

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

La incorporación de la viruta de cuero para reducir las patologías del concreto simple f'c 210 kg/cm² en losas – Huachipa

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTOR(ES):

Alejandro Palacios, Miguel Irmar (ORCID: 0000-0001-6037-4475)

ASESOR(A):

Mg. Janet Yéssica Andía Arias (ORCID: 0000-0002-6084-0672)

LÍNEA DE INVESTIGACIÓN:

Diseño sísmico y estructural

ATE – PERÚ 2021

DEDICATORIA

Este trabajo dedico en primer lugar a dios, a mis padres y a todas las personas por haberme apoyado en todo momento para que este trabajo se realice, así como también en mis objetivos y metas.

AGRADECIMIENTO

Agradecer a Dios por iluminarme y guiarme durante esta etapa universitaria; además agradecer de forma muy especial a mis padres por brindarme y darme la oportunidad de poder de poder iniciar esta maravillosa carrera de Ingeniería Civil y por último a mi alma mater y mi asesor por apoyarme y brindarme las oportunidades.

ÍNDICE

Indice de tablas	v
Índice de graficos y figuras	viii
RESUMEN	xi
ABSTRACT	xii
I. INTRODUCCIÓN	13
II. MARCO TEÓRICO	17
III. METODOLOGÍA	35
3.1 Tipo y diseño de investigación	35
3.2 Variables y operacionalización	37
3.3. Población muestra y muestreo	40
3.4 Técnicas e instrumento de recolección de datos	41
3.5 Procedimientos	42
3.6 Método de análisis de datos	74
3.7 Aspectos éticos	74
IV. RESULTADOS	75
V. DISCUSIÓN	136
V. CONCLUSIONES	138
VI. RECOMENDACIONES	139
REFERENCIAS	140
ANEXOS	145

Indice de tablas

Tabla 1: Componentes del Concreto (Pasquel E., 1993)	25
Tabla 2: Porcentajes que pasa en una Granulometría NTP 400.037	26
Tabla 3: Tipos de consistencia (Abanto, 2009)	29
Tabla 4: Propiedades de la viruta de cuero (Espinosa, 2017)	33
Tabla 5: Muestra mínima para ensayo pasante n°200	50
Tabla 6: Muestra mínima para el ensayo de partículas desmenuzables y terrone	es
de arcilla	51
Tabla 7: 5 vidrios de color estándar MTC E213	55
Tabla 8: Secuencia de diseño según el método de fineza	67
Tabla 9: Propiedades y características físicas de la viruta de cuero	76
Tabla 10: Determinación Cuantitativa de cloruros solubles en suelos y agua	
subterránea	76
Tabla 11: Sulfatos solubles	76
Tabla 12: Ensayo de abrasión de los ángeles	76
Tabla 13: Equivalente de arena	77
Tabla 14: Impurezas orgánicas	77
Tabla 15: Peso específico y absorción	77
Tabla 16: Peso unitario compactado y peso unitario suelto	77
Tabla 17: Contenido de Humedad	78
Tabla 18: Determinación de partículas chatas y alargadas en el agregado grues	30
	78
Tabla 19:Determinación del material que pasa el tamiz No. 200	78
Tabla 20: Durabilidad al sulfato de magnesio	78
Tabla 21: Porcentaje de caras fracturadas	79
Tabla 22: Arcillas en terrones y partículas desmenuzables en agregados	79
Tabla 23: Granulometría de la viruta de cuero	79
Tabla 24: Granulometría del agregado grueso	80
Tabla 25: Granulometría del agregado fino	81
Tabla 26: Diseño de mezclas teórico	82
Tabla 27: Resistencia a la compresión promedio mediante probetas cilíndricas	95

Tabla 28: Resultados de la resistencia a compresión de los concretos a los 3, 7 y
28 días96
Tabla 29: Análisis de la resistencia a compresión a los 3 días de edad97
Tabla 30: Análisis de la resistencia a compresión a los 7 días de edad97
Tabla 31: Análisis de la resistencia a compresión a los 28 días de edad97
Tabla 32. Número de fisuras por retracción plástica de los concreto evaluados. 106
Tabla 33. Resultados del ancho de fisuras por retracción plástica del concreto. 107
Tabla 34. Distribución de frecuencias para el ancho de fisuras en el concreto
patrón107
Tabla 35. Distribución de frecuencias para el ancho de fisuras en el concreto más
1 % de viruta de cuero108
Tabla 36. Distribución de frecuencias para el ancho de fisuras en el concreto más
3 % de viruta de cuero109
Tabla 37. Distribución de frecuencias para el ancho de fisuras en el concreto más
5 % de viruta de cuero110
Tabla 38. Ancho de fisuras promedio en los concretos evaluados111
Tabla 39. Resultados de las longitudes de fisuras por retracción plástica del
concreto112
Tabla 40. Distribución de frecuencias para la longitud de fisuras en el concreto
patrón113
Tabla 41. Distribución de frecuencias para la longitud de fisuras en el concreto
más 1 % de viruta de cuero114
Tabla 42. Distribución de frecuencias para la longitud de fisuras en el concreto
más 3 % de viruta de cuero114
Tabla 43. Distribución de frecuencias para la longitud de fisuras en el concreto
más 5 % de viruta de cuero115
Tabla 44. Longitud de fisuras promedio por retracción plástica de los concretos
evaluados117
Tabla 45: Tabla de ensayo de exudación muestra 1 tipo patrón118
Tabla 46: Tabla de ensayo de exudación muestra 2 tipo patrón118
Tabla 47: Tabla de ensayo de exudación muestra 3 tipo patrón

Tabla 48: Tabla de ensayo de exudación muestra 1 con adición de 1% de viruta de
cuero
Tabla 49: Tabla de ensayo de exudación muestra 2 con adición de 1% de viruta de
cuero
Tabla 50: Tabla de ensayo de exudación muestra 3 con adición de 1% de viruta de
cuero
Tabla 51: Tabla de ensayo de exudación muestra 1 con adición de 3% de viruta de
cuero
Tabla 52: Tabla de ensayo de exudación muestra 2 con adición de 3% de viruta de
cuero
Tabla 53: Tabla de ensayo de exudación muestra 3 con adición de 3% de viruta de
cuero
Tabla 54: Tabla de ensayo de exudación muestra 1 con adición de 5% de viruta de
cuero
Tabla 55: Tabla de ensayo de exudación muestra 2 con adición de 5% de viruta de
cuero
Tabla 56: Tabla de ensayo de exudación muestra 3 con adición de 5% de viruta de
cuero
Tabla 57: Incremento de volumen de exudación
Tabla 58: Reducción de la velocidad de exudación
Tabla 59: Resultados de la exudación de los concretos evaluados
Tabla 60: Promedio del promedio de volumen de exudación de los concretos
evaluados
Tabla 61. Promedio de la velocidad de exudación en los concretos evaluados 130
Tabla 62. Prueba de normalidad para los datos de fisuración por retracción
plástica en el concreto131
Tabla 63. Prueba de normalidad para los datos de exudación del concreto 131
Tabla 64. Prueba no paramétrica de Kruskal – Wallis para la hipótesis específica
"a"132
Tabla 65. Comparación de grupos en cuanto al ancho de fisuras 133
Tabla 66. Comparación de grupos en cuanto al número de fisuras

Tabla 67. Prueba paramétrica ANOVA respecto al volumen de exudación para la	
hipótesis específica "b"13	4
Tabla 68. Comparación de grupos en cuanto al volumen de exudación13	4
Tabla 69. Prueba no paramétrica de Kruskal – Wallis respecto a la velocidad de	
exudación para la hipótesis específica "b"13	5
Tabla 70. Comparación de grupos en cuanto a la velocidad de exudación 13	5
Tabla 71: Tabla para muestra mínima para el ensayo de partículas fracturadas	
(MTC E210)14	S
Tabla 72: Tamices a utilizar en la separación de partículas NTP 400.015 15	C
Tabla 73: Muestra mínima para porcentaje de chatas y alargadas	C
Índice de graficos y figuras	
Figura 1: Foto panorámica de la problemática1	
Figura 2: Foto a detalle de la problemática1	
Figura 3: Foto a detalle de la problemática1	6
Figura 4: Concreto en el laboratorio2	4
Figura 5: Cemento Andino Tipo I2	5
Figura 6: Ensayo de asentamiento2	
Figura 7: Viruta de cuero en el laboratorio3	4
Figura 8: Diseño cuasiexperimental Campbell y Stanley (1996)3	5
Figura 9: Presentación de la viruta de cuero4	3
Figura 10: Lugar de extracción de la viruta de cuero4	4
Figura 11: Extracción de la viruta de cuero4	4
Figura 12: Viruta de cuero4	5
Figura 13: Entrega de muestras5	S
Figura 14: Tipos de curvas granulométricas (Badillo, 2006)6	C
Figura 15: Granulometría de la viruta de cuero6	C
Figura 16: Granulometría del agregado fino6	1
Figura 17:Granulometria del agregado grueso6	1
Figura 18: Equipos para el ensayo de retracción plástica7	C
Figura 19: Equipos para el ensayo de retracción plástica7	C

Figura 20: Cámara de ambiente	. 71
Figura 21: Vaciado de concreto en los paneles de concreto	. 72
Figura 22: Paneles de concreto	. 72
Figura 23: Rotura de probetas para determinar la resistencia a la compresión	. 74
Figura 24: Extracción del agregado fino	. 75
Figura 25: Extracción del agregado grueso	. 75
Figura 26: Curva granulométrica del agregado grueso	. 81
Figura 27: Curva granulométrica del agregado fino	. 82
Figura 28: Grafico de dispersión relación resistencia-edad	. 95
Figura 29: Número de fisuras por retracción plástica de los concreto evaluados.	
	106
Figura 30: Distribución de frecuencias para el ancho de fisuras en el concreto	
patrón	108
Figura 31: Distribución de frecuencias para el ancho de fisuras en el concreto m	nás
1 % de viruta de cuero	109
Figura 32: Distribución de frecuencias para el ancho de fisuras en el concreto m	nás
3 % de viruta de cuero	109
Figura 33: Distribución de frecuencias para el ancho de fisuras en el concreto m	nás
5 % de viruta de cuero	110
Figura 34: Distribución de frecuencias para el ancho de fisuras en los concreto	
evaluados	111
Figura 35: Ancho de fisuras por retracción plástica de los concreto evaluados	112
Figura 36: Distribución de frecuencias para la longitud de fisuras en el concreto	
patrón	113
Figura 37: Distribución de frecuencias para la longitud de fisuras en el concreto	
más 1 % de viruta de cuero	114
Figura 38: Distribución de frecuencias para la longitud de fisuras en el concreto	
más 3 % de viruta de cuero	115
Figura 39: Distribución de frecuencias para la longitud de fisuras en el concreto	
más 5 % de viruta de cuero	116
Figura 40: Distribución de frecuencias para la longitud de fisuras en los concreto	o

evaluados	116
Figura 41: Longitud de fisuras promedio por retracción plástica de los concret	os
evaluados	117
Figura 42: Grafico tiempo-volumen en muestra tipo patrón	119
Figura 43: Grafico tiempo-velocidad en muestra tipo patrón	119
Figura 44: Grafico tiempo-volumen en muestra adición de 1% de viruta de cu	ero
	121
Figura 45: Grafico tiempo-velocidad en muestra adición de 1% de viruta de cu	
	122
Figura 46: Grafico tiempo-volumen en muestra adición de 3% de viruta de cu	ero
	124
Figura 47: Grafico tiempo-velocidad en muestra adición de 3% de viruta de cu	
	124
Figura 48:Grafico tiempo-volumen en muestra adición de 5% de viruta de cue	
	126
Figura 49: Grafico tiempo-velocidad en muestra adición de 5% de viruta de cu	uero
	126
Figura 50: Comparación de promedios de muestras tipo patrón, 1%, 3% y 5%	en
volumen de exudación	127
Figura 51: Comparación de promedios de muestras tipo patrón, 1%, 3% y 5%	en
velocidad de exudación	127
Figura 52: Volumen de exudación en los concretos evaluados	129
Figura 53: Exudación en los concretos evaluados	130
Figura 54: Clima de la zona	149

RESUMEN

En esta investigación se evalúo la influencia de la viruta de cuero para reducir las patologías del concreto simple f'c 210kg/cm2 en losas de concreto simple en donde se sustituyó al agregado fino en 1, 3 y 5% con respecto al patrón para poder determinar la disminución de estas patologías, se realizaron diferentes ensayos entre ellos el ensayo de retracción plástica (8 paneles), ensayo de exudación (12) y el ensayo de resistencia a la compresión como interés para poder ver la efectividad del aditivo (48), también se los ensayos de calidad de agregados en donde el agregado grueso (1/2) fue extraído de la cantera GLORIA (400kg), el agregado fino de la cantera SAN MARTIN (350kg) y la viruta de cuero que se considero fue de 20kg, también se realizaron ensayos a este material como el ensayo de humedad y absorción, además se optó usar el diseño de mezclas por el método de módulo de fineza, Se concluyo que se redujo un 59.60% en la fisuración por contracción plástica, se incrementó la cantidad de agua de exudación en un 17.27% y se disminuyó un 31.86% en la velocidad de agua exudada

Palabras clave: Fisuración por contracción plástica, exudación, resistencia a la compresión, diseño de mezclas

ABSTRACT

In this research, the influence of leather shavings was evaluated to reduce the pathologies of plain concrete f'c 210kg/cm2 in plain concrete slabs where the fine aggregate was substituted at 1, 3 and 5% with respect to the pattern in order to To determine the reduction of these pathologies, different tests were carried out, including the plastic shrinkage test (8 panels), exudation test (12) and the compressive strength test as an interest to be able to see the effectiveness of the additive (48). also the aggregate quality tests where the coarse aggregate (1/2) was extracted from the GLORIA quarry (400kg), the fine aggregate from the SAN MARTIN quarry (350kg) and the leather chip that was considered was 20kg, tests were also carried out on this material such as the moisture and absorption test, in addition it was decided to use the design of mixtures by the fineness modulus method, it was concluded that cracking due to plastic contraction was reduced by 59.60%, the sing rate of exudation water by 17.27% and decreased by 31.86% in the velocity of exuded water

Keywords: Plastic shrinkage cracking, bleeding, compressive strength, mix design

I. INTRODUCCION

Según Giovambattista (2011, p.2) manifestó en un seminario que el rey de Babilonia "Hammurabi" estableció reglas drásticas y evitar que las construcciones sean defectuosas, que se puede traducir a lo que hoy se llama patología en el concreto. A lo que en Colombia, Diaz (2014) sostiene en su trabajo de maestría que actualmente en dicho país no hay un protocolo o norma que agrupe criterios para estimar el daño y realizar un diagnóstico apropiado en las construcciones de concreto reforzado con relación a las patologías de la construcción, por la cual infiere que es necesario realizar un proceso de reconocimiento donde se determine el motivo de estos daños que originan las lesiones, con el fin de realizar una correcta intervención (p.15). En la actualidad existen formas para asegurar que una edificación sea durable en el tiempo, mediante los mínimos requisitos de seguridad, estabilidad, funcionalidad y un diseño de vida útil prolongada, hoy en día en los reglamentos o códigos de seguridad de seguridad están en constante evolución con respecto al concepto de vida en servicio y durabilidad de las estructuras. Giovambattista (2011, p.2)

Para Krauss P. y Rogalla E. (1996) sostienen que a causa de estos materiales como los aditivos reductores de agua de alto rango y de puzolanas altamente reactivas como el humo de sílice se hizo posible desarrollar un concreto con muy buena trabajabilidad y en bajas relaciones (a/c), en ese entonces se creía que cuanto la resistencia de un concreto sea alta seria la estructura más durable, sin embargo no tomaron en cuenta los aspectos básicos para un diseño de mezclas ya que el tipo de concreto que realizaron presento fisuras por contracción a corto plazo y fue menos durable en ambientes agresivos (p.28). Al pasar del tiempo en Argentina según Priano (2011) Manifiesta en su doctorado que las fisuras por contracción del concreto surgen a causa de las condiciones ambientales como velocidad de viento, temperatura y humedad que contribuyen a un rápido secado en superficies más expuestas, perjudicando su funcional y sus propiedades, también este problema se debe a distintos factores químicos, físicos, mecánicos, biológicos que por lo general se presentan solo o combinados (p.52).

En el Perú Laguna M., Mamami A. y Cruz C. (2020) Sustentan en su revista que en

Tacna se ha visto afectado el tiempo de vida útil y la durabilidad en las edificaciones cercanas al mar debido a la falta de aplicación de procesos constructivos, conocimiento técnico, control de calidad y diseños estructurales adecuados. La presencia de patologías en el concreto es generada debido al ataque de agentes nocivos como: cloruros, sulfatos y carbonatación a razón de que la edificación está cerca al mar y a las condiciones del medio ambiente (p.2).

Según Gutiérrez (2018) en Pasco manifiesta que en la zona existen diferentes tipos de fisuras, fallas y problemas estructurales severos debido a ciertos factores como un error de diseño en el expediente técnico, cálculos mal elaborados, mala ejecución en el proceso constructivo y por agentes climáticos que no son evaluados en el proyecto, también no existen estudios previos sobre las patologías en las construcciones del lugar ni mucho menos la intervención de este problema ingenieril frente a la durabilidad que tendrán en su vida útil. (p.11).

A nivel local se registró esta problemática en diferentes losas de concreto donde se pudo apreciar que inmediatamente después del vaciado y fraguado aparecieron estas fisuras debido a la retracción plástica.

En caso de aplicar las virutas de cuero para reducir las patologías del concreto no llegue a concretar un resultado favorable, por consecuente, se seguirá observando este problema en cualquier construcción produciendo efectos que se notaran a lo largo del tiempo de su vida útil y arriesgando la integridad de las personas.

Con respecto a la problemática presentada se pudo observar que después del vaciado y fraguado en las obras aparecieron la exudación y fisuras de distintos tamaños y posiciones provocando una mala apariencia estética, inseguridad y el posible ingreso de agentes agresivos como cloruros, sulfatos o carbonatación, dando como resultado la necesidad e importancia de realizar esta investigación

Figura 1: Foto panorámica de la problemática

Figura 2: Foto a detalle de la problemática

Se puede observar en la imagen una foto más cercana con respecto a la problemática de la investigación en donde se muestra las fisuras por retracción plástica

Figura 3: Foto a detalle de la problemática

Se puede observar en la imagen una foto más cercana con respecto a la problemática de la investigación en donde se muestra las fisuras por retracción plástica

Por esta razón la **Justificación teórica** es que a través de esta investigación se amplió los conocimientos acerca de las patologías en losas tanto, así como la aplicación de nuevos materiales como la viruta de cuero que podrían disminuir o reducir los efectos ante este problema. Con respecto a la **Justificación practica** se pretendió disminuir los efectos de la patología en losas de concreto mediante una dosificación patrón y otra con la aplicación del uso de la fibra natural denominada "viruta de cuero" con el fin de dar resultados favorables para evitar problemas a futuro como la estética de la estructura y posibles aberturas a agentes agresivos. La **Justificación social** se realizó para que las personas tengan bienestar y buenas

condiciones de vida en la comunidad de Huachipa ya que se ha visto reflejado distintas patologías en sus viviendas poniendo en riesgo y vulnerando la seguridad de las personas. La **Justificación Metodológica** se definió que mediante esta investigación la nueva metodología que se pretende incorporar es la adición de virutas de cuero en las dosificaciones de concreto para reducir las patologías de losas de concreto con el fin de poder incorporar estas propiedades fibra natural al concreto y ver sus características.

Debido a la importancia del **problema** se realizó la siguiente pregunta ¿Cómo influye la incorporación de la viruta de cuero en la reducción de patologías del concreto simple f'c 210 kg/cm² en losas-Huachipa?, también se planteó como **problemas específicos** ¿ De qué forma influye la incorporación de la viruta de cuero en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas-Huachipa? y ¿En qué forma influye la incorporación de la viruta de cuero en la reducción de la exudación del concreto simple f'c 210kg/cm² en losas-Huachipa? teniendo como objetivo general Determinar la influencia de la incorporación de la viruta de cuero en la reducción de patologías del concreto simple f'c 210 kg/cm² en losas-Huachipa y los **objetivos específicos** Cuantificar la influencia de la incorporación de la viruta de cuero en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas-Huachipa y Conocer la influencia de la incorporación de la viruta de cuero en la reducción de la exudación del concreto simple f'c 210kg/cm² en losas-Huachipa, así también se empleó como hipótesis general. La incorporación de la viruta de cuero influye favorablemente en un 12% en la reducción de las patologías del concreto simple f'c = 210 kg/cm² en losas-Huachipa, y las **hipótesis especificas** La incorporación de la viruta de cuero influye considerablemente en un 15% en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas-Huachipa y La incorporación de la viruta de cuero influye significativamente en un 8% en la reducción de la exudación del concreto simple f'c 210kg/cm² en losas-Huachipa.

II. MARCO TEORICO ANTECEDENTES INTERNACIONALES

Según Ghantous, R. (2018), en su investigación titulada *Relación entre la apertura de la grieta y la extensión del daño inducido en la interfaz acero / mortero*. Tuvo como objetivo ver si existe una relación entre extensión del daño de agrietamiento en la interfaz interior. Fue un estudio de tipo experimental, la población fueron probetas prismáticas de 70x70x280 de 4 lotes a partir de 601 cada uno donde se empleó el ensayo a flexión de tres puntos y se observó la evolución de las grietas superficiales y profundas, los instrumentos a emplear fueron las fichas de recolección de datos y las imágenes que posteriormente fueron procesadas. Los resultados fueron que eran cercanas las mediciones de la apertura de grieta superior con las medidas de la muestra a varias profundidades, además se observó que las grietas hicieron un daño considerable en la interfaz de acero/mortero. Se concluyo que se recomienda para el diseño estructural definir un umbral en las aberturas de las grietas para temas estéticos, pero no influye para la evaluación de riesgo a la corrosión.

Según Blanco, **A. (2019)**, en su investigación titulada *Lecciones aprendidas sobre* el diagnóstico de patologías en presas de hormigón: 30 años de investigación y práctica. Tuvo como objetivo hacer una recopilación de la información sobre las enseñanzas más importantes y aprendidas durante 30 años de experiencia en el campo en el rubro. Fue un estudio tipo Descriptivo y experimental, la población a emplear fueron 4 represas que fueron analizadas, monitoreadas y de gran importancia por los autores, los instrumentos a emplear fueron la guía de observación de campo ya que se realizó determinadas inspecciones y la ficha de registro de datos para un análisis de documentación histórica. Los resultados fueron que mediante múltiples inspecciones visuales se encontraron signos de daños en la presa en toda su estructura, como agrietamientos en todo el mapa en donde era claramente visible aguas debajo de la presa, donde indujeron que probablemente fue causado por la oxidación de sulfatos de hierro en los agregados que fueron usado para el concreto. Las conclusiones fueron que la inspección fue determinante para poder evaluar las posibles patologías en las presas de hormigón ya que estas son mayormente obligatorias para diagnosticar un resultado preciso, a su vez fue fundamental ya que no se contó con registros históricos y datos de seguimiento de

la estructura.

Según Drochytka, R. (2019), en su investigación titulada *Uso de cristalización* secundaria y cenizas volantes en materiales impermeabilizantes para aumentar la resistencia del concreto a gases y líquidos agresivos. Tuvo como objetivo implementar un mortero impermeabilizante a base de cenizas volantes y un aditivo de cristalización para contrarrestar los agentes agresivos y reducir la permeabilidad. Fue un estudio de tipo experimental, la población fue 65 probetas de concreto (cubos de 150mm), los instrumentos fueron la ficha de recolección de datos. Los principales resultados fueron que para el ensayo de penetración del agua se ejecutó una presión del agua sobre la muestra para proporcionar un resultado más nítido y concluyente en la comparación de un concreto tratado y sin tratar para resistir el agua y los agentes agresivos, dando como resultado un mejoramiento del concreto tratado en cuestión a la resistencia contra la penetración del agua a presión. Se concluyo que se pudo reemplazar con éxito el aditivo de cenizas volantes en un 10% en el contenido de cemento para poder reducir el contenido de cemento.

Según Chiew SM. (2020), en su investigación *Comportamiento del hormigón reforzado con fibra de acero bajo tensiones biaxiales*. Tuvo como objetivo investigar el comportamiento biaxial de un concreto reforzado con fibras de acero con proporciones de 0.5, 1 y 1.5% de fibra bajo tensiones biaxiales y tensión compresión biaxial. Fue un estudio tipo experimental, la población fue 96 muestras para pruebas biaxiales y uniaxiales, los instrumentos fueron las fichas de recolección de datos. Los principales resultados fueron que la incorporación de fibra de acero mejoro satisfactoriamente la resistencia del concreto en un 15 a 41 % bajo tensión compresión en comparación a un concreto tipo patrón. Se concluyo que el incremento de la fibra mejoro poco en la resistencia a la tracción biaxial del SFRC, pero por otra parte hubo un mejoramiento de gran magnitud sobre la deformación por tracción y el comportamiento del concreto después de la fisuración, donde la mejor proporción en cuanto a la fibra fue de 1.5% que tuvo mejores propiedades para la reducción de fisuras.

Según Venquiaruto, S. (2018), en su investigación Influencia de la microfisuración inducida por la precarga en la durabilidad del hormigón producido con diferentes

tipos de cemento. Tuvo como objetivo investigar la resistencia a la penetración de cloruros de concreto fisurados después de haberse sometido a una carga temprana. Fue un estudio tipo experimental, la población fueron 25 probetas cilíndricas con dos cementos de procedencia brasileña de alta resistencia inicial y con relación de agua/cemento de 0.50, los instrumentos empleados fueron la ficha de recolección de datos. Los principales resultados fueron en las muestras de referencia para ambos tiempos de cemento, se pudo observar que hubo una reducción considerable en el ensayo de penetración de cloruro para curados más largos en muestras precargadas, así también se identificó las diferencias entre ambas muestras en edad de 3 y 91 días. Se concluyó que en etapas iniciales de curado para ambos cementos aumento considerablemente la penetración de cloruros, pero a medida que fue aumentando el tiempo de curación fue reduciendo este agente agresivo, entonces se puede concluir que la composición química de los cementos es vital para el comportamiento de penetración de cloruro al concreto.

Según Cacoango y Millingalli (2019) en su investigación titulada Eficiencia del Control de Fisuramiento por Contracción Plástica del Hormigón mediante el uso de Fibra de Acero 4D. Tuvo como objetivo evaluar el fisuramiento por contracción plástica del hormigón reforzado con fibra de acero 4D a través del uso de la Normativa ASTM C-1579-13, bajo condiciones climáticas críticas simuladas en el laboratorio. Fue un estudio tipo experimental, la población de estudio fue la fabricación del hormigón en diferentes relaciones de agua cemento de 0.6,0.4,0.35 y la incorporación de la fibra de acero en 15, 20 y 30 kg/cm3, con esto finalmente se midió los anchos de las fisuras en cada panel de manera manual para determinar los valores de la reducción de grietas (CRR), posteriormente se expresó en porcentaje para indicar la eficiencia de la fibra ante el fisuramiento, los instrumentos utilizados fue mediante la observación donde se pudo rescatar los datos de los ensayos. Los principales resultados fueron que para la relación de reducción de grietas CCR y la dosificación de fibras para diferentes relaciones a/c como 0.6,0.4 y 0.35 se observó que a medida que aumenta la dosificación en fibras para diferentes relaciones aumenta el valor de CRR, es decir que para relación a/c 0.6 se tiene un CRR de 46%, 64% y 76%. Se concluyo que para cada relación agua cemento W/C=0.60, 0.40 y 0.35 a medida que va aumentando la dosificación de fibra en 15, 20 y 30 kg/m₃, el valor de CRR se incrementa obteniendo menos fisuras.

ANTECEDENTES NACIONALES

Según Huaquisto, S. y Belizario, G. (2018), en su investigación titulada *Utilización* de la ceniza volante en la dosificación del concreto como sustituto del cemento. Tuvo como objetivo la adición de ceniza volante en la dosificación de la mezcla considerando en no disminuir su resistencia y ayude de forma positiva al medio ambiente. Fue un estudio de tipo experimental, la población fueron 60 testigos de concreto de dimensiones de 30cm de altura y 15cm de diámetro en las cuales se clasificaron en tipo patrón y adiciones de la ceniza volante en un 2.5%,5%,10%,15%, los instrumentos fueron la ficha de recolección de datos. Los principales resultados fueron que se obtuvo resistencias promedio a los 28 días para un concreto tipo patrón de 221kg/cm², con adiciones de 5% una resistencia de 231 kg/cm² y para un 15% resistencia de 192 kg/cm². Se concluyo que es conveniente sustituir la cantidad de cemento por la ceniza volante máximo en un 10% ya que al ser mayor la cantidad de sustitución disminuye la resistencia del concreto.

Según Alvarado, M. (2018), en su investigación Evaluación de los defectos constructivos en Viviendas de Albañilería confinada según NTP-E070 Sector 4 Distrito de la Esperanza 2018. Tuvo como objetivo determinar los defectos constructivos en viviendas de albañilería confinada. Fue un estudio tipo descriptivo, no experimental. La población fue 25 viviendas de albañilería donde se evaluó en coordinación con los propietarios de los predios quienes respondieron la encuesta, el instrumento fue las fichas de observación. Los principales resultados fueron que dentro de los defectos constructivos se obtuvo un 84% a causa de la inexistencia de las juntas de dilatación, un 76% con respecto a la corrosión del acero en columnas, un 24% en la falta de apoyo para escaleras y un 20% en fisuras en muros. Se concluyo que se encontró un promedio de 25% de defectos que dan a entender que no hubo una gestión en el proyecto de edificación, falta de asesoría profesional y carencia del conocimiento de normas técnicas.

Según Ballena, H. (2019), en su investigación *Principales elementos ambientales* que degradan el concreto armado en columnas del centro educativo inicial n° 124,

Lambayeque, 2016. Tuvo como objetivo describir los principales agentes ambientales que producen degradación en el concreto armado en columnas. Fue un estudio experimental, la población de estudio fue los ensayos de núcleos de concreto para poder verificar la presencia del dióxido de carbono CO₂ y la resistencia a la compresión axial, los instrumentos fueron la ficha de recolección de datos. Los principales resultados fueron que los núcleos de concreto que se extrajo de las columnas se encontraron afectadas por el dióxido de carbono atmosférico agrupando a los agentes ambientales que son perjudiciales para el concreto. Se concluyo que se estimó que en solo 10 años de construcción hubo defectos en las columnas de concreto armado como carbonatación, la perdida de alcalinidad y la reducción de la resistencia a la compresión axial.

Según Quispe, D. (2016), en su investigación Determinación y evaluación de patologías del concreto del canal de regadío del distrito de Huacrachuco. Tuvo como objetivo determinar y evaluar las patologías de concreto en el canal de regadío del caserío de Asay entre las progresivas 0+000 al1+000. Fue un estudio de tipo descriptivo, no experimental, la población fue el canal de regadío del caserío de Asay a lo largo de los 2.85km, los instrumentos fueron la inspección en el campo. Los principales resultados fueron que la patología más frecuente es la erosión con un porcentaje de 17.12% del área de la caja del canal. Se concluyó que se detalló 3 niveles de severidad donde hubo un 56.67% de severidad leve, un 31.67% de severidad moderada y un 11.67% de severidad severa

Según Seclen (2019) en su investigación titulada Patología y terapéutica en estructuras de concreto armado de instituciones educativas públicas del distrito de Pimentel. Tuvo como objetivo detectar e identificar las lesiones (fisuras, grietas, humedades) en los elementos estructurales o en aquellos otros que puedan ser origen o indicar síntomas de daños en la estructura. Fue un estudio de tipo aplicativa y descriptiva, la población de estudio fue la inspección a múltiples instituciones educativas mediante un reconocimiento visual complementado con ensayos in situ o de laboratorio, los instrumentos fueron una inspección preliminar de un edificio o elemento o elemento para poder analizar el estado actual de la estructura, si presenta fallas o lesiones y deterioros en el concreto. Los resultados fueron que en

su mayoría las instituciones, mediante los ensayos de fenolftaleína para cloruros y carbonatación, había un exceso cloruros (reacción mayor a 14 gotas) y que se encontró peligro de corrosión (Ph que varía menor a 9). Se concluyo en el estudio que existen factores que perjudicarían la durabilidad y resistencia en el concreto, a causa de esta razón se necesita realizar ensayos de resistencia, durabilidad en colegios antiguos para estar preparados frente a movimientos telúricos y no tener daños fatales.

Según Chavarry (2018) en su investigación Elaboración de concreto de alta resistencia incorporando partículas residuales del chacado de piedra de la cantera talambo, Chepén. Tuvo como objetivo evaluar el concreto simple empleando el polvo de granito (5, 10 y 15%) extraído de las partículas residuales del chancado de piedra de la cantera Talambo para obtener concretos de altas resistencias. Fue un estudio tipo experimental porque se incorporó en el concreto un material que provenía de las partículas residuales, la población entre todos los ensayos tanto fresco como endurecido fue de 352 muestras cilíndricas, los instrumentos a emplear fueron las fichas de recolección de datos, los principales resultados fueron que para el ensayo de exudación con diferentes resistencias reduce ligeramente la adición en diferentes porcentajes de polvo de granito mientras que en la resistencia del concreto en diferentes resistencias se realizaron en base al peso total del cemento y también se obtuvo una ligero aporte a la compresión en diferentes adiciones en la cual la más resaltante fue a 10% de polvo de granito. Se concluyo que el polvo de granito reduce ligeramente la exudación ya que por tratarse de concretos de alta resistencia el fraguado será muy rápido, mientras que en la resistencia del concreto el porcentaje más resaltante de polvo de granito fue de 10% para diferentes resistencias en donde se mejoró un 15% en cada una.

Según Llanos y Mellado (2020) en su investigación Control de la retracción plástica mediante el uso de dosificaciones de microfibras sintéticas DRYMIX y Fibra Ultrafina utilizando paneles normados. Tuvo como objetivo evaluar la reducción de la retracción plástica en base a la norma ASTM C1579-13 del concreto mediante la dosificación optima de dos microfibras comerciales Drymix y Fibra ultrafina. Fue un estudio tipo experimental. La población fue de 17 ensayos a la retracción plástica

donde se empleo 8 dosificaciones 25%, 50%, 75%, 100%, 125%, 150%, 175% y 200%, los instrumentos a emplear fueron las fichas de recolección de datos. Los principales resultados fueron que mientras se incrementa la dosificación en fibras reduce el ancho de fisuras, mientras que en la fibra Drymix que la dosificación optima fue el de 150% en donde se pudo reducir el 100% del ancho de fisuras, además en la fibra ultrafina la dosificación optima fue de 175% en donde se redujo hasta en un 99.80% en la reducción del ancho de fisuras. Se concluyo que en ambas microfibras sintéticas se puede reducir el fisuramiento por contracción plástica, pero se obtiene una mejor reducción en dosificaciones mayores a lo recomendado por el fabricante.

BASES TEORICAS

Concreto

Según Pasquel (1998, p.12) manifiesta que el concreto es un material artificial de una composición de distintos materiales como agua, cemento, agregados y opcionalmente aditivos (para mejorar sus características), inicialmente presenta una consistencia plástica y manejable, y que luego del fraguado obtiene dos propiedades importantes que son resistentes y aislantes, con lo que se obtiene un material muy importante para la construcción.

Este material se caracteriza por la contracción en bajas temperaturas y la dilatación en altas temperaturas, también es afectado por varias sustancias agresivas y falla si son sometidos a esfuerzos que a la larga superan su capacidad resistente del material. (Pasquel, 1998, p.12)

Figura 4: Concreto en el laboratorio

Componentes del concreto

En general los componentes más importantes del concreto son: Cemento, agregados (fino y grueso), agua y aditivos en caso de mejorar las características, cuando interviene los aditivos en el concreto se toma como un material adicional, pero en la actualidad consideramos de manera normal ya que al agregar a la mezcla del concreto permite mejorar múltiples propiedades como trabajabilidad, resistencia y durabilidad, con el fin de ahorrar en costos a largo plazo (De Guzmán, 2001).

Componentes del concreto	Volumen (%)
Aire	1 a 3%
Cemento	7 a 15%
Agua	15 a 22%
Agregados	60 a 75%

Tabla 1: Componentes del Concreto (Pasquel E., 1993)

Cemento

De Guzmán (2001) Manifiesta que el material de construcción que resulta del calcinamiento de una mezcla compuesta por piedra caliza, areniscas y arcillas que da un producto de un aglomerado, la reacción de este material es debido que interactúa con el agua y se consolida obteniendo propiedades resistentes y aglutinados.

Figura 5: Cemento Andino Tipo I

Agregados

Son materiales inertes que ocupan el mayor volumen de una mezcla (entre 60 a 75%) estos se emplean debido que son de carácter económico, poseen una

resistencia propia, estos materiales no perjudican el endurecimiento del concreto en su proceso y además proporcionan una unión o adherencia con el conglomerante (Rivera, 2013)

Agregado Fino

Se deriva mediante la descomposición artificial o natural de las rocas, en la cual debe pasar por el tamiz 3/8" y cumplir con las normas establecidas (Norma Técnica Peruana 400.037, 2018)

La arena gruesa debe estar limpia de suciedad, tierra y entre otras partículas que perjudiquen el resultado de la muestra. (NTP 400.037, 2018)

El agregado fino debe ser inferior al 45 % al momento de pasar por cualquier malla y detenida en la próxima malla a continuación y su módulo de fineza debe ser superior a 2,3 y menor de 3,1 (NTP 400.037, 2018)

Mediante la norma (American Society for Testing and Materials C125) indica que se obtendrá el módulo de fineza aproximadamente el tamaño medio de las partículas y se logra obtener sumando los porcentajes acumulados impregnados de los tamices presentados en la tabla dividida entre 100.

Tamiz	Porcentaje que pasa (%)	
3/8"	100	
N°4	95 a 100	
N°8	80 a 100	
N°16	50 a 85	
N°30	25 a 60	
N°50	5 a 30	
N°100	0 a 10	

Tabla 2: Porcentajes que pasa en una Granulometría NTP 400.037

Agregado Grueso

Material proveniente de la descomposición artificial o natural de las rocas retenida, tamiz N°4 (4,75mm) y que debe cumplir con los parámetros dispuestos por la norma (NTP 400.037, 2018)

El agregado grueso deberá estar limpio, compacto, duro y resistentes (NTP 400.037, 2018).

El máximo tamaño corresponderá al menor tamiz por donde pasará la totalidad de la muestra de agregado grueso (NTP 400.037, 2018).

El máximo tamaño nominal corresponderá al tamiz menor de toda la serie utilizada donde el primer retenido esta entre los intervalos 5 % y 10 % (NTP 400.037, 2018).

Granulometría de los agregados

Ensayo que se realiza para la distribución y separación por tamaño de partículas de una masa de agregado, consiste en hacer pasar el material mediante una serie de tamices que poseen aberturas de distintos tamaños de forma que el material de mayor diámetro quedara en los primeros tamices superiores y los de menor diámetro quedara en los tamices más finos inferiores, también se pesa cada tamiz del respectivo material. Además, el ensayo permite mostrar la distribución de los tamaños y calcular por parte de los agregados gruesos los tamaños máximos, módulo de finura por parte del agregado fino y el tamaño nominal (Badillo, 2016)

Agua

El H2O es un material fundamental en el concreto ya que por sus características cumple roles muy importantes como mojar y humedecer el cemento, curado del concreto y otorgar maniobrabilidad a la mezcla, esta deberá ser potable ya que su presencia en el estado fresco del concreto mejorará sus propiedades y adquiera resistencia en la etapa de endurecimiento. (Gutiérrez, 2003)

Aditivos

Según (ACI, 2008) indica que son materiales que aportan características favorables al concreto, su uso es de un ingrediente adicional pero que en la actualidad el uso que se le da es de carácter normal y se incluyen en el instante o antes del proceso de mezcla.

Diseño de mezcla del concreto

Definimos como un procedimiento técnico sobre los componentes que integran la mezcla donde se aplica la metodología de algunas tablas o medidas estandarizadas para determinar la adecuada proporción de materiales para el concreto con el fin de conseguir un material final adecuado, eficaz y requeridas a las exigencias del proyecto (Pasquel, 1998)

Objetivos de diseño de mezclas del concreto

Por lo general se tiene el propósito de que esta práctica debe ser viable, satisfacer las exigencias y que sea asequible de acuerdo a lo establecido en los procedimientos técnicos constructivos y lograr la mejor eficiencia en un proceso constructivo, el fin del diseño de mezclas es que se pueda cumplir o alcanzar los resultados de una dosificación realizada a cargo de una persona profesional a un estado endurecido del concreto en el campo. (Rivva, 1992).

Método del módulo de fineza de la combinación de agregados

Este método se emplea con los módulos de fineza de agregado fino y grueso que expresan un índice de superficie especifica en donde los contenidos de a los agregados finos y grueso varían para diferentes resistencias siendo está infiriendo principalmente en la relación agua-cemento y del contenido total del agua, en casos de que el índice aumente se incrementara la demanda de la pasta, o en caso contrario si se mantiene constante la pasta y se incrementa la fineza se disminuirá la resistencia por adherencia. (Rivva, 1992).

PROPIEDADES MAS IMPORTANTES DEL CONCRETO FRESCO

Trabajabilidad

Según Rivva (1992) manifiesta que esta propiedad permite que una estructura de concreto armado tenga una facilidad a la hora del llenado, esta propiedad se caracteriza en el estado fresco por su capacidad para ser manipulado, mezclado, situado, vaciado y consolidado determinadamente, en la cual el concreto tiene que tener una máxima homogeneidad y realizar un mínimo trabajo (p.15).

Consistencia

Para Méndez (2012) indica que es el estado en el que se tiene la mezcla siendo esta que tendrá adherencia entre los materiales, teniendo una manejabilidad buena y esta propiedad dependerá de la proporción de agua que se efectuará al mezclar, por la cual esta consistencia también se define la resistencia ante la oposición ante las alteraciones por deformación y medirá por un ensayo de asentamiento (p. 54).

Consistencia	Slump	Trabajabilidad	Método de compactación
Seca	<2"	Poco trabajable	Vibración normal
Plástica	2-4"	Trabajable	Vibración ligera, Chuseado
Fluidos	>6"	Muy trabajable	Chuseado

Tabla 3: Tipos de consistencia (Abanto, 2009)

Figura 6: Ensayo de asentamiento

PROPIEDADES MAS IMPORTANTES DEL CONCRETO ENDURECIDO Elasticidad

Esta propiedad refleja la habilidad del concreto en poder deformarse elásticamente al ser aplicado por cargas conocidas sobre un espécimen y evaluar la deformación del material (Aguinaga, 2019)

Resistencia

Se considera la propiedad con más importancia del concreto y está destinada a resistir esfuerzos y cargas, determinando que el más importante es la compresión al comparar con la tracción, para lograr un concreto con alta resistencia principalmente dependerá de la relación a/c en peso, de acuerdo que el proceso de hidratación del concreto es relativamente lento y se realiza muestras curadas bajo condiciones estándar por 28 días. (Instituto de ingeniería UNAM, 1998).

PATOLOGIA DEL CONCRETO

Se define como un estudio y análisis que se realiza a las características y los procesos de los daños y lesiones que podria ser de origen mecánico, físico o químico que sufriría el concreto, así como también sus posibles causas, consecuencias y las soluciones planteadas. (Moran, 2018, p.52).

Contracción o retracción plástica

Es una patología que se manifiesta en el concreto donde se ve alterado su volumen debido a la temperatura, humedad y viento donde se trabajara, donde el agua del concreto se seca y se contrae dando lugar a los esfuerzos que supera la capacidad resistente del material en primeras horas del fraguado reflejándose las fisuras por contracción plástica (Castillo, 2019, p. 15).

Según el (American Institute Concrete, 2008) indica que ocurre esta patología ocurre en la cara externa del concreto, en losas principalmente y en donde el ratio de evaporación supera al ratio de agua que asciende en la superficie del concreto por exudación. Las consecuencias que generan en el concreto por lo general se presentan con dimensiones de 1.5 a 2m de longitud y con profundidades de 2 a 3 cm, asi también estas no comprenden mucho daño estructural, pero pueden permitir la existencia de otras patologías debido que da un ingreso a elementos agresivos donde puede reducir su durabilidad y afectando estructuralmente al concreto (Llanos J., Mellado M., 2020)

Para el ensayo por retracción plástica se realizará mediante la norma ASTM C1579 que consiste en evaluar los agrietamientos tempranos por contracción plástica mediante la comparación de diferentes dosificaciones con o sin fibras.

Fisura y grietas

La fisura son las aberturas incontroladas de todo tipo longitudinal que afectan solamente a la capa visible o externa de cualquier elemento de construcción o su superficial terminado. En cambio, las grietas son ranuras más profundas que perjudican al elemento estructural en relación a su espesor (Monjo J. 1997).

Efectos de temperatura

Según la Norma E-060 señala que si la temperatura ambiental es de 35°C<T<5°C se realizara un control adecuado a las temperaturas del concreto. Estos cambios de

temperatura pueden ser a causa del calor de hidratación del cemento o cambios en la variación térmica cuando exceda 32°C, ya que originan variaciones volumétricas que con llevan a esfuerzos adicionales, cuando los esfuerzos son superados por la resistencia a tracción se produce el efecto de fisuración (RNE, 2019).

Exudación

Sostiene que el agua de la mezcla asciende como resultado de la sedimentación de las partículas sólidas formando una cama de agua en la superficie del concreto. Esta anomalía sucede momentos después que la mezcla fue colocada en el encofrado (Aybar, Miguel De La Torre), como consecuencia de esta patología puede ocurrir que se produzca capas porosas, débiles y no perdurables de concreto debido a que la parte superior de cada capa puede ocurrir demasiada humedad y peor aún si el agua queda atrapa en el concreto sobrepuesto (Azang, 2017)

El ensayo que se emplea para esta patología es de la norma NTP 339.077 donde se calcula el volumen del agua exudada o relativa mediante una probeta cilíndrica retirando el agua con una pipeta dentro de los tiempos de intervalos de 10 a minutos dentro de los 40 minutos y luego a intervalos de 30 minutos.

Eflorescencia

Esta patología consiste en manchas blanquecinas que se producen debido a la humedad en las superficies, cuando se seca y se evapora el agua se produce la cristalización las sales en las superficies dando origen a las manchas conocidas como eflorescencias (Aranda, 2013).

Segregación

Ocurre esta patología cuando existe la separación de agregados finos y gruesos y la pasta de cemente logran separarse, esto debido a una baja adherencia de los materiales, este problema puede suceder durante la mezcla, transporte, vaciado o vibrado del concreto. Por consecuencia disminuye su resistencia, durabilidad y su apariencia estética (Gonzalez, 2003).

Carbonatación

Se origina cuando el dióxido de carbono atmosférico reacciona con la humedad reduciendo la alcalinidad del concreto en los poros, el concreto posee un ambiente alcalino alto dentro de los rangos de pH de 12 a 13 en donde su función consiste en

la protección del acero contra la corrosión, se presenta esta patología cuando avanza e ingresa la carbonatación hacia la profundidad del acero, dejando de ser estable la capa de oxido protectora y reduce el nivel de pH por debajo de 9.5, causando estragos de corrosión y finalmente el agrietamiento. (Instituto Mexicano del Cemento y del Concreto, 2000).

Ataque de Sulfatos

Estos son propios de los propios agregados, son suelos que tienen incorporación de yesos o también son disueltos en las aguas freáticas que se filtran mediante la humedad, entre sus variedades son los sulfatos de magnesio, calcio, potasio y sodio, todos solubles en el agua y perjudiciales para el concreto (Mostacero M., 2016).

VIRUTA DE CUERO

Fibra Natural

En la construcción durante los años el uso de las fibras ha sido muy beneficioso para el concreto, lo cual los hace más recurrente por su alta variedad y funcionalidad. En general no solo existe un solo tipo de fibras.

(John Oré), indica que las fibras, cumpliendo la normativa ASTM C1116M - 10^a (2010), se dividen en dos grandes grupos: Por su material (sintético, metálico, de vidrio o naturales) y por su funcionalidad, geometría y dosificación (microfibras y macrofibras) ("Elementos de Refuerzo", 2013).

Las fibras más comunes o representativas son las fibras de vidrio, acero y últimamente aparecieron las de polipropileno que se caracterizan por reforzar al concreto. Pero existen otras fibras denominadas naturales que vienen siendo estudiadas para optimizar las propiedades del concreto, la disponibilidad de este producto en nuestro país es alta ya que es en abundancia su producción de fibras naturales.

La fibra natural "viruta de cuero" son obtenidas de distintas curtiembres durante el proceso de rebajado o curtido de las pieles de los animales vacunos

Según (Sánchez J. y Cortes R., 2016) Manifiesta que para su proyecto hubo una necesidad de reutilizar las materias primas que son desechadas inadecuadamente

en el medio ambiente con el fin de darle un uso favorable para la fabricación de un aglomerado y la elaboración de otros futuros elementos.

Propiedades	Magnitud	
Capacidad calorífica (J/g)	18.83	
Contenido de Humedad (%)	50.70	
рН	2.10	
Contenido de cromo	4.25	

Tabla 4: Propiedades de la viruta de cuero (Espinosa, 2017)

Propiedades físicas del cuero

Las propiedades más destacadas de este material valioso son:

Es resistente a la alta tracción, resisten al desgarro, muy resistente a la flexión, aislante térmico de buena capacidad lo cual lo hace un mal conductor de calor por el material contiene una alta cantidad de aire.

Este material muestra buenas propiedades entre las cuales este adaptara a su nueva forma después de ser moldeado, también proporciona propiedades plásticas y elásticas en el desgaste, a su vez presenta la resistencia a la abrasión seca y húmeda, dentro de sus otras más importantes características son:

El cuero es muy resistente al calor y las llamas, resistente a los hongos y resistente al ataque químico (Garcia, Morayala, & Quintanilla, s.f)

Según (Valdez, Gonzales, Pariguana, Lopez, Dueñas, 2019) indican que los resultados que llegaron fue que a la resistencia a la compresión del aglomerado mostraron diferencias altamente significativas para ambas mezclas, siendo la mezcla con relación 1 parte adhesivo de viruta de wet blue + 1 aserrín de madera de tornillo con que se obtuvieron una mayor resistencia a la compresión con un promedio de 291.57 Kgf/cm2, además estos valores resultaron ser mayores por la norma DIN 68763 175 Kfg/m2 (valores recomendados para aglomerados como material de construcción).

Para Brian F. y Zerbino R. (2005) indican que durante la comparación de un mortero tipo patrón y uno con la incorporación de virutas de cuero(10% del peso del cemento) en la compactación, se pudo observar que la dosificación con viruta tuvo una consistencia un poco más seca debido a su alta absorción del residuo, en este

caso el investigador para no modificar la relación a/c, humedeció este residuo con una cantidad de agua equivalente a 1.5 veces su peso, también se pudo ver en el ensayo que al utilizar una cantidad baja en la proporción de viruta de cuero no se produjo un retardo apreciable en el tiempo de fraguado, la incorporación de viruta aproximadamente 45kg/m3 en un mortero conllevo a disminución del peso unitario cercano al 10% y un incremento en absorción de agua del 25%

Con respeto Schneider A., et al., (2013) Manifiestan que cuanto más se ejerza más presión en el proceso de compactación conducirá a una mezcla más densa, con una resistencia mayor a la tracción y mayor conductividad térmica.

Figura 7: Viruta de cuero en el laboratorio

MARCO CONCEPTUAL

Viruta de cuero: Son residuos que obtenemos en las curtiembres a consecuencia del proceso del rebajado o curtido de pieles de vacunos. Sánchez J. y Cortes R. (2016)

Tamaño Máximo Nominal: Se refiere al menor tamiz en la granulometría por donde pasa la mayor cantidad de muestra de agregado grueso, este intervalo es de 5% al 15% del material. (NTP 400.037, 2018)

Tamiz: Utensilio empleado en la mecánica de suelos que usa para distribuir y separar las partículas finas y gruesas de un suelo, está formado por una rejilla y existen de diversos tamaños. (NTP 400.037, 2018)

Consistencia: Es la adherencia en una mezcla de los materiales mediante la adhesión de la pasta de cemento o ligamento y áridos (Agregados gruesos y finos) Pasquel (1998)

III. METODOLOGIA

3.1 Tipo y diseño de investigación

Tipo de investigación

Se uso la investigación APLICADA porque trata de solucionar problemas reales esto quiere decir que emplearemos los conocimientos teóricos de las variables con los que daremos posibles soluciones a la realidad problemática. (Sampieri, 2016) Nuestra investigación fue de forma aplicada porque a partir de los conocimientos teóricos antepasadas como las dosificaciones, ensayos estandarizados, entre otros aplicaremos en nuestra investigación incremento la fibra viruta de cuero para reducir las patologías en el concreto.

Diseño de investigación

En la investigación Experimental, Según Sampieri (2016) el investigador manipula las variables para determinar su efecto en la variable dependiente mediante ensayos de laboratorio o campo con un control adecuado. Con respecto a nuestra investigación fue experimental ya que se refiere a la adición de la fibra viruta de cuero para reducir las patologías del concreto, así también será de tipo cuasi experimental ya que nuestros grupos son preexistentes y formados, pero con la diferencia que no existe aleatoriedad o randomizacion.

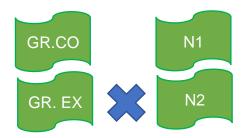


Figura 8: Diseño cuasiexperimental Campbell y Stanley (1996)

Donde:

GR.CO: Grupo de control

GR. EX: Grupo Experimental

X: Procedimiento con la variable independiente

N1 Y N2: Consecuente a prueba

En la presente investigación está compuesta mediante una estructura de manera ordenada:

Grupo de Control: Este se clasifica mediante un concreto tipo patrón de resistencia a compresión 210 kg/cm² donde se realizarán 12 probetas tipo patrón en las edades de 3,7 y 28 días y 2 paneles de concreto para el ensayo de la retracción plástica, así también se realizará 3 ensayos de exudación.

Grupo Experimental: Este grupo lo conforma 3 tipos de diseño de mezcla de resistencia la compresión 210kg/cm² con adición de virutas de cuero, incorporando la proporción de dosis de 1, 3 y 5%, donde se prepara 36 probetas para el ensayo a la compresión, a su vez también 6 paneles de concreto con adiciones de 1,3 y 5% de la fibra natural que posteriormente se analizará y verificará la reducción de las patologías en losas de concreto, también se realizará 9 ensayos de exudación.

Enfoque de investigación

Esta investigación tiene un enfoque CUANTITATIVO pues partiendo de una interrogante se determinará la operacionalización de variable para presentar hipótesis, y un plan de evidencia, referencias medibles de los cuales se presentarán discusiones y resultados (Sampieri, 2016).

En la presente investigación mediante pruebas de ensayos de laboratorio se dará a conocer los datos numéricos para poder comprobar la fundamentación de las hipótesis

Nivel de investigación

Según Sampieri (2016) las investigaciones explicativas se orientan en relacionar diversos conceptos para así direccionar y lograr responder las causas de hechos sociales o físicos, es decir que consisten en explicar porque las variables se relacionan entre sí, las causas de donde provienen y las condiciones o entorno en donde se manifiestan.

La investigación fue de nivel EXPLICATIVO, ya que se realizó un análisis de los efectos de la incorporación de la viruta de cuero en las patologías de concreto simple mediante descripción de resultados de los ensayos de laboratorio.

Alcance de investigación

Según Sampieri (2016) La investigación transversal consiste que se recolectaran datos mediante un tiempo temporal y único, es decir que se describirá y analizara las incidencia e interrelación de las variables en un momento dado.

En la investigación los ensayos o pruebas normadas y establecidas se darán de maneral temporal y única

3.2 Variables y operacionalización

Variable dependiente

Patologías del concreto

Variable independiente

Viruta de Cuero

MATRIZ DE OPERACIONALIZACION DE VARIABLES

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
Patologías del concreto en losas f'c 210kg/cm² Se define como parte de la ingeniería que estudia el comportamiento de las estructuras cuando se evidencia o presentan fallas,	Las patologías más recurrentes en las losas de concreto son la retracción plástica y exudación y se operara esta variable mediante distintas	Retracción plástica	Longitud de fisuras Ancho de fisuras Cantidad de fisuras	Razón	
	defectos, realizando una minuciosa investigación en sus causas y posibles soluciones para poder salvaguardar la seguridad de la estructura (Fernández M. 2007)	dosificaciones tipo patrón y con viruta de cuero para dar el resultado favorable con el fin de mitigar o disminuir los efectos de la patología. (Fuente propia)	Exudación	Cantidad de agua exudada Velocidad de exudación	

Fuente: propia

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
Viruta de cuero Es una fibra tipo natural que es extraída mediante en el proceso de cortado o rebajados de las pieles de los vacunos en las curtiembres Sánchez J. y	Se operará esta variable mediante el efecto de la incorporación de las propiedades físicas de la viruta de cuero en la losa de concreto, así como también las diferentes	Propiedades Físicas	%absorción %humedad	Razón	
	Cortes R. (2016)	cantidades de viruta de cuero para un resultado favorable (Fuente propia)	Adición de la fibra	1,3,5 %	

Fuente: propia

3.3. Población muestra y muestreo

Según Tamayo (2004) indica que es aquello que concuerda determinantes especificaciones en un conjunto de casos que pueden ser personas, elementos, que se requiere para determinar la problemática y el estudio del fenómeno. Según Arias (2006) Indica que para este estudio la muestra no aplica y el muestreo es toda la población la cual será definida como no probabilístico y por conveniencia.

Para la investigación se realizará 8 paneles de concreto de 35.5cmx56cmx10cm de acuerdo a la norma ASTM-c1579 (Método para evaluación del agrietamiento por contracción plástica del concreto reforzado con fibras) para una resistencia a la compresión de 210kg/cm² para analizar y evaluar la retracción plástica con (1, 3 y 5 %) o sin viruta de cuero.

N° de muestras	Dosis	Cantidad de ensayos
Patrón f'c = 210kg/cm²	0%	2
Patrón f'c = 210kg/cm²	1%	2
con adición de viruta de	3%	2
cuero	5%	2
	Total	8

Fuente: Propia

Además, también se realizará 12 ensayos de exudación según la norma MTC E713.

N° de muestras	Dosis	Cantidad de ensayos
Patrón f'c = 210kg/cm²	0%	3
Patrón f'c = 210kg/cm ²	1%	3
con adición de viruta de	3%	3
cuero	5%	3
	Total	12

Fuente: Propia

Así también se realizará 48 probetas según para el ensayo de la resistencia a la compresión del concreto mediante probetas cilíndricas ASTM C39/C39M, donde 12 serán tipo patrón durante los 3,7 y 28 días y 36 será con adiciones de virutas de cuero (1,3 y 5%) con los días mencionados anteriormente.

N°DE MUESTRAS	N° DE MUESTRAS	F'C		ENSAYOS
	-	DIAS	n° probetas	
Diseño patrón F'c= 210	Patrón F'c = 210kg/cm²	3	4	12
kg/cm²	-	7	4	
	-	28	4	
Diseño patrón F'c=	1% viruta de cuero	3	4	12
210kg/cm² con adición	-	7	4	
de viruta de cuero	-	28	4	
	3% viruta de cuero	3	4	12
	-	7	4	
	-	28	4	
	5% viruta de cuero	3	4	12
	-	7	4	
	-	28	4	
-	TOTAL DE ENSAYOS			48

Fuente: Propia

3.4 Técnicas e instrumento de recolección de datos

Técnicas

Según Sampieri (2016) sostiene que es una etapa donde se seleccionara el instrumento a emplear y se recolecta la mayor cantidad de datos o información de las variables que se requiere para una investigación, también se puede definir como la información que recibimos al instante cuando realizamos las pruebas necesarias para nuestra investigación y que esta sea confiable y verídica.

En la investigación la técnica que se empleo fue mediante la observación experimental que consistirá ver y recopilar los datos de los fenómenos presentados sobre la retracción plástica, exudación y el ensayo de la resistencia a la compresión en donde se manipulará la variable viruta de cuero

Instrumentos

Según Sampieri (2016) indica que es aquel que deberá tener como requisito la validez, confiabilidad y objetividad.

El instrumento a emplear será las fichas de recolección de datos que serán elaborados y posteriormente se recolectarán los datos durante el desarrollo de los ensayos, a su vez también se tendrá en cuenta la toma de fotos para la recopilación de datos

Fichas de recolección:

- Ficha de recolección de datos las características físicas de los agregados fino y grueso
- Ficha de recolección de datos para el diseño de mezclas
- Ficha de recolección de datos del ensayo resistencia a la compresión en muestras cilíndricas
- Fichas de recolección de datos del ensayo de exudación
- Ficha de recolección de datos del ensayo de retracción plástica

Validez

Según Sampieri (2016) manifiesta que se refiere al grado de que el instrumento mide una variable y que se obtiene diferentes tipos de evidencias.

Para la presente investigación se utilizó formatos validados por un laboratorio dentro de su proceso de acreditación los mismos que están siendo utilizados, así también se empleó formatos dentro del sistema de gestión de calidad ISO 9001 asegurando la conformidad y seguridad.

Confiabilidad

Según Sampieri (2016) indica que se refiere al grado de que un instrumento pueda dar resultados coherentes y razonables, ya que, si por ejemplo si se midiera la temperatura ambiental con un termómetro y este diera resultados distintos cada 10 min, el instrumento no sería confiable.

Con respecto a este ítem se sustenta que para la realización de esta investigación se realizó los ensayos mediante equipos y maquinas calibradas por un laboratorio acreditado asegurando la calidad necesaria para la realización de los ensayos.

3.5 Procedimientos

Para poder realizar esta investigación en primer lugar se basó en investigaciones previas similares recolectadas mediante tesis de pregrado, post grado o artículos científicos en donde se analizó y procedió a tomar la selección relevante con respecto al tema y los valores o cantidades promedios para realizar la investigación, en donde la importancia de realizar este proyecto es reducir las patologías del concreto incorporando esta nueva fibra natural denominada viruta de cuero, así también se realizara por parte del laboratorio la cotización respectiva y los horarios

establecidos para la realización de los ensayos, con respecto al material se adquirirá de las canteras Gloria y San Martin y por consiguiente se llevara al para preparar la cantidad suficiente, también se realizara los ensayos correspondientes para los agregados, diseño de mezclas, retracción plástica, ensayo a compresión y exudación, todos estos ensayos mediante normas estandarizadas como ASTM, NTP, entre otros. En la parte final se aplicará el instrumento, se dará los resultados de manera descriptiva mediante gráficos, tablas donde se apreciará las diferencias o comparaciones.

Trabajo de gabinete

En la primera parte se realizará una exhaustiva revisión a los procedimientos estandarizados y fundamentos teóricos de los ensayos que se emplearan en esta investigación, así también recolectaremos datos y anotaremos mediante fichas.

Trabajo en campo

Se recolectará la fibra natural "viruta de cuero" aproximadamente 25kg para la manipulación de esta variable en los ensayos de esta investigación, este material se extraerá en las renovadoras de calzados y fabricas industriales, se considerará el material de diferentes tamaños, sobre los agregados gruesos será de 750kg, finos de 700kg más 5 bolsas de cemento andino tipo I.

Figura 9: Presentación de la viruta de cuero

Figura 10: Lugar de extracción de la viruta de cuero

Figura 11: Extracción de la viruta de cuero

Figura 12: Viruta de cuero

Trabajo de laboratorio

Ensayo de las propiedades y características físicas de la viruta de cuero

Se procederá a realizar el ensayo de humedad y absorción de la fibra natural para dar a conocer las propiedades físicas favorables que pueda reducir las patologías del concreto simple en losas 210kg/cm²

Ensayo de las propiedades físicas de los agregados

PAQUETE PARA CANTERA DE AGREGADO FINO Y GRUESO PARA CONCRETO

Durabilidad al sulfato de magnesio (NTP 400.016)

Este ensayo tiene como objetivo determinar mediante la resistencia de los agregados la alterabilidad de los agregados expuestos a la intemperie en donde se aplicará soluciones saturadas de sulfato de sodio o sulfato de magnesio.

Aparatos

- Tamices (n°4,5,8,16,30,50,100)
- Envases
- Regulación de la temperatura
- Balanzas
- Horno de secado
- Medida del peso especifico
- Reactivos

- Solución de sulfato de sodio
- Solución de sulfato de magnesio
- Solución de cloruro de bario

Procedimiento

- ✓ Para la toma de la muestra en agregado fino se pasa por el tamiz de 3/8", la muestra sería una cantidad que cuando pase por cada tamiz quede un material de aproximadamente 100gr en cada uno de los tamices, los pesos a retener serán por lo menos de 5% o más de la muestra tamizada, respecto sobre el agregado grueso este se pasara por el tamiz n°4 y se realizara la toma de acuerdo lo indicado anteriormente.
- ✓ Se lavará completamente la muestra sobre el tamiz n°50 y se secará hasta un peso contante de 110°C ± 5°C, por el tamizado se clasificará en diferentes tamaños de acuerdo con lo establecido según la NTP 350.001, es recomendable tener una muestra de 110gr en cada de una de las fracciones, se pesará cada tamiz con las respectivas muestras y se colocaran en envases individuales.
- ✓ Se introducirán las muestras en la solución del sulfato de sodio o magnesio en un plazo no menos de 16h ni mas de 18h de tal forma que la solución cubra una profundidad por lo mínimo 1.5cm, después se taparán los envases para reducir la evaporación y evitar la introducción de sustancias extrañas, estas muestras sumergidas se mantendrán a una temperatura de 21°C ± 1°C.
- ✓ Después del proceso de inmersión se extrae la muestra y se deja escurrir un tiempo aproximado de 15min ± 5 min y se coloca al horno de secar, así mismo se lleva la temperatura del horno de 110 °C ± 5°C, se secara la muestra hasta obtener un peso constante, para conseguirlo se debería realizar varias verificaciones donde se retirara y se pesara la muestra en intervalos de 2 a 4 horas, se considerara que es constate cuando la perdida de peso es menor a 0.1% del peso de la muestra realizadas a 4 horas de secado, posteriormente se enfriara la muestra a la temperatura del ambiente y se sumergirá en la solución
- ✓ Se repetirá el proceso de alternado de inmersión y secado hasta que se

- consiga el número de ciclos requeridos
- ✓ Después de concluir el ciclo final y enfriado de la muestra a temperatura a ambiente se procederá a lavar cada fracción por separada para excluir el sulfato de sodio o magnesio, posteriormente serán lavados con agua destilada y mediante la reacción del cloruro de bario se podrá comprobar si el agua se encuentra con sales

Cálculos

Examen cuantitativo

Después de haber sido eliminado el sulfato de sodio o magnesio, se seca cada fracción de la muestra hasta llegar a un peso constante y luego se toma apunte, posteriormente ese tamiza el agregado a través del tamiz que estaba retenido anteriormente, el agregado grueso también se tamizara para cada tamaño apropiado a través del cedazo

El método y duración del agregado fino será el mismo de la preparación de la muestra, en este caso para el agregado grueso se realizará a mano en donde mediante la agitación se debe asegurar que el material de menor medida pase la malla, después se pesará el material retenido en cada malla, para hallar el porcentaje de perdida se deberá restar las cantidades y el peso inicial de la muestra.

Examen cualitativo

Se realizará este examen de las muestras mayores a 3/4" se separa en grupos las partículas de cada muestra de acuerdo a la acción producida, se registrará el número de partículas que muestran cada tipo de acción

Equivalente de arena (NTP 339.146)

El objetivo de este ensayo es realizar un procedimiento rápido donde se determinará las proporciones relativas de finos plásticos o arcillosos en los áridos que pasan por el tamiz N°4, en donde mediante un porcentaje se dará a conocer el resultado.

Aparatos

- Probeta graduada
- Pisón
- Sifón
- Recipiente

- Tamiz n°4
- Agitador mecánico
- Herramientas y accesorios
- Reactivos
- Solución base
- Solución de ensayo

Procedimiento

- ✓ Se pasará la muestra original a estado húmedo por el tamiz de 4,75mm, se disgregará los terrones de material arcilloso, en caso del material retenido tiene adheridas capa de material arcilloso, se procederá removerlas y colocarlas en un recipiente en este caso se deberá desechar.
- ✓ Se reducirá la muestra por cuarteo hasta obtener un material que llene cuatro medidas
- ✓ Se secará la muestra hasta que se obtenga una masa constante a una temperatura de 110°C ± 5°C después se debería enfriar a la intemperie.
- ✓ Se colocará la botella del sifón conteniendo esta la solución del ensayo a aproximadamente a 1 cm sobre la superficie de trabajo, se procederá sifonear la solución del ensayo en la probeta hasta que pueda alcanzar un nivel de 100 ± 5 mm
- ✓ Se obtendrá por cuarteo el material que será suficiente para llenar una determinada medida
- ✓ Se llenará la medida y se procederá a asentar el material dando golpes en el fondo de la medida contra la mesa como mínimo 4 veces, se enrasará y verterá en la probeta, se procederá a golpear el fondo de la probeta contra la palma de la mano hasta que pueda desaparecer las burbujas de aire
- ✓ Se dejará la probeta en reposo durante unos 10 min
- ✓ Se colocará el tampón y se soltará la arena del fondo inclinando y sacudiendo el tubo
- ✓ Se podrá agitar la probeta mediante 2 métodos Agitación manual: se procederá a colocar la probeta de forma horizontal y se agitará de forma lineal durante 90 ciclos en 30 sg.

Agitación mecánica: Se fijará la probeta en el agitador mecánico y lo realizará

en un periodo de 45 ± 1 sg.

✓ Se colocará la probeta sobre la mesa de trabajo, se destapará y se le hará

una limpieza en sus paredes interiores mediante el irrigador, se introducirá el

irrigador hasta el fondo de la probeta con un movimiento no brusco para

remover el material

✓ Se retirará el irrigador siempre y cuando regulando el flujo de la solución en

donde se pueda ajustar a un nivel final de 380mm y posteriormente se dejará

sedimentar en un periodo de 20 min ± 15sg

✓ Al final de la sedimentación realice el registro del nivel superior de arcilla (Nt)

y trate de aproximarlo al milímetro asimismo introduzca el pisón en la probeta

y con mucha cautela hágalo descender hasta donde quede apoyado en la

arena, en este caso se registrará el nivel superior de arena (NA) igualmente

aproximando al milímetro.

Cálculos

Se calculará el resultado con la siguiente ecuación:

$$EA(\%) = \left(\frac{Na}{Nt}\right) * 100$$

Donde:

EA: Equivalente de arena (%).

Na: Nivel superior de la arena (mm).

Nt : Nivel superior de la arcilla (mm).

Pasante por la malla 200 por lavado (NTP 339.132)

Este ensayo consiste en la separación de partículas menores a la malla N°200 que

a su vez se efectuara por un lavado con agua.

Aparatos

Balanza

Tamices

Horno

Recipientes

Procedimiento

49

Se tomará las cantidades de muestra según indicadas en la tabla 5 para ellos se optará usando el método de cuarteo o división de muestras

Tamaño nominal máximo	Cantidad mínima aproximada
N°10	20 g
N°4	100 g
3/8"	500 g
3/"	2.5 kg
1 ½"	10.0 kg
3"	50.0 kg

Tabla 5: Muestra mínima para ensayo pasante nº200

- ✓ Se secará la muestra a una temperatura de 110 ± 5°C hasta llegar a un peso constante
- ✓ Es recomendable hallar el contenido de humedad y este debe estar entre el 20 y 30% del peso de la muestra del ensayo
 - En este caso el método apropiado que se empleo fue el método A
- ✓ Después de preparar la muestra de ensayo se colocará en la malla más gruesa y mediante una corriente de agua se lavará el espécimen a través de las mallas, el material puede ser ligeramente manipulado para facilitar el proceso de tamizado, pero teniendo en cuenta de no producir una perdida de material
- ✓ Cuando se halla completo el proceso de lavado el material retenido en el tamiz n°200 puede secarse ya sea en el mismo tamiz o transfiriendo el espécimen a otro contenedor, se debería tener mucho cuidado en no perder partículas a la hora de remover el agua clara
- ✓ Finalmente se secará el contenido de cada tamiz a un peso constante en una temperatura de 110°C ± 5°C y se procederá a pesar.

Cálculos

Se calcula el resultado con la siguiente ecuación: donde:

$$P = \left(\frac{Mo - M1}{Mo}\right) * 100$$

P: Es el porcentaje de material más fino que el tamiz N°200

Mo: Es la masa de la muestra original seca al horno, g

M1: Es la masa de la muestra seca al horno después del lavado y del tamizado en seco, g.

Arcilla en terrones y partículas desmenuzables (NTP 400.015)

El objetivo de este ensayo es determinar de manera aproximada el contenido de terrones de arcilla y partículas desmenuzables en agregados

Aparatos

- Balanzas
- Recipientes
- Tamices
- Estufa

Procedimiento

- ✓ La muestra para este ensayo estará constituida por el material retenido en el tamiz n°200
- ✓ Las muestras deberán tener un peso constante y serán secadas mediante un horno a temperaturas de 110°C ± 5°C
- ✓ Para el agregado fino la muestra estará comprendida en el material retenido en el tamiz n°16 y su masa no deberá ser menor de 25g.
- ✓ Para el agregado grueso la muestra deberá ser separada en los tamices n°4, 3/8", ¾ y 11/2", para este caso la masa no deberá ser menor según la tabla 6

Tamaño de las partículas de la muestra	Masa mínima de la muestra (g)
N°4 a 3/8 pulg	1000
3/8 pulg a ¾ pulg	2000
34 pulg a 1 ½ pulg	3000
Mayor a 1 ½ pulg	5000

Tabla 6: Muestra mínima para el ensayo de partículas desmenuzables y terrones de arcilla

✓ Se pesará la muestra y se esparcirá una capa fina sobre el fondo del

recipiente, después se cubrirá con agua destilada y se remojará en un tiempo de 24h ± 4h

- ✓ Para el efecto de este ensayo se realizará por compresión y deslizamiento entre los dedos índice y pulgar
- ✓ El material que pueda ser desmenuzado con los dedos en finos removibles por tamizado húmedo serán consideradas como terrones de arcilla o partículas desmenuzables
- ✓ Después de haber sido segregados, se separará los detritos de la muestra restante por un tamizado húmedo descrito en el (anexo 6)
- ✓ Se realizará el tamizado húmedo donde se pasará agua sobre la muestra y se agitará manualmente el tamiz hasta que finalmente todo el material se halla removido.
- ✓ Finalmente se pondrá al horno hasta obtener un peso constate y se pesará con una balanza.

Cálculos

Se calculará con la siguiente formula

$$P = \left(\frac{M-R}{M}\right) * 100$$

Donde:

P= Porcentaje de partículas desmenuzables y terrones de arcilla

M= Masa de la muestra de ensayo

R= Masa de partículas retenidas sobre el tamiz asignado de acuerdo a la tabla 7 En caso del agregado grueso se calculará un promedio ponderado de los porcentajes de este ensayo entre los distintos tamaños que fue dividida la muestra **Sulfatos (NTP 339.178)**

El objetivo de este ensayo es determinar el contenido de ion sulfato soluble en suelos.

Aparatos

- Vaso de 250ml
- Pipetas 5ml,30ml,50ml
- Horno mufla

- Crisol de platino
- Reactivos

Procedimiento

- ✓ Primero se pipetea 30ml de la muestra del suelo en un vaso de 250ml
- ✓ Se calentará la solución hasta el proceso de ebullición y se procederá a añadir lentamente 5ml solución caliente de cloruro de bario, se mantendrá la temperatura debajo del punto de ebullición hasta que el liquido se clarifique y los precipitados se sedimenten completamente
- ✓ Se filtrará la suspensión de sulfato de bario encima de un papel de filtro de textura fina, que este libre de ceniza y se lavará el precipitado con agua caliente hasta que se encuentren libres de cloruros
- ✓ Se colocará el papel de filtro y el contenido en un crisol de platino previamente tarado, posteriormente se carbonizará lentamente hasta que se consuma el papel y no dejar arder, a su vez el residuo se calcinará aproximadamente 800°C hasta que todo el carbón haya consumido
- ✓ Finalmente se añadirá una gota de ácido sulfúrico y unas cuantas gotas de fluoruro de hidrogeno y se deberá evaporar bajo campana extractora para retirar la sílice como tetrafluoruro de silicio, finalmente nuevamente se calcinará a una temperatura cerca de 800°C, se enfriará y pesará.

Cálculos

$$Sulfato\ ppm = \left(\frac{WX411500}{M}\right)$$

W= Gramos de sulfato de bario

M= gramos de muestra de suelo ajustado por la dilución

Cloruros (NTP 339.177)

El objetivo de este ensayo es determinar de manera numero el ion cloruro soluble en agua contenido en suelos

Aparatos

- Bureta de 25ml,50ml
- Plancha de calentamiento
- Agitador magnético y barras de agitación cubiertas de teflón

Pipetas de 1,5,10,25,30,50ml

Vaso de 250ml

Frasco Erlenmeyer de 500ml

Fiola

Centrifuga con tubos de 50ml

Papel indicador de ph

Reactivos

Procedimiento

✓ Se tomará la muestra de suelo mediante una alícuota de 30ml para la determinación de ion cloruro

✓ Se verificará el ph con ph metro o con el papel indicador, en el caso que el ph este en el rango de 6 a 8 se continuara con el ensayo, pero si esta debajo de 6 se podrá añadir bicarbonato de sodio para ajustar en los limites de los rangos, en este caso si pasa de 8 se podría añadir acido nítrico para ajustarlo de igual forma

✓ Añadir 1ml de la solución indicadora de cromato de potasio

✓ Titular con la solución del nitrato de plata hasta que el indicador comience a virar del color amarillo al rojo, en este caso la titulación no debe consumir más de 30 ml, después se diluirá con agua cualquier alícuota mas pequeña hasta aproximadamente 50ml antes de la titulación.

✓ Se procederá a registrar la cantidad de volumen del nitrato de plata empleada hasta llegar al punto final y calcular el contenido de cloro

✓ Finalmente se deberá restar 0.2ml de consumo blanco

Cálculos

$$Cloruro\ ppm = \left(\frac{(mL\ nitrato\ de\ plata\ utilizado - B)xTx1000}{M}\right) - D$$

Donde:

T= Titulo

B= consumo del blanco del indicador

M= gramos de muestra de suelo titulada

D= Factor de dilución

Impurezas orgánicas (MTC E213)

El objetivo de este ensayo es determinar aproximadamente la presencia de impurezas orgánicas dañinas al agregado fino

Aparatos

- Botellas graduadas
- Solución color de referencia
- Nivel de agregado fino
- Nivel de solución
- Reactivo solución hidróxido de sodio
- Solución estándar de referencia

Procedimiento

- ✓ La muestra a emplear será de 450 aproximadamente
- ✓ Se llenará la botella con aproximadamente 130ml de la muestra de agregado fino
- ✓ Se adicionará la solución de hidróxido de sodio hasta que le volumen del agregado fino y el líquido alcance a 200ml.
- ✓ Se tapa la botella, se sacudirá y posteriormente se dejará reposar 24 horas.
- ✓ Después de las 24 horas, se llenará un frasco con la solución de referencia fresca con aproximadamente 75 ml de nivel
- ✓ Se comparará el color del liquido de la solución referencia con la muestra del ensayo y se tomara apunte si es mas clara igual o oscura
- ✓ Se puede optar comparar la muestra con los 5 vidrios de color estándar de la tabla siguiente:

Color Garner Estándar N°	Placa orgánica N°
5	1
8	2
11	3
13	4
16	5

Tabla 7: 5 vidrios de color estándar MTC E213

Cálculos

No existe cálculos porque es un ensayo cualitativo donde se utiliza la técnica de interpretación

Abrasión de los ángeles (MTC E207)

El objetivo de este ensayo es determinar la resistencia a la degradación utilizando la maquina de los ángeles

Aparatos

- Máquina de los ángeles
- Tamices
- Balanza
- Esferas de acero (carga)

Procedimiento

- ✓ Se procederá a lavar y secar la muestra al horno hasta obtener un peso constante, en este caso la cantidad de muestra dependerá al tipo de gradación y esta al tipo del tamaño máximo nominal
- ✓ Se colocará la muestra de ensayo y las esferas de acero en la máquina de los ángeles, después se rotará a una velocidad de 30rpm a 33rpm por 500 revoluciones, posteriormente se descargará el material y se hará una separación preliminar de la muestra sobre el tamiz n°12

Cálculos

Se calculará la perdida entre la diferencia de la masa inicial y final de la muestra como un porcentaje de la masa original de la muestra.

Porcentaje de caras fracturadas (MTC E210)

El objetivo de este ensayo es obtener el porcentaje de una muestra en masa o cantidad que contiene partículas fracturadas.

Aparatos

- Balanza
- Tamices
- Cuarteador o separador
- Espátula

Procedimiento

- ✓ Se secará la muestra hasta que se pueda observar una separación clara entre el fino y el grueso mediante el proceso del tamizado (malla n°4) después de realizar este procedimiento se reducirá la masa retenida usando un cuarteador hasta llegar al tamaño apropiado.
- ✓ La masa de la muestra siempre debe ser almenas lo suficientemente grande según la tabla (anexo 5)
- ✓ Se lavará la muestra sobre el tamiz que será designado previamente, para poder realizar este ensayo retirar cualquier partícula fina y secar la masa de manera constante, posteriormente se determinará la muestra de la masa
- ✓ Se extenderá la muestra sobre una superficie limpia, llana y larga donde se permita el monitoreo de cada partícula, determinar si la partícula dentro del criterio en donde si la cara al menos se encuentra fracturada em un cuarto de la máxima sección transversal de la partícula se considerará como cara fracturada.
- ✓ Se separará en 2 categorías usando la espátula u otro utensilio de separación, 1 partículas fracturadas siempre y cuando teniendo el numero requerido de caras fracturadas, 2 partículas que no cumplen con los criterios especificados
- ✓ Se determinará la cantidad o masa de partícula en la categoría de partícula fracturada y las que no cumplan con el criterio establecido

Cálculos

$$P = \left(\frac{(F)}{F+N}\right) X 100$$

Donde:

P= Porcentaje de partículas con el numero especificado de caras fracturadas

F= cantidad de partículas fracturadas con el numero especificado de caras fracturadas

N= Cantidad de partículas en la categoría no fracturadas o que no están incluidas en el criterio de partícula fracturada

Porcentaje de chatas y alargadas (MTC E223)

El objetivo de este ensayo es determinar el porcentaje de chatas y alargadas en el agregado grueso

Aparatos

• Dispositivo calibrador proporcional

Procedimiento

- ✓ Se mezclará totalmente la muestra y se reducirá de manera apropiada mediante el cuarteo, esta cantidad conformará los mínimos requeridos según el anexo 7
- ✓ Tanto longitud, ancho y espesor deberán de tener una máxima dimensión
- ✓ Si se desea determinar por peso, se introducirá al horno hasta un peso constante
- ✓ Se procederá a tamizar y reducir cada fracción mayor a 3/8" o n°4 en un 10% o mas de su peso original, aproximadamente se debe obtener 100 partículas.
- ✓ Se ensayará cada partícula de cada fracción y se clasificará mediante 3 grupos: chatas, alargadas y ni chatas ni alargadas.
- ✓ Para realizar el ensayo de partículas chatas se ajustará la abertura entre el brazo mayor y el poste, la partícula será chata si pasa su espesor por la abertura menor
- ✓ Para realizar el ensayo de partículas alargada se ajustará la abertura de mayor longitud, la partícula se considerará alargada si su ancho pasa por la abertura menor.
- ✓ Finalmente determinar la proporción de muestra por cada grupo

Cálculos

Se calculará el porcentaje de chatas y alargadas para cada malla mayor de 3/8" o la n°4

Extracción y preparación de muestras (NTP 400.010)

Las muestras que se extraerán en el campo son tentativas ya que estas deben ser asignadas para la cantidad y el tipo de ensayo donde se utilizara los agregados y se debe obtener la cantidad necesaria para ejecutar los ensayos.

Figura 13: Entrega de muestras

Análisis granulométrico por tamizado (ASTM C136-06)

Consiste en realizar la separación y la selección de partículas por tamaño grueso y fino a través del zarandeó o un agitador de tamices.

Aparatos

- Balanzas
- Tamices
- Agitador mecánico de tamices
- horno
- herramientas manuales

Procedimiento

- ✓ Se procesadora a pasar por la malla 3/8", posteriormente lavado y secado de la muestra a una temperatura de 110°C ± 5°C
- ✓ Se vierte la cantidad determinada no menor a 500gr de muestra sobre la columna de serie de tamices
- ✓ Se colocará en orden los tamices y se agitará mediante un agitador mecánico de tamices o de manera manual (de manera circular), el tiempo mínimo de tamizado es 10 minutos.
- √ Finalizado el procesado se pesará y anotará los pesos retenidos en cada

tamiz

Cálculos

- Se calcula la masa retenida en porcentaje de cada tamiz de la masa inicial conocida.
- -Se compara la sumatorio total de los pesos retenidos respecto a la muestra inicial
- -Los resultados se suelen representar en una gráfica semilogarítmica

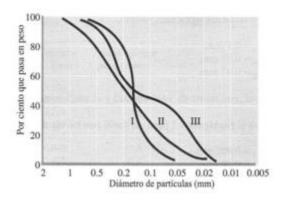


Figura 14: Tipos de curvas granulométricas (Badillo, 2006)

Figura 15: Granulometría de la viruta de cuero

Figura 16: Granulometría del agregado fino

Figura 17:Granulometria del agregado grueso

Peso unitario del agregado fino y grueso (ASTM C29/29M)

Con este ensayo se pretende determinar el valor del peso unitario compactado o suelto.

Aparatos

- Balanza
- Barra compactadora
- Recipientes de medida
- Molde

Procedimiento

Peso unitario suelto del agregado

Se pesará el envase cilíndrico en una balanza que debe estar calibrada, se colocará el agregado en un recipiente y posteriormente en un molde cilíndrico

Después con la varilla de acero se realizará el proceso del enrasado y al final se pesará el recipiente más la muestra.

Peso unitario compactado del agregado

Método del apisonado

Se procederá a pesar el envase cilíndrico y se colocará la muestra, posteriormente se colocará la muestra en el molde cilíndrico

Luego colocará la muestra a 1/3 de la capacidad del molde cilíndrico, después se compactará con una varilla de 5/8" y se procederá a golpear 25 veces, esta cantidad de golpes se realizará mediante 3 capas, luego se hace el proceso de enrasado y su posterior pesaje del agregado compactado

Cálculos

Se realizará la siguiente ecuación:

$$M=(\frac{G-T}{V})$$

$$M = (G - T) * F$$

M= Peso unitario del agregado en kg/cm3

G= Peso del recipiente de medida más el agregado en kg

T= Peso del recipiente de medida en kg

V= Volumen de la medida en m3

F= Factor de la medida en m3

Gravedad específica y absorción del agregado fino (MTC E205)

Se determina después de haber sumergido 24 horas la arena gruesa para luego determinar cuanta pesa

Materiales y equipos

- Balanza
- Tamiz n°4
- Molde cónico
- Bandejas
- Pisón metálico 340 gr y una sección de Ø25mm
- Horno
- Picnómetro

Procedimiento

- ✓ Se homogenizará el material y se filtra el material por la malla n°4, el material restante superior se eliminará
- ✓ Se tomará de muestra 1kg después del cuarteo, posteriormente se secará en un horno a 110°C luego se enfriará a la intemperie de 1 a 3 horas
- ✓ Estando en un estado frio la muestra se pesa, luego la muestra es cubierta completamente con h20 y se dejara sumergida por un día.
- ✓ Se separa con cuidado el h20 de la muestra y así evitar la pérdida de la muestra, se colocará la muestra en una bandeja y se comenzará el proceso de volver a secar la superficie de las partículas, aplicando sobre ella aire caliente moderado y agitando continuamente para que sea uniforme la desecación y luego conseguir que fluyan las partículas de forma libre.
- ✓ Fijamos el molde cónico a una superficie lisa y plana, seguidamente con un embudo una muestra suficiente, a continuación, aplicaremos 25 golpes con una varilla, levantamos el molde verticalmente con mucho cuidado, si la muestra mantiene la forma original del molde continuar secando la muestran, y así continuar realizando pruebas con el cono hasta que se desmorone superficialmente y en ese punto se alcanzara la condición superficial seca.

- ✓ A continuación, introducimos la muestra a la muestra al picnómetro que antes fue tarado con una cantidad de 500 gr de arena gruesa y se agregara el agua hasta una capacidad del 90%, con el fin de expulsar el aire, se rodara el picnómetro sobre una superficie lisa, sumergimos en un baño de agua a tempera de 21 y 25°C durante 60 min, posteriormente se retira del baño y se secara rápidamente en la superficie y se estimara el peso.
- ✓ Se sacará el agregado del picnómetro y se realizará el procedimiento del secado con un horno a una T° de 100°C a 110°C, posteriormente se enfriará al aire libre de 60 a 90 min y se estima su peso seco.

Cálculos

Datos:

Wo = Peso de la muestra secada al horno

V= Peso o volumen del frasco volumétrico

Va= Peso o volumen del agua añadida

PEM = Peso específico de masa

ABS = Porcentaje de absorción%

Se empleará las siguientes formulas

$$PEM = \frac{Wo}{(V - Va)}$$
 $\%abs = \frac{500 - Wo}{Wo}x100$

Peso específico y absorción del agregado grueso (MTC E206)

Se determina el peso de la muestra después de haberse sumergido por 24 horas con tamaño igual o mayor a 4,75mm

Aparatos

- Balanzas
- Canastillas metálicas
- Dispositivo de suspensión
- Tamiz n°4
- Molde cónico
- Pisón metálico
- Estufa

Picnómetro

Procedimiento

- ✓ Preparar la muestra adecuada y pasarla por malla n°4 para dividir el material fino del grueso
- ✓ Se procederá a eliminar la muestra de polvos y otras sustancias a través del lavado
- ✓ Luego se secará la muestra en una estufa a 110°C y se enfriará al aire libre durante 60min a 180 min
- ✓ Estado frío la muestra se pesará y posteriormente se introduce en el agua durante 1 día a la intemperie.
- ✓ Se sacará la muestra y se secará mediante un paño absorbente, a continuación, se pesará la muestra saturada superficialmente seca
- ✓ Colocamos la muestra en una canastilla y se tomara apunte de su peso sumergido en h2O entre una T° de 21 y 25°C
- ✓ Finalmente secamos la muestra en una estufa de 100 a 150°C, posteriormente se enfriará a la intemperie durante 60 min a 180 min y se determinará su peso seco

Cálculos

Datos

A= Peso seco en el aire

B= Peso superficialmente seco

C= Peso de la muestra en agua

Formulas

$$Y = \frac{A}{B - C}$$

$$Yss = \frac{B}{B - C}$$

$$Y \ aparente = \frac{A}{A - C}$$

$$Absorcion = \frac{B - A}{A}$$

Contenido de humedad del agregado fino y grueso (NTP 339.127)

La finalidad del presente ensayo es determinar la cantidad de agua en porcentaje

que contiene el agregado, generalmente los agregados se encuentran humedecidos y es necesario determinar el porcentaje para poder corregir en la dosificación de la mezcla.

Equipo y materiales:

- Balanza
- Recipiente para la colocación de la muestra
- Horno
- Taras

Procedimiento:

- ✓ Determinaremos primero el peso del recipiente
- ✓ Pesamos la muestra más el recipiente
- ✓ Se colocará en una estufa de 110°C ± 5°C por 12 a 14 horas
- ✓ Se retirará del horno, se registra su peso seco

Cálculos:

W (%): Porcentaje de humedad

$$W\% = \frac{W_{agua}}{W_{seco}} \times 100\%$$

DISEÑO DE MEZCLAS SEGÚN EL METODO MODULO DE FINEZA

Este método consiste en un procedimiento a base de tablas elaboradas teniendo en cuenta que los agregados ya pasaron por ensayos y así obtener diferentes proporciones de materiales que conforman el m3 de concreto.

Secuencia de diseño

1. Selección de la resistencia requerida i d	ж)	

- 2. Seleecion del TMN del agregado grueso
- 3. Seleccion del asentamiento
- 4. Seleccion del contenido de agua
- 5. Seleccion del contenido de aire atrapado
- 6. Seleccion de la relación agua/cemento sea por resistencia a compresión o por durabilidad
- 7.Calculo de contenido de cemento
- 8.Calculo de la suma de los volúmenes

absolutos de todos los componentes sin incluir los agregados 9. Cálculo del volumen absoluto de los agregados 10. Calculo del modulo de fineza de la combinación de agregados 11. Calculo del porcentaje de agregado fino 12. Cálculo de los volúmenes absolutos de los agregados 13. Calculo de los pesos secos de los agregados 14. Presentación del diseño en estado seco 15. Corrección del diseño por el aporte de humedad de los agregados 16. Presentación del diseño en estado húmedo

Tabla 8: Secuencia de diseño según el método de fineza

Ensayo de exudación (MTC E713)

El objetivo del ensayo es calcular la cantidad de agua relativa de la muestra que es exudada, se empleara el método A que se somete la muestra consolidada por varillado.

En este caso se realizará 6 ensayos de exudación, 1 tipo patrón y 4 con incorporación de viruta de cuero (1 y 3%)

Aparatos

- Recipiente cilíndrico
- Bascula
- Pipeta
- Probeta graduada
- Varilla compactadora
- balanza
- hornilla

Procedimiento

Se mantendrá la T° ambiental entre 24 y 18°C, se registra el momento actual y se determina el contenido y la masa del recipiente, luego se ubicará en una superficie nivelada y se tapará y evitar la evaporación del agua. Retirar con una pipeta el H20 que se almaceno en la superficie, los intervalos de tiempo a realizar será según la norma establecida MTC E713.

Cálculos

Fórmula para hablar el volumen de exudación

$$V = \frac{V1}{A}$$

V1 = Volumen de agua exudada medida durante el intervalo de tiempo(ml)

A= Área expuesta del concreto en cm2

Ensayo de retracción plástica (ASTM C1579-13)

El objetivo de este ensayo es realizar la comparación de la fisuración ocurridas en la superficie del panel reforzado con fibras y el tipo patrón o convencional, que estarán sujetas bajo restricciones establecidas y la perdida de humedad para poder general las fisuras antes del fraguado final de concreto, a su vez se evaluara los efectos de evaporación, velocidad de viento, humedad y la aparición de grietas debido a la temprana retracción autógena del concreto con fibra o sin fibra desde el inicio y fin del fraguado del concreto.

En este caso se realizará 8 paneles de concreto, 2 tipo patrón y 6 con incorporación de viruta de cuero (1,3 y 5%)

Equipos

- Molde (la norma ASTM recomienda de medidas 355mmx560mmx100mm, caja de madera)
- Placa con elevador de tensiones (actuara como generador de grietas y deberá encajar en la parte inferior del monde)
- Cámara de ambiente (Contendrá varios instrumentos de medición, humedad, viento y temperatura, esta cámara deberá estar contemplada en un lugar cerrado con condiciones de evaporación, viento, temperatura y humedad relativa para la generación de fisuras)

 Fisurómetro, comparador de grietas, conjunto de imágenes, ventilador, sensores

Procedimiento

Vaciado del concreto. - se verterá el concreto sobre el molde mediante una capa de concreto hasta la parte superior y se nivelará de manera perpendicular

Cálculo de perdida de humedad. - Se procederá a limpiar la parte exterior del molde y se pesará el panel

Introducción a la cámara de ambiente. - en este parte se introduce los paneles a la cámara de ambiente y se procederá a encender los sensores y los ventiladores de manera que este pueda asegurar la velocidad del aire y condiciones de evaporación Levantamiento y control de información. – se realizará una toma al comienzo del ensayo y cada 30 min sobre la temperatura, velocidad de aire y humedad relativa. Así también se recomienda registrar la hora en que la se puede observar el primer agrietamiento en toda la superficie del panel, en este caso hasta el tiempo de fraguado inicial. Para realizar el cálculo de la tasa de evaporación se determinará pesando los recipientes de monitoreo en intervalos de 30 min. Para determinar la velocidad de evaporación durante cada intervalo de tiempo, se deberá de dividir la pérdida de masa de dos tomas sucesivas de pesaje por la superficie del agua en el recipiente y el intervalo de tiempo entre pesajes sucesivos. La prueba no es válida si la tasa de evaporación promedio es de menos de 1,0 kg/m2 ·h.

Después de las 24 horas realizo el ensayo se tomará dato de las respectivas grietas desarrolladas en el panel y mediante esta información se pasará al cálculo del CRR

Cálculos

Se medirá a partir de la relación de reducción de grietas (CRR) de acuerdo a la siguiente ecuación

$$\mathit{CRR} = \left[1 - \frac{\mathit{ancho}\ \mathit{de}\ \mathit{grieta}\ \mathit{promedio}\ \mathit{del}\ \mathit{concreto}\ \mathit{con}\ \mathit{fibra}}{\mathit{ancho}\ \mathit{de}\ \mathit{grieta}\ \mathit{promedio}\ \mathit{de}\ \mathit{concreto}\ \mathit{patron}}\right] x 100\%$$

Figura 18: Equipos para el ensayo de retracción plástica

Figura 19: Equipos para el ensayo de retracción plástica

Figura 20: Cámara de ambiente

Figura 21: Vaciado de concreto en los paneles de concreto

Figura 22: Paneles de concreto

Ensayo de resistencia a la compresión del concreto mediante probetas cilíndricas (ASTM C39/C39M)

El objetivo de este ensayo es determinar la resistencia a la compresión del concreto **Aparatos**

- Moldes cilíndricos (4x8) pulg
- Máquina de compresión

Procedimiento

- ✓ Se ensaya los cilindros en condición húmeda
- ✓ Se fracturará los cilindros con tolerancia y tiempo permisible
- ✓ Se retirará las impurezas de la cara inferior y superior de los bloques, tanto de las almohadillas y de la probeta de ensayo
- ✓ Se alineará los ejes de la probeta con el centro de empuje de rotula del bloque
- ✓ Se verificará que debe estar en cero el indicador de carga
- ✓ Se deberá aplicar la carga de manera constante
- ✓ La velocidad aplicada será de 0.25±0.05 Mpa/s esta debe ser por lo menos hasta la mitad de la fase donde se anticipa la carga
- ✓ En la primera parte la carga deberá ser de una alta velocidad
- ✓ Verificar la máxima carga alcanzada y se identificara el tipo de fractura
- ✓ Si finalmente verificamos que la resistencia es menor a lo esperado se examinara la fractura del concreto y considerar la existencia de segregación o vacíos en el aire del concreto.

Cálculos

Se determinará mediante la siguiente formula:

$$Fm = \frac{P}{A}$$

En donde:

Fm= Resistencia a la compresión en MPa

P= Carga máxima total en N

A = Área de superficie de carga en cm2

Figura 23: Rotura de probetas para determinar la resistencia a la compresión

3.6 Método de análisis de datos

En la presente investigación se realizará un método de análisis de datos de manera descriptiva e inferencial por el método Kruskal Wallis y ANOVA donde se realizará los resultados promedios de los diferentes ensayos a realizar, en este caso tomando la data mediante la ficha de recolección de datos y será procesada en el programa Excel y SPSS donde se realizará tablas, gráficos a modo de poder visualizar la comparación de los efectos de la viruta de cuero en la reducción de las patologías del concreto simple en losas.

3.7 Aspectos éticos

Para evidenciar ética en la investigación se recolectara la información previa mediante paginas confiables en donde se sustrajo artículos científicos, tesis pregrado y post grado, además con respecto a los ensayos de laboratorio se obtuvo una conversación previa a la realización de estos en donde se verifico la confiabilidad y veracidad tanto como los certificados de calibración correspondientes, por último se empleó el programa TURNITIN para verificar la transparencia y veracidad de la investigación con las respectivas referencias redactadas.

IV. RESULTADOS

Figura 24: Extracción del agregado fino

Figura 25: Extracción del agregado grueso

4.1 RESULTADOS DE LOS ENSAYOS DE LAS PROPIEDADES Y CARACTERISTICAS FISICAS DE LA VIRUTA DE CUERO

Material	Viruta de cuero	
Contextura	Filamentos de mismos	
	tamaños, delgados	
Tamaño	Largo de 3cm	
	Diámetro de 2mm	
%humedad	3.5	
%Absorción	17.20	

Tabla 9: Propiedades y características físicas de la viruta de cuero

4.2 RESULTADOS DE LOS ENSAYOS DE CALIDAD DE LOS AGREGADOS

Tabla 10: Determinación Cuantitativa de cloruros solubles en suelos y agua subterránea

CANTERA	TIPO DE AGREGADO	CONTENIDO		
CANTERA SAN MARTIN	AGREGADO FINO	86mg/kg = 86ppm		
CANTERA GLORIA	AGREGADO GRUESO	47mg/kg = 47ppm		
Interpretación: Según los resultados ambos agregados cumplen con el límite				
permitido de 600 ppm, estos límites se encuentran en la NTP 400.037				

Tabla 11: Sulfatos solubles

CANTERA	TIPO DE AGREGADO	CONTENIDO
CANTERA SAN MARTIN	AGREGADO FINO	25ppm
CANTERA GLORIA	AGREGADO GRUESO	33mg/kg = 33 ppm

Interpretación: Según los resultados ambos agregados cumplen con el límite permitido de 1000 ppm, estos límites se encuentran en la NTP 400.037

Tabla 12: Ensayo de abrasión de los ángeles

CANTERA	TIPO DE AGREGADO	DESGASTE
CANTERA GLORIA	AGREGADO GRUESO	11.45%

Interpretación: Según los resultados cumple con lo requerido según la norma MTC E207, es decir no pasan del 50% del degaste.

Tabla 13: Equivalente de arena

CANTERA	TIPO DE AGREGADO	CONTENIDO	
CANTERA SAN MARTIN	AGREGADO FINO	66%	

Interpretación: Respecto al resultado cumple con lo requerido según la norma MTC E114 ya que lo requerido para un concreto 210 kg/cm² es de 65% como mínimo.

Tabla 14: Impurezas orgánicas

CANTERA	TIPO DE AGREGADO	PLACA ORGANICA
CANTERA SAN MARTIN	AGREGADO FINO	1

Interpretación: Respecto al resultado cumple con la normativa NTP 400.037 ya que se clasifica en la placa orgánica de tipo 1 y esta no tiene material orgánico ya que es similar al tipo patrón.

Tabla 15: Peso específico y absorción

CANTERA	TIPO DE AGREGADO	PESO ESPECIFICO (kg/m3)	ABSORCION (%)
		MPROM	MPROM
CANTERA GLORIA	Agregado grueso	2.7	0.81
CANTERA SAN MARTIN	Agregado Fino	2.52	1.93
	Viruta de cuero		17.20

Tabla 16: Peso unitario compactado y peso unitario suelto

CANTERA	TIPO DE	PESO UNITARIO	PESO
	AGREGADO	COMPACTADO	UNITARIO
		(kg/m3)	SUELTO
			(kg/m3)
		MPROM	MPROM
CANTERA GLORIA	Agregado	1879	1693
	grueso		
CANTERA SAN MARTIN	Agregado Fino	1747	1634

Tabla 17: Contenido de Humedad

CANTERA	TIPO DE AGREGADO	CONTENIDO DE HUMEDAD (%)
CANTERA GLORIA	Agregado grueso	0.33
CANTERA SAN MARTIN	Agregado Fino	1.05
-	Viruta de cuero	3.5

Tabla 18: Determinación de partículas chatas y alargadas en el agregado grueso

CANTERA	TIPO DE AGREGADO	MUESTRA	PORCENTAJE DE PARTICULAS ALARGADAS (%)	PORCENTAJE DE PARTICULAS CHATAS (%)
CANTERA	Agregado	3/8"	0.00	0.00
GLORIA	grueso	1/,"	0.30	0.00
		3/4"	1.18	0.03
		1"	0.00	0.00

Interpretación: En este caso cumple con lo requerido según la norma NTP 400.040 que lo máximo permisible es de 15%

Tabla 19:Determinación del material que pasa el tamiz No. 200

CANTERA	TIPO DE AGREGADO	MATERIAL QUE PASA (%)
CANTERA SAN MARTIN	Agregado Fino	6.18%

Interpretación: En este caso no cumple con lo requerido según la norma NTP 400 037 ya que lo máximo permisible es de 3%

Tabla 20: Durabilidad al sulfato de magnesio

CANTERA	TIPO DE AGREGADO	PERDIDAS (%)
CANTERA GLORIA	Agregado grueso	1.686
CANTERA SAN MARTIN	Agregado fino	4.081

Interpretación: Con respecto a los resultados en ambos agregados cumplen con

el requerimiento de la norma NTP 400 037 ya que son menores a 15% para el agregado fino y 18% para el agregado grueso

Tabla 21: Porcentaje de caras fracturadas

CANTERA	TIPO DE AGREGADO	TIPO DE CARAS FRACTURADAS	PORCENTAJE (%)
CANTERA GLORIA	Agregado grueso	UNA O MAS CARAS	100
		DOS O MAS CARAS	99.52

Interpretación: Con respecto a los resultados en ambos agregados cumplen con el requerimiento de la norma MTC E 210 ya que son mayores al 60% en ambos casos.

Tabla 22: Arcillas en terrones y partículas desmenuzables en agregados

CANTERA	TIPO DE AGREGADO	RESULTADO
CANTERA GLORIA	Agregado grueso	0.3
CANTERA SAN MARTIN	Agregado fino	2.1

Interpretación: Con respecto a los resultados en ambos agregados cumplen con el requerimiento de la norma NTP 400.015 ya que son menores al 3% en agregado fino y 5 % en agregado grueso.

Tabla 23: Granulometría de la viruta de cuero

TAMIZ	ABERTURA DE TAMIZ (mm)	PESO RETENIDO (g)	%RETENIDO	%RETENIDO ACUMULADO	% QUE PASA
5 in.	125	-	-	-	100.0
4 in.	100	-	-	-	100.0
3 ½ in.	90	-	-	-	100.0
3 in.	75	-	-	-	100.0
2 ½ in.	63	-	-	-	100.0
2 in.	50	-	-	-	100.0

1 ½ in.	37.5	-	-	-	100.0
1 in.	25	-	-	-	100.0
¾ in.	19	-	-	-	100.0
½ in.	12.5	-	-	-	100.0
3/8 in.	9.5	-	-	-	100.0
No. 4	4.75	-	-	-	100.0
No. 8	2.36	3.9	3.1	3.1	96.9
No. 16	1.18	3.8	3.0	6.1	93.9
No. 30	0.6	6.2	4.9	11.1	88.9
No. 50	0.3	24.8	19.8	30.8	69.2
No. 100	0.15	58.0	46.2	77.1	22.9
No. 200	0.075	22.5	17.9	95.0	5.0
Fondo		6.3	5.0	100.0	-
TO	OTAL	125.50	100.00	MODULO	1.3

Tabla 24: Granulometría del agregado grueso

TAMIZ	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE
	DE TAMIZ	RETENIDO		ACUMULADO	PASA
	(mm)	(g)			
5 in.	125	-	-	-	100.0
4 in.	100	-	-	-	100.0
3 ½ in.	90	-	-	•	100.0
3 in.	75	-	-	•	100.0
2 ½ in.	63	-	-	•	100.0
2 in.	50	-	-	•	100.0
1 ½ in.	37.5	-	-	-	100.0
1 in.	25	-	-	-	100.0
¾ in.	19	-	-	-	100.0
½ in.	12.5	4,966.3	77.6	77.6	22.4
3/8 in.	9.5	1,069.1	16.7	94.3	5.7
No. 4	4.75	348.4	5.4	99.7	0.3
No. 8	2.36	14.3	0.2	99.9	0.1
No. 16	1.18	1.1	0.0	99.9	0.1
No. 30	0.6	0.5	0.0	99.9	0.1
No. 50	0.3	0.6	0.0	100.0	0.0
No. 100	0.15	0.8	0.0	100.0	0.0
No. 200	0.075	1.8	0.0	100.0	0.0
Fondo		0.5	0.0	100.0	-
TO	OTAL	6,403.40	100.00	MODULO	6.9

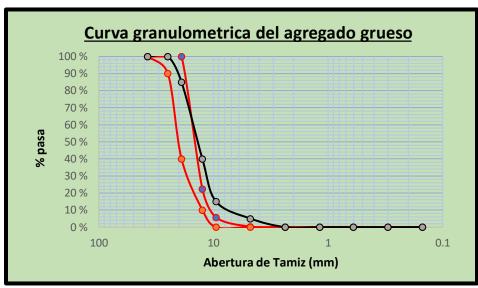


Figura 26: Curva granulométrica del agregado grueso

Interpretación: Respecto a los resultados comparando con los requerimientos según la NTP 400 037 no cumple respecto a los husos granulométricos.

Tabla 25: Granulometría del agregado fino

TAMIZ	ABERTURA DE TAMIZ	PESO RETENIDO	%RETENIDO	%RETENIDO ACUMULADO	% QUE PASA
	(mm)	(g)		ACOMOLADO	PASA
5 in.	125	-	-	-	100.0
4 in.	100	-	-	-	100.0
3 ½ in.	90	-	-	-	100.0
3 in.	75	-	-	-	100.0
2 ½ in.	63	-	-	-	100.0
2 in.	50	-	-	•	100.0
1 ½ in.	37.5	-	-	ı	100.0
1 in.	25	-	-	•	100.0
¾ in.	19	-	-	•	100.0
½ in.	12.5	-	-	•	100.0
3/8 in.	9.5	-	-	•	100.0
No. 4	4.75	30.3	1.6	1.6	98.4
No. 8	2.36	326.6	16.9	18.5	81.5
No. 16	1.18	510.3	26.4	44.9	55.1
No. 30	0.6	413.6	21.4	66.3	33.7
No. 50	0.3	255.8	13.2	79.5	20.5
No. 100	0.15	217.0	11.2	90.8	9.2
No. 200	0.075	129.9	6.7	97.5	2.5
Fondo		48.2	2.5	100.0	-
TO	OTAL	1,931.70	100.00	MODULO	3.0

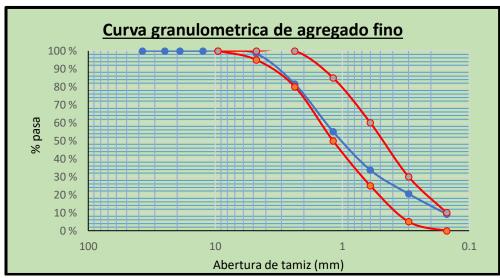


Figura 27: Curva granulométrica del agregado fino

Interpretación: Los resultados cumplen con los requerimientos de la NTP 400,037 tanto que están dentro del parámetro de módulo de fineza (2,3-3,1) y según la tabla 2 con los porcentajes que pasan.

4.3 Diseño de mezclas

Tabla 26: Diseño de mezclas teórico

F'c kg/cm²	F'cr Kg/cm²	R a/c	Cantidad de cemento kg/m3	Cantidad de agua lt/m3	Agregado fino kg/m3	Agregado grueso kg/m3
210	295	0.56	400.36	234.31	885.63	725.54

4.4 Ensayo de resistencia a la compresión mediante probetas cilíndricas

Resistencia a los 3 días tipo patrón f'c 210kg/cm²

		EN	ISAYO DE LA RE	SISTENCIA	A A LA COMPR	ESIÓN MED	DIANTE PROB	ETAS CILÍNDRIO	CAS	
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%REQUERIDA	Tipo de
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA		fractura
1	PROBETAS	3	102.31	8220.22	198.20	252.3		120%	50%	2
	DE									
	CONCRETO									
	CILINDRICAS									
2	PROBETAS	3	101.56	8100.94	218.42	278.1		132%	50%	2
	DE									
	CONCRETO						250.05			
	CILINDRICAS						259.95			
3	PROBETAS	3	103.05	8339.57	197.19	251.0	-	120%	50%	3
	DE									
	CONCRETO									
	CILINDRICAS									
4	PROBETAS	3	103.66	8439.41	203.01	258.4	-	123%	50%	3
	DE									
	CONCRETO									
	CILINDRICAS									

Fuente: Propia

Resistencia a los 7 días tipo patrón f'c 210kg/cm²

		ENS	AYO DE LA RESI	STENCIA	A LA COMPR	ESIÓN ME	DIANTE PRO	BETAS CILÍNDR	ICAS	
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%REQUERIDA	Tipo de
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA		fractura
1	PROBETAS	7	99.13	7717.92	215.72	274.6		131%	70-75%	1
	DE									
	CONCRETO									
	CILINDRICAS									
2	PROBETAS	7	99.12	7716.36	244.11	310.8		148%	70-75%	3
	DE									
	CONCRETO						291.4			
	CILINDRICAS						291.4			
3	PROBETAS	7	99.85	7830.44	228.12	290.4		138%	70-75%	3
	DE									
	CONCRETO									
	CILINDRICAS									
4	PROBETAS	7	100.59	7946.93	227.62	289.8		138%	70-75%	3
	DE									
	CONCRETO									
	CILINDRICAS									

Fuente: Propia

Resistencia a los 28 días tipo patrón f'c 210kg/cm²

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS											
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de		
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura		
1	PROBETAS	28	99.73	7811.63	339.18	431.8		206%	100%	3		
	DE											
	CONCRETO											
	CILINDRICAS											
2	PROBETAS	28	101.07	8022.96	299.06	380.7		181%	100%	1		
	DE											
	CONCRETO						200 025					
	CILINDRICAS						399.825					
3	PROBETAS	28	100.54	7939.03	318.88	406.0		193%	100%	2		
	DE											
	CONCRETO											
	CILINDRICAS											
4	PROBETAS	28	99.11	7714.02	299.08	380.8		181%	100%	3		
	DE											
	CONCRETO											
	CILINDRICAS											

Fuente: Propia

Resistencia a los 3 días f'c 210kg/cm² con adición de 1% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS											
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de		
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura		
1	PROBETAS	3	101.89	8153.67	200.17	254.8		121%	50%	3		
	DE											
	CONCRETO											
	CILINDRICAS											
2	PROBETAS	3	103.35	8388.20	209.48	256.7		122%	50%	3		
	DE											
	CONCRETO						240.0					
	CILINDRICAS						249.9					
3	PROBETAS	3	101.49	8088.98	197.22	251.1		120%	50%	2		
	DE											
	CONCRETO											
	CILINDRICAS											
4	PROBETAS	3	102.35	8227.46	186.20	237.0		113%	50%	5		
	DE											
	CONCRETO											
	CILINDRICAS											

Resistencia a los 7 días f'c 210kg/cm² con adición de 1% de viruta de cuero

		ENS	AYO DE LA RESI	STENCIA	A LA COMPR	ESIÓN ME	DIANTE PRO	BETAS CILÍNDR	ICAS	
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%REQUERIDA	Tipo de
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA		fractura
1	PROBETAS	7	99.89	7835.93	218.94	278.7		133%	70-75%	2
	DE									
	CONCRETO									
	CILINDRICAS									
2	PROBETAS	7	99.36	7753.77	198.04	252.1		120%	70-75%	1
	DE									
	CONCRETO						259.47			
	CILINDRICAS						209.47			
3	PROBETAS	7	99.49	7774.08	186.18	237.0		113%	70-75%	1
	DE									
	CONCRETO									
	CILINDRICAS									
4	PROBETAS	7	100.66	7957.21	212.13	270.1		129%	70-75%	1
	DE									
	CONCRETO									
	CILINDRICAS									

Resistencia a los 28 dias f'c 210kg/cm² con adición de 1% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS											
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de		
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura		
1	PROBETAS	28	101.75	8130.48	219.76	279.8		133%	100%	2		
	DE											
	CONCRETO											
	CILINDRICAS											
2	PROBETAS	28	102.47	8246.76	219.26	279.1		133%	100%	2		
	DE											
	CONCRETO						070.65					
	CILINDRICAS						272.65					
3	PROBETAS	28	103.24	8371.16	201.35	256.3		122%	100%	1		
	DE											
	CONCRETO											
	CILINDRICAS											
4	PROBETAS	28	102.28	8216.21	216.34	275.4		131%	100%	1		
	DE											
	CONCRETO											
	CILINDRICAS											

Resistencia a los 3 días f'c 210kg/cm² con adición de 3% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS										
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de	
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura	
1	PROBETAS	3	102.34	8225.04	135.48	172.5		82%	50%	5	
	DE										
	CONCRETO										
	CILINDRICAS										
2	PROBETAS	3	101.91	8156.07	145.40	185.1		88%	50%	5	
	DE										
	CONCRETO						477.05				
	CILINDRICAS						177.05				
3	PROBETAS	3	101.82	8141.67	128.76	163.9		78%	50%	5	
	DE										
	CONCRETO										
	CILINDRICAS										
4	PROBETAS	3	101.70	8122.49	146.63	186.7		89%	50%	5	
	DE										
	CONCRETO										
	CILINDRICAS										

Resistencia a los 7 días f'c 210kg/cm² con adición de 3% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS										
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%REQUERIDA	Tipo de	
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA		fractura	
1	PROBETAS	7	99.99	7851.63	173.69	221.1		105%	70-75%	1	
	DE										
	CONCRETO										
	CILINDRICAS										
2	PROBETAS	7	98.82	7668.95	178.25	226.9		108%	70-75%	2	
	DE										
	CONCRETO						225.2				
	CILINDRICAS						223.2				
3	PROBETAS	7	99.73	7810.84	184.55	2349		112%	70-75%	5	
	DE										
	CONCRETO										
	CILINDRICAS										
4	PROBETAS	7	99.68	7803.01	171.19	217.9		104%	70-75%	3	
	DE										
	CONCRETO										
	CILINDRICAS										

Resistencia a los 28 días f'c 210kg/cm² con adición de 3% de viruta de cuero

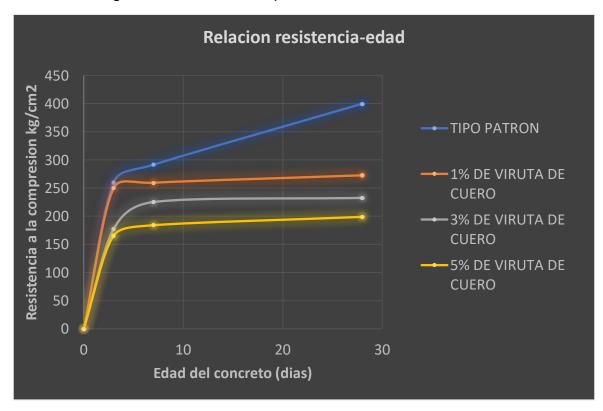
	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS											
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de		
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura		
1	PROBETAS	28	103.21	8365.49	184.26	234.6		112%	100%	5		
	DE											
	CONCRETO											
	CILINDRICAS											
2	PROBETAS	28	102.34	8225.04	177.79	226.3		108%	100%	2		
	DE											
	CONCRETO						000 575					
	CILINDRICAS						232.575					
3	PROBETAS	28	101.84	8145.67	184.99	235.5		112%	100%	5		
	DE											
	CONCRETO											
	CILINDRICAS											
4	PROBETAS	28	102.62	8270.12	183.70	233.9		111%	100%	3		
	DE											
	CONCRETO											
	CILINDRICAS											

Resistencia a los 3 días f'c 210kg/cm² con adición de 5% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS										
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de	
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura	
1	PROBETAS	3	100.64	7954.04	123.40	157.1		75%	50%	1	
	DE										
	CONCRETO										
	CILINDRICAS										
2	PROBETAS	3	99.72	7810.06	133.14	169.5		81%	50%	1	
	DE										
	CONCRETO						405.5				
	CILINDRICAS						165.5				
3	PROBETAS	3	99.76	7816.33	127.59	162.4		77%	50%	5	
	DE										
	CONCRETO										
	CILINDRICAS										
4	PROBETAS	3	100.54	7939.03	135.88	173.0		82%	50%	1	
	DE										
	CONCRETO										
	CILINDRICAS										

Resistencia a los 7 días f'c 210kg/cm² con adición de 5% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS										
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%REQUERIDA	Tipo de	
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA		fractura	
1	PROBETAS	7	103.13	8352.53	151.3	192.6		92%	70-75%	1	
	DE										
	CONCRETO										
	CILINDRICAS										
2	PROBETAS	7	102.58	8263.67	146.67	186.7		89%	70-75%	2	
	DE										
	CONCRETO						183.975				
	CILINDRICAS						103.975				
3	PROBETAS	7	103.34	8386.58	140.61	179.0		85%	70-75%	5	
	DE										
	CONCRETO										
	CILINDRICAS										
4	PROBETAS	7	102.26	8212.19	139.51	177.6		85%	70-75%	3	
	DE										
	CONCRETO										
	CILINDRICAS										


Resistencia a los 28 días f'c 210kg/cm² con adición de 5% de viruta de cuero

	ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN MEDIANTE PROBETAS CILÍNDRICAS											
N°	Tipo de	Edad	Diámetro	Área	Carga	F'c	PROMEDIO	RESISTENCIA	%	Tipo de		
	muestra		promedio(mm)	(mm²)	máxima(kn)	(kg/cm²)		OBTENIDA	REQUERIDA	fractura		
1	PROBETAS	28	100.10	7869.70	152.62	194.3		93%	100%	2		
	DE											
	CONCRETO											
	CILINDRICAS											
2	PROBETAS	28	99.08	7709.35	145.78	185.6		88%	100%	2		
	DE											
	CONCRETO						400 775					
	CILINDRICAS						198.775					
3	PROBETAS	28	100.81	7980.94	165.11	210.2		100%	100%	1		
	DE											
	CONCRETO											
	CILINDRICAS											
4	PROBETAS	28	99.48	7771.73	161.02	205.0		98%	100%	1		
	DE											
	CONCRETO											
	CILINDRICAS											

Tabla 27: Resistencia a la compresión promedio mediante probetas cilíndricas

	Resistencia obtenida (kg/cm²)							
Edades (días)	Patrón	Reemplazo al A.F 1%	Reemplazo al A.F 3%	Reemplazo				
(dias)		ai 71.1 170	ai 71.1 370	ai 71.1 370				
3	295.95	249.9	177.05	165.5				
7	291.4	259.47	225.2	183.97				
28	399.82	272.65	232.57	198.77				

Figura 28: Grafico de dispersión relación resistencia-edad

En la siguiente tabla se muestra los resultados obtenidos en cuanto a la resistencia a compresión de los concretos evaluados:

Tabla 28: Resultados de la resistencia a compresión de los concretos a los 3, 7 y 28 días.

Grupos	Resistencia a compresión (kg/cm²)				
	3 días	7 días	28 días		
	252.30	274.60	431.80		
Concrete patrón	278.10	310.80	380.70		
Concreto patrón	251.00	290.40	406.00		
	258.40	289.80	380.80		
	254.80	278.70	279.80		
Caparata can adjaján da 1 0/ da viruta da ayara	256.70	252.10	279.10		
Concreto con adición de 1 % de viruta de cuero	251.10	237.00	256.30		
	237.00	270.10	275.40		
	172.50	221.10	234.60		
Concreto con adición de 3 % de viruta de cuero	185.10	226.90	226.30		
Concreto con adicion de 5 % de virula de cuero	163.90	234.90	235.50		
	186.70	217.90	233.90		
	157.10	192.60	194.30		
Concrete con adjajón de E 0/ de virute de quero	169.50	186.70	185.60		
Concreto con adición de 5 % de viruta de cuero	162.40	179.00	210.20		
	173.00	177.60	205.00		

En consecuencia, de acuerdo a la desviación estándar de las resistencias de los concretos tal como se muestra en la Tabla 29, Tabla 30 y Tabla 31 se tiene que a los 3 días se presentó un manejo excelente de la mezcla por contar con valores menores a 14 kg/cm², mientras que a los 7 días se presentó un manejo bueno y muy bueno, y a los 28 días un mal manejo en el concreto patrón y excelente cuando se añadió las virutas de cuero.

Tabla 29: Análisis de la resistencia a compresión a los 3 días de edad.

Grupos	Desviación estándar (kg/cm²)	Coeficiente de variación (%)	Resistencia a compresión promedio (kg/cm²)	Porcentaje de variación
Concreto patrón	12.52	4.82	259.95	0.00
Concreto con adición de 1 % de viruta de cuero	8.91	3.56	249.90	-3.87
Concreto con adición de 3 % de viruta de cuero	10.83	6.11	177.05	-31.89
Concreto con adición de 5 % de viruta de cuero	7.13	4.31	165.50	-36.33

Tabla 30: Análisis de la resistencia a compresión a los 7 días de edad.

Grupos	Desviación estándar (kg/cm²)	Coeficiente de variación (%)	Resistencia a compresión promedio (kg/cm²)	Porcentaje de variación
Concreto patrón	14.86	5.10	291.40	0.00
Concreto con adición de 1 % de viruta de cuero	18.64	7.18	259.48	-10.96
Concreto con adición de 3 % de viruta de cuero	7.46	3.31	225.20	-22.72
Concreto con adición de 5 % de viruta de cuero	7.00	3.81	183.98	-36.87

Tabla 31: Análisis de la resistencia a compresión a los 28 días de edad.

Grupos	Desviación estándar (kg/cm²)	Coeficiente de variación (%)	Resistencia a compresión promedio (kg/cm²)	Porcentaje de variación
Concreto patrón	24.41	6.11	399.83	0.00
Concreto con adición de 1 % de viruta de cuero	11.07	4.06	272.65	-31.81
Concreto con adición de 3 % de viruta de cuero	4.23	1.82	232.58	-41.83
Concreto con adición de 5 %	11.00	5.53	198.78	-50.28

4.5 Resultados de las fisuras por retracción plástica en losas de concreto simple f'c 210 kg/cm²

Losa concreto simple patrón f'c 210 kg/cm² (PAÑO 1)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	400	398.1	1.11072061	24	2.3	66
60	398.1	396.3	1.05226163	28.6	2.6	50
90	396.3	393.9	1.4030155	29.5	3.3	47
120	393.9	391.9	1.16917958	30	3.6	47
150	391.9	388.8	1.81222836	30	3	44
180	388.8	385.3	2.04606427	31.7	3.3	41
210	385.3	382.9	1.4030155	32.5	2.9	42
240	382.9	379.6	1.92914631	36.2	3.3	35
270	379.6	377.3	1.34455652	30.7	3.5	43
300	377.3	375.3	1.16917958	29.3	3.2	43
330	375.3	373.4	1.11072061	29.6	3.3	43
360	373.4	370.1	1.92914631	31.3	3	40
390	370.1	367.3	1.63685142	29.8	2.8	43
420	367.3	364	1.92914631	30.6	3	39

Fuente: Propia

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.35	2
2	2	0.2	5
3	3	0.2	2
4	4	0.1	3.08
5	5	0.1	1
6	6	0.2	4
7	7	0.1	4
8	8	0.1	5
9	9	0.1	6

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 1 se puede apreciar la aparición de 9 fisuras en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 24°C y 36.2°C, humedades de 35 y 66% y velocidad de viento de 2.3 y 3.6 m/s

Losa concreto simple patrón f'c 210 kg/cm² (PAÑO 2)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	400	398.1	1.11072061	23.8	2.7	68
60	398.1	396.3	1.05226163	28.8	2.2	51
90	396.3	393.9	1.4030155	29.9	2.7	49
120	393.9	391.9	1.16917958	32.1	2.7	44
150	391.9	388.8	1.81222836	30.5	2.6	45
180	388.8	385.3	2.04606427	31.4	2.4	41
210	385.3	382.9	1.4030155	32.6	3	42
240	382.9	379.6	1.92914631	34.4	2.7	44
270	379.6	377.3	1.34455652	29.2	2.8	43
300	377.3	375.3	1.16917958	29.5	3.1	43
330	375.3	373.4	1.11072061	29.5	3	42
360	373.4	370.1	1.92914631	31.3	2.6	41
390	370.1	367.3	1.63685142	29.8	3.2	40
420	367.3	364	1.92914631	30.7	2.9	40

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	23.5
2	2	0.1	11.5
3	3	0.1	17.5
4	4	0.25	11
5	5	0.1	5.8
6	6	0.2	7.5
7	7	0.1	9
8	8	0.1	7
9	9	0.2	6

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 2 se puede apreciar la aparición de 9 fisuras en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 23.8°C y 34.4°C, humedades de 40 y 68% y velocidad de viento de 2.4 y 3.2 m/s

Losa concreto simple patrón f'c 210 kg/cm² con adición de 1% de viruta de cuero (PAÑO 3)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	400	397.9	1.22763856	28.1	3.1	46
60	397.9	395.5	1.4030155	29.3	2.9	46
90	395.5	393.1	1.4030155	29	3	44
120	393.1	390.3	1.63685142	28.3	2.8	44
150	390.3	384.4	3.44907977	29.4	2.8	41
180	384.8	383.4	0.81842571	29.6	3	41
210	383.4	380.8	1.51993346	29.3	3	40
240	380.8	377.2	2.10452325	30	3	48
270	377.2	375	1.28609754	31.5	2.8	40
300	375	372.7	1.34455652	31.5	2.8	40
330	372.7	368.4	2.51373611	30.7	3.2	32
360	368.4	364.8	2.10452325	32	3.2	37
390	364.8	355	5.72897996	33.6	3.1	29

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	5
2	2	0.1	4
3	3	0.1	5
4	4	0.1	3.5
5	5	0.15	5.5
6	6	0.1	4.5
7	7	0.15	9
8	8	0.2	4.5
9	9	0.1	13
10	10	0.1	7
11	11	0.1	5
12	12	0.1	6
13	13	0.15	3

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 3 se puede apreciar la aparición de 13 fisuras en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 28.1°C y 33.6°C, humedades de 29 y 48% y velocidad de viento de 2.8 y 3.2 m/s

Losa concreto simple patrón f'c 210 kg/cm² adicionando 1% de viruta de cuero (PAÑO 4)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	400	397.9	1.22763856	28.7	2	49
60	397.9	395.5	1.4030155	29.7	2.3	47
90	395.5	393.1	1.4030155	30	2	49
120	393.1	390.3	1.63685142	28.8	2.4	47
150	390.3	384.4	3.44907977	29.6	3	42
180	384.8	383.4	0.81842571	30	2.6	39
210	383.4	380.8	1.51993346	29.2	2.7	41
240	380.8	377.2	2.10452325	29.2	2.7	49
270	377.2	375	1.28609754	29.5	2.8	40
300	375	372.7	1.34455652	31.1	2.7	40
330	372.7	368.4	2.51373611	31.1	2.8	32
360	368.4	364.8	2.10452325	31.6	2.7	37
390	364.8	355	5.72897996	34.5	3.1	28

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	5
2	2	0.1	5
3	3	0.1	3
4	4	0.1	5
5	5	0.1	6
6	6	0.1	2
7	7	0.1	8.5
8	8	0.1	4
9	9	0.1	5
10	10	0.1	5
11	11	0.1	7.5
12	12	0.1	5
13	13	0.15	5

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 4 se puede apreciar la aparición de 13 fisuras en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 28.7°C y 34.5°C, humedades de 28 y 49% y velocidad de viento de 2 y 3.1 m/s

Losa concreto simple patrón f'c 210 kg/cm² con adición de 3% de viruta de cuero (PAÑO 5)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	400	397.7	1.34455652	27	2.8	66
60	397.7	392.5	3.03986692	29	3	44
90	392.5	390.3	1.28609754	30.3	2.7	46
120	390.3	387.8	1.46147448	30.2	3	39
150	387.8	385.7	1.22763856	31.3	3	39
180	385.7	383.1	1.51993346	32.5	3	40
210	383.1	380.9	1.28609754	32.1	3	37
240	380.9	378.2	1.57839244	35	2.9	38
270	378.2	375.9	1.34455652	32.8	2.8	36
300	375.9	373.3	1.51993346	32.7	2.8	40
330	373.3	369.6	2.16298223	32.1	2.9	35
360	369.6	362.4	4.2090465	32.6	2.9	37
390	362.4	358.6	2.22144121	33.3	3	33
420	358.6	355.2	1.98760529	35.1	3	37

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	4.12
2	2	0.1	2.02
3	3	0.1	2.1
4	4	0.1	3.86
5	5	0.1	6.79
6	6	0.1	2.97
7	7	0.1	1.96

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 5 se puede apreciar la aparición de 7 fisuras en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 27°C y 35.1°C, humedades de 33% y 66% y velocidad de viento de 2.7 m/s y 3 m/s

Losa concreto simple patrón f'c 210 kg/cm² con adición de 3% de viruta de cuero (PAÑO 6)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	400	397.7	1.34455652	27.4	2.5	62
60	397.7	392.5	3.03986692	29.3	2.7	45
90	392.5	390.3	1.28609754	31	2.5	46
120	390.3	387.8	1.46147448	31	2.6	40
150	387.8	385.7	1.22763856	31.5	2.6	40
180	385.7	383.1	1.51993346	34.1	2.5	40
210	383.1	380.9	1.28609754	31.7	2.7	36
240	380.9	378.2	1.57839244	35.2	2.9	38
270	378.2	375.9	1.34455652	33.1	2.7	35
300	375.9	373.3	1.51993346	32.8	2.5	41
330	373.3	369.6	2.16298223	32.8	2.6	37
360	369.6	362.4	4.2090465	32.7	2.7	37
390	362.4	358.6	2.22144121	33.2	2.6	35
420	358.6	355.2	1.98760529	31	2.7	35

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	2.07
2	2	0.1	2.06
3	3	0.1	6.23
4	4	0.1	6.91

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 6 se puede apreciar la aparición de 4 fisuras en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 27.4°C y 35.2°C, humedades de 35 y 62% y velocidad de viento de 2.5 y 2.9 m/s

Losa concreto simple patrón f'c 210 kg/cm² con adición de 5% de viruta de cuero (PAÑO 7)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	375	373.8	0.70150775	40.5	2.9	49
60	373.8	372	1.05226163	38.4	2.7	45
90	372	371	0.58458979	38.6	2.2	43
120	371	369	1.16917958	38.5	2.5	43
150	369	365	2.33835917	39.7	2.7	42
180	365	363.2	1.05226163	40	2.8	43
210	363.2	362	0.70150775	41	2.7	41
240	362	360	1.16917958	42.1	2.5	40
270	360	358	1.16917958	41.2	2.6	40
300	358	356	1.16917958	43.2	2.8	39
330	356	354	1.16917958	42.3	2.5	38
360	354	352	1.16917958	41.8	2.4	36
390	352	349	1.75376938	39.1	3.7	37
420	349	346	1.75376938	40	3.9	37

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	2.47

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 7 se puede apreciar la aparición de 1 fisura en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 38.4°C y 43.2°C, humedades de 36 y 49% y velocidad de viento de 2.2 y 3.9 m/s

Losa concreto simple patrón f'c 210 kg/cm² con adición de 5% de viruta de cuero (PAÑO 8)

Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T° Aire	Veloc. Viento	Humedad Relativa
min	gr	gr	kg/m2/h	(°C)	m/s	%
30	375	373.8	0.70150775	38.3	2.5	52
60	373.8	372	1.05226163	39.8	2.9	49
90	372	371	0.58458979	38.5	2.3	44
120	371	369	1.16917958	37.4	2.5	42
150	369	365	2.33835917	38.1	2.7	45
180	365	363.2	1.05226163	39.3	2.4	44
210	363.2	362	0.70150775	40.1	2.7	42
240	362	360	1.16917958	40.8	2.9	40
270	360	358	1.16917958	40.9	2.7	41
300	358	356	1.16917958	42.3	2.5	41
330	356	354	1.16917958	40.7	2.6	36
360	354	352	1.16917958	34.1	2.9	38
390	352	349	1.75376938	34.4	3.1	38
420	349	346	1.75376938	42.1	2.3	38

# Fisura	Identificación	Espesor (mm)	Longitud (cm)
1	1	0.1	3.81

Fuente: Propia

Interpretación: Según los resultados obtenidos en el paño 8 se puede apreciar la aparición de 1 fisura en donde cumple con la tasa de evaporación mayor o igual a 1, también las temperaturas mínima y máxima son de 34.1°C y 42.3°C, humedades de 36 y 52% y velocidad de viento de 2.3 y 3.1 m/s

4.6 Influencia de viruta de cuero en la fisuración por retracción plástica del concreto

4.6.1 Número de fisuras por retracción plástica del concreto

En la siguiente tabla se detalla el número de fisuras promedio obtenidas en el concreto patrón y en los concretos donde se adicionó 1 %, 3 % y 5 % de viruta de cuero; asimismo, se tiene la variación presentada, donde al adicionar 1 % de virutas se incrementan en 44.44 %; mientras que, con 3 % y 5 % de viruta de cuero se reducen en 22.22 % y 88.89 %.

Tabla 32. Número de fisuras por retracción plástica de los concreto evaluados.

	Número de fisuras promedio	Porcentaje de variación
Concreto patrón	9	
Concreto con adición de 1 % de viruta de cuero	13	44.44
Concreto con adición de 3 % de viruta de cuero	7	-22.22
Concreto con adición de 5 % de viruta de cuero	1	-88.89

En consecuencia, según la **Error! Reference source not found.** se tiene que al adicionar 3 % y 5 % de viruta de cuero se reduce el número de fisuras en el concreto.

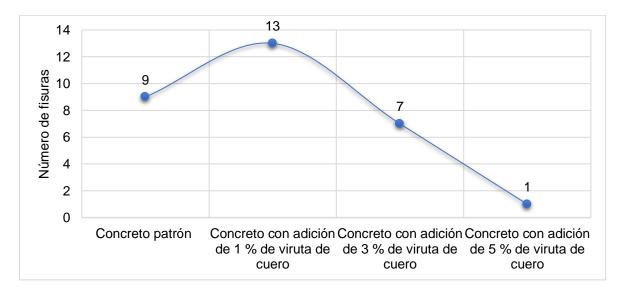


Figura 29: Número de fisuras por retracción plástica de los concreto evaluados.

4.6.2 Ancho de fisuras por retracción plástica del concreto

En la siguiente tabla se muestra los resultados obtenidos en cuanto al ancho de fisuras en los paneles para cada uno de los concreto evaluados:

Tabla 33. Resultados del ancho de fisuras por retracción plástica del concreto.

Crunos	Ancho de f	Ancho de fisuras (mm)			
Grupos	Medición 1	Medición 2			
	0.35	0.10			
	0.20	0.10			
	0.20	0.10			
	0.10	0.25			
Concreto patrón	0.10	0.10			
·	0.20	0.20			
	0.10	0.10			
	0.10	0.10			
	0.10	0.20			
	0.10	0.10			
	0.10	0.10			
	0.10	0.10			
	0.10	0.10			
	0.15	0.10			
	0.10	0.10			
Concreto con adición de 1 % de viruta de cuero	0.15	0.10			
	0.20	0.10			
	0.10	0.10			
	0.10	0.10			
	0.10	0.10			
	0.10	0.10			
	0.15	0.15			
	0.10	0.10			
	0.10	0.10			
	0.10	0.10			
Concreto con adición de 3 % de viruta de cuero	0.10	0.10			
	0.10				
	0.10				
	0.10				
Concreto con adición de 5 % de viruta de cuero	0.10	0.10			

De acuerdo a la tabla anterior, en la Tabla 3434 y Figura 30 se tiene la distribución de frecuencias para el ancho de fisuras en el concreto patrón.

Tabla 34. Distribución de frecuencias para el ancho de fisuras en el concreto

patrón.

		Marca (mm)	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	0.06 - 0.10	0.08	11.00	42.31	61.11	61.11
	0.16 - 0.20	0.18	5.00	19.23	27.78	88.89
Válido	0.21 - 0.25	0.23	1.00	3.85	5.56	94.44
	0.31 - 0.35	0.33	1.00	3.85	5.56	100.00
	Total		18.00	69.23	100.00	
Perdidos	Sistema		8.00	30.77		
Total		•	26.00	100.00		

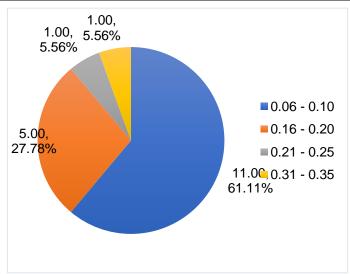


Figura 30: Distribución de frecuencias para el ancho de fisuras en el concreto patrón.

Asimismo, en la Tabla 35 y Figura 31 se tiene la distribución de frecuencias para el ancho de fisuras en el concreto más 1 % de virutas de cuero, denotándose que el 80.77 % se encuentra entre 0.06 a 0.10 mm, el 15.38 % entre 0.11 a 0.15 mm y el 3.85 % entre 0.16 a 0.20 mm.

Tabla 35. Distribución de frecuencias para el ancho de fisuras en el concreto más 1 % de viruta de cuero.

			Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	0.06 - 0.10	0.08	21.00	80.77	80.77	80.77
Válido	0.11 - 0.15 0.16 - 0.20	0.13	4.00	15.38	15.38	96.15
valido	0.16 - 0.20	0.18	1.00	3.85	3.85	100.00
	Total		26.00	100.00	100.00	

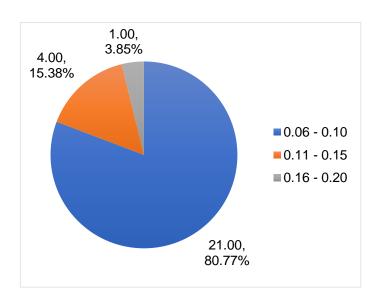


Figura 31: Distribución de frecuencias para el ancho de fisuras en el concreto más 1 % de viruta de cuero.

Del mismo modo se especifica la distribución de frecuencia del ancho de las fisuras para el concreto más 3 % viruta de cuero en la Tabla 36 y Figura 32.

Tabla 36. Distribución de frecuencias para el ancho de fisuras en el concreto más 3 % de viruta de cuero.

			Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válido	0.06 - 0.10	0.08	11.00	42.31	100.00	100.00
Perdidos	Sistema		15.00	57.69		
Total			26.00	100.00		

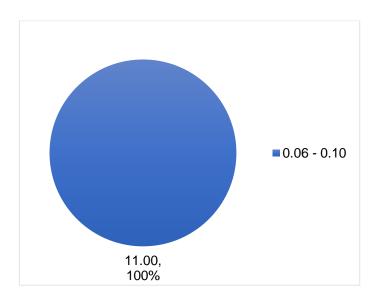


Figura 32: Distribución de frecuencias para el ancho de fisuras en el concreto más

3 % de viruta de cuero.

Por último, lo referido al concreto más 5 % de viruta de cuero se detalla en la Tabla 37 y Figura 33.

Tabla 37. Distribución de frecuencias para el ancho de fisuras en el concreto más 5 % de viruta de cuero.

			Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
Válido	0.06 - 0.10	0.08	2.00	7.69	100.00	100.00
Perdidos	Sistema		24.00	92.31		
Total			26.00	100.00		

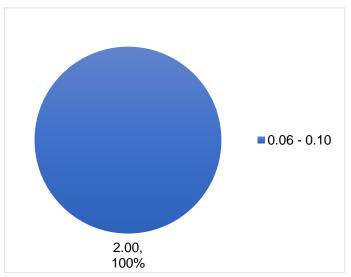


Figura 33: Distribución de frecuencias para el ancho de fisuras en el concreto más 5 % de viruta de cuero.

En la siguiente figura se tiene que el 100 % de fisuras presentadas en el concreto más 3 % y 5 % de viruta de cuero se encontró entre 0.05 y 0.10 mm, mientras que con 1 % de viruta de acero se encontró entre 0.05 a 0.10 mm, 0.10 mm y 0.15 mm, además de 0.15 mm a 0.20 mm; a diferencia de lo encontrado en el concreto patrón que osciló entre 0.05 a 0.35 mm.

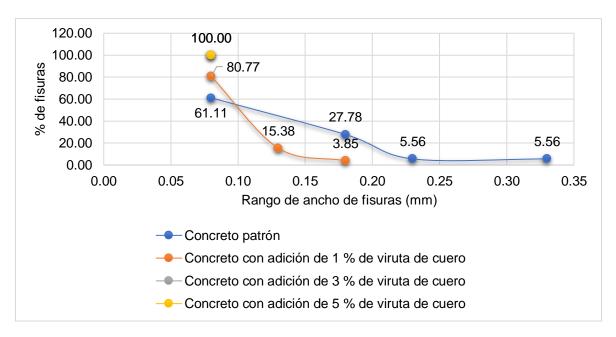


Figura 34: Distribución de frecuencias para el ancho de fisuras en los concreto evaluados.

En consecuencia, la Tabla 38 muestra el promedio del ancho de fisuras y el porcentaje de variación presentado, representando que con la adición de virutas de cuero se logró reducir en hasta 33.33 % el ancho de las fisuras.

Tabla 38. Ancho de fisuras promedio en los concretos evaluados.

Grupos	Desviación estándar (mm)	Ancho promedio de fisuras (mm)	Porcentaje de variación (CRR)
Concreto patrón	0.07	0.15	
Concreto con adición de 1 % de viruta de cuero	0.03	0.11	-25.64
Concreto con adición de 3 % de viruta de cuero	0.00	0.10	-33.33
Concreto con adición de 5 % de viruta de cuero	0.00	0.10	-33.33

Por ende, en la Figura 35 se denota que mientras se adiciona virutas de cuero al concreto el ancho se reduce en comparación a lo obtenido para el concreto patrón.

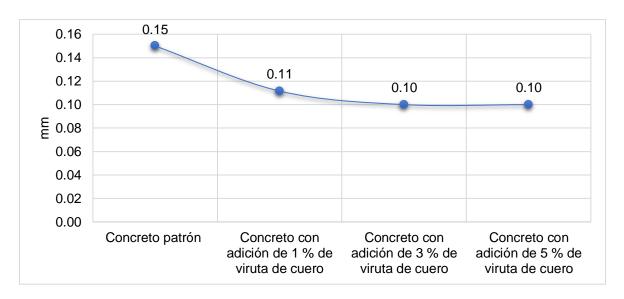


Figura 35: Ancho de fisuras por retracción plástica de los concreto evaluados.

4.6.3 Longitud de fisuras por retracción plástica en el concreto

En cuanto a la longitud de las fisuras, en la siguiente tabla se detalla los resultados obtenidos para cada uno de los grupos evaluados:

Tabla 39. Resultados de las longitudes de fisuras por retracción plástica del concreto.

Grunos	Longitud de	fisuras (cm)
Grupos	Muestra 1	Muestra 2
	2.00	23.50
	5.00	11.50
	2.00	17.50
	3.08	11.00
Concreto patrón	1.00	5.80
	4.00	7.50
	4.00	9.00
	5.00	7.00
	6.00	6.00
	5.00	5.00
	4.00	5.00
	5.00	3.00
	3.50	5.00
	5.50	6.00
Concreto con adición de 1 % de viruta de cuero	4.50	2.00
Concreto con adicion de 1 % de virdia de cuero	9.00	8.50
	4.50	4.00
	13.00	5.00
	7.00	5.00
	5.00	7.50
	6.00	5.00

	3.00	5.00
	4.12	2.07
	2.02	2.06
	2.10	6.23
Concreto con adición de 3 % de viruta de cuero	3.86	6.91
	6.89	
	2.97	
	1.96	
Concreto con adición de 5 % de viruta de cuero	2.47	3.81

En la Tabla 40 y Figura 36 se muestra la distribución de las longitudes de las fisuras en el concreto patrón, encontrándose que el 16.7 % se presentó entre 0 a 3 cm, el 44.4 % entre 4 a 6 cm, el 16.7 % entre 7 a 9 cm, el 11.1 % entre 10 a 12 cm, el 5.6 % entre 16 a 18 cm y el 5.6 % restante entre 22 a 24 cm.

Tabla 40. Distribución de frecuencias para la longitud de fisuras en el concreto patrón.

		Marca (cm)	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	0 – 3	1.5	3	11.5	16.7	16.7
	4 - 6	5	8	30.8	44.4	61.1
	7 – 9	8	3	11.5	16.7	77.8
Válido	10 – 12	11	2	7.7	11.1	88.9
	16 – 18	17	1	3.8	5.6	94.4
	22 - 24	23	1	3.8	5.6	100.0
	Total		18	69.2	100.0	
Perdidos	s Sistema		8	30.8		
Total			26	100.0		

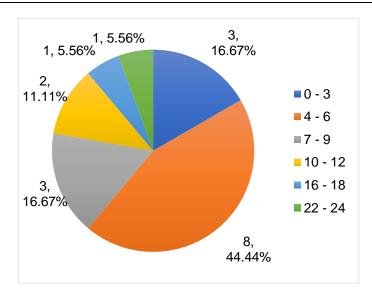


Figura 36: Distribución de frecuencias para la longitud de fisuras en el concreto patrón.

En la Tabla 41 y Figura 37 se tiene la distribución de frecuencia de la longitud de las fisuras en el concreto más 1 % de virutas de cuero, de lo cual el 11.5 % se encontró entre 0 a 3 cm, el 69.2 % entre 4 a 6 cm, el 15.4 % entre 7 a 9 cm y el 3.8 % entre 13 a 15 cm.

Tabla 41. Distribución de frecuencias para la longitud de fisuras en el concreto más 1 % de viruta de cuero.

		Marca (cm)	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	0 – 3	1.5	3	11.5	11.5	11.5
	4 - 6	5	18	69.2	69.2	8.08
Válido	7 – 9	8	4	15.4	15.4	96.2
	13 – 15	14	1	3.8	3.8	100.0
•	Total		26	100.0	100.0	

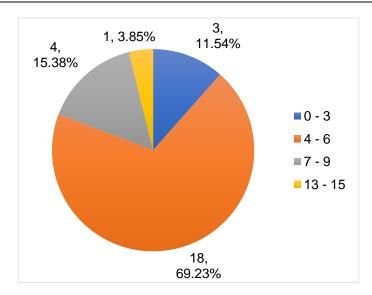


Figura 37: Distribución de frecuencias para la longitud de fisuras en el concreto más 1 % de viruta de cuero.

Lo referido a la longitud de fisuras del concreto más 3 % de viruta de cuero se detalla en la Tabla 42 y Figura 38, donde el 54.5 % estuvo entre 0 a 3 cm, el 18.2 % entre 4 a 6 cm y el 27.3 % entre 7 a 9 cm.

Tabla 42. Distribución de frecuencias para la longitud de fisuras en el concreto más 3 % de viruta de cuero.

		Marca (cm)	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	0 – 3	1.5	6	23.1	54.5	54.5
Válido	4 - 6	5	2	7.7	18.2	72.7
	7 – 9	8	3	11.5	27.3	100.0

Total	11	42.3	100.0	
Perdidos Sistema	15	57.7		
Total	26	100.0	_	

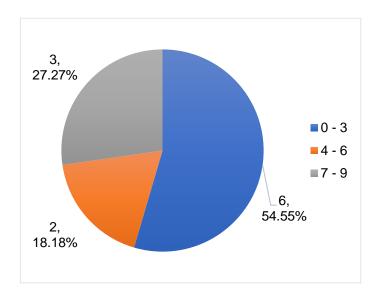


Figura 38: Distribución de frecuencias para la longitud de fisuras en el concreto más 3 % de viruta de cuero.

Mientras que, para el concreto más 5 % de viruta de cuero se especifica en la Tabla 43 y Figura 39, de los cuales el 50 % se encontró entre 0 a 3 cm y los 50 % restante entre 4 a 6 cm.

Tabla 43. Distribución de frecuencias para la longitud de fisuras en el concreto más 5 % de viruta de cuero.

		Marca (cm)	Frecuencia	Porcentaje	Porcentaje válido	Porcentaje acumulado
	0 - 3	1.5	1	3.8	50.0	50.0
Válido	4 - 6	5	1	3.8	50.0	100.0
	Total		2	7.7	100.0	
Perdidos	Sistema		24	92.3		
Total			26	100.0		

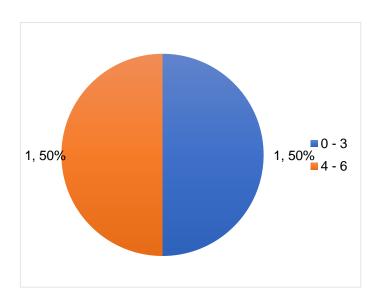


Figura 39: Distribución de frecuencias para la longitud de fisuras en el concreto más 5 % de viruta de cuero.

En resumen, se tiene la Figura 40 donde se muestra la distribución de frecuencias en porcentajes de la longitud de fisuras de los concretos evaluados.

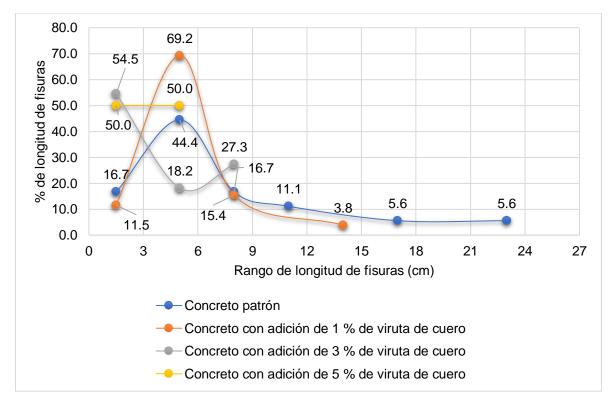


Figura 40: Distribución de frecuencias para la longitud de fisuras en los concreto evaluados.

Por último, en la Tabla 4444 se tiene que el promedio de longitud de fisuras para el concreto patrón fue de 7.27 cm, para el concreto más 1 % de viruta de cuero fue de 5.42 cm, para el concreto más 3 % de viruta de cuero fue de 3.74 cm y para el

concreto más 5 % de viruta de cuero fue de 3.14 cm; asimismo, se detalla que al adicionar 1 % de viruta de cuero se reduce en 25.42 % la longitud de las fisuras en comparación del concreto patrón, más 3 % se reduce en 48.50 % y más 5 % se reduce en 56.82 %.

Tabla 44. Longitud de fisuras promedio por retracción plástica de los concretos evaluados.

	Desviación estándar (cm)	Longitud promedio de fisuras (cm)	Porcentaje de variación
Concreto patrón	5.70	7.27	
Concreto con adición de 1 % de viruta de cuero	2.21	5.42	-25.42
Concreto con adición de 3 % de viruta de cuero	2.03	3.74	-48.50
Concreto con adición de 5 % de viruta de cuero	0.95	3.14	-56.82

Es así que, en la Figura 41 se denota que la adición de las virutas de cuero en el concreto reduce la longitud de las fisuras.

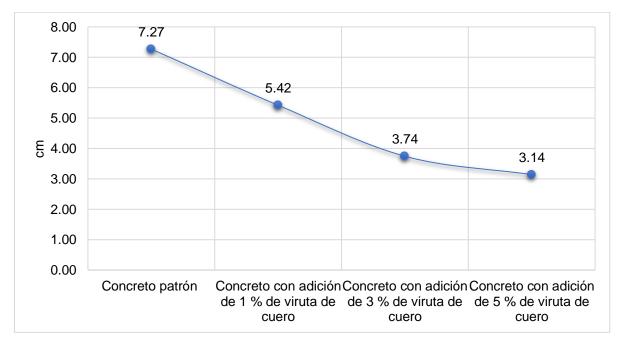


Figura 41: Longitud de fisuras promedio por retracción plástica de los concretos evaluados.

4.7 Resultados del ensayo de exudación

4.7.1 Muestra 1 tipo patrón

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	4	4	0.40	
20	3	7	0.15	
30	4	11	0.13	0.21
40	6	17	0.15	0.21
70	16	33	0.23	
100	24	57	0.24	
130	13	70	0.10	
160	23	93	0.14	
190	12	105	0.06	

Tabla 45: Tabla de ensayo de exudación muestra 1 tipo patrón

4.7.2 Muestra 2 tipo patrón

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	5	5	0.50	
20	3	8	0.15	
30	5	13	0.17	0.16
40	5	18	0.13	0.10
70	12	30	0.17	
100	25	55	0.25	
130	13	68	0.10	
160	17	85	0.11	
190	15	100	0.08	

Tabla 46: Tabla de ensayo de exudación muestra 2 tipo patrón

4.7.3 Muestra 3 tipo patrón

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	3	3	0.30	
20	3	6	0.15	
30	5	11	0.17	0.2
40	7	18	0.18	0.2
70	19	37	0.27	
100	20	57	0.20	
130	15	72	0.12	
160	19	91	0.12	

Tabla 47: Tabla de ensayo de exudación muestra 3 tipo patrón

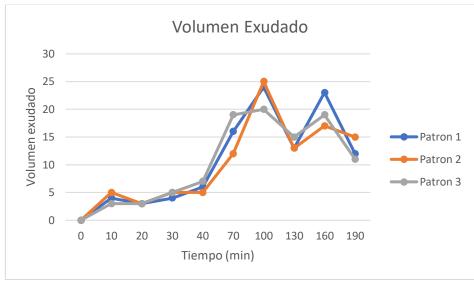


Figura 42: Grafico tiempo-volumen en muestra tipo patrón

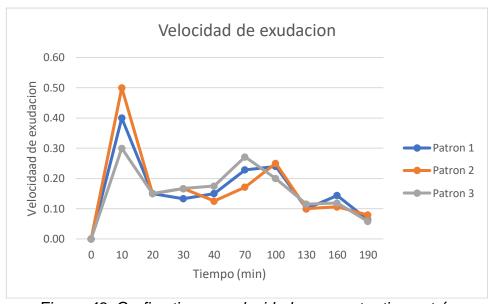


Figura 43: Grafico tiempo-velocidad en muestra tipo patrón

4.7.4 Muestra 1 con 1% de viruta de cuero

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	IIII/ CITIZ
10	1	1	0.10	
20	2	3	0.10	
30	2	5	0.07	0.21
40	2	7	0.05	0.21
70	12	19	0.17	
100	15	34	0.15	
130	18	52	0.14	
160	20	72	0.13	
190	35	107	0.18	

Tabla 48: Tabla de ensayo de exudación muestra 1 con adición de 1% de viruta de cuero

4.7.5 Muestra 2 con 1% de viruta de cuero

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	1	1	0.10	
20	1	2	0.05	
30	2	4	0.07	0.2
40	4	8	0.10	0.2
70	11	19	0.16	
100	13	32	0.13	
130	16	48	0.12	
160	20	68	0.13	
190	36	104	0.19	

Tabla 49: Tabla de ensayo de exudación muestra 2 con adición de 1% de viruta de cuero

4.7.6 Muestra 3 con 1% de viruta de cuero

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	1	1	0.10	
20	3	4	0.15	
30	3	7	0.10	0.21
40	2	9	0.05	0.21
70	13	22	0.19	
100	14	36	0.14	
130	17	53	0.13	
160	22	75	0.14	
190	30	105	0.16	

Tabla 50: Tabla de ensayo de exudación muestra 3 con adición de 1% de viruta de cuero

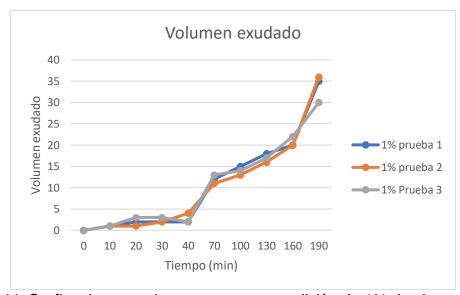


Figura 44: Grafico tiempo-volumen en muestra adición de 1% de viruta de cuero

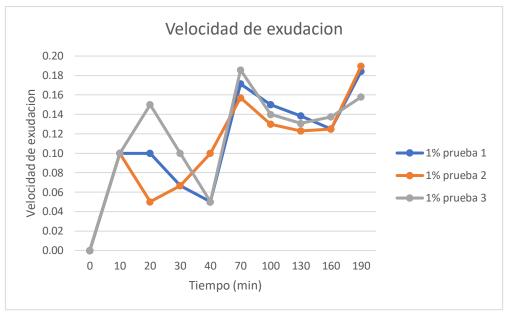


Figura 45: Grafico tiempo-velocidad en muestra adición de 1% de viruta de cuero

4.7.7 Muestra 1 con 3% de viruta de cuero

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	0	0	0.00	
20	5	5	0.25	
30	7	12	0.23	0.2
40	7	19	0.18	0.2
70	7	26	0.10	
100	16	42	0.16	
130	17	59	0.13	
160	22	81	0.14	
190	25	106	0.13	

Tabla 51: Tabla de ensayo de exudación muestra 1 con adición de 3% de viruta de cuero

4.7.8 Muestra 2 con 3% de viruta de cuero

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	0	0	0.00	
20	4	4	0.20	
30	5	9	0.17	0.22
40	7	16	0.18	0.22
70	8	24	0.11	
100	15	39	0.15	
130	18	57	0.14	
160	20	77	0.13	
190	35	112	0.18	

Tabla 52: Tabla de ensayo de exudación muestra 2 con adición de 3% de viruta de cuero

4.7.9 Muestra 3 con 3% de viruta de cuero

Tiempo(min)	Volumen exudado	Volumen acumulado	VELOCIDAD	Exudación por unidad de área ml/cm2
0	0	0	0.00	
10	1	1	0.10	
20	2	3	0.10	
30	8	11	0.27	0.22
40	8	19	0.20	0.22
70	9	28	0.13	
100	12	40	0.12	
130	19	59	0.15	
160	21	80	0.13	
190	33	113	0.17	

Tabla 53: Tabla de ensayo de exudación muestra 3 con adición de 3% de viruta de cuero

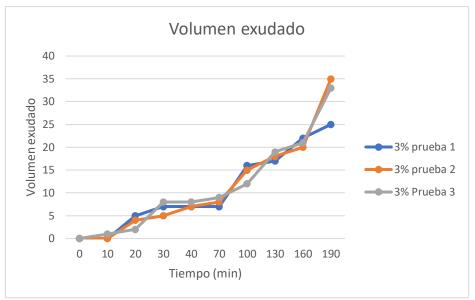


Figura 46: Grafico tiempo-volumen en muestra adición de 3% de viruta de cuero

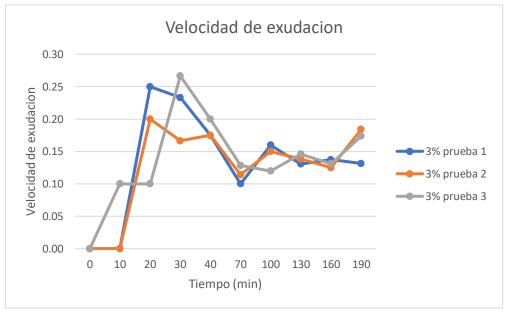


Figura 47: Grafico tiempo-velocidad en muestra adición de 3% de viruta de cuero

4.7.10 Muestra 1 con 5% de viruta de cuero

	Volumen	Volumen	VELOCIDAD	Exudación por unidad
Tiempo(min)	exudado	acumulado	VELOCIDAD	de área ml/cm2
0	0	0	0.00	
10	0	0	0.00	
20	1	1	0.05	
30	7	8	0.23	
40	8	16	0.20	0.21
70	15	31	0.21	
100	17	48	0.17	
130	23	71	0.18	
160	23	94	0.14	
190	25	119	0.13	

Tabla 54: Tabla de ensayo de exudación muestra 1 con adición de 5% de viruta de cuero

4.7.11 Muestra 2 con 5% de viruta de cuero

	Volumen	Volumen	VELOCIDAD	Exudación por unidad
Tiempo(min)	exudado	acumulado	VELOCIDAD	de área ml/cm2
0	0	0	0.00	
10	0	0	0.00	
20	2	2	0.10	
30	6	8	0.20	
40	9	17	0.23	0.2
70	12	29	0.17	
100	16	45	0.16	
130	20	65	0.15	
160	25	90	0.16	
190	30	120	0.16	

Tabla 55: Tabla de ensayo de exudación muestra 2 con adición de 5% de viruta de cuero

4.7.12 Muestra 3 con 5% de viruta de cuero

	Volumen	Volumen	VELOCIDAD	Exudación por unidad
Tiempo(min)	exudado	acumulado	VELOCIDAD	de área ml/cm2
0	0	0	0.00	
10	0	0	0.00	
20	1	1	0.05	
30	6	7	0.20	
40	9	16	0.23	0.2
70	17	33	0.24	
100	15	48	0.15	
130	22	70	0.17	
160	25	95	0.16	
190	26	121	0.14	

Tabla 56: Tabla de ensayo de exudación muestra 3 con adición de 5% de viruta de cuero

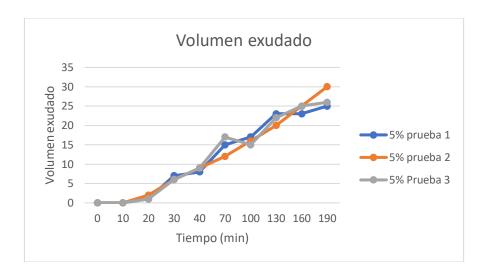


Figura 48:Grafico tiempo-volumen en muestra adición de 5% de viruta de cuero

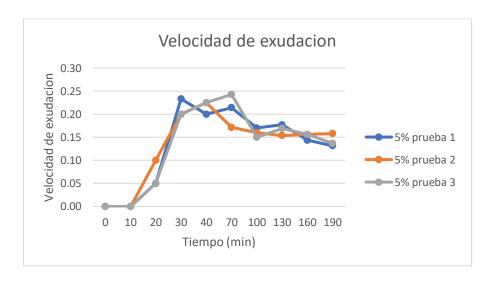


Figura 49: Grafico tiempo-velocidad en muestra adición de 5% de viruta de cuero

4.7.13 Comparación tipo patrón, 1%, 3% y 5% en volumen de exudación y velocidad de exudación

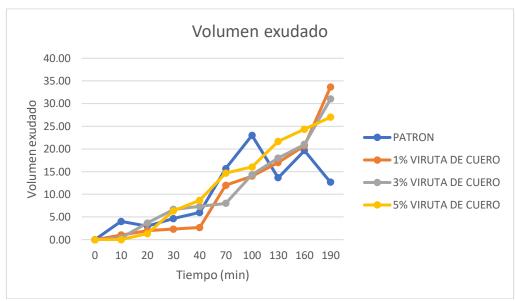


Figura 50: Comparación de promedios de muestras tipo patrón, 1%, 3% y 5% en volumen de exudación

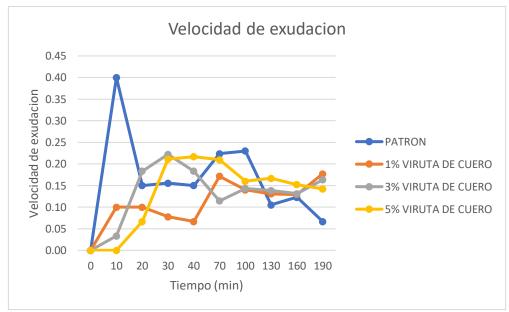


Figura 51: Comparación de promedios de muestras tipo patrón, 1%, 3% y 5% en velocidad de exudación

Tabla 57: Incremento de volumen de exudación

	Viruta de	Exudación	Dorsontaio	Incremento
	cuero	acumulada	Porcentaje	
	0%	102.33	100%	0
F'c =	1%	105.33	102.93%	2.93%
210kg/cm2	3%	110.33	107.82%	7.82%
	5%	120	117.27%	17.26%

Tabla 58: Reducción de la velocidad de exudación

	Viruta de cuero	Velocidad de exudación	Porcentaje	Reducción
	0%	0.16	100%	0
F'c =	1%	0.11	68.75%	31.25%
210kg/cm2	3%	0.13	81.25%	18.75%
	5%	0.13	81.25%	18.75%

4.7.14 Influencia de viruta de cuero en la exudación del concreto

En la **Error! Reference source not found.**9 se muestra los resultados en cuanto a la exudación del concreto patrón y concretos más 1 %, 3 % y 5 % de viruta de cuero:

Tabla 59: Resultados de la exudación de los concretos evaluados.

	Exuda	ación
Grupos	Volumen de Exudacion(ml)	Velocidad de exudación (ml/min)
Concreto patrón	105	0.16
Concreto patrón	100	0.16
Concreto patrón	102	0.16
Concreto con adición de 1 % de viruta de cuero	107	0.11
Concreto con adición de 1 % de viruta de cuero	104	0.10
Concreto con adición de 1 % de viruta de cuero	105	0.12
Concreto con adición de 3 % de viruta de cuero	106	0.13
Concreto con adición de 3 % de viruta de cuero	112	0.13
Concreto con adición de 3 % de viruta de cuero	113	0.14
Concreto con adición de 5 % de viruta de cuero	119	0.13
Concreto con adición de 5 % de viruta de cuero	120	0.13
Concreto con adición de 5 % de viruta de cuero	121	0.13

4.7.15 Volumen de exudación en el concreto

En la siguiente tabla se tiene la desviación estándar, promedio y variación del volumen de exudación de los concretos evaluados:

Tabla 60: Promedio del promedio de volumen de exudación de los concretos evaluados.

Grupos	Desviación estándar del volumen de exudación (ml)	Promedio del volumen de exudación (ml)	Variación del promedio de exudación por unidad de área (%)
Concreto patrón	2.52	102.33	0.00
Concreto con adición de 1 % de viruta de cuero Concreto con	1.53	105.33	2.93
adición de 3 % de viruta de cuero Concreto con	3.79	110.33	7.82
adición de 5 % de viruta de cuero	1.00	120.00	17.26

Según la **Error! Reference source not found.** se tiene que al adicionar 1 %, 3 % y 5 % de virutas de cuero en el concreto se incrementa el volumen de exudación en comparación a lo obtenido para el patrón, sobrepasándolo en hasta 17.26 %.

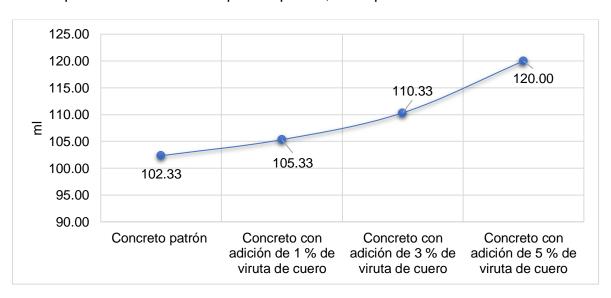


Figura 52: Volumen de exudación en los concretos evaluados.

4.7.16 Velocidad de exudación

Lo relacionado a la desviación estándar, promedio y variación de la velocidad de exudación se muestra en la Tabla 6161:

Tabla 61. Promedio de la velocidad de exudación en los concretos evaluados.

Grupos	Desviación estándar de velocidad de exudación (ml/min)	Promedio de velocidad de exudación (ml/min)	Variación del promedio de la velocidad de exudación (%)
Concreto patrón	0.00	0.16	0.00
Concreto con adición de 1 % de viruta de cuero	0.01	0.11	-31.86
Concreto con adición de 3 % de viruta de cuero	0.01	0.13	-18.16
Concreto con adición de 5 % de viruta de cuero	0.00	0.13	-17.41

Según la **Error! Reference source not found.** se tiene que al adicionar virutas de cuero al concreto se reduce la velocidad de exudación, pues pasó de 0.16 a 0.11, 0.13 y 0.13 con 1 %, 3 % y 5 %.

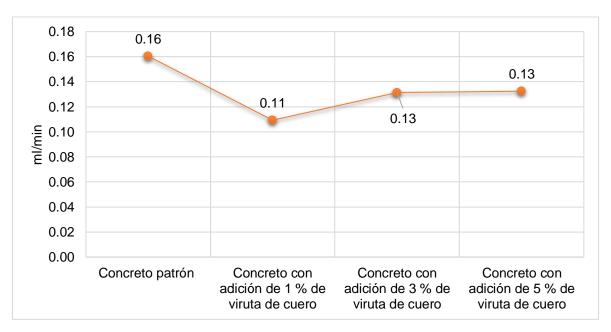


Figura 53: Exudación en los concretos evaluados.

Contrastación de hipótesis

Previamente se realizó la prueba de normalidad de los datos obtenidos para determinar el estadístico de prueba, cuyos resultados se muestran en la **Error! Not a valid bookmark self-reference.**62 referido a la fisuración por retracción plástica, del cual para los datos de ancho de fisura del concreto con 3 % y 5 % de viruta de cuero; además, del número de fisuras no se obtuvo la normalidad por no presentar variaciones en sus resultados; asimismo, para la exudación se tiene la Tabla 6363, entonces se evidencia que el nivel de significancia considerando una confiabilidad del 95 % resultó en valores mayores y menores a 0.05 para la velocidad de exudación, por lo tanto, se consideró la prueba estadística no paramétrica de Kruskal – Wallis, mientras que para el volumen de exudación se consideró el estadístico ANOVA por contar con una distribución normal (significancia mayor a 0.05).

Tabla 62. Prueba de normalidad para los datos de fisuración por retracción plástica en el concreto.

Concretes	Concretos			Shapiro-Wilk				
Concretos		Estadístico	gl	Sig.				
Ancho de fisuras	Concreto patrón	0.71	18.00	0.00				
(mm)	Concreto más 1 % de viruta de cuero	0.51	26.00	0.00				
	Concreto patrón	0.84	18.00	0.01				
Longitud de fisuras	Concreto más 1 % de viruta de cuero	0.83	26.00	0.00				
(cm)	Concreto más 3 % de viruta de cuero	0.80	11.00	0.01				
	Concreto más 5 % de viruta de cuero	0.00	0.00	0.00				

Tabla 63. Prueba de normalidad para los datos de exudación del concreto.

Conorotos	Concretos			Shapiro-Wilk			
Concretos		Estadístico	gl	Sig.			
	Concreto patrón	0.99	3.00	0.78			
Volumen de exudación	Concreto más 1 % de viruta de cuero	0.96	3.00	0.64			
(ml)	Concreto más 3 % de viruta de cuero	0.86	3.00	0.25			
	Concreto más 5 % de viruta de cuero	1.00	3.00	1.00			
Velocidad de	Concreto más 1 % de viruta de cuero	1.00	3.00	1.00			
exudación (ml/min)	Concreto más 3 % de viruta de cuero	0.75	3.00	0.00			

Hipótesis específica "a"

De acuerdo a las hipótesis planteadas:

H_{ia}: La incorporación de la viruta de cuero influye considerablemente en un 15 % en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas - Huachipa.

H_{0a}: La incorporación de la viruta de cuero no influye considerablemente en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas - Huachipa.

Tal como se mostró en la Tabla 38, el ancho de fisuras se redujeron con el empleo de virutas de cuero en 25.64 % con 1 % y 33.33 % con 3 % y 5 %, del mismo modo, acorde a la Tabla 44, las longitudes de fisuras al emplear 1 % de viruta de cuero se redujo en 25.42 %, con 3 % se redujo en 48.50 % y con 5 % se redujo en 56.82 %, en cuanto al número de fisuras se tiene según la Tabla 32 que se incrementó al emplear 1 % de viruta de cuero en 44.44 %, a diferencia de utilizar 3 % y 5 % donde se redujo en 22.22 % y 88.89 %.

Asimismo, se tiene en la Tabla 64 los resultados de la prueba no paramétrica de Kruskal – Wallis, evidenciándose que, la adición de virutas de cuero influye significativamente reduciendo el ancho y el número de fisuras por contar una significancia menor a 0.05 (95 % de confiabilidad); sin embargo, no se encontró influencia significativa en reducción de la longitud de fisuras.

Tabla 64. Prueba no paramétrica de Kruskal – Wallis para la hipótesis específica "a".

	N total	Estadístico de contraste	Grados de libertad	Significación asintótica (prueba bilateral)
Ancho de fisuras	66	11.13	3.00	0.01
Longitud de fisuras	57	7.44	3.00	0.06
Número de fisuras	66	65.00	3.00	0.00

Consecuentemente, en la siguiente tabla se tiene la comparación de grupos referidos al ancho de fisuras, donde se tiene que el ancho de las fisuras se reduce significativamente tanto en el concreto con adición de 1 %, 3 % y 5 % de virutas de cuero.

Tabla 65. Comparación de grupos en cuanto al ancho de fisuras.

		Estadístico de prueba	Error estándar	Desviación estadístico de prueba	Significancia
	Concreto más 1 % de viruta de cuero	7.897	3.955	1.997	0.046
Concreto patrón	Concreto más 3 % de viruta de cuero	13.667	4.936	2.769	0.006
•	Concreto más 5 % de viruta de cuero	13.667	4.936	2.769	0.006

Del mismo modo, en la Tabla 666 se tiene que el número de fisuras se incrementan significativamente con 1 % de virutas de cuero y se reducen significativamente con 3 % y 5 % de virutas de cuero.

Tabla 66. Comparación de grupos en cuanto al número de fisuras.

		Estadístico de prueba	Error estándar	Desviación estadístico de prueba	Significancia
	Concreto más 1 % de viruta de cuero	-22.00	5.61	-3.92	0.00
Concreto patrón	Concreto más 3 % de viruta de cuero	14.50	7.01	2.07	0.04
	Concreto más 5 % de viruta de cuero	25.50	7.01	3.64	0.00

Por lo tanto, se acepta la hipótesis alterna de investigación, referida a la incorporación de la viruta de cuero influye considerablemente en un 15 % en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas – Huachipa.

Hipótesis específica "b"

De acuerdo a las hipótesis planteadas:

H_{ib}: La incorporación de la viruta de cuero influye significativamente en un 8 % en la reducción de la exudación del concreto simple f'c 210kg/cm² en losas – Huachipa.

H_{ab}: La incorporación de la viruta de cuero no influye significativamente en la reducción de la exudación del concreto simple f'c 210 kg/cm² en losas – Huachipa.

Tal como se mostró en la **Error! Reference source not found.**60 el promedio del volumen de exudación se incrementó con 1 % de viruta de cuero en 2.93 %, con 3 % se incrementó en 7.82 % y con 5 % se incrementó en 17.26 %; no obstante, según la Tabla 61 la velocidad de exudación se redujo con 1 % de viruta de cuero en 31.86 %, con 3 % en 18.16 % y con 5 % en 17.41 %.

Se tiene en la Tabla 6767 los resultados de la prueba paramétrica ANOVA, evidenciándose que, la adición de virutas de cuero influye significativamente en el incremento en el volumen de exudación por contar una significancia menor a 0.05 (95 % de confiabilidad).

Tabla 67. Prueba paramétrica ANOVA respecto al volumen de exudación para la hipótesis específica "b".

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	539.00	3.00	179.67	29.94	0.00
Dentro de grupos	48.00	8.00	6.00		
Total	587.00	11.00			

En consecuencia, en la siguiente tabla se compara los grupos, determinándose que los incrementos del volumen de exudación fueron significativos con 3 % y 5 % de virutas de cuero, pues las significancias son menores a 0.05.

Tabla 68. Comparación de grupos en cuanto al volumen de exudación.

(I) Q		Diferencia de	Error	<u> </u>	95% de intervalo de confianza	
(I) Concret	ios	medias (I-J) estándar		Sig.	Límite inferior	Límite superior
	Concreto más 1 % de viruta de cuero	-3.00	2.00	0.48	-9.40	3.40
Concreto patrón	Concreto más 3 % de viruta de cuero	-8.00*	2.00	0.02	-14.40	-1.60
	Concreto más 5 % de viruta de cuero	-17.67*	2.00	0.00	-24.07	-11.26

^{*.} La diferencia de medias es significativa en el nivel 0.05.

Asimismo, se tiene en la Tabla 69 los resultados de la prueba no paramétrica de Kruskal – Wallis, evidenciándose que, la adición de virutas de cuero influye significativa en la reducción de la velocidad de exudación por contar una significancia de 0.02.

Tabla 69. Prueba no paramétrica de Kruskal – Wallis respecto a la velocidad de exudación para la hipótesis específica "b".

	N total	Estadístico de contraste	Grados de libertad	Significación asintótica (prueba bilateral)
Velocidad de exudación	12.00	10.33	3.00	0.02

En consecuencia, en la Tabla 7070 se tiene la comparación de grupos referidos a la velocidad de exudación, donde se tiene que esta se reduce significativamente en el concreto con adición de 1 % de virutas de cuero.

Tabla 70. Comparación de grupos en cuanto a la velocidad de exudación.

		Estadístico de prueba	Error estándar	Desviación estadística de prueba	Significancia
Concreto patrón	Concreto más 1 % de viruta de cuero	9.00	2.82	3.19	0.00
	Concreto más 3 % de viruta de cuero	4.00	2.82	1.42	0.16
	Concreto más 5 % de viruta de cuero	5.00	2.82	1.78	0.08

Por lo tanto, se acepta la hipótesis de investigación: La incorporación de la viruta de cuero influye significativamente en la reducción de la velocidad de exudación del concreto simple f'c 210kg/cm² en losas – Huachipa; además es dable mencionar que se dio un incremento del volumen de exudación que también fue significativo.

V. DISCUSION

En relación con el objetivo general, determinar la influencia de la incorporación de la viruta de cuero en la reducción de patologías del concreto simple f'c 210 kg/cm² en losas-Huachipa con adiciones de 1, 3 y 5%, en donde **Blanco**, **A (2010)** según en su investigación titulada *Lecciones aprendidas sobre el diagnóstico de patologías en presas de hormigón: 30 años de investigación y práctica*. Los resultados fueron descriptivos y cualitativos donde se encontraron agrietamientos en todo el mapa en donde era claramente visible aguas debajo de la presa y no se obtuvo resultados, por lo cual no se puede diferenciar o discutir con presente investigación donde se logró obtener una reducción de 59.60% en relación a la retracción plástica y con respecto a la exudación dentro de los resultados más representativos hubo un incremento de cantidad de agua de 17.27% y una reducción de la velocidad de agua exudada de 31.86%.

En relación con el objetivo específico 1, cuantificar la influencia de la incorporación de la viruta de cuero en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas-Huachipa, en donde **Según Cacoango y Millingalli (2019)** en su investigación titulada *Eficiencia del Control de Fisuramiento por Contracción Plástica del Hormigón mediante el uso de Fibra de Acero 4D*. Los resultados fueron que mientras se incorporaba más la dosificación en fibras (15, 20, 30 kg/m3) aumentaba el coeficiente de reducción de grietas para diferentes relacionas agua-cemento (0.6, 0.4, 0,35) por ende reduce las fisuras, en comparación a la investigación actual difiere ya que se obtuvo que el coeficiente de reducción de grietas mejora en un 33% en adiciones de 3 y 5% disminuyendo la retracción plástica en losas de concreto simple f'c = 210 kg/cm²

En relación con el objetivo específico 2, conocer la influencia de la incorporación de la viruta de cuero en la reducción de la exudación del concreto simple f'c 210kg/cm² en losas-Huachipa, en donde según **Chavarry**, **A. (2018)** en su investigación titulada Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén tuvo como resultado que para adiciones de 5,10 y 15% partículas residuales redujo muy ligeramente la exudación ya que al tratarse de concretos de alta resistencia el

fraguado fue más rápido, en comparación a la investigación actual difiere ya que se incrementó el volumen exudación en un 2.93%, 7.82% y 17.27% en adiciones de 1, 3 y 5% de viruta de cuero en donde se pudo apreciar que hubo cambios significativamente en esta patología en losas de concreto simple f'c = 210kg/cm².

V. CONCLUSIONES

Se determino la influencia de la incorporación de la viruta de cuero en la reducción de patologías del concreto simple f'c 210kg/cm² en losas- Huachipa en donde para cada tipo de ensayo se realizaron ensayos tipo patrón y con adiciones de 1%, 3% y 5% de viruta de cuero reduciendo en un 59.60% la retracción plástica, con respecto en la exudación se incrementó el agua exudada en un 17.27% y disminuyo en un 31.86% en la velocidad de agua exudada.

Se determinaron la influencia de la incorporación de la viruta de cuero en la reducción del fisuramiento por retracción plástica del concreto simple f'c 210kg/cm² en losas-Huachipa en donde se realizó tanto tipo patrón y con la incorporación de este material en un 1%, 3% y 5% en donde se observó que los resultados más favorables fueron que se redujo la longitud en un 56.82% en la adición de 5%, reducción de la cantidad de fisuras en un 89% en la adición de 5% y el aumento de CRR en un 33% en la adición de 3%.

Con respecto a la estadística inferencial se determinó que la viruta de cuero influye significativamente en el ancho y numero de fisuras debido a una significancia menor a 0.05, mientras que en la longitud de fisuras no se encontró influencia significativa ya que fue mayor a 0.05.

Se determino la influencia de la incorporación de la viruta de cuero en la reducción de la exudación el concreto simple f'c 210kg/cm² en losas-Huachipa en donde se realizó ensayos tipo patrón y con incorporaciones de 1%, 3% y 5% considerando que con respecto a la velocidad de exudación hubo un incremento de 2.93%, 7.82% y 17.27%, además sobre la velocidad de exudación disminuye en un 31.86%, 18.16% y 17.41%.

Además, según la estadística inferencial el volumen de exudación influye significativamente debido a un nivel de significancia menor a 0.05, así también se encontró influencia significativa en la velocidad de exudación ya que conto con una significancia de 0.02.

VI. RECOMENDACIONES

Se sugiere de manera general evaluar otras patologías incorporando la viruta de cuero tanto en losas de concreto simple como en otras estructuras con el fin de verificar y ver la efectividad de este material.

Con respecto a los equipos del ensayo de retracción plástica como el fisurómetro, se recomienda que se pueda optar el uso de un microscopio para tener las mediciones exactas de las fisuras con el fin de obtener resultados precisos y dispersos, así también se recomienda tomar en cuenta la temperatura del concreto. para poder observar la variación de esta con la temperatura relativa, además se debe considerar que el ensayo se realice en un ambiente cerrado.

En relación a la exudación se recomienda emplear equipos debidamente certificados y calibrados para poder obtener resultados favorables y confiables, además de cumplir con los tiempos establecidos para extraer la cantidad de agua exudada adecuada.

Para investigaciones futuras se recomienda en el diseño de mezclas reemplazar la viruta de cuero en el cemento para poder determinar la influencia de esta en la reducción de las patologías.

Así mismo también se recomienda siempre realizar los ensayos en un laboratorio acreditado o que sus equipos se encuentren debidamente calibrados por otro laboratorio metrológico para poder tener resultados viables y verídicos ya que estos aportan confiabilidad y validez en la investigación.

Para empleo de este material viruta de cuero en otras estructuras o investigaciones se sugiere analizarlo detalladamente para el diseño de mezclas ya que lo que más destaca dentro de sus propiedades son la absorción y humedad.

Además, se sugiere que se pueda seguir la tendencia mundial a diseñar un concreto de alta resistencia para poder ver los efectos de la viruta de cuero.

REFERENCIAS

Abanto, F. (2009). *Tecnología del concreto*. (2ª ed.). Lima, Perú: San Marcos E.I.R.L.

Aguinaga, G. (2019). *Mitigación de los efectos negativos en el concreto de F'c=210 kg/cm2, producidos por las altas temperaturas en la ciudad de Tarapoto.* (Tesis de grado, Universidad Nacional de San Martin-Tarapoto)

Alvarado, M. (2018). Evaluación de los defectos constructivos en Viviendas de Albañilería confinada según NTP-E070 Sector 4 Distrito de la Esperanza 2018. (Tesis de maestría, Universidad Cesar Vallejo)

ANONIMO (2013). Elementos de Refuerzo: Fibras para el Concreto. Revista Constructivo. Edición: 91. Febrero – Marzo. Pp 126-131

Aybar, Miguel De La Torre. (2015). *Tecnología del concreto*. (2ª ed.). Perú: Editorial San Marcos

Azang J., E. (2017). Análisis comparativo de concretos fabricados de acuerdo a la técnica de diseño "práctica estándar de selección de proporciones de concreto de peso normal, pesado y masivo (ACI 211.1)" y técnicas de diseño "Vitervo A. O'reilly Díaz. (tesis de grado, Universidad Nacional de San Martin)

Badillo J., Rodríguez, R. (2006). Mecánica de suelos: Fundamentos de la mecánica de suelos. México: Limusa.

Ballena, H. (2019). Principales elementos ambientales que degradan el concreto armado en columnas del centro educativo inicial n° 124, Lambayeque, 2016. (Tesis de maestría, Universidad Privada del Norte)

Beriain, F., & Zerbino, R. (2005). Resistencia y tenacidad de morteros con virutas de cuero. Ciencia y Tecnología del Hormigón.

Blanco, A., Pardo-Bosch, F., Cavalaro, S., & Aguado, A. (febrero, 2019). Lecciones aprendidas sobre el diagnóstico de patologías en presas de hormigón: 30 años de investigación y práctica. Materiales de construcción y construcción. Recuperado de https://link.gale.com/apps/doc/A577513460/AONE?u=univcv&sid=bookmark-

AONE&xid=53b1a328

Cacoango G. y Millingali M. (2019). Eficiencia del Control de Fisuramiento por Contracción Plástica del Hormigón mediante el uso de Fibra de Acero4D. (Tesis de

grado, Universidad Central del Ecuador)

Castillo, J. (2019). Factores intrínsecos del concreto premezclado que producen la fisuración en su proceso de fraguado. (Tesis de grado, Universidad Privada Antenor Orrego)

Chavarry, G. (2018). Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén. (Tesis de grado, Universidad Católica Santo Toribio de Mogrovejo)

Chiew, SM, Ibrahim, IS, Jamaluddin, N., Sarbini, NN, Ma, CK y Ahmad, Y. (2020). Comportamiento del hormigón reforzado con fibra de acero bajo tensiones biaxiales.

Revista estructural ACI. Recuperado de

https://link.gale.com/apps/doc/A633832458/AONE?u=univcv&sid=bookmark-

AONE&xid=1eb918b9

De Guzmán, D. S. (2001). Tecnología del concreto y del mortero. Colombia: Bhandar Editores.

Diaz Barreiro, P. (2014). Protocolo para los Estudios de Patología de la Construcción en Edificaciones de Concreto Reforzado en Colombia. (Tesis de maestría, Pontificia Universidad Javeriana).

Diaz J. y Huachuhuillca J. (2018). Evaluación de resistencia al esfuerzo de compresión en concreto de f´c = 210 kg/cm2 con adición de fibras de rafia de polipropileno, san juan de Lurigancho, 2018. (Tesis de grado, Universidad Cesar Vallejo).

Drochytka, R., Ledl, M., Bydzovsky, J., Zizkova, N. y Bester, J. (2019). Uso de cristalización secundaria y cenizas volantes en materiales impermeabilizantes para aumentar la resistencia del concreto a gases y líquidos agresivos. Avances en Ingeniería

Civil. Recuperado de

https://link.gale.com/apps/doc/A610843327/AONE?u=univcv&sid=bookmark-

AONE&xid=2c436305

Espinosa, H. (2007). Análisis de alternativas para la de los residuos sólidos generados en el sector de curtiembres. Bogotá: Universidad Nacional.

Gallo, W. (2006). *Inspecciones técnicas de seguridad estructural en edificaciones de concreto armado*. (Tesis de grado, Universidad de Piura)

Garcia, D., Morayala, G., & Quintanilla, E. (s.f de s.f de s.f). Propiedades físicas y químicas del cuero. Obtenido de http://es.scribd.com/doc/203314106/Propiedades-Fisicas-y-QuimicasCuero#scribd

Ghantous, RM, Francois, R., Poyet, S., Lhostis, V., Bernachy-Barbe, F., Meinel, D., Portier, L. y Tran, N.-C. (diciembre, 2018). Relación entre la apertura de la grieta y la extensión del daño inducido en la interfaz acero / mortero. Materiales de construcción y construcción. Recuperado de https://link.gale.com/apps/doc/A572551248/AONE?u=univcv&sid=bookmark-AONE&xid=ad585526

Giovambattista, A. (1999). Vida en servicio de las estructuras para obras civiles. Un concepto con raíces antiguas que se proyecta al futuro. Revista Hormigón, 11-30. Giovambattista, A. (2001). El diseño por durabilidad de las estructuras de hormigón y los reglamentos de seguridad: Soluciones actuales y en desarrollo. (Seminario de Durabilidad, AATH).

Gonzalez J., L. (2003). Las mezclas de concreto y sus resultados en la ciudad de Tarapoto utilizando el método de agregado Global. (Tesis de grado, Universidad Nacional de San Martin)

Gutiérrez, L. (2003). *El concreto y otros materiales para la construcción*. (2.ª ed.). Colombia: Centro de Publicaciones Universidad Nacional de Colombia.

Gutiérrez. C. (2018). Evaluación de las patologías del concreto armado en la durabilidad de las edificaciones del distrito de yanacancha-pasco-2017. (Tesis de grado, Universidad Nacional Daniel Alcides Carrión)

Hernandez, R., Fernandez, C., & Baptista, P. (2016). Metodologia de la investigacion. 6ta Edicion Sampieri.

Huaquisto, S. y Belizario, G. (mayo, 2018). Utilización de la ceniza volante en la dosificación del concreto como sustituto del cemento. Revista de Investigaciones. Recuperado de http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2313-29572018000200007&lng=es&nrm=iso

Instituto de ingeniería UNAM (1998). Manual de tecnología del concreto. México: Limusa Noriega Editores

Instituto Mexicano del Cemento y del Concreto, A.C. 2000. Revista Construcción y

Tecnología. Recuperado de

http://www.imcyc.com/revista/2000/dic2000/carbonatacion.htm

Krauss, P. & Rogalla, E. (1996). Transverse Cracking in Newly Constructed Bridge Decks, 1-132.

Laguna, M., Mamami, A. y Cruz, C. (2020). Evaluación y diagnóstico de elementos de concreto localizados en ambiente marino del distrito de Ite, Tacna. Revista Ingeniería investiga, 2-22

Llanos J. y Mellado M. (2020). Control de la retracción plástica mediante el uso de dosificaciones de microfibras sintéticas DRYMIX y Fibra Ultrafina utilizando paneles normados. (Tesis de grado, Universidad Peruana de Ciencias Aplicadas)

Méndez, E. (2012). Propuesta para situación de agregados pétreos por agregados PET, en diseño de mezclas de concreto con resistencia f`c=150 kg/cm2, usando para banquetas, guarniciones y firmes. (Tesis de grado, Universidad de Veracruzana)

Monjo, J. (1997). *Patologías de cerramientos y acabados arquitectónicos*. (2ª ed.). España: Munilla-Leria

Moran, J. (2018). Determinación y evaluación de las patologías del concreto armado del reservorio apoyador1v=1000m3 ubicado en ñañañique-distrito de Chulucanas-provincia de Morropón-departamento Piura-agosto 2018. (Tesis de grado, Universidad Católica Los Ángeles Chimbote)

Mostacero M. (2016). Patología del Edificio 1b de la Facultad de Ingeniería de la Universidad Nacional de Cajamarca Tesis para optar el título de Ing. Civil, Universidad Nacional de Cajamarca)

Pasquel C., E. (1998). *Tópicos de Tecnología del Concreto en el Perú*. (2.ª ed.). Perú: Colegio de Ingenieros del Perú

Priano, C. (2011). Estado de conservación de hormigones estructurales en ambientes urbanos, rurales y marinos de la ciudad de bahía blanca y su zona de influencia. (Tesis de doctor, Universidad Nacional del Sur)

Quispe, D. (2016). Determinación y evaluación de patologías del concreto del canal de regadío del distrito de Huacrachuco. (Artículo científico, Universidad Católica los ángeles de Chimbote- Facultad de ingeniería-Escuela) Recuperado de

https://docplayer.es/39565500-Articulo-cientifico-determinacion-y-evaluacion-depatologias-del-concreto-del-canal-de-regadio-del-distrito-de-

huacrachuco.html?fbclid=lwAR3BbxOBunv2pIIE9uGE9INGrXMF2FOPV8-

K8yP88dFlJ8F_KHNc1RJyAhQ

Rivera, G. (2003). Concreto Simple. Perú: Universidad del Cauca

Rivva L., E. (1992). Diseño de mezclas. Perú: Colegio de Ingenieros del Perú

Schneider, A., Flores, H., Retamar, J. C., Orué, S., Belis, E., & Lacoste, A. (2013,

April). Aglomerado de virutas de cuero. In VII Congreso de Medio Ambiente.

Seclen Falen, L. (2019). *Patología y terapéutica en estructuras de concreto armado de instituciones educativas públicas del distrito de Pimentel*. (Tesis de grado, Universidad Católica Santo Toribio de Mogrovejo).

Tamayo, M. (2004). El proceso de la investigación científica. Editorial Limusa.

Valdez M., Gonzales Liz., Pariguana M., López R., y Dueñas A. (2019). *Obtención* de un aglomerado para material de construcción a partir de un adhesivo obtenido de viruta de wet blue del proceso del curtido de pieles. VÉRITAS Vol. 20 N°1 103-106

Venquiaruto, S., da Silva, LB y Molin, DCCD (noviembre, 2018). Influencia de la microfisuración inducida por la precarga en la durabilidad del hormigón producido con diferentes tipos de cemento. Construcción y materiales de construcción. Recuperado

https://link.gale.com/apps/doc/A565200095/AONE?u=univcv&sid=bookmark-AONE&xid=a40b54b9

ANEXOS

Anexo 1: Matriz de operacionalización de la variable dependiente

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
Patologías del concreto en losas f'c 210kg/cm2	Se define como parte de la ingeniería que estudia el comportamiento de las estructuras cuando se evidencia o presentan fallas, defectos,	Las patologías más recurrentes en las losas de concreto son la retracción plástica y exudación y se operara esta variable mediante	Retracción plástica	Longitud de fisuras Ancho de fisuras Cantidad de fisuras	Razón
	realizando una minuciosa investigación en sus causas y posibles soluciones para poder salvaguardar la seguridad de la estructura (Fernández M. 2007)	distintas dosificaciones tipo patrón y con viruta de cuero para dar el resultado favorable con el fin de mitigar o disminuir los efectos de la patología. (Fuente propia)	Exudación	Cantidad de agua exudada Velocidad de exudación	

Anexo 2: Matriz de operacionalización de la variable independiente

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
Viruta de cuero	Es una fibra tipo natural que es extraída mediante en el proceso de cortado o rebajados de las pieles de los vacunos en las curtiembres Sánchez J. y Cortes R. (2016)	Se operará esta variable mediante el efecto de la incorporación de las propiedades físicas de la viruta de cuero en la losa de concreto, así como también las diferentes cantidades de	Propiedades Físicas	%absorción %humedad	Razón
		viruta de cuero para un resultado favorable (Fuente propia)	Adición de la fibra	1,3,5 %	

Anexo 3: Matriz de consistencia

	T		T			1	E f'c 210kg/cm2 EN LOSAS-HUACHIPA
PROBLEMA	OBJETIVO	HIPOTESIS	,	MENSIONES e INDIC		METODOLOGIA	POBLACION
Problema general	Objetivo general	Hipótesis general	VARIABLES	DIMENSIONES	INDICADORES	METODO	Según Arias (2006) En este caso el proyecto de
¿Cómo influye la	Determinar la	La incorporación de la			2/11	Cuantitativo	investigación presentado posee que la muestra es
incorporación de la	influencia de la	viruta de cuero		Propiedades Físicas	%Humedad %Absorción	TIPO DE	toda la población la cual es definida como censo,
viruta de cuero en	incorporación de	influye		FISICAS	%ADSOLCIOII		•
la reducción de las	la viruta de cuero	favorablemente en un				INVESTIGACION	donde la población en su total es igual a la muestra
patologías del	en la reducción de	12% en la reducción	V1. Viruta de cuero			Aplicada	y así poder obtener los datos correspondientes.
concreto simple f'c	las patologías del	de las patologías del				NIVEL	Para la investigación se realizará 8 paneles de
210kg/cm2 en	concreto simple	concreto simple f'c = 210 kg/cm2 en losas-		Adición de fibra	1,3 y 5%	Funding time	concreto con dimensiones de 35.5cmx56cmx10cm
losas-Huachipa?	f'c 210kg/cm2 en losas-Huachipa	Huachipa			_,_ , _, _,	Explicativo	
Problemas	103d3 Fludchipa	Tradempa				DISEÑO	según la astm-c1579 (Método de prueba Standard
específicos	Objetivos	Hipótesis especificas				METODOLOGICO	para evaluación del agrietamiento por contracción
	específicos				Longitud de fisuras	Experimental-	plástica del concreto reforzado con fibras) con una
- ¿De qué forma		- La incorporación de		Retracción		Cuasi	·
influye la	- Cuantificar la	la viruta de cuero		plástica	Ancho de	experimental	resistencia a la compresión de 210kg/cm2 para
incorporación de la viruta de cuero en	influencia de la incorporación de	influye considerablemente		'	fisuras		analizar y evaluar la retracción plástica con (1,3 y
la reducción del	la viruta de cuero	en un 15% en la	V2. Patologías del		Cantidad de		5%) o sin viruta de cuero, además también se
fisuramiento por	en la reducción	reducción del	concreto en losas f'c		fisuras		
retracción plástica	del fisuramiento	fisuramiento por	210kg/cm2		Cantidad de		realizará 12 ensayos de exudación según la norma
del concreto simple	por retracción	retracción plástica del			agua exudada		MTC E713 de las cuales se considerara el tipo patrón
f'c 210kg/cm2 en	plástica del	concreto simple f'c 210kg/cm2 en losas-		Exudación			y la incorporación de la viruta en porcentajes de 1,
losas-Huachipa?	concreto simple f'c 210kg/cm2 en	Huachipa		EXUUACION	Velocidad de		3 y 5% para determinar la reducción de las
- ¿En qué forma	losas-Huachipa	Tradempa			exudación		
influye la	·	- La incorporación de					patologías de losas de concreto, así también se
incorporación de la	- Conocer la	la viruta de cuero					realizara 48 probetas según para el ensayo de
viruta de cuero en	influencia de la	influye					compresión del concreto, donde 12 serán tipo
la reducción de la exudación del	incorporación de la viruta de cuero	significativamente en un 8% en la reducción					,
concreto simple f'c	en la reducción de	de la exudación del					patrón durante los 3,7 y 28 días y 36 será con
210kg/cm2 en	la exudación del	concreto simple f'c					adiciones de virutas de cuero (1,3 y 5%) con los días
losas-Huachipa?	concreto simple	210kg/cm2 en losas-					mencionados anteriormente.
	f'c 210kg/cm2 en	Huachipa					
	losas-Huachipa						

Anexo 4: Ficha de recolección de datos para ensayo de retracción plástica

Fecha:

		ENSAYO DE RE	TRACCION PL	ASTICA 210	f'c kg/cm2			
Numero de fisuras		SIN FIB	BRA			CON FI	BRA	
	PAI	NEL 1	PANEL 2		PANEL 1		PANEL 2	
	Ancho (mm)	Longitud (cm)	Ancho (mm)	Longitud	Ancho (mm)	Longitud	Ancho	Longitud
				(cm)		(cm)	(mm)	(cm)
N° de anchos de								
fisuras								
SUMA								
PROMEDIO								
PROMEDIO ANCHO			1					1
CRR					<u> </u>			

Anexo 4: Clima de la zona

Estación : ATE , Tipo Automtica - Meteorológica								
Departamento : LIMA Provincia : LIMA Distrito : ATE Ir : 2020-03 V Latitud : 12° 1' 34" Longitud : 76° 55' 7" Altitud : 362								
Día/mes/año	Tem Prom	peratura Max	ı (°c) Min	Humedad (%)	Lluvia (mm)	Presion (mb)	Velocidad del Viento (m/s)	Direccion del Viento
01-03-2020	23.9	26.85	21.76	75.8	0	-999	1.17	239.5
02-03-2020	25.33	28.83	22	66.52	0	-999	1.29	248.2
03-03-2020	22.4	23.96	21.27	81.4	0	-999	.86	232

Figura 54: Clima de la zona

Anexo 5: Tabla para muestra mínima para el ensayo de partículas fracturadas

Tamaño Máximo Nominal muestra de	Abertura cuadrada, mm (pulg) Masa, g
ensayo mínima mm (pulg.)	(aprox lb)
9,5 (3/8)	200(0,5)
12,5	500(1)
19,0	1 500 (3)
25,0	3 000 (6,5)
37,5	7 500 (16,5)
50,0	15 000 (33)
63,0	30 000 (66)
75,0 (3)	60 000 (132)
90,0 (3 ½")	90 000 (198)

Tabla 71: Tabla para muestra mínima para el ensayo de partículas fracturadas (MTC E210)

Anexo 6: Tabla de tamices a utilizar para la separación de partículas

Tamices a utilizar para la separación de partículas					
Tamaño de las partículas de la muestra	Tamiz a emplear				
Agregado fino retenido en el tamiz nº16	N°20				
N°4 a 3/8" pulg	N°8				
3/8" a ¾ pulg	N°4				
34 pulg a 1 ½ pulg	N°4				
Mayor a 1 ½ pulg	N°4				

Tabla 72: Tamices a utilizar en la separación de partículas NTP 400.015

Anexo 7: Muestra mínima para porcentaje de chatas y alargadas

TMN malla cuadrada (pulg)	Peso mínimo de la muestra de ensayo			
	kg			
3/8	1			
1/2	2			
3/4	5			
1	10			
1 ½	15			
2	20			
2 ½	35			
3	60			
3 ½	100			
4	150			
4 ½	200			
5	300			
6	500			

Tabla 73: Muestra mínima para porcentaje de chatas y alargadas

Anexo 8: INSTRUMENTOS DE RECOLECCION DE DATOS

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO

MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO PASANTE POR LA MALLA N°200 - NTP 339.132

CÓDIGO DE ORDEN DE TRABAJO: NOMBRE DE ANALISTA: CÓD. DE MUESTRA: FECHA DE REALIZACION: TAMAÑO NOMINAL MAXIMO (mm): METODO EMPLEADO: METODO SUMERGIDO (min): COD. BALANZA: COD. TAMIZ:						
MASA COSTANTES		TEMPERATURA AMBIENTE:				
CODIGO DE TARA						
MASA DE TARA	g					
MASA HUMEDA +TARA	g	MUESTRA SECA+TARA	g			
FECHA Y HORA		FECHA Y HORA				
1º REGISTRO MASA SECA+TARA	g	1º MASA LAVADA Y SECA + TARA	g			
FECHA Y HORA		FECHA Y HORA				
2º REGISTRO MASA SECA+TARA	9	2º MASA LAVADA Y SECA + TARA	g			
FECHA Y HORA		FECHA Y HORA				
3º REGISTRO MASA SECA+TARA	g	3º MASA LAVADA Y SECA + TARA	g			

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO DE PARTICULAS CHATAS MTC E 223 - 2016

CÓDIGO DE ORDEN DE TRABAJ	0:	NOMBRE DE ANALISTA: FECHA DE RECEPCION DE MUESTRA:		
		FECHA DE REALIZACION DE ENSAYO:		
	TEMPERATURA HUMEDAD RELAT	AMBIENTE:		
MASA TOTAL		MASA TOTAL		
DIÁMETRO		DIÁMETRO		
% PASANTE		% PASANTE		
%RETENIDO		%RETENIDO		
MASA TOTAL		MASA TOTAL		
DIÁMETRO		DIÁMETRO		
% PASANTE		% PASANTE		
%RETENIDO		%RETENIDO		

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO

MIGUEL IRMAR ALEJANDRO PALACIOS

PORCENTAJE DE CARAS FRACTURADAS MTC E 210

CÓDIGO DE ORDEN DE CÓD. DE MUESTRA:	TRABAJO:	BRE DE ANALISTA: E REALIZACION DE ENSAYO	
TEMPERATURA AME HUMEDAD RELATIVA:	BIENTE:	_	
	1		2
MASA TOTAL		MASA TOTAL	
DIAMETRO		DIAMETRO	
MASA 1° CARA FRACTURADA		MASA 1° CARA FRACTURADA	
MASA 2° CARAS FRACTURADAS		MASA 2° CARAS FRACTURADAS	
MASA NO FRACTURADA		MASA NO FRACTURADA	
	3		4
MASA TOTAL		MASA TOTAL	
DIAMETRO		DIAMETRO	
MASA 1° CARA FRACTURADA		MASA 1° CARA FRACTURADA	
MASA 2° CARAS FRACTURADAS		MASA 2° CARAS FRACTURADAS	
MASA NO FRACTURADA		MASA NO FRACTURADA	

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA MIGUEL IRMAR ALEJANDRO PALACIOS

ALUMNO

PROYECTO

ENSAYO NORMALIZADO PARA LA DETERMINACIÓN CUANTITATIVA DE SULFATOS SOLUBLES EN AGREGADOS NTP 339.178

CÓDIGO DE ORDEN DE TRABAJO: CÓD. DE MUESTRA: CANTERA:		FECHA DE RECEPCION DE MUESTRA:		
TEMPERATURA AMBIENTE:HUMEDAD RELATIVA:		REGADO FINO		
Descripción	_			
Peso papel filtro Seco				
Peso papel filtro húmedo				
Peso papel filtro carbonizado				

PROYECTO

ALUMNO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO EN TERRONES Y PARTICULAS DESMENUZABLES (FRIABLES) EN AGREGADOS NTP 400.015

CÓDIGO DE ORDE					NOMBRE DE ANALISTA:
COD. DE MUESTRA	4 :			F	ECHA DE RECEPCION DE MUESTR <u>A:</u> E ENSAYO:
CANTERA:		_ FECH	HA DE REAL	LIZACION D	E ENSAYO:
TEMPERATURA AN	IRIENTE:				
HUMEDAD RELATIVA					
				AGREGADO) FINO:
TAMIZ	No	16			
	110				
M					
R					
K					
				AGREGADO (GRUESO:
TAMIZ	No 4	3/8		1 1/2	
I AWIL	NO 4	pulg	¾ pulg	pulg	
M		P9		F9	
- 141					

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO

MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO ABRASION DE LOS ÁNGELES-MTC E-207

CÓD. DE ORDEN DE TRABAJO: CÓD. DE MUESTRA: MÉTODO A UTILIZAR:	NOMBRE Y APELLIDO DEL ANALISTA: FECHA DE REALIZACION DE ENSAYO:
TEMPERATURA AMBIENTE:HUMEDAD RELATIVA:	

GRADACION DE MUESTRAS DE ENSAYO

		MASA DE TAMAÑO INDICADO (g)					
MEDIDA DEL TAM	GRADACIÓN						
Que pasa	Retenido sobre	Α	В	С	D		
37.5 mm (1 ½ pulg)	25.0 mm (1 pulg)						
25.0 mm (1 pulg)	19.0 mm (3/4 pulg)						
19.0 mm (¾ pulg)	12.5 mm (1/2 pulg)						
12.5 mm (1/2 pulg)	9.5 mm (3/8 pulg)						
9.5 mm (3/8 pulg)	6.3 mm (1/4 pulg)						
6.3 mm (1/4 pulg)	4.75 mm(No 4)						
4.75 mm(No 4)	2.36 mm(No 8)						
7	TOTAL						
PESO QUE	PESO QUE PASA LA No 12						

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO DURABILIDAD AL SULFATO DE MAGNESIO MTC E 209-2016

CÓDIGO DE ORDEN DE TRABAJO	:NOMBRE DE ANALISTA:
CÓD. DE MUESTRA:	FECHA DE RECEPCION DE MUESTRA:
CANTERA:PROGRES	SIVA:FECHA DE REALIZACION DE ENSAYO:
	TEMPERATURA AMBIENTE:
	HOMEDAD REALIVA:

INALTERABILIDAD DEL AGREGADO FINO: ANALISIS CUANTITATIVO MTC E209 – 2016 SULFATO DE MAGNESIO

FRAC	FRACCION		2	3	4	5	6
PASA	RETIENE	Masa Retenida de la granulometría original (g)	GRADACION ORIGINAL %	Masa de la Fracción Ensayada Retenida (g)	Masa Retenida después del Ensayo (g)	Pérdida Total %	Perdida Corregida %
9.5 mm(3/8 pulg)	4.75 mm (No 4)						
4.75 mm (No 4)	2.36 mm (No 8 pulg)						
2.36 mm (No 8 pulg)	1.18mm (No16 pulg)						
1.18mm (No 16 pulg)	600 um (No 30 pulg)						
600 um (No 30 pulg)	300 um (No 50 pulg)						
300 um (No 50 pulg)	150 um (No 100)						
150 um (No 100)							
TOTALES							

$\frac{\text{INALTERABILIDAD DEL AGREGADO GRUESO: ANALISIS CUANTITATIVO MTC E209} - \underline{2016}$

RAC	CION	1	2	3	4	5	6	7	8
PASA	RETIENE	Masa Retenida de la granulometría original (g)	GRADACION ORIGINAL %	Masa de la Fracción Ensayada (g)	No de Partícula	Masa Retenido después del Ensayo (g)	Pérdida Total %	Perdida Corregida %	No de Partículas
63 mm (2 ½ pulg)	50 mm (2 pulg)								
50 mm (2 pulg)	37.5 mm (1 ½ pulg)								
37.5 mm (1 ½ pulg)	25 mm (1 pulg)								
25 mm (1 pulg)	19 mm (3/4 pulg)								
19 mm (3/4 pulg)	12.5 mm (1/2 pulg)								
12.5 mm (1/2 pulg)	9.5 mm (3/8 pulg)								
9.5 mm (3/8 pulg)	4.75 mm (No 4)								
TOTALES		MEDO DE BADTI				ATO DE MA			

ANALISIS CUALITATIVO	NÚ	NÚMERO DE PARTICULAS DESPUES DEL ENSAYO - SULFATO DE MAGNESIO						
CICLO	No DE PARTICULAS PREENSAYO	EN BUEN ESTADO	RAJADAS	DESMORONADAS	FRACTURADAS	ASTILLADAS		
2 ½ pulg – 1 ½ pulg								
1 ½ pulg - ¾ pulg								

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

EQUIVALENTE DE ARENA NTP 339.146

CÓDIGO DE ORDEN DE CÓD. DE MUESTRA: CANTERA:	TRABAJO:	NOM	BRE DE ANALIS	ΓΑ:	
CÓD. DE MUESTRA:		FECHA DE RECE	PCION DE MUES	STRA:	
CANTERA:	FECHA DE F	REALIZACION DE	ENSAYO:		
PROGRESIVA:					
TEMPERATURA AMBIENTE:					
HUMEDAD RELATIVA:					
DESCRIPCIÓN	CONSTANTE	1	2	3	PROMEDIO
Lectura de arena	254				
Loctara de arena	23 .				
lectura de arcilla	254				

PROYECTO ALUMNO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA MIGUEL IRMAR ALEJANDRO PALACIOS

MÉTODO DE PRUEBA ESTÁNDAR PARA ANÁLISIS DE TAMICES DE AGREGADOS FINOS Y GRUESOS ASTM C136 /C136M-19

Nombre D	e Orden De Trabajo: le Analista: no balanza 0.1 g: la de fin de ensayo: ón:	Cód. inte	Fecha/hor	ra de inicio de ensayo:		ooratorio):Cód. Int. Termoh	nigrómetro:	_
MASA	CONSTANTE DEL AGREGADO	O FINO	MAS	SA CONSTANTE DEL AGREGA	ADO GRUESO	MASA	CONSTANTE DEL AGR	EGADO GLOBAL
Cód. Muestra:	Temperatura Ambiente:	Humedad relativa:	Cód. Muestra:	Temperatura Ambiente:	Humedad relativa:	Cód. Muestra:	Temperatura Ambiente:	Humedad relativa:
			Masa de muestra + tara inicial	Masa de tara (g):		Masa de muestra + tara inicial (g):	Masa de tara (g):	
Masa de muestra tara inicial (g):	Masa de tara (g):		(g):					
			Fecha y hora:	Fecha y hora:	Fecha y hora:	Fecha y hora:	Fecha y hora:	Fecha y hora:
Fecha y hora:	Fecha y hora:	Fecha y hora:						
1° Masa seca + tara	2° Masa seca + tara	3° Masa seca + tara	1° Masa seca + tara	2° Masa seca + tara	3° Masa seca + tara	1° Masa seca + tara	2° Masa seca + tara	3° Masa seca + tara

GRANULOMETRIA DEL AGREGADO FINO

-	1
Cód. muestra	
TAMIZ in (mm)	Masa Retenida
5 in (125 mm)	
4 in (100 mm)	
3 ½ in (90 mm)	
3 in (75 mm)	
2 ½ in (63 mm)	
2 in (50 mm)	
1 ½ in (37.5 mm)	
1 in (25 mm)	
¾ in (19 mm)	
½ in (12.5 mm)	
3/8 in (9.5 mm)	
No. 4 (4.75 mm)	
No. 8 (2.36 mm)	
No. 16 (1.18 mm)	
Νο. 30 (600 μm)	
Νο. 50 (300 μm)	
No. 100 (150 μm)	
No. 200 (75 μm)	
Fondo	

AGREGADO FINO						
Temperatura ambiente						
Humedad relativa						
Masa de muestra + Tara (g)						
Masa de tara (g)						
Masa de muestra (g)						
Forma de partícula:						
Tamaño máximo						
Observación:						

GRANULOMETRIA DEL AGREGADO GRUESO

Cód. muestra	
TAMIZ in (mm)	Masa Retenida
5 in (125 mm)	
4 in (100 mm)	
3 ½ in (90 mm)	
3 in (75 mm)	
2 ½ in (63 mm)	
2 in (50 mm)	
1 ½ in (37.5 mm)	
1 in (25 mm)	
¾ in (19 mm)	
½ in (12.5 mm)	
3/8 in (9.5 mm)	
No. 4 (4.75 mm)	
No. 8 (2.36 mm)	
No. 16 (1.18 mm)	
Νο. 30 (600 μm)	
Νο. 50 (300 μm)	
Νο. 100 (150 μm)	
No. 200 (75 μm)	
Fondo	

AGREGADO GRUESO		
Temperatura ambiente		
Humedad relativa		
Masa de muestra + Tara (g)		
Masa de tara (g)		
Masa de muestra (g)		
Forma de partícula:		
Tamaño máximo		
Observación:		

GRANULOMETRIA DEL AGREGADO GLOBAL

Cód. muestra	
TAMIZ in (mm)	Masa Retenida
5 in (125 mm)	
4 in (100 mm)	
3 ½ in (90 mm)	
3 in (75 mm)	
2 ½ in (63 mm)	
2 in (50 mm)	
1 ½ in (37.5 mm)	
1 in (25 mm)	
¾ in (19 mm)	
½ in (12.5 mm)	
3/8 in (9.5 mm)	
No. 4 (4.75 mm)	
No. 8 (2.36 mm)	
No. 16 (1.18 mm)	
No. 30 (600 μm)	
No. 50 (300 μm)	
No. 100 (150 μm)	
No. 200 (75 μm)	
Fondo	

AGREGADO GRUESO			
Temperatura ambiente			
Humedad relativa			
Masa de muestra + Tara (g)			
Masa de tara (g)			
Masa de muestra (g)			
Forma de partícula:			
Tamaño máximo			
Observación:			
I Tamaño	Tamaño de		
Tamaño máximo nominal	Tamaño de muestra		
máximo nominal	muestra		
máximo nominal mm (in)	muestra mínima (kg)		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2	muestra mínima (kg)		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in) 25,0 mm (1 in)	muestra mínima (kg) 1 2 5 10		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in)	muestra mínima (kg) 1 2 5		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in) 25,0 mm (1 in) 37,5 mm (1 ½	muestra mínima (kg) 1 2 5 10		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in) 25,0 mm (1 in) 37,5 mm (1 ½ in)	muestra mínima (kg) 1 2 5 10 15		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in) 25,0 mm (1 in) 37,5 mm (1 ½ in) 50 mm (2 in)	muestra mínima (kg) 1 2 5 10 15		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in) 25,0 mm (1 in) 37,5 mm (1 ½ in) 50 mm (2 in) 63 mm (2 ½ in)	muestra mínima (kg) 1 2 5 10 15 20 35		
máximo nominal mm (in) 9,5 mm (3/8 in) 12,5 mm (1/2 in) 19,0 mm (3/4 in) 25,0 mm (1 in) 37,5 mm (1 ½ in) 50 mm (2 in) 63 mm (2 ½ in) 75 mm (3 in)	muestra mínima (kg) 1 2 5 10 15 20 35 60		

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO DE IMPUREZAS ORGÁNICAS EN CONCRETO -MTC E 213

CÓDIGO DE ORDEN DE TRA CÓD. DE MUEST <u>RA:</u> CANTERA <u>:</u>	FECHA DE RECEPCION DE M	FECHA DE RECEPCION DE MUESTRA:			
PROGRESIVA:	TEMPERATURA AMBIENTE: HUMEDAD RELATIVA:				
No	DESCRIPCION	PLACA ORGÁNICA No			
1					
2					
3					
4					
5					
6					
7					
8					

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA

REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

ENSAYO DE PARTICULAS ALARGADAS MTC E 223 - 2016

CÓDIGO DE ORDEN DE TRABAJO:		NOMBRE DE ANALISTA:		
		FECHA DE RECEPCION DE MUESTRA:		
CANTERA: PROGRESIVA	A:	FECHA DE REALIZACION DE ENSAYO:		
	TEMPERATURA AME HUMEDAD RELATIVA:	BIENTE:		
MASA TOTAL			MASA TOTAL	
DIÁMETRO			DIÁMETRO	
% PASANTE			% PASANTE	
%RETENIDO			%RETENIDO	
MASA TOTAL]		
			MASA TOTAL	
DIÁMETRO			DIÁMETRO	
% PASANTE			% PASANTE	
%RETENIDO			%RETENIDO	
				1

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

DISEÑO DE MEZCLA - MODULO FINEZA

CÓDIGO DE ORDEN DE TRABAJO:	CODIGO DE MUESTRA:	OBSERVACIÓN:		
CONTENIDO DE HUMEDAD – A. FINO – I TEMPERATURA AMBIENTE:COD. BALA HUMEDAD RELATIVA: FECHA:	NTP 339.185 NZA: 339.181 TEMPEI	ATURA AMBIENTE: COD. BALANZA: DAD RELATIVA: FECHA:	PESO UNITARIO SUELTO Y COMPACT. TEMPERATURA AMBIENTE:	FECHA:

TAMAÑO MAXIMO (mm)	
FUENTES DE CALOR:	DI ANCHA ()
HORNO A 110°C () MICROONDAS () I	PLANCHA ()
CODIGO DE TARA	
MASA DE TARA	g
MASA DE LA MUESTRA HUMEDA	2
MASA DE LA MUESTRA HUMEDA	g
MASA CONSTANTE DE LA MUESTR	A SECADA AL
HORNO	
1º REGISTRO DE MASA FECHA Y HORA	
TIONA	
1º REGISTRO DE MASA	g
2º REGISTRO DE MASA FECHA Y	
HORA	
2º REGISTRO DE MASA	g
	9
3º REGISTRO DE MASA FECHA Y HORA	
3º REGISTRO DE MASA	g

TAMAÑO MAXIMO (mm)	
TAMARO MAXIMO (IIIII)	
FUENTES DE CALOR:	ANICHA ()
HORNO A 110°C () MICROONDAS () PI	LANCHA ()
CODIGO DE TARA]
MASA DE TARA	
THIS TE THE	
MASA DE LA MUESTRA HUMEDA (g)	
MASA DE LA MOESTICA HOMEDA (g)	
MASA CONSTANTE DE LA MUESTRA	SECADA AL
HORNO	
1º REGISTRO DE MASA FECHA Y HORA	
1º REGISTRO DE MASA	_
I 1º REGISTRO DE MASA	g
2º REGISTRO DE MASA FECHA Y HORA	
Ţ	
2º REGISTRO DE MASA	g
3º REGISTRO DE MASA FECHA Y	
HORA	
3º REGISTRO DE MASA	g

	RECIPIENTE (g)			
	MASA DE LA MUESTRA COMPACTADO + RECIPIENTE (g)			
	MASA DE RECIPIENTE (g)			
PES	O UNITARIO SUELTO Y COMPACTADO –	A. GRUESC	NTP 400.017	
TEN	IPERATURA AMBIENTE: FE	CHA:		
	MEDAD DELATIVA: CA	ט ע כוט ע ט ט	E DECIDIENTE:	

DESCRIPCIÓN

PESO UNITARIO SUELTO Y COMPACTADO - A. GRUESO NTP 400.017			
TEMPERATURA AMBIENTE:	FECHA:		
HUMEDAD RELATIVA:	CAPACIDAD DE RECIPIENTE:		
TAMAÑO MAXIMO DE PARTICULA (mm)	: COD. RECIPIENTE:		
TIPO DE METODOS EMPLEADOS:	COD.BALANZA:		
METODO A – RODDING () METODO B –	-JIGGING () METODO C- SHOVELING ()		

DESCRIPCIÓN	M-1	M-2	M-3
MASA DE LA MUESTRA SUELTA + RECIPIENTE (g)			
MASA DE LA MUESTRA COMPACTADO + RECIPIENTE (g)			
MASA DE RECIPIENTE (g)			

AGREGADO GRUESO - PESO ESPECÍFICO Y ABSOI TEMPERATURA AMBIENTE: FECHA: HUMEDAD RELATIVA: COD. BALA			AGREGADO FINO – GRAVEDAD ESPECÍFICA Y ABSORCION DE MTC E 205 TEMPERATURA AMBIENTE: FECHA:					
			DESCRIPCION		CANTIDAD			
DESCRIPCION		CANTIDAD	CODIGO DE TARA					
CODIGO DE TARA			MASA DE TARA					
MASA DE TARA			MASA DE LA FIOLA					
MASA DE LA MUESTRA SATURADA SUPERFICIALMENT	E SECA + TARA		MASA DE LA ARENA SUPERFICIALMENTE SECA + P FIOLA+MASA DEL AGUA	ESO DE LA				
		ı	VOLUMEN DE LA FIOLA					
MASA DE LA MUESTRA SATURADA SUPERFICIALMENT DEL AGUA + CANASTILLA	E SECA DENTRO		1º MASA DE LA MUESTRA SECA + TARA:	Fecha/H	ora:			
MASA DE LA CANASTILLA DENTRO DEL AGUA			2º MASA DE LA MUESTRA SECA + TARA:	Fecha/H	ora:			
1º MASA DE LA MUESTRA SECA + TARA:	Fecha/Ho	ra:	TE TWO TEE BY TOES HOT SECRET TAKEN.	T T CCHA/TH	Jiu.			
2º MASA DE LA MUESTRA SECA + TARA:	Fecha/Ho	ra:	3º MASA DE LA MUESTRA SECA + TARA:	l Fecha/H	ora:			
3º MASA DE LA MUESTRA SECA + TARA:	Fecha/Ho	ra:						
FIRMA DE ANALISTA DE PESO ESPECIFICO	l	FIRMA DE ANALIS PUS Y PUC	STA					
FIRMA DE ANALISTA DE CONTENIDO DE HUMEDAD		IRMA DE ANALIST. GRAVEDAD ESPECI						

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS -

HUACHIPA

ALUMNO MIGUEL IRMAR ALEJANDRO PALACIOS

CO	ALODETO EXTELL				<u> PECIMENES DE</u>
_ <u></u>	NCRETO EN EL LA	ABORATO	RIO NTP	339.183	
CÓDIGO DE ORDEN DE	E TRABA IO:				
NOMBRE Y APELLIDO I					
TEMPERATURA	DE AINAMEIOTA .		HUMEDA	D RELATIV	'A:
AMBIENTE:					
COD. DE MUESTRA:				TAMIENTO DISEI	
AGREGADO FINO			TIPO DE	ADITIVO	
AGREGADO GRUESO			FECHA DELABOR		
A PROPORCIONES DE	E DISEÑO EN PES	O POR TA	ANDA DE	UNA BOLSA	A DE CEMENTO
	Cemento		kg/bolsa	%	Medida de
	Agua		lt/bolsa	%	Probetas
	gado Fino Húmedo		kg/bolsa	%	4 x 8 in ()
0 0	lo Grueso Húmedo		kg/bolsa		6 x 12 in ()
TOTAL			1	100%	0 × 12 111 ()
B PROPORCIONES PADE:	ARA LA TANDA		kg	100%	
	Cemento		kg		
	Agua		lt		
9 9	gado Fino Húmedo		kg		
	lo Grueso Húmedo		kg		
C TOTAL DE AGUA EI TANDA		g			
D TOTAL DE ADITIV	O EMPLEADO:		ml		
E ASENTAMIENTO	O OBTENIDO:		cm		
F TEMPERATURA DI	EL CONCRETO:		°C		
OBSERVA	CION:				

ENSAYO DE ROTURA DE ESPECÍMEN CILÍNDRICAS DE CONCRETO

																TEMPERATU HUMEDAD R COD. INT. TERMOHIGR	ELATIVA		i:	
	CÓDIGO DEL F	ROYECT	O:				!	NOMBR	E Y APE	LLIDO [DEL OPE	ERADO	R:				-			
	FECHA INICIAL	DE ROT	URA/HC	RA DEL ES	PÉCIMEN: _			FE	CHA FIN	AL DE R	OTURA	/HORA	DEL E	ESPÉ	CIMEN:					
	CÓD. INTERNO	DEL PIE	DE RE	Y:			_	CÓD. II	NTERNO	DEL M	ICRÓME	TRO E	DE PIN	ZA:_			_			
N° ENSAYO	DESCRIPCIÓ N	N.° De Ensay o	f _C	VACEAD	HORA DE VACEAD O	PRESENTA INCLINACIÓ N: SI	PRESENTA DEFECTO: SÍ	CT, CP, CAP	DI M 1 (mm)	DI M 2 (mm)		JRAS (i mación		A O R*	MÁXIM	aproximació	TIPO DE FALLA	W	ws	
ð				0		(CUANTO) O NO	(DESCRIBIR) O NO	*			111	2	3			n 0.1				
1																				
2																				
3																				
4																				
5																				
	forma	idos, en	olemente ambas	bien Cor	nos bien forn e, desplazam	PO II nados sobre una iento de grieta:	Grietas column	ares en	erticales ambas	Fractura en las k	ases; go	l sin grit Ipear co	on (super	ior e infe	V o en las bases erior) ocurren las capas de	Similar	ermina	o V pero al del	

TIPO I

embonado.

acentuado.

formados.

Fuente: Inversiones generales centauro ingenieros

no bien definido en la otra base.

entre capas.

PROYECTO

ALUMNO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA MIGUEL IRMAR ALEJANDRO PALACIOS

EXUDACION DEL CONCRETO MTC E 713										
CÓDIGO DE ORDEN DE TRAB	BAJO:									
NOMBRE Y APELLIDO DE ANA	ALISTA:									
FECHA DE REALIZACIÓN DEL	. ENSAYO:			HORA DE ENSAYO:						
TEMPERATURA AMBIENTE:		•		HUMEDAD						
				RELATIVA:						
AProporción de Tand	a usada:									
Cemento	k	g								
Agua	Li	t								
A. Grueso	k	g								
A. Fino	K	g								
BRecipiente:										
Diámetro			cm							
Masa de Recipiente			kg							
Masa de Recipiente +			kg							
Concreto										

C.-Datos Obtenidos durante el Ensayo son:

Tiempo (min)	Volumen Exudado
0	ml
10	ml
30	ml

OBSERVACION	

			FORMATO DE	LABORATORIO)		Cód		00
		EN	SAVO DE	RETRAC	ción		Vers		0
L GEOTECNIA	1	EN:	SAYO DE	RETRAC	LION		Fect Pági	15/1	0/20 de :
	:								
	:							Aprobado por: Ensayado por:	
	:						Fe	oha de Ensayo:	
ente Nº	:								
			ENDA	YO DE RETRA	COIÂN				
			ENSA	ASTM C1579	CCION				
A) INFORM	MACIÓN GENERAL:								
	Muestra								
	Resistencia de diseño:		kgf/cm2						
	Dimensiones de caja								
	Diámetro Balde:								
B)TOMA	DE DATOS:								
	Tiempo	Masa de agua inicial	Masa de agua final	Tasa de Evaporación	T* Aire	Veloo. Viento	Humedad Relativa	¿Aparación de grieta?	
	min	kg	kg	kg/m2/h	(°C)	mis	%	Si/No - Código	
	30								
	60								
	90								
	120								
	150								
	180								
	210								
	240								
	270								
	270								
	270 300								
	270 300 330								
	270 300 330 360								
	270 300 330 360 390								
	270 300 330 360 390 420								
	270 300 330 360 390 420								
C) <u>ALCAN</u>	270 300 330 360 390 420 450								

D) OBSERVACIONES DE ENSAYO:

Fuente: MTL geotecnia

		FORMATO DE LABORATORIO	Código	FOR-LAB-CON-002.01				
			Versión	n				
		ENSAYO DE RETRACCIÓN	Fecha	14/10/2021				
MTL GEOTECNI	A		Página	2 de 2				
Proyecto / Cliente	:	Annah	ado por :					
-	_							
Código de Muestra		Engay	Encayado por:					
Procedencia	=	Feoha de	Ensayo:					
Expediente Nº	:							
		ENSAYO DE RETRACCIÓN						
		ASTM C1579						

A) INFORMACIÓN GENERAL:

Resistencia de diseño: kgf/cm2

Dimensiones de caja:

Diámetro Balde: _____ cm

B) TOMA DE DATOS:

# Fisura	Identificación	Espesor (mm)	Longitud (om)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			

# Fisura	Identificación	Espesor (mm)	Longitud (om)
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			

Fuente: MTL geotecnia

VALIDACION DEL INSTRUMENTO POR UN JUICIO DE EXPERTOS

INSTRUMENTO: FICHA DE VALIDACION PARA LA RECOLECCION DE DATOS
DEL ENSAYO DE RETRACCION PLASTICA EN LOSAS DE

CONCRETO SIMPLE

I. DATOS GENERALES DEL EXPERTO:

Apellidos y nombre:	
C.I.P:	
Grado y especialidad:	
Cargo y ocupación:	

II. DATOS GENERALES DEL INSTRUMENTO:

Elaborado por: Miguel Irmar Alejandro Palacios

Instrumento a validar: Recolección de datos del ensayo de retracción plástica en losas de concreto simple

Proyecto: <u>La incorporación de la viruta de cuero para reducir las patologías del concreto</u> simple f'c 210 kg/cm2 en losas – Huachipa____

III. VALIDACION:

INDICADORES	CRITERIOS		VALORACION 1 2 3 4 5			
		1	2	3	4	5
CLARIDAD	Esta formulado con lenguaje apropiado					
OBJETIVIDAD	Expresa el alcance del proyecto					
ESTRUCTURA	Tiene una organización lógica de contenido					
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos					
INTENCIONALID AD	Adecuado para valorar aspectos estratégicos planteados					
CONSISTENCIA	Basado en aspectos teorico-cientificos para identificar y determinar la magnitud de las fisuras por retracción plástica					
COHERENCIA	El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias					
METODOLOGIA	La estrategia a emplear responde al propósito del diagnostico					
		l				

VALORACION	
TOTAL	

La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE	0-20	21-30	31-36	37-40
VALORACION				

IV. RESULTADO DE LA La valoración obtenida fu y su valoración fu	ue de, y este está dentro d	el rango de valoración
	APLICACIÓN DEL INSTRUME	NTO.
		Lima
	Firma del experto	
	DNI:	
	C I P·	

(511) 457 2237 / 989 349 903 Jr. La Madrid 264 Asociación Los Olivos, San Martin de Porres - Lima informes@mtlgeotecniasac.com

VALIDACION DEL INSTRUMENTO POR UN JUICIO DE EXPERTOS

INSTRUMENTO: FICHA DE VALIDACION PARA LA RECOLECCION DE DATOS DEL ENSAYO DE RETRACCION PLASTICA EN LOSAS DE CONCRETO SIMPLE

I. DATOS GENERALES DEL EXPERTO:
Apellidos y nombre: Elmer Moreno Huamán

C.I.P: 210906

Grado y especialidad: Ingeniero Civil

Cargo y ocupación: Ingeniero de la empresa MTL Geotecnia

II. DATOS GENERALES DEL INSTRUMENTO:

Elaborado por: Miguel Irmar Alejandro Palacios

Instrumento a validar: Recolección de datos del ensayo de retracción plástica en losas de concreto simple

Proyecto: La incorporación de la viruta de cuero para reducir las patologías del concreto simple fc 210 kg/cm2 en losas – Huachipa

III. VALIDACION:

INDICADORES	CRITERIOS		VALORACION			000
		1	2	3	4	5
CLARIDAD	Esta formulado con lenguaje apropiado					Х
OBJETIVIDAD	Expresa el alcance del proyecto				Х	
ESTRUCTURA	Tiene una organización lógica de contenido					X
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos					X
INTENCIONALIDAD	Adecuado para valorar aspectos estratégicos planteados				Х	
CONSISTENCIA	Basado en aspectos teorico-científicos para identificar y determinar la magnitud de las fisuras por retracción plástica					х
COHERENCIA	El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias					X
METODOLOGIA	La estrategia a emplear responde al propósito del diagnostico					Х
		VALO	ORACI	ON	3	38

(511) 457 2237 / 989 349 903 Jr. La Madrid 264 Asociación Los Olivos, San Martin de Porres - Lima informes@mtlgeotecniasac.com

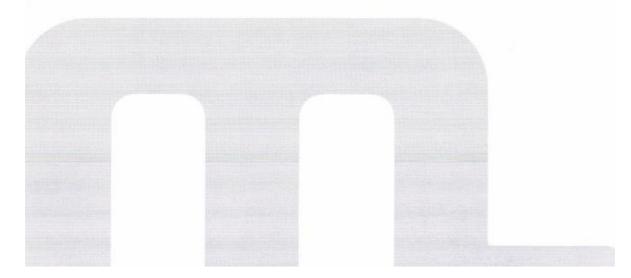
La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE VALORACION	0-20	21-30	31-36	37-40

IV. RESULTADO DE LA VALIDACION:

La valoración obtenida fue de 38, y este esta dentro del rango de valoración EXCELENTE.

V. OPINION SOBRE LA APLICACIÓN DEL INSTRUMENTO.


La ficha de recolección de datos cuenta con los parámetros necesarios para la identificación, evaluación y determinación de las fisuras por retracción plástica, siguiendo los lineamientos de la normativa correspondiente ASTM C1579, se recomienda constante observación durante la ejecución del ensayo y cuidado en el llenado de la ficha de recolección de datos.

Lima 21 de octubre del 2021

Firma del experto

DNI:

C.I.P: 210906

ANEXO 9: RESULTADOS

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS 150 ERRIVICIOS DE MEL ARICA DE SUELOS. ENSAYOS EN AGREGADOS PARA CONCRETO Y ASPALTO ENSAYOS EN ROCAS ENSAYOS EN ROCAS ENSAYOS EN ROCAS ENSAYOS EN ROCAS ENSAYOS CIÚNICOS EN SUELOS Y AGUA ENSAYOS CIÚNICOS EN SUELOS Y AGUA ENSAYOS CIÚNICOS EN SUELOS Y AGUA ESTUDIOS Y ENSAYOS GEOFÍSICOS PERFORACIONES Y EXTRACCIÓN DIAMANTINAS ESTUDIOS GEOTÍCINICOS CONTROL DE CAULDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU CENTAURO Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS CONCRETO Y INFORME DE ENSAYO EXPEDIENTE N° : 1636-2021-AC PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS : UNIVERSIDAD CESAR VALLEJO ATENCIÓN CONTACTO DE PETICIONARIO : irmar.2508@gmail.com LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL : CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA PROYECTO HBTCACTÓN · LIMA- LIMA - ATE VITARTE - HUACHIPA : 14 DE SEPTIEMBRE DEL 2021 FECHA DE MUESTREO FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN 27 DE SEPTIEMBRE DEL 2021 DETERMINACIÓN CUANTITATIVA DE CLORUROS SOLUBLES EN SUELOS Y AGUA SUBTERRÂNEA NTP 339.177 2002 (revisada el 2015) CÓDIGO DE TRABAJO : P-178-2021 CODIFICACIÓN DE LA : M-2 MUESTRA UBICACIÓN DE LA MUESTRA : CANTERA DE SAN MARTIN, UBICADA EN VITARTE : AGREGADO FINO EN 10 COSTALES BLANCOS CON UN PESO APROXIMADO DE 30 kg MUESTRA FECHA DE INICIO DE ENSAYO : 23 DE SEPTIEMBRE DEL 2021 FECHA DE CULMINACION DE : 23 DE SEPTIEMBRE DEL 2021 **ENSAYO** CONTENIDO 86 mg/kg ADICIONES, DESVIACIONES O EXCLUSIONES: NO APLICA TEMPERATURA AMBIENTE 19,2 °C HUMEDAD RELATIVA : ÁREA DE QUÍMICOS - AGUA POTABLE. ÁREA DONDE SE REALIZO EL ENSAYO MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO. LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO. LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN. EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD. LOS RESULTADOS DELOS ENSA YOS NO DEBENNER UTILIZADOS CONDUNA CERTIFICACIÓN DE CONNORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DECALIDAD DE LA RITUADA QUELO PRODUCE LOS RESULTADOS CORRESPONDEN A LOS ENSA YOS REALIZADOS SOBRE LAS MEDISTRAS PROPORTIONADAS FORESTA, CHINTRE ALLABORATORIO DE MOCANCA DE ESSULTADOS CORRESPONDEN A LOS ENSA YOS REALIZADOS SOBRE LAS MEDISTRAS PROPORTIONADAS FORESTA, CHINTRE ALLABORATORIO DE MOCANCA DE ESSULTADOS CORRESPONDEN A LOS ENSA YOS REALIZADOS SOBRE LAS MEDISTRAS PROPORTIONADAS FORESTA, CHINTRE ALLABORATORIO DE HC-AC-013 REV.02 FECHA: 2021/09/11 Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros Av. Mariscal Castilla Nº 3950 - El Tambo - Huancayo - Junín (Frente a la 1ra Puerta de la U.N.C.P.) Telf, 064 - 253727 Cel. 992875860 - 964483588 - 964966015 Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS

SERVICIOS DE:

- ENSAYOS PARA MECÂNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROGAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÍCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS CONCRETO Y

INFORME DE ENSAYO

EXPEDIENTE N°

: 1637-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN

: UNIVERSIDAD CESAR VALLEJO CONTACTO DE PETICIONARIO : irmar.2508@gmail.com

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL

CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE MUESTREO FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 14 DE SEPTIEMBRE DEL 2021 : 15 DE SEPTIEMBRE DEL 2021 : 27 DE SEPTIEMBRE DEL 2021

DETERMINACIÓN CUANTITATIVA DE CLORUROS SOLUBLES EN SUELOS Y AGUA SUBTERRÀNEA

NTP 339.177 2002 (revisada el 2015)

CÓDIGO DE TRABAJO

: P-178-2021

CODIFICACIÓN DE LA MUESTRA

: M-1

UBICACIÓN DE LA MUESTRA

: CANTERA GLORIA, UBICADA EN VITARTE

MUESTRA

AGREGADO GRUESO EN 9 BOLSAS DE PLASTICO BLANCOS CON UN PESO

* APROXIMADO DE 30 kg

FECHA DE INICIO DE ENSAYO : 23 DE SEPTIEMBRE DEL 2021

FECHA DE CULMINACION DE

ENSAYO

: 23 DE SEPTIEMBRE DEL 2021

CONTENIDO 47 mq/ka

ADICIONES, DESVIACIONES O EXCLUSIONES: NO APLICA

CONDICIONES AMBIENTALES

TEMPERATURA AMBIENTE : 19,2 °C HUMEDAD RELATIVA

ÁREA DONDE SE REALIZO EL ENSAYO : ÁREA DE QUÍMICOS - AGUA POTABLE.

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO.

LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO. LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN. EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD.

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE LOS RESULTADOS CORRESPONDEN A LOS ENSA YOS REALIZADOS SCIBRELAS NUESTRAS PROPORCIONADA APPARE, CLEINTE AL LABORATORIO DE MECÂNICA DESUELOS, CONCRETO Y PAVIMENTOS

HC-AC-013 REV.02 FECHA: 2021/09/11

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/

Facebook: centauro ingenieros

Av. Mariscal Castilla Nº 3950 - El Tambo -- Huancayo -- Junin (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cei. 992875860 - 964483588 --964966015

Para verificar la autenticidad del informe puede comunicarse a: grupocentaurolngenieros@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS

BERVICIOS DE:
- ENSAYOS PARA MECÁNICA DE SUELOS

- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

- ENSAYOS SPT. DPL. DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS - PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

BISANOS EN ROCAS
 BISTUDIOS GEOTÉCNICOS
 BISTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS CONCRETO Y ASFALTO

INFORME DE ENSAYO

: 1610-2021-AC EXPEDIENTE N°

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS PETICIONARIO

: UNIVERSIDAD CESAR VALLEJO ATENCIÓN CONTACTO DE

PETICIONARIO

irmar.2508@gmail.com

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PROYECTO

PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN : 25 DE SEPTIEMBRE DEL 2021

SULFATOS SOLUBLES EN AGREGADOS

NTP 339.178:2002 REV. 2015

CÓDIGO DE TRABAJO : P-178-2021

MUESTRA : M-2

UBICACIÓN : CANTERA DE SAN MARTIN, UBICADA EN VITARTE

> CONTENIDO : 25 ppm

CONDICIONES AMBIENTALES

: 2021-09-24 Fecha de ensayo Temperatura Ambiente : 40 % Humedad relativa

MUESTREO E IDENTIFICACION REALIZADOS POR EL PETICIONARIO.

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

HC-AS-007 REV.02 FECHA: 2021/09/11

SERVICIOS DE:

- ENSAYOS PARA MECÂNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
 ENSAYOS EN ROCAS
- ENSAYOS SPT, DPL, DPHS
- ENSAYOS QUÍMICOS EN SUELOS Y AGUA
- ESTUDIOS Y ENSAYOS GEOFÍSICOS
- PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
- CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS CONCRETO Y ASFALTO

INFORME DE ENSAYO

EXPEDIENTE N°

: 1611-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN CONTACTO DE : UNIVERSIDAD CESAR VALLEJO

PETICIONARIO

irmar.2508@gmail.com

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS

PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021

: 25 DE SEPTIEMBRE DEL 2021

FECHA DE EMISIÓN

SULFATOS SOLUBLES EN AGREGADOS

NTP 339.178:2002 REV. 2015

CÓDIGO DE TRABAJO : P-178-2021

MUESTRA

: M-1

UBICACIÓN

: CANTERA DE SAN MARTIN, UBICADA EN VITARTE

CONTENIDO :

33

ppm

E SAL

CONDICIONES AMBIENTALES

Fecha de ensayo Temperatura Ambiente : 2021-09-24 : 20,3 °C

: 40 %

Humedad relativa

MUESTREO E IDENTIFICACION REALIZADOS POR EL PETICIONARIO.

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

HC-AS-007 REV.02 FECHA: 2021/09/11

SERVICIOS DE:
- ENSAYOS PARA MECÁNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO - ESTUDIOS Y ENSAYOS GEOFÍSICOS - PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

ENSAYOS EN ROCAS

ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS CONCRETO Y ASFALTO INFORME

EXPEDIENTE

: 2435-2021-AC

PETICIONARIO

: BACH. MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DE PETICIONARIO : irmar.2508@gmail.com

OBRA

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL

CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 15 DE SETIEMBRE DEL 2021 : 09 DE NOVIEMBRE DEL 2021

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (FRIABLES) EN AGREGADOS MTC E212:2016

CODIGO DE TRABAJO

P-178-2021

DATOS DE LA MUESTRA

: CANTERA GLORIA, UBICADA EN VITARTE

MUESTRA

: M-1, 3/4"

FECHA DE ENSAYO

21 DE SETIEMBRE DEL 2021

RESULTADO:

0.3

 $P = [(M - R) / M] \times 100$

CONDICIONES AMBIENTALES:

TEMPERATURA. 19.9 % HUMEDAD RELATIVA 41%

MUESTREO E IDENTIFICACION REALIZADOS POR EL PETICIONARIO

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE, LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS. SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

HC-AC-030 REV.02 FECHA: 2021/09/11

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook; centauro ingenieros Av. Mariscal Castilla Nº 3950 - El Tambo - Huancayo - Junin (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cel. 992875860 - 964483588 -964966015

Para verificar la autenticidad del informe puede comunicarse a: grupocentauroingenieros@gmail.com

SERVICIOS DE: - ENSAYOS PARA MECÂNICA DE SUELOS

ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENSAYOS EN ROCAS ENSAYOS CUMECOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPMS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS CONCRETO Y ASFALTO INFORME

: 2434-2021-AC EXPEDIENTE

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO CONTACTO DE PETICIONARIO : irmar.2508@gmail.com

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL OBRA

CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SETIEMBRE DEL 2021 FECHA DE EMISIÓN : 09 DE NOVIEMBRE DEL 2021

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (FRIABLES) EN AGREGADOS MTC E212:2016

CODIGO DE TRABAJO P-178-2021

DATOS DE LA MUESTRA CANTERA DE SAN MARTIN, UBICADA EN VITARTE

2.1

MUESTRA M-2, N°16

FECHA DE ENSAYO 21 DE SETIEMBRE DEL 2021

P = [(M - R) / M] x 100

CONDICIONES AMBIENTALES:

RESULTADO:

19,9 °C HUMEDAD RELATIVA 41%

MUESTREO E IDENTIFICACION REALIZADOS POR EL PETICIONARIO

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

HC-AC-030 REV.02 FECHA: 2021/09/11

JEFE DE LABORATORIO

Email: grupocentauroingenieros@gmail.com Web: http://centauroingenieros.com/ Facebook: centauro ingenieros Av. Mariscal Castilla Nº 3950 - El Tambo - Huancayo - Junin (Frente a la 1ra Puerta de la U.N.C.P.) Telf. 064 - 253727 Cei, 992875860 - 964483588 -

Para verificar la autenticidad del Informe puede comunicarse a: grupocentauroingenieros@gmail.com

ERRIVIGIOS DE:

ENSAYOS PARA MECÁNICA DE SUELOS

ENSAYOS EN ARREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS

ENSAYOS EN ROCAS

ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOFÍCINICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE SUELOS Y CONCRETO

INFORME

EXPEDIENTE N°

: 1591-2021-AC

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS PETICIONARIO

ATENCIÓN

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DE PETICIONARIO : irreir 2508@gr

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL

OBRA CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN FECHA DE EMISIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021

: 24 DE SEPTIEMBRE DEL 2021

INFORME DE ENSAYO (PÁG. 01 DE 01)

Código : MTC E 207-2016

Tibulo

: AGREGADOS: Método de ensayo normalizado para la determinación de la resistencia: a la degradación de agregados

gruesos de tamaño grande por abrasión e impacto en la máquina de Los Angeles

CÓDIGO DE ORDEN DE TRABAJO:

P-178-2021

CÓDIGO DE MUESTRA:

M-1

CANTERA: CANTERA GLORIA, UBICADA EN VITARTE

FECHA DE INICIO DE ENSAYO: 2021-09-21

FECHA DE CULMINACIÓN DE ENSAYO:

2021-09-21

GERENCIA TECNIC

ENSAYO DE ABRASION DE LOS ANGELES

Gradación		В
No. de esferas		11
No. de revoluciones		500
Peso de muestra inicial	(g)	5004
Peso que pasa tamiz Nº 12	(g)	573
DESGASTE	%	11,45

DATOS SOBRE: GRADACIÓN, CARGA ABRASTVA Y REVOLUCIONES

	TAMAÑOS			MASA Y	GRANULOME	TRIA DE LA M	UESTRA
PA	SANTE	RETI	NIDO	A	В	C	D
mm	in	mm	in				
76.1	3	64	2 1/2				
64	2 1/2	50.8	2		1.89		
50.8	2	38.1	1 1/2				
38.1	1 1/2	25.4	1	1250			
25.4	1	19	34	1250			
19	3/4	12.7	1/2	1250	2500		
12.7	1/2	9.5	3/8	1250	2500		
9.5	3/8	6.3	1/4			2500	
6.3	1/4	4.8	No 4			2500	
4.8	No 4	2.4	No 8	- A			5000
NÚMERO DE E	SFERAS	20.000		12	11	8	K
NÚMERO DE R	EVOLUCIONES			500	500	500	500

CONDICIONES AMBIENTALES

Humedad relative

: 36%

MUESTREO E IDENTIFICACIÓN REALIZADO POR EL PETICIONARIO.

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIPSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TÓTAUD

LOS RESULTADOS DE LOS ENSÁVOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE COMPORAMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ LAS CUALLES FUERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAYMENTOS.

HC-AC-001 REV.02 FECHA: 2021/09/11

SERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE SUELOS

- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS - PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

- ESTUDIOS GEOTÉCNICOS

CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS **CONCRETO Y ASFALTO**

INFORME

EXPEDIENTE Nº : 1573-2021-AC

1 BACH, MIGUEL IRMAR ALEJANDRO PALACIOS PETICIONARIO

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DE PETICIONARIO : irmar.2508@gmail.com

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS OBRA

DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

66 %

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

1 15 DE SEPTIEMBRE DEL 2021 FECHA DE RECEPCIÓN 24 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN

CÓDIGO NTP 339.146:2000

TİTULO SUELOS. Método de prueba estándar para el valor equivalente de arena de suelos y agregado fino

COMITÉ

TÍTULO (EN) Soils. Stndard test method for sand equivalen value of soils and fine aggregate

EQUIVALENTE DE ARENA

CÓDIGO DE TRABAJO P-178-2021

MUESTRA

CANTERA DE SAN MARTIN, UBICADA EN VITARTE UBICACIÓN

EQUIVALENTE DE ARENA :

> Equivalente $\frac{Equivalente}{de \ arena\ (EA)} = \frac{lectura\ de\ arena}{lectura\ de\ arcilla} \times 100$

CONDICIONES AMBIENTALES

2021-09-25 Temperatura Ambiente Humedad relativa 38%

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE: LA REPRODUCCION SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

HC-AC-016 REV.02 FECHA: 2021/09/11

ENSAYOS PARA MECÁNICA DE SUELOS
 ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
 ENSAYOS EN ROCAS

- ENBAYOS QUÍMICOS EN SUELOS Y AGUA

- ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

- PERFORACIONES Y EXTRACCIÓN DIAMANTINAS - ESTUDIOS GEOTÉCNICOS

CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES DE CENTAURO INGENIEROS **LABORATORIO DE SUELOS**

INFORME DE ENSAYO

IMPUREZAS ORGÁNICAS MTC E 213-2016

EXPEDIENTE Nº : 1581-2021-AC

PETICIONARIO BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DE PETICIONARIO

: irmar.2508@gmail.com

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 PROYECTO

: KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN : 24 DE SEPTIEMBRE DEL 2021

INFORME DE ENSAYO (PÁG. 01 DE 01)

MTC E 213 - 2016

CÓDIGO DE TRABAJO : P-178-2021

MUESTRA : M-2

UBICACIÓN : CANTERA DE SAN MARTIN, UBICADA EN VITARTE

COLOR GARDNER ESTÁNDAR Nº	PLACA ORGANICA Nº
5	1
8	2
11	3 (estándar)
13	4
16	5

RESULTADO EN LA PLACA ORGÁNICA Nº

HC-AC-031 REV.02 FECHA: 2021/09/11

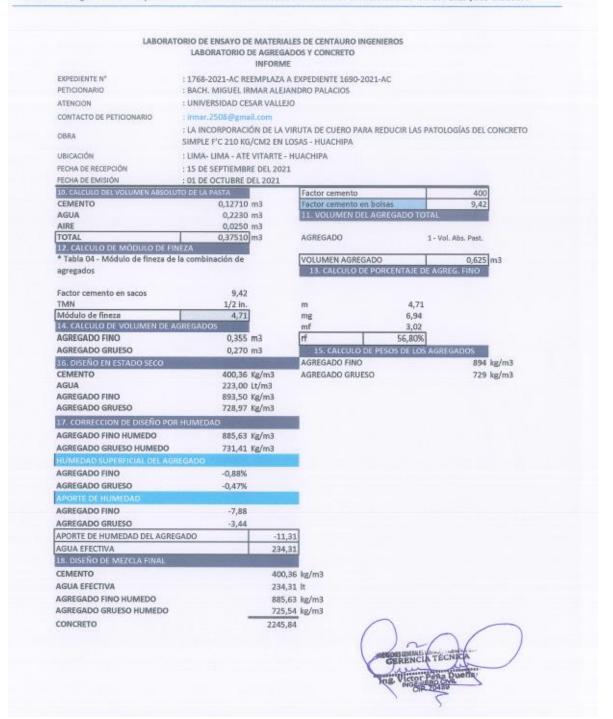
CONDICIONES AMBIENTALES

Fecha de ensayo Temperatura Ambiente : 2021-09-22 ± 21,8 °C Humedad relativa 1 35 %

MUESTREO E IDENTIFICACION REALIZADOS POR EL PETICIONARIO.

EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SBA EN SU TOTALIDAD LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS CONO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

1


SERVICIOS DE:

- ENSAYOS PARA MECÂNICA DE SUFLOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENSAYOS EN ROCAS
- ENSAYOS QUÍMICOS EN SUELOS Y AGUA - ENSAYOS SPT, DPL, DPHS
- ESTUDIOS Y ENSAYOS GEOFÍSICOS
- PERFORACIONES Y EXTRACCIÓN DIAMANTINAS ESTUDIOS GEOTÉCNICOS
- CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS 150 SERVICIOS DE: - ENSAYOS PARA MECÁNICA DE SUELOS - ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO PERFORACIONES Y EXTRACCIÓN DIAMANTINAS ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS ESTUDIOS GEOTÉCNICOS CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME EXPEDIENTE N* : 1768-2021-AC REEMPLAZA A EXPEDIENTE 1690-2021-AC PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS ATENCION : UNIVERSIDAD CESAR VALLEJO CONTACTO DE PETICIONARIO : irmar.2508@gmail.com : LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO OBRA SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA UBICACIÓN: : LIMA- LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN 01 DE OCTUBRE DEL 2021 VOLUMEN CEMENTO 40,036 AGUA EFECTIVA 23,431 AGREGADO FINO HUMEDO 88.563 AGREGADO GRUESO HUMEDO 72,554 CONCRETO 224,584 VOLUMEN DEL CONCRETO MEZCLADO CEMENTO 400,36 AGUA 234,31 AGREGADO FINO 885,63 AGREGADO GRUESO 725,54 PESO ESPECIFICO 2245,84 RA/C 0,59 PROPORCION EN VOLUMEN CEMENTO 42,5 kg/saco AGUA 24,87 24,87 kg/saco AGREGADO FINO 2,21 94,01 kg/saco AGREGADO GRUESO 1,81 77,02 kg/saco FINO GRUESO PESO UNITARIO SUELTO 1633,80 1693.17 AGREGADO FINO 46,28 Kg/pie3 AGREGADO GRUESO 47,97 Kg/pie3 19. PROPORCION EN PESO MATERIALES SIN CORREGIR CEMENTO A.F. A.G AGUA 400 894 729 223 400 400 400 9,4 1,00 2,23 1.82 23,67 MATERIALES CORREGIDOS CEMENTO A.F. A.G AGUA 726 234 400 400 400 9,4 1,00 2,21 24,87 * RELACION AGUA CEMENTO DE DISEÑO 0,56 * RELACION AGUA CEMENTO EFECTIVA (OBRA) GERENCIA TECHICA 0.59

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS ENRAYCIS DE: ENBAYOS PARA MECÂNICA DE SUELOS ENBAYOS PARA MECÂNICA DE SUELOS ENBAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENBAYOS EN ROCAS ENBAYOS GUÍMICOS EN SUELOS Y AGUA ENBAYOS SIPT, DPL, DPHS EXTRACCIÓN Y YRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS

LABORATORIO DE AGREGADOS Y CONCRETO

INFORME

EXPEDIENTE N°

: 1768-2021-AC REEMPLAZA A EXPEDIENTE 1690-2021-AC : BACH. MIGUEL IRMAR ALEJANDRO PALACIOS

PETICIONARIO

ATENCION

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DE PETICIONARIO : irmar.2508@gmail.com

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN : 01 DE OCTUBRE DEL 2021

20: PROPORCION EN VOLUMEN	

CEMENTO	A.F.	A.G	AGUA
42,5	94,0	77,0	24,9
42,5	46,3	48,0	1,0
1,00	2,03	1,61	24,87

21. PESOS POR TANDA DE UNA BOLSA DE CEMENTO

CEMENTO	42,50 Kg/bolsa
AGUA	24,87 Lt/bolsa
AGREGADO FINO HUMEDO	94,01 Kg/bolsa
AGREGADO GRUESO HUMEDO	77,02 Kg/bolsa

- SERVICIOS DE:
 ENSAYOS PARA MECÁNICA DE SUELOS
 ENSAYOS EN AGREGADOS PARA CONCRETO Y ASPALTO
- ENSAYOS EN ROCAS
 ENSAYOS QUÍMICOS EN SUELOS Y AGUA
 ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS
- PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
- ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

ISO

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME

EXPEDIENTE N°

: 1686-2021-AC

PETICIONARIO

BACH, MIGUEL IRMAR ALEJANDRO PALACIOS : UNIVERSIDAD CESAR VALLEIO

ATENCION CONTACTO DE PETICIONARIO

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE P'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 15 DE SEPTIEMBRE DEL 2021 28 DE SEPTIEMBRE DEL 2021

CÓDIGO DE TRABAJO: P-178-2021

Tipo de agregado: AGREGADO FINO

Norma: MTC £ 205

Procedencia: CANTERA DE SAN MARTIN, UBICADA EN VITARTE

Muestra: M-2

DESCRIPCION	CANTIDAD
PESO DE LA FIOLA	1529
PESO DE LA ARENA SUPERFICIALMENTE SECA + PESO DE LA FIOLA	566
PESO DE LA ARENA SUPERFICIALMENTE SECA + PESO DE LA FIOLA+PESO DEL AGUA	964,91
PESO DEL AGUA	296.91
PESO DE LA ARENA SECA	490.50
VOLUMEN DE LA FIOLA	500.00
PESO ESPECIFICO DE LA MASA	2.43
PESO ESPECÍFICO DE MASA SATURADA SUPERFICIALMENTE SECO	2.48
PESO ESPECIFICO APARENTE	2,55
PORCENTALE DE ABSORCION	1.94%

PROPIEDADES FISICAS DE LOS AGREGADOS

Tipo de agregado: AGREGADO GRUESO

Norma: MTC E 206

Procedencia: CANTERA GLORIA, UBICADA EN VITARTE

Muestra: M-1

DESCRIPCION	CANTIDAD
PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECA	5020.7
PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECA DENTRO DEL AGUA + CANASTILLA	4295.9
PESO DE LA CANASTILLA DENTRO DEL AGUA	1120
PESO DE LA MUESTRA SATURADA DENTRO DEL AGUA	3175.9
PESO DE LA MUESTRA SECA	4980.5
PESO ESPECIFICO DE MASA	2.70
PESO ESPECIFICO DE MASA SATURADA SUPERFICIALMENTE SECO	2.72
PESO ESPECIFICO APARENTE	2.76
PORCENTAJE DE ABSORCION	0.81%

ENSAYO	M-2	M-2	PROMEDIO
PESO ESPECIFICO DE MASA	2,60	2,43	2.52
PESO ESPECIFICO DE MASA SATURADA SUPERFICIALMENTE SECO	2.65	2.48	2.57
PESO ESPECIFICO APARENTE	2.74	2.55	2.65
PORCENTAJE DE ABSORCION	1.92%	1.94%	1.93%

TEMPERATURA AMBIENTE

HUMEDAD RELATIVA. AREA DONDE SE REALIZO EL ENSAYO

: SUELOS III Y CONCRETO

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO.

LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA PUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y COMO SE RECIBIÓ.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN. EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIASE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESILITADOS DE LOS ENSAYOS NO DEBEN SEN UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD OSÍN IN DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CONSERVORDEM IND. REPOSICIONADAS FOR EL CLEHER AL LABORATORIO DE RECONICIO ES SULLOS, CONCRETO Y MUNICIPIOS.

HC-AC-008 REV.02 FECHA: 2021/09/11

- SERVICIOS DE:
 ENSAYOS PARA MECÂNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y AGUA

- ENSAYOS SPT. DPL. DPHS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME

EXPEDIENTE N° PETICIONARIO

: 1686-2021-AC

ATENCION CONTACTO DE PETICIONARIO BACH, MIGUEL IRMAR ALEJANDRO PALACIOS : UNIVERSIDAD CESAR VALLEIO

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F°C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021. FECHA DE EMISIÓN : 28 DE SEPTIEMBRE DEL 2021

PROPIEDADES FISICAS DE LOS AGREGADO	ADO5
-------------------------------------	------

CÓDIGO DE TRABAJO: P-178-2021

Tipo de agregado: AGREGADO FINO

Norma: MTC E 205

Procedencia: CANTERA DE SAN MARTIN, UBICADA EN VITARTE

Muestra: M-2

DESCRIPCION	CANTIDAD
PESO DE LA FIOLA	152.9
PESO DE LA ARENA SUPERFICIALMENTE SECA + PESO DE LA PIOLA	652.9
PESO DE LA ARENA SUPERFICIALMENTE SECA + PESO DE LA FIGLA+PESO DEL ABUA	1529 652.9 964.39
PESO DEL AGUA	311.49
PILSO DE LA ARENA SECA	490.59 500.00 2.60
VOLUMEN DE LA FIOLA	500.00
PESO ESPECIFICO DE LA MASA	2.60
PESO ESPECIFICO DE MASA SATURADA SUPERFICIALMENTE SECO	2,65
PESO ESPECIFICO APARENTE	2.65 2.74
PORCENTAJE DE ABSORCION	1.92%

PROPIEDADES PISICAS DE LOS AGREGADOS

Tipo de agregado: AGREGADO GRUESO

PESO DE LA MUESTRA SATURADA SUPER PESO DE LA CANASTILLA DENTRO DEL AI PESO DE LA MUESTRA SECA PESO ESPECIFICO DE MASA PESO ESPECIFICO DE MASA SATURADA SI Norma: MTC E 206 Muestra: M-1

Procedencia: CANTERA GLORIA, UBICADA EN VITARTE

DESCRIPCION	CANTIDAD
RFICIALMENTE SECA	5021
RFICIALMENTE SECA DENTRO DEL AGUA + CANASTILLA	4296
GUA	1119
RO DEL AGUA	3177
	4981
	2.70
HAPPER LILLER DE COOK	500

ENSAYO M-1 M-1 PROMEDI								
PESO ESPECIFICO DE MASA	2.70	2.70	2.70					
PESO ESPECIFICO DE MASA SATURADA SUPERFICUALMENTE SECO	2.72	2.72	2.72					
PESO ESPECIFICO APARENTE	2.76	2.76	2.76					
PORCENTAJE DE ARSONCION	0.80%	0.81%	0.81%					

CONDICIONES AMBIENTALES:

TEMPERATURA AMBIENTE. : 14,1 %

AREA DONDE SE REALIZO EL BNSAYO : SUELOS III Y CONCRETO

OBSERVACIÓN: EN OBRA CORRESTR POR HUMEDAD.

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIDNARIO.

LOS RESULTADOS DEL ENSATO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y CONO SE RECIBIÓ.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN,

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA BERECOLICIÓN SEA EN SU TOTALIDADO.

LOS RESULTADOS DE LOS ENSAVOS NO DEBEN SEX UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DERRODUCIOS O COMO CERTIFICADO DEL
SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAVOS REALIZADOS SOBRE LAS PILESTRAS PROPUNCIONADES POR
B. CLIENTE AL LABORATORIO DE RECANICA DE SUBLOS, CONCRETO Y PANUMENTOS.

HC-AC-008 REV.02 FECHA: 2021/09/11

GERENCIA TECNICA

SERVICIOS DE:

- ENSAYOS PARA MECÂNICA DE SUELOS

- ENSAYOS EN AGRECIADOS PARA CONCRETO Y ASPALTO

ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL, DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTITU

150

CENTAURO

LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS

LABORATORIO DE AGREGADOS Y CONCRETO

INFORME

EXPEDIENTE Nº : 1767-2021-AC REEMPLAZA A EXPEDIENTE 1687-2021-AC PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION : UNIVERSIDAD CESAR VALLEIO

CONTACTO DE PETICIONARIO

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE PC

210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN : 01 DE OCTUBRE DEL 2021

PROPIEDADES FISICAS DE LOS AGREGADOS

Tipo de agregado: AGREGADO GRUESO

Procedencia: CANTERA GLORIA, UBICADA EN VITARTE

FECHA DE INICIO DE ENSAYO:

FECHA DE CULMINACIÓN DE ENSAYO:

Muestra: M-1

22/09/2021

I. PESO UNITARIO SUELTO - MÉTODO C

DESCRIPCIÓN	1	2	3
PESO DE LA MUESTRA SUELTA + RECIPIENTE (kg)	23,429	23,259	23,218
PESO DE RECIPIENTE (kg)	4,49	4,49	4,49
PESO DE LA MUESTRA SUELTA (kg)	18,94	18,770	18,729
FACTOR DE CALIBRACIÓN DEL RECIPIENTE	90	90	90
PESO APARENTE SUELTO (kg/m3)	1705	1689	1686
PESO UNITARIO PROMEDIO	1693		

II. PESO APARENTE COMPACTADO - MÉTODO A

DESCRIPCIÓN	1	2	3	
PESO DE LA MUESTRA COMPACTADA+ RECIPIENTE (kg)	25,272	25,442	25,370	
PESO DE RECIPIENTE (kg)	4,489	4,489	4,489	
PESO DE LA MUESTRA COMPACTADA (kg)	20,783	20,953	20,881	
FACTOR DE CALIBRACIÓN DEL RECIPIENTE	90	90	90	
PESO APARENTE COMPACTADO (kg/cm3)	1870	1886	1879	
PESO UNITARIO PROMEDIO	1879	Total -		

BESULTADOS FINALES	CANTIDAD	UMDAD
PESO UNITARIO SUELTO SECO	1693	kg/m3
PESO UNITARIO COMPACTADO SECO	1879	kg/m3

CONDICIONES AMBIENTALES:

TEMPERATURA AMBIENTE : 15 °C

: 47% HUMEDAD BELATIVA ÁREA DONDE SE REALIZO EL ENSAYO

: SUELOS III Y CONCRETO

OBSERVACIÓN: EN OBRA CORREGIR POR HUMEDAD.

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO.

LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y COMO SE RECIBIÓ.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, USICACIÓN,

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCERSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD.

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON MORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SULLOS, CONCRETO N-MANIMENTOS.

HC-AC-008 REV.02 FECHA: 2021/09/11

HIBICACIÓN

ERRYCOS DE:

ENBAYOS PARA MECÂNICA DE SUELOS

ENBAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
ENSAYOS EN ROCAS

ENSAYOS CUÍMICOS EN SUELOS Y AGUA

ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Muestra: M-2

LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME

EXPEDIENTE Nº : 1767-2021-AC REEMPLAZA A EXPEDIENTE 1687-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION. 1 UNIVERSIDAD CESAR VALLEJO

CONTACTO DE PETICIONARIO

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO

SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021. FECHA DE EMISIÓN : 01 DE OCTUBRE DEL 2021

PROPIEDADES FÍSICAS DE LOS AGREGADOS

Procedencia: CANTERA DE SAN MARTIN, UBICADA EN VITARTE

FECHA DE INICIO DE ENSAYO: 21/09/2021 FECHA DE CULMINACIÓN DE ENSAYO: 22/09/2021

I. PESO UNITARIO SUELTO - MÉTODO C

Tipo de agregado: AGREGADO FINO

DESCRIPCIÓN	1	2	3	
PESO DE LA MUESTRA SUELTA + RECIPIENTE (kg)	6,251	6,301	6,342	
PESO DE RECIPIENTE (kg)	1,63	1,63	1,63	
PESO DE LA MUESTRA SUELTA (kg)	4,621	4,671	4,712	
FACTOR DE CALIBRACIÓN DEL RECIPIENTE	350	350	350	
PESO APARENTE SUELTO (kg/cm3)	1617	1635	1649	
PESO UNITARIO PROMEDIO	1634			

II. PESO APARENTE COMPACTADO - MÉTODO A

DESCRIPCIÓN	1	2	3	
PESO DE LA MUESTRA COMPACTADA+ RECIPIENTE (kg)	6,589	6,681	6,594	
PESO DE RECIPIENTE (kg)	1,63	1,63	1,63	
PESO DE LA MUESTRA COMPACTADA (kg)	4,959	5,051	4,964	
FACTOR DE CALIBRACIÓN DEL RECIPIENTE	350	350	350	
PESO APARENTE COMPACTADO (kg/cm3)	1736	1768	1737	
PESO UNITARIO PROMEDIO	1747			

RESULTATIOS FINALES	CANTIDAD	UNIDAD
PESO UNITARIO SUELTO SECO	1634	kg/m3
PESO UNITARIO COMPACTADO SECO	1747	lor/m3

CONDICIONES AMBIENTALES:

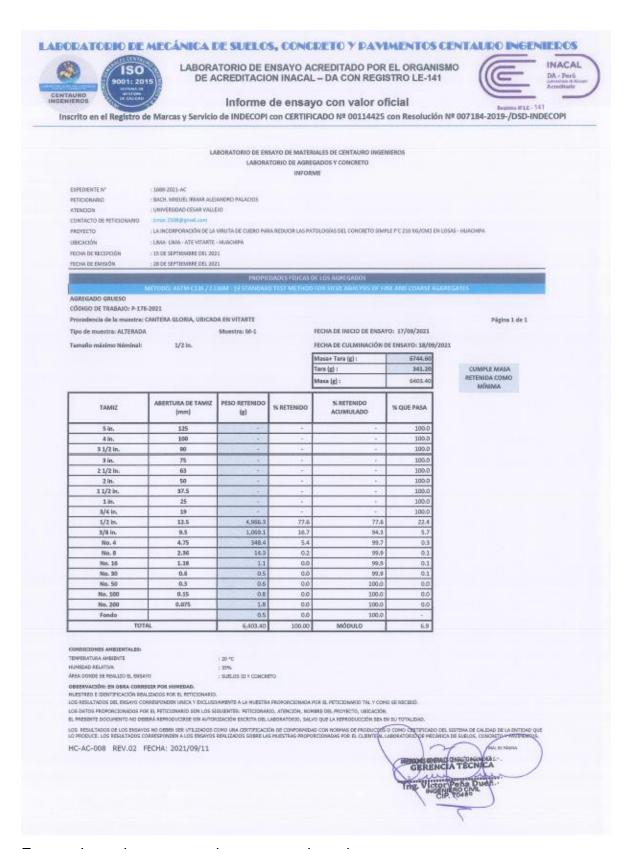
TEMPERATURA AMBIENTE

HUMEDAD RELATIVA

ÁREA DONDE SE REALIZO EL ENSAYO : SUELOS (III Y CONCRETO

OBSERVACIÓN: EN OBRA CORREGIR POR HUMEDAD.

HUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO.


LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA HUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y CONO SE

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTIRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS.

HC-AC-008 REV.02 FECHA: 2021/09/11

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYO DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME

EXPEDIENTE N° : 1689-2021-AC

PETICIONATIO : BACH, WIRUS, IRWAR ALEJANDRO PALACIOS

ATTENCION : UNIVERSIDAD CESAR VALLEIO CONTACTO DE PETICIONABIO

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE PO 230 KG/OM2 EN LOSAS - HUACHPA

UNICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHINA FECHA DE RECEPCIÓN

FECHA DE BMISIÓN 28 DE SEPTIEMBRE DEL 2021

AGREGADO FINO

CÓDIGO DE TRABAJO: P-178-2021

Procedenda de la muestra: CANTERA DE SAN MARTIN, UBICADA EN VITARTE

Tipo de muestra: ALTERADA FECHA DE INICIO DE ENSAYO: 17/09/2021 Muestra: M-2

Tamaño máximo Nómisal: FECHA DE CULMINACIÓN DE ENSAYO: 18/09/2021 No. 4

Masa+ Tara (g) :	2023.8
Tare (g) :	92.1
Mass (g):	1931.70

CUMPLE MASA RETENIDA COMO

Página 1 de 1

TAMIZ	ABERTURA DE TAMIZ (mm)	PESO RETENIDO (g)	% RETENIDO	% RETENIDO ACUMULADO	% QUE PASA
5 in.	125			-	100.0
4 in.	100		47		100.0
3 1/2 in.	90	7	7.7	+ 1	100.0
3 In.	75	14	4	-	100.0
2 1/2 in.	63		27		100.0
2 in.	50		+ 1	-	100.0
1 1/2 in.	37.5	(*)	- 4	W	100.0
I in.	25				100.0
3/4 in.	19	(4)	(±1)	-	100.0
1/2 in.	12.5	1.0	+	(4)	100.0
3/8 In.	9.5	3 95		· ·	100.0
No. 4	4.75	30.3	1.6	1.6	98.4
No. 8	2.36	326.0	16.9	18.5	81.5
No. 16	1.18	510.3	26.4	44.9	55.1
No. 30	0.6	413.6	21.4	96.3	33.7
No. 50	0.3	255.8	13.2	79.5	20.5
No. 100	0.15	217.0	11.2	90.8	9.2
No. 200	0.075	129.9	6.7	97.5	2.5
Fondo		48.2	2.5	100.0	
T	OTAL	1,931.70	100.00	MÓDULO	3.0

CONDUCTORES APRIENTALES

TEMPERATURA APRIEMTE 111,2 10

HUPEDAD RELATIVA AREA DONDE SE REALIZO EL ENSAVO SUBLOS DE Y CONCRETO

OBSERVACIÓN: EN OBRA CORRESOR POR HUMEDAD

MUSTINO E IDENTIFICACIÓN REALIZADOS FOR EL PETICIONARIO.
LOS RENATADOS DE, BYRANO CORRESPONDEN UNICA Y ENCLUSIVAMENTE A LA PUESTRA PROPORCIONADA POR EL PETICIONADO TAL Y COMO SE RECUBIÓ.

LOS DATOS PROFORCIONADOS FOR EL PETICIONARIO SON LOS SIGURBITES: PETICIONARIO, ATENCIÓN, HOMBRE DEL PROVIETO, LIBIDACIÓN, EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIESE SIN NUTORIZACIÓN BIORITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN DEL EN SU TOTALIDAD.

LOS REBULTADOS DE LOS ERIGAYOS NO DEREN SER UTILIZADOS COMO UMA CENTRICACIÓN DE CONPORMIDAD CON WORMAS DE PRODUCT LOS REPULTADOS CORRESPONDEN A LOS ERIGAYOS RISA IZADOS SORRE LAS INJESTRAS PROPOSICIONADAS POR EL CLERITE AL LABORATOS

HC-AC-008 REV.02 FECHA: 2021/09/11

SERVICIOS DE: - ENSAYOS PARA MECÁNICA DE SUELOS

ENBAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y AGUA

ENBAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

LABORATORIO DE SUELOS CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS LABORATORIO DE SUELOS

INFORME DE ENSAYO

EXPEDIENTE Nº

: 1571-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO : irmar.2508@gmail.com

PROYECTO

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN DEL PROYECTO

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE MUESTREO FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 14 DE SEPTIEMBRE DEL 2021 : 15 DE SEPTIEMBRE DEL 2021 : 24 DE SEPTIEMBRE DEL 2021

NTP 339.185 (REVISADA EL 2018) AGREGADOS: Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado

FECHA DE INICIO : 17 DE SEPTIEMBRE DEL 2021

MUESTRA

: AGREGADO GRUESO EN 9 BOLSAS DE

150

CENTAURO

PLASTICO BLANCOS CON UN PESO APROXIMADO DE 30 kg

GERENDIA TECNICA

FECHA DE

CULMINACIÓN DE : 18 DE SEPTIEMBRE DEL 2022

ENSAYO

CÓDIGO DE TRABAJO	SONDEO	MUESTRA	UBICACIÓN DE LA MUESTRA	PROFUNDIDAD DE CALICATA (m)	TIPO DE MUESTRA	CONDICIÓN DE MUESTRA	PRECISIÓN	% DE HUNEDAD	MÉTODO DE SECADO
P-178-2021	CANTERA	M-1	CANTERA GLORIA, UBICADA EN VITARTE	SUPERFICIAL	AGREGADO GRUESO	ALTERADA	0.1%	0.33	110 °C ± 5

LOS RESULTADOS SE REPORTAN AL ± 1%

LA MUESTRA ENSAYADA CUMPLE CON LA MASA MÍNIMA RECOMENDADA.

LA MUESTRA ENSAYADA NO CONTIENE MAS DE UN MATERIAL.

EN LA MUESTRA ENSAYADA NO SE EXCLUYO NINGÚN MATERIAL.

CONDICIONES AMBIENTALES

TEMPERATURA AMBIENTE

: 20,2 °C

: 32%

ÁREA DONDE SE REALIZO EL ENSAYO

OBSERVACIÓN: EN OBRA CORREGIR POR HUMEDAD

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO,

LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y COMO SE RECIBIÓ.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN,

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU

LOS RESULTADOS DE LOS ENSA YOS NO DEBENSER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFIDENCIDAD CON NORMAS DE PRODUCTOS D COMPO PETERCADIO DE L'ASTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CONSESPUNDEN A LOS ENSAYOS REALIZAROS CERNA AS MUESTRAS PROPORCIONADAS FOR EL CLIENTE AL LABORATORIO DE MECANICA DE SUBLOS CONCRETO Y PAYIMENTOS.

HC-AC-032 REV.02 FECHA: 2021/09/11

ENSAYOS EN ROCAS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS PERFORACIONES Y EXTRACCIÓN DIAMANTINAS.

SERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE BUELOS

- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

ESTUDIOS GEOTÉCNICOS CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE SUELOS CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS LABORATORIO DE SUELOS INFORME DE ENSAYO

EXPEDIENTE N°

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

: 1572-2021-AC

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO : Irmar.2508@gmail.com

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL PROYECTO

CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN DEL PROYECTO : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE MUESTREO : 14 DE SEPTIEMBRE DEL 2021 FECHA DE RECEPCIÓN : 15 DE SEPTIEMBRE DEL 2021 FECHA DE EMISIÓN : 24 DE SEPTIEMBRE DEL 2021

MÉTODO:

NTP 339.185 (REVISADA EL 2018) AGREGADOS: Método de enseyo normelizado para contenido de humedad total evaporable de agregados por secado

FECHA DE INICIO : 17 DE SEPTIEMBRE DEL 2021

MUESTRA

FECHA DE CULMINACIÓN DE : 18 DE SEPTIEMBRE DEL 2022 : AGREGADO FINO EN 10 COSTALES BLANCOS

ISO

001: 2015

CENTAURO

CON UN PESO APROXIMADO DE 30 kg

CÓDIGO DE TRABAJO	SONDEO	MUESTRA	UBICACIÓN DE LA MUESTRA	PROFUNDIDAD DE CALICATA (m)	TIPO DE MUESTRA	CONDICIÓN DE MUESTRA	PRECISIÓN	% DE HUMEDAD	MÉTODO DE SECADO
P-178-2021	CANTERA	M-2	CANTERA DE SAN MARTIN, UBICADA EN VITARTE	SUPERFICIAL	AGREGADO FINO	ALTERADA	0.1%	1.05	110 °C ± 5

LOS RESULTADOS SE REPORTAN AL # 1%

LA MUESTRA ENSAYADA CUMPLE CON LA MASA MÍNIMA RECOMENDADA. LA MUESTRA ENSAYADA NO CONTIENE MAS DE UN MATERIAL.

EN LA MUESTRA ENSAYADA NO SE EXCLUYO NINGÚN MATERIAL.

CONDICIONES AMBIENTALES:

TEMPERATURA AMBIENTE : 20,2 °C HUMEDAD RELATIVA : 32%

ÁREA DONDE SE REALIZO EL ENSAYO : SUELOS III Y CONCRETO

OBSERVACIÓN: EN OBRA CORREGIR POR HUMEDAD

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO.

LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y CONO SE RECIBIÓ.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU

LOS RESULTADOS DE LOS ENSAYOS NO DEMENSER UTILIZADOS CONO UNA CERTIFICACIÓN DE CONFORMIDAD CON NOSMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE LOS RESULTADOS CORRESPONDEN A LOS ENSA YOS REALIZADOS CURREDAS MUSTRAS PROPORCIONADAS FOR EL CLIENTE AL LABORATORIO DE NECÁNICA DE SULLOS, CONCRETO Y PAVINDROS.

HC-AC-032 REV.02 FECHA: 2021/09/11

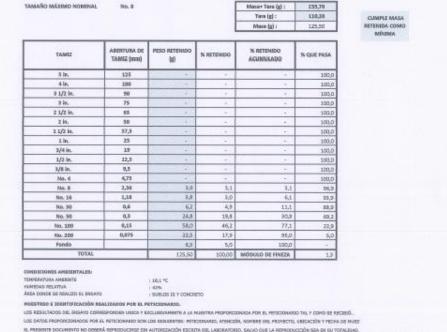
GERENCIA TECNICA GERENCIA TECNICA VICTOR FERRA DUEF INCAMENO COM.

LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS ISO SERVICIOS DE: - ENSAYOS PARA MECÁNICA DE SUELOS - ESTUDIOS Y ENSAYOS GEOFÍSICOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO-ENSAYOS EN MOCAS ENSAYOS EN MOCAS ENSAYOS SUÍNICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS PERFORACIONES Y EXTRACCIÓN DIAMANTINAS ESTUDIOS GEOTÉCNICOS CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI LABORATORIO DE DASAYO DE MATERIALES DE CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS EXPEDIENTS NO 11899-0003-00 BACK, MIGUEL IRMAR ALEMADRO PALACIOS PETICIONANIO UNIVERSIDAD CESAR VALLEJO CONTACTO DE PETICIONARIO PROVECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONORETO SIMPLE PO 210 REJORAS EN LISSAS - HUNCHPA FECHA DE MUESTREO 14 DE SEPTIEMBRE DEL 2001 FROM DE RECEPCIÓN : 15 DE SEPTEMBRE DEL 2001. RECHA DE EMISIÓN 26 DE SEPTEMBRE DEL 2001

PROPRIORIES HISTORY DE LOS ASPESADOS

AGREGADO RNO

:AD-1 (MEUTA DE CUERO)


PROCEDENCIA DE LA MUESTRA : L'VIRUTA DE CUERO, ADICIONAR A LA CANTIDAD DE CEMENTO

FECHA DE INICIO DE ENSAYO : 23 DE SEPTEMBRE DEL 2021 FECHA DE CUIMINACIÓN DE : 23 DE SEPTEMBRE DEL 2021

CODHO DE TRABAJO: P-178-2021

THO DE ASSESADO

CODIGO DE MUESTRA.

LIGO RIBRATACIDO DE LOS BRIADOS NO DEBEM DES VITULIDADOS COMO UNA CERTIFICACIÓN DE COMPONIDAD CON ROPPAS DE PRODUCTOS O COMO CERTIFICADO DEL EXITURA DE CA.
DE LA RITURA QUE LO RECUENT. LOS REPUTADOS CORPERIORDEM A LOS EMSAVOS FEALIZADOS SOBRE LAS HUESTRAS PROPOSICIAMADES POR EL CUENTE AL LABORATORIO DE MOÇÃO
OS ESENDES, CONSESTO Y PARÁMENTOS.

GERENCIA TECNICA

Fuente: Inversiones generales centauro ingenieros

HC-AC-019 REV.02 FECHA: 2021/09/11

SERVICIOS DE:

ENSAYOS PARA MECÁNICA DE SUELOS

ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y AQUA ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS - PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

ESTUDIOS GEOTÉCINICOS CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE SUELOS CONCRETO Y PAVIMENTOS CENTAURO INGENIEROS LABORATORIO DE SUELOS INFORME DE ENSAYO

EXPEDIENTE Nº

: 1693-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO : irmar.2508@gmail.com

PROYECTO

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL

CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN DEL PROYECTO

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE MUESTREO

: 14 DE SEPTIEMBRE DEL 2021 : 15 DE SEPTIEMBRE DEL 2021

FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 28 DE SEPTIEMBRE DEL 2021

MÉTODO:

NTP 339.185 (REVISADA EL 2018) AGREGADOS: Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado

FECHA DE INICIO

: 23 DE SEPTIEMBRE DEL 2021

MUESTRA

DE ENSAYO FECHA DE

: VIRUTA DE CUERO EN UN COSTAL DE COLOR NARANJA

GERENCIA TECN

150

9001: 201

CENTAURO

ENSAVO

CULMINACIÓN DE : 23 DE SEPTIEMBRE DEL 2022

CÓDIGO DE TRABAJO	SONDEO	MUESTRA	UBICACIÓN DE LA MUESTRA	PROFUNDIDAD DE CALICATA (m)	TIPO DE MUESTRA	CONDICIÓN DE HUESTRA	PRECISIÓN	% DE HUMEDAD	MÉTODO DE SECADO
P-178-2021		AD-1	VIRUTA DE CUERO		AGREGADO FINO	ALTERADA	0.1%	3.5	110 °C ± 5

LOS RESULTADOS SE REPORTAN AL ± 1%

LA MUESTRA ENSAYADA CUMPLE CON LA MASA MÍNIMA RECOMENDADA.

LA MUESTRA ENSAYADA NO CONTIENE MAS DE UN MATERIAL. EN LA MUESTRA ENSAYADA NO SE EXCLUYO NINGÚN MATERIAL

CONDICIONES AMBIENTALES:

HUMEDAD RELATIVA

± 18.2 °C : 35%

ÁREA DONDE SE REALIZO EL ENSAYO

: SUELOS III Y CONCRETO

MUESTREO E IDENTIFICACIÓN REALIZADOS POR EL PETICIONARIO.

LOS RESULTADOS DEL ENSAYO CORRESPONDEN UNICA Y EXCLUSIVAMENTE A LA MUESTRA PROPORCIONADA POR EL PETICIONARIO TAL Y CÓMO SE RECIBIÓ.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU

LOS RESULTADOS DELOS BYSA YOS NO DERENSER UTILIZADOS CONDUNA CERTIBICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIBICADO DEL SISTEMA DE CALIDAD DE LA ENTEMA QUE LO PRODUCE LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SORRE LAS MUESTEAS PROPORCIONADAS POR EL CUENTE AL LADORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVINENTOS.

HC-AC-032 REV.02 FECHA: 2021/09/11

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

EXPEDIENTE Nº : 2165-2021-AC PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO

PROYECTO : LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F°C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN : 23 DE OCTUBRE DEL 2021

FECHA DE EMISIÓN : 26 DE OCTUBRE DEL 2021

MUESTRA	CÓDISO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTHRA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOR
Cel-1	E-330-2021	BLABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	24/10/2021	3	102.31	204.51	8220.22	198.20	25.2	252.3	210	120%	TIPO 2	NO
Cel-2	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	24/10/2021	1	101.54	204.17	8100.94	218.42	27.8	270.1	250	122%	TIPO 3	No
Cel-3	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CLINDRICAS	21/10/2021	24/10/2021	3	103.05	204.95	8339,57	197.19	25.1	251.0	210	120%	TIPO 3	NO
Cel-4	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	24/10/2021	3	103.66	203.77	8439,41	203.01	25.8	258.4	210	123%	TIPO 3	NO

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO.

FECHA DE INICIO DEL ENSAYO FECHA DE CULMINACIÓN DEL ENSAYO : 24/20/2021 CONDICIONES AMBIENTALES: TEMPERATURA AMBIENTE HUMEDAD RELATIVA ÁREA DONDE SE REALIZÓ EL ENSAYO : AREA DE ENSAYOS ESPECIALES

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO, ESTRUCTURA DE PROCEDENCIA, PECHA DE MOLDEO, FECHA DE ROTURA. EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO DUE INDICÓ EL CUENTE

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CLIALES FLERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUBLOS, CONCRETO Y PAVIMENTOS.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

: Cenillado

Fin de Pázina

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

INACAL DA - Perú

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

	LARGERIORIO DE ENSATO DE MATERIALES CENTAURO INGENIER
	LABORATORIO DE AGREGADOS Y CONCRETO
	INFORME DE RESULTADOS

XPEDIENTE N°	: 2187-2021-AC
CTTCTONADTO	DAGIL MARKET

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS : UNIVERSIDAD CESAR VALLEJO

ATENCIÓN

CONTACTO DEL PETICIONARIO

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE FO 210 KG/CM2 EN LOSAS - HUACHIPA

: LIMA- LIMA - ATE VITARTE - HUACHIPA

<u>торо;</u> м сээ/сээ	M-20: Estandard Test Method	for Compressive Strength of Cylindrical Concrete	Specimens.													
NUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
Cel-5	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	28/10/2021	7	99.13	203.93	7717.92	215.72	27.5	274.6	210	131%	TIPO 1	NO
Cel-6	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	28/10/2021	,	99.12	203.80	7716.36	244,11	31.1	310.8	210	145%	TIPO 3	NO
Cel-7	E-330-2021	ELABORACIÓN DE ESPECIMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	28/10/2021	2	99.85	205.21	7830.44	228.12	29.0	290.4	210	138%	TIPO 3	NO
Cel-8	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-MUESTRA PATRON	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	100.59	205.29	7946.93	227.62	29.0	289.8	210	138%	TIPO 3	NO
the later was a dear										744						
PO 2 PO 3 PO 4 PO 5 PO 6	Conos razonablemente bien f Cono bien formado sobre otra Grietas verticales columnares Frectura diagonal sin grietas e	n las bases, golpear con martillo para diferencia: s (superior o inferior) ocurren comunmente con l	vés de las capas, cono no bien d	efinido en la otra	base.					100	LIW.	I W			TANK	HCY
01 02 03 04 05 06 P	Conos razonablemente blen i Cono blen formado sobre otro Ginitas verticales columnares. Frectures de lados en las base Similar al tipo 5 pero el termi- Cortado Copillado Capeado Amohadillas de neopreno	is base, desplaiamiento de grietas verticales o tra en ambas bases. In las bases, golphar con martillo para diferencias (s'uparior o inferior) ocurren comunmente con l al dei cilindro es a centuado.	vés de las capas, cono no bien d r del tipo 1. as capas de embonado.			DAD Y CAL	IDAD DE CONCR	ETO.							1903	RCY

HUMEDAD RELATIVA ÁREA DONDE SE REALIZÓ EL ENSAYO

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO.

LOS DATIOS PROPUNCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO, ESTRUCTURA DE PROCEDENCIA, FECHA DE MONDEO, FICHA DE ROTURA EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS RESULTADOS CORRESPONDER A LOS ENSAYOS REALIZADOS SOBRÉ LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y PAVINDENTOS.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.02 FECHA: 2021/09/11

JEFE DE LABORATORIO Ku victor Peña Dueñas

Fin de Página

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME DE RESULTADOS

EXPEDIENTE Nº : 2182-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEDO CONTACTO DEL PETICIONARIO : irmar.2508@email.co

PROYECTO : LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

CILINDRICAS

ROBETAS DE CONCRETO

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 01 DE OCTUBRE DE 2021 FECHA DE EMISIÓN

: 28 DE OCTUBRE DE 2021

TM C39/C39M-20: Estandard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

INFORME DE ENSAYO (PÁG...01 DE 01)

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (&N)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
NEW-1	E-274-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO- PATRON	PROBETAS DE CONCRETO CILINDRICAS	30/09/2021	28/10/2021	28	99,73	205.56	7811.63	339.18	43.2	432.8	210	206%	TIPO 3	NO
NEW-2	E-274-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO: PATRON	PROBETAS DE CONCRETO CILINDRICAS	30/09/2021	28/10/2021	28	101.07	204.20	8022.96	299.06	38,1	380.7	210	381%	TIPO 1	NO

28/10/2021

28/10/2021

28

100.54

99.11

206.04

7939.03

318,88

299.08

40.5

38.1

3.086

30/09/2021

NEW-4

NEW-3

: Conos razonablemente bien formados, en ambas basas, menos de 25mm de grietas en capas.

: Cono bien formado sobre otra base, despiszamiento de grietas verticales a través de las capas, cono no bien definido en la otra base

LABORACIÓN DE ESPECÍMEN EN EL LABORATOR

PATRON

KORACIÓN DE ESPECÍMEN EN EL LABORATORI

F-274-2021

E-274-2021

Cono bien formado sobre otra pase, espessamento se grecia y en canada de la Confesta virticidas collumnares en ambies bases.

Fractura diagonal sin grietos en las bases, golpar con martillo para differenciar del tipo 1.

Fracturas de lados en las bases (superior o inferior) courren comunimente con las capas de embo

: Similar al tipo 5 pero el terminal del clindro os acent

: Cepillado

Capeado

NOTA ELESTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO.

FECHA DE INICIO DEL ENSAYO FECHA DE CULMINACIÓN DEL ENSAYO 1 28/10/2021

TEMPERATURA AMBIENTE 17.2 °C HUMEDAD RELATIVA

ÁREA DONDE SE REALIZÓ EL ENSAYO : ÁREA DE ENSAYOS ESPECIALES

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO, ESTRUCTURA DE PROCEDENCIA, FECHA DE MOLDEO, FECHA DE ROTURA. EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL QUENTE

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FLERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

EL PRESENTE DOCUMENTO NO DEBETÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.02 FECHA: 2021/09/11

TPO 2

NO

ги qу гами

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME DE RESULTADOS

EXPEDIENTE Nº t 2354-2021-AC

PETICIONARIO : BACH. MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO CONTACTO DEL PETICIONARIO i Irmar 2508@gmail.com

PROYECTO LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE PC 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 23 DE OCTUBRE DEL 2021 FECHA DE EMISIÓN

1 05 DE NOVIEMBRE DEL 2021

ÉTODO: STM C39/C39	M-21: Método de prueba está	indar para determinar la resistencia a la compresión o	le especimenes cilindricos de	hormigón.												
MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA OF ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (1917)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
VIA-1	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	101.89	203,56	8153.67	200.17	25.5	254.8	210	121%	TIPO 3	NO
VIA-2	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 136	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	1	103.35	200 88	8989.20	209.49	25.7	256.7	310	122%	neg a	NO
VIA-3	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	101.49	208.92	8088.98	197.22	25.1	251.1	210	120%	TIPO 2	NO
VIA-4	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	102.35	204.33	8227.46	186.20	23.7	237.0	210	113%	TIPO 5	NO
1PO 2 1PO 3 1PO 4 1PO 5 1PO 6 T	: Conos razonablemente bien : Cono bien formado sobre ot : Grietas verticales columnare : Fractura diagonal sin grietas : Fracturas de lados en las bas	formados, en ambas bases, menos de 25mm de griet na base, dispilszamiento de grietas verticoles a través ora ambas bases, com martillo para diferenciar de en las bases, golpear con martillo para diferenciar de las Lugaelfor di inferiori (ocurren comammente con las control del clando es acentivado.	de las capas, cono no bien d I tipo 1.	efinido en la otra	base.				×	ng.		Į W	Nation 1		1104	1000
OTA ILUSTRA	TIVA: UNA MUESTRA DE CONC IO DEL ENSAYO	CRETO DE ACUERDO AL REGLAMENTO NACIONAL DE S	CONSTRUCCIÓN LA CONSTITU	IVEN DOS PROBE	TAS, PARA CADA E	DAD Y CAL	JDAD DE CONCR	ETO.								
CONDICIONES EMPERATURA HUMEDAD REL		: 26/10/2021 1 16.8 °C 1 50% AREA DE ENSAYOS ESPECIALES											(JE	FE DE I	ABORA

Fuente: Inversiones generales centauro ingenieros

EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO. SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAYIMENTOS.

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.03 FECHA: 2021/11/04

MUESTREO REALIZADO POR EL PETRSONAL DE LABORATORIO.

Fin de Página

Ving. Victor Pena Duenas

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

INACAL DA - Perú

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

XPEDIENTE Nº	t 2190-2021-A

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO CONTACTO DEL PETICIONARIO

PROYECTO

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN

: 23 DE OCTUBRE DEL 2021 FECHA DE EMISIÓN : 29 DE OCTUBRE DEL 2021

INFORME DE ENSAYO (PÁG..01 DE 01)

ASTM C39/C39	MI-20: Estandard Test Method I	for Compressive Strength of Cylindrical Concrete S	Specimens.	_												
MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
TK-1	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	28/10/2021	7	99.89	204.54	7835,93	218.94	27.9	278.7	210	133%	TIPO 2	NO
TK-2	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	99.36	204.49	7753.77	198.04	25.2	252.1	220	120%	TIPO1	NO
TK-3	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	99.49	208.35	7774.08	186.18	23.7	237,0	230	113%	TIPO 1	NO
TK-4	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	100,66	203.60	7957,21	212.13	27,0	270.1	250	129%	TIPO 1	NO

TIPO DE FRACTURA:

MÉTODO:

: Conos razonablemente bien formados, en ambas bases, menos de 25mm de grietas en capas.

: Cono bien formado sobre otra base, despiazamiento de grietas verticales a través de las capas, cono no bien definido en la otra base

Grietas verticales columnares en ambas bases.
Fractura diagonal sin grietas en las bases, golpes cron martillo para diferenciar del tipo 1,
Fracturas de lados en las bases l'upperior o inferior) ocurren comunmente con las capas de embonado.
Similar al tipo 5 pero el terminal del cilindro es acentuado. TIPO 5

: Cortado : Cepillado

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO.

FECHA DE INICIO DEL ENSAYO FECHA DE CULMINACIÓN DEL ENSAYO

CONDICIONES AMBIENTALES:

TEMPERATURA AMBIENTE HUMEDAD RELATIVA

ÁREA DONDE SE REALIZÓ EL ENSAYO : AREA DE ENSAYOS ESPECIALES

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO, ESTRUCTURA DE PROCEDENCIA, FECHA DE MOLDEO, FECHA DE ROTURA. EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO. SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONPORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.02 FECHA: 2021/09/11

Fin de Página

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

INACAL DA - Perú

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

EXPEDIENTE Nº t 2253-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALFJANDRO PALACIOS

ATENCIÓN I UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO 1 irmar.2508@email.com

PROYECTO : LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE PC 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 06 DE OCTUBRE DEL 2021 FECHA DE EMISIÓN : 02 DE NOVIEMBRE DEL 2021

INFORME DE ENSAYO (PÁG.,01 DE 01)

Μέτορο:

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MIOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
ODI-1	E-285-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	1/10/2021	29/10/2021	28	101.75	205.63	8130.48	219.76	28.0	279.8	210	133%	TIPO 2	NO
ODI-2	E-285-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	1/10/2021	29/10/2021	28	102.47	203,60	8245.76	219.26	27.9	279.1	210	133%	TIPO 2	NO
ODI-3	E-285-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	1/10/2021	29/10/2021	28	103.24	205.11	8371.16	201.35	25.6	256.3	210	122%	TIPO 1	NO
006-4	E-285-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 1%	PROBETAS DE CONCRETO CILINDRICAS	1/10/2021	29/10/2021	28	102.28	203.20	8216.21	216.34	27.5	275.4	210	131%	TIPO 1	NO

TIPO DE FRACTURA:

: Conos rezonablemente bien formados, en ambas bases, menos de 25mm de ariotas en capas

: Cono bien formado sobre otra base, desplazamiento de grietas verticales a través de la

Como oten nominosi potre cita de ses, cuspiparamento de generas verticiens a traves de las co d'infetas verticales columnarse en ambas basso.

Fractura disgonal sin grietas en las bases, golipear con martillo para differenciar del tipo 1.

Fractura de la doce nia la basea i superior o inferior) ocurren comunmente con las capas de Similar al tipo 5 pero el terminal del cilindro es a seentuado. TIPO 5

TIPO 6

: Cortado : Cepillado CAP : Almahedillas de negarena

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO.

FECHA DE INICIO DEL ENSAYO FECHA DE CULMINACIÓN DEL ENSAYO 29/10/2021

TEMPERATURA AMBIENTE 19.2 % HUMEDAD RELATIVA ÁREA DONDE SE REALIZÓ EL ENSAYO AREA DE ENSAYOS ESPECIALES

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO. LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO.

EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAYMENTOS.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.02 FECHA: 2021/09/11

GEFE DE LABORATORIO Ing Victor Pena Duenas

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL – DA CON REGISTRO № LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 14"

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

EXPEDIENTE N°	: 2355-2021-AC
PETICIONARIO	BACH, MIGUEL IRMAR ALEJANDRO PALACIOS
ATENCIÓN	: UNIVERSIDAD CESAR VALLEJO
CONTACTO DEL PETICIONARIO	irmar 2508@gmail.com
PROYECTO	1 LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE FC 210 KG/CM2 EN LOSAS - HUACHIPA
UBICACIÓN	: LIMA-LIMA - ATE VITARTE - HUACHIPA
FECHA DE RECEPCIÓN	: 23 DE OCTUBRE DEL 2021
FECHA DE EMISIÓN	: 05 DE NOVIEMBRE DEL 2021
	INFORME DE ENSAYO (PÁG01 DE 01)

-		
MÉTODOL		
ASTM C39/C39M-2	21: Método de prueba estándar para determinar la resistencia a la compresión de especimenes cilindricos de hormigón.	

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
Ste-1	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	102.34	205.42	8225.04	135.48	17.3	172.5	210	82%	TIPO 5	NO
Ste-2	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CIUNDRICAS	23/10/2021	26/10/2021	3	101.91	206,77	8156.07	145.40	18.5	185.1	210	88%	TIPO 5	NO
Ste-3	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CIUNDRICAS	23/10/2021	26/10/2021	3	101.82	206.29	8141.67	128.76	16.4	163.9	210	78%	TIPO 5	NO
Ste-4	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	201.70	204.65	8122.49	146.63	18,7	186.7	230	89%	TIPO 5	NO

TIPO DE FR	ACTURA:						
TIPO 1 TIPO 2 TIPO 3 TIPO 4 TIPO 5 TIPO 6 CT CP CAP AN	: Cono bien formado sobre ol : Grietas verticales columnari : Fractura diagonal sin grieta:	tra base, es en am s en las b ses (sup	s, golpear con martillo para diferenciar del tipo 1. ro inferior) ocurren comunmente con las capas de emb		×.) 1900	K()
NOTA ILUST	TRATIVA: UNA MUESTRA DE CONC	ORETO D	UERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓ	ÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE COI	NCRETO.		
	NICIO DEL ENSAYO CULMINACIÓN DEL ENSAYO	1	6/10/2021 6/10/2021				
	NES AMBIENTALES: URA AMBIENTE	- 1	16.8°C				

MUESTREO REALIZADO POR EL PETRISONAL DE LABORATORIO.
LOS DATOS PROPORCIONADOS POR EL PETRISONAL DO LABORATORIO. SEGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO.

EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

EL PORCETTURE DE RESIDERACIA ESTA EN REPERENCIA AL ARESSITENCIA DE DISENO QUE DISENO QUE DISENO DE DES CALCIENTE.

LOS RESULTADOS CORRESPONDOS ALOS ENSASONO SERALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ. LAS CUALES FUERON PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCISSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL – DA CON REGISTRO Nº LE-141

INACAL DA - Perú Lideradoro de Energe Acreditado

Registro N'LE - 141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS

LABORATORIO DE AGREGADOS Y CONCRETO

INFORME DE RESULTADOS

EXPEDIENTE Nº 1 2189-2021-AC

PETICIONARIO : BACH. MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO : irmar.2508@gmail

PROYECTO 1 LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 23 DE OCTUBRE DEL 2021 FECHA DE EMISIÓN : 29 DE OCTUBRE DEL 2021

INFORME DE ENSAYO (PÁG.,01 DE 01)

MÉTODO:
ASTIM C39/C3914-20: Estandard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DÉ ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
PO-1	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	2	99.99	205.07	7851.63	173.69	24.1	221.1	210	105%	TIPO 1	NO
PO-2	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	96.82	204.19	7668.95	178.25	22.7	226.9	210	208%	TIPO 2	NO
PO-3	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	28/10/2021	7	99.73	203.86	7810.84	184.55	23.5	234.9	210	112%	TIPO 5	NO
PO-4	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 3%	PROBETAS DE CONCRETO CIUNDRICAS	21/10/2021	28/10/2021	7	99.68	205.26	7803.01	171.19	23.8	217.9	210	304%	TIPO 3	NO

PO-4	E-330-2021	LABORATORIO-CON ADICIÓN DE 3%	CIUNDRICAS	21/10/2021	28/10/2021	7	99.68	205.26	7803.01	171.19	23.8	217.9	210	30436	TIPO 3	NO
TIPO DE FRAC	CTURA:															
TIPO 1		formados, en ambas bases, menos de 25mm de g							1	1150	L2.1631	11111		125		OWN
TIPO 2		a base, desplazamiento de grietas verticales a tra	vés de las capas, cono no bien o	definido en la otra	base.					11 X	12 1111	10.11				7
TIPO 3	: Grietas verticales columnare:									IV VE	1 3 1333	1100				
TIPO 4		en las bases, golpear con martillo para diferencia							- 1		L VIV	1.000				
TIPO 5		es (superior o inferior) ocurren comunmente con	las capas de embonado.							11	li	1.174				
TIPO 6	: Similar al tipo 5 pero el termi	nal del cilindro es acentuado.								1921	1951	101	1101		1869	200.0
CT	: Cortado															
CP	: Cepillado															
CAP	: Capeado															

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO,

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO, ESTRUCTURA DE PROCEDENCIA, FECHA DE MOLDEO, FECHA

EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS INLESTRAS TAL Y COMO SE RECIBIO, LAS CUALES FUERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÂNICA DE XUELOS, CONCRETO Y PAYIMENTOS. EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.02 FECHA: 2021/09/1:

MERICAS GENEVALES CRIPTANO MICHENOS AG.

JEPE DE LASORATORIO

THE VICTOR PENA DUCHAS

INC. VICTOR PENA DUCHAS

INC. VICTOR PENA DUCHAS

INC. VICTOR PENA DUCHAS

Fin de Página

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO

INFORME DE RESULTADOS

: 2252-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS ATENCIÓN

: UNIVERSIDAD CESAR VALLEJO CONTACTO DEL PETICIONARIO : irmar.2508@gmail.co

PROYECTO

1 LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE FIC 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN : 06 DE OCTUBRE DEL 2021

FECHA DE EMISIÓN : 02 DE NOVIEMBRE DEL 2021

INFORME DE ENSAYO (PÁGLIDI DE 01)

ASTM C39/C39M-20: Estandard Test Method for Compressive Strength of Cylindrical Concrete Sp ÁREA DE LA FECHA DE FECHA DE CARGA MUESTRA CÓDIGO DE TRABAJO ALTURA DI DE TIPO DE TIPO DE MUESTRA EDAD ESPÉCIMEN SECCIÓN DEFECTO MOLDEO ROTURA ESPÉCIMEN (MPa) (kN) (kg/cm^2) (mm) (mm) (mm^2) ELABORACIÓN DE ESPECÍMEN EN EL ROBETAS DE CONCRETO DAN-1 F-285-2021 1/10/2021 29/10/2021 103,21 202.43 8365,49 184.20 112% TIPO 5 NO LABORATORIO-CON ADICIÓN DE 3% ELABORACIÓN DE ESPECÍMEN EN EL 1/10/2021 29/10/2021 28 102.34 202.65 8225.04 177.79 22.6 210 226.3 20890 TIPO 2 NO CIUNDRICAS ELABORACIÓN DE ESPECÍMEN EN EL PROBETAS DE CONCRETO DAN-3 £-285-2021 1/10/2021 29/10/2021 28 101.64 203.40 8145.67 184.99 23.6 235.5 210 LABORATORIO-CON ADICIÓN DE 3% FLABORACIÓN DE ESPECÍMEN EN EL PROBETAS DE CONCRETO DAN-4 29/10/2021 102.62 204.67 8270.12 183.70 23.4 233.9 210 111% TIPO 3 NO CILINDRICAS TIPO DE FRACTURA

: Conos razonablemente bien formados, en ambas bases, menos de 25mm de grietas en capas. : Cono bien formado sobre otra base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en la otra base Consensational control

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CAUDAD DE CONCRETO.

FECHA DE CULMINACIÓN DEL ENSAYO 1 29/10/2021

TEMPERATURA AMBIENTE 18.2 °C HUMEDAD BELATIVA

ÁREA DONDE SE REALIZÓ EL ENSAYO

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO.

EL PORCENTAJE DE RESISTENCIA ESTA EN REPERÊNCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y PAYIMENTOS.

EL PRESENTE DOCUMENTO NO DEBETÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV.02 FECHA: 2021/09/11

Fin de Pázina

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

EXPEDIENTE Nº 1 2356-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO i irmar.2508@gmail.co

PROYECTO 1 LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE P°C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN : 23 DE OCTUBRE DEL 2021

FECHA DE EMISIÓN 1 05 DE NOVIEMBRE DEL 2021

INFORME DE ENSAYO (PÁG..01 DE 01)

MÉTODO: ASTM CB9/C39W4-21: Método de prueba estándar para deleminar la resistencia a la compresión de especim

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDÊNCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MĀXIMA (kN)		RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
Pau-1	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	100.64	203.49	7954.04	123,40	15.7	157.1	210	75%	TIPO 1	NO
Pau-1	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	99.72	203.43	7810.06	133.14	17.0	169.5	210	63%	TIPO I	No
Pau-1	E-330A-2021	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	23/10/2021	26/10/2021	3	99.76	205.29	7816.33	127.59	16.2	162.4	210	77%	TIPO 5	NO
Pau-1	E-330A-2023	ESPECÍMENES ELABORADOS EN EL LABORATORIO CON ADICIÓN DE 5%	PROBETAS DE CONCRETO	23/10/2021	26/10/2021	3	200.54	203.55	7939.03	135.88	17.3	173.0	210	82%	TIPO 1	NO

TIPO DE FRACTURA:

: Conos razonablemente bien formados, en ambas bases, menos de 25mm de grietas en capas. : Cono bien formado sobre otra base, desplazamiento de grietas verticales a través de las capas, cono no bien definido en la otra base.

Grietas verificales columnares en ambas bases.

Fractura diagonal sin grietas en las bases, polpear con martillo para diferenciar del tipo 1.

Fractura diagonal sin grietas en las bases, polpear con martillo para diferenciar del tipo 1.

Fractura diagonal sin paresa en las bases (superior o inferior) ocurren comunmente con las capas de 15milar al tipo 5 pero el terminal del cilindre es a camitosdo. TIPO 3 TIPO 4 TIPO 5

TIPO 6

: Cortado

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO.

FECHA DE INICIO DEL ENSAYO FECHA DE CULMINACIÓN DEL ENSAYO

TEMPERATURA AMBIENTE 16,8 °C

ÁREA DONDE SE REALIZÓ EL ENSAVO : ÁREA DE ENSAYOS ESPECIALES

MUESTREO REALIZADO POR EL PETRSONAL DE LABORATORIO.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SIGUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO.

EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CUENTE.

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

HC-AC-017 REV:03 FECHA: 2021/11/04

JEFE DE LABORATORIO Ing. Victor Pena Dueñas

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL - DA CON REGISTRO Nº LE-141

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

EXPEDIENTE Nº : 2188-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO

PROYECTO : LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE FIC 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA-LIMA - ATE VITARTE - HUACHIPA FECHA DE RECEPCIÓN

1 23 DE OCTUBRE DEL 2021 FECHA DE EMISIÓN : 29 DE OCTUBRE DEL 2021

INFORME DE ENSAYO (PÁG..01 DE 01)

ASTM C39/C39M-20: Estandard Test Method for Compressive Strength of Cylindrical Concrete Specimens

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (71171)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
Lap-1	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	103.13	204.54	8352.53	151.30	22.3	192.6	210	92%	TIPO 1	NO
Lap-Z	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	102.58	204.66	8263.67	146.67	18.7	186.7	210	89%	TIPO 1	NO
Lap-3	E-330-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	103.34	205.30	8386.58	140.61	20.9	179.0	210	85%	TIPO 5	NO
Esp-t	E-530-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO-CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	21/10/2021	28/10/2021	7	102.26	202.48	8212.19	139.51	17.8	177.6	210	85%	TIPO 5	NO

TIPO DE FRACTURA:

Cono resonablemente baio formados, no ambas hazas, mesos de Semen de griesse ne capas.

Cione bien formado obre dras has degistamiento de gretas verticates a través de las capais, como no bien definido en la otra baso l'indicats verticates columnares en ambas bases.

Grietats verticates columnares en ambas bases, porpese com mantifio para diferencia del tipo 3.

Fractura disposit sin grietas en las bases, polipares com mantifio para diferencia del tipo 3.

Fracturas de bados en las bases (superior o inferior) courren comunmente con las capas de embanado.

Similare al tipo 5 pero el terminal del Cindico si acciminato del tipo 3.

TIPO 6 : Cortado

NOTA ILUSTRATIVA: UNA MUESTRA DE CONCRETO DE ACUERDO AL REGLAMENTO NACIONAL DE CONSTRUCCIÓN LA CONSTITUYEN DOS PROBETAS, PARA CADA EDAD Y CALIDAD DE CONCRETO.

FECHA DE INICIO DEL ENSAYO

CONDICIONES AMBIENTALES:

HUMEDAD RELATIVA

ÁREA DONDE SE REAUZÓ EL ENSAYO : AREA DE ENSAYOS ESPECIALES

MUESTREO REALIZADO POR EL PERSONAL DE LABORATORIO.

LOS DATOS PROPORCIONADOS POR EL PETICIONARIO SON LOS SKIUIENTES: PETICIONARIO, ATENCIÓN, NOMBRE DEL PROYECTO, UBICACIÓN, RESISTENCIA DE DISEÑO, ESTRUCTURA DE PROCEDENCIA, FECHA DE MOLDEO, FECHA DE ROTURA. EL PORCENTAJE DE RESISTENCIA ESTA EN REFERENCIA A LA RESISTENCIA DE DISEÑO QUE INDICÓ EL CLIENTE.

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS. EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

JEFE DE LABORATORIO hul

Fin de Página

LABORATORIO DE ENSAYO ACREDITADO POR EL ORGANISMO DE ACREDITACION INACAL – DA CON REGISTRO № LE-141

INACAL DA - Perú Labrandro de Enseyo Acreditado

Informe de ensayo con valor oficial

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

Registro N'LE - 141

Fin de Página

LABORATORIO DE ENSAYO DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE AGREGADOS Y CONCRETO INFORME DE RESULTADOS

EXPEDIENTE N°	Control of the second control of the
EXPEDIENTE N°	r 2185-2021-AC

PETICIONARIO : BACH. MIGUEL IRMAR ALEJANDRO PALACIOS ATENCIÓN : UNIVERSIDAD CESAR VALLEJO

ATENCIÓN : UNIVERSIDAD CESAR VALLEJO CONTACTO DEL PETICIONARIO : irmar.2508@gmail.com

PROYECTO : LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MUESTRAS TAL Y COMO SE RECIBIÓ, LAS CUALES FUERON PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAYMMENTOS.

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE.

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN : 01 DE OCTUBRE DEL 2021 FECHA DE EMISIÓN : 29 DE OCTUBRE DEL 2021

FECHA DE EMISIÓN : 29 DE OCTUBRE DEL 2021

INFORME DE ENSAYO (PÁG..01 DE 01)

MUESTRA	CÓDIGO DE TRABAJO	ESTRUCTURA DE PROCEDENCIA	TIPO DE MUESTRA	FECHA DE MOLDEO	FECHA DE ROTURA	EDAD	DIÁMETRO ESPÉCIMEN PROMEDIO (mm)	ALTURA DE ESPÉCIMEN (mm)	ÁREA DE LA SECCIÓN TRANSVERSAL (mm²)	CARGA MÁXIMA (kN)	RESISTENCIA DE ESPÉCIMEN (MPa)	RESISTENCIA DE ESPÉCIMEN (kg/cm²)	RESISTENCIA DE DISEÑO (kg/cm²)	% RESIS.	TIPO DE FRACTURA	DEFECTOS
RIC-1	E-279-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO CON ADICIÓN DE SIS	PROBETAS DE CONCRETO CIUNDRICAS	30/09/2021	28/10/2021	28	100.10	205.89	7869.70	152.62	25.3	194.3	210	93%	TIPO 2	NO
RIC-2	E-279-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO CON ADICIÓN DE SM	PROBETAS DE CONCRETO CIUNDRICAS	30/09/2021	28/10/2021	28	99.08	203.11	7709.35	145.78	24.1	185.6	210	88%	TIPO 1	NO
RIC-3	E-279-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	30/09/2021	28/10/2021	28	100.81	203.45	7980.94	165.11	27.3	210.2	210	100%	TIPO 2	NO.
RIC-4	E-279-2021	ELABORACIÓN DE ESPECÍMEN EN EL LABORATORIO CON ADICIÓN DE 5%	PROBETAS DE CONCRETO CILINDRICAS	30/09/2021	28/10/2021	28	99.48	203.16	7771.73	161.02	23.5	205.0	210	98%	TIPO 1	NO
	Conos razonablemente bien fo	rmados, en ambas bases, menos de 25mm de gr				90		***************************************	-	plan.	Parameter					
P01 P02 P03 P04 P05 P06	Conos razonablemente bien for Cono bien formado sobre otra Grietas verticales columnares Fractura diagonal sin grietas e	basa, desplazamiento de grietas verticales a tro- en ambas bases. I las bases, golpuar con martillo para diferenciar (guperior o inferior) ocurren comunmente con l	rés de las capas, cono no bien d del tipo 1.	efinido en la otra	base.				X		100		No.	7	1000	Urv Urv
PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 6 PO 6 PO 6 PO 7	Conos ratonablemente bien fe Cono bien formado sobre otra Grietax verticales columanes: Fractura diagonal sin grietas e Fracturas de lados en las base Similar al tipo 5 pero el termin Cortado Capitlado Capitlado Almohadillas de neopreno	basis, dissiplatamiento de grietas verticales a tro: na ambas hases. nas bases, golpsur con martillo para diferenciar (superior o inferior) courren comunmente con la il del cilindro es acentuado.	rés de las capas, cono no bien d del tipo 1. as capas de embonado.			EDAD Y CAS	JÍĐAÐ DE CONCRI	ETO.				N.		7		amobileros a

Fuente: Inversiones generales centauro ingenieros

HC-AC-017 REV.02 FECHA: 2021/09/11

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS

ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
 ENSAYOS EN ROCAS
 ENSAYOS QUÍMICOS EN SUELOS Y AGUA

- ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

- ESTUDIOS GEOTÉCNICOS

- CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO.

- EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N°

: 2528-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO

: irmar.2508@gmail.com

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO ¹ SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

FECHA DE RECEPCIÓN

: 15 DE SETIEMBRE DEL 2021

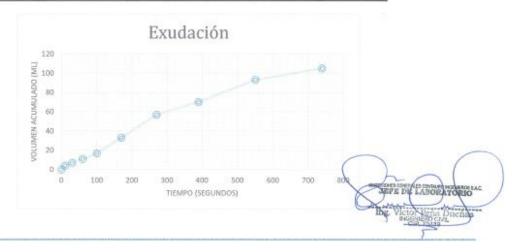
FECHA DE EMISIÓN

: 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

: P-178-2021

MUESTRA

: MUESTRA PATRÓN - M1

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	4	10	4
20	3	30	7
30	4	60	11
40	6	100	17
70	16	170	33
100	24	270	57
120	13	390	70
160	23	550	93
190	12	740	105

SERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE SUELOS

- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASPALTO
- ENSAYOS EN ROCAS

- ENSAYOS QUÍMICOS EN SUELOS Y ADUA

- ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOFECINCOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.21
EXUDACIÓN (%)	2.8

MEDICIONEN SCHIUM NCHIOSEAC.

18,6°C TEMPERATURA AMBIENTE HUMEDAD BELATIVA : 38 % FECHA DE REALIZACIÓN DEL ENSAYO :25/10/2021

HC-AC-037 REV.00 FECHA: 2021/11/10

* MUSSTREO E IDENTIFICACION MEALIZADOS FOR EL PERSONAL DEL LABORATORIO

* EL PRESENTE DOCUMENTO NO GERERA PEPRODUCISSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESILTADOS DE LOS ERISAYOS NO DEBRI SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON MORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE, SOS BESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SORRE LAS MUESTRAS PROPORCIONADAS POR EL CUENTE AL JABONATORIO DE MECÁNICA SE SUELOS, CONCRETO Y PRAMBENTOS.

SERVICIOS DE:

ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS

CONTROL DE GALIDAD EN SUELOS CONCRETO Y ASFALTO EXTRACCIÓN Y TRABLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N°

- 2537-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEIANDRO PALACIOS

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO

: irmar.2508@gmail.com

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: UMA- UMA - ATE VITARTE - HUACHIPA : 15 DE SETIEMBRE DEL 2021

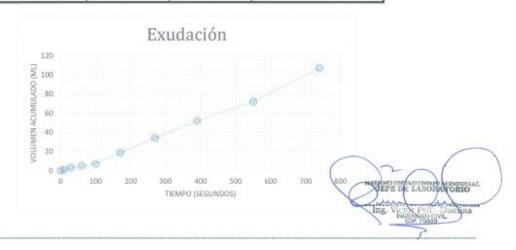
FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

: P-178-2021

MUESTRA

: MUESTRA PATRÓN + 1% DE VIRUTA DE CUERO - M1

Tiempo (min)	Volumen exudado	Tlempo (s)	Volumen exudado
0	0	0	0
10	1	10	1
20	2	30	3
30	2	60	5
40	2	100	7
70	12	170	19
100	15	270	34
120	18	390	52
160	20	550	72
190	35	740	107

SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENSAYOS EN ROCAS ENSAYOS GUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIMANTINAS
 ESTUDIOS GEOFÍCINICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.21
EXUDACIÓN (%)	3.0

E DE ASORATORIO

HUMEDAD RELATIVA 154% FECHA DE REALIZACIÓN DEL ENSAVO : 08/11/2021

HC-AC-057 REV.00 FECHA 2021/11/10

* MULESTRED C (DENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

* EL RRESENTE DOCUMENTO NO DEBENA REPRODUCIRSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE: LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS RESULTADOS DE LOS FINANCIS NO DESEN SIR UTILIDADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTINA DE QUE LO PRODUCTO. LOS RESULTADOS CORRESPONDEN A LOS ENSAVOS REALIZADOS SOBRE LAS INJESTINAS PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÁRICA.

SERVICIOS DE:
SISTEMA MECÁNICA DE SUELOS
ENSAYOS EN AGRIEGADOS PARA CONCRETO Y ASFALTO
ENSAYOS EN HOCAS
ENSAYOS QUÍMICOS EN SUELOS Y AGUA
ENSAYOS SPT, DPL, DPNS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOFÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N° : 2531-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION : UNIVERSIDAD CESAR VALLEIO CONTACTO DEL : irmar.2508@gmail.com

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO PROYECTO

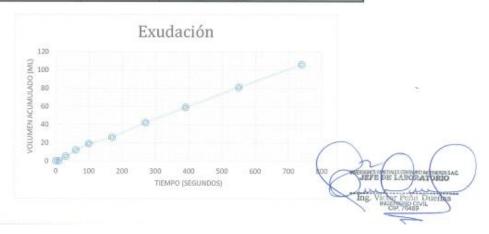
SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA : LIMA- LIMA - ATE VITARTE - HUACHIPA **UBICACIÓN**

FECHA DE RECEPCIÓN : 15 DE SETIEMBRE DEL 2021 : 11 DE NOVIEMBRE DEL 2021 FECHA DE EMISIÓN

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

PETICIONARIO

; P-178-2021

MUESTRA : MUESTRA PATRÓN + 3% DE VIRUTA DE CUERO - M1

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	0	10	0
20	5	30	5
30	7	60	12
40	7	100	19
70	7	170	26
100	16	270	42
120	17	390	59
160	22	550	81
190	25	740	106

SERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE SUELOS

- ENSAYOS EN AGRIGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROCAS

- ENSAYOS QUÍMICOS EN SUELOS Y AQUA
- ENSAYOS SPT, OPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOFÉCINICOS
 CONTROL DE CALIBIAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.20
EXUDACIÓN (%)	3.5

DE LABORATORIO

TEMPERATURA AMBIENTE

HUMEDAD RELATIVA

:50 % :09/11/2021

FECHA DE REALIZACIÓN DEL ENSAYO

HC-AC-037 REV.00 FECHA: 2021/11/10

* WILLESTRED E (DENTIFICAÇÃON REMIZADOS POR EL PERSONAL DEL LABORATORIO

* EL PRESENTE DOCUMENTO NO DESENA REPRODUCISSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALNO QUE LA REPRODUCCION SEA EN SU TOTALICAD LOS RESULTADOS DE LOS ENSAROS HO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE COMPORMIDAD CON MORMAS DE PRODUCTOS O COMO CERTIFICADO DEL HIFEMA DE CAUDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS EMANOS REALEXADOS SOBRE LAS NUESTINAS PROPORCIONADAS POR EL CIENTE AL LABORATORIO DE MECÁNICA.

SERVICIOS DE:

SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGRECADOS PARA CONCRETO Y ASFALTO ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y ASUA

- ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRADCIÓN DIAMANTINAS
 ESTUDIOS GEOTECNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO.

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N°

: 2534-2021-AC

PETICIONARIO

; BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION

: UNIVERSIDAD CESAR VALLEJO

CONTACTO DEL PETICIONARIO

rirmar.2508@gmail.com

PROYECTO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO : SIMPLE P'C 210 KG/CMZ EN LOSAS - HUACHIPA

; UMA- UMA - ATE VITARTE - HUACHIPA

UBICACIÓN FECHA DE RECEPCIÓN

: 15 DE SETIEMBRE DEL 2021

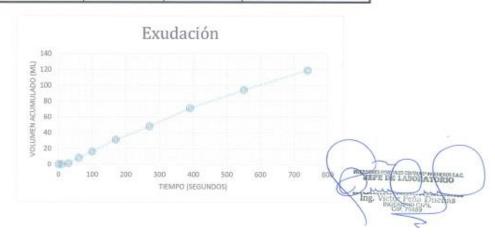
FECHA DE EMISIÓN

: 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

: P-178-2021

MUESTRA

: MUESTRA PATRÓN + 5% DE VIRUTA DE CUERO - M1

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	0	10	0
20	1	30	1
30	7	60	8
40	8	100	16
70	15	170	31
100	17	270	48
120	23	390	71
160	23	550	94
190	25	740	119

SERVICIOS DE:

ENSAYOS DE:

ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS

- ENSAYOS QUÍMICOS EN SUELOS Y AGUA - ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.21
EXUDACIÓN (%)	3.1

TEMPERATURA AMBIENTE 18,6°C HUMEDAD RELATIVA 138 % FECHA DE REALIZACIÓN DEL ENSAYO 27/10/2021

HC-AC-087 REV.00 FECHA: 2021/11/10

* MUESTRED E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CRITIFICACIÓN DE CONFORMIDAD CON MORMAS DE PRODUCTOS O CONIO CESTIFICADO DEL SITEMA DE CALIDAD DE LA ENTIGAO DUE LO PRODUCE. LOS RESULTADOS COMPESPORDER A LOS ENSAYOS REALIZADOS SCRIPE LAS MUESTRAS PROPOR CICHADAS PÓR EL CUENTE AL LABORATORIO SE MECÁNICA DE SULLOS, CONCRETO Y PARMARRISOS.

SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÍCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

EXPEDIENTE N°

: 2529-2021-AC

PETICIONARIO

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION CONTACTO DEL ; UNIVERSIDAD CESAR VALLEJO

PETICIONARIO

: irmar.2508@gmail.com

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE P'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

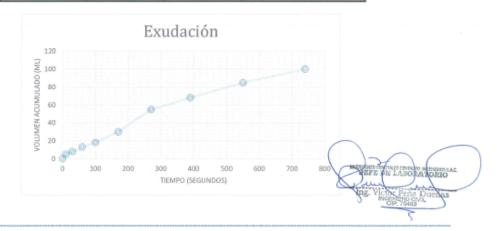
FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 15 DE SETIEMBRE DEL 2021 : 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

: P-178-2021

MUESTRA

: MUESTRA PATRÓN - M2

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	5	10	5
20	3	30	8
30	5	60	13
40	5	100	18
70	12	170	30
100	25	270	55
120	13	390	68
160	17	550	85
190	15	740	100

SERVICIOS DE:
ENSAYOS PARA MECÂNICA DE SUELOS
ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
ENSAYOS EN ROCAS
ENSAYOS CUÍMICOS EN SUELOS Y AGUA
ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOFÍCINICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.16	
EXUDACIÓN (%)	2.6	

TEMPERATURA AMBIENTE

HUMEDAD RELATIVA. FECHA DE REALIZACIÓN DEL ENGAYO

18,6 °C

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

25/10/2021

HC-AC-057 REV.00 FEDHA: 2021/11/10

" MUESTRED E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

* EL PRESENTE DOCUMENTO NO DEBETA REPRODUCRIES SIN AUTORIDACION ESCRITA DEL L'ARGRATORIO, SALVO QUE L'A REPRODUCCION SEA EN SU TOTALIDAD.

LOS SESULTADOS DE LOS DIGINOS NO DESENS SER UTILIZADOS COMO UNA CIRTIFICACIÓN DE CONFORMANO CON MORMAS DE PRODUCCIOS O COMO DERFIFICADO DEL ESTEMA OF CALIDAD.

DE LA SÍNTICAD QUE LO PRODUCCI. LOS RESUlTADOS CORRESPONDEN A LOS DISSANOS REALIZADOS SORRE LAS MUESTRAS PROPRIECIONADAS POR EL CUENTE AL L'ARGRATORIO DE MECÂNICA.

DE JUELOS, CONCRETO Y PARMINISTICS.

SERVICIOS DE:

SERVICIOS DE:
- ENSAYOS PARA MECÁNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROCAS
- ENSAYOS EN ROCAS
- ENSAYOS GUÍNICOS EN SUELOS Y AGUA
- ENSAYOS SPT, DPL, DPHS

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

- ESTUDIOS GEOTÉCNICOS

- CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO

- EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTIU

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO

DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N° : 2538-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION : UNIVERSIDAD CESAR VALLEIO CONTACTO DEL : irmar.2508@gmail.com PETICIONARIO

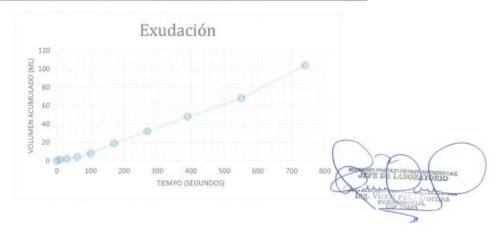
LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO PROYECTO

SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA : 15 DE SETIEMBRE DEL 2021 FECHA DE RECEPCIÓN

FECHA DE EMISIÓN : 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO


MTC E 713

CÓDIGO DE ORDEN DE

; P-178-2021 TRABAJO

: MUESTRA PATRÓN + 1% DE VIRUTA DE CUERO - M2 MUESTRA

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	1	10	1
20	1	30	2
30	2	60	4
40	4	100	8
70	11	170	19
100	13	270	32
120	16	390	48
160	20	550	68
190	36	740	104

SERVICIOS DE:

ENSAYOS PARA MECÁNICA DE SUELOS

ENSAYOS EN AQRIBGADOS PARA CONCRETO Y ASPALTO
ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AQUA

ENSAYOS OFIT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.21
EXUDACIÓN (%)	3.0

TEMPERATURA AMBIENTE :18,610 HUMEDAD RELATIVA 38% FECHA DE REALIZACIÓN DEL ENSAYO : 27/10/2021

HC-AC-037 REV.00 FECHA: 2023/11/10

* MUESTRED E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

* EL PRESENTE DOCUMENTO NO DESERA REPRODUCTIOSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS REMATADOS DE LOS ERSAPOS NO DESEN SER UTILIZADOS COMO UNA CONTINCACIÓN DE CONFORMIDAD CON HORMAS DE PRODUCTOS O CÓMO CERTIFICADO DEL ISITIMA DE CALIDAD DE LA RIFIDAD QUE LO PRODUCE. LOS REJULTADOS CORRESPONDER A LOS EMBANOS REMIZADOS SOBRE LAS MUESTRAS PROPORCIONADAS POR EL ELIENTE AL LABORATORIO DE MECANICA DE SUELOS, COMORETO Y MANMENTOS.

SERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE SUELOS
- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

 ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 0011425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

EXPEDIENTE N°

: 2532-2021-AC

PETICIONARIO

; BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION CONTACTO DEL : UNIVERSIDAD CESAR VALLEJO : irmar.2508@gmail.com

PETICIONARIO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO : SIMPLE P'C 210 KG/CM2 EN LOSAS - HUACHIPA

PROYECTO

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA : 15 DE SETIEMBRE DEL 2021

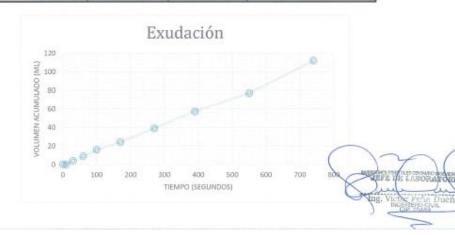
FECHA DE RECEPCIÓN FECHA DE EMISIÓN

11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

: P-178-2021

MUESTRA

: MUESTRA PATRÓN + 3% DE VIRUTA DE CUERO - M2

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	0	10	0
20	4	30	4
30	5	60	9
40	7	100	16
70	8	170	24
100	15	270	39
120	18	390	57
160	20	550	77
190	35	740	112

SERVICIOS DE:

ENSAYOS PARA NECÂNICA DE SUELOS

ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOFÍCINICOS
 CONTROL DE CALIDAD DE SUELOS CONCRETO Y ASPALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.22
EXUDACIÓN (%)	3.2

TEMPERATURA AMBIENTE :16,6 °C HUMEDAD RELATIVA 154% FECHA DE REALIZACIÓN DEL ENSAYO : 08/11/2021

HC-AC-097 REV.00 FECHA: 2023/13/30

* MUESTREO E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

* EL PRESENTE DOCUMENTO NO DEBENA REPRODUCINSE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TOTALICAD

LOS RESULTADOS DE LOS ENSAYOS NO DEBEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFORMENO CON MORNAS DE PRODUCTOS O COMO CERTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SOBRE LAS MURSTRAS PROPORCIÓNADAS POR EL CUENTE AL LABORATORIO DE MECÁMICA

SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS

CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N°

: 2535-2021-AC PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

: UNIVERSIDAD CESAR VALLEJO CONTACTO DEL : irmar.2508@gmail.com PETICIONARIO

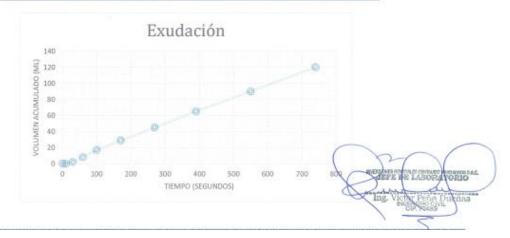
LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE P'C 210 KG/CM2 EN LOSAS - HUACHIPA PROYECTO

: LIMA- LIMA - ATE VITARTE - HUACHIPA

: 15 DE SETIEMBRE DEL 2021 FECHA DE RECEPCIÓN : 11 DE NOVIEMBRE DEL 2021 FECHA DE EMISIÓN

EXUDACIÓN DEL CONCRETO

MTC E 713


CÓDIGO DE ORDEN DE

TRABAJO

; P-178-2021

: MUESTRA PATRÓN + 5% DE VIRUTA DE CUERO - M2 MUESTRA

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	0	10	0
20	2	30	2
30	6	60	8
40	9	100	17
70	12	170	29
100	16	270	45
120	20	390	65
160	25	550	90
190	30	740	120

SERVICIOS DE:

BERVICIOS DE:

(INSAYOS PARA MECÁNICA DE SUELOS

ENSAYOS EN AGREGADOS PARA CONCRETO Y ABFALTO

ENSAYOS EN ROCAS

ENSAYOS QUÍMICOS EN SUELOS Y AGUA ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

- ESTUDIOS GEOTÉCNICOS

- CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO

- EXTRACCIÓN Y TRASLADO DE MJESTRAS INSTIL

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

EXUDACIÓN POR UNIDAD DE 0.20 ÁREA (ml/cm2) EXUDACIÓN (%) 3.5

18,6°C TEMPERATURA AMBIENTE : 50 % :09/11/2021 FECHA DE REALIZACIÓN DEL ENSAVO.

HC-AC-037 REV:00 FECHA: 2021/11/10

^{*} MUESTREO E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL CABORATORIO

^{*} EL RIBERENTE DOCUMENTO NO DEBERA REPRODUCERSE NIN AUTORIDACION ESCRITA DEL LABORATORIO, SALVO QUE: LA REPRODUCCION SEA EN SU TOTALIDAD. LOR RESULTADOS DE LOS DINAYOS NO DEBEN SET UTILIZADOS COMO UNA CERTIFICACIÓN DE EDIVERNADAD CON NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SETEMA DE CALDAD DE LA DITIDAD QUE LO PRODUCE, LOS RESULTADOS CONVESPONDEN A LOS ENANTOS REJUDADOS DORRE LAS DILEZBAS PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÂNICA.

SERVICIOS DE:

- SERVICIOS DE: ENBAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO ENBAYOS EN ROCAS ENBAYOS GUÍMICOS EN SUELOS Y AGUA.
- ENSAYOS SPT, DPL, DPHS
- ESTUDIOS Y ENSAYOS GEOFÍSICOS
- PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS

CONTROL DE CALIDAD EN SUBLOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N° : 2530-2021-AC

PETICIONARIO : BACH. MIGUEL IRMAR ALEJANDRO PALACIOS

ATENCION : UNIVERSIDAD CESAR VALLEJO CONTACTO DEL

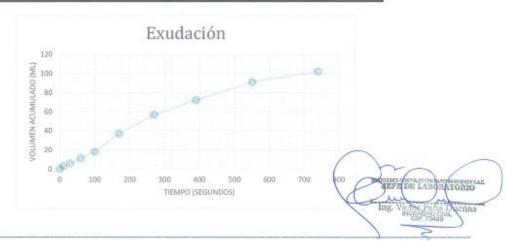
: irmar.2508@gmail.com PETICIONARIO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO $^{\!\!\!1}$ SIMPLE P'C 210 KG/CMZ EN LOSAS - HUACHIPA PROYECTO

LIMA- LIMA - ATE VITARTE - HUACHIPA UBICACIÓN

FECHA DE RECEPCIÓN : 15 DE SETIEMBRE DEL 2021 : 11 DE NOVIEMBRE DEL 2021 FECHA DE EMISIÓN

EXUDACIÓN DEL CONCRETO


MTC E 713

CÓDIGO DE ORDEN DE

: P-178-2021 TRABAJO

: MUESTRA PATRÓN - M3 MUESTRA

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	3	10	3
20	3	30	6
30	5	60	11
40	7	100	18
70	19	170	37
100	20	270	57
120	15	390	72
160	19	550	91
190	11	740	102

SERVICIOS DE:

BERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE SUELOS
- ENSAYOS EN AGRIEGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROCAS
- ENSAYOS GUÍMICOS EN SUELOS Y AGUA
- ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

BITUDIO Y ENATOS GENTRACIÓN DIAMANTINAS
 BETUDIOS GEOTÉCNICOS
 CONTROL DE GALEAD EN SUELOS CONCRETO Y ASPALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTITU

OMO

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.20
EXUDACIÓN (%)	2.3

:18,6 °C TEMPERATURA AMBIENTE : 38 % : 25/10/2021 HUMEDAD RELATIVA FECHA DE REALIZACIÓN DEL ENSAYO

HC-AC-037 NEV.00 FED-IA: 2021/11/10

* WILDSTRED E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

THE RESIDENT COCUMENTO NO DECEMBRICADO SONO, ESCRITA DEL LABORATORIO, NALVO CIJE. LA REPRODUCCIÓN SEA EM SU TOTALIDAD.

LOS RESULTADOS DE DOS REGIONOS NO DESDO SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONTORNIDAD COM NORMAS DE PRODUCTOS O COMO CERTIFICADO DEL SITEMA DE CALDAD

DE LA INITIDAD QUE LO PRODUCCI. LOS RESULTADOS CORRESPONDOS A LOS DISANOS PEALIZADOS SORRE LAS MUESTRAS PROPORCIONADAS POR EL CLIENTE AL LABORATORIO DE MECÁNICA

DE DELOS, CINICIETO Y FRANMENTOS.

REVISADO POR THIS, JAMET YESSICA MIDIA ARIAS.

SERVICIOS DE:

SERVICOS DE:
ENSAYOS PARA MECÁNICA DE SUELOS
ENSAYOS EN AGREGADOS PARA CONCRETO Y ASPALTO
ENSAYOS EN ROCAS
ENSAYOS QUÍMICOS EN SUELOS Y AQUA

ENSAYOS SPT. DPL. DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTITU

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N°

: 2539-2021-AC

: BACH, MIGUEL IRMAR ALEJANDRO PALACIOS PETICIONARIO

: UNIVERSIDAD CESAR VALLEJO ATENCION CONTACTO DEL

: irmar.2508@gmail.com PETICIONARIO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO PROYECTO

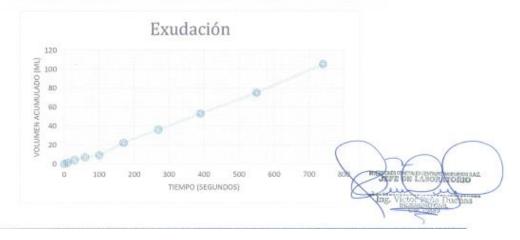
SIMPLE F'C 210 KG/CM2 EN LOSAS - HUACHIPA

UBICACIÓN : LIMA- LIMA - ATE VITARTE - HUACHIPA : 15 DE SETIEMBRE DEL 2021 FECHA DE RECEPCIÓN

: 11 DE NOVIEMBRE DEL 2021 FECHA DE EMISIÓN

EXUDACIÓN DEL CONCRETO

MTC E 713


CÓDIGO DE ORDEN DE

TRABAJO

: P-178-2021

MUESTRA : MUESTRA PATRÓN + 1% DE VIRUTA DE CUERO - M3

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	1	10	1
20	3	30	4
30	3	60	7
40	2	100	9
70	13	170	22
100	14	270	36
120	17	390	53
160	22	550	75
190	30	740	105

SERVICIOS DE:
ENSAYOS PARA MECÁNICA DE SUELOS
ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
ENSAYOS EN ROCAS
ENSAYOS EN ROCAS
ENSAYOS EN POCAS
ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTECNICOS
 CONTROL DE GALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.21	
EXUDACIÓN (%)	3.0	

:18,6 °C TEMPERATURA AMBIENTE HUMEDAD RELATIVA :38% : 27/10/2021 FECHA DE REALIZACIÓN DEL ENSAVO

HC-AC-037 REV.00 FECHA: 2021/11/10

LOS RESILITADOS DE LOS ENSAYOS NO DEBEN SER LITUIZADOS COMO UNA CERTIFICACIÓN DE CONFORMIDAD CON NORMAS DE PRODUCTIOS O COMO CERTIFICADO DEL SISTEMA DE CAUDAD DE LA ENTIDAD QUE LO PRODUCE. LOS RESULTADOS CORRESPONDEN A LOS ENSAYOS REALIZADOS SORRE LAS MUESTRAS PROPORCIONADAS POR EL CUENTE AL LABORATORIO DE MECÁNICA DE MELOS, CONCRETO Y PAYMENTOS.

^{*} MUESTREO E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

^{*} EL PRESENTE DOCUMENTO NO DEBENA REPRODUCASSE SIN AUTORIZACION EXCIPTA DEL LABORATORIO, SALVO QUE LA REPRODUCCION SEA EN SU TOTAUDAD

BERVICIOS DE:

SERVICIOS DE: ENSAYOS PARA MECÁNICA DE SUELOS ENSAYOS EN AGREGADOS PARA CONCRETO Y ASPALTO ENSAYOS EN ROCAS ENSAYOS GUÍMICOS EN SUELOS Y AGUA

- ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

ESTUDIOS GEOTÉCNICOS

CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTIL

EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTIL

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N° : 2533-2021-AC

PETICIONARIO : BACH, MIGUEL IRMAR ALEJANDRO PALACIOS

: UNIVERSIDAD CESAR VALLEJO ATENCION CONTACTO DEL : irmar.2508@gmail.com

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO PROYECTO

SIMPLE P'C 210 KG/CM2 EN LOSAS - HUACHIPA

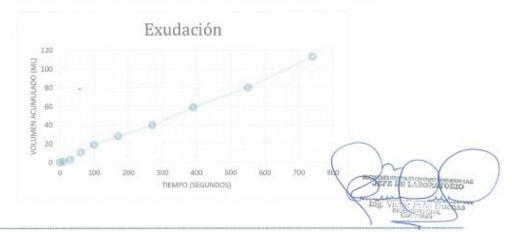
UBICACIÓN ; LIMA- LIMA - ATE VITARTE - HUACHIPA

: 15 DE SETIEMBRE DEL 2021 FECHA DE RECEPCIÓN FECHA DE EMISIÓN 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

PETICIONARIO

: P-178-2021

MUESTRA : MUESTRA PATRÓN + 3% DE VIRUTA DE CUERO - M3

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	1	10	1
20	2	30	3
30	8	60	11
40	8	100	19
70	9	170	28
100	12	270	40
120	19	390	59
160	21	550	80
190	33	740	113

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO № 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

SERVICIOS DE:

- ENSAYOS PARA MECÁNICA DE SUELOS

- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO
- ENSAYOS EN ROCAS

- ENSAYOS QUÍMICOS EN SUELOS Y AGUA
- ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS
 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS

ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU

EXUDACIÓN POR UNIDAD DE ÁREA (ml/cm2)	0.22
EXUDACIÓN (%)	3.2

TEMPERATURA AMBIENTE : 16,6 °C HUMEDAD RELATIVA FECHA DE REAUZACIÓN DEL ENSAYO 08/11/2021

HC-AC-037 REV.00 FECHA: 2021/11/10

" MIJESTREO E IGENTIFICACION REALIZADOS FOR EL PERSONAL DEL LABORATORIO

1 EL PRESENTE DOCUMENTO NO DEBERA REPRODUCIESE SIN AUTORIZACION ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD LOS RESULDADOS DE LOS ENSAROS NO DECEN SER UTILIZADOS COMO LIVIA CERTIFICACIÓN DE CUMPORMIDAD CON NOMAIS DE PRODUCTOS O COMO CERTIFICADO DEL SETEMA DE CAUDAD DE LA ENTIDAD QUE LO PRODUCE, LOS RESULTADOS CORRESPONDEN A LOS ENSAROS REALIZADOS SOBRE LAS NUJESTINAS PRODUCCIONADAS POR DE CUENTE AL JABORACIÓN DE NECÁMICA.

SERVICIOS DE:

ENSAYOS PARA MECÁNICA DE SUELOS

ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS
 ENSAYOS QUÍMICOS EN SUELOS Y AGUA
 ENSAYOS SPT, DPL, DPHS

ESTUDIOS Y ENSAYOS GEOFÍSICOS

PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASFALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSTITU

CENTAURO

Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución Nº 007184-2019-/DSD-INDECOPI

LABORATORIO DE ENSAYOS DE MATERIALES CENTAURO INGENIEROS LABORATORIO DE SUELOS, CONCRETO Y ASFALTO

INFORME

EXPEDIENTE N°

: 2536-2021-AC

PETICIONARIO.

; BACH, MIGUEL IRMAR ALEIANDRO PALACIOS

ATENCION

: UNIVERSIDAD CESAR VALLEIO

CONTACTO DEL

irmar.2508@gmail.com

PETICIONARIO

LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO : SIMPLE P'C 210 KG/CM2 EN LOSAS - HUACHIPA

PROYECTO

UBICACIÓN

: LIMA- LIMA - ATE VITARTE - HUACHIPA

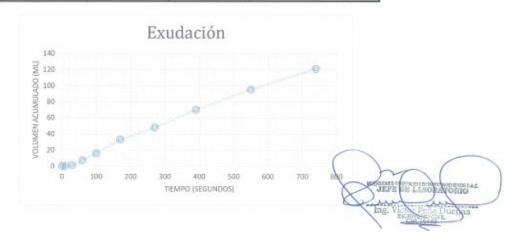
FECHA DE RECEPCIÓN FECHA DE EMISIÓN

: 15 DE SETIEMBRE DEL 2021 : 11 DE NOVIEMBRE DEL 2021

EXUDACIÓN DEL CONCRETO

MTC E 713

CÓDIGO DE ORDEN DE


TRABAJO

: P-178-2021

MUESTRA

: MUESTRA PATRÓN + 5% DE VIRUTA DE CUERO - M3

Tiempo (min)	Volumen exudado	Tiempo (s)	Volumen exudado
0	0	0	0
10	0	10	0
20	1	30	1
30	6	60	7
40	9	100	16
70	17	170	33
100	15	270	48
120	22	390	70
160	25	550	95
190	26	740	121

SERVICIOS DE:


- ENSAYOS PARA MECÁNICA DE SUELOS

- ENSAYOS EN AGREGADOS PARA CONCRETO Y ASFALTO

ENSAYOS EN ROCAS
 ENSAYOS QUÍMICOS EN SUELOS Y AGUA
 ENSAYOS SPT, DPL, DPHS

- ESTUDIOS Y ENSAYOS GEOFÍSICOS

 PERFORACIONES Y EXTRACCIÓN DIAMANTINAS
 ESTUDIOS GEOTÉCNICOS
 CONTROL DE CALIDAD EN SUELOS CONCRETO Y ASPALTO
 EXTRACCIÓN Y TRASLADO DE MUESTRAS INSITU Inscrito en el Registro de Marcas y Servicio de INDECOPI con CERTIFICADO Nº 00114425 con Resolución № 007184-2019-/DSD-INDECOPI

TEMPERATURA AMBIENTE 18,6 °C :50 % FECHA DE REALIZACIÓN DEL ENSAYO 09/11/2021

HC-AC-057 REV.00 FECHA: 2021/11/10

ASORAT HOUSE

CENTAURO

^{*} MUESTREO E IDENTIFICACION REALIZADOS POR EL PERSONAL DEL LABORATORIO

^{*} EL PRESENTE DOCUMENTO NO DEBENA REPRODUCINSE SIN AUTORIZACION ESCRITA DEL UABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD

LOS PESILITADOS DE LOS ENTAYOS NO DESEN SER UTILIZADOS COMO UNA CERTIFICACIÓN DE CONFURMANDE CON NORMAS DE PRODUCTOS O COMO CESTIFICADO DEL SISTEMA DE CALIDAD DE LA ENTIDAD QUE LOS PROJUCES, LOS RESULTADOS CORRESPONDEN A LOS ENSAROS REALIZADOS SOBRE LAS MUESTRAS PROPORECINADAS POR EL CHEMITE AL LABORATORIO DE INSCÁNICA.

www.mtlgeotecniasac.com

		INFORME DE ENBAYO	Códico	FOR-LAS-CON-002.01
LABORATOR			Versitin	0
MATERIALE		CONCRETO	Fecha	25/10/2021
		CONTRACTO	Página	1 cm 2
	JA WASSERSE	COMMUNEY A VISIT OF CHIESE DADA DENING LAS BATTO ODÍAS D	EL CONCENTO S	MEN & EVO 240 MOUNTAINS
TESIS SOLIC/TANTE UBICACIÓN EXPEDIENTE Nº	EN LOSAS - HU	KORÓN DE LA VIMUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS D ACRIPA ALACIOS MIGUEL	EL CONCRETO S	MPLE PC 210 KG/CM2

A) INFORMACIÓN GENERAL:

Muestre : Patrin 1

Realstensis de diserio: 210 /sg8cm2

Diseretro Baide: 35,5 cm x 95 cm x 10 cm

Diseretro Baide: 6,67 cm

B) TOMA DE DATOS:

Tiempo	Masa de agus inicial	Masa de agua final	Tase de Evaporación	T* Alse	Velos. Viento	Humedad Relative	¿Apereción de grieta
min	9'	91	kg/m2fh	(c)	mis	%	SilNo - Código
30	400.00	398.10	1.09	24.0	23	00	
60	306.10	366.00	1.00	28.6	26	50	
90	398.30	393.90	1.37	20.5	3.1	47	
120	303.00	391.90	1.15	30.0	3.6	47	
160	391.09	388.60	176	90.0	3.0	44	
180	388.60	395.30	2.01	317	3.5	41	
210	385.30	362 50	1.37	12.5	2.9	42	
240	362.60	379.60	1.00	36.2	3.3	35	St-1 y 2
270	379.60	377.30	1.32	30.7	3.5	43	
300	377.30	375.40	1.09	29.3	12	40	
330	376.30	373.40	1.09	29.6	33	43	
390	373.40	370.10	1.60	31.8	3.0	40	
390	378.10	387.30	1.60	29.6	2.8	41	
420	367.30	384.00	1.89	30.0	3.0	38	
450							
480		+					(Ve

OBSERVACIONES DE ENSAYO: Perrel acondicionado al estado más crítico del ambiento dosde se instató el listema. Registro de detos de 7 hornes. Pranetes acondicionados por el periodo de 24 horas. Para la foras de clata de la temperatura ambiente y humacidad relativo, se utilizó el formesigadmente de mance BOSCO Germany.

MTL CEC/ECNIA S.A. C MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECNIA SAC

MTL GEOTECN

www.mtlgeotecniasac.com

BORATORIO ENSAYO DE ATERIALES		INFORMI	DE ENSA	YO	Código	FOR-LA	B-00N-00
		VO DE D	ETDAG	CIÁN DE	Versión		0
	ENSA		CRETO	CIÓN DEL	Fechs	20	V10/2021
		0011			Págine		2 de 2
EWIDSAS	PORACIÓN DE LA VIRUT E-HUACHRA RO PALACIOS MISUEL	TA DE CUERD À	ARA REDU	OR LAS PATOLOS	S DEL CONCRETO SIMPLE A	°C 210 KS/CMS	
re Patrio f					Ens	obado pon ayado pon de ensayo:	907 907 29705
A) INFOR	MACIÓN GENE	RAL:					
	0.44000		Marine a				
	Musetra :		Patrice 1				
,	Resistencia de diseño:						
	Dimensiones de caja:	200		10 cm			
	Diámetro Balde:	6.67	CIE.				
B) TOMA	DE DATOS:						
	# Floors	identificación		Longitud			
	· i	FP1/t	page	2.00			
	2	FP1-2	0.20	5.00	744 TO 11		
	3	FP1-0	0.20	2.00	Charles House	10 to	
	4	PP1-4	0.10	3.06	STATE OF THE PARTY OF		
	5	PP1-5	0.10	1.00	-	7	Y
	6	FP1-6	0.20	4.00	Store.	115	The second
	,	FP1-7	8.10	4.00		2	- 1
		FF18	0.10	5.00	**	4	15
		FP1-0	0.10	8.06	Market Market	240	12
	10						25
	- 11				P	DINET	
	12		. 12	-		1	
	15	- 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
	14	-	-			Consection	1000
	15	- 60	-	-		7	*
	14	-			Panel do	Concreto - Pat	rón 1
	PROMEDIO ESPI	EBOR (nem)		0.16	Lateral		
	CRRC			0.00			

Control de Calidad MTL GEOTECNIA

www.mtlgeotecniasac.com

UBICACIÓN EXPEDIENTE Nº
TESIS SOLICITANTE
MATERIAL
LABORATO

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

# Finute	identificación	Expanor	Longitud
		men	669
1	FP1-1	0.10	23.50
2	FP1-2	0.10	11,50
3	FP13	0.10	17.50
4	FF14	0.25	11.00
5	EP1-5	0.10	5.60
6	FP1.8	0.20	7.50
7	FP1-7	6.10	8.00
	FP1-8	6.10	7.99
	FP1-8	0.90	6.00
10			30
11			
12	-		100
13			(+)
14	*	- (*)	15
15		7	17.
16		100	
PROMEDIO E	SPESOR (mm)		2.14
CRF	(%)		100

Panel de Concreto - Patrón 2

C) OBSERVACIONES DE ENSAYO: - Paral acondicionado ani estado rela entido del enteñada de interesa. - Paral acondicionado an estado rela enteñada de interesa. - Paral la torre de defos del especer de la fisara, se sidiado la regia de fisuras. - Para la torre de defos del especer de la fisara, se sidiado la regia de fisuras. - Para la torre de defos de la fragiliad de la fisura, se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura, se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura, se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura, se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fonção de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre de defos de la fisura se sidiado la regia de fisuras. - Para la torre d

www.mtlgeotecniasac.com

		INFORME DE ENSAYO	Códiso	FDR-LAB-CON-002.01
DE ENSAYO I		ENSAYO DE RETRACCIÓN DEL	Version	0
MATERIALE		CONCRETO	Fecha	25/10/2021
	1		Página	1 de 2
TESAS	LA INCOMPONACIÓN	DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DI	EL CONCRETO 8	MPLE FC 210 KG/CM2
TESIS SOLICITANTE UBICACIÓN EXPEDIENTE Nº	EW LOGAS - HUNCHN ALEJANDRO PALACI LIMA	PA.	EL CONCRETO S	MPLE PC 210 KSJCM2

A) INFORMACIÓN GENERAL:

Museire : Patrio 2

Resistencia de diseño: 219 Agérn2

Dimensiones de caja: 35.5 cm x 56 cm x 10 cm

Diámetro Beide: 6.67 cm

B) TOMA DE DATOS:

Tiempo	Mass de ague inicial	Mose do agus final	Tasa de Evaporeción	To Alee	Veloc. Viento	Hursedad Relative	¿Apareción de grieta
min	9'	gr .	kg/m2th	(°C)	mis	- %	SVNo - Código
30	400.00	388.10	1.09	28.6	2.7	**	
60	398.10	396.50	1.03	28.8	22	51	
90	308.30	308.00	1.37	29.9	27	48	
120	393.50	391.00	1.15	82.1	27	44	
160	391.60	360.00	1.78	90.6	28	46	
100	388.80	385.30	201	314	24	d1	
210	385.90	302.93	1.37	326	3.0	42	
240	382.00	379.60	1.60	34.0	27	34	
270	379.40	377.30	132	29.2	2.6	43	
393	377.30	375.40	1.00	29.5	3.1	43	
330	375.80	373.40	1.09	29.5	3.0	42	
360	373.40	370.10	1.80	31.3	2.0	41	
390	370.10	367.30	1,60	29.8	3.2	40	
420	367.30	364.00	1.00	30.7	29	40	
460	-	-					
480	1 6	10.0		-	-		

C) OBSERVACIONES DE ENSAYO: - Perrel aconstitionado al estado más critico del antidente deede se instatil el sistema. - Registre de datos de 7 horse. - Para la torna de datos de la inexpension accidente y horseclid relativa, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida relativa de manca BOECO Germany. - Para la torna de datos de la velocidad de vienda, se utilido el inemológida de inemológi

www.mtlgeotecniasac.com

		INFORME DE ENSAYO	Codigo	FOR-LAB-CON-002.01
LABORATOR DE ENSAYO			Versite	0
MATERIALE		ENSAYO DE RETRACCIÓN DEL CONCRETO	Fesha	25/10/2021
	CONTRETO		Página	1 de 2
PAIR	TA INCORPORA	ACIÁN DE LA VIRUTA DE CUERO PARA RECUERLAS PATOLOGÍAS	DEL COMORETO	SIMPLE PC 210 KWCM2
TESIS SOLICITANTE UBICACIÓN EXPEDIENTE Nº	EN LOSAS - HU : ALEJANDRO PI : LIMA	ADÓN DE LA VIPUTA DE CUERO PARA REDUCIR LAS PATOLOSTAS IACHERA RLACIOS MIGUEL	DEL CONCRETO	SIMPLE PC 210 KS/CH2

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

C) OBSERVACIONES DE ENSAYO:

Tlempo	Mess de agus inicial	Hens de agus final	Tona de Evaponación	T* Aire	Veloc. Viento	Rumedad Relativa	¿Aperación de grieta
min	gr	gr	kg/m2h	(°C)	m/s	1%	SéWo - Código
30	400.00	397.90	1.20	28.1	8.5	45	
00	997.60	395.50	1,07	29.5	2.0	45	
90	395.50	383.10	5.37	29.0	3.0	44	
120	390,10	390,30	1.60	28.3	2.8	44	
150	390,30	304 00	115	29.4	2.8	41	
100	384.80	363.40	2.90	29.6	5.0	41	
210	383.40	360.60	1,49	29.3	2.0	40	
240	386.80	377.20	2.06	58.0	3.0	40	
270	377.20	376.30	1,09	31.5	2.8	40	
300	375.30	372.70	1.49	31.5	25	40	
330	372.70	368,40	2.46	30.7	3.2	82	
360	358.40	384.80	2.00	22.0	32	87	
390	354.00	388.00	5.81	33.6	3.1	26	
420	,	-			14		
450					1.4		
480		200	100	3.4	14		

- Registro de dotes de 6 horas 30 minutos. - Parales scondidicados por el petido de 24 horas. - Parales scondidicados por el petido de 24 horas. - Para la torna de datos de la temporatura arabiente y humodos frebleva, se utilizó el termotrigrónsato de manca BCECO Germany. - Para la torna de datos de la velocidad de viento, se utilizó el termotrigrónsato de manca BCECO Germany. - Para la torna de datos de la velocidad de viento, se utilizó el termotrigrónsato de manca BCECO Germany. - Para la torna de datos de la velocidad de viento, se utilizó el termotrigrónsato de por: - Revisado por: - MTL - REDTECNÍA SAC - MTL - REDTECNÍA

www.mtlgeotecniasac.com

MTL GEOTECNIA SAC

SONTRUL DE DANDA

			INFORME	DE ENSA	ΥO		Códes	FOR LAB	CON-9021
LABORATO		E110			olán pri	8	Verside:		0
MATERIAL		ENS	SAYO DE R	CRETC		•	Fesha	25/1	0r2021
							Página	2	de 2
ESIS OLICITANTE BICACIÓN XPEDIENTE Nº	ALEJA LIMA	ORPORACIÓN DE LA VIR SAS - HUACHIPA NDRO PALACIOS MIGUE		PARA RED	UCIR LAS PATOL	COMAS DEL COM	PRETO SMIPLE F	C 210 KG/CM2	
anal lueatre rofundidad	Donle 1	K-1					Aprob Ensey Fecha de	ado por: ado por: ensayo:	GCM GCM 22/10/20
A)	INFO	RMACIÓN GEN	IERAL:				- ,-,-,-,-,-,-	14-91	
			· G	14 No. 11 No.					
		Resistencia de diseñ-	0: 210	kg/lom2					
		Dimensiones de caj	ar35.5 cm	x 56 cm x	10 cm				
		Diámetro Beld	B: 8.67	om					
	Bee	anterthe six Plants Statut	n: 0.15	.mm					
		Willegin de Lieure Leiter							
B)		A DE DATOS:							
В)			identificación	Espesor	Longitud cm				
B)		A DE DATOS:	kientificación						
B)		A DE DATOS:		mm	cm			101	
В)		A DE DATOS:	F-01%-1-1	0.10	5:00			10,1	
В)		A DE DATOS:	F-01%-1-1 F-01%-1-2	0.10 0.10	5:00 4:00			100	
В)		# Flours	F-01%-1-1 F-01%-1-2 F-01%-1-8	0.10 0.10 0.10 0.10	5:00 4:00 5:00				
В)		A DE DATOS: # Finers 1 2 3 4	F-C1%-1-1 F-C1%-1-2 F-C1%-1-3 F-C1%-1-4	0.10 0.10 0.10 0.10	500 400 500 190		DAIL	W-1	
В)		A DE DATOS: # Finers 1 2 3 4	FC1%-1-2 FC1%-1-2 FC1%-1-3 FC1%-1-4	0.10 0.10 0.10 0.10 0.10	500 400 500 190 150		PAN	JEL	
В)		A DE DATOS: A Fissure 1 2 3 4 5	FG19-1-1 FG19-1-2 FG19-1-3 FG19-1-4 FG19-1-6 FG19-1-8	0.10 0.10 0.10 0.10 0.10 0.10	500 400 500 500 190 150 430		PAIN	JEL.	
B)		# Finance	F-C19-1-1 F-C19-1-2 F-C19-1-4 F-C19-1-4 F-C19-1-8 F-C19-1-8	0.10 0.10 0.10 0.10 0.10 0.15 0.15	500 400 500 500 200 200 200 453 840		PAN ?	JEL	
B)		# Finance	F-C19-1-1 F-C19-1-2 F-C19-1-3 F-C19-1-4 F-C19-1-2 F-C19-1-7 F-C19-1-7	0.10 0.10 0.16 0.15 0.15 0.15 0.16	5:00 4:00 5:00 3:90 3:90 3:50 4:50	· · · · · · · · · · · · · · · · · · ·	PAN 3	JEL	
B)		### A DE DATOS: ### Finate	F-C19-1-1 F-C19-1-2 F-C19-1-4 F-C19-1-4 F-C19-1-7 F-C19-1-8 F-C19-1-8	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	5:00 4:00 5:00 5:00 3:90 3:90 3:50 4:50 4:50		PAN ?	IF L	
B)		### A DE DATOS: ### ### ### ### ### ### #### #### ##	F-C19-1-1 F-C19-1-2 F-C19-1-2 F-C19-1-2 F-C19-1-2 F-C19-1-2 F-C19-1-3 F-C19-1-1 F-C19-1-1	0.10 0.10 0.10 0.10 0.10 0.15 0.16 0.16 0.20 0.10	5:00 4:00 5:00 3:90 3:53 4:53 6:60 4:50 13:00 7:00		PAN ?	JEL 2	
B)		### A DE DATOS: ### ### ### ### ### ### ### ### ### #	F-C19-1-1 F-C19-1-2 F-C19-1-2 F-C19-1-2 F-C19-1-2 F-C19-1-3 F-C19-1-1 F-C19-1-1 F-C19-1-1	0.10 0.10 0.10 0.10 0.10 0.15 0.16 0.20 0.10	5:00 4:00 5:00 2:50 2:50 2:50 4:50 4:50 13:00 7:00 5:00		PAN ?	IEC >	
В)		## A DE DATOS: ## Finus 1 2 3 4 5 6 7 6 9 10 11 12	F-C19-1-1 F-C19-1-2 F-C19-1-3	0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 1	500 4.00 5.00 1.50 1.50 1.50 4.50 13.00 7.00 5.00 6.00		PAN ?	IEL .	
В)		### A DE DATOS: ###################################	FG19-1-1 FG19-1-2 FG19-1-3 FG19-1-3 FG19-1-3 FG19-1-3 FG19-1-3 FG19-1-3 FG19-1-1 FG19-1-1 FG19-1-1 FG19-1-1 FG19-1-1 FG19-1-1 FG19-1-1 FG19-1-1 FG19-1-1	0.10 0.10 0.10 0.10 0.15 0.16 0.20 0.10 0.10 0.10 0.10	500 4.00 5.90 159 153 4.53 8.60 4.50 13.00 7.00 5.00 4.00		PAN ?	IEL	
В)		## A DE DATOS: # Finare 1 2 3 4 5 6 9 10 11 12 13	F-C19-1-9 F-C19-1-9 F-C19-1-9 F-C19-1-9 F-C19-1-9 F-C19-1-9 F-C19-1-9 F-C19-1-1-9	0.10 0.10 0.10 0.10 0.15 0.16 0.16 0.10 0.10 0.10 0.10 0.10 0.10	500 4.00 5.90 159 153 4.53 8.60 4.50 13.00 7.00 5.00 4.00		PAN 3	JEL.	
В)		## A DE DATOS: ## Fister 1 2 3 4 5 6 9 10 11 12 13 14 15	F-C19-1-4 F-C19-1-2 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-3 F-C19-1-4 F-C19-1-1-3 F-C19-1-4 F-C19-1-4 F-C19-1-4 F-C19-1-4 F-C19-1-4 F-C19-1-4 F-C19-1-4 F-C19-1-4 F-C19-1-4	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	200 5:00 5:00 5:00 1:50 1:50 4:53 8:80 4:50 13:00 5:00 4:00	70	PAN 3	JEL.	

Fuente: MTL geotecnia

Paneles accedicionatise por el periodo de 24 hotas.
 Pera la torne de datos del esposor de la fisura, se utilizó la regla de fisuras.

www.mtlgeotecniasac.com

	BORATORIO ENSAYO DE RETRACCIÓN DE ENSAYO DE		Código	FDR-LAB-CON-002.01
			Vertion	0
MATERIAL		CONCRETO	Fecha	35/10/2021
	10	2011011270	Página	1 de 2
TRIBAN	1.4 (WCD/9800/94	CHANGE LA VIBUTA DE CUERDO PARA RECUICIR LAS RATOS DISTAS DI	EL CONCRETO S	MER E EST DATE MODERNO
TESIS SOLICITANTE UBICACIÓN EXPEDIENTE Nº	EW LOSAS - HU	CIÓN DE LA VIRUTA DE CUERTO PARIA REDUCIR LAS PATOLOGÍAS DI ACHIPA. LLACIOS MIQUEL	EL CONCRETO S	MPLE FE 210 KG/CM2

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

Tiempo	Mass de agus Inicial	Nasa de ague final	Yana de Eveporación	T* Alse	Veloc. Viento	Hursedad Relative	¿Apereción de griete
min	OF.	Qr .	kg/m2fh	("C)	mis	%	SVNo - Código
30	600.00	397.60	1,20	26.7	2.0	46	
60	307.00	395.50	1.37	29.7	2.9	47	
90	365.50	363.10	1.37	30.0	29	40	
120	365,10	860.30	1.00	28.6	2.4	47	
150	390.30	364.00	3.15	29.6	2.0	42	S-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
180	384.80	363.40	0.60	30.0	26	39	
210	363.40	380.83	1.40	29.2	27	41	
240	389.80	377.20	2.06	29.2	2.7	49	
270	377.20	375.30	1.00	30.1	27	42	
300	375.40	372.70	1.55	31.1	2.7	40	
330	372.70	388.40	2.46	31.1	28	32	
360	368.40	364.80	2.06	31.0	2.7	37	
386	364.80	365.00	5.61	34.5	3.1	29	
420							
450		20	1				100
460			1 2			-	

C) OBSERVACIONES DE ENSAYO:

Pored acondicionado al estado reás critico del ambiento disede se instalo el alatante.

- Registro de datos de 6 horas 30 minutos.

- Pareles acondicionados por el periodo de 24 horas.

- Pare la torsa de datos de la temperatura ambiente y horacidad nelativa, se utilizó el fermatignómetro de manos BOSCO Germany.

- Pare la torsa de datos de la velocidad de viento, se utilizó el manhametro digital de madelle

www.mtlgeotecniasac.com

SOLICITANTE UBICACIÓN EXPEDIENTE Nº	ALEJANDRO PALACIOS MIGUEL LUMA 279		
TESIS	LA INCORPORACIÓN DE LA VIRUTA DE CUERTO PARA REDUCIR LAS F EN LOSAS - HUACHIPA	AFOLOGÍAS DEL CONCRETO SIMPLI	FC 210 KG/CM2
		Pigina	2 de 2
DE ENSAYO MATERIAL		Fecha	25/10/2021
LABORATO		Version	
			FOR LAB-CON-902.0

Musetra : _	Cuero 1% - 2			
Assistancia de diseño: _	210	_ Agricm2		
Dimensiones de caja: _	35.5 6	on x 56 on x 10 on		
Diémetro Balde:	6.67	000		
ocredio de Figure Parrón:	015	mm		

B) TOMA DE DATOS:

# Floura	Identificación	Espesor	Longitus
(140)		mm	cm
1	F-Q1%-Q-1	0.10	5.00
2	F-G1M-2-2	0.10	5.00
3	F-C1%-2-8	0.10	3.00
4	F-C19-24	0.10	5.00
6	F-01%-0-5	0.10	6.00
6	Fi01%-2-8	0.10	2.00
T	F-C1%-2-7	0.10	8.50
0	F-01%-2-8	0.10	4,00
9	F-01%-24	9.10	5.00
10	Fi01%-2-10	0.10	5.00
11	F-01%-2-11	0.92	7.50
12	F-G1%-2-12	6.10	5.00
13	F-01%-2-13	0.15	3.00
14	F-C1%-2-14	33	100
15	F-C1%-2-15		97
16	F-C1%-2-18	74	14
PROMEDIO ES	IPESOR (mm)		1.50
CRR	(90)	8	0.77

C) OBSERVACIONES DE ENSAYO:

Panel de Concreto - Cuero 1% - 2

- Registro de datos de 6 horas 30 minutos. - Paneles acordizionados por el periodo de 24 horas. Para la toma de datos del espesor de la fisura, se utilizó la regla de fisuras. - Para la toma de datos do la longitud de la fisura, se utitol una winoha métrica. GEOTANIAS A CMTL GEOTECNIA SAC

www.mtlgeotecniasac.com

Ay	INFORME DE ENSAYO	Odelan	FOR-LAB-CON-002.01	
LABORATORIO	ENSAYO DE RETRACCIÓN DEL	Versión	0	
DE ENSAYO DE MATERIALES	CONCRETO	Fecha	25/10/2021	
		Página	1 de 2	

TESIS	LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIÓ LAS PATOLÓGÍAS DEL CONCRETO S EN LOSAS - NUACHIPA	IMPLE PC	210 KG/CM2
SOLICITANTE	: ALEJANDRO PALACIOS MIGUEL		
UBICACIÓN	: LIMA		
EXPEDIENTE Nº	1279		
Panel	.d Aprobe	do por:	GCM
Muestre	: Dose 3K - 1 Enseya	de per:	GCM
Profundided	Fecha de a		25/10/2021

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

Tiempo	Mara de ague Inicial	Masa de agua finsi	Tasa de Eveporación	T* Aire	Veloc. Viento	Humedad Reletive	Apereción de grieta
min	gr	gr	kg/m2/h	(°C)	mis	*	Si/No - Código
30	400.00	397.70	1.32	27.0	2.6	66	s-areconducts
60	397.70	192.50	2.96	29.0	20	44	
90	392,50	190.30	126	30.3	27	46	
120	390.30	387.80	1.43	80.2	3.0	39	
150	387.80	385.70	1.20	31.3	3.0	36	
160	385.70	383.10	1.49	52.6	3.0	40	
210	383.10	180.90	1.26	32.1	3.0	37	
240	360.90	378.20	1.66	36.0	2.0	36	
270	379.26	375.00	1,02	32.6	2.6	36	
800	375.90	373.30	1.49	32.7	28	40	
390	373.30	309.60	212	12.1	29	35	
363	369.60	362.43	4.12	32.E	2.9	37	
390	362,60	359.63	2.18	22.3	2.0	33	
420	368.60	395.20	1,66	35.1	3.0	37	
450		-					
480	-			4			

C) OBSERVACIONES DE ENSAYO:

- Panel accedisionada al estado més crítico del ambiente donde se lostaló el sistema.

- Ragistro de datos sin 7 horsa.

- Panelsa accedisionados por el periodo de 24 horsa.

- Panelsa accedisionados por el periodo de 24 horsa.

- Pane la torsa de datos de la temperatura ambiente y humedad relativa, se utilizá el formológionetro de marca BOECO Garmany.

- Pane la torsa de datos de la velocidad de viento, se utilizó el anestmetro digital CR2002.

www.mtlgeotecniasac.com

oratory	INFORME DE ENSAYO	Cádigo	FOR-LAB-00N-002.01
LABORATORIO	ENSAYO DE RETRACCIÓN DEL	Version	0
DE ENSAYO DE MATERIALES	CONCRETO	Fecha	25/10/2021
		Pägira	2 de 2

TE8/8	LA MICORPORACIÓN DE LA VINUTA DE CUENO PARA REDUCIR LAS PATO EN LOSAS - HUACHIPA.		
SOLICITANTE UNICACIÓN EXPEDIENTE Nº	: ALEXANDRO PALACIOS MIGURL : LIMA : 279		
Panel	: 6 : Dank 2% - f	Aprobedo por:	GCM
Musetra Profundidad	: LABER JOB - T	Enseyado por: Facha de anseyo	GCM 35/10/2021

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

# Flaura	Identificación	Espesor	Longitud
		mm	cm
1	F-03%-1-1	0.10	4.12
2	F-C3%-1-2	D:10	2.02
3	F-C0%-1-0	0.10	2.10
4	F-07%-1-4	0.10	3.66
5	F-C3%-1-9	0.90	6.79
	F-CIN-14	0.10	2.97
7	F-C3%-1-7	0.10	1.96
8			- 5
9	-		- 10
10	-		-
11			
12	A Control		
13			
14			- 5
15			. €
18	+	3.5	+0
PROMEDIO ES	PESOR (mm)		110
CRR	(%)	3	5.30

Panel de Concreto - Cuero 3% - 1

C) OBSERVACIONES DE ENSAYO:

- Parali aconsisionado al estado más critico del ambiente donde se instaló el sistema.

- Registro de datos de 7 hoses

- Parales acondicionados por el periodo de 24 horas.

- Para la toras de delos del espesor de la flacas, es utilizó la regla de flecras.

- Para la toras de delos de la tengitad de la flacas, es utilizó la regla de flecras.

Elaborado por	Revisado por:	Aprobado por:
Se OL	MTL GEOTE VIA	SAC MTL GENTECNIA SA
E HP	Ounter &	
(a) 11 Bo	Grand Huse	CONTROL DE CALIDAD
Jefe de Laboratorio	Ingeniero de Susios y Pavimentos	Control de Calidad MTL GEOTECNIA

www.mtlgeotecniasac.com

		INFORME DE ENSAYO	Código	FOR-LAB-CON-002.81
DE ENSAYO		ENSAYO DE RETRACCIÓN DEL	Versión	0
MATERIALE		CONCRETO	Fecha	25/10/2021
		377333337533	Página	1 de 2
TES/S	LA INCOMPORACI	IÓN DE LA WRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS D	EL CONCRETO S	MPLE FIC 210 KG/CM2
TESIS SOLICITANTE UBICACIÓN EXPEDIENTE Nº	EN LOSAS - HUA ALEJANORO PAL LIMA	CHPA.	EL CONCRETO S	IMPLE PC 210 KG/CM2

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

C) OBSERVACIONES DE ENSAYO:

Therepo	Hone de ague inicial	Viena da agua final	Tesa de Exsporación	T' Also	Veloc. Viesto	Humedad Relativa	¿Aparación de grieta:
rein	gr	gr	kg/m2/h	(0.1)	rm/s	*	SiWo - Cddlgo
30	400.00	397.70	1.32	27.4	25	62	
60	907.79	302.93	256	29.3	27	45	
90	392.50	390 30	126	310	25	46	
120	390,30	387.83	1.48	31.0	28	40	
150	367.80	395.70	1.20	31.5	26	40	
180	385.75	383.10	1.49	34.1	2.6	40	
210	383.10	390,00	1.26	\$1.7	2.7	36	
240	360.60	378.20	1.55	36.2	2.9	38	
270	378.20	375.00	1.32	33.1	2.7	35	
300	375.60	373.30	1.49	32.0	2.5	41	
230	372.30	269.60	2 12	32.8	28	37	
360	360.60	362.40	412	32.7	2.7	57	
390	362.40	366.60	218	33.2	2.5	35	
420	356.60	366.20	166	31.0	2.7	36	
450	-			-			
480					-		

- Purel acondicionado al estado más critico del ambiente donde se instalo el sistema. - Registro de datos de 7 horas. - Purelas consciliórendos por el período de 24 horas. - Pure la torna de datos de la temperatura ambiente y humedad relativa, se utilizó el termológionetro de mente 80000 Germany. - Pura la torna de datos de la velocidad de vierão, se utilizó el annotoriero digital de modela CR2000. Elaborado por Apreliados A C MTL GEOPECNIA SAC MIL GEOPECNIA SAC LIBRO DE CALIDAD LIBRO DE CALIDAD LIBRO DE CALIDAD Linguistico de proceso Registro de Sessión de Ses

www.mtlgeotecniasac.com

DATE DISEASE IN				
TESIS SOLICITANTE UBICACIÓN EXPEDIENTE Nº	LA INDOMPORACIÓN DE LA VIRUTA DE CUERTO PARA REDUCIR LAS PATOLOGÍAS DE EN LOSAS - HUACHIRO. ALEJANDRO PALACIOS MISUSE. LUMA 270	EL CONCRETO SWAPLE F	C 210 MG/CM3	
		Pigina	2	de 2
MATERIAL		Fecha	25/1	10/2021
DE ENSAYO		Versión		0
				CON-962.01

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

# Flours	ident/ficación	Espesar	Longitud
*		mm	cm
1	F-00W-0-1	0.10	2.07
2	F-03%-2-2	0.10	2.06
3	F-09%-2-8	0.10	6.23
4	F-03%-24	0.10	6.91
6	+	14	17
6		0.0	
7			
	1 2	- SF	14
9		1	14
10		89	14
11			
12		- 1	
13		- 14	19
14		100	38
15	1 5	15500	1195
16	2.2		
PROMEDIO ES	PEBOR (mm)		.00
CRR	(%)	3	5.55

Panel de Concreto - Cuero 3% - 2

C) OBSERVACIONES DE ENSAYO:

- Parel accondicionado si estado más critico del antiterta donde se tentado el sistema.
- Registro de datos de 7 horse.
- Pareles concribionesis por el gentudo de 26 horse.
- Pare la torre de datos del especer de la fisera, se utilido la regis de fiseras.
- Pare la torre de datos de la fonçitud de la fisera, se utilido la regis de fiseras.
- Pare

www.mtlgeotecniasac.com

		INFORME DE ENSAYO	Códiso	FOR-LAS-CON-002.01
DE ENSAYO		ENSAYO DE RETRACCIÓN DEL	Versión	0
MATERIALE		CONCRETO	Fecha	25/10/2021
		33.13.12.13	Página	1 de 2
7ESIS	LA INCORPORA	CIÓN DE LA VIRUTA DE CUERD PARA REDUCIR LAS PATOLOSÍAS D	EL CONCRETO S	MPLE FC 210 KG/CM2
TESIS SOLICITANTE UBICACIÓN EXPEDIENTE NP	EN LOSAS - HU ALEJANORO PA LINA		EL CONCRETO S	MPLE FC 210 KS/CM2

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

Tiempo	Mana de agua inicial	Mane de agus Real	Tasa de Evaporación	T* Also	Veloc. Viento	Hameded Relative	¿Aparación de griete:
min	gr.	gr	lig/m2/b	(c)	m/s	4	SI/No - Cdd/go
30	375.CO	373.60	249	40.5	2.9	49	
60	373.60	372.00	1.00	38.4	27	40	
90	372.00	371.00	6.57	38.0	22	-0	
120	371.00	369.00	1.15	38.5	25	43	
150	399.00	385.00	2 29	39.7	27	42	
180		369.20	#WLOR	45.0	2.8	49	
210	363.20	362.00	0.80	410	27	41	
240	362.00	390.00	1.15	421	25	40	
270	360.00	358.00	1.15	412	28	40	
300	358.00	350.00	1.15	43.2	28	39	
330	356.00	364.00	1.10	423	2.5	38	
360	354.00	362.00	1.15	41,8	2.4	36	
390	352.00	349.00	1.72	39.1	3.7	37	
420	349.00	346.00	1.72	40.0	3.9	37	
450	-	-					
480	J. J. Ha	-	100				

C) OBSERVACIONES DE ENSAYO;

Peret acondicionado al estado máis critico del antidente donde se instalo el sisteme.

 Registro de datos de 7 horas.

Pareles occedicionatos per el periodo de 24 hosas.

Pareles occedicionatos per el periodo de 24 hosas.

Para la toma de datos de la temperatura ambiente y humadad relativa, se utilizó el termohigormetro de marca BOECO Germany.

Para la toma de datos de la velocidad de viento, se utilizó el anenómetro digital CR2002.

(511) 457 2237 / 999 349 903 Jr. La Madrid 264 Asociación Los Olivos, San Martin de Porres - Lima

www.mtlgeotecniasac.com

informes@mtlgeotecniasac.com INFORME DE ENSAYO

FOR-LAB-CON-002.01 ENSAYO DE RETRACCIÓN DEL 25/10/2021 Fecha CONCRETO 2 de 2 Página

: LA INCORPORACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DEL CONCRETO SIMPLE PC 210 KG/CM2 EN LOSAS - HURCHIPA. : ALEJANDRO PALACIOS MIGUEL 09/11/2021

A) INFORMACIÓN GENERAL:

Dos/s 5% - 1 Resistencia de diseño: 210 kg/t/m2 ensiones de caja: 35.5 cm x 56 cm x 10 cm Diámetro Baide: 5.67 cm Promedio de Fisura Patrón: 0.15 mm

B) TOMA DE DATOS:

Ø Fleura	Identificación	Espasor	Longitud
		mm	cim
1	F-C8%-1-1	0.10	2.47
2		+0	
3		*:	- 3
4		¥3	98
5		*8	
6			31
7		25	13
8	+	1 31	- 35
9	76	*	38
10			18
-11			0.5
12			135
13			1.0
14			3
15	1	-	=
18			-
PROMEDIO ES	PESOR (mm)		0,10
CRR	(%)	3	3.33

Panel de Concreto - Cuero 5% - 1

C) OBSERVACIONES DE ENSAYO:

- Panel acondicionado al estado más critico del ambiente donde se instaló el sistema.
- Paneles acondicionados por el período de 24 horas.
- Para la soma de datos del espesor de la flecre, se utilizó la regla de fisures.
- Para la tome de datos de la longitud de la fisura, se utilizó una winche métrica.

MTL GEOTECNIA SAC OL DE CANDAD

www.mtlgeotecniasac.com

	-	INFORME DE ENSAYO	Código	FOR LAB	CON-002.01
DE ENSAYO		ENSAYO DE RETRACCIÓN DEL	Versión		D
MATERIALE		CONCRETO	Fecha	25/1	0/2021
			Figins	1	de 2
TES/S	LA INCOMPOR	ACIÓN DE LA WRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS D	EL CONCRETO S	MPLE FC 21	NG/OM2
SOLICITANTE UBICACIÓN	EN LOSAS - HI ALEJAMORO P LIMA		EL CONCRETO S	MPLE FIC 21	HS/OM2
TÉSIS SOLICITANTE UBICACIÓN EXPEDIENTE Nº Panel	EN LOSAS - HI ALEJAMORO P LIMA	ACHPA ALAGIOS MISUEL	EL CONCRETO S Aprobe Ensays	de par:	GCM GCM

A) INFORMACIÓN GENERAL:

B) TOMA DE DATOS:

C) OBSERVACIONES DE ENSAYO:

- Panel acondicionado al estado más critico del ambiente donde se installó el sistema

Thempo	Mass de agus Inicial	Mass do agus final	Tasa de Evaporación	T* Alm	Veloc. Viento	Humedad Relative	¿Apareción de grieta
min	gr	gr	kg/m2th	(°C)	mis	%	SVNo - Código
80	375.00	373.80	0.69	58.3	2.5	62	
60	371.00	372.00	1.00	39.6	29	49	
90	372.00	871.00	0.67	30.5	23	44	
120	371.00	369.00	1.15	37.4	2.5	42	
150	369,00	365.00	129	38.1	27	45	
180	365,00	363.20	1.08	39.3	24	44	
210	363.20	362.00	0.69	40.1	2.3	42	
240	362.00	380.00	1.16	40.8	2.1	40.	
270	366.00	368.00	115	40.9	2.6	41	
300	354.00	366.00	1.18	42.3	2.2	41	
330	358.00	364.00	1.15	40.7	25	36	
360	354.00	362.00	115	34.1	2.9	30	
390	352,00	349.00	172	34.4	3.1	38	
420	349.00	346.00	1.72	421	23	39	
450		*	-				-
490							-

- Replace de dates de 15 house. - Person la coma de dates de la temporatura entiretre y humeded receiva, se utilizé el termohignément de marce BOECO Germany. - Person la torna de dates de la velicidad de viente, se utilizé el senediretro deglas CR2002. | Person la torna de dates de la velicidad de viente, se utilizé el senediretro deglas CR2002. | Person la torna de dates de la velicidad de viente, se utilizé el senediretro deglas CR2002. | Person la torna de dates de la velicidad de viente, se utilizé el senediretro deglas CR2002. | Person de dates de la velicidad de viente, se utilizé el senediretro deglas CR2002. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de marce BOECO Germany. | Person de dates de la velicidad de viente, se utilizé el senediretro de la velicidad de viente, se utilizé el senediretro de la velicidad de viente, se utilizé el senediretro de la velicidad de viente, se utilizé el senediretro de la velicidad de viente, se uti

www.mtlgeotecniasac.com

LABORATO		INFORME DE ENSAYO	Códico	FOR-LAB-CON-862.0
DE ENSAYO MATERIALI		Fecha	25/10/2021	
		00110110	Pigine	2 de 2
YESIS .		IACIÓN DE LA VIRUTA DE CUERO PARA REDUCIR LAS PATOLOGÍAS DE	CONCRETO SHAPE E E	27 010 MO PMY
SOLICITANTE UBICACIÓN EXPEDIENTE Nº			S SWITTE I V SHITTEE	O I TO POSICIONE

A) INFORMACIÓN GENERAL:

Mvestra : _	Donit 5% - 2		
Resistencia de diseño: _	210	_ kgflom2	
Dimensiones de caja: _	35.5 cm x 56 cm x 10 cm		
Diámetro Balde: _	6.67	_ 011	
Promedio de Fleura Patrón:	0.15	mm	

B) TOMA DE DATOS:

A Floure	MentFeasibn	Espesor	Longiber cm 3.61
F	-	mm	
1	F-05%-2-1	0.10	
2	- 6		
3	2		
4	+		
5	*		
6	*		
7			
10			
12			
12			
54			
15	-	- 25	135
18		- 14	
PROMEDIO ESPESOR (mm)		0.90	
CRR (%)		33.33	

Panel de Concreto - Cuero 5% - 2

C) OBSERVACIONES DE ENSAYO: - Pacel acondicionado si estado mise critico del antidente donde se instalo el deterna. - Registro de detos de 7 horas. - Pereles acondicionados por el periodo de 24 horas. - Pere la torea de datos del espesor de la fisura, se vilitró anoga de fisuras. - Para la torea de datos de la longitud de la fisura, se vilitró una véncha métrica. Elaborado por: | Revisado por: | Aprobado
ANEXO 10: CERTIFICADOS DE CALIBRACION

CERTIFICADO DE CALIBRACIÓN No: CCP-0155-026-21

IDENTI			

NOMBRE INVERSIONES GENERALES CENTAURO INGENIEROS S A C. DIRECCIÓN: CAR. CENTRAL NRO 3950 INT. A JUNIN HUANCAYO EL TAMBO

TELÉFONO: 992 875 860

PERSONA(S) DE CONTACTO: VÍCTOR PEÑA DUEÑAS

IDENTIFICACIÓN DEL ÎTEM DE CALIBRACIÓN

EQUIPO: CONVECCIÓN FORZADA UNIDAD DE MEDIDA: MARCA: PINZUAR •с MODELO: PG190 RESOLUCIÓN: 0,1 °C SERIE: INTERVALO DE MEDIDA: 327 (5a200)°C

CÓDIGO :	E-GT-054	ι	JBICACIÓN:	5	SUELOS I Y PAVIME	NTOS			
	EQUIPAMIENTO UTILIZADO								
CÓDIGO	NOMBRE	MARCA	MODELO	SERIE	VENCE CAL.	Nº CERTIFICADO			
ELP.PT.022	TERMÓMETRO DIGITAL	ELPRO	ECOLOG TN4	404712	2021-08-08	CCP-0104-068-20			
ELP.PT.023	TERMÓMETRO DIGITAL	ELPRO	ECOLOG TN4	404701	2021-08-08	CCP-0104-064-20			
ELP.PT.018	TERMÓMETRO DIGITAL	ELPRO	ECOLOG TN2	405292	2021-08-08	CCP-0104-078-20			
ELP.PT.013	TERMÓMETRO DIGITAL	CENTER	309	171000507	2021-08-25	CCP-0104-104-20			
ELP.PT.015	TERMÓMETRO DIGITAL	CENTER	309	171000560	2021-08-25	CCP-0104-112-20			
ELP.PT.014	TERMÓMETRO DIGITAL	CENTER	309	171000522	2021-08-25	CC-0104-108-20			
ELP.PT.041	FLEXÔMETRO	TRUPER	FH-5M	NO ESPECIFICA	2021-07-03	CCP-0104-027-20			
ELP.PT.078	BARÔMETRO	CONTROL COMPANY	6530	192445037	2021-08-30	6530-10674025			
ELP.PT.056	TERMOHIGRÓMETRO	ELC	TH-0510	NO ESPECIFICA	2021-08-10	CCP-0104-045-20			

DECLARACIÓN DE TRAZABILIDAD METROLÓGICA

Los resultados de calibración contenidos en este certificado son trazables al Sistema Internacional de Unidades (SI) por medio de una cadena ininterrumpida de calibraciones a través del CENAM (Centro Nacional de Metrología - México) o de otros institutos Nacionales de Metrología (INMs).

MÉTODO Y CONDICIONES DE LA CALIBRACIÓN

CALIBRACIÓN: ESTUDIO DE ESTABILIDAD Y UNIFORMIDAD EN 9 LOCACIONES (VOLUMEN ÚTIL) MÉTODO: MEDICIÓN Y COMPARACIÓN DIRECTA CON REGISTRADORES DE TEMPERATURA DOCUMENTO DE REFERENCIA: DKD-R 5-7, EDITION 07/2004 (ENGLISH TRANSLATION 02/2009), MÉTODO A

PROCEDIMIENTO: PEC.ELP.35

LUGAR DE CALIBRACIÓN: SUELOS I Y PAVIMENTOS TEMPERATURA AMBIENTAL MEDIA: 20,3 °C ±0,2 °C HUMEDAD RELATIVA MEDIA: 48,7 %HR ±1,2 %HR PRESIÓN ATMOSFÉRICA MEDIA: 693 hPa ±0 hPa

OBSERVACIONES

La incertidumbre reportada en el presente certificado corresponde a la incertidumbre expandida de medición (intervalo de conflanza), la cual se evaluó con base en el diocumento JCGM 100:2008 (GUM 1995 with minor corrections) "Evaluation of measurement data - Guide to the expression of uncertainty in measurement", multiplicando la incertidumbre tipica combinada por el factor de cobertura k, que para una distribución t (de Student) corresponde a un nivel de conflanza de aproximadamente el 95,45%. Este certificado no podrá reproducirse excepto en su totalidad sin la aprobación escrita del laboratorio Elicrom-Calibración. Los resultados contenidos en este certificado son válidos únicamente para el item aqui descrito, en el momento y bajo las condiciones en que se realizó el calibración.

- Normana. Los resultados indicados son válidos solamente para el volumen de trabajo delimitado por los 8 sensores, el resto de la cámara no se considera caracterizada.
- Las influencias debidas al efecto de la carga y la radiación no han sido estudiadas y por lo tanto tampoco fueron consideradas en la estimación de la incertidumbre. La temperatura media de los sensores patron han sido corregidas tomando en cuenta las desviaciones indicadas en sus certificados de calibración y representa a la mejor
- La temperatura media en el indicador del equipo bajo prueba y su corrección han sido redondeadas de acuerdo a las cifras decimales que posee la incertidumbre expandida reportada (véase 7.2.6 de la GUM).
- La temperatura del aire se obtiene sumando la lectura del indicador más la corrección de la indicación.
- El limite inferior para la presión atmosférica permitida bajo el procedimiento interno PEC.EL.35 es 860 hPa. Se acepta la desviación al método, en vista de que no afecta a la validez de los resultados

NOMBRE: INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C. DIRECCIÓN: CAR, CENTRAL NRO 3950 INT, A JUNIN HUANCAYO EL TAMBO

TELÉFONO: 992 875 880

PERSONA(8) DE CONTACTO: VÍCTOR PEÑA DUEÑAS

IDENTIFICACIÓN DEL ÎTEM DE CALIBRACIÓN MODO DE LECTURA: PIE DE REY DIGITAL MARCA: INSIZE UNIDAD DE MEDIDA: mm MODELO: 1108-300W DIVISIÓN DE ESCALA: 0,01 mm 1804141796 INTERVALO DE MEDIDA(1): (0 a 300) mm

cóbigo⁽ⁱ⁾: UBICACIÓNO: ÁREA DE ENSAYOS ESPECIALES E-GT-531

I	EQUIPAMIENTO UTILIZADO								
I	cóbigo	NOMBRE	MARCA	MODELO	SERIE	VENCE CAL.	Nº CERTIFICADO		
ı	ELP.PC.006	BLOQUE PATRÓN DE 50 mm	MITUTOYO	611675-531 18D	180205	2022-01-02	LLA-002-2020		
ı	ELP.PC.007	BLOQUE PATRÓN DE 100 mm	MITUTOYO	611681-531 17K	172533	2024-03-05	LLA - 093 - 2021		
ı	ELP.PC.008	BLOQUE PATRÓN DE 150 mm	MITUTOYO	611803-531 18A	170473	2022-01-02	LLA-005-2020		
ı	ELP.PC.009	BLOQUE PATRÓN DE 200 mm	MITUTOYO	611682-531 18D	180148	2024-03-08	LLA - 104 - 2021		
ı	ELP.PT.100	TERMÔMETRO DIGITAL	CENTER	309	190402568	2021-08-25	CCP-0104-138-20		
ı	ELP.PT.035	REGLA	MITUTOYO	182-125	ELP.PT.035	2021-09-23	CC-2929-037-20		
ı	ELP.PT.059	BARÔMETRO	CONTROL COMPANY	6530	181821642	2021-11-05	CCP-0104-149-20		
ı	ELP.PT.038	TERMOHIGRÓMETRO	CENTER	342	140701832	2022-08-03	CCP-0731-001-21		

DECLARACIÓN DE TRAZABILIDAD METROLÓGICA

Los resultados de calibración contenidos en este certificado son trazables al Sistema internacional de Unidades (SI) por medio de una cadena ininternumpida de calibraciones a wés del INACAL (Instituto Nacional de la Calidad - Perú) o de otros Institutos Nacionales de Metrología (INMs).

CALIBRACIÓN

MÉTODO: COMPARACIÓN DIRECTA CON BLOQUES PATRÓN LONGITUDINALES (BPL)

DOCUMENTO DE REFERENCIA: CEM DI-008:2013 (EDICIÓN DIGITAL 1) TEMPERATURA AMBIENTAL MEDIA: 20,1 °C ±0,0 °C PROCEDIMIENTO: HUMEDAD RELATIVA MEDIA: PEC.ELP.22 58,6 %HR ±0,1%HR LUGAR DE CALIBRACIÓN: PRESIÓN ATMOSFÉRICA MEDIA: LABORATORIO 2 - ELICROM 1004 NPa ±0 hPa

RESULTADOS DE LA CALIBRACIÓN

Nominal	Lectura Îtem	Lectura Patrón	Error de Medición	Incertidumbre	Factor de Cobertura			
mm	mm	mm	mm	mm	(k)			
		BOCAS PARA MED	IDAS DE EXTERIORES					
0	0,000	0,0000	0,0000	0,0082	2,00			
50	50,000	50,0001	-0,0001	0,0082	2,00			
100	100,000	100,0001	-0,0001	0,0082	2,00			
150	150,000	150,0003	-0,0003	0,0082	2,00			
200	200,000	199,9998	0,0002	0,0082	2,00			
250	250,000	249,9998	0,0002	0,0082	2,00			
300	300,000	299,9999	0,0001	0,0082	2,00			
		BOCAS PARA MED	IDAS DE INTERIORES					
100	100,000	100,0001	-0,0001	0,0082	2,00			
250	250,000	249,9998	0,0002	0,0082	2,00			
	SONDA DE PROFUNDIDAD							
100	100,000	100,0001	-0,0001	0,0082	2,00			
250	250,000	249,9998	0,0002	0,0082	2,00			

OBSERVACIONES

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición (intervalo de conflarza), la cual se evaluó con base en el documento JCGM La incentidamere reportada en el presente centricado en la incertoambre expansica de medicion (intervado de contanza), al cual se evalud con base en el cocumento occumento occu NOTAS:

En cada punto de calibración se ha realizado 2 medidas repetidas y se muestra el promedio de ellas. Adicionalmente se ha elegido dos puntos al azar y se ha realizado en ellos

(0) Información proporcionada por el cliente. Elicrom no es responsable de dicha información.
(a) Información tomada de las especificaciones del Item de calibración (proporcionada por el fabricante).

CALIBRACIÓN REALIZADA POR: José Ferro FECHA DE RECEPCIÓN DEL ÎTEM: 2021-08-05 FECHA DE EMISIÓN: 2021-08-11 FECHA DE CALIBRACIÓN: 2021-08-06

¹⁰ medidas repetidas para determinar la repetibilidad.
- La lectura del patrón y el error de medición (mejor estimación del valor verdadero) se muestran con la misma cantidad de decimales que la incertidumbre reportada (véase 7.2.6

L-23862-002 RO

Calibration Cartificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

Equipo

TAMIZ 8" PARA LAVADO

Fabricante

PINZUAR

Modelo

GRANOTEST

Número de Serie

62046

Identificación Interna

E-GT-1405

Malla

Meub

No. 200

Solicitante

Dirección

INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS,GDE-AV MCAL. CASTILLA) JUNIN -HUANCAYO - EL TAMBO

Ciudad

City

HUANCAYO

Fecha de Calibración

2021 - 07 - 20

Fecha de Emisión

2021 - 07 - 22

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refleren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados e petrones nacionales e internacio-nales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

intervals.

dis la aprobación del Laboratorio de Netrologia Pincoxiz no se puede repredisor el informe, socrepte cisando se repredisse en su tatalidad, ya que proporciena la seguridad que las partes del certificado ou se secon de certifico. Les entificados de calibración sin tima no sen vilidido.

Without the approved of the Pinsser Meknology Laboratory, the resert can not be reproduced, except when it is reproduced in its entirely, zince it provides the security that the parts of the cartificate are not taken out of context. Usegined collection perficults are not rould.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Amulfo López orio de Metr

Calibration Certificate - Dimensional Metrology Laboratory

L-23862-001 RO

Page / Pág 1 de 3

Equipo

TAMIZ 8" PARA LAVADO

Fabricante

PINZUAR

Modelo

GRANOTEST

Número de Serie

62039

Identificación Interna

E-GT-1404

Malla

No. 200

Solicitante

INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-

HUANCAYO - EL TAMBO

Cludad

SÑOS.GDE-AV MCAL. CASTILLA) JUNIN -

HUANCAYO

CIV

Fecha de Calibración

2021 - 07 - 20

Fecha de Emisión

2021 - 07 - 22

Número de páginas del certificado, incluyendo anexos

03

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al Item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la suministrada por el solicitante. información

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

intervals.

Sin its aprotection del Laboratorio de Natrología Priscuar nó se puede reproducir el informe, excepto cuando se reproduce en su tutalidad, ya que preparaciona la seguridad que los partes del eurificado no se secan de contenta. Los certificados de calibración sin firma no son vididos.

Without the approval of the Piccular Methodogy Laboratory, the report one not be reproduced, except when it is reproduced to its entirely, since it provides the security that the party of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan Certificado

Ing. Sergio Iván Martínez

Tecg. Jaiver Amulfo López

DIORCHOSTI RIXX

Los resultados emitidos en este Certificado se

refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información suministrada

Este Certificado de Calibración documenta y asegura la trazabilidad de los resultados a

patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo

con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la Calibración de

los instrumentos en apropiados intervalos de

ISO/TEC 17025:2017 11-LAC-004

Certificado de Calibración - Laboratorio de Fuerza

Calibration Certificate - Laboratory of Force

F-23460-001 R0

Page / Pág. 1 de 5

Equipo

MÁQUINA DIGITAL DOBLE RANGO PARA ENSAYOS

A COMPRESIÓN

Fabricante

PINZUAR S.A.S.

Modelo

PC-42D

Número de Serie

308

E-GT-1403

Identificación Interna

Capacidad Máxima

1000 kN

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección Address

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-

Ciudad

HUANCAYO - EL TAMBO

City

SÑOS,GDE-AV MCAL. CASTILLA) JUNIN -

HUANCAYO - EL TAMBO

The results issued in this Certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any

damages that may arise from the improper use of the instruments and/or the information provided by the customer.

por el solicitante.

tiempo.

This Calibration Cartificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI)

The user is responsable for Calibration the measuring instruments at appropriate time intervals.

05

Fecha de Calibración

2021 - 05 - 18

Fecha de Emisión

2021 - 06 - 02

Número de páginas del certificado, incluyendo anexos

Sin la aproteción del Lisboratorio de Metrología Printuar no se puede reproducir al Certificado, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del Certificado no se secen de certificados de calibración ain firma no son villados,

Without the approval of the Pinature Methology Leboratory: the report can not be reproduced, among when it is reproduced in its entirety; since it provides the security that the parts of the Certificate are not salar out of contain. Unsigned cells ratio certificates are not wait.

Firmas que Autorizan el Certificado

ing. Sergio Íván Martinez

ing. Miguel Andrés Vela Avellaned

CERTIFICADO DE CALIBRACIÓN No: CCP-0166-026-21

IDENTIFICACIÓN DEL CLIENTE

NOMBRE: INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.
DIRECCIÓN: CAR. CENTRAL NRO 3950 INT. A JUNIN HUANCAYO EL TAMBO

TELÉFONO: 992 875 880

PERSONA(S) DE CONTACTO: VÍCTOR PEÑA DUEÑAS

IDENTIFICACIÓN DEL ÎTEM DE CALIBRACIÓN

TEM: BALANZA DE PRECISIÓN UNIDAD DE MEDIDA: MARCA: OHAUS DIVISIÓN DE ESCALA REAL (d): 0,5 MODELO: R31P15 DIVISIÓN DE ESCALA DE VERIFICACIÓN (e): 0,5 SERIE: 8334120119 CAPACIDAD MÁXIMA (Méx): 15000 cóbigo : E-GT-059 CAPACIDAD MÍNIMA (Min): 100 CLASE: (III) MEDIA COEFICIENTE DE TEMPERATURA (Kr): 0,0000100 / °C

UBICACIÓN: SUELOS I Y PAVIMENTOS

EQUIPAMIENTO UTILIZADO								
cópigo	NOMBRE	MARCA	MODELO	SERIE	VENCE CAL.	Nº CERTIFICADO		
ELP.PT.004	JUEGO DE PESAS (F1)	HAFNER	F1	9851015	2021-08-23	CC-1930-004-20		
ELP.PT.002	PESA	HAFNER	M2	AEE	2021-08-23	CC-1930-002-20		
ELP.PT.003	PESA	HAFNER	M2	AEZ	2021-08-23	CC-0190-003-20		
ELP.PT.078	BARÓMETRO	CONTROL COMPANY	6530	192445037	2021-08-30	6530-10674025		
ELP.PT.058	TERMOHIGRÓMETRO	ELC	TH-0510	NO ESPECIFICA	2021-08-10	CCP-0104-045-20		

DECLARACIÓN DE TRAZABILIDAD METROLÓGICA

Los resultados de calibración contenidos en este certificado son trazables al Sistema Internacional de Unidades (SI) por medio de una cadena ininterrumpida de calibraciones a través del PTB (Physikalisch-Technische Bundesanstalt - Alemania) o de otros institutos Nacionales de Metrologia (INMs).

CALIBRACIÓN

MÉTODO: COMPARACIÓN DIRECTA CON MASAS PATRÓN CERTIFICADAS

DOCUMENTO DE REFERENCIA: EURAMET CALIBRATION GUIDE No. 18 - VERSION 4.0 (11/2015)

PROCEDIMIENTO: PEC.ELP.01

 LUGAR DE CALIBRACIÓN:
 SUELOS I Y PAVIMENTOS

 TEMPERATURA AMBIENTAL MEDIA:
 20,2 °C
 ±0,1 °C

 HUMEDAD RELATIVA MEDIA:
 47,4 %HR
 ±0,7 %HR

 PRESIÓN ATMOSFÉRICA MEDIA:
 690 hPa
 ±0 hPa

 DENSIDAD MEDIA DEL AIRE:
 0,820 kg/m²
 ±0,001 kg/m²

PRUEBA DE EXCENTRICIDAD						
Posición	Indicación	emp	±1,5 g			
No. 1	5000,0 g	Δlecc	Cumplimiento			
No. 2	5000,0 g	0,0 g	Cumple			
No. 3	5000,0 g	0,0 g	Cumple			
No. 4	5000,0 g	0,0 g	Cumple			
No. 5	5000,0 g	0,0 g	Cumple			
	Al _{ess} _{max}	0,0 g				

No. Pesada	Indicación			
No. 1	12000,0 g			
No. 2	12000,0 g			
No. 3	12000,0 g			
No. 4	12000,0 g			
No. 5	12000,0 g			
emp	± 1,5 g			
Máx - Min	0,0 g			

PRUEBA DE REPETIBILIDAD

PRUEBA DE ERRORES	DE INDICACIÓN (PRUEBA	DE PESAJES)
-------------------	-----------------------	-------------

Nominal	Lecture Item	Valor Patrón	Error de Medición	Incertidumbre	Factor de Cobertura (k)	emp	Cumplimiento
[9]	[9]	[9]	[9]	[9]	racio: de Cobertara (x)	[4/-9]	Cumpimento
0	0,0	0,00	0,00	0,29	2,00	0,5	Cumple
100	100,0	100,00	0,00	0,41	2,00	0,5	Cumple
3000	3000,0	3000,00	0,00	0,41	2,00	1,5	Cumple
4500	4500,0	4500,00	0,00	0,41	2,00	1,5	Cumple
6000	6,000	6000,00	0,00	0,43	2,00	1,5	Cumple
7500	7500,0	7500,00	0,00	0,43	2,00	1,5	Cumple
9000	9000,0	9000,00	0,00	0,43	2,00	1,5	Cumple
10500	10500,0	10500,00	0,00	0,48	2,00	1,5	Cumple
1200	1200,0	1200,00	0,00	0,41	2,00	1,5	Cumple
13500	13500,0	13500,00	0,00	0,48	2,00	1,5	Cumple
15000	15000,0	15000,00	0,00	0,55	2,00	1,5	Cumple

CERTIFICADO DE CALIBRACIÓN No: CCP-0155-017-21

IDENTIFICACIÓN DEL CLIENTE

NOMBRE: INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.
DIRECCIÓN: CAR. CENTRAL NRO 3950 INT. A JUNIN HUANCAYO EL TAMBO

TELÉFONO: 992 875 860
PERSONA(S) DE CONTACTO: VÍCTOR PEÑA DUEÑAS

IDENTIFICACIÓN DEL ÎTEM DE CALIBRACIÓN

TEM: BALANZA DE PRECISIÓN UNIDAD DE MEDIDA: Gramos (g) MARCA: CHAUS DIVISIÓN DE ESCALA REAL (d): 0.5 MODELO: R31P15 DIVISIÓN DE ESCALA DE VERIFICACIÓN (e): 0.5 SERIE: 8335130502 CAPACIDAD MÁXIMA (Méx): 15000 cóbigo : E-GT-057 CAPACIDAD MÍNIMA (Mín): COEFICIENTE DE TEMPERATURA (Kr.): 0.0000100 / °C CLASE: (III) MEDIA

UBICACIÓN: ENSAYOS ESPECIALES

	EQUIPAMIENTO UTILIZADO								
CÓDIGO	NOMBRE	MARCA	MODELO	SERIE	VENCE CAL.	Nº CERTIFICADO			
ELP.PT.002	PESA	HAFNER	M2	AEE	2021-08-23	CC-1930-002-20			
ELP.PT.003	PESA	HAFNER	M2	AEZ	2021-08-23	CC-0190-003-20			
ELP.PT.078	BARÓMETRO	CONTROL COMPANY	6530	192445037	2021-08-30	6530-10674025			
ELP.PT.058	TERMOHIGRÓMETRO	ELC	TH-0510	NO ESPECIFICA	2021-08-10	CCP-0104-045-20			
	DECLARACIÓN DE TRAZABILIDAD METROLÓGICA								

Los resultados de calibración contenidos en este certificado son trazables al Sistema Internacional de Unidades (SI) por medio de una cadena ininterrumpida de calibraciones a través del PTB (Physikalisch-Technische Bundesanstalt - Alemania) o de otros Institutos Nacionales de Metrología (INMs).

CALIBRACIÓN

MÉTODO: COMPARACIÓN DIRECTA CON MASAS PATRÓN CERTIFICADAS DOCUMENTO DE REFERENCIA:: EURAMET CALIBRATION GUIDE No. 18 - VERSION 4.0 (11/2015)

 PROCEDIMIENTO:
 PEC.ELP.01

 LUGAR DE CALIBRACIÓN:
 ENSAYOS ESPECIALES

 TEMPERATURA AMBIENTAL MEDIA:
 20.0 °C
 ±0.1 °C

 HUMEDAD RELATIVA MEDIA:
 47.7 %HR
 ±0.8 %HR

 PRESIÓN ATMOSFÉRICA MEDIA:
 600 NPs
 ±0 hPs

PRESIÓN ATMOSFÉRICA MEDIA: 600 hPa ±0 hPa

DENSIDAD MEDIA DEL AIRE: 0.820 kg/m² ±0.001 kg/m²

PRUEBA DE EXCENTRICIDAD

A 1.5.0

PROEBA DE EXCENTRICIDAD					
Posición	Indicación	emp	±1.5g		
No. 1	5000.0 g	Δl _{ess}	Cumplimiento		
No. 2	5000.0 g	0.0 g	Cumple		
No. 3	5000.0 g	0.0 g	Cumple		
No. 4	5000.0 g	0.0 g	Cumple		
No. 5	5000.0 g	0.0 g	Cumple		
	Alexhan	0.0 g			
			-		

			No. Pesada	Indicación
		l	No. 1	12000.0 g
3	4		No. 2	12000.0 g
 i	1	No. 3	12000.0 g	
 			No. 4	12000.0 g
2 5		No. 5	12000.0 g	
 		emp	±1.5 g	

Cumple

PRUEBA DE ERRORES DE INDICACIÓN (PRUEBA DE PESAJES)							
Nominal	Lectura Îtem	Valor Patrón	Error de Medición	Incertidumbre	Factor de Cobertura (k)	emp	Cumplimiento
[g]	[g]	[9]	[g]	[g]	racior de Cobertura (k)	[+/-g]	Cumpimiento
0	0.0	0.00	0.00	0.29	2.00	0.5	Cumple
100	100.0	100.00	0.00	0.41	2.00	0.5	Cumple
3000	3000.0	3000.00	0.00	0.41	2.00	1.5	Cumple
4500	4500.0	4500.00	0.00	0.41	2.00	1.5	Cumple
6000	0.000	6000.00	0.00	0.43	2.00	1.5	Cumple
7500	7500.0	7500.00	0.00	0.43	2.00	1.5	Cumple
9000	9000.0	9000.00	0.00	0.43	2.00	1.5	Cumple
10500	10500.0	10500.00	0.00	0.48	2.00	1.5	Cumple
12000	12000.0	12000.00	0.00	0.48	2.00	1.5	Cumple
13500	13500.0	13500.00	0.00	0.48	2.00	1.5	Cumple
15000	15000.0	15000.00	0.00	0.55	2.00	1.5	Cumple

L-20965-011 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las

unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the

measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

Calibration Cartificate - Dimensional Metrology Laboratory

Pege / Pég 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33N60

Número de Serie Gertal Number

75485

Identificación Interna

E-GT-614

Maila

Mosh

No. 60

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS.GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Cludad

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

aprobación del Laboratorio de Metrología Pincuar; no se puede reproducir el informe, excepte cuando se reproduce en eu totalidad, ya que proporciona la seguridad que las pertes del do no se secen de contecto. Lun centificados de caliosoción sin timo no son validado.

Without the approximal of the Pintuan Matrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not false out of context. Unsigned calcherion certificates are not relate.

Firmas Autorizadas

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

UNAPPENDICH RELEGI

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-013 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al fiam que se relaciona

en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos yo de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the

measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

measuring instruments at appropriate time

information provided by the customer. This calibration certificate documents and

international System of Units (SI).

The user is responsable for recalibrating the

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

Page / Pág 1 de 3

Equipo TAMIZ 8*

Instrument PINZUAR

Modelo PS33140

Número de Serie 75023
Seria Number

Identificación Interna E-GT-612

Malla No. 140

Solicitante INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección

Address

CAR.CENTRAL NRO, 3950 INT. A (FRTE
UNCP-SÑOS.GDE-AV MCAL. CASTILLA)
JUNIN - HUANCAYO - EL TAMBO

Ciudad HUANCAYO

Fecha de Calibración 2020 – 06 – 22 Dote of calibration

Fecha de Emisión 2020 – 07 – 10

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Laboratorio de Metrología Pinquar: no se puede reproducir el informe, excepte cuando se reproduce en su totalidad, ya que proporciona la seguridad que les partes del sertificado no se secon de contexio. Los certificados de celloración en tima no sen velidore.

03

intervals.

Without the approval of the Primum Methology Lisbonstony, the report can not be reproduced, except when it is reproduced in its entirety, alone it provides the security that the parts of the conflicate are not taken out of context. Unsigned calculation certificates are not said.

Firmas Autorizadas

Authorized signatureS

THE RESTRICTED BY

Ing. Sergio Íván Martínez Director Leborstorio de Metrologie Tecg. Jaiver Arnulfo López

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-014 R1

Los resultados emitidos en este certificado se refleren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona

en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33200

Número de Serie

75454

Identificación Interna

E-GT-611

Malla

No. 200

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3850 INT. A (FRTE UNCP-SÑOS.GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Cludad

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

ties recommends and accommendations

Número de páginas del certificado, incluyendo anexos

the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

Sin la aprobación del Laboratorio de Metrología Pincuar, no se puede reproduce al informa, accepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las poetas del certificado no se ascan de contieno. Los certificados de celtificación en firme no son validose.

Without the approval of the Pissuar Matrology Laboratory, the report dan not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not talken out of contest, Unsigned calculation certificates are not valid.

Firmas Autorizadas

Ing. Sergio Ivan Martinez

Tecg. Jaiver Arnulfo López Matridega Esboratorio de Masulogía

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-012 R1

Page / Pág 1 de 3

Equipo TAMIZ 8"
Instrument

Fabricante PINZUAR
Minufactueer

Modelo PS33100

Número de Serie 76144

Identificación Interna E-GT-613

Malla No. 100

Solicitante INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección CAR, CENTRAL NRO. 3850 INT. A (FRTE UNCP-SÑOS, GDE-AV MCAL, CASTILLA)

JUNIN - HUANCAYO - EL TAMBO
Ciudad HUANCAYO

Fecha de Calibración 2020 – 06 – 22

Fecha de Emisión 2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

Sin la aprobación del Lacoretorio de Metrología Pricular, no se puede reproducir el informe, excepto quando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se assers de contento. Los certificados de calibración en temporarios por estableción de calibración en temporarios por contrato de contento.

Without the approval of the Pircuan Metrology Laboratory, the report on not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the cedificate are not taken out of context. Unsigned celibration certificates are not valid.

Firmas Autorizadas

Authorized signatureS

Ing. Sergio Iván Martinez Director Laboratorio de Metrología Los resultados emitidos en este certificado se refieren al mormento y condiciones en que se realizaron las mediciones, Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsebiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the custamer.

information provided by the customer. This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the international System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate lime intervals.

Tecg. Jaiver Arnulfo López Metrologo Laboratorio de Metrologie

UNEPG-134-01 R12 E

L-20965-001 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al îtem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one.
The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the

This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the

information provided by the customer.

International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

suministrada por el solicitante.

Calibration Cartificate - Dimensional Metrology Laboratory

Page / Pág 1 da 3

Equipo TAMIZ 8" Fabricante PINZUAR Modelo PS33004

Número de Serie 63250

Identificación Interna E-GT-609

Malla 4 in.

Solicitante INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección CAR.CENTRAL NRO, 3950 INT. A (FRTE UNCP-SÑOS, GDE-AV MCAL, CASTILLA) JUNIN - HUANCAYO - EL TAMBO

Cluded HUANCAYO

Fecha de Calibración 2020 - 06 - 22

Fecha de Emisión 2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

Without the approval of the Pissuar Mistrology Laboratory, the report can not be repressued, except when it is replace and of contest. Unagreed calibration certificates are not said.

Firmas Autorizadas

Ing. Sergio Íván Martinez

Tecg. Jaiver Arnulfo López iogo Labore

intervals.

L-20965-002 R2

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al îtem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The leboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

Celibration Certificate - Dimensional Metrology Laboratory

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33312

Número de Serie

54000

Identificación Interna

E-GT-610

Malla

3 1/2 lm.

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE

Ciudad

HUANCAYO

UNCP-SÑOS.GDE-AV MCAL. CASTILLA) JUNIN - HUANCAYO - EL TAMBO

2020 - 06 - 22

Fecha de Calibración Fecha de Emisión

2020 - 07 - 16

Número de páginas del certificado, incluyendo anexos

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

International System of Units (SI).

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

Sin la aprobasión del Laboratorio de Metrologia Pircuer, no se puede reproducir el informe, excepto cuendo se reproduce en su totalidad, ya que proporciona la seguridad que les partes del certificado no se sacon de contendo. Los certificados de celibración en firma no sen visidos,

Without the approval of the Pirosan Matrology Laboratory, the report one not be reproduced, except when it is reproduced in its entirely, since it provides the security that the perts of the certificate are not believe out of content. Unsigned calification certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martinez

Tecg. Jaiver Arnulfo López

Calibration Cartificate - Dimensional Metrology Laboratory

L-20965-010 R1

Los resultados emitidos en este certificado se refleren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al îtem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan deriverse del uso Inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ansures the traceability to national and internationals standards, which realize the units of measurament according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

Page / Pág 1 de 3

Equipo

TAMIZ 8*

Fabricante

PINZUAR

Modelo

PS33N50

Número de Serie

74752

Identificación Interna

E-GT-615

Maila

No. 50

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS,GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Ciudad

HUANCAYO

Fecha de Calibración

2020 - 06 - 23

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

03

la aprolacción del Laboratorio de Netrologia Prouse, no se puede reproduce el teforme, excepto cuendo se reproduce en su totelidad, ye que proporcione le seguridad que las partes del sificaco no se ascen de contexio. Los cestificados de calibración sin firms no son vididos.

Without the approver of the Pinnour Metology Lationatory, the report can not be reproduced, except when it is reproduced in its entirely, since it provides the exounty that the parts of the certificate are not taken out of centers. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LIMPORTURAL REST

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-007 R1

Page / Pág 1 de 3

Equipo

Fabricante

TAMIZ 8" PINZUAR

Modelo

PS33N20

Número de Serie Bailed Harrhay

76221

Identificación Interna

E-GT-618

Malla

No. 20

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

Ciudad

CAR, CENTRAL NRO, 3950 INT. A (FRTE UNCP-SÑOS.GDE-AV MCAL. CASTILLA) JUNIN - HUANCAYO - EL TAMBO

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

03

El usuario es responsable de la celibración de los instrumentos en apropiados intervalos de tiempo. The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one.

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al Item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

Sistema Internacional de Unidades (SI).

suministrada por el solicitante,

The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the

International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

de Netrotogis Pintust, no se puede regroduair el Informe, excepto cuando se reproduce en su totelidad, ya que proporcione la seguridad que las partes del Los certificados de calibración sin firma no son validos.

Without the approval of the Printian Methology Caborstory, the report can had be reproduced, except when it is reproduced in the entirely, eince it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martínez Director Laboratorio de Metrología

Tecg. Jaiver Arnulfo López Metrólogo Laboratorio de Metrol

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-005 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que

puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the

measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may erise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

suministrada por el solicitante.

de tiempo.

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33N10

Número de Serie

76345

Serial Number

Identificación Interna

E-GT-619

Malla

No. 10

Solicitante

INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS.GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Ciudad

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

03

measuring instruments at appropriate time intervals.

Infernational System of Units (Si). The user is responsable for recalibrating the

ogla Pincuar, no se puede reproducir el informe, escepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del Icados de calibración sin firma no son validos.

Without the approval of the Princer Metrology Leborstory, the report can not be reproduced, except when it is reproduced in its entirety, since if provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López

LIMPORTO-FULL RIZE

TAMIZ 8"

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-009 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al Item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y

asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any demeges that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

International System of Units (SI).
The user is responsable for recalibrating the measuring instruments at appropriate time

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

intervals.

Page / Pág 1 de 3

Equipo

Fabricante PINZUAR

Modelo PS33N40

Número de Serie 73391

Identificación Interna E-GT-618

Malia No. 40

Solicitante INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección CAR.CENTRAL NRO. 3850 INT. A (FRTE UNCP-SÑOS,GDE-AV MCAL, CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Ciudad HUANCAYO

Fecha de Calibración 2020 – 06 – 22

Fecha de Emisión 2020 – 07 – 10

Número de páginas del certificado, incluyendo anexos

reservoir or pages or the commons and during stationary

Sin ils aprobación del Laboratorio de Metrología Pinouat, no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segundad que las partes del certificado no se secan de contento. Los certificados de calibración ain firma no son validos.

03

Without the approval of the Prictian Metology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the assumity that the parts of the certificate are not fallen out of context. Unagreed celibration certificates are not valid.

Firmas Autorizadas

Authorized signatureS

Ing. Sergio Iván Martinez Director Laboratorio de Metrología Tecg. Jaiver Arnulfo López

Metrologia Laboratorio de Metrologia

LMAPG-1347-01 R12.0

ISO/IEC 17025:2017 11-LAC-004

Certificado de Calibración - Laboratorio de Longitud

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-008 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al Item que se relaciona

en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

Sistema Internacional de Unidades (88).

instrumentos y/o de

suministrada por el solicitante.

Page / Pág 1 de 3

la información

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33N30

Número de Serie

76630

Identificación Interna

E-GT-617

Malla

No. 30

Solicitante

Dirección

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS.GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Cludad

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo. The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The leboratory, which will not be liable for any damages that may exise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recellbrating the measuring instruments at appropriate time Intervals.

Gin its aprobación del Laborátorio de Netrologia Protato, no se puede reproduce el riforme, excepto coando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se secen de contento. Los certificados de celibración sin tima no son váldos.

Without the approval of the Pinzuar Methology Leboratory, the report own not be reproduced, except when it is reproduced in the entirely, since it provides the sessirity that the parts of the certificate are not taken out of context. Unalgoed celebration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Ivan Martínez rio de Metrologia

Tecg. Jaiver Arnulfo López

IMPOSTRUTION

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-016 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al îtem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to the time and conditions under which the

measuraments. These results correspond to the Item that relates on page number one. The leboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

Sistema Internacional de Unidades (SI),

suministrada por el solicitante.

de tiempo.

Page / Pág 1 de 3

Equipo

TAMIZ 12"

Fabricante

PINZUAR

Modelo

PS353/8

Número de Serie

78988

Identificación Interna

E-GT-624

Malla

3/8 ln.

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS,GDE-AV MCAL, CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Ciudad

HUANCAYO

Fecha de Calibración

2020 - 06 - 23

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

03

This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement eccording to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervels.

excepto cuentilo se reproduce en su totalidad, ya que proporciona la segundad que las partes del

Without the approval of the Pintuer Metrology Laboratory. The report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not falsen out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martínez Director Laboratorio de Matrología

Tecg. Jaiver Arnulfo López

LWAYC-134-01 RHLD

Calibration Certificate - Dimensional Metrology Laboratory

L-21042-004 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona

en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the Item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability to national and internationals standards, which realize the

units of measurement according to the International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

Page / Pág 1 de 3

Equipo

Fabricante

Modelo

Número de Serie

Identificación Interna

Malla

Solicitante

Dirección

Ciudad

TAMIZ 12"

PINZUAR

PS35N04

77307

E-GT-623

No. 4

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS, GDE-AV MCAL, CASTILLA) JUNIN - HUANCAYO - EL TAMBO

HUANCAYO

Fecha de Calibración

2020 - 07 - 01

Fecha de Emisión

2020 - 07 - 09

Número de páginas del certificado, incluyendo anexos

ratorio de Metrologia Pincuer, no se puede reproducir el informe, excepto cuando se reproduce en su icitalidad, ya que propordiona la seguridad que las partes del critacio. Los certificados de calibración sin fisse no son visidos.

Without the approval of the Printies' Metrology Entoratory, the report can not be reproduced, except When it is reproduced in its writing; since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martínez

Tecg. Jaiver Arnulfo López diogo Laboratorio de Metro

DALBY CHOICE OF BUILD

Calibration Certificate - Dimensional Metrology Laboratory

L-21042-001 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al îtem que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability to national and internationals atenderds, which realize the units of measurement according to the

International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

Sistema Internacional de Unidades (SI).

instrumentos y/o de la

suministrada por el solicitante.

de tiempo.

Page / Pág 1 de 3

información

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33005

Número de Serie

73196

Identificación Interna

E-GT-627

Malla

5 in.

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE

UNCP-SÑOS.GDE-AV MCAL. CASTILLA) JUNIN - HUANCAYO - EL TAMBO

Ciudad

HUANCAYO

Fecha de Calibración

2020 - 07 - 01

Fecha de Emisión

2020 - 07 - 09

Número de páginas del certificado, incluyendo anexos

03

Sin is aprobación del Laboratorio de Metologio Pinzuar, no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporcione la segundad que las partes del certificado no se socian de controto. Los certificados de calibración sin firma no son válidos,

Without the approval of the Pirouan Mathology Laboratory, the report can not be reproduced, except when it is reproduced in its entirely, whose it provides the security that the parts of the certificate are not relief except and incident cut of content. Unargued calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Íván Martínez

Tecg. Jaiver Arnulfo López

THE SECOND SECOND

Calibration Certificate - Dimensional Metrology Laboratory

L-21042-003 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona

en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

onsures the traceability to national and internationals standards, which realize the units of measurement according to the

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo,

Page / Pág 1 de 3

Equipo

TAMIZ 12"

Fabricante

PINZUAR

Modelo

P835001

Número de Serie

77306

Identificación Interna

E-GT-626

Malla

1 in.

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE UNCP-SÑOS,GDE-AV MCAL, CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Ciudad

HUANCAYO

Fecha de Calibración

2020 - 07 - 01

Fecha de Emisión

2020 - 07 - 09

Número de páginas del certificado, incluyendo anexos

measuring instruments at appropriate time intervals

International System of Units (SI). The user is responsable for recalibrating the

Sin la aprobación del Laboratorio de Metrología Pinstair, no se puede repri certificado no se secen de cortento, Los certificados de calibración sin firme ny

Without the approval of the Principle Methology Laboratory, the report can not be reproduced, except when it is reproduced in its entirely, since it provides the security that the parts of the certificate we not taken out of context, threigned calceston certificates are not valid.

Firmas Autorizadas

THE PARTY OF THE PERSON

Ing. Sergio Iván Martínez wio de Metrologie

Tecg. Jaiver Arnulfo López

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-015 R1

Page / Pág 1 de 3

Equipo

Fabricante

TAMIZ 12" PINZUAR PS353/4

76982

% in.

E-GT-625

Modelo

Número de Serie

Internal Identification

Identificación Interna

Malia

Solicitante

INVERSIONES GENERALES CENTAURO INGENIEROS S.A.C.

Dirección

CAR, CENTRAL NRO, 3950 INT, A (FRTE UNCP-SÑOS.GDE-AV MCAL, CASTILLA) JUNIN - HUANCAYO - EL TAMBO

Ciudad

Fecha de Calibración

2020 - 06 - 22

HUANCAYO

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los parjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

Sin is aprobación del Laboratorio de Matrología Pintual. no se puede reproducir el informe, excepto cuando se reproducis en su totalidad, ye que proporcione la seguridad que las partes del certificado no se salcan de contendo, Los certificados de calibración sin firma no son valados.

Without the approved of the Pinnuar Metrology Laboratory, the report own not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of centers. Unsigned self-mission certificates are not valid.

Firmas Autorizadas

Ing. Sergio Íván Martinez

Tecg. Jaiver Amulfo López

DMARCHISAFATI RISS

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-006 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información

Esta certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the

This calibration cartificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the

information provided by the customer.

International System of Units (SI).

suministrada por el solicitante,

de tiempo.

ucir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33N16

Número de Serie

76226

Identificación Interna

E-GT-620

Malla

No. 16

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE

UNCP-SÑOS.GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

Ciudad

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

Without the approval of the Pinsuer Metrology Leborstory, the report can not be reproduced, except when it is reproduced in its entirely, since it provides the security that the parts of the certificate are not taken out of contact. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Íván Martinez Director Leboratorio de Metrología

Tecg. Jaiver Arnulfo López

Metrólogo Laboratorio de Metrología

LM-PC-194-0H R12.0

Calibration Certificate - Dimensional Metrology Laboratory

L-20965-004 R1

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al îtem que se relaciona

en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los

instrumentos y/o de la información

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to the item that relates on page number one.

The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

International System of Units (SI). The user is responsable for recalibrating the measuring instruments at appropriate time

Sistema Internacional de Unidades (SI).

suministrada por el solicitante.

de tiempo.

intervals.

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

P833N08

Número de Serie

74866

Identificación Interna

E-GT-621

Malla

No. 8

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3850 INT. A (FRTE

UNCP-SÑOS,GDE-AV MCAL, CASTILLA)

Ciudad

JUNIN - HUANCAYO - EL TAMBO

HUANCAYO

Fecha de Calibración

2020 - 06 - 22

Fecha de Emisión

2020 - 07 - 10

Número de páginas del certificado, incluyendo anexos

Sirt is aprobation del Laboratorio de Metrologia Pintuer, no se puede reproducir di informe, excepto cuando se reproducis en su totalidad, ya que proporcione la seguridad que las partes del certificación no se secon de controto. Los certificacios de calibración sin firma no sen validos.

Without the approval of the Pinsuar Matrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not relear out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Íván Martínez

Director Laboratorio de Metrologia

Tecg. Jaiver Arnulfo López Metrólogo Leboretorio de Metrología

BARROWS CONTRACTOR

Calibration Carlificate - Dimensional Metrology Laboratory

L-21042-002 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se

realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite

no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el

El usuario es responsable de la calibración

de los instrumentos en apropiados intervalos

The results issued in this certificate relates to

the time and conditions under which the measurements. These results correspond to

the item that relates on page number one. The laboratory, which will not be liable for any damages that may erise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and

Sistema Internacional de Unidades (SI).

Page / Pág 1 de 3

Equipo

TAMIZ 8"

Fabricante

PINZUAR

Modelo

PS33212

Número de Serie

74466

Identificación Interna

E-GT-622

Malla

2 1/2 in.

Solicitante

INVERSIONES GENERALES CENTAURO

INGENIEROS S.A.C.

Dirección

CAR.CENTRAL NRO. 3950 INT. A (FRTE

Ciudad

UNCP-SÑOS.GDE-AV MCAL. CASTILLA)

JUNIN - HUANCAYO - EL TAMBO

HUANCAYO

Fecha de Calibración

2020 - 07 - 01

Fecha de Emisión

2020 - 07 - 09

Número de páginas del certificado, incluyendo anexos

The user is responsable for recalibrating the measuring instruments at appropriate time

International System of Units (SI).

ensures the traceability to national and internationals standards, which realize the units of measurement according to the

Intervale

de tiempo,

el informe, excepto cuando se reproduce en su totalidad, ya que proporcione la segundad que las partes del

Without the approval of the Pinauar Matiniagy Laboratory, the report own not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not valid.

Firmas Autorizadas

Ing. Sergio Ivan Martinez

Tecg. Jaiver Arnulfo López

DISPOSITION OF REAL PROPERTY.

CERTIFICADO DE CALIBRACIÓN TC - 17022 - 2021

PROFORMA: 6177A Fecha de emisión: 2021-10-11

SOLICITANTE : MTL GEOTECNIA S.A.C.

Cal.La Madrid Nro. 264 Asc. Los Olivos Lima - Lima - San Martín De Porres

INSTRUMENTO DE MEDICIÓN : TERMO ANEMÓMETRO

Marca : BENETECH Modelo : GM816 N° de Serie : JD:145370 Alcance de Indicación : 0 m/s a 30 m/s Resolución : 0,1 m/s Sensor : Veleta Fecha de Calibración : 2021-10-11

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa utilizando patrones calibrados y trazables al sistema internacional de unidades.

CONDICIONES AMBIENTALES

MAGNITUD	INICIAL	FINAL
TEMPERATURA	21,1 °C	21,8 °C
HUMEDAD RELATIVA	52,7 %	58,9 %

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana

TEST & CONTROL S.A.C. brinda los servicios de calibración instrumentos de medición con los más

altos estándares de calidad, garantizando la satisfacción de

de

nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al

Los resultados son válidos solamente para el item sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolas Ramos Paucar Gerente Técnico. CFP:0316

Certificado de Calibración TC - 17022 - 2021

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de calibración
Patrones de Referencia ALAB	Anemometer	LVV-013-2021

RESULTADOS DE CALIBRACIÓN

VELOCIDAD

INDICACIÓN PATRÓN (*) (m/s)	LECTURA INDICADA (*) (m/s)	ERROR (m/s)	INCERTIDUMBRE (m/s)
1,15	1,1	-0,05	0,06
2,13	2,1	-0,03	0,06
4,07	4,1	0,03	0,06
6,04	6,0	-0,04	0,07
8,05	8,0	-0,05	0,07
10.05	10,1	0.05	0.09

^(*) Valor promedio de cinco lecturas

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN TC-9295-2020

Proforma : 2806A Fecha de emisión: 2020-12-21 Página : 1 de 2

SOLICITANTE: MTL GEOTECNIA S.A.C.

Dirección : Cal. La Madrid Nro. 264 Asc. Los Olivos Lima-Lima-San Martin de Porres

INSTRUMENTO DE MEDICIÓN : TERMOHIGRÓMETRO

Marca : BOECO Modelo : BOE 327 N° de Serie : No indica : -10 °C a 50 °C Intervalo de Indicación del Termómetro Interior Resolución del Termómetro Interior : 0,1 °C Intervalo de Indicación del Termómetro Exterior : -50 °C a 70 °C Resolución del Termómetro Exterior : 0,1 °C Intervalo de Indicación del Higrómetro : 20 % a 99 % Resolución del Higrómetro : 1% Identificación : No indica Procedencia : No indica : 2020-12-21 Fecha de Calibración

LUGAR DE MEDICIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestro termohigrómetro patrón, tomando como referencia TH-007 "Procedimiento para la calibración de medidores de condiciones ambientales de temperatura y humedad en Aire". Edición digital 1 - CEM

CONDICIONES AMBIENTALES

Magnitud	Inicial	Final
Temperatura	20,3 °C	20,5 °C
Humedad Relativa	60,0 %	57,8 %

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Stema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Jc. Nicolás Ramos Paucar Gerente Técnico

SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017

Certificado : TC-9295-2020 Página : 2 de 2

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Termohigrómetro Incertidumbre de 1,4 %hr a 2,1 %hr INACAL	Termohigrómetro Resolución: 0,01 °C ; 0,01 %hr	LH-178-2019
Termohigrómetro Incertidumbre de 1,4 %hr a 2,1 %hr INACAL	Termohigrómetro Resolución: 0,01 °C ; 0,01 %hr	LH-177-2019

RESULTADOS DE MEDICIÓN

PARA EL TERMÓMETRO INTERIOR

Indicación del Termómetro	Temperatura Convencionalmente Verdadera	Corrección	Incertidumbre
(℃)	(℃)	(℃)	(℃)
15,0	15,00	0,00	0,33
25,5	25,08	-0,42	0,33
35,6	35,03	-0,57	0,33

PARA EL HIGRÓMETRO

Indicación del Higrómetro (%hr)	Humedad Relativa Convencionalmente Verdadera (%hr)	Corrección (%hr)	Incertidumbre
40	37,4	-2,6	2,2
60	60,0	0,0	2,2
80	82,1	2,0	2,2

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO