

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Análisis y diseño estructural aplicando el software Robot Structural Analysis para el edificio multifamiliar de 5 Niveles, Juliaca, Puno,2021"

> TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Mamani Laura Jose Angel (ORCID 0000-0002-4574-9467)

ASESOR:

Mg. Arévalo Vidal Samir Augusto (ORCID 0000-0002-6559-0334)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico Y Estructural

Lima-Perú

2021

Dedicatoria

A Dios por cuidarme y guiarme en cada etapa de mi vida.

.

A mi padre y madre por todo su cariño, comprensión y apoyo incondicional que supieron educarme en mi formación personal y profesional.

> A mis hermanas y abuelos por sus apoyos y consejos que siempre estuvieron ahí para apoyarme incondicionalmente

> > Jose Angel Mamani Laura.

Agradecimiento

Agradezco mi padre José y madre Mercedes, que me apoyaron incondicionalmente en la idea de convertirme en profesional.

.

A mi asesor el ing. Mg. Arévalo Vidal Samir Augusto, por sus recomendaciones durante la duración de la elaboración del presente tesis.

Jose Angel Mamani Laura.

Índice de contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de tablas	v
Índice de figuras	vii
Resumen	х
Abstract	xi
I. INTRODUCCIÓN	12
II. MARCO TEÓRICO	14
III. METODOLOGÍA	29
III.1. Tipo y diseño de investigación	29
III.2. Variables y operacionalización	30
III.3. Población, muestra y muestreo	30
III.4. Técnicas e instrumentos de recolección de datos	31
III.5. Procedimientos	32
III.6. Método de análisis de datos	33
III.7. Aspectos éticos	33
IV. RESULTADOS	34
V. DISCUSIÓN	46
VI. CONCLUSIONES	48
VII. RECOMENDACIONES	50
REFERENCIAS	51
ANEXOS	57

Índice de tablas

Tabla 1 Pesos unitarios	20
Tabla 2 Cargas mínimas repartidas repartidas para viviendas.	20
Tabla 3 Factores de zona.	23
Tabla 4 Resumen de los valores de tipos de perfiles de suelos	23
Tabla 5 Valores de factor Suelo.	24
Tabla 6 Valores de Periodos T p y T I.	24
Tabla 7 Categoría de edificaciones y factor "U"	24
Tabla 8 sistema estructural.	25
Tabla 9 Distorsión del entrepiso	26
Tabla 10 Técnica e Instrumento de la Recopilación de Datos IN SITU	32
Tabla 11 Técnica e Instrumento de la Recopilación de Datos en Gabinete	32
Tabla 12 Fuerza Cortante en la base "X" y "Y".	42
Tabla 13 Desplazamiento en dirección X-X para el cálculo de deriva	44
Tabla 14 Desplazamiento en dirección Y-Y para el cálculo de deriva	44
Tabla 15 matriz de consistencia	57
Tabla 16 Operacionalización de variables.	58
Tabla 17 Coordenadas del terreno.	60
Tabla 18 Tabla de predimensionamiento de columnas centrales.	85
Tabla 19 Tabla de predimensionamiento de columnas excéntricas y esqui	nadas.
	85
Tabla 20 Valores de cargas distribuidas.	91
Tabla 21 Valores de cargas aplicadas al programa.	92
Tabla 22 Valores de cargas en muros.	92
Tabla 23 Factor de zona	93
Tabla 24 Factor de suelo "S"	93
Tabla 25 Factor de uso "U"	93
Tabla 26 Cortante basal estático en las direcciones "X" y "Y"	97
Tabla 27 Valores de T vs Sa en X-X y en Y-Y. Del espectro de diseño	98
Tabla 28 Espectro de pseudo-aceleraciones X-X.	99
Tabla 29 Espectro de pseudo-aceleraciones Y-Y.	99

Tabla 30 Desplazamiento en dirección X-X para el cálculo de deriva	103
Tabla 31 Desplazamiento en dirección Y-Y para el cálculo de deriva	103
Tabla 32 Irregularidad de masas	104
Tabla 33 Iteración de área de acero para escaleras	106

Índice de figuras

Figura 1 Equipo de Corte directo	19
Figura 2 zonas sísmicas	22
Figura 3 Diseño de viga principal.	34
Figura 4 Sección diseño de viga principal.	35
Figura 5 Diseño de viga secundaria.	35
Figura 6 Sección diseño de viga secundaria.	36
Figura 7 Diseño de viga de amarre	36
Figura 8 Sección diseño de viga de conexión.	37
Figura 9 Diseño de columnas central con el software	37
Figura 10 Diseño de columnas excéntrica 40x45cm con el software	38
Figura 11 Diseño de losa aligerada.	38
Figura 12 Diseño de losa aligerada tramo 1	39
Figura 13 Diseño de zapata central	39
Figura 14 Diseño de zapata excéntrica.	40
Figura 15 Diseño de zapata esquinera	40
Figura 16 Fuerza cortante en la base en la dirección "X"	41
Figura 17 Fuerza cortante en la base en la dirección "Y"	42
Figura 18 Valores de entre piso del análisis dinámico en dirección "Y"	43
Figura 19 Valores de entre piso del análisis dinámico en dirección "X"	43
Figura 20 Medición del terreno para el proyecto.	59
Figura 21 Plano perimétrico	60
Figura 22 Plano de ubicación del terreno.	61
Figura 23 Plano de distribución arquitectónica del primer nivel	62
Figura 24 Plano de distribución arquitectónica del segundo al quinto nivel	63
Figura 25 Plano en planta de azotea	64
Figura 26 Medición del terreno para excavación de calicata (1m x 1m)	65
Figura 27 Excavación de calicata	66
Figura 28 Ubicación del nivel freático a 1.50m de profundidad	66
Figura 29 Extracción de muestra inalterada de 20cm x 20cm x 20xm	67
Figura 30 Muestra inalterada de 20cm x 20cm x 20cm para ensayo de corte dire	ecto.
	67
Figura 31 Extracción de la muestra inalterada en los moldes	68

Figura 32 Colocado de la muestra a los moldes de	e corte directo68
Figura 33 Colocado de moldes al equipo de corte	directo 69
Figura 34 Rotura de muestra, después de realizad	do el ensayo de corte 69
Figura 35 Resultados del estudio de suelos del	laboratorio GEOTECNIA PUNO
EIRL.	
Figura 36 Configuración estructural del edificio	
Figura 37 Plano de distribución de áreas tributaria	as para columnas 84
Figura 38 Propiedades de materiales de acero	
Figura 39 Propiedades de materiales de concreto	88
Figura 40 Líneas de construcción	
Figura 41 Plantas de la estructura	
Figura 42 Secciones de columnas	
Figura 43 Secciones de vigas	
Figura 44 Dimensiones para losa aligerada y esca	aleras 90
Figura 45 Modelo de la estructura 3D	
Figura 46 Cargas asignadas al programa	
Figura 47 Edición de del valor (Z.U.C.S)/R al prog	ırama 95
Figura 48 Sismo estático en Y	
Figura 49 Sismo estático en X	
Figura 50 Distribución de cargas correctamente	
Figura 51 Centro de la gravedad de la planta y ce	ntro de rigidez 97
Figura 52 Espectro en X.	
Figura 53 Espectro en Y.	
Figura 54 Cargas – conversión	
Figura 55 (Cargas – combinación) de cargas para	sismo dinámico en X101
Figura 56 (Cargas – combinación) de cargas para	sismo dinámico en Y102
Figura 57 Combinación de desplazamiento en dire	ección X102
Figura 58 Combinación de desplazamiento en dire	ección Y102
Figura 59 Tramo de escalera para diseño	
Figura 60 Diagrama de momento flector de la esc	alera105
Figura 61 Dimensiones de escaleras para diseño.	
Figura 62 Parámetros para diseño de vigas	
Figura 63 Diseño de viga principal con el software	

Figura	64	Diseño de acero viga principal 30x60cm con el software1	80
Figura	65	Diseño de viga principal1	11
Figura	66	Sección diseño de viga principal1	11
Figura	67	Diseño de viga secundaria con el software1	12
Figura	68	Diseño de acero viga secundaria 30x45cm con el software1	12
Figura	69	Cuadro de cantidad de varillas de acero1	13
Figura	70	Diseño de viga secundaria1	15
Figura	71	Diseño de viga secundaria tramo central1	15
Figura	72	Sección diseño de viga principal1	15
Figura	73	Diseño de viga e conexión con el software1	16
Figura	74	Diseño de viga de conexión1	17
Figura	75	Sección diseño de viga de conexión1	17
Figura	76	Diseño de columnas central con el software1	18
Figura	77	Diseño de columnas central con el software1	19
Figura	78	Diseño de columnas excentrica con el software1	20
Figura	79	Diseño de columnas excéntrica 40x45cm con el software1	21
Figura	80	Diseño de columnas excéntrica 45cm x 45cm con el software1	21
Figura	81	Diseño de columnas excentrica 40x45cml con el software1	22
Figura	82	Reporte Turnitin1	23

Resumen

La presente tesis tiene como objetivo principal analizar la aplicación del software robot structural analysis para mejorar el diseño estructural de un edifico multifamiliar de 5 niveles, Juliaca, Puno, 2021, la metodología de investigación es de tipo descriptivo - aplicativo y el diseño de investigación no experimental, el enfoque es cuantitativo y tiene un método científico los resultados fueron el buen comportamiento estructural dentro de los criterios establecidos por la norma técnica E. 030, aplicando el software Robot Structural Analysis, mejora el diseño de algunos elementos estructurales en cuanto al armado de acero automático, como son las vigas, columnas y zapatas, estas fueron diseñadas por el mismo software, así mismo las escaleras y losas aligeradas se diseñó en plantillas de Excel tomando en cuenta los valores del cálculo obtenidos por el software, estos resultados de las cantidades de acero fueron verificadas por las cuantías de acero donde la cuantía obtenida está en el rango de las cuantías permitidas, cabe resaltar que para el diseño se tomaron como referencia los elementos del primer nivel. Se concluye que el software robot structural analysis disminuye el tiempo de la creación del modelo, así mismo mejora el diseño de las vigas, columnas, zapatas en cuanto al dibujo automático del armado de acero, en cuanto al diseño de escaleras y losas aligeradas no se encontraron el dibujo del detalle del armado de acero.

Palabras claves: Análisis, Diseño, Concreto Armado, Estructura.

Abstract

The main objective of this thesis is to analyze the application of the robot structure analysis software to improve the structural design of a 5-level multifamily building, Juliaca, Puno, 2021, the research methodology is descriptive - applicative and the research design is not experimental, the approach is quantitative and has a scientific method, the results were the good structural behavior within the criteria established by the technical standard E. 030, applying the Robot Structural Analysis software, it improves the design of some structural elements in terms of the assembly of automatic steel, such as the beams, columns and footings, these were designed by the same software, thus the stairs and lightened slabs were designed in Excel templates taking into account the values of the calculation obtained by the software, these results of the quantities of steel were verified by the amounts of steel where the amount obtained is in the r Despite the amounts allowed, it should be noted that the elements of the first level were taken as a reference for the design. It is concluded that the robottructural analysis software reduces the time of the creation of the model, likewise improves the design of the beams, columns, footings in terms of the automatic drawing of the steel reinforcement, in terms of the design of stairs and lightened slabs. the drawing of the detail of the steel reinforcement.

Keywords: Analysis, Design, Reinforced Concrete, Structure.

I. INTRODUCCIÓN

Realidad problemática

El Perú a nivel internacional, está ubicado en una zona sumamente sísmica, específicamente sobre la placa Sudamericana, está placa tiene contacto directo con la placa de Nazca y se encuentra ubicada en casi toda su totalidad del litoral peruano. Es por ello que las edificaciones como hospitales, colegios, centros comerciales, viviendas y todas las edificaciones deben realizarse los correctos diseños de estructuras cumpliendo el reglamento nacional de edificaciones. (Condori, J. y Contrao, D. 2020. p, 2). En la región de Puno y en casi todo el Perú se diseña y construye las edificaciones de forma informal y sin ningún tipo de asesoría técnica en proyectos de edificación para viviendas, debido a que en la etapa de diseño del proyectos no se realiza un buen diseño estructural ello da resultado erróneos en las edificaciones y su ves estas presentan vulnerabilidad sísmica colocando en peligro la integridad física de las habitantes, algunas veces no se realizan estudios previos, ocasionado posteriormente pésimos resultados en los cálculos estructurales, si en caso ocurriera un evento sísmico fallarían los elementos estructurales ocasionando pérdida de vidas humanas y grandes pérdidas económicas, siendo esta la situación más relevante que nos motiva a analizar y diseñar estructuralmente la edificación. (Colonia, Y. y Valentín, S. 2020. p, 1). Hoy en día existe una aceleración en la elaboración de proyectos de edificaciones, debido a la competencia de mercado. En cada avance de la tecnológico en el área de la Ingeniería civil se tiene una mayor eficiencia en el análisis, diseño y en la creación de los detalles estructurales, existen muchas opciones a la hora de elegir un software que realice el análisis estructural pero pocos que puedan realizar el análisis y el dibujo del diseño estructural. Una de las opciones para mejorar en la elaboración de los dibujos de detalles de acero de los elementos estructurales es el software Robot Structural Analysis Professional, el cual aumenta la productividad, eficacia y eficiencia. Es por ello que la presente tesis se realizó con la finalidad de conocer de qué manera mejora el software Robot Structural Analysis en la elaboración del proyecto. Así mismo porque este software es poco utilizado en nuestro medio.

Como formulación del **problema general**, tenemos: ¿De qué manera el uso del software robot structural Analysis mejorara el diseño estructural de un edificio multifamiliar de 5 niveles, Juliaca, puno? y como formulación de los **problemas específicos** tenemos a: ¿Cuál es la fuerza cortante en la base del análisis estático aplicando el software robot structural Analysis, para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021?, ¿Cuál es la distorsión de entre piso del análisis dinámico aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021?, ¿Cuál es la distorsión de entre piso del análisis dinámico aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021?, ¿Cuáles son las ventajas y desventajas del software robot structural analysis, para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca, Puno 2021?, 2021?.

Así mismo damos a conocer nuestras Justificación de la investigación para la elaboración de nuestra investigación, los cuales son: la Justificación en el aspecto teórico, se realizó con el propósito de buscar el aporte de conocimiento respecto al análisis y diseño estructural en edificaciones y fomentar el eso del programa robot structural Analysis, fundamentándose en la norma técnica (NTP). Justificación en el **aspecto Metodológico**, esta investigación se realiza el análisis y diseño estructural de la edificación, siguiendo un procedimiento que se realizara mediante una herramienta de cálculo estructural, denominado Robot Structural Analysis; la metodología utilizada servirá para investigaciones con aplicación a otros temas, justificación en el aspecto práctico, esta investigación se realizó para conocer el procedimiento del análisis y diseño estructural usando el programa Robot Structural Analysis en la edificación, Justificación en el aspecto Social, salvaguardar la integridad física de las persona que hagan uso de esta infraestructura, así mismo dar a conocer la importancia de utilizar el software robot structural. Justificación en el **aspecto personal**, la presente tesis es una excelente oportunidad para crecer en mi carrera profesional, adquiriendo conocimientos de análisis estructural así como también la utilización del software robot structural.

La presente tesis tiene como **Objetivo general**, Analizar la aplicación del software robot structural analysis para mejorar el diseño estructural de un edificio multifamiliar de 5 niveles, Juliaca, Puno, 2021. y como la formulación de los **Objetivos específicos** tenemos: Determinar la fuerza cortante en la base del análisis estático aplicando el software robot structural Analysis para el edificio

multifamiliar de 5 niveles, Juliaca, Puno 2021, Determinar la distorsión de entrepiso del análisis dinámico aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021, Determinar las ventajas y desventajas del software robot structural analysis, para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca, Puno 2021.

Como formulación de la **Hipótesis general** se tiene: Mejora el diseño estructural aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021. Y como formulación de las **Hipótesis específicas** tenemos: La fuerza cortante en la base del análisis estático son iguales en la dirección "X" y "Y" aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021, La distorsión de entre piso del análisis dinámico aplicando el software robot structural Analysis es menor a 0.007 para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021, Utilizando el software robot structural Analysis es menor a distructural Analysis presenta mayores ventajas para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca, Puno 2021.

II. MARCO TEÓRICO

Como antecedentes internacionales, tenemos a:

Según (Quinchiguango, M. y Taco, D. 2016) en su tesis de graduacion titulada: "Análisis estructural de una edificación de hormigón armado a través del software Robot Analysis Structural." por la Universidad Central De Ecuador, llego a las siguientes conclusiones:

En el trabajo de investigación tiene por objetivo elaborar un procedimiento adecuado del análisis estructural de una edificación utilizando el software Robot Structural, teniendo como metodología de investigación de tipo aplicada además presenta un procedimiento donde primeramente se hizo el predimensionamiento de la estructura, después de ello se realizó la modelación de la estructura de concreto armado de cinco niveles con el software Robot Structural (Autodesk), los resultados por el programa Robot Structural fueron mejores al ser comparado con el software más usado respecto al diseño estructural como es el Etabs, se concluye que el robot analysis está creada para estructuras que estén dentro del flujo BIM, debido que se conectan con los diferentes software y en diferentes campos: como en arquitectura el software (Revit Structural), en el campo de tiempos el software (Naviswork), en las instalaciones eléctricas (Revit Electrical), y en el campo de instalaciones sanitarias (Revit M E P), indica también si existiera mayor información en el medio sería una potencia en tiempos y costos.

Según (Carrillo, J., Rubiano, A. y Hernández, H. 2014) en su artículo científico: "Analysis of the Earthquake-Resistant Design Approach for Buildings in *Mexico*/." por la Ingeniería Investigación y Tecnología, llego a las siguientes conclusiones:

La actualizacion de los reglamentos en el diseño estructural sismorresistente ha hecho posible que sean mas confiables en el comportamiento de las edificaciones cuando son sometidas a eventos sismicos, debido a ello es mejor que los reglamento se actualicen constantemente respecto al diseño de edificaciones y asi sean trasperentes en cuanto a la variacion de la resistencia y la forma de calcular las maximos desplazamiento laterales, de tal caso los encargados de realizar el diseñeo estructural pueden entender de manera sencilla el proceso de diseño, asi mismo tiene por objetivo realizar el analisis con los parametros de analisis y diseño estructural sismorresistente para estructuras en mexico, se llega a la conclusion que el reglamento de analisis, diseño estructural sismorresistente en mexico a progresado en varios aspectos, asi mismo se muestra el procedimiento solicitado en las normas que nos permite conocer el analsis y diseño asi como los desplazamientos en una forma mas coherente y clara, cabe resaltar que los reglamentos de EU no se tiene una claridad para el analisis sísmico de las edificaciones.

Según (Caycedo, P y Galvis, K. 2017) En su tesis "Diseño arquitectónico y estructural de vivienda unifamiliar de tres niveles en sistema de muros de carga en estructura metálica de pórticos con diagonales dentro del marco de construcción sostenible." por la Universidad de Santander (Colombia), llego a las siguientes conclusiones:

La investigación tiene como objetivo dar a conocer la implementación del software robot structural en una edificación unifamiliar de 3 pisos que se ejecutara en el municipalidad de Málaga, Santander; así mismo se realizó el diseño arquitectónico basado en los parámetros de Calidad Ambiental Interior donde se innovo el Diseño arquitectónico, con los requerimientos del Consejo Colombiano de Construcción Sostenible, que están vigentes en la actualidad en Colombia. Así mismo se tiene que cumple con los parámetros del Reglamento Colombiano de Construcción Sismorresistente 2010 (NSR10) y se implementó con la metodología BIM con los programas Robot Structural Analysis Professional, "AutoCAD, Revit", realizando de manera más sencilla la elaboración del modelamiento y procesamiento de los cálculos.

Como antecedentes nacionales, tenemos a:

Según (Atto, J. y Estrella, K. 2019) en su tesis de grado titulada: "*Diseño estructural mediante el Software "Autodesk Robot Structural Analysis*" para la ampliación del Hotel Cielo, Tarapoto 2019", por la Universidad Cesar Vallejo, llego a las siguientes conclusiones:

Se planteó como objetivo de estudio, diseñar estructuralmente con el programa Robot Structural Analysis para ampliar el hotel cielo de la ciudad de Tarapoto así mismo la metodología de investigación es aplicada, donde a través de fichas de exploración fueron llenadas las clasificaciones del suelo, también se hizo el ensayo de granulometría, límites de atterberg y ensayo directo siguiendo las normas E 050 suelos y cimentaciones, posterior a ello. Se realizó la modelación con el uso del programa robot estructural, para determinar el análisis sísmico se siguiendo el reglamento nacional de edificaciones E. 030 diseño sismorresistente. Los resultados que tiene esta investigación son datos favorables para el edificio con una altura considerable, las cuales fueron resistencia a la compresión mayores a lo indicado inicialmente, debido a ello el análisis sísmico tuvo como resultado la una configuración estructural discontinua ello conlleva condiciones desfavorables a la obtención de valores enmarcada en la norma técnica peruana, en conclusión se identificaron los suelos donde se tiene suelos granulares como grava arcillosa (GC) y graba arcillo limosa (GC-GM), así mismo presenta una capacidad portante de 1.30 kg/cm2, la edificación cumple con los lineamientos establecidos por la E. 030 así mismo presenta derivas menores a lo establecido en la norma que tiene un valor de 0.007.

Según (huaraca, A.2018) en su tesis de grado titulada: "Análisis Comparativo Aplicando El Software Robot Structural Analysis Y Etabs Para Evaluar El Comportamiento Estructural De Viviendas Autoconstruidas" por la Universidad Peruana Los Andes, llego a las siguientes conclusiones:

Esta investigación tiene como objetivo comparar el programa Robot Structural Analysis y el programa Etabs para determinar el comportamiento de las viviendas autoconstruidas en la ciudad de Pucará, Huancayo, el resultado presenta deficiencias en el análisis estructural (estático-dinámico) de la vivienda autoconstruida además no cumplen los parámetros mínimos de acuerdo a la norma técnica peruana. La metodología de la investigación es científico, de tipo aplicada, de nivel descriptivo - correlacional y tiene como diseño no experimental. Se tiene como conclusión que no tiene un buen comportamiento del análisis estático y dinámico estructural de la edificación autoconstruida utilizando el programa Robot Structural Analysis y el programa Etabs, así mismo no cumplen los parámetros mínimos de la norma técnica peruana (E.030, E.060, E.070).

Según (Paredes, E. 2018) en su tesis de grado titulada: "*Diseño estructural de un edificio de 8 niveles con disipadores de energía, Trujillo-La Libertad, 2018*", por la Universidad Cesar Vallejo, llego a las siguientes conclusiones:

La tesis tiene como objetivo diseñar una edificación de ocho niveles en la ciudad de Trujillo a estas se añadieron un sistema de seguridad como son disipadores de energía, así como también se empleó la metodología experimental transversal descriptivo, se realizaron trabajos en campo como estudios de topográficos dando como resultado pendientes menores al 1%, posteriormente se realizó el diseño arquitectónico cumpliendo los requisitos mínimos de acuerdo a las nomas A 010 Y A 020, posterior a ello se realizó el EMS donde realizaron tres calicatas a una profundidad de 3m cada una, obteniendo como resultado una capacidad admisible de 1.28kg/cm2, para el análisis sismorresistente con disipadores de energía se utilizó con el programa Etabs, los resultados del diseño estructural del edifico fue utilizado con el programa SAP, Etabs y SAFE, así mismo las cuantías de acero fueron obtenidas de una forma rápida siguiendo los criterios mínimos permitidos. Se llegó a la conclusión que el análisis sismorresistente de la edificación de ocho pisos con disipadores de energía permitió minimizar el tiempo

de creación del modelado, así mismo, el desplazamiento en la dirección X y en la dirección Y se encuentra en el parámetro según lo establece en el reglamento nacional de edificaciones E. 030, para el análisis estático y dinámico.

Bases teóricas

La topografía en edificaciones es una ciencia aplicada, el objetivo es conocer los puntos sobre la tierra, la posición de los puntos ubicados en la superficie terrestre encima y por debajo, para ello se realizan mediciones de ángulos, elevaciones y distancias, el cual será representado en un plano. (Rincon M, Vargas W, y Gonzales, C. 2018, p.1).

Según (Rincon M, Vargas W, y Gonzales, C. 2018), el **levantamiento topográfico** tiene un conjunto de operaciones que tienen por objetivo conocer la ubicacion del terreno y sus caracteristicas para representarlas en un plano: método de levantamiento, elegir los equipos necesarios, ubicar posibles vértices de apoyo, realizar la medición del terreno, procesamiento de datos obtenidos del terreno y dibujo de planos. (p,3).

El diseño arquitectónico son consideraciones que deben ser cumplidas para favorecer al diseño de la edificación, se deben considerar lo siguiente: la topografía del terreno, las dimensiones, orientación cardinal y servicios. Cuando se solucionen los aspectos anteriores, se tienen que ver las necesidades de la edificación por ejemplo: superficie construida, altura de los niveles o plantas, relaciones entre los espacios, los usos, etc. (arquigrafico, 2016).

Los criterios arquitectónicos para el diseño son las correcta distribucion de ambiente para un correcto diseño arquitectonico, deben cumplir los siguiente requisitos y/o cumlir las siguiente normas A.010 que plantea todo acerca de los parametros para el diseño y en la norma A.020 que tiene criterios para vivienda.

La estructuración es el procedimiento de distribuir correctamente los elementos estructurales tomando en consideración criterios y plasmándolo en los planos de arquitectura, así mismo es lo primero que se debe diseñar en una edificación y uno de los más importantes, los resultados del análisis estructural depende de la estructuración. (Chavez, A. y Pilco, J. 2015, p.6).

Según (Norma Tecnica E. 050, 2018 Art.5.33), el **estudio de mecánica de suelos** es la exploración que se realiza in situ, realizando las calicatas para poder obtener las muestras alteradas e inalteradas y luego estas llevado al laboratorio para realizar los ensayos en laboratorio.

Las calicatas son excavaciones que se realizan de muchas formas con el objetivo de realizar observaciones directas del terreno, como también la obtención de muestras alteradas e inalteradas, a la hora de realizar las calicatas se debe tener mucho cuidado a fin de evitar accidente. (Reglamento Nacional de Edificaciones E-050, 2018, Art.14.2.1).

La capacidad portante del terreno se puede determinar realizando el ensayo de corte directo, para realizar este ensayo se tiene que colocar una muestra inalterada al molde de (CD), a esta se aplica un esfuerzo normal determinado y consolidando el espécimen bajo el esfuerzo normal, ejerciendo la fuerza sobre el molde desplazando horizontalmente respecto al otro a una velocidad constante donde presenta deformación y se puede medir la fuerza de corte y los desplazamiento horizontales a medida que la muestra es llevada a la falla. (Universidad de las Americas Puebla).

Figura 1 Equipo de Corte directo.

Fuente: elaboración propia 2021.

Según (Norma Tecnica E. 020, Cargas, 2006), para el análisis y diseño se tiene que considerar el metrado de cargas, las cargas son la fuerza y todo lo que pueda producir peso, entre ellos pueden ser los materiales de construccion, los ocupanes en las edificaciones, efectos que puedan producir el medio ambiente, y otros. (p.1).

La **carga muerta** según (Norma Tecnica E. 020, Cargas, 2006), es el peso que producen los materiales, y todos los elementos que se encuentren empotrados en un edificio, agregando su peso, y todo elemento que sea empotrado.

Tabla 1 Pesos unitarios.

MATERIALES	PESO(KN/M3) (Kgf/m3)
albañilería de adobe	16.0 (1600)
albañilería de unidades de arcilla cocida solidas	18.0 (1800)
albañilería de unidades de arcilla cocida huecas	13.5 (1350)
concreto simple de cascote de ladrillo	18.0 (1800)
concreto simple de grava	23.0 (2300)
concreto simple de pómez	16.0 (1600)
	agregar 1.0 (100) al
Concreto Armado	peso de concreto
	simple

Fuente: Norma Tecnica E. 020, Cargas. (2006)

La **carga viva** según (Reglamento Nacional de Edificaciones E 020, Cargas, 2006), es producido por el peso de todos los habitantes en la vivienda, como los muebles, materiales, y los elementos que se puedan mover y sean soportados por la edificacion.

Tabla 2 Cargas mínimas repartidas repartidas para viviendas.

OCUPACION	CARGAS DISTRIBUIDA Kpa (Kgf/m2)
vivienda	2.00 (200)
corredores y escalera	2.00 (200)
uente Deglemente Nacional da	Edificacionas 020 Corgos (2006)

Fuente: Reglamento Nacional de Edificaciones 020, Cargas. (2006).

El análisis estructural es un proceso para determinar resultados matemáticamente de resistencia de los elementos estructurales para así poder conocer los esfuerzos, las deformaciones y tensiones de la edificaciones, así mismo deben ser calculadas los elementos estructurales que soportan cargas aplicadas en cada elemento estructural. (Sambrano, M. 2014).

Según (Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.9), establece algunos procedimientos de manera general para poder hacer el analsis y son el analisis estatico y dinamico modal espectral.

Según el (Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.9), La fuerza Cortante en la base es la fuerza que actúa en de toda la estructura, correspondiente en la dirección ya sea en "X" o "Y", donde se calcula por la siguiente expresión:

$$V = \frac{Z * U * C * S}{R} * P$$

Así mismo se tiene la fuerza cortante en la base de la edificación (*V*), peso de la edificación (*P*), factor de zona (*Z*), factor de uso (*U*), factor de amplificación sísmica *C*, perfil de suelo (*S*):, según Norma E.030.

El dato de C/R no se considera > que:

$$\frac{C}{R} \ge 0.11$$

Las fuerzas horizontales sísmicas que se aplican en el nivel que sea i, en una dirección determinada, se define con la siguiente expresión:

$$Fi = \propto i * v$$
$$\propto = \frac{P_i (h_i)^k}{\sum_{i=1}^n p_i * (h_i)^k}$$

El periodo fundamental de vibración, para cada tipo de dirección se estima con la siguiente formula.

$$T = \frac{h n}{C T}$$

La altura de la estructura (H n) se considera del nivel de terreno, para pórticos de concreto armado C T = 35; ascensores, escaleras y pórticos de acero arriostrados C T = 45, concreto armado duales y edificios de albañilería C T = 60.

El valor T obtenido se determinar siguiendo los parámetros estructurales y de la deformación de los elementos:

$$T = 2\pi * \sqrt{\frac{(\sum_{i=1}^{n} Pi * d_i^2)}{(g * \sum_{i=1}^{n} f_i * d_i)}}$$

Nota: el periodo T determinado, no tiene que ser > en 25% del T obtenido por el método aproximado.

Según (Reglamento Nacional de Edificaciones E. 030, Diseño Sismorresistente, 2018. p.4), la **zonificación (***Z*), de nuestro territorio se encuentra repartido en 4 zonas, se basa en el ordenamiento de la sismicidad observada, según los registros de los sismos, la distancia de epicentro y la información neotectonica.

Figura 2 zonas sísmicas.

Fuente: Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.4.

Tabla 3 Factores de zona.

FACTORES DE ZONA "Z"		
zona	Z	
4	0.450	
3	0.350	
2	0.250	
1	0.100	

Fuente: Reglamento Nacional de Edificaciones E. 030, Diseño Sismorresistente, 2018. p.5.

Según (Reglamento Nacional de Edificaciones E. 030, Diseño Sismorresistente, 2018 p.6) El valor de la **Amplificación Sísmica (C)**, se considera los parámetros de sitio, se determina por las siguientes formulas:

T <tp< th=""><th>C=2.5</th></tp<>	C=2.5
Tp <t<t l<="" td=""><td>C=2,5 *(Tp/T)</td></t<t>	C=2,5 *(Tp/T)
T>TL	$C = 2.5^{*}(Tp^{*}TL/T^{2})$

Según (Norma Tecnica E 030, Diseño Sismorresistente, 2018 p.5), Los **Perfiles de suelo (S)**, son cinco: suelo S0: Roca Dura; suelo S1: Roca o Suelos Muy Rígidos; suelo S2: Suelos Intermedios; suelo S3: Suelos Blandos; suelo S4: Condiciones Excepcionales.

CLASIFICACIÓN DE PERFILES DE SUELO			
perfil	V ₁	N 60	Su
S 0	> 1500 m/s	-	-
S 1	500 m/s a 1500 m/s	>50	>100 kPa
S 2	180 m/s a 500 m/s	15 a 50	50 kPa a 100 kPa
S 3	< 180 m/s	<15	25 kPa a 50 kPa
S 4	Clasificación basada en el EMS		

Fuente: Norma Tecnica E. 030, Diseño Sismorresistente, 2018, p.5.

Según la (Norma Tecnica E. 030, Diseño Sismorresistente, 2018 p.6), Los **parámetros de sitio (S, TP y TL)**, Se tendrán en consideración el tipo de perfil de suelo que mejor se parezca al terreno local, se considerara los valores del factor de amplificación del suelo S y de los períodos TP y TL dados en las siguientes tablas.

Tabla 5 Valores de factor Suelo.

FACTOR DE SUELO "S"					
ZONA \ SUELO	S0	S 1	S2	S3	
Z4	0.80	1.00	1.05	1.1	
Z3	0.80	1.00	1.15	1.2	
Z2	0.80	1.00	1.20	1.4	
Z1	0.80	1.00	1.60	2.0	

Fuente: Reglamento Nacional de Edificaciones E. 030, Diseño Sismorresistente, 2018. p.6.

Tabla 6 Valores de Periodos T p y T I.

PERIODOS "TP" y "TL"				
	Perfiles de suelo			
	S 0	S1	S2	S 3
Tp (s)	0.30	0.40	0.60	1.00
TL (S)	3.00	2.50	2.00	1.60

Fuente: Reglamento Nacional de Edificaciones E. 030, Diseño Sismorresistente, 2018. P.6.

La categoría de edificación y el **valor de Uso (U)** cada tipo de edificación está clasificada con las categorías indicadas. Para edificios de una vivienda se puede tomar el valor de U=1.

CATEGORÍA	DESCRIPCIÓN	FACTOR U	
C: edificios comunes	las edificación como vivienda	1	

Fuente: Norma Tecnica E. 030, Diseño Sismorresistente, 2018, p.6.

Según (Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.7), los tipos de sistemas Estructurales y los **Coeficiente Básico de Reducción de las Fuerzas Sísmicas (R0)**, se clasifican según el tipo material utilizado según corresponda en cada dirección "X" y "Y", se define un tipo de sistema estructural. Tabla 8 sistema estructural.

Sistemas Estructurales			
sistema estructural coeficiente básico de reducción Ro			
Concreto Armado:			
pórticos	8.00		
dual	7.00		
de muros estructurales	6.00		
muros de ductilidad limitada 4.00			

Fuente: (Norma Tecnica E. 030, Diseño Sismorresistente, 2018, p.7).

La estimación del **Peso (P),** para determina el peso se tomara en cuenta lo siguiente para edificaciones para edificaciones comunes "C", se considera el 25 % de la carga viva, (Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.9).

Según (Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.10), el **análisis Dinámico**, la edificación puede ser diseñada utilizando los resultados de los análisis dinámicos por la combinación modal espectral.

La aceleración espectral, se considera el espectro inelástico de pseudoaceleraciones para las direcciones horizontales y está definido por:

$$Sa = \frac{ZUCS}{R} * g$$

Dónde: se tiene Sa = Aceleración espectral, los valores de ZUCSR se definieron anteriormente, g = 9.81 m/s2 aceleración de gravedad.

Los **criterios de combinación**, se puede determinar las respuestas máximas elásticas, fuerzas internas, fuerza cortante en la base, cortantes de entre piso, momentos de volteo, desplazamientos totales y relativos de entrepiso, de la estructura (Norma Tecnica E. 030, Diseño Sismorresistente, 2018, p.10).

Se usa la siguiente formula de combinación cuadrática completa, calculados para cada momento.

$$r = \sqrt{\sum \cdot \sum ri \rho i j r j}$$

Así mismo los coeficientes de correlación están dados de la siguiente manera.

$$\rho ij = \frac{8\beta^2 (1+\lambda)\lambda^{3/2}}{(1-\lambda^2)^2 + 4\beta^2\lambda(1+\lambda)^2} \qquad \lambda = \frac{\omega j}{\omega i}$$

Alternativamente, la respuesta máxima se puede determinar con la siguiente manera:

$$r = 0.25 \sum_{i=1}^{m} |ri| + 0.75. \sqrt{\sum_{i=1}^{m} ri^2}$$

La fuerza cortante mínima, se tiene que para estructuras regulares la fuerza cortante en el primer entrepiso de la edificación no debe ser menor que el 80% del valor calculado, y para estructuras irregulares no debe ser menor que el 90%. Si no cumple se puede escalar proporcionalmente los resultados obtenidos, más no el desplazamiento. (Norma Tecnica E. 030, Diseño Sismorresistente, 2018. p.10).

Según (Norma Tecnica E. 030, Diseño Sismorresistente, 2018, p.10), para determinar los **desplazamientos Laterales Relativos Admisibles**, los desplazamiento máximo relativo de entrepiso, no tienen que exceder lo que se indica en la siguiente Tabla.

T	abla	9	Distorsión	del	l entrepiso
---	------	---	------------	-----	-------------

LIMITES PARA LA DISTORSION DEL ENTREPIS	0
material predominante	(∆i/hei)
concreto armado	0.007
acero	0.010
albañilería	0.005
madera	0.010
edificios de concreto armado con muros de ductilidad limitada	0.005

Fuente: (Norma Tecnica E. 030, Diseño Sismorresistente, 2018, p.11).

El diseño estructural de un edificio es la unión de elementos estructurales que tiene una función que es cumplir todas las solicitaciones de diseño, y además tomando criterios tal como es el peso y el costo. (Morales, R. 2006, p.8).

Según (Norma Tecnica E. 060, 2018 p.53), el diseño de elementos estructurales de la edificación deberán diseñarse para determinar las secciones de

acuerdo a las resistencias de diseño (øRn) o iguales a las resistencias requeridas (Ru), se deberá cumplir lo siguiente.

øRn ≥ Ru

Los Requisitos de Resistencia y Servicio, para la resistencia requerida de (CM) y (CV) serán:

Y para el diseño se considera las cargas de sismo (CS):

$$U = 1,25 (CM + CV) \pm CS$$

$$U = 0.9 \text{ CM} \pm \text{CS}$$

Para el refuerzo de acero mínimo en elementos estructurales sometidos a flexión. Se considerara la siguiente formula donde ninguna manera se considera menor a:

$$As min = \frac{0.22 * \sqrt{f' * c}}{fy} * bw * d$$

Para el análisis y diseño se tomó en cuenta lo establecido en la norma E. 020 cargas, E. 030, diseños sismorresistente, E.050 Suelos y Cimentaciones, norma E.060 Concreto Armado.

La aplicación de software en el análisis y diseño estructural, en la actualidad los programas computarizados nos ayudan en realizar el análisis y diseño estructural, utilizando los métodos de elementos finitos que han permitido dar solución a problemas estructurales. Así mismo las etapas de análisis estructural son: el pre procesamiento (modelaje de estructura) en esta tapa se realizan las asignaciones de las propiedades mecánicas, propiedades geométricas así mismo las solicitaciones de cargas; Procesamiento (Procesamiento de los datos) en esta etapa se define el tipo de análisis como el análisis estático elástico, análisis dinámico lineal; Post Procesamiento (Análisis de los resultados) se pueden visualizar las reacciones en la base, fuerzas internas, distribución de fuerzas, desplazamientos, rotaciones, modos del edificio, curvas espectrales. Según (Taboada y De Izcue, 2009).

El software Autodesk Robot Structural Analysis Professional, según (Deusto Formacion, 2021) Es un programa de análisis de elementos finitos que permite realizar el modelo, analizar y diseñar estructuras de acero y de concreto armado según códigos estadounidenses, estándares británicos y es modificable a normas nacionales.

Definición de términos

Análisis estructural: es crear un modelo y a partir de ello se insertan las fuerzas y estas interactúan en los elementos estructurales.

Análisis estático: son cargas que se aplican en la estructura que se expresan en fuerzas horizontales, en toda la estructura. Según (Canchanya, S. y Vargas, R. 2017).

Análisis dinámico: representa el análisis con las cargas en la edificación y estas varían con el tiempo debido a la participación de las fuerzas de inercia. Según (Canchanya, S. y Vargas, R. 2017).

Centro de rigidez: Es un punto ubicada en la edificación donde se aplica una fuerza cortante horizontal, Según (Canchanya, S. y Vargas, R. 2017).

Centro de masa: Es un lugar geométrico donde concentra la masa en cada piso.

Concreto Armado: Es una combinación de un concreto simple más un acero de refuerzo que soporta tensiones y compresiones.

Cortante en la base: es la fuerza lateral debido a las fuerzas de inercia. (Canchanya, S. y Vargas, R. 2017).

Comportamiento estructural: Es la manera la estructura reacciona la estructura ante la acción de una fuerza sísmica.

Desplazamiento: Es el movimiento de longitud que tiene la edificación entre una punto inicial y un punto final.

Diafragma rígido: Es una losa de estructura rígida que no experimentara deformación. (Canchanya, S. y Vargas, R. 2017).

Diseño estructural: es un proceso donde se analiza, y de acuerdo a ello se dimensiona componentes para el edificio de acuerdo a los requisitos requeridos.

Estructura: es un conjunto de elementos estructurales conectados y tiene por finalidad de resistir cargas de su propio peso como también soportar a cargas externas como de sismos, vientos etc.

Edificación sismorresistente: es cuando la edificación tiene una configuración estructural adecuada, con distribución y de dimensiones apropiadas y que tengan una resistencia para soportar las fuerzas causadas por sismos.

Excentricidades: es un parámetro que determina la desviación de una sección en sus ejes.

Irregular: Es una variación de la estructura en cuanto a rigidez, masa, altura.

III. METODOLOGÍA

III.1. Tipo y diseño de investigación Tipo de investigación

Descriptivo - Aplicado:

Según (Hernández, R, Fernández, C. y Baptista, M. 2014) el tipo de investigación descriptiva tiene por objeto dar a conocer el procedimiento de un objeto. El presente informe de investigación describe las características encontradas en el análisis basada en una metodología y aplicada porque se basa en diseñar la edificación, mediante el Software "Autodesk Robot Structural Analysis". (p, 155).

Diseño de Investigación

No experimental

El proyecto tiene un diseño no experimental según (Hernández, R, Fernández, C. y Baptista, M. 2014), empleando el siguiente esquema:

 $\mathsf{M} \dashrightarrow \mathsf{O}$

Donde:

M: Edificio multifamiliar de 5 niveles de la urbanización taparachi manzana "E-10" L-7 del distrito de Juliaca, provincia de San Román, departamento de Puno.

O: Recolección de datos del proyecto.

III.2. Variables y operacionalización Variable independiente: Sotfware Robot Structural Analysis.

Definición conceptual:

Es un software de análisis y diseño estructural donde se puede modelar en 3d, y realizar el análisis estático y dinámico, así mismo el diseño estructural, bajo la norma ACI 318. Además de las normas internacionales, (Villarroel, 2016).

Definición operacional:

Esta investigación se realizó usando el software robot structural Analysis y se analizara el diseño estructural de la edificación.

Variable Dependiente: Diseño estructural.

Definición conceptual:

Generalmente al diseñar una edificación se inicia desde el predimensionamiento de la estructura, posterior a ello se realiza el análisis estructural. Para finalmente conocer el diseño estructural de la superestructura y la sub estructura. (Méndez y Díaz, 2019).

Definición operacional:

Se procederá a realizar los dibujos de los elementos estructurales a través del software computacional.

La matriz de consistencia se ubica en el Anexo 1.

La matriz operacional se Ubica en el Anexo 2.

III.3. Población, muestra y muestreo Población: Según (Hernández, R, Fernández, C. y Baptista, M. 2014, p74). Nos indica que la población es un grupo donde poseen algunas características comunes.

En nuestro caso será los edificios multifamiliares de la ciudad de Juliaca.

Muestra:

Según (Fidias, 2006). Es una muestra representativa de la población de tamaño y características parecidas, donde permite concretar los resultados de la población. (p.83).

En el presente informe de investigación se seleccionó Edificio multifamiliar de 5 niveles de la urbanización taparachi manzana "E-10" L-7 del distrito de Juliaca, provincia de San Román, departamento de Puno.

Muestreo:

Según Antuna, (2015) la muestra no probabilística se determinara por el investigador el decide cómo se determinara la selección de la muestra. (p.47).

En la investigación se encuentra en el muestro No Probabilístico – Intencional por criterio.

III.4. Técnicas e instrumentos de recolección de datos

En la presente tesis se realizó la recopilación de los datos partiendo primeramente de la exploración del terreno donde se tomaron las dimensiones del terreno, luego se realizó la excavación de calicatas donde se extrajeron muestras inalteradas para conocer las características del terreno, posterior a ello se realizó la propuesta arquitectónica de la edificación, a partir de ello se realizó el modelado en el software y se desarrolló el análisis estructural sismorresistente.

TIPO DE INVESTIGACION	TECNICA	INSTRUMENTOS	
IN SITU	Observaciones	Cuaderno de campo.	
	Técnicas para levantamiento topográfico	Instrumento topográficos	
	Procedimiento de EMS	Herramientas para la excavación de Calicatas.	
	Cumplimiento de la Norma	Norma técnica, E 050.	
Fuente: Elaboración propia 2021.			

Tabla 10 Técnica e Instrumento de la Recopilación de Datos IN SITU.

	Observación. Obtención de Datos de Topografía Análisis de EMS	software (EXCEL, WORD) software AutoCAD software (EXCEL, WORD)
GABINETE	Análisis estructural sismorresistente Norma, E 020,E030	Sotfware Robot Structural Analysis, Excel.
	diseño estructural E 050,E 060	Sotfware Robot Structural Analysis, Excel. AutoCAD.

Fuente: Elaboración propia.

III.5. Procedimientos

- ✓ Se realizó el levantamiento topográfico para obtener información del terreno y posterior a ello se realizó los dibujos de los perímetros a través del software Autocad, además se utilizó las siguientes herramientas: wincha métrica de 50 m, un cuaderno de campo donde se tomaron todos los datos del terreno.
- Se realizó el diseño de arquitectura mediante el programa Autocad y siguiendo los criterios del reglamento.

- Se realizó la exploración y EMS, para determinar la capacidad admisible que tiene el terreno del proyecto, donde primeramente se realizó la excavación de la calicata para observar las características del terreno y también se extrajo una muestra inalterada donde se realizó el ensayo de corte directo.
- ✓ Para el análisis estructural se realizó el modelamiento con el software Robot Estructural Analysis en su versión estudiantil gratuita así mismo se utilizó las hojas de cálculo de Excel 2016, para determinar el análisis y diseño.
- Se realizó el diseño de la estructura aplicando software Robot Estructural Analysis y siguiendo los parametros establecidos en el norma tecnica E.060.

III.6. Método de análisis de datos Exploración y ensayos:

A través de exploración de campo y excavación de calicatas para obtener muestra inalterada, para después realizar el ensayo de corte directo donde se obtuvo la capacidad admisible del terreno.

Modelación Digital

Se realizó mediante la aplicación del programa Robot Estructural Analysis, Excel, AutoCAD donde se realizó en análisis y el diseño del edificio siguiendo los criterios de la norma técnica vigente E. 030.

III.7. Aspectos éticos

En la presente tesis fue desarrollado cumpliendo los parámetros del reglamento nacional de edificaciones, las cuales son E.020 Cargas, E.030 Diseño Sismorresistente, E.050 Suelos y Cimentaciones y la E.060 Concreto armado, los resultados obtenidos fueron consultados por profesionales del área, así mismo se realizó esta investigación con mucha honestidad y responsabilidad.

IV. RESULTADOS Diseño estructural

Diseño de viga principal

Figura 3 Diseño de viga principal.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 4 Sección diseño de viga principal.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 5 Diseño de viga secundaria.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 6 Sección diseño de viga secundaria.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Diseño de viga de amarre

Figura 7 Diseño de viga de amarre.

Fuente: Autodesk Robot Structural Analysis Professional 2017.
Figura 8 Sección diseño de viga de conexión.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Diseño de Columna central

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Diseño de Columna Excéntrica

Figura 10 Diseño de columnas excéntrica 40x45cm con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Diseño de losa aligerada

Figura 11 Diseño de losa aligerada.

Fuente: AutoCAD 2017.

Diseño de escalera

Figura 12 Diseño de losa aligerada tramo 1.

Fuente: AutoCAD 2017.

Diseño de zapatas central

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Diseño de zapatas excéntrica

Figura 14 Diseño de zapata excéntrica.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Diseño de zapatas esquinera

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Interpretación:

El software robot structural Analysis mejora el diseño de algunos elementos estructurales en cuanto al dibujo de armado de acero automático, como son las vigas, columnas y zapatas, estas fueron diseñadas por el mismo software, así mismo las escaleras y losas aligeradas se diseñó en plantillas de Excel tomando en cuenta los valores del cálculo obtenidos por el software, estos resultados de las cantidades de acero fueron verificadas por las cuantías de acero donde la cuantía obtenida está en el rango de las cuantías permitidas, cabe resaltar que para el diseño se tomaron como referencia los elementos del primer nivel.

Fuerza cortante en la base del análisis estático.

Figura 16 Fuerza cortante en la base en la dirección "X".

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 17 Fuerza cortante en la base en la dirección "Y"

Fuente: Autodesk Robot Structural Analysis Professional 2017

NIVEL	Fx (tn)	Fy (tn)
5	20.92	20.92
4	51.21	51.21
3	81.53	81.53
2	111.85	111.85
1	143.94	143.94

Tabla 12 Fuerza Cortante en la base "X" y "Y".

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Interpretación:

Se tiene que los resultados del análisis del fuerza cortante en la base en la dirección "X" y "Y" los valores son iguales para el primer nivel Fx,y=143.94 tn, para el segundo nivel Fx,y=111.85 tn, para el tercer nivel se tiene Fx,y= 81.53 tn, para el cuarto nivel Fx,y=51.21 tn, para el quinto nivel Fx,y=20.92 tn. Esto debido a que el sistema estructurales en ambas direcciones tienen el mismo coeficiente básico de reducción Ro=8 por ser pórticos de concreto armado.

Distorsión de entre piso del análisis dinámico

Figura 18 Valores de entre piso del análisis dinámico en dirección "Y".

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 19 Valores de entre piso del análisis dinámico en dirección "x".

Fuente: Autodesk Robot Structural Analysis Professional 2017.

		DESPLAZAMENTO	X-X	
PISO	Hi	DISTORCION DE ENTREPISO (DERIVA- C.M)	DESP SEGÚN	I RNE
	m	m	C°Am(D	/Hi)
5	2.8	0.00172	0.007	ОК
4	2.8	0.0033	0.007	ОК
3	2.8	0.00468	0.007	ОК
2	2.8	0.00569	0.007	ОК
1	3	0.00597	0.007	ОК

Tabla 13 Desplazamiento en dirección X-X para el cálculo de deriva.

Fuente: elaboración propia 2021.

Tabla 14 Desplazamiento en dirección Y-Y para el cálculo de deriva.

		DESPLAZAMENTO Y-Y	,	
PISO	Hi	DISTORCION DE ENTREPISO (DERIVA-C.M)	DESP SEGÚN RNE	
	m	m	C °A m (D/Hi)	
5	2.8	0.00164	0.007	ОК
4	2.8	0.00345	0.007	ОК
3	2.8	0.00499	0.007	ОК
2	2.8	0.00609	0.007	ОК
1	3	0.00571	0.007	ОК

Fuente: elaboración propia 2021.

Interpretación:

Se tiene que los resultados del análisis de distorsión de entre piso del análisis dinámico en dirección "Y" los cuales tienen los siguientes valores para el primer piso d UY = 0.00571, para el segundo piso se tiene d UY = 0.00609, para el tercer piso se tiene d UY = 0.00499, para el cuarto piso se tiene d UY = 0.00345, para el quinto piso se tiene d UY = 0.00164, para los resultados del análisis de distorsión de entre piso del análisis dinámico en dirección "X" los cuales tienen los siguientes valores para el primer piso d UX = 0.00597, para el segundo piso se tiene d UX = 0.00568, para el tercer piso se tiene d UX = 0.00468, para el cuarto piso se tiene d UX = 0.00330, para el quinto piso se tiene d UX = 0.00172, todos estos valores son menores a 0.007 y es lo que establece en la norma técnica E. 030.

Ventajas y desventajas

Ventajas

- El software Robot Structural Analysis tiene ventajas en cuanto al diseño de vigas se puede realizar los diseños por flexión o corte en tiempo real y adicionando a ello el dibujo del armado de la sección de la viga automáticamente y así nos permite mejorar el tiempo en el diseño de acero.
- ✓ En cuanto al diseño de columnas mediante el software Robot Structural Analysis, nos permite hacer el diseño por flexocompresión, así mismo nos proporciona el dibujo del armado de acero en columnas automáticamente.
- En cuanto al diseño de zapatas mediante el software Robot Structural Analysis, nos proporciona el dibujo del armado de acero automático en zapatas.
- Así mismo tiene la ventaja de realizar la exportación de los dibujos de armaduras de acero de los elementos estructurales anteriormente mencionados al software AutoCAD y Revit, especializados para la generación de detalles tanto en concreto armado y de acero, disminuyendo así el tiempo de entrega de los proyectos.

Desventajas

- ✓ Las desventajas que se tiene en cuanto al diseño de losas aligeradas y escaleras es la no proporción del dibujo del armado automático de acero.
- ✓ Los parámetros de los diseños de los elementos estructurales no son editables.
- Una de las desventajas es la demora al momento de realizar el análisis de cálculo de la estructura, esto depende de la distancia del mallado, si se tiene para un mallado a una distancia de 1 metro tiene un promedio de demora de cálculo de 2 min, para un mallado a cada 0.50 m. tiene un promedio de demora de cálculo de 6 min, para un mallado a cada 0.25 m tiene un promedio de cálculo de 22 min. Este último tiene los cálculos más exactos debido a la menor distancia de mallado.

V. DISCUSIÓN

Discusión 1

Según (Chipana, E y Huillca, E 2019) en su tesis nos indica que software robot structural Analysis proporciona el armado automático de las vigas, columnas, placas. Y verifica si el armado es correcto, La verificación se basó en la utilización de hojas de Excel y las fórmulas que le proporcionaron la norma peruana E060-2016. En nuestra investigación se pudo verificar que el software robot structural Analysis mejora el diseño de las vigas, columnas, zapatas en cuanto al dibujo automático del armado de acero, así mismo el diseño de escaleras y losas aligeradas no se encontraron el dibujo del detalle del armado de acero, estos resultados de las cantidades de acero fueron verificadas por las cuantías de acero donde la cuantía obtenida está en el rango de las cuantías permitidas. Se concluye el software si mejora en el diseño en cuanto al dibujo del armado automático de las vigas, columnas, placas, zapatas y estos resultados pueden ser verificados por las normas actuales.

Discusión 2

Según (Huaraca, A. 2018) en su tesis, indica que el análisis estático se obtiene la cortante estática en la base; donde se observa que los valores obtenidos en el software Robot Structural es de 305.91 Ton-f y que son iguales en ambas direcciones "X" y "Y" donde no indica por qué los valores son iguales en ambas direcciones. Para nuestra investigación se verifico en la fuerza cortante en la dirección "X" y "Y", los resultados fueron para el primer nivel Fx,y=143.94 tn, para el segundo nivel Fx,y=111.85 tn, para el tercer nivel se tiene Fx,y= 81.53 tn, para el cuarto nivel Fx,y=51.21 tn, para el quinto nivel Fx,y=20.92 tn. Son iguales debido a que en el sistema estructurales en ambas direcciones tienen el mismo coeficiente básico de reducción Ro=8 por ser pórticos de concreto armado, se concluye que los resultados son iguales en ambas direcciones con ello se verifica que se realizó un buen análisis, debido que en ambas direcciones tienen el mismo coeficiente básico de reducción.

Discusión 3

Según (Atto, J. y Estrella, K. 2019) En su tesis, se realizó la verificación de la edificación en el quinto nivel, se obtuvo los siguientes valores 0.00680 y 0.00698 para las direcciones de análisis X e Y respectivamente, verificando con la norma E.030 Diseño Sismorresistente, donde para un sistema aporticado las derivas deben ser menores a 0.007 donde cumple. Para nuestro proyecto de investigación se obtuvo la distorsión de entre piso del análisis dinámico para la dirección "Y" en el primer piso d UY = 0.00571, segundo piso d UY = 0.00609, tercer piso d UY = 0.00499, cuarto piso d UY = 0.00345, quinto piso d UY = 0.00164; en la dirección "X" los cuales tienen los siguientes valores para el primer piso d UX = 0.00597, segundo piso d UX = 0.00468, cuarto piso d UX = 0.00330, quinto piso d UX = 0.00172, donde los valores son menores a 0.007 lo establecido en la norma, se concluye que se cumplieron con lo que establece la norma donde indica que la distorsión de entre piso del análisis dinámico debe ser menor a 0.007.

Discusión 4

Según (Quinchiguango, M. y Taco, D. 2016) en su tesis el software Robot Structural Analysis tiene ventajas en el mayor flujo de trabajo por su parecido al software CAD, la posibilidad de cambiar el idioma en el software en las opciones de menú, notas de cálculo, generación del mallado más adecuado, la Interconexión con softwares de tecnología BIM, la exportacion de las armaduras de acero de los elementos estructurales a softwares especializados para detallar tanto en concreto armado y de acero, y la desventaja al ser un software relativamente nuevo e innovador, presenta poca información y capacitación en nuestro medio. En nuestra investigación el software Robot Structural Analysis tiene ventajas en cuanto al diseño de vigas, columnas, zapatas, puede realizar el dibujo del armado de las secciones automáticamente y así nos permite disminuir el tiempo en los detalles de acero en las vigas, zapatas y columnas; así mismo la exportación de los dibujos de armaduras de acero a otros software como AutoCAD y Revit especializados en realizar detalles tanto en concreto armado y de acero, disminuyendo así el tiempo de entrega de los proyecto, se concluye que el software Robot Structural Analysis tiene ventajas favorables al realizar el análisis y diseño estructural de las edificaciones.

VI. CONCLUSIONES

CONCLUSION 1

Objetivo General. Analizar la aplicación del software robot structural analysis para mejorar el diseño estructural de un edifico multifamiliar de 5 niveles, Juliaca, Puno, 2021.

Se concluye que el software robot structural analysis mejora en el diseño estructural del edificio multifamiliar de 5 niveles, se puede decir que disminuye en el tiempo de creación del modelo, así mismo mejora el diseño de las vigas, columnas, zapatas en cuanto al dibujo automático del armado de acero, así mismo cuanto al diseño de escaleras y losas aligeradas no se encontraron el dibujo del detalle del armado de acero.

CONCLUSION 2

Objetivo específico 1. Determinar la fuerza cortante en la base del análisis estático aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021.

Se concluye que la fuerza cortante en la base del análisis estático en la dirección "X" y "Y" los valores son iguales para todos los niveles, para el primer nivel Fx,y=143.94 tn, para el segundo nivel Fx,y=111.85 tn, para el tercer nivel se tiene Fx,y= 81.53 tn, para el cuarto nivel Fx,y=51.21 tn, para el quinto nivel Fx,y=20.92 tn. Esto debido a que el sistema estructurales en ambas direcciones tienen el mismo coeficiente básico de reducción Ro=8 por ser pórticos de concreto armado, con ello se verifica que se realizó un buen análisis.

CONCLUSION 3

Objetivo específico 2. Determinar la distorsión de entrepiso del análisis dinámico aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021.

Se concluye que el análisis de distorsión de entre piso del análisis dinámico en dirección "X" y en la dirección "Y" los valores más elevados son d UY = 0.00609, d UX = 0.00597 donde cumplieron con lo que establece en la norma técnica E. 030, donde indica que deben ser menores a 0.007, así mismo estos datos cumplieron

debido a que se aumentaron la dimensiones de columnas para que pudieran cumplir con lo establecido con la norma.

CONCLUSION 4

Objetivo específico 3. Determinar las ventajas y desventajas del software robot structural analysis, para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca, Puno 2021.

Se concluye que las ventajas del software Robot Structural Analysis en cuanto al diseño de vigas, columas, zapatas, nos proporciona el dibujo del armado de las secciones automáticamente y así nos permite disminuir el tiempo en los detalles de acero en las vigas, zapatas y columnas; así mismo la exportación de los dibujos de armaduras de acero a otros software como AutoCAD y Revit especializados en realizar detalles tanto en concreto armado y de acero, disminuyendo así el tiempo de entrega de los proyectos. Las desventajas que se tiene en cuanto al diseño de losas aligeradas y escaleras es la no proporción del dibujo del armado automático de acero, Una de las desventajas es la demora al momento de realizar el análisis de cálculo de la estructura.

VII. RECOMENDACIONES

- Se recomienda seguir la secuencia del pre procesamiento, procesamiento y pos procesamiento, para tener un buen comportamiento y análisis de la estructura, así mismo al momento del diseño con el software tener buen criterio siguiendo lo que indica el reglamento nacional de edificaciones en las normas E 020, E 030, E 050, y la E 060, los resultados obtenidos por el software Robot Structural Analysis deben ser comprobados de forma manual para asegurar un buen análisis y diseño estructural.
- Se recomienda para el análisis estático cumplir con lo que indica en la norma E 030, así mismo para determinar la fuerza cortante en la base se deben verificar los parámetros como peso total de la estructura, factores de zona, factor de suelo, factor de uso, coeficiente básico de reducción, factor de ampliación sísmica, para obtener los resultados correctos.
- ✓ Se recomienda que si los datos de las derivas no cumplen con lo establecido en la norma E 030, que indica que la deriva debe ser menor al 0.007, se deben aumentar las secciones de las columnas y analizarlos nuevamente con el fin de cumplir con lo establecido en dicha norma.
- Se recomienda utilizar software Robot Structural Analysis ya que presenta ventajas en cuanto al análisis y diseño de edificaciones, así mismo es compatible con otros software y estos ayudan a mejoran la elaboración de proyectos.

REFERENCIAS

- Acero, J. (2020). predimensionamiento de elementos estructurales de concreto armado. Lima: Universidad de Lima. Obtenido de https://www.ulima.edu.pe/pregrado/ingenieriacivil/noticias/predimensionamiento-de-elementos-estructurales-de-concretoarmado.
- Arapa, R. (08 de Setiembre de 2017). Análisis y diseño estructural en concreto armado del edificio multifamiliar de siete niveles en el Centro Poblado de Jayllihuaya [Tesis de Grado Universidad Nacional del Altiplano]. Obtenido de Repositorio Institucional UNAP: http://repositorio.unap.edu.pe/handle/UNAP/5883.
- arq.com.mx. (2020). ¿Qué tanto sabes acerca de la simetría? Obtenido de https://noticias.arq.com.mx/Detalles/23408.html#.YJS31NUzbIU.
- Atto, J, y Estrella, K. (10 de Diciembre de 2019). Diseño estructural mediante el Software "Autodesk Robot Structural Analysis" para la ampliación del Hotel Cielo, Tarapoto 2019 [Tesis de Grado-Universidad Cesar Vallejo]. Obtenido de Repositorio Digital Institucional UCV: https://repositorio.ucv.edu.pe/handle/20.500.12692/47026.
- Bazan, E., y Meli, R. (1999). Diseño Sismico de Edificios. Obtenido de https://www.academia.edu/36401028/Diseno_Sismico_de_Edificios_Bazan _y_Meli.
- Canchanya, S., y Vargas, R. (2017). Estudio comparativo entre el análisis sismico estático y el dinámico, del nuevo aulario de ingenieria civil de la Universidad Científica del Perú-UCP-Tarapoto-2017. Universidad Científica del Perú.
- Carrillo, J., Rubiano, A., y Hernández, H. (2014). Analysis of the Earthquake-Resistant Design Approach. *Ingeniería Investigación y Tecnología, XV*, 151-162. doi:http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432014000100013&Ing=es&tIng=.

- Caycedo, P., y Galvis., K. (2017). Diseño arquitectónico y estructural de vivienda unifamiliar de tres niveles en sistema de muros de carga en estructura metálica de pórticos con diagonales dentro del marco de construcción sostenible. Obtenido de Universidad de Santander (Colombia): https://repositorio.udes.edu.co/handle/001/4010.
- Chavez, A., y Pilco, J. (2015). Propuesta de diseño estructural para una edificación sismorresistente de cuatro niveles ubicado en la localidad de Chachapoyas 2015 [Tesis de grado Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas]. Obtenido de Repositorio Digital UNTRM: http://repositorio.untrm.edu.pe/handle/UNTRM/1040.
- Chevarria, D. (27 de Octubre de 2014). Análisis y diseño estructural sismorresistente por el método de elementos finitos: pabellón de aulas I.E.S.
 Charamaya Mañazo [Tesis de Grado Universidad Nacional del Altiplano].
 Obtenido de Repositorio Institucional UNAP: http://repositorio.unap.edu.pe/handle/UNAP/4552.
- Chipana, E., y Huillca, E. (2019). Análisis y diseño del edificio montoya salazar de concreto armado de 1 semisótano + 6 pisos en arequipa interactuando los programas revit y robot analysis. Arequipa: Universidad Nacional De San Agustin De Arequipa.
- Choquehuanca, K. (2017). Análisis y Diseño Estructural de una Edificación en Concreto Armado de 5 pisos y 1 semisótano [Tesis de Grado]. Obtenido de Repositorio Digital Institucional UNSA: http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/3299/ICchmakp04.pd f?sequence=1&isAllowed=y.
- Colonia, Y., y Valentin, S. (2020). Implementación De La Metodología BIM En El Diseño Estructural Sismorresistente En La Construcción Del Edificio Multifamiliar En Huaraz, Ancash, 2020 [Tesis de grado, Universidad Cesar Vallejo]. Obtenido de Repositorio Digital Institucional UCV: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/48327/Coloni a_VYR-Valentin_DSA-SD.pdf?sequence=1&isAllowed=y.

- Condori, J., y Contrao, D. (25 de Noviembre de 2020). *Analisis y diseño estructural de una edificacion de 5 pisos de concreto armado mediante la aplicacion de la metodologia BIM en el distrito de Tacna* [tesis de grado, Universidad Privada de Tacna]. Obtenido de Repositorio Digital Institucional UTP: http://repositorio.upt.edu.pe/handle/UPT/1567.
- Cumpa, B. (2019). Diseño estructural sismorresistente del edificio nivel primaria, de la Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, 2017 [Tesis de grado-Universidad Cesar Vallejo]. Obtenido de Repositorio Digital Inatitucional UCV: https://repositorio.ucv.edu.pe/handle/20.500.12692/40640.
- DAS, B. (2001). *fundaméntos de ingeniería geotécnica.* mexico: internacional thomson editores s.a.
- De Dios, J. (2016). edificion multifamiliares y hoteles. Obtenido de http://multifamiliares2016juandediosperez.blogspot.com/2016/09/tipologiay-definicion-de-vivienda.html.
- Deusto Formacion. (2021). Obtenido de https://www.deustoformacion.com/blog/diseno-arquitectonico/que-es-paraque-sirve-autodeskrobot#:~:text=Autodesk%20Robot%20Structural%20es%20una,muchos%2 0otros%2C%20con%20las%20grandes.
- Domínguez Hurtado, N. R., y Moreno Minaya, A. E. (13 de Diciembre de 2018).
 Diseño estructural sismorresistente de un edificio de siete niveles bajo la metodologia bim en la provincia de Pomabamba, Ancash, 2018 [Tesis de pregrado, Universidad Cesar Vallejo]. Obtenido de Repositorio Digital Institucional
 UCV: https://repositorio.ucv.edu.pe/handle/20.500.12692/26694.
- Hernández, R., Fernández, C., y Baptista, M. (2014). Metodologia de la Investigacion 6ta edicion. Mexico: McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V. Obtenido de https://www.uca.ac.cr/wpcontent/uploads/2017/10/Investigacion.pdf.

- Huaraca, A. (2018). Análisis Comparativo Aplicando El Software Robot Structural Analysis Y Etabs Para Evaluar El Comportamiento Estructural De Viviendas Autoconstruidas. Huancayo: Universidad Peruana Los Andes.
- Manual De Ensayo De Materiales (Em 2000). (s.f.). *ensayo de penetración s.p.t.* Obtenido de Instituto de la Construccion y Gerencia: https://docplayer.es/49655294-Ensayo-de-penetracion-s-p-t-mtc-e.html.
- Mapa Sísmico del Perú periodo 1960-2017. (15 de Mayo de 2018). Obtenido de Ministerio del Ambiente: https://sinia.minam.gob.pe/mapas/mapa-sismicoperu-periodo-1960-2017.
- Mendez, K., y Diaz, O. (2019). Diseño estructural sismorresistente de un edificio de cuatro niveles en concreto armado [Tesis de grado, Universidad Nacional Jose Faustino Sanchez Carrion]. Obtenido de Repositorio Institucional Digital de la UNJFSC: http://repositorio.unjfsc.edu.pe/bitstream/handle/UNJFSC/2950/MENDEZ% 20LEON%20y%20DIAZ%20SIESQUEN.pdf?sequence=1&isAllowed=y.
- Morales, R. (s.f.). *Deformaciones de las estructuras.* Obtenido de revista de la universidad de mendoza: https://core.ac.uk/download/pdf/268219527.pdf.
- Neira, G. (2017). Diseño de un Edificio de Dieciocho Pisos Estructurado [Tesis de Grado-Universidad Tecnica Federico Santa Maria]. Obtenido de Repositorio USM: https://repositorio.usm.cl/handle/11673/23418.
- Obeso, C. (2020). Diseño Estructural en concreto armado de una Vivienda Multifamiliar de 8 niveles en el distrito de Víctor Larco Herrera - Trujillo.
 Obtenido de Repositorio Digital Institucional UCV: https://repositorio.ucv.edu.pe/handle/20.500.12692/47189.
- Paredes, E. (2018). Diseño estructural de un edificio de 8 niveles con disipadores de energía, Trujillo-La Libertad, 2018 [Tesis de grado - Universidad Cesar Vallejo]. Obtenido de Repositorio Digital Institucional UCV: https://repositorio.ucv.edu.pe/handle/20.500.12692/32609.
- Plan de contingencias por sismo. (s.f.). Obtenido de Gobierno Regional Puno: http://sigrid.cenepred.gob.pe/docs/PARA%20PUBLICAR/OTROS/Plan_de_

contingencia_por_sismo_Puno.pdf#:~:text=SISMICIDAD%20EN%20LA%2 0REGI%C3%93N%20PUNO&text=Esto%20debido%20a%20la%20presenc ia,%2C%20Ma%C3%B1azo%20(Figura%202).

- Quinchiguango, M., y Taco, D. (25 de Julio de 2016). Análisis estructural de una edificación de hormigón armado a través del software Robot Analysis Structural [Trabajo de Graduacion-Universidad Central del Ecuador].
 Obtenido de Repositorio Digital UCE: http://www.dspace.uce.edu.ec/handle/25000/6931.
- Reglamento Nacional de Edificacion. (2021). *A. 020 Vivienda.* Obtenido de Instituto de Construccion y Gerencia: https://www.construccion.org/normas/rne2012/rne2006.htm.
- Reglamento Nacional de Edificacion. (2006). *E. 020 Cargas.* Obtenido de Instituto de Construccion y Gerencia: https://www.construccion.org/normas/rne2012/rne2006.htm.
- Reglamento nacional de edificaciones. (2018). *E.030 diseño sismorresistente.* Obtenido de Instituto de Construccion y Gerencia: https://www.construccion.org/normas/rne2012/rne2006.htm.
- Reglamento Nacional de Edificaciones. (2018). *E.050 Suelos y Cimentaciones.* Obtenido de Instituto de Construccion y Gerencia: https://www.construccion.org/normas/rne2012/rne2006.htm.
- Reglamento Nacional de Edificaciones. (2009). *E.060 Concreto Armado*. Obtenido de Instituto de Construccion y Gerencia: https://www.construccion.org/normas/rne2012/rne2006.htm.
- Rincon, M., Vargas, W., y Gonzales, C. (2018). Topografia conceptos y aplicaciones. Ecoeediciones. Obtenido de https://www.ecoeediciones.com/wpcontent/uploads/2018/02/Topograf%C3%ADa-Conceptos-y-aplicacionesebook.pdf.
- Sambrano, M. (Julio de 2014). Introduccion al analisis estructural. Obtenido de https://es.slideshare.net/mikelitox/introduccin-al-anlisis-estructural

- Taboada, J., y De Izcue, A. (2009). *Análisis y diseño de edificios asistido por computadoras.* Pontificia Universidad Católica del Perú.
- Universidad de las Americas Puebla. (s.f.). *Ensayo de corte directo*. Puebla. Obtenido de http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/patino_r_ca/capitulo3. pdf
- Villarroel, C. (2016). Análisis y diseño de estructuras con Autodesk Robot Structural Analysis (Primera). Santa Cruz - Bolivia.

ANEXOS ANEXO 1

Tabla 15 matriz de consistencia.

TITULO:	"ANÁLISIS Y DISEÑO ES"	IRUCTURAL APLICANDO	EL SOFTWARE F 5 NIVELES,	ROBOT STRUCT JULIACA, PUNO	URAL ANALYSIS F "	PARA EL EDIFICIO	MULTIFAMILIAR DE
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES	INSTRUMENTOS	TIPO Y DISEÑO DE INVESTIGACION
Problema general:	Objetivo general:	Hipótesis general:		Análisis Estático	Euerza Cortante		Método: Científico
¿De qué manera el uso del software robot structural Analysis mejorara el	Analizar la aplicación del software robot structural analysis para mejorar el	Mejora el diseño estructural aplicando el software robot structural	Variable Independiente	Análisis Dinámico	En La Base.	software robot structural	Tipo: Aplicado Diseño: No
diseño estructural de un edifico multifamiliar de 5 niveles, Juliaca, puno?	diseño estructural de un edifico multifamiliar de 5 niveles, Juliaca, Puno, 2021.	Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021.	Software Robot Structural Analysis	Software Robot Structural	Entre Piso Ventajas Y	Analysis	experimental Enfoque: Científico
Problemas específicos:	Objetivos específicos:	Hipótesis específicas:	Variable	Analysis	Desventajas		Cuaninalivo
¿Cuál es la fuerza cortante en la base del análisis estático aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021? ¿Cuál es la distorsión de entre piso del análisis dinámico aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021? ¿Cuáles son las ventajas y desventajas del software robot structural analysis, para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca, Puno 2021?	Determinar la fuerza cortante en la base del análisis estático aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021. Determinar la distorsión de entrepiso del análisis dinámico aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021. Determinar las ventajas y desventajas del software robot structural analysis, para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca Puno 2021	La fuerza cortante en la base del análisis estático son iguales en la dirección "X" y "Y" aplicando el software robot structural Analysis para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021. La distorsión de entre piso del análisis dinámico aplicando el software robot structural Analysis es menor a 0.007 para el edificio multifamiliar de 5 niveles, Juliaca, Puno 2021 Utilizando el software robot structural Analysis presenta mayores ventajas para el análisis y diseño estructural del edificio multifamiliar de 5 niveles, Juliaca Puno	Dependiente Diseño Estructural	elementos estructurales	Columnas Vigas Losa Aligerada Escalera Zapatas	Software Robot Structural Analysis	Población: los edificios multifamiliares de la ciudad de Juliaca. Muestra: Edificio multifamiliar de 5 niveles de la urbanización taparachi manzana "E-10" L-7 del distrito de Juliaca-Puno. Técnicas: Toma de datos IN - SITU Trabajos en gabinete Instrumentos: software robot structural Analysis

FUENTE: Elaboración propia 2021.

ANEXO 2

Tabla 16 Operacionalización de variables.

Variable De Estudio	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Escala de Medición
software robot structural Analysis	Es un software de análisis y diseño estructural donde se puede modelar en 3d, y realizar el análisis estático y dinámico,	Esta investigación se realizara aplicando el software robot structural Analysis y	Análisis estático.	Fuerza cortante en la base.	Razón.
(independiente)	bajo la norma ACI 318. Además de las normas internacionales, (Villarroel, 2016).	estructural de la edificación.	Análisis dinámico.	Distorsión de entre piso	Razón.
			software robot structural Analysis	Ventajas y Desventajas	Razón.
dependiente diseño estructural (dependiente)	Generalmente al diseñar una edificación se inicia desde el predimensionamiento de los elementos estructurales, posterior a ello se realiza el análisis estructural. Para finalmente conocer el diseño	Se procederá a realizar los dibujos de los elementos estructurales a través del software computacional.	Elementos estructurales.	Columnas Vigas Losa aligerada	Razón.
	estructural de la superestructura y la sub estructura. (Méndez y Díaz, 2019)			Escalera Zapatas	

FUENTE: Elaboración propia 2021.

ANEXO 3

Estudios topográficos

Figura 20 Medición del terreno para el proyecto.

Figura 21 Plano perimétrico.

Fuente: Elaboracion propia 2021.

	C	CUADRO DE COORE	DENADAS UTM LADOS Y VERTICES			
				DISTANCIA		
VIC	NORTE (M)	ESTE (m)	ANG. INT.	LADOS	LONGITUD	
1	8283523.79	379040.628	90°00′00"	12	30.00 ml	
2	8283549.53	379057.901	90°00′00"	23	10.00 ml	
3	8283543.96	379066.205	90°00′00"	34	30.00 ml	
4	8283518.21	379048.931	90°00′00"	41	10.00 ml	
		SUM.ANG.INT.	360°00′00"	PERIM.:	80.00 ml	
F uentes		rania 2021		·		

ANEXO 4

Diseño Arquitectónico

Ubicación del terreno

El terreno está ubicado en el Jr. Canoas de la Mz. E-10 LT-7 de la Urbanización Taparachi III Etapa del distrito de Juliaca provincia de San Román región de puno.

Figura 22 Plano de ubicación del terreno.

Fuente: Elaboracion propia 2021.

Descripción arquitectónica

El diseño arquitectónico de la edificación de 5 niveles contiene planos de planta, esta edificación multifamiliar está proyectada sobre un terreno de forma regular que tiene un área de 300 m2, ubicada en la ciudad de Juliaca.

El primer nivel consta de un estacionamiento para 4 vehículos y un área verde y/o entretenimiento, en el segundo nivel al quinto se encuentra departamentos donde cuentan con un área de 235 m2 aproximadamente cada uno.

Figura 23 Plano de distribución arquitectónica del primer nivel.

Fuente: Elaboracion propia 2021.

Figura 24 Plano de distribución arquitectónica del segundo al quinto nivel.

Fuente: Elaboracion propia 2021.

Figura 25 Plano en planta de azotea.

Fuente: Elaboracion propia 2021.

Cada departamento de la edificación consta con tres dormitorios, dos baños, una sala, una cocina, un comedor, un estudio, una lavandería, hall y un área libre (terraza). Así mismo la edificación tiene 5 niveles, a partir del segundo nivel hasta el quinto se encuentran los departamentos. La altura del primer nivel es de 3.00 m y a partir del segundo al sexto nivel la altura de entrepiso es de 2.80 m.

. ANEXO 5

Estudio de Mecánica de Suelos

Trabajos realizados en campo

Se realizó los estudios de suelos para obtener la capacidad admisible del terreno, se realizó 1 calicata de 1m x 1m y con una profundidad de 1.5m de altura debido a que a esa profundidad se encontró en nivel freático, así mismo se extrajo una muestra inalterada de 20cm x 20cm x 20cm.

Figura 26 Medición del terreno para excavación de calicata (1m x 1m).

Figura 27 Excavación de calicata.

Fuente: Elaboración propia 2021.

Figura 28 Ubicación del nivel freático a 1.50m de profundidad.

Figura 29 Extracción de muestra inalterada de 20cm x 20cm x 20xm.

Fuente: Elaboración propia 2021.

Figura 30 Muestra inalterada de 20cm x 20cm x 20cm para ensayo de corte directo.

Ensayos y laboratorio

El EMS para determinar la capacidad admisible del terreno se realizó el ensayo de Corte Directo en el laboratorio de mecánica de suelos GEOTECNIA PUNO EIR.

Figura 31 Extracción de la muestra inalterada en los moldes.

Fuente: Elaboración propia 2021.

Figura 32 Colocado de la muestra a los moldes de corte directo.

Figura 33 Colocado de moldes al equipo de corte directo.

Fuente: elaboración propia 2021.

Figura 34 Rotura de muestra, después de realizado el ensayo de corte.

ANEXO 6

Figura 35 Resultados del estudio de suelos del laboratorio GEOTECNIA PUNO EIRL.

SOFTWARE ROBOT STRUCTURAL SISMORRESISTENTE DE UN EDIFICIO MULTIFAMILIAR DE 5 NIVEL SOFTWARE ROBOT STRUCTURAL JULIACA, SAN ROMÂN, PLINO, 2021
TESISTA: Jose Angel Mamani Laura
PROGRESIVA : CALICATA Nº 01, muestra 01 MUESTRA : TERRENO DE ELINOACION
PROFUNDIDAD : 0.50-3.00 m
FECHA : 05/06/21
ENSAYO DE CONSOLIDACIÓN UNIDIMENSIONAL
FECHADE IMPRESION 2021-06-10 No. ENSAYO MATERIAL
INFORMACIÓN GENERAL
D. WJESTRA 1 CLENTE halo
PROYECTO Itesis arona
ASPECTOS DIMENSIONALES DEL ENSAYO
64 0.65 3.4 141.706
Area (mm ⁻¹) Pesas en el brazo de palanca (kg) Relación de brazos Esfuerzo vertical (kPa) 4095 10 10 10 10 10 10 10 10 10 10 10 10 10
Altura inicial (mm) Coeficiente de consolidación Cv (mm2/s) Tiempo estimado de falla (min)
21.75 0.177 471.699
0 10 Electronic de la la primiti de la companya de
D0 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 100% de la consolidación primaria D50 (mm) 5 (mm) D90 (mm) 5 (mm) 1 (mm)
0.001 0.001 89.00 0.001 89.00 0.001 1569.02
GRAFICA DEFORMACION (mm) vs. RAIZ DE TIEMPO (min) Tempo Raz tempo Deformación
(min) (min ¹⁰) (mm) 3
0.10 0.316 0.000
0.25 0.500 0.000 8008
1.00 1.000 0.001
2.00 1.414 0.001 800
800 2828 0.001
15.00 3.873 0.001 0000
30.00 6.477
60.00 7.746 sar
240.00 15.402
480.00 21.909 5309
1440.00
OBSERVACIONES.
Research Toro BIRL
N. Statistics

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE MATERIALES - SUPERVISIÓN - PROYECTOS DE INGENIERÍA - CONSULTARÍA .

MUESTRA PROFUNDID FECHA	AD :	TERRENO 0.50-3.00 n 05/06/21	DE FUN	DACION							
and a	alery.	EN	SAYO D	E CONSOL	IDACIÓ	N UNIDI	MENSION	IAL		11.23	17739
FECHADE FECHAD	IMPRESIÓN E ENSAYO	2021-0 2021-0	6-10 6-04	No. EN 14	SAYO			MAT	ERIAL rminado		
ID. MU	ESTRA	2	1000	INFORMA	CION GI	ENERAL	-	1	(Selection)	1.1.24	10 mail
CLI	ENTE	tesis	11	1			11	-	<u>.</u>		
PROV	ECTO	tesis arena					1				1
Lado (m	m)	Mas.a bronces	ASPECT + piedras	OS DIMEN	SIONAL	Pease	ENSAYO	00 (80)	Total	Carra Lar	ALL DAY
64			0.65		19. mil		3.8	a cas		239.773	aren fush
Area (mr	n3)	Pesas en el	brazo de	palanca (kg	1	Reta	ción de br	3205	Estu	erzo vertic	al (kPa)
Altura is	nicial (mm)	Coefe	2 ciente de c	consolidade	So Cy Ime	n2%1	10	Tempo es	100 2 40 4	58.538	-
2	1.75			0.177				nem yo es	471.699	e dea (m	ay.
Atura	final (mm)	Del	ormación	estimada d	e talla (m	m) /	Velocid	lad recom	endada o	de conte (n	nm/min)
(D0 (mm)	50% de la co	nsolidación p	ename	10 90% de	a consol	dación n	rimana	1005	0.021	- Colonida	
0.001	D60 (mm)	t _{in (r}	nin)	090 (n	im)	te (r	nin)	D100	(mm)	Lon	(min)
100	0.001	19,	00	0,00	1	89.	00	0.0	101	11	69.02
Tempo	Rait temps	GRAFIC	A DEFO	RMACION	(mm) vs	RAIZD	E TIEMPO	0 (min)		0.20	No.
(min.)	(min 20)	(1919	000 T 9	5.00	10.00	15.00	20.00	35.00	31.00	25.00	40.00
0.00	0.000	0.000									
0.10	0.316	0.000	0.005		1						
0.50	0.707	0.001	and a								
1.00	1.000	0.001									
2.00	1.414	0.001		VI					-		
8.00	2.000	0.001		11							
15.00	3.873	0.001	63015	V	-						
30.00	5,477	0.002		V							
120.00	10.954		8.82	1						1	- 1
240.00	15.492										
480.00	21.909		183								- 1
CBSERVACK	37.947 WES									1	1000
-			-	_	_	_	_	_			
								G	EOTEC	MAR	UNO EIR
										La	1.1.1
			-				-	ALF	Pille A	12	110416

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE MATERIALES - SUPERVISIÓN - PROYECTOS DE INGENIERÍA - CONSULTARÍA .

ENSAYO DE CONSOLIDACIÓN UNIDIMENSIONAL PECHA DE INFRESSIÓN 2021-06-14 No ENSAYO MATERIAL PECHA DE ENSAYO 2021-06-04 148 Indeterminado ID.MUESTRA 3 INFORMACIÓN GENERAL Indeterminado ID.MUESTRA 3 ELENTE tesla errera ADROVECTO tesla errera ASPECTOS DIMENSIONALES DEL ENSAYO Total orgas vertical (h) 44 064500 Total orgas vertical (h) 3.8 Estanzo vertical (hPa) 40586 4 10 10 Total orgas vertical (hPa) 21.75 Oxediciento de consolidación Ov(m2h) Trenco estinado de falla (min) 21.75 0.377 471.892 Abrara final (mm) Deformación estinado do talla (min) Velocidad recomendacida de total (mamin) 21.75 0.327 0.321 471.892 00 (mm) 50.000 10 0.023 1000 (mm) 0.001 6.002 18.00 0.021 196.022 0.002 100 0.000 0.021 196.02 0.000	MUESTRA PROFUND FECHA	IDAD :	CALICATA TERRENC 0.50-3.00 05/06/21	0 DE FU	muestra 03 NDACION							
FECHADE IMPRESIÓN 2021-06-14 No ENSAVO MATERIAL ID MUESTRA 3 CLEATE tests arens PROVECTO tests arens Autoria Destruction de la		NT KLER	EN	SAYO D	E CONSOLIDAC	ÓN UNIDIN	ENSION	IAL				
FECHADE ENSAVO 2021-06-04 148 Indeterminado ID: MUESTRA 3 CLENTE teals PROYECTO teals ASPECTOS DIMENSIONALES DEL ENSAYO Total carga vertical (%) 64 0.85 3.8 Elseros vertical (%) 4056 0.85 3.8 Elseros vertical (%) 4056 0.85 3.8 10 104.422 Altura inicial (mm) Coeficiente de consolidación Ov (mm2/a) Tiempo estinado de falla (min) 105.422 Altura inicial (mm) Coeficiente de consolidación Ov (mm2/a) Tiempo estinado de falla (min) 0.477.885 Altura inicial (mm) Deformación estimado de falla (mm) Velocidad recomendacia de consolidación primaria 100% de la consolidación primaria 00% de la consolidación primaria 100% de la consolidación primaria 100% de la consolidación primaria 0.000 0.000 0.000 8.00 0.021 100% 166.02 0.01 (mm) 50% de la consolidación primaria 00% de la consolidación primaria 100% 100%	FECHA DE	IMPRESIÓN	2021-0	6-10	No ENSAVO	entrettiere		MATE	RIAL	- mi	and and	
ID AUESTRA 3 CLENTE tests PROVECTO tests areas ASPECTOS DIMENSIONALES DEL ENSAYO Lado (mm) Masa bronces + piedras porceas (ng) Petass en el estibo (ng) Tobil canga verical (n) 464 0.65 4 10 106.422 Ausa inicial (mm) Cefforente de consolidación Ov(mm2a) Tempo estimado de falla (min) 21.75 0.177 4036 10 0.621 Di (mm) 50% de la consolidación primaria 10% ufe la consolidación primaria 10% ufe la consolidación primaria 0.002 80.00 0.002 10.001 0.021 Di (mm) 50% de la consolidación primaria 10% ufe la consolidación primaria 10% ufe la consolidación primaria 0.002 80.00 0.002 10.001 100 (mm) vs. (min) 0.003 0.003 80.00 0.002 109.001 0.003 0.000 0.002 100 100.001 100.001 0.003 0.003 0.002 100.001 100.001 100.001 100.001 0.003 0.000 0.002 0.002 100.001 </td <td>FECHA</td> <td>DE ENSAYO</td> <td>2021-0</td> <td>8-04</td> <td>148</td> <td>An and a second s</td> <td></td> <td>Indeter</td> <td>minado</td> <td></td> <td></td> <td></td>	FECHA	DE ENSAYO	2021-0	8-04	148	An and a second s		Indeter	minado			
CLENTE tesis PROVECTO tesis areas ASPECTOS DIMENSIONALES DEL ENSAYO Lado (mm) Masa binnose + indras porceas (ng) Peasa em el estibo (ng) Tobil canga vertical (N) 64 0.65 3.8 435.596 Avea (mm ²) Peasa en el binaco de palanca (ng) Relación de binaco Esterco vertical (R) 4066 0.67 10 Descato Esterco vertical (R) 4006 10 10 Descato 10.54.22 Altra inicial (mm) Coeficiente de consolidación CV (mm2la) Tiempo estimado de falla (min) 41.658 21.75 0.177 41.659 45.50 45.50 00 (mm) 50% de la consolidación primaria 10% de la consolidación primaria 10% de la consolidación primaria 10% de la consolidación primaria 0.602 10.00 (mm) 0.002 8.00 0.002 18.00 189.02 0.602 16.00 0.002 8.00 0.002 189.02 199.02 0.600 0.000 0.000 0.002 18.00 0.002 18.00 199.02 0.600 0.000 0.000	ID M	ESTRA		and by	INFORMACIÓN	GENERAL	1.0	1.11	11/1	Sec. 11	all come	
PROYECTO tests aream Lado (mm) Mass bronces + biodras porobas (vg) Pease serie + setilo (kg) Total carga vertical (k/h) 64 0.65 3.5 435.598 Area (mm) Pease en el binao de palanca (kg) Relación de brazos Esberos vertical (k/h) 4086 4 0 10 10.55.998 Alua inicial (mm) Concensiona de consolidación C//(mm2/b) Trempo estimado de colas (mm.min) 21.75 0.177 471.892 Aura foal (mm) Deformación estimada de fala (mm) Velocidad reconsolidación primaria 0 100 (mm) 50% de la consolidación primaria 100% kg (min) 0.021 0 100 (mm) 100 (mm) kg (min) 0.021 166.02 0.002 18.80 0.000 kg (min) 0.001 100 (mm) kg (min) 0.002 18.80 0.000 issi 0.001 166.000 0.002 18.80 0.000 issi 0.00 100 (mm) kg (min) 0.002 18.80 0.000 issi <t< td=""><td>CL</td><td>ENTE</td><td>tesis</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CL	ENTE	tesis									
ASPECTOS DIMENSIONALES DEL ENSAYO Lado (mm) Masa brances + piedras porosas (vg) Peras en el estito (vg) Total curga vertical (N) 64 0.85 3.8 435.598 Área (mm*) Penas en el brazo de palanca (xg) Relación do brazos Estienzo vertical (NPa) 4056 4 0 10 106.422 Atura inicial (mm) Coeficiente de consolidación (V(mm2)e) Tiempo estimado de falla (min) 471.89 Atura inicial (mm) Deformación estimada de talla (mm) Velocidad recomendada de corta (min/min) 0.021 D0 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 100% de la consolidación primaria 0.002 0.502 88.69 0.002 88.09 0.002 1169.02 0.001 (mm) 50% (min) Lig (min) Lig (min) Estimo Lig (min) Lig (min) Lig (min) 0.002 0.002 0.002 0.002 1000 (mm) Lig (min) Lig (min) Lig (min) 0.002 0.002 0.002 0.002 0.002 1060 (min) Lig (min)<	PRO	YECTO	tesis arena									
Labo (mm) Masa Bonces + plottas porcess (vg) Persas en el estrico (kg) Total canga verical (k) 64 0.85 3.8 435.506 Avea (mm) Pesas en el traco de palance (vg) Relación de strazos Esterzo verical (kPa) 4098 4 10 105.422 Altra inicial (mm) Coeficiente de consolidación CV (mm2/s) Tiempo estimado de falla (min) 21.75 0.17 471.692 Abara final (mm) Deformación estimado de tata (mm) Velocidad recomencias de dorte (mmann) 0 50 0.02 ge.00 0.002 D0 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 10100 (mm) 0.002 0.002 98.00 0.002 118.02 0.002 0.002 98.00 0.002 118.02 0.002 0.002 0.002 10.00 10.00 10.00 0.000 0.000 0.000 0.002 18.00 10.00 10.00 0.000 0.000 0.000 0.002 0.002 10.00 10.0	- years		Williamonth	ASPEC	TOS DIMENSION	ALES DEL	ENSAYO)			aler ale	
Mark Mark <th< td=""><td>Lado (n</td><td>nm)</td><td>Masa bronces</td><td>* piedra</td><td>is porosas (4g)</td><td>Pesas</td><td>en el esh</td><td>ibo (kg)</td><td>Total</td><td>carga ver</td><td>ticni (N)</td><td></td></th<>	Lado (n	nm)	Masa bronces	* piedra	is porosas (4g)	Pesas	en el esh	ibo (kg)	Total	carga ver	ticni (N)	
4086 4 10' 108.422 Attura inicial (mm) Coeficiente de consolidación Cv (mm2/s) Tiempo estimado de falla (min) 471.689 Abura final (mm) Deformación estimado do falla (mm) Velocidad recomendacia de cona (mmimin) 0.021 D0 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 10% de la consolidación primaria 0.02 158.02 D0 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 10% de la consolidación primaria 10% de la consolidación primaria 0.02 158.02 D0 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 10% de la consolidación primaria 10% de la consolidación primaria 0.002 REAPICA DEFORMACIÓN (imm) vs. RAIZ DE TIEMPO (min) Leg (min) 2.002 158.02 100 0.000 sau au au au au au 100 0.000 sau au au au au au 1000 0.000 au au au au au au 100 0.000	Area Im	(fm)	Pesas en el	brazo de	palanca (kp)	Rein	J.C.	1820.8	Febr	435.906 (20 vertice	al (kPa)	
Altura inicial (mm) Coefficiente de consolidación Cv (mm2/s) Tiempo estimado de falta (min) 21,75 Deformación estimada de falta (mm) Velocidad recomendada de coria (mm/m.n) 0 13 Deformación estimada de falta (mm) Velocidad recomendada de coria (mm/m.n) 0.602 D50 (mm) 50% de la consolidación primaria 90% de la consolidación primaria 100% de la consolidación primaria 0.602 D50 (mm) Le (min) D90 (mm) Le (min) D100 (mm) Le (min) 0.602 D50 (mm) Le (min) D90 (mm) Le (min) D100 (mm) Le (min) 0.602 D50 (mm) Le (min) D90 (mm) Le (min) D100 (mm) Le (min) 0.602 D50 (mm) Le (min) D90 (mm) Le (min) D100 (mm) Le (min) 0.602 D50 (mm) Le (min) D90 (mm) Le (min) Le (min) Le (min) 0.602 D50 (mm) Le (min) Le (min) Le (min) Le (min) Le (min) 0.603 0.000 0.000 0.000 Le (min) Le (min)	409	Colomban		4	and the second second	- 2017	10			106.423	an (ver al)	
21.75 0.177 471.692 Abura final (mm) Deformación estimada de falla (mm) Velocidad recomendada de conta (mm/m.in) 0 10 0.021 D0 (mm) 50% de la consolidación primaria 100% de la consolidación primaria 00% de la consolidación primaria 0.602 D90 (mm) 50% de la consolidación primaria 100% de la consolidación primaria 000 (mm) 0.602 D90 (mm) 50% de la consolidación primaria 000 (mm) 50% (min) 0.602 D90 (mm) 50% de la consolidación primaria 000 (mm) 50% (min) 0.602 D90 (mm) 50% de la consolidación primaria 000 (mm) 50% (min) 0.602 D90 (mm) 50% 0.002 0.002 0.602 D90 (mm) 50% 0.002 0.002 0.000 0.000 0.000 0.000 0.001 0.00 0.000 0.002 0.002 0.002 0.00 1.000 0.002 0.002 0.002 0.00 2.000 0.002 0.002 0.002	Altura	inicial (mm)	Coefe	iente de	consolidación Cv	mm2/s)		Tiempo es	tmado de	e falla (m)	n)	
Neura roa (nim) Deformation de saminado de lava (mm) Velocidad recomendada de cone (mmmin) 0 10 0.021 0.021 D0 (mm) 50% de la consolidación primaria 100% de la consolidación primaria 100% de la consolidación primaria 0.002 D50 (mm) fue (min) D00 (mm) fue (min) D100 (mm) 0.002 B5.00 0.002 B8.00 0.002 1169.02 0.002 B5.00 0.002 B8.00 0.002 1169.02 0.002 B5.00 0.002 B8.00 0.002 1169.02 0.000 0.000 0.000 0.002 1169.02 1169.02 0.00 0.000 0.000 0.001 600 10.00 10.00 0.00 0.000 0.002 6001 2.00 1.000 0.002 6001 0.00 0.002 6001 2.00 1.000 0.002 6001 2.00 1.000 0.002 6001 10.00 0.002 6001 4.00 2.00	12.00	21.75		-	0.177		-		471.699			
D0 (mm) 50% de la consolidación primaria B0% de la consolidación primaria 100% de la consolidación primaria 0.002 D50 (mm) tu (min) D90 (mm) tu (min) D100 (mm) tu (min) 0.002 0.002 0.002 0.002 1000 (mm) tu (min) 0.002 0.002 0.002 1000 (mm) tu (min) tu (min) 0.002 0.002 0.002 1000 (mm) tu (min) tu (min) 0.000 0.000 0.000 0.000 0.000 1000 (mm) tu (min) 0.000 0.000 0.000 0.000 0.000 1000 (mm) tu (min) 0.000 0.000 0.000 0.000 0.000 0.000 1000 mm tu (min) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	rises	0	Ve	or macion	10	(mm)	Veloo	dad recom	0.024	le corse (r	nm/min)	
0.002 D50 (mm) tu (min) D90 (mm) tu (min) D100 (mm) tu (min) 0.002 0.002 0.002 0.002 1169.02 GRÁFICA DEFORMACIÓN (mm) vs. RAIZ DE TIEMPO (min) 1empo Paiz tempo 0 domación 0 domación <th< td=""><td>D0 (mm)</td><td>50% de la co</td><td>nsolidación p</td><td>imaria</td><td>90% de la con</td><td>lolidación pr</td><td>imaria</td><td>100% d</td><td>e la consi</td><td>olidación</td><td>primaria</td><td></td></th<>	D0 (mm)	50% de la co	nsolidación p	imaria	90% de la con	lolidación pr	imaria	100% d	e la consi	olidación	primaria	
0.002 0.002 0.002 0.002 1169.02 GRÁFICA DEFORMACIÓN (mm) vs. RAIZ DE TIEMPO (min) Tempo (ms.) Paiz tempo (ms.) 0.000 0	0.002	D50 (mm)	tes (r	mitt)	D90 (mm)	Le (n	nin)	D100	(mm)	1.00	(min)	
Tempo Paic tempo Del meteo Constructor Co		0.002	10	00	0.002	89.	00	0.0	02	11	69.02	
(min) (min)** (min) (min)** (min)** <th(min)**< th=""> <th(min)**< th=""> <th(min)< td=""><td>Temps</td><td>Raiz territor</td><td>Determicion</td><td>AUER</td><td>ROMACION (mm)</td><td>VS. RAIZ D</td><td>E TIEMP</td><td>O (min)</td><td>nie znali</td><td>1</td><td>mar and</td><td></td></th(min)<></th(min)**<></th(min)**<>	Temps	Raiz territor	Determicion	AUER	ROMACION (mm)	VS. RAIZ D	E TIEMP	O (min)	nie znali	1	mar and	
0.00 0.000 0.000 0.000 0.19 0.316 0.000 0.00 0.25 0.500 0.000 0.00 0.650 0.707 0.000 0.002 1.00 1.000 0.002 0.00 2.00 1.414 0.002 0.00 0.00 2.828 0.002 0.00 0.00 2.828 0.002 0.00 0.00 5.477 0.00 5.477 0.00 0.00 5.477 0.0	(min.)	(min ¹⁴)	(1787.0)	00	540 104	2 15.00	20.00	25.00	30	16.00	4.0	
0.19 0.316 0.000 mm 0.25 0.500 0.000 mm 0.650 0.707 0.000 1.00 1.000 0.002 some 2.00 1.414 0.002 mm 4.00 2.000 0.002 mm 4.00 2.828 0.002 mm 30.00 5.477 mm 50.00 7.746 mm 120.00 10.954 mm 120.00 10.00 10.00 10.00 100 10	0.0	0.000	0.000									
0.500 0.500 0.500 aau 0.500 0.707 0.000 aau 1.00 1.000 0.002 tott 2.00 1.414 0.002 aau 4.00 2.000 0.002 aau 4.00 2.000 0.002 aau 15.00 3.873 0.002 aau 30.00 5.477 680 5.477 60.00 7.748 0.008 120.00 10.954 0.008 120.00 10.954 0.008 0085 0.008 0.008 0085 0.008 0.008	0.1	0.316	0.000								- 1	
100 1000 0002 see 200 1414 0.002 eas 4.00 2.000 0.002 eas 8.00 2.828 0.002 eas 15.00 3.873 0.002 eas 30.00 5.477 eas 60.00 7.46 eas 120.00 10.954 eas 240.00 15.422 eas 480.00 2.1509 eas 0dsSERVACIONES: eas	0.5	0 707	0.000	0.001								
2.00 1.414 0.002 0.002 4.00 2.000 0.002 0.002 8.00 2.828 0.002 0.005 15.00 3.873 0.002 0.005 30.00 5.477 0.008 120.00 10.954 0.008 120.00 10.954 0.008 440.00 21.909 0.008 0BSERVACIONES: 0.008 0.008	1.0	1.000	0.002	60815	11							
4.00 2.000 0.002 8.00 2.828 0.002 0.003 15.00 3.873 0.002 0.005 30.00 5.477 0.002 80.00 7.748 0.008 120.00 10.954 0.008 480.00 21.909 0.008 085ERVACIONES:	2.0	1.414	0.002	6.857 -		-	-		1.1.1.1	_		
15.00 3.873 0.002 680 30.00 5.477 680 680 120.00 7.46 0.068 120.00 10.954 240.00 15.462 680 680 680 480.00 21.909 0.068 660 660 OBSERVACIONES: 000 0.008 660 660	4.00	2.000	0.002									
30.00 5.477 680 60.00 7.748 0.008 120.00 10.954 699 480.00 21.909 0.008 085ERVACIONES:	15.00	2.828	0.002	4,080								
60.00 7 745 0.008 120.00 10.954 6.00 240.00 15.422 6.00 480.00 21.909 6.00 OBSERVACIONES:	30.0	5.477		6.80								
120.00 10.954 240.00 15.422 600 480.00 21.909 500 1440.00 OBSERVACIONES:	60.00	7.748		ó.em								
480.00 21 909 2009 1440.00 OBSERVACIONES:	120.00	10.954		6.004								
1440.00 000 0000 0000 CIAL	480.00	15,492										
	1440.00	21.000		0.0040								
AP	OBSERVAC	IONES:	-	te Arche	Andre Gerlandersk	- Kalledard				1	- Andrewson	
									ALEAG	4	P	IRL.
No.200

<No 200

0.075

680.00

653.00

41.67.

40.01

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE MATERIALES - SUPERVISIÓN - PROYECTOS DE INGENIERÍA - CONSULTARÍA

PROYECTO	DISEÑO ESTRUCTURAL SISMORRESIST SOFTWARE ROBOT STRUCTURAL, JULI TESISTA: Jose Appl Mampi Laura	ENTE DE UN EDIFICIO MULTIF/ ACA, SAN ROMÁN, PUNO, 2021	AMILIAR DE 5 NIVELES CON EL
PROGRESIVA	: CALICATA Nº 01	TECN RESPONS	· PERCONAL LABORAT
MUESTRA	: TERRENO DE FUNDACION	ING RESPONS	ALEREDO ALABOOALA
PROFUND.	: 0.00 - 3.00m (M-1)	FECHA	: 04/06/2021

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D-422) % Retenido Parcial % Retenido Acumulado Tamices Abertura Peso % Que Especif-DESCRIPCION DE LA MUESTRA ASTM mm Retenido Pasa caciones 3" 75.000 Peso inicial 1632 Grs 2 1/2" 63.000 Peso fracción Grs 2 50.000 Grava 0.00 14 1 1/2 37 500 Arena 50.99 % 1" 25.000 Fino 40.01 % 3/4" 19.000 100.00 Winatural 28.40 % 1/2 12,500 100 00 3/8" 9.500 0.00 0.00 0.00 100.00 LIMITES DE CONSISTENCIA No.04 4.750 0.00 0.00 0.00 100.00 Lt 47.01 % No.10 2.000 0.00 0.00 0.00 100.00 LP 32.70 36 No.20 0.840 0.00 0.00 0.00 100.00 1.P 14.32 56 No.40 0.425 8.00 0.49 0.49 99.51 No.100 0,150 291,00 17.83 18 32 81.68 CLASIFICACION

REPRESENTACION GRAFICA TAMAÑO DE LAS MALLAS U.S. STANDARD

40.01

SUCS

AASHTO

SC

59.99

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE MATERIALES - SUPERVISIÓN - PROYECTOS DE INGENIERÍA - CONSULTARÍA.

PROYECTO

: DISEÑO ESTRUCTURAL SISMORRESISTENTE DE UN EDIFICIO MULTIFAMILIAR DE 5 NIVELES CON EL SOFTWARE ROBOT STRUCTURAL, JULIACA, SAN ROMÁN, PUNO, 2021 TESISTA: Jose Angel Mamani Laura

PROGRESIVA	CALICATA Nº 01
MUESTRA	: TERRENO DE FUNDACION
PROFUND.	: 0.00 - 3.00m (M-1)

TECN. RESP	i.	PERSONAL LABORAT.
ING. RESP.	1	ALFREDO ALARCON A
FECHA	1	04/06/21

JR. TIAHUANACO H 17 URBANIZACION RESIDENCIAL KOLLASUYO I ETAPA - JULIACA alfredalarcon2@hotmail.com / Cel. 979000744

LIMITES DE CONSISTENCIA

(ASTM D-424)

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE MATERIALES - SUPERVISIÓN - PROYECTOS DE INGENIERÍA - CONSULTARÍA .

ENSAYO DE CORTE DIRECTO (ASTM D3080-98)

PROYECTO

DISEÑO ESTRUCTURAL SISMORRESISTENTE DE UN EDIFICIO MULTIFAMILIAR DE 5 NIVELES CON EL SOFTWARE ROBOT STRUCTURAL, JULIACA, SAN ROMAN, PUNO, 2021 TESISTA: Jose Angel Mamari, Laura

PROGRESIVA MUESTRA PROFUNDIDAD FECHA CALICATA Nº 01 TERRENO DE FUNDACION 0.50-3.00 m 04/08/21

Estado de la muestra Veloc. Ensayo (mm/min) Clasificación SUCS Inalterada 0.5 SC

E	SPECIMEN	01	_	E	SPECIMEN	02	111	5	SPECIMEN (03	
	0.50 kg/cm*			1.00 kg/cm*			2.00 kg/cm*				
Deformac Tangencial (man)	Dial de Carga	Fuerza Curtaste (Kg)	Esformo de Corte (Kg/cm ²)	Deformat Tangencial (mm)	Diel de Cargo	Funta Cortuite (Kg)	Esfierro de Cone (Kg/DH ²),	Deformac Tangencial (mm)	Dial de Corga	Fuerza Contaone (Kg)	Eufuerzo de Corte (Kg/cm/)
0.00	0.00	0.000	0.000	0.00	0.00	0.000	0.000	0.00	0.00	0.000	0.000
0.10	7.00	0.981	0.050	0.10	8.00	1,122	0.057	0.10	25.00	3 505	0.179
0.20	9.00	1.252	0.054	0.20	14.00	1.962	0 100	0.20	35.00	4 907	0.250
0.30	12.00	1.682	0.086	0.30	20.00	2.804	0.143	0.30	45.00	6.578	0.335
0.40	14.00	1,953	0.100	0.40	23.00	3 225	0.164	0.40	52.00	7.436	0.379
0.60	17.00	2.383	0 121	0.60	30.00	4 206	0.214	0.60	61.00	8.723	0.444
0.80	19.00	2.664	0.136	0.80	37.00	5.291	0.269	0.80	57.00	9.581	0.488
1.00	21.00	2.944	0,150	1.00	43.00	6 149	0.313	1.00	71.00	10.260	0.523
1.25	24.00	3.365	0.171	1.25	45.00	6.578	0.335	1.25	77.00	11.127	0.567
1.50	28.00	3 926	0.200	1.50	51.00	7 293	0.371	1.50	82.00	11.849	0.603
1.75	30.00	4.208	0.214	1.75	53.00	7.579	0.388	1.75	87.00	12.572	0.640
2.00	33.00	4.627	0.238	2.00	56.00	8,008	0.408	2.00	90.00	13.005	0.662
2.25	32.00	4.455	0.228	2.25	54.00	7.722	0.393	2.25	89.00	12.861	0.655
2.50	30.00	4.206	0.214	2.50	52.00	7.436	0.379	2.50	87.00	12.572	0.640
2.75	28.00	3.926	0.200	2.75	51.00	7 293	0.371	2.75	85.00	12.283	0.625
3.00	27.00	3.785	0.193	3.00	50.00	7.150	0.364	3.00	84.00	12.138	0.618
3.50	25.00	3.505	0.179	3.50	48.00	6.854	0.350	3.50	82.00	11.849	0.603
4.00	24.00	3,365	0.171	4.00	45.00	6.578	0.335	4.00	80.00	11.580	0.589
4.50	23.00	3.225	0.164	4.50	44.00	6.292	0.320	4.50	78.00	11 271	0.574
5.00	22.00	3.084	0.157	5.00	42.00	6.006	0.306	5.00	75.00	10.838	0.552
5.50	21.00	2.944	0.150	5.50	40.00	5.720	0.291	5,50	73.00	10.549	0.537
5.00	20.00	2 504	0.143	6.00	37.00	5.291	0.269	6.00	71.00	10.260	0.523
6.50	18.00	2.524	0.129	6.50	34.00	4,767	0.243	6.50	70.00	10.115	0.515

OEOTECNIA PITRO EIIIL ALFREDO ALANION ATAHUACHI INGGINI I TO CIVIL Rog. KIR BITAZ

JR. TIAHUANACO H 17 URBANIZACION RESIDENCIAL KOLLASUYO I ETAPA - JULIACA alfredalarcon2@hotmail.com / Cel. 979000744

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE Para el Factor d MATERIALES on SUBERVISIÓN O PROYECTOS DE INGENIERÍA - CONSULTARÍA .

Las incertidumbres que como es lógico, contienen los métodos o fórmulas para la determinación de la capacidad última del suelo. Excesivo asentamiento en suelos compresibles que haría fluir un suelo cuando éste está proximo a la carga de rotura por corte.

Por lo expuesto adoptaremos FS = 2.50 establecido para estructuras permanentes.

Para Zapatas Cuadradas: A partir del ensayo se tiene los siguientes valores:

Cohesión	:	0.108	Kg/cm2
Ø	:	15.65	0
Df	:	200	cm
В	:	200	cm
Y	:	1.623	g/cm3
Ysat	:	1.736	g/cm3
N'c	:	9.9235	
N'q	:	2.854	
N'y	:	0.635	

El nivel freático se encuentra a un nivel de

Cuando el nivel freático se encuentra encima de la zapata, se tiene:

Para Df=	0 cm		Para Df=	110 cm	
	Df1:	100 cm		Df1:	100 cm
	Df2:	-100 cm		Df2:	10 cm
Para Df=	10 cm		Para Df=	120 cm	
	Df1:	100 cm		Df1:	100 cm
	Df2:	-90 cm		Df2:	20 cm
Para Df=	20 cm		Para Df=	130 cm	
	Df1:	100 cm		Df1:	100 cm
	Df2:	-80 cm		Df2:	30 cm
Para Df=	30 cm		Para Df=	140 cm	
	Df1:	100 cm		Df1:	100 cm
	Df2:	-70 cm		Df2:	40 cm
Para Df=	40 cm		Para Df=	150 cm	
	Df1:	100 cm		Df1:	100 cm
	Df2:	-60 cm		Df2:	50 cm
_					
Para Df=	50 cm		Para Df=	160 cm	
	Df1:	100 cm		Df1:	100 cm
	Df2:	-50 cm		Df2:	60 cm
	~~				
Para Df=	60 cm		Para Df=	170 cm	
	DH:	100 cm		Df1:	100 cm
	Df2:	-40 cm		Df2:	70 cm

GEOTECNIA NO EIRL. ATAHUACHI CIVIL 732 ALFREDO AL

JR. TIAHUANACO H 17 URBANIZACION RESIDENCIAL KOLLASUYO I ETAPA - JULIACA alfredalarcon2@hotmail.com / Cel. 979000744

GEOTECNIA, PAVIMENTOS Y CONSTRUCCIÓN

MECÁNICA DE SUELOS - PAVIMENTOS - CIMENTACIONES - LABORATORIO - CALIDAD - TECNOLOGÍA DE Para Df= MATERIALES - SUPERVISIÓN - PROYECTOS DE INGENIERÍA - GONSULTARÍA .

	Df2:	-30 cm		DIZ:	ou cm	
Para Df=	80 cm		Para Df=	190 cm		
	Df1:	100 cm		Df1:	100 cm	
	Df2:	-20 cm		Df2:	90 cm	
Para Df=	90 cm		Para Df=	200 cm		
	Df1:	100 cm		Df1:	100 cm	
	Df2:	-10 cm		Df2:	100 cm	
Para Df=	100 cm					
	Df1:	100 cm				
	Df2:	0 cm				

Los valores para cada profundidad tenemos:

PROF.	qu	qa
Df (cm)	(Kg/cm2)	(Kg/cm2)
0	1.27	0.51
10	1.29	0.52
20	1.31	0.52
30	1.33	0.53
40	1.35	0.54
50	1.37	0.55
60	1.39	0.56
70	1.42	0.57
80	1.44	0.57
90	1.46	0.58
100	1.48	0.59
110	1.50	0.60
120	1.52	0.61
130	1.54	0.62
140	1.56	0.62
150	1.58	0.63
160	1.60	0.64
170	1.63	0.65
180	1.65	0.66
190	1.67	0.67
200	1 69	0.68

O EIRL. ATANUACHI

JR. TIAHUANACO H 17 URBANIZACION RESIDENCIAL KOLLASUYO I ETAPA - JULIACA alfredalarcon2@hotmail.com / Cel. 979000744

ANEXO 7

Estructuración

Planteamiento estructural

Para realizar la estructuración de la edificación depende de la distribución de la geometría del terreno, debido a ello se analizó los planos de arquitectura donde se tuvo por conveniente utilizar losas aligeradas y estas tendrán la dirección hacia las vigas principales, así mismo se proyectan las vigas principales en la dirección X-X en los y las vigas secundarias en la dirección Y-Y así mismo se consideró escaleras en la edificación.

Figura 36 Configuración estructural del edificio.

Fuente: Elaboracion propia 2021.

ANEXO 8

Predimensionamiento de elementos estructurales

Para el **predimensionamiento de losa aligerada** se consideró la mayor longitud paralela a las vigas secundarias y esta es de 4.60m. Así mismo las vigas principales y estas se ubican en el eje X-X, para determinar la altura de la losa se consideró la siguiente formula.

$$h = \frac{luz \ libre}{25}$$
$$h = \frac{4.60}{25}$$
$$h = 0.18 \ m$$

Por lo tanto se considerara un espesor de 0.20m.

Predimensionamiento de viga principal

Se tomó la dimensión mayor entre los apoyos de las columnas en el eje X-X, así mismo estas vigas son las que soportan el peso de la losa donde se distribuyen las cargas vivas y cargas muertas.

$$h = \frac{l}{9\dots 12} m$$

La luz mayor de la viga se encuentra en el eje X-X y tiene una dimensión de 4.88m.

$$h = \frac{4.88}{9} m$$
$$h = 0.54 m$$

Entonces se considerara un peralte de h = 0.55m.

El ancho de la viga principal se determinara de la siguiente manera:

$$b = \frac{1}{20} \text{ ancho tributario} \qquad b = \frac{h}{2}$$
$$b = \frac{4.55}{20} m \qquad b = \frac{55}{2}$$
$$b = 0.23 m \qquad b = 0.28 m$$

82

$$b = 0.30 m$$

Entonces se trabajara con una sección de viga de 0.30 x 0.55 m.

Predimensionamiento de viga secundaria

Se considera la mayor dimensión entre los apoyos que se encuentra en el eje Y-Y, Donde se tiene una longitud de 4.60

$$h = \frac{4.60}{11} m$$
$$h = 0.41 m$$

Se considerara un peralte de h = 0.45 m.

Para el ancho de la viga secundaria

$$b = \frac{1}{20} \text{ ancho tributario} \qquad b = \frac{h}{2}$$
$$b = \frac{4.87}{20} m \qquad b = \frac{45}{2}$$
$$b = 0.24 m \qquad b = 0.23 m$$

Entonces se considerara un peralte de b = 0.25 m.

Entonces se trabajara con una sección de viga de 0.25 x 0.45 m.

Predimensionamiento de columnas

Para realizar el predimensionamiento de columnas es necesario conocer la resistencia a la comprensión del concreto, el número de pisos, el ara tributaria de cada columna de acuerdo a la ubicación de las columnas de la estructura. Para dimensionar las columnas se empleó las siguiente formulas

Para columnas céntricas

$$area = \frac{P}{0.45 * fc}$$

• Para columnas excéntricas y esquinadas

$$area = \frac{P}{0.35 * fc}$$

Datos para considerar las dimensiones de las columnas, se tendrá el peso por metro cuadrado de 1000kg/m2, el número de pisos 5 y la resistencia a la comprensión del concreto f'c=210kg/cm2.

Fuente: Elaboracion propia 2021.

Se realizó el predimensionamiento de las columnas centrales utilizando las formulas ya antes mencionadas.

	PRES	SIMEN	ICIONAN	IIENTO DE COLUMN	AS CENTRALE	S		
Numero de columnas	Área tributaria (m2)		Carga de servicio en el primer piso	Area de columna	b (cm)	h (cm)	Area colocado	
	L	В	LXB	(tn)	(cm2)	(cm)	(cm)	(cm2)
C5	4.53	5	22.65	113.25	1198.41	30	45	1350
C8	4.47	5	22.35	111.75	1182.54	30	45	1350
C11	4.41	5	22.05	110.25	1166.67	30	45	1350
C14	4.63	5	23.15	115.75	1224.87	30	45	1350

Tabla 18 Tabla de predimensionamiento de columnas centrales.

Fuente: Elaboracion propia 2021.

Se realizó el predimensionamiento de las columnas excéntricas y esquinadas utilizando las formulas ya antes mencionadas.

	PRESIMEN	CIONAN	IENTO	DE COLUMNAS I	EXCENTRICAS Y ESQUI	NADAS		
Numero de columnas	Area ti L	ributaria B	a (m2) LXB	Carga de servicio en el primer piso (tn)	Area de columna necesaria (cm2)	b (cm)	h (cm)	Area colocado (cm2)
C1	2.86	2.5	7.15	35.75	486.39	25	30	750
C2	2.76	5	13.8	69	938.78	25	40	1000
C3	2.76	2.5	6.9	34.5	469.39	25	30	750
C4	4.53	2.5	11.33	56.63	770.41	25	40	1000
C6	4.53	2.5	11.33	56.63	770.41	25	40	1000
C7	4.47	2.5	11.18	55.88	760.2	25	40	1000
C9	4.47	2.5	11.18	55.88	760.2	25	40	1000
C10	4.41	2.5	11.03	55.13	750	25	40	1000
C12	4.41	2.5	11.03	55.13	750	25	40	1000
C13	4.63	2.5	11.58	57.88	787.41	25	40	1000
C15	4.63	2.5	11.58	57.88	787.41	25	40	1000
C16	2.32	2.5	5.8	29	394.56	25	30	750
C17	2.32	5	11.6	58	789.12	25	40	1000
C18	2.32	2.5	5.8	29	394.56	25	30	750

Tabla 19 Tabla de predimensionamiento de columnas excéntricas y esquinadas.

Fuente: Elaboracion propia 2021.

Para columnas esquinadas tendrá una sección de 25x30cm.

Para columnas céntricas tendrá una sección de 30x45cm.

Para columnas excéntricas tendrá una sección de 25x40cm.

Predimensionamiento de escaleras

Para el predimensionamiento de escaleras, se obtendrá el espesor con la siguiente formula.

$$t = \frac{l}{25} \ cm$$

Se tiene una longitud L= 212 cm

$$t = \frac{342}{25} \ cm$$

$$t = 13.68 \ cm$$

Se trabajara con un espesor de 15cm de escaleras.

ANEXO 9

Análisis Sísmico

El presente análisis se realizó para conocer el comportamiento de la estructura sísmicamente y cumplir con la norma sismorresistente E.030.

Modelo del análisis

Para el análisis del edificio se utilizó el software ROBOT STRUCTURAL, donde sirvió para el realizar el análisis tridimensional de la estructura. A continuación se presentan algunos aspectos importantes con respecto al modelamiento:

Se definió las propiedades de los materiales de la siguiente manera:

Acero:

- Módulo de elasticidad (E) = 2 100 000 kg/m2
- Módulo de Poisson (µ) = 0.3
- Coeficiente de Kirchhoff (G) = $\frac{E}{2(1+\mu)}$

G=8076923.0 tf/m2

- Fluencia del acero = 4200 kg/cm2
- Peso específico = 7.85 tf/m3

Concreto

- Módulo de elasticidad (E) = 15000 * $\sqrt{F'c} kg/cm^2$ E=2173706.5 tf/m2
- Coeficiente de poisson (µ) = 0.20
- Coeficiente de Kirchhoff (G) = $\frac{E}{2(1+\mu)}$

G=905711.04 tf/m2

- Peso específico = 2.4 tf/m3
- F'c = 210kg/cm2

Se procedió a subir los datos al programa Autodesk Robot Structural Analysis Professional 2017 para el respectivo análisis.

Figura 38 Propiedades de materiales de acero.

R	Defi	nición de	l material		?	x
Acero Hormigón Aluminio Made	ra Otros					
Nombre: Fy=4.2tn/cm2	*	Descrip	ción: ACERO GRADO 60			
Elasticidad			Resistencia			
módulo de Young, E:	21000000.	(tf/m2)	Característico 🗸	42000.00	(tf/m2)	
coeficiente de Poisson, v:	0.3		reducción para el cortante:	1.5		
coeficiente de Kirchoff, G:	8076923.0	(tf/m2)	límite de tracción:	46000.00	(tf/m2)	
Peso específico (densidad):	7.85	(tf/m3)				
Dilatación térmica:	0.000012	(1/°C)	 Tratamiento térmico 			
Coeficiente de	0.04					
Agrega	r E	Eliminar	OK Canc	elar	Ayuda	э

R	Definición del material	? ×
Acero Hormigón Aluminio Made Nombre: fc=210kg/cm2	a Otros Descripción: concreto fc=210	kg/cm2
Elasticidad módulo de Young, E: coeficiente de Poisson, v: coeficiente de Kirchoff, G:	2173706.5 (tf/m2) 0.2 Característico 905711.04 (tf/m2)	 ✓ 2100.00 (tf/m2) Cilíndrico ✓
Peso específico (densidad): Dilatación térmica: Coeficiente de amortiguamiento	2.40 (tf/m3) 0.000010 (1/°C) 0.04	
Agrega	Eliminar OK	Cancelar Ayuda

Figura 39 Propiedades de materiales de concreto.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Una vez colocado los datos al programa se procede a definir las grillas de acuerdo a la estructuración.

Figura 40 Líneas de construcción.

	Plantas – 🗆 ×
(1) (2) (3) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7	Nivel de la base del edificio: 0.00 (m) Definir Plantas definidas O Definición gráfica (m) (m) Nivel de la planta: (m) (m) (m) O Definición manual Cota de nivel: Repetir: Altura:
Planta 3	Planta 5 5 2.8 (m) Agregar
(Planta 4) (Planta 2)	Nombre Nivel de la Altura C
(Planta 3)	Planta 5 14.20 2.80
	Planta 4 11.40 2.80
(Planta 2) (Base)	Planta 3 8.60 2.80
(Dianta 1)	Planta 2 5.80 2.80 Planta 1 3.00 3.00
	Eliminar Eliminar todo Numeración: Planta 1,2, Y Nivel %+v
	Opciones avanzada
	Aplicar Cerrar Ayuda

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Se procedió a insertar las dimensiones de las columnas al programa, anteriormente predimensionadas las cuales fueron de 45X45, 35X45 Y 40X45.

Figura 42 Secciones de columnas

+	Nueva sección – 🗆 🗙	I Sección – 🗆 🗙 🕫
ficha	Tipo de perfil: Columna (h. arm.; 🗸 Ángulo gama: 0 🗸 (Deg)	🗅 🛎 X 🗉 🖬 📰 📰 🐇 🖬 🖻
	Material: fc=210kg/cm2 v	ELIMINAR V. P.
	General	C 40x45 → C 45x45
		□ V. A. □ V. C.
	Nombre: C 45x45 Dimensiones (cm) Color: Auto b 45.0	Líneas/barras
		× •
	Reducción de momentos de inerc	Aplicar Cerrar Ayuda
	Agregar Cerrar Ayuda	
- (

Se insertaron las dimensiones de las vigas al programa, anteriormente predimensionadas las cuales fueron: Vigas principales de 30X55, vigas secundarias 25X45.

+	I Nueva sección − □ ×	I Sección – 🗆 🗙 🅬
ficha	Tipo de perfil: Viga (h. arm.) 🗸 Ángulo gama: 0 🗸 (Deg)	
	Material: fc=210kg/cm2 General Nombre: V. P. Color Auto v h	★ ELIMINAR → V. P. C 35x45 V. S. C 40x45 C 45x45 V. A. V. C.
	Dimensiones básicas (cm) Reducción de mom. de inercia Sección variable	Líneas/barras
,	Agregar Cerrar Ayuda	

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 44 Dimensiones para losa aligerada y escaleras.

Muevo espesor 🗕 🗆 🗙	
Uniforme Ortótropo	
	Espesor EF ×
Nombre: ALIGERADO Color: Auto V	
Dirección Y	
nervios de un lado en una dirección 🗸 🤟	ESCALERA 10CM
Parámetros geométricos (cm)	
h = 5.0 ha = 20.0 a = 40.0 a1 = 10.0	Paneles
Matrices de rigidez ortótropas Mostrar	Aplicar Cerrar Ayuda
Espesor Esp 8.8 (cm)	
Esp 1 20.0 (cm) Esp 2 5.0 (cm)	
Parámetros de la elasticidad del suelo	
Material: fc=210kg/cm2 V	
Agregar Cerrar Ayuda	

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Ya insertados las dimensiones de las columnas, vigas, losas y escaleras se procedió a realizar el modelo de la estructura.

Figura 45 Modelo de la estructura 3D

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Ya obtenido el modelo de la estructura se procedió a insertar las cargas sobre la edificación las cuales se detallan a continuación: Carga muerta, Carga viva, Carga muerta en azotea, carga viva en azotea, carga viva en escaleras, carga muerta en escaleras, cargas muerta en muros.

Los valores de las cargas se consideraron de la siguiente manera:

DESCRIPCION	CANTIDAD POR M2	CARGA MUERTA Kg/m2	CARGA VIVA kg/m2	CARGA VIVA AZOTEA kg/cm2	PESO kg
Peso de acabados		100			
Peso tab. Móvil		120			
peso de ladrillo de techo 30x30x15	8.33				8.5
Sobre carga			200		
sobre carga azotea				100	

Tabla 20 Valores de cargas distribuidas.

Fuente: Reglamento Nacional de edificaciones E. 020.

Tabla 21	Valores de	cargas aplicad	das al programa.
----------	------------	----------------	------------------

CARGAS PARA APLICAR AL PROGRAMA	cargas por Kg/m2	cargas por to	on/m2
CARGA MUERTA C.M	290.81	0.29	Ton/m2
SOBRE CARGA C.V	200	0.2	Ton/m2
SOBRE CARGA AZOTEA C.V.A	100	0.1	Ton/m2
CARGA MUERTA AZOTEA C.M.A	170.805	0.17	Ton/m2
CARGA MUERTA C.M (escaleras)	100	0.1	Ton/m3
SOBRE CARGA C.V (escaleras)	200	0.2	Ton/m4

Fuente: Elaboración propia 2021.

Tabla 22Valores de cargas en muros.

alturas de muros	espesor (m)	altura (m)	P.e. muro (tn/m3)	P. muro tn/m
para h=2.8m	0.13	2.8	1.9	0.69
para h=0.9 m	0.13	0.9	1.9	0.22

Fuente: Reglamento Nacional de edificaciones E. 020

Figura 46 Cargas asignadas al programa.

Análisis estático

Fuerza cortante en la base

La fuerza cortante total en la base de la estructura, correspondiente a la dirección considerada, se determina por la siguiente expresión:

$$V = \frac{Z.U.C.S.}{R}.P$$

Factor de zona (Z)

La estructura se ubicará en Juliaca, por lo tanto se tendrá lo siguiente:

Tabla 23 Factor de zona

EACTOR DE ZONA "7"	ZONA	Z		
FACTOR DE ZONA "Z"	3	0.35		
anto: radamente nacional de adificaciones E 020				

Fuente: reglamento nacional de edificaciones E 030.

Factor de suelo (s)

Se considerara un tipo de suelo s2

Tabla 24 Factor de suelo "S"

FACTOR DE	TIPO	DESCRIPCION	S	Тр	Τι
SUELO "S"	S2	Suelos Intermedios	1.15	0.6	2

Fuente: reglamento nacional de edificaciones E 030.

Factor de uso (U)

El presente proyecto se encuentra dentro de las edificaciones comunes entonces tenemos:

Tabla 25 Factor de uso "U"

	CATEGORIA	U
FACTOR DE USO "U" -	"C" edificaciones comunes	1
The second secon		

Fuente: reglamento nacional de edificaciones E 030.

Factor de amplificación sísmica "C"

Según la Norma E.030, se considerara C=2.5

Coeficiente básico de reducción. "R"

Debido a la presencia de columnas se consideró como pórticos de concreto armado por lo que R0 = 8, luego este valor se verifica.

Entonces se tiene lo siguiente:

$$Vx, y = \frac{0.35 * 1 * 2.5 * 1.5}{8}.P$$
$$Vx = 0.12578 * P$$
$$Vy = 0.12578 * P$$

Así mismo según el reglamento nacional de edificaciones E 030 nos indica que el valor de C/R no se considera menor que:

$$\frac{C}{R} \ge 0.11$$
$$\frac{2.5}{8} \ge 0.11$$

 $0.3125 \ge 0.11$ Cumple lo indicado en la norma

Para el cálculo en el programa el peso se consideró un 100% de la carga muerta y para la carga viva de acuerdo a norma se consideró el 25% del total.

Cabe resaltar que el peso no se puede modificar en el programa, debido a ello se modificara el valor (Z.U.C.S)/R multiplicándolo por el 25% para la carga viva, de acuerdo a lo establecido en el reglamento nacional de edificaciones E 030.

Entonces se considera de la siguiente manera:

Para carga muerta:

$$Vx, y = 0.12578 * P$$

Para carga viva:

$$Vx, y = 0.03145 * P$$

Figura 47 Edición de del valor (Z.U.C.S)/R al programa

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Se procede a calcular el programa, se obtendrán los siguientes resultados.

Figura 48 Sismo estático en Y.

Figura 49 Sismo estático en X.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 50 Distribución de cargas correctamente.

			Visualizar atributos	-		×	
	Plantilla:	Estándar	v 🕽 🔁		\times	¥	
ta	Plantilla: Favoritos Modelo Paneles / E Designació Cargas Vista Estructura	Estantidal	Nombre Nombre Símbolos de cargas Valores de cargas Tamaño igual de símbolos de cargas Tamaño igual de símbolos de cargas Cargas móviles Fuerzas generadas automáticamente Zonas de distribución de la carga Massa añadidas Valores de masa Onostrar atributos Aceptar Cancelar	s solo nados	de los		
	•	×			P	1 2	

Se procede a verificar la fuerza Cortante en la base en la dirección "X" y "Y"

NIVEL	Fx (tn)	Fy (tn)
5	20.92	20.92
4	51.21	51.21
3	81.53	81.53
2	111.85	111.85
1	143.94	143.94

Tabla 26 Cortante basal estático en las direcciones "X" y "Y"

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Así mismo se obtuvo del programa el centro de gravedad de la planta y el centro de rigidez, se puede apreciar que tienen los mismos valores.

Figura 51 Centro de la gravedad de la planta y centro de rigidez.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Análisis dinámico

Aceleración espectral

La norma establece que para cada una de las direcciones horizontales analizadas se utiliza un espectro inelástico de pseudoaceleraciones definido por:

Valores T vs Sa del espectro de diseño.

$$Sa = \frac{Z.U.C.S.}{R}.g$$

т	Sa Dir X-X, Y-Y	Sa Dir Y-Y
0	1.2339	1.2339
0.02	1.2339	1.2339
0.04	1.2339	1.2339
0.06	1.2339	1.2339
0.08	1.2339	1.2339
0.1	1.2339	1.2339
0.12	1.2339	1.2339
0.14	1.2339	1.2339
0.16	1.2339	1.2339
0.18	1.2339	1.2339
0.2	1.2339	1.2339
0.25	1.2339	1.2339
0.3	1.2339	1.2339
0.35	1.2339	1.2339
0.4	1.2339	1.2339
0.45	1.2339	1.2339
0.5	1.2339	1.2339
0.55	1.2339	1.2339
0.6	1.2339	1.2339
0.65	1.139	1.139
0.7	1.0576	1.0576
0.75	0.9871	0.9871
0.8	0.9254	0.9254
0.85	0.871	0.871
0.9	0.8226	0.8226
0.95	0.7793	0.7793
1	0.7403	0.7403
1.1	0.673	0.673
1.2	0.617	0.617
1.3	0.5695	0.5695
1.4	0.5288	0.5288
1.5	0.4936	0.4936
1.6	0.4627	0.4627
1.7	0.4355	0.4355
1.8	0.4113	0.4113
1.9	0.3897	0.3897
2	0.3702	0.3702
2.25	0.2925	0.2925
2.5	0.2369	0.2369
2.75	0.1958	0.1958
3	0.1645	0.1645
4	0.0925	0.0925
5	0.0592	0.0592
6	0.0411	0.0411
7	0.0302	0.0302
8	0.0231	0.0231
9	0.0183	0.0183
10	0.0148	0.0148

Tabla 27 Valores de T vs Sa en X-X y en Y-Y. Del espectro de diseño

Fuente: Elaboración propia 2021.

Tabla 28 Espectro de pseudo-aceleraciones X-X.

Fuente: Elaboración propia 2021.

Tabla 29 Espectro de pseudo-aceleraciones Y-Y.

Fuente: Elaboración propia 2021.

Se procedió a subir los datos del espectro pseudo-aceleraciones al programa tanto en X y en Y, en donde para el espectro en X se consideró en la dirección x=1, en la dirección y=0 y en la dirección y=2/3, así mismo para el espectro Y en la se dirección x=0, en la dirección y=1 y en la dirección y=2/3.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 53 Espectro en Y.

Así mismo se procedió a subir las cargas en el software donde nos indica en el RNE-E030, el 100% de la carga muerta más el 25% de la carga viva.

+ se	R	1	lipo de anális	is	- 🗆 ×
fich	Tipos de análisis	Estructura - modelo	Cargas - conver	sión Combinación	-signo Rest • •
	Parámetros de la	conversión			
	Convertir casos	2	Dir. de	e la masa 🛛 🗴 💽	Y ✓ Z ✓
	Dirección de la co	nversión Z -	✓ Adjuni	tar la masa a: Ma	sa global 🛛 🗸
	Coeficiente	1			
				Agregar	Modificar
h	Casos conver	Dir. de la con	Coeficiente	Dirección	Caso n.º
	→ 2	Z -	1.00000	XYZ	Masa global
	3	Z -	0.25000	Z	Masa global
	4	Z -	0.25000	Z	Masa global
	Eliminar				
5	Generar el model	0	Calcula	r Cerrar	Ayuda

Figura 54 Cargas – conversión.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Ya obtenido la conversión de cargas se procede a la combinación de estas para determinar los sismos dinámicos en X y Y, en función a los espectros en X (xz) y Y (yz), en el software.

Figura 55 (Cargas – combinación) de cargas para sismo dinámico en X

17 : SISMO DI	~				
Lista de casos en la combinación:					binación:
~			coeficiente	Nú	Nombre del caso
caso	^		1.00	12	E 030X Dirección_X
0		>	1.00	13	E 030X Dirección_Z
DTA					

Figura 56 (Cargas – combinación) de cargas para sismo dinámico en Y

18 : SISMO	~				
Lista de casos en				asos en la com	binación:
~			coeficiente	Nú	Nombre del caso
caso	^		1.00	15	E 030 Y Dirección_Y
10		>	1.00	16	E 030 Y Dirección_Z

Fuente: Autodesk Robot Structural Analysis Professional 2017

Para determinar los límites de la distorsión (deriva) se consideró lo establecido en el RNE-E030 que para estructuras regulares debe ser 0.75 R, para ello se asignó lo siguiente en el software.

Para desplazamiento en dirección $X = 0.75^{R*}$ sismo dinámico en X.

Para desplazamiento en dirección Y = 0.75*R*sismo dinámico en Y.

Como se tiene un sistema estructural de pórticos tanto en X y Y se tiene que R=8, entonces se debe considerar en el programa lo siguiente:

Para desplazamiento en dirección X = 0.6*sismo dinámico en X.

Para desplazamiento en dirección Y = 0.6*sismo dinámico en Y.

Figura 57 Combinación de desplazamiento en dirección X.

R	Combin	aciones		×		
Combinación:	: ELS		~			
Lista de casos:	Lista de casos:			Lista de casos en la combinación:		
Naturalı todo	~	coeficiente	Nú	Nombre del caso]	
Número Nombre del	caso ^	6.00	17	SISMO DINAMIC		

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 58 Combinación de desplazamiento en dirección Y.

ſ	R	- 🗆 🗙			
I	Combinación:	IN Y : ELS		¥	
	Lista de casos:		Lista de cas	os en la com	binación:
	Naturalı todo	~	coeficiente	Nú	Nombre del caso
100	Número Nombre del	caso A	6.00	18	SISMO DINAMIC

Una vez proporcionados todos los datos al software se realizó el cálculo donde se verifico la fuerza cortante mínima donde se escaló en la dirección X, mas no en la dirección Y, de acuerdo en lo establecido en la RNE E030.

Desplazamiento lateral

En relación a la NTE E.030 los desplazamientos que se obtuvo del análisis dinámico se multiplicaron por 0.75 R, por ser una estructura regular con el fin de obtener los máximos desplazamientos del edificio, estos valores no deberán superar la deriva máxima de 0.007 para concreto armado establecida en la norma, en las siguientes tablas se muestran todas las derivas obtenidas del programa:

	DESPLAZAMIENTO X-X							
PISO	Hi	DISTORCION DE ENTREPISO (DERIVA-C.M)	DESP SEGÚN RNE					
	m	m	C °A m (D/Hi)					
5	2.8	0.00172	0.007	ОК				
4	2.8	0.0033	0.007	ОК				
3	2.8	0.00468	0.007	ОК				
2	2.8	0.00569	0.007	ОК				
1	3	0.00597	0.007	ОК				

Tabla 30 Desplazamiento en dirección X-X para el cálculo de deriva.

Fuente: Elaboración propia.

「abla 31 Desplazamiento en	dirección Y-Y para	a el cálculo de deriva.
-----------------------------------	--------------------	-------------------------

	DESPLAZAMIENTO Y-Y						
PISO	Hi	DISTORCION DE ENTREPISO (DERIVA-C.M)	DESP SEGÚN RNE				
	m	m	C °A m (D/Hi)				
5	2.8	0.00164	0.007	ОК			
4	2.8	0.00345	0.007	ОК			
3	2.8	0.00499	0.007	ОК			
2	2.8	0.00609	0.007	ОК			
1	3	0.00571	0.007	ОК			

Fuente: Elaboración propia.

IRREGULARIDAD DE MASAS					
PISO	PESO	<u>ь 1 г</u>			
	KG	> 1.5	VERFCACON		
PISO 1	246420.29				
PISO 2	244619.14	0.99	ОК		
PISO 3	244619.14	1	ОК		
PISO 4	244619.14	1	ОК		
PISO 5	180207.34	0.74	ОК		

Tabla 32 Irregularidad de masas

Fuente: Elaboración propia.

Para el cumplimiento de derivas se incrementó las dimensiones de las columnas y vigas teniendo las siguientes dimensiones.

Columna Tipo 1. = 45×50 cm Columna Tipo 2 = 40×45 cm Columna Tipo 3 = 45×45 cm Viga Principal = 30×60 cm Viga secundaria = 30×45 cm

Diseño de elementos estructurales

Diseño de escaleras

Para diseñar la escalera se tendrá que separar el tramo para poder ser diseñada.

Figura 59 Tramo de escalera para diseño.

Figura 60 Diagrama de momento flector de la escalera.

Entonces se trabajara con un momento de 4.21tn/m obtenidas del software.

Figura 61 Dimensiones de escaleras para diseño.

Fuente: Elaboración propia.

Diseño de acero

Datos para el diseño de acero positivo:

Mu = 4210 kg/m \emptyset = 0.90 Fy =4200 kg/cm2 R = 3.00 cm D = 12.00 cm F'c = 210 kg/cm2 B = 120.00 cm

$$As = \frac{Mu}{\emptyset * Fy(d - \frac{a}{2})} \qquad \qquad a = \frac{As * fy}{0.85 * f'c * b}$$

	AS	а
		2.4
	10.31	2.02
	10.14	1.99
	10.12	1.98
	10.12	1.98
	10.12	1.98
_	10.12	1.98

Fuente: Elaboración propia.

Se tiene un área de acero requerido de Ac+=10.12cm2

Entonces se usara 8 varillas de acero de Φ = 1/2 "donde tiene Ac = 10.32cm2

Para determinar el acero mínimo:

As min =
$$(14/Fy)*b*d$$

Por lo tanto usar 8 Φ 1/2 @ 15cm.

Datos para el diseño de acero negativo:

As-=5.06cm2

As min= 5.20 cm2

Entonces se trabajara con el As min = 5.20 cm2

Entonces se usara 4 varillas de acero de Φ = 1/2 "donde tiene As = 5.16cm2

Por lo tanto usar 4 Φ 1/2 @ 30cm.

Datos para el As por temperatura:

As temp. = 0.0018 x b x d, donde b se consideró a 1m

As temp. = 2.34 cm2

Entonces se usara 3 varillas de acero de Φ = 3/8 "donde tiene As = 2.16cm2

Por lo tanto usar 3 Φ 3/8 @ 30cm.

Diseño de viga principal

En el diseño de vigas se realizara por el software para ello se seleccionó la viga más crítica y se consideró todas las combinaciones de cargas para realizar el diseño con la mayor carga.

Figura 62 Parámetros para diseño de vigas

100	🏛 Viga	s - Para	ámetros de	elementos de hormigón ar.	×				
	Casos simples								
	Combinaciones manuales								
L									
	Mada d								
	Modo de agrupar								
	✓ Seg	un el nive Crear pla	el antas nara elem	entos no asignados a					
	 ✓ Crear plantas para elementos no asignados a ninguna planta ✓ Según la geometría 								
	Considerar la posición de los ejes de las barras								
	✓ Mostr	ar siempr	re esta ventana	3					
	Calcul	lar autom	áticamente						
	~	N.°	Тіро	Nombre					
	v	24	ELU	U=1.25(CM+CV)-CSX					
	✓	25	ELU	U=1.25(CM+CV)-CSY					
	✓	26	ELU	U=0.9CM+CSX					
	 ✓ 	27	ELU	U=0.9CM+CSY					
h		28	ELU	U=0.9CM-CSX					
	✓	29	ELU	U=0.9CM-CSY					
	Apoyos λ Combinaciones manuales								
	OK	:	Cancelar	Ayud	a				

n	Estruct	tura Vig	ja - visti	a Viga - diagramas	Viga - armaduras	Viga - nota d	e cálculo				
]	
			4								
Ĺ	Image: Separation of the section Image: Separation of the section of the sec							× □			
			N.º	Tipo de arma	dura Clase	e de ero Diám	etro Número) (m)			
		1	1 principal superior		Grade	60 #6	2	B = 1.98			
		2 2 principal superior			Grade	60 #6	2	B = 2.13			
		3	3	transversal principal	Grade	60 #3	46	B = 0.22	С		
		4	4	principal inferior	Grade	60 #6	4	B = 5.64			
		5	5	superior de construc	ción Grade	60 #4	2	2	\square		
		6	6	principal superior	Grade	60 #6	2	B = 2.46			
		7	7	principal superior	Grade	60 #6	2	B = 4.08	+		
	8 8 superior de construcc			cion Grade	60 #4	2	!	+			
		x				1	1	1			

Figura 63 Diseño de viga principal con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

El programa realizo los cálculos de acero de la viga los cuales se detallan a continuación,

Figura 64 Diseño de acero viga principal 30x60cm con el software.

La cantidad de varillas de acero calculadas por el software se muestra a continuación:

Armaduras inferiores (Grade 60)

2 #6 l = 5.90

Armaduras de montaje (encima) (Grade 60)

2 #4 l = 5.0

Tramo (Grade 60)

2 #6 l = 2.24 2 #6 l = 2.13

Armaduras transversales (Grade 60)

#3

Se realizará la verificación por el cálculo de cuantías.

Cuantía balanceada

 $\boldsymbol{\rho}$ Bal=B1*0.85* $\frac{f'c}{fy}$ * $(\frac{6000}{6000+fy})$

Cuantía máximas

 $\boldsymbol{\rho}$ max zona sismica = 0.50 * $\boldsymbol{\rho}$ Bal

 $\boldsymbol{\rho} \max zona \ normal = 0.75 * \boldsymbol{\rho}$ Bal

Cuantía real

 $\boldsymbol{\rho} = As/\boldsymbol{bd}$

Cuantía mínima

```
\rho min = 14/F'y
```

Para acero positivo se tiene un área de acero de:

 $As + = 5.68 \text{ cm}^2$

Cuantía balanceada

```
pBal= 0.0213
```

*As*Bal= 35.145 cm2

Cuantía máximas

ρ max zona sismica = 0.0107 Asmax= 0.0107*30*55 Asmax= 17.66cm2

Cuantía

 $\rho = 5.68/30 * 55$ $\rho = 0.00344$

Cuantía mínima

ρmin = 0.0033

 ρ max > ρ > mín.

0.0107 > 0.00344 > 0.0033

Cumple con las cuantías requeridas pero es muy poca la diferencia con la cuantía mínima por ello se modificara el acero + de la viga principal.

Armaduras inferiores (Grade 60)

	3	#6
Armaduras de montaje (encima)	(Grade 60))
	2	#4
Intermedio (Grade 60)		
	2	#4
Refuerzo + y - (Grade 60)		
	2	#6
Armaduras transversales (Grade	e 60)	
	Estribos	#3

Figura 65 Diseño de viga principal.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 66 Sección diseño de viga principal.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

 ρ max > ρ > mín.

0.0107 > 0.00516 > 0.0033

Diseño de viga secundaria

En el diseño de vigas se realizara por el software para ello se seleccionó la viga más crítica y se consideró todas las combinaciones de cargas para realizar el diseño con la mayor carga.

чT	F	10		16 to the second line second	durae M	and a dama dia a	1-					
	Estruct	ura Vig	ja - vist	a Viga - diagramas Viga - arm	aduras Viga	- nota de calcu	llo					
	ť	, Y	8]					
	<		-	> <								
			J									
- 1		General	Detal	ada Lista Separaciones y ár	eas de secció	n				픠	Selección no efect	ada
			N.°	Tipo de armadura	Clase de acero	Diámetro	Número	(m)	^			
		13	13	principal superior	Grade 60	#5	2	B = 3.26				
		14	14	principal inferior	Grade 60	#5	2	B = 5.36				
		15	15	superior de construcción	Grade 60	#4	2		_			
		16	16	principal superior	Grade 60	#5	2	B = 2.36	-			
		17	17	principal interior	Grade 60	#5	2	B = 5.31	-			
		18	18	superior de construcción	Grade 60	#4	2	B = 3.30	-			
		20	20	principal superior	Grade 60	#5	2	B = 4.18	-			
		20	21	principal appendi	Grade 60	#5	2	B = 5.51	-			
		22	22	superior de construcción	Grade 60	#4	2	0 - 0.01	-			
		23	23	principal inferior	Grade 60	#5	2	B = 1.69	-			
		24	24	superior de construcción	Grade 60	#4	2		-			
		*							_			
		<						>				

Figura 67 Diseño de viga secundaria con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 68 Diseño de acero viga secundaria 30x45cm con el software.

Figura 69 Cuadro de cantidad de varillas de acero.

F	osio	. Arr	nadura	s	Formaf	osio	. Arr	nadura	5	Formaf	osio	. Arı	madura	5	Forma
	1	147#	3 Grac	le	60 🛴	10	2#5	Grade	60		9	2#5	Grade	60	1010
	2	2#5	Grade	60	b 5-95	(1)	2#4	Grade	60	14—1.0	0	2#5	Grade	60	12-85_é
	3	2#4	Grade	60	32.5	3	2#5	Grade	60		2	2#5	Grade	60	ē
	4	2#5	Grade	60	17-0.5	1	2#5	Grade	60		0	2#4	Grade	60	F
	5	2#5	Grade	60	1 <u>4-25</u>	14	2#5	Grade	60	17-7	0	2#5	Grade	60	5ĕ
	6	2#4	Grade	60	14-7	15	2#4	Grade	60	14=3	❹	2#4	Grade	60	P50
	0	2#5	Grade	60	10_12	16	2#5	Grade	60	7_9					
	8	2#5	Grade	60	8-1	\bigcirc	2#5	Grade	60	17-5					
	9	2#5	Grade	60	1011	18	2#4	Grade	60	14-1					

Fuente: Autodesk Robot Structural Analysis Professional 2017.

La cantidad de varillas de acero calculadas por el software se muestra el más crítico el cual está en el tramo 5.62 a 9.77 (m).

P3: Tramo de 5.62 a 9.77 (m)

Armaduras longitudinales:

Armaduras inferiores (Grade 60)

2 #5 Armaduras de montaje (encima) (Grade 60) 2 #4 Tramo (Grade 60) 2 #5 2 #5 2 #5 Armaduras transversales (Grade 60)

Estribos 28 #3

Se realizará la verificación por el cálculo de cuantías.

Para acero positivo se tiene un área de acero de:

 $As + = 6 \text{ cm cm}^2$

Cuantía balanceada

*p*Bal= 0.0213

*As*Bal= 0.0213*30*40

*As*Bal= 25.56 cm2

Cuantía máximas

 $\boldsymbol{\rho}$ max zona sismica = 0.0107

*As*max= 0.0107*30*40

*As*max= 12.84cm2

Cuantía

 $\rho = 6/30 * 40$ $\rho = 0.005$

Cuantía mínima

pmin = 0.0033

ρmax > ρ > mín.

0.0107 > 0.005 > 0.0033

Cumple con las cuantías requeridas por lo tanto se consideró lo siguiente:

Armaduras inferiores (Grade 60)

3 #5 Armaduras de montaje (encima) (Grade 60) 2 #4 Armaduras intermedio (Grade 60) 2 #4 Refuerzo + y - (Grade 60)

2 #5

Armaduras transversales (Grade 60)

Estribos #3

Figura 70 Diseño de viga secundaria.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 71 Diseño de viga secundaria tramo central.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 72 Sección diseño de viga principal.

Diseño de viga de conexión

En el diseño de vigas se realizara por el software para ello se seleccionó la viga de conexión más crítica y se consideró todas las combinaciones de cargas para realizar el diseño con la mayor carga.

Falser	una l'Anna vinta l	View diamond	Maa . am	adurae	Marg. and		Slav da										-
Estruct	ura Viga - vista i	Viga - diagramas	Viga - arm	aduras	Viga - no	ta de câ										50	
Ň	Barra		0	×	General	Detallac	da Lista	Separaciones y áre	eas de secciór	1							
	Tipo	Grada 60 (Noneu	inda)			N.º	Tipo	de armadura	Clase de	Diámetro	Número	(m)	(m)	(m)	(m)	(m)	(m)
	Regimetres de	Cirade ou (Nervu	10007		1	1 /	valores dif	erentess	Grade 60	#4	4	B = 4.62					
	Parametros de				2	2 t	ransversal	principal	Grade 60	#3	41	B = 0.17	C = 0.22	D = 0.17	E = 0.22		
	Diametro				*												

Fuente: Autodesk Robot Structural Analysis Professional 2017.

La cantidad de varillas de acero calculadas por el software se muestra.

Armaduras longitudinales:

```
Armaduras inferiores (Grade 60)
```

	2	#4
Tramo (Grade 60)		
	2	#4
Armaduras transversales (Grade	60):	
	Estribos #3	3
Para acero positivo se tiene un á	rea de acer	o de:
As+ = 2.58 cm cm2		
Cuantía balanceada		
	p Bal=	0.0213
	As Bal= 0.0	213*25*26

Cuantía máximas

 $\boldsymbol{\rho}$ max zona sismica = 0.0107

*As*max= 0.0107*25*26

*As*max= 6.955cm2

Cuantía

 $\rho = 0.004$

Cuantía mínima

 ρ max > ρ > mín.

0.0107 > 0.004 > 0.0033

Cumple con las cuantías requerida.

Figura 74 Diseño de viga de conexión.

Fuente: Autodesk Robot Structural Analysis Professional 2017.

Figura 75 Sección diseño de viga de conexión.

Diseño de columnas central 45cm x 50cm

En el diseño de columnas se realizara por el software para ello se seleccionó la columna más crítica y se consideró todas las combinaciones de cargas para realizar el diseño con la mayor carga.

Fuente: Autodesk Robot Structural Analysis Professional 2017

Como el diseño se realizó con el software se verificara si cumplen con las cuantías necesarias.

Cuantías mínimas

 $1\% \leq \rho s$

Cuantías máxima

 $\rho s \leq 8\%$

Cuantía

 $\rho s \leq A s / A c$

De acuerdo a los resultados se tiene

Área de acero As = 27.88

Barras principales (Grade 60):

8 #6

Barras de construcción (Grade 60):

4 #4

Área de concreto

Ac=45x50cm

Ac=2250.00 cm2

Obteniendo el dato de Ac y As se obtiene lo siguiente:

$$\rho s \leq \frac{27.88}{45x50}$$
$$\rho s \leq 1.24$$

Por lo tanto cumple la cuantía establecida por el software

Figura 77 Diseño de columnas central con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017

Diseño de columnas excéntrica 40cm x 45cm

En el diseño de columnas se realizara por el software para ello se seleccionó la columna más crítica y se consideró todas las combinaciones de cargas para realizar el diseño con la mayor carga.

Figura 78 Diseño de columnas excentrica con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017

Como el diseño se realizó con el software se verificara si cumplen con las cuantías necesarias

De acuerdo a los resultados se tiene

Área de acero As = 20 cm 2

Barras principales (Grade 60):

10 #5

Área de concreto

Ac=40x45cm

Ac=1800 cm2

Obteniendo el dato de Ac y As se obtiene lo siguiente:

$$\rho s \leq \frac{20}{1800}$$
$$\rho s \leq 1.11$$

Por lo tanto cumple la cuantía establecida por el software

Figura 79 Diseño de columnas excéntrica 40x45cm con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017

Diseño de columnas excéntrica 45cm x 45cm

En el diseño de columnas se realizara por el software para ello se seleccionó la columna más crítica y se consideró todas las combinaciones de cargas para realizar el diseño con la mayor carga.

Figura 80 Diseño de columnas excéntrica 45cm x 45cm con el software.

Fuente: Autodesk Robot Structural Analysis Professional 2017

Como el diseño se realizó con el software se verificara si cumplen con las cuantías necesarias

De acuerdo a los resultados se tiene

Barras principales (Grade 60):

16 #5

Área de concreto

Ac=45x45cm

Ac=2025 cm2

Obteniendo el dato de Ac y As se obtiene lo siguiente:

$$\rho s \leq \frac{32}{2025}$$
$$\rho s \leq 1.58$$

Por lo tanto cumple la cuantía establecida por el software

Figura 81 Diseño de columnas excentrica 40x45cml con el software.

