

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Mejoramiento de las propiedades mecánicas del suelo incorporando tiras de plástico PET, Villa La Merced-La Libertad-2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL AUTORES:

Dionicio Rebaza, Katherine Pamela (orcid.org/0000-0002-3663-5337)

Rojas Amaya, Alin Yeyson (orcid.org/0000-0002-1875-0956)

ASESORES:

Mg. Cerna Rondon, Luis Anibal (orcid.org/0000-0001-7643-7848)

Dr. Farfan Cordova, Marlon Gaston (orcid.org/0000-0001-9295-5557)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

TRUJILLO – PERÚ 2022

Dedicatoria

A mis padres Juan y Chabuca, por el esfuerzo que hicieron para que pueda lograr cumplir mi sueño de ser Ingeniera civil, además de aconsejarme para ser mejor cada día.

A mis hermanas, Cecilia, Anali y Arianna por siempre estar conmigo apoyándome incondicionalmente.

Katherine Pamela Dionicio Rebaza

A mi madre, que jamás dejo de apoyarme y creer en mí.

A mi padre, por toda la ayuda recibida y siempre motivar a sus hijos a ser mejores.

A mis hermanos, por su apoyo, consejos y cariño incondicional.

Rojas Amaya, Alin Yeyson

Agradecimiento

A Dios por darnos salud, aprendizaje y protegernos cada día y permitirnos cumplir nuestros sueños.

A nuestra Universidad César Vallejo por ser nuestra alma mater.

A los Ingenieros de la escuela de Ingeniería civil por compartir sus conocimientos y vivencias para ser mejores profesionales.

A nuestros asesores Dr. Farfán
Córdova, Marlon Gastón y el Ing. Mg.
Cerna Rondón, Luis Anibal por el apoyo
brindado en la elaboración de nuestro
proyecto de investigación.

Índice de Contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de Contenidos	iv
Índice de Tablas	v
Índice de Figuras	vi
Resumen	vii
Abstract	viii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	11
3.1. Tipo y Diseño de la Investigación	11
3.2. Variables y Operacionalización	12
3.3. Población, Muestra y Muestreo	12
3.4. Técnicas e Instrumentos de Recolección de datos: .	14
3.5. Procedimientos	14
3.6. Método de Análisis de Datos	15
3.7. Aspectos éticos	15
IV. RESULTADOS	16
4.1. Características Granulométricas	16
4.2. Capacidad de compactación añadiendo tiras de plás1.5%. 18	stico PET al 0.5%, 1% y
4.3. Resistencia del suelo añadiendo tiras de plástico PE 20	ET al 0.5%, 1% y 1.5%.
4.4. Diferencia significativa en los Resultados	21
V. DISCUSIÓN	24
VI. CONCLUSIONES	27
VII. RECOMENDACIONES	28
REFERENCIAS	29
ANEVOS	20

Índice de Tablas

Tabla 1.	Cantidad de pruebas por ensayo realizadas	13
Tabla 2.	Ubicación de las calicatas	13
Tabla 3.	Análisis granulométrico de la calicata N°1	16
Tabla 4.	Análisis granulométrico por calicata de la zona de estudio	16
Tabla 5.	Resultados de los estudios de humedad y límites de consistencia	17
Tabla 6.	Resultado de los estudios de Proctor modificado	17
Tabla 7.	Resultados de los estudios de CBR.	18
Tabla 8.	Resultados de los estudios experimentales de Proctor Modificado	18
Tabla 9.	Resultados de los estudios experimentales de CBR.	20
Tabla 10.	Estadísticas de los grupos control y experimentales	21
Tabla 11.	Prueba de normalidad	21
Tabla 12. Kruskal-Wa	Comparación estadística múltiple de grupos analizados con la prueba allis	21
Tabla 13.	Estadísticos de los grupos de control y experimentales	22
Tabla 14.	Prueba de normalidad.	22
Tabla 15.	Prueba de varianza (ANOVA).	22
Tabla 16. HSD Tukey	Comparación del grupo control con los grupos experimentales a través o . 23	de

Índice de Figuras

Figura 1.	Ubicación de las calicatas	13
Figura 2.	Curva de compactación del suelo natural de la c1	17
Figura 3.	Resultados en MDS respecto a las dosificaciones	19
Figura 4.	Resultados en OCH respecto a las dosificaciones	19
Figura 5.	Ensayos CBR con adición de plástico PET	20

Resumen

El objetivo planteado por la presente investigación es cumplir con mejorar las

propiedades mecánicas del suelo de Villa La Merced, distrito de Laredo, Provincia

de Trujillo, departamento La Libertad. Se realizó el análisis de suelos y se obtuvo

que se clasifica por SUCS en CL es suelo arenoso de baja plasticidad, y como límite

liquito, platico e índice de plasticidad se obtuvo que es demasiado elevado, el cual

no es bueno para construir una edificación, por ende, se mejoró las propiedades

mecánicas utilizando tiras de plástico PET, se agregó en tres proporciones 0.5%,

1% y 1.5%. Una vez comparado los resultados se obtuvo que al añadir el porcentaje

de 1% se obtuvo un aumento de 17.44% al 9.184%, esto es una mejora respecto a

la muestra patrón con suelo natural.

Se concluye que al añadir 1% de plástico PET tiene mayor densidad seca, 1.806

gr/cm3, la cual tiene un resultado no significativo (Sig.<0.05) en base a el suelo

natural, pero en la resistencia del suelo (CBR) tiene una diferencia muy significativa

(Sig.=0.00) en base al suelo natural.

Palabras Claves: Suelo, Propiedades, Mecánicas, plástico PET.

VΪ

Abstract

The objective of this research is to improve the mechanical properties of the soil in Villa La Merced, Laredo district, Trujillo province, La Libertad department. The soil analysis was carried out and it was obtained that it is classified by SUCS in CL is sandy soil of low plasticity, and as a liquid, plastic limit and plasticity index it was obtained that it is too high, which is not good to build a building, therefore, the mechanical properties were improved using PET plastic strips, 0.5%, 1% and 1.5% were added in three proportions. Once the results were compared, it was obtained that by adding the percentage of 1%, an increase from 17.44% to 9.184% was obtained, this is an improvement compared to the standard sample with natural soil. It is concluded that adding 1% of PET plastic has a higher dry density, 1,806 gr/cm3, which has a non-significant result (Sig.<0.05) based on the natural soil, but in the resistance of the soil (CBR) it has a very significant difference (Sig.=0.00) based on the natural soil.

Keywords: Soil, Properties, Mechanical, plastic PET.

I. INTRODUCCIÓN

El uso de materiales de desperdicios se ha convertido en problema mundial, su uso excesivo de estos materiales está provocando problemas en el medio ambiente como también en lo económico (Jian-Jun, Min-Lee, Siong-Kang, Yasuo, 2017). Según Jefferson (2019), una encuesta estima un promedio de 15.4 mil millones de piezas de plástico al día el cual es el material de desecho más frecuente a nivel mundial, los cuales se usa en nuestra vida diaria; los materiales de desechos se producen en grandes cantidades como por ejemplo las botellas de plástico, la cual están hechas de tereftalato de polietileno (PET), también tenemos los sacos o bolsas y alfombras de platico, que están fabricadas de polipropileno (PP), cuyos principales componentes se consideran como desechos..

En la ciudad de Duhok, anualmente seproduce más de 5000 toneladas de polietileno que equivale a (500 cm³ capacidad de la botella) de material de desecho. En nuestra vida diaria nos beneficia bastante, pero para nuestro medio ambiente y para nuestra salud presenta impactos muy negativos esto debido a que en su gran mayoría delos plásticos no son biodegradables y tienen una larga duración, en muchos países buscan un plan para disminuir el uso y a su vez prevenir el efecto delos materiales incentivando a reciclar y también incentivan a reutilizar dichos materiales (Gu, Guo, Zhang, A.Summers, Hall, 2017).

En los últimos años muchos investigadores realizaron estudios en los que puedan encontrar diferentes métodos en la cual sean efectivos para disminuir las diferentes contaminaciones de estos materiales, entre los cuales están incluidos el reciclaje y la reutilización de dichos materiales, por ejemplo, en aplicaciones en el campo de la ingeniería civil, la cual es una de las soluciones para resguardar el medio ambiente. Uno de los métodos para reutilizar dichos materiales es la estabilización de los suelos, que servirán para las construcciones de carreteras (Abdy et al.

2022). Siempre se ha usado estabilizadores de suelos tradicionales como el cemento y la cal, usando grandes cantidades para que se mejoren las propiedades geotécnicas de suelos débiles (Mohamed et al, 2022). La capacidad de dichos materiales regenerar las propiedades de los suelos es realmente verídica por muchos investigadores. No obstante, la gran cantidad de material usado los vuelve menos rentables (Shuja, Rollakanti, Poloju, Adams, 2022).

Por ende, diferentes investigadores buscan hallar estabilizadores de suelo que sean alternativos y mucho más rentables, como son las astillas de neumáticos, cáscara de arroz y plástico (Raja et al., 2022). Entonces, determinar de qué manera la adición de tiras de plástico en la subrasante influye en la mejora de las capacidades portantes del suelo, por lo tanto, esto puede resolver el problema de los desechos de reducir las cantidades y reciclar estos materiales para mejorar las propiedades de los suelos. Un método de utilizar plástico para la estabilización del suelo es utilizar el plástico en forma de pequeñas tiras (Huang, Kogbara, Hariharan, Masad, Little, 2021).

Porque cuando los materiales plásticos se fusionan con los suelos, se comportan de manera similar al suelo reforzado con fibras. Se han realizado varias investigaciones para investigar la eficacia de los materiales de desecho plásticos en forma de fibras discretas en las propiedades de los suelos (Mishra, Kumar, 2018). Estos investigadores encontraron que el uso de materiales de desecho plásticos para la estabilización del suelo mejorará las propiedades de los suelos débiles, como un aumento en UCS, CBR y MR y una disminución en la plasticidad del suelo.

En el Distrito de Laredo, Provincia de Trujillo existe similitud de suelos, en las calles al no ser pavimentadas existe perdida de suelos finos, hundimientos, además al contar con una zona agrícola hace que las carreteras con ese tipo de suelo con el tiempo pierdan estabilidad,

generando incomodad en los transportistas y transeúntes puesto que al construir las carreteras se ven imitadas a no ser seguras y necesitar un cambio o mejoramiento de suelo, es por eso que es necesario determinar el porcentaje de tiras de plástico para poder estabilizar el suelo y mejorar sus características físicas y mecánicas

Debido a esta situación nos planteamos el siguiente problema de investigación: ¿Cómo mejora las propiedades mecánicas del suelo con la incorporación de tiras de plástico PET en la Villa La Merced-Laredo-La Libertad? Dicho proyecto de investigación se justifica teóricamente con el fin de consolidar una base para futuras investigaciones relacionadas con el tema con el objetivo de hacer comparaciones sobre la mejora de propiedades mecánicas en el suelo. Socialmente se justifica pues al tener suelos mejorados significará un punto de inicio para próximas evaluaciones y construcción de vías que ayudarán al libre tránsito y de los pobladores de la zona y además brindará bienestar y seguridad a las personas. Finalmente se justifica metodológicamente pues una investigación de este tipo genera conocimiento sobre la nueva propuesta de implementar plástico PET para la mejora de las propiedades del suelo; tanto en los estudios de Proctor y CBR (Fernández, 2020).

Se da como respuesta al problema de dicho proyecto de investigación, y además se sugiere como objetivo general: Determinar las propiedades mecánicas del suelo mejorado con la incorporación de tiras de plástico PET, Villa La Merced-Laredo-La Libertad-2022. Y también como objetivos específicos nos formulamos los siguientes: (a) Identificar las características granulométricas del suelo en la Villa La Merced del distrito de Laredo. (b) Determinar la capacidad de compactación del suelo añadiendo tiras de plástico. (c) Determinar resistencia del suelo al añadir tiras de plástico. (d) Hallar la diferencia en los resultados de los estudios de suelos entre el suelo natural y con la adición de 0.5%, 1% y 1.5% de tiras de plástico.

Como posible respuesta al problema nos formulamos la siguiente hipótesis: La incorporación de tiras de plástico mejora las propiedades mecánicas del suelo en la Villa La Merced-Laredo-La Libertad

II. MARCO TEÓRICO

Para comprender mejor el comportamiento de la adicción de tiras de plástico en el suelo y las mejoras hacia las propiedades de estos, se presentan a continuación algunas investigaciones vinculadas a las variables de estudio donde se aprecian la metodología, resultados y conclusiones de estos estudios.

De esta manera tenemos dentro del ámbito internacional a Saravanan. Murthi, Poongodi, Raju (2020) en su estudio "Un estudio sobre el efecto de las tiras de plástico de desecho en la estabilización de suelos arcillosos" propusieron determinar la mejora en los suelos utilizando tierra arcillosa y piezas de plástico (PET) que fue preparado a partir de botellas de desechos. Las botellas de plástico se cortaron en tres tipos de trozos: 8mm×8mm, 16mm×8mm y 24mm×8mm. Se utilizaron pruebas de laboratorio, tales como el análisis de tamizado, la gravedad específica, análisis granulométrico, gravedad específica, límite líquido (LL), límite plástico (PL) de la muestra de suelo. Para una mejora en las propiedades del suelo se utilizaron 3 tipos de dosificaciones para cada tipo de trozo de plástico: 0.5%, 1% y 1.5% por la masa del suelo. Concluyeron que al incorporar tiras de plástico al suelo mejora la unión entre las partículas del suelo; además aumenta la resistencia a la compresión, todo esto siendo unmétodo económico y rentable para la estabilización de suelos.

Asimismo, Kadhum y Aljumaili (2020) en su estudio "Fortalecimiento de los suelos de grava arcillosa y arena para la carretera del curso Subbase utilizando diferentes materiales de desecho", demuestran que se puede mejorar la subbase utilizando grava arcillosa y tiras de plástico, para lo cual se cortaron botellas desechadas en rodajas de dimensiones

(12mm×8mm) para ser utilizadas en la estabilización del suelo. Se añadieron en varias proporciones por el peso de suelo, utilizando proporciones de 0.25%, 0,5%, 0,75% y 1% para encontrar el porcentaje óptimo que mejore la resistencia de las subbases. Se utilizó la prueba de CBR, colocando la mezcla en un molde en cinco capas, cada capa se compacta con 56 golpes. Como resultados obtuvieron una mejora del 20% en la capacidad de compactación respecto al suelo sin tratar, aumentando la adherencia del suelo añadiendo tiras de plástico. Concluyeron que al añadir plástico reciclado al suelo mejora las propiedades mecánicas.

En la investigación de Mehdi y Massoud (2022) titulada "Propiedades mecánicas de suelos arcillosos reforzados con PET considerando la influencia de la estabilización con cal", demostraron que es posible mejorar el suelo arcilloso añadiendo plástico PET. Se realizaron pruebas como el Proctor Estándar, carga puntual (PTL) y la prueba de carga de impacto a la caída para evaluar el efecto de la incorporación de plástico en el suelo arcilloso en porcentajes de 0.5%, 1%, 1.5%, 2%, 3%, 5% y 10%. Obteniendo resultados una influencia positiva en la incorporación de tiras plásticas, pero perdiendo significativamente la resistencia al añadir más de 2% de PET.

Nacionalmente también se cuentan con estudios, como el de Márquez (2019) quien se propuso mejorar las propiedades de los suelos arcillosos con la utilización de plástico PET en el distrito La Encantada, provincia de Morropón, Piura, para lo cual aplicó una metodología comparativa, donde realizó pruebas utilizando todas las calicatas de la zona de estudio que fueron analizadas en un laboratorio de suelos con añadido de plástico y sinañadido. En sus resultados obtenidos en base al ensayo de CBR se observa que la adición de plástico PET al estudio mejora en un 6% a los resultados de la muestra sin tratar. Finalmente se concluyó que, si bien los resultados demuestran una evidente mejora en las condiciones del suelo con la incorporación de plástico PET en el ensayo de CBR, en las otras pruebas de laboratorio no demuestran

cambio significativo.

En la investigación de Flores y Zea (2021) quienes realizaron el estudio titulado Plástico reciclado en la estabilización de suelos cohesivos para mejorar la subrasante de una vía multicarril se propuso mejorar la subrasante de una vía multicarril mediante la incorporación de plástico reciclado en los suelos cohesivos, en la cual se tomaron proporciones de 1.5%, 3.5% y 5.5% de plástico reciclado (PET) respecto al suelo seco parasometerlo a los distintos ensayos de laboratorio de granulometría, límite deatterber, contenido de humedad, CBR y Proctor modificado. Obteniendo como resultados en el ensayo de CBR una mejora del 2.2% en la capacidadde soporte respecto al suelo sin añadido. Demostrando que al añadir plástico PET reciclado se logra mejorar las condiciones de suelos cohesivos, mejorando sus resistencia y compactación.

También contamos con la investigación de Cobeñas (2018) en su estudio sobre la estabilización del suelo con material plástico reciclado para cimentación de viviendas, donde se propuso evaluar la influencia delplástico en porcentajes de 0.2%, 0.5%, 1% y 1.5% en la estabilización de suelos, para lo cual la metodología que se utilizó fue no experimental y deltipo correlacional. En sus resultados se obtuvo que la capacidad portante del suelo añadido plástico a 1.5% es de 1.256 kg/cm2, lo cual tiene la óptima densidad debido a su compactación con plástico. Además, los resultados del estudio CBR muestran que al aumentar las muestras de plástico el valor de CBR aumenta, siendo un aumento del 100% al añadirle 1.5% de material plástico.

García y Marquina (2021) en su investigación "Influencia del porcentaje de polímeros PET y cenizas de carbón con fines de estabilización de subrasante para un pavimento, aplicado en el sector Barraza, Laredo, Trujillo – La Libertad", demuestran que es posible estabilizar el suelo utilizando plástico PET. Para lo cual utilizaron plástico en porcentajes de 3%, 5% y 10% respecto al peso del suelo, aplicando los ensayos de límite líquido, límite plástico, Proctor Modificado, compresión simple no confinada y CBR. Obtuvieron favorables resultados al añadir tiras de

plástico, pues se obtuvo mayor resistencia a la compresión con 10% de plástico PET. Concluyendo que es factible el mejoramiento del suelo con este material.

Para una mejor comprensión a detalle sobre el desarrollo de las variables y sus dimensiones, a continuación, explicamos su caracterización y funcionalidad, tanto a nivel teórico como normativo.

Según Juárez (2005) la definición de suelo varía de acuerdo a los intereses; para un agrónomo se aplica a la parte superficial de la corteza terrestre quees capaz de proveer vida vegetal, diferenciándose de un ingeniero el cual considera que es una definición demasiado restringida. Para un geólogo esla acumulación de materia orgánica cerca de la superficie. Otra definición común dice que el suelo representa una combinación de todo tipo de material terroso, ya sea relleno o desperdicio e incluso areniscas parcialmente cementadas. Incluso el agua contenida forma parte fundamental del comportamiento mecánico del suelo, es por esto que debeconsiderarse como parte de él. Es una acumulación de la desintegración mecánica y la descomposición química de las rocas por agentes físicos; tales como cambios de temperatura, acción del agua en las grietas y juntasde las rocas, efectos de plantas u organismos, etc. Por estos y muchos fenómenos las rocas se degradan y forman arenas, limos y en casos especiales arcillas (Darange, Adesina, Das, 2018).

Según la fundación Heinrich Böll (2019) en el mundo el nivel de producción de plásticollega a superar los 400 millones de toneladas por año, las cuales forman parte de la vida diaria de las personas y de la industria. El plástico es un sintético fabricado a partir de hidrocarburos formados por polimerización que se forma por una secuencia de reacciones químicas sobre las materiasprimas orgánicas como el gas natural y el petróleo crudo. De este procesopueden formarse diferentes tipos de plástico ya sea duros o blandos, transparentes u opacos, rígidos o flexibles. El polietileno es de los materiales más aceptados en su uso cotidiano, inventado en la década de1930, su uso no se limita solamente

al ámbito industrial; puesto que a lo largo de los años se han fabricado distintos objetos como envases de botellas, textiles, maquinaria, entre otros. La facilidad del uso, practicidad, fácil y económica elaboración contribuyeron a desplazar productos existentes entrando en casi todas las áreas de la vida siendo el PVC, el polipropileno y el polietileno los plásticos más usados en el mundo.

Entre los distintos métodos para evitar la contaminación, la reutilización del plástico es una de las más abordadas entre expertos. Para la estabilización del suelo utilizando productos de desechos, los plásticos se encuentran entre los residuos que son ideales. Utilizar el plástico desechado resuelve al mismo tiempo las dificultades de la limpieza inapropiada de los residuos plásticos, esto es sin duda actualmente un problema inicial en muchos países que están en desarrollo. La reutilización y aprovechamiento de estos envases de plástico para estabilizar suelos arcillosos es una estrategia en un camino correcto decidiendo hacer uso en la industria de la construcción con su mayor consumo (Van, Nian, Soh, Morgan, Gao, 2022).

Para Montejo, (2018) es natural que en una obra de ingeniería civil se pretenda utilizar los materiales de las mejores calidades, sin embargo, en muchos casos es imposible contar con los materiales óptimos, ya sea por costos elevados o la dificultad del transporte. En estos casos es mejor optar por mejorar los materiales, optimizando sus propiedades para beneficio dela construcción. Con estas consideraciones la estabilización o mejoramiento de suelos es una forma práctica de solucionar un problema. Estabilizar un suelo significa mejorar sus propiedades como durabilidad, resistencia, densidad, permeabilidad, etc. Optando por un sistema deestabilización mecánica (mezcla de agregados), mezcla de aditivos (cenizas, cal, acrilato de calcio, cemento, cloruro de calcio, etc.) o compactación (sola o en combinación).

La mejora de propiedades mecánicas del suelo consiste en la mezcla de algún aditivo junto al suelo, obteniendo reacciones químicas que permiten compactar las partículas del suelo. Esto permite la mejora de propiedades como la resistencia del suelo. Entre otras propiedades beneficiosas en el mejoramiento del suelo tenemos la durabilidad, permeabilidad, estabilidad volumétrica y compresibilidad (Chompoorat, Thepumong, Khamplod, Likitlersuang, 2022).

Según el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos (2013) para que la estructura de un pavimento pueda apoyarse se necesita que el suelo tenga un valor de CBR ≥ 6% (subrasante regular); de ser menor (subrasante pobre o inadecuada) por tener suelos blandos o de mala calidad se considera una mejora, estabilización o refuerzo del suelo. El objetivo de realizar una estabilización es mejorar las capacidades de resistencia, durabilidad, densidad; entre otras. Se puede estabilizar un suelo de manera mecánica, granulométrica o añadiendo algún agente externo como los aditivos. El Manual de Diseño de Carreteras no Pavimentadas de Bajo Volumen de Tránsito (2008) clasifica los valores de la capacidad de soporte (CBR) para carreteras en 5 categorías: So: muy pobre CBR < 3%, So: pobre CBR= 3% - 5%, So: regular CBR= 6% - 10%, So: buena CBR= 11% - 19% y So: muy buena CBR > 20%.

Según el Ministerio de Transporte y Comunicaciones (MTC) (2013) el mejoramiento de las propiedades del suelo consisteen la excavación del terreno por debajo del suelo de fundación, y reemplazar de manera parcial o total con materiales anteriormente aprobados por un laboratorio de suelos y supervisados por un especialistaen el tema; cuyo material será acomodado y compactado conforme a las dimensiones que se requiera. Se puede, además mejorar el suelo a través de estabilizadores de suelos de acuerdo a lo establecido en el proyecto, considerando los grupos de estabilizadores, sus procedimientos y condiciones. Del mismo modo el suelo puede mejorarse mediante el uso de geotextiles u otros agregados que mejoran las propiedades físicas y mecánicas del suelo. Los materiales adicionados deben estar libres de materia orgánica o cualquier otra sustancia que resulte perjudicial y deben estar en las mejores condiciones que cumpla con todos los

estándares y reglamentos para su trabajabilidad.

Según Suárez (1998) el objetivo de usar agentes estabilizadores para el suelo es proponer medidas para la prevención y control, esto para minimizar el grado de amenaza y riesgo que conlleva construcciones que no cuentan con los debidos estándares de seguridad a la hora de edificar.

Para Crespo (2003) la resistencia mediante la compactación es un método de estabilización mecánica comúnmente utilizado para mejorar las características del suelo,pero al emplear mayores intensidades en la compactación no siempre produce mayor resistencia sobre todo si quiere mantener la resistencia obtenida por largos periodos de tiempo. Para la mejora de la resistencia seutiliza la compactación, mezcla con otros suelos, precarga, usando aditivoscomo cal, cemento, etc. Además, hay métodos que fueron utilizados raramente como el empleo del calor (Pérez, García, Paredes, Luna, Madriz, 2016).

La compactación es la disminución del volumen de la estructura del suelo, la reducción del tamaño y los espacios de vacíos que presenta. Esta reducción cambia características físicas del suelo como la transmisión y retención de fluidos y el calor. El grado de compactación puede definirse como la relación entre la densidad en seco (%) de suelo y la densidad del mismo suelo compactado a presión de 200 kPa (González, Iglesias, Herrera, 2009).

El ensayo de laboratorio de límite de consistencia que incluye el límite líquido y límite plástico sirven para expresar cuantitativamente el efecto dela variación de humedad en las características plásticas del suelo. Estos ensayos se realizan con una porción de la cantidad de suelo que pasa el maya N.º 40. Los resultados del límite líquido y límite plástico del suelo permiten indicar el índice de plasticidad (Camilo, Cruz, 2018).

Según el Ministerio de Transporte y Comunicaciones (MTC) (2016) el contenido de humedad del suelo es el resultado del cálculo expresado en porcentaje del peso del agua entre el peso seco del material o

volumen de suelo analizado. El ensayo California Bearing Ratio(CBR)

permite medir la resistencia del suelo al esfuerzo de corte; además de

permitir evaluar la calidad de un suelo sea para subrasante, terraplén,

base y subbase. Se realiza sobre suelo preparado en condiciones

apropiadas de humedad y densidad en el laboratorio (Contraloría

General de la República, 2009).

III. **METODOLOGÍA**

> 3.1. Tipo y Diseño de la Investigación

> > Tipo de investigación: El tipo de investigación para este trabajo fue

básica; ya que generó conocimiento que permite solucionar

problemas (Lerma, 2016).

Diseño de investigación: Por su alcance temporal este trabajo fue

transversal; puesto que recolección de datos, se realizó en un tiempo

determinado y único (Hernandez, 1997).

El nivel de investigación para este trabajo de investigación fue

explicativa; pues explicó la relación causa-efecto entre la variable

dependiente y la variable independiente (Gallardo, 2018).

El diseño de investigación realizada fue cuasi experimental en su

versión con posprueba únicamente y grupo control, puesto que se

consideró un grupo control que no fue sometido a una

experimentación y 5 grupos experimentales que fueron sometidos a

experimentación añadiendo una dosificación de 0.5%, 1% y 1.5% de

tiras de plástico.

G1-----01

G2 X1 02

G3 X2 O3

G4 X3 O4

Dónde:

G1: grupo control

11

G2: grupo experimental con 0.5% de tiras de plástico.

G3: grupo experimental con 1% de tiras de plástico.

G4: grupo experimental con 1.5% de tiras de plástico.

Oi(i=1,4): comparaciones en estabilidad

Xi(i=1,3): añadido de tiras plásticas en 0.5%, 1% y 1.5%.

3.2. Variables y Operacionalización

Las variables de estudio fueron tiras de plástico (v. simple) y propiedades mecánicas del suelo (v. compleja) clasificada como variable cuantitativa, pues todas las variables fueron sometidas a una medición cuantificable. Además, las dimensiones que comprende fueron afectadas en los estudios realizados.

Dimensiones: las dimensiones que se tomaron en cuenta para la variable compleja son: compactación y resistencia.

Indicadores: para la dimensión de compactación se consideró los indicadores: clasificación de los suelos, contenido de humedad, granulometría y Proctor; finalmente para la dimensión de resistencia se tuvo: capacidad portante del suelo (CBR).

Escala de medición: En base a los indicadores de las dimensiones se tomó como escala de dimensión la razón en base a nuestra variable.

3.3. Población, Muestra y Muestreo

 Población: El suelo de la Villa La Merced del distrito de Laredo, provincia de Trujillo, departamento de La Libertad.

Criterios de Inclusión: Villa La Merced ubicado en el distrito de Laredo.

Criterios de Exclusión: Barrios aledaños, zonas y sectores pertenecientes al distrito de Laredo.

 Muestra: Se considera como muestra para ensayos de propiedades el suelo de 5 calicatas de la Villa La Merced del distrito de Laredo para los estudios de Granulometría, Clasificación del suelo, Proctor Modificado y CBR.

 Tabla 1.
 Cantidad de pruebas por ensayo realizadas.

ENSAYOS DE LABORATORIO	NORMAS APLICADA	TOTAL
GRANULOMETRÍA	ASTM - D6913	5
LÍMITES DE CONSISTENCIA	ASTM - D4318	5
CONTENIDO DE HUMEDAD	ASTM - D2216	5
CLASIFICACIÓN DE SUELOS	ASTM - D2487	5
PROCTOR MODIFICADO	ASTM - D1557	20
CBR	ASTM - D1883	20
TOTAL DE ENS	SAYOS	60

Fuente: Elaboración propia

 Tabla 2.
 Ubicación de las calicatas

CALICATA	DDOCUMDIDAD (m)	COORDENADAS		
	PROFUNDIDAD (m)	ESTE	NORTE	
C1	1.5	721991	9106568.851	
C2	1.5	721997.3	9106426.455	
C3	1.5	722057	9106441.361	
C4	1.5	722123.6	9106390.211	
C5	1.5	722203.7	9106415.262	

Fuente: Elaboración propia

Figura 1. Ubicación de las calicatas.

• Muestreo: Se empleó el muestreo no probabilístico; puesto que

todos los elementos de la muestra fueron elegidos a criterio y juicio de los investigadores.

Unidad de Análisis: El suelo ubicado en el distrito de Laredo.

3.4. Técnicas e Instrumentos de Recolección de datos:

Técnicas:

Las técnicas que se utilizaron para esta investigación fueron de observación directa; pues la recolección de la muestra a utilizar se realizará en campo con la supervisión de los autores e indirecta, puesto que se realizaron los estudios de mecánica de suelos (E.M.S.) correspondientes para poder analizar los resultados obtenidos; ya que es necesario presentar los formatos empleados para validar los datos obtenidos (Borja, 2012).

Instrumentos:

Los instrumentos que se utilizarán son formatos estandarizados de Estudio de Mecánica de Suelos (Anexo 3), el cual nos permitió conocer los resultados de los diversos estudios de mecánica de suelos donde se añadió las distintas dosificaciones de plástico para analizar el cambio que hubo en las propiedades del suelo.

3.5. Procedimientos

Se realizó una visita de campo para ubicar la zona, luego se tomó los datos en campo ubicando las calicatas, posteriormente se obtuvo las muestras de suelo a analizar para ser llevadas a laboratorio para los respectivos estudios. Se analizaron los resultados de laboratorio de clasificación de los suelos (ASTM D2487/NTP 339.134), contenido de humedad (ASTM D2216/NTP 339.127), granulometría (ASTM D6913/NTP 400.012), Proctor Modificado (ASTM D1557/NTP 339.142) y capacidad portante (ASTM D1883/NTP 339.145) para determinar la variación en las propiedades del suelo. Con los datos obtenidos de las distintas pruebas se realizaron pruebas estadísticas para conocer la diferencia significativa entre el grupo control y los grupos experimentales con distintas dosificaciones (0.5%, 1% y 1.5%).

3.6. Método de Análisis de Datos

Para el desarrollo de proyecto de investigación se realizó el análisis mediante pruebas realizadas en el laboratorio de suelo, dichas pruebas permitieron conocer el tipo de suelo, sus propiedades, resistencia y determinar la compactación, una vez obtenido los resultados se utilizó el software SPSS para determinar la diferencia significativa entre el suelo natural y con 0.5%, 1% y 1.5% de adición de tiras de plástico; ya que se trabajó utilizando la estadística inferencial, donde se realizó una prueba de normalidad con el test: Shapiro-Wilk. Con los resultados se determinó si la estadística aplicada es paramétrica o no paramétrica para luego utilizar la prueba de Anova Factor o Kruskal-Wallis según convenga. Con los resultados de las pruebas se determinó el porcentaje de tiras de plástico óptimo para el mejoramiento del suelo en la Villa La Merced del distrito de Laredo.

3.7. Aspectos éticos

Los datos que se obtuvieron se manejaron de una forma responsable y con ética profesional sin alterar los resultados que arrojaron dichas pruebas, dicha investigación se desarrolló respetando los autores y fuentes consultadas, además se respetó los lineamientos dispuestos por la casa de estudios, como la resolución que emite el vicerrectorado de proyectos de investigación, en donde está establecida la guía con la cual se realizó el trabajo de investigación para obtener los grados académicos y títulos profesionales.

IV. RESULTADOS

4.1. Características Granulométricas

Tabla 3. Análisis granulométrico de la calicata N°1

ENSAYO GRANULOMÉTRICO

HUMEDAD NATURAL ASTM D 2216						
Sh + Tara 1,263.70 gr 1,374.60 gr						
Ss + Tara	1,206.70 gr 1,311.50 gr					
Tara	106.70 gr 104.90 gr					
Humedad (%)	5.18 5.23					
Humedad Prom (%)	5.21					

TAMICES ASTM D6913	Abertura en mm.	Masa Retenida	% Retenido Parcial	% Retenido Acumulado	% Que Pasa	LÍMITES E INDICES DE CONSISTENCIA NTP 339.129		
3	76.200	0	0	0	100.00	L. Líquido :	37	
2	50.800	0	0.00	0.00	100.00	L. Plástico	19	
1 1/2	38.100	0	0.00	0.00	100.00	Ind. Plástico :	18	
1	25.400	0	0.00	0.00	100.00	CLASIFICACIÓN / ASTM		
3/4	19.050	0	0.00	0.00	100.00	Clas. SUCS (ASTM D2487) CL		
1/2	12.700	0	0.00	0.00	100.00	Clas. AASHTO (ASTM D3282) A-6-(8)		
3/8	9.500	0	0.00	0.00	100.00			
N°4	4.750	0	0.00	0.00	100.00	NOMBRE DEL GRUPO O MUESTRA		
N°10	2.000	0.15	0.01	0.01	99.99	Arcilla arenosa de baja plasticidad		
N°20	0.840	0.35	0.03	0.04	99.96	PROF. MUESTREO (m) : 1.5		
N°40	0.425	14.35	1.06	1.09	98.91	ESTRATO : 0.5 - 1.5		
N°60	0.250	248.00	18.28	19.38	80.62			
N°140	0.106	290.50	21.42	40.80	59.20	PORCENTAJE DE MASA EN MUESTRA		
N°200	0.075	12.80	0.94	41.74	58.26	% Grava = 0.00		
<200	Plato	0.20	58.26	100.00	0	% Arena = 41.74		
Total		566.35				% Finos = 58.26		

Fuente: Elaboración propia

Los suelos de la calicata N° 01 se clasificó por SUCS en CL (Arcilla arenosa de baja plasticidad), por AASHTO en A-6-(8) suelo arcilloso.

Tabla 4. Análisis granulométrico por calicata de la zona de estudio

CALICATA %	% FINOS		CLASIFICACIÓN		
CALICATA	GRAVAS	ARENAS	% FINUS	AASHTO	SUCS
C-1	0	41.74	58.26	A-6 (8)	CL
C-2	0.04	46.88	53.08	A-6 (8)	CL
C-3	1.41	47.11	51.48	A-6 (6)	CL
C-4	14.56	28.9	56.54	A-6 (8)	CL
C-5	17.35	27.73	54.92	A-6 (4)	CL

Fuente: Elaboración propia

Los suelos de las cinco calicatas se clasifican por SUCS en CL (Arcilla arenosa de baja plasticidad), por AASHTO en A-6-(8) suelo arcilloso.

Tabla 5. Resultados de los estudios de humedad y límites de consistencia

CALICATA	HUMEDAD %	LL %	LP %	IP %
C-1	5.21	39	19	20
C-2	6.7	36	14	22
C-3	4.79	33	16	17
C-4	4.31	34	16	18
C-5	5.6	29	18	11
PROM	5.322	34.2	16.6	17.6

Fuente: Elaboración propia

Los limites líquido, límite de plasticidad e índice de plasticidad son demasiado elevados por ende es un suelo malo.

Tabla 6. Resultado de los estudios de Proctor modificado

CALICATA	MÁXIMA ALICATA DENSIDAD SECA (gr/cm3) ÓPTIM DE H	
C1	1.73	8
C2	1.742	8.4
C3	1.722	8.1
C4	1.784	8.05
C5	1.792	8.6
PROM	1.754	8.23

Fuente: Elaboración propia

1.78 1.76 1.74 1.72 MAXIMA DENSIDAD SECA (gr./cm3) 1.70 1.68 1.66 1.64 1.62 1.60 1.58 1.56 1.54 1.52 9.00 10.00 11.00 12.00 13.00 4.00 5.00 6.00 8.00 ÓPTIMO CONTENIDO DE HUMEDAD (%)

Figura 2. Curva de compactación del suelo natural de la c1.

El ensayo de Proctor modificado se aplicó al suelo en estudio, la cual

obtuvimos que:

- ❖ Densidad seca máxima (g/cm3) = 1.73
- ❖ Humedad Optima % = 8

En este caso se calculó en 3 puntos, tal como se muestra en la figura N° 1, todos los resultados que se obtuvieron van de la mano de las normas.

Tabla 7. Resultados de los estudios de CBR.

MUESTRA	PENETRACIÓN (pulg)	CBR al 100% (%)	CBR al 95% (%)
C1	0.1	10.53	7.55
C2	0.1	10.81	7.86
C3	0.1	10.53	7.6
C4	0.1	11.09	7.96
C5	0.1	11.24	8.13
PROM	0.1	10.84	7.82

Fuente: Elaboración propia

Los resultados de las 5 calicatas están obtenidos a 1 pulgada de penetración.

4.2. Capacidad de compactación añadiendo tiras de plástico PET al 0.5%, 1% y 1.5%.

Tabla 8. Resultados de los estudios experimentales de Proctor Modificado

MUESTRA	GRUPO CONTROL		GE1 0.5%PET		GE2 1%PET		GE3 1.5%PET	
	MDS (gr/cm3)	OCH (%)	MDS (gr/cm3)	OCH (%)	MDS (gr/cm3)	OCH (%)	MDS (gr/cm3)	OCH (%)
C1	1.73	8	1.75	7.95	1.798	7.62	1.762	7.59
C2	1.742	8.4	1.753	8.32	1.776	8.1	1.762	8.02
C3	1.722	8.1	1.74	7.98	1.768	7.95	1.754	7.89
C4	1.784	8.05	1.816	7.93	1.846	7.86	1.824	7.83
C5	1.792	8.6	1.823	8.32	1.842	8.21	1.83	8.18
Prom.	1.754	8.23	1.7764	8.1	1.806	7.948	1.7864	7.902

Fuente: Elaboración propia

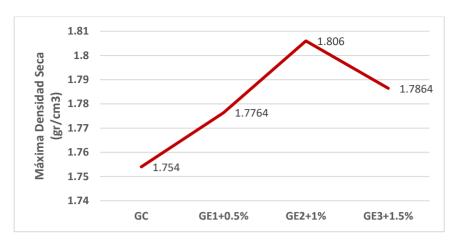


Figura 3. Resultados en MDS respecto a las dosificaciones.

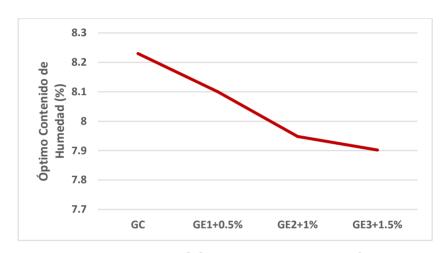


Figura 4. Resultados en OCH respecto a las dosificaciones.

Se aprecia (Tabla 8) un aumento de la densidad seca al incrementar el porcentaje de plástico PET en la incorporación con el suelo, obteniendo los mejores resultados al incorporar 1% de PET. Disminuyendo el Óptimo contenido de humedad (7.948%) para una mayor densidad del suelo (1.806 gr/cm3).

4.3. Resistencia del suelo añadiendo tiras de plástico PET al 0.5%,1% y 1.5%.

 Tabla 9.
 Resultados de los estudios experimentales de CBR.

	GRUPO CONTROL		GE1 0.5%PET		GE2 1%PET		GE3 1.	5%PET
CALICATA	CBR al 100% (%)	CBR al 95% (%)	CBR al 100% (%)	CBR al 95% (%)	CBR al 100% (%)	CBR al 95% (%)	CBR al 100% (%)	CBR al 95% (%)
C1	10.53	7.55	10.81	8.18	11.81	9.09	11.09	8.86
C2	10.81	7.86	11.09	8.11	11.95	9.27	11.81	9.03
C3	10.53	7.6	10.95	7.97	11.73	8.93	11.38	8.19
C4	11.09	7.96	11.52	8.34	12.37	9.17	11.95	8.8
C5	11.24	8.13	11.24	8.33	12.37	9.46	12.09	9.02
Prom	10.84	7.82	11.122	8.186	12.046	9.184	11.664	8.78

Fuente: Elaboración propia

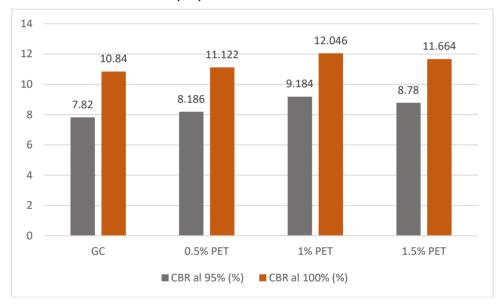


Figura 5. Ensayos CBR con adición de plástico PET.

Por los resultados obtenidos del ensayo CBR del grupo control y los grupos experimentales de 0.5%, 1% y 1.5%, se puede determinar que la incorporación de tiras de plástico PET da valores máximos de CBR al añadir 1% de PET a la muestra natural. Un aumento de 17.44% al 9.184%, siendo una mejora respecto a la muestra natural.

4.4. Diferencia significativa en los Resultados

A. Para Proctor Modificado

Tabla 10. Estadísticas de los grupos control y experimentales.

GRUPOS	MEDIA	DESVIACIÓN ESTANDAR	COEFICIENTE DE VARIACIÓN	
GC	1.745	0.031	1.78%	
GE1+0.5%	1.776	0.039	2.20%	
GE2+1%	1.806	0.036	1.99%	
GE3+1.5%	1.786	0.037	2.07%	

Fuente: IBM SPSS Statisticv.

Tabla 11. Prueba de normalidad

CRUBOS	SHAPIRO-WILK				
GRUPOS	ESTADISTICO	gl	SIG.		
GC	0.868	5	0.257		
GE1+0.5%	0.801	5	0.083		
GE2+1%	0.866	5	0.250		
GE3+1.5%	0.772	5	0.047		

Fuente: IBM SPSS Statisticv.

Se puede observar que en la Tabla 11 los grupos no cumplen con la prueba de normalidad de Shapiro-Wilk (Significancia = 0.047 < 0.05); de modo que se utiliza la estadística no paramétrica (Kruskal-Wallis) para realizar la comparación de grupos).

Tabla 12. Comparación estadística múltiple de grupos analizados con la prueba Kruskal-Wallis.

	GRUPO DE DATOS			
H de Kruskal-Wallis	5.610			
gl	3			
Sig. Asintótica.	.132			

Fuente: IBM SPSS Statisticv.

La Tabla 12 muestra que la Significancia > 0.05; por lo tanto, no existe

diferencia significativa al añadir las distintas proporciones de plástico PET los estudios de Proctor Modificado.

B. Para CBR

Tabla 13. Estadísticos de los grupos de control y experimentales.

GRUPOS	MEDIA	DESVIACIÓN ESTANDAR	COEFICIENTE DE VARIACIÓN	
GC 10.84		0.32	2.95%	
GE1+0.5%	11.12	0.27	2.43%	
GE2+1% 12.04		0.3	2.49%	
GE3+1.5%	11.66	0.41	3.52%	

Fuente: IBM SPSS Statisticv.

Tabla 14. Prueba de normalidad.

GRUPOS	SHAPIRO-WILK				
GRUPUS	ESTADISTICO	gl	SIG.		
GC	0.887	5	0.341		
GE1+0.5%	0.978	5	0.923		
GE2+1%	0.838	5	0.161		
GE3+1.5%	0.926	5	0.572		

Fuente: IBM SPSS Statisticv.

Los datos de los grupos analizados en la Tabla 14 cumplieron con la prueba de normalidad de Shapiro-Wilk, siendo todos los resultados de Significancia > 0.05; por lo tanto, se utiliza la técnica estadística paramétrica Análisis de Varianza (ANOVA).

Tabla 15. Prueba de varianza (ANOVA).

	SUMA DE CUADRADOS	gl	MEDIA CUADRÁTICA	F	Sig.
Entre grupos	4.383	3	1.461	13.093	.000
Dentro de grupos	1.785	16	.112		
Total	6.168	19			

Fuente: IBM SPSS Statisticv.

La Tabla 15 muestra los resultados de la significancia estadística; siendo

Sig. < 0.05. Por lo tanto, existe diferencia significativa entre los grupos analizados.

Tabla 16. Comparación del grupo control con los grupos experimentales a través de HSD Tukey.

GRUPO CONTROL	GRUPOS EXPERIMENTALES	Diferencia de medias (I-J)	Error estándar	Sig.	Intervalo de confianza al 95% Límite Límite	
					inferior	superior
	GE1 - 0.5%	28200	.21127	.555	8864	.3224
GC	GE2 - 1%	-1,20600*	.21127	.000	-1.8104	6016
	GE3 - 1.5%	-,82400 [*]	.21127	.006	-1.4284	2196

Fuente: IBM SPSS Statisticv.

La Tabla 16 muestra que los valores de significancia son menores a 0.05 en los porcentajes de 1% y 1.5%, por lo cual existe diferencia significativa excepto en el porcentaje de 0.5%. Siendo superior por diferencia de medias la adición de 1 % de tiras de plástico

V. DISCUSIÓN

En la presente investigación se realizó el estudio de suelos en 5 puntos de exploración, determinando que el terreno se clasifica por SUCS en CL (Arcilla arenosa de baia plasticidad) v AASHTO A-6-8 (Suelos Arcillosos) además, el promedio en los resultados de limite líquido, plástico e índice de plasticidad son demasiado elevados siendo de 34.2%, 16.6% y 17.6% respectivamente. Estos resultados son similares a los encontrados en la investigación de Saravanan, Murthi, Poongodi, Raju (2020), quienes trabajaron con un suelo con mayor contenido de finos, teniendo como base el LL de 51%, LP de 24.5% e IP de 26.5% de suelo natural, en sus resultados de Óptimo Contenido de Humedad para una Máxima Densidad Seca se tuvo 14% y 1.911 gr/cm3; también Kadhum y Aljumaili (2020) determinaron valores de 22.1% para Límite Líquido, 4.2% para Límite Plástico, 17.9 de Índice de Plasticidad, en cuanto a la clasificación AASHTO el suelo es grava y arena limo o arcillosa (A-2-6) valores de MDS y OCH de 2.2 gr/cm3 y 9.8% respectivamente y finalmente un valor CBR de 29.5%, por otro lado Mehdi y Massoud (2022) en su investigación determinaron la clasificación del suelo por SUCS como CL (arcilla arenosa de baja plasticidad) con un LL de 39%, LP de 17% e IP de 22%, un máximo contenido de humedad de 14.5%, máxima densidad seca de 1780 kg/m3. Marquéz (2019) obtuvo un suelo CL (arcilla arenosa de baja plasticidad) y según AASHTO (arcilla de baja compresibilidad); respecto a los valores de LL, LP e IP obtuvieron 34%, 20% y 14% respectivamente, en cuanto a los valores de MDS y OCH obtuvieron 1.278 gr/cm3 y 12.1%, el valor de CBR fue menor a 6%. Por su parte Flores y Zea (2021) realizaron su investigación un suelo base de clasificación (CL) arcilla inorgánica de baja plasticidad por el método SUCS y un tipo (A-4) suelos limosos por el método AASHTO, un LL de 28.06%, LP de 18.98% e IP de 9.08% con una máxima densidad seca de 1.767 gr/cm3, óptimo contenido de humedad de 16.55% y valor de resistencia del suelo de 4.3%, siendo un suelo malo a mejorar, aplicando métodos convencionales como el uso de la cal, cemento, ceniza de algún material o mas experimentales como mascarillas, materiales reciclados, plásticos, etc. (MTC, 2008).

- La Tabla 8 muestra la variación de la máxima densidad seca con la humedad óptima en los diferentes grupos experimentales y el grupo control, evidenciando la disminución del contenido de humedad en 4% v un incremento en la resistencia del suelo de 3%, demostrando que la incorporación de plástico favorece en las propiedades mecánicas de suelo arcilloso. Mehdi y Massoud (2022) donde utilizaron porcentajes de tiras de plástico 0.5%, 1%, 1.5%, 3%, 5% y 10% obtuvo la misma variación en sus resultados de máxima densidad seca y óptimo contenido de humedad. Asimismo, Saravanan, Murthi, Poongodi, Raju (2020), difiere de estos resultados; pues el óptimo contenido de humedad y máxima densidad seca disminuye al incrementar el porcentaje de plástico, en un máximo de 18% para el OCH y 15% para MDS. También Marquéz (2019) obtuvo resultados similares al disminuir el OCH en 5% y aumentar la MDS en 10%. Flores y Zea (2021) no encontraron variaciones notables, pues sus resultados de OCH y MDS son muy similares de suelo natural y con porcentajes de plástico. Cobeñas (2018) obtuvo resultados similares a la presente investigación pues al incrementar el porcentaje de tiras de plástico PET en el suelo disminuye la cantidad de agua necesaria para mejorar la compactación del suelo. En la investigación de García y Marquina (2021) obtuvieron una mejora máxima de 8% en la máxima densidad seca del suelo. El incremento se debe a que el plástico no es capaz de absorber agua, en consecuencia, el suelo se comprime con un contenido de humedad menor
- ➤ En la presente tesis se utilizó porcentajes de 0.5%, 1% y 1.5% de tiras de plástico PET, después de haber realizado el estudio de suelos determinamos que hubo un aumento en la resistencia del suelo en base al ensayo de CBR donde se obtuvo una mejora del 17% respecto a la muestra natural, aumentando gradualmente al incrementar el porcentaje de PET. Estos resultados son similares a los obtenidos por Kadhum y Aljumaili (2020), quienes utilizaron dosificaciones de 0.25%, 0.5%, 0.75% y 1% de plástico, donde demuestra que al añadir PET en el suelo mejora

gradualmente su resistencia en 20% respecto al suelo base. Saravanan, Murthi, Poongodi, Raju (2020), obtuvieron una mejora máxima en la capacidad portante (CBR) del 106% mejorando considerablemente la estabilidad del suelo al utilizar plástico en porcentajes de 0.5%, 1% y 1.5%. También Marquéz (2019) muestra mejorar mayores al 6% en sus resultados de CBR con esto demuestran un cambio notable en la resistencia del suelo respecto al suelo natural. Asimismo, en la investigación de Flores y Zea (2021) se obtuvo un incremento del 41% en el CBR, esto utilizando 1.5% de plástico PET en la incorporación del suelo. De igual manera Cobeñas (2018) en sus resultados obtuvo una mejor del 71% al incorporar plástico al suelo. El MTC (2008) indica las categorías según el valor CBR; valores menores a 10% se tiene que mejorar la capacidad del suelo por una estabilización. La incorporación de plástico en la mezcla del suelo se considera como un material ecológico y favorece a las propiedades mecánicas del mismo. La existencia de plástico en la mezcla del suelo de la subbase se considera como un material ecológico y puede mejorar la resistencia del suelo.

➤ La compresión del suelo utilizando el ensayo de Proctor Modificado no presentan diferencia significativa al añadir los distintos porcentajes de tiras de plástico (Tabla 12), mientras que en la resistencia del suelo por el ensayo CBR (Tabla 15) si existe significancia siendo superior la adición de 1% de tiras de plástico. Estos resultados difieren de los encontrados por Flores y Zea (2021) pues si encontraron significancia en los resultados de Proctor Modificado y CBR demostrando mayor grado de significancia el uso de 1.5% de PET.

VI. CONCLUSIONES

- 1. El suelo natural se clasifica por el método SUCS como arcilla arenosa de baja plasticidad (CL) y por el método AASHTO como suelo arcilloso (A-6-(8)). Además, tiene un contenido de humedad promedio de 5.32%, un límite líquido promedio de 34.2%, límite plástico de 16.6% y la plasticidad promedio de 17.6%. Por último, cuenta con un óptimo contenido de humedad promedio de 8.23% para una máxima densidad seca promedio de 1.754 gr/cm3 y valor de resistencia CBR promedio de 7.82%.
- 2. La incorporación de tiras de plástico PET en porcentajes de 0.5%, 1% y 1.5% reduce el óptimo contenido de humedad y aumenta la máxima densidad seca del suelo, sobresaliendo al añadir 1% de PET; disminuyendo la cantidad de agua para un suelo más estable.
- 3. Al añadir tiras de plástico PET mejora la capacidad de resistencia del suelo natural, con valores de CBR de 8.18% con 0.5% de PET, 9.18% con 1% de PET y 8.78% con 1.5% de PET; obteniendo mejores resultados al añadir 1% de PET pues mejora en 17.44% el valor de resistencia CBR del suelo natural.
- 4. El suelo añadiendo 1% de plástico PET tiene mayor densidad seca, 1.806 gr/cm3, obteniendo un resultado no significativo (Sig. < 0.05) en base al suelo natural; a diferencia de la resistencia del suelo (CBR) que tiene una diferencia muy significativa (Sig. = 0.00) con el suelo natural.

VII. RECOMENDACIONES

- ➤ En el futuro se sugiere realizar investigaciones si también cumple para mejorar las propiedades mecánicas del suelo utilizando el PET para las cimentaciones de viviendas.
- Se recomienda realizar estudios mucho mas avanzados al PET, ya que posee componentes apropiados para estabilización y se puede determinar su utilización en otros tipos de suelos, climas y escenarios.
- ➤ Se recomienda hacer estudios para un suelo arenoso, y ver el comportamiento y la resistencia que hay para realizar una carretera, además determinar si se puede usar para cimentaciones.

REFERENCIAS

ABDY, Charlotte, ZHANG, Yuqing, WANG, Jiawei, YANG, Yang, ARTAMENDI,

Ignacio, ALLEN, Bob. Pyrolysis of polyolefin plastic waste and potential applications

in asphalt road construction: A technical review. Resources, Conservation and

Recycling [en línea]. 180. Mayo 2022. [Fecha de consulta: 10 de mayo de 2022].

Disponible en: https:

https://www.sciencedirect.com/science/article/pii/S0921344922000611?via%3Dihu

ISSN: 0921-3449

AMERICAN Society for Testing and Materials (USA). D1883-16: Método de prueba

estándar para la relación de carga de California (CBR) de suelos compactados en

laboratorio. Pensilvania, 2018. 14 pp.

AMERICAN Society for Testing and Materials (USA). ASTM D2487-17: Práctica

estándar para la clasificación de suelos con fines de ingeniería (Sistema unificado

de clasificación de suelos). Pensilvania, 2018. 5 pp.

AMERICAN Society for Testing and Materials (USA). ASTM D2216-19: Métodos de

prueba estándar para la determinación de laboratorio del contenido de aqua

(humedad) del suelo y la roca por masa. Pensilvania, 2018. 7 pp.

AMERICAN Society for Testing and Materials (USA). ASTM D6913-04e1: Métodos

de prueba estándar para la distribución del tamaño de partículas (graduación) de

suelos mediante análisis de tamiz. Pensilvania, 2018. 8 pp.

AMERICAN Society for Testing and Materials (USA). ASTM D1557-12e1: Métodos

de prueba estándar para las características de compactación de laboratorio del

suelo usando esfuerzo modificado. Pensilvania, 2018. 13 pp.

BORJA, Manuel. Metodología de la Investigación Científica para Ingenieros [en

línea]. Chiclayo, 2016. 38 pp.

29

CAMILO, Cristian y CRUZ, Lucio. Estudio experimental de clasificación de suelos

derivados de cenizas volcánicas en el suroccidente colombiano con el método

SUCS, el AASHTO y un nuevo método de clasificación de suelos. *Ingeniería y*

Desarrollo. Universidad del Norte. [en línea]. 36 n.º 2. [Fecha de consulta: 02 de

mayo de 2022].

Disponible en: https://www.scielo.org.co/pdf/inde/v36n2/2145-9371-inde-36-

02-378.pdf

ISSN: 0122-3461

CHOMPOORAT, Thanakorn, THEPUMONG, Thanakit, KHAMPLOD, Anupong,

LIKITLERSUANG, Suched. Improving mechanical properties and shrinkage

cracking characteristics of soft clay in deep soil mixing. Construction and Building

Materials. [en línea]. 316. [Fecha de consulta: 24 de octubre de 2021].

Disponible en: https:

https://www.sciencedirect.com/science/article/pii/S0950061821035911?via%3Dihu

b

ISSN: 0950-0618

COBEÑAS, Josué. Estabilización del suelo en el A.H. Solidex Bajo del C.P. San

Jacinto distrito de Nepeña con material plástico reciclado con fines de cimentación

de viviendas unifamiliares, Ancash 2018. Tesis (Bachiller en Ingeniería). Chimbote:

Universidad César Vallejo, Facultad de Ingeniería, 2018. 170 pp.

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/26462

CONTRALORÍA General de la República. El sistema CBR en la contraloría general

de la república. [en línea]. Rímac: RS Servicios Gráficos S.A.C., 2009. [fecha de

consulta: 19 de octubre de 2021].

Disponible en: https://www.bivica.org/files/sistema-cbr.pdf

ISBN: 978-612-45412-0-9

30

CRESPO, Carlos. Mecánica de suelos y cimentaciones. [en línea]. 5.a ed. México:

Limusa, 2004. [fecha de consulta: 19 de octubre de 2021].

Disponible en: https://stehven.files.wordpress.com/2015/06/mecanica-

desuelos-y-cimentaciones-crespo-villalaz.pdf

ISBN: 968-18-6489-1

DARANGE, Rushikesh, ADESINA, Adeyemi, DAS, Sreekanta. Feasibility study on

the sustainable utilization of uncalcined clay soils as Low-Cost binders. Construction

and Building Materials. [en línea]. 340. [Fecha de consulta: 24 de octubre de 2021].

Disponible en: https:

https://www.sciencedirect.com/science/article/pii/S095006182201399X?via%3Dih

ub

ISSN: 0950-0618

FERNÁNDEZ, Víctor. Tipos de justificación en la investigación científica. Espíritu

Emprendedor TES. [en línea]. 4, n.° 3. [Fecha de consulta: 24 de octubre de 2021].

Disponible en: https:

https://www.espirituemprendedortes.com/index.php/revista/article/view/207

ISSN: 2602-8093

FLORES, Deyvis y ZEA, Henry. Plástico reciclado en la estabilización de suelos

cohesivos para mejorar la subrasante de una vía multicarril, Juliaca 2021. Tesis

(Bachiller en Ingeniería). Lima: Universidad César Vallejo, Facultad de Ingeniería,

2021. 230 pp.

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/68779

HEINRICH BÖLL. Atlas del Plástico [en línea]. 2.a ed. El Salvador: Talleres Gráficos

UCA, 2019. [Fecha de consulta: 25 de setiembre de 2021].

Disponible en: https://sv.boell.org/sites/default/files/2020-

04/ATLASDELPLASTICOESPANOL2020.pdf

ISBN: 978-3-86928-211-4

GALLARDO, Eliana. Metodología de la Investigación. [en línea]. Huancayo:

Universidad Continental, 2017. [Fecha de consulta: 25 de setiembre de 2021].

Disponible en:

https://repositorio.continental.edu.pe/bitstream/20.500.12394/4278/1/DO UC EG

MAI UC0584 2018.pdf

ISBN: 978-612-4196-1

GARCÍA, Daniela, MARQUINA, Luis. Influencia del porcentaje de polímeros PET y cenizas de carbón con fines de estabilización de subrasante para un pavimento,

aplicado en el sector Barraza, Laredo, Trujillo – La Libertad, La Libertad 2021. Tesis

(Bachiller en Ingeniería). Trujillo: Universidad Privada Antenor Orrego, Facultad de

Ingeniería, 2021. 203 pp.

Disponible en: https://repositorio.upao.edu.pe/handle/20.500.12759/8524

GONZÁLEZ, Omar, IGLESIAS, Ciro, HERRERA, Miguel. Análisis de los factores

que provocan compactación del suelo agrícola. Revista Ciencias Técnicas

Agropecuarias. [en línea]. vol. 18, n.º 2. [Fecha de consulta: 21 de octubre de 2021].

Disponible en: https://www.redalyc.org/pdf/932/93215937011.pdf

ISSN: 1010-2760

GU, Fu, GUO, Jianfeng, ZHANG, Wujie, A.SUMMERS, Peter, HALL, Philip. From

waste plastics to industrial raw materials: A life cycle assessment of mechanical

plastic recycling practice based on a real-world case study. Science of The Total

Environment. [en línea]. vol. 601. [Fecha de consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S0048969717313980?via%3Dihu

ISSN: 0048-9697

32

HERNANDEZ, Roberto, FERNÁNDEZ, Carlos y BAPTISTA, María. Metodología de

la Investigación. [en línea]. 6.a ed. México: Interamericana Editores S.A. [Fecha de

consulta: 15 de setiembre de 2021].

http://observatorio.epacartagena.gov.co/wp-Disponible en:

content/uploads/2017/08/metodologia-de-la-investigacion-sexta-

edicion.compressed.pdf

ISBN: 978-1-4562-2396-0

HUANG, Jianxin, KOGBARA, Reginald, HARIHARAN, Narain, MASAD, Eyad,

LITTLE, Dallas. A state-of-the-art review of polymers used in soil stabilization.

Construction and Building Materials. [en línea]. vol 305. [Fecha de consulta: 21 de

octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S0950061821024405?via%3Dihu

b

ISSN: 0950-0618

INSTITUTO de Construcción y Gerencia (Perú). EC. 020 CE.020 Estabilización de

Suelos y Taludes. Lima: 2012. 18 pp.

JEFFERSON. Michael. Whither Plastics?-Petrochemicals, plastics and

sustainability in a garbage-riddled world. Energy Research & Social Science. [en

línea]. vol 56. [Fecha de consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S2214629619303172?via%3Dihu

b

ISSN: 2214-6296

JIAN-JUN, Zhao, MIN-LEE, Lee, SIONG-KANG, Lim, YASUO, Tanaka. Unconfined

compressive strength of PET waste-mixed residual soils. Geomechanics and

Engineering. [en línea]. vol 56. [Fecha de consulta: 15 de octubre de 2021].

Disponible en:

https://www.webofscience.com/wos/woscc/full-record/WOS:000353195700004

33

ISSN: 2005-307X

JUÁREZ, Eulalio y RICO, Alfonso. Mecánica de Suelos [en línea]. México: Limusa-Noriega Editores. 2005. [Fecha de consulta: 15 de setiembre de 2021].

Disponible en:

https://suelos.milaulas.com/pluginfile.php/128/mod_resource/content/1/Mecanica %20de%20suelos%20-%20Juarez%20Badillo.pdf

ISBN: 968-18-0069-9

LERMA, Hector. Metodología de la Investigación. [en línea]. 5.a ed. Colombia: Ecoe Ediciones. [Fecha de consulta: 15 de setiembre de 2021].

Disponible en: https://www.ecoeediciones.com/wp-content/uploads/2016/04/Metodolog%C3%ADa-de-la-investigaci%C3%B3n-propuesta-anteproyecto-y-proyecto.pdf

ISBN: 978-958-648-602-6

KADHUM, R., ALJUMAILI, K. Strengthening the clayey gravel and sand soils for Subbase course highway using different waste materialsIOP Conference Series: Materials Science and Engineering. vol 888. 1. [Fecha de consulta: 01 de octubre de 2021].

Disponible en: https://www.scopus.com/record/display.uri?eid=2-s2.0-85090860360&origin=resultslist&sort=plf-

f&src=s&nlo=&nlr=&nls=&sid=838f966967b7529ddd8c40a0e956dffa&sot=b&sdt=c l&cluster=scofreetoread%2c%22all%22%2ct%2bscosubjabbr%2c%22ENGI%22%2ct&sl=68&s=TITLE-ABS-

KEY%28%22ground%22+and+%28%22pet%22+or+%22plastic%22%29+and+%2 2stabilization%22%29&relpos=3&citeCnt=0&searchTerm=

ISNN: 1757-8981

MARQUEZ, Diana. Mejoramiento de la estabilización en la subrasante de suelos arcillosos usando plásticos reciclados pet en el distrito la encantada, provincia de morropon – piura 2019. Tesis (Bachiller en Ingeniería). Piura: Universidad Nacional De Piura, Facultad de Ingeniería, 2019. 78 pp.

Disponible en:

https://repositorio.unp.edu.pe/bitstream/handle/20.500.12676/2241/CIV-MAR-MAR-2019.pdf?sequence=1&isAllowed=y

MEHDI, Koohmishi, MASSOUD, Palassi. Mechanical Properties of Clayey Soil Reinforced with PET Considering the Influence of Lime-Stabilization. *Transportation Geotechnics*. vol 23. [Fecha de consulta: 01 de octubre de 2021].

Disponible en:

https://www.scopus.com/record/display.uri?eid=2-s2.0-

85122798756&origin=resultslist&sort=plf-

f&src=s&st1=10.1016%2fj.trgeo.2022.100726&sid=d68b427a7a8b111e4c73d90ea e862bcd&sot=b&sdt=b&sl=32&s=DOI%2810.1016%2fj.trgeo.2022.100726%29&re lpos=0&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAI LS EXPORT:1

ISNN: 2214-3912

MINISTERIO de Transportes y Comunicaciones (Perú). MTC 2013: Manual de Diseño de Carreteras no Pavimentadas de Bajo Volumen de Tránsito. Lima, 2008. 208 pp.

MINISTERIO de Transportes y Comunicaciones (Perú). MTC 2013: Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos. Lima, 2013. 355 pp

MINISTERIO de Transportes y Comunicaciones (Perú). MTC 2013: Especificaciones Técnicas Generales Para Construcción. Lima, 2013. 605 pp.

MINISTERIO de Transportes y Comunicaciones (Perú). MTC 2016: Manual de Ensayo de Materiales. Lima, 2016. 1272 pp.

MONTEJO, Alfonso, MONTEJO, Alejandro y MONTEJO, Alberto. Estabilización de Suelos. [en línea]. México: Ediciones de la U, 2018. [Fecha de consulta: 03 de octubre de 2021].

Disponible en: https://docplayer.es/202738097-Ingenieria-civil-estabilizacion-de-

suelos-alfonso-montejo-fonseca-alejandro-montejo-piratova-alberto-montejo-

piratova-bogota-mexico-df.htmlt

ISBN: 978-958-762-878-4

MISHRA, Brajesh, KUMAR, Mohit. Use of randomly oriented polyethylene

terephthalate (PET) fiber in combination with fly ash in subgrade of flexible

pavement. Construction and Building Materials. [en línea]. vol 190. [Fecha de

consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S0950061818322505?via%3Dihu

ISSN: 0950-0618

MOHAMED, Abubaker, AL-AJAMEE, Mohamed, KOBBAIL, Ayman, DAHAB,

Haytham, MOHAMED, Abdo, ALHASSAN, Husam. A study on soil stabilization for

some tropical soils. Materials Today: Proceedings. [en línea]. vol 60. [Fecha de

consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S2214785321079943?via%3Dihu

b

ISSN: 2214-7853

PÉREZ, Maiby, GARCÍA, Auris, PAREDES, Aullen, LUNA, Juan, MADRIZ, Petra.

Resistencia mecánica del suelo a la panetración de raíces y forma de la raíz

reservante de la batata a partir del descriptor de Huamán. Agronomía

Costarricense. [en línea]. vol 40. [Fecha de consulta: 15 de octubre de 2021].

Disponible en: https://www.redalyc.org/pdf/436/43648865011.pdf

ISSN: 0377-9424

PINEDA, Eva. RAMÍREZ, Gilmar. Estudio de factibilidad técnica para fabricación de

elementos arquitectónicos y estructurales de plástico reciclado para uso en el sector

construcción. [en línea]. Santa Tecla: ITCA Editores, 2019. 60 pp.

ISBN: 978-99961-39-05-5

36

RAJA, K, VENKATACHALAM, S, VISHNUVARDHAN, K, SIVA, R, TAMIL, V, VETRISELVAN, N. A review on soil stabilization using rice husk ash and lime sludge. *Materials Today: Proceedings*. [en línea]. [Fecha de consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S2214785322023100?via%3Dihu

ISSN: 2214-7853

SARAVANAN, R., MURTHI, P., POONGODI, K., RAJU, K. A study on the effect of waste plastic strips in the stabilization of clay soil. *IOP Conference Series: Materials Science and Engineering*. 981. 3. [Fecha de consulta: 29 de setiembre de 2021]. Disponible en: https://www.scopus.com/record/display.uri?eid=2-s2.0-

85099514796&origin=resultslist&sort=plf-

&src=s&nlo=&nlr=&nls=&sid=838f966967b7529ddd8c40a0e956dffa&sot=b&sdt=cl &cluster=scofreetoread%2c%22all%22%2ct%2bscosubjabbr%2c%22ENGI%22%2ct&sl=68&s=TITLE-ABS-

KEY%28%22ground%22+and+%28%22pet%22+or+%22plastic%22%29+and+%2 2stabilization%22%29&relpos=1&citeCnt=0&searchTerm=

ISSN: 17578981

SHUJA, Danish, ROLLAKANTI Chiranjeevi, POLOJU, Kiran, ADAMS, Joe. An experimental investigation on -stabilization of sabkha soils with cement and Cement Kiln Dust (CKD) in Sultanate of Oman. *Materials Today: Proceedings*. [en línea]. [Fecha de consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S221478532202274X

ISSN: 2214-7853

SUÁREZ, Jaime. Deslizamientos Y Estabilidad De Taludes En Zonas Tropicales [en línea]. Colombia: Publicaciones UIS, 1998. [Fecha de consulta: 06 de octubre de 2021].

Disponible en:

http://desastres.medicina.usac.edu.gt/documentos/docgt/pdf/spa/doc0101/doc010 1.pdf

VAN, Joanna, NIAN, Yefan, SOH, Moonwon, MORGAN, Stephen, GAO, Zhifeng. ¿Do plastic warning labels reduce consumers' willingness to pay for plastic egg packaging? – Evidence from a choice experiment. Ecological Economics. [en línea]. [Fecha de consulta: 21 de octubre de 2021].

Disponible en:

https://www.sciencedirect.com/science/article/pii/S221478532202274X

ISSN: 0921-8009

ANEXOS

ANEXO 1:

Anexo 1.1. MATRIZ DE CONSISTENCIA

				VARIABLES	
PROBLEMA	HIPÓTESIS	OBJETIVOS	VARIABLE(S)	DIMENSIONES	INDICADORES
		GENERAL			Dosificación:
		Determinar las propiedades mecánicas del suelo mejorado con la incorporación de tiras de plástico PET, Villa La Merced-Laredo-La Libertad-2022	Tiras de plástico		0.5% 1% 1.5%
¿Cómo influye la incorporación de	La incorporación de tiras de plástico	ESPECÍFICOS			
tiras plástico en la estabilización de los suelos en el distrito	estabilización de suelos en el distrito hir, Trujillo, o de La 022? Influye en la estabilización de suelos en el distrito de El Porvenir, provincia de Trujillo, departamento de La Libertad 2022. Dete plás Halli estu	Identificar las características granulométricas del suelo en la Villa La Merced del distrito de Laredo.		Compactación	Proctor Modificado
El Porvenir, provincia de Trujillo, departamento de La Libertad 2022?		Determinar la capacidad de compactación del suelo añadiendo tiras de plástico.			
Libertad 2022?		Determinar resistencia del suelo al añadir tiras de plástico.			
		Hallar la diferencia en los resultados de los estudios de suelos entre el suelo natural y con la adición de 0.5%, 1% y 1.5% de tiras de plástico.		Resistencia	Capacidad Portante (CBR)

Anexo 1.2. Matriz de operacionalización

VARIABLE	DEF. CONCEPTUAL	DEF. OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
Tiras de plástico	Es un envase ligero muy utilizado en la comercialización de líquidos en productos como de lácteos, bebidas o limpia hogares. Sus ventajas respecto al vidrio son básicamente su menor precio y su gran versatilidad de formas (Zavala, 2015)	Se incorpora las tiras de plástico en las muestras de suelo para determinar la influencia que tiene las propiedades del suelo a evaluar.		Dosificación: 0.5% 1% 1.5%	Razón
	Las propiedades	A través de ensayos de	Compactación	Proctor Modificado	Razón
Propiedades mecánicas	mecánicas a nivel de subrasante son determinantes en el futuro desempeño de un pavimento. (RNE. CE.0.20, 2012).	laboratorio de suelos se determinará el comportamiento de las propiedades del suelo al haber añadido tiras de plástico.	Resistencia	Capacidad Portante (CBR)	Razón

ANEXO 2: INSTRUMENTOS DE RECOLECCIÓN DE DATOS

E N S A Y
P A R A
C
D E
S U E L O S

OBSERVACIÓN:

ONSULTORIA GEOTECNIA PROYECTO:			RATORIO DE MECÁNICA DE SUELOS, CONCRETO, PA\			CODIFICACION
SOLICITANTE :			÷			
CALICATA:						
ESTRATO :				•		
COLOR:			•	·		
FECHA DE INGRESO :						
ANÁLISIS GRANULO	MÉTRICO			CONTENIDO DE HUM	EDAD	
MASA SECA INICIAL	=		CODIGO DE TARA			
MASA DESPUES DE LAVADO	=		MASA DE TARA			
MASA DE FINOS	=		MASA SUELO HÚMEDO + TARA			
Tamices	Abertura	Masa	MASA SUELO SECO + TARA			
ASTM D6913	en mm.	Retenida	CLASIFICACIÓN VISUAL-MANUAL			
3"	76.200					
2"	50.800			LÍMITE LÍQUIDO)	
1 1/2"	38.100		RANGO DE GOLPES	15-20	20-30	25-30
1"	25.400		CODIGO DE TARA			
3/4"	19.050		NUMERO DE GOLPES			
1/2"	12.700		MASA DE TARA			
3/8"	9.500		MASA SUELO HÚMEDO + TARA			
N°04	4.750		MASA SUELO SECO + TARA			
N°10	2.000		Cantidad mínima 20 gr. SH-Tara			
N°20	0.840					
N°40	0.425			LÍMITE PLÁSTICO)	
N°60	0.250		CODIGO DE TARA			
N°100	0.150		MASA DE TARA			
N°140	0.106		MASA SUELO HÚMEDO + TARA			
N°200	0.075		MASA SUELO SECO + TARA			
< 200	Plato		Cantidad mínima 6 gr. SH-Tara			1

CONSULTORIA GEOTECNIA		LAI	BORATORIO DE MECÁNICA DE SUELOS, CONCRETO, PAVIMENTO Y MATERIALES
PROYECTO:			
SOLICITANTE :			· · · · · · · · · · · · · · · · · · ·
AGREGADO:	FINO - ARENA	*	- · · · · · · · · · · · · · · · · · · ·
CANTERA:			•
COLOR:			•
FECHA DE INGRESO :			•
	-		•
ANÁLISIS GRANUL	OMÉTRICO		CONTENIDO DE HUMED
MASA SECA INICIAL	=		CODIGO DE TARA
MASA DESPUES DE LAVADO	-		MASA DE TARA
MASA DE FINOS	=		MASA SUELO HÚMEDO + TARA
Tamices	Abertura	Masa	MASA SUELO SECO + TARA
ASTM D6913	en mm.	Retenida	CLASIFICACIÓN VISUAL-MANUAL
3"	76.200		
2"	50.800		PESO UNITARIO SUELTO Y CON
1 1/2"	38.100		IDENTIFICACIÓN
1"	25.400		PESO DEL MOLDE (Kg)
3/4"	19.050		VOLUMEN DEL MOLDE (m3)
1/2"	12.700		PESO DE MOLDE + MUESTRA SUELTA (Kg)
3/8"	9.500		PESO DE MOLDE + MUESTRA CONSOLIDADA (Kg)
N° 04	4.750		
N° 08	2.360		GRAVEDAD ESPECÍFIC
N° 16	1.180		DATOS DE ENSAYO / N° DE PRUEBA
N° 30	0.600		MASA SECADA AL HORNO (OD) (A)
N° 50	0.300		MASA DE PICNÓMETRO CON AGUA HASTA LA MARCA (B)
N°100	0.150		MASA DE PICNOMETRO CON AGUA + MUESTRA SSS (C)
N°200	0.075		MASA SATURADA CON SUPERFICIE SECA (SSS) (S)

Plato

< 200

TOTAL

ENSA

YO DE CLASI FICAC IÓN DE AGRE GAD OS

CONTENIDO DE HUMEDAD	
CODIGO DE TARA	
MASA DE TARA	
MASA SUELO HÚMEDO + TARA	
MASA SUELO SECO + TARA	
CLASIFICACIÓN VISUAL-MANUAL	

PESO UNITARIO SUELTO Y COMPACTADO						
IDENTIFICACIÓN	PRUEBA 1	PRUEBA 2				
PESO DEL MOLDE (Kg)						
VOLUMEN DEL MOLDE (m3)						
PESO DE MOLDE + MUESTRA SUELTA (Kg)						
PESO DE MOLDE + MUESTRA CONSOLIDADA (Kg)						

GRAVEDAD ESPECÍFICA		
DATOS DE ENSAYO / N° DE PRUEBA	PRUEBA 1	PRUEBA 2
MASA SECADA AL HORNO (OD) (A)		
MASA DE PICNÓMETRO CON AGUA HASTA LA MARCA (B)		
MASA DE PICNOMETRO CON AGUA + MUESTRA SSS (C)		
MASA SATURADA CON SUPERFICIE SECA (SSS) (S)		

OBSERVACIÓN:	•	•	•		

RUC: 2060609225
Estudios de mecánica de suelos con fines de cimentación y pavimentación. Ensayos de agregados, diseño de concreto y rotura de probetas
Servicio de consultoria. Servicios de obras civiles en general. Assoramiento técnico

CODIFICACION:

Ε
Ν
S
Α
Υ
0
D
Ε
С
L
Α
S
1
F
- 1
С
Α
C
ĺ
Ó
N
_
D E
A
G
R
E
G
A
D
0
S
_

CONSULTORIA GEOTECNIA PROYECTO:	LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO, PAVIMENTO Y MATERIALES	ŀ	CODIFICACION:
SOLICITANTE :	GRUESO - PIEDRA (
AGREGADO:	")		
CANTERA:			
COLOR:			
FECHA DE INGRESO :			

ANÁLISIS GRANULOMÉTRICO				
MASA SECA INICIAL	=			
MASA DESPUES DE LAVADO	=			
MASA DE FINOS	=			
Tamices	Abertur a	Masa		
ASTM D6913	en mm.	Retenida		
3"	76.200			
2"	50.800			
1 1/2"	38.100			
1"	25.400			
3/4"	19.050			
1/2"	12.700			
3/8"	9.500			
N° 04	4.750			
N° 08	2.360			
N° 16	1.180			
N° 30	0.600			
N° 50	0.300			
N°100	0.150			
N°200	0.075			
< 200	Plato			
TOTAL				

CONTENIDO DE HUMEDAD			
CODIGO DE TARA			
MASA DE TARA			
MASA SUELO HÚMEDO + TARA			
MASA SUELO SECO + TARA			
CLASIFICACIÓN VISUAL-MANUAL			

PESO UNITARIO SUELTO Y COMPACTADO				
IDENTIFICACIÓN	PRUEBA 1	PRUEBA 2		
PESO DEL MOLDE (Kg)				
VOLUMEN DEL MOLDE (m3)				
PESO DE MOLDE + MUESTRA SUELTA (Kg)				
PESO DE MOLDE + MUESTRA CONSOLIDADA (Kg)				

GRAVEDAD ESPECÍFICA				
DATOS DE ENSAYO / N° DE PRUEBA	PRUEBA 1	PRUEBA 2		
MASA DE LA MUESTRA SECA EN EL HORNO (A)				
MASA DE LA MUESTRA SECA AL AIRE SSD (B)				
MASA DE LA MUESTRA SUMERGIDA (C)				

OBSERVACIÓN:		•	•	

CODIFICACION:

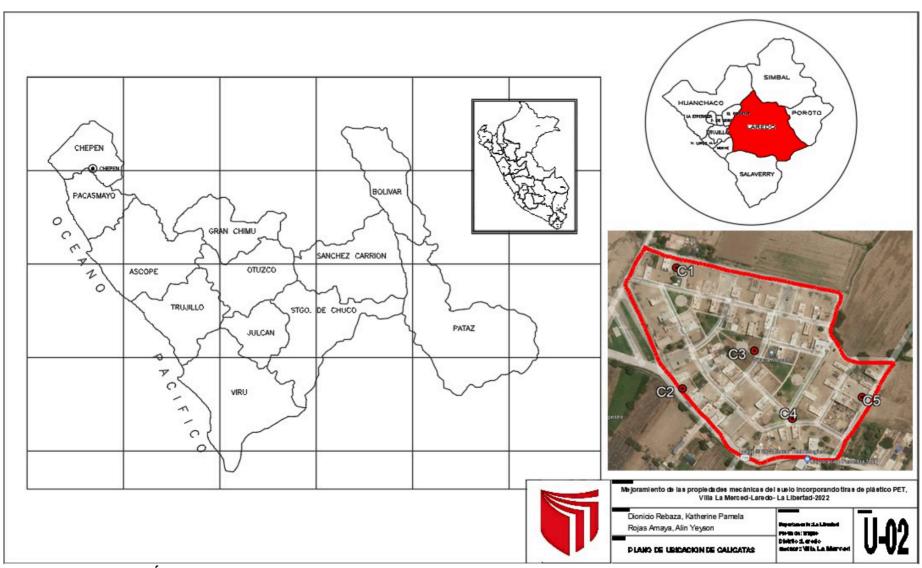
	JVC SECTECNIA
	PROYECTO: -
	SOLICITANTE :
	MATERIAL :
	PROCEDENCIA:
ENS	COLOR:
AYO DE CO	FECHA DE INGRESO :
MPA	

CTA CIÓ N -PRO CTO R MO DIFI CAD O

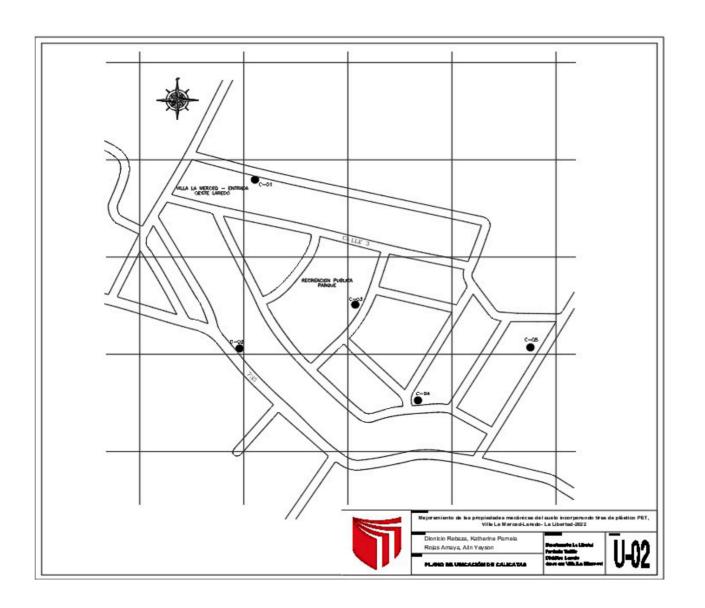
I ARORATORIO	DE MECÁNICA	DE SHELOS	CONCRETO	PAVIMENTO	Y MATERIALES
LADONAIONIO	DE MILCAMICA	DE JOELOS,	CONCINETO	, I AVIIVILIAIO	I MINITELLI

DROVECTO .	<u> </u>		
PROTECTO.			
SOLICITANTE :			
MATERIAL:			
PROCEDENCIA:			
COLOR:		CALICATA:	
A DE INGRESO :			
	•		

	CÁPSULA	PARA HUMEDAD	
PESO DEL SUELO SECO + CÁPSULA (g)	PESO DEL SUELO SECO + CÁPSULA (g)	PESO DE LA CÁPSULA (g)	CODIGO DE LA CÁPSULA (g)


MOLDE COMPACTACION PROCTOR				
MUESTRA N°	PESO DEL SUELO HUMEDO + MOLDE (g)	PESO DEL MOLDE (g)		
M-1				
M-2				
M-3				
M-4				
M-5				
M-6				

J. MCONS	ULTORIA GEOTECNIA	RUC: 20606092297
Ensayo	Estudios de mecánica de s cimentación y pavi s de agregados, diseño de co	
	Servicio de cons Servicios de obras civi Asesoramiento	les en general.
☎ 044-615	690 Jr. L	os Diamantes 365 Dpto. 101 😯


OBSERVACIÓN:			

044-615690	Jr. Los Diama
973994030 - 971492979	Urb.
7/3774030-7/14727/7	consultoriageof

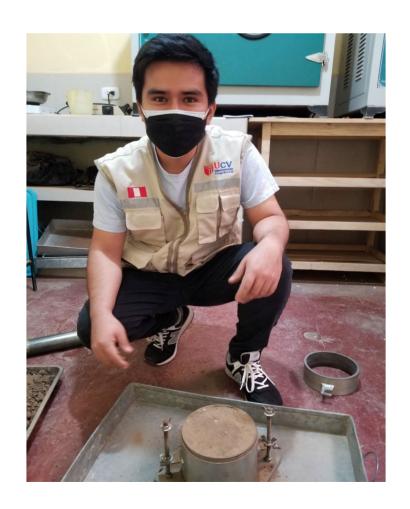
ANEXO 3: UBICACIÓN DE LA ZONA

ANEXO 4: UBICACIÓN DE CALICATAS

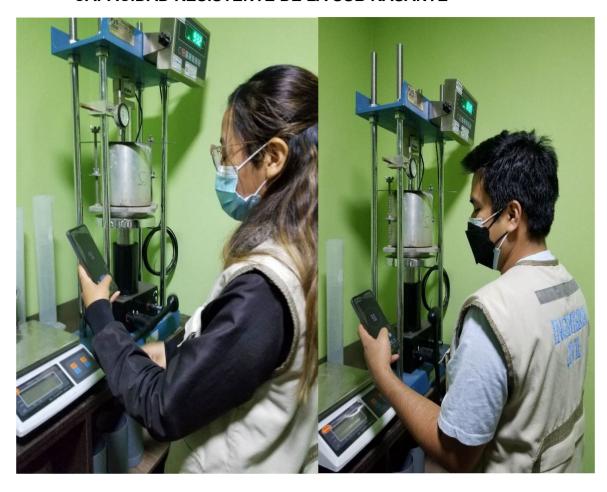
ANEXO 5: ELABORACIÓN DE ENSAYOS EN EL LABORATORIO 5.1. CUARTEO DE MATERIAL

5.2. TOMANDO NOTA LOS PESOS

5.3. LLEVADO DEL MATERAL AL HORNO


5.4. PESANDO EL MATERIAL UNA VEZ RETIRADO DEL HORNO

5.5. LAVADO DEL MATERIAL PARA ELIMINACIÓN DE LIMOS


5.6. COMPACTACIÓN DEL MATERIAL PARA ENSAYO PROCTOR

5.7: PESANDO LA TARA PARA COLOCAR EL MATERIAL COMPACTADO Y LLEVAR AL HORNO

5.8. REALIZANDO EL ENSAYO DE CBR PARA CONOCER LA CAPACIDAD RESISTENTE DE LA SUB RASANTE

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM D6913

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - L'AREDO -PROYECTO

TRILIILLO - LA LIBERTAD - 2022

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VALLA MERCED - L'AREDO - TRUJILLO - LA LIBERTAJO MAYO DEL 2822. SOLICITANTE UBICACIÓN FECHA

DATOS:

ENSAYO:

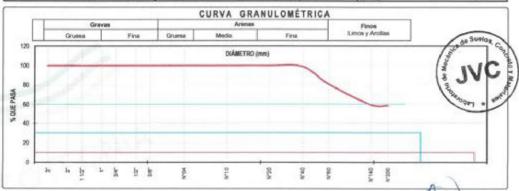
Sondais/Muestra Código de Muestra Observación

Missa Seca de Fracción Masa de Fracción Limpia y Seca Masa de Fracción Tamizada

CALICATA C-1/E-2 LA MERCED

COLOR MARRON

Masa de Finos Elminados : Error de Tamizado :


Norte Este Cota Progresiva

HUMEDAS NATURAL, ASTM S 2276								
Sh + Tara	1,263.70 gr.	1,374,60 gr.						
Ss + Tara	1,206.70 gr.	1,311,50 gr.						
Tara	106.70 gr.	104.90 gr.						
Humedad(%)	5.18	5.23						
Humedad Prom(%)		21						

ENSAYO GRANULOMETRICO

1,356.4 gr. 566.4 gr. 566.4 gr.

Tamices ASTM 06913	Abertura en mm.	Mesa Retenida	%Retenido Parcial	*Watenido Acumulado	% Que Pasa	Especificación Técnica	LÍMITES E INDICES DE	CONSISTEM	CIA NTP 339.17
3"	76.200	0.0	0.00	0.00	100.00		L. Liquido		37
7	50.800	0.0	0.00	0.00	100.00		L. Plástice	1.5	19
11/2"	38.100	0.0	0.00	0.00	100.00		Ind. Plástico	54	18
t,	25.400	0.0	0.00	0.00	100.00	+	CLASIFI	CACION / AST	M
34"	19.050	0.00	0.00	0.00	100.00		Class. SUCS (ASTM D2	467)	CL
1/2"	12.700	0.00	0.00	0.00	100.00		Clas. AASHTO (ASTM 03	282)	A-5 (B)
3/8"	9.500	0.00	0.00	0.00	100.00	4		-	
N704	4.750	0.00	0.00	0.00	100.00	- +	technology con-		
N*10	2:000	0.15	0.01	0.01	99.99	+	NOMBRE DEL GRUPO O MUESTRA		
N*20	0.840	0.35	0.03	0.04	99.96	10000			
N*40	0.425	14.35	1.06	1.09	98.91		Arcilla arenosa de basa plasticidad		licidad :
N°60	0.250	248.00	18.28	19.38	80.62	July 1	- 222		
N*140	0.106	290.50	21.42	40.80	59.20	and the same	of the second		
N*200	0.075	12.60	0.94	41.74	56.26		PROF. MUESTREO	(m) :	1.50
< 200	Plato	0.20	58.26	100.00	0.00		ESTRATO	C-1/E-2:	0.50 - 1.50
Total		566.35					PORCENTAJE DE MASA EN MUESTRA		
	745			- Inner	444			E MANUAL EN B	
DIAMETROS EFECTIVOS	D10 = D30 = D60 =	0.64 0.26 0.11	CORF. UNIF, Y CURVATURA	CC =	0.17		% Grava % Arena % Finos	*	0.00 41.74 58.26

JVC CONSULTORIA SECTECHIA S.A.C.

Jag Victorio de las Angeles Agustin Dice GERENTE GENERAL

MECHIA S.A.C JVC CONSULT

mirez Muños. Ing. Carlos Javier Ra CIP. 140574

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 - 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

CONTENIDO DE HUMEDAD

ASTM D2216

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA

PROYECTO MERCED - LAREDO - TRIUILLO - LA LIBERTAD - 2022 SOLICITANTE

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRIJILLO - LA LIBERTAD MAYO DEL 2022 UBICACIÓN

FECHA

Prof. de Musestreo Calicata / Muestra Estrato

CALICATA C -1 / E-2 0.50 - 1.50 m.

Analisis Preliminar (Separación)

Tamaho Máximo Tamiz Separador N° 04 No Requerido

CONTENIDO DE HUMEDAD

D-2216

DESCRIPCIÓN	C-5	C-14	
Masa de Recipiente	(gr.)	106.70	104.90
Masa de Recipiente + Suelo Humedo	(gr.)	1,263.70	1,374.60
Masa de Recipiente + Suelo Seco Inicial	(pr.)	1,209.05	1,313.83
Masa de Recipiente + Sueto Seco 02	(gr.)	1,206.70	1,311.50
Masa de Recipiente + Suelo Seco Final	(gr.)	1206.70	1311.50
Masa de Suelo Seco	(gr.)	1,100.00	1,206.60
Masa de Agua	(gr.)	57.00	63.10
Contenido de Humedad	(%)	5.18	5.23
Clasificación Visuali - Manuali		CL	CL.

Contenido de Humedad Promedio (%) 5.21

JVC CONSULTORIA GEOTECNIA S.A.C

Ing. Carlos Jonese Hamirez Muños CIP. 140474

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Victoria de los Angeles Aguella Diaz GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo
Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030
consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

LÍMITES DE CONSISTENCIA

ASTM D4318

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULO - LA LIBERTAD - 2022 PROYECTO

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON SOLICITANTE

UBICACIÓN VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD

FECHA MAYO DEL 2022

LIMITES DE CONSISTENCIA			LIMITE LIQUIDO	LIMITE PLASTICO		
N° de golpes		18	26	34		
Peso tara	(gr.)	13.85	14.59	13.94	12.53	13.24
Peso tara + suelo húmedo	(gr.)	33.85	34.53	34.21	20.85	20.33
Peso tara + suelo seco	(gr.)	28.25	29.20	28.92	19.56	19.17
Humedad %		38.89	36.48	35.31	18.35	19.56
Limites			37.00		19	

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Victoria de las Argeles Agratin Diaz GERENTE GENERAL

JVC CONSULTORIA GED TECH ing Carlos Javie Ramirez Muho: CIP. 140°74

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÂNICA DE SUELOS - CONCRETO - ASF

ANALISIS GRANULOMETRICO POR TAMIZADO ON SULTORIA ASTM D6913

ASTIM 08913

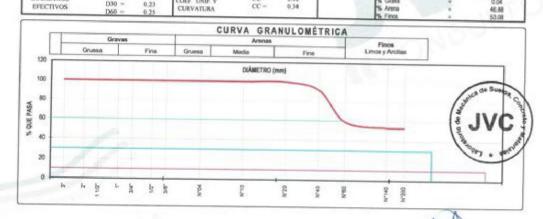
MEJORAMIENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PE**TRAJACIAZADAMISADEZ CRE**DODIÓNICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON
VILLA MERCEO - LAREDO - TRILUILLO - LA LIBERTAD
MAYO DEL 2022 SOLICITANTE UBICACIÓN FECHA

DATOS:

Sondajn/Muestra Código de Muestra Observación CALICATA C -2/E-1 LA MERCED COLOR AMARILLO

Coordena Norte Este Cota Progresiva

ENSAYO:


NSAYO : Masa Seca de Fracción Masa de Fracción Limpia y Seca Masa de Fracción Tamizada

8356	A mar	
999	4 86	
656	A me	
95/00	A SE	

IN AN LAYE CHIMINENCE	- 1	967.30 gr.
Error de Tamizado	1	0.00%

Sh + Tarra	1,134.60 gr.	1.248.70 cr.			
Ss + Tara	1,077.60 gr.	1,169,30 or			
ara	105.70 gr.	114.60 gr.			
lumedad(%)	5.85	7.53			
furnedad Prom(%)	6.70				

ENSAYO GRANULOMETRICO						Humedad(%) Humedad Prom(%)	5.88	7.53	
Yamices ASTM D6913	Abertura en mm.	Masa Ratenida	%Retenido Parcial	%Retenido Acumulado	N Que Pasa	Especificación Técnica	The second secon		6.70 NCIA NTP 339.12
3"	76.200	0.0	0.00	0.00	100.00		L. Liquido		
7	50.800	0.0	0.00	0.00	100.00		L. Plástico		36
11/2"	38,100	0.0	0.00	0.00	100.00		100		14
1"	25.400	0.0	0.00	0.00	100.00		Ind. Plástico		22
3/4"	19.050	0.00	0.00	0.00	100.00		A THE RESIDENCE OF THE PARTY OF	SIFICACION / AS	
1/2"	12.700	0.00	0.00	0.00	100.00			02487) :	CL
387	9.500	0.00	0.00	0.00	100.00		CHIS. AASHTO (ASTM 03282) . A-61		
N*64	4.750	0.50	0.04	0.04	99.96				- 31 120
N*10	2.000	0.22	0.02	0.06	99.94		NOMBRE DEL GRUPO O MUESTRA		DESTRA
N*20	0.840	0.31	0.02	0.08	99.92	4			
N*40	0.425	106.40	8.21	8.29	91.71		A SECTION A		
N*60	0.250	423.80	32.71	41.00	59.00	-	Arolla are	mosa de buja plas	dicidad
N*140	0.106	72.90	5.63	46.63	57.50 Sept. 200				
M*200	0.075	3.60	0.29		53.37				100
< 200	Plato	0.50	-	46.92	53.08		PROF, MUESTREO	(m) :	1.50
Totali	1 1000	606.43	53.08	100.00	0.00		ESTRATO	C-2/E-1:	0.10 - 1.50
Total		506.43					PORCENTAJ	E DE MASA EN I	MUESTRA
DIAMETROS	D40 = D30 =	0.61	CORF. UNIF. Y	CU =	0.41		% Grava	*	0.04

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Rictoria de los Angeles Agustín Dile: GERENTE GENERAL

JVC CONSOLTO leg. Carlos Javier Ramirez Muñoz CIP. 140574

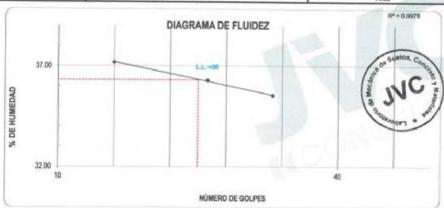
JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Telèf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

LÍMITES DE CONSISTENCIA

ASTM D4318


MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA. PROYECTO

MERCED - LAREDO - TRUJILLO - LA LIBERTAD - 2022 DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD SOLICITANTE

UBICACIÓN

FECHA MAYO DEL 2022

LIMITES DE CONSISTENCIA			LIMITE LIQUIDO	LIMITE PLASTICO		
Nº de golpes		16	26	33		
Peeo tara	(gr.)	14.31	13.92	13.87	11.83	12.56
Peso tara + suelo húmedo	(gr.)	34.16	33.94	34.12	19.67	20.28
Peso tara + suelo seco	(gr.)	28.78	28.61	28.81	18.73	19.33
Humedad %		37.18	36.28	35.54	13.62	14.03
Limites			38.00		14	

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Victorio il luo Angeles Agustin Diaz GERENTE GENERAL

JVC CONSULTORIA GED

irez Muñot Ing. Carlos Javier Ran CIP. 140174

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvo@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

CONTENIDO DE HUMEDAD

ASTM D2216

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECÂNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA

SOLICITANTE

MERCED - LAREDO - TRUJILLO - LA LIBERTAD - 2022

DIONICIO REBAZA KATHERINE PAMELA - ROUAS AMAYA ALIN YEYSON

VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD

MAYO DEL 2022 UBICACIÓN

FECHA

Prof. de Muestreo Calicata / Muestra Estrato

1.50 m. CALICATA C -2 / E-1

Analisis Preliminar (Separación)

Tamaño Máximo Tamiz Separador N° 04 No Requerido

0.10 - 1.50 m.

CONTENIDO DE HUMEDAD

DESCRIPCIÓN	C-3	D-01	
Masa de Recipiente	(gr.)	105.70	114.60
Masa de Recipiente + Suelo Humedo	(gr.)	1,134.60	1,248.70
Masa de Recipiente + Suelo Seco Inicial	(gr.)	1,079.95	1,171.63
Masa de Recipiente + Sueto Seco 02	(gr.)	1,077.60	1,169.30
Masa de Recipiente + Suelo Seco Final	(gr.)	1077.60	1169.30
Masa de Suelo Seco	(gr.)	971.90	1,054.70
Masa de Agua	(gr.)	57.00	79.40
Contenido de Humedad	(%)	5.86	7.53
Clasificación Visual - Manual		CL	CL.
Contenido de Humedad Promedio	(%)	6.70	

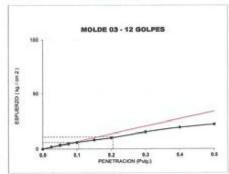
JVC CONSULTORIA SEO TECNIA S.A.C.

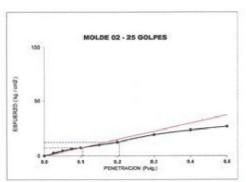
Ing. Carlos Javier Ramirez Muñoz CIP. (40-574

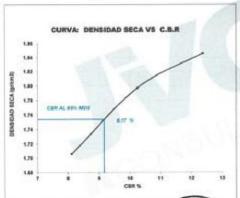
JVC CONSULTORIA SECTECHIA S.A.C.

Ing. Victoria de las Angeles Agustin Diaz GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inès - Trujillo Telèf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com




CURVAS - VALORES PRELIMINARES

C-4/E-1 + 1% PET

MOLDE 01 : 56 GOLPES ESPUENZO (1g / ond.)

Walasaa Carragidas

MOLDE N°	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.7	70.307	12.37	1.846
2	0.1	7.2	70.307	10.24	1,797
3	0.1	5.7	70.307	6.11	1.705

Nº Nº	N (pulg)	APLICADA (kg/cm ²)	PATRÓN (kg/cm²)	%	SECA (gr/cm3)	1 J
1	0.1	8.7	70.307	12.37	1.846	13
2	0.1	7.2	70.307	10.24	1.797	1 500
3	0.1	5.7	70.307	8.11	1.706	100
200			- CONTRACT I			
MOLDE	PENETRACIÓ	PRESION APLICADA	PRESION	C.B,R	DENSIDAD	

3	0.2	10.7	105.48	10.15	1.706
METODO DE C	OMPACTACIÓN		ASTM D1557		
Máxima Densid	tad Seca (gr./cm3)	al 100 %			1.85
	lad Seca (gr./cm3)				1.75
	nido de Humedad				7.86%

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	12,37%
Malance D. D. & LOSW do to Mileimo Deposided Spore	9.17%

s Javier Ramirez Muños CIP. 1400** Ing. Carls

ANG CONSUSTORIA GERTECHIA S.A.C.

O coforthe late of Angeles Agustin Dies
GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR MÉTODO C

ASTM D-1557 / ASTM D1883

MEJORAMIENTO DE LAS PROPIEDADES MICANCAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - L'AREDO - TRUJULLO -LA LIBERTIAD - 2022 DIOMOD REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSÖN WILLA MERCED - L'AREDO - TRUJULLO - LA LIBERTAD MAYO DEL 2022 PROYECTO

SOLICITANTE UBICACIÓN

FECHA

Material	1	CARRETIERA	Profundidad:		- m
Procedencia	4	Calicata	Norta:	+	N
N° de Muestra	4	C-4/6-1 = 1.5% PET	Enta:	+	E
Ubicación	4	VILLA LA MERCED	Cotac		move

Molds N°	5 - 123
Pesse del Molde gr.	6,734
Volumen del Molde cm ³ .	2,135
Nº de Capas	5
Mª de Golines por cana	55

WUESTRA M"	1	1	3	4		- 1
Peso de Suelo hirmedo - Molde (gr.)	10,640	10,885	10,811			
Pesc de Molde (gr.)	6,734	6,734	6,734			
Pese del suelo Húmedo (gr.)	3,906	4,151	4,677			1
Densidad Hümeda (gricm3)	1.83	1.54	1.91			-
CAPSULA IF	1,00	2.00	3.00			
Peso de suelo Húmedo « Cápsula (gr.)	9113	523.2	529.9			
Peso de suelo seco - Cápsula: (gr.)	519.3	495.8	491.7			
Peso de Agus (pr)	22.0	27.4	38.2		100	THE THE
Peso de Căpeula (gr.)	106.8	100.0	112.5			1 1
Peso de Suelo Seco (gr.):	410.5	389.8	379.2			
N de Humedad	5.36	7,03	10.67			
Densidad de Suelo Seco (gricm3)	1.74	1.62	1.73			

Máxima Densidad Seca (gricm3)	1.824
Óptimo Contenido de Humedad (%)	7.83

OBSERVACION:

VC CONSULTORIA SECTECHIA S.A.C. Ing. Victoria de sel Arquier Agustin Disc GERENTE GENERAL

Carlos Javier Ramínez Muñoz

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecnia/vc@gmail.com

PROYECTO

RUC: 20606092297

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

MEJORAMIENTO DE LAS PROPREDIDES MECÁNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJELO -LA LIBERTAD - 2022

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILIA MERCEO - LAVEDO - TRUMLIO - LA LIBERTAD MAYO DEL 2023

SOLICITANTE UBICACIÓN FECHA

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENSAYO DE COMPACTACIÓN

MOLDE	MOL	MOLDE 1		DE 2	MOL	0E 3
Nº DE CAPAS		5			5	
Nº DE GOLPES POR CAPA		6	2	5	12	
SOBRECARGA (gr.)	59	40	50		5915	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8096	8491	8280	8418	8125	8294
Peso de Molde (gr.)	4162	4160	4196	4196	4189	4189
Peso del Suelo Húmedo (gr.)	4214	4309	4064	4222	3936	4105
Volumen de Molde (cm3)	3235	5226	3228	3228	3228	3228
Volumen del Disco Especiador (cm3)	1065	1080	1985	1085	1085	1085
Densidad Hümeda (gr/on/3)	1.97	2.01	1.91	1.97	1.84	1.92
CAPSULA Nº	1	2		4		- 6
Peso de Sueto Húmedo + Cápeula (gr.)	444.50	447.60	458.00	447.30	449.10	463.00
Peso de Suelo Seco + Cápsula (gr.)	420.40	410,00	403.10	409.10	424.70	420.60
Peso de Agus (gr)	24.10	36.70	24.90	38.20	24.40	42.40
Peso de Cápeula (gr.)	113.10	113.20	116,70	116.50	113.20	113.60
Peso de Suelo Seco (gr.)	307.30	297.70	316.40	292.60	\$11.50	307.60
% de Humedad	7.84	12.33	7,87	13.06	7.53	13.81
Densidad de Suelo Seco (gricm3)	1.82	1.79	1.77	1.74	1.70	1.68

				ENSAYO DE EX	PANSIÓN				
MOLDE	IM.	DLDE 1 - 56 GOLPE	1	la la	DLDE 2 - 25 GOLPE	S	MK	LDE 3 - 12 GOLPE	3
		EXPANSION		EXPANSION		LECT DAY	EXPA	NSION	
TIEMPO	LECT DIAL	mm	%	LECT. DIAL	nm	%	LINE II. DAVIG.	mm	%
B Nes	0	0.000	6.00	0	0.000	0.00	9	0.000	9.00
214 hrs	63	1.800	11.26	71	1.803	1.42	79	2.007	1.50
48 hrs	76	1.906	1.50	87	2.210	1.74	97	2.464	1.9
TZ hrs	101	2.565	2.02	113	2:870	2.26	123	3,124	2.46
96 hrs	118	2 997	2.36	133	3.378	2.86	140	3.706	2.90

ENSAYO DE CARGA PENETRACION	CA	RGA	CORRECCION kg/m ²	CARGA		CORRECCION	CA	RGA	CORRECCIÓN
	ka	kg/cm ²		kg	kg/cm ²	kg/cm ²	kg	kg/cm²	kg/cm²
8,900	0.00	0.0		0.00	4.0	1	0.00	1.0	
0.025	52	2.6		40	21		34	1.7	
4.650	99	49		83	4.1		62	3.1	
8.075	100	6.6		117	3.8		89	4.4	1400000
0.100	149	1.4	8.4	1.39	4.9	6.9	110	3.4	5.6
0.150	235	11.6		192	9.5		155	2.7	
6,300	298	14.9	14.4	244	12.1	82.2	394	7.6	9.7
8,300	448	22.2		392	19.4	10000	314	15.5	
6.400	322	28.3		491	24.3		400	20.1	
6.500	671	30.2		564	27.9		477	23.6	

OBSERVACION: Muestras provotas e identificadas por el solutiante

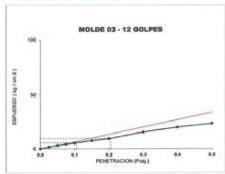
AND CONSULTORIA SECTECAT o colourly (

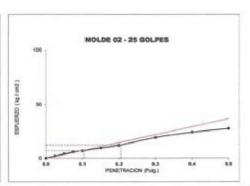
seles Agustin Diaz

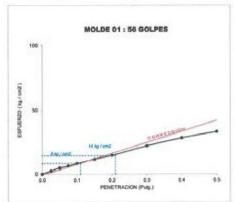
Ing. Victoria de lut Al

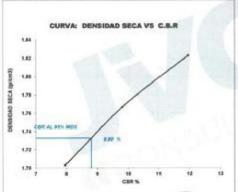
Les Carlos Javier Kamirez Muñoz

GERENTE GENERAL CONSULTORIA GEOTECNIA S.A.C.


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 - 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com






CURVAS - VALORES PRELIMINARES

C-4/E-1 + 1.5% PET

Valores Corregidos

MOLDE N°	PENETRACIÓ N (puig)	PRESION APLICADA (ka/om²)	PRESION PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.4	70.307	11.95	1.823
2	0.1	6.9	70.307	9.81	1.767
3	0.1	5.6	70.307	7.97	1.703

MOLDE Nº	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	14.4	105.46	13.65	1.823
2	0.2	12.2	105.46	11.57	1.767
3.	0.2	9.7	105.46	9.20	1.703

	M	
JVC CONS	ULTOPUL GEOTEC	CNIASAC 3
Lan Car	toe Ramin	rez Muñoc
ing Car	CIP. 140571	T7 = 75 (4) (2)

METODO DE COMPACTACIÓN		ASTM D1557	
Máxima Densidad Seca (gr./cm3) al	100 %	1.00	1.82
Máxima Densidad Seca (gr./cm3) al	95 %		1.73
OPTIMO Contenido de Humedad			7.83%

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.95%
Valor C.B.R Al 95% de la Máxima Densidad Seca	8.80%

ONSULTOR A GEOFECHIA S.A.C. trata Sal COA GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvo@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR MÉTODO C ASTM D-1557 / ASTM D1883

ROYECTO

SOLICITANTE UBICACIÓN FECHA

MILORAMIENTO DE LAS PROPEDADES MECANICAS DEL SUELO INCORPORANDO TIRAS DE PLASTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULO -LA LIBERTAD - 2022 DÍONICO PENAZA KATHERINE PAMELA - IRQUAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJULO - LA LIBERTAD

MAYO DEL 2022

Nº de Mu Ubinanite

CARRETERA Calicata C-SE-1 VILLA LA MERCIED

Molde W	5-120
Peso del Molde gr.	6.734
Volumen del Moide cm ³	2 135
M* de Capas	5
M* de Golpes por capa	- 56

MUESTRA N°	1 1					1
Proto de Suelo húmedo + Molde (gr.)	10,558	10.896	,	4	5	- 6
Peso de Molde (gr.)	6.734	6,734	10,741			
Preso del suelle Hamedo (gr.)	1.634	4,162	8,734			
Densidad Hümeda (gelorsi))	1.79	1.95	4,007			
CAPSULA M	1.00	2.00	1.88			4
Peto de suelo Hámedo + Cápsula (pr.)	525.4	507.3	514.0			
Peso de suelo seco + Cápsula: (gr.)	502.2	472.8	472.5			00
Peso de Agua (gr)	23.2	34.5	41.5	-		1
Peno de Cápsula (gr.)	102.9	100.1	106.6		_	
Pesso de Suelo Seco (gr.)	399.3	372.7	The same of the sa			
% de Humedad	5.81		365.9			
Densidad de Suelo Seco (gotenut)	1.65	9.26	11.34			
	1.00	1.78	1.69		4 - 25	

Máxima Densidad Seca (gricm3)	1792
	1
Optimo Contenido de Humedad (%)	

JVC CONSULTORIA GEOTECHIA S.A.C.

lag, Victorio di los Argeies Agustia Dice GERENTE GENERAL

JVC CONSULTORIA GEDTECNIA S.A.C.

Ing. Carlos Javes Kontrez Muños CIP. 140*74

JVC CONSULTORIA GEOTECNIA S.A.C. Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

PROYECTO

RUC: 20606092297

LABORATORIO DE MECANICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - 01883)

MEJORAMBENTO DE LAS PROPIEDADES MEJÓNICAS DEL SUELO INCOMPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LARECO - TRUJELO -LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONOCO REBAZA KATHERNE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUBLLO - LA LIBERTIAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENS/	VYO	DE	COMPACTACIÓN

MOLDIE	190	DE 1	1	- T			
№ DE CAPAS	- mon	1	MOL	DE 2	MIOL	DE 3	
Nº DE GOLPES POR CAPA	5	A	1		5		
SOBRECARGA (gr.)	5940		3		1,2		
ESTADO	SIN SATURAR	SIN SATURAR SATURADO 1		700	5915		
Peso de Suelo Húmedo + Molde (gr.)	8359	5478	SIN SATURAR 1252	SATURADO	SIN SATURAR	SATURADO	
Peso de Molde (gr.)	4182	4182	-33335	8365	8102	1261	
Peeo del Suelo Húmedo (gr.)	4177		4198	4196	4199	4189	
Volumen de Molde (gm3)		4296	405B	4100	3913	4072	
Volumen del Disco Especiador (cm3)	3228	3228	3228	3028	3228	1028	
Densidad Hümeda (grion3)	1065	1085	1085	1085	1085	1086	
CAPSULA Nº	1,95	2.00	1.89	1.95	1.03	1.00	
	1	2		4			
Peec de Suelo Húmedo + Cápeula (gr.)	451.70	454.90	465.30	454.80	456.40	470.30	
Peso de Suelo Seco + Cápsula (gr.)	424.30	414.70	437.20	414.20	425.90	423.80	
Peso de Agua (gr)	27.40	40.20	26.10	60.43	27.50	7 () () () () () ()	
Perso de Cápreuta (gr.)	107.10	107.20	106.10	109.10	108.20	46.50	
Petio de Suelo Seco (gr.)	317.20	367.56	329.10	305.10	10,510,000	109.80	
% de Humedad	8.64	13.07	8.54		329.70	214.00	
Demsidad de Suelo Seco (gricmiti)	1.79	1.77	-	13.24	8.57	34.81	
	1.13	1.77	1.74	1.72	1.88	1.66	

-	_	-	-	-		
CANCE	THE	IF V III A	BUILDING	NA.		

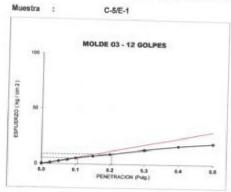
MOLDE	W	OLDE 1 - 56 GOLPE		M	MOLDE 2 - 25 GOLPES			MOLDE 3 - 12 GOUPES			
TIEMPO	LECY, DIAL	EXPANSION		LECT. DUL.	EXPANSION		LECT OLD EXPANSION		Towns and T	EXPA	NSION
		eves	%	CECT DEG.	F1973	1 %	LECT DIAL	mm.	46		
P Pers	0	9.000	0.00	0	8.006	0.00	0	0.000	7.0		
24 hrs	36	0.965	0.78	-46	1,168	0.92	- 4		0.00		
48 hrs	48	1,219	0.96	180	1.524	1.20	20	1.372	1.0		
72 No	- 80	2.184	1.72	96	2.489	1.90	108	5,779	1.40		
96 hrs	89	2.261	1.78	104	2.642	2:08	117	2.743	2.9		

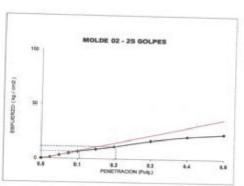
ENSAYO DE CARGA	CA	RXIA	COURECCIÓN	CANGA		CORRECCION	CARGA		CORRECCIÓN
PENETRACION	kg	kg/em*	kg/ow ¹	- No.	kg/ow ¹	kp/cm ³	No.	kg/cm²	kg/cm²
6,000 6,00	8.0		0.00	44		0.00	8.0	Rgycon	
0.025	41	2.0		27	1.3				-
8,058	.88	4.4		68	3.4		47	0.9	
0.075	126	2.8		160	6.1		74	2.3	
0.100	158	TN	7.9	130	6.1	6.6		3.7	
0.150	225	11.1		177	8.8	6.6	105	5.3	5.3
8,300	275	13.6	10.7	129	11.3	100	141	7,3	
8.500	400	20.0		347	1000	11.4	183	9.1	7.1
8.400	307	25.1			17.2		269	13.3	
6.500	786	29.8		426	21.1		541	14.9	
	749	20.0		479	29.7		3902	29.4	

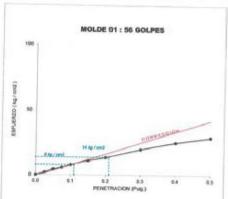
JVC CONSULTORIA GEOTECHIA S.A.C.

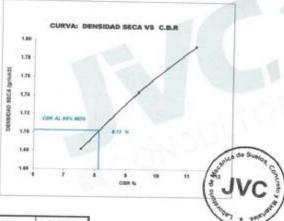
log. Pictorio de nos Arquies Agustín Díaz GERENTE GENERAL

JVC CONSULTORY ing Carlos James Haminez Muños


JVC CONSULTORIA GEOTECNIA S.A.C. Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Telèf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvo@gmail.com






CURVAS - VALORES PRELIMINARES

RUC: 20606092297

Valores Corregidos

MOLDE N°	PENETRACIÓ N (pulgi)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (griom3	
1	0.1	7.9	70.307	11.24	1.794	
2	0.1	6.6	70.307	9.39	1.744	
3	0.1	5.3	70.307	7.54	1.682	

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/om²)	C.B,R %	DENSIDAD SECA (gr/om3
- 1	0.2	13.7	105.46	12.94	1.794
2	0.2	11.4	105.46	10.81	1.744
3	0.2	9.1	106.46	8.63	1.682

	100.40	95,952	1.004
METODO DE COMPACTACIÓN	: ASTM D1567		
Máxima Densidad Seca (gr./cm3) al 100	%		1.79
Máxima Densidad Seca (gr./cm3) at 95 %	6	- 1	1.70
OPTIMO Contenido de Humedad			AL MAGE.

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.24%
Valor C.B.R Al 95% de la Méxima Densidad Seca	R 434C

JVC CONSULTORIA GEOTECNIA S.A.C. Ing. Carlos Javier Rambrez Muños CIP. 140576

JVC CONSULTOR CHASAC. Ing. Pictoria de la GERENTE GENERAL

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D1883

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORANDO TIRAS DE PLASTICO PET EN LA VILLA LA MERICED - LAREDO - TITURILLO -DICINICIO RESINZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON WALTA MERICED - L'AREDO - TRURILLO - LA LIBERETAD MAYO DEL 2022

SOLICITANTE URCACIÓN FECHA

Material	¥.	CARRETERA	Profundidad:	4	
Procedencia	1	Calcuta	Morte:		N
Nº de Muestra Ubinarión	1	C-5E-1+0.8% PET	Estac	-	E
Unincacionii		VILLA LA MERCED	Cota:		moves

Molde IF	8 - 123
Peec del Molde gr.	6,736
Volumen del Molde cin ³ .	2 136
M* de Capas	5
Nº de Golpes por casa	100

WLESTRA M*				16 00 000	es por capa	- 56
The same of the sa	1	2	1	4		
Pento de Suela harvedo + Moide (gr.)	10.652	10,913	10,823			- 1
Perso de Molde (gr.)	6.734	6.734	6,734			
Peso del suelo Húmedo (gr.)	3.918	4.179	4,089			
Densidad Humeda (gricini)	1.84	1.96	1.92			
CAPSULA Nº	1.00	2.00				- 4
Perso de suelo Hürmedo + Cápsola (gr.)	452.5	434.4	1.00 44E.1			
Peso de suelo seco + Capsula (gr.)	430.9	410.5				9
Peso de Agua (gr)	21.6	23.9	418.5			
Peso de Capeula (gr.)	100.6	100	29.6			
Pesso de Suelo Seco (gr.)	321.3	106.8	113.3			
% de Humedad	27777	363.7	305.2			
Dennidad de Suelo Seco (gotuni))	6.72	7.87	539			
Account on Joseph George (Bricherth	1.72	1,81	1.75			

OBSERVACION:

Máxima Densidad Seca (gricm3)	1.823
Óptimo Contenido de Humedad (%)	8.32

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Meterio de los Argeles Agustín Díaz GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C. er Ramirez Muñoz Ing. Carlos Javier

CIP. (40°73

LABORATORIO DE MECÁNICA DE SUELOS-COMCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA. (ASTM - D1883)

PROYECTO MEJORAMENTO DE LAS PROPREDADES MEJCÁNICAS DEL SUELD INCORPORANCO TRAS SE PLÁSTICO PET EN LA VILLA LA MERICED - LAREDO - TRUJULO -LA LIBERTIAD - 2022

SOLICITANTE UBICACIÓN DIONICIO REBAZA KATHERINE PANELA - ROJAS ANAYA ALIN YEYSON VILLA MERCED - LAVIEDO - TRUBLLO - LA LIBERTAD

FECHA MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENSAYO DE COMPACTACIÓN

	MOL	DE 1	MOL	DE 2	1 1000	DE 3
					MUL	DE 3
		6	2	5	1	9
_	59		58	98	5915	
_	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
	6413	9505	6296	8432	8146	8328
	4182	4162	4196	4196	4109	
	4231	4303	6090	4236	3967	4109
	3228	1228	3028	3228	3228	4139
	1085	1085	1085	1088	10000	3128
	1.97	2.62		10000	1085	1085
		4.08	1.91	1.90	1.65	1.00

MOLDE
N° DI CAPAS
N° DE GOUPES POR CAPA
SORRECANDA (gr.)
ESTADO
Peso de Suelo Húnedo + Molde (gr.)
Tibasa, de Molde (gr.) Pesa de Moide (gr.) Perio del Suelo Húmedo (gr.) Volumen de Molde (cm3) Volumen del Disco (Lapsciador (cm3) Densidad Húmeda (gr/cm3) CAPSULA Nº 2 Peso de Suelo Húmedo + Cápsula (gr.) Peso de Suelo Seco + Cápsula (gr.) . 492,30 424,00 458.90 472.20 463.30 435.80 465.00 443.90 423,10 434.70 Peso de Agua (gr) 27.10 38.30 106.60 28.30 Peto de Cápeula (gr.) 42.90 27.50 48.00 107.90 316.00 106.90 Peeo de Suelo Seco (gr.) 325.50 317.40 337.00 % de Humedad 328.66 327.10 12.07 8.40 13.56 ensidad de Suelo Seco (gr/cm3) 14.67

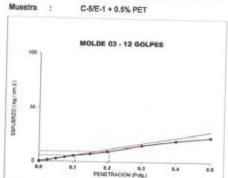
				ENSAYO DE EX	PANSIÓN				
MOLDE	M	DLDE 1 - 56 GOLPE		M	OLDE 2 - 25 GOLPS	8	1 4	DLDE 9 - 12 GOLPE	1
TIEMPO	LECT DIAL	EXPA	NSION	LECT. DEAL	EXPA	NSION		EXPANSION	
		mm	%	COC 1. DOLL -	eve	14.	LECT DEAL	-	ALBUM
9 hrs	0	0.000	0.60		0.000	0.00		mm	74
24 fee	33	0.838	0.66	41	1.041		0	0.000	0.00
40 hrs	86	1.168	0.02	58	100000 AVA	0.82	49	1.245	0.90
PZ box	60	1.753			1,473	1.16	68	1.727	1.36
96 Pris		- CONTROL OF THE PARTY OF THE P	1.38	- 81	2.067	1.62	91	2.311	1.80
100	- 12	1.829	11.44	807	2.210	1.74	100	2.540	2.00

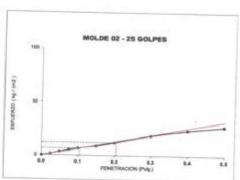
ENSAYO DE CARGA	Ch	RGA	CORRECCION	CARGA		CORRECCION	CARGA		
PENETRACION	kg	kg/cm ²	kg/cm ²	ke	kg/cm ²	kg/cm ²		200	CORRECCIÓN
6,000	8,60	- 0.0		6.00	0.0		- kg	kg/cm ²	kg/cm ²
0.025	41	2.0		27			9.00	0.0	
0.000	201	1.1		44	1.3		.19	119	
8.873	818	3.8		102	3.4		47	2.3	
9,100	158	7.8	100	75.74	5.1		74	3.7	
0.150	225	11.1	7.9	130	6.4	6.5	204	3.1	5.2
9,200	292	14.7		177	5.5	10.00	240	6.9	1 - 1 - 1 - 1
0.300	400		145	238	13.4	11.8	185	9.2	9.2
0.400		31.4		377	88.7		299	14.8	
	567	27.6		476	23.6		291	59.4	
0.500	656	32.5		349	27.2		462	22.9	

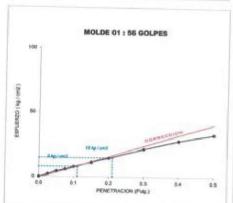
identificades por el solicitante

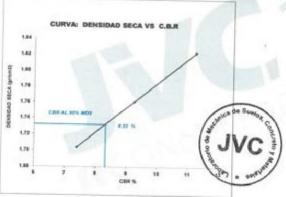
JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Victoria de los Angeles Agustín Dias GERENTE GENERAL


INE. Carlos Javier Hambrez Muños






CURVAS - VALORES PRELIMINARES

RUC: 20606092297

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm ³)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (grlom3)
1	0.1	7.9	70.307	11.24	1.823
2	0.1	6.5	70.307	9.25	1.761
3	0.1	5.2	70.307	7.40	1,704

MOLDE N°	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R	DENSIDAD SECA (gr/cm3)
1	0.2	14.5	105.46	13.75	1.823
2	0.2	11.8	105.46	11.19	1.761
3	0.2	9.2	105.46	8.72	1.704

1	
JVC CONSULTORIA GEOT	CNIA S.A.C
Ing. Carlos Javier You	rez Muñoz

METODO DE COMPACTACIÓN	ASTM D1557	
Máxima Densidad Seca (gr./cm3) al 100 °	4	1.82
Máxima Densidad Seca (gr./cm3) al 95 %		1.73
ÓPTIMO Contenido de Humedad		1.73

IVC	CONSI	ALTORE	A GEO	TECHIA	S	AC.

11.24%
8.33%

Ing. Victorio di ios Angeles Agustia Diaz GERENTE GENERAL

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CER MÉTODO C ASTM D-1557 / ASTM D1883

MEJORAMIENTO DE LAS PROPEDADES MECÀNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULO -LA LIBERTAD - 2022 DIONICIO RESIGNA KATHERINE PAMELA - INCIAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJULO - LA LIBERTAD MAYO DEL 2022 PROYECTO

SOLICITANTE UBICACIÓN FECHA

Material	1	CARRETERA	Dooks stided				
Procedencia	1	Calcuta	Norte:	-	m	Molde N*	\$ - 125
Nº de Wuestra	1	C-5E-1 + 1% PET			M	Peto del Molde gr.	6,734
Ubicación	-	VILLA LA MERCED	Rete:	+	E	Volumen del Molde cm ²	2.135
		THE OTHER PERSON	Cota		mons	№ de Capan	5
						Mº de Goloes por capa	- 40

MLESTRA Nº						
Preso de Suelo húmedo + Molde (gr.)	10,719	10.000	1	- 4		. 6
Pisso de Molde (gr.)	6,734	10,977	10,926			
Pesia del suelo Hismedo (gr.)		6,734	6,734			
Denoided Humeda (gricm/l)	3,985	4,243	4,192			- 4
CAPSULA M	1.67	1.99	1.94			4
Pinto de suelo Hámedo + Cápsula (or)	1.00	2.00	3.00			- 14
	517.6	499.5	506.2			
Perso de suello seco + Cápisula (gr.)	492.6	470.5	471.5			
Pesc de Agua (gr)	25.0	29.2	34.7			1 10000
Peso de Cápsula (gr.)	109.0	106.2	112.7			1
Peso de Suelo Seco (gr.)	363.6	364.1	358.8			100
S de Humedad	6.52	1.02			200	
Densidad de Suelo Seco (gricm3)	1.75	1.84	9.67			
	619	1.04	1.79			

Máxima Deneidad Seca (gricm3)	1.842
Óptimo Contenido de Humedad (%)	8.21

JVC CONSULTORIA GEOTECHIA S.A.C.

Îng, Notorio de sus Angries Agustin Diam GERENTE GENERAL

JVC CONSULTOR A SECTECHIA S.A.C. rez Muñoz

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvo@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS-COMCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (ASTM - D1883)

PROYECTO MEJORAMIENTO DE LAS PROPIEDADES MEJÓNICAS DEL SUELO RICORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - L'AREDO - TRUJULO -LA LIBERTUA - 2027

SOLICITANTE UBICACIÓN FECHA DIOMICIO REBAZA KATNERINE PAMELIA - ROJAS AMAYA ALIN YEYSON VILLA MERCIED - LAREDO - TRUDILLO - LA LISERTAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

	ENSAYO D	E COMPACT	TACIÓN			
MOLDE N° DE CAPAS	MOLDE 1		MOL	DE 2	MOLDE 3	
Nº DE GOLPES POR CAPA		6			1	
SOBRECARGA (gr.)		40	2		1	
ESTADO	SIN SATURAR	SATURADO	58		50	
Peso de Suelo Húmedo + Molde (gr.)	8452	8837	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Moide (gr.)		170000	8548	3404	8121	8250
Perso del Suelo Húmedo (gr.)	4182	4180	4190	4196	4100	4189
Volumen de Molde (cm2)	4270	4355	4152	4268	2000	4001
	3238	3224	3220	3228	3228	3228
Volumen del Disco Especiador (cmd)	1085	1085	1088	1086	1085	1086
Densidad Hümeda (grkmit)	1,99	2.03	1.04	1.99	1.50	10000
CAPSULA IN	1	7	3	4	5	1.90
Peso de Suelo Húmedo + Cápsula (gr.)	405.4	406.7	419.0	405.4	1000	TOTAL COLUMN
Peso de Suelo Seco + Cápeula (gr.)	382.8	377.6	395.6	374.5	410.2	424.1
Peso de Agua (gr)	22.8	31.1	23.6	The second second	367.3	386.7
Peso de Cápaula (gr.)	110.0	108.9		33.9	22.9	37.4
reso de Suelo Seco (gr.)	272.8	100,000	110.4	110.2	109.4	110.6
4 de Humedad	2000	268.7	286.2	264.3	277 9	276.2
Verteidad de Suelo Seco (gr/cm3)	8.38	11.57	8.20	12.83	8,24	13.54
THE STREET WHEN LEFTERING	1.64	1.82	1.79	1.77	1.70	1.07

				ENSAYO DE EX	PANSIÓN	1000	35			
MOLDE MOLDE 1		DUDE 1 - SE-GOLPE	8	M	MOLDE 2 - 25 GOLPES			MOLDE 3 - 12 GOLPES		
TIEMPO	LECT DIAL	EXPA	EXPANSION		EXPANSION		T. Commission of P.	EXPA		
		mm	%	LECT, DIAL	/Deta	- 4	LECT. DIAL		-	
O Are	0	0.000	0.00	0	0.000	0.00		men	- %	
24 hrs	24	0.610	0.48	32	0.813	0.64	- 0	0.000	0.00	
All five	38	0.966	0.76	50			40	1.016	9.80	
72 fes	67	1.448	1.14		1,270	1.00	60	1.524	1,20	
06 fes	AL .			69	1.753	1.38	79	2.007	1.58	
100	1 40	1.851	1.30	80	2.002	1.60	10	2.362	1.00	

DNSAYO DE CARGA	CA	RGA	CORRECCION	CARGA		CORRECCIÓN		RGA	CORRECCIÓN
PENETRACION	lg.	kg/on/	kg/cm ⁴	Su	Applican ²	kg/cm ²	No.	kg/oe ²	
0,000	9.00	0.0		6.00	0.0		18.000	7.19 (1000)	kg/cm ⁴
0.025	78.	19		64	12	_		0.0	-
6.000	105	3.2		89	4.3		36	1.8	
0.079	125	6.7		119	3.9		- 64	3.3	
0.100	879	8.7	6.7	147	7.9		91	43	
8.250	242	12.0	-	204		1,3	119	5.9	5.9
8.200	364	15.1	153	209	30.9	300	197	7.8	
6300	420	22.5	100		12.8	12.8	284	10.1	18.1
6.400	274	22.5		394	19.5		386	85.6	77.7
0.500	673	33.3		401	24.4		408	20.3	
5.341	873	313		366	28.0		479	23.7	

ObdeRVACION, Muestras provistas e identificadas por el anticituras

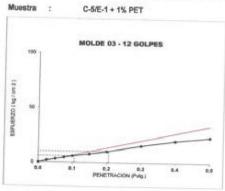
JVC CONSULTORIA SECTECHIA S.A.C.

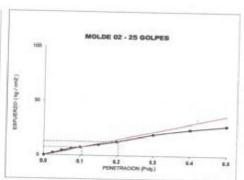
log, Victorio de nos devotes Agustin Diez GERENTE GENERAL

JVC CONSULTORIA GEOTECHIA

Ing. Carlos Javer hamine Muños. CIP. 14

JVC CONSULTORIA GEOTECNIA S.A.C.


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com



CURVAS - VALORES PRELIMINARES

RUC: 20606092297

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/km²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.7	70.307	12.37	1.840
2	0.1	7.3	70.307	10.38	1.791
3	0.1	5.9	70.307	8.39	1.695

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRON (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.2	15.1	105.46	14.32	1.840
2	0.2	12.8	105.46	12.14	1.791
3	0.2	10.1	105.46	9.58	1.695

1111
JVC CONSULTORIA GEOTECNIA S.A.L
(UH)
Carlos Javiel Rathirez Muñoz
CIP. 14

20

METODO DE COMPACTACIÓN	1	ASTM D1557	
Máxima Densidad Seca (gr./cm3) al 100	%		1.84
Máxima Densidad Seca (gr./cm3) al 95 5	4		
OPTIMO Contenido de Humedad			1.75
or rimes commented de numedad			R 21%

11,175 (8)	SPALISH I	LTORIA	进步内里	物がおける	0.4.0
of Whee he	ALI PORCORUI	LINGRA	CHARLES	ELMAN	Charles and

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	12.37%
Valor C.B.R Al 95% de la Máxima Densidad Seca	
The state of the s	9.46%

Ing. Victoria de las Angoles Agustia Diaz GENENTE GENERAL

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D1883

PROYECTO

SOLICITANTE UBICACIÓN FECHA

MEJORAMIENTO DE LAS PROPIEDADES MEJONICAS DEL SUELO PICORPORANDO TIRAS DE PLASTICO PET EN LA VILLA LA MERCEO - LAREDO - TRUJULO -LA LIBERTAD - 2022 DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCEO - LAREDO - TRUJULO - LA LIBERTAD MAYO DEL 2022

N° de Museto

CARRETERA	Profundidad:		
Calcata	Norte:	-	N
C-SE-1+1.5% PET	Date		E
VILLA LA MERCED	Ceta:		- 19

Molde N°	6 - 123
Peso del Molde gr.	6.734
Volumen del Molde om ¹ .	2 196
№ de Capana	5
M* de Golpes por capa	4

MUESTRA Nº					se por capa	- 56
	1	1	3	4	-	
Peso de Suelo húmedo. + Molde (gr.)	10,596	10.936	10,799		,	9
Perso de Molde (gr.)	6.734	6,734	6.734			
Pesa del suelo Hamedo (gr.)	3.862	4,262	4,065			
Dentsidad Hümeda (gritzn.))	1.81	1.97				
CAPSULA Nº	1.00	2.00	1,50			28 14
Pieso de suelo Húrmedo + Cápeula (gr.)	364.7	336.6	3.00			
Prese de suelo seco + Calpuala (gr.)	303		343.3			No.
Peso de Agua (gr)		320.4	320.4			
Peso de Capsula (gr.)	11.9	16.2	22.9			
Petro de Suelo Seco (gr.)	113.2	110.4	116.9			
% de Humedad	225.6	210.0	203.5			
	5.18	7.21	11.25			
Demaidad de Suelo Seco (gricasú)	1.72	1.83	1.71	Total I		

OBSERVACION:

Máxima Densidad Seca (gricm3)	1.830
Óptimo Contenido de Humedad (%)	8.18

JVC CONSULTORIA GEOTECHIA S.A.C.

Tog. Victoria de sea Angueri Agustin Diez GERENTE GENERAL

JVC CONSULTOR Carlos Javier Ram Humiles Muños

PROYECTO

RUC: 20606092297

LABORATORIO DE MECANICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

MEJORAMENTO DE JAS PROPIEDADES MEJÓNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAPEDO - TRUJULO -LA LIBERTAD - 2022

SOLICITANTE DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERICED - LAREDO - TRIJULIO - LA LIBERTAD MAYO DEL, 2022 UBICACIÓN

FECHA

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

	COMPACTA	

MOLDE	1 1000	mer a	-			
Nº DE CAPAS	MOLDE 1		MOLDE 2		MOLDE 3	
Nº DE GOLPES POR CAPA		8	5.		- 5	
SOBRECARGA (gr.)	50		25		12	
ESTADO	SIN BATURAR	SATURADO	5668		5915	
Peso de Suelo Húmedo + Molde (gr.)	8423		SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Moide (gr.)		8514	8316	8431	0160	8297
Pesso del Suelo Húmedo (gr.)	4162	6182	4198	4198	4189	4189
Volumen de Moide (cm))	4241	4332	4120	4235	3979	4108
	3228	3228	3228	3226	3226	3228
Volumen del Disco Especiador (cm0)	1085	1085	1000	1085	1065	1965
Densidad Humada (gr/om3)	1.06	2.02	1.92	1.98	1.86	
CAPSULA Nº	1	2	3	-	- 5	1.92
Peso de Sueto Húmedo + Cápsuta (gr.)	412.90	416.00	426.20			1
Peso de Suelo Seco + Cápsula (gr.)	369.00	363.60	10000	415.70	417.90	401.40
Peso de Agua (gr)	23.30		401.60	377.90	394,10	391.50
Peso de Cápeula (gr.)		32,30	24.40	37.80	23.60	39.90
Peec de Suelo Seco (gr.)	105.10	105.20	105.50	105.80	105.70	106.10
% de Humedad	284.50	278.60	256.30	272.90	298.40	285.40
NAME OF TAXABLE PARTY O	8.79	11.86	8.29	13.99	8.25	13.98
Densidad de Suelo Saco (gr/cm3)	1.83	1.81	1.79	1.74	1.72	1.68

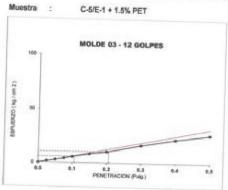
_	The state of the s
	BURNEY & NAME AND ADDRESS OF ADDRESS OF
	ENSAYO DE EXPANSION

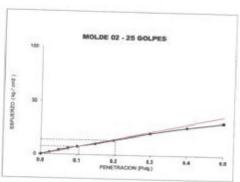
MOLDE	M	DLDE 1 - 56 GOLPE	5	M	OLDE 2 - 25 GOLPE	5	lu:	DLDE 3 - 12 GOLP1	06
TIEMPO	LECT DEAL	EXPA	NSION	THE PARTY IN THE	EXPA	NSION	The second second		NSION
		EVIT	%	AUCT DIAL	myn	- 14	LECT DEAL		NORTH
0 fes	0	0.000	0.00	0	0.000	0.00		mm	- %
24 fee	25	0.635	0.50				. 0	0.000	0.00
48 hrs	40	1.168		30	0.838	0.86	41	1.041	0.00
72 hrs	100		0.92	50	1.473	1.16	- 68	1.727	1.36
	- 97	2.261	1.71	101	2,500	2.02	311	2.819	2.22
96 hrs	112	2.845	2.24	127	3.226	2.54	140	3.686	2.0

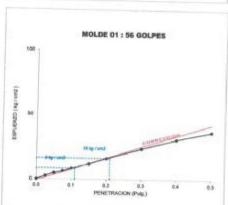
PENETRACION Rg Rg/ton	ENSAYO DE CARGA	CA	RGA	CORRECCION	- 17	A PENETRAC	-	_		and the same of th	
0,000 0,00	PENETRACION						CORRECCIÓN		CA	RGA	CORRECCIÓN
B(2) 52 2.6 78 1.9 30 1.3				Agrico:		kg/om/	kg/cm*		Ref	kg/ow ²	ke/cm ³
100 100	The second secon				6.0	0.0		+			19.11
10					38	1.9				12000	
1077 129 6.4 117 5.6 15 6.7 170			4.7		79	14					
Right 172 8.5 8.5 145 7.2 7.3 136 5.7 8.8 Right 206 16.7 205 18.2 177 8.5 Right 208 20.8 20.8 20.8 20.8 20.8 Right 20.9 20.8 20.8 20.8 Right 20.9 20.8 20.8 20.8 Right 20.9 20.8 Right 20.9 20.8 Right 20.8 2	8,675	129	6.4		110			-	- 74		
0.150 256 16.7 265 16.2 177 8.5 18.5 177 8.5 18.5	8,100	172		1.5				_			
9.299 201 15.9 15.6 278 17.5 18.8 278 17.5 18.8 284 170.0 18.5 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6	8.150	236					7.2	-		5.7	5.8
8.500 424 23.5 448 20.7 240 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.	0,300			10.0					172	8.5	
8.400 413 30.6 337 36.6 433 22.4	B 500			100	7.07		13.8		254	10.6	10.6
6.500 707 No. 1 337 10.6 450 22.4	0.400								340	36.8	11,000
8.5 630 312 541 76.9									452	22.4	
ESPECIMEN IMPORTANT ALCOHOLIS		227	36.5		430	312			543	26.9	

JVC CONSULTORIA GEOTECHIA S.A.C.

fog. Victorio de las America Agustin Diaz GERENTE GENERAL


JVC CONSULTORIA GEOTECHIA S.A.C Ramiper Munor





CURVAS - VALORES PRELIMINARES

RUC: 20606092297

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.5	70.307	12.09	1,829
2	0.1	7.2	70.307	10.24	1.776
3	0.1	5.8	70,307	8.25	1.715

-		0.0	70,307	8.25	1.715
MOLDE Nº	PENETRACIÓ N (puig)	PRESION APLICADA (kg/om²)	PRESION PATRÓN (kg/cm²)	C.B,R.	DENSIDAD SECA (gr/om3)
1	0.2	15.9	105.46	15.08	1.829
2	0.2	13.8	105.46	13.09	1.776
3	0.2	10.6	105.46	10.05	1.715

1
CNIA S.A.C
or Muños

METODO DE COMPACTACIÓN	1	ASTM D1557	
Máxima Densidad Seca (gr./cm3) al 100			1.83
Máxima Densidad Seca (gr./cm3) al 95 %	4		1.74
OPTIMO Contenido de Humedad	_		1.74

JVC	CONSULTORIA GEOTECHIA S.A.C.
log	Naturia de los Angeles Aguetle Diaz GERENTE GENERAL

RESULTADOS

Valor C.B.R Al 100 % de la Máxima Densidad Seca	
Valor C B D ALOSS 4- 1- MALL STATES	12.09%
Valor C.B.R Al 95% de la Máxima Densidad Seca	9.02%

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM D6913

MEJORAMIENTO DE LAS PROPIEDADES MEGANICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO
TRAJULO - LA LIBERTAD - 2022

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AN VILLA MERCED - L'AREDO - TRUJILLO - LA LIBERTIAO MAYO DEL 2022 SOLICITANTE ROJAS AMAYA ALIN YEYSON

UBICACIÓN FECHA

DATOS -

EMSAYD:

PROVECTO

Sondaje/Muestra Código de Muestra Observación CALICATA C-3/E-1 LA MERCED COLOR AMARILLO

Masa Seca de Franción Masa de Franción Limpia y Seca Masa de Franción Tamicada 1,467.9 gr. 712.7 gr. 712.7 gr.

Masa de Finos Eliminados : Emor de Tamizado :

Coordenadas : Norte Este Cota

HUMEGAD NATURAL ASTN D 2216						
Sh + Tara	1,353.80 gr.	1,275.80 gr				
Ss + Yarra	1,301.80 gr.	1,218.30 gr				
Tara	115.80 gr.	112.30 gr.				
Humedad(%)	4.38	5.20				
Humedad Prom(%)	4	79				

ENSAYO GRANULOMETRICO

	-						Increased Promery		19
Tamices ASTM D6913	Abertura en mm.	Mana Retenida	%Retenido Parcial	*WRatemido Acumulado	% Que Pasa	Especificación Técnica	LÍMITES E INDICES DE CO	NSISTEM	CIA NTP 300.0
7	76.200	0.0	0.00	0.00	100.00		L. Liquido		33
2"	50.800	0.0	0.00	0.00	100.00		L. Pilatico		16
1 1/2"	38.100	0.0	0.00	0.00	100.00		Ind. Plástico	1000	17
1*	25.400	0.0	0.00	0.00	100.00		CLASIFICAC	ION / AST	
34"	19.050	11.40	0.78	0.78	99.22		Class. SUCS (ASTM 02487)	1	CL
1/2"	12,700	3.90	0.25	1.02	98.98		Class. AASHTO (ASTM DODG)	W.	A-6 (6)
3/8*	9,500	1.40	0.10	1.12	98.88	100			
N*04	4.750	4.33	0.29	1.41	98.59				
N*10	2.000	31.80	2.17	3.58	96.42		NOMBRE DEL GRI	JPO O MU	ESTRA
N*20	0.840	116.70	7.95	11.53	88.47				
N*40	0.425	151.30	10.31	21.83	78.17		Arcilla arenosa do	tola elect	ristari
N*60	0.250	175.60	11.96	33.80	66.20		110000000000000000000000000000000000000	Order business	
N*140	0.106	209.78	14.29	48.09	51.91		7		
N*200	0.075	6.30	0.43	48.52	51.48		PROF. MUESTREO	(m) :	1.50
< 200	Plato	0.50	51.48	100.00	0.00			/E-1:	0.10 - 1.50
Total		712.68						-	
							PORCENTAJE DE M	ASA EN W	UESTIKA
DIAMETROS EPECTIVOS	D10 = D30 = D60 =	9,60 9,22 9,17	COEF, UNIF, Y CURVATURA	CC =	0.28 0.47		% Grava = % Arena = %		1.41 47.11 51.48

JVC CONSULTORIA GEOTECHIA S.A.C.

Tog. Victorio ik un desgeles dignatis Diag GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

JVC CONSULTORIA SEOTECHIA S.A.C ing Carlos Javar Ramirez Muñoz CIP. 140=74

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

LIMITES DE CONSISTENCIA

ASTM D4318

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJILLO - LA LIBERTAD - 2022 PROYECTO

DIONICIO REBAZA KATHERINE PAMELA - RIDJAS AMAYA ALIN YEYSON SOLICITANTE

UBICACIÓN FECHA VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD

MAYO DEL 2022

LIMITES DE CONSISTEN	CIA		LIMITE LIQUIDO	LIMITE PLASTICO		
Nº de golpes		17	27	33		
Peso tara	(gr.)	13.86	14.27	13.86	12.20	13.57
Peso tara + suello húmedo	(pr.)	33.68	33.94	34.12	19.37	20.19
Peso tara + suelo seco	(gr.)	28.85	29.14	29.23	18.42	19.28
Humedad %		34.01	32.28	31.82	15.27	15.94
Limites		33.00			16	

JVC CONSULTORIA GEOTECHIA S.A.C.

log. Netura de los Angeles Agustin Diaz GERENTE GENERAL

JVC CONSULTORS Ing Carles Javier Ramirez Muñoz

CIP. 140574

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

CONTENIDO DE HUMEDAD

ASTM D2216

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA

MERCED - LAREDO - TRIJUILLO - LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD MAYO DEL 2022

FECHA

Prof. de Muestreo

Analisis Preliminar (Separación)

Calicata / Muestra Estrato

0.10 - 1.50 m.

Tamaño Máximo Tamiz Separador

N° 04 No Requerido

CONTENIDO DE HUMEDAD

D-2216

DESCRIPCIÓN		J-15	M-15	
Masa de Recipiente	(gr.)	115.80	112.30	
Masa de Recipiente + Suelo Humedo	(gr.)	1,353.80	1,275.80	
Masa de Recipiente + Suelo Seco Inicial	(gr.)	1,304,15	1,220.63	
Masa de Recipiente + Suelo Seco 02	(gr.)	1,301.80	1,218.30	
Masa de Recipiente + Suelo Seco Final	(gr.)	1301.80	1218.30	
Masa de Suelo Seco	(gr.)	1,186.00	1,106.00	
Masa de Agua	(gr.)	52.00	57.50	
Contenido de Humedad	(%)	4.38	5.20	
Clasificación Visual - Manual		CL	CL	
Contenido de Humedad Promedio	780	4	70	

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Victorio de las Argeles Agustis Diaz GERENTE GENERAL

JVC CONSULTOR

mirez Muñoz CIP. 140574

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 - 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

		LADO				TO-ASFALTOYM	ATERIALES		
			ANALISI	S GRANULON AST	IETRICO PO M D6913	RTAMIZADO			
ROYECTO	4	MEJORAMIEN TRUJILLO - LA	TO DE LAS PROPIED LIBERTAD - 2022	NDES MECÁNICAS I	DEL SUELO INCO	RPORANDO TIRAS DE	PLÁSTICO PET EN LI	A VILLA LA MERCE	D-LAREDO-
OLICITANTE BICACIÓN ECHA	1 1 2	DIONICIO REI VILLA MERCE MAYO DEL 20	BAZA KATHERINE PAL D - LAREDO - TRIJULI 22	IELA - ROJAS AM O-LA LIBERTAD	AYA ALIN YEYSO	N			
ATOS:							Coordenades :		
Sondajo/Muestra Código de Muestra		*	CALICATA C -47 LA MERCED				Norte Este		R E
Observación		1	COLOR MARRON				Cota		_
ISAYO : Masa Seca de Fra	elektron.	91		Waste.		and succession	Progresiva	_	
Masa de Fracción	Limpia y Secia		1,302.5 gr. 566.6 gr.	Masa de F En	Finos Eliminados nor de Tamicado	735.90 gr. 0.00%	Sh + Tara	D NATURAL ASTN	1.257.80-2
Mana de Fracción	Tamizada	+	566.6 gt				Se + Yara Tara	1,121.30 gr. 105.60 gr.	1,214.80 g 107.20 g
		ENSA	YO GRANULO	METRICO			Humedad(%) Humedad Prom(%)	4.74	3.88
Tamices	Abertura	Masa	SRatenido	NRetenido	% Que	L			1.31
ASTM 06913	98 mm. 75,200	Retenida	Parcial	Acumulado	Pasa	Especificación Técnico		S DE COMSISTEN	
7	50,800	0.0	0.00	0.00	100.00	-	L. Liquido L. Plástico		34 16
11/2"	38.100	0.0	0.00	0.00	100.00		Ind. Plastico		18
۳	25.400	0.0	0.00	0.00	100.00	9		SEFICACIÓN I AS	
3/4"	19.050	76.30 62.40	5.86	5.86	94.94		Class. SUCS (AST)		Q.
3/0"	9.500	11.40	4.79	10.65	89.35		Class, AASHTO (AST	M D3282)	A-6 (8)
N*04	4.750	39.50	3.03	14.56	85.44	*		111	
N*10	2.000	52.30	4.02	18.57	81.43		NOMBRE	DEL GRUPO O MI	JESTRA
N"20	0.840	61.70	4.76	23.31	76.69				
N*40	0.425	88.40	6.79	30.10	69.90	1	Arcilla a	renosa de baja plas	Boldad
N*60 N*143	0.250	72.30	5.55	35.65	64.36		7		
N°140 N°200	0.106	91.40	7,02	42.66 43.46	57.34 56.54	100	PROF. MUESTREO	1	1.50
< 200	Plato	0.50	56.54	100.00	0.00	-	ESTRATO	04/E-2:	0.50 · 1.50
Total	1984	566.60			7,77			JE DE MASA EN I	
DIAMETROS	D10	- 0.63	COEF UNIF Y	CU-	0.23		N Grava		14.56
EFECTIVOS	D30 D60		CURVATURA	CC =	0.69		% Arena	*	28.91
	1900	= 0.15					% Finos	1	56.54
			C		ANULOMÉ	TRICA			
	Green	Fina	Gruesa	Arenas	Fre	Lie	Finos ios y Arollas		
120	CHUMPS	TEM	CHARGE	SHIOLOGI.	FEB		1.55		
177				DIÁMETRO	(mm)			_	
100		_						A SUM	04.0
								13	18
80								1 - 1	~ al
60								VI.	U 1
								- C	Al
40								(gardens	AF X
								1.000	
20									
0					-7				
le:	h by t	A 5	in E	2.0	8	2 8	3 K K	_	
	**						k k	A.A	1
		DOMSULTORN	A SECTECHIA SJ	LC.			JVC CONSULT	TORIA GEDTE	CNAS.A.C

Ing. Victors L. iur Angeles Agastin Dies
GERENTE GENERAL
JVC CONSULTORIA GEOTECNIA S.A.C.
GI. Los Diamantes 365 Dpto. 101 Urb. Santa Inès - Trujillo
Telèf.: 044 – 615690 - Cel.: 971492979 / 973994030
consultoriageotecniajvo@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

LÍMITES DE CONSISTENCIA

ASTM D4318

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - L'AREDO - TRUJILLO - LA LIBERTAD - 2022


SOLICITANTE

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD

UBICACIÓN FECHA

MAYO DEL 2022

LIMITES DE CONSISTENCIA			LIMITE LIQUIDO	LIMITE PLASTICO		
N" de golpes	0000	16	28	34		
Peso tara	(gr.)	12.30	14.48	13.97	11.02	14.23
Peso tara + suelo húmedo	(gr.)	33.08	36.66	35.47	17.16	21.41
Peso tara + suelo seco	(gr.)	27.41	31.17	30.25	16.18	20.56
Humedad %		37.52	32.89	32.06	18.99	13.43
Limites			34.00		18.00	00

JVC CONSULTORIA SECTECHIA S.A.C.

log, Victorio II. Lo Angeles Agestis Diae GERENTE GENERAL

JVC CONSULTORIA

ing Carlos Javie Harlines Munics CIP. 140***

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

CONTENIDO DE HUMEDAD

ASTM D2216

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJILLO - LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD MAYO DEL 2022

FECHA

Estrato

Prof. de Muestreo Calicata / Muestra

1.50 m. CALICATA C -4 / E-2 0.50 - 1.50

Analisis Preliminar (Separación)

Tamaño Máximo Tamiz Separador

N° 04 No Requerido

CONTENIDO DE HUMEDAD

D-2216

DESCRIPCIÓN		B-2	8-9
Masa de Recipiente	(gr.)	105.60	107.20
Masa de Recipiente + Suelo Humedo	(gr.)	1,169,40	1,257.80
Masa de Recipiente + Suelo Seco Inicial	(pr.)	1,123.65	1,217.13
Masa de Recipiente + Suelo Seco 02	(gr.)	1,121.30	1,214.80
Masa de Recipiente + Suelo Seco Final	(gr.)	1121.30	1214.80
Masa de Suelo Seco	(gr.)	1,015.70	1,107.60
Masa de Agua	(gr.)	48.10	43.00
Contenido de Humedad	(%)	4.74	3.88
Clasificación Visual - Manual		α	CL

Contenido de Humedad Promedio 4.31 (%)

JVC DONSULTORIA GEOYECHIA S.A.C.

Ing. Fictorio di lui Angeles Agustín Dies GERENTE GENERAL

JVC CONSULTORIA GEOTE

Ing. Carlos Javie Kambez Munica CIP. 140 == 4

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÂNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO

ASTM DG913

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECÂNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERICED - LAREDO -

TRUJILLO - LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - L'AREDO - TRIJILLO - LA LIBERTAD MAYO DEL 2022

DATOS:

Código de Muestra Observación

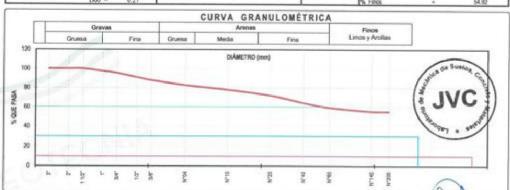
CALICATA C -5 / E-2

Coordenadas : Norte:

LA MERCED COLOR MARRON

Este Prograsiva

ENSAYO:


Maria Seca de Fracción Maria de Fracción Limpia y Seca Masia de Fracción Tamizada

1,401.6 gr. 632.2 gr. 632.2 gr.

Masa de Finos Eliminados Error de Tamizado

ENSAYO GRANULOMETRICO

							Humedad Prom(%)	- 3	00
Tamices ASTM D6913	Abertura en mm.	Masa Retenida	*KRatenido Parcial	%Atetenido Acumulado	% Que Pasa	Expedificación Técnica	LÍMITES E INDICES DE CON	SISTEM	3A NTP 339.1
3"	76.200	0.0	0.00	0.00	100.00		L. Liquido		29
7	50.800	0.0	0.00	0.00	100.00		L. PMstico	150	18
11/2"	38.100	0.0	0.00	0.00	100.00		Ind. Plástico		- 11
1"	25.400	36.1	2.58	2.58	97.42	-	CLASHFICACII	W/AST	
34"	19.050	28.70	2.05	4.62	95.38		Class. SUCS (ASTM 03487)	-	či
10"	12,700	61.80	4.41	9.03	90.97		Class AASHTO (ASTM 00282)	1	A6(4)
3/6"	9.500	42.80	3.05	12.09	87.91		The state of the s	16.	mater
N*04	4.750	73.80	5.27	17.35	82.66				. 3.4
N*10	2.000	66.40	4.74	22.09	77.91		NOMBRE DEL GRUPO O MUESTRA		
N*20	0.840	86.40	6.16	28.25	71.75		1000000		
N*40	0.425	107.90	7.70	35.95	64.05		Arcika arenosa de baja p	individue	con cersus
N*60	0.250	68.70	4.90	40.85	59.15		To a construction of solid lit.	-	non grana
N*140	0.106	55.40	3.95	44.81	55.19				
N*200	0.075	3.90	0.28	45.08	54.92		PROF. MUESTREO	int :	1.50
< 200	Plato	0.30	54.92	100.00	0.00			E-2:	0.50 - 1.50
Total		632.20							
					1111111		PORCENTAJE DE MA	SA EN M	UESTRA
DIAMETROS EFECTIVOS	D10 - D30 - D60 -	0,62 0,24 0,27	CORF. UNSF. Y. CURVATURA	CO-	0.44 0.34	100	% Grave = % Arene = % Finos =		17.35 27.73 54.92

JVC CONSULTORIA GEOTECHIA S.A.C.

Tog. Victoria il ina Angues Agustin Diaz GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

JVC CONSULTORIA SEDITECNIA S.A.C. Carlos Javier Ramirez Muños

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

LÍMITES DE CONSISTENCIA

ASTM D4318

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA

MERCED - LAREDO - TRUJILLO - LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD

FECHA MAYO DEL 2022

LIMITES DE CONSISTENCIA			LIMITE LÍQUIDO	LIMITE PLASTICO		
Mº de golpes		19	26	.33		
Peso tara	(gr.)	12.78	13.57	14.12	13.24	14.37
Peso tara + suelo húmedo	(gr.)	33.76	34.15	33.24	19.64	21.34
Peso tara + suelo seco	(gr.)	28.86	29.64	29.17	18.72	20.19
Humedad %		30.47	28.06	27.04	16.79	19,76
Limites			29.00			.00

JVC CONSULTORIA GEOTECHIA S.A.C.

Ing. Victoria A in Angeles Agustin Diag GERENTE GENERAL

JVC CONSULTORIA Ing Carlos Janes Komirez Muhoz CIP, 14"

LABORATORIO DE MECÁNICA DE SUELOS - CONCRETO - ASFALTO Y MATERIALES

CONTENIDO DE HUMEDAD

ASTM D2216

PROYECTO

MEJORAMIENTO DE LAS PROPIEDADES MECÂNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJELO - LA LIBERTAD - 2022

SOLICITANTE

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD MAYO DEL 2022

UBIGACIÓN FECHA

Prof. de Muestreo Calicata / Muestra Estrato

1.50 m. CALICATA G -5 / E-2 0.60 - 1.50

Analisis Preliminar (Separación) Tamaño Miximo Tamiz Separador

No Requerido

CONTENIDO DE HUMEDAD

D-			

DESCRIPCIÓN		C-3	C-7
Masa de Recipiente	(gr.)	105.30	108.30
Masa de Recipiente + Suelo Humedo	(gr.)	1,055.70	1,136.90
Masa de Recipiente + Suelo Seco Inicial	(gr.)	1,001.05	1,091.93
Masa de Recipiente + Suelo Seco 02	(gr.)	998.70	1,089.60
Masa de Recipiente + Suelo Seco Final	(gr.)	998.70	1089.60
Masa de Suelo Seco	(gr.)	893.40	981.30
Masa de Agua	(gr.)	57.00	47.30
Contenido de Humedad	(%)	6.38	4.82
Clasificación Visual - Manual		CL CL	CL

Contenido de Humedad Promedio (%) 5.60

JVC CONSULTORIA GEOTECHIA S.A.C.

lag, Pictoria de las dispoles Agustin Diaz GERENTE GENERAL

JVC CONSULTOR Carlos Javes Ramirez Muños

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inès - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MEGANICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D1883

MEJORAMIENTO DE LAS PROPREDADES MECÁNICAS DEL SURLO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILIA LA MERCED - LAREDO - TRUJULIO -LA LIBERTIAD - 2022 DIONICIO REBUZA KATHERIME PIAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJULIO - LA LIBERTAD MAYO DEL 2022 SOLICITANTE UBICACIÓN

FECHA

Meterial	#	CARRETERA	Profundidad:	- 4	n
Procedencia	1	Calicata	Norta:		N
N° de Muestra	1	C-ME-1	Exter		f.
Ubicación	1	VILLA LA MERCED	Cote:	+	moon

Molde M*	S - 123
Peso del Molde gr.	6,734
Volumen del Molde cm ³	2.135
Nº de Capes	5
Nº de Golpes por capa	55

MUESTRA M*	1 1	2	3			_
Peso de Suelo húmedo + Molde (gr.)	10,360	10,725	10,460		,	- 6
Peso de Molde (gr.)	6,734	6.734	6,734			
Peso del suela Húmedo (gr.)	3,616	3,991	3,726			
Denoidad Hümeda (gricm3)	1.00	1.87	1.75			- A
CAPSULA IP	C1	C-ts	C4			
Peso de suelo Hámedo - Cápsula (gr.)	259.3	200.6	207.9			20 000
Peso de suelo seco + Cápsula: (gr.)	250.9	190.8	194.8			
Peso de Agua (gr)	8.4	9.8	13.1	-177		
Peso de Cápsula (gr.)	80.4	81.9	80.7		100	1
Preso de Suelo Seco (gr.)	170.5	108.9	196.1	- T		
% de Humedad	4.93	9.00	11.48			
Densidad de Suelo Seco (griomi))	1.61	1.71	1.57	10000		

Māxima Densidad Seca (gr/cm3)	1.730
Óptimo Contenido de Humedad (%)	8.00

OBSERVACION:

Tratacopults via de los Adgrées Agustis Diaz. General TVC CONSULTO SECTECNIA S.A.C

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASPALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

PROYECTO MILIORAMENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PIET EN LA VILLA LA MERCED - L'AREDO - TRUJULLO -L'A LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DICANCIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCIED - LARIEDO - TRUJULLO - LA LIBERTAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

	ENSAYO D	E COMPACT	CACTÓN			
		A STATE OF THE PARTY	Constant t			
MOLDE	MOLDE 1		MOLDE 2		MOLDE 3	
N° DE CAPAS N° DE GOLPES POR CAPA		5		Contract Con	-	
SOBRECARGA (gr.)		6	25	5	1	2
ESTADO	50		500	58	50	
Control of the Contro	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8192	8351	8100	8298	7895	8060
Peso de Molde (gr.)	4162	4182	4196	4196	4189	4189
Peso del Suelo Húmedo (gr.)	4010	4100	3904	4103	3706	
Volumen de Molde (om3)	3028	3226	3228	3226	3228	3891
Volumen del Disco Espaciador (cm3)	1085	1086	1085	1085	1085	3228
Densidad Hümeda (grigw3)	1.67	1.95	1.82	1.91		1085
CAPSULA Nº	1	2	3	4	1.73	1.82
Peso de Suelo Húmedo + Cápsula (gr.)	225.7	229.1	239.5	100000000000000000000000000000000000000		- 4
reso de Suelo Seco + Cápsula (pr.)	211.6	204.2	224.1	201.3	230.6	264.4
Peso de Agua (gr)	14.10	24.90	15.40	100000000000000000000000000000000000000	218.1	215.2
Peso de Cápeula (gr.)	36.57	35.60		26.10	14.50	29.20
reso de Suelo Seco (gr.)	175.03	-	35.99	16.55	25.66	36.05
k de Humedad		168.52	166.11	166.75	180.44	179.15
The state of the s	8.01	14.78	8.19	15.7%	8.04	16.30
tensidad de Suelo Seco (gricm3)	1.73	1.70	1.68	1.65	1.60	1.55

				ENSAYO DE EX	PANSIÓN	The Contract of the Contract o	201		
MOLDE	M	OLDE 1 - 56 GOLPE		M	OLDE 2 - 25 GOLPE	E8	I M	1.DE 1 - 12 GOLPE	5
TIEMPO	LECT. DIAL	EXPA	NSBON	LECT DIAL	EXPA	INSTON	Committee 1	EXPA	NSSON
	123,1,02,0	reve	- %	Eac 1 Done	mm	%	LECT DIAL	mm	- N.
Q hrs	0	0.000	0.00	0	0.000	0.00	- 6	0.000	0.00
24 fes	15	0.381	0.30	23	0.564	0.46	31	0.787	0.62
46 firs	22	0.559	0.44	34	0.864	0.68	44	1.118	
72 hrs	46	1.168	0.92	58	1.473	1.18	63	1,116	0.86
96 hrs	63	1.600	1.26	78	1.981	1.56	- 50		1.36
					1.797	11.449	- 81	2.311	1.82

ENSAYO DE CARGA	CA	RGA.	CORRECCION	CARGA		CORRECCION	CARGA		CORRECCIÓN
PENETRACION	Lg	kg/cm ²	kg/cm ²	kg	kg/cm ³	kg/cm ³	ke	kg/cm ³	kg/cm ²
8,000	8,00	0.9		8.00	0.0		0.00	0.0	-
0.025	3.0	1.6		11	0.9		10	0.5	
0,000	29	3.9		.59	2.9		39	1.9	
0.075	109	3.4		33	4.4		37	2.1	
8.300	149	7.4	7,4	321	6.0	6.0	93	44	4.5
0.150	306	10.2		373	8.6	1000	541	7.0	-
6,300	258	12.8	12.8	214	10.6	10.6	170	1.4	8.6
8,300	349	173	32.50	290	14.5	100	215	10.6	
0.600	423	269		342	16/9		237	12.7	
8,500	472	23.4		368	18.1		278	13.8	

ORBERNACION: Muestras provistas e identificadas por el solicitante

TO THE THE PARTY OF THE PARTY O

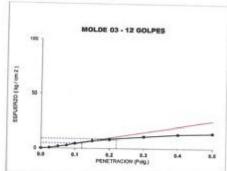
JVC CONSULVORU GEOTECNIA S.A.C.

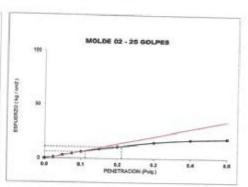
Carlos Javier Ramirez Muños

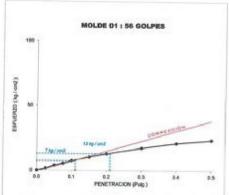
GERENTE GENERAL

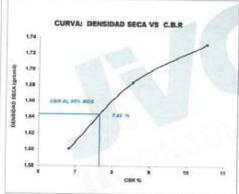
JVC CONSULTORIA GEOTECNIA S.A.C.

101 Light Santa Inés - Tr


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com






CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	7.4	70.307	10.53	1.732
2	0.1	6.0	70.307	8.53	1.684
3	0.1	4.8	70.307	6.83	1,601

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	12.8	105.46	12.14	1.732
2	0.2	10.6	105.46	10.05	1.684
3	0.2	8.6	105.46	8.15	1.601

3	0.2	8.6	105.46	8.15	1.601
	OMPACTACIÓN		ASTM D1557		
	áad Seca (gr./cπ				1.73
	sad Seca (gr./cn				1.64
OPTIMO Conte	nido de Humed	ed .			8.00%

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	10.53%
Valor C.B.R Al 95% de la Máxima Densidad Seca	7.65%

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CER

MÉTODO C ASTM D-1557 / ASTM D1883

MILIORAMIENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORANDO TRAS DE PLASTICO PET EN LA VILLA LA MÉRICED - LAPEDO - TRUJILLO -PROYECTO

ALLIBERTAD 2022
DIONICIO REBUZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON
VILLA MERCED - LAKEDO - TRUBLED - LA LIBERTAD
MAYO DEL 2022 SOLICITANTE UBICACIÓN FECHA

Meterial	1.2	CARRETERA	Profundidad		-
Procedencia	1	Calcata	Norte		M
M* de Musetra	1	C-16-1 + 0.5% PET	Enter		
Ubicación	4	VILLA MERCEO	Cota	-	-

Molde Nº	S-123
Peso del Molde gr	6.734
Volumen del Molde om	2.136
N* de Capas	5
Nº de Golbes por capa	- 46

MUESTRA M*	1	2	3 1		-	
Peso de Suelo húmedo + Molde (gr.)	10,540	10,769	10,662	-		- 6
Peso de Moide (gr.)	6.734	6.734	6,734			
Peso del suelo Homedo (gr.)	3,806	4.035	3,029			
Densidad Humeda (grium3)	1.78	1.00	1.84			- 4
CAPSULA IP	C-3	C-15	C4			
Peso de suelo Húroedo + Cápsula (gr.)	332.7	314.6	321.3			
Peso de suelo seco + Calpsula. (gr.)	319.1	296.9	258.7		- 110	
Peso de Agua (gr)	13.6	17.7	22.6		0	
Peso de Căpsula (gr.)	77.0	78.5	77.3			
Pesso de Suelo Seos (gr.)	342.1	218.4	221.4			100
% de Humedad	5.62	8.10	10.21			
Denoidad de Suelo Seco (priore3)	1.69	1.75	1.57			

Máxima Densidad Seca (gricm3)	1.750
Óptimo Contenido de Humedad (%)	7.95

OBSERVACION:

INC. VICTORIA SECTE CHIA S.A.C.,

Technology Company C

JVC CONSULTER GEOTECNIA S.A.L. Javier Ramirez Munez CIP, 140 Ing. Carlos

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS CONCRETO ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (ASTM - D1883)

PROYECTO MEJORAMBENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELD INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAVIEDO - TRUBLLO -LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICIO REBAZA KATHERNE PAMELA - ROJAS AMAXA ALIN YEYSON VILLA MERCED - LAREDO - TRUJULO - LA LIBERTIAD MAYO DEL, 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

MOLDE	MOLDE 1		1000	mer a	-	
Nº DE CAPAS	-		MOL	MOLDE 2		DE 3
Nº DE GOLPES POR CAPA	- 5	A.	2		- 1	1
SOBRECARGA (gr.)	5940		500		- 1	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN
Peso de Suelo Húmedo + Molde (gr.)	8222	8361	8070	£258		SATURADO
Peso de Molde (gr.)	4182	4162	4196		7905	8160
Peso del Suelo Húmedo (gr.)	4040	4160	3874	4196	4100	4109
Volumen de Molde (cm3)	3228	3228		4090	3736	3971
Volumen del Disco Especiador (cm3)	1085	1065	3228	3026	3226	3228
Densidad Hümeda (griom3)	1.00		1985	1085	1985	1985
CAPSULA Nº	1.00	1.95	1.81	1.91	1.74	1.85
Peso de Suelo Húmedo + Cápsula (gr.)	-	1	1	4		
Perso del Suelo Humedo + Capsula (gr.)	236.70	239.79	250.10	239.40	241.20	288.10
Peec de Suelo Seco + Cépsulia (gr.)	222.00	218.60	234.50	210.70	226.20	221.30
Peso de Agua (gr)	94.70	23.10	15.80	20.70	15.00	33.80
Pesió de Cápsula (gr.)	37.27	37.38	37.69	37.25	37.36	37.75
Pésio de Suelo Seco (gr.)	184.73	179.22	196.81	173.45	188.64	183.55
N de Humedad	7.96	12.89	7.90	18.55	7.94	TVS Statistics
Demaidad de Suelo Seco (griom3)	1.75	1.72	1.68	164	1.62	1,57

				ENSAYO DE EX	PANSIÓN				-
MOLDE	u	OLDE 1 - 98 GOUPE	and the second second	M	DLDE 2 - 25 GOLPS	EB .	M	OLDE 3 - 12 GOLPE	8
TIEMPO	LECT DIAL	EXPA	NSION	LECT DIAL	EXPA	NSION	V-10101	EXPA	SSION
Contract of the Contract of th		mm	%	EDC.L. DEAL	mm	%	LECT DIAL	mm	44.
0 hrs	0	0.000	8.00		5,500	0.00		0.000	9.00
24 hrs	56	1.422	1.12	- 64	1.626	1.28	70	1.829	1.64
All Pers	88	2.159	1.39	9.7	2.464	1.94	107	2.716	2.14
T2 hrs	112	2:845	2.24	131	3.327	2.62	143	3.632	
96 hrs	145	3.683	2.90	167	4.342	3.34	185	4.609	2.86

PINSTRACION	NSAYO DE CARGA	CA	RGA	CORRECCION	CA	RGA	CORRECCION	CA	RGA	CORRECCIÓN
0.000 0.00	PENETRACION	kg	kg/cm ³	kp/em²	ke	lig/ow ⁸	ka/cm ³		2000	
0.002 35 1.7 21 1.0 12 0.6 0.000 52 4.1 4.2 2.1 41 2.0 0.000 52 4.1 4.2 2.1 41 2.0 0.000 52 52 1.2 5.5 76 124 5.1 4.0 96 4.1 4.0 0.100 200 10.3 17.6 124 5.1 4.0 96 4.1 4.0 0.100 200 10.3 17.6 5.7 5.4 4.1 4.0 0.200 200 10.3 17.6 2.7 5.4 4.1 4.0 0.200 200 10.3 17.6 2.7 5.4 4.1 4.0 0.200 200 10.3 17.6 2.7 5.4 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	0.000	6,00	0.0		8.00	0.0				
0,000 12 4.1 42 2.7 41 2.8 1.50 1	0.025	35	1.7		21	1.0			- CO CO CO	_
107		#2	4.1		62					
4.300 353 2.5 7.4 354 6.1 6.0 96 4.1 4.5 8.350 390 10.0 0.76 6.7 6.2 6.4 7.1 4.6 7.1 7.1 7.0<	8.675	112	3.5	1500	91	4.5			1000	_
8.506 269 16.3 276 8.7 544 7.1 8.206 269 269 129 13.0 227 16.7 18.8 273 3.6 8.6 2.0 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0,100	852		7.6	1124		6.0			
8.206 266 12.9 LLA 227 16.7 18.8 173 8.6 LLA 237 16.7 18.8 173 8.6 LLA 240 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	0.130	209	10,3		17%		1 100			100
0.300 352 17.4 296 14.7 218 51.4 0.600 436 31.5 545 12.1 206 12.9	0.200	261	12.9	13.0	217		18.8			
0.000 826 21.1 245 171 200 122	9,300	382	17.4	13.50			1000	2.75		- 44
0.500	13.400	426	21.1						-	
	0.500	475	23.5			68.2		281	13.9	1

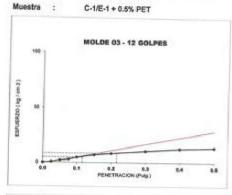
OBSERVACION: Minestras provintas e identificadas por el solicito

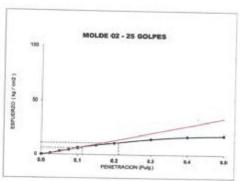
TE CONSULTORIA SECTECHIA S.A.C. Tratarely ortuites. Ing. Victoria de los Angeles Agustin Diag GERENTE GENERAL

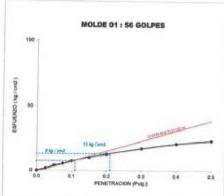
JVC CONSULTING GEOTECNIA S.A.

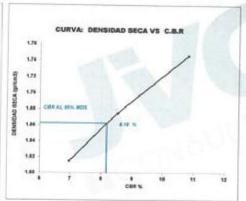
Ing. Carlos Javas Raminez Muñiz

CIP. 14***


JVC CONSULTORIA GEOTECNIA S.A.C.


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inês - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.1	7.6	70.307	10.81	1,746
2	0.1	6.0	70.307	8.53	1.675
3	0.1	4.9	70.307	6.97	1.615

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SIECA (gr/cm3)
1	0.2	13.0	105.46	12.33	1.746
2	0.2	10.8	105.46	10.24	1.675
3	0.2	8.6	105.46	8.15	1.615

180			2/	
100	QUE T	-		

METODO DE COMPACTACIÓN		ASTM D1557	30-26- E 14
Máxima Densidad Seca (gr./cm3) al	100 %		1.75
Máxima Densidad Seca (gr./cm3) al	95 %		1.66
OPTIMO Contenido de Humedad	The Management		7.95%

	100000000000000000000000000000000000000
RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	10.81%
Valor C.B.R Al 95% de la Máxima Densidad Seca	8 4850

JVC CONSUMOR GEOTECNIA S.A.C.

INC CONSULTADA GEOTECHIA S.A.C.

Directory La U.S.

Lag. Victoria de las Angeles Aguntin Diaz

GERENTE GENERAL

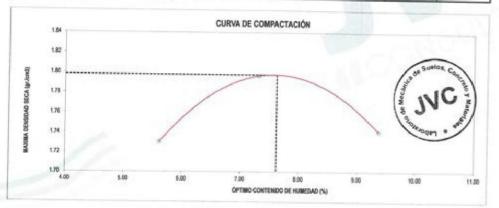
LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D1883

MEJORAMIENTO DE LAS PROPREDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLASTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULLO -ROYECTO

LA LIBERTAD. 2022


DIONICIO REJINZA KVITHERNE PAMELA - ROJAS AMAYA JUN YEYSON
VILLA MERCOTO - LAREDO - TRUJULO - LA LIBERTAD

MAYO DEL 2022 SOLICITANTE UBICACIÓN FECHA

CARRETERA Calicata C-16-1 = 1% PET VILLA LA MERCED

Molde N*	5 - 123
Peso del Molde gr.	6,734
Volumen del Molde cre ¹ .	2 135
M* de Capas	5
M* de Golpes por cana	- 60

MUESTRA Nº	1					
Peno de Suelo húmedo - Molde (gr.)	10.636	45.000	3	4		
Peso de Molde (or.)	6,734	10,851	10,800			
Peso del suela Húmedo (gr.)		6,734	6,734			
Densidad Hürneda (golcm.))	3,902	4,117	4,066			
CAPSILA IF	1.0	1.93	1.90			A 10
Section 1 and 1 an	C-3	C-15	C-4			O
Pesa de suelo Húmedo - Cápsula (gr.)	345.9	342.4	349.1			
Peso de suelo seco + Cápeula (gr.)	3319	334.8	326.3			1000
Peso de Agua (gr)	14.0	17.6	22.8	1		
Peso de Capsula (gr.)	82.7	84.2	83.0		2000	
Pess de Suelo Seco (gr.)	269.2	240.6	2000000			
% de Humedad	5.62		203			
Denoidad de Suelo Seco (priomit)		7.32	9.37		14 - 15 m	
The same same property	1.73	1.80	1.74			

Máxima Densidad Soca (gricm3)	1.798
Óptimo Contenido de Humedad (%)	7.62

OBSERVACION: Muselines provintar

JAC CONSULTORING GEOTECHIA S.A.C.

To Consultant Comments

Log. Victorius a. sel. despeler departe Dier GERENTE GENERAL

GEOTECNIA S.A.C Javier Ramirez Muños CIP. 140574

JVC CONSULTORIA GEOTECNIA S.A.C. Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030

consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS CONCRETO ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883) MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULLO -LA LIBERTIAD - 2022

PROYECTO

SOLICITANTE UBICACIÓN FECHA. DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUJILLO - LA LIBERTAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

MOLDE	11.00					
Nº DE CAPAS	MOLDE 1		MOL	MOLDE 2		DE 1
MP DE GOLPES POR CAPA	- 6					
SOBRECARGA (or.)	59	Maria and a second	3		1	
ESTADO	SIN SATURAR	SATURADO	50	Total Control of the	59	15
Peso de Suelo Húmedo + Molde (gr.)	8336		SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Molde (gr.)		0404	8193	8381	7978	8163
Pesso del Suelo Húmedo (gr.)	4160	4182	4196	4196	4189	4189
Volumen de Molde (gm²)	4163	4302	2097	4185	3789	3974
	3228	3226	3226	3228	3020	3228
Volumen del Disco Especiador (cm3)	1085	1085	1085	1085	1085	1085
Demaided Hürnedie (gelom3)	1.94	2.01	1.87	1.95	1,77	700000
CAPSULA Nº	1	3	3	4		1.85
Peso de Suelo Húmedo + Cápsula (gr.)	290.10	286.23	296.20	285.00		
Peso de Suelo Seco + Cápsula (gr.)	265 80	258.90	278.10	400000000000000000000000000000000000000	287.40	301.60
Peso de Agua (gr)	17.30	27.30		254.30	269.90	264.60
Peso de Cápsula (gr.)	41.10		16.10	31.60	17.50	37.00
Pesió de Suelo Seco (gr.)		41.20	41.50	41.10	41.20	41.60
% de Humedad	224.70	217.79	236.60	213.20	228.70	223.00
	7.70	12.54	7.65	14.82	7.65	16.59
Densidad de Suelo Seco (gricm3)	1.80	1.78	1.73	1.70	1.64	1.88

				ENSAYO DE EX	PANSION						
MOLDE	ADLDE M		MOLDE MOLDE 1 - 56 GOLPES EXPANSION		M	MOLDE 2 - 25 GOLPES			MOUDE 3 - 12 GOLPES		
TIEMPO	V LECT DIAL		NSRUN	LECT DUL	EXPA	NSION	LECT DIAL	EXPA	NSKON		
4 10	-	mm	16		ENT)	%	T LEX. S. DEAL.	mm	196		
P hrs	0	9:000	0.00	0	0.000	0.00	0	0.000	0.00		
34 turn	46	1,168	0.92	54	1.372	1.08	40				
48 hrs	71	1.800	1.42	83	BOOK OF STREET		94	1,575	1.24		
72 hrs	96	2.413	1.90		2,108	1.66	93	2.362	1.86		
96 hrs			-	114	2.896	2.26	126	5.200	27.52		
No use	105	2.667	2:10	127	3.226	2.54	145	3.683	2.90		

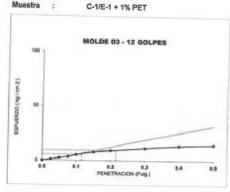
PENETRACION	CA	MGA.	CORRECCION	CA	RGA	CORRECCIÓN	CA	RGA	CORRECCIÓN
	kg	kg/cm ²	kp/cm²	kg .	kg/cm ²	kg/cm ¹	lg.	kg/om*	kg/cm ²
8,600	6,00	8.0		6.00	0.0		6.00	0.0	elli-ten.
0.025	47	2.3		33	1.6			197	
8.050	94	4.7		24	3.7		25	1.2	-
0.075	124	6.1		112	3.1		72	2.6	
0.100	164	8.1	8.3	136	6.7	6.6	108	3.6	
0.150	221	10.9		148	93	9.0	156	7-04	5,5
9.300	273	13.5	134	229	11.3	11.4		2.7	
8,300	364	18.0		368	15.3	11.4	188	9.2	9.3
0.400	678	21.7		343	17.7		236	11.4	
0.500	487	24.1		390	18.8		272	15.5	
ESPECIMEN		OLDE 1 - % GOLJ			OLDE 2 - 25 GOL		20	14.5	

TICLES POST CHASAC.

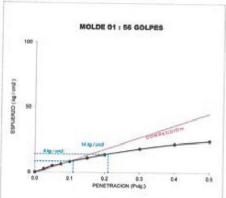
rio de las Argeiro Agustis Diag. GERENTE GENERAL

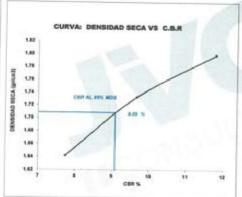
JVC CONSULTORIA GEOTECNIA S.A.L

Ing. Carles Javier Hamirez Medicz CIP. 140579


JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.3	70.307	11.81	1.799
2	0.1	6.6	70.307	9.67	1.733
3	0.1	5.5	70.307	7.75	1.642

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3	
1	0.2	13.6	105.46	12.90	1.799	
2	0.2	11,4	105.46	10.81	1.733	
3	0.2	9.3	105.46	8.82	1.642	

METODO DE COMPACTACIÓN		ASTM D1667	
Máxima Densidad Seca (gr./cm3) ai	100 %		1,80
Máxima Densidad Seca (gr./cm3) al	95 %		1.71
OPTIMO Contenido de Humedad			7 656

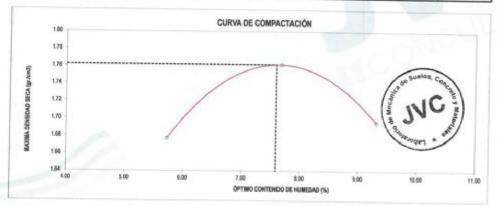
	1177777
RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.81%
Valor C.B.R Al 95% de la Máxima Densidad Seca	0.00%

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CER

MÉTODO C ASTM D-1557 / ASTM D1883

PROYECTO


SOLICITANTE UBICACIÓN FECHA

MEJORAMIENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORANDO TRAS DE PLASTICO PET EN LA VILIA LA MERCED - L'AREDO - TRUJULO-DIONICIO PERAZA KATTERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - TRUJULLO - LA LIBERTAD

CARRETERA Calkuta C-16-1 + 1.5% PET VILLA LA MERCILD

Molde W	8 - 123
Peso del Molde gr.	6,734
Volumen del Molde cm ² .	2.136
Nº de Capas	5
Nº de Golpes por casu	48

MUESTRA Nº	1 1	- 4				
Peso de Suelo húmedo + Molde (gr.)	10.520	44.000	- 1	4		
Peso de Molde (gr.)	6.734	10,794	10,691			
Peso del suelo Humado (gr.)	178 (25.0)	6,734	6,734			
Dennidad Hirmeda (golom/l)	3,786	4,050	3,957			
CAPSULA IV	1.77	1.90	1.85			all All
Peso de suelo Húmedo + Capsula (gr.)	C-3	C-15	64			
	362.1	334.0	340.7		N	- Dec
Peso de suelo seco + Cápeula (gr.)	337.3	315.9	316.4			
Pesa de Agua (gr)	14.8	18.1	22.3			
Peso de Capsula (pr.)	78.9	80.1	78.9			-
Peso de Suelo Seco (gr.)	258.4	235.8	239.5			
N de Humedad	5.73	7.68	9.31		The state of the s	
Dennidad de Suelo Seco (grions))	1.68	1.75	1.70			

Máxima Densidad Seca (gr(cm3)	1.762
Óptimo Contenido de Humedad (%)	-

OBSERVACION:

JVE CONSULTORIA GEOTECHIA S.A.C. Tratautautum ura de las descritos descrito Dice: GERENTE GENERAL

JVC CONSTUTER GEOTECNIA S.A.C. GIP. 140574

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

PROYECTO MEJORAMIENTO DE LAS PROPREDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - L'AREDO - TRUJULO -

SOLICITANTE UBICACIÓN FECHA DIONICKO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERICEO - LAREDO - TRUJULIO - LA LIBERTAD MAYO DE, 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

MOLDE						
Nº DE CAPAS	MOL	MOLDE 1		DE 2	MOLDE 3	
Nº DE GOLPES POR CAPA		5			* * * * * * * * * * * * * * * * * * *	
SOBRECARGA (gr.)		-	2		1	2
ESTADO	59	-	50	98	59	15
Peso de Suelo Húmedo + Molde (gr.)	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
	8233	8382	8081	8287	7866	8061
Peso de Molde (gr.)	4182	4102	4190	4198	4109	4189
Peso del Suelo Húmedo (gr.)	4651	4200	3885	4091	3677	
Volumen de Molde (cm3)	3228	3226	3226	3228	-	367
Volumen del Disco Especiador (cm3)	1088	1085	1085		3228	3228
Deneidad Hürneda (gr/cm/3)	1,80			1088	1085	1085
CAPSULA Nº	1	1.99	1.81	1.91	1.72	1.81
Peso de Suelo Húmedo + Cápsula (gr.)			3	4	5	6
Pesio de Suelo Seco + Cápsula (gr.)	236.60	239.70	250.10	239.40	241.20	255.10
	222.60	217.40	235.20	213.50	229.90	224.10
Pesio de Agua (gr)	14.00	22.30	14.90	25.90	14.30	31.00
Peso de Cápeuse (gr.)	38.97	39.08	39.39	38.95	39.08	39.45
Peso de Suelo Seco (gr.)	183.63	178.32	195.81	174.55	187.84	184.85
% de Humeded	7.62	12.51	7.61	14.84		
Deneidad de Sueto Seco (griond)	1.76	1.74	1.09	1.66	7.61	1.55

				ENSAYO DE EX	PANSION				
MOLDE	N.	OLDE 1 - 56 GIOLPE	and the last of th	.M	MOLDE 2 - 25 GOLPES		, w	OLDE 1 - 17 GOLPE	3
TIEMPO	LECT DIAL	EXPANSION		LECT DIAL	EXPANSION		- CONTROL	EXPA	NSSION
	The state of the s	mm	%	Lac I Dou	mm	%	LECT DIAL -	mm	Av.
0 fors	. 0	0.000	0.00	0	0.000	0.00		0.000	76
24 hrs	28	0.711	0.56	36	0.914	9.72	- 44	T. C.	0.0
48 hrs	49	1.245	0.98	61	1.549	1.22	71	1.118	0.86
77 hm	60	1.727	1.36	80	2.000	1.60	10000	1.600	1.42
96 hrs	84	2.134	1.68	99	2.515	1.00	112	2.386	1.80

NSAYO DE CARGA	CA	RGA	CORRECCIÓN	CARGA		CORRECCIÓN	CARGA		CORRECCIÓN
PENETRACION	kg.	kgiom	kg/cm ³	No	kg/cm ²	kg/cm ²	No.	kg/om ²	kg/om ²
0.000	6.00	0.0		0.00	0.0		0.00	0.0	10.00
0.625	39	1.9		25	1.2		17		-
8.050	86	4.3		66	3.3		45	2.2	-
8.075	116	5.7		95	6.7		44	32	
9,100	156	7.7	7,8	128	6.3	6.6	100	3.0	- 20
0.150	243	10.5		190	8.9		148		5.0
6,200	365	10.1	13.2	221	10.9	10.0	177	73	
0.300	356	17.6	100	300		11.0		1.1	8.5
0.400	430	21.3		349	17.3		323	11.0	
8.500	479	23.7		322	19.4		264	1301	
ESPECIMEN				772 18.4			285 14.1		

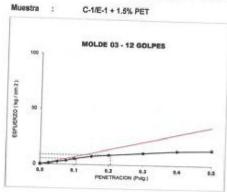
ING VICTORIA GEOTECHIA S.A.C.

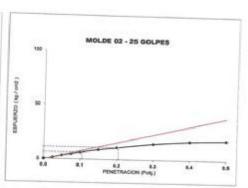
Ing Victoria de nor regenis Agentin Dur

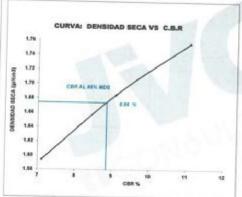
GERENTE GENERAL

JVC CONSULTATION BEOTECNIA S.A.C. er Ramirez Muño: CIP. 140414

JVC CONSULTORIA GEOTECNIA S.A.C.


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvo@gmail.com




CURVAS - VALORES PRELIMINARES

RUC: 20606092297

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3	
1	0.1	7.8	70.307	11.09	1.756	
2	0.1	6.4	70.307	9.10	1.685	
3	0.1	5.0	70.307	7.11	1.594	

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3	
.1	0.2	13.2	105.46	12.52	1.756	
2	0.2	11.0	105.46	10.43	1.685	
3	0.2	8.8	105.46	8.34	1.504	

12
100
2
/
1

JVC CONSTRUCT & GEOTECNIA S.A.C.

METODO DE COMPACTACIÓN		ASTM D1557	
Måxima Densidad Seca (gr./cm3) al 1	1.76		
Maxime Densidad Seca (gr./cm3) al 9	5%		1.67
OPTIMO Contenido de Humedad	(A)		7.59%

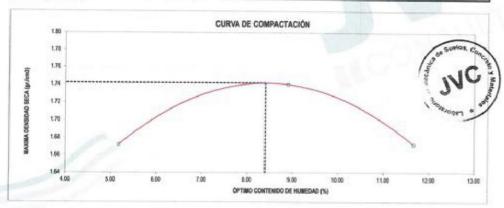
RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	44 0000
Valor C.B.R Al 95% de la Máxima Densidad Seca	11.09%

Trefatour Co Ling, Victorio de los Angeles Agustín Diez GERENTE GENERAL

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D1883


PROYECTO

MEJORAMIENTO DE LIS PROPEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILIA LA MERCED - LAREDO - TRUJULO -LIA LIBERTAD - 2022 DICINICIO REBUZA IXATI-ERINE PAMELA - ROJAS AMAYA ALIN YEYSÖN VELLA MERCED - LAREDO - TRUJULO - LA LIBERTIAD MAYO DEL 2022 SOLICITANTE UBICACIÓN FEGHA

CARRETERIA Calcuta C-2/6-1 VILLA LA MERCED N° de Musetra

Molde N*	8 - 123
Pleso del Moide gr.	6,734
Volumen del Molde om ³ .	2,135
Nº de Capas	5
Mº de Colose por cana	46

MUESTRA Nº	1	- 2	1	4		
Peso de Suelo hómede + Molde (pr.)	10,488	10,780	10,721			,
Peso de Molde (gr.)	6,734	6,734	6.734			
Peso del suelo Húmedo (gr.)	3.754	4,046	3.987			
Densidad Hümeda (griom3)	1.78	1.99	1.07			100
CAPSULA IF	1.00	2.00	3.00			
Peso de suelo Hámedo + Cápsula (gr.)	475.7	457.6	464.3			
Peso de suelo seco + Capsula (gr.)	457.5	428.5	427.2	-		
Peso de Agua (gr)	18.2	29.0	37.1	and Minary	7	
Peso de Cápsula (gr.)	105.6	102.6	109.3			
Pisso de Suelo Seco (gr.)	351.9	325.8	317.9	THE W		
% de Humedad	5.57	8.90	11.67			
Censidad de Suelo Seco (griom3)	1,67	1.24	1.67			

Máxima Densidad Seca (gr/cm3)	1.742
Óptimo Contenido de Humedad (%)	8.40

OBSERVACION:

Tratantimento Ing. Victorio ik dis Angeles Agustin Diez GERENTE GENERAL

DVC CONSULTOR OTECNIA S.A.C Carlos Javier Kamirez Muños CIP. 1405 *4

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trijillo Teléf.: 044 - 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - 01883)

PRIOYECTO MILORAMENTO DE LAS PROMEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUSILLO -LA LIBERTAD - 2022

SOLICITANTE UBIGACIÓN FECHA DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED-LAREDO - TRUBLLO - LA LIBERTAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

MOLDE	MOL	DE 1	100	PAE 4	1000	
Nº DE CAPAS			MOLDE 2		MOLDE 3	
№ DE GOLPES POR CAPA	5	6	2		5 12	
SOBRECARGA (gr.)	59			5000		
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR SATURADO		5915 SIN SATURAR SATURA	
Peso de Suelo Húmedo + Molde (gr.)	8232	8335	8122	8240	7908	8126
Peso de Molde (gr.)	4162	4182	4100	4196	4189	4189
Peso del Suelo Húmedo (gr.)	4050	4153	2526	4044	3739	3907
Volumen de Molde (cm3)	3226	3228	3028	3228	3226	1228
Volumen del Disco Especiador (cm/li)	1065	1988	1085	1088	1005	1085
Densidad Hümeda (gr/cm3)	1.89	1.94	1.83	1.89	1.74	1.64
CAPSULA Nº	1		3	4	3	
Pesso de Suello Húmedo + Cápsula (gr.)	355.50	368.60	369.00	356.30	360.10	374.00
Pesio de Suelo Seco + Cápsula (gr.)	336.00	330.60	340.50	328.10	340.10	336.70
Peso de Agus (gr)	19.50	26.00	20.50	30.20	20.00	37.30
Pesto de Cápsula (gr.)	104.57	104.68	104.99	104.55	104.66	105.05
Peso de Suelo Seco (gr.)	231.43	225.92	243.51	222.55	235.44	231.88
% de Humedad	8.0	12.39	0.42	13.51	8.49	78.10
Densidad de Suelo Seco (gricm3)	1.74	1.72	1.09	1.00	1.01	1.52

				ENSAYO DE EX	PANSIÓN				
MOLDE	M	OLDE 1 - 50 GIOLPE	8	M	OLDE 2 - 25 GOLPE	8	M.	N.DE 1 - 12 GOLPE	5
TIEMPO	LECT. DIAL	EXPA	NSION	LECT DIAL	EXPA	NSION	4 mars 2011	EXPA	NSION
There is	ASSET DESIGN	mm	%	ASC L DUAL	mm	56	LECT DUL -	mm	16.
O form	0	0.000	0.00	0	0.000	0.50	- 0	0.000	0.00
24 hrs	33	0.636	0.66	41	1,041	0.82	49	1.245	0.96
48 hrs	46	1.168	6.92	58	1,473	1.16	68	1.727	1.36
12 hrs	69	1.753	1.38	81	2:067	1.62	91	2.311	1.80
96 hrs	72	1.829	1.44	67	2.210	1.74	100	2 540	2.00

ENSAYO DE CARGA	CARGA		CORRECCION	CARGA		CORRECCIÓN	CARGA		CORRECCIÓN
PENETRACION	lig.	kg/cm ²	kg/cm ²	kg/cm ² kg kg/cm ² kg/cm ²	kg/cm ²	ke	kaplom*	kg/cm ²	
8.000	6100	0.0		6.90	0.0		6.00	9.0	
0.025	35	1.7		21	1.0		13	0.6	
4.056	62	4.1		42	3.1		41	2.0	
0.075	112	3.3	1000	-98	4.5	0.091	60	3.0	
0.100	152	7.5	7.6	124	6.1	6.1	96	4.8	4.9
0.130	200	30.3		156	8.7		544	7.1	77
0.280	261	12.9	13.6	217	99.7	16.3	173	8.6	3.6
0,300	367	88.2	SYSE 16	301	15.4	1000	233	11.5	1
0.400	451	22.3		329	18.3		295	14.1	
8.300	340	25.3		463	20.0		316	13.6	

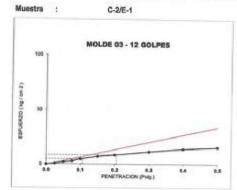
INC DEMONSTRATE GENTECHIA S.A.C.

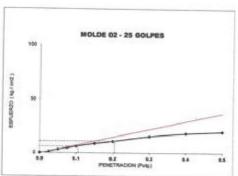
B. TOTOLOGY

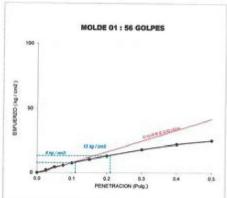
Ing. Victorio is not despote Agustin Disc.

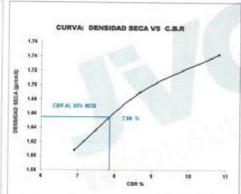
GERENTE GENERAL

Carlos Viaver Ramirez Muñoz


JVC CONSULTORIA GEOTECNIA S.A.C.


Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE N"	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gricm3)
1	0.1	7.6	70.307	10.81	1.743
2	0.1	6.1	70.307	8.68	1.690
3	0.1	4.9	70.307	6.90	1.608

MOLDE No	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.2	13.0	105.46	12.33	1.743
2	0.2	10.8	105.46	10.24	1.690
3	0.2	8.6	105.46	8.15	1.608

7.0	2/7	100.40	0.10	1.999
METODO DE COMPACTACIO	ON :	ASTM D1557		
Máxima Densidad Seca (gr./	cm3) all 100 %			1.74
Máxima Densidad Seca (gr./	cm3) al 95 %		- 0	1.65
ODTIMO Contentido de Moreo	a discol			4 144

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	10.81%
Valor C.B.R Al 95% de la Máxima Densidad Seca	TREM

LABORATORIO DE MECANICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR MÉTODO C

ASTM D-1557 / ASTM D1883

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULLO ярувсто

LA LIBERTIAD 2002

LONGOO REBAZA KATHERNE PAMELA - ROAS AMAYA ALIN YEYSON


VALLA MERCEO - LARBOO - TRUULLO - LA LIBERTAD

MAYO DEL 2002 SOLICITANTE UBICACIÓN FECHA

Matierial	1	CARRETERA.	Profundidad:		n.
Procedencia	7	Calicata	Norta:		N
N° de Muestra	=	C-2/E-1 +0.5% PET	Enter	-	E
Ubicación	E	VILLA LA MERCED	Cota:	-	5500

Molde N*	5 - 123
Pesa del Molde gr.	6.736
Volumen del Moide cm ³ .	2.135
M* de Capas	5
M* de Golpes por capa	56

MUESTILA IP	1	2	1	4	5	
Pisso de Suelo himedo + Molde (gr.)	10,488	10,793	10,671			-
Peso de Moide (gr.)	6.734	6,734	6.734			
Peso del suelo Húmedo (gr.)	3,754	4,059	1937			-
Densidad Hümede (gricm/)	1.76	1.90	1.84			-0 60
CAPSULA M	1.00	2.00	3.00		2 175	
Peso de suelo Húmedo + Cápsula (gr.)	4893	471.2	477.9		- 2	
Peso de suelo seco + Cápsula (pr.)	467.1	442.5	443.6	2,480		
Peso de Agua (gr)	22.2	28.7	34.3		- 7	
Peso de Capsula (gr.)	107.2	104.4	110.9			
Pesso de Sueto Seco- (gr.)	359.9	338.1	332.7			1 1
% de Humedad	6.17	8.49	10.31			
Densidad de Suelo Seco (grigmili)	1.66	1,75	1.67			

Māxima Densidad Seca (gr/cm3)	1.75
Óptimo Contenido de Humedad (%)	8.32

OBSERVACION: Muestras provintar

o ratorfulto

Ing. Victoria de des Angeles Agustín Diaz GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C Carle) Jaker Komirez Muños CIP. 145***

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030 consultoriageotecniajvc@gmail.com

PROYECTO

RUC: 20606092297

LABORATORIO DE MICANICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (ASTM - 01883)

MEJORAMENTO DE LAS PROPRIDADES MECÁNICAS DEL SUELO INCORPORANDO TIPAS DE PLÁSTICO PET EN LA VILIA LA MERCED - LARIEDO - TRURALO -LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICIO REBAZA NA THERINE PAMELA — ROJAS AMINYA ALIN YEYSON VILLA MERCED - LAREDO - TRIUJILLO - LA LIBERTAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

	ENSAYO D	E COMPACT	CACIÓN				
MOLDE							
Nº DE CAPAS	MOLDE 1		MOLDE 2		MOLDE 3		
N° DE GOLPES POR CAPA				5			
SOBRECARGA (gr.)				25		2	
ESTADO	50			5868		15	
	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	
Pesio de Suelo Húmedo + Molde (gr.)	IE252	8380	8149	8267	7924	8123	
Peso de Molde (gr.)	4182	4182	4196	4196	4189	4189	
Peso del Suelo Húmedo (gr.)	4070	4198	3953	4071	3735	2934	
Volumen de Molde (cm3)	3228	3226	3228	3228	3228	3228	
Volumen del Disco Especiador (cm3)	1065	1085	1085	1085	1085	1085	
Densidad Hümeda (gricm2)	1.90	1.96	1.84	1.99	1.74	1,84	
CAPSULA Nº	1	2	3	4	5		
Peso de Suelo Húmedo + Cápsuts (gr.)	360.10	363.29	373.70	362.90	364.70	378.60	
Peso de Suelo Seco + Gápsula (gr.)	340.50	332.90	383.10	332.00	344.80	340.60	
Peso de Agua (gr)	99.60	30.30	20.60	20.90	19.90	38.00	
Peso de Cápeula (gr.)	105.80	105.60	106.20	105.80	105.90	106.30	
Peso de Suelo Seco (gr.)	204.70	227.00	246.90	226.20	236.00	234.30	
% de Humedad	8.35	13.36	8.34	13.66	8.33	15.22	
Pensidad de Suelo Seco (griomd)	1.75	1.73	1.70	1.67	181	1.58	

				ENSAYO DE EX	PANSION	E = 17-	NOTE THE PARTY OF		
MOLDE	M	OLDE 1 - 56 GOLPE	5	M	OLDE 2 - 25 GOLPE	8	M	OLDE 3 - 12 DOLPE	8
TIEMPO	LECT DIAL	EXPANSION		LECT. DUL	A ROTE POLATE EXPANSION		10000000	EXPA	NSION
THE P SECTION	mm	mm %	HACK II. DAVID.	ETVTS	%	LECT. DUAL	mm	16	
0 hrs	0	0.000	0.00	0	0.000	0.00	0	0.006	0.0
24 hrs	33	0.636	0.66	41	3:043	0.82	49	1.245	0.9
48 hrs	48	1,168	0.92	58	1.473	1.16	55	1,727	1.3
72 his	69	1.753	1,38	81	2:057	1.62	96	2.311	1.83
96 hrs	72	1.829	1.44	87	2.210	1.74	100	2.540	2.00

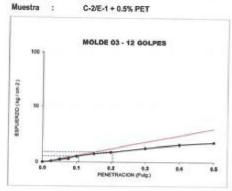
ENSAYO DE CARGA PENETRACIÓN									
ENSAYO DE CARGA PENETRACIÓN	CARGA.		CORRECCIÓN	CARGA		CORRECCION	CARGA		CORRECCIÓN
	Ag.	kg/cm ²	kg/cm²	No.	kg/cm ²	kg/cm ³	No	kg/om ³	kg/cm ²
9,000	5.00	8.0		0.00	0.0		0.00	0.0	
0.025	38	1.9		24	1.2		10	0.8	
0.000	85	4.2		45	3.2		44	2.3	
8.875	113	3.7		194	4.7		63	3.1	
0.100	155	7.7	7.8	127	6.3	6.3	99	4.9	15.0
8.156	212	10.5	200	179	9.9		347	73	
8,200	364	10.1	13.2	229	10.0	11.0	176	8.7	8,9
e 300	385	19.1	1990	329	16.3	1889	251	12.4	100
10,4000	479	23.7		398	19.7		313	15.5	
8,500	548	27.1		461	21.8		354	17.5	
ESPECIMEN	MOLDE 1 - 34-GOLPES		RPES MOLDE 2 - 25 GOLDES			PICS .	MOLDE 3 - 12 GOLPES		

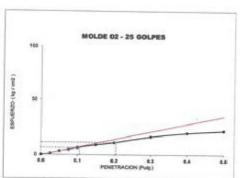
JVC DONSOLTORIA GEOTECHIA S.A.C.

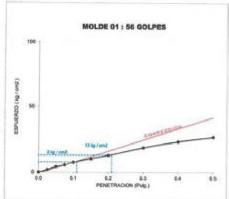
Today Land Land

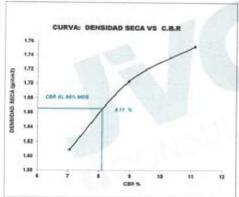
Today Victoria de los Angeles Agretis Dice

GERENTE GENERAL


ING Carlos Saver Raminez Muñoz







CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm ²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	7.8	70.307	11.09	1.753
2	0.1	6.3	70.307	8.96	1,703
3	0.1	5.0	70.307	7.04	1.609

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gricm3)
1	0.2	13.2	105.46	12.52	1.753
2	0.2	11.0	105.46	10.43	1.703
3	0.2	8.9	105.46	8,44	1.609

_ 3	0.2	0.9	105.46	5,44	1.009
METODO DE C	OMPACTACIÓN	1	ASTM D1557		
Máxima Densk	fad Seca (gr./cm3) al 100 %			1.75
	fad Seca (gr./cm3) al 95 %			1.67
CHARLES CO.	and other states to the contract of				The state of the s

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.09%
Valor C.B.R Al 95% de la Máxima Densidad Seca	8 11%

JVC CONSULTER A GEOTECNIA S.A.L S Javier Kamirez Muño:

Ing. Victoria de un Angeres Apartin Dies GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D-1883

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PIET EN LA VILLA LA MERCED - LAREDO - TRUJULO -

SOLICITANTE UBICACIÓN FECHA

MAYO DEL 2022 PROPREDICES MECANOCIS DEL SUELO INCORP LA LIBERTIA D. 2022 DIONICIO REPAZA KATIFERNE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCES - LAREDO - TRUILLO - LA LIBERTIAD MAYO DEL 2022

N° de Musetra

CARRETERA Culcuto C-26-1 + 1% PET VILLA LA MERCED

Molde H*	8 - 122
Preso del Molde gr	6,734
Volumen del Molde cm ³ .	2.135
M* de Capas	5
M* de Golnes mos como	12

MUESTRA Nº	1	1	1	4		
Peso de Suelo húmedo + Molde (gr.)	10,578	10,832	10,756			
Peso de Molde (gr.)	6,734	6,734	6.734			
Peso del suelo Humedo (gr.)	3,844	4,098	4.022			
Densidad Hümeda (grion3)	1.80	1.82	1.88			- 6
CAPSULA IF	1.00	2.00	3.00		1 = 9	
Pesa de suelo Húmedo + Cápsula (gr.)	504.2	486.1	492.8			
Peso de suelo seco + Cápsula (gr.)	482.6	457.6	457.5			
Peso de Agua (gr)	21.6	28.5	35.3	The Village		
Peso de Capsula (gr.)	107.6	104.8	1113			
Peso de Suelo Seco (gr.)	375.0	352.8	346.2			77 19
% de Humedad	5.76	8.08	99.20			
Densidad de Suelo Seco (gricmili)	1.70	1.78	1.71	TOTAL T		7

Māxima Densidad Seca (grlcm3)	1,779
Óptimo Contenido de Humedad (%)	2 40

OBSERVACION:

INC COMBULTORIA SEOTECHIA S.A.C.

To School (LD)

Ing. Victoria de los Acqueles Agustía Diam
GERENTE GENERAL

JVC CONSULTORY SEOTECNIA S.A.C.

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

PROYECTO MEJORAMIENTO DE LAS PRIOMEDADES MECÁNICAS DEL SUELO INCORPORANDO TRUS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUBLLO-LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREGO - TRUJILLO - LA LIBERTAO MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

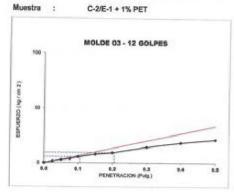
	ENSAYO D	E COMPACI	TACIÓN			
MOLDE	MOLDE 1		MOL	DE 2	MOLDE 3	
Nº DE CAPAS					1 4	
Nº DE GOLPES POR CAPA		56		5	12	
SOBRECARGA (gr.)	50	-	58	98	5915	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8296	8392	8151	8259	8016	8185
Peso de Molde (gr.)	4182	4182	4196	4196	4109	6189
Peso del Suelo Húmedo (gr.)	4114	4210	3955	4093	3827	3096
Volumen de Molde (omit)	3228	3226	3028	3228	3228	3228
Volumen del Disco Especiador (cm3)	1065	9005	1085	1065	1085	1088
Densidad Húmeda (gr/om3)	1.92	1.96	1.85	1.91	5.79	1.06
CAPBULA Nº	1	2	3	4		4
Pesa de Suelo Húmedo + Cápsula (gr.)	366.40	369.50	379.90	309.30	371.00	384.90
Peso de Suelo Seco + Cápsula (gr.)	346.90	342.70	359.50	337.90	35130	349.40
Peso de Agua (gr)	19.50	26.80	20.40	3/1.40	19.80	35.50
Peso de Cápsula (gr.)	107.10	107.20	107.50	107.30	107.20	107.60
Pesó de Suelo Seco (gr.)	239.80	235.50	252.00	230.50	244.00	241.80
% de Humedad	8.13	11.38	8.10	13.62	0.11	14.68
Densidad de Suelo Seco (griom3)	1.78	1.78	1.71	1.00	1.65	1.63

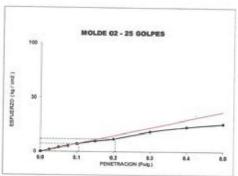
				ENSAYO DE EX	PANSIÓN	1			
MOLDE	M	OLDE 1-98 GOLPE	5	M	OLDE 2 - 25 GOUPE	S	L MC	LDE 1-12 GOUPE	5
TIEMPO	LECT DIAL	EXPA:	NSION	LECT DIAL	LECT DIAL EXPANSION			EXPA	NSION
THE ST	Table Dott.	mm	%	LECT. DIAL	mm	%	LECT DIAL	mm	%
0 hrs	0	0.000	0.00	0	0.000	0.00	0	0.000	0.00
24 hrs	29	0.737	0.58	37	0.940	0.74	45	1.143	0.90
48 hrs	42	1.067	0.84	54	1.372	1.06	04	1,626	1.28
72 hrs.	61	1,549	1.22	73	1.854	1.46	83	2 108	1.86
96 hrx	73	1.854	1.46	88	2.238	1.76	101	2.688	2.00

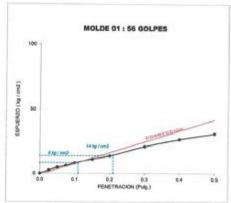
INSAYO DE CARGA CARGA	RGA	CORRECCION	CORRECCIÓN CARGA		CORRECCIÓN	CARGA		CORRECCION	
PENETRACION	kg.	kg/cm ²	Kg/om ²	kg	kplers ²	kplom!	ke	kg/cm²	kg/cm ²
0,500	0.00	0.0		0,09	0.0		0.00	8.0	
6.625	51	2.5		37	1.8		29	8.4	
4.650	96	4.9		79	3.9		37	2.4	
8.075	129	4.3	100	107	5.3		75	3.5	
0.100	168	1.3	8.4	149	6,9	1.6	112	5.5	5.6
8.159	225	11.1	181	192	9.5		160	7.9	1 7
8,260	277	13.7	13.8	2.83	18.5	11.6	189	9.4	9.4
0,300	428	21.2	1000	372	19.4	1000	294	14.6	-
0.400	542	24.5		462	22.8		3/36	18.6	
0.500	631	31.2		534	25.9		437	21.6	

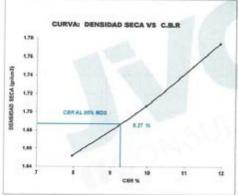
totay In to

ria de los dogoles Aguatin Diaz GERENTE GENERAL


Leg Carlos Javier Ramirez Munes


JVC CONSULTORIA GEOTECNIA S.A.C.





CURVAS - VALORES PRELIMINARES

Valores Correctes

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.4	70.307	11.95	1.775
2	0.1	7.0	70.307	9.96	1.707
3	0.1	5.6	70.307	7.97	1.652

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gricm3
- 1	0.2	13.8	105.46	13.09	1.775
2	0.2	11.6	105.46	11.00	1.707
3	0.2	9.4	105.46	8.91	1.652

	9.2	3.4	100.40	0.31	1,002
METODO DE C	OMPACTACIÓN		ASTM D1557		
Máxima Densid		1.78			
Máxima Densid		1.69			
OPTIMO Conte		8.10%			

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11,95%
Valor C B R Al 95% do la Máxima Deceidad Soca	0.539

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CER

MÉTODO C ASTM D-1557 / ASTM D1883

MELCRAMMENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORADOD TIRAS DE PLASTICO PET EN LA VILLA LA MERCED - LAREDO - TRILULLO -

LA LIBERTIAD - 2022

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON
VILLA MEROCEO - LAPEDO - TRUJULLO - LA LIBERTIAD
MAYO DEL 2022 SOLICITANTE UBICACIÓN

FECHA

CARRETERA Calcula C-26-1 + 1.5% PET VILLA LA MERCED

Molde Nº	5 - 125
Pleso del Molde gr.	6,734
Volumen del Molde cm².	2,135
Nº de Capas	5
Mª de Colose per como	12

MUESTRA W	1	2	3	4	- 6	1
Peso de Suelo húmedo + Molde (gr.)	10,448	10,747	10.521		-	-
Peso de Moide (gr.)	6,734	6.734	6.734			
Peso del suelo Húmedo (gr.)	3,714	4,013	3.887			
Densidad Hümeda (grion.3)	1.74	1.88	1.82			- A
CAPSULA IF	1.00	2.00	3.00		. 60	
Peso de suelo Hámedo + Cápsula (gr.)	510.9	492.8	499.5			
Pess de suelo seco + Cápeula: (gr.)	488.9	466.4	464.2			
Pesa de Agua (gr)	22.0	26.4	36.3	-10		
Peso de Cápsula (gr.)	108.0	105.2	111.7		100	
Peso de Suelo Seco (gr.)	380.9	361.2	362.5	1000	100	
% de Humedad	5.71	7.31	10.01	THE REAL PROPERTY.		
Densidad de Suelo Seco (gricm3)	1.64	1.75	1.65	1955191		

Máxima Densidad Seca (gricm3)	1.762
Óptimo Contenido de Humeded (%)	8.02

log Victoria de Angerio Agustin Diar GERENTE GENERAL

IVC CONSULTING A GOTECNIA > ... CIP. (40°71)

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - 01883)

PROYECTO MEJORAMIENTO DE LAS PROPIEDADES MEJÓNICAS DEL SUELO INCORPORANDO TRAS DE RÁSTICO PET EN LA VALIA LA MERCEO - L'AREDO - TRUJULO -L'A LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICIO REBAZA VATIVERINE PAMELA - ROJAS AMIXIA ALIN YEYSON VILLA MERCED - LAVIEDO - TRIJILLO - LA LIBERTAD MAYO DEL 2022

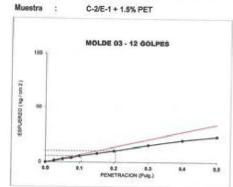
CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

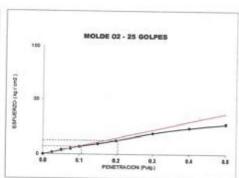
	ENSAYO D	E COMPACT	FACIÓN			
MOLDE	HO	DE 4				
N° DE CAPAS	MOL	DE 1	MOL	DE 2	MOLDE 3	
Nº DE GOLPES POR CAPA		6	-			
SOBRECARGA (gr.)		40	- 2		1	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	The second second
Peso de Sueto Húmedo + Molde (gr.)	8297	8365	8145	8252	7898	SATURADO
Peso de Moide (gr.)	4182	4182	4196	4196	4189	8092
Peso del Suelo Húmedo (gr.)	4065	4183	2949	4056	3709	4189
Volumen de Molde (crid)	3228	3228	3229	3228		3903
Volumen del Disco Espaciador (cm3)	1985	1085	1985	1085	3226	3228
Densided Hümedia (gricm3)	1.91	1.95	1.04	1.89	1475	1085
CAPSULA N°	1	2	3	4	1.73	1.82
Peso de Suelo Húmedo + Cápsula (gr.)	363.30	386.43	396.60	386.10	100000	- 4
Peso de Sueto Seco + Cápsula (gr.)	362.70	355.40	175.30	353.50	367.60	401.80
Peso de Agua (gr)	20.60	31.00	21.50		366.90	362.10
Peso de Cápsula (gr.)	108.40	100.50	106.80	109.10	21.00	39.70
Pesó de Suelo Seco (gr.)	254.30	346.90		100190090	109.00	109.40
% de Humedad			266.50	244.40	257.90	282,70
Densidad de Suelo Seco (griomit)	8.10	12.56	8.07	13.34	8.14	10.71
Citizania or desire salve (Section)	1.76	1.73	1.71	1.87	1.60	1.57

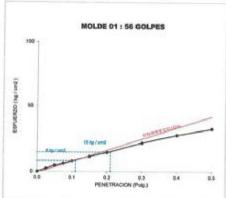
				ENSAYO DE EX	PANSIÓN				
MOLDE	M	OLDE 1 - 58 GOUPE		M	OLDE 2 - 25 GOLPE	5	MC	XDE 1-12 GOLPE	8
TIEMPO	LECT. DIAL	EXPANSION		ON LECT DIAL		41 EXPANSION		EXPA	NSKIN
	SECTION .	mm	%	DECT. DUAL	mm	%	LECT. DIAL	mm	%
O ficts	0	0.000	9,99	0	0.000	0.00	0	0.000	0.00
24 hrs	24	0.610	0.48	32	0.813	0.64	40	1,016	0.80
48 hrs	37	0.940	0.74	49	1.248	0.98	59	1,499	1.18
72 hrs	52	1.321	1.04	64	1.626	1.20	74	1.880	1.48
96 hm	61	1.549	1.22	76	1.990	1.52	100	2.261	1.76

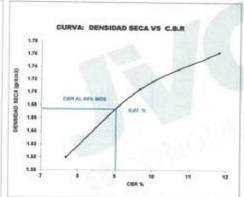
INSAYO DE CARGA	CA	RGA.	CORRECCION	CA	URGA	CORRECCION	CA	RGA	CORRECCIÓN
PENETRACION	kg	kg/em ²	kg/cm ²	kg	kg/cm²	kg/cm ²	ke	kg/om ²	kg/cm ³
8,000	0,00	6.6		0,00	0.0		0.00	0.8	
8.625	47	2.3		30	6.6		25	1.2	
0.050	94	4.7		24	3.7		33	2.6	
0.075	124	6.1		140	5.1		72	3.6	
6.100	164	8.1	1.3	136	6.7	6.8	300	5.3	5.4
0.150	235	11.5		188	9.3		156	7.7	
0.200	296	14.7	14.7	249	12.3	12.5	265	99.2	16.2
0.300	440	21.9	1000	383	19.0	1000	305	15.1	
0.400	363	27.9		4112	23.0		397	19.7	
0.500	662	32.8		555	27.5		468	23.2	

O STORY OF SECTECHASAC. es Agustin Diaz Ing. Victorio di


Corlos Javier Ramirez Muños


GERENTE GENERAL JVC CONSULTORIA GEOTECNIA S.A.C.





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRIESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.3	70.307	11.81	1.763
2	0.1	6.8	70.307	9.67	1.705
3	0.1	5.4	70.307	7.68	1.600

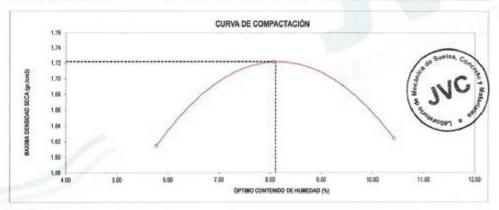
MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3
1	0.2	14.7	105.46	13.94	1.763
2	0.2	12.5	105.46	11,81	1.705
3	0.2	10.2	105.46	9.67	1.600

	U.4	10.2	100,40	9.07	1.600
METODO DE O	OMPACTACIÓN		ASTM D1557		
Máxima Densi		1.76			
Máxima Densir		1.67			
OPTIMO Conte		8.02%			

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.81%
Valor C.B.R Al 95% de la Máxima Densidad Seca	9.0396

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR MÉTODO C


MILIORAMIENTO DE LAS PROPEDADES MECANICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCEO - LAREDO - TRUULLO -PROYECTO

MILJOOMENTO DE LOS PROPEINOES MECANICAS DEL SUELO INCUR-LA LIBERTAD - 2022 DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - LAREDO - TRUULLO - LA LIBERTAD SOLICITANTE UBICACIÓN FECHA

MAYO DEL 2022

Material		CARRETERA	Profundidad:		m	Molds N°	S - 123
Pro-cedencia	1	Calicuta	Norte:		N.	Peso del Molde pr.	6,734
H" de Muestra	I	C-3/E-1	Ente:	+	E	Volumen del Molde cm²	2,135
Ubicación	=	VILLA LA MERCED	Cota:		manys	№ de Capas	5
						M. de Colnes nos cana	- 98

MUESTRA Nº	1	2	3	4		- 6
Peso de Suelo húmedo + Melde (gr.)	10,380	10,706	10,563			
Peso de Molde (gr.)	6,734	6,734	6,734			
Peso del suelo Humedo (gr.)	3,546	3,972	3,829			
Densidad Hümeda (gr/cm3)	1.71	1.86	1,79			as all
CAPSULA M*	1.00	2.00	3.00		1	C 1248
Peso de suelo Húmedo + Cápsula (gr.)	475.7	457.6	464.3			8
Peso de suelo seco - Capsula (pr.)	456.5	431.1	430.8			
Peso de Agua (gr)	20.2	26.5	33.5			I I
Peso de Cápsula (gr.)	105.6	102.8	109.3			
Peso de Suelo Seco (gr.)	349.9	328.3	301.5			
% de Humedad	5.77	8.07	10.42			
Densidad de Suelo Seco (gricm3)	1.61	1.72	1.62			

Máxima Densidad Seca (gricm3)
Óptimo Contenido de Humedad (N)

OBSERVACION:

JVC CONSULTOS DE GEOTECNIA S.A. leg. Carlot Javbe Kamirez Muñ-

Ing Present and Angeles Agentin Disc GENERITE GENERAL JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inés - Trujillo
Teléf.: 044 – 615690 - Cel.: 971492979 / 973994030
consultoriageotecniajvc@gmail.com

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

MEJORIAMENTO DE LAS PROPIEDADES MEJCÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILIA LA MERCEO - LAREDO - TRUBULO : LA LIBERTIAD : 2022 ROYECTO

SOLICITANTE UBICACIÓN FECHA DIOMICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCED - L'AREDO - TRILINELO - LA LIMINITAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENSAYO DE COMPACTACIÓN

MOLDE	MOL	MOLDE 1		MOLDE 2		DE 3
N° DE CAPAS				5		
Nº DE GOLPES POR CAPA.	5	8	2	5	12	
SOBRECARGA (gr.)	59	40	59	5868		15
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8178	8280	8064	8957	7914	8063
Peso de Molde (gr.)	4182	4182	4196	4196	4189	4189
Peso del Suelo Húmedo (gr.)	2000	4066	3000	3971	3725	3874
Volumen de Moide (cm3)	3228	3028	3226	3228	3029	3228
Volumen del Disco Espaciador (pm3)	1085	1085	1985	1085	1065	1088
Densidad Hümeda (gr/om3)	1.86	1.91	1.80	1.85	1,74	1.81
CAPSULA Nº	1	2	3	4		
Peso de Suelo Húmedo + Cápeula (gr.)	415.20	418.40	428.80	418.10	419.90	433.80
Peso de Suelo Seco + Cápsula: (gr.)	391.90	383.60	404.50	300.10	290.30	390.70
Peso de Agua (gr)	23.30	34.60	24.30	38.00	23.60	43.10
Peso de Câpsula (gr.)	105.80	105.90	100.80	107.80	106.90	108.50
Peso de Suelo Seco (gr.)	286.10	277,70	397,79	272.30	289.40	262.20
% de Humedad	8.14	12.53	8.16	13.96	8.16	15.27
Deneidad de Suelo Seco (grices3)	1.72	1.70	1.67	1.63	1.01	1.57

				ENSAYO DE EX	PANSIÓN				
MOLDE	M.	OLDE 1 - 56 GOLPE	9	M.	OLDE 2 - 25 GOLPE	5	M	LDE J - 12 GOLPE	8
TIEMPO	LECT DIAL	EXPA	NSBON	LECT DIAL EXPANS		NSHON	1000000	EXPANSION	
THEM O	ABC I, DOLL	ITET	%	TALL DUSC	rrm	%	LECT. DIAL	rren	%
O hrs	0	0.000	0.00	- 0	0.000	0.00	0	0.000	0.00
24 hrs	37	0.940	0.74	45	1.143	0.90	53	1.346	1.06
46 No.	51	1.295	1.02	63	1,600	1.26	73	1,854	1.46
72 hrs	79	2.007	1.55	91	2.311	1.82	101	2.565	2.00
96 hrs	82	2.083	1.64	97	2.464	1.94	110	2.764	2.29

ENSAYO DE CARGA	CA	80GA	CORRECCION	CA	JIGA	CORRECCION	C#	RGA	CORRECCIÓN
PENETRACION	kg	kg/cm	kg/cm ²	Ag .	kg/on ²	kg/on ²	ke	kg/m ²	kg/cm²
6,000	81.00	0.0	The second second	0.00	0.0		0.00	-0.0	
0.025	33	1.6		19	0.9		11	6.5	
8.858	30	4.0		68	3.8		39	1.0	
6.875	110	5.4	1000	94	4.7	100	66	3.3	-1
6,100	150	7.4	7.4	822	6.0	6.1	94	4.7	4.7
0.00	217	10.7		169	8.4		132	4.5	753
8,200	267	13.2	13.3	221	10.9	11.0	879	9.5	8.5
6,300	380	19.8		334	16.0	7.00	246	12.2	
9.400	474	23.5		393	19.5		308	15.3	
0.500	543	26.9		436	216		349	173	

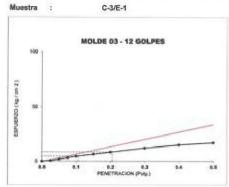
OBSERVACION; Musetras provintas e identificadas por el solicitante

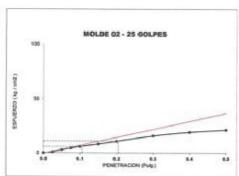
JVC CONSULTON GEOTECHIAS A.C.

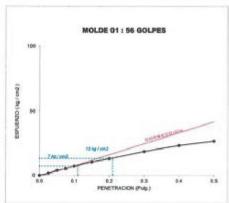
Traclimentor

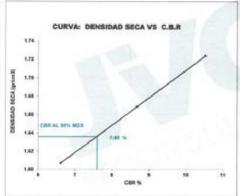
Tag Vactoria de las degentes Agustín Diaz

GERENTE GENERAL


OVC CONSUMORY GEOTECHIA 3...


JVC CONSULTORIA GEOTECNIA S.A.C.





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	7.4	70.307	10.53	1.724
2	0.1	6.1	70.307	8.68	1.669
3	0.1	4.7	70.307	6.61	1.607

MOLDE N°	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.2	13.3	105.46	12.61	1.724
2	0.2	11.0	105.46	10.43	1.669
3	0.2	8.5	105.46	8.06	1.607

13	20
1	glevodaJ *
	. (0)

METODO DE COMPACTACIÓN	8 2	ASTM D1557	
Máxima Densidad Seca (gr./cm3) al		1.72	
Máxima Densidad Seca (gr./cm3) al 95 %			1.64
ÓPTIMO Contenido de Humedad			8.10%

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	10.53%
Valor C.B.R Al 95% de la Máxima Densidad Seca	7.60%

JVC CONSULTATION GEOTECHIA S.A.C.

J. CONT. CONT

JVC CONSULTORIA GEOTECNIA S.A.C.

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR MÉTODO C

ASTM D-1557 / ASTM D1883

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICIO PET EN LA VILIA LA MERCED - LAREDO - TRUJULLO -LIA LIBERTAD - 2022 DIONICIO REBAZA KATHERME, PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCES - LAREDO - TRUJULLO - LA LIBERTAD MAYO DEL 2022 SOLICITANTE UBICACIÓN FECHA

CARRETERA Calcuta C-36-1 + 0.5% PET VILLA LA MERCED

Molde N*	\$ - 123
Peso del Molde gr	6,734
Volumen del Molde cm ³ .	2.135
Nº do Capes	- 5
M* de Golpes por capa	- 56

MUESTRA W*	1	2	3	4	5	
Peso de Suelo húmedo + Molde (gr.)	10,465	10,730	10.636			
Peso de Moide (gr.)	6,754	6,734	6.734			
Preso del suelle Húmede (gr.)	3,731	1,996	3,907			
Densidad Humeda (grlom3)	1.35	1.87	1.83			- M
CAPSULA W	1.00	2.00	3.00		14	- X
Peso de suelo Húmedo + Capeula (gr.)	502.1	494.0	490.7			S7 = 5
Peso de suelo seco - Cápoula (gr.)	480.6	456.9	465.2			17 10-
Peso de Agua (gr)	21.5	27.1	36.5			
Peso de Capsula (gr.)	108.1	105.3	111.8	DIE TO		1/-
Peso de Suelo Seco (gr.)	372.5	351.6	343.4			10 10
% de Humedad	5.77	7.71	10.34			
Densidad de Suelo Seco (gricmili)	1.65	1.74	1.66			

Máxima Densidad Seca (gricm3)	1.740
Óptimo Contenido de Humedad (%)	7.98

OBSERVACION:

O cotaline (CO)

Ing. Picture it was degries agreem Dice GERENTE GENERAL

ing Cartes Javier Raminos M. 3. CIP. 147575

JVC CONSULTORIA GEOTECNIA S.A.C.

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - DISSS)

PROYECTO MEJORAMIENTO DE LAS PROPIEDADES MEJCÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCEO - LARESO - TRUBLIO -LA LIBERTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILIA MERCED - LARIDO - TRIJULIO - LA LIBERTIAD MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

MOLDE	MOLDE 1		MOLDE 2		MOLDE 3	
Nº DE CAPAS		1	5		WOLDE 3	
Nº DE GOLPES POR CAPA	5	0	21	5	1	2
SOBRECARGA (gr.)	59	40	59	58	59	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8214	8322	8100	8249	7963	8145
Peso de Molde (gr.)	4182	4182	4196	4196	4189	4129
Peso del Suelo Húmedo (gr.)	4032	4140	3007	4053	3774	2000
Volumen de Molde (cm3)	3228	3236	3228	3226	3008	3228
Volumen del Disco Espaciador (cm3)	1085	1085	1085	1085	1085	1085
Densidad Hümeda (gripm(l)	1.88	1.93	1.82	1.89	1.76	1.65
CAPSULA Nº	1	2	3	4		- 1
Peso de Suelo Húmedo + Cápsula (gr.)	435.70	438.80	449.20	442.50	440.20	459.20
Peso de Suelo Seco + Cápsula (gr.)	411.30	400.50	423.90	401.60	415.70	414.20
Peso de Agua (gr)	24.40	38.30	25.30	40.90	24.60	45.00
Peso de Cápsula (gr.)	105.80	105.90	106.20	106.40	106.50	106.90
Peso de Suelo Seco (gr.)	305.50	294.60	317.70	295.20	309.20	307.30
% de Humedad	7.59	13.00	7.66	13.86	7.96	14.64
Densidad de Suelo Seco (grions3)	1.74	1.71	1.09	1.60	1.63	1.61

ENGLINA DE COLEDA COLONA.

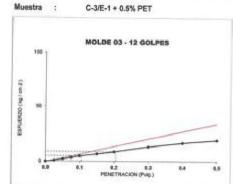
				ENSAYO DE EX	PANSIÓN				
MOLDE	M	OLDE 1 - 56 GOLPE	8	, MC	OLDE 2 - 25 GOLPE	5	Mo	LDE 3 - 12 GOLPE	5
TIEMPO	LECT. DIAL	EXPANSION		LECT DIAL EXPANSION LECT DIAL		EXPA	NSION		
	500 S DOM:	mm	%	840, 31 0000	rtve	%	LECT DIAL	605	16.
O have	. 0	0.000	0.00	0	0.000	0.00	0	0.000	0.00
24 hrs	33	0.836	0.66	41	1.041	0.82	40	1.245	0.96
48 hrs	46	1.168	0.92	56	1,472	1.16	68	1.727	1.36
72 hrs	69	1.753	1.36	81	2.067	1.62	- 91	2.311	1.62
96 hrs	72	1.829	1.44	67	2.210	1.74	100	2.540	2.00

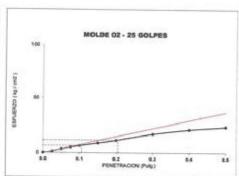
ENSAYO DE CARGA	CA	RGA	CORRECCION	CORRECCIÓN CARGA		CORRECCION	CA	RGA	CORRECCION
PENETRACION	kg	kg/cm ²	kg/cm ⁴	ke	kg/ow ^f	kg/cm²	ke	kg/om*	kg/cm ²
8,000	0.00	0.0		0.00	6.0		6.00	4.6	
0.025	26	1.9		24	1.2		34	0.8	
0.058	85	4.2		48	3.2		-84	2.2	
0.075	115	5.7	220	99	4.9	6001	71	3.5	
0.100	158	7.7	1.1	127	6.3	6.4	99	4.9	5.1
0.150	222	11.0	100001	174	8.6	1810	137	6.8	
0.200	272	13.5	13.5	236	11.2	11.3	176	8.7	3.5
0.300	400	29.8	750	344	17.0	1/2/1	266	13.2	1
0.400	564	25.0		423	20.9		338	16.7	
0.500	580	28.9		436	23.6		389	19.3	

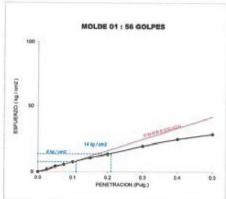
INCOMSULTARIA GEOTECHIA S.A.C.

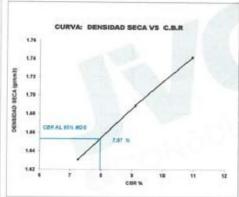
Ing. Pictoria sk no Angries Agustín Diaz Gerente General

SVC CONSULTORIZ GEOTECNIA S.A.L.


Carlos Javier Ramirez Muños
CIP. 140774


JVC CONSULTORIA GEOTECNIA S.A.C.





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	7.7	70.307	10.95	1.742
2	0.1	6.4	70.307	9.10	1.689
3	0.1	5.1	70.307	7.25	1.631

MOLDE Nº	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3
1	0.2	13.5	105.46	12.80	1.742
2	0.2	11.3	105.46	10.67	1.689
3	0.2	8.8	105.46	8.34	1.631

3	0.2	8.8	105.46	8.34	1.631
METODO DE CO	MPACTACIÓN		ASTM D1557		
Máxima Densida	id Seca (gr./cm3)	al 100 %			1.74
	id Seca (gr./cm3)				1.65
OPTIMO Conten	ido de Humedad			- 17	7.98%

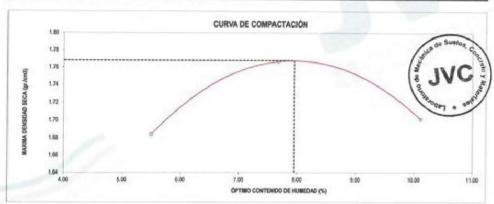
RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	10.95%
Valor C.B.R: Al 95% de la Máxima Densidad Seca	7 97%

JVC CONSULTERIA GEOTECNIA S.A.C. ds Javier Ramirez Muliez CIP. 147

Actor Burty Co Ing. Victoria de sus Angeles Agustin Dien GERENTE GENERAL

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR MÉTODO C ASTM D-1957 / ASTM D1883


рвочесто

MEJORAMIENTO DE LAS PROPIEDADES MECANICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUBLLO-LIA LIBERTIAD - 2022 DIONICIO REBUDA KATHERINE PAMELA - ROJUS AMAYA ALIN YEVISON VILLA MIÈSCIÒ - LAREDO - TRUBLLO - LA LIBERTIAD MAYO DEL 2022 SOLICITANTE UBICACIÓN FECHA

Retorial	=	CARRETERA	Profundidad:			
Procedencia	2	Colicata	Norte	- 1	N	
N° de Muestra	F	C-3/E-1 + 1% PET	Estar	-	E	
Ubicación	E.	VILLA LA MERCEO	Cota:		monn	

Molde M*	S - 123
Peso del Molde gr.	6,734
Volumen del Molde gm ² .	2,135
M* de Capas	5
M* de Golpes por capa	- 44

		CI VO	over the second second			
MUESTRA Nº	1	2	3	4	5	6
Peso de Suelo húmedo + Moide (gr.)	10,527	10,795	10.734			
Peso de Molde (gr.)	6,736	6,734	4.734			
Pesa del suelo Hamedo (gr.)	3,793	4,061	4.000			- 4
Densidad Humeda (grlom.1)	1.76	1.90	1.87			AV ST
CAPSULA IP	1.00	2.00	3.00		4 100	
Peso de suela Húmeda + Cilpaula (gr.)	510.9	492.4	499.5			
Peso de suelo seco + Cápsula (pr.)	489.9	465.2	463.9			H
Peto de Agua (gr)	21.0	27.6	35.6		100	17 1000
Peso de Capsula (gr.)	108.3	105.5	112.0	BANK .		
Peso de Suelo Seco (gr.)	381.6	359.7	351.9		1 7	
% de Humedad	5.50	7.67	10.12			
Densidad de Susio Seco (gricmili)	1.68	1.77	1.70	1134		

Máxima Densidad Seca (gricm3)	1.76
Óptimo Contenido de Humedad (%)	7.65

OBSERVACION: e identificadas por el solicitame

> IVC CONSULTORIA DEGLECINA S.A.C. Ing, Victoria de los Angeles Agustín Diez GERENTE GENERAL

Javier Kamirez Muñoz CIP. 140-51 Im Carlos

JVC CONSULTORIA GEOTECNIA S.A.C.

PROYECTO

RUC: 20606092297

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1083)

MEJORAMENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILIA LA MERCEO - LAREDO - TRUBILLO LA LIBERTIAD - 202

DONICIO RESAZA KATHERRIE PAMELA - ROJAS AMMYA ALIN YEYSON VLLA MERCED - LAREDO - TRUMLIO - LA LIBERTAD MAYO DEL 2002

SOLICITANTE UBICACIÓN FECHA

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

	ENSAYO D	ENSAYO DE COMPACTACIÓN					
MOLDE	MOLDE 1		MOLDE 1 MOLDE 2		DE 2	MOL	DE 3
Nº DE CAPAS	5				A		
N° DE GOLPES POR CAPA	5	6	2	5	12		
SOBRECARGA (gr.)	59	40	58	58	59	115	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	
Peen de Suelo Hümedo + Molde (gr.)	8272	8364	8175	8291	7940	8077	
Peso de Molde (gr.)	4182	4182	4196	4190	4189	4199	
Peso del Suelo Húmedo (gr.)	4090	4182	3979	ACSS.	3759	2055	
Volumen de Molde (amd)	5228	3228	3226	5228	3228	3228	
Volumen del Disco Especiador (cm3)	1085	1085	1085	1088	1085	1085	
Densidad Húmeda (gr/on3)	1.91	1.95	1.86	1.91	1.75	1.81	
CAPSULA Nº	1	2	3	4		4	
Peso de Suelo Húmedo + Cápeula (gr.)	366.0	309.1	309.4	305.6	200.6	404.5	
Peso de Suelo Seco + Cápsula (gr.)	365.5	308.4	377.9	365.3	369.8	367.5	
Peso de Agua (gr)	20.5	30.7	21.6	33.5	20.6	37.0	
Peso de Cápsula (gr.)	108.4	107.3	106.8	106.6	107.8	108.9	
Peso de Suelo Seco (gr.)	257.1	251.1	269.1	346.7	262.0	258.6	
% de Humedad	7.97	12.23	7.06	13.58	7.64	14.51	
Densidad de Suelo Seco (griom3)	1.77	1.74	1.72	1.66	1.63	1.59	

				ENSAYO DE EX	PANSION				
MOLDE	OLDE MOLDE 1 - 56 GOLPES		MOLDE 1 - 56 GOLPES MOLDE 2 - 25 GOLPES		3	MOLDE 1 - 12 GOLPES			
TIEMPO	LECT DIAL	EXPA	EXPANSION		EXPA	NSION	VENTE PART	EXPA	NSION
THE ST.	mark it being	mm	%	LECT. DIAL.	STREET.	%	LECT DIAL	mm.	1%
© hrs	0	0.000	0.90	0	0.000	0.00	0	0.000	0.00
24 hrs	34	0.610	0.48	32	0.813	0.84	-60	1,016	0.80
48 brs	36	0.965	0.76	50	1.270	1.00	60	1.524	1.20
72 hrs	57	1.445	1.34	09	1.753	1.36	79	2.007	1.50
96 Nrs	66	1.851	1.30	80	2.002	1.60	93	2.362	1.86

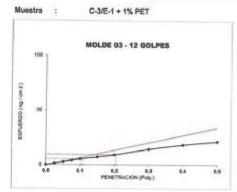
ENSAYO DE CARGA	CA	RGA	CORRECCION	ORRECCION CARGA COR		CORRECCION	CA	CARGA	
PENETRACION	kg.	kg/cm ²	kg/om ²	kg	kg/cm ²	kg/cm ³	ka	kg/cm ³	kg/cm ¹
1,000	8.00	0.0	100000000000000000000000000000000000000	0.00	0,0		8.00	-0.0	1.00
0.025	49	2.4		35	1.7		27	1.3	
0.050	96	4.8		76	3.8		55	27	
0.075	126	6.2		110	5.4		82	4.1	
0.100	166	8.2	1.3	138	6.8	6.5	110	3.4	5,5
0.150	200	11.5		105	9.3		141	7.3	158
0.200	293	14.0	142	207	11.7	11.8	887	9.3	7.4
0.300	426	21.1	1144	339	16.3	7777	292	14.5	
0.400	540	26.7		439	22.7		334	10.5	
0.500	629	31.1		522	23.8		435	21.5	

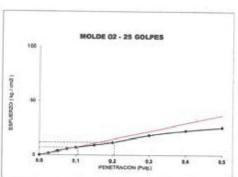
COSERVACION: Muestres provistas e identificadas por el solicitante

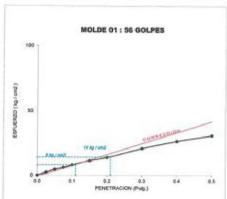
Tratouring the GEOTECHIA S.A.C.

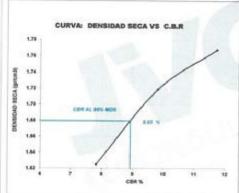
Ing. Victorio S. ius Angeles Agustin Diur.

JVC CONSULTORIA GEOTECNIA S.A.C.


GERENTE GERERAL


JVC CONSULTORIA GEOTECNIA S.A.C.





CURVAS - VALORES PRELIMINARES

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0,1	8.3	70.307	11.73	1.768
2	0.1	6.9	70.307	9.81	1.719
3	0.1	5.5	70.307	7.82	1.625

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (griom3)
1	0.2	14.2	105.46	13.42	1.768
2	0.2	11.8	105.46	11.19	1.719
3	0.2	9.4	105.46	8.91	1.625

	4.4	2.7	1 100.40	0.01	17,04.0
METODO DE COMP	ACTACIÓN	:	ASTM D1557		
Máxima Densidad S	eca (gr./cm3)	al 100 %			1.77
Máxima Densidad S	eca (gr./cm3)	al 95 %			1.68
CARTINACA Complementation	the Albertan or other off				m name

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11,73%
Valor C B R Al 95% do la Máxima Depoidad Soca	9.03%

JVC CONSULT OFFICE CNIA S.A.C. Ing Carlot Javier Ramirez Midies

A GEORGE CHINS.A.C. Ing. Victoria ia no Angeles Agustin Diaz GERENTE GENERAL

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÉTODO C

ястесто

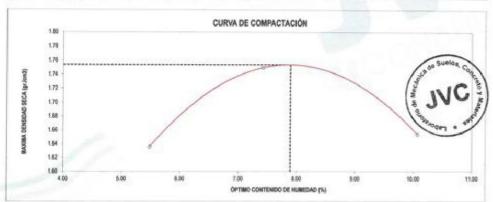
MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TRAS DE PLASTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULO -IA LIBERTIAD - 2022

IA LIBERTIAD - 2022

DIOMOSO REBAZA KATHERINE PAMELA - ROJAS AWAYA ALIN YEYSON

VALLA MERGEO - LAREDO - TRIUILLO - LA LIBERTIAD

MAYO DEL 2022


SOLICITANTE UBICACIÓN

FECHA.

Material	4	CARRETERA	Profundidad:	+	m
Procedencia	4	Collicata	Norte:	- 1	N
N° de Muestra	2	C-3E-1+1.5% PET	Ente:	- 4	E
Ubicación	1	VILLA LA MERCED	Cota:	+	FISH

Molde N°	5 - 123
Pieso del Molde gr.	6,734
Volumen del Molde cm ³	2.135
M* de Capas	5
Mª de Golpes por casa	4

MUESTRA Nº	1	2	1	4		
Peso de Suelo húmedo + Moldie (gr.)	10,418	10,747	10,521			_
Peso de Molde (gr.)	6,734	8.734	6.734			
Peso del suelo Húmedo (gr.)	3,684	4,013	3.887			
Densidad Hümeda (grionsti)	1.73	1.88	1.82			
CAPSULA Nº	1.00	2.00	3.00		4	
Pesa de suelo Hirmedo » Cápsula (gr.)	424.0	405.9	412.6			
Peso de suelo seco + Cápeula (gr.)	407.7	385.3	365.3			
Peso de Agua (gr)	163	20.6	27.3	A 100		
Peso de Căpeula (pr.)	110.6	107.8	114.3			
Péso de Suelo Seco (gr.)	297.1	277.5	271.0			
% de Humedad	5.49	7.42	10.07			
Denoktad de Suelo Seco (gricm3)	1.64	1.75	1.65			

Máxima Densidad Seca (gr/cm3)	1.754
Óptimo Contenido de Humedad (%)	7.89

OBSERVACION:

INC CONSULTABLE GENTECHIA S.A.C.

THE CONSULTABLE CHIA S.A.C.

THE CONSULT

JC CONSULTABLE BEOTECNIAS AC

PROYECTO

RUC: 20606092297

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

MEJORAMIENTO DE LAS PROPIEDADES MEJÓRICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET ON LA VALIA LA MERCED - LAREDO - TRUJALIO - LA JUENTAD - 2022

SOLICITANTE UBICACIÓN FECHA DIONICO PEBAZA KATHERINE PAMELA - ROJAS AMRYA ALIN YEYSON VILLA MERICED - L'AREDO - TRIJULIO - LA LIBERTIAO MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENSA	LO DE	COMP	ACTAG	TON

MOLDE	MOLDE 1		MOLDE 2		MOL	DF 1
Nº DE CAPAS					A A	
Nº DE GOLPES POR CAPA	5	6	21	5	12	
SOBRECARGA (gr.)	59	40	58	58	5915	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8229	8244	8126	8131	7978	7907
Peso de Mokde (gr.)	4102	4162	4196	4190	4109	4129
Peto del Suelo Húmedo (gr.)	4047	4062	3930	2935	3769	3718
Volumen de Moide (cm3)	3228	3036	2229	3226	3238	3226
Volumen del Disco Espaciador (cm3)	1005	1085	1085	1085	1085	1085
Densidad Hümeda (griow3)	1.89	1.90	1.83	1.84	1.77	1.73
CAPSULA Nº	1	2	3	4		
Peso de Suelo Húmedo + Cápeula (gr.)	396.10	401.29	411.40	400.90	402.70	416.60
Peso de Sueto Seco + Cápsula: (gr.)	376.60	376.20	388.90	371.30	380.80	382.90
Peso de Agua (gr)	21.50	25.00	22.50	29.50	21.90	33.70
Peso de Cápsula (gr.)	162.70	102.80	103.10	103.40	103.30	103.70
Pesó de Suelo Seco (gr.)	273 10	273.40	285.80	267.90	277.50	279.20
% de Humedad	7.88	9.14	7.87	11.05	7.89	12.07
Densidad de Suelo Seco (griom3)	1.75	1.74	1.70	1.65	1.04	1.95

				ENSAYO DE EX	PANSIÓN				
MOLDE	M	DUDE 1 - 56 GOLPE	8	MOUDE 2 - 25 GOLPES		MOLDE 3 - 12 GOLPES			
TIEMPO	LECT. DUAL	EXPA	EXPANSION		EXPA	NSION	THE PART OF THE	EXPA	NSHON
Limited &	825.3.10096	mm.	%	LECT. DUUL	.mm	%	LISCT DULL	mm	16
D hea	9	0.000	0.00	0	0.000	0.00	0	0.000	0.00
24 hrs	20	0.508	0.40	26	0.711	0.58	36	0:914	0.72
46 hrs	38	0.889	0.70	47	1.194	0.94	67	1.448	1.14
72 fee	42	3.194	0.94	59	1.499	1.55	199	1.783	1.38
96 hrs	56	1.450	1.10	74	1.880	1.44	44	2.705	1.70

ENSAYO DE CARGA	CA	RGA	CORRECCION	CARGA		CORRECCION	CARGA		CORRECCION
PENETRACION	kg .	kg/cm ³	kg/cm²	kg	kg/cm ²	kg/cm²	kg	kg/om ¹	kg/end ¹
8,000	0.0	0.0		0.0	9.9		9.0	9.0	
9.025	43	2.1		29	5.4		21	1.0	
4.858	56	4.5		79	3.5		49	24	
0.075	139	5.9		894	5.1	0.19%	76	3.8	
0.100	169	7.9	5.6	132	6.5	6.5	384	9.1	5.2
0.150	207	11.2		196	9.7		163	8.1	100
0.300	362	15.6	18.5	249	13.3	13.4	205	89.2	18.2
0.300	430	22.3		394	19.5	1000	396	15.0	1000
0.400	584	28.9		703	34.9		411	20.7	
0.500	663	34.3		786	29.0		499	24.7	

CRISERVACION, Muestras provistas e identificadas por el solicitante

INC CONSULTORIA GEOTECHIA S.A.C.

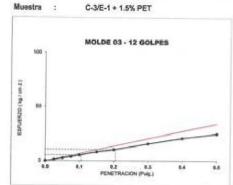
O cata-y-y-u tras

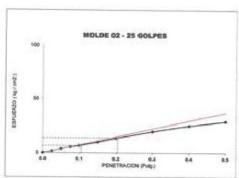
log Partona L los Angeles Aguetia Diez

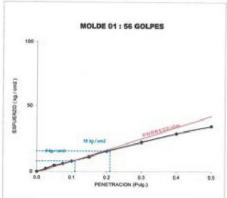
GERENTE GENERAL

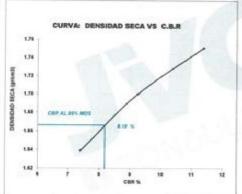
JVC CONSULTINE A GEOTECNIA S.A.C.

Ine. Carlos Vavier Ramfrez Muñot CIP. 1417***




JVC CONSULTORIA GEOTECNIA S.A.C.





CURVAS - VALORES PRELIMINARES

Valores Corregidos

METODO DE Máxima Dena

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm ²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
1	0.1	8.0	70.307	11.38	1.751
2	0.1	6.5	70.307	9.25	1.700
3	0.1	5.2	70.307	7.40	1.639

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B,R %	DEINSIDAD SECA (gr/cm3)
C.T.	0.2	15.5	105.46	14.70	1.751
2	0.2	13.4	105.46	12.71	1,700
3	0.2	10.2	105.46	9.67	1 639

	N (pulg)	(kg/cm²)	(kg/om²)	96	SECA (gr/cm3)	12 T
	0.2	15.5	105.46	14.70	1.751	NA
	0.2	13.4	105.46	12.71	1,700	JVC CONSULTORY GEOTECNIA S.A.
	0.2	10.2	105.46	9.67	1.639	TI.A
10	COMPACTACIÓN		ASTM D1557			Ing. Carl Claving Ramires Muños
ąέ	dad Seca (gr./cm	13) all 100 %			1.75	The state of the s
g ji	dad Seca (gr./cm	13) all 95 %			1.67	CIP. 14****
-	and of a sile the come of the	- 4				

	1.000.00
RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.38%
Valor C.B.R Al 95% de la Máxima Densidad Seca	8,19%

INGCONSULTORIA GEOTECHIA S.A.C.
Tudenfun LLCA
Ing. Victoria de us dogeles Agastin Diaz
GERENTE GENERAL

JVC CONSULTORIA GEOTECNIA S.A.C.

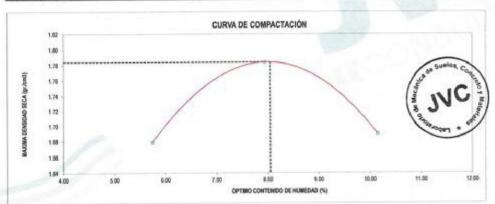
FECHA

RUC: 20606092297

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÉTODO C ASTM D-1557 / ASTM D1883


MEJORAMENTO DE LAS PROPIEDACES MECANICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCILO - LAREDO - TRUJULLO-LA LIBERTAD - 2022 DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCILO - LAREDO - TRUJULLO - LA UBERTAD ROYECTO

SOLICITANTE UBICACIÓN MAYO DEL 2022

CARRETERA Calicita C-MI-1 VILLA LA MERCEO N° de Moestra

Molde N°	S - 123
Peso del Molde gr.	6,734
Volumen del Molde cm ³ .	2,135
M* de Capies	5
MF de Coloes por cana	- 44

MUESTRA W	1	2	3	4		
Peso de Suelo húmedo + Molde (gr.)	10,534	10,845	10,707			
Pesa de Molde (gr.)	6,734	6,734	6,734			
Pesa del suela Humedo (gr.)	3,790	4,111	3,973			
Densidad Humeda (grion/3)	1.78	1.93	1.86			A P
CAPSULA IF	1.00	2.00	3.00			717
Pesa de suelo Húmedo + Cápsula (gr.)	477/0	458.9	465.6			
Peso de suelo seco + Cápsula (gr.)	456.9	432.8	432.9		101	
Pese de Agua (gr)	20.1	25.1	32.7		7 39	
Peso de Capsula (gr.)	107.0	104.2	110.7			1 61
Pesa de Suelo Seco (gr.)	349.9	329.6	322.2			
% de Humedad	5.74	7.54	10.15	VINUE		
Densidad de Suelo Seco (grlom/l)	1.68	1.78	1.69	100		

Máxima Densidad Seca (gricm3)	1.784
Óptimo Contenido de Humedad (%)	8.05

OBSERVACION:

Ing. Victoria of an Angeles Apartle Disc OFFENTE GENERAL

JVC CONSULTORIAL s Javier Kamirez Muñot CIP. 140°74 Tre Carlos Javier

JVC CONSULTORIA GEOTECNIA S.A.C.

PROYECTO

288.90 54.85

RUC: 20606092297

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA (ASTM - D1883)

MEJORAMIENTO DE LAS PROPIEDADES MECÁNICAS DEL SUELO INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCEÓ - LAREDÓ - TRUJELÓ -LA LIBERTIAD - 2927

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMYRA ALIN YEYSON VILLA MERCED-LAREDO-TRUMLIO-LA LIBERTAD MAYO DEL 2022 SOLICITANTE

UBICACIÓN

FECHA

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

MOLDE	MOLDE 1		MOL	MOLDE 2		DE 3
Nº DE CAPAS						
Nº DE GOLPES POR CAPA		6	2	5	12	
SOBRECARGA (gr.)	59	140	58		5915	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8312	0414	8205	8301	8048	8197
Peso de Molde (gr.)	4162	4182	4196	4196	4189	4189
Peso del Suelo Húmedo (gr.)	4130	4202	4009	#106	3859	4008
Volumen de Molde (cm3)	9226	3228	5228	5228	3228	3228
Volumen del Disco Especiador (cm3)	1085	1085	1085	1986	1065	1065
Densidad Húmeda (gr/cm3)	1.93	1.97	1.87	1.92	1,80	1.87
CAPSULA Nº	1	2	3	4		
Peso de Suelo Húmedo + Cápsula (gr.)	423.90	420,70	437,70	426.40	425.60	442,10
Paso de Buelo Seco + Cápsula (gr.)	400.20	392,19	413.00	100.60	404.50	399.20
Peso de Agua (gr)	23.70	34.60	24.70	37.80	23.80	42.90
Peso de Cápsula (gr.)	107.60	907.70	108.60	109.60	108.70	110.30
Peso de Suelo Seco (gr.)	292.60	264.43	304.40	279.00	296.10	288.90
N do the market	0.00	44.47	8 44	49.88	8.64	44.65

12.17

8.10

ENSAYO DE COMPACTACIÓN

				ENSAYO DE EX	PANSION	3			
MOLDE	M.	OLDE 1 - SK GOUPE	8	Mo	LDE 2 - 25 GOLPE	5	M	ALDE 3 - 12 GOLPE	8
		EXPA	NSSON	LECT. DIAL	EXPA	NSRON	LECT DIAL	EXPA	SEON
TIEMPO	LECT DIAL	itim	%	LECTION	itteti	%	LOC L DIAL	mm	%
0 hrs	8	0.000	0.00	. 0	0.000	10.00	0	0.000	0.00 1.02
24 hrs	35	0.569	0.70	43	1,092	0.86	51	1.295	1.02
48 hrs	48	1,219	0.96	60	1.524	1,20	70	1.778	1.40
72 hrs	72	1.829	1.44	84	2.134	1.68	94	2.388	1.89
96 hrs	76	2.007	1.58	54	2.388	1.88	107	2.718	2.14

8.11

13.56

8.64

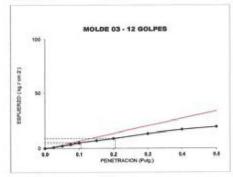
ENSAYO DE CARGA	CA.	RGA	COURSECTION	CA	RGA	CORRECCION	CA	MGA	CORRECCIÓN
PENETRACION	ke	kg/on ²	kg/cm ²	ig	kg/cm ²	kg/om ²	kg	kg/cm²	kg/cm ²
0.000	4.00	0.0		0.00	0.0		9,00	0.0	
0.025	39	1.9		25	1.2		17	0.8	
0.050	86	4.3		46	3.3		45	2.2	
8,875	136	3.7		100	5.0		73	3.6	2000
0.100	156	7.7	7.8	126	6.3	6.4	100	5.0	5.0
0.150	225	11.0		175	8.7		138	6.8	
0.200	273	13.5	13.6	217	11.2	11.3	177	8.8	8.9
0.300	400	19.9		345	17.1	44.00	247	13.2	
0.400	505	25.0		424	21.8		339	16.3	
0.500	264	28.9		477	33.4		396	19.3	
ESPECIMEN	Shirt a	MOLDE 1 - 56-GOL	PES		MOLDE 2 - 25 GOL	PES	1	MOLDE 5 - 12 GOL	MS

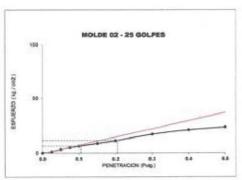
ORSERVACION: Muestras provintas e identificades por el solicitante

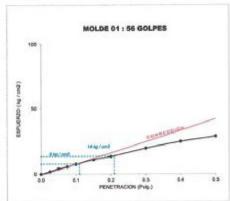
INC COMBULTARIA GEOTECHIA S.A.C.

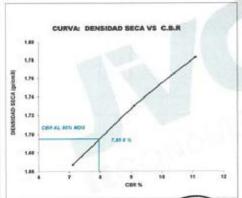
Trada La UNI

Ing. Victoria de las despeles Aspastin Dian
GERENTE GENERAL


JVC CONSULTORIX SECTECNIA S.A.C.
Vicinia Carlos Javer Ramirez Muñoz
GIP. 140**4






CURVAS - VALORES PRELIMINARES

C-4/E-1 Muestra :

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kajam²)	C.BJR %	DENSIDAD SECA (gr/cm3)
- 1	0.1	7.8	70.307	11.09	1.783
2	0.1	6.4	70.307	9.10	1.730
3	0.1	5.0	70.307	7.11	1.667

13			ķ
M.	11	IC	-
18	JI	, -	2
18	W	1	3
,	LALL		-

MOLDE Nº	PENETRACIÓ N (puig)	PRESION APLICADA (kg/cm²)	PRESION PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.2	13.6	105.46	12.90	1.783
2	0.2	11.3	105.46	10.71	1,730
3	0.2	8.9	105.46	8.44	1.667

METODO DE COMPACTACIÓN		ASTM D1557	
Máxima Densidad Seca (gr./cm3) a	100 %		1.78
Máxima Densidad Seca (gr./cm3) al			1.69
Assessment Conservation of Champaday			8.05%

METODO DE COMPACTACIÓN		ASTM D1557	
Máxima Densidad Seca (gr./cm3) al	100 %		1.78
Máxima Densidad Seca (gr./cm3) al			1.69
OPTIMO Contenido de Humedad			8.05%

LUCANOUI	DEL GEOT	ECNIA S.A.C
U	the	
Carlos	Javier Rom	irez Muñoz

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.09%
Valor C B R Al 95% de la Máxima Densidad Seca	7.96%

JVC CONSULTORIA GEOTECHIA S.A.C.

O cofa ...

Ing. Vertorio de nos Angeles Aquella Diaz

GERENTE GENERAL

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACION - PROCTOR MODIFICADO PARA CBR

MÈTODO C ASTM D-1557 / ASTM D1883

MEJORAMENTO DE LAS PROPIEDADES MECIANCAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILIA LA MERCED - L'AREDO - TRUJULO-LA LIBERTAD - 2022 DIONICIO REBAZA KATHERINE PIAMELA - ROJAS AMAYA ALIN YEYSON VILLA MERCEDO - L'AREDO - TRUJULO - LA LIBERTAD **РОЧЕСТО**

SOLICITANTE UBICACIÓN

FECHA MAYO DEL 2022

CARRETERA Calcuta C-4E-1 + 0.5% PET VILLA LA MERCED

Molde Nº	5 - 123
Peso del Molde gr.	6,734
Volumen del Molde om	2,135
M* de Capes	5
M' de Golpes por casa	- 56

MUESTRA Nº	1	2	1	4	 - 6
Peso de Suelo húmedo + Molde (gr.)	10,633	10,893	10,781		
Peso de Molde (gr.)	6,734	6,734	6,734		
Peso del suelo Hizmedo (gr.)	3,899	4,159	4,047		
Densidad Hümeda (griom3)	1.83	1,95	1.90		W (1)
CAPSULA Nº	C-3	C-15	C-4		
Peso de suelo Húmedo + Cápsula (gr.)	362.8	369.3	366.0		
Peso de suelo seco + Cápeula (gr.)	347.6	343.2	339.9		
Peso de Agua (gr)	15.2	19.1	26.1		
Peso de Cápsula (gr.)	83.8	85.3	84.1		
Peso de Suelo Seco (gr.)	263.8	254.9	255.8		
% de Humedad	5.76	7.49	10.20	1	
Densidad de Suelo Seco (gricm3)	1.73	1.81	1.72		2

Máxima Densidad Seca (gricm3)	1.816
Óptimo Contanido de Humedad (%)	7.93

OBSERVACION:

INC CONSULTORIA DEGLECINA S.A.C.

The Various of Angelor Agustin Diese General General

TVC CONSULTOS ACED TECNIA S.A.C. Int Carlos Javier Ramirez Muñoz CIP. 140571

LABORATORIO DE MECÂNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - D1883)

MEJORIAMENTO DE LAS PROPEDIDES MECÁNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LANCIDO - TRUJULO -LA LIBERTAD - 2012 PROYECTO

DIONICIO REBAZA KATHERINE PAMELA - ROJAS AMAYA, ALIN YEYSON VILLA MERCED - L'AREDO - TRUULLO - LA LIBERTAD MAYO DEL 2022 SOLICITANTE UBICACIÓN

FECHA

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENSAYO DE COMPACTACIÓN

MOLDE	MOL	DE 1	MOL	DE 2	MOU	DE 3
Nº DE CAPAS						
Nº DE GOLPES POR CAPA	5		2		10	
SOBRECARGA (gr.)	50		59	Address of the local division in the local d	59	
STADO	SIN SATURAR	BATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8380	8439	8278	8348	8103	8178
Peso de Molde (gr.)	4182	4182	4196	4196	4159	4189
Peso del Suelo Húmedo (gr.)	4198	4257	4082	4150	3914	3989
Volumen de Moide (cm2)	3228	3226	3228	5226	3228	3229
Volumen del Disco Especiador (cm2)	1088	1985	1005	1085	1985	1085
Densidad Húmeda (gr/cm3)	1.96	1.99	1.90	1.94	1.83	1.80
CAPSULA Nº	1	2	3	4		- 6
Peso de Suelo Húmedo + Cápsula (gr.)	294.40	297.79	507.70	297,40	299.20	3/13,10
Peso de Suelo Seco + Cápsula: (gr.)	275.80	271.20	288.30	267.80	280.30	277.40
Peso de Agua (gr)	18.80	26.50	19.40	29.50	18.90	36.70
Peso de Cápsula (gr.)	42.40	42.50	42.60	42.40	42.50	42.90
Peso de Suelo Seco (gr.)	233.40	228.70	246.50	225.40	237.80	234.50
% de Humedad	7.67	11.50	7.90	13.13	7.96	15.22
Densidad de Susio Seco (oriom3)	1.01	1.78	1.77	1.71	1.09	1.62

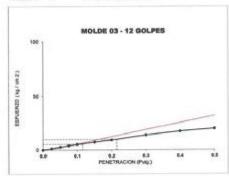
		E		ENSAYO DE EX	PANSION	Towns.			
MOLDE	T M	OLDE 1 - 36 GOLPE	\$	M	MOLDE 2 - 25 GOLPES		M	NOE 1 - 12 GOLPE	8
	1	EXPANSION		LECT DIAL	EXPA	NSBON	LECT. DIAL	EXPA	VSEON
TIEMPO	LECT, DIAL	ITWIT	%	LECT. DEAL.	igun	%	LEX. 1: DOM:	mm	%
0 hrs	0	0.000	0.00	0	0.000	10.00	0	0.000	0.00
24 tra	78	1.900	1.52	84	2.134	1.08	62	2.337	1.84
48 for	92	2.337	1.84	104	2:642	2.08	114	2.896	2.26
72 hrs	110	2.946	2.32	135	3.429	2.70	147	3.734	2.94
96 hrs	148	3.759	2.96	170	4.318	3.40	188	4.776	3.76

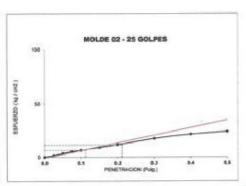
ENSAYO DE CARGA	CA	RGA	CORRECCION	CA	/RGA	CORRECCIÓN	CA	/BGA	CORRECCION
PENETRACION	ke	kg/cm ²	kp/cm ²	ig .	kg/cm ²	kg/cm ⁴	kg	kg/cm²	kg/cm²
9,000	6.00	0.0		6.00	0.0	11-25597	8.00	0.0	100000
0.025	48	2.4		34	1.7		26	1.3	
6.050	95	4.7		25	3.7		34	2.7	
9.075	125	6.2	Ged C	109	5.4		81	4.0	2000
6.100	163	8.1	8.1	133	4.6	6.6	104	5.1	5.3
0.150	232	0.5		194	9.1		147	7.3	The state of
6,200	262	14.0	13.9	256	11.7	11.2	586	9.2	9.7
4,300	410	20.3	1 1 1 1 1 1 1	354	17.5	1000	276	13.7	
8,400	514	25.4		433	21.4		348	17.2	
6,500	203	29.4		486	24.1		399	19.8	

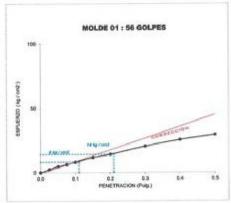
OBSERVACIONE
Muestras provintes e identificadas por el solicitante

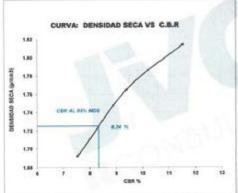
IVC CONSULTORIA GEOTECHIA S.A.C. Ing. Victoria de Angeles Aguntis Disc GERENTE GENERAL JVC CONSULTORY BEOTECNIA S.A.C.

CIP. 140574


JVC CONSULTORIA GEOTECNIA S.A.C.






CURVAS - VALORES PRELIMINARES

Muestra C-4/E-1 + 0.5% PET

Valores Corregidos

MOLDE Nº	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B,R %	DENSIDAD SECA (gr/cm3)
-1	0.1	8.1	70.307	11.52	1.814
2	0.1	6.6	70.307	9.39	1.765
3	0.1	5.3	70.307	7.54	1.692

MOLDE N°	PENETRACIÓ N (pulg)	PRESION APLICADA (kg/cm²)	PRESIÓN PATRÓN (kg/cm²)	C.B.R %	DENSIDAD SECA (gr/cm3)
1	0.2	13.9	105.46	13.20	1.814
2	0.2	11.2	105.46	10.62	1.765
3	0.2	9.7	105.46	9.20	1.692

de Sur	Had. C	150
	C	· 👸
7,	1 ~	1
by Oran		F)
	J)	74C

METODO DE COMPACTACIÓN		ASTM D1557	
Máxima Densidad Seca (gr./cm3) al	100 %		1.82
Máxima Densidad Seca (gr./cm3) al			1.73
Aprillo Control to de Numedad	-		7.93%

RESULTADOS	
Valor C.B.R Al 100 % de la Máxima Densidad Seca	11.52%
Valor C.B.R Al 95% de la Máxima Densidad Seca	8.34%

JAC CONSULTOR A RED Carlos Javier Kamirez Muñoz CIP. 140.574

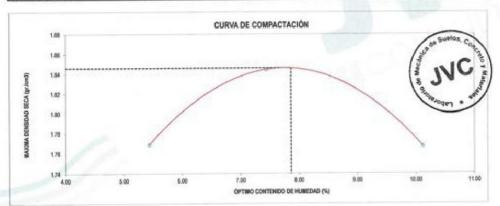
JVC CONSUMED RESPECTED MASAC.

Today you too
Tog. Victoria de los Angeles Agustin Dice
GERENTE GENERAL

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE COMPACTACIÓN - PROCTOR MODIFICADO PARA CBR MÉTODO C

ASTM D-1557 / ASTM D1883


MEJORAMENTO DE LAS PROPIEDADES MÉCÂNCAS DEL SUELD INCORPORANDO TIRAS DE PLÁSTICO PET EN LA VILLA LA MERCED - LAREDO - TRUJULO -LA LIBERTAD - 2022 DIORIGO REBIZA KATHERNE PAMELA - ROJAS JAMAYA ALIN YEYBON VILLA MERCED - LAREDO - TRUJULO - LA LIBERTAD MAYO DEL 2022 ROYECTO

SOLICITANTE UBICACIÓN FECHA

Material	1	CARRETERA	Profundidad:		76
Procedencia		Calicata	Norte:		M
N° de Muestra	1	C-4/E-1 + 1% PET	Enter		
Ubicación	1	VILLA LA MERCEO	Cota:	-	mone

Molds Nº	5 - 123
Peso del Molde gr.	6,734
Volumen del Molde cm ² .	2,135
M* de Capas	5
Nº dis Golpes por capa	56

MUESTRA Nº	1	2	1	4	5	6
Peso de Suelo húmedo + Molde (gr.)	10,715	10,965	10,887			
Peso de Molde (gr.)	6,734	6,734	6,734			
Peso del suelo Hiznedo (gr.)	3,981	4,231	4,153			- 4
Densidad Hümeda (grlom/l)	1.86	1.96	1.95			- C
CAPSULA IF	1.00	2.00	1.00			
Pesa de suelo Hürnedo + Cápsula (gr.)	529.0	510.9	517.6			
Peso de suelo seco + Cáptula (gr.)	507.3	462.8	480.3			
Pesa de Agua (gr)	21.7	28.1	37.3	and Year		
Peso de Cápsula (gr.)	106.0	105.2	111.7		100	
Pese de Suelo Seco (gr.)	399.3	377.6	368.6			
% de Humedad	5.43	7.44	10.12			
Densidad de Suelo Seco (griom3)	1.77	1.84	1.77			

Máxima Densidad Seca (gr/cm3)
Óptimo Contenido de Humedad (%)

OBSERVACION:

ING CONSULTORIA GEOTECHIA S.A.C.

Tratoriffue Los

Ing. Victoria de los drogens Agustin Diam
GENENTE GENERAL

SVC CONSULTOR A CENTECNIA S.A.C. ing Carlos Javier Ramirez Muñoz

CIP. 140574

LABORATORIO DE MECÁNICA DE SUELOS-CONCRETO-ASFALTO Y MATERIALES

ENSAYO DE VALOR DE SOPORTE DE CALIFORNIA

(ASTM - 01883)

MEJORAMENTO DE LAS PROPEIDADES MECÁNICAS DEL SUELO INCORPORANDO TRAS DE PLÁSTICO PET EN LA VILLA LA MERCIED - LAREDO - TRIUBLIÓ -LA LIBERTAD - 2012 PROYECTO

DIONICIO REBAZA KATHERINE RAMELA - ROJAS AMIYA ALIN YEYSON VILIA MERCEIO - LANEDO - TRUJELIO - LA LIBERTAD

SOLICITANTE UBICACIÓN

FECHA MAYO DEL 2022

CÁLCULO DE LA RELACIÓN DE SOPORTE CALIFORNIA(C.B.R)

ENKA	6065	DAY.	COS	ATD &	FFE	63	OW

MOLDE	MOLDE 1		MOLDE 2		MOLDE 3	
Nº DE CAPAS			5		5	
Nº DE GOLPES POR CAPA	56		25		12	
SOBRECARGA (gr.)	59		5868		5915	
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
Peso de Suelo Húmedo + Molde (gr.)	8448	8548	8349	8483	8134	8264
Peso de Molde (gr.)	4182	4182	4190	4196	4109	4100
Peso del Suelo Húmedo (gr.)	4299	4366	4153	4267	3945	4095
Volumen de Molde (omô)	3226	5026	3228	3029	3228	3228
Volumen del Disco Especiador (cm3)	1085	1085	1985	1065	1065	1085
Densidad Húmeda (gr/om3)	1.99	2.04	1.94	2.00	1.84	1.91
CAPSULA Nº	1		3	4	1	
Peso de Suelo Húmedo + Cápsula (gr.)	435.90	439.00	449.40	438.70	640.50	454.40
Peso de Suelo Seco + Cápsula: (gr.)	412.20	404.60	424.90	401.70	410.30	411.30
Peso de Agua (gr)	23.70	34.40	24.50	37.00	24.20	43.10
Peso de Cápsula (gr.)	109.90	110.00	113.50	113.30	110.00	110.40
Peso de Suelo Seco (gr.)	302.30	294.60	311.40	266.40	306.30	300.90
% de Humedad	7.64	11.66	7.87	12.83	7.90	14.32
Densidad de Sueto Seco (gr/om3)	1.85	1.82	1.80	1.77	1.71	1.67

Colonia de Carro					PANSION		T		_
MOLDE	MOLDE 1 - 36 GOLPES			MOLDE 2 - 25 GOLPES			MOLDE 3 - 12 GOLPES		
		EXPANSION			EXPANSION		LECT DIAL	EXPANSION	
TIEMPO	LECT. DIAL.	ITITE	%	LECT. DIAL	mm	%	List, F. Diost.	mm	%
8 tos	0	0.000	0.00	0	0.000	10,00	0	0.000	0.00
24 hrs	53	1.346	1.08	81	1.549	1.22	69	1,753	1.38
45 ftm	72	1.829	1.44	84	2.134	1.68	94	2.388	1.88
72 fes	96	2.489	1.99	110	2.794	2.20	120	3,048	2.40
SG firs	138	3.429	2.70	150	3,810	3.00	163	4.140	3.26

ENSAYO DE CARGA DENETRACION	CARGA		CORRECCIÓN	CARGA		CORRECCION	CARGA		CORRECCION
	lg.	kg/on*	kg/cm ²	L ₀	kg/cm ²	kg/cm²	kg	kg/cm ²	kg/cm ²
0.000	0,00	0.0		0,000	0.0		9,00	0.0	and the second
0.025	61	3.0		47	2.3		39	1,9	
0.050	106	53			4.4		67	3.3	
0.075	138	6.8		122	6.6		94	4.7	-
0,100	174	8.6	8.7	144	7.1	7,3	135	3.7	5.7
0.150	345	12.1		197	9.8		160	7.9	
0.300	295	14.6	14.7	249	12.3	12.2	199	9.9	18.7
0.300	438	21.7		392	31.9	10/00	364	15.1	
0.400	512	393		471	19.3		786	19.1	
6,500	663	31.7		534	26-4		447	12.1	

OBSERVACION: Muestras provintas e identificades por el solicitante

ANG CONSULTORIA GEOTECHIA S.A.C. Tretourfultos
Tog Victorio de los Angeles Agustin Diaz
GERENTE GENERAL

... CONSULTIVE DEOTECNIA S.A.C

Carlos Javier Ramirez Muñoz

CIP. (4)***±

JVC CONSULTORIA GEOTECNIA S.A.C.