

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

APLICACIÓN DE LA TECNOLOGÍA SIN ZANJA PARA MEJORAR LA PRODUCTIVIDAD EN LA REHABILITACIÓN DE REDES DE ALCANTARILLADO, COMAS 2016

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

JESSICA ARCE OBREGON

ASESOR:

ING. JORGE JOHN GABRIEL BELTRÁN

LÍNEA DE INVESTIGACIÓN:

DISEÑO DE OBRAS HIDRÁULICAS Y SANEAMIENTO

LIMA - PERÚ

2017

Página del Jurado

Mg. César Teodoro Arriola Prieto

PRESIDENTE

Mg. Raúl Heredia Benavides SECRETARIO

Mg. Jorge John Gabriel Beltran VOCAL

DEDICATORIA

A DIOS:

Que siempre me ha acompañado e iluminado mi camino en todos estos años de estudio y trabajo. Además, por haberme otorgado fuerza y salud para cumplir mí objetivo académico.

A MI FAMILIA:

Por haberme acompañado con mucha paciencia e iluminado a lo largo de todos mis años de estudio y por haberme dado fortaleza y salud para cumplir mis objetivos.

AGRADECIMIENTO

Agradezco a la Universidad César Vallejo por ser el centro de mi capacitación y darme las herramientas necesarias para poder crecer profesionalmente, a los docentes quienes con sus conocimientos y experiencia impartida en cada clase han forjado en mí una persona con fundamentos sólidos como ingeniería y de manera muy especial a mis asesores.

A todas las personas que han colaborado en parte de mi vida profesional, agradecerles por su enseñanzas, consejos y apoyo, a la empresa constructora MPM S.A. por brindarme su confianza.

DECLARATORIA DE AUTENTICIDAD

Yo, Jessica Arce Obregón con DNI Nº 41106562, con el propósito de cumplir con lo establecido como requisito en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Civil, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

De igual manera declaro bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, octubre del 2017

Jessica Arce Obregon

PRESENTACIÓN

Señores miembros del Jurado, presento ante ustedes la Tesis titulada "Aplicación de la tecnología sin zanja para mejorar la productividad en la rehabilitación de redes de alcantarillado", con la finalidad de dar cumplimiento del Reglamento de Grados y Títulos de la Universidad César Vallejo para obtener el Título Profesional de Ingeniero Civil.

Esperando cumplir con los requisitos de aprobación.

La Autora

INDICE

Carátula.		
Dedicator	ia	i
Página pa	ara jurados	ii
Agradecir	miento	<i>i</i> v
Declaraci	ón en autenticidad	l
Presentac	ción	V
Índice		vi
	ablas	
	guras	
	inexos	
Abstract I.	INTRODUCCIÓN	
ı. 1.1	Realidad problemática	
1.2	Trabajos previos	
1.2	Internacionales	
	Nacionales	
1.3	Teorías relacionadas al tema (marco teórico)	12
	Redes de tuberías de desagüe	12
	Tecnología sin zanja para la rehabilitación de redes de desagüe .	13
	Método de renovación de instalaciones existentes	16
	Productividad	22
1.4	Formulación del problema	25
1.5	Justificación	26
1.6	Hipótesis	27
1.7	Objetivos	28
11.	MARCO METODOLÓGICO	29

2.1	Diseño de investigación	. 30
	Tipo de estudio	. 30
2.2	Variables, operacionalización	. 32
2.3	Población	. 34
2.4	Técnicas e instrumentos de recolección de datos, confiabilidad	. 34
2.5	Métodos de análisis de datos	. 36
2.6	Aspectos éticos	. 36
III.	RESULTADOS	. 37
	Descripción del proyecto	. 38
3.1	Rehabilitación con el método de excavación de zanja	. 39
	Trazado para la excavación de zanjas	. 41
	Excavación de zanja	. 41
	Suministro de material selecto	. 42
	Preparación de cama de apoyo para tuberías	. 42
	Colocación de puntos de nivel de alineación	. 43
	Instalación de tuberías de desagüe	. 44
	Emboquillado de la tubería	. 44
	Pruebas de nivelación e hidráulica del tramo	. 45
	Reparaciones	. 45
	Relleno y compactación de la primera capa con material selecto .	. 46
	Relleno y compactación del resto de zanja	. 46
	Pruebas de deflexión	. 47
3.2	Rehabilitación con el método de excavación sin zanja	. 47
	Señalización de la zona de trabajo	. 48
	Taponamiento de las redes de alcantarillado	. 49
	Corte y retiro de pavimento	. 49
	Limpieza de tuberías existentes	. 50
	Inspección televisiva en redes existentes	. 51
	Termofusion de tuberías de HDPE	. 52
	Colocación de tuberías	. 54
	Relleno, compactación y transporte	. 56
3.3	Análisis de costo y tiempo	. 56

	Análisis de costo en el método de excavación sin zanja	57
	Análisis de costo en el método con zanja	60
	Costo sociales e impacto medioambiental sostenibilidad	63
	Cuadro comparativo de la metodología con y sin zanja	65
IV.	DISCUSIÓN	70
V.	CONCLUSIÓN	72
VI.	RECOMENDACIÓN	75
VII.	REFERENCIAS BIBLIOGRÁFICAS	77
VIII.	ANEXOS	80

LISTA DE TABLAS

Tabla 1 Operacionalizacion de variables	33
Tabla 2 Resumen de trabajos a ejecutar	38
Tabla 3 Costos de rehabilitación de redes de alcantarillado	57
Tabla 4 Reemplazo de líneas de alcantarillado método sin zanja	58
Tabla 5 Costo total de rehabilitación con método sin zanja	60
Tabla 6 Reemplazo de líneas de alcantarillado método tradicional	61
Tabla 7 Costo total de rehabilitación con el método con zanja	62
Tabla 8 Cuadro comparativo entre método sin zanja y con zanja	66

LISTA DE FIGURAS

Figura 1 sistema red de alcantarillado	13
Figura 2 instalaciones en una zona céntrica de una ciudad	15
Figura 3 colocación de método de fractura de tubería	17
Figura 4 Procedimiento de fractura del tubo	18
Figura 5 construcción del método reentubado	19
Figura 6 Colocación del polímero en una tubería	21
Figura 7 Ubicación de la zona en estudio	39
Figura 8 Excavación en zanja con maquinaria	40
Figura 9 Trazo y replanteo	41
Figura 10 Rehabilitación de método tradicional	42
Figura 11 colocación de cama de apoyo para tuberías	43
Figura 12 Colocación de los puntos y alineación	43
Figura 13 Instalación de tuberías de alcantarillado	44
Figura 14 Nivelación de tuberías de zanja abierta	<i>4</i> 5
Figura 15 Compactación de la primera capa de relleno	46
Figura 16 Compactación de la segunda capa de relleno	47
Figura 17 Verificación del estado de la tubería	48
Figura 18 Zona de trabajo señalizada	49
Figura 19 Corte y retiro del pavimento	50
Figura 20 Inspección televisiva de tuberías existente	52
Figura 21 Montado de tubería en máquina de termo fusión (izq), aplicación	
de presión para que los tubos queden soldados	52
Figura 22 Nudo soldado	53
Figura 23 Cabezal empernado a la tubería PE (izq), cable guía	

"cobra" (der)	54
Figura 24 Herramienta de martilleo "topo" (izq), "cobra" insertada	
en la tubería nueva (der)	55
Figura 25 colocación de la tubería en el tramo a fragmentar (izq),	
fragmentación de tubería de concreto (der)	55
Figura 26 llegada del cabezal hasta la ubicación del winche	56
Figura 27 Rendimiento de reemplazo de líneas de alcantarillado	
Con Método sin zanja	59
Figura 28 costos unitarios de construcción según diámetro de tubería	
a rehabilitar con el método sin zanja	60
Figura 29 Rendimiento de reemplazo de líneas de alcantarillado con	
Método tradicional con zanja	61
Figura 30 costos unitarios de construcción según diámetro de tubería	
a rehabilitar con el método tradicional con zanja	62
Figura 31 costos social y medioambiental en las obras de infraestructura	63
Figura 32 rendimiento de tuberías rehabilitada por metro lineal por día	67
Figura 33 comparativo de rendimiento	68
Figura 34 costo de construcción en soles por unidad de longitud	69
Figura 35 costo total de rehabilitación de redes de alcantarillado	69

LISTA DE ANEXOS

Anexo 1 matriz de consistencia	75
Anexo 2 consentimiento informado	78

RESUMEN

En este trabajo de tesis se realizó un análisis comparativo entre el método tradicional con zanja y el método sin zanja para la rehabilitación de un sistema de alcantarillado. El método tradicional hace referencia a una metodología mucha más invasiva, pues consiste en realizar una zanja abierta, el cual es comúnmente empleado en obras de rehabilitación de alcantarillado. Por otro lado, se presenta el método sin zanja como una alternativa moderna mucho menos invasiva, pues permite rehabilitar las tuberías del alcantarillado sin realizar zanja abierta, permitiendo así reducir tiempo y costo de ejecución.

Para ello, este trabajo se dividió en cinco capítulos: los dos primeros capítulos permitieron establecer los alcances del trabajo, así como la metodología a emplear; en el tercer capítulo se describe el procedimiento constructivo e implementación de ambas metodologías. Finalmente, en el último capítulo se realizó un análisis económico por metro lineal de tubería renovada para ambos casos, así como el costo social y de esta forma se verificó que la implementación de la metodología sin zanja permitió incrementar la productividad en obra.

Palabra clave: costo social, costo medioambiental, costo de ejecución, seguridad de los trabajadores, trafico.

ABSTRACT

In this thesis, a comparative analysis was made between the traditional trench method and the trenchless method for the rehabilitation of a sewage system. The traditional method refers to a much more invasive methodology, since it consists of making an open ditch, which is commonly used in sewer rehabilitation works. On the other hand, the trenchless method is presented as a modern methodology, much less invasive alternative, since it allows the rehabilitation of the sewage pipes without an open trench, thus reducing the time and cost of execution.

For this, this work was divided in five chapters: the first two chapters allowed to establish the scope of the work, as well as the methodology to be used; the third chapter describes the constructive procedure and implementation of both methodologies. Finally, in the last chapter, an economic analysis was carried out per linear meter of renewed pipe for both cases, as well as the social cost and in this way it was verified that the implementation of the methodology without trench allowed to increase the productivity in work.

Keyword: social cost, environmental cost, cost of execution, worker safety, traffic.