FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Comparación entre metodología AASHTO y PCA en el diseño de pavimento rígido en la Av. Ejército, Andahuaylas - Apurímac, 2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniera Civil

AUTORES:

Sierra Fernandez, Andrea Victoria (ORCID: 0000-0001-7030-7305)

Ccorahua Mina, Karem (ORCID: 0000-0002-4590-4720)

ASESOR:

Mg. Arévalo Vidal, Samir Augusto (ORCID:0000-0002-6559-0334)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LIMA - PERÚ

2020

Dedicatoria

A Dios, por permitirme el haber logrado mi objetivo en mi formación profesional, que es tan importante para mi persona. A mis padres por la formación de valores y principios y por todo su amor, sacrificio y esfuerzo que han realizado para poder sacarme adelante. A mi hija que es mi motor y motivo para seguir adelante.

Ccorahua Mina Karem.

A mi padre que desde el cielo me guía y protege como mi ángel guardián. A mi madre por brindarle la vida y la sabiduría. A mis tíos José y Sonia por darme la fuerza suficiente de seguir adelante a pesar de los grandes obstáculos de la vida y por no permitirme derrumbarme. A mis hermanos Kevin, Jean Phier y Mayza. A Dios que me ha brindado otorgado la vida, salud y la oportunidad de poder terminar mis estudios.

Sierra Fernández Andrea Victoria.

Agradecimiento

A Dios:

por permitirme llegar a esta etapa de mi vida, por el cual doy gracias.

A mis padres:

que siempre serán mi apoyo incondicional, aquellas personas que me alientan a ser mejores personas cada día.

Al Mg. Arévalo Vidal, Samir Augusto:

Por su valiosa asesoría, colaboración y aporte brindado al presente trabajo.

Ccorahua Mina Karem.

A mis queridos abuelos por los sabios consejos que me brindaron, para ser mejor en mi vida personal y profesional. AL Mg. Arévalo Vidal, Samir Augusto, Por su valiosa asesoría, colaboración y aporte brindado al presente trabajo.

Sierra Fernández Andrea Victoria.

Índice de contenido

Caratula	i
Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de tablas	v
Índice de figuras	vii
Resumen	ix
Abstrac	x
I. INTRODUCCIÓN	1
II. MARCO TEORICO	3
III. METODOLOGIA	42
3.1 Tipo y diseño de investigación	42
3.2. Variables y operacionalización	43
3.3. Población, muestra y muestreo	44
3.4. Técnicas y recolección	44
3.6. Método de análisis de datos	49
3.7. Aspecto éticos	50
IV. RESULTADOS	50
V. DISCUSIONES	76
VI. CONCLUSIONES	77
VII. RECOMENDACIONES	79
REFERENCIAS	80
ANEXOS	84

Índice de tablas

Tabla 1 Valores recomendados de coeficiente de drenaje	. 11
Tabla 2 Tipo de vía	. 14
Tabla 3 Transferencia de carga (J)	. 16
Tabla 4 Confiablidad recomendada	. 19
Tabla 5 incremento de valor k según espesor de subbase granular	. 23
Tabla 6 incremento de valor k según el espesor de la sub base tratada	con
cemento	. 23
Tabla 7 factor de dirección según número de carriles	. 26
Tabla 8 categoría de carga por eje	. 28
Tabla 9 factor de seguridad a partir del tipo de transito	
Tabla 10 cálculo del espesor del pavimento	. 31
Tabla 11 Operacionalización de las variables	. 43
Tabla 12 Peri <i>odo</i> del diseño para pavimentos rígidos según metodolo	ogía
AASHTO	. 52
Tabla 13 Índice de servicialidad inicial	. 52
Tabla 14 Índice de servicialidad final	. 53
Tabla 15 Distribución por dirección	. 53
Tabla 16 Distribución por carril	. 54
Tabla 17 Código de eje cargado	. 54
Tabla 20 Desviacion estandar normal de confiabilidad	. 56
Tabla 21 Coeficiente de drenaje	. 59
Tabla 22 Porcentaje de tiempo	. 59
Tabla 23 Calculo del coeficiente de carga	. 60
Tabla 24 Conteo vehicular	. 63
Tabla 25 Periodo de diseño	. 63
Tabla 26 Tasa de crecimiento vehicular	. 64
Tabla 27 Clasificación de carreteras	. 64
Tabla 28 Resultados obtenidos de diseño del pavimento por el Méto	odo
PCA	. 66
Tabla 29 Calculo de espesores del pavimento	. 67

Tabla 30 Metrado de la estructura del pavimento para metodología .	AASHTO y
PCA	68
Tabla 31 Precios para la sub base granular	69
Tabla 32 Precios unitarios de la losa concreto	70
Tabla 33 Tipo de suelo	71
Tabla 34 Limite liquido	71
Tabla 35 Limite plastico	72
Tabla 36 Compactación Proctor modificado	72
Tabla 37 Compactación de CBR	73
Tabla 38 Carga de penetración suelo natural	73
Tabla 39 CBR y densidad seca	74
Tabla 40 Estudio de tráfico	74
Tabla 41 Análisis de costos	75

Índice de figuras

Figura 1. Componentes principales del sistema	6
Figura 2. Capas de la pavimentacion rígida	7
Figura 3. Losa simple con juntas	7
Figura 4. Losa reforzada con juntas (JRCP)	8
Figura 5. CRCP- Pavimento de concreto armado continuo	8
Figura 6. Figura general el diseño de pavimentos AASHTO	9
Figura 7. Cálculo del número estructural en función a D1 y a1	10
Figura 8. Coeficiente estructural (a1) de la mezcla asfáltica	10
Figura 9. Coeficiente estructural (a2) de la base granular	11
Figura 10. Estimación de espesores de capas	12
Figura 11. Índice de Serviciabilidad	13
Figura 12. Figura ESAL's	15
Figura 13.Módulo elástico del concreto	17
Figura 14. Relación CBR y K de la subrasante	18
Figura 15. Nivel óptimo de confiabilidad	20
Figura 16 Tipos de pavimentos rígidos	21
Tabla 5.Incremento de valor K según el espesor(altura) de la subbase g	jranular
23	
Figura 17.Módulo elástico del concreto	25
Figura 19. Módulo elástico del concreto	27
Figura 20. Módulo elástico del concreto	29
Figura 21.repeticiones esperadas	30
Figura 22.Esfuerzo equivalente	32
Figura 23. Eje simple sin berma de concreto	33
Figura 24.Eje tanden sin berma de concreto	33
Figura 25.Eje simple	33
Figura 26.Eje tanden	33
Figura 27. Factor de ajuste eje simple	34
Figura 28. Factor de ajuste eje tanden	34
Figura 29.Factor de ajuste sin berma de concreto	34
Figura 30.Factor de ajuste con berma de concreto	34

Figura 31. Determinar el número de repeticiones máximas admisibles 35
Figura 32. deformación equivalente36
Figura 35. Sin pasadores eje simple con berma de concreto 37
Figura 37.Con pasadores eje simple sin berma de concreto37
Figura 38. Con pasadores eje tándem sin berma de concreto37
Figura 39.Con pasadores eje simple con berma de concreto37
Figura 41.Eje simple factor de ajuste por efecto de la carga por eje 38
Figura 42. Eje tándem factor de ajuste por efecto de la carga por eje 38
Figura 43.Sin pasadores sin berma de concreto factor de ajuste en losas sir
dovela en juntas38
Figura 44.Sin pasadores con berma de concreto factor de ajuste en losas sin
dovela en juntas38
Figura 48 .Con pasadores factor de ajuste para subbases estabilizadas y no
tratadas40
Figura 50.Con pasadores factor de ajuste para pavimentos con bermas 40
Figura 51. Espesor(altura) del pavimento en Nomograma AASHTO 62
Figura 52.Estructura del pavimentacion rígida en funcion a la metodología
AASHTO 62
Figura 53. Estructura de la pavimenacion rígida en funcion de la metodología
PCA 67

RESUMEN

La presente tesis titulada "Comparación entre metodología AASHTO y PCA en el diseño de pavimento rígido en la Av. Ejército, Andahuaylas - Apurímac, 2020" tuvo como objetivo principal realizar la comparación entre las metodologías AASHTO y PCA en el diseño de pavimento rígido. La metodología utilizada fue de tipo de investigación aplicada, con un diseño de investigación experimental, con una población y muestra correspondiente a la Avenida Ejercito del distrito y Provincia de Andahuaylas, Región de Apurímac. La técnica de investigación utilizada para la recolección de datos fue la observacional. Primero se realizó una calicata y obteniéndose las muestras del suelo, con la que se determinándose así las siguientes propiedades físico-mecánicas del material proveniente de la subrasante: El límite liquido es de 28.10%, el límite plástico es de 25.10%, el índice de plasticidad es de 3, la máxima densidad seca es de 1.995 gr/cm3 y el CBR a una penetración de 0.1" es de 23.8%. En el estudio de tránsito vehicular, se encontró que el número de vehículos ligeros representa el 97.17% de vehículos totales y los vehículos pesados el 2.83%. Asimismo, procedemos a diseñar la estructura del pavimento rígido por la metodología AASTHO, obteniendo un espesor de 19 cm y por la metodología PCA, se determinó un espesor de 24 cm. Analizando los espesores obtenidos por estas dos metodologías se concluyó que se el diseño de espesor por la metodología AASTHO es menor. Por lo tanto; el costo de construcción de pavimento es menor que el costo por la metodología PCA. Sin embargo, el diseño de la estructura del pavimento por la metodología PCA, cumple con los análisis de erosión y fatiga, ya que su espesor es 24 cm. Mientras que, esta metodología garantiza un análisis más específico y conveniente durante el periodo de vida útil. El método AASHTO no cumpliría bajos estos análisis.

Palabras Claves: Diseño de Pavimento Rígido, Metodología AASHTO, Metodología PCA.

ABSTRAC

The present thesis entitled "Comparison between the AASHTO and PCA methodology in the design of rigid pavement in Av. Ejercito, Andahuaylas -Apurímac, 2020" had as its main objective to make the comparison between the AASHTO and PCA methodologies in the design of rigid pavement. The methodology used was applied research type, with an experimental research design, with a population and sample corresponding to Ejercito Avenue, Andahuaylas, Apurímac. The research technique used for data collection was observational. First, a calicata was made and the soil samples were obtained, thereby determining the following physical-mechanical properties of the material from the subgrade: The liquid limit is 28.10%, the plastic limit is 25.10%, the plasticity index is 3%, the maximum dry density is 1,995 gr / cm3 and the CBR at a penetration of 0.1 is 23.8%. In the vehicle traffic study, it was found that the number of light vehicles represents 97.17% of total vehicles and heavy vehicles 2.83%. also, We proceed to design the structure of the rigid pavement using the AASHTO methodology, obtaining a thickness of 19 cm and using the PCA methodology, a thickness of 24 cm was determined. Analyzing the thicknesses obtained by these two methodologies, it is concluded that the design of thicknesses by the AASHTO methodology is lower. Therefore, the cost of construction of the pavement is less than the cost of the PCA methodology. However, the design of the pavement structure by the PCA methodology complies with the erosion and fatigue analyzes, since its thickness is 24 cm. However, the design of the pavement structure by the PCA methodology complies with the erosion and fatigue analyzes, since its thickness is 24 cm. While, this methodology guarantees a more specific and convenient analysis during the useful life period. The AASHTO method would not meet these tests.

Key Words: Rigid Pavement Design, AASHTO Methodology, PCA Methodology.

I. INTRODUCCIÓN

A nivel **mundial**, las vías son el activo estatal de mayor valor en los países, ya que personifican el sistema de transporte más importante, pues a través de la red se traslada el 90% de la tendencia de pasajeros y el 70 de la tendencia de carga menciona MINCETUR (2015), de esta manera, el transporte terrestre a través de las vías pavimentadas se convierte en una inversión necesaria para el desarrollo de un país, mejorando la vida de los seres humanos, así mismo la competitividad en sus localidades.

En el entorno **latinoamericano** se ralentizo la construcción de la red interurbana en los años 80, de tal forma que, tras la inversión de varias décadas y ardua construcción, se logró una red vial amplia y de tamaño que es considerado suficiente. Hoy, en algunas del mundo se ha hecho una necesidad el incrementar la cobertura de las redes físicas.

A nivel **nacional**, ante la presencia de los Andes(cordillera), el realce de la superficie peruana es muy agreste, problematizando la edificación de las vías que posibilitan la comunicación terrestre. Desde inicios del siglo 20, se aparecen edificando vías y ferroviales, siendo la finalidad de descartar el aislamiento que se daba entre nuestros pueblos y permitiendo surgir el desarrollo económico y cultural que se da en la actualidad.

Los pavimentos son el intermedio de conectividad más significativo a nivel nacional, conjuntamente de su puesto principal el cual posibilita la transferencia del ser humano desde otros puntos; asimismo los pavimentos sirven en la reducción que se genera por la transacción en la adquisición de bienes transportables por carretera. Estos garantizan tener una mejor ruta de acceso que disminuye los costos logísticos en los traslados a nivel nacional. De esta manera se obtienen grandes beneficios de reducción de costos, así la generación de empleo. (Tadeu, 2016).

En el Perú las vías de más transitadas son las terrestres, tal como: caminos, trochas, carreteras, vías pavimentadas, entre otros; sin embargo, estas vías son aquellas que se encuentran en gran medida deterioradas y sin accesos adecuados siendo así que el 80% se encuentran en mal estado. (Diario Correo, 2019)

Por lo cual la principal problemática de la investigación fue ¿Se puede desarrollar una Comparación entre metodología AASHTO y PCA en el diseño de pavimento rígido en la Av. Ejército, Andahuaylas - Apurímac, 2020?

De esta manera se plantean los problemas específicos de la presente investigación ¿Se puede determinar las propiedades mecánicas de la subrasante en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020?, ¿Se puede desarrollar la comparación del espesor del pavimento a través de las metodologías AASHTO y PCA en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020?, ¿Se puede comparar los costó de los pavimentos para las metodologías AASHTO y PCA en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020?

El principal objetivo de la investigación fue realizar la comparación entre las metodologías AASHTO y PCA en el diseño de pavimento rígido en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020. Asimismo, los objetivos específicos son determinar las propiedades mecánicas de la subrasante en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020, determinar la comparación del espesor del pavimento a través de las metodologías AASHTO y PCA en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020 y determinar la comparación del costo de los pavimentos para las metodologías AASHTO y PCA en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020

Mientras que la hipótesis general de la investigación fue Existe comparación significativa entre las metodologías AASHTO y PCA en el diseño de pavimento rígido en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020. Asimismo, las hipótesis especificas fueron se puede determinar las propiedades mecánicas de la subrasante en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020, existe comparación significativa entre el espesor del pavimento a través de las

metodologías AASHTO y PCA en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020, existe comparación significativa entre el costo de los pavimentos para las metodologías AASHTO y PCA en la Av. Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020

II. MARCO TEÓRICO

Priano, C., Marfil, S. y Señas, L. (2016) en su artículo de investigación titulado "Patología de un pavimento rígido de la ciudad de Bahía Blanca (Provincia de Buenos Aires)", determino que el objetivo principal fue corregir un desplazamiento. El método requerido en esta investigación fue de tipo aplicada - experimental, con una técnica de recolección de datos observacional. Los resultados arrojaron que las causas del fisura miento, así como el levantamiento pueden ser atribuidos a una conservación inadecuada, adicionalmente se tiene que sumar a este deterioro de conservación los factores atmosféricos y climatología especial. Por lo cual el estado especial de deterioro no permitió que en las juntas se absorban las dilataciones producto del alza térmica de la materia. Asimismo, se encontró especies de cuarzo ondulante y rocas volcánicas, concluyendo que no existe evidencia de un desarrollo de los efectos expansibles atribuibles a la petrografía-mineralógica de los agregados.

Botto, R. y Santacruz, P. (2017) en su tesis de maestría titulada "Evaluación de las propiedades en estado fresco y endurecido de un concreto para uso de pavimento rígido, adicionado con nanocompuestos de carbono", determino que el objetivo principal fue el análisis de las cargas dinámicas así como de las cargas monotónicas y el comportamiento de estas, evaluando así su resistencia a la compresión, sus propiedades mecánicas, su módulo de elasticidad de forma dinámica y estática, su manejabilidad en estado fresco, su módulo de rotura y fatiga y su contenido de aire. Los resultados determinaron que la matriz cementante consiste en agua, cemento, agregados, además de super plastificantes (en porcentajes desde 0% hasta 0.15%), adicionalmente se evaluaron relaciones molares en 0.33, 1.0 y 2.0 de Cu/Ni, las cuales permitieron la evaluación del comportamiento del material compuesto, el cual se obtuvo a través de la obtención

de las NCC en diferentes longitudes. Concluyendo que le carácter hidrófobo de las NCC, es una variable necesaria para su estudio, la cual junto al material dispersante utilizado facilita el contacto entre los NCC y la matriz cementante, determinando que la cantidad de adición adecuada se encuentra alrededor del 0.10%.

Antecedentes nacionales:

Según Chávez, A. (2018) en su investigación para su titulación "Análisis comparativo entre el pavimento flexible y pavimento rígido en el tramo Mullaca a Chavín Huaraz-2018", planteo como objetivo primordial el análisis de manera comparativa la alternativa técnica y económica de un pavimento flexible y un pavimento rígido. Para lo cual utilizó una metodología de tipo aplicada, cuya población y muestra se concentró en la circulación del tramo Matucana a Chavín Huaraz 2018. La técnica requerida en esta tesis fue la observación directa. Los resultados que se obtuvo determinaron que el proyecto se eleva al realizarse a través de un diseño de pavimento rígido con un costo de S/. 1'913,036.95, mientras que el diseño a través de pavimento flexible tiene un costo de S/. 490,210.34. El autor concluyo que la utilización de pavimento rígido supera en rentabilidad y durabilidad al pavimento flexible, sin embargo, económicamente excesivamente más costoso.

Según Jiménez, M. y Valverde, M. (2018), planteo como título en su tesis "Diseño comparativo entre pavimento flexible y rígido en el tramo Pariahuanca – San Miguel de Aco, Ancash 2018", formuló como objetivo principal la realización del diseño comparativo entre pavimento flexible y pavimento rígido entre el tramo Pariahuanca – San Miguel de Aco, Ancash 2018, cuya finalidad fue la determinación de una posible mejora en la transitabilidad peatonal, así como la vehicular, de tal forma que se vea beneficiados las actividades socioeconómicas de los moradores cercanos. La metodología utilizada corresponde al método cuantitativo con un tipo de investigación aplicada y de alcance descriptivo, la población de estudio corresponde a la carretera antes mencionada, con una muestra de 3 puntos clave del sector, la técnica de recolección de datos fue la observación no experimental. Los resultados diagnosticaron que la carretera en mención está compuesta por una

subrasante principalmente de arena arcillosa, así como de una grava regular, con una mezcla entre arena y arcilla media plástica, con una humedad ligera (SC/A-2-7), además contó con una CBR de 10.4%, el ensayo de Proctor Estándar arrojo una compactación valorada en un 95% de la DSM. Los autores concluyen que el uso de la metodología AASHTO 93 es recomendada por el uso de las definiciones de desviación estándar combinada, así como la confiabilidad y la perdida de la Serviciabilidad, por lo cual se determina que la metodología AASHTO nos da una sub base de 6 pulgadas, y un espesor de losa de 2 pulgadas.

Según Rengifo, M. (2017), en su tesis de grado titulada "Influencia de la calidad de concreto reciclado en la resistencia de un pavimento rígido, Jr. Sargento Lores, ubicado en el distrito Morales – San Martin 2017", determino que el objetivo general fue la determinación de la influencia de la calidad del concreto reciclado en la resistencia a la compresión de un pavimento rígido en el Jr. Sargento Lores, Distrito de Morales – San Martín 2017. La metodología utilizada fue un diseño experimental, de tipo pre experimental. Cuya población fue el pavimento rígido considerado en el lugar previsto para la investigación. Los resultados obtenidos determinaron que el módulo de rotura no se encuentra dentro de los rangos establecidos dando un valor de 3.88. Siguiendo los valores estipulados en la NTP 400.037 se determina que el agregado grueso tampoco cumple con estos valores definidos en tanto a las graduaciones de retención. Los autores concluyen que el resultado es positivo siempre que se utilice únicamente agregado fino reciclado a la mezcla, de tal forma que la resistencia a la compresión se vea beneficiada, sin embargo, al utilizar un agregado grueso el nivel óptimo se ve disminuido en cuanto a la resistencia. Finalmente se determina que la mezcla elaborada con agregados reciclados es óptima en la siguiente combinación de elementos (Agua 7%, Cemento 16%, Agregado grueso 27%, Agregado fino 50%). Sin embargo, si se deseara realizar una mezcla a partir de los agregados se deberá utilizar la siguiente combinación, 8% agua, 17% cemento, 39% de agregado grueso y un 36% de agregado fino.

Como bases teóricas tenemos:

Diseño de una pavimentación rígida

La utilización de la pavimentación rígida se da principalmente en las autopistas, así como en los aeropuertos.

La principal cualidad del pavimento rígido se centra en el soporte de altas cargas de tráfico evitando las fallas producidas por la fatiga a la que es sometida por las cargas repetitivas. Su vida útil se centra entre los 15 a 20 años, sin embargo, el periodo para el que están desarrollados es para un tiempo de 30 a 40 años. (AUSTROADS, 2004).

Las capas conformadas por el pavimento rígido (ver **Figura 1**) consisten en la primera capa de subrasante, la segunda capa está conformada por la subbase y finalmente la losa de concreto hidráulico.

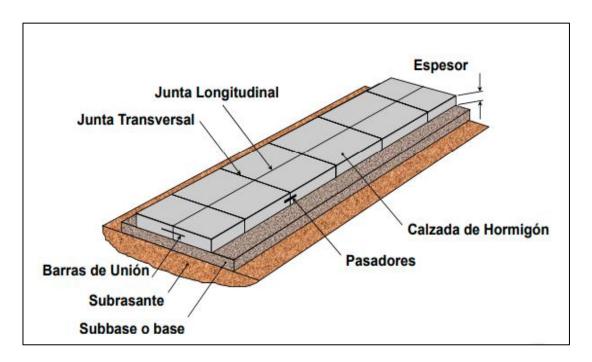


Figura 1. Componentes principales del sistema.

Fuente: (Instituto del cemento portland Argentino ,2016)

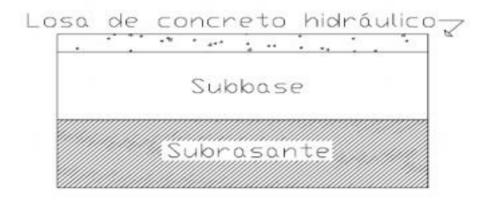


Figura 2. Capas de la pavimentacion rígida .

Fuente: (Universidad Nacional Autónoma de México, 1999)

La subrasante es considerada la capa de terreno que conforma una carretera que es el soporte de la estructura de pavimento, esta se extiende hacia lo profundo sin que afecte la carga del diseño para el transito previsto.

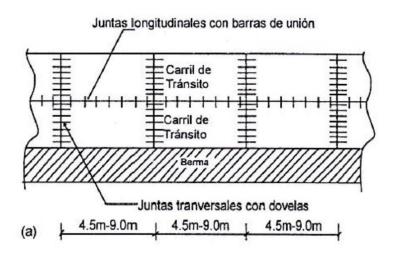


Figura 3. Losa simple con juntas
Fuente: (ICG ,2016)

La subbase es una de las capas del pavimento el cual soporta, transmite y distribuye uniformemente las cargas que se aplicaran en la superficie de rodadura del pavimento. Adicionalmente esta es utilizada como capa de drenaje y control de la ascensión del agua capilar.

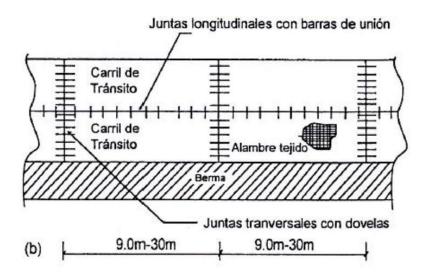


Figura 4. Losa reforzada con juntas (JRCP).

Fuente: (ICG ,2016)

La losa, es la capa superior de rodadura de la estructura del pavimento, principalmente construida de concreto hidráulico, esto se da puesto que pose gran dureza (rigidez) y alto módulo de elasticidad, esta se centra más en su capacidad de la subrasante que en la capacidad portante de la losa.

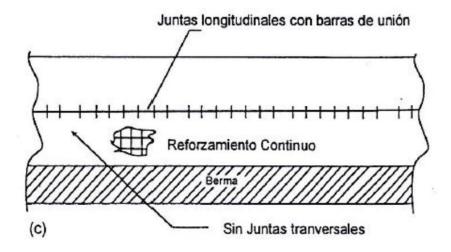


Figura 5. CRCP- Pavimento de concreto armado continuo.

Fuente: (ICG ,2016)

Metodología AASHTO

La metodología de diseño de pavimentos rígidos (AASHTO) aplica una ecuación (figura 6) con la cual se determinará el parámetro de Número estructural (SN), luego calculamos los espesores (altura) de las capas que conformaran el pavimento, llamadas capa (losa) de concreto (la capa base y la subbase). (ASOCEM, 2014)

$$\begin{split} \text{Log}_{10} \text{W}_{82} &= \text{Z}_{\text{r}} \text{S}_{0} + 7.35 \text{log}_{10} (\text{D} + 25.40) - 10.39 + \frac{\text{Log}_{10} \left(\frac{\Delta \text{Psi}}{4.5 - 1.5} \right)}{1 + \frac{1.25 \text{x} 10^{19}}{(\text{D} + 25.40)^{8.46}}} \\ &+ (4.22 - 0.32 \text{P}_{\text{t}}) \text{ x Log}_{10} \left(\frac{\text{M}_{\text{r}} \text{C}_{\text{dx}} (0.09 \text{D}^{0.75} - 1.132)}{1.51 \text{x J} \left(0.09 \text{D}^{0.75} - \frac{7.38}{(\text{E}_{\text{c}}/\text{k})^{0.25}} \right)} \right) \end{split}$$

Figura 6. Figura general el diseño de pavimentos AASHTO .

Fuente: ICG (2016)

En donde:

 $W_{82}=El$ número previsto de los ejes equivalentes de 8.2 toneladas métricas a lo largo del periodo de diseño.

 $Z_r = Desviación normal estándar.$

 $S_0 = Error$ estándar combinado en la predicción del transito y en la variación en el comportamiento esperado del pavimento.

D = Espesor de pavimento de concreto, en milímetros.

 $\Delta PSI = Diferencia de los índices de servicio al inicio y al final.$

 $P_t =$ Índice de serviciavilidad o servicio final.

 $M_r = Resistencia media del concreto (en Mpa) a flexotracción a los 28 días (método de carga que se da en los tercios de la luz).$

 C_d = Coeficiente de drenaje.

J = El coeficiente de la transimisión de cargas en las juntas

 $E_c = M\'odulo de elasticidad del concreto, en Mpa.$

 $K = M \acute{o} dulo de reacci\'on, dado en \frac{Mpa}{m} de la superficie (base, sub base o subrasante) en la cual se apoya el pavimento de concreto.$

De la ecuación presentada en la **Figura 6** se obtendrá el valor del SN, con el cual luego se determinarán las capas D₁, estas capas tendrán que superar el número estructural que se calcule a través del módulo resiliente de la subrasante **(Figura 7)** en donde encontraremos que es una función del coeficiente estructural (a₁).

$$SN = a1.D1 + a2.m2.D2 + a3.m3.D3$$

Figura 7. Cálculo del número estructural en función a D1 y a1 . Fuente: (ICG ,2016)

Donde:

a = Es el coeficiente de la estructura de la capa i

Di = Es el espesor de la capa i en pulgadas

Mi = Es el coeficiente de drenaje de la capa i

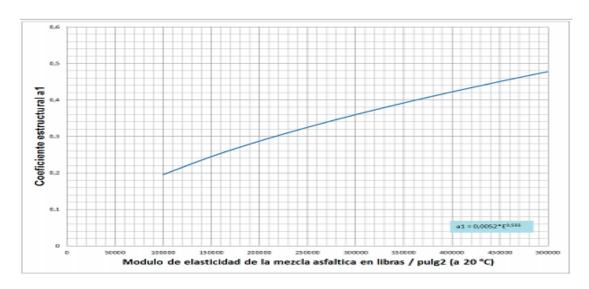


Figura 8. Coeficiente estructural (a1) de la mezcla asfáltica .

Fuente: (AASHTO ,1993)

Asimismo, para la obtención de la base granular (con agregado) a2 se emplea la Figura 9.

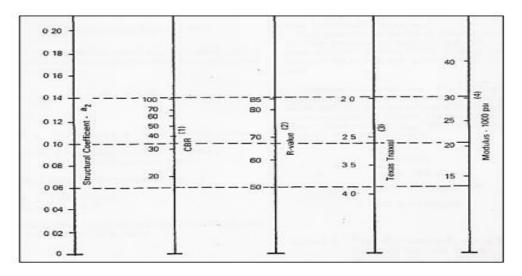


Figura 9. Coeficiente estructural (a2) de la base granular .

Fuente: AASHTO (1993)

Además, para obtener coeficientes de drenaje (materiales de base y subbase) se empleará criterios que se recomiendan en la metodología (**Tabla 1**).

Tabla 1. Valores de los coeficientes de drenaje (m_i)

Características del drenaje	Evacuación de agua en	Porcentaje de tiempo al año, que está expuesta la estructura a un nivel de humedad						
		Menor 1%	1% al 5%	5% al 25%	25%			
Muy malo	No drena	1.05 – 0.95	0.95 - 0.75	0.75 -0.40	0.4			
Pobre	1 mes	1.15 – 1.05	1.05 – 0.80	0.80 - 0.60	0.6			
Bueno	1 día	1.35 – 1.25	1.25 – 1.15	1.15 -1.00	1.0			
Regular	1 semana	1.25 – 1.15	1.15 – 1.05	1.00 -0.80	0.8			
Excelente	2 horas	1.40 – 1.35	1.35 – 1.30	1.30 – 1.20	1.2			

Fuente: AASHTO (1993)

Con la determinación de los parámetros ya planteados se procederá a determinar los diferentes espesores (altura) de las capas.

$$D^{*}_{1} \ge \frac{SN_{1}}{a_{1}}$$

$$SN^{*}_{1} = a_{1}x D_{1} \ge SN_{1}$$

$$D^{*}_{2} \ge \frac{SN_{2} - SN^{*}_{1}}{a_{2} x m_{2}}$$

$$SN^{*}_{1} + SN^{*}_{2} \ge SN_{2}$$

$$D^{*}_{3} \times a_{3} \times SN^{*}_{1} + SN^{*}_{2} \ge SN^{*}_{3}$$

Figura 10. Estimación de espesores de capas . Fuente. AASHTO (1993)

Donde:

a = Es el Coeficiente estructural de la capa i

 $D_i = Espesor(altura)$ de la capa i en pulgadas

SN = Valor de número estructural

* = Es correspondiente al valor que realmente se ha usado

Asimismo, se requieren otros parámetros intervinientes en los resultados de la Figura AASHTO:

Periodo de diseño

Según lo dispuesto en la metodología AASHTO, se define como mínimo 20 años al tiempo dentro del cual se prioriza el diseño del pavimento rígido, asimismo estas condiciones deberán ser evaluadas y modificadas bajo el criterio del ingeniero responsable y lo requerido por la entidad.

Serviciabilidad

Se determina la Serviciabilidad como la habilidad que el pavimento tendrá de servir al tránsito de vehículos menores y mayores que circularan por la vía, la cual esta medida a través de una escala de 5 a 0, donde el valor de cero describirá un tipo de pavimento difícil o intransitable, mientras que 5 constituirá un pavimento en perfecto estado.

Por lo tanto, la Serviciabilidad es medida de manera subjetiva, sin embargo, se busca medir a través de parámetros junto al índice de Serviciabilidad, el cual al ser mayor podrá soportar mayor cantidad de repeticiones y su utilidad será más elevada. (Chauveinc, 2011).

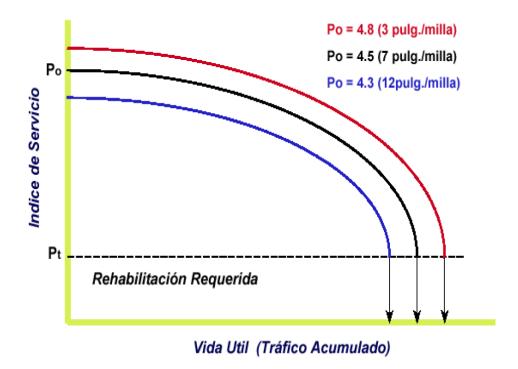


Figura 11. Índice de Serviciabilidad Fuente. AASHTO (1993)

El inicio de la serviciabilidad se determina desde el término de la construcción, siendo el valor que se recomienda de 4.5, esta recomendación es indicada en la guía del pavimento rígido, asimismo se encuentra que la Serviciabilidad final es

aquella determinada al concluir el proyecto, donde el valor esperado fluctúa entre 3 y 2, y dependerá de la importancia de la construcción. (**Ver tabla 2**)

Tabla 2 .Tipo de vía a diseñar

Pt	Clasificación
2	Residenciales
2.25	Comerciales
2.5	Locales
3	Autopistas

Fuente: AASHTO (1993)

El tránsito (ESAL's)

Se debe obtener los datos reales sobre el posible tráfico para el diseño, tales como la cantidad de repeticiones (carga) que resistirá el pavimento previo a llegar al punto de servicio final.

El AASHTO indica dentro de su Figura que se debe utilizar la cantidad de repeticiones que se esperan por cada eje equivalente, de tal forma que los ejes sencillos equivaldrán a 8.2 tn, junto con el factor de crecimiento anual como el periodo de diseño, se determinara la cantidad de ejes que recorrerán las vías dentro del tiempo de vida determinado para esta. (Chávez, 2018)

El Road Test de la metodología AASHTO, determino que sea cual sea el peso de un eje que transite por la vía puede ser representado como una carga equivalente a 18 kips (ESAL's) o 8.2 tn. El tráfico se debe transformar a ESAL's, se realizará los cálculos de varios factores. (ver **figura 12**).

 $\textbf{ESAL}'s = \ \Sigma \ (\textit{N}^{\circ} \ \textit{de vehiculos por categoria} * \textit{F sentido} * \textit{F carril} \\ * \textit{F crecimiento} * \textit{F eje equivalente}$

Figura 12. Figura ESAL's Fuente. AASHTO (1993)

Los factores involucrados se determinan a través de las ecuaciones, tablas y recomendaciones mencionadas en la guía (Anexo B). De tal forma el valor del eje equivalente se encargará de normalizar los pesos a un estándar de 18 kips, de tal forma se considerará la relación existente entre el daño que genera el paso de un eje de un vehículo pesado con un eje de peso estándar.

Transferencia de carga (J)

Es la transferencia de carga, debido a que la losa cumple con la función estructural, simplemente se encargara de pasar a la subrasante con cierta intensidad las cargas, también quiere decir que las formas que transmitan estas cargas son importantes en la duración que va a tener el pavimento. Dependiendo de la clase de pavimento a construir estos valores variaran.

De la siguiente manera es que se llevara la transferencia de carga de las juntas transversales entre las losas:

- Junta con pasadores de varilla lisa de acero.
- Las juntas de acero con refuerzo de varilla corrugada.
- La junta transversal

Si ambas losas experimentan una misma deflexión esto será un indicador de la existencia de una buena transferencia de cargas, sin embargo, si no existiera ninguna deflexión entonces no se experimentará una mala transferencia de carga de losa. Por lo tanto, se definirá que el valor de J está directamente relacionado al espesor del concreto que se requerirá. (Deng y Yang, 2017) **Ver Tabla 3.**

Tabla 3 .Transferencia de carga(J)

Soporte lateral	Si	No	Si	No	Si	No	Tipo
ESALs (en	Sin refue	zo de	refue	rzo	Fricción e	entre	
millones)	temperatura (con		contir	nuo	agregados	s (sin	
	pasadores)				pasador	es)	
3 al 10	2.70	3.20	3.20	3.80	3.50	2.90	Caminos y
10 al 30	2.70	3.20	3.40	4.20	2.60	3.00	autopistas
mayor de	2.70	3.20	3.60	4.30	2.60	3.10	
30							
Hasta 0.30	2.70	3.20	2.80	3.20	-	-	Caminos
0.30 al	2.70	3.20	30	3.40	-	-	vecinas y
1.00							calles
1.00 al 3	2.70	3.20	3.10	3.60	-	-	

Fuente: AASHTO (1993)

Módulo de rotura del concreto

Es el principal indicador de la flexión en los pavimentos de concreto. De tal forma que la fatiga producto de las cargas repetitivas se controlara bajo este parámetro (Hernandez, 2020). Asimismo, dentro de la ASTM C-78 encontraremos a los valores de medición para la flexión del concreto y su normalización del módulo de rotura (S'c), el cual se ensaya en vigas, estas deberán ser trabajadas en los tercios de tal forma que se fuerce la falla del tercio central de la viga ensayada. Los S'c pueden variar con valores altos como 8.2 MPa o 1200 psi, 4.8 MPa o 700 psi, 2.8 MPa o 400 psi. Siendo así el primer valor utilizado para concreto de alta resistencia inicial.

Módulo elástico del concreto

Es utilizado para el dimensionamiento de edificaciones de concreto armado,

puesto que este es un parámetro importante por determinar la capacidad de la losa

de concreto y su rigidez, adicionalmente esta distribuirá las cargas esperadas.

A través de las correlaciones ya establecidas se podrá calcular el módulo de

elasticidad de concreto (resistencia a la compresión) y se podrá efectuar la

predicción del flexo tracción en los pavimentos de concreto armado y continuo,

asimismo el coeficiente de expansión térmica regirá el estado de la tensión durante

el armado. Asimismo, se sugiere para el uso de concreto de peso normal la

siguiente Figura. (Ver Figura 13)

 $Ec = 57,000 (F_c)^0.5$

Figura 13. Módulo elástico del concreto

Fuente: AASHTO (1993)

Donde:

Ec = Modulo de elasticidad del concreto en PSI

 $F^{\prime} c = M \acute{o} dulo compresi\'{o} n del concreto en PSI$

Resistencia de la subrasante

Es aquella que determina las condiciones tanto del soporte como del suelo para

soportar las capas adicionales que se forman producto de la estructura del

pavimento. Asimismo, del parámetro de la resistencia de la subrasante dependerá

que el pavimento sea de menor o mayor espesor. El ensayo de CBR realizados a

la subrasante serán aquellos que determinen el valor de presión que se deberá

ejercer para producir una deformación. (Gallarda, Martínez y Muñoz, 2020)

17

El valor del módulo de reacción combinado se calculará teniendo en cuenta sus propiedades que tiene *la subrasante*, asimismo se considerara los efectos sobre la capa granular, la cual es afectada por la estacionalidad del año, así mismo como la presencia, que también es beneficiosa, la cual es de base rocosa bajo la subrasante, y el efecto perjudicial de una pérdida de soporte por erosión de las capas inferiores.

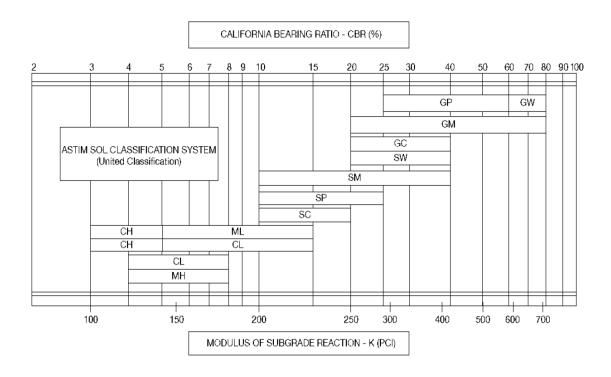


Figura 14. Relación CBR y K de la subrasante Fuente: (AASHTO ,1993)

Drenaje

El Cd (coeficiente de drenaje) incluirá los parámetros utilizados para el diseño de las estructuras de pavimentos teniendo como criterio de razón, las influencias de condiciones ambientales que causan el deterioro de un pavimento, no hay forma de que se aislé la estructura del contacto con el agua, de forma que se aminoren los efectos de esta sobre el pavimento

Por lo cual se considera que la losa de concreto se debe mantener por cierto libre de humedad, por lo general esto dependerá del tipo de drenaje que se diseñe, así como las capas de la subrasante, subbase y las condiciones atmosféricas.

Por lo tanto, tenemos que el coeficiente de drenaje se puede determinar en un intervalo de 0.70 a 1.25, y esto dependerá de las condiciones ya mencionadas, por lo cual un buen drenaje implicará un alto coeficiente de drenaje.

Confiabilidad

La confiabilidad (R) busca la contabilización en las variaciones producidas en las características de los materiales, puesto que estas variaciones pueden producir el cambio en los *procesos constructivos*. Es un criterio que permitirá considerar un incremento en el transito previsto para un periodo largo de diseño. Por lo cual el rango que se sugiere dentro de la metodología AASHTO para la desviación estándar (so) los cuales van desde el 0.30 hasta el 0.40. Si la construcción es nueva se asumirá que el valor de la desviación estándar será de 0.40 con una producción baja. (Huang, 2004)

La guía AASHTO 93 requiere de valores de confiabilidad como los planteados (**Ver tabla 4**).

Tabla 4. Confiabilidad requerida

Tipo de Calle	Confiabilidad recomendada R			
	Zona Urbana	Zona Rural		
Locales	50 - 80	50 – 80		
Colectoras	80 – 85	75 - 95		
Arterias principales	85 – 99.9	75 - 99		
Ruta y autopistas	85 – 99.9	85 – 99.9		

Fuente: AASHTO (1993)

El valor de la confiabilidad (R) se relaciona de manera directa con el costo total del pavimento. Si el valor R se asemeja al 50% se obtendrá un valor de menor espesor del pavimento, por lo cual los costos iniciales de la construcción serán menores.

Pero esto implica que el deterioro de la construcción sea mayor, de tal forma que conllevara a mayores costos durante la duración de su vida útil. Si los valores se asemejan al 100% se obtendrá un mayor espesor de losa de pavimento, lo cual hará que los costos de la construcción se incrementen, sin embargo, los costos asociados al mantenimiento serán mucho menores. (Kolesnikov y Tolmacheva, 2019).

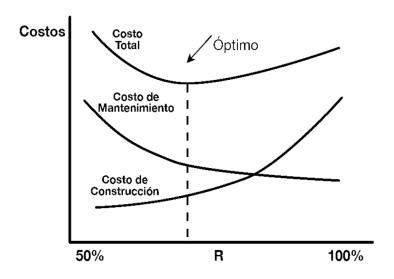


Figura 15. Nivel óptimo de confiabilidad Fuente: (AASHTO ,1993)

Metodología de la PCA-Asociación de Cemento Portland

La metodología de la Asociación de Cemento Portland (PCA) su propósito es el diseño del pavimento se basan en el conocimiento teórico de pavimentos, en su comportamiento, y experiencias de investigación.

Los factores de diseño

Módulo de rotura (resistencia del hormigón a la flexión)

- Resistencia a la subrasante y subbase (k).
- Frecuencia, tipos y magnitudes por ejes esperadas de las cargas.
- Generalmente se considera 20 años, el periodo de diseño, pero puede ser más o menos.

La metodología trabaja con tipos diferentes de pavimentos:

- Concreto simple
- Concreto simple con varias transferencias de carga o pasadores
- Concreto reforzado y con refuerzo continuo.

El espesor dependerá de los factores tales como bermas y sistema de juntas, adicionalmente este método requiere que se reconozca la cantidad, tipo y peso del eje de los vehículos. (Ver **Figura 16**).

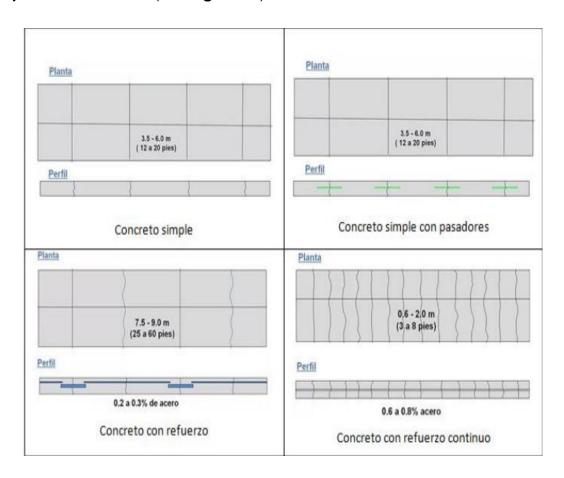


Figura 16 Tipos de pavimentos rígidos

Fuente: (Metodología PCA ,1984)

Criterios de diseño

Para esta metodología de diseño del PCA se considera dos criterios:

Fatiga

Protege al pavimento de los agrietamientos y esfuerzos que se produce debido a las repeticiones de la carga. Este parámetro intervendrá en el diseño del tráfico ligero, este valor es independiente de la existencia de los pasadores.

Erosión

la deflexión del pavimento genera efectos principalmente producto de la erosión durante la construcción, el reconocimiento de las fallas del pavimiento producto de la erosión principalmente son por el exceso del bombeo.

Factores de diseño

Parámetros de pavimento rígido mediante el método PCA son:

a) Resistencia del concreto a la deflexión.

La deflexión o también llamado diseño por fatiga, es aquel que produce un esfuerzo de compresión en las *cargas del tránsito*, asimismo tensión en la estructura del pavimento.

La metodología PCA recomienda la resistencia de flexión, mediante el MR (Módulo de Rotura) sobre vigas de 15 x 15 x 75cm. Cargados en los tercios de la luz en un tiempo de curado de 28 días.

b) Soporte de la subrasante y sub base

No es necesario conocer el valor exacto del módulo de la reacción (K), puesto que la diferencia de este parámetro suele ser minúscula y sin importancia mayor, asimismo estos valores se consideran en la **Tabla 5 y 6**.

Tabla 5.Incremento de valor K según el espesor(altura) de la subbase granular.

K para la subrasante	K para subbase							
Mpa/m	100 mi	límetros	150 mi	límetros	225 mi	límetros	300 mi	límetros
	Mpa/	Mpa/ lb/pulg Mpa/ lb/pulg Mpa/ lb/pulg				Mpa/	lb/pulg	
	m	3	m	3	m	3	m	3
80	87	320	90	330	100	100	117	430
60	64	235	66	245	76	76	90	330
40	45	165	49	180	57	57	66	245
20	23	85	26	96	32	32	38	140

Fuente: Metodología PCA (1984)

Tabla 6.Incremento de valor K según el espesor de la subbase tratada con cemento

K para la subrasante	K para subbase							
Mpa/m	100) mm	150) mm	225	mm	300) mm
	Mpa/ m	lb/pulg 3	Mpa/ m	lb/pulg 3	Mpa/ m	lb/pulg 3	Mpa/ m	lb/pulg 3
60	140	520	190	700	245	900		
40	100	370	130	500	185	680	230	850
20	60	220	80	300	105	400	135	500

Fuente: Metodología PCA (1984)

c) Periodo de diseño.

Conocido como el periodo del tiempo donde se establecen las cualidades del pavimento, asimismo se evalúa cuál será su desempeño a largo plazo, con el fin de cumplir con los objetivos esperados para dicho periodo, manteniendo un costo aceptable.

El periodo de diseño suele estar comprendido en un rango mínimo de 10 a 20 años y es conocido por la letra (n). Asimismo, este se afecta de manera directa por el espesor de la losa ya que con él se determinará la cantidad de vehículos transitables por la vía. (Mela, Hilarío y Costa, 2017).

d) Factor de tránsito.

Estos valores son obtenidos a parte de los estudios de tránsito, siendo los principales valores influyentes para su determinación la magnitud y el número de cargas por eje. El cual se calculará utilizando el TPD-transito promedio diario, el TPDVC-transito promedio diario en vehículos comerciales en ambas direcciones, así como los vehículos comerciales y sus cargas por eje. (Milind y Kadam, 2016).

e) Tasa anual de crecimiento de tránsito.

Este factor determina el crecimiento anual entre 2% y 6%. Según corresponda el factor de proyección de tráfico.

f) Proyección de tránsito.

Sera necesario determinar el crecimiento anual del tránsito, además del periodo de diseño para lograr obtener el factor de proyección del tránsito.

$$Fproy = \frac{(1+r)^n}{r} - 1$$

Figura 17. Módulo elástico del concreto

Fuente: (Metodología PCA ,1984)

Donde:

Fproy = factor de proyeccion

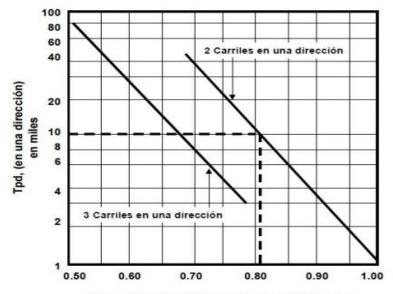
n = periodo de diseño estructural

r = tasa anual de creciemiento vehicular

Para la tasa de crecimiento de tránsito, influye los factores: transito atraído, tránsito generado, transito desarrollado y crecimiento normal de tránsito para estos factores se requiere alisar mejor se espera una alta construcción.

g) Factor de dirección.

Posteriormente al ser afectado por el parámetro del factor de sentido, también se deberá evaluar el número de carriles por sentido mediante el factor de carril. El paramento en el factor carril nos permite obtener el porcentaje de vehículos que transita por el carril con más tráfico. Por eso la PCA sugiere utilizar la siguiente figura en donde el factor depende del número de carriles por sentido o dirección del tráfico y del tránsito promedio diario anual en un solo sentido. (Juárez y Inzunza, 2011).


Tabla 7. Factor de dirección según el número de carriles

Número de	Numero	Número	Factor	Factor	Factor
calzadas	de	de	direccional	carril	ponderado
	sentidos	carriles	(Fd)	(Fc)	FdxFc
		por			para carril
		sentido			de diseño
1 calzada (para	1 sentido	1	1.00	1.00	1.00
IMD a total de la	1 sentido	2	1.00	0.80	0.80
calzada)	1 sentido	3	1.00	0.60	0.60
	1 sentido	4	1.00	0.50	0.50
	2	1	0.50	1.00	0.50
	sentidos				
	2	2	0.50	0.80	0.40
	sentidos				
2 calzadas con	2	1	0.50	1.00	0.50
separador central	sentidos				
(para IMD a total	2	2	0.50	0.80	0.40
de las dos	sentidos				
calzadas)	2	3	0.50	0.60	0.30
	sentidos				
	2	4	0.50	0.50	0.25
	sentidos				

Fuente: Metodología PCA (1984)

h) Factor carril

Esta expresado como una relación al carril que recibirá mayor número de ejes equivalentes(EE), el tránsito se realizará por dirección. Dependerá de la cantidad de carril por dirección y del tránsito promedio diario de diseño. En la Figura 17 se obtiene el TPD(transito promedio diario del diseño), calculo obtenido para el uso de la figura x que junto al número de carriles por dirección se obtiene el factor carril. (Shaban et al., 2019) (Ver **Figura 18**

Porcentaje de camiones en el carril derecho Figura 18. Factor carril (FL)

Fuente: (Metodología PCA ,1984)

i) Transito promedio vehicular comerciales.

Se determina como la cantidad de vehículos de carga pesada que recorren la vía durante un determinado tiempo, asimismo se considera el tiempo de diseño siempre que las vías sean de 04 carriles o más.

$$TPD_{dise\~no} = TPD * Fproy * FD$$

Figura 19. Módulo elástico del concreto

Fuente: (Metodología PCA ,1984)

Donde:

TPD diseño = transito promedio de diseño

TPD = transito promedio diario en ambas direcciones

Fproy = factor de proyeccion

PD = factor de dirección

j) Factor de seguridad de carga.

Una vez conocido con las distribuciones de carga por eje ya conocemos cuantas repeticiones tenemos para cada uno de los tipos de peso de eje, utilizamos el parámetro de factor de seguridad de carga para multiplicar por cargas por eje. (UMSS, 2004) (**Tabla 8 y Tabla 9**).

Tabla 8. Categoría de carga por eje

Categoría de carga	Descripción	Tránsito			áximo d por eje	•	
por eje		TPD		T	TPDC		
			%	Diari	Eje	Eje	
				0	sim	tánd	
					ple	em	
1	Vías residenciales, secundarias (bajo	200-800	5	hasta	98	160	
	a medio y rurales		-	25			
			3				
2	Vías colectoras, secundarias (alto) y	700-5000	5	40-	115	195	
	rurales.		-	1000			
			1				
			8				
	Vías arterias y primarias (bajo)	3000-1200	8	500-	133	230	
		(2 carriles)	-	5000			
3	Vías arterias y primarias (alto), vías	3000-5000+	3	+			
	expresas y autopistas urbanas e	(4 carriles o	0				
	interestatales (bajo a medio)	más)					
4		3000-	8	1500-	151	267	
	Vías arterias, primarias y vías	150000 (4	-	8000			
	expresas (alto), autopista urbana e	carriles o	3	+			
	interestatales (medio bajo)	más)	0				

Fuente: Metodología PCA (1984)

Tabla 9. El tipo de transito según su factor de seguridad

Tránsito	FSC
Alto	1.20
Medio	1.10
Bajo	1.00

Fuente: Metodología PCA (1984)

- Casos especiales con alto volumen de tráfico pesado y cero mantenimientos,
 FSC=1.3
- Vías con un alto volumen de tráfico, FSC=1.2
- Vías principales con tráfico pesado medio, FSC=1.1
- Caminos locales y calles residenciales con bajo volumen de tráfico, FSC=1.0

k) Modulo Rotura del coeficiente de POISSON.

Tiene como relación al diseño de concreto diseñado para resistir esfuerzos a flexión (*módulo de rotura o torsión*). Para esta investigación de tesis consideramos un valor típico de módulo de elasticidad del concreto 4'000,000psi, así como un coeficiente de POISSON de 0.15.

I) Numero de repeticiones esperadas.

Para la realización del cálculo del número de repeticiones esperadas, se tendrá que tener en cuenta factores tales como el carril, factores de inyección, la cantidad de vehículos comerciales, y el periodo de diseño, asimismo también se necesita conocer el promedio anual de vehículos comerciales.

$$N = TPD_{dise\~no} * VC * FL * n * 365$$

Figura 20. Módulo elástico del concreto

Fuente: (Metodología PCA ,1984)

Donde:

N = Numero de repeticiones esperadas para cada eje

 $TPD_{dise\tilde{n}o} = transito promedio de dise\tilde{n}o (estudio de transito)$

VC = porcentaje de vehiculos comerciales (estudio de transito)

 $FL = factor \ carril$

n = periodo de diseño estructural

Procedimiento de diseño.

Como mencionamos anteriormente que para elaborar un diseño de pavimentación rígida requerimos conocer los factores de diseño:

- Tipos de bermas y juntas.
- Resistencia de la flexión del concreto (MR) a 28 días.
- El valor de numero de resistencia (k) del terreno del apoyo
- Factor de seguridad de carga (FSC).
- Numero de repeticiones esperadas (N) durante el periodo de diseño estructural

Podemos observar los datos que necesitamos para el diseño del método (tabla 10), y los otros datos que es por la carga de eje y el número de eje. Figura 21.

$$R_{esperadas} = \frac{N*EjeX}{1000}$$

Figura 21. repeticiones esperadas.

Fuente: (Metodología PCA ,1984)

Donde:

R = repeticiones esperadas

R esperadas = numero de repeticiones esperadas para cada eje

N = numero de repeticiones esperadas para cada eje

 $Eje\ X = eje\ por\ cada\ 1000\ vehiculos$

Podemos apreciar a continuación el análisis de erosión como los principios elemento para el uso del método de la PCA. Podemos observar la **Tabla 10**.

Tabla 10. Espesor del pavimento (calculo)

	Cálculo del espesor del pavimento							
Espesor	por tanteo:	mm						
k combinado: _		Mpa/m						
N	Лr: _	Мра						
F	sc: _							
Carga por eje	Eje x 1000 vehículos	Carga *	Repetición esperada	Análisis de		Análisis de erosión		
KN	verniculos	136	esperaua	Rep. Admisible	% fatiga	Rep. Admisible	% erosión	
Eje simple								
Esf	uerzo equiva	lente	Factor de erosión _					
		Fa	tor de reacció	n de esfuerzos	S: _			
		Cál	culo del espe	esor del pavim	ento			
Eje								
tándem								
Esfu	Esfuerzo equivalente: _			Factor de erosión: _				
	Fator de reacción de esfuerzos: _							

Fuente: Metodología PCA (1984)

Análisis de fatiga

- El módulo elástico del concreto E=4'000,000psi.
- Largo de la losa L=457.2cm
- El ancho de la losa W = 365.76 cm
- La carga de los ejes simples de la rueda doble es igual a 18kips, con 4500lb en cada.
- Espacio entre ruedas, s=30.48cm
- Área de contacto de la rueda A=451.612cm2.
- Distancia entre el centro de las dos ruedas D=182 cm.
- La carga utilizada para los ejes tándem de ruedas dobles es igual a 36kips con espaciamiento entre ejes t=127 cm.
- Coeficiente de Poisson de la losa μ=0.15.

Es fundamental indicar que el PCA utilice nomogramas y tablas por lo que es requerido determinar los esfuerzas.

a. Esfuerzo equivalente.

Para determinar el análisis de fatiga se define el esfuerzo equivalente ((psi)) a partir de la **Figura 22.**

$$\sigma eq = \frac{6 * Me}{h^2} * f1 * f2 * f3 * f4$$

Figura 22. Esfuerzo equivalente

Fuente: (Metodología PCA,1984)

Donde:

f1 = factor de ajuste del efecto del peso de los ejes

f2 = factor de ajuste para la losa sin bermas

f3 = factor de ajuste por el efecto en el esfuerzo

f4 = factor de ajuste por el aumento de la resistencia

Sin berma de concreto.

$$Me = -1600 + 2525 * log(l) + 24.42 * l + 0.204 * l^2$$

Figura 23. Eje simple sin berma de concreto

Fuente: (Metodología PCA ,1984)

$$Me = 3029 - 2966.8 * \log(l) + 133.69 * l - 0.0632 * l^{2}$$

Figura 24. Eje tanden sin berma de concreto

Fuente: (Metodología PCA ,1984)

Con berma de concreto

$$Me = (-970.4 + 1202.6 * \log(l) + 53.587 * l)(0.8742 + 0.01088 * k^{0.447})$$

Figura 25. Eje simple

Fuente: (Metodología PCA ,1984)

$$Me = (2005.4 - 1980.9 * \log(l) + 99.008 * l)(0.8742 + 0.01088 * k^{0.447})$$

$$l = \frac{E * h^3}{12 * (1 - u^2) * k}$$

Figura 26.Eje tanden

Fuente: (Metodología PCA ,1984)

$$f1 = (\frac{24}{SAL})^{0.06} * (\frac{SAL}{18})$$

Figura 27. Factor de ajuste eje simple

Fuente: (Metodología PCA ,1984)

$$f1 = (\frac{48}{TAL})^{0.06} * (\frac{TAL}{36})$$

Figura 28. Factor de ajuste eje tanden

Fuente: (Metodología PCA ,1984)

$$f1 = (\frac{24}{SAL})^{0.06} * (\frac{SAL}{18})$$

Figura 29. Factor de ajuste sin berma de concreto

Fuente: (Metodología PCA ,1984)

$$f_{-}(2 = 1)$$

 $f_{-}(3 = 0.894)$

Figura 30. Factor de ajuste con berma de concreto Para el 6% de camiones en el borde de la losa

$$f4 = \left(\frac{1}{1.235 * (1 - CV)}\right)$$
$$f4 = 0.953$$

PCA recomienda un CV=15%,

Si:
$$log N_f = 11.737 - 12.077 * \frac{\sigma eq}{MR}$$

Si:
$$0.45 < \frac{\sigma eq}{MR} < 0.55$$

Si:
$$Nf = \left(\frac{4.577}{\frac{\sigma eq}{MR} - 0.4325}\right)^{3.268}$$

Si:
$$0.45 > \frac{\sigma eq}{MR}$$

$$Nf = ilimitado$$

Figura 31. Determinar el número de repeticiones máximas admisibles Fuente: Metodología PCA (1984)

Donde:

 $\sigma eq = esfuerzo$ equivalente, en psi.

h = espesor de la losa, en pulg.

k = Módulo de reaccion de la subrasante, en pci.

f1 = factor de ajuste del efecto del peso de los ejes

f2 = factor de ajuste para losas sin bermas.

f3 = factor de ajuste por el efecto en el esfuerzo.

f4 = factor de ajuste por el aumento de la resistencia.

SAL = cargas de los ejes simples, en kips

TAL = cargas de los ejes tándem, en kips

 N_f = numero de repeticiones maximas admisibles

Análisis de erosión.

se define:

$$\delta eq = \frac{pc}{k} * f5 * f6 * f7$$

Figura 32. deformación equivalente

Fuente: (Metodología PCA ,1984)

$$pc = \frac{46.127}{l} + \frac{4372.7}{l^2} + \frac{22886}{l^3}$$

Figura 33. Sin pasadores eje simple sin berma de concreto Fuente: (Metodología PCA ,1984)

$$pc = 1.847 + \frac{213.68}{l} + \frac{1260.8}{l^2} + \frac{22989}{l^3}$$

Figura 34. Sin pasadores eje tándem sin berma de concreto Fuente: (Metodología PCA ,1984)

$$pc = 0.5874 + \frac{65.108}{l} + \frac{1130.9}{l^2} + \frac{5245.8}{l^3}$$

Figura 35. Sin pasadores eje simple con berma de concreto Fuente: (Metodología PCA ,1984)

$$pc = 1.47 + \frac{102.2}{l} + \frac{1072}{l^2} + \frac{14451}{l^3}$$

Figura 36. Sin pasadores eje tándem con berma de concreto Fuente: Metodología PCA (1984)

$$pc = -0.3019 + \frac{128.85}{l} + \frac{1105.8}{l^2} + \frac{3269.1}{l^3}$$

Figura 37.Con pasadores eje simple sin berma de concreto Fuente: (Metodología PCA ,1984)

$$pc = 1.258 + \frac{97.491}{l} + \frac{1484.1}{l^2} + \frac{180}{l^3}$$

Figura 38. Con pasadores eje tándem sin berma de concreto Fuente: (Metodología PCA ,1984)

$$pc = 0.018 + \frac{72.99}{l} + \frac{323.1}{l^2} + \frac{1620}{l^3}$$

Figura 39.Con pasadores eje simple con berma de concreto Fuente: (Metodología PCA,1984)

$$pc = 0.0345 + \frac{146.25}{l} + \frac{2385.6}{l^2} + \frac{23848}{l^3}$$

Figura 40. Con pasadores eje tándem con berma de concreto Fuente: (Metodología PCA ,1984)

$$f5 = \frac{SAL}{18}$$

Figura 41. Eje simple factor de ajuste por efecto de la carga por eje Fuente: (Metodología PCA ,1984)

$$f5 = \frac{TAL}{36}$$

Figura 42. Eje tándem factor de ajuste por efecto de la carga por eje

Fuente: (Metodología PCA ,1984)

$$f6 = 0.95$$

Figura 43.Sin pasadores sin berma de concreto factor de ajuste en losas sin dovela en juntas

Fuente: (Metodología PCA ,1984)

$$f6 = 1.001 - \left(0.266363 - \frac{k}{3034.5}\right)^2$$

Figura 44. Sin pasadores con berma de concreto factor de ajuste en losas sin dovela en juntas

Fuente: (Metodología PCA ,1984)

$$f6 = 1$$

Figura 45. Con pasadores factor de ajuste en losas sin dovela en juntas Fuente: (Metodología PCA ,1984)

$$f7 = 0.896$$

Figura 46.Con pasadores sin berma factor de ajuste por efecto de vehículos pesados

Fuente: (Metodología PCA ,1984)

$$f7 = 1$$

Figura 47.Con pasadores con berma factor de ajuste por efecto de *vehículos* pesados

Fuente: (Metodología PCA,1984)

$$EF = log\left(\frac{111111 * (0.896 * P)^2 * C1}{h * k^{0.73}}\right)$$

$$P = 268.7 * \frac{k^{1.27} * (\delta eq)^2}{h}$$

$$C1 = 1 - \left(\frac{k}{2000} * \frac{4}{h}\right)^2$$

Figura 48. Con pasadores factor de ajuste para subbases estabilizadas y no tratadas

Fuente: (Metodología PCA ,1984)

$$C2=0.06$$

Figura 49. Con pasadores factor de ajuste para pavimentos sin bermas Fuente: (Metodología PCA ,1984)

$$C2 = 0.94$$

Si:
$$C1 * P < 9$$

$$\log(N_e) = 14.524 - 6.777 * (C1 * P - 9)^{0.103} - \log(C2)$$

Si:
$$C1*P \leq 9$$

$$N_e = ilimitado$$

Figura 50.Con pasadores factor de ajuste para pavimentos con bermas Fuente: (Metodología PCA ,1984)

Donde:

 δ eq = es la defleción equivalente en la esquina de la losa.

f5 = es el factor de ajuste por el efecto de las cargas por eje.

f6 = es el factor de ajuste para losas sin dovelas en las juntas y sin berma.

f7 = es el factor de ajuste por el efecto de los camiones

pc = es la presión entre la losa y la superficie de soporte.

P=es el índice de trabajo o potencia que relaciona la defelxión de esquina y la presion en la losa.

C1 = es el factor de ajuste para subbases no tratadas y estabilizadas

Ne = es el número máximo de repeticiones admisibles que cumplen el criterio de erosión.

SAL, TAL, k, l = tiene las mismas definiciones descritas anterirmente.

De tal forma se calculará el grado (porcentaje) de daño producido por la erosión, este se obtiene a través de la división entre las repeticiones esperadas y el número máximo de las repeticiones que son admisibles. Asimismo, el daño por erosión producido deberá ser menor al 100% para que se cumpla con el criterio del espesor de la losa que se encuentra evaluando.

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Tipo de investigación:

Según Borja (2012) menciona que una investigación de tipo aplicada busca construir y actuar, modificar y conocer una realidad problemática, centrado su esfuerzo en la solución inmediata a la problemática existente.

Por lo descrito anteriormente nuestra investigación es el tipo aplicada.

Diseño de investigación:

La presente investigación de diseño experimental, con un tipo de experimento puro, Borja (2012) menciona que la investigación experimental pura, es aquella que presenta dos, o un objeto de estudio de iguales o similares condiciones, donde a uno (grupo experimental) se le aplicara el estímulo, mientras que al otro grupo (grupo de control) no se le aplicara, para posteriormente medirlos.

3.3 Variables y operacionalización

Tabla 11. Operacionalización de las variables

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores						
	Asociación Americana de Oficiales de			Periodo de diseño						
		o o		Espesor del pavimento						
				Índice de Serviciabilidad inicial						
	Carreteras Estatales y Transportes o por sus	rígidos AASHTO aplica una ecuación con la		Índice de Serviciabilidad final						
	siglas en inglés AASHTO. de American	cual se establece el parámetro que se		Factor de distribución por dirección y por carril						
Diseño de	Association of State Highway and	determina como SN (Número estructural),	Metodología AASHTO	Eje cargado						
pavimento a	vimento a Transportation Officials. Es un órgano que establece normas,	on Officials. con el cual se obtendrá los espesores de las capas que conformaran el pavimento.		Número de ejes equivalentes						
través de la metodología				Niveles de confiabilidad						
AASHTO				Error estándar combinada y desviación estándar						
				Módulo de reacción efectivo de la subrasante						
				Coeficiente de drenaje						
				Coeficiente de transmisión de cargas						
				Módulo de elasticidad del concreto						
				Tránsito futuro						
Diseño de	El método de la Asociación del Cemento			Resistencia del concreto						
pavimento a	Portland de los Estados	Porland (PCA) es un		CBR						
través de la metodología	Unidos ha sido utilizado desde el año1984 para	criterio basado en su comportamiento y	Metodología PCA	Módulo de reacción						
PCA	el cálculo de los diseños de los espesores de los	s diseños experiencia del diseño	periencia del diseño	Módulo de reacción de la sub base						
	pavimentos de concreto en calles y carreteras alrededor del mundo.	También se basa mediante los criterios de fatiga y erosión.		Módulo de residencia						

Nota. Elaboración propia

3.4 Población, muestra y muestreo

El universo de la investigación se conforma de por la población de estudio o también por el conjunto de las unidades que pueden ser estudiada o que se podrían estudiar a través de una observación conjunta o individual. Siendo así que la población es una totalidad de un fenómeno que se espera analizar, las cuales poseen características en común que dan origen a los datos de la investigación. (Hernández, Fernández y Baptista, 2014)

La población y muestra de la investigación será la Av. Ejercito del Distrito y Provincia de Andahuaylas, Región Apurímac.

3.5 Técnicas e instrumentos de recolección de datos

La técnica de recopilación de datos fue observacional, se refiere al uso de una diversidad de técnicas y herramientas, pudiendo ser utilizadas por un análisis que permita desarrollar los sistemas de información, siendo estos la entrevista, el cuestionario, la observación, el diccionario de datos, el diagrama de flujo y la encuesta. (Hernández, Fernández y Baptista, 2014)

El instrumento utilizado en esta investigación ha sido la ficha de recolección de datos.

3.6 Procedimientos

Todos los ensayos de laboratorio se realizaron bajo los parámetros que se establecen en las normas NTP.

3.6.1. Determinación de propiedades mecánicas

En la determinación de las propiedades físico-mecánicas se plantearon los siguientes análisis:

3.6.1.1. Pozos de exploración o Calicata.

Se realizó 1 calicata o pozo de exploración a cielo abierto, designada como C-1, para evaluar directamente las diferencias características de la Sub suelo en su estado natural, hasta la profundidad promedio de 1.50m, no encontrándose el nivel freático.

Se obtuvieron muestras disturbadas representativas de los estratos a través de la calicata en cantidades requeridas para realizar la clasificación y para los ensayos de CBR y Proctor Modificado.

3.6.1.2. Evaluación y clasificación de suelos.

Las muestras obtenidas fueron clasificadas de acuerdo al AASTHO y S.U.C.S.sistema unificado de clasificación de suelos. Los resultados de laboratorio sobre las muestras de suelo.

3.6.1.3. Clasificación del suelo por AASTHO.

Se utiliza para clasificar el suelo y agregados. Los requisitos de clasificación de suelos son:

- Análisis mecánico
- Indicé de plasticidad

3.6.1.4. Clasificación del suelo según S.U.C.S.

Utilizado para la identificación de suelos para describir el tamaño y textura de las partículas de un suelo.

Se clasifican mediante los símbolos:

G: Grava

S: Arena

C: Arcilla

M: Limo

O: Suelo orgánico

3.6.1.5. Determinación del contenido de humedad de la cantera NTP 339.160-2011.

Es la relación que se presenta entre el porcentaje de agua y la masa del suelo. Para la determinación de este contenido de humedad el procedimiento fue el siguiente:

- Se realizó el pesaje de las taras donde se colocó a secar el material y muestras dentro del horno.
- Se agregó las muestras sobre la tara
- Se realiza el pesado de las muestras de humedad sobre la tara anteriormente ya pesada
- Se ingresa dentro de la estufa las muestras por un tiempo promedio de 1 día.

3.6.1.6. Determinación de límites de Atterberg.

Por la cantidad de humedad, los suelos suelen cambiar de consistencia. El cual tienen siguientes estados.

- Solidos.
- Semisólido.
- Liquido.
- Platico.

Los límites entre estos estados se denominan Limite de Contracción (LC) limite Plástico (LP) y limite Liquido (LL).

Para la determinación de los límites de Atterberg se utilizó la NTP 339.129-1999,

Asimismo, el proceso para la determinación del límite liquido fue el siguiente:

- Se extraer un pedazo de muestra de 150 a 200 gr completamente mezclada y que haya pasado por el tamiz 0.425 mm (N°40).
- Colocar dentro de la vasija de porcelana la muestra del suelo y mezclar en conjunto con 15 a 20 ml de agua, hasta formar una masa que deberá ser tajada en forma alternada y agregar de 1 a 3 ml de agua.
- Se realizará esta mezcla hasta que la consistencia obtenida sea resistente a una cantidad de 30 a 35 golpes dentro de la cazuela de bronce.

lo procedimental para la determinación del límite plástico fue el siguiente:

- En la mezcla que se ha preparado para la determinación del anterior ensayo se le agregara suelo seco de tal manera que la mezcla baje su contenido de humedad
- Posterior se enrollará sobre la placa vidriada de forma que se obtenga cilindros de 3mm de diámetro, y además presente agrietamientos.
- Se repite el ensayo

 El cálculo del límite plástico se dará en relación de los 02 valores del contenido de humedad, si los valores obtenidos tienen una diferencia de 02 puntos se deberá repetir el ensayo.

3.6.1.7. Índice de plasticidad

Se entiende como el campo plástico de un suelo y el porcentaje de humedad que debe tener la muestra de suelo, el cual se mantenga plástico. Permitiendo establecer los parámetros de asentamiento de un suelo.

3.6.1.8. Proctor modificado

Mediante el ensayo de Proctor modificado se obtendrá el óptimo contenido de humedad y la máxima densidad seca, todo esto calculado con una compactación establecida.

Se determinará utilizando la NTP 339.141-1991. El procedimiento para la determinación del proctor modificado fue el siguiente:

- Se requiere una muestra aproximada de 30kg que será utilizado para la compactación bajo en método C
- Se realiza el tamizaje en la malla N° ¾"
- Se selecciona el molde para el ensayo
- Se realiza 5 puntos para formar la curva en la muestra en la cual se aplicará un peso de compactación de 6kg por punto.
- Se retira la muestra ya compactada de cada molde y se introduce al horno, de lo cual se determinará el contenido de humedad y adicionalmente la densidad seca máxima.
- Se realiza el análisis (cálculo) para la obtención de la curva y determinar el contenido óptimo de humedad y densidad seca máxima.

3.6.1.9. Ensayo de compactación CBR

Es la capacidad de soporte bajo criterios de densidad y humedad. Este ensayo evalúa la resistencia de los materiales que se encuentran en las capas de la estructura del pavimento rígido. El procedimiento en este ensayo fue el siguiente:

Paso 01 : Preparación de la muestra que contenga la cantidad optima de humedad planteada en el ensayo de compactación de Proctor modificado

Paso 02 : Dentro de cada uno de los 3 moldes del CVR se deberá compactar las muestras de 5 capas, de tal forma que el primero a de recibir 13 golpes, el segundo recibirá un total de 27 golpes y finalmente el 3ro recibirá 56 golpes por capa.

Paso 03 : Se determinará la densidad húmeda y el contenido de humedad que presentan las muestras de cada molde.

3.6.1.10. Ensayo carga-penetración

Paso 01 : Tras el transcurso de las 96 horas, los moldes deberán ser extraídos del tanque de agua, posteriormente se extraer el dial, así como la placa de expansión, trípode y sobrecarga, finalmente se deja drenar por alrededor de 15 minutos.

Paso 02 : En cada molde poner la sobrecarga, transportar a la prensa hidráulica, realizar al ensayo de penetración aplicando un pisón a una velocidad de 0.05 pulg/min., por cada muestra se registrará las lecturas de carga.

3.7 Método de análisis de datos

Se planteo como precedente el análisis de datos para la ejecución de la actividad. La interpretación se ejecuta en base a los resultados obtenidos de la investigación. Esta actividad establece inferencias en las relaciones entre las

variables estudiadas para extraer recomendaciones y conclusiones. (Hernández, Fernández y Baptista, 2014)

Los datos analizados se realizaron con la ayuda del software Microsoft Excel.

3.8 Aspectos éticos

De acuerdo a lo que plantea la Oficina de Investigación Lima (UCV, 2016), "el investigador debe tener el compromiso de exponer los resultados con veracidad, respecto por la propiedad intelectual, responsabilidad y ética" (p.12). Esta tesis se elaboró con el compromiso de la responsabilidad, respetando la veracidad, la autoría y originalidad de los autores, así como la confiablidad y la recolección de datos obtenidos. Se utilizo el software del TURNITIN como herramienta para realizar la revisión de confiabilidad y privacidad.

IV. RESULTADOS

4.1 Análisis de tránsito vehicular de vías aledañas

Se realizó el estudio del tránsito vehicular de vías aledañas a la Av. Ejército, en el **Anexo 03** se muestra el volumen máximo que se registró en un día.

Para este estudio el tránsito vehicular fue:

- Vehículos livianos:
 - \circ Autos = 981
 - \circ *Pick up* = 95
 - \circ *C. Rural* = 21
 - \circ *Micros* = 3

- Bus
 - o 2E = 7
 - \circ 3*E* = 2
- Camiones unitarios
 - \circ 2*E* = 15
 - o 3E = 4
 - \circ 4E=1
- Semitrailer
 - \circ 2*S*1/2*S*2 = 1
 - \circ 2*S*3 = 1
 - \circ 3*S*1/3*S*2 = 0
 - $\circ \geq 3S3 = 1$

Deberemos considerar que los vehículos livianos están compuestos por categorías tales como autos (2754 vehículos), Pick up (95 vehículos), Rural (21 vehículos) y micros (3 vehículo). Posteriormente tenemos los Buses que están categorizados en 2E (7 vehículos) y 3E (2 vehículos). Siguiendo los Camiones unitarios la cual esta categorizada en 2E (15 vehículos), 3E (4 vehículos) y 4E (1 vehículo). Finalmente, los semitrailers categorizado en 2S1/2S2 (1 vehículo), 2S3 (1 vehículo), 3S1/3S2 (0 vehículos) y >= 3S3 (1 vehículo).

4.2 Diseño a través de la metodología AASHTO 93.

Se utilizará la metodología AASHTO 93 para el diseño del pavimento rígido, el cual ha sido explicado en cada uno de sus pasos a continuación:

4.2.1. Periodo de diseño

Se selecciona una temporalidad de 20 años para el periodo del diseño, puesto que esta corresponderá a una vía pavimentada con bajos volúmenes de tránsito, ver **Tabla 12.**

Tabla 12.Periodo del diseño para pavimento rígidos según metodología AASHTO 93

Carretera / vía	Periodo de diseño
Con bajos volúmenes de transito vía Revestidas	10 a 20 años
Con bajos volúmenes de transito vía Pavimentada	15 a 25 años
Con altos volúmenes de transito vía interurbana	20 a 50 años
Con altos volúmenes de transito vía Urbana	30 a 50 años

Nota. Elaboración propia

4.2.2. Espesor del pavimento

A continuación, se asumirá un espesor de losa de 200mm para poder calcular el número de ejes que equivalen al vehículo de diseño de 8.2Tn (18 Kips), que se propone en el modelo AASHTO 93.

4.2.3. Índice de Serviciabilidad

Se determino el índice de Serviciabilidad inicial en Po=4.5 para pavimentos rígidos, tal como se observa en la **Tabla 13.**

Tabla 13 . Índice de Serviciabilidad inicial

Índice de Serviciabilidad Inicial				
Ро	=	4.5	pavimentos rígidos	
Ро	=	4.2	pavimentos flexibles	

Nota. Elaboración propia

Además, el índice de Serviciabilidad final se obtiene en Pt=2.0 para caminos con un tránsito inferior, tal como se observa en la **Tabla 14.**

Tabla 14 .Índice de Serviciabilidad final

Índice de Serviciabilidad Final					
Pt	=	2.5	o mayor, para caminos de alto transito		
Pt	=	2.0	para caminos de transito menor		

Nota. Elaboración propia

De tal forma se tiene que el Δ PSI se calcula como la diferencia entre el índice de Serviciabilidad final y el índice de Serviciabilidad inicial, dando como resultado un Δ PSI = 2.5.

4.2.4. Factor de distribución por dirección

En la **Tabla 15** se mostrará el factor de distribución por dirección, el cual ha sido calculado en un valor D=0.5 para cantidad de 2 carriles en ambas direcciones.

Tabla 15. Distribución por dirección

N° de carriles en ambas direcciones	Valor
6 o mas	0.40
4	0.45
2	0.50

Nota. Elaboración propia

4.2.5. Factor de distribución por carril

Se determinará el factor de distribución por carril el cual fue de L=1, lo cual significa que se tendrá un carril por cada sentido de la vía.

Tabla 16. Distribución por carril

N° de carril en cada sentido	% de W18 en el carril de diseño
1	100
2	80 al 100
3	60 al 80
4 o más	50 al 75

Nota. Elaboración propia

4.2.6. Código de eje cargado.

El valor del código de eje cargado será de L2, puesto que este valor depende del tipo de eje.

Tabla 17. Código de eje cargado

Valor		•	Tipo de eje
L2	=	1	Simple
L2	=	2	Tandem
L2	=	3	Tridem

Nota. Elaboración propia

Asimismo, se determinará los parámetros requeridos para definir el número de ejes equivalentes, tal como se muestra en la **Tabla 18**

Tabla 18. Parámetros requeridos

lte	∍m	Valor	Unidad
Т	=	20	Años
esp	=	200	Mm
Pt	=	2	Serviciabilidad final
D	=	0.5	factor de dirección ida y vuelta
L	=	1	un carril en cada sentido
=>	W18	=	100%

Nota. Elaboración propia

Se considerará a W18 como el porcentaje de los vehículos que son iguales a 18 Kips (8.2 Tn).

4.2.7. Cálculo de número de ejes equivalentes

Se determinó en un valor parcial para Vehículos ligeros en 7856.07, Buses en 173455.60, Camiones unitarios en 433807.27 y los semi tráileres en 129167.02 (**Ver Anexo 04**)

4.2.8. Niveles de confiabilidad

Sera seleccionado R=80% ver Tabla 19.

Tabla 19. Nivel de confiabilidad

Niveles de confi	Tipo de carretera	
Sub urbanas	Rurales	
85 - 99.9	80 - 99.9	Autopista Regional
80 – 95	50 - 80	Colectoras
80 – 99	75 - 95	Local

Nota. Elaboración propia

4.2.9. Desviación estándar normal(ZR) y Error estándar combinado(S0)

Para el cálculo de la desviación y error estándar se utilizará el valor de la confiabilidad determinado (**ver tabla 14**) valor de R= 80%, dándonos así un valor ZR de -0.841 y de S0 de 0.32 (**ver tabla 20**).

Tabla 20. Desviación estándar normal de confiabilidad

Desviación estándar normal valores que corresponden						
a los niveles seleccionados de confiabilidad						
Confiabilidad R (%)	(ZR)	(\$0)				
50	0.000	0.35				
60	-0.253	0.35				
70	-0.524	0.34				
75	-0.647	0.34				
80	-0.841	0.32				
85	-1.037	0.32				
90	-1.282	0.31				
91	-1.340	0.31				
92	-1.405	0.30				
93	-1.476	0.30				
94	-1.555	0.30				
95	-1.645	0.30				
96	-1.751	0.29				
97	-1.881	0.29				
98	-2.054	0.29				
99	-2.327	0.29				
99.9	-3.090	0.29				
99.99	-3.750	0.29				

Nota. Elaboración propia

4.2.10. Determinación del módulo de reacción efectivo de la subrasante

Se utilizará dos métodos, el método empírico o también llamado mecanismo de ábacos el cual utiliza la ecuación guía mecánica empírica NCHRP del 2002 y la ecuación de Kentucky, además se utilizará el método de las Figuras de AASHTO para determinar el módulo de la subrasante (K).

A. Método mecanistico o empírico a través de ábacos

Datos sub-base: CBR=23.80%

NCHRP 2002-Ecuación guía mecánica empírica

 $MR = 2,555 (CBR)^0.64$

MR = 19426.750

Psi = 134.04 Mpa

Ecuación de Kentucky (regresión exponencial)

 $MR = 1,910(CBR)^0.68$

MR = 16485.636

Psi = 113.75 Mpa

regresión polinómica 2°-Ecuación de Kentucky para CBR < 55 %

 $MR = -7.5 (CBR)^2 + 800 CBR + 1820$

MR = 17087.7

Psi = 117.91 Mpa

De tal forma se determina que el mínimo Modulo de Elasticidad de la sub-base es de 113.75 Mpa.

Datos subrasante: CBR=11.70 %

NCHRP 2002-Ecuación guía mecánica empírica

 $MR = 2,555 (CBR)^0.30$

 $MR = 12331.896 \, psi$

Psi = 85.09 Mpa

regresión exponencial-Ecuación de after van til et al

 $MR = 5,490 (CBR)^{0.30}$

 $MR = 11482.279 \, psi$

Psi = 79.23 Mpa

De tal forma se determina que el mínimo módulo de resiliencia del suelo (MR) =

79.23 Mpa.

Con los datos obtenidos se determinará el módulo de reacción a través del ábaco.

En el ábaco:

a) Se estimará el espesor para la sub-base de manera preliminar en 150mm

b) Se obtendrá el módulo de elasticidad de la sub-base y el módulo resiliente

del suelo

c) Finalmente proyectaremos las líneas para la obtención del módulo de

reacción compuesto

Se determina mediante el ábaco, que el módulo de reacción del compuesto de la

subrasante (K) equivale a 130 Mpa/m. (Ver **Anexo 05**)

B. Determinación del módulo de reacción compuesto de la subrasante (K)

a través del método AASHTO

Datos sub-base:

$$CBR = 23.80 \%$$

Si $CBR \leq 10$

$$K0 = 2.55 + 52.5 \, Log \, (CBR)$$

Si CBR > 10

$$K1 = 46 + 9.08 Log (CBR)^4.34$$

K1 = 82.35 Mpa/m

Datos suelo de fundación: CBR = 11.70 %

$$CBR = 11.70 \%$$

Si $CBR \leq 10$

$$K0 = 2.55 + 52.5 Log (CBR)$$

Si CBR > 10

$$K0 = 46 + 9.08 Log (CBR)^4.34$$

58

K0 = 58.09 Mpa/m

Finalmente determinaremos el módulo de reacción compuesto de la subrasante el cual se determinará a través de los valores K0 y K1, la cual nos da como resultado 63.54 Mpa/m.

4.2.11. Determinación del Cd-coeficiente de drenaje

Se realizará la determinación del coeficiente de drenaje (Cd) la cual se determinó en Cd=0.90 (Ver **Tabla 22**)

Tabla 21. Coeficiente de drenaje (Cd)

cuación de agua	Calidad del drenaje	
2 horas	Excelente	
1 día	Bueno	
1 semana	Mediano	
1 mes	Malo	
El agua no	Muy malo	
	2 horas 1 día 1 semana 1 mes	

Nota. Elaboración propia

Tabla 22.Porcentaje del tiempo que la estructura del pavimento está expuesta a niveles de humedad próximos a la saturación

Calidad del drenaje	Porcentaje del tiempo en que la estructura del pavimento está expuesta a niveles de humedad próximos a la saturación						
	Menos de 1%	1% - 5%	5% - 25%	más del			
				25%			
Excelente	1.25 - 1.20	1.20 - 1.15	1.15 - 1.10	1.10			
Bueno	1.20 - 1.15	1.15 - 1.10	1.10 -1.10	1.00			
Mediano	1.15 - 1.10	1.10 - 1.00	1.00 - 0.90	0.90			
Malo	1.10 - 1.00	1.00 - 0.90	0.90 - 0.80	0.80			
Muy malo	1.00 - 0.90	0.90 - 0.80	0.80 - 0.70	0.70			

Nota. Elaboración propia

4.2.12. Coeficiente de transmisión de cargas

Para el tipo de pavimentación se determinó el coeficiente de transmisión de cargas en un total de J en 3.00 (ver tabla 23)

Tabla 23. Cálculo del coeficiente de carga

Tipo de pavimentos	Elemento de transmisión de carga				
	Asfaltico		Hidráulico		
	SI	NO	SI	NO	
Reforzado continuo	2.9 - 3.2	-	2.3 - 2.9	-	
No reforzado o reforzado con juntas	3.2	3.8 - 4.4	2.5 - 3.1	3.6 - 4.2	

Nota. Elaboración propia

4.2.13. Módulo de elasticidad del concreto

 $EC = 57,000 (f^{\prime} c)^{0.5}$

EC = 35997088

Psi = 24819.90 Mpa

4.2.14. Módulo de rotura del concreto

 $S'c = 8 - 10 (f'c)^0.5$

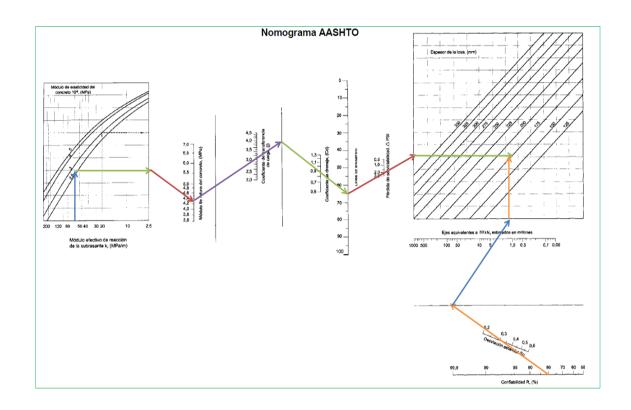
 $S^{\wedge'} c = 631.10 \, psi$

Psi = 4.35 Mpa

4.2.15. Determinación a través de AASHTO del espesor(altura) del pavimento

Cálculo del espesor(altura) del pavimento, parámetros necesarios:

$$K = 63.54 \, mpa/m$$
 $So = 0.32$ $Ec = 24820 \, Mpa$ $R = 80\% => ZR = -0.841$ $S^{\prime} c = Mr = 4.35 \, mpa$ $Pt = 2$ $J = 3$ $\Delta PSI = 2.5$ $Cd = 0.90$ $W81 = 3 \, x \, 10^{6}$ $D = Se \, determinar \acute{a} \, por \, tanteo$ $D = 192.00 \, mm$


Desarrollando:

$$6.48 = -0.26912 + 6.788857617 + -0.065400431 + 0.028195873$$

 $6.48 = 6.48$

Se obtiene un valor aceptable, determinando que el valor del espesor del pavimento (D) es igual a 19 cm.

4.2.16. Espesor del pavimento por abaco (AASHTO)

A través de los valores brindados por el nomograma de AASHTO se procederá a calcular los valores del espesor del pavimento rígido. (Ver **Figura 51**)

Figura 51. Espesor(altura) del pavimento en Nomograma AASHTO. Fuente: Instituto de Construcción y Gerencia (2016)

De tal forma se determinó los valores para el espesor(altura) del pavimento en concreto en función de la metodología AASHTO, utilizando su Figura y nomograma correspondiente, por lo cual se adaptará el espesor del pavimento determinado por la Figura lo cual se representará de la siguiente manera (ver **figura 52**):

Figura 52. Estructura del pavimentacion rígida en funcion a la metodología

AASHTO

Nota. Elaboración propia

4.3 Diseño de la pavimentación rígida en función a la metodología PCA

4.3.1. Conteo Vehicular.

Se determinará el conteo vehicular para el diseño ver **Tabla 24** y el periodo de diseño ver **Tabla 25.**

Tabla 24. Conteo vehicular

Tipo de vehículos	Veh/día
Vehículos ligeros	
Autos	981
Pick up	95
C.Rural	21
Micros	3
Bus	
2E	7
3E	2
Camiones unitarios	
2E	15
3E	4
Tipo de vehículos	Veh/día
4E	1
Semi tráiler	
2\$1/2\$2	1
2S3	1
3\$1/3\$2	
>=3S3	1
Total	1132

Nota. Elaboración propia

Tabla 25. Periodo de diseño.

Ítem	Valor
Periodo de diseño	20 años

Para la tasa de crecimiento anual consideramos la siguiente tabla. ver Tabla 26.

Tabla 26. Tasa de crecimiento vehicular

	LIGEROS	2.90%
Tasa de crecimiento vehicular	BUSES	3.90%
vomealar	PESADOS	4.90%

Nota. Elaboración propia

4.3.2. Factores de diseño.

Para determinar la clasificación de carreteras ver la tabla 27

Tabla 27. Clasificación de carreteras

	Calles residenciales liviano ligero	Carretera de tercera clase liviano	Carretera de segunda clase liviano	Carretera de primera clase pesado ligero	Autopista de segunda clase pesado	Autopista de primera clase sobrecargado	
Ejes simples carga	Numero de ejes por cada 10,000 camiones						
kips	1	2	3	4	5	6	
34						0.19	
32						0.54	
30				0.45	0.58	0.63	
28				0.85	1.35	1.78	
26			0.07	1.78	2.77	3.52	
24			1.6	5.21	5.92	4.16	
22		0.96	2.6	7.85	9.83	9.69	
20		4.23	6.63	16.33	21.67	41.82	
18		15.81	16.61	25.15	28.25	68.27	
16	11.57	38.03	23.88	31.82	38.83	57.07	
14	20.87	56.11	47.76	47.73	53.95		
12	39.07	124	116.76	182.02	168.85		
10	103.3	204.96	142.70				
8	283.13	483.10	233.60				
6	369.97	732.28					
4	846.15	1693.31					
60						0.57	
56						1.07	

Ejes simples carga	Numero de ejes por cada 10,000 camiones								
kips	1	2	3	4	5	6			
52				1.19	1.96	1.79			
48				2.91	3.94	3.03			
44				8.01	11.48	3.52			
40				21.31	34.27	20.31			
36		14.22	4.19	56.25	81.42	78.19			
32		27.82	69.59	103.63	85.24	109.54			
28		38.55	68.48	121.22	125.23	95.79			
24		42.24	38.18	72.54	90.52	95.79			
20		64.33	57.10	85.94	112.81	71.16			
16		72.69	75.02	99.34	124.69				
12		48.34	139.30						
8		39.21	85.59						
4		15.12	3.19						

Fuente: Diseño de espesores para pavimento de hormigón en carretera y calles Método PCA

4.3.3. Módulo de K subrasante, Módulo de K combinado

Método Portland

Datos de la sub-base: CBR = 23.8% espesor = 150 mm

Si $CBR \leq 10$

K0 = 2.55 + 52.5 Log (CBR)

Si CBR > 10

 $K1 = 46 + 9.08 Log (CBR)^4.34$

K1 = 82.35 Mpa/m

Datos suelo de fundación: CBR = 11.7%

Si $CBR \leq 10$

K0 = 2.55 + 52.5 Log (CBR)

Si CBR > 10

 $K1 = 46 + 9.08 Log (CBR)^4.34$

K1 = 58.09 Mpa/m

Finalmente determinaremos el módulo de reacción compuesto de la subrasante el cual se determinará a través de los valores K subrasante y K combinando, la cual nos da como resultado 63.54 Mpa/m = 231.94 pci/m.

4.3.4. Resultados obtenidos de diseño del pavimento rígido por el método PCA.

Tabla 28. Resultados obtenidos de diseño de la pavimentacion rigida por el método PCA.

Diseño de pavimento rígido				
Método de la Portland Cer	nment Association PCA 84			
1.Propiedades de la carretera	Resultados			
Tipo de carretera	Carretera de segunda clase			
Número de carriles por sentidos	2			
Tipo de subbase	Base granular CBR 100%, compactada al 100 % de			
	la MDS			
Periodo de diseño	20 años			
Tipo de distribución de cargas de trafico	Bajo			
% camiones que circulan sobre el borde del	6% (método PCA considera el 6%)			
pavimento				
Factor de seguridad de cargas	1.0			
T.P.D.A. (incluyendo vehículos livianos)	1,31800 vehículos/día			
Porcentaje de vehículos pesados en el trafico	2.7%			
Tasa de crecimiento anual	3.9%			
Factor de distribución por carril	0.98			
Factor direccional	50%			
Trafico de diseño (solo camiones pesados)	189.124 (vehículos de más de cuatro llantas)			
2. Propiedades de la base y del concreto	Resultados			
Resistencia a la compresión del concreto FC= 280				
kg/cm2				
Valor CBR	23.8%			
Modulo K de subrasante	58.10 MPa/m 212.0 pci			
Modulo K combinado	63.5 MPa/m 231.9 pci			
Módulo de rotura	4.45 MPa/m 645.0 pci			
Varianza de resistencia	15% (método considerada 15%)			
Factor de seguridad	1			
Espesor losa de hormigón	24cm			
Espesor base	15 cm			

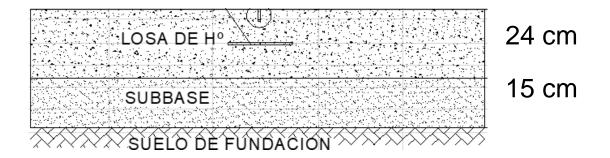

Fuente: elaboración propia

Tabla 29. Cálculo de espesores del pavimento

Resumen de análisis de datos									
K	Espesor	Módulo	Factor de	Consumo	Consumo	Factibilidad			
subrasante	de losa	de	seguridad	de fatiga	de erosión				
		rotura							
212.0 pci	24 cm	4.45	1	0.00%	0.27%	Es factible			
212.0 pci	25 cm	4.45	1	0.00%	0.19%	Es factible			
212.0 pci	26 cm	4.45	1	0.00%	0.13%	Es factible			
212.0 pci	27 cm	4.45	1	0.00%	0.09%	Es factible			
212.0 pci	28 cm	4.45	1	0.00%	0.07%	Es factible			
212.0 pci	29 cm	4.45	1	0.00%	0.05%	Es factible			
212.0 pci	30 cm	4.45	1	0.00%	0.03%	Es factible			
212.0 pci	31 cm	4.45	1	0.00%	0.02%	Es factible			
212.0 pci	32 cm	4.45	1	0.00%	0.01%	Es factible			
212.0 pci	33 cm	4.45	1	0.00%	0.01%	Es factible			
212.0 pci	34 cm	4.45	1	0.00%	0.01%	Es factible			
212.0 pci	35 cm	4.45	1	0.00%	0.00%	Es factible			
212.0 pci	36 cm	4.45	1	0.00%	0.00%	Es factible			

Fuente: método PCA 1984

De esta manera se determina la estructura del pavimento rígido, ver figura 53:

Figura 53. Estructura de la pavimenacion rígida en funcion de la metodología PCA

A través del ancho de la calzada y el espesor de la losa, de, concreto, podemos adoptar una separación de juntas transversales de 2.60ml y juntas longitudinales de 3.20 metros.

4.4 Costos de construcción

4.4.1. Metrado de la estructura de la pavimentación rígida.

En la **Tabla 30** se observa los Metrados para la subbase granular, así como para el pavimento de concreto, los cuales constituyen la estructura de la pavimentación de concreto, de tal forma que los Metrados se encuentran conforme a las metodologías de AASHTO y PCA.

Tabla 30.Metrado de la estructura del pavimento para metodología AASHTO y PCA

Método de diseño	Estructura de pavimento	Espesor	Longitud	Ancho (Carril)	Cunetas	Volumen Total
PCA	Subbase	0.15	249.55	2.60	37.4325	232.0815
	granular				m3	m3
	Losa de	0.24	249.55	2.60	59.892 m3	371.3304
	concreto					m3
AASHTO	Subbase	0.15	249.55	2.60	37.4325	232.0815
	granular				m3	m3
	Losa de	0.19	249.55	2.6	47.4145	293.9699
	concreto				m3	m3

Nota. Elaboración propia

Precios unitarios en el pavimento

Asimismo, se realizó el cálculo de los precios unitarios para los materiales que conformaran la subbase granular y losa de concreto (Pavimento rígido), la mano de obra que se utilizara, la maquinaria y el equipo que intervendrá. (ver **Tabla 31 y Tabla 32**).

Tabla 31.Precios para la subbase granular

Análisis de costos de pavimentos rígidos								
Análisis económico del diseño	de pavir	nento rígido	o - Precio un	itario de la sul	bbase			
Guía: Costos estimados								
Subbase granular E = 0.15 M								
Descripción	Unid	Cuadrilla.	Cantidad	Costo parcial	Costo total			
Rendimiento: 1 m3								
1. Materiales								
1.1. Materiales para la subbase	m3		1.2	S/26.98	S/32.38			
Transporte interno	m3		1	S/4.76	S/4.76			
Extracción de material de cantera	m3		1.1	S/7.25	S/7.98			
Chancado de agregados para subbase	m3		1	S/11.98	S/11.98			
Transporte de agua para la obra	m3		0.17	S/27.63	S/4.70			
Subtotal					S/61.79			
2. Mano de obra					S/2.31			
Ayudante	H-H	1	0.03088	S/15.00	S/0.46			
Capataz	H-H	1	0.00772	S/27.90	S/0.22			
Chofer	H-H		0.00772	S/21.67	S/0.17			
Operador de equipo pesado	H-H		0.0772	S/18.98	S/1.47			
Herramientas				5%	S/0.12			
3. Equipo y maquinaria					S/18.92			
Camión cisterna 10000 LTS	H-M		0.029	S/225.65	S/6.54			
Compactadora manual rodillo liso 8HP	H-M		0.0154	S/187.65	S/2.89			
Compactadora para de cabra	H-M		0.00772	S/278.54	S/2.15			
Moto niveladora 120 Hp 125 Hp	H-M		0.0154	S/476.54	S/7.34			
Total					S/83.14			

Tabla 32. Precios unitarios de la losa de concreto

Análisis de costos de pavimentos rígidos - Precio unitarios del concreto							
Guía: Costos estimados							
Descripción	Unida d	Cuadrill a	Cantidad	Costo parcial	Costo total		
Concreto F'c. 280 Kg/Cm2 Losa	•	•		•			
Rendimiento: 25 m3							
Unidad: m3							
1. Materiales					S/277.58		
Arena gruesa clasificada	m3		0.5	S/55.23	S/27.62		
Cemento portland (42.5 Kg)	Bls		13	S/15.67	S/203.71		
Piedra chancada de 1/2" - 3/4"	m3		0.8	S/54.32	S/43.46		
Gasolina 84 octanos (Grifo primax)	gal		0.12	S/11.76	S/1.41		
Aceite motor gasolina SAE 30w	gal		0.004	S/38.22	S/0.15		
Grasa Múltiple EP	Lb		0.008	S/11.43	S/0.09		
Agua	ml		0.18	S/6.34	S/1.14		
2. Mano de obra					S/101.94		
Capataz	H-H	1	0.064	S/26.23	S/1.68		
Operario	H-H	1	0.64	S/21.86	S/13.99		
Oficial	H-H	1	0.64	S/17.51	S/11.21		
Peón	H-H	1	3.84	S/15.78	S/60.60		
Operador equipo	H-H		0.64	S/22.61	S/14.47		
Herramientas	1			5%	S/5.10		
2. Maguinaria y Equipa					S/20.87		
Maquinaria y Equipo Mezcladora de concreto T. Tambor 23	H-M		0.32	S/26.21	S/8.39		
Hp 11-12P3	1 1-101		0.32	3/20.21	3/0.38		
Cortadora de pavimento	H-M		0.04744	S/15.12	S/0.72		
grupo electrógeno 150 Kva	H-M		0.04744	S/179.73	S/8.53		
Regla moduladora BT 90D	H-M		0.04744	S/26.04	S/1.24		
Vibrador de hormigón 4Hp, 2.40 pulg.	H-M		0.32	S/6.27	S/2.01		
Total					S/405.49		

4.5 Resultados de la mecánica de suelos

4.5.1. Granulometría

Resumen de ensayo de granulometria Ver Tabla 33.

Tabla 33. Tipo de suelo.

% Grava	90.2			
% Arena	4.1			
% Finos	5.7			
Clasificación (SUCS)	GM			
Clasificación (AASHTO)	A-1-B(0)			
Descripción (AASHTO)	BUENA			
Índice de grupo	0			
Descripción: Grava limosa				

Nota. Elaboración propia

4.5.2. Límites de Atterberg

Tras realizar los ensayos correspondientes se calcularon los valores del límite líquido, el límite plástico y el cálculo del índice de plasticidad.

Limite líquido

Los valores arrojados por el límite liquido en cada uno de sus ensayos correspondieron a valores desde 29.01% para 17 golpes, 28.37% para 26 golpes y de 26.99% para 37 golpes. (Ver **Tabla 34**). Por lo tanto, el límite liquido será de 28.10%.

Tabla 34. Limite liquido (LL)

Limite Liquido								
Descripción Unid 1 2 3								
Numero de golpes	N	17	26	37				
Contenido de humedad(W) % 29.01 28.37 26.99								

Limite plástico

Para el cálculo del límite plástico (LP) se desarrolló un total de 2 ensayos en el cual el % promedio LP se calculó en 25.10% (Ver **Tabla 35**).

Tabla 35.limite plástico (LP)

limite plástico (LP)					
Descripción	1	2			
Promedio limite plástico %	25.10				

Nota. Elaboración propia

Índice de plasticidad

Habiendo calculado los valores del límite liquido (LL) y el límite plástico (LP) se procedió a realizar el cálculo del índice de plasticidad el cual se determinó en IP = 3%.

4.5.3. Compactación Proctor modificado

Se obtienen los resultados tales como optimo contenido de humedad de 9.2% y una máxima densidad seca de 1.99 gr/cm3 (Ver **Tabla 36**).

Tabla 36. Compactación Proctor modificado

	Proctor mod	lificado		
Descripción	1	2	3	4
Promedio contenido de humedad (%)	7.1	8.2	9.3	10.5
Densidad seca máxima: Ds (gr/cm3)	1.93	1.98	1.99	1.95

4.5.4. California Bearing Ratio (CBR)

El ensayo se realizó con 3 moldes de características tales como una densidad húmeda desde 1.914 gr/cm³ hasta 2.18 gr/cm³ y una densidad seca desde 1.752 gr/cm³ hasta 12.021 gr/cm³. (ver **Tabla 37**).

Tabla 37. Compactación de CBR al material de la Av. Ejercito – Andahuaylas

	Comp	actac	ión d	e CBR					
Car	racterí	sticas	de lo	s mol	des				
Numero de Moldes		M1			M2			М3	
Densidad húmeda (gr/cm3)	2.18	2.	14	1.98	1.	99	1.91	1.9	92
	Conte	nido c	le hun	nedad					
Ensayo N°	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2	3-3
Densidad seca (gr/cm3)		2.02			1.87			1.76	

Nota. Elaboración propia

Asimismo, el ensayo de carga de penetración de suelo se desarrolló con 3 moldes (ver **Tabla 38**).

Tabla 38. Carga de Penetración suelo natural

Penetra ción	Carga stand.		Molde	N°1			Molo	le N°2			Мо	olde l	V°3	
(mm)	Kg/cm2	Carga	Со	rrección		Cai	rga	Correccio	ón	Car	ga	C	orrección	
		Dial	Kg/	Kg/c	%	Dial	Kg/c	Kg/cm	%	Dial	Kg/ci	m2	Kg/cm	%
			cm2	m			m2							
2.54	70.31	40	10.1	23.79		16	4.0	6.2		15	3.8	3	4.25	
5.08	105.46	96	24.1	36.13		30	7.5	11.65		16	4.0)	7.83	

Además, se realizó la determinación del % de CBR y la densidad seca máxima (Ds) de cada uno de los moldes, donde se obtiene valor final una densidad máxima seca de 1.88 gr/cm^{3,} dando como resultado un CBR a 0.1" de 27.2%. (**Ver Tabla 39**).

Tabla 39.CBR y densidad seca

Ensayo	CBR y densidad seca					
Esfuei	erzo para 01" y 02" de penetración					
Molde N°	Mold	e N° 01	Molde	<i>N° 02</i>	Molde	N° 03
Penetración (")	0.1"	0.2"	0.1"	0.2"	0.1"	0.2"
CBR (%)	23.8	36.10	6.2	11.7	4.3	7.8
DS (gr/cm3)	2	.02	1.	87	1.	76

Nota. Elaboración propia

4.5.5. Tránsito vehicular del estudio

La vía durante el periodo de vida útil estará expuesta a carga vehicular, por tal motivo para su diseño es importante el estudio de tránsito vehicular y los datos estadísticos de tránsito. En la **tabla 40**, constatamos que en la vía de estudio el tránsito de vehículos ligeros es alto y el tránsito de vehículos pesados es baja. (Ver **Tabla 40**).

Tabla 40. Estudio de trafico

		_	CULOS ROS		В	JS	CAMIO	NES UNI	TARIOS		SEMITI	RAILER	
Sent.	Autos	Pick up	C. Rural	Micros	2E	3E	2E	3E	4E	2S1/2S2	2S3	3S1/3S2	>=3S3
Ε	3491	321	80	15	20	4	52	10	3	4	2		3
S	3379	343	70	6	25	4	53	13	2	2	2		3
TOTAL	6870	664	150	21	<i>4</i> 5	8	105	23	5	6	4		6
%	86.89%	8.40%	1.90%	0.27%	0.57%	0.10%	1.33%	0.29%	0.06%	0.08%	0.05%		0.08%
IMD	981.42	94.857	21.429	3	6.4286	1.1429	15	3.2857	0.7143	0.8571	0.5714		0.8571
IMD	981.42	94.857	21.429	3	6.4286	1.1429	15	3.2857	0.7143	0.8571	0.5714		0.8571
IMD TOTAL	981	95	21	3	7	2	15	4	1	1	1		1

4.5.6. Costos de la construcción

En la **Tabla 41** Obtenemos el costo con la metodología PCA de S/.169,866.01. Asimismo, la metodología AASHTO con un costo de S/138,497.10. Con una diferencia de costo de construcción de S/.31,368.91 en la estructura del pavimento.

Tabla 41. Análisis de costos

A	Análisi	s de costos	s pavimo	ento rí	gido			
Estudio	Aná	álisis econó	mico co		ativo d	del diseñ	o de pa	avimento
Descripción	Unic ad	Pavimento rígido - Método Pavimento rígido - AASHTO Método PCA						
		Cantid ad	Pu (S/.)	Co: par	sto cial	Canti dad	Pu (S/.)	Costo parcial
Subbase estabilizada granulométricamente	m ³	232.08 15	83.14	S/19 2	,295. 5	232.0 815	83.1 4	S/19,295 .25
Pavimento de cemento portland	m ³	293.96 99	405.4 9	S/119	,	371.3 304	405. 49	S/150,57 0.76
Total	S/138,497.10 S/169,866.01				1			

V. DISCUSIONES

Con respecto al análisis de costos se observa que la aplicación de la metodología AASHTO conlleva aún menor inversión, obteniendo resultados superiores a los obtenidos en la metodología PCA, tal y como podemos observar en la **tabla 41** los costos de la metodología AASHTO es de S/.138,497.10 menor a la PCA. Tal como concluye Chávez (2018) indicando que la utilización del pavimento rígido supera en rentabilidad y durabilidad al diseño de pavimentos flexibles.

En el cálculo para el espesor del pavimento asumiendo un e= 24 cm (**Tabla 29**), se observa que la suma del consumo de fatiga es de 0.00% y el daño por erosión es de 0.27%, los cuales sumados no superan el 100% lo cual indicara que es mucho mayor el número de repeticiones admisible al número de repeticiones esperadas. Por lo tanto, el cálculo de espesor asumido es factible para el periodo de diseño seleccionado.

Los metrados realizados para la estructura del pavimento se encuentran acorde al diseño por los métodos AASHTO y PCA. (**Tabla 30**). El tramo de este proyecto es de 249.55 ml. en la Avenida Ejercito – Andahuaylas.

Tabla 31 se realizó los precios unitarios para la mano de obra, los materiales que conforma la estructura del pavimento, equipo y maquinaria. Se obtuvo los costos de construcción de la revista de costos y presupuesto. (**Tabla 32**) se obtuvo el análisis y los datos estadísticos del tránsito.

VI. CONCLUSIONES

Tras los datos encontrados producto de la presente investigación se estableció, que el diseño de pavimentos rígido con la metodología AASHTO con lleva aún menor espesor de losa de concreto, de tal manera que se contrasta la hipótesis de la investigación, determinando que existe una comparación significativa entre las metodologías AASHTO y PCA para el diseño de pavimentos rígidos, sin embargo debido a los parámetros de fatiga y la erosión el espesor de losa determinado en la metodología AASHTO no cumplirá estos factores.

Los estudios de mecánica de suelo realizados en la Av. Ejercito – Andahuaylas – Apurímac, son los siguientes: límite liquido de 28.10%, límite plástico de 25.10% y el índice de plasticidad con 3%. Así mismo se obtuvo la máxima densidad seca de 1.995 gr/cm3 y a una penetración de 0.1" de 23.8% el CBR. De las muestras ensayadas en laboratorio se determinó que los resultados son óptimos para un diseño de pavimento rígido.

El estudio de tráfico en la vía pública Avenida Ejercito – Andahuaylas se encontraron los siguientes datos: el número de vehículos ligeros representan al 97.17% y los vehículos pesados al 2.83% del total de vehículos. Indicando la poca transitabilidad de los vehículos pesados el daño que ocasionará a la vía será menor.

Se obtuvo un espesor de losa de concreto de 24 cm para un diseño por la metodología PCA; Así mismo en el diseño por el método de AASHTO se obtuvo un espesor de 19 cm. Determinando que hay cambios significativos en los espesores de diseño de pavimento mediante los métodos para el diseño de la estructura del pavimento.

El análisis de costos de la estructura pavimento se determinó que por la metodología de PCA un costo de S/ 169,866.01 nuevos soles. Asimismo, para la metodología AASHTO un precio de S/ 138,497.10 soles, teniendo una diferencia

de S/ 31,368.91 soles, concluimos que, nuestra mejor alternativa seria la metodología AASHTO.

VII. RECOMENDACIONES

Asimismo, se recomienda que se pueda desarrollar espesores mínimos de la losa y que a su vez tengan en cuenta el tránsito vehicular, se utilice diversos módulos de rotura de un valor mayor.

Para evitar la acumulación de humedad en las superficies, así como su infiltración, se recomienda que se opte por un acabo homogéneo el cual haya seguido un correcto control de topografía al momento de la colocación de la capa.

Asimismo, para evitar lo anteriormente mencionado, la contemplación de la variable climática es importante siendo el estado de tiempo atmosférico durante el proceso constructivo el más importante, puesto que este considera el régimen de lluvias de la zona a trabajar. Además, si existiera lluvias durante la construcción de la vía esta se deberá recubrir para evitar su deterioro prematuro y no comprometer la durabilidad del mismo.

Se recomienda para el proceso constructivo considerar la variable del clima en la zona, por la presencia de lluvias, se recomienda cubrir el concreto para evitar el lavado de la superficie que afecte la durabilidad del concreto.


REFERENCIAS

- AASHTO (1993). Guide for desing of pavement structures. Estados Unidos: American Association Of State Highway And Transportation Officials.
- ASOCEM, A. d. (2014). Pavimentos de hormigón: Una alternativa inteligente y sostenible. Lima: IECA Instituto español del cemento y sus aplicaciones
- Porland Cement Association (1984). Metodología del diseño de Cemento Porland. Estados Unidos: PCA.
- AUSTROADS (2004). Technical basis of Autroads Pavement Desing Guide.

 Australia: National Library of Australia.
- Borja, M. (2012). Metodología de investigación para ingenieros. Perú: Universidad Nacional de Chiclayo.
- Botto, R. y Santacruz, P. (2017). Evaluación de las propiedades en estado fresco y endurecido de un concreto para uso en pavimento rígido, adicionado con nanocompuestos de carbono [Tesis de maestría, Pontificia Unidad javeriana]. https://bit.ly/32lzrGT
- Chauveinc, J. A. (2011). Estudio experimental de propiedades mecánicas de hormigones con árido reciclado mediante la modificación del método de mezclado del hormigón. Santiago de Chile: Universidad de Chile
- Chávez, A. (2018). Análisis comparativo entre el pavimento flexible y pavimento rígido en el tramo Mullaca a Chavín [Tesis de grado, Universidad Cesar Vallejo].
- Correo, R. (2020). CCL: El 80% de las carreteras del Perú está en mal estado. Recuperado el 26 de octubre de 2020.

- Deng, Y. y Yang, Q. (2017). Rapid evaluation of a transverse crack on a semi-rigid pavement utilizing deflection basin data. Road Materials and Pavement Design, 20(4), 929-942.
- Gallarda, R., Martínez, C. y Muñoz, A. (2020). Characterization of plastic soil for stabilization with cementing. Universidad Francisco de Paula, 25(2), 1-8.
- Hernandez, J. (2020). Effect of joint rotation on cursling responses in airfield rigid pavements. International Journal of Pavement Engineering. (2020), 833-856.
- Hernández, R., Fernández, C. y Baptista P. (2014). Metodología de la investigación científica. Mexico: Mc-GrawHill.
- HUANG, Yang (2004). Pavement Analysis and Design. (2º.ed.). Estados Unidos: Pearson Prentice Hall.
- Instituto de Cemento Porland (2016). Recubrimiento de Hormigón. Argentina: Instituto de Cemento Porland.
- Instituto de construcción y gerencia (2016). Concreto Armado. Perú: ICG
- Jimenez, M. y Valverde, M. (2018). *Diseño comparativo entre pavimento flexible y rígido en el tramo de Pariahuanca San Miguel de Aco, Ancash 2018* [Tesis de grado, Universidad Cesar Vallejo]. https://bit.ly/3347Ccn
- JUÁREZ, Omar e INZUNZA, Marco. (2011). Guía práctica de estabilización y recuperación de pavimentos con cemento portland en México. México: Asociación Mexicana de Ingeniería de Vías Terrestres A.C
- Kolesnikov, A. y Tolmacheva, T. (2019). Ways to Minimize Volume (Weight) and Increase the Bearing Capacity of Rigid Pavement. Civil Engineering Journal, 11(5), 1-7.

- Mela, L., Hilarío, E., Silva, D. y Costa, A. (2017). Adição de uma associação polimérica a um solo argilo-arenoso com vistas à estabilização química de materiais para pavimentos. Matéria, 22(3), 1-13.
- Milind, V. y Kadam, K. (2016). A comparative study on rigid and flexible pavement: a review. IOSR Journal of mechanical and civil engineering, 13(3), 84-88.
- MINCETUR (2015). *Guía de orientación al usuario del transporte terrestre*. Editorial: Ministerio de Comercio Exterior y Turismo
- Priano, C., Marfil, S. y Señas, L. (2016). Patología de un pavimento rígido de la ciudad de Bahía Blanca (Provincia de Buenos Aires), *CICDigital*, *3*(12), 1-49.
- Rengifo, M. (2017). Influencia de la calidad de concreto reciclado, en la resistencia de un pavimento rígido, Jr. Sargento Lores, distrito Morales San Martín 2017 [Tesis de grado, Universidad Cesar Vallejo]. https://bit.ly/38KWwMJ
- Rondón, H. y Reyes, F. (2015). *Pavimentos Materiales, construcción y diseño*. Ecoe Ediciones.
- Shaban, A., Alsabbagh, A., Wtaife, S. y Suksawang, N. (2019). Effect of pavement foundation materials on rigid pavement response. IOP Publishing Ltd. 671(3), 4-6.
- Tadeu, J. (2016). Pisos de concreto. Brasil: Cámara Brasileira do Livro.
- UMSS Universidad Mayor de San Simón. (2004). Manual Completo Diseño de Pavimentos. Bolivia: Facultad de Ciencias y Tecnología.
- Universidad Nacional de México (1999). Diseño estructural de pavimentos asfalticos, incluyendo carreteras de altas especificaciones. México: Universidad Nacional de México.

Anexo 01. Matriz de consistencia

Problema	Objetivo	Hipótesis	Variable	Metodología	Población
General	General	General	Variable independiente	Tipo de investigación:	
¿Se puede desarrollar una Comparación entre metodología AASHTO y PCA en el diseño de pavimento rígido en la Avenida Ejército, Andahuaylas - Apurímac, 2020?	Realizar la comparación entre las metodologías AASHTO y PCA en el diseño de pavimento rígido en la Avenida Ejército en Andahuaylas- Andahuaylas-Apurímac, 2020	Existe comparación significativa entre las metodologías AASHTO y PCA en el diseño de pavimento rígido en la Avenida Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020	Metodología AASHTO	Aplicada	
Específicos	Específicos	Específicos	Variable dependiente	Diseño de investigación:	
¿Se puede determinar las propiedades mecánicas de la subrasante en la Avenida Ejército en Andahuaylas-Andahuaylas- Apurímac, 2020?	Determinar las propiedades mecánicas de la subrasante en la Avenida Ejército en Andahuaylas- Andahuaylas-Apurímac, 2020	Se puede determinar las propiedades mecánicas de la subrasante en la Avenida Ejército en Andahuaylas-Andahuaylas- Apurímac, 2020			La población y muestra de la investigación será la Avenida Ejercito del distrito y Provincia de Andahuaylas, Región
comparación del espesor del	espesor del pavimento a través de las metodologías AASHTO y PCA en la Avenida Ejército en	Existe comparación significativa entre el espesor del pavimento a través de las metodologías AASHTO y PCA en la Avenida Ejército en Andahuaylas-Andahuaylas-Apurímac, 2020	Metodología PCA	Experimental	Andahuaylas, Región Apurímac
los pavimentos para las metodologías AASHTO y PCA en la	Determinar la comparación del costo de los pavimentos para las metodologías AASHTO y PCA en la Avenida Ejército en Andahuaylas- Andahuaylas-Apurímac, 2020	Existe comparación significativa entre el costo de los pavimentos para las metodologías AASHTO y PCA en la Avenida Ejército en Andahuaylas-Andahuaylas- Apurímac, 2020			

Canstructora, Laboratorio de Mecánica de Suelos, Concreta y Asfallo para Ingeniería Civil

ESTUDIO DE SUELOS CON FINES DE TESIS

PROYECTO:

COMPARACIÓN ENTRE METODOLOGÍA AASHTO Y PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS-ANDAHUYLAS -APURÍMAC, 2020

UBICACIÓN:

DISTRITO DE ANDAHUAYLAS - PROVINCIA DE ANDAHUAYLAS - REGIÓN APURIMAC

ANDAHUAYLAS, 15 OCTUBRE DEL 2020

APURIMAC PERU

ENSAYO DE ANALISIS GRANULOMETRICO POR TAMIZADO MTC E 107-200

IDENTIFICACIÓN:

C1 / M1

PROGRESIVA (m):

0 + 249.55

PESO DE LA MUESTRA SECA (gr):

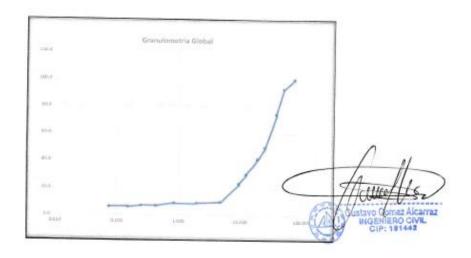
3061.0

PESO DE LA MUESTRA LAVADA Y SECADA (gr)

2885.0

PESO DE FINOS LAVADOS (gr)

176.0


Muestra					04 1344
Progresnia (Km)	•				C1/M1
Profundidad (m)	L	_			0 + 420
r rosunordad (m)	×				0.25 - 1.50
Tamiz	Abertura (mm)	Pesa Retenido (gr)	(%) Parcial Retenido	(%) acumulado Retenido	(%) acumulado que pasa
3*	75.000				100.0
2"	50.000	224.0	7.3	7.3	92.7
1 1/2"	37.500	568.0	18.6	25.9	74.1
- 1"	25 000	750.0	24.6	50.4	49.6
3/4"	19.000	259.0	8.5	58.8	41.2
1/2"	12.500	331.0	10.8	69.7	30.3
3/8"	9.500	213.0	7.0	76.6	23.4
1/4"	6.250	0.0	0.0	76.6	23.4
N*4	4.760	416.0	13.6	90.2	9.8
N°10	2 000	32.0	1.0	91.2	8.8
14"20	0.850	0.0	0.0	91.2	8.8
N°40	0.425	60.0	2.0	93.2	6.8
N'80	0.250	0.0	0.0	93.2	6.8
N°100	0.160	29.0	0.9	94.2	5.8
N'200	0.075	3.0	0.1	94.3	5.7
FONDO		176.0	5.7	100.0	0.0
TOTAL			100.0		

Dynaman (IV)	11.				Q-1 1 (6) 1
Progresna (Km)	-				0 + 420
Profundidad (m)	×				0.25 - 1.50
Tamiz	Abertura (mm)	Peso Retenido (gr)	(%) Parcial Retenido	(%) acumulado Retenido	(%) acumulado que pasa
3"	75.000				100.0
2"	50.000	224.0	7.3	7.3	92.7
1 1/2"	37.500	568.0	18.6	25.9	74.1
- 1"	25.000	750.0	24.6	50.4	49.6
3/4"	19.000	259.0	8.5	58.8	41.2
1/2"	12 500	331.0	10.8	69.7	36.3
3/8	9.500	213.0	7.0	76.6	23.4
1/4"	6.250	0.0	0.0	76.6	23.4
N*4	4.760	416.0	13.6	90.2	9.8
Nº10	2 000	32.0	1.0	91.2	8.8
14"20	0.850	0.0	0.0	91.2	8.8
N°40	0.425	60.0	2.0	93.2	6.8
N'60	0.250	0.0	0.0	93.2	6.8
N°100	0.160	29.0	0.9	94.2	5.8
N.500	0.075	3.0	0.1	94.3	5.7
FONDO		176.0	5.7	100.0	0.0
TOTAL			400.0		

% GRAVA	90.2	Gruesa	58.8
	Fina	Fina	31.4
		Gruesa	
% ARENA	4.1	Media	4.1
		Fina	
% FINOS	5.7		6.7

Clasificación (SUCS)	GM
Clasificacion (AASHTO)	A-1-B(0)
Descripcion (AASHTO)	BUENA
Descripcion GRAVA LIMOSA	1

Contenido de Humedad (%)	6.8
Limite Liquido (LL) (%)	28.1
Limite Plastico (LP) (%)	25.1
Limite Contraccion (LC) (%)	
Indice Plastico (IP) (%)	3.0

ENSAYO DE LIMITE DE CONSISTENCIA

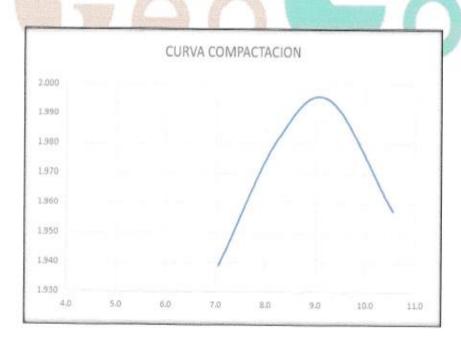

LIMITE LIQUIDO (LL) MTC E 110-2000

NUMERO DE GOLPES, N		17	20	67
		11	26	37
N° DEL DEPOSITO		1	2	3
PESO DEL SUELO HUMEDO + DEPOSITO	(g)	34.03	33.2	32.3
PESO DEL SUELO SECO + DEPOSITO	(g)	29.44	29.01	28.47
PESO DEL AGUA	(g)	4.59	4.19	3.83
PESO DEL DEPOSITO	(g)	13.62	14.24	14.28
PESO DEL SUELO SECO	(g)	15.82	14.77	14.19
CONTENIDO DE AGUA (w%)		29.01	28.37	26.99

LIMITE PLASTICO (LP) MTC F

EMITE PEASITED (EP) WITCE							
	1	2	-355				
(g)	25	26.04					
	24.29		-				
-	0.71						
(g)	21.42	22 19					
(g)	2.87						
1000	0.71						
	24.74	17000					
	(g) (g) (g)	(g) 25 (g) 24.29 (g) 0.71 (g) 21.42 (g) 2.87 0.71 24.74	(g) 25 26.04 (g) 24.29 25.26 (g) 0.71 0.78 (g) 21.42 22.19 (g) 2.87 3.07 0.71 0.78				

LIMITE LIQUIDO	28.1	9
LIMITE PLASTICO	25.1	9,
INDICE DE PASTICIDAD	3	o.



ENSAYO DE COMPACTACION DE PROCTOR MODIFICADO MTC E 107-2000

METODO DE COMPACTACION	C	VOLUMEN DEL	MOLDE	2133	cm3	MOLDE N°	3
COMPACTACION							
N° ENSAYO		1	2	3	4		
PESO MOLDE + SUELO	(g)	10987	11135	11209	11175		
PESO MOLDE	(g)	6560	6560	6560	100000000000000000000000000000000000000		
PESO SUELO COMPACTADO	(g)	4427	4575	4649	4615		
DENSIDAD HUMEDA	(g/cm3)	2.075	2.145	2.180			
CONTENIDO DE HUMEDAD							
RECIPIENTE N°		0	0	0	0		
PESO SUELO HUMEDO + TARA	(g)	516	512	519	524		
PESO SUELO SECO + TARA	(g)	482	473	475	474		
PESO DEL AGUA	(g)	34	39	44	50		
PESO DEL RECIPIENTE	(g)	0	0	0	0		
PESO DEL SUELO SECO	(g)	482	473	475	474		
CONTENIDO DE HUMEDAD	(%)	7.1	8.2	9.3	10.5		
DENSIDAD SECA		1.939	1.981	1.995	1.957		

Gestavo Gosta Alcarraz Ingenizao civil. Gily 191442

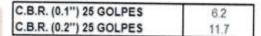
ENSAYO DE CBR (CALIFORNIA BEARING RATIO: ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA)

Molde nº		1		2		3		
N° de capa		5		5				
golpe por capa		56		25		12		
Cond. De la muestra			SATURADO		SATURADO	NO SATURADO	CATURADO	
Compactacion				THE SHITTERS OF	an ionnibo	NO SHIONADO	an TURNUU	
Peso molde + peso humedo	(g)	11209	11125	12985	12996	12154	12169	
Peso de molde	(g)	6560	6560				8036	
Peso del suelo humedo	(g)	4649	THE RESIDENCE	2000				
Volumen del molde	cm3	2133	-		2151	2151	2151	
Densidad humeda	(g/cm3)	2.18	The second second	1 986	1.991	1 914	The second second	
Contenido de humedad	-		3.17.7	7.000	1.00.1	1.014	1.02.1	
Recipiente N°								
Tara + suelo humedo	(g)	519	447.6	519	391	519	350.4	
Tara + suelo seco	(g)	475	422.6	0.10	368.9		321.7	
peso del agua	(g)	44	25	1111	22.1	44	28.7	
Tara	(g)			- 13	22.1	44	20.1	
Peso del suelo seco	(g)	475	422.6	475	368.9	475	321.7	
Humedad	%	9.26	5.92	9.26	5.99	9.26	8.92	
Densidad seca	(g/cm3)	1.995	2.021	1.818	1.879		1.764	

	SIN EXPANSION										
FECHA	hora	Tienpo	Dial	Expansion		Dial	Expansion		Dial	xpansion	
1,100,000				resm	%		mm	%	-	mm	16
15/10/2020	89:00	. 0	0.00	0.00	0.000	0.00	0.00	0.000	0.00	0.00	0.00
16/10/2020	09:00	24	5.00	0.05	0.039	7.00	0.07	0.055	10:00	0.10	0.07
17/10/2020	09:90	48	7.00	0.07	0.055	9.00	0.09	0.710	12.00	0.12	0.09
18/10/2020	09:00	72	9.00	0.09	0.071	11 00	0.11	0.097	14.00		

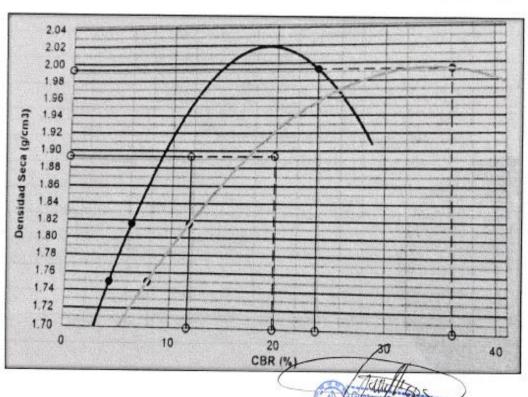
			2		PENE	TRACION			74				100	
PENETRACIO		MOLDEN			1	1	MOLDE N	+		2	MOLDE N			
N (MM)		CARGA COR		CORRECCION		CARGA	CORR	ECCION					CORR	ECCION
	CARGA STAND.Kg/cm2	Dist (div)	kg/cm2	kg/cm2	%	Dal (div.)	kg/ em2	kg/cm2	74	Dial (div.)	kg/ cm2	kgiom2	1%	
0		0	0			0	0.			0	0			
0.64		14	3.6			10	7.5			1 6	13		_	
1.27		20	5			9	23			1	18		_	
1,91	Law Control	33	83			13	33			10	25		_	
254	70.31	40	10.1	23.79		15	1	62		16	1 2	425	+	
3.81	7	50	12.6	-		28	,	- 44	_	19	48	9,60	-	
5.08	105.46	96	24.1	36.13		30	7.5	11.65	-	16	4.0	7.81	-	
6.35		175	44		_	70	17.6	.11700	+	45	113	1.03	-	
7.62		198	49.8		_	112	28.1	+	+	85	21.4	-	-	
8.89		200	50.3		_	145	38.4	_	+	56		-	\leftarrow	
10.16		1	-			140	29,9	-	-	36	24.6		-	
11.43					-			-	-	-	-	-	-	
12.7				1	1	-			+	-	-		-	

Gustava Gomez Alcarraz


ENSAYO DE CBR (CALIFORNIA BEARING RATIO) RESULTADOS OBTENIDOS Y GRAFICO

C.B.R. AL 100% DE M.D.S. 0.1"	23.8
C.B.R. AL 90% DE M.D.S. 0.1"	11.7

C.B.R. AL 100% DE M.D.S. 0.2"	36.1
C.B.R. AL 90% DE M.D.S. 0.2"	19.8


DATOS DE PROCTOR		
Densidad Seca	1.995	g/cm2
Humedad Opt.	9.2	96

C.B.R. (0.1") 56 GOLPES	23.8
C.B.R. (0.2") 56 GOLPES	36.1

C.B.R. (0.1") 12 GOLPES	4.2
C.B.R. (0.2") 12 GOLPES	7.8

Anexo 03. Estudio de trafico

ESTACION C-1 FECHA 09/11/2020

PROYECTO "COMPARACIÓN ENTRE METODOLOGÍA AASHTO Y PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS - APURÍMAC, 2020"

				CA	MIONET	AS		Bl	JS	C	AMION				SEMIT	RAYLE	R			TRAY	LER	
HORA	SENTIDO	AUTO	STATION VAGON	PICK UP	PANEL	RURAL Combi	MICRO	B2	B3	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	2T2	2Т3	3T2	3T3
DIAGE	RA.VEH.				7.6		, ,	#	, ,,	, 	a 	20 	, \	,. ,4	7(V - 4-1)	,	8 71 €		4	<u>4</u>	8 5 5	N 1 2 2 3
00-01	E S	3																				
01-02	E S	2 2																				
02-03	E S	2 2																				
03-04	E S	1																				
04-05	E S	3																				
05-06	E S	6		2																		
06-07	E S	20 15		1		1					1											
07-08	E S	30 33		6 7		2		1	2		3				1							
08-09	E S	40 37		3 2					2													
09-10	E S	28 29		3		2					1	2										
10-11	E S	23 27		2 2		_					2											
11-12	E S	27 25		3								1										
12-13	E S	38 34		3				1														
13-14	E S	35 35		2 2																		
14-15	E	33 30		1 2																		
15-16	E S	34 30		1 2						2												
16-17	E S	25 27		3 3							1											
17-18	E S	28 27		4 3						1												
18-19	Е	26		4						'												
19-20	S E S	30 30 33		2 3		2																
20-21	Е	34		2																		
21-22	S E S	34 22 23		2																		
22-23	E	11 12		-																		
23-24	E	7																				
PAR	CIAL:	0 1013	0	75	0	9	0	2	4		10	3	0	0	2	0	0	0		0	0	0

FECHA: 10/11/2020

			STATION	CA	MIONET			BL	IS	C	AMION				SEMI T	RAYLE	R			TRAY	LER	
HORA	SENTIDO	AUTO	WAGON	PICK UP	PANEL	RURAL Combi	MICRO	B2	В3	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	2T2	2T3	3T2	3T3
DIAGR	A.VEH.				100		ļ, Iγ.		ارمانی ارمانی	ş <u>1</u> 2	* - [- [4	, 4	797 5 T	با ر	,, , ,	75 M	 	a e : 5	7 18 S	0 4 B 4
00-01	E S	3																				
01-02	E S	2 2																				
02-03	E S	2 2																				
03-04	E S	1																				
04-05	E S	3 3																				
05-06	E S	6 5		1																		
06-07	E S	20 15		1		1					1											
07-08	ES	23 21		6 7		2 1		1	2		3				1							
08-09	E S	25 15		3 2					2													
09-10	E S	27 24		3 1		2					1	1										
10-11	E	25 27		2 2							2											
11-12	E S	30 28		3								1										
12-13	E S	33 30		3				1														
13-14	E S	35 38		2 2																		
14-15	E S	40 37		1 2																		
15-16	E S	30 33		1 2																		
16-17	E S	25 24		3 3							1											
17-18	5 5	24 23		4 3																		
18-19	E S	28 28		4 3																		
19-20	E S	29 30		2 3		1																
20-21	E S	25 25		2																		
21-22	E S	15 10		2																		
22-23	E S	12 10																				
23-24	E S	8 7																				
PAR	CIAL:	918	0	74	0	8	0	2	4	0	10	2	0	0	2	0	0	0	0	0	0	(

ESTACION C-1 FECHA: 11/11/2020 "COMPARACIÓN ENTRE METODOLOGÍA AASHTO Y PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS - APURÍMAC, 2020" PROYECTO CAMIONETAS BUS CAMION SEMI TRAYLER TRAYLER STATION WAGON PICK UP PANEL RURAL MICRO HORA SENTIDO AUTO B2 В3 C2 C3 C4 | T2S1 | T2S2 | T2S3 | T3S1 | T3S2 | T3S3 | 2T2 213 312 313 DIAGRA, VEH. ya - ya 🎉 00-01 2 S 7 Ε 3 01-02 S 4 Ε 02-03 6 S 4 1 03-04 Ε 3 S 2 04-05 Ε 3 2 S Ε 7 05-06 1 S 6 Ε 22 06-07 1 S 18 1 1 5 E S 07-08 20 3 1 21 3 Ε 2 08-09 22 S 22 Ε 25 1 09-10 S 25 1 10-11 Ε 5 26 1 S 28 3 1 Ε 11-12 21 4 1 S 27 5 E S 12-13 35 5 3 35 3 13-14 Ε 36 10 1 S 38 12 3 Ε 38 14-15 3 38 5 S 1 Ε 7 15-16 30 1 S 24 8 16-17 Ε 28 6 1 S 27 3 Ε 3 4 17-18 23 S 23 4 Ε 27 8 2 18-19 1 S 25 8 Ε 2 19-20 27 S 27 3 Ε 8 20-21 30 S 28 5 21-22 Ε 27 30 3

ESTACION C-1
PROYECT: "COMPARACIÓN ENTRE METODOLOGÍA AASHTO Y PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS - APURÍMAC, 2020"

FECHA: 12/11/2020

				CA	MIONE	AS		BL	IS	C	AMION				SEMIT	RAYLE	R			TRAY	LER	
HORA	SENTIDO	AUTO	STATION WAGON				MICRO		В3	C2	C3	C4	T2S1	T2S2	T2S3	T3S1	T3S2	T3S3	2Т2	2Т3	3T2	3T3
DIAGR	A.VEH.				T-10	0.0	Ç™ ij.			7	(4)°	<u>.</u>	, , 4		,,,, 4	,— _{v.} A	,		Ţ			# # # #
00-01	E S	4 7		2																		
01-02	E S	3 4																				
02-03	E S	6 4		1																		
03-04	E S	3 2																				
04-05	E S	3 2								1												
05-06	E S	7		1 2																		
06-07	E S	15 11		1		1																
07-08	E S	25 25		5 3		1	1	1 2		3 1								1				
08-09	E S	26 26		2						1												
09-10	E S	20 23		1 4						1	1											
10-11	E S	28 25		5 3				1		1								1				
11-12	E S	28 30		4 5		1		1		1												
12-13	E S	35 33		5 4						3												
13-14	E S	40 40		10 12				1		3												
14-15	E S	32 32		3 5				1		•												
15-16	E S	30 33		7 8				1		1												
16-17	E S	22 24		6 3				1		2												
17-18	E S	27 28		3 4						4												
18-19	E S	28 29		8 8		1				2												
19-20	E S	35 35		2 3		1		1		1												
20-21	E S	18 15		8 5		1		·														
21-22	E S	13 15		1 3		1																
22-23	Ĕ S	8		1 2		3 2																
23-24	E S	7 5		1		1																
PAR	CIAL:	923	0	155	0	16	1	11	0	29	1	0	0	0	0	0	0	2	0	0	0	0

ESTACION C-1 FECHA 13/11/2020
PROYECTC "COMPARACIÓN ENTRE METODOLOGÍA AASHTO Y PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS - APURÍMAC, 2020"

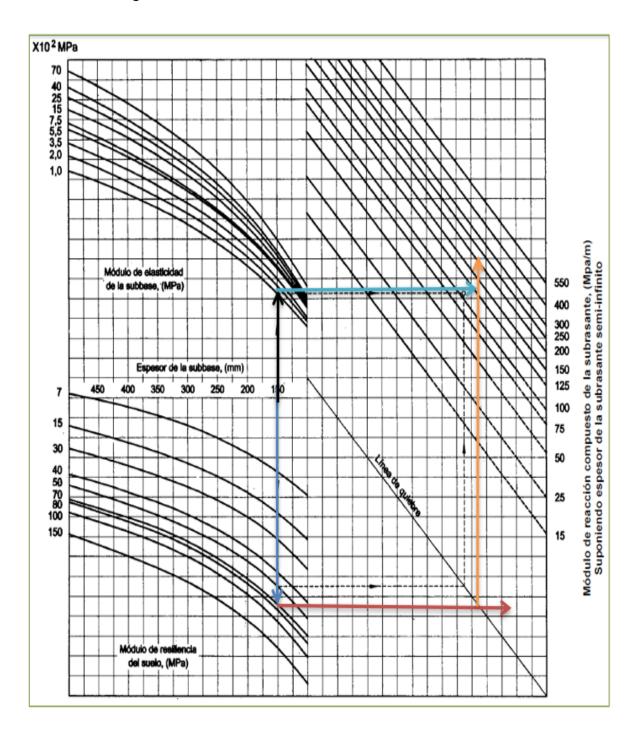
13/11/2020

			STATION	C/	MIONET	AS		BL	IS	0	AMION				SEMIT	RAYLER	R			TRA	(LER	
HORA	SENTIDO	AUT0	VAGON	PICK UP	PANEL	RURAL Combi	MICRO	B2	В3	C2	C3	C4	T2\$1	T2\$2	T2\$3	T3\$1	T3\$2	T3\$3	2T2	2T3	3T2	3T3
DIAGRA	A.VEH.				1	10 mm	[<mark>3]</mark> χ.	,	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Ş	* ÷		, _ 4	,4	75¢ 5 3	A	71 −71 ♣		,,,4	a e, 🕴		# 4 B F W
00-01	E S	4 7		2																		
01-02	E S	3 4																				
02-03	E S	6 4		1																		
03-04	E S	3 2																				
04-05	E S	3 2								1												
05-06	E S	7 6		1 2																		
06-07	E S	15 12		1 1		1																
07-08	E S	15 18		5 3		1	1	1 2		3								1				
08-09	E S	20 20		2						1												
09-10	E S	20 22		1 4						1	1											
10-11	E S	28 22		5				1		1								1				
11-12	E S	29 25		4 5		1		1		1												
12-13	E S	28 33		5 4						3												
13-14	E S	38 35		10 12				1		3												
14-15	E S	30 40		3 5				1														
15-16	E S	40 21		7 8				1		1												
16-17	E S	28 24		6 3				1		2												
17-18	E 5	33 30		3 4						4												
18-19	E S	31 35		8		1				2 1												
19-20	E S	32 34		2		1		1		1												
20-21	E S	30 33		8 5		1																
21-22	E S	30 15		1 3		1																
22-23	E S	10 8		1 2		3 2																
23-24	E S	8 0		1 1		1																
PARC		943	0	155	0	16	1	11	0	29	1	0	0	0	0	0	0	2	0	0	0	0

ESTACION C-1 FECHA 14/11/2020
PROYECTC "COMPARACIÓN ENTRE METODOLOGÍA AASHTO Y PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS - APURÍMAC, 2020"

14/11/2020

			STATION	CAI	MIONETA	18		Bl	J\$	C	AMION				SEMI T	RAYLE	R			TRA	YLER	
HORA	SENTIDO	AUT0	WAGON	PICK UP	PANEL	RURA L	MICRO	B2	ВЗ	C2	C3	C4	T281	T2\$2	T2\$3	T3\$1	T3\$2	T3\$3	2T2	2T3	3T2	3T3
DIAGRA					111	-0-0	ξ Į.	ابات دوا	امرانسوا اورونساور	ş <u>ı</u>	2 Å	w [4	,,4	7)(3 4	ب ر	, , , ,4	:: N		n 7: 1	a 1	# 4 F €
00-01	E s	3 2																				
01-02	ωп	2 2																				
02-03	E S	1				2																
03-04	E S	3 3				2																
04-05	Eσ	3 6		1		2	1															
05-06	E S	7 10				2	1															
06-07	E S	15 15		2		2 1	2															
07-08	E S	28 28				1 3							1									
08-09	E S	27 25		1		4 5	2	1														
09-10	E S	35 35		1		1				1												
10-11	Eσ	28 27		3		2	1			2												
11-12	E S	35 39																				
12-13	E S	40 38		1																		
13-14	E S	40 40		1		1				1												
14-15	E S	39 38		1		3		1		1			1									
15-16	E S	32 28		1																		
16-17	Es	36 35		2		2																
17-18	E S	30 36				2 4	1															
18-19	E S	35 30		3									1									
19-20	E S	33 37		1		1				1												
20-21	E S	39 15		1				1														
21-22	E S	15 10		1			1			1												
22-23	E S	8 3						1														
23-24	E S	3 1																				
PARC	CIAL:	1041	0	25	0	44	3	4	0	7	0	0	3	0	0	0	0	0	0	0	0	0


ESTACION C-1 FECHA: 15/11/2020
PROYECTC "COMPARACIÓN ENTRE METODOLOGÍA AASHTOY PCA EN EL DISEÑO DE PAVIMENTO RÍGIDO EN LA AV. EJÉRCITO, ANDAHUAYLAS - APURÍMAC, 2020"

			STATION	CAI	MIONET/	ıs		Bl	J\$	C	AMION				SEMIT	RAYLER	}			TRAY	LER	
HORA	SENTIDO	AUTO	VAGON	PICK UP	PANEL	RURA L	MICRO	B2	В3	C2	C3	C4	T2\$1	T2\$2	T2\$3	T3\$1	T3\$2	T3\$3	2T2	2T3	3T2	3T3
DIAGRI	A.VEH.						ξ I γi.	, in the second	امريان مورانيون	\$ [}	2 ·	w [4	 4	,4	77K 7 3	<u>-</u> -	, ,		,,,,	a e . 4	7 18 E	सराम ै
00-01	E S	3 2																				
01-02	E S	2 2																				
02-03	E S	1				2																
03-04	E S	3				2																
04-05	E S	3 2		1		2	1															
05-06	E S	4 5				2	1															
06-07	E S	10 15		2		2	2															
07-08	E S	29 27				1 2							1									
08-09	E S	28 27		1		3 4	2	1														
09-10	E S	27 28		1		1				1												
10-11	E S	35 30		3		2	1			1												
11-12	E S	28 30																				
12-13	E S	39 38		1																		
13-14	E S	40 40		1		1				1												
14-15	E S	38 39		1		3		1		1			1									
15-16	E S	28 29		1																		
16-17	E S	25 28		2		2																
17-18	E S	29 35				2 4	1															
18-19	E S	39 37		3																		
19-20	E S	35 37		1		1				1												
20-21	E S	38 37		1				1														
21-22	E S	28 29		1						1												
22-23	E S	7 7					1	1														
23-24	E S	0																				
PARC		1047	0	25	0	41	9	4	0	6	0	0	2	0	0	0	0	0	0	0	0	0

Anexo 04. Determinación de ejes equivalentes

Tipo de			VEH	CULOS	LIGERO)S				BL	S			CA	MIONESI	JNITARIO:	6						S	EMITRAIL	ER					
Vehiculo	Au	tos	Pick	(up	C. R	lural	Mic	FOS		2E		3E	2	E	3	E	4	E		251/252			2S3			351352	. (>=353	
	delant.	post.	delant.	post.	delant.	post.	delant.	post.	delant.	post.	delant.	post.	delant.	post.	delant.	post.	delant.	post.	delant.	centr.	post.	delant.	centr.	post.	delant.	centr.	post.	delant.	centr.	post.
CARGA	1	0.8	1.2	1.5	1.5	2	2	3	7	11	7	16	7	11	7	18	7	23	7	11	18	7	11	25	7	18	18	7	18	25
Lx (kips)	2.21	1.76	2.65	3.31	3.31	4.41	4.41	6.62	15.44	24.26	15.44	35.29	15.44	24.26	15.44	39.71	15.44	50.74	15.44	24.26	39.71	15.44	24.26	55.15	15.44	39.71	39.71	15.44	39.71	55.15
no	981.00	981.00	95.00	95.00	21.00	21.00	3.00	3.00	7.00	7.00	2.00	2.00	15.00	15.00	4.00	4.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00	1.00	1.00
r%	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Gt	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08
L2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	2.00	1.00	3.00	1.00	1.00	2.00	1.00	1.00	3.00	1.00	2.00	2.00	1.00	2.00	3.00
818	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Вх	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
log(Wtx/Wt)	3.57	3.87	3.31	2.98	2.98	2.52	2.52	1.83	0.29	-0.57	0.29	-0.37	0.29	-0.57	0.29	-0.59	0.29	-0.52	0.29	-0.57	-0.59	0.29	-0.57	-0.68	0.29	-0.59	-0.59	0.29	-0.59	-0.68
G=Wt/Wtx	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.51	3.73	0.51	2.32	0.51	3.73	0.51	3.89	0.51	3.32	0.51	3.73	3.89	0.51	3.73	4.78	0.51	3.89	3.89	0.51	3.89	4.78
GY	31.37	31.37	29.78	29.78	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	31.37	31.37	29.78	29.78	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87	26.87
ESAL	1510.47	762.17	251.90	544.24	108.56	311.14	44.45	215.70	17596.16	128063.16	5027.48	22768.80	37706.07	274421.07	11739.25	89117.69	2785.76	18037.44	2513.74	18294.74	19082.86	2513.74	18294.74	23435.31	0.00	0.00	0.00	2513.74	19082.86	23435.31
PARCIAL				3748	.63					17345	5.60				43380	17.27								129167.02						
TOTAL															740)178.52														

Anexo 05. Nomograma AASHTO

