

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Dimensionamiento y Selección de Planta de Oxígeno Medicinal en Alta Presión para Aumentar Disponibilidad de Camas UCI en Hospital Regional de Trujillo

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Mecánico Electricista

AUTORES:

Miranda Medina Richard Andree (ORCID: 0000-0002-9103-0795)

Rodríguez Calderón Miguel Angel Rafael (ORCID: 0000-0002-3136-7724)

ASESOR:

Mg. Sifuentes Inostrosa, Teófilo Martín (ORCID: 0000-0001-8621-236X)

LÍNEA DE INVESTIGACIÓN:

Generación, Transmisión y Distribución

TRUJILLO – PERÚ 2021

Dedicatoria

Esta investigación se la dedico a mis padres Javier Rafael Rodríguez del Águila y Magaly Aleida Calderón Reyna, porque siempre estuvieron para mí en todo este periodo universitario dándome todo su apoyo incondicional y aconsejándome en todo momento.

Miguel Angel Rodríguez Calderón

Este presente trabajo se lo dedico a Dios, a mis padres, mis hermanos, por siempre apoyarme en mis momentos complicados durante estos 5 años de carrera universitaria.

Richard Andree Miranda Medina

Agradecimiento

A mis padres, darles las gracias por siempre confiar en mí, por motivarme para lograr mis objetivos, por sus consejos para tomar las mejores decisiones y por todo su apoyo incondicional.

A mis familiares más cercanos, que me impulsaron a lograr todo lo que me proponga, siempre por el camino del bien.

A mis docentes que me brindaron sus conocimientos a lo largo de esta etapa universitaria para poder culminar con éxito esta investigación.

Miguel Angel Rodríguez Calderón

A mis padres, que nunca se cansaron de darme su apoyo incondicional. Líneas a parte, quiero agradecer a Dios por haberme permitido conocer a mi gran amigo – hermano Almiro Ayala Ortiz, quien fue el primero en darme la motivación para ingresar a la universidad, y quien me enseño todo lo que se necesita aprender sobre la vida, estés donde estés hermano, esto es para ti.

Richard Andree Miranda Medina

Índice de contenido

Dedic	catoria	i
Agrad	decimiento	ii
Índice	e de contenido	iii
Índice	e de tablas	iv
Índice	e de figuras	vi
Resu	men	vii
Abstr	act	viii
I. II	NTRODUCCIÓN	1
II. N	IARCO TEÓRICO	3
III.	METODOLOGÍA	35
3.1	. Tipo y diseño de investigación	35
3.2	. Variables y operacionalización	36
3.3	. Población, muestra y muestreo	39
3.4	. Técnicas e instrumentos de recolección de datos	40
3.5	. Procedimientos	40
3.6	. Método de análisis de datos	42
3.7	. Aspectos éticos	42
IV.	RESULTADOS	43
V. C	DISCUSIÓN	92
VI.	CONCLUSIONES	95
VII.	RECOMENDACIONES	96
REFE	ERENCIAS	97
ΔNE	(OS	102

Índice de tablas

Tabla 1. Componentes del aire y características principales	8
Tabla 2. Comparativa de técnicas para separar el aire.	9
Tabla 3. Medidas de seguridad para depósitos con oxígeno criogénico	. 16
Tabla 4. Sistemas de suministro en la planta PSA	. 17
Tabla 5. Especificaciones de calidad para oxígeno medicinal de una planta P	SA.
	. 18
Tabla 6. Clase de aire para contenido de agua	. 26
Tabla 7. Variables y operacionalización.	. 37
Tabla 8. Técnicas e instrumentos de recolección de datos.	. 40
Tabla 9. Condiciones ambientales de Trujillo 2020-2021	. 45
Tabla 10. Tamiz molecular seleccionado	. 47
Tabla 11. Factor de corrección de altura	. 48
Tabla 12. Factor de corrección de temperatura	. 48
Tabla 13. Peso de Vapor de agua en el aire a condiciones cambiantes	de
temperatura y cantidad de humedad relativa	. 49
Tabla 14. Contenido de humedad en el aire	. 50
Tabla 15. Tanque de almacenamiento seleccionado	. 52
Tabla 16. Características del compresor de aire seleccionado	. 53
Tabla 17. Requerimiento para la selección del pre-filtro	. 54
Tabla 18. Características del pre-filtro seleccionado	. 55
Tabla 19. Requerimiento para la selección del secador	. 56
Tabla 20. Características del secador seleccionado	. 56
Tabla 21. Requerimiento para la selección del filtro de carbón	. 59
Tabla 22. Características de la torre de carbón activado seleccionado	. 59
Tabla 23. Requerimiento para la selección del post-filtro	. 60
Tabla 24. Características del micro-filtro de partículas y aceite seleccionado	. 60
Tabla 25. Requerimientos para la selección del micro - filtro extrafino	de
partículas	. 61
Tabla 26. Características del micro – filtro extrafino de partículas	. 61
Tabla 27. Características del dimensionamiento del recibidor de oxigeno	. 62
Tabla 28. Características del recibidor seleccionado	63
Tabla 29. Requerimientos para la selección del post-filtro de partículas	. 64

Tabla 30. Características post-filtro de partículas seleccionado 6	35
Tabla 31. Requerimientos para la selección del filtro bacteriológico 6	35
Tabla 32. Características del filtro bacteriológico seleccionado 6	6
Tabla 33. Especificación de cilindro a alta presión de llenado 6	37
Tabla 34. Requerimientos para la selección del compresor de oxígeno a al	ta
presión6	37
Tabla 35. Características del compresor de oxígeno seleccionado 6	8
Tabla 36. Características del sistema de mantenimiento de presión seleccionad	lo
6	39
Tabla 37. Resultados de condesados, separados y arrastres	'5
Tabla 38. Características del sistema de manejo de condensado	S
seleccionado	'6
Tabla 39. Resumen de cargas	3
Tabla 40. Resumen del cálculo eléctrico	34
Tabla 41. Costos de repuestos y suministros	35
Tabla 42. Costo de los equipos de la planta PSA	37
Tabla 43. Proyección estimada del gasto presupuestal de oxígeno medicina	al
criogénico 2022 - 20288	38
Tabla 44. Proyección de los gastos estimados 2021 - 2028	39
Tabla 45. Flujo neto efectivo y factor simple de actualización	90
Tabla 46. Período de retorno de la inversión9) 1

Índice de figuras

Figura 1. Diagrama de obtención de gases medicinales mediante el proce	so de
licuación.	1
Figura 2. Diagrama de obtención de oxígeno medicinal	12
Figura 3. Tamiz molecular	14
Figura 4. Esquema de una unidad PSA	15
Figura 5. Compresores de pistones	19
Figura 6. Detalle del Compresor de diafragma	19
Figura 7. Compresor de tornillo rotativo.	20
Figura 8. Sistema integral de filtrado, secado y desecado para	ı aire
comprimido	26
Figura 9. Comportamiento de la humedad relativa	29
Figura 10. Diagrama de variables	36
Figura 11. Diagrama de variables	43
Figura 12. Planta de oxígeno del HRDT entre los años 2000 y 2010	44
Figura 13. Frecuencia de conmutación / h, ΔP regulación (bar)	51
Figura 14. Selección de filtros	54
Figura 15. Gráfica para selección del punto de rocío	58
Figura 16. Gráfica para selección del recibidor	63
Figura 17. Gráfica de la función del sistema de mantenimiento de presión	69

Resumen

En esta investigación tiene la finalidad de hacer un dimensionamiento y selección

de una planta de oxigeno medicinal en alta presión para aumentar la capacidad

de camas UCI en el Hospital Regional Docente de Trujillo.

El hospital actualmente compra el oxígeno medicinal y solo cuenta con 17 camas

UCI, lo cual no es suficiente para cubrir con la demanda máxima de este recurso.

Por lo tanto, se hizo una evaluación al sistema actual del hospital y

posteriormente se realizaron ciertos cálculos con los cuales se plantea obtener

40 camas UCI. Además, con la instalación de la planta el hospital podrá cubrir la

demanda de oxígeno.

Se realizó un análisis comparativo para poder elegir el tipo de planta más

apropiado para el hospital, siendo el elegido la planta con tecnología PSA, ya

que se logran mejores resultados de generación y grado de pureza de oxigeno

medicinal.

Se determinaron los parámetros más críticos del sistema de distribución de

oxigeno medicinal, con lo cuales se pudo empezar a dimensionar y seleccionar

los equipos que son necesarios para todo el proceso de la planta PSA.

También se realizaron programas de mantenimiento preventivo con el objetivo

de que la planta de oxigeno medicinal sea sostenible en el tiempo, no acorte su

tiempo de vida y pueda estar operativa el mayor tiempo posible.

Se hizo un análisis económico, obteniendo un TIR de 48% con un PRI de 2 años,

2 meses y 3 días. Lo que indica que esta investigación es factible, porque se

obtiene un valor positivo, por lo tanto, no va generar pérdidas de dinero.

Palabras clave: camas UCI, demanda de oxígeno medicinal, planta PSA.

νii

Abstract

The purpose of this research is to size and select a high pressure medicinal

oxygen plant to increase the capacity of ICU beds at the Trujillo Regional

Teaching Hospital.

The hospital currently purchases medical oxygen and only has 17 ICU beds,

which is not enough to cover the maximum demand for this resource. Therefore,

an evaluation was made of the current hospital system and later certain

calculations were made with which they plan to obtain 40 ICU beds. In addition,

with the installation of the plant, the hospital will be able to cover the oxygen

demand.

A comparative analysis was carried out to be able to choose the most appropriate

type of plant for the hospital, the plant with PSA technology being the one chosen,

since better results of generation and degree of purity of medicinal oxygen are

achieved.

The most critical parameters of the medicinal oxygen distribution system were

determined, with which it was possible to start sizing and selecting the equipment

that is necessary for the entire process of the PSA plant.

Preventive maintenance programs were also carried out with the aim that the

medicinal oxygen plant is sustainable over time, does not shorten its life span

and can be operational for as long as possible.

An economic analysis was made, obtaining an IRR of 48% with a PRI of 2 years,

2 months and 3 days. Which indicates that this research is feasible, because a

positive value is obtained, therefore, it will not generate losses of money.

Keywords: ICU beds, medical oxygen demand, PSA plant.

viii

I. INTRODUCCIÓN

Mediante el progreso de la tecnología médica, sabiendo que el gas medicinal tiene un papel importante. Años atrás solo se empleó para terapia respiratoria o como excipiente como portador de otro fármaco, hoy en día cada vez se emplea para otros procesos como: cirugías, procedimientos oftalmológicos, etc. Lo que respecta a la normativa de sanidad que se asemeja a los gases de uso medicinal a los medicamentos, es obligatorio la implementación de documentos que nos permitan tener un panorama más amplio sobre las instalaciones y distribución de estos gases para facilitar su gestión. Para ello, las condiciones y requisitos para la generación de gas medicinal afectarán a la Autoridad Hospitalaria, ya que el departamento de gestión del hospital tiene la responsabilidad del control y el uso de gas medicinal que sirva como medicamento. El departamento de mantenimiento se encargaría de realizar las tareas operativas en el centro hospitalario. El gas medicinal es el producto de una secuencia de procedimientos que siguen buenas prácticas de fabricación. (Bilbao Rolando, Cárdenas Ronny,2016)

La problemática actual del Hospital Regional se basa principalmente en la no generación de oxígeno medicinal, ya que lo obtienen por medio de terceros, lo cual provoca costos elevados de compra de este recurso. Para ello, no cuentan con camas UCI suficientes, que esto conlleva a una deficiencia para alcanzar la demanda de oxígeno que se necesita para la población en promedio, con lo cual basándonos en la tesis Doctoral que se realizó en España, menciona que por cada 100,000 habitantes tiene que haber 7.7 camas UCI en promedio (Lluís Cabré,1995). Actualmente el Hospital Regional, solo cuenta con 17 camas UCI, tomando como referencia la población existente en La Libertad y además según la tesis antes mencionada lo más recomendable sería tener como mínimo 60 camas UCI.

El nosocomio hasta julio del presente año solo había alcanzado picos de 90 000 m3 de oxígeno medicinal, ya que cuenta con solo 9 balones de este recurso con una capacidad de 6 m3 cada uno, cuando la NTS (Normas Técnicas de Salud) menciona que una central de oxígeno, como la del Hospital Regional Docente de Trujillo, debería tener 48 balones. Por lo tanto, lo antes ya mencionado no cumple con la demanda de oxígeno que se

requiere actualmente, es por esta escasez que hay una deficiencia para atender a las personas que necesiten una cama UCI.

Este problema tiene más de 10 a 15 años de antigüedad, que no se logra resolver.

El hospital, desea contar con su propio Sistema de generación, distribución y consumo de oxígeno medicinal, para poder disponer con 40 camas UCI.

Por lo expuesto, se plantea realizar el presente estudio para determinar la viabilidad de instalación de un sistema de Oxígeno Medicinal, que permita aumentar la capacidad de camas UCI a un costo razonable.

Con la finalidad de dar solución a la problemática presentada, se propuso la siguiente **formulación de problema**: ¿Cuál es la configuración de una planta de oxígeno para aumentar la disponibilidad de camas UCI en el HRDT?

La investigación planteada, es de **justificación práctica**, ya que el desarrollo de la investigación ayudara a resolver una incertidumbre, proponiendo estrategias que contribuirán a dar solución el problema cuando se aplique.

Como solución al problema, se propuso el siguiente **objetivo general**: Dimensionar y seleccionar una planta de oxígeno medicinal, para aumentar la disponibilidad de atención en UCI y reducir costos de oxígeno en el HRDT.

Para obtener el objetivo general se propusieron los siguientes **objetivos específicos**: (1) Evaluar el sistema actual de distribución y control de suministro de oxígeno; (2) Identificar los parámetros críticos del sistema de distribución de oxígeno para determinar capacidad, presión de generación, distribución y consumo; (3) Dimensionar y seleccionar los equipos en base a un análisis comparativo de tipos de plantas de oxígeno existentes en el mercado; (4) Preparar un programa de mantenimiento preventivo para el sistema de oxígeno para que se sostenga el proceso; (5) Realizar un análisis financiero en cuanto tiempo se recuperaría la inversión de la instalación de la nueva planta de oxígeno.

Para dar solución a la enunciación del problema, se propuso la siguiente **hipótesis**: Mediante el dimensionamiento y selección adecuados, determinaremos la configuración de la planta de oxígeno medicinal en alta presión se aumentará la disponibilidad de camas UCI en el HRDT.

II. MARCO TEÓRICO

Este estudio tiene como fundamento científico los siguientes **trabajos previos** internacionales, nacionales y locales, los cuales tienen relación a la problemática antes mencionada:

Bilbao Renzo, Cárdenas Ronny (2016), en su trabajo de investigación sobre equipos PSA para la producción de oxígeno médico, estableció un método para determinar y seleccionar los elementos constitutivos del sistema de oxígeno médico de acuerdo con la cantidad y calidad requeridas. El análisis se realizó mediante el sistema PSA, que representa la viabilidad técnica y económica del estudio de caso. Bilbao y Cárdenas, obtuvieron los siguientes resultados: para el diseño de la planta PSA, identificaron los parámetros críticos; presión atmosférica de 75.6 Kpa, temperatura desde 6 °C hasta 24°C, humedad relativa desde 12 % hasta 80%, punto de rocío desde 10 °C hasta 17°C y altitud de 2350 msnm. Para ello, encontraron una demanda de oxígeno de 90 m³/h. consiguiendo un dimensionamiento del sistema con una pureza del 95% de oxígeno, pero puede variar en ± 3%, las partículas compactas y de aceite que alcanzan es de 0.01 micras (µm) y 0.001 micras (µm) respectivamente y pureza anhidra, con lo que se cumple con los requisitos de la Farmacopea de Estados Unidos y los de diversas áreas del hospital en cuanto a flujo y presión. Los autores, concluyen que el proyecto es atractivo económicamente pues se obtiene un TIR 15%-VAN. La inversión inicial en la instalación es alta \$1'413 508.5, pero en el caso más desfavorable, la inversión se recupera en 6 años. Los autores, recomiendan que el dinero que se ahorra sería posible destinarlo al hospital, comprendiendo que hay muchos defectos como por ejemplo en equipos, infraestructura y servicios.

Vargas Pineda, L. (2018), en su investigación sobre las necesidades de oxígeno médico (O.M) en instituciones de salud, propuso un plan estratégico para fortalecer OXIWEST CIA. LTDA para el mercado O.M. Vargas, pudo ver si los estudios de mejora eran factibles a través del modelo de planificación estratégica. Lorena Vargas, se obtiene el resultado, el costo de inversión calculado es de US \$ 219,443.69, el valor actual neto es de US \$ 543,224.47 y la tasa de retorno es de 51%. Esto muestra que el proyecto es factible y la inversión se puede recuperar en 4 años y 7 meses. Lorena Vargas, recomienda implementar un mecanismo de seguimiento permanente.

Tello, Porras, Inga (2015), en su tesis se propuso un estudio de prefactibilidad para la instalación de una planta de oxígeno para uso médico e industrial. Los autores hacen un estudio sobre la implicancia del uso de oxígeno medicinal. Tello, Porras, Inga, obtienen los siguientes resultados; De acuerdo con un análisis comparativo de los procesos o tipos de plantas de generación de oxígeno, ya sea para uso médico o industrial, se encontró que la más eficiente, es el proceso de PSA. Evaluando el proyecto económicamente, y utilizando una tasa de descuento de 8.38% para calcular el valor presente neto de 33,626.20 dólares estadounidenses, la tasa interna de retorno es de 11.62% y la relación beneficio / costo financiero es de 1.11. Además, el período de recuperación de la inversión del proyecto es de 3 años y 2 meses. Los autores, llegaron a la conclusión que el proyecto es técnicamente, financieramente y ambientalmente aceptable. También se recomienda; con el fin de mejorar la tasa interna de retorno, se recomienda brindar el producto final a un precio menor que el de la competencia, realizar una comercialización adecuada para la compra continua y cooperar con el gobierno local (GOREL y municipio) como proveedor de oxígeno medicinal. Llegar a un acuerdo en toda la región.

LLauce Albujar, A. (2018), en su investigación, estudió cómo diseñar un sistema SCADA para mejorar el control del oxígeno médico en el Hospital de Chiclayo. La conclusión es que al evaluar el costo-beneficio de la solución propuesta, es económicamente viable. En comparación con otros proyectos,

el tiempo más corto para implementar el sistema es de 3 años y 3 meses. Como sugerencia, se recomienda controlar y monitorear los parámetros de operación de cada área para obtener un historial de consumo más efectivo.

Arévalo Daza, Jorge (2011), en su trabajo de tesis, realizo un estudio sobre la producción criogénica de oxígeno, para poder ver los diferentes votalidades de los componentes del aire a diferentes condiciones de temperatura y presión. Logrando como resultado ver que cierta condición de operación discontinua con respecto a la continua para la generación de oxígeno por medio de destilación dividida, se pudo observar que es conveniente utilizando el método de catarro criogénico, ya que es factible por el lado económico y energético, teniendo niveles de demanda mayores a 67% de producción máxima.

More Tello, José (2018), en su trabajo de tesis, realizo un Diseño de distribución para la red de oxigeno liquido medicinal en el Hospital II Jorge Reátegui de Piura. Logrando como resultados encontrar en la evaluación del sistema actual con una planta de oxígeno propia, pero sin poder llegar directamente el oxígeno medicinal a los pacientes por intermedios de conductos o alguna red específica, si no con botellas de alta presión. Para ello la investigación estima tener hasta la disponibilidad de 126 tomas de oxígeno medicinal. Llegando a la conclusión que con un tanque criogénico 253.63 m³ y con una pureza del 95 % que establece las normas internacionales de la farmacopea Europea, es factible la instalación.

De León, René (2007), en su investigación, sobre un sistema centralizado de gases médicos para el Hospital de Santa Rosa de Guatemala, teniendo como resultado que la instalación criogénica puede llegar hasta 95% de pureza de acuerdo a la NFPA y teniendo como gran ventaja que el proveedor de los equipos y de la instalación, serán los encargados de hacer los respectivos mantenimientos preventivos y correctivos durante 2 años de uso. Llegando a la conclusión el ahorro como mino del 50% del costo anual.

Cerrada Martínez, Pablo (2017), en la investigación completa, realizó investigaciones sobre el diseño y análisis de equipos de separación de aire. Pablo, llego a la conclusión de que la unidad de separación de aire es un sistema de producción complejo, que requiere mucho consumo de energía porque el flujo de aire debe calentarse a baja temperatura. Además, debido a la aparición de un conjunto de compresores, turbinas e intercambiadores de calor en el proceso, se requiere una gran cantidad de despliegue mecánico. De igual forma, el resultado que obtuve es que la inversión inicial estimada es muy alta, unos 23 millones de dólares estadounidenses. Esta inversión se puede recuperar rápidamente en tan solo 6 años, porque, aunque el precio del gas natural por metro cúbico es barato, el gas producido La cantidad es muy alta. En otras palabras, este tipo de fábricas solo pueden obtener ganancias cuando la producción es alta, porque si no lo hacen, la inversión no se recuperará en el mejor momento y nunca se recuperará. Para volúmenes mucho menores, se deben considerar otras opciones, como la adsorción, que, aunque la adsorción no puede alcanzar la pureza de la destilación (99%), su menor inversión y costos operativos la hacen más económica.

La investigación mencionada es fundamentada con el dimensionamiento y selección de planta de oxígeno medicinal en alta presión, lo cual es un problema en el Hospital Regional de Trujillo, ya que no cuenta con la capacidad necesaria de camas UCI por la no generación de oxígeno medicinal, para poder lograr dar respuesta a este problema desde el aspecto científico, se utilizarán las siguientes **teorías relacionadas al tema**:

El hospital de alta complejidad; abarca a todas las personas involucradas con el rubro de salud y proporcionan beneficios de alta complejidad apoyados en el ministerio de servicios determinado por el supervisor de la red. Estos suelen ser organismos autorregulados, en otras palabras, en cierto modo separadas de los beneficios de salud para alcanzar esta calidad. (Heber Navarro, 2018)

Hospital Regional Docente de Trujillo; su procedimiento actual de adquisición de oxígeno líquido de uso medicinal con tanque criogénico, es

mediante la importación a la empresa AIR PRODUCTS PERÚ S.A., por medio de un acuerdo de distribución de 400 000,00 m³ por una suma que asciende a 416 000,00 soles, asegurando de esta manera oxigeno por todo el año. (Contraloría general de la republica de Perú,2020)

Camas UCI; el concepto de unidad de cuidados intensivos (UCI) es una institución constituida por profesionales del área médica que ofrece ayuda de muchas disciplinas en un lugar determinado de un centro hospitalario cumpliendo con ciertos requerimientos estructurales, organizativos y funcionales, asegurando de esta manera una correcta calidad, eficiencia y seguridad. La diligencia de la circunstancia es sencilla de reponer, los enfermos que necesiten ayuda respiratoria o ayuda respiratoria básica y por lo menos dos órganos o medios de apoyo; y todos los enfermos complicados que requieran apoyo debido a un defecto orgánico complejo, la UCI puede ofrecer servicios para enfermos que requieran niveles más reducidos de atención. (Ministerio de Sanidad y Política Social; MDSYPS,2010)

Asistencia en UCI (Unidad de Cuidados Intensivos) en Hospitales con los siguientes niveles: II-2, III-1 y III-2 (para nuestro caso, el HRDT es de categoría III – 1) tienen que satisfacer los siguientes requerimientos como mínimo (MINISTERIO DE SALUD, MINSA,2004): Sistema de Oxígeno incrustado con dos salidas por cada cama; sistema de aire con proceso de compresión con dos salidas por cada cama; sistema de absorción con dos salidas por cada cama; sistema de aire por acondicionamiento tanto con presión positiva y negativa con valores de 12-15 repuestos por 60 min con filtro HEPA; sistema de alumbrado individual y general regulables con potencia; sistema de tomas de electricidad con valores de 6 a 10 por cada cama; en cada cuarto se toma en cuenta tener necesariamente cuatro tomas de oxígeno y cuatro tomas de aire. (MDSYPS, 2010)

Oxígeno; es un componente natural que se obtiene por lo general del aire. Sus propiedades son insípidas, incoloras, y no tóxicas. Tiene un peso mayor que el aire aproximadamente en un 10% y levemente disoluble en alcohol y agua. Este recurso es invariable y se puede encontrar en estado líquido y en

estado gaseoso, además es posible adquirirlo dispersando elementos en el aire por medio de procedimientos de filtración o licuación criogénica. (Rico, Pérez, & Catellanos, 2008)

Tabla 1

Componentes del aire y características principales

Gases que	Compuesto	Zona	Marca
lo	molar(mol)	normal de	normal de
componen		Fusión	Ebullición
		(°C)	(°C)
Nitrógeno	27.98	-208.75	-196.9
Oxígeno	31.58	-217.7	-184
Argón	38.85	-188.5	-184.9
Hidrogeno	1.02	-258.9	-253.2
Neón	20.15	-249.12	-246.1
Helio	3.99	-271.8	-269.2
Criptón	83.78	-168.85	-152.1
Xenón	130.92	-139.58	-108.89
Dióxido de	43.94	- 55.8 ^{5.2atm}	-79.1
carbono			

Nota. Tomado de Perry, 1997.

Proceso para separar el aire; los gases como el nitrógeno y el oxígeno son obtenidos mediante métodos de disolución, esto implica en separar el aire en sus principales componentes. Los fluidos gaseosos como por ejemplo el argón, el criptón y el xenón son comúnmente conseguidos a manera de productos secundarios del tratamiento de desprendimiento. La ejecución del tratamiento de separar el aire es realizada mediante implantación de técnicas innovadoras y particulares, haciendo uso de la tecnología. (Ruthven, 1994).

 Tabla 2

 Comparativa de técnicas para separar el aire

Proceso de	Estado	Capacidad de	Margen de	Tiempo de
separación		productos	pureza (%)	iniciación
		secundarios		
Adsorción	Casi -	Bajo	93.1-96.4	min
	desarrollado			
Químico	En progreso	Bajo	>99.01	hr
Criogénico	Desarrollado	Muy alto	>99.05	hr
Membrana	Casi -	Bajo	40.2	min
	desarrollado			
ITM	En progreso	Bajo	>99.08	hr

Nota. Tomado de J. Klosek y A. Smith (Universidad de Pretoria).

Consumo de oxígeno; para el caso de consumo de oxígeno en camas UCI, un paciente en estado de peligro leve, consume en promedio 6 m³/día, pero en estado crítico, puede ascender a consumir hasta 15 m³/día. (RESOLUCIÓN DIRECTORAL N° 005-2020-EF/63.01- IOARR – ESTADO DE EMERGENCIA NACIONAL, 2020).

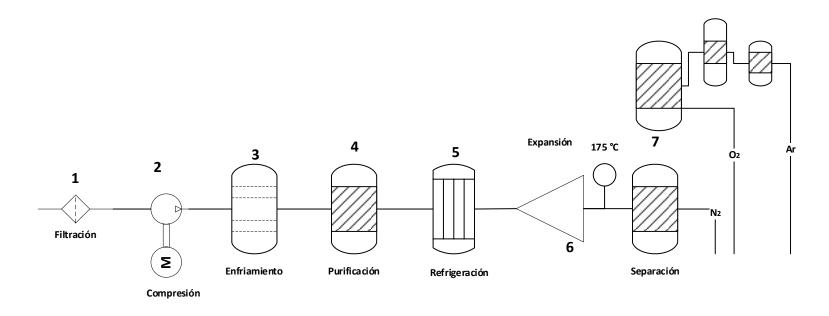
Capacidad de camas por población; según menciona la Sociedad Peruana de Medicina Intensiva, en una cantidad de 100 mil ciudadanos se tendría que contar al menos con 10 camas UCI. Lo mínimamente permitido son 6 camas UCI, esto corrobora la tesis doctoral (Lluís Cabré,1995) que refiere que debe haber 7.7 camas UCI por cada 100 000 ciudadanos.

Promedio de permanencia de un paciente en UCI; para el caso de un hospital oscila entre 10 a 15 días como máximo según indica el ministerio de salud del Perú, que se menciona en el documento de trabajo del año 2013, titulado como parámetros de administración y valoración hospitalaria, para centros médicos, clínicas e institutos.

Requerimiento de oxígeno para camas UCI; Según la "ley que aprueba el uso del 93% de oxígeno porcentual para fines terapéuticos y médicos", el estatuto requiere el uso de 99% de concentración de oxígeno, a nivel de todo el país sólo dos compañías logran precisar y obtener este oxígeno. Debido a la alta disposición de la mayoría del oxígeno medicinal, es complicado conseguir este porcentaje y dificulta la obtención de oxígeno médico de alta calidad.

Por esta razón, esta norma parlamentaria autorizará la producción intensiva de oxígeno medicinal a nivel nacional y disminuirá la disposición de oxígeno de alta concentración del 99% al 93%, favoreciendo así la salud de los habitantes y concesionarias nacionales involucradas en la elaboración y producción de oxígeno. (Ley N° 5613, 2020)

En la farmacopea de América (USP) en estado gaseoso el oxígeno elaborado por licuación logra alcanzar un grado de pureza de 99 por ciento, estando libre de estudio de monóxido de carbono (CO) y de dióxido de carbono (CO₂), asimismo tiene que estar almacenado en cilindros o guardado en depósitos que mantengan la presión atmosférica. En el caso de la producción por adsorción, por el contrario de lo dicho anteriormente, la farmacopea americana (USP) en su artículo de título "Oxygen 93 percent" requiere un grado de pureza mínimo de 90 por ciento y máxima de 96 por cierto, logra permanecer almacenado en cilindros o en depósitos presión baja y necesario un estudio de residuos, implantando márgenes permisibles para el hombre, decretando que no tiene que superar un rango máximo de 300 partes por millón (ppm) de dióxido de carbono (CO₂) y de 10 partes por millón (ppm) de monóxido de carbono (CO). (The U. S. Pharmacopeial Convention, 2007).

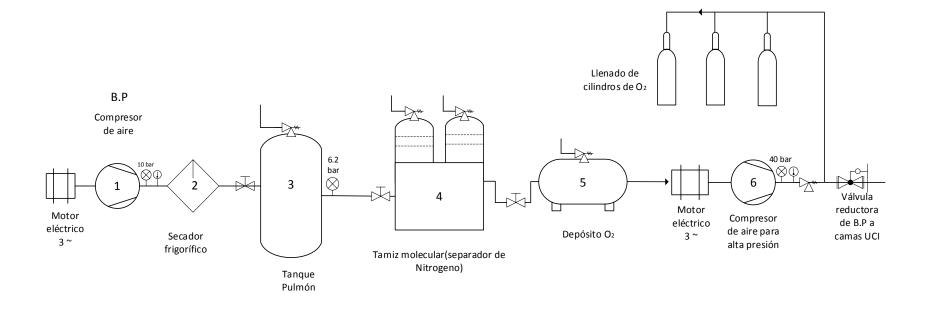

Formas de suministro para camas UCI; todos los gases tienen abundantes maneras de suministro. Según su condición física, se dividen de la siguiente manera: (1) Gases por licuación - Método de obtención criogénica; (2) Gases por proceso de compresión - Método de obtención por PSA.

(1) Gases por licuación; mediante una técnica de evaporación particular, los gases como el oxígeno, el nitrógeno y el argón son posibles separarlos del

aire en distintos puntos de ebullición que están parcialmente cercanos a la temperatura del ambiente y estos oxígenos se acumulan en los tanques en forma líquida. Mediante un método de transferencia de calor apropiado, el fluido gaseoso se disipa en estado gaseoso y alcanza al cuerpo del paciente. (Quintero, 2006; Indura, 2015).

Figura 1

Diagrama de obtención de gases medicinales mediante el proceso de licuación


Nota. Tomado de Messer Group, 2017.

El aire que está purificado (1°) se envía al compresor (2°), es aquí en donde la capacidad del aire del compresor se reduce hasta 150 veces en seis etapas. En estos pasos, el aire se enfría y se seca (3° y 4°) para eliminar la humedad, el CO₂ y los compuestos de hidrógeno y carbono. El aire que esta comprimido y previamente enfriado circula a través de los intercambiadores de calor y expansión (5° y 6°), tratamiento que enfría este gas a una temperatura próxima a su temperatura de rocío, alrededor de 175 grados (°C). Dicha temperatura promueve el desprendimiento en la columna (7) y la obtención de este gas en estado líquido. El gas se condensa mucho y se evapora en la torre hasta la concentración requerida (183 ° C) en cada oxígeno; 186 ° C para el argón y 196 ° C para el nitrógeno.

(2) Gases por proceso de compresión; a través de un método llamado PSA (Adsorción por oscilación de presión), el aire atmosférico se absorbe por la variación de presión, se seca y se filtra con la finalidad de quitar bacterias, humedad y olores. El aire seco pasa a través de un productor de oxígeno llamado tamiz molecular El tanque del generador de oxígeno contiene 22 piedras porosas, zeolita, que purifica la zeolita y conserva el gas nitrógeno debido a la oposición del tamaño atómico. (ECOGASES, 2009).

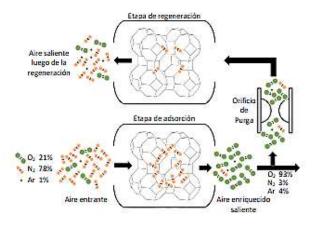
Figura 2

Diagrama de obtención de oxígeno medicinal

Nota. Tomado de Atlas Copco, 2011.

El aire que se encuentra comprimido (1°) después de pasar por el compresor de aire entra al secador (2) logrando así quitar toda la humedad y siguiendo su viaje para luego ser acumulado transitoriamente en el depósito intermedio (3) con 90 psi de presión para abastecer la cámara de tamiz molecular inicial (4) El gas nitrógeno es capturado por la zeolita y el oxígeno continúa pasando a lo largo de todo el sistema hasta la parte final, lo que transporta al (5) depósito de acumulación y al compresor (6) se entrega oxígeno médico a alta presión al lugar donde se llenan los cilindros. En el trayecto se instalaron distintas clases de filtros: coalescentes, de carbón activo y filtros microbianos para garantizar su grado de pureza y monitoreados por equipos paramagnéticos. (ECOGASES, 2009; Atlas Copco, 2011).

Según la Farmacopea de la FDA, se determina que el oxígeno producido por esta tecnología es 93% de oxígeno adecuado para uso médico.

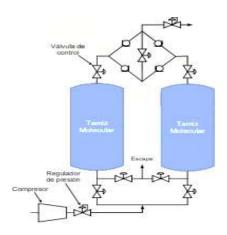

Obtención de oxígeno para uso médico por medio del método PSA: (a) Explicación del método o proceso; es el proceso de separar aire usando adsorción por fluctuación de presión, circula este gas por medio de una columna repleta con granulación o en partículas de polvo que son caracterizados debido a su elevada superficie (unidad de peso de material del lecho). Si dicho compuesto del lecho es una configuración de zeolita [NdCa], el gas nitrógeno del torrente de aire de ingreso se adsorbe en el área de la zeolita y el gas de partida se conservará aproximadamente exento de gas nitrógeno incluso hasta lograr que los lugares de acumulación libres en las áreas de zeolita puedan ser ocupados por las partículas del gas.

El gas de partida por lo general será de un 93 por ciento de pureza de oxígeno puro, sin embargo, regresará a un 21 por ciento en el momento que la zeolita se cargue con gas nitrógeno. En las pruebas, el flujo volumétrico de llegada se administra a un lecho de zeolita análogo, aunque dividido previamente que suceda esta impregnación. El siguiente lecho por lo tanto suministra el flujo volumétrico perfeccionado con "O" hasta que el anterior lecho logre ser expulsado del gas "N" con un flujo volumétrico invertido y luego volver a ser reusado en el procesamiento de separar el aire. De este modo, el

procesamiento de desprendimiento de aire "fluctúa" en ambos sentidos entre ambos lechos.

Figura 3

Tamiz molecular



Nota. Tomado de Reynolds, 2001.

Los lechos empleados para los métodos PSA son referidos generalmente a coladores de partículas por similitud a la red de colado que es utilizada para disociar las moléculas conforme a su dimensión. (Reynolds, 2001).

Figura 4

Esquema de una unidad PSA

Nota. Tomado de Santos, 2005.

Por lo tanto, el desprendimiento de aire en el método PSA empieza en el momento que el aire atmosférico es purificado y es sometido a un proceso de compresión a una presión manométrica característica de 124 psi (18.65 bar). El aire que ha pasado por compresión y ha sido trabajado es enviado a uno de los dos depósitos de adsorción mediante una serie de obturadores. En el depósito, el nitrógeno se adsorbe de manera selectiva, entretanto que los gases oxígeno y argón circulan por el proceso hasta el recipiente de oxígeno. El agua es apartada por medio de un filtro.

En el momento que el absorbedor comienza a obtener aire potenciado con oxígeno, un sensor abre un obturador, lo cual comienza a liberar el producto. Provisionalmente el absorbedor se carga con gas de nitrógeno y no es posible quitarlo del aire, aquí es cuando el flujo de producto que sale se detiene. Se inicia un flujo de depuración en el depósito de adsorción, y se le quita presión al tanque. A esta presión disminuida, el gas de nitrógeno deja el depósito de adsorción mediante una evasión.

En una planta de generación de oxígeno PSA, ambos depósitos de adsorción laboran en simultáneo. Entretanto en el primero el nitrógeno se está diluyendo, en el segundo el aire de la atmósfera, anteriormente trabajado, viene siendo

suministrado. En todo un proceso, se obtiene un flujo volumétrico aproximadamente constante de aire potenciado con oxígeno.

Parámetros de ubicación para la instalación de una planta PSA.

Tabla 3

Medidas de seguridad para depósitos con oxígeno criogénico

Medidas de protección de riesgo para	Hasta 20	Sobre
depósitos donde suele suceder	ton	20 ton
desbordamiento de oxígeno	(metros)	(metros)
Sitios donde están permitido fumar	4	7
Espacios libres de reuniones	11	16
Avenidas públicas	4	7
Parqueos vehiculares	6	9
Conductos de tuberías de gases	4	4
inflamables		
Entrada de aire de generadores	4	7
Tanques de gas combustible (hasta 70	6	4
m3)		
Cilindros de almacenamiento de Gas	8.5	8.5
Licuado de Petróleo (hasta 4 ton)		
Contenedor de almacenamiento de GLP	14	14
(hasta 60 ton)		
Depósitos de reserva de fluidos	16	16
inflamable a granel (hasta 117m3)		
Sub-estaciones eléctricas de MT o AT	4	7

Nota. Tomado de DH States and Facilities Directorate, 2006.

Configuración de la planta; la norma ISO 10083:20064 expone que, a excepción del "O" y "N", cada procedimiento debe abarcar mínimamente tres causas autónomas de distribución, que suelen ser reconocidas como

"primaria", "secundaria" y "reserva", a pesar que la última sea referida más a una causa terciaria de distribución. El procedimiento tiene que ser proyectado con la finalidad de obtener una entrega constante en los terminales de salida en condiciones normales y en condiciones donde ocurra alguna falla.

Tabla 4Método de entrega en la planta PSA

Suministro primario	Forma secundaria	Modo de reserva	
		Procedimiento para suministrar	
		la demanda necesaria de O, a	
	Unidad concentradora	los conductos de tuberías del	
	de oxígeno. Producto	hospital, partiendo de los	
Elemento centralizado	(mezcla de aire con O.)	cilindros presurizados, que	
de oxígeno.	en cilindros.	están unidos en línea, y	
		automáticamente entregan	
		oxigeno frente a una falla de la	
		planta. Lo mínimo que se debe	
		entregar, es por un periodo de	
		2 horas.	

Nota. Tomado de ISO 10083:2006.

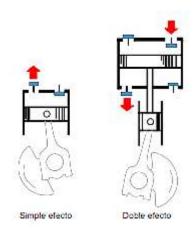
Tratamiento de aire; los agentes que contaminan logran ingresar al procedimiento de compresión de aire desde tres fuentes: el compresor, la atmósfera y el sistema de tuberías de suministro. Cada fuente se tiene que tomar en cuenta al instante de determinar el tipo y posición del equipo de tratamiento del aire. Un equipo de filtración puede incorporar pre-filtros, filtros coalescentes, filtros desecantes, filtros de carbón, filtros de partículas y otros equipos adicionales de filtrado, indispensables para garantizar que el producto sea de buena calidad (Parr, 2006).

Los límites máximos de capacidad de aceite cambian dependiendo de la región, de 0.025 mg/m³ hasta 0.5 mg/m³ (0.1 mg/m³ en Perú); la empresa distribuidora de agua debe ser preguntada previamente. (Frankel, 2010).

 Tabla 5

 Especificaciones de calidad para oxígeno medicinal de una planta PSA

Gránulo	lubricante	H2O	MOXIDO	DIOXIDO	OXIDO	DIOXIDO	Olor
			DE	DE	NITRICO	DE	
			CARBONO	CARBONO	y NO ₂	AZUFRE	
Disuelto	≤0.101	≤67.02	≤5.01 ppm	≤300.01	≤2.003	≤1 ppm	-
de	mg/m³	ppm		ppm	ppm		
partículas							
que se							
aprecie							
en una							
muestra							
de 75L							


Nota. Tomado de DH States and Facilities Directorate, 2006.

(a) Compresores comúnmente usados en una Planta PSA.

(a.1) Compresor de pistón; habitualmente los compresores de una sola etapa son más adecuados para valores de presión de 410 kPa (60 psig) o inferiores, los compresores de muchas etapas son mejores para valores de presión de 689.5 kPa (100 psig) o superiores. En los valores de 60 a 100 psig (410 a 689.5 kPa), principalmente se sugiere una sola etapa para volúmenes inferiores que 300 scfm y muchas etapas para 300 scfm o superiores.

Figura 5

Compresores de pistones

Nota. Tomado de Frankel, 2010.

(a.2) Compresor de diafragma; este modelo de compresor está designado para trabajo leve, bajas presiones, poco caudal y fines donde los recursos económicos es un agente determinante, principalmente en valores de 50 psig y 25 scfm.

Figura 6

Detalle del Compresor de diafragma

Nota. Tomado de Frankel, 2010.

(a.3) Compresor de tornillo; debido a como funciona es rotativo, la descarga es casi constante. Este modelo de compresor es muy apropiado para usos en alta presión, donde por lo general, los volúmenes van de 30 a 26 000 scfm (1 a 780 m3/min) en valores de presión de 125 a 250 psig (875 a 1750 kPa).

Figura 7

Compresor de tornillo rotativo

Nota. Tomado de Frankel, 2010.

La Norma ISO 15001:2010 establece los requisitos para la compatibilidad con oxígeno, de los materiales, componentes y dispositivos para usos respiratorios, que consiguen ingresar en contacto con el oxígeno en condiciones normales o en una sencilla condición de falla a presiones superiores de 50 kPa.

Capacidad; para poder lograr dimensionar algunos de estos compresores mencionados, se debe saber el volumen real de la cantidad de aire que será succionado por el compresor en icfm (Bilboa,2018)

Icfm (pies cúbicos de entrada por minuto); es el flujo de aire atmosférico para la entrada del compresor. (Bilboa,2018)

Acfm (pies cúbicos reales por minuto); es el volumen de aire habitual después de haber sido procesado en el compresor. Si se tiene una presión y temperatura estándar iguales a las condiciones de entrada del aire para el compresor, los acfm llegan hacer igual a los icfm. Y si estas condiciones son distintas a las condiciones de entrada, se usa: (bilboa,2018).

icfm = acfm
$$\left(\frac{P_{ref}}{P_s}\right)\left(\frac{T_s}{T_{ref}}\right)$$
 ... [Ec. 1]

P_{ref}: Presión referencial (bar).

T_{ref}: Temperatura referencial (K).

P_s: Presión succionada (bar).

T_s: Temperatura succionada, (K).

Scfm (pies cúbicos estándar por minuto); para el uso de estas medidas, se necesita valores típicos para presión y temperatura. Para ello se utilizan 14.7 psi y 520°R.(Bilbao,2018)

icfm = scfm
$$\left(\frac{P_{std}}{P_s}\right)\left(\frac{T_s}{T_{std}}\right)$$
 ... [Ec. 2]

P_{std}: Presión barométrica estándar (1.014 bar).

T_{ref}: Temperatura de referencia (273 K).

P_s: Presión (bar).

T_s: Temperatura succionada, (K).

Free Air; es el más común para los compresores de aire, sus características del medio ambiente pueden fluctuar con respecto al clima y la altura. (Bilbao, 2018)

icfm = Free Air
$$\left(\frac{P_{amb}}{P_s}\right)\left(\frac{T_s}{T_{amb}}\right)$$
 ... [Ec. 3]

P_{amb}: Presión barométrica local, (bar).

T_{amb}: Temperatura ambiental, (K).

P_s: Presión succionada (bar).

T_s: Temperatura succionada (K).

Cálculo de la potencia al freno del compresor (HP); para hallar los HP, se detecta en primer lugar el trabajo teórico. Para los dimensionamientos de todo tipo de máquina, para que la selección no sea de tipo ideal, se adapta las eficiencias. Para esta causa existen tres tipos: proceso isentrópico, isotérmico y politrópico. Con respecto al trabajo teórico es proporcional al politrópico y también a la corriente másica de aire. Para poder calcular los BHP de los compresores se multiplica el trabajo politrópico por la afluencia másica del

aire, y teniendo en cuentas las supresiones mecánicas y las eficiencias que pueda haber.

$$H_p = Z.R.T(\frac{n}{n-1})(\frac{P_2}{P_1})^{\frac{n-1}{n}}-1) \dots [Ec. 4]$$

Z: Factor de compresión de aire (Z=1)

R: Constante universal del gas (0.287 kJ/kg.K)

T: Temperatura succionada (K)

n: Índice politrópico (n=1.4)

P₂: Presión descargada (bar)

P₁: Presión succionada (bar)

Potencia al freno del compresor:

$$HP = \frac{H_p \cdot m}{\eta_p} + pérdidas mecánicas ... [Ec.5]$$

H_p: Trabajo teórico del compresor (Kj/kg)

m: Flujo de masa de aire (kg/h)

η_n: Eficiencia politrópica (η_n≈1)

Para estos cálculos se omiten las perdidas mecánicas

Corriente nominal de la carga

$$I_{N} = \frac{P}{\sqrt{3} \cdot V_{L} \cdot FP \cdot \eta} \dots [Ec.6]$$

In: Corriente nom. (A).

P: Potencia nom. (W).

V_L: Tensión nom. entre fases (V).

FP: Factor de potencia.

η: Eficiencia.

Corriente del conductor

$$I_{cond} = \frac{I_N}{F_t \cdot F_a \cdot n} \dots [Ec.7]$$

Icond: Corriente (A).

In: Corriente nom. (A).

n: Número de conductores por fase del circuito.

Ft: Factor de corrección por temperatura.

Fa: Factor de corrección por agrupamiento.

n: Número de conductores por fase.

Si se quiere encontrar la corriente de los conductores de los circuitos derivados, se usa la ecuación que se muestra a continuación.

$$I_{cond} = \frac{I_{N} \cdot 1.25}{F_{t} \cdot F_{a} \cdot n} \dots [Ec.8]$$

Resistencia del conductor

$$R = R_{tabla} \cdot \frac{L}{1000} \dots [Ec.9]$$

R: Resistencia (Ω).

R_{tabla}: Resistencia en canalización (Ω/km).

L: Longitud del circuito (m).

Reactancia inductiva del conductor

$$X_L = X_{L_{tabla}} \cdot \frac{L}{1000} \dots [Ec.10]$$

 X_L : Reactancia inductiva (Ω).

X_{Ltabla}: Reactancia inductiva en canalización (Ω/km).

L: Longitud del circuito (m).

Impedancia del conductor

$$Z_{cond} = \sqrt{R^2 + X_L^2} \dots [Ec.11]$$

 Z_{cond} : Impedancia (Ω).

R: Resistencia (Ω).

 X_L : Reactancia inductiva (Ω).

El resultado de la impedancia encontrada se multiplica por el valor nominal de la corriente de la carga, este valor es la caída de tensión, la ecuación se muestra a continuación:

$$e = I_N \cdot Z_{cond} \dots [Ec.12]$$

e: Caída de tensión por fase (V).

IN: Corriente nom. (A).

 Z_{cond} : Impedancia (Ω).

El resultado de la caída de tensión debe ser expresado en porcentaje, además la tensión nominal de fase, no debe superar el 3%. Por lo tanto, la caída de tensión en términos de porcentaje, se halla con la siguiente ecuación:

%e =
$$\frac{\sqrt{3} \cdot e}{V_L} \cdot 100 \dots [Ec.13]$$

24

%e: Caída de tensión porcentual por fase.

e: Caída de tensión por fase (V).

V_L: Tensión nominal entre fases del sistema (V).

Cálculo del costo de la energía eléctrica mensual

$$C_{EEM} = P_{MAX} \cdot h \cdot C_{E} \dots [Ec.14]$$

PMÁX: Máxima demanda de potencia, kW.

H: Horas totales de operación al mes, h.

C_E: Costo de la energía eléctrica, $\frac{\text{soles}}{\text{kW-h}}$

Filtros; el objetivo de un filtro es disminuir o retirar los residuos en la corriente de aire a un nivel establecido o tolerable. Estos filtros son: (1) Los filtros de admisión: retiran abundantes proporciones de residuos en el ingreso de aire dirigido al compresor. (2) Los pre-filtros: son principalmente utilizados previamente que el aire ingrese al secador, para quitar varios residuos que lograrían atascar la unidad. Estos pre-filtros son comúnmente del tipo coalescente a fin de quitar partículas y vapores, tales como aceite, hidrocarburos y agua. Cuando estos filtros se juntan, en este punto, con los separadores, se nombran filtros separadores. (3) Los Post-filtros: son utilizados principalmente luego del procedimiento donde es secado, para retirar residuos más pequeños que el pre-filtro no pudo retirar. Algunos secadores ocasionan residuos de polvo de tamaño muy insignificante (finos) que deben ser retirados de la corriente de aire. (4) Los filtros de final de línea: son utilizados de inmediato antes de cualquier herramienta o equipo individual del procedimiento que solicite una retirada adicional de residuos en mayor tamaño que el post-filtro. (5) Los filtros de remoción de aceite: son filtros particulares utilizados solo para retirar proporciones no pretendidas de aerosoles de aceite súper pequeñas para ser retiradas por coalescencia, un valor apropiado de retirada de aceite es de 5 a 10 ppm. (6) Los filtros de carbón activado: son utilizados para retirar aceite gaseoso y otros hidrocarburos en modo de diminutos residuos muy pequeños para ser retiradas por coalescencia.

Los filtros deben ofrecer una expulsión de partículas bacteriológicas hasta 0.01 mg/m3. (Frankel, 2010).

Figura 8
Sistema integral de filtrado, secado y desecado para aire comprimido

Nota. Tomado de Sharpe Manufacturing.

Para organizar el aire que se comprime según la naturaleza en función de la capacidad de agua se usa la norma ISO 8573- 1:2001, que explica diferentes tipos de calidad de aire para capacidad en residuos, aceite y agua. Los tipos referente a esta normativa se mencionan en la Tabla 6.

 Tabla 6

 Condiciones de aire por cada volumen de agua

Categorías (ISO)	Inicio del punto de rocío (°C)
0.00	Menor que clase 1,
	correspondiente a las
	especificaciones del usuario.
1.00	-69
2.00	-35
3.00	-22
4.00	4
5.00	8
6.00	0

Nota. Tomado de ISO 8673-1:2001.

Peso del vapor de agua en el aire; la unión de punto de rocío que hay en la sustancia de agua a cierta cantidad de flujo a temperatura constante, la

variedad es prácticamente nula para las diversas presiones.

Condensación; este proceso tiene como principio la disminución de la

temperatura de flujo de aire a lo largo de un intercambiador de calor,

generando un punto de rocío muy disminuido. Esto ayuda a reducir la

capacidad del aire para cohibir humedad. Luego la humedad por medio de los

tubos del secador se condensa. Un separador de humedad expulsa el

condensado. El refrigerante que normalmente se utiliza es agua fría, salmuera

o un refrigerante. (Frankel, 2010).

Expresiones para el cálculo de condensados, separados y arrastres; La

cantidad de condensados "C" (I/h), se calcula con la siguiente fórmula:

$$C = 7.2 \cdot 10^{-4} \cdot G \cdot X \cdot (W_i - W_f) \dots [Ec. 15]$$

C: Caudal de condensados formados (I/h).

G: Caudal nom. (Nm³/min).

X: Porcentaje de servicio de carga.

Wi: Humedad inicial (g/kg).

W_f: Humedad final (g/kg).

Tomando en cuenta que C = L + A, esto quiere decir que los valores

condensados son iguales a los valores de los separados "L", más los valores

de arrastres "A", para esto se tienen otras fórmulas para este cálculo. Además,

los condensados es posible expresarlos en g (H₂O)_v/kg de aire, siendo en tal

caso:

$$C' = W_i - W_f ... [Ec. 16]$$

27

Si se llega a producir condensación, la cantidad de condenados que se debe eliminar, se halla con formula que se muestra a continuación:

$$L = \frac{C \cdot E}{100} ... [Ec. 17]$$

Si no se llega a producir condensación, se debe utilizar:

$$L = \frac{A \cdot E}{100} ... [Ec. 18]$$

En el caso que exista condensación (enfriadores, secadores refrigerativos), los valores de arrastres, es posible calcularlos con las siguientes fórmulas:

$$A = C - L ... [Ec. 19]$$

L y L': Caudal de separados (I/h), (g/kg).

C y C': Caudal de condensados (l/h), (g/kg).

A y A': Arrastres (I/h), (g/kg).

E: Eficacia de separación del separador.

En el caso que no exista condensación (depósitos, separadores), los arrastres se pueden calcular por medio de:

$$A_s = \frac{A_e \cdot E}{100} ... [Ec. 21]$$

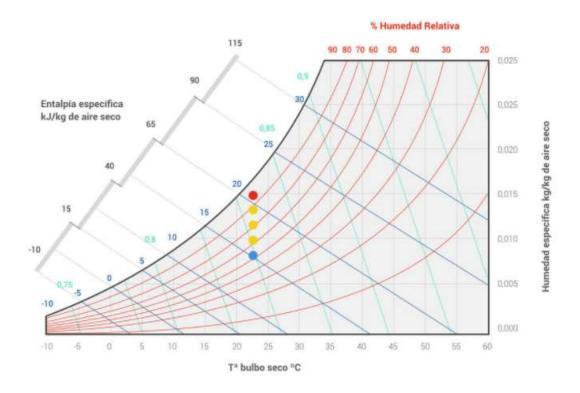
$$A'_s = \frac{A'_e \cdot E}{100} \dots [Ec. 22]$$

As y A's: Arrastres a la salida (I/h), (g/kg).

Ae y A'e: Arrastres a la entrada (l/h), (g/kg).

Humedad relativa; El vapor de agua que se haya en el aire húmedo contiene una presión secuaz establecida p_w, esto puede cambiar si se tiene aire saturado de humedad se podría tener otra presión p_w* con igual de temperatura que se denomina presión de saturación, esta relación de menciona como humedad relativa.

$$%W_R = \frac{p_W}{p_W^*} \cdot 100 \dots [Ec. 23]$$


P_w = Presión de vapor

Pw*= Presión de saturación

Esta humedad relativa se puede expresar en valores de porcentaje. (Angel L. Miranda, 2009)

Figura 9

Comportamiento de la humedad relativa

Nota. Tomado de Aliaga Godofredo, Quispe Pedro, 2015.

Controles del Secador; el rendimiento de trabajo del sistema de control se verá a prueba cuando la compresión se analiza al 10% y al 0% del flujo de diseño. La fiabilidad y la eficacia de un proceso de secado es responsable únicamente el diseñador del sistema. Este mismo diseño tiene que incorporar un higrómetro de punto de rocío y evidenciar una exactitud como mínimo del ±3°C con valores desde -20°C a -60°C, ajustándolo al -46°C. Cabe mencionar que, para un circuito abierto, debe haber algo previsto, para poder iniciar alguna alarma de "emergencia en planta". (Frankel, 2010).

- (b) Componentes para un sistema PSA: (b.1) Separador; este accesorio tiene similitud con el tipo de filtro que sirve para conmover numerosas cantidades de agua líquida o aceite, desde la línea de aire.
- (b.2) Trampas de drenado; el trabajo principal es dar colección y remoción de los fluidos que han sido independizados del flujo de aire, con casi nada de pérdidas de presión en la línea de aire comprimido.
- **(b.3) Válvulas anti-retorno**; se necesitan estos tipos de válvulas para que el flujo no pueda regresar al mismo sistema y ser perdido.
- **(b.4) Tanques recibidores de aire comprimido**; son depósitos tamaño considerable de metal, afuera del área de producción. Su trabajo es: habilitar conservación de emergencia para poder liberar a las máquinas de su trabajo cuando no se les necesita. (Frankel, 2010).

Cálculo de numero de cilindros

$$V = \text{flujo x t } (\text{m}^3) \dots \text{[Ec. 24]}$$

$$\# \text{ cilindros} = \frac{V}{\text{capcidad nominal x cilindro}} \dots \text{[Ec. 25]}$$

Tipos de válvulas; (1) válvulas de seguridad: está sujeta a la norma ISO 4126-1:2013. Esto ayuda en la descarga o alivio que puede haber en el

sistema mismo. (2) válvulas de aislamiento: son válvulas de corte de bola de funcionamiento, concede el aislamiento de las siguientes componentes, como recibidores, secadores, drenajes automáticos, válvulas cambiadoras de presión y filtros.

Presión; especifica la fuerza normal que es aplicada a un fluido por una cierta unidad de área, ya sea en gas o líquido. (Yunus C, Boles, 2009)

$$P = \frac{F}{A} ... [Ec. 26]$$

P = presión (pascal)

F = fuerza (Newton)

 $A = \text{área } (m^2)$

Indicadores de Presión; los señalizadores de presión y manómetros para método de tuberías de gas medicinal deben estar apropiadamente limpios antes de su montaje. La categoría de la medición de presión positiva en indicadores similares tiene que ser la presión normal de trabajo que esté dentro de la tercera parte del rango total. Las exactitudes de las señales con valores digitales tienen que ser de ±5% de la presión en operatividad con la que se trabajará. (Frankel,2010). Tienen que efectuar con la normativa ISO 17025:2005 (Laboratorios Acreditados de Calibración).

Flujo másico. (Paredes, 2016)

$$\dot{m} = \rho * \dot{V} \text{ [kg/s]} \dots \text{[Ec. 27]}$$

 ρ = densidad, kg/m³

V: flujo volumétrico, m³/s

Tanques recibidores de oxígeno; el volumen de los recibidores de cualquier tipo de los procedimientos de entrega se hará en la utilización estimada y comúnmente de otorgar oxígeno para los circuitos de distribución del hospital.

Se tiene que tener en cuenta los recipientes adecuados, así poder ver que los

depósitos recibidores estén en estados óptimos, salvaguardar y en un

ambiente apropiado y limpio. Refiriéndose siempre a la normativa BS EN 286-

1:1998 para tanques de presurización.

Unidad secundaria de suministro; el suministro secundario debe estar

siempre conectado, y así pueda dar la materia prima por cualquier motivo que

se presente.

Sistema de suministro de reserva de emergencia; debe ser alojado una

línea de colector de guarda de emergencia, para mantener un suministro de

entrega alternativo, en caso de contratiempo, o para poder realizar el trabajo

de mantenimiento o arreglo a la planta de generación. El abastecimiento de

reserva tendría que estar siempre conectada para poder entregar oxigeno si

sucede algo improvisto.

Fórmulas para el análisis financiero

Periodo de retorno de la inversión; es la devolución inicial de la inversión

de los operantes asegurados, correspondiente a una ganancia económica

permanente en un periodo establecido (Sowell,2013).

PRI =
$$\frac{\text{INVERSIÓN INICIAL}}{\text{BENEFICIO ÚTIL}}$$
 ... [Ec. 28]

PRI Período de retorno de la inversión (años)

I: Inversión inicial (S/.)

B: Beneficio útil (S/año)

Valor Actual Neto; es un instrumento financiero de tasación de variación, se

refiere a la forma distinta que hay entre el valor principal y los pagos

establecidos en una inversión de un proyecto, para estimar la cantidad de

ganancia o pérdida. (Sowell,2013)

32

VAN =
$$\sum_{k=0}^{n} \left(\frac{Ft}{(1+r)^t} - I_0 \right) \dots [Ec. 29]$$

VAN: Valor pactual neto (S/.)

Ft: Periodos de flujo (S/.)

r: Tasa de Interés (%)

t: Cantidad de periodos (años)

I_o: Inversión inicial (S/.)

Tasa interna de retorno; es la tasa efectiva anual o tasa de reducción que hace que los indicadores vigentes reales de todo el sistema efectivo de inversión sean semejantes a cero (Sowell,2013).

TIR =
$$\sum_{k=0}^{n} \left(\frac{Ft}{(1+TIR)^t} - I_o \right) = 0 \dots [Ec. 30]$$

TIR: Tasa interna de retorno (%)

Ft: Periodos de flujo (S/.)

r: Tasa de Interés (%)

t: Cantidad de periodos (años)

I_o: Inversión inicial (S/.)

Mantenimiento preventivo; De igual manera se le conoce como "mantenimiento planeado", está sujeta previamente a que ocurra la falla. (Ferren, 2005). Brinda servicios de supervisión, control y renovación de cierta tarea, con el fin de prevenir, detectar o corregir ciertas deficiencias para poder lograr evitar fallas.

Es una secuencia o programa que se realiza de manera planificada, para que pueda conllevar a poder a asegurar el tiempo más mínimo de paros no previstos y así poder tener una producción con más tiempo de trabajo, eficaz y eficiente para cualquier sistema. Para ello un programa de mantenimiento preventivo tiene dos actividades básicas:(1) Supervisión constante de la configuración de los procesos, y así poder lograr ver las conductas que puedan generar los paros imprevistos de producción, y (2) sostener la planta

para bloquear estos aspectos, adaptarlos o mejorarlos cuando se hallen aun en etapa inicial.

Es el trabajo realizado por técnicos especializados, con el propósito de precaver el desgaste previo de las maquinas vitales en el proceso de producción, pronosticar posibles deficiencias en el funcionamiento, haciendo programas de reparaciones con anticipación a la falla.

- a) Programa para un mantenimiento(Mto) preventivo adecuado; Listado técnico con compendios, representaciones, configuración de cada componente de cada equipo, métodos técnicos, inventarios de trabajos a efectuar paulatinamente, observación de frecuencias, indicaciones reales de trabajo programadas a la fecha, listado de operaciones, repuestos y costos que pueda mejorar la planificación. (Martin, 2005)
- b) Hay dos puntos esenciales para el Mto Preventivo; organizacional y operativo.
 - •La exigencia de disposición comprende el listado del equipo que va ser revisado. Se especifican lineamiento para supervisión. Se realiza un compendio de listado de máquinas. Se crea modelos de tiempo para avanzar con el mantenimiento. Se implementa el tiempo de trabajo para cada tarea. Se establecen los requerimientos de mano de obra. Los requerimientos operativos Realizar y difundir el listado de trabajos de mantenimiento puntualizando el proceso y verificando la realización. El trabajo con anticipación debe ir en ascenso, y el de parada de emergencias en retroceso. Se chequean los procesos de inspección. Se establece las cantidades de inspecciones que se hacen y si los arreglos a las maquinas cumplen con la tarea asignada.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

El presente estudio es de tipo **aplicada**, según (Lozada, 2014) menciona: "La investigación aplicada tiene por objetivo la generación de conocimiento con aplicación directa y a mediano plazo en la sociedad o en el sector productivo". Esta investigación es aplicada porque se busca dar solución a un problema, en este caso es la deficiencia de camas UCI de alta complejidad, utilizando los conocimientos de la ingeniería mecánica eléctrica.

El diseño para esta presente investigación es pre experimental, según (Sierra,2012) precisa: "Es un tipo de diseño que trata de disponer una iniciativa o mejora a un cierto grupo y luego poder aplicar una medición de las variables, y así poder lograr ver cuál es el nivel del grupo en estas variables". Es por ende que la investigación es pre experimental, ya que se aplicarán y se harán cálculos y por ende a través de la ejecución corroborar si estos cálculos son correctos.

3.2. Variables y operacionalización

Variable independiente: (ver Anexo 1).

Aire atmosférico, (m³/h)

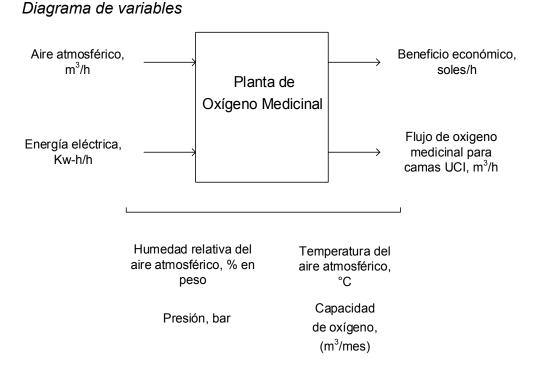
Energía eléctrica, (kw-h/h)

Variable dependiente: (ver Anexo 1).

Beneficio económico, (soles/h)

Flujo de oxígeno medicinal para camas UCI, (m³/h)

Variables intervinientes: (ver Anexo 1).


Humedad relativa del aire atmosférico, (% en peso)

Temperatura del aire atmosférico, (°C)

Presión, (bar)

Capacidad de oxígeno, (m³/mes)

Figura 10

Nota. Elaboración propia.

Tabla 7 *Variables y operacionalización*

Variables	Definición	Definición	Indicadores	Escala de
	Conceptual	Operacional		medición
Independientes				
Aire atmosférico	El aire de la atmósfera está compuesto de una combinación de gases, por ejemplo, vapor de agua y una diversidad de contaminantes. (Santesmases, 2012).	Se define como la cantidad volumétrica que fluye a través de determinada sección en un cierto intervalo de tiempo. Las unidades más comunes son: m3/s, m3/h, Nm³/h, I/h, I/min, GPM, entre otras.	[m³/h]	De razón
Energía eléctrica	Se llama energía eléctrica a la forma de energía que surge de la presencia de una diferencia de voltaje entre dos puntos, lo que admite una corriente eléctrica entre ambos y lograr trabajo. (Agustín Rela, 2010).	Para medir la energía eléctrica, la medida más útil es el kilovatio por hora (kw/h). Para obtener los valores se calculará mediante la energía demandada en un período de facturación.	[kw-h/h]	De razón
Dependientes				,
Beneficio económico	El beneficio económico, son las ganancias que se consiguen al	Se obtiene por la diferencia entre el valor que tienen los bienes	[soles/h]	De razón

	instante de	resultantes del		
	desarrollar una	proceso		
	actividad o	productivo		
	procedimiento	(productos) y los		
	económico.	que se emplearon		
	(Baldemar Quiroz,	en el mismo		
	2016).	(insumos), En este		
		caso se medirá en		
		soles/h		
Flujo de oxígeno	Es la capacidad de	Es el resultado del	[m ³ /h]	De razón
medicinal para	flujo de oxígeno	flujo en volumen		
camas UCI	suficiente para	por cada paciente		
	proporcionar el	en un determinado		
	volumen - hora	tiempo. Las		
	requerido para toda	unidades más		
	el área de alta	comunes son:		
	complejidad.	m³/s, m³/h, Nm³/h,		
	(Santesmases,	I/h, I/min, GPM,		
	2012).	entre otras.		
Intervinientes				
Humedad	Es el cociente entre	Es expresado en	[% en peso]	De intervalo
relativa del aire	el total de vapor de	porcentajes, como		(0 – 100%)
atmosférico	agua almacenada	el cociente entre la		
	en el aire (humedad	presión de vapor		
	absoluta) y la	efectiva (e), y la		
	máxima cantidad	presión de vapor		
	que el aire puede	máxima o de		
	ser capaz de	saturación (E).		
	almacenar a dicha	Los valores serán		
	temperatura	tomados		
	(humedad absoluta	dependiendo de la		
	de saturación).	temperatura		
	(Cengel y Boles,	ambiente.		
_	2012).			
Temperatura del	La temperatura es	La temperatura	[°C]	De intervalo
1 - 1 1		muestra en datos		(0 a 35 °C)
aire atmosférico	un indicador de que			(0 4 00 0)
aire atmosferico	tan caliente o frío	numéricos el nivel		(0 4 00 0)
aire atmosterico	•			(0 4 00 0)

	1., , , ,			
	intercambio de calor	un lugar en ese		
	entre la tierra y la	instante. Los		
	atmósfera. (Cengel	valores serán		
	y Boles, 2012).	tomados de la		
		temperatura		
		ambiente		
		expresados en °C.		
Presión.	Hace referencia a la	Las unidades más	[bar]	De razón
	medida que puede	comunes son: Pa,		
	ejercer cierta	bar. En este caso		
	cantidad de fuerza	los valores serán		
	por m ² en los límites	tomados en bar,		
	de una sustancia.	los cuales se van a		
	La presión	recopilar de los		
	manométrica	manómetros a la		
	corresponde al valor	entrada y salida		
	que se puede leer	del compresor.		
	directamente en un			
	manómetro o en un			
	transmisor de			
	presión. (Connor,			
	2019).			
Capacidad de	Es la estimación de	En este caso lo	[m ³ /mes]	De razón
oxígeno	demanda de	vamos a medir en		
	oxígeno que	unidades de		
	queremos lograr.	m³/mes.		
	(Cengel y Boles,			
	2012).			
	1		l	l

Nota. Elaboración propia.

3.3. Población, muestra y muestreo

Población: Plantas de oxígeno medicinal en alta presión en hospitales del departamento de La Libertad.

Muestra: Planta de oxígeno medicinal en alta presión en el Hospital Regional de Trujillo.

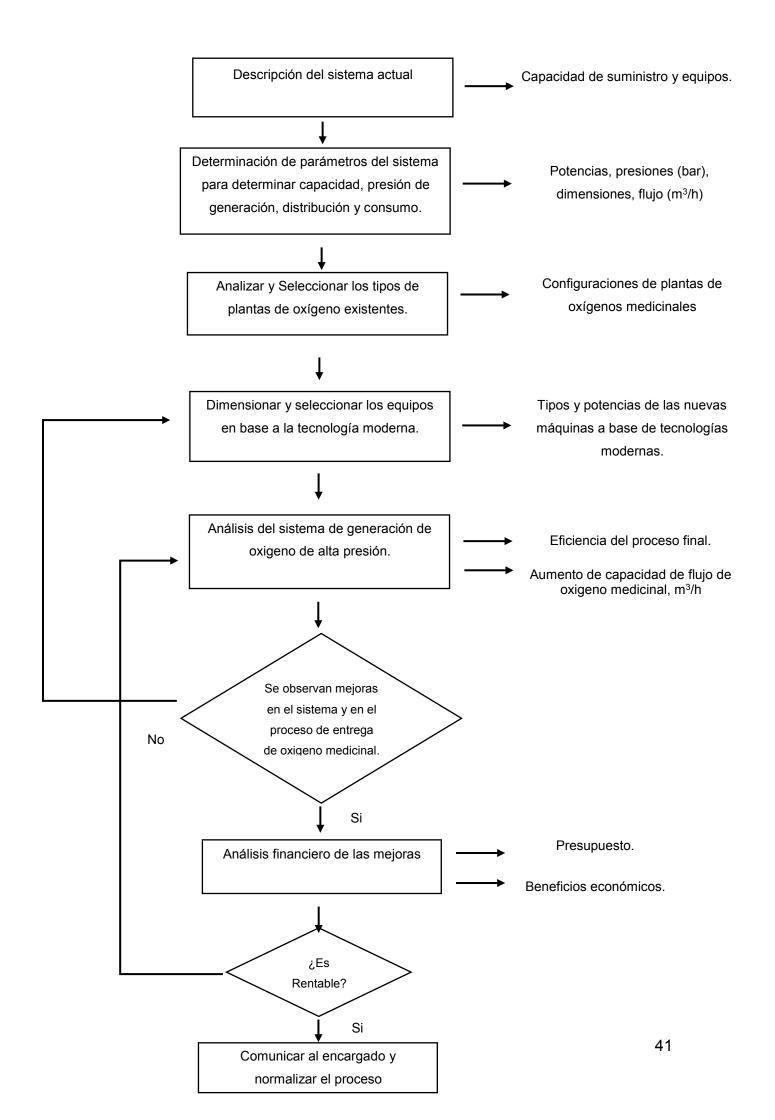
Muestreo: No probabilístico intencionado, elegido por los investigadores.

3.4. Técnicas e instrumentos de recolección de datos

 Tabla 8

 Técnicas e instrumentos de recolección de datos

Técnica	Instrumento
Observación	Ficha de observación
Análisis documental	Fichas registro


Nota. Elaboración propia.

Las fichas de observación, se aplicarán al área de suministro de oxígeno medicinal del Hospital Regional Docente de Trujillo. (ver Anexo 2, 3, 4 y 5).

La ficha de registro, se aplicará a los documentos de registro de compra de oxígeno, demanda de oxígeno, capacidad de camas UCI, registro de energía. (ver Anexo 6).

3.5. Procedimientos

Se muestra el diagrama de flujo de los pasos para explicar los objetivos específicos del estudio y precisar la solución al problema planteado.

3.6. Método de análisis de datos

Se harán análisis descriptivos y analíticos del sistema de generación de oxigeno medicinal para el Hospital Regional Docente de Trujillo, aplicando ecuaciones físicas y matemáticas que comprenden nuestras variables y parámetros necesarios para poder hacer un adecuado dimensionamiento y selección de una planta de oxígeno medicinal en alta presión. Determinando así valores estadísticos y resultantes obtenidos del proceso.

También se harán análisis cuantitativos con los datos tomados, además se realizarán tablas de frecuencias, gráficos y cuadros informativos, para esto se empleará el software Microsoft Excel. Asimismo, para realizar el esquema de todo el proceso de obtención de oxigeno medicinal, se empleó el software Microsoft Visio.

3.7. Aspectos éticos

Los autores en el desarrollo del trabajo de investigación se enfocarán en efectuar dos aspectos éticos importantes: La seguridad intelectual y seguridad de la información recopilada. En lo referente a la posesión intelectual se respeta, referenciando toda la información que no es de autoría nuestra, evitando incidir en el plagio de nivel académico. Además, se protegió la información ofrecida por el Hospital Regional Docente de Trujillo, la cual fue ofrecida con la única razón de este trabajo de investigación.

IV. RESULTADOS

(1) Evaluar el sistema actual de distribución UCI y control de suministro de oxígeno.

Actualmente el Hospital Regional Docente de Trujillo, no cuenta con una planta de generación de oxígeno medicinal es por esto que recurre a la compra de este recurso con la finalidad de satisfacer la demanda de oxígeno para sus pacientes, pero lo cual es insuficiente ya que solo cuenta con dos tanques criogénicos.

Sin embargo, el hospital se ve en la necesidad de adquirir oxígeno líquido de uso medicinal con 94 % de pureza, mediante la importación a la empresa AIR PRODUCTS PERÚ S.A. (en su sucursal de Trujillo), por medio de un acuerdo de distribución de 400 000,00 m³ por una suma que asciende a 416 000,00 soles al año.

Figura 11

Diagrama de variables

Nota. Tomado de AIR PRODUCTS PERÚ S.A., 2021.

Es por esto que hospital, después de realizar la compra del oxígeno medicinal, vende este recurso para los pacientes que lo necesiten con el propósito de poder recuperar el dinero invertido en la compra del oxígeno. Pero no es suficiente la reserva con la que cuenta el nosocomio, ya que solo tiene 25 balones de oxígeno, es por esto que la gran mayoría de las personas que entran a UCI, se ven obligados a comprarlo de manera externa.

Figura 12

Planta de oxígeno del HRDT entre los años 2000 y 2010

Nota. Tomado de Macronorte, 2020.

Por estas razones es más que necesario que el hospital cuente con su propia planta de generación de oxígeno medicinal en alta presión, ya que de esta manera se evitarán los problemas de estar comprando el oxígeno y de la falta de este recurso para el suministro y venta a sus pacientes.

(2) Identificar los parámetros críticos del sistema para determinar capacidad, presión de generación, distribución y consumo.

Gracias a la información recopilada de la ficha de registro se obtuvieron datos muy importantes, para poder identificar los parámetros críticos del sistema del hospital.

Actualmente el hospital solo tiene una capacidad de 17 camas UCI, lo cual es muy insuficiente, ya que por normal un nosocomio debe tener en promedio 7.7 camas por cada 100 000 habitantes. Es por esto que la capacidad de camas UCI proyectada será de 40, basándonos en la disponibilidad y la infraestructura del hospital.

Además, se obtuvo de los datos que el consumo de un paciente en UCI en estado crítico (caso COVID) es de 60 m³/día, lo cual refleja que la demanda de oxígeno es alta.

Con los datos previos se pudo determinar la demanda mensual de oxígeno medicinal, la cual es posible calcular mediante el producto de la capacidad de camas proyectada por el consumo de paciente en UCI en estado crítico, asimismo este resultado debe ser multiplicado por la cantidad de días al más que sería 30, lo que da un valor de 72 000 m³.

Para poder determinar los valores de presión es necesario tomar en cuenta las condiciones ambientales de Trujillo en los años 2020 – 2021, que son:

Tabla 9Condiciones ambientales de Trujillo 2020-2021- parámetros críticos

Altitud	34m
Presión atmosférica	101.4 kPa
Temperatura (min./máx.)	15/26 °C
Humedad relativa (min./máx.)	77/94 %
Punto de rocío (min./máx.)	13/24 °C

Nota. Elaboración propia.

De los datos del cuadro anterior, se procedió a determinar las presiones de succión y descarga, pero antes es importante conocer la equivalencia de la presión atmosférica en valores de kPa y bar (101.4kPa >> 1.014 bar).

Se tomó como base 8 kPa para la presión de succión. Y para la presión de descarga 860 kPa. Se hará un cálculo para obtener los valores en unidades de bar.

$$P_s$$
 = 8kpa + 101.4 kpa = 109.4kpa >> 1.094 bar
 P_D = 860 kpa + 101.4 kpa = 961.4 kpa >> 9.614 bar

Temperatura de succión (Ts)

$$T_S$$
 = 26 °C T_s = 26 °C + 273.15 K = 299.15 K

(3) Dimensionar y seleccionar los equipos en base a un análisis comparativo de tipos de plantas de oxígeno existentes en el mercado.

Luego de los cálculos previos en el objetivo anterior, se tiene que camas UCI en proyección son 40 y para lo cual se tendría una demanda mensual de 72 000 m³. Es por esto, se requiere una capacidad de oxígeno medicinal de 100 m³/h, con una calidad de 93 % - 95%, pero, para que el generador de O₂ (tamiz molecular) requerido entregue esta cantidad, necesita un consumo de aire de 1280 m³/h, es decir 753.380 scfm (pies cúbicos estándar por minuto). Por lo tanto, el tamiz molecular seleccionado es: (ver Anexo 7).

 Tabla 10

 Tamiz molecular seleccionado

Ejemplar	Oxymat/O1250 x2
Amplitud al 95% de O2	112.29 Nm3/h
Adquisición de aire	1280 Nm3/h
P. mínima de ingreso	6 bar
P. máxima de entrada	10 bar
P. de expulsión	4 bar
Punto de roció a	3 °C
presión de la entrada	
del aire	
Punto de roció a	-50 °C
presión del oxigeno	
T° de funcionamiento	5°C / 45 °C

Nota. Tomado de Oxymat A/S.

Corrección de altura

Interpolando tenemos:

1.003541 >> 0.003541, entonces 753.380 scfm x 0.003541 :2.6677 scfm

Tabla 11

Principio de corrección de altura

Altitud (pies)	Altitud (m)	Factor de corrección
0.00002	0	1.002
1 600.001	481	1.051
3 300.060	992	1.110
5 000.040	1 510	1.170
6 600.010	1 970	1.241
8 200.050	2 450	1.314
9 900.0009	2 960	1.397

Nota. Tomado de Frankel, 2010.

Corrección de temperatura Máximo y Mínimo

Para 26 °C se obtiene 1.01519. Para 15 se obtiene 0.9738. La diferencia en el factor de corrección es 0.04139 753.380 x 0.04139 =31.1824 scfm

Tabla 12Causante de corrección de temperatura

T° de entrada		Factor de	Temperatu	ıra de	F. de
		corrección	admisión	admisión	
°C	°F		°C	°F	
-46	-50	0.773	4	40	0.943
-40	-40	0.792	10	50	0.962
-34	-30	0.811	18	60	0.981
-28	-20	0.830	22	70	1.000
-23	-10	0.849	27	80	1.019
-18	0	0.867	32	90	1.038
-9	10	0.886	38	100	1.057
-5	20	0.905	43	110	1.076
-1	30	0.925	49	120	1.095

Nota. Tomado de Frankel, 2010.

Humedad relativa %

HR = 94%

T =26C

Se tiene 138.08 gramos /lb de aire
De tabla se obtiene 3 % volumen de aire
753.380 x 0.03 =22.6014 scfm

Tabla 13Peso de Vapor de agua en el aire a condiciones cambiantes de temperatura y cantidad de humedad relativa

Temp	eratura		H. R. (%)								
°C	°F	10	20	30	40	50	60	70	80	90	95
-1	30	3	5	7	9	12	14	17	19	21	22
4	40	4	7	10	14	16	18	20	22	24	25
10	50	6	10	14	20	26	32	38	42	48	51
18	60	8	16	22	30	39	48	54	62	70	74
22	70	11	21	34	44	55	66	78	88	100	106
27	80	16	30	46	62	78	92	108	125	140	148
32	90	21	42	65	85	108	128	158	173	195	
38	100	29	58	87	116	147	176	208			

Nota. Tomado de Frankel, 2010.

Tabla 14

Materia de humedad en el aire

Punto de rocío	Granos de	Partes Por	V. (%)
(°C)	humedad por lb	Millón	
	de aire		
44.10	400	60 000 50 000	9 8 7
38	300	40 000	6
33	200		4
27	150	20 000	3
22	100 90 80	15 000	2
18	70 60	10 000 9 000 8 000	1.5

Nota. Tomado de Frankel, 2010.

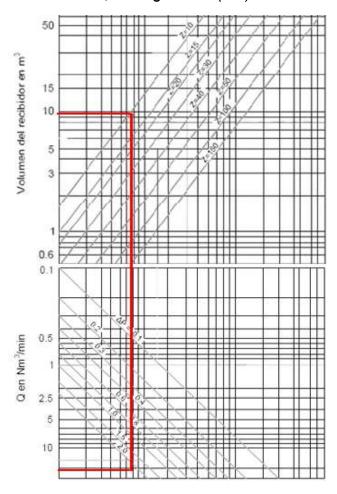
Sumatoria de los flujos totales

$$2.6677 + 31.1824 + 22.6014 + 753.380 = 809.8315 \text{ scfm}$$

Flujo de aire libre

icfm = Free Air
$$(\frac{P_{amb}}{P_s})(\frac{T_s}{T_{amb}})$$

icfm = 809.8315 scfm $(\frac{1.014}{1.094})(\frac{299.15}{299.15})$
icfm = 750.61 > 751 cfm =1276 m³/h


Cálculo de la potencia al freno del compresor (HP)

$$HP = Z.R.T \frac{n}{n-1} \left(\left(\frac{p2^{\frac{n-1}{n}}}{p1} \right) - 1 \right)$$

HP =
$$\frac{1\times0.287\text{kj}}{\text{kg.K}}$$
 x 299.15 x $\frac{1.4}{1.4-1} \left(\left(\frac{9.614^{\frac{1.4-1}{1.4}}}{1.094} \right) - 1 \right) = 258.64 \text{ kj/kg}$

Calcular potencia: hallar el flujo másico del aire para el tanque recibidor.

Figura 13
Frecuencia de conmutación / h, △P regulación (bar)

Nota. Tomado de Frankel, 2010.

Se logra dimensionar un tanque pulmón de 10 m³, para una demanda de flujo de aire de 21.33 m³/min. El trabajo de presiones de estos tipos de tanques, normalmente fluctúan entre 1 a 2.5 bar puesto en marcha. (ver Anexo 8).

 Tabla 15

 Tanque de almacenamiento seleccionado

Marca	Kaeser
Capacidad nominal	10000 litros
Presiones de trabajo	11 – 16 bar
Altura	5.415m
Diámetro	1.6 m
Versión	Vertical

Nota. Tomado de Ficha técnicas de tanques de almacenamiento Kaeser.

Para la frecuencia de conmutación "Z" que se puede trabajar para estos tanques lo normal 10 para marcha y parada, 60 a más cuando puede estar en carga o vacío.

Teniendo en cuenta que la demanda del sistema es $1280 \text{ m}^3/\text{h} = 21.33\text{m}^3/\text{min}$, se estima con Z = 10 y con un trabajo de presión promedio de 14 bar = 1400 KPa.

$$\dot{m} = \rho \times \dot{V}$$

$$\dot{m} = \frac{P}{RxT} \times \dot{V}$$

$$\dot{m} = \frac{1400 \text{ kPa}}{0.287 \text{ x}299.15} \times 10 \frac{m3}{h} = 163 \text{ kg/h}$$

$$HP = \frac{258.64 \times 93.18}{1} = 42158.32 \frac{kj}{h} \gg 11.71 \text{ kW} \gg 12 \text{ kW}$$

Entonces teniendo la conmutación del tanque Z = 10, en 1 hora. Para estimaciones se hará en segundos y el tiempo requerido se de 300 segundos (5 minutos), ya que requiere el llenado en menos de 6 minutos.

$$x = \frac{3600 \text{ s } \times 12 \text{ kW}}{300 \text{ s}} = 144 \text{kW} = 194 \text{ hp}$$

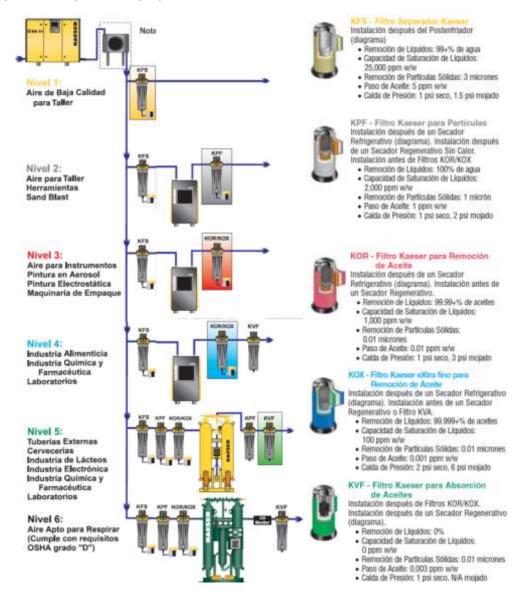
Para este caso se necesitará un compresor de 200 hp. (ver Anexo 9).

 Tabla 16

 Particularidad del compresor.

Marca	Kaeser/DSD 200
Modelo	Tornillo rotativo lubricado por aceite,1
	etapa
Potencia Nominal	200 HP, 380 VAC, trifásico, 60 Hz
Presiones de Trabajo	Mínimo 5.5 bar (80 psig)
	Máximo 8.5 bar (125 psig)
Disposición de Trabajo	8.5 bar (125 psig)
Cabida nominal	24.40m³/min (862 cfm)
Refrigeración	Aire
Nivel auditivo	73 dB
Geometría	2.600 – 1.980 – 2.040 m.
Peso	3650 kg.

Nota. Tomado de Ficha de especificaciones técnicas de compresores Kaeser.


Selección del post-enfriador

Para el caso del postenfriador, el compresor seleccionado ya cuenta con este sistema. Con lo cual este enfriador incorporado, puede lograr enfriar el aire de descarga del compresor a 30°C como dato del fabricante.

Selección de filtros

Figura 14

Esquema de posición y tipos de filtros

Nota. Tomado de Kaeser Compressors Inc.

Los filtros deben ser cambiados, cuando cumplan sus horas de trabajo o presenten una presencia de presión diferencial de 10 psi.

Selección de pre-filtro de partículas y separador de aceite

El principal objetivo, es la anulación de los residuos y contenido de aceite en el aire comprimido.

Tabla 17Requerimiento para el pre-filtro

Afluencia de aire	751 cfm
Presión de acción	151 psig
ΔΡ	1 – 4 psig
Eliminación de aceite	5 – 10 ppm
Temperatura de	30 °C
operación	

Nota. Elaboración propia.

Referenciando de la ficha técnica (ver Anexo 10), se hará un ajuste de corrección de flujo con la presión de operación 10.4 bar. Por lo cual, el prefiltro trabajará con un nuevo flujo de aire de:

Tabla 18Características del pre-filtro seleccionado

Marca/ Modelo	Atlas Copco/UD+ 550+
Corriente de aire	1165 cfm
Presión máxima	232 psig
Caída de presión	3.45 psig
Arrastre de aceite	9ppm
máximo(mg/m3)	
Temperatura de operación	68 °C

Nota. Tomado de Ficha de especificaciones técnicas de filtros Atlas Copco.

Selección del Secador

En el proceso de selección del secador, lo primordial para el procedimiento de secado, es saber encontrar el más inferior punto de rocío necesitado para la aplicación.

Tabla 19

Requerimiento.

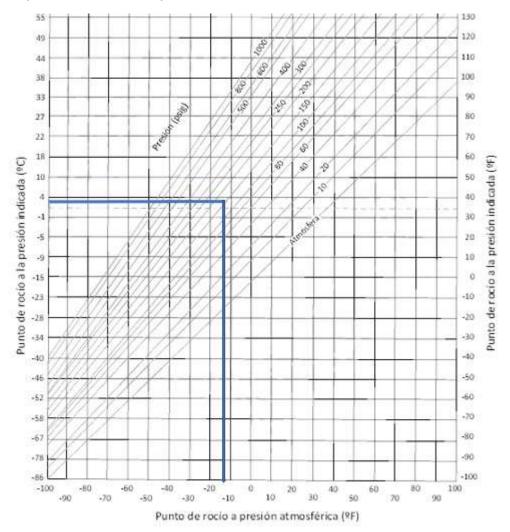
Torrente de aire	21.5 m ³ /min
Presión de carga	10.4 bar
Punto de rocío ansiado	≤3°C
T° (In)	30 °C
Avenamiento	Necesario
Sistema eléctrico	Monofásica / Trifásica
Caída de presión	3 – 5 psig

Nota. Elaboración propia.

Igualmente, como se hizo en la selección del filtro sobre el factor de corrección de flujo, el mismo procedimiento se hará que este caso (ver Anexo 11), con lo cual tendremos un flujo:

$$751 \times 1 \times 1.3150 = 987.565 \text{ cfm} >> 27.964 \text{ m}^3/\text{min}$$

Tabla 20 *Características*


Marca / Modelo	Atlas Copco/FX 18
Circulación de aire	30.015 m3/min
Presión máxima de trabajo	13 bar
Punto de rocío	3°C
Temperatura de entrada máxima	60°C
Máxima temperatura ambiente	Desde 5°C hasta 43.33 °C
Drenaje	Con drenaje de condensado
Alimentación eléctrica	380 V, trifásico, 60 Hz
Caída de presión	4.35 psi
Drenaje	Drenaje electrónico

Nota. Tomado de Atlas Copco.

Ficha técnica del secador. (ver Anexo 11).

Punto de rocío: Teniendo en cuenta, que el punto de rocío es donde la temperatura en lo cual el agua que está en el aire, se comienza a condensar en una cierta superficie. Por lo cual, si tenemos un punto de roció más bajo, el aire estará más seco. Sabiendo que este punto, puede variar con la presión. Para hallar el punto de roció con la presión de trabajo y la temperatura, se utiliza la figura 15.

Figura 15
Gráfica para selección del punto de rocío

Nota. Tomado de Frankel, 2010.

De la figura 15 se puede observar, que con un punto de rocío de 3°C a la presión de trabajo del secador seleccionado(151 psig), se obtiene una temperatura real de punto de rocío de -13°F (-25°C) a una presión atmosférica, por lo cual se logra apreciar que el aire que será tratado no estará expuesto a la humedad.

Selección del filtro de carbón activado

El principal trabajo que realiza este elemento, es la cancelación de aceite gaseoso y otros hidrocarburos.

Tabla 21Requerimiento.

Secuencia de aire	751 cfm
Presión de acción	151 psig
Declinación de	1.01 – 4 psig
presión	
Supresión de aceite	≤ 0.01 ppm
Temperatura de	30 °C
operación	

Nota. Elaboración propia.

Igualmente se trabaja con un factor de corrección (ver Anexo 12) obteniendo como factores de corrección lo siguiente.

$$751 \times 1 \times 1.05 = 788.55 \text{ cfm}$$

 Tabla 22

 Características de la torre de carbón activado seleccionado

Marca/ Modelo	Atlas Copco/QDT 425
Flujo de aire	901 cfm
Presión máxima de trabajo	232 psig
Caída de presión	1.8 psig
Arrastre de aceite	0.003
máximo(mg/m3)	
Temperatura de operación	68 °C

Nota. Tomado de Ficha de especificaciones técnicas de filtros Atlas Copco.

Ficha técnica de la torre de carbón activado. (ver Anexo 12).

Selección del micro-filtro de partículas y aceite

Para el componente, su trabajo, es excluir los aerosoles de aceite que puedan quedar.

 Tabla 23

 Requerimiento para la selección del post-filtro

Flujo de aire	751 cfm
Presión de operación	151 psig
Caída de presión	1 – 4 psig
Remoción de aceite	≤ 0.01 ppm
Temperatura de	30 °C
operación	

Nota. Elaboración propia.

El prefiltro tendrá que trabajar con un flujo de aire (ver Anexo 13):

Tabla 24Descripción del componente.

Marca/ Modelo	Atlas Copco/DDpt (+) 550
Flujo de aire	1165 cfm
Presión máxima de trabajo	232 psig
Caída de presión	1.23 psig
Arrastre de aceite	0.003
máximo(mg/m3)	
Temperatura de operación	68 °C

Nota. Tomado de Ficha de especificaciones técnicas de filtros Atlas Copco.

Selección de micro-filtro extrafino de partículas y aceite

Este último componente, es el que se encargara de limpiar o purificar en la mayor parte al flujo de aire comprimido antes que llegue al tanque pulmón y consecutivamente al tamiz molecular.

 Tabla 25

 Exhortación para la selección del micro – filtro extrafino de partículas

Flujo de aire	751 cfm
Presión de operación	151 psig
Caída de presión	1 – 4 psig
Remoción de aceite	≤ 0.01 ppm
Temperatura de	30 °C
operación	

Nota. Elaboración propia.

Trabajará con un flujo de aire (ver Anexo 14):

Tabla 26

Características de ficha.

Marca/ Modelo	Atlas Copco/PDp (+) 550
Flujo de aire	1165 cfm
Presión máxima de trabajo	232 psig
Caída de presión	1.45 psig seca
Arrastre de aceite	0.003
máximo(mg/m3)	
Temperatura de operación	68 °C

Nota. Tomado de Ficha de especificaciones técnicas de filtros Atlas Copco.

Ficha técnica del micro – filtro extrafino de partículas. (ver Anexo 14).

Selección del recibidor de oxígeno al 95%

El recibidor de oxígeno, para lo cual tiene como trabajo amortiguar los flujos altos de demanda que se puede generar en el proceso. Por lo cual, este tanque, tendrá las mismas condiciones de trabajo que el tanque pulmón ya seleccionado.

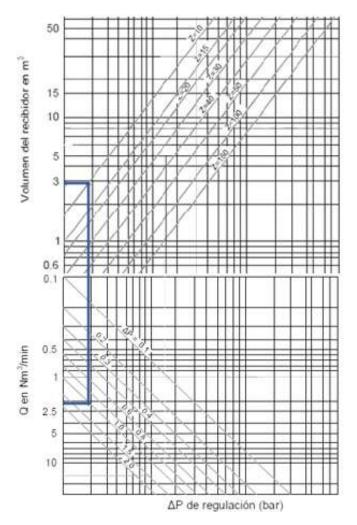

Para poder dimensionar el tanque de oxígeno, se utilizará la figura 16, con las siguientes características de la Tabla 27:

Tabla 27Características del recibidor de oxígeno.

Consumo del sistema	110 m3/h = 1.8m3/min
Regulación del compresor	Paradas y marcha (Z=10)
Caídas de presión	1 bar

Figura 16

Gráfica para selección del recibidor

Nota. Tomado de Frankel, 2010.

De la figura 16, se logra estimar el volumen del tanque de 3 m³ (3000 litros), con presiones de operatividad inferior de 4 bar (m) (58 psig) y superior de 5 bar (m) (72.5 psig) (ver Anexo 15).

El tanque debe contar con ciertos instrumentos de control, como; manómetro de presión, válvula de alivio y una válvula de bola de purga manual, además de una tapa de registro (manhole) para su correspondiente supervisión y mantenimiento.

Tabla 28Características del recibidor seleccionado

Marca	Kaeser
Capacidad nominal	3000 litros
Máxima presión de trabajo	11 bar a 16 bar
Altura	2.7 m
Diámetro	1.25 m

Nota. Tomado de Ficha técnicas de tanques de almacenamiento Kaeser.

Ficha técnica del recibidor (ver Anexo 15).

Selección del post-filtro de partículas

Lo esencial de este posfiltro, es quitar las partículas que pueden llegar del tanque de oxígeno medicinal ya procesado y poder lograr suprimir en su totalidad la presencia de agua.

 Tabla 29

 Requerimientos para la selección del post-filtro de partículas

Flujo de aire	65 cfm
Presión de operación	72.5 psig
Caída de presión	1 – 4 psig
Remoción de	1 µm
partículas	
Remoción de aceite	1-5 ppm
Temperatura de	30 °C
operación	

 Tabla 30

 Características post-filtro de partículas seleccionado

Marca/ Modelo	Kaeser/ KPF 100
Flujo de aire	100 cfm
Presión máxima de trabajo	250 psig
Caída de presión	1 psig seco
Remoción de partículas	1 µm
Remoción de aceite	1 ppm
Temperatura de operación	65.5
Drenaje	Drenaje automático interno tipo
	flotador

Nota. Tomado de Ficha de especificaciones técnicas de filtros Atlas Copco.

Ficha técnica del post-filtro de partículas (ver Anexo 16). Para este caso, ya no se hace la corrección de flujo.

Selección del filtro bacteriológico

Para este caso, es fundamental poder seleccionar el filtro bacteriológico, ya que este mismo se encarga de poder quitar las bacterias que puedan quedar después de todo el proceso, antes de poder entregar al punto común de oxígeno, para las tomas de las camas UCI.

 Tabla 31

 Requerimientos para la selección del filtro bacteriológico

Flujo de aire	65 cfm
Presión de operación	72.5 psig
Caída de presión	1 – 4 psig
Retención de bacterias	0.01 µm (referido a
	bacterias)
Temperatura de operación	30 °C

En la selección del filtro bacteriológico se observa el (ver Anexo 17). Para eludir el aumento de la caída de presión, se comenzará a sobredimensionar este componente.

 Tabla 32

 Características del filtro bacteriológico seleccionado

Marca/ Modelo	Kaeser/ F18 P-ST
Flujo de aire	3 m3/min
Presión máxima de trabajo	7 bar
Caída de presión	1.7 psi
Retención de bacterias	0.01 µm.
Grado de eficacia	100%
Temperatura de servicio	Tiene como máximo 200 °C
Medio de filtración	pre-filtración, fibra no tejida
Elemento de filtración	05/20 P-ST
Certificación	FDA

Nota. Tomado de Ficha de especificaciones técnicas de filtros Kaeser. Ficha técnica del filtro bacteriológico (ver Anexo 17).

Selección para el llenado de cilindros

Para este caso, se seleccionará el cilindro del tipo T.

 Tabla 33

 Especificación de cilindro a alta presión de llenado

Capacidad	10 m3				
Presión nominal @ 15 °C	196.133 bar				
Largo	168 cm				
Diámetro exterior	23 cm				
Peso	85 kg				
Contenido de agua	50 L				

Nota. Tomado de Praxair.

Ficha técnica del cilindro a alta presión de llenado. (ver Anexo 18).

Para el cálculo del número de cilindros necesarios para un suministro de dos horas al sistema, teniendo en cuenta que la demanda de oxígeno se sobre sobredimensiono con un 10% de más, para cual este sistema se utilizar la venta de oxígeno medicinal, tal demanda se estima 16 m³/h, se usará la siguiente expresión:

$$V = 1.8 \text{m}^3/\text{min } \times 120 \text{min}$$

$$V = 216 \text{ m}^3$$

Siendo la capacidad nominal de cada cilindro es de 10 m³, por lo tanto:

Selección del compresor de oxígeno a alta presión

Para el compresor de oxígeno (booster), se logró estimar por el número de cilindro que se quiere llenar, no obstante, teniendo en cuenta que, para este caso, para no generar pérdidas en el sistema, y así el booster no incremente su capacidad, se estima un llenado de 3 a 4 cilindros.

Tabla 34
Solicitud para la selección.

Clase	Sin aceite
P. de admisión	5.2 bar.
P. de descarga	170.1 bar
Flujo200	16 Nm3/h a (2465 psi)

Nota. Elaboración propia.

Tabla 35Características del compresor de oxígeno seleccionado

Categoría	Rix-2V3B-4. 1-P1C
Tipo	exento de aceite, 3 etapas
Presión de admisión	50 psi (mínimo)
Presión de descarga	3000 psi (máximo)
Entrega de oxigeno	6-16 Nm3/h
Gasto de energía	7.5 kw, 380 VAC, trifásico, 60 Hz
Capacidad de llenado	56 botella de 40 litros a 170 bar por
	día

Nota. Tomado de Rix Industries.

Ficha técnica del compresor de oxígeno. (ver Anexo 19).

Selección del sistema de mantenimiento de presión

Los elementos que conforman el método del proceso de aire comprimido, están proyectados para el trabajo de soportar los flujos volumétricos en el sistema a lo largo del funcionamiento en carga. Para ello debemos evitar que la red pierda presión, con el fin de que en el momento que los compresores inicien la carga,

no existirá resistencia de presión en la red. Esto podría afectar a los componentes de filtrados, ya que el flujo que será enviado con demasiada velocidad.

Sistema de mantenimiento de presión

Figura 17

Gráfica de la función del sistema de mantenimiento de presión

Nota. Tomado de Kaeser.

Es imprescindible para cualquier sistema de aire comprimido la mantener la presión. Su principal función de este sistema de trabajo es que los compresores funcionen puedan enviar un flujo de aire correcta, sin fluctuaciones. Para la selección de este sistema se realizará de acuerdo a los datos técnicos presentados (ver Anexo 20).

Tabla 36

Características.

Grupo	Kaeser/DHS 25G
Rango	7 - 232 psi
Unión	G1
Modo de servicio	Producción segura de aire
	comprimido
Abastecimiento	Transmisor de presión

Nota. Tomado de Kaeser Compresores.

Selección del sistema de manejo de condensado

Para el tratamiento del condensado, lo cual genera sustancias de suciedad y

restos de aceite. Hemos previsto colocar un componente que pueda purificar

esta sustancia y así poder proteger el medio ambiente, con lo cual poder drenar

agua limpia. Para tener como referencia en el marco legal los valores

establecidos, se tomará en cuenta que, para los hidrocarburos, por ejemplo, son

de 10 o 20 mg/l.

Para poder establecer el flujo de condensado que estará en el sistema y así

poder dimensionar el tipo de tratamiento de condensado, se especificará las

componentes siguientes:

I. Compresor.

II. Post-enfriador (incluido en el equipo compresor).

III. Pre-filtro de partícula y separador de aceite.

IV. Secador.

V. Microfiltro de partículas.

VI. Columna de carbón activado.

VII. Microfiltro extrafino de partículas.

Consideraciones:

Máx. Humedad relativa: 94%, máx. temperatura de admisión: 26°C.

Trabajo de presión será de 8 bares.

a) Compresor Baja Presión:

Cantidad de aire generado: 25 m3/min

Grados de salida de aire: 78°C

Carga: 90%

b) Post-enfriador:

Calor de salida de aire: 30°C

Eficacia de separación: 88%

c) Separador:

70

Utilidad de separación: 100%

d) Secador

Temperatura de salida del aire comprimido: 25°C

Punto de rocío: 3°C

Eficacia de separación: 100%

Cálculo de condesados, separados y arrastres

Primer punto: Aspiración:

Teniendo en cuenta que: $W_r = \frac{W}{W_s} x 100$

$$W_1$$
=0.94 x 21.37=20.10 $\frac{g}{kg}$ (que saturan el ambiente)

$$T_{r1}$$
:25 °C (para 20.10 $\frac{g}{kg}$ a 1 atm).

W₁:100%(humedad general)

Punto 1(1): Desfogue del compresor, recepción al post-enfriador:

$$W_{s1(1)}$$
: $\frac{31.31g}{kg}$ (a 78°C a 9 atm).

 $W_{1(1)}$:20.10 $\frac{g}{kg}$ (la misma humedad absoluta que 1).

$$W_{r1(1)}$$
: $\frac{20.10}{31.31}$ x100:64.19%.

$$T_{r1(1)}:68^{\circ}C\left(para\ 20.10\frac{g}{kg}\ a\ 9\ atm\right).$$

$$T_{r1}$$
:25 °C (para 20.10 $\frac{g}{kg}$ a 1 atm). $W_{1(1)}$:100%

Segundo: salida de condensado del post-enfriador:

$$W_{s2}$$
:2.91 $\frac{g}{kg}$ (a 30°C a 9 atm).

C₂:7.2 x10⁻⁴ x 25 x 90 x (20.10-2.91):27.84 l/h

$$L_2{:}\frac{27.84x86}{100} : 23.94 \frac{I}{h} de \ caudal \ separado.$$

$$L_{2}$$
: $\frac{17.19x86}{100}$:14.78 $\frac{g}{kg}$ de caudal separado.

$$I_2: \frac{14.78}{23.94} \times 100:61.73\%$$

Tercero: Salida del post-enfriador, entrada al separador (incluido en el secador refrigerativo).

$$W_{s3}: \frac{2.91g}{kg}$$
.

W_{r4}:100% (aire cargado).

$$A_3$$
: $\frac{(27.84-23.94)x86}{100}$:3.35 $\frac{I}{h}$ de arrastre líquido.

$$A_3^{'}$$
: $\frac{(17.19-14.78)x86}{100}$:2.07 $\frac{g}{kg}$ de arrastre líquido.

$$W_3$$
: $\frac{2.91}{20.10}$ x 100 :14.47 % de humedad

$$a_3$$
: $\frac{2.07}{20.10}$ x100:10.29 % de arrastres líquidos.

 T_{r3} :39.62°C(para la suma de W_3 + $A_3^{'}$ a 9 atm).

 T_{r3} :3.82 °C(para la suma de W_3 + $A_3^{'}$ a 1 atm).

Cuarto: Salida de condensados del separador.

 $\dot{L_4}$:2.07 g/kg (se asume, que el total es separado).

L₄=3.35 l/h de condensado separado.

$$I_4$$
: $\frac{2.07}{20.10}$ x 100 = 10.29 % separación

Punto 4(1): Salida del separador y entrada al secador:

 $W_{r4(1)}$:100 %(aire saturado).

A_{s4(1)}: 0 (sin ningún arrastre).

$$A'_{s4}:0.$$

$$W_{4(1)}$$
: $\frac{2.91}{20.10}$ x100 :14.47 % de humedad.

 $a_{4(1)} = 0\%$ (no existe arrastre).

Este valor coincide con la temperatura del aire comprimido a la salida del postenfriador.

Quinto: Salida del secador.

$$C_5:7.2 \times 10^{-4} \times 25 \times 90 \times (2.91-0.518):3.87 \text{ l/h}$$

$$L_5$$
: $\frac{3.87 \times 100}{100}$: 3.87 $\frac{I}{h}$ de caudal separado.

$$L_{5}^{'}$$
 : $\frac{2.39\,x100}{100}$:2.39 $\frac{g}{kg}$ de caudal separado.

$$I_5$$
: $\frac{2.39}{20.10}$ x100:11.89 % de condensados separados.

Sexto: Salida de aire comprimido del secador refrigerativo.

$$W_{s6}{:}2.17~g/kg$$
 (para $25^{\circ}\text{C}\ y\ 9\ atm).$

$$W_{r6}$$
: $\frac{0.518}{2.17}$ x100 :23.87%

a₆:0% (no existe arrastres).

$$W_6: \frac{0.518}{20.10} x100 : 2.57 \% de humedad.$$

T_{r06}: -22.15 °C (para 0.518 g/kg a 1 atm).

Tabla 37

Punto	W	W_{s}	W_r	T	T_r	T_{ro}	Α	A	W	а	L	Ľ	l
	(g/k	(g/k	(%)	(°	(°C	(°C	(1/	(g/k	(%)	(%)	(l/h	(g/k	(%)
	g)	g)		C)))	h)	g))	g)	
Aspiraci	20.	21.	94	26	25	25	-	-	100	-	-	-	-
ón	10	37											
Salida	20.	31.	64.	78	68	25	-	-	100	-	-	-	-
compre	10	31	19										
sor													
Salida	-	-	-	-	-	-	-	-	-	-	23.	14.	61.
conden											94	78	73
sado													
post-													
enfriado													
r													
Salida	2.9	2.9	100	30	39.	3.8	3.	2.0	14.	10.	-	-	-
del	1	1			62	2	35	7	47	29			
post-													
enfriado													
r													
Salida	-	-	-	-	-	-	-	-	-		3.3	2.0	10.
conden											5	7	29
sado													
separad													
or	0.0	0.0	400		00				4.4				
Salida	2.9	2.9	100	30	30	-	-	-	14.	-	-	-	-
separad	1	1				3.1			47				
or						8					0.0	0.0	45
Salida	-	-	-	-		-	-	-	-	-	3.8	2.3	15.
conden											7	9	81
sado													
secador	0.5	0.4	00	0.5					0.5				
Salida	0.5	2.1	23.	25	3	-	-	-	2.5	-	-	-	-
del	18	7	87			22.			7				
secador						15					24	10	0.7
Total	-	-	-	-	-	-	-	-	-	-	31.	19.	87.
											76	24	83

Resultados de condesados, separados y arrastres

Para esta selección de manejo de condensado se considerará un flujo de aire del compresor de 25 m³/min y una espacio de tratado de condensado para 31.760 l/h. (ver Anexo 21).

Tabla 38Particularidad del sistema de manejo de condensados.

Marca	Atlas copco/OSC 600
Capacidad	69 m3/min zona climática tipo 2
Medidas (LxAxAI)	750 x 546 x 1030 mm
Peso	26 kg

Nota. Tomado de Atlas Copco.

Con lo cual la planta de oxigeno medicinal en alta presión para el Hospital Regional Docente de Trujillo, se podrá apreciar la configuración completa en Anexo 22.

SISTEMA ELÉCTRICO

Compresor de aire en baja presión

Dimensionamiento de los conductores

Si se requiere encontrar el calibre del conductor en primer lugar lo que se debe hallar es la intensidad de corriente nominal del motor eléctrico.

$$I_{N} = \frac{P}{\sqrt{3} \cdot V_{1} \cdot FP \cdot \eta}$$

$$I_{N} = \frac{200 \text{ HP} \cdot 746}{\sqrt{3} \cdot 380 \text{ V} \cdot 0.88 \cdot 0.90}$$

$$I_N = 286.22 A$$

Datos previos importantes:

a. Conductores por fase (n): Se compararán uno y dos conductores.

b. Clase de aislamiento: THHW-LS para 90°C. (ver Anexo 23).

c. Distancia: 16 metros.

d. Factor de temperatura (Ft): 1.00 (ver Anexo 23).

e. Factor de agrupamiento (Fa): 0.8/0.7 (ver Anexo 24).

Hallando la intensidad de corriente para un conductor por fase, entonces:

$$I_{cond} = \frac{I_{N} \cdot 1.25}{F_{t} \cdot F_{a} \cdot n}$$

$$I_{cond} = \frac{286.22 \text{ A} \cdot 1.25}{1.00 \cdot 1}$$

$$I_{cond} = 357.78 A$$

Del Anexo 23 se sabe que el calibre apropiado para esta cantidad de corriente es de 600 AWG (304 mm²) con una cantidad de conducción de 475A.

Hallando la intensidad de corriente para dos conductores por fase, entonces:

$$I_{cond} = \frac{I_{N} \cdot 1.25}{F_{t} \cdot F_{a} \cdot n}$$

$$I_{cond} = \frac{286.22 \text{ A} \cdot 1.25}{1.00 \cdot 0.8 \cdot 2}$$

$$I_{cond} = 223.60 A$$

Analizando el Anexo 23 se tiene que el calibre apropiado para esta cantidad de intensidad corriente es de 250 AWG (127 mm²) con una cantidad de conducción de 290A.

Al tener como referencia el factor en la canalización, se escoge utilizar de dos conductores por fase.

En la dimensión del conductor de PE (puesta a tierra), según la recomendación para conductores de fase superiores a 50 mm², el conductor de seguridad tendrá que ser la mitad del calibre del conductor de fase, esto quiere decir, 63.5 mm² o AWG 2/0 (67.4 mm²).

Para la verificación del calibre por caída de tensión, se emplean las siguientes fórmulas y el Anexo 25.

$$R = R_{tabla} \cdot \frac{L}{1000}$$

$$R = 0.177 \Omega \cdot \frac{16 \text{ m}}{1000 \text{ m}} = 0.002832 \Omega$$

$$X_{L} = X_{L_{tabla}} \cdot \frac{L}{1000}$$

$$X_{L} = 0.171 \Omega \cdot \frac{16 \text{ m}}{1000 \text{ m}} = 0.002736 \Omega$$

$$Z_{cond} = \sqrt{R^{2} + X_{L}^{2}}$$

$$Z_{cond} = \sqrt{(0.002832 \ \Omega)^2 + (0.002736 \ \Omega)^2} = 0.003938 \ \Omega$$

$$e = I_N \cdot Z_{cond}$$

e= 143.11 A \cdot 0.003938 Ω =0.566 V

%e=
$$\frac{\sqrt{3} \cdot e}{V_I} \cdot 100$$

%e=
$$\frac{\sqrt{3} \cdot 0.566 \text{ V}}{380 \text{ V}} \cdot 100 = 0.26 \%$$

Entonces, la elección de dos conductores por fase con un calibre 250 AWG (127 mm²) es apropiada, porque la caída de tensión es inferior al 3%.

Compresor de O2 en alta presión

Dimensionamiento de conductores

$$I_{N} = \frac{P}{\sqrt{3} \cdot V_{L} \cdot FP \cdot \eta}$$

$$I_{N} = \frac{7500 \text{ w}}{\sqrt{3} \cdot 380 \text{ V} \cdot 0.88 \cdot 0.88}$$

$$I_N = 14.71 A$$

Datos previos importantes:

- a. Conductores por cada fase (n): un conductor.
- b. Clase de aislamiento: THW para 75°C. (ver Anexo 23).
- c. Distancia: 5.5 metros.
- d. Factor de temperatura (Ft): 1.00 (ver Anexo 23).
- e. Factor de agrupamiento (Fa): 1.00 (ver Anexo 24).

Hallando la intensidad de corriente para un conductor por fase, entonces:

$$I_{cond} = \frac{I_{N} \cdot 1.25}{F_{t} \cdot F_{a} \cdot n}$$

$$I_{cond} = \frac{14.71 \text{ A} \cdot 1.25}{1.00 \cdot 1 \cdot 1}$$

$$I_{cond} = 18.39 A$$

Analizando el Anexo 23 se sabe que el calibre apropiado para esta cantidad de intensidad de corriente es de 12 AWG (3.31 mm²) con una cantidad de conducción de 25A.

En la dimensión del conductor de PE (puesta a tierra), según la recomendación para conductores de fase inferiores a 50 mm², el conductor de seguridad tendrá que ser el mismo que el calibre del conductor de fase, esto quiere decir, 12 AWG (3.31 mm²).

Para la verificación del calibre por caída de tensión, se emplean las siguientes fórmulas y el Anexo 25.

$$R = R_{tabla} \cdot \frac{L}{1000}$$

$$R = 6.6 \ \Omega \cdot \frac{5.5 \ m}{1000 \ m} = 0.0363 \ \Omega$$

$$X_{L} = X_{L_{tabla}} \cdot \frac{L}{1000}$$

$$X_{L} = 0.223 \ \Omega \cdot \frac{5.5 \ m}{1000 \ m} = 0.001227 \ \Omega$$

$$Z_{cond} = \sqrt{R^{2} + X_{L}^{2}}$$

$$Z_{cond} = \sqrt{(0.0363 \ \Omega)^{2} + (0.001227 \ \Omega)^{2}} = 0.03632 \ \Omega$$

$$e = I_{N} \cdot Z_{cond}$$

$$e = 14.71 \ A \cdot 0.03632 \ \Omega = 0.53 \ V$$

$$\% e = \frac{\sqrt{3} \cdot e}{V_{L}} \cdot 100$$

%e=
$$\frac{\sqrt{3} \cdot 0.53 \text{ V}}{380 \text{ V}} \cdot 100 = 0.24 \%$$

Entonces, la elección de conductores con un calibre por fase es 12 AWG (3.31 mm²) es apropiada, porque la caída de tensión es inferior al 3%.

Secador refrigerativo

Dimensionamiento de conductores

$$I_{N} = \frac{P}{\sqrt{3} \cdot V_{I} \cdot FP \cdot \eta}$$

$$I_{N} = \frac{3500 \text{ w}}{\sqrt{3} \cdot 380 \text{ V} \cdot 0.88 \cdot 0.88}$$

$$I_N = 6.87 A$$

Datos previos importantes:

a. Conductores por cada fase (n): un conductor.

b. Clase de aislamiento: THW para 75°C. (ver Anexo 23).

c. Distancia: 15 metros.

d. Factor de temperatura (Ft): 1.00 (ver Anexo 23).

e. Factor de agrupamiento (Fa): 1 (ver Anexo 24).

Hallando la intensidad de corriente para un conductor por fase, entonces:

$$I_{cond} = \frac{I_{N} \cdot 1.25}{F_{t} \cdot F_{a} \cdot n}$$

$$I_{cond} = \frac{6.87 \text{ A} \cdot 1.25}{1.00 \cdot 1 \cdot 1}$$

$$I_{cond} = 8.59 A$$

Analizando el Anexo 23 se sabe que el calibre apropiado para esta cantidad de intensidad de corriente es de 14 AWG (2.08 mm2) con una cantidad de conducción de 20A.

En la dimensión del conductor de PE (puesta a tierra), el conductor de seguridad tendrá que ser 14 AWG (2.08 mm²).

Para la verificación del calibre por caída de tensión, se emplean las siguientes fórmulas y el Anexo 25.

$$R = R_{tabla} \cdot \frac{L}{1000}$$

$$R = 10.2 \Omega \cdot \frac{15 \text{ m}}{1000 \text{ m}} = 0.153 \Omega$$

$$X_{L} = X_{L_{tabla}} \cdot \frac{L}{1000}$$

$$X_{L} = 0.240 \Omega \cdot \frac{15 \text{ m}}{1000 \text{ m}} = 0.0036 \Omega$$

$$Z_{cond} = \sqrt{R^{2} + X_{L}^{2}}$$

$$Z_{cond} = \sqrt{(0.153 \Omega)^{2} + (0.0036 \Omega)^{2}} = 0.1530 \Omega$$

$$e = I_{N} \cdot Z_{cond}$$

$$e = 6.87 \text{ A} \cdot 0.1530 \Omega = 1.05 \text{ V}$$

$$\% e = \frac{\sqrt{3} \cdot e}{V_{L}} \cdot 100$$

$$\% e = \frac{\sqrt{3} \cdot 1.05 \text{ V}}{380 \text{ V}} \cdot 100 = 0.48 \%$$

Entonces, la elección de conductores con un calibre por fase es 14 AWG (2.08 mm2) es apropiada, porque la caída de tensión es menor al 3%.

Tabla 39Resumen de cargas

Carga	Cantidad	Cantidad Potencia		Máxima	
		Instalada	Demanda	Demanda	
Compresor de aire	1	149.14 kW	1.00	149.14 kW	
Secador	1	3.50 kW	1.00	3.50 kW	
Generador de	1	0.10 kW	1.00	0.10 kW	
oxígeno					
Compresor de	1	7.50 kW	1	7.50 kW	
oxígeno					
Total		160.24 kW		160.24 kW	

Nota. Elaboración Propia.

Cálculo del costo de la energía eléctrica mensual:

Máxima demanda de potencia: 160.24 kW

Horas totales de operación al mes: 720 h

Costo de la energía eléctrica: 0.18 $\frac{\text{soles}}{\text{kW-h}}$ (MINEM, 2019).

$$C_{\text{EEM}} = P_{\text{M\'AX}} \cdot h \cdot C_{\text{E}}$$

$$C_{\text{EEM}} = 160.24 \text{ kW} \cdot 720 h \cdot 0.18 \frac{\text{soles}}{\text{kW-h}}$$

$$C_{\text{EEM}} = 20 \text{ 767.104 soles}$$

Por lo tanto, el costo de la energía eléctrica anual, será:

$$C_{EEA}$$
 = 20 767.104 soles x 12 C_{EEA} = 249 205. 248 soles

 Tabla 40

 Resumen del cálculo eléctrico

Equipo	Conductor	Intensidad	Intensidad	Interruptor
		nominal	del	termo
			conductor	magnético
Compresor de	6 x 250 AWG +	286.22 A	357.78 A	3 x 500 A
aire	1 x 2/0 AWG			
	(THHW-LS			
	90°C)			
Secador	3 x 14 AWG + 1	6.87 A	8.59 A	3 x 20 A
	x 14 AWG			
	(THW 75°C)			
Compresor de	3 x 12 AWG + 1	14.71 A	18.39 A	3 x 25 A
oxígeno	x 12 AWG			
	(THW 75°C)			

Nota. Elaboración Propia.

(4) Preparar un programa de mantenimiento preventivo para el sistema de oxígeno para que se sostenga el proceso.

Prestación de mantenimiento

La empresa proveedora del equipo realizará el mantenimiento preventivo y correctivo por un plazo de 3 años. Al mismo tiempo, estará obligada a brindar capacitaciones al personal hospitalario. Una vez finalizado el acuerdo, el hospital asumirá esta deber sin impedimento.

Para este caso, el costo anual, es de un promedio del 2% al 3% de los equipos más el costo de montaje.

Repuestos y suministros

Si bien el mantenimiento será realizado por un tercero, como medida de precaución, deberá contar con repuestos y suministros básicos para el equipo instalado. Se recomienda proporcionar una lista que deben estar en stock, para cualquier imprevisto.

Tabla 41Costos de repuestos y suministros

Repuestos y	Horas de	Cantidad	Precio	Precio
Suministros	trabajo	por año	Unitario	Total
			(\$)	(\$)
Post- filtro	1 500 H	6	2 211.00	13 266.00
bacteriológico				
Filtro de aire	1 500 H	6	90.00	540.00
del compresor				
Aceite	2 000 H	4	105.00	420.00
lubricante(gal.)				
Filtro ciclónico	1 500 H	6	385.00	2 310
separador para				
aire				
comprimido				
Juego de	7 000 H	1	2.8	2.8
anillos para				
compresor de				
aire				
Válvulas de	4 000 H	2	2.3	4.6
cierre para				
compresor de				
aire				
Kit de	4 000 H	2	595.00	1 190.00
reparación de				
válvulas de				

admisión de				
aire del				
generador.				
Kit de	4 000 H	2	595.00	1 190.00
reparación de				
válvulas de				
descarga del				
generador				
Presostato de	3 500 H	2	735.00	1 470
aire				
Presostato de	3 500H	2	735.00	1 470
oxigeno				
Silenciador	6 000 H	1	420.00	420.00
para descarga				
de generador				
de oxigeno				
Analizador de	6 000 H	1	1 200.00	1 200.00
oxigeno				
	1		TOTAL	23 485.55

(5) Realizar un análisis financiero en cuanto tiempo se recuperaría la inversión de la instalación de la nueva planta de oxígeno.

Tabla 42Facturación para los componentes de la planta PSA

	PLAN	ΓA PSA		
Descripción	Fabricante	Modelo	Cantidad	Precio
				Unitario (\$)
Compresor de aire	Kaeser	DSD 200	1	88,061.0
Secador refrigerativo	Atlas Copco	FX 18	1	23,620.0
Post-filtro (microfiltro)	Atlas Copco	UD+	1	3,485.0
		550+		
Filtro de carbón	Atlas Copco	QDT 425	1	9,996.0
activado				
Post-filtro (microfiltro	Atlas Copco	DDpt +	1	3,685.0
extrafino)		550		
Recibidor de aire	Kaeser	302446	1	14,411.0
seco (10 000 L)				
Generador de	Oxymat	0	1	211,800.0
oxígeno		1250x2		
Recibidor de oxígeno	Kaeser	T11-	1	8,188.0
concentrado		3000		
Post-filtro de	Atlas Copco	PDp (+)	1	574.0
partículas		550		
Post-filtro	Kaeser	F 27 P-	1	2,711.0
bacteriológico		ST		
Sistema de	Kaeser	DHS	1	2,217.0
mantenimiento de		25G		
presión				
Sistema de manejo	Kaeser	CF-75	1	2,685.0
de condensados				
Compresor de	RIX	2V-3B	1	105,758.0
oxígeno de alta		4.1		
presión				
Post-filtro de	Kaeser	KPF 100	1	574.0
partículas				
Total				477,765.0

VALOR ACTUAL NETO

Para el cálculo del VAN se tendrá en cuenta una Tasa Social de Descuento. La Tasa Social de Descuento (TSD) representa el costo en que incurre la sociedad cuando el sector público extrae recursos de la economía para financiar sus proyectos. Se utiliza para transformar a valor actual, los flujos futuros de beneficios y costos de un proyecto en particular. La Tasa Social de Descuento Nominal se define como la TSD ajustada por la inflación. Si se considera que la TDS es equivalente a 8 % y que el Reporte de Inflación (RI) para el segundo semestre de 2021 es de 2.2 %, se tiene una Tasa Social de Descuento Nominal de 10.2%.

Tabla 43Proyección estimada del gasto presupuestal de oxígeno medicinal criogénico 2022 - 2028

Año	Presupuesto de oxígeno medicinal	Venta de oxígeno medicinal	INGRESO TOTAL (S/.)
	(S/.)	64 800 m3 (S/.)	
2022	520 000.00	972 000.00	1 492 000.00
2023	520 000.00	972 000.00	1 492 000.00
2024	520 000.00	972 000.00	1 492 000.00
2025	520 000.00	972 000.00	1 492 000.00
2026	520 000.00	972 000.00	1 492 000.00
2027	520 000.00	972 000.00	1 492 000.00
2028	520 000.00	972 000.00	1 492 000.00

Tabla 44Proyección de los gastos estimados 2021 - 2028

Año	Costo de	Repuesto de	Consumo	Total de
	Planta PSA	mantenimiento(S/.)	de	gastos (S/.)
	(S/.)		energía(S/.)	
2021	1 826	89 800.52	249 205.248	2 165
2021	973.36			979.13
2022		89 800.52	250 205.248	340
2022				005.768
2023		89 800.52	251 150.45	340 950.97
2024		92 705.10	252 240.30	344 945.4
2025		95 100.00	253 404.10	348 504.1
2026		100 500.00	254 200.10	354 700.1
2027		140 500.00	265 800.50	406 300.5
2028		90 400 .00	251 400.50	341 800.5

Tabla 45Flujo neto efectivo y factor simple de actualización

	VALOR DE ACTUALIZACIÓN						
Año	Total de ingresos	Total de gastos	Flujo neto	Factor simple de			
	(S/.)	(S/.)	efectivo(S/.)	actualización(S/.)			
2021		-2 165 979.13	-2 165 979.13	-2 165 979.13			
2022	1 492 000.00	340 005.768	1,151,994.23	1 228 586.20			
2023	1 492 000.00	340 950.97	1,151,049.03	1 114 869.51			
2024	1 492 000.00	344 945.4	1,147,054.60	1 011 678.32			
2025	1 492 000.00	348 504.1	1,143,495.90	918 038.41			
2026	1 492 000.00	354 700.1	1,137,299.90	833 065.70			
2027	1 492 000.00	406 300.5	1,085,699.50	755 957.99			
2028	1 492 000.00	341 800.5	1,150,199.50	685 987.29			
2029	1 492 000.00	344 856.4	1,147,143.60	622 493.00			

TASA INTERNA DE RENDIMIENTO

Mediante el flujo de efectivo, se calculó la TIR, obteniéndose un valor de 48%.

PERÍODO DE RECUPERACIÓN DE LA INVERSIÓN EN SOLES

Tabla 46Período de retorno de la inversión

PERÍODO	FACTOR SIMPLE DE ACTUALIZACIÓN	AÑO	PRI (AÑO)	MES	PRI (MES)	DÍAS	PRI (DÍAS)
2021	-2 165 979.13		-2 165 979.13		-177 476.58		-8 863.58
2022	1 228 586.20	1	-937 392.93	1	- 93 170.08	1	-6 053.37
2023	1 114 869.51	2	-177 476.58	2	- 8 863.58	2	- 3 243.16
2024	1 011 678.32	3	834 202.32	3	75 442.92	3	- 432.95
2021	918 038.41	4	1 752 240.73	4	159 749.42	4	2 377.26
-	-	-	-	-	-	5	5 187.47
-	-	-	-	-	-	6	7 997.68
-	-	-	-	-	-	7	10 807.89
PERIODO I	DE R. INVERSIÓN		2 AÑOS		MESES	;	3 DÍAS

V. DISCUSIÓN

En el Hospital RDT, en la evaluación del sistema, se logró encontrar que no cuenta con una planta de oxígeno medicinal funcionando, ni con la cantidad suficiente de camas UCI (17). Sin embargo, el hospital obtiene oxigeno medicinal comprando a la empresa PRODUCTS PERÚ S.A. con una pureza del 94% que está dentro de lo establecido, según la norma de la farmacopea europea que indica que el grado de pureza permitido del oxígeno medicinal para consumo humano está entre 93% -99%. Además, el hospital no cumple con las camas necesarias como hace mención la base teórica de Lluís Cabré (1995), que son como mínimo de 6 camas UCI por 100 000 habitantes. El investigador More Tello, José (2018), en su investigación titulada, Diseño de distribución para la red de oxígeno liquido medicinal en el Hospital II Jorge Reátegui de Piura, hizo cumplir con la teoría establecida, ya que pudo dimensionar una capacidad de camas UCI, hasta 126, y con una pureza de oxígeno medicinal al 95%. En nuestra investigación, se encontró que el hospital si cumplía con el grado de pureza del oxígeno ya que lo compraba a un 94%, pero en donde no estaba en el rango permitido es en la capacidad de camas UCI ya que solo cuenta con 17.

Los parámetros críticos son los primeros que se determinaron para poder dimensionar la planta de oxígeno medicinal, como son los parámetros de trabajo de dicha planta, para ello (Frankel,2010) hace mención en su libro *Facility piping systems handbook* sobre los parámetros críticos que se tiene como referencia para dicho dimensionamiento siendo estos lo siguientes, altitud, presión atmosférica, temperatura (min. /máx.), humedad relativa (min. /máx.) y punto de rocío (min. /máx.). Los investigadores Bilbao Renzo, Cárdenas Ronny (2016), en su trabajo de investigación sobre equipos PSA para la producción de oxígeno médico obtuvieron los siguientes resultados; altitud 2 350 msnm, presión atmosférica. 75.6 kPa, temperatura de 6 - 24°C, humedad relativa 12 - 80% y el punto de rocío de 10 - 17°C; lo que les permitió encontrar una demanda de oxígeno de 90 m³/h. En nuestra investigación se logró encontrar los siguientes resultados; altitud 34 msnm, presión

atmosférica 101.4 kPa, temperaturas 15 - 26°C, humedad relativa 77 – 94% y punto de rocío 13 – 24°C, calculando una demanda de oxígeno de 100 m³/h.

Tanto nosotros, como los investigadores Bilbao Renzo, Cárdenas Ronny, hemos seguido las recomendaciones de la teoría correspondiente, es por ello que sus resultados y los nuestros son muy similares. Obteniéndose buenos resultados al comparar los datos de los investigadores y los nuestros; estos valores son 2 350 msnm y 34 msnm, presión atmosférica. 75.6 kPa y 101.4 kPa, temperatura de 6 - 24°C y 15 - 26°C, humedad relativa 12 - 80% y 77 – 94%, punto de rocío de 10 - 17°C y 13 – 24°C.

Para hacer el dimensionamiento y selección de los equipos de una planta de oxígeno, en necesario hacer un análisis comparativo de qué tipo de planta se desea obtener, ya que dependerá del tipo de uso que se quiera dar. Por esto ECOGASES (2009) en su libro Tecnología PSA, menciona que la planta de oxígeno medicinal que entrega mejores resultados en calidad de oxigeno es la que cuenta con la tecnología PSA (Adsorción por oscilación de presión). Los investigadores (Tello, Porras, Inga, 2015) en su investigación sobre estudio de prefactibilidad para la instalación de una planta de oxígeno para uso médico e industrial, ellos utilizaron el proceso del PSA. En nuestra investigación también hemos elegido trabajar con una planta de oxigeno medicinal con sistema PSA, basándonos en la teoría y los investigadores, ya que se podrá satisfacer con la demanda de oxígeno y generar un grado de pureza adecuado.

Es muy importante tener un programa de mantenimiento, que pueda lograr sostener al sistema, para ello, Martin Rolón Sandra Milena (2005) en su teoría de su libro programa de mantenimiento preventivo, menciona la importancia de tenerlo ya que así se evitan paradas imprevistas, daños en los equipos, perdidas de dinero, lo cual genera sostenibilidad del sistema en el tiempo. El investigador De León, René (2007), en su trabajo de investigación, sobre un sistema centralizado de gases médicos para el Hospital de Santa Rosa de Guatemala, logra establecer el plan de mantenimiento, teniendo como ventaja que los proveedores de sus equipos a

instalar realizarán el plan de mantenimiento preventivo y correctivo durante 2 años de uso. En nuestra investigación, el mantenimiento tanto preventivo, como correctivo lo ejecutará la empresa suministradora de los equipos, por un periodo de 3 años, con el convenio de capacitar al personal técnico durante ese tiempo.

Tanto nosotros, como el investigador De León, René, hemos seguido con la teoría que menciona que es importante que se cuente con un programa de mantenimiento, es por esto que sus resultados y los nuestros son parecidos. Obteniéndose que el investigador estableció un plan de mantenimiento preventivo y correctivo durante 2 años mientras que el de nosotros será por 3 años.

Teniendo en cuenta el análisis económico para saber en qué tiempo se va recuperar la inversión de la instalación de la planta de oxígeno, es necesario conocer la base teórica, por esto (Sowell, 2013) hace mención que el TIR siempre debe ser una cantidad positiva, en caso de ser negativa significa que se van a generar pérdidas. La investigadora (Vargas Pineda, L., 2018) en su trabajo de investigación sobre las necesidades de oxígeno médico (O.M) en instituciones de salud, obtuvo un TIR del 51% y así pudo estimar que la inversión del proyecto se puede lograr a recuperar en 4 años y 7 meses. En nuestra investigación haciendo el análisis económico se logró obtener un TIR del 48% y con un retorno de la inversión de 2 años, 2 meses y 3 días.

Tanto nosotros, como la investigadora Vargas Pineda, L., hemos coincidido en la obtención de un TIR positivo ya que ella obtuvo un 51% con un PRI de 4 años y 7 meses y nosotros un TIR de 48% con un PRI de 2 años, 2 meses y 3 días. Lo cual nos indica que estamos cumpliendo con la teoría.

VI. CONCLUSIONES

Evaluando el sistema actual de distribución de oxigeno medicinal del HRDT, se obtuvo que el hospital solo cuenta con 17 camas UCI y compra el oxígeno con 94% de pureza. Lo que nos indica que no cumple con la capacidad mínima de camas por eso en nuestra investigación se propone aumentar hasta 40 y además generar el propio oxígeno a un 95%, de esta manera ya no se gastará comprando este recurso y se mejorará el grado de pureza.

Analizando la información necesaria del Hospital se logró identificar, que los parámetros críticos del sistema de distribución de oxígeno son; altitud 34 msnm, presión atmosférica 101.4 kPa, temperaturas 15 - 26°C, humedad relativa 77 – 94% y punto de rocío 13 – 24°C. Los que permiten determinar la capacidad (100 m³/h), presión de generación (109.4 kPa), distribución y consumo (961.4 kPa).

Haciendo un análisis comparativo de los tipos de plantas de oxigeno existentes en el mercado, se logró determinar que la tecnología PSA es la más adecuada actualmente. Esta elección permite hacer un correcto dimensionamiento y selección de los equipos que intervienen en la planta de oxígeno medicinal, además de obtener grandes resultados de generación de este recurso.

Sabiendo que es importante que la planta de oxigeno medicinal se sostenga en el tiempo, se logró preparar un programa de mantenimiento preventivo por un periodo de 3 años, que en este tiempo será ejecutado por la empresa suministradora de los equipos, pero con el convenio que se va capacitar al personal técnico. Lo que permitirá que la planta sea sostenible y no genere pérdidas o paradas imprevistas.

Realizando el análisis financiero se logró obtener un TIR de 48% con un PRI de 2 años, 2 meses y 3 días. Lo cual significa que la inversión no va generar pérdidas y que se podrá recuperar en ese tiempo, pero partiendo si la inversión inicial es presupuestada por el estado peruano.

VII. RECOMENDACIONES

Las siguientes recomendaciones son dirigidas hacia el Director General del HRDT con el propósito de generar mejoras para esta institución.

Se recomienda que el hospital facilite y obtenga un área donde se pueda seguir aumentando la capacidad de camas UCI a futuro, ya que con la generación de su propio oxigeno si podrá cubrir con la demanda de este recurso.

La zona donde será instalada la planta de oxigeno medicinal debe ser en un lugar que esté protegido contra agentes externos contaminantes, porque puede provocar que no trabaje a condiciones óptimas o que los equipos empiecen a presentar fallas, lo que generaría que la obtención del oxígeno no sea el esperado.

Después de acabado el tiempo de capacitación al personal técnico por la empresa suministradora, se recomienda mantener un plan de mantenimiento, con la finalidad que la planta se mantenga operativa el mayor tiempo posible y no ocurran los mismos problemas que hubo con la planta anterior que tenía el hospital.

Se recomienda que con el dinero obtenido de la venta de oxigeno medicinal sirva para el hospital en mejorar la logística (equipos, sistema, etc.) de dicha institución.

REFERENCIAS

Arévalo Daza, Jorge, (2011). Análisis de indicadores de la producción criogénica de oxígeno en operación continua y discontinua. (Tesis Doctoral). Recuperado de http://dspace.unitru.edu.pe/handle/UNITRU/8196.

Bilbao Arce, Rolando y Cardenas CCasa, Ronny, (2016). Proyecto de una Planta PSA de generación de oxigeno medicinal para el Hospital Regional Delgado de Arequipa. (Tesis de pregrado). Recuperado de

https://1library.co/document/q5mo6x3y-proyecto-generacion-medicinal-instalaciones-hospital-regional-espinoza-arequipa.html

Bruce Dawson, M. K. (2010). Optimización del Rendimiento de las Plantas de Oxígeno. Recuperado de https://docplayer.es/23719325-Optimizacion-del-rendimiento-de-las-plantas-de-oxigeno.html

Cabré L. (1995). Estat actual deles serveis de medicina intensiva a Catalunya. (Tesis doctoral, Universitat Autònoma de Barcelona). Recuperado de https://www.mscbs.gob.es/organizacion/sns/planCalidadSNS/docs/UCI.pdf

Cerrada Martínez, Pablo, (2017). Diseño y análisis de una planta de separación de aire. (tesis de pregrado). Recuperado de http://oa.upm.es/48874/1/TFG_PABLO_CERRADA_MARTINEZ.

Contraloría general de la republica de Perú, 2020.N° 006-2020-OCI/0640-SVC. Infraestructura, equipamiento y distribución de oxigeno medicinal para los pacientes COVID – 19.

DICTAMEN RECAÍDO EN LOS PROYECTOS DE LEY 5519/2020 -CR, 5567/2020-CR, 5591/2020-CR, 5613/2020-CR, 5612/2020-CR, 5669/2020-CR, LEY QUE REGULA, AUTORIZA, ASEGURA Y GARANTIZA EL USO DE OXIGENO

MEDICINAL EN LOS ESTABLECIMIENTOS DE SALUD PÚBLICO Y PRIVADOS A NIVEL NACIONAL.

DH States and Facilities Directorate. (2006). *Health technical Memorandum 02-01: Medical Gas Pipeline Systems - Part A: Design, Installation, Validation and Verification.* Recuperado de http://www.bcga.co.uk/assets/HTM_02-01_Part_A.pdf

ECOGASES. (2009). Tecnología PSA. Recuperado de http://www.ecogases.com/Espanol/tecnologia PSA.htm

Frankel, M. (2010). *Facility piping systems handbook*. Recuperado de http://ndl.ethernet.edu.et/handle/123456789/23148

Galicia, A., Pérez, R., Castellano, M, (2008). Química. Recuperado de https://www.worldcat.org/title/quimica-1-agua-y-oxigeno/oclc/651214039

Gonzales Guzmán, Jorge, (2016). Propuesta de mantenimiento preventivo y planificado para la línea de producción en la empresa LATERCER S.A.C. (Tesis de pregrado). Recuperado de http://tesis.usat.edu.pe/xmlui/handle/20.500.12423/830

Kruger, T. J. (2003). A Generic Framework For Continous Energy Management At Cryogenic Air Separation Plants. (Tesis de maestría, University of Pretoria). Recuperado de https://repository.up.ac.za/bitstream/handle/2263/25037/Complete.pdf?sequence= 10

León, Hugo René. (2007). Sistema centralizado de gases médicos en el hospital nacional de Cuilapa Santa Rosa. (Tesis de Maestría). Recuperado de https://bit.ly/2LpKzOM

LLauce Albujar, Angel, (2018). Diseño de sistema Scada para mejorar el control de oxigeno medicinal de un hospital categoría III-1 – Chiclayo, 2018. (tesis de

pregrado). Recuperado de http://repositorio.ucv.edu.pe/handle/20.500.12692/25913.

Martin, Rolon Sandra Milena (2005). En su libro, programa de mantenimiento preventivo.

Messer Group. (2017). Fraccionamiento de aire para la producción de gases. Recuperado de: https://www.messer.es/gases-aire

Michael A. Boles, Y. A. (2009). Termodinámica. Recuperado de http://joinville.ifsc.edu.br/~evandro.dario/Termodin%C3%A2mica/Material%20Did%C3%A1tico/Livro%20-%20Cengel/Termodinamica%20-%20Cengel%207th%20-%20espanhol.pdf

Ministerio de Salud del Perú, (2013). Indicadores de Gestión y evolución hospitalaria, para hospitales, institutos y Diresa.

Ministerio de Energía y Minas del Perú, (2019). Elaboración de Proyectos de Guías de Orientación del Uso Eficiente de la Energía y de Diagnóstico Energético en Hospitales.

Recuperado de http://www.minem.gob.pe/minem/archivos/Guia13%20Hospitales.pdf

More Tello, José Arturo, (2018). Diseño de la Red de Oxígeno Líquido Medicinal para los Servicios en el Hospital II Jorge Reátegui Delgado EsSalud Piura 2018. (Tesis de pregrado). Recuperado de https://hdl.handle.net/20.500.12692/36480.

Navarro Aguilar, Heber, (2018). Aplicación de paneles solares en el diseño del pabellón de consultorios externos en Hospital tipo IV – Piura. (Tesis de pregrado). Recuperado de http://repositorio.usanpedro.edu.pe/handle/USANPEDRO/14175?show=full.

Nelson, P. R. (1993). Oxygen From Air By Pressure Swing Adsorption. (Tesis de pregrado). Recuperado de http://ir.cput.ac.za/bitstream/handle/20.500.11838/1281/Oxygen%20from%20air%2 0by%20pressure%20swing%20adsorption.pdf?sequence=1&isAllowed=y

Paredes, R. (2016). Termodinámica para la ingeniería industrial. Trujillo.

Parr, A. (2006). Hydraulics and Neumatics - A Technician and Engineers Guide. Recuperado de http://staff.tiiame.uz/storage/users/52/books/qqIV2IV9BnlohhfzY3Ufavql87kDKPy2 TBD89rsw.pdf

Perry, R. H. (1997). Perry's Chemical Engineer's Handbook. Recuperado de https://chembugs.files.wordpress.com/2015/12/perrys-chemical-engineering-handbook1.pdf

RESOLUCIÓN DIRECTORAL N° 005-2020-EF/63.01- IOARR – ESTADO DE EMERGENCIA NACIONAL, 2020

Reynolds, T. L. (2001). Gas Separation Technology: Recuperado de https://ntrs.nasa.gov/citations/20010092198

Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. Recuperado de http://aevnmont.free.fr/SACH-BOOKS/Adsorption/Ruthven-Adsorption.pdf

Santos, J. C. (2005). Study of New Adsorbents and Operation Cycles for Medical PSA Units. (Tesis de pregrado). Recuperado de https://repositorio-aberto.up.pt/bitstream/10216/12888/2/Texto%20integral.pdf

Sowel Thomas, (2013). Economía básica. Recuperado de https://www.amazon.es/Econom%C3%ADa-b%C3%A1sica-econom%C3%ADa-escrito-2013-01-01/dp/B00HNEA2WC.

Stephan Kuhn, (2011). Manual de aire comprimido, 7a edición. Recuperado de https://issuu.com/valeria.lirach/docs/manual_del_aire_comprimido.

Tello, J., Porras, M. y Inga, P. (2015). Estudio de Pre-Factibilidad para la instalación de una planta para obtener oxígeno líquido, para uso medicinal e industrial en la región Loreto. (tesis de pregrado). Recuperado de https://1library.co/document/qo5x055y-estudio-factibilidad-instalacion-oxigeno-liquido-medicinal-industrial-region.html.

The U. S. Pharmacopeial Convention. (2007). Pharmacopoeia of the United States of America.

Recuperado de

https://www.who.int/medicines/areas/quality_safety/quality_assurance/resources/U S_Pharmacopoeia.pdf?ua=1

Unidad de cuidados intensivos, estándares y recomendaciones. Ministerio de Sanidad y Política Social,2010.

Vargas Pineda, Lorena, (2018). Estudio de las necesidades de oxigeno medicinal en las instituciones de salud de la provincia de Loja. Propuesta de un plan estratégico para potenciar la participación de OXIWEST CIA. LTDA.(Tesis de Magister). Recuperado de http://repositorio.ucsg.edu.ec/handle/3317/10789.

Weg. (2008). Recuperado de http://ecatalog.weg.net/

ANEXO 1

Matriz de operacionalización de variables

Variables	Definición	Definición	Indicadores	Escala de
	Conceptual	Operacional		medición
Independientes				
Aire atmosférico	El aire de la atmósfera está compuesto de una combinación de gases, por ejemplo, vapor de agua y una diversidad de contaminantes. (Santesmases, 2012).	Se define como la cantidad volumétrica que fluye a través de determinada sección en un cierto intervalo de tiempo. Las unidades más comunes son: m3/s, m3/h, Nm³/h, I/h, I/min, GPM, entre otras.	[m³/h]	De razón
Energía eléctrica	Se llama energía eléctrica a la forma de energía que surge de la presencia de una diferencia de voltaje entre dos puntos, lo que admite una corriente eléctrica entre ambos y lograr trabajo. (Agustín Rela, 2010).	Para medir la energía eléctrica, la medida más útil es el kilovatio por hora (kw/h). Para obtener los valores se calculará mediante la energía demandada en un período de facturación.	[kw-h/h]	De razón
Dependientes				

Beneficio	El beneficio económico, son las	Se obtiene por la diferencia entre el	[soles/h]	De razón
económico	ganancias que se consiguen al	valor que tienen los bienes		
	instante de desarrollar una	resultantes del proceso productivo		
	actividad o procedimiento	(productos) y los que se emplearon		
	económico. (Baldemar Quiroz,	en el mismo (insumos), En este caso		
	2016).	se medirá en soles/h		
Flujo de oxígeno	Es la capacidad de flujo de oxígeno	Es el resultado del flujo en volumen	[m ³ /h]	De razón
medicinal para	suficiente para proporcionar el	por cada paciente en un		
camas UCI	volumen - hora requerido para toda	determinado tiempo. Las unidades		
	el área de alta complejidad.	más comunes son: m³/s, m³/h,		
	(Santesmases, 2012).	Nm³/h, I/h, I/min, GPM, entre otras.		
Intervinientes				
Humedad relativa	Es el cociente entre el total de vapor	Es expresado en porcentajes, como	[% en peso]	De intervalo
del aire atmosférico	de agua almacenada en el aire	el cociente entre la presión de vapor		(0 – 100%)
	(humedad absoluta) y la máxima	efectiva (e), y la presión de vapor		
	cantidad que el aire puede ser	máxima o de saturación (E). Los		
	capaz de almacenar a dicha	valores serán tomados dependiendo		
	temperatura (humedad absoluta de	de la temperatura ambiente.		
	saturación). (Cengel y Boles, 2012).			
Temperatura del	La temperatura es un indicador de	La temperatura muestra en datos	[°C]	De intervalo
aire atmosférico	que tan caliente o frío está el aire	numéricos el nivel de energía		(0 a 35 °C)
	que surge del intercambio de calor	interna que se localiza en un lugar		
		en ese instante. Los valores serán		

	entre la tierra y la atmósfera.			
	(Cengel y Boles, 2012).	ambiente expresados en °C.		
Presión	La presión es una medida de la	Las unidades más comunes son:	[bar]	De razón
	fuerza ejercida por unidad de área	Pa, bar. En este caso los valores		
	en los límites de una sustancia. La	serán tomados en bar, los cuales se		
	presión manométrica corresponde	van a recopilar de los manómetros a		
	al valor que se puede leer	la entrada y salida del compresor.		
	directamente en un manómetro o			
	en un transmisor de presión.			
	(Connor, 2019).			
Capacidad de	Es la estimación de demanda de	En este caso lo vamos a medir en	[m³/mes]	De razón
oxígeno	oxígeno que queremos lograr.	unidades de m³/mes.		
	(Cengel y Boles, 2012).			

Fuente: Elaboración propia.

Técnica: Observación.

Instrumento: Ficha de observación.

Proceso:	Instrumento de evaluación: Área de oxígeno medicinal - HRDT Obtención de oxigeno medicinal								
Institución:	Hospital Regional Docente de Trujillo								
Responsables:	Miranda Medina, Richard – Rodríguez Calderón, Miguel								
Objetivo:	Deter								
,		Determinar la presión promedio del oxígeno medicinal a la entrada y salida de los tanques criogénicos.							
Hora	UM		/ salida de oxígeno	Fecha	Observaciones				
		·	icinal						
		Entrada	Salida						
1	Bar								
2	Bar								
3	Bar								
4	Bar								
5	Bar								
6	Bar								
7	Bar								
8	Bar	7.5	39.5	19/04/21					
9	Bar	7.8	39	19/04/21					
10	Bar	8	39.8	19/04/21					
11	Bar	8.1	40	19/04/21					
12	Bar	8.3	40.1	19/04/21					
13	Bar	8	40.3	19/04/21					
14	Bar	8.2	40.4	19/04/21					
15	Bar	8.5	40	19/04/21					
16	Bar	8.05	39.8	19/04/21					
17	Bar								
18	Bar								
19	Bar								
20	Bar								
21	Bar								
22	Bar								
23	Bar								
24	Bar								
		Parámetros es	tadísticos descriptivo	S					
Media Aritméti	ca								

Técnica: Observación.

Instrumento: Ficha de observación.

D	iiisti ü	mento de evaluación: Área de oxígeno med		, i					
Proceso:	Obtención de oxígeno medicinal								
Institución:	Hospital Regional Docente de Trujillo								
Responsables:		Miranda Medina, Richard – Rodríguez Calderón, Miguel							
Objetivo:	h 1	minar la temperatura de aire atmosférico er							
Hora	UM	Temperatura de aire atmosférico en el	Fecha	Observaciones					
		área de proceso							
		Entrada							
1	°C								
2	°C								
3	°C								
4	°C								
5	°C	-							
6	°C								
7	°C	17	19/04/21						
8	°C	19	19/04/21						
9	°C	19	19/04/21						
10	°C	20	19/04/21						
11	°C	20	19/04/21						
12	°C	21	19/04/21						
13	°C	21	19/04/21						
14	°C	20	19/04/21						
15	°C	19	19/04/21						
16	°C	19	19/04/21						
17	°C								
18	°C								
19	°C								
20	°C								
21	°C								
22	°C								
23	°C								
24	°C								
	<u> </u>	Parámetros estadísticos descriptivos	<u>1</u>	I					
Media aritmétic	ca			19.5					

Técnica: Observación.

Instrumento: Ficha de observación.

	Instrum	ento de evaluación: Área de oxígeno medio	inal - HRDT	•						
Proceso:		Obtención de oxígeno medicinal								
Institución:	Hospital Regional Docente de Trujillo									
Responsables:		Miranda Medina, Richard – Rodríguez Calderón, Miguel								
Objetivo:	Determ	Determinar el flujo de oxígeno a la entrada y salida de los tanques criogénico								
Hora	MU	Flujo de oxígeno a la entrada y salida de	Fecha	Observaciones						
		los tanques criogénicos								
		Salida								
1	m³/h									
2	m³/h									
3	m³/h									
4	m³/h									
5	m³/h									
6	m³/h									
7	m³/h									
8	m³/h	40	19/04/21							
9	m³/h	42.5	19/04/21							
10	m³/h	41	19/04/21							
11	m³/h	41.5	19/04/21							
12	m³/h	40.5	19/04/21							
13	m³/h	42	19/04/21							
14	m³/h	42.5	19/04/21							
15	m³/h	41	19/04/21							
16	m³/h	42.5	19/04/21							
17	m³/h	42.5	19/04/21							
18	m³/h	40	19/04/21							
19	m³/h									
20	m³/h									
21	m³/h									
22	m³/h									
23	m³/h									
24	m³/h									
		Parámetros estadísticos descriptivo								
Media aritméti	ca			41.6						

Técnica: Observación.

Instrumento: Ficha de observación.

	Instru	mento de evaluación: Área de oxígeno me		DT						
Proceso:	Obtención de oxígeno medicinal									
Institución:	Hospital Regional Docente de Trujillo									
Responsables:		Miranda Medina, Richard – Rodríguez Calderón, Miguel								
Objetivo:	Deter	Determinar la humedad relativa del aire atmosféricos en la zona de proceso.								
Hora	UM	Humedad relativa del aire atmosférico	Fecha	Observaciones						
		Entrada								
1	%									
2	%									
3	%									
4	%									
5	%									
6	%									
7	%	94	19/04/21							
8	%	88	19/04/21							
9	%	88	19/04/21							
10	%	83	19/04/21							
11	%	83	19/04/21							
12	%	88	19/04/21							
13	%	88	19/04/21							
14	%	88	19/04/21							
15	%	88	19/04/21							
16	%	94	19/04/21							
17	%									
18	%									
19	%									
20	%									
21	%									
22	%									
23	%									
24	%									
	•	Parámetros estadísticos descriptivo	S	•						
Media aritméti	ca	·		88.2%						

Técnica: Análisis documental. Instrumento: Ficha de registro.

Aplicado: A los documentos de registro de compra de oxígeno, demanda de compra de oxígeno, demanda de oxígeno, capacidad de camas UCI, registro de energía.

UNIVERSIDAD CÉSAR VALLEJO ESCUELA DE INGENIERÍA MECÁNICA ELÉCTRICA

REGISTRO DE DATOS

SOLICITANTES: RICHARD MIRANDA MEDINA, MIGUEL RODRÍGUEZ CALDERÓN
DATOS: ESPECIFICACIONES TÉCNICAS DEL OXÍGENO MEDICINAL Y DEL HRDT
FECHA DE INGRESO:
DATOS OBTENIDOS EN EL HRDT

DETERMINACIONES	Unidades	Resultados
Precio de compra del oxígeno medicinal	s/.	416 000,00(anual)
Cantidad de compra de oxígeno	m³	400 000,00
medicinal		
Demanda mensual de oxígenos medicinal	m³/mes	72 000,00
Capacidad de camas actual	camas	17
Capacidad de camas proyectada	camas	40
Consumo de paciente en UCI en estado	m³/día	60
crítico		
Capacidad de almacenamiento de	m³	21 000
tanques criogénicos		
Cantidad de tanques verdes	m³	25
Pureza de oxígeno medicinal (compra)	%	94
Tensión	Voltaje	380 (trifásico)
Frecuencia	Hz	60

TRUJILLO 19 de abril del 2020

Ficha técnica del tamiz molecular

model Oxymat 01250 X2

Oxygen purity rate [%, ppm]	92%	93%	94%	95%			
Nm*/hour (*)	135.93	120.05	120.17	112.29			
Air feed [m ^a /min.] F.A.D. at min. 6 bar		21	34				
Power consumption generator [kW]	0.1						
Oxygen outlet pressure [bar] (g) (**)	4						
Minimum Oxygen receiver tank [litres]	1900						
Minimum Air receiver tank [litres]	1900						
Hose connection [DN] Inlet / Outlet		50/	40				
Dimensions L x W x H [cm]		195×20	10x242				
Shipping dimensions L x W x H [cm]		194×151)	(256 (k2)				
Maintenance area L x W x H [cm]		255x34	0±302				
Weight [kg] net, exd, Control cabinet, estimate	6000						
Weight [kg] brutto		3200	(x2)				

Fuente: Oxymat A/S.

ANEXO 8

Ficha técnica del tanque pulmón

Capacidad del Presión má tanque		max. Versiones posibles			Versión vertical			Versión horizontal			
litros	bac	Vertical	Horizontal	Alum	Ø mm	Tubos de entrada/ salida	Peso kg	Longbud	Ø mm	Tubos de entradal salida	Pesc
90	11 45	si.	*	1160 1154	350	2 x G 1/s deltrals	37 88	-	*	-	-
150	11 18	*	*	1190	450	2 × G % outrais	60 67	1060 1346	450 400	2×G2	56 75
290	11 16	¥	si	1540 1545	500	2 x G % detrás	84 100	1410 1410	500	2×G2	84
	45			1600	500	2 x G 1 detries	195	-	-	1.70	-
350	11 16	¥	ni	1770 1810	550	2 x G 1 detrás	100 150	1630 1640	550	2×G2	101 164
500	11 16	si.	el .	1925 1916	600	2×G t detrás	130 210	1776	600	2×G2	130 208
	45		-5	1925			420		-	18	-
900	11	¥	3	2170 2255	800	2×G2; 2×G1%	238	=	-	-	340
1.000	11 16	¥	×	2265 2255	800	2×G11k 2×G2	244 356	2150 2160	800	G2.1×G15	240 360
	45			2255		4×G1%	670	122	2	325	-
2.000	11 16	¥	al	2375 2510	1150 1100	4×G2H	470 500	2180	1150	2×02	470 600
	50		-	2430	1100	4 × DN 80	1500	173	-	-	=
3.000	11 16	*	w	2705 2710	1250	4 × G 2%	683 850	2610 3040	1250 1150	2×G2% 2×G2	683 810
5.000	11 16	si	si.	3570	1400	4 × DN 100	1050 2100	3470 3700	1400	4 × DN 100	1100
8.000	11 18	×	¥	4400	1600	4 × 0N 200	1850 2350	4440 4400	1600	4 × DN 200	1850
10.000	11 16	gí	si	5415	1800	4 × DN 200	2260 2540	5400 5440	1600	4 × DN 200	2200 2680

Fuente: Ficha técnicas de tanques de almacenamiento Kaeser.

ANEXO 9

Model	Pressure Range (psig)	Capacity (cfm) (1)	Rated Motor Power (hp)	Dimensions L x W x H (in.)	Weight (lb.) (2)	Sound Level (dB(A)) (3)
DSD 125	125	569	125	92¾ x 68 x 80¼	6283	71
DSD 125T	175	424	120	1303/8 x 68 x 817/8	7170	71
DSD 150	125	671	450	92¾ x 68 x 80¼	7055	73
DSD 150T	175	544	150	1303/8 x 68 x 817/8	8050	13
000 475	125	660		92¾ x 68 x 80¼ 1303/8 x 68 x 817/8	7496 8490	
DSD 175 DSD 175T	175	636	175			74
DOD 1701	217	526		10078 / 00 / 0178		
	125	862			8047	
DSD 200	175	639	200	1021/2 x 777/8 x 801/4		73
	217	530				
	125	1003			8267	
DSD 250	175	837	250	1021/2 x 777/8 x 801/4		73
il.	217	615				

(1) Performance rated in accordance with CAGI/ISO 1217 test code. (2) Weights may vary slightly depending on airend model. (3) Per ISO 2151 using ISO 9614-2.

NOTE: Other pressures available from 80 to 217 psig

Fuente: Catálogo de compresores de tornillo Kaeser.

Ficha técnica del prefiltro de partículas y separador de aceite

Tamaños y dimensiones

TAMAÑO		cidad	Presid		Presión	máxima	Conexiones			Dimer	siones				libre para el cartucho	Pr	eso
DEL FILTRO	non	ninal	refer	encia					4		В		ć		D		
001	1/s	cfm	bar(e)	psig	bar(e)	psig	pulg.	mm	pulg.	mm	pulg.	mm	pulg.	mm	pulg	kg	lb
9+	9	19	7	102	16	232	3/8	90	3,5	61	2,4	268	10,6	75	2,9	1,0	2,2
15+	15	32	7	102	16	232	1/2	90	3,5	61	2,4	268	10,6	75	2,9	1,1	2,4
25+	25	53	7	102	16	232	1/2	90	3,5	61	2,4	323	12,8	75	2,9	1,3	2,9
45+	45	95	7	102	16	232	3/4 y 1	110	4,3	99	3,9	374	14,7	75	2,9	1,6	4,2
60+	60	127	7.	102	16	232	1	110	4,3	99	3,9	414	16,3	75	2,9	2,1	4,6
100+	100	212	7:	102	16	232	1	140	5,5	105	4,0	425	16,7	100	3,9	3,7	8,2
140+	140	297	7	102	16	232	1-1/2	140	5,5	105	4,1	520	20,5	100	3,9	4,2	9,3
180+	180	381	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,5	9,9
220+	220	466	7	102	16	232	1-1/2	140	5,5	105	4,1	603	23,7	100	3,9	4,6	10,1
310+	310	657	7	102	16	232	2 & 2-1/2	179	7,1	121	4,8	689	27,1	150	5,9	6,9	15,2
425+	425	901	7	102	16	232	3	210	8,3	128	5,1	791	31,1	200	7,9	11,0	24,2
550+	550	1165	7	102	16	232	3	210	8,3	128	5,1	961	37,8	200	7,9	12,6	27,8
550+F	550	1165	7	102	16	232	DN80	370	14,6	280	11,0	1295	51,0	1375	54,1	76,0	167,6
850+F	850	1801	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	141,0	310,9
1100+F	1100	2331	7	102	16	232	DN100	510	20,1	410	16,1	1360	53,5	1500	59,1	143,0	315,3
1400+F	1400	2967	7	102	16	232	DN150	620	24,4	485	19,1	1480	58,3	1560	61,4	210,0	463,0
1800+F	1800	3814	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	176,0	388,0
2200+F	2200	4662	7	102	16	232	DN150	640	25,2	490	19,3	1555	61,2	1640	64,6	178,0	392,4
3000+F	3000	6357	7	102	16	232	DN200	820	32,3	650	17,7	1745	68,7	1710	67,3	420,0	925,9
4000+F	4000	8476	7	102	16	232	DN200	820	32,3	650	17,7	1745	68,7	1710	67,3	428,0	943,6
5000+F	5000	10595	7	102	16	232	DN200	820	32,3	650	17,7	1745	68,7	1710	67,3	432,0	952,4
6000+F	6000	12714	7	102	16	232	DN250	920	36,2	815	32,1	2085	82,1	1625	64,0	671,0	1479,
7000+F	7000	14833	7.	102	16	232	DN250	920	36,2	B15	32,1	2085	82,1	1625	64,0	675,0	1488,
8000+F	8000	16952	7:	102	16	232	DN300	1040	40,9	930	36,6	2070	81,5	1625	64,0	900,0	1984;

Rendimiento

	UD+
Contaminante	Aerosol de aceite y partículas sólidas
Método de prueba	ISO 8573-2:2007, ISO 12500-1:2007
Arrastre de aceite máximo (mg/m³)*	0,0009
Calda de presión húmeda (mbar)	245
Servicio del cartucho	Después de 4000 horas de funcionamiento o 1 año
Precedido de	Separación de agua

^{*} Concentración de aceite en la entrada = 10 mg/m². Aceite = aerosol de aceite y líquido

Factores de corrección

Presión de entrada (bar)	17/	-2	3 :	4	5	6	7	8	10	12	1.4	16
Presión de entrada (psig)	15	29	44	58	72,5	87	102	116	145	174	203	232
Factor de corrección	0,38	0,53	0,65	0,75	0,83	0,92	1,00	1,06	1,20	1,31	1,41	1,50

Ficha técnica del secador

TECHNICAL SPECIFICATIONS 60 Hz

FX REFRIGERANT DRYER RANGE 60 Hz

	Outle		re dew /41 °F	point	Outle		re dew /37 °F	point		imum king	Electrical			Dime	nsions	V	**********	We	ight	Compressed
Model	Inlet c	apacity	Pressu	re drop	Inlet c	apacity	Pressu	re drop	pres	sure	supply	Ler	igth	w	dth	He	ight			air connections
	l/s	cfm	bor	psi	t/s	cfm	bar	psi	bar	psi		mm	inch	mm	inch	mm	inch	kg	lb	
FX 1	7	14	0.20	2.88	6	13	0.15	2.18	16	232	115-230/1/60Hz	500	19.7	350	13.8	484	19.1	19	42	3/4" NPT
FX 2	12	24	0.33	4.79	10	21	0.25	3.63	16	232	115-230/1/60Hz	500	19.7	350	13.8	484	19.1	19	42	3/4" NPT
FX 3	16	35	0.33	4.79	14	30	0.25	3.63	16	232	115-230/1/60Hz	500	19.7	350	13.8	484	19.1	20	44	3/4" NPT
FX 4	23	49	0.33	4,79	20	42	0.25	3.63	16	232	115-230/1/60Hz	500	19.7	350	13.8	484	19.1	25	55	3/4" NPT
FX 5	35	74	0.40	5.75	30	64	0.30	4.35	16	232	115-230/1/60Hz	500	19.7	350	13.8	484	19.1	27	60	3/4" NPT
FX 6	45	95	0.42	6.14	39	83	0.32	4.64	13	189	115-230/1/60Hz	500	19.7	370	14.6	804	31,7	51	112	1" NPT
FX 7	58	122	0.50	729	50	106	0.38	5.51	13	189	115-230/1/60Hz	500	19.7	370	14.6	B04	31.7	51	112	1" NPT
FX 8	69	146	0.24	3.45	60	127	0.18	2.61	13	189	115-230/1/60Hz	560	22.0	460	18.1	829	32.6	61	135	1 1/2" NPT
FX 9	79	167	0.33	4.79	68	144	0.25	3.63	13	189	115-230/1/60Hz	560	22.0	460	18.1	829	32.6	68	150	1 1/2" NPT
FX 10	100	211	0.24	3.45	87	184	0.18	2.61	13	189	115-230/1/60Hz	560	22.0	460	18.1	829	32.6	73	161	1 1/2" NPT
FX 11	125	264	0.26	3.84	108	229	0.20	2.90	13	189	230/1/60Hz	560	22.0	580	22.8	939	37.0	90	198	1 1/2" NPT
FX 12	148	313	0.36	5.18	128	271	0.27	3.92	13	189	230/1/60Hz	560	22.0	580	22.8	939	37.0	90	198	1 1/2" NPT
FX 13	192	407	0.26	3.77	167	354	0.20	2.90	13	189	460/3/60Hz	898	35.35	735	28.9	1002	36.4	173	381	2" NPT
FX 14	230	488	0.33	4.79	200	424	0.25	3.63	13	189	460/3/60Hz	898	35.35	735	28.9	1002	36.4	178	392	2" NPT
FX 15	288	611	0.46	6.67	250	530	0.35	5.08	13	189	460/3/60Hz	898	35.35	735	28.9	1002	36.4	183	404	2" NPT
FX 16	345	731	0.46	6.67	300	636	0.35	5.08	13	189	460/3/60Hz	898	35.35	735	28.9	1002	36.4	183	404	2" NPT
FX 17	424	899	0.28	4.07	400	848	0.25	3.63	13	189	460/3/60Hz	1082	42.59	1020	40.15	1560	61.41	325	717	3" NPT
FX 18	530	1124	0.34	4.89	500	1060	0.30	4.35	13	189	460/3/60Hz	1082	42.59	1020	40.15	1560	61.41	335	739	31 NPT
FX 19	618	1310	0.39	5.70	583	1236	0.35	5.08	13	189	460/3/60Hz	1082	42.59	1020	40.15	1560	61.41	350	772	3° NPT
FX 19.5	795	1685	0,28	4.07	750	1527	0,25	3.63	13	189	460/3/60Hz	1123	44,2	1020	40.15	1560	61.41	380	838	Flanged DN 125
FX 20	B83	1872	0.34	4.89	833	1766	0.30	4,35	13	189	460/3/60Hz	2099	82.6	1020	40.15	1560	61.41	550	1213	Flanged DN 125
FX 21	1187	2516	0.28	4.07	1120	2374	0.25	3.63	13	189	460/3/60Hz	2099	82.6	1020	40.15	1560	6141	600	1323	Flanged DN 125

Datos de potencia según condiciones de referencia de la norma ISO 7183, opción A1. Temperatura ambiente 25 °C, temperatura de entrada del arie 35 °C, punto de rocio 3 °C En otras condiciones, el flujo volumétrico varia Factores de corrección del flujo volumétrico + 45°C +35 °C + 40 °C 1.0 0.83 0,78 Factor de corrección 0.94 0,89 Temperatura de entrada del aire comprimido + 25 °C +30 °C +35°C + 45 °C + 50 °C 0,65 0,54 0,44 3 bar Factor de corrección 1,47 1,15 0.93 0,63 0,53 0,83 0,70 0,59 7 bar 1,56 1,23 1,00 9 bar 1,61 1,28 1,05 0,88 0,74 0,63 0,79 11 bar 1,67 1,33 1,10 0,92 0,68 13 bar 1.72 0.72

ANEXO 12

Ficha técnica del filtro de carbón activado

			Conexio	nes				Dim	ensiones						
TAMAÑO DEL FILTRO QDT	Capacida	d nominal	GoNP			A			8			c		Pr	150
25.	l/s	cfm	pulg.		mm	pu	lg.	mm	pul	g.	mm	pul	g.	log	ТЬ
20	20	42	1/2*		490	1	9	223	9		190	7		10	2.2
45	45	95	111		715	2	8	223	9		190	7		15	33
60	60	127	1,		B40	3	3	223	9		190	7		18	40
95	95	210	1"		715	2	8	387	715	5	190	7		29	54
125	125	265	1 1/2		840	3	3	387	15	5	190	7		34	75
150	150	318	1 1/2		715	2	8	551	22	2	190	7		42	93
185	185	392	1.1/2		840	3	3	551	22	2	190	7		50	110
245	2.45	519	1.1/2		840	3	3.0	715	.28	3	190	7		67	148
310	310	657	1 1/2		840	3	3	879	35	5	190	7		84	185
425	425	901	DN80 /	3°	2148	8	5	710	28	3	600	24	1	264	581
550	550	1165	DN80 /	3"	2190	8	6	710	28	3	670	26	5.	302	664
850	850	1801	DN100 /	4*	2320	9	1	724	29)	805	32	2	391	860
1100	1100	2331	DN100 /	4*	2450	9	7	934	37	+	820	33	2	602	1324
1800	1800	3814	DN150 /	6"	2612	10)3	1046	41	D)	980	39)	882	1940
	Presión de	e entrada (bar)	3	4	-5	6	7	8	9	10	11	12	13	
		e entrada		44	58	73	87	102	116	131	145	160	174	193	
	Factor	le correcci	ón i	0,57	0,77	0,83	1	1	1	1	1,05	1,05	1,11	1,18	

ANEXO 13

Ficha técnica del microfiltro de partículas y aceite

TAM DEL F	LTRO	,	apacida	d nomin	all	Presió: refere			sión xima	Conexio	nes			Dime	nsiones			par	pacio libre ra cambio I cartucho	P	eso
DDp	PDp	Está	indar									,	١		В		c		D		
Estándar		l/s	cfm	I/s	cfm	bar(e)	psig	bar(e)	psig	pulg.		mm	pulg.	mm	pulg.	mm	pulg	ma	pulg.	kg	lb
12	10+	12	25	10	21	7	102	16	232	3/8		90	3,5	61	2,4	268	10,6	75	2,9	1,0	2,2
25	20+	25	53	20	42	7	102	16	232	1/2		90	3,5	61	2,4	268	10,5	75	2,9	1,1	2,4
45	35+	45	95	35	74	7	102	16	232	1/2		90	3,5	61	2,4	323	12,7	75	2,9	1,3	2,9
65	50+	65	138	50	106	7:	102	16	232	3/4 &	1	110	4,3	99	3,9	374	14,7	75	2,9	1,6	4,2
90	70+	90	191	70	148	7	102	16	232	1		110	4,3	99	3,9	414	16,3	75	2,9	2,1	4,6
160	130+	160	339	130	275	7	102	16	232	1-1/2	2	140	5,5	105	4,1	520	20,5	100	3,9	4,2	9,3
215	170+	215	456	170	360	7	102	16	232	1-1/2	2	140	5,5	105	4,1	603	23,7	100	3,9	4,5	9,9
265	210+	265	562	210	445	7:	102	16	232	1-1/2	2	140	5,5	105	4,1	603	23,7	100	3,9	4,6	10,1
360	310+	360	763	310	657	7	102	16	232	2 & 2-1	/2	179	7,0	121	4,8	689	27,1	150	5,9	6,9	15,2
525	425+	525	1112	425	901	7	102	16	232	3		210	8.3	128	5,0	791	31,1	200	7,9	11.0	24,2
690	550+	690	1462	550	1165	7	102	16	232	3		210	8.3	128	5.0	961	37,9	200	7,9	12,6	27,8
630F	550+F	630	1335	550	1165	7.	102	16	232	DN80	1	370	14,6	280	11	1295	51,0	137	5 54,1	76,0	167,6
1+1	850+T	- 100		850	1801	7	102	16	232	DN100	O.	510	20,1	418	16,5	796	31,3	200	7,9	35,2	77,6
970F	850+F	970	2055	850	1801	7	102	16	232	DN100	0	510	20,1	410	16.1	1360	53,5	150	0 59,1	141,0	310,9
-	1100+T	- 5	-	1100	2331	7	102	16	232	DN100	0	510	20,1	418	16,5	966	38,0	200	7,9	37,4	82,4
1260F	1100+F	1260	2670	1100	2331	7	102	16	232	DN100	0	510	20,1	410	16,1	1360	53,5	150	0 59,1	143,0	415,3
1600F	1400+F	1600	3390	1400	2967	7	102	16	232	DN158	0	620	24,4	485	19,1	1480	58,3	156	0. 61,4	210,0	463,0
2200F	1800+F	2200	4662	1800	3814	7.	102	16	232	DN150	0	640	25,2	490	19,3	1555	61,2	164	54,6	176,0	388,0
2400F	2200+F	2400	5086	2200	4662	7	102	16	232	DN150	0	640	25,2	490	19,3	1555	61,2	164	0 64,6	178,0	392,4
3600F	3000+F	3600	7628	3000	6357	7	102	16	232	DN200	0	820	32,3	650	25,6	1745	68,7	171	0 67,3	420,0	925,9
.+.	4000+F	-0-		4000	8476	7	102	16	232	DN200	0	820	32,3	650	25,6	1745	68,7	171	0 67,3	428,0	943,6
-	5000+F	1.	-	5000	10595	7	102	16	232	DN256	0	820	32,3	650	25,6	1745	68,7	171	0 67,3	432,0	952,4
9	6000+F	34	- 12	6000	12714	7	102	16	232	DN250	0	920	32,3	815	32,1	2085	80,3	162	5 64	671,0	1479,3
	7000+F	- 14	-8	7000	14833	7	102	16	232	DN300	0	920	36,2	815	32,1	2085	82,1	162	5 64	675,0	1488,1
171	8000+F	9		8000	16952	7	102	16	232	DN306	0	1040	40,9	930	36,6	2070	81,5	162	5 64	900,0	1984,2
		Presi	ón de	entrad	ia (bar)	1		2	3	4 5	5	6	7	8	1	0	12	14	16		
		Presi	ón de i	entrad	a (psig)	15	2	9 2	44	58 72	2,5	87	102	:11	6 1	45	174	203	232		
		196.10	vacant says			and a			-	aran an			4.000	2.2			100	4.04			

Factor de corrección 0,38 0,53 0,65 0,75 0,83 0,92 1,00 1,06 1,20 1,31 1,41 1,50

ANEXO 14

Ficha técnica del microfiltro extrafino de partículas y aceite

		D	Dp			PD	P		ı	DDp+	23		PDp+
Contaminante								Polvo se	00				
Método de prueba						ISO 8	3573-4:2	001, ISC	12500	3:2009			
Eficiencia de eliminación de partículas (% a MPP	5)		18,09			99,9	7			99,92			99,98
Caída de presión seca (mbar)			135			150	1			85			100
Servicio del cartucho				Tras	4000 ho	ras opera	ativas, 1	año o ur	na caída	de presi	on de 35	0 mbar	
Precedido de		Se	cador			Secador	DDp		- 19	Secador			Secador DDp+
Devide de settedo (bar)		7		SCORE I	-		-	n.	10	-17		10	
Presión de entrada (bar)	100	2	3	4	5	6	7	8	10	12	14	16	
Presión de entrada (psig)	15	29	44	58	72,5	87	102	116	145	174	203	232	
Factor de corrección	0,38	0,53	0,65	0,75	0,83	0,92	1,00	1,06	1,20	1,31	1,41	1,50	

ANEXO 15

Ficha técnica del recibidor de oxigeno

Capacidad del tanque	Presión máx.		iones sbles			Version vertical			Ve	raión horizontal	
litros	bin	Vertical	Horizontal	Alum	Ø mm	Tubos de entrada/ salida	Peso kg	Longbad mm	O mm	Tubos de entractal safda	Peso
90	11 45	si	+	1160 1154	350	2 x G % deltras	37 88	-	-	-	-1
150	11 16	×	×	1190	450	2 × G % outrais	60 67	1060 1346	450 400	2×G2	56 75
250	11 16	×	si	1540 1545	500	2 x G % detrás	84 100	1410 1410	900	2×G2	84
	45			1600	500	2 x G 1 detries	195		-	1.75	-
350	11 16	ä	ni	1770 1810	550	2 x G 1 detrás	100 150	1630 1640	550	2 × G 2	101 164
500	11 16	si	si.	1925 1918	600	2×G1detrás	130 210	1776	600	2×G2	130 208
	45		-	1925			420		-	100	=0
900	11	×	3	2170 2255	800	2×G2; 2×G1%	238	=	-	-	8
1.000	11 16	ž.	al .	2265 2255	800	2×G11k 2×G2	244 356	2150 2160	800	G2,1×G1%	240 360
	45			2255		4×G1%	670	100	22	325	20
2.000	11 16	si	al	2375 2510	1150 1100	4×G2H	470 500	2180	1150	2×02	470 600
	50		-	2430	1100	4 x DN 80	1500	175	-	-	-
3.000	11 16	*	w	2705 2710	1250	4 × G 2%	683 850	2610 3040	1250 1150	2×G2% 2×G2	683 810
5.000	11 16	sí	¥	3570	1400	4 × DN 100	1050 2100	3470 3700	1400	4 × EN 100	1100 1800
8.000	11 16	×	¥	4400	1600	4 × 0N 200	1850 2350	4440 4400	1600	4 × DN 200	1850 2350
10.000	11 16	si	si	5415	1600	4 × DN 200	2260 2540	5400 5440	1600	4 × DN 200	2200 2680

Fuente: Kaeser Compressors Inc.

Ficha técnica del post-filtro de partículas

KPF			culas) prefil	100 000 000 Charles					Eler	mentos filtrantes
	caida de pres	sión 1 psi seco, 2 p	si mojado; presión máxi	aceite £ 1 mg/m³ (v ma de trabaji 250 psi _{lib} (l 1000 a 21250: +110	(FP 1000P en a	delante: 225 psi,	a).		Modelo	Calidad original efecto filtrante constante casquillo de acero inoxidable Pzs.
20	1/2" NPTF	KPF 20	8	STD	N/A	STD	Α	Ecodrain 30	PF 20	
35	1/2" NPTF	KPF 35	8.25	STD	N/A	STD	A	Ecodrain 30	PF 35	
60	1/2" NPTF	KPF 60	8.5	STD	N/A	STD	A	Ecodrain 30	PF 60	
100	1" NPTF	KPF 100	9.5	STD	STD	N/A	А	Ecodrain 30	PF 100	
170	1" NPTF	KPF 170	10.5	STD	STD	N/A	Α	Epodrain 31	PF 170	
250	1 1/3" NPTF	KPF 250	10.25	STD	STD	N/A	A	Ecodrain 12	PF 250	
375	1 ½" NPTF	KPF 375	11.5	STD	STD	N/A	Α	Ecodrain 13	PF 375	
485	2" NPTF	KPF 485.2	28	N/A	STD	N/A	A	Ecodrain 13	PF 485	
485	2 1/2" NPTF	KPF 485.2.5	28	N/A	STD	N/A	A	Epodrain 13	PF 485	
625	2 1/2" NPTF	KPF 625	33	N/A	STD	N/A	A	Ecodrain 13	PF 625	
780	2 1/2" NPTF	KPF 780	38	N/A	STD	N/A	Α	Ecodrain 13	PF 780	
1000	3" NPTM	KPF 1000P	91	N/A	STD	N/A	Р	Eccdrain 13	PF 500 x2	
1250	3" NPTM	KPF 1250P	91	N/A	STD	N/A	Р	Ecodrain 13	PF PV x2	
1875	3" NPTM	KPF 1875P	120	N/A	STD	N/A	Р	AMD 6550	PF PV x3	
2500	4" FLG	KPF 2500P	179	N/A	STD	N/A	P	AMD 6550	PF PV x4	
3125	4" FLG	KPF 3125P	182	N/A	STD	N/A	P	AMD 6550	PF PV x5	
5000	6" FLG	KPF 5000P	271	N/A	STD	N/A	P	AMD 6550	PF PV x8	
6875	6" FLG	KPF 6875P	518	N/A	STD	N/A	P	AMD 6550	PF PV x11	
8750	6" FLG	KPF 8750P	527	N/A	STD	N/A	P	AMD 6550	PF PV x14	
11875	8" FLG	KPF 11875P	709	N/A	STD	N/A	P	AMD 6550	PF PV x19	
16250	8" FLG	KPF 16250P	918	N/A	STD	N/A	P	AMD 6550	PF PV x26	
21250	10" FLG	KPF 21250P	1412	N/A	STD	N/A	Р	AMD 6550	PF PV x34	

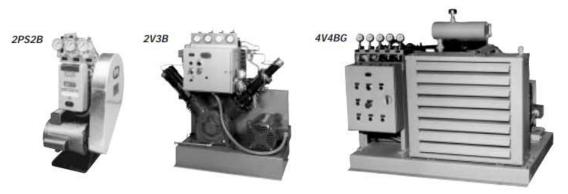
Fuente: Kaeser Compressors Inc.

ANEXO 17

Ficha técnica del filtro bacteriológico

Filtro esteril tipo	Potencia de	e flujo	Conexión	Espacio par	а	200			Meds	das mm		100	Eler	nento de	filtraci
FST	m²/mi		para aire a presión			Tipo		A		В		Peso kg		Tipo	Can da
	1		R 1/4	90		F6P-S	r	215	1 8	108	55	1,7	03/	10 P-ST	1
espacin para el desmontajo C	1,5		R 3/8	120		F9P-S	r	243		108	55	1,9	04/	10 P-ST	1
•	2		R 1/2	120		F 12 P-	ST	243		108	55	1,9	04)	20 P-ST	1
	3		R 3/4	150		F 18 P-	ST	266		125	55	2	05/	20 P-ST	1
	4,5		R1	150		F 27 P-	ST	293		125	75	2,6	05/	25 P-ST	1
	6		R1 1/4	200		F 36 P-	ST	344		140	75	3	07/	25 P-ST	1
A	8		R1 1/2	200		F 48 P-	ST	386	200	170	94	4,3	07/	30 P-ST	1
	12		R2	280		F 72 P-	TZ	460		170	94	4,8	10/	30 P-ST	1
	18		R2	450		F 108 P	-ST	587	1 8	170	94	5,3	15,	30 P-ST	1
Dan	24		R2 1/2	580		F 144 P	-ST	732	1 3	216	106	9	20/	30 P-ST	1
1 0	32		R3	850		F 192 P	-ST	987	1 3	216	106	10,8	30/	30 P-ST	1
B *	48		R 3	850		F 288 P	-ST	1026		240	119	16,2	30,	50 P-ST	1
tor de conversión	f para ofras	presid	nes de ser	vicio						Poteno	cia de flujo	para 7 bar, r	eferida a 1	bar absol	uto y 2
repression de vicio ba	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16
or de conversion /	0.25	0.36	0,5 0.	6 0.75	0.9	1	1.1	1.2	1.4	1,5	1.6	1.75	1,9	2.0	2.1

Fuente: Kaeser Compressors Inc.


ANEXO 18

Ficha técnica del cilindro Tipo "T"

GASES		-		***BOT	ELLA	ļ.		
Oxígeno	Tipo*	Dimensi Largo mm.	ones aprox. Diámetro mm.	Presión Máx. Kg./cm²	Capa Gas m³	a cidad a	aprox. Agua L	Peso aprox. Kg
Nitrógeno	5 H	570	145	200	1		5	10
Argón	эп	3/0	145	300***	1,5		5	10,5
Mezclas Soldadura	20 H	OEO	207	200	4		20	36
Helio	20 H	950	207	300***	6		20	38
Hidrógeno	30 H	1.240	230	300***	9		30	71
indiogeno	TEO I	1.000	220	200	10		50	85
	F50 L	1.680	230	300***	15		50	95
Acetileno	40 L	1.345	230	18**		7	40	83
CO,	50 L	1.680	330			37,5	50	105

Fuente: Praxair.

Ficha técnica del compresor de alta presión

	2PS2B	2V3B	4V4BG
Size, Compressor Pkg.	29"H x 23"L x 14"W	46"H x 49"L x 22"W	41"H x 61"L x 50"W
	(74Cm x 58Cm x 36Cm)	(117Cm x 124Cm x 56Cm)	(104Cm x 155Cm x 127Cm)
Weight, Compressor Pkg.	150 lbs. (68 Kg)	550 lbs. (250 Kg)	1650 lbs. (750 Kg)
Power, motor size	1.5 HP (1.1 Kw)	10 HP (7.5 Kw)	15 HP (11 Kw)
	120 or 240 volts	190 to 460 volts as required	190 to 460 volts as required
	50 or 60 Hz as required	50 or 60 Hz as required	50 or 60 Hz as required
	single phase	three phase	three phase
Compressor RPM	190 or 390 RPM	530 RPM	400-820 RPM
Suction Pressure	30 - 70 PSIG	3 - 40 PSIG	3 - 10 PSIG
	2 - 5 BarG	.2 - 2.8 BarG	0.2 - 0.69 BarG
	2 - 5 Kg/cm ² G	.2 - 2.8 Kg/cm² G	0.21 - 0.70 Kg/cm ² G
Max. Discharge pressure, Oz	2200 PSIG	2500 PSIG	3000 PSIG
	152 BarG	172 BarG	207 BarG
	155 Kg/cm² G	176 Kg/cm ² G	211 Kg/cm ² G
Flow Rate	30 - 120 SCFH	225 - 600 SCFH	600 - 1000 SCFH
	.80 - 3.20 Nm3/H	6 - 16 Nm ³ /H	16 - 27 Nm3/H
	14 - 57 Nltr/M	100 - 268 Nitr/M	268 - 446 Nltr/M
Cooling	air cooled	air cooled	Closed circuit water cooling with air/water heat exchanger.
Shipping weight	200 lbs. (91 Kg)	725 lbs. (330 Kg)	1840 lbs. (836 Kg)
Shipping volume	36"H x 30"L x 24"W	48"H x 57"L x 30"W	54"H x 76"L x 65"W
	(91Cm x 76Cm x 61Cm)	(122Cm x 145Cm x 76Cm)	(137Cm x 193Cm x 165Cm)
Gas inlet	1/4" FPT	3/4" FPT	3/4" FPT
Gas outlet	1/4" FPT	1/4* FPT	1/4" FPT

Fuente: Rix Industries.

ANEXO 20

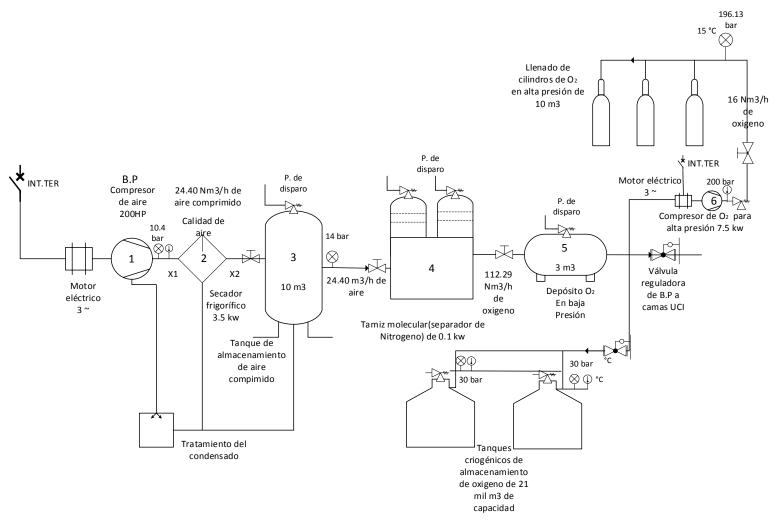
Ficha técnica del sistema de mantenimiento de presión

Modelo	Diámetro de conexión	Compatible con el campo de presión			Transductor de presión	Funcionami	ento seguro	Medidas an x prof x al	Peso	
		0,5-10 bar 0,5-16 bar		hasta 63 bar	electrónico	Tratamiento del aire comprimido	Suministro de aire comprimido	mm	kg	
Versiones co	n válvula de bola									
DHS 15 G	G 1/a	+			~	V		226 x 173 x 284	4,5	
DHS 20 G	G ¾	i+i			1	1		316 x 173 x 293	5,6	
DHS 25 G	G t	-			1	1	•	226 x 173 x 327	5,9	
DHS 32 G	G11/4	120		п	4	4	•	226 x 173 x 338	7,7	
DHS 40 G	G11/2	1.45			1	1		226 x 173 x 371	3,8	
DHS 50 G	G 2	7 - 2			1	1	•	258 x 173 x 386	10,9	
DHS 65 G	G 2 1/2	120			1	4		299 x 173 x 437	17,3	
DHS 80 G	G3	2		□	4	~	•	349 x 173 x 507	23,7	
Versiones co	n válvula intermed	ia								
DHS 40	DN 40	14.		-	✓	V		226 x 173 x 441	8,2	
DHS 50	DN 50	+		- 15	1	1		226 x 173 x 427	9,1	
DHS 65	DN 65	(F)		a .	1	1	•	258 x 173 x 459	10,6	
DHS 80	DN 80	21		2	~	~	•	258 x 173 x 489	12,1	
DHS 100	DN 100	-		-	✓.	· ·	110	299 x 173 x 545	16,2	
DHS 125	DN 125	-		-	1	1		349 x 173 x 627	23,2	
DHS 150	DN 150	-		-	1	1	•	397 x 183 x 649	28,4	
DHS 200	DN 200	-		521	1	1	•	473 x 193 x 737	38,6	

Fuente: Kaeser Compresores.

ANEXO 21

Ficha técnica del manejo del condesando



		o FAD del ema	100	rave FAD stema	Clima cálido FAD del sistema		
Modelo	l/s	cfm	I/s	cfm	l/s	cfm	
08035	65	138	35	75	17	36	
DSC 95	180	382	95	201	45	95	
DSC 145	270	572	145	307	70	148	
DSC 355	665	1410	355	753	170	360	
DSC 600	1150	2438	605	1283	290	615	
DSC 825	1550	3286	825	1749	400	848	
DSC 1200	2220	4706	1180	2502	570	1208	
DSC 2400	4440	9413	2360	5003	1145	2427	

Fuente: Atlas Copco.

ANEXO 22

Configuración completa de la planta de oxigeno medicinal en alta presión propuesta para el HRDT

Fuente: Elaboración propia.

Capacidad de conducción de corriente (A) permisible de conductores aislados para 0 a 2000V y 60 a 90°C. No más de tres conductores en una canalización o directamente enterrados, para una temperatura ambiente de 30°C

Tamaño o designación		Temperatura nominal del conductor									
(mm²) (AWG o kemil)		60°C	75°C	90°C	60°C	75°C	90°C				
		Tipos RHW, T Tipos THH- THW THW XHH USE,		Tipos TBS, SA, SIS, FEP, FEPB, ML, RHH, RHW-2, THHN, THHW, THHW-LS, THWN-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Tipos UF	Tipos RHW, XHHW, USE	Tipos SA, SIS RHH, RHW-2 USE-2 XHH, XHHW, XHHW-2 ZW-2				
	<i>y</i> 1		Cob	Aluminio o aluminio recubierto de cobre							
1.31 16		51. N.J		recu	cobre						
2.08	14	15	20	18 25	-	-	-				
3.31	12	20	25	30	15	20	25				
5.26	10	30	35	40	25	30	35				
8.37	8	40	50	55	35	40	45				
13.3	6	55	65	75	40	50	55				
21.2	4	70	85	95	55	65	75				
26.7	3	85	100	115	65	75	85				
33.6	2	95	115	130	75	90	100				
42.4	1	110	30	145	85	100	115				
53.5	1/0	125	150	170	100	120	135				
67.4	2/0	145	175	195	115	135	150				
85.0	3/0	165	200	225	130	155	175				
107	4/0	195	230	260	150	180	205				
127	250	215	255	290	170	205	230				
152	300	240	285	320	195	230	260				
177	350	260	310	350	210	250	280				
203	400	280	335	380	225	270	305				
253	500	320	380	430	260	310	350				
304	600	350	420	475	285	340	385				
355	700	385	460	520	315	375	425				
380	750	400	475	535	320	385	435				
405	800	410	490	555	330	395	445				
458	900	435	520	585	355	425	480				

Factores de corrección (Ft)													
Temperatura ambiente (°C)	Para te	Para temperaturas ambiente distintas de 30°C, multiplicar la capacidad de corriente por el corriente factor de corrección											
21 - 25	1.08	1.05	1.04	1.08	1.05	1.04							
26 - 30	1.00	1.00	1.00	1.00	1.00	1.00							
31 - 35	0.91	0.94	0.96	0.91	0.94	0.96							
36 - 40	0.82	0.88	0.91	0.82	0.88	0.91							
41 - 45	0.71	0.82	0.87	0.71	0.82	0.87							
46 – 50	0.58	0.75	0.82	0.58	0.75	0.82							
51 - 55	0.41	0.67	0.76	0.41	0.67	0.76							
56 - 60	-	0.58	0.71	-	0.58	0.71							
61 - 70		0.33	0.58	-	0.33	0.58							
71 - 80	-	-	0.41	-	-	0.41							

Fuente: NFPA70:2014 (National Electrical Code).

ANEXO 24

Factores de corrección por agrupamiento

Número de conductores dentro de la canalización	Factor de corrección por agrupamiento (F _a) (%)					
4-6	80					
7 - 9	70					
10 - 20	50					
21 - 30	45					
31 - 40	40					
41 o más	35					

Fuente: NFPA70:2014 (National Electrical Code).

Resistencia y reactancia en corriente alterna para cables de 600V, tres fases a 60Hz y 75°C – tres conductores individuales en tubo (conduit)

	Calibre de conductor (AWG o		Ohmios al neutro por kilómetro													
		ctor conductores		Resistencia a corriente alterna para			Resistencia a la corriente alterna para conductores de aluminio (R)			Impedancia efectiva a FP = 0.85 para conductores de cobre sin revestimiento (Z ₀)			Impedancia efectiva a FP = 0.85 para conductores de aluminio (Z•)			
Área																
				conductores de cobre												
(mm²)				sin revestimiento (R)												
	kemil)			Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	Conduit	
		PVC o	de	de	de	de	de	de	de	de	de	de	de	de	de	
		aluminio	acero	PVC	aluminio	acero	PVC	aluminio	acero	PVC	aluminio	acero	PVC	aluminio	acero	
2.08	14	0.190	0.240	10.200	10.200	10.200	-	i	•	8.900	8.900	8.900	-	-	-	
3.31	12	0.177	0.223	6.600	6.600	6.600	-	•	-	3.600	3.600	3.600	-	-	-	
5.26	10	0.164	0.207	3.900	3.900	3.900	•	٠	•	2.260	2.260	2.260	-	-	-	
8.37	8	0.171	0.213	2.560	2.560	2.560		٠	•	2.260	2.260	2.300	-	-	-	
13.3	6	0.167	0.210	1.610	1.610	1.610	2.660	2.660	2.660	1.440	1.480	1.480	2.330	2.360	2.360	
21.20	4	0.157	0.197	1.020	1.020	1.020	1.670	1.670	1.670	0.950	0.095	0.098	1.510	1.510	1.510	
26.70	3	0.154	1.194	0.820	0.820	0.820	1.310	1.350	1.310	0.750	0.790	0.790	1.210	1.210	1.210	
33.60	2	0.148	0.187	0.620	0.660	0.660	1.050	1.050	1.050	0.620	0.620	0.660	0.980	0.980	0.980	
42.40	1	0.151	0.187	0.490	0.520	0.520	0.820	0.850	0.820	0.0520	0.520	0.520	0.790	0.790	0.820	
53.50	1/0	0.144	0.180	0.390	0.430	0.390	0.660	0.690	0.660	0.430	0.430	0.430	0.620	0.660	0.660	
67.40	2/0	0.141	0.177	0.330	0.330	0.330	0.520	0.520	0.520	0.360	0.380	0.360	0.520	0.520	0.520	
85.00	3/0	0.138	0.171	0.253	0.269	0.259	0.430	0.430	0.430	0.289	0.302	0.308	0.430	0.430	0.460	
107.00	4/0	0.135	0.167	0.203	0.220	0.207	0.330	0.360	0.330	0.243	0.256	0.262	0.360	0.360	0.360	
127.00	250	0.135	0.171	0.171	0.187	0.177	0.279	0.295	0.282	0.217	0.230	0.240	0.308	0.322	0.330	
152.00	300	0.135	0.167	0.144	0.161	0.148	0.233	0.249	0.236	0.194	0.207	0.213	0.269	0.282	0.289	
177.00	350	0.131	0.164	0.125	0.141	0.128	0.200	0.217	0.207	0.174	0.190	0.197	0.240	0.253	0.262	
203.00	400	0.131	0.161	0.108	0.125	0.115	0.177	0.194	0.180	0.161	0.174	0.184	0.217	0.233	0.240	
253.00	500	0.128	0.157	0.089	0.105	0.095	0.141	0.157	0.148	0.141	0.157	0.164	0.187	0.200	0.210	
304.00	600	0.128	0.157	0.075	0.092	0.082	0.118	0.135	0.125	0.131	0.144	0.154	0.167	0.180	0.190	
380.00	750	0.125	0.157	0.062	0.079	0.069	0.095	0.112	0.102	0.118	0.131	0.141	0.148	0.161	0.171	
507.00	1000	0.121	0.151	0.049	0.062	0.059	0.075	0.089	0.082	0.105	0.118	0.131	0.128	0.138	0.151	

Fuente: NFPA70:2014 (National Electrical Code).