

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍACIVIL Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES:

Cruz Garcia Jhordink Benjamin (ORCID(0000-0002-9089-4153)

Cruz Vasquez Junior (ORCID: 0000-0002-3668-602X)

ASESORES:

MG. Villar Quiroz Josualdo Carlos (ORCID: 0000-0003-3392-9580)

MG. Herrera Viloche Alex Arquimedes (ORCID: 0000-0001-9560-6846)

LÍNEA DE INVESTIGACIÓN:

Construcción Sostenible

Diseño de Obras hidráulicas y saneamiento

TRUJILLO – PERÚ

2021

DEDICATORIA

Dedicado a Dios en primer lugar y mi madre Elizabeth Garcia, mi Padre Benjamin Cruz que me ve desde el cielo y toda mi familia que me ha brindado su apoyo para el logro de mis objetivos.

Muchas gracias.

Cruz Garcia, Jhordink

Dedicado a mi madre Luz Ari Vásquez, mi padre Jacinto Cruz y toda mi familia que me habrindado su apoyo para el obtener de mis objetivos.

Muchas gracias.

Junior, Cruz Vásquez

Agradecimiento

A todos mis compañeros de mi centro de labores por el apoyo y las facilidades brindadas para poder desarrollar el presente trabajo de investigación.

A la Universidad César Vallejo y su plana docente que gracias a sus enseñanzas ha servido para poder realizar esta investigación.

Gracias.

Cruz Garcia, Jhordink

A mi esposa y a mis hijas por el apoyo que brindaron para poder desarrollar el presente trabajo de investigación.

A la Universidad César Vallejo y su plana docente que gracias a sus enseñanzas ha servido para poder realizar esta investigación.

Gracias.

Cruz Vásquez, Junior

RESUMEN

La presente investigación se realizó en la ciudad de Chuquibamba, se evaluó el diseño hidráulico a tomar del canal la longitud y varios estudios que se hicieron en campo, para la realización de la tesis se utilizó un diseño no experimental transversal descriptivo, la técnica utilizada fue la observación y la revisión documentaria, para el de análisis de datos se hizo uso de la estadística descriptiva como técnica de análisis de datos, utilizando el software Excel para la recolección de información obtenido por la quía de observación N° 01 el cual se procesará los datos obtenidos en campo para su análisis por medio de tablas de frecuencia y gráficos en barras para una mejor representación de la información procesada, perjuicios a pobladores y a usuarios que utilizan los canales de riego para su cultivos y así ser beneficiados con el proyecto, se obtuvo como resultado el diseño hidráulico del canal el caudal la fluidez y velocidad . Dado como resultado un caudal y diseño adecuado para trasladar el agua para el sistema de riego de cultivos. Lográndose evaluar la pendiente el caudal el diseño hidráulico la longitud de curva del caudal asimismo también se aprecia un buen estado en algunas zonas de la unidad de estudio, dando como resultado que el diseño hidráulico sea realizado en un estado "bueno".

Palabras clave: Diseño Hidráulico, canal, evaluación de canal.

Abstract

The present investigation was carried out in the city of Chuquibamba, the hydraulic design to take the length of the canal was evaluated and several studies that were carried out in the field, for the realization of the thesis a non-experimental descriptive cross-sectional design was used, the technique used was Observation and documentary review, for data analysis, descriptive statistics was used as a data analysis technique, using Excel software to collect information obtained by observation guide No. 01, which will process the data obtained in the field for analysis by means of frequency tables and bar graphs for a better representation of the processed information, damages to residents and users who use irrigation canals for their crops and thus be benefited by the project, were obtained as The result is the hydraulic design of the channel, the flow, the fluidity and speed. As a result, an adequate flow and design to transfer the water for the crop irrigation system. Being able to evaluate the slope of the flow, the hydraulic design, the length of the flow curve, and a good condition is also seen in some areas of the study unit, resulting in the hydraulic design being carried out in a "good" condition.

ÍNDICE DE CONTENIDOS

3.8.	.2 Mecánica de suelos	49
3.8.	.3 Estudio Hidrológico	49
3.8.		
I.V RI		
4.1	Estudio Topográfico	50
4.2		
4.3	Estudio Hidrológico	61
4.4		
4.5		
4.6	. CAPACIDADES DEL CANAL DISEÑADO	96
4.7	Coeficiente de escorrentía	100
V. [DISCUSIÓN	104
VI.	CONCLUSIONES	107
VII	RECOMENDACIONES	108

INTRODUCCIÓN

1.1. Realidad problemática.

a. Global

Actualmente, las redes de agua y saneamiento es una de las actividades más importantes y la que más ha evolucionado en todo el mundo, cada año son más los países que invierten en el mejoramiento de canales de regadío y de saneamiento con el fin de mantener a todos los lugares conectados mediante canales es esencial para el desarrollo urbano rural, su proceso apropiado para el consumo humano y para la agricultura y ganadería. Pero, existe un gran déficit en las zonas rurales de difícil acceso ya sea por factores topográficos o infraestructura vial que no cuenta con un saneamiento apropiado para cubrir las necesidades básicas del área de influencia, por lo cual generan un incremento tasa de mortalidad, además de incomodidad de salubridad que representa directamente al poblador, con el fin de impulsar el desarrollo de los pueblos y lugares más alejados a las principales ciudades, pero la evolución del saneamiento y redes de agua también ha traído muchos problemas, uno de ellos es el crecimiento acelerado de mayor producción de agricultura y ganadería. En las principales ciudades los canales de regadío son primordiales para la agricultura ya que ayuda a la producción de productos agrícolas con mayor demanda. Es por eso que hacer un buen mejoramiento de canales de regadío y una buena planeación es primordial para obtener un desarrollo acelerado y ordenado de un país, ya que con esto se logra una mejor producción agrícola que sea fácil, rápida y segura.

En Colombia, se ha obtenido información sobre "Ampliación y optimización del sistema de alcantarill4ado sanitario del municipio de fundación-magdalena etapa ii"

dicho proyecto se elaboró o diseño con fines de dar mejor calidad de vida de los habitantes de Magdalena, eliminado de inmediato problemas ambientales, generando un impacto positivo a la salud pública e los pobladores, en el proyecto se puede contemplar las siguientes actividades : suministro e instalación de 6.774m de colector en tuberías de PVC, donde se utilizó dímetros de tubería desde 10" hasta 36"con fines de variaciones de velocidades disminución de presiones por cuestiones topográficas del terreno, además se instalaran 30.176m de redes de alcantarillado en tuberías de PVC de 8",488 pozos de inspección de concreto de 3000psi cilindro Φ =1.2m así como también suministro e instalación de acometidas domiciliarias que incluyen tubería de PVC de 6". (Tavera, 2015, p.27,29)

Ecuador, ciudad de Santo Domingo se ha obtenido información sobre "Propuesta de mejoramiento y regulación de los servicios de agua potable y alcantarillado para la ciudad de Santo Domingo", la provisión de agua potable y redes de saneamiento en la ciudad de Santo Domingo es deficiente por lo que es de vital importancia aumentar y mejorar la cobertura e redes de agua y alcantarillado, la toma o captación es de tipo convencional, radica en un azud que obstruye el cauce del rio y capta el agua por un conducto rejilla lateral, esta toma está diseñada para almacenar entre 700 a 800l/s pero solo se toma 300l/s y lo demás sale por el rebose del caudal, la capacidad del conducto utilizado para transportar el agua a la planta de tratamiento hasta 1992 fue de 275l/s sin embargo lo llegaba el causal necesario para satisfacer la población, en 2002 la administración municipal contrata a la compañía GALLEGOS donde se realizó el mejoramiento para la cual se instaló una tubería de PVC de 60mm de diámetro para la cual dotara a la población de 450l/s además esta tubería posee válvulas que permiten el control y regulación del caudal, en el 2014 por el crecimiento poblacional se optó a mejorar y ampliar el diámetro de la tubería de 700mm en hierro dúctil con una capacidad de conducción de aqua de 800l/s, asimismo se realizara la ampliación de la planta de tratamiento con propósito de dota de un servicio adecuado(cantidad y calidad) de agua potable para la ciudad. (Lino, 2014, p76)

A nivel nacional, Perú, se estima que aproximadamente un 86.7% de los canales

a nivel departamental no se encuentran revestidas en concreto, siendo esto muy preocupante, debido a que impide el aumento de la agricultura y la ganadería, lo cual es indispensable para el desarrollo de las principales regiones del País. Los canales de regadío que carecen de un buen mejoramiento son las que se encuentran más alejadas de las capitales, siendo estas las que unen pequeños centros poblados rurales o urbanos de los departamentos, se estima que el 99% de red vial vecinal (RVV) o rural no se encuentran los canales revestidos; todo lo contrario, sucede con los canales de regadío de la zona norte que conectan las principales ciudades, ya que aproximadamente un 62.9% se encuentran revestidos. (Diario Perú21, 2017)

En la ciudad de Cajabamba existen numerosas propuestas para dar solución al problema del mejoramiento de canales de regadío en varios puntos específicos de los principales caseríos de la ciudad, una de ellas es el Diseño y mejoramiento de canales a desnivel en la intersección de las avenidas Junín y jr. Castilla en el Distrito de Huamachuco. El diseño se realizó empleando el Manual de Diseño de Canales del ANA, así como también se buscó cumplir con los estándares internacionales como la American Association of State Highway and Officials Diseño y mejoramiento de canales de regadío, que permitirá dar solución al problema que presentan deficiencias en su recorrido lo que acarrea problemas para los agricultores y falta de agua. Y diseño de canales siguiendo las normas y reglamentos del ANA. (Cabrera, 2019)

b) Macro

(Miranda, 2018). Encontró que, de la investigación realizada, se logró un diseño que cumple con las normas del ANA (Autoridad Nacional del Agua), en esta forma se ara el mejoramiento del sistema de riego y su consiguiente aumento en las áreas de cultivo, consiguiendo una mejora de la calidad de vida de la población involucrada, siempre respetando al medio ambiente. Además del estudio de mecánica de suelos hechos se obtuvo que el suelo se clasificó como Grava mal graduada con arena, Arcilla ligera arenoso, Arena arcillosa con Grava; del estudio Hidrológico determino un caudal de máxima avenida de 26.59 m³/s y en tiempos de verano de 0.4 m³/s;

el canal diseñado tuvo una longitud de 6.699km y una sección trapezoidal de dimensiones 0.60 m de base por 1.00 m de espejo de agua, con 0.80 m de altura, un espesor de 0.10 m y borde libre de 0.30 m.

(Paredes, 2018). Encontró que el proyecto mejoraría la eficiencia de riego y la calidad de vida. Además de esta investigación realizada, beneficiará de manera significativa a la población de Pampas de Chepate y habiendo un control en el proceso de ejecución de la obra se evitará reducir al mínimo posible el impacto al medioambiente, de esta forma ya se tendría el diseño del canal para su futura ejecución e incrementando la eficiencia del canal en la zona, cumpliendo la normatividad del ANA.

(Rosales, 2018). Encontró que identificando todo tipo de carencias, limitaciones y deficiencias que tiene el actual sistema de riego se puede evitar pérdidas y dar a la comunidad una obra que permita satisfacer las demandas de los agricultores. Además, según los datos obtenidos y sus resultados han indicado una topografía ligeramente suave; del estudio de mecánica de suelos se determinó el siguiente tipo de suelo SC-SM (Arena limo arcillosa)

Se concluyó que, en cada antecedente, identificando las carencias, deficiencias y limitaciones en el servicio de riego se pudo hacer un análisis para un mejoramiento o un diseño si se requiere, guiándonos de estos antecedentes, sentaremos las bases de nuestra investigación.

b. Macro Intermedio

ODEBRETCH empresa ejecutora del Proyecto de Chavimochic constituye un proyecto de propósitos múltiples, ubicado en una región que por su importancia socioeconómica esta llamada a alcanzar a través del proyecto, Para ello, se ensamblaron y pusieron en marcha diferentes obras de infraestructura Mayor de Riego pertenecientes a la Primera y Segunda Etapa, sirviendo actualmente a los valles de Chao, Virú y Moche.

CONSORCIO HUARMACA (E&S Cons Alquiler y Construcción SAC, Constructora e Inversiones Soto SAC y Disser Contratistas Generales SRL)

El proyecto consistió en la mejora del sistema de riego en dos fases. La primera consiste en la infraestructura para revestimiento de más de 60 km de canales, construcción de 05 reservorios, 591 tomas de aguas, 10 captaciones de manantiales, cruces de quebradas, pases aéreos y peatonales, cámaras rompe presión, pozas de disipación y bebederos. Mientras que la segunda fase incluyó el fortalecimiento a los usuarios a través de talleres, acompañamiento y técnicas demostrativas sobre control eficiente de agua en el riego de parcelas, preparación de terrenos, desinfección de semilla y siembra, control de plagas y enfermedades de los cultivos, deshierbas y abonamiento adecuado, y el fomento para la organización y formalización de los productores.

c. Micro

El problema se encuentra en el canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, cuenta con varios canales de varios km de longitud entre ellos canal principal y los canales secundarios, entre ellos el canal de Chuquibamba que es utilizado por alrededor de 185 usuarios, él canal posee algunos tramos revestidos de concreto y los demás tramos sin revestir, que presentan un mal estado y agrietamiento en general, además posee tramos sin revestir, esto ha provocado grandes pérdidas en el caudal de agua de los canales. El caserío posee alrededor de 250 residentes, y los residentes no poseen un acceso permanente al agua del canal para utilizarlo en sus cultivos, lo cual afecta la productividad en la zona y con ello gran cantidad de terrenos sin uso, debido a la falta de agua, esto afecta terriblemente en la economía de la zona ya quegran parte de los pobladores dependen de la agricultura.

Este problema es de gran importancia para el distrito de Cachachi, se originó debido a que hay una ausencia de estudios completos dirigido a las necesidades que posee la población de la zona y las demandas que posee el entorno demográfico, para beneficiar a la población dedicada a la agricultura (personas que usan este recurso hídrico), esto es debido a que no hay evidencia que se haya aplicado conceptos básicos que incluyan el crecimiento de la población para sus necesidades a largo plazo.

d. Nano

La presente investigación, busca lograr hacer un mejoramiento de canales, el problema se encuentra en el canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, cuenta con varios canales de varios km de longitud entre ellos canal principal y los canales secundarios, entre el cual está el canal de Pueblo Viejo que es utilizado por alrededor de 50 usuarios, él canal posee algunos tramos revestidos de concreto y los demás tramos sin revestir, esta realidad problemática es necesario realizar una investigación para que determine

¿Qué características técnicas debe presentar el canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca?, para cumplir con las Normas del ANA. Así como también, la población vería mermada sus esfuerzos de una mejora en la economía de la zona, reduciendo el nivel de eficiencia y una menor capacidad productiva para el desarrollo de la zona, ya que, en tiempos de estiaje, los agricultores ven mermadas sus capacidades de hacer crecer su producción, esto añadido al mal estado de los canales, la capacidad de distribuir agua se reduce enormemente.

1.2 Planteamiento del problema.

¿Qué características debería tener el diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba - Cajamarca, 2021, ¿para que cumpla con la Norma Técnica del ANA?

1.3 Justificación

a. Justificación General:

Esta investigación se está realizando porque es necesario hacer un diseño hidráulico del canal de Chuquibamba del distrito de Cachachi, ya que presentan deficiencias en su recorrido lo que acarrea problemas para los agricultores y falta de agua.

Al resolver el problema de investigación, estaremos ayudando a evitar pérdidas del recurso hídrico a través del cauce de los canales que están en mal estado de conservación, además estaremos mejorando toda la productividad agrícola que tiene el distrito de Cachachi, incrementando al máximo su eficiencia.

Al responder a la pregunta lograremos una mejora económica para el distrito de Cachachi, provincia de Cajabamba incrementando la productividad agrícola, también habrá una mejora tecnológica ya que el distrito va tener canales de riego revestidos en concreto lo que generará evitar pérdidas del caudal de agua y también una mejora social y ambiental en la zona, ya que, al encausar el canal, evitaremos que el agua tenga contacto con agentes contaminantes.

Esta solución beneficiará, directamente a los agricultores ya que necesitan de los canales de riego para regar sus campos de cultivo, de esta forma su producción aumentará considerablemente, e indirectamente, beneficiará al distrito ya que mejorará económicamente debido a un incremento en la producción.

b. Justificación teórica:

En esta investigación tiene como finalidad de mejorar los canales del distrito de Cachachi; se realizará porque es necesario hacer un mejoramiento del canal de regadío y así poder ayudar a mejorar mediante teorías y normas técnicas del ANA yaestablecidas en nuestro país, el cual obtendremos resultados que aportarían a nuestro trabajo. El actual nivel de vida de los pobladores, generando deesta forma un desarrollo económico social sostenible, mejorando la producción en laagricultura y así mejorar las condiciones en las que se encuentra en la actualidad el canal aplicando la norma técnica del ANA.

c. Justificación Práctica:

Este estudio realizado se enfocó únicamente en proponer un mejoramiento de canales de regadío, por lo mismo a que en el distrito de Cachachi, el problema se encuentra en el canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021, cuenta con varios canales de varios km de longitud entre ellos canal principal y los canales secundarios, entre ellos el canal de Chuquibamba que es utilizado por alrededor de 50 usuarios, él canal posee algunos tramos revestidos de concreto y los demás tramos sin revestir, que presentan un mal estado y agrietamiento en general, además posee tramos sin revestir, esto ha provocado grandes pérdidas en el caudal de agua de los canales. El caserío posee alrededor de 250 residentes, y los residentes no poseen un acceso permanente al agua del canal para utilizarlo en sus cultivos. En este proyecto se llevará a cabo bajo las normas de la Autoridad Nacional del Agua donde rige los parámetros de diseño y mejoramiento de canales. Este proyecto se encuentra en el canal de riego Chuquibamba en el distrito de Cachachi-Cajabamba-Cajamarca, Actualmente es visible el problema que los aqueja por la carencia de un mejoramiento geométrico adecuado de los canales de regadío, en el distrito de Cachachi.

Esta investigación permitirá y beneficiará a los pobladores, ya que, con el diseño y mejoramiento, se brindará mayor seguridad en la agricultura, y optimizar el flujo de productividad agrícola, donde podrán abastecerse de agua para sus sembríos de manera más rápida y sobre todo segura.

d. Justificación Metodológica:

Este proyecto de investigación es indispensable; se desarrollará un estudio cuantitativo, el cual se efectuará y resolverá para el cálculo de variable, también se utilizará instrumento de medición, con ello se obtendrá como resultado la comprobación de la hipótesis; el cual obtendremos resultados que aportarían a nuestro trabajo.

1.4. Hipótesis

Las características que debe tener el canal de riego son revestidas en concreto, cumplir con la pendiente requerida y transportar el caudal de agua de acuerdo a la demanda, para que cumpla con la norma técnica del ANA en el distrito de Cachachi, provincia de Cajabamba – Cajamarca, 2021.

Hipótesis referenciale	Hipótesis Componentes metodológicos Componentes referenciales				
	Variable	Unidad de análisi s	Conector es lógicos	El espacio	El tiempo

	D:		1	:_a:a_	001
as	Diseño	canales	n el	istrito	021
característica		e riego			
s que debe		según l		de Cachachi,	
tener		a norma		provincia	
el canal		técnica			
de		de la		de	
riego		Autorida		Cajabamba-	
son		d		Cajamarca,	
revestidas		Nacional			
en		del			
concreto,		Ag			
cumplir con		ua (ANA)			
la pendiente					
requerida					
у					
transportar					
el caudal					
de agua de					
acuerdo a la					
demanda,					
para que					
cumpla					
con la					
norma					
técnica					
del					
NA en el					
istrito					
de Cachachi,					
provincia					

de			
Cajabamba			
– Cajamarca,			
021.			

1.5 Objetivos

1.5.1 Objetivo General

Realizar el diseño hidráulico del canal de Chuquibamba cumpliendo con la norma técnica de la Autoridad Nacional del Agua en el distrito de Cachachi, provincia de Cajabamba-Cajamarca, 2021.

1.5.2 Objetivos Específicos

- O.E.1 Realizar el estudio topográfico del lugar
- O.E.2 Realizar el estudio de Mecánica de suelos.
- O.E.3 Realizar el estudio hidrológico.
- O.E.4 Realizar el diseño hidráulico y estructural del canal.

II. MARCO TEÓRICO

2.1 Antecedentes

"Mejoramiento Del Sistema De Riego Del Canal Shumin-San Benito, Sector San Benito, Caserío De Coina, Distrito De Usquil-Otuzco-La Libertad". (Llerena, 2017). La presente investigación tuvo como objetivo principal el realizar el mejoramiento del canal Shumin y consideró como población al área de influencia del canal de riego, el número respectivo de usuarios fue de 22 y un área de 54.74has. Para la recolección y proceso de la información se utilizó equipos y software de ingeniería (Estación Total, GPS, AutoCAD, AutoCAD CIVIL 3D, S10, etc.). Los resultados que se obtuvo indicaron tener una topografía accidentada con zonas de difícil acceso; para el estudio de mecánica de suelos se elaboraron las calicatas y se identificó un suelo compuesto en su mayoría por limos y arcillas; del estudio Hidrológico determinó un caudal de estiaje mínimo de 127 l/s teniendo en cuenta los datos de la cuenca Chicama y el caudal de diseño de 84l/s; el canal diseñado fue de sección trapezoidal de 3.13km de largo, con una base de 0.30m, además de un talud de 0.25, y una altura de 0.60m; en cuanto al EIA, la tesis no cuenta con un plan ni medidas de contingencia; el costo de la obra fue de S/. 1, 029, 607.67. Se concluyó que el proyecto garantizaría la disponibilidad hídrica lo cual permitiría aumentar la producción agrícola en épocas de verano. (p. 80)

La presente investigación nos aporta un mejoramiento que sirve para tener en cuenta la zona de estudio que debemos seguir para el mejoramiento del canal y así evitar los desperdicios y mejorar la eficiencia del uso de los canales en el sector, perosobre todo garantizar la disponibilidad hídrica de la zona referida.

"Mejoramiento Del Canal De Riego Chucupe Bajo En El Sector Capote, Distrito De Picsi, Provincia De Chiclayo Tramo Crítico: Km 4+352.80 Al Km 6+000.00".

(Dávila y Rosales, 2018). La presente investigación ha tenido como objetivo el diseño del mejoramiento de la infraestructura del canal de conducción de Chucupe Bajo para una eficiente servicio en el riego de los cultivos del sector Capote, consideró como población el tramo del canal de 23 km con el inicio en el distrito de Picsi y finalizando en el distrito de Mochumi, en cuanto a la muestra del tramo estudiado fue desde la progresiva 4+352.80km hasta la 6+000.00km, en cuanto a los usuarios que son beneficiados fueron un total de 328. Los resultados han indicado una topografía ligeramente suave; del estudio de mecánica de suelos se di a entender el siguiente tipo de suelo SC-SM (Arena limo arcillosa); del estudio hidrológico se determinó un caudal de diseño de 3m3/s; en cuanto al diseño de este se tiene un ancho de solera de 1.5m, un talud de 1, coeficiente de rugosidad 0.015, un tirante normal 0.81m, tipo de flujo subcrítico y una velocidad de 1.61m/s; del estudio de impacto ambiental planteo medidas de mitigación como la nivelación, conformación y restitución de las áreas a su estado natural, eliminación de materiales que afectan el entorno natural y la disminución de ruidos y polvo; el presupuesto total de la obra fue de S/. 1, 056, 239.32. Se concluyó con la identificación de carencias, deficiencias y limitaciones en el servicio de riego y posterior solución con la ejecución del diseño del canal de riego Chucupe bajo. (p.73)

En la investigación presente nos aportará todos los lineamientos que se tiene que tener en cuenta, previamente habiendo identificado todo tipo de carencias, limitaciones y deficiencias que tiene el actual sistema de riego para de esta forma se pueda evitar pérdidas y dar a la comunidad los lineamientos para un futuro proyecto que permita satisfacer las demandas de los agricultores.

"Diseño para el mejoramiento del canal de riego el Común - Vizcacha, Caserío la Esperanza, Distrito de Huaranchal, Provincia Otuzco -La Libertad" (Pacheco, 2018). La presente investigación ha tenido como objetivo determinar todas las características técnicas para el diseño del mejoramiento del canal de riego El Común-Vizcacha, considero como población al diseño del canal de 5.5km, en cuanto al número de usuarios que van a ser beneficiados fueron un total de

120. Se usó como instrumentos y técnicas a la observación, los equipos topográficos (Estación total, GPS, Wincha), los instrumentos de laboratorio de mecánica de suelos, y softwares (AutoCAD, AutoCAD CIVIL 3D, S10, Excel, etc.). Los resultados indican una topografía accidentada tipo 3; un suelo Limoso con arena con un 83.93% de suelos finos; del estudio hidrológico se determinó un caudal de 160 l/s; y el canal que fue diseñado con un ancho de 0.60m de fondo, 0.70m de altura y 0.10m de espesor; del EIA se implementó medidas correctivas y de control. Se concluyó con un presupuesto total de S/4,596,390.77. (p.69) Este trabajo de investigación nos aportará todos los lineamientos que debemos tener en cuenta para diseñar un canal tomando en cuenta la topografía de la zona y usando todos los softwares necesarios para el diseño, de esta forma al cumplir con toda la normativa del ANA, se espera que esta información sirva como base para la ejecución de un canal en el lugar indicado.

"Diseño del Canal de Riego para el anexo Collay, distrito de Tayabambaprovincia De Pataz-Región La Libertad"

(Según Haro, 2018). De la presente investigación se asumió como objetivo principal el realizar el diseño del canal de riego en el anexo Collay, considerando como población al canal de riego y toda su área de cobertura, además con el proyecto se beneficiarían un total de 120 familias y 190has de cultivos. Para ello su uso como instrumentos el monitoreo, equipos topográficos, de laboratorio de mecánica de suelos y de procesamiento de datos, además de los métodos analíticos de datos conformado por programas de ingeniería (AutoCAD, Civil3D, S10, Hidroesta, etc). Los resultados indicaron un terreno accidentado con pendientes transversales de 51% a 100% y una altitud promedio de 3378msnm; del estudio de mecánica de suelos hizo un total de 06 calicatas de profundidad 1.50m y determino 3 tipos de suelos Arcilla Limosa CL-ML, Arcilla ligera (CL), Arena

Arcillosa (SC), respecto al contenido de humedad, este se encuentra entre los valores de 3.45% y 9.90%; del estudio hidrológico determino una intensidad máxima de 8.09mm/h, un caudal máximo de 10.704 y un caudal de diseño de 0.14m3/s; el diseño del canal tuvo una longitudde 5.42km y una sección trapezoidal de 0.30m de ancho de solera, un talud de 0.5, un espejo de agua de 0.62m y un tirante variable de valores 0.29, 0.28, 0.32, 0.33 y 0.34; del estudio de impacto ambiental se determinó impactos negativos como los agentes contaminantes por equipos livianos y pesados, la alteración de terreno agrícola, cambios en el paisaje y la afectación a la biodiversidad, dentro de los impactos positivos estuvo el mejoramiento de la calidad de vida, la generación de empleo, la mejora de la producción agrícola y el posicionamiento en el mercado; el presupuesto de la obra fue de S/. 2, 209, 024.55. Se concluyó además que el diseño del canal cumplía los parámetros establecidos en las normas del ANA y se generarían impactos positivos y negativos que influían de manera directa en el canal. (p.84)

Este trabajo de investigación tiene como finalidad aportar todos los lineamientos a tener en cuenta para el diseño de este canal, el cual de llegarse a construir generaría una mejora en la producción agrícola y un mejor posicionamiento en el mercado, considerando siempre todas las normativas y especificaciones técnicas de la autoridad nacional del agua (ANA) en su desarrollo.

"Diseño del Canal de Riego en el Anexo Huancas, Distrito de Tayabamba-Provincia de Pataz-Región la Libertad"

(Flores, 2018). De la presente investigación se ha tenido como objetivo el diseño del canal de riego del Anexo Huancas, considerando como población al canal de riego estudiado y su área de influencia, además el canal beneficiaría a 75 familias y un total de 100has. Para ello empleo instrumentos y técnicas como la Observación, Guías de observación, equipos de topografía, laboratorio de Mecánica de suelos y programas especializados para ingeniería (AutoCAD, S10, Excel, HCanales). Los resultados obtenidos indicaron un terreno accidentado con pendientes transversales entre 51% y 100% a una altitud promedio de 3370msnm; del estudio de suelos se realizó 6 calicatas con una profundidad de 1.20m y se determinó 03 tipos de suelos Limos arcillosos (ML), Arenas Ligeras con grava (CL) y Arenas Arcillosas con Grava (SC), además de un contenido de humedad que varía entre 22.66% a 30.32%; del estudio Hidrológico se determinó una intensidad máxima en la cuenca de 8.93mm/h, un caudal de máxima avenida de 6.58m3/s y un caudal de diseño de 0.05m3/s; el canal fue diseñado con una longitud de 3.059km y una sección trapezoidal de sección 0.25m de ancho de solera, talud de 0.5, espejo de agua de 0.44m, tirante variable con valores de 0.20, 0.21 y 0.19 y una rugosidad de 0.014.

Además de un desarenador de 2m de longitud y una profundidad de 0.80m; En conclusión estudio de impacto ambiental se determinó impactos ambientales negativos como la contaminación por equipos, la alteración de áreas agrícolas y del paisaje y los cambios en la biodiversidad, en los impactos positivos estuvo el mejoramiento en la calidad de vida, la generación de los empleos, el crecimiento agrícola y el incremento de la economía; el presupuesto total de la obra fue de 673,978.84. (p.92)

Este trabajo de investigación tiene como finalidad aportar una base sólida ya que de concretarse la obra, generaría empleo y permitiría a la población contar con agua para mejorar sus cultivos y calidad de vida, para el anexo de Huancas, esto significaría un gran avance, ya que en el estado actual hay pérdidas significativas del recurso Hídrico a través del canal de conducción.

"Diseño del Mejoramiento del Canal de Riego Sausalito del Caserío Puente Ochape, Distrito Cascas, Provincia Gran Chimú, La Libertad"

(Miranda, 2018). La presente investigación en su tesis se tuvo como objetivo principal realizar una propuesta técnica y normativa para el Canal de Riego Sausalito, considerando como población al área de influencia directa del canal y un total de 118 beneficiarios. Para la recolección de datos se realizó visitas de campo (Observación), y uso equipos topográficos (Estación total, GPS, Wincha, Prismas), de mecánica de suelos y oficina, para procesar la información y diseño empleo software de ingeniería (AutoCAD, AutoCAD CIVIL 3D, S10, Excel, etc.). Los resultados obtenidos arrojaron que es un terreno llano de pendientes promedio del 0.662%; en cuanto al estudio de mecánica de suelos se realizaron 08 calicatas con una profundidad de suelo que este se clasificó como Grava mal graduada con arena, Arcilla ligera arenoso, Arena arcillosa con Grava; del estudio Hidrológico determino un caudal de máxima avenida de 26.59 m³/s y en tiempos de verano de 0.4 m³/s; el canal diseñado tuvo una longitud de 6.699km y una sección trapezoidal de dimensiones 0.60 m de base por 1.00 m de espejo de agua, con 0.80 m de altura, un espesor de 0.10 m y borde libre de 0.30 m; del estudio de impacto ambiental se identificó los impactos negativos como la alteración de la calidad del suelo, agua, del paisaje, de la flora y fauna y a su vez planteó medidas de solución como los retiros de materiales e instalaciones temporales, la implementación de baños químicos, revegetación y prendimiento de especies; el costo de la obra fue de S/.3, 477,013.65. El autor concluyó que se debería tener un control de la ejecución de la obra con el fin de causar pocos o nulos impactos negativos en el medio ambiente. (p.87)

El aporte de esta investigación beneficiará de manera significativa a la población de la zona y habiendo un control en el proceso de ejecución de la obra evitaremos causar un impacto negativo en el medio ambiente o al menos reducir al mínimo posible su impacto, de esta forma ya se tendría el diseño del canal para su futura ejecución, cumpliendo la normatividad del ANA.

"Diseño de la infraestructura del canal de riego Hacienda Vieja-caserío Pampas de Chepate - distrito de Cascas - provincia Gran Chimúdepartamento La Libertad"

(Paredes, 2018). De la presente investigación tenía como objetivo principal determinar las características del diseño de la infraestructura del canal de riego hacienda vieja, considero como población al canal en estudio y toda su área de influencia, con un área de cultivos de 90.80 ha. Para ello empleo técnicas e instrumentos como la observación, además instrumentos de topografía, de estudio de suelos e hidrológicos, para el procesamiento de la información se usó equipo de oficina y software de ingeniería (AutoCAD, AutoCAD CIVIL 3D, S10, MS Project, etc.). Los resultados indicaron que la topografía era accidentada con pendientes de 51% a 100% y una altura de 1204 msnm; del estudio de mecánica de suelos se determinó dos tipos de suelo predominantes Arena limosa (SM) y Arena arcillosa (SC), con un contenido de humedad de 7.42% y 28.8% respectivamente; del estudio hidrológico se pudo calcular el caudal de diseño con un valor de 0.12 m3/s; el diseño del canal que se tomó es de sección trapezoidal de base 0.30m, talud 0.50, tirante variable de valores 0.58, 0.29, 0.28 y 0.33 y altura variable considerando el borde libre 0.10m; del estudio de impacto ambiental, los impactos negativos se darían con el movimiento de tierras, y los positivos durante el funcionamiento del canal; el presupuesto de la obra fue de S/. 1, 201, 760.51. Se concluyó además que el proyecto mejoraría la eficiencia de riego y la calidad de vida. (p. 86). El aporte de esta investigación realizada beneficiará de manera significativa a la población de Pampas de Chepate y habiendo un control en el proceso de ejecución de la obra se evitará reducir al mínimo posible el impacto al medioambiente, de esta forma ya se tendría el diseño del canal para su futura ejecución e incrementando la eficiencia del canal en la zona, cumpliendo la normatividad del ANA.

"Diseño de la infraestructura del canal de riego Pampas de Jahuey – caserío Pampas de Jahuey- distrito de Ascope - provincia Ascope – departamento La Libertad".

(Costa, 2018). De la presente investigación tenía como objetivo principal determinar las características del diseño de la infraestructura del Canal de riego llamado "Pampas de Jahuey", considerando como población al canal estudiado y su área de influencia, haciendo un total de 386ha de cultivos y una población beneficiada de 220 personas.

Para la recolección de datos ha sido empleada la

observación, equipos topográficos, software (AutoCAD, AutoCAD CIVIL 3D, S10, Excel, etc.) para procesar la información. Los resultados indicaron un terreno con pendientes horizontales menores al 1% y transversales entre 10% y 12%; del estudio de mecánica de suelos determino un suelo (SM) Arenas Limosas; del estudio hidrológico obtuvimos un caudal de diseño de 0.59 m3/s; en cuanto al canal este tuvo una sección trapezoidal con un ancho de solera de 0.50m, talud 1:1, tirante variable; del EIA se determinó que el impacto que generará más daño está el movimiento de tierras que se realizaría. Se concluyó con un costo de la obra de S/ 3,341,216.59. (p. 76). El aporte de esta investigación realizada nos aportará mucho en el diseño de la infraestructura del canal de Pampas de Jahuey, además de tener lineamientos básicos para su futura construcción para el caserío, evitando perdidas del caudal de agua a través del canal, incrementando la productividad y generando empleo de realizarse.

2.2 Bases teóricas.

2.2.1 Criterios de Diseño de obras hidráulicas

Una vez realizado el estudio de suelos al terreno del canal, se podrán conocer con exactitud las características del suelo y todas las consideraciones que tendremos en cuenta al momento de diseñar y mejorar el canal.

Se tendrá en cuenta lo siguiente:

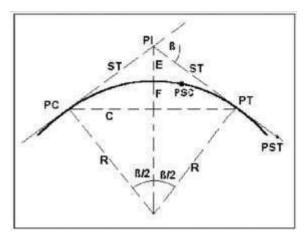
Cálculo de caudal de diseño para el mejoramiento de canal de riego

El caudal de diseño del canal se calculará a partir de los datos obtenidos de la estación meteorológica del SENAMHI.

Cálculo de demanda hídrica para el mejoramiento del canal de riego

El cálculo de demanda de agua está dado de acuerdo a los tipos de cultivos.

Diseño de canal de regadío


Se utilizará el Manual de Criterios de diseños de obras hidráulicas para la formulación de hidráulicos multisectoriales y de afianzamiento hídrico, emitido por el ANA.

A) Diseño del canal en planta:

Curvas circulares

Las curvas horizontales circulares tienen como elementos más importantes a los radios, los puntos de inicio y fin de las curvas, la longitud de curva, entre otros.

Figura N° 01

Fuente: Autoridad Nacional del Agua

A: ArcoC: Principio de curvaPI: Punto de inflexión

B: Ángulo de deflexión PT: Punto de tangente

E: Externa PSC: PST: Punto sobre curva

F: Flecha Punto sobre

G: Grado, ángulo central R: Radio de la curva

LC: Longitud de curva ST: Subtangente

Radio mínimo

De acuerdo al manual del ANA, el radio mínimo de las curvas circulares está en función con la capacidad del canal (Caudal).

Figura N° 02

Capacidad del canal	Radio mínimo
20 m ³ /s	100 m
15 m ³ /s	80 m
10 m ³ /s	60 m
5 m ³ /s	20 m
1 m ³ /s	10 m
0,5 m ³ /s	5 m

Fuente: Autoridad Nacional del Agua

B) Diseño del canal en perfil:

Rasante

De acuerdo al ANA, El perfil se realizará en escala 1:2000 en sentido horizontal y 1:200 en el sentido vertical; para cumplir con la relación que recomienda el manual del ANA, 1:10.

Pendiente

El ANA recomienda para el diseño del canal en perfil, que la pendiente de rasante sea igual a la pendiente del canal natural.

C) Diseño de la sección transversal:

Rugosidad

La rugosidad del canal diseñado se eligirá de acuerdo al tipo de superficie.

Figura N° 03

n	Superficie		
0.010	Muy lisa, vidrio, plástico, cobre.		
0.011	Concreto muy liso.		
0.013	Madera suave, metal, concreto frotachado.		
0.017	Canales de tierra en buenas condiciones.		
0.020	Canales naturales de tierra, libres de vegetación.		
0.025	Canales naturales con alguna vegetación y piedras esparcidas en el fondo		
0.035	Canales naturales con abundante vegetación.		
0.040	Arroyos de montaña con muchas piedras.		

Fuente: Autoridad Nacional del Agua

Talud

La Autoridad Nacional del Agua, en su normativa establece los valores de los taludes para distintos tipos de materiales. El diseño del canal es vertical.

Figura N° 04

MATERIAL	TALUD (h : v)
Roca	Prácticamente vertical
Suelos de turba y detritos	0.25 : 1
Arcilla compacta o tierra con recubrimiento de concreto	0.5 : 1 hasta 1:1
Tierra con recubrimiento de piedra o tierra en grandes canales	1:1
Arcilla firma o tierra en canales pequeños	1.5 : 1
Tierra arenosa suelta	2:1
Greda arenosa o arcilla porosa	3:1

Fuente: Autoridad Nacional del Agua

Velocidad máxima y mínima permisible

La velocidad mínima es de importancia pues tiene la finalidad de impedir sedimentaciones, crecimiento de vegetación y estancamientos de agua. **Borde**

El borde libre viene a ser el espacio entre la cota de la corona y la superficie del agua, existen distintas formas de determinar su valor, para el presente diseño se utilizó el cuadro de dimensiones de bordes libres de acuerdo al ancho de solera establecido por Máximo Villon.

Figura N° 05

Ancho de la plantilla (m)	Borde libre (m)
Hasta 0.8	0.4
0.8-1.5	0.5
1.5-3.0	0.6
3.0 - 20.0	1.0

Fuente: Autoridad Nacional del Agua

Espesor de revestimiento

Los valores de revestimiento para canales pequeños son de 5 a 7cm, para canales medianos y grandes el valor de revestimiento es de 10 a 15cm.

2.2.2 Canal

Libre

El canal es una estructura creada con el fin de llevar agua de una captación o bocatoma hacia las áreas de cultivos. Los canales se clasifican en principales los cuales vienen a ser los que conducen el agua de las fuentes a los canales secundarios. El trazado del canal principal, debe evitar en la medida posible, los terrenos demasiado permeables, cuando no se haya previsto de un revestimiento en las paredes y solera, caso que no debe ser frecuente (Poireé, 1977, 49 p).

Los tipos de riego son por gravedad y por presión, en cuanto al riego por gravedad, el agua se capta en una cota más alta y luego se distribuye a las parcelas en las cotas más bajas. El trazado preliminar puede iniciarse en la parte más baja del canal, situado en el punto más alto de las tierras que van a regarse: (Blair, 1965, 91 p).

Clasificación:

Canal de primer orden: Generalmente conocido como canal principal ya que su trazo siempre será con una pendiente mínima, usualmente ubicados con terrenos colindantes de pendientes elevadas. (Rodríguez,2008, p.6)

Canal de segundo orden: Estos se les conocen como laterales, son aquellos que provienen del canal principal como brazos siendo el caudal entrante, es repartido continuamente a los sub-laterales, siendo conocido como unidad de riego al área que brinda estos canales laterales. (Rodríguez,2008, p.6)

Sistemas de riego

Los sistemas de riego, vienen a ser un conjunto de técnicas que garantizan la eficiencia en el riego y la mejora de las tierras. Para impulsar el crecimiento agrícola se realizan los canales, a fin de suministrar el agua necesaria a los cultivos. (Aidarov, Golovanov y Mamaév, 1985)

Estos sistemas llevan el agua por canales a gravedad. El agua se destina directamente a la superficie del suelo, ya sea por inundación inspeccionada o a través de zanjas donde la inundación no es total.

2.2.3 Criterios técnicos para el Mejoramiento de un canal según la norma del ANA

2.2.3.1 Estudio topográfico

Es el conjunto de acciones realizadas sobre un terreno con herramientas adecuadas para obtener una representación gráfica o plano. Los trabajos en topografía pueden serurbanos, de catastro, de construcción, hidrográficos y forestales. Dentro de los instrumentos utilizados en la construcción, actualmente gracias a la tecnología están los equipos como GPS, Estación total, drones, etc. El levantamiento topográfico es de vital importancia para toda obra de ingeniería pues permite conocer las características del terreno. Dentro de los canales son de vital importancia para el diseño.

La Topografía, en ese punto, puede percibirse como una ciencia geométrica aplicada a la descripción de la realidad física inmóvil circundante. Consiste en plasmar en un plano la realidad vista en campo, en el ámbito rural o natural, de la superficie terrestre; en el ámbito urbano, es la representación de los hechos existentes en un lugar determinado: muros, edificios, calles, entre otros. (Josep y Antonio, 2010, p. 6).

2.2.3.2 Estudio de mecánica de suelos

Este estudio trata de la realización de exploraciones en la superficie terrestre mediante métodos como la realización de calicatas y sondajes, las calicatas consisten en la realización de excavaciones de 1m2 por una profundidad variable dependiendo al tipo de estructura. A su vez es importante para todo tipo de obra que se apoye sobre el suelo, el desconocimiento de la característica física y mecánica del suelo a futuro puede acarrear graves consecuencias a la obra. (Sanz, 1975, p.89)

2.2.3.3 Estudio Hidrológico

Este estudio nos permite diseñar, calcular la estructura del canal de regadío. El estudio hidrológico es considerado como la ciencia natural encargada del estudio del agua, su repartición, ocurrencia y circulación en la superficie terrestre, además de sus propiedades físicas, químicas y su interacción con el medio ambiente. El estudio hidrológico proporciona los métodos para realizar el diseño y la operación de todo tipo de estructuras hidráulicas. (Villón, 2002, p.15)

El estudio hidrológico incluye estudios climáticos, topográfico, de delimitación de cuenca y determinación del caudal de diseño, así como la preparación de un modelo hidrológico mediante software, la elaboración cartográfica de la cuenca y a veces incluye la tramitación y el seguimiento con las alianzas hidrográficas.

Además, permite el reconocimiento y la evaluación de las características físicas y geomorfológicas de las cuencas, como examinar y tratar la información hidrometeorológica existente, también de la escorrentía mediante registros históricos y obtener caudales sintéticos. (Ministerio de Agricultura, 2010, pg. 2)

Es un documento en el que recogemos las repercusiones hidráulicas que una obra puede lograr a alcanzar sobre una cuenca hidrográfica. Este estudio nos permite diseñar, calcular la estructura del canal de regadío.

Para los estudios hidrológicos se debe tener datos de la zona como topografía, clima, fuentes de agua, cuencas, etc. El estudio hidrológico generalmente se lleva a cabo después del estudio topográfico y de suelos, además su realización conlleva tiempo es por ello que se debe realizar con anticipación.

2.2.3.4 Diseño de canal

En los proyectos de irrigación, es de importancia la realización de un buen diseño de sección de canal, para esto se debe tener datos del suelo, del tipo de cultivo, de las condiciones del clima, etc. En el diseño entra en función la relación agua, suelo y planta. En el diseño se realiza las características y dimensiones del canal, así como el manejo eficiente del agua. Para el diseño del canal es de vital importancia el caudal para el dimensionamiento y disponibilidad. (ANA, 2010, p.6)

En el diseño de canales se debe tener en consideración elementos como: fotografías aéreas con el fin de localizar pueblos, áreas de cultivo, domicilios, caminos, etc.; plano topográfico del área y estudios de suelos, hidrológicos y demás.

Además el diseño del canal es la culminación de los estudios, para ello se necesita los estudios realizados con anterioridad como topográfico, de suelos e hidrológico, con estos datos obtenidos se diseña el canal para lograr que este sea eficiente y cumpla con su propósito de abastecer a todos los cultivos durante todo el año incluso en épocas de estiaje. La planificación de los proyectos de irrigación, depende de la formación y experiencia del diseñador, destacándose en esta especialidad la ingeniería agrícola (Autoridad Nacional del Agua, 2010, pg. 6)

2.2.3.5 Estudio de impacto ambiental

Estudio técnico cuyo fin es prever y determinar los posibles impactos ambientales, negativos y positivos, derivados de proyectos y diferentes actividades reales; para presentar políticas, planes y medidas de control y mitigación para estos impactos. (Duinker, Mackinson y Walker, 2018, p. 5).

Además, este estudio contempla políticas, medidas y planes de control y mitigación con el fin de hacer al proyecto sustentable. Se identifican, evalúan y describen todo tipo de impactos que se generaran en el proyecto y alrededores en caso de que este se llegue hacer realidad, una vez conocidos todos estos impactos se contemplan las medidas necesarias para aceptarlos, modificarlos o desecharlos. El estudio de impacto ambiental sirve para determinar la viabilidad ambiental de un proyecto de inversión. (Ministerio del Ambiente, 2011- 2016 Perú, pg. 11.)

2.2.3.6 Análisis de costos y presupuesto

Identifica, mide, analiza y reporta los diversos elementos de los costos directos a utilizar en la ejecución del proyecto. El costo directo viene a ser el total de los costos de materiales, la mano de obra, las herramientas y equipos, además de todos los elementos solicitados en obra. (Capeco, 2018, p.15)

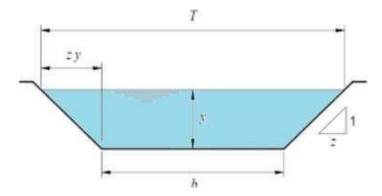
El análisis de costos y presupuesto identifica, mide, analiza y reporta los diversos elementos de los costos directos a utilizar en la ejecución del proyecto. En conclusión, los costos proporcionan el conocimiento y un análisis profundo de la estimación del presupuesto. Los elementos de los costos lo conforman la mano de obra, las herramientas y equipos, y los insumos. (Alvaro Beltrán, 2011, pg. 8)

2.2.3.7 Glosario

Levantamiento topográfico. - La Topografía viene a estudiar la representación de Manera gráfica de un terreno sobre un papel o una computadora con las técnicas y procedimientos de campo y gabinete necesarias. (Josep y Antonio, 2010, p. 6)

Mecánica de suelos. - EL Estudio de Mecánica de Suelos para los proyectos trata en la realización de prospecciones de exploración (Calicatas y sondajes). (Michel Kure Bernal)

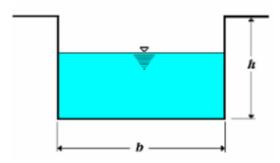
Estudio hidrológico. - El Estudio Hidrológico permite entender y valuar las características físicas y geomorfológicas de la cuenca. (Ministerio de Agricultura)


Diseño del canal. – El diseño del canal depende de la disponibilidad hídrica de la zona, así como de las áreas a irrigar. (Autoridad Nacional del Agua, 2010, pg. 6) **Calidad de agua:** son todas las características y parámetros que debe efectuar el agua para ser estimada como apta para consumo humano. (OS.010, 2006, p. 3) **Caudal Máximo Diario:** es el caudal mayor demandada en un día entero, calculado a lo largo de un año y sin tener en cuenta posibles gastos extraordinarios. (OS.010, 2006, p. 3)

Dotación: es la cantidad diaria de agua potable que usa un individuo para compensar las necesidades básicas. Se mide en litros por habitante por día. (OS.100, 2006, p. 1)

Presiones: es la fuerza por unidad de área medida en metros de columna de agua, que coloquialmente se alude a la altura que alcanzaría la columna de agua es cualquier punto. (OS.050, 2006, p. 4)

Sección Trapezoidal: Mayormente presentado en los canales de tierra ya que tienen pendientes para obtener una velocidad y caudal estable, también en canales revestidos por su alineamiento. (Rodríguez,2008, p.4)


Figura N° 06

Fuente: (Rodríguez, 2008, p.4)

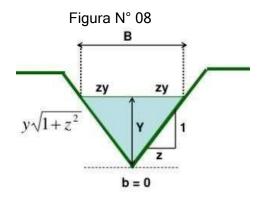
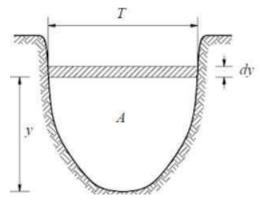

Sección Rectangular: Como la figura geométrica tiene dos lados verticales, este usados en canales revestidos elaborados con materiales sólidos, además, en conductos de madera, en el caso de canales enterrados en roca y para canales revestidos de concreto o materiales de mampostería. (Rodríguez,2008, p.4)

Figura N° 07

Fuente: (Rodríguez,2008, p.4)


Sección Triangular: Se presenta en canales de tramos pequeños, se ubica mayormente en cunetas de vías de transitabilidad moderada, además, en canales pequeños de tierra, ya que tienen la mayor sencillez a la hora del trazo. Estas pocas veces se encuentran revestidas, y ser el caso son como alcantarilladas de las vías longitudinales. (Rodríguez,2008, p.4)

Fuente: (Rodríguez,2008, p.4)

Sección Parabólica: Ordinariamente son pocas las que se logran hallar para canales revestidos, ya que mayormente los canales de tierra y canales antiguos tomaron esta forma. (Rodríguez,2008, p.4)

Figura N° 09

Fuente: (Rodríguez,2008, p.4)

La sección transversal, va a depender primordialmente de la elección de canal a construir; la sección trapecial es la más usada en los canales revestidos, al igual que los rectangulares, estos en su mayoría diseñados con un material estable ya sea concreto, mampostería, madera, etc. (Rodríguez, 2008, p.4)

No existe una norma para parámetros de los espesores del revestimiento, sin embrago, en varios proyectos de construcción de canales a lo largo de nuestro país, se puede diseñar a partir de 5 a 7cm de espesor para canales de extensión cortos y medianos, y de 10 a 15 cm para el diseño de canales grandes, cabe resaltar estos espesores deberán diseñarse sin armadura.

Saltos de agua: Según Arbulú (2009), estas se proyectan en canales o zanjas, con el simple objetivo de salvar los desniveles bruscos, asimismo estas obras y se denominan caídas cuando el desnivel de canales es menor o igual a 4 m, y se introducen como verticales (gravedad) o adicionalmente inclinados. Cuando se presentan desniveles mayores a 4 m, se conoce como rápido y es ventajoso estudiar económicamente para luego elegir entre la rápida o una serie de caídas que también es llamada como gradas.

Caídas:

Esta estructura trabaja en el desnivel entre los tramos del canal superior e inferior y este se une hacia arriba, consiguiendo que el agua caiga por gravedad al tramo de inferior a través de un plano vertical. La definición de un plano vertical es la de un muro cuya capacidad es sostener el empuje de los materiales laterales a la caída. (Rodríguez,2008, p.12).

Caídas inclinadas: Igualmente denominada rápida corta, a diferencia de la caída vertical tienen una pendiente equivalente al talud natural del terreno, a diferencia con la anterior, es que, en lugar del muro que sujeta el empuje, solo necesita un recubrimiento del canal con un espesor delgado (10 a 15 cm en concreto), con forma del terreno. (Rodríguez,2008, p.12).

Toma lateral: La función de esta toma es regular el caudal entrante en los campos de cultivos y su velocidad. La elección del método o dispositivo para ingresar el agua desde los canales de distribución a los campos, depende del sistema de riego que se diseñe. (Rodríguez,2008, p.13).

III. METODOLOGÍA

3.1 Enfoque, Tipo y Diseño de Investigación

3.1.1 Enfoque de Investigación

Cuantitativo

Nuestra investigación posee un enfoque cuantitativo. En este enfoque tenemos un método deductivo en un proceso de cuantificación numérica. Para esto se considera tres características principales:

Validez: Tiene un alto grado de Validez ya que se está siguiendo la norma técnica de edificaciones y las herramientas que planteamos para la recolección de nuestros datos.

Confiabilidad: Se tiene un alto grado de confiabilidad ya que los instrumentos usados como equipos topográficos, equipos de laboratorio de mecánica de suelos, computadoras, tienen un alto grado de precisión de centésimas.

Factibilidad: El grado de factibilidad es amplio ya que; el equipo de investigación posee los recursos necesarios para llevar a cabo esta investigación, es conveniente ya que esta línea de investigación puede servir para una posterior especialización.

3.1.2 Tipo de Investigación

3.1.2.1 Tipo de investigación por el propósito.

3.1.2.1.1 Investigación aplicada.

Nuestra investigación es aplicada ya que nuestra investigación usa conocimientos previamente adquiridos y contrastados en el aspecto práctico, partiendo de una investigación básica en la que se formulan teorías.

3.1.2.2 Tipo de investigación por el diseño.

3.1.2.2.1 No experimental.

Nuestra investigación es no experimental ya que no manipula las variables para su posterior análisis, en cambio analiza las variables en su estado natural.

- Descriptiva

Es no experimental descriptiva ya que sólo realizamos una descripción de los hechos, características, de la realidad de nuestro tema de investigación.

3.1.2.3 Tipo de investigación por el nivel.

3.1.2.3.1 Investigación Descriptiva.

Nuestra investigación es descriptiva ya que medimos conceptos, con el fin de establecer una estructura en nuestra investigación, nuestros resultados de nuestra investigación se ubican en un nivel intermedio por la profundidad de conocimientos de la que se hace uso.

3.1.3 Diseño de Investigación

La presente investigación es de diseño no experimental ya que analizamos las variables en su estado natural y no manipulamos las variables

Hernández, Fernández y Baptista (2014) nos dice que el diseño de estudio no experimental incita a no manipular los resultados de las variables y además no hay manejo en forma directa de las variables (p. 152)

Tabla N°02

Estudio	T1
M	0

DOÓnde:

M: Muestra

O: Observación

3.1.2.3.2 Diseño no experimental transversal descriptivo

Nuestra investigación es descriptiva no experimental transversal ya que observamos y describimos todos los fenómenos que intervienen en nuestra investigación que se presentan de forma natural dentro de un mismo tiempo, analizando el comportamiento de la variable.

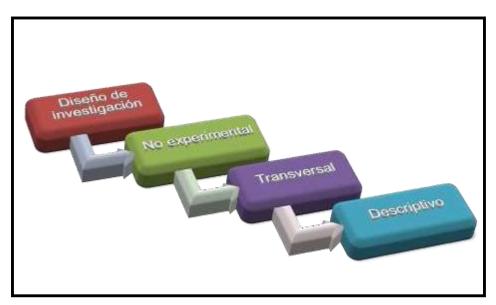


Figura N° 28

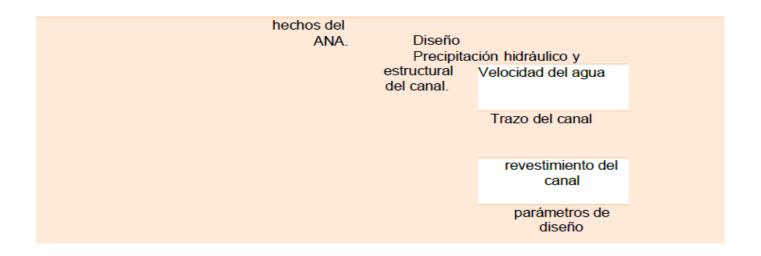
3.2 Operacionalización de Variables

3.2.1 Variable DISEÑO

Es la forma como el diseño hidráulico de canales de regadío abarca un dominio principal en la agricultura siendo primordial tanto para la agricultura y ganadería. Este diseño se crea con el planteamiento técnico e instalación de un sistema de riego por aspersión. De esta manera, con el uso de técnicas de riego para el manejo del cultivo, a través de la instalación de riego por aspersión. Optimizando la eficiencia de aplicación de riego, con un sistema de riego por aspersión en 75%, así mejorando la eficiencia de riego por gravedad actual de 35%. (Perez,2017)

3.2.3 Matriz de Clasificación de Variables

La variable de la investigación será la que permita desarrollar el presente estudio, en la tabla 4, se muestra la identificación y clasificación de variables de investigación.


Tabla 04. Identificación y clasificación de las variables

IDENTIFIACION Y CLASIFICACION DE LAS VARIBALES											
Variables	Relación	aturaleza	scala de edición	Dimensión	orma de dición						
Diseño	ndependiente	antitativa continua	Razón	Multidimensional	ndirecta						

3.2.2 Matriz de Operacionalización de variables

Tabla 05: Matriz de Operacionalización de variables

		Definici			Escala
Variable	ón Concep tual	ón Operaci onal			s de medici ón
Diseño	Es la forma del	Realiz ar el	Estudi o	razo y Alineamiento	RAZON
	estudio y planteamiento	diseño del mejoramiento	topográf ico		
	que permite diseñar	del canal	del lugar	Vista y planta de	_
	y mejorar los	huquibamba,		secciones	
	canales haciendo un	distrito de Cachachi,	studio de Mecánica	Contenido de	RAZON
	revestimiento en		de	humeda d	
	concreto, cálculo del	provincia de Cajabamba	uelos	Análisis Granulométrico	
	volumen, nivel de	Cajamarca,		por Tamizado	
	napa freática,	que cumpla con la		Densidad máxima y límites	
	escorrentías, área	norma		de consistencia	
	de influencia del	técnica del ANA. Los			INTERVAL
	proyecto.	elementos,	Estudi		O
	(Villón,	la	0	Datos del Senamhi	

3.3 Población y muestra

3.3.1 Población

Todo el canal de Chuquibamba según la norma técnica de la Autoridad Nacional del Agua en el distrito de Cachachi, provincia de Cajabamba- Cajamarca, 2021.

3.3.2 Muestra.

- a. Técnica de Muestreo: La técnica de muestreo es no probabilístico, la cual es encaminada según las características de investigación, y los elementos a elegir no dependen de la probabilidad (Hernández et al. 2014), es así que la muestra es por juicio de experto, porque los investigadores han considera criterios para la elección de canal, los criterios son los siguientes:
 - 1. Características del mercado
 - 2. Características del producto
 - 3. Características de los intermediarios
 - 4. Competencia
 - 5. Los objetivos de la estrategia comercial:
 - 6. Recursos disponibles, ingresos y costos generados
 - 7. Limitaciones legales

Figura 1: Técnica de Muestreo

b. Tamaño de muestra

El canal de Chuquibamba, distrito de Cachachi, provincia de Cajabamba - Cajamarca.

La muestra son los estudios que traten de las variables independientes.

Tabla

Tamaño de muestra

amaño de Muestra	studios	ariable
STUDIO DE SUELOS: 7 calicatas en 11km del canal	 ✓ 03 estudios de Densidad máxima y límites de consistencia ✓ 03 estudios Análisis Granulométrico por Tamizado ✓ 03 estudios de Contenido de humedad 	√ DISEÑO

Fuente: Elaboración Propia

3.3.3 Materiales

Para llevar a cabo la investigación se han utilizado los siguientes materiales.

Tabla 1
Materiales

	Materiales
	Materiales
•	Internet
•	Laptop
•	Artícul entíficos lacionados s riable os
est	udio
•	Tesis relacionadas a las variables de estudio
•	Útiles de Oficina

Fuente: Elaboración Propia

3.4 Técnicas e instrumentos de recolección de Datos

3.4.1 Técnica

Este proyecto de investigación utilizará la observación directa como técnica de recolección de datos con la cual se logrará obtener datos de campo a través de la observación.

De la zona a investigar, se realizó la recolección de datos en una libreta de campo. Behar (2008) nos dice que el marco metodológico de recogimiento de datos está establecido con el método de la observación (p. 55).

3.4.2 Instrumentos y equipos de recolección de datos

Se utilizará una Guía de Observación de campo experimental, como instrumento físico para recoger y registrar datos, porque de esta forma se permite mantener la información de manera ordenada y precisa para los ensayos pertinentes.

Los instrumentos que se usaron en la investigación para la recolección de datos fueron los siguientes:

Guía de observación directa 01:

Con este instrumento se evaluarán los indicadores que permite diseñar las obras de arte de un diseño hidráulico, se evaluará:

- La antigüedad del canal,
- Estado actual del canal
- Topografía del terreno

Ficha de observación: Se utilizarán equipos para el levantamiento topográfico del terreno:

- GPS
- Prisma
- Estación total
 - Winchas
 - Jalones

También equipos computarizados e informáticos para el procesamiento de datos, su evaluación y diseño del canal

- CIVIL 3D
- AUTOCAD
 - EXCEL
- H canales
- Reglamento de ANA.
 - Libros y tesis
- Manual de mecánica de suelos.
 - Ministerio de agricultura
- > Estudio Topográfico
- a). Estudio de Campo: en este proceso se recolecta toda la información según las guías de observación con el fin de recolectar información necesaria para luego procesarla. Teniendo en cuenta los indicadores de cada uno de las dimensiones establecidas.

Visita de campo: los investigadores realizaran una indagación a la zona de estudio con el fin de identificar posibles restricciones, teniendo en cuenta la ubicación de la zona, accesibilidad, transitividad, etc. Y no tener inconvenientes al momento de utilizar las guías de observación. Así mismo identificar las viviendas que serán evaluadas, según eltamaño de muestra calculada.

La visita al lugar se realizó a pie, con la finalidad de determinar un diagnóstico de la situación actual del canal Chuquibamba; para el levantamiento topográfico se empleó los materiales, equipos y personal adecuado, el punto de partida del reconocimiento se realizó desde la captación donde nace el canal, Chuquibamba, posteriormente se continuo con el recorrido determinando el mal estado del canal construido con poco criterio de diseño, para el presente estudio se considerará la demolición total evitando lo máximo posible influir de maneranegativa en el medio ambiente.

Uso de las guías de observación: Una vez identificado el canal a estudiar, según el tamaño de muestra se procede a toma de datos, teniendo en cuenta todos los ítems de las guías de observación, así mismo se procede a realizar una toma de datos.

Toma de datos: los investigadores proceden a la toma de datos teniendo en cuenta las dimensiones de la presente investigación. Así mismo con el consentimiento de los pobladores, se empieza a la recolección de datos.

b). Estudio de Gabinete: Una vez obtenido los datos necesarios, recolectados en el estudio de campo, pasaremos a trabajar en gabinete, teniendo en cuenta las Tablas, para su respetiva calificación según el parámetro obtenido.

Procesamiento de la información: una vez recolectada la información, se procede a separar las guías de observación, con el fin de evaluar el estado y peligro en que esta el canal.

Datos de campo: con toda la información de campo recolectada se hace uso del software EXCEL para analizar los datos, contabilizando los parámetros y datos del diseño del canal.

Tablas: una vez contabilizado las características y datos para el diseño del canal se hace uso de las tablas, en la cual a cada ítem de las guías de observación se les asigna un valor numérico según las características evaluadas

C). Resultados de la investigación:

Con el análisis de datos y su procesamiento, se llega a los resultados así mismo se llega a la conclusión, si el canal de Chuquibamba está o no en un estado deplorable para los pobladores. se puede llegar a realizar una discusión de los resultados, y podemos Verificar la hipótesis. Cabe recalcar, para que exista un Diseño del canal su estado tiene que estar en pésimas condiciones tanto para el sistema de riego como para el consumo humano.

Estudio Mecánica de Suelos

Para el presente trabajo en mención se han realizado un total de 07 calicatas, una por los 11 kilómetros del canal a diseñar, con la finalidad de extraer muestras representativas del suelo en bolsas herméticas y en sacos.

Excavaciones:

En total se realizó 07 calicatas de 1.00 m2 x 1.50m de profundidad.

Cuadro 2. Número de calicatas y ubicación

alicata	ILOMETRAJE	IMENSIONES (LARGO.x ANCHO.xPROFUNDIDAD) ts.
- 01	m. 01+000	.00 X 1.00 X 1.50
- 02	m. 03+000	.00 X 1.00 X 1.50
- 03	m. 05+000	.00 X 1.00 X 1.50
- 04	m. 06+000	.00 X 1.00 X 1.50
- 05	m. 07+000	.00 X 1.00 X 1.50
- 06	m. 09+000	.00 X 1.00 X 1.50
- 07	m. 11+000	.00 X 1.00 X 1.50

Determinar las características físicas y mecánicas del suelo, para el diseño de las obras hidráulicas que conformaran el canal de riego.

> Estudio Hidrológico

El estudio hidrológico tiene como fin calcular el caudal máximo de avenida, para el diseño de bocatoma con el fin de tener una estructura que sea capaz de soportar la máxima avenida que pueda ocurrir durante la vida útil de la obra. Se muestran los registros hidrológicos y los cálculos realizados.

Diseño Hidráulico del canal

A. Diseño Hidráulico de Obras de Arte

El estudio hidráulico permite diseñar las obras de arte, cálculo del volumen, nivel de napa freática, escorrentías, área de influencia del proyecto. (Villón, 2002, p.15)

La precipitación será recogida por el Senamhi y Cuenca hidrológica será recogida por

estudios hechos del ANA.

B. Diseño Hidráulico del Canal

El diseño hidráulico que se busca hacer, se hará con un periodo de vida de 20 años, para la

cual estamos tomando de ejemplos todas las causantes que se han venido dando en el

tiempo por el mal uso del canal de regadío y el tipo de estructura que se hizo, por ello se

tendrá en cuenta la existencia de obras de arte, del diseño técnico y del revestimiento del

mismo.

Se utilizará el Manual de Criterios de diseños de obras hidráulicas para la formulación de

hidráulicos multisectoriales y de afianzamiento hídrico, emitido por el ANA.

C. Diseño Estructural de las Obras de Arte

Para esto nos quiaremos del Manual de Diseño Hidráulico de Canales y Obras de Arte.

Para el diseño estructural de las siguientes Obras de Arte: Bocatoma,

Desarenador, alcantarilla, caídas verticales, Pases aéreos.

D. Diseño Estructural del Canal

El diseño estructural del Canal es la culminación de los estudios, para ello se necesita los

estudios realizados con anterioridad como topográfico, de suelos e hidrológico, con estos

datos obtenidos se diseña el canal para lograr que este sea eficiente y cumpla con su

propósito de abastecer a todos los cultivos durante todo el año incluso en épocas de estiaje.

La planificación de los proyectos de irrigación, depende de la formación y experiencia del

diseñador, sobresaliéndose en esta especialidad la ingeniería agrícola (Autoridad Nacional

del Agua, 2010, pg. 6)

Tabla 25: Instrumentos y validación

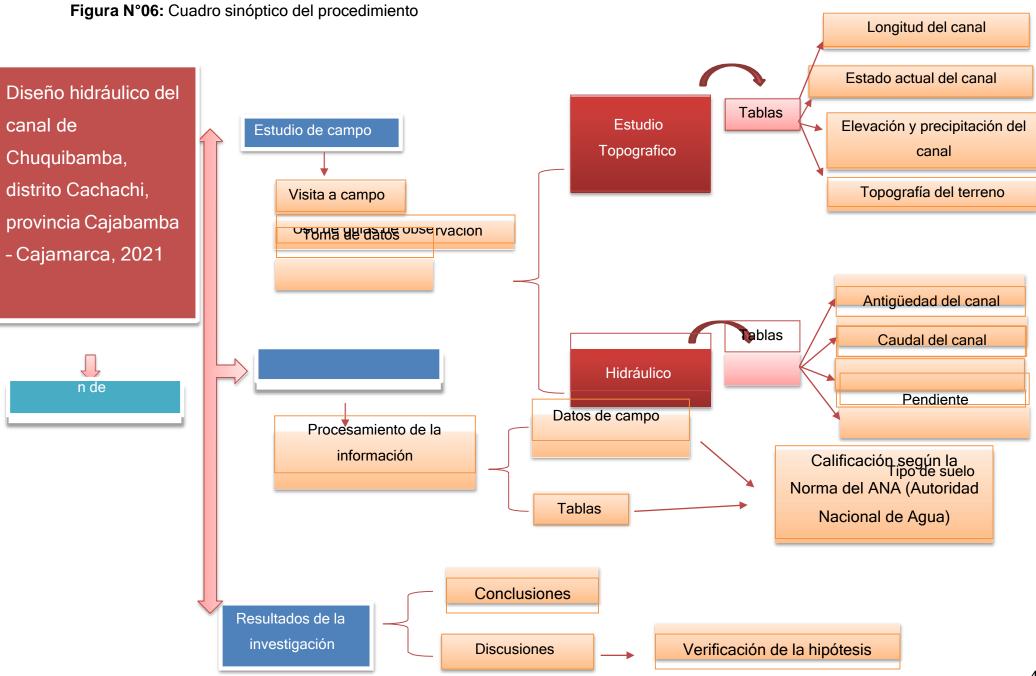
40

Etapas de la investigació n (Dimensione s)	Instrumentos	Validación
Estudio topográficodel lugar	guía de observación N° 01 para la recolección de datos	IGN (Instituto Geográfico Nacional Experto
Estudio de Mecánica deSuelos	guía de observación N° 02 para la recolección de datos	Norma ASTM E-050 Suelos y Cimentaciones
Estudio Hidrológico		Datos del Senamhi
Diseño hidráulico y estructural del canal.		Reglamento Nacional de Edificaciones

3.4.3 Validez de recolección de datos

La guía de observación será validada por el profesional respectivo para la obtención de resultados a tracción, flexión y compresión. También se trabajará con las respectivas normas estandarizadas (Norma Técnica de la Autoridad Nacional del Agua, Reglamento Nacional de Edificaciones).

3.4.4 Confiabilidad de la recolección de datos


(Hernández y otros, 2006) nos dicen que es el grado de solidez que se obtiene los resultados de distintos instrumentos (p.205).

La confiabilidad o también denominada precisión, corresponde al nivel de precisión que

tienen nuestros puntajes de medición, indica al grado en el cual el instrumento genere los mismos resultados después de que hayan sido repetidos varias pruebas para verificar su precisión y si se obtienen los mismos resultados. Para la toma de datos obtendremos una ficha de observación n° 1 y n°2 según los anexos 4.1 y 4.3

Con los instrumentos se evaluarán los indicadores que permite diseñar las obras de arte de un diseño hidráulico y mejoramiento, se evaluará: La antigüedad del canal, Estado actual del canal y Topografía del terreno.

3.5 Procedimientos

La presente investigación "Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021" constara de tres puntos principales: un estudio de campo, para la recolección de datos un estudio de gabinete, para el procesamiento de la información y por último resultados de la investigación. Todos los procedimientos a seguir se basan en la norma técnica del ANA. Antes de iniciar a detallar los procedimientos se tuvo en cuenta una Revisión documental, de trabajos realizados con anterioridad, que tienen relación con el tema de investigación.

El procedimiento para nuestra investigación fue de la siguiente manera:

Primero, se ha realizado la búsqueda y recopilación de la información mediante publicaciones digitales que tenían acceso libre como son Google Académico y Dialnet. Segundo, para la producción de datos se realizó el reconocimiento del lugar y campo luego se realizó el levantamiento topográfico y su estudio retrospectivo de suelos. Tercero, el tramo de estudio del diseño hidráulico a realizar era de 11km de longitud donde realizamos 7 calicatas en tramos diferentes para llevar hacer un estudio específico en el cual realizamos 3 estudios de suelos en el laboratorio de suelos específicamente de cada calicata realizada y por último se ha utilizado el análisis documental se desarrolló el análisis e interpretación de resultados empleando el método de análisis de datos mediante la estadística descriptiva usando softwares como es el Excel y Word. Finalmente, se ha efectuado las observaciones objetivas de la variable.

La revisión de datos y las dimensiones son:

Levantamiento topográfico. - La Topografía viene a estudiar la representación de manera gráfica de un terreno sobre un papel o una computadora con las técnicas y procedimientos de campo y gabinete necesarias. (Josep y Antonio, 2010, p. 6)

Estudio de Mecánica de suelos. - EL Estudio de Mecánica de Suelos para los proyectos consiste en la realización de prospecciones de exploración (Calicatas y sondajes). (Michel Kure Bernal)

Estudio hidrológico. - El Estudio Hidrológico permite conocer y evaluar las características físicas y geomorfológicas de la cuenca. (Ministerio de Agricultura)

Diseño Hidráulico y Estructural del canal. - El diseño del canal depende de la disponibilidad hídrica de la zona, así como de las áreas a irrigar. (Autoridad Nacional del Agua, 2010, pg. 6)

3.6 Método de Análisis de Datos

El presente trabajo, hemos considerado con criterio técnico previamente establecido en normas correspondientes de diseño para el análisis, proceso de datos e interpretación de los resultados que arroje; asimismo, se considerará todo el contenido respectivo del marco teórico, se buscará que la obra sea viable y segura, para el beneficio del sector de Chuquibamba, Municipalidad distrital de Cachachi Provincia de Cajabamba.

Para el procesamiento respectivo de datos se utilizará programas como Excel, AutoCAD, H-canales, sewer CAD y el S10 permitiendo de esta forma la realización del diseño y mejoramiento del canal.

3.6.1 Técnicas de Análisis de Datos

El proyecto de investigación es del tipo no experimental y transversal, debido a que se realizará el estudio en un solo periodo de tiempo, por lo que se van a usar las siguientes Técnicas para nuestro análisis:

3.6.1.1 Estadística Descriptiva

Para el recojo de datos se utilizará el software Excel, lo que permitirá cálculos de dotaciones y cálculos hidráulicos para todoel sistema del canal y también metrados. Además, a través del software AutoCAD Civil 3D consiente efectuar el proceso de la data obtenida del levantamiento topográfico, asimismo, también diseñar las presentaciones finales de los planos.

Mejoramiento y diseño del Canal:

Se utilizará una Ficha de Observación, donde se hará una descripción y datos a tomar del Canal, tales como: Lugar del estudio, cantidad de pobladores beneficiados, precipitaciones, caudal que consumen por persona al día, coordenadas, pendientes, punto de descarga.

De acuerdo al estudio Hidrológico se obtuvieron los siguientes datos:

Cuadro 4. Precipitaciones estación Huangacocha en 24 horas

Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre		Máximo
1995	3.00	5.00	8.10	25.50	11.40	8.40	6.20	7.10	6.20	8.40	48.60	26.00	48.60	Noviembr
1996	23.40	25.20	23.70	18.00	9.80	15.20	0.00	1.80	3.20	20.40	9.30	11.90	25.20	Febrero
1997	16.30	14.00	7.10	6.80	16.50	6.20	0.00	4.80	15.30	18.80	23.90	19.10	23.90	Noviembre
1998	22.80	35.30	26.90	25.50	14.30	6.60	0.00	4.70	17.80	31.40	30.80	15.80	35.30	Febrero
1999	38.30	57.60	30.60	11.90	22.30	14.90	2.60	1.30	22.30	12.40	18.80	20.80	57.60	Febrero
2000	30.20	35.00	19.80	13.90	12.40	6:60	0.70	4.50	6.50	17.60	16.20	25.40	35.00	Febrero
2001	28.20	22.70	24.40	14.70	17.10	3.50	16.60	0.00	15.00	15.90	34.80	31.20	34,80	Noviembre
2002	15.90	24.10	28.00	21.30	18.50	5.70	5,10	0.00	27.20	21.40	39.60	23,50	39.60	Noviembre
2003	16.80	17.80	20.00	20.80	11.10	5.40	9.10	2.00	29.10	15.40	29.40	31.60	31.60	Diclembre
2004	24.20	16.30	12.80	32.30	10.00	3.70	16.80	5.30	19.60	25.10	15.10	27.70	32.30	Abril
2005	18.70	26.50	26.80	10.50	6.90	5.20	0.01	7.50	11.60	26.50	9.50	18.20	26.80	Marzo
2006	20.00	24.80	25.80	16.90	26.60	14.90	12.90	8.10	5.60	24.90	29.80	24.10	29,80	Noviembre
2007	20.30	15.00	27.00	25.30	14.40	1.40	11.70	4.40	13.90	30.90	15.80	27.60	30.90	Octubre
2008	21.20	24.70	22.60	30.60	7.70	10.60	3,70	6.70	14.50	14.60	22.60	13.40	30.60	Abril
2009	23.80	16.70	27.60	19.50	10.60	13.80	11.50	3.60	5.50	25.80	26.30	13.20	27.60	Marzo
2010	11.00	37.60	23.80	18.70	10.30	3.70	4.00	2.00	15.00	17.70	30.00	16.60	37.60	Febrero
2011	18.10	23.70	29.10	34.80	6.50	2.30	6.50	2.70	12.10	16.00	39.50	23.50	39.50	Noviembre
2012	28.20	27.30	28.30	22.00	9.20	13.10	0.00	17.60	8.30	19.40	26.70	19.80	28.30	Marzo
2013	19.70	45.30	32.90	32.50	9.30	3.90	10.50	7.30	5.00	23.00	10.30	20.40	45.30	Febrero
2014	21.60	49.30	SD	SD	SD	SD	SD	SD	SD	SD	SD	SD	49.30	Febrero
MAX	38.30	57.60	32.90	34.80	26.60	15.20	16.80	17.60	29.10	31.40	48.60	31,60	57.60	FEB

Precipitación Máxima en 24 horas

Cuadro 5. Precipitación máxima en 24 horas

Precipitaciones Máximas N° AÑO mm/24h							
N°	AÑO	mm/24h					
1995	Noviembre	48.6					
1996	Febrero	25.2					
1997	Noviembre	23.9					
1998	Febrero	35.3					
1999	Febrero	57.6					
2000	Febrero	35					
2001	Noviembre	34.8					
2002	Noviembre	39.6					
2003	Diciembre	31.6					
2004	Abril	32.3					
2005	Marzo	26.8					
2006	Noviembre	29.8					
2007	Octubre	30.9					
2008	Abril	30.6					
2009	Marzo	27.6					
2010	Febrero	37.6					
2011	Noviembre	39.5					
2012	Marzo	28.3					
2013	Febrero	45.3					
2014	Febrero	49.3					
PREC	CIPITACION PROM	35.48					

Como se puede observar en el cuadro de precipitaciones, la precipitación máxima se dio en el año de 1999 exactamente en el mes de febrero con un valor de 57.6 y promedio de 35.48.

3.7 Aspectos Éticos

La ética y la moral son aspectos primordiales para todo investigador, ya que ofrecen validación y fiabilidad en lo que brinda, La presente investigación realizo un análisis documental, de varias fuentes documentales Como son libros, tesis, seminarios, artículos científicos que fueron primordiales para la presente investigación. Fue realizado por los autores, en el cual se comprobará mediante la práctica toda la autenticidad de nuestros resultados que han sido obtenidos en laboratorio y de las observaciones respectivas en el área de trabajo. Los autores se han comprometido a realizar el proyecto con total honestidad, ética y compromiso, resaltando que este proyecto se desarrollará con todos los pobladores del sector de Chuquibamba, la Municipalidad Provincial de Cachachi, asesor y docente.

3.8 Desarrollo Del Proyecto De Investigación

Para el desarrollo de esta investigación de tipo no experimental descriptiva transversal y la muestra como a los estudios que traten de las variables independientes.

Finalmente, para nuestra investigación con enfoque mixto se hizo uso de la estadística descriptiva para la organización de la información y obtener una mejor interpretación de los resultados teniendo con herramientas al Excel y Word, etc. Además, así representar los resultados en tablas y/o gráficos.

3.8.1 Levantamiento Topográfico del terreno

Es el conjunto de acciones ejecutadas sobre un terreno con instrumentos adecuados para conseguir una representación gráfica o plano. Los trabajos en topografía pueden ser urbanos, de catastro, de construcción, hidrográficos y forestales. Dentro de los instrumentos utilizados en la construcción, actualmente gracias a la tecnología están los equipos como GPS, Estación total, drones, etc. El levantamiento topográfico es de vital importancia para toda obra de ingeniería pues permite conocer las características del terreno. Dentro de los canales son de vital importancia para el diseño.

La Topografía, se le puede comprender como una ciencia geométrica aplicada a la descripción de la realidad física inmóvil circundante. Está en plasmar en un plano la realidad vista en campo, en el ámbito rural o natural, de la superficie terrestre; en el ámbito urbano, es la descripción de los hechos existentes en un lugar determinado: muros, edificios, calles, entre otros. Es la ciencia que estudia el conjunto de procedimientos para dar a entender las posiciones de puntos sobre la superficie de la tierra a través de medidas según los tres elementos del espacio. Pueden ser estos elementos: dos distancias y una elevación, o bien una distancia, una dirección y una elevación. (Josep y Antonio, 2010, p. 6).

3.8.2 Mecánica de suelos

Consiste en realizar exploración del suelo mediante prospecciones (Calicatas o sondajes), las calicatas consisten en realizar excavaciones en el suelo de un metro cuadrado por una profundidad variable dependiendo del uso que se le dará al suelo. (Michel Kure Bernal, 2010).

3.8.3 Estudio Hidrológico

En el estudio hidrológico realizado, se determinó una precipitación máxima en 24 Hrs. de 57.60mm y un caudal de 0.05m3/s para el diseño del canal. Para ello se contó con la información de la estación meteorológica del SENAMHI. Estos nos ayudaran a ver El estudio hidrológico contempló el cálculo de parámetros morfométricos, tiempos de concentración, duración e intensidad de la lluvia y cálculo de caudales a partir de diferentes metodologías.

3.8.4 Diseño Hidráulico y Estructural del canal

El diseño hidráulico de canales consiste en realizar el dimensionamiento y la forma geométrica del canal en función al caudal que transporta de acuerdo a la demanda de agua requerida por el sistema de riego.

IV. RESULTADOS

4.1 Estudio Topográfico

Para el desarrollo del presente trabajo" Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021" se realizó el estudio topográfico considerando como primordial el diseño hidráulico del canal porque permite conocer tanto las características del canal como las deficiencias por resolver.

Nuestro objetivo principal para nuestro estudio topográfico es desarrollar los trabajos de campo y gabinete, para obtener los datos topográficos de toda la zona de estudio y el estado actual del canal de riego del caserío Chuquibamba. **Topografía**

Las pendientes en la zona del caserío de Chuquibamba son onduladas a moderada, el terreno donde se ubica el canal, materia del presente proyecto tienen una pendiente accidentada con pendientes que varían del 53% a 100%.

Clima:

El clima que presenta el caserío de Chuquibamba es Templado, con una temperatura media anual de 21° a 23° centígrados. Durante la temporada de verano el caserío alcanza los 24 °C y durante el invierno las temperaturas son por lo general de 16°C. Durante todo el año se presenta precipitaciones, en cuanto a la humedad relativa del distrito de Cajabamba esta varía entre 46 % a 75 %.

Suelo:

El tipo de suelo es bueno para la agricultura especialmente para el cultivo de papa, maíz, cebada, trigo, además de hortalizas.

Anexo 4. Estudio Topográfico

FICHA DE OBSERVACIÓN

DATOS DEL ESTUDIO TOPOGRÁFICO.

NOMBRE DEL PROYECTO:

Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021

Lugar y fecha:

Chuquibamba - Cachachi

Apellidos y Nombres: CRUZ GARCIA, Jhordink Benjamín CRUZ VASQUEZ, Junior

DESCRIPCIÓN DEL ESTUDIO

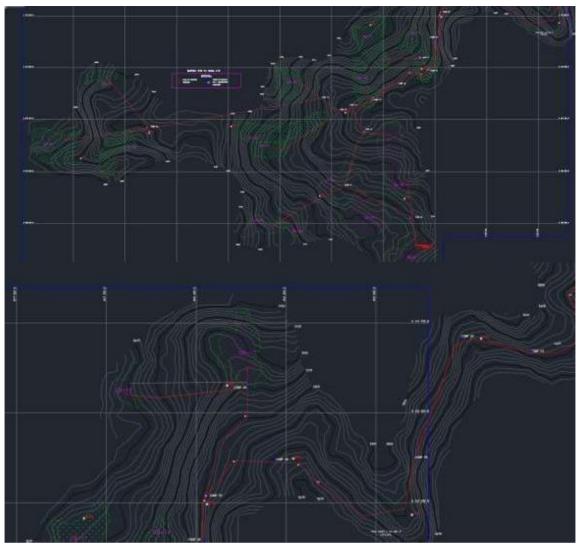
Cordenadas longitudinales

UNTO	ORTE	STE	LEVACIÓN
1	52381	8776	01
2	52424	8762	00
3	52454	8751	00
4	52474	8743	00

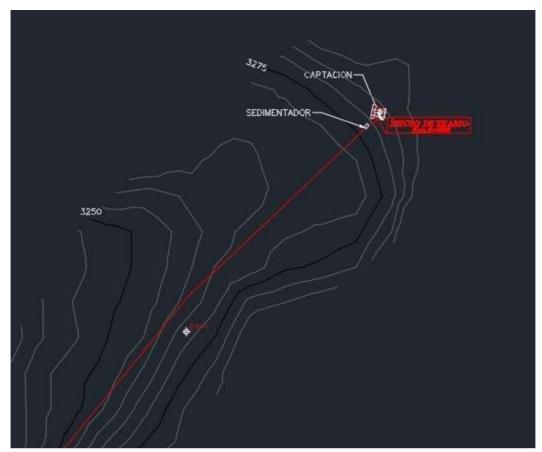
DATOS DEL DISEÑO DEL CANAL.

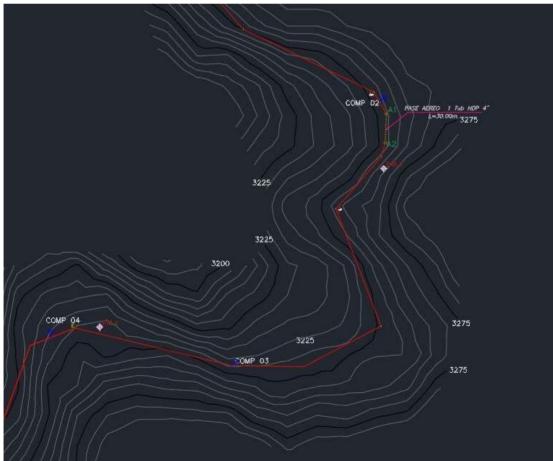
NOMBRE DEL PROYECTO:

Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2020


.1 Lugar: Chuquibamba - Cachachi

Apellidos y Nombres: CRUZ GARCIA, Jhordink Benjamín CRUZ VASQUEZ, Junior


CRUZ VA


DESCRIPCIÓN DEL ESTUDIO

Fotos para su diseño.

Plano Topográfico caserío Chuquibamba

Fuente: Propia

Tabla de Curvas

	TABLA DE ELEMENTOS DE CURVA											
N° PI	PRO6.PC	PROG.PI	PRO6.PT	NORTE	ESTE	RADIO	LON6.CURVA	CUERDA	TAN6ENTE	EXTERNA	AN6.DEFLEXION	
PI-624	1+044.495	1+048.046	1+051.564	9152948.35	817975.99	30.00	7.069	7.052	3.551	3.551	13*30'00"	
PI-625	1+065.258	1+066.449	1+067.640	9152944.41	817957.98	30.00	2.382	2.381	1.192	1.192	4"32'56"	
PI-626	1+076.728	1+081.620	1+086.428	9152940.00	817943.47	30.00	9.700	9.658	4.893	4.893	18*31'32"	
PI-627	1+101.341	1+102.767	1+104.192	9152927.69	817926.17	30.00	2.850	2.849	1.426	1.426	5*26'38"	
PI-628	1+109.639	1+113.271	1+115.371	9152920.82	817918.22	3.68	5.732	5.170	3.632	3.632	89*15'01"	
PI-629	1+122.908	1+123.730	1+124.551	9152929.78	817910.26	30.00	1.643	1.643	0.822	0.822	3*08*19*	
PI-630	1+142.232	1+143.182	1+144.132	9152943.59	817896.56	30.00	1.900	1.900	0.951	0.951	3*37'46"	
PI-631	1+156.014	1+158.232	1+160.442	9152953.59	817885.31	30.00	4.428	4.424	2.218	2.218	8*27'22"	
PI-632	1+167.781	1+171.556	1+175.291	9152960.88	817874.15	30.00	7.509	7.489	3.774	3.774	14*20'28"	
PI-633	1+175.863	1+177.244	1+178.623	9152962.72	817868.72	30.00	2.760	2.759	1.381	1.381	5*16'15"	
PI-634	1+218.730	1+219.496	1+220.263	9152979.97	817830.15	30.00	1.533	1.533	0.767	0.767	2*55'43"	
PI-635	1+229.871	1+233.041	1+236.188	9152984.85	817817.51	30.00	6.317	6.305	3.170	3.170	12"03'49"	
PI-636	1+239.921	1+242.409	1+244.805	9152986.34	817808.24	10.38	4.885	4.840	2.488	2.488	26*58'15"	
PI-637	1+253.911	1+256.571	1+259.218	9152981.96	817794.68	30.00	5.308	5.301	2.661	2.661	10*08'12"	
PI-638	1+268.008	1+269.714	1+271.417	9152975.78	817783.06	30.00	3.408	3.406	1.706	1.706	6*30/34*	
PI-639	1+290.018	1+290.448	1+290.872	9152968.18	817763.77	3.01	0.854	0.851	0.430	0.430	16*16'47"	
PI-640	1+291.259	1+291.517	1+291.755	9152967.52	817762.92	0.74	0.496	0.487	0.258	0.258	38*28'39"	
PI-641	1+292.006	1+292.173	1+292.330	9152967.53	817762.24	0.54	0.324	0.319	0.167	0.167	34*22'07"	

	TABLA DE ELEMENTOS DE CURVA											
N° PI	PRO6.PC	PRO6.PI	PRO6.PT	NORTE	ESTE	RADIO	LON6.CURVA	CUERDA	TAN6ENTE	EXTERNA	AN6.DEFLEXION	
PI-684	1+936.631	1+937.153	1+937.672	91:53104.25	817606.73	6.48	1.042	1.041	0.522	0.522	9*12'48"	
PI-685	1+945.090	1+949.783	1+954.400	91:53114.70	817599.64	30.00	9.309	9.272	4.692	4.692	1'7"46'46"	
PI-686	1+967.197	1+969.027	1+970.853	91:53126.62	817584.43	30.00	3.655	3.653	1.830	1.830	6*58'52"	
PI-687	1+979.415	1+985.791	1+991.980	9153138.49	817572.58	30.00	12.565	12.473	6.376	6.376	2:3*59'50"	
PI-688	1+994.126	1+995.557	1+996.929	91:53142.06	817563.30	5.62	2.802	2.773	1.431	1.431	28*34'08*	
PI-689	2+014.726	2+016.792	2+018.851	91:53139.28	817542.18	30.00	4.125	4.122	2.066	2:.066	7*52'44"	
PI-690	2+041.218	2+042.371	2+043.523	9153132.49	817517.52	30.00	2.305	2.305	1.153	1.153	4"24'09"	
PI-691	2+071.923	2+072.570	2+073.217	91:53126.73	817487.87	30.00	1.293	1.293	0.647	0.647	2*28'12"	
PI-692	2+084.776	2+086.992	2+089.200	91:53123.38	817473.84	30.00	4.424	4.420	2.216	2.216	8*26'54"	
PI-693	2+115.654	2+117.373	2+119.087	91:53120.73	817443.57	30.00	3.433	3.431	1.718	1.718	6*33'24"	
PI-694	2+127.098	2+130.488	2+133.849	91:53121.08	817430.46	30.00	6.751	6.737	3.390	3.390	1:2"53'39"	
PI-695	2+140.880	2+143.166	2+145.442	91:53124.25	817418.15	30.00	4.56:2	4.558	2.286	2:286	8*42'47*	
PI-696	2+152.853	2+154.278	2+155.701	91:53128.62	817407.93	30.00	2.848	2.847	1.425	1.425	5*26'21"	
PI-697	2+159.848	2+163.524	2+167.164	91:53133.05	817399.81	30.00	7.316	7.298	3.676	3.676	13*58'21"	
PI-698	2+171.570	2+174.508	2+177.246	91:53140.50	817391.69	8.94	5.676	5.581	2.937	2.937	36"22'34"	

	TABLA DE ELEMENTOS DE CURVA											
N° PI	PRO6.PC	PRO6.PI	PRO6.PT	NORTE	ESTE	RADIO	LONG.CURVA	CUERDA	TANGENTE	EXTERNA	AN6.DEFLEXTON	
PI-744	3+078.801	3+086.986	3+094.782	9153771.67	817014.10	30.00	15.981	15.793	8.185	8.185	30*31*21*	
PI-744	3+0/0.001	3+000.900	3+094.702	9153//1.6/	01/014.10	30.00	15.901	15.793	0.100	0.100		
PI-745	3+098.454	3+102.561	3+106.617	9153761.14	817002.11	30.00	8.163	8.138	4.107	4.107	15*35'25"	
PI-746	3+113.745	3+116.722	3+119.680	9153754.98	816989.30	30.00	5.935	5.925	2.977	2.977	11*20'05"	
PI-747	3+122.845	3+126.889	3+130.885	9153748.84	816981.17	30.00	8.040	8.016	4.044	4.044	15*21'22"	
PI-748	3+132.707	3+133.921	3+135.123	9153743.23	816976.85	9.65	2.416	2.410	1.214	1.214	14*20'40*	
PI-749	3+149.983	3+151.697	3+153.407	9153732.27	816962.84	30.00	3.423	3.422	1.714	1.714	6*32'18"	
PI-750	3+156.675	3+161.267	3+165.788	9153727.26	816954.68	30.00	9.114	9.079	4.592	4.592	17*24'20"	
PI-751	3+175.943	3+181.880	3+187.666	9153711.67	816941.09	30.00	11.723	11.648	5.937	5.937	22*23'19*	
PI-752	3+208.512	3+209.640	3+210.768	9153699.20	816916.12	30.00	2.256	2.255	1.128	1.128	4*18'30"	
PI-753	3+224.202	3+229.067	3+233.849	9153691.86	816898.13	30.00	9.646	9.605	4.865	4.865	18*25'22"	
PI-754	3+237.771	3+239.206	3+240.639	9153691.18	816887.93	30.00	2.868	2.867	1.435	1.435	5*28'40"	
PI-755	3+241.516	3+242.101	3+242.682	9153691.26	816885.04	6.22	1.166	1.164	0.585	0.585	10*44'31"	
PI-756	3+249.716	3+254.406	3+258.278	9153689.33	816872.88	8.44	8.561	8.199	4.690	4.690	58*06'58"	
PI-757	3+269.305	3+275.036	3+277.929	9153669.56	816864.56	5.13	8.624	7.643	5.731	5.731	96*21'34"	
PI-758	3+283.481	3+286.526	3+289.549	9153676.54	816852.05	30.00	6.068	6.057	3.044	3.044	11*35'19"	
PI-759	3+295.265	3+303.633	3+311.586	9153687.73	816839.08	30.00	16.322	16.121	8.368	8.368	31*10'19"	
PI-760	3+312.205	3+316.170	3+320.090	9153689.89	816826.31	30.00	7.885	7.862	3.965	3.965	15*03'32"	
PI-761	3+324.202	3+325.633	3+327.062	9153688.98	816816.84	30.00	2.859	2.858	1.431	1.431	5*27'40"	
PI-762	3+327.520	3+327.826	3+328.130	9153688.98	816814.65	4.24	0.610	0.610	0.306	0.306	8*14'40"	
PI-763	3+336.470	3+339.362	3+342.236	9153690.64	816803.23	30.00	5.767	5.758	2.892	2.892	11*00'50"	

4.2 Estudio de suelos

4.2.1Generalidades

En el presente trabajo: "Diseño hidráulico del canal de

Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021", el estudio de suelos es primordial como en toda obra de ingeniería civil, pues permite conocer las características físicas y mecánicas del suelo, así como los estratos del terreno en estudio.

4.2.2 Objetivos

Determinar las características físicas y mecánicas del suelo, para el diseño de las obras hidráulicas que conformaran el canal de Chuquibamba.

Sismicidad

La exploración en campo y el análisis realizado en laboratorio, se han desarrollado con la finalidad de determinar la capacidad portante y las deformaciones que surgirán por la aplicación de las cargas en este caso impuestas por el canal y demás obras proyectadas. Para ello hay que tener en cuenta, el coeficiente de seguridad de cimentación con respecto a una rotura por falla de resistencia al esfuerzo cortante en el terreno de un apoyo(3.5 valor mínimo), también las deformaciones en las estructuras provocadas se encuentren en el valor permisible.

4.2.3 Trabajo de campo

Para el presente trabajo en mención se han realizado un total de 07 calicatas, dependiendo el kilómetro a tomar ya que cuenta con 11km de distancia tomamos una por kilómetro y una cada dos kilómetros de canal a diseñar, con la finalidad de extraer muestras representativas del suelo en bolsas herméticas y en sacos.

4.2.3.1 Excavaciones

En total se realizó 07 calicatas de 1.00~m2~x~1.50m de profundidad.

Cuadro 2. Número de calicatas y ubicación

alicata	ILOMETRAJE	IMENSIONES (LARGO.x NCHO.x PROFUNDID D) mts.
- 01	m. 01+000	.00 X 1.00 X 1.50
- 02	m. 03+000	.00 X 1.00 X 1.50
- 03	m. 05+000	.00 X 1.00 X 1.50
- 04	m. 06+000	.00 X 1.00 X 1.50
- 05	m. 07+000	.00 X 1.00 X 1.50
- 06	m. 09+000	.00 X 1.00 X 1.50
- 07	m. 11+000	.00 X 1.00 X 1.50

4.2.3.2 Toma y transporte de muestras

La localización de cada calicata se realizó de acuerdo a la topografía, las muestras fueron llenadas de manera cuidadosa en bolsas herméticas y para su traslado hasta el laboratorio se colocaron en una caja de cartón debidamente acondicionada.

Trabajo de laboratorio

El trabajo de laboratorio consistió en el estudio de las muestras alteradas e inalteradas extraídas del campo, se realizaron el análisis granulométrico, de contenido de humedad, Limites de Atterberg (Limite líquido y Limite Plástico) y clasificación del suelo SUCS y ASSHTO.

4.2.3.3 Análisis granulométrico

Ofrece un criterio para determinar una clasificación descriptiva, además estudia la distribución de las partículas del suelo de acuerdo al tamaño. De acuerdo al análisis granulométrico el suelo puede ser suelo bien graduado (cuando hay graduación continua de tamaños), mal graduado (cuando hay una graduación uniforme de tamaños) y suelo con graduación discontinua (cuando existe una graduación de tamaños de partículas discontinua).

4.2.3.4 Contenido de humedad

Viene a ser la cantidad de agua que hay en una muestra o porción de suelo, se determina como la relación del peso del agua existente (Ww) y el peso de su fase solida (Ws) de una muestra.

4.2.3.5 Límites de Atterberg

Estos límites son el límite líquido y limite plástico y su uso es para caracterizar el comportamiento del suelo.

1. Límite liquido

Corresponde al límite arbitrario entre los estados de consistencia plástico y semilíquido del suelo. Un suelo con comportamiento plástico tiene contenido de humedad menor a su límite líquido.

2. Límite plástico

Corresponde al límite arbitrario entre el estado plástico y el estado semisólido de un suelo. Un material considerado no plástico posee contenido de humedad menor a su límite plástico.

Peso específico

El peso específico se define como su peso por unidad de volumen, el cálculo se realiza dividiendo el peso del cuerpo entreel volumen que ocupa.

4.2.3.6 Clasificación de suelos

Calicata N° 01

contenido de humedad

.37%Límite Líquido 36
Límite Plástico 15
Índice de Plasticidad 21
Clasificación SUCS SC
Clasificación A-6

AASHTO(5)

Calicata N° 02

Contenido de

humedad

.43%Límite Líquido 34

Límite Plástico 17 Índice de Plasticidad 17 Clasificación SUCS SC Clasificación AASHTO A-6

Calicata N° 03

Contenido de humedad

.17%Límite Líquido 33 Límite Plástico 16 Índice de Plasticidad 15 Clasificación SUCS SC Clasificación A-6

AASHTO(3)

Calicata N° 04

Contenido de humedad

.36%Límite Líquido 36 Límite Plástico 25

Índice de Plasticidad 11

Clasificación SUCS : SC Clasificación AASHTO : A-6

(3)

Calicata N° 05

Contenido de humedad:

11.49%

Límite Líquido 34

Límite Plástico 22

Índice de Plasticidad 12

Clasificación SUCS :

SC Clasificación

AASHTO : A-6 (3)

4.2.4 Características del proyecto

Una vez realizado el estudio de mecánica de suelos al terreno de fundación de la obra a proyectarse (canal), se consiguió como resultado conocer los distintos tipos de suelo. Con esto se determina la importancia de revestir el canal y evitar problemas como la filtración.

ESTUDIO DE MECÁNICA DE SUELOS

PROYECTO		DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQU CAJABAMBA - CAJAMARCA, 2021	IBAMBA, DISTRITO C	ACHACHI, PROVINCIA
UBICACIÓN	:	CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA		
MATERIAL	1	Terreno Existente	RESP. LAB	: J. Y. F.
SOLICITANTE	÷	JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ	TEC. LAB	: J. A. F.
			FECHA	: MAY. 2021

Celicate		Lanca Control	Prof.	PROPIEDADES FÍSICAS							CLASI	ROADIÓN		PROPIEDADES MECÁNICAS				
N°	Estrato	Ubicación	Estrato	% CH	% Finos	% Avenus	% Gravas	к ц	% LP	% IP	sucs	AASHTO	MDS (g/cm3)	OCH%	CBR 100%	CBR 95%	PU (g/cm3)	Aadm. (Kg/cm2
01	6-1	Km 01+000	1.50 m	11.25	49,70	41.00	3,29	31	20	11	SC.	A-6 (3)	-		-			-
02	8.1	Sm (84000	156 m	21/49	50.18	41.72	8.11	32	18	34	CL.	A-6 (5)		2	-		1	
C-3	8-1	Km (5+000	158 m	12.38	53,66	37.70	8.56	33	22	51	CI.	A-6 (4)			-	100		
04	E-1	C++ 05+000	1,50 m	11.65	47.17	34.05	18.78	35	22	33	SC	A-6 (3)		1				
CS.	5-1	6m 09+000	150m	11.57	43.54	40.70	35.73	33	19	34	SC	A-6 (3)		-				-
0.6	E-1	Qm/10+000	1.50m	11.39	59.56	37.84	8.63	13	22	31	0.	A-6 (4)					-	
C-7.	E-1.	Km 11+000	1.50m	11.35	49.75	41.01	9.26	12	21	11	SC	A-6 (3)		-	15			-

ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

PROYECTO	: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTR CAJABAMBA - CAJAMARCA, 2021	TO CACHACHI, PRO	VINCIA
UBICACIÓN	: CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA		
MATERIAL	: Terreno Existente	RESP. LAB	1). Y. F.
SOLICITANTE	: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ	TEC. LAB	:J. A. F.
MUESTRA	: C-1 / E-1 / Km 01+000	FECHA	: MAY. 2021

DATOS DELENSAVO		
Peso de muestra seca	\$11	2000/00
Peso de muestra seca luego de levado	7	1005.92
Peso perdido por lavado	1	994,08

Tarrices ASTM	Abertura (mm)	Peso Retenido	%Retenido Percial	%Retesido Acumulado	%Qse Pasa	Cortenido de Humedad			
3"	76,200	0.00	0.00	0.00	100.00	12.26%			
2.1/2*	63,500	0.00	5.00	0,00	130.00	Limites e Índices de Consistencia			
2"	50,600	0.00	0.00	0.00	100.00	r liquido 1 21			
1 2/2"	38,300	0.00	0.00	6.00	100.00	L Plástico : 20			
1"	25,400	11.12	0.96	0.96	99,04	Ind. Plasticidad : 11			
3/4"	15.050	11.00	0.55	1.51	58.49				
1/2"	12,700	57.89	2.89	4.40	95.60	Clasificación de la Muestra			
9/8"	9.525	26.51	1.33	5:73	94.27				
1/4"	6.350	33.68	1.07	7.40	92,60	CIB. SUCS : SC			
No4	4178	31.67	1.89	9,29	90.71	Ulds. AASHTO : A-5/3			
Niel	2,360	331.00	5.59	14.88	85.12	1,013			
Noto	2,000	35.76	1.79	16.67	83,33	Descripción de la muestra			
No16	1.180	110.36	9.97	22,64	77.36	THE STATE OF THE S			
No20	0.850	78.81	3,94	26.58	73.42	SUCS: Are no ancillosa			
No30	0.600	90,46	4,52	85.10	68.00	The state of the s			
No40	0.420	74.35	3.72	34,82	(5,18	AASHTO: Sueles entillosos / Regular a malo			
Ne50	0.900	71.09	3.55	38,38	61.63				
No60	0.250	49.47	2.47	40.85	59.15	Tiene un 16 de finos de = 49,709			
No80	0.180	55.78	2.79	43,64	56.36				
Notice	0.150	38,95	1.00	45.44	54.57	Descripción de Calicata			
No300	0.074	91.22	4.86	50.30	49.70	- HOLDS - HOLDS - HOLDS			
< No 200	1 110	994.08	49.70	100.00	0.00	C-1 : E-1			
Total	1. 3	2000.00	100.00			Profundicad : 0.0m - 1.50m			

LIMITES DE CONSISTENCIA

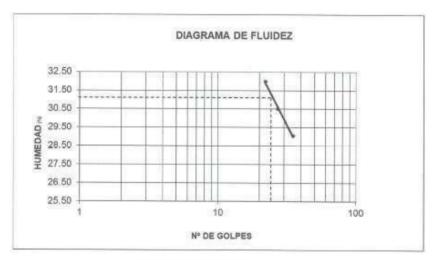
(NORMA ASTM D-4253, ASTM D-4254)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

: CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA UBICACIÓN

MATERIAL : Terreno Existente


SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

: C-1 / E-1 / Km 01+000 MUESTRA

RESP. LAB : J. Y. F. TEC. LAB : J. A. F.

FECHA : MAY. 2021

	LÍI	MITES DE C	ONSISTENCI	A		
Descripción			Limite Liquid	lo	Limite	Plástico
N° de golpes		22	27	35		
Peso de tara	(g)	21.12	10.08	10.31	14.17	14.08
Peso de tara + suelo húmedo	(g)	17.97	20.04	18.04	14.97	14,75
Peso tara + suelo seco	(g)	16.31	17.7	16.3	14.83	14.64
Contenido de Humedad	96	31.98	30.51	29.05	21.21	19.64
Limites	96		31		1 2000	20

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) y =-6.293ln(x) +51.37

CONTENIDO DE HUMEDAD

(NORMA ASTM D-2216)

PROYECTO

DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA
CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN

CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL

Terreno Existente

RESP. LAB : J. Y. F.
SOLICITANTE: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

TEC. LAB : J. A. F.

FECHA : MAY. 2021

: C-1 / E-1 / Km 01+000

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Muestra 03	
Peso del tarro	(g)	50.98	50.77	49.87	
Peso del tarro + suelo humedo	(g)	124.88	133.47	145.98	
Peso del tarro + suelo seco	(g)	117.97	123.86	136,98	
Peso del suelo seco	(g)	66.99	73.09	87.11	
Peso del agua	(g)	6.91	9.61	9.00	
% de humedad	(%)	10.31	13.15	10.33	
% de humedad promedio	(%)		11.26		

4.3 Estudio Hidrológico

4.3.1 Generalidades

El estudio hidrológico tiene como fin calcular el caudal máximo de avenida, para el diseño de bocatoma con el fin de tener una estructura que sea capaz de soportar la máxima avenida que pueda ocurrir durante la vida útil de la obra. Se muestran los registros hidrológicos y los cálculos realizados.

4.3.2 Ubicación

Ubicación política:

Departamento

Cajamarca

Provincia

Cajabamba Cachachi

Distrito

Chuquibamba

Caserío

.

4.3.3 Precipitación:

Los datos hidrológicos fueron obtenidos de la estación Cajabamba.

Estación Cajabamba, :

Tipo Automática - Meteorológica :

Departamento : Cajamarca Cajabamba Provincia : Distrito Cachachi Altitud 2626 msnm 07° 37' 18"

78° 03' S Longitud

04" W

Latitud

Cuadro 4. Precipitaciones estación Cajabamba en 24 horas

Año	Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	ı	Vláxim o
1994	24.00	36.00	21.00	33.00	16.00	3.60	8.10	1.00	3.10	21.30	22.00	25.30	36.00	Febrero
1995	15.00	23.50	21.50	14.30	16.30	1.40	8.60	1.00	26.20	23.80	16.30	31.20	31.20	Diciembre
1996	25.80	30.60	15.70	23.70	21.40	4.00	0.00	3.60	15.20	22.00	18.30	33.30	33.30	Diciembre
1997	20.40	25.20	48.80	10.70	6.30	8.70	0.00	20.00	10.20	16.50	36.60	30.20	48.80	Marzo
1998	66.20	40.20	61.60	33.40	10.20	2.10	0.00	7.00	28.20	22.60	17.80	35.20	66.20	Enero
1999	43.30	30.60	27.00	20.30	18.40	18.00	12.30	2.00	20.30	10.60	20.60	19.50	43.30	Enero
2000	18.60	25.80	25.60	17.80	9.50	7.20	1.00	4.20	13.70	4.80	11.00	25.70	25.80	Febrero
2001	30.10	18.30	32.50	7.20	9.80	2.40	1.80	0.01	11.70	26.70	48.60	30.10	48.60	Noviembre
2002	15.90	24.60	49.30	23.60	5.70	2.10	11.40	0.00	32.60	23.50	24.70	31.00	49.30	Marzo
2003	23.60	16.30	25.40	27.00	8.70	6.80	6.00	0.00	21.90	31.90	39.00	21.10	39.00	Noviembre
2004	24.90	14.30	10.90	34.10	11.90	2.40	17.20	3.80	15.90	15.80	36.50	26.10	36.50	Noviembre
2005	37.10	21.60	20.10	10.70	6.60	3.70	1.20	9.40	7.20	22.40	9.80	21.40	37.10	Enero
2006	27.40	32.20	65.70	22.30	4.90	5.70	2.30	19.70	22.50	23.60	24.40	20.40	65.70	Marzo
2007	14.40	17.60	50.00	27.90	22.20	0.00	3.90	1.20	22.70	30.10	11.70	20.00	50.00	Marzo
2008	40.90	18.10	31.60	17.30	13.50	14.10	3.70	1.80	14.40	27.00	19.20	9.50	40.90	Enero
2009	56.50	23.10	29.30	24.60	27.90	5.60	10.80	7.90	4.10	22.70	40.40	17.70	56.50	Enero
2010	22.00	33.60	16.60	44.90	31.70	3.50	0.80	3.80	5.90	15.80	20.90	20.80	44.90	Abril
2011	10.60	17.50	31.60	28.20	3.70	2.90	6.00	4.80	30.10	28.30	12.00	55.70	55.70	Diciembre
2012	44.90	29.30	12.90	32.00	13.40	2.70	0.00	1.60	0.90	28.40	17.60	15.90	44.90	Enero
2013	24.10	27.40	31.20	42.30	12.00	2.30	10.20	8.30	1.40	32.90	8.20	49.50	49.50	Diciembre
MAX	66.20	40.20	65.70	44.90	31.70	18.00	17.20	20.00	32.60	32.90	48.60	55.70	66.20	Enero

Cuadro 5. Precipitación máxima en 24 horas

Р	recipitaciones M	láximas
AÑO	MES	mm/24h
1994	Febrero	36.00
1995	Diciembre	31.20
1996	Diciembre	33.30
1997	Marzo	48.80
1998	Enero	66.20
1999	Enero	43.30
2000	Febrero	25.80
2001	Noviembre	48.60
2002	Marzo	49.30
2003	Noviembre	39.00
2004	Noviembre	36.50
2005	Enero	37.10
2006	Marzo	65.70
2007	Marzo	50.00
2008	Enero	40.90
2009	Enero	56.50
2010	Abril	44.90
2011	Diciembre	55.70
2012	Enero	44.90
2013	Diciembre	49.50
PRE	CIPITACION PROM	45.16

Como se puede observar en el cuadro de precipitaciones, la precipitación máxima se dio en el año de 1998 exactamente en el mes de Enero con un valor de 66.20 y promedio de 45.16. Posteriormente se analizaron los valores por el Método de Parámetros Ordinarios mediante el programa HIDRO - ESTA. Se obtuvieron los siguientes resultados para los diferentes modelos de distribución.

4.3.4 Análisis estadísticos de datos hidrológicos

Cuadro 6. Modelos de distribución de probabilidad teóricos

t(años)	DISTRIBUCIÓ N NORMAL (mm)	DISTRIBUCIÓ N LOG NORMAL 2 PARÁMETRO S (mm)	DISTRIBUCIÓ N LOG NORMAL 3 PARÁMETRO S (mm)	DISTRIBUCIÓ N GAMMA 2 PARÁMETRO S (mm)	DISTRIBUCIÓ N GAMMA 3 PARÁMETRO S (mm)	DISTRIBUCIÓ N LOG PEARSON TIPO III (mm)	DISTRIBUCIÓ N <u>GUMBEL</u> (mm)	DISTRIBUCIÓ N LOG GUMBEL (mm)
500	76.01	88.27	77.27	81.25	80.28	99.56	92.26	127.45
200	72.77	82.03	73.62	76.74	76.08	90.24	84.59	107.16
100	70.10	77.22	70.65	73.11	72.68	83.36	78.78	93.96
50	67.18	72.29	67.45	69.25	69.04	76.56	72.94	82.35
25	63.93	67.17	63.95	65.12	65.10	69.83	67.07	72.10
20	62.79	65.47	62.75	63.71	63.75	67.67	65.16	69.06
10	58.90	59.95	58.65	59.04	59.22	60.90	59.14	60.28
5	54.18	53.88	53.81	53.68	53.96	53.88	52.87	52.31
2	45.16	43.94	44.87	44.35	44.56	43.32	43.40	42.23
D TEÓRICO	0.0877	0.0898	0.0747	0.0827	0.07327	0.10349	0.1179	0.1479
D TABULA R	0.3041	0.3041	0.3041	0.3041	0.3041	0.3041	0.3041	0.3041

4.3.5 Cálculo de intensidad de lluvias

Se eligió el modelo de distribución Gamma 3 Parámetros debido al ajuste relativo de menor valor. Posteriormente se aplicó el modelo Frederich Bell y el modelo de Yance Tueros el cual se expresa en la siguiente formula:

: Intensidad máxima, en mm/h

a : 0.4602 según Yance Tueros

b : 0.8760 según Yance Tueros

P:24Precipitación máxima en 24 horas para un periodo de diseño de 10 años

Dónde:

a: 0.4602

b: 0.8760

P₂₄: 59.22

0.876

Obtenido el valor con la fórmula de Yance Tueros, se aplicó el modelo de Frederich Bell.

$$P_t^T = (0.21 \log_e T + 0.52)(0.54t^{0.25} - 0.50)P_{60}^{10}$$

t: duración en minutos

T: periodo de retorno en años

Cuadro 7. Lluvias máximas para diferentes D y T

t (años)	Pmax 24 horas	Duración (t, minutos)					
		5	10	15	20	30	60
500	80.28	9.22	13.80	16.87	19.25	22.90	30.07
200	76.08	8.25	12.35	15.09	17.22	20.49	26.90

100	72.68	7.51	11.25	13.75	15.68	18.66	24.50
50	69.04	6.78	10.14	12.40	14.15	16.83	22.10
25	65.10	6.04	9.04	11.06	12.61	15.01	19.71
20	63.75	5.81	8.69	10.62	12.12	14.42	18.93
10	59.22	5.07	7.59	9.28	10.58	12.59	16.54
5	53.96	4.33	6.49	7.93	9.05	10.77	14.14
2	44.56	3.36	5.03	6.15	7.02	8.35	10.97

Para hallar las intensidades de diseño hemos usado la fórmula: I=P/T Dónde: P= precipitación (mm).

T=Tiempo en (hrs).

Cuadro 8. Intensidades de diseño para duración de 24 horas para diferentes D y T

1 (añas)	Pmáx 24			Dura	ción (t, n	ninutos)	
t (años)	horas	5	10	15	20	30	60
500	80.28	10.6 4	82.81	67.49	57.75	45.80	30.07
200	76.08	.98	74.08	60.38	51.66	40.98	26.90
100	72.68	.15	67.47	54.99	47.05	37.32	24.50
50	69.04	.33	60.87	49.61	42.45	33.67	22.10
25	65.10	.50	54.26	44.23	37.84	30.02	19.71
20	63.75	.66	52.14	42.49	36.36	28.84	18.93
10	59.22	.84	45.53	37.11	31.75	25.19	16.54
5	53.96	.01	38.93	31.73	27.15	21.53	14.14
2	44.56	.35	30.20	24.61	21.06	16.70	10.97

4.3.5 Curvas de intensidad – Duración – Frecuencia

Las curvas IDF se obtuvieron por la fórmula: $I = \frac{KT^m}{t^n}$ Dónde:

I : Representa la intensidad máxima en

mm/hr K, m, n : Factores característicos del área de

estudio T : Periodo de retorno (años)

t : Duración de la precipitación equivalente al tiempo de concentración en minutos

donde se tomaron los logaritmos:

$$Log(I) = Log_{(K)} + m Log_{(T)} - n Log_{(t)}$$

o bien

$$Y = a_0 + a_1 X_1 + a_2 X_2$$

Donde:

Y = Log(I)

X1 = Log(T)

X2 = Log(t)

ao = Log(K)

a1 = m

a2 = n

Los valores de k, m, n, se obtienen a partir del análisis de regresión de la tabla Intensidades máximas (mm/hr) para diferentes D y T.

Cuadro 9. Resultados del análisis de regresión

RESULTADOS ANA	LISIS DE REGRE	ESIÓN							
onstante	1.981889	9873							
ror Estándar de est. Y									
. cuadrada	0.987239013								
úmero Observaciones	54								
rados de libertad	53								
oeficientes (X)	0.17854709	-							

m = 0.17854709 n = 0.52682156 Log k = 1.98188987 k = 98.9157380

Cuadro 10. Intensidades máximas de diseño (mm/hr) – Duración – Periodo

Duración t (min)		Periodo de retorno (T) años														
(111111)	5	10	20	25	50	100	200	500								
10	38.01	43.01	48.68	50.66	57.33	64.89	73.44	86.49								
20	26.38	29.86	33.79	35.16	39.79	45.04	50.97	60.03								
30	21.31	24.11	27.29	28.40	32.14	36.38	41.17	48.48								
40	18.31	20.72	23.45	24.41	27.62	31.26	35.38	41.67								
50	16.28	18.42	20.85	21.70	24.56	27.79	31.45	37.04								
60	14.79	16.74	18.94	19.71	22.31	25.25	28.57	33.65								
70	13.63	15.43	17.46	18.17	20.57	23.28	26.34	31.03								
80	12.71	14.38	16.28	16.94	19.17	21.70	24.56	28.92								
90	11.94	13.52	15.30	15.92	18.02	20.39	23.08	27.18								
100	11.30	12.79	14.47	15.06	17.04	19.29	21.83	25.71								
110	10.75	12.16	13.76	14.32	16.21	18.35	20.76	24.45								
120	10.26	11.62	13.15	13.68	15.48	17.52	19.83	23.36								

En el siguiente gráfico (Curvas IDF) se representan los datos del cuadro anterior.

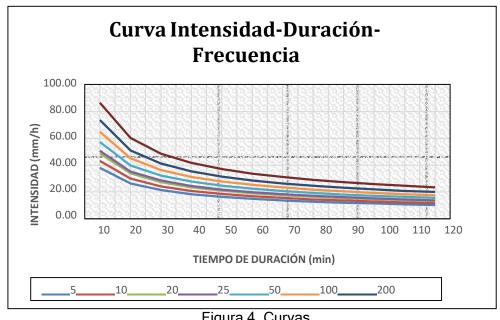


Figura 4. Curvas IDF

4.3.6 Cálculo de caudal

Se realizó mediante el Método Racional el cual consiste en la siguiente fórmula:

$$Q = \frac{C.I.A}{3.60}$$

Dónde

Caudal (m3/s) en sección de estudio C Q

Coeficiente de escorrentía

Intensidad de la precipitación máxima

(mm/hora) A Área de la cuenca en (km2)

Cuadro 11. Coeficiente de escorrentía método racional

COBERTURA VEGETAL Sin vegetación Cultivos Pastos, vegetación ligera		8	PENDIEN	NTE DEL	TERRENC)
	TIPO DE SUELO	PRONUNCIADA	ALTA	MEDIA	SUAVE	DESPRECIABLE
VEGETAL		> 50%	> 20%	> 5%	> 1%	< 1%
*	Impermeable	0,80	0,75	0,70	0,65	0,60
Sin vegetación	Semipermeable	0,70	0,65	0,60	0,55	0,50
	Permeable	0,50	0,45	0,40	0,35	0,30
9	Impermeable	0,70	0,65	0,60	0,55	0,50
Cultivos	Semipermeable	0,60	0,55	0,50	0,45	0,40
	Permeable	0,40	0,35	0,30	0,25	0,20
Pastos	Impermeable	0,65	0,60	0,55	0,50	0,45
vegetación	Semipermeable	0,55	0,50	0,45	0,40	0,35
ligera	Permeable	0,35	0,30	0,25	0,20	0,15
	Impermeable	0,60	0,55	0,50	0,45	0,40
Hierba, grama	Semipermeable	0,50	0,45	0,40	0,35	0,30
	Permeable	0,30	0,25	0,20	0,15	0,10
	Impermeable	0,55	0,50	0,45	0,40	0,35
Bosques, densa vegetación	Semipermeable	0,45	0,40	0,35	0,30	0,25
vegetacion	Permeable	0,25	0,20	0,15	0,10	0,05

de hidrología, hidráulica y Fuente: Manual drenaje

Datos de la cuenca:

Pendiente = 4.14% Longitud Área = 60361.10 m $= 82.01 \text{ km}^2$

C Tc = 0.35

= 318.86 min

Cuadro 13. Intensidades y caudales de la cuenca

T (años)	INTENSIDAD (mm/h)	CAUDAL MAXIMO (m3/seg.)
500	13.96	111.30
200	11.85	94.48
100	10.47	83.48
50	8.94	71.28
25	8.18	65.22
20	7.86	62.67
10	6.94	55.33
5	6.13	48.87
2	5.21	41.54

4.3.8 Cálculo de caudal de diseño para el canal de riego

4.3.8.1 Cálculo de precipitación y evo transpiración

El caudal de diseño del canal se calculó a partir de los datos obtenidos de la estación meteorológica del SENAMHI:

Cajabamba.

Cuadro 14. Datos de las precipitaciones por año (2017)

AÑO:2017	TEMP. MIN (°C)	TEMP. MAX (°C)	HUMEDAD (%)	VIENTO (Km/dia)	Sol(horas)	Precip (mm)	Días
ENERO	12.25	22.72	66.64	102.29	,	56.6	31
FEBRERO	12.39	23.2	70.61	93.59	-	124.6	28
MARZO	12.54	22.62	70.89	94.23	•	126.4	31
ABRIL	12.12	22.97	71.63	84.75	-	118.8	30
MAYO	10.78	22.76	56.26	84.53	1	63.8	31
JUNIO	9.74	22.75	58.64	107.255	-	6.6	30
JULIO	9.11	23.88	60.29	103.25	-	1.1	31
AGOSTO	9.15	23.6	48.24	112.55	-	5.4	31
SETIEMBRE	10.3	24.02	54.53	116.67	1	21.8	30
OCTUBRE	10.18	23.9	54.6	124.83	-	51	31
NOVIEMBRE	10.35	23.23	60.92	105.81	-	85	30
DICIEMBRE	10.8	21.41	77.12	89.73	-	111.2	31

Cuadro 15. Datos de las precipitaciones por año (2018)

AÑO:2018	TEMP. MIN (°C)	TEMP. MAX (°C)	HUMEDAD (%)	VIENTO (Km/dia)	Sol(horas)	Precip (mm)	Días
ENERO	10.62	21.96	67.52	103.24	-	75	31
FEBRERO	10.5	21.57	71.49	94.54	-	107.6	28
MARZO	10.21	20.44	71.77	95.18	-	140.6	31
ABRIL	10.83	20.98	72.51	85.7	-	170.1	30
MAYO	9.88	22.41	57.14	85.48	-	7.7	31
JUNIO	9.4	22.6	59.52	108.205	-	3.7	30
JULIO	9.08	22.48	61.17	104.2	-	11.2	31
AGOSTO	9.65	23.58	49.12	113.5	-	6.4	31
SETIEMBRE	10.56	22.46	55.41	117.62	-	63.5	30
OCTUBRE	10.17	22.13	55.48	125.78	-	101.7	31
NOVIEMBRE	11.53	22.74	61.8	106.76	-	85.7	30
DICIEMBRE	11.46	21.53	78	90.68	-	235.4	31

Cuadro 16. Datos de las precipitaciones por año (2019)

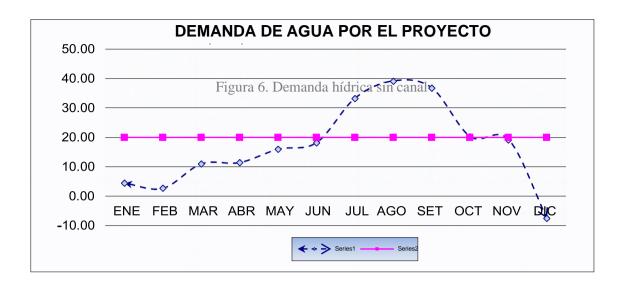
AÑO:2019	TEMP. MIN (°C)	TEMP. MAX (°C)	HUMEDAD (%)	VIENTO (Km/dia)	Sol(horas)	Precip (mm)	Días
ENERO	11.29	21.37	69.65	104.44	-	244.6	31
FEBRERO	10.46	21.14	73.62	95.74	-	189.4	29
MARZO	11.52	21.63	73.9	96.38	-	103.9	31
ABRIL	11.01	21.35	74.64	86.9	-	144.7	30
MAYO	10.49	21.96	59.27	86.68	-	40.2	31
JUNIO	8.58	22.27	61.65	109.405	-	4.1	30
JULIO	8.73	22.59	63.3	105.4	-	0	31
AGOSTO	9.06	23.25	51.25	114.7	-	1.6	31
SETIEMBRE	9.72	23.89	57.54	118.82	-	1.5	30
OCTUBRE	11.35	22.8	57.61	126.98	-	153.3	31
NOVIEMBRE	12.25	22.37	63.93	107.96	-	107	30
DICIEMBRE	11.5	22.49	80.13	91.88	-	79.1	31

Cuadro 13. Resumen de datos climáticos

	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC
TEM. MIN.	1.9	5.0	6.4	4.9	4.1	2.6	1.9	3.4	2.9	3.3	1.3	3.4
TEM. MAZ.	21.7	21.8	20.6	20.6	20.9	20.4	20.8	22.1	22.5	21.8	21.9	21.2
HUMED. %	89.3	91.4	91.8	90.6	90.1	85.2	78.2	78.7	79.6	84.8	81.5	88.0
VEL. VIENT	82.3	79.4	82.4	76.2	81.0	87.1	91.0	90.4	88.5	81.8	50.8	82.4
HORAS SOL	11.7	10.4	9.3	10.2	11.0	11.6	12.2	12.0	12.2	11.5	12.2	10.8
PP. Efect. mm/mes	89.6	99.3	102.2	94.4	49.7	23.1	0.0	0.0	26.0	59.2	38.3	96.0

Cuadro 14. Evapotranspiración Potencial - software Cropwat (Penman Monteith)

	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
DIAS	31	28	31	30	31.0	30	31	31	30	31	30	31
Eto (mm/día)	3.98	4.08	4.04	4.28	4.33	4.28	4.43	4.67	4.79	4.38	4.16	3.71
Eto (mm/mes)	123.4 1	114.2 0	125.2 1	128.4 2	134.2 2	128.4 0	137.3 0	144.8 1	143.7 3	135.8 4	124.8 2	115.0 0


Cálculo de la demanda hídrica sin proyecto

Cuadro 15. Tipo de cultivos, área de siembra y kc de especies

CULTIVO PRINC	IPAL	CALE														CULTIVO ROTACIONAI	L										
	SUP.	ENER	0	FEBR	ERO	MARZ	:0	ABRIL		MAYO	ı	סומטנ		ллло		AGOS	TO	SETIE E	MBR	ости	BRE	NOVIE E	MBR	E DICIE	MBR	ECDECIE	SUP.
ESPECIE	(Has)	ARE A	кс	ARE A	кс	ARE A	кс	ARE A	кс	AREA	кс	ARE A	кс	ESPECIE	(Has)												
MAIZ	10.0	10.00	0.6 4	10.00	0.9 6	10.00	1.2	10.00	1.1	10.00	0.8	10.00	0.4	10.00	0.4 5	10.00	0.8	10.00	1.0	10.00	1.1	10.00	0.85	10.00	0.5 8	HORTALIZA S	10.0 0
PAPA	13.0 0	13.00	0.8	13.00	0.9 5	13.00	0.9 5	13.00	0.9	13.00	0.7 5	13.00	0.5 0	13.00	0.8	13.00	0.9 5	13.00	0.9 5	13.00	0.9	13.00	0.75	13.00	0.5		
TRIGO	8.00	8.00	0.8	8.00	1.0 0	8.00	1.1 0	8.00	0.8 5	4.00	0.6 8	4.00	0.6 6	4.00	0.9 8	4.00	1.0 0	4.00	0.9	4.00	0.3	8.00	0.40	8.00	0.4 5	ARVEJA	4.00
ARVEJA	6.00	6.00	0.9 8	6.00	1.0 0	6.00	0.9	6.00	0.3	4.00	0.5 8	4.00	0.6 4	4.00	0.9 6	4.00	1.2	4.00	1.1	4.00	0.8	6.00	0.68	6.00	0.6 6	MAIZ	4.00
ALFALFA	6.00	6.00	0.9 0	6.00	0.5 0	6.00	0.9 0	6.00	0.9 0	6.00	0.5 0	6.00	0.9 0	6.00	0.9 0	6.00	0.5 0	6.00	0.9 0	6.00	0.9	6.00	0.50	6.00	0.9 0		
AREA TOTAL	43.00	43.00		43.00		43.00		43.00		37.00		37.00		37.00		37.00		37.00		37.00		43.00	•	43.00			18.0
KC PONDERADO		0.83		0.93		1.06		0.98		0.76		0.63		0.79		0.88		0.99		0.92		0.72		0.65		TOTAL	0

Cuadro 16. Demanda hídrica sin canal

ANALISIS		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC
Nª de días mes	días	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00
Eto	mm/día	3.98	4.08	4.04	4.28	4.33	4.28	4.43	4.67	4.79	4.38	4.16	3.71
Eto	mm/mes	123.38	114.24	125.24	128.40	134.23	128.40	137.33	144.77	143.70	135.78	124.80	115.01
Kc Ponderado		0.83	0.93	1.06	0.98	0.76	0.63	0.79	0.88	0.99	0.92	0.72	0.65
U C.	mm	102.09	106.14	132.96	125.41	101.76	80.44	108.31	127.44	141.87	125.14	90.35	74.78
Pp. Registrada	mm/mes	143.50	164.10	250.40	141.73	82.17	34.10	1.10	7.93	51.87	81.20	70.57	159.77
P. efectiva	mm/mes	89.62	99.31	102.15	94.40	49.74	23.09	0.00	0.00	26.05	59.25	38.33	95.98
Req	mm	12.47	6.82	30.81	31.01	52.03	57.36	108.31	127.44	115.83	65.89	52.02	-21.19
Req. Vol Bruto	m3/ha	124.75	68.24	308.06	310.14	520.26	573.56	1083.05	1274.37	1158.30	658.91	520.19	-211.92
Ef. De Aplicación		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Req Vol Neto.	mm	277.22	151.65	684.57	689.20	1156.13	1274.57	2406.78	2831.93	2573.99	1464.24	1155.99	-470.93
Req bruto	lt/seg/ha	0.047	0.028	0.115	0.120	0.194	0.221	0.404	0.476	0.447	0.246	0.201	-0.079
N ^a de Horas	hrs	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00
MR	lt/seg/ha	0.10	0.06	0.26	0.27	0.43	0.49	0.90	1.06	0.99	0.55	0.45	-0.18
Área total	has	43.00	43.00	43.00	43.00	37.00	37.00	37.00	37.00	37.00	37.00	43.00	43.00
Q. demanda	lt/seg	4.45	2.70	10.99	11.43	15.97	18.19	33.25	39.12	36.74	20.23	19.18	-7.56
Oferta (fuente)	(l/s)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00

Q. demanda	lt/se g	4.45	2.70	10.9 9	11.4 3	15.9 7	18.1 9	33.25	39.12	36.74	20.2 3	19.1 8	-7.56
Oferta (fuente)	(l/s)	20.0 0	20.0 0	20.0 0	20.0 0	20.0 0	20.0 0	20.00	20.00	20.00	20.0 0	20.0 0	20.0 0
Balance oferta - demanda	l/s	15.5 5	17.3 0	9.01	8.57	4.03	1.81	- 13.2 5	- 19.1 2	- 16.7 4	-0.23	0.82	27.5 6

Figura 6. Demanda hídrica

Cálculo de la demanda hídrica con proyecto

Cuadro 17. Tipo de cultivos, área de siembra y kc de especies

Cuadro 17. Tipo de curityos, area de siemora y ke de especies																											
CULTIVO PRINCIPA	AL	CALEN												CULTIVO ROTACIONAL													
	SUP. (Has)	ENERO		FEBRE	30	MARZO		ABRIL		MAYO		JUNIO		JULIO		AGOST	0	SETIEM	BRE	OCTUB	RE	NOVIE	MBRE	DICIEM	BRE	ESPECIE	SUP.
ESPECIE	SUP. (Has)	AREA	KC	AREA	KC	AREA	KC	AREA	KC	AREA	KC	AREA	KC	AREA	KC	ESPECIE	(Has)										
MAIZ	15.00	15.00	0.64	15.00	0.96	15.00	1.22	15.00	1.18	15.00	0.80	12.00	0.40	12.00	0.45	12.00	0.80	12.00	1.00	12.00	1.10	12.00	0.85	15.00	0.58	HORTALIZAS	12.00
PAPA	18.00	18.00	0.80	18.00	0.95	18.00	0.95	18.00	0.90	18.00	0.75	18.00	0.50	18.00	0.80	18.00	0.95	18.00	0.95	18.00	0.90	18.00	0.75	18.00	0.50		
TRIGO	8.00	8.00	0.80	8.00	1.00	8.00	1.10	8.00	0.85	5.00	0.68	5.00	0.66	5.00	0.98	5.00	1.00	5.00	0.90	5.00	0.30	8.00	0.40	8.00	0.45	ARVEJA	5.00
ARVEJA	7.00	7.00	0.98	7.00	1.00	7.00	0.90	7.00	0.30	5.00	0.58	5.00	0.64	5.00	0.96	5.00	1.22	5.00	1.18	5.00	0.80	7.00	0.68	7.00	0.66	MAIZ	5.00
ALFALFA	7.00	7.00	0.90	7.00	0.50	7.00	0.90	7.00	0.90	7.00	0.50	7.00	0.90	7.00	0.90	7.00	0.50	7.00	0.90	7.00	0.90	7.00	0.50	7.00	0.90		
AREA TOTAL	55.00	55.00		55.00		55.00		55.00		50.00		47.00		47.00		47.00		47.00		47.00		52.00		55.00		TOTAL	22.00
KC PONDERADO		0.79		0.91		1.03		0.89		0.71		0.57		0.76		0.88		0.97		0.88		0.68		0.59		TOTAL	22.00

Cuadro 18. Demanda hídrica con canal

Análisis		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC
Nª de días mes	días	31.00	28.00	31.00	30.00	31.00	30.00	31.00	31.00	30.00	31.00	30.00	31.00
Eto	mm/día	3.98	4.08	4.04	4.28	4.33	4.28	4.43	4.67	4.79	4.38	4.16	3.71
Eto	mm/mes	123.38	114.24	125.24	128.40	134.23	128.40	137.33	144.77	143.70	135.78	124.80	115.01
Kc Ponderado		0.79	0.91	1.03	0.89	0.71	0.57	0.76	0.88	0.97	0.88	0.68	0.59
U C.	mm	97.72	103.85	129.34	114.63	94.77	72.67	104.60	127.21	140.03	119.02	84.38	67.37
Pp. Registrada	mm/mes	143.50	164.10	250.40	141.73	82.17	34.10	1.10	7.93	51.87	81.20	70.57	159.77
P. efectiva	mm/mes	89.62	99.31	102.15	94.40	49.74	23.09	0.00	0.00	26.05	59.25	38.33	95.98
Req	mm	8.10	4.54	27.19	20.23	45.03	49.58	104.60	127.21	113.99	59.78	46.05	-28.60
Req. Vol Bruto	m3/ha	81.02	45.42	271.86	202.26	450.31	495.84	1046.05	1272.13	1139.86	597.77	460.54	-286.00
Ef. De Aplicación		0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Req Vol Neto.	mm	180.04	100.93	604.14	449.47	1000.70	1101.87	2324.55	2826.95	2533.02	1328.38	1023.42	-635.56
Req bruto	lt/seg/ha	0.030	0.019	0.102	0.078	0.168	0.191	0.391	0.475	0.440	0.223	0.178	-0.107
Nª de Horas	hrs	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00
MR	lt/seg/ha	0.07	0.04	0.23	0.17	0.37	0.43	0.87	1.06	0.98	0.50	0.39	-0.24
Área total	has	55.00	55.00	55.00	55.00	50.00	47.00	47.00	47.00	47.00	47.00	52.00	55.00
Q. demanda	lt/seg	3.70	2.29	12.41	9.54	18.68	19.98	40.79	49.61	45.93	23.31	20.53	-13.05
Oferta (fuente)	(l/s)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00

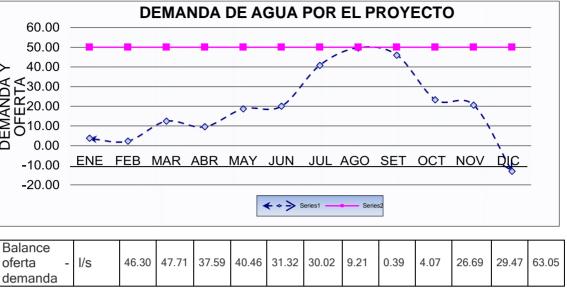


Figura 7. Demanda hídrica con

4.4. Diseño Hidráulico y estructural del canal

1. SISTEMA DE RIEGO:

El diseño de un sistema de riego hidráulico tiene como finalidad determinar los diámetros y longitudes de las diferentes tuberías de un canal de riego, dando así criterios de optimalización. Por otro lado, se dice que el diseño hidráulico se debe considerar dos criterios básicos, el primero es corroborar que la velocidad de las tuberías de la red no exceda los 2.0 m/s y que las secciones operen con una uniformidad de emisión mayor a un 90%.

2. ESTUDIO HIDROLÓGICO

Se hace este estudio hidrológico para determinar las lluvias críticas, determinando así los caudales en régimen natural, que producen un incremento máximo. En donde la precipitación es altamente variable con el tiempo y espacio, por otro lado, sedebe contar con un número suficiente de

datos y preferiblemente de varias estaciones meteorológicas, logrando un buen grado de posibilidad. Para saber cómo realizar este estudio, se debe saber que existen varias fases: primero se debe delimitar las zonas de afección del proyecto (tiene como objetivo definir el cauce de una cuenca hidrográfica), posteriormente se debe realizar un estudio hidráulico del cauce (se debe realizar trabajos de campos), luego con la ayuda de un software se contrasta la información obtenida. Se debe saber que un estudio hidrológico incluye varios apartados, por ejemplo: estudio climático, topográfico, determinación del caudal, preparación del modelo hidrológico por medios electrónicos, elaboración de cartografía, entre otros.

3. MÉTODO RACIONAL

Este método se asocia a la determinación de lluvias. En donde se utiliza normalmente los diseños de drenaje urbano como rural. La fórmula que se utiliza para el método racional es:

$$Q = \frac{\text{C.I.A}}{360}$$

Q: Caudal Máximo (m3/s)

C: Coeficiente de escorrentía I:

Intensidad de la lluvia

A: Área de la cuenca. (Ha)

a) Curvas mediante el análisis de frecuencia (IDF)

Se puede desarrollar mediante el análisis de frecuencia. Ya que es comúnmente utilizada en el análisis de frecuencia de Iluvia. La fórmula para es

$$Fy = e^{-e^{x(y-\beta)}}$$

La distribución empírica se calcula mediante el periodo de retorno el cual es:

Período de retorno (Tr)

Es un evento externo como son las lluvias torrenciales, las altas temperaturas, huracanes, entre otros, este periodo se define como el lapso o números de años que en promedio cree que será igualado o excedido, significa que el evento suceda a intervalos constantes de cada N años, existe 1/N de probabilidades que el aumento de N años ocurra dentro de algún periodo, de la cual se muestra la siguiente formula:

$$Tr = \frac{n+1}{m}$$

Dónde:

T= Periodo de retorno

M= número total de muestra

N= número de orden

b) Coeficiente de escorrentía

Es un escurrimiento C, en donde la variable presenta mayor incertidumbre en su determinación y representa una relación adimensional entre la lámina de escorrentía generada por una determinada cuenca y lamina de precipitación. En cuanto a la proporción de drenaje de lluvias depende del porcentaje de permeabilidad de la pendiente y las características del encharcamiento, como por ejemplo tenemos los pavimentos de asfalto o los techos de edificios, en donde producirán una escorrentía de casi el ciento por ciento después de la superficie en donde haya sido mojada, independientemente de la pendiente. Ahora en cuanto al coeficiente de escorrentía, dependerá de

las características y también las condiciones del suelo. En cuanto a la tasa de infiltración disminuye a medida que la lluvia continua y los antecedentes de las condiciones de humedad del suelo. Por otro lado, influyen otros factores en el coeficiente de escorrentía que son las intensas lluvias, la proximidad del nivel freático, el grado de comparación del suelo y el almacenamiento por depresión. Es recomendable escoger un coeficiente razonable para representar los efectos integrados de todos los factores.

c) Caudal (Q)

Este método racional, en caso que la lluvia de intensidad empiece de forma instantánea y continua en forma indefinida, la tasa de escorrentía continuara hasta que se llegue al tiempo de concentración, en donde la cuenca esta contribuyendo al flujo en la salida. Ahora bien, el producto de la intensidad de lluvia y el área de la cuenca A es el caudal de entrada al sistema, iA, y la relación entre este caudal y el caudal pico Q, se conoce como el coeficiente de escorrentía entonces la formula racional es:

$$Q = 0.2778 * C * I * A$$

Dónde:

Q= Caudal máximo aportado en m3 /s C= Coeficiente de escorrentía I= Intensidad de Iluvia en mm/h A= Área de aportación en km2

4. DISEÑO HIDRÁULICO:

En cuanto al diseño se basa por planos en planta del cauce del canal Chuquibamba en un tramo de 11 kilómetros, el perfil longitudinal que se ha permitido diseñar la pendiente necesaria que evite alta sedimentación y los planos de las secciones transversales para efectuar el movimiento de tierras. Por otro lado, se tendrá que estudiar el suelo en donde está realizándose el proyecto.

El diseño hidráulico se basará en elementos geométricos, cinéticos y dinámicos

del escurrimiento, las condiciones del flujo, movilidad y la definición del

canal, que en este caso será rectangular.

ÁREA MÍNIMA DE DISEÑO: 4.1.

El diseño del canal requiere de una serie de iteraciones en donde parte de una

sección trasversal del canal, en donde debería tener una superficie iqual o

mayor a la calculada según la ecuación:

$$A_{mi} = \frac{Q \max}{V \max}$$

Dónde:

V máx.: Velocidad máxima permitida, m/s Q

máx.: Gasto máxima de diseño. m3/s.

DISEÑO DE SECCIÓN TRANSVERSAL 4.2.

Una vez que conocemos los parámetros, se deberá realizar una serie de

iteraciones, de sucesivas secciones transversales a fin de encontrar aquella

sección que sea capaz de trasladar de manera segura el caudal. Por otro lado,

se deberá considerar, una misma sección transversal, aquella capaz de

trasladar un mayor caudal.

Se propone los siguientes pasos:

Selección de área (se recomienda un área igual

o superior)

Determinación de parámetros de la sección

trasversal

Cálculos de los parámetros de tirante del canal,

superficie libre, talud y radio hidráulico.

Asignación de la pendiente hidráulica del canal

Cálculo del caudal y velocidad de transporte del

canal.

96

• Si el canal no satisface las especificaciones técnicas, donde se propone un nuevo diseño.

4.3. CAPACIDADES DEL CANAL DISEÑADO

Después de hacer el diseño de la sección trasversal del canal, es asignada una pendiente, en la cual se determina el coeficiente de rugosidad que corresponde a las condiciones del terreno, para calcular la velocidad y el caudal que transporta el canal por medio de la ecuación de Manning.

"n" de Manning para canales sin revestir									
Material	n								
Arena fina coloidal	0.020								
Marga arenosa no coloidal	0.020								
Marga limosa no coloidales	0.020								
Marga firme ordinaria	0.020								
Ceniza volcánica	0.020								
Arcilla rígida muy coloide	0.025								
Limos aluviales coloidales	0.025								
Asquitos y subsuelos de arcilla dura	0.025								
Grava fina	0.020								
Marga gradada a cantos rodados no coloidales	0.030								
Linos gradados a cantos rodados coloidales	0.030								
Grava gruesa no coloidal	0.025								
Cantos rodados y ripios de canteras	0.035								

Fuente (Chow, 2004)

Tablas a utilizar para el diseño hidráulico del canal

COEFICIENTE DE RUGOSIDAD DE M	IANNING
CANALES ABIERTOS REVESTIDOS	COEFICIENTE
	(n)
Metal	0.013
Cemento	0.011
Mortero	0.013
Concreto acabado a llana	0.013
Concreto acabado en bruto	0.017
Gunita	0.022
Ladrillo	0.015
Mampostería	0.025

Fuente (Chow, 2004)

Velocidades máximas permitidas en canales.

VELOCIDAD MÁXIMA DE	EROSIÓN
CARACTERÍSTICAS DE SUELO O	VELOCIDAD MÁXIMAS
DEL REVESTIMIENTO DEL CANAL	EN M/S
Suelos limosos, turbas	0.25-0.50
descompuestas	
Arena arcillosa suelta, arcillas blandas	0.70-0.80
Turbas fibrosas pocas	0.70-1.00
descompuestas	
Arcillas arenosa medias compactas	1.00-1.20
Arcillas duras	1.20-1.80
Encespedo	0.80-1.00
Conglomerados	1.80-2.40
Madera cepillada	6.00-6.50
Concreto f'c 140 kg/cm2	3.80-4.40
Concreto f'c 210 kg/cm2	6.60-7.40
Plancha de acero	12.00-30.00

Fuente(Rubio,2010)

4.4. DISEÑO GEOMÉTRICO:

Ancho en el fondo en m. = b

Perímetro mojado en m. = X=b/y

Área mojada en m2 = A

Profundidad Total = H

El tirante de m. = y

Talud de escarpas = Z

Relación fondo - tirante = B= b+2zy

Tirante critico = Yc

Borde libre en m. = B.L.

Ancho de corono en m. = C

4.5. DISEÑO HIDRÁULICO DEL CANAL

Se toma en cuenta ciertos factores, como es el caso del tipo de material del cuerpo del canal, coeficiente de rugosidad, mínima perdida y velocidad máxima. Según Manning:

Caudal o gasto en m3/s Q=A R2/3 S ½ / n

Velocidad media m/s $V=Q/A=1/n R 2/3 S \frac{1}{2}$

Coeficiente de rugosidad = n

Pendiente hidráulica S= hf/L

4.6. CAPACIDADES DEL CANAL DISEÑADO

CRITERIOS DE OPTIMATIZACIÓN HIDRÁULICA

Máxima eficiencia Hidráulica:

 Se llama máxima eficiencia hidráulica cuando para una misma área y pendiente, se tiene un gasto máximo, donde está dirigida para un perímetro húmedo en una área mínima o menor de un área de fricción, la fórmula para determinar la sección de máxima eficiencia es:

$$\frac{b}{y} = 2tan^{\theta} \frac{1}{2}$$

Mínima Infiltración:

 Supongamos que un canal está ubicado en un terreno bastante permeable, es necesario diseñar secciones que permitan obtener una menor perdida posible de agua por filtración, donde depende ya sea el tipo de suelo o del tirante del canal, la fórmula que se da para esta condición de mínima filtración es:

$$\frac{b}{y} = 4tan^{\theta} \frac{1}{2}$$

El promedio de ambas queda expresado por lo siguiente:

$$\frac{b}{y} = 3\tan \frac{\theta}{2}$$

4.7 Coeficiente de escorrentía

Tabla I. Coeficientes de escorrentía (\bar{C}) (en Aparicio (1999))

Tipo de superficie	Coeficiente d	le escorrentía
	Mínimo	Máximo
Zona comercial	0,70	0,95
Vecindarios, zonas de edificios, edificaciones densas	0,50	0,70
Zonas residenciales unifamiliares	0,30	0,50
Zonas residenciales multifamiliares espaciadas	0,40	0,60
Zonas residenciales multifamiliares densas	0,60	0,75
Zonas residenciales semiurbanas	0,25	0,40
Zonas industriales espaciadas	0,50	0,80
Zonas industriales densas	0,60	0,90
Parques	0,10	0,25
Zonas deportivas	0,20	0,35
Estaciones e infraestructuras viarias del ferrocarril	0,20	0,40
Zonas suburbanas	0,10	0,30
Calles asfaltadas	0,70	0,95
Calles hormigonadas	0,70	0,95
Calles adoquinadas	0,70	0,85
Aparcamientos	0,75	0,85
Techados	0,75	0,95
Praderas (suelos arenosos con pendientes inferiores al 2%)	0,05	0,10
Praderas (suelos arenosos con pendientes intermedias)	0,10	0,15
Praderas (suelos arenosos con pendientes superiores al 7%)	0,15	0,20
Praderas (suelos arcillosos con pendientes inferiores al 2%)	0,13	0,17
Praderas (suelos arcillosos con pendientes intermedias)	0,18	0,22
Praderas (suelos arcillosos con pendientes superiores al 7%)	0,25	0,35

Tabla II. Coeficientes de escorrentía, según Benítez et al. (1980), citado por Lemus & Navarro (2003)

COBERTURA	TIPO DE		PE	ENDIENTE (%)	
DEL SUELO	SUELO	> 50	20-50	5-20	1-5	0-1
	Impermeable	0,80	0,75	0,70	0,65	0,60
Sin vegetación	Semipermeable	0,70	0,65	0,60	0,55	0,50
	Permeable	0,50	0,45	0,40	0,35	0,30
	Impermeable	0,70	0,65	0,60	0,55	0,50
Cultivos	Semipermeable	0,60	0,55	0,50	0,45	0,40
	Permeable	0,40	0,35	0,30	0,25	0,20
Pastos,	Impermeable	0,65	0,60	0,55	0,50	0,45
vegetación	Semipermeable	0,55	0,50	0,45	0,40	0,35
ligera	Permeable	0,35	0,30	0,25	0,20	0,15
	Impermeable	0,60	0,55	0,50	0,45	0,40
Hierba	Semipermeable	0,50	0,45	0,40	0,35	0,30
	Permeable	0,30	0,25	0,20	0,15	0,10
Bosque,	Impermeable	0,55	0,50	0,45	0,40	0,35
vegetación	Semipermeable	0,45	0,40	0,35	0,30	0,25
densa	Permeable	0,25	0,20	0,15	0,10	0,05

TABLA 15.1.1 Coeficientes de escorrentía para ser usados en el método racional

			Perio	do de rete	orno (año	s)	
Característica de la superficie	2	5	10	25	50	100	500
Áreas desarrolladas							
Asfáltico	0.73	0.77	0.81	0.86	0.90	0.95	1.00
Concreto/techo	0.75	0.80	0.83	0.88	0.92	0.97	1.00
Zonas verdes (jardines, parques	, etc.)						
Condición pobre (cubierta d	le pasto	menor de	1 50% de	i área)			
Plano, 0-2%	0.32	0.34	0.37	0.40	0.44	0.47	0.58
Promedio, 2-7%	0.37	0.40	0.43	0.46	0.49	0.53	0.61
Pendiente, superior a 7%	0.40	0.43	0.45	0.49	0.52	0.55	0.62
Condición promedio (cubier	ta de pa	asto del 5	0 al 75%	del área)			
Plano, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Promedio, 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Pendiente, superior a 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Condición buena (cubierta o	le pasto	mayor de	1 75% de	l área)			
Plano, 0-2%	0.21	0.23	0.25	0.29	0.32	0.36	0.49
Promedio, 2-7%	0.29	0.32	0.35	0.39	0.42	0.46	0.56
Pendiente, superior a 7%	0.34	0.37	0.40	0.44	0.47	0.51	0.58
Áreas no desarrolladas							
Área de cultivos							
Plano, 0-2%	0.31	0.34	0.36	0.40	0.43	0.47	0.57
Promedio, 2-7%	0.35	0.38	0.41	0.44	0.48	0.51	0.60
Pendiente, superior a 7%	0.39	0.42	0.44	0.48	0.51	0.54	0.61
Pastizales							
Plano, 0-2%	0.25	0.28	0.30	0.34	0.37	0.41	0.53
Promedio, 2-7%	0.33	0.36	0.38	0.42	0.45	0.49	0.58
Pendiente, superior a 7%	0.37	0.40	0.42	0.46	0.49	0.53	0.60
Bosques							
Plano, 0-2%	0.22	0.25	0.28	0.31	0.35	0.39	0.48
Promedio, 2-7%	0.31	0.34	0.36	0.40	0.43	0.47	0.56
Pendiente, superior a 7%	0.35	0.39	0.41	0.45	0.48	0.52	0.58

Nota: Los valores de la tabla son los estándares utilizados en la ciudad de Austin, Texas. Utilizada con autorización.

V. DISCUSIÓN:

La topografía donde se realizó el "Diseño Hidráulico Del Canal De Chuquibamba, Distrito De Cachachi, Provincia De Cajabamba - Cajamarca", corresponde a un terreno accidentado con pendientes que van de 51% y 100%. Este resultado se asemeja al estudio realizado por Flores (2018), en su tesis "Diseño del Canal de Riego en el Anexo Huancas, Distrito de Tayabamba – Provincia de Pataz – Región la Libertad", quien determino valores de 51 y 100% de pendiente transversal.

Del estudio de Mecánica de Suelos realizado a las muestras de campo, calicatas C-01 a C-07, se determinó un suelo compuesto por Arenas arcillosas con grava y Arenas arcillosas (SC), con un contenido de humedad que varía de 10.43 a 11.49%.; Haro (2018)en su estudio de mecánica de suelos realizado para el "Diseño Del Canal De Riego Para El Anexo Collay, Distrito De Tayabamba – Provincia De Pataz – Región La Libertad", obtuvo resultados distintos del tipo de suelo, encontró un suelo compuesto en su mayoría por arcillas: Arcillas limosas, Arcilla ligera, Arcilla limosa, Arena arcillosa, Arcilla arcillosa.

En el estudio hidrológico realizado, se determinó una precipitación máxima en 24 Hrs. de57.60mm y un caudal de 0.05m3/s para el diseño del canal. Para ello se contó con la información de la estación meteorológica del SENAMHI Cajabamba ubicada en el distrito de Cajabamba, provincia de Cajabamba. Mendoza (2018), en su estudio hidrológico para el "Diseño para el mejoramiento y ampliación del canal de irrigación entre los caseríos de Yeguada parte baja y Aractullan, distrito de Mollepata, provincia de Santiago de Chuco -La Libertad", obtuvo un caudal de diseño de 0.345 m3/s para el diseño del canal, además de un pase de 1m y pozas disipadoras para reducir la velocidad.

En el diseño geométrico del canal, se diseñó un canal principal y cinco canales secundarios de sección rectangular de altura 0.30m x 0.35m de

base con un espesor de 0.10m, un tirante promedio 0.10m y un borde libre de 0.10m, además de pozas disipadorascon el fin de controlar el flujo turbulento. Paredes (2018), en su tesis "Diseño de la infraestructura del canal de riego Hacienda Vieja-caserío Pampas de Chepate - distrito deCascas - provincia Gran Chimú-departamento La Libertad", opto por un diseño con el finde obtener máxima eficiencia, el diseño del canal fue de sección trapezoidal de base 0.30m, talud 0.50, tirante variable de valores 0.58, 0.29, 0.28 y 0.33 y altura variable considerando el borde libre 0.10m.

Los terrenos son Limo arcilloso con vegetación tipo cultivos y la mayoría de terrenos tiene una pendiente del 7% la mayoría del terreno tiene una pendiente media

El canal de riego es un bienestar en el área de cultivo tanto para el consumo humano como para la parte económica, ayudamos a las personas con los recursos de cultivo sea beneficioso para la población agrícola.

Los sistemas de riego por superficie o por gravedad es un método que engloba gran número de variantes o sistemas diferentes. Dentro de los más usados destacan el riego por surcos, el riego por tabulares y el riego por fajas. En total se reconocen los siguientes sistemas de riego por superficie:

Riego por surcos: se infiltra el agua lentamente a través de los surcos o pequeños canales abiertos y equidistantes. Existen dos tipos:

Surcos con pendiente, cuyos surcos se distribuyen de manera paralela. Surcos a nivel, cuyo trazado se hace dentro de un tablar.

Riego por tablares o canteros: se aplica agua a sistemas de parcelas planas y rectangulares, por lo general, circundadas por diques o caballones que limitan el paso del agua a otras parcelas, quedando el agua estancada e infiltrándose paulatinamente en el suelo.

Riego por fajas: en este tipo de riego, el terreno se divide en franjas rectangulares estrechas, llamadas fajas o melgas, separadas unas de otras mediante caballones dispuestos longitudinalmente. El agua discurre a lo largo de las fajas formando una lámina delgada que se va infiltrando poco a poco al tiempo que avanza.

Riego "de careo" de zonas de montaña: se trata de una acequia que corre casi a nivel sobre una ladera y tiene pequeñas salidas por las que el agua fluye escurriendo ladera abajo.

Los canales de riego tienen la función de conducir el agua desde la captación hasta el campo o huerta donde será aplicado a los cultivos. Son obras de ingeniería importantes, que deben ser cuidadosamente pensadas para no provocar daños al ambiente y para que se gaste la menor cantidad de agua posible. Están estrechamente vinculados a las características del terreno, generalmente siguen aproximadamente las curvas de nivel de este, descendiendo suavemente hacia cotas más bajas (dándole una pendiente descendente, para que el agua fluya más rápidamente y se gaste menos líquido).

La construcción del conjunto de los canales de riego es una de las partes más significativas en el costo de la inversión inicial del sistema de riego, por lo tanto su adecuado mantenimiento es una necesidad imperiosa.

Las dimensiones de los canales de riego son muy variadas, y van desde grandes canales para transportar varias decenas de m³/s, los llamados canales principales, hasta pequeños canales con capacidad para unos pocos l/s, son los llamados canales de campo.

VI. CONCLUSIONES

Se concluye que, de la investigación realizada, se diseñó Hidráulico de un canal que cumple con las normas del ANA (Autoridad Nacional del Agua), asimismo se verá el sistema de riego y su consiguiente aumento en las áreas de cultivo, mejorando la calidad de vida de la población involucrada, respetando el medio ambiente.

La topografía donde se realizó el "Diseño Hidráulico Del Canal De Riego Chuquibamba, Distrito De Cachachi, Provincia De Cajabamba - Cajamarca", corresponde a un terreno accidentado con pendientes que van de 51% y 100%.

Del estudio de Mecánica de Suelos realizado a las muestras de campo, calicatas C-01 a C-07, se determinó un suelo compuesto por Arenas arcillosas con grava y Arenas arcillosas (SC), con un contenido de humedad que varía de 10.43 a 11.49%.

En el estudio hidrológico realizado, se determinó una precipitación máxima en 24 Hrs. de 57.60mm y un caudal de 0.05m3/s para el diseño del canal. Para ello se contó con la información de la estación meteorológica del SENAMHI Cajabamba ubicada en el distrito de Cajabamba, provincia de Cajabamba.

En el diseño del canal, se diseñó un canal principal y cinco canales secundarios de sección rectangular de altura 0.30m x 0.35m de base con un espesor de 0.10m, un tirante promedio 0.10m y un borde libre de 0.10m, además de 24 pozas disipadoras con el fin de controlar el flujo turbulento.

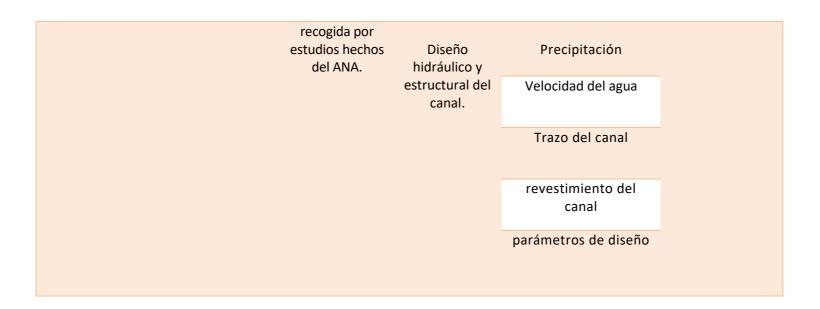
VII. RECOMENDACIONES

- Programar la ejecución de los trabajos en época de estiaje, con el objetivo de lograr trabajos de mayor calidad.
- Tener en cuenta las medidas de seguridad y protección para la realización de los trabajos a fin de evitar accidentes y complicaciones al momento de ejecutar la obra.
- La obra deberá contar con un Ingeniero Residente, para garantizar que se cumpla lo contemplado en el expediente técnico (Planos y Especificaciones).
- Se recomienda tener un control óptimo en la calidad de la obra con el fin de evitar alteraciones en el medio ambiente.
- Realizar la capacitación para los pobladores del área de influencia directa del proyecto, para el uso adecuado del canal.
- Dar mantenimiento periódico al canal de riego, para que cumpla con su vida útil y para garantizar el buen funcionamiento de la estructura.

VIII. REFERENCIAS

- Evaluating Flood Resilience Strategies for Coastal Megacities by Aerts, J. [et al.]. Science, Vol. 344: 473-475, Mayo 2014.
- II. ANA. Manual: criterios de diseños de obras hidráulicas para la formulación de proyectos hidráulicos multisectoriales y de afianzamiento hídrico [en línea] Perú: Diciembre, 2010 [fecha de consulta: 18 de septiembre de 2017]. Disponible en: http://www.ana.gob.pe/media/389716/manual-dise%C3%B1os-1.pdf
- III. ARBULU, José. Hidráulica Aplicada Diseño de Canales.1.a ed. Universidad Pedro Ruiz Gallo, 2010. 39pp.
- IV. AREDO, Antonio y VALVERDE, Armando. Mejoramiento y rehabilitación del canal de regadío Carabamba margen izquierda, Distrito de CARABAMBA, Provincia de JULCÁN, Departamento de LA LIBERTAD. Tesis (Ballicher en Ingeniería). Trujillo: Universidad Nacional de Trujillo, 2016. Disponible en http://dspace.unitru.edu.pe/handle/UNITRU/7522
- V. CAPECO. Costos y presupuestos en edificaciones. Lima:Cámara Peruana de la Construcción, 2018. 375pp.
- VI. FLORES, Américo. Diseño del Canal de Riego en el Anexo Huancas, Distrito de Tayabamba – Provincia de Pataz – Región la Libertad. Trujillo: Universidad César Vallejo, 2018. 247 pp.
- VII. GARCIA, Martín y ROSIQUE, Manuel. Topografía básica para ingenieros. Murcia: Universidad de Murcia, 1994. 277pp.

- VIII. GOBIERNO REGIONAL LA LIBERTAD. "Mejoramiento del Canal de Riego Calera – Guadalupe – Pacasmayo – La Libertad", Perfil Técnico JUSDRR Jequetepeque, 2013.
 - IX. HARO, Albin. Diseño Del Canal De Riego Para El Anexo Collay, Distrito De Tayabamba Provincia De Pataz Región La Libertad. Trujillo: Universidad César Vallejo, 2018. 247 pp.
 - X. HUANCA, Santos. Evaluación de la gestión de riego tradicional en la subcuenca media del río Keka (Provincia Omasuyos del departamento de La Paz). Tesis (Bachiller en Ingeniería). Bolivia Universidad Mayor de San Andrés, 2006. Disponible en: http://bibliotecadigital.umsa.bo:8080/rddu/bitstream/123456 789/4249/1/T-1195.pdf
- XI. MINISTERIO de Vivienda, Construcción y Saneamiento (Perú). Reglamento Nacional de Edificaciones. Lima, 2006.
- XII. MIRANDA, Omar. Diseño del Mejoramiento del Canal de Riego Sausalito del Caserío Puente Ochape, Distrito Cascas, Provincia Gran Chimú, La Libertad. Trujillo: Universidad César Vallejo, 2018. 247 pp.
- XIII. PAREDES, Jazmín. Diseño de la infraestructura del canal de riego Hacienda Vieja – caserío Pampas de Chepate distrito de Cascas - provincia Gran Chimú – departamento La Libertad. Trujillo: Universidad César Vallejo, 2018. 219 pp.
- XIV. TAPIA, Miguel. Construcción ٧ diseño obras complementarias del canal de riego Parihuana, distrito de Taurija, Pataz La Libertad" Tesis (Ballicher en Ingeniería). Trujillo: Universidad Antenor Orrego, 2016. Disponible en http://repositorio.upao.edu.pe/handle/upaorep/2049


- XV. ROCHA, Arturo. Hidráulica de Tuberías y Canales. 1.a ed. Universidad Nacional de Ingeniería, 2007. 530 pp. ISBN-13: 9786034511002
- XVI. RODRIGUEZ, Pedro. Hidráulica de Canales. 1.a ed. Mc Graw Hill, 2008. 499pp.
- XVII. SANZ, Juan. Mecánica de Suelos. Barcelona: EditoresTécnicos Asociados, 1975. 223 pp.
- XVIII. SOTELO, Gilberto. Hidráulica de Canales. Ciudad de México: Universidad Nacional Autónoma de México, 2002.839pp.
 - XIX. VILLÓN, Máximo. Hidrología. Lima: Editorial Villón, 2002. 430 pp.

VIII. ANEXOS

Anexo 1

 Anexo 1.1: Matriz de operacionalización de variables Tabla 1. Matriz de operacionalización de variables

Variable	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Escalas de medición
Diseño	Es la forma del estudio y planteamiento que	Realizar el diseño del mejoramiento	Estudio topográfico del lugar	Trazo y Alineamiento	RAZON
	permite diseñar y mejorar los canales	del canal Chuquibamba,		Vista y planta de secciones	
	haciendo un revestimiento en concreto, cálculo del volumen, nivel de napa freática,	distrito de Cachachi, provincia de Cajabamba- Cajamarca, que	Estudio de Mecánica de Suelos	Contenido de humedad Análisis Granulométrico por Tamizado Densidad máxima y Iímites de consistencia	RAZON
	escorrentías, área de influencia del proyecto. (Villón, 2002, p.15)	cumpla con la norma técnica del ANA. Los elementos, la precipitación	Estudio Hidrológico	Datos del Senamhi	INTERVALO
		recogida por el senamhi y		Trazo Longitudinal	
		cuenca hidrológica será		Elementos del diseño Geométrico	RAZON

Fuente: elaboración propia de los autores

Anexo 1.2: Matriz de Consistencia

MATRIZ DE CONSISTENCIA PARA PROYECTOS DE INVESTIGACIÓN

TÍTULO	PROBLE MA	JUSTIFICACIÓN	OBJETIVO DE LA INVESTIGACIÓN	HIPÓTESIS	VARIABLE S	METODOL OGÍA	POBLACION Y MUESTRA
		1.Justificación teórica:	1. <u>Objetivo General:</u>	1. <u>Hipótesis</u> <u>General:</u>	1. <u>Variable:</u>	<u>Tipos</u> d e	<u>Poblaci</u> <u>y</u> <u>ón</u>
"Diseño hidráulic o del canal de Chuquib amba, distrito Cachach i, provinci a Cajaba mba - Cajamar ca,	¿Qué caracterí sticas técnicas debe presentar e ¿Diseño hidráulic o del canal de Chuquib amba, distrito Cachach i, provinci	En este punto debemos considerar que el canal de riego en el caserío de Chuquibamba fue construido rústicamente por los pobladores del caserío de Chuquibamba hace unos cuarenta años, contando solo con una mejora realizada hace unos veinte años aproximadamente. En este contexto, la situación del canal de regadío se encuentra evidentemente deteriorado, por lo que, ante esta infraestructura que sufre de filtraciones, a través del presente proyecto se aporta sostenibilidad y eficiencia en el uso del recurso hídrico, logrando el aumento de productividad del sector agrícola de la población y reduciendo la degradación de los recursos hídricos 1. Justificación Metodológica:	Realizar el diseño hidráulico del canal de Chuquibamba cumpliendo con la norma técnica de la Autoridad Nacional del Agua en el distrito de Cachachi, provincia de Cajabamba-Cajamarca, 2021.	Las característic as que debe tener el canal de riego son revestidas en concreto, cumplir con	Diseño hidráulico del canal de riego del caserio Chuquiba mba.	Descriptiva simple - Transvers al	La población y muestra será de 950 pobladores de acuerdo al padrón de usuarios elaborado por los comuneros de la zona.

2021"	a Cajaba mba - Cajamar ca, 2021?, ¿para cumplir con las Normas del ANA?	e importancia del canal de regadío para el caserío de Chuquibamba, por cuanto es indispensable para la actividad de mayor ingreso económico para la población, esto es la agricultura, sin embargo, se debe considerar parámetros de respeto al medio ambiente para evitar impactos negativos que resulten repercutiendo incluso en el desmedro de los mismos cultivos, por lo que, para lograr un regadío eficiente se debe considerar las condiciones ambientales	2. Objetivo Específico: O.E.1 Realizar el estudio topográfico del lugar	la pendiente requerida y transportar el caudal de agua de acuerdo a la demanda, para que cumpla con la norma técnica del ANA en el	2. <u>Dimensi</u> ones de la variable Estudio topográfico	No experimental transversal descri	<u>a</u>	
		1.Justificación Practica:	O.E.2 Realizar el estudio de Mecánica de suelos.	distrito de Cachachi, provincia de	Estudio de mecánica de suelos.	ptivo simple		
		El vigente estudio de Diseño	O.E.3 Realizar el estudio hidrológico.	Cajabamba - Cajamarca, 2021.	Estudio hidroló gicodel canalde regadío			
		hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba - Cajamarca, 2021 se encuentra justificado en la importancia y transcendencia de uso para los pobladores del Caserío de Chuquibamba, toda vez que, el referido recurso hídrico a través de los seis ramales principales que tiene a lo largo del canal, es esencial para el regadío de sus cultivos en diferentes sectores.	O.E.4 Realizar el diseño hidráulico y estructural del canal.		Diseño Hidráulico y estructural del canal			

Fuente: elaboración propia de los autores

• Anexo 1.3: Indicadores de variables

Tabla 1. Indicadores de variables

OBJETIVO ESPECÍFICO	DIMENSIONES	INDICADORES	DESCRIPCIÓN	TÉCNICA / INSTRUMENTO	TIEMPO EMPLEADO	MODO DE CÁLCULO
O.E.1 Realizar el estudio topográfico del lugar	Levantamiento topográfico del canal. (Chuquibamba)	Trazo Vista en planta y secciones Perfiles longitudinales	El estudio hidráulico permite diseñar las obras de arte, cálculo del volumen, nivel de napa freática, escorrentías, área de influencia del proyecto. (Villón, 2002, p.15)	Guía de observación N° 01 para la recolección de datos	2020-II a 2021-I (8 meses)	(m2) (m3/s) (m2) (mm)
O.E.2 Realizar el estudio de Mecánica de suelos.	Estudio de suelos. Calicatas en el terreno.	contenido de humedad Análisis granulométrico por tamizado Densidad máxima y límites de consistencia	Mediante el estudio de la relación entre los factores agua, suelo y planta, sumado a los parámetros hidráulicos, se podrá dilucidar el diseño de los canales, y junto con el manejo de la hidrología, (Autoridad Nacional del Agua, 2010, pg. 6)	Guía de observación N° 02 para la recolección de datos	2020-II a 2021-I (8 meses)	m.km m m/s
O.E.3 Realizar el estudio hidrológico.	Datos del Senamhi	Datos del Senamhi	Este diseño permite realizar el trazo y dimensiones de las obras de arte.		2020-II a 2021-I (8 meses)	(m) (m) (m2, m) (m)
O.E.4 Realizar el diseño hidráulico y estructural del canal.	Diseño estructural del canal. Elementos del diseño geométrico Velocidad del agua	Velocidad Pendiente Trazo del Canal Elementos de diseño geométrico Parámetros de Diseño Revestimiento	Este diseño permite realizar el trazo óptimo del canal, radios permitidos, rugosidad, taludes, velocidades permisibles y estableciendo criterios en el espesor de revestimiento	115	2020-II a 2021-I (8 meses)	(m/s) (%) (m) (m) (m3/s, m2, m) (m)

Fuente: elaboración propia de los autores

ANEXO 2 INSTRUMENTOS DE RECOLECCIÓN DE DATOS

ANEXO 2.1 Guía de Observación – Reconocimiento del Canal

G	UÍA DE OBSERVACION	- RECONOCIMIE	NTO DEL CANAL			
	lel canal de Chuquiba a Cajabamba - Cajan			D CÉSAR VALLEJO		
	AUTORES		ASESOR			
	z Garcia Jhordink		ING. HERRERA VILOCHE, ALEX			
	z Vasquez Junior		ARQUIMEDES			
LUGAR	DISTRITO	PROVINCIA	REGION	FECHA		
Chuquibamba	Cachachi	Cajabamba	Cajamarca	Julio-2021		
Cuenca rio chorro b	lanco 0+000 km al 1°	TRAMO				
Oderica no chomo b	idilco o · ooo kiii di T	1 · 000 Km				
	DATO	S ESPECIFICOS				
Definición			a. Natural sin revestir			
			b. concreto armado			
	TIPO DE REVEST	IMIENTO	c. plástico PVC			
			d. Material asfaltico			
			e. Otros			
Definición			a. Rectangular			
			b. Trapezoidal			
	SECCION DEL	CANAL	Triangular Parabólica Otros			
			d. Parabólica			
Definición	PROBLEMAS DEL CANAL		a. Erosión			
			b. Absorción c. Filtración			
			d. Desgaste			
			e. Otros			
Definición	-		a. Rápido			
	NIVEL DE FLUIDEZ DEL AG	GUA	b. Medio			
			c. Despacio			
Definición	-		a. Bueno			
	ESTADO DEL	CANAL	b. Regular			
			c. Malo			
Definición			a. Mucho			
	CUANTO AFECTA EL ESTA ACTUAL DEL CANAL A		b. Poco			
			c. Nada			
Definición			a. No presenta revestimiento			
	1		b. Fenómenos naturales			
	CAUSAS DEL MAL ESA	TDO DEL CANAL	c. Mal diseño			
			d. Sedimentación			
			e. Falta de mantenimiento			
Definición	_		a. Desperdicio de agua			
	CONSECUENCIAS DEL MAL	ESATDO DEL CANAL	b. Pérdida de cultivos			
			b. Pérdida económica			

ING. Josualdo Villar Quiroz	Quelin
ING. ALEX ARQUIMEDES HERRERA VILOCHE	Alex A Shirters Fluchs Sea Organius C12726

ANEXO 4.2 Guía de Observación – Levantamiento Topográfico

GUÍA DE OBSERVACIÓN - LEVANTAMIENTO TOPOGRÁFICO						
"Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba - Cajamarca, 2021"					AD CÉSAR VALLEJO	
	AUTORES			ASESOR		
CF	RUZ GARCIA JHORDII	١K				
CRUZ VASQUEZ JUNIOR				ING. HERRERA VILOCH	HE, ALEX ARQUIMEDES	
LUGAR	DISTRITO	PROV	INCIA	REGION FECHA		
Chuquibamba	Cachachi	Cajab	amba	Cajamarca Julio-2021		
DATOS ESPECIFICO						

PUNTO	ESTE NORTE	ELEVACIÓ
		N
p1	818776 9152381	2201
p2	818762 9152424	2200
р3	818751 9152454	2200
p4	818743 9152474	2200
p5	818735 9152489	2200
p6	818727 9152500	2200
p7	818720 9152509	2200
p8	818690 9152521	2199
p9	818671 9152527	2199
p10	818653 9152534	2199
p11	818638 9152537	2199
p12	818629 9152544	2199
p13	818610 9152544	2199
p14	818609 9152544	2199
p15	818588 9152552	2199
p16	818579 9152569	2198
p17	818577 9152570	2198
p18	818576 9152571	2198
p19	818564 9152583	2198
p20	818541 9152597	2197
p21	818520 9152603	2196
p22	818519 9152603	2196

-22	240507	0153607	2100
'		9152607	2196
'		9152608	2196
'			2196
·		9152620	2196
·			2196
•		9152624	2196
•			2195
1		9152657	2195
·			2195
		9152664	2195
-			2194
p34 8	318408	9152667	2194
p35	318390	9152670	2194
p36	318379	9152674	2194
p37	318365	9152696	2194
p38	318364	9152697	2194
p39	318348	9152714	2194
p40 8	318347	9152715	2194
p41 8	318346	9152716	2194
p42	318337	9152723	2194
p43	318321	9152740	2194
p44	318311	9152758	2194
p45	318303	9152767	2194
p46 8	318303	9152768	2194
p47	318296	9152781	2194
p48 8	318296	9152782	2194
p49 8	318291	9152791	2193
'	318281	9152797	2193
•		9152801	2193
•			2193
		9152818	2192
·			2192
'		9152843	2192
·			2191
'		9152866	2191
·			2190
'		9152880	2190
·			2190
'		9152888	2189
'			2189
'		9152895	
·			2189
•			2189
'			2189
'		9152916	2189
		9152924	2189
			2189
		9152932	2189
•		9152937	2189
p71 8	318003	9152945	2189

n72	217002	0152040	2100
<u>'</u>		9152948	2189
<u>'</u>		9152948	2189
<u>'</u>			2190
		9152940	2191
<u>'</u>			2194
		9152921	2196
<u>'</u>			2196
		9152944	2195
			2194
•		9152961	2193
<u>'</u>			2193
p83	317854	9152969	2193
p84	317844	9152974	2193
p85	317830	9152980	2192
p86	317818	9152985	2192
p87	317808	9152986	2192
p88	317795	9152982	2192
p89	317783	9152976	2193
p90	317783	9152976	2193
p91	317764	9152968	2193
p92	317763	9152968	2193
p93	317762	9152968	2193
p94	317753	9152961	2194
p95 8	317738	9152954	2195
p96 8	317726	9152945	2197
p97 8	317712	9152929	2200
p98 8	317703	9152917	2202
<u>'</u>			2202
<u>'</u>		9152897	2204
<u>'</u>			2203
		9152875	2203
<u>'</u>		9152866	2203
		9152860	2202
1			2201
		9152854	2201
<u>'</u>		9152846	2202
<u>'</u>		9152845	2202
<u>'</u>			2204
		9152843	2204
<u>'</u>			2203
<u>'</u>		9152839	2207
<u>'</u>			
		9152850	2205
<u>'</u>		9152857	2204
<u>'</u>		9152863	2201
		9152870	2199
			2199
		9152879	2199
<u>'</u>		9152889	2200
p120	317563	9152899	2200

-121	147575	0453007	2200
'		9152907	2200
<u> </u>		9152920	2201
·			2201
·		9152932	2201
'			2201
•		9152947	2200
·			2198
·		9152975	2196
<u>-</u>			2196
<u> </u>		9152992	2194
p131	317648	9153000	2193
p132	317649	9153016	2192
p133	317648	9153031	2192
p134 8	317647	9153040	2192
p135	317646	9153040	2192
p136	317640	9153050	2193
p137	317639	9153051	2193
p138	317632	9153058	2194
p139	317631	9153059	2194
p140 8	317631	9153060	2194
p141 8	317624	9153070	2194
p142	317621	9153077	2193
p143	317614	9153090	2193
p144 8	317608	9153102	2191
p145	317607	9153104	2191
p146 8	317607	9153104	2191
p147	317600	9153115	2190
'			2189
'	317584	9153127	2189
•			2187
,		9153142	2186
'			2188
·		9153132	2191
•			2195
•		9153123	2196
'			2197
1		9153122	2197
·			2198
'		9153121	2198
'			2198
'		9153121	
·			2198 2197
'			
'			2196
•		9153129	2195
'		9153129	2195
			2193
		9153140	2192
'		9153155	2190
p169	317386	9153180	2190

-170	247222	0453400	2402
'		9153198	2192
<u> </u>		9153213	2195
<u>'</u>			2197
·		9153227	2197
·			2199
·		9153251	2200
'			2199
<u> </u>		9153280	2199
I ⁻ -			2199
·		9153302	2197
p180	317333	9153320	2196
p181	317328	9153336	2194
p182	317320	9153341	2196
p183	317319	9153355	2195
p184	317317	9153369	2194
p185	317318	9153386	2192
p186	317315	9153403	2191
p187	317311	9153422	2190
p188	317305	9153432	2193
p189	317304	9153441	2193
p190 E	317303	9153454	2193
p191	317295	9153469	2198
p192	317290	9153488	2201
p193 8	317291	9153513	2199
p194 8	317296	9153541	2193
p195 8	317300	9153563	2189
p196 8	317298	9153587	2189
'			2188
'			2188
•			2188
		9153647	2191
'			2194
'		9153674	2197
<u>'</u>			2200
		9153715	2199
<u>'</u>			2197
'		9153751	2195
•			2193
·		9153770	2193
<u>'</u>			2196
<u>'</u>		9153781	2197
<u>'</u>			
			2192
•			2190
•		9153814	2188
'		9153815	2188
			2188
		9153820	2188
'		9153809	2189
p218	317096	9153803	2189

-210	247002	0152706	2100
'		9153796	2189
		9153791	2191
			2191
		9153786	2190
			2190
		9153782	2190
			2191
		9153774	2191
			2190
		9153772	2190
		-	2190
p230	317003	9153761	2191
p231	317002	9153761	2191
p232	317001	9153760	2191
p233	316991	9153756	2191
p234	316990	9153755	2191
p235	316989	9153755	2190
p236	316982	9153750	2190
p237	316982	9153749	2191
p238	316981	9153749	2190
p239	316977	9153744	2191
p240	316977	9153743	2191
p241	316971	9153739	2191
p242	316963	9153732	2190
p243	316963	9153732	2191
p244	316955	9153727	2189
p245	316950	9153722	2189
		-	2189
		9153706	2189
•			2190
		9153699	2190
			2190
		9153692	2190
'		-	2189
'		9153691	2189
			2189
'		9153691	2189
			2189
		9153689	2188
		-	2190
'		9153676	
			2191
'		-	2191
		9153675	2188
		9153675	2188
'		9153677	2187
•			2185
		9153688	2185
'		9153690	2185
p267	316828	9153690	2185

-2C0	010000	0153600	2105
'		9153690	2185
<u>'</u>		9153689	2185
			2185
		9153689	2185
			2185
		9153691	2185
			2185
		9153692	2185
			2185
		9153694	2185
			2185
p279	816788	9153695	2185
p280	316786	9153696	2185
p281	816778	9153700	2184
p282	816767	9153702	2184
p283	816756	9153708	2183
p284	816739	9153710	2183
p285	316739	9153710	2183
p286	316725	9153714	2183
p287	316723	9153715	2183
p288	816707	9153715	2183
p289	816696	9153712	2184
p290	816694	9153712	2184
p291	316691	9153712	2184
p292	816665	9153708	2185
p293	316664	9153708	2185
p294	816649	9153706	2186
			2186
		9153705	2186
			2186
		9153703	2186
			2186
		9153702	2187
			2187
		9153699	2187
			2187
		9153699	2187
			2188
		9153698	2188
			2187
		9153701	2187
			2186
		9153712	2185
		9153713	2185
'		9153713	2185
•			2185
		9153713	2185
		9153712	2185
p316	816462	9153712	2185

	-247	04644=	0452706	2405
	•			
	<u> </u>			
	<u>'</u>		ļ	
9322 816397 9153664 2192 9323 816390 9153652 2195 9324 816372 9153648 2196 9325 816372 9153648 2196 9326 816367 9153664 2193 9327 816306 9153664 2193 9328 816355 9153687 2188 9329 816355 9153687 2188 9330 816351 9153698 2186 9331 816318 9153705 2185 9332 816328 9153710 2184 9333 816319 9153715 2184 9334 816318 9153715 2184 9335 816278 9153705 2187 9336 816277 9153705 2187 9337 816238 9153702 2188 9338 816239 9153702 2188 9340 816239 9153702 2188 9341 <td><u> </u></td> <td></td> <td>ļ</td> <td>ļ</td>	<u> </u>		ļ	ļ
	•		ļ	ļ
	<u> </u>			Į.
	•			
	I			
3327 816360 9153664 2193 3328 816356 9153686 2188 3329 816355 9153686 2188 3330 816355 9153698 2186 3331 816328 9153705 2185 3332 816328 9153715 2184 3333 816319 9153715 2184 3334 816328 9153715 2184 3335 816298 9153715 2184 3336 816279 9153715 2184 3336 816279 9153715 2184 3337 816253 9153704 2185 3338 816279 9153704 2188 3338 816239 9153702 2189 3349 816239 9153702 2189 3341 816229 9153702 2188 3342 816216 9153716 2188 3344 816216 9153716 2188 3344 <td>•</td> <td></td> <td></td> <td></td>	•			
3328 816356 9153686 2188 3299 816355 9153687 2188 3330 816351 9153698 2186 3331 816340 9153705 2185 3332 816328 9153715 2184 3333 816319 9153715 2184 3334 816328 9153714 2185 3336 816279 9153705 2187 3337 816233 9153704 2188 3338 816233 9153704 2188 3339 816239 9153702 2189 3340 816239 9153702 2189 3341 816228 9153702 2189 3440 816228 9153709 2188 3642 816217 9153716 2188 3643 816216 9153717 2188 3644 816216 9153712 2188 3645 816207 9153721 2188 3646 <td>·</td> <td></td> <td></td> <td>2196</td>	·			2196
\$16355 \$153687 \$2188 \$16300 \$16351 \$153698 \$2186 \$16331 \$16340 \$153705 \$2185 \$16332 \$16328 \$153710 \$2184 \$16333 \$16319 \$153715 \$2184 \$16333 \$16319 \$153715 \$2184 \$16333 \$16319 \$153715 \$2184 \$16335 \$16298 \$153714 \$2185 \$16336 \$16277 \$153705 \$2187 \$16337 \$16253 \$153704 \$2188 \$16339 \$153704 \$2188 \$16339 \$153704 \$2188 \$16339 \$153704 \$2188 \$16339 \$153704 \$2188 \$16339 \$153702 \$2188 \$16340 \$153709 \$2188 \$16341 \$16228 \$153709 \$2188 \$16341 \$16228 \$153709 \$2188 \$16341 \$16228 \$153709 \$2188 \$16343 \$16216 \$153716 \$2188 \$16343 \$16216 \$153716 \$2188 \$16344 \$16215 \$153717 \$2188 \$16344 \$16215 \$153717 \$2188 \$16345 \$16206 \$153712 \$2188 \$16346 \$16306 \$153712 \$2188 \$16349 \$16337 \$2189 \$16349 \$16337 \$2189 \$16349 \$16337 \$2189 \$16359 \$16371 \$2189 \$16379 \$16370 \$16370 \$1639 \$16370 \$16300 \$1630	p327	816360	9153664	2193
	p328	816356	9153686	2188
Big	p329	816355	9153687	2188
3332 816328 9153710 2184 p333 816319 9153715 2184 p334 816318 9153715 2184 p335 816298 9153714 2185 p336 816277 9153705 2187 p337 816253 9153704 2188 p338 816253 9153704 2188 p339 816239 9153704 2188 p340 816228 9153709 2188 p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816218 9153719 2188 p344 816215 9153712 2188 p344 816219 9153721 2188 p345 816207 9153721 2188 p346 816209 9153721 2188 p347 816164 9153719 2189 p348 816148 9153714 2189 p351 816153 9153715 2189 p352 816165 <	p330	816351	9153698	2186
3333 816319 9153715 2184 p334 816318 9153715 2184 p335 816298 9153714 2185 p336 816277 9153705 2187 p337 816253 9153704 2188 p338 816233 9153704 2188 p339 816239 9153702 2189 p340 816228 9153709 2188 p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816216 9153717 2188 p345 816207 9153721 2188 p346 816206 9153712 2188 p347 81696 9153712 2188 p348 816184 9153714 2189 p349 816184 9153714 2189 p350 816184 9153714 2189 p351 81619 9153729 2186 p352 816165 <td< td=""><td>p331</td><td>816340</td><td>9153705</td><td>2185</td></td<>	p331	816340	9153705	2185
3334 816318 9153715 2184 9335 816298 9153714 2185 9336 816277 9153705 2187 9337 816253 9153704 2188 9338 816233 9153702 2189 9340 816228 9153709 2188 9341 816228 9153709 2188 9342 816217 9153716 2188 9343 816218 9153716 2188 9344 816217 9153716 2188 9344 816215 9153717 2188 9345 816207 9153721 2188 9346 816207 9153721 2188 9347 816169 9153712 2189 9348 816184 9153714 2189 9349 816183 9153714 2189 9350 816183 9153714 2189 9351 816169 9153713 2189 9352 816169 9153715 2188 9353 816169 <	p332	816328	9153710	2184
p335 316298 p153714 2185 p336 816277 p153705 2187 p337 316253 p153704 2188 p338 316239 p153702 2188 p340 316228 p153709 2188 p341 816228 p153709 2188 p342 316217 p153716 2188 p343 316216 p153716 2188 p344 816215 p153717 2188 p344 816206 p153721 2188 p345 316206 p153721 2188 p346 316206 p153721 2188 p347 816196 p153712 2188 p348 316184 p153714 2189 p349 316183 p153714 2189 p350 316184 p153714 2189 p351 316173 p15370 2187 p352 316165 p153715 2189 p353 316165 p153715 2189 p353 316154 <t< td=""><td>p333</td><td>816319</td><td>9153715</td><td>2184</td></t<>	p333	816319	9153715	2184
p336 \$16277 \$153705 \$2187 p337 \$16253 \$153704 \$2188 p338 \$16253 \$153704 \$2188 p339 \$16239 \$153702 \$2189 p340 \$16228 \$153709 \$2188 p341 \$16228 \$153709 \$2188 p342 \$16217 \$153716 \$2188 p343 \$16216 \$153716 \$2188 p344 \$16216 \$153716 \$2188 p345 \$16216 \$153712 \$2188 p346 \$16207 \$153721 \$2188 p347 \$16169 \$153719 \$2189 p348 \$16148 \$153714 \$2189 p349 \$16183 \$153714 \$2189 p349 \$16183 \$153714 \$2189 p350 \$16184 \$153713 \$2189 p351 \$16165 \$153715 \$2189 p352 \$16165 \$153715 \$2189 p353 \$16165 \$153715 \$2188 p354	p334	816318	9153715	2184
3337 816253 9153704 2188 9338 816253 9153704 2188 9339 816239 9153702 2189 9340 816228 9153709 2188 9341 816228 9153709 2188 9342 816217 9153716 2188 9343 816216 9153716 2188 9344 816215 9153717 2188 9345 816207 9153721 2188 9346 816206 9153721 2188 9347 816169 9153714 2189 9348 816183 9153714 2189 9350 816183 9153714 2189 9351 816183 9153713 2189 9352 816165 9153715 2189 9353 816165 9153725 2188 9354 816165 9153715 2189 9353 816165 9153715 2189 9353 816165 9153725 2187 9354 816184 <	p335	816298	9153714	2185
p338 816253 9153704 2188 p339 816239 9153702 2189 p340 816228 9153709 2188 p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816215 9153717 2188 p345 816216 9153712 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153715 2189 p353 816162 9153729 2188 p354 816158 9153715 2187 p355 816164 9153752 2187 p356 816145 <	p336	816277	9153705	2187
p339 816239 9153702 2189 p340 816228 9153709 2188 p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816215 9153721 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153721 2188 p348 816184 9153719 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816185 9153715 2189 p352 816165 9153725 2188 p353 816162 9153725 2188 p354 816165 9153715 2189 p353 816162 9153725 2188 p354 816165 9153725 2187 p355 816164 9153782 2186 p357 816104 <	p337	816253	9153704	2188
p340 816228 9153709 2188 p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816215 9153717 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816165 9153715 2189 p354 816165 9153729 2188 p355 816165 9153752 2187 p356 816154 9153770 2187 p357 81610 9153784 2186 p358 81610 9153782 2186 p359 81612	p338	816253	9153704	2188
p340 816228 9153709 2188 p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816215 9153717 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816165 9153715 2189 p354 816165 9153729 2188 p355 816165 9153752 2187 p356 816154 9153770 2187 p357 81610 9153784 2186 p358 81610 9153782 2186 p359 81612	p339	816239	9153702	2189
p341 816228 9153709 2188 p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816215 9153717 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p350 816183 9153714 2189 p351 816181 9153713 2189 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816168 9153752 2187 p356 816154 9153752 2187 p357 816104 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p359 816139 9153784 2186 p360 816128 <	•			2188
p342 816217 9153716 2188 p343 816216 9153716 2188 p344 816215 9153717 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816165 9153729 2188 p355 816149 9153752 2187 p355 816149 9153784 2186 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816140 9153785 2186 p360 816128 <	•			2188
p343 816216 9153716 2188 p344 816215 9153717 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816154 9153752 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 <	•			
p344 816215 9153717 2188 p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816153 9153715 2189 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816154 9153752 2187 p357 816149 9153784 2186 p358 816140 9153785 2186 p359 816137 9153780 2186 p360 816128 9153788 2186 p361 816129 915380 2186 p362 81618 9153810 2186 p363 816119 <td< td=""><td><u> </u></td><td>816216</td><td>9153716</td><td></td></td<>	<u> </u>	816216	9153716	
p345 816207 9153721 2188 p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816154 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816129 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p363 816104 <	•			
p346 816206 9153721 2188 p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816129 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p347 816196 9153719 2189 p348 816184 9153714 2189 p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816110 9153819 2186 p363 816104 9153827 2186	1			
p348 816184 9153714 2189 p349 816183 9153713 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153752 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p363 816104 9153827 2186	,			1
p349 816183 9153714 2189 p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153810 2186 p364 816104 9153827 2186	•			
p350 816181 9153713 2189 p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816129 9153800 2186 p362 816118 9153810 2186 p363 816110 9153812 2186 p364 816104 9153827 2186	•			1
p351 816173 9153709 2190 p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	<u> </u>			
p352 816165 9153715 2189 p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186				1
p353 816162 9153729 2188 p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p354 816158 9153741 2188 p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	1		ļ	
p355 816154 9153752 2187 p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	<u>'</u>			
p356 816145 9153770 2187 p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	'			
p357 816140 9153784 2186 p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p358 816140 9153785 2186 p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p359 816137 9153790 2186 p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	<u>'</u>			
p360 816128 9153788 2186 p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p361 816122 9153800 2186 p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p362 816118 9153810 2186 p363 816111 9153819 2186 p364 816104 9153827 2186	•			
p363 816111 9153819 2186 p364 816104 9153827 2186	'			
p364 816104 9153827 2186	•			
p365 816104 9153828 2186	•			
	p365	816104	9153828	2186

-2CC	01.0000	0152026	2100
'		9153836	2186
'		9153837	2186
			2185
		9153858	2185
			2185
		9153876	2185
			2185
		9153893	2185
			2185
		9153917	2185
			2185
p377	816014	9153933	2186
p378	816013	9153933	2186
p379	816003	9153939	2186
p380	316000	9153947	2186
p381	815999	9153964	2186
p382	815992	9153986	2185
p383	315986	9153999	2185
p384	315979	9154017	2185
p385	815975	9154036	2184
p386	815974	9154037	2184
p387	815966	9154054	2184
p388	315966	9154055	2184
p389	815957	9154077	2184
p390	815953	9154100	2184
p391	315948	9154115	2183
p392	815941	9154128	2184
	815940	9154130	2184
		9154139	2184
•			2184
		9154169	2184
			2184
		9154189	2184
•			2183
		9154199	2183
			2183
		9154221	2183
			2183
		9154248	2183
			2182
'		9154259	
			2183
'			2183
		9154295	2183
		9154305	2183
'		9154318	2183
•		9154318	2183
·		9154326	2184
		9154337	2184
p414	815772	9154338	2184

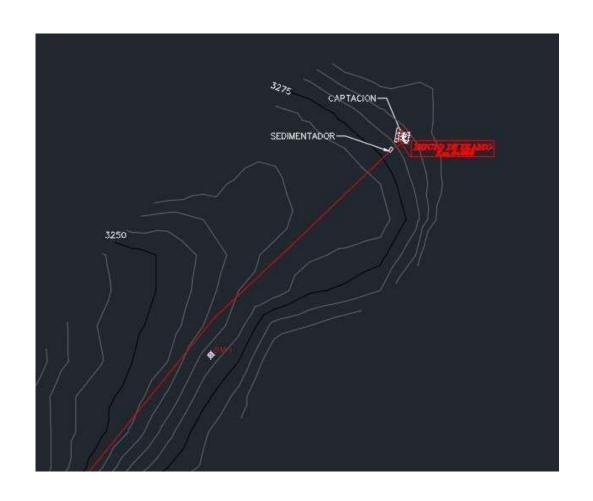
- 445	045765	0454040	2404
'		9154349	2184
		9154362	2184
'			2184
		9154378	2184
			2184
		9154398	2184
			2184
		9154416	2184
			2184
		9154440	2184
p425	815600	9154448	2184
p426	815584	9154455	2184
p427	815571	9154463	2184
p428	815560	9154469	2184
p429	815537	9154480	2183
p430	815520	9154488	2183
p431	815503	9154496	2183
p432	815484	9154510	2182
p433	815460	9154525	2182
p434	815443	9154533	2182
p435	815442	9154534	2182
p436	815428	9154545	2182
p437	815415	9154554	2182
p438	815414	9154555	2182
p439	815403	9154567	2182
p440	815393	9154581	2182
p441	815383	9154591	2182
'			2182
		9154614	2182
			2182
		9154648	2183
'			2183
'		9154676	2184
<u>'</u>			2184
		9154697	2184
			2184
'		9154726	2184
			2184
		9154763	2184
'			2184
		9154774	2184 2184
			2184 2184
		9154801	2184
'		9154813	2183
		9154827	2183
·			2183
'		9154850	2183
'		9154858	2183
p463	815018	9154867	2183

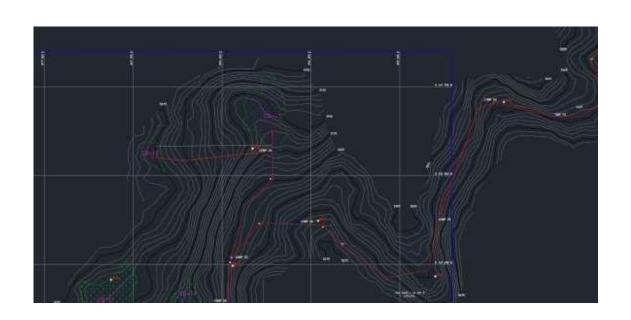
- AC A	21.400.4	0154074	2102
'		9154874	2183
<u>'</u>		9154879	2183
			2183
		9154901	2183
			2183
		9154935	2183
			2183
		9154963	2183
			2182
		9154997	2182
		-	2182
p475	314743	9155013	2182
p476	314714	9155021	2184
p477	314696	9155045	2183
p478	314679	9155058	2183
p479	314654	9155068	2183
p480	314631	9155077	2182
p481	314606	9155082	2182
p482	314588	9155081	2183
p483	314574	9155078	2184
p484	314553	9155074	2186
p485	314532	9155067	2189
p486	314514	9155068	2190
p487	314513	9155068	2190
p488	314503	9155072	2190
p489	314491	9155076	2190
p490 8	314476	9155078	2191
			2191
		9155076	2194
			2192
		9155101	2189
			2186
'		9155114	2186
			2185
		9155145	2183
		-	2183
		9155155	2182
			2182
		9155163	2181
		-	2181
		9155165	2181
		-	2177
			2177
		9155214	2176
'		9155229	2176
			2176
		9155238	2176
		9155243	2176
p512	314470	9155244	2176

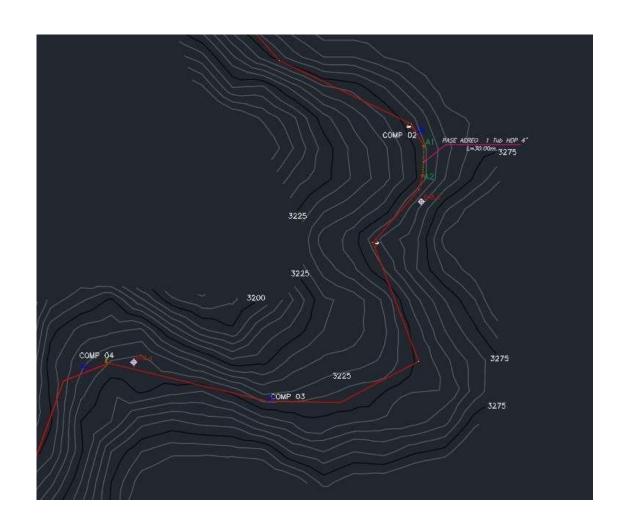
-F12	21.4.4.6.0	0155344	2476
		9155244	2176
		9155246	2177
			2179
		9155218	2182
			2184
		9155204	2186
			2189
		9155200	2189
			2188
		9155226	2186
p523	314389	9155227	2186
p524	314382	9155233	2186
p525	314373	9155234	2187
p526	314372	9155234	2188
p527	314365	9155234	2190
p528	314364	9155234	2190
p529	314351	9155239	2192
p530 E	314340	9155246	2194
p531	314339	9155246	2194
p532	314329	9155254	2194
p533	314329	9155255	2194
p534	314321	9155265	2194
p535	314316	9155275	2193
p536	314316	9155276	2193
p537	314318	9155284	2191
p538	314318	9155284	2190
p539 8	314325	9155288	2188
	314326	9155288	2188
		9155291	2186
			2184
		9155306	2182
			2181
		9155326	2181
			2181
		9155353	2182
			2184
		9155363	2186
			2190
		9155376	2190
			2192
		9155388	2192
			2184
			2180
		9155419	2177
'		9155437	2176
			2176
		9155450	2176
		9155461	2177
p561	314373	9155469	2179

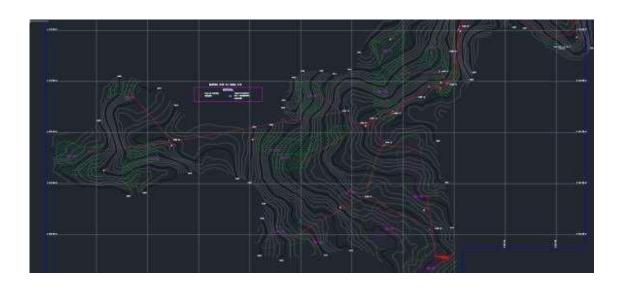
-CC3	21 1272	0155470	2470
<u>'</u>		9155470	2179
<u>'</u>		9155479	2182
			2183
		9155487	2183
			2184
		9155501	2184
			2184
		9155594	2185
			2185
1		9155621	2185
<u>'</u>			2185
p573	314257	9155632	2185
p574	314247	9155636	2184
p575	314240	9155647	2183
p576	314239	9155647	2183
p577	314233	9155664	2182
p578	314233	9155665	2182
p579	314232	9155666	2182
p580	314225	9155684	2181
p581	314220	9155693	2181
p582	314220	9155694	2181
p583	314211	9155705	2180
p584	314205	9155714	2180
p585	314204	9155715	2180
p586	314192	9155724	2181
p587	314191	9155724	2181
p588	314185	9155733	2182
<u>'</u>			2182
		9155750	2182
<u>'</u>			2182
		9155762	2184
<u>'</u>			2184
		9155768	2184
<u>'</u>			2184
		9155773	2184
<u>'</u>			2184
<u>'</u>		9155786	2184
			2189
'		9155803	2189
<u>'</u>			
<u>'</u>			2191
<u>'</u>		9155832	2192
<u>'</u>			2192
<u>'</u>			2189
		9155853	2190
<u>'</u>		9155862	2190
			2189
		9155877	2190
<u>'</u>		9155885	2190
p610	314344	9155891	2190

-C11	04.40.00	0155000	2400
'		9155896	2188
		9155899	2186
			2184
		9155902	2183
			2181
		9155914	2181
			2179
		9155930	2179
			2178
		9155941	2175
			2174
p622	814575	9155948	2174
p623	814595	9155953	2172
p624	814596	9155953	2172
p625	814612	9155963	2172
p626	314632	9155976	2171
p627	814653	9155992	2170
p628	814663	9156011	2171
p629	314666	9156029	2172
p630	314661	9156048	2171
p631	814654	9156063	2170
p632	814645	9156072	2170
p633	814637	9156077	2170
p634	314636	9156078	2170
p635	314624	9156083	2170
p636	314622	9156084	2170
p637	814603	9156090	2171
			2171
		9156091	2174
•			2178
		9156072	2180
			2180
		9156068	2181
'			2183
		9156057	2184
			2184
		9156047	2186
			2189
		9156040	2109
'			2191
'		9156038	
			2195
			2197
'		9156054	2196
		9156063	2195
'		9156078	2192
		9156079	2192
,		9156089	2190
		9156091	2189
p659	814434	9156106	2188


mcc0	21//25	0156107	2107
'		9156107	2187
		9156120	2183
			2182
		9156167	2181
			2181
		9156233	2176
			2172
		9156289	2171
			2172
		9156314	2174
			2179
p671	314399	9156326	2184
p672	314371	9156326	2190
p673	314337	9156322	2196
p674	314336	9156322	2196
p675	314319	9156326	2200
p676	314316	9156334	2201
p677	314329	9156347	2199
p678	314349	9156361	2195
p679	314375	9156380	2187
p680	314402	9156408	2178
p681	314408	9156432	2174
p682	314404	9156452	2174
p683	314404	9156453	2174
p684	314399	9156472	2175
p685	314388	9156490	2178
p686	314373	9156509	2180
			2181
		9156553	2181
•			2182
		9156564	2182
			2183
		9156574	2183
•			2183
		9156587	2186
			2190
•		9156621	2184
			2179
'			2177
'			2175
		9156730	2175
			2174
'		9156758	2176
		9156766	2179
		9156773	2183
			2185
,		9156780	2186
		9156786	2186
p708	314141	9156786	2187

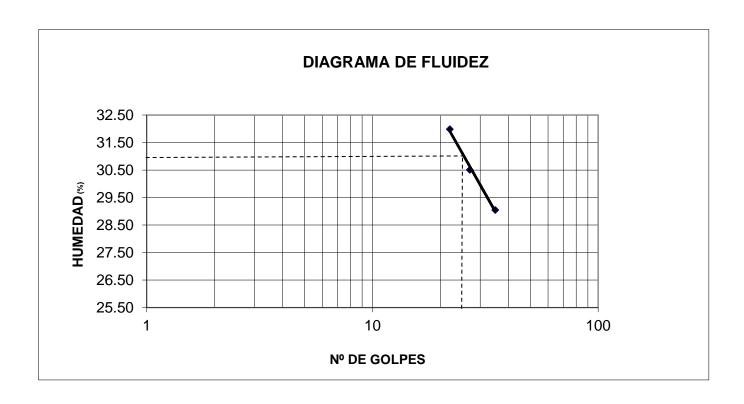

			1
<u>'</u>		9156788	2188
p710		9156790	2188
<u>'</u>		9156793	2189
'		9156794	2189
-		9156794	2190
p714	814034	9156794	2190
p715	814033	9156794	2191
p716	814016	9156792	2192
p717	814000	9156790	2191
p718	814000	9156790	2191
p719	813985	9156791	2190
p720	813969	9156793	2188
p721	813966	9156793	2188
p722	813950	9156791	2187
p723	813947	9156791	2187
p724	813946	9156791	2187
p725	813932	9156789	2186
p726	813930	9156789	2186
p727	813927	9156789	2186
p728	813913	9156788	2186
p729	813908	9156793	2186
p730	813910	9156803	2185
p731	813917	9156817	2183
p732	813917	9156818	2183
p733	813925	9156835	2181
p734	813923	9156858	2179
p735	813924	9156877	2179
p736	813922	9156894	2180
p737	813920	9156903	2181
p738	813916	9156916	2183
p739		9156931	2185
p740	813910	9156951	2187
p741	813912	9156964	2188
p742	813920	9156972	2186
p743	813928	9156984	2185
p744	813929	9156984	2185
p745	813938	9156996	2184
p746	813944	9157008	2184
p747	813948	9157022	2185
p748	813951	9157037	2185
<u>'</u>		9157057	2186
p750	813955	9157064	2187
'		9157077	2188
		9157098	2189
'		9157113	2188
<u>'</u>		9157123	2187
<u>'</u>		9157129	2185
p756		9157133	2184
<u>'</u>		9157134	2181
p= : = :			


-7F0	21.4022	0157130	2470
'		9157128	2178
<u>'</u>		9157123	2176
			2173
		9157134	2171
			2171
		9157161	2170
			2170
		9157185	2170
			2170
		9157213	2170
		-	2171
p769	314061	9157238	2173
p770	314050	9157246	2173
p771	314041	9157252	2174
p772	314030	9157259	2175
p773	314021	9157264	2175
p774	314012	9157268	2175
p775	314003	9157268	2176
p776	313987	9157269	2177
ρ777	313969	9157267	2179
p778	313957	9157263	2180
p779	313940	9157262	2182
p780	313923	9157259	2184
p781	313906	9157261	2186
p782	313890	9157262	2187
p783	313872		2189
p784	313859	9157268	2190
			2191
		9157280	2189
			2188
		9157297	2187
			2184
		9157313	2183
		-	2181
		9157336	2182
		-	2184
		9157360	2186
			2188
		9157383	2191
		-	2191
		9157913	2190
		-	2186
		9157952	2185
		9157949	2185
'		9157945	2187
<u>'</u>			2188
'		9157934	2190
<u>'</u>		9157936	2191
p806	313516	9157942	2192


p807	813526	9157950	2190
p808	813540	9157961	2187
p809	813552	9157969	2184
p810	813578	9157985	2184
p811	813589	9157995	2184
p812	813600	9158023	2185

ING. Josualdo Villar Quiroz	Openin)
ING. ALEX ARQUIMEDES HERRERA VILOCHE	Alex A Shervera Filscher Speingen 1998 Fing Organism C12F28

ANEXO 1.3 Guía de Observación - Estudio de mecánica de suelos


FI	FICHA DE RESUMEN - ESTUDIO DE MECÁNICA DE SUELOS												
	el canal de Chuquibam Cajabamba - Cajamaro	UNIVERSIDA	D CÉSAR VALLEJO										
	AUTORES		ASESOR										
C	ruz Garcia Jhordink		ING. HERRERA VILOCHE, ALEX ARQUIMEDES										
	Cruz Vásquez Junior												
LUGAR	DISTRITO	PROVINCIA	REGION	FECHA									
Chuquibamba	Cachachi	Cajabamba	Cajamarca	Julio-2021									
LABORATORIO: I	M&M ANTON LABO	RATORIOS Y	CONSTRUCCION	N E.I.R.L.									

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Muestra 03
Peso del tarro	(g)	50.97	50.81	49.90
Peso del tarro + suelo húmedo	(g)	124.94	133.54	146.07
Peso del tarro + suelo seco	(g)	117.98	123.87	136.99
Peso del suelo seco	(g)	67.01	73.06	87.09
Peso del agua	(g)	6.97	9.68	9.08
% de humedad	(%)	10.40	13.25	10.42
% de humedad promedio	(%)		11.36	

	LÍMITES DE CONSISTENCIA										
Descripción			Límite Líquido)	Límite Plástico						
N° de golpes		22	27	35	1	-					
Peso de tara	(g)	11.12	10.03	10.31	14.17	14.08					
Peso de tara + suelo húmedo	(g)	17.97	20.04	18.04	14.97	14.75					
Peso tara + suelo seco	(g)	16.31	17.7	16.3	14.83	14.64					
Contenido de Humedad	%	31.98	30.51	29.05	21.21	19.64					
Límites		31	20								

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) y =-6.293ln(x) + 51.37

Tamices	Abertura	Peso	%Retenido	%Retenido	%Que	Contonido do Ulumodod
ASTM	(mm)	Retenido	Parcial	Acumulado	Pasa	Contenido de Humedad
3"	76.200	0.00	0.00	0.00	100.00	11.49%
2 1/2"	63.500	0.00	0.00	0.00	100.00	Límites e Índices de Consistencia
2"	50.600	0.00	0.00	0.00	100.00	L. Líquido : 32
1 1/2"	38.100	0.00	0.00	0.00	100.00	L. Plástico : 18
1"	25.400	0.00	0.00	0.00	100.00	Ind. Plasticidad : 14
3/4"	19.050	0.00	0.00	0.00	100.00	
1/2"	12.700	27.22	1.36	1.36	98.64	Clasificación de la Muestra
3/8"	9.525	33.67	1.68	3.04	96.96	
1/4"	6.350	53.50	2.68	5.72	94.28	Clas. SUCS : CL
No4	4.178	47.72	2.39	8.11	91.89	Clas. AASHTO : A-6 (5)
No8	2.360	141.16	7.06	15.16	84.84	
No10	2.000	42.42	2.12	17.28	82.72	Descripción de la muestra
No16	1.180	134.68	6.73	24.02	75.98	
No20	0.850	85.27	4.26	28.28	71.72	SUCS: Arcilla ligera arenosa
No30	0.600	88.34	4.42	32.70	67.30	Y
No40	0.420	67.83	3.39	36.09	63.91	Suelos arcillosos / AASHTO: Regular a malo
No50	0.300	64.19	3.21	39.30	60.70	
No60	0.250	42.33	2.12	41.42	58.58	Tiene un % de finos de = 50.18%
No80	0.180	48.18	2.41	43.83	56.17	
No100	0.150	32.27	1.61	45.44	54.56	Descripción de Calicata
No200	0.074	87.67	4.38	49.82	50.18	_
< No200		1003.55	50.18	100.00	0.00	C-2 : E-1
Total		2000.00	100.00			Profundidad : 0.0 m - 1.50 m

ıng. Josualdo Villar Quiroz	Queu
ING. ALEX ARQUIMEDES HERRERA VILOCHE	Alex A Liver Tiloche Indexeno civil Gressee Reg Ophautor C13726

ANEXO 2 ESTUDIO DE MECANICA DE SUELOS

ESTUDIO DE MECÁNICA DE **SUELOS**

DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO PROYECTO:

CACHACHI, PROVINCIACAJABAMBA - CAJAMARCA, 2021

CHUQUIBAMBA - CACHACHI -<u>UBICACIÓN</u> CAJABAMBA - CAJAMARCA

MATERIAL RESP. LAB: J. Y. F. Terreno Existente

JHORDINK BENJAMIN CRUZ GARCÍA, TEC. LAB: J. A. F. **SOLICITANTE**: JÚNIOR CRUZ VASQUEZ

FECHA : MAY. 2021

Ca	alicata	Ubicació	Prof.			PROPIE	DADES F	SICAS	3		CLAS ÓN	IFICACI		PI	ROPIEDA	ADES M	ECÁNICAS	
N°	Estrat 0	n	Estrat o	CH	% Finos	% Arenas	% Gravas	% LL	% LP	% IP	SUC S	AASHT O	MDS (g/cm3)	OCH	CBR 100%	CBR 95%	PU (g/cm3)	Aadm. (Kg/cm2)
C-1	E-1	Km 01+000											-	-	-	-	-	-
C-2	E-1	Km 03+000											7/-	-	1- 4	-	-	-
C-3	E-1	Km 05+000											-	-	-		-	-
C-4	E-1	Km 06+000											-	-	/ -	-	-	-
C-5	E-1	Km 08+000											-	-	-	-	-	-
C-6	E-1	Km 10+000											/	-	-	-	-	-
C-7	E-1	Km 11+000											-	-	-	-	-	-

ENSAYO GRANULOMETRICO POR TAMIZADO

NORMA ASTM D-422)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO **PROYECTO**

CACHACHI, PROVINCIACAJABAMBA - CAJAMARCA, 2021

<u>UBICACIÓN</u> : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

: C-1 / E-1 / Km 01+000

: Terreno Existente RESP. LAB: J. Y. F. **MATERIAL** TEC. LAB: J. A. F.

SOLICITANT E

MUESTRA

: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

FECHA: MAY. 2021

Tamices ASTM	Abertura (mm)	Peso Retenido	%Retenid o Parcial	%Retenido Acumulado	%Que Pasa	Contenido de Humedad
						11.26%
						Límites e Índices de Consistencia
						Clasificación de la Muestra
					4.	Clasificación de la Muesua
						Descripción de la muestra
						·
						4
						Burneton de Callana
						Descripción de Calicata
						4

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-²4254)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO **PROYECTO**

CACHACHI, PROVINCIACAJABAMBA - CAJAMARCA, 2021

<u>UBICACIÓN</u>: CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL RESP. LAB: J. Y. F. : Terreno Existente

SOLICITAN TE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ TEC. LAB: J. A. F. VASQUEZ

FECHA : MAY. 2021 **MUESTRA** : C-1 / E-1 / Km 01+000

	LÍMITES DE CONSISTENCIA										
Descripción			Límite Líquid	0	Límite Plástico						
N° de golpes			6/79								
Peso de tara	(g)	_ 4									
Peso de tara + suelo húmedo	(g)										
Peso tara + suelo seco	(g)										

CONTENIDO DE HUMEDAD

(NORMA ASTM D-2216)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO **PROYECTO**

CACHACHI, PROVINCIACAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL: Terreno Existente RESP. LAB: J. Y. F.

SOLICITAN : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ TEC. LAB: J. A. F.

FECHA : MAY. 2021 **MUESTRA** : C-1 / E-1 / Km 01+000

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción	Muestra 01	Muestra 02	Muestra 03
Peso del tarro			
Peso del tarro + suelo humedo (g		7) /
Peso del tarro + suelo seco (g			
Peso del suelo seco (g		Y	
Peso del agua (g	$Z_{\mathcal{I}}^{\mathcal{I}}$		
% de humedad (%			
% de humedad promedio (%	/		

ESTUDIO DE MECÁNICA DE SUELOS

PROYECTO

DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN

CHUQUIBAMBA - CACHACHI - CAJABAMBA -

\$3

CAJAMARCA Terreno Existente

RESP. LAB : J. Y. F.

MATERIAL SOLICITANTE

JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

TEC. LAB 1J. A. F.

FECHA.

: MAY, 2021

Ca	Heats	San Carrie	Prof.		PROFIEDADES FÍSICAS						CLASI	FICACIÓN		PE	OPIEDA	DES ME	CÁNICAS	0
Nº	Estrato	Ubicación	Estrato	96 CH	% Finos	% Arenas	% Gravas Y	i ii	SU	K P	SUCS	AASHTO	MDS (g/cm3)	осн%	CBR 100%	CBR 95%	PU (g/on3)	Andm. (Kg/cm2)
C-1	E-1	Km 01,4000	1.50m	11.26	40.70	41.00	9,29	31	200	11	SC	A-6/31		1.0	12000	100	14	-
0.1	8.1	Km 08+000	150m	11.49	50.18	41.72	8.11	32	48	34	CL	A-6 (S)		110	No.	-	174	10
63	E-1	Km 05+000	1.50m	12.38	53,66	37.79	8.56	33	22	-11	CL	A-6 (4)	13.7	12		11/4	100	120
C-4	E-1	Km 05+000	150m	11.65	47,17	34.06	18,78	35	22	- 13	SC	A-6131			-	-		
€5	5-1	C= 08+000	1.50m	11.57	43.54	40.70	15.75	13	19	34	SE	A-6(3)		100	-		100	100
C-0	E-1	Km 10+000	1.50m	11.19	59.56	37.84	8.61	33	22	-11	G.	A-6140			S		0	
07	E-3	Km 11+000	1.50m	13,38	49.75	43.01	9.24	32	21	53	SC	A-6 (3)			-			

ng. John R. Yupanqui Flores CIP 193252 JEFE DE LABORATORIO

R INDECOPL

TRUJELO-PERU

Carlle Hunyur Capac 144 - Int 3 - Urb. Sunta Maria - May. 976785652 - E-Mail: Jim. 9625666ctmail.com

M&M ANTÓN LABORATORIOS Y CONSTRUCCIÓN ELRE.

LABORATORIO DE ESTUDIOS GEOFECNICOS Y ENSAVOS DE MATERIALES DE CONSTRUCCION

ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

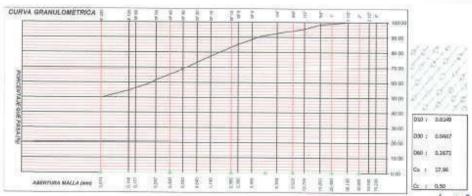
UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

RESP. LAB : J. Y. F.

TEC. LAB : J. A. F.

MUESTRA : C-1 / E-1 / Km 01+000


: MAY, 2021

Perso de muestra sersa Peso de muestra sera luego de levado Pěšá pěrdída por lavada

MATERIAL

2000,00 994,08

Tamices :ASTM	Abertura (mm)	Peso Retenido	NRetenido Parcial	%Netenido Acumulado	%Que Pasa	Contenido de Humedad
31	76,200	0.00	0,00	0.00	100.00	11,26%
21/2"	63,500	0.00	0.00	0.00	100.00	Limites e Índices de Consistencia
27.	50.600	0,00	0.00	0.00	100.00	L Vauido : 31
11/2"	38,100	0.00	0.00	0.00	100.00	L Plástico : 20
1.	25,400	19.12	0.95	0.96	99.04	L Plástico : 20 Ind. Plasticidad : 11
3/4"	19.050	11.00	0.55	1.51	98.49	
1/2"	12,700	57.89	2.89	4.40	95.60	Clasificación de la Muestre
3/8"	9.525	26.51	1.33	5.73	94.27	
1/4"	6.350	33.48	1.67	7.40	92.60	Clas. SUCS 90
No1	4.178	37.87	1.89	5,25	90,71	Clas. AASHTO . A-6(3)
Not	2,360	111.80	5,59	14.88	85.12	
No10	2.000	35.76	1.79	16.67	83.33	Descripción de la muestra
No16	1.180	119.36	5.97	22.64	77.36	COLOR WAS ASSESSED FOR CONTRACTOR
No20	0.850	78,81	3.94	26.58	73.42	SUCS: Arena arcillosa
No30	0.600	90.46	4,52	31,10	68.90	Provident about the control of the c
No40	0.420	74.35	3.72	34.82	65.18	AASHTD: Suelos arcillosos / Regular a malo
Nudo	0.500	71.09	3.55	38.38	62,63	
Noéc	0.250	49.47	2,47	40,85	59.15	Tiene un % de finos de = 49.70
No80	0.180	55.78	2.79	43.64	56,36	VINE DESCRIPTION OF THE PROPERTY OF THE PROPER
No100	0.150	35.95	1,80	45.44	54.57	Descripción de Calicata
No 200	0.074	97,22	4.8E	50.30	49.70	THE RESIDENCE OF THE PROPERTY
< No200		994.08	49,70	100.00	0.00	C-1 : E-1
Total		2000,00	100.00		1 100000	Profundided : 0.0 m - 1.50 m

Ing. John R. Yupanqui Flores C₱ 193252 JEFE DE LABORATORIO

Calle Hunyun Capus 144 - Int. 2 - Urb. Sunta Hurra - Mey. 976705052 - E-Mail: Lim. 90200chotmail.com

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

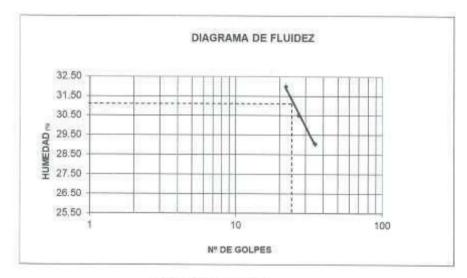
PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ


MUESTRA : C-1 / E-1 / Km 01+000

RESP, LAB : J. Y. F.

TEC, LAB : J. A. F.

FECHA : MAY, 2021

	LÍMIT	ES DE C	ONSISTENC	IA:		
Descripción			Limite Liqui	Limite Plástico		
N° de goipes		22	27	35		23
Peso de tara	g) 1	1.12	10.03	10.31	14,17	14,08
Peso de tara + suelo húmedo.	g) 1	7.97	20.04	18.04	14.97	14.75
Peso tara + suelo seco	g) 19	5.31	17.7	16.3	14.83	14.64
Contenido de Humedad	% 3	1.98	30.51	29.05	21.21	19.64
Limites	96	31		20		

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) y =-6.293ln(x) +51.37

Ing. John R. Yupanqui Flores CIP 193252 JEFE DE LABORATORIO

RINDECOPI

TRUILEO-PERU

Cuffe Huayna Capae 144 - Int. J.- Uth: Saieta Macia - Mov. 976783652 - E-Math Jim_0626/chofmail.com

CONTENIDO DE HUMEDAD

(NORMA ASTM D-2216)

PROYECTO

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN

: CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL

: Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

RESP. LAB : J. Y. F. TEC. LAB : J. A. F.

MUESTRA : C-1 / E-1 / Km 01+000

FECHA : MAY. 2021

CONTENIDO DE HUMEDAD

A5TM D-2216

Descripción		Muestra U1	Muestra OZ	Muestra 03
Peso del tarro	(g)	50,98	50.77	49.87
Peso del tarro + suelo humedo	(g)	124.88	133.47	145.98
Peso del tarro + suelo seco	(g)	117.97	123.86	136.98
Peso del suelo seco	(g)	E6.99	73.09	87.11
Peso del agua	(g)	6,91	9,61	9.00
% de humedad	(96)	10.31	13,15	10.33
% de humedad promedio	(%)	2 23.11	11.26	11100000

Ing. John R. Yupanqui Flores CIP 180252 JEFE DE LABORATORIO

R INDECOPI

TRUILLO-PERG

Calle Hunyan Capue 144 - Int.2 - Urb. Santa Minia - Mov. 976785052 - E-Mail: Jim. 062067 hotimal/com

ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

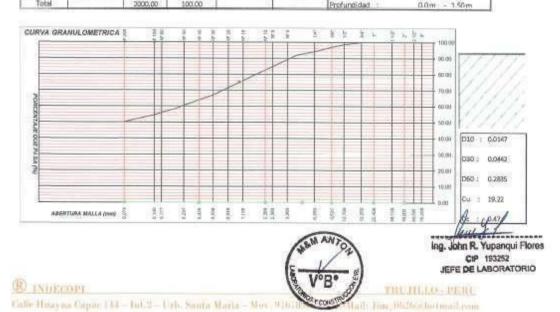
: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ SOLICITANTE


TEC. LAB : J. A. F. : MAY, 2021 FECHA

RESP. LAB : J. Y. F.

MUESTRA : C-2 / E-1 / Km 03+000

DATOS DEL ENSAYO Peso de muestra seca 2000.00 Peso de muestra seca luego de lavado 998,48 Peso perdido por lavado 1003.55

Tamions ASTM	Abertura (mm)	Peso Retenido	%Retenido Parcial	KReterido Acumulado	%Que Pasa	Contenido de Humedad			
3*	76.200	0.00	0.00	0.00	100:00	11,49%			
21/2"	63.500	0.00	0.00	0.00	100.00	Limites e Indices de Consistencia			
2*	50.500	0.00	0.00	0.00	200000	L Uguido : 32			
1.1/2"	38.100	0.00	0.00	0.00	100.00	LPlástico : 18			
1"	25,400	0.00	0.00	0.00	100.00	ind. Plasticidad : 14			
3/4"	19.050	0.00	0.00	0.00	100.00	Minimus XXXX			
1/2"	12,700	27.22	1,36	1.36	98.64	Clasificación de la Muestra			
3/8"	9,525	33.67	1.68	3.04	96.96				
1/4"	6,350	53.50	2.68	5.72	94.28	Class SUCS : CL			
No4	4.178	47.72	2,39	8.11	91.88	Clas. AASHTO : A-6 (5)			
No8	2.360	141.16	7.06	15.16	84.84				
No10	2,000	42.42	2,12	17,28	82.72	Descripción de la muestra			
No15	1.180	134.68	6:73	34.02	75,98				
No20	0.850	85.27	4.25	28.28	71.72	SUCS: Arcill a ligera arenosa			
No.30	0,600	88.34	4.42	52.70	67.30	Servery Oversive motorskeretis			
No40	-0.420	67.83	3.30	36.09	63.91	AASHTO: Suelios artillosos / Reguler e malo			
No50	0.300	64.19	3.21	39.30	60,70				
No60	0.250	42.33	2.12	41.42	58.58	Tiene un % de finos de = 50.18			
No90	0.180	48.18	2,41	43.85	56.17	NEW CASE OF SAME OF SAME			
No100	0.150	32.27	1.61	45.44	54,56	Descripción de Calicata			
No200	0.074	87.67	4.38	49.82	50,18	UKSKSATOURSTATIVEST INVANCE			
< No 200		1003.55	50.18	100.00	0.00	C-2 E1			
Total		2000.00	100.00			Profundidad : 0.0m - 1.50m			

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN

: CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

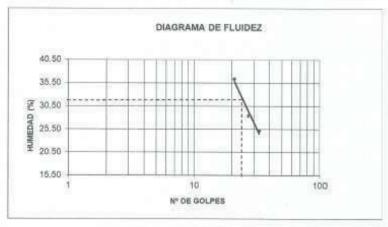
MATERIAL

PROYECTO

: Terreno Existente

RESP. LAB 1J. Y. F.

SOLICITANTE


: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

TEC. LAB : J. A. F. FECHA

: MAY, 2021

MUESTRA	: C-2 /	E-1 /	Km 03+000

	Lit	MITES DE C	ONSISTENCIA	A,		
Descripción		- 17	Limite Liquio	Limite Plástico		
N° de golpes		21	27	33		- 43
Peso de tara	(g)	50,89	50.77	50.76	14.54	14.47
Peso de tara + suelo húmedo	(g)	59.9	60.45	59.07	15.05	15.02
Peso tara + sue lo seco	(g)	57.5	58.31	57.4	14.97	14.94
Contenido de Humedad	%	36,31	28,38	25.15	18.60	17.02
Limites	96	37		37		18

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) $y = -24.97 \ln(x) + 111.82$

(R) INDECOPI

Calle Huayun Capue 144 - Int.2 - Urlo Santu Muria - Mov. 976/M3052 - E-Maii: Jim. 06266/hotmail.com

(NORMA ASTM D-2216)

PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

MUESTRA : C-2 / E-1 / Km 03+000

: MAY. 2021

RESP. LAB : J. Y. F.

TEC. LAB : J. A. F.

FECHA.

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Mue stra 03	
Peso del tarro	(g)	50.85	50.86	51.62	
Peso del tarro + suelo humedo	(g)	154.37	154.61	149.08	
Peso del tarro + suelo seco	(g)	143.17	144.52	138,98	
Peso del suelo seco	(g)	92.32	93,66	87.36	
Peso del agua	(g)	11.20	10.09	10.10	
% de humedad	(%)	12.13	10.77	11.56	
% de humedad promedio	(%)		11.49	3,000	

ing. John R. Yupanqui Flores CIP 182752 JEFE DE LABORATORIO

ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

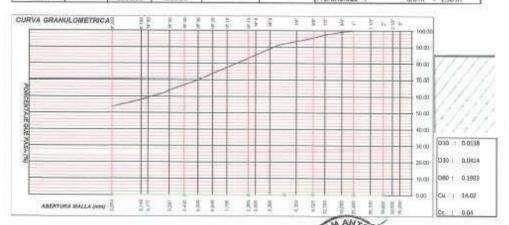
: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

: CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA UBICACIÓN

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ


RESP. LAB : J. Y. F. TEC. LAB : J. A. F. FECHA : MAY, 2021

: C-3 / E-1 / Km 05+000 DATOS DEL ENSAYO

Peso de muestra seca Peso de muestra seca luego de lavado Peso perdido por lavado

2000:00 926.90 1073.10

Tamices ASTM	Abertura (mm)	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	56Que Pasa	Contenido de Humeded
3"	76.200	0.00	0.00	0.00	100,00	12.98%
2.1/2"	63,500	0.00	0,00	0.00	100.00	Limites a Indices de Consistencia
2n	50,600	0.00	0.00	0.00	100.00	L Liquida 33
11/2"	38,000	0.00	0.00	0.00	100.00	LPIástico : 22
I"	25.400	0.00	0.00	0.00	100/00	Ind. Plasticidad : 11
3/4"	19.050	15.22	0.76	0.76	99.24	DOUBLE BOOKERS
1/2"	12,700	35.24	1.76	2.52	97.48	Clasifficación de la Muestra
3/8"	9.525	36.50	1.83	4.35	95.65	
1/4"	6.850	44.29	2.21	6.56	93.44	Class SUCS : CL
Not	4.178	39,92	2,00	8.56	91.44	Class AASHTO : A-G (4)
Noti	2.360	127,00	6.35	14.91	85.09	
No10	2.000	36.81	1.84	16,75	83.25	Descripción de la muestra
No16	1.180	113.08	5,65	22,40	77.60	
No20	0.850	71.73	3.59	25.99	74,01	SUCS: Arcilla ligera arenosa
No30	0.600	78.89	3.94	29.93	70.07	Control September 1
Mo40	0.420	64:77	3.24	33.17	56.85	AASHTO: Suelos ertillosos / Regular a malo
Nu30	0.300	80.79	5,04	36,21	63.79	
No60	0.250	38.49	2,92	38.14	61,86	Tiene un % de finos de = 53.66
No80	0.180	46:00	2,30	40,44	59,56	1000
No100	0.150	31.02	1.55	41.99	58.01	Descripción de Calicata
No200	0.074	87.14	4.36	46.35	53,66	
< No 200		1073.10	53.66	100.00	0.00	C-3 : E-1
Total	1	2000.00	100.00	4344000		Profundidad : 0.0m - 1.50m

B INDECORT

Ing. Jehn R. Yupanqui Flores 10 11110 - PHILLICIP 193252 Calle Hungant Capate 144 - Int. 2 - Urb. Santa Maria - May. 936705452 - E-Mail. Jun. 992676 hotto. 4576 De LABORATORIO

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

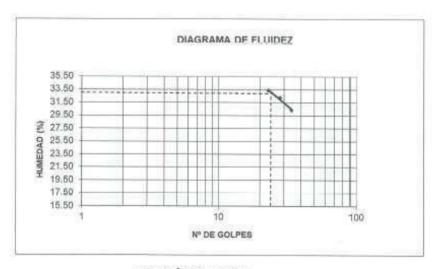
: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ


: C-3 / E-1 / Km 05+000 MUESTRA

RESP. LAB : J. Y. F.

TEC. LAB : J. A. F.

FECHA : MAY. 2021

	LÎM	ITES DE C	ONSISTENCI	A,		
Descripción		- M	Limite Liquic	Limite Plástico		
N° de golpes		23	28	34	-	-
Peso de tara	(g)	50.65	50.84	51.97	51.77	52.45
Peso de tara + suelo húmedo	(g)	59.41	62.11	59.92	53.01	53.36
Peso tara+suelo seco	(g)	57.22	59.36	58:07	52.78	53.2
Contenido de Humedad	96	33,33	32.28	30.33	22:77	21.33
Limites	96		33			22.

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) $y = -7.684\ln(x) + 57.578$

Calle Huayon Capue 144 - Jun 2 - Urb, Szinta Maria - Mov. 976/385052 - E-Mod. Jun. 90/200/ Botmolleon

(NORMA ASTM D-2216)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

SOLICITANTE

: C-3 / E-1 / Km 05+000 MUESTRA

RESP. LAB : J. Y. F.

TEC. LAB : J. A. F.

FECHA : MAY, 2021

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Mu estra 03	
Peso del tarro	(g)	50.95	49.74	50.44	
Peso del tarro + suelo humedo	(g)	153.84	149.78	144.20	
Peso del tarro+suelo seco	(g)	142.55	138.65	133.93	
Peso del suelo seco	(g)	91,60	88.91	83,40	
Peso del agua	(g)	11.29	11.13	30.27	
% de humedad	(36)	12.33	12.52	12.30	
% de humedad promedio	(%)		12.38	17	

CIP 193252 JEFE DE LABORATORIO

TRUJULIO - PERU Calle Hunyna Capne 144 - Int.2 - Urb. Sania Maria - Mov. 976785652 . E-Mun. Jim. 0026605ottmail.com

15

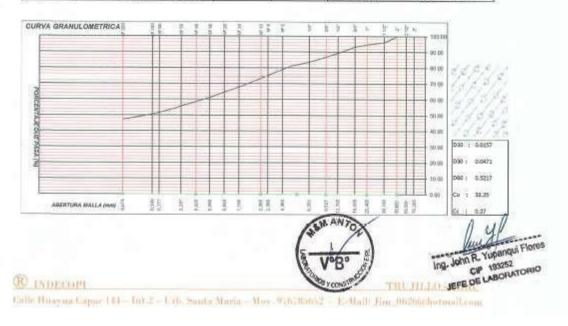
ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA


MATERIAL : Terreno Existente RESP. LAB : J. Y. F. SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ TEC. LAB : J. A. F. FECHA : MAY, 2021 : C-4 / E-1 / Km 06+000

DATOS DEL ENSAVO

Peso de muestra seca Peso de muestra seca fuego de lavado

2000.00 3056.67

Yamices ASTM	Aberture (mm)	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	%Que Pasa	Contenido de Humeded
3*	75,200	0.00	0.00	0.00	100,00	11.65%
21/2"	63.500	0.00	0.00	0.00	100.00	Límitos e Índices de Consistencia
2"	50,600	0.00	0.00	0,00	100,00	L. Uquido : 35
1.1/2*	38.100	75.63	5.78	3,78	96,22	i. Plástico : 22
1"	25,400	27.89	1.39	5.18	94.82	Ind. Plasticidad : 13
3/4"	19.050	28.15	1.41	6,58	93.42	
1/2"	12,700	81.57	4.08	10.66	89.34	Clasificación de la Muestra
3/8"	9.525	50,28	2.51	13.38	86.82	Amendative-consequent rooms/arevice
1/4"	6,950	63.75	3.19	16.36	83.64	Clas. SUCS : SC
No4	4.178	48.25	2.41	18.78	81.22	Clas AASHTO : A-G(3)
No8	2.960	124.24	6.21	24.99	75.01	
Noto	2.000	35.26	1.76	26.75	75.25	Descripción de la muestra
No16	1,180	107.69	5,38	32.14	67.86	TO PART PART OF MALE AND THE PART OF THE P
No20	0.850	63.57	3.18	35.31	64.69	SUCS: Arena arollosa
No30	0.600	69.32	3.47	38.78	61.22	Serve Harman Ship
No40	0.420	56.08	2,80	41.58	58.42	AASHTO: Suelice arcilloses / Regular a male
No50	0.300	33.73	7.69	44,27	55.73	THE PARTY OF THE P
No60	0.250	35.59	1.78	46.05	53.95	Tiene un % de finos de = 47.179
No80:	0.280	41.71	2.09	48,14	51.86	
No100	0.150	26,79	1,34	49.48	50.52	Descripción de Calicata
No 200	D,074	67.15	3.36	52.83	47.17	CASE MARKET CASE CONTROLLY
< No.200		943,33	47.17	100.00	0.00	C-4 E-1
Total		2000.00	100.00		-	Profundidad : 0.0 m + 1.50 m

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

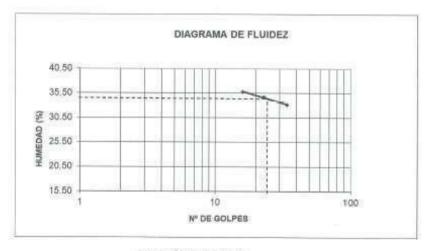
PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ


MUESTRA : C-4 / E-1 / Km 06+000

RESP. LAB : J. Y. F.

TEC. LAB ; J. A. F.

FECHA : MAY. 2021

	Lft	MITES DE C	ONSISTENCI/	A.			
Descripción			Limite Liquio	lo	Limite Plástico		
N° de golpes		16	23	34	-	i te	
Peso de tara	(g)	50.02	8.02	8.48	8,45	8.88	
Peso de tara + suelo húmedo	(g)	62.01	16.05	19.89	9.45	9.76	
Peso tara + suelo seco	(g)	58.85	13.98	17.05	9.26	9.61	
Contenido de Humedad	%	35.79	34.73	33.14	23,46	20.55	
Limites	26		35			22	

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) y = -3.521ln(x) + 45.624

VOB .

ng. John R. Yupanqui Flores Cip 193252 VEFE DE LABORATORIO

R INDECOR

TRUJELO-PERL

Calle Hunyan Capae 144 - Tot. 2 - Urb. Santii Marii - Mov. 970785652 - E-Mad: Jim_00266chotmail.com

(NORMA ASTM D-2216)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

MUESTRA : C-4 / E-1 / Km 06+000 RESP. LAB : J. Y. F.

TEC. LAB : J. A. F.

FECHA : MAY: 2021

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción	_	Muestra 01	Muestra 02	Mulestra 03	
Peso del tarro	(g)	50.75	50.85	51.52	
Peso del tarro + suelo humedo	(g)	154.40	154.71	1,49,13	
Peso del tarro + suelo seco	(g)	143.11	144,42	1.38.88	
Peso del suelo seco	(g)	92.36	93.57	87.36	
Peso del agua	(g)	11.29	10.29	10.25	
% de humedad	(%)	12,22	11.00	11.73	
% de humedad promedio	(%)	ESSET III.	11.65		

ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

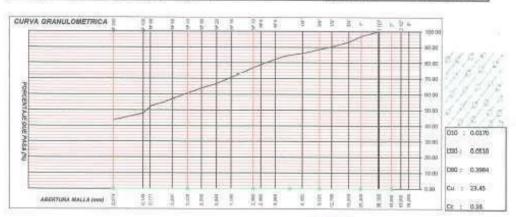
UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

TEC. LAB : J. A. F. FECHA : MAY, 2021

RESP. LAB : J. Y. F.


: C-5 / E-1 / Km 08+000 MUESTRA

DATOS DEL ENSAYO

Peso perdido por lavado

Peso de muestra seca Pero de muestra sesa fuego de lavado. 2000.00 1129,12 870.88

Tamices ASTM	Abertura (mm)	Peso Retanido	%Retenido Parcial	%Retenido Acumulado	NQue Pesa	Contenido de Humedad
3"	76.200	0.00	0.00	0.00	100.00	11.57%
21/2"	63.500	0.00	0.00	0.00	100,00	Limites e Índioss de Consistencia
25	50.600	0.00	0.00	0.00	100.00	L Liquido : 33
11/2"	38.100	0.00	0.00	0.00	100.00	LPlastico 19
2*	25,400	62.71	3.14	3.54	96.86	Ind: Plasticidad : 14
3/4"	19.050	72.38	3,62	6.75	93.25	100000000000000000000000000000000000000
1/2"	12.700	56.75	2.84	9.59	90.41	Clasificación de la Muestra
3/8"	9.525	36.98	1.85	11,44	88.56	
1/4"	6.350	49.55	2,48	13.92	86.08	Clas. SUCS 1 SC
No4	4.178	36.66	1.83	15.75	84.75	Clas, AASHTO : A-6(3)
NoS	2,360	113.31	5.67	21.42	78.58	UTING WES - TO BUILD.
Ne20	2.000	35.86	1.79	23.21	76,79	Descripción de la muestra
No16	1.180	121.26	6.06	29.27	70.73	
No20	0.850	77.93	3.90	33.17	66.83	SUCS: Arena arcillosa
No30	0.600	55.67	2.78	35.95	64.05	Common descriptions of the common of the com
No40	0.420	68.98	3.45	39,40	60,60	AASHTO: Sueless arctiliosos / Regular a main
No50	0.300	66,57	3.33	42.73	57.27	10000
No60	0.250	43,73	2.19	44.92	55.08	Tiene un % de finos de = 43.54
No80	0.180	50.72	2.54	47.45	52.55	are a superior and the
No100	0.150	92.87	4.64	52.10	47.90	Descripción de Calicata
No200	0.074	87,19	4.36	58.46	43,54	THE STORT SERVE AND SERVE AT THE
< No200		870.88	43.54	100.00	0.00	C-5 : E-1
Total		2000.00	100,00			Profundidad + 0.0m - 150m

® INDECOPI-

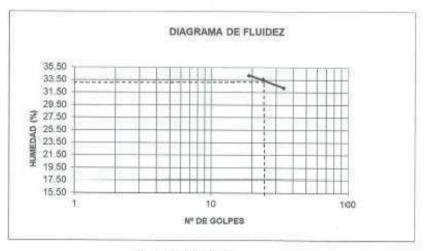
CIP 193252 Calle Hunyan Capac 144-4562-45b. Santa Maria - Mov. 976785632 Mark Jun 1026 bet

SIN ANTO

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO CAJABAMBA - CAJAMARCA, 2021


UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ SOLICITANTE

TEC. LAB : J. A. F. MUESTRA : C-5 / E-1 / Km 08+000 FECHA : MAY, 2021

	Lit	WITES DE C	ONSISTENCI	Α		
Descripción			Limite Liquio	Limite Plástico		
N* de golpes		19	24	34		CONTRACTOR OF THE PARTY OF THE
Peso de tara	(g)	9.21	14.33	50.77	14.11	14.03
Peso de tara + suelo húmedo	(g)	19.69	26.26	61.03	15.23	15.13
Peso tara + suelo seco	(g)	17.02	23,26	58.53	15.05	14.96
Contenido de Humedad	%	34.19	33,59	32.22	19.15	18.88
Limites	96		33			19

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) y = -3.43ln(x) +44.366

CIP 193252 JEFE DE LABORATORIO

(R) INDECORT

TRUILLO-PERU

RESP. LAB 13, Y. F.

Calle Huayna Capar 144 - Int. 2 - Urb. Santa Murja - Mov. 9767K5652 - 4; Mail: Jim. 09266rbotmuil.com

(NORMA ASTM D-2216)

PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

SANSTERISTE STOUDING SCHAMMIN CROSS GARCIA, JUNIOR CROSS VASQUE

MUESTRA : C-5 / E-1 / Km 08+000

RESP. LAB : J. Y. F.

TEC. LAB : J. A. F.

FECHA : MAY, 2021

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Muestra 03	
Peso del tarro	(g)	50,75	50,55	51.82	
Peso del tarro + suelo humedo	(g)	153.88	137.92	143.48	
Peso del tarro + suelo seco	(g)	143.12	128.75	134,14	
Peso del suelo seco	(g)	92.37	78,20	82.32	
Peso del agua	(g)	10.76	9.17	9.34	
% de humedad	(%)	11.65	11.73	11.35	
% de humedad promedio	(%)		11.57		

Ing. John R. Yupanqui Flores CIP 193252 JEFE SE LASORATORIO

ENSAYO GRANULOMETRICO POR TAMIZADO (NORMA ASTM D-422)

PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

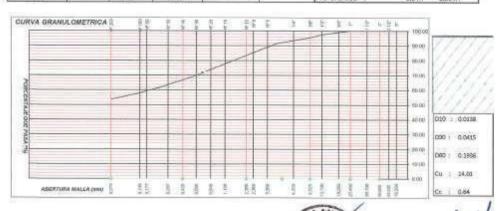
MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ TEC. LAB : J. A. F.

MUESTRA : C-6 / E-1 / Km 10+000 FECHA : MAY, 2021

RESP. LAB : J. Y. F.


DATOS DEL ENSAYO

 Peso de muestre sece
 2000.00

 Puso de muestre sece luego de lavado
 922.50

 Peso perdido por lavado
 1071.10

famices ASTM	Abertura (mm)	Peso Retenido	SiRetenido Parcial	56Retenido Acumulado	16Que Pasa	Contenido de Humedad
3*	76,200	0.00	0.00	0.00	100.00	11,39%
2.1/25	63.500	0.00	0.00	0.00	100.00	Limites e Índices de Consistencia
2"	50,600	0.03	0.00	0,00	100.00	L Uquido : 33
11/2"	38.100	0.00	0.00	0.00	100.00	LPlástico 22
10	25,400	0.00	0.00	0.00	100.00	Ind. Plasticidad : 11
3/4"	19.050	16.24	0.81	0.81	99.19	CONTROL DI
1/2"	12,700	34.23	1.71	2.52	97.48	Clasificación de la Muestra
3/8"	9,525	37.51	1.88	4.40	95.60	
1/4"	6,350	43.28	2.16	6.56	93.44	Class SUCS : CL
No4	4,178	40.93	2.05	8.61	91.39	Clas. AASHTO A-6 (4)
NoB	2,360	125.99	6.30	14.91	85.09	
No10	2.000	35.80	1.79	16.70	83.30	Descripción de la muestra
No16	1.180	114.07	5.70	22.40	77,60	Lacron and the second
No20	0.850	72.72	3.64	26.04	75,96	SUCS: Ardilla arenosa, limosa
No30	0,600	77.87	3.89	29.93	70.07	100000 00000000000000000000000000000000
No4D	0.420	65.78	8.29	14.22	66, 79	AASHTO: Suelice arcillosos / Regular a malo
No50	0.300	61.80	1.09	36.31	63,69	I STATE NO CONTRACTOR AND CONTRACTOR
No60	0.250	37.50	1.88	38.19	61.81	Tiene un % de finos de = 53.50
No80	0.180	45.01	225	40.44	59.56	SO WANDAMESTA
No100	0.150	31.03	1.55	41.99	58.01	Descripción de Calicata
No200	0.074	89.14	4,46	46.45	53.56	THE WAY OF MANY PROPERTY.
< No200		1071,10	53.56	100.00	0.00	C-8 : E-1
Total		3000,00	100.00	001.11	APACA	Profundided 1 0.0 m - 1.50 m

R INDECOPT

Calle Hunyan Capac 144 - Int.2 - Urb. Santa Maria - Mov. 976785652 - E. Mail: Jim. 06266/hotmail.com

CW 183252

LABORATORIO DE ESTUDIOS GEOTECNICOS Y ENSAYOS DE MATERIALES DE CONSTRUCÇION

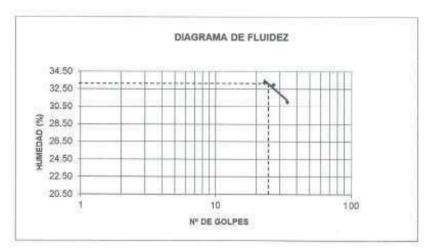
LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAIABAMBA - CAIAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA


MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

RESP. LAB : J. Y. F. TEC. LAB : J. A. F.

MUESTRA : C-6 / E-1 / Km 10+000 FECHA : MAY. 2021

	LĤ	METES DE C	ONSISTENCE	A		
Descripción			Limite Liquio	Limite Plástico		
N° de golpes		23	27	34		
Peso de tara	(g)	50.64	51.02	52.03	51.77	52.45
Peso de tara + sue lo húmedo	(g)	59.41	62.11	59,95	53.01	53.36
Peso tara + suelo seco	(g)	57.22	59.36	58.07	52.78	53,20
Contenido de Humedad	%	33.26	33.01	31.06	22.81	21.85
Limites	96		33			22

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) y = -5.831in(x) + 51.795

Ing. John R. Yupsings Flares
OP 18322
DELABORATORIO

R INDECORT

TRUJELO-PERU

Calle Huayna Capac 144 - Int. 2 - Urb. Santa Maria - Mov. 976785652 - E-Mad. Jon. 967664 hotmail.com

(NORMA ASTM D-2216)

PROYECTO : DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

SEMESTRALE TRANSPORT OF STREET STREET STREET STREET

MUESTRA : C-6 / E-1 / Km 10+000

TEC, LAB : J. A. F. FECHA : MAY. 2021

RESP. LAB : J. Y. F.

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Muestra 03
Peso del tarro	(g)	50.94	49.73	50.45
Peso del tarro + suelo humedo	(g)	152.84	149.77	144.85
Peso del tarro + sue lo seco	(g)	142.54	139.65	134,98
Peso del suelo seco	(g)	91.60	89.92	84.53
Peso del agua	(g)	10.30	10.12	9.87
% de humedad	(%)	11.24	11.25	11.68
% de humedad promedio	(%)	William	11.39	-10111

Ing. John H. 19252 JEFE DE LABORATORIO

LABORATORIO DE ESTUDIOS GEOTECNICOS Y ENSAVOS DE MATERIALES DE CONSTRUCCION

ENSAYO GRANULOMETRICO POR TAMIZADO

(NORMA ASTM D-422)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

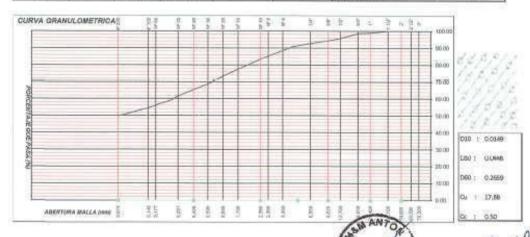
SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

MUESTRA : C-7 / E-1 / Km 11+000 **FECHA** : MAY, 2021

RESP. LAB : J. Y. F.

TEC. LAB IJ. A. F.

DATOS DEL ENSAYO


Peso de muestra seca Peso de muestre seca luego de levedo

2000,00 1004.99

Peso perdido por lavado

995.01

Tamices ASTM	Aberturu (num)	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	NQue Pasa	Contenido de Humedad					
3"	76,200	0.00	0.00	0.00	100,00	11.36%					
21/27	63,500	0.00	0.00	0.00	100.00	Limites e-Indices de Consistencia					
21	50.600	0.00	0.00	0.00	100,00	L líquido : 32					
1.1/2"	38,100	0.00	0.00	0.00	300.00	LPlástico : 21					
1"	25.400	20.12	1.01	-1.01	98.99	LPIástico : 21 Ind. Plasticidad : 11					
3/4"	19.050	10.02	0.50	1.51	98.49						
1/2"	12,700	57.88	2,89	4.40	95.60	Clasificación de la Muestre					
3/8"	9.525	25.50	1,28	5.68	94.32						
1/4"	6,350	34.47	1.72	7.40	92.60	Class, SUCS : SC					
Ned	4.178	26.88	3.81	9.24	90.76	Clas. AASHTO : A-6 (3)					
No&	2.360	112.82	5,64	14,68	85.12						
No10	2,000	34,77	1.74	16.62	83.38	Descripción de la muestra					
No16	1.180	118.57	5.92	22.54	77.46						
No20	0.850	79,82	3.99	26,53	73.47	SUCS: Arena artillosa					
No30	0.600	91,47	4.57	31.11	68.89	Personal International Property of the Personal Property of the Persona					
N640	0.420	73,34	5.67	34,77	65.23	AASHTO: Suelos arciliosos / Regular a malo					
Nuso	0.500	70.09	3.50	58,28	61.72						
No60	0.250	50.56	2.53	40,81	59.19	Tiene un % de finos de = 49.75					
No80	0.180	54.78	2.74	43.54	56.46	01 / DIO2 DI					
No100	0.150	36.97	1,85	45,39	54,61	Descripción de Calicata					
No200	0.074	97.13	4,86	50,25	49.75						
< No200		995.01	49,75	100.00	0.00	G-7 : 5-1					
Yotel		2000.00	100.00		10,000,000	Profundidad : 0.0m - 150 m					

Calle Huayan Capae 141 - Int.2 - Urle Santa Maria - May, 976705652 - E-Walls Hou 162566 Instantial Comp.

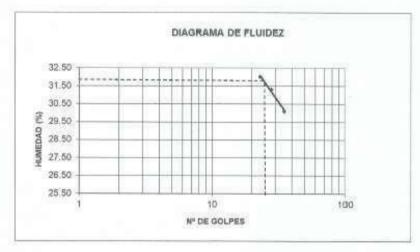
Ing. John R. Yupanqui Flores

LIMITES DE CONSISTENCIA

(NORMA ASTM D-4253, ASTM D-4254)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021


UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE : JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ

TEC. LAB : J. A. F. **FECHA** : MAY. 2021 MUESTRA : C-7 / E-1 / Km 11+000

	LIMI	TES DE C	ONSISTENCIA	A		
Descripción			Limite Liquid	Limite	Plástico	
N" de golpes		23	28	35	13	-
Peso de tara	(g)	11.13	10.04	10.29	14.18	14.08
Peso de tara + suelo húmedo:	(g)	17,97	20.10	18.06	14:97	14.75
Peso tara + suelo seco	(g)	16.31	17.70	16.26	14,83	14.64
Contenido de Humedad	96	32.02	31.30	30.10	21.49	20.15
Limites	36		32	21		

ECUACIÓN DE LA RECTA

(Elaborada a partir de los datos de los ensayos) $y = -4.59 \ln(x) + 46.476$

Yupanqui Flores CIP 193252 JEFE DE LABORATORIO

RESP. LAB : J. Y. F.

(R) INDECOPI

TRUBLEO-PERL

Calle Huayna Capar (44 - Int.2 - Urb. Santa Maria - Moy. 976705052 - E-Mail: Jim_06265c hormail.com

18 V M&M ANTÓN LABORATORIOS Y CONSTRUCCIÓN ELEL.

LABORATORIO DE ESTUDIOS GEOTECNICOS Y ENSAYOS DE MATERIALES DE CONSTRUCCION

CONTENIDO DE HUMEDAD

(NORMA ASTM D-2216)

: DISEÑO HIDRÁULICO DEL CANAL DE RIEGO DE CHUQUIBAMBA, DISTRITO CACHACHI, PROVINCIA PROYECTO

CAJABAMBA - CAJAMARCA, 2021

UBICACIÓN : CHUQUIBAMBA - CACHACHI - CAJABAMBA - CAJAMARCA

MATERIAL : Terreno Existente

SOLICITANTE

: JHORDINK BENJAMIN CRUZ GARCÍA, JÚNIOR CRUZ VASQUEZ TEC. LAB : J. A. F.

RESP. LAB : J. Y. F.

: MAY. 2021

FECHA

MUESTRA : C-7 / E-1 / Km 11+000

CONTENIDO DE HUMEDAD

ASTM D-2216

Descripción		Muestra 01	Muestra 02	Muestra 03			
Peso del tarro	(g)	50.97	50.81	49.90			
Peso del tarro + suelo humedo	(g)	124.94	133.54	146.07			
Peso del tarro + suelo seco	(g)	117.98	123.87	136.99			
Peso del suelo seco	(g)	67.01	73.06	87.09			
Peso del agua	(g)	6.97	9.68	9.08			
% de humedad	(%)	10.40	13.25	10.42			
% de humedad promedio	(%)	11.36					

CIP 193252 JEFE DE LABORATORIO

FICHA RESUMEN - ESTUDIO HIDROLÓGICO												
"Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba - Cajamarca, 2021"												
	AUTORES ASESOR											
	Cruz Garcia Jho	ordink		ING. HERRERA VILOCHE, ALEX ARQUIMEDES								
	Cruz Vasquez Ju	nior		ING. HER	REKA VILOCHE, ALEX ARQUINIEDES							
LUGAR	DISTRITO	PROVINCIA	REGION		FECHA							
Chuquibamba Cachachi Cajabamba Cajamarca Julio-2021												

ANEXO 3 Guía de Observación - Estudio Hidrológico

Cuadro 4. Precipitaciones estación Cajabamba en 24 horas

Año	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre	M	láximo
1994	24.00	36.00	21.00	33.00	16.00	3.60	8.10	1.00	3.10	21.30	22.00	25.30	36.00	Febrero
1995	15.00	23.50	21.50	14.30	16.30	1.40	8.60	1.00	26.20	23.80	16.30	31.20	31.20	Diciembre
1996	25.80	30.60	15.70	23.70	21.40	4.00	0.00	3.60	15.20	22.00	18.30	33.30	33.30	Diciembre
1997	20.40	25.20	48.80	10.70	6.30	8.70	0.00	20.00	10.20	16.50	36.60	30.20	48.80	Marzo
1998	66.20	40.20	61.60	33.40	10.20	2.10	0.00	7.00	28.20	22.60	17.80	35.20	66.20	Enero
1999	43.30	30.60	27.00	20.30	18.40	18.00	12.30	2.00	20.30	10.60	20.60	19.50	43.30	Enero
2000	18.60	25.80	25.60	17.80	9.50	7.20	1.00	4.20	13.70	4.80	11.00	25.70	25.80	Febrero
2001	30.10	18.30	32.50	7.20	9.80	2.40	1.80	0.01	11.70	26.70	48.60	30.10	48.60	Noviembre
2002	15.90	24.60	49.30	23.60	5.70	2.10	11.40	0.00	32.60	23.50	24.70	31.00	49.30	Marzo
2003	23.60	16.30	25.40	27.00	8.70	6.80	6.00	0.00	21.90	31.90	39.00	21.10	39.00	Noviembre
2004	24.90	14.30	10.90	34.10	11.90	2.40	17.20	3.80	15.90	15.80	36.50	26.10	36.50	Noviembre
2005	37.10	21.60	20.10	10.70	6.60	3.70	1.20	9.40	7.20	22.40	9.80	21.40	37.10	Enero
2006	27.40	32.20	65.70	22.30	4.90	5.70	2.30	19.70	22.50	23.60	24.40	20.40	65.70	Marzo
2007	14.40	17.60	50.00	27.90	22.20	0.00	3.90	1.20	22.70	30.10	11.70	20.00	50.00	Marzo
2008	40.90	18.10	31.60	17.30	13.50	14.10	3.70	1.80	14.40	27.00	19.20	9.50	40.90	Enero
2009	56.50	23.10	29.30	24.60	27.90	5.60	10.80	7.90	4.10	22.70	40.40	17.70	56.50	Enero
2010	22.00	33.60	16.60	44.90	31.70	3.50	0.80	3.80	5.90	15.80	20.90	20.80	44.90	Abril
2011	10.60	17.50	31.60	28.20	3.70	2.90	6.00	4.80	30.10	28.30	12.00	55.70	55.70	Diciembre

201	2 44	4.90	29.30	12.90	32.00	13.40	2.70	0.00	1.60	0.90	28.40	17.60	15.90	44.90	Enero
201	3 24	4.10	27.40	31.20	42.30	12.00	2.30	10.20	8.30	1.40	32.90	8.20	49.50	49.50	Diciembre
MA	X 66	5.20	40.20	65.70	44.90	31.70	18.00	17.20	20.00	32.60	32.90	48.60	55.70	66.20	Enero

Cuadro 5. Precipitación máxima en 24 horas

	Precipitaciones Máximas										
AÑO	MES	mm/24h									
1994	Febrero	36.00									
1995	Diciembre	31.20									
1996	Diciembre	33.30									
1997	Marzo	48.80									
1998	Enero	66.20									
1999	Enero	43.30									
2000	Febrero	25.80									
2001	Noviembre	48.60									
2002	Marzo	49.30									
2003	Noviembre	39.00									
2004	Noviembre	36.50									
2005	Enero	37.10									
2006	Marzo	65.70									
2007	Marzo	50.00									
2008	Enero	40.90									
2009	Enero	56.50									
2010	Abril	44.90									
2011	Diciembre	55.70									
2012	Enero	44.90									
2013	Diciembre	49.50									
PI	RECIPITACION PROM	45.16									

ANEXO 3.1 Guía de Observación - Diseño Hidráulico del canal

FICHA RESUMEN - CÁLCULO HIDRÁULICO Y DISEÑO DEL CANAL									
"Diseño hidráulico	del canal de Chuquibamb Cajabamba - Cajamaro	UNIVE	RSIDAD CÉSAR VALLEJO						
	AUTORES			ASESOR					
	CRUZ GARCIA J	HORDINK							
	_{Cruz} Vásquez	JUNIOR	ING. HERRERA	VILOCHE, ALEX ARQUIMEDES					
LUGAR	DISTRITO	PROVINCIA	REGION	FECHA					
Chuquibamba	Cachachi	Cajabamba	Cajamarca	Julio-2021					
•				· ·					
		CÁLCULO HIDRÁULICO Y DISEÑO DEL CANAI							

TRAMO	Long.	TIPO	Q	b	Z	n	S	Y	Α	Т	F	Р	R	V	E	f	H′	H asumido	ESPESOR	Tipo de
TRAINO	(m)	(1),(2),(3)	(m³/s)	(m)			(m/m)	(m)	(m²)	(m)		(m)	(m)	(m/s)	(m- kg/kg)	(m)	(m)	(m)	(m)	Canal
km. 00+000 al km. 00+500	100.00	2	0.0548	0.30	1.00	0.014	0.0020	0.1683	0.0788	0.6366	0.6310	0.7760	0.1016	0.6953	0.1929	0.056	0.224	0.40	0.10	Rectangular
km. 00+000 al km. 01+600	400.00	2	0.0500	0.30	1.00	0.014	0.0100	0.1025	0.0412	0.5049	1.3543	0.5898	0.0699	1.2123	0.1774	0.034	0.137	0.40	0.10	Rectangular
km. 00+000 al km. 01+650	400.00	2	0.0500	0.30	1.00	0.014	0.0060	0.1183	0.0495	0.5367	1.0618	0.6347	0.0780	1.0100	0.1703	0.039	0.158	0.40	0.10	Rectangular
km. 00+000 al km. 01+700	400.00	2	0.0500	0.30	1.00	0.014	0.0090	0.1056	0.0428	0.5112	1.2881	0.5986	0.0715	1.1677	0.1751	0.035	0.141	0.40	0.10	Rectangular
km. 00+000 al km. 01+720	200.00	2	0.0500	0.30	1.00	0.014	0.0090	0.1056	0.0428	0.5112	1.2881	0.5986	0.0715	1.1677	0.1751	0.035	0.141	0.40	0.10	Rectangular
km. 00+000 al km. 02+200	200.00	2	0.0500	0.30	1.00	0.014	0.0050	0.1245	0.0529	0.5490	0.9733	0.6522	0.0810	0.9459	0.1701	0.042	0.166	0.40	0.10	Rectangular
km. 00+000 al km. 00+020	200.00	2	0.0600	0.30	1.00	0.014	0.0040	0.1465	0.0654	0.5929	0.8822	0.7142	0.0915	0.9176	0.1894	0.049	0.195	0.40	0.10	Rectangular
km. 05+000 al km. 06+952	200.00	2	0.0600	0.30	1.00	0.014	0.0090	0.1170	0.0488	0.5340	1.2992	0.6309	0.0773	1.2299	0.1941	0.039	0.156	0.40	0.10	Rectangular

km. 05+000 al km. 06+952	200.00	2	0.0600	0.30	1.00	0.014	0.0010	0.2122	0.1087	0.7245	0.4548	0.9003	0.1208	0.5519	0.2278	0.071	0.283	0.40	0.10	Rectangular
km. 05+000 al km. 10+241	300.00	2	0.0600	0.30	1.00	0.014	0.0200	0.0933	0.0367	0.4867	1.9001	0.5640	0.0651	1.6345	0.2295	0.031	0.124	0.40	0.10	Rectangular

CAUDALES DE DISEÑO											
Tipo de canal	Qd(I/s)	Qd(m3/s)									
Canal Principal	163 l/s	0.163									
Canal Lateral 04	00.1/a	0.00									
Canal Lateral 01	80 l/s	0.08									
Canal Lateral 02	55 l/s	0.055									
Canal Lateral 03	85 l/s	0.085									
Canal Lateral 04	70 l/s	0.07									
Canal Lateral 05	75 l/s	0.075									
Canal Lateral 06	95 l/s	0.095									
Canal Lateral 07	80 l/s	0.08									
Canal Lateral 08	55 l/s	0.055									
Canal Lateral 09	70 l/s	0.07									
Canal Lateral 10	75 l/s	0.075									

Cuenca: Rio Chorro Blanco

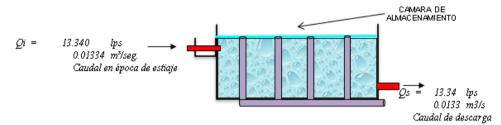
- Guoniou in tio	OHOTTO BIGHTO
Cota Naciente:	3287
Ubicación	
Geográfica:	Costa Norte del Perú
Ubicación Política:	Provincia de Cajabamba- Región Cajamarca
Longitud Cause Principal (km)	141.543
Pendiente Media (%)	7

ING. Josualdo Villar Quiroz	Juliu
ING. ALEX ARQUIMEDES HERRERA VILOCHE	Alex A Served Muche Tudesigna Civil. Cip esses Rug Consultor C13728

CALCU	ILOS DE DIS	SEÑO - CA	PTACION		
PROYECTO: "Diseño hidráulico del car	nal de Chuquibar	mba, distrito Ca	achachi, provinci	a Cajabamba	– Cajamarca
PROTECTO:		2021"			
CANAL . Chusuibasaha					
CANAL: Chuquibamba					
DISEÑO HIDRAULICO DE OBRA	AS DE TOMA				
0.15		1111			
Qdis =		lit/seg			
Qmín =	20.00	lit/seg			
CALCULO DE LAS DIMENSIONES DEL BO	CAL				
Qdis = caudal de diseño =	0.069	m3/e			
v = Cd*(2*g*ht)1/2 =	0.86				
ht = altura de toma =	0.15				
Cd = coef. Descarga =		adim	Cresta Rectano	ular	
A = Q/v =	0.0804			jaiai	
Como A = b*h	0.0004		4		
Asumimos b=	0.20	m	Ancho total		
Luego h = A/b =	0.402		Adoptamos h=	0.15	m
A' = b*h =	0.03		//aoptamos n=	0.10	111.
hv = altura del vertedero =	0.30		Mayor que ht		
			, 5. 425		
CALCULO DE LA ALTURA DE LOS MURO	S DE ENCAUCE Y	DEL CAUDAL			
CAPTADO POR EL CANAL EN AVENIDA					
Qmáx(río) =	20.000	m2le			
Longitud vertedero = Lv =	6.20				
Longitua vertedero – LV –	0.20	111			
ALTURA DE MUROS DE ENCAUCE					
fb = borde libre =	0.20	m			
hc = carga del aliviadero en avenida					
hc = (Qmáx/(Cw*Lv))2/3 =	1.16	m			
Cw = coef. De cresta =		adim.	(2/3xCdx(2*g)^1	/2)	
Cd = 0.602+0.075*hc/hv	0.880	0.891	(Sile/hc<=0.67)	vertedero de p	ared delgad
e = espesor de la corona	0.25	m			
e/hc =	0.22	0.32<0.67		OK	
h = altura total de los muros de encauce					
h = hc+hv+fb =	1.66	m con	sideramos=	1.7 m	

h1 = Tirante c		JE			
6.4 A.8 121.225	omprimido				
mT = QJLVI(K(2	?*g*(A-P+hc-h1)+Vo^2)^1.	/2			
Q = Caudal m		20.000	m3/s		
Lv = Ancho de	l Vertedero	6.20	m		
K=		1.00			
	in de la gravedad		m/s2		
à = Cota del A		A-P =	1.45	m	
P = Cota de fo					
	el aliviadero en avenida	1.16	m		
Vo = Q/(g*hc)			m/s		
Por tanteos	h1 =				
V1 = Q/(g*h1)					
2.18,	V1 =	4.077	m/s		
F1 = V1/(g*Y1)			11110	_	
	F1 =	1.841	100	2	
h'2 = 0.5*h1*/	(1+8*F1^2)^1/2-1)				
112 - 0.5 111 ((1.011 2) 1/2-1) h'2 =	1.075624		_	
h2 = Tirante d		1.07-0024			
h2 = (1.1-F1^2		Oi.	(1.7 < F1 < 5.5)	
112 - (1.156102	2120) 112	31	(1.7 5 7 1 5 3.3	, 	
	h2 =	1.153			
	nz =	1.133			
l b – Longitud	 de colchón de amortigu	iamionto			
Lb = 4.5*h'2/F		iamiento			
LD = 4.5"H 2/F	Lb =	3.044	m		
0 dontomoo Ll					
Adoptamos LI	U =	3.00	ILI		

CALCULOS JUSTIFICATORIOS


PROYECTO

: "Diseño hidráulico del canal de Chuquibamba, distrito Cachachi, provincia Cajabamba – Cajamarca, 2021"

FECHA : Julio del 2021 ELABORADO : Ing.Jhordink Benjamin

1 PRESEDIMENTADOR

Calculo de la capacidad del Presedimentador

Por las dimenciones del Presedimentador, esta almacenará un vólumen máximo de 3.33m3 Volumen de almacenamiento 3.73 m3 Usando :

Datos:

= 3.73 m3

Qi(lps) = 13.340 0.0133 m3/s

Resultados :

T(hrs) = 0.0777 horas

4.6602 MINUTOS

Resultados :

 $V = 3.73 \ m3$

Vaciado del Presedimentador se realizara en: 0.0777 hrs.

Usando .

Qs = V / Ts

Usando :

$$Qs = V / Ts$$

Donde:

Qs = Caudal de descarga

V = Volumen de la Presedimentador Ts = Tiempo que demora en el vaciado

Datos:

V = 3.73 m3

 $Ts = 0.0777 \ hrs = 279.61 \ seg.$

Resultados :

Vólumen a utilizar 3.73 m3

Qs = 0.0133 m3/s 13.34 lps

Descarga del Presedimentador

La velocidad del agua se incrementa con la carga aguas arriba; parte de esta energía se disipa en la masa de fluido de la sección de salida y la otra parte debe amortiguarse en una poza disipadora, (si se diseña riego por gravedad) con la finalidad de mantener un nivel de agua estable:

Diámetro de la llave de salida

Aplicando la formula de caudal para tubos cortos

DATOS:

h = 0.10 m h minimaC = 0.83 Coef. de cont.

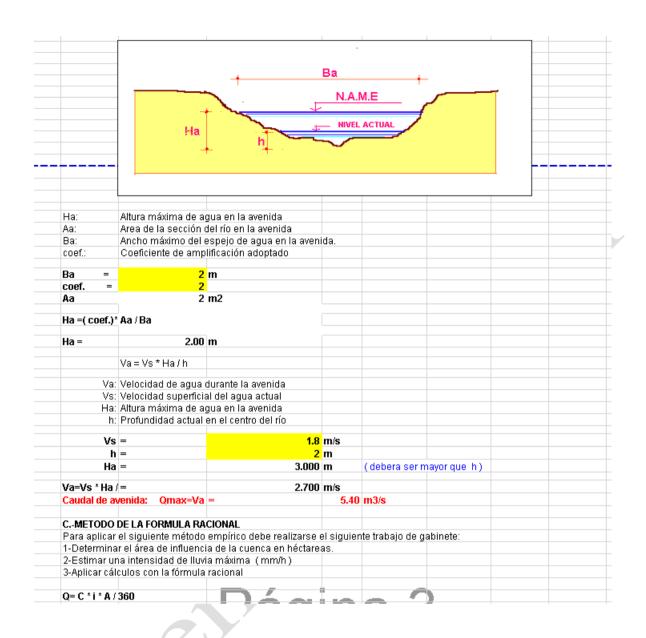
Q = 0.0133 m3/s Caudal

g = 9.81 m/s2 **Gravedad T**.

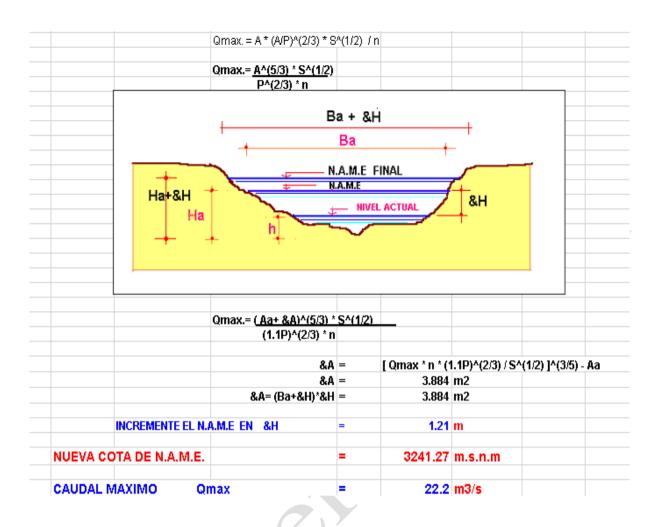
RESULTADOS

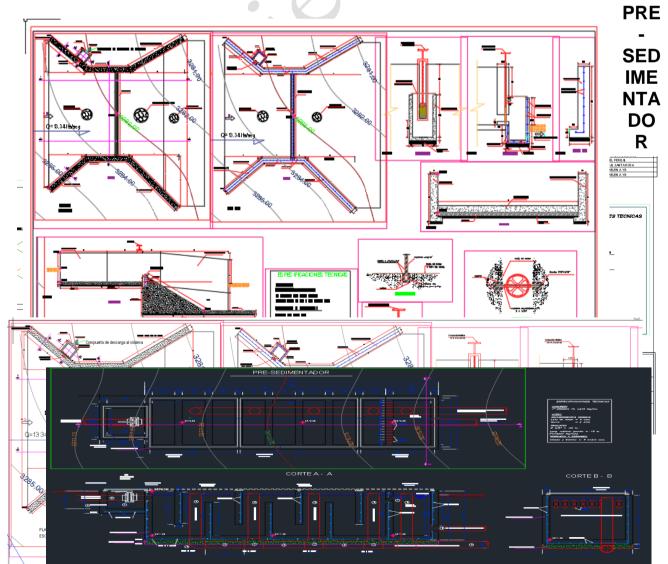
Diámetro calculado: 0.12 m. = 4.77 pulg.

A usar:

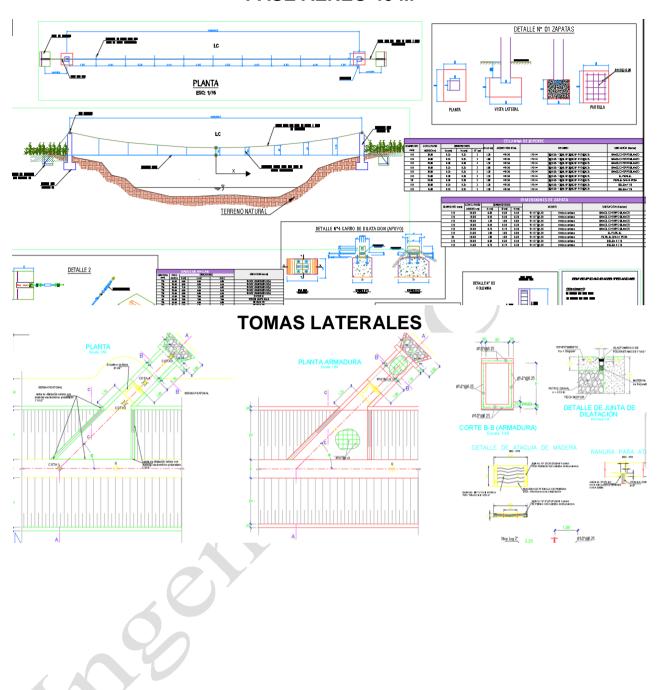

4 pulg.

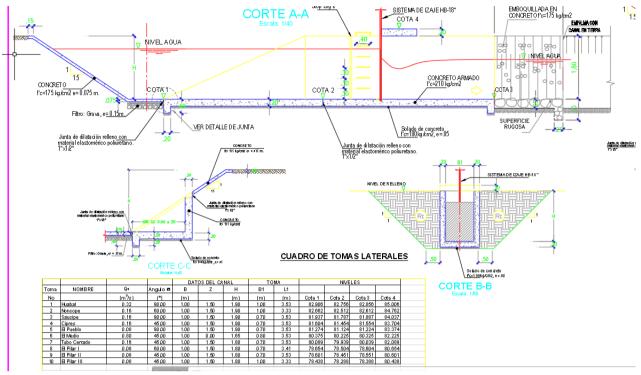
CALCU	LO DEL CAUDAL	EN UN	CANAL	RECTA	INGULAR	
PROYECTO:						
PROTECTO:	(B) (1) (1)					
	:"Diseno hidraulico d	lei canal de Ch	•		hi, provincia Cajabam	ba – Cajama
			2	021"		
UBICACIÓN:	CASERIO CHUQUIBA	MBA				
FECHA:	JULIO DEL 2020					
CALCII O DEL TID	ANTE MAXIMO DEL CAU	T) AT				
CALCULU DEL TIK	ANTE MAXIMO DEL CAU	DAL				
Debido a la falta de inf	i Formación hidrometereológica e	n determinada	as zonas que	i e justifiquen el	diseño hidraulico de	las
	s, se plantean metodos de calc					
	terísticas geomorfológicas y de					
Con la finanlidad de ob	itener la altura maxima que tenc	drá el puente s	e calcularan	los caudales	instantaneos	
por medio de diferente	s metodos empiricos; de esta f	orma determir	aremos el m	naximo caudal	;	
	calculado utililizando la formula			una nueva altu	ıra de agua, que	
será mayor a la marca	de la huella dejada por el agua	a en una máxir	na avenida.			
AMETODO DE LA SEC	CION Y LA PENDIENTE					
	ente método debe realizarse lo:	s siquientes tr	abaios de ca	mpo:		
1-Selección de varios t			,			
2-Levantamiento topog	ráfico de las secciones tranvers	sales seleccio	nadas (3 se	cciones mínin	nas)	
3-Determinación de la	pendiente de la superficie de ag	gua con las m	arcas o huel	las dejadas pi	or las aguas	
de máximas avenida:						
	eficiente de rugosidad (n) el n	nás óptimo.				
5-Aplicar cálculos en la	i formula de Manning.					
	* R^(2/3) Qmax. = A * R^(2/3) *	'8^(1/2) / n				
* S^(1.						
A:área de la sección hu	ımeda (m2) umeda/ perimetro mojado			4		
	umeda) perimetro mojado erficie del fondo de cauce	4 12				
s:pendiente de la supe n: rugosidad del cauce				-		
n. rugosidad dei tädte	del III.	7 " " "		-		
La siguiente tabla nos	muestra los distinto valores de	"n" que se ad	optaran:			
_						
SEGUN COWAN:						
Condiciones del río:						
material del cauce:	A	terroso				
	В	rocoso				
	С	gravoso	fino			
	D	gravoso	arueso			

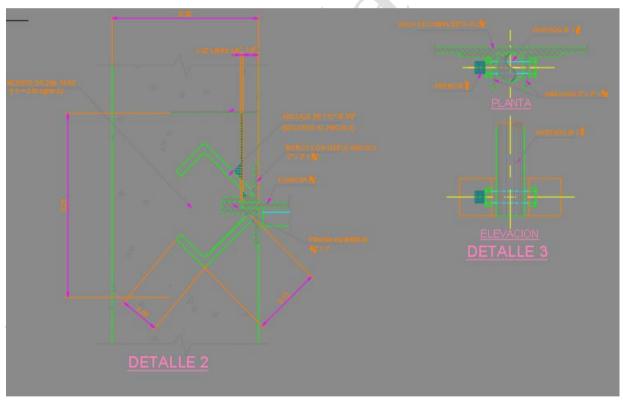

Efecto de las obstrucciones: B menor C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: B poco C regular D alta prado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B regular C considerable grado de sinuosidad adoptado: B = 1.15	B leve C regular D severo Grado de irregularidad adoptado: B = 0.006 Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.006 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C = 0.006 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.006 Regular C regular D alta grado de sinuosidad: A Insignificante B regular C considerable Grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.15	Grado de irr			otado:		В	=	0.025
B leve C regular D severo Grado de irregularidad adoptado: B = 0.000 Secciones A leve Variables B regular C severo variación de la seccción adoptada: B menor C apreciable D severo Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: A ninguna B poco C regular D alta vegetación adoptada: B menor B poco C regular D alta vegetación adoptada: B regular C considerable grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B regular C considerable B regular C considerable Grado de sinuosidad adoptado: B = 1.15	B leve C regular D severo Grado de irregularidad adoptado: B = 0.000 Secciones A leve B regular C severo Variables B regular C severo Variables B menor C apreciable D severo Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta Vegetación: A ninguna B poco C regular D alta Vegetación adoptada: B = 0.00 G regular C considerable grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B = 1.15 Valor de "n" adoptado según COWAM n = 0.07475	Grado de irr							
Grado de irregularidad adoptado: B = 0.009 Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.009 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: A ninguna B poco C regular D alta vegetación adoptada: B regular C considerable grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B = 1.119	Grado de irregularidad adoptado: B = 0.009 Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.009 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C apreciable D severo Ffecto de las obstrucciones adoptado: C regular D alta vegetación: B pocc C regular D alta vegetación adoptada: B regular C considerable grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B = 1.15		egularidad:						
Grado de irregularidad adoptado: Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.009 Effecto de las obstrucciones: A despreciables B menor C apreciable D severo Effecto de las obstrucciones adoptado: C apreciable D severo Effecto de las obstrucciones adoptado: C apreciable D severo Effecto de las obstrucciones adoptado: C apreciable D severo Effecto de las obstrucciones adoptado: B pocco C regular D alta Vegetación adoptada: B = 0.009 B = 0.009 Vegetación adoptada: B = 0.009	Grado de irregularidad adoptado: B = 0.008 Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.008 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: B pocco C regular D alta grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B = 1.18 valor de "n " adoptado según COWAM n = 0.07475			В	leve				
Grado de irregularidad adoptado: Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.009 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: Efecto de las obstrucciones adoptado: B poco C regular D alta Vegetación adoptada: B = 0.009 Vegetación adoptada: B = 0.009 B = 0.009 Efecto de las obstrucciones adoptado: C considerable Grado de sinuosidad: B regular C considerable Grado de sinuosidad adoptado: B = 1.199 Valor de "n" adoptado según COWAM n = 0.07475	Grado de irregularidad adoptado: Secciones A leve Variables B regular C severo variación de la seccción adoptada: B = 0.009 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta Vegetación: B poco C regular D alta Fregular D alta Vegetación adoptada: B = 0.00 Grado de sinuosidad: A Insignificante B regular C considerable Grado de sinuosidad: B = 1.19 Valor de "n" adoptado según COWAM n = 0.07475			С	regular				
Secciones Variables B regular C severo Variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta Vegetación adoptada: B = 0.00 grado de sinuosidad: A insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 Valor de "n" adoptado según COWAM n = 0.07475	Secciones Variables B regular C severo variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: B poco p C regular D alta grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475			D					
Secciones Variables B regular C severo Variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta Vegetación adoptada: B = 0.00 grado de sinuosidad: A insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 Valor de "n" adoptado según COWAM n = 0.07475	Secciones Variables B regular C severo variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: B poco p C regular D alta grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475								
Variables B regular C severo	Variables B regular C severo variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.15			Grado de Irregularidad a	adoptado:		Н	=	0.005
Variables B regular C severo	Variables B regular C severo variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C apreciable D severo Efecto de las obstrucciones adoptado: C regular D alta vegetación: B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.15	Serriones		Δ	leve				
C severo variación de la seccción adoptada: Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C = 0,00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de "n" adoptado según COWAM n = 0.07475	C severo variación de la seccción adoptada: B = 0.009 Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C = 0.009 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.009 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad: A los guiar C considerable grado de sinuosidad adoptado: B = 1.159 valor de "n" adoptado según COWAM n = 0.07475								
Variación de la seccción adoptada: B = 0.009 Efecto de las obstrucciones: A despreciables B menor	Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Efecto de las obstrucciones adoptado: C = 0.00 Vegetación: A ninguna B poco C regular D alta Vegetación adoptada: B = 0.00 Grado de sinuosidad: A Insignificante B regular C considerable Grado de sinuosidad adoptado: B = 1.19 Valor de "n" adoptado según COWAM n = 0.07475	valiables							
Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0,0% vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0,0% grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.19 valor de "n" adoptado según COWAM n = 0.07475	Efecto de las obstrucciones: A despreciables B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0,0% vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0,0% grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.19 valor de "n" adoptado según COWAM n = 0.07475				364610				
B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0.00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0.00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475			variación de la seccción	n adoptada):	В	=	0.005
B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0.00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0.00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475								
B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0.00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B menor C apreciable D severo Ffecto de las obstrucciones adoptado: C = 0.00 vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475		Efecto de las ol	strucciones:	Α	despreciables			
C apreciable D severo	C apreciable D severo								
Pfecto de las obstrucciones adoptado: Vegetación: A ninguna B poco C regular D alta Vegetación adoptada: B = 0.0° grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.16 Valor de " n " adoptado según COWAM n = 0.07475	Pfecto de las obstrucciones adoptado: Vegetación: A ninguna B poco C regular D alta Vegetación adoptada: B = 0.0° grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.16 Valor de " n " adoptado según COWAM n = 0.07475								
regetación: A ninguna B poco C regular D alta vegetación adoptada: B regular C considerable grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de " n " adoptado según COWAM n = 0.07475	regetación: A ninguna B poco C regular D alta vegetación adoptada: B regular C considerable grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de " n " adoptado según COWAM n = 0.07475								
vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	vegetación: A ninguna B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475					SEVELO			
B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475			Efecto de las obstruccio	ones adop	tado:	C	=	0.02
B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475								
B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B poco C regular D alta vegetación adoptada: B = 0.00 grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475		vegetación:		Α	ninguna			
C regular D alta vegetación adoptada: B = 0.0° grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de "n" adoptado según COWAM n = 0.07475	C regular D alta vegetación adoptada: B = 0.0° grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de "n" adoptado según COWAM n = 0.07475								
vegetación adoptada: grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de " n " adoptado según COWAM n = 0.07475	vegetación adoptada: grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de " n " adoptado según COWAM n = 0.07475								
vegetación adoptada: grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.19 valor de " n " adoptado según COWAM n = 0.07475	vegetación adoptada: grado de sinuosidad: B regular C considerable grado de sinuosidad adoptado: B = 1.19 valor de " n " adoptado según COWAM n = 0.07475								
grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de " n " adoptado según COWAM n = 0.07475	grado de sinuosidad: A Insignificante B regular C considerable grado de sinuosidad adoptado: B = 1.18 valor de " n " adoptado según COWAM n = 0.07475				D	aita			
B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de "n" adoptado según COWAM n = 0.07475	B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de "n" adoptado según COWAM n = 0.07475			vegetación	n adoptada	1:	В	=	0.01
B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475	B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de " n " adoptado según COWAM n = 0.07475								
B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de "n" adoptado según COWAM n = 0.07475	B regular C considerable grado de sinuosidad adoptado: B = 1.15 valor de "n" adoptado según COWAM n = 0.07475		1	grado de sinuosidad:	А	Insignificante			
grado de sinuosidad adoptado: ### Paragraphica B	grado de sinuosidad adoptado: ### Paragraphica B			2		regular			
grado de sinuosidad adoptado: Valor de " n " adoptado según COWAM n = 0.07475	grado de sinuosidad adoptado: Valor de " n " adoptado según COWAM n = 0.07475								
valor de " n " adoptado según COWAM n = 0.07475	valor de " n " adoptado según COWAM n = 0.07475			grado do einvecid					1 14
						ww.		_	1.13
			valor de " r	ı " adoptado según COWAM	n =		0.07475		
) '					
			7 /						

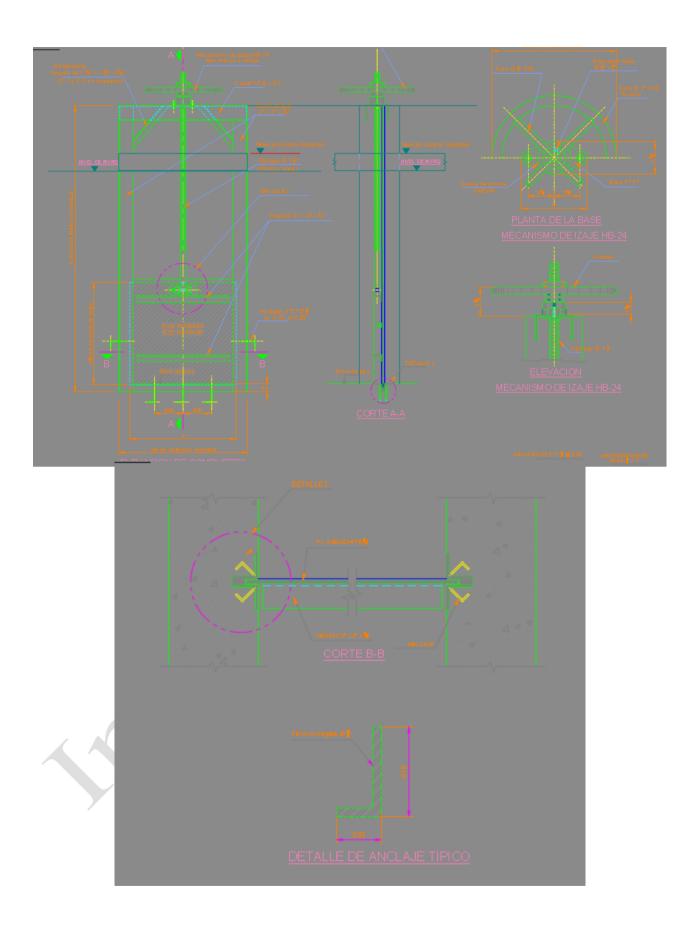

SEGUN SCOBEY:						
Condiciones del río:						
. 0.005						
n = 0.025	san huan alinaamianta san a	a ain alaa a	la ua wata si ƙ	on loo talud	oo u arauillaa	dianaraaa
Cauce de tierra natural limpios en los taludes	con buen allneamlento con c) Sin aigu d	ie vegetacioi	i en ios talud	esygravillasi	ispersas
en los talques						
n = 0.030						
Cauce de piedra fragmentada y	erosionada de sección varia	able con alg	go de vegeta	ción en los b	ordes y consid	lerable per
(típico de los ríos de entrada de	e ceja de selva)					
n = 0.035						
Cauce de grava y gravilla con v	ariación considerable de la s	ección tran	nevereal con	alno de vene	tación en los t	v sehule
baja pendiente.(típico de los río			13401341 0011	aigo ac vege	tacion cirios i	alddc5 y
baja perialente. Capico de 105 m	oo de chinada de ceja de seiv	α,				
n = 0.040-0.050						
Cauce con gran cantidad de car		e sección tr	ransversal va	riable con o	sin vegetacion	n en los tal
(típicos de los ríos de la sierra	y cej a de s elva)					
n = 0.060-0.075		10 /		/		
Cauce con gran crecimiento de	molero, de apseián abatruid	a nar la va	antoción out	rna v acuátic	a da linaamia	nto u cocci
Cauce con gran crecimiento de		a hours as	getacion exte	ama y acualic	a ue illiealille	nio y secci
irrogular / típica da lac ríac da l	o colvo \					
irregular. (típico de los ríos de l	a selva)					
irregular. (típico de los ríos de l valor de " n " adoptado se			0.05			
valor de " n " adoptado se Seleccionando el menor valor d	gún SCOBEY n = e "n" de estos dos criterios		0.05 0.05			
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las	gún SCOBEY n = e "n" de estos dos criterios huellas	:	0.05			
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d	gún SCOBEY n = e "n" de estos dos criterios huellas en la avenida	:	0.05 3240.06 1.3	m.s.n.m m2		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida	: :	0.05 3240.06 1.3 1.5	m.s.n.m m2		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave S : pendiente de la superficie d	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida lel fondo de cauce	: : : : : : : : : : : : : : : : : : : :	0.05 3240.06 1.3 1.5 0.01	m.s.n.m m2 m		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida lel fondo de cauce	:	0.05 3240.06 1.3 1.5	m.s.n.m m2 m		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave S : pendiente de la superficie d	gún SCOBEY n = e "n" de estos dos criterios huellas en la avenida nida el fondo de cauce	:	0.05 3240.06 1.3 1.5 0.01	m.s.n.m m2 m		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave S : pendiente de la superficie d	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida lel fondo de cauce	:	0.05 3240.06 1.3 1.5 0.01 0.05	m.s.n.m m2 m		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave S : pendiente de la superficie d	gún SCOBEY n = e "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S	:	0.05 3240.06 1.3 1.5 0.01 0.05	m.s.n.m m2 m		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave S : pendiente de la superficie d	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax.	:	0.05 3240.06 1.3 1.5 0.01 0.05	m.s.n.m m2 m		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río e P : perimetro mojado de la ave S : pendiente de la superficie d n : rugosidad del cauce del río.	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida lel fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA	: : : : : : : : : : : : : : : : : : :	0.05 3240.06 1.3 1.5 0.01 0.05	m.s.n.m m2 m		
valor de "n" adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa: Area de la sección del río d P: perimetro mojado de la ave S: pendiente de la superficie d n: rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río	gún SCOBEY n = e "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu	: : : : : : : : : : : : : : : : : : :	0.05 3240.06 1.3 1.5 0.01 0.05	m.s.n.m m2 m		
valor de "n" adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa: Area de la sección del río de P: perimetro mojado de la ave S: pendiente de la superficie de n: rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río 2-Medir la profundidad actual er	gún SCOBEY n = e "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu	: : : : : : : : : : : : : : : : : : :	0.05 3240.06 1.3 1.5 0.01 0.05 2.36	m.s.n.m m2 m m3/s		
valor de " n " adoptado se Seleccionando el menorvalor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río o P : perimetro mojado de la ave S : pendiente de la superficie d n : rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río 2-Medir la profundidad actual er 3-Levantamiento topográfico de	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu n el centro del río (h)	: : : : : : : : : : : : : : : : : : :	0.05 3240.06 1.3 1.5 0.01 0.05 2.36	m.s.n.m m2 m m3/s	huellas	
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río d P : perimetro mojado de la ave S : pendiente de la superficie d n : rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río 2-Medir la profundidad actual er 3-Levantamiento topográfico de dejadas por las aguas de má	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu n el centro del río (h) las secciones tranversales ximas avenidas.	: : : : : : : : : : : : : : : : : : :	0.05 3240.06 1.3 1.5 0.01 0.05 2.36 ajos de cam	m.s.n.m m2 m m3/s		
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río de P : perimetro mojado de la ave S : pendiente de la superficie de n : rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río 2-Medir la profundidad actual er 3-Levantamiento topográfico de dejadas por las aguas de má 4-Medir la velocidad superficial	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu n el centro del río (h) las secciones tranversales kimas avenidas. del agua (Vs) que discurre f	: : : : : : : : : ientes trab selecciona tomando e	0.05 3240.06 1.3 1.5 0.01 0.05 2.36 ajos de cam das indican n cuenta el t	m.s.n.m m2 m m3/s po:	emora un obje	to
valor de " n " adoptado ser Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río e P : perimetro mojado de la ave S : pendiente de la superficie d n : rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río 2-Medir la priornotidad actual el 3-Levantamiento topográfico de dejadas por las aguas de má 4-Medir la velocidad superficial flotante en llegar de un punto	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida el fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu n el centro del río (h) las secciones tranversales ximas avenidas. del agua (Vs) que discurre fa	: : : : : : : : : ientes trab selecciona tomando e	0.05 3240.06 1.3 1.5 0.01 0.05 2.36 ajos de cam das indican n cuenta el t	m.s.n.m m2 m m3/s po:	emora un obje	to
valor de " n " adoptado se Seleccionando el menor valor d Cota de N.A.M.E dejada por las Aa : Area de la sección del río de P : perimetro mojado de la ave S : pendiente de la superficie de n : rugosidad del cauce del río. BMETODO DE LA VELOCIDAD Para aplicar el siguiente mét 1-Selección de tramo del río 2-Medir la profundidad actual er 3-Levantamiento topográfico de dejadas por las aguas de má 4-Medir la velocidad superficial	gún SCOBEY n = le "n" de estos dos criterios huellas en la avenida nida lel fondo de cauce Qmax. = A * (A/P)^(2/3) * S Qmax. Y AREA odo debe realizarse los sigu n el centro del río (h) las secciones tranversales ximas avenidas. del agua (Vs) que discurre ta a otro en una sección regula bos puntos.	: : : : : : : : : ientes trab selecciona tomando e	0.05 3240.06 1.3 1.5 0.01 0.05 2.36 ajos de cam das indican n cuenta el t	m.s.n.m m2 m m3/s po: do marcas o empo que de ndose previa	emora un obje imente	to

CAUDALES DE DISEI		EÑO	Cuenca :Rio	Chorro Blanco
Tipo de canal	Qd(l/s)	Qd(m3/s)	Cota Naciente:	3287
Canal Princial	163 l/s	0.163	Ubicación Geografica:	Costa Norte del Perú
Canal Lateral 01	80 l/s	0.08	I Ubicación Politica: I	Provincia de Cajabamba- Rgión Cajamarca
			Longitud Cause	141.543
Canal Lateral 02	eral 02 55 l/s 0.055		Principal (km)	141.343
Canal Lateral 03	85 l/s	0.085	Pendiente Media (%)	7
Canal Lateral 04	70 l/s	0.07		
Canal Lateral 05	75 l/s	0.075		
Canal Lateral 06	95 l/s	0.095		
Canal Lateral 07	80 l/s	0.08		
Canal Lateral 08	55 l/s	0.055		
Canal Lateral 09	70 l/s	0.07		
Canal Lateral 10	75 l/s	0.075		




u Coe A: Are: i: inte coeficiente e A B C D E F G H indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caud. 1 - el 2 - el 3 - la CAL	eficiente de esco ea de influencia d ensidad máxima orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a	e la cuenca.(ha) de lluvia (mm/h) cultivos generales en topo cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to cultivos de bosques en to areas desnudas en topo gareas desnudas en topo l coeficiente seleccionado do (C): otada (A) = doptada (i) = *A/360 = alculados se adoptaran lo caudales s caudales da	ografía or ografía in ografía in pografía pografía rafía ond rafía incl C 4361 13.52	(< 500 has) Indulada (S = 5) Indulada (S = 10)	a10%) 0a30%) a10%) 0a30%) 5a10%) 10a30%)		
A: Area i: inte coeficiente e A B C D E F G H indicar la letra co coeficiente esco Area de intensidad máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	ea de influencia densidad máxima orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	e la cuenca.(ha) de lluvia (mm/h) cultivos generales en topo cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to cultivos de bosques en to areas desnudas en topo gareas desnudas en topo l coeficiente seleccionado do (C): otada (A) = doptada (i) = *A/360 = alculados se adoptaran lo caudales s caudales da	ografía in ografía or ografía in pografía pografía irafía ond rafía incl C 4361 13.52	ndulada (S = 5 clinada (S = 10 clinada (S = 10 clinada (S = 10 clinada (S = inclinada (S = 5 a inada (S = 10 clinada (S = 10 c	0 a 30 %) a 10 %) D a 30 %) 5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
i: inte coeficiente e A B C D E F G H indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caud. 1 - el 2 - el 3 - la CAU Luego con el cau	ensidad máxima orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	de lluvia (mm/h) cultivos generales en topo cultivos generales en topo cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo gareas desnudas en topo l coeficiente seleccionado do (C): otada (A) = doptada (i) = *A/360 = alculados se adoptaran lo caudales s caudales da	ografía in ografía or ografía in pografía pografía irafía ond rafía incl C 4361 13.52	ndulada (S = 5 clinada (S = 10 clinada (S = 10 clinada (S = 10 clinada (S = inclinada (S = 5 a inada (S = 10 clinada (S = 10 c	0 a 30 %) a 10 %) D a 30 %) 5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
coeficiente e A B C D E F G H indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caud 1 - el 2 - el 3 - la CAU Luego con el cau	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c: Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos generales en topo cultivos generales en topo cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo areas desnudas en topo do (C): otada (A) = doptada (i) = *A/360 = alculados se adoptaran lo caudales s caudales da	ografía in ografía or ografía in pografía pografía irafía ond rafía incl C 4361 13.52	clinada (S = 1) ndulada (S = 5) clinada (S = 1) ondulada (S = inclinada (S = lulada (S = 5) a inada (S = 10) = has mm/h	0 a 30 %) a 10 %) D a 30 %) 5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
B C D E F G H indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caud: 1 - el 2 - el 3 - la CAU Luego con el cau	orrespondiente a orrentia adopta d de la cuenca adop áxima de lluvia a c: Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos generales en topo cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo gareas desnudas en topo il coeficiente seleccionado do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	ografía in ografía or ografía in pografía pografía irafía ond rafía incl C 4361 13.52	clinada (S = 1) ndulada (S = 5) clinada (S = 1) ondulada (S = inclinada (S = lulada (S = 5) a inada (S = 10) = has mm/h	0 a 30 %) a 10 %) D a 30 %) 5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
B C D E F G H indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caud: 1 - el 2 - el 3 - la CAU Luego con el cau	orrespondiente a orrentia adopta d de la cuenca adop áxima de lluvia a c: Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos generales en topo cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo gareas desnudas en topo il coeficiente seleccionado do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	ografía in ografía or ografía in pografía pografía irafía ond rafía incl C 4361 13.52	clinada (S = 1) ndulada (S = 5) clinada (S = 1) ondulada (S = inclinada (S = lulada (S = 5) a inada (S = 10) = has mm/h	0 a 30 %) a 10 %) D a 30 %) 5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
C D E F G H indicar la letra co coeficiente esco intensidad máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a : Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo areas desnudas en topo do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	ografía or ografía ini pografía pografía irafía ond rafía incl C 4361 13.52	ndulada (S = 5 clinada (S = 11 ondulada (S = 11 ondulada (S = 11 clinada (S = 5 a clinada (S = 10 clinada (S =	a10%) Da30%) 5a10%) 10a30%) 1030%) a30%)		
C D E F G H indicar la letra co coeficiente esco intensidad máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a : Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos de pastos en topo cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo areas desnudas en topo do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	ografía or ografía ini pografía pografía irafía ond rafía incl C 4361 13.52	ndulada (S = 5 clinada (S = 11 ondulada (S = 11 ondulada (S = 11 clinada (S = 5 a clinada (S = 10 clinada (S =	a10%) Da30%) 5a10%) 10a30%) 1030%) a30%)		
D E F G H indicar la letra co coeficiente esco coeficiente esco intensidad máximo: De los tres caud: 1 - el 2 - el 3 - la CAL	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c: Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos de pastos en topo cultivos de bosques en to cultivos de bosques en to areas desnudas en topo areas desnudas en topo de coeficiente seleccionado do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	grafía in pografía pografía pografía irafía incl C 4361 13.52	clinada (S = 10 ondulada (S = inclinada (S = lulada (S = 5 a inada (S = 10 = has mm/h	0 a 30 %) 5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
E F G H indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres cauda 1 - el 2 - el 3 - la CAU Luego con el cau	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos de bosques en to cultivos de bosques en to areas desnudas en topog areas desnudas en topog I coeficiente seleccionado do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	pografía pografía irafía ond irafía incl C 4361 13.52 58.96	ondulada (8 = inclinada (8 = tulada (8 = 5 a inada (8 = 10 a i	5 a 10 %) 10 a 30 %) 10 %) a 30 %)		
F G H indicar la letra co coeficiente esco Area di intensidad má intensidad má Caudal máximo: De los tres caudal 1 - el 2 - el 3 - la CAL	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C*i dales máximos ca el máximo de los el promedio de los a media pondera	cultivos de bosques en to areas desnudas en topog areas desnudas en topog I coeficiente seleccionado do (C): otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	pografía irafía ond irafía incl C 4361 13.52 58.96	inclinada (S = 1 lulada (S = 5 a inada (S = 10 = has mm/h	10 a 30 %) 10 %) a 30 %)		
indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caude 1 - el 2 - el 3 - la CAL Luego con el cau	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C^ i dales máximos ca el máximo de los el promedio de los a media pondera	areas desnudas en topogareas desnudas en topogareas desnudas en topogareas desnudas en topogareas description (C): otada (A) = otada (i) = ^AA/360 = alculados se adoptaran lo caudales s caudales da	rafía ond rafía incl C 4361 13.52 58.96	lulada (S = 5 a inada (S = 10 = has mm/h	10%) a30%)		
indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres caude 1 - el 2 - el 3 - la CAL Luego con el cau	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c: Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	areas desnudas en topogoli coeficiente seleccionado do (C): otada (A) = otada (i) =	C 4361 13.52 58.96	inada (S = 10 = has mm/h	a 30 %)		
indicar la letra co coeficiente esco Area de intensidad má Caudal máximo: De los tres cauda 1 - el 2 - el 3 - la CAU Luego con el cau	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	I coeficiente seleccionado do (C): otada (A) = doptada (i) = ^AA/360 = alculados se adoptaran lo caudales s caudales da 1	C 4361 13.52 58.96	= has mm/h			
Caudal máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	orrespondiente a orrentia adoptad de la cuenca adop áxima de lluvia a c. Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	I coeficiente seleccionado do (C): otada (A) = doptada (i) = ^AA/360 = alculados se adoptaran lo caudales s caudales da 1	C 4361 13.52 58.96	= has mm/h			
Caudal máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	orrentia adoptado de la cuenca adopáxima de lluvia a de como de como de como de los el máximo de los el promedio de los a media pondera	otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	C 4361 13.52 58.96	has mm/h m3/s	0.36		
Caudal máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	orrentia adoptado de la cuenca adopáxima de lluvia a de como de como de como de los el máximo de los el promedio de los a media pondera	otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da	C 4361 13.52 58.96	has mm/h m3/s	0.36		
Area de intensidad má Caudal máximo: De los tres caud: 1 - el 2 - el 3 - la CAU	de la cuenca adop áxima de lluvia a c: Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	otada (A) = doptada (i) = * A / 360 = alculados se adoptaran lo caudales s caudales da 1	4361 13.52 58.96	has mm/h m3/s	0.38		
Caudal máximo: De los tres caudal de la cau	áxima de lluvia a :	A / 360 = alculados se adoptaran lo caudales s caudales da	13.52 58.9 6	mm/h m3/s			
Caudal máximo: De los tres caudal de la cau	áxima de lluvia a :	A / 360 = alculados se adoptaran lo caudales s caudales da	13.52 58.9 6	mm/h m3/s			
Caudal máximo: De los tres cauda 1 - el 2 - el 3 - la CAL Luego con el cau	c. Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	* A / 360 = alculados se adoptaran lo caudales s caudales da 1	58.96	m3/s			
Caudal máximo: De los tres cauda 1 - el 2 - el 3 - la CAL Luego con el cau	c. Qmax=C* i dales máximos ca el máximo de los el promedio de los a media pondera	* A / 360 = alculados se adoptaran lo caudales s caudales da 1	58.96	m3/s			
De los tres caud: 1 - el 2 - el 3 - la CAL	dales máximos ca el máximo de los el promedio de lo: a media pondera	alculados se adoptaran lo caudales s caudales da 1					
De los tres caud: 1 - el 2 - el 3 - la CAL	dales máximos ca el máximo de los el promedio de lo: a media pondera	alculados se adoptaran lo caudales s caudales da 1					
De los tres caud: 1 - el 2 - el 3 - la CAL	dales máximos ca el máximo de los el promedio de lo: a media pondera	alculados se adoptaran lo caudales s caudales da 1					
1 el 2 el 3 la CAL	el máximo de los el promedio de lo: a media pondera	caudales s caudales da 1	siguiente	9:			
1 el 2 el 3 la CAL	el máximo de los el promedio de lo: a media pondera	caudales s caudales da 1	siguiente	9:			
1 el 2 el 3 la CAL	el máximo de los el promedio de lo: a media pondera	caudales s caudales da 1	siguiente	9:			
1 el 2 el 3 la CAL	el máximo de los el promedio de lo: a media pondera	caudales s caudales da 1					
2 el 3 la CAL	el promedio de lo: a media pondera	s caudales da 1					
2 el 3 la CAL	el promedio de lo: a media pondera	s caudales da 1					
CAL	a media pondera	da 1					
CAL Luego con el cal	Ò	1					
Luego con el cau	UDAL MAXIMO S						
Luego con el cau	UDAL MAXIMO S						
Luego con el cau	UDAL MAXIMO S						
Luego con el cau	UDAL MAXIMO S						
Luego con el cau	ODAL MANIMO S	THE COLONIADO OMOU	_	22.2	m3/s		
		ELECCIONADO Qmax	_	22.2	ma/s		
	udal máximo ado	optado se ingresara nueva	mente er	n la formula de	Manning y se ha	illara el nuevo) valor de la a
de aqua de máxi	imas avenidas.						
		Qmax. = A * (A/P)^(2/3) * S	A/172\				
		GIIIax A (AF) (2/3) 3	C(172) 7 H	I			
		Qmax.= <u>A^(5/3) * S^(1/2)</u>					
		P^(2/3) * n					
		(2.0)					
	90						




PASE AEREO 40 M

DISEÑO DE COMPUERTA

ANEXO 4: Fotos y Documentos

ANEXO 4.1: Reconocimiento del lugar por donde pasan los canales de regadío

FUENTE: Propia

ANEXO 4.2: Parcelas de cultivo en el Distrito de Cachachi.

FUENTE: Propia

ANEXO 4.3: Parcelas de cultivo en el Distrito de Cachachi.

FUENTE: Propia

ANEXO 4.4: Situación actual de canal de Chuquibamba.

FUENTE: Propia

ANEXO 4.5: Levantamiento Topográfico.

FUENTE: Propia

ANEXO 4.6: levantamiento topográfico.

FUENTE: Propia

