

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Diseño estructural de puente colgante vehicular, mejorando la transitabilidad, sobre el río Mayo, localidad de San Francisco – Cuñumbuqui – Lamas - San Martín – 2014"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Del Aguila Perea, Andrey

ASESOR:

Mg. Díaz Pérez, Daniel

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

TARAPOTO – PERÚ

2014

Página del Jurado

Dedicatoria

Este trabajo lo dedico en primer lugar a Dios, de quien depende el éxito alcanzado. A mi esposa, Nancy Arévalo Rojas, mi especial tesoro; y a mi Hijo, quienes fueron mi motivación para alcanzar la meta trazada.

ANDREY

Agradecimiento

Especialmente, a mi esposa, por estar a mi lado motivándome y apoyándome en todo tiempo; y así ver un sueño hecho realidad. También a mis padres que me alentaron a seguir hasta el final y hoy, mis logros son su orgullo y alegría. A la Universidad César Vallejo por el conocimiento impartido en aula.

EL AUTOR

Declaratoria de Autenticidad

Yo, ANDREY DEL AGUILA PEREA, identificado con DNI Nº 01159807, estudiante del

programa de estudios de Ingeniería Civil de la Universidad César Vallejo, con la tesis titulada:

"Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad, sobre el Río

Mayo, localidad de San Francisco – Cuñumbuqui - Lamas – San Martín – 2014".

Declaro bajo juramento que:

La Tesis es de mi autoría.

He respetado las normas internacionales de citas y referencias para las fuentes consultadas.

La tesis no ha sido auto plagiado, es decir, no ha sido publicada ni presentada anteriormente para

obtener algún grado académico previo o título profesional.

Los datos presentados en los resultados son reales, no han sido falseados, ni duplicados, ni

copiados y por tanto los resultados que se presenten en la tesis se constituirán en aportes a la

realidad investigada.

De identificarse fraude (datos falsos), plagio (información sin citar a autores), auto plagio

(presentar como nuevo algún trabajo de investigación propio que ya ha sido publicado), piratería

(uso ilegal de información ajena) o falsificación (presentar falsamente las ideas de otros), asumo

las consecuencias y sanciones que de mi acción se deriven, sometiéndome a la normatividad

vigente de la Universidad César Vallejo.

Tarapoto, 17 de noviembre de 2020.

Andrey del Aguila Perea

DNI: 01159807

V

Presentación

Señores miembros del jurado calificador; cumpliendo con las disposiciones establecidas en el reglamento de grado y títulos de la Universidad César Vallejo; pongo a vuestra consideración la presente investigación titulada "Diseño estructural de puente colgante vehicular, mejorando la transitabilidad, sobre el Río Mayo, localidad de San Francisco – Cuñumbuqui - Lamas – San Martín – 2019", con la finalidad de optar el título de Ingeniero Civil

La investigación está dividida en ocho capítulos:

L INTRODUCCIÓN. Se considera la realidad problemática, trabajos previos, teorías relacionadas al tema, formulación del problema, justificación del estudio, hipótesis y objetivos de la investigación.

IL PROCEDIMIENTO Y/O MÉTODO. Se menciona el diseño de investigación; variables, operacionalización, población y muestra, técnicas e instrumentos de recolección de datos, validez y confiabilidad y métodos de análisis de datos.

III.RESULTADOS. En esta parte se menciona las consecuencias del procesamiento de la información.

IV.DISCUSIÓN. Se presenta el análisis y discusión de los resultados encontrados durante la tesis.

V. CONCLUSIONES. Se considera en enunciados cortos, teniendo en cuenta los objetivos planteados.

VI. RECOMENDACIONES. Se precisa en base a los hallazgos encontrados.

VII. REFERENCIAS. Se consigna todos los autores de la investigación.

Índice

Página	a del Jurado	ii
Dedic	catoria	iii
Agrad	decimiento	iv
Decla	aratoria de Autenticidad	v
Índice	e	vii
Índice	e de Tablas	ix
Índice	e de Gráficos	x
Resun	men	xi
Abstra	act	xii
I. INT	TRODUCCIÓN	13
1.1.	Realidad Problemática	13
1.2.	Trabajos Previos	14
1.3.	Teorías Relacionadas al Tema	15
1.4.	Formulación del Problema	33
1.5.	Justificación del Estudio	33
1.6.	Hipótesis	34
1.7.	Objetivos	34
II. MÉ	ÉTODO	36
2.1.	Diseño de la Investigación	36
2.2.	Identificación y Operacionalización de Variables	36
2.3.	Población y Muestra	36
2.4.	Técnica y herramientas de recopilación de información	37
2.5.	Métodos de Análisis de Datos	38
2.6.	Aspectos Éticos	41
III. RI	ESULTADOS	42
IV. D	ISCUSIÓN	60
V. CC	ONCLUSIONES	62

VI. RE	COMENDACIONES	.63
VII.	REFERENCIAS	.64
ANEX	OS	

Índice de Tablas

Tabla 1.	Análisis sin carga	31
Tabla 2.	Análisis con carga	31
Tabla 3.	Cuadro de principales Actividades Económicas-Distrito de Cuñumbuqui	32
Tabla 4.	Población	37
Tabla 5.	Técnicas y herramientas de recojo de información	37
Tabla 6.	Crecida ordinaria	45
Tabla 7.	Crecida extraordinaria	45
Tabla 8.	Tipos de madera	48
Tabla 9.	Suelos encontrados en la calicata	94
Γabla 10.	Ensayos ejecutados en laboratorio	97
Γabla 11.	Efectos de sismo	101

Índice de Figuras

Figura 1.	Parte del tablero con otros elementos estructural de madera (Vista en planta).	20
Figura 2.	Esfuerzos Admisibles	21
Figura 3.	Vista del puente con los cables principales, Tirantes, Torre, Armadura de Refuerzo, Anclaje.	22
Figura 4.	Vista del puente con los cables principales, Tirantes, Torre, Armadura de Refuerzo, Anclaje.	22
Figura 5.	Cables	23
Figura 6. Figura 7.	Péndolas Dilatación	24 25
Figura 8.	Cáncamo de Acero Fundido	26
Figura 9.	Torres	27
Figura 10.	Vigas	27
Figura 11.	Vista Izq.: Cimentación profunda	28
Figura 12.	Análisis de Carga	31

Resumen

El presente proyecto de tesis trata del diseño estructural de puente colgante vehicular. Se

desarrollaron un conjunto de estudios básicos de ingeniería, que permitieron la concepción

de una estructura eficaz. Estos estudios son: levantamiento topográfico, geotécnicos,

hidrológico, hidráulicos. Estos sustentan los diseños geométricos y estructurales, así como

el desarrollo paso a paso del diseño del puente; conformada por la Superestructura,

subestructura, cimentación y elementos de conexión. Obtenido todos estos datos, se procedió

a procesar la información para realizar los cálculos del diseño, basados en el Manual de

Puentes del Ministerio de Transporte y Comunicaciones, así como el Reglamento Nacional

de Edificaciones. Finalmente se elaboró los planos, tomando como datos los resultados del

diseño estructural y estudios realizados.

Concluyo mencionando que la construcción de este puente sobre el río Mayo, será una

alternativa de solución frente a la problemática de transporte que atraviesan, permitiendo la

integración de los pobladores de la Localidad de San Francisco y localidades aledañas a la

misma.

Palabras claves: Diseño Estructural, Puente Colgante Vehicular y Transitabilidad

хi

Abstract

This Thesis project deals with the structural design of a vehicular suspension bridge. A set

of basic engineering studies were developed, which allowed the conception of an effective

structure. These studies are: topographic, geotechnical, hydrological, hydraulic survey.

These support the geometric and structural designs, as well as the step-by-step development

of the bridge design; made up of the Superstructure, substructure, foundation and connection

elements. Once all these data were obtained, the information was processed to carry out the

design calculations, based on the Manual of Bridges of the Ministry of Transport and

Communications, as well as the National Building Regulations. Finally, the plans were

drawn up, taking as data the results of the structural design and studies carried out.

I conclude by mentioning that the construction of this bridge over the May River will be an

alternative solution to the transportation problems they cross, allowing the integration of the

residents of the town of San Francisco and surrounding towns.

Keywords: Structural Design, Vehicular Suspension Bridge and Walkability

xii

I. INTRODUCCIÓN

1.1. Realidad Problemática

En San Martín, muchas localidades están aisladas de las principales ciudades y los centros de consumo, debido a la carencia de un adecuado sistema de articulación vial, el cual les permita tener acceso a los diferentes centros de expendio para el sustento diario e impulsar el comercio, producción agropecuaria y la agricultura en nuestra región.

Es así, que en los últimos años se vienen construyendo en diferentes localidades puentes colgantes vehiculares, que por su ubicación geográfica y potencial económico se hace necesaria y sustentable su construcción. Permitiendo no solamente el tránsito Vehicular sino también el traslado de sus productos hacia las ciudades de mayor dinámica comercial, siendo los pobladores los principales beneficiados y así también la sociedad en su conjunto mediante el abastecimiento oportuno y en condiciones seguras.

Es de indicar que, hace aproximadamente 4 años, los pobladores de la localidad de San Francisco y alrededores vienen haciendo uso de un medio de transporte: Bote Motor. Desde el año 1998 hasta 2010 (12 años), se transportaban mediante una balsa cautiva, cumpliendo éste su ciclo de vida útil y quedando totalmente obsoleto. Debido a las condiciones de transporte, se origina un considerable peligro, a la integridad física de los transeúntes, lo que limita el normal tránsito de los pobladores, quienes se ven afectados de manera directa al no poder transportar sus productos desde sus chacras hacia sus hogares, así como a los centros de expendio, siendo éstos el sustento diario en alimentación y economía, ya que un porcentaje son vendidos en los principales mercados de las ciudades de Lamas y Tarapoto.

Asimismo, se establece que para cada inconveniente encontrado en el trazado de una vía y dependiendo de sus características, se requerirá construir estructuras con ciertas y determinadas peculiaridades, a las cuales se les denomina usualmente: obra de fábrica o simplemente **PUENTES**. Pero un puente es mucho más que un elemento de unión, tiene además la función de resistir las cargas que recaen sobre él, de soportar las embestidas de las aguas de los ríos, permaneciendo firme a pesar de la socavación que se producen en sus bases, debe retar al viento que se genera en las grandes quebradas, las heladas y el peso de la nieve en las grandes alturas, los deslizamiento de la tierra en

los sismos y finalmente el desgaste que se produce sobre sí mismo, con el pasar del tiempo.

1.2. Trabajos Previos

Para la ejecución del estudio se ha citado antecedentes de investigación. Este requisito lo encontramos revisando fuentes bibliográficas, que hayan trabajado con Puentes Colgantes; siendo así tenemos:

REÁTEGUI, César (2013): Análisis y Diseño de puente Colgante Peatonal Churuyacu sobre el río Mayo — Distrito de Lamas, Provincia de Lamas, Región San Martín"-Morales - Universidad Nacional de San Martín. Llegó a la conclusión que el presente diseño formula una opción de solución, respecto al problema de transporte que afrontan el pueblo de Churuyacu y ciudades aledañas, la misma que consiste en la proyección de puente en el río Mayo. Realizar el Diseño y Análisis Estructural, y aportar al desarrollo del Proyecto para su posterior construcción. Tomando en cuenta lo propuesto obtuvimos la comprobación, de acuerdo al análisis y diseño estructural del puente, respaldado conforme a las normas, permitiéndonos tener una resistente estructura, ante las cargas y causas externas que actúan; unidos a parámetros de seguridad, funcionalidad y economía.

SAAVEDRA, Rosa (2000): Diseño puente colgante vehicular Nangao. Universidad Nacional de San Martín, Edición 2000, Tarapoto – Perú. Concluyó que es importante mencionar que, existe una notable tendencia en cuanto a la construcción de Puentes Colgantes de madera para uso vehicular liviano se refiere, citándose los siguientes: en las localidades de La Libertad (1998, L = 22 m), Pacayzapa (1996, L = 20m), Zapatero (1999, L = 30m), San Martín de Alao (1996, L=50m), Cuñumbuqui (L = 22m), estructuras que hasta la actualidad no registran ningún problema técnico que pueda influir en su comportamiento y servicio para lo cual fueron diseñados. Asimismo, se hace necesario el mantenimiento periódico de cada una de las partes de la estructura, siendo esta actividad de bajo costo y que a su vez prolongará su vida útil. Con estas características se demuestran que esta tipología de Puentes es segura, livianas, de fácil proceso constructivo, y lo más importante económicas.

AMPUERO, Matías (2012): Consideración Estructural en el Análisis y Diseño de Puentes Colgantes; Lima- Perú 2012. Llegó a la conclusión de que el propósito de esta investigación es mostrar las propiedades significativas y el proceso de diseño que deben

incluir los puentes, específicamente las de intermedia luz, ya que nuestras condiciones naturales no impiden construir puentes colgantes de grandes luces. Dicho propósito se completa con la descripción del análisis y diseño de los componentes más fundamentales de un puente de 140 m de longitud.

ORTEGA, Andrés (2012): Influencia de Diferentes Índices de Rigidez en el comportamiento estructural de puentes colgantes"-Maracaibo, Venezuela 2012. La presente investigación prueba la influencia de diferentes índices de rigidez en el comportamiento estructural de puente colgante. La investigación es de tipo no experimental descriptivo, caracterizando un grupo de variables con el fin de establecer el comportamiento estructural del puente colgante basándose en la búsqueda, recuperación, investigación y explicación del resultado obtenido. El desarrollo planteado se automatizo en el software de Excel para calcular las deformaciones de diferentes elementos de la estructura que al haber sido comparadas en diferentes modelos de viga de rigidez llegar a la conclusión de cuál es el índice de rigidez más adecuado para el diseño de estos puentes.

TAPIA, Abril (2009): *Diseño Estructural del Puente sobre el Canal Internacional Ecuador – Perú*. Muestra un aumento en el cambio comercial y turístico entre los países de Ecuador y Perú, producto del tratado de paz. A lo largo de los años 2000-2004. Las Investigaciones, relacionadas al Diseño de Puentes, creció tanto en los elementos teóricos como prácticos, gracias a estudios realizados sobre las características de materiales empleados, en procedimientos más lógicos y específicos que se comporta la estructura, en la investigación de sucesos extremos, especialmente peligrosos para puentes, así como socavación y sismos.

1.3. Teorías Relacionadas al Tema

De la Ingeniería Básica

Estudio Topográfico

Tienen como objetivos:

- Ejecutar labores de campo que favorezcan la elaboración de los planos de topografía.
- Facilitar datos importantes para los trabajos de hidrología e hidráulica, geología, geotecnia, así como de ecología y el impacto que pueda causar en el medio ambiente.
- Facilitar la ubicación exacta y las medidas de los elementos que componen la estructura.

• Determinar señales fijas, a fin de realizar, durante la construcción, el replanteo.

Documentación

Comprende los planos topográficos, donde se observa los niveles del terreno (Planta y Sección), registros digitales, fotografías e informes.

En el informe se deberá hacer mención, datos técnicos del instrumento empleado para el trabajo de levantamiento, el procedimiento utilizado para que los datos de campo sean procesados y así obtener los resultados.

Estudios de Hidrología e Hidráulica Objetivo

El objetivo de estos trabajos, son determinar las características hidrológicas de las avenidas máximas y extraordinarias, y los factores hidráulicos, mostrándonos una apreciación real de la conducta hidráulica del río, lo que permitirá precisar los requerimientos exactos, y su ubicación del puente, a partir del grado de seguridad, riesgos permitidos y/o permisibles, para las propiedades de la estructura.

Los trabajos realizados de hidrología e hidráulica para el diseño deben determinar lo siguiente:

- Localización perfecta del cruce.
- Máximo Caudal de diseño hasta la localización del cruce.
- Comportamiento hidráulico en el tramo que comprende el cruce.
- Área de flujo a ser confinada por el puente.
- Nivel máximo de agua en la ubicación del puente.
- Nivel mínimo recomendable para el tablero del puente.
- Profundidad de socavación general, por contracción y local.
- Profundidad mínima recomendable para la ubicación de la cimentación, según el tipo de cimentación.
- Obras de defensa importantes.
- Precauciones para la construcción del puente.

Estudios Geológicos y Geotécnicos Geológicos

Objetivos. Establecer las características geológicas, tanto especifico como general de las diferentes formas geológicas que se encuentran, identificando su distribución, así como sus características geotécnicas correspondientes.

Alcance

En la planificación de estos estudios, se deberá considerar exploraciones de campo, la cantidad se determinará en base a la magnitud del proyecto.

Geotécnicos

Objetivos: Plantear las características geotécnicas, es decir, la estratigrafía, la identificación y las propiedades físicas y mecánicas de los suelos, para el diseño de cimentaciones.

Alcance

El estudio debe considerar exploraciones de campo y ensayos en laboratorio, determinando la cantidad en base a la magnitud del proyecto, en términos de su longitud y condiciones del suelo. Los estudios comprenderán el lugar donde se ubicará el puente, estribos, pilares y accesos.

Estudios de Riesgo Sísmico

Objetivos: Los estudios de riesgo sísmico tendrán como propósito la obtención de espectros de diseño, que precisen los elementos horizontales y verticales del sismo a nivel de la cota donde se cimentara.

Requerimiento de los Estudios

El alcance de los estudios de riesgo sísmico dependerá de:

- La zona sísmica donde se localice el puente
- El tipo de puente y su largura
- Características del suelo

Para los casos siguientes podrán utilizarse directamente las fuerzas sísmicas mínimas especificadas en el Título II del Manual de Diseño de Puentes, sin que se requieran estudios especiales de riesgo sísmico para el sitio:

- Puentes ubicados en la zona sísmica 1, independientemente de las características de la estructura.
- Puentes de una sola luz, simplemente apoyados en los estribos, independientemente de la zona donde se ubiquen.
- Otros puentes que no correspondan a los casos explícitamente listados en lo que sigue.
- Se requerirán estudios de riesgo sísmico para los puentes que se ubiquen en las zonas 1, 2, 3 o 4, en los siguientes casos:
- Puentes colgantes, puentes atirantados, puentes de arco y todos aquellos puentes con sistemas estructurales no convencionales, siempre que - en cualquiera de los casos mencionados - se tenga una luz de más de 90m. y/o el suelo corresponda al perfil tipo S4.
- Otros puentes, incluyendo puentes continuos y simplemente apoyados de múltiples luces, con una longitud total de la estructura mayor o igual a 150 m.

Estudios de Impacto Ambiental Enfoque

La Edificación de un puente transforma el lugar y en consecuencia las condiciones socio - económicas, culturales y ecológicas del contexto donde se realizan; y es allí cuando aparece la prioridad de un examen, bajo una perspectiva ambiental.

Muchas veces este cambio es positivo para los objetivos sociales y económicos que se pretenden alcanzar, pero en muchas ocasiones la falta de una planificación, para su ubicación, etapa de construcción y de operación puede llevar a severos desarreglos debido a la perturbación del medio.

Puentes. En razón del propósito de estas estructuras y las diversas formas arquitectónicas adoptadas se pueden definir como "obras de arte destinadas a salvar corrientes de agua, depresiones del relieve topográfico, y cruces a desnivel que garanticen una circulación fluida y continua de peatones, agua, ductos de los diferentes servicios, vehículos y otros que redunden en la calidad de vida de los pueblos." (CHUQUIMIA y MERUVIA, p. 204)

Diseño de puentes: El puente es una estructura que forma parte de caminos, carreteras y líneas férreas y canalizaciones, construida sobre una depresión, río u obstáculo cualquiera. Los puentes constan fundamentalmente de dos partes, la superestructura, o conjunto de tramos que salvan los vanos situados entre los soportes, y la infraestructura (apoyos o soportes),

formada por las pilas, que soportan directamente los tramos citados, los estribos o pilas situadas en los extremos del puente, que conectan con el terraplén, y los cimientos, o apoyos de estribos y pilas encargados de transmitir al terreno todos los esfuerzos. Cada tramo de la superestructura consta de un tablero o piso, una o varias armaduras de apoyo y de las riostras laterales. El tablero soporta directamente las cargas dinámicas y por medio de la armadura transmite las tensiones a pilas y estribos. Las armaduras trabajarán a flexión (vigas), a tracción (cables), a flexión y compresión (arcos y armaduras), etc. La cimentación bajo agua es una de las partes más delicadas en la construcción de un puente, por la dificultad en encontrar un terreno que resista las presiones, siendo normal el empleo de pilotes de cimentación. Las pilas deben soportar la carga permanente y sobrecargas sin asentamientos, ser insensibles a la acción de los agentes naturales, viento, grandes riadas, etc. Los estribos deben resistir todo tipo de esfuerzos; se construyen generalmente en hormigón armado y formas diversas. (CHUQUIMIA y MERUVIA, 2004)

Mejorando la transitabilidad: Durante los últimos años se vienen construyendo en diferentes localidades puentes colgantes vehiculares, que por su ubicación geográfica y potencial económico se hace necesaria y sustentable su construcción. Permitiendo no solamente el tránsito Vehicular sino también el traslado de sus productos hacia las ciudades de mayor dinámica comercial, siendo los pobladores los principales beneficiados y así también la sociedad en su conjunto mediante el abastecimiento oportuno y en condiciones seguras. (REÁTEGUI, 2013)

En la teoría relacionada de este informe se aborda los fundamentos de las dos variables identificadas dentro de las mismas esta la Variable 1: DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, que consta de:

La Superestructura: Constituida por el sobre entablado y la armadura principal.

La Subestructura: Constituida por los estribos y los pilares.

La Cimentación: Constituida por las zapatas, los pilotes y cajones

Elementos de Conexión: Constituidos por las juntas y los aparatos de apoyo.

De La Ingeniería Básica

También, sobre el entablado del puente se colocan las veredas, barandas, etc., que en su totalidad, conforman la carga muerta sobre la armadura del puente.

Superestructura, es la estructura conformada por el sobre entablado (tablero) y la armadura de refuerzo (armadura principal).

El sobre entablado (tablero): Formado por las partes estructurales que soportan, el peso de los carros y/o peatones, y así trasladar sus efectos a la armadura principal.

Muchos casos, utilizan una losa de concreto, como principal elemento portante del sobre entablado en los puentes. En los de pequeña envergadura está constituida por un entablado que descansa sobre los largueros y vigas.

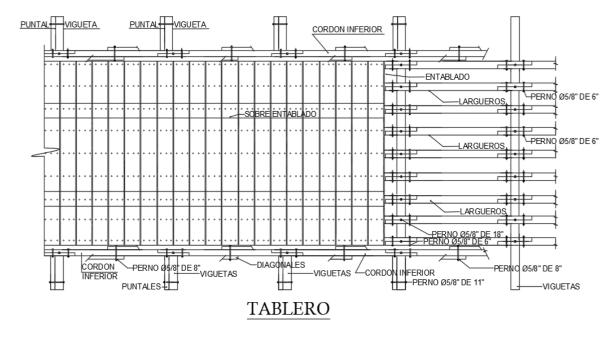


Figura 1. Parte del tablero con otros elementos estructural de madera (Vista en planta).

Tablero de madera: *Hernández Ibáñez* señala que, para resultados de diseño, la madera es considerada como un material uniforme e igual en todas sus direcciones. En consecuencia, el comportamiento del material, son detallados por el sentido paralelo a la fibra y perpendicular a la fibra. (HERNÁNDEZ. 1993)

Las variedades de madera apropiadas para el diseño, usan la Norma E081 ININVI, fueron distribuidas en tres grupos conforme a sus propiedades estructurales A, B y C.

El diseño de los componentes de la madera de acuerdo a esta norma deberá realizarse para cargas de servicio, empleando el procedimiento de esfuerzos admisibles.

Los esfuerzos admisibles que se tienen que usar en el diseño de componentes de la madera, en cada grupo estructural, son las que se establecen en la norma E.010.

5.2.3. Esfuerzos Admisibles **

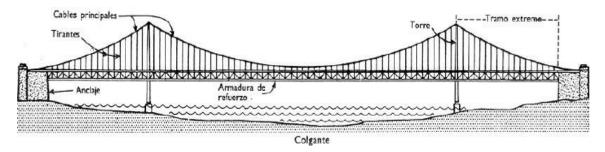
Grupo	Esfuerzos Admisibles MPa (kg/cm²)				
	Flexion f _m	Tracción Paralela f _t	Compresión Paralela f //	Compresión Perpendicular fॄ⊥	Corte Paralelo f _v
Α	20,6 (210)	14,2 (145)	14,2 (145)	3,9 (40)	1,5 (15)
В	14,7 (150)	10,3 (105)	10,8 (110)	2,7 (28)	1,2 (12)
С	9,8 (100)	7,3 (75)	7,8 (80)	1,5 (15)	0,8 (8)
Nota: Para los esfuerzos admisibles en compresión deberán consi-					

derarse adicionalmente los efectos de pandeo

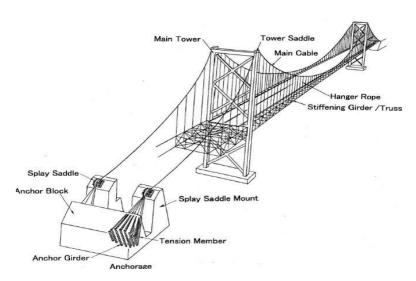
(**) Estos valores son para madera húmeda, y pueden ser usados

Figura 2. Esfuerzos Admisibles

para madera seca.


Fuente: Reglamento Nacional de Edificación Nacional

Miembros de madera sometida a cargas transversales. La acción crítica en miembros sometidos a cargas transversales, como las vigas, viguetas, largueros, entablado, etc., suele ser la flexión. Debido a la estructura y propiedades particulares de la madera, los miembros de este material se fabrican de manera que las fibras queden orientadas perpendicularmente a las fuerzas transversales que deben soportarse, es decir, las fibras deben quedar paralelas al eje longitudinal de los miembros. (ROBLES y ECHENIQUE, 1991)


La estructura principal: Es la que sostiene al sobre entablado y ayuda, al vano entre soportes, trasladando la carga a la subestructura.

Con el propósito de emplear favorablemente las normas del diseño estructural, es primordial determinar, qué sector del puente corresponde, a un establecido componente estructural, según veremos, dependiendo del modelo de puente.

En un puente viga-losa, por ejemplo, el sobre entablado (tablero) lo constituye la losa, y la estructura principal, el conjunto de vigas longitudinales y transversales (diafragmas). En puentes en arco, el diafragma, vigas y losa de la zona superior de esta estructura, forman el tablero, y los círculos del arco constituyen la armadura principal. En puentes reticulados, el tablero está constituido por las vigas y losa, que se localizan bajo la losa, entretanto que la armadura principal lo componen dos retículas longitudinales. En puentes colgantes el sobre entablado (tablero), está formado por componentes de la viga de rigidez y la losa (retícula longitudinal), y los cables forman la armadura principal que traslada la carga a las torres y anclajes. (HERNÁNDEZ, 1993)

Figura 3. Vista del puente con los cables principales, Tirantes, Torre, Armadura de Refuerzo, Anclaje.

Figura 4. Vista del puente con los cables principales, Tirantes, Torre, Armadura de Refuerzo, Anclaje.

Fuente: Diseño de puentes - Francisco Arellano- ACI - Perú.

Cables. Conformado por una cuerda (alma) de cáñamo, en torno al cual se han entretejido seis u ocho torones. Cada torón está constituido por una serie de cables (alambres) trenzados. El diámetro del cable, el número de torones, alambres, etc. varía según el objeto del cable, y los diámetros más usados varían entre 1 ¾" a 2".

El cable para puentes colgantes de luces medianas es análogo al anterior con la diferencia que el alma es de acero en lugar de cáñamo, siendo por esto menos flexible.

Los diámetros más usados varían entre 1 3/4" a 2". Pueden ser trenzados los cables, hacia la derecha e izquierda, siendo largo o corto las trenzas, cuanto más se acorta se consigue más rigidez.

Los cables en general, en los ramales se enroscan en sentido opuesto a la que tiene el cable y solo el cable en especial sigue el mismo sentido, la parte más firme se consigue utilizando 6 unidades de torón. Para los cables de acero la constante elástica es de 1680000 kg/cm². Se sugiere tener mucha atención para desarrollar y manejar los cables, impidiendo que se formen nudos cortos que dañen determinada sección, disminuyendo su resistencia. El espesor mínimo para doblez de un cable no será 30 veces el diámetro de 6 unidades de torón de 19 cables y/o alambres, excepto en el caso que se trate de un doblez estable y protegido por el guarda cabo.

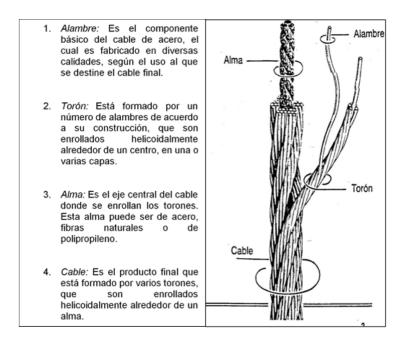


Figura 5. Cables

Cantidad de cables. Se utilizará la menor cantidad posible, determinadas ocasiones se coloque 8 cables por lado que se puede reducir sí, se emplean diámetros superiores, no pudiendo siempre hacerlo, si no tenemos pernos de anclaje de adecuado diámetro. Es preferible no usar un solo cable por lado para poder ejecutar sin inconveniente cualquier reparación. (QUIROGA, 1998)

Péndolas. Su propósito es transferir las cargas que se producen en el sobre entablado, en dirección al cable principal, en puentes cortos (peatonales), emplean las varillas de acero redondeado a modo de péndolas, y en los de luces amplias se emplean cables que soportan grandes esfuerzos. (QUIROGA, 1998)

De cada uno, es variable su largo, repartido en tres partes (Ver Fig. 6), primero es y' adecuado a la parábola principal de flecha f; es cambiante y se calcula con la fórmula:

.....(c)
$$Y' = 4f^{x^2}$$

Segundo "S" constante para todos, es el espacio que existe entre la parábola principal y el límite superior del sobre entablado que se hace lo más corto favorable.

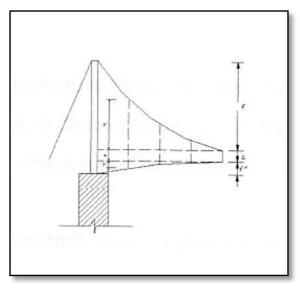


Figura 6. Péndolas

Según *Pastor*, el tercero y" pertenece a la contra lecha, parábola de la vía para eludir su horizontalidad cuando trabaja la sobrecarga y también para mejorar la apariencia de la obra, recomendándoles emplear una contra flecha firme y superior que la indispensable dependiendo del cálculo. Las ordenadas de esta parábola se definen por la fórmula:

$$Y_{l^2} = 4f' \frac{x^2}{l^2}$$
 (d)

En la parte de arriba se amarran los cables en distintas formas; se debe procurar que la péndola no se deslice desviándose; en la parte de abajo se amarra a la vigueta. (PASTOR, 1990)

Separación entre péndolas: Así mismo *Quiroga* señala que, siempre es constante y está dirigida por las medidas de los largueros y viguetas que se emplean. (QUIROGA, 1998)

De dilatación. Formados por un conjunto de cilindros que se deslizan entre dos láminas de acero, debajo amarrada a las torres y encima de la zona curva de la otra, se apoyan los cables. Este mecanismo tiene por objetivo eliminar el elemento horizontal que se origina por desigualdad de largura del cable por temperatura. Logrando que la resistencia sea vertical.

Componiendo las dos fuerzas verticales resulta:

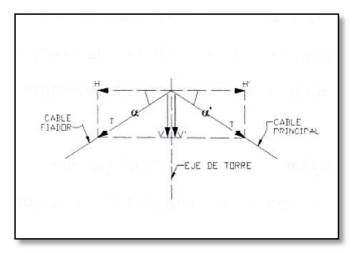


Figura 7. Dilatación

$$P = H \tan (\alpha + \alpha')$$
....(e)

El diámetro de los rodillos de acero moldeado se determina por la fórmula alemana:

$$\sqrt{p}_{rE}$$
 (f) $f = 0.42$ /

Dónde:

f= Esfuerzo admisible sobre el rodillo en ton/cm²; se puede aceptar 7.50 ton/cm². E= módulo de elasticidad.

l= longitud del rodillo.

N= Número de rodillos.

p= P/an, presión unitaria en cada rodillo en ton/cm². r= Radio del rodillo. (QUIROGA, 1998)

Cáncamo de acero fundido: Quiroga señala que, consiste en una masa de acero de dimensiones apropiadas que lleva una perforación central tronco – cónica cuyo diámetro menor, corresponde al del cable y dos o más perforaciones que permiten colocar pernos o barras de anclaje.

Según las recomendaciones de la fábrica Roebling, se procederá en la siguiente forma:

Se destrenza el cable asegurándolo previamente con 3 amarres de alambre, se limpia cada alambre con kerosene y se seca completamente, se remoja durante 5 minutos en una mezcla al 50% de agua y ácido muriático, se vuelve a secar y a remojar en la solución anterior, pero al 75% de agua, se endereza los alambres, se colocan paralelos, se amarran en sus extremos para que pueda pasar por el encastre y se destrenza colocándose verticalmente, asegurándose el encastre en un tornillo mecánico, se rodea la

parte inferior con una masa de arcilla refractaria para evitar que el zinc vaciado en la sección troncocónico se escape dejándose enfriar lentamente.

La temperatura del zinc fundido no debe pasar de 400°C. Por ningún motivo debe usarse metal de antifricción.

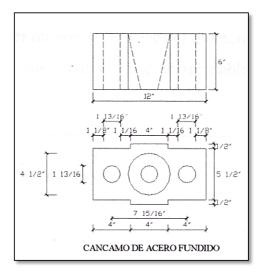
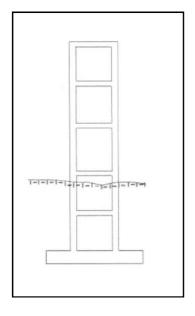


Figura 8. Cáncamo de Acero Fundido

Fuente: Quiroga, 1998


La subestructura, conformado por los componentes estructurales que aguantan la superestructura, trasmitiendo cargas a la cimentación. Obedeciendo a su posición se llaman estribos o pilares.

- . Estribos: soportes finales.
- . Pilares: soportes medios.

En puentes colgantes la subestructura principal lo constituyen las Torres y las Cámaras de Anclaje.

Torres. Son estructuras de madera, albañilería simple, reforzada o de acero, según la relevancia de la obra y la disposición para conseguir el material usándose madera solamente para puentes provisionales. Esquemáticamente son dos columnas unidas entre sí por vigas arriostradas, si es de madera, de acero o de concreto armado. (QUIROGA, 1998)

Las torres serán pórticos de concreto armado, que gráficamente son dos columnas unidas entre sí por una viga y otra en la parte inferior de estas, amarrándolos a ambos. (MORALES, 1999)

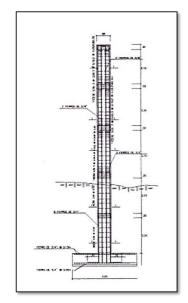


Figura 9. Torres

Figura 10. Vigas

Cámaras de anclaje: Son bloques de albañilería sólidos o huecos de concreto armado, rellenados con un apropiado material, con el propósito de resistir la tensión del cable. Son de suma importancia sus dimensiones y pueden construirse por conjunto de cables uno o para los dos conjuntos uno solo; en lo primero es mejor unirlas de alguna manera y es adecuado en puentes muy amplios o en situaciones particulares.

Los cables en sus extremos están fijos a unas estructuras llamadas cámaras de anclaje, que actúan como unos estribos que soportan con fuerza principal el tiro del cable, con una componente horizontal dirigida hacia el centro y una vertical hacia arriba. La estabilidad de las cámaras de anclaje se da generalmente por gravedad, es decir se les da dimensiones y pesos tales, que con estos últimos contrarrestan los efectos de las fuerzas actuantes. (QUIROGA, 1998)

Para *Morales*, el diseño de las cámaras de anclaje, quedará determinada siempre y cuando se cumplen las condiciones siguientes:

Estabilidad de la cámara tanto al:

Volcamiento y/o volteo

Deslizamiento

Equilibrio del sistema de fuerzas actuantes en la cámara, se verificará que la resistencia de las fuerzas deberá ser mayor que el doble de la rigidez horizontal. (MORALES, 1999)

Las Cimentaciones, comunican las cargas de la estructura al suelo por contacto directo, a través de la columna y/o torres, con la finalidad de distribuir las cargas de tal forma que el suelo no sea sobrecargado. Puede ser clasificada en dos grupos:

- 1. Cimentación directa o superficial. Mediante zapatas que transmiten directamente la carga al suelo portante. Este tipo de cimentación se utiliza cuando el estrato portante adecuado se encuentra en pequeñas profundidades a la cual es posible llegar mediante excavaciones.
 - Cimentaciones aisladas
 - Cimentaciones corridas para muros
 - Cimentaciones combinadas
 - Cimentaciones conectadas
- 2. Cimentaciones profundas. Se emplean cuando el estrato resistente se encuentra a una profundidad a la que no es posible llegar con excavaciones. Las cimentaciones profundas se construyen mediante:
 - Cajones de cimentación
 - Pilotaje
 - Cimentaciones compuestas (Cajones con pilotes)

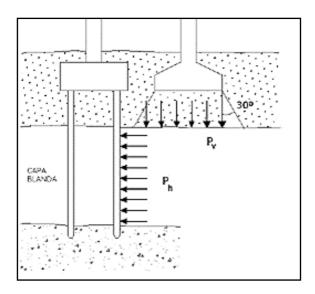


Figura 11. Vista Izq.: Cimentación profunda.

Vista Der.: Cimentación superficial.

Elementos de conexión y accesorios del tablero: Según Hernández Ibáñez, encima del sobre

entablado del puente se ponen componentes como las veredas y barandas, estos conforman la

carga muerta sobre la estructura del puente. En puentes, además de los componentes estructurales

indicados antes, existen los de enlace entre la superestructura y la subestructura que son los

mecanismos que deben ser diseñados y analizados con mucha atención y cuidado, porque se ha

analizado que su comportamiento es muy importante en sucesos como: sismos, huaycos y

cambios de temperatura. Son denominados mecanismos o dispositivos de apoyo (Fijo o Móvil).

Normas de diseño: En general, el diseño estructural se realiza de acuerdo a reglamentos, normas,

códigos o especificaciones que se adaptan o acondicionan a cada país.

Se debe tener en cuenta que las especificaciones establecen requerimientos mínimos que se deben

cumplir dentro del ámbito correspondiente y que se debe complementar a los conocimientos, buen

juicio y criterio del proyectista que es a fin de cuentas el único responsable del proyecto.

Desde años anteriores, también se viene utilizando especificaciones americanas, como la AASHTO

(American Association of State Highway and Transportation Officials), donde menciona en uno de

sus artículos, que el resultado de las fuerzas en los Puentes Colgantes, se analizarán por la Teoría de

Deflexiones Grandes para cargas verticales. Las cargas de viento se analizarán teniendo en cuenta la

rigidez de tensión de los cables. La rigidez torsional del sobre entablado se puede dejar de lado, para

establecer fuerzas a los cables, colgadores y componentes de las vigas de rigidez.

Cargas en un puente: Hernández Ibáñez, considera que el puente y todos sus componentes, tendrán

la capacidad de resistir las cargas a los que son sometidas, consecuencia de su uso planteado. Se

comportarán en sus condiciones indicadas y no provocarán esfuerzos que superen los admisibles,

indicados para cada material de la estructura.

Las acciones, cargas y fuerzas que se deben tener en cuenta en el diseño estructural de puentes son:

Cargas permanentes. - Son las que tienen una aplicación prolongada:

Permanentes

 D_1

Peso propio...

Carga muerta...D₂

Empuje de tierras...E

29

	D .		
•	Permanentes	variable	60

Efecto del preesforzado....PS

Contracción del Concreto...SH

Fluencia del Concreto... CR

Asentamiento de apoyos DS

Presión Hidráulica...... SF

Sub presión..... B

Cargas Transitorias. - Son las cargas que se aplican sobre la estructura en un período de corto tiempo.

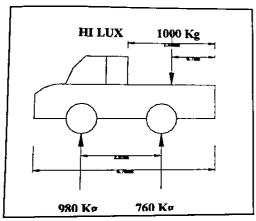
Carga viva (Efecto estático).....L

Fuerzas de viento......W

Efectos de temperatura.....T

Cargas Excepcionales: Son las cargas que tienen baja probabilidad de acción, pero con importante valor durante la vida útil del puente.

Cargas Temporales: Como su nombre lo indica son cargas que actúan temporalmente sobre la estructura.


- Durante la construcción
- Durante el mantenimiento

Carga viva del diseño: Para este diseño se tomó en cuenta el tipo de vehículo que transita por la localidad de San Francisco del Rio Mayo, que son los modelos: Camioneta Hi Lux (Doble cabina) y Camioneta Stout (Cabina simple), para poder así obtener la carga viva de diseño.

Tabla 1 *Análisis sin carga*

	PESOS		PESO TOTAL (Kg)
DESCRIPCIÓN	EJE DELANTERO	EJE POSTERIOR	
	(Kg)	(Kg)	
CAMIONETA HI LUX	975	755	1730
(Doble cabina)			
CAMIONETA STOUT	910	830	1740
(Cabina simple)			

Seguidamente se procedió a sacar las medidas de los vehículos para poder analizar cuando están cargados con su carga útil y obtener el porcentaje que recae en cada eje.

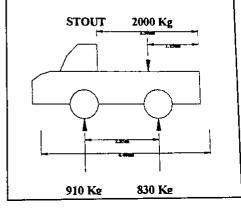


Figura 12. Análisis de Carga

Tabla 2 *Análisis con carga*

DESCRIPCIÓN	PESO EN EL EJE	PESO EN EL EJE	CARGA	PESO
DESCRIPCION	DELANTERO (Kg)	POSTERIOR (Kg)	UTIL (Kg)	TOTAL (Kg)
CAMIONETA HI	834.65	1895.35	1000	2730
LUX (Doble				
cabina)				
CAMIONETA	1036.32	2703.68	2000	3740
STOUT (Cabina				
simple)				

Las normativas precisan las propiedades del Camión de diseño, el Tándem de diseño, la Sobrecarga distribuida y los efectos dinámicos.

En la Variable 2: MEJORANDO LA TRANSITABILIDAD, observando la falta de un acceso que permita ingresar a la localidad de San Francisco y demás localidades aledañas, que permita la comunicación y así obtener un crecimiento económico; ya que la predominancia de la población en el ámbito Rural, tiene una incidencia en las actividades económicas y se manifiesta en la Agricultura, Ganadería, caza y silvicultura que tiene una representación del 81% como actividad de mayor predominancia, las otras actividades económicas son mínimas, solo el comercio tiene una representatividad un poco mayor del 5%. El detalle de las actividades económicas de la Población del Distrito de Cuñumbuqui se indica en el próximo cuadro.

Tabla 3Cuadro de principales Actividades Económicas-Distrito de Cuñumbuqui

Actividad económica	Fraguancia	Dorgontoio
		Porcentaje
Agricultura, ganadería, caza y silvicultura	156/	81
Pesca	1	0.1
Industrias manufactureras	22	1.1
Suministro de electricidad, gas y agua	4	0.2
Construcción	20	1
Comercio	98	5.1
Venta, mantenimiento y reparación de	2	0.1
vehículos		
Hoteles y restaurantes	22	1.1
Transporte, almacén. y comunicaciones	40	2.1
Intermediación financiera	3	0.2
Actividad, inmobiliario, empres. y	5	0.3
alquileres		
Administración pública y defensa,	18	0.9
Enseñanza	53	2.7
Servicios sociales y de salud	18	0.9
Otras actividades, servicios y	6	0.3
comunicaciones sociales y personales		
Hogares privados con servicio doméstico	20	1
Actividad económica no especificada	36	1.9

Fuente: Estadística Local

La localidad de San Francisco y poblados aledaños, se dedica a las actividades agrícolas como son: la siembra cosecha del café, frejol, maíz, plátano entre otros productos. Asimismo se dedican a ganadería, produciendo leche que es comercializado en la ciudad de Tarapoto y venta a la empresa GLORIA S.A, el cual tiene una planta de procesamiento en la zona. Una parte de la Población, oferta su trabajo en la empresa anteriormente mencionada.

Beneficios del proyecto

Los beneficios cualitativos que genera el proyecto son:

- o Aumento en la seguridad en el transporte vehicular y ahorro de tiempo de los usuarios
- o Aumento en el traslado de sus productos hacia las ciudades de mayor dinámica comercial.
- o En operación vehicular un ahorro en los precios
- Permitir el cruce vehicular y peatonal, así como la entrada a las localidades aledañas otorgando también seguridad
- Estimular la economía y desarrollo de los pobladores

1.4. Formulación del Problema

En la región San Martín, muchas localidades se encuentran aisladas de las principales ciudades y los centros de consumo, debido a la carencia de un adecuado sistema de articulación vial, el cual les permita tener acceso a los diferentes centros de expendio para el sustento diario e impulsar el comercio, producción agropecuaria y la agricultura en nuestra región.

Es así, que en los últimos años se vienen construyendo en diferentes localidades puentes colgantes vehiculares, que por su ubicación geográfica y potencial económico se hace necesaria y sustentable su construcción. Permitiendo no solamente el tránsito Vehicular sino también el traslado de sus productos hacia las ciudades de mayor dinámica comercial, siendo los pobladores los principales beneficiados y así también la sociedad en su conjunto mediante el abastecimiento oportuno y en condiciones seguras.

1.5. Justificación del Estudio

Justificación teórica

Permite integrar los conocimientos teóricos sobre el tema a tratar "Diseño Estructural de Puente Colgante Vehicular, Mejorando la transitabilidad, sobre el Río Mayo, San Francisco – Cuñumbuqui - Lamas – San Martín – 2014".

Justificación práctica

Servirá para integrar la teoría y el conocimiento encuadrados en la contribución al desarrollo de los pueblos, realizando un proyecto de desarrollo para la localidad de San Francisco, y zonas aledañas.

Justificación metodológica

Sirve como material de consulta para futuras investigaciones; además se utilizará las normas establecidas por la UCV, concernientes a la guía de productos observables.

Justificación social

Desarrollar este trabajo se sustentó en que la interconexión y articulación de los pueblos dinamiza el desarrollo socio-económico, cultural de los mismos, es decir, permite a los productores el acceso a mercados más competitivos, disminuyen los costos de producción y transporte, generando una integración más efectiva y el fortalecimiento de lazos entre las comunidades, y al mismo tiempo promover el turismo hacia los distintos puntos ubicados a lo largo de esta cadena fluvial como es la del Río Mayo. Por eso el proyecto de construcción del puente vehicular en dicho punto es de mucha importancia.

1.6. Hipótesis

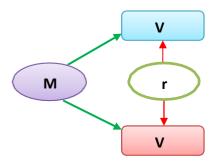
Como Hipótesis se propuso: Es posible realizar un Diseño Estructural de Puente Colgante Vehicular, para solucionar el tránsito de San Francisco y zonas aledañas. El diseño estructural de un Puente Colgante Vehicular, si solucionara el tránsito en San Francisco y zonas aledañas.

1.7. Objetivos

1.7.1. Objetivo General

 Realizar el Diseño Estructural del Puente Colgante Vehicular, sobre el Río Mayo, Localidad de San Francisco, con fines de aportar al mejoramiento de la transitabilidad y al desarrollo del mismo y de las Localidades aledañas.

1.7.2. Objetivos Específicos


- Elaborar el estudio Topográfico.
- Elaborar el estudio de Mecánica de Suelos y Geotécnicos.
- Elaborar el estudio Hidrológico.
- Efectuar el diseño estructural del puente colgante vehicular
- Elaborar los costos y presupuestos.

II. MÉTODO

2.1. Diseño de la Investigación

El estudio a realizar en el presente trabajo será descriptivo y explicativo, que nos permitirá obtener los resultados de las variables propuestas.

Descriptivos: Detalla la situación actual del lugar; **Explicativos:** Estudia las causas y efectos del proyecto.

Donde:

- M: Muestra
- V1: Diseño Estructural de Puente Colgante Vehicular
- V2: Mejoramiento la Transitabilidad.
- r: Coeficiente de Correlación.

2.2. Identificación y Operacionalización de Variables

Identificación de variables

- Variable 1: Diseño Estructural de Puente Colgante Vehicular.
- Variable 2: Mejoramiento la Transitabilidad.

Operacionalización de variables (Ver Anexo 6)

2.3. Población y Muestra

Población: Constituida por las diferentes localidades que serán beneficiadas con este proyecto (Censo extraído de las Postas de Salud); tales como:

Tabla 4 *Población*

UNIDAD	LOCALIDADES	CANTIDAD
	LOCALIDADES	(Habitantes)
1	San Francisco	133
2	Alto Progreso	433
3	Mamonaquihua	750
4	Las Flores de Mamonaquihua	846
5	Unión de Mamonaquihua	267
6	San Fernando	167
7	Nuevo Jaén	85
8	Estero	90
	Población Total	2771

Muestra: Por las características de la investigación a realizar, la magnitud de la muestra será elegida a criterio del investigador, así como la zona donde se ubicará el puente colgante vehicular como muestra de estudio en la localidad de San Francisco.

2.4. Técnica y herramientas de recopilación de información

Tabla 5 *Técnicas y herramientas de recojo de información*

TÉCNICA	HERRAMIENTAS	INFORMACIÓN
Encuesta	Cuestionario	Población de las diferentes localidades
Observación	Guía de observación	Lugar de Estudio
Estudio de Suelos	Laboratorio	Muestras tomadas en campo
Estudio Topográfico	Equipos de Medición	Lugar donde se ubicará el puente

Procedimiento de Recolección de Datos

Los datos recolectados tendrán el siguiente proceso:

Datos Obtenidos Para la Topografía

Se realizará la topografía, donde se ubicará el puente colgante vehicular en la localidad de San Francisco, para procesar en gabinete de estudio.

Datos Recolectados Para el Estudio de Mecánica de Suelos

Se realizará la toma de muestras de las calicatas in situ; en laboratorio se determinará las cualidades físicas y mecánicas de los materiales extraídos.

Trabajos en Hojas de Cálculo de Excel

Corresponde al Estudio Hidrológico para obtener el caudal de diseño y el comportamiento hidráulico del rio. También para realizar el diseño estructural del puente, siguiendo los pasos de las normas de Diseño.

2.5. Métodos de Análisis de Datos

2.5.1. Para la Topografía

El método usado fue la nivelación directa y/o altimetría, para la obtención de las alturas de todos los puntos en el plano horizontal. Los equipos utilizados para este trabajo fueron: Teodolito Electrónico Topcon DT200, para sacar los datos de los puntos visados, GPS navegador marca Garmin modelo 64s, para tener las coordenadas de los puntos, Mira de aluminio y Wincha de 5m y 30m., para tomar las dimensiones correspondientes.

Posteriormente todos los datos tomados en campo fueron procesados en la computadora con el programa AutoCAD Civil 3D versión 2012, donde se trabajaron los puntos para la obtención de niveles del terreno, así como el plano en planta y secciones.

2.5.2. Para el Estudio de Mecánica de Suelos

El Estudio, se desarrolló en tres etapas:

- La Primera, con la recopilación de datos, y la toma de muestras de las calicatas in situ.
- La Segunda, identificación de campo, que se realizó de todo el lugar, en el cual se construirá la obra proyectada, con la finalidad de contemplar las propiedades geológicas, que pudieran afectar la estabilidad del puente.
- La Tercera, los ensayos de laboratorio, el método que se tomó en cuenta, para

determinar las cualidades físicos y mecánicos de los materiales del terreno de fundación donde se excavo, no solo sacar la muestra para realizar el corte directo en ambos márgenes del río, sino también de recoger de las excavaciones, especímenes de suelos, para su clasificación por medio de los ensayos en el laboratorio.

2.5.3. Para el Estudio Hidrológico e Hidráulico

Con la finalidad de agrupar, los métodos convenientes para saber, las propiedades hidráulicas, hidrológicas, capacidad de erosión y de avenamiento del río se efectuaron los trabajos en los pasos siguientes. (Ver Anexo 3)

PRIMER PASO

Se desarrolló la selección de información e inspecciones de campo oportunos, en este primer paso.

Recolección de Información: Incluyo el análisis, evaluación y búsqueda, de los registros existentes, como investigaciones antiguas, referencias pluviométricas y cartografía del valle comprendido en la investigación.

Visita preliminar de campo: Se realizó una inspección inicial al lugar de estudio.

SEGUNDO PASO

Las investigaciones en campo incluyeron principalmente la evaluación en el lugar, del perfil hidráulico e hidrológico, más importantes, donde se proyectará el puente. Procediendo a realizar una caminata aguas abajo, aguas arriba, del probable eje, realizando las siguientes actividades.

Se evaluó el cauce en el eje proyectado: Se efectuó un examen visual del río Mayo en el sector, con la finalidad de mirar el perfil hidrológico e hidráulico, logrando los valores siguientes.

Río Mayo

- Factor de rugosidad de Manning, n = 0.050
- Utilización del suelo y sus propiedades en el valle. Determinando con esto un CN = 60
- Selección del espesor nominal de residuos del fondo, bordes del río en el sector proyectado.

TERCER PASO (Trabajo en Gabinete)

Se realizó la documentación, conteniendo detallado de todo el trabajo e información recopilada en campo, especificados en el Anexo 3.

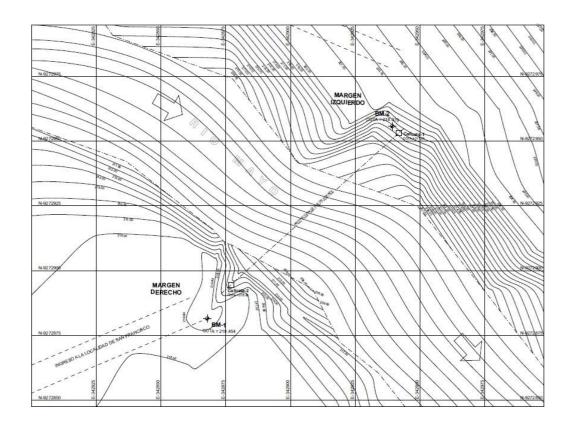
2.5.4. Para el Diseño Estructural del Puente

Para calcular estructuralmente el puente colgante, se trabajó con lo determinado en las normas de diseño; tomando en cuenta el tipo de vehículo que transita por la localidad de San Francisco del Rio Mayo, que son los modelos: Camioneta Hi Lux (Doble cabina) y Camioneta Stout (Cabina simple), para poder así obtener la carga viva de diseño.

2.6. Aspectos Éticos

Los resultados obtenidos estarán expuestos a la autenticidad y realidad de los mismos, teniendo como fundamento principal respetar, de donde se obtenga la información para la elaboración del proyecto; así como la contribución que se pueda hacer a investigaciones en la ingeniería y contar con una técnica confiable y viable de diseño.

III. RESULTADOS


3.1. Resultados de la Topografía

Localización del Área de Estudio

Se localiza en el Distrito de Cuñumbuqui, localidad de San Francisco, sobre el río Mayo. En las coordenadas y altitudes siguientes:

Margen Derecho, Este 342895.362, Norte 9272880.000 y Altitud 207.817

Margen Izquierdo, Este 342795.589, Norte 9272890.547 y Altitud 207.379

Puntos del Levantamiento

•		ALTITUD	DESCRIPCIÓN
342895.362	9272880.000	207.817	BM-1
342882.109	9272879.188	204.627	1
342895.066	9272878.764	208.319	2
342905.113	9272872.872	207.895	3
342876.481	9272878.715	203.034	4
342874.720	9272878.699	202.158	5
342867.265	9272878.019	201.041	6
	342882.109 342895.066 342905.113 342876.481 342874.720	342882.1099272879.188342895.0669272878.764342905.1139272872.872342876.4819272878.715342874.7209272878.699	342882.1099272879.188204.627342895.0669272878.764208.319342905.1139272872.872207.895342876.4819272878.715203.034342874.7209272878.699202.158

8	342869.780 927	72870.438	201.64	.9	7
9	342871.429 92	72869.712	203.99	92	8
10	342869.495 92	72863.184	201.07	72	9
11	342870.508 927	72864.875	203.71	0	10
12	342869.674 92	72860.180	201.04	48	11
13	342870.500 92	72860.372	202.1	16	12
14	342876.976 92	72870.698	206.67	'3	13
15	342878.653 927	72868.413	208.65	6	14
16	342878.432 927	2875.387	205.540	0	15
17	342876.462 927	72886.136	205.40	07	16
18	342881.076 927	72886.594	207.17	'9	17
19	342868.963 927	72886.719	201.05	54	18
20	342873.134 927	72887.883	201.33	9	19
21	342875.729 927	72907.654	201.14	-8	20
22	342872.149	9272905	5.485	200.940	21
23	342875.117	9272904	1.700	201.109	22
24	342872.226	9272926		200.822	23
25	342879.065	9272925		201.575	24
26	342880.915	9272924		203.125	25
27	342801.655	9272888	3.780	203.120	Est-2
28	342868.979	9272879	9.734	200.918	Est-1
29	342804.198	9272886	5.836	201.520	26
30	342802.798	9272887	7.175	202.879	27
31	342796.113	9272894	1.165	206.256	Est-3
32	342791.393	9272892	2.675	202.370	28
33	342796.770	9272897	7.640	204.976	29
34	342793.254	9272898	3.106	207.055	30
35	342793.193	9272900).446	206.970	31
36	342791.520	9272907	7.379	206.641	32
37	342787.442	9272905	5.742	209.040	33
38	342783.561	9272904	1.976	211.130	34
39	342790.433	9272892	2.626	208.818	35
40	342792.560	9272890).826	208.597	36
41	342791.045	9272886	5.187	208.533	37
42	342794.570	9272884	1.549	207.851	38
43	342795.589	9272890).547	207.379	BM-2

El informe Topográfico se detalla en el **Anexo 1**, y el plano Topográfico en el

Anexo 12 Lamina T-1.

3.2. Resultados de Mecánica de Suelos y Geotécnicos

Se utilizó la fórmula general "Capacidad de Carga" y "Teoría de la Elasticidad", para el diseño del esfuerzo y cargas admisibles del terreno, así como el asentamiento de las estructuras (Zapatas, Cámaras de anclaje).

Cálculo de la Carga de Rotura al Corte y Factor de Seguridad

Ecuación General Capacidad de Carga: $q_u = c$. Nc+gsup.Df. Nq $_+(1/2)$. γ '.B'N $_\gamma$

CALICATA Nº 01 (Margen Izquierda).

Capacidad de carga neta admisible: q adm (neta) = 1.90 kg/cm²

CALICATA Nº 02 (Margen Derecha).

Capacidad de carga neta admisible: q adm (neta) = 3.80 kg/cm²

Cálculo del Asentamiento

Ecuación General del Asentamiento: $S_i = q_s.B. (1 - u^2). \text{ Iw/E}_s$

CALICATA N^{o} **01.-** $S_{i} = 0.16 \text{ cm}$

CALICATA Nº 02.- $S_i = 0.32 \, cm$

Todo el procedimiento de cálculo y cuadros están detallados en el Anexo 2.

Resultado Hidrológico

Análisis Hidrológico

Se obtuvieron datos de la estación "PLU-CUÑUMBUQUE", y se realizaron los análisis de las precipitaciones máximas, del valle en estudio, obteniendo una gran cantidad de información, de la oficina SENAMHI.

Características Geomorfológicas de la Cuenca

Área total de la cuenca = 9247.53 Km², Perímetro = 644.33 Km, Nivel Máximo = 3415 m, Nivel Mínimo = 230 m, Longitud = 299 m y Ancho = 30.93 m.

Precipitaciones Máximas en 24 horas

ESTACION: PLU " CUÑUMBUQUE"

Latitud : 06° 30' Longitud : 76° 30' Altura : 240 m.s.n.m.

Departamento : SAN MARTIN Provincia Distrito

: LAMAS : CUÑUMBUQUE

				PRECIP	ITACION	MAXIN	A EN 2	4 HORA	S (mm)				
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	MAXIMA
2000	26.8	47.4	22.9	30.9	13.9	24.3	13.2	35.3	67.4	13.8	24.1	25.6	67.4
2001	13.4	27.1	43.8	42.4	29.0	11.3	99.7	84.4	21.8	33.5	63.2	52.5	99.7
2002	8.7	8.4	16,7	35.3	10.3	24.9	46.0	21.9	25.8	25.6	28.9	16.5	46.0
2003	33.9	17.2	36.5	28.4	13.7	18.0	31.8	17.0	18.9	31.8	37.4	64.4	64.4
2004	9.1	39.6	23.7	19.5	27.4	18.4	19.8	17.4	53.1	26.0	26.9	61.1	61.1
2005	12.0	19.0	32.1	26.0	22.2	17.7	13.0	30.7	30.8	16.2	29.4	12.2	32.1
2006	23.0	32.2	55.3	22.0	26.0	20.0	44.2	14.4	25.1	23.3	81.3	11.5	81.3
2007	16.5	6.9	29.1	19.0	23.6	3.3	23.4	18.4	40.2	24.1	64.0	8.1	64.0
2008	18.5	93.2	33.7	54.4	11.6	28.3	37.2	26.0	30.0	29.9	18.3	25.8	93.2
2009	24.1	33.0	24.9	52.2	15.5	51.3	8.9	32.1	50.3	14.3	10.8	7.6	52.2
2010	35.1	11.1	31.7	50.3	38.7	39.8	16.9	47.0	11.3	14.4	35.2	15.7	50.3
2011	17.2	6.8	41.6	43.7	24.6	38.9	17.6	11.1	28.2	32.4	53.4	29.2	53.4
2012	105.4	23.5	31.3	44.4	36.0	12.8	34.8	15.4	29.0	31.2	20.4	32.3	105.4
2013	55.2	18.3	28.2	19.3	39.4	20.8	33.8	29.9	22.4	12.4	53.1	30.1	55.2
2014	15.2	12.6	40.5	49.4	17.3	16.8	43.6	6.0	17.2	102.4	42.3	45.3	102.4
MAXIMA	105.4	93.2	55.3	54.4	39.4	51.3	99.7	84.4	67.4	102.4	81.3	64.4	105,4
MEDIA	27.6	26.4	32.8	35.8	23.3	23.1	32.3	27.1	31.4	28.8	39.2	29.2	68.5

Modelamiento Hidrológico

Se determinó para diferentes edades de retorno, teniendo en cuenta el tipo de suelo, sus elevaciones y precipitaciones, del valle en estudio.

Los siguientes caudales ordinarios y extraordinarios son:

Tabla 6 Crecida ordinaria

AÑOS	CAUDAL
25	2,019.22 m ³ /seg
50	$2,315.84 \text{ m}^3/\text{seg}$

Tabla 7 Crecida extraordinaria

AÑOS	CAUDAL
100	2,599.65 m ³ /seg
200	$2,871.82 \text{ m}^3/\text{seg}$
500	$3,218.82 \text{ m}^3/\text{seg}$

Parámetros Hidráulicos de la Sección de Estudio

PARA LA SE	CCION PROM	1EDIO DEL PL	JENTE							
Periodo	Q Total	Cota (msn	m)	Tirante, en el	E.G. Elev	Pendiente	Velocidad	Area	Ancho	N°Froude
de Retorno	(m3/s)	Cauce	NAME	eje cauce (m)	(msnm)	(m/m)	(m/s)	(m2)	(m)	
25	2019.22	196.87	201.87	5.00	211.50	0.0081	5.90	73.00	52.64	0.74
50	2315.84	196.87	205.42	8.55	212.45	0.0081	6.13	173.22	54.83	0.75
100	2599.65	196.87	209.60	12.73	213.40	0.0081	6.33	336.77	56.81	0.75
200	2871.82	196.87	213.00	16.13	214.35	0.0081	6.50	551.06	58.58	0.76
500	3218.82	196.87	215.30	18.43	216.25	0.0081	6.70	727.84	60.71	0.76

Sección Estable o Sección de Equilibrio

PROCEDIMIENTO DE LA	ACEY		
	Periodo de Retorno	Caudal (m³/s)	Ancho Estable
$B = 1.8Q^{1/2}$	25	2019.22	80.88
Q = Caudal	50	2315.84	86.62
B = Ancho Estable del Cauce (m)	100	2599.65	91.78
	200	2871.82	96.46
	500	3218.82	102.12
	Periodo de 100 años		92 m. (*)

(*).-

Se ha determinado optar una longitud estable de 105 m. Para la longitud del puente

Determinación de la Socavación General

Para efectos del cálculo de la socavación general se ha utilizado la fórmula propuesta por L.L. Lischtvan-Ledeviev, comúnmente conocida y cuya formulación matemática se puede encontrar en el Libro: Mecánica de Suelos Tomo III. Juárez Badillo; con un resumen descriptivo que se presenta a continuación:

$$ds = \left(\frac{\alpha \cdot d_0^{5/3}}{0.60 \cdot w^{1.18} \beta}\right)^{\frac{1}{x+1}} ds = \left(\frac{\alpha \cdot d_0^{5/3}}{0.68 \cdot dm^{0.28} \cdot \beta}\right)^{\frac{1}{1+X}}$$

	CALCULO	DE LA SOCAVA	CION GENERAL	EN EL RIO MA	YO (METODO D	E LISCHTVAN -	LEVEDIEV)		
a =	a = Q/($t^{5/3}$ B μ)					Suelos Cohesivos $ds=((a t^{5/3})/(0.60 w^{1.18} B))^{1/(x+1)}$			
Periodo de Retorno (Años)	Caudal (m³/s)	Ancho Superior (m)	Coeficiente de Contracción (µ)	Ho (m)	a	β	Hs (m)	Socavación General (m)	
25 50	2019.22 2315.84	52.64 54.83	0.97 0.97	5.00 8.55	2.70 1.22	0.95 0.97	13.36 14.12	8.36 5.57	
100 200 500	2599.65 2871.82 3218.82	56.81 58.58 60.71	0.97 0.97 0.97	12.73 16.13 18.43	0.68 0.49 0.43	1.00 1.02 1.05	14.75 15.28 15.87	2.02 -0.85 -2.56	

El **Anexo 3**, muestra los cuadros y el procedimiento de cálculo realizado.

3.3. Resultados del Diseño Estructural

Para el cálculo estructural del puente colgante, se trabajó con lo determinado en las normas de diseño; tomando en cuenta el tipo de vehículo que transita por la localidad de San Francisco del Río Mayo, que son los modelos: Camioneta Hi Lux (Doble cabina) y Camioneta Stout (Cabina simple), para poder así obtener la carga viva de diseño.

Datos de Diseño

A=	3.00	m	=	Ancho util maximo deltablero			
D=	1.50	m	=	Separacion entre Vigueta de eje a eje			
d=	0.40	m	=	Separacion entre Largueros de eje a eje			
N=	105.00	m	=	Longitud del Puente			
F=	10.50	m	=	Flecha del cable= 10%L'			
5/c=	1071-33	Kg/m2	=	Sobrecarga			
j=	75	%	=	Factor de Impacto			
δ=	1000	Kg/m3	=	Densidad de Madera			
cf=	1.05	m	=	Contra flecha del tablero de transito 10 %f			
<i>s=</i>	1-10	m	=	Altura de la pendolacentral			
P=	2703·68	Kg	=	Peso en el eje posterior de Camioneta STOUT (Cabina simple,			

Cálculo de la Sobrecarga de Diseño

S/C repartida en	orma=	970	Kg/m	
S/C concentrada	de una camioneta STOUT(C	Cabina sin	nple)= 22	244 Kg/m
S/C Total = 321	4 <i>Kg/m / 3m = 1071·33</i> k	(g/m2		

Diseño de la Estructura de Madera

Cualidades Físicas de la Madera

Las cualidades físicas de la madera, están establecidas por el grupo Andino. Para este diseño emplearemos la tabla siguiente (Grupo B).

Tabla 8 *Tipos de madera*

GRUPO A	GRUPO B	GRUPO C
Estoraque	Huayruro	Catahua amarilla
Palo sangre negro	Manchinga	Copaiba
Pumaquiro		Diablo fuerte
		Tornillo

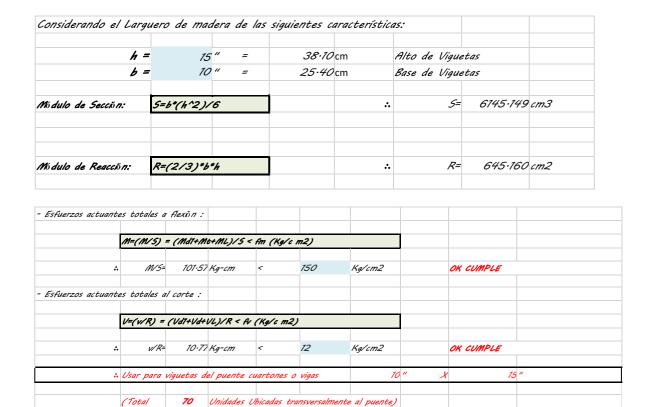
Módulo de elasticidad = 75000 Kg/cm^2

Esfuerzo admisible = 150 Kg/cm^2

Diseño del Entablado

Sobrecarga (W _L)	=	1071·33K	/g/m2							
Considerando el en	tablado de l	madera de	las siguien	tes caract	terísticas:					
h =	2.5	,	6.33	5cm	Altura del	Tablón				
b =		? <i>" =</i>	20.32	?cm	Base del 1	ablón				
Modulode Seccion:	5=6*(h^2)i	16			Momento	de Sobreca	rga Puntal:		MP=((P/2)*(d/4))*100	
		S=	136.55	9 cm3			MP=	13518-40	Kg-cm	
Modulo de Reaccion:	R=(2/3)*b	*/			Momento	de Sobreca	rga:		M=W*(L^2)/8	
		R=	86.02	11 cm2		W=5/c*(1+i	(100)			
						L=d =mt·	0.40	W=	-1874·8275	Kg/m
(Momento maximo	centralen u	na viga sim	plemente a	poyada)		D-0 -1110	0 70			
							. <i>M=</i>	<i>3749-655</i>	Kg-cm	
Momento actuante:	σ <i>= (MP+1</i>	M)/5 < fm	(Kg/cm2)							
	M/S=	126.45	Kg-cm	<	150	Kg/cm2		OK CUMPLE !!!!	 / 	
Esfuerzo cortante:	v = W*L/.	2				ν	= 374.97	Кд		
(Reaccion en ambos i	lados de una	a viga simpi	lemente apo	oyada)						
Esfuerzo actuante:	V = WR	< fv (Kg/	icm2)							
	V=	: 4·36	Kg/cm2	<	12	Kg/cm2		OK CUMPLE !!!!	 /	
	Usar para e	el entablado	n del puente	tablas de			s " X	2:5	5 //	
	(Total	517			nnsversalment					

Diseño de Larguero

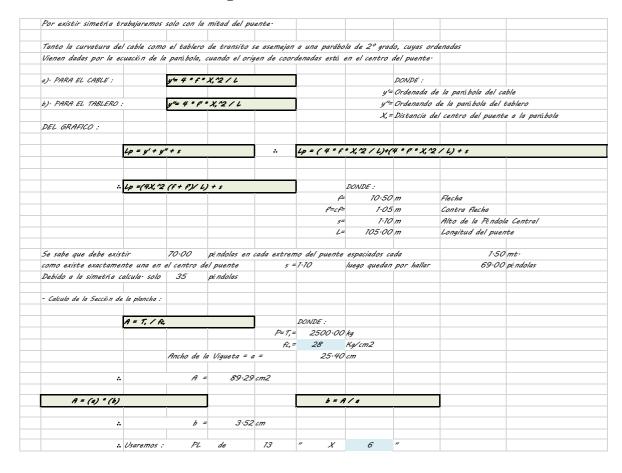

Considerando el Lar	rguero de m	nade	era de i	las siguiente	es caracte	rísticas:		
h =	8	"	=	20.32	cm	Alto del Lar	guero	
6 =	7	"	=	17.78	cm	Base delLar	guero	
Módulo de sección	S=b*(h^2)/	6				. S=	1223.567	cm3
Módulo de reacción:	R=(2/3)*b	*//				. <i>R=</i>	240.860	cm2

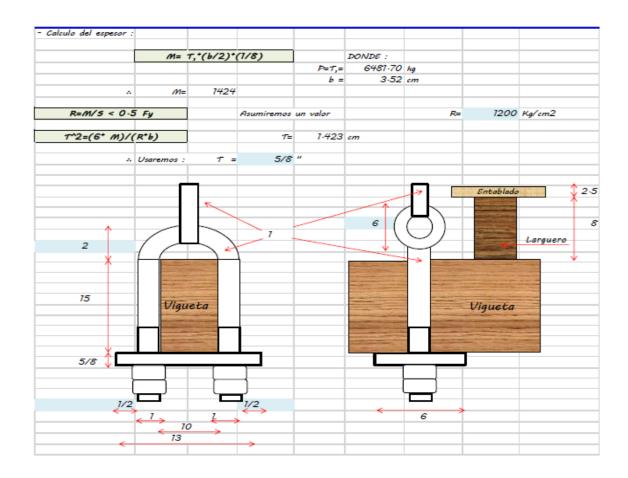
CARGAS ACTUANTES							
- MOMENTO POR CA	ARGA MUE	RTA (Md1)	<i>:</i>				
Metrado de Cargas (W = σ*vol·); por ml·					
Peso del entablado:		Went ·= 8*	(h1*D*1)		=	95.25	Kg/m
Peso de Largueros:		Wlarg·= δ*	(h2* b2* 1)*.	N*(D/A)	=	180-64	Kg/m
Peso de Viguetas:		Wvig·= 8* ((h3* b3* 1)		=	96.77	Kg/m
Clavos, pernos y otros					=	15	Kg/m
					Wd7 =	387-67	Kg/m
-	Momento:						
		Md1=(W*L'	2)/8 * 100	L = A =		3.00	$mt\cdot$
					W = Wd1=	387-67	Kg/m
		Md1=	43612-74	Kg-cm			
-	Cortante:						
		Vd1=(W*L).	/2	L = A =		3.00	$mt\cdot$
					W = Wd1=	387-67	Kg/m
		Vd1=	581-50	Kg			

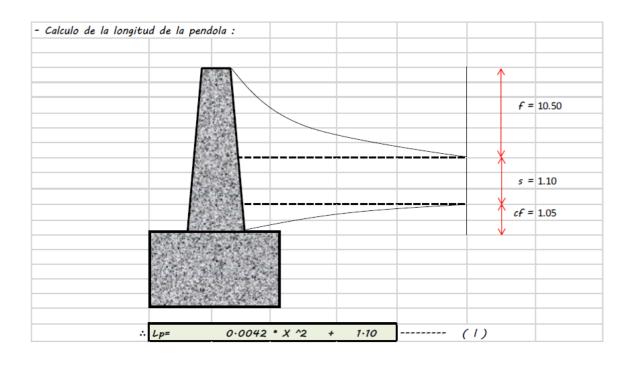
TO POR CARGA VIVA (1							
: Momento	Sobrecarga	Puntual:					
	MP=P *D/	4	L = D =		1.50	mt.	
				P =	2703.7	Кд	
	MP=	101388	Kg-cm				
: Momento	por Sobrei	carga:					
	ML=(W. *L		L = D =		1.50	mt·	
				W = U =	1874-8	Kg/m	
	ML=	52729.5	Kg-cm				
: Cortante	por Carga i	Puntual:					
	VP =P	/2					
				P =	2703.68	Kg	
	VP=	1351-84	Kg				
: Cortante	por Sobrec	arga:					
	U.=(W. *L)		L = D =		1.50	mt·	

					W = W =	1874-8	Kg/m		
		VI=	1406-12	Kg			-		
Esfuerzos actuant	es totales a	Hexion:							
	M=(M/S) :	= (Md+MF	P+ML)/5 < 1	Am (Kg/c m	n2)				
	M/S=	127-60	Kg-cm	<	150	Kg/cm2		OK CUMPLE	
Esfuerzos actuant	es totales a	al corte :							
	V=(v/R) =	(Vd+Vp+V	(.)/R < Av (Kg/c m2)					
	v/R=	11.67	Kg-cm	<	12	Kg/cm2		OK CUMPLE	
٨	Usar para	largueros	del puent	e cuarton	es o vigas	7	" X	8	"
	(Total	10	Unidades de	1-50	mts· Ubicad	las paralelan	nente al eje	del puente)	
	Se colocaran	•	700.00	Unidades					

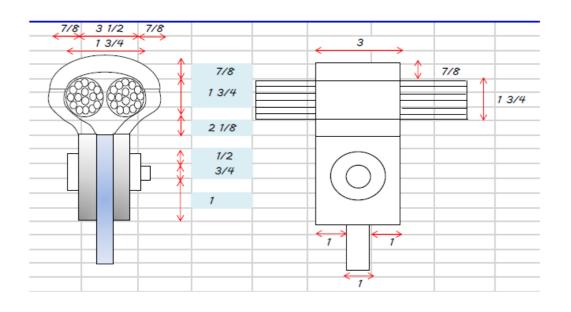
Diseño de Viguetas

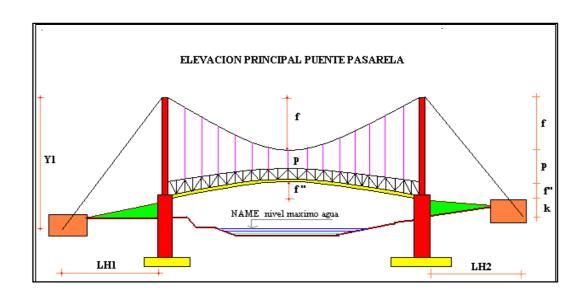

Diseño de Péndolas


(Total

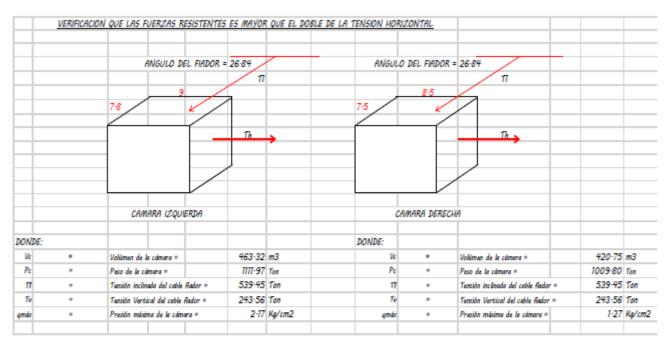

- NUMERO DE PEN	VDOLAS :										
			Np=	Numero a	de péndolas	a calcular					
	Np= Wd	1	L=	Longitud	del puente	entre ejes de	e torres	-	-	105	mt
			d=	Distancia	entre cada	pé ndola		-	=	1.50	mt
	Np=	69	pé ndolas	(entre ex	tremos del	puente)					
Total de péndolas en	el puente	138	péndolas de	distintas	medidas y/	o alturas y e	estarán dist	ianciados c/	1.50		mt
DIAMETROS DE LA	PENDOLA : .	Se usara vai	rillas de fierro lis	oque en su ex	tremo llevaran	n ojos soldados ek	ctricamente				
		P E	NDOLAS			Fy=	<i>2500</i>	kg/cm2	Acero ASTM A-		

		D IA M.	A s (c m2)	Pas o (Kg/ml)		Fadm=	1500	kg/cm2		
A pendola= P/Fadm		1/2"	1-27	1.02		Datos:				
		5/8"	1.98	1.58		A pendola =	Área de a	cero de la péndole	a por calcular	
F adm= 0.6*Fy		3/4"	2.85	2.24		P=	Peso tota	l que soportara la	as péndolas	
		1"	5.07	3.97		F adm =	Esfuerzo	admisible		
		1 1/2"	11.4	8.94						
- Calculando el peso t	otal que sop	portan las j	pendolas P:							
P = VdT+V	5+VL				P=	6481-70	Kg			
	A pendola =		4.32	cm2						
۵	Se usara pe	endolas de	varilla lisa de .	Diametro		1	" cad	<i>a</i> 1.50	mt	


Longitud de las Péndolas



Nº DE PENDOLA A PARTIR DE CL	DISTANCIA DE X A LA PENDOLA	X^2	ECUACION (1) Lp	LONGITUD CORREGIDA
1	1.5	2.25	1-109	0.622
2	3	9	1-138	0.650
3	4 .5	20-25	1-185	0-697
4	6	36	1-251	0-763
5	7-5	56-25	1-336	0.848
6	9	81	1.439	0.952
7	10-5	110-25	<i>1</i> ⋅562	1-075
8	72	144	1-703	1·216
9	13-5	182-25	7-864	1-376
10	75	225	2-043	1-555
π	<i>16-5</i>	272-25	2.241	<i>1-7</i> 53
12	78	324	2-458	1-970
73	19-5	380-25	2-693	2-206
74	21	447	2-948	2· 46 7
75	22-5	506-25	3-227	2-734
76	24	576	3.574	3-026
77	25-5	650-25	3-825	3-337
18	27	729	4·155	3-667
19	28-5	812·25	4-504	4-016
20	30	900	4-871	4-384
27	31-5	992-25	5-258	4-77 1
22	33	1089	5-663	5·176
23	34-5	π90∙25	6.088	5-600
24	36	1296	6-531	6.043
25	37-5	1406-25	6-993	6-505
26	39	7527	7-474	6.986
27	40-5	1640-25	7-973	7.486
28	42	1764	8-492	8·005
29	43·5	1892-25	9-029	8·542
30	45	2025	9-586	9-098
37	46.5	2162-25	10-161	9-673
32	48	2304	10-755	10-267
33	49-5	2450-25	77-368	10-880
34	57	2601	77-999	77-572


Diseño de Cámara de Anclaje

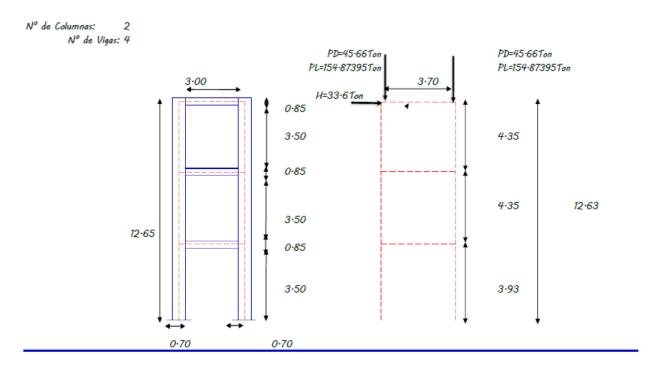
μ= 0·35		=	Coeficiente de roza	miento de suelo				
Ø= 26·00	0	=	Angulo de fr	icción interna del s	suelo (grava li	ig· Humedad) -	· Lado Izq.	uierda
Ø= 30·00	0	=	Angulo de fr	icción interna del s	suelo (grava l	ig· Humedad)	- Lado De	recho
Tt (Derecha)= 3.80	Kg/cm2	=	Capacidad portante	del suelo				
Tt (Izquierda)= 1.90	Kg/cm2	=	Capacidad portante	del suelo				
γ suelo (Derecha)= 1.98	Tn/m3	=	Peso específico del	suelo				
y suelo (Izquierda)= 1.54	Tn/m3	=	Peso específico del	suelo				
γ Conc = 2.40	Tn/m3	=	Peso específico del	Concreto Ciclópeo				
k = 1.00	m	-	Altura de aplicación	n de anclaje				
LH1= 25.00	m	-	Longitud Horizonta	al izquierdo				
LH2=25·00	m	=	Longitud Horizonta	al derecho				
Y1=12·65	m	=	Y1= f + cf + s					
MENSIONES DE LAS CAM	ARAS DE							
LADO IZQUIER	DO							
A=	7.8m	=	Ancho					
<i>B</i> =	9 m	=	Largo					
C=	6·60 m	=	Peralte					
LADO DERECH	10							
A=	7.5 m	=	Ancho					
B=	8.5 m	=	Largo					
C=	6.60 m	=	Peralte					

	RADIANES		GRADOS						
α =	0.38		21.80	2	= Angulo co	n el cable F	Principal		
α 1 =	0.47		26.8	4	= Angulo de	l fiador izqu	uierdo		
α 2 =	0.47		26.8	4	= Angulo de	l fiador der	echo		
Longitud del fiadoriza	guierdo (L1) =	.	28.02			T=	539.45	Tn	= Tensión en el cable
Longitud del fiador de	erecho(L2)=		28-02			K			
				А	6				
		В					В		
- Por efecto del Puen	ate Sobre la Co	ámara :							
17 =	539.45 =		Tensión D	Pel Cable (C	Calculado ante	riormente)			
LADO L	ZQUIERDO								
Th =	481-335 =		Tensión H	lorizontal		Th = 17 *	COS a1		
Tv =	243.556 =		Tensión V	lertical		Th = 17 *			
LADO I	DERECHO								
Th =	481-335 =		Tensión H	lorizontal		Th = 17 *	COS a2		
Tv =	243.556 =		Tensión V	lertical		Th = 17 *	SEN a2		

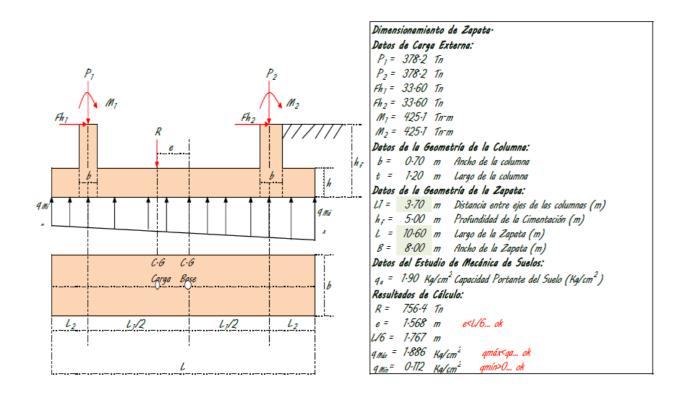
alculo de los moment	tos que inter	vienen					
Suma de momentos	estables:						
Σ M est· =	((Y Conc*A	*B*C)*A/2	?)+((Ep*L	8)+Ea*2*A*µ))*C/3		
	S M act. 1	6194.8	Tn - m	LADO IZQ	UFRDA		
				LADO DER			
- Suma de momentos	de volteo :						
$\Sigma M V =$	T *COSB *F+(((T*SEN	β *(A-F))) + (Ea*B)))	*C/3		
	Σ M v1 =	2396.8	Tn - m	LADO IZQU	VIERDO		
	ΣM v 2=	2333.3	Tn - m	LADO DER	ECHO		
- Verificación al volcan	niento :						
FSV = Mest / Mv > 1	2						
	FSV 1 =	2.58	Kg-cm	>	2	OK CUMPLE	
	FSV 2 =	2.73	Kg-cm	>	2	OK CUMPLE	
· Verificación al desliz	amiento :						
FSD = Wc / P > 2						Wc = Y Conc*A*B*C	
	FSD1 =	2.47		>	2	OK CUMPLE	
*	FSD2 =	8.13		>	2 2	OK CUMPLE	

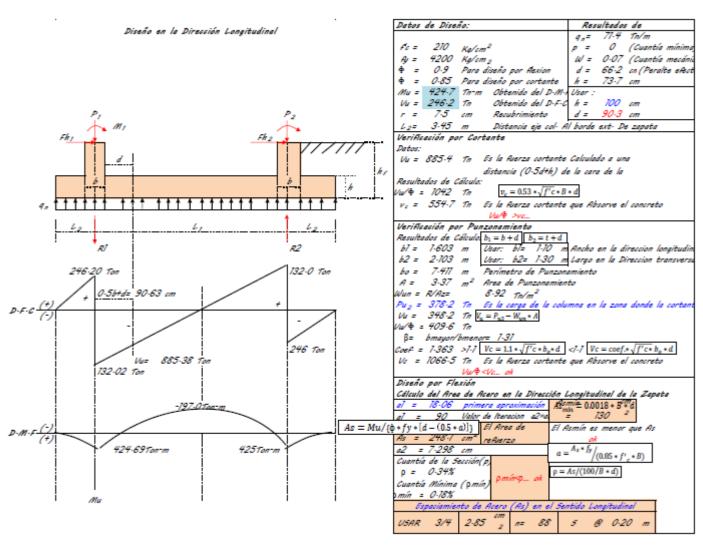
Verifi	icando las fuerzas Lado	Izquierdo						Verificando	las fuerzas Lado De	recho			
	:	(FI	+F2+F3) :	> 2°Th					i.	(FI+F2+F3)	> 2°11		
													Ton
	Σ de las fuerzas =	1093-97	Ton	>	1078-9	Ton			Σ de las fuerzas =	1390-42	Ton	>	1078-894
Щ		OK CUMPLE !!!!!								OK CU	MPLE !!!!!		
							_						
Щ	-	Se usará la	s dimension	es de		7-8	X	9	X	6-60	cámara i	izquierda	
Ш													
Ш													
	4	Se usará la	s dimension	nes de		7-5	x	8.5	x	6-60	camara (derecha	

Diseño de las Torres y/o Columnas


PREDIMENSIONAMIENTO

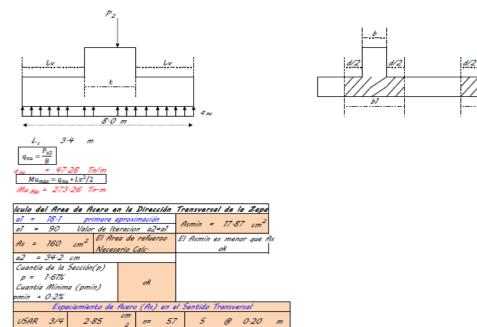
Para el caso específico de la presente estructura adoptaremos el criterio de dimensionamiento para evitar fallas tipo frágil indicados en el ítem 2·5·3· CRITERIO DE CARGA AXIAL
Determinación de la fuerza actuante


Deverminación de la fuel	iza accuance		
P de diseño =		377·70 Ton	(Valor máximo de las Tensiones Verticales en los fiadores)
Tensión máxima =		459·05 Ton	(Calculado anteriormente)
fc=		210 kg/cm2	
Fy=		4,200·00 kg/cm2	
st =		1.90 kg/cm2	capacidad portante del terreno (el menor)
$g_t =$		1,760·00 kg/m3	peso espeáfico del terreno (el menor)
9c =		2,400·00 kg/m3	peso espeá fico del concreto
n _{adm} =		0.25	
hc=		100 cm	
$h_T =$		12·65 m	
Df =		5.00 m	Profundidad de desplante
Asumiendo sección de to	rres:		
	b=	70 cm	
	t=	120 cm	
n= P/(fc*b*t) =	0.21		
0-21<<<0-25	\Rightarrow	CORRECTO	
3	e puede concluir que la sección asu	mida está definida por:	
•	- / 700 / 0000/01/ 4001/	······································	


Se puede concluir que la sección asumida está definida por: b= 70 cm

= 120 cm

Diseño de la Zapata Combinada



Diseño en la Dirección Transversal

Cargas que Actúan en la Dirección Transversal de la Zapata

Identificación del Ancho de la Zapata "bl" para el Diseño en la Dirección Transversal

El Anexo 4, muestra los resultados del diseño.

3.4. Resultados de los Costos y Presupuestos

Para realizar los costos y presupuestos del presente proyecto, se inició con los metrados de todas las partidas, y así obtener el presupuesto total del proyecto, utilizando el software S10 Presupuestos.

El Presupuesto del proyecto "Diseño Estructural de Puente Colgante Vehicular, Mejorando la transitabilidad, sobre el Río Mayo, San Francisco –Cuñumbuqui - Lamas – San Martín – 2014" fue de 1'278,168.48 Soles (Un millón doscientos setentaiocho mil ciento sesentaiocho y 48/100 Soles).

Los resultados se presentan en los Anexos 7, 8, 9, 10 y 11.

IV. DISCUSIÓN

Según estudio realizado por Reátegui Pinedo. En su investigación titulada: "Análisis y Diseño de puente Colgante Peatonal Churuyacu sobre el río Mayo – Distrito de Lamas, Provincia de Lamas, Región San Martín"- Morales - Universidad Nacional de San Martín, llega a la siguiente conclusión:

El presente diseño formula una opción de solución, respecto al problema de transporte que afrontan el pueblo de Churuyacu y ciudades aledañas, la misma que consiste en un puente colgante peatonal sobre el río Mayo. Realizar el Análisis y Diseño Estructural del Puente Colgante Peatonal Churuyacu sobre el Río Mayo, con el fin de aportar al desarrollo del Proyecto para su posterior construcción. Tomando en cuenta lo propuesto obtuvimos la comprobación, de acuerdo al análisis y diseño estructural del puente, respaldado conforme a los principios, permitiéndonos obtener una estructura resistente frente a las cargas actuantes, causas externas y simultáneamente bidireccional; unidos a parámetros de seguridad, funcionalidad y economía.

Según estudio realizado por Saavedra Paredes. En su investigación titulada: "DISEÑO PUENTE COLGANTE VEHICULAR NANGAO"- Universidad Nacional de San Martín, Edición 2000, Tarapoto – Perú. Concluye diciendo que Es importante mencionar que, existe una notable tendencia en cuanto a la construcción de Puentes Colgantes de madera para uso vehicular liviano se refiere, citándose los siguientes: en las localidades de La Libertad (1998, L = 22 m), Pacayzapa (1996, L = 20m), Zapatero (1999, L = 30m), San Martín de Alao (1996, L=50m), Cuñumbuqui (L=22m), estructuras que hasta la actualidad no registran ningún problema técnico que pueda influir en su comportamiento y servicio para lo cual fueron diseñados. Asimismo, se hace necesario el mantenimiento periódico de cada una de las partes de la estructura, siendo esta actividad de bajo costo y que a su vez prolongará su vida útil. Con estas características se demuestran que esta tipología de Puentes es segura, livianas, de fácil proceso constructivo, y lo más importante económicas"

Según estudio realizado por Ampuero Alata. En su estudio titulado: "Consideraciones Estructurales en el Análisis y Diseño de Puentes Colgantes; Lima- Perú 2012", define la siguiente conclusión: El objetivo principal de este trabajo es presentar las características importantes y el procedimiento de diseño que deben tener estos puentes, particularmente los de luces intermedias, ya que nuestros obstáculos naturales hacen necesarios puentes colgantes

de grandes luces. Dicho objetivo se complementa con la presentación del análisis y diseño de los elementos más importantes de un puente de 140 m de luz.

Según estudio realizado por Tapia González, abril. En su Informe de Ingeniería "Diseño Estructural del Puente sobre el Canal Internacional Ecuador – Perú". Muestra un incremento en el intercambio comercial y de turismo entre Ecuador y Perú como consecuencia de la firma del acuerdo de paz. Durante el periodo 2000-2004.

El conocimiento relacionado al Diseño de Puentes ha crecido tanto en los aspectos teóricos como prácticos, gracias a trabajos de investigación sobre las propiedades de los materiales, en métodos más racionales y precisos sobre el comportamiento estructural, en el estudio de eventos extremos particularmente peligrosos para puentes tales como sismos y socavación. A fin de mantener el pasos con todos estos avances, el AASHTO en base a las investigaciones del Programa Nacional Cooperativo de Investigación en Carreteras (NCHRP), concluyó que las Especificaciones STANDARD contenían vacíos discernibles, inconsistencias y aún algunos conflictos, además las especificaciones no reflejaban, ni incorporaban la filosofía de diseño más reciente, el Diseño por Carga y Resistencia Facturada (LRFD), una filosofía que ha venido imponiéndose en otras áreas de la Ingeniería Estructural y en otras partes del mundo tales como Canadá y Europa.

V. CONCLUSIONES

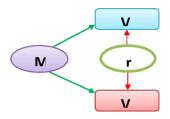
- **5.1.** El levantamiento topográfico nos permitió plantear la correcta ubicación del puente colgante vehicular, considerando la forma y la topografía general del terreno, por medio este trabajo se obtuvo la cota de máximas avenidas del río Mayo +215.30, permitiéndonos conocer, que la altura del río llega a 2.78m, sobre la cota más baja de la carretera +218.075.
- **5.2.** Los Estudios de Suelos y Geotécnicos ayudaron a determinar la capacidad pórtate para el diseño de zapatas de las Torres y Cámaras de Anclaje del puente colgante vehicular, con los resultados siguientes: Margen Izquierda Calicata Nº 01 = q adm (neta) = 1.90 kg/cm², Margen Derecha Calicata Nº 02 = q adm (neta) = 3.80 kg/cm²; también con estos estudios se pudo determinar qué la profundidad de desplante será de 5.00m, donde irían dichas estructuras.
- **5.3**. Se obtuvieron datos de la estación "PLU-CUÑUMBUQUE", y se realizaron los análisis de las precipitaciones máximas del valle en estudio, obteniendo una gran cantidad de información, de la oficina SENAMHI.
- 5.4. Por último, se diseñó el puente colgante vehicular, bajo los parámetros de las Normas de Diseño, se tomó en cuenta el tipo de vehículo para este diseño, vehículos que transitan por la localidad de San Francisco del Río Mayo, que son los modelos: Camioneta Hi Lux (Doble cabina) y Camioneta Stout (Cabina simple), obteniendo un puente colgante vehicular de 105m de luz, ancho de vía de 3.00m, con parapetos de madera (para dar seguridad a los que transitaran por el puente), las dimensiones de las vigas principales serán de 10"x12", los largueros de 7"x8" y el entablado de 2.5"x8", así mismo se calculó el cable principal, carro de dilatación, las péndolas, abrazaderas, las torres y las cámaras de anclaje, todos estos datos se observan en los planos.

VI. RECOMENDACIONES

- **6.1.** Se recomienda para la elaboración de proyectos de puente colgante vehicular, tomar en cuenta, los criterios de diseño estipulados en las normas de diseño, así como la norma AASHTO LRFD y referencias bibliográficas de varios autores.
- **6.2.** Se recomienda la revisión del diseño del cable principal, incrementando la cantidad, para permitir el ensamblaje, en valles pocos accesibles, usando equipos mecánicos. para el proyecto serán 4 cables de 1 3/4", 2 por banda.
- 6.3. Se recomienda darle un mantenimiento con preservantes, ya que el tablero, las vigas, largueros y las barandas del puente en su mayoría son de madera; porque la madera es un material y natural, formado principalmente por celulosa y lignina, si es sometida a ciertas condiciones de humedad, temperatura y oxigeno puede ser degradado. La degradación de la madera se debe al ataque de organismos biológicos destructores como son los hongos y los insectos xilófagos que a dichas condiciones ambientales pueden invadir ciertos sectores de la madera y si no son detectados a tiempo, destruyen las células que la componen, perturbando sus propiedades físicas y químicas y reduciendo severamente su resistencia estructural.
- **6.4.** Estos tipos de puentes deben ser una alternativa inmediata a la necesidad de algunas localidades, las cuales carecen de recursos económicos para la elaboración de grandes estructuras de concreto armado, la cual sería de mucho costo, y esto sería fundamental para la gran problemática del transporte de productos hacia diversos puntos de consumo y / o comercialización.

VII. REFERENCIAS

- PASTOR G., Luis. 1990. Puentes y obras de arte", FIC-UNI.
- ROBLES, Francisco y ECHENIQUE, Ramón. *Estructuras de madera*, 2ª Edición 1991, Editorial LIMUSA.
- HERNÁNDEZ, Santiago. Edición 1993. *Puentes: análisis, diseño y construcción*, Universidad de La Coruña, A Coruña España
- A.C.I. capítulo peruano, 2ª Edición, 1994. Puentes: Análisis, Diseño y Construcción, U.N.I.
- QUIROGA, Juan. 1998. Diseño de puentes colgantes. Lima Perú: U.N.I.
- MORALES, Raúl A. *Estudio comparativo de diseño en puente colgante peatonal*, 1ª Edición 1999, Editorial U.N.I.
- SAAVEDRA, Henry. *Diseño Puente Colgante Vehicular Nangao*.2000. Tarapoto: Biblioteca Especializada de Ingeniería Civil UNSM.
- Ministerio de Transportes y Comunicaciones. *Manual de diseño de puentes*. Edición 2003, Lima Perú Dirección General de Caminos y Ferrocarriles.
- ZEGARRA, Luis. 2007. *Análisis y diseño de puentes colgantes*. Lima: Biblioteca Especializada de Ingeniería Civil Pontificia Universidad Católica del Perú.
- TAPIA, Bolívar. Abril 2009. Diseño estructural del puente sobre el canal internacional Ecuador - Perú. Riobamba – Ecuador.
- PALACIOS, Marlon. Mantenimiento en puentes. Edición 2012. Tegucigalpa- Honduras
- AMPUERO, Everth. Consideraciones Estructurales en el Análisis y Diseño de Puentes Colgantes. 2012. Lima
- ORTEGA, Andres, y VILORIA, Cesar. *Influencia de diferentes índices de rigidez en el comportamiento estructural de puentes colgantes* 2012. Maracaibo, Venezuela.
- REÁTEGUI, Chachita. Análisis y Diseño Estructural del Puente Colgante Peatonal Churuyacu sobre el río Mayo-Distrito de Lamas, Provincia de Lamas, Región San Martín 2013. UNSM. Morales.


Matriz de consistencia

Título: "Diseño estructural de puente colgante vehicular, mejorando la transitabilidad, sobre el río Mayo, localidad de San Francisco — Cuñumbuqui — Lamas - San Martín — 2014"

Formulación del problema	Objetivos	Hipótesis	Técnica e Instrumentos
Problema general En los últimos años se vienen	Objetivo general Realizar el Diseño Estructural del Puente Colgante	Hipótesis general	Técnicas
construyendo en diferentes localidades puentes colgantes vehiculares, que por su ubicación geográfica y potencial	Vehicular, sobre el Río Mayo, Localidad de San Francisco, con fines de aportar al mejoramiento de la transitabilidad y al desarrollo del mismo y de las	Hi: Es posible realizar un Diseño Estructural de Puente Colgante Vehicular, para	Encuesta Observación Estudio de Suelos
económico se hace necesaria y sustentable su construcción.	Localidades aledañas. Objetivos específicos	solucionar el tránsito de San Francisco y zonas aledañas. El diseño estructural de un	Instrumentos Cuestionario
sus productos hacia las ciudades de	- Elaborar el estudio Topográfico. - Elaborar el estudio de Mecánica de Suelos y Geotécnicos. - Elaborar el estudio Hidrológico.	Puente Colgante Vehicular, si solucionara el tránsito en San Francisco y zonas aledañas.	Guía de observación
pobladores los principales beneficiados y así también la sociedad en su conjunto mediante el abastecimiento oportuno y en condiciones seguras.	- Efectuar el diseño estructural del puente colgante vehicular - Elaborar los costos y presupuestos.		
Diseño de investigación	Población y muestra	Variables y dimensiones	

El estudio a realizar en el presente trabajo será descriptivo y explicativo, que nos permitirá obtener los resultados de las variables propuestas.

Descriptivos: Detalla la situación actual del lugar; **Explicativos:** Estudia las causas y efectos del proyecto.

Donde:

M: Muestra

V1: Diseño Estructural de Puente

Colgante Vehicular

V2: Mejoramiento la

Transitabilidad.

r: Coeficiente de Correlación.

Población

Constituida por las diferentes localidades que serán beneficiadas con este proyecto (Censo extraído de las Postas de Salud)

Muestra

Por las características de la investigación a realizar, la magnitud de la muestra será elegida a criterio del investigador, así como la zona donde se ubicará el puente colgante vehicular como muestra de estudio en la localidad de San Francisco.

Variables	Dimensiones			
Diseño	Análisis Estructural			
Estructura				
1 de	Análisis Sísmico			
Puente				
Colgante				
Vehicular				
Mejorami	comercio			
ento la				
Transitab	Tránsito vehicular			
ilidad.	Transito veniculai			
-	<u> </u>			

Operacionalización de variables

Variable	Definición conceptual	Definición operacional	Indicadores	Escala de medición
DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR	Obra de Arte Especial que permite pasar tráfico sobre un	Diseño	Para encontrar esfuerzos internos, deformaciones y tensiones. Comportamiento de una estructura ante un sismo Dimensionamiento y cálculo de la estructura. Realizar levantamiento topográfico del área proyectada para el puente.	NOMINAL
MEJORAMIENTO DE LA TRANSITABILIDAD	Tener acceso Vehicular a los diferentes centros de expendio para el sustento diario e impulsar el comercio, producción	Comercio	Actividad socioeconómica consistente en el intercambio de algunos materiales que sean libres en el mercado de compra y venta.	NOMINAL

agropecuaria y agricultura en nue región	Tránsito vehicular	El Tránsito Vehicular permite impulsar las actividades económicas a través del traslado de productos hacia las	
		productos hacia las	
		diferentes ciudades.	

ANEXO INFORME DE TOPOGRAFÍA

PROYECTO: "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN – 2014"

EJECUTA: TESISTA ANDREY DEL AGUILA PEREA

INFORME TÉCNICO DE TOPOGRAFÍA

INFORME TÉCNICO

PROYECTO: "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN – 2014"

TESISTA : ANDREY DEL AGUILA PEREA

DEPARTAMENTO : SAN MARTÍN

PROVINCIA : LAMAS

DISTRITO : CUÑUMBUQUI

SECTOR : LOCALIDAD DE SAN FRANCISCO

MORALES – PERÚ

Noviembre 2014

L- INFORMACIÓN BÁSICA DEL PROYECTO

1.1. NOMBRE DEL PROYECTO

"DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN – 2014"

1.2. LOCALIZACIÓN Y CARACTERÍSTICAS DE LA LOCALIDAD

Ubicación Política

Sector : Localidad de San Francisco

Distrito : Cuñumbuqui Provincia : Lamas Departamento : San Martín

Ubicación del Área de Estudio

El Lugar donde se localiza el presente proyecto, se ubica en el Distrito de Cuñumbuqui, específicamente en la Localidad de San Francisco, sobre el río Mayo.

Políticamente, la Localidad de San Francisco, se halla dentro de la jurisdicción del Distrito de Cuñumbuqui, Provincia de Lamas, Región San Martín, República del Perú; a una altura promedio respecto al nivel medio del mar de 860.00 metros.

Clima

El clima que se registra en la zona del proyecto y alrededores es "Selva Tropical Permanentemente Cálido" según la clasificación de W. Köppen.

Las temperaturas que corresponden a este tipo climático fluctúan entre 22.7 °C y 23.8 °C que muestran una oscilación media anual muy estrecha de 1.1 °C. Teniendo una media anual de 23.2 °C. Y la vegetación es abundante, como lo es también los matorrales producto de la intensa deforestación.

Las precipitaciones anuales son mayores a los 885 mm; existe además humedad atmosférica durante todo el año y dos estaciones perfectamente definidas de acuerdo con las precipitaciones registradas, por lo que en obra se deberá prever planes de contingencia para alcanzar los objetivos ante el proyecto. La intensidad o cantidad de precipitación natural se registra de la siguiente manera:

Precipitación alta: De enero a marzo.

Precipitación media: De abril a mayo y de septiembre a diciembre. Precipitación baja: De junio a agosto, pero con altas temperaturas.

Vías de acceso

La zona del proyecto es accesible, desde Tarapoto, por dos rutas:

La primera, se da a través de la Vía de Evitamiento cruzando el Puente Tarapoto, sobre el río Cumbaza, en el sector Chontamuyo, llegando hasta la Localidad de Santa Rosa de Cumbaza, de ahí se toma la carretera que conduce a la Localidad de San Francisco en el Km 7.1 desde allí continuar a la mano Izquierda hasta llegar a la Localidad de San Francisco, recorriendo unos 10.7 kilómetros de carretera a nivel de afirmado hasta llegar a la zona motivo del presente informe.

La segunda ruta se da desde el Distrito de Cuñumbuqui, que se comunica con la ciudad de Tarapoto y se encuentra a una distancia de 19 Km por una carretera asfaltada; de allí se continúa por una carretera no afirmada, hasta la Localidad de San Francisco, recorriendo unos 11.8 kilómetros, pasando por la localidad de Estero.

Localmente, el lugar del proyecto es accesible únicamente por vía terrestre a través de las vías señaladas en el ítem anterior, en cualquier época del año y en cualquier tipo de movilidad.

1.3. OBJETIVO GENERAL

Realizar el estudio topográfico del "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS –

SAN MARTÍN – 2014", efectuando el levantamiento topográfico general de la zona del proyecto; se tomó detalles, accesos, Longitud del Puente, terrenos y vías colindantes con el proyecto, las prospecciones realizadas para el estudio de suelos, etc.

1.4. EQUIPOS EMPLEADOS

Para el levantamiento topográfico se empleó.

- 01 Teodolito Electrónico Topcon DT200
- 01 GPS navegador marca Garmin modelo 64s
- 02 miras
- 01 Wincha de 5m y 30m
- 01Cámara fotográfica.

1.5. TRABAJO DE CAMPO

Todo levantamiento topográfico realizado contempla las etapas siguientes:

Reconocimiento del Área de Trabajo

En primer lugar, se estudió la zona del trabajo para organizar adecuadamente todo el levantamiento topográfico que se realizó, confeccionando un plan de trabajo que al final de las diferentes fases, dio como resultado el conjunto de los datos de campo, los valores numéricos, necesarios para la confección del plano topográfico con la forma del relieve del terreno.

Una vez analizada la zona, se procedió a organizar grupo de trabajo de topografía entre estas están de levantamiento topográfico, de colocación estacas ambos lados del Terreno y el pintado de las estacas, y además el Pintado de la Estación del Teodolito y de los BM's. En esta fase de reconocimiento del terreno del grupo de trabajo, se organizaron para poder realizar en forma responsable sus diferentes tareas que han de realizar; entre estas se procedió a efectuar diferentes croquis y anotaciones en las libretas de campo concernientes al tipo de trabajo a realizarse. Es así que se llegó a determinar las ubicaciones adecuadas del trazo del Terreno.

Red de Control y Altímetro

Para el apoyo altimétrico del levantamiento se ha partido del BM – 1 y finalizado con el BM- 2, ubicado en el terreno del Puente, cuyo valor de altitud es de 207.817 msnm, obtenido mediante lectora de GPS.

A partir del BM-1 inicial de cota conocida, se dio cotas a los puntos levantados hasta llegar a finalizar con el BM-2, Los valores (altitud) de cada BM nivelado se han obtenido con las lecturas del Teodolito. Esto se efectúo para todo el levantamiento topográfico.

Trabajos de Gabinete

Con los datos obtenidos en campo se procedió a realizar los cálculos respectivos en gabinete.

Taquimetría: Los datos de campo obtenidos mediante el teodolito, fueron trasferidos al ordenador, para su procesamiento (Excel), con el cual se pudo obtener los puntos medidos en el software AutoCAD Civil 3D versión 2012, para luego a través del manejo apropiado obtener los planos respectivos de planta y perfil del trazo, a las escalas indicadas, con curvas de nivel a cada un metro.

1.6. LONGITUD DEL PUENTE

Longitud del Puente = 105m.

1.7. PUNTOS DEL LEVANTAMIENTO

PUNTOS	ESTE	NORTE	ALTITUD	DESCRIPCIÓN
1	342895.362	9272880.000	207.817	BM-1
2	342882.109	9272879.188	204.627	1
3	342895.066	9272878.764	208.319	2
4	342905.113	9272872.872	207.895	3
5	342876.481	9272878.715	203.034	4
6	342874.720	9272878.699	202.158	5
7	342867.265	9272878.019	201.041	6
8	342869.780	9272870.438	201.649	7
9	342871.429	9272869.712	203.992	8
10	342869.495	9272863.184	201.072	9
11	342870.508	9272864.875	203.710	10
12	342869.674	9272860.180	201.048	11
13	342870.500	9272860.372	202.116	12
14	342876.976	9272870.698	206.673	13
15	342878.653	9272868.413	208.656	14
16	342878.432	9272875.387	205.540	15
17	342876.462	9272886.136	205.407	16
18	342881.076	9272886.594	207.179	17
19	342868.963	9272886.719	201.054	18
20	342873.134	9272887.883	201.339	19
21	342875.729	9272907.654	201.148	20
22	342872.149	9272905.485	200.940	21
23	342875.117	9272904.700	201.109	22
24	342872.226	9272926.708	200.822	23
25	342879.065	9272925.418	201.575	24
26	342880.915	9272924.792	203.125	25
27	342801.655	9272888.780	203.120	Est-2
28	342868.979	9272879.734	200.918	Est-1
29	342804.198	9272886.836	201.520	26
30	342802.798	9272887.175	202.879	27
31	342796.113	9272894.165	206.256	Est-3
32	342791.393	9272892.675	202.370	28
33	342796.770	9272897.640	204.976	29
34	342793.254	9272898.106	207.055	30
35	342793.193	9272900.446	206.970	31
36	342791.520	9272907.379	206.641	32
37	342787.442	9272905.742	209.040	33
38	342783.561	9272904.976	211.130	34
39	342790.433	9272892.626	208.818	35
40	342792.560	9272890.826	208.597	36
41	342791.045	9272886.187	208.533	37
42	342794.570	9272884.549	207.851	38
43	342795.589	9272890.547	207.379	BM-2

1.8 PANEL FOTOGRÁFICO

En la imagen se aprecia el reconocimiento del área donde se realizó el levantamiento topográfico.

En la imagen se aprecia el trabajo de levantamiento topográfico.

ANEXO 2: INFORME DE MECÁNICA DE SUELOS

PROYECTO: "DISEÑO ESTRUCTURAL DE PUENTE

COLGANTE VEHICULAR, MEJORANDO LA

TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE

SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN –

2014"

EJECUTA : TESISTA ANDREY DEL AGUILA PEREA

INFORME TÉCNICO DE MECÁNICA DE SUELOS CON FINES DE CIMENTACIÓN

INFORME TÉCNICO

PROYECTO: "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE
VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO,
LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN –
2020"

TESISTA : ANDREY DEL AGUILA

PEREA DEPARTAMENTO : SAN MARTÍN

PROVINCIA : LAMAS

DISTRITO : CUÑUMBUQUI

SECTOR : LOCALIDAD DE SAN FRANCISCO

MORALES - PERÚ Noviembre 2014

"DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN – 2014"

INFORME TÉCNICO DE MECÁNICA DE SUELOS CON FINES DE CIMENTACIÓN

NOVIEMBRE 2014

CONTENIDO

PARTE I GENERALIDADES

1.01	Introducción
1.02	Objetivo del estudio
1.03	Ubicación del área en estudio
1.04	Accesibilidad al área en estudio
1.05	Clima y precipitación pluvial
1.06	Metodología planificada para el desarrollo del estudio
1.07	Descripción general del proyecto
1.08	Tipo de estudio para el proyecto
1.09	Estudios anteriores realizados en la zona
1.10	Participa
	ntes

PARTE II

GEOLOGÍA

2.01 Geología

regional

PARTE III

GEOTECNIA

- 3.01 Sismicidad. Antecedentes
- 3.02 Exploración de campo
- 3.03 Ensayos de campo y laboratorio
- 3.04 Perfil del suelo

- 3.05 Nivel de la napa freática
- 3.06 Análisis de la cimentación
- 3.06.01 Memoria de cálculo
- 3.06.02 Tipo de cimentación
- 3.06.03 Profundidad de desplante
- 3.06.04 Determinación de la carga de rotura al corte y factor de Seguridad
- 3.06.05 Cálculo del asentamiento
- 3.07 Efectos de sismo
- 3.08 Materiales de construcción

PARTE IV

CONCLUSIONES Y RECOMENDACIONES

- 4.1 Conclusiones
- 4.2 Recomendaciones

PARTE V

REFERENCIAS

PARTE VI

ANEXOS

Anexo I : Ensayos de laboratorio

Anexo II : Fotografías

1.01 INTRODUCCIÓN

En la región San Martín, muchas localidades se encuentran aisladas de las principales ciudades, debido a la carencia de un adecuado sistema de articulación vial, es así, que en los últimos años se vienen construyendo en diferentes localidades puentes colgantes vehiculares, que por su ubicación geográfica y potencial económico se hace necesaria y sustentable su construcción.

La elaboración de este informe, estará financiada totalmente por el investigador con la finalidad de diseñar un puente colgante vehicular en la localidad de San Francisco, sobre el río Mayo.

En el presente informe se desarrolló una serie de trabajos de campo, laboratorio y gabinete con la finalidad de determinar las propiedades físicas, mecánicas y de resistencia para finalmente determinar los parámetros geotécnicos lo cual permitió establecer la capacidad admisible del suelo donde se proyecta construir el puente colgante vehicular; con estos datos se elaboró el informe final.

1.02 OBJETIVOS

El presente estudio consiste en evaluar las condiciones Geotécnicas presentes en la zona donde se encasillará el puente colgante vehicular, las cuales son inexcusables e imprescindibles para determinar la seguridad física de la estructura en cuanto a estabilidad, diseño, construcción y correcto funcionamiento se refiere.

Siendo esto la mira del presente informe, se estableció para el mismo a nivel específico, lo siguiente:

- Establecer las particularidades geológicas, tanto local como general de las diferentes formaciones geológicas identificando tanto su distribución como sus características geotécnicas.
- Dar existencia las características geotécnicas del lugar, es decir, la estratigrafía, la identificación y las propiedades físicas y mecánicas de los materiales térreos para el diseño de cimientos estables a través del concepto de presión admisible.

1.03 UBICACIÓN DEL ÁREA EN ESTUDIO

El Lugar donde se localiza el presente proyecto, se ubica en el Distrito de Cuñumbuqui, específicamente en la Localidad de San Francisco, sobre el río Mayo.

Políticamente, la Localidad de San Francisco, se halla dentro de la jurisdicción del Distrito de Cuñumbuqui, Provincia de Lamas, Región San Martín, República del Perú; a una altura promedio respecto al nivel medio del mar de 860.00 metros.

1.04 ACCESIBILIDAD AL ÁREA EN ESTUDIO

La zona del proyecto es accesible, desde Tarapoto, por dos rutas:

La primera, se da a través de la Vía de Evitamiento cruzando el Puente Tarapoto, sobre el río Cumbaza, en el sector Chontamuyo, llegando hasta la Localidad de Santa Rosa de Cumbaza, de ahí se toma la carretera que conduce a la Localidad de San Francisco en el Km 7.1 desde allí continuar a la mano Izquierda hasta llegar a la Localidad de San Francisco, recorriendo unos

10.7 kilómetros de carretera a nivel de afirmado hasta llegar a la zona motivo del presente informe.

La segunda ruta se da desde el Distrito de Cuñumbuqui, que se comunica con la ciudad de Tarapoto y se encuentra a una distancia de 19 Km por una carretera asfaltada; de allí se continúa por una carretera no afirmada, hasta la Localidad de San Francisco, recorriendo unos 11.8 kilómetros, pasando por la localidad de Estero.

Localmente, el lugar del proyecto es accesible Únicamente por vía terrestre a través de las vías señaladas en el ítem anterior, en cualquier época del año y en cualquier tipo de movilidad.

1.05 CLIMA Y PRECIPITACIÓN PLUVIAL

El clima que se registra en la zona del proyecto y alrededores es "Selva Tropical Permanentemente Cálido" según la clasificación de W. Köppen.

Las temperaturas que corresponden a este tipo climático fluctúan entre 22.7°C y 23.8 °C que muestran una oscilación media anual muy estrecha de 1.1°C. Teniendo una media anual de 23.2° C. Y la vegetación es abundante, como lo es también los matorrales producto de la intensa deforestación.

Las precipitaciones anuales son mayores a los 885 mm; existe además humedad atmosférica durante todo el año y dos estaciones perfectamente definidas de acuerdo con las precipitaciones registradas, por lo que en obra se deberá prever planes de contingencia para alcanzar los objetivos ante el proyecto. La intensidad o cantidad de precipitación natural se registra de la siguiente manera:

Precipitación alta: De enero a marzo.

Precipitación media: De abril a mayo y de septiembre a diciembre. Precipitación baja: De junio a agosto pero con altas temperaturas.

1.06 METODOLOGÍA PLANIFICADA PARA EL DESARROLLO DEL ESTUDIO

Con el designio de realizar el objetivo trazado hasta el nivel de detalle requerido, se desarrolló la siguiente serie ordenada de actividades:

- Recopilación y estudio de la información existente.
- Reconocimiento de campo. Se efectuó un recorrido a lo largo y alrededores del sitio donde se erigirá el puente, con el fin de observar la mayor cantidad posible de rasgos geológicos, geomorfológicos, geodinámicos y geotécnicos que pudieran afectar la seguridad física del puente.
- Trabajos de campo y laboratorio. La modalidad adoptada para determinar las cualidades físico mecánicas de los materiales térreos del terreno de fundación fue la de no solo medir la resistencia a la penetración in situ en ambas márgenes del desnivel a salvar, dentro del área concebida para los estribos correspondientes, sino también de recolectar con la ejecución de calicatas muestras de suelos representativos para ser sometidos a ensayos de clasificación y especiales.
- Análisis e interpretación de la información recolectada.
- Elaboración de las correspondientes recomendaciones.
- Informe final.

1.07 DESCRIPCIÓN GENERAL DEL PROYECTO

El puente a construir, será un puente colgante vehicular de longitud aproximada de 95 metros de luz; el ancho de su calzada será igual 3.0 m; la estructura será de madera y metal.

En los puentes colgantes el tablero está formado por la losa y los elementos de la viga de rigidez (reticulado longitudinal) y los cables constituyen la estructura principal que transmite las cargas a los anclajes y torres.

Estas Torres se apoyarán sobre zapatas rectangulares y soportará una carga excéntrica cuya resultante deberá quedar dentro del tercio medio de la dimensión menor de la zapata.

La profundidad de desplante considerada para la zapata estará como mínimo

5.00 metros por debajo del tirante de socavación máximo ya sea del total o del local (el más crítico) registrado en la zona del ponteadero.

El asentamiento a considerarse en los estribos del puente no involucra mayores exigencias dado a que la superestructura estará simplemente apoyada.

1.08 TIPO DE INFORME PARA EL PROYECTO

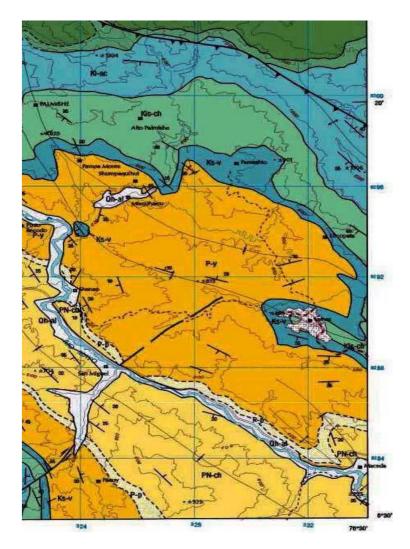
El presente estudio es con fines académicos y las recomendaciones dadas son suficientes para el desarrollo de la Tesis y se puede aprovechar esta información para la planeación de la parte constructiva del proyecto.

Además, las recomendaciones escritas en este estudio son solo para los fines del presente proyecto; para otro tomar al presente estudio, como un carácter de antecedente o referencial.

1.09 NORMATIVIDAD

Para elaborar el presente informe, se siguió los lineamientos mínimos que exige nuestra actual Norma Técnica de Edificación E.050 - Suelos y Cimentaciones.

Asimismo, se tuvo presente las siguientes Normas Técnicas como lineamientos de complementación: NTE. E.030 - Di serio Sismo resistente (Del 9 de junio del 2006).


1.10 PARTICIPANTES

En el presente estudio han participado los señores: Andrey del Águila Perea como Tesista Responsable del presente estudio y el técnico-operador de laboratorio Robert Navarro Mori como técnico especialista en mecánica de suelos y ensayos de laboratorio de la Universidad César Vallejo.

2.01 GEOLOGÍA REGIONAL

Constituida por rocas cenozoicas y recientes, con un relieve colinoso bajo y aplanamientos situados por debajo de los 200 m.s.n.m.

Al estar comprendida esta región en la zona Subandina oriental más activa del país, los procesos tectónicos, denudacionales y deposicionales hídricos (fluviales), han dado lugar a ambientes geomorfológicos bien diferenciados, con características morfo dinámicas actuales y latentes muy relacionadas con las condiciones climáticas, de flora y fauna, litológicas y estructurales, sobre las que tiene mucha incidencia la actividad antrópica, se requiere tener una visión prospectiva del comportamiento geomorfológico futuro del área y que permita el planeamiento del uso racional de los recursos naturales y la preservación del medio ambiente.

+

3.01 SISMICIDAD, ANTECEDENTES

El presente informe, se desarrolla dentro de lo que geográficamente se conoce como "Faja Subandina", el cual es una unidad adyacente a las unidades geográficas denominadas "Llanura Amazónica" y "Cordillera Oriental".

Aquí y sobre la primera unidad mencionada, es evidente la presencia de fallas geológicas regionales tanto longitudinales como transversales al rumbo andino y son los que directamente se vinculan a las manifestaciones sísmicas de la región.

Estas fallas corresponden a zonas sismo activas del pasado y presente siglo, donde los sismos tienen sus ocurrencias a profundidades mayores a los 20 Km, siendo de naturaleza superficial a intermedia principalmente y pertenecientes a las unidades de formación Mesoterciaria y Supraterciaria.

La zona que ha concentrado la mayor actividad sísmica en la región San Martín, es el Valle del Alto Mayo. Esta unidad geomorfológica, la cual en "términos" de sismicidad guarda los intereses propios del presente proyecto, tiene en su registro histórico el desarrollo de varios sismos fuertes con efectos destructores que han cobrado numerosas víctimas y cuantiosos daños materiales; las ondas propagadas en cada evento han sido sentidos con variable intensidad en los alrededores de la ciudad de Moyobamba, esto debido a que más allá de la ubicación de los epicentros identificados, es a las energías liberadas respectivamente y a la influencia de su ubicación en cuanto a topografía y condición local del sitio.

Muestra de esta actividad registrada en la zona del Valle del Alto Mayo es el que a continuación se enseña, los mismos que han sido, en buen grado, sentidos en el lugar y alrededores del proyecto.

Fechas

Ubicación y características

- 26 de noviembre de 1,877

Chachapoyas, ocurren efectos del sismo.

- 28 de septiembre de 1,906

Trujillo y Moyobamba; en Chachapoyas alcanza una intensidad VII en la escala de Mercalli Modificada.

- 14 de mayo de 1928

- 18 de julio de 1928

- 6 de agosto de 1945

- 10 de noviembre de 1946

- 19 de junio de 1968

- 29 de mayo de 1990

- 4 de abril de 1991

- 25 de septiembre del 2005

Chachapoyas sufre destrucción casi total; es un sismo notable con intensidad de IX en la escala de Mercalli Modificada.

Réplica fuerte del sismo de 14 de mayo.

Sismo destructor en Moyobamba, con intensidad VII en la escala de Mercalli Modificada.

Sismo con epicentro en Sihuas, a 300 Km de Moyobamba y Chachapoyas, causó daños en Moyabamba y Chachapoyas.

Terremoto con epicentro al noroeste de Moyobamba. Alcanzó una intensidad de VII en la escala de Mercalli Modificada. Moyobamba quedó con daños significativos.

Terremoto, con epicentro al sur de Rioja (falla Pucatambo). Daños en Soritor, Rioja y Moyobamba. Este sismo alcanzó una magnitud de 5.8 grados en la escala de Richter, acompañado de un gran número de réplicas que se prolongaron por más de 20 días.

Sismo con epicentro a 30 Km aproximadamente de Moyobamba. Daños en Moyobamba, Rioja y principalmente en Nueva Cajamarca. Este sismo alcanzó una intensidad de VII en la escala de mercalli Modificada.

Sismo estremecedor sentido en casi toda la parte central y toda la parte norte del PerÚ. Sus ondas fueron sentidas en localidades fronterizas de El Ecuador, Colombia y Brasil. Este sismo mostró su mayor efecto en la ciudad de Lamas; aquí los factores de vulnerabilidad sísmica fueron

Los materiales y sistemas constructivos, el suelo, la topografía y la presencia de agua subterránea. En Lamas se registró un muerto y varios heridos; en Moyobamba y alrededores hubo mucha conmoción. La magnitud local de este sismo fue de 7.5° en la escala de Richter.

Análisis de las condiciones sísmicas en la zona del proyecto:

Tomando en consideración la resultante manifestada en cuanto a la configuración geológica estructural a nivel regional, afirmamos que la historia y la actividad sísmica del lugar del proyecto y alrededores es significativa dado a que éste, ha sido receptora de grandes fuerzas de sismo de intensidades considerables, estas medidas en la escala de Mercalli Modificada.

Antecedentes en cuanto a damnificados del lugar y alrededores por el desarrollo de estos eventos naturales si se tienen, por lo que no se debe suponer que no se desarrollen sismos con magnitudes que ubiquen o cuestionen la estabilidad y funcionamiento post-sismo del puente a construir.

La Norma Técnica de Edificación E.030 – Diseño Sismorresistente, del 08 de junio del 2,006, especifica y ubica en su anexo Nº 01, en la zona 2 a la zona del proyecto, la misma que es considerada como zona de media a alta intensidad sísmica; por esta razón, para el diseño y construcción del puente se considerarán los efectos de sismo.

3.02 EXPLORACIÓN DE CAMPO

La exploración de campo ha sido dirigida y ejecutada por el suscrito bajo la supervisión y estrecha coordinación con el ingeniero Zadith Nancy Garrido campana.

El trabajo de campo se desplego con la participación del Tesista, se realizó dos (02) calicatas, una en el margen derecho (calicata – 02, dos muestras) y otro en el margen izquierdo (Calicata – 01), del río Mayo, ya en el pozo de observación e investigación del subsuelo, se identificó, midió y describió los distintos tipos de suelos hallados, desarrollándose en cada una de ellas pruebas manuales y pruebas para obtener su densidad natural en estado húmedo. De las calicatas se obtuvieron, por cada tipo de suelo hallado, muestras en estado alterado para ser sometidos a pruebas básicas, se extrajeron muestras por debajo de 0.20 metros de profundidad respecto al Nivel superior de cada calicata mencionada, muestras inalteradas tipo bloque (MIB) para ser sometidas a pruebas especiales en laboratorio.

Los suelos encontrados en la calicata — 01 (MI), es una Arena Arcillosa de color marrón claro medianamente compacta; en la calicata — 02 (MD), en la muestra — 01, es una Arena Arcillosa de color marrón claro medianamente compacta, en la muestra — 02, es una Grava Limosa muy compacta color marrón claro con bolonería tamaño máximo 4" en un 20% aproximadamente. Todos estos suelos se manifiestan en todo lo largo de las dos calicatas, mostrando uniformidad de los tipos de suelos conformante del lugar; cuanto a la trinchera de observación ejecutada en el lugar, mostramos lo recopilado en la siguiente tabla:

Tabla 9Suelos encontrados en la calicata

N° CALICATA	MUESTRA	PROCEDENCIA DE MATERIAL	PROFUNDIDAD (m)
C-01 Margen Izquierda	M I	SUELO NATURAL	0.20 – 4.50
C-02 Margen Derecha	ΜΙ	SUELO NATURAL	0.10 - 1.60
	M II	SUELO NATURAL	1.60 - 4.50

3.03 ENSAYOS DE CAMPO Y LABORATORIO

En cuanto a ensayos realizados para el presente estudio, afirmamos que solo el ensayo de "Descripción Visual – Manual", cuya norma aplicable es la ASTM D 2488, ha sido realizado sobre el lugar y las Normas Técnicas Peruanas, según el detalle siguiente:

Tabla 10 *Ensayos ejecutados en laboratorio*

Ensayos realizados	Norma aplicable			
Análisis granulométrico	NTP 339.128			
Límite líquido y límite plástico	NTP 339.129			
Clasificación unificada de suelos	NTP 339.134			
Corte directo	NTP 339.171			
Contenido de sales solubles en suelos	NTP 339.152			
y agua subterránea Contenido de cloruros solubles en	NTP 339.177			
suelos y aguas subterráneas				

3.05 NIVEL DE LA NAPA FREÁTICA

No se encontró el nivel de la napa freática, tampoco indicios de filtración subterránea, el suelo es semi húmedo y semi compacto

3.06 ANÁLISIS DE LA CIMENTACIÓN

3.06.01 MEMORIA DE CÁLCULO

Para el cálculo del esfuerzo admisible del terreno de fundación y del asentamiento inmediato de las cimientos de concreto armado de forma rectangular con carga inclinada que provoca excentricidad en una dirección, se emplearon respectivamente la "Ecuación General de Capacidad de Carga" propuesto por Meyerhof en 1,963 y la "Ecuación de la Teoría de la Elasticidad", cuya relación de factor de influencia y la razón largo/ancho de la zapata fue establecida por Terzaghi en 1,943.

Para el cálculo de la presión admisible, se tuvo en cuenta las ecuaciones antes mencionadas, un factor de seguridad de 3, una falla del tipo "falla local por corte" y el siguiente parámetro geotécnico asumido (no se pudo obtener muestra de suelo ubicada bajo el nivel del desplante de la zapata), la misma que está en función de la fracción menos gruesa del suelo:

3.06.02 TIPO DE CIMENTACIÓN

Por razones de diseño, construcción y economía y teniendo en cuenta que los suelos del lugar presentan en superficie un índice de densidad medio y en profundidad un índice de densidad compacto, se ha seleccionado para el análisis de la presión admisible, cimientos superficiales del tipo "zapatas de concreto armado" con geometría rectangular, el cual soportará una excentricidad no mayor a 1.00 metro en una sola dirección.

3.06.03 PROFUNDIDAD DE DESPLANTE

La profundidad de Desplante, para efectos de construcción de las zapatas de los estribos del puente se tendrá una profundidad de desplante de 5.00 metros medidos desde la superficie natural del terreno.

3.06.04 DETERMINACIÓN DE LA CARGA DE ROTURA AL CORTE Y FACTOR DE SEGURIDAD

<u>CALICATA Nº 01 (Margen Izquierda).-</u> Para determinar la carga de rotura al corte se tiene para el suelo, una densidad saturada de γ sat = 1.54 Kg/cm³.

Ecuación General de Capacidad de Apoyo:

 $q'u = qNqFqsFqdFqi + 0.5\gamma'B'N\gamma F\gamma sF\gamma dF\gamma i$

Donde:

q = Presión por sobrecarga efectiva al nivel del fondo de la cimentación (Kg/cm²).

 γ ' = Peso específico de la masa del suelo.

B' = Ancho efectivo de la cimentación.

 N_q , N_γ = Factores adimensionales de capacidad de carga.

Fqs, $F\gamma s = Factores de forma$.

Fqd, Fyd = Factores de profundidad (condición $Df/B \le 1$).

Fqi, Fyi = Factores de inclinación de la carga (i = 10°).

 $\gamma n = 1.54 \text{ Kg/cm} 3 \text{ Ø} = 17^a$

C = 0.04 Kg/cm2

Capacidad de carga neta admisible:

q adm (neta) = 1.90 kg/cm²

<u>CALICATA Nº 02.-</u> Para determinar la carga de rotura al corte se tiene para el suelo, una densidad saturada de $\gamma_{sat} = 1.98 \text{ Kg/m}^3$.

Ecuación General de Capacidad de Apoyo:

 $\label{eq:quantum_eq} q\text{`}u = qNqFqsFqdFqi + 0.5\gamma\text{'}B\text{'}N\gamma F\gamma sF\gamma dF\gamma i$

Donde:

q = Presión por sobrecarga efectiva al nivel del fondo de la cimentación (Kg/m²).

 γ' = Peso específico de la masa del suelo.

B' = Ancho efectivo de la cimentación.

 N_q , N_γ = Factores adimensionales de capacidad de carga.

 F_{QS} , $F_{\gamma S}$ = Factores de forma.

Fqd, $F_{\gamma}d$ = Factores de profundidad (condición $Df/B \le 1$).

Fqi, $F_{\gamma i}$ = Factores de inclinación de la carga (i = 10°).

 $\gamma n = 1.98 \text{ Kg/cm} 3 \text{ Ø} = 17^{\text{a}}$

C = 0.30 Kg/cm2

Capacidad de carga neta admisible:

q adm (neta) = 3.80 kg/cm²

3.06.05 CÁLCULO DEL ASENTAMIENTO

CALICATA Nº 01.-

 $S_i = q_S.B. (1 - u^2).I_W/E_S$

Donde:

 S_i = Asentamiento total inmediato (cm).

 $q_S = Esfuerzo$ neto transmitido = 1.90 Kg/cm 2 B = Ancho de

la cimentación

U = Relación de Poisson = 0.30

 $E_S = \mbox{M\'odulo de elasticidad} = 1,000 \mbox{ Kg/cm2 I_W = factor de} \label{eq:elasticidad}$ influencia (m/m)

Por tanto el asentamiento real de la zapata es:

Si = 0.16 cm

CALICATA Nº 02.-

Donde:

$$S_i = q_s.B. \ (1 - u^2).I_W/E_s$$

 S_i = Asentamiento total inmediato (cm).

 $q_S = Esfuerzo$ neto transmitido = 3.80 Kg/cm 2 B = Ancho de la cimentación

U = Relación de Poisson = 0.30

 $E_S = M\'odulo de elasticidad = 1000 \ Kg/cm^2 \ I_W = factor de influencia (m/m)$

Por tanto el asentamiento real de la zapata es: Si = 0.32 cm

3.07 EFECTOS DEL SISMO

Para la zona en estudio, tenemos los siguientes valores que representan la zonificación sísmica y las condiciones locales:

Tabla 11 *Efectos de sismo*

Factores		Valores
Zona 2	Z(g)	0.30
Suelo	S3	1.20
Periodo	Ts	0.60

4.01 CONCLUSIONES

- El presente Informe Técnico de Cimentaciones es de carácter "Académico" y las recomendaciones vertidas son suficientes para el desarrollo de la Tesis del proyecto "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO CUÑUMBUQUI LAMAS SAN MARTÍN 2014".
- Los suelos del lugar son aptos para la planificación y construcción del puente colgante Vehicular.
- La zona de Informe presenta el siguiente régimen de precipitación:

Precipitación alta: De enero a marzo.

Precipitación media: De abril a mayo y de septiembre a diciembre. Precipitación baja: De junio a agosto pero con altas temperaturas.

Se deberá tener en consideración este régimen para la correcta planificación del proceso constructivo del puente.

- Dado a la deformación tectónica que hasta la fecha experimenta el lugar del proyecto, se afirma que la zona y alrededores del mismo es de baja intensidad sísmica.
- Se realizó dos (02) calicatas, una en el margen derecho (calicata 02, dos muestras) y otro en el margen izquierdo (Calicata 01); del río Mayo, ya en el pozo de observación e investigación del subsuelo, se identificó, midió y describió los distintos tipos de suelos hallados, desarrollándose en cada una de ellas pruebas manuales y pruebas para obtener su densidad natural en estado húmedo. De las calicatas se obtuvieron, por cada tipo de suelo hallado, muestras en estado alterado para ser sometidos a pruebas básicas, se extrajeron muestras por debajo de 0.20 metros de profundidad respecto al nivel superior de cada calicata mencionada, muestras inalteradas tipo bloque (MIB) para ser sometidas a pruebas especiales en laboratorio.
- Los suelos encontrados en la calicata 01 (MI), es una Arena Arcillosa de color marrón claro medianamente compacta; en la calicata 02 (MD), en la muestra 01, es una Arena Arcillosa de color marrón claro medianamente compacta; en la muestra 02, es una Grava

- Limosa muy compacta color marrón claro con bolonería tamaño máximo 4" en un 20% aproximadamente.
- La profundidad de desplante considerada para la zapata estará como mínimo 5.00 metros por debajo del tirante de socavación máximo ya sea del total o del local (el más crítico) registrado en la zona del ponteadero.
- El asentamiento a considerarse en los estribos del puente no involucra mayores exigencias dado a que la superestructura estará simplemente apoyada.
- Para determinar la carga de rotura al corte por falla local se tuvo en cuenta una densidad saturada de γ_{Sat} = 1.54 Kg/cm³ para la calicata N^a 01, con una cohesión de c = 0.04 Kg/cm² (ARENA ARCILLOSA SC) y para la calicata N^o 02 Ysat =1.98 Kg/cm³, con una cohesión de c = 0.30 Kg/cm² (GRAVA ARENOSA GP)
- Asimismo, el parámetro geotécnico de resistencia "Ø" fue adquirido con el ensayo de corte directo de la muestra para la calicata N° 01 de 25ª, el ensayo de corte directo de la muestra remoldeada para la calicata N° 02 es de 26ª.
- Estos valores del ensayo de corte residual de la matriz conformante de la zona y que en una relación realizadas cumple con lo asumido en cuando al grado de compacidad y consistencia.

4.02 RECOMENDACIONES

- Para el diseño del Puente considerar los efectos de sismo con los siguientes valores:

$$Z(g) = 0.30 \text{ (zona 2) } S2 = 1.20 \text{ (Factor suelo)}$$

 $T_S = 0.60$ (Periodo de vibración)

- Diseñar las zapatas y cámaras de anclaje con una capacidad portante del suelo de:

Calicata
$$N^{\circ}$$
 01 = q adm (neta) = 1.90 kg/cm²

Calicata
$$N^{\circ}$$
 02 = q adm (neta) = 3.80 kg/cm²

Estos valores deberá ser verificado en obra bajo la profundidad de desplante de las zapatas de los estribos (5.00 metros).

- Tener en consideración para la construcción del puente la precipitación pluvial que se registra en el lugar y alrededores.
- En la fase constructiva y al lograrse la profundidad de desplante especificado en la presente Tesis, se recomienda la verificación de la calidad de suelo de cimentación según el perfil de suelo definido en el presente estudio.
- Para los efectos constructivos se deberá colocar elementos para sostener los taludes de las excavaciones y encofrados para alcanzar las formas deseadas al momento de colocar el concreto fresco.
- Finalmente podemos concluir, que para el diseño de la cimentación del proyecto "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO, CUÑUMBUQUI, LAMAS SAN MARTÍN 2014", se deberá realizar una verificación Insitu, teniendo en cuenta las recomendaciones antes descrita, dada la importancia del proyecto, de tal manera, que se asegure mayor estabilidad y durabilidad de la estructura a Diseñar.

- ALVA, J.E.; "Cimentaciones superficiales". Curso de actualización. Universidad Nacional de San Martín, Facultad de Ingeniería Civil. Tarapoto Perú (2,004).
- ALVA J.E.; "Dinámica de suelos". Universidad Nacional de Ingeniería,
- Facultad de Ingeniería Civil, Sección de Postgrado. Lima Perú (2,002).
- ARCE, I.; "San Martín: Desastres Naturales y Lineamientos de Planeamiento". Tesis de Grado para optar el Título de Ingeniero Civil. Universidad Nacional de San Martín, Facultad de Ingeniería Civil. Tarapoto Pertú (1,993)
- CRESPO, C.; "Mecánica de suelos y cimentaciones". Editorial Limusa, sexta reimpresión de la cuarta edición. México (1,998).
- CUBAS, F.; "Puente Belén. Estudio de Geología y Geotecnia". Informede Ingeniería. Tarapoto Perú (2,001).
- DELGADO, M.; "Ingeniería de cimentaciones. Fundamento e introducción al análisis geotécnico". Alfaomega Grupo Editorial S.A.; segunda edición. Colombia (1,999).
- Instituto Geológico, Minero y Metalúrgico; "Geología de los cuadrángulos de Tocache y Uchiza". Boletín Nº 126, Serie A: Carta Geológica Nacional. Lima Perú (1,998).
- JUÁREZ Rico; "Mecánica de suelos. Tomo 2. Teoría y aplicaciones de la Mecánica de Suelos". Editorial Limusa, decimonovena reimpresión. México (2,000).
- MARTÍNEZ Vargas, J.A.; "Geotecnia para ingenieros Principios básicos. Volumen 1". Concytec. Lima Perú (1,990).
- MARTÍNEZ, J.A.; "Geotecnia para ingenieros Mecánica de Suelos. Volumen 2". Universidad de San Martín de Porres, Facultad de Ingeniería. Lima PerÚ (1,991).

ANEXO I : FOTOGRAFÍAS

ANEXO II : ENSAYOS DE CAMPO Y LABORATORIO

PANEL FOTOGRÁFICO

PROYECTO:

"DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN – 2014"

CALICATA Nº 01

Se observa vista panorámica de la ubicación y excavación de la calicata N° 01, suelo Arena arcillosa color marrón claro medianamente compacto.

CALICATA Nº 01

Se observa un suelo arena arcilloso color negro con mezcla de material en descomposición y raíces, suelo con olor característico hasta los 0.20 metros seguido de una mezcla de suelo color marrón, suelo contaminado. Seguido un suelo arena arcilloso color marrón medianamente compacto.

CALICATA Nº 02

Se observa vista panorámica de la ubicación y excavación de la calicata N° 02, suelo arena arcillosa color marrón claro medianamente compacto.

CALICATA Nº 02

Se observa un suelo arena arcilloso color negro con mezcla de material en descomposición y raíces, suelo con olor característico hasta los 0.20 metros seguido de una mezcla de suelo color marrón, suelo contaminado. Seguido un suelo arena arcilloso de consistencia muy compacto y El suelo es una grava limosa de consistencia muy compacta color marrón claro con botonería tamaño máximo 4" en un 20% aproximadamente.

ENSAYO DE CORTE DIRECTO EN LABORATORIO

Se observa vista panorámica de sacado de muestra para ensayo de corte directo.

ENSAYO DE CORTE DIRECTO EN LABORATORIO

Se observa al tesista Andrey realizando las anotaciones de los resultados del corte directo.

ENSAYO DE LÍMITE LÍQUIDO Y PLÁSTICO EN LABORATORIO

Se observa al tesista Andrey realización el ensayo de límite líquido.

ENSAYO DE CLASIFICACIÓN DE SUELOS EN LABORATORIO

Se observa al tesista Andrey realizando el ensayo de clasificación de los suelos

CALICATA C-01: MARGEN IZQUIERDA

Solo para los que quieren salir adelante LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

lmsucv@gmail.com TARAPOTO - PERU

Proyecto: Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad sobre el rio Mayo, Localidad de San Francisco Localización del Proyecto: Descripción del Suelo: Distrito de Cuñumbuqui - Provincia de Lamas - Región San Martín Kilometraje: Kilometraje:
Profundidad de la Muestra: 0.20-4.50 m SUELO ARENA ARCILLOSA Hecho Por: TESISTA ANDREY DELAGUILA PEREA Calicata: C - 01 Fecha: 03/11/2014

> Determinación del % de Humedad Natural ASTM 2216

LATA	15	34	36	
PESO DE LATA grs	95.10	94.38	98.13	
PESO DEL SUELO HUMEDO + LATA grs	587.00	502.00	437.00	
PESO DEL SUELO SECO + LATA grs	565.00	484.00	421.00	
PESO DEL AGUA grs	22.00	18.00	16.00	
PESO DEL SUELO SECO grs	469.90	389.62	322.87	
% DE HUMEDAD	4.68	4.62	4.96	
PROMEDIO % DE HUMEDAD		4.75		

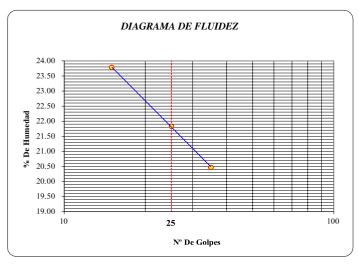
ASTM D-854 Determinación de la Gravedad Específico de Solidos OL. DEL FRASCO A 20° C. METODO DE REMOCION DEL AIREA PESO DEL FRASCO+AGUA+SUELO ΓEMPERATURA, °C PESO DEL FRASCO+AGUA grs PLATO EVAPORADO Nº ESO DEL PLATO EVAP+SUELO SECO grs PESO DEL SUELO SECO grs VOLUMEN DE SOLIDOS cm3 GRAVEDAD ESPECIFICA PROMEDIO

Determinación del Peso Volumétrico ASTM D-2937 PESO DE MOLDE grs
PESO DEL SUELO + MOLDE grs
PESO DEL SUELO SECO Kgrs
VOLUMEN DEL MOLDE cm3 PESO UNITARIO grs/m3
PROMEDIO grs/m3

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS


CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI


TARAPOTO - PERU

Proyecto: Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad sobre el rio Mayo, Localidad de San Francisco Kilometraje: Localización del Provecto: Distrito de Cuñumbuqui - Provincia de Lamas - Región San Martín SUELO ARENA ARCILLOSA Descripción del Suelo: Profundidad de la Muestra: 0.20-4.50 m

Hecho Por: TESISTA ANDREY DEL AGUILA PEREA C - 01 Fecha: 03/11/2014 Calicata:

Determinación del Límite Líquido ASTM D-4318 LATA PESO DE LATA grs 60.13 60.70 PESO DEL SUELO HUMEDO + LATA grs PESO DEL SUELO SECO + LATA grs 54.60 55.50 PESO DEL AGUA grs

Indice de Flujo Fi	-
Límite de contracción (%)	ND
Límite Líquido (%)	21.83
Límite Plástico (%)	13.07
Índice de Plasticidad Ip (%)	8.76
Clasificación SUCS	SC
Clasificación AASHTO	A-2-4 (0)
Indice de consistencia Ic	-

Determinación del Límite Plástico **ASTM D-4318**

LATA	4	5	6
PESO DE LATA grs	30.56	30.75	31.21
PESO DEL SUELO HUMEDO + LATA grs	60.79	60.70	60.63
PESO DEL SUELO SECO + LATA grs	57.40	57.41	56.96
PESO DEL AGUA grs	3.39	3.29	3.67
PESO DEL SUELO SECO grs	26.84	26.66	25.75
% DE HUMEDAD	12.63	12.34	14.25
% PROMEDIO	13.0)7	

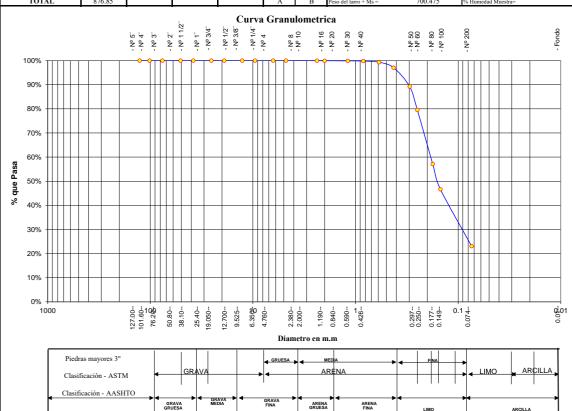
LIMITE DE CONTRACCION ASTM D-427	
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Límite de Contracción %	
Relación de Contracción	

Solo para los que quieren salir adelante

LABORATORIO DE MECANICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI | Imsucv@gmail.com TARAPOTO - PERU

Projectic Diseño Estrutural de Puente Colgante Vehicular, Mejorando la Transitabilidad sobre el rio Mayo, Localidad de San Francisco


Localización del Proyetto Distrito de Cuñumbuqui-Provincia de Lamas - Región San Martín Kilometraje:

Descripción del Suelo: SUELO AREÑA ARCILLOSA Profundidad de la Muestra: 0.20-4.50 m Calicata: C-01

Hecho Por : TESISTA ANDREY DEL AGUILA PEREA Fecha: 03/11/2014

ANALISIS GRANULOMETRICO POR TAMIZADO ASTM D - 422

Tam	ices	Peso	% Retenido	% Retenido	% Que	Especific	cacionae	Tamaño	Máximo:				
Ø	(mm)	Retenido	Parcial	Acumulado	Pasa	Lapcein	caciones	Modulo	de Fineza Al	F:	_		
5"	127.00							Modulo	de Fineza AC	G:	-		
4"	101.60							Equival	ente de Arena	a:	-		
3"	76.20							Descrip	ción Muestra	:			
2"	50.80							Grupo s	uelos particula	as gruesas	Sub-Grupo	: Arenas	SC A-2-4(0) Arcilla
1 1/2"	38.10							1	ine	organica con matriz de	e arcilla color ana	ranjado con cl	lasificación 4/8
1"	25.40							S	UCS =	SC	AASHTO =		A-2-4 (0)
3/4"	19.050							LL	=	21.83	WT	=	142.00
1/2"	12.700							LP	=	13.07	WT+SAL	=	700.48
3/8"	9.525							IP	=	8.76	WSAL	=	558.48
1/4"	6.350							IG	=	0	WT+SDL	=	253.18
Nº 4	4.760	0.00	0.00%		100.00%						WSDL	=	111.18
Nº 8	2.380	0.34	0.06%	0.06%	99.94%			D	90=		%ARC.	=	23.09
Nº 10	2.000	0.07	0.01%	0.07%	99.93%			D	60=		%ERR.	=	0.00
Nº 16	1.190	0.33	0.06%	0.13%	99.87%			D	30=		Cc	=	
N° 20	0.840	0.42	0.08%	0.21%	99.79%			D	10=		Cu	=	
N° 30	0.590	2.73	0.49%	0.70%	99.30%						Observa	ciones :	
N° 40	0.426	12.52	2.24%	2.94%	97.06%			El suelo	es arenoso arcil	lloso, de densidad medi	a		
N° 50	0.297	43.74	7.83%	10.77%	89.23%			de plastic	cidad baja, con	LL = 21.83%, con mat	riz arcillosa color	naranja	
Nº 60	0.250	54.12	9.69%	20.46%	79.54%			con % Fi	inos 23.09%			-	
N° 80	0.177	125.36	22.45%	42.91%	57.09%			Ĭ .		% de Hu	medad Natural d	le la muestra	ensayada
N° 100	0.149	58.27	10.43%	53.34%	46.66%			Número d	e tarro =	1	Peso del agua	=	26.525
N° 200	0.074	131.65	23.57%	76.91%	23.09%			Peso del ta	arro =	142	Peso suelo húmed	lo=	585
Fondo	0.01	447.30	80.09%	157.01%	0.00%			Peso del ta	arro + Mh =	727	Peso suelo seco	-	558.475
TO	ΓAL	876.85				A	В	Peso del ta	rro + Ms =	700.475	% Humedad Mues	tra=	4.75

N.M/FIC.SUEL

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO -DISTRITO CACATACHI

		-	RO DE EXCAVA							
jecuta :		~	ESCUELA DE INGENIE					Elaboro :	Tes AdAP	
royecto:		DISEÑO ESTRUCTURA	AL DE PUENTE COLO MAYO	SANTE VEH	HCULAR	SOBRE	EL RIO	Reviso:	Ing. N.Z.G.C	
		LOCALIDAD DE SAN FRANCISCO-CUÑUMBUQUI-LAMAS - SAN MARTIN - 2014 LOCALIDAD DE SAN FRANCISCO-CUÑUMBUQUI-LAMAS - SAN MARTIN - 2014						Kilometraje:	0)
bicación								Fecha:	03/11/2014	
bicación		LOCALIDAD DE SAN FRAI				11IN - 20.	14	recna:	03/11/2014	1
alicata N°	C 01	COORDENADAS UTM E: 0342941.805 S: 9272953.139					1			
ancata IV	C - U1	Nivel freático = N.P. Prof. Exc. 4.75 (m) Cota As. 217.26 (msnm)			ESPESOR	HUMEDAD	Foto			
Cota As.	<u> </u>	TVIVEI HEALICO = TV.I .	1101. EAC. 4.73	(111)	CLASIFI		11111)			roto
(m)	Estrato	Descripción del Estrato de suelo			AASHTO	SUCS	SÍMBOLO	(m)	(%)	Manual Control
17.26					ААЗПІО	SUCS	SIMBOLO	(111)	(70)	4
.7.20							MA MANA			100 h
		Suelo arena arcilloso color negro	oon mazala da matarial an				MAINA			
		descomposición y raíces, suelo con					Mariall			
	I				A-8	CL-Pt		0.20	-	
		0.20 metros seguido de una mezclo contaminado.	i de sueio coior marron, suei	o			L. Mo ha			
		сопштишо.								
17.06							Addition			
17.06										
										18 69
										25
										West 1
										1 18
		El suelo es una arena arcillosa co	lor marrón de consistencia m	edianamente						92 B
		compacto, con finos de 23.09%,								THE REAL
		de plasticidad mediana con LL = 2	21.83%, color narania, con							938
		resistencia al corte regular, no pro								146
		porcentaje de arena del 76.91% d								1327
		porcemaje de drend dei 70.5170 d	er total de la maestra							BREEN
	II				A-2-4(0)	SC		4.55	4.75	
	•									RAMBIS.
										MATE IN
										RINGS !
										Part !
	ł									
	ł						. /	1		No.
	ł						\ \			
	l					/	/ \			1
	Į.						1			No.
12.51								I		

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO -DISTRITO CACATACHI

Imsucv@gmail.com

MORALES - PERÚ

CAPACIDAD ADMISIBLE DE SUELOS

PROYECTO :Diseño Estructural de Puente Colgante Vehicular

sobre el Rio Mayo

UBICACIÓN : Localidad de San Francisco - Dist. Cuñumbuqui

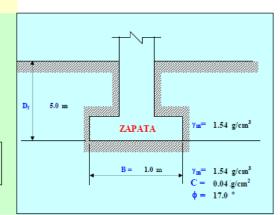
Prov. Lamas - Reg. San Martín

ARCHIVO N° REALIZADO

: SF-San Francisco : Andrey del Aguila Perea

REVISADO FECHA

: 03 de Nov. del 2014


MARGEN

POR RESISTENCIA

Cimentación Cuadrada

Cohesión $0.04~\mathrm{Kg/cm^2}$ Angulo de fricción 17.0° 1.54 g/cm³ Peso unitario del suelo sobre el nivel de fundación Peso unitario del suelo bajo el nivel de fundación Ancho de la cimentación 1.0 m 1.0 m Largo de la cimentación Profundidad de la cimentación $\mathbf{D_f}$ 5.0 m Factor de seguridad FS 3.0

 $\frac{1}{2} \gamma BS_{\gamma} N_{\gamma \gamma}$ Capacidad última de carga 5.6 Kg/cm² Capacidad admisible de carga 1.9 Kg/cm²

POR ASENTAMIENTO (S_i)

Cimentación Cuadrada

Presión por carga admisible 1.9 Kg/cm² 0.3 Relación de Poisson Módulo de Elasticidad 1000 Kg/cm² 2.5 cm Asentamiento permisible Ancho de la cimentación 1.0 m Factor de forma $I_{\rm f}$ 0.93 m/m Asentamiento $S_i = 0.002 \text{ m}$ Asentamiento 0.16 cm Presión por carga 1.9 Kg/cm² Presión de carga asumida por asentamiento 1.9 Kg/cm²

= **0.16** cm OK! = **0.16** cm OK!

Solo para los que quieren salir adelante

LABORATORIO DE MECANICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

lmsucv@gmail.com

TARAPOTO - PERU

ENSAYO DE CORTE DIRECTO

ASTM D3080

INFORME : LMS 2014 DESCRIPCION DEL SUELO: ARENOSO ARCILLOSO PROYECTO : DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD SOBRE EL RIO MAYO

LOCALIDAD DE SAN FRANCISCO, DISTRITO CUÑUMBUQUI, PROVINCIA LAMAS, REGION SAN MARTIN - 2014

SOLICITANTE : TESISTA ANDREY DEL AGUILA PEREA CERTIFICADO UCV
004-2014-05 UBICACIÓN : DISTRITO DE CUÑUMBUQUI DISPOSITIVO UTILIZADO : ELECTRONICO

Sondaje : CALICATA N° 01 Profundidad : 0.20 - 4.50 m. Velocidad : 0.5 mm/min Muestra : II Estado : INALTERADO Clasificación SUCS: SC

ESPECIMEN 1 ESPECIMEN 2 ESPECIMEN 3

20.00 mm Altura: 20.00 mm 20.00 mm Altura: Altura: 60.00 mm Lado: 60.00 mm Lado: 60.00 mm Lado: D. Seca: 1.23 gr/cm³ D. Seca: 1.18 gr/cm³ D. Seca: 1.22 gr/cm³ Humedad: 25.54 % Humedad: 28.21 % Humedad: 27.01 % 1.11 kg/cm² 1.67 kg/cm² Esf. Normal: Esf. Normal: Esf. Normal : 2.22 kg/cm² Esf. Corte: 0.56 kg/cm² Esf. Corte: 0.82 kg/cm² Esf. Corte: 1.09 kg/cm²

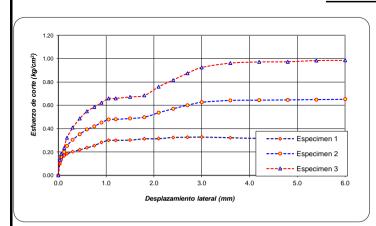
Desp. lateral (mm)	Esfuerzo de Corte (kg/cm²)	Esfuerzo Norma- lizado (τ/σ)
0.00	0.00	0.00
0.03	0.08	0.07
0.06	0.11	0.09
0.12	0.13	0.12
0.18	0.16	0.14
0.30	0.19	0.17
0.45	0.22	0.20
0.60	0.25	0.22
0.75	0.27	0.24
0.90	0.30	0.26
1.05	0.33	0.29
1.20	0.35	0.31
1.50	0.38	0.33
1.80	0.40	0.35
2.10	0.42	0.37
2.40	0.44	0.38
2.70	0.46	0.40
3.00	0.48	0.41
3.60	0.51	0.43
4.20	0.55	0.46
4.80	0.56	0.47
5.40	0.56	0.46
6.00	0.56	0.45

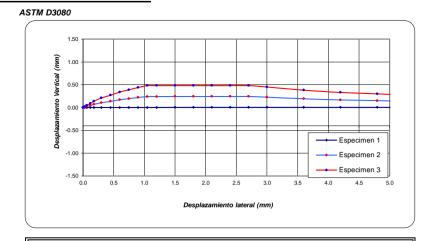
Desp. lateral (mm)	Esfuerzo de Corte (kg/cm²)	Esfuerzo Norma- lizado (τ/σ)
0.00	0.00	0.00
0.03	0.09	0.05
0.06	0.11	0.07
0.12	0.14	0.08
0.18	0.16	0.10
0.30	0.19	0.11
0.45	0.24	0.15
0.60	0.30	0.18
0.75	0.36	0.21
0.90	0.42	0.25
1.05	0.49	0.29
1.20	0.55	0.32
1.50	0.57	0.34
1.80	0.63	0.37
2.10	0.68	0.39
2.40	0.70	0.40
2.70	0.72	0.41
3.00	0.74	0.42
3.60	0.77	0.44
4.20	0.80	0.45
4.80	0.82	0.45
5.40	0.82	0.45
6.00	0.82	0.44

Desp. lateral (mm)	Esfuerzo de Corte (kg/cm²)	Esfuerzo Norma- lizado (τ/σ)
0.00	0.00	0.00
0.03	0.09	0.04
0.06	0.11	0.05
0.12	0.14	0.06
0.18	0.17	0.07
0.30	0.19	0.09
0.45	0.27	0.12
0.60	0.36	0.16
0.75	0.45	0.20
0.90	0.53	0.24
1.05	0.65	0.29
1.20	0.75	0.33
1.50	0.77	0.34
1.80	0.86	0.38
2.10	0.94	0.41
2.40	0.95	0.41
2.70	0.97	0.42
3.00	1.00	0.43
3.60	1.03	0.44
4.20	1.05	0.44
4.80	1.08	0.45
5.40	1.08	0.44
6.00	1.08	0.44

OBSERVACIONES:

La muestra ha sido extraida de acuerdo a normas vigentes y establecidas en nuestro país, homologadas con normas internacionales


Solo para los que quieren salir adelante


LABORATORIO DE MECANICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

lmsucv@gmail.com TARAPOTO - PERU

ENSAYO DE CORTE DIRECTO RESIDUAL

ENSAYO DE CORTE						
	DIRECTOAST	M D3080				
PROYECTO:	LMS 2014					
SOLICITANTE :	DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR					
	MEJORANDO LA TRANSITABILIDAD SOBRE EL RIO MAYO					
	LOCALIDAD DE SAN F	RANCISCO, DISTRIT	TO CUÑUMBUQUI			
	PROVINCIA LAMAS, R	REGION SAN MARTIN	- 2014			
UBICACIÓN :	TESISTA ANDREY	DEL AGUILA PERE	EA .			
FECHA:	DISTRITO DE CU	ÑUMBUQUI				
Sondaje: C-01		Profundidad :	0.40-1.50 m.			
Muestra: CALICATA N° 01	1 Estado: INALTERADO					
N° ANILLO 1 2 3						
Esfuerzo Normal	1.11	1.67	2.22			
Esfuerzo de corte	0.56	0.82	1.09			

Resultados:				
Cohesión (c):	0.04 kg/cm2			
Ang. Fricción (φ):	25 °			

CALICATA C-02: MUESTRA I

Solo para los que quieren salir adelante LABORATORIO DE MECANICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

TARAPOTO - PERÚ

Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad sobre el rio Mayo, Localidad de San Francisco yecto: Distrito de Cuñumbuqui - Provincia de Lamas - Región San Martín Kilometraje: Proyecto: <u>Diser</u>
Localización del Proyecto:

Profundidad de la Muestra: Descripción del Suelo: SUELO ARENA LIMOSA 0.10-1.60 m

Hecho Por: TESISTA ANDREY DEL AGUILA PEREA 03/11/2014 Calicata: C - 02 (M-1) Fecha:

Determinación del % de Humedad Natural ASTM 2216

LATA	15	34	36		
PESO DE LATA grs	96.00	105.00	101.00		
PESO DEL SUELO HUMEDO + LATA grs	511.00	432.00	439.00		
PESO DEL SUELO SECO + LATA grs	480.00	410.00	417.00		
PESO DEL AGUA grs	31.00	22.00	22.00		
PESO DEL SUELO SECO grs	384.00	305.00	316.00		
% DE HUMEDAD	8.07	7.21	6.96		
PROMEDIO % DE HUMEDAD	7.42				

Determinación de la Gravedad Específico de Solidos ASTM D-854

LATA	1	2
VOL. DEL FRASCO A 20° C.		
METODO DE REMOCION DEL Aire		
PESO DEL FRASCO+AGUA+SUELO		
TEMPERATURA, °C		
PESO DEL FRASCO+AGUA grs		
PLATO EVAPORADO Nº		
PESO DEL PLATO EVAP+SUELO SECO grs		
PESO DEL SUELO SECO grs		
VOLUMEN DE SOLIDOS cm3		
GRAVEDAD ESPECIFICA		
PROMEDIO		

Determinación del Peso Volumétrico ASTM D-2937

LATA	1	2	3	4
PESO DE MOLDE grs				
PESO DEL SUELO + MOLDE grs				
PESO DEL SUELO SECO Kgrs				
VOLUMEN DEL MOLDE cm3				
PESO UNITARIO grs/m3				
PROMEDIO grs/m3				

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO -DISTRITO CACATACHI

REGISTRO DE EXCAVACIÓN ESCUELA DE INGENIERÍA CIVIL Tes AdAP Ejecuta : Flahoro Ing. N.Z.G.C. DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR SOBRE EL RIO Proyecto: MAYO LOCALIDAD DE SAN FRANCISCO-CUÑUMBUQUI-LAMAS - SAN MARTIN - 2014 03/11/2014 Ubicación LOCALIDAD DE SAN FRANCISCO-CUÑUMBUQUI-LAMAS - SAN MARTIN - 2014 Fecha: 0342877.058 COORDENADAS UTM Calicata N° - 02 (M-9272894.594 ESPESOR HUMEDAD Nivel freático = N.P. Prof. Ex. 1.70 (m) Cota As. 215.63 (msnm) Foto CLASIFICACIÓN Cota As. Descripción del Estrato de suelo AASHTO (%) (m) SUCS (m) Suelo arena arcilloso color negro con mezcla de material en descomposición y raíces, suelo con olor característica hasta los CL-Pt 0.10 metros seguido de una mezcla de suelo color Marrón claro, suelo contaminado, 215.53 El suelo es una arena limosa de densidad media con 64.02 % de finos A-4(3) ML 1.60 7.42

OBSERVACIONES: Del registro de excavación que se muestra, ha sido realizado con datos adjuntados por el solicitante.

CALICATA C-02: MUESTRA II

UNIVERSIDAD CÉSAR VALLEJO Solo para los que quieren salir adelante LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

lmsucv@gmail.com TARAPOTO - PERU

Proyecto: <u>Disc</u>	seño Estru	ctural de Puente Colgante Vehicular, Mejorando la Transitabili	<u>dad sobre el rio Mayo</u>	, Localidad de San Francisco	
ocalización del Proyecto: Descripción del	l Suelo:	Distrito de Cuñumbuqui - Provincia de Lamas - Región San Martín		Kilometraje:	
		SUELO GRAVA LIMOSO		Profundidad de la Muestra:	1.70-4.50 m
Hecho Por: TESISTA ANDREY DELAGU	JILA PERE	A	Calicata:	C - 02 (M-2) Fecha:	03/11/2014

Determinación del % de Humedad Natural

ASTM 2216 LATA 102.00 821.00 102.00 874.00 PESO DEL SUELO HUMEDO + LATA grs 766.00 PESO DEL SUELO SECO + LATA grs 748.00 804.00 853.00 PESO DEL SUELO SECO grs % DE HUMEDAD
PROMEDIO % DE HUMEDAD

Determinación de la Gravedad Específico de Solidos **ASTM D-854**

1	2

Determinación del Peso Volumétrico

Peso Volumétrico	ASTM D-2937			
LATA	1	2	3	4
PESO DE MOLDE grs				
PESO DEL SUELO + MOLDE grs				
PESO DEL SUELO SECO Kgrs				
VOLUMEN DEL MOLDE cm3				
PESO UNITARIO grs/m3				
PROMEDIO grs/m3		•	•	•

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

lmsucv@gmail.com TARAPOTO - PERU

Proyecto: Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad sobre el rio Mayo, Localidad de San Francisco

Localización del Proyecto: <u>Distrito de Cuñumbuqui - Provincia de Lamas - Región San Martín</u>
A LIMOSO Profundidad de la Muestra: Kilometraje: 1.70-4.50 m Calicata: Descripción del Suelo: SUELO GRAVA LIMOSO C - 02 (M-2) 03/11/2014 Hecho Por: TESISTA ANDREY DEL AGUILA PEREA Fecha: ANALISIS GRANULOMETRICO POR TAMIZADO ASTM D - 422 Tamices o Máximo: Retenido % R % Qua Temai Módulo de Fineza AF: 127.00 Módulo de Fineza AG: 4" 101.60 Equivalente de Arena: 0.00% 100.00 Descripción Muestra: 76.20 0.00 50.80 0.00% 0.00% 100.00 Grupo suelos particulas gruesas crupo: Arenas a inorganica con matriz de arcilla color anaranjado con clasificación 4/8 GP A-1-a(0) 1 1/2" 38.10 80% SUCS = GP AASHTO = A-1-a(0) 272.90 782.00 16.06% 20.26% 3/4" 1/2" 3/8" 0.00 19.050 331.00 6.80% 10.64% 27.06% 37.69% 43.88% WT+SAL 12.700 9.525 0.00 5141.90 4869.00 518.00 62.31% WSAL 6.18% 301.00 56.12% IΡ 43.88% 55.73% 55.79% 56.12% 1/4" Nº 4 6.350 4.760 0.00 577.00 0.00% 0 WT+SDL 384.08 Nº 8 2.380 3.00 0.06% 44.219 Nº 10 Nº 16 Nº 20 2 000 0.02% 55.81% 60-%ERR 0 00 44.199 44.179 1.190 0.02% 55.83% 1.00 30= Cc 0.840 39 0.01% 55 84% 44.16% 10= Cu 0.590 55.84% N° 30 0.08 0.00% 44.16% N° 40 N° 50 N° 60 55.84% 55.84% 55.85% 0.426 0.00% consistencia dura con finos de 61.16% 0.297 0.20 0.00% plasticidad mediana, con LL = 31.01% con matriz arcillosa color anaranjado con resistencia al corte regular, no presenta nivel freático, con porcentaje de arena del 38.84% del total de la muestra 44.16% 0.250 15 0.00% te reguiar, no presenta nivel freatico, con porcentaje de a <mark>% de Humedad Natural de la muestra ensayada</mark> 0.01% Peso del agua Peso suelo húmedo= N° 100 0.149 0.009 Nº 200 0.074 0.02% 272.9 5000 4869 Fondo 0.01 4757.82 97.72% 153.59% 0.00% Peso del tarro + Mh = 5272.9 eso suelo seco TOTAL 7478.25 В 5141.9 Curva Granulométrica 3/8" 00 01 02 .50 .30 09. 100% dne 10% 1000 100 0.01 Diámetro en m. m GRAVA ARCILL ENIMO Clasificación - ASTM

Clasificación - AASHTO

GRAVA FINA GRAVA MEDIA ARENA GRUESA ARENA GRUESA ARENA GRUESA HENA GRUESA LIMO FINA ARCILL

R.N.M/FIC.SUELOS

UNIVERSIDAD CÉSAR VALLEJO Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

ARIO -DISTRITO CACATACHI

MORALES - PERÚ

					ź						
jecuta :		ESCUELA DE INGENIERÍA CIVIL			Elaboro:	Tes AdAP					
royecto:		DISEÑO ESTRUCTURA	L DE PUEN	TE COLGA MAYO	NTE VEF	HCULAR	SOBRI	E EL RIO	Reviso :	Ing. N.Z.G.C	
		LOCALIDAD DE SAN FRA	ANCISCO-C		DIII-I AM	AS - SAN	MART	IN - 2014	Kilometraje:	0	,
bicación		LOCALIDAD DE SAN FRAN							Fecha:	03/11/2014	
		ì			0342877.05						T
alicata N° - (02 (M-	COORDENADAS UTM			9272894.59						
		Nivel freático = N.P.	Prof. Exc.	2.80	(m)	Cota As. 2	215.63 (n	isnm)	ESPESOR	HUMEDAD	Foto
Cota As.						CLASIFI	CACIÓN	I	1		
(m)	Estrato	Descripción del Estrato de suelo				AASHTO	SUCS	SÍMBOLO	(m)	(%)	
	I	El suelo es una grava limosa de coi compacta color marrón claro con b máximo 4" en un 20% aproximadai no presenta nivel freático, con porci ninguna plasticidad (NP), de arena de grava el 55.73% del total de la n	olonería tamaño mente entaje de finos o del 0.15% y			A-1-a(0)	GP		2.80	<u>2.69</u>	
								W			

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO -DISTRITO CACATACHI

lmsucv@gmail.com

MORALES - PERÚ

CAPACIDAD ADMISIBLE DE SUELOS

PROYECTO :Diseño Estructural de Puente Colgante Vehicular

sobre el Rio Mayo

UBICACIÓN : Localidad de San Francisco - Dist. Cuñumbuqui

Prov. Lamas - Reg. San Martín

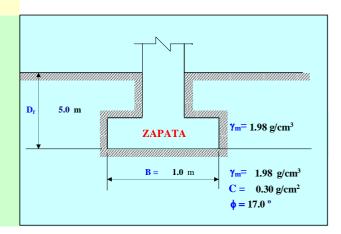
ARCHIVO N° REALIZADO

FECHA

: SF-San Francisco

: Andrey del Aguila Perea

REVISADO


: 03 de Nov. del 2014

MARGEN DERECHO

POR RESISTENCIA

Cimentación Cuadrada

Cohesión $C = 0.30 \text{ Kg/cm}^2$ Angulo de fricción φ = 17.0 ° Peso unitario del suelo sobre el nivel de fundación $\gamma_m = 1.98 \text{ g/cm}^3 \text{ Peso}$ unitario del suelo bajo el nivel de fundación $\gamma_m = 1.98$ g/cm³ Ancho de la cimentación B = 1.0 mLargo de la cimentación L =1.0 m Profundidad de la cimentación 5.0 m Factor de seguridad **FS** = 3.0

POR ASENTAMIENTO (S_i)

Cimentación Cuadrada

Presión por carga admisible	$q_{adm} = 3.8 \text{ Kg/cm}^2$
Relación de Poisson	$\mu = 0.3$
Módulo de Elasticidad	$\mathbf{E_s} = 1000 \mathrm{Kg/cm^2}$
Asentamiento permisible	$S_{i \text{ (max)}} = 2.5 \text{ cm}$
Ancho de la cimentación	$\mathbf{B} = \overline{1.0}\mathbf{m}$
Factor de forma	$I_f = 0.93 \text{ m/m}$
Asentamiento	$S_i = 0.003 \text{ m}$
Asentamiento	$S_i = 0.32 \text{ cm}$
Presión por carga	$q_{adm} = 3.8 \text{ Kg/cm}^2$
Presión de carga asumida por asentamiento	$\mathbf{q_{adm}} = 3.8 \mathbf{Kg/cm^2}$

$$S_i = 0.32 \text{ cm}$$

 $S_i = 0.32 \text{ cm}$

OK

OK

Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI

lmsucv@gmail.com

TARAPOTO - PERU

ENSAYO DE CORTE DIRECTO

ASTM D3080

DESCRIPCION DEL SUELO: INFORME: GRAVOSO ARCILLOSO LMS 2014

EÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD SOBRE EL RIO MAYO LOCALIDAD DE SAN FRANCISCO,

TRITO CUÑUMBUQUI, PROVINCIA LAMAS, REGION SAN MARTIN - 2014

SOLICITANTE: TESISTA ANDREY DEL AGUILA PEREA

UBICACIÓN: DISTRITO DE CUÑUMBUQUI **CERTIFICADO** DISPOSITIVO UTILIZADO: UCV 004-2014-05 ELECTRONICO

Sondaje : CALICATA Nº 02 Profundidad: 1.60 - 4.50 m. Velocidad: 0.5 mm/min Muestra: II Estado: INALTERADO Clasificación SUCS:

> **ESPECIMEN 3 ESPECIMEN 1 ESPECIMEN 2**

20.00 mm 20.00 mm Altura: Altura: Lado: 60.00 mm Lado: 60.00 mm D. Seca: 1.92 gr/cm3 D. Seca: 1.98 gr/cm3 Humedad: Humedad: 0.74 % Esf. Normal: 0.56 kg/cm² Esf. Normal: 1.11 kg/cm² Esf. Corte:

0.36 kg/cm² Esf. Corte: 0.63 kg/cm²

Desp. lateral (mm)	Esfuerzo de Corte (kg/cm²)	Esfuerzo Norma- lizado (τ/σ)
0.00	0.00	0.00
0.03	0.10	0.17
0.06	0.12	0.22
0.12	0.16	0.28
0.18	0.17	0.31
0.30	0.19	0.34
0.45	0.21	0.38
0.60	0.24	0.42
0.75	0.26	0.47
0.90	0.28	0.50
1.05	0.30	0.53
1.20	0.31	0.55
1.50	0.30	0.53
1.80	0.31	0.55
2.10	0.31	0.55
2.40	0.32	0.56
2.70	0.33	0.56
3.00	0.36	0.61
3.60	0.36	0.61
4.20	0.34	0.58
4.80	0.35	0.58
5.40	0.34	0.56
6.00	0.35	0.56

Desp. lateral (mm)	Esfuerzo de Corte (kg/cm²)	Esfuerzo Norma- lizado (τ/σ)
0.00	0.00	0.00
0.03	0.11	0.09
0.06	0.14	0.13
0.12	0.18	0.16
0.18	0.23	0.21
0.30	0.28	0.25
0.45	0.33	0.29
0.60	0.38	0.34
0.75	0.41	0.37
0.90	0.43	0.38
1.05	0.47	0.41
1.20	0.48	0.42
1.50	0.50	0.44
1.80	0.52	0.46
2.10	0.55	0.48
2.40	0.60	0.52
2.70	0.60	0.52
3.00	0.62	0.53
3.60	0.63	0.53
4.20	0.63	0.53
4.80	0.63	0.52
5.40	0.62	0.50
6.00	0.62	0.50

Desp. lateral (mm)	Esfuerzo de Corte (kg/cm²)	Esfuerzo Norma- lizado (τ/σ)
0.00	0.00	0.00
0.03	0.15	0.09
0.06	0.20	0.12
0.12	0.25	0.15
0.18	0.34	0.20
0.30	0.43	0.26
0.45	0.50	0.30
0.60	0.53	0.32
0.75	0.56	0.33
0.90	0.57	0.34
1.05	0.59	0.35
1.20	0.59	0.35
1.50	0.64	0.37
1.80	0.64	0.37
2.10	0.67	0.39
2.40	0.69	0.40
2.70	0.83	0.48
3.00	0.85	0.49
3.60	0.89	0.50
4.20	0.90	0.50
4.80	0.90	0.50
5.40	0.90	0.49
6.00	0.90	0.49

20.00 mm

60.00 mm

0.76 %

1.98 gr/cm3

1.67 kg/cm²

0.90 kg/cm²

Altura:

Lado:

D. Seca:

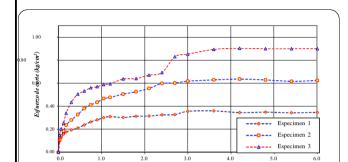
Humedad:

Esf. Normal :

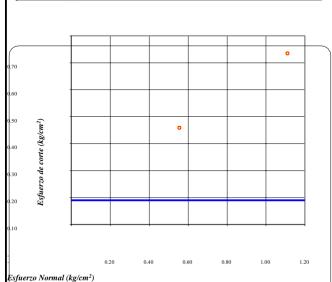
Esf. Corte:

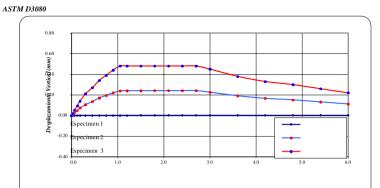
OBSERVACIONES:

La muestra ha sido extraída de acuerdo a normas vigentes y establecidas en nuestro país, homologadas con normas internacionales


Solo para los que quieren salir adelante

LABORATORIO DE MECÁNICA DE SUELOS


CAMPUS UNIVERSITARIO - DISTRITO DE CACATACHI


lmsucv@gmail.com TARAPOTO - PERU

ENSAYO DE CORTE DIRECTO RESIDUAL

Desplazamiento lateral (mm)

ENSAYO DE CORTE DIRECTO
ASTM D3080

PROYECTO: LMS 201

SOLICITANTE: DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR

MEJORANDO LA TRANSITABILIDAD SOBRE EL RIO MAYO LOCALIDAD DE SAN FRANCISCO, DISTRITO CUÑUMBUQUI

PROVINCIA LAMAS, REGION SAN MARTIN - 2014

UBICACIÓN: TESISTA ANDREY DEL AGUILA PEREA

FECHA: DISTRITO DE CUÑUMBUQUI

 N° ANILLO
 1
 2
 3

 Esfuerzo Normal
 0.56
 1.11
 1.67

 Esfuerzo de corte
 0.36
 0.63
 0.90

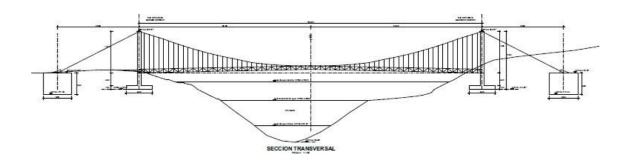
Resultados:				
Cohesión(c):	0.30 kg/cm2			
Ang. Fricción (ø):	26°			

ANEXO 3: ESTUDIO HIDROLÓGICO

PROYECTO: "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE
VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO,
LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN
– 2014"

EJECUTA: TESISTA ANDREY DEL AGUILA PEREA

INFORME TÉCNICO DEL ESTUDIO HIDROLÓGICO


INFORME TÉCNICO

PROYECTO: "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE

VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO,

LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN

– 2014"

TESISTA : ANDREY DEL AGUILA PEREA

DEPARTAMENTO: SAN MARTÍN

PROVINCIA : LAMAS

DISTRITO : CUÑUMBUQUI

SECTOR : LOCALIDAD DE SAN FRANCISCO

*MORALES - PERÚ*Noviembre 2014

ÍNDICE

ESTUDIO HIDROLÓGICO

- 1.0 GENERALIDADES
- 1.1 INTRODUCCIÓN
- 1.2 OBJETIVOS
- 1.3 IMPORTANCIA
- 1.4 DEFINICIÓN DE TÉRMINOS EMPLEADOS
- 1.5 METODOLOGIA EMPLEADA
- 2.0 INFORMACIÓN BÁSICA
- 2.1 UBICACIÓN DEL ÁREA DE ESTUDIO
- 2.2 CUENCA DE INTERES
- 2.3 CLIMATOLOGÍA
- 3.0 DETERMINACIÓN DE LOS PARÁMETROS GEOMORFOLOGICOS
- 3.1 CARACTERISTICAS GEOMORFOLICAS DE LA CUENCA
- 4.0 ANÁLISIS HIDROLÓGICO
- 4.1 INFORMACIÓN BÁSICA UTILIZADA.
- 4.2 PRECIPITACIÓN MÁXIMA DIARIA
- 4.3 ANÁLISIS DE CONSISTENCIA (SALTOS Y TENDENCIAS)
- 4.4 COMPLETACIÓN DE DATOS
- 4.5 ANÁLISIS DE FRECUENCIAS
- 4.6 MÉTODO DE TRANSFORMACIÓN DE ALTURAS DE LLUVIA EN ESCORRENTÍA
- 4.7 MODELAMIENTO HIDROLÓGICO

ESTUDIO HIDRÁULICO FLUVIAL

- 5.0 DETERMINACIÓN DE LA SOCAVACIÓN EN SITIOS DE INTERÉS
- **5.1 GENERALIDADES**
- 5.2 CAUCE DE EQULIBRIO DEL RÍO

- 5.3 DETERMINACIÓN DE LA SOCAVACIÓN GENERAL
- 5.4 DETERMINACION DE VALORES DE DISEÑO
- 5.4.1 LONGITUD LIBRE ENTRE TORRES
- 5.4.2 NIVELES DE AGUAS MÁXIMAS PROBABLES
- 6.0 CONCLUSIONES
- 7.0 ANEXOS

ESTUDIO HIDROLÓGICO

1.0 GENERALIDADES

1.1 INTRODUCCIÓN

El Estudio Hidrológico e Hidráulico para el Proyecto "DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN

 2014", tiene como objeto establecer las características y el comportamiento hidráulicos más importantes del Río Mayo, en la sección en estudio que se puedan generar durante épocas de Máximas Avenidas Extraordinarias.

Con el objeto de proyectar una adecuada ubicación y profundidad de cimentación evitando en lo posible no afectar el flujo normal del Río, garantizando así la funcionalidad de la estructura proyectada, ante eventuales ocurrencias de caudales Máximo Extraordinarios que puedan acaecer durante la vida útil del puente; se ha estimado una sección estable del río utilizando la hidrología superficial para temas específicos como la modelación de escurrimiento superficial en cuencas, tránsito de caudales, cálculo de niveles máximos de agua y profundidades de socavación.

1.2 OBJETIVOS

- Evaluar el caudal máximo que pueda suscitarse en base a la información hidrológica disponible.
- Evaluar el tirante máximo (NAME), generado duran una las máximas avenidas que puede suscitarse.

1.3 IMPORTANCIA

La importancia de realizar la evaluación hidrológica e hidráulica, radica en la necesidad de proyectar y estimar los volúmenes de agua que atraviesan la sección, evaluar hidráulicamente los cambios drásticos que se puedan producir el lecho del río o taludes.

1.4 DEFINICIÓN DE TÉRMINOS EMPLEADOS

Cuenca

La superficie del terreno cuya escorrentía superficial fluye en su totalidad a través de una serie de corrientes, ríos, quebradas, eventualmente lagos por una única desembocadura, estuario o delta.

Cuenca Alta

Es la parte de la cuenca hidrográfica en la cual predomina el fenómeno de la socavación, es decir que

Hay aportación de material terreo hacia las partes bajas de la cuenca, en las que se pueden distinguir claramente trazas de erosión.

Cuenca Media

Es la parte de la cuenca hidrográfica en la cual hay un equilibrio entre el material sólido que llega traído por la corriente y el material que sale, visiblemente no hay erosión.

Cuenca Baja

Es la parte de la cuenca hidrográfica en la cual el material extraído de la parte alta es depositado.

Caudal o aportación

Cantidad de agua que pasa por un punto específico en un sistema hidráulico en un momento o periodo.

Caudal base

Caudal en los ríos o cauces menores que discurre en estiaje, que normalmente procede de la descarga de aguas subterráneas.

Área de la Cuneca (A)

El área de la cuenca es probablemente la característica geomorfológica más importante para el diseño, está definida como la proyección horizontal de toda el área de drenaje de un sistema de escorrentía directa o indirectamente a un mismo cauce natural.

Longitud

La longitud de la cuenca puede estar definida como la distancia del cauce principal entre un punto abajo (estación de aforo) y otro punto aguas arriba donde la tendencia general de cauce principal corte la línea de contorno de la cuenca.

Perímetro

El perímetro de la cuenca o la longitud de la línea divorcio de la hoya es un parámetro importante, pues junto al área nos puede decir la forma de la cuenca.

Ancho de la cuenca

El ancho se define como la relación entre el área y la longitud de la cuenca.

Pendiente

Es una medida de la inclinación de la superficie del fondo en el sentido de la corriente. Se expresa como la tangente del ángulo que forma la horizontal con la línea del fondo en sentido longitudinal.

Sinuosidad de un tramo del cauce principal

Relación entre la distancia en línea recta entre los puntos, y la longitud medida en el cauce principal, siguiendo la línea del thalweg.

Intensidad de Precipitación

Es la altura de precipitación por unidad de tiempo, se expresa en mm/m (milímetros por hora).

Lecho Mayor

Terrenos planos en las márgenes del rio que, en condiciones no intervenidas con obras, son ocupados por el río en máximas avenidas.

Máximo Pelo de Agua

Es el máximo ordinario de pelo de agua refiere al nivel más alto alcanzado por un cuerpo de agua que se mantiene por un periodo suficiente para dejar evidencia en el paisaje.

Tasa de escurrimiento (Coeficiente de Escurrimiento)

Relación entre el volumen de agua que se precipita sobre una superficie determinada y el volumen de agua que se escurre en la misma. Las perdidas pueden ser por evaporación o por infiltración.

Tiempo de Concentración

El tiempo de concentración de una determinada cuenca hidrográfica es el tiempo necesario para el caudal saliente se estabilice, cuando la ocurrencia de una precipitación con intensidad constante sobre toda la cuenca.

Hidrograma Unitario

Es el hidrograma de escorrentía directa que se producirá en la salida de la cuenca si sobre ella se produjera una precipitación neta de una duración determinada.

Thalweg

Line que une los puntos de mayor profundidad a lo largo de un curso de agua.

Erosión local

Los procesos de erosión local se originan en movimientos vorticosos que ocurre al pie de obstáculos al flujo en el curso del río.

1.5 METODOLOGÍA EMPLEADA

Con el fin de reunir los criterios adecuados para conocer la capacidad de erosión, las características hidráulicas, hidrológicas y de drenaje del río se realizaron los estudios en las siguientes etapas.

PRIMER ETAPA

Durante la primera etapa se realizó la recopilación de información y las visitas de campos correspondientes.

• Recopilación de Información.

Comprendió la búsqueda, evaluación y análisis de la documentación existente tales como estudios anteriores, cartografías y los datos pluviométricos de la cuenca involucrada en el estudio.

• Visita preliminar de campo.

Se realizó una visita preliminar al lugar de estudio.

SEGUNDA ETAPA (Visita a Campo)

Los trabajos de campo consistieron mayormente en evaluación in situ de los parámetros hidráulicos e hidrológicos más relevantes en la zona donde se proyectará el puente. Lo que consistió en un recorrido aguas arriba como aguas abajo del posible eje del puente, se realizaron las siguientes actividades.

- Se llevó a cabo una evaluación del cauce en el eje del puente proyectado.
- Se realizó una inspección ocular del Río Mayo en la Zona en estudio con el fin de observar los parámetros hidrológicos e hidráulicos, obteniendo los siguientes posibles valores.

Rio Mayo

- 1. Coeficiente de rugosidad de Manning n = 0.050
- 2. Características del tipo de suelo y uso de la tierra en la cuenca. Con lo cual se ha definido un CN = 60
- 3. Muestreo del Diámetro nominal de sedimentos de fondo y márgenes del río en la Zona en Estudio.

TERCERA ETAPA (Trabajo en Gabinete)

Los trabajos de gabinete consistieron en la elaboración de un informe, el mismo que contiene una evaluación detallada de la información recogida en campo.

 Generalidades; En este primer capítulo se describe la introducción, los objetivos del estudio, importancia del estudio, definición de términos empleados y la metodología empleada usada en la elaboración del presente informe. • Información básica; Contiene la ubicación del área de estudio, la ubicación del Puente, la cuenca de interés, la climatología, los parámetros climáticos y una pequeña clasificación del clima en la zona.

 Determinación de los parámetros geomorfológicos, tales como área de cuenca, perímetro, factor de forma, índice de compacidad, longitud del curso principal, pendiente, etc.

Análisis hidrológico, conteniendo los siguientes ítems: Información básica utilizada,
Precipitación máxima diaria, Análisis de consistencia (saltos y tendencias), Análisis de
frecuencias y periodos de retorno (Gumbell, Log Pearson III, Pearson Tipo III, etc.)
Método de transformación de alturas de lluvia en escorrentía y modelamiento
hidrológico.

 Determinación de la socavación en sitios de interés, este capítulo da inicio al estudio hidráulico fluvial y contiene Generalidades del tema, determinación de la socavación general.

• Consideraciones sobre hidráulica fluvial del río, que contiene: Mecánica fluvial del río, Determinación de la capacidad de arrastre, Determinación de los valores de diseño.

 Conclusiones del estudio, indicando un resumen de los principales resultados y recomendaciones a tomar en cuenta.

 Cuadros de hidrología e hidráulica indicando el procedimiento, los valores tomados y los principales resultados para cada caso.

ESTUDIO DE HIDROLOGIA E HIDRAULICA

2.0 INFORMACIÓN BÁSICA

2.1 UBICACIÓN DEL ÁREA DE ESTUDIO

Políticamente el proyecto se encuentra ubicado en:

Región : San Martín

Provincia : Lamas Distrito

Cuñumbuque

Sector : Localidad de San Francisco

2.2 CUENCA DE INTERÉS

El río Mayo pertenece a la Cuenca del Río Huallaga, quien a su vez pertenece a la cuenca del

sistema hidrográfico del Río Amazonas encontrándose estas cuencas en la vertiente del

Atlántico. La naciente de la misma está en la parte alta de la provincia de San Martín a una

altitud de 1946.00 m.s.n.m.

La principal fuente de abastecimiento del flujo son las precipitaciones que se presentan de

manera continua en la zona, las filtraciones aportan mínimamente sus aguas a la cuenca en los

periodos de menor precipitación.

La cuenca del río se encuentra ubicada aproximadamente entre las siguientes coordenadas:

Longitud Oeste

: 76° 45' - 77° 24'

Latitud Sur

: 05° 15' - 08° 25'

Su cuenca es bastante húmeda, por esta razón casi el 85 % de su cuenca se encuentra cubierta

de vegetación permanente.

De la información cartográfica disponible que corresponde a la carta nacional IGN a escala

1:100,000 (Carta Nacional 13-k denominada Tarapoto), se desprende que el área de cuenca

hasta la ubicación del puente es igual a 9247.30 Km2, con un perímetro igual a 644.30 Km.,

una longitud de río principal de 299Km. y una pendiente de 0.57 %, un factor de forma con

un valor de 0.10 lo que nos da una cuenca con un tipo alargado, lo que producirá que los

eventos máximos se produzcan con mayor rapidez y un coeficiente de compacidad con valor

de 1.89 lo que nos da como conclusión que nos encontramos frente a una cuenca de forma

oval oblonga.

"DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO – CUÑUMBUQUI - LAMAS – SAN MARTÍN – 2014"

Imagen Satelital

2.3 CLIMATOLOGÍA

El puente proyectado sobre el río Mayo, se encuentra ubicada cerca de la zona urbana de la localidad de San Francisco del Río Mayo, razón por la cual para la descripción de los principales parámetros climatológicos (precipitación y temperatura) han sido evaluados de informes de análisis cercanos a la Zona de Influencia. La entidad encargada del manejo y operación de la mayoría de los parámetros climatológicos es el Servicio Nacional de Meteorología e Hidrología (SENAMHI).

2.3.1 PARÁMETROS CLIMÁTICOS PRECIPITACIÓN

La variable precipitación es tomada de la estación PLU- CUÑUMBUQUE, debido a que se ubican dentro del área de influencia del proyecto.

En los registros meteorológicos analizados se puede observar que existen dos periodos durante el año donde se presentan mayor precipitación pluvial.

Los cuales están comprendidos entre los meses de Marzo a Julio y de Setiembre a Noviembre mientras que el periodo de estiaje está marcado por los meses de Agosto y de Diciembre a febrero.

TEMPERATURA

La temperatura presenta valores característicos a esta parte del país, la media anual es de 25°C mientras que la máxima promedio puede alcanzar los 32°C.

La zona en estudio tiene un clima Cálido Húmedo (Tropical Húmedo)

3.0 DETERMINACIÓN DE LOS PARÁMETROS GEOMORFOLÓGICOS

Las características físicas de una cuenca forman un conjunto que influye profundamente en comportamiento hidrológico de dicha zona tanto a nivel de las excitaciones como de las respuestas de la cuenca tomada como un sistema.

Así pues, el estudio sistemático de los parámetros físicos de las cuencas es de gran utilidad práctica en la ingeniería de la hidrología, pues con la base en ellos se puede lograr una transferencia de información de un sitio a otro, donde exista poca información o datos faltantes, siempre que exista semejanzas geomorfológicas y climática de las zonas en cuestión.

CARACTERÍSTICAS GEOMORFOLÓGICAS DE LA CUENCA

PARAMETROS			UND	NOMENGLATURA	C U E N C A	
Superficie total de la cuenca		Km²	Área cuenca	9247.53		
Perímetro		Km.	Р	644.33		
м м		Coeficiente de Compacidad		1	Kc = 0.28 P / (At) ^{1/2}	1.89
CIONES DE FORMA	FACTOR DE FORMA	Longitud (// al curso más largo)	Km.	LB	299.00	
		Ancho Medio	Km.	AM = Área cuenca/ LB	30.93	
		Factor de Forma	1	Ff = AM / LB	0.10	
< <	RECTANGULO EQUIVALENTE		Lado Mayor	Km.	L = Kc*(pi*A) ^{1/2} /2*(1+(1- 4/pi*Kc²))	264.76
REL			Lado Menor	Km.	B= At / L	34.93
Cota Máxima de la cuenca			m.s.n.m.	CMAX	3415.00	
Cota Mínima de la Cuenca			m.s.n.m.	CMIN	230.00	
Desnivel total de la cuenca			m.s.n.m.	Ht	3185.00	
Altura media de la cuenca			m.s.n.m.	Hm	1592.50	
Pendiente de la cuenca (Sist. del Rectángulo Equivalente)			%	Ip =100 * Ht / B	9.12	
Pendiente media del cauce del río			%	lm	1.07%	

4.0 ANÁLISIS HIDROLÓGICO

Con la información obtenida de la oficina de Estadística e Informática del Servicio Nacional de meteorología (SENAMHI), se ha procedido a efectuar el cálculo de lluvia para distintos periodos de retorno.

Este cálculo se basa en las posibilidades de excedencia o no excedencias de las frecuencias de lluvia según los métodos de distribución de valores extremos como son: Gumbell, Pearson III y el Logaritmos Pearson Tipo III, para calcular las precipitaciones en distintos periodos de retorno de 25, 50, 100, 200 y 500 años, y con estas precipitaciones se procedió a la transformación de precipitación en volumen de escorrentía.

El método para calcular los caudales de los flujos que discurren del río Mayo es Soil Conservation Service (1972) SCS.

4.1 INFORMACIÓN BÁSICA UTILIZADA

La información hidro-meteorológica disponible en la zona del proyecto corresponde a información pluviométrica con registros máximos en 24 horas de la estación PLU-CUÑUMBUQUE.

Estación	Latitud	Longitud	Altitud (msnm)
PLU- CUÑUMBUQUE	06°30′ "S"	76°30′ "W"	240 msnm

4.2 PRECIPITACIÓN MÁXIMA DIARIA

Los datos empleados, corresponde a los valores de precipitaciones máximas en 24 horas registradas; estos datos se adjuntan en anexos.

4.3 ANÁLISIS DE CONSISTENCIA (SALTOS Y TENDENCIAS)

La no homogeneidad e inconsistencia de los datos hidrológicos representa uno de los aspectos más importantes del estudio en la hidrología contemporánea, particularmente en lo relacionado a la conservación, desarrollo y control de recursos hídricos.

Un error significativo puede causar la obtención de resultados altamente sesgados en el cálculo de datos futuros.

En este caso se ha efectuado previamente el análisis de consistencia (Análisis Estadísticos de Saltos y Tendencias) de la información pluviométrica. Dicha evaluación del análisis gráfico y estadístico de saltos y tendencias de la información pluviométrica se efectúa mediante los estadísticos "T" de Student "F" de Fischer.

De la evaluación realizada a la información pluviométrica, se ha encontrado mínimamente periodos inconsistentes (saltos) en la estación en análisis, estos saltos son formas que nos determinan de manera transitoria que una serie de datos hidrológicos periódicos o no periódicos pasan de un estado a otro, como respuesta a cambios hechos por el hombre o cambios naturales que puedan ocurrir, así podemos observar en los anexos, que los datos obtenidos de la estación en estudio presenta saltos, debido a su paso de una precipitación menor a una precipitación mayor sin la debida concordancia.

4.4 COMPLETACIÓN DE DATOS

En este caso no ha sido necesario realizar completar de datos, debido a que la Estación presenta una secuencia de datos, siendo suficiente esta información para poder realizar los cálculos y encontrar resultados representativos de precipitaciones máximas en 24 horas.

4.5 ANÁLISIS DE FRECUENCIAS

Los registros de precipitación máximas en 24 horas fueron analizados estadísticamente (Gumbell, Pearson tipo III y el de Logaritmos Pearson Tipo III); previamente registrados, fueron sometidos a la prueba de datos dudosos. Se adoptó la distribución Pearson Type III, por presentar mayor bondad de ajuste (menor error de estimación). De los que se calculó para periodos de retorno de 25, 50, 100, 200, 500 años.

4.6 MÉTODO DE TRANSFORMACIÓN DE ALTURAS DE LLUVIA EN ESCORRENTÍA

Con las alturas de lluvia obtenidas, el cálculo del volumen de agua se ha realizado utilizando el método del Soil Conservation Service SCS (1972), dicho método está basado en la simulación de la escorrentía superficial que resulta de una precipitación, mediante la representación de la cuenca como un sistema de componentes interconectados.

Cada componente modela un aspecto del proceso lluvia – escorrentía dentro de una cuenca o área en estudio. El componente de escorrentía superficial para un área se utiliza para representar el movimiento de agua sobre la superficie del terreno hacia los cauces del río y riachuelos. La entrada en este componente es un histograma de precipitación, el exceso de lluvia se calcula restando la infiltración y las pérdidas por detención, con base en una función de infiltración que debe acogerse de varias opciones, incluyendo el número de curva SCS de la tasa de pérdida. Se supone que tanto la lluvia como la infiltración están distribuidas uniformemente en toda la cuenca. El exceso de lluvia resultante se aplica al hidrograma Adimensional del SCS para encontrar el hidrograma de escorrentía a la salida del área.

4.7 MODELAMIENTO HIDROLÓGICO

Las amenazas provenientes de las descargas del río en estudio, para períodos de retorno considerados, hacen que se desarrolle una serie de secuencias numéricas y estadísticas para llegar a resultados condicionados por las características hidro-geomorfológicas de la zona en estudio.

En este modelamiento se ha identificado las descargas para diversos periodos de retorno, así como una base de entrada: elevación, tipo de suelo, precipitación, cobertura terrestre natural del río en estudio.

De los resultados encontrados por el Método SCS se precisa como los caudales máximos ordinarios y extraordinarios los siguientes:

RÍO MAYO

- Caudal del Río Mayo en avenidas ordinarias: Tr = 25
 años 2,019.22 m³/seg.
- Caudal del río Mayo en avenidas ordinarias: Tr = 50
 años 2,315.84 m³/seg.
- Caudal del río Mayo en avenidas extraordinarias: Tr = 100
 años 2,599.65 m³/seg.

- Caudal del río Mayo en avenidas extraordinarias: Tr = 200
 años 2,871.82 m³/seg.
- Caudal del río Mayo en avenidas extraordinarias: Tr = 500
 años 3,218.82 m³/seg.

ESTUDIO HIDRÁULICO FLUVIAL

5.0 DETERMINACIÓN DE LA SOCAVACIÓN EN SITIOS DE INTERÉS

5.1 GENERALIDADES

El proceso erosivo de la corriente de agua en los ríos, provoca la socavación del lecho móvil de los mismos en función básicamente a las características hidráulicas del río y las características granulométricas del material que conforma el cauce. La socavación resulta más intensa a medida que se incrementa el caudal y las velocidades del flujo del agua superan la velocidad crítica de erosión del material del lecho del Río. Siendo de interés la granulometría del cauce del río que durante los trabajos de campo se han efectuado, tomando muestras representativas del lecho del río Mayo.

De los datos mencionados anteriormente obtenemos el diámetro medio de las partículas en el lecho del río Mayo igual a 14.50mm.

Para efectos del cálculo de la socavación general se ha utilizado varios métodos comúnmente usados, asumiendo las características hidráulicas en función de las curvas de calibración de los ríos y las características granulométricas del material que conforma el lecho.

5.2 CAUCE DE EQUILIBRIO DEL RÍO

La teoría de régimen evalúa las características de un cauce natural que presente las condiciones de equilibrio es decir de un lecho que no sea erosionado y que no deposite para un caudal determinado.

En ríos de cauce divagante conviene reconocer las condiciones de equilibrio del cauce, puesto que al ser comparadas con la sección real puede dar información sobre la posibilidad de creación de procesos erosivos. Para el caso particular del puente a fin de no originar un estrechamiento que pueden alterar las condiciones del cauce, el ancho de la sección con las estructuras proyectadas entre la margen izquierda y margen derecha debe corresponder al ancho de equilibrio. Para efectos del cálculo de la sección de equilibrio se ha utilizado Teoría de Lacey.

Para el cálculo del ancho de equilibrio para cada uno de los periodos de retorno sobre el rio ante la ocurrencia de diversos caudales tal como se presenta en el CUADRO N° 16.

5.3 DETERMINACIÓN DE LA SOCAVACIÓN GENERAL

Se entiende por socavación normal el descenso del fondo de un río que se produce al presentarse una creciente y es debida al aumento de la capacidad de arrastre de material sólido que en ese momento adquiere la corriente, en virtud de su mayor velocidad.

La erosión del fondo de un cauce definido por el cual discurre una corriente es una cuestión de equilibrio entre el aporte sólido que pueda traer el agua a una cierta sección y el material que sea removido por el agua de esa sección; en avenida, aumenta la velocidad del agua y, por lo tanto, la capacidad de arrastre. La posibilidad de arrastre de los materiales de fondo en cada punto se considera, a su vez, dependiente de la relación que existe entre la velocidad media del agua y la velocidad media requerida para arrastrar las partículas que constituyen el fondo en cuestión. Para suelos sueltos, esta última no es la velocidad que inicia el movimiento de algunas partículas de fondo, sino la velocidad, mayor, que mantiene un movimiento generalizado; en suelos cohesivos, será aquella velocidad capaz de ponerlos en suspensión.

La primera velocidad mencionada depende de las características hidráulicas del rio: pendiente, rugosidad y tirante; la segunda depende de las características del material del fondo y del tirante.

Como característica del material se toma el diámetro medio, en el caso de suelos no cohesivos y el peso específico seco, en el caso de los suelos cohesivos (en suelos friccionantes se suele considerar en la literatura del tema el mismo peso específico a todas las arenas y gravas, por lo que esta propiedad no puede usarse para diferenciarlas). El peso específico seco y se obtiene dividiendo el peso de los sólidos de la muestra (Ws) entre el volumen original de la masa de suelo (Vw). Naturalmente que un criterio tan simplista para definir las características de los materiales impone las correspondientes limitaciones en los resultados y conclusiones de las teorías elaboradas con tales ideas.

La erosión general puede llegar a producirse inclusive cuando el lecho del rio es rocoso, con tal de que la velocidad de la corriente sea superior a la necesaria para producir el desgaste de la roca.

Un hecho curioso observado es que la socavación general disminuye para una misma velocidad media de la corriente, en fondos no cohesivos, cuando el agua arrastra en suspensión gran cantidad de partículas finas, del tamaño de limos y arcillas; el hecho se atribuye a la disminución en este caso del grado de turbulencia del agua, por aumento de su peso específico y de su viscosidad.

Para efectos del cálculo de la socavación general se ha utilizado la fórmula propuesta por L.L. Lischtvan-Ledeviev, comúnmente conocida y cuya formulación matemática se puede encontrar en el Libro: Mecánica de Suelos Tomo III. Juárez Badillo; con un resumen descriptivo que se presenta a continuación:

$$ds = \left(\frac{\alpha.d}{0.60.w^{1.18}\beta}\right)^{\frac{1}{x+1}} ds = \left(\frac{\alpha.d^{5/3}}{0.68 \cdot dm^{0.28} \cdot f}\right)^{\frac{1}{1+X}}$$

$$ds = (\frac{\alpha \cdot A_0^{5/3}}{0.68 \cdot dm^{0.28} \cdot f})^{\frac{1}{1+X}}$$

Donde:

zg = ds - do

Qd: Caudal máximo de diseño (m3/seg)

Do: Tirante inicial que existe en una determinada vertical de la sección.

ds: Profundidad después de producirse la socavación de fondo.

dm : Diámetro medio de las partículas del lecho del río.

a : Coeficiente que se deduce a partir de la siguiente expresión

$$\alpha = \frac{Qd}{y_m^{5/3} \cdot Be \cdot \mu}$$

Be: Ancho efectivo en la sección.

y_m: Tirante medio de la sección

μ: Coeficiente que se toma en cuenta el efecto de contracción.

1 / 1+ x: Exponente que depende del diámetro medio de las partículas del lecho del río

1 70' (1' 1 ')

ds: Tirante medio de socavación

Zg: Profundidad de socavación general

Los resultados de socavación general en el cauce del río; obtenidos mediante la aplicación del Método de Lischtvan–Lebediev, se presentan en el **CUADRO** Nº 18.

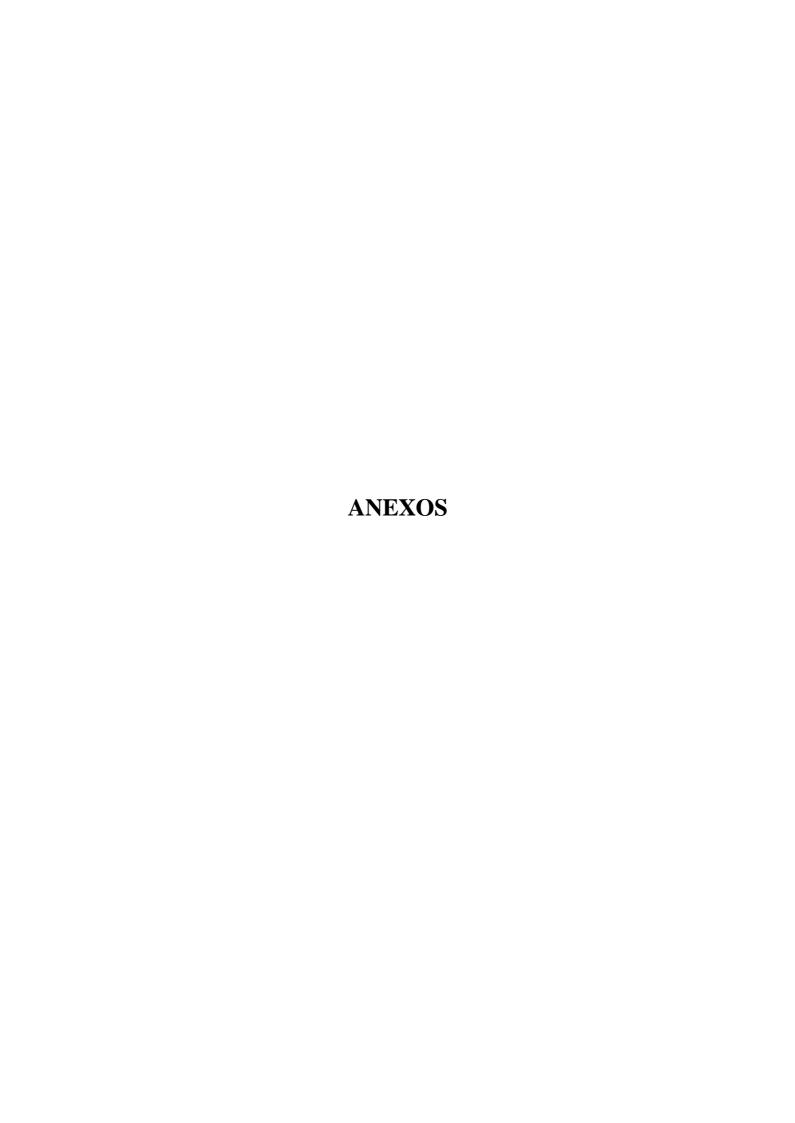
5.4 DETERMINACIÓN DE VALORES DE DISEÑO

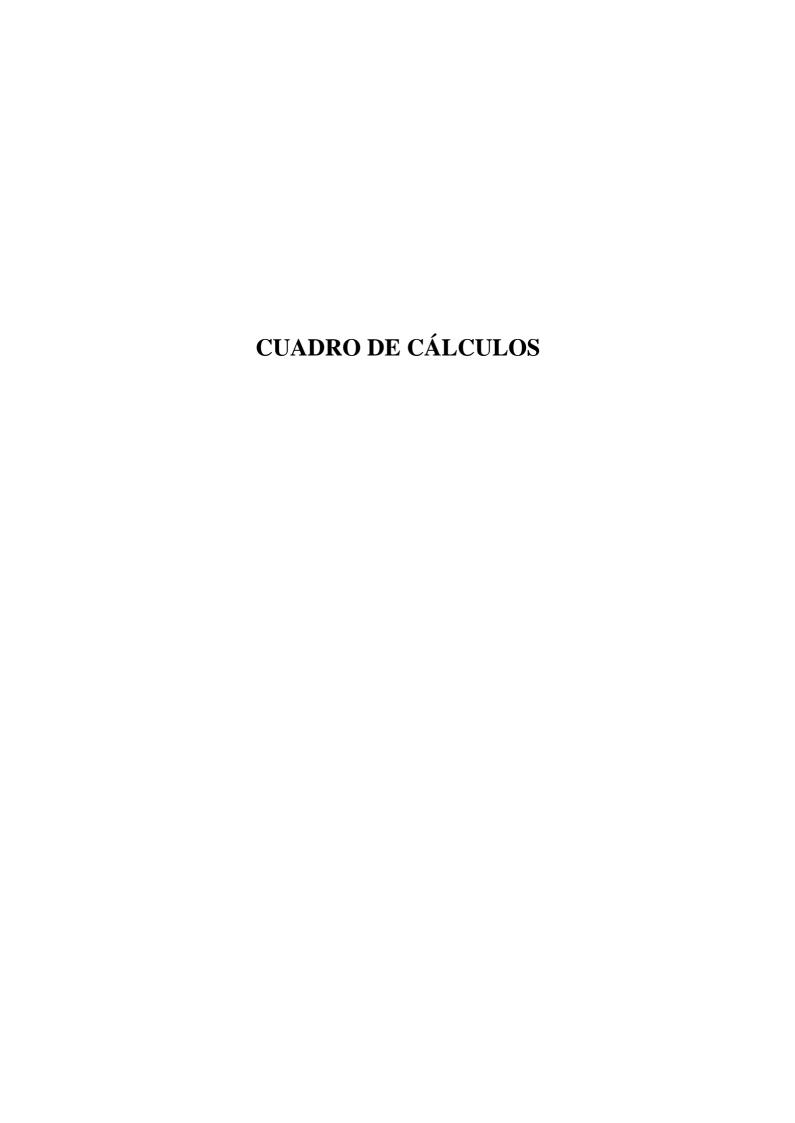
5.4.1 LONGITUD LIBRE ENTRE TORRES

Las torres proyectadas para el diseño del puente contaran, con una separación mayor a la estimada para el ancho estable del río, garantizando la libre circulación en avenidas ordinarias y extraordinarias con cauce hidráulicamente estable y sin peligro de obstrucción por presencia de huaycos o grandes piedras, con la finalidad de que dicha longitud trabaje a capacidad plena la mayor parte del tiempo y permita aún en época de estiaje considerarla una estructura aparente.

Acorde al criterio fundamental antes expuesto y de acuerdo a los resultados encontrados en el presente estudio se desprende que la longitud promedio recomendada como ancho estable del río Mayo es igual a 92.00 m; pero a criterio del investigador se asumirá un ancho estable de 105.00 m.

5.4.2 NIVELES DE AGUAS MÁXIMAS PROBABLES


Los niveles de agua de diseño en el rio han sido determinados utilizando la ecuación de Manning para la sección de río considerada como zona inundable, los parámetros han sido determinados de acuerdo a las características propias para el rio Mayo.


Estos niveles han sido comparados con los niveles máximos indicados por los pobladores en campo, esto con la finalidad de permitir un paso adecuado del flujo de agua aún en condiciones extremas y no permitir de ésta manera que las aguas lleguen a rebasar la estructura del puente.

El nivel máximo para un período de retorno igual a 100 años es de 209.60 m.s.n.m., con un tirante máximo de 12.73 metros.

6.0 CONCLUSIONES

- Para realizar el análisis de datos hidrológicos (precipitaciones máximas en 24 horas) se han adquirido los datos de la estación Pluviométrica "PLU-CUÑUMBUQUE" siendo la que se encuentra dentro de la cuenca de estudio y cuenta con la mayor cantidad de datos registrados.
- 2. Se ha realizado el análisis de consistencia de la información pluviométrica lo que permitió determinar que dicha estación presenta saltos, los cuales han sido corregidos según corresponda.
- 3. No ha sido necesario completar ni extender datos, esto en tal sentido de tener una variedad importante de datos, cantidad suficiente de datos para llevar a cabo el análisis hidrológico.
- 4. Comparando la curva experimental y la curva de mayor ajuste a ésta, se ha usado la curva de distribución Pearson Type III, descartando las otras distribuciones ya que éstas muestran valores por debajo de la distribución anterior.
- 5. Los periodos de retorno trabajados en el presente estudio son de 25, 50, 100, 200 y 500 años; calculados para mostrar la incidencia de los casos extremos de máximas avenidas.
- 6. El caudal de diseño para la sección en el puente, corresponde a un periodo de retorno de 100 años es de 2599.65 m3/s.
- 7. La socavación general en la sección del puente en las máximas avenidas extraordinarias para un periodo de retorno de 100 años es 2.02m.

REGISTRO DE DATOS HIDROLOGICOS

Proyecto:									
ESTACIÓN:	CACIÓN: PLU-CUÑUMBUQUE / 378-DRE-9/2015								
Latitud	Longitud	Distrito	Provincia	Región					
76°30′ "W"	06°30′ "S"	CUÑUMBUQUI	LAMAS	SAN MARTIN					

150	ENTE		b r a D	4.00	3.5.4.37		ORAS EN	1.00	CIETE	OCT	NION	DIC	3.5.4.37	D CEDIA
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	MAX	MEDIA
2000	26.8	47.4	22.9	30.9	13.9	24.3	13.2	35.3	67.4	13.8	24.1	25.6	67.4	28.8
2001	13.4	27.1	43.8	42.4	29.0	11.3	99.7	84.4	21.8	33.5	63.2	52.5	99.7	43.5
2002	8.7	8.4	16.7	35.3	10.3	24.9	46.0	21.9	25.8	25.6	28.9	16.5	46.0	22.4
2003	33.9	17.2	36.5	28.4	13.7	18.0	31.8	17.0	18.9	31.8	37.4	64.4	64.4	29.1
2004	9.1	39.6	23.7	19.5	27.4	18.4	19.8	17.4	53.1	26.0	26.9	61.1	61.1	28.5
2005	12.0	19.0	32.1	26.0	22.2	17.7	13.0	30.7	30.8	16.2	29.4	12.2	32.1	21.8
2006	23.0	32.2	55.3	22.0	26.0	20.0	44.2	14.4	25.1	23.3	81.3	11.5	81.3	31.5
2007	16.5	6.9	29.1	19.0	23.6	3.3	23.4	18.4	40.2	24.1	64.0	8.1	64.0	23.1
2008	18.5	93.2	33.7	54.4	11.6	28.3	37.2	26.0	30.0	29.9	18.3	25.8	93.2	33.9
2009	24.1	33.0	24.9	52.2	15.5	51.3	8.9	32.1	50.3	14.3	10.8	7.6	52.2	27.
2010	35.1	11.1	31.7	50.3	38.7	39.8	16.9	47.0	11.3	14.4	35.2	15.7	50.3	28.9
2011	17.2	6.8	41.6	43.7	24.6	38.9	17.6	11.1	28.2	32.4	53.4	29.2	53.4	28.7
2012	105.4	23.5	31.3	44.4	36.0	12.8	34.8	15.4	29.0	31.2	20.4	32.3	105.4	34.
2013	55.2	18.3	28.2	19.3	39.4	20.8	33.8	29.9	22.4	12.4	53.1	30.1	55.2	30.2
2014	15.2	12.6	40.5	49.4	17.3	16.8	43.6	6.0	17.2	102.4	42.3	45.3	102.4	34.1
MAXIMA	105.4	93.2	55.3	54.4	39.4	51.3	99.7	84.4	67.4	102.4	81.3	64.4	105.4	
MEDIA	27.6	26.4	32.8	35.8	23.3	23.1	32.3	27.1	31.4	28.8	39.2	29.2	68.5	

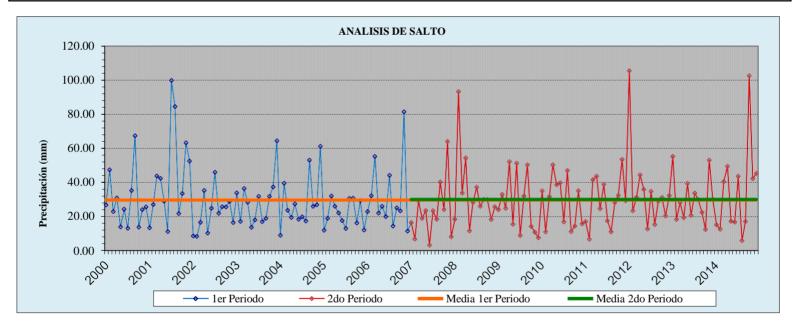
Fuente: Servicio Nacional De Meteorología e Hidrología

OBSEI	RVA	CIC	DNES

OFICINA GENERAL DE ESTADISTICA E INFORMATICA										
ESTACION: PLU-CUÑUMBUQUE / 378-DRE-9/2015	LAT : 76°30′ "W"	DPTO. : SAN MARTIN								
PARAMETRO : PRECIPITACION MAXIMA EN 24 HORAS (mm)	LONG: 06°30′ "S"	PROV. : LAMAS								
	ALT: 240 msnm	DIST. : CUÑUMBUQUI								

AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	Total	Max.	Min.	Media
2000	26.80	47.40	22.90	30.90	13.90	24.30	13.20	35.30	67.40	13.80	24.10	25.60	345.60	67.40	13.20	28.80
2001	13.40	27.10	43.80	42.40	29.00	11.30	99.70	84.40	21.80	33.50	63.20	52.50	522.10	99.70	11.30	43.51
2002	8.70	8.40	16.70	35.30	10.30	24.90	46.00	21.90	25.80	25.60	28.90	16.50	269.00	46.00	8.40	22.42
2003	33.90	17.20	36.50	28.40	13.70	18.00	31.80	17.00	18.90	31.80	37.40	64.40	349.00	64.40	13.70	29.08
2004	9.10	39.60	23.70	19.50	27.40	18.40	19.80	17.40	53.10	26.00	26.90	61.10	342.00	61.10	9.10	28.50
2005	12.00	19.00	32.10	26.00	22.20	17.70	13.00	30.70	30.80	16.20	29.40	12.20	261.30	32.10	12.00	21.78
2006	23.00	32.20	55.30	22.00	26.00	20.00	44.20	14.40	25.10	23.30	81.30	11.50	378.30	81.30	11.50	31.53
2007	16.50	6.90	29.10	19.00	23.60	3.30	23.40	18.40	40.20	24.10	64.00	8.10	276.60	64.00	3.30	23.05
2008	18.50	93.20	33.70	54.40	11.60	28.30	37.20	26.00	30.00	29.90	18.30	25.80	406.90	93.20	11.60	33.91
2009	24.10	33.00	24.90	52.20	15.50	51.30	8.90	32.10	50.30	14.30	10.80	7.60	325.00	52.20	7.60	27.08
2010	35.10	11.10	31.70	50.30	38.70	39.80	16.90	47.00	11.30	14.40	35.20	15.70	347.20	50.30	11.10	28.93
2011	17.20	6.80	41.60	43.70	24.60	38.90	17.60	11.10	28.20	32.40	53.40	29.20	344.70	53.40	6.80	28.73
2012	105.40	23.50	31.30	44.40	36.00	12.80	34.80	15.40	29.00	31.20	20.40	32.30	416.50	105.40	12.80	34.71
2013	55.20	18.30	28.20	19.30	39.40	20.80	33.80	29.90	22.40	12.40	53.10	30.10	362.90	55.20	12.40	30.24
2014	15.20	12.60	40.50	49.40	17.30	16.80	43.60	6.00	17.20	102.40	42.30	45.30	408.60	102.40	6.00	34.05
MAXIMA	105.40	93.20	55.30	54.40	39.40	51.30	99.70	84.40	67.40	102.40	81.30	64.40	898.60	105.40	39.40	74.88
MEDIA	27.61	26.42	32.80	35.81	23.28	23.11	32.26	27.13	31.43	28.75	39.25	29.19	357.05	39.25	23.11	29.75
															Euontos	SENAMHI

 Total:
 414.1
 396.3
 492.0
 537.2
 349.2
 346.6
 483.9
 407.0
 471.5
 431.3
 588.7
 437.9


 Media:
 27.6
 26.4
 32.8
 35.8
 23.3
 23.1
 32.3
 27.1
 31.4
 28.8
 39.2
 29.2

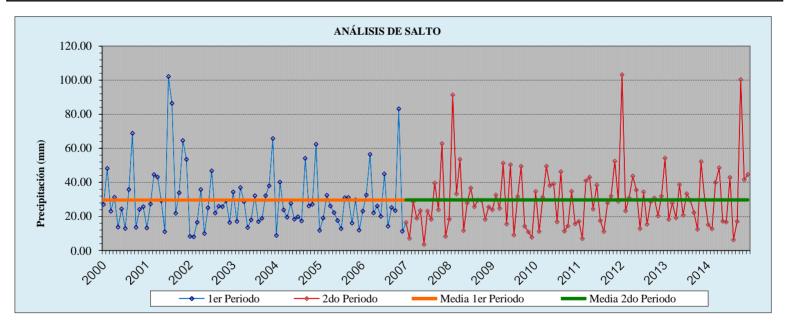
acrice.	17 1111111	

	ANALISIS DE SALTOS											
		Media	Des. Estándar.	Тс	Tt	Fc	Ft	Consistencia de la Media	Consistencia de la Des. Est.			
	2000 - 2006	29.75	18.13	0.12	1.97	1.06	1.42	Datos Consistentes	Datos Consistentes			
ſ	2007 - 2014	30.09	18.63	0.12	1.97	1.00	1.42	Tc ≤Tt(95%)	$Fc \le Ft(95\%)$			

	ECUACIONES PARA LA CORRECION I	DE DATOS
	Para laSub Muestra N° 01	Para la Sub Muestra Nº 02
X' =	xt - 29.75 18.63 + 30.09	$X' = \frac{xt - 30.09}{18.63} \qquad 18.13 + 29.75$

ANALISIS GRAFICO DE SALTOS

OFICINA GENERAL DE ESTADISTICA E INFOR	OFICINA GENERAL DE ESTADISTICA E INFORMATICA										
ESTACION: PLU-CUÑUMBUQUE / 378-DRE-9/2015	LAT : 76°30′ "W"	DPTO. : SAN MARTIN									
PARAMETRO : PRECIPITACION MAXIMA EN 24 HORAS (mm)	LONG: 06°30′ "S"	PROV. : LAMAS									
	ALT: 240 msnm	DIST. : CUÑUMBUQUI									


AÑO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	OCT.	NOV.	DIC.	Total	Max.	Min.	Media
2000	27.05	48.22	23.04	31.27	13.79	24.48	13.07	35.79	68.78	13.69	24.28	25.82	349.29	68.78	13.07	29.11
2001	13.28	27.36	44.52	43.08	29.31	11.12	101.97	86.25	21.91	33.94	64.46	53.46	530.68	101.97	11.12	44.22
2002	8.45	8.14	16.67	35.79	10.09	25.10	46.78	22.02	26.02	25.82	29.21	16.47	270.56	46.78	8.14	22.55
2003	34.35	17.19	37.02	28.70	13.59	18.01	32.19	16.98	18.93	32.19	37.95	65.69	352.78	65.69	13.59	29.40
2004	8.86	40.21	23.87	19.55	27.67	18.42	19.86	17.39	54.08	26.23	27.15	62.30	345.59	62.30	8.86	28.80
2005	11.84	19.04	32.50	26.23	22.32	17.70	12.87	31.06	31.16	16.16	29.72	12.05	262.65	32.50	11.84	21.89
2006	23.15	32.60	56.34	22.12	26.23	20.06	44.93	14.31	25.30	23.45	83.06	11.33	382.89	83.06	11.33	31.91
2007	16.53	7.19	28.79	18.97	23.44	3.69	23.25	18.38	39.59	23.93	62.75	8.36	274.88	62.75	3.69	22.91
2008	18.48	91.16	33.27	53.41	11.77	28.01	36.67	25.78	29.67	29.57	18.28	25.58	401.66	91.16	11.77	33.47
2009	23.93	32.59	24.71	51.27	15.56	50.39	9.14	31.71	49.42	14.39	10.99	7.87	321.97	51.27	7.87	26.83
2010	34.63	11.28	31.32	49.42	38.13	39.20	16.92	46.21	11.47	14.49	34.73	15.75	343.57	49.42	11.28	28.63
2011	17.21	7.09	40.96	43.00	24.41	38.33	17.60	11.28	27.92	32.00	52.44	28.89	341.14	52.44	7.09	28.43
2012	103.03	23.34	30.93	43.68	35.51	12.93	34.34	15.46	28.70	30.84	20.33	31.91	411.00	103.03	12.93	34.25
2013	54.19	18.28	27.92	19.26	38.82	20.72	33.37	29.57	22.27	12.54	52.15	29.77	358.85	54.19	12.54	29.90
2014	15.27	12.74	39.89	48.55	17.31	16.83	42.90	6.32	17.21	100.11	41.64	44.56	403.31	100.11	6.32	33.61
MAXIMA	105.40	93.20	55.30	54.40	39.40	51.30	99.70	84.40	67.40	102.40	81.30	64.40	898.60	105.40	39.40	74.88
MEDIA	27.61	26.42	32.80	35.81	23.28	23.11	32.26	27.13	31.43	28.75	39.25	29.19	357.05	39.25	23.11	29.75
															Fuente:	SENAMHI

Total:	410.3	396.4	491.7	534.3		345.0	485.9	408.5	472.5	429.4	589.1	439.8
Media:	27.4	26.4	32.8	35.6	23.2	23.0	32.4	27.2	31.5	28.6	39.3	29.3

	ANÁLISIS DE SALTOS											
	Media	Des. Estándar.	Tc	Tt	Fc	Ft	Consistencia de la Media	Consistencia de la Des. Est.				
2000 - 2006	29.73	18.08	0.01	1.97	1.01	1.42	Datos Consistentes	Datos Consistentes				
2007 - 2014	29.75	18.13	0.01	1.97	1.01	1.42	Tc ≤Tt(95%)	$Fc \le Ft(95\%)$				

ECUACIONES PARA LA CORRECION DE DATOS				
Parala Sub Muestra Nº 01	Para la Sub Muestra Nº 02			
$X' = \frac{xt - 29.73}{18.08} + 29.75$	$X' = \frac{xt - 29.75}{-18.13} - 18.08 + 29.73$			

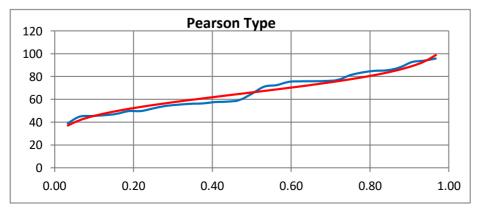
ANÁLISIS GRAFICO DE SALTOS

PRECIPITACION MAXIMA EN 24 HORAS (mm)

ESTACION PLU-CUÑUMBUQUE

Distribution Analysis: Pearson Type III First

Moment (mean) = 66.5945


Second Moment = 2.808e02 Skew =

1.406e-01

Point	Weibull	Actual	Predicted	Standard
Number	Probability	Value	Value	Deviation
1	0.0313	38.6	36.7651	5.2001
2	0.0625	44.8	41.6625	4.2660
3	0.0938	45.4	44.9456	3.8340
4	0.1250	46.0	47.5270	3.5934
5	0.1563	47.2	49.7113	3.4487
6	0.1875	49.7	51.6404	3.3588
7	0.2188	49.7	53.3931	3.3023
8	0.2500	52.1	55.0182	3.2672
9	0.2813	54.2	56.5485	3.2463
10	0.3125	55.3	58.0074	3.2350
11	0.3438	56.1	59.4124	3.2303
12	0.3750	56.4	60.7774	3.2303
13	0.4063	57.6	62.1137	3.2337
14	0.4375	58.0	63.4310	3.2399
15	0.4688	59.3	64.7379	3.2485
16	0.5000	64.9	66.0427	3.2593
17	0.5313	71.1	67.3539	3.2727
18	0.5625	72.4	68.6813	3.2891
19	0.5938	75.3	70.0333	3.3094
20	0.6250	75.8	71.4195	3.3348
21	0.6563	75.9	72.8509	3.3670
22	0.6875	76.1	74.3410	3.4084
23	0.7188	77.0	75.9064	3.4624
24	0.7500	81.3	77.5687	3.5337
25	0.7813	83.6	79.3571	3.6294
26	0.8125	85.0	81.3133	3.7600
27	0.8438	85.5	83.4998	3.9423
28	0.8750	87.8	86.0191	4.2050
29	0.9063	92.7	89.0578	4.6022
30	0.9375	93.9	93.0218	5.2574
31	0.9688	95.9	99.1521	6.5723

	Predictiones			_
Exceedence Probability	Return Period	Calculated Value	Standard Deviation	
0.998	500	118.8932	12.9892	
0.995	200	112.8877	10.7176	
0.990	100	108.0142	9.0710	
0.980	50	102.7730	7.5119	
0.960	25	97.0479	6.0808	
0.900	10	88.3943	4.5077	
0.800	5	80.5073	3.7027	
0.667	3	73.3561	3.3801	
0.500	2	66.0427	3.2593	

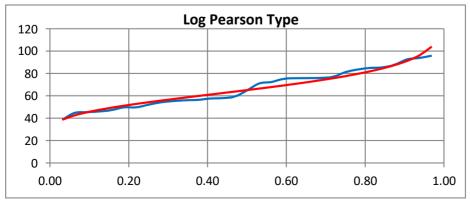
Fuente: Resultados obtenidos en base al Software SMADA ver. 6.3

PRECIPITACION MAXIMA EN 24 HORAS (mm)

ESTACION PLU-CUÑUMBUQUE

Distribution Analysis: Log Pearson Type III First

Moment (mean) = 66.5945


Second Moment = 2.808e02 Skew =

1.406e-01

Point	Weibull	Actual	Predicted	Standard
Number	Probability	Value	Value	Deviation
1	0.0313	38.6	38.5400	3.9836
2	0.0625	44.8	42.4407	3.5138
3	0.0938	45.4	45.1755	3.2784
4	0.1250	46.0	47.3934	3.1463
5	0.1563	47.2	49.3165	3.0728
6	0.1875	49.7	51.0503	3.0364
7	0.2188	49.7	52.6541	3.0254
8	0.2500	52.1	54.1656	3.0321
9	0.2813	54.2	55.6103	3.0519
10	0.3125	55.3	57.0068	3.0812
11	0.3438	56.1	58.3696	3.1179
12	0.3750	56.4	59.7102	3.1602
13	0.4063	57.6	61.0384	3.2071
14	0.4375	58.0	62.3631	3.2578
15	0.4688	59.3	63.6923	3.3118
16	0.5000	64.9	65.0342	3.3690
17	0.5313	71.1	66.3978	3.4295
18	0.5625	72.4	67.7932	3.4939
19	0.5938	75.3	69.2302	3.5629
20	0.6250	75.8	70.7200	3.6376
21	0.6563	75.9	72.2757	3.7198
22	0.6875	76.1	73.9138	3.8123
23	0.7188	77.0	75.6551	3.9188
24	0.7500	81.3	77.5270	4.0452
25	0.7813	83.6	79.5671	4.2004
26	0.8125	85.0	81.8292	4.3986
27	0.8438	85.5	84.3957	4.6638
28	0.8750	87.8	87.4020	5.0390
29	0.9063	92.7	91.0975	5.6110
30	0.9375	93.9	96.0313	6.5886
31	0.9688	95.9	103.9089	8.6965

	Predictiones			
Exceedence	Return	Calculated	Standard	
Probability	Period	Value	Deviation	
0.998	500	131.2328	21.2476	
0.995	200	122.6145	16.4274	
0.990	100	115.8144	13.1795	
0.980	50	108.7004	10.3143	
0.960	25	101.1714	7.8863	
0.900	10	90.2841	5.4738	
0.800	5	80.8933	4.3129	
0.667	3	72.8290	3.7503	
0.500	2	65.0342	3.3690	

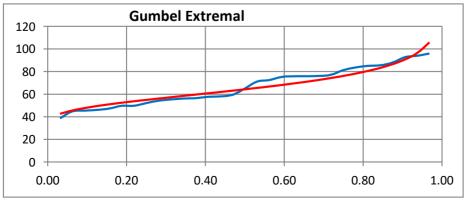
Fuente: Resultados obtenidos en base al Software SMADA ver. 6.3

PRECIPITACION MAXIMA EN 24 HORAS (mm)

ESTACION PLU-CUÑUMBUQUE

Distribution Analysis: Gumbel Extremal Type I First

Moment (mean) = 66.5945


Second Moment = 2.808e02 Skew =

1.406e-01

Point	Weibull	Actual	Predicted	Standard
Number	Probability	Value	Value	Deviation
1	0.0313	38.6	42.6403	3.5795
2	0.0625	44.8	45.6431	3.2113
3	0.0938	45.4	47.7708	2.9822
4	0.1250	46.0	49.5145	2.8192
5	0.1563	47.2	51.0421	2.6983
6	0.1875	49.7	52.4333	2.6085
7	0.2188	49.7	53.7333	2.5440
8	0.2500	52.1	54.9708	2.5014
9	0.2813	54.2	56.1657	2.4785
10	0.3125	55.3	57.3326	2.4740
11	0.3438	56.1	58.4831	2.4868
12	0.3750	56.4	59.6269	2.5165
13	0.4063	57.6	60.7725	2.5624
14	0.4375	58.0	61.9278	2.6242
15	0.4688	59.3	63.1005	2.7019
16	0.5000	64.9	64.2985	2.7954
17	0.5313	71.1	65.5302	2.9051
18	0.5625	72.4	66.8048	3.0314
19	0.5938	75.3	68.1328	3.1753
20	0.6250	75.8	69.5266	3.3380
21	0.6563	75.9	71.0015	3.5213
22	0.6875	76.1	72.5764	3.7280
23	0.7188	77.0	74.2758	3.9615
24	0.7500	81.3	76.1325	4.2271
25	0.7813	83.6	78.1919	4.5323
26	0.8125	85.0	80.5202	4.8880
27	0.8438	85.5	83.2196	5.3119
28	0.8750	87.8	86.4610	5.8334
29	0.9063	92.7	90.5639	6.5082
30	0.9375	93.9	96.2453	7.4622
31	0.9688	95.9	105.7918	9.0976

	Predictiones		
Exceedence Probability	Return Period	Calculated Value	Standard Deviation
0.998	500	142.9832	15.6316
0.995	200	130.6323	13.4459
0.990	100	121.2707	11.7972
0.980	50	111.8749	10.1534
0.960	25	102.4091	8.5146
0.900	10	89.6496	6.3567
0.800	5	79.5511	4.7387
0.667	3	71.5309	3.5896
0.500	2	64.2985	2.7954

Fuente: Resultados obtenidos en base al Software SMADA ver. 6.3

PRUEBA DEKOLMOGOROV-SMIRNOV

Distribución Pearson Tipo 3.- Precipitación Máxima en 24 horas ESTACION PLU-CUÑUMBUQUE

N	X	Y=(x-δ1)/α1	2Y	2β1	χ2	Fx	Fo	Abs(Fo-Fx)
1	38.6	144.4066	288.8132	331.8342	0.9544	0.0456	0.0313	0.0144
2	44.8	149.1646	298.3292	331.8342	0.9011	0.0989	0.0625	0.0364
3	45.4	149.6258	299.2515	331.8342	0.8943	0.1057	0.0938	0.0120
4	46.0	150.1177	300.2354	331.8342	0.8866	0.1134	0.1250	0.0116
5	47.2	151.0247	302.0495	331.8342	0.8715	0.1285	0.1563	0.0278
6	49.7	152.9310	305.8620	331.8342	0.8357	0.1643	0.1875	0.0232
7	49.7	152.9310	305.8620	331.8342	0.8357	0.1643	0.2188	0.0544
8	52.1	154.7527	309.5054	331.8342	0.7962	0.2038	0.2500	0.0462
9	54.2	156.3900	312.7799	331.8342	0.7566	0.2434	0.2813	0.0379
10	55.3	157.2355	314.4710	331.8342	0.7348	0.2652	0.3125	0.0473
11	56.1	157.8504	315.7008	331.8342	0.7184	0.2816	0.3438	0.0621
12	56.4	158.0810	316.1620	331.8342	0.7121	0.2879	0.3750	0.0871
13	57.6	159.0034	318.0068	331.8342	0.6864	0.3136	0.4063	0.0927
14	58.0	159.3032	318.6063	331.8342	0.6779	0.3221	0.4375	0.1154
15	59.3	160.2947	320.5895	331.8342	0.6491	0.3509	0.4688	0.1179
16	64.9	164.5992	329.1984	331.8342	0.5176	0.4824	0.5000	0.0176
17	71.1	169.4033	338.8067	331.8342	0.3719	0.6281	0.5313	0.0969
18	72.4	170.3795	340.7590	331.8342	0.3440	0.6560	0.5625	0.0935
19	75.3	172.6086	345.2173	331.8342	0.2841	0.7159	0.5938	0.1221
20	75.8	172.9930	345.9859	331.8342	0.2744	0.7256	0.6250	0.1006
21	75.9	173.0391	346.0782	331.8342	0.2732	0.7268	0.6563	0.0706
22	76.1	173.2082	346.4164	331.8342	0.2690	0.7310	0.6875	0.0435
23	77.0	173.9153	347.8307	331.8342	0.2517	0.7483	0.7188	0.0296
24	81.3	177.1821	354.3643	331.8342	0.1805	0.8195	0.7500	0.0695
25	83.6	178.9885	357.9770	331.8342	0.1475	0.8525	0.7813	0.0712
26	85.0	180.0646	360.1292	331.8342	0.1300	0.8700	0.8125	0.0575
27	85.5	180.4105	360.8210	331.8342	0.1247	0.8753	0.8438	0.0315
28	87.8	182.2322	364.4644	331.8342	0.0994	0.9006	0.8750	0.0256
29	92.7	185.9525	371.9050	331.8342	0.0601	0.9399	0.9063	0.0337
30	93.9	186.9057	373.8113	331.8342	0.0523	0.9477	0.9375	0.0102
31	95.9	188.4353	376.8706	331.8342	0.0416	0.9584	0.9688	0.0104
							D=	0.1221

31.0 (Número de Datos)

-149.2586

2064.4 66.6

 $\begin{array}{lll} Des.Eest(S) & 16.76 \\ sesgo(\gamma) & 0.1553 \\ \beta_1 = (2/\gamma)^2 & 165.9171 \\ \alpha_1 = S/\sqrt{\beta_1} & 1.3010 \end{array}$

Suma Media

 $\dot{\delta_1}\!\!=\!\!X\!\!-\!\!\dot{\alpha_1}\beta_1$

d crítico = 0.238

α=0.05

PRUEBA DE KOLMOGOROV-SMIRNOV

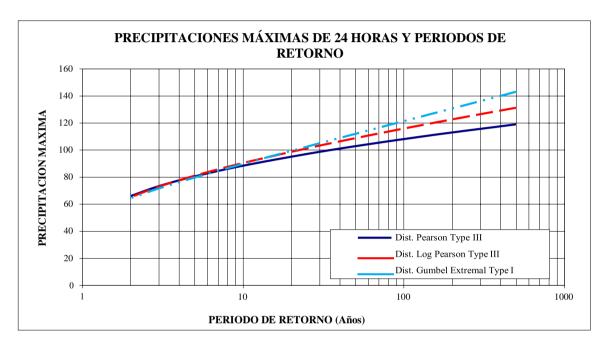
Distribución Log Pearson Tipo 3.- Precipitación Máxima en 24 horas ESTACION PLU-CUÑUMBUQUE

N	X	LnX	Y=(x-δ1)/α1	2 Y	2β1	χ2	Fx	Fo	Abs(Fo-Fx)
1	38.6	3.6535	159.8907	319.7814	374.2890	0.9804	0.0196	0.0313	0.0117
2	44.8	3.8022	167.7822	335.5644	374.2890	0.9239	0.0761	0.0625	0.0136
3	45.4	3.8155	168.4883	336.9765	374.2890	0.9157	0.0843	0.0938	0.0094
4	46.0	3.8295	169.2312	338.4624	374.2890	0.9063	0.0937	0.1250	0.0313
5	47.2	3.8548	170.5742	341.1485	374.2890	0.8876	0.1124	0.1563	0.0438
6	49.7	3.9060	173.2908	346.5816	374.2890	0.8422	0.1578	0.1875	0.0297
7	49.7	3.9060	173.2908	346.5816	374.2890	0.8422	0.1578	0.2188	0.0610
8	52.1	3.9526	175.7631	351.5261	374.2890	0.7923	0.2077	0.2500	0.0423
9	54.2	3.9927	177.8908	355.7816	374.2890	0.7431	0.2569	0.2813	0.0243
10	55.3	4.0128	178.9571	357.9142	374.2890	0.7165	0.2835	0.3125	0.0290
11	56.1	4.0271	179.7193	359.4387	374.2890	0.6967	0.3033	0.3438	0.0405
12	56.4	4.0325	180.0024	360.0048	374.2890	0.6893	0.3107	0.3750	0.0643
13	57.6	4.0535	181.1197	362.2394	374.2890	0.6592	0.3408	0.4063	0.0654
14	58.0	4.0603	181.4778	362.9557	374.2890	0.6493	0.3507	0.4375	0.0868
15	59.3	4.0823	182.6455	365.2909	374.2890	0.6166	0.3834	0.4688	0.0853
16	64.9	4.1725	187.4360	374.8721	374.2890	0.4776	0.5224	0.5000	0.0224
17	71.1	4.2645	192.3170	384.6339	374.2890	0.3411	0.6589	0.5313	0.1277
18	72.4	4.2822	193.2562	386.5124	374.2890	0.3168	0.6832	0.5625	0.1207
19	75.3	4.3215	195.3405	390.6810	374.2890	0.2659	0.7341	0.5938	0.1404
20	75.8	4.3281	195.6917	391.3834	374.2890	0.2577	0.7423	0.6250	0.1173
21	75.9	4.3289	195.7337	391.4674	374.2890	0.2568	0.7432	0.6563	0.0870
22	76.1	4.3318	195.8874	391.7748	374.2890	0.2533	0.7467	0.6875	0.0592
23	77.0	4.3438	196.5253	393.0506	374.2890	0.2391	0.7609	0.7188	0.0422
24	81.3	4.3975	199.3766	398.7531	374.2890	0.1814	0.8186	0.7500	0.0686
25	83.6	4.4260	200.8898	401.7795	374.2890	0.1549	0.8451	0.7813	0.0639
26	85.0	4.4427	201.7711	403.5423	374.2890	0.1407	0.8593	0.8125	0.0468
27	85.5	4.4479	202.0514	404.1027	374.2890	0.1364	0.8636	0.8438	0.0199
28	87.8	4.4753	203.5033	407.0066	374.2890	0.1156	0.8844	0.8750	0.0094
29	92.7	4.5289	206.3504	412.7008	374.2890	0.0818	0.9182	0.9063	0.0120
30	93.9	4.5422	207.0559	414.1118	374.2890	0.0747	0.9253	0.9375	0.0122
31	95.9	4.5632	208.1689	416.3377	374.2890	0.0646	0.9354	0.9688	0.0333
								D=	0.1404

n	31		
Suma	2064.4	d crítico =	0.238
Media	4.17	$\alpha = 0.05$	
Des.Eest(S)	0.2578		
sesgo(γ)	-0.1462		
$\beta_1 = (2/\gamma)^2$	187.1445		
$\alpha_1 = S/\sqrt{\beta_1}$	0.0188		
$\delta_1 = X - \alpha_1 \beta_1$	0.6407		

PRUEBA DE KOLMOGOROV-SMIRNOV

Distribución Gumbel.- Precipitación Máxima en 24 horas ESTACION PLU-CUÑUMBUQUE


N	X	Fx	Fo	Abs(Fo-Fx)
1	38.6	0.0231	0.0313	0.0081
2	44.8	0.0825	0.0625	0.0200
3	45.4	0.0910	0.0938	0.0028
4	46.0	0.1006	0.1250	0.0244
5	47.2	0.1196	0.1563	0.0366
6	49.7	0.1653	0.1875	0.0222
7	49.7	0.1653	0.2188	0.0535
8	52.1	0.2149	0.2500	0.0351
9	54.2	0.2634	0.2813	0.0178
10	55.3	0.2894	0.3125	0.0231
11	56.1	0.3087	0.3438	0.0351
12	56.4	0.3159	0.3750	0.0591
13	57.6	0.3451	0.4063	0.0611
14	58.0	0.3547	0.4375	0.0828
15	59.3	0.3863	0.4688	0.0825
16	64.9	0.5194	0.5000	0.0194
17	71.1	0.6492	0.5313	0.1179
18	72.4	0.6723	0.5625	0.1098
19	75.3	0.7209	0.5938	0.1271
20	75.8	0.7286	0.6250	0.1036
21	75.9	0.7295	0.6563	0.0733
22	76.1	0.7329	0.6875	0.0454
23	77.0	0.7466	0.7188	0.0278
24	81.3	0.8023	0.7500	0.0523
25	83.6	0.8283	0.7813	0.0471
26	85.0	0.8423	0.8125	0.0298
27	85.5	0.8466	0.8438	0.0029
28	87.8	0.8675	0.8750	0.0075
29	92.7	0.9021	0.9063	0.0041
30	93.9	0.9095	0.9375	0.0280
31	95.9	0.9203	0.9688	0.0485
	•	•	D=	0.1271

n : 31 d crítico : 0.23788 Suma : 2064.4 α : 0.05

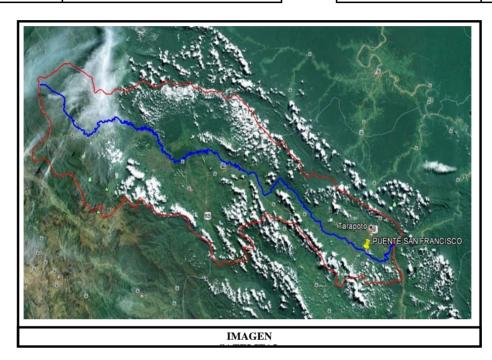
CUADRO Nº 10

PRECIPITACIONES MÁXIMAS PARA DIFERENTES PERIODOS DE RETORNO

: Retorno T	P	Type III X _T	on Type III X _T	remal Type I X _T
500	0.002	118.9	131.2	143.0
200	0.005	112.9	122.6	130.6
100	0.010	108.0	115.8	121.3
50	0.020	102.8	108.7	111.9
25	0.040	97.0	101.2	102.4
10	0.100	88.4	90.3	89.6
5	0.200	80.5	80.9	79.6
3	0.333	73.4	72.8	71.5
2	0.500	66.0	65.0	64.3

CUADRO Nº 11

PRECIPITACIÓN MÁXIMA CORREGIDA POR INTERVALO FIJO DE OBSERVACIÓN


	P max. sin corrección	P max. con corrección (*)
Período de	CUÑUMBUQUI	CUÑUMBUQUI
Retorno	Pearson Type III	Pearson Type III
500	118.9	134.35
200	112.9	127.56
100	108.0	122.06
50	102.8	116.13
25	97.0	109.66
10	88.4	99.89
5	80.5	90.97
3	73.4	82.89
2	66.0	74.63

PARÁMETROS GEOMORFOLÓGICOS DE LA CUENCA

PROYECTO : DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - LAMAS - CUÑUMBUQUI - SAN MARTÍN - 2014

LUGAR	SAN FRANCISCO DEL RÍO MAYO			
DISTRITO	CUÑUMBUQUI			

PROVINCIA	SAN MARTÍN		
REGIÓN	SAN MARTÍN		

PARÁMETROS			UND	NOMENGLATURA	CUENCA		
TARANETROS					UND	NOMENGLATURA	RÍO MAYO
Superficie total de la cuenca			Km²	Area cuenca	9247.53		
Perímetro					Km.	P	644.33
МА			1	$\mathbf{Kc} = 0.28 \mathbf{P} / (\mathbf{At})^{1/2}$	1.89		
CIONES DE FORMA	DE A	A A	Longitud (// al curso r	nás largo)	Km.	LB	299.00
편 문	ACTOR DE	FACTOR DE FORMA	Ancho Medio		Km.	AM = Área cuenca/ LB	30.93
O S3	S.D	FA	Factor de Forma		1	Ff = AM / LB	0.10
Z C DECTANGULO EQUIVALENTE		Lado Mayor	Km.	$\mathbf{L} = \mathbf{K}\mathbf{c}^*(\mathbf{p}\mathbf{i}^*\mathbf{A})^{1/2}/2^*(1+(1-4/\mathbf{p}\mathbf{i}^*\mathbf{K}\mathbf{c}^2))$	264.76		
ACI	RECTANGULO EQUIVALENTE Lado M		Lado Menor	Km.	B= At / L	34.93	
Cota Máxima de	la cuenca				m.s.n.m.	CMAX	3415.00
Cota Mínima de	la Cuenca				m.s.n.m.	CMIN	230.00
Desnivel total de la cuenca			m.s.n.m.	Ht	3185.00		
Altura media de la cuenca			m.s.n.m.	Hm	1592.50		
Pendiente de la cuenca (Sist. del Rectángulo Equivalente)			%	Ip =100 * Ht / B	9.12		
Pendiente media	del cauce d	del río			%	Im	1.07%

CÁLCULO DEL TIEMPO DE CONCENTRACIÓN

Tiempo requerido para que el agua fluya desde el punto más distante de la cuenca, hasta la boca de descarga

CARACTERISTICAS DE LA CUENCA

L: 299.00 Longitud de cauce principal (Km)

H: 3185.00 Diferencia de Cotas (m)

S: 0.011 Pendiente del cauce Principal (m/m)

A: 9247.53 Área (Km2)

I.- FORMULA DE KIRPICH

 $Tc = 0.06628 (L^{0.77})(Sk^{-0.385})$

L = 299.00 Distancia más lejana aportante al canal de desviación o cauce principal (Km) S = 0.01

Pendiente del cauce Principal (m/m)

Tc= 30.70 Hr

II.- FÓRMULA DE ROWE

$$\begin{array}{c|c}
\hline
(0.86 * L^3)^{0.385} \\
Tc = | & H
\end{array}$$

L = 299.00 Longitud de cauce principal (Km)

H = 3185.00 Diferencia de Cotas (m)

Tc= 30.58 Hr

III.- FÓRMULA DE LA SOIL CONSERVATION SERVICE OF CALIFORNIA

$$\mathcal{L} = \begin{array}{c|c} 0.871 & \left(\frac{L^3}{2} \right) \end{array}$$

H = 3185.00 Diferencia de Cotas (m)

 $L = \ 299.00 \qquad \qquad Longitud \ de \ cauce \ principal \ (Km)$

Tc = 30.73 Hr

EVALUACIÓN DE RESULTADOS

Método	Tc (Hora)
Fórmula de Kirpich	30.70 hr
Fórmula de Rowe	30.58 hr
Soil Conservation service of Califormia	30.73 hr
Promedio	30.67 hr

Tc (Asumido) >>>>>>	30.67 hr

DISTRIBUCIÓN GRANULOMÉTRICA DEL MATERIAL DEL LECHO DEL RÍO MAYO

MARGEN IZQUIERDA

Peso seco inicial : 5,480.00 gramos Peso lavado seco : 5,259.20 gramos

MALLA	ABERTURA	MATERIAL RET	ENIDO	PORCENTAJE AC	CUMULADOS	
WALLA	(mm) GRAMOS		%	RETENIDO	% QUE PASA	
3"	76.200				100.00	
2"	50.800				100.00	
1 1/2"	38.100	115.00	2.1	2.1	97.90	
1"	25.400	1,575.00	28.7	30.8	69.16	
3/4"	19.050	125.00	2.3	33.1	66.88	
3/8"	9.250	1,525.00	27.8	60.9	39.05	
Nº 4	4.750	640.00	11.7	72.6	27.37	
N° 10	2.000	490.00	8.9	81.6	18.43	
N° 20	0.850	351.20	6.4	88.0	12.02	
N° 40	0.425	183.90	3.4	91.3	8.67	
N° 80	0.180	81.15	1.5	92.8	7.19	
Nº 100	0.150	123.15	2.2	95.1	4.94	
N° 200	0.075	49.80	0.9	96.0	4.03	
FONDO	0.010	220.80	4.0	100.0		

\mathbf{Dm} (mm):	13.106
asumido :	13.000

MARGEN DERECHA

Peso seco inicial : 9,719.00 gramos Peso lavado seco : 9,499.70 gramos

MALLA	ABERTURA	MATERIAL RET	ENIDO	PORCENTAJE AC	CUMULADOS
MALLA	(mm)	GRAMOS	%	RETENIDO	% QUE PASA
3"	76.200				100.00
2"	50.800	738.00	7.6	7.6	92.41
1 1/2"	38.100	1,270.00	13.1	20.7	79.34
1"	25.400	1,521.00	15.6	36.3	63.69
3/4"	19.050	945.00	9.7	46.0	53.97
3/8"	9.250	1,150.00	11.8	57.9	42.13
Nº 4	4.750	810.00	8.3	66.2	33.80
Nº 10	2.000	643.14	6.6	72.8	27.18
N° 20	0.850	831.75	8.6	81.4	18.62
N° 40	0.425	619.81	6.4	87.8	12.25
N° 80	0.180	555.56	5.7	93.5	6.53
Nº 100	0.150	121.77	1.3	94.7	5.28
N° 200	0.075	293.67	3.0	97.7	2.26
FONDO	0.010	219.30	2.3	100.0	

D m (mm):	15.765
asumido :	15.7

PARÁMETROS HIDRÁULICOS DE LA SECCIÓN EN ESTUDIO

PARA LA SECCIÓN PROMEDIO DEL PUENTE

Periodo	Q Total	Cota (msnm)		Tirante, en el	E.G. Elev	Pendiente	Velocidad	Área	Ancho	N°Froude
de Retorno	(m3/s)	Cauce	NAME	eje cauce (m)	(msnm)	(m/m)	(m/s)	(m2)	(m)	
25	2019.22	196.87	201.87	5.00	211.50	0.0081	5.90	73.00	52.64	0.74
50	2315.84	196.87	205.42	8.55	212.45	0.0081	6.13	173.22	54.83	0.75
100	2599.65	196.87	209.60	12.73	213.40	0.0081	6.33	336.77	56.81	0.75
200	2871.82	196.87	213.00	16.13	214.35	0.0081	6.50	551.06	58.58	0.76
500	3218.82	196.87	215.30	18.43	216.25	0.0081	6.70	727.84	60.71	0.76

SECCIÓN ESTABLE O SECCIÓN DE EQUILIBRIO

PROCEDIMIENTO DE LACEY

 $B = 1.8Q^{1/2}$

Q = Caudal

B = Ancho Estable del Cauce (m)

Periodo de Retorno	Caudal (m³/s)	Ancho Estable
25	2019.22	80.88
50	2315.84	86.62
100	2599.65	91.78
200	2871.82	96.46
500	3218.82	102.12

Periodo de 100 años	92 m. (*)

(*).-

Se ha determinado optar una longitud estable de 105 m. Para la longitud del puente

CÁLCULO DE LA SOCAVACIÓN GENERAL EN EL RÍO MAYO (MÉTODO DE BLENCH)

Darena (mm) 14.50 asumido

PERIODO DE RETORNO	CAUDAL (m³/s)	CAUDAL (p³/s)	ANCHO SUPERIOR (m)	ANCHO SUPERIOR (Pies)	q _z (pies³/segxpie)	Fbo	dzo (pies)	dzo (m)	d (m)	Zg (m)
25	2,019.22	71,253	52.64	172.66	412.68	6.70	29.40	8.96	1.39	7.57
50	2,315.84	81,720	54.83	179.84	454.40	6.70	31.35	9.56	3.16	6.40
100	2,599.65	91,735	56.81	186.34	492.31	6.70	33.07	10.08	5.93	4.15
200	2,871.82	101,339	58.58	192.14	527.42	6.70	34.62	10.55	9.41	1.14
500	3,218.82	113,584	60.71	199.13	570.40	6.70	36.48	11.12	11.99	-0.87

CÁLCULO DE LA SOCAVACIÓN GENERAL EN EL RÍO MAYO (MÉTODO DE LISCHTVAN - LEVEDIEV)

Coef. Rugosidad (n) 0.050 Diámetro medio (mm): 14.50

% Caudal de diseño 1.07% 100% x

: 0.31

1/(1+x): 0.77

Suelos no Cohesivos

Suelos Cohesivos $ds = ((a t^{5/3})/(0.60 w^{1.18} \beta))^{1/(x+1)}$ $\mathbf{a} = \mathbf{Q}/(\mathbf{t}^{5/3}\mathbf{B} \; \mathbf{\mu})$ $ds = ((a t^{5/3})/(0.68 D^{0.28} \beta))^{1/(x+1)}$

Periodo de Retorno (Años)	Caudal (m³/s)	Ancho Superior (m)	Coeficiente de Contracción (µ)	Но (т)	a	β	Hs (m)	Socavación General (m)
25	2019.22	52.64	0.97	5.00	2.70	0.95	13.36	8.36
50	2315.84	54.83	0.97	8.55	1.22	0.97	14.12	5.57
100	2599.65	56.81	0.97	12.73	0.68	1.00	14.75	2.02
200	2871.82	58.58	0.97	16.13	0.49	1.02	15.28	-0.85
500	3218.82	60.71	0.97	18.43	0.43	1.05	15.87	-2.56

CÁLCULO DE LA PRECIPITACIÓN EFECTIVA

CN : 60 S (pulg) : 6.67 S (mm) : 169.33 Po (mm) : 33.87

 $P_{m\acute{a}x\,24\,horas} \hspace{1.5cm} : \hspace{1.5cm} 109.66 \hspace{0.1cm} \text{(Calculado anteriormente)}$

Tr : 25 Años

Tr	P acum.	P acum.	K	P neta acum.	P neta hr.
(horas)	%	(mm)		(mm)	(mm)
0	0.00	0.00	-33.87	0.00	
1	2.00	2.19	-31.67	0.00	0.00
2	3.50	3.84	-30.03	0.00	0.00
3	5.00	5.48	-28.38	0.00	0.00
4	7.50	8.22	-25.64	0.00	0.00
5	10.00	10.97	-22.90	0.00	0.00
6	13.00	14.26	-19.61	0.00	0.00
7	16.00	17.55	-16.32	0.00	0.00
8	20.00	21.93	-11.93	0.00	0.00
9	26.50	29.06	-4.81	0.00	0.00
10	52.50	57.57	23.70	2.91	2.91
11	63.00	69.09	35.22	6.06	3.15
12	68.50	75.12	41.25	8.08	2.02
13	73.00	80.05	46.19	9.90	1.82
14	76.50	83.89	50.02	11.41	1.51
15	80.00	87.73	53.86	13.00	1.59
16	83.00	91.02	57.15	14.42	1.42
17	86.00	94.31	60.44	15.90	1.48
18	89.00	97.60	63.73	17.43	1.53
19	91.00	99.79	65.92	18.47	1.05
20	93.00	101.98	68.12	19.54	1.07
21	95.00	104.18	70.31	20.63	1.09
22	96.50	105.82	71.96	21.46	0.83
23	98.00	107.47	73.60	22.30	0.84
24	100.00	109.66	75.79	23.44	1.14

NOTA: S = 1000/CN-10 (pulg:)

S = 25.4*S (mm.)

 $K = \Sigma P_{\text{acum}}$ - 0.2*S (mm.), K en mm.

Pp efectiva acumulada

- a) Si K< \acute{o} = 0, entonces Σ Pneta = Σ Pefectiva = 0
- b) Si K> 0, entonces $\Sigma P_{\text{neta (acumulada)}} = K^2/(P_{\text{Pacum}} + 0.8 \text{*S(mm.)})$

CÁLCULO DEL HIDROGRAMA UNITARIO DE MÁXIMAS AVENIDAS (Tr= 25 años)

DATOS: Est. PLU-CUÑUMBUQUE

 Ac
 :
 9247.53 Km²
 Tp:
 18.90 Horas

 Duración:
 1.00 Hora
 Tb:
 50.47 Horas

 Tc
 :
 30.67 Horas
 qp:
 101.76 m³/s/mm

Tiempo	Pp. Ef. hr.	Qp	TIEMPO DEL HID	OROGRAMA	
(horas)	(mm)	(m^3/s)	to	to + tp	to + tb
0-1	0.00	0.00	0.00	18.90	50.47
1-2	0.00	0.00	1.00	19.90	51.47
2-3	0.00	0.00	2.00	20.90	52.47
3-4	0.00	0.00	3.00	21.90	53.47
4-5	0.00	0.00	4.00	22.90	54.47
5-6	0.00	0.00	5.00	23.90	55.47
6-7	0.00	0.00	6.00	24.90	56.47
7-8	0.00	0.00	7.00	25.90	57.47
8-9	0.00	0.00	8.00	26.90	58.47
9-10	2.91	296.22	9.00	27.90	59.47
10-11	3.15	320.85	10.00	28.90	60.47
11-12	2.02	205.20	11.00	29.90	61.47
12-13	1.82	184.90	12.00	30.90	62.47
13-14	1.51	153.68	13.00	31.90	63.47
14-15	1.59	161.83	14.00	32.90	64.47
15-16	1.42	144.88	15.00	33.90	65.47
16-17	1.48	150.32	16.00	34.90	66.47
17-18	1.53	155.52	17.00	35.90	67.47
18-19	1.05	106.47	18.00	36.90	68.47
19-20	1.07	108.62	19.00	37.90	69.47
20-21	1.09	110.72	20.00	38.90	70.47
21-22	0.83	84.38	21.00	39.90	71.47
22-23	0.84	85.51	22.00	40.90	72.47
23-24	1.14	115.72	23.00	41.90	73.47

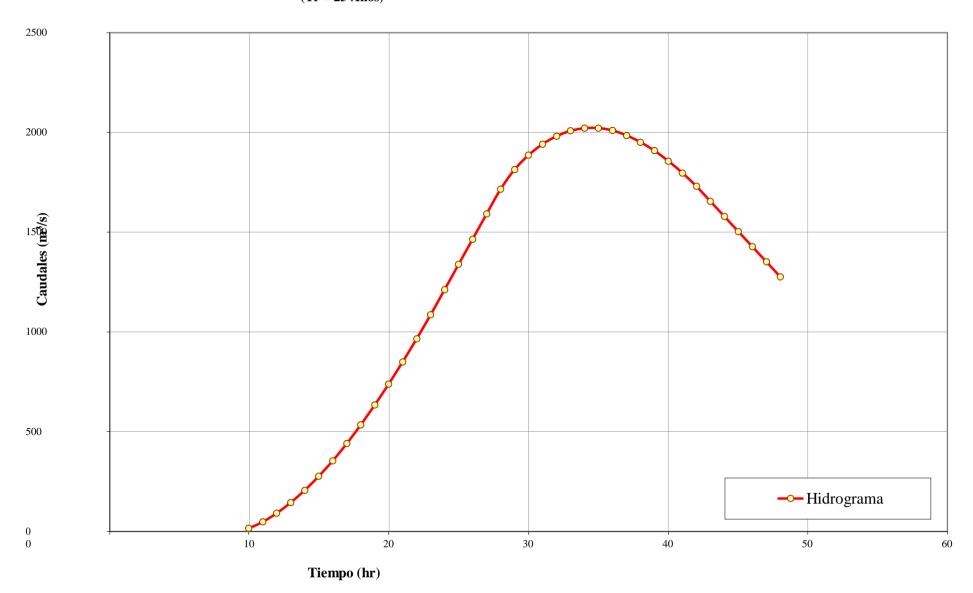
NOTA:

Tb = 2.67*Tp donde:

 $\begin{array}{ll} Tp = 0.5*D + 0.6*Tc & A: \mbox{ Area de la cuenca en } Km^2 \\ qp = 0.208*A/Tp & D: \mbox{ Duración de la lluvia en horas} \\ Qp = qp*Pp.efec. & Tc: \mbox{ Tiempo de concentración} \end{array}$

Tb: Tiempo base del Hidrograma Unitario en horas Tp: Tiempo pico al Q máx. Horas qp: Caudal pico al Tp. en m^3/s/mm Qp: Caudal en m^3/s

CÁLCULO DEL HIDROGRAMA TOTAL DE MÁXIMAS AVENIDAS (Tr= 25 Años)


DATOS

: Ac : 9248 Km² Tp : 18.90 Horas D : 1.00 Hora Tb : 50.47 Horas Tc : 30.67 Horas qp : 101.76 m²3/s/mm

EMPO	Qp	to	to -	⊦ tp	to + tb										C	AUDAL	ES DEL	. HIDR	OGRAM	[A																									
	m^3/s	t inici	al t n	áx.	t final	10	- 1	1	12	13	14	15		16	7 18	19	20	2	1 2	2	2	2	5 26	21	28	29	30	31	32	33	34	35	36	37	38	39	4	4	4	4	4	4:	4	4	ı
0 - 1	0.00	0.	00 18	.90	50.47																																								
1 - 2	0.00	1.	00 19	.90	51.47																																								
2 - 3	0.00	2.	00 20	.90	52.47																																								
3 - 4	0.00	3.	00 21	.90	53.47																																								
4 - 5	0.00	4.	00 22	.90	54.47																																								1
5 - 6	0.00	5.	00 23	.90	55.47																																								1
6 - 7	0.00	6.	00 24	.90	56.47																																								1
7 - 8	0.00	7.	00 25	.90	57.47																																								1
8 - 9	0.00	8.	00 20	.90	58.47																																								1
9 - 10	296.22	9.	00 27	.90	59.47	15.67	31.	34	47.01	62.69	78.36	94.03	109.7	0 125.3	7 141.04	156.71	172.38	188.06	203.73	219.40	235.0	250.7	266.41	282.08	295.30	285.91	276.53	267.15	257.7€	248.38	238.99	229.61	220.23	210.84	201.46	192.07	182.69	173.3	163.9	154.5	145.13	135.7	126.3	117.0	10
10 - 11	320.85	10.	00 28	.90	60.47		16.	97	33.95	50.92	67.90	84.87	101.8	5 118.8	2 135.80	152.77	169.74	186.72	203.69	220.6	237.6	254.6	271.59	288.57	305.54	319.85	309.69	299.53	289.36	279.20	269.03	258.87	248.70	238.54	228.38	218.21	208.05	197.8	187.7	177.5	167.39	157.23	147.0	136.9	12
11 - 12	205.20	11.	00 29	.90	61.47				10.86	21.71	32.57	43.42	54.2	8 65.1	4 75.99	86.85	97.70	108.56	119.42	130.2	141.1	151.9	162.84	173.69	184.55	195.41	204.56	198.06	191.56	185.06	178.5€	172.06	165.56	159.0€	152.56	146.06	139.50	133.0	126.5	120.0	113.55	107.03	100.5	94.0	8
12 - 13	184.90	12.	00 30	.90	62.47					9.78	19.56	29.35	39.1	3 48.9	1 58.69	68.47	78.26	88.04	97.83	107.6	117.3	127.1	136.95	146.73	156.51	166.29	176.07	184.32	178.47	172.61	166.75	160.89	155.04	149.18	143.32	137.46	131.6	125.73	119.8	114.0	108.11	102.33	96.4	90.6	5 8
13 - 14	153.68	13.	00 31	.90	63.47						8.13	16.26	24.3	9 32.5	2 40.65	48.78	56.91	65.04	73.17	81.3	89.4	97.5	105.69	113.82	121.95	130.08	138.21	146.34	153.20	148.33	143.46	138.60	133.73	128.8€	123.99	119.12	114.25	109.39	104.5	99.6	94.78	89.9	85.0	80.1	7
14 - 15	161.83	14.	00 32	.90	64.47							8.56	17.1	2 25.6	8 34.25	42.81	51.37	59.93	68.49	77.0	85.6	94.1	102.74	111.30	119.86	128.42	136.98	145.54	154.10	161.32	156.20	151.07	145.94	140.82	135.69	130.56	125.44	120.3	115.1	110.0	104.93	99.80	94.6	89.5	5. 8
15 - 16	144.88	15.	00 33	.90	65.47								7.6	6 15.3	3 22.99	30.66	38.32	45.99	53.65	61.3	68.9	76.6	84.31	91.98	99.64	107.31	114.97	122.64	130.30	137.96	144.43	139.84	135.25	130.66	126.07	121.48	116.89	112.30	107.7	103.13	98.5	93.9	89.3	84.7	8
16 - 17	150.32	16.	00 34	.90	66.47									7.9	5 15.90	23.86	31.81	39.76	47.71	55.6	63.6	71.5	79.52	87.48	95.43	103.38	111.33	119.29	127.24	135.19	143.14	149.85	145.09	140.33	135.56	130.80	126.04	121.2	116.5	111.7	106.99	102.23	97.4	92.7	8
17 - 18	155.52	17.	00 35	.90	67.47										8.23	16.46	24.68	32.91	41.14	49.3	57.6	65.8	74.05	82.28	90.51	98.73	106.96	115.19	123.42	131.65	139.87	148.10	155.04	150.11	145.19	140.26	135.33	130.4	125.4	120.5	115.63	110.70	105.7	100.8	9
18 - 19	106.47	18.	00 36	.90	68.47											5.63	11.27	16.90	22.53	28.1	33.8	39.4	45.06	50.69	56.33	61.96	67.59	73.22	78.8€	84.49	90.12	95.75	101.39	106.14	102.76	99.39	96.00	92.6	89.2	85.9	82.53	79.15	75.7	72.4	
19 - 20	108.62	19.	00 37	.90	69.47												5.75	11.49	17.24	22.9	28.7	34.4	8 40.23	45.97	51.72	57.47	63.21	68.96	74.71	80.45	86.20	91.95	97.69	103.44	108.29	104.85	101.40	97.9	94.5	91.0	87.6	84.20	80.70	77.3	6 7
20 - 21	110.72	20.	00 38	.90	70.47													5.86	11.72	17.5	23.4	29.2	9 35.15	41.00	46.86	52.72	58.58	64.43	70.29	76.15	82.01	87.86	93.72	99.58	105.44	110.38	106.83	103.30	99.8	96.3	92.8	89.33	85.83	82.3	6 7
21 - 22	84.38	21.	00 39	.90	71.47														4.46	8.9	13.39	17.8	22.32	26.79	31.25	35.71	40.18	44.64	49.11	53.57	58.03	62.50	66.96	71.43	75.89	80.36	84.12	81.4	78.7	76.1	73.43	70.75	68.0	65.4	
22 - 23	85.51	22.	00 40	.90	72.47															4.5	9.0:	13.5	18.09	22.62	27.14	31.67	36.19	40.71	45.24	49.76	54.28	58.81	63.33	67.85	72.38	76.90	81.43	85.2	82.5	79.8	77.1	74.4	71.70	68.9	(
23 - 24	115.72	23.	00 41	.90	73.47		1				t		1	1		1					6.13	12.2	18.37	24.49	30.61	36.73	42.85	48.98	55.10	61.22	67.34	73.46	79.59	85.71	91.83	97.95	104.0	110.20	115.3	111.6	108.03	104.30	100.69	97.0) 9

	TOTAL:	15.67	48.32	91.82	145.10	206.52	276.49	354.13	439.72	533.54	633.00	738.20	849.25	964.77	*****	*****	*****	*****	*****	*****	*****	*****	*****	******	2005.34	*****	*****	2007.26	######	*****	*****	*****	*****	*****	######	*****	*****	*****	*****	#####
--	--------	-------	-------	-------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------	---------	-------	-------	---------	--------	-------	-------	-------	-------	-------	--------	-------	-------	-------	-------	-------

HIDROGRAMA DE MÁXIMAS AVENIDAS (Tr = 25 Años)

CÁLCULO DE LA PRECIPITACIÓN EFECTIVA

CN : 60 S (pulg) : 6.67 S (mm) : 169.33 Po (mm) : 33.87

 $P_{m\acute{a}x\,24\,horas} \hspace{1.5cm} : \hspace{1.5cm} 116.13 \hspace{0.1cm} \text{(Calculado anteriormente)}$

Tr : 50 Años

Tr	P acum.	P acum.	K	P neta acum.	P neta hr.
(horas)	%	(mm)		(mm)	(mm)
0	0.00	0.00	-33.87	0.00	
1	2.00	2.32	-31.54	0.00	0.00
2	3.50	4.06	-29.80	0.00	0.00
3	5.00	5.81	-28.06	0.00	0.00
4	7.50	8.71	-25.16	0.00	0.00
5	10.00	11.61	-22.25	0.00	0.00
6	13.00	15.10	-18.77	0.00	0.00
7	16.00	18.58	-15.29	0.00	0.00
8	20.00	23.23	-10.64	0.00	0.00
9	26.50	30.77	-3.09	0.00	0.00
10	52.50	60.97	27.10	3.74	3.74
11	63.00	73.16	39.30	7.40	3.66
12	68.50	79.55	45.68	9.71	2.30
13	73.00	84.77	50.91	11.77	2.06
14	76.50	88.84	54.97	13.47	1.71
15	80.00	92.90	59.04	15.26	1.79
16	83.00	96.39	62.52	16.86	1.60
17	86.00	99.87	66.01	18.51	1.65
18	89.00	103.36	69.49	20.22	1.71
19	91.00	105.68	71.81	21.39	1.17
20	93.00	108.00	74.13	22.57	1.19
21	95.00	110.32	76.46	23.78	1.21
22	96.50	112.07	78.20	24.70	0.92
23	98.00	113.81	79.94	25.64	0.93
24	100.00	116.13	82.26	26.90	1.26

NOTA: S = 1000/CN-10 (pulg:)

S = 25.4*S (mm.)

 $K = \Sigma P_{\text{acum}}$ - 0.2*S (mm.), K en mm.

Pp efectiva acumulada

- a) Si K< \acute{o} = 0, entonces Σ Pneta = Σ Pefectiva = 0
- b) Si K> 0, entonces $\Sigma P_{\text{neta (acumulada)}} = K^2 / (P_{\text{Pacum}} + 0.8 \text{ S (mm.)})$

CÁLCULO DEL HIDROGRAMA UNITARIO DE MÁXIMAS AVENIDAS (Tr= 50 años)

DATOS: Est. PLU-CUÑUMBUQUE

 Ac
 :
 9247.53 Km²
 Tp:
 18.90 Horas

 Duración :
 1.00 Hora
 Tb:
 50.47 Horas

 Tc
 :
 30.67 Horas
 qp:
 101.76 m³/s/mm

Tiempo	Pp. Ef. hr.	Qp	TIEMPO DEL HID	DROGRAMA	
(horas)	(mm)	(m^3/s)	to	to + tp	to + tb
0-1	0.00	0.00	0.00	18.90	50.47
1-2	0.00	0.00	1.00	19.90	51.47
2-3	0.00	0.00	2.00	20.90	52.47
3-4	0.00	0.00	3.00	21.90	53.47
4-5	0.00	0.00	4.00	22.90	54.47
5-6	0.00	0.00	5.00	23.90	55.47
6-7	0.00	0.00	6.00	24.90	56.47
7-8	0.00	0.00	7.00	25.90	57.47
8-9	0.00	0.00	8.00	26.90	58.47
9-10	3.74	380.50	9.00	27.90	59.47
10-11	3.66	372.66	10.00	28.90	60.47
11-12	2.30	234.50	11.00	29.90	61.47
12-13	2.06	209.79	12.00	30.90	62.47
13-14	1.71	173.54	13.00	31.90	63.47
14-15	1.79	182.09	14.00	32.90	64.47
15-16	1.60	162.54	15.00	33.90	65.47
16-17	1.65	168.22	16.00	34.90	66.47
17-18	1.71	173.66	17.00	35.90	67.47
18-19	1.17	118.67	18.00	36.90	68.47
19-20	1.19	120.92	19.00	37.90	69.47
20-21	1.21	123.10	20.00	38.90	70.47
21-22	0.92	93.72	21.00	39.90	71.47
22-23	0.93	94.89	22.00	40.90	72.47
23-24	1.26	128.29	23.00	41.90	73.47

NOTA:

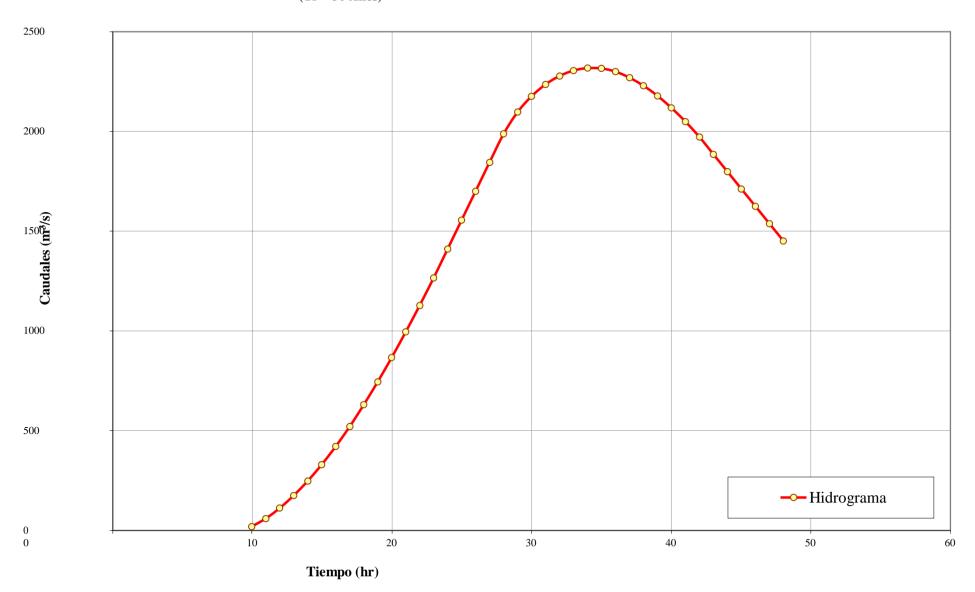
Tb = 2.67*Tp donde:

 $Tp = 0.5*D + 0.6*Tc \qquad \qquad A: \text{ Área de la cuenca en } Km^2 \\ qp = 0.208*A/Tp \qquad \qquad D: \text{ Duración de la lluvia en horas} \\ Qp = qp*Pp.efec. \qquad \qquad Tc: \text{ Tiempo de concentración}$

Tb: Tiempo base del Hidrograma Unitario en horas Tp: Tiempo pico al Q máx. Horas

qp: Caudal pico al Tp. en m^3/s/mm Qp: Caudal en m^3/s

CÁLCULO DEL HIDROGRAMA TOTAL DE MÁXIMAS AVENIDAS (Tr= 50 Años)


DATOS

Ac: 9248 Km²
D: 1.00 Hora
Tc: 30.67 Horas

Tp: 18.90 Horas Tb: 50.47 Horas qp: 101.76 m^3/s/mm

MPO	Qp	to	to +		+ tb												CA	UDALE	S DEI	L HIDR	OGRA!	MA																											
	m^3/s	t inicia	al t ma	ix. t	final	- 10	0 1	1	12	13	14		15	16	17	18	19	2	:0	21 22		23	24	25	26	27	28	2	9 3	3	31 3	2 3	33 34	35	36	37	38	39	40	41	4	43	4	4 45	40	4	48	49	9
1	0.00	0.0	00 1	8.90	50.47																																												\neg
2	0.00	1.0	00 19	9.90	51.47																																												\neg
	0.00	2.0	00 20	0.90	52.47																																												T
	0.00	3.0	00 2	1.90	53.47																																												
	0.00	4.0	00 2:	2.90	54.47																																												
	0.00	5.0	00 2	3.90	55.47																																												
	0.00	6.0	00 2	4.90	56.47																																												
	0.00	7.0	00 2:	5.90	57.47																																												
	0.00	8.0	00 20	5.90	58.47																																												
	380.50	9.0	00 2	7.90	59.47	20.1	3 40.2	6 6	0.39 8	80.52	100.65	5 120.	.78 1	140.91	161.04	181.17	201.30	221.4	13 241	1.56 261.	69 28	81.82	301.95	322.08	342.2	362.34	379.33	367.2	355.2	343.1	15 331.1	319.0	306.99	294.94	282.89	270.83	258.78	246.73	234.6	222.62	210.5	198.51	186.4	174.40	162.3	150.2	138.24	126.	.18
	372.66	10.0	00 2	8.90	60.47		19.7	2 3	9.43 5	59.15	78.86	98.	.58 1	118.29	138.01	157.72	177.44	197.1	16 216	5.87 236.	59 25	56.30	276.02	295.73	315.45	335.16	354.8	371.5	359.7	347.8	336.0	324.2	28 312.48	300.67	288.8	277.00	265.25	253.45	241.6	229.84	218.0	206.23	194.4	182.6	170.8	159.0	147.20	135.3	.39
	234.50	11.0	00 25	9.90	61.47			1	2.41 2	24.81	37.2	2 49.	.62	62.03	74.44	86.84	99.25	111.6	66 124	4.06 136.	47 14	48.87	161.28	173.69	186.09	198.50	210.9	223.3	233.7	226.3	218.9	211.4	49 204.06	196.63	189.20	181.77	174.34	166.93	159.49	152.06	144.6	137.20	129.7	122.34	114.9	107.4	100.05	92.6	.63
	209.79	12.0	00 30	0.90	62.47				1	11.10	22.20	33.	.30	44.40	55.49	66.59	77.69	88.7	99	9.89 110.	99 12	22.09	133.19	144.28	155.31	166.48	177.50	188.6	199.7	209.1	202.4	195.8	85 189.20	182.55	175.9	169.26	162.62	155.93	149.33	142.68	136.0	129.39	122.7	116.09	109.43	102.8	96.16	89.5	.51
	173.54	13.0	00 3	1.90	63.47						9.18	18.	.36	27.54	36.72	45.91	55.09	64.2	27 73	3.45 82.6	53 9	91.81	100.99	110.17	119.30	128.54	137.72	146.9	156.0	165.2	26 173.0	167.5	51 162.01	156.51	151.0	145.52	140.02	134.50	129.03	123.52	118.0	112.53	107.0	101.53	96.0	90.5	85.04	79.5	.54
	182.09	14.0	00 3	2.90	64.47							9.	63	19.27	28.90	38.53	48.17	57.8	67	7.43 77.0	07 8	86.70	96.33	105.97	115.60	125.23	134.83	144.5	154.1	163.7	173.4	181.5	52 175.75	169.99	164.23	158.45	152.68	146.93	141.14	135.38	129.6	123.84	118.0	112.30	106.5	100.7	95.00	89.2	.23
	162.54	15.0	00 3:	3.90	65.47									8.60	17.20	25.80	34.40	42.9	9 51	1.59 60.1	19 6	68.79	77.39	85.99	94.5	103.19	111.79	120.3	128.9	137.5	146.1	154.7	78 162.03	156.88	151.73	146.58	141.44	136.29	131.14	125.99	120.8	115.69	110.5	105.39	100.2	95.0	89.95	84.8	.80
	168.22	16.0	00 3	4.90	66.47										8.90	17.80	26.70	35.6	50 44	4.50 53.4	10 6	62.30	71.20	80.10	89.0	97.90	106.80	115.7	124.5	133.4	19 142.3	151.2	29 160.19	167.70	162.3	157.04	151.71	146.38	141.05	135.72	130.3	125.07	119.7	114.4	109.00	103.7	98.42	93.0	.09
	173.66	17.0	00 3:	5.90	67.47											9.19	18.37	27.5	56 36	6.75 45.9	94 5	55.12	64.31	73.50	82.6	91.87	101.00	110.2	119.4	128.6	52 137.8	146.9	99 156.18	165.37	173.13	167.63	162.11	156.63	151.1	145.61	140.1	134.61	129.1	123.6	118.10	112.6	107.10	101.6	.60
	118.67	18.0	00 3	5.90	68.47												6.28	12.5	56 18	8.84 25.1	11 3	31.39	37.67	43.95	50.2	56.51	62.78	69.0	75.3	81.6	50 87.9	94.1	18 100.45	106.73	113.0	118.31	114.55	110.79	107.03	103.27	99.5	95.75	91.9	88.2	84.4	80.7	76.95	73.1	.19
	120.92	19.0	00 3	7.90	69.47		Ì										Ì	6.4	0 12	2.79 19.1	19 2	25.59	31.99	38.38	44.7	51.18	57.5	63.9	70.3	76.1	7. 83.1	89.5	56 95.96	102.35	108.75	115.15	120.54	116.7	112.8	109.05	105.2	101.39	97.5	93.73	89.9	86.0	82.24	78.4	.41
	123.10	20.0	00 3	8.90	70.47														6	5.51 13.0	03 1	19.54	26.05	32.56	39.0	45.59	52.10	58.6	65.1	71.6	54 78.1	15 84.6	91.18	97.69	104.20	110.71	117.23	122.73	118.83	114.92	111.0	107.12	103.2	99.3	95.4	91.5	87.62	83.7	.72
	93.72	21.0	00 3	9.90	71.47		Ì										Ì			4.9	6	9.92	14.87	19.83	24.7	29.75	34.7	39.6	44.6	49.5	54.5	59.5	50 64.46	69.42	74.3	79.33	84.29	89.2	93.4	90.46	87.4	84.52	81.5	78.50	75.6	72.6	69.68	66.7	.71
	94.89	22.0	00 40	0.90	72.47		Ì										Ì					5.02	10.04	15.06	20.0	25.10	30.13	35.1	40.1	45.1	18 50.2	55.2	22 60.24	65.26	70.2	75.30	80.32	85.34	90.3	94.59	91.5	88.58	85.5	82.5	79.5	76.5	73.55	70.5	.55
	128.29	23.0	00 4	1.90	73.47																		6.79	13.57	20.3	27.15	33.0	40.7	47.5	54 3	80 61.0	67.1	74.66	81.45	88.2	95.00	101.81	108.60	115.3	122.17	127.8	123.83	119.7	115.70	111.6	107.5	103.51	99.4	.44

HIDROGRAMA DE MÁXIMAS AVENIDAS (Tr = 50 Años)

CÁLCULO DE LA PRECIPITACIÓN EFECTIVA

CN : 60 S (pulg) : 6.67 S (mm) : 169.33 Po (mm) : 33.87

 $P_{m\acute{a}x\,24\,horas} \hspace{1.5cm} : \hspace{1.5cm} 122.06 \hspace{0.1cm} \text{(Calculado anteriormente)}$

Tr : 100 Años

Tr	P acum.	P acum.	K	P neta acum.	P neta hr.
(horas)	%	(mm)		(mm)	(mm)
0	0.00	0.00	-33.87	0.00	
1	2.00	2.44	-31.43	0.00	0.00
2	3.50	4.27	-29.59	0.00	0.00
3	5.00	6.10	-27.76	0.00	0.00
4	7.50	9.15	-24.71	0.00	0.00
5	10.00	12.21	-21.66	0.00	0.00
6	13.00	15.87	-18.00	0.00	0.00
7	16.00	19.53	-14.34	0.00	0.00
8	20.00	24.41	-9.45	0.00	0.00
9	26.50	32.35	-1.52	0.00	0.00
10	52.50	64.08	30.21	4.58	4.58
11	63.00	76.90	43.03	8.72	4.14
12	68.50	83.61	49.74	11.30	2.58
13	73.00	89.10	55.24	13.59	2.29
14	76.50	93.38	59.51	15.48	1.89
15	80.00	97.65	63.78	17.45	1.98
16	83.00	101.31	67.44	19.21	1.76
17	86.00	104.97	71.10	21.03	1.82
18	89.00	108.63	74.77	22.90	1.87
19	91.00	111.07	77.21	24.18	1.28
20	93.00	113.52	79.65	25.48	1.30
21	95.00	115.96	82.09	26.80	1.32
22	96.50	117.79	83.92	27.81	1.01
23	98.00	119.62	85.75	28.83	1.02
24	100.00	122.06	88.19	30.20	1.38

NOTA: S = 1000/CN-10 (pulg:)

S = 25.4*S (mm.)

 $K = \Sigma P_{\text{acum}}$ - 0.2*S (mm.), K en mm.

Pp efectiva acumulada

- a) Si K< \acute{o} = 0, entonces Σ Pneta = Σ Pefectiva = 0
- b) Si K> 0, entonces $\Sigma P_{\text{neta (acumulada)}} = K^2 / (P_{\text{Pacum}} + 0.8 \text{*S (mm.)})$

CÁLCULO DEL HIDROGRAMA UNITARIO DE MÁXIMAS AVENIDAS (Tr= 100 años)

DATOS: Est. PLU-CUÑUMBUQUE

 Ac
 :
 9247.53 Km²
 Tp:
 18.90 Horas

 Duración:
 1.00 Hora
 Tb:
 50.47 Horas

 Tc
 :
 30.67 Horas
 qp:
 101.76 m³/s/mm

Tiempo	Pp. Ef. hr.	Qp	TIEMPO DEL HII	DROGRAMA	
(horas)	(mm)	(m^3/s)	to	to + tp	to + tb
0-1	0.00	0.00	0.00	18.90	50.47
1-2	0.00	0.00	1.00	19.90	51.47
2-3	0.00	0.00	2.00	20.90	52.47
3-4	0.00	0.00	3.00	21.90	53.47
4-5	0.00	0.00	4.00	22.90	54.47
5-6	0.00	0.00	5.00	23.90	55.47
6-7	0.00	0.00	6.00	24.90	56.47
7-8	0.00	0.00	7.00	25.90	57.47
8-9	0.00	0.00	8.00	26.90	58.47
9-10	4.58	465.56	9.00	27.90	59.47
10-11	4.14	421.73	10.00	28.90	60.47
11-12	2.58	262.11	11.00	29.90	61.47
12-13	2.29	233.18	12.00	30.90	62.47
13-14	1.89	192.17	13.00	31.90	63.47
14-15	1.98	201.06	14.00	32.90	64.47
15-16	1.76	179.05	15.00	33.90	65.47
16-17	1.82	184.95	16.00	34.90	66.47
17-18	1.87	190.58	17.00	35.90	67.47
18-19	1.28	130.06	18.00	36.90	68.47
19-20	1.30	132.38	19.00	37.90	69.47
20-21	1.32	134.63	20.00	38.90	70.47
21-22	1.01	102.41	21.00	39.90	71.47
22-23	1.02	103.62	22.00	40.90	72.47
23-24	1.38	139.99	23.00	41.90	73.47

NOTA:

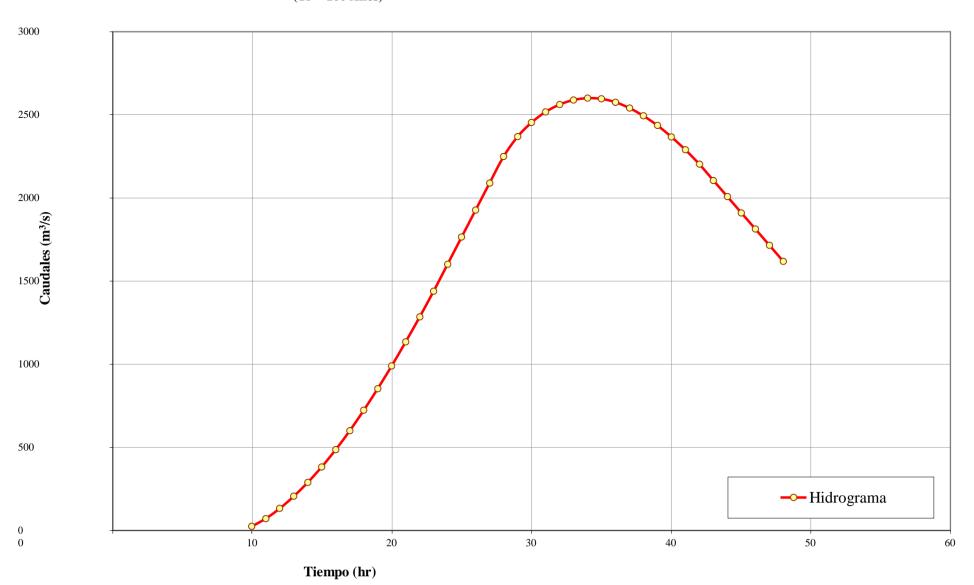
Tb = 2.67*Tp donde:

 $Tp = 0.5*D + 0.6*Tc \qquad \qquad A: \text{ Área de la cuenca en } Km^2 \\ qp = 0.208*A/Tp \qquad \qquad D: \text{ Duración de la lluvia en horas} \\ Qp = qp*Pp.efec. \qquad \qquad Tc: \text{ Tiempo de concentración}$

Tb: Tiempo base del Hidrograma Unitario en horas Tp: Tiempo pico al Q máx. Horas

qp: Caudal pico al Tp. en m^3/s/mm Qp: Caudal en m^3/s

CÁLCULO DEL HIDROGRAMA TOTAL DE MÁXIMAS AVENIDAS (Tr= 100 Años)


DATOS :

Ac: 9248 Km² D: 1.00 Hora Tc: 30.67 Horas Tp: 18.90 Horas Tb: 50.47 Horas qp: 101.76 m^3/s/mm

PO Ç)p	to	to + tp	to + tb										CAUL	ALES I	EL HID	ROGRA	MA																										
n	n^3/s	t inicial	t máx.	t final	10	11		12 13	14	- 1	5 16	5 17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	45
- 1	0.00	0.00	18.90	50.47																																		$\overline{}$					\neg	$\overline{}$
- 2	0.00	1.00	19.90	51.47																																								ī
- 3	0.00	2.00	20.90	52.47																																								ī
4	0.00	3.00	21.90	53.47																																								ı
5	0.00	4.00	22.90	54.47																																								ı
6	0.00	5.00	23.90	55.47																																								
	0.00	6.00	24.90	56.47																																								
	0.00	7.00	25.90	57.47	1																																							ī
,	0.00	8.00	26.90	58.47	1																																							ī
)	465.56	9.00	27.90	59.47	24.63	49.20	5 73.	89 98.52	123.15	147.7	8 172.4	1 197.04	221.67	246.30	270.93	295.56	320.19	344.82	369.45	394.08	418.71	443.34	464.11	449.36	434.62	419.87	405.12	390.37	375.62	360.87	346.12	331.38	316.63	301.88	287.13	272.38	257.63	242.88	228.14	213.39	198.64	183.89	169.14	154.
1	421.73	10.00	28.90	60.47		22.31	1 44.	62 66.93	89.25	111.5	6 133.8	7 156.18	178.49	200.80	223.11	245.43	267.74	290.05	312.36	334.67	356.98	379.29	401.61	420.42	407.06	393.70	380.34	366.98	353.62	340.26	326.90	313.54	300.18	286.82	273.46	260.10	246.74	233.38	220.02	206.66	193.30	179.94	166.58	153
2	262.11		29.90	61.47	1		13.3	87 27.73	41.60	55.4	7 69.3	83.20	97.07	110.94	124.80	138.67	152.54	166.40	180.27	194.14	208.00	221.87	235.74	249.61	261.30	253.00	244.69	236.39	228.09	219.78	211.48	203.17	194.87	186.57	178.26	169.96	161.66	153.35	145.05	136.75	128.44	120.14	111.84	103
3	233.18	12.00	30.90	62.47				12.34	24.67	37.0	1 49.3	61.68	74.02	86.35	98.69	111.03	123.36	135.70	148.04	160.37	172.71	185.04	197.38	209.72	222.05	232.46	225.07	217.68	210.30	202.91	195.52	188.13	180.75	173.36	165.97	158.59	151.20	143.81	136.43	129.04	121.65	114.26	106.88	99
4	192.17	13.00	31.90	63.47					10.17	20.3	3 30.5	0 40.67	50.83	61.00	71.17	81.33	91.50	101.67	111.84	122.00	132.17	142.34	152.50	162.67	172.84	183.00	191.58	185.49	179.40	173.31	167.23	161.14	155.05	148.96	142.87	136.79	130.70	124.61	118.52	112.43	106.35	100.26	94.17	- 88
5	201.06	14.00	32.90	64.47	1					10.6	4 21.2	7 31.91	42.55	53.19	63.82	74.46	85.10	95.73	106.37	117.01	127.65	138.28	148.92	159.56	170.19	180.83	191.47	200.44	194.07	187.70	181.33	174.96	168.59	162.22	155.85	149.48	143.11	136.74	130.37	124.00	117.64	111.27	104.90	98
6	179.05	15.00	33.90	65.47							9.4	7 18.95	28.42	37.89	47.36	56.84	66.31	75.78	85.25	94.73	104.20	113.67	123.14	132.62	142.09	151.56	161.03	170.51	78.50	172.82	167.15	161.48	155.81	150.13	144.46	138.79	133.12	127.45	121.77	116.10	110.43	104.76	99.08	93
7	184.95	16.00	34.90	66.47								9.78	19.57	29.35	39.14	48.92	58.71	68.49	78.28	88.06	97.85	107.63	117.41	127.20	136.98	146.77	156.55	166.34	176.12	184.37	178.51	172.66	166.80	160.94	155.08	149.22	143.36	137.50	131.64	125.78	119.92	114.07	108.21	102
3	190.58	17.00	35.90	67.47									10.08	20.16	30.25	40.33	50.41	60.49	70.58	80.66	90.74	100.82	110.91	120.99	131.07	141.15	151.24	161.32	171.40	181.48	189.99	183.95	177.91	171.88	165.84	159.80	153.76	147.73	141.69	135.65	129.61	123.58	117.54	111
9	130.06	18.00	36.90	68.47	1									6.88	13.76	20.64	27.52	34.40	41.28	48.16	55.04	61.93	68.81	75.69	82.57	89.45	96.33	103.21	110.09	116.97	123.85	129.65	125.53	121.41	117.29	113.17	109.05	104.93	100.81	96.69	92.57	88.45	84.33	80
0	132.38		37.90	69.47											7.00	14.01	21.01	28.01	35.02	42.02	49.02	56.03	63.03	70.03	77.04	84.04	91.04	98.05	105.05	112.05	119.06	126.06	131.97	127.77	123.58	119.39	115.19	111.00	106.81	102.61	98.42	94.22	90.03	85
1	134.63	20.00	38.90	70.47	1											7.12	14.25	21.37	28.49	35.61	42.74	49.86	56.98	64.10	71.23	78.35	85.47	92.59	99.72	106.84	113.96	121.08	128.21	134.21	129.95	125.68	121.42	117.15	112.89	108.62	104.36	100.09	95.83	91
2	102.41	21.00	39.90	71.47													5.42	10.84	16.25	21.67	27.09	32.51	37.93	43.34	48.76	54.18	59.60	65.02	70.44	75.85	81.27	86.69	92.11	97.53	102.10	98.85	95.61	92.36	89.12	85.87	82.63	79.38	76.14	72
:3	103.62	22.00	40.90	72.47														5.48	10.96	16.45	21.93	27.41	32.89	38.37	43.85	49.34	54.82	60.30	65.78	71.26	76.75	82.23	87.71	93.19	98.67	103.30	100.01	96.73	93.45	90.17	86.88	83.60	80.32	77.
4	139.99	23.00	41.90	73.47															7.41	14.81	22.22	29.62	37.03	44.44	51.84	59.25	66.65	74.06	81.46	88.87	96.28	103.68	111.09	118.49	125.90	133.31	139.55	135.12	130.68	126.25	121.81	117.38	112.94	108.

	TOTAL:	24.63 71.57 132.38 205.52 2	38.84 382.79 486.21	599.41 722.70 852.87 990.04	1134.34 1284.05 1439.25 1601.85 1764.45 1927.05	2089.65 2248.39 2368.12 2453.50 2516.94 2561.01 2588.74 2599.65 2595.3	.37 2575.40 2539.81 2493.20 2435.37 2366.42 2288.80 2202.12 2104.75	2007.38 1910.02 1812.65 1715.29 1617.92 1520.56 1423.19
--	--------	-----------------------------	---------------------	-----------------------------	---	--	---	---

HIDROGRAMA DE MÁXIMAS AVENIDAS (Tr = 100 Años)

CÁLCULO DE LA PRECIPITACIÓN EFECTIVA

CN : 60 S (pulg) : 6.67 S (mm) : 169.33 Po (mm) : 33.87

 $P_{m\acute{a}x\,24\,horas} \hspace{1.5cm} : \hspace{1.5cm} 127.56 \; \text{(Calculado anteriormente)}$

Tr : 200 Años

Tr	P acum.	P acum.	K	P neta acum.	P neta hr.
(horas)	%	(mm)		(mm)	(mm)
0	0.00	0.00	-33.87	0.00	
1	2.00	2.55	-31.32	0.00	0.00
2	3.50	4.46	-29.40	0.00	0.00
3	5.00	6.38	-27.49	0.00	0.00
4	7.50	9.57	-24.30	0.00	0.00
5	10.00	12.76	-21.11	0.00	0.00
6	13.00	16.58	-17.28	0.00	0.00
7	16.00	20.41	-13.46	0.00	0.00
8	20.00	25.51	-8.35	0.00	0.00
9	26.50	33.80	-0.06	0.00	0.00
10	52.50	66.97	33.10	5.41	5.41
11	63.00	80.36	46.50	10.02	4.60
12	68.50	87.38	53.51	12.85	2.83
13	73.00	93.12	59.25	15.36	2.51
14	76.50	97.58	63.72	17.42	2.06
15	80.00	102.05	68.18	19.57	2.15
16	83.00	105.87	72.01	21.48	1.91
17	86.00	109.70	75.83	23.46	1.97
18	89.00	113.53	79.66	25.49	2.03
19	91.00	116.08	82.21	26.87	1.38
20	93.00	118.63	84.76	28.28	1.41
21	95.00	121.18	87.32	29.71	1.43
22	96.50	123.10	89.23	30.79	1.09
23	98.00	125.01	91.14	31.89	1.10
24	100.00	127.56	93.69	33.37	1.48

NOTA: S = 1000/CN-10 (pulg:)

S = 25.4*S (mm.)

 $K = \Sigma P_{\text{acum}}$ - 0.2*S (mm.), K en mm.

Pp efectiva acumulada

- a) Si K< \acute{o} = 0, entonces Σ Pneta = Σ Pefectiva = 0
- b) Si K> 0, entonces $\Sigma P_{\text{neta (acumulada)}} = K^2 / (P_{\text{Pacum}} + 0.8 \text{*S(mm.)})$

CÁLCULO DEL HIDROGRAMA UNITARIO DE MÁXIMAS AVENIDAS (Tr= 200 años)

DATOS: Est. PLU-CUÑUMBUQUE

 Ac
 :
 9247.53 Km²
 Tp:
 18.90 Horas

 Duración:
 1.00 Hora
 Tb:
 50.47 Horas

 Tc
 :
 30.67 Horas
 qp:
 101.76 m³/s/mm

Tiempo	Pp. Ef. hr.	Qp	TIEMPO DEL HII	DROGRAMA	
(horas)	(mm)	(m^3/s)	to	to + tp	to + tb
0-1	0.00	0.00	0.00	18.90	50.47
1-2	0.00	0.00	1.00	19.90	51.47
2-3	0.00	0.00	2.00	20.90	52.47
3-4	0.00	0.00	3.00	21.90	53.47
4-5	0.00	0.00	4.00	22.90	54.47
5-6	0.00	0.00	5.00	23.90	55.47
6-7	0.00	0.00	6.00	24.90	56.47
7-8	0.00	0.00	7.00	25.90	57.47
8-9	0.00	0.00	8.00	26.90	58.47
9-10	5.41	550.82	9.00	27.90	59.47
10-11	4.60	468.48	10.00	28.90	60.47
11-12	2.83	288.31	11.00	29.90	61.47
12-13	2.51	255.32	12.00	30.90	62.47
13-14	2.06	209.78	13.00	31.90	63.47
14-15	2.15	218.97	14.00	32.90	64.47
15-16	1.91	194.62	15.00	33.90	65.47
16-17	1.97	200.70	16.00	34.90	66.47
17-18	2.03	206.50	17.00	35.90	67.47
18-19	1.38	140.76	18.00	36.90	68.47
19-20	1.41	143.15	19.00	37.90	69.47
20-21	1.43	145.46	20.00	38.90	70.47
21-22	1.09	110.58	21.00	39.90	71.47
22-23	1.10	111.81	22.00	40.90	72.47
23-24	1.48	150.96	23.00	41.90	73.47

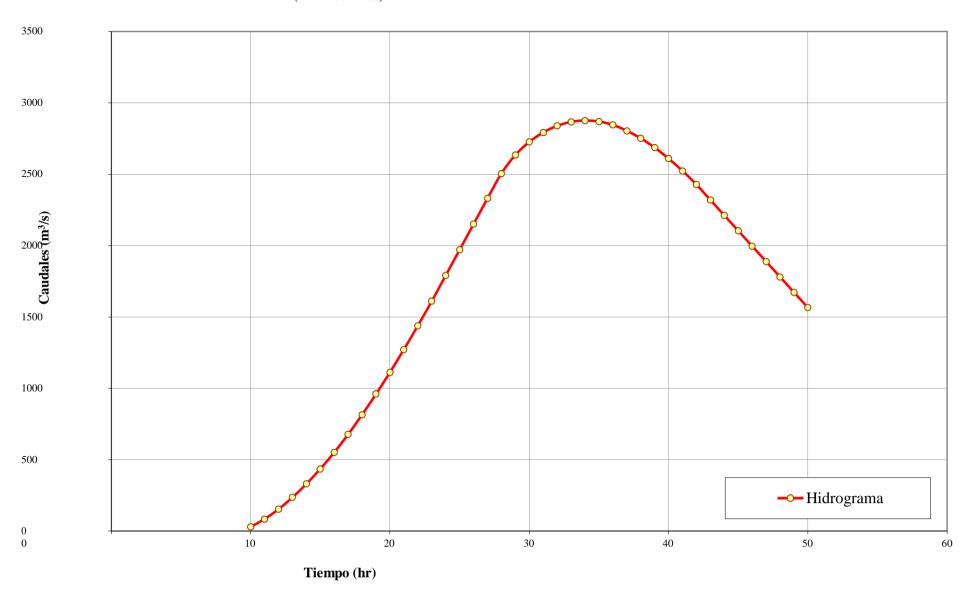
NOTA:

Tb = 2.67*Tp donde:

 $Tp = 0.5*D + 0.6*Tc \qquad \qquad A: \text{ Área de la cuenca en } Km^2 \\ qp = 0.208*A/Tp \qquad \qquad D: \text{ Duración de la lluvia en horas} \\ Qp = qp*Pp.efec. \qquad \qquad Tc: \text{ Tiempo de concentración}$

Tb: Tiempo base del Hidrograma Unitario en horas Tp: Tiempo pico al Q máx. Horas

qp: Caudal pico al Tp. en m^3/s/mm Qp: Caudal en m^3/s


CÁLCULO DEL HIDROGRAMA TOTAL DE MÁXIMAS AVENIDAS (Tr= 200 Años)

DATOS :
Ac : 9248 Km²
D : 1.00 Hora
Tc : 30.67 Horas

Tp: 18.90 Horas Tb: 50.47 Horas qp: 101.76 m^3/s/mm

1.00 19 2.00 20 3.00 21 4.00 22 5.00 23 6.00 24 7.00 25 8.00 26 9.00 27	18.90 19.90 20.90 21.90 22.90 23.90 24.90 25.90 26.90	50.47 51.47 52.47 53.47 54.47 55.47 56.47 57.47 58.47	10	1 12	13	14	15	16	17	18	19	20	21	22	2:	3 24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
1.00 19 2.00 20 3.00 21 4.00 22 5.00 23 6.00 24 7.00 25 8.00 26 9.00 27	19.90 20.90 21.90 22.90 23.90 24.90 25.90 26.90	51.47 52.47 53.47 54.47 55.47 56.47 57.47 58.47																																						\dashv	=
2.00 20 3.00 21 4.00 22 5.00 23 6.00 24 7.00 25 8.00 26 9.00 27	20.90 21.90 22.90 23.90 24.90 25.90 26.90	52.47 53.47 54.47 55.47 56.47 57.47 58.47																																							-
3.00 21 4.00 22 5.00 23 6.00 24 7.00 25 8.00 26 9.00 27	21.90 22.90 23.90 24.90 25.90 26.90	53.47 54.47 55.47 56.47 57.47 58.47																																							
4.00 22 5.00 23 6.00 24 7.00 25 8.00 26 9.00 27	22.90 23.90 24.90 25.90 26.90	54.47 55.47 56.47 57.47 58.47																	1	1																					
5.00 23 6.00 24 7.00 25 8.00 26 9.00 27	23.90 24.90 25.90 26.90	55.47 56.47 57.47 58.47																																							
6.00 24 7.00 25 8.00 26 9.00 27	24.90 25.90 26.90	56.47 57.47 58.47																																							
7.00 25 8.00 26 9.00 27	25.90 26.90	57.47 58.47																																							
8.00 26 9.00 27	26.90	58.47																																							
9.00 27																																									
	27.90	CO 42		1																																					
10.00 28		59.47	29.14 58.	28 87.43	116.56	145.70	174.85	203.99	233.13	262.27	291.41	320.55	349.69	378.83	407.9	437.11	466.26	495.40	524.54	549.11	531.66	514.21	496.76	479.31	461.86	444.41	426.96	409.51	392.07	374.62	357.17	339.72	322.27	304.82	287.37	269.92	252.47	235.02	217.57	200.12	182.67
	28.90	60.47	24.	78 49.5	74.35	99.14	123.92	148.71	173.49	198.28	223.06	247.85	272.63	297.42	322.20	346.99	371.77	396.56	421.34	446.13	467.03	452.19	437.35	422.50	407.66	392.82	377.98	363.14	348.30	333.46	318.62	303.78	288.93	274.09	259.25	244.41	229.57	214.73	199.89	185.05	170.20
11.00 29	29.90	61.47		15.2	30.51	45.76	61.01	76.26	91.52	106.77	122.02	137.27	152.53	167.78	183.03	198.29	213.54	228.79	244.04	259.30	274.55	287.41	278.28	269.15	260.01	250.88	241.75	232.61	223.48	214.35	205.21	196.08	186.95	177.81	168.68	159.55	150.41	141.28	132.14	123.01	113.88
12.00 30	30.90	62.47			13.51	27.02	40.52	54.03	67.54	81.05	94.55	108.06	121.57	135.08	148.5	162.09	175.60	189.11	202.61	216.12	229.63	243.14	254.53	246.44	238.35	230.26	222.18	214.09	206.00	197.91	189.82	181.73	173.64	165.56	157.47	149.38	141.29	133.20	125.11	117.03	108.94
13.00 31	31.90	63.47				11.10	22.20	33.30	44.39	55.49	66.59	77.69	88.79	99.89	110.93	122.08	133.18	144.28	155.38	166.48	177.57	188.67	199.77	209.13	202.48	195.84	189.19	182.55	175.90	169.26	162.61	155.96	149.32	142.67	136.03	129.38	122.74	116.09	109.44	102.80	96.15
14.00 32	32.90	64.47					11.58	23.17	34.75	46.34	57.92	69.51	81.09	92.68	104.20	115.85	127.43	139.02	150.60	162.19	173.77	185.36	196.94	208.53	218.30	211.36	204.42	197.48	190.55	183.61	176.67	169.74	162.80	155.86	148.93	141.99	135.05	128.11	121.18	114.24	107.30
15.00 33	33.90	65.47						10.30	20.59	30.89	41.19	51.48	61.78	72.08	82.3	92.67	102.96	113.26	123.56	133.85	144.15	154.45	164.74	175.04	185.34	194.02	187.85	181.69	175.52	169.36	163.19	157.03	150.86	144.69	138.53	132.36	126.20	120.03	113.87	107.70	101.54
16.00 34	34.90	66.47							10.62	21.24	31.85	42.47	53.09	63.71	74.3	84.95	95.56	106.18	116.80	127.42	138.04	148.65	159.27	169.89	180.51	191.13	200.08	193.72	187.36	181.01	174.65	168.29	161.93	155.57	149.22	142.86	136.50	130.14	123.78	117.42	111.07
17.00 35	35.90	67.47								10.93	21.85	32.78	43.70	54.63	65.5	76.48	87.40	98.33	109.25	120.18	131.10	142.03	152.95	163.88	174.80	185.73	196.65	205.86	199.32	192.78	186.24	179.70	173.15	166.61	160.07	153.53	146.99	140.44	133.90	127.36	120.82
18.00 36	36.90	68.47									7.45	14.89	22.34	29.79	37.2	44.68	52.13	59.58	67.02	74.47	81.92	89.36	96.81	104.26	111.70	119.15	126.60	134.04	140.32	135.87	131.41	126.95	122.49	118.03	113.57	109.11	104.65	100.19	95.73	91.27	86.81
19.00 37	37.90	69.47										7.57	15.15	22.72	30.2	37.87	45.44	53.01	60.59	68.16	75.73	83.31	90.88	98.45	106.02	113.60	121.17	128.74	136.32	142.70	138.17	133.63	129.10	124.56	120.03	115.49	110.96	106.43	101.89	97.36	92.82
20.00 38	38.90	70.47											7.70	15.39	23.0	30.78	38.48	46.17	53.87	61.57	69.26	76.96	84.65	92.35	100.04	107.74	115.44	123.13	130.83	138.52	145.01	140.40	135.80	131.19	126.58	121.97	117.36	112.75	108.15	103.54	98.93
21.00 39	39.90	71.47												5.85	11.70	17.55	23.40	29.25	35.10	40.95	46.80	52.65	58.50	64.35	70.20	76.05	81.90	87.75	93.60	99.45	105.30	110.23	106.73	103.23	99.72	96.22	92.72	89.21	85.71	82.21	78.71
22.00 40	40.90	72.47													5.92	11.83	17.75	23.66	29.58	35.49	41.41	47.32	53.24	59.15	65.07	70.98	76.90	82.82	88.73	94.65	100.56	106.48	111.47	107.92	104.38	100.84	97.30	93.75	90.21	86.67	83.13
23.00 41	41.90	73.47														7.99	15.97	23.96	31.95	39.93	47.92	55.90	63.89	71.88	79.86	87.85	95.84	103.82	111.81	119.80	127.78	135.77	143.76	150.49	145.71	140.93	136.14	131.36	126.58	121.80	117.01
				•										•	-	•	•	•	•	•	•	_																			
2 2	8.00 9.00 0.00 1.00 2.00	9.00 37.90 0.00 38.90 1.00 39.90 2.00 40.90 3.00 41.90	8.00 36.90 68.47 9.00 37.90 69.47 0.00 38.90 70.47 1.00 39.90 71.47 2.00 40.90 72.47 3.00 41.90 73.47	8.00 36.90 68.47 9.00 37.90 69.47 0.00 38.90 70.47 1.00 39.90 71.47 2.00 40.90 72.47 3.00 41.90 73.47	8.00 36.90 68.47 9.00 37.90 69.47 0.00 38.90 70.47 1.00 39.90 71.47 2.00 40.90 72.47 3.00 41.90 73.47	8.00 36.90 68.47 9.00 37.90 69.47 0.00 38.90 70.47 1.00 39.90 71.47 2.00 40.90 72.47 3.00 41.90 73.47	8.00 36.90 68.47 9.00 37.90 90.47 9.00 37.90 90.47 9.00 37.90 90.47 9.00 38.90 70.47 9.00 38.90 70.47 9.00 38.90 71.47 9.00 39.90 71.47 9.00 40.50 72.47 9.00 40.50 72.47 9.00 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50 90.50	8.00 3.690 68.47 9.00 37.90 69.47 9.00 37.90 69.47 9.00 38.00 70.47 1.00 38.00 70.47 1.10 39.90 71.47 2.00 40.50 72.47 9.00 41.50 73.47	8.00 3.09 68.47 9 9.00 37.50 69.47 9 9.00 37.50 69.47 9 9.00 37.50 69.47 9 9.00 38.50 70.47 9 9.00 38.50 70.47 9 9.00 38.50 70.47 9 9.00 38.50 71.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.47 9 9.00 41.50 73.	8.00 36.90 88.47 9.00 37.90 99.47 9.00 37.90 99.47 9.00 38.90 70.47 9.00 38.90 70.47 9.00 38.90 70.47 9.00 38.90 71.47 9.00 40.90 72.47 9.00 40.90 72.47 9.00 41.90 73.47	8.00 3.690 68.47 9.00 37.90 69.47 9.00 37.90 69.47 9.00 38.50 70.47 9.00 38.50 70.47 9.00 38.50 70.47 9.00 38.50 70.47 9.00 39.50 71.47 9.00 39.50 40.50 72.47 9.00 41.50 73.47	8.00 36.90 68.47 7 7.45 9.00 37.90 69.47 9 9.00 9.00 38.50 70.47 9 9.00 10.00 38.50 70.47 9 9.00 10.00 38.90 71.47 9 9.00 10.00 41.90 72.47 9 9.00 11.00 41.90 73.47 9 9.00	8.00 3.690 68.47 748 41.89 900 37.90 69.47 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37 72.37	8.00 36.00 68.47 7 7.48 14.89 22.34 7.50 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.47 7.50 7.50 7.47 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.5	8.00 3.690 68.47 7.45 14.889 22.34 29.79 9.00 3.790 6.94.7 7.57 11.54 22.79 9.00 3.85 70.47 7.57 11.54 22.70 10.0 3.980 71.47 7.70 15.39 15.39 2.00 40.90 72.47 3.85 3.00 41.90 73.47 73.47	8.00 36.90 68.47 745 14.89 22.34 29.79 37.90 9.00 37.90 69.47 75.71 15.15 22.21 29.79 37.2 9.00 38.90 70.47 7.70 15.99 23.09 10.0 38.90 71.47 5.83 11.79 2.00 41.90 72.47 35.9 3.91 41.90 73.47 39.90	8.00 3.690 68.47 7.48 14.899 22.34 29.79 372.14 46.88 9.00 37.90 37.90 7.57 15.15 22.72 30.32 37.87 9.00 38.90 70.47 7.37 15.39 22.72 30.28 37.87 10.0 39.90 71.47 7.30 15.38 11.73 37.52 2.00 40.90 72.47 7.30 11.83 37.52 11.83 3.00 41.90 73.49 7.99	8.00 36.90 68.47 7.48 14.88 22.34 22.79 37.23 44.68 82.13 9.00 37.90 69.47 7.57 15.18 22.27 30.29 37.87 30.29 37.87 30.29 37.87 30.29 37.87 30.29 37.87 30.28 30.78 38.48 9.00 35.90 70.47 7.70 15.39 22.09 30.78 38.48 1.00 39.90 71.47 5.85 11.70 17.55 23.40 2.00 40.90 72.47 5.85 11.70 17.55 23.40 3.00 41.90 73.471 7.99 18.57	8.00 36.90 68.47 7.45 14.89 2.23 39.99 37.22 44.68 32.13 99.89 9.00 37.90 69.47 7.57 15.15 22.72 30.29 37.87 45.44 53.01 1.00 39.90 70.47 7.70 15.29 23.00 30.73 38.48 46.77 1.00 39.90 71.47 8.83 11.70 17.55 23.00 30.25 2.00 40.90 72.47 8.83 10.72 23.60 30.21 13.77 23.60	800 35.90 68.47 7.45 14.89 22.34 29.99 37.22 44.68 22.13 99.88 87.02 0.00 37.90 69.47 7.57 15.15 22.72 30.20 37.87 45.44 53.01 60.95 0.00 38.90 70.47 7.70 15.97 23.07 33.48 46.17 58.87 0.00 39.90 71.47 9.83 11.70 17.55 22.40 20.23 38.10 0.00 49.90 72.47 9.83 8.11 77.78 12.52 23.00 20.23 38.10	8.00 36.90 68.47 7.80 14.89 22.34 29.79 57.23 44.68 52.13 99.58 67.02 74.47 0.00 37.90 69.47 7.57 15.15 22.77 30.22 37.87 45.44 53.01 60.59 68.16 0.00 38.90 70.47 7.70 13.39 23.00 30.78 38.48 44.17 53.87 61.57 0.00 39.90 71.47 588 11.70 17.55 22.40 20.25 33.10 40.95 0.00 40.90 72.47 8.92 11.80 17.75 22.60 20.98 33.90	800 35.90 68.47 7.45 14.80 22.3 59.79 37.23 44.68 52.13 59.58 67.02 74.47 81.92 9.00 37.90 69.47 1 7.57 15.13 22.72 30.23 37.87 45.44 53.01 60.99 68.10 75.75 1.00 39.90 70.47 1 2.70 13.39 23.09 30.78 38.48 46.17 53.87 61.57 69.28 1.00 39.90 71.47 1 3.88 11.70 17.55 22.40 20.22 33.10 409.93 48.99 2.00 40.90 72.47 1 5.88 11.70 17.57 23.66 29.58 33.09 44.41	8.00 35.90 68.47 7.45 14.89 22.34 29.79 37.29 44.68 \$2.13 \$9.85 67.02 7.427 81.92 89.36 9.00 37.90 69.47 7.57 15.15 22.72 30.29 37.87 45.44 53.01 60.59 68.16 75.73 83.31 10.00 39.90 70.47 7.70 15.90 22.09 30.78 38.48 46.17 53.87 61.57 62.20 75.90 10.01 39.90 71.47 7.47 18.90 23.90 30.78 33.40 20.25 35.10 60.59 68.10 75.73 83.31 10.01 39.90 71.47 8.90 8.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 79.90 7	8.00 36.90 68.47 7.58 14.89 22.34 29.79 37.23 44.68 52.11 9.98 67.02 74.47 81.92 89.36 96.81 0.00 37.90 69.47 7.57 15.15 22.72 30.23 37.87 45.44 53.01 60.59 66.16 75.75 38.31 90.88 0.00 38.90 70.47 7.70 13.93 23.09 30.78 38.44 44.17 53.87 61.57 69.56 84.65 0.00 39.90 71.47 7 1 5.83 11.70 17.55 22.40 20.23 30.0 40.95 46.80 92.26 85.00 0.00 40.90 72.47 7 1 5.83 11.70 17.75 22.40 20.88 33.0 44.11 47.32 33.24	7.00 35.90 67.47 1 10.93 21.86 32.78 43.70 54.60 65.55 76.48 87.40 98.33 109.25 120.18 131.10 142.03 152.95 163.88 80.09 36.00 68.47 1 7.55 14.89 22.34 14.85 21.39 29.79 37.25 44.68 52.13 99.58 67.02 74.47 81.92 89.56 96.81 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.09 1042.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00 35.90 67.47 1 10.93 21.85 32.78 43.70 54.60 65.55 76.48 87.40 98.33 109.25 120.18 131.10 142.03 152.95 163.88 174.80 185.71 193.09 36.09 68.47 1 7.45 14.89 223.4 29.79 37.22 44.68 52.13 59.85 67.02 74.47 81.92 89.36 68.31 104.26 111.70 119.13 193.09 37.90 69.47 1 15.15 22.70 27.00 15.90 27.00 15.90 27.00 15.90 27.00 15.90 27.00 15.90 27.00 15.90 27.00 15.90 27.00 15.90 27.00 15.90 27.00 18.10 17.73 83.31 190.88 94.84 100.62 111.70 119.13 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193.00 193	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00 35.90 67.47 1 10.93 21.88 32.78 43.70 54.61 65.55 76.48 87.40 98.33 109.25 120.18 131.10 142.03 152.95 163.88 174.80 185.73 196.65 205.86 199.32 10.00 35.00 68.47 1 7.55 14.89 22.34 19.279 37.21 44.68 52.13 39.88 67.02 74.47 81.92 89.56 98.81 104.26 1117.0 119.15 126.66 134.04 143.05 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35 199.35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00 35.90 67.47 10.03 21.86 32.78 43.70 54.60 65.55 76.48 87.40 98.33 109.25 120.18 131.10 142.03 152.95 163.88 174.00 185.73 196.65 205.86 199.32 192.70 185.24 185.00 36.00 68.47 17.50 18.50 199.32 199.70 185.24 185.00 185.70 199.50 199.70 185.24 185.00 199.50 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 185.00 199.70 185.24 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00 35.90 67.47	7.00 35.90 67.47	7.00 35.90 67.47 10.30 32.86 32.78 43.70 54.60 65.55 64.8 87.40 98.33 109.25 123.18 131.10 142.03 152.95 163.88 174.00 185.73 196.65 205.86 199.32 192.78 186.24 179.70 173.15 166.61 160.07 180.09 35.00 68.47 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00 35.90 67.47 1.00 32.18 32.78 43.70 54.00 65.55 76.48 87.40 98.33 109.25 120.18 131.10 142.03 152.95 163.88 174.00 185.27 196.65 205.86 199.32 192.78 186.24 179.70 173.15 166.61 160.07 133.55 146.99 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00 179.00	7.00 35.90 67.47	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.00 35.90 67.47 10.93 21.85 32.78 43.70 54.60 65.55 64.8 67.40 98.33 109.25 123.18 131.10 142.03 152.95 163.88 174.00 185.77 196.65 205.86 199.32 192.78 186.24 179.70 173.15 166.61 100.07 153.53 146.99 140.44 133.90 127.36 180.09 37.09 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 37.90 3

HIDROGRAMA DE MÁXIMAS AVENIDAS (Tr = 200 Años)

CÁLCULO DE LA PRECIPITACIÓN EFECTIVA

CN : 60 S (pulg) : 6.67 S (mm) : 169.33 Po (mm) : 33.87

 $P_{m\acute{a}x\,24\,horas} \hspace{1.5cm} : \hspace{1.5cm} 134.35 \hspace{0.1cm} \text{(Calculado anteriormente)}$

Tr : 500 Años

Tr	P acum.	P acum.	K	P neta acum.	P neta hr.
(horas)	%	(mm)		(mm)	(mm)
0	0.00	0.00	-33.87	0.00	
1	2.00	2.69	-31.18	0.00	0.00
2	3.50	4.70	-29.16	0.00	0.00
3	5.00	6.72	-27.15	0.00	0.00
4	7.50	10.08	-23.79	0.00	0.00
5	10.00	13.44	-20.43	0.00	0.00
6	13.00	17.47	-16.40	0.00	0.00
7	16.00	21.50	-12.37	0.00	0.00
8	20.00	26.87	-7.00	0.00	0.00
9	26.50	35.60	1.74	0.02	0.02
10	52.50	70.53	36.67	6.53	6.51
11	63.00	84.64	50.77	11.71	5.19
12	68.50	92.03	58.16	14.87	3.16
13	73.00	98.08	64.21	17.65	2.78
14	76.50	102.78	68.91	19.93	2.28
15	80.00	107.48	73.61	22.30	2.37
16	83.00	111.51	77.64	24.41	2.10
17	86.00	115.54	81.67	26.58	2.17
18	89.00	119.57	85.70	28.80	2.23
19	91.00	122.26	88.39	30.32	1.51
20	93.00	124.95	91.08	31.85	1.54
21	95.00	127.63	93.77	33.42	1.56
22	96.50	129.65	95.78	34.60	1.19
23	98.00	131.66	97.80	35.80	1.20
24	100.00	134.35	100.48	37.42	1.62

NOTA: S = 1000/CN-10 (pulg.)

S = 25.4*S (mm)

 $K = \Sigma P_{\text{acum}}$ - 0.2*S (mm.), K en mm.

Pp efectiva acumulada

- a) Si K< \acute{o} = 0, entonces Σ Pneta = Σ Pefectiva = 0
- b) Si K> 0, entonces $\Sigma P_{\text{neta (acumulada)}} = K^2 / (P_{\text{Pacum}} + 0.8 \text{*S(mm.)})$

CÁLCULO DEL HIDROGRAMA UNITARIO DE MÁXIMAS AVENIDAS (Tr= 500 años)

DATOS: Est. PLU-CUÑUMBUQUE

 Ac
 :
 9247.53 Km²
 Tp:
 18.90 Horas

 Duración:
 1.00 Hora
 Tb:
 50.47 Horas

 Tc
 :
 30.67 Horas
 qp:
 101.76 m³/s/mm

Tiempo	Pp. Ef. hr.	Qp	TIEMPO DEL I	HIDROGRAMA	
(horas)	(mm)	(m^3/s)	to	to + tp	to + tb
0-1	0.00	0.00	0.00	18.90	50.47
1-2	0.00	0.00	1.00	19.90	51.47
2-3	0.00	0.00	2.00	20.90	52.47
3-4	0.00	0.00	3.00	21.90	53.47
4-5	0.00	0.00	4.00	22.90	54.47
5-6	0.00	0.00	5.00	23.90	55.47
6-7	0.00	0.00	6.00	24.90	56.47
7-8	0.00	0.00	7.00	25.90	57.47
8-9	0.02	1.79	8.00	26.90	58.47
9-10	6.51	662.36	9.00	27.90	59.47
10-11	5.19	527.72	10.00	28.90	60.47
11-12	3.16	321.35	11.00	29.90	61.47
12-13	2.78	283.19	12.00	30.90	62.47
13-14	2.28	231.91	13.00	31.90	63.47
14-15	2.37	241.46	14.00	32.90	64.47
15-16	2.10	214.15	15.00	33.90	65.47
16-17	2.17	220.44	16.00	34.90	66.47
17-18	2.23	226.44	17.00	35.90	67.47
18-19	1.51	154.15	18.00	36.90	68.47
19-20	1.54	156.61	19.00	37.90	69.47
20-21	1.56	159.00	20.00	38.90	70.47
21-22	1.19	120.77	21.00	39.90	71.47
22-23	1.20	122.04	22.00	40.90	72.47
23-24	1.62	164.65	23.00	41.90	73.47

NOTA:

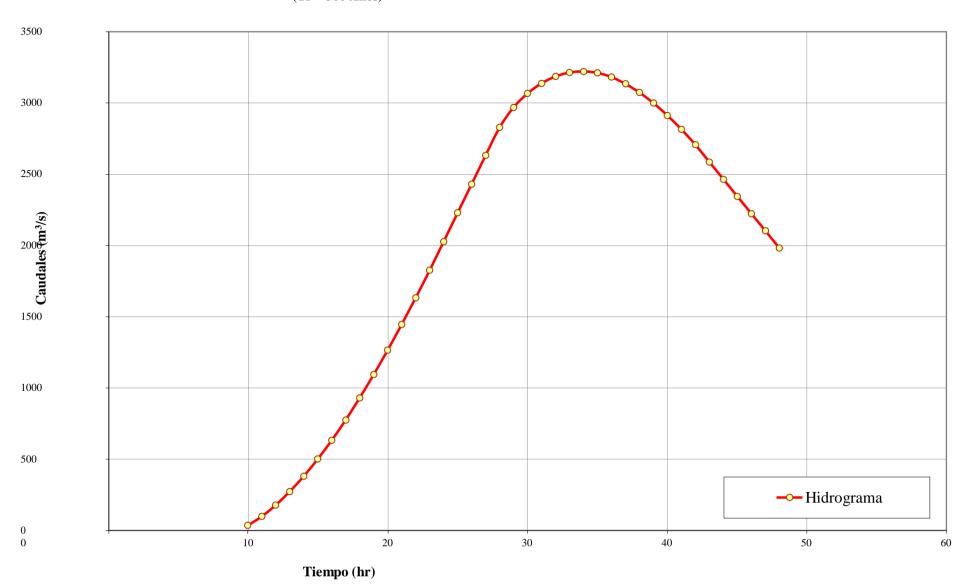
Tb = 2.67*Tp donde:

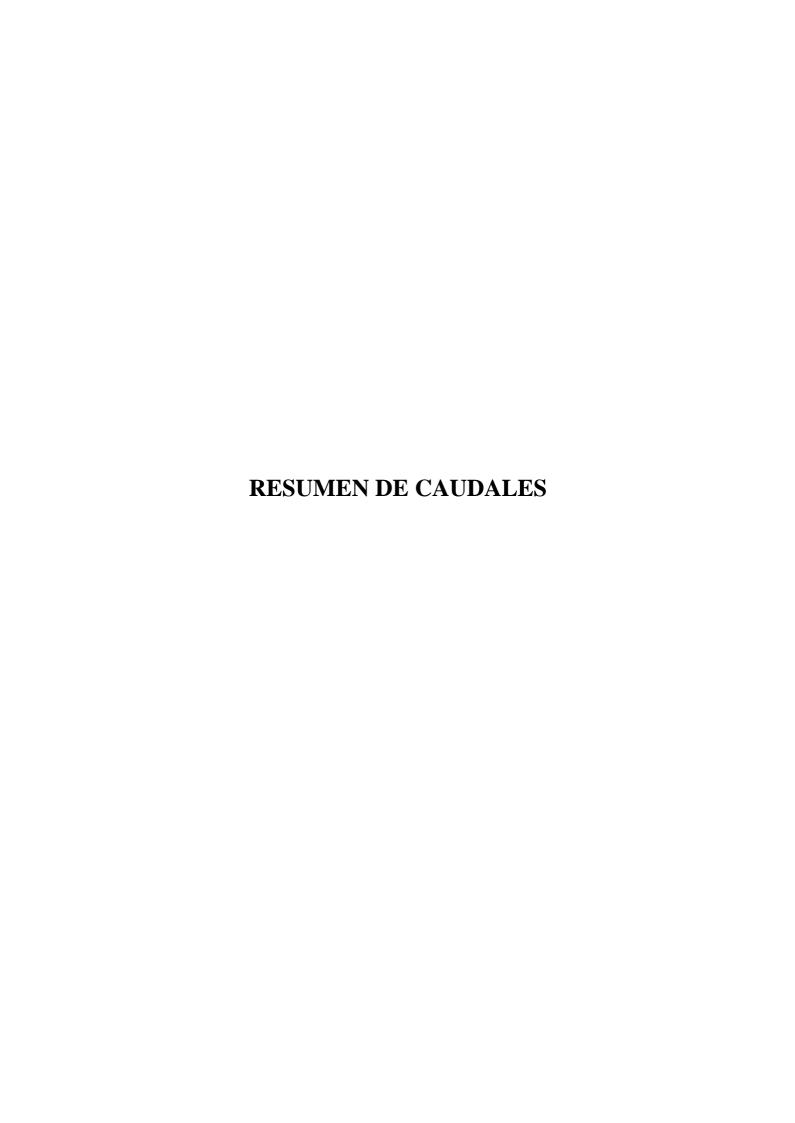
 $Tp = 0.5*D + 0.6*Tc \qquad \qquad A: \text{ Área de la cuenca en } Km^2 \\ qp = 0.208*A/Tp \qquad \qquad D: \text{ Duración de la lluvia en horas} \\ Qp = qp*Pp.efec. \qquad \qquad Tc: \text{ Tiempo de concentración}$

Tb: Tiempo base del Hidrograma Unitario en horas Tp: Tiempo pico al Q máx. Horas

qp: Caudal pico al Tp. en m^3/s/mm Qp: Caudal en m^3/s

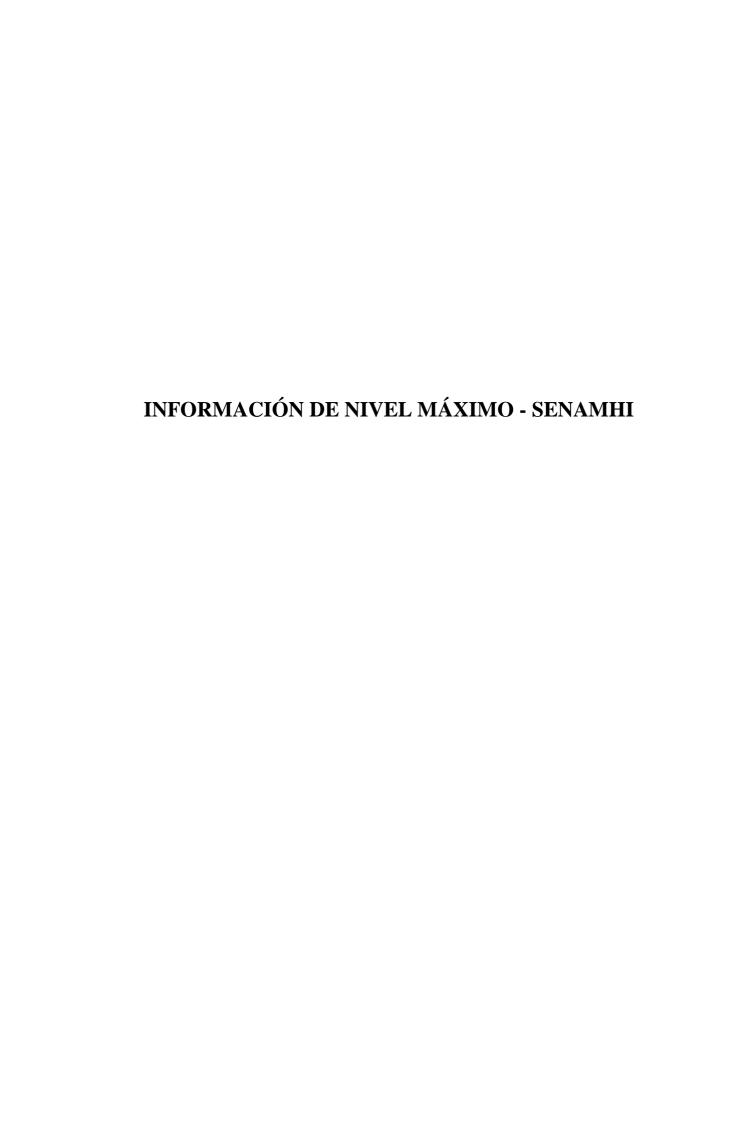
CÁLCULO DEL HIDROGRAMA TOTAL DE MÁXIMAS AVENIDAS (Tr= 500 Años)


DATOS


Ac: 9248 Km²
D: 1.00 Hora
Tc: 30.67 Horas

Tp: 18.90 Horas Tb: 50.47 Horas qp: 101.76 m^3/s/mm

MPO	Qp	to	to + t	to + tb											CAU.	DALES	DEL	IIDRO	GRAMA	L																									
	m^3/s	to t inicia	l t máx.	t final	1	0 11	12	1	3 14	15		16	17	18	19	20	21	1 2	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
) - 1	0.00	0.00	18.5	0 50.47					1									1																											
- 2	0.00	1.00	19.5	0 51.47																																									
- 3	0.00	2.00	20.5	0 52.47	'																																								
- 4	0.00	3.00	21.5	0 53.47																																									
- 5	0.00	4.00	22.5	0 54.47																																									
- 6	0.00	5.00	23.5	0 55.47																																									
- 7	0.00	6.00	24.5	0 56.47																																									
8	0.00	7.00	25.5	0 57.47																																									
9	1.79	8.00	26.5	0 58.47	0.1	9 0.28	0.38	0.4	7 0.57	0.66		0.76	0.85	0.95	1.04	1.14	1.23	3 1.3	3 1.42	1.52	1.61	1.71	1.79	1.73	1.67	1.62	1.56	1.50	1.45	1.39	1.33	1.28	1.22	1.16	1.11	1.05	0.99	0.94	0.88	0.82	0.76	0.71	0.65	0.59	0.54
10	662.36	9.00	27.5	0 59.47	35.0	4 70.08	105.12	140.1	7 175.2	1 210.2	5 24	5.29 28	80.33	315.37	350.42	385.46	420.50	0 455.5	490.58	525.62	560.67	595.71	630.75	660.30	639.32	618.33	597.35	576.37	555.39	534.40	513.42	492.44	471.45	450.47	429.49	408.50	387.52	366.54	345.56	324.57	303.59	282.61	261.62	240.64	219.66
11	527.72	10.00	28.5	0 60.47		27.92	55.84	83.7	6 111.6	7 139.5	9 16	7.51 19	05.43 2	223.35	251.27	279.18	307.10	335.0	362.94	390.86	418.78	446.70	474.61	502.53	526.08	509.36	492.64	475.92	459.21	442.49	425.77	409.05	392.34	375.62	358.90	342.18	325.47	308.75	292.03	275.31	258.59	241.88	225.16	208.44	191.7
12	321.35	11.00	29.5	0 61.47			17.00	34.0	0 51.00	0 68.00	0 8	5.01 10	02.01 1	119.01	136.01	153.01	170.0	1 187.0	204.01	221.01	238.01	255.02	272.02	289.02	306.02	320.36	310.18	300.00	289.81	279.63	269.45	259.27	249.09	238.91	228.73	218.55	208.37	198.19	188.01	177.83	167.65	157.47	147.29	137.11	126.93
3	283.19	12.00	30.5	0 62.47				14.9	8 29.96	6 44.93	5 5	9.93 7	4.91	89.89	104.87	119.86	134.84	4 149.8	164.80	179.79	194.77	209.75	224.73	239.71	254.70	269.68	282.31	273.34	264.37	255.40	246.43	237.46	228.48	219.51	210.54	201.57	192.60	183.63	174.66	165.69	156.71	147.74	138.77	129.80	120.8
4	231.91	13.00	31.5	0 63.47					12.27	7 24.5	4 3	6.81 4	19.08	61.35	73.61	85.88	98.15	5 110.4	122.69	134.96	147.23	159.50	171.77	184.04	196.31	208.57	220.84	231.19	223.84	216.50	209.15	201.80	194.46	187.11	179.76	172.42	165.07	157.72	150.38	143.03	135.68	128.34	120.99	113.64	106.3
5	241.46	14.00	32.5	0 64.47						12.7	7 2	5.55 3	8.32	51.10	63.87	76.64	89.4	2 102.	9 114.97	127.74	140.52	153.29	166.06	178.84	191.61	204.39	217.16	229.93	240.71	233.06	225.41	217.76	210.11	202.46	194.81	187.16	179.51	171.86	164.22	156.57	148.92	141.27	133.62	125.97	118.3
6	214.15	15.00	33.5	0 65.47							1	1.33 2	22.66	33.99	45.32	56.65	67.9	8 79.3	90.63	101.96	113.29	124.62	135.95	147.28	158.61	169.94	181.27	192.60	203.93	213.48	206.70	199.91	193.13	186.35	179.56	172.78	165.99	159.21	152.43	145.64	138.86	132.07	125.29	118.51	111.3
7	220.44	16.00	34.5	0 66.47								1	1.66	23.32	34.99	46.65	58.3	1 69.9	7 81.64	93.30	104.96	116.62	128.29	139.95	151.61	163.27	174.94	186.60	198.26	209.92	219.76	212.77	205.79	198.81	191.82	184.84	177.86	170.87	163.89	156.91	149.92	142.94	135.96	128.97	121.9
8	226.44	17.00	35.5	0 67.47										11.98	23.96	35.94	47.93	2 59.9	71.88	83.86	95.84	107.82	119.80	131.78	143.75	155.73	167.71	179.69	191.67	203.65	215.63	225.73	218.56	211.39	204.21	197.04	189.87	182.69	175.52	168.35	161.17	154.00	146.83	139.65	132.4
9	154.15	18.00	36.5	0 68.47				1	1 -						8.16	16.31	24.4	7 32.0	2 40.78	48.93	57.09	65.24	73.40	81.55	89.71	97.86	106.02	114.17	122.33	130.48	138.64	146.79	153.67	148.79	143.91	139.02	134.14	129.26	124.37	119.49	114.60	109.72	104.84	99.95	95.0
20	156.61	19.00	37.5	0 69.47												8.29	16.5	7 24.1	33.14	41.43	49.71	58.00	66.28	74.57	82.85	91.14	99.43	107.71	116.00	124.28	132.57	140.85	149.14	156.13	151.16	146.20	141.24	136.28	131.32	126.36	121.40	116.44	111.47	106.51	101.5
21	159.00	20.00	38.5	0 70.47													8.41	1 16.1	25.24	33.65	42.06	50.47	58.88	67.29	75.71	84.12	92.53	100.94	109.35	117.76	126.18	134.59	143.00	151.41	158.50	153.47	148.43	143.39	138.36	133.32	128.28	123.25	118.21	113.17	108.1
22	120.77	21.00	39.5	0 71.47														6.3	9 12.78	19.17	25.56	31.95	38.34	44.73	51.11	57.50	63.89	70.28	76.67	83.06	89.45	95.84	102.23	108.62	115.01	120.40	116.57	112.74	108.92	105.09	101.27	97.44	93.61	89.79	85.9
23	122.04	22.00	40.5	0 72.47					1									1	6.46	12.91	19.37	25.83	32.28	38.74	45.20	51.65	58.11	64.57	71.02	77.48	83.94	90.39	96.85	103.31	109.76	116.22	121.66	117.80	113.93	110.07	106.20	102.33	98.47	94.60	90.7.
24	164.65	23.00	415	0 73.47	1	1		1	1				_			t -	t	1	1	8.71	17.42	26.13	34.84	43.55	52.27	60.98	69.69	78.40	87.11	95.82	104 53	113.24	121.95	130.66	139.37	148.09	156.80	164 14	158.93	153.71	148 49	143.28	138.06	132.85	127.6


HIDROGRAMA DE MÁXIMAS AVENIDAS (Tr = 500 Años)

RESUMEN DE CAUDALES DE DISEÑO PARA DIFERENTES PERIODOS DE RETORNO

Periodo de Retorno Tr (Años)	Cuencas y Sub Cuencas	Área km2	CN	Caudal m3/s
25	Rio Mayo	9247.53	60.00	2019.22
50	Rio Mayo	9247.53	60.00	2315.84
100	Rio Mayo	9247.53	60.00	2599.65
200	Rio Mayo	9247.53	60.00	2871.82
500	Rio Mayo	9247.53	60.00	3218.82

SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA **DIRECCION REGIONAL DE SAN MARTIN**

INFORMACION METEOROLOGICA PARA: ANDREY DEL AGUILA PEREA SEGÚN PROFORMA Nº 378-DRE-9/2015

ESTACION: PLU " CUÑUMBUQUE"

Latitud : 06° 30' Longitud: 76° 30'

Altura: 240 m.s.n.m.

Departamento : SAN MARTIN

Provincia

: LAMAS

Distrito

: CUÑUMBUQUE

				PRECIP	ITACIO	MAXIN	IA EN 2	4 HORA	S (mm)				
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	MAXIMA
2000	26.8	47.4	22.9	30.9	13.9	24.3	13.2	35.3	67.4	13.8	24.1	25.6	67.4
2001	13.4	27.1	43.8	42.4	29.0	11.3	99.7	84.4	21.8	33.5	63.2	52.5	99.7
2002	8.7	8.4	16.7	35.3	10.3	24.9	46.0	21.9	25.8	25.6	28.9	16.5	46.0
2003	33.9	17.2	36.5	28.4	13.7	18.0	31.8	17.0	18.9	31.8	37.4	64.4	64.4
2004	9.1	39.6	23.7	19.5	27.4	18.4	19.8	17.4	53.1	26.0	26.9	61.1	61.1
2005	12.0	19.0	32.1	26.0	22.2	17.7	13.0	30.7	30.8	16.2	29.4	12.2	32.1
2006	23.0	32.2	55.3	22.0	26.0	20.0	44.2	14.4	25.1	23.3	81.3	11.5	81.3
2007	16.5	6.9	29.1	19.0	23.6	3.3	23.4	18.4	40.2	24.1	64.0	8.1	64.0
2008	18.5	93.2	33.7	54.4	11.6	28.3	37.2	26.0	30.0	29.9	18.3	25.8	93.2
2009	24.1	33.0	24.9	52.2	15.5	51.3	8.9	32.1	50.3	14.3	10.8	7.6	52.2
2010	35.1	11.1	31.7	50.3	38.7	39.8	16.9	47.0	11.3	14.4	35.2	15.7	50.3
2011	17.2	6.8	41.6	43.7	24.6	38.9	17.6	11.1	28.2	32.4	53.4	29.2	53.4
2012	105.4	23.5	31.3	44.4	36.0	12.8	34.8	15.4	29.0	31.2	20.4	32.3	105.4
2013	55.2	18.3	28.2	19.3	39.4	20.8	33.8	29.9	22.4	12.4	53.1	30.1	55.2
2014	15.2	12.6	40.5	49.4	17.3	16.8	43.6	6.0	17.2	102.4	42.3	45.3	102.4
MAXIMA	105.4	93.2	55.3	54.4	39.4	51.3	99.7	84.4	67.4	102.4	81.3	64.4	105.4
MEDIA	27.6	26.4	32.8	35.8	23.3	23.1	32.3	27.1	31.4	28.8	39.2	29.2	68.5

NOTA: LA PRESENTE INFORMACIÓN METEOROLÓGICA SOLO SERA EMPLEADA PARA EL PROPÓSITO DE LA SOLICITUD QUEDANDO PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL.

Tarapoto, 29 de octubre del 2015

Ing. M.Sc. Felipe Huamán Solís DIRECTOR REGIONAL SENAMHI - SAN MARTIN

ANEXO DISEÑO ESTRUCTURAL

DISEÑO DE PUENTE COLGANTE VEHICULAR

DATOS DE DISEÑO

A= D=	3∙00 m	=	Ancho útil máximo del tablero	Cálculo de la S/C de Diseño	
η- D- d= N=	1.50 m	=	Separación entre Vigueta de eje a eje	S/C repartida en todo el puente según la norma=	<i>970</i> Kg/m
2- /0-	0·40 m	=	Separación entre Largueros de eje a eje		
	105·00 m	=	Longitud del Puente	S/C concentrada de una camioneta STOUT (Cabina simple)= 2244	Kg/m
<i>f=</i>	10·50 m	=	Flecha del cable= 10%L'		
S/c=	<i>1071-33</i>	=	Sobre carga	5/C Total = 3214 Kg/m / 3m = 1071·33 Kg/m2	
<i>j</i> = δ=	<i>75</i>	=	Factor de Impacto		
cf= s=	1000	=	Densidad de Madera		
P=	1.05 m	=	Contra flecha del tablero de transito = 10 %f		
	m 1-10	=	Altura de la péndola central		
	2Kg3.68	=	Peso en el eje posterior de Camioneta STOUT (Cabina simple)		

 $f_m =$

fc =

Fc ↓

 $f_{\nu} =$

75000 Kg/cm²

150 Kg/cm²

110 Kg/cm²

28 Kg/cm²

105 Kg/cm²

12 Kg/cm²

Módulo de elasticidad mínimo

Esfuerzo admisible a la flexión

Esfuerzo admisible a la Tracción paralela

Esfuerzo admisible al corte paralela

Esfuerzo admisible a la compresión paralela a las fibras

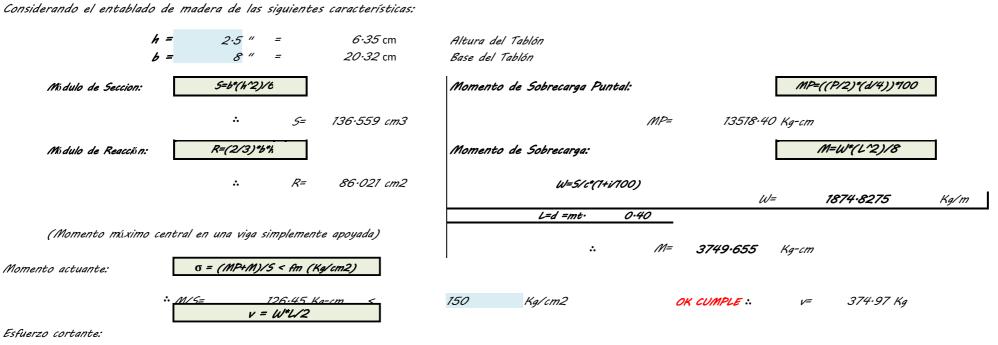
Esfuerzo admisible a la compresión perpendicular a las fibras

1 -- DISEÑO DE LA ESTRUCTURA DE MADERA:

1-1 CARACTERÍSTICAS FÍSICAS DE LA MADERA

Las propiedades físico mecánicas de la madera está dado por el grupo Andino según el tipo de madera para nuestro diseño usaremos las del grupo: Grupo =

Emin =	Propiedades		GRUPO	
	Kg/cm2	A	В	C
	E0.05 0 Emin	95000	75000	55000
	Eprom.	130000	100000	90000
	f _m	210	150	100
	Fe	145	110	80
	$f_{c\downarrow}$	40	28	<i>15</i>
	Fv	15	12	8
	f_t	145	105	<i>75</i>
	D (Kg/m3)	1100	1000	900


GRUPO A	GRUPO B	GRUPO C
Estoraque	Huayruro	Catahua amarilla
Palo sangre negro	Manchinga	Copaiba
Pumaquiro		Diablo fuerte
		Tornillo

1071-33Kg/m2

A -- DISEÑO DEL ENTABLADO

*Peso propio no se considera por ser insignificante respecto a la sobrecarga-

Sobrecarga (WL) =

(Reacción en ambos lados de una viga simplemente apoyada) Esfuerzo

which the section of the section of

(Total unidades ubicadas transversalmente al puente)

B-- <u>DISEÑO DE LARGUERO</u>

Considerando el Larguero de madera de las siguientes características:

h =8 =20.32 cmAlto del Larguerob =7 =17.78 cmBase del LargueroModulo de Sección: $S = b^*(h'2)/6$ S = 1223.567 cm3Modulo de Reacción:R = 240.860 cm2CARGAS ACTUANTES

CHRONS HOTOHIVIES

- MOMENTO POR CARGA MUERTA (Md):

Metrado de Cargas (W = σ *vol·); por ml·

Peso del entablado: Peso de Went:= δ * (h1*d*1) 25:40 Kg/m 36:13 Kg/m

Peso de clavos y otros: = $\frac{10\cdot00}{Wd}$ Kg/m

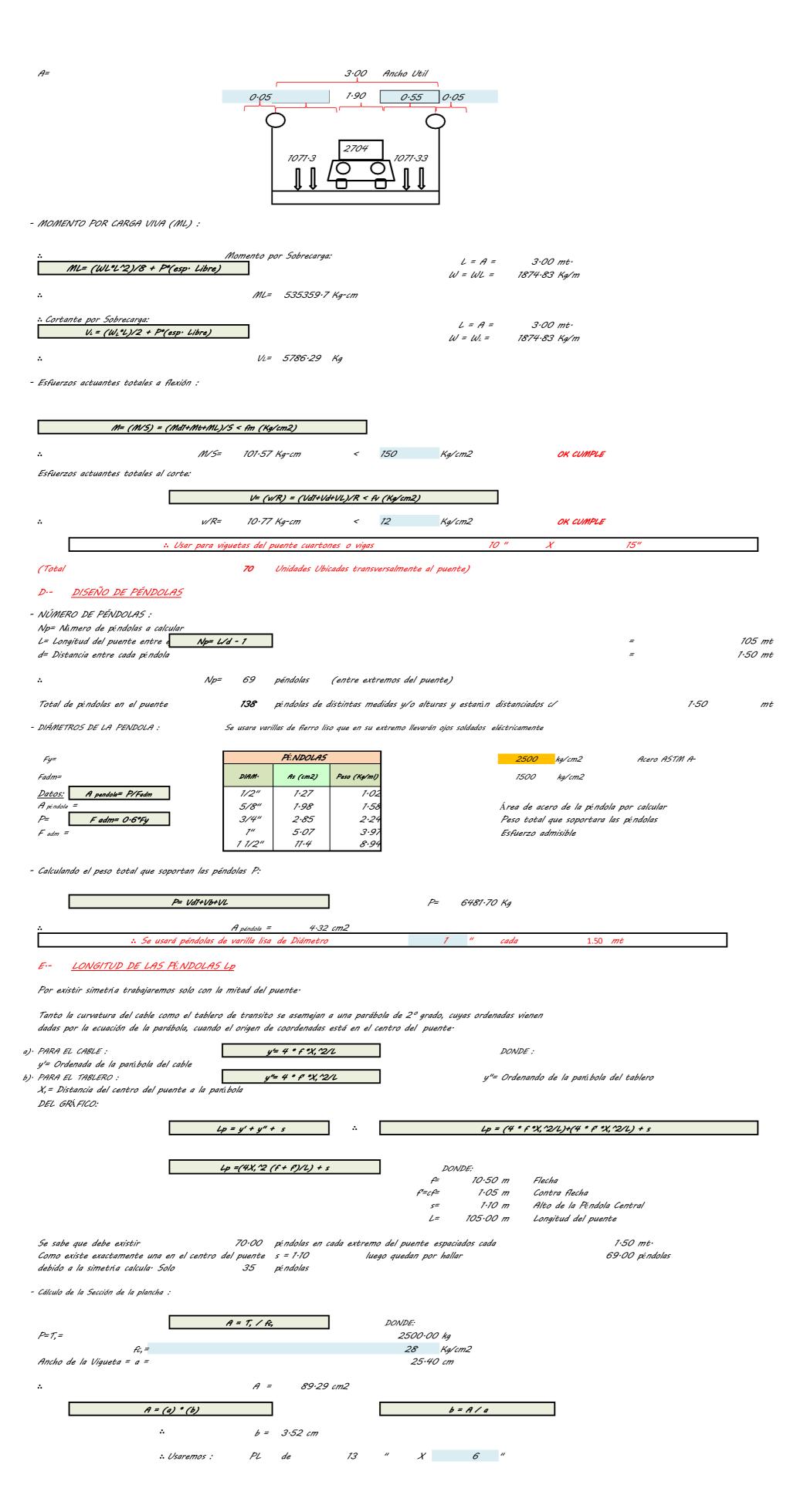
Wd = $\frac{10\cdot00}{Vd}$ Kg/m

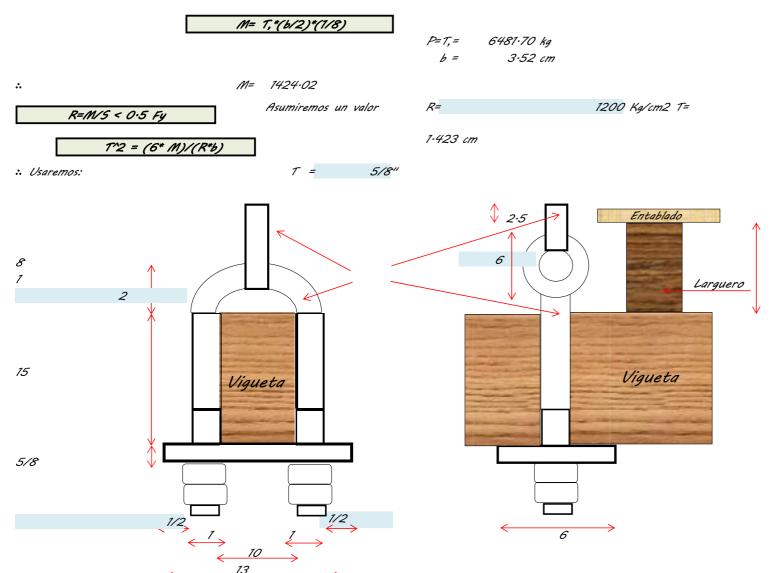
: Momento por carga muerta:

Md=(W*L^2)/8

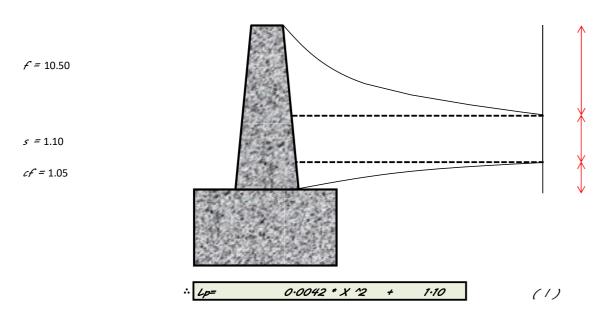
:. Cortante por carga muerta: $U = D = 1.50 \text{ mt} \cdot$ W = Wd = 71.53 Kg/m : Vd = 53.65 Kg

```
: Momento Sobrecarga Puntual:
                                                                            L = D =
                                                                                           1.50 mt.
         MP=P*D/4
                                                                                         2703.7 Kg
                                             MP=
                                                       101388 Kg-cm
 : Momento por Sobrecarga:
                                                                            L = D =
                                                                                           1.50 mt.
      ML=(WL*L^2)/8
                                                                           W = W_{\iota} =
                                                                                         1874·8 Kg/m
                                             ML= 52729.52 Kg-cm
 : Cortante por Carga Puntual:
         VP=P/2
                                                                                        2703.68 Kg
                                              VP= 1351.84 Kg
 : Cortante por Sobrecarga:
                                                                            L = D =
                                                                                           1.50 mt·
        Vi= (Wi*L)/2
                                                                           W = W_{\iota} =
                                                                                         1874.8 Kg/m
                                               VI= 1406·12 Kg
 - Esfuerzos actuantes totales a flexión
           M= (M/S) = (Md+MP+ML)/S < fm (Kg/cm2)
                                  M/5=
                                          127.60 Kg-cm
                                                                       150
                                                                                                            OK CUMPLE
                                                                                   Kg/cm2
  - Esfuerzos actuantes totales al corte:
                                       V = (v/R) = (Vd+Vp+VL)/R < fv (Kg/cm2)
                                   v/R=
                                                                  < 12
                                             11.67 Kg-cm
                                                                                    Kg/cm2
                                                                                                            OK CUMPLE
                           : Usar para largueros del puente cuartones o vigas
 (Total
                                       10 Unidades de
                                                                    1.50 mts. Ubicadas paralelamente al eje del puente)
                                     Se colocaran 700.00
                                                              Unidades
        DISEÑO DE VIGUETAS
  Considerando el Larguero de madera de las siguientes características:
                                     15 " =
                                                        38·10 cm
                                                                        Alto de Viguetas
                                     10 "
                                                       25.40 cm
                                                                        Base de Viguetas
                                   5=6*(4^2)/6
                                                                                  S= 6145·149 cm3
        Módulo de Sección:
        Módulo de Reacción:
                                  R=(2/3)*b*h
                                                                                        645·160 cm2
 CARGAS ACTUANTES
- MOMENTO POR CARGA MUERTA (MdI) :
 Metrado de Cargas (W = \sigma *vol·); por ml·
 Peso del entablado:
                                                Went ·= δ * (h1*D*1)
                                                                                          95.25 Kg/m
 Peso de Largueros:
                                                    Wlarg∙= 8*
                                                                                         180.64 Kg/m
                                                 (h2*b2*1)*N*(D/A)
                                                                                          96.77 Kg/m
 Peso de Viguetas:
                                                Wvig. = 8 * (h3*b3*7)
 Clavos, pernos y otros
                                                                                             15 Kg/m
 Wd1 =
                                                                                         387-67 Kg/m
  - Momento:
                           Md1=(W+L^2)/8+100
                                                                             L = A = 3.00 \text{ mt}
                                                                      W = Wd1=
                                                                                      387-67 Kg/m
                           Md1=
                                                    43612.74 Kg-cm
                           - Cortante:
                                    VdT=(W*L)/2
                                                                             L = A = 3.00 \text{ mt}
                                                                                      387.67 Kg/m
                                                                      W = Wd1=
                           Vd1=
                                                    581.50 Kg
- MOMENTO POR LA BARANDA (Mb) :
 Para el cálculo del momento por la baranda se utiliza longitud de eje de péndolas:
                                                                                                        L =
                                                                                                                       3.20 mt.
 P1= 4x (4" x 6") x (0.025m/1")^2 x 1000Kg/m3 x 1.5m/3.2mt.=
                                                                                          28·13 Kg/m
                                                                                                            Peso cordón inf. y sup.
 P2=4(6" x 2·50")(0·025m/1")^2 x 1000Kg/m3x1·5m/3·2mt·=
                                                                                          17.58 Kg/m
                                                                                                            Peso de diagonales
 P3=60·00 Kg/m
                                                                                         60.00 Kg/m
                                                                                                            Platinas, pernos y clavos (aprox·)
 P4=2(7" x 2") x (0.025m)^2x 1000x1.5m/3.2mt.=
                                                                                          8·20 Kg/m
                                                                                                            Puntales
 W_B =
                                                                                          113-91 Kg/m
 : Momento de la baranda:
                                                                                            75 %
       Mb=(P*i*100)
                                                                   W = Wb =
                                                                                          113-91 Kg/m
                                                                                                            = P
                                                        1604 Kg-cm
                                              Mb=
 : Cortante de la baranda:
          Vb = P
                                                                                            Vb= 113.91 Kg
                                                                   ።
                                                                      Mt = Md1 + Mb
- MOMENTO TOTAL POR CARGA MUERTA :
                                             Mt= 45217-07 Kg-cm
 :
                                                                 Vd = Wd1 * A/2
```


Kg-cm

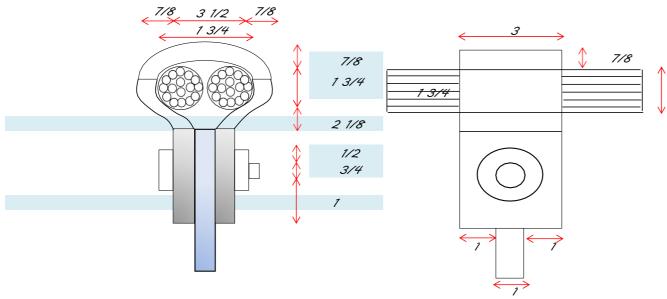

Vd= 581·50

- MOMENTO POR CARGA VIVA (ML):


- CORTANTE POR CARGA MUERTA (Vd) :

:

- Cálculo de la longitud de la péndola :



En el centro de luz (CL) En x=0, (existe la péndola central Lp= En x=2, Lp=

1.10 mts) 1.109 0.0042 * 2^2+1 =

Nº DE PÉNDOLA A PARTIR DE CL	DISTANCIA DE X A LA PÉNDOLA	X*2	ECUACIÓN (1) Lp	LONGITUD CORREGIDA
1	1.5	2.25	1-109	0.622
2	3	9	1-138	0-650
3	4.5	20.25	1-185	0.697
4	6	36	1-251	0.763
5	7.5	<i>56-25</i>	1.336	0.848
6	9	81	1.439	0.952
7	10.5	110-25	1.562	1-075
8	12	144	1.703	1-216
9	13.5	182-25	1-864	1-376
10	15	225	2.043	1-555
11	<i>16.5</i>	272-25	2.241	1-753
12	18	324	2.458	1.970
13	19.5	380-25	2.693	2·206
14	21	441	2.948	2.461
<i>15</i>	22.5	<i>506-25</i>	3.221	2.734
16	24	576	3.514	<i>3.026</i>
17	25.5	<i>650-25</i>	3.825	3.337
<i>18</i>	27	729	4.155	<i>3.667</i>
19	28.5	812-25	4.504	4.016
20	30	900	4.871	4.384
21	31.5	992-25	5-258	4-771
22	33	1089	5.663	5.176
23	34.5	1190-25	6.088	5.600
24	36	1296	6.531	6.043
25	37.5	1406-25	6.993	6.505
26	39	1521	7-474	6.986
27	40.5	1640-25	7.973	7·486
28	42	1764	8.492	<i>8·005</i>
29	43.5	1892-25	9-029	8.542
30	45	2025	9.586	9.098
31	46.5	2162-25	10·161	9.673
32	48	2304	10.755	10-267
33	49.5	2450-25	11-368	10-880
34	51	2601	11-999	11.512
35	52.5	2756-25	12-650	12·163

Abrazadera Cable - Péndola = -0.04 Abrazadera Vigueta- Péndola =_ -0.44 -0.49

LONGITUD DEL CABLE (Lc)

Lc =L' * (1+ (8*(n^2)/3)-(32*(n^4)/3)) La longitud de la curva parabólica del cable, viene dada por:

DONDE:

Lc= Longitud de la curva parabólica del cable

L'= Longitud entre torres = n= Flecha /L' =

105.00 0.100 Lc= 107.7328 mts.

- Altura de la Torre :

hT = f + s + f'

DONDE

h= Altura de la Torre

f= Flecha del cable en el eje central igual a (Mínima altura de flecha es del

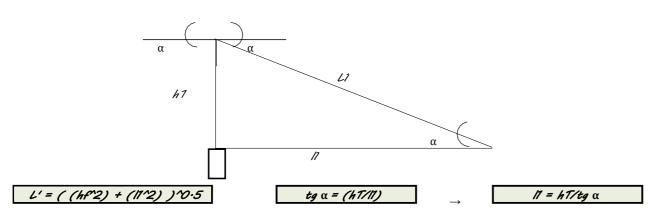
s= Altura de la péndola central (criterio)

f'= Contra flecha del tablero en el eje central =

8%L'

10.50 1.10

1.05


mt

18/17 %L'

10%L'

12.65 mts.

- Longitud de Fiadores :

DONDE:

Sec α =

L1= Longitud del fiador

li= Proyección horizontal del fiador hT= Altura de torre

8 4 L'

112

31.63 mt 12.65 mt

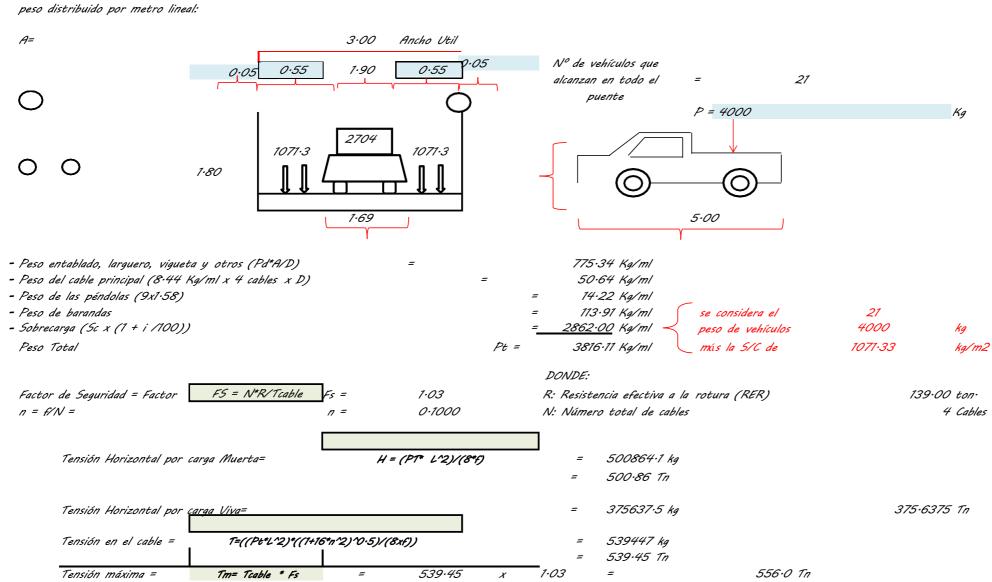
46

112 Sec \alpha = (1+4n) 10.5

84 x

Ľ

1.077


34.06 mt

Sustituyendo datos:

Grados $tg \alpha = 0.40$ Angulo con el cable principal 21.80° ። *|1 = 31.63* 26.84 : Angulo del fiador izquierdo mtsL1 = 34.06 mts Angulo del fiador derecho 26.84

- Diseño de los cables Principales :

Se usará como mínimo O2 cables por banda Cálculo del

	CABLE PRII	CABLE PRINCIPAL (CLASE TRANSA)					
C	DÍAMETRO plg	A (plg 2)	R, E, R (TN)	COSTO \$	COSTO 5/-		
1	3/4	0.336	23.75	4.301852	23.23		
2	7/8	0.457	32.13	5-298148	28.61		
3	1	0.597	41.71	7.024074	37.93		
4	1 1/8	0.755	52.49	8·635185	46·63		
5	1 1/4	0.933	64.47	11-02778	<i>59.55</i>		
6	1 3/8	1-128	77.54	11-92407	64.39		
7	1 1/2	1.343	103	<i>13·73519</i>	74-17		
8	1 5/8	1.576	120	<i>16·12593</i>	87.08		
9	1 3/4	1.828	139	<i>18-51667</i>	99.99		

9

DONDE:

Se usarán

 $R \cdot E \cdot R =$ Resistencia Efectiva a la Rotura (Tn, tipo Alma de Acero)

Tasa de cambio: \$ 1.00 = 5/. 3.80, se incluye IGV ÁREA (plg2): Sección transversal metálica del cable (0.76 * D^2)

Ingrese el número del cable a usar

CABLES 4 CABLES

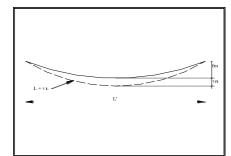
: USAR - Cálculo de la longitud del cable:

2 POR BANDA Lc = L * (1+ 8/3*(f^2/L^2) - 32/5*(f4/L^4))

1 3/4

Longitud de Amarre=

Lc = 108 m

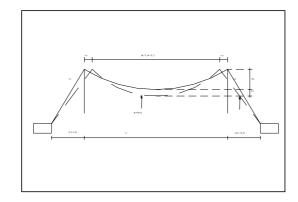

Lt = (Lc + Cable marg· Der+ Cable marg· lzq +2*L·amarre) *

711·421 m Lt = Lt = 711 m

-Cálculo de la flecha de montaje

AUMENTO DE FLECHA POR ALARGAMIENTO DEL CABLE ENTRE TORRES

Tal que Aft = 15/(16n1*(5-24*n1^2))*\L' $\Delta L' = (H'pp*L / E*A) * (1+ (16/3)*n^2)$



AUMENTO DE FLECHA POR DISMINUCIÓN DE LUZ ENTRE TORRES

Sabemos que:

 $\Delta f2 = (15-40n+288n^2)/(16n1*(5-24*n1^2))^{*} L'$

 $\Delta L' = (Hpp^* (L1+L2) * Sec3\alpha / E*A$

DONDE:

 $\Delta L' =$

Aumento de flecha por alargamiento de cable entre torres $\Delta F7$

ΔL = Aumento de longitud de cable entre torres E = Módulo de elasticidad del cable

A = Área transversal de la parte metúlica del cable calculado (2 por banda)

n, = fm/L'

f/L n= H'pp= Hpp/2 a cada lado del puente LI=

25.00 m Longitud del cable fiador izquierdo L2= Longitud del cable fiador derecho 25.00 m $\Delta f 2 =$ Aumento de flecha por disminución de luz entre torres

Aumento de longitud de cable entre torres

Sec α = 1.077 En centrado anteriormente

*Sec3*α = 1.249 CÁLCULO DE FLECHA DE MONTAJE (Am)

2.405281876

 $\Delta f = \Delta f + \Delta f$ $f = fm + \Delta f$ $f=fm+(\Delta fI+\Delta f2)$

Tensión máxima horizontal verdadera por peso propio (H'pp):

Hpp = Pd * L^2 / (8 * f) = 775.34 Kg/ml Peso entablado, larguero, vigueta y otros (Pd*A/D)

0.001552

= 50.64 Kg/ml Peso del cable principal (8.44 Kg/ml x 4 cables x D)

Peso de las péndolas (9x1.58) 14.22 Kg/ml Hpp = 125.227 Tn (En todo el puente) Peso de barandas <u>113-91</u> Kg/ml 954·11 Kg/ml H'pp = Hpp / 2 PESO TOTAL = Pd =

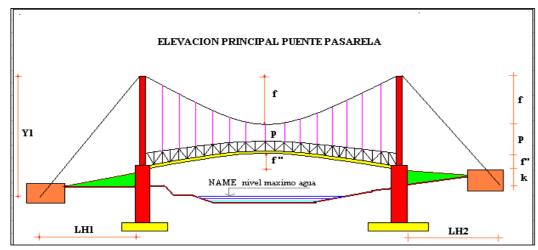
H'pp = 62.613 Tn (a cada lado el puente) E = 24000000 in/plg2 = 16896000 Tn/cm2

m2

TANTEAMOS: Consideramos en el tanteo una flecha de montaje igual a: 10.51 de la flecha del cable

n = f/L'0.100 Sustituyendo datos : ∆**f/=** -0.0055 ۸6 = 0.132 Luego: 1.051 n1 = fm/L' ∆L'= 0.075 ∆**f2=** -0·0030

REEMPLAZANDO EN


plg2

10.50 = 10 26/51 *-0.0055* -0.0030

OK CUMPLE

10.50 10.50

DISEÑO DE LA CÁMARA DE ANCLAJE

μ= Ø= Ø= 0.35 Coeficiente de rozamiento de suelo Ángulo de fricción interna del suelo (grava lig· Humedad) - Lado Izquierdo Tt (Derecha)= Tt 26.00 Ángulo de fricción interna del suelo (grava lig· Humedad) - Lado Derecho (Izquierda)= 30.00 γ suelo (Derecha)= 3.80 Capacidad portante del suelo γ suelo (Izquierda)= 1.90 Capacidad portante del suelo γ Conc = 1.98 Peso específico del suelo k = LH1= LH2= 1.54 Peso específico del suelo 2.40 Peso específico del Concreto Ciclópeo 1.00 Altura de aplicación de anclaje 25.00 Longitud Horizontal izquierdo 25.00 Longitud Horizontal derecho

Y1= f + cf + s

DIMENSIONES DE LAS CAMARAS DE

LADO IZQUIERDO			
A= B=	7.8 m	=	Ancho
C=	9 m	=	Largo
	6·60 m	=	Peralte

12·65 m

LADO D	ERECHO		
A= B=	7.5	m =	Ancho
C=	8.5	m =	Largo
	6.60	m =	Peralte

RADIANES GRADOS

α =	0.38	21.80 = Ángulo con el cable Principal
$\alpha I =$	0.47	26.84 = Ángulo del fiador izquierdo
α2 =	0.47	26.84 = Á naulo del fiador derecho

Longitud del fiador izquierdo (L1) = 28.02 Longitud del fiador derecho (L2) = 28.02

539·45 Tn = Tensión en el cable В

- Por efecto del Puente Sobre la Cámara:

A

Ea=

Ea=

Ep=

Ep=

17 = 539.45 = Tensión Del Cable (Calculado anteriormente)

		LADO IZQUIER	'DO
Th	=	481-335 =	Tensión Horizontal
TV	=	243.556 =	Tensión Vertical

Th = 17 + COS a1 Th = 17 * SEN a1

		LADO DERECHO	
Th	=	481-335 =	Tensión Horizontal
TV	=	243.556 =	Tensión Vertical

Th = 17 + CO5 a2 Th = 17 * SEN α2

Ca =

Cp=

- Por Peso Propio de la cámara:

Wt	=	LADO IZQUIERDO 1111-97	Tn	
		LADO DERECHO		
Wt	=	1009-80	Tn	

Wt = Y Conc C* Vol-

Wt = Y Conc C* Vol-

0.333

3.000

- Por Efectos del Terreno Sobre la Cámara:

Ea= Empuje activo del Terreno Ep= Empuje pasivo del Terreno

Empuje activo del Terreno (por unidad de longitud) - Lado izquierdo

Ea= (y suelo* C^2 * Ca)/2 Ca = Tg^2 (45 - 0/2) Tal que 13·10 Tn Ca = 0.390

Empuje activo del Terreno (por unidad de longitud) - Lado Derecho

Ea= (y suelo* C^2 * Ca)/2 Ca = Tg^2 (45 - 0/2) Tal que

Empuje pasivo del terreno (por unidad de longitud) - Lado Izquierdo

14.37 In

Ep= (y suelo* C^2 * Cp)/2 Tal que Cp = Tg^2 (45 - 0/2) 85.90 Tn 2.561

Empuje pasivo del terreno (por unidad de longitud) - Lado Derecho

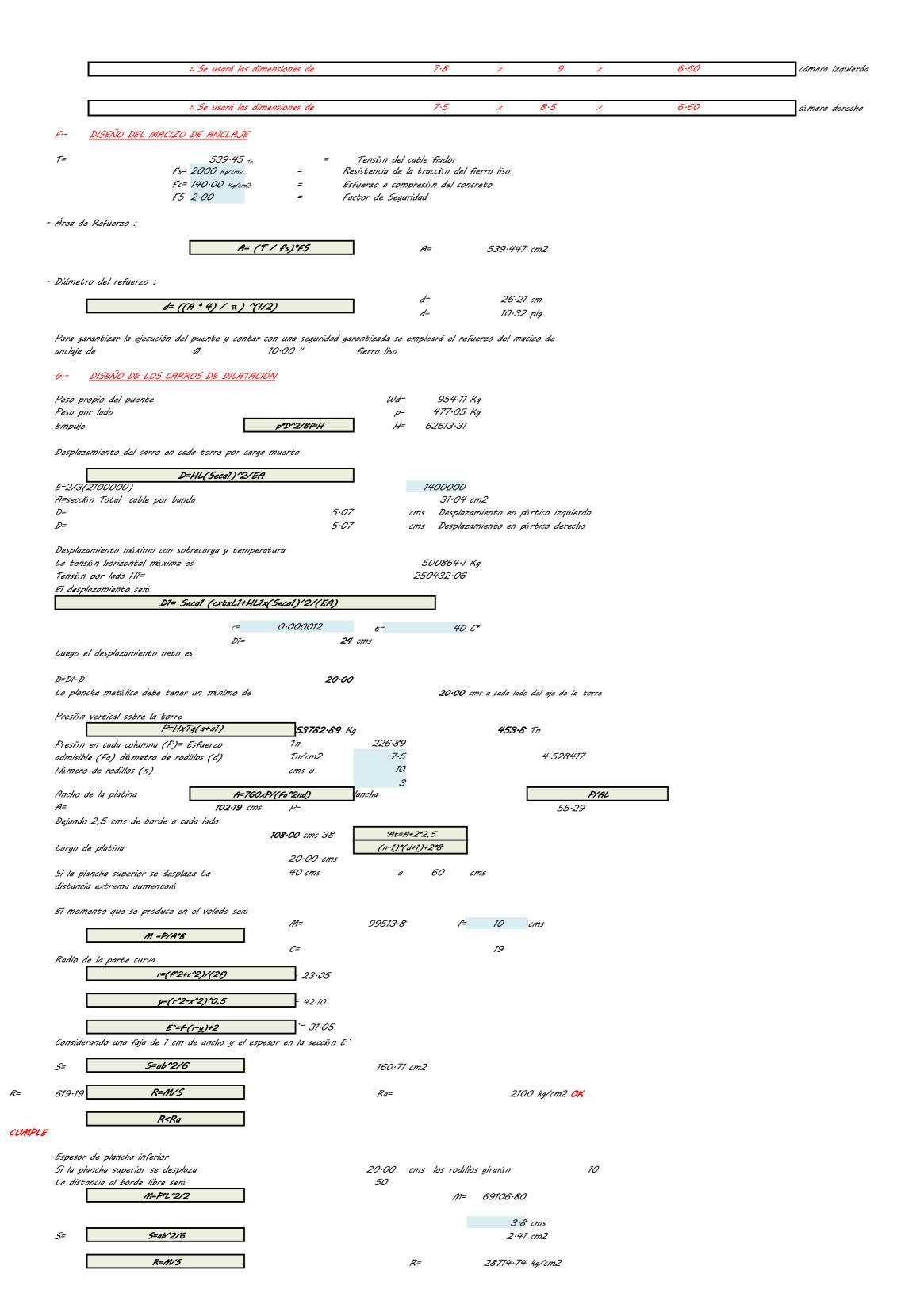
129.37 Tn

Ep= (y suelo* C^2 * Cp)/2 Cp = Tg^2 (45 - 0/2) Tal que

Sumatoria de Todas las Fuerzas que intervienen 450.46 Tn P1= LADO IZQUIERDO P= (Tv/μ + Th) - (Ep-Ea) * B - (Ea * 2*A * μ) P2= 124.25 Tn LADO DERECHO Cálculo de los momentos que intervienen - Suma de momentos estables: $\Sigma M est = ((\gamma Conc^*A^*B^*C)^*A/2) + ((Ep^*B) + Ea^*2^*A^*\mu))^*C/3$ Σ M est· 1= 6194.84 Tn - m LADO IZQUIERDO 6372.06 Tn - m LADO DERECHO Σ M est. 2 - Suma de momentos de volteo: $\Sigma M V = T *COSB*F+ (((T*SENB*(A-F))) +$ $\Sigma M VI = 2396.83 Tn - m$ LADO IZQUIERDO ΣM v 2= 2333.26 Tn - m LADO DERECHO - Verificación al volcamiento: FSV = Mest / Mv > 2 FSV 1 = 2.58 Kg-cm OK CUMPLE FSV 2 = 2.73 Kg-cm OK CUMPLE - Verificación al deslizamiento: FSD = Wc / P > 2 Wc = Y Conc*A*B*C FSD1 = 2.47 OK CUMPLE OK CUMPLE FSD2 = 8.13 - Verificación de presiones sobre el suelo: Punto de aplicación de la Resultante X = (Mest - Mv) / Wc : X1 = 3.42 mt LADO IZQUIERDO LADO DERECHO : X2 = 4.00 mt Cálculo de la Excentricidad " e" e = (a/2) - X0.48 mt LADO IZQUIERDO : e1 = e2 = -0.25 mt LADO DERECHO - Presión máxima sobre el suelo: q max= (Wc/(B*A)) * (1+((6*e)/A)) or Cámara 1) 9 Max = LADO IZQUIERDO 2.17 Kg/cm2 q max= (Wc/(B*A)) * (1+((6*e)/A)) Presiói LADO DERECHO 1-27 Kg/cm2 9 Max = VERIFICACIÓN QUE LAS FUERZAS RESISTENTES ES MAYOR QUE EL DOBLE DE LA TENSIÓN HORIZONTAL AGULO DEL FIADOR = 26.84 ÁNGULO DEL FIADOR = 26.84 17 Th Th CÁMARA IZQUIERDA CÁMARA DERECHA DONDE: DONDE: 463·32 m3 Volumen de la cámara = 420·75 m3 Vc Volumen de la cámara = Vc Pc Peso de la cámara = 1111-97 Ton Pc Peso de la cámara = 1009.80 Ton Tensión inclinada del cable fiador = 539.45 Ton Tensión inclinada del cable fiador = 539.45 Ton 17 17 243.56 Ton 243.56 Ton Tensión Vertical del cable fiador = TV Tensión Vertical del cable fiador = TV 2.17 Kg/cm2 1.27 Kg/cm2 Presión máxima de la cámara = Presión máxima de la cámara = - Fuerzas que se oponen al deslizamiento - Fuerzas que se oponen al deslizamiento $(Pc-2 * Tv) * \mu = (Pc-2*77*Sena1)$ $(Pc-2 * Tv) * \mu = (Pc-2*17*Senx1)$ FSD = 2 FSD = 2F1= 218.70 Ton 182.94 Ton - Fuerzas debido al Empuje pasivo sobre la pared frontal - Fuerzas debido al Empuje pasivo sobre la pared frontal Ep*B 773-11 Ton Ep*B F2= 1099-67 Ton - Fuerzas debido al empuje activo sobre las paredes laterales - Fuerzas debido al empuje activo sobre las paredes laterales Ea*A Ea*A 102-15 Ton F3= 107.81 Ton - Fuerza debido a la Tensión Horizontal del cable fiador - Fuerza debido a la Tensión Horizontal del cable fiador 77*Cosa1 77*Cosa1 539.45 Ton 539.45 Ton Verificando las fuerzas Lado Izquierdo Verificando las fuerzas Lado Derecho (F1+F2+F3) > 2*Th (F1+F2+F3) > 2*Th Ton 1078-894

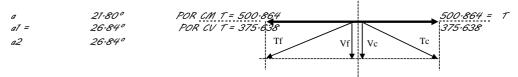
1390.42 Ton

OK CUMPLE


Σ de las fuerzas =

 Σ de las fuerzas =

1093-97 Ton


OK CUMPLE

> 1078.89 Ton

H. ANÁLISIS ESTRUCTURAL DE LAS TORRES Y/O COLUMNAS CARGA

DE LA SUPERESTRUCTURA SOBRE LA TORRE

Tc=Tensión del cable principal Tf=Tensión TORRE IZQUIERDA del cable Fiador TCCM = T/cos(a) 539.45 Tn $Tc_{cv} = T/cos(a)$ 404.57 Tn TFCM = T/cos(a1 ó a2) 561-33 Tn $Tf_{cv} = T/cos(a_1 \circ a_2)$ 420.99 Tn $Vc_{CM} = Tc*seno(a)$ 200.35 Tn $Vc_{cv} = Tc*seno(a)$ 150-26 Tn $Vf_{CM} = Tf^*seno(a_1 \circ a_2)$ 253.44 Tn $Vf_{cv} = Tf^*seno(a_1 \circ a_2)$ 190.07 Tn

> $V_{totalCM} = V_{totalCV} = 453.78 \text{ Tn}$ cm 226891.45 340.33 Tn cv 170163.79

CARGA DE VIENTO SOBRE LA TORRE

Velocidad del viento (V)=100 Km/hora, (Velocidad mayor de 75 km/hora)=100.00Altura de torre (h)12.65 m, (h mayor de 10 m)12.65Velocidad de diseño (Vd)= $V^*(h/10)^{0.22}$ =105.31 Km/horaCarga de viento (w)= 0.0105^*Vd^* =116.44 Kg/m2

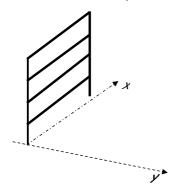
794-11 Tn

Análisis SISMICO (método estático)

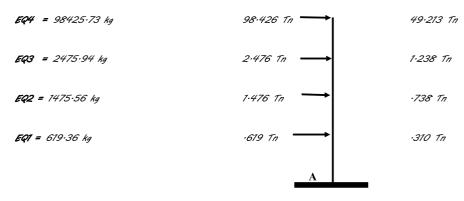
Cálculo DE " H "

H = AUSCP/(Rd)A = factor de Zona =0.35 (Zona 3)U= factor de uso de importancia=1.3 (Categoría C)S= factor de sueloS3 =1.2 (Suelos Blandos)R= factor de modificación de respuestas=Cálculo de CTp= periodo predominante de la estratigrafia==

= periodo de vibración fundamentalmente de la estructura= 0.08*N, (N es el número de pisos) N = $\frac{4}{9}$ pisos H = 16.648 T = 0.48 seg CT = 35.00


C=2.5*(Tp/T), C<=2.5

C = 5.26 deberú ser menor que 2.5, por tanto
C = 2.5

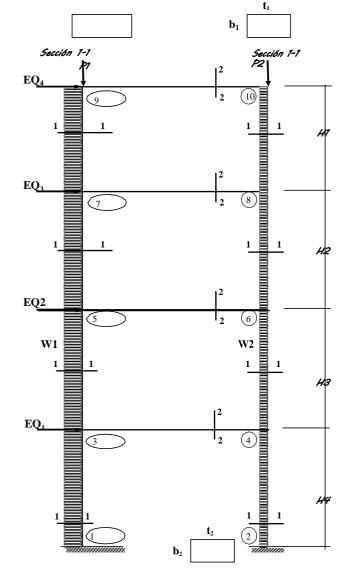

0-1706 *P

NIVEL	Pi(Kg)	hi (m)	Pi*hi	Pi*hi/(Spi*hi)	ν
4	552092-60	<i>16.65</i>	9191237-68	0.96	98,425.73
3	17686·03	13.07	231209-50	0.02	2,475.94
2	17686·03	7.79	137791-88	0.01	1,475.56
1	16178-40	<i>3.58</i>	<i>57837·78</i>	0.01	619.36
	603643.07		9618076-84	1.00	102,996.60

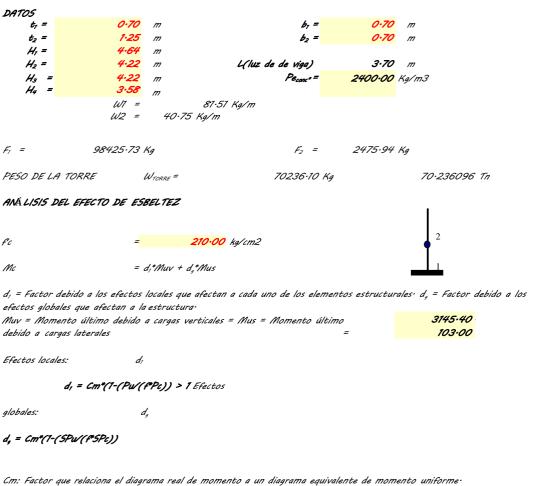
Entonces, H = 102996.60 kg 102.997 Tn

El eje " Y " es el mús desfavorable en cada columna la carga es la siguiente:

En cada columna: Pu = 1.5*CM = 1.5*(Ptorre+VtotaKM)/2+1.8*Vtotalcv 699309·06 Kg Mu = 1.87*(M) = 1.87*(EQ4*(+H1+H2+H3+H4)+EQ3*(H2+H3+H4)+EQ2*(H3+H4)+ EQ1*H4) = 3145397·04 Kg m El eje "X", la disposición de las cargas es la siguiente : P1m = P2m = Vmtotal/2 = 226891·45 Kg/m P1v = P2v = Vvtotal/2 = 170163·79 Kg EQ4 = 98425.73 Kg $EQ_3 =$ 2475·94 Kg 1475.56 kg $EQ_2 =$


Carga de viento:

619.36 kg

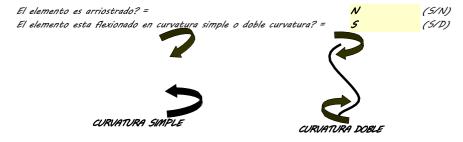

 $EQ_1 =$

 $\mathbf{b}_{\scriptscriptstyle 1}$

Sobre la subestructura = W1 = wb_1 = 82 Kg/m W4 = W3/2 = 41 Kg/m \mathbf{t}_1

Sección 2-2

Pu: Carga axial última·


Pc: Carga critica de pandeo.

SPu, SPc Son las sumas para todas las columnas del piso que se está analizando.

Cálculo de Cm:

 $Cm = 0.60 + 0.40 * M_1 / M_2 > 0.40$

Para elementos contraventados (arriostrados) y sin cargas transversales entre los apoyos· Para los demás casos Cm debe tomarse como 1.

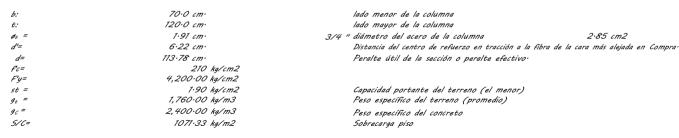
33-248 (Momento flector menor de diseño en el extremo de la columna: Es positivo si el elemento está flexionado en curvatura simple y es negativo si está flexionado en doble curvatura)· M2 280·71 (Momento flector mayor de diseño en el extremo de la columna· Siempre es positivo). Md = 30.074 Tn-m, (momento mayor por carga muerta no mejorado)

```
Cm =
                                                         0.65
Cm =
                                                          1.00
Pc =
                              p^2*El/(k*ln)^2 , (carga crítica de pandeo) ·······A
           El = Ec*lg/(2.5*(1+bd))
                                                         = Ec=15000(f'c)^0.5 149882394839.21
                                                         Ec = 217370.65
= 2000833.33
                                                                                        0.16 , 0 < bd < 1
bd = 1.5*Mdmax/Mumax
                                                  11393229-17
Cálculo de k : Cálculo de y2 :
                                                                    9057-02
5(1g/L) columnas
0.5*(S(1/L)vigas) =
                                                                    15396-26
                                                                        0.59
Cálculo de y:
y<sub>2</sub> =
                                 y<sub>m</sub> =
                                                          0.79
                                                                                  2 K=
SI(ym>=2,"0.9*ráz(1+ym) =","(20-ym)*(ráz(1+ym))/20 =")
                                                                                    1.29
Verificamos si columna necesita corrección por esbeltez
                                                    0·30*t = 0·21
k*/u/r =
                                                        22.00 < 22 ; NO ES NECESARIO CONSIDERERAR EFECTO DE ESBELTEZ!
Por lo tanto, reemplazando datos en fórmula A:
Pc =
                                                 5,030,221.98
                                                  699,309.06
F =
                                                        0.75 (0.75, para columnas estribadas)
Cálculo de d, , d;
d, =
                                      1.228
```

1.228

d, =

CÁLCULO DE ACERO DE LAS TORRES Y/O COLUMNAS DATOS


PRELIMINIARES.

Altura de la torre $h_{\tau} = f$

+ 5 + 6

$$\tau$$
 = 12.65 m

COLUMNA:

CÁLCULO DE CARGAS ACTUANTES:

Peso de la propia torre:

Vigas = 0.30m x 0.85m x 3m x 2400kg/m3 x 4vigas=

7.34 Ton 67-13 Ton 2.85 cm2

Columnas = 2 x 70 x 120 x (1/100)^2 x 2400 x (12.65 + 5 -100/100)/1000=

74.48 Ton

Ppcpara cada columna= Ptoro/2=

37240.00 Kg

Del cálculo anterior:

Wn= 915.40 Ka/m

W = 2332.00 Kg/m

L= 105.00 m

TENSIÓN TRANSMITIDA DE CARGA MUERTA POR EL PUENTE

$$T_{m\acute{a}x.D} = \frac{W_D * L^2}{8f} \sqrt{1 + 16n^2}$$

= (915.4*105^2/(8*10.5))*(1+16*(10.5/105).^2)^0.5

Tmáx. D= 129401.47 Kg

120146-25 Kg

48058.50 Kg

PTD= PDV + PDC PTD= 133357.00 Kg

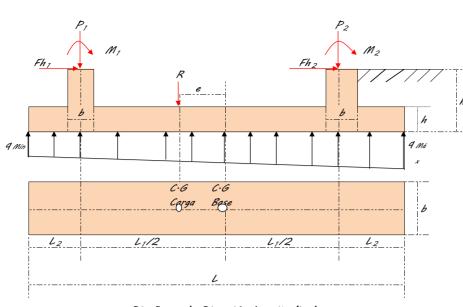
TENSIÓN TRANSMITIDA POR SOBRECARGA EN EL PUENTE

$$T_{m\acute{a}x.L} = \frac{W_L * L^2}{8f} \sqrt{1 + 16n^2}$$

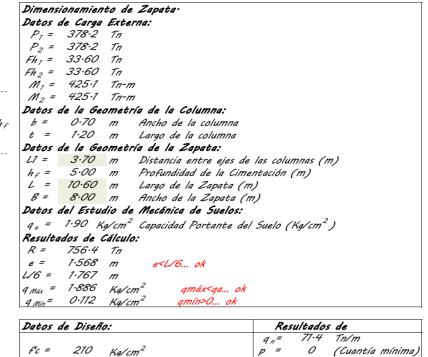
= (2332*105^2/(8*105))*(1+16*(10·5/105)·^2)^0·5

Tmáx· L= 329652.86 Kg

$$P_{Lk} = T_{mkr.l} * cosx$$
 306075.00 Kg $P_{Lr} = T_{mkr.l} * sorx$ 122430.00 Kg

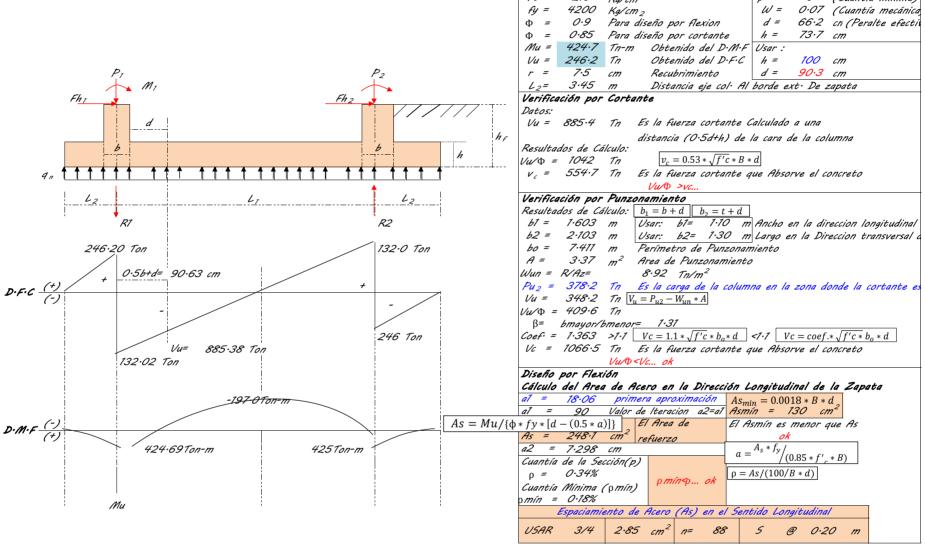

$$P_{\pi}=2*P_{\iota\nu}$$

Pn= 244860.00 Kg


Pu= 1.40P10 + \$ 70P11 Pu= 602961.80 Kg

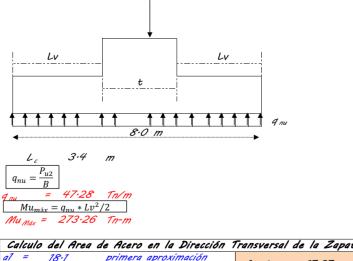
```
Para la columna de dimensiones:
h= 70.00 cm
t= 120.00 cm
B= 0.85
                                                                  (Para fc<= 280 Ka/cm², y disminuye en 0.05 por cada 70 Ka/cm², 0.65<=8<=0.85)
.
d = 0.70
Es= 2.10E+06
                                                                  Ka/cm² (Valor módulo de elasticidad del acero)
Para verificar si la columna trabaia a tracción o compresión:
Asumiendo falla halanceada
            a_b = \frac{0.003 E_S}{f_{y+0.003 E_S}} \beta b
ab=(0.003 x 2 x 10^6Ka/cm^2 x 0.85 x 70cm)/(4200ka/cm2+0.003 x 2.10 x 10^6Ka/cm^2) ab=
                                                                                                     35.00
Luego la carga balanceada es:
             P_b = (0.85 * f'c * a_b * b)
Pi=
                               0.7(0.85 x 210kg/cm2 x 35 x 70)
                              306127.50 Ka
Pi=
Utilizamos la Ecuación de Whitney
    PII = 0 + \frac{A' c * f}{f^2} + \frac{f'}{d^2}
Cálculo de la Excentricidad
e= Mu/Pu
425093.97Kg-m
602961.8ka
e= 70.50 cm
Reemplazando datos en la Ecuación de Whitney para el cálculo de acero:
                                                                                                                              a= 861374
                                                                                                                              b= 3635
                         #'s x 4200kg/cm2 + 210kg/cm2 x 70 x 120cm2
602961-8Kg=0-7
                                                                                                                                c= 561684
                       70.5cm + 0.50
                                                       3 x 120cm x 70.5cm + 1.18
                       (113·7775-6·2225)cm
                                                                         (113.7775cm)^2
                 As= 82.45 cm2
         USAR:
                        29 varillas de Diámetro
                                                            3/4 "
Cuantía del acero, a =?
      A's
                                                             p= 82.45 cm2
 ρ=
      bxt
                                                             70 x 120cm2
o= 0.0098
                                                             a= 0.0098 x 113.7775cm x 4200kg/cm2
      \rho * d * f_{\nu}
                                                             0.85 x 210kg/cm2
      0.85 * f'
a= 26.24 cm
Ey=fy/Es =4200kg/cm2/2100000Kg/cm2
£y= 0.0020
```

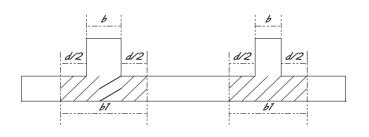
ESXEY ... EL ACERO FLUYE


Diseño en la Dirección Longitudinal

w =

4200 Kg/cm2


fy =


Diseño en la Dirección Transversal

Cargas que Actúan en la Dirección Transversal de la Zapata

Identificación del Ancho de la Zapata "b1" para el Diseño en la Dirección Transversal

Calculo del Area de Acero	en la Dirección	Transversal de la Zapata
	proximación eracion a2=a1	- Asmín = 17.87 cm ²
$As = 160 cm^2$	a de refuerzo rio Calc·	El Asmín es menor que As ok
a2 = 34.2 cm		
Cuantía de la Sección(p) p = 1·61% Cuantía Mínima (pmín) pmín = 0·2%	ok	
Espaciamiento de	Acero (As) en e	l Sentido Transversal
USAR 3/4 2.85	cm^2 $n=57$	7 5 @ 0·20

ANEXO PROPIEDADES DEL CAMIÓN DE DISEÑO

PROPIEDADES DEL CAMIÓN DE DISEÑO

El Manual de Diseño de Puentes precisa que:

Generalidades. - La carga viva correspondiente a cada vía será la suma de:

Camión de diseño, según 2.4.3.2.2.2 o tándem, según 2.4.3.2.2.3, tomándose aquello que produzca en cada caso los efectos más desfavorables.

Sobrecarga distribuida.

Camión de Diseño. - Las cargas por eje y los espaciamientos entre ejes serán los indicados en la (Figura. 1.13), la distancia entre los dos ejes de 145kN (14.78 t) será tomada como aquella que, estando entre los límites de 4.30m y 9.00m, resulta en los mayores efectos. Las cargas del camión de diseño deberán incrementarse por efectos dinámicos en los casos indicados en 2.4.3.3

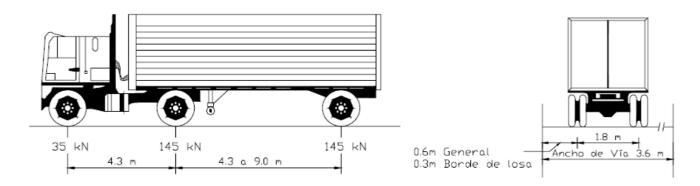


Figura 13. Características del Camión de Diseño

Tándem de Diseño. - El tándem de diseño consistirá en un conjunto de dos ejes, cada uno con una carga de 110kN (11.2t), espaciados a 1.20m. La distancia entre las ruedas de cada eje, en dirección transversal será de 1.80 m. estas cargas deberán incrementarse por efectos dinámicos en los casos indicados en 2.4.3.3.

Sobrecarga Distribuida. - Se considerará una sobrecarga de 9.3 kN7m (970 kg/m), uniformemente distribuida en dirección longitudinal sobre aquellas porciones del puente en las que produzca un efecto desfavorable. Se supondrá que esta sobrecarga se distribuye uniformemente sobre un ancho de 3.00 m en dirección transversal. Esta sobrecarga se aplicará sobre aquellas zonas donde se ubique el camión o el tándem de diseño. No se considerarán efectos dinámicos para esta sobrecarga.

Efectos Dinámicos. - Excepto de estructuras enterradas y de madera, las cargas vivas correspondientes al camión o al tándem de diseño se incrementarán en los porcentajes indicados en la tabla 2.4.3.3-1 para tener en cuenta los efectos de amplificación dinámica y de impacto.

Componente						Porcentaje
Elementos	de	unión	en	el	tablero	
(para todos lo	75%					
Para otros el	emento	S				
 Estados lí 	15%					
 Otros esta 		The state of the s				33%

Fuente: Manual de Diseño de Puentes 2003 – Ministerio de Transportes y Comunicaciones

Este incremento no se incluirá en el cómputo de las fuerzas centrifugas o en el cómputo de las fuerzas de frenado, ni se aplicará a la sobrecarga uniformemente distribuida indicada en 2.4.3.2.2.4.

No se considerarán incrementos de la carga viva por efectos dinámicos en el diseño de:

- Veredas y puentes peatonales
- Muros de contención, excepto estribos
- Cimentaciones y otras estructuras totalmente enterradas.

Para puentes de madera y componentes de madera en puentes mixtos los incrementos de carga viva por efectos dinámicos serán 75% de los especificados en la tabla 2.4.3.3-1.

ANEXO METRADOS

	HOJA DE METRADOS								
PROYECTO		DICEÑ	ÍO DE DUE	ENTE CO	I CANTE	VEHICIII	AD		
UBICACIÓ	-	DISEÑO DE PUENTE COLGANTE VEHICULAR LOCALIDAD DE SAN FRANCISCO DEL RÍO MAYO ANDREY DEL AGUILA PEREA							
TESISTA	11								
FECHA		ENERO DEL 2015							
LCIIA			DIMENSI			1			
PART. N°	DESCRIPCIÓN	VEC.				PARCIAL	TOTAL	UNID	
	DISEÑO ESTRUCTURAL DE PUENTE COLGANT					A TRANS	I STARIL ID	A D	
1.00.00	TRABAJOS PRELIMINARES	I VEII	lcolar,	MEJOR	ANDOL	I		AD	
1.01.00	LIMPIEZA DEL TERRENO						300.00	M2	
1.01.00	MARGEN DERECHO	1	30.00	5.00)	150.00		1112	
	MARGEN IZQUIERD0	1	30.00			150.00			
						200.00	300.00		
1.02.00	TRAZO, NIVELACION Y REPLANTEO						300.00	M2	
	MARGEN DERECHO	1	30.00	5.00)	150.00			
	MARGEN IZQUIERD0	1	30.00	5.00)	150.00			
							300.00		
2.00.00	MOVIMIENTO DE TIERRAS								
2.01.00	EXCAVACIÓN DE MAT. SUELTO MANUAL EN SECO						1628.58	M3	
	CÁMARA DE ANCLAJE MARGEN DERECHO	1	7.20	+					
	CÁMARA DE ANCLAJE MARGEN IZQUIERDO	1	8.50						
	TORRES + ZAPATA	2	10.60	8.00	5.10	864.96	1 200 70		
		+		ļ	ļ	ļ	1628.58		
2.02.00	DELLENO V COMPACE M. PROPIO						((10)	242	
2.02.00	RELLENO Y COMPACT. M. PROPIO TORRES+ZAPATA	4	8.00	3.10	4.00	396.80	664.96	M3	
	TORRES+ZAPATA	4	4.40						
		2	3.00	-					
			3.00	1.20	4.00	20.00	664.96		
							004.50		
2.03.00	ELIMINACIÓN DE MATERIAL EXCEDENTE	1	1370.77				1370.77	M3	
		+ -	10,000				20.00		
3.00.00	OBRAS DE CONCRETO SIMPLE								
3.01.00	SOLADO								
3.01.01	concreto fc=100 kg/cm2 p/solado de zapatas						169.60	M2	
	Zapatas	2	10.60	8.00)	169.60			
							169.60		
3.02.00	CÁMARA DE ANCLAJE								
3.02.01	CONCRETO f'c = 140 Kg/cm2 + 30% PG						763.62	M3	
	Cámara de Anclaje Derecho	1	7.20						
	Cámara de Anclaje Izquierdo	1	8.50	6.20	6.60	347.82	7.0.00		
		_					763.62		
03.02.02	ENCO.Y DESEN. CÁMARA DE ANCLAJE.	+		-		-	404.58	M2	
03.02.02	Cámara de Anclaje Derecho	2	7.20)	6.60	95.04		1V12	
	Camara de Aneraje Derectio	2	8.75		6.60				
	Cámara de Anclaje Izquierdo	2	8.50		6.60	-			
		2	6.20		6.60				
		+-	0.20	<u> </u>	0.50	22.01	404.58		
				1		1			
4.00.00	OBRAS DE CONCRETO ARMADO								
4.01.00	ZAPATA COMBINADA								
4.01.01	CONCRETO f'c = 175 Kg/cm2						169.60	М3	
	Zapatas de torres	2	10.60	8.00	1.00	169.60			
			<u> </u>	<u> </u>	<u> </u>		169.60		
İ			<u> </u>	ļ	<u> </u>				
4.01.02 A	ACERO fy = $4200 \text{ Kg/cm}2$		largo	cantidad		KG/ML	2891.68	KG	
4.01.02			Ŭ						
4.01.02	acero negativo	-		40.00		444			
4.01.02		2		40.00		1445.84			
4.01.02	acero negativo acero de ø3/4"	2		40.00		1445.84			
4.01.02	acero negativo	2	10.60	40.00		1445.84			

	HOJA DE METRADOS							
ROYECTO)	DISEÑ	O DE PUE	NTE COI	LGANTE	VEHICUL	AR	
BICACIÓ	N	LOCA	LIDAD DE	SAN FR	ANCISCO	DEL RÍO	MAYO	
ESISTA		ANDR	EY DEL A	GUILA P	EREA			
ECHA		ENER	O DEL 201	5				
		N° DE	DIMENSI	ONES				
PART. N°	DESCRIPCIÓN					PARCIAL	TOTAL	UNID
		VEC.	LARGO	ANCHO	ALTO			
.02.00	TORRES Y VIGAS DE AMARRE							
.02.01	CON.EN TORRES, VIGAS f'c = 210 Kg/cm2						62.96	M3
	Torre margen derecha	2	1.20	0.70	16.65	27.97		
	Torre mangem detection	1	4.40					
		- -						
	Torre margen izquierda	2	1.20	0.70	16.65	27.97		
		1	4.40	0.75	0.60	1.98		
	vigas de amarre(0.30X0.85)	4	3.00	0.30	0.85	3.06		
							62.96	
.02.02	ACERO f'y = 4200 Kg/cm2(TORRES Y VIGAS)						6061.37	KG
.02.02	TORRE MARGEN DERECHO		largo	cantid.		KG/ML	0001.37	NO
	acero principal de ø3/4"	2	18.25			1978.59		
	estribos de ø3/8"	2	3.80			632.02		
	TORRE MARGEN IZQUIERDO		largo	cantid.		KG/ML		
	acero principal de ø3/4"	2	18.25			1978.59		
	estribos de ø3/8"	2	3.80	135.00		632.02		
	VIGA DE AMARRE DE .30x.85		largo	cantid.		KG/ML		
	Acero principal de ø5/8" superior e inf.	8	4.40			480.13		
	acero intermedio de ø1/2"	8	4.4			76.67		
	estribos de ø3/8"	8	2.30	25.00		283.36		
							6061.37	
1.02.03	ENCO.Y DESENC.(TORRES Y VIGAS)						240.28	M2
1.02.03	Torre margen derecha	4	0.70		12.65	35.42		1012
	Torre margen derecta	4	1.20		12.65			
			1.20		12.00			
	Torre margen izquierda	4	0.70		12.65	35.42		
		4	1.20		12.65	60.72		
		0	2.00		2.00	40.00		
	vigas de amarre(0.30X0.85)	8	3.00		2.00	48.00	240.28	
							240.28	
.00.00	CARPINTERÍA DE MADERA							
5.01.00	VIGUETAS 10"x12"x4.36 M	33				33.00		UND
5.02.00	LARGUERO 7"x 8"x 2.00M	2				2.00		UND
5.03.00	CORD INFERIOR 4"x1.5M	140				140.00		
.04.00	CORD.INFERIOR. 4"x8"x1.50M MONT.CENTRAL Y EN VIG. DE 4"x4"x1.33m	140 280				140.00 280.00		
.06.00	MONT. EXTREMA EN VIG. DE 4"x4"x1.33m	140	 			140.00		
5.07.00	DIAG.INTER. Y EXT.DE 1 1/2"x6"x1.83m	280				280.00	280.00	
.08.00	DIAG.EXTREMA.DE 1 1/2 "x6"x1.83m	4				4.00		UND
5.09.00	PUNTALES 4" x 4" x 1.69M	140				140.00		
5.10.00	PUNTALES EXTREMAS 4" x 4" x 1.69M	8				8.00		UND
5.11.00	ENTABLADO.8"x2.5"x3.0m	517				517.00		
5.12.00	SOBREENTABLADO DE 1"x12"X3m	80				80.00	80.00	UND

	HOJA DE METRADOS							
PROYECTO		DISEÑ	O DE PUE	ENTE CO	LGANTE	VEHICUL	AR	
UBICACIÓ	N	LOCA	LIDAD DE	SAN FR	ANCISC	O DEL RÍO	MAYO	
ΓESISTA		ANDR	EY DEL A	GUILA P	EREA			
FECHA		ENER	O DEL 201	.5				
		N° DE	DIMENSI	ONES				
PART. N°	DESCRIPCIÓN					PARCIAL	TOTAL.	UNID
711111	BESCHII CION	VEC.	LARGO	ANCHO	ALTO	T THE CITY		CIVID
5.00.00	CABLES Y PÉNDOLAS			11110110				
5.01.00	CABLE TIPO BOA DE 1 3/4" INC/MONTALE							ML
	LT=711.00ML EN 4 CABLES					711.00	711.00	
						711.00	71100	
5.02.00	PÉNDOLAS DE FIERRO LISO 1"INC/MONT.		LARGO	CANT.		ML	755.23	ml
.02.00	ENDOMIS DE L'EMICO EISO L'INVOLVIONI.	1	0.70			3.07	700120	****
		1	0.73			3.19		
		1	0.73		-	3.40		
		1	0.77		 	3.69		
		1	0.84		 	4.06		
		1	1.03		 	4.06		
			1.03		<u> </u>			
		1			<u> </u>	5.06		
		1	1.29		<u> </u>	5.68		
		1	1.45			6.39		
		1	1.63		-	7.17		
		1	1.83			8.04		
		1	2.05			9.00		
		1	2.28			10.04		
		1	2.54			11.16		
		1	2.81			12.36		
		1	3.10			13.65		
		1	3.41			15.01		
		1	3.74			16.47		
		1	4.09			18.00		
		1	4.46			19.62		
		1	4.85			21.32		
		1	5.25			23.10		
		1	5.68			24.97		
		1	6.12			26.92		
		1	6.58	4		28.95		
		1	7.06			31.07		
		1	7.56			33.27		
		1	8.08	4		35.55		
		1	8.62			37.91		
		1	9.17	4		40.36		
		1	9.75	4		42.89		
		1	10.34	4		45.51		
		1	10.96	4		48.20		
		1	11.59	4		50.98		
		1	12.24	4		53.85		
	Doblado superior e inferior en péndolas	1	0.20	140		30.80		
	-	İ					755.23	ML
.03.00	ABRAZADERA CABLE-PÉNDOLA	2	35.00			70.00		UND
.04.00	ABRAZADERA VIGUETA-PÉNDOLA	2	35.00			70.00		UND
.05.00	DISPOSITIVO APOYO CABLE EN TORRE							
	(CARRO DE DILATACIÓN - 03 RUEDAS)	4				4.00	4.00	UND
	,	<u> </u>						
.00.00	PINTURAS					1		
.01.00	PINTURA EN PÉNDOLAS	1	622.03			622.03	622.03	ML
.02.00	EN TORRES Y VIGAS Y CARPINTERÍA	1	543.28			543.28		
.52.50	ETT TORREST TIONS I CHIMINITERIA	1	272.20	 	 	575.20	5-15.20	1712

ANEXO PRESUPUESTO

Presupuesto

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - CUÑUMBUQUI - LAMAS - SAN MARTÍN - 2014 Presupuesto 0302001

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - CUNUMBUQUI - LAMAS - SAN MARTIN - 2014 Sub presupuesto 001

DEL AGUILA PEREA, ANDREY 29/01/2015 Cliente Costo al

Lugar SAN MARTÍN - LAMAS - CUÑUMBUQUI

Ítem	Descripción	Unid.	Metrado	Precio S/.	Parcial S/.
01	TRABAJOS PRELIMINARES				1,572.00
01.01	LIMPIEZA DE TERRENO MANUAL	m2	300.00	0.45	135.00
01.02	TRAZO, NIVELACIÓN Y REPLANTEO	m2	300.00	4.79	1,437.00
02	MOVIMIENTO DE TIERRAS				148,552.57
02.01	EXCAVACIÓN DE MAT. SUELTO MANUAL EN SECO	m3	1,628.58	60.23	98,089.37
02.02	RELLENO Y COMP.MAT.PROPIO EN ZANJAS	m3	664.96	16.19	10,765.70
02.03	ELIMINACIÓN DE MATERIAL EXCEDENTE	m3	1,370.77	28.96	39,697.50
03	OBRAS DE CONCRETO SIMPLE				201,549.22
03.01	CONCRETO F'c=100 kg/cm2 P/SOLADO DE ZAPATAS	m2	169.60	16.16	2,740.74
03.02	CONCRETO F'C=140 KG/CM2 +30% P.G. EN CÁMARA DE ANCLAJE	m3	763.62	237.34	181,237.57
03.03	ENCOFRADO Y DESENCOFRADO NORMAL EN CÁMARA DE ANCLAJE	m2	404.58	43.43	17,570.91
04	OBRAS DE CONCRETO ARMADO				129,022.68
04.01	ZAPATAS COMBINADAS				64,393.73
04.01.01	CONCRETO F'C=175 KG/CM2 EN ZAPATAS	m3	169.60	301.25	51,092.00
04.01.02	ACERO FY=4200 KG/CM2 EN ZAPATAS	kg	2,891.68	4.60	13,301.73
04.02	TORRES Y VIGAS DE AMARRE				64,628.95
04.02.01	CON.EN TORRES, VIGAS fc = 210 Kg/cm2	m3	62.96	366.88	23,098.76
04.02.02	ACERO fy = 4200 Kg/cm2(TORRES Y VIGAS)	kg	6,061.37	5.13	31,094.83
04.02.03	ENCO.Y DESENC.(TORRES Y VIGAS)	m2	240.28	43.43	10,435.36
05	CARPINTERÍA DE MADERA				228,614.77
05.01	VIGUETAS 10"x12"x4.36 M	unid	33.00	361.04	11,914.32
05.02	LARGUERO 7"x 8"x 2.00M	unid	2.00	280.34	560.68
05.03	CORD.SUP. 4"x4"x1.5M	unid	140.00	148.88	20,843.20
05.04	CORD.INFERIOR. 4"x8"x1.50M	unid	140.00	181.73	25,442.20
05.05	MONT.CENTRAL Y EN VIG. DE 4"x4"x1.33m	unid	280.00	136.92	38,337.60
05.06	MONT. EXTREMA EN VIG. DE 4"x4"x1.33m	unid	140.00	136.92	19,168.80
05.07	DIAG.INTER. Y EXT.DE 1 1/2"x6"x1.83m	unid	280.00	136.15	38,122.00
05.08	DIAG.EXTREMA.DE 1 1/2"x6"x1.83m	unid	4.00	136.15	544.60
05.09	PUNTALES 4" x 4" x 1.69M	unid	140.00	152.98	21,417.20
05.10	PUNTALES EXTREMAS 4" x 4" x 1.69M	unid	8.00	152.98	1,223.84
05.11	ENTABLADO.8"x2.5"x3.0m	unid	517.00	89.89	46,473.13
05.12	SOBREENTABLADO DE 1"x12"X3m	unid	80.00	57.09	4,567.20
06	CABLES Y PÉNDOLAS				184,882.22
06.01	CABLE TIPO BOA DE 1 3/4" INC/MONTALE	m	711.00	170.65	121,332.15
06.02	PÉNDOLAS DE FIERRO LISO 1"INC/MONT.	m	755.23	37.67	28,449.51
06.03	ABRAZADERA CABLE - PÉNDOLA	unid	70.00	257.15	18,000.50
06.04	ABRAZADERA VIGA - PÉNDOLA	unid	70.00	136.55	9,558.50
06.05	DISPOSITIVO APOYO CABLE EN TORRE (CARRO DE DILATACIÓN - 03 RUEDAS)	unid	4.00	1,885.39	7,541.56
07	PINTURA				23,767.24
07.01	PINTURA EN PÉNDOLAS	m	622.03	17.30	10,761.12
07.02	EN TORRES Y VIGAS Y CARPINTERÍA	m2	543.28	23.94	13,006.12
	COSTO DIRECTO				917,960.70
	GASTOS GENERALES 10%				91,796.07
	UTILIDAD 8%				73,436.86
	SUB TOTAL				1,083,193.63
	IGV 18%				194,974.85
	PRESUPUESTO TOTAL				1,278,168.48

ANEXO RESUMEN DE PRESUPUESTO

Hoja resumen

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - CUÑUMBUQUI - LAMAS - SAN MARTÍN - 2014 Obra 0302001

Localización 220505 Fecha Al

29/01/2015

SAN MARTÍN - LAMAS - CUÑUMBUQUI

Presupuesto base

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - CUÑUMBUQUI - LAMAS - SAN MARTÍN -2014 917,960.70

(CD) S/.

917,960.70

COSTO DIRECTO GASTOS GENERALES 10% UTILIDAD 8%	917,960.70 91,796.07 73,436.86
SUB TOTAL IGV 18%	1,083,193.63 194,974.85
PRESUPUESTO TOTAL	1,278,168.48

Descompuesto del costo directo

MANO DE OBRA	S/.	318,288.29
MATERIALES	S/.	574,535.13
EQUIPOS	S/.	25,140.71
SUBCONTRATOS	S/.	
Total descompuesto costo directo	S/.	917,964.13

Nota: Los precios de los recursos no incluyen I.G.V. son vigentes al

Fecha 30/01/2015 02:25:39p.m.

ANEXO 10 ANÁLISIS DE COSTOS UNITARIOS

Sub presupuesto			E PUENTE COLGANTE VEH	ICULAR		I	echa presupuesto	29/01/2015
artida	01.01	LIMPIEZA DE 1	TERRENO MANUAL					
lendimiento	M2/DÍA	MO. 300.0000	EQ. 300.0000			Costo unitario direc	cto por: m2	0.45
Código	Descripción R			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
0147010001	Mano de Obra CAPATAZ			L	0.1000	0.0027	21.96	0.06
0147010001 0147010004	PEÓN			h	1.0000	0.0027	13.79	0.00
0147010004	PEON			h	1.0000	0.0267	13.79	0.3
	E	quipos						01.
0337010001		AS MANUALES		%MO		5.0000	0.43	0.02 0.0 2
Partida	01.02	TRAZO, NIVEL	ACIÓN Y REPLANTEO					
Rendimiento	m2/DÍA	MO. 250.0000	EQ. 250.0000			Costo unitario d	irecto por : m2	4.79
Código Mano de Obra	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147000032	TOPÓGRAFO			h	1.0000	0.0320	21.96	0.70
0147010001	CAPATAZ			h	0.5000	0.0160	21.96	0.35
0147010003	OFICIAL			h	1.0000	0.0320	15.33	0.49
0147010004	PEÓN			h	3.0000	0.0960	13.79	1.32
								2.86
0243010099	Materiales MADERA TOR	NILLO		p2		0.3500	2.50	0.88 0.88
0000550050		quipos			4 0000	0.0000	45.00	0.44
0330550056	TEODOLITO	40 4444114150		hm	1.0000	0.0320	15.00	0.48
0337010001 0349890001	NIVEL TOPOG	AS MANUALES		%MO	1.0000	3.0000 0.0320	2.86 15.00	0.09
0349090001	NIVEL TOPOG	RAFICO		hm	1.0000	0.0320	15.00	0.48 1.0 9
Partida	02.01	EXCAVACIÓN	DE MAT. SUELTO MANUAL	. EN SECO				
Rendimiento	m3/DIA	MO.8.0000	EQ. 8.0000			Costo unitario d	irecto por : m3	60.23
Código Mano de Obra	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
0147010001	CAPATAZ			h	0.1000	0.1000	21.96	2.20
0147010004	PEÓN			h	4.0000	4.0000	13.79	55.16
								57.36
0337010001		quipos AS MANUALES		%MO		5.0000	57.36	2.87 2.8 7
Partida	02.02	RELLENO Y C	OMP.MAT.PROPIO EN ZANJ	IAS				
Rendimiento	m3/DÍA	MO. 7.0200	EQ. 7.0200			Costo unitario d	irecto por : m3	16.19
Código	Descripción R	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
Mano de Obra 0147010004	PEÓN			h	1.0000	1.1396	13.79	15.72 15.72
0337010001		quipos AS MANUALES		%MO		3.0000	15.72	0.47 0.47
Partida	02.03	ELIMINACIÓN	DE MATERIAL EXCEDENTE					

Sub presupuesto	001 DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR				Fecha presupuesto	29/01/2015	
Rendimiento	m3/ DÍA	MO. 4.0000	EQ. 4.0000		Costo unitario dire	cto por: m3	28.96
Código	Descripció	on Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010004	PEÓN	Mano de Obra	h	1.0000	2.0000	13.79	27.58
0337010001	HERRAMIEN	Equipos TAS MANUALES	%MO		5.0000	27.58	27.58 1.38 1.38
Partida	03.01	CONCRETO F'c=10	0 kg/cm2 P/SOLADO DE ZAPATA	3			
Rendimiento	m2/ DÍA	MO. 200.0000	EQ. 200.0000		Costo unitario dire	cto por: m2	16.16
Código	Descripció	on Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO	Mario de Obra	h	1.0000	0.0400	18.30	0.73
0147010003	OFICIAL		h	2.0000	0.0800	15.33	1.23
0147010004	PEÓN		h	10.0000	0.4000	13.79	5.52
							7.48
		Materiales					
0221000000		ORTLAND TIPO I (42.5KG)	BOL		0.2300	17.50	4.03
0238000005	HORMIGÓN		m3		0.1400	30.00	4.20
0239010100	AGUA		m3		0.0120	2.50	0.03 8.26
0007040004		Equipos	2/110		5.000	7.10	
0337010001		TAS MANUALES	%MO	0.0000	5.0000	7.48	0.37
0348010004	MEZCLADOR	KA	hm	0.0900	0.0036	15.00	0.05 0.42
Partida	03.02	CONCRETO F'C=14	0 KG/CM2 +30% P.G. EN CÁMAR	A DE ANCLAJE			
Rendimiento	m3/ DÍA	MO. 20.0000	EQ. 20.0000		Costo unitario dire	cto por: m3	237.34
Código	Descripció	on Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010001	CAPATAZ	Mano de Obra	h	0.2000	0.0800	21.96	1.76
0147010001	OPERARIO		h	2.0000	0.8000	18.30	14.64
0147010002	OFICIAL		h	2.0000	0.8000	15.33	12.26
0147010004	PEÓN		h	12.0000	4.8000	13.79	66.19
							94.85
		Materiales					
0205020021	PIEDRA GRA		m3		0.4500	30.00	13.50
0221000000		ORTLAND TIPO I (42.5KG)	BOL		5.3000	17.50	92.75
0238000005	HORMIGÓN		m3		0.8500	30.00	25.50 131.75
		Equipos					131.73
0337010001	HERRAMIEN	TAS MANUALES	%MO		5.0000	94.85	4.74
0348010011	MEZCLADOF	RA DE CONCRETO DE 9 -11P3	hm	1.0000	0.4000	15.00	6.00
							10.74
Partida	03.03	ENCOFRADO Y DE	SENCOFRADO NORMAL EN CÁN	IARA DE ANCLAJE			
Rendimiento	M2/DÍA	MO. 9.0900	EQ. 9.0900		Costo unitario dire	cto por: m2	43.43
						•	

Código	Descripción Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad Precio	o S/. Parcial S/.	
0147010001	CAPATAZ	h	0.0900	0.0792	21.96	1.74
0147010002	OPERARIO	h	1.0000	0.8801	18.30	16.11
0147010003	OFICIAL	h	1.0000	0.8801	15.33	13.49

0		CO - CUNUMBUQUI - LAMAS					20/04/2045 04 04
Sub presupuesto	001 L	DISENU ESTRUCTURAL DE F	PUENTE COLGANTE VEHICULAR		Fecha pre	supuesto	29/01/2015 31.34
	Mate	riales					
0202000007	ALAMBRE NE	GRO RECOCIDO # 16	kg		0.2000	5.00	1.00
0202010005		A MADERA C/C 3"	kg		0.1800	5.00	0.90
0243010099	MADERA TOF		p2		3.7000	2.50	9.25
0243010033	WADEIVA TOI	WILLO	ρΣ		3.7000	2.50	11.15
0337010001		quipos AS MANUALES	%MO		3.0000	31.34	0.94
							0.94
Partida	04.01.01	CONCRETO F'C=	175 KG/CM2 EN ZAPATAS				
Rendimiento	M3/DÍA	MO. 16.0000	EQ. 16.0000		Costo unitario direct	o por: m3	301.25
Código	Descripción	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra					
0147000022		DE EQUIPO LIVIANO	h	2.0000	1.0000	15.33	15.33
0147010001	CAPATAZ		h	0.5000	0.2500	21.96	5.49
0147010002	OPERARIO		h	2.0000	1.0000	18.30	18.30
0147010003	OFICIAL		h	1.0000	0.5000	15.33	7.67
0147010004	PEÓN		h	9.0000	4.5000	13.79	62.06
							108.85
0205010003	ARENA DE RI	Materiales O (NO AFECTO IGV)	m3		0.5300	30.00	15.90
0205030079		ANDEADA DE RIO TM 3/4"	m3		0.5100	30.00	15.30
0221000000	CEMENTO PO	ORTLAND TIPO I (42.5KG)	BOL		8.1600	17.50	142.80
0239050000	AGUA (NO AF	, ,	m3		0.1840	2.50	0.46
02000000	710071(11071	2010101)			0.1010	2.00	174.46
0337010001	HERRAMIENT	Equipos TAS MANUALES	%MO		5.0000	108.85	5.44
0348010004	MEZCLADOR		hm	1.0000	0.5000	15.00	7.50
0349070004		E CONCRETO 4 HP 2.40"	hm	1.0000	0.5000	10.00	5.00
0043070004	VIBIVIBOIT BI	2.40	1111	1.0000	0.0000	10.00	17.94
Partida	04.01.02	ACERO FY=4200	KG/CM2 EN ZAPATAS				
Rendimiento	Kg/DÍA	MO. 350.0000	EQ. 350.0000		Costo unitario direc	to por: kg	4.60
Código	Descripció	n Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010001	CAPATAZ	Mano de Obra	h	0.1000	0.0023	21.96	0.05
0147010001	OPERARIO		h	1.0000	0.0023	18.30	0.03
			h				
0147010003	OFICIAL			1.0000	0.0229	15.33	0.35
0147010004	PEÓN		h	1.0000	0.0229	13.79	0.32 1.14
		Materiales			0.000	5.00	
0202000007		GRO RECOCIDO # 16	kg		0.0600	5.00	0.30
0203030008	ACERO DE RI	EFUERZO FY=4200 KG/CM2 (G-60 kg		1.0700	2.90	3.10 3.40
0007040004	HEDD A MENT	Equipos	0/140		F 0000	4.44	
0337010001	HERRAMIENT	TAS MANUALES	%MO		5.0000	1.14	0.06 0.06
Partida	04.02.01	CON.EN TORRES	i, VIGAS fc = 210 Kg/cm2				
Rendimiento	M3/DÍA	MO. 12.5000	EQ. 12.5000		Costo unitario direct	o por: m3	366.88
							200.00

Código	Descripción Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad Precio	S/. Parcial S/.	
0147000022	OPERADOR DE EQUIPO LIVIANO	h	2.0000	1.2800	15.33	19.62

Sub presupuesto	001 [001 DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR				Fecha presupuesto 29/01/2015			
0147010002	OPERARIO		h		2.0000	1.2800	18.30	23.42	
0147010003	OFICIAL		h		1.0000	0.6400	15.33	9.81	
0147010004	PEÓN		h		10.0000	6.4000	13.79	88.26	
	. 20					0000		141.11	
		Materiales							
0204010008	ARENA		m3			0.4800	30.00	14.40	
0205030078	PIEDRA ZARA	ANDEADA DE RIO DE 1/2"	m3			0.7200	30.00	21.60	
0221000000	CEMENTO PO	ORTLAND TIPO I (42.5KG)	BOL			9.5000	17.50	166.25	
0239010100	AGUA		m3			0.1840	2.50	0.46	
								202.71	
0227040004		quipos	0/.MO			E 0000	141 11	7.06	
0337010001		AS MANUALES	%MO		1 0000	5.0000	141.11	7.06	
0348010004	MEZCLADOR.		hm		1.0000	0.6400	15.00	9.60	
0349070004	VIBRADOR DI	E CONCRETO 4 HP 2.40"	hm		1.0000	0.6400	10.00	6.40	
								23.06	
Partida	04.02.02	ACERO f'y = 42	00 Kg/cm2 (TORRES Y VIGA	S)					
Rendimiento	Kg/DÍA	MO. 240.0000	EQ. 240.0000			Costo unitario dire	cto por: kg	5.13	
Código	Descripci	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
Mano de Obra									
0147010001	CAPATAZ		h		0.1000	0.0033	21.96	0.07	
0147010002	OPERARIO		h		1.0000	0.0333	18.30	0.61	
0147010003	OFICIAL		h		1.0000	0.0333	15.33	0.51	
0147010004	PEÓN		h		1.0000	0.0333	13.79	0.46	
0117010001	12011				1.0000	0.0000	10.10	1.65	
		Materiales							
0202000007	ALAMBRE NE	GRO RECOCIDO # 16	kg			0.0600	5.00	0.30	
0203030008	ACERO DE RI	EFUERZO FY=4200 KG/CM2	2 G-60 kg			1.0700	2.90	3.10	
								3.40	
0227040004	LIEDDAMIENT	Equipos	0/110			F 0000	4.05	0.00	
0337010001	HERRAMIENI	AS MANUALES	%MO			5.0000	1.65	0.08 0.08	
								0.00	
Partida	04.02.03	ENCO.Y DESEN	IC. (TORRES Y VIGAS)						
Rendimiento	M2/DÍA	MO. 9.0900	EQ. 9.0900			Costo unitario direc	to por: m2	43.43	
Código Mano de Obra	Descripci	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
Mario de Obra									
0147010001	CAPATAZ		h		0.0900	0.0792	21.96	1.74	
0147010002	OPERARIO		h		1.0000	0.8801	18.30	16.11	
0147010003	OFICIAL		h		1.0000	0.8801	15.33	13.49	
								31.34	
		Materiales			0.0005			. ==	
0202000007		GRO RECOCIDO # 16	kg		0.2000		5.00	1.00	
0202010005		A MADERA C/C 3"	kg		0.1800		5.00	0.90	
0243010099	MADERA TOP	RNILLO	p2		3.7000		2.50	9.25	
								11.15	
0227040004		QUIPOS	0/ MO		2 0000		24.24	0.04	
0337010001	TEKKAWIEN I	AS MANUALES	%MO		3.0000		31.34	0.94	
								0.94	

Partida 05.01 VIGUETAS 10"x12"x4.36 M

Rendimiento Unid/DÍA MO. 8.0000 EQ. 8.0000 Costo unitario directo por: Unid. 361.04

Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. Mano de Obra

Sub presupuesto	001 D	DISEÑO ESTRUCTURAL I		VEHICULAR		Fecha	presupuesto	29/01/2015
						1 00110	procupacito	
0147010002	OPERARIO			h	2.0000	2.0000	18.30	36.60
0147010003	OFICIAL			h	1.0000	1.0000	15.33	15.33
0147010004	PEÓN			h	2.0000	2.0000	13.79	27.58
		Materiales						79.51
0201910001	PENTACLORO	DFENOL (PRESERVANTE	DE MADERA)	gln		1.0000	25.00	25.00
0202010061	CLAVOS PARA			kg		0.1000	5.00	0.50
0202460096	PERNO C/TUE	ERCA-ARANDELA 1/2"X8"	1	Unid.		2.0000	10.00	20.00
0202460097	PERNO C/TUE	ERCA-ARANDELA 1/2"X21	1"	Unid		6.0000	25.00	150.00
0243570062	VIGUETAS 10'	"x12"x4.36 M		Unid		1.0000	69.55	69.55
	_							265.05
0337010001		quipos AS MANUALES		%MO		5.0000	79.51	3.98
0349160019	TALADRO DE			hm	1.0000	1.0000	5.00	5.00
0349270010	GRUPO ELEC			hm	0.5000	0.5000	15.00	7.50
								16.48
Partida	05.02	LARGUERO 7	"x 8"x 2.00M					
Rendimiento	Unid. /DÍA	MO. 24.0000	EQ. 24.0000			Costo unitario directo por	r: Unid.	280.34
Código	Descripción R			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	Mano de Obra OPERARIO	l		h	2.0000	0.6667	18.30	12.20
0147010003	OFICIAL			h	1.0000	0.3333	15.33	5.11
0147010004	PEÓN			h	1.0000	0.3333	13.79	4.60
								21.91
0201910001	DENTACI ODC	Materiales	DE MADEDA)	ala		0.2500	25.00	6.25
		OFENOL (PRESERVANTE	DE MADERA)	gln			5.00	
0202010061 0202460094	CLAVOS PARA	a Madeka ERCA-ARANDELA 1/2"X20	ייר	kg Unid		0.1000 1.0000	15.00	0.50 15.00
0202400094	LARGUERO 7'		J	Unid		1.0000	150.00	150.00
0243370003		FIERRO 1/4" X 1.5" X 12"		Unid		1.5000	56.50	84.75
0201100004	T D (TIME) DE T	1E1110 1/4 X 1.0 X 12				1.0000	00.00	256.50
		quipos						
0337010001		AS MANUALES		%MO		5.0000	21.91	1.10
0349160019	TALADRO DE	1/2"		hm	0.5000	0.1667	5.00	0.83 1.93
								1.93
Partida	05.03	CORD.SUP. 4	"x4"x1.5M					
Rendimiento	Unid/DÍA	MO. 60.0000	EQ. 60.0000			Costo unitario directo por	r: Unid.	148.88
Código	Descripción R			Unidad	Cuadrilla	Cantidad Precio	S/. Parcia	I S/.
0147010002	Mano de Obra OPERARIO	l		h	2.0000	0.2667	18.30	4.88
0147010003	OFICIAL			h	1.0000	0.1333	15.33	2.04
0147010004	PEÓN			h	1.0000	0.1333	13.79	1.84
								8.76
0201910001	DENITACI ODC	Materiales DFENOL (PRESERVANTE	DE MADEDA)	ala		0.2500	25.00	6.25
0201910001	CLAVOS PARA		. DE IVINDEIVA)	gln kg		0.2000	5.00	0.50
0202010061		a Madeka ERCA-ARANDELA 1/2"X20	ייר	kg Unid.		1.0000	15.00	15.00
0202460094	CORD.SUP. 4"		,	Unid.		1.0000	32.85	32.85
0251130054		FIERRO 1/4" X 1.5" X 12"		Unid.		1.5000	56.50	84.75
0201100004	, LITTING DE I	12.3.0 1/7 / 1.0 / 1Z				1.5000	00.00	139.35
								103.00

EquiposHERRAMIENTAS MANUALES 0337010001 %MO 5.0000 8.76 0.44 0349160019 TALADRO DE 1/2" hm 0.5000 0.0667 5.00 0.33

Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/.	Sub presupuesto	001 [DISEÑO ESTRUCTURAL DE	PUENTE COLGANTI	EVEHICULAR		Fecha pre	supuesto	29/01/2015 0.77
Descripcion Recurso Descripcion Recurso	Partida	05.04	CORD.INFERIO	R. 4"x8"x1.50M					
Mano de Dira	Rendimiento	Unid/DÍA	MO. 60.0000	EQ. 60.000)		Costo unitario dir	recto por: Unid.	181.73
0477010022	Código				Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010004 PEON	0147010002		•		h	2.0000	0.2667	18.30	4.88
Materiales CO21910001 PENTACLORGENOL (PRESERVANTE DE MADERA) gin 0.2500 2.500 6.25	0147010003	OFICIAL			h	1.0000	0.1333	15.33	2.04
Materiales Mat	0147010004	PEÓN			h	1.0000	0.1333	13.79	1.84
DEMITACIO ROPERNOL (PRESERVANTE DE MADERA) gin 0.2500 25.00 6.25									8.76
D002010051 CLAYOS PARA MADERA \$g	0001010001	DENTA 01 0 D					0.0500	05.00	2.25
				DE MADERA)	•				
COZ27010086 CORD.INFERIOR. 47x8*x1.50M Unid 1.0000 65.70									
PLATINA DE FIERRO 141' X 1.5" X 12"									
Table Tabl									
Repulsion Repu	0251130054	PLATINA DE F	-IERRO 1/4" X 1.5" X 12"		Unia		1.5000	56.50	
Materiales Mat		-	i						172.20
TALADRO DE 1/2" hm 0.5000 0.0667 5.00 0.33 0.77	0337010001		• •		%MO		5 0000	8 76	0 44
Particide						0.5000			
Rendimiento Unid/DÍA MO. 80.0000 EQ. 80.0000 Costo unitario directo por: Unid. 136.92	0010100010	TAL ISTO BE	172			0.0000	0.0007	0.00	
Código	Partida	05.05	MONT.CENTRA	L Y EN VIG. DE 4"x4"	x1.33m				
Mano de Obra DI47010002 OPERARIO OPERARIO DE OPE	Rendimiento	Unid/DÍA	MO. 80.0000	EQ. 80.0000			Costo unitario direct	o por: Unid.	136.92
Mano de Obra DI47010002 OPERARIO OPERARIO DE OPE									
0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 13.8	-	Mano de Obra							
Nateriales									
Materiales Materiales Materiales									
Materiales Materiales	0147010004	PEON			h	1.0000	0.1000	13.79	
Description PentacloroFenol (Preservante de Madera) gin 0.2500 25.00 6.25			Materiales						0.51
0202460094 PERNO C/TUERCA-ARANDELA 1/2"X20" Unid. 1.0000 15.00 15.00 0227010099 MONT. CENTRAL Y EN VIG. DE 4"x4"x1.33m Unid. 1.0000 23.27 23.27 0251130054 PLATINA DE FIERRO 1/4" X 1.5" X 12" Unid. 1.5000 56.50 84.75 0337010001 HERRAMIENTAS MANUALES %MO 5.0000 6.57 0.33 0349160019 TALADRO DE 1/2" hm 0.5000 0.0500 5.00 0.25 Partida 05.06 MONT. EXTREMA EN VIG. DE 4"x4"x1.33m Costo unitario directo por: Unid. 136.92 Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. 0147010002 OPERARIO h 2.0000 0.2000 18.30 3.66 0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 1.38 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) </td <td>0201910001</td> <td>PENTACLOR</td> <td></td> <td>DE MADERA)</td> <td>gln</td> <td></td> <td>0.2500</td> <td>25.00</td> <td>6.25</td>	0201910001	PENTACLOR		DE MADERA)	gln		0.2500	25.00	6.25
0202460094 PERNO C/TUERCA-ARANDELA 1/2"X20" Unid. 1.0000 15.00 15.00 0227010099 MONT. CENTRAL Y EN VIG. DE 4"x4"x1.33m Unid. 1.0000 23.27 23.27 0251130054 PLATINA DE FIERRO 1/4" X 1.5" X 12" Unid. 1.5000 56.50 84.75 0337010001 HERRAMIENTAS MANUALES %MO 5.0000 6.57 0.33 0349160019 TALADRO DE 1/2" hm 0.5000 0.0500 5.00 0.25 Partida 05.06 MONT. EXTREMA EN VIG. DE 4"x4"x1.33m Codigo Costo unitario directo por: Unid. 136.92 Código Descripción Recurso Mano de Obra Unidad Cuadrilla Cantidad Precio S/. Parcial S/. 0147010002 OPERARIO h 2.0000 0.2000 18.30 3.66 0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79	0202010061	CLAVOS PAR	A MADERA		kg		0.1000	5.00	0.50
Descripción Recurso Descripción Recurso Descripción Recurso Mano de Obra Descripción Recurso Descripción Descripción Recurso Descripción R	0202460094	PERNO C/TUE	ERCA-ARANDELA 1/2"X20"		-		1.0000	15.00	15.00
129.77 Equipos 129.77 Equipos 129.77 Equipos 129.77 Equipos 129.77	0227010099	MONT.CENTF	RAL Y EN VIG. DE 4"x4"x1.3	3m	Unid.		1.0000	23.27	23.27
Section Sect	0251130054	PLATINA DE F	FIERRO 1/4" X 1.5" X 12"		Unid.		1.5000	56.50	84.75
O337010001 HERRAMIENTAS MANUALES %MO 5.0000 6.57 0.33									129.77
TALADRO DE 1/2" hm 0.5000 0.0500 5.00 0.25			• •						
Partida 05.06 MONT. EXTREMA EN VIG. DE 4"x4"x1.33m									
Partida 05.06 MONT. EXTREMA EN VIG. DE 4"x4"x1.33m Rendimiento Unid/DÍA MO. 80.0000 EQ. 80.0000 Costo unitario directo por: Unid. 136.92 Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. Mano de Obra 0147010002 OPERARIO h 2.0000 0.2000 18.30 3.66 0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 1.38	0349160019	TALADRO DE	1/2"		hm	0.5000	0.0500	5.00	
Código Descripción Recurso Mano de Obra Unidad Cuadrilla Cantidad Precio S/. Parcial S/. 0147010002 OPERARIO h 2.0000 0.2000 18.30 3.66 0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 1.38 Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25	Partida	05.06	MONT. EXTRE	//A EN VIG. DE 4"x4"x	1.33m				
Mano de Obra 0147010002 OPERARIO h 2.0000 0.2000 18.30 3.66 0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 1.38 Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25	Rendimiento	Unid/DÍA	MO. 80.0000	EQ. 80.0000			Costo unitario direct	o por: Unid.	136.92
0147010002 OPERARIO h 2.0000 0.2000 18.30 3.66 0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 1.38 Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25	Código	Descripci	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010003 OFICIAL h 1.0000 0.1000 15.33 1.53 0147010004 PEÓN h 1.0000 0.1000 13.79 1.38 Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25	0147040000	ODEDAD			h	2 0000	0.2000	10 20	2 66
0147010004 PEÓN h 1.0000 0.1000 13.79 1.38 6.57 Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25			U						
6.57 Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25									
Materiales 0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25	0147010004	PEON			n	1.0000	0.1000	13.79	
0201910001 PENTACLOROFENOL (PRESERVANTE DE MADERA) gln 0.2500 25.00 6.25			Materiales						0.37
	0201910001	PENTACL		TE DE MADERA)	gln		0.2500	25.00	6.25
	0202010061	CLAVOS	PARA MADERA		kg		0.1000	5.00	0.50

Sub presupuesto	001 [DISEÑO ESTRUCTURAL DE P	UENTE COLGAN	ITE VEHICULAR		I	Fecha presupuesto	29/01/2015
0202460094	PERNO C/TUI	ERCA-ARANDELA 1/2"X20"		Unid.		1.0000	15.00	15.00
0227010100		EMA EN VIG. DE 4"x4"x1.33m		Unid.		1.0000	23.27	23.27
0251130054		FIERRO 1/4" X 1.5" X 12"		Unid.		1.5000	56.50	84.75
								129.77
0337010001		Equipos FAS MANUALES		%MO		5.0000	6.57	0.33
0349160019	TALADRO DE			hm	0.5000	0.0500	5.00	0.35
0040100010	TALADITO DE	. 112		11111	0.3000	0.0000	0.00	0.58
Partida	05.07	DIAG.INTER. Y EX	(T.DE 1 1/2"x6"x1	1.83m				
Rendimiento	Unid/DÍA	MO. 80.0000	EQ. 80.0000			Costo unitario direc	to por: Unid.	136.15
Código	Descripción F			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	Mano de Obra OPERARIO	a		h	2.0000	0.2000	18.30	3.66
0147010003	OFICIAL			h	1.0000	0.1000	15.33	1.53
0147010004	PEÓN			h	1.0000	0.1000	13.79	1.38
						*****		6.57
0201910001	PENTACI OR	Materiales OFENOL (PRESERVANTE DE	MADERA)	gln		0.2500	25.00	6.25
0202010061	CLAVOS PAR		132.11,	kg		0.1000	5.00	0.50
0202460094		ERCA-ARANDELA 1/2"X20"		Unid		1.0000	15.00	15.00
0227010101		Y EXT.DE 1 1/2"x6"x1.83m		Unid		1.0000	22.50	22.50
0251130054		FIERRO 1/4" X 1.5" X 12"		Unid		1.5000	56.50	84.75
								129.00
0337010001		E quipos FAS MANUALES		%MO		5.0000	6.57	0.33
0349160019	TALADRO DE			hm	0.5000	0.0500	5.00	0.25
								0.58
Partida	05.08	DIAG.EXTREMA.C	DE 1 1/2"x6"x1.83	im .				
Rendimiento	Unid/DÍA	MO. 80.0000	EQ. 80.0000			Costo unitario direc	to por: Unid.	136.15
Código	Descripción F			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	Mano de Obra OPERARIO	a		h	2.0000	0.2000	18.30	3.66
0147010003	OFICIAL			h	1.0000	0.1000	15.33	1.53
0147010004	PEÓN			h	1.0000	0.1000	13.79	1.38
								6.57
0201910001	PENTACLOR	Materiales OFENOL (PRESERVANTE DE	MADERA)	gln		0.2500	25.00	6.25
0202010061	CLAVOS PAR		,	kg		0.1000	5.00	0.50
0202460094		ERCA-ARANDELA 1/2"X20"		Unid.		1.0000	15.00	15.00
0227010102	DIAG.EXTRE	MA.DE 1 1/2"x6"x1.83m		Unid.		1.0000	22.50	22.50
0251130054	PLATINA DE I	FIERRO 1/4" X 1.5" X 12"		Unid.		1.5000	56.50	84.75
	_	·						129.00
0337010001		E quipos FAS MANUALES		%MO		5.0000	6.57	0.33
0349160019	TALADRO DE			hm	0.5000	0.0500	5.00	0.25
								0.58
Partida	05.00	DIINTALES A" v A	" v 1 60M					

Rendimiento	Unid/DIA	MO. 60.0000	EQ. 60.0000		С	osto unitario direct	o por: Unid.	152.98
Código Mano de Obra	Descripcio	ón Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.

Sub presupuesto	001 [DISEÑO ESTRUCTURAL I	DE PUENTE COLGANTE	VEHICULAR			Fecha presupuesto	29/01/2015
0147010002	OPERARIO			h	2.0000	0.2667	18.30	4.88
0147010003	OFICIAL			h	1.0000	0.1333	15.33	2.04
0147010004	PEÓN			h	1.0000	0.1333	13.79	1.84
0111010001	12011				1.0000	0.1000	10.70	8.76
		Materiales						
0201910001	PENTACLOR	OFENOL (PRESERVANTE	DE MADERA)	gln		0.2500	25.00	6.25
0202010061	CLAVOS PAR	A MADERA		kg		0.1000	5.00	0.50
0202460094	PERNO C/TU	ERCA-ARANDELA 1/2"X2)"	Unid.		1.0000	15.00	15.00
0227010103	PUNTALES 4	" x 4" x 1.69M		Unid.		1.0000	36.95	36.95
0251130054	PLATINA DE	FIERRO 1/4" X 1.5" X 12"		Unid.		1.5000	56.50	84.75 143.45
0337010001		Equipos FAS MANUALES		%MO		5.0000	8.76	0.44
					0.5000			
0349160019	TALADRO DE	: 1/2"		hm	0.5000	0.0667	5.00	0.33 0.77
Partida	05.10	PUNTALES E	XTREMAS 4" x 4" x 1.69	M				
Rendimiento	Unid/DÍA	MO. 60.0000	EQ. 60.0000			Costo unitario direc	eto por: Unid.	152.98
Código	Descripción F			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	Mano de Obra OPERARIO	3		h	2.0000	0.2667	18.30	4.88
0147010002	OFICIAL			h	1.0000	0.1333	15.33	2.04
0147010004	PEÓN			h	1.0000	0.1333	13.79	1.84
		Materiales						8.76
0201910001	PENTACLOR	OFENOL (PRESERVANTE	DE MADERA)	gln		0.2500	25.00	6.25
0202010061	CLAVOS PAR	A MADERA		kg		0.1000	5.00	0.50
0202460094	PERNO C/TUI	erca-arandela 1/2"X20)"	Unid.		1.0000	15.00	15.00
0227010104		XTREMAS 4" x 4" x 1.69M		Unid.		1.0000	36.95	36.95
0251130054	PLATINA DE I	FIERRO 1/4" X 1.5" X 12"		Unid.		1.5000	56.50	84.75 143.45
0227040004		quipos		0/140		5 0000	0.70	0.44
0337010001 0349160019		TAS MANUALES		%MO hm	0.5000	5.0000 0.0667	8.76 5.00	0.44 0.33
0349100019	TALADRO DE	1/2		hm	0.5000	0.0667	5.00	0.33 0.77
Partida	05.11	ENTABLADO	8"x2.5"x3.0m					
Rendimiento	Unid/DÍA	MO. 120.0000	EQ. 120.0000			Costo unitario direc	cto por: Unid.	89.89
Código	Descripció		Unidad		Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010001	CAPATAZ	Mano de Obra	h		0.2000	0.0133	21.96	0.29
0147010002	OPERARIO		h		2.0000	0.1333	18.30	2.44
0147010003	OFICIAL		h		1.0000	0.0667	15.33	1.02
0147010004	PEÓN		h		3.0000	0.2000	13.79	2.76 6.51
		Materiales						0.01
0202010061	CLAVOS PAR		kg			0.2000	5.00	1.00
0243570064	ENTABLADO.	8"x2.5"x3.0m	Unid.			1.0000	82.05	82.05
								83.05

Partida	05.12	SOBREENTABLADO DE 1"x12"X3m			
0337010001	Eq HERRAMIENTAS MANUA	uipos LES %MO	5.0000	6.51	0.33 0.33

Sub presupuesto	0010	ISEÑO ESTRUCTURAL DE PUE	INTE COLGANTE VEIII	CULAN		Fe	echa presupuesto	29/01/201
endimiento	Unid/DÍA	MO. 120.0000	EQ. 120.0000			Costo unitario directo	por: Unid.	57.0
Código	Descripción Ro	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.Parcial S/.	
0147010001	Mano de Obra CAPATAZ			h	0.2000	0.0133	21.96	0.2
0147010002	OPERARIO			h	2.0000	0.1333	18.30	2.4
0147010003	OFICIAL			h	1.0000	0.0667	15.33	1.0
0147010004	PEÓN			h	3.0000	0.2000	13.79	2.7
								6.5
0000010001	Materiales					0.000	5.00	4.0
0202010061	CLAVOS PARA			kg		0.2000	5.00	1.0
0243570065	SOBREENTAB	LADO DE 1"x12"X3m		Unid		1.0000	49.25	49.2 50.2
0337010001	Ec HERRAMIENTA	juipos AS MANUALES		%MO		5.0000	6.51	0.3
								0.3
Partida	06.01	CABLE TIPO BOA D	E 1 3/4" INC/MONTALE	Į.				
Rendimiento	m/DÍA	MO. 165.0000	EQ. 165.0000			Costo unitario d	lirecto por : m	170.6
Código Mano de Obra	Descripción Ro	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.Parcial S/.	
0147010002	OPERARIO			h	3.0000	0.1455	18.30	2.0
0147010003	OFICIAL			h	2.0000	0.0970	15.33	1.4
0147010004	PEÓN			h	10.0000	0.4848	13.79	6.6 10. 8
0230020098	CABLE DE ACE	Materiales FRO DE 1.3/4"		m		1.0000	155.80	155.8
0239020008	SOGA DE 3/4"	-1.0 52 1 0/ 1		kg		0.1000	4.00	0.4
0243010099	MADERA TORI	NILLO		p2		0.5000	2.50	1.3
0244010039		LIZA (PIE DERECHO)		Unid.		0.2000	1.80	0.3
		,						157.8
0337010001	HERRAMIENTA	IUIPOS		%MO		5.0000	10.84	0.9
0348600002	TIRFOR DE 5 1			hm	1.0000	0.0485	30.00	1.
001000002	1111 011 01	O11.		••••	1.0000	0.0100	00.00	2.0
Partida	06.02	PÉNDOLAS DE FIERRO L	ISO 1"INC/MONT	-				
Rendimiento	m/DÍA	MO. 150.0000	EQ. 150.0000			Costo unitario d	lirecto por : m	37.0
Código Mano de Obra	Descripción Ro	ecurso		Unidad	Cuadrilla	Cantidad	Precio S/.Parcial S/.	
0147010002	OPERARIO		h		1.0000	0.0533	18.30	0.
0147010003	OFICIAL		h		1.0000	0.0533	15.33	0.8
0147010004	PEÓN		h		1.0000	0.0533	13.79	0. 2. :
	,	Materiales						
0202110100	PÉNDOLAS DE	E FIERRO LISO 1"INC/MONT.	m			1.0000	35.00	35.0 35. 0
0337010001		luipos AS MANUALES	%MO			5.0000	2.54	0.
								0.1
Partida	06.03	ABRAZADERA CABLE - P	ÉNDOLA					

Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/.

Sub presupuesto	001	DISEÑO ESTRUCTURAL	DE PUENTE COLGANTE VEHIC	ULAR		F	echa presupuesto	29/01/2015
		Mano de Obra						
0147010001	CAPATAZ			h	0.5000	0.3333	21.96	7.32
0147010002	OPERARIO			h	1.0000	0.6667	18.30	12.20
0147010004	PEÓN			h	1.0000	0.6667	13.79	9.19
								28.71
020210005	DEDNO HEY	Materiales AGONAL DE 3/4" X2	1/2" + TUERCA Y ANILLO	Pza.		1.0000	1.00	1.00
020210003			2 1/2" + TUERCA Y ANILLO	Pza.		2.0000	12.00	24.00
0202100099		FECTO I.G.V.)	2 1/2 + TUERCA T ANILLO			0.0100	200.00	24.00
0252000052	`	A CABLE-PÉNDOLA (INC	NUME DINTUDA)	ton Unid.		1.0000	200.00	200.00
0251050052	ADRAZADER	A CABLE-PENDOLA (INC	CLUTE PINTURA)	Office.		1.0000	200.00	200.00 227.00
		Equipos						221.00
0337010001		TAS MANUALES		%MO		5.0000	28.71	1.44
								1.44
Partida	06.04	ABRAZADE	RA VIGA - PÉNDOLA					
Rendimiento	Unid/DÍA	MO. 12.0000	EQ. 12.0000		(Costo unitario directo	por: Unid.	136.55
Código	Descripo	sión Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra								
0147010001	CAPATAZ			h	0.5000	0.3333	21.96	7.32
0147010002	OPERARIO			h	1.0000	0.6667	18.30	12.20
0147010004	PEÓN			h	1.0000	0.6667	13.79	9.19
	. 20					0.000		28.71
0202100019	PERNO HEY	Materiales AGONAL (G-2) DE 3/4" X	2 1/2" + TUERCA Y ANILLO	Pza.		1.0000	6.00	6.00
0232000032		FECTO I.G.V.)	2 1/2 · TOLINO/(T/NINELO	ton		0.0020	200.00	0.40
0251050051		A VIGA-PÉNDOLA (INCL	I IVE DINTI IRA\	Unid.		1.0000	100.00	100.00
0201030031	ADIVAZADLIV	A VIOA-I ENDOLA (INOL	OTET INTOINA)	Offic.		1.0000	100.00	106.40
0337010001		E quipos TAS MANUALES		%MO		5.0000	28.71	1.44
	TIET (I V WINE)	THE HILL WATER		701110		0.0000	20.71	1.44
Partida	06.05	DISPOSITIV	O APOYO CABLE EN TORRE (CA	ARRO DE DILA	TACIÓN - 03 RUEDA	AS)		
Rendimiento	Unid/DÍA	MO. 1.0000	EQ. 1.0000		(Costo unitario directo	por: Unid.	1,885.39
Código Mano de Obra	Descripo	ción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0147010002	OPERARIO		h		1.0000	8.0000	18.30	146.40
0147010004	PEÓN		h		2.0000	16.0000	13.79	220.64
								367.04
000400000		Materiales	لمنسا			4 0000	1 500 00	1 500 00
0221990003	CARRO DE D	JILATACION	Unid.			1.0000	1,500.00	1,500.00 1,500.00
		Equipos						1,300.00
0337010001		TAS MANUALES	%MO			5.0000	367.04	18.35 18.35
Partida	07.01	PINTURA EI	N PÉNDOLAS					
Rendimiento	M/DÍA	MO. 30.0000	EQ. 30.0000			Costo unitario dire	cto por: m	17.30
-							•	

		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Código Mano de Obra	Descripción Recurso					
0147010002	OPERARIO	h	1.0000	0.2667	18.30	4.88
0147010003	OFICIAL	h	1.0000	0.2667	15.33	4.09
						8.97
	Materiales					

		gln gln gln %MO Unid.		PINTURA ANT E HERRAMIENT BROCHA DE 4	0253030027 0254020042 0254060000 0337010001 0337010025
		gln %MO Unid.	Equipos ITAS MANUALES E 4"	PINTURA ANT E HERRAMIENT BROCHA DE 4	0254060000 0337010001
		%MO Unid.	Equipos ITAS MANUALES E 4"	HERRAMIENTA BROCHA DE 4	0337010001
		Unid.	ITAS MANUALES - 4"	HERRAMIENTA BROCHA DE 4	
		Unid.	ITAS MANUALES - 4"	HERRAMIENTA BROCHA DE 4	
		Unid.	4"	BROCHA DE 4	
		VIGAS Y CARPINTERÍA			
			EN TORRES Y	07.02	Partida
С		EQ. 40.0000	MO. 40.0000	m2 /DÍA	Rendimiento
Cuadrilla	Unidad		ción Recurso Mano de Obra	Descripci	Código
2.0000	h			OPERARI	0147010002
1.0000	h			PEÓN	0147010004
			Materiales		
				LIJA	0230990019
	gln				0253030027
	gln		A ESMALTE	PINTURA	0254110090
	%MO			HERRAMI	0337010001
					0339090073
	unu		A I VIVY EINTAU	FISTOLAT	033030073
		Unid. gln	Unid. gln gln %MO	Materiales Unid. gln ESMALTE gln Equipos ENTAS MANUALES %MO	Materiales LIJA Unid. THINER gln PINTURA ESMALTE gln Equipos HERRAMIENTAS MANUALES %MO

ANEXO INSUMOS

Precios y cantidades de recursos requeridos por tipo

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - CUÑUMBUQUI - LAMAS - SAN MARTÍN - 2014 0302001 Obra

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO Sub presupuesto 001

29/01/2015 Fecha

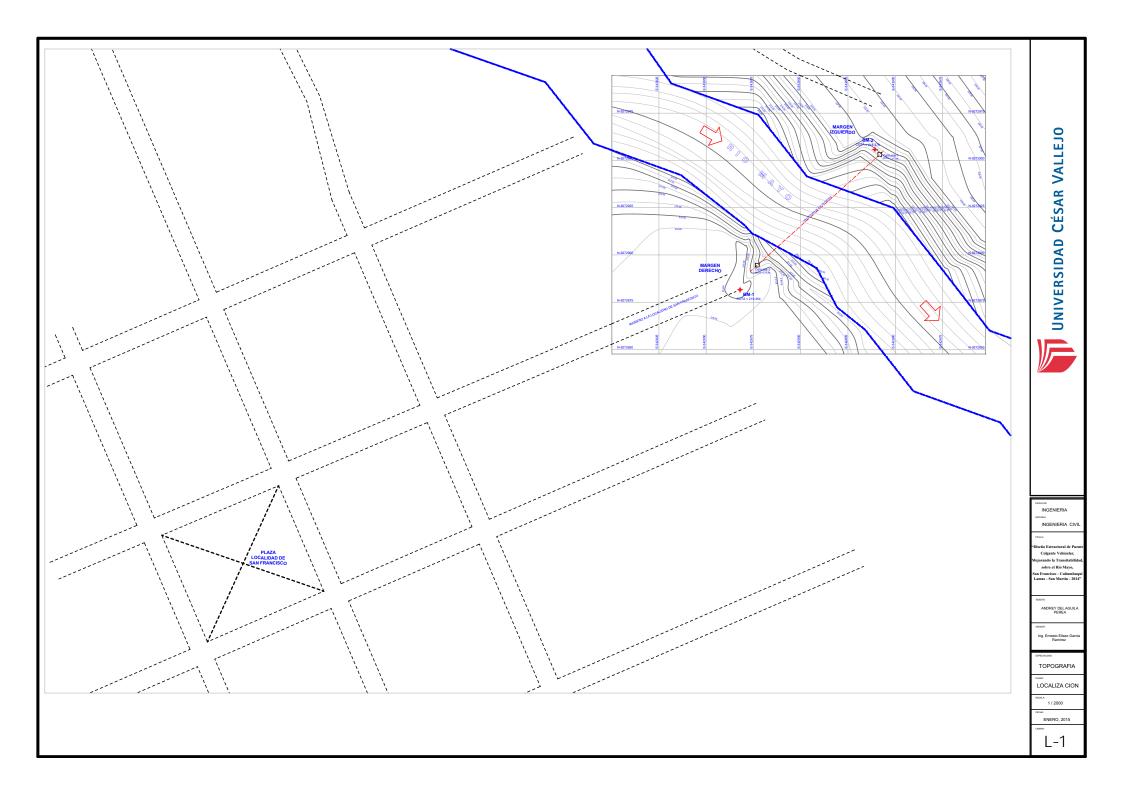
220505 SAN MARTÍN - LAMAS - CUÑUMBUQUI

Lugar	220505	SAN MARTÍN - LAMAS - CUÑUMBUQUI				
Código	Recurso		Unidad	Cantidad	Precio S/.	Parcial S/.
	MANO DE	ODD 4				
044704004	MANO DE	OBKA		40.4.0055		0.070.44
0147010001	CAPATAZ		h	404.2855	21.96	8,878.11
0147010003	OFICIAL	DE FOLIDO LIVIANO	h	2,070.8180	15.33	31,745.64
0147000022 0147010002	OPERADOR	DE EQUIPO LIVIANO	h h	250.1892 2,757.5844	15.33 18.30	3,835.40 50,463.79
0147010002	PEÓN		h	16,182.3424	13.79	223,154.50
0147010004	TOPÓGRAFO)	h	9.6000	21.96	210.82
0147000032	TOLOGIVALO			3.0000	21.90	
						318,288.26
	MATERIAL	ES				
0251050052	ABRAZADER	A CABLE-PÉNDOLA (INCLUYE PINTURA)	Unid.	70.0000	200.00	14,000.00
0251050051	ABRAZADER	A VIGA-PÉNDOLA (INCLUYE PINTURA)	Unid.	70.0000	100.00	7,000.00
0203030008	ACERO DE R	REFUERZO FY=4200 KG/CM2 G-60	kg	9,579.7635	2.90	27,781.31
0239010100	AGUA		m3	13.6198	2.50	34.05
0239050000	AGUA (NO AF		m3	31.2064	2.50	78.02
0202000007		EGRO RECOCIDO# 16	kg	666.1540	5.00	3,330.77
0204010008	ARENA	/	m3	30.2208	30.00	906.62
0205010003		ÍO (NO AFECTO IGV)	m3	89.8880	30.00	2,696.64
0230020098		CERO DE 1 3/4"	m Ll-:-l	711.0000	155.80	110,773.80
0221990003	CARRO DE D		Unid.	4.0000	1,500.00	6,000.00
0221000000	CLAVOS PAF	ORTLAND TIPO I (42.5KG)	BOL	6,068.2500 236.1000	17.50	106,194.38
0202010061 0202010005		RA MADERA C/C 3"	kg kg	116.0748	5.00 5.00	1,180.50 580.37
0202010003		NA MADERA 6/6 3	Unid.	140.0000	65.70	9,198.00
0227010090	CORD.SUP. 4		Unid.	140.0000	32.85	4,599.00
0227010037		MA.DE 1 1/2"x6"x1.83m	Unid.	4.0000	22.50	90.00
0227010101		Y EXT.DE 1 1/2"x6"x1.83m	Unid.	280.0000	22.50	6,300.00
0243570064	ENTABLADO		Unid.	517.0000	82.05	42,419.85
0232000032		FECTO I.G.V.)	ton	0.8400	200.00	168.00
0238000005	HORMIĞÓN	,	m3	672.8210	30.00	20,184.63
0243570063	LARGUERO 7	7"x 8"x 2.00M	Unid.	2.0000	150.00	300.00
0230990019	LIJA		Unid.	54.3280	2.00	108.66
0244010039	MADERA RO	LLIZA (PIE DERECHO)	Unid.	142.2000	1.80	255.96
0243010099	MADERA TO	RNILLO	p2	2,846.4820	2.50	7,116.21
0227010100	MONT. EXTR	EMA EN VIG. DE 4"x4"x1.33m	Unid.	140.0000	23.27	3,257.80
0227010099		RAL Y EN VIG. DE 4"x4"x1.33m	Unid.	280.0000	23.27	6,515.60
0202110100		DE FIERRO LISO 1"INC/MONT.	m	755.2300	35.00	26,433.05
0201910001		OFENOL (PRESERVANTE DE MADERA)	gln	316.5000	25.00	7,912.50
0202460094		ERCA-ARANDELA 1/2"X20"	Unid.	1,134.0000	15.00	17,010.00
0202460097		ERCA-ARANDELA 1/2"X21"	Unid.	198.0000	25.00	4,950.00
0202460096 0202100019		ERCA-ARANDELA 1/2"X8" AGONAL (G-2) DE 3/4" X 2 1/2" + TUERCA Y ANILLO	Unid. Pza.	66.0000	10.00 6.00	660.00 420.00
0202100019		AGONAL (G-5) DE 1/2" X 2 1/2" + TUERCAY ANILLO	Pza.	70.0000 140.0000	12.00	1,680.00
020210005		AGONAL (G-3) DE 1/2 X 2 1/2 + TOERCA Y ANILLO	Pza.	70.0000	1.00	70.00
0205020021	PIEDRA GRA		m3	343.6290	30.00	10,308.87
0205030078		ANDEADA DE RÍO DE 1/2"	m3	45.3312	30.00	1,359.94
0205030079		ANDEADA DE RÍO TM 3/4"	m3	86.4960	30.00	2,594.88
0254060000	PINTURA AN	TICORROSIVA	gln	49.7624	60.00	2,985.74
0254110090	PINTURA ESI		gln	179.2824	35.00	6,274.88
0254020042	PINTURA ESI	MALTE SINTÉTICO	gln	49.7624	35.00	1,741.68
0251130054	PLATINA DE	FIERRO 1/4" X 1.5" X 12"	Unid.	1,701.0000	56.50	96,106.50
0227010103	PUNTALES	4" x 4" x 1.69M	Unid.	140.0000	36.95	5,173.00
0227010104	PUNTALES E	XTREMAS 4" x 4" x 1.69M	Unid.	8.0000	36.95	295.60
0243570065		BLADO DE 1"x12"X3m	Unid.	80.0000	49.25	3,940.00
0239020008	SOGA DE 3/4	,,	kg	71.1000	4.00	284.40
0253030027	THINER		gln	48.4386	20.00	968.77
0243570062	VIGUETAS 10	0"x12"x4.36 M	Unid.	33.0000	69.55	2,295.15
		DOVE				574,535.13
0337040005	DDOOLIA DE	EQUIPO		6 2002	40.00	74.64
0337010025 0349270010	BROCHA DE		Unid.	6.2203 16.5000	12.00 15.00	74.64 247.50
0349270010	GRUPO ELEC	TAS MANUALES	hm %MO	00000	15.00	247.50 15,285.07
0348010001	MEZCLADOR		%IVIO hm	125.7050	15.00	1,885.58
0348010004		RA DE CONCRETO DE 9-11P3	hm	305.4480	15.00	4,581.72
0349890001	NIVEL TOPO		hm	9.6000	15.00	144.00
			*****	0.000		

Precios y cantidades de recursos requeridos por tipo

DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO MAYO, LOCALIDAD DE SAN FRANCISCO - CUÑUMBUQUI - LAMAS - SAN MARTÍN -Obra 0302001

2014


DISEÑO ESTRUCTURAL DE PUENTE COLGANTE VEHICULAR, MEJORANDO LA TRANSITABILIDAD, SOBRE EL RÍO Sub presupuesto 001

29/01/2015 Fecha

Lugar	220505	SAN MARTÍN - LAMAS - CUÑUMBUQUI
-------	--------	---------------------------------

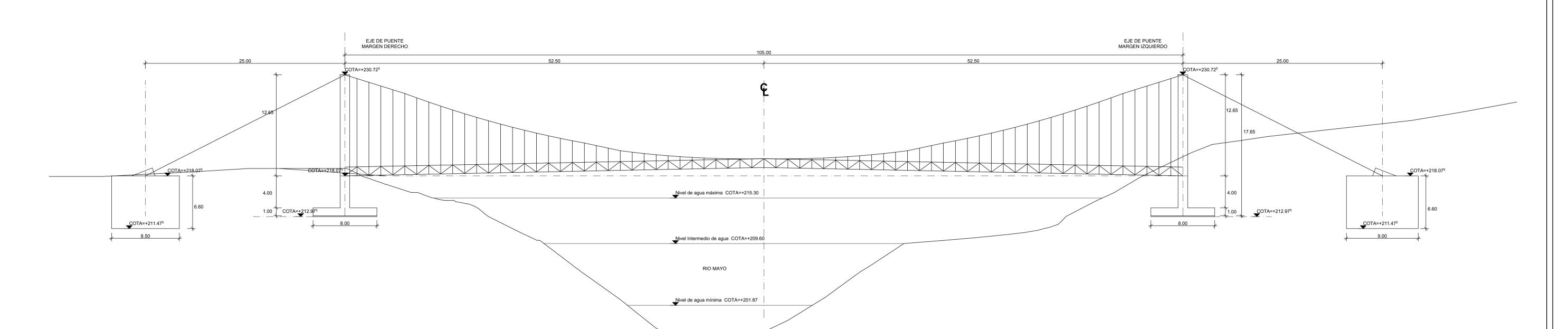
Código	Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
0339090073	PISTOLA PARA PINTAR	Unid.	0.1630	45.00	7.34
0349160019	TALADRO DE 1/2"	hm	97.0810	5.00	485.41
0330550056	TEODOLITO	hm	9.6000	15.00	144.00
0348600002	TIRFOR DE 5 TON.	hm	34.4835	30.00	1,034.51
0349070004	VIBRADOR DE CONCRETO 4 HP 2.40"	hm	125.0944	10.00	1,250.94
				-	25,140.71
				Total S/.	917,964.10

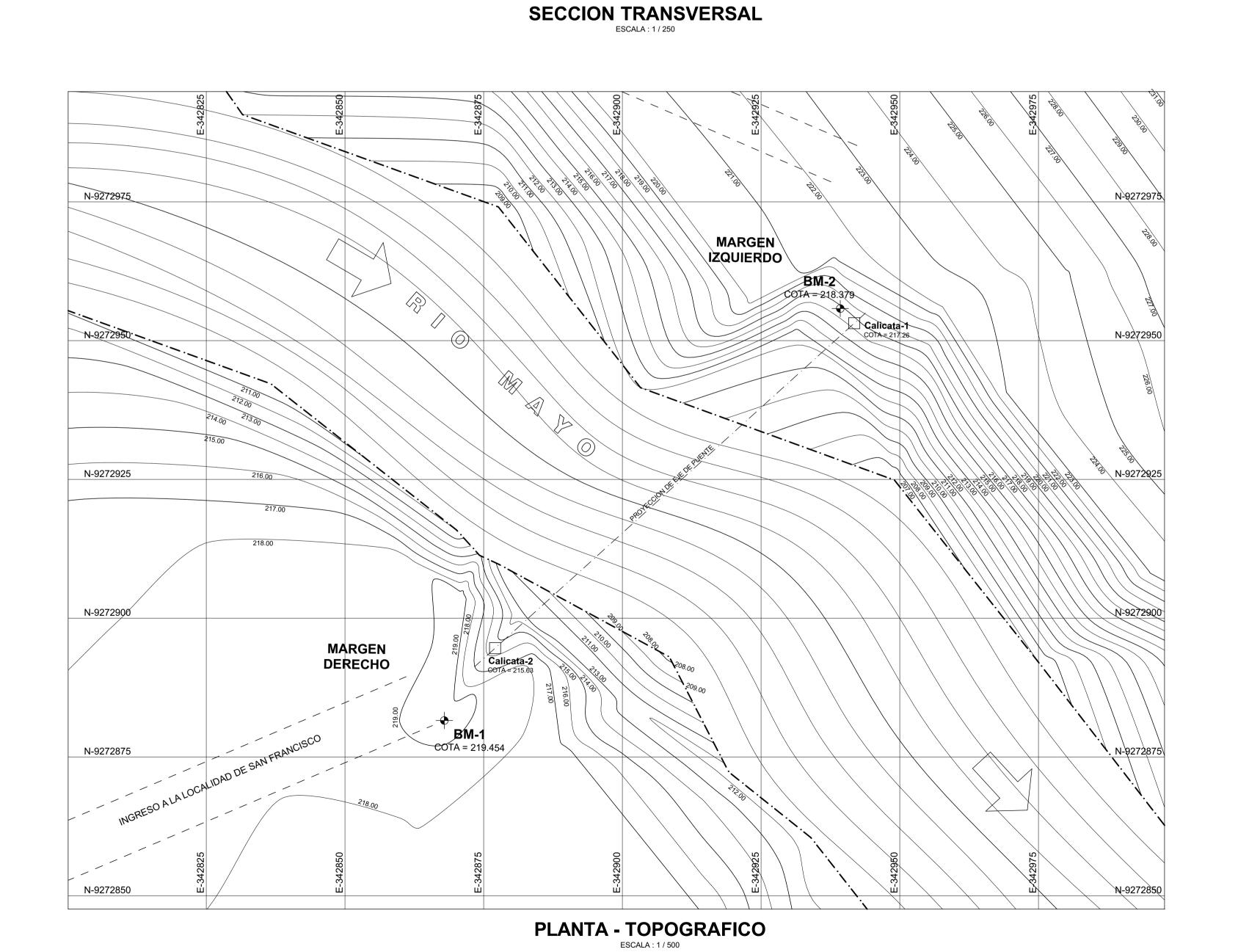
ANEXO PLANOS

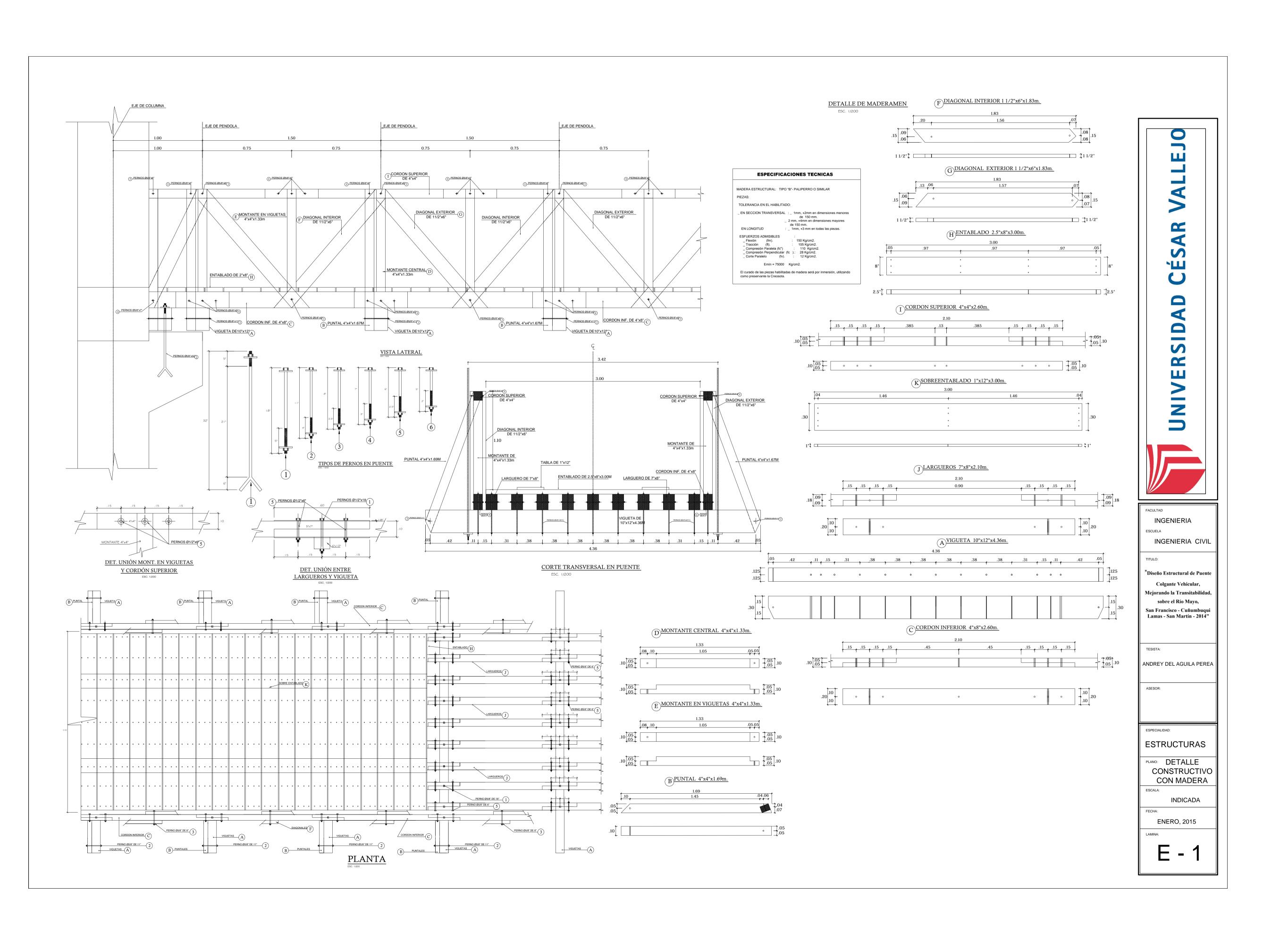
"Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad

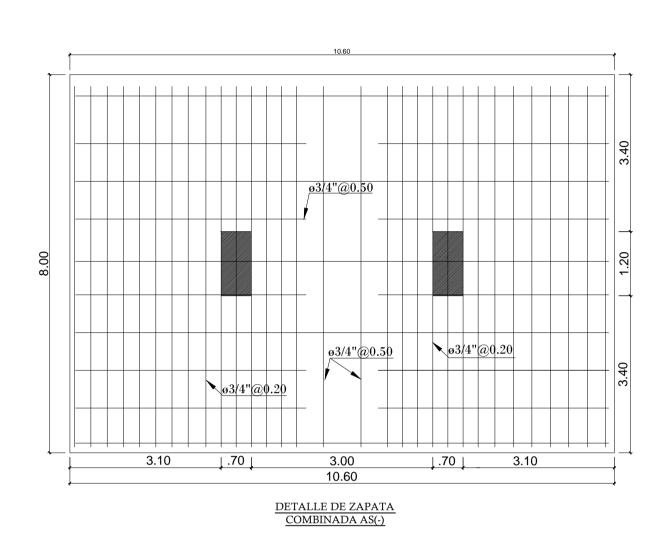
sobre el Río Mayo, San Francisco - Cuñumbuqui Lamas - San Martín - 2014"

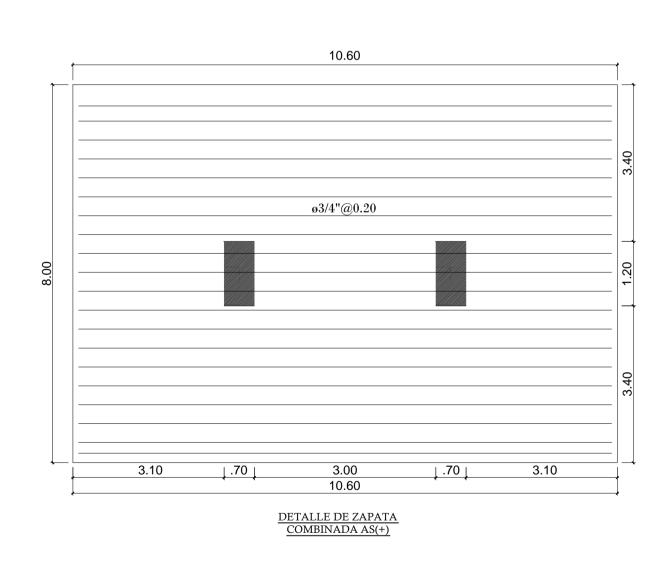
ANDREY DEL AGUILA PEREA

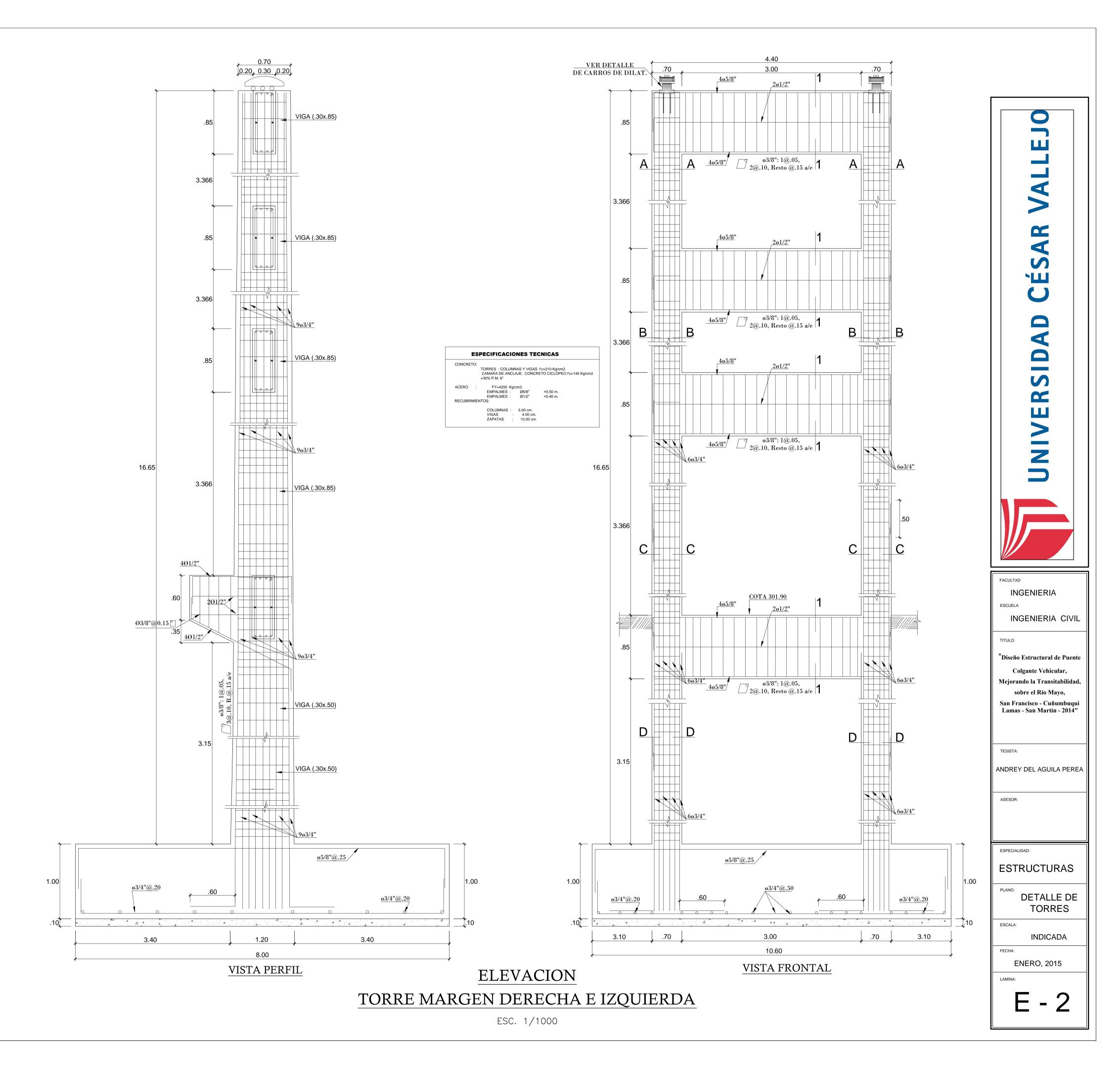

Ing. Ernesto Eliseo Garcia Ramírez

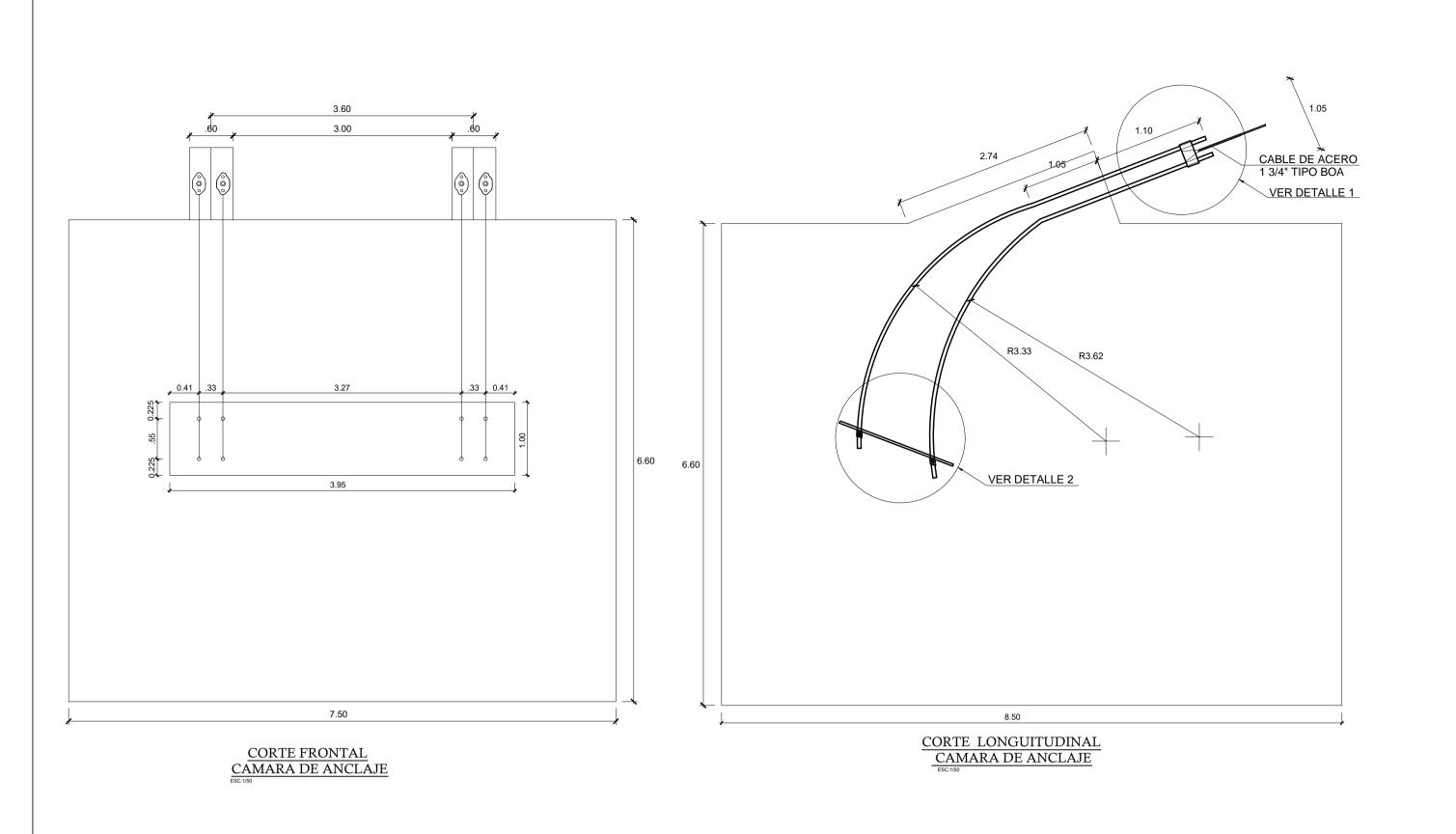

TOPOGRAFIA

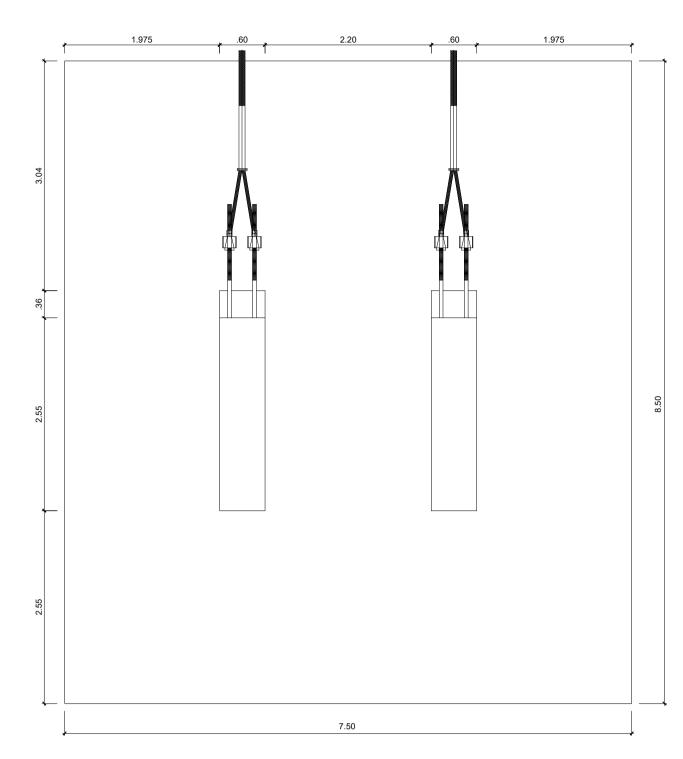

PLANTA SECCION

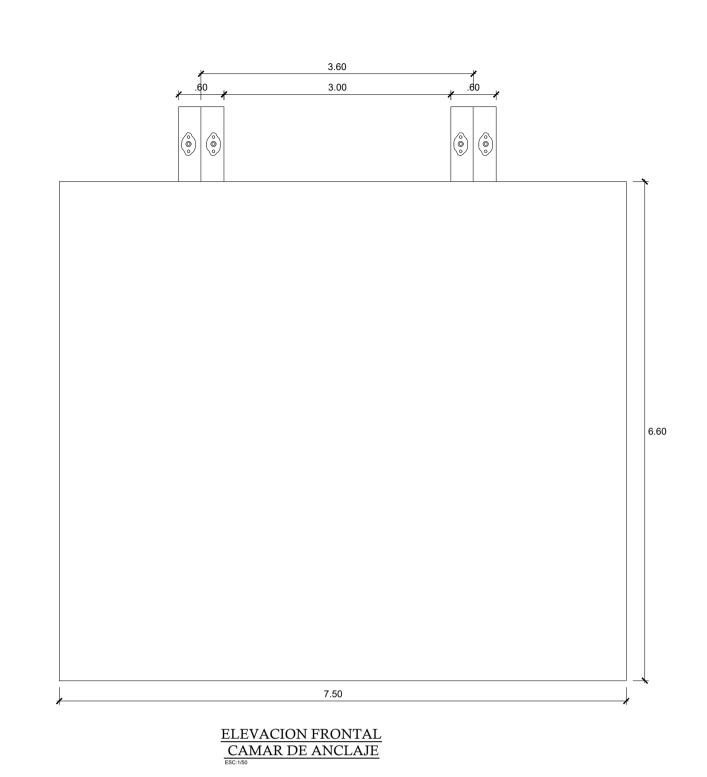

1 / 500 - 1 / 250 ENERO, 2015

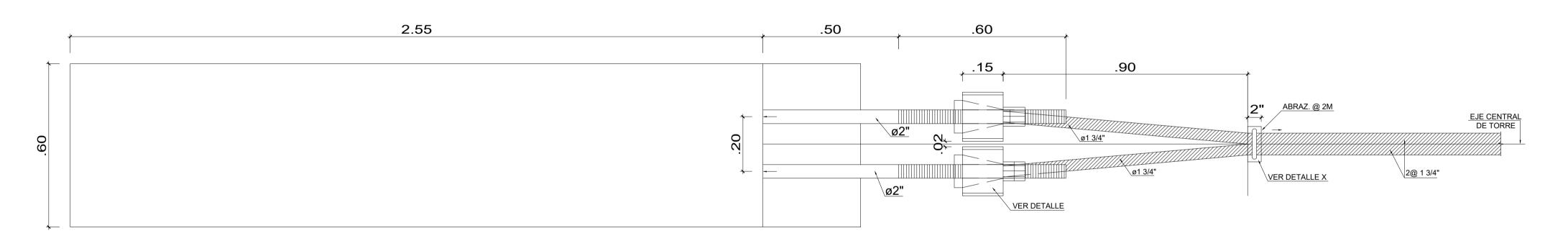

T-1

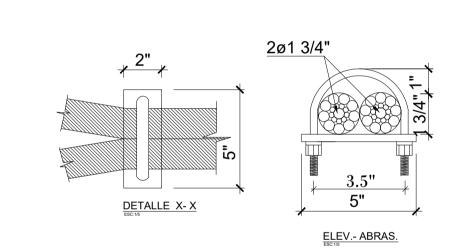


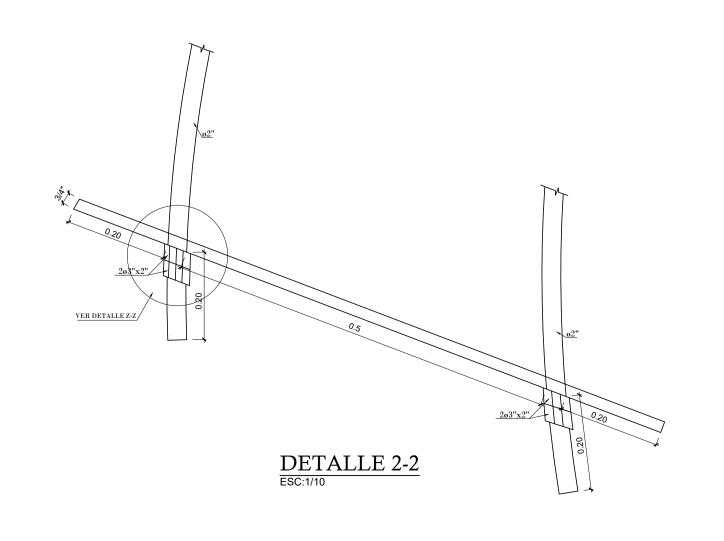


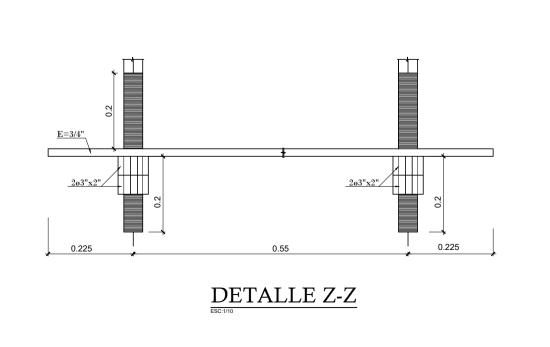











CAMARA DE ANCLAJE - PLANTA

DETALLE 1-1 ESC:1/10

UNIVERSIDAD CÉSAR VALLEJO

FACULTAD

INGENIERIA

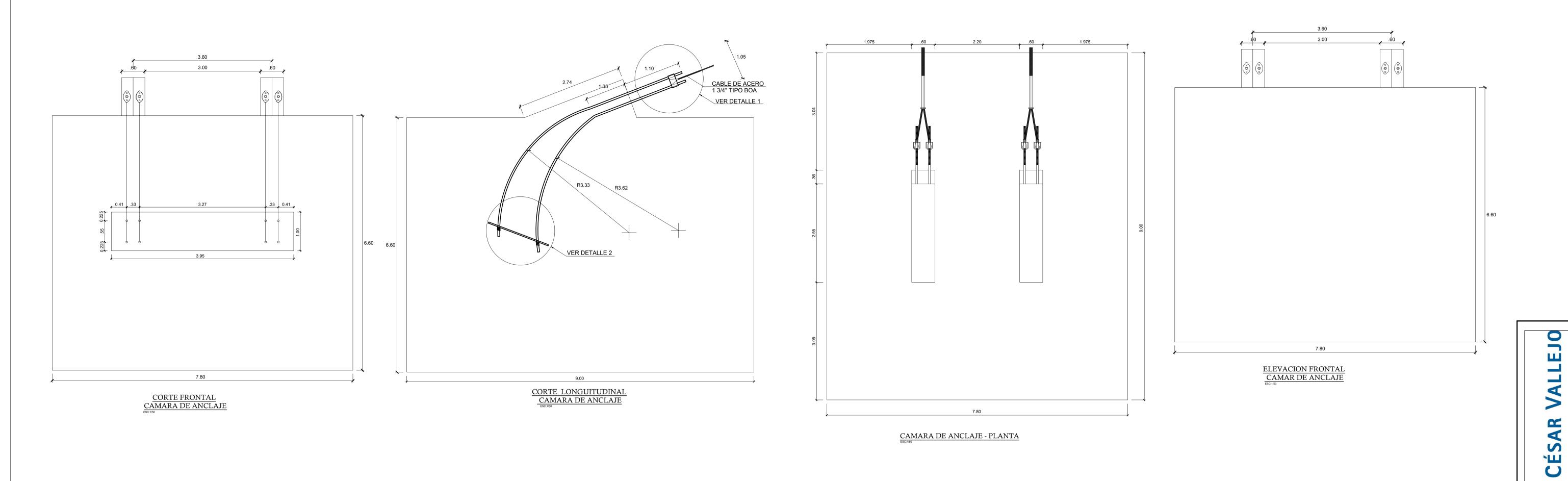
ESCUELA

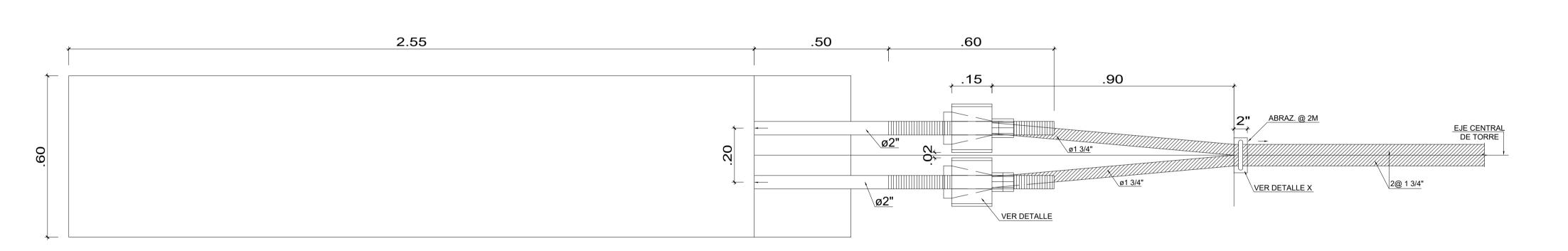
INGENIERIA CIVIL

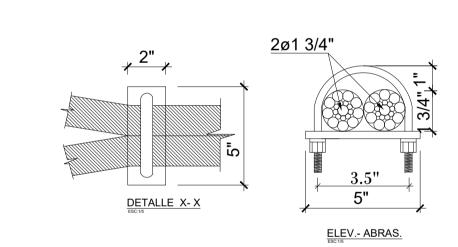
"Diseño Estructural de Puente Colgante Vehicular, Mejorando la Transitabilidad, sobre el Río Mayo, San Francisco - Cuñumbuqui Lamas - San Martín - 2014"

TESISTA:
ANDREY DEL AGUILA PEREA

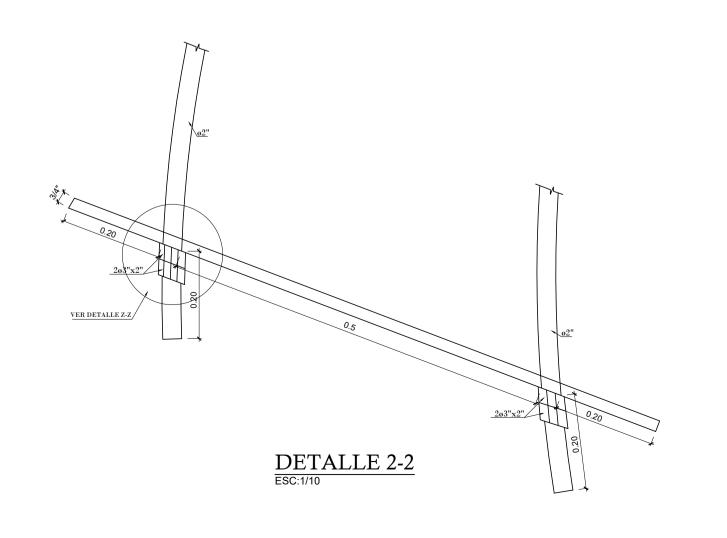
ASESOD

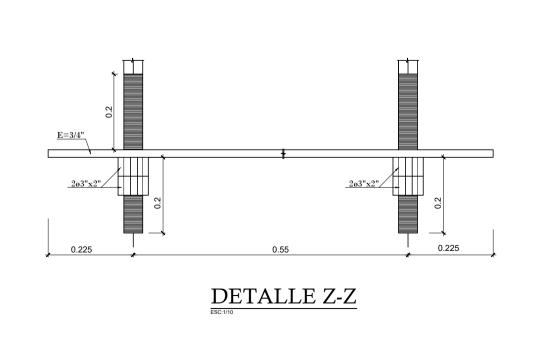

ESPECIALIDAD:


PLANO: DETALLE DE CAMARA DE


ANCLAJE - Derecha

FECHA: NOVIEMBRE, 2014


E - 3



DETALLE 1-1 ESC:1/10

UNIVERSID,

INGENIERIA

ESCUELA

INGENIERIA CIVIL

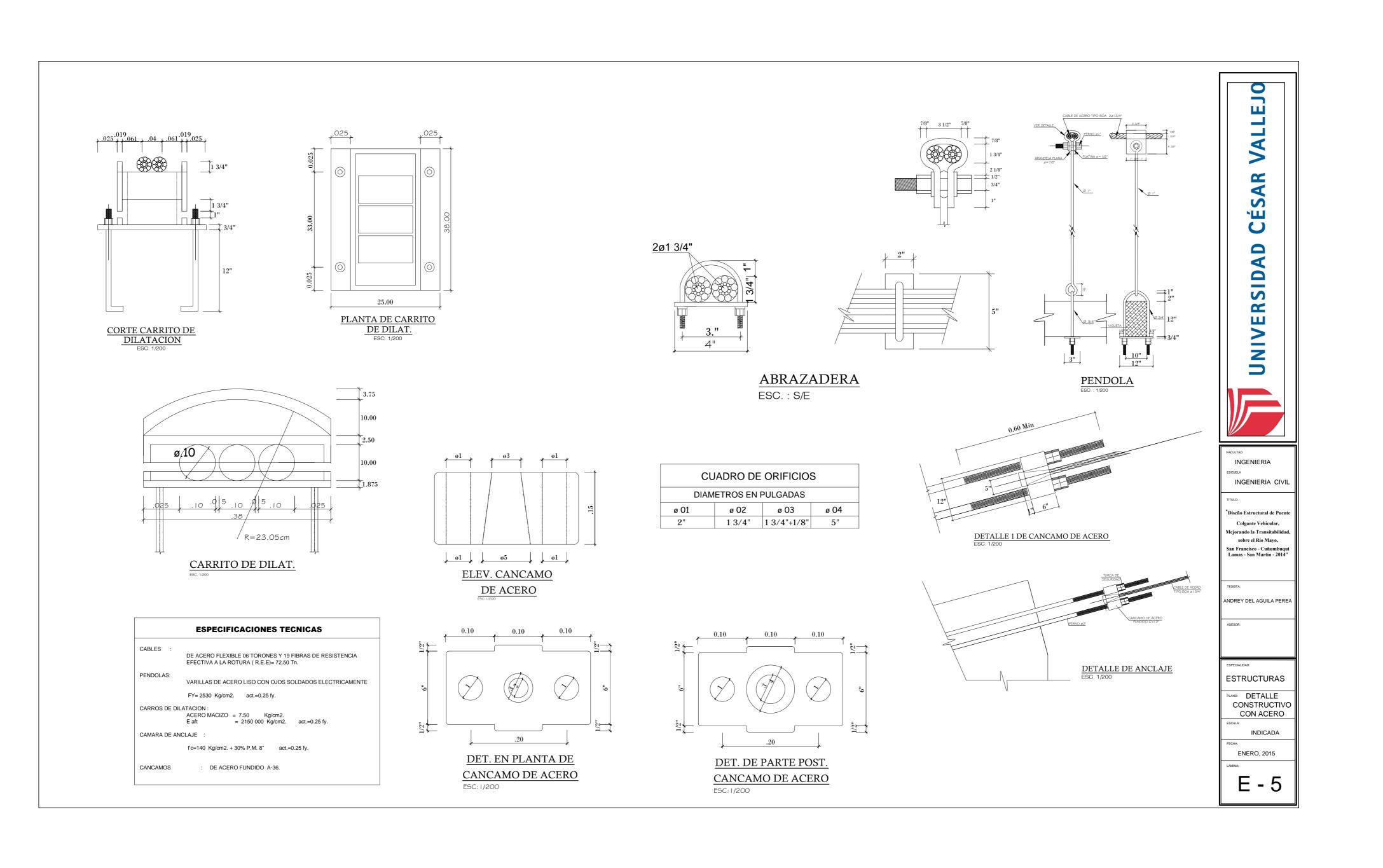
"Diseño Estructural de Puento Colgante Vehicular, Mejorando la Transitabilidad sobre el Río Mayo, San Francisco - Cuñumbuqui Lamas - San Martín - 2014"

TESISTA:

ANDREY DEL AGUILA PEREA

ESPECIALIDAD:

PLANO: DETALLE DE CAMARA DE


ANCLAJE - Izquierda

ESCALA:

INDICADA

NOVIEMBRE, 2014

E - 4

