

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

ESTUDIO DEL TRABAJO PARA INCREMENTAR LA PRODUCTIVIDAD EN LA LÍNEA DE CORTE DE MELAMINA EN LA EMPRESA INVERSIONES LINEASUP SAC, V.E.S. 2017

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO INDUSTRIAL

AUTOR:

QUIÑONEZ VILCAMISA SANDRA KAREN

ASESOR:

MG. MEJIA AYALA, DESMOND

LÍNEA DE INVESTIGACIÓN:

GESTIÓN EMPRESARIAL Y PRODUCTIVIDAD

LIMA-PERÚ

Año 2017

PÁGINA DEL JURADO

JURADO 1:			
JURADO 2:			
JURADO 3:			

DEDICATORIA

Esta tesis está dedicada a mis padres Santa Vilcamisa y Lenin Quiñonez por enseñarme que todo se puede lograr siendo perseverantes y obedientes; y por todo su apoyo brindado y su compresión durante la realización del presente proyecto y durante toda mi vida.

AGRADECIMIENTOS

Agradezco en primer lugar a Dios Agradezco también a mis padres por su aguante, a mi amigo Brian Sánchez por que fue un gran apoyo en la tesis. A la Gerencia de la empresa donde se realiza esta investigación y a las personas que me brindaron su apoyo con sus consejos para el desarrollo de esta investigación

DECLARACIÓN DE AUTENTICIDAD

Yo, SANDRA KAREN QUIÑONEZ VILCAMISA con DNI Nº 70029139, a efecto

de cumplir con las disposiciones vigentes consideradas en el Reglamento de

Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela

de Ingeniería Industrial, declaro bajo juramento que toda la documentación que

acompaño es veraz y autentica.

Así mismo, declaro también bajo juramento que todos los datos e información

que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier

falsedad, ocultamiento u omisión tanto de los documentos como de información

aportada por lo cual me someto a lo dispuesto en las normas académicas de la

Universidad César Vallejo.

Sandra Karen Quiñonez Vilcamisa

Lima, 19 de Diciembre del 2017

٧

PRESENTACIÓN

Señores miembros del Jurado:

Presento antes ustedes la Tesis titulada "Estudio del Trabajo para Incrementar

la Productividad en la línea de Corte de Melamina en la Empresa Inversiones

Lineasup SAC, V.E.S. 2017", la misma que someto a vuestra consideración y

espero que cumpla con los requisitos de aprobación para obtener el Título

Profesional de Ingeniero Industrial.

Sandra Karen Quiñonez Vilcamisa

vi

INDICE GENERAL

PÁGINA DEL JURADO	II
DEDICATORIA	III
AGRADECIMIENTOS	IV
DECLARACIÓN DE AUTENTICIDAD	V
PRESENTACIÓN	V
INDICE GENERAL	VII
INDICE DE TABLAS	X
INDICE DE DIAGRAMAS	XII
INDICE DE FIGURAS	XIII
RESUMEN	XIV
ABSTRACT	xv
I. INTRODUCCIÓN	1
1.1 Realidad problemática	2
1.2 Trabajos previos	10
1.2.1 Antecedentes Nacionales	10
1.2.2 Antecedentes Internacionales	14
1.3. Teorías Relacionadas al Tema	19
1.3.1. Método de trabajo	19
1.3.2. Productividad	29

1.4. Formulación del problema	32
1.4.1. Problema general	32
1.4.2. Problema específico	32
1.5. Justificación	32
1.5.1. Justificación económica	32
1.5.2. Justificación académica	32
1.5.3. Justificación social	33
1.6. Objetivos	33
Objetivo general	33
Objetivos específicos	33
1.7. Hipótesis	34
1.7.1 Hipótesis general	34
1.7.2. Hipótesis específicas	34
II .MÉTODO	35
2.1. Diseño de investigación	36
2.2. Variable, operacionalización	36
2.2.1. Definición conceptual de variables	36
2.2.2. Matriz de operacionalización de variables	38
2.3. Población y muestra	40
2.3.1. Población	40
2.3.2. Muestra	40
2.4. Técnicas e instrumentos de recolección de datos, valide	ez y
confiabilidad	40
2.4.1. Técnica	40
2.4.2. Instrumentos	41
2.5. Método de análisis de datos	41
2.6. Aspectos éticos	42

2.7 Desarrollo de la propuesta	42
2.7.1 Situación actual de la empresa	42
2.7.2 PLAN DE MEJORA	47
2.7.3 IMPLEMENTACION DE LA PROPUESTA	68
2.7.4. RESULTADOS DESPUES DE LA MEJORA (POST TEST)	73
2.7.5 ANÁLISIS COSTO BENEFICIO	85
III. RESULTADOS	93
3.1 Análisis descriptivo:	94
3.2 Análisis inferencial	97
3.2.1 Análisis de la Hipótesis general:	97
3.2.2. Análisis de la primera hipótesis específica	99
3.2.3 Análisis de la segunda hipótesis específica	102
IV. DISCUSION	106
V. CONCLUSIÓN	108
RECOMENDACIONES	110
VII. REFERENCIAS BIBLIOGRAFICAS	112
VIII. ANEXOS	114

INDICE DE TABLAS

Tabla 1: Diagrama de pareto	7
Tabla 2 : Símbolos empleados en los diagramas	20
Tabla 3 : Símbolos empleados en los diagramas	23
Tabla 4: Therbligs	25
Tabla 5: Factor de valoración	27
Tabla 6 :Tabla de suplementos	28
Tabla 7: Fichas de observaciones	41
Tabla 8: Medición de eficacia del ropero (antes)	45
Tabla 9: Medición de eficiencia de corte de piezas de un ropero (antes)	46
Tabla 10 : Tabla de diagrama gantt	49
Tabla 11 : Ropero de melamina proceso de producción	52
Tabla 12 : Formatos a utilizar	54
Tabla 13: Símbolos a utilizar en los diagramas	58
Tabla 14 :Porcentaje de operaciones repetidas cortes de piezas de un rop	ero
(antes)	71
Tabla15:Resumen de tiempo estándar de la semana corte de pieza de un rop	ero
(antes)	72
Tabla 16 : Medición de eficacia de un ropero (después)	73
Tabla 17: Comparación eficacia antes y después	74
Tabla 18 : Medición de eficiencia del corte de piezas de un ropero (después)	75
Tabla 19 : Comparación de eficiencia antes y después	76
Tabla 20 : Porcentaje de operaciones repetidas del corte de piezas de un rope	ero-
después	82
Tabla 21 : Comparación de operaciones repetidas del proceso de corte	de
piezas de un ropero antes y después	83
Tabla 22 : Resumen de tiempo estándar de la semana de cortes de piezas de	un ៖
ropero (después)	84
Tabla 23: Comparación de tiempo estándar de cortes de piezas de un rop	ero
antes y después	84
Tabla 24: Costos de fabricación de un ropero-abril 2017(antes)	86

Tabla 25: Margen de utilidad antes (en soles)	87
Tabla 26:Tabla beneficio / costo	88
Tabla 27: Margen de utilidad abril- antes	88
Tabla 28 : Costo de fabricación de un ropero agosto - después	89
Tabla 30: Margen de utilidad después (en soles)	90
Tabla 31: Margen de utilidad antes y después	90
Tabla 32: Cuadro descriptivo spss	96
Tabla 33: Prrueba de normalidad de productividad con shapiro-wilk	97
Tabla 34: Prueba de normalidad de productividad con shapiro –wilk	98
Tabla 35: Estadísticos de prueba de wilcoxon	99
Tabla 36: Prueba de normalidad de eficacia con shapiro -wilk	100
Tabla 37: Comparación de medias de eficacia antes y después con w	/ilcoxor
	101
Tabla 38: Estadísticos de prueba de wilcoxon para eficacia	102
Tabla 39: Prueba de normalidad de eficiencia con shapiro- wilk	103
Tabla 40: Comparación de medias de eficiencia antes y después con t	studen
	104
Tabla 41: Prueba de muestras emparejadas de t student para eficiencia	105

INDICE DE DIAGRAMAS

Diagrama 1 : Diagrama de gantt	50
Diagrama 2: Diagrama bimanual	59
Diagrama 3: Dap corte de piezas de un ropero (antes)	68
Diagrama 4 : Bimanual de corte de piezas de un ropero (antes)	70
Dagrama 5: Corte de piezas de un ropero (después)	77
Diagrama 6 : Dap comparación de proceso de corte de piezas de un ropero	79
Dagrama 7: Bimanual corte de pieza de un ropero (después)	80
Diagrama 8 : Comparación bimanual de corte de piezas de un ropero	81

INDICE DE FIGURAS

Figura 1: Diagrama de ishikawa	6
Figura 2: Diagrama de pareto	9
Figura 3: Ejemplo de diagrama de análisis de procesos -dap	21
Figura 4: Ejemplo de registro dap	22
Figura 5: Ejemplo de diagrama bimanual	24
Figura 6: Mapa de ubicación de inversiones lineasup s.a.c	42
Figura 7: Organigrama de la empresa inversiones lineasup s.a.c	43
Figura 8: Máquina de cortar modelo cimile 101	44
Figura 9 : Canto para borde de melamina	53
Figura 10 : Jaladores modelo t	54
Figura 11: Trabajadores a y b en la máquina cimile 101	56
Figura 12 : Antes y después de la implementación	62
Figura 13: Trabajadores diseñando con el lápiz bicolor	65
Figura 14: Trabajando con la lona en la mesa	66
Figura 15 : Mesa de trabajo modificada	67
Figura 16: Margen de utilidad antes y después	92
Figura 17: Indice de operaciones repetidas	94
Figura 18: Tiempo de producción	95

RESUMEN

La presente investigación titulada "Estudio del trabajo para incrementar la productividad en la línea de corte de melamina en la empresa Inversiones Lineasup S.A.C. – V.E.S 2017" empresa que realiza sus funciones en el rubro de muebles, se dedica a la fabricación de muebles de melamina. El objetivo principal de la investigación es determinar que el estudio de tiempos produce un incremento en el nivel de la productividad. Para lo cual se desarrolló una investigación aplicada de tal manera que luego se pudieran comprobar las hipótesis.

Dentro del estudio del trabajo se evaluaran y observaran los tiempos, movimientos repetidos para la fabricación de cada ropero de melamina, planificando metas que como empresa puedan cumplirlas.

El investigador recolectara y analizara los datos mediante la observación, ya que los mismos serán aplicados al análisis estadístico.

Por seguido, se incrementara la productividad de la empresa Inversiones Lineasup SAC, aplicando el estudio del trabajo.

Palabras clave: Estudio del trabajo, productividad, producción, estudio de tiempos, eficacia, eficiencia.

ABSTRACT

The present investigation entitled "Estudio del trabajo para incrementar la productividad en la linea de corte de melamina en la empresa Inversiones Lineasup S.A.C. - V.E.S 2017 "company that performs its functions in the furniture industry, is dedicated to the manufacture of melamine furniture. The main objective of the research is to determine that the study of times produces an increase in the level of productivity. For which an applied research was developed in such a way that later the hypotheses could be verified.

Within the study of the work will be evaluated and observed the times, repeated movements for the manufacture of each melamine closet, planning goals that as a company can fulfill them.

The researcher will collect and analyze the data through observation, since they will be applied to the statistical analysis.

By followed, the productivity of the company inversions Lineasup SAC will be increased, applying the study of the work.

Keywords: Work study, productivity, production, time study, efficiency, efficiency.