

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Modelamiento y diseño estructural de una edificación de 8 niveles de concreto armado, urbanización San Luis, distrito y provincia Ica

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Santiago Andres, Derian Jesus Orlando (ORCID: 0000-0001-7212-7527) Tipacti Gomez, Luigui Joao (ORCID: 0000-0001-9600-015X)

ASESOR:

Dr. Herrera Viloche, Alex Arquimedes (ORCID: 0000-0001-9560-6846)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

TRUJILLO - PERÚ

2020

DEDICATORIA

Yo, Derian Jesus Orlando Santiago Andres Dedicado a Dios por darnos salud y vida a mí y a mis padres para poder estar presentes al lograr mis metas, y a mis padres por su apoyo incondicional a pesar de muchas dificultades desde siempre

> Yo, Luigui Joao Tipacti Gomez, dedico el presente proyecto de investigación en primer lugar a Dios por ser mi guía dia a dia , a mis padres Henry y Rina por brindarme su apoyo incondicional , a mi esposa Bianca e hijita Ghia Isabella quienes son mi motor para luchar dia a dia y por último a mi abuelito Jóse Antonio que es mi angelito que me guía desde el cielo.

AGRADECIMIENTO

A nuestro asesor el Dr.Ing Alex Arquimedes Herrera Viloche , por todo el apoyo y la enseñanza de Calidad brindada durante toda la etapa como nuestro asesor .

> A el Dr.Ing. Alan Yordan Valdivieso por el apoyo brindado en este camino hacia el logro de nuestro título profesional de Ingeniería Civil.

A la Universidad Cesar Vallejo por abrirnos Sus puertas y darnos la oportunidad de Continuar con nuestra meta de ser grandes Ingenieros civiles.

ÍNDICE

DEDICATORIA	ii
AGRADECIMIENTO	iii
ÍNDICE	vii
ÍNDICE DE FIGURAS	ix
ÍNDICE DE CUADROS	xvi
RESUMEN	xviii
ABSTRACT	xix
I. INTRODUCCIÓN	1
1.1.Realidad problemática	1
1.2. Antecedentes	4
1.3.Formulación del problema	11
1.4.Justificación	11
1.5.Objetivos generales y específicos	12
1.6.Hipótesis	12
II.MÉTODO	13
2.1.Tipo y diseño de investigación	13
2.2.Variables y operacionalización	13
2.3.Población, muestra y muestreo	16
2.4.Técnicas e instrumentos de recolección de datos	16
2.5.Procedimientos	17
2.6.Método de análisis de datos	18

2.7.Aspectos éticos	19
III. RESULTADOS	20
IV. DISCUSIÓN	143
V. CONCLUSIONES	145
VI. RECOMENDACIONES	146
REFERENCIAS	147
ANEXOS	153

ÍNDICE DE FIGURAS

Figura 1 . Distribución 1° Nivel	21
Figura 2 . Distribución 2° - 8° Nivel	22
Figura 3 . Áreas Tributarias	23
Figura 4 . Nuevo Modelamiento	33
Figura 5 . Definir Códigos de Diseño	34
Figura 6 . Definir Grillas	34
Figura 7 . Editar Grillas	35
Figura 8 . Insertar Grillas por Espaciamiento	35
Figura 9 . Definir las alturas de entrepiso	36
Figura 10 . Grillas en 3D	36
Figura 11 . Definir Materiales	37
Figura 12 . Material Concreto F´c = 210 kg/cm2	38
Figura 13 . Material Acero F´y = 4200 kg/cm2	39
Figura 14 . Definir Elementos Frame	40
Figura 15 . Columna C-1	40
Figura 16 . Definir tipo de elemento frame	41
Figura 17 . Columna C-2	41
Figura 18 . Columna C-3	42
Figura 19 . Columna VP-1	43
Figura 20 . Definir Elemento Frame Tipo Viga	43
Figura 21 . Definiendo Losa Aligerada	44
Figura 22 . Definiendo Placas	45
Figura 23 . 1° Modelado Estructural - Planta	46
Figura 24 . 1° Modelado Estructural – 3D	46
Figura 25 . Asignación de Restricciones	47
Figura 26 . Creación de Patrones de Carga Sismicos	48
Figura 27 . Definiendo Factor Sismico Sx	

Figura 28 . Definiendo Factor Sísmico Sy	49
Figura 29 . Definiendo Fuente de Masa	50
Figura 30 . Adición de Diafragmas	50
Figura 31 . Asignación de Diafragmas	51
Figura 32 . Modelado Estructural Final - Planta	52
Figura 33 . Modelado Estructural Final – 3D	52
Figura 34 . Modos de Vibración	53
Figura 35 . Definiendo Espectro de Aceleraciones	60
Figura 36 . Grafico de Espectro de Aceleraciones	61
Figura 37 . Caso de Carga Sismo en X	62
Figura 38 . Caso de Carga Sismo en Y	62
Figura 39 . Combinaciones de Carga	63
Figura 40 . Combo Deriva Max - X	64
Figura 41 . Combo Deriva Max - Y	64
Figura 42 . Definiendo Sismo de Diseño X	66
Figura 43 . Definiendo Sismo de Diseño Y	67
Figura 44 . Diagrama de momentos	68
Figura 45 . Importar Archivo de Etabs	69
Figura 46 . Definiendo Unidades para Cimentación	69
Figura 47 . Definiendo Materiales para Cimentación	70
Figura 48 . Definiendo Losa de Cimentación y elemento Rigidez	z70
Figura 49. Modelado de Losa de Cimentación	71
Figura 50 . Definiendo Suelo	71
Figura 51 . Asignando Suelo	72
Figura 52 . Asignando Restricciones a la Cimentación	72
Figura 53 . Cimentación Con Restricciones	73
Figura 54. Definiendo Caso de Carga para Cimentación	73
Figura 55 . Definiendo Recubrimientos	74

Figura 56.	Selección de Combinación de carga para Diseño	74
Figura 57.	Asentamiento de la Cimentación	75
Figura 58 .	Presión Ejercida por la Cimentación	.75
Figura 59 .	Franjas de Diseño	76
Figura 60.	Momentos en X	77
Figura 61.	Momentos en Y	77
Figura 62 .	Acero Requerido en X	78
Figura 63 .	Acero Requerido en Y	79
Figura 64 .	Momentos Máximos en Viguetas - Y	80
Figura 65 .	Cortantes Máximos en Viguetas - Y	.80
Figura 66 .	Acero Requerido en Viguetas de Losa Aligerada	.81
Figura 67.	Acero Colocado en Viguetas	82
Figura 68 .	Sección de Losa Aligerada	.82
Figura 69 .	Pórtico en X	.85
Figura 70 .	Momentos del Pórtico en X	86
Figura 71 .	Cortantes del Pórtico en X	86
Figura 72 .	Acero Requerido por momentos en Vigas 1º Piso	.87
Figura 73 .	Acero Requerido por cortantes en Vigas 1º Piso	.87
Figura 74 .	Acero Colocado en Vigas 1º Piso	.87
Figura 75 .	Secciones de Viga con Refuerzo 1º Piso	.88
Figura 76 .	Acero Requerido por momentos en Vigas 2º Piso	.88
Figura 77 .	Acero Requerido por cortantes en Vigas 2º Piso	.88
Figura 78 .	Acero Colocado en Vigas 2º Piso	.89
Figura 79 .	Secciones de Viga con Refuerzo 2º Piso	.89
Figura 80 .	Acero Requerido por momentos en Vigas 3º Piso	.89
Figura 81 .	Acero Requerido por cortantes en Vigas 3º Piso	.90
Figura 82 .	Acero Colocado en Vigas 3º Piso	90
Figura 83.	Secciones de Viga con Refuerzo 3º Piso	.90

Figura 84 . Acero Requerido por momentos en Vigas 4º Piso	91
Figura 85 . Acero Requerido por cortantes en Vigas 4º Piso	91
Figura 86 . Acero Colocado en Vigas 4º Piso	91
Figura 87 . Secciones de Viga con Refuerzo 4º Piso	92
Figura 88 . Acero Requerido por momentos en Vigas 5° Piso	92
Figura 89 . Acero Requerido por cortantes en Vigas 5° Piso	92
Figura 90 . Acero Colocado en Vigas 5º Piso	93
Figura 91 . Secciones de Viga con Refuerzo 5° Piso	93
Figura 92 . Acero Requerido por momentos en Vigas 6º Piso	93
Figura 93 . Acero Requerido por cortantes en Vigas 6º Piso	94
Figura 94 . Acero Colocado en Vigas 6º Piso	94
Figura 95 . Secciones de Viga con Refuerzo 6° Piso	94
Figura 96 . Acero Requerido por momentos en Vigas 7º Piso	95
Figura 97 . Acero Requerido por cortantes en Vigas 7º Piso	95
Figura 98 . Acero Colocado en Vigas 7º Piso	95
Figura 99 . Secciones de Viga con Refuerzo 7º Piso	95
Figura 100 . Acero Requerido por momentos en Vigas 8º Piso	96
Figura 101 . Acero Requerido por cortantes en Vigas 8° Piso	96
Figura 102 . Acero Colocado en Vigas 8º Piso	96
Figura 103 . Secciones de Viga con Refuerzo 8º Piso	96
Figura 104 . Pórtico en Y	97
Figura 105 . Momentos del Pórtico en Y	97
Figura 106 . Cortantes del Pórtico en Y	
Figura 107 . Acero Requerido por momentos en Vigas 1º Piso	
Figura 108 . Acero Requerido por cortantes en Vigas 1º Piso	
Figura 109 . Acero Colocado en Vigas 1º Piso	
Figura 110 . Secciones de Viga con Refuerzo 1º Piso	
Figura 111 . Acero Requerido por momentos en Vigas 2º Piso	100

Figura 112 . Acero Requerido por cortantes en Vigas 2° Piso	100
Figura 113 . Acero Colocado en Vigas 2º Piso	100
Figura 114 . Secciones de Viga con Refuerzo 2º Piso	101
Figura 115 . Acero Requerido por momentos en Vigas 3º Piso	101
Figura 116 . Acero Requerido por cortantes en Vigas 3º Piso	101
Figura 117 . Acero Colocado en Vigas 3º Piso	102
Figura 118 . Secciones de Viga con Refuerzo 3º Piso	102
Figura 119 . Acero Requerido por momentos en Vigas 4º Piso	102
Figura 120 . Acero Requerido por cortantes en Vigas 4º Piso	103
Figura 121 . Acero Colocado en Vigas 4º Piso	103
Figura 122 . Secciones de Viga con Refuerzo 4º Piso	103
Figura 123 . Acero Requerido por momentos en Vigas 5° Piso	104
Figura 124 . Acero Requerido por cortantes en Vigas 5° Piso	104
Figura 125 . Acero Colocado en Vigas 5º Piso	104
Figura 126 . Secciones de Viga con Refuerzo 5º Piso	105
Figura 127 . Acero Requerido por momentos en Vigas 6º Piso	105
Figura 128 . Acero Requerido por cortantes en Vigas 6° Piso	105
Figura 129 . Acero Colocado en Vigas 6º Piso	106
Figura 130 . Secciones de Viga con Refuerzo 6º Piso	106
Figura 131 . Acero Requerido por momentos en Vigas 7º Piso	106
Figura 132 . Acero Requerido por cortantes en Vigas 7º Piso	107
Figura 133 . Acero Colocado en Vigas 7º Piso	107
Figura 134 . Secciones de Viga con Refuerzo 7º Piso	107
Figura 135 . Acero Requerido por momentos en Vigas 8º Piso	108
Figura 136 . Acero Requerido por cortantes en Vigas 8° Piso	108
Figura 137 . Acero Colocado en Vigas 8º Piso	108
Figura 138 . Secciones de Viga con Refuerzo 8º Piso	109
Figura 139 . Columna 70 x 70	110

Figura 140 . Diagrama de Momentos Columna Critica	110
Figura 141 . Diagrama de Fuerzas Cortantes Columna Critica	111
Figura 142 . Acero Requerido en Columna de 70 x 70	111
Figura 143 . Columna de 70 x 70 Acero Colocado	112
Figura 144 . Columna en T 85 x 85 x 35	113
Figura 145 . Diagrama de Momentos Columna en T Critica	113
Figura 146 . Diagrama de Fuerzas Cortantes Columna en T Critica	114
Figura 147 . Acero Requerido en Columna en T Critica	114
Figura 148 . Columna T de 85 X 85 X 35 Acero Colocado	115
Figura 149 . Acero Propuesto – Placa 01	117
Figura 150 . Diagrama de interacción X – Placa 01	118
Figura 151 . Diagrama de interacción Y – Placa 01	118
Figura 152 . Acero Colocado – Placa 01	119
Figura 153 . Sección Final – Placa 01	122
Figura 154 . Acero Propuesto – Placa 02	124
Figura 155 . Diagrama de interacción X – Placa 02	124
Figura 156 . Diagrama de interacción Y – Placa 02	125
Figura 157 . Acero Colocado – Placa 02	125
Figura 158 . Sección Final – Placa 02	128
Figura 159 . Acero Propuesto – Placa 03	130
Figura 160 . Diagrama de interacción X – Placa 03	130
Figura 161 . Diagrama de interacción Y – Placa 03	131
Figura 162 . Acero Colocado – Placa 03	131
Figura 163 . Sección Final – Placa 03	134
Figura 164 . Acero Propuesto – Placa 04	136
Figura 165 . Diagrama de interacción X – Placa 04	136
Figura 166 . Diagrama de interacción Y – Placa 04	137
Figura 167 . Acero Colocado – Placa 04	137

Figura 168 . Sección Final – Placa 04	.140
Figura 169 . Losa de Cimentación	.141
Figura 170 . Acero Colocado en Losa de Cimentación	.142

ÍNDICE DE CUADROS

Cuadro 1 . Áreas de Ambientes	20
Cuadro 2 . Áreas efectivas de la distribución	21
Cuadro 3 . Factores para predimensionar losas	23
Cuadro4 . Factor de predimensionamiento de vigas	24
Cuadro 5 . Factores para predimensionamiento de columnas	26
Cuadro 6 . Metrado de Carga muerta para Columna Central	27
Cuadro 7 . Metrado de Carga Viva para Columna Central	28
Cuadro 8 . Metrado de Carga muerta para Columna en Esquina	
Cuadro 9 . Metrado de Carga viva para Columna en Esquina	29
Cuadro 10. Metrado de Carga muerta para Columna Perimetral	29
Cuadro 11. Metrado de Carga viva para Columna Perimetral	
Cuadro 12 . Cargas Asignadas a la losa	49
Cuadro 13 . Irregularidad de Rigidez Dirección X	53
Cuadro 14 . Irregularidad de Rigidez Dirección Y	54
Cuadro 15 . Irregularidad de Resistencia	54
Cuadro 16 . Irregularidad de Masa o Peso	55
Cuadro 17 . Irregularidad Geométrica Vertical	55
Cuadro 18 . Irregularidad Torsional Dirección X	56
Cuadro 19 . Irregularidad Torsional Dirección Y	56
Cuadro 20. Datos para Espectro de Aceleraciones	58
Cuadro 21 . Espectro de Aceleraciones	58
Cuadro 22 . Desplazamiento Maximos X	65
Cuadro 23 . Desplazamiento Maximos Y	65
Cuadro 24 . Factor de Escala Dinámico	66
Cuadro 25 . Datos de Placa 01 – Primer Nivel	116
Cuadro 26 . Combinaciones de Carga – Placa 01 - X	116

Cuadro 27 . Combinaciones de Carga – Placa 01 - Y	117
Cuadro 28 . Verificación de Resistencia al Corte – Placa 01	120
Cuadro 29 . Diseño de Acero Horizontal – Placa 01	120
Cuadro 30 . Verificación de Acero Vertical – Placa 01	121
Cuadro 31 . Disposición de Acero – Placa 01	121
Cuadro 32 . Datos de Placa 02 – Primer Nivel	122
Cuadro. 33. Combinaciones de Carga – Placa 02 - X	123
Cuadro 34 . Combinaciones de Carga – Placa 02 - Y	123
Cuadro 35 . Verificación de Resistencia al Corte – Placa 02	126
Cuadro 36 . Diseño de Acero Horizontal – Placa 02	126
Cuadro 37 . Verificación de Acero Vertical – Placa 02	127
Cuadro 38 . Disposición de Acero – Placa 02	127
Cuadro 39 . Datos de Placa 03 – Primer Nivel	128
Cuadro 40 . Combinaciones de Carga – Placa 03 - X	129
Cuadro 41 . Combinaciones de Carga – Placa 03 - Y	129
Cuadro 42. Verificación de Resistencia al Corte – Placa 03	132
Cuadro 43 . Diseño de Acero Horizontal – Placa 03	132
Cuadro 44 . Verificación de Acero Vertical – Placa 03	133
Cuadro 45 . Disposición de Acero – Placa 03	133
Cuadro 46 . Datos Placa 04 – Primer Nivel	134
Cuadro 47 . Combinaciones de Carga – Placa 04 - X	135
Cuadro 48 . Combinaciones de Carga – Placa 04 - Y	135
Cuadro 49. Verificación de Resistencia al Corte – Placa 04	138
Cuadro 50 . Diseño de Acero Horizontal – Placa 04	138
Cuadro 51 . Verificación de Acero Vertical – Placa 04	139
Cuadro 52 . Disposición de Acero – Placa 04	139

RESUMEN

El presente proyecto de investigación tuvo como objetivo principal realizar el Modelamiento y Diseño Estructural de una Edificación de 8 Niveles de Concreto Armado, Urbanización San Luis, Distrito y Provincia Ica. El diseño de investigación usado fue el no experimental, Transversal Descriptivo Simple. La población de la presente investigación fue el área total de 4650 m2 y la muestra se considerada fue el área del lote 1 y 2, las cuales tienen un área de 832.00 m2. Como resultados obtuvimos que el sistema estructural en el eje X es dual y que en el eje Y es de Muros estructurales, las placas cuentan con un espesor de 0.35 m, la losa aligerada es de 0.25 m, tenemos sección de columna en "T" con medidas de 0.85 m x 0.85 m x 0.35 m y columnas cuadradas de 0.70 m x 0.70 m y con vigas de 0.35 m x 0.60 m, también se realizó el diseño estructural de una losa de cimentación empleando el software Safe y para realizar el modelamiento y diseño estructural de nuestra edificación empleamos el software Etabs dentro del cual insertamos parámetros sísmicos estipulados por la norma E.030 del RNE, dentro del cual tienen como reguisito fundamental la verificación de desplazamientos máximos de la edificación, estos desplazamientos no debes de exceder de 0.007 en edificaciones de Concreto Armado . Para el Diseño estructural hicimos la configuración del programa Etabs para que nos diseñe con nuestra Normativa vigente que es la norma E.060 del Reglamento Nacional de Edificaciones. Finalizando se realizó y se presentaron todos los planos respectivos dentro de los cuales se encuentran los planos de estructuras y ubicación y arquitectura de nuestro proyecto.

Palabras Clave : Diseño estructural , desplazamientos , modelamiento estructural

ABSTRACT

The main objective of this research project was to carry out the Structural Modeling and Design of a Building of 8 Levels of Reinforced Concrete, San Luis Urbanization, Ica District and Province. The research design used was the non-experimental, Simple Descriptive Transversal. The population of the present investigation was the total area of 4650 m2 and the sample considered was the area of lots 1 and 2, which have an area of 832.00 m2. As results we obtained that the structural system in the X axis is dual and that in the Y axis it is structural walls, the plates have a thickness of 0.35 m, the lightened slab is 0.25 m, we have a column section in "T" With measurements of 0.85 mx 0.85 mx 0.35 m and square columns of 0.70 mx 0.70 m and with beams of 0.35 mx 0.60 m, the structural design of a foundation slab was also carried out using Safe software and to carry out the modeling and structural design of our building We use the Etabs software into which we insert seismic parameters stipulated by the RNE E.030 standard, within which the verification of maximum displacements of the building is a fundamental requirement, these displacements must not exceed 0.007 in Reinforced Concrete buildings. For the structural design, we made the configuration of the Etabs program to design us with our current Regulations, which is standard E.060 of the National Building Regulations. At the end, all the respective plans were carried out and presented, within which are the structures and location and architecture plans of our project.

Keywords: Structural design, displacements, structural modeling

I. INTRODUCCIÓN

1.1 REALIDAD PROBLEMÁTICA

En el Perú la Ciudad de Ica se encuentra en una zona de alta vulnerabilidad sísmica , la cual esta expuesta a movimientos sísmicos constantes , producto de esto las edificaciones cuentan con un alto grado de deterioro debido a los eventos sísmicos ocurridos en la localidad , producto de la carencia de un análisis estático , análisis sísmico y mal diseño estructural .

La región lca ha sido golpeada con varios fenómenos sísmicos entre ellos unos de los mas importantes y de mayor magnitud fue hace 13 años el 15 de agosto del 2007, el cual causo grandes pérdidas de vidas humanas y pérdidas materiales, en dicho evento sísmico salieron a relucir las carencias estructurales productos de la autoconstrucción ya que hasta viviendas de solo un nivel fueron afectadas quedando en estado crítico.

Si las Edificaciones se siguen construyendo sin un buen análisis sísmico y un buen diseño estructural en los próximos eventos sísmicos seguiremos teniendo grandes pérdidas humanas, grandes pérdidas materiales debido al mal diseño las edificaciones.

Es por lo que en el presente proyecto se propone diseñar y modelar un edificio de 8 niveles de concreto armado en la Urbanización San Luis cumpliendo con todas las normativas vigentes Nacionales.

TEÓRIAS RELACIONADAS AL TEMA

1.1.1. Diseño Arquitectónico:

El diseño arquitectónico es un acto de creatividad, en el que se plasman los detalles que tendrá una edificación respecto a distribución de ambientes, decoración de zonas, desniveles, entre otros aspectos.

1.1.2. Análisis Sísmico:

1.1.2.1 Análisis Estático:

Evalúa el estado de fatiga de la estructura sometida a fuerzas constantes durante un tiempo prolongado. La evaluación de la etapa de fatiga se realiza en conclusión al sondear las características de diseño tomadas frente al criterio de resistencia. (San Bartolomé, 1998, p. 177).

1.1.2.2 Análisis Dinámico

Es estudio de las velocidades, aceleraciones y fuerzas que surgen en una estructura como consecuencia de las deformaciones y desplazamientos. (San Bartolomé, 1998, p. 177).

1.1.3. Diseño Estructural:

Es el estudio del equilibrio entre la composición natural de los elementos estructurales y la conducta frente a las capacidades mecánicas con la condición de tener un equilibrio entre costo y calidad. (Morales, 2006, p. 8).

1.1.3.1 Diseño por corte:

Método que evita la ampliación de grietas inclinadas, teniendo como resultado una mayor profundidad de la franja comprimida, incrementando la capacidad de adherencia del acero longitudinal y evitando la falla por desgarramiento para así lograr incrementar la ductilidad del conjunto y poder evitar las roturas frágiles. (McCormac y Brown, 2011, p. 63).

1.1.3.2 Diseño por flexión:

Es el que evalúa el estado límite de servicio que normalmente influye en las dimensiones de los elementos estructurales los cuales son sometidos a cortante u otras acciones estructurales. (McCormac y Brown, 2011, p. 68).

1.1.3.3 Elementos Estructurales:

Cimentación:

Es la que constituye un elemento estructural intermedio el cual nos permite transmitir las cargas de una estructura hacia el suelo subyacente , de tal modo que esta presión ejercida no rebase la capacidad portante del suelo. (Luis López García, 1999, p. 3)

Columnas:

Son elementos estructurales capaces de resistir fuerzas de compresión y flexión, estos elementos estructurales son los encargados de transmitir todas las cargas de la estructura hacia la cimentación; siendo estos uno de los elementos de mayor importancia en la estructura. (San Bartolomé, 1998, p. 28).

Escaleras:

Las escaleras son elementos estructurales que permiten el acceso entre dos planos (plantas), los cuales se encuentran situados a distinto nivel, constituidas por peldaños o escalones. (E.T.S.A. Sevilla, 1998, p. 2).

Losa aligerada unidireccional:

Plataforma constituida de concreto armado, conformada de cierto número de viguetas en una sola dirección apoyada sobre un conjunto de vigas portantes y de ladrillos de arcilla para llenar los vacíos entre viguetas.

Muros de concreto armado:

Son elementos estructurales verticales que reciben cargas verticales, y que, tiene mayor longitud en una dirección, proporcionan una gran estabilidad e inflexibilidad lateral ante movimientos sísmicos. (McCormac y Brown, 2011, p. 538).

Platea de Cimentación:

Es la que consiste en una losa de concreto armado, con refuerzo en ambas direcciones y colocada en toda el área de la edificación, tanto superior como inferior. Este tipo de cimentación es empleado cuando la cantidad de pisos son altos o el peso de la edificación es considerable, para la baja capacidad portante que presenta el suelo. También cuando el área a cimentar requerida es mayor o igual al 50 % del área del terreno de la edificación.

Viga de cimentación:

Cimento lineal conectado a las zapatas. Cuenta con una disposición de viga, por lo que su refuerzo será el de una viga trabajando a flexión, solamente que este elemento estructural el refuerzo longitudinal de la armadura sujeto a tracción estará ubicado en la parte superior. Normalmente se emplean para disminuir las presión admisible en la cimentación y para el control de excentricidades.

Zapatas:

Grupo de elementos estructurales de una edificación en el que su trabajo es la transmisión de las cargas pertenecientes a la edificación hacia el suelo, distribuyéndolas de tal manera que no superen su presión admisible. El área de contacto entre la cimentación y el suelo debe de ser de mayor dimensión que los elementos soportados, excepto en suelos rocosos. (Morales, 2013, p. 143).

1.2 ANTECEDENTES

AGUIAR y ORTIZ (2017), en el artículo denominado "Seismic analysis of a twelve story building of Manta city considering soil Structure Interaction", tienen como propósito comprobar los periodos de vibración y desplazamientos máximos teniendo una interacción con los suelos. Los resultados obtenidos nos muestran que el periodo para el asentamiento del suelo, tanto transversal como longitudinal son 1.065 y 1.143 segundos respectivamente, de igual manera nos detalla los desplazamientos máximos los cuales son 12.959 y 10.948 para el E-W y N-S el cual representa al asentamiento transversal y para el asentamiento longitudinal tenemos 14.032 y 11,051 tanto para el E-W Y N-

S. A manera de conclusión se empleó el método de aceleración espectral el cual permitió conocer la deriva máxima de pisos superiores al 70% en los primeros 10 niveles.

ÁLVAREZ (2019), en el artículo denominado "Influence of the dead loads in the seismic design of ductile frames of reinforced concrete", plantea como objetivo realizar el diseño estructural de una edificación de 5 pisos en Santiago de Cuba. Los resultados muestran un suelo de tipo S2, un porcentaje de contenido de humedad de 3.18%, una resistencia a la compresión de 35 Mpa, columnas cuadradas de 0.50 m x 0.50 m, vigas peraltadas de 0.30 m x 0.50 m y losa de 0.20 m. En conclusión, se comprobó que la carga muerta tiene gran influencia en el diseño estructural.

ARCHUNDIA et.al (2018), en el artículo denominado "Revisión de la seguridad sísmica de un edificio de concreto reforzando de mediana altura fuertemente irregular existente en la ciudad de México", tiene como objetivo mostrar el comportamiento estructural en su estado actual. Los resultados manifiestan a detalle los distintos estudios realizados en laboratorios, teniendo como resultado un periodo de vibración 0.65 seg, la contenida de finos es 7.51%, además de ello nos presenta el modelo estructural tridimensional empleando el software de análisis estructural ETABS. Se concluye que se debe ejecutar variedad de investigaciones del análisis dinámico para de esta manera poder obtener resultados más precisos del comportamiento de la estructura.

BARBA MEDINA Y LA TORRE (2020), en su tesis titulada, "Diseño estructural de un edificio de pisos en el suelo rígido de Lima haciendo uso de losas postensadas", nos plantea un edificio de 40 niveles empleando losas postensadas, Antes de iniciar con el análisis se realizo el predimensionamiento de los elementos estructurales, en segundo lugar se procedió a realizar el modelamiento estructural respectivo debido a que ya se tenían datos de ingreso, al culminar con el modelamiento estructural se inicio con las labores de análisis sísmico empleando la normativa peruana en vigencia, continuando con el proyecto se realizo la verificación del análisis modal, desplazamientos máximos, irregularidades estructurales y por último se procedió a realizar el diseño estructural de todos sus elementos estructurales tomando en cuenta las normas establecidas en el Reglamento Nacional de Edificaciones, Concluyendo que el sistema estructural planteado es el mas óptimo para la edificación de 40 niveles.

BOZZO et.al (2019), en el artículo nombrado "Modeling, analysis and seismic design of structures using energy dissipators SLB", plantea detallar el modelamiento tridimensional que tienen las estructuras. Dentro de los resultados se precisa que mediante el software Etabs se diseñará la estructura utilizando las distintas escalas de aceleración, en los análisis se redujo el factor de reducción "R" que oscila entre 6 y 10 dentro de este rango la estructura no presenta deterioros; además en el perfil estratigráfico se muestra en los 2 primeros estratos un suelo SM y en el último OL. Para finalizar se concluye que para tener un análisis y diseño lo más acercado a la realidad se debe efectuar un modelamiento tridimensional de la estructura con el programa Etabs.

CORREIA y SILVA (2017), en su artículo llamado "Simplified assesment of the effects of columns shortening on the response of tall concrete buildings", tienen como finalidad efectuar el diseño estructural del edificio. Los resultados nos muestran vigas peraltadas de 0.40 m x 0.70 m, columnas rectangulares de 0.30 m x 0.50 m, losa de 0.15 m, muros de concreto armado de 0.20 m de espesor, el tipo de suelo que se encontró es arcilloso. Se concluye con el diseño estructural y el análisis sísmico de la edificación.

DIAZ, MORALES y PALACIOS (2019), en este artículo llamado "Analysis of structural performance of existing RC building designated as tsunami evacuation shelter in case of earthquake-tsunami scenarios in Lima city", tienen como objetivo emplear una técnica en la cual se va a evaluar el comportamiento estructural y el porcentaje de deterioros ocasionado en caso de sismos o tsunami . Los resultados obtenidos expresan el valor de la deriva máxima obtenidas en el piso más alto entre todos los interiores , para el análisis dinámico es 1.25% y para el análisis estático es 1.76%, esta deriva supera el 29% en el análisis dinámico, el drift máximo es 0.00615; además se encuentra ubicado en la zona 4 teniendo como factor de zona Z= 0.45, el factor del suelo es S=1.1 y el factor de uso U=1.65. En conclusión, debe efectuarse un análisis estructural a los edificios para así determinar el nivel de deterioro y de esta manera contar con seguridad para la estructura de los edificios y las personas que habitan en ellos.

DURAND, GONZALEZ y RUIZ (2018), en el artículo llamado "Evaluacion del comportamiento estructural del edificio el Marvy", tienen como objetivo realizar una evaluación sísmica estructural de la edificación. Los resultados obtenidos nos expresan que la edificación cuenta con una área techada de 380.85 m2 y área libre de 124.77 m2, tiene de ancho 25,12m, 27,58m de longitud y 9,25m de altura total , las losas cuentan con un espesor de 0.20m, columnas rectangulares de 0.30m x 0.45m, muros de concreto armado de 0.20m y las vigas de 0.45m x 0.30m; también nos muestra el refuerzo transversal de las columnas con acero de 3/8" y longitudinal de 3/4". Se concluye con el diseño estructural del edificio Marvy.

HERRERA (2020) ,en su tesis titulada, "Diseño estructural de un edificio de oficinas de 5 pisos en Barranco", en su tesis busca realizar el análisis sísmico dinámico y el diseño estructural de un edificio de oficinas de concreto armado. Esta edificación tiene cinco pisos y una azotea. Se encuentra ubicado en un suelo S1 con una capacidad portante admisible de 4.5 kg/cm2. El análisis sísmico y el diseño estructural deberá respetar los requisitos indicados por el Reglamento Nacional de Edificaciones (RNE). El sistema estructural que predomina en la edificación es de muros de concreto armado. El techado es de losas macizas y losas aligeradas convencional de 20 cm de espesor.

Además, la edificación cuenta con los siguientes elementos estructurales: vigas peraltadas, columnas y muros de concreto armado en el sótano. La cimentación, contara con zapatas combinadas, aisladas, conectadas ,cimientos corridos y vigas de cimentación. Se realizo la estructuración y predimensionamiento de los elementos estructurales en base al diseño arquitectónico y al metrado de cargas realizado de manera manual. Las cargas que han sido asumidas corresponden a las cargas indicadas en la norma E.020. Luego, se hizo un modelamiento tridimensional en el software ETABS para realizar el análisis sísmico dinámico de la estructura. Después, se comprobó que la edificación cumpla con todos los requisitos mínimos indicados de la norma E.030. Se diseñó la edificación teniendo en cuenta todos los requisitos indicados de la norma E.060. Se tomó en cuenta los criterios para los elementos estructurales que solo son sometidos a cargas gravitacionales y para los que también son sometidos a cargas dinámicas sísmicas. Adicionalmente, se verifico las condiciones por carga de servicio de algunos elementos de la edificación. Para el diseño de las losas macizas y aligeradas, el muro de sótano y verificar la longitud de confinamiento de la placa se utilizó el software SAP 2000.

LIAS Y PASCUAL (2020), en su tesis titulada, " Diseño Estructural de una Edificación Multifamiliar de 10" se obtuvo que para edificaciones de 10 niveles el estudio de mecánica de suelos que debe de realizarse es el ensayo de penetración estándar , asi mismo concluye que el uso de software para el análisis de una estructura es sumamente ventajoso y bastante provechoso debido a que nos permite evaluar de una manera mas rápida los calculo , de igual manera ratificar los cálculos realizados por método manual .

MOROCHO (2016), en su tesis titulada "Diseño estructural de un edificio de concreto armado de siete pisos", nos presenta el diseño estructural de un edificio multifamiliar de concreto armado el cual tiene un sistema estructural dual, compuesto de losas aligeradas y losas macizas. En primer lugar, realizó el pre-dimensionamiento de elementos estructurales, como segundo paso procedió a realizar el modelamiento estructural para emplear un análisis sísmico, comprobando que se cumpla con los requerimientos que se establecen en la Norma E.030, luego con los datos mecánicos del suelo y teniendo la capacidad portante del terreno se procedió a realizar el diseño de la cimentación, seguido del diseño estructural de los elementos estructurales de concreto armado, todo acorde a lo indicado en la norma E.060, para finalizar se diseño la tabiquería guiándonos de la norma de albañilería E.070. Concluyendo que el pre-dimensionamiento realizado, los desplazamientos máximos permisibles presentes en nuestra edificación, el control de irregularidades tanto en altura como en planta y los cálculos obtenidos están dentro de lo requerido y recomendado por la normativa peruana vigente.

NEIRA BUSTAMENTE (2017), en su tesis titulada "DISEÑO DE UN EDIFICIO DE DIECIOCHO PISOS ESTRUCTURADO CON MUROS MECEDORES Y COMPARACIÓN CON UNO TRADICIONAL" se logró obtener como resultado en una edificación de 18 niveles que los muros de concreto armado controlan significativamente los desplazamientos laterales en edificaciones de gran altura asimismo se logro apreciar que los muros de concreto armado fundados sobre suelos estables han dado una respuesta favorable prácticamente sin presentar daño alguno, asimismo, en zona donde el suelo es blando los muros de concreto armado tuvieron una respuesta con daño en zonas criticas , teniendo que requerir a una reparación , para ello se hizo la propuesta de colocar muros mecedores ,ya que la finalidad de estos es eliminar el daño producido en la estructura .

OBESO (2020), en su tesis titulada, "Diseño estructural en concreto armado de una vivienda multifamiliar de 8 niveles", planteo el diseño estructural de una vivienda multifamiliar de 8 pisos. En cada uno de los niveles de la edificación tienen dos departamentos, cada departamento fue diseñado de acuerdo a los requerimientos mínimos según la norma A.010 y A0.20. Se buscó que la

estructura tenga una rigidez adecuada en ambas direcciones para tener un mejor control de los desplazamientos máximos laterales, luego se realizó el pre-dimensionamiento los elementos estructurales. El análisis sismorresistente se llevo a cabo mediante el uso del software Etabs, empleando los parámetros indicados en la norma E 0.30 de Diseño Sismorresistente, verificando si el sistema estructural planteado inicialmente es el correcto para cumplir con los lineamientos establecidos en la norma. Finalmente se llevó a cabo el diseño de los elementos estructurales empleando los softwares Etabs, safe y Sap200, respetando los requisitos mínimos indicados en la norma E 0.60.

PARRAGA (2020), en su tesis titulada, "Diseño estructural de un edificio multifamiliar en Jesús María", plantea el análisis sísmico y diseño estructural de los elementos estructurales que conforman una edificación multifamiliar de 5 niveles. El edificio tiene un semisótano empleado de manera exclusiva para estacionamientos, y 5 niveles, de los cuales 4 son similares. El edificio multifamiliar cuenta con 14 departamentos y 14 estacionamientos. Los elementos estructurales verticales de la estructura son columnas y muros de concreto armado también llamadas placas ubicadas en toda la planta según los criterios de estructuración. Los elementos estructurales son conformados por vigas peraltadas, vigas chatas y por las losas tanto aligeradas como macizas. La cimentación está conformada por zapatas conectadas , zapatas aisladas, zapatas corridas y zapatas aisladas.

SIESQUEN JOSE Y SIESQUEN LUIS (2020) en su tesis titulada," "Diseño estructural y modelamiento sismo resistente del nuevo pabellón de 10 pisos " plantea, el diseño sismo resistente del nuevo pabellón de 10 niveles de la facultad de ingeniería civil de la universidad César Vallejo, Moche, Trujillo, iniciando por la etapa de pre dimensionamiento estructural de los siguientes elementos: las losas ,columnas , vigas y escaleras , con los datos del pre dimensionamiento obtenidos se empleó el software ETABS para modelar la estructura del pabellón de 10 niveles, ingresando al software todos los

parámetros normativos indicados por la normativa Peruana actual como son la E.030 Diseño sismo-resistente, E.020.Cargas, E.050.Suelos y cimentaciones, E.060 Concreto armado. Se ha tenido en consideración en los softwares al momento de calcular las cuantías requeridas y mínimas de acero debido a que no se encuentra la norma técnica peruana en su base de datos debido a ello se realizó el cálculo de forma empírica y empleando otro software llamado DIANSCA para verificar los resultados obtenidos. Como resultado de todo el procedimiento se obtuvo una edificación con un sistema estructural de muros estructurales.

1.3 FORMULACIÓN DEL PROBLEMA

¿Cuál es el Modelamiento y Diseño Estructural de una Edificación de 8 Niveles de Concreto Armado Urbanización San Luis, Distrito - Provincia de Ica?

1.4 JUSTIFICACIÓN

a) TEÓRICA

Dar a Conocer la importancia que todas las Edificaciones deben de cumplir con todas las normas indicadas en el Reglamento Nacional de Edificaciones

b) METODOLÓGICA

Emplear el software Etabs , de esta manera podremos evaluar y verificar el diseño estructural de la edificación 8 niveles.

c) TECNICA

En la ciudad de lca existe la necesidad de mejorar las edificaciones ya que se encuentra en una zona de alta vulnerabilidad sísmica.

1.5 OBJETIVOS

- 1.5.1 OBJETIVO GENERAL
 - Elaborar el: "Modelamiento y Diseño Estructural de una Edificación de 8 Niveles de Concreto Armado Urbanización San Luis, Distrito y Provincia de Ica."

1.5.2 OBJETIVOS ESPECÍFICOS

- Realizar el diseño de arquitectura
- Efectuar el pre-dimensionamiento estructural
- Emplear el modelamiento estructural
- Realizar el diseño estructural sismorresistente

1.6 HIPÓTESIS

El Modelamiento y Diseño Estructural de una "Edificación de 8 Niveles de Concreto Armado Urbanización San Luis, Distrito y Provincia de Ica.", cuenta con el adecuado diseño y distribución de los elementos estructurales de tal manera que se cumpla con lo estipulado en las normativas del Reglamento Nacional de Edificaciones (RNE).

- II. MÉTODO
- 2.1. Tipo y diseño de investigación

Para el presente proyecto se empleará el diseño no experimental descriptivo simple, teniendo el siguiente esquema a utilizar:

Μ _____Ο

Dónde:

M: Área del terreno 832.00 m2.

O: Recolección de Datos del Área del Proyecto.

2.2. Variables y operacionalización

2.2.1 Variable

Modelamiento y Diseño Estructural de un Edificio de Concreto armado.

- Definición Conceptual: El diseño que se empleara será el que tenga una buena resistencia en el rango elástico, todos aquellos sismos severos que ocurran durante su vida útil deben de generar un nivel de daño imperceptible, para así garantizar su funcionamiento luego de la ocurrencia de un movimiento sísmico.
- Definición Operacional: El diseño de la edificación de 8 niveles se realizará siguiendo los procedimientos mencionados en el marco teórico, empleando los requisitos mencionados en el Reglamento Nacional de Edificaciones, ya que estas nos permitirán la buena realización de nuestro presente proyecto de investigación.

2.2.2 Dimensiones

- Diseño de Arquitectura
- > Pre-dimensionamiento Estructural
- Modelamiento Estructural
- > Diseño Estructural Sismorresistente

2.2.3 Operacionalización de Variables

Variables:

✓ Modelamiento y Diseño Estructural de un Edificio de Concreto armado. (V. Cuantitativa / Independiente)

NG 2511					Escala de
Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Medición
	El diseño que se empleara será el que tenga una buena resistencia en el rango elástico, todos aquellos sismos severos que ocurran durante su vida útil deben de generar un nivel de daño	El diseño de la edificación de 8 niveles se realizará siguiendo los procedimientos mencionados en el marco teórico, empleando los requisitos mencionados en el Reglamento Nacional de	Diseño de Arquitectura	a) Area Libre (m2)	
				b) Area Techada (m2)	
			Pre-Dimensionamiento Estructural	a) Losas	
Modelamiento y r Diseño estructural de un edificio de				b) Vigas Peraltadas	
				c) Columnas	
			Modelamiento Estructural	Modelamiento Estructural en	Razón
concreto armado	imperceptible, para así garantizar su	Edificaciones, va que estas nos		Software Etabs	
funciona de	funcionamiento luego de la ocurrencia de un movimiento sísmico.	permitirán la buena realización de nuestro presente proyecto de investigación.		a) Losas Aligeradas	
			Diseño Estructural	b)Vigas Peraltadas	
				c) Columnas	
				d) Muros de Concreto Armado	
				e) Platea de Cimentación	

Cuadro 1. Matriz de Operacionalización

Fuente. Elaboración Propia

- 2.3. Población, muestra y muestreo
 - Población: En el presente proyecto se estimó a la población como el área total comprendida de 4650.00 m2 en la Urbanización San Luis de Ica.
 - Muestra: La muestra del proyecto se consideró al área del Lote 1 y
 2 de la manzana B, el cual comprende 832 m2 en la Urbanización
 San Luis de Ica.
 - Muestreo: Es no probabilístico porque se realizó el diseño estructural de la edificación de concreto armado teniendo en cuenta las normas vigentes del RNE.
- 2.4. Técnicas e instrumentos de recolección de datos
- 2.4.1 Técnicas:

La técnica que emplearemos para la realización del presente proyecto de investigación será la observación y las bases de ingeniería establecidas por los investigadores del presente proyecto de investigación.

2.4.2 Instrumentos:

- Instrumentos documentales: Se utilizará la observación para recolectar datos fundamentales del proyecto.
- Instrumentos mecánicos:

Se utilizará equipos de georreferenciación que nos permitan la encontrar la ubicación y tener datos topográficos de la superficie del proyecto.

Instrumentos electrónicos:

Se emplearan dispositivos y equipos de computación como memorias USB, discos duros externo para almacenar los datos de la investigación y laptops que cuenten con softwares que se harán mención para el procesamiento de la información.

2.5. Procedimientos

Permiso

Se solicitó permiso a los propietarios de la Urbanización San Luis de Ica mediante una carta de presentación para que nos autoricen el poder realizar el presente proyecto de tesis en dicha ubicación de la Urbanización San Luis de Ica.

Reconocimiento

Se reconoció la ubicación del presente proyecto, la cual se encuentra ubicado en la Urbanización San Luis de Ica.

Diseño Arquitectónico

Para elaborar el plano de arquitectura se tuvo que tener en cuenta las medidas indicadas por el propietario, con esas condiciones se procedió a realizar el plano de arquitectura teniendo en cuenta las normas (A010 y A020) del RNE.

Pre-Dimensionamiento Estructural

Para iniciar con el análisis y diseño estructural primero se tuvo que elaborar un pre-dimensionamiento estructural ya que el software requiere que se ingresen datos previos y secciones preliminares para luego proceder con la comprobación de las secciones obtenidas como resultado para que estas puedan ser optimizadas con el análisis estructural.

Modelamiento Estructural

En el modelamiento estructural insertaremos las dimensiones de los elementos estructurales hallados en el predimensionamiento para luego optimizar dichos elementos empleando la normativa peruana vigente , este modelamiento se efectuó en el software ETABS 2016 y SAFE 2016.

Diseño estructural

En el diseño estructural se realizó el diseño sismorresistente de los elementos estructurales: losas aligeradas, vigas peraltadas , columnas, placas, zapatas; teniendo en consideración lo estipulado en el Reglamento Nacional de Edificaciones .

- 2.6. Método de análisis de datos
 - Para la recolección de información del área en estudio procederemos a realizar la georreferenciación usando un GPS de mano y el software Google Earth para representar dicha georreferenciación que se empleara en el terreno del proyecto.
 - Los resultados Estudio de Mecánica de Suelos fueron proporcionados por un vecino cercano a la edificación.
 - Se realizó el diseño arquitectónico a utilizando el software AutoCAD 2018, empleando las normas A.010 y A.020 del Reglamento Nacional de Edificaciones.
 - Se realizó el análisis estático y el análisis dinámico a través del modelado estructural con el software ETABS 2016 y SAFE 2016 tomando en cuenta la normativa vigente del Reglamento Nacional de Edificaciones.

Para la elaboración del análisis y diseño estructural se emplearán las Normas Técnicas E.020, E.030, E.050, E.060, también softwares ETABS 2016 y SAFE 2016 según corresponda para la edificación de 8 niveles.

2.7. Aspectos éticos

El presente proyecto de investigación se realizará con justicia y compromiso, contando con todos los permisos necesarios por parte de los propietarios correspondientes y empleando de manera adecuada las siguientes normas:

- > Norma Técnica A.010: Consideraciones generales de diseño.
- ➢ Norma Técnica − A.020: Vivienda.
- Norma Técnica E.020: Cargas.
- > Norma Técnica E.030: Diseño Sismo-resistente.
- > Norma Técnica E.050: Suelos y Cimentaciones.
- > Norma Técnica E.060: Concreto Armado.

III. RESULTADOS

3.1 Diseño de Arquitectura

3.1.1 Entorno Urbano

La ubicación del terreno en estudio se encuentra dentro del centro de la ciudad de ica a unos 5 minutos desplazándose a pie desde la plaza de armas de la ciudad de ica ,

3.1.2 Descripción Arquitectónica

El presente proyecto es de una edificación de Concreto Armado de 8 pisos el cual cuenta con un área de 560 m2 con las siguientes medidas siendo 28.00 m de frente y 20.00 m de fondo.

El primer nivel cuenta con 2 Departamentos, Gimnasio y Cafetería, escalera y ascensor, desde el segundo al octavo nivel es planta típica y cuenta con 4 departamentos; los 2 departamento de la parte posterior cuentan con sala-comedor, 3 dormitorios, 2 baños y 1 lavandería, los 2 departamentos de adelante cuentan con sala-comedor, 2 dormitorios 2 baños y 1 lavandería, en los siguiente cuadros se muestra el área de los ambientes de los 4 departamentos:

DESCRIPCIÓN	ÁREAS (m2)
1° NIVEL	832.00
Estacionamiento	99.4
Áreas Verdes	155.97
Gimnasio	80.25
Pasadizo	81.12
Cafetería	80.25
Dormitorio	130.6
Baños	21.5
Sala - Comedor	75.84
Estudio	48.67
Lavandería	10.8
Escalera - Ascensor	47.6

Cuadro 1 : Áreas	de Ambientes
------------------	--------------
2° - 8° NIVEL	560.00
---------------------	--------
Pasadizo	81.12
Dormitorio	210.7
Baños	45.5
Sala - Comedor	153.7
Lavandería	21.38
Escalera - Ascensor	47.6

Fuente : Elaboración Propia

Cuadro 2 : Áreas efectivas de la distribución

Área techada	Área libre			
529.03	302.97			
	·/ P ·			

Figura 1 : Distribución 1° Nivel Fuente : Elaboración Propia

Figura 2 : Distribución 2° - 8° Nivel Fuente : Elaboración Propia

3.2 Pre-dimensionamiento Estructural

En esta parte previa al análisis sísmico se realizará el predimensionamiento de las secciones de los elementos estructurales empleando criterios aproximados con el objetivo de poder calcular el peso total del edificio.

Las secciones obtenidas luego del pre-dimensionamiento estructural serán evaluadas al momento de ingresar al diseño de concreto armado y se determinara si estas cumplen con los requisitos indicados en el RNE_E060.

Figura 3 : Áreas Tributarias Fuente : Elaboración Propia

3.2.1 Pre-dimensionamiento de Losas Aligeradas en una Dirección

Para el pre-dimensionamiento de las losas aligeradas en una dirección tomamos como criterio el colocarlas en la dirección con la luz mas corta, para esta ocasión será en la dirección Y - Y.

El espesor lo determinamos tomando en cuenta lo recomendado en el RNE y a continuación se detallará:

Peraltes o espesore	es minimos de vigas	s no preesforzadas calculen las de	s o losas reforzadas flexiones.	s en una dirección a menos que se				
		Espesor o peralte minimo , h						
	Simplemente apoyados	Con un extremo continuo	Ambos extremos continuos	En voladizo				
Elementos	Elementos que no soporten o estén ligados a divisiones u otro tipo de elementos no estructurales susceptibles de dañarse debido a deeflexiones grandes.							
Losas macizas en una dirección	LL/20	LL/24	LL/28	LL/10				
Vigas o losas nervadas en una dirección	LL/16	LL/18.5	LL/21	LL/8				

Cuadro 3 : Factores para predimensionar losas

Fuentre : Extraida del RNE

Espesor de losa aligerada =
$$\frac{LL}{21} = \frac{5 m}{21} = 0.23 \approx 0.25 m$$

El espesor de losa aligerada a emplear es de 0.25 m

3.2.2 Pre-dimensionamiento de Vigas

3.2.2.1 Vigas Principales

Son aquellas vigas encargadas de soportar el peso de la losa aligeradas o de la losa maciza, estas vigas en conjunto con las columnas forman los pórticos principales.

Para nuestro pre-dimensionamiento de nuestras vigas principales hemos tomado en cuenta la siguiente tabla en la cual el factor por el cual se divide la longitud de la luz libre va a variar dependiendo de la Sobre Carga (S/C) que se tome en cuenta de acuerdo al tipo de uso que se le dará a la edificación.

Factor para Pre-dimensionamiento de Vigas					
Principales					
S/C	α				
S/C ≤ 200 kg/m2	12				
200 < S/C ≤ 350 kg/m2	11				
350 < S/C ≤ 600 kg/m2	10				
600 < S/C ≤ 750 kg/m2	9				

Cuadro 4 : Factor de predimensionamiento de vigas Fuente: Extraído del libro del Magister. Ricardo Oviedo

h =
$$\frac{LL}{\alpha}$$

b = $\frac{B}{20} \ge 0.25m$ ó b = $\frac{h}{2}$
Dónde:
h= Peralte de Viga

b= Base de Viga

B= Ancho Tributario LL= Luz libre

Para nuestro Proyecto nuestras dimensiones de vigas principales se detallan a continuación Datos: S/C= 200kg/m2 B = 5 m LL = 5 m

Peralte de Viga Principal:

$$h = \frac{5}{12} = 0.416 \approx 0.45 m$$

Base de Viga Principal

$$b = \frac{5}{20} = 0.25 \approx 0.30 m$$

Nuestras Vigas Principales tendrás dimensiones de 0.30 m x 0.45 m inicialmente para todos los pisos

VP1 – 0.30 X 0.45

3.2.2.2 Vigas Secundarias

Nuestras Vigas Secundarias son aquellas vigas encargadas de soportar su peso propio y el de la tabiquería que se encuentre sobre ella, son las encargadas de distribuir su carga hacia las vigas principales.

Los criterios a tomar en cuenta para el predimensionamiento de nuestras vigas secundarias son los siguientes.

La dimensión de la base mínima para una viga secundaria será de 0.25 m y para determinar el peralte emplearemos la siguiente formula:

$$h = \frac{LL}{14}$$

Dónde:

LL = Luz libre

h = Peralte de Viga

Para nuestro proyecto hemos empleado las siguientes dimensiones de vigas secundarias:

Peralte de Viga Secundaria

$$h = \frac{5}{14} = 0.35m$$

Para uniformizar nuestras secciones de vigas hemos tomado como decisión el emplear las mismas dimensiones obtenidas de las VP-1 que son de 0.30 m x 0.45 m

VP2 - 0.30 X 0.45

3.2.3 Pre-dimensionamiento de Columnas

En las columnas hemos tomado las consideraciones de predimensionamiento involucrando la carga por gravedad de la estructura, su área tributaria y factores que dependerán de la ubicación en la que se encuentran nuestras columnas. Emplearemos los siguientes criterios:

Cuadro 5 : Factores para predimensionamiento de columnas

Factores para el predimensionamiento de columnas						
TIPO DE COLUMNA	λ	η				
CENTRAL	1.1	0.3				
PERIMETRAL	1.25	0.25				
ESQUINA	1.5	0.2				

Fuente: Extraido del Libro del Magister Ricardo Oviedo

$$Acol = \frac{\lambda Pg}{\eta f'c}$$

Dónde:

 λ,η = Factores que dependen de las columnas

Pg= Carga por Gravedad.

F´c= Esfuerzo de Compresión del concreto

Previo al pre-dimensionamiento de las columnas hemos realizado el metrado respectivo de cargas de cada columna presente en nuestro proyecto.

Columna Central

C-1

Metrado de Carga Muerta

Cuadro 6: Metrado de Carga muerta para Columna Central

DESCRIPCION	N° PISOS	AREA	(m2)	LONGITUD(m)	PESO(t/m2)	PESO(tn)
Peso Acabado	8	5	5	-	0.1	20
Peso Tabiqueria Tipica	7	5	5	-	0.08	14
Peso Tabiqueria Ultimo Nivel	1	5	5	-	0.04	1
Peso de Losa	8	5	5	-	0.35	70

DESCRIPCION	N° PISOS	AREA(m2)		LONGITUD(m)	PESO(t/m3)	PESO(tn)
Vigas en dirección X	8	0.3	0.45	5	2.4	12.96
Vigas en dirección Y	8	0.3	0.45	5	2.4	12.96
Columna de 30x30	1	0.3	0.3	24.2	2.4	5.2272
	•					
CARGA MUERTA						136.1472

Metrado de Carga Viva

Cuadro 7: Metrado de Carga Viva para Columna Central

DESCRIPCION	N° PISOS	AREA(m2)		LONGITUD(m)	PESO(t/m2)	PESO(tn)
Sobrecarga Tipica	7	5	5	-	0.2	35
Sobrecarga Ultimo Nivel	1	5	5	-	0.1	2.5
CARGA VIVA						37.5

Fuente: Elaboración Propia

CARGA POR SERVICIO (CM+CV) = 173.65 Tn.CARGA ULTIMA 1.4CM+1.7CV = 254.36 Tn.

$$Acol = \frac{1.1 x \, 173.65 \, Tn}{0.3 \, x \, 0.21} = 3031.95 \, cm2$$

 $Acol = \sqrt{3031.95} \ cm2 = 60 \ cm$

Nuestra columna central empleada en un inicio será cuadrada de 0.60 m x 0.60 m.

Columna en Esquina

C-2

Metrado de Carga Muerta

Cuadro 8: Metrado de Carga muerta para Columna en

Esquina

DESCRIPCION	N° PISOS	AREA	A(m2)	LONGITUD(m)	PESO(t/m2)	PESO(tn)
Peso Acabado	8	2.5	2.5	-	0.1	5
Peso Tabiqueria Tipica	7	2.5	2.5	-	0.08	3.5
Peso Tabiqueria Ultimo Nivel	1	2.5	2.5	-	0.04	0.25
Peso de Losa	8	2.5	2.5	-	0.35	17.5

DESCRIPCION	N° PISOS	AREA(m2)		LONGITUD(m)	PESO(t/m3)	PESO(tn)
Vigas en dirección X	8	0.3	0.45	2.5	2.4	6.48
Vigas en dirección Y	8	0.3	0.45	2.5	2.4	6.48
Columna de 30x30	1	0.3	0.3	24.2	2.4	5.2272
CARGA MUERTA						44.4372

Metrado de Carga Viva

Cuadro 9: Metrado de Carga viva para Columna en

Esquina

DESCRIPCION	N° PISOS	AREA	(m2)	LONGITUD(m)	PESO(t/m2)	PESO(tn)
Sobrecarga Tipica	7	2.5	2.5	-	0.2	8.75
Sobrecarga Ultimo Nivel	1	2.5	2.5	-	0.1	0.625

CARGA VIVA						9.375
------------	--	--	--	--	--	-------

Fuente: Elaboración Propia

CARGA POR SERVICIO (CM+CV) = 53.81Tn.CARGA ULTIMA 1.4CM+1.7CV = 78.15 Tn.

$$Acol = \frac{1.5 x 53.81 Tn}{0.2 x 0.21} = 1921.86 cm2$$
$$Acol = \sqrt{1921.86} cm2 = 45 cm$$

Nuestras columnas en esquinas empleadas en un inicio serán cuadradas de 0.45 m x 0.45 m.

Columna Perimetral

C-3

Metrado de Carga Muerta

Cuadro 10: Metrado de Carga muerta para Columna

Perimetral

DESCRIPCION	N° PISOS	AREA	A(m2)	LONGITUD(m)	PESO(t/m2)	PESO(tn)
Peso Acabado	8	2.5	5	-	0.1	10
Peso Tabiqueria Tipica	7	2.5	5	-	0.08	7
Peso Tabiqueria Ultimo Nivel	1	2.5	5	-	0.04	0.5
Peso de Losa	8	2.5	5	-	0.35	35

DESCRIPCION	N° PISOS	AREA	A(m2)	LONGITUD(m)	PESO(t/m3)	PESO(tn)
Vigas en dirección X	8	0.3	0.45	2.5	2.4	6.48
Vigas en dirección Y	8	0.3	0.45	5	2.4	12.96
Columna de 30x30	1	0.3	0.3	24.2	2.4	5.2272
CARGA MUERTA						77.1672

Metrado de Carga Viva

Cuadro 11: Metrado de Carga viva para Columna

Perimetral

DESCRIPCION	N° PISOS	AREA	A(m2)	LONGITUD(m)	PESO(t/m2)	PESO(tn)
Sobrecarga Tipica	7	2.5	5	-	0.2	17.5
Sobrecarga Ultimo Nivel	1	2.5	5	-	0.1	1.25
	·					
CARGA VIVA						18.75

Fuente: Elaboración Propia

CARGA POR SERVICIO (
$$CM+CV$$
) = 95.92Tn.
CARGA ULTIMA 1.4CM+1.7CV = 139.91 Tn.

 $Acol = \frac{1.5 \ x \ 95.92 \ Tn}{0.2 \ x \ 0.21} = 2283.74 \ cm2$

$$Acol = \sqrt{2283.74} \ cm2 = 50 \ cm$$

Nuestras columnas en esquinas empleadas en un inicio serán cuadradas de 0.50 m x 0.50 m.

3.2.4 Pre-dimensionamiento de Placas

Habiendo realizado un análisis previo del comportamiento estructural de nuestra estructura empleando el programa Etabs el cual fue realizado con el sistema aporticado, nos dio como resultado que para cumplir los criterios de la dinámica estructural debíamos de incorporar Placas para tener un comportamiento correcto en el análisis modal, estos elementos nos favorecieron al momento de controlar las derivas de nuestra estructura llegando a cumplir con lo estipulado en el RNE. La ecuación empleada para el cálculo aproximado de el área de placas requerida en nuestra estructura se detalla a continuación:

$$Ac = (\frac{V}{\emptyset x \ 0.53 \ x \ \sqrt{210}}) \qquad \emptyset = 0.85$$

Dónde:

V= Fuerza Cortante Sísmica

Para hallar la fuerza cortante sísmica empleamos la siguiente ecuación con los datos de nuestro proyecto:

$$V = \frac{Z \times U \times C \times S}{R} \times Pedificio$$

Dónde:	
Z= 0.45	
U=1.00	$V = \frac{0.45 x 1.00 x 1.71 x 1.05}{7} x 3373.39$
C= 1.71	V = 389.37 Toneladas
S= 1.05	
R= 7	
Pedificio= 3373.39 ti	n.

Para determinar nuestra Área de Corte empleamos las siguientes ecuaciones:

Determinando Corte que necesita absorber nuestra placa.

$$V = 53.48\% X (389.37)$$

 $V = 208.24 Toneladas$

Determinando Área de Corte

$$Ac = \left(\frac{208.24}{0.85 \, x \, 0.53 \, x \, \sqrt{210}}\right)$$

Ac = 3.189 m2

Para la Dirección X-X

$$Ac X - X = \frac{3.189}{2} = 1.59 m2$$

Determinando el área de placas

 $Aplacas = 2 \ x \ 0.30 \ x \ 2.70 = 1.62 \ m2$

Como resultado hemos obtenido que las placas empleadas en la dirección X-X son 2 placas de 0.30 m de espesor y 2.70 m de longitud .

3.2.5 Pre-dimensionamiento de Losa de Cimentación

Para realizar el predimensionamiento de nuestra losa de cimentación tomaremos las cargas mas criticas de las columnas centrales para de esta manera definir con que espesor de losa maciza se iniciara el modelamiento y análisis estructural..

La ecuación que se ha empleado para el cálculo aproximado de el espesor de la losa de cimentación es la siguiente:

$$\emptyset Vc = \emptyset(1.06\sqrt{f'c} \ x \ bo \ x \ d)$$

Datos de la columna mas critica:

 $CC=0.60 \times 0.60$ Wu=1.4(136.14)+1.7(37.5) = 254.346 ton Bo = 4(0.6+d) = 2.40+4d Reemplazando:

$$\emptyset Vc = 0.85 (1.06 \ x \ \sqrt{210} \)(2.4 + 4d)(d)$$
$$0.85 (1.06 \ x \ \sqrt{210} \ x \ 10)(2.40 + 4d)(d) \ge 254.346$$

$$(2.40 + 4d)(d) \ge 1.948$$

 $d \ge 0.46$
 $h \approx d + 0.09 \ge 0.55$

Con el resultado obtenido tuvimos como resultado iniciar con una losa de cimentación de 0.55 m de altura .

3.3 Modelamiento Estructural

Inicio al modelamiento

 Para iniciar el modelamiento en el software Etabs primero Seleccionamos en el recuadro <u>New Model</u> como se indica en la siguiente figura:

New Model	
Open Existing Model	

Figura 4 : Nuevo Modelamiento Fuente: Elaboración Propia

Una vez habiendo presionado New Model , en la siguiente ventana procedemos a marcar la casilla <u>Use Built-in Setting With</u> en la cual debemos definir nuestras unidades de medida y nuestras normas de diseño a emplear dentro de las cuales usaremos el sistema de medida MKS (Metros, Kilogramos , Segundos) , las secciones de acero serán definidas por el AISC14 , el código de diseño del acero será el AISC 360-10 y la norma de concreto armado que emplearemos es el ACI 318-08 debido a que es la más parecida a nuestra norma de diseño de concreto armado la E-060 , estas se insertaran como se muestra en la siguiente figura:

C) Use Saved User Default Settings		0
) Use Settings from a Model File		0
<mark>-</mark> •	Use Built-in Settings With:		
	Display Units	Metric MKS	~ ()
	Steel Section Database	AISC14	\sim
	Steel Design Code	AISC 360-10	~ ()
	Concrete Design Code	ACI 318-08	~ ()

Figura 5 : Definir Códigos de Diseño Fuente: Elaboración Propia

 Al término de la configuración de nuestras unidades de medidas y nuestros códigos de diseño de manera automática nos aparecerá una venta en la cual debemos de definir nuestras grillas del proyecto o también llamado eje de coordenadas, esta ventana lleva por nombre <u>New Model Quick Template</u>, dentro de esta ventana podemos definir nuestras grillas tanto para nuestro plano en planta como plano en elevación, si nuestras distancias entre eje y eje es igual solo empleamos las casillas que se indican al inicio, las que se muestran en la siguiente figura:

Grid Dimensions (Plan)		Story Dimensions	
Uniform Grid Spacing		Simple Story Data	
Number of Grid Lines in X Direction	4	Number of Stories	4
Number of Grid Lines in Y Direction	4	Typical Story Height	3
Spacing of Grids in X Direction	8 m	Bottom Story Height	3
Spacing of Grids in Y Direction	8 m		
Specify Grid Labeling Options	Grid Labels		
O Custom Grid Spacing		O Custom Story Data	
Specify Data for Grid Lines	Edit Grid Data	Specify Custom Story Data	Edit Story Data

Figura 6 : Definir Grillas Fuente : Elaboración Propia

En el caso se tenga distancias irregulares lo cual es nuestro caso emplearemos la opción <u>Custom Grid Spacing</u> para el caso de los ejes en planta y para la altura de entrepiso usaremos la opción <u>Custom</u> <u>Story Data</u> y pulsaremos en la opción <u>Edit Grid data</u> y en la opción <u>Edit</u> <u>Story Data</u> para definir nuestras dimensiones irregulares asi como se muestra en la figura a continuación:

-

Custom Grid Spacing		Custom Story Data	
Specify Data for Grid Lines	Edit Grid Data	Specify Custom Story Data	Edit Story Data

Figura 7: Editar Grillas

Fuente: Elaboración Propia

Seguidamente continuamos con la definición de nuestras grillas con la opción <u>Edit Grid Data</u>, seleccionando la opción <u>Display Grid Data as</u> <u>Spacing</u> para poder ingresar la distancia entre grilla y grilla ya que la otra opción se tendría que trabajar con coordenadas, nuestros datos se ingresaron como se muestra en la figura:

irid System Name G1 System Origin Global X Global Y Rotation	0 m 0 m 0 d	Story	Range Option Default - All Stori User Specified Top Story Story8 Bottom Story Base	es		Click to Modify Poptions Bubble Siz Grid Color	r/Show: Reference Points Reference Planes e 0.5	m		
									,	
Rectangular Grids O Display Grid X Grid Data	d Data as Ordinates	۲	Display Grid Data	a as Spi	acing	Y Grid Data		Quick Sta	nt New Rectangular	Grids
Rectangular Grids O Display Grid X Grid Data Grid ID	d Data as Ordinates X Spacing (m)	Visible	Display Grid Data Bubble Loc	a as Spi	acing	Y Grid Data Grid ID	Y Spacing (m)	Quick Sta Visible	rt New Rectangular Bubble Loc	Grids
Rectangular Grids O Display Grid X Grid Data Grid ID A	d Data as Ordinates X Spacing (m) 5	Visible Yes	Display Grid Data Bubble Loc End	a as Spi	acing Add	Y Grid Data Grid ID 1	Y Spacing (m) 5	Quick Sta Visible Yes	irt New Rectangular Bubble Loc Start	Grids
Rectangular Grids O Display Grid X Grid Data Grid ID A B	d Data as Ordinates X Spacing (m) 5 5	Visible Yes Yes	Display Grid Data Bubble Loc End End	a as Spa	Add	Y Grid Data Grid ID 1 2	Y Spacing (m) 5 5	Quick Sta Visible Yes Yes	irt New Rectangular Bubble Loc Start Start	Grids Add
Rectangular Grids O Display Grid X Grid Data Grid ID A B C	d Data as Ordinates X Spacing (m) 5 5 4	Visible Yes Yes Yes	Display Grid Data Bubble Loc End End End	a as Spa	Add Delete	Y Grid Data Grid ID 1 2 3	Y Spacing (m) 5 5 5 5	Quick Sta Visible Yes Yes Yes	nt New Rectangular Bubble Loc Start Start Start	Grids Add Delete
Rectangular Grids Display Gric X Grid Data Grid ID A B C D	d Data as Ordinates X Spacing (m) 5 5 4 4	Visible Yes Yes Yes Yes Yes	Display Grid Data Bubble Loc End End End End	a as Spi	Add Delete	Y Grid Data Grid ID 2 3 4	Y Spacing (m) 5 5 5 5 5	Quick Sta Visible Yes Yes Yes Yes	nt New Rectangular Bubble Loc Start Start Start Start Start	Grids Add Delete
Rectangular Grids Display Grid X Grid Data Grid ID A B C D E	d Data as Ordinates X Spacing (m) 5 5 4 4 4 5	Visible Yes Yes Yes Yes Yes Yes	Display Grid Data Bubble Loc End End End End End	a as Spi	Add Delete	Y Grid Data Grid ID 2 3 4 5	Y Spacing (m) 5 5 5 5 5 0	Quick Sta Visible Yes Yes Yes Yes Yes	rt New Rectangular Bubble Loc Start Start Start Start Start Start	Grids Add Delete

Figura 8 : Insertar Grillas por Espaciamiento

Fuente: Elaboración Propia

 Continuamos con la edición de nuestras alturas de entrepiso y selecconamos la opción <u>Edit Story Data</u> dentro de esta ventana ingresaremos la altura cada nivel de nuestra edificación y se define si existe piso maestro o no, nuestros datos se ingresaron de la siguiente manera :

	Story	Height	Elevation	Master Story	Similar To	Splice Story	Splice Height	Story Color
•	Story8	4	32.2	Yes	None	No	0	
	Story7	4	28.2	No	Story8	No	0	
	Story6	4	24.2	No	Story8	No	0	
	Story5	4	20.2	No	Story8	No	0	
	Story4	4	16.2	No	Story8	No	0	
	Story3	4	12.2	No	Story8	No	0	
	Story2	4	8.2	No	Story8	No	0	
	Story1	4.2	4.2	No	Story8	No	0	
	Base		0					
lote: Rigi	ht Click on Grid for Optic	ons						

Figura 9: Definir las alturas de entrepiso

Fuente: Elaboración Propia

 A continuación, se muestra como quedan nuestras grillas definidas y nuestra altura de entrepiso:

Figura 10 : Grillas en 3D Fuente: Elaboración Propia

 Continuando con el modelamiento estructural , el siguiente paso a seguir es el definir nuestros materiales en este caso el concreto y acero para definir nuestros materiales debemos de ir a la opción <u>Define</u> > <u>Define Materials</u> y nos aparecerá una ventana como nos muestra la siguiente figura:

erials	Click to:
A992Fy50	Add New Material
acero 4200	Add Copy of Material
Concreto 280	Modify/Show Material
	ОК
	Cancel

Figura 11 : Definir Materiales Fuente: Elaboración Propia

A partir de esta ventana iniciaremos definiendo nuestros materiales comenzando por el concreto armado el cual tendrá una resistencia de 210kg/cm2, un peso volumetrico de 2400kg/m3, un módulo de elasticidad hallado con la fórmula 15000 x $\sqrt{f'c}$ y un coeficiente de poisson de 0.20, asi como se muestra en la figura:

-

aeneral Data			_
Material Name	Concreto 210		
Material Type	Concrete	`	/
Directional Symmetry Type	Isotropic	`	/
Material Display Color		Change	
Material Notes	Modify/Show	v Notes	
Material Weight and Mass			
Specify Weight Density	O Specify Ma	iss Density	
Weight per Unit Volume	2.4	4	tonf/m ³
Mass per Unit Volume	0.1	244732	tonf-s²/m4
Mechanical Property Data			
Modulus of Elasticity, E	21	73706.51	tonf/m ²
Poisson's Ratio, U	0.2	2	
Coefficient of Thermal Expansion, A	0.0	000099	1/C
Shear Modulus, G	90)5711.05	tonf/m ²
Design Property Data			
Modify/Show I	Material Property Design	n Data	
Advanced Material Property Data			
Nonlinear Material Data	Materi	ial Damping Prop	perties
Time [Dependent Properties		

Figura 12 : Material Concreto F´c = 210 kg/cm2

Fuente: Elaboración Propia

 Continuamos definiendo nuestras propiedades del Acero grado 60, el cual tiene las siguientes características, Peso volumétrico de 7800 kg/m3, modulo de elasticidad de 20000000 ton/m2 y con un esfuerzo de fluencia F´Y= 4200kg/cm2, como se muestra en la siguiente figura: 👪 Material Property Data

Material Name	acero 4200
Material Type	Rebar 🗸
Directional Symmetry Type	Uniaxial
Material Display Color	Change
Material Notes	Modify/Show Notes
Naterial Weight and Mass	
 Specify Weight Density 	 Specify Mass Density
Weight per Unit Volume	7.8 tonf/m ³
Mass per Unit Volume	0.795379 tonf-s ² /m ⁴
Aechanical Property Data	
Modulus of Elasticity, E	20000000 tonf/m ²
Coefficient of Thermal Expansion, A	0.0000117 1/C
Design Property Data	
Modify/Show Ma	terial Property Design Data
dvanced Material Property Data	
Nonlinear Material Data	Material Damping Properties
Time De	pendent Properties

Figura 13 : Material Acero F´y = 4200 kg/cm2

Fuente: Elaboración Propia

Siguiendo con nuestro modelamiento continuaremos definiendo nuestras secciones tanto columnas y vigas ingresando a Define > Section Properties > Frame Section en esta ventana definiremos nuestras columnas y vigas pulsando en la opción Add New Property en esta ventana seleccionaremos la opción donde dice concreto y pulsamos en la opción donde se encuentra el rectángulo ya que nuestras columnas y vigas empleadas tienen sección cuadra y rectangular, en la siguiente figura se muestra la opción a seleccionar:

 \times

35	Frame	Property	Shape	Type
		, roperty	Sugar	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Frame Property Shape Type		>
Shape Type	Section Shape	Concrete Rectangular
Frequently Used ape Types		
Special Section Designer	ato Select List	Steel Composite
	ОК	Cancel

Figura 14 : Definir Elementos Frame

Primero definimos nuestra columna C1 – 0.60 X 0.60 como se muestra en la figura:

ame Section Property Data		
General Data		
Property Name	C1-60x60	
Material	Concreto 210 V 2 🔨	
Notional Size Data	Modify/Show Notional Size	
Display Color	Change	
Notes	Modify/Show Nates	
Shape	• •	
Section Shape	Concrete Rectangular V	
Source: User Defined	Property Modifiers Modify/Show	Modifiers
Depth	0.6 m	Jefault
Width	0.6 m Heinforcement Modify/Show	Rebar
	OF	(

Figura 15 : Columna C-1 Fuente: Elaboración Propia

Una vez definida nuestra sección de columnas iremos a la opción Modify/ Show Rebar, para darle el tipo de estribaje que se le colocara a nuestra columna:

esign Type	Rebar Material	
P-M2-M3 Design (Column)	Longitudinal Bars	acero 4200 🗸 📈
O M3 Design Only (Beam)	Confinement Bars (Ties)	acero 4200 🗸 🗸
einforcement Configuration	Confinement Bars	Check/Design
Rectangular	Ties	Reinforcement to be Checked
O Circular	O Spirals	Reinforcement to be Designed

Figura 16 : Definir tipo de elemento frame

Fuente: Elaboración Propia

 De igual manera seguiremos los mismos pasos mencionados anteriormente ya que nuestras otras columnas son cuadradas solo que presentan otras dimensiones asi como se muestran en las siguientes figuras:

Columna C2 - 0.45 X 0.45

-

Property Name	C2 45×45	
Material	Concreto 210 🗸	2
Notional Size Data	Modify/Show Notional Size	• •
Display Color	Change	• * • •
Notes	Modify/Show Notes	• •
Shape		• • •
Section Shape	Concrete Rectangular 🗸	
Section Dimensions		Currently Default
Denth	0.45 m	Currently Default
Width	0.45	Reinforcement
Wall	0.45	Modify/Show Rebar

Figura 17 : Columna C-2 Fuente: Elaboración Propia

Columna C3 - 0.50 X 0.50

Seneral Data				
Property Name	C3-50×50			_
Material	Concreto 210	×	2	
Notional Size Data	Modify/Sh	now Notional Size	•	•
Display Color		Change	• č	•
Notes	Modify	/Show Notes	•	•
Shape			• •	•
Section Shape	Concrete Rect	angular 🗸		
Section Property Source				
Source: User Defined			Property Modifiers	
Section Dimensions			Modify/Show Mo	odifiers
Depth		0.5 m	Currently De	fault
Width		0.5	Reinforcement	
		0.0	Modify/Show F	Rebar
			OK	

 Para definir nuestras vigas empleamos los mismos pasos empleados en la definición de columnas así como se muestra en la siguiente figura:

VP1 - 0.30 X 0.45

ieneral Data		
Property Name	VP1-30X45	
Material	Concreto 210 🗸	2
Notional Size Data	Modify/Show Notional Size	3
Display Color	Change	é
Notes	Modify/Show Notes	
hape		
Section Shape	Concrete Rectangular V	
ection Dimensions	Propeny I	odify/Show Modifiers
Depth	0.45	Currently Default
Width	Reinforce	ement
		Nodify/Show Rebar
		OK
		OIL

Figura 19 : Columna VP-1

Fuente: Elaboración Propia

- Luego de colocar las dimensiones que tendrá nuestra viga procedemos a ingresar a la opción Modify/Show Rebar para indicarle al programa que es una viga y precisar el recubrimiento que llevara, en la siguiente figura se precisa el detalle:

Design Type	Rebar Ma	aterial			
O P-M2-M3 Design (Column)	Longit	udinal Bars	acero 42	00	~
M3 Design Only (Beam)	Confin	nement Bars (Ties)	acero 42	00	~
Coverto Longitudinal Rebar Group C	entroid	Reinforcement A	rea Overwrit	es for Ductile B	Beams
Top Bars 0.04	m	Top Bars at I-	End	0	m²
Bottom Bars 0.04	m	Top Bars at J	-End	0	m²
		Bottom Bars a	at I-End	0	m²
		Bottom Bars a	at J-End	0	m²

Figura 20 : Definir Elemento Frame Tipo Viga Fuente: Elaboración Propia Continuando con nuestro modelamiento procedemos a definir nuestra losa aligerada ingresando a Define > Section Properties > Slab Section en esta ventana nos hemos dirigido a la opción Add New Property y definimos nuestra losa aligerada como se muestra en la siguiente figura:

General Data			
Property Name	Losa aligerada 2	5cm	
Slab Material	Concreto 210	~	
Notional Size Data	Modify/Show	v Notional Size	
Modeling Type	Shell-Thin	~	
Modifiers (Currently Default)	Modify	//Show	
Display Color		Change	
Property Notes	Modify	//Show	
Туре	Ribbed	~	
Туре	Ribbed	~	
Overall Depth		0.25	m
Slab Thickness		0.05	m
Stem Width at Top		0.1	m
		0.1	m
Stem Width at Bottom		0.4	m
Stem Width at Bottom Rib Spacing (Perpendicular to Rib	Direction)	0.4	

Figura 21 : Definiendo Losa Aligerada

Fuente: Elaboración Propia

 Para definir los muros de corte o también llamados placas iremos a a Define > Section Properties > Wall Section en esta ventana nos hemos dirigido a la opción Add New Property y definimos nuestros muros de corte como se muestra en la siguiente figura:

Property Name	muro de concreto armado
Property Type	Specified \checkmark
Wall Material	Concreto 210 🗸 📈
Notional Size Data	Modify/Show Notional Size
Modeling Type	Shell-Thin \checkmark
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Property Data	
Thickness	0.3 m

Figura 22 : Definiendo Placas Fuente: Elaboración Propia

 Al terminar de definir nuestros elementos Frame, Shell y Wall se procedió a realizar el modelamiento estructural colocando nuestras columnas, vigas, muros de corte y losas aligeradas como se muestra en las siguientes figuras:

n t	5 (m)	, 5 (m)	4 (m) 6 6	4 (m) 9 6	5 (m)	5 (m)
2 (II)	,	,		+	+	~~
2 (m)				↓ +	4	⇒
5 (II)	tan ta	ya n ta			, ``	↔
() 2 (II)	,	÷		1	4	4

Figura 23 : 1° Modelado Estructural - Planta Fuente: Elaboración Propia

Figura 24 : 1° Modelado Estructural – 3D Fuente: Elaboración Propia

 Determinamos nuestras restricciones en nuestros apoyos ASSIGN > JOINT > RESTRAINTS en esta ventana seleccionamos la opción de Empotramiento así como se muestra en la siguiente figura:

Joint Assignment - Restraints	x
Restraints in Global Directions	
Translation X Rotation about X	
Translation Y Rotation about Y	
✓ Translation Z ✓ Rotation about Z	
Fast Restraints	
OK Close Apply	

Figura 25 : Asignación de Restricciones Fuente: Elaboración Propia

 Terminando el modelado de la estructura procedemos a insertar los patrones de carga de nuestro sismo estático para obtener un primer análisis en el cual evaluaremos nuestras irregularidades estructurales, para ingresar a nuestros patrones de carga nos vamos a DEFINE > LOAD PATTERNS, en esta ventana adicionaremos 2 cargas SX y SY como se presenta en la siguiente figura:

ads				C	lick To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load		Add New Load
x	Seismic	~ 0	User Coefficient	\sim	Modify Load
Dead	Dead	1			
jve SX	Live	0	User Coefficient		Modify Lateral Load
SY .	Seismic	ŏ	User Coefficient		Delete Load

Figura 26 : Creación de Patrones de Carga Sísmicos Fuente: Elaboración Propia

 Una vez definidos nuestros patrones de carga de nuestro sismo estático no dirigimos a MODIFY LATERAL LOAD para insertar nuestros valores de C y de K así como se muestran en las siguientes figuras:

Direction and Eccentricity		Factors	
🗌 X Dir	Y Dir	Base Shear Coefficient, C	0.115188
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1.1895
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story8 ~
Overwrite Eccentricities	Overwrite	Bottom Story	Base \vee

Figura 27 : Definiendo Factor Sísmico Sx Fuente: Elaboración Propia A Seismic Load Pattern - User Defined

prection and Eccentricity		Factors	
X Dir	Y Dir	Base Shear Coefficient, C	0.091052
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1.2365
X Dir - Eccentricity	Y Dir - Eccentricity	Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	Story8 ~
Overwrite Eccentricities	Overwrite	Bottom Story	Base ~

Figura 28 : Definiendo Factor Sísmico Sy Fuente: Elaboración Propia

- Asignamos Carga Muerta y Carga Viva a nuestra estructura empleando el siguiente cuadro:

Cuadro 12 : Cargas Asignadas a la losa

Tabla: Asignación de Carga Uniforme								
sobre las losas								
Load Set	Load Set Load Pattern							
Viviondo	Dead	250 kg/m2						
vivienua	Live	200 kg/m2						
Azetee	Dead	150 kg/m2						
Azolea	Live	100 kg/m2						

Fuente: Elaboración Propia

 Definimos nuestra fuente de masa para ingresando a DEFINE > MASS SOURCE > ADD NEW MASS SOURCE en dicha ventana tendremos que definir como nos indica el RNE Art.26 de la norma E.030, así como se muestra en la siguiente figura:

Х

Mass Source Name	PesoVivienda		Land Detter	M. Weller	
			Load Pattern	Multiplier	
ass Source			Dead		Add
Element Self Mass			Live	0.25	Modify
Additional Mass					Delete
Specified Load Patterns					
Adjust Diaphragm Lateral Mass	s to Move Mass Centroid by:		Mass Options		
This Ratio of Diaphragm Widt	h in X Direction	0.05	Include Lateral Ma	ISS	
This Ratio of Diaphragm Widt	h in Y Direction	0.05	Include Vertical M	ass	
			🖂 Lump Lateral Mas	s at Story Levels	

Figura 29 : Definiendo Fuente de Masa Fuente: Elaboración Propia

 Continuamos adicionando los diafragmas que sean necesarios para nuestra edificación estos serán igual a la cantidad de niveles que presenta nuestra estructura, para adicionar los diafragmas necesarios ingresamos a DEFINE > DIAPHRAGMS > ADD NEW DIAPHRAGM dentro de esta ventana crearemos todos los diafragmas como se muestra en nuestra siguiente figura:

🗿 Diaphragm Data		×
Diaphragm	D1	
Rigidity	🔿 Semi Rigid	
ОК	Cancel	

Figura 30 : Adición de Diafragmas Fuente: Elaboración Propia

 Para asignar los diafragmas a cada nivel hemos seleccionado todas las losas aligeradas de cada piso e ingresamos a ASSIGN > SHELL > DIAPHRAGMS en esta ventana seleccionamos el diafragma que le pertenece al piso seleccionado:

Figura 31 : Asignación de Diafragmas Fuente: Elaboración Propia

Continuando con el modelamiento y análisis estructural al realizar el primer análisis nos percatamos de que en el análisis modal no cumplía con el comportamiento dinámico regular que debe de tener una estructura ,de tal manera que debimos de hacer una nueva estructuración incrementando las secciones de las columnas, volviendo algunas columnas cuadradas en columnas en "T" y adicionando mas placas a la estructura llegamos a tener un comportamiento dinámico regular de la estructura , como resultado obtuvimos la siguiente estructura:

Figura 33 : Modelado Estructural Final – 3D Fuente: Elaboración Propia

Case	Mode	Period	UX	UY	Sum UX	Sum UY	RZ	Sum RZ
Modal	1	0.747	0.7049	0.0414	0.7049	0.0414	0.0175	0.0175
Modal	2	0.721	0.0479	0.7059	0.7528	0.7473	0.0099	0.0274
Modal	3	0.529	0.0106	0.0164	0.7634	0.7637	0.7237	0.7511
Modal	4	0.218	0.118	0.004	0.8814	0.7677	0.0023	0.7534
Modal	5	0.21	0.0048	0.1155	0.8862	0.8832	0.0018	0.7551
Modal	6	0.151	0.0013	0.0022	0.8875	0.8854	0.1249	0.8801
Modal	7	0.108	0.048	0.001	0.9355	0.8864	0.0007	0.8808
Modal	8	0.104	0.0011	0.0495	0.9366	0.9359	0.0007	0.8815
Modal	9	0.094	0	2.19E-06	0.9366	0.9359	0	0.8815
Modal	10	0.091	1.875E-06	0	0.9366	0.9359	1.014E-06	0.8815
Modal	11	0.086	5.083E-07	0.0001	0.9366	0.9359	7.623E-06	0.8815
Modal	12	0.085	0	5.11E-06	0.9366	0.9359	3.427E-05	0.8815
Modal	13	0.081	0	3.026E-05	0.9366	0.936	5.042E-06	0.8815
Modal	14	0.077	0	8.135E-07	0.9366	0.936	0	0.8815
Modal	15	0.077	2.26E-05	2.281E-06	0.9366	0.936	0.0001	0.8816
Modal	16	0.074	0.0003	2.252E-05	0.9369	0.936	0.0009	0.8825
Modal	17	0.073	5.837E-06	0.0001	0.9369	0.9361	0.0008	0.8833
Modal	18	0.073	0.0001	0.0003	0.9371	0.9364	0.0337	0.9171
Modal	19	0.072	2.338E-05	0	0.9371	0.9364	0.0025	0.9195

Figura 34 : Modos de vibración

Fuente: Elaboración Propia

- Al ya tener la nueva estructura definida se procedió a realizar el análisis de irregularidades por fuerzas sísmicas equivalentes así como se muestra en los siguientes Cuadros:
 - 1. IRREGULARIDAD EN ALTURA

Cuadro 13 : Irregularidad de Rigidez Dirección X

IRREGULARIDAD DE RIGIDEZ (PISO BLANDO)

En la dirección "X":

Story	Load Case	VX, VY	Z	UX	$\Delta_{CM(i)}$	K _i	$0.70 * K_{i+1}$	ESTRUCTURA	K _i	$0.8*\frac{1}{3}(K_{i+1}+K_{i+2}+K_{i+3})$	ESTRUCTURA
		tonf	m	mm	mm	X					
Story8	Sismo X	-125.12	32.2	33.310	2.60	48.158			48.158		
Story7	Sismo X	-290.56	28.2	30.712	3.47	83.808	33.711	REGULAR	83.808		
Story6	Sismo X	-429.88	24.2	27.245	4.32	99.533	58.665	REGULAR	99.533		
Story5	Sismo X	-543.61	20.2	22.926	5.03	108.009	69.673	REGULAR	108.009	61.733	REGULAR
Story4	Sismo X	-632.36	16.2	17.893	5.46	115.754	75.606	REGULAR	115.754	77.693	REGULAR
Story3	Sismo X	-696.90	12.2	12.430	5.43	128.391	81.028	REGULAR	128.391	86.212	REGULAR
Story2	Sismo X	-738.21	8.2	7.002	4.64	158.993	89.873	REGULAR	158.993	93.908	REGULAR
Story1	Sismo X	-757.85	4.2	2.359	2.36	321.257	111.295	REGULAR	321.257	107.503	REGULAR
							F.I. (X)	1		F.I. (X)	1

Fuente: Elaboración Propia

Cuadro 14 : Irregularidad de Rigidez Dirección Y

En la dirección "Y":

Story	Load Case	VX, VY	Z	UY	$\Delta e_{CM(i)}$	K _i	$0.70 * K_{i+1}$	ESTRUCTURA	K _i	$0.8 \times \frac{1}{3}(K_{i+1} + K_{i+2} + K_{i+3})$	ESTRUCTURA
		tonf	m	mm	mm						
Story8	Sismo Y	-150.36	32.2	37.815	2.99	50.272			50.272		
Story7	Sismo Y	-349.54	28.2	34.824	3.87	90.367	35.190	REGULAR	90.367		
Story6	Sismo Y	-517.60	24.2	30.956	4.87	106.217	63.257	REGULAR	106.217		
Story5	Sismo Y	-655.10	20.2	26.083	5.73	114.409	74.352	REGULAR	114.409	65.828	REGULAR
Story4	Sismo Y	-762.73	16.2	20.357	6.24	122.173	80.086	REGULAR	122.173	82.931	REGULAR
Story3	Sismo Y	-841.27	12.2	14.114	6.20	135.711	85.521	REGULAR	135.711	91.413	REGULAR
Story2	Sismo Y	-891.80	8.2	7.915	5.26	169.576	94.998	REGULAR	169.576	99.278	REGULAR
Storyl	Sismo Y	-916.04	4.2	2.656	2.66	344.893	118.703	REGULAR	344.893	113.989	REGULAR
							F.I. (Y)	1		F.I. (Y)	1

Fuente: Elaboración Propia

Como nos muestran los resultados nuestra estructura no presenta irregularidad de rigidez normal por tal motivo tampoco presenta irregularidad de rigidez extrema.

Cuadro 15 : Irregularidad de Resistencia

IRREGULARIDAD DE RESISTENCIA (PISO DÉBIL)

 $\sum Vc_i < 0.80 * \sum Vc_{(i+1)}$

 $\sum (bw * d)_i < 0.8 * \sum (bw * d)_{(i+1)}$

Story	C1	P1	$\nabla(hu \circ d)$	$0.0 \times \overline{V}(1_{111} \times 2)$	
	m²	m²	$\Sigma(bw * a)_i$	$0.8 * \sum (bW * a)_{(i+1)}$	ESTRUCTURA
Story8	13.02	10.92	23.94		
Story7	13.02	10.92	23.94	19.152	REGULAR
Story6	13.02	10.92	23.94	19.152	REGULAR
Story5	13.02	10.92	23.94	19.152	REGULAR
Story4	13.02	10.92	23.94	19.152	REGULAR
Story3	13.02	10.92	23.94	19.152	REGULAR
Story2	13.02	10.92	23.94	19.152	REGULAR
Story1	13.02	10.92	23.94	19.152	REGULAR
				FI	1

En el cuadro 15 nos muestra que tampoco presenta irregularidad de resistencia o también llamada irregularidad por piso débil.

Cuadro 16 : Irregularidad de Masa o Peso

IRREGULARIDAD DE MASA O PESO

$W_i > 1.5 * \{W_{i+1}; W_{i-1}\}$

Story	Mi	W_i	$1.5*W_{i+1}$	ESTRUCTURA	$W_{\rm f}$	$1.5 * W_{i-1}$	ESTRUCTURA
	Kg	Kgf	Kgf	LJIKUCIUKA	Kgf Kgf		LJIKUCIUKA
Story8	48495.25	48495.25			48495.25	111649.245	REGULAR
Story7	74432.83	74432.83			74432.83	111649.245	REGULAR
Story6	74432.83	74432.83	111649.2	REGULAR	74432.83	111649.245	REGULAR
Story5	74432.83	74432.83	111649.2	REGULAR	74432.83	111649.245	REGULAR
Story4	74432.83	74432.83	111649.2	REGULAR	74432.83	111649.245	REGULAR
Story3	74432.83	74432.83	111649.2	REGULAR	74432.83	111649.245	REGULAR
Story2	74432.83	74432.83	111649.2	REGULAR	74432.83	112579.47	REGULAR
Story1	75052.98	75052.98	111649.2	REGULAR	75052.98		
			F.I.	1		F.I.	1

Fuente: Elaboración Propia

En el cuadro 16 en el cual evaluamos la irregularidad de masa o peso nos da como resultado que nuestra estructura no presenta irregularidad de masa o peso.

Cuadro 17: Irregularidad Geométrica Vertical

 $L_1 > 130\% L_2$

Story	Dirección en X (m)										
	Li	L _{i+1}	1.3 * L _{i + 1}	ESTRUCTURA	L ₁₋₁	1.3 * L _{i - 1}	ESTRUCTURA				
Story6	28				28	36.4	REGULAR				
Story5	28	28	36.4	REGULAR	28	36.4	REGULAR				
Story4	28	28	36.4	REGULAR	28	36.4	REGULAR				
Story3	28	28	36.4	REGULAR	28	36.4	REGULAR				
Story2	28	28	36.4	REGULAR	28	36.4	REGULAR				
Story1	28	28	36.4	REGULAR							
			F.I. (X)	1		F.I. (X)	1				

Story	Dirección en Y (m)										
	Li	L _{i+1}	1.3 * L _{i + 1}	ESTRUCTURA	L ₁₋₁	1.3 * L _{i - 1}	ESTRUCTURA				
Story6	20				20	26	REGULAR				
Story5	20	20	26	REGULAR	20	26	REGULAR				
Story4	20	20	26	REGULAR	20	26	REGULAR				
Story3	20	20	26	REGULAR	20	26	REGULAR				
Story2	20	20	26	REGULAR	20	26	REGULAR				
Story1	20	20	26	REGULAR							
	-		F.I. (Y)	1		F.I. (Y)	1				

En el cuadro 17 nos muestra los resultados de las evaluaciones realizadas a nuestra estructura por irregularidad geométrica vertical en ambos sentidos , donde nos indica que nuestra estructura es regular ante este tipo de irregularidad.

Con respecto a la irregularidad de discontinuidad de sistemas resistentes no aplica a este proyecto en mención debido a que todos los niveles son continuos.

2. IRREGULARIDAD EN PLANTA

Cuadro 18: Irregularidad Torsional Dirección X

Irregularidad torsional

$\frac{\Delta_{max}}{\Lambda} >$	$\frac{\Delta_{máx}}{\Delta_{max}} > 1.3$ Cuando: $\Delta_{inelástica} > 50\% \Delta_{limite}$												
Aprom			Donde:	$\Delta_{prom} = \frac{1}{2}$	$\frac{\Delta_L + \Delta_R}{2}$	$\Delta_L = \frac{\Delta_{L-1} + \Delta}{2}$	$\frac{L-2}{\Lambda} \wedge \Delta_R$	$=\frac{\Delta_{R-1}-\Delta_{R-2}}{2}$					
Story	Load	oad Item	n Max Drift	ft Avg Drift	Ratio	Max Loc Z	P1	P2	P3	P4	PROM	Relación Max Drift/Prom	ESTRUCTURA
	Cuic					m	Drift	Drift	Drift	Drift			
Story8	SX	Diaph D8 X	0.000738	0.000667	1.106	32.2					0.000667	1.106	REGULAR
Story7	SX	Diaph D7 X	0.000942	0.000855	1.103	28.2					0.000855	1.103	REGULAR
Story6	SX	Diaph D6 X	0.001173	0.001065	1.101	24.2					0.001065	1.101	REGULAR
Story5	SX	Diaph D5 X	0.001365	0.001241	1.1	20.2					0.001241	1.100	REGULAR
Story4	SX	Diaph D4 X	0.00148	0.001347	1.099	16.2					0.001347	1.099	REGULAR
Story3	SX	Diaph D3 X	0.001469	0.001339	1.096	12.2					0.001339	1.096	REGULAR
Story2	SX	Diaph D2 X	0.001253	0.001146	1.093	8.2					0.001146	1.093	REGULAR
Story1	SX	Diaph D1 X	0.000605	0.000555	1.091	4.2					0.000555	1.091	REGULAR
			•	•	•	•				•		FI	

Fuente: Elaboración Propia

Cuadro 19: Irregularidad Torsional Dirección Y

Story	Load	Item	Max Drift	Avg Drift	Ratio	Max Loc Z	P1	P2	P3	P4	PROM	Relación Max Drift/Prom	ESTRUCTURA
	Cuse					m	Drift	Drift	Drift	Drift			
Story8	SY	Diaph D8 Y	0.000879	0.000731	1.203	32.2					0.000731	1.203	REGULAR
Story7	SY	Diaph D7 Y	0.001132	0.000949	1.193	28.2					0.000949	1.193	REGULAR
Story6	SY	Diaph D6 Y	0.001418	0.001196	1.186	24.2					0.001196	1.186	REGULAR
Story5	SY	Diaph D5 Y	0.001661	0.001406	1.181	20.2					0.001406	1.181	REGULAR
Story4	SY	Diaph D4 Y	0.001806	0.001534	1.177	16.2					0.001534	1.177	REGULAR
Story3	SY	Diaph D3 Y	0.001788	0.001524	1.173	12.2					0.001524	1.173	REGULAR
Story2	SY	Diaph D2 Y	0.001511	0.001293	1.168	8.2					0.001293	1.168	REGULAR
Story1	SY	Diaph D1 Y	0.000724	0.000622	1.164	4.2					0.000622	1.164	REGULAR
												F.I.	1
Para el caso de las irregularidades en planta solo evaluamos la irregularidad estructural torsional debido a que nuestros drift máximos son mayores al 50% del drift máximo permitido según el RNE.

En los cuadros 18, 19 nos muestran los resultados obtenidos de nuestro análisis por torsión la cual no se encuentra presente en nuestra edificación de acuerdo a nuestros datos obtenidos.

Para concluir con nuestro análisis de irregularidades indicamos que las otras irregularidades estructurales en planta no aplican a nuestra estructura debido a que tenemos una estructura con una geometría regular.

 Siguiendo con el modelamiento y análisis de la estructura , una vez ya obtenido nuestro Coeficiente de reducción sísmica ya pasamos a definir nuestros espectros de aceleraciones los cuales se pueden definir en el mismo software de Etabs o empleando un método manual , para nuestro caso nosotros hemos empleado un método manual que fue reflejado en hojas de cálculo como se muestra en los siguientes cuadros:

Cuadro 20: Datos	para Espectro	de Aceleraciones
------------------	---------------	------------------

ESPECTRO DE ACELERACIONES DE LA NORMA PERUANA E030-2018

Factores de	zona
ZONA	Z
1	0.1
2	0.25
3	0.35
4	0.45

	Ta FACTOR	bla N° 3 DE SUEL	0 " <i>S</i> "	
SUELO ZONA	So	S1	S ₂	S ₃
Z ₄	0,80	1,00	1,05	1,10
Z ₃	0,80	1,00	1,15	1,20
Z ₂	0,80	1,00	1,20	1,40
Z ₁	0,80	1,00	1,60	2,00

	PERIC	Tabla N° DOS " <i>T</i> P	4 " Y " <i>T</i> _L "	
		Perfil d	e suelo	
	S ₀	S ₁	S ₂	S ₃
$T_P(\mathbf{S})$	0,3	0,4	0,6	1,0
$T_L(\mathbf{S})$	3,0	2,5	2,0	1,6

Fuente: Elaboración Propia

Cuadro 21: Espectro de Aceleraciones

CONSIDERANDOU	JNA ZONA	SISMICA DE Z4, SUELO S2 Y UNA EDIFICACION DE VIVIENDA
Perfil de Suelo = Zona Sismica = Categoria =	52 Z4 C	
Z	0.45	
T _P (S)	0.6	TL 2
Factor de suelo "S"=	1.05	
Factor de Uso "U"=	1	
Rx	7	DUAL
Ry	6	MUROS ESTRUCTURALES
FACTOR	X-X=ZUSg/R	0.662175
FACTOR	Y-Y=ZUSg/R	0.772538

т	С	Sa
0	2.5	1.931344
0.1	2.5	1.931344
0.2	2.5	1.931344
0.3	2.5	1.931344
0.4	2.5	1.931344
0.5	2.5	1.931344
0.6	2.5	1.931344
0.7	2.142857	1.655438
0.8	1.875	1.448508
0.9	1.666667	1.287563
1	1.5	1.158806
1.1	1.363636	1.05346
1.2	1.25	0.965672
1.3	1.153846	0.891389
1.4	1.071429	0.827719
1.5	1	0.772538
1.6	0.9375	0.724254
1.7	0.882353	0.681651
1.8	0.833333	0.643781
1.9	0.789474	0.609898
2	0.75	0.579403
2.1	0.680272	0.525536
2.2	0.619835	0.478846
2.3	0.567108	0.438112
2.4	0.520833	0.402363
2.5	0.48	0.370818
2.6	0.443787	0.342842
2.7	0.411523	0.317917
2.8	0.382653	0.295614
2.9	0.356718	0.275578
3	0.333333	0.257513
3.1	0.312175	0.241167
3.2	0.292969	0.226329
3.3	0.275482	0.21282
3.4	0.259516	0.200486
3.5	0.244898	0.189193

3.6	0.231481	0.178828
3.7	0.219138	0.169292
3.8	0.207756	0.160499
3.9	0.197239	0.152374
4	0.1875	0.144851
4.1	0.178465	0.137871
4.2	0.170068	0.131384
4.3	0.16225	0.125344
4.4	0.154959	0.119711
4.5	0.148148	0.11445
4.6	0.141777	0.109528
4.7	0.135808	0.104917
4.8	0.130208	0.100591
4.9	0.124948	0.096527
5	0.12	0.092705

_

Fuente: Elaboración Propia

 Una vez ya definido nuestro espectro de aceleraciones de manera manual procedimos a ingresarlo al programa Etabs ubicándonos en la ventana DEFINE > FUNCTIONS > RESPONSE SPECTRUM en esta ventana selecionamos la opción From File seguidamente de la opción Add New Function asi como se muestra en las siguiente figuras:

esponse Spectra	From File
UnifRS	Click to:
	Add New Function
	Modify/Show Spectrum
	Delete Spectrum
	OK Cancel

Figura 35: Definiendo Espectro de Aceleraciones Fuente: Elaboración Propia

 Luego de haber definido nuestro espectro de aceleraciones en base a nuestro tipo de suelo, zona sísmica, sistema estructural, tipo de uso , Coeficiente de amplificación sísmica y nuestro Coeficiente de Reducción sísmica procedemos a nuestros casos de cargas a los cuales adicionamos nuestros casos de cargas sísmicas empleando nuestro espectro de aceleraciones definido, para definirlo nos dirigimos hacia DEFINE > LOAD CASES > ADD NEW CASE, en esta ventana definimos nuestro Espectro en la dirección X y en la dirección Y asi como se muestra en la siguiente figura:

Load Case Name			EspectroX-X			Design
Load Case Type			Response Spectru	um	~	Notes
Exclude Objects in this G	roup		Not Applicable			
Mass Source			Previous (PesoVi	vienda)		
ads Applied						
Load Type	Load Name		Function	Scale Fa	ctor	0
Acceleration	U1	Es	pectroTvsC	0.6622		Add
						Advanced
ner Parameters	-					Advanced
ner Parameters Modal Load Case		_	Modal		~	Advanced
ner Parameters Modal Load Case Modal Combination Meth	od	_	Modal		~	Advanced
ner Parameters Modal Load Case Modal Combination Methi Include Rigid R	od	Rigi	Modal CQC d Frequency, f1		~	Advanced
ner Parameters Modal Load Case Modal Combination Methi Include Rigid R	od Nesponse	Rigi Rigi	Modal CQC d Frequency, f1 d Frequency, f2		~	Advanced
ner Parameters Modal Load Case Modal Combination Meth Include Rigid R	od	Rigi Rigi Peri	Modal CQC d Frequency, f1 d Frequency, f2 odic + Rigid Type		~	Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid R Earthquake Duratio	od Response	Rigi Rigi Peri	Modal CQC d Frequency, f1 d Frequency, f2 odic + Rigid Type		~ ~	Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid R Earthquake Duratii Directional Combination 1	od Jesponse an, td Type	Rigi Rigi Peri	Modal CQC d Frequency, f1 d Frequency, f2 odic + Rigid Type SRSS		× ×	Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid R Earthquake Duratin Directional Combination T Absolute Direction:	od Jesponse an, td Jype al Combination Scale	Rigi Rigi Peri	Modal CQC d Frequency, f1 d Frequency, f2 odic + Rigid Type SRSS r		~	Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid R Earthquake Duratii Directional Combination 1 Absolute Direction: Modal Damping	od lesponse on, td Type al Combination Scale [Constant at 0.05	Rigi Rigi Peri	Modal CQC d Frequency, f1 d Frequency, f2 odic + Rigid Type SRSS r	Modfy/	> > > Show	Advanced

Figura 37: Caso de Carga Sismo en X

Fuente: Elaboración Propia

Load Case Name		Espectro Y-Y		Design
Load Case Type		Response Spectrur	n v	Notes
Exclude Objects in this G	àroup	Not Applicable		
Mass Source		Previous (PesoViv		
ds Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U2	Espectro TvsC	0.7725	Add
er Parameters				Advance
er Parameters	_			Advance
er Parameters Modal Load Case	-	Modal	~	Advanced
er Parameters Modal Load Case Modal Combination Meth	nod	Modal CQC	~	Advance
er Parameters Modal Load Case Modal Combination Meth ☐ Include Rigid F	nod Response	Modal CQC Rigid Frequency, f1	~	Advance
er Parameters Modal Load Case Modal Combination Meth Include Rigid f	iod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2	~ ~	Advance
er Parameters Modal Load Case Modal Combination Meth Include Rigid f	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~ ~	Advance
er Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durat	nod Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~ ~	Advance
er Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durat Directional Combination	nod Response ion, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Petiodic + Rigid Type SRSS	~ ~ 	Advance
er Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durat Directional Combination	nod Response lion, td Type nal Combination Scale	Modal COC Rigid Frequency, f1 Rigid Frequency, f2 Petiodic + Rigid Type SRSS Factor	~ ~ 	Advance
er Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durat Directional Combination Absolute Direction Modal Damping	nod Response ion, td Type Ial Combination Scale Constant at 0.05	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor	~ ~	Advance

Figura 38: Caso de Carga Sismo en Y Fuente: Elaboración Propia

Al culminar de haber definido nuestros casos de cargas sísmicos continuamos a definir nuestras combinaciones de cargas dentro de las cuales adicionamos una combinación de carga para verificar nuestros drift máximos , para definir nuestras combinaciones de cargas ingresamos a DEFINE > LOAD COMBINATION > ADD NEW COMBO , en el recuadro que nos aparece definimos todos nuestras combinaciones de carga como nos indica el RNE y nuestra combinación de carga para ver nuestro desplazamiento máximo de la estructura empleando nuestro sismo de aceleraciones definido , estos pasos se muestran en la figura siguiente:

_

mbinations	Click to:
DerivaMax-X-X DerivaMax-X-X	Add New Combo
ENVOLVENTE PesoEdificio	Add Copy of Combo
SIS-XX SIS-YY	Modify/Show Combo
U1=1.4CM+1.7CV J2=1.25(CM+CV)+-SISXX J3=1.25(CM+CV)+-SISYY U1-225(CM+CV)+-SISYY	Delete Combo
J4=U.9CM+-SISXX J5=0.9CM+-SISYY	Add Default Design Combos
	Convert Combos to Nonlinear Cases

Figura 39: Combinaciones de Carga Fuente: Elaboración Propia

Para el caso de los desplazamientos máximos de nuestra estructura empleamos los siguientes combos:

Load Combination Name	Deriv	aMax-X-X	
Combination Type	Linea	ır Add	~
Notes		Modify/Show No	otes
Auto Combination	No		
LapoonU////		3.23	nuu
			Delete

Figura 40: Combo Deriva Max - X Fuente: Elaboración Propia

eneral Data			
Load Combination Name	Deriv	aMax-Y-Y	
Combination Type	Linea	ar Add	~
Notes		Modify/Show No	otes
Auto Combination	No		
Load Name EspectroY-Y		Scale Factor	Add
Load Name		Scale Factor	
Load Name EspectroY-Y		Scale Factor 4.5	Add
Load Name EspectroY-Y		Scale Factor 4.5	Add Delete
Load Name EspectroY-Y		Scale Factor 4.5	Add Delete
Load Name Espectro Y-Y		Scale Factor 4.5	Add Delete
Load Name EspectroY-Y		Scale Factor 4.5	Add Delete

Figura 41: Combo Deriva Max - Y Fuente: Elaboración Propia

 Teniendo definidas nuestras combinaciones de carga procedemos a evaluar los desplazamientos máximos permitidos y obtuvimos los siguientes resultados :

_

Cuadro 22: Desplazamiento Maximos X

Story	Load Case/Combo	Direction	Drift	Label	x	Y	Z	DRIFT	
					m	m	m	WAANVO	
Story8	DerivaMax-X-X Max	х	0.00311	31	7	20	24.2	0.007	CUMPLE
Story7	DerivaMax-X-X Max	Х	0.00396	31	7	20	21.2	0.007	CUMPLE
Story6	DerivaMax-X-X Max	х	0.00491	31	7	20	18.2	0.007	CUMPLE
Story5	DerivaMax-X-X Max	х	0.00571	31	7	20	15.2	0.007	CUMPLE
Story4	DerivaMax-X-X Max	х	0.0062	31	7	20	12.2	0.007	CUMPLE
Story3	DerivaMax-X-X Max	х	0.00617	31	7	20	9.2	0.007	CUMPLE
Story2	DerivaMax-X-X Max	Х	0.00527	31	7	20	6.2	0.007	CUMPLE
Story1	DerivaMax-X-X Max	Х	0.00255	31	7	20	3.2	0.007	CUMPLE

DIRECCIÓN X-X

Fuente: Elaboración Propia

Cuadro 23: Desplazamiento Maximos Y

Story	Load Case/Combo	Direction	Drift	Label	Х	Y	Z	DRIFT	
Story	Load Case/Combo	Direction	Dint	Laber	m	m	m	MAXIMO	
Story8	DerivaMax-Y-Y Max	Y	0.00325	28	33	18	24.2	0.007	CUMPLE
Story7	DerivaMax-Y-Y Max	Y	0.00416	28	33	18	21.2	0.007	CUMPLE
Story6	DerivaMax-Y-Y Max	Y	0.00518	28	33	18	18.2	0.007	CUMPLE
Story5	DerivaMax-Y-Y Max	Y	0.00606	28	33	18	15.2	0.007	CUMPLE
Story4	DerivaMax-Y-Y Max	Y	0.0066	28	33	18	12.2	0.007	CUMPLE
Story3	DerivaMax-Y-Y Max	Y	0.00654	28	33	18	9.2	0.007	CUMPLE
Story2	DerivaMax-Y-Y Max	Y	0.00553	28	33	18	6.2	0.007	CUMPLE
Story1	DerivaMax-Y-Y Max	Y	0.00265	28	33	18	3.2	0.007	CUMPLE

DIRECCIÓN Y-Y

Fuente: Elaboración Propia

Luego de evaluar nuestros desplazamientos máximos permitidos y verificar que estos cumplen con el RNE, pasamos a evaluar de que nuestra cortante sísmica de diseño sea el 80% del cortante estatico este factor del 80% se indica en el RNE debido a que nuestra estructura es regular de no ser regular debía de ser el 90% de cortante estatico, al evaluar nuestras cortantes obtuvimos un factor con el que debíamos de escalar nuestra cortante dinámica y el resultado de este escala seria nuestra cortante dinámica de diseño, con la cual realizamos nuestro diseño estructural, esta evaluación se presenta en el siguiente cuadro:

CORTANTE	CORTANTE	FACTOR
ESTATICA	DINÁMICA	SISMICO
775.155958	585.8555	1.058494
936.960357	699.0108	1.072327

Cuadro 24: Factor de Escala Dinámico

Fuente: Elaboración Propia

 Al tener nuestro factor de escala volvemos a la parte de combinaciones de carga y adicionamos un combo en el que el espectro de aceleraciones sea multiplicado por este factor para obtener nuestro sismo de diseño, este procedimiento se muestra en la siguiente figura:

	la caracteria				
Load Combination Name	SIS-X	x			
Combination Type	Linear	Linear Add			
Notes		otes			
Auto Combination	No				
Etine Combination of Load Case Load Name EspectroX-X	e/Combo Resi	Scale Factor 1.0585	Add		
efine Combination of Load Case Load Name	e/Combo Resi	Scale Factor			
etine Combination of Load Case Load Name EspectroX-X	e/Combo Resi	Scale Factor 1.0585	Add		
etine Combination of Load Case Load Name EspectroX-X	e/Combo Resi	Scale Factor 1.0585	Add Delete		
Load Case Load Name EspectroX-X	c/Combo Resi	Scale Factor 1.0585	Add Delete		
Load Case Load Name EspectroX-X	/Combo Resi	Scale Factor 1.0585	Add Delete		

Figura 42: Definiendo Sismo de Diseño X Fuente: Elaboración Propia

Land Combination Name	CIC	XX/	
Load Combination Name	515	٠٢٢	
Combination Type	Line	ear Add	~
Notes		Modify/Show No	otes
Auto Combination	No		
			-
			Delete

Figura 43: Definiendo Sismo de Diseño Y Fuente: Elaboración Propia

 Para concluir con nuestra parte del modelamiento estructural en el software Etabs volvimos a correr el programa con todos los nuevos datos obtenido y tomando en cuenta los momentos y cortantes máximos de los elementos estructurales para que se pueda realizar el respectivo diseño estructural de cada elemento, estos datos se muestran en la siguiente figura:

Figura 44: Diagrama de momentos Fuente: Elaboración Propia

- Continuando con la parte del modelamiento estructural pasamos a realizar el modelamiento de nuestra cimentación la cual esta compuesta por una losa o también llamada una platea de cimentación.
- Para comenzar con el modelamiento de la cimentación ejecutamos el programa Safe y nos dirigimos hacia FILE > IMPORT > SAFE .F2K FILE, en esta pestaña ubicaremos nuestros datos exportados de Etabs hacia Safe , así como se muestra en las siguientes figuras.

File	New Model Ctrl+N	gn Run Display Detailing Tools Options
	New Model from Existing File Ctrl+Shift+N	
ं 🔳 🦢	Open Ctrl+O	·
	Save Ctrl+S	5 II
	Save As Ctrl+Shift+S	
	Import	SAFE .F2K File
	Export Model	DXF/.DWG File Ctrl+1
	Export Drawings	.DXF/.DWG Architectural Plan Ctrl+Shift+1
	Modify/Show Project Information	.EXR Revit File Ctrl+Shift+X
3	Modify/Show Comments and Log	Access .mdb/.accdb File
	Create Video	Excel .xls/.xlsx File
8	Print Graphics Ctrl+P	
	Print Tables Ctrl+Shift+T	r III
~	Print Drawings Ctrl+Shift+D	
_	Report Setup	
	Create Report Ctrl+Shift+R	e la
-1	Advanced Report Writer	
1	Capture Picture	>
4	Show Input/Output Text Files Ctrl+Shift+F	-
1	1 G:\\Cimentación Final Tesis.FDB	
s	2 E:\\CIMENTACION SAFE.FDB	
r	3 E:\\Cimentacion safe final.FDB	
3	4 E:\\Cimentacion safe final.FDB	
	Evit Alt+E4	

Figura 45: Importar Archivo de Etabs

Fuente: Elaboración Propia

Se paso a definir nuestras unidades en (Kgf, m, C).

-

JICK UNITS						
U.S. Defaults	N	Netric Defaults	(Consistent Units		Named Units
nits						
ltem	Units	Units Label	Decimal Places	Min. Sig. Figures	Zero Tolerance	Always Use E Format
Structure Dimensions						
Coordinates	KN, m, C	m	5	2	1.0000E-20	No
Absolute Distance	KN, m, C	m	5	2	1.0000E-20	No
Relative Distance			4	2	1.0000E-20	No
Angles	_		3	2	1.0000E-20	No
Section Dimensions	10	Consistent Unit	s	? X		
Length	KN, mm,				1.0000E-20	No
Area	KN, mm,	6 L			1.0000E-20	No
Length4	KN, mm,	Select Units			1.0000E-20	No
Rebar Area	KN, mm,	Kgf, m, C		\sim	1.0000E-20	No
Rebar Area/Length	mm2/m				1.0000E-20	No
Displacements						
Translational Displ	KN, mm,	OK	C	incel	1.0000E-20	No
Rotational Displ					1.0000E-20	No
Forces	_					
Force	KN, m, C	kN	3	2	1.0000E-20	No
Force/Length	KN, m, C	kN/m	2	2	1.0000E-20	No
Force/Area	KN, m, C	kN/m2	2	2	1.0000E-20	No
Moment	KN, m, C	kN-m	4	2	1.0000E-20	No
Moment/Length	KN, m, C	kN-m/m	4	2	1.0000E-20	No
Temperature Change	KN, mm, C	С	3	2	1.0000E-20	No
Stresses						
Stress Input	N, mm, C	N/mm2	5	2	1.0000E-20	No
Stress Output	N, mm, C	N/mm2	6	2	1.0000E-20	No
Stiffness						

Figura 46: Definiendo Unidades para Cimentación Fuente: Elaboración Propia

En la siguiente figura se ha definido los materiales como el concreto y el acero empleado , se definió en la opción DEFINE > MATERIALS.

-

.....

General Data Material Name CONCRETO	210]				
Material Type Concrete	~ 	1	Material Property Data		?	Х
Material Notes Modif	y/Show Notes]	0.101			
			General Data	4.000		
Matenai vveight		1	Matenal Name	Acero 4200		
Weight per Unit Volume	2400	kgt/m3	Material Type	Rebar	\sim	
Isotropic Property Data			Material Display Color	Cha	inge	
Modulus of Elasticity, E	2173706511.9284	kgf/m2	Material Notes	Modify/Show N	otes	
Poisson's Ratio, U	0.2]				
Coefficient of Thermal Expansion, A	9.9E-06	1/C	Material Weight			
Shear Modulus, G	905711047	kgf/m2	Weight per Unit Volume	7800	kgf/m	.3
Other Properties for Concrete Materials						
Specified Concrete Compressive Strength, f'c	2100000	kgf/m2	Uniaxial Property Data			
Lightweight Concrete			Modulus of Elasticity, E	2E+0	10 kgf/m	2
Shear Strength Reduction Factor						
Modulus of Runtum for Cracked Deflections			Other Properties for Rebar Materials	S		
Program Default (Based on Concrete Slab De	sian Code)		Minimum Yield Stress, Fy	42000)000 kgf/m	2
O User Specified			Minimum Tensile Stress, Fu	50985	5809.61 kgf/m	2
OK	Cancel		ОК	Cancel		

Figura 47: Definiendo Materiales para Cimentación

Fuente: Elaboración Propia

 Luego pasamos a definir nuestra losa de cimentación en la opción DEFINE > SLAB PROPERTIES , con espesor de 70 cm y su respectivos elementos de rigidez como se muestra en la figura.

Slab Property Data	?	×	Slab Property Data	? ×
General Data Property Name Slab Material Display Color Property Notes Analysis Property Data	LOSA DE CIMENTACIÓN CONCRETO 210 Change Modífy/Show		General Data Property Name Slab Material Display Color Property Notes Analysis Property Data	RIGIDEZ CONCRETO 210 Change Modify/Show
Type	Mat V		Туре	Suff V
☑ Thick Plate	Orthotropic		Thick Plate	Otthotropic
ОК	Cancel		OK	Cancel

Figura 48: Definiendo Losa de Cimentación y elemento Rigidez Fuente: Elaboración Propia

 Una vez definida nuestra losa de cimentación y nuestro elementos rigidez realizamos el modelamiento de la cimentación asi como se muestra en la figura.

Figura 49: Modelado de Losa de Cimentación

Fuente: Elaboración Propia

En la figura 50 se definió nuestro suelo.

Figura 50: Definiendo Suelo Fuente: Elaboración Propia

- Una vez definido nuestro suelo en la figura 51 asignamos el suelo a nuestra cimentación.

También asignamos las restricciones a nuestra cimentación ASSING > SUPPORT DATA > JOIM RESTRAINT , en la figura 52 nos muestra las restricciones .

Figura 52: Asignando Restricciones a la Cimentación Fuente: Elaboración Propia

Fuente: Elaboración Propia

 Para asignar nuestras combinaciones por las cuales analizaremos nuestra cimentación nos dirigimos hacia DEFINE > LOAD COMBINATION , en la siguiente figura 54 nos muestra las combinaciones asignadas .

Combinations	Click to:
CARGA SERVICIO	Add New Combo
	Add Copy of Combo
	Modify/Show Combo
	Delete Combo
	Add Default Design Combos

Figura 54: Definiendo Caso de Carga para Cimentación Fuente: Elaboración Propia

- Continuamos definiendo nuestras preferencias de diseño en la figura.

Non-	Prestressed Reinforc	ement			_
Cle	earCoverlop (m)			0.1	_
Cle	ear Cover Bottom (m))		0.1	 _
Pre	eferred Bar Size			5/8"	\sim
Inr	ner Slab Rebar Layer			Layer B	
Post-	Tensioning				
CG	àS of Tendon Top (n	ı)		0.025	
CO	aS of Tendon for Bot	om of Exterior Bay (n	n)	0.04	
CG	aS of Tendon for Bot	om of Interior Bay (m)	0.025	
Minim	num Reinforcing				
Sla	ab Type for Minimum	Reinforcing		Two Way	

Figura 55: Definiendo Recubrimientos

Fuente: Elaboración Propia

- En la figura 56 asignamos nuestra combinación con la que se trabajara el diseño de la losa de cimentación.

and Lond Combinetion	
ist of Load Combination	Design Load Combinations
CARGA SERVICIO	Add =>

Figura 56: Selección de Combinación de carga para Diseño Fuente: Elaboración Propia

 En la siguiente figura 57 se muestra el análisis de nuestra losa de cimentación y se verifica que los asentamientos son menores a los permitidos por el terreno.

Figura 57: Asentamiento de la Cimentación Fuente: Elaboración Propia

En la figura 58 se observa que la presión ejercida por nuestra estructura es de 1.493 kg/cm2 y la capacidad portante de nuestro suelo es de 1.5 kg/cm2.

Figura 58: Presión Ejercida por la Cimentación Fuente: Elaboración Propia

 Una vez comprobado que nuestro suelo es capaz de soportar nuestra estructura pasamos a definir nuestras franjas de diseño para obtener nuestros datos por cada franja de diseño asi como se muestra en la figura.

Figura 59: Franjas de Diseño Fuente: Elaboración Propia

 Por ultimo para obtener los datos de nuestra losa de cimentación nos dirigimos a DISPLAY > SHOW STRIP FORCE donde seleccionaremos el caso de combinación de carga que utilizaremos para el diseño estructural, para este caso se selecciono la que indica en la figura.

Figura 60: Momentos en X Fuente: Elaboración Propia

Figura 61: Momentos en Y Fuente: Elaboración Propia

Para obtener el diseño del acero de refuerzo de nuestra losa de cimentación nos dirigimos a la ventana DISPLAY > SHOW SLAB DESIGN al ingresar a esta ventana marcamos la casilla "Impose minimum reinforcing" para que nos muestro el acero mínimo requerido si es que el refuerzo arrojado es menor nos indicara el acero mínimo para cumplir con nuestro RNE para nuestro caso el acero mínimo es mayor al acero de refuerzo obtenido por nuestras combinaciones de cargas y se muestra en la siguiente figura.

Figura 62: Acero Requerido en X Fuente: Elaboración Propia

Figura 63: Acero Requerido en Y Fuente: Elaboración Propia

3.4 Diseño Estructural Sismorresistente

Generalidades

El diseño estructural de se ejecutó en base a los parámetros establecidos en el Reglamento Nacional de Edificaciones.

3.4.1 Diseño de Losa Aligerada

Para el diseño estructural y análisis, hemos considerado la losa aligerada como viga "T" con extremos continuos con sección rectangular; la cual está compuesta por 5 cm de losa maciza y 20 cm de altura de vigueta.

Análisis estructural

Se usó una losa aligerada de 25cm de grosor con cuatro tramos la cual se analizara con la primera combinación de cargas 1.4CM + 1.7 CV.

Para el análisis de la losa aligerada emplearemos el programa Safe para realizar el análisis y su diseño estructural.

El análisis de nuestra losa aligerada se realizo en el programa safe en el cual hemos obtenido los siguiente resultados indicados en las siguientes figuras.

Figura 64: Momentos Máximos en Viguetas - Y Fuente: Elaboración Propia

Jura 65: Cortantes Maximos en Viguetas -Fuente: Elaboración Propia

Dentro de nuestros resultados se logró comprobar de que no existe flexión en la losa aligerada y que el corte soportado por el concreto en las viguetas es superior al cortante ejercido por la combinación de carga.

Para su diseño estructural procederemos a dirigirnos hacia DISPLAY > SHOW SLAB DESIGN dentro de esta ventana marcaremos la casilla de "Impose mínimum Reinforcing" ya que el RNE nos indica que debemos colocar acero mínimo si el acero resultante de las combinaciones de cargas es menor al mínimo requerido por la sección este acero se detalla en la siguiente figura.

Figura 66: Acero Requerido en Viguetas de Losa Aligerada Fuente: Elaboración Propia

Tenemos como resultado del diseño estructural que emplearemos acero de Ø1/2" tanto para el acero positivo como para el acero negativo asi como se muestra en la figura.

Figura 67: Acero Colocado en Viguetas

Fuente: Elaboración Propia

LOSA ALIGERADA H=0.25m.

Figura 68: Sección de Losa Aligerada

Fuente: Elaboración Propia

3.4.2 Diseño de Vigas Peraltadas

Se realizo un diseño estructural por corte y flexión, para esta oportunidad se diseñó tomando en cuenta la combinación envolvente que representa los resultados máximos de todas las combinaciones de carga, para el diseño estructural hemos empleado los resultados arrojados por el software ETABS.

Diseño por flexión

Se realizo la comprobación de que el acero propuesto no sea menor al acero mínimo requerido y no sea superior al acero máximo permitido.

$$As \min = \frac{0.22 x \sqrt{f'c}}{fy} x b x d$$

Dónde:

d= Peralte efectivo de la viga.

b= Base de la Viga.

f´c: Resistencia a la compresión del concreto.

fy: Resistencia a la fluencia del acero.

Para cálcular el acero máximo tenemos que es igual al 75% de la cuantia de acero balanceada. De acuerdo a lo mencionado se calculara el factor Ku con la siguiente formula:

$$Ku = \frac{Mu}{bd^2}$$

Mu= Momento ultimo obtenido del análisis.

Con el factor Ku se determina la cuantía (ρ), y de esta manera obtenemos el acero requerido.

$$As = \rho x b x d$$

Al momento de proponer el acero se debe tomar en consideración los diámetros comerciales de acero utilizados en el mercado.

Diseño por Corte

Para el diseño de nuestras secciones transversales se tiene que tomar la cortante última a una longitud "x" de la cara del apoyo (VuX). De la misma manera este diseño debe realizarse con la siguiente formula:

$$\emptyset Vn \ge Vu$$
$$Vn = Vc + Vs$$

Dónde:

Vn= Cortante Nominal.

Vs= Resistencia al Corte del refuerzo transversal.

Vu= Cortante Ultima.

Vc= Resistencia al Corte del Concreto.

Continuando, presentamos las ecuaciones para hallar la Resistencia al Corte del Concreto (Vc) y la Resistencia al Corte del refuerzo transversal (Vs).

$$Vc = 0.53 x \sqrt{f'c} x b x d$$
$$Vs = \frac{Vu}{\emptyset} + Vc$$
$$S = \frac{Av x f y x d}{Vs}$$

Para nuestro caso hemos empleado todos los datos obtenidos del software ETABS , tanto momentos , cortantes y área de acero requerida , para este caso hemos seleccionado las vigas mas criticas de nuestra estructura y hemos realizado la colocación de acero requerido por los momentos máximos y cortantes máximas, para nuestro proyecto hemos tomado como guía 1 pórtico en cada dirección tanto en el eje X como en el eje Y , los pórticos y resultados se muestran en las siguientes figuras.

- PORTICO DIRECCIÓN X

Figura 69: Pórtico en X Fuente: Elaboración Propia

DIAGRAMA DE MOMENTO

Figura 71: Cortantes del Pórtico en X Fuente: Elaboración Propia

CUANTIA DE ACERO REQUERIDA

1ER PISO

Figura 74: Acero Colocado en Vigas 1º Piso Fuente: Elaboración Propia

Figura 75: Secciones de Viga con Refuerzo 1° Piso

Fuente: Elaboración Propia

2DO PISO

ACERO REQUERIDO POR MOMENTOS

Figura 76: Acero Requerido por momentos en Vigas 2º Piso Fuente: Elaboración Propia

+	0.0702 0.0626 0.0470	0.0293 0.0293 0.0293	0.0907 0.1022 0.1086	_	_	0.1050 0.0996 0.0882	0.0293 0.0293 0.0293	0.0474 0.0522 0.0598	
	ľ.								
	000	0000	711			000	0711	0000	
	0.0	0.0	0.0			0.0	0 0	0.0	

Figura 77: Acero Requerido por cortantes en Vigas 2º Piso

Fuente: Elaboración Propia

Figura 78: Acero Colocado en Vigas 2º Piso Fuente: Elaboración Propia

Figura 79: Secciones de Viga con Refuerzo 2° Piso Fuente: Elaboración Propia

3ER PISO

ACERO REQUERIDO POR MOMENTOS

Figura 80: Acero Requerido por momentos en Vigas 3º Piso Fuente: Elaboración Propia

Figura 83: Secciones de Viga con Refuerzo 3° Piso Fuente: Elaboración Propia

4TO PISO

ACERO REQUERIDO POR MOMENTOS

	18.74 6.06 9.47	10.26	3.40	10.51	10.27 6,56 20.86		20.28 6,56 10.55	10.73	3.40	10.05	9.52 6.01 18.61	
-	11.63 5.38 11.87	6.98	5.84	6.78	13.30 5,88 14.26	 	14.65 6.00 12.90	6.63	5.93	7.11	11.80 5.42 11.72	
	25			25			25			25		—
	47			47			47			47		

Figura 84: Acero Requerido por momentos en Vigas 4º Piso Fuente: Elaboración Propia

Figura 86: Acero Colocado en Vigas 4º Piso Fuente: Elaboración Propia

Figura 87: Secciones de Viga con Refuerzo 4° Piso Fuente: Elaboración Propia

5TO PISO

ACERO REQUERIDO POR MOMENTOS

+	_	16.32 5.23 7.32	9.81	3.18	10.17	7.78 6.46 17.61		17.01 6.27 8.08	10.42	3.24	9.59	7.38 5.17 16.18	-
		8.79 4.31 10.17	6.62	5.67	6.56	11.16 4,59 10.70		11.11 4.73 10.73	6.56	5.77	6.77	10.09 4.35 8.88	1
		25			25			25			u c	2	
		47			47			47			Ľ	Ŧ	

Figura 88: Acero Requerido por momentos en Vigas 5º Piso

Fuente: Elaboración Propia

Figura 89: Acero Requerido por cortantes en Vigas 5° Piso Fuente: Elaboración Propia

Figura 90: Acero Colocado en Vigas 5º Piso Fuente: Elaboración Propia

Figura 91: Secciones de Viga con Refuerzo 5° Piso Fuente: Elaboración Propia

6TO PISO

ACERO REQUERIDO POR MOMENTOS

Figura 95: Secciones de Viga con Refuerzo 6° Piso Fuente: Elaboración Propia

7MO PISO

ACERO REQUERIDO POR MOMENTOS

Figura 96: Acero Requerido por momentos en Vigas 7º Piso Fuente: Elaboración Propia

Figura 97: Acero Requerido por cortantes en Vigas 7º Piso Fuente: Elaboración Propia

Figura 98: Acero Colocado en Vigas 7º Piso

Figura 99: Secciones de Viga con Refuerzo 7° Piso Fuente: Elaboración Propia

8VO PISO

Figura 100: Acero Requerido por momentos en Vigas 8º Piso Fuente: Elaboración Propia

Figura 103: Secciones de Viga con Refuerzo 8° Piso Fuente: Elaboración Propia

- PORTICO DIRECCIÓN Y

Figura 104: Pórtico en Y Fuente: Elaboración Propia

DIAGRAMA DE MOMENTO

Figura 105: Momentos del Pórtico en Y Fuente: Elaboración Propia

DIAGRAMA DE FUERZA CORTANTE

Figura 106: Cortantes del Pórtico en Y Fuente: Elaboración Propia

CUANTIA DE ACERO REQUERIDA

1ER PISO

ACERO REQUERIDO POR MOMENTOS

Figura 109: Acero Colocado en Vigas 1º Piso Fuente: Elaboración Propia

Figura 110: Secciones de Viga con Refuerzo 1º Piso Fuente: Elaboración Propia

2DO PISO

ACERO REQUERIDO POR MOMENTOS

Figura 111: Acero Requerido por momentos en Vigas 2º Piso Fuente: Elaboración Propia

Figura 112: Acero Requerido por cortantes en Vigas 2º Piso Fuente: Elaboración Propia

Figura 113: Acero Colocado en Vigas 2º Piso Fuente: Elaboración Propia

Figura 114: Secciones de Viga con Refuerzo 2° Piso Fuente: Elaboración Propia

3ER PISO

ACERO REQUERIDO POR MOMENTOS

Figura 115: Acero Requerido por momentos en Vigas 3º Piso Fuente: Elaboración Propia

Figura 116: Acero Requerido por cortantes en Vigas 3º Piso Fuente: Elaboración Propia

ACERO COLOCADO

Figura 117: Acero Colocado en Vigas 3º Piso Fuente: Elaboración Propia

Figura 118: Secciones de Viga con Refuerzo 3º Piso Fuente: Elaboración Propia

4TO PISO

Figura 120: Acero Requerido por cortantes en Vigas 4º Piso Fuente: Elaboración Propia

Figura 121: Acero Colocado en Vigas 4º Piso Fuente: Elaboración Propia

Figura 122: Secciones de Viga con Refuerzo 4° Piso Fuente: Elaboración Propia

5TO PISO

Figura 123: Acero Requerido por momentos en Vigas 5º Piso Fuente: Elaboración Propia

Figura 124: Acero Requerido por cortantes en Vigas 5º Piso Fuente: Elaboración Propia

Figura 125: Acero Colocado en Vigas 5º Piso Fuente: Elaboración Propia

Figura 126: Secciones de Viga con Refuerzo 5° Piso Fuente: Elaboración Propia

6TO PISO

ACERO REQUERIDO POR MOMENTOS

Figura 127: Acero Requerido por momentos en Vigas 6º Piso Fuente: Elaboración Propia

Figura 128: Acero Requerido por cortantes en Vigas 6° Piso Fuente: Elaboración Propia

Figura 129: Acero Colocado en Vigas 6º Piso Fuente: Elaboración Propia

Figura 130: Secciones de Viga con Refuerzo 6° Piso Fuente: Elaboración Propia

7MO PISO

ACERO REQUERIDO POR MOMENTOS

Figura 131: Acero Requerido por momentos en Vigas 7º Piso Fuente: Elaboración Propia

_	0.0293 0.0293 0.0293	0.0293 0.0293 0.0301	1	0.0312 0.0293 0.0293	0.0293 0.0293 0.0293	
	0	00		0	00	
	0.00	0.00		0.00	0.00	

Figura 132: Acero Requerido por cortantes en Vigas 7º Piso Fuente: Elaboración Propia

Figura 133: Acero Colocado en Vigas 7º Piso Fuente: Elaboración Propia

Figura 134: Secciones de Viga con Refuerzo 7° Piso Fuente: Elaboración Propia

8VO PISO

Figura 135: Acero Requerido por momentos en Vigas 8° Piso Fuente: Elaboración Propia

Figura 137: Acero Colocado en Vigas 8º Piso Fuente: Elaboración Propia

Figura 138: Secciones de Viga con Refuerzo 8° Piso Fuente: Elaboración Propia

3.4.3 Diseño de Columnas

Para diseñar estos elementos estructurales se debe tomar en consideración dos partes sumamente importantes que son los esfuerzos axiales y flexión , con estos datos generar un diagrama de interacción .

Para el caso del refuerzo en los elementos sometidos a compresión la cuantía de acero según lo indica el RNE no debe de ser menos del 1% del área del elemento y no debe de ser mayor al 4% del área del elemento.

Para nuestro proyecto hemos empleado los momentos, cortantes y área de acero obtenidos por el software debido a que nuestras áreas de acero en nuestras columnas no presentan irregularidad alguna y se mantiene la misma área en todos los miembros estructurales de nuestra edificación.

Hemos elegido el diseñar solo 1 columnas de cada tipo debido a que sus resultados son iguales y se repiten en todas las columnas con igual sección. En las siguientes figuras se mostrara los momentos , cortantes , el area de acero requerida y el acero colocado .

Columna C1 – 70X70

Figura 139: Columna 70 x 70 Fuente: Elaboración Propia

DIAGRAMA DE MOMENTOS

Figura 140: Diagrama de Momentos Columna Critica Fuente: Elaboración Propia

DIAGRAMA DE FUERZAS CORTANTES

ACERO LONGITUDINAL REQUERIDO

Figura 142: Acero Requerido en Columna de 70 x 70 Fuente: Elaboración Propia

ACERO COLOCADO

 $\frac{Acero \ Requerido}{Acero \ Propuesto \ \emptyset1"} = \frac{49.00 \ cm2}{5.07 \ cm2} = 9.66 \ Varillas \ \approx 10 \ Varillas$

Figura 143: Columna de 70 x 70 Acero Colocado Fuente: Elaboración Propia

Debido a que en nuestro Reglamento Nacional de Edificaciones nos indica que la separación máxima entre varilla y varilla en columnas es de 15 cm hemos optado por adicionarle 2 varillas de acero a nuestro acero propuesto para cumplir con lo estipulado en el RNE.

Figura 144: Columna en T 85 x 85 x 35 Fuente: Elaboración Propia

DIAGRAMA DE MOMENTOS

DIAGRAMA DE FUERZAS CORTANTES

Figura 146: Diagrama de Fuerzas Cortantes Columna en T Critica Fuente: Elaboración Propia ACERO LONGITUDINAL REQUERIDO

Figura 147: Acero Requerido en Columna en T Critica Fuente: Elaboración Propia Área de Acero requerido = 47.25 cm2 = 1% del Ag

ACERO COLOCADO

 $\frac{Acero \ Requerido}{Acero \ Propuesto \ \emptyset \ 3/4"} = \frac{47.25 \ cm2}{2.85 \ cm2} = 16.58 \ Varillas \ \approx 17 \ Varillas$

Figura 148: Columna T de 85 X 85 X 35 Acero Colocado Fuente: Elaboración Propia

De igual manera debido a que el RNE estipula que la separación máxima entre varilla y varilla en columnas es de 15 cm hemos optado por adicionarle 5 varillas de acero a nuestro acero propuesto para cumplir con lo indicado en el RNE.

3.4.4 Diseño de Placas

Para el diseño de nuestras placas , hemos optado por realizar el diseño en hojas de calculo elaboradas en Excel , tomando los datos de nuestro modelamiento y análisis estructural , todos los datos que hemos empleados son los que se han recolectado de todo el primer nivel

El diseño de nuestras placas ha sido empleando el diseño por flexo-compresión y diseño por Corte , todos los criterios empleados han sido respetando todo lo indicado en el RNE , así como se muestran en las siguientes figuras.

PLACA 01

DATOS EN EL PRIMER NIVEL

Cuadro 25: Datos de Placa 01 - Primer Nivel

Ρ	V2	V3	т	M2	М3
-208.203	-1.0846	1.2792	-0.6097	2.0005	-2.1654
-20.7212	-0.2027	0.2917	-0.2458	0.3083	-0.5411
124.1432	14.4565	49.9593	30.5033	309.2721	137.2482
156.4193	54.9349	16.3752	32.8548	152.8449	341.7285

Fuente: Elaboración Propia

SISXX									
	COMPOS	COMBINA	CIONES D	E DISEÑO					
	COMBOS	Р	M2	M3					
	U1=1.4CM+1.7CV	326.71	3.32481	-3.9514					
	U2=1.25(CM+CV)+SISXX	410.298	312.1581	133.8651					
SISMO XX	U3=1.25(CM+CV)-SISXX	162.0116	-306.386	-140.631					
POSITIVO	U4=0.9CM+SISXX	311.5255	311.0726	135.2993					
	U5=0.9CM-SISXX	63.23914	-307.472	-139.197					
	U2=1.25(CM+CV)+SISXX	410.298	-312.158	-133.865					
SISMO XX	U3=1.25(CM+CV)-SISXX	162.0116	306.3861	140.6313					
NEGATIVO	U4=0.9CM+SISXX	311.5255	-311.073	-135.299					
	U5=0.9CM-SISXX	63.23914	307.4717	139.1971					

Cuadro 26: Combinaciones de Carga – Placa 01 - X

SISYY									
	COMPOS	COMBINACIO	NES DE D	ISEÑO					
	CONIDOS	Р	M2	M3					
	U1=1.4CM+1.7CV	326.70968	3.32481	-3.9514					
	U2=1.25(CM+CV)+SISYY	442.57405	155.7309	338.3454					
SISMO YY	U3=1.25(CM+CV)-SISYY	129.73545	-149.959	-345.112					
POSITIVO	U4=0.9CM+SISYY	343.80164	154.6454	339.7796					
	U5=0.9CM-SISYY	30.96304	-151.044	-343.677					
	U2=1.25(CM+CV)+SISYY	442.57405	-155.731	-338.345					
SISMO YY	U3=1.25(CM+CV)-SISYY	129.73545	149.9589	345.1116					
NEGATIVO	U4=0.9CM+SISYY	343.80164	-154.645	-339.78					
	U5=0.9CM-SISYY	30.96304	151.0445	343.6774					

Cuadro 27: Combinaciones de Carga - Placa 01 - Y

Fuente: Elaboración Propia

DISEÑO POR FLEXO-COMPRESIÓN

ACERO PROPUESTO EN PLACA - 01

Figura 149 : Acero Propuesto – Placa 01 Fuente: Elaboración Propia

DIAGRAMA DE INTERACCIÓN DE PLACA - 01

Figura 150 : Diagrama de interacción X – Placa 01 Fuente: Elaboración Propia

Figura 151 : Diagrama de interacción Y – Placa 01 Fuente: Elaboración Propia

ACERO COLOCADO

Figura 152 : Acero Colocado – Placa 01 Fuente: Elaboración Propia

DISEÑO POR CORTE

Cuadro 28 : Verificación de Resistencia al Corte - Placa 01

					RNE-E.060: 21.9.5.3						11.10.5			11.5	5.7.9	
	MURO									Vn=Vc+Vs						
PISO	PIER	Lm	em	f´c	Vua	Mua	Mur=Mn	Mur/Mua	Vu/Φ	Vc (ton)	Hm/Lm	αC	Vc máx (ton)	Vs (ton)	Vs máx (ton)	Vs max??
1	PLACA 01	3.5	0.35	210	56.544	345.112	628.571	1.82135687	121.160998	75.2682108	9.14	0.53	94.0852635	45.8927872	298.232533	CUMPLE
2	PLACA 01	3.5	0.35	210	41.769	175.114	621.429	3.54870108	174.383693	75.2682108	8.00	0.53	94.0852635	99.115482	298.232533	CUMPLE
3	PLACA 01	3.5	0.35	210	37.592	100.767	600.000	5.9543362	263.334896	75.2682108	6.86	0.53	94.0852635	188.066686	298.232533	CUMPLE
4	PLACA 01	3.5	0.35	210	31.743	53.724	578.571	7	261.410059	75.2682108	5.71	0.53	94.0852635	186.141848	298.232533	CUMPLE
5	PLACA 01	3.5	0.35	210	27.107	34.024	571.429	7	223.233706	75.2682108	4.57	0.53	94.0852635	147.965495	298.232533	CUMPLE
6	PLACA 01	3.5	0.35	210	21.757	40.727	564.286	7	179.172	75.2682108	3.43	0.53	94.0852635	103.903789	298.232533	CUMPLE
7	PLACA 01	3.5	0.35	210	14.641	47.856	557.143	7	120.568824	75.2682108	2.29	0.53	94.0852635	45.3006127	298.232533	CUMPLE
8	PLACA 01	3.5	0.35	210	15.278	54.080	550.000	7	125.818412	75.2682108	1.20	0.53	94.0852635	50.5502009	298.232533	CUMPLE

Fuente: Elaboración Propia

Cuadro 29 : Diseño de Acero Horizontal - Placa 01

21.9.4.3	ACERO MINIMO 11.10.7		11.10.10.1						С	LASI	СА
	0.085RAIZAcw		REFUE	RZO HORIZOI	NTAL						
N° Hileras	0.27*raiz(f´c)*Acw	Usar	ph=Vs/(Acw*fy)	Vs final (ton)	Φ	Area (cm2)					m
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453
2	47.93022859	Vs=Acw.ph.fy	0.00366	188.066686	5/8"	1.98	2	ф	5/8"	@	0.31
2	47.93022859	Vs=Acw.ph.fy	0.00362	186.141848	5/8"	1.98	2	φ	5/8"	@	0.313
2	47.93022859	Vs=Acw.ph.fy	0.00288	147.965495	5/8"	1.98	2	φ	5/8"	@	0.393
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453

	11.1	0.4	11.10.10.3					CLASICA		
	Vn			REFUERZO VERTICAL						
Vn real (ton)	Vn máx (ton)	Vn máx??	pv	ф	Area (cm2)					m
203.8932108	461.5503494	cumple	0.0025	1/2"	1.29	2	φ	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.29	2	ф	1/2"	@	0.29
263.3348964	461.5503494	cumple	0.0025	1/2"	1.29	2	φ	1/2"	0	0.29
261.4100588	461.5503494	cumple	0.0025	1/2"	1.29	2	φ	1/2"	0	0.29
223.2337059	461.5503494	cumple	0.0025	1/2"	1.29	2	φ	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.29	2	φ	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.29	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.29	2	ф	1/2"	0	0.29

Cuadro 30 : Verificación de Acero Vertical - Placa 01

Fuente: Elaboración Propia

Cuadro 31	: Disposición	de Acero -	Placa 01
-----------	---------------	------------	----------

	CONCLUSION											
	HC	RIZONT	AL			١	/ERTICAI	-				
2	ф	5/8"	@	25	2	ф	1/2"	@	20			
2	ф	5/8"	@	25	2	ф	1/2"	@	20			
2	ф	5/8"	@	25	2	ф	1/2"	@	20			
2	ф	5/8"	@	25	2	ф	1/2"	@	20			
2	ф	5/8"	@	25	2	ф	1/2"	@	20			
2	ф	5/8"	@	25	2	ф	1/2"	@	20			
3	ф	5/8"	@	25	2	ф	1/2"	@	20			
4	φ	5/8"	@	25	2	φ	1/2"	@	20			

SECCIÓN FINAL PL - 01

Figura 153 : Sección Final – Placa 01 Fuente: Elaboración Propia

PLACA 02

DATOS EN EL PRIMER NIVEL

Cuadro 32: Datos de Placa 02 - Primer Nivel

Р	V2	V3	т	M2	М3
-296.187	-0.1019	-2.2452	-0.0217	-3.3324	-1.0464
-35.6642	-0.0263	-0.6675	-0.0055	-0.9784	-0.2892
98.8341	28.3028	37.0844	6.4833	206.8079	194.302
13.4485	159.2863	4.9917	34.6923	27.9525	1072.128

COMBINACIONES

SISXX									
	COMPOS	COMBINA	CIONES D	E DISEÑO					
	CONIDOS	Р	M2	M3					
	U1=1.4CM+1.7CV	475.291	-6.3286	-1.9566					
	U2=1.25(CM+CV)+SISXX	513.648	201.4194	192.6325					
SISMO XX	U3=1.25(CM+CV)-SISXX	315.9798	-212.196	-195.972					
POSITIVO	U4=0.9CM+SISXX	365.4023	203.8087	193.3602					
	U5=0.9CM-SISXX	167.7341	-209.807	-195.244					
	U2=1.25(CM+CV)+SISXX	513.648	-201.419	-192.633					
SISMO XX	U3=1.25(CM+CV)-SISXX	315.9798	212.1964	195.9715					
NEGATIVO	U4=0.9CM+SISXX	365.4023	-203.809	-193.36					
	U5=0.9CM-SISXX	167.7341	209.8071	195.2438					

Cuadro 33: Combinaciones de Carga – Placa 02 - X

Fuente: Elaboración Propia

Cuadro 34: Combinaciones de Carga – Placa 02 - Y

SISYY										
	COMPOS	COMBINACIO	NES DE D	ISEÑO						
	CONIDOS	Р	M2	M3						
	U1=1.4CM+1.7CV	475.2908	-6.3286	-1.9566						
	U2=1.25(CM+CV)+SISYY	428.262375	22.564	1070.458						
SISMO YY	U3=1.25(CM+CV)-SISYY	401.365375	-33.341	-1073.8						
POSITIVO	U4=0.9CM+SISYY	280.01671	24.95334	1071.186						
	U5=0.9CM-SISYY	253.11971	-30.9517	-1073.07						
	U2=1.25(CM+CV)+SISYY	428.262375	-22.564	-1070.46						
SISMO YY	U3=1.25(CM+CV)-SISYY	401.365375	33.341	1073.797						
NEGATIVO	U4=0.9CM+SISYY	280.01671	-24.9533	-1071.19						
	U5=0.9CM-SISYY	253.11971	30.95166	1073.07						

Figura 154 : Acero Propuesto – Placa 02 Fuente: Elaboración Propia

DIAGRAMA DE ITERACIÓN DE PLACA - 02

Figura 155 : Diagrama de interacción X – Placa 02 Fuente: Elaboración Propia

Figura 156 : Diagrama de interacción Y – Placa 02 Fuente: Elaboración Propia

ACERO COLOCADO

PL-2

Figura 157 : Acero Colocado – Placa 02 Fuente: Elaboración Propia

DISEÑO POR CORTE

Cuadro 35 : Verificación de Resistencia al Corte – Placa 02

				RNE-E.060: 21.9.5.3					11.10.5				11.5.7.9			
MURO												Vn=Vc+Vs				
PISO	PIER	Lm	em	f´c	Vua	Mua	Mur=Mn	Mur/Mua	Vu/Ф	Vc (ton)	Hm/Lm	αC	Vc máx (ton)	Vs (ton)	Vs máx (ton)	Vs max??
1	PLACA 02	4.15	0.35	210	159.447	1073.797	1685.714	1.56986251	294.481367	89.2465928	7.71	0.53	111.558241	205.234774	353.618575	CUMPLE
2	PLACA 02	4.15	0.35	210	129.168	571.833	1671.429	2.5	379.905515	89.2465928	6.75	0.53	111.558241	290.658922	353.618575	CUMPLE
3	PLACA 02	4.15	0.35	210	105.161	301.185	1657.143	3.5	433.015882	89.2465928	5.78	0.53	111.558241	343.76929	353.618575	CUMPLE
4	PLACA 02	4.15	0.35	210	90.880	156.900	1650.000	4	427.671765	89.2465928	4.82	0.53	111.558241	338.425172	353.618575	CUMPLE
5	PLACA 02	4.15	0.35	210	75.288	90.564	1635.714	4.95	438.444503	89.2465928	3.86	0.53	111.558241	349.19791	353.618575	CUMPLE
6	PLACA 02	4.15	0.35	210	58.200	101.217	1600.000	6.4	438.209318	89.2465928	2.89	0.53	111.558241	348.962725	353.618575	CUMPLE
7	PLACA 02	4.15	0.35	210	38.522	124.442	1592.857	7	317.2435	89.2465928	1.93	0.8	168.389798	227.996907	353.618575	CUMPLE
8	PLACA 02	4.15	0.35	210	14.917	43.756	428.571	7	122.847735	89.2465928	1.01	0.8	168.389798	33.6011425	353.618575	CUMPLE

Fuente: Elaboración Propia

Cuadro 36 : Diseño de Acero Horizontal – Placa 02

21.9.4.3	ACERO MIN	IIMO 11.10.7	11.10	.10.1					CLASICA		
	0.085RAIZAcw		REFUE	RZO HORIZOI	NTAL						
N° Hileras	0.27*raiz(f´c)*Acw	Usar	ph=Vs/(Acw*fy)	Vs final (ton)	ф	Area (cm2)					m
2	56.83155675	Vs=Acw.ph.fy	0.00336	205.234774	5/8"	1.98	2	ф	5/8"	@	0.336
2	56.83155675	Vs=Acw.ph.fy	0.00476	290.658922	5/8"	1.98	2	ф	5/8"	@	0.237
2	56.83155675	Vs=Acw.ph.fy	0.00564	343.76929	5/8"	1.98	2	ф	5/8"	@	0.201
2	56.83155675	Vs=Acw.ph.fy	0.00555	338.425172	5/8"	1.98	2	ф	5/8"	@	0.204
2	56.83155675	Vs=Acw.ph.fy	0.00572	349.19791	5/8"	1.98	2	ф	5/8"	@	0.198
2	56.83155675	Vs=Acw.ph.fy	0.00572	348.962725	5/8"	1.98	2	ф	5/8"	@	0.198
2	56.83155675	Vs=Acw.ph.fy	0.00374	227.996907	5/8"	1.98	2	ф	5/8"	@	0.303
2	56.83155675	Vs=Acw.ph.fy	0.00250	152.5125	5/8"	1.98	2	ф	5/8"	@	0.453

	11.10.4		11.10.10.3		CLASICA					
	Vn			REFUERZO VERTICAL						
Vn real (ton)	Vn máx (ton)	Vn máx??	pv	ф	Area (cm2)					m
294.4813668	547.2668428	cumple	0.0025	1/2"	1.27	2	ф	1/2"	@	0.29
379.9055147	547.2668428	cumple	0.0025	1/2"	1.27	2	ф	1/2"	@	0.29
433.0158824	547.2668428	cumple	0.0025	1/2"	1.27	2	φ	1/2"	@	0.29
427.6717647	547.2668428	cumple	0.0025	1/2"	1.27	2	ф	1/2"	@	0.29
438.4445029	547.2668428	cumple	0.0025	1/2"	1.27	2	ф	1/2"	@	0.29
438.2093176	547.2668428	cumple	0.0025	1/2"	1.27	2	ф	1/2"	@	0.29
317.2435	547.2668428	cumple	0.0029	1/2"	1.27	2	ф	1/2"	0	0.25
241.7590928	547.2668428	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29

Cuadro 37 : Verificación de Acero Vertical – Placa 02

Fuente: Elaboración Propia

Cuadro 38 : Disposición de Acero – Placa 02

CONCLUSION											
	нс	RIZONT	AL		VERTICAL						
2	φ	5/8"	@	20	2	φ	1/2"	@	20		
2	φ	5/8"	@	20	2	ф	1/2"	@	20		
2	φ	5/8"	@	20	2	φ	1/2"	@	20		
2	φ	5/8"	@	20	2	φ	1/2"	@	20		
2	φ	5/8"	@	20	2	φ	1/2"	@	20		
2	φ	5/8"	@	20	2	φ	1/2"	@	20		
3	φ	5/8"	@	25	2	φ	1/2"	@	20		
4	ф	5/8"	@	25	2	φ	1/2"	@	20		

SECCIÓN FINAL PL - 02

Figura 158 : Sección Final – Placa 02 Fuente: Elaboración Propia

PLACA 03

DATOS EN EL PRIMER NIVEL

Cuadro 39 : Datos de Placa 03 - Primer Nivel

Р	V2	V3	т	M2	M3
-211.235	1.0039	-1.3677	-0.6985	-2.1254	1.6681
-20.7119	0.179	-0.3037	-0.2632	-0.447	0.2916
107.0487	29.8656	64.1944	46.1532	418.9047	255.3672
179.1721	76.8327	30.9392	52.5089	280.5066	499.14
COMBINACIONES

SISXX											
	COMPOS										
	CONIDO2	Р	M2	M3							
	U1=1.4CM+1.7CV	330.939	-3.7355	2.83106							
	U2=1.25(CM+CV)+SISXX	396.9817	415.6892	257.8168							
SISMO XX	U3=1.25(CM+CV)-SISXX	182.8843	-422.12	-252.918							
POSITIVO	U4=0.9CM+SISXX	297.1598	416.9918	256.8685							
	U5=0.9CM-SISXX	83.06235	-420.818	-253.866							
	U2=1.25(CM+CV)+SISXX	396.9817	-415.689	-257.817							
SISMO XX	U3=1.25(CM+CV)-SISXX	182.8843	422.1202	252.9176							
NEGATIVO	U4=0.9CM+SISXX	297.1598	-416.992	-256.868							
	U5=0.9CM-SISXX	83.06235	420.8176	253.8659							

Cuadro 40 : Combinaciones de Carga – Placa 03 - X

Fuente: Elaboración Propia

SISYY										
	COMPOS	COMBINACIONES DE DISEÑO								
	COIVIBUS	Р	M2	M3						
	U1=1.4CM+1.7CV	330.93853	-3.7355	2.83106						
	U2=1.25(CM+CV)+SISYY	469.1051	277.2911	501.5896						
SISMO YY	U3=1.25(CM+CV)-SISYY	110.7609	-283.722	-496.69						
POSITIVO	U4=0.9CM+SISYY	369.28315	278.5937	500.6413						
	U5=0.9CM-SISYY	10.93895	-282.419	-497.639						
	U2=1.25(CM+CV)+SISYY	469.1051	-277.291	-501.59						
SISMO YY	U3=1.25(CM+CV)-SISYY	110.7609	283.7221	496.6904						
NEGATIVO	U4=0.9CM+SISYY	369.28315	-278.594	-500.641						
	U5=0.9CM-SISYY	10.93895	282.4195	497.6387						

Cuadro 41 : Combinaciones de Carga – Placa 03 - Y

DISEÑO POR FLEXO-COMPRESIÓN ACERO PROPUESTO EN PLACA - 03

Figura 159 : Acero Propuesto – Placa 03 Fuente: Elaboración Propia

DIAGRAMA DE ITERACIÓN DE PLACA - 03

Figura 160 : Diagrama de interacción X – Placa 03 Fuente: Elaboración Propia

DISEÑO POR CORTE

Cuadro 42 : Verificación de Resistencia al Corte - Placa 03

RNE-E.060: 21.9.5.3				1.9.5.3				11.10.5			11.5	5.7.9				
		MURO								Vn=Vc+Vs						
PISO	PIER	Lm	em	f´c	Vua	Mua	Mur=Mn	Mur/Mua	Vu/Φ	Vc (ton)	Hm/Lm	αC	Vc máx (ton)	Vs (ton)	Vs máx (ton)	Vs max??
1	PLACA 03	3.5	0.35	210	78.311	501.590	1135.714	2.26423002	208.605709	75.2682108	9.14	0.53	94.0852635	133.337498	298.232533	CUMPLE
2	PLACA 03	3.5	0.35	210	59.650	262.778	1121.429	4.26759454	299.486857	75.2682108	8.00	0.53	94.0852635	224.218646	298.232533	CUMPLE
3	PLACA 03	3.5	0.35	210	53.191	150.359	1071.429	5.9	369.205515	75.2682108	6.86	0.53	94.0852635	293.937304	298.232533	CUMPLE
4	PLACA 03	3.5	0.35	210	44.844	78.672	1000.000	7	369.305588	75.2682108	5.71	0.53	94.0852635	294.037377	298.232533	CUMPLE
5	PLACA 03	3.5	0.35	210	37.862	47.636	942.857	7	311.808206	75.2682108	4.57	0.53	94.0852635	236.539995	298.232533	CUMPLE
6	PLACA 03	3.5	0.35	210	29.790	56.187	914.286	7	245.326735	75.2682108	3.43	0.53	94.0852635	170.058524	298.232533	CUMPLE
7	PLACA 03	3.5	0.35	210	19.535	66.850	885.714	7	160.879765	75.2682108	2.29	0.53	94.0852635	85.6115539	298.232533	CUMPLE
8	PLACA 03	3.5	0.35	210	18.300	69.991	785.714	7	150.704441	75.2682108	1.20	0.8	142.015492	75.4362304	298.232533	CUMPLE

Fuente: Elaboración Propia

Cuadro 43 : Diseño de Acero Horizontal – Placa 03

21.9.4.3	ACERO MIN	IIMO 11.10.7	11.10	.10.1						CLASICA		
	0.085RAIZAcw		REFUE	RZO HORIZO	NTAL							
N° Hileras	0.27*raiz(f´c)*Acw	Usar	ph=Vs/(Acw*fy)	Vs final (ton)	ф	Area (cm2)					m	
2	47.93022859	Vs=Acw.ph.fy	0.00259	133.337498	5/8"	1.98	2	φ	5/8"	@	0.437	
2	47.93022859	Vs=Acw.ph.fy	0.00436	224.218646	5/8"	1.98	2	φ	5/8"	@	0.26	
2	47.93022859	Vs=Acw.ph.fy	0.00571	293.937304	5/8"	1.98	2	φ	5/8"	@	0.198	
2	47.93022859	Vs=Acw.ph.fy	0.00572	294.037377	5/8"	1.98	2	φ	5/8"	@	0.198	
2	47.93022859	Vs=Acw.ph.fy	0.00460	236.539995	5/8"	1.98	2	φ	5/8"	@	0.246	
2	47.93022859	Vs=Acw.ph.fy	0.00331	170.058524	5/8"	1.98	2	φ	5/8"	@	0.342	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453	

	11.1	0.4	11.10.10.3				CLASICA			
	Vn			REFUERZO VERTICAL						
Vn real (ton)	Vn máx (ton)	Vn máx??	pv	pv o Area (cm2)						m
208.6057092	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
299.4868566	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
369.2055147	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
369.3055882	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
311.8082059	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
245.3267353	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29

Cuadro 44 : Verificación de Acero Vertical - Placa 03

Fuente: Elaboración Propia

Cuadro 45 : Disposición de Acero – Placa 03

	CONCLUSION											
	нс	RIZONT	AL		VERTICAL							
2	φ	5/8"	@	20	2	φ	1/2"	@	20			
2	ф	5/8"	@	20	2	φ	1/2"	@	20			
2	φ	5/8"	@	20	2	φ	1/2"	@	20			
2	φ	5/8"	@	20	2	φ	1/2"	@	20			
2	φ	5/8"	@	20	2	φ	1/2"	@	20			
2	ф	5/8"	@	25	2	φ	1/2"	@	20			
3	φ	5/8"	@	25	2	φ	1/2"	@	20			
4	φ	5/8"	@	25	2	φ	1/2"	@	20			

SECCIÓN FINAL PL - 03

Figura 163 : Sección Final – Placa 03

Fuente: Elaboración Propia

PLACA 04

DATOS EN EL PRIMER NIVEL

Cuadro 46 : Datos Placa 04 – Primer Nivel

Ρ	V2	V3	т	M2	М3
-211.701	-1.3729	1.0101	0.6972	1.7327	-2.2299
-20.7119	-0.3037	0.179	0.2632	0.2916	-0.447
106.9057	64.1632	29.65	46.0656	254.3654	418.642
144.731	19.7543	56.5964	36.1803	357.9545	181.1182

COMBINACIONES

SISXX											
	COMPOS	COMBOS COMBINACIONES DE DISEÑO									
	CONIDO2	Р	M2	M3							
	U1=1.4CM+1.7CV	331.591	2.9215	-3.8818							
	U2=1.25(CM+CV)+SISXX	397.4217	256.8958	415.2959							
SISMO XX	U3=1.25(CM+CV)-SISXX	183.6103	-251.835	-421.988							
POSITIVO	U4=0.9CM+SISXX	297.4365	255.9248	416.6351							
	U5=0.9CM-SISXX	83.62511	-252.806	-420.649							
	U2=1.25(CM+CV)+SISXX	397.4217	-256.896	-415.296							
SISMO XX	U3=1.25(CM+CV)-SISXX	183.6103	251.835	421.9881							
NEGATIVO	U4=0.9CM+SISXX	297.4365	-255.925	-416.635							
	U5=0.9CM-SISXX	83.62511	252.806	420.6489							

Cuadro 47 : Combinaciones de Carga – Placa 04 - X

Fuente: Elaboración Propia

SISYY											
	COMPOS	COMBINACIONES DE DISEÑO									
	CONIDOS	Р	M2	M3							
	U1=1.4CM+1.7CV	331.59149	2.9215	-3.8818							
	U2=1.25(CM+CV)+SISYY	435.247	360.4849	177.7721							
SISMO YY	U3=1.25(CM+CV)-SISYY	145.785	-355.424	-184.464							
POSITIVO	U4=0.9CM+SISYY	335.26181	359.5139	179.1113							
	U5=0.9CM-SISYY	45.79981	-356.395	-183.125							
	U2=1.25(CM+CV)+SISYY	435.247	-360.485	-177.772							
SISMO YY	U3=1.25(CM+CV)-SISYY	145.785	355.4241	184.4643							
NEGATIVO	U4=0.9CM+SISYY	335.26181	-359.514	-179.111							
	U5=0.9CM-SISYY	45.79981	356.3951	183.1251							

DISEÑO POR FLEXO-COMPRESIÓN ACERO PROPUESTO EN PLACA - 04

Figura 164 : Acero Propuesto – Placa 04 Fuente: Elaboración Propia

DIAGRAMA DE ITERACIÓN DE PLACA – 04

Figura 165 : Diagrama de interacción X – Placa 04 Fuente: Elaboración Propia

DISEÑO POR CORTE

Cuadro 49: Verificación de Resistencia al Corte - Placa 04

	RNE-E.060: 21.9.5.3					11.10.5					11.5.7.9					
		MURO								Vn=Vc+Vs						
PISO	PIER	Lm	em	f´c	Vua	Mua	Mur=Mn	Mur/Mua	Vu/Φ	Vc (ton)	Hm/Lm	αC	Vc máx (ton)	Vs (ton)	Vs máx (ton)	Vs max??
1	PLACA 04	3.5	0.35	210	66.259	421.988	714.286	1.69266781	131.946343	75.2682108	9.14	0.53	94.0852635	56.6781323	298.232533	CUMPLE
2	PLACA 04	3.5	0.35	210	50.866	219.684	700.000	3.18639428	190.682362	75.2682108	8.00	0.53	94.0852635	115.414151	298.232533	CUMPLE
3	PLACA 04	3.5	0.35	210	42.389	119.333	692.857	5.80607315	289.544428	75.2682108	6.86	0.53	94.0852635	214.276217	298.232533	CUMPLE
4	PLACA 04	3.5	0.35	210	35.489	64.269	671.429	7	292.260294	75.2682108	5.71	0.53	94.0852635	216.992083	298.232533	CUMPLE
5	PLACA 04	3.5	0.35	210	29.897	45.336	664.286	7	246.208118	75.2682108	4.57	0.53	94.0852635	170.939907	298.232533	CUMPLE
6	PLACA 04	3.5	0.35	210	23.882	57.043	657.143	7	196.673029	75.2682108	3.43	0.53	94.0852635	121.404819	298.232533	CUMPLE
7	PLACA 04	3.5	0.35	210	16.130	66.304	650.000	7	132.837971	75.2682108	2.29	0.53	94.0852635	57.5697598	298.232533	CUMPLE
8	PLACA 04	3.5	0.35	210	18.337	70.034	642.857	7	151.006471	75.2682108	1.20	0.8	142.015492	75.7382598	298.232533	CUMPLE

Fuente: Elaboración Propia

Cuadro 50: Diseño de Acero Horizontal - Placa 04

21.9.4.3	ACERO MIN	IIMO 11.10.7	11.10	.10.1						CLASICA		
	0.085RAIZAcw		REFUE	RZO HORIZOI	NTAL							
N° Hileras	0.27*raiz(f´c)*Acw	Usar	ph=Vs/(Acw*fy)	Vs final (ton)	ф	Area (cm2)					m	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	0	0.453	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453	
2	47.93022859	Vs=Acw.ph.fy	0.00416	214.276217	5/8"	1.98	2	φ	5/8"	@	0.272	
2	47.93022859	Vs=Acw.ph.fy	0.00422	216.992083	5/8"	1.98	2	φ	5/8"	@	0.268	
2	47.93022859	Vs=Acw.ph.fy	0.00332	170.939907	5/8"	1.98	2	φ	5/8"	@	0.341	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453	
2	47.93022859	Vs=Acw.ph.fy	0.00250	128.625	5/8"	1.98	2	φ	5/8"	@	0.453	

	11.10.4		11.10.10.3						CLASICA	
Vn			REFUERZO VERTICAL							
Vn real (ton)	Vn máx (ton)	Vn máx??	pv	ф	Area (cm2)					m
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
289.5444279	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
292.2602941	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
246.2081176	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29
203.8932108	461.5503494	cumple	0.0025	1/2"	1.27	2	ф	1/2"	0	0.29

Cuadro 51: Verificación de Acero Vertical - Placa 04

Fuente: Elaboración Propia

CONCLUSION										
HORIZONTAL					VERTICAL					
2	φ	5/8"	@	25	2	φ	1/2"	@	20	
2	φ	5/8"	@	25	2	φ	1/2"	@	20	
2	φ	5/8"	@	25	2	φ	1/2"	@	20	
2	φ	5/8"	@	25	2	φ	1/2"	@	20	
2	φ	5/8"	@	25	2	φ	1/2"	@	20	
2	φ	5/8"	@	25	2	φ	1/2"	@	20	
3	φ	5/8"	@	25	2	φ	1/2"	@	20	
4	φ	5/8"	@	25	2	φ	1/2"	@	20	

SECCIÓN FINAL PL - 04

3.4.5 Diseño de Losa de Cimentación

Continuando, presentamos las consideraciones que hemos tomado en cuenta para realizar el diseño estructural de la losa de cimentación:

-Capacidad portante del suelo

-Profundidad de cimentación (Df)

-Tipo de suelo para efectos sísmicos.

Esfuerzo Neto del Suelo

 $\sigma n = \sigma t - \gamma \text{suelo} \cdot hf - hz \cdot \gamma \text{concreto} - S/C$

 $\sigma n = 1.50 - 1.574 \text{x} 0.8/10 - 0.70^* 2.4/10 - 0.020$

 $\sigma n = 1.19 \text{ Kg/cm}^2$

Área de la platea: $23 \times 30 = 690.00$ m2.

Área (cm2) =6 900 000 cm²

Peso de La estructura = 6261.93 tn = 6 261 930 kg

Presión en el suelo = 6 261 930 kg / 6 900 000 cm²= 0.9075 kg/cm

Por lo tanto, obtenemos como resultado que la resistencia del suelo es mayor a la presión del suelo, por lo tanto, se aceptan las dimensiones de la losa de cimentación.

Figura 170: Acero Colocado en Losa de Cimentación Fuente: Elaboración Propia

IV. DISCUSIÓN

En la tesis de Lias y Pascual (2019) titulada "Diseño estructural de una edificación multifamiliar de 10 niveles en la urbanización Las Flores de San Isidro, Trujillo 2019" en la cual nos anexa los cuadros de columna en el plano E-01, en el que se muestra una columna C-1 con dimensiones de 30 cm x 30 cm la cual cuenta con refuerzo de 8 $Ø \frac{1}{2}$ ", consideramos que es un error tremendo el emplear este tipo de columnas para un edificio de 10 niveles ya que en investigación ya realizadas nos da a conocer que la sección mínima de columnas resistente a fuerzas sísmicas debe de contar con una sección de 1000cm², por ende consideramos que no se realizo el correcto predimensionamiento estructural y de igual manera no se empleó el correcto análisis sísmico ya que de haberlo realizado correctamente en esos puntos no les hubiera arrojado esa columna con poca sección .

En la tesis de Obeso (2020) titulada "Diseño estructural en concreto armado de una vivienda multifamiliar de 8 niveles" dentro del diseño de cimentación emplea un análisis y diseño por elementos finitos de dicha losa de cimentación con lo cual estamos en desacuerdo ya que bien es cierto que también se puede emplear este método no lo recomendamos debido a que no arroja los momentos máximos en cada punto si no en este método las fuerzas son distribuidas en un área mayor que en donde se esta aplicando esta fuerza realmente , por ello el diseño de sus elementos estructurales no serán tan precisos debido a que le arrojara menores momentos máximos y tendrá un rango de error mayor , lo que nosotros recomendamos es emplear el diseño y análisis por franjas ya que con este diseño se puede tener una mayor precisión en los cálculos de la cimentación.

En la tesis de Siesquen, Jose y Siesquen, Luis (2020) titulada "Diseño estructural y modelamiento sismo resistente del nuevo pabellón de 10 pisos de la facultad de ingeniería de la universidad César Vallejo, Moche, Trujillo", en su conclusión nos indica que al realizar su predimensionamiento por el método del ING. Otazzi estos elementos le resultaron robustos por ende no tuvo problemas de rigidez, estamos en desacuerdo con su conclusión ya que estos datos obtenidos por el predimensionamiento solo son datos preliminares para iniciar un análisis estructural y no necesariamente deben de mantenerse con esas secciones arrojadas por el predimensionamiento ya que si son muy robustos puede que la estructura sea demasiada rígida y pueda presentar algún tipo de fenómeno de resonancia, ya que la edificación es de una gran altura y como se sabe que a mayor altura y demasiada rigidez se puede generar este tipo de fenómeno de resonancia.

En la tesis de Morocho(2016) titulada "Diseño estructural de un edificio de concreto armado de siete pisos" nos comenta en su conclusión que el desplazamiento máximo obtenido en la dirección X es de 0.026% y en la dirección Y de 0.508%, el valor del desplazamiento máximo de X es cuestionable ya que al ser un edificio de gran nivel en esta dirección presenta una elevada rigidez por ende al producirse un sismo de gran magnitud este edificio pueda sufrir gran daño debido a que no tendrá un adecuado comportamiento los elementos estructurales propuesto en esa dirección debido a su alta rigidez que presentan dichos elementos.

V. CONCLUSIONES

- El diseño de arquitectura se realizó empleando toda la normativa vigente en el RNE, tanto la Norma A-10 como la A-20.
- 2. Se efectuó el pre-dimensionamiento estructural de cada elemento estructural de nuestra edificación empleando distintos criterios , dentro de los cuales nos arrojaron dimensiones preliminares , por ejemplo columnas de 0.45 x 0.45 , 0.50 x 0.50 y 0.60 x 0.60 , en el caso de nuestras vigas obtuvimos nuestras vigas de 0.30 x 0.45 , las cuales fueron modificadas debido a los requerimientos estipulados en nuestro RNE.
- 3. El modelamiento estructural se realizo en el programa Etabs y en el software Safe gracias a los estos softwares se hizo mas fácil el análisis y diseño de nuestro proyecto, dentro de este punto obtuvimos las irregularidades estructurales de nuestra edificación, el peso total de la edificación, modos de vibración, desplazamientos máximos, momentos, cortantes todos estos resultados se contrastaron con el RNE.
- 4. Para el diseño estructural sismorresistente de nuestra edificación empleamos los datos obtenidos de los software ya mencionados debido a que se realizo la programación con nuestra normativa vigente, obtuvimos las secciones finales de cada elemento estructural con su debida distribución de acero calculadas con la solicitación sísmica de cada elemento estructural.

VI. RECOMENDACIONES

- El empleo de softwares tanto para el análisis como para el diseño de una edificación tiene una gran ventaja debido a que se facilita el análisis de la estructura y si se configura de la manera correcta en el mismo software se realiza el diseño de los elementos estructurales.
- Para el análisis y diseño de una edificación de 8 niveles de concreto armado es recomendable tener un área mayor a lo que ocupara nuestra super estructura debido a que al diseñar la cimentación esta tendrá mayores dimensiones y se evitarían las columnas excéntricas dentro de nuestra cimentación.
- 3. Siempre es bueno verificar las irregularidades estructurales de la edificación ya que si fuera el caso de que presenten irregularidades la estructura sufriría mayores fuerzas sísmicas al momento de un fenómeno sísmico.
- 4. Es sumamente importante realizar un buen detallado de los planos estructurales para que estos sean legibles y sean de fácil comprensión ante cualquier maestro de obra.
- 5. Se debe de considerar que la estructura a medida de que tiene mayor altura esta cuente con geometría regular ya que de esta manera la estructura tendrá un mejor comportamiento dinámico.

REFERENCIAS

AGUIAR, Roberto y ORTIZ, Dennis. "Seismic analysis of a twelve story building of Manta city considering soil Structure Interaction". Revista Internacional de Ingeniería de Estructuras [en línea]. Julio del 2017, N°021. [Fecha de consulta: 20 de Octubre del 2020].Disponible en <u>http://riie.espe.edu.ec/volumen-22-3-ano-2017/</u>

ISSN: 1390- 0315.

ALVAREZ, Eduardo. "Influence of the dead loads in the seismic design of ductile frames of reinforced concrete". Revista Ciencia en tu PC [en línea]. Abril del 2019, n.º2. [Fecha de consulta: 1 de Noviembre del 2020]. Disponible en https://www.redalyc.org/articulo.oa?id=181359681005.pdf ISSN: 1027-2887.

ARCHUNDIA, Hans {et.al}. "Revisión de la seguridad Sísmica de un edificio de concreto reforzado de mediana altura fuertemente irregular existente en la ciudad de México". Revista Internacional de Ingeniería de Estructuras [en línea]. Julio del 2018, n.º12. [Fecha de consulta: 21 de Octubre del 2020]. Disponible en <u>http://riie.espe.edu.ec/volumen-22-3-ano-2017/</u>

ISSN: 1390-0315.

BARBA, Diego y LA TORRE, Josue, "Diseño estructural de un edificio de pisos en el suelo rígido de Lima haciendo uso de losas postensadas", Tesis para optar por al titulo de ingeniero civil , Universidad Peruana de Ciencias , [Fecha de consulta: 22 de Octubre del 2020]. Disponible en <u>http://hdl.handle.net/10757/652574</u>

BILOTTA, Antonio {et.al}. Soil-structure interaction effects on the seismic performances of reinforced concrete moment resisting frames. Revista ELSEVIER (en línea). Marzo del 2017, N° 199 [Fecha de consulta: 10 de Diciembre del 202020].

Disponible https://www.sciencedirect.com/science/article/pii/S1877705817333969

ISSN: 1877-7058.

BOZZO, Luis {et.al}. "Modeling, analysis and seismic design of structures using energy dissipators SLB". Revista UNI [en línea]. Agosto del 2019, n.º29. [Fecha de consulta: 14 de octubre del 2019]. Disponible en http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/713.

ISSN: 2309-0413.

BROWN, Nathan y MUELLER, Caitlin. "Design for structural and energy performance of long span buildings using geometric multi-objective optimization. Revista ELSEVIER. Mayo del 2016, N° 127 [Fecha de consulta: 02 de Diciembre del 2020].Disponible en

https://www.sciencedirect.com/science/article/abs/pii/S0378778816304790

ISSN: 0378-7788.

CAMACHO, Cesar, ESPAÑA, Sheila y GODÍNEZ, Eber. Seismic design of RC framed buildings considering different criteria for the definition of the effective stiffnesses of structural members. Revista Internacional de Ingeniería de Estructuras [en línea]. Octubre del 2017, n.º22. [Fecha de consulta: 02 de Noviembre del 2020].

Disponible en http://riie.espe.edu.ec/volumen-22-4-ano-2017/.

ISSN: 1390-0315.

CASTAÑEDA, Ángel y MIELES, Yordy. Overview of the Structural Behavior of Columns, Beams, Floor, Slabs and Buildings during the Earthquake of 2016 in Ecuador. Revista Ingeniería de la construcción [en línea]. Diciembre del 2017, n.º32. [Fecha de consulta: 31 de Octubre del 2020]. Disponible en <u>http://dx.doi.org/10.4067/S0718-50732017000300157</u>

ISSN: 0718-5073.

CORREIA, Rubén y SILVA, Paulo. "Simplified assessment of the effects of columns shortening on the response of tall concrete buildings". Revista ELSEVIER [en línea]. Setiembre del 2017, N° 05. [Fecha de consulta: 19 de Octubre del 2020]. Disponible en <u>https://www.sciencedirect.com/science/article/pii/S245232161730207X</u>

ISSN: 2452-3216.

CHAARI, Majdi {et.al}. An adaptive modeling approach to structural health monitoring of multistory buildings. Revista ELSEVIER [en línea]. Enero del 2019, n.º440. [Fecha de consulta: 05 de Noviembre del 2020]. Disponible en https://www.sciencedirect.com/science/article/pii/S0022460X18306928

ISSN: 0022-460X.

DIAZ, Miguel, MORALES, Jorge y PALACIOS, Julian." Analysis of structural performance of existing RC building designated as tsunami evacuation shelter in case of earthquake-tsunami scenarios in Lima city". Revista UNI [en línea]. Agosto del 2019, n.º29. [Fecha de consulta 01 de Noviembre del 2020]. Disponible en <u>http://www.revistas.uni.edu.pe/index.php/tecnia/article/view/704</u>

ISSN: 2309-0413.

DURAND, Rafael, GONZALEZ, Mayra y RUIZ, José. "Evaluación del comportamiento estructural del edificio el Marvy". Revista Ciencia en tu PC [en línea]. Octubre del 2018, N° 4 [Fecha de consulta: 10 de Octubre del 2020]. Disponible en https://www.redalyc.org/jatsRepo/1813/181358509007/index.html

ISSN: 1027-2887.

GARCÍA, Yuliet, GONZÁLEZ, Mayra y RUIZ, José. "Rehabilitación estructural del Hotel Imperial, Santiago de Cuba". Revista Ciencia en tu PC [en línea]. Octubre del 2016, n.º4. [Fecha de consulta: 15 de Noviembre del 201]. Disponible en https://www.redalyc.org/articulo.oa?id=181351126002

ISSN: 1027-2887.

HARMSEN, Teodoro. Diseño de Estructuras de Concreto Armado [en línea].1.a ed .Perú : Fondo editorial Pontificia Universidad Católica del Perú, 2017 Pontificia Universidad Católica del Perú [Fecha de consulta: 30 de Octubre del 2020].

Disponible en: <u>https://www.fondoeditorial.pucp.edu.pe/ingenieria/613-diseno-de-</u>estructuras-de-concreto-armado-.html#.Xbd9JppKjIW.

ISBN: 9786123172978.

HERRERA, **Sergio**, "Diseño estructural de un edificio de oficinas de 5 pisos en Barranco", Tesis para optar por el titulo de ingeniero civil , Pontificia Universidad Catolica del Perú, Noviembre del 2020 , 152pp. [Fecha de consulta: 12 de Noviembre del 2020].

Disponible en https://www.redalyc.org/jatsRepo/1813/181358509007/index.html

LIAS, Nieves y PASCUAL, Dennis, "Diseño estructural de una edificación multifamiliar de 10 niveles en la urbanización Las Flores de San Isidro, Trujillo 2019", Tesis para optar por el título de ingeniero civil, Universidad Cesar Vallejo, 2020, 254pp [Fecha de consulta: 29 de Octubre del 2020]. , Disponible en https://hdl.handle.net/20.500.12692/44392

MOROCHO, Fernando. "Diseño estructural de un edificio de concreto armado de siete pisos". Tesis (Ingeniero Civil). Lima: Pontifica Universidad Católica del Perú, Marzo del 2016, 96pp [Fecha de consulta: 20 de Noviembre del 2020]. , Disponible en <u>http://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/6628</u>.

MUÑOZ, Carlos. Metodología de la investigación [en línea]. 1.a ed. México: Lilia Guadalupe Aguilar Iriarte, 2015 [Fecha de consulta: 19 de octubre del 2020]. Se encuentra:

https://books.google.com.pe/books?id=DflcDwAAQBAJ&printsec=frontcover&dq=li bros+de+proyecto+de+investigaci%C3%B3n+pdf+2015&hl=es&sa=X&ved=0ahUK Ewiurl3lirnIAhXIIbkGHejdC2oQ6AEIRjAE#v=onepage&q&f=false

ISBN: 9786074265422.

NORMAS Legales (Perú). Reglamento Nacional de Edificaciones. Norma Técnica E.020 Cargas. [en línea]. Lima: RNE, 2006. 8 pp. [fecha de consulta: 5 de Noviembre del 2020].

Disponible:

http://cdnweb.construccion.org/normas/rne2012/rne2006/files/titulo3/02_E/RNE200 6_E_020.pdf **NORMAS Legales (Perú).** Reglamento Nacional de Edificaciones. Norma Técnica E.030 Diseño Sismo-resistente. [en línea]. Lima: RNE, 2016. 30 pp. [fecha de consulta: 6 de Noviembre del 2020].

Disponible:

http://cdn-

web.construccion.org/normas/rne2012/rne2006/files/titulo3/02_E/DS0032016_E.03 0.pdf

NORMAS Legales (Perú). Reglamento Nacional de Edificaciones. Norma Técnica E.060 Concreto Armado. [en línea]. Lima. RNE, 2009. 201 pp. [fecha de consulta: 10 de Noviembre del 2020].

Disponible en: http://www.construccion.org/normas/rne2012/rne2006.html

NEIRA BUSTAMENTE, GASPAR ISMAEL, "Diseño de un Edificio de Dieciocho Pisos Estructurado con Muros Mecedores y Comparación con uno Tradicional", Tesis para optar por al titulo de ingeniero civil, Universidad Técnico Federico Santa Maria, Departamento de Obras Civiles Valparaiso – CHILE 2017, 115pp. [Fecha de consulta: 10 de Octubre del 2020],Disponible en https://repositorio.usm.cl/handle/11673/23418

OBESO, Cesar, "Diseño estructural en concreto armado de una vivienda multifamiliar de 8 niveles", Tesis para optar por el titulo de ingeniero civil, Universidad Cesar Vallejo – Trujillo 2020,109pp. [Fecha de consulta: 25 de Noviembre del 2020],Disponible en <u>https://hdl.handle.net/20.500.12692/47189</u>

OLIVERA, Juan, OYARZO, Claudio y VERGARA, Luis. Structural health assessment of r/c building in the coastal área of Concepción, Chile. Revista

ELSEVIER [en línea]. Diciembre del 2017, n.º199. [Fecha de consulta: 29 de Octubre del 2020]. Disponible en:

https://www.researchgate.net/publication/319654979_Structural_health_assessme nt_of_a_RC_building_in_the_coastal_area_of_Concepcion_Chile

ISSN: 1877-7058.

PARRAGA, Alejandro, "Diseño estructural de un edificio multifamiliar en Jesús María", Tesis para optar por el titulo de ingeniero civil, Pontificia Universidad Católica del Perú – Noviembre del 2020,137pp. [Fecha de consulta: 20 de Noviembre del 2020],Disponible en <u>http://hdl.handle.net/20.500.12404/17473</u>

PORTOCARRERO, Helen. Diseño estructural en concreto armado de un edificio multifamiliar de 9 pisos más sótano, ubicado en una Urbanización Residencial en el Distrito de Cercado. Tesis (Título Profesional de Ingeniero Civil). Arequipa: Universidad Católica de Santa María, 2016.300 pp, [Fecha de Consulta: 25 de Noviembre del 2020]

Disponible en http://tesis.ucsm.edu.pe/repositorio/handle/UCSM/5748

SÁNCHEZ, Paúl. Diseño estructural de un edificio multifamiliar de 8 pisos en la ciudad de Huancayo. Tesis (Título Profesional de Ingeniero Civil). Huancayo: Universidad Peruana del Centro, 2019.174 pp. [Fecha de Consulta: 10 de Diciembre del 2020]

Disponible:

http://repositorio.upecen.edu.pe/bitstream/UPECEN/153/1/DISE%C3%91O%20ES TRUCTURAL%20DE%20UN%20EDIFICIO%20MULTIFAMILIAR%20DE%208%20 P%C3%8DSOS%20EN%20LA%20CIUDAD%20DE%20HUANCAYO.pdf SIESQUEN, José y SIESQUEN, Luis, "Diseño estructural y modelamiento sismo resistente del nuevo pabellón de 10 pisos de la facultad de ingeniería de la universidad César Vallejo, Moche, Trujillo", Tesis para optar por el título de ingeniero civil, Universidad Cesar Vallejo – Trujillo 2020,147pp. [Fecha de consulta: 27 de Noviembre del 2020],Disponible en https://hdl.handle.net/20.500.12692/44535

SMITH, Paul. Structural Design of Buildings [en línea].1.a ed.United Kingdom: Wiley & Sons Ltd, 2016 [Fecha de consulta: 01 de diciembre del 2020].

Disponible:

https://books.google.com.pe/books?id=AvWICgAAQBAJ&printsec=frontcover&hl=e s&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

ISBN: 9781118839416.

TICONA, Edwin. Análisis y Diseño Estructural en Concreto Armado, de un Edificio Multifamiliar de 6 pisos, ubicado en la Ciudad de Arequipa. Tesis (Título Profesional de Ingeniero Civil). Arequipa: Universidad Nacional de San Agustín de Arequipa, 2018.113 pp. [Fecha de Consulta: 28 de Noviembre del 2020]Disponible en <u>http://repositorio.unsa.edu.pe/handle/UNSA/5841</u>.

VILLAREAL, Genner. Interacción Sísmica Suelo-Estructura en edificaciones con plateas de cimentación [en línea].1.a ed. Perú : Imprenta Grafica Norte S.R.L, 2017 [Fecha de consulta: 15 de Noviembre del 2020].

Disponible en <u>https://civilgeeks.com/2018/01/04/libro-interaccion-sismica-suelo-</u> estructura-edificaciones-plateas-cimentacion-ph-d-genner-villarreal/

ISBN: 9786120026960.

ANEXOS

UBICACIÓN DEL PROYECTO

SOLICITUD DE PERMISO

Estimado Señor:

Orlando Víctor Santiago Quispe.

Me pongo en contacto con usted para comunicarle nuestro interés durante el año 2020 realizar una investigación para nuestra Tesis para el Título Profesional de Ingeniería Civil denominada "Modelamiento y Diseño Estructural de una Edificación de 8 Niveles de Concreto Armado, Urbanización San Luis, Distrito y Provincia de Ica".

El objetivo principal de nuestra tesis es realizar un modelamiento y diseño estructural de una estructura de 8 niveles con la finalidad de demostrar que si se puede contar con una edificación de esta magnitud en la ciudad de Ica tomando en cuenta todo lo estipulado en nuestra normativa vigente.

Por ello acudimos a usted para solicitarle su autorización para poder desarrollar nuestra tesis en el lugar donde usted es dueño de los lotes 1 y 2, de la manzana B y nos gustaría contar con usted para lo que pueda ser necesario.

Sin otro particular, nos despedimos de usted atentamente.

Derian Jesús Orlando Santiago Andrés DNI: 72977884

Luigui Joao Tipacti Gómez DNI: 73820492

9	EMSGEO S.A.C.	0081G0 DMS-CIM-30-37
	INFORME TECNICO	#2/3/3/N 00
EMSGEQ	ESTUDIO DE MECÁNICA DE SUELOS CON RIMES DE OMENTACIÓN	PÁGANA 2 de 47

9. DETALLE DE CIMENTACIÓN RECOMENDADA

9.1. DISEÑO DE PROPUESTA DE ZAPATA

La construcción de zapata cuadrada, serán construidas sobre una base de concreto simple, de acuerdo con las presente especificaciones y parámetros. Solado de concreto simple: Este trabajo consiste en la colocación de la capa base, se ha optado que la base estará conformada por concreto simple cemento-hormigón 1:16 (f'c=30 a 40 Kg/cm2), siendo aplicada directamente sobre la subrasante debidamente. Zapata Quadrada: Estructura de concreto armado de l'c=210 Kg/cm2 con cemento Pórtland tipo I; puesto que trasmitirán las cargas al suelo de fundación, en funciones de la capacidad de resistencia del suelo; el slump tiene que tener el valor comprendido 4* (máximo).

CONDICIONES DE LA CIMENTACIÓN:

Profundidad de la Cimentación: Basado al estudio de suelo y característica se recomienda cimentar a una profundidad mínima de Df=1.50 m.

Cimentación: Se empleará zapatas arriostradas o interconectadas con vigas de cimentación y sobrecimientos armados mínima de 1.50 m. Asimismo, la opción por el empleo de zapatas conectadas depende de giros en la zapata, torsión en planta, asimetría de la estructura.

Apoyo de la cimentación: Tipo de estrato de apoyo ARENA MAL GRADUADA (SP).

Agresividad del Suelo: Moderado, usar Cemento Tipo I.

INC. DANIEL CUEVAS SERNA ISP EN GLOTECNICA DE SUBJOS OF 117201

Ernall verstaußernagen nut Cal.: 956531175 - 956594238

ESTUDIO DE MECÁNICA DE SUELOS Of : Andrés Avelino Cáceres X-16 Percona - Ica

Telf.: (56) 800075

Web: emigeo.net

ESTUDIO DE MECÁNICA DE SUELDS Of : Andrés Aveline Gloeres K-16 Parcena - Ica Web: emigro.net Telf: (56) 307075 Email: wentas@emageo.vet Cel.: 956501175 - 556594230

8	EMSGED S.A.C.	CÓDIGO DVS-CIM-10-20
-	INFORME TÉCNICO	ADVISIÓN 00
EMSGEQ	ESTUDIO DE MECÁNICA DE SUELOS CON RINES DE CIMENTACIÓN	Wight 2 de 47

9.2. DISEÑO DE PROPUESTA DE CIMIENTO CORRIDO

La construcción de cimiento corrido, serán construidas sobre una base de concreto simple, de acuerdo con las presente especificaciones y parámetros.

Base de concreto simple: Este trabajo consiste en la colocación de la capa base para la cimentación, la base estará conformada por concreto simple cemento-hormigón 1:16 (f'c=30 a 40 Kg/cm²), siendo aplicada directamente sobre la subrasante.

Cimiento Corrido: se Empleara concreto ciclópeo de 1:8 + 25% de Piedra Mediana con cemento Pórtland tipo V; puesto que trasmitirán las cargas de los muros al suelo de fundación, en funciones de la capacidad de resistencia del suelo.

CONDICIONES DE LA CIMENTACIÓN:

Profundidad de la Cimentación: Basado al estudio de suelo y característica se recomienda cimentar a una profundidad minima de Df=1.20 m. Cimentación: Se empleará cimentación corrida. Tiene la función estructural de recibir las cargas de los muros y transmitirlas al suelo portante. Apoyo de la cimentación: Tipo de estrato de apoyo ARENA MAL GRADUADA (SP). Agresividad del Suelo: Moderado, usar Cemento Tipo I.

ING. DANIEL CUEVAS SERINA ESP EN GEOTEONICA DE SULLOS OP 117250

ESTUDIOI DE MECÁNICA DE SUELOS Of.: Andrés Avelino Cásares K-16 Parcoro - Ica Web: emigrounet Telf.; [56] 307075 Ernak: veritas@ernigeo.net Cel: 950351175 - 956554238

è ING. DANIEL CUEVAS SERVA ESP. EN GEOTEDNICA DE SUELOS CP. 117293 ESTUDIO DE MECÁNICA DE SUELOS OF.: András Avelino Cáceres IV de Parceéa - Ica Web: emspecied Telf.: (56) 307075 Email: ventin@emigno.vet Cel: 956031175 - 256594238 40

	EMSGED S.A.C.	cózego	EMS-CRH-10-30
ENAPERED	INFORME TÉCNICO	REVELCE	00
EWEDED	ESTUDIO DE MECÁNICA DE SURIOS CON FINES DE OMENERACIÓN		

30. CONCLUSIONES Y RECOMENDACIONES

De acuerdo al resultado de los cálculos, características físico-mecánicas de los suelos, se establecen las siguientes consideraciones finales.

1. El área de proyecto se encuentra ubicado en el ámbito de la Provincia de loa.

NOMERE DE PROPIETABIO	DIRECCIÓN	01181230
LEONIDAS JOSE PERA INVANTE	URR. SAV LUIS MZ. D	RCA

- 2. Se realizó las exploraciones de campo que consistieron en 06 Calicatas a cielo abierto, una profundidad variable de 0.00 a 3.00 m., durante la excavación se encontró presencia de rellenos con restos vegetales. Las calicatas se han ubicado convenientemente en el área del terreno con el plano de ubicación y así poder contar con la información y resultados correctos. De las calicatas se extrajeron muestras alteradas para realizar ensayos análisis granulométrico por tamizado, límites de consistencia, Humedad natural, Peso unitario, pesos específicos, clasificación de suelos SUCS, análisis químicos (suffatos y cloruros) y ensayos de corte directo.
- 3. Tipos de suelos: El perfil estratigráfico que se presenta ha sido elaborado mediante la interpretación de la estratigrafía encontrada en las calicatas. El subsuelo del área de estudio es homogéneo en profundidad, estando conformado por Arena Mal Graduada (SP), el material subrasante califica como suelo regular.
- Burante la excavación no se Localizó el nivel Freático (NAF), hasta la profundidad escavada.
- Se recomienda que el tipo de cimentación a utilizar sea zapatas cuadras de concreto armando, Para evitar los asentamientos diferenciales. Se Propone las Siguientes recomendaciones para la protección de la cimentación.
 - Se recomienda estabilizar el suelo con una capa de 20 cm. Min. de material afirmado al 100% de la máxima densidad seca del Proctor modificado.
- 6. Profundidad de la cimentación:

En base a las características del perfil estratigráfico, se recomienda cimentar las estructuras de zapatas de concreto a la profundidad minima de D_f = 1.50 metros; y los cimientos corridos a una profundidad minima de D_f = 1.20, a estas profundidades se cimentarán en el estrato de Arena Mal Graduada. Con respecto a la superficie ini<u>cial del</u> terreno existente.

ING. DANIEL CUEVAS SERMA ESP. EN GESTEDNICA DE SUELOS CP 117293

ESTUDIO DE MECÁNICA DE SUELOS OF.: Andrés Avelino Cácanes K-36 Parcona - Ica

Ernell: ventas@wmsgeo.net Cel.: 956931175 - 956554238

1 rorest EMS-California

	EMSGED S.A.C.	000000 THE OM 90.20
ENSCER	INFORME TÉCNICO	Amongolas (an
eweren	25TUDED DE MECÁNICA DE SUELOS CON EMES DE CIMENTACIÓN	alarse w

7. La Capacidad Admisible del terreno se expresan los siguientes valores:

UBICACION	CALICATA	Df (m)	B (m)	Angulo Ø	De Fricclón (Φ) Φ Corregido	q4 (tn/m²)	Fs	q _{el} (Ke/cm²)
ON SAN LUIS NO D LUIS NO D	C-01	1.50	1.20	32.65*	22.91*	22.08	3	1.532

- 8. El asentamiento total es de aproximadamente 1.2 cm, que es menor de 1"(2.54 cm.) recomendado para este tipo de estructuras (según la Norma E.050 de Suelos y Cimentaciones que dice que para Edificaciones el Asentamiento Permisible es de 1"), por lo tanto, no se presentaran problemes por asentamiento.
- Se aplicará para obtener la capacidad admisible (q_{ad}) del suelo de fundación un factor de seguridad (Fs = 3).
- Retirar el material superficial contaminado (suelo que contiene elementos orgánicos, etc.).
- 11. Taludes de excavación:

Las excavaciones temporales hasta nivel de sello de fundación, y/o definitivas, deberán ejecutarse con los siguientes taludes:

Excavaciones hasta 1.20 m de profundidad: Taludes Verticales.

Excavaciones superiores a 1.20 m de profundidad: Taludes 2:1 (V:H).

Protegidos con lechada de cemento.

- 11.1. Para el caso del movimiento de tierra se deben considerar las siguientes recomendaciones para los taludes:
 - Excavaciones para taludes definitivos en suelos SP y SM H:V = 1,5:1
 - Excavaciones transitorias H:V = 1:1,5
 - Relience H:V = 2:1

212. Cuando las excavaciones se requieran operaciones manuales y las profundidades superen el 200 cm se deberá disponer de entibaciones y protecciones que eviten desmoronamientos y riesgos de accidentes. Estas medidas oc adoptaran cualquiera que sea la calidad de los suelos y siempre que el talud sea más emplinado que H:V=1:1,5,

De acuerdo al Reglamento interno de Seguridad y Salud en el Trabajo, son considerados como trabajos de alto riesgo los trabajos a altura mayores a 1,8

metros y las excavaciones mayores o iguales a 1,5 metros.

ESTUDIO DE MECÁNICA DE SUELOS Of.: Andrés Avelino Cáceres K-16 Parcona - Ica

Web: emigeo.net Telt: (56) 307075

Email: ventas@amsgaouvel Cel.: 956931175 - 956594238

42

ING. DANIEL CUEVAS SERNA ESP. EN GEOTEONICA DE SUELOS OP 117293

2	EMSGED S.A.C.	CÓDIGO 1045-CM-13-20
	INFORME TÉCNICO	HEVERON DO
EMSGEQ	ESTUDIO DE MECÁNICA DE SUELDS CON PIVES DE EMENTACIÓN	DiGMA 2 de 40

Se deberán respetar lo indicado en las normas nacionales vigente respecto de la seguridad en excavaciones.

- La estructura de los pisos, patios y obras exteriores tendrá el siguiente Diseño geométrico;
 - Subrasante. el material de la Subrasante está conformado por Grava Mal graduada mal graduada, la que será mejorada la subrasante escarificada y compactada en un espesor de 0.30 m, al 95% de la máxima densidad seca del Proctor modificado.
 - Base. el material a emplear en la base será tipo granular seleccionado A-1-a (0) o A-1-b (0), con un espesor de 0.20 m. compactada, al 100% de la máxima densidad seca del Proctor modificado.
 - Losa de concreto. El concreto a utilizar tendrá una resistencia de f'e = 210 kg/cm³ y un espesor de 0.20 m. Siguiendo las normas vigentes del reglamento nacional de construcciones.
- De acuerdo con la Norma Técnica de Edificación E.030 Diseño Sismo resistente y el predominio del suelo de la cimentación, se recomienda adoptar en los análisis sismoresistente según el RNE. Se recomienda considerar un suelo de perfiltipo:

PARÁMETRO DE SUELO		VALOR
Factor Uso	U	1.50
Factor de Zona	Z	0.45
Periodo predominante que define la plataforma del espectro (Tr)	TP (s)	0.60
Período que define el inicio de la zona del factor C con desplazamiento constante (TL)	TL (S)	2.00
Factor amplificación del suelo de acción sísmica	s	1.05
Periodo Fundamental	CT	1.50
NORMA		E.030

- 14. En caso de que la cimentación de las estructuras del tipo plateas o losas, esta se desplantase mayormente en el suelo natural más desfavorable encontrado en el área en estudio, en el área se identificó como Arena Mal Graduada (SP).
- Asimismo, en esso de considerarse el uso de plateas o lusas de cimentación, se descarta totalmente la presencia de asentamientos diferenciales en las estructuras, debido a que estos serán anulados por los elementos estructurales indicados.
- Se recomienda, antes del vaciado de las zapatas y/o plateas o losas de cimentación, compactar el suelo de apoyo que generalmente se altera por el proceso de excavación.
 ING. CANEL OLEVAS SERVA ISP EN COTENCA DE SALIOS OP 112233

ESTUDIO DE MECÁNICA DE SUELOS OL: Andrés Avelino Cáceres K-16 Parcana - Ica

Web: emigeo.ret Telf - (55) 307075 Email: ventas@unsigeo.nat Cel: 956931175 - 956594238

EMSGEQ INFORMETÉCNICO NOVA	-	EMSGEO S.A.C.	citizens and
EMSDED SIVERY 00		INFORME TÉCNICO	CODIGO EMSCEM (6-30
ESTUDIO DE MECANICA DE SUBLICE CONTRACE DE SUBLICE	EMSDED	ESTUDIO DE MICÓNICA DE SUBLICE COM EN LA COM	REVERON 00

- 17. Se recomienda cimentar en base a zapatas conectadas con vigas de cimentación. Asimismo, la decisión y el criterio del Ingeniero Estructural son decisivos ya que podrían encontrarse diversos factores que conllevarían al uso de elementos de conexión (zapatas conectadas) tales como giros en las zapatas, torsión en planta, asimetría de la estructura.
- En tal sentido, es recomendable, tomar en consideración la necesidad de establecer un tipo de estructura simétrica.

Ya que la asimetría nos entregara deformaciones del sistema terreno-estructura. Bajo estas condiciones, una cimentación en base a zapatas conectadas para el caso de estructuras porticadas y en el caso de albahiteria confinadas, cimientos cuadrado bajo muros de adecuada densidad de muros, incrementara la capacidad de resistencia suelo-estructura, así como atenuara los potenciales efectos dinámicos indicados.

19. Es conveniente tener presente el cuidado necesario para que los empalmes de las tuberías de agua y desagüe estén bien instalados de tal forma evitar fugas que pueden generar la reacción de los sulfatos y cloruros.

 El subsuelo de actividad de cimentación no está sujeta a socavaciones ni deslizamientos, así como no se ha encontrado evidencias de hundimiento ni levantamientos en el terreno.

Así mismo la geodinámica externa en el área de estudio no presenta en la actualidad riesgo alguno como posibles aluviones, huaycos, deslizamientos de masas de tierra, inundaciones, etc.

- Si en la zona del proyecto se encuentra la presencia de material de rellenos en estado suelto, se recomienda eliminar dichos rellenos y reemplazarlo por material afirmado compactado, con las recomendaciones respectivas.
- En la zona del proyecto si se notara la presencia de filtraciones superficiales debido a Iluvias, anlegos a la profundidad de cimentación con respecto a la superficie natural del terreno.

Se recomienda diseñar un sistema de drenaje superficial (sangría) para poder evacuar el agua de filtración y pueda facilitar el proceso constructivo de las cimentaciones y también afectar a las mismas una vez construidas.

23. De los ensayos de análisis químico de suelos, se ha realizados a la muestra del suelo donde ira desplantada la cimentación, e inspección de la zona en estudio, la presencia de Sales Solubles totales en promedio es de 133 ppm menor que 1000 ppm, estos valores indica que no puede ocasionar problemas de perdida de resistencia mecánicam. INS. DAVIEL CUENAS SERNA. ISP DI CORDICA DE SUELOS. DE 112260.

CP 117793

2	EMSGED S.A.C.	cábico	EMS-CM-10-30
	INFORME TÉCNICO	REVISIÓN	00
ÉMSGEQ	ESTUDIO DE MEGÁNICA DE SUELOS CON RINES DE CIMENTACIÓN	RÁGINA	2 de 47

por problemas de lixiviación (lavado de sales), por lo que se recomienda el uso de Cemento Tipo I.

10.1. REFERENCIAS BIBLIOGRÁFICAS

RNE E.030 .- Diseño Sismorresistente

RNE E.050 .- Suelos y Cimentaciones

ALVA HURTADO, Jorge E.- Mecánica de Suelos Aplicada a las Cimentaciones

BOWLWS JOSEPH, E.- Manual de Laboratorio de Mecánica de Suelos

BRAJAN, Das.- Principios de Ingeniería de Cimentaciones.

TERZAGHI KARL- Mecánica de Suelos Aplicada a la Ingenieria Práctica.

10.2. FIGURAS

Figura Nº 1 - Ubicación De Proyecto

Figura Nº 2 - Ubicación Satelital

Figura Nº 3 - Geología Del Cuadrante De Paracas

Figura Nº 4 - Mapa de Zonificación Sismica

Figura Nº 5 - Mapa de Isoaceleraciones

Figura Nº 6 - Mapa de Distribución de Máxima Intensidad Sísmica (Alva 1984)

10.3. TABLAS Y CUADROS

Tabla Nº 1 - FACTORES DE ZONA "Z"

Tabla Nº 2 - PARÁMETRO DEL SUELOS

Tabla Nº 3 - TIPO DE EDIFICACIÓN U OBRA PARA DETERMINAR EL NUMERO DE PUNTOS

DE EXPLORACIÓN

Tabla Nº 4 - NUMERO DE PUNTOS DE INVESTIGACIÓN

Tabla Nº 5 - DENSIDAD RELATIVA

Tabla Nº 6 - DISTORSIÓN ANGULAR

Tabla Nº 7 - CONCRETO EXPUESTO A SOLUCIONES DE SULFATOS

Tabla Nº 8 - REQUISITOS PARA CONCRETO EXPUESTO A SOLUCIONES DE SULFATOS

ING. DANIEL CUEVAS SERNA ESP. DV GEOTEDNICA DE SUELOS OP 117293

ESTUDIO DE MEGÁNICA DE SUELOS OL: Andrés Avelino Gáceres K-16 Parcona - Ica

Web: emageo.net Telf.: (56) 307075 Email: wentas@emsgao.net Cel.: 956031175 - 956594238

	CARGERO S.A.C.	CÓDROD (1985-CM-18-20
	access ticker	MUVISIÓN 00
	ENCOUNT OF SURVICE ON DATES OF CANTACIÓN	MiGNA 2 de 07
CMSGED	PSDUDIO DE MEDONICA DE INCLUSI CONTRATA	

10.4. RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN

De acuerdo con la Norma Técnica de Edificaciones E-050 "Suelos y Cimentaciones", la

siguiente información deberá transcribirse en los planos de cimentación.

Esta información no es limitativa y deberá cumplirse con todo lo especificado en el

presente Estudio de Suelos y en el Reglamento Nacional de Edificaciones.

ESTUDIO DE MECÁNICA DE SUELOS PARA DISEÑO DE LA CIMENTACIÓN

NOMBRE DEL SOLICITANTE: GOBIERNO REGIONAL DE ICA.

NOMBRE DEL PROYECTO: AMPUACION DEL SERVICIO EDUCATIVO DE LA INSTITUCIÓN EDUCATIVA Nº 22526 MEDARDO APARCANA HERNANDEZ DE OCUCAJE DEL DISTRITO DE OCUCAJE, PROVINCIA DE ICA-DEPARTAMENTO DE ICA.

DISTRITO DE OCUCAJE - PROVINCIA DE ICA - DEPARTAMENTO DE ICA

De conformidad con la Norma Técnica E.050 "Suelos y Cimentaciones" la siguiente información deberá transcribirse literalmente en los planos de cimentación. Esta información no es limitativa, deberá cumplir con todo lo especificado en el presente Estudio de Mecánica de Suelos (EMS) y con el Reglamento Nacional de Edificaciones (RNE).

			and the second se		
	RESUMEN DE LAS	S CONDICIONES	DE CIMENTACIÓN		
Tipo de Cimenteción: Se sobrecimientos armados- de giros en la rapata, tora	empleară zapatas am ninima de 1.50 m. As ión en planta, asimet	estradas o inter imismo, la optió ría de la estruct	conectadas con vigas de ciment In por el empleo de zapatas cons ura.	tación y ectadas depende	
Estrato de Apoyo de la Ci (SP)	mentación: La ciment	tación se apoya	rá sobre el estrato Arena Mal G	raduada	
Profundidad de la Napa F	reática: No se encont	ró Nivel Freditio	0		
PARÁMETRO DE DISEÑO I	DE LA CIMENTACIÓN				
Profundidad de Cimentaci	ánc	1.50 m.			
Presión Admisible Zapata	Cuadrada:	1.532 Kg/cm	2		
Factor de Seguridad por O	ute:	S.D			
Asentamiento Diferencial	Makimo Aceptable :	1.20 cm			
PARÁMETRO DE DISEÑO D	E LA CIMENTACIÓN				
Zona Sismica:	04				
Tipo de Perfii de Suelos :	\$2				
Factor de Suelos (5) :	1.00				
Periodo TP (s) :	0.60				
Periodo TL (s) :	2.00				
AGRESIVIDAD DEL SUELO A Tipo L empleando una relac	LA CIMENTACIÓN: I ido máxima de agua	ll tipo de cemer cemento izual :	nto recomendable para la cime a 0.50.	ntación es el	
PROBLEMAS ESPECIALES D	CIMENTACIÓN				
Licuación :	No se detectó.				
Colano:	No se detectó.				
Expansión :	Bajo.				
Indicaciones Adicionales: M sanitario o relieno artificial y construir la estructura y ser	o debe cimentarse so estos materiales ina reemplazados con m	ibre turba, suel decuados debe ateriales adecu	o orgânico, tierra vegetal, desn não ser removidos en su totalio ados debidamente compactado	torite, relleno fad, antes de	
efector del scentarianto no	e camentación lo sun	desire amostra dioSmilone Court	so en as dos direcciones, para	manamittar los	1
ricio di scinalici di	NICES PARTIES I	anamees (pes	-consideration,	ING. DANIEL CUE ESP EN GEOTEORIC OP 1172	WAS SERINA A DE SUELOS 93
ESTUDIO DE MECÁNICA DE SUELOS	Web: emogr	toret	Ernal: ventas@ensigno.net		-
VALI MERICO MYERIO LINCE/CS \$100 PARCONA - IED	Filler : (Display	11005	Cel. 398931175 - 956594298	- 45	

WEITERST STATES	
	600007 EM3-CIM-10-30
EMSGEO S.A.C.	REVISIÓN DO
INFORME TECHNOO	PÁGINA. 47 de 47
	EMISSEO S.A.C. INFORME TÉCNICO

RECOMENDACIONES 10.5.

Por otro lado, en la Reglamento Nacional de Edificaciones, Norma E.050, en el Capitulo 4°, Articulo 19, "Profundidad de Cimentación", indica que la profundidad de cimentación quedará definida por el PR y estará condicionada a cambios de volumen por humedecimiento-secado, hielo-deshielo o condiciones particulares de uso de la estructura, no debiendo ser menor de 0,80 m en el caso de zapatas y cimientos corridos. No debe cimentarse sobre turba, suelo orgánico, tierra vegetal, relleno de desmonte o relienos sanitario o industrial, ni relienos no Controlados. Estos materiales inadecuados deberán ser removidos en su totalidad, antes de construir la edificación y ser reemplazados con materiales que cumplan con lo indicado en el Artículo 21(21.1).

NOTA:

.

Las Conclusiones y Recomendaciones establecidas en el presente informe técnico son solo aplicables para el área estudiada. De ninguna manera se puede aplicar a otros sectores para otros fines.

<u>ti)</u>

Berkelen Observaciones Berkelen Observaciones Berkelen Original				ING. DA ESP EN	OP 117293
Revisión Observaciones 60 Documento Original	4,000.00	01 04 (16:0)	and the second second	and the second se	1
60 Documento Original	Nevisián		Observaciones		
	00	Documento Original			
and a second second state of the second se					

EMSGEO S.A.C.	CÓDISO	EM5-CM-10-20
INFORME TÉCNICO	REVISIÓN	00
ANEXOS	PÁGINA	6 de 10

ANEXO II

PERFIL ESTRATIGRÁFICO

ANDIOS Of.: Andrés Aveilno Cáceres K-16 Parcona - Ica

Web: emigeo.net Telf.: (56):307075 Email: ventas@emageo.net Cel:950931175 - 950594238

8	INIGIO LA.C.	CODISION EMS-CIM-10-20
	ENSAYOS DE LABORATORIO	REVISION : 00
EMSGEQ	PERRI, ESTRATIGRÁRICO DEL SUELO	PAGINA:1 de 1

	PERFIL ESTRATIGRÁFICO DEL SUELO NTP. 339.150 - ASTM D 2488
SOUCITANTE	: LEONIDAS JOSE PERA INJANTE.
PROYECTO	: VIVIENDA UNIFAMILIAR 2 PISOS
UBICACIÓN	: URBANIZACIÓN SAN LUIS MZ . D LOTE 5 - PROVINCIA DE ICA - DEPARTAMENTO DE ICA.
FECHA	: 07/09/2020

DATOS DE LA MUESTRA						
CALICATA:	601	PROCEDENCIA: -	FECHA DE EXTRACIÓN :	05/09/3020		
ESTRATOS:	01	REFERENCIA:-	FECHADE INSAYO:	07/09/2020		
PROFUNDIDA	m 00.6-3.00 m	TIPO DE MATERIAL :-				

PROFUNDIDA	CLASIFI	CACION	MUESTRA	10 C	SÍMBOLO	DESCRIPCIÓN DE LA MUESTRA	OBSERVACIONES
UMETHUS	SUCS	AASHTO		8			
0.00							TIPO EXCAVACIÓN : MANUAL
0.40							
0.60							
0.80							
1.00							
1.20							
1.40	SP	A-1-b (0)	M-1	8		Arena Mai Graduada, color marron ciaro en estado suelto, de humedad baja de 1.30 %.	
1.00							
2.00							
2.20							
2.40							
2.50							
2.60							
2.80							NO SE ENCONTRO
3.00				+			NIVEL FREATICO
SUBDIAL POL	6	. /	197	-	NIMINADO ROB	EMS GEQ.S.A.U.	<u> </u>
	ALEX G	ARCIA VE	NTURA		CARL	BO MG. C	AN EL CLEVAS SERNA GLOTICHICA DI SUBJOS
	FEG. E	CRETOTASFAL	10		5	Web engedet	Small ventas@emigeo.net

00	EMSGEO S.A.C.	CODIED, ENE CAN LO 30
	ENSAYO DE LABORATORIO	NIVERON CO
ÉMSGEQ	PESO VOLUMÉTRICO DE SUELOS	PARKA: 1 de 1

PESO VOLUMÉTRICO DE SUELOS NTP 339.144 - ASTM D2937

SOUCITANTE : LEONIDAS JOSE PEÑA INJANTE. PROYECTO : VIVIENDA UNIFAMILIAR 2 PISOS UDICACIÓN : URBANIZACIÓN SAN LUIS MZ . D LOTE 5 - PROVINCIA DE ICA - DEPARTAMENTO DE ICA. FECHA : 07/09/2020

DATOS DE LA MUESTRA

CALICATA : C-1 MUESTRA : M-1 PROF. DE MUESTRA: 0.00 - 3.00 m PROCEDENCIA: -REFERENCIA: -TIPO DE MATERIAL: - FECHA DE EXTRACION : 05/09/2020 FECHA DE ENSAYO : 07/09/2020

ENSAYOS						
MUESTRA	UESTRA M-1					
ENSAYOS	1	2	3		ond.	
PESO DEL SUELO + MOLDE	1902.00	1962.00	2071.00		grs.	
PESO DEL MOLDE	145.00	145.00	145.00		grs.	
PESO DEL SUELO SECO	1757.00	1817.00	1926.00		5rs.	
VOLUMEN DEL MOLDE	1200.00	1200.00	1200.00		cm	
PESO ESPECIFICO	1.464	1.514	1.605		grs./cm*	
PESO VOLUMÉTRICO DE SUELOS		1.9	574		grs./cm	

OBSERVACIONES : Las muestras fueran proporcionadas por el Solicitante, hasta nuestro laboratorio.

OE: Andrés Avelino Cáceres K-56 Parcona - ka

Web: emiges.net Telf.: (56) 807075 Email: vertau@emageo.net Cel.: 956921175 - 956594288

100	EM5GEO S.A.C.	CÓDIGO	BMS-CIM-10-20
	INFORME TÉCNICO	REVISIÓN	00
ÉMSGEQ	ANDIOS	PÁGINA	8 de 10

ANEXO IV

MEMORIA DE CALCULO

8

CALCULO DE LA CAPACIDAD PORTANTE

ANDIDS Of.: Andrés Aveilno Cáceres K-15 Parcona - Ica

Web: emigeo.net Telf.: (56) 307075 Email: ventas@emageo.net Cel:950931175-950594238

202	
EMSGED	

ENSAYOS DE LABORATORIO CALCULO DE LA CAPACIDAD PORTANTE

EMSGED S.A.C.

CODIGO: MC-QADM-10-20 REVISION:00 PAGENA: 1de 1

CALCULO DE LA CAPACIDAD PORTANTE

SOLICITANTE	: LEONIDAS JOSE PEÑA INJANTE.
PROYECTO	: VIVIENDA UNIFAMILIAR 2 PISOS
UBICACIÓN	: URBANIZACIÓN SAN LUIS MZ . D LOTE 5 - PROVINCIA DE ICA - DEPARTAMENTO DE ICA.
FECHA	: 07/09/2020

CAUCATA Nº:	64	Material Extraido :	Arena Mal Graduada (SM)	Fecha de Ensayo :	05/09/2020
UBICACIÓN:	-			Fecha de Emision :	07/09/2020

ODELO DE TERZASH

- 64

DATOS DE ASENTAMIENT	o .
Asentamiento probable (S) cm
Ancho de la Cimentación (I	l) 1.20 m
Presión de trabajo (q adm)	1.84 ton/m2
Relación de poisson (u)	0.25
Modulo Electicided (Ex)	1150 ton/m2
Factor de forma (If)	112 cm/m

			D
5	0440		h
Кр	2.275		h
Ko	0.611		Pr
Kps	1.934		R
E.	0.486		м
Cρ	2.516		Fe
	Ka Ko Kps Es Ep	Ka 0.440 Kp 2.275 Ko 0.611 Kps 1.934 Ea 0.486 Ep 2.516	Ka 0.440 Kp 2.275 Ko 0.611 Kps 1.934 Ea 0.486 Ep 2.516

0 Asentamiento probable (SI) cm	
5 Ancho de la Cimentación (B) 1.20 m	
1 Presión de trabajo (q adm) 1.84 ton/m2	
4 Relación de polaton (u) 0.25	
6 Modulo Elasticidad (Es) 1150 ton/m2	
6 Factor de forma (If) 112 cm/m	

FACTORES SEGÚN VESIC (1973)						
RECTOR OF CAR. DE CARGA		FICTOR OF FORMS.				
Nc	17.94		Circ. Corrido	Circ Cuedrado		
Ng	8.58	8	1.0	1.48		
Ny	8.10	S.	1.0	1.42		
Ng/Nc	0.48	SY	1.0	0.60		
Tan 🖗	0.42			,		

CIMENTACION CORRIDA									
Desplante	Ancho	Largo	Oute/e2	The Control Index	Asentamiento Metodo Elastico				
Df (m)	B (m)	L (m)	quitijinz Fac	Gram regrenz	SI(cm) Rigida	SI(cm) Centro	SI(cm) Esquina	Si(cm) Medio	
0.80	0.7	1.0	15.11	3	1.105	0.147	0.181	0.091	0.181
1.20	0.7	1.0	20.38	3	1.386	0.198	0.244	0.122	0.244
1.50	0.7	1.0	24.34	3	1.532	0.236	0.292	0.145	0.292
2.00	0.7	1.0	30.93	3	1,872	0.300	0.371	0.185	0.371

	OBS	ERVA	CION	ES :	
--	-----	------	------	------	--

Of: Andrés Aveiro Cáceres X-16 Parcora - ka

Cel: 956931175 - 956594238