

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Aplicación del Six Sigma para incrementar la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. Chimbote 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Industrial

AUTORES:

Guerra Paredes, Julissa Marina (orcid.org/0000-0003-2739-2721)

Huamanchumo Pérez, Selene Marisol (orcid.org/0000-0001-7373-6770)

ASESOR:

Ms. Gonzales Capcha, John Kelby (orcid.org/0000-0001-7310-0502)

LÍNEA DE INVESTIGACIÓN:

Gestión Empresarial y Productiva

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

CHIMBOTE - PERÚ

2023

Dedicatoria

Dedicamos esta tesis a nuestros padres: Toribio Guerra Polo, María Paredes urbano, Lizandro Huamanchumo Burgos, María Pérez Corpus, quienes gracias a su inmenso amor, sabiduría, comprensión y esfuerzo nos permitieron conseguir hoy una meta más, gracias a ustedes por enseñarnos a ser perseverantes y nunca dejarnos caer ante nadie y que Dios estará en todo momento con nosotras para así seguir con nuestros sueños de ser grandes Ingenieras Industriales.

Agradecimiento

Agradecemos primeramente a Dios por guiarnos en el camino del bien, y a todas nuestras familias por sus consejos y estar siempre con nosotras.

Nuestro agradecimiento sincero a nuestros profesores de nuestra Universidad César Vallejo en especial а nuestro asesor, Ingeniero Gonzales Capcha, John Kelby, el cual nos enseñó todo conocimiento, paciencia motivación У gracias por confiar en nosotras siempre lo llevaremos en nuestros corazones.

Índice de contenidos

Dedicatoria	ii
Agradecimiento	ii
Índice de contenidos	iv
Índice de tablas	V
Índice de figuras	vi
Resumen	vii
Abstract	viii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	5
III. METODOLOGÍA	16
3.1. Tipo y diseño de investigación	16
3.2. Variables y operacionalización	16
3.3. Población, muestra y muestreo	17
3.4. Técnicas e instrumentos de recolección de datos	18
3.5. Procedimientos	21
3.6. Métodos de análisis de datos	22
3.7. Aspectos éticos	23
IV. RESULTADOS	24
V. DISCUSIÓN	35
VI. CONCLUSIONES	40
VII. RECOMENDACIONES	41
Referencias	42
Anexos	

Índice de tablas

Tabla 1. Técnicas e instrumentos de recolección de datos	18
Tabla 2. Métodos de análisis de datos	22
Tabla 3. Criticidad por áreas	24
Tabla 4. Eficiencia inicial del subproceso de envasado	25
Tabla 5. Eficacia inicial del subproceso de envasado	25
Tabla 6. Productividad inicial del subproceso de envasado	26
Tabla 7. Estadística descriptiva	27
Tabla 8. Índice de capacidad de producción	28
Tabla 9. Comparación de estadística descriptiva pretest y postest	29
Tabla 10. Comparación de índices pretest y postest	30
Tabla11. Comparación de datos pretest y postest	31
Tabla 12. Resumen de producción y productividad	32
Tabla 13. Prueba de normalidad	33
Tabla 14. Prueba de Wilcoxon	33
Tabla 15. Prueba de T de Student	34

Índice de figuras

Figura 1. Criticidad del área de envasado	24
9	

Resumen

La investigación tuvo como finalidad y objetivo general determinar si la aplicación del Six Sigma incrementa la productividad del proceso de elaboración del envasado en La Chimbotana S.A.C. - Chimbote 2022. El estudio fue de tipo aplicada, con enfoque cuantitativo, cuyo diseño es pre experimental, la muestra estuvo conformada por 3 meses de los procesos productivos de conservas en la línea de cocido. Los resultados mostraron que, el primer mes obtuvo una producción de 215,264 cajas, con una producción estimada de 400,000 es decir que se obtuvo una productividad de 78,17%. Para el mes de agosto se obtuvo 214,303 cajas, llegando a un promedio de 78,67% en su productividad, en setiembre una producción de 216,364 cajas con un porcentaje de 80,73%. en octubre se obtuvo una producción de 222,623 cajas, con un promedio de 88,62% en su productividad, en noviembre 223,059 cajas, con un porcentaje de 88,62% y para el mes de diciembre 229,839 cajas, con un promedio de 90,88% siendo este mes con mayor productividad en comparación con los anteriores meses. Concluyó que, la prueba de t de Student se pudo observar un t=-11.039, gl=5, p=0.00, con una significancia menor a 0.05 por lo que se rechaza la Ho, por lo que la aplicación del método Six-Sigma incrementa la productividad del proceso de elaboración de conservas en la Chimbotana.

Palabras clave: Productividad, eficiencia, eficacia, calidad.

Abstract

The purpose and general objective of the research was to determine if the application of Six Sigma increases the productivity of the packaging manufacturing process in La Chimbotana S.A.C. - Chimbote 2022. The study was of an applied type, with a quantitative approach, whose design is pre experimental, the sample consisted of 3 months of the productive processes of preserves in the cooking line. The results showed that the first month obtained a production of 215,264 boxes, with an estimated production of 400,000, that is, a productivity of 78,17% was obtained. For August, 214,303 boxes were obtained, reaching an average of 78.67% in productivity, in September 216,364 boxes with a percentage of 80.73%. in October a production of 222,623 boxes, with an average of 88.62%, in November 223,059 boxes, with a percentage of 88.62% and for the month of December 229,839 boxes, with an average of 90.88% being this month with higher productivity than previous months. It was concluded that, the Student's t test, it was possible to observe a t=-11.039, gl=5, p=0.00, with a significance of less than 0.05, so the Ho is rejected, therefore the application of the Six-Sigma method increases the productivity of the canning process in Chimbotana.

Keywords: Productivity, efficiency, efficacy, quality.

I. INTRODUCCIÓN

La importancia del actual trabajo de investigación será demostrar que a través de una adecuada implementación del Six Sigma se conseguirá aumentar la productividad en la elaboración de conservas de la planta objeto de estudio, por lo tanto, la puesta en marcha de esta vital metodología será propiciar una serie de mejoras para la organización, permitiendo no solo generar una mayor capacidad de producción en contraste a los meses anteriores, sino, alcanzando una mayor competitividad para hacerle frente a la competencia, mejorando la calidad del producto final, reduciendo los costes de operación al hacer más eficientes los procesos, reduciendo los tiempos de entrega, disminuyendo los defectos, estandarizando los procesos y ayudando a tomar las mejores decisiones para la empresa.

A nivel mundial, la competencia por permanecer en el mercado afecta considerablemente a diversas empresas establecidas en el sector de servicios y manufactura, y para esto tienen que mejorar sus flujos de procesos productivos si desean establecer una permanencia en este rubro por mucho tiempo. Ya que esto implica muchas exigencias de los diversos clientes o consumidores de estas organizaciones; por lo que las empresas manufactureras no están exentas de estas exigencias ya que son generadoras de productos para la sociedad en general (Gastelum et al, 2018, p.2). Ante ello y con la necesidad de brindar productos que cumplan con los parámetros adecuados es que se ha venido desarrollando una metodología conocida como Six Sigma, la cual es una técnica que se enfoca en generar parámetros adecuados de la calidad, es decir, se basa en evitar la variabilidad de los límites, identifica y elimina desperdicios (Maris et al, 2019, p.2).

Con la finalidad de alcanzar la mejora continua, muchas empresas han ido optimizando su flujo de producción e incrementando los parámetros de calidad, ya que las demandas de los mercados y de los clientes han influenciado potencialmente en estos indicadores. Por ello, el mejorar la calidad continuamente, beneficia a distintas organizaciones, generando alto rendimiento de los recursos y satisfaciendo a los clientes. En este rubro, se ha implementado un sistema que es

Six Sigma para las diversas empresas tanto micro y macro, dando como resultado una mejoría en eficacia y eficiencia (Guerrero, Silva y Bocanegra, 2018, p.2).

A nivel nacional, en el año 2017 la Sociedad Nacional de la Industria informo que 70 plantas de la industria de la conserva podrían parar la producción y reducir a un 10% (Gestión, 2017), generado por la alta demanda de competencia en el mercado y la baja producción de empresas locales. A nivel local, dentro de la ciudad de Chimbote, se encuentran diversas empresas dedicadas a la transformación y comercialización del recurso hidrobiológico (conservas de pescado), que no incorporan metodologías que les permitan optimizar sus procesos, aprovechar al máximo sus factores productivos y que ayuden a incrementar sus niveles de productividad. Por ello, es necesario que estas empresas apliquen el método del Six Sigma, por lo que orientada a la productividad logrando un mejor rendimiento y capacidad de su producción.

Con respecto a la empresa La Chimbotana S.A.C., esta se encuentra localizada en Av. Pescadores Mz. D Lt. 1, Gran Trapecio - Ancash. La mencionada planta tiene una capacidad de producción de 2800 cajas/turno, en donde procesa diversas especies de pescado para sus 2 líneas productivas. En cuanto a sus presentaciones de envase y líquido de cobertura depende específicamente del requerimiento del consumidor o usuarios, sin embargo, las que tienen mayor demanda son las que se elaboran en envase de tipo tinapa, tinapon y con líquido de cobertura de aceite de vegetal y salsa de tomate.

Como problemática de la empresa, se vienen evidenciando diversos inconvenientes dentro del área productiva, particularmente en el proceso de envasado, es aquí en donde existen deficiencias en cuanto a la variabilidad del peso, es decir, no se llega al peso correcto (cantidades mayores y cantidades menores a los parámetros establecidos). Sumado a ello, el supervisor no cumple con un control disciplinario igualmente con el jefe de calidad al no verificar y calibrar al momento de envasar ocasiona que se genere merma de materia prima lo que termina reduciendo la productividad en relación a la materia prima.

Otro factor problemático se da por los malos manejos sobre la línea de producción ya que estos tienen pérdidas del ritmo y también generan pérdidas económicas en el proceso de envasado, sumado a ello, el mal manejo de los tiempos provoca retrasos significativos en dicho proceso, puesto que, parte del personal que labora presenta lentitud en desarrollar sus actividades. Además, se puede evidenciar la deficiencia de calidad, la organización, motivación y planificación, en vista de que, no muestran interés alguno al realizar las actividades encomendadas. Por consiguiente, según la problemática presentada y las consecuencias que se están ocasionando para la planta, resulta de vital importancia aplicar el Six Sigma, en vista de que, esta metodología de trabajo se centra en incrementar la productividad, mediante la reducción de fallas, gestión de tiempos, aumento de la calidad, planificación estratégica y reducción de costos de producción para así optimizar y aprovechar los factores productivos.

Ante ello, la formulación del problema que se plantea fue: ¿En qué medida la aplicación del Six Sigma incrementará la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022?

El presente estudio, se justificó socialmente, ya que la aplicación de la metodología Six Sigma estuvo orientada al incremento de la productividad de tal manera que se logre una buena satisfacción tanto con sus proveedores y clientes. En efecto, todo ello hiso que la empresa alcance una mayor rentabilidad por lo que se aseguró la estabilidad de todos los trabajadores e incluso permitió brindar productos con mejores parámetros de calidad para la población en general, es decir, se dio la generación de productos que se basen en los principios de inocuidad. Así mismo, se presenta una justificación medio ambiental, en vista de que, al desarrollar efectivamente el Six Sigma se logró generar menores desperdicios, en efecto, reduciendo significativamente todo tipo de desecho que suele arrojarse al medio ambiente de la localidad. De otra manera, se justifica económicamente, porque a partir de la aplicación del Six Sigma se consiguió una máxima productividad del proceso de elaboración de conservas y se logró estandarizar los parámetros del producto final, en consecuencia, se disminuirán costos innecesarios y se elaborará una mayor cantidad de cajas de conservas con una mejor calidad. En síntesis, esto

provocó un incremento monetario significativo para la planta. Finalmente, se justifica metodológicamente, porque el estudio sirvió como referencia para otras empresas que se dediquen al sector pesquero que manifiesten obstáculos semejantes a los presentados en el reciente estudio.

Su objetivo general se consideró lo siguiente: determinar si la aplicación del Six Sigma incrementa la productividad del proceso de elaboración del envasado en La Chimbotana S.A.C. - Chimbote 2022. Entre tanto, como **objetivos específicos** se consideraron: diagnosticar la situación actual del proceso de envasado antes de aplicar el Six Sigma en la empresa de conservas Chimbotana S.A.C. - Chimbote 2022. Aplicar la metodología Six Sigma en el proceso de envasado en la empresa de conservas Chimbotana S.A.C. - Chimbote 2022. Evaluar el incremento de las producciones después de aplicar el método Six Sigma en el proceso de envasado en la empresa de conservas Chimbotana S.A.C. - Chimbote 2022.

Se consideró como **hipótesis alternativa**: la aplicación del método Six Sigma incrementará la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022. Mientras tanto y como **hipótesis nula**: La aplicación del Six Sigma no incrementará la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022.

II. MARCO TEÓRICO

En los antecedentes internacionales, Freire et al. (2020) en su estudio tuvo como objetivo perfeccionar la productividad en la adquisición del alga verde conocida como espirulina, con el propósito de poder controlar el estadístico y la disminución de los costes de producción. Para lograr la toma y registro de datos se hizo uso de listas de chequeo, mapa de procesos y del diagrama de espina de pescado. Como resultado se obtuvo que los compuestos de nitrato de potasio y que el bicarbonato sódico eran aquellos que poseían un coste inicial de \$21.15 por m3 respecto al sistema productivo y que finalmente el precio de estos compuestos fue de \$12.11 por m3, logrando de esta manera una reducción de coste de 58.30%, de la misma forma, el valor de cultivo inicial fue de \$13.76 por m3, aplicando el Six Sigma este valor cambió a un \$6.77 por m3, todo ello indica que el costo de ahorro mensual fue de \$16000, gracias a ello la producción aumentó en un 37.00%. Los autores concluyeron que el aplicar el Six Sigma contribuyó a conservar el nivel de productividad media de 4.16 g-m2/d, este progreso pudo reducir el proceso de escalado de 3.0 a 1.5 por año, de esta manera se acrecentó la producción de espirulina en un 33.00%.

Decky e Ilhamyah (2018) investigaron como acrecentar la productividad en la empresa que produce Cover Coffee Maker. La población fue el área de moldeado y la muestra fue la misma, la cual emplearon los métodos de diagrama de pescado, documentos de verificación, histograma, diagrama 80/20, diagrama de ejecución, diagrama de dispersos y de control. Obtuvieron un desempeño muy bajo en los operarios, causando una falta de formación en la muestra del mes de octubre, esto se evidencio en una parte de PT ya que se encontró 197464 de PT dañados de un total de 3294944, luego de implementar este sistema se volvió a realizar una muestra del mes de noviembre arrojando una cantidad menor de fallos en PT, llegando a la conclusión, que un sistema de Six Sigma representa una manera de optimizar los procesos, es decir, consigue simplificar los defectos que se manifiestan en un producto.

Calderón (2017) investigó el desarrollo de un sistema RIMLESS con el propósito de incrementar la productividad del proceso de vulcanizado mediante la

aplicación del Six Sigma, con una metodología pre – experimental y aplicada, en una muestra del proceso de reencauchadora, inclusive, para esta investigación fue necesario emplear varios instrumentos como el diagrama de pescado, diagrama 80/20, formatos de recolección de datos, encuestas y fichas de producción. Generó un resultado bastante satisfactorio, ya que al utilizar la metodología Six Sigma se redujo de 118 a 48 en defectos destacados, así como también la reducción del porcentaje de un 0,7% a 0,3%, aumentando la productividad de 99,2% a un 99,7%, así aumentando el nivel de la metodología sigma de 3,90 a 4,22. El autor dispuso que, al verificar las mejoras de esta implementación se obtuvo disminución de tiempo en el proceso, aumento de productividad y una mejora relativa de la calidad.

En Ecuador, Garcés (2016) en su investigación tuvo como objetivo fundamental acrecentar el porcentaje de productividad en el proceso de extrusión a través de la estrategia de Six Sigma. La investigación desarrollada presentó un diseño pre experimental, además de ello de tipo aplicada, para la población se consideró el proceso de extrusión, para el desarrollo se aplicaron distintos instrumentos para el registro de datos, dentro de los cuales se encontraban, el diagrama de pescado, la curva de distribución ABC, además de un medidor de dureza para el aluminio. Logrando reducir el porcentaje en 1.32% de los productos no conformes. Adicionalmente, se pudo determinar que durante el periodo pre-test la productividad fue de 255 kg/h-h y que luego del desarrollo de la metodología los resultados obtenidos en el post-test fue de 269 kg/h-h, lo cual indica que el valor porcentual de mejora fue de 5.5%. Posteriormente se calculó la eficacia preliminar que fue 71.00% y obteniendo una eficacia a posteriori de 84%, lo cual establece que este indicador tuvo un incremento porcentual de 18.3%. Finalmente se evaluó el último indicador que fue la eficiencia inicial y final de 76.00% y 90.00% respectivamente, de igual forma este indicador tuvo un incremento porcentual de 18.42%. Concluyó que la aplicación de dicha metodología pudo disminuir la cantidad de productos no conformes y por ende se incrementó la productividad.

En Colombia, Martínez (2016) en su estudio sobre implementar el Six Sigma en una industria alimentaria para la producción de golosinas como objetivo general. Para ello el diseño de esta investigación tuvo que ser pre-experimental, además se

utilizó el proceso productivo de golosinas en una muestra de las tomas del tiempo de la operación, diagrama Ishikawa, documentos de inspección y análisis de la productividad. Se generó un resultado satisfactorio gracias a la implementación de un sistema de metodología Six Sigma, los resultados fueron conformidad en la revisión de las bolsas de producto terminado la cual se hallaron una cierta cantidad de producto terminado disconformes con respecto a calidad aumentando en 3,48 del Sigma dando como resultado un DPO de 0.376. También aumentó su productividad de MP de 0,97 a 0.99 kg e incrementó los niveles de calidad.

A nivel nacional, Añazco (2019) tuvo como objetivo primordial determinar la productividad mediante la aplicación del Six Sigma, con una metodología aplicada y cuasi experimental, en una muestra de pañales XG. Se obtuvo como resultado que, el 95.75% tuvo como eficacia, 72% de eficiencia y una productividad del 68.83%. Luego, realizó un comparativo entre los productos no conformes por línea de producción, así como un diagrama de pescado de la baja productividad. Sumado a ello, efectuó un Project chárter del sistema y determinó un DPMO de 508. Es así que, desarrolló los procedimientos del DMAIC del Six Sigma por lo que consiguió alcanzar mejores parámetros de la calidad. El autor concluyó que, el Seis Sigma permitió incrementar la productividad en un 9.67%, la eficacia en un 2.67% y la eficiencia en un 7.67%.

Quillupangui (2019) en su estudio tuvo como objetivo optimizar el proceso de producción de alimentos en base al Six Sigma, con un método aplicado pre experimental, en una muestra del área de producción. Obtuvo como resultado que, en primera instancia realizó un diagnóstico situacional de la línea productiva por medio de un diagrama flujo y diagrama de bloques, en seguida, efectuó un mapa de procesos de la elaboración de alimentos balanceados, teniendo en consideración todas las estrategias que estas conllevaban. Sumado a ello, desarrolló un cursograma analítico a fin de determinar las actividades del proceso. Además, estableció un Takt time de 3.88 min/batch y un TC de 14,14 min y una productividad de 0,001037 batch/\$. Posteriormente, seleccionaron los procesos claves en los cuales realizó las mejoras, para ello, se basó en 5 fases

predeterminadas. Concluyendo que, consiguió incrementar la productividad en un 19% al día, disminuyó el TC en un 14,14% y aminoró el TT en 0,41 min/batch.

Del Castillo y Noriega (2018) investigó como aumentar la productividad en la producción de harina de pescado en la pesquera Austral Group, con una metodología aplicada y pre experimental, en una muestra de 385 sacos del producto terminado y en relación a la toma de data se usaron diferentes técnicas, pero que dentro de ellas se destacó el reconocimiento directo y el análisis inferencial de toda la documentación, en relación a los instrumentos empleados se usó el software SAP. Mostrando como resultados que al analizar los datos correspondientes dentro del pre-test resultó que la productividad fue de 12.33TM/M-HR con un valor sigma de 2.35 en inicio, luego de aplicar el sistema Six Sigma y realizar la evaluación correspondiente los datos del post-test fue de 19.13 TM/M-HR, resultando un valor sigma de 4.45, Los autores concluyeron que el valor porcentual incrementó en un 55.15% lo cual es totalmente favorable para la empresa.

Aguilar (2018) investigó la aplicación del Six Sigma en el área de producción de la empresa en estudio, la investigación fue aplicada y pre-experimental, en una muestra del área de producción de maca. Donde se obtuvo como resultado que, en primer lugar, determinó una productividad del 88.45%, posteriormente detalló el proceso de producción por medio de un DAP, plano de la planta e incluso priorizó la cantidad de fallas del área productivas por medio de un Pareto. Sumado a ello, determinó un tiempo de ciclo de 1. 25 horas y el porcentaje de tiempo no utilizado alcanzó un valor de 8.13%. En seguida, analizaron las causar raíces de la baja productividad y aplicaron los 5W1H como técnica, con el propósito de generar alternativas de mejora. Concluyendo que, al aplicar la metodología Six Sigma, consiguieron optimizar adecuadamente el proceso, incrementando en un 7.14% la productividad, pasando de 3.9 a 4.3 con el Six Sigma.

Matzunaga (2017) investigó como mejorar la calidad y productividad del proceso de fileteado y envasado en la línea productiva de cocido. El estudio fue aplicado y pre-experimental, en una muestra del área de productividad. Mostrando

como resultado que, con el fin de recabar información confiable y real aplicó una entrevista a los operarios del área de fileteado y envasado, luego, recopiló data a través de la observación sobre todo en el peso de envasado y producto no conforme del fileteado. Consecutivamente, con la finalidad de generar oportunidades de mejoras para los procesos críticos, desarrolló la metodología DMAIC del Six Sigma, por ello, estableció diagramas de flujos de ambos procesos críticos, priorizaron los defectos por medio del diagrama 80/20, y efectuó gráficas de control. Sumado a ello, efectuó diagrama de pescado a fin de examinar las causas de los problemas y desarrolló el análisis de capacidad. Concluyendo que, la metodología mejora el proceso de fileteado aminorando en 63.19% el DPMO y aumentó la capacidad de proceso a un nivel Cpk del 0.65 y Z de 2 sigmas.

En cuanto a **las teorías relacionadas al tema**, se procedió a conceptualizar las dos variables del presente trabajo de investigación, por lo que en relación a la primera variable en estudio se tiene el método Six Sigma, que se define como un sistema de perfeccionamiento basado en el ciclo de la mejora continua que permite restablecer el rendimiento de las actividades que se realizan dentro de una empresa y disminuir su variabilidad; por ende permite hallar y descartar las fuentes que generan los errores, las deficiencia y demoras en los diferentes procesos. El sistema Six Sigma se sostiene en un método que tiene como pilares las herramientas e ideología estadística (Gutiérrez y De La Vara, 2009, p.420).

Entre tanto, para Pérez y García (2014, p.3), el Six Sigma es una metodología orientada a mejorar los niveles de calidad de los diferentes productos hasta lograr su perfección, es aplicable para diferentes tipos de industrias, se diferencia de las otras metodologías pues permite corregir los problemas antes que estos ocasionen inconvenientes.

Además, para Herrera y Fontalvo (2006, p.4) la metodología de Six Sigma es una técnica encaminada al enfoque de la calidad sumado a instrumentos estadísticos con el propósito de incrementar los índices productivos de los procesos, a través de una buena toma de decisiones, obteniendo de esta manera que las organizaciones puedan enfocarse en las necesidades de los consumidores. Mientras tanto, para Arias, Portilla y Castaño (2008, p.2), el Six Sigma es una doctrina de análisis de trabajo y de un planeamiento de comercio, que tiene como

fundamento la dirección hacia el consumidor, mediante un análisis eficaz de la data, sistemas y procedimientos, que ayudan a suprimir la variación de los procesos y poder lograr un grado inferior a 5 defectos por millón.

El Six Sigma se dio a conocer a mediados de los ochenta a raíz que el investigador Mikel Harry analizó y evaluó la variabilidad de los métodos de trabajo de la empresa Motorola, dicha organización fue la primera en poner en marcha el desarrollo de esta nueva metodología como herramienta de posicionamiento en el mercado y del perfeccionamiento de la calidad (Navarro, Gisbert y Pérez, 2017, p.3). En aquella época las organizaciones implementaron distintos sistemas para mejorar el desarrollo de los procesos, considerando como meta la disminución de los índices de variabilidad. De este modo se inició a estimar el error estándar, que fue el índice para diagnosticar la eficacia y eficiencia. La empresa Motorola se orientó en todos estos pilares para acrecentar la calidad de sus productos; de este modo con la asistencia de Bob Galvin se centró en la transformación y del progreso continuo, visualizando que al desarrollar un registro de la estadística se considera una variación natural cuando el error estándar fluctúa entre 3 errores promedio (Herrera y Fontalvo, 2006, p.2)

Dentro de los objetivos fundamentales que posee la metodología Six Sigma se encuentra: mejorar la calidad, proporcionar un instrumento enfocado a incrementar la capacidad productiva, aumentar la productividad, disminuir la variabilidad, reducir defectos, incrementar la rentabilidad de las organizaciones y por ende aminorar los costes de producción, evitar los reprocesos, disminuir el desperdicio del material y a su vez reducir las pérdidas de energía derivada de la producción de residuos (Malpartida et al., 2021, p.5). En otro sentido, para poder desarrollar la metodología de Six Sigma es fundamental implementar el sistema DMAIC con sus instrumentos respectivos que contribuirán a perfeccionar todo un sistema (Felizzola y Luna, 2014, p.2).

Para el desarrollo de la primera etapa que es la definición, se establece y se exponen los cimientos para su logro. Por ende, al culminar esta etapa se precisa el objetivo principal de la planificación, la manera de cuantificar su logro, trascendencia, utilidad, y los involucrados. Todo lo descrito se simplifica en el marco del proyecto. Adicionalmente para establecer de manera objetiva el problema es necesario desarrollar y reunir toda la data para que sea procesada por diferentes

herramientas utilizadas para diagnosticar un problema, entre los cuales se encuentran: la curva de distribución ABC, un diagrama de barra, diagramas de control, mapa y diagrama de procesos, diagrama pepsu, entre otros. (Gutiérrez, 2010, p.291).

En la segunda etapa que es medir, se busca comprender y calcular la dimensión real del problema o de la circunstancia que se va tratar en el proyecto. Por ende, se establece las actividades a un grado más específico para captar la trascendencia del trabajo, los enfoques de decisión y los pormenores para un adecuado desarrollo; se determinan con mayor énfasis los parámetros con los que se analizarán el logro del proyecto. Es así que se deben utilizar mecanismos que contribuyan a controlar el avance en relación a las metas establecidas en la etapa anterior. Se usan mecanismos como: Diagrama de flujo, diagramas de control y análisis de la expansión productiva con sistemas del Six Sigma (Gutiérrez, 2010, p.291).

En la tercera etapa que consiste en analizar, está definida por el planteamiento del origen del problema. Aquí se establece en qué etapa del procesamiento se determina el origen del fundamento esencial del problema. Normalmente en las organizaciones se le conoce como "mitigar el incendio", dicha expresión es muy popular puesto que frecuentemente los colaboradores no se dan el tiempo de establecer criterios de solución de manera adecuada, y es por eso que el problema vuelve aparecer de forma intempestiva. Los recursos en esta etapa son de gran variedad, pero los más reconocidos son: el brainstorming, diagrama de causa y efecto, curva de distribución ABC de segundo nivel, las 5's, registros de procesos, prueba de normalidad, grafica de puntos, entre otros. (Gutiérrez y De la Vara, 2009, p.428).

En esta cuarta etapa de mejora, se tiene como objetivo plantear y poner en práctica recursos que asistan de forma directa al problema raíz, de modo que de subsane o disminuya el problema. Las posibles opciones de mejora deben dar respuesta en base a la aplicación de distintos instrumentos como lo son el brainstorming, listas de chequeo, diagramas de barras, entre otros. La esencia se encuentra en presentar alternativas de solución que puedan atacar de forma directa y precisa hacia la problemática hallada (Gutiérrez y De la Vara, 2009, p.429).

En la última etapa que es el control, se esquematiza un método que conserve el progreso obtenido y se pueda dar por culminado el proyecto. Por lo general esta etapa es la más complicada debido a que se evalúa cuáles de todas las acciones se tomarán en cuenta para que sean invariables, se instauren e incorporen dentro de una organización. Lo cual abarca la colaboración y acoplamiento al cambio por parte de todos los colaboradores que forman parte del proceso productivo, que en muchas ocasiones puede generar retraso debido a que presenta complicaciones y resistencia (Gutiérrez, 2010, p.293).

Los instrumentos que se usan en el método de Six Sigma tienen como propósito la recolección de la data correspondiente para su análisis y diagnóstico, logrando así de esa manera exponer transformaciones, después de ello definir la problemática en cuestión, todo ello indica, que después serán visibles los cambios, por tanto, los instrumentos más precisos para el desarrollo de la investigación de presenta lo siguiente:

Capacidad de un proceso, se suele interpretar como la aptitud para generar bienes de acuerdo a las especificaciones estipuladas, para ello se debe tener en cuenta: índice de capacidad potencial y el índice de capacidad real (Gutiérrez y De la Vara, 2013, p.101). En otro sentido, la variación es la resta de la data obtenida de una actividad, así como de una dimensión. Debido a que para poder reducir la variabilidad de estas actividades es una meta fundamental del Six Sigma y el análisis estadístico, por ende, se deduce en la etapa de administrativa se interactúa con el sistema, la maquinaria, fuerza de trabajo, entorno natural y material, y cálculo (p.11).

El diagrama de causa y efecto brinda una visión general de un listado de causas que establecen los potenciales factores por la cual se está originando un problema. Además, es una herramienta que une las causas básicas con la problemática en específico (Basilio, 2021, p.19). Su éxito se deriva en la investigación que se realiza para determinar los factores de riesgo que modifican un problema, en tanto que se realiza una evaluación, de tal manera que se puede evitar posibles errores y así dar solución de forma precisa (Burgasí et al, 2020, p.1218).

Diagrama de Pareto, es una forma de priorizar las causas que generan deficiencias en un determinado sistema de producción, por ello, es vital que se

reconozca la frecuencia de la ocurrencia de las distintas causas de un problema (Gándara, 2014, p.19). No obstante, para Contreras et al (2019, p.4) es una representación visual a través del cual se jerarquizan y priorizan las causas de los problemas según su repetitividad en un sistema de conversión. Para ello, se debe disponer de registros donde se anoten los diversos problemas generados durante una jornada de trabajo. Sumado a ello, se debe tener en cuenta el nivel de impacto que propicia cada causa identificada previamente.

Los defectos por unidad (DPU), representan un análisis cuantitativo en donde se expresan las fallas que se generan al momento de producir un determinado bien, además, esto se debe interrelacionar con el nivel de calidad sigma. Su significado consiste en la relación de N° de unidades procesadas y N° de defectos identificados (Gutiérrez y De la Vara, 2013, p.114).

La inferencia estadística, es una evaluación cuantitativa por medio del cual se validan los datos generados en un periodo de tiempo estipulado. Además, este método ayuda a generar ideas en cuanto a estrategias, así como controles de evaluación, con el objetivo de reducir o simplificar los diversos errores que se denotan en un sistema transformativo (Gutiérrez y De la Vara, 2013, p.63).

Control estadístico de procesos, es una técnica que ayuda a que los productos o procesos se desarrollen en los parámetros de calidad adecuados, es decir, evitando todo tipo de falla al momento de desarrollar las acciones propias de cada operación. Agregado a ello, es recomendable que se pongan en práctica las 7 herramientas de la calidad (Herrera y Fontalvo, 2006, p.48). Las cartas de control, verifican que la variabilidad se mantenga en los parámetros adecuados para cada proceso requerido en un sistema productivo. Su finalidad es velar por el correcto funcionamiento de las operaciones y analizar las varianzas generadas con el fin de planificar acciones remedios y evitar la recurrencia de estos (Gutiérrez, 2010, p.219).

La estadística descriptiva, consiste en la agrupación de datos generados en un determinado periodo de tiempo, ello enmarca un estado inicial y final. Del mismo modo, se basa en determinar la desviación estándar y la media obtenida de todos los valores generados (Álvarez y Barreda, 2020, p.18). Sumado a ello, su finalidad se basa en examinar los datos, procesarlos y obtener una data final, siendo esta

confiable y veraz como producto del desarrollo del estudio (Cuauhtémoc, 2014, p.1).

El análisis de criticidad es una técnica simple y dinámica mediante la cual se mide el grado de importancia o de probabilidades de las máquinas, sistemas y activos. (Mendoza, 2000, p.1). Del mismo modo, este método evaluativo sirve como un diagnóstico y es esencial desarrollarlo en situaciones que requieran la programación de los diferentes planes de mantenimientos (Enriques et al., 2020, p.2).

El manual de buenas prácticas de manufactura (BPM) establecen los procedimientos sistematizados por el cual un colaborador ejecuta las diversas tareas de la mejor manera posible (Bastías et al, 2013, p.161). Entre tanto, para Salgado y Castro (2007, p.2), el BPM representa el empleo de procedimientos de trabajos más simples, dinámicos y flexibles a partir de lo cual los colaboradores pueden desarrollar sus actividades de una forma más práctica y eficiente.

La herramienta 5W+2H es una manera de determinar las causas raíz de los inconvenientes manifestados en un entorno o estación de trabajo, además, ayuda a generar las acciones preventivas o correctivas correspondientes para hacer frente a cualquier obstáculo evidenciado a lo largo de un sistema de transformación (Cabrera, Medina y Puentes, 2017, p.15). La primera W, representa la actividad que se desarrollará, la segunda W, se basa en mencionar las razones por la cual se pretende ejecutar la acción, la tercera W, ejemplifica la persona que lo llevará a cabo, la cuarta W, estipula el tiempo en el que se procederá a ejecutar y, finalmente, la quinta W, representa donde se debería efectuar la acción. Sumado a ello, se tienen las 2 H: La primera H, implica la forma en la que se desarrollará una acción y la segunda H, implicar la determinación de los costos (Cabrera, Medina y Puentes, 2017, p.15).

Mapa de procesos, es una representación visual en el que se esquematiza la manera en la que se conectan las fases de actividades, tareas e información. En efecto, haciendo más entendible los procedimientos que se incurren en una operación (Hernández, 2009, p.3). Diagrama SIPOC, es un esquema dinámico en el cual se reconocen los elementos más significativos, para ello, se tienen en cuenta los factores claves y como estos se relacionan (González y Escobar, 2020, p.124).

En concordancia con la variable dependiente se tiene a la productividad, la cual es conceptualizada como el resultado de dividir la totalidad de productos generados y el total de factores productivos empleados. Del mismo modo, es útil cuando se pretende determinar el buen aprovechamiento de los recursos para producir un determinado bien (Gutiérrez, 2010, p.21). Además, para Fontalvo (2016, p.8) esta variable es la clara muestra de obtener el mayor grado de aprovechamiento de los factores productivos al momento de generar cada unidad producida y en un determinado tiempo. Además, McGowan, Andrews y Nicolett (2015) aluden que esta variable es empleada mayormente cuando una compañía desea obtener mejores resultados mediante el buen aprovechamiento de los recursos (p.23).

Por otra parte, para Mejía y Jiménez (2020) la productividad tiene como finalidad establecer las ratios por el cual un determinado factor genera diversos resultados ya sean positivos o negativos pero que a corto y mediano plazo favorece en la búsqueda de oportunidades. Sumado a ello, este indicador representa una de las diferentes maneras de generar valor y la obtención de ventajas competitivas a diferencia que la competencia (p.3). Bajo esa premisa, una serie de organizaciones enmarcan que en la realidad actual enfrentan el reto de acrecentar la productividad en términos generales, ya que, de ello depende la sobrevivencia en una industria donde día a día la competencia se va volviendo más rígida y dinámica. En síntesis, todo ello hace énfasis en que se brinden productos con la mayor calidad posible, dado que, a lo largo ello será el punto de diferenciación entre una y otra empresa.

Por otro lado, existen diferentes formas de determinar la productividad, sin embargo, para Gutiérrez (2010, p.21) esta variable se mide primordialmente por medio de la eficiencia (refleja el uso óptimo de los factores productivos empleados para generar un bien) y la eficacia (representa el grado en el cual se alcanzan los objetivos previamente planificados). Sumado a ello, para García (2012, p.19) la eficacia es el valor representativo por el cual se consiguen alcanzar las metas programadas. Mientras tanto, la eficiencia establece el grado de aprovechamiento de los recursos productivos para generar un bien específico.

III.METODOLOGÍA

3.1. Tipo y diseño de investigación

Según Valderrama (2013, p.164) el estudio de tipo aplicado es aquel que busca solucionar inconvenientes identificados en un entorno por medio de metodologías sistematizadas, dinámicas y eficientes. Por ello, el actual estudio fue aplicada, porque brindó solución a las diversas deficiencias manifestadas a lo largo del proceso de elaboración de conservas, en efecto, aumentando el nivel de productividad en La Chimbotana S.A.C.

Según Valderrama (2013, p.175) el diseño experimental es una técnica estadística que permite identificar y cuantificar las causas de un efecto dentro de un estudio experimental. En otro sentido, el diseño de investigación pre experimental es aquel en el cual existe una manipulación ligera de la variable. Por lo tanto, el diseño de investigación fue pre-experimental, dado que, se trabajó con un grupo (proceso productivo de conservas de pescado), al cual se le aplicó un incentivo (Six Sigma) que determinó si la variable dependiente (productividad) es efectiva, ello realizado mediante una pre-prueba y post-prueba después de aplicar el incentivo.

$$\begin{array}{c|c} G & \longrightarrow & \boxed{\mathbf{0}_1} & \xrightarrow{\mathbf{X}_1: \text{Six Sigma}} & \boxed{\mathbf{0}_2} \end{array}$$

Dónde:

G: Proceso productivo de la empresa La Chimbotana S.A.C.

0₁: Productividad antes de aplicar el Six Sigma

X₁: Metodología Six Sigma

0₂: Productividad después de aplicar el Six Sigma

3.2. Variables y operacionalización

Variable independiente (cuantitativa): Six Sigma, es definido como: una técnica encaminada al enfoque de la calidad sumado a instrumentos estadísticos con el propósito de incrementar los índices productivos de los procesos a través de una buena toma de decisiones, obteniendo de esta manera que las organizaciones puedan enfocarse en las necesidades de los consumidores (Gutiérrez y De la Vara, 2009, p.420). Entre tanto, se define operacionalmente como: mejorar la calidad,

proporcionar un instrumento enfocado a incrementar la capacidad productiva, aumentar la productividad, disminuir la variabilidad, reducir defectos, incrementar la rentabilidad de las organizaciones y por ende aminorar los costes de producción, evitar los reprocesos, disminuir el desperdicio del material y a su vez reducir las pérdidas de energía derivada de la producción de residuos

Variable dependiente (cuantitativa): La productividad; hace énfasis al resultado de dividir la totalidad de productos generados en un sistema productivo y el total de factores productivos empleados. Del mismo modo, es útil cuando se pretende determinar el buen aprovechamiento de los recursos para producir un determinado bien (Gutiérrez, 2010, p.21). Entre tanto, se define operacionalmente como: La productividad se mide a través de dos componentes esenciales: la eficiencia y la eficacia. Por un lado, la eficiencia demuestra el buen aprovechamiento del factor tiempo, mientras tanto, la eficacia demuestra que tanto se llega a alcanzar los objetivos planteados por la empresa.

Es preciso mencionar que, la matriz de operacionalización de variables se encuentra desarrollada en el anexo 1.

3.3. Población, muestra y muestreo

Para Hernández, Fernández y Bautista (2014, p.174) la población fue representada por una serie de casos que concuerdan en ciertos aspectos y que generan información relevante para un estudio a partir de su interacción con el entorno. Por tanto, la población en el presente estudio estuvo conformada por la productividad de los procesos productivos para elaboración de conservas en la línea de cocido en La Chimbotana S.A.C.

Como criterio de inclusión se sostuvo la productividad del proceso de envasado, dado que, representa el área de menor productividad. En cuanto al criterio de exclusión, se consideró la productividad de los demás procesos productivos para la elaboración de conservas en la línea de cocido, siendo estos: recepción de materia prima, fileteado, adición de líquido de gobierno, codificado y almacén de producto final.

Para Hernández et al. (2014, p.175) la muestra fue representada generalmente por una parte del universo, al cual se le aplica determinados tratamientos a fin de propiciar un determinado efecto. Por tanto, la muestra del

reciente estudio estuvo conformada por la productividad del proceso de envasado para la elaboración de conservas en la línea de crudo, además se analizó los datos de productividad en 3 meses de pre-test y 3 meses de post-test. Además, para Valderrama (2013, p.188) el muestreo no probabilístico por conveniencia es aquel por el cual el indagador en base a sus propios criterios toma las decisiones pertinentes para llevar a cabo el estudio (Valderrama, 2013, p.193). Por ello, el muestreo fue no probabilístico por conveniencia. Finalmente, la unidad de análisis pone en énfasis los eventos o situaciones a la cual se le estudia y brinda data significante en cuanto a una problemática manifestada (Hernández, Fernández y Baptista, 2014, p.172). Por ello, la unidad de análisis estuvo conformada por la elaboración de conservas en la línea de cocido en La Chimbotana S.A.C.

3.4. Técnicas e instrumentos de recolección de datos

Valderrama (2013, p.194) define como técnicas a una serie de procedimientos que permiten analizar diversos sucesos y de esa forma generar data para un propósito específico. Por tanto, las técnicas empleadas en el estudio estuvieron comprendidas por el análisis documental y observación. Además, Valderrama (2013, p.185) define como instrumentos a los recursos empleados del investigador para aproximarse más a los hechos y de esa manera recolectar información relevante para el trabajo de investigación.

Tabla 1.Técnicas e instrumentos de recolección de datos

Variable	Técnica	Instrumento	Fuente/Información
		Formato de criticidad	Proceso de
	Observación	(Anexo 2)	envasado de La
		(/ tilexe z)	Chimbotana S.A.C.
		Formato AMFE	Proceso de
lu danandianta.	Observación	(Anexo 3)	envasado de La
Independiente:		(Allexo 3)	Chimbotana S.A.C
Six Sigma	Observación	Formato de diagrama de	Proceso de
		Ishikawa	envasado de La
		(Anexo 4)	Chimbotana S.A.C
		Formato de diagrama de	Proceso de
	Observación	Pareto	envasado de La
		(Anexo 5)	Chimbotana S.A.C.

	Observación	Formato de registro temporal de control de envasado (Anexo 6)	Elaboración propia
	Observación	Formato de índice de capacidad (Anexo 7)	Proceso de envasado de La Chimbotana S.A.C
	Observación	Formato de cumplimiento de mejoras (Anexo 8)	Proceso de envasado de La Chimbotana S.A.C
	Observación	Formato de capacitaciones (Anexo 9)	Elaboración propia
	Observación	Formato de defecto por unidad (Anexo 10)	Elaboración propia
	Observación	Formato de los 5W2H (Anexo 11)	Proceso de envasado de La Chimbotana S.A.C
	Observación	Formato de las buenas prácticas de manufactura (Anexo 12)	Proceso de envasado de La Chimbotana S.A.C
Dependiente: Productividad	Análisis documental	Formato de registro de indicadores de productividad (Anexo 13)	Área de producción de La Chimbotana S.A.C.

En lo que respecta a la validez, para Hernández et al. (2014, p.200) representa el nivel por el cual un determinado instrumento de forma realista mide las variables que pretenden medir. Así como la validación por juicio de expertos, considerándose a 3 especialistas en el tema de estudio, lo cual procedieron a validar la información para que así se alcance un adecuado nivel de aplicabilidad. Es preciso indicar que, los instrumentos a validar fueron: formato de registro temporal de control de envasado, formato de capacitaciones y formato de defecto por unidad.

3.5. Procedimientos

Incremento de la productividad del proceso de elaboración de conservas aplicando el Six Sigma en La Chimbotana S.A.C. Diagnosticar la situación actual Aplicar la metodología Evaluar el incremento de las del proceso de envasado antes producciones después de aplicar el Sigma en el proceso de de aplicar el Six Sigma en la método Six Sigma en el proceso de envasado en la empresa La Chimbotana S.A.C. - Chimbote empresa La Chimbotana S.A.C. envasado en la empresa Chimbotana S.A.C - Chimbote 2022. Chimbote 2022. 2022. Análisis de datos de Inicio Diagrama de Ishikawa los indicadores de productividad Diagrama de Pareto Realizar un diagnóstico de la Comparar y evaluar situación actual del la productividad Aplicar el registro temporal proceso de envasado antes y después de del control de envasado haber aplicado el método Six Sigma Cálculo de la capacidad del Análisis de criticidad proceso Aplicar formato de Realizar inferencia NO criticidad ¿Se estadística SI incrementó **AMFE** Determinar Defecto por productivid Unidad ad? Aplicar formato de Método 5W2H **AMFE** Análisis documental Implementación de buenas prácticas de manufactura Recolectar datos y determinar la Aplicar registro temporal del productividad peso de envasado Aplicar las cartas de control XRNO SI ¿La productivid ad es la adecuada? Fin

3.6. Métodos de análisis de datos

Tabla 2. *Métodos de análisis de datos*

Objetivo específico	Técnica	Instrumento	Resultado
Diagnosticar la situación	Análisis de datos	Formato de criticidad (anexo 2)	Ayudará a identificar el proceso con mayor cantidad de defectos
actual del proceso de envasado antes de aplicar el Six Sigma en la empresa	Análisis de datos	Formato AMFE (anexo 3)	Permitirá reconocer las fallas críticas, según sus índices de severidad y ocurrencia.
de conservas Chimbotana - S.A.C Chimbote 2022	Análisis de datos	Formato de registro de indicadores de productividad (anexo 13)	Permitirá determinar la productividad inicial del proceso crítico
_	Análisis de datos	Diagrama de Ishikawa (anexo 4)	Permitirá identificar los defectos potenciales
_	Análisis de datos	Diagrama de Pareto (anexo 5)	Permitirá priorizar las causas de potenciales
	Análisis de datos	Formato de registro temporal de datos de control de envasado (anexo 6)	Permitirá tener un control de la cantidad de latas de envasado que cumplan con los parámetro de control adecuados
	Análisis de datos	Formato de índice de capacidad (anexo 7)	Permitirá determinar la cantidad de productos que estén dentro de los límites establecidos de especificación
Aplicar la metodología Six Sigma en el proceso de envasado en la empresa de	Análisis de datos	Formato de cumplimiento de mejoras (anexo 8)	Permitirá definir el nivel de cumplimiento de las mejoras implementadas
conservas Chimbotana S.A.C Chimbote 2022	Análisis de datos	Formato DPU (anexo 10)	Permitirá determinar el número de defectos en una determinada muestra
_	Análisis de datos	Formato de los 5W2H (anexo 11)	Permitirá plantear acciones más estratégicas para dar solución a los problemas
	Análisis de datos	Formato de BPM (anexo 12)	Permitirá asegurar un mejor control y manipulación de los productos, en efecto, estableciendo parámetros adecuados para el proceso
Evaluar el incremento de las producciones después de aplicar el método Six	Análisis de datos	Formato de registro de indicadores de productividad (anexo 13)	Se determinará la productividad final del proceso crítico
Sigma en el proceso de envasado en la empresa de conservas Chimbotana S.A.C Chimbote 2022	Estadística descriptiva	Tabla comparativa de las productividades (Anexo 14)	Se determinará la variación de la productividad luego de implantar las mejoras
5 5	Estadística inferencial	Prueba T de Student	Permitirá aceptar o rechazar la hipótesis del estudio

3.7. Aspectos éticos

El estudio se realizó con las normas éticas de la UCV, siguiendo estrictamente los artículos estipulados en la Resolución de Consejo Universitario N°0275-2020/UCV. Por lo tanto, de acuerdo con el artículo 3, principios de la ética de la investigación, se enfatizó que como principio de beneficencia, la investigación se realizó con el objeto de obtener una serie de beneficios para los autores y la organización. Los autores también se comprometieron a analizar los posibles riesgos y/o beneficios, teniendo presente el principio de no maleficencia. Además, según el principio de autonomía, todos los participantes en el estudio podían tomar la decisión de retirarse si lo consideraban correcto. Teniendo presente el principio de justicia, los autores evitaron cualquier tipo de discriminación en el desarrollo de la investigación, es decir, igualdad de trato por parte de ambos investigadores.

De acuerdo con el artículo 4 "Investigación con seres humanos" se precisa que, al recolectar datos, los investigadores se comprometieron a no proporcionar información sobre todas las partes que participan directamente o indirectamente en el estudio. Asimismo, según el artículo 7 de la publicación de trabajos de investigación, los autores dieron permiso para publicar la investigación después de su finalización en el repositorio institucional. Además, de acuerdo al artículo 8 de las responsabilidades del investigador, los investigadores se comprometieron a exhibir un comportamiento adecuado durante el desarrollo del estudio. Finalmente, de acuerdo con el artículo 9, que define la política anti plagió, los autores evitaron cualquier forma de plagio, por lo que una vez finalizado el estudio, se procesó en Turnitin para identificar el plagio con otras fuentes de investigación.

IV. RESULTADOS

Diagnosticar la situación actual del proceso de envasado antes de aplicar el Six Sigma en la empresa de conservas Chimbotana S.A.C. - Chimbote 2022.

Figura 1
Criticidad del área de envasado

Nota. Base de datos de la criticidad del área de envasado

Tabla 3

Criticidad por áreas

Áreas	Criticidad	
Filete	19	
Recepción de materia prima	7	
Envasado	71	
Esterilización	3	
Almacén	5	

Nota. Base de datos de la criticidad por áreas

Se pudo observar en la tabla 3, el área con mayor criticidad es en el envasado con un porcentaje de 71 con una criticidad media y las áreas menos críticas son la esterilización con una criticidad de 3, almacén con 5, recepción de materia prima con 7 y filete con 19.

Tabla 4

Eficiencia inicial del subproceso de envasado

	Cálculo de la eficiencia					
Mes	Tiempo efectivo (8h)	Horas efectivas trabajadas	%			
		-	Eficiencia			
Julio	10800	7843.5	72.63%			
Agosto	10800	7929	73.42%			
Setiembre	10800	8059.5	74.63%			
Promedio total						

Nota. Base de datos de la eficiencia inicial del subproceso de envasado.

Se pudo observar en la tabla 4 que la eficiencia en el subproceso de envasado para el mes de julio fue de 72,63%, para el mes de agosto 73,42% y para el mes de setiembre 74,63% con un promedio de 73,56%, debido a que no se completó la cantidad de cajas estimadas.

Tabla 5

Eficacia inicial del subproceso de envasado

	Cálculo)	
Mes	Clientes proyectados	Clientes atendidos	% Eficacia
Julio	5400	4050	75.00%
Agosto	5400	2700	50.00%
Setiembre	5400	3375	62.50%
	Promedio total		62.50%

Nota. Base de datos de la eficacia inicial del subproceso de envasado.

Se pudo observar en la tabla 5 que la eficacia en el subproceso de envasado para el mes de julio fue de 75%, para el mes de agosto 50% y para el mes de setiembre 62,50% con un promedio de 62,50%, debido a que no se completó la cantidad de cajas estimadas.

Tabla 6

Productividad inicial del subproceso de envasado

PRODUCTIVIDAD								
Fecha	Α	В	С	D	E	E1	E2	E1 x E2
	Unidades producidas	Unidades planificadas	Unidades de tiempo	Tiempo útil	Tiempo total	Eficacia	Eficiencia	Productividad
Julio	108,447.6	110,000.	14	3,922	5,400	54.2	72.63	39.38
	106,817.2	110,000.	16	3,922	5,400	53.4	72.63	38.79
Agosto	106,817.2	110,000.	15	3,965	5,400	53.4	73.42	39.21
	107,485.8	110,000.	15	3,955	5,400	53.7	73.42	39.46
Setiembre	107,545.8 108,818.5	110,000. 110,000.	16 15	4,030 4,030	5,400 5,400	53.8 54.4	74.63 74.63	40.13 40.60

Nota. Base de datos de la productividad inicial del subproceso de envasado.

En la tabla 6 se pudo observar que la productividad en el subproceso de envasado para el mes de julio fue de 78,17%, para el mes de agosto 78,67% y para el mes de setiembre 80,73% debido a que no se completaron sus unidades producidas.

Objetivo específico 2: Aplicación de la metodología Six Sigma en el proceso de envasado en la empresa de conservas Chimbotana S.A.C. - Chimbote 2022.

Tabla 7
Estadística descriptiva

Estadísticos		
		PRE
N	Válido	6
	Perdidos	0
Media		45.9400
Mediana		46.6400
Moda		36,71 ^a
Desviacio	ón estándar	7.96100
Varianza		63.378
Mínimo		36.71
Máximo		54.47

Nota. Software SPSS-24.

De la información de la tabla 7 se desprende que la metodología Six-sigma del proceso de envasado tiene un 45.94 gr. de media, con 7.96gr. de desviación estándar, los procesos de envasados están por debajo de la mediana de 46,64gr. De carne de pescado, con una varianza de 63.37, se puede observar que el proceso de envasado se encuentra entre 36.71gr y 54.47gr como mínimo y máximo.

Tabla 8 Índice de capacidad de producción

ÍNDICE DE CAPACIDAD DE PRODUCCIÓN

Pretest	Índice de capacidad	Indicador de la capacidad	Índice Z
	potencial	real	
	26,380	50,00	0.528
	26,263	50,00	0.525
	26,515	50,00	0.530

Nota. Base de datos de capacidad de producción.

Se pudo observar que la capacidad potencial dio como resultado 26,38, por lo que, cumple con sus especificaciones requeridas para el subproceso de envasado dado que el valor debe ser mayor a 1, para que este adecuado al trabajo realizado en el subproceso. Por otro lado, la capacidad real es mayor a 1 mostrando que sea satisfactoria y el índice Z, mostró que el subproceso de envasado obtuvo un 0.52 de distancia entre la media y las especificaciones de peso requerido para el subproceso.

Objetivo específico 3: Evaluar el incremento de las producciones después de aplicar el método Six Sigma en el proceso de envasado en la empresa de conservas Chimbotana S.A.C. - Chimbote 2022.

Tabla 9

Comparación de estadística descriptiva pretest y postest

		PRETEST	POSTEST
N	Válido	6	6
	Perdidos	0	0
Media		45.9400	61.6300
Mediana		46.6400	65.9000
Moda		36,71ª	52,98 ^a
Desviación estándar		7.96100	6.70044
Varianza		63.378	44.896
Mínimo		36.71	52.98
Máximo		54.47	66.01

Nota. Software SPSS-24.

De la información de la tabla 9 se desprende que la metodología Six-sigma del proceso de envasado tiene una mejora de 45.94gr. a 61.63gr., con una desviación estándar de 7.96gr. a 6.70gr, los procesos de envasados se encuentran con un aumento de la mediana de 46,64gr a 65.90. De carne de pescado, con una varianza de 63.37gr a 44.89gr de producción, se puede observar que el proceso de envasado se encuentra entre 36.71gr y 66.01gr como mínimo y máximo.

Tabla 10

Comparación de índices pretest y postest

ÍNDICE DE CAPACIDAD DE PRODUCCIÓN

Pretest	Índ. de capacidad potencial	Capacidad real (indicador)	Índ. Z
	26,380	50,000	0.528
Postest	27,282	50,000	0.546

Nota. Base de datos de capacidad de producción.

Se pudo observar en la tabla 10 que la capacidad potencial dio como resultado 27.28, la cual cumple con los requisitos requeridos para el subproceso del envasado, ya que el valor debe ser mayor a 1 para que sea suficiente para el trabajo realizado por el subproceso. Desde el otro lado, la capacidad real es superior a 1, lo que indica que es satisfactoria; finalmente, el índice Z mostró que el subproceso del envasado alcanzó un 0.54 de distancia entre el valor promedio y el peso requerido. Esto significa que los pesos envasados cumplen con los requisitos establecidos para el producto.

Tabla 11

Comparación de datos pretest y postest

Comparación							
	DPU	Y	Nivel sigma				
Pretest	81.59	78.80	2.4				
Postest	97.37	97.13	3.4				

Nota. Base de datos de capacidad de producción.

Se pudo mostrar que en el postest dio como resultado que el DPU fue del 97.37%, lo cual cumple con los requisitos requeridos para el subproceso del envasado, ya que se eliminaron las imperfecciones de cada unidad producida, representando un porcentaje de menor defectos de pesos envasados respecto al pretest para ser adecuado el trabajo realizado en el subproceso. Por otro lado. Indicando un nivel de sigma de 3.4 mejor que el pretest.

Tabla 12

Resumen de producción y productividad

		PR	ODUCTI	VIDAD			
Fecha A		В	B C D			E2	E1 x E2
	Unidades producidas	Unidades planificadas	Tiempo útil	Tiempo total	Eficacia	Eficiencia	Productividad
Julio	108,447.62	200,000	3,922	5,400	54.2%	72.63%	39.38%
	106,817.24	200,000	3,922	5,400	53.4%	72.63%	38.79%
Agosto	106,817.24	200,000	3,965	5,400	53.4%	73.42%	39.21%
	107,485.83	200,000	3,965	5,400	53.7%	73.42%	39.46%
Setiembre	107,545.75	200,000	4,030	5,400	53.8%	74.63%	40.13%
	108,818.52	200,000	4,030	5,400	54.4%	74.63%	40.60%
Octubre	109,939.88	200,000	4,277	5,400	55.0%	79.2%	43.54%
	112,682.75	200,000	4,277	5,400	56.3%	79.2%	44.63%
Noviembre	111,578.18	200,000	4,291	5,400	55.8%	79.5%	44.33%
	111,480.93	200,000	4,291	5,400	55.7%	79.5%	44.29%
Diciembre	114,547.24	200,000	4,271	5,400	57.3%	79.1%	45.29%
	115,292.15	200,000	4,271	5,400	57.6%	79.1%	45.59%

Nota. Base de datos de capacidad de producción.

En la tabla 12 se pudo observar que en el primer mes obtuvo una producción de 215,264 cajas, con una producción estimada de 400,000 es decir que se obtuvo una productividad de 78,17%. Para el mes de agosto se obtuvo 214,303 cajas, llegando a un promedio de 78,67% en su productividad, en setiembre una producción de 216,364 cajas con un porcentaje de 80,73%. en octubre se obtuvo una producción de 222,623 cajas, con un promedio de 88,62% en su productividad, en noviembre 223,059 cajas, con un porcentaje de 88,62% y para el mes de diciembre 229,839 cajas, con un promedio de 90,88% siendo este mes con mayor productividad en comparación con los anteriores meses.

Tabla 13

Prueba de normalidad

Pruebas de normalidad									
Kolmogorov-Smirnov ^a Shapiro-Wilk									
	Estadístico	gl	Sig.	Estadístico	gl	Sig.			
Pretest	0.210	6	,200*	0.849	6	0.155			
Postest	0.405	6	0.003	0.645	6	0.002			

Nota. IBM SPSS v-24

En los resultados mostrados se observó las diferencias del pretest y postest, con una significancia de 0,003 para Kolmogorv-Smirnov y 0,002 para Shapiro-Wilk, dando un valor mayor a 0.05, por lo que la distribución estudiada cumple con los principios de normalidad. Por lo tanto, se aplicó la prueba de Wilcoxon la cual determinó la existencia de diferencias significativas entre las medias del pre y postest, puesto a que es la misma muestra para supuestos diferentes.

Tabla 14

Prueba de Wilcoxon

Hipótesis nula	Prueba	Sig.	Decisión
La mediana de las	Prueba de rangos con	0.026	Rechaza la
diferencias entre pre y	signo de Wilcoxon para		hipótesis nula
postest es igual a 0	muestras relacionadas		

Nota. IBM SPSS v-24

En la tabla 14 se pudo observar que la significancia es de 0.026, encontrándose dentro de los parámetros permisibles de aceptación, es decir es mayor a 0.05, por lo que se acepta la hipótesis de investigación Hi: La aplicación del método Six Sigma incrementó la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022. Por lo que demuestra que el aumento se dio positivamente en la productividad, ya que el aumento de la productividad será de manera gradual en el subproceso de envasado.

Tabla 15

Prueba de T de Student

Diferencias emparejadas						gl	Sig.
Media	Desviación	Media	95% de intervalo				(bilateral)
	estándar	de error	de confianza de la				
		estándar	diferencia				
			Inferior	Superior			
15.690	3.481	1.42136	-19.343	-12.036	-11.039	5	0.000

Nota. T-Student

En la prueba de t de Student se pudo observar un t=-11.039, gl=5, p=0.00, con una significancia menor a 0.05 por lo que se rechaza la hipótesis nula, por lo que la aplicación del método Six-Sigma incrementa la productividad del proceso de elaboración de conservas en la Chimbotana.

V. DISCUSIÓN

En el presente estudio se dio lugar a la redacción de una serie de discusiones, que respondieron con argumentos de contrastación de los objetivos de investigación. Inicialmente en base al objetivo general, de determinar si la aplicación del Sig sigma incrementa la productividad del proceso de elaboración del envasado en la Chimbotana SAC, Chimbote 2022.

De la tabla 3, de la muestra encuestada de la situación actual, se observa que el área con mayor criticidad es en el área de envasado con una criticidad media de 71 y las áreas menos críticas son la esterilización con una criticidad de 3, almacén con 5, recepción de materia prima con 7 y filete con una criticidad de 19. Con una eficiencia de 73,56%, una eficacia de 62,50% y una productividad en el subproceso de envasado para el mes de julio fue de 54,47%, para el mes de agosto 36,71% y para el mes de setiembre 46,64% debido a que no se completaron sus unidades producidas. Estos resultados se difieren con lo obtenido por Castillo y Noriega (2018) quienes determinan que al usar el diagrama de espina de pescado se pudo definir las principales causas que ocasionan problemas dentro del proceso productivo desde su inicio a fin, así como aquellos factores que repercutían en la calidad del producto final. Al analizar los datos correspondientes dentro del pre-test resultó que la productividad inicial fue de 12.33TM/M-HR con un valor sigma de 2.35, luego de aplicar el sistema Six Sigma y realizar la evaluación correspondiente los datos del post-test fue de 19.13 TM/M-HR, resultando un valor sigma de 4.45, por lo que, el valor porcentual incrementó en un 55.15% lo cual es totalmente favorable para la empresa. Estos resultados se ajustan a lo indicado por Enriques et al (2018) quienes afirman que el análisis de criticidad es una técnica simple y dinámica mediante la cual se mide el grado de importancia o de probabilidades de las máquinas, sistemas y activos. Del mismo modo, este método evaluativo sirve como un diagnóstico y es esencial desarrollarlo en situaciones que requieran la programación de los diferentes planes de mantenimientos; así mismo, Mejía y Jiménez (2020) menciona que la productividad tiene como finalidad establecer los ratios por el cual un determinado factor genera diversos resultados ya sean positivos o negativos pero que a corto y mediano plazo favorece en la búsqueda de

oportunidades. Sumado a ello, este indicador representa una de las diferentes maneras de generar valor y obtener una ventaja competitiva en contraste a la competencia.

De la tabla 7, en el pretest se desprende que la metodología Six-sigma del proceso de envasado tiene una media de 45.94 gr., con una desviación estándar de 7.96gr., los procesos de envasados están por debajo de la mediana de 46,64gr. De carne de pescado, con una varianza de 63.37, se puede observar que el proceso de envasado se encuentra entre 36.71gr y 54.47gr como mínimo y máximo. El índice de capacidad de producción potencial dio como resultado 26,38, demostrando que cumple con las especificaciones requeridas para el subproceso de envasado puesto que el valor debe ser mayor a 1, para ser adecuado el trabajo realizado en el subproceso. Por otro lado, la capacidad real es mayor a 1 mostrando que sea satisfactoria, finalmente el índice Z, indicó que el subproceso de envasado obtuvo un 0.52 de distancia entre la media y las especificaciones de peso requerido para el subproceso. Estos resultados se confrontan y difieren con los hallazgos de Freire et al. (2020) determinan que los compuestos de productividad eran aquellos que poseían un coste inicial de \$21.15 por m3 respecto al sistema productivo y que finalmente el precio de estos compuestos fue de \$12.11 por m3, logrando de esta manera una reducción de coste de 58.30%, de la misma forma, el valor de cultivo inicial fue de \$13.76 por m3 y que luego de la aplicación de la metodología de Six Sigma este valor cambió a un \$6.77 por m3, todo ello indica que el costo de ahorro mensual fue de \$16000, gracias a ello la producción aumentó en un 37.00%, por lo que, al aplicar el Six Sigma contribuyó a conservar el nivel de productividad media de 4.16 g-m2/d, este progreso pudo reducir el proceso de escalado de 3.0 a 1.5 por año, de esta manera se acrecentó la producción de espirulina en un 33.00%. Estos resultados se ajustan a lo indicado por Malpartida et al. (2021) quienes afirman que la metodología Six Sigma se encuentra: mejorar la calidad, proporcionar un instrumento enfocado a incrementar la capacidad productiva, aumentar la productividad, disminuir la variabilidad, reducir defectos, incrementar la rentabilidad de las organizaciones y por ende aminorar los costes de producción, evitar los reprocesos, disminuir el desperdicio del material y a su vez reducir las pérdidas de energía derivada de la producción de residuos.

De la tabla 9, se observó un incremento de la producción después de aplicar el método six sigma del proceso de envasado con una mejora de 45.94gr. a 61.63gr., con una desviación estándar de 7.96gr. a 6.70gr, los procesos de envasados se encuentran con un aumento de la mediana de 46,64gr a 65.90. De carne de pescado, con una varianza de 63.37gr a 44.89gr de producción, se puede observar que el proceso de envasado se encuentra entre 36.71gr y 66.01gr como mínimo y máximo. Se pudo observar que la capacidad potencial dio como resultado 27.28, demostrando que cumple con las especificaciones requeridas para el subproceso de envasado puesto que el valor debe ser mayor a 1, para ser adecuado el trabajo realizado en el subproceso. Por otro lado, la capacidad real es mayor a 1 mostrando que sea satisfactoria, finalmente el índice Z, indicó que el subproceso de envasado obtuvo un 0.54 de distancia entre la media y las especificaciones de peso requerido para el subproceso. Es decir que los pesos envasados se encentran próximos a cumplir con las especificaciones requeridas para el producto. Estos resultados se confrontan y difieren con los hallazgos de Decky e Ilhamyah (2018) mencionaron que obtuvieron un desempeño muy bajo en los operarios, causando una falta de formación en la muestra del mes de octubre, esto se evidencio en una parte de PT ya que se encontró 197464 de PT dañados de un total de 3294944, luego de implementar este sistema se volvió a realizar una muestra del mes de noviembre arrojando una cantidad menor de fallos en PT, por lo que, un sistema de Six Sigma representa una manera de optimizar los procesos, es decir, consigue simplificar o eliminar los defectos o fallos que se manifiestan en un producto o servicio. Estos resultados se ajustan a lo indicado por Herrera y Fontalvo (2006) guienes afirman que la metodología de Six Sigma es una técnica encaminada al enfoque de la calidad sumado a instrumentos estadísticos con la finalidad de aumentar los índices de productividad de los procesos a través de una buena toma de decisiones, obteniendo de esta manera que las organizaciones puedan enfocarse en las necesidades de los consumidores.

De la tabla 11, de la muestra del postest dio como resultado que el DPU fue del 97.37%, demostrando que cumple con las especificaciones requeridas para el subproceso de envasado puesto que se eliminaron los defectos de cada unidad de producto, la cual representa un porcentaje menos defectos de pesos envasados

respecto al pretest para ser adecuado el trabajo realizado en el subproceso. Por otro lado, indicando un nivel de sigma de 3.4 mejor que el pretest. Se pudo observar que en el primer mes obtuvo una producción de 215,264 cajas, con una producción estimada de 400,000 es decir que se obtuvo una productividad de 78,17%. Para el mes de agosto se obtuvo 214,303 cajas, llegando a un promedio de 78,67% en su productividad, en setiembre se obtuvo una producción de 216,364 cajas con un porcentaje de 80,73%. En el mes de octubre se obtuvo una producción de 222,623 cajas, con un promedio de 88,17% en su productividad, en noviembre 223,059 cajas, con un porcentaje de 88,62% y para el mes de diciembre 229,839 cajas, con un promedio de 90,88% siendo este mes con mayor productividad en comparación con los anteriores meses. Asimismo, en la prueba de normalidad del pretest y postest, con una significancia de 0,003 para Kolmogorv-Smirnov y 0,002 para Shapiro-Wilk, dando un valor mayor a 0.05, por lo que la distribución estudiada cumple con los principios de normalidad. Por lo tanto, se aplicó la prueba de Wilcoxon la cual determinó la existencia de diferencias significativas entre las medias del pre y postest, puesto a que es la misma muestra para supuestos diferentes. Y la prueba de T de Student se pudo observar un t=-11.039, gl=5, p=0.00, con una significancia menor a 0.05 por lo que se rechaza la hipótesis nula, por lo que la aplicación del método Six-Sigma incrementa la productividad del proceso de elaboración de conservas en la Chimbotana. Estos resultados se confrontan y difieren con los hallazgos de Añazco (2019) quien determinó que, el 95.75% tuvo como eficacia, 72% de eficiencia y una productividad del 68.83%. Luego, realizó un comparativo entre los productos no conformes por línea de producción, así como un diagrama de pescado de la baja productividad. Sumado a ello, efectuó un Project chárter del sistema y determinó un DPMO de 508. Es así que, desarrolló los procedimientos del DMAIC del Six Sigma por lo que consiguió alcanzar mejores parámetros de la calidad. Por lo que este método permitió incrementar la productividad en un 9.67%, la eficacia en un 2.67% y la eficiencia en un 7.67%, asimismo, Quillupangui (2019) quien determina que en primera instancia realizó un diagnóstico situacional de la línea productiva por medio de un diagrama flujo y diagrama de bloques, en seguida, efectuó un mapa de procesos de la elaboración de alimentos balanceados, teniendo en consideración todas las estrategias que estas conllevaban. Sumado a ello, desarrolló un cursograma

analítico a fin de determinar las actividades del proceso. Además, estableció un Takt time de 3.88 min/batch y un TC de 14,14 min y una productividad de 0,001037 batch/\$. Posteriormente, seleccionaron los procesos claves en los cuales realizó las mejoras, para ello, se basó en 5 fases predeterminadas. Por lo que, consiguió incrementar la productividad en un 19% al día, disminuyó el TC en un 14,14% y aminoró el TT en 0,41 min/batch. Estos resultados se ajustan a lo indicado por Mejía y Jiménez (2020) quienes afirman que la productividad tiene como finalidad establecer los ratios por el cual un determinado factor genera diversos resultados ya sean positivos o negativos pero que a corto y mediano plazo favorece en la búsqueda de oportunidades. Sumado a ello, este indicador representa una de las diferentes maneras de generar valor y obtener una ventaja competitiva en contraste a la competencia. Bajo esa premisa, una serie de organizaciones enmarcan que en la realidad actual enfrentan el reto de acrecentar la productividad en términos generales, ya que, de ello depende la sobrevivencia en una industria donde día a día la competencia se va volviendo más rígida y dinámica. En síntesis, todo ello hace énfasis en que se brinden productos con la mayor calidad posible, dado que, al largo ello será el punto de diferenciación entre una y otra empresa

VI. CONCLUSIONES

- 1. Se diagnosticó que el área con mayor criticidad es en el envasado con un porcentaje de 71 con una criticidad media y las áreas menos críticas son la esterilización con una criticidad de 3, almacén con 5, recepción de materia prima con 7 y filete con 19. Con una productividad de 78,17% para el mes de julio, para el mes de agosto 78,67% y para el mes de setiembre 80,73% debido a que no se completaron sus unidades producidas.
- 2. Se aplicó la metodología Six-sigma mostrando un proceso de envasado de 45.94 gr. de media, con 7.96gr. de desviación estándar, los procesos de envasados están por debajo de la mediana de 46,64gr. De carne de pescado, con una varianza de 63.37, se puede observar que el proceso de envasado se encuentra entre 36.71gr y 54.47gr como mínimo y máximo.
- 3. Se evaluó el incremento de la producción con la metodología Six-sigma del proceso de envasado con una mejora de 45.94gr. a 61.63gr., con una desviación estándar de 7.96gr. a 6.70gr, los procesos de envasados se encuentran con un aumento de la mediana de 46,64gr a 65.90. De carne de pescado, con una varianza de 63.37gr a 44.89gr de producción, se puede observar que el proceso de envasado se encuentra entre 36.71gr y 66.01gr como mínimo y máximo. Con un aumento de la producción de 78,17% a 88,17%, para el primer mes, para el segundo mes de 78,67% a 88,62% y 80,73% a 90,88% para el tercer mes.
- 4. Se determinó que mediante la prueba de t de Student se pudo observar un t=-11.039, gl=5, p=0.00, con una significancia menor a 0.05 rechazando la hipótesis nula, por lo que la aplicación del método Six-Sigma incrementa la productividad del proceso de elaboración de conservas en la Chimbotana.

VII. RECOMENDACIONES

A los encargados del área de producción se sugiere emplear la metodología Six Sigma en la empresa la Chimbotana para incrementar la productividad y mantener el compromiso con sus colaboradores.

Al gerente general de la empresa la Chimbotana se sugiere emplear las herramientas tecnológicas para realizar un mejor diagnóstico, implementación, así como para el monitoreo y control

Se sugiere implementar un sistema integrado de gestión empresarial (ERP), con el propósito de integrar los procesos de la empresa, para que la información fluya sin ningún problema en sus diferentes áreas, para lograr una mejora en la toma de decisiones, coordinación y eficiencia.

Se sugiere emplear un programa de entrenamiento y capacitación al personal del área de producción de la empresa la Chimbotana en metodologías de mejora continua para incrementar la productividad de la empresa.

Referencias

ACOLTZIN, Cuauhtémoc. Estadística descriptiva y selección de prueba. México: Revista Mexicana de cardiología – Scielo [en línea], n.o 2, vol.25. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en https://www.scielo.org.mx/pdf/rmc/v25n2/v25n2a9.pdf

ISSN: 3123-1235

AGUILAR, Kenedy. Six Sigma para mejorar la productividad en una empresa procesadora de maca. Tesis (Título en ingeniería industrial). Huancayo: Universidad Peruana de los Andes, 2018, 109 pp. Disponible en: https://repositorio.upla.edu.pe/handle/20.500.12848/1052

ÁLVAREZ, Elen y BARREDA, Liset. La estadística descriptiva en la formación investigativa del instructor de arte. Argentina: Revista Conrado [en línea], n.o 73, vol.16. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1990-8644202000020010 ISSN: 1990-8644

AÑAZCO, Dixon. Seis Sigma para Mejora de la productividad en la Fabricación de Pañales de la Línea Nazca, Santa Clara 2019. Tesis (Título en ingeniería industrial). Lima: Universidad César Vallejo, 2019, 70 pp. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/40465/Huaman_CP.pdf?sequence=1&isAllowed=y

ARIAS, Leonel [et al]. Aplicación de six sigma en las organizaciones. Revista Redalyc [en línea], n.o 38, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.redalyc.org/articulo.oa?id=84903846

ISSN: 0122-1701

BASILIO, Gabriel y CAMPOS, Gevair. El uso del diagrama de Ishikawa para identificar las causas de contaminación en la línea de producción de matanza de ganado. La técnica [en línea]. Ecuador: Revista de las Agrociencias 2021, n.o 26, vol.4. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=8232842

ISSN: 2477-8982

BASTÍAS, José [et al]. Correlación entre las buenas prácticas de manufactura y el cumplimiento de los criterios microbiológicos en la fabricación de helados en chile. Revista Chile nutricional [en línea], n.o 2, vol.40. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.scielo.cl/scielo.php?pid=S0717-75182013000200011&script=sci_abstract&tlng=en

ISSN: 5234-1553

BURGASÍ, Dayanara [et al]. El diagrama de Ishikawa como herramienta de calidad en la educación. Ecuador: Universidad de las Fuerzas armadas [en línea], n.o 1, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: http://tambara.org/wp-content/uploads/2021/04/DIAGRAMA-ISHIKAWA_FINAL-PDF.pdf

ISSN: 1242-3255

CALDERÓN, Juan. Implementación del sistema Rimless para mejora de la productividad en el proceso de vulcanizado utilizando la metodología Seis Sigma. (Magíster en ingeniería industrial). Quito: Escuela Politécnica Nacional, 2017, 139 pp. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/18966

CABRERA, Henrry, MEDINA, Alberto y PUENTES, Manuel. Procedimiento para la gestión de procesos con contribución a la integración de sistemas normalizados [en línea]. Universidad de Cienfuegos, no. 2, vol.9. [Fecha de consulta: 25 de abril 2023]. Disponible en: http://scielo.sld.cu/pdf/rus/v9n2/rus37217.pdf

CONTRERAS, Andrés [et al]. Herramientas estadísticas para la mejora del control de inventarios: un caso de estudio. Colombia: Revista I+D [en línea], n.o 1, vol.10. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://revistas.unisimon.edu.co/index.php/identic/article/view/3486

ISSN: 2216-1570

CUAUHTÉMOC, Acolzin. Estadística descriptiva y selección de la prueba. México: Revista Mexicana [en línea], no. 2, vol.25. [Fecha de consulta: 25 de abril 2023]. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-21982014000200009

DECKY, Antony e ILHAMYAH, Sipahutar. Penerapan Six Sigma Upaya Peningkatan produktivitas Pada Perusahaan Moulding Plastik. SNISTEK [en línea]. Indonesia: Batam 2018, n.o 2, vol.4. [Fecha de consulta: 28 de septiembre del 2022].

https://ejournal.upbatam.ac.id/index.php/prosiding/article/view/742

ISSN: 4324-1234

DEL CASTILLO, Euler y NORIEGA, Víctor. Propuesta de un modelo de gestión para incrementar la productividad, aplicando la metodología six sigma en una empresa pesquera. Tesis (Título en ingeniería industrial). Chimbote: Universidad César Vallejo, 2018, 106 pp. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/23787

ENRIQUES, Antonio [et al]. Tecnología para el análisis de criticidad de los sistemas tecnológicos en empresas biofarmacéuticas. Colombia: Revista ingeniería mecánica [en línea], n.o 1, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-5944 ISSN: 1815-5944

FELIZZOLA, Heriberto y LUNA, Carmenza. Lean Six Sigma en pequeñas y medianas empresas: un enfoque metodológico. Ingeniare [en línea]. Colombia: Revista Chilena de Ingeniería 2014, n.o 2, vol.22. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-3305

ISSN: 3412-352

FREIRE, Daniel y ÁLVAREZ, Gabriela. Metodología Seis Sigma en el incremento de producción de Spirulina. Revista minerva de investigación científica [en línea]. Quito: Universidad de las Américas 2020, n.o 1, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.researchgate.net/publication/342353304 Metodologia Seis Sigma

ISSN: 2697-3650

FONTALVO, Tomás. Análisis de la productividad para las empresas certificadas y no certificadas en la coalición empresarial anti-contrabando en la ciudad de Cartagena. Ingeniare [en línea]. Chile: Revista Chilena de Ingeniería 2016, n.o 1, vol.24. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.scielo.cl/scielo.php?script=sci_abstract&pid=S0718

ISSN: 3242-5423

GÁNDARA, Felipe. Herramientas de calidad y el trabajo en equipo para disminuir la reprobación escolar. Conciencia tecnología [en línea]. México: Revista Redalyc 2014, n.o 1, vol.48. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.redalyc.org/articulo.oa?id=94432996003

ISSN: 1405-5597

GARCÉS, Luis. Mejoramiento de la productividad de la línea de extrusión de la empresa Cedal, empleando la metodología "six sigma". Tesis (Magíster en ingeniería industrial). Quito: Escuela Politécnica Nacional, 2016, 194 pp. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/16888

GARCÍA, Roberto. Estudio del trabajo. 2da edición. México: Mc Graw Hill, 2012, 459 pp. Disponible en: https://faabenavides.files.wordpress.com/2011/03/estudio-del-trabajo_ingenierc3ada-de-mc3a9todos-roberto-garcc3ada-criollo-mcgraw_hill ISBN: 9701046579

GASTELUM, Carlos [et al]. Seis Sigma en instituciones de educación superior en México. Información tecnológica [en línea]. México: Universidad Autónoma 2018, n.o 5, vol.29. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.scielo.cl/scielo.php?pid=S071807642018000500091&script=sci_arttex ISSN: 4326-2354

GESTIÓN. SNI: La mitad de plantas de conservas de pescado peruanas están a punto de cerrar. El diario de economía y negocios de Perú, 2017. [Fecha de consulta: 25 de abril del 2023]. Disponible en: https://archivo.gestion.pe/economia/sni-mitad-plantas-conservas-pescado-peruanas-estan-punto-cerrar-2205300

GONZÁLEZ, Hernando y ESCOBAR, Carlos. Aplicación de la herramienta SIPOC a la cadena de suministro interna de una empresa distribuidora de medicamentos. Naturaleza, innovación y tecnología [en línea]. Colombia: Revista Lumen Gentium

2020, n.o 2, vol.5. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://revistas.unicatolica.edu.co/revista/index.php/LumGent/article/view/361

ISSN: 2590-8714

GUERRERO, David; SILVA, Jorge y BOCANEGRA, Claudia. Implementation of lean six sigma in higher education intitutions: A comprehensive review. Ingeniare [en línea]. Chile: Revista chile de ingeniería 2019, n.o 4, vol.27. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://www.ingeniare.cl/index.php?option=com_ingeniare&view=va&aid=759&vid

ISSN: 5324-3264

GUTIÉRREZ, Humberto. Calidad total y productividad. Terca edición. México: Mc Graw Hill, 2009, 502 pp. Disponible en: https://clea.edu.mx/biblioteca/files/original/56cf64337c2fcc05d6a9120694e36d82.p

ISBN: 9789701069127

GUTIÉRREZ, Humberto y DE LA VARA, Román. Control estadístico de calidad y seis sigmas. México: Mc Graw Hill, 2010, 370 pp. Disponible en: https://www.uv.mx/personal/ermeneses/files/2018/05/6-control-estadistico-

ISBN: 9786071603152

HERNÁNDEZ, Arialys y MEDINA, Alberto. Procedimiento de elaboración de mapas de procesos en servicios hospitalarios. [en línea]. Cuba: Revista avanzada científica 2009, n.o 1, vol.123. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5074418

ISSN: 1029-3450

HERRERA, Roberto y FONTALVO, Tomás. Seis Sigma Métodos estadísticos y sus aplicaciones. Primera edición. Colombia: Eumed, 2000, 138 pp. Disponible en: https://www.eumed.net/libros-gratis/2011b/939/939.pdf

ISBN: 9789583395307

HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos y BAUTISTA, María. Metodología de la investigación. Sexta edición. México: Mc Graw Hill, 2014, 298 pp. Disponible en: https://www.esup.edu.pe/wp-

content/uploads/2020/12/2.%20Hernandez,%20Fernandez%20y%20Baptista-Metodolog%C3%ADa%20Investigacion%20Cientifica%206ta%20ed.pdf

ISBN: 978-1-4562-2396-0

HUAMAN, Placido. Seis Sigma para mejora de la productividad en la fabricación de pañales de la línea Nazca, Santa clara. (Título en ingeniería industrial). Lima: Universidad César Valleio. 2019, 111 Disponible pp. en:

https://repositorioslatinoamericanos.uchile.cl/handle/2250/3230720

HUERTA, Ricardo. El análisis de criticidad, una metodología para mejorar la confiabilidad operacional. Ingeniería mecánica [en línea]. Venezuela: Revista ISPJAE 2000, n.o 1, vol.3. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://reliabilityweb.com/sp/articles/entry/el-analisis-de-criticidad-

una-metodologia-para-mejorar-la-confiabilidad

ISSN: 1532-2356

MCWOMAN, Muge [et al]. The future of productivity. Primera edición. California: OECD, 2015, 102 pp. Disponible en: https://www.oecd.org/economy/growth/OECD-

2015-The-future-of-productivity-book.pdf

ISBN: 9235636236578

MALPARTIDA, Jorge [et al]. Estrategia de mejora de procesos Six Sigma aplicado a la industria textil. Alpha Centauri [en línea]. Perú: Revista internacional 2021, n.o. 2, vol.3. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://journalalphacentauri.com/index.php/revista/article/view/45

ISSN: 2709-4502

MARIS, Stella [et al]. Aplicación de Seis Sigma en el laboratorio clínico. Gestión de la calidad y acreditación [en línea]. Argentina: Acta bioquímica clínica Lationamericana 2019, n.o 4, vol.53. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en:

https://www.redalyc.org/journal/535/53562809014/html/#:~:text=El%20modelo%

ISSN: 1851-6114

MARTÍNEZ, María. Mejora radical del proceso de elaboración de golosinas en la industria alimentaria mediante desarrollo de metodología seis sigma. (Título en tecnologías industriales). Cartagena: Universidad Politécnica de Cartagena, 2016, 136 pp. Disponible en: https://repositorio.upct.es/handle/10317/6647

MATZUNAGA, Luis. Implementación de un sistema de mejora de calidad y productividad en la línea de fileteado y envasado de pescado basado en las herramientas de la metodología Six Sigma. (Magíster en ingeniería industrial). Lima: Universidad Ricardo Palma, 2017, 166 pp. Disponible en: https://revistas.urp.edu.pe/index.php/Paideia/article/view/2039

MEJÍA, Isabel y JIMÉNEZ, Carlos. Competitividad y productividad del administrador de empresas en las Pymes en Colombia y Latinoamérica. Colombia: Revista de la facultad de ciencias económicas y administrativas [en línea]. 2020, n.o 1, vol.21. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: http://www.scielo.org.co/pdf/tend/v21n1/2539-0554-tend-21-01-238.pdf

ISSN: 2359-0554

MENDOZA, R. El análisis de criticidad, una metodología para mejorar la confiabilidad operacional. Revista de Ingeniería mecánica [en línea]. 2000, n0.2, vol.13. [Fecha de consulta: 25 de abril 2023]. Disponible en: https://ingenieriamecanica.cujae.edu.cu/index.php/revistaim/article/view/364/704

NAVARRO, Eduardo, GISBERT, Víctor y Pérez, Molina. Metodología e implementación de six sigma. 3c empresa [en línea]. España: Revista Dialnet, 2017, n.o 1, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6300067

ISSN: 2254-3376

NWANYA, Saul, UDOFIA, Jean y AJAYI, Oscar. Optimization of machine downtime in the plastic manufacturing. Cogen Engineering [en línea]. Nigeria: Revista Crossmark, 2017, n.o 1, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible

https://www.tandfonline.com/doi/full/10.1080/23311916.2017.1335444#:~:text=Fro

m%20the%20optimization%20model%2C%20uptime,pieces%2C%20respectively %2C%20after%20optimization.

ISSN: 2331-1916

PÉREZ, Esteban y GARCÍA, Minor. Implementación de la metodología DMAIC – Seis Sigma en el envasado de licores en fanal. Tecnología en marcha [en línea]. Costa Rica: Revista Redalyc, 2014, n.o 3, vol.27. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en:

https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2070

ISSN: 2462-1253

QUILLUPANGUI, Alexandra. Mejora del proceso de elaboración de alimentos para broilers mediante la implementación del proceso de negocio Seis Sigma-DMAIC, en una planta de producción de alimentos balanceados. (Magíster en ingeniería industrial). Quito: Escuela Politécnica Nacional, 2019, 88 pp. Disponible en: https://www.studocu.com/pe/document/universidad-nacional-agraria-lamolina/ecologia-general/quillupangui-2019-mejora-de-broilers-con-six-sigma/21826692

SALGADO, María y CASTRO, Katherine. Importancia de las buenas prácticas de manufactura en cafeterías y restaurantes. Vector [en línea]. Colombia: Revista Redalyc, 2007, n.o 1, vol.1. [Fecha de consulta: 28 de septiembre del 2022]. Disponible en: http://vip.ucaldas.edu.co/vector/downloads/Vector2_4.pdf

ISSN: 2323-4213

URIBE, Rafael. Mejora del proceso de elaboración de alimentos para broilers mediante la implementación del proceso de negocio Seis Sigma, en una planta de producción de alimentos balanceados. Tesis (Magíster en ingeniería industrial). Quito: Escuela Politécnica Nacional, 2019, 112 pp. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/20553

VALDERRAMA, Santiago. Pasos para elaborar proyectos de investigación científica. Segunda edición. Lima: Editorial San Marcos, 2013, 60 pp. Disponible en: https://es.scribd.com/document/335731707/Pasos-Para-Elaborar-Proyectos-de-Investigacion-Cientifica-Santiago-Valderrama-Mendoza#

ISBN: 978-612-302-878-7

Anexos

Anexo 1. Matriz de operacionalización de variables

Variables de estudio	Definición conceptual	Definición operacional	Dimensión	Indicador	Escala de medición
	Es una estrategia	Se empleará la herramienta de		Análisis de criticidad	Nominal
	de mejora continua que busca mejorar	Six Sigma conformado por las etapas de definir, medir,		Análisis modal de fallos y efectos (AMFE)	Razón
	el desempeño de los procesos de	analizar, mejorar, controlar;	D ₁ : Definir	Diagrama de Ishikawa	Razón
	una organización y reducir su	permitiendo dar ideas y soluciones a los problemas _		Diagrama de Pareto	Razón
	variación; con ello,	encontrados.		Capacidad de proceso	
<u>Б</u>	es posible encontrar y eliminar las causas de los errores, defectos y	-	D ₂ : Medir	Cumplimiento de mejoras = $\left(\frac{\text{ML}}{\text{MP}}\right)$ X100% Dónde: ML; metas logradas y MP; metas programadas	Razón
Sigma	retrasos en los procesos. La		D ₃: Analizar	Inferencia estadística	Nominal
S. X.	estrategia Six Sigma se apoya en una metodología			DPU= D/(N) Dónde: DPU: defectos por unidad; D: defectos detectados y N: unidades procesadas	Razón
<u>a</u> e	fundamentada en			Unidades defectuosas	Razón
enc	las herramientas y			5W2H	Nominal
Independiente:	el pensamiento estadístico (Gutiérrez y De la	_	D ₄ : Mejorar	Manual de buenas prácticas de manufactura	Nominal
	Vara, 2009, p.420).	-	D ₅ : Controlar	Carta de control X R	Razón

Dependiente : Productividad	Es la relación entre el número de productos obtenidos en el proceso productivo y la cantidad de recursos utilizados. Además, sirve para medir el cociente	La productividad se mide a través de dos componentes esenciales: la eficiencia y la eficacia. Por un lado, la eficiencia demuestra el buen aprovechamiento del factor tiempo, mientras tanto, la eficacia demuestra que tanto –	D ₁: Eficiencia	Eficiencia = $\frac{\text{Tiempo útil}}{\text{Tiempo total}}$	Razón
	constituido por los resultados obtenidos y los recursos empleados (Gutiérrez, 2010,	s se llega a alcanzar los objetivos planteados por la empresa.	D ₂: Eficacia	$Eficacia = \frac{Unidades\ producidas}{Unidades\ planificadas}$	Razón
De	p.21).		D ₂ : Productividad	Productividad= Eficiencia x eficacia	Razón

Anexo 2. Formato de análisis de criticidad

Chimbo	otana	ANÁLISIS DE	E CRITICIDAD	Código: Fecha: Realizado por:		
		FACTORES A EVALUAR				
PROCESOS	FRECUENCIA DE PARADAS	IMPACTO OPERACIONAL	FLEXIBILIDAD OPERACIONAL	CRITICIDAD		

Fuente: Adaptación de la tesis de Alva y Gómez (2021)

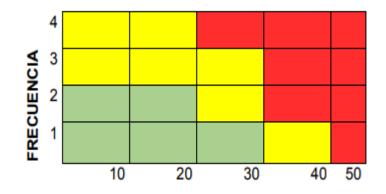

Con la siguiente tabla se complementará el formato de criticidad:

Tabla de factores ponderados de la criticidad							
FRECUENCIA DE PARADAS	PONDERARACIÓN						
≥ a 8 paradas/día	4						
De 5 hasta 7 paradas/día	3						
De 2 hasta 4 paradas/día	2						
≤ a 1 paradas/día	1						
IMPACTO OPERACIONAL							
Parada urgente de toda la producción	10						
Perjudica a más del 50 % a la línea producción	8						
Perjudica a menos del 50 % a la línea de producción	5						
No perjudica a la producción	1						
FLEXIBILIDAD OPERACIONAL							
No se cuenta con un segundo equipo igual o parecido	4						
La línea puede continuar funcionando	2						
Cuenta con un segundo equipo igual o parecido	1						

Fuente: Adaptación de la tesis de Alva y Gómez (2021)

MATRIZ DE CRITICIDAD

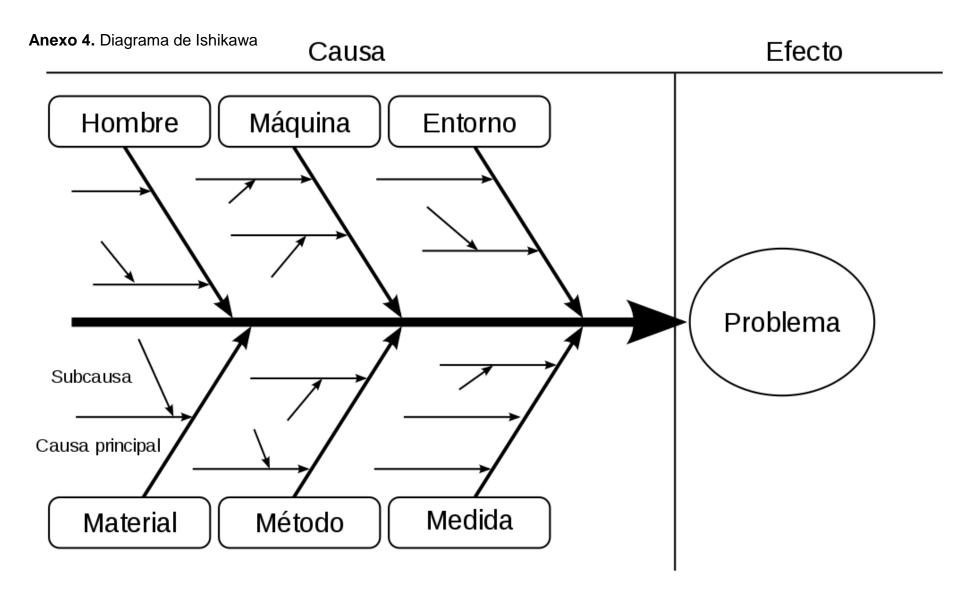
Área de sistema NO CRÍTICOS	
Área de sistema de MEDIA CRITICIDAD	
Área de sistema CRÍTICO	

CONSECUENCIA

CRITICIDAD=FRECUENCIA DE PARADAS*CONSECUENCIA
CONSECUENCIA= (IMPACTO OPERACIONALI*FLEXIBILIDAD)

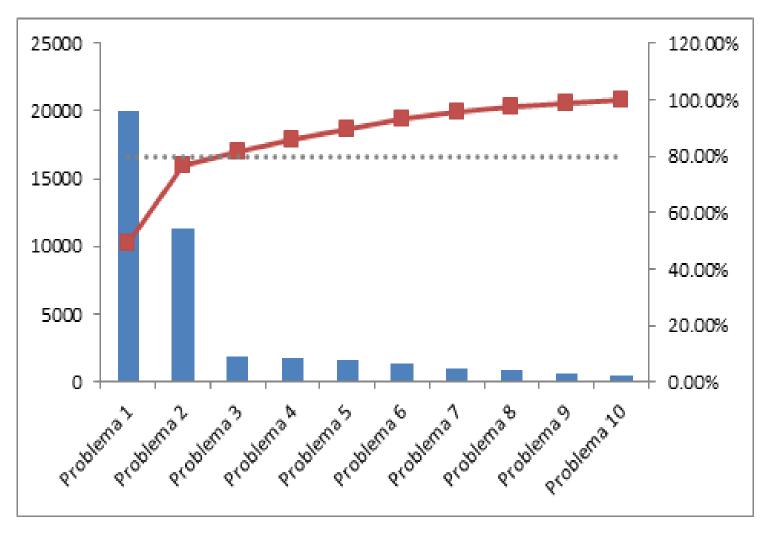
Anexo 3. Formato AMFE

Chimbotana			ANÁLISIS MODAL DE FALLOS Y EFECTOS				Código: Fecha: Página:			
Proceso	Modo de fallo	Efecto	Causas	Método de detección	Gravedad	Ocurrencia	Detección	Número de riesgo ponderado	Responsable	Acción recomendada


Fuente: Adaptación de la tesis de Pumaricra y Solórzano (2021)

Con la siguiente tabla se complementará el formato AMFE:

Análisis modal de fallos y efectos (AMFE)


Valores	Indice de gravedad	Îndice de ocurrencia	Índice de detección
1	Muy baja	Remota	Casi Seguro
2	Baja	Baja	Muy Alta
3	Baja	Baja	Moderada
4	Moderada	Moderada	Altamente Moderada
5	Moderada	Moderada	Moderada
6	Moderada	Moderada	Baja
7	Alta	Alta	Muy Baja
8	Alta	Alta	Remota
9	Muy Alta	Muy Alta	Muy Remota
10	Muy Alta	Muy Alta	Casi Imposible

Fuente: Adaptación de la tesis de Pumaricra y Solórzano (2021)

Fuente: Adaptación de la bibliografía de Gutiérrez y De la Vara (2010)

Anexo 5. Diagrama de Pareto

Fuente: Adaptación de la bibliografía de Gutiérrez y De la Vara (2010)

Anexo 6. Formato de registro de control de envasado

Chimb		F	REGIST	TRO TE	EMPO	RAL DI	E DAT	OS DE C	ONTROL	DE PESO DE	EENVASADO	
EMPRESA:									ESP	ECIE		
EVALUADOR:									PESO P	PESO PATRON:		PESO PROM.
Fecha	Día	1	2	3	4	5	6	7	8	9	10	1 EGG I ROM.

Fuente: Elaboración propia

Anexo 7. Formato de índice de capacidad

ESTADÍSTICA DESCRIPTIVA							
	Pre-test	Post-test					
Medía							
Desv. Est.							
Q1							
Mediana							
Q3							
Moda							
Asimetría							
Curtosis							

ÍNDICE DE CAPACIDAD DE PRODUCCIÓN								
Índice de capacidad potencial	Índice de capacidad potencial Indicador de la capacidad real Z							

Fuente: Adaptación de la tesis de Alva y Gómez (2021)

Anexo 8. Formato de cumplimiento de mejoras

CUMPLIMIENTO DE MEJORAS							
N°	Metas planteadas	Metas logradas	% de cumplimiento				

Fuente: Adaptación de la tesis de Alva y Gómez (2021)

Anexo 9. Formato de capacitaciones

La Chimbotana		CAPACITACIÓN DEL PERSONAL			Código: Versión: Aprobado: Fecha de aprobación:			
Tema		Hora		de inicio				
Exposito	r		Hora de	e término				
N°	ÁREA	APELLIDOS Y NOMBRES	APELLIDOS Y NOMBRES		FIRMA			

Fuente: Elaboración propia

Anexo 10. Formato de defecto por unidad

DEFECT	DEFECTO POR UNIDAD								
N° de defectos detectados	Unidades procesadas	DPU (%)							

Fuente: Elaboración propia

Anexo 11. Formato de los 5W2H

Chimbo	otana	TÉCNICA DE LOS 5W2H				
¿QUÉ?	¿POR QUÉ?	¿DÓNDE?	¿CUÁNDO?	¿CÓMO?	¿CUÁNTO?	ACCIÓN PREVENTIVA O CORRECTIVA

Fuente: Adaptación de la tesis de Alva y Gómez (2021)

Anexo 12. Formato de buenas prácticas de manufactura

MANUAL DE BUENAS PRÁCTICAS DE MANUFACTURA

Código:	M-BPM-01
Versión:	01
Fecha:	01/02/2022
Página :	1 de 38

LA CHIMBOTANA S.A.C.

Manual de Buenas Prácticas de Manufactura

2022

Fuente: Adaptación de la tesis de Ríos y Vigil (2019)

Anexo 13. Formato de registro de indicadores de productividad

		PRODU	UCTIVIDAD				
	17 @		Proceso:				
F		Fase:					
Empresa			Elaborado p	oor:			
Fecha	A	С	D	E1	E2	E1 x E2	
reciia	Unidades producidas	Unidades planificadas	Tiempo útil Tiempo total		Eficacia	Eficiencia	Productividad
		TOTAL	•	•			

Fuente: Adaptación de la tesis de Aguirre (2021)

Anexo 14. Tabla comparativa de productividad

TABLA COMPARATIVA DE PRODUCTIVIDAD					
PRE TEST	PRODUCTIVIDAD	POST TEST	PRODUCTIVIDAD	INCREMENTO (%)	
MES 1		MES 1			
MES 2		MES 2			
MES 3		MES 3			
PROMEDIO		PROMEDIO			

Fuente: Adaptación de la tesis de Príncipe y Rivera (2019)

Anexo 15.

Constancia de Validación 1

Yo Juan Carlos Vásquez Guzmán con DNI 40787083, Ingeniero Agroindustrial de profesión. Por medio de la presente hago constar que he revisado con fines de validación los instrumentos de elaboración propia, a los efectos de su implementación en la investigación titulada "Aplicación del Six Sigma para incrementar la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022".

La constancia de validación que le hacemos llegar contiene:

- -Anexo 6: Formato de registro de control de envasado
- -Anexo 9: Formato de capacitaciones
- Anexo 10: Formato de defecto por unidad

Luego de hacer las observaciones pertinentes, puedo formular las siguientes apreciaciones.

Las escalas son: deficiente"1", aceptable"2", bueno"3" y excelente "4".

	Deficiente	Aceptable	Bueno	Excelente
Congruencia de ítems			х	
Amplitud de contenido				Х
Redacción del ítem			Х	
Claridad y precisión				Х
Pertinencia				Х

Sello y firma del validador

C.I.P. 106318

Anexo 16.

Constancia de Validación 2

Yo Manrique Añazgo Henry Jesus con DNI 41205506, Ingeniero Industrial de profesión. Por medio de la presente hago constar que he revisado con fines de validación los instrumentos de elaboración propia, a los efectos de su implementación en la investigación titulada "Aplicación del Six Sigma para incrementar la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022".

La constancia de validación que le hacemos llegar contiene:

- -Anexo 6: Formato de registro de control de envasado
- -Anexo 9: Formato de capacitaciones
- Anexo 10: Formato de defecto por unidad

Luego de hacer las observaciones pertinentes, puedo formular las siguientes apreciaciones.

Las escalas son: deficiente"1", aceptable"2", bueno"3" y excelente "4".

	Deficiente	Aceptable	Bueno	Excelente
Congruencia de ítems				Х
Amplitud de				
contenido			Х	
Redacción del				Х
ítem				Α
Claridad y precisión				Х
Pertinencia				Х

MANRIQUE ANAZGO HENRY JESUS
ING. INDUSTRIAL
Reg. Colegio de Ing...ieros CIP N° 202618

Sello y firma del validador

Anexo 17.

Constancia de Validación 3

Yo Angela Katia Casana Velásquez con DNI 47973006, Ingeniera Industrial de profesión. Por medio de la presente hago constar que he revisado con fines de validación los instrumentos de elaboración propia, a los efectos de su implementación en la investigación titulada "Aplicación del Six Sigma para incrementar la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022".

La constancia de validación que le hacemos llegar contiene:

- -Anexo 6: Formato de registro de control de envasado
- -Anexo 9: Formato de capacitaciones
- Anexo 10: Formato de defecto por unidad

Luego de hacer las observaciones pertinentes, puedo formular las siguientes apreciaciones.

Las escalas son: deficiente"1", aceptable"2", bueno"3" y excelente "4".

	Deficiente	Aceptable	Bueno	Excelente
Congruencia de ítems				х
Amplitud de contenido				х
Redacción del ítem			Х	
Claridad y precisión				х
Pertinencia				Х

CASANA VELASQUEZ ANGELA KATIA INGENIERA INDUSTRIAL CIP Nº 242083

Sello y firma del validador

Anexo 18: Calificación del Ing. (Juan Carlos Vásquez Guzmán)

Criterio de validez	Deficiente	Aceptable	Bueno	Excelente	Total parcial
Congruencia de ítems	1	2	3	4	3
Amplitud del contenido	1	2	3	4	4
Redacción de ítems	1	2	3	4	3
Claridad y precisión	1	2	3	4	4
Pertinencia	1	2	3	4	4
TOTAL					18

Fuente: Elaboración propia

Anexo 19: Calificación del Ing. (Manrique Añazgo Henry Jesus)

Criterio de validez	Deficiente	Aceptable	Bueno	Excelente	Total parcial
Congruencia de ítems	1	2	3	4	4
Amplitud del contenido	1	2	3	4	3
Redacción de ítems	1	2	3	4	4
Claridad y precisión	1	2	3	4	4
Pertinencia	1	2	3	4	4
TOTAL					19

Fuente: Elaboración propia

Anexo 19 : Calificación del Ing. (Angela Katia Casana Velásquez)

Criterio de validez	Deficiente	Aceptable	Bueno	Excelente	Total parcial
Congruencia de ítems	1	2	3	4	4
Amplitud del contenido	1	2	3	4	4
Redacción de ítems	1	2	3	4	3
Claridad y precisión	1	2	3	4	4
Pertinencia	1	2	3	4	4
TOTAL					19

Fuente: Elaboración propia

Anexo 20. Consolidado de la calificación de expertos

Experto	Calificación de validez	Total de puntaje	% Calificación
Ing. Juan Carlos Vásquez Guzmán	18	20	90%
Ing. Manrique Añazgo Henry Jesus	19	20	95%
Ing. Angela Katia Casana Velásquez	19	20	95%

Fuente: Elaboración propia

Tabla 21. Escala de validez de instrumento

Escala	Indicador
0.00 - 0.53	Validez nula
0.54 - 0.59	Validez baja
0.60 - 0.65	Válida
0.66 - 0.71	Muy válida
0.72 - 0.99	Excelente validez
1	Validez perfecta

Fuente: Elaboración propia

Anexo 21. Carta de consentimiento

"Año del Fortalecimiento de la Soberanía Nacional"

Chimbote, 24 de Noviembre del 2022

ASUNTO: CONSENTIMIENTO PARA REALIZAR EL PROYECTO

DE INVESTIGACIÓN

Yo, **EDWIN CESAR PALMA DE LA CRUZ**, con DNI N° 10200267, (GERENTE DE OPERACIONES) de la empresa, **PESQUERA CONSERVAS DE CHIMBOTE - LA CHIMBOTANA S.A.C.**, con RUC N° 20445359042, ubicado en Av. Los Pescadores Mz. D Lote 5 - 1A Zona Industrial Gran Trapecio - Chimbote, digo:

AUTORIZO, a las estudiantes **Guerra Paredes, Julissa Marina**, identificado(a) con DNI N° 75087258 y **Huamanchumo Pérez, Selene Marisol**, identificado(a) con DNI N° 75751102 de la Escuela Profesional de Ingeniería Industrial de la Universidad César Vallejo, en calidad de los autores para poder realizar su proyecto de investigación titulado: Aplicación del Six Sigma para incrementar la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022, para la cual se les brinda los datos de la empresa, así como las facilidades para la ejecución y aplicación del proyecto de investigación.

Se expide el presente documento a solicitud del interesado para los fines que se estime conveniente.

PESQUERA CONSERVAS CHIMBOTE

FIRMA Y SELLO

Anexo 22. Bitácora

N°	TIPO DE TEXTO	AUTOR Y AÑO	TITULO	LINK
1	Revista	ACOLTZIN, Cuauhtémoc. (2014)	Estadística descriptiva y selección de prueba. México: Revista Mexicana de cardiología	https://www.scielo.org.mx/pdf/rmc/v25n2/v25n2a9.pdf
2	Tesis	AGUILAR, Kenedy. (2018)	Six Sigma para mejorar la productividad en una empresa procesadora de maca	https://repositorio.upla.edu.pe/handle/20.500.12848/105
3	Revista	ÁLVAREZ, Elen y BARREDA, Liset. (2020)	La estadística descriptiva en la formación investigativa del instructor de arte	http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S 1990-8644202000020010
4	Tesis	AÑAZCO, Dixon (2019)	Seis Sigma para Mejora de la productividad en la Fabricación de Pañales de la Línea Nazca, Santa Clara 2019	https://repositorio.ucv.edu.pe/bitstream/handle/20.500.1 2692/40465/Huaman CP.pdf?sequence=1&isAllowed=y
5	Revista	ARIAS, Leonel [et al]. (2008)	Aplicación de six sigma en las organizaciones	https://www.redalyc.org/articulo.oa?id=84903846
6	Revista	BASILIO, Gabriel y CAMPOS, Gevair. (2021)	El uso del diagrama de Ishikawa para identificar las causas de contaminación en la línea de producción de matanza de ganado	https://dialnet.unirioja.es/servlet/articulo?codigo=823284 2
7	Revista	BASTÍAS, José [et al]. (2013)	Correlación entre las buenas prácticas de manufactura y el cumplimiento de los criterios microbiológicos en la fabricación de helados en chile	https://www.scielo.cl/scielo.php?pid=S0717- 75182013000200011&script=sci_abstract&tlng=en

8	Revista	BURGASÍ, Dayanara [et al]. (2021)	El diagrama de Ishikawa como herramienta de calidad en la educación: una revisión de los últimos 7 años	http://tambara.org/wp- content/uploads/2021/04/DIAGRAMA- ISHIKAWA_FINAL-PDF.pdf
9	Tesis	CALDERÓN, Juan. (2017)	Implementación del sistema Rimless para mejora de la productividad en el proceso de vulcanizado, en reeencauchadora de la sierra caucho sierrra S.A. utilizando la metodología Seis Sigma.	https://bibdigital.epn.edu.ec/handle/15000/18966
10	Revista	CABRERA, Henrry, MEDINA, Alberto y PUENTES, Manuel (2017)	Procedimiento para la gestión de procesos con contribución a la integración de sistemas normalizados	http://scielo.sld.cu/pdf/rus/v9n2/rus37217.pdf
11	Revista	CONTRERAS, Andrés [et al]. (2019)	Herramientas estadísticas para la mejora del control de inventarios: un caso de estudio.	https://revistas.unisimon.edu.co/index.php/identic/article/view/3486
12	Revista	CUAUHTÉMOC, Acoltzin (2014)	Estadística descriptiva y selección de la prueba	https://www.scielo.org.mx/scielo.php?script=sci_arttext& pid=S0188-21982014000200009
13	Artículo	DECKY, Antony e ILHAMYAH, Sipahutar. (2018)	Penerapan Six Sigma Upaya Peningkatan produktivitas Pada Perusahaan Moulding Plastik.	https://ejournal.upbatam.ac.id/index.php/prosiding/article/view/742
14	Tesis	DEL CASTILLO, Euler y NORIEGA, Víctor. (2018)	Propuesta de un modelo de gestión, para incrementar la productividad, aplicando la metodología six sigma en una empresa pesquera.	https://repositorio.ucv.edu.pe/handle/20.500.12692/237
15	Revista	ENRIQUES, Antonio [et al]. (2020)	Tecnología para el análisis de criticidad de los sistemas tecnológicos en empresas biofarmacéuticas.	http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1 815-5944

16	Revista	FELIZZOLA, Heriberto y LUNA, Carmenza. (2014)	Lean Six Sigma en pequeñas y medianas empresas: un enfoque metodológico.	https://www.scielo.cl/scielo.php?script=sci_arttext&pid= S0718-3305
17	Revista	FREIRE, Daniel y ÁLVAREZ, Gabriela. (2020)	Metodología Seis Sigma en el incremento de producción de Spirulina	https://www.researchgate.net/publication/342353304_M etodologia_Seis_Sigma
18	Revista	FONTALVO, Tomás. (2016)	Análisis de la productividad para las empresas certificadas y no certificadas en la coalición empresarial anti-contrabando (CEAC) en la ciudad de Cartagena, Colombia	https://www.scielo.cl/scielo.php?script=sci_abstract&pid =S0718
19	Revista	GÁNDARA, Felipe. (2014)	Herramientas de calidad y el trabajo en equipo para disminuir la reprobación escolar	https://www.redalyc.org/articulo.oa?id=94432996003
20	Tesis	GARCÉS, Luis. (2016)	Mejoramiento de la productividad de la línea de extrusión de la empresa Cedal, empleando la metodología "six sigma".	https://bibdigital.epn.edu.ec/handle/15000/16888
21	Libro	GARCÍA, Roberto. (2019)	Estudio del trabajo.	https://faabenavides.files.wordpress.com/2011/03/estudi o-del-trabajo_ingenierc3ada-de-mc3a9todos-roberto- garcc3ada-criollo-mcgraw_hill
22	Revista	GASTELUM, Carlos [et al]. (2018)	Seis Sigma en instituciones de educación superior en México.	https://www.scielo.cl/scielo.php?pid=S07180764201800 0500091&script=sci_arttex
23	Revista	GESTIÓN (2017)	SNI: La mitad de plantas de conservas de pescado peruanas están a punto de cerrar.	https://archivo.gestion.pe/economia/sni-mitad-plantas- conservas-pescado-peruanas-estan-punto-cerrar- 2205300
24	Revista	GONZÁLEZ, Hernando y ESCOBAR, Carlos. (2020)	Aplicación de la herramienta SIPOC a la cadena de suministro interna de una empresa distribuidora de medicamentos.	https://revistas.unicatolica.edu.co/revista/index.php/Lum Gent/article/view/361
25	Revista	GUERRERO, David; SILVA, Jorge	Implementation of lean six sigma in higher education intitutions: A comprehensive review	https://www.ingeniare.cl/index.php?option=com_ingenia re&view=va&aid=759&vid

		y BOCANEGRA, Claudia(2019)		
26	Libro	GUTIÉRREZ, Humberto(2010)	Calidad total y productividad	https://clea.edu.mx/biblioteca/files/original/56cf64337c2f cc05d6a9120694e36d82.p
27	Libro	GUTIÉRREZ, Humberto y DE LA VARA, Román(2009)	Control estadístico de calidad y seis sigmas	https://www.uv.mx/personal/ermeneses/files/2018/05/6- control-estadistico-
28	Revista	HERNÁNDEZ, Arialys y MEDINA, Alberto (2009)	Procedimiento de elaboración de mapas de procesos en servicios hospitalarios	https://dialnet.unirioja.es/servlet/articulo?codigo=507441 <u>8</u>
29	Libro	HERRERA, Roberto y FONTALVO (2006)	Seis Sigma Métodos estadísticos y sus aplicaciones	https://www.eumed.net/libros-gratis/2011b/939/939.pdf
30	Libro	HERNÁNDEZ, Roberto; FERNÁNDEZ, Carlos y BAUTISTA, María (2014)	Metodología de la investigación	https://www.esup.edu.pe/wp- content/uploads/2020/12/2.%20Hernandez,%20Fernand ez%20y%20Baptista- Metodolog%C3%ADa%20Investigacion%20Cientifica% 206ta%20ed.pdf
31	Tesis	HUAMAN, Placido(2019)	Seis Sigma para mejora de la productividad en la fabricación de pañales de la línea Nazca, Santa clara	https://repositorioslatinoamericanos.uchile.cl/handle/225 0/3230720
32	Revista	HUERTA, Ricardo(2000)	El análisis de criticidad, una metodología para mejorar la confiabilidad operacional	https://reliabilityweb.com/sp/articles/entry/el-analisis-de- criticidad-una-metodologia-para-mejorar-la-confiabilidad
33	Libro	MCWOMAN(2015)	The future of productivity	https://www.oecd.org/economy/growth/OECD-2015- The-future-of-productivity-book.pdf

34	Revista	MALPARTIDA, Jorge; OLMOS, David; QUIÑONES, Susana; LEDESMA, Mildred.; GaARCIA, Gianmarco & DIAZ, Jorge. (2021)	Estrategia de mejora de procesos Six Sigma aplicado a la industria textil.	https://www.redalyc.org/journal/535/53562809014/html/ #:~:text=El%20modelo%
35	Articulo	MARIS, Stella; CAROLINA, Ana; PANDOLFO, Marcela; BUSTOS (2019)	Aplicación de Seis Sigma en el laboratorio clínico. Gestión de la calidad y acreditación	https://www.redalyc.org/journal/535/53562809014/html/#:~:text=El%20modelo%
36	Tesis	MARTÍNEZ, María(2016)	Mejora radical del proceso de elaboración de golosinas en la industria alimentaria mediante desarrollo de metodología seis sigma	https://repositorio.upct.es/handle/10317/6647
37	Articulo	. MATZUNAGA, Luis y RAMON, Alfonso (2017)	Implementación de un sistema de mejora de calidad y productividad en la línea de fileteado y envasado de pescado basado en las herramientas de la metodología Six Sigma	https://revistas.urp.edu.pe/index.php/Paideia/article/view/2039
38	Revista	MEJÍA, Isabel y JIMÉNEZ, Carlos (2020)	Competitividad y productividad del administrador de empresas en las Pymes en Colombia y Latinoamérica	http://www.scielo.org.co/pdf/tend/v21n1/2539-0554- tend-21-01-238.pdf
39	Revista	MENDOZA, R. (2000)	El análisis de criticidad, una metodología para mejorar la confiabilidad operacional	https://ingenieriamecanica.cujae.edu.cu/index.php/revist aim/article/view/364/704
40	Revista	NAVARRO, Eduardo, GISBERT, Víctor y PEREZ, Ana(2017)	Metodología e implementación de six sigma	https://dialnet.unirioja.es/servlet/articulo?codigo=630006 7
41	Revista	NWANYA, Saul, UDOFIA, Jean y	Optimization of machine downtime in the plastic manufacturing. Cogen Engineering	https://www.tandfonline.com/doi/full/10.1080/23311916. 2017.1335444#:~:text=From%20the%20optimization%2

		AJAYI, Oscar(2017)		Omodel%2C%20uptime,pieces%2C%20respectively%2 C%20after%20optimization.
42	Revista	PÉREZ, Esteban y GARCÍA, Minor(2014)	Implementación de la metodología DMAIC – Seis Sigma en el envasado de licores en fanal	https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/2070
43	Tesis	QUILLUPANQUI, Alexandra (2019)	Mejora del proceso de elaboración de alimentos para broilers mediante la implementación del proceso de negocio Seis Sigma-DMAIC, en una planta de producción de alimentos balanceados	https://www.studocu.com/pe/document/universidad- nacional-agraria-la-molina/ecologia- general/quillupangui-2019-mejora-de-broilers-con-six- sigma/21826692
44	Revista	SALGADO, María y CASTRO, Katherine(2007)	Importancia de las buenas prácticas de manufactura en cafeterías y restaurantes	http://vip.ucaldas.edu.co/vector/downloads/Vector2 4.p df
45	Tesis	URIBE, Rafael(2019)	Mejora del proceso de elaboración de alimentos para broilers mediante la implementación del proceso de negocio Seis Sigma, en una planta de producción de alimentos balanceados	https://bibdigital.epn.edu.ec/handle/15000/20553
46	Libro	VALDERRAMA, Santiago (2013)	Pasos para elaborar proyectos de investigación científica	https://es.scribd.com/document/335731707/Pasos-Para- Elaborar-Proyectos-de-Investigacion-Cientifica- Santiago-Valderrama-Mendoza#

Anexo 23: Análisis modal de fallos y efectos Pretest

I co									Código:	F-BPM - 09
Ch	imboi	tana		ANÁLIS	SIS MOD	AL DE FAL	LOS Y EF	ECTOS	Fecha:	5/09/2022
								Página:	14	
Proceso	Modo de fallo	Efecto	Causas	Método de detección	Gravedad	Ocurrencia	Detección	Número de riesgo ponderado	Responsable	Acción recomendada
El pescado fresco llega a la planta y es descargado de los camiones frigoríficos en jabas con hielo, conservándose a una temperatura de 0 a 3 ºC.	La temperatura al momento de la recepción es mayor a los 3 ºC.	Alto nivel de histamina	Mal control de la temperatura en la recepción del pescado	Ninguno	9	6	3	162	Operario	Mantener en todo momento el pescado cubierto de hielo
El pescado pasa por una evaluación física y sensorial para determinar su grado de frescura.	Presencia de magulladuras en la piel, aplastamiento de la carne.	Deterioro y descomposición de la materia prima.	Falta de capacitación para separar las unidades magulladas y falta de análisis sensorial	Ninguno	3	5	1	15	Operario	Inspeccionar la materia prima que se encuentre fuera del rango de temperatura permitido
Se pesa el pescado descontando el hielo, siendo la capacidad de	Falta de higiene en la zona de recepción y manipulación inadecuada de los empleados.	Contaminación cruzada y presencia de patógenos.	Falta de supervisión y limpieza de la zona de recepción	Ninguno	1	6	2	12	Operario	Capacitar y entrenar al personal encargado de la inspección de la materia prima.

cada jaba de 20 a 25 kg de pescado										
	Inadecuada manipulación y conservación después de la captura , así como malas condiciones de transporte hacia la planta			Ninguno	7	4	2	56	Operario	Implementar las Buenas Prácticas de Manufactura en la zona de recepción.
Se coloca el pescado en canastillas sobre carritos para facilitar su transporte y posterior lavado.	Uso de agua no tratada que pueda contaminar la materia prima.	Contaminación biológica.	Falta de control periódico de la calidad del agua.	Ninguno	1	1	2	2	Operario	Mantener un registro del control de la calidad del agua utilizada.
El lavado se realiza con agua fría a presión, de forma manual para eliminar restos como sanguaza e impurezas.	Deficiente limpieza de las canastillas y lavado de la materia prima que no elimine la presencia de elementos extraños	Contaminación cruzada.	Falta de capacitación al personal encargado de realizar el lavado.	Ninguno	1	1	2	2	Operario	Cumplir con el programa de limpieza y desinfección de materiales y equipos.
Las operarias se encargan de descabezar el pescado y separar las espinas, vísceras y piel. Los filetes son colocados en	Presencia de restos de piel, vísceras, espinas en el filete y manipulación inadecuada por parte de los operarios	Mala presentación del producto final y rompimiento de los filetes	Falta de capacitación al personal encargado de realizar el proceso.	Ninguno	1	1	2	2	Operario	Inspeccionar la limpieza de la materia prima.

bandejas de manera ordenada.										
Los filetes son envasados de forma manual, colocando las piezas de pescado en las latas.	Excesivo llenado de las latas.	Menor espacio de cabeza.	Falta de calibración de los equipos de pesado	Ninguno	2	6	3	36	Operario	Realizar un muestreo durante el proceso para verificar si se cumple con los pesos.
Se utilizan balanzas de platillos para verificar el peso de pescado envasado (120 g).	Peso insuficiente de las latas	Vacío insuficiente durante el evacuado y deformación de los envases durante el esterilizado.	Personal incorrecto en el lleado de lata	Ninguno	1	4	2	8	Operario	Personal capacitado para cumplir con sus funciones
Esta operación se realiza inyectando vapor a 95 ºC en un exhauster, para eliminar el aire de la lata y crear un vacío en la superficie del envase previo al sellado.	Parada de la línea de producción.	Enfriamiento de los envases y Vacío insuficiente.	No cumplen con los mantenimiento de equipos y no controlan el tiempo de evacuado	Ninguno	8	4	3	96	Operario	Verificar el adecuado funcionamiento de los equipos antes del proceso.
Los envases son colocados en los carritos y transportados a las autoclaves, donde ingresan tres carritos en	Insuficiente temperatura y/o tiempo de esterilización.	Posibilidad de supervivencia de C. botulinum.	No hay un correcto control en el tiempo de temperatura y presión durante el proceso de esterilizado	Ninguno	2	4	2	16	Operario	Capacitar al personal encargado del proceso en el manejo de los autoclaves y en los peligros de

cada autoclave horizontal. El tratamiento térmico se lleva a cabo a una temperatura de 116 ºC y una presión de 10.5 psi durante 75 minutos.										supervivencia microbiana por subesterilización.
Las cajas son almacenadas sobre parihuelas de madera en el almacén de productos terminados a una altura que evite el deterioro de las latas por abolladuras en un ambiente seco.	Condiciones de almacenamiento inadecuadas y Mala manipulación durante el estibado	Corrosión de latas, riesgo de contaminación química, latas abolladas, cajas rotas y mala presentación del producto	No cuentan con ambientes secos y ventilados.	Ninguno	3	4	1	12	Operario	Considerar los espacios adecuados de almacenamiento e inspeccionar los lotes almacenados y llevar un registro de productos no conformes.

Análisis modal de fallos y efectos Post test

										Código:	F-BPM - 09
	Chi	mbo	tana		ANÁLISIS MODAL DE FALLOS Y EFECTOS					Fecha: Página:	14/11/2022 14
	Proceso	Modo de fallo	Efecto	Causas	Método de detección	Gravedad	Ocurrencia	Detección	Número de riesgo ponderado	Responsable	Acción recomendada
Recepción del Pescado	El pescado fresco llega a la planta y es descargado de los camiones frigoríficos en jabas con hielo, conservándose a una temperatura de 0 a 3 ºC.	La temperatura al momento de la recepción es mayor a los 3 ºC.	Alto nivel de histamina	Mal control de la temperatura en la recepción del pescado	Ninguno	6	4	1	24	Operario	Mantener en todo momento el pescado cubierto de hielo
Recepc	El pescado pasa por una evaluación física y sensorial para determinar su grado de frescura.	Presencia de magulladuras en la piel, aplastamiento de la carne.	Deterioro y descomposición de la materia prima.	Falta de capacitación para separar las unidades magulladas y falta de análisis sensorial	Ninguno	1	2	1	2	Operario	Inspeccionar la materia prima que se encuentre fuera del rango de temperatura permitido

	Se pesa el pescado descontando el hielo, siendo la capacidad de cada jaba de 20 a 25 kg de pescado	Falta de higiene en la zona de recepción y manipulación inadecuada de los empleados.	Contaminación cruzada y presencia de patógenos.	Falta de supervisión y limpieza de la zona de recepción	Ninguno	1	2	1	2	Operario	Capacitar y entrenar al personal encargado de la inspección de la materia prima.
		Inadecuada manipulación y conservación después de la captura, así como malas condiciones de transporte hacia la planta			Ninguno	2	2	1	4	Operario	Implementar las Buenas Prácticas de Manufactura en la zona de recepción.
ope	Se coloca el pescado en canastillas sobre carritos para facilitar su transporte y posterior lavado.	Uso de agua no tratada que pueda contaminar la materia prima.	Contaminación biológica.	Falta de control periódico de la calidad del agua.	Ninguno	1	1	1	1	Operario	Mantener un registro del control de la calidad del agua utilizada.
Fileteado	El lavado se realiza con agua fría a presión, de forma manual para eliminar restos como sanguaza e impurezas.	Deficiente limpieza de las canastillas y lavado de la materia prima que no elimine la presencia de elementos extraños	Contaminación cruzada.	Falta de capacitación al personal encargado de realizar el lavado.	Ninguno	1	1	1	1	Operario	Cumplir con el programa de limpieza y desinfección de materiales y equipos.

	Las operarias se encargan de descabezar el pescado y separar las espinas, vísceras y piel. Los filetes son colocados en bandejas de manera ordenada.	Presencia de restos de piel, vísceras, espinas en el filete y manipulación inadecuada por parte de los operarios	Mala presentación del producto final y rompimiento de los filetes	Falta de capacitación al personal encargado de realizar el proceso.	Ninguno	1	1	2	2	Operario	Inspeccionar la limpieza de la materia prima.
орі	Los filetes son envasados de forma manual, colocando las piezas de pescado en las latas.	Excesivo llenado de las latas.	Menor espacio de cabeza.	Falta de calibración de los equipos de pesado	Ninguno	2	6	3	36	Operario	Realizar un muestreo durante el proceso para verificar si se cumple con los pesos.
Envasado	Se utilizan balanzas de platillos para verificar el peso de pescado envasado (120 g).	Peso insuficiente de las latas	Vacío insuficiente durante el evacuado y deformación de los envases durante el esterilizado.	Personal incorrecto en el lleado de lata	Ninguno	1	4	2	8	Operario	Personal capacitado para cumplir con sus funciones

	Esta operación se realiza inyectando vapor a 95 ºC en un exhauster, para eliminar el aire de la lata y crear un vacío en la superficie del envase previo al sellado.	Parada de la línea de producción.	Enfriamiento de los envases y Vacío insuficiente.	No cumplen con los mantenimiento de equipos y no controlan el tiempo de evacuado	Ninguno	2	3	1	6	Operario	Verificar el adecuado funcionamiento de los equipos antes del proceso.
Esterelizado	Los envases son colocados en los carritos y transportados a las autoclaves, donde ingresan tres carritos en cada autoclave horizontal. El tratamiento térmico se lleva a cabo a una temperatura de 116 °C y una presión de 10.5 psi durante 75 minutos.	Insuficiente temperatura y/o tiempo de esterilización.	Posibilidad de supervivencia de C. botulinum.	No hay un correcto control en el tiempo de temperatura y presión durante el proceso de esterilizado	Ninguno	1	2	1	2	Operario	Capacitar al personal encargado del proceso en el manejo de los autoclaves y en los peligros de supervivencia microbiana por subesterilización.

Almacén	Las cajas son almacenadas sobre parihuelas de madera en el almacén de productos terminados a una altura que evite el deterioro de las latas por abolladuras en un ambiente seco.	Condiciones de almacenamiento inadecuadas y Mala manipulación durante el estibado	Corrosión de latas, riesgo de contaminación química, latas abolladas, cajas rotas y mala presentación del producto	No cuentan con ambientes secos y ventilados.	Ninguno	1	2	1	2	Operario	Considerar los espacios adecuados de almacenamiento e inspeccionar los lotes almacenados y llevar un registro de productos no conformes.
---------	--	---	---	---	---------	---	---	---	---	----------	--

Anexo 24: Análisis de criticidad Pretest

Chimbotana

ANÁLISIS DE CRITICIDAD

Código: F-BPM - 13
Fecha:11/07/2022
Realizado por:

Humanachumo Pérez

					Selene			
			FACTORES					
	PROCESOS	FRECUENCI A DE PARADAS	IMPACTO OPERACIONAL	FLEXIBILIDAD OPERACIONAL	CRITICIDAD	CONCECUEN CIA		
Ρ.	Descarga de cubetas	2	2	3	12	6		
del	Verificación del producto	1	1	2	2	2		
Recepción del	Encanastillado del pescado	2	2	3	12	6		
cep	Cocinar	1	1	2	2	2		
Re	TOTAL	1.5	1.5	2.5	7	3.75		
	Recoger canastillas con pescado	1	2	1	2	2		
ဓ	Cortar y eviscerar	3	6	3	54	18		
Fileteado	Llenar bandejas con P.	2	2	2	8	4		
Ε	Pesar las bandejas con P.	2	1	5	10	5		
	TOTAL	2	2.75	2.75	19	7.5625		
	Recibir bandejas de pescado	2	2	3	12	6		
	Recibir latas	3	4	4	48	16		
0	Llenar latas con carne de pescado	4	5	4	80	20		
Envasado	Pesaje de latas con carne de pescado	3	9	5	135	45		
En	Prensar	1	1	1	1	1		
	Agregar líquido de gobierno	1	4	3	12	12		
	Sellar	5	7	6	210	42		
	TOTAL	3	5	4	71	17		
zad	Limpiar	1	2	2	4	4		
Esterelizad	Esterilizar	1	1	1	1	1		
Este	TOTAL	1	1.5	1.5	2.5	2.25		
	Limpieza y empaque	2	4	2	16	8		
_	Codificado	1	4	1	4	4		
эcér	Barnizado	1	1	1	1	1		
Almacén	Etiquetado	1	1	1	1	1		
1	Guardar en cajas	1	1	1	1	1		
	TOTAL	1	2	1	5	2.64		

Análisis de criticidad Postest

Chimbotana

ANÁLISIS DE CRITICIDAD

Código: F-BPM - 13
Fecha:22/08/2022
Realizado por: Guerra

			Paredes Julissa							
			FACTORES A EVALUAR							
	PROCESOS		IMPACTO OPERACION AL	FLEXIBILIDA D OPERACION AL	CRITICIDAD	CONCECUENCIA				
ión	Descarga de cubetas	1	1	1	1	1				
Recepción	Verificación del producto	1	1	1	1	1				
Rec	Encanastillado del pescado	1	1	1	1	1				
	Cocinar	1	1	1	1	1				
	TOTAL	1	1	1	1	1				
Fileteado	Recoger canastillas con pescado	1	1	1	1	1				
lete	Cortar y eviscerar	1	2	2	4	4				
证	Llenar bandejas con P.	1	2	2	4	4				
	Pesar las bandejas con P.	2	1	5	10	5				
	TOTAL	1.25	1.5	2.5	5	3.75				
0	Recibir bandejas de pescado	2	2	2	8	4				
Envasado	Recibir latas	1	2	2	4	4				
Envä	Llenar latas con carne de pescado	2	2	2	8	4				
	Pesaje de latas con carne de pescado	2	2	5	20	10				
	Prensar	1	1	1	1	1				
	Agregar líquido de gobierno	1	2	2	4	4				
	Sellar	2	2	2	8	4				
	TOTAL	2	2	2	8	4				
zad	Limpiar	1	1	1	1	1				
Esterelizad	Esterilizar	1	1	1	1	1				
Est	TOTAL	1	1	1	1	1				
	Limpieza y empaque	1	2	1	2	2				
_	Codificado	1	2	1	2	2				
Almacén	Barnizado	1	1	1	1	1				
 	Etiquetado	1	1	1	1	1				
`	Guardar en cajas	1	1	1	1	1				
	TOTAL	1	1	1	1	1.4				

Anexo 25: Productividad

		PRODUC	TIVIDAD					
	l m	100	Pro	oceso	Productividad 1 y 2			
Empresa	Chimbo	lama	F	ase				
Limpicou		BUUUU	Elabo	rado por	Hun	nanchumo Pe	érez Selene	
Fecha -	Α	В	С	D	E1	E2	E1 x E2	
recita	Unidades producidas	Unidades planificadas	Tiempo útil	Tiempo total	Eficacia	Eficiencia	Productividad	
Julio -	108,447.62	200,000	3,922	5,400	54.2%	72.63%	39.38%	
Julio	106,817.24	200,000	3,922	5,400	53.4%	72.63%	38.79%	
Agosto -	106,817.24	200,000	3,965	5,400	53.4%	73.42%	39.21%	
7 lg03l0	107,485.83	200,000	3,965	5,400	53.7%	73.42%	39.46%	
Setiembre -	107,545.75	200,000	4,030	5,400	53.8%	74.63%	40.13%	
Octionible	108,818.52	200,000	4,030	5,400	54.4%	74.63%	40.60%	
Octubre	109,939.88	200,000	4,277	5,400	55.0%	79.2%	43.54%	
Octubic	112,682.75	200,000	4,277	5,400	56.3%	79.2%	44.63%	
Noviembre -	111,578.18	200,000	4,291	5,400	55.8%	79.5%	44.33%	
Novicinibio	111,480.93	200,000	4,291	5,400	55.7%	79.5%	44.29%	
Diciembre -	114,547.24	200,000	4,271	5,400	57.3%	79.1%	45.29%	
Didicitible	115,292.15	200,000	4,271	5,400	57.6%	79.1%	45.59%	

Pretest

	FILETEADO									
Julio			Agosto				Setiembre			
Día	Filete (Kg)	Cajas	Día	Filete (Kg)	Cajas	Día	Filete (Kg)	Cajas		
1	7320.32	897	1	7215.23	884	1	7005.39	859		
2	7234.53	887	2	7120.32	873	2	7212.12	884		
3	7123.35	873	3	7025.15	861	3	7180.76	880		
4	7235.12	887	4	7010.32	859	4	7055.22	865		
5	7189.36	881	5	7000.12	858	5	7123.53	873		
6	7235.64	887	6	7005.39	859	6	7256.21	889		
7	7328.31	898	7	7212.12	884	7	7217.19	884		
8	7143.45	875	8	7180.76	880	8	7002.35	858		
9	7234.56	887	9	7055.22	865	9	7159.21	877		
10	7321.45	897	10	10 7123.53 87		10	7234.12	887		
11	7234.52	887	11	11 7256.21 8		11	7328.31	898		
12	7159.56	877	12	7217.19	884	12	7143.45	875		
13	7310.54	896	13	7002.35	858	13	7234.56	887		
14	7253.68	889	14	7159.21	877	14	7159.21	877		
15	7123.23	873	15	7234.12	887	15	7234.12	887		
16	7215.23	884	16	7328.31	898	16	7235.64	887		
17	7120.32	873	17	7143.45	875	17	7328.31	898		
18	7025.15	861	18	7234.56	887	18	7143.45	875		
19	7010.32	859	19	7321.45	897	19	7234.56	887		
20	7000.12	858	20	7234.52	887	20	7321.45	897		
21	7005.39	859	21	7159.56	877	21	7234.52	887		
22	7212.12	884	22	7310.54	896	22	7159.56	877		
23	7180.76	880	23	7253.68	889	23	7310.54	896		
24	7055.22	865	24	7123.23	873	24	7253.68	889		
25	7123.53	873	25	7215.23	884	25	7328.31	898		
26	7256.21	889	26	7120.32	873	26	7143.45	875		
27	7217.19	884	27	7025.15	861	27	7234.56	887		
28	7002.35	858	28	7010.32	859	28	7321.45	897		
29	7159.21	877	29	7000.12	858	29	7234.52	887		
30	7234.12	887	30	7005.39	859	30	7334.52	899		
Т	215,264.86	26,380.50	T	214,303.07	26,263	Т	216,364.27	26,515		

Postest

Octubre				Noviembre)	Diciembre			
Día	Filete (Kg)	Cajas	Día Filete (Kg) Cajas			Día	Filete (Kg)	Cajas	
1	7445.15	912	1	7467.19	915	1	7455.23	914	
2	7330.32	898	2	7342.35	900	2	7560.32	927	
3	7300.12	895	3	7474.56	916	3	7445.15	912	
4	7405.39	908	4	7491.45	918	4	7650.32	938	
5	7230.12	886	5	7354.52	901	5	7430.12	911	
6	7145.39	876	6	7439.56	912	6	7555.39	926	
7	7242.12	888	7	7540.54	924	7	7782.12	954	
8	7250.76	889	8	7343.68	900	8	7680.76	941	
9	7335.22	899	9	7433.23	911	9	7785.22	954	
10	7233.53	886	10	7565.23	927	10	7663.53	939	
11	7246.21	888	11	7350.32	901	11	7766.21	952	
12	7467.19	915	12	7467.19	915	12	7677.19	941	
13	7342.35	900	13	7342.35	900	13	7882.35	966	
14	7474.56	916	14	7474.56	916	14	7569.21	928	
15	7491.45	918	15	7491.45	918	15	7644.12	937	
16	7354.52	901	16	7354.52	901	16	7586.21	930	
17	7439.56	912	17	7439.56	912	17	7767.19	952	
18	7540.54	924	18	7540.54	924	18	7892.35	967	
19	7343.68	900	19	7343.68	900	19	7674.56	941	
20	7433.23	911	20	7467.19	915	20	7661.45	939	
21	7565.23	927	21	7342.35	900	21	7774.52	953	
22	7350.32	901	22	7474.56	916	22	7469.56	915	
23	7449.36	913	23	7491.45	918	23	7660.54	939	
24	7585.64	930	24	7354.52	901	24	7783.68	954	
25	7568.31	927	25	7439.56	912	25	7673.23	940	
26	7443.45	912	26	7540.54	924	26	7765.23	952	
27	7484.56	917	27	7343.68	900	27	7750.32	950	
28	7661.45	939	28	7433.23	911	28	7649.36	937	
29	7781.45	954	29	7565.23	927	29	7585.64	930	
30	7681.45	941	30	7350.32	901	30	7598.31	931	
Т	222,622.63	27,282	Т	223,059.11	27,336	Т	229,839.39	28,167	

Anexo 26: Plan de capacitación

MES	TOTAL DE CAPACITACIONES	TOTAL DE CAPACITACIONES REALIZADAS	% DE CUMPLIMIENT O
JULIO	8	7	87.5
AGOSTO	8	5	62.5
SETIEMBRE	8	6	75
OCTUBRE	8	8	100
NOVIEMBRE	8	8	100
DICIEMBRE	8	8	100

Anexo 27: Tabla comparativa de productividad

TABLA COMPARATIVA DE PRODUCTIVIDAD										
PRE TEST	PRODUCTIVIDAD	POST TEST	PRODUCTIVIDAD	INCREMENTO (%)						
MES 1	51.63511	MES 4	78.90583903	27.27						
MES 2	34.05221	MES 5	62.92606188	28.87						
MES 3	41.87605	MES 6	79.03055848	37.15						
PROMEDIO	42.52	PROMEDIO	73.62	31.10						

Anexo 28: **REGISTRO TEMPORAL DE DATOS DE CONTROL DE PESO DE ENVASADO**

Chimbotana

REGISTRO TEMPORAL DE DATOS DE CONTROL DE PESO DE ENVASADO

EMPRESA:	La Chimbotana S.A.C						ESPECIE			Bonito		
EVALUADOR:	Guerra Paredes Julissa y Selene Humanachumo Perez				mo	PESO PATRON:		94-98 PESO PROM.				
Fecha	Día	1	2	3	4	5	6	7	8	9	10	
Julio	4/07/2022	95	94	94	94	95	95	95	95	95	96	94.80
Julio	11/07/2022	96	98	95	94	94	95	95	94	95	98	95.40
Julio	18/07/2022	96	95	97	96	95	94	94	95	96	97	95.50
Agosto	8/08/2022	98	97	97	96	95	95	95	95	94	96	95.80
Agosto	15/08/2022	95	94	94	94	94	96	96	96	98	98	95.50
Agosto	22/08/2022	97	97	97	98	98	96	95	94	94	95	96.10
Septiembre	5/09/2022	96	94	94	94	94	98	95	95	97	97	95.40
Septiembre	19/09/2022	95	95	95	96	94	94	95	96	96	98	95.40
Octubre	3/10/2022	94	96	94	95	96	96	95	95	94	94	94.90
Octubre	17/10/2022	95	96	95	94	95	94	95	94	95	95	94.80
Noviembre	31/10/2022	94	95	95	94	94	95	94	94	94	95	94.40
Noviembre	14/11/2022	95	97	95	96	94	94	95	95	94	94	94.90
Diciembre	28/11/2022	94	96	94	95	96	94	94	95	95	94	94.70
Diciembre	12/12/2022	94	95	94	95	95	94	94	94	94	95	94.40

Anexo 29: **ÁREA DE ENVASADO**

Fuente: Elaboración propia.

Anexo 30: PRODUCTO ENVASADO

Fuente: Elaboración propia.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Declaratoria de Autenticidad del Asesor

Yo, JOHN KELBY GONZALES CAPCHA, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA INDUSTRIAL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHIMBOTE, asesor de Tesis titulada: "

Aplicación del Six Sigma para incrementar la productividad del proceso de elaboración de conservas en La Chimbotana S.A.C. - Chimbote 2022", cuyos autores son GUERRA PAREDES JULISSA MARINA, HUAMANCHUMO PEREZ SELENE MARISOL, constato que la investigación tiene un índice de similitud de 15.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

CHIMBOTE, 04 de Julio del 2023

Apellidos y Nombres del Asesor:	Firma
JOHN KELBY GONZALES CAPCHA	Firmado electrónicamente
DNI: 40176130	por: GOCAJOKE el 09-07-
ORCID: 0000-0001-7310-0502	2023 10:07:24

Código documento Trilce: TRI - 0571127

