

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Propuesta de Mejora del Diseño de la Planta de Empaque de Conservas para Incrementar la Productividad en una Agroindustria, Trujillo

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Industrial

AUTORES:

Longa Salazar, Yuli Jhakelines (orcid.org/0000-0001-9775-4033)

Rojas Bustamante, Viviana (orcid.org/0000-0003-3303-4891)

ASESORES:

Dr. Aranda Gonzalez, Jorge Roger (orcid.org/0000-0002-0307-5900)

Dr. Linares Lujan, Guillermo Alberto (orcid.org/0000-0003-3889-4831)

LÍNEA DE INVESTIGACIÓN:

Gestión Empresarial y Productiva

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

TRUJILLO – PERÚ

DEDICATORIA

Le dedicamos este trabajo a DIOS para que en estos momentos cruciales que estamos atravesando, pueda mantenernos saludables, logrando nuestras metas y llevarnos por el camino correcto

A nuestras familias por su constante apoyo en todo el proceso de nuestra carrera universitaria, especialmente a mis padres por dejarme el legado de la humildad y dignidad

AGRADECIMIENTO

A nuestros padres, que son nuestros modelos a seguir y nos llevan por el camino correcto en la vida, quienes nos brindaron su apoyo necesario para poder culminar nuestra carrera universitaria y que son personas emprendedoras que nos apoyan, asesoran y motivan para seguir luchando por nuestro objetivo como profesionales y personas.

Así mismo a las personas más importantes en nuestras vidas, a nuestros hermanos quienes nos motivaron durante todo este tiempo, a nuestros hijos que son el motivo de nuestros días y el motivo por seguir adelante, al amor de mi vida por brindarme comprensión y darme la fuerza necesaria para cumplir mi objetivo profesional.

A mi angelito y mis abuelitos en el cielo, por bendecirnos con su luz divina y poder cumplir nuestras metas propuestas.

A la gerencia de planta de la empresa Danper Trujillo S.A.C., por la oportunidad de desarrollar el proyecto y a nuestros asesores por formarnos en el cambio y mejora continua.

Índice de contenidos

CA	RÁTULA	i
DE	DICATORIA	ii
AG	RADECIMIENTO	iii
ĺnd	ice de contenidos	iv
ĺnd	ice de tablas	V
ĺnd	ice de figuras	vi
RE	SUMEN	vii
AB	STRACT	. viii
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	5
III.	METODOLOGÍA	11
	3.1. Tipo y diseño de investigación:	11
	3.2. Variables y Operacionalización	11
	3.3. Población, muestra y muestreo, y unidad de análisis	12
	3.4. Técnicas e instrumentos de recolección de Datos	13
	3.5. Procedimientos	14
	3.6. Método de Análisis Estadístico de Datos	17
	3.7. Aspectos éticos:	18
IV.	RESULTADOS	20
V.	DISCUSIÓN	53
VI.	CONCLUSIONES	57
VII.	RECOMENDACIONES	58
RE	FERENCIAS	59
AN	FXOS [.]	64

Índice de tablas

Tabla 1: Técnicas instrumentos	.14
Tabla 2: Técnicas de Recolección de Datos	.14
Tabla 3: Descripción de las Técnicas e Instrumentos de Recolección de Datos.	.14
Tabla 4: Procedimiento de Datos	.18
Tabla 5: Registro de Datos para el Abastecimiento de Pallets para Etiquetado	.26
Tabla 6: Ficha de registro de datos para el traslado de materiales	.27
Tabla 7: Ficha de registro de datos para el proceso de Empacado	.28
Tabla 8: Sobrecostos Anuales por Abastecimiento de Producto y Materiales	.30
Tabla 9: Matriz de recorridos	.31
Tabla 10 Matriz de Esfuerzos	.31
Tabla 11 Formatos Representativos de Etiquetado Manual	.32
Tabla 12: Productividad Mano de Obra del Formato A10 – Año 2021	.33
Tabla13: Productividad del Etiquetado del formato A-10 – FCL's por Hora	.33
Tabla 14: Productividad de la Mano de Obra – Preparación de Paletas	.34
Tabla 15: Productividad de la Preparación de Paletas para Embarque	.34
Tabla 16: Evaluación de las 5'S	.35
Tabla 17: Costos por Incumplimiento de las 5'S	.36
Tabla 18: Pareto de la Problemática observada	.36
Tabla 19: Costos De la Problemática	.37
Tabla 20: Cálculos método Gourchet de la línea de empaque	.42
Tabla 21 Registro de Datos de Tiempo antes de Rediseño de Planta	.43
Tabla 22: Matriz de Distancia Propuesto	.44
Tabla 23: Matriz de Esfuerzos	.45
Tabla 24: Distancia y Tiempo después de la Mejora	.45
Tabla 25 Plan de Capacitación de las 5'S	.48
Tabla 26: Organización del Armario de Accesorios para Calibrar Máquinas	de
Etiquetado	.49
Tabla 27: Estandarización de Actividades	.51
Tabla 28: Impacto a Nivel de Reducción de Costos	.52

Índice de figuras

Figura 1: Ilustración de superficies parciales	15
Figura 2: Guía de observación	17
Figura 3: Comparativo Ventas Proyectadas y Ejecutadas 2021 y 2022	21
Figura 4: Participación Porcentual de los Productos	21
Figura 5: Organigrama de la Empresa	23
Figura 6: Problemas detectados en la operación de empaque	25
Figura 7: Layout actual del Área de Empaque	30
Figura 8: Formato A-10 para el Etiquetado Manual	32
Figura 9: Diagrama de Ishikawa	38
Figura 10: Diagrama Causa Efecto	39
Figura 11: Diagrama Causa Efecto	40
Figura 12: Diagrama Causa Efecto	41
Figura 13: Dimensiones de las Máquinas - Método Guerchet para el cá	lculo de
superficies	42
Figura 14: Distribución Propuesta del Área de Empaque	44
Figura 15: Layout propuesto para el proceso de empaque	47
Figura 16: Ubicación de Accesorios Rotulados y Clasificados por Uso	49
Figura 17: Técnica del Poka Yoke	50

RESUMEN

La presente investigación tuvo como objetivo general mejorar el diseño de la planta

de empaque para incrementar la productividad de embarques de conservas

vegetales en una agroindustria. Trujillo con la metodología de enfogue cuantitativo.

del tipo aplicada y de diseño pre experimental. La población está conformada por

las instalaciones, maquinaria y personal del área de empaque y almacén de

producto terminado.

Se concluye que la mejora en el rediseño aplicando el método de Guerchet y la

matriz de esfuerzo, en las instalaciones de una empresa de manufactura, logra la

mejora de la productividad de sus actividades en un intervalo del 20.5% al 37.21%.

Se determinó que la mejora en el diseño de las instalaciones de la planta de

empague tiene un impacto económico, cuyo valor esperado de los tres escenarios

equivale a S/49,844.73 lo que equivale a una reducción moderada del 35.83% del

costo total anual encontrado.

Palabras Claves: Rediseño, Eficiencia, Producción, Procesos.

vii

ABSTRACT

The present investigation had as a general objective to improve the design of the

packing plant to increase the productivity of shipments of canned vegetables in an

agro-industry, Trujillo, with the methodology of quantitative approach, of the applied

type and of pre-experimental design. The population is made up of the facilities,

machinery and personnel of the packaging area and finished product warehouse.

It is concluded that the improvement in the redesign applying the Guerchet method

and the effort matrix, in the facilities of a manufacturing company, achieves the

improvement of the productivity of its activities in a range of 20.5% to 37.21%.

It was determined that the improvement in the design of the packing plant facilities

has an economic impact, whose expected value of the three scenarios is equivalent

to S/49,844.73, which is equivalent to a moderate reduction of 35.83% of the total

annual cost, found.

Keywords: Redesign, Efficiency, Production, Processes.

viii

I. INTRODUCCIÓN

Actualmente la población se encuentra en una expansión muy veloz, por tal motivo al rediseño de planta debemos explorar los más grandes beneficios que podamos obtener de los procesos al optimizar y encontrar una productividad eficiente, por tal motivo es que el rediseño de una planta es un pilar principal para aportar y solucionar los problemas. Según Aguilar B. (2018)

Mayormente las empresas tienen un sistema de producción manual y poco automatizado, que bajo su proceso no permite cubrir la totalidad de la demanda requerida, ocasionando demoras en los empaques, sus tiempos establecidos de despacho en la entrega, la pérdida de credibilidad, impacto en sus ventas, clientes insatisfechos, perdida de posicionamiento en el mercado y finalmente impactan negativamente en la economía de la empresa.

Por lo que el rediseño de una planta es fundamental para el ordenamiento y la disminución de los costos de la empresa, lo cual generaría un incremento en la productividad de los procesos, sin embargo, no muchas empresas dan la debida importancia, con este cambio implica ordenamiento y aprovechamiento de lugares necesarios para movimiento de sus materiales, servicios, almacenamiento, equipo y maquinaria.

Realizando este cambio de rediseño del proceso en la organización y que es primordial para el desarrollo de sus actividades, su deficiente funcionamiento acarrea problemas de gran magnitud que afectarían seriamente a sus niveles de producción, sus sistemas de distribución, sus exportaciones, importaciones e incluso la paralización total o parcial de sus actividades (Velásquez, 2018).

Según Salvarote (2018), menciona que las estaciones de los procesamientos se realizan a través de Márkov con tiempo continuo y estaciones discretas, para él es importante que en las etapas de proceso no se tenga estaciones innecesarias, por ello es importante que cuando empiezan a surgir este tipo inconvenientes se debe aplicar un rediseño de planta, para ello conseguir un mejoramiento de planta de procesos significa tener mayor capacidad de producción, por tanto se debe determinar que variables y cuales necesitan ser cambiadas, mejoradas o

implementadas en base a la importancia que tenga un proceso, una vez que se tenga finalizada se debe establecer cambios con la finalidad que se obtenga incremento en la productividad del proceso y ante cualquier tiempo de mejoras ocasionara positivamente a la diminución de los costos y un aumento de la productividad.

Uniendo nuestras variables primordiales de nuestro tema a realizar, ya que señala la distribución de planta y la productividad, Jain (2014), la eficiencia de la producción depende de la manera correcta como este distribuido la planta, por este motivo la industria busca encontrar la mejor forma para disminuir problemas y con la finalidad de aumentar la productividad

En tal disminuyó la productividad por parte de los trabajadores, esto se traduce en un descenso de rentabilidad profesional, para ello la solución fue en analizar el cuello de botella, medir el rendimiento de los procesos, eliminar los desperdicios, realizar un estudio de la distribución de la planta, con el objetivo que los procesos sean más eficientes y productivos para la organización.

De manera general todas las empresas en sus inicios, realizan un diseño de acuerdo a sus necesidades, sin embargo, conforme la empresa va creciendo esta se debe ir adaptando a los cambios que se le presentaran, es en estas situaciones que su diseño inicial ya no es la adecuada, es en este momento en donde se le tiene que hacer un nuevo diseño o una nueva redistribución. Las causas por los que sucede estos cambios son: el aumento de la producción y necesita un mayor espacio, la tecnología y procesos también pueden influir a un cambio y finalmente la utilización de equipos e instalaciones que también se necesite ciertas modificaciones. (García, 2017).

Asimismo, indica sobre la importancia de la productividad como una ventaja competitiva y la razón entre la salida y entrada generando ahorro de costos (Carro, 2016). Hoy en día las industrias necesitan solucionar los diferentes problemas y aumentar la productividad expresándolo en mayor capacidad de producción y de mejor calidad, los equipos de trabajo, espacios y el aumento en los pedidos de los clientes, generando así un disponer de una mayor capacidad

en sus instalaciones y lograr una eficiencia en los tiempos de producción. (Lehlake et al., 2018).

La realidad de la empresa agroindustrial radica que las operaciones en la planta son en un 60% manual y el 40% son apoyados con máquinas etiquetadoras, embolsadoras y paletizadoras. Las actividades manuales requieren de acondicionar mesas de trabajo y esperar el abastecimiento de los productos (conservas vegetales en hojalata o en vidrio). Por la distribución de las mesas, los espacios para el abastecimiento de producto se reducen, incrementan los tiempos de recorrido, se generar mermas. Las mesas de trabajo se ubican a criterio del supervisor y las actividades se traducen en improductivas y costosas. El embarque del producto terminado se realiza según las salidas de producto terminado del área de empaque, lo que provocan demoras para la carga del camión, tiempos excesivos en la salida de las unidades cargadas generando falsos fletes para la empresa y el proveedor.

En este contexto se formuló la pregunta de investigación: ¿En qué medida la mejora del diseño de la planta de empaque incrementará la productividad de los embarques de conservas vegetales en una agroindustria, Trujillo? La empresa contó con espacios reducidos y existió dificultades para la continuidad de los empaques.

La justificación de la investigación es por cuatro razones: justificación Metodológica: con el resultado de la investigación se obtuvo evidencias que demostraron la aplicación de la herramienta de diseño de plantas como impacto en la productividad, el cual permitió contribuir a nueva información que fue de gran utilidad para el desarrollo de las investigaciones que se relacionan con la investigación empírica; justificación Práctica: se estableció herramientas adecuadas y fue de gran beneficio para el incremento de la productividad en la empresa agroindustrial en la sección operativa de empaque de conservas vegetales, y a su vez, la empresa tenga un valor agregado que justifique aún más la rentabilidad de sus operaciones; Justificación social: para una mejor disposición de planta se requirió una mayor cantidad de mano de obra para el trabajo en unas nuevas líneas de empacado, para las actividades manuales que

exigen los clientes para diversos tipos y modelos de empaque y **justificación Teórica**: se tomó como base de estudios realizados sobre el diseño de plantas industriales y la productividad en actividades manuales o semiautomatizadas. Esta teoría nos permitió demostrar el valor que tienen el rediseño de las instalaciones en el afán de mejorar la productividad en diversas actividades de gestión empresarial.

El Objetivo general fue mejorar el diseño de la planta de empaque para incrementar la productividad de embarques de conservas vegetales en una agroindustria, Trujillo; los objetivos específicos son:

OE1 : Diagnosticar la distribución de planta y productividad del área de empaque de conservas vegetales en la empresa agroindustrial Trujillo.

OE2 : Mejorar el rediseño de la planta de empaque en la empresa agroindustrial Trujillo.

OE3 : Implementar mejoras de corto y mediano plazo del rediseño de planta.

OE4 : Determinar un impacto en el incremento de la productividad de los embarques de conservas de vegetales en la empresa agroindustrial Trujillo.

II. MARCO TEÓRICO

El rediseño industrial tuvo fuertes raíces que fueron consecuencias del cuestionario a la estética de los primeros objetos de la producción industrial, lo cual han influido en la vida laboral que ha generado una disposición de todas las áreas laborables, muchos años atrás, el hombre mismo era quien se encargaba de desarrollar y llevar a cabo el trabajo de realizar sus propias distribuciones, con la aparición de la revolución industrial todo cambio, los mismos propietarios fueron los que buscaron un objeto económico cuando estudiaron los cambios de sus propias fabricas con el objetivo de mejorar su productividad.

Antecedentes internacionales, según la tesis de (Roa, 2017) titulada "Propuesta para el diseño y distribución de planta para las instalaciones de producción de biopinturas mediante técnicas de ingeniería". Bio Pinturas S.A.S. corresponde a una empresa familiar dedicada a la fabricación de pinturas, anticorrosivos, esmaltes, adhesivo para baldosa, vinilo, entre otros productos, además de esto. se dedica a la comercialización de productos para la construcción y remodelación, que en el diagnóstico encontró que la productividad de la mano de obra fue del 17% por debajo del valor estándar, y que dejaron de producir 3.8 contenedores de pinturas y corrosivos, siendo el impacto económico de 35150 dólares anuales. De tal manera, se logra en ellos una opción para realizar el diseño del almacén, utilizando el análisis del ABC y realizando las siete técnicas del almacenaje, tratando de arreglar la localización de los productos y disminuir la distancia del recorrido para realizar la recolección de estos. Tiene por objetivo general la de Proponer un diseño y distribución en planta para la planta de producción de Bio Pinturas, bajo un enfoque de mejoramiento en los procesos de flujo y transporte de materiales, almacenamiento y formulación de políticas de ordenamiento de puestos de trabajo, con técnicas de ingeniería. En esta investigación se concluye que para el diseño y distribución en planta del programa de producción se generó una proyección de la demanda por tipo de familias como adhesivo, pintura, agregados y abrasivo, donde se presenta una disminución del 9% para el primer año y 6% para el segundo año respecto al último año de la demanda histórica, esto debido a que la familia pintura es la que tiene mayor participación en las ventas, y disminuye en 14% y 9% para el primer y segundo año respectivamente.

Antecedentes nacionales. Según (Godoy, 2019), nos dice que la problemática encontrada es que no pueden definir la ubicación de la maquinaria y equipos para la producción de calzado, eso asociado a la alta frecuencia de movimiento del personal para ir de una estación de trabajo a otra, lo que dificulta la productividad. La pregunta formulada es ¿De qué manera el diseño y redistribución de la planta se relaciona con la productividad en la microempresa de calzado Rossel, distrito del Agustino – Lima? El tesista aplica una correlación entre la productividad y el diseño de las instalaciones. Lo que concluye que con la prueba de Chi Cuadrado de Pearson existe una fuerte relación entre la productividad y el rediseño de las instalaciones. Los resultados encontrados con la matriz de esfuerzos fue de 9156 ton x m y en la mejora logró 7596 ton x m, incrementando la productividad en 20.5%.

Según la tesis (Rebaza, 2021) titulado "Distribución de planta para incrementar la productividad en taller de mantenimiento y reparación de empresa Chang Asociados S.A.C.", indica que la empresa cuenta con 750 m2, en la cual las oficinas administrativas están definidas, hay deficiencias en las ubicaciones de mantenimiento, planchado, recepción, pintura, lavado y otros. Por lo que, la calidad y tiempos de entrega estarían siendo afectados por esta problemática y los clientes ya han manifestado reclamos a la administración. En resumen, la empresa no cuenta con una buena distribución de sus instalaciones y se manifiesta por el desorden con el cual trabajan los operarios, las actividades son improductivas y demandan mayor tiempo de entrega de los productos a los clientes. Para la solución se logró realizar un diagnóstico de la distribución actual, y emplearon el método de Guerchet para determinar las áreas adecuadas para cada una de las estaciones de trabajo, y el incremento de la productividad fue del 25.53% y 37.21% para los servicios y para los equipos respectivamente.

Antecedentes locales. Según, (Díaz, 2020) en su tesis se encarga de describir como problemática la deficiente distribución de sus instalaciones en la producción de hormas de calzado. Mediante el estudio descriptivo y explicativo basado en fuentes bibliográficas, la observación directa de los procesos de

producción; así como las operaciones en planta y con las visitas a planta, se logró identificar la problemática con empleo del diagrama causa – efecto. Con la aplicación de las herramientas de distribución de planta se logró la mejora, reduciendo recorridos, minimizando los tiempos muertos, y aplicando fichas técnicas para medir la eficiencia en planta. Se concluye la mejora de la productividad en la producción de hormas de calzado en un 27.6% y la reducción de los costos de mano de obra en 11%. Asimismo, la eficiencia física de la producción mejoró en un 15% y el impacto económico que redujo los costos en un 12.2%.

Coronel (2017). En su trabajo "Propuesta de la distribución de planta para incrementar la productividad en la empresa grifería industrial y comercial NC S.R.L., lima, 2017". Se propuso el objetivo de establecer de qué manera la distribución de planta aumentara la productividad final de la empresa. La población que fue estudiada estuvo conformada por ciertos días antes y después de estar aplicado la distribución de planta, asimismo la muestra que se tomo fue semejante a la población. Para esto la técnica que se utilizo fue la observación y como herramienta se utilizó fichas de acopio de información. Resultado de todo el estudio se llegó a la conclusión que se logró incrementar un 29 %, de esta manera se llegó a la conclusión que la propuesta de realizar una distribución de planta ayuda en el aumento de la productividad de la empresa.

Por otra parte, todos los antecedentes con referencia a tema a trabajar están relacionados con la distribución de planta y la productividad de las empresas.

De este modo podemos decir que la distribución de planta nos hace referencia a la disposición física de todas las labores u actividades y procesos que se realizan al interior de dicha planta de producción, estudiando cada una de las áreas relacionadas a los procesos productivos (Sortino, 2001).

En otras palabras, el rediseño y la distribución tiene el objetivo de poder organizar de la manera correcta a todos los espacios donde se hace todas las actividades productivas (Salazar, 2010)

Así mismo mediante la distribución de planta se trata de disminuir las rotaciones

u movimientos que no son necesarios, aumentar la seguridad de los trabajadores, aumentar una mejor calidad de vida para el personal y disminuir los riegos que pudieran presentarse a los materiales, herramientas y equipos (Benavides, 2013)

La ejecución de una distribución intercepta en la eficiencia de la construcción, así como en la productividad de la empresa por tal razón es de vital importancia conocer las ocasiones en donde se puede realizar una mejora sobre las actividades de producción (Pérez, 2016).

Por otro lado, en la investigación se encuentran diferentes tiempos para realizar una distribución de planta que son empleados en base a las necesidades de cada empresa, actualmente se tiene cuatro tipos de distribuciones, las cuales se mencionara a continuación: distribución básica, por producto, por producto estático, por celular y procesos (Baca, 2014).

En la distribución por producto en posición fija, esta se hace cuando se requiere que el proceso fluya sobre el producto (Baca, 2014).

Por otro lado, la distribución por proceso se tiene que realizar en los espacios o lugares del trabajo que se hallen en asociación de acuerdo a la labor que realicen en dicho lugar, pero no existe una correlación con el producto que recorre por las áreas según la necesidad que se solicite.

Así mismo en la distribución por celular, se unen los elementos en familia de los cuales sus etapas o procesos son similares.

Para poder realizar la distribución de planta se requiere la utilización de diferentes técnicas como por ejemplo el procedimiento de relación de actividades y para la metodología de análisis como lo es el método Guerchet, este método ayudó a realizar el cálculo de los espacios físicos para la maquinaria, elementos móviles y estáticos.

Definición de productividad: Según López, García y Casanovas (2007) "la productividad es conocida como la relación que existe entre la suma de producción y todos los recursos que se utilizan para poder alcanzar dicho nivel

de producción, mejor dicho, la razón entre todas las salidas y entradas.

Por otro lado, Gutiérrez (2020), asegura que la productividad aumenta las unidades sin producir o recursos que exceden a lo brindado (mano de obra, insumos, tiempo etc.), por lo tanto, se llega a la conclusión que la productividad como la relación entre la cantidad de unidades y servicios con la cantidad de elementos que se utilizan para ellos.

Diseño de planta: Para Chease y Aquilano (2012) "Cuando se decide realizar una distribución dentro de una empresa u planta, se tiene que estudiar la ubicación de las áreas y estaciones de trabajo, herramientas y máquinas de trabajo. El objetivo primordial es contar con todos los elementos de tal manera nos ayuden a tener un flujo continuo del trabajo.". (pág. 221)

Distribución de planta: **La** distribución comprende la colocación de las cosas físicas de todos los factores de la producción, teniendo en cuenta las maquinarias, personal, herramientas y construcciones. Sus técnicas se utilizan bajo dos situaciones:

Construcciones nuevas en proyectos o alguna mudanza, también se considera una redistribución por una mala distribución al inicio o por algunos cambios en el alrededor.

La función primordial del trabajo fue investigar la adecuada opción para poder arreglar las áreas de labor y cada una de las máquinas para obtener un margen económico más rentable para la empresa y así poder cumplir con todos los objetivos principales que son aportar una mejor seguridad y una mejor satisfacción a los trabajadores para que puedan tener un gran rendimiento.

A continuación, se mencionará alguna de las ventajas por cada tipo de distribución:

- 1. Por proceso: se puede producir una gran cantidad de materia prima
- 2. En cadena: Menor tiempo en todo lo pasos de producción, ya que se necesita menor cantidad de materiales.

La supervisión es más fácil.

No hay presencia de los desperdicios de materiales en el área de trabajo.

3. Por Posición fija: En el proceso y en lo producto fabricado se pueden realizar cambios a cada momento.

Es más económica y no necesita mucho diseño en la distribución.

No hay tiempos muertos

Guerrero Marín Manuel Andrés. (2001, octubre 11). Distribución en planta y área de trabajo, Según el autor menciona que el diseño de planta, existen variables para la toma de decisión según la productividad de su proceso y depende de la forma física, planta o con el que se cuenta y se presentan en forma esquemática los diferentes flujos del proceso que serán utilizados en la industria.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación:

El tipo de nuestra investigación fue cuantitativa aplicada conocida como activa por estar vinculada a la investigación pura, por lo que el tipo de investigación trata de solucionar dificultades de la vida laboral, además de controlar ocurrencias prácticas. Tamayo (2017).

El trabajo de investigación fue el diseño Preexperimental, por el motivo que el estudio de investigación se efectúo para establecer los efectos de la manipulación (Hernández 2014)

3.2. Variables y Operacionalización

3.2.1. Variable independiente: Rediseño de planta

- Definición conceptual. "Diseño de planta es el orden de todos los factores e implica encontrar un orden en la disposición de las máquinas y equipos, logrando costos mínimos y recorridos eficientes". (Salazar, 2016)
- Definición operacional, la distribución de planta consiste en optimizar las áreas de cada una de las estaciones de trabajo para realizar actividades óptimas, espacios reducidos y a costos competitivos.

3.2.2. Variable dependiente: Productividad

- Definición conceptual: Es la relación que existe entre todo lo que se produce y teniendo en cuenta a todos los medios que se emplean para lograr el objetivo o lo que se va a producir (Betancourt, 2017).
- Definición operacional: Estudiar y analizar a la productividad,
 con referente a lo producido y la cantidad de recursos que se

utilizó, este estudio nos permitirá saber si la organización logra manejar de la manera correcta sus recursos que tiene a su alcance (Aguilar, 2017).

3.3. Población, muestra y muestreo, y unidad de análisis

"La población es una porción de los elementos con ciertas características y que las distinguen como totalidad del fenómeno a estudiar" (Sánchez, 2019), de los cuales fue conformada por 12 personas del área de empaque etiquetado del formato galón.

Criterio de inclusión: Tomamos en consideración como población al conjunto de los elementos en la empresa a estudiar, ya que estos elementos tienen una gran relación con el rendimiento de sus labores.

Criterio de exclusión: Se consideró a todos los elementos de la empresa, ya que todos tienen mucha importancia para poder realizar la investigación, todos los elementos intervienen y guardan una gran relación para el momento de desarrollar las actividades productivas.

La muestra que se realizo fue parecida a la población, por tal motivo se realizó un muestreo por conveniencia.

Muestra: Son los centros de actividad de la planta de producción agroindustrial; específicamente el área de empaque de conservas, en las que existen las líneas de empaque (etiquetado y encajado de conservas), los tiempos de etiquetado y la sección de embarques como almacén de producto terminado para la exportación de conservas vegetales.

Muestreo:

El muestreo fue no probabilístico por conveniencia, solo se excluyó lo que no estaba relacionado al almacén de empaque por motivos de enfoque de la investigación.

Unidad de análisis:

Se consideró a los trabajadores de la estación de etiquetado de la empresa Agroindustrial de Trujillo, bajo cumplimiento con los criterios de inclusión y exclusión establecidos para la presente investigación.

3.4. Técnicas e instrumentos de recolección de Datos

Técnicas

En este presente trabajo de investigación se usó: la observación directa, con la finalidad de evaluar la distribución actual e identificar las oportunidades de mejora, análisis documentario, con relación a la productividad actual de los embarques, con ello dependió la validez y confiabilidad del estudio, que podrá exponer con evidencias el logro planteado en dicha investigación.

Para el desarrollo de nuestra investigación se realizó teniendo en cuenta el primer objetivo específico, el cual se centra en realizar el diagnóstico de la planta actual del área de empaque de conservas vegetales en la empresa agroindustrial Trujillo, continuando se utilizó la técnica de observación, seguido a esto utilizamos el DAP, que es un importante diagrama para realizar análisis de procesos, El desarrollo del siguiente objetivo específico consistió en diseñar la mejora del rediseño de la planta de empaque en la empresa agroindustrial Trujillo, para esto utilizamos la observación, así mismo como tercer objetivo implementar mejoras de corto y mediano plazo del rediseño de planta finalmente el cuarto objetivo específico enfocado en determinar un impacto en el incremento de la productividad de los embarques de vegetales en la empresa agroindustrial Trujillo, donde se optó por el procedimiento de la observación y también una ficha de acopio de datos con importante información de la productividad al inicio del estudio y la obtenida producto de rediseño.

Tabla 1: Técnicas instrumentos

Variable	Técnica	Instrumento
Diseño de planta	Análisis documental	Cuestionario
	Estudio de movimientos	DOP - DAP
		Formatos de datos de
Productividad	Guías de Observación	productividad
	Indicadores	Método Guerchet

Tabla 2: Técnicas de Recolección de Datos

Método	Fuente	Técnica
Cualitativo	Primaria	Encuesta
		Observación directa
Cuantitativo	Primaria	Análisis
		Documentario

Tabla 3: Descripción de las Técnicas e Instrumentos de Recolección de Datos

Técnica	Justificación	Instrumentos	Aplicación
Entrevista	Se logra detectar la problemática en	Guía de entrevista	Jefe de Área de
	el área de Empaque de la empresa.		Empaque
	Se conocería los niveles de		
	productividad generado por la		
	distribución de planta actual		
Encuesta	Se logra conocer el nivel de	Cuestionario	Jefe de Área de
	frecuencia de los problemas		Empaque,
	encontrados actualmente en la		Supervisores
	distribución de planta y el impacto en		de Línea y
	la productividad de las operaciones		Controladores
	de empaque		
Observación	Permite identificar oportunidades de	Guía de observación	Proceso de
directa	mejora, dado la forma de trabajo del		empaque de
	personal y la disposición de los		conservas
	equipos y zonas de trabajo		

3.5. Procedimientos

Los procedimientos que se tuvieron en cuenta para el desarrollo de la investigación fueron de acorde con los objetivos planteados.

Todas las actividades realizadas, fueron de acorde con los objetivos específicos, por esta razón se inició realizando un estudio general de la

empresa para poder analizar en qué situación se encuentra actualmente, para esta actividad se hizo mediante el uso del diagrama de Ishikawa luego se prosiguió a utilizar el DAP que nos sirvió para analizar las operaciones, como el recorrido de planta, como segundo punto se optó por realizar un cálculo de los índices de productividad inicial, un análisis de servicios realizados, la mano de obran que necesitan, insumos que utilizan, a través de esto se determinó cual es la ganancia que obtienen por cada sol que invierten, como último se tuvo que determinar el espacio que necesita cada área para realizar su trabajo y el análisis de la relación y para esto utilizamos el método Guerchet.

3.1,1. Método Guerchet:

Nos permite hallar el área que ocupa cada maquinaria, el número de máquinas, dimensiones y otros elementos, para ello se calcula de la siguiente manera:

Formula:

$$St = Ss + Sg + Se$$

Donde:

St: Superficie total **Sg**: Superficie gravitación **Ss:** Superficie estática **Se:** Superficie de evolución

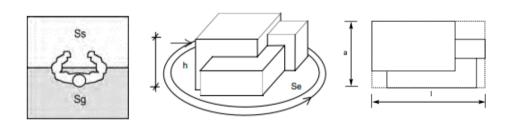


Figura 1: Ilustración de superficies parciales

Superficie estática: área ocupada por maquinas equipos que se encuentran estáticos o fijos, su fórmula corresponde:

Ss= largo x ancho

Superficie gravitacional: área que ocupada por los operarios y materiales complementarios para el proceso y halla el número de lados de cada equipo estático.

Sg= superficie estática x número de lados

Superficie de evolución, corresponde a los espacios entre los puestos de operación que es usada para el recorrido del personal, el transporte, equipos y la salida del producto.

$$Se = (Ss + Sg) * K$$

K= coeficiente de evolución Para su cálculo se utiliza un factor "k" denominado coeficiente de evolución, que presenta una medida ponderada de la relación entre las alturas de los elementos móviles y los elementos estáticos

En la presente investigación se realizó una encuesta cuyo objetivo es de obtener todos los datos necesarios para poder emplear en la investigación, la encuesta está basada en una serie de preguntas fueron dirigidas a una adecuada muestra. Utilizando la encuesta se puede obtener diferentes opiniones. motivaciones. emociones. comportamientos y diferentes características de cada una de las personas encuestadas, y a partir de esa información podemos generalizar para toda la población (Briones, 2018). En la investigación se utilizó la encuesta con la única finalidad de poder obtener todos los problemas y la frecuencia que ocurre estos dentro de las áreas y su relación que tiene con el desempeño de la productividad dentro de la empresa a estudia. Se aplicó a todos los trabajadores que se encuentren laborando más de un año en la empresa, a los controladores, supervisores y jefatura del área de almacén y empaque. La encuesta se realizó en escala Likert (con cinco diferentes respuestas, nunca, raras veces, a veces, a menudo y siempre), con la finalidad de obtener la frecuencia con la que ocurre ciertos problemas que son encontrados. Se llevó a cabo en la oficina de la jefatura, se consideró una duración de 10 minutos. El instrumento es el cuestionario.

GUIA DE OBSERVACION									
Situación: Guia de observación de la infraestructur	ra de la planta	de empaqu	ie						
I: Datos generales									
a) Zonificación () Urbana b) Propiedad () Propiio c)Modalidad de uso () Exclusivo	() Rural () Alquiler () Compartio	do	() Otros						
II: Aspectos evaluados:									
Aspectos de observación	Todas	Algunas	Ninguna	Observaciones					
El area cumple con los requisitos establecidos para el proceso de empacado									
El area ha sido evaluado por defecsa civil									
El material de construcción es adecuado para el proceso requerido									
Existe suficiente ventilación en el area									
La iluminación es adecuada para desarrolar las actividades									
Existe suficiente espacio para que los trabajadores se movilicen y desarrolen sus actividades de manera correcta									
El area esta organizada para las actividades de etiquetado									
Ladistribución de maquinas y equipos responde a la secuencia del proceso.									
El area cumple con los requisitos establecidos para el proceso de empacado									

Figura 2: Guía de observación

3.6. Método de Análisis Estadístico de Datos

Todos los datos que se obtuvieron fueron registrados en programas de una laptop, mediante la cual se utilizó cuadros estadísticos, para ello utilizamos la estadística descriptiva, guías de observación, y wincha; estos datos fueron recolectados analizados e interpretados de la manera correcta, después todos estos datos recolectados se plasmaron con la ayuda del Microsoft Word en la presente tesis.

Tabla 4: Procedimiento de Datos

Diagnóstico del Problema	Diagnóstico de la distribución física	Diagnóstico de la productividad	Mejora de Diseño	Resultados del diseño	Impacto económico
Recolección de	Identificar	Unid.	Planeamiento	Comparativo	Costo Beneficio
datos	áreas	producidas	rianoamiento	Comparativo	Coolo Borionolo
Entrevista	Zonas de trabajo	Productividad de la Mano de Obra	Sistemático	Antes y después	de la propuesta
Encuesta	Evaluar Indicadores	Actividades	de la Distribución	de la mejora	de mejora
Observación	IDL, IFO y IFS	Productivas	(PSD)	Mediciones de	
Proceso de dato		No Productivas		Unidades producidas	
Histogramas				Productividad de MO	
Diagrama Causa Efecto				Actividades	
Diagrama de Pareto				Productivas	
Tablas matriciales				No Productivas	
				Análisis IDL	

3.7. Aspectos éticos:

En la investigación, se observó que existen principios buenos y unas excelentes conductas que son aceptables dentro de la investigación, gracias a estos aspectos éticos se lograron obtener toda la información útil para poder ejecutar la investigación. Por estas razones el investigador valida que toda la información y datos obtenidos no serán alterados dentro de la investigación, esta acción demuestra que el investigador tiene valores morales y éticos que hacen valer la confidencialidad de este trabajo de investigación, asimismo se respetó con total normalidad las normas que están vigentes en la Universidad Cesar Vallejo, por último, punto se manejó con total discreción todos los datos de las personas encuestadas y pautas de la empresa. A continuación, se da a conocer los aspectos éticos que se tienen en cuenta para esta investigación:

La información que se plasmó en este documento es de carácter confiable, la ética profesional es vital para toda la información y análisis de los datos, toda la investigación plasmada y expuesta en el proyecto fue veraz y confiable, toda la información plasmada y expuesta se realiza mediante la aceptación del representante de dicha empresa.

Por último, las personas responsables de la investigación se hacen cargo ante cualquier consecuencia que se pueda presentar asimismo garantizan un respeto a todos los miembros que se encuentran implicados en la investigación.

IV. RESULTADOS

4.1. Descripción de la Empresa

El Perú posee una amplia variedad de hortalizas, de las cuales el mayor volumen es fabricado en el norte del país, donde tenemos la alcachofa, pimiento y el espárrago, lo cual son hortalizas más apreciadas por los gastrónomos y es considerada como especialidades en los restaurantes más conocidos, sus múltiples propiedades y beneficios para la salud de las personas han hecho que sean reconocidos a nivel mundial.

Es por ello por lo que las empresas agroindustriales son consolidadas como empresas líderes en el sector agrícola, que utilizan sus productos de primera calidad; para esto, cuentan con grandes cantidades de auspiciadores, los cuales se encargar de cumplir todos los requisitos que la empresa requiere como son: suministros, insumos y diferentes materiales.

Para ello han avanzado con gran éxito la actividad agroindustrial de producción y exportación de conservas de espárrago, alcachofa, pimiento del piquillo, hortalizas en general y frutas, así como espárragos frescos y congelados.

Por su misma posición en el mercado estas empresas cuentan con ventajas internacionales de conformidad para sus productos, procesos, servicios y gestión desde el campo hasta el destino final. Esto les otorga competitividad en las transacciones comerciales internacionales.

Entre sus certificaciones exigidas por el ente regulatorio de alimentos tiene:

- HACCP (sistema de análisis de peligros y puntos críticos de control)
- ISO9001 (sistema de gestión de calidad)
- ISO 14001 (sistema para la administración de las obligaciones ambientales de una organización)
- BRC (consorcio de minoristas ingleses -sistema de seguridad

alimentaria)

- BASC (alianza empresarial internacional para un comercio segurosistema de gestión de control de seguridad)
- GLOBAL GAP y USGAP (buenas prácticas agrícolas)
- CERTIFICACIÓN SA 8000 (normas internacionales sobre derechos humanos y leyes laborales nacionales y convenciones de la Organización Internacional del Trabajo (OIT).

En cuanto al mercado y sus ventas, exportan sus productos con US\$ 220 millones de ventas, cerca del 28% más que el 2020, mientras que en el 2022 se espera cerrar las ventas en US\$ 300 millones, los principales productos que se ha incrementado son los frescos 29%, congelados 21% y los cultivos de alcachofa 22%, pimiento 18% y espárrago10%.

Figura 3: Comparativo Ventas Proyectadas y Ejecutadas 2021 y 2022

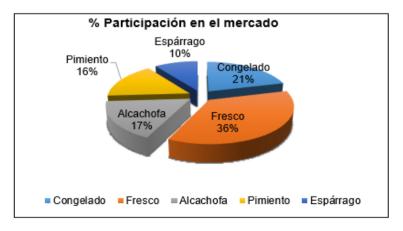


Figura 4: Participación Porcentual de los Productos

4.2. Organigrama

La empresa tiene un organigrama que define claramente los niveles jerárquicos y de autoridad representados por un CEO y las gerencias corporativas.

Se describen algunos puestos de trabajo para el desarrollo de la presente investigación.

- Gerencia de calidad. Elabora las pruebas de conformidad del producto bajo las normas e índice de calidad determinados.
- Producción. Transforma insumos y recursos en productos finales (bienes)
- Mantenimiento. Proporciona oportuna y eficientemente, los servicios que requiera la Empresa en mantenimiento preventivo y correctivo a las instalaciones, así como la contratación de la obra pública necesaria para el fortalecimiento y desarrollo de las instalaciones físicas de la Empresa.
- Contraloría y Finanzas. Gestiona todo lo relacionado con las finanzas de la Empresa y el presupuesto de la empresa.
- Compras. Realiza las adquisiciones necesarias en el momento debido, en la cantidad y calidad requerida y a precio adecuado.
- Recursos humanos. Selecciona y contrata al personal idóneo para cada puesto laboral vacante, y también se ocupa del mantenimiento del personal con posibilidades y comodidades, en buenos ambientes, con respeto y tolerancia.
- Comercialización. Responsable de crear la demanda y vender los productos en los distintos mercados.

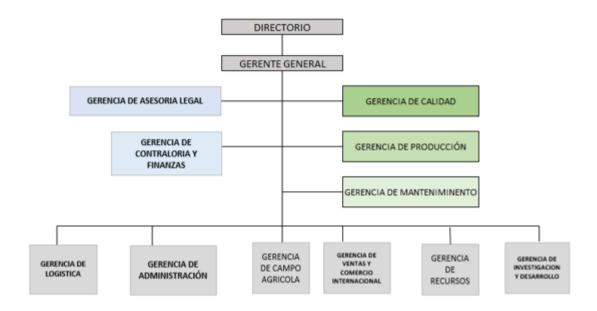


Figura 5: Organigrama de la Empresa

4.3. Resultados del primer objetivo específico:

4.3.1. Diagnóstico de la productividad:

La empresa agroindustrial, se dedica a la producción y exportación de múltiples variedades de conserva, en este caso nos enfocaremos en el área o proceso del empaque de estas, en donde logramos identificar diversos problemas. Entre unos de los problemas que logramos observar fue en las productividades parciales y totales en el empaque de la producción del empacado de contenedores que se tiene que exportar, asimismo se observó que es inadecuada la distribución de dicha planta, por lo que no ayuda a que los trabajadores y maquinas realicen sus funciones para contribuir con la productividad.

Las líneas de procesos de empacado de las conservas se describen en la siguiente lista.

Lista 1. Áreas y proceso de producción de empacado de conservas

- Abastecimiento de producto:
- El abastecimiento de los productos se ejecuta a través de un programa de empaque según la necesidad de pedido de venta y cliente.
- Etiquetado:
- Se balancea grupos de 8 personas, de las cuales dos se encargan de verificar el etiquetado y codificado de acuerdo con las presentaciones solicitadas por el cliente.
- Línea continua empaque:
- Se maneja también el empaque en línea formado por 8 y 16 operarios ubicados en ese orden para realizar etiquetados manuales.
- Marcado de cajas:
- Se encargan de preparar y marcar las cajas para cada tipo de producto según el requerimiento del cliente. Lo conforman 4 marcadores, 3 pegadores de cabezales por turno de 10 horas.
- Llenado de envases a cajas:
- Los operarios se encargan de llenar los envases a sus cajas de acuerdo con el lote de producción. Estas cajas son trasladadas a etiquetado según requerimiento.
- Paletizado y enzunchado:
- Proceso el cual las cajas son estibadas en parihuela de madera, bajo conformaciones del total de cajas y/o envases por pallets de acuerdo con requerimiento de cliente.
- Despacho en camiones destino terminal Callao; proceso

donde los pallets se encuentran protegidos con zunchos flejes plásticos y protegidos con film industrial, para ser cargado en las unidades de transporte, con destino de arribo al terminal del Callao Lima. La productividad de la línea de empaque se ha calculado por áreas y los procesos correspondientes a cada área. Para ello sea aplicado la siguiente formula:

$$P = \frac{Productos\ etiquetados}{Tiempo}$$

4.3.2. Análisis estadísticos:

Data de Análisis Estadístico de recopilados	Frecuencia	% Acum.
Distribución deficiente de las zonas de trabajo	72	25.3
Recorridos innecesarios por acumulación de paletas	68	49.1
Falta de experiencia en el manejo de inventarios	42	63.9
Demoras en la entrega de la ficha técnica	40	77.9
Demoras en la calibración de la máquina	22	85.6
Demoras en el picking de los productos	21	93.0
Demoras en el paletizado final del producto	20	100.0

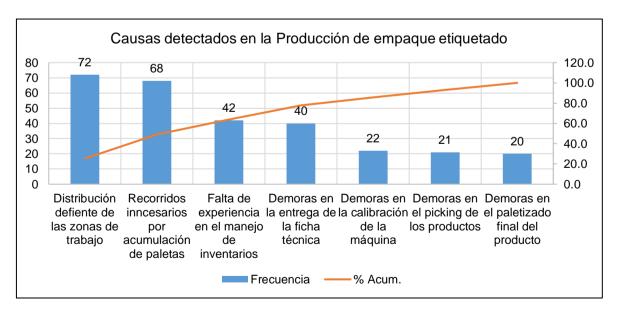


Figura 6: Problemas detectados en la operación de empaque.

4.3.3. Diagrama de operaciones:

 Tabla 5: Registro de Datos para el Abastecimiento de Pallets para Etiquetado

			DIAGRAMA	ANALITICO	DE PRO	CESOS				
Diagrama n°	_	ma de is n° 1								
Método	Act	tual	Actividad	Gráfico	Aactual	Mejorado		Comienza		
			Operación		1					
φφ			Transporte		6			Termina	a	
	4		Espera		0					
Proceso	produc	niento de to para	Inspección		0		E	laborado	por	
	etiquetar		Almacén		0		Viviana Rojas Yuli Long			
			Combinada		1		VIVIAIIA	un congu		
			Tota	al	8					
Descripción	Tiempo (Seg)	Distanci a (m)							Descripció	
El operario se traslada a tomar la stocka hidráulica	25	720		•						
Ubica el producto a tomar de acuerdo a programa de empaque	540		•							
El operario traslada el producto a etiquetar	28	720		•						
El operario se traslada a retirar el pallets empacado	300			•						
El operario se traslada a ubicar cajas para abastecer a la linea de empque	420			•						
El operario traslada el pallets empacado a la zona de enzunchado	600	2100		•						
Carga la bateria de la stocka hidráulica	1800	400						•		
Retira saldos de lotes abastecidos	300			•						
Total	4013	3940	1	6	0	0	0	1		

Tabla 6: Ficha de registro de datos para el traslado de materiales

			DIAGRAMA	ANALITICO D	E PROCESOS				
Diagrama n°		e análisis n° L							
Método	Act	tual	Actividad	Gráfico	Actual	Mejorado		Comienza	
			Operación		2				
		Transporte		3			Termina		
			Espera		0				
Proceso	Traslado de		Inspección		0			Elaborado p	or
	de empaque		Almacén		0		Vhdana	Dalas V	uli Lanan
			Combinada		1		Viviana Rojas Yuli Longa		
Descripción	Tiempo (Seg)	Distancia (m)							Descripción
El operario lleva su carrito para trasladar las cajas a las 3 lineas de empaque	180	1600		•					
Setraslada a la zona de embalajes	300			•					
El operario verifica el lote a empacar	120							—	
Toma paquetes completos a la cantidad a solicitar	360		•						
Regresa a la linea de empaque y abastece las cajas a los operarios de las 3lineas de empaque.	480	1600		•					
Retira las cajas sobrantes y devuelve al auxiliar de marcado de cajas.	540	1600	•						
Total	1980	4800	2	3	0	0	0	1	

En la tabla 6, muestra los datos referentes del análisis de las operaciones seleccionados, de esta forma se obtuvo que el tiempo total utilizado para dicha actividad es de 2.26 horas y un recorrido total de 144.4 metros de distancia.

4.3.4.

Tabla 7: Ficha de registro de datos para el proceso de Empacado

			DIAGRAMA	ANALITICO D	E PROCESOS				
Diagrama n°	Diagrama d	e análisis n° 1							
Método	Act	tual	Actividad	Gráfico	Actual	Mejorado		Comienza	
			Operación		2				
			Transporte		3			Termina	
			Espera		0				
Proceso		Traslado de materiales			0			Elaborado p	or
	de empaque		Almacén		0		Milan	Balas W	
			Combinada		1		Viviana Rojas Yuli Long		uli Longa
Descripción	Tiempo (Seg)	Distancia (m)							Descripción
El operario lleva su carrito para trasladar las cajas a las 3 lineas de empaque	180	1600		•					
Se traslada a la zona de embalajes	300			•					
El operario verifica el lote a empacar	120							—	
Toma paquetes completos a la cantidad a solicitar	360		•						
Regresa a la linea de empaque y abastece las cajas a los operarios de las 3lineas de empaque.	480	1600		•					
Retira las cajas sobrantes y devuelve al auxiliar de marcado de cajas.	540	1600	•						
Total	1980	4800	2	3	0	0	0	1	

			DIAGRAMA	ANALITICO D	E PROCESOS				
Diagrama n°	Diagrama de								
Método	Act	ual	Actividad	Gráfico	Aactual	Mejorado		Comienza	
			Operación		2				
			Transporte		3			Termina	
			Espera		2				
Proceso	Proceso de	empacado	Inspección		0		E	laborado por	
			Almacén		0		Viviana	Rojas Vuli	Longa
			Combinada	\bigcirc	0		- Viviana Rojas Yuli Longa		conga
			To	tal	7				
Descripción	Tiempo (Seg)	Distancia (m)							Descripción
El operario se traslada a la linea de empaque	240	1600		•					
Toma las cajas para llenar los envases etiquetados	180		-<						
Al cambio de lote tiene que esperar que abastezcan cajas para llenar los envases	540	1600			•				
Por cada cambio de lore tiene que esperar que abastezcan el producto para etiquetar.	540				•				
El operario traslada una parĥuela de madera para paletizar las cajas.	120	900		•					
El operario baja las cajas para paletizar en un pallets de madera	240	300							
madera Las cajas paletizadas son retiradas de la zona de encajado.	300	1300		•					
Total	2160	5700	2	3	2	0	0	0	

Tabla 8: Sobrecostos Anuales por Abastecimiento de Producto y Materiales

Actividad	Número de	Tiempo por	Recorrido por
	operaciones	contenedor (horas)	contenedor (m)
Demoras en abastecimiento de	7	2.8	964
producto			
Demoras en entrega de	5	0.6	68
materiales de empaque			
Total, actual	12	3.4	1032
Total, estándar	10	3.0	880
Diferencia	2	0.4	152
% Exceso	20.0%	13.3%	17.3%
Costo mensual		S/ 11,923.2	S/ 3,357.8
Costo anual			S/ 15,281.0

El sobrecosto por demoras en el abastecimiento de producto es de S/ 11,923.2 y por demoras en las entregas de materiales de empaque es de S/ 3,357.8 anuales.

4.3.5. Cálculo del esfuerzo en la distribución actual

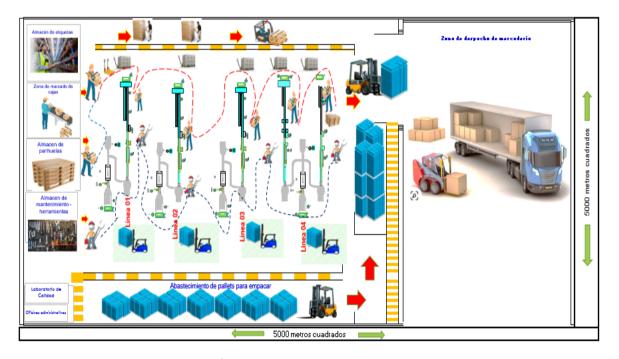


Figura 7: Layout actual del Área de Empaque

Nota. Se hizo la distribución con la guía de observación.

Tabla 9: Matriz de recorridos

Distancia en metros	Zona de Picking abastecimiento a línea de etiquetado	Zona de Parihuelas	Preparación de Embalajes	Almacén Etiquetas	Zona de empacado	Almacén de químicos
Zona de Picking	-					
abastecimiento a			65	52		
línea de etiquetado						
Zona de Parihuelas	45					12
Preparación de				37		
Embalajes				O.		
Almacén Etiquetas	32					
Zona de empacado				62		
Almacén de químicos				42		

La matriz de recorridos y distancias se muestra en la tabla 8, de acuerdo con la distribución mostrada en la figura 7. Se observa a la zona de picking que corresponde a al abastecimiento de producto para las actividades de empaque a las líneas de etiquetado.

Tabla 10 Matriz de Esfuerzos

Cantidad de	Cantidad de	Cantidad de	Cantidad de	Cantidad de	Zona de	Almacén
Contenedores	Contenedores	Contenedores	Contenedores	Contenedores	empacado	de
, Toneladas	, Toneladas	, Toneladas	, Toneladas	, Toneladas	страсаао	químicos
Zona de	-					_
Picking						
abastecimiento			23	24		
a línea de						
etiquetado						
Zona de	26					15
Parihuelas	20					13
Preparación de				32		
Embalajes				32		
Almacén	25					
Etiquetas	25					
Zona de				18		
empacado				10		
Almacén de				25		
químicos						
Valor del	8243	Ton x m				
Esfuerzo	0243	1011 X 111				

En la tabla 9, se muestra el valor actual del esfuerzo con la disposición de los procesos, 8243 Ton x m.

4.3.6. Productividad de la mano de obra.

Se va a enfocar en dos actividades.

- Etiquetado Manual de conservas en formato A-10
- Preparación de paletas para embarque

Para el etiquetado manual se tomó como referencia en producto más representativo de la actividad manual en el área de empaque, que corresponde al formato A-10 y representan el 62% de la actividad manual (se incluye el A-8 por ser un formato similar al A-10). Figura 8

En la tabla 11 se indica el formato que más veces se trabaja el etiquetado manual. Corresponde el formato A-10 con un 40.8% y otro formato similar el A-8 con un 21.7%, en consecuencia, se determina que el formato A-10 es representativo de la actividad manual.

Figura 8: Formato A-10 para el Etiquetado Manual

Tabla 11 Formatos Representativos de Etiquetado Manual

Formato	Cantidad, FCL's	%
15 onzas	3	2.5%
A-8	26	21.7%
A-10	49	40.8%
28 onzas	13	10.8%
250 ml	7	5.8%
460 ml	17	14.2%
8 onzas	5	4.2%
Total	120	100.0%

En la tabla 11, se registran las unidades etiquetadas del formato A-10 mes a mes

durante el año 2021. En el mes de octubre se registró la cantidad mínima de unidades etiquetadas, siendo el indicador de productividad para ese mes 0.219 contenedores por hora. En el mes de junio se registra la cantidad máxima de etiquetado de 258400 unid del formato A-10; siendo la productividad de 0.299 contenedores por hora. La empresa tiene un indicador meta de 0.287 contenedores por hora. Se observa que la productividad en el promedio global cae en un 10% comparado con el valor estándar.

Tabla 12: Productividad Mano de Obra del Formato A10 – Año 2021

Mes	Unidades	Horas	Contenedores	Contenedores	Variación,
	etiquetadas	hombre, HH	por hora	por hora - Meta	%
1	189000	2158	0.280	0.287	-2.5%
2	194400	2650	0.224	0.287	-21.9%
3	223200	2839	0.262	0.287	-8.7%
4	203210	2381	0.320	0.287	11.5%
5	208800	3245	0.232	0.287	-19.0%
6	258400	2645	0.299	0.287	4.0%
7	172800	2389	0.241	0.287	-16.0%
8	180000	2205	0.249	0.287	-13.1%
9	180000	2419	0.238	0.287	-17.2%
10	165600	2205	0.219	0.287	-23.7%
11	194400	2592	0.281	0.287	-2.0%
12	223200	2688	0.254	0.287	-11.6%
Promedio	199418	2535	0.258	0.287	-10.0%

La problemática se presenta en la cantidad promedio de contenedores que se dejan de etiquetar por mes que son en total 5.7 contenedores (ver tabla 12). Estos contenedores pasan al plan de embarques del mes siguiente.

Tabla13: Productividad del Etiquetado del formato A-10 – FCL's por Hora

Valor	Productividad, Contenedores por hora	Horas totales por mes	Cantidad de contenedores por mes
Promedio	0.258	200	51.7
Estándar	0.287	200	57.4
Diferencia	0.029		5.7

De la tabla 13 se deduce que las 18 personas en línea de etiquetado tienen 0.392 horas en exceso por contenedor. El sobrecosto de la improductividad, considerando 24 contenedores por mes, asciende a **S/ 11,684.7 anuales**. Asimismo, se logró calcular **la productividad de la preparación de paletas** para embarque. En la

tabla 13, se muestra el registro mensual para el año 2021.

Tabla 14: Productividad de la Mano de Obra – Preparación de Paletas

Mes	Contenedores	Horas	Contenedores	Contenedores	Variación,
	preparados	hombre, HH	por hora	por hora -	%
				Meta	
1	25	232.5	0.323	0.31	4.1%
2	27	324.0	0.250	0.31	-19.4%
3	31	334.8	0.278	0.31	-10.4%
4	31	308.6	0.301	0.31	-2.8%
5	29	348.0	0.250	0.31	-19.4%
6	22	220.2	0.300	0.31	-3.3%
7	24	237.6	0.303	0.31	-2.2%
8	25	155.0	0.323	0.31	4.1%
9	25	205.0	0.244	0.31	-21.3%
10	23	215.6	0.320	0.31	3.2%
11	27	283.5	0.286	0.31	-7.8%
12	31	214.5	0.289	0.31	-6.8%
Promedio	27	256.6	0.289	0.310	-6.8%

En el proceso de empaque se realiza la actividad de paletizado, enzunchado y forrado de las paletas. En la tabla 13, se observa que la productividad realizada es de 0.289 contenedores por hora y el valor objetivo aceptable es de 0.310 contenedores por hora, es decir el problema se presenta que la operación tiene 6.8% de productividad por debajo de lo establecido.

Esta situación conduce que las actividades de preparación de paletas para embarque tengan un déficit de 4.2 contenedores por mes. Lo que obliga a reprogramar despachos perjudicando al plan de embarques de la empresa.

Tabla 15: Productividad de la Preparación de Paletas para Embarque

Valor	Productividad, Contenedores por hora	Horas totales por mes	Cantidad de contenedores
Promedio	0.289	200	57.8
Estándar	0.310	200	62.0
Diferencia	0.021		4.2

De la tabla 15 se deduce que hay un exceso de tiempo de preparación de paletas de 0.234 horas/contenedor, para 24 contenedores y 6 personas en línea, se tiene un sobrecosto de **S/ 2,325.0** anuales.

4.3.7. Evaluación de las 5's en la planta de producción

Después de una charla, se va a determinar el punto inicial de la metodología de las 5's, iniciando por una evaluación de la situación actual. Ciertas actividades se trabajan con ciertos criterios de limpieza junto con organización, esto implica que se tiene que tener implementado las 5's, solo se realiza por actividades inherentes al proceso productivo. En la tabla N° 18, se da a conocer la calificación alcanzada de esta evaluación de 5's. Corresponde una calificación de 20 puntos, que está ubicado al límite del criterio "muy bajo".

Tabla 16: Evaluación de las 5'S

LAS 5S	LAS 5S		LAS 5S	LAS 5S
Clasificar		6	20	30%
Organización		4	20	20%
Limpieza		6	20	30%
Estandarización		2	20	10%
Disciplina		2	20	10%
Total		20	100	100%

Puntaje de	implementación de la	s 5s
Muy baja	0 - 20	

Muy baja	0 - 20
Baja	20 - 40
Regular	40 - 60
Buena	60 - 80
Muy Buena	80 - 100

Los resultados que se obtuvieron nos indican, que la calificación mínima se muestra en la base principal de la estandarización y la disciplina. Se concluye que en el área de producción no tiene los documentos necesarios ni tampoco los pasos lo que indica que no tienen ningún criterio en el orden de una mejora continua asimismo se observa que la disciplina en dicha planta de producción es totalmente ajena. De tal manera, no hay ningún orden ya que no se conoce un lugar seguro para las herramientas las mismas que deben estar rotuladas para su fácil acceso. La limpieza se realiza de manera superficial.

La falta de estandarización y disciplina ha generado costos asociados al

tiempo de búsqueda de herramientas y la limpieza se observan en la tabla siguiente.

Tabla 17: Costos por Incumplimiento de las 5'S

Sección de Trabajo	Tiempo de ubicación de Herramientas	Tiempo de limpieza de herramientas
Máquina Etiquetadora 1	2.10	3.00
Máquina Etiquetadora 2	2.10	3.00
Máquina Etiquetadora 3	3.00	2.67
Tiempo total (min)	7.20	8.67
Tiempo estándar (min)	6.80	7.50
Diferencia (sobretiempo)	0.40	1.17
Costo mensual	S/ 351.00	S/ 1,026.68
Costo Anual	S/ 4,212.00	S/ 12,320.10
Costo Total Anual		S/ 16,532.10

Los costos totales son equivalentes a S/ 15,532.10 anuales; entre los costos de tiempo excesivo para la búsqueda fue de S/ 4,212.0 y el tiempo de limpieza asciende a S/ 12,320.

4.3.8. Diagrama de Pareto de la problemática observada

Tabla 18: Pareto de la Problemática observada

Ítem	Problemática observada	Frecuencia	%
1	Demoras en el abastecimiento (picking)	82	28.8%
2	Demoras en las entregas de materiales	78	27.4%
3	Baja productividad en el etiquetado	42	14.7%
4	Baja productividad en el armado de paletas	40	14.0%
5	Baja productividad por inadecuada distribución	22	7.7%
6	Incumplimiento de la metodología de las 5'S	21	7.4%
	Total	285	100.0%

En la tabla 18, se indica que las causas representativas de la problemática son 4, las cuales suman un 80% del total de las frecuencias encontradas. La distribución deficiente de las zonas de empacado, la demora en el picking de los productos, la falta de experiencia en el manejo del inventario de producto terminado y la demora en la calibración de las máquinas.

La deficiente distribución de las zonas de trabajo, no han permitido una

productividad de la mano de obra que se encuentre en el promedio o supere el valor objetivo establecido por el área.

Asimismo, en la siguiente tabla se determina los costos involucrados en la problemática.

Tabla 19: Costos De la Problemática

Entorno	Problema	Costos (S/)	%
Método	Demoras en el abastecimiento (picking)	11,923.2	15.35%
Método	Demoras en las entregas de materiales	3,357.8	4.32%
Mano de Obra	Baja productividad en el etiquetado	11,684.7	15.04%
Mano de Obra	Baja productividad en el armado de paletas	2,325.0	2.99%
Maquinaria	Baja productividad por inadecuada distribución	31857.3	41.01%
Método	Incumplimiento de la metodología de las 5´S	16,532.1	21.28%
	Total	S/ 77,680.1	100%

La problemática observada demanda un sobrecosto actual de S/ 77,680.10 anuales. El más representativo es por la inadecuada distribución con un 41.01% del total equivalente a S/ 31,857.3; esto se explica porque se dejan de embarcar 5.7 contenedores (ver Tabla 13)

Figura 9: Diagrama de Ishikawa

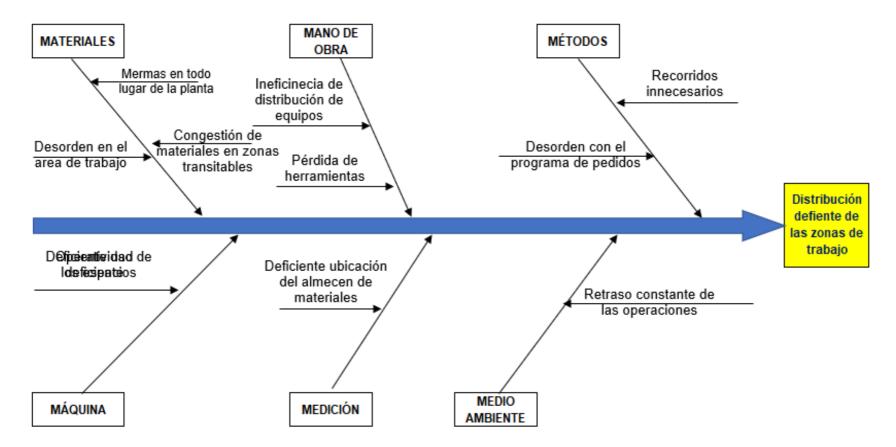


Figura 10: Diagrama Causa Efecto

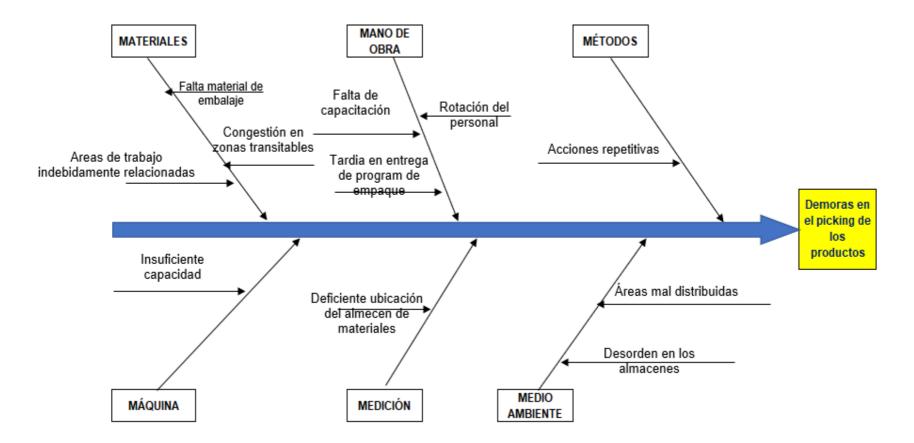


Figura 11: Diagrama Causa Efecto

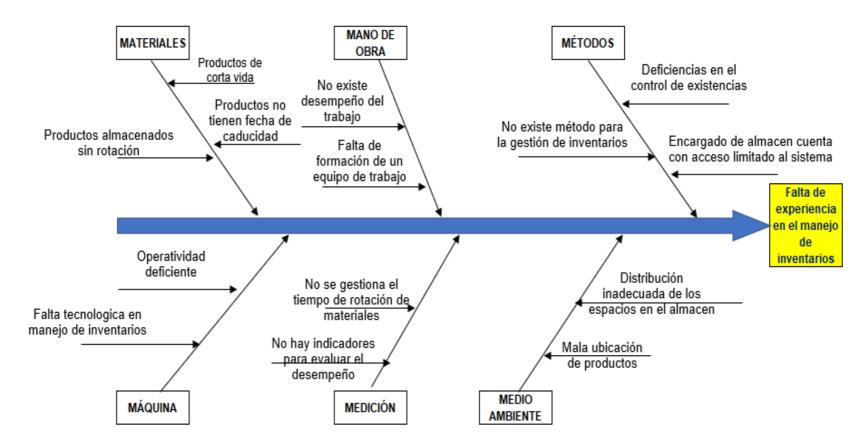
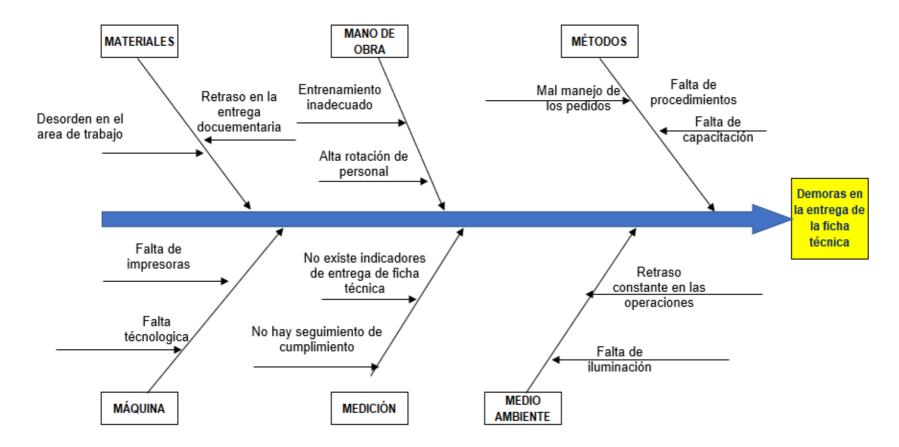



Figura 12: Diagrama Causa Efecto

Una de las metodologías usadas es la espina de pescado o llamado Ishikawa, esta herramienta nos permite analizar y desarrollar un análisis a profundidad e identificar las causas potenciales, con el cual se pretende solucionar gran parte de los problemas expuesto en el diagrama.

Para mejorar el diseño de la planta de empaque, se ha realizado toma de datos dimensionales de las máquinas que son usadas en el proceso de empacado:

Tabla 20: Cálculos método Gourchet de la línea de empaque

	Método Gourchet								
ITEM	DESCRIPCIÓN	N	n	Largo	ancho	Ss	Sg	Se	St
Α	Consola de alimentación	4	3	4	3	12	36	17	89
В	Maquina Abastecimiento	4	3	4	4	16	48	112	208
С	Maquina etiquetadora Rotativa	4	1	3	2	6	6	18	30
D	Faja pulmón	4	4	6	2	12	48	108	204
Е	Máquina codificadora	2	1	2	1	2	2	6	10
F	Máquina de vacío	4	1	3	2	6	6	18	30
G	Máquina de rayos x	2	1	5	4	20	20	60	100
Н	Fajas para Codificado de Cajas	4	2	2	2	4	8	20	36
I	Maquina encintadora	6	2	4	3	12	24	60	108
J	Mesa paletizado	6	2	4	2	8	16	40	72
K	Maquina Paletizadora	4	1	4	2	8	8	24	40
L	Stocka eléctrica	6	1	2	2	3	3	9	15
									942

El espacio usado corresponde a 942 metros, de acuerdo con estos datos procedemos a calcular los volúmenes de cada una de las máquinas.

Figura 13: Dimensiones de las Máquinas - Método Guerchet para el cálculo de superficies

Tabla 21Registro de Datos de Tiempo antes de Rediseño de Planta

	Descripción de distancias y tiempo evaluado						
ITEM	DESCRIPCIÓN	Zona A	Zona B	DISTANCIA (m)	TIEMPO (min)		
	Consola de	Consola de	Máquina		3.0		
Α	alimentación	alimentación	Abastecimiento	2.0	0.0		
	Maquina	Máquina	Máquina etiquetadora		3.0		
В	Abastecimiento	Abastecimiento	Rotativa	2.4	3.0		
	Maquina etiquetadora	Máquina etiquetadora			2.0		
С	Rotativa	Rotativa	Faja pulmón	1.2	2.0		
D	Faja pulmón	Faja pulmón	Máquina codificadora	0.8	2.0		
Е	Máquina codificadora	Máquina codificadora	Máquina de vacío	1.2	3.0		
F	Máquina de vacío	Máquina de vacío	Máquina de rayos x	0.8	1.0		
	M		Fajas para Codificado	0.0	1.0		
G	Máquina de rayos x	Máquina de rayos x	de Cajas	0.8			
	Fajas para Codificado	Fajas para Codificado		2.0	2.0		
Н	de Cajas	de Cajas	Maquina encintadora		0		
- 1	Maquina encintadora	Maquina encintadora	Mesa paletizado	1.0	3.0		
J	Mesa paletizado	Mesa paletizado	Maquina Paletizadora	0.9	2.0		
K	Maquina Paletizadora	Maquina Paletizadora	Stock a eléctrica	6.0	4.0		
	Tota	l, distancia y tiempo		19.1	26.0		

Antes de realizar el rediseño, la distancia recorrida fue de 19.1 metros y el tiempo que se utilizó para el desarrollo de todas las actividades fue de 26 minutos.

4.4. Resultado del segundo objetivo específico

4.4.1. Mejora del diseño de la planta de empaque.

Propuesta de la distribución.

Se observa que el almacén de químicos no influye en las actividades de empaque. La zona de parihuelas está al final de la línea, dado que la operación inicia desde el lado derecho, en la cual se requieren el abastecimiento de producto y de etiquetas y a la salida del producto empacado se requiere de las parihuelas para el paletizado y forrado de paletas.

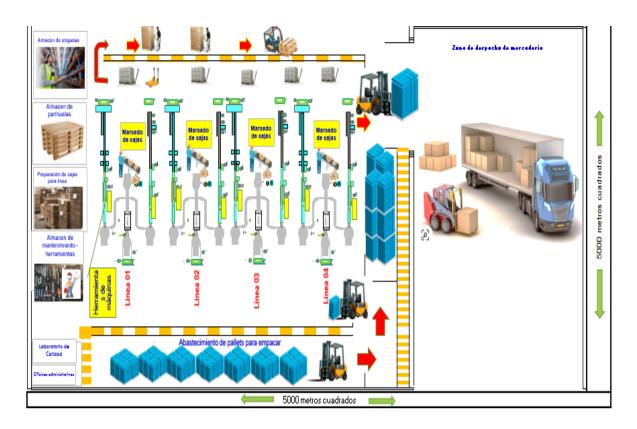


Figura 14: Distribución Propuesta del Área de Empaque

Se observa la distribución propuesta, el almacén de etiquetas se ubica cerca a la preparación de los materiales de embalaje; estos corresponden a cintillos, etiquetas en las cajas, el marcaje de fechas de producción o lotes agrupados en las cajas entre otros.

Tabla 22: Matriz de Distancia Propuesto

Distancia en metros	Zona de Picking abastecimiento a línea de etiquetado	Zona de Parihuelas	Preparación de Embalajes	Almacén Etiquetas	Zona de empacado	Almacén de químicos
Zona de Picking abastecimiento a línea de etiquetado		-	22	12		
Zona de Parihuelas Preparación de Embalajes	25			28		52
Almacén Etiquetas Zona de empacado Almacén de químicos	32			32 28		

Cada zona identificada se mide con respecto a otra zona y se registra en la matriz que se muestra en la Tabla 22.

Tabla 23: Matriz de Esfuerzos

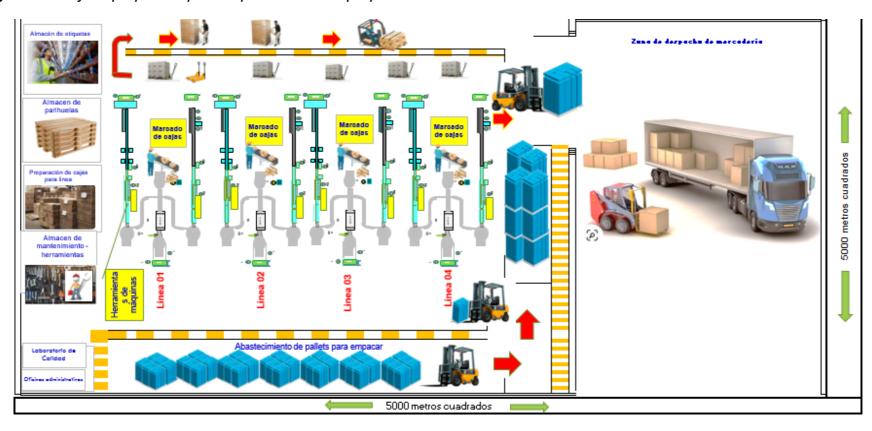
Cantidad de Contenedores, Toneladas	Zona de Picking abastecimiento a línea de etiquetado	Zona de Parihuelas	Preparación de Embalajes	Almacén Etiquetas	Zona de empacado	Almacén de químicos
Zona de Picking abastecimiento a linea	mica de oriquetado		23	24		quiiiiooo
de etiquetado Zona de Parihuelas Preparación de	36			32		15
Embalajes Almacén Etiquetas Zona de empacado	45			18		
Almacén de químicos Valor del Esfuerzo	6086	Ton x m		25		

Cálculo de la mejora de la Productividad

$$\Delta P_r = \frac{8243 - 6086}{6086} \times 100\% = 35.4\%$$

Con la propuesta se tiene una variación de la productividad positiva, lo cual indica un incremento del 35.4% con respecto a la distribución deficiente.

Tabla 24: Distancia y Tiempo después de la Mejora


				DISTANCIA	TIEMPO
ITEM	DESCRIPCIÓN	Zona A	Zona B	(m)	(min)
	Consola de	Consola de	Máquina		3.0
Α	alimentación	alimentación	Abastecimiento	1.0	0.0
	Maquina	Máquina	Máquina etiquetadora		3.0
В	Abastecimiento	Abastecimiento	Rotativa	1.4	3.0
	Maquina etiquetadora	Máquina etiquetadora			2.0
С	Rotativa	Rotativa	Faja pulmón	1.0	2.0
D	Faja pulmón	Faja pulmón	Máquina codificadora	0.8	2.0
Е	Máquina codificadora	Máquina codificadora	Máquina de vacío	1.0	3.0
F	Máquina de vacío	Máquina de vacío	Máquina de rayos x	0.8	1.0
			Fajas para Codificado		1.0
G	Máquina de rayos x	Máquina de rayos x	de Cajas	0.8	1.0
Н	Fajas para Codificado de Cajas	Fajas para Codificado de Cajas	Maquina encintadora	1.0	2.0
	-	-	•	4.0	0.0
ı	Maquina encintadora	Maquina encintadora	Mesa paletizado	1.0	3.0
J	Mesa paletizado	Mesa paletizado	Maquina Paletizadora	0.9	2.0
K	Maquina Paletizadora	Maquina Paletizadora	Stocka eléctrica	6.0	4.0
	Tota	l, distancia y tiempo		15.7	26.0

La distancia final que se recorrió después del rediseño de planta fue de

15.7 metros y el tiempo que se utilizó para el lograr todas las actividades fue de 26.0 minutos. El motivo por el cual solo se bajó un metro es que no todas las máquinas significaban cuello de botella, y las máquinas cuello de botellas acortaron para bajar el tiempo de procesamiento, tal fue el caso de del área de embotellado.

Diseño de la mejora propuesta del rediseño de la planta de empaque

Figura 15: Layout propuesto para el proceso de empaque

4.5. Implementar mejoras de corto y mediano plazo del rediseño de planta

4.5.1. Sensibilización y capacitación en la metodología 5'S

En la tabla 23, se muestra la propuesta con un programa de charlas o capacitaciones, en donde el tiempo es de 3 horas y el tema es sobre la metodología de las 5's. Las capacitaciones internas que se tiene son de mucha importancia porque nos permite informar a los trabajadores y difundir esta metodología con el propósito de lograr una cultura de gran calidad y con buenas prácticas de igual manera lograr que los trabajadores tengan una nueva opinión y que sea diferente en donde la limpieza y el orden son parte fundamental en cada uno y diferentes procesos.

Tabla 25 Plan de Capacitación de las 5'S

TEMA	OBJETIVOS	TIEMPO (MIN)	ORIENTACIONES
DEFINICIÓN DE LA	Conocer los principios y	15	Proyección de videos de casos
METODOLOGÍA DE LAS 5S	aplicaciones		de éxito en diferentes empresas
CLASIFICACIÓN	Conocer los beneficios	30	Explicación para el nombramiento del líder del equipo, colocación de tarjetas, formatos de control, uso de criterios del proceso de selección
ORDEN Y ORGANIZACIÓN	Conocer los beneficios	30	Establecer los criterios para el orden y organización, inventario de equipos
LIMPIEZA	Conocer los beneficios	30	Establecer los criterios para el orden y organización, programar limpieza profunda
ESTANDARIZACIÓN	Conocer los beneficios	30	Implementar procedimientos para el control de cambios, formatos y responsabilidades
DISCIPLINA	Conocer los beneficios	30	Establecer indicadores, diseño e implementación

4.5.2. Plan de actividades

SEIRI - Clasificación

El objetivo de esta implementación es eliminar el tiempo en exceso que obliga la tardanza en la calibración de las máquinas etiquetadoras.

Las áreas que son elegidas como piloto son las áreas de torno y forjado, porque es en donde se muestra la mayor realización de trabajos; por lo que se logra evidenciar el desorden y suciedad, aparte de ello no cuentan con un método de trabajo y se utiliza una disciplina que no es útil.

Tabla 26: Organización del Armario de Accesorios para Calibrar Máquinas de Etiquetado

Tipo	Ubicación	Medidas
Cabeza Hexagonal y Hexagonal Embas	1° Nivel (mm)	8, 10, 13, 17, 19, 22, 24, 27, 30, 32, 36, 41, 46, 50, 55.
	2° Nivel (plg)	1/4, 5/16, 3/8, 1/2, 5/8, 1, 1-1/4, 1-1/2
Cabeza Cuadrada	2° Nivel (mm)	8, 10, 13, 17, 19, 22, 24, 27, 30, 32, 36, 41, 46, 50, 55
Cabeza Rectangular	3° Nivel (mm)	10 x20, 12 x 20, 15x25
Cabeza Redonda	3° Nivel (mm)	19, 22, 24, 27, 30, 32, 36, 41, 46, 50, 55.

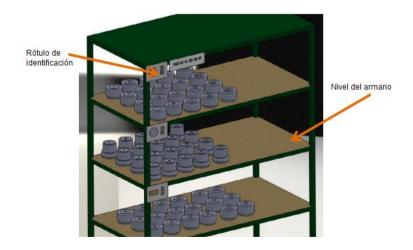


Figura 16: Ubicación de Accesorios Rotulados y Clasificados por Uso

En la figura 16, podemos verificar que los accesorios se ubican en los niveles de dicho armario, que se encuentran ordenas con un rotulo en cada uno de los nieles, de esta manera se logra la identificación correspondiente, es más fácil dar con la ubicación y logrando minimizar los tiempos en la calibración de dichas máquinas.

4.5.3. Con la técnica Poka Yoke

En la primera S, es indispensable, esto confirma y asegura que todos los accesorios y herramientas de trabajo no se mezclen y se arme una confusión, así se logra seleccionar rápidamente y evitar la pérdida de tiempo. Loa accesorios y herramientas serán codificados con la finalidad de poder ingresar en el sistema de inventarios, de la tal manera todas las herramientas para la calibración y de limpieza serán clasificados por su tamaño, por la frecuencia que se usa, es decir debe estar bien visible.

El ejemplo de presentación se puede observar en la figura N°16

Figura 17: Técnica del Poka Yoke

Estandarización. Se realiza en todas las áreas que son asignadas como piloto y producción, con la finalidad de hacer una

costumbre la implementación de las 5'S.

Las inspecciones que se propusieron se deben realizar tal cual lo indica en la tabla 27, en donde se tiene que respetar todo el paso con respecto al tiempo, hora inicial y frecuencia.

Tabla 27: Estandarización de Actividades

Actividades Implementar la aplicación de	Tiempo (min)	Hora inicio	Frecuencia
Red Card Inspección de ubicación de herramientas y accesorios	6	4:50 p. m.	Diario
Inspección de ubicación de parihuelas, estantes y	3	4:57 p. m.	Diario
accesorios Revisar la disposición de	3	4:57 p. m.	Diario
maquinas Inspección de la limpieza por	10	Medio día	Mes
áreas Proponer indicadores de nuevas ubicaciones de las herramientas y accesorios	30	4.30: p.m.	Semanal
•	10	Medio día	Semanal

4.6. Impacto en el incremento de la productividad de los embarques

Por lo explicado en las tablas 22 y 23, la productividad se incrementa en un 35.4%, esto permite a la planta recuperar los contenedores que no se despacharon en el mes, los 5.7 contenedores y realizar empaque de 4,3 contenedores mensuales lo que favorecería a los ingresos por ventas de la empresa.

Tabla 28: Impacto a Nivel de Reducción de Costos

Entorno	Problemática observada	Costos (S/)	Escenario pesimista, reducción del 15%	Escenario probable, reducción del 35%	Escenario optimista, reducción del 60%
Método	Demoras en el abastecimiento (picking)	11,923.20	10,134.72	7,750.08	4,769.28
Método	Demoras en las entregas de materiales	3,357.80	2,854.13	2,182.57	1,343.12
Mano de Obra	Baja productividad en el etiquetado	11,684.70	9,932.00	7,595.06	4,673.88
Mano de Obra	Baja productividad en el armado de paletas	2,325.00	1,976.25	1,511.25	930.00
Maquinaria	Baja productividad por inadecuada distribución	31857.3	27,078.71	20,707.25	12,742.92
Método	Incumplimiento de la metodología de las 5´S	16,532.10	14,052.29	10,745.87	6,612.84
	Total	S/77,680.10	S/66,028.09	S/50,492.07	S/31,072.04
	Impacto Esperado			S/49,844.73	-35.83%

En el contexto económico, como la reducción de costos, en la tabla 28 se observa que el impacto se realizó en tres escenarios, pesimista (sólo se reduce un 15%), probable (se reduce en un 35%) y optimista (se reduce en un 60%).

El valor esperado de los tres escenarios equivale a S/ 49, 844.73 lo que equivale a una reducción moderada del 35.83% del costo total anual encontrado.

V. DISCUSIÓN

Este trabajo realizado, da a conocer una adecuada distribución, ya que muchas veces las empresas lo toman sin importancia, muchas se dejan que un problema pequeño vaya creciendo de magnitud y lo que en un principio se podía gastar menos en solucionarlo con el pasar del tiempo se gastara un dinero más considerable. Después de realizar la mejora, se puede observar en los cuadros la mejora de una productividad en el área realizado el cambio, asimismo podemos ver que ya no se realizan movimientos repetitivos e innecesarios que anteriormente lo realizaban, lo que a los trabajadores les ocasionaba un cansancio, eso generaba perdidas, de tal manera parecía que se trabajaba en un espacio muy reducido cuando en realidad solo no se estaba utilizando el espacio de manera adecuada.

Los resultados que se obtuvieron tiene un gran parecido con una tesis de mejora que fue realizada por Alva y Paredes (2014), donde en su tesis realiza una adecuada distribución del área, en donde el logra obtener un resultado positivo en la productividad, asimismo reduce los recorridos incensarios el personal de trabajo de igual manera el mejor uso u utilización del espacio, logrando así una mejor productividad de la organización, logrando así la disminución de clientes por una mala atención o insatisfacción.

Con respecto a la hipótesis, nos da a conocer que una buena distribución de planta aumenta y mejora la productividad de la empresa, llegando a la conclusión que todo dependía del reemplazo de todo el tiempo que se perdía realizando movimientos repetitivos en vano, esto se convirtió en un tiempo de producir más,

En el desarrollo del rediseño de la distribución del área de empaques de conservas se consideró realizar un plano de cómo están ubicadas las diferentes áreas de trabajo, para poder identificar el principal problema dentro de la empresa, esto fue complementado con los diferentes datos como el traslado de materiales, datos para el abastecimiento de pallets para etiquetado, asimismo realizamos la matriz de recorridos, matriz de esfuerzos,

realizamos todas estas actividades con la finalidad de poder analizar a fondo el problema y realizar la propuesta.

Se realizo un análisis de la situación actual de la problemática que presenta la zona de trabajo de empaque mediante la utilización del Diagrama de Pareto para poder identificar los motivos de la problemática, de igual manera se utilizó el diagrama de Ishikawa para lograr determinar los motivos de la baja productividad del área, relacionado con no tener un orden adecuado en las áreas de trabajo, recorridos no necesarios, desaparición de los materiales y herramientas de trabajo y movimientos consecutivos y repetitivos de los trabajadores.

El objetivo general de la investigación fue mejorar el diseño de la planta de empaque para incrementar la productividad de embarques de conservas vegetales en una agroindustria, Trujillo. El diseño de planta según lo indica Jain (2014) que la eficiencia de la producción depende de la manera correcta de la distribución de planta.

Para el objetivo específico que fue diagnosticar la productividad en el área de empaque, según refiere Carro (2016) que manifiesta que la productividad tiene una vital importancia como ventaja competitiva y que mide la relación entra la salida y entrada al proceso. Las empresas requieren dar solución a sus problemas de productividad por lo que se requiere un mejor diseño de la disposición de las máquinas y recorridos, incremento de la capacidad instalada y disponer de un equipo de trabajo capacitado.

En concordancia con el texto citado, los resultados del diagnóstico de la productividad se encontraron las demoras por abastecimiento de producto a las líneas de etiquetado y las demoras en la entrega de materiales de empaque que en cifras de sobrecostos de S/ 15,281.0 anuales. El valor del esfuerzo encontrado fue de 8,243 ton x m; lo que indica que la productividad estaba por debajo del valor estándar. La productividad de la mano de obra en etiquetado fue de 0.258 contenedores por hora, siendo el estándar 0.287 contenedores por hora; con este indicador se dejan de etiquetar 5.7

contenedores mensuales. Con respecto a las actividades de paletizado por la baja productividad encontrada de 0.289 contenedores por hora sobre el valor estándar de 0.310 contenedores por hora, se dejan de paletizar 4.2 contenedores por mes. Por su parte Roa (2017) encuentra una productividad del 17% por debajo del valor estándar y que dejaron de embarcar 3.8 contenedores mensuales. Porque es importante realizar el rediseño de la planta de empaque y evaluar el impacto de la productividad para reducir los sobrecostos en la mano de obra, en materiales, en los recorridos innecesarios.

Con respecto al objetivo específico de la mejora del diseño de la planta de empaque los resultados obtenidos indican que el almacén de etiquetas se ubica cerca a la preparación de los materiales de embalaje; estos corresponden a cintillos, etiquetas en las cajas, el marcaje de fechas de producción o lotes agrupados en las cajas entre otros y que con la propuesta de distribución se tiene una variación de la productividad positiva, lo cual indica un incremento del 35.4% con respecto a la distribución deficiente. Se empleó la metodología de la matriz de esfuerzos para determinar el valor del esfuerzo, que la propuesta dio como resultado 6086 ton x m y que comparado con el encontrado en el diagnóstico fue de 8243 ton x m. Por su parte Godoy (2019) aplicando el mismo criterio de la matriz de esfuerzos logró un incremento de la productividad del 20.5%. Asimismo, Rebaza (2021) logró realizar un diagnóstico de la distribución actual y emplearon el método de Guerchet para determinar las áreas adecuadas para cada una de las estaciones de trabajo, y el incremento de la productividad fue del 25.53% y 37.21% para los servicios y para los equipos respectivamente. Con lo expuesto, se deduce la relación directa entre el diseño de las instalaciones y la productividad, una mejora en el rediseño aplicando el método de Guerchet y la matriz de esfuerzo, en las instalaciones de una empresa de manufactura, logra la mejora de la productividad de sus actividades en un intervalo del 20.5% al 37.21%.

Con relación al objetivo que es la evaluación del impacto de la propuesta de diseño en el incremento de la productividad, los resultados obtenidos con la propuesta la productividad se incrementó en un 35.4%, lo que ha permitido en

la planta recuperar los contenedores que no se despacharon al cierre de cada mes, los 5.7 contenedores de etiquetado y los 4,3 contenedores en paletizado, y siendo el resultado más importante cumplir con la planificación comercial y con el cliente. Este aspecto se relaciona de manera similar con lo indicado por Díaz (2020) que el diseño de la planta favoreció en el incremento de la productividad en la producción de hormas de calzado en un 27.6% y la reducción de los costos de mano de obra en 11%. Asimismo, la eficiencia física de la producción mejoró en un 15% y una reducción de costos del 12.2%. El impacto en la reducción de costos se realizó en tres escenarios, pesimista (sólo se reduce un 15%), probable (se reduce en un 35%) y optimista (se reduce en un 60%). Por lo que, se determina que la mejora en el diseño de las instalaciones de la planta de empaque tiene un impacto económico, cuyo valor esperado de los tres escenarios equivale a S/49,844.73 lo que equivale a una reducción moderada del 35.83% del costo total anual encontrado.

VI. CONCLUSIONES

- 1. El objetivo general fue mejorar el diseño de la planta de empaque para incrementar la productividad de embarques de conservas vegetales en una agroindustria, Trujillo. Según Pérez (2016) define el diseño de planta como la ejecución de actividades en la optimización de la distribución de máquinas, personas y recursos que logren la productividad diseñada por la compañía. En consecuencia, para la investigación aplicando los métodos de Gourchet y la matriz de esfuerzos se logran un diseño de planta que acondicione convenientemente a las máquinas, equipos y herramientas orientadas al incremento de la productividad.
- 2. En el objetivo del diagnóstico se encontró que las actividades de etiquetado presentaron una baja productividad, dejando de etiquetarse 5.7 contenedores por mes; asimismo, 4.2 contenedores no se paletizaron para embarque; lo que generó que el plan de embarques de la empresa reprograme los contenedores y las pruebas de los reclamos de los clientes.
- 3. En el objetivo del diseño de la mejora de la distribución de planta, se aplicaron los métodos de Guerchet y la matriz de esfuerzo, en el área de empaque y almacén de producto terminado, se logró la mejora de la productividad de sus actividades en un intervalo del 20.5% al 37.21%.
- 4. El impacto de la mejora del diseño de la distribución de planta se logró resultados con incrementó de la productividad en un 35.4%; y el impacto económico cuyo valor esperado evaluados en tres escenarios equivale a S/ 49,844.73 lo que equivale a una reducción moderada del 35.83% del costo total anual encontrado.

VII. RECOMENDACIONES

- 1. La propuesta del diseño de planta de empaque fue realizada con el método de Guerchet para determinar las áreas adecuadas para cada una de las estaciones de trabajo y la matriz de esfuerzos y se comprobó el incrementó de la productividad en un 35%; por lo que se recomienda hacer uso de estos métodos otras áreas la empresa como producción (o envasado), acopio o pelado de espárragos.
- 2. Se recomienda implementar el plan de capacitaciones en la metodología de las 5'S, para otras áreas de la empresa; dado que para el proyecto ha funcionado consistentemente en la estandarización y disciplina; asimismo, con la finalidad que todos los trabajadores estén mentalizados que la buena higiene y el orden son parte primordial en los diferentes procesos productivos, con esta metodología nos ayuda a reducir las distancias de recorrido del personal
- 3. Se recomienda implementar la técnica del Poka Yoke con la finalidad que las herramientas y accesorios se encuentren codificados y disponerlos en el sistema o base de datos de la empresa para el control de inventarios. Esta técnica funcionó en el proyecto, dado que el personal operadores de las máquinas etiquetadoras, embolsadoras y paletizadoras cuenten con las herramientas de calibración disponibles y a la vista del técnico eliminando tiempos muertos para poner en marcha la línea de empaque.
- 4. Para finalizar, es recomendable tener una constante actualización de mejoras en la distribución de planta, por si sea el caso que decidan comprar u utilizar nuevas tecnologías, o haya un incremento de la demanda en el mercado, es importante seguir aplicando mediciones mediante indicadores, con esta propuesta se ha demostrado que se logra el cumplimiento de metas de producción y económico.

REFERENCIAS

- 1. BORGOGLIO, L. and ODISIO, J. (2015). La productividad manufacturera en Argentina, Brasil y México: una estimación de la Ley de Kaldor-Verdoorn, 1950-2010. Investigación Económica. S.I.
- CARDEN, L., KOVACH, J. v. and FLORES, M. (2021). Enhancing human resource management in process improvement projects. 1 April 2021. S.I.: Elsevier Ltd.
- 3. COVEÑAS PISCOYA, Raúl .(2020).Influencia del control de la producción del área de productos terminados.
- DE SOUSA, J.C.M., CAMPILHO, R.D.S.G., SILVA, F.J.G. and DOS SANTOS, P.M.M., (2019) Process improvement in the metallic mesh cutting operation associated to tire manufacturing. Procedia Manufacturing.
- Diego-Mas, (2012). J. Optimización de la distribución en planta de instalaciones industriales mediante algoritmos genéticos: Aportación al control de la geometría de las actividades (Tesis de Doctorado en Ingeniería Industrial, Universidad Politécnica de Valencia, Valencia, España).
- Díaz Fernández, R. L. (2020). Propuesta de distribución de planta para incrementar la productividad en una empresa de fabricación de hormas de calzado. Trujillo, Perú: Repositorio UPN.
- 7. DIAZ CHAVE, ANA.(2020). Influencia de la redistribución de planta en la productividad.
- Godoy Zavala, R. A. (2019). Diseño y redistribución de planta para aumentar la productividad en la microempresa de calzados Rossel".
 Callao, Lima, Perú: Repositorio de UNAC.
- 9. Gao and Cao., (2019). Process improvement in the metallic mesh cutting operation associated to tire manufacturing.
- 10. GARZA RIOS ROSARIO, (2019) Evaluación y selección del layout de una instalación con el empleo de un enfoque hibrido simulación multiatributo.

- 11. GOMEZ CABRERA AND MORALES BOCANEGRA, (2016). Análisis de la productividad en la construcción de vivienda basada en rendimientos de mano de obra.
- 12. Gómez and Boniti. (2017), Productivity of companies in the extractive mining-energy área and its impact on the financial performance in Colombia.
- 13. Glock eat al, (2019). An integrated cost and worker fatihue evaluation model of a packaging process.
- 14. GONZALES GOMEZ. (2016), Productividad y Competitividad.
- 15. Guardado Peña, Saul. (2018). Diseño de empresa para el Acopio, procesamiento y comercialización de Frutas.
- 16. GAO, X. and CAO, C., 2020. A novel multi-objective scenario-based optimization model for sustainable reverse logistics supply chain network redesign considering facility reconstruction. Journal of Cleaner Production, vol. 270. ISSN 09596526. DOI 10.1016/j.jclepro.2020.122405.
- 17. GLOCK, C.H., GROSSE, E.H., KIM, T., NEUMANN, W.P. and SOBHANI, A.(2019). An integrated cost and worker fatigue evaluation model of a packaging process. International Journal of Production Economics, vol. 207, pp. 107–124. ISSN 09255273. DOI 10.1016/j.ijpe.2018.09.022.
- 18.GOMEZ CABRERA, A. and MORALES BOCANEGRA, D. (2016). Análisis de la productividad en la construcción de vivienda basada en rendimientos de mano de obra. INGE CUC, vol. 12, no. 1, pp. 21–31. ISSN 01226517. DOI 10.17981/ingecuc.12.1.2016.02.
- 19. GÓMEZ, J.M. and BOTTINI, M.Á.N. (2017). Productivity of companies in the extractive mining-energy area and its impact on the financial performance in Colombia.
- 20. ISAZA CARDOZO, G.D.(2020). Hacia el rediseño del mecanismo de extensión de la jurisprudencia en Colombia: Una propuesta desde el estudio de la fuerza del precedente constitucional.
- 21.KOSTAROPOULOS, A.E. (2016). Plant Design of Food Manufacturing 'Units.' Reference Module in Food Science. S.I.: Elsevier.

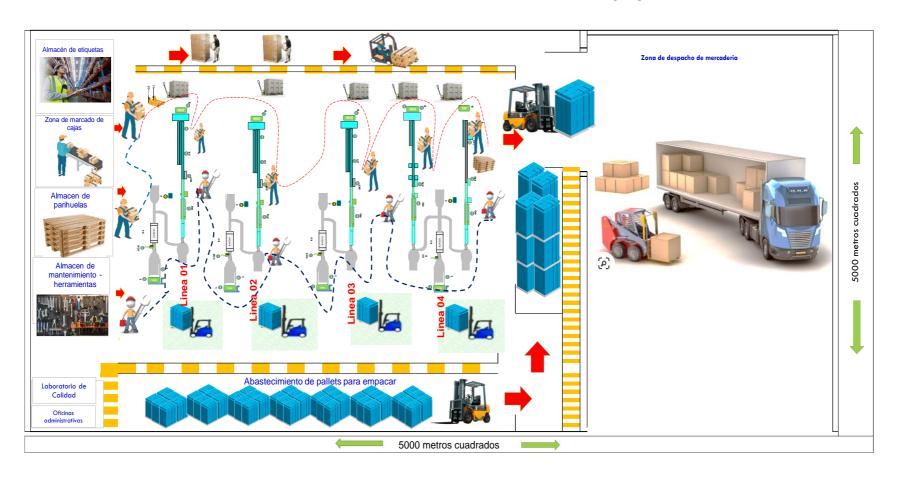
- 22. KOWALSKI, M., STEINBOECK, A., ASCHAUER, A. and KUGI, A. (2021). Optimal start times for a flow shop with blocking constraints, nowait constraints, and stochastic processing times.
- 23.LISTA, A.P., TORTORELLA, G.L., BOUZONA, M., MOSTAFAD, S. and ROMEROE, D. (2021). Lean layout design: a case study applied to the textile industry.
- 24. Lehlake S.K Muyengwa G,. (2018) .Enhancing Productivity through simulation and layout plnnnig: A Case Study of a Manufacturing company in South Africa.
- 25. López Huanilo, Edwards(2018). Distribución de planta para mejorar la productividad en la empresa manjar real E.I.R.L

 MAMANI LARICANO, Luis,. (2018). Optimización del proceso productivo en el área de producción de una industria plástica,.
- 26.MARULANDA GRISALES, N. and GONZÁLEZ GAITÁN, H.H. (2017).

 Objetivos y decisiones estratégicas operacionales como apoyo al lean manufacturing.
- 27.MARIN DIAZ AND TRUJILLO CASTAÑOLA. (2019). Apuntes para gestionar actividades de calidad en proyectos de desarrollo de software para disminuir los costos de corrección de defectos.
- 28. MARTINEZ FIESTAS. (2020). Rediseño de procesos logísticos de una planta de selección de café.
- 29. MAYULEMA CAIZA M . (2019). Estandarización del proceso de control en el servicio de mantenimiento preventivo.
- 30. Nieto Alejandra Trejo. (2017). Economic Growth and industrialization on the 2030.
- 31. ORLOV, A., SILLMANN, J., AUNAN, K., KJELLSTROM, T. and AAHEIM, A. (2020). Economic costs of heat-induced reductions in worker productivity due to global warming.
- 32.OSCAR, H., DÍAZ, L. and NAVARRETE, R.A.(2017). Crecimiento, competitividad y restricción externa en América Latina. Investigación Económica. S.I.

- 33. PALACIO, S.D.C., ESTRADA, L.J.V. and GÓMEZ, B.E.M., (2017). Evaluative analysis of marketing process in the internationalization of small and medium food companies in Medellin.
- 34. PÉREZ HERNÁNDEZ, C.C., LARA GÓMEZ, G. and GÓMEZ HERNÁNDEZ, D. (2017). Evolución de la capacidad tecnológica en México. Aplicación del análisis estadístico multivariante de cluster.
- 35. PUMAYALLA PORTILLA, B.(2019). Rediseño de procesos para mejorar la eficiencia.
- 36. RAZA SOLIS, ALEX, (2022). Rediseño de plantas agroindustriales con un enfoque de economía circular.
- 37. ROMAN, D.J., OSINSKI, M. and ERDMANN, R.H. (2017). A substantive theory on the implementation process of operational performance improvement methods.
- 38. SAEZ-MAS, A., GARCIA-SABATER, J.P., GARCIA-SABATER, J.J. and RUIZ, A. (2020). Redesigning the in-plant supply logistics: A case study.
- 39. Segundo Camino , Mogro. (2017). Estimación de una función de producción y análisis de la productividad.,.
- 40. SCRIVANO, S. and TOLIO, T. (2021). A Markov Chain model for the performance evaluation of manufacturing lines with general processing times.
- 41. TORTORELLA, G.L., NARAYANAMURTHY, G. and THURER, M. (2021).

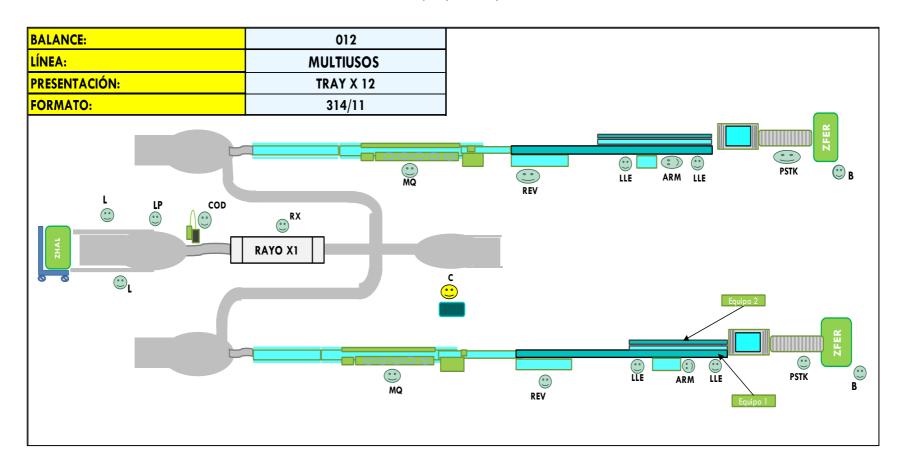
 Identifying pathways to a high-performing lean automation implementation.
- 42. VERMAELEN, N. and KOVACH, J. v. (2021). Driving meeting effectiveness through organizational process improvement—A Lean Six Sigma case study.
- 43. WANG, S., CUI, W., CHU, F., YU, J. and GUPTA, J.N.D. (2020). Robust (min–max regret) single machine scheduling with interval processing times and total tardiness criterion. Computers and Industrial Engineering.
- 44. Rebaza Rojal, J. P. (2021). "Distribución de planta para incrementar la productividad en taller de mantenimiento y reparación de empresa Chang Asociados S.A.C.". Pimentel, Perú: Repositorio USS.


- 45. Salazar, B. (2016). Diseño de plantas industriales. España: Mc Graw Hill Interamericana.
- 46. Sánchez, R. (2019). Rediseño del proceso productivo de la empresa Industrias y Negocios Piccoli S.R.L. utilizando herramientas lean para el incremento de la productividad. Lima, Perú, Perú: Alycia Concitec.

ANEXOS:

Anexo 1: Matriz de Operacionalización de Variables:

Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
VI: DISEÑO DE PLANTA Diseño de planta implica encontrar un orden en la disposición de las máquinas y equipos, logrando costos mínimos y recorridos eficientes". (Salazar, 2016)	La distribución de planta consiste en optimizar las áreas de cada una de las estaciones de trabajo para realizar actividades óptimas y a costos competitivos.	Desempeño	Índice de desempeño del Layout (IDL) Índice de Flujo Operativo (IFO) Índice de Relaciones Subjetivas (IFS)	Razón
		Método Guerchet.	Espacio actual usado/Espacio propuesto	
		Matriz de Esfuerzos	índice de esfuerzos	
VD: PRODUCTIVIDAD	La productividad como la relación entre el número de unidades (bienes) y servicios con la cantidad de elementos (recursos) que se necesitaron para ello. En actividades de producción se utiliza la productividad para medir y evaluar el rendimiento de todos los elementos que actúan en el proceso (operarios, maquinas equipos, etc.)		Unidades producidas	
La productividad en base a la producción obtenida y su relación con los recursos que se utilizan para obtener dicha producción, para lograr medir la eficiencia del trabajo operativo donde esta se evalúa también económicamente. López (2019)		Productividad	Productividad de mano de obra / productividad maquina	Razón


Anexo 02: Distribución Actual de la Planta de Empaque

Anexo 03: Distribución Propuesta de la Planta de Empaque

Anexo 04: Diseño de línea de empaque Etiquetado manual Galón A8 – A10

Anexo 05: Leyenda de Puestos de Trabajo

Código	Descripción	# Personas	S	Velocidad (Tray/min-H)		N° PERSONA	S HOMBRES/MUJERES
L	Lanzador	2	Hombre			Hombre	5
CO	Maquinista Codificadora	1	Indistinto			Mujer	4
RX	Maquinista de Rayos X	1	Indistinto			Indistinto	3
С	Cuadrador	1	Indistinto				
MQ	Téc. Etiquetador	1	Hombre				
REV	Revisadora de etiquetas	1	Hombre				
ARM	Armador de Trays	1	Mujer	10 Trays/min-H			
PSTK	Pegador de Stickers de Salida	1	Mujer	11 Trays/min-H			
LLE	Llenadoras	2	Mujer	5.5 Trays/min-H			
В	Bajador	1	Hombre	11 Trays/min-H			
		12					
CATEGORÍA	Línea Multiusos	Velocidad Máx de la máquina Etiquetadora (unid/min)	Unid/Pallet - Zfer	Tiempo Estándar	por Línea (min)	Velocidad Están	dar de la línea (unid/min
C	3	130	2964	30)		99
С	2	120	2964	32	2		93
				Velocidad Total etique			191
1	Fiempo a 02 líneas de etiquetado (n	nin)	Unid/Pallet	Tiempo (min)	Velocidad	(unid/min)	

Anexo 06: Data de Análisis estadísticos evaluados en la investigación

Actividad	Formato	Unds	Min.
Inspección rx	15oz	207	Min.
Inspección rx	15oz alto	136	Min.
Inspección rx	Galon	44	Min.
Encajado	caja x 12 unds	204	Min.
Encajado	Galón	44	Min.
Retractilado	15oz x 12	18	Min.
Etiquetado	Formato	Tiempo	Min.
Etiquetado	212/11	220	Min.
Etiquetado	15oz	240	Min.
Etiquetado	Galón	110	Min.
Marcado de cajas	15oz	25	Min.
Enzunchado	varios (1 pallets)	6	Min.
Forrado film manual	varios (1 pallets)	50	seg.

Anexo 07: Instrumentos de recolección de datos

Situación: Guia de observación de la infraestructur	a de la planta	de empaqu	е	
I: Datos generales				
a) Zonificación () Urbana b) Propiedad () Propiio c)Modalidad de uso () Exclusivo	() Alquiler		() Otros	
II: Aspectos evaluados:				
Aspectos de observación	Todas	Algunas	Ninguna	Observacione
El area cumple con los requisitos establecidos para el proceso de empacado				
El area ha sido evaluado por defecsa civil				
El material de construcción es adecuado para el proceso requerido				
Existe suficiente ventilación en el area				
La iluminación es adecuada para desarrolar las actividades			ı	
Existe suficiente espacio para que los trabajadores se movilicen y desarrolen sus actividades de manera correcta				
El area esta organizada para las actividades de etiquetado				
Ladistribución de maquinas y equipos responde a la secuencia del proceso.				
El area cumple con los requisitos establecidos para el proceso de empacado				

DIAGRAMA ANALTINCO DE PROCESO - DAP and de análisis Resumen Operación Operación Transporte Espera D 0 Inspección Almacén Combinada O Elaborado Combinada O BARAMA ANALTINCO DE PROCESO - DAP Actividad Resumen O Transporte Transporte D 0 Elaborado Elaborado Cronómetro Medición de operaciones de etiquetadoy recorridos del personal		INOTROPIEN	ILDICIOIV	IVIEL	EGOLOS													
Operación Transporte Se utilizo para medir las distancias más largas de la planta Cinta métrica Se utilizo para medir las distancias más largas de la planta Consérvato Medición de operaciones de	*									Re						Diagrama n°		
Transporte O Termina Espera O Elaborado Almacén O Elaborado Cronémetro Medición de operaciones de	1	_				Inicia	Mejorado	Actual	Gráfico		Actividad			ctual	A	Método		
Iransporte Espera D 0 Inspección Almacén O Elaborado Cropómetro Medición de operaciones de		zo para medir las distancias		Se utilizo para medir las distancias				0				ón	Operacio			echa		
Espera 0 0 Inspección 0 Elaborado Almacén 0 0 Medición de operaciones de								Termina		0				rte	Transpor			
Almacén 0 Cropémetro Medición de operaciones de							0					Espera						
Cropémetro Medición de operaciones de		N				Elaborado		0				ón	Inspecci					
Combinada 0 Cronometro etiquetadoy recorridos del personal					C			0				1	Almacén					
							0				ada	Combina						
Distancia (min) Descripción		_00				ı	Descripción								Tiempo (Seg)	Descripción		
Se utilizo para medir las distancias			Se utilizo para medir las distancias mas cortas, uso para maquinas,															
	1						Wincha											
		mas cortas, uso para maquinas, estaciones de trabajo.		11110110														
estaciones de trabajo.	100	estaciones de trabajo.	estaciones															
Tables a Sirve para apoyo de registro de			novo do rogistro do	Simo para apon														
		40			Tableros													
anotaciones		-	notaciones	anota														
1		R																
		. 10-5		Instrumentos de recolección de datos														
Instrumentos de recolección de		655	s de recolección de															
Begistros																		
datos			datos															
																Total		

Anexo 08: Formato de Tiempo por Estación de Trabajo para la data estadística

Estación	Nombre de la estación	Tiempo de Abastecimiento (min)	Tiempo de Actividad (min)	Ti (min)
E1	Etiquetado			
E2	Paletizado			
E3	Encajado			
E4	Embolsado			
E5	Enzunchado			
E6	Forrado			
Total				

Anexo 09: Método GOURTCHET para la data estadística:

Núm.	Máquina	n	N	Largo Ancho	Altura	k	Ss.	Sg	Se=K(Ss+Sg)	S total
1		1	4			0.15				0.00
2		1	4			0.15				0.00
3		1	1			0.15				0.00
4		1	1			0.15				0.00
5		1	1			0.15				0.00
6		1	1			0.15				0.00
7		1	1			0.15				0.00
8		1	1			0.15				0.00

Anexo 10: Matriz de las Necesidades de Transporte

Distancia en	Zona de Picking	Zona de	Preparación		Zona de	Almacén
metros	abastecimiento a	Parihuelas	de	Etiquetas	empacado	de
	línea de		Embalajes			químicos
	etiquetado					
Zona de Picking	0	12	22	12	0	0
abastecimiento a						
línea de						
etiquetado						
Zona de	25	0	0	0	0	52
Parihuelas						
Preparación de	0	22	0	28	0	0
Embalajes						
Almacén Etiquetas	32	0	0	0	0	0
Zona de	0	0	0	32	0	0
empacado						
almacén de	0	0	0	28	0	0
químicos						

Anexo 11: Matriz Triangular de las Necesidades de Transporte

Distancia en	Zona de Picking	Zona de	Preparación	Almacén	Zona de	Almacén
metros	abastecimiento a	Parihuelas	de	Etiquetas	empacado	de
	línea de		Embalajes			químicos
	etiquetado					
Zona de Picking	12	0	22	12	0	11
abastecimiento a						
línea de						
etiquetado						
Zona de	0	0	9	0	16	52
Parihuelas						
Preparación de	0	0	0	28	0	9
Embalajes						
Almacén Etiquetas	0	0	0	0	14	0
7ana da	0	0	0	0	0	04
Zona de	0	0	0	0	0	21
empacado	0	0	0	0	0	0
almacén de	0	0	0	0	0	0
químicos						

Anexo 12: Matriz de Relaciones de Adyacentes

	ros de vidad	Relacior	nes de ad	yacencia					Moda	Rij	Razón
i	j	01	O2	О3	04	O5	O6	07			
1	2	0	I		I	Е	0			5	Facilidad en el movimiento de paletas
1	3	1	Ε	1	0	1	0	I	1	5	Facilidad en el movimiento de paletas
1	5	1	E	I	0	1	0	I	1	5	Facilidad en el almacenamiento de embalajes
2	1	N	N	0	0	0	D	0	0	2	Facilita la preparación de los materiales de embalaje
2	3	0	0	0	1	0	D	D	0	2	Facilita la preparación de los materiales de embalaje
2	4	0	I	0	1	1	Е	I	1	5	Facilita la preparación de los materiales de embalaje
3	4	0	0	0	1	0	D	D	0	2	Facilita la preparación de los materiales de embalaje
3	5	0	0	0	1	0	0	0	0	2	Facilita la preparación de los materiales de embalaje
3	6	N	N	0	N	N	D	D	N	-10	Inseguridad
4	3	1	E	I	Е	Е	1	Ε	E	10	Movimiento eficiente
4	2	0	I	I	Е	Е	Е	Ε	E	10	Movimiento eficiente
4	6	N	N	D	0	N	N	D	N	-10	Inseguridad
5	2	N	0	0	D	0	N	0	0	2	Facilita la preparación de los materiales de embalaje
5	3	1	I	I	D	1	1	0	0	2	Facilita la preparación de los materiales de embalaje
6	3	D	I	I	1	1	0	N	1	5	Facilidad en el almacenamiento de embalajes

i/j	1	2	3	4	5	6
1	0	5	5	0	5	0
2	2	5	0	5	0	0
3	0	5	0	2	2	-10
4	0	10	10	0	0	-10
5	0	2	2	0	0	0
6	0	10	0	0	0	5

Anexo 13: Matriz de Cálculo del Índice de Flujo Operativo (IFo)

24	290	120	104	44	-340	
0	645	125	0	125	260	
44	390	280	110	0	-280	
0	160	160	0	160	0	
0	320	320	0	0	-320	
0	280	280	0	0	-280	
				Suma =	3021	
684	484	0	616	0	624	
0	300	550	1756	0	0	
1446	0	0	0	0	1144	
0	384	704	384	0	0	
1024	0	0	0	0	0	
896	0	0	0	0	0	
				Suma =	10996 =>	> IF o 27.47%

Anexo 10: Carta de autorización para la Investigación en la Empresa

Ciudad, Trujillo 25 de Junio de 2022

Señor (a):
Wilder Alberto Villalta Olivos
CARGO: Jefe de Aseguramiento de la Calidad
NOMBRE DE LA EMPRESA: Danper Trujillo SAC
Presente.-

Es grato dirigirme a usted para saludarlo, y a la vez manifestarle que dentro de mi formación académica en la experiencia curricular de investigación del noveno ciclo, se contempla la realización de una investigación con fines netamente académicos /de obtención de mi título profesional al finalizar mi carrera.

En tal sentido, considerando la relevancia de su organización, solicito su colaboración, para que pueda realizar mi investigación en su representada y obtener la información necesaria para poder desarrollar la investigación titulada: "MEJORA DEL DISEÑO DE LA PLANTA DE EMPAQUE DE CONSERVAS PARA INCREMENTAR LA PRODUCTIVIDAD EN UNA AGROINDUSTRIA, TRUJILLO 2022". En dicha investigación me comprometo a mantener en reserva el nombre o cualquier distintivo de la empresa, salvo que se crea a bien su socialización.

Se adjunta la carta de autorización de uso de información y publicación, en caso que se considere la aceptación de esta solicitud para ser llenada por el representante de la empresa.

Agradeciéndole anticipadamente por vuestro apoyo en favor de mi formación profesional, hago propicia la oportunidad para expresar las muestras de mi especial consideración.

Atentamente,

Viviana Rojas Bustamante DNI 80242552

Longa Salazar Yuli Jhakelines DNI 77434409

Anexo 11: Autorización de uso de información de empresa:

AUTORIZACIÓN DE USO DE INFORMACIÓN DE EMPRESA

Yo WILDER ALBERTO VILLALTA OLIVOS, identificado con DNI 40109710, en mi calidad de JEFE DE CALIDAD del área de ASEGURAMIENTO DE LA CALIDAD de la empresa DANPER TRUJILLO SAC con R.U.C N° 20170040938, ubicada en la ciudad de TRUJILLO.

OTORGO LA AUTORIZACIÓN,

Al señor(a, ita,) YULI JHAKELINES LONGA SALAZAR identificado con DNI N° 77434409, VIVIANA ROJAS BUSTAMANTE identificado con DNI N° 80242552, de la Carrera profesional INGENIERIA INDUSTRIAL, para que utilice la siguiente información de la empresa:

- Distribución de planta de empaque.
- Data histórica y actual de la empresa
- Diagrama de flujo
- Datos de productividad
- Costos de producción y mano de obra
- Encuestas / entrevistas

Con la finalidad de que pueda desarrollar su () Informe estadístico, () Trabajo de Investigación, (X) Tesis para optar el Título Profesional.

- (X) Publique los resultados de la investigación en el repositorio institucional de la UCV.
- (X) Mantener en reserva el nombre o cualquier distintivo de la empresa; o

() Mencionar el nombre de la empresa.

Firma y sello del Rep

DNI: 40109710

CIP: 164452

Wilder Alberto Willaffa Olivo: ING. INDUSTRIAL /R. CIP № 164452

El Estudiante declara que los datos emitidos en esta carta y en el Trabajo de Investigación, en la Tesis son auténticos. En caso de comprobarse la falsedad de datos, el Estudiante será sometido al inicio del procedimiento disciplinario correspondiente; asimismo, asumirá toda la responsabilidad ante posibles acciones legales que la empresa, otorgante de información, pueda ejecutar.

Firma del Estudi

DNI: 77434409

DNI: 80242552

Anexo 12: Evaluación de Instrumentos

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTOS

I. DATOS GENERALES

- APELLIDOS Y NOMBRES DEL EXPERTO: CHICOMA GALVEZ JOSE CARLOS ALONSO
 FECHA: 27 Junio 2022
- GRADO ACADEMICO: INGENIERO INDUTRIAL
- INSTUTUCION ACADEMICA: UNIVERSIDAD PERUANA DEL NORTE
- INSTITUCIÓN DONDE LABORA: Grupo Acrimsa Srl Chiclayo
- DIRECCION: Av. Angamos 1191, Urb Los Rosales, Chiclayo
 CEL:989194249
 EMAIL: jchicomagalvez@outlook.com
- AUTOR DEL INSTRUMENTO: ROJAS BUSTAMANTE VIVIANA LONGA SALAZAR YULI JHAKELINES

Anexo 13: Certificado de Validez del contenido:

CERTIFICADO DE VALIDEZ DE CONTENIDO DEL INSTRUMENTO QUE MIDE LA MEJORA DEL DISEÑO DE PLANTA DE EMPAQUE Y LA PRODUCTIVIDAD

N°	VARIABLE / DIMENSIONES / INDICADORES	PERT	INENCIA 1	RELE	VANCIA 2	CLA	RIDAD 3	SUGERENCIAS
	VARIABLE INDEPENDIENTE: Rediseño de planta	SI	NO	SI	NO	SI	NO	
	DIMENSIÓN: Método relacional de actividades	SI	NO	SI	NO	SI	NO	
1	Distancia propuesta de recorrido	х						
1	Distancia actual del recorrido			X		X		
	DIMENSIÓN: Método Guerchet	SI	NO	SI	NO	SI	NO	
2	Espacio propuesto usado	х		х		х		
2	Espacio actual usado	^		^		^		
	VARIABLE DEPENDIENTE: Productividad	SI	NO	SI	NO	SI	NO	
	DIMENSIÓN: Productividad		NO	SI	NO	SI	NO	
3	Producción	х		x		x		
3	Insumos utilizados			_ ^		^		

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable [X] Aplicable después de corregir [] No aplicable []

Apellidos y nombres del juez validador: CHICOMA GALVEZ JOSE CARLOS ALONSO - DNI: 47275064 Especialidad del validador. INGENIERO INDUSTRIAL

1Pertinencia: El ítem corresponde al concepto teórico formulado.

2Relevancia: El ítem es apropiado para representar al componente o dimensión específica del constructo

3Claridad: Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo

Nota: Suficiencia, se dice suficiencia cuando los ítems planteados son suficientes para medir la dimensión

CHICOMA GALVEZ Ingeniero Industrial CIP Nº 262061

Firma del Experto Informante DNI: 1727506 4

CIP: 262061

Anexo 14: Evaluación de Instrumentos

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTOS

I. DATOS GENERALES

- APELLIDOS Y NOMBRES DEL EXPERTO: ARANEDA LOYOLA CRISTIAN JOEL
 FECHA: 28 Junio 2022
- GRADO ACADEMICO: INGENIERO INDUTRIAL
- INSTUTUCION ACADEMICA: UNIVERSIDAD CESAR VALLEJO
- INSTITUCIÓN DONDE LABORA: DANPER TRUJILLO SAC.
- DIRECCION: CARRETERA INDUSTRIAL A LAREDO MOCHE
 CEL:949160415
 EMAIL: caraneda@danper.com
- AUTOR DEL INSTRUMENTO: ROJAS BUSTAMANTE VIVIANA LONGA SALAZAR YULI JHAKELINES

CERTIFICADO DE VALIDEZ DE CONTENIDO DEL INSTRUMENTO QUE MIDE LA MEJORA DEL DISEÑO DE PLANTA DE EMPAQUE Y LA PRODUCTIVIDAD

N°	VARIABLE / DIMENSIONES / INDICADORES	PERTINENCIA 1		RELEVANCIA 2		CLARIDAD 3		SUGERENCIAS
	VARIABLE INDEPENDIENTE: Rediseño de planta	SI	NO	SI	NO	SI	NO	
	DIMENSIÓN: Método relacional de actividades	SI	NO	SI	NO	SI	NO	
1	Distancia propuesta de recorrido	X		x	x			
1	Distancia actual del recorrido					^		Ninguna.
	DIMENSIÓN: Método Guerchet	SI	NO	SI	NO	SI	NO	
2	Espacio propuesto usado	X		X		x		
	Espacio actual usado							Ninguna
	VARIABLE DEPENDIENTE: Productividad	SI	NO	SI	NO	SI	NO	
	DIMENSIÓN: Productividad	SI	NO	SI	NO	SI	NO	
3	Producción	X		x		х	v	
	Insumos utilizados					^		Ninguna

Observaciones (precisar si hay suficiencia):

Opinión de aplicabilidad: Aplicable [X] Aplicable después de corregir [] No aplicable []

Apellidos y nombres del juez validador. ARANEDA LOYOLA CRISTIAN JOEL - DNI: 42114182

Especialidad del validador. INGENIERO INDUSTRIAL

1Pertinencia: El ítem corresponde al concepto teórico formulado.

2Relevancia: El ítem es apropiado para representar al componente o dimensión específica del constructo

3Claridad: Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo

Nota: Suficiencia, se dice suficiencia cuando los ítems planteados son suficientes para medir la dimensión

Firma del Experto Informante DNI: 42 1 14 82

CIP: 158272

Anexo 16: Evaluación de Instrumento

FICHA DE VALIDACIÓN DE INSTRUMENTOS JUICIO DE EXPERTOS

I. DATOS GENERALES

- APELLIDOS Y NOMBRES DEL EXPERTO: Villalta Olivos Wilder Alberto........... FECHA: 28/06/2022
- INSTITUCIÓN UNIVERSITARIA: UNIVERSIDAD CESAR VALLEJO
- DIRECCION: ...CARRETERA INDUSTRIAL A LAREDOMOCHE CEL: 949160403
- EMAIL: wildervillalta27@gmail.com wvillalta@danper.com
- AUTOR DEL INSTRUMENTO: LONGA SALAZAR YULI JHAKELINES ROJAS BUSTAMANTE VIVIANA

Anexo 17: Evaluación de Instrumento

CERTIFICADO DE VALIDEZ DE CONTENIDO DEL INSTRUMENTO QUE MIDE LA MEJORA DEL REDISEÑO DE PLANTA DE EMPAQUE Y LA PRODUCTIVIDAD

N°	VARIABLE / DIMENSIONES / INDICADORES	PERTINENCIA 1		RELEVANCIA 2		CLARIDAD 3		SUGERENCIAS
	VARIABLE INDEPENDIENTE: Rediseño de planta	SI	NO	SI	NO	SI	NO	
		x		x		х		
	DIMENSIÓN: Método relacional de actividades	SI	NO	SI	NO	SI	NO	
1	Distancia propuesta de recorrido	x		x		х		
1	Distancia actual del recorrido							Ninguna
	DIMENSIÓN: Método Guerchet	SI	NO	SI	NO	SI	NO	
2	Espacio propuesto usado	х		x		x		
2	Espacio actual usado							Ninguna
	VARIABLE DEPENDIENTE: Productividad	SI	NO	SI	NO	SI	NO	
		x		X		X		
	DIMENSIÓN: Productividad	SI	NO	SI	NO	SI	NO	
3	Producción	x		x		x		
3	Insumos utilizados							Ninguna

Observaciones (precisar si hay suficiencia): Si hay suficiencia en los ítems planteados.

Opinión de aplicabilidad: Aplicable [X] Aplicable después de corregir [] No aplicable []

Apellidos y nombres del juez validador. Villalta Olivos Wilder...........DNI:...40109710...

Especialidad del Validador: Gestión de la Calidad, Dirección de Operaciones y Cadena de Abastecimiento.

1Pertinencia: El ítem corresponde al concepto teórico formulado.

2Relevancia: El ítem es apropiado para representar al componente o dimensión específica del constructo

3Claridad: Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo

Nota: Suficiencia, se dice suficiencia cuando los ítems planteados son suficientes para medir la dimensión.

Firma del Experto Informante

DNI: 40109710

CIP: 164452

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Declaratoria de Autenticidad de los Asesores

Nosotros, ARANDA GONZALEZ JORGE ROGER, LINARES LUJAN GUILLERMO ALBERTO docentes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA INDUSTRIAL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesores de Tesis titulada: "Propuesta de Mejora del Diseño de la Planta de Empaque de Conservas para Incrementar la Productividad en una Agroindustria, Trujillo", cuyos autores son LONGA SALAZAR YULI JHAKELINES, ROJAS BUSTAMANTE VIVIANA, constato que la investigación tiene un índice de similitud de 18.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

Hemos revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 06 de Diciembre del 2022

Apellidos y Nombres del Asesor:	Firma	
ARANDA GONZALEZ JORGE ROGER	Firmado electrónicamente	
DNI: 18072194	por: JARANDA el 21-12-	
ORCID: 0000-0002-0307-5900	2022 23:02:37	
LINARES LUJAN GUILLERMO ALBERTO	Firmado electrónicamente	
DNI: 40026086	por: GLINARESL el 10-12- 2022 10:25:31	
ORCID: 0000-0003-3889-4831		

Código documento Trilce: TRI - 0476202

