

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño del Pavimento Rígido Sustituyendo Caucho al Agregado Fino en el Concreto de la Calle Bulgaria-Hunter-Arequipa 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL AUTOR:

Saico Saico, Justo Emanuel (orcid.org/0000-0001-7657-2521)

ASESOR:

Mg. Sigüenza Abanto, Robert Wilfredo (orcid.org/ 0000-0001-8850-8463)

LÍNEA DE INVESTIGACION:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo Sostenible y Adaptación al Cambio Climático

LIMA - PERÚ

2022

Dedicatoria

Dedico a Dios esta tesis porque su fidelidad es grande y para siempre a la misma vez dedico a mi amada esposa Elsa Mamani Pancca por su especial y gran amor hacia mí y hacia sus prójimos.

Agradecimiento

Agradezco a:

A Dios por mostrarme conocimiento, entendimiento y sabiduría para poder terminar este trabajo de investigación.

A mi amada esposa por su inmenso amor y cariño.

A mis pastores de la Iglesia Evangélica Peruana la Merced 411, por acercarnos al Dios.

A mis padres Justo German y Juana por sus esfuerzos y sacrificios que hicieron mientras estudiaba en la universidad.

A mi madre Lucia Pancca por su aprecio y apoyo incondicional.

A mi Padre Teófilo Mamani Cahui por el cuidado y educación a mi amada mia esposa.

A mis hermanos en general por sus apoyo moral constante.

Índice de Contenidos

Dedicatoria	
Agradecimiento	i
Índice de Contenidos	iii
Índice de tablas	iv
Índice de figuras	Vi
Resumen	ix
Abstract	х
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGA	10
3.1. Tipo y diseño de investigación:	11
3.2. Variables y operacionalización	11
3.3. Población, muestra, muestreo, unidad de análisis	12
3.4. Técnicas e instrumentos de recolección de datos	13
3.5. Procedimientos	17
3.6. Métodos de análisis de datos	17
3.7. Aspectos éticos	18
IV. RESULTADOS Y DISCUSIÓN	19
V. DISCUSION	96
VI. CONCLUSIONES	101
VII. RECOMENDACIONES	104
VIII. REFERENCIAS	106
IX. ANEXOS	111

Índice De Tablas

Tabla 1: NTP para agregados	9
Tabla 2: Nomas para estudio del suelo	9
Tabla 3: Gradación de la grava	21
Tabla 4: Absorción y densidad relativa de la grava	22
Tabla 5: Densidad relativa y absorción de la grava	23
Tabla 6: Porcentaje de agua de la grava	23
Tabla 7: Resultados de densidad suelta de la grava	23
Tabla 8: Resultados de densidad compactado de la grava	24
Tabla 9: Distribución de partículas del material fino.	24
Tabla 10: Valores máximo y mínimos de la arena gruesa	25
Tabla 11 Verificación de la distribución granulométrica del material fino	26
Tabla 12: Resultados de densidad suelta del material fino	26
Tabla 13: Resultados de densidad compactada del material fino	27
Tabla 14: Calculo del agua en % que contiene la arena gruesa	27
Tabla 15: Valores de densidad relativa y absorción de la arena para concreto	27
Tabla 16: Valores de densidad relativa y absorción de la arena gruesa	28
Tabla 17: Análisis granulométrico del caucho tipo viruta o arrocillo	28
Tabla 18 Granulometría del caucho tipo granulado	29
Tabla 19 Requerimientos para diseñar Mezcla de concreto	30
Tabla 20 Especificaciones de materiales para el diseño	31
Tabla 21 Porcentajes de sustitución del caucho granulado y tipo viruta	34
Tabla 22 Vigas endurecidas y codificadas después de desmoldar	35
Tabla 23: Ensayo de compresión a 7 y 28 días	35
Tabla 24: Ensayos a flexión del concreto elaborado	36
Tabla 25: Tendencia del Slump	37
Tabla 26: Localización Calicata C-1	38
Tabla 27: Descripción de los estratos encontrados de la Calicata C-1	38
Tabla 28: Ensayo en la calicata C-1 de DLP a 0.50 m	39
Tabla 29: Ensayo en la Calicata C-1 de DLP a 1.50 m de profundidad	39

Tabla 30 Granulometría del suelo Calicata C-1:M1	40
Tabla 31: Pesos de la muestra que se empleó para ensayo	40
Tabla 32: Descripción, Clasificación y Límites de Consistencia del suelo	41
Tabla 33: Localización Calicata C-2:M2	41
Tabla 34: Descripción de estratos de la calicata C-2	42
Tabla 35: Ensayo en la calicata C-2 de DLP a 0.50 m de profundidad	42
Tabla 37: Distribución granulométrica calicata C-2	43
Tabla 38: Cantidad de material utilizado de la calicata C-2:M2	44
Tabla 39: Clasificación y Limites de consistencia Calicata C-2:M2	44
Tabla 36: Ensayo en la calicata C-2 de DLP a 1.50 m de profundidad	45
Tabla 40: Descripción y Denominación de variables de calicata C-1	46
Tabla 41: Estimación de CBR empleando el DLP para la calicata C-1:M1	47
Tabla 42: Ensayo DLP capacidad de carga del suelo para C-1, C-2	48
Tabla 43: CBR y Capacidad de carga del suelo con DLP de C-1 a 0.50m	48
Tabla 44: Estimación de CBR empleando el DLP para la calicata C-1 A 1.50m	50
Tabla 45: CBR y Capacidad de carga del suelo con DLP de C-1 a 1.50m	51
Tabla 46: Estimación de CBR con DLP para la calicata C-1 a 0.50m	52
Tabla 47: CBR y Capacidad de carga del suelo con DLP de C-2 a 0.50m	53
Tabla 48: Estimación de CBR empleando el DLP para la calicata C-2 a 1.50m	55
Tabla 49: CBR y Capacidad de carga del suelo con DLP de C-2 a 1.50m	56
Tabla 50: Proctor Calicata C- 1:M1	58
Tabla 51: Proctor calicata C-2:M2	59
Tabla 52: Ensayo de CBR C-1: M1	60
Tabla 53: Ensayo penetración Molde E-1 con 12 golpes por capa	61
Tabla 54: Calculo de nuevos esfuerzos corregidos de E-1 con 12 golpes	62
Tabla 55: Ensayo penetración Molde E-2 con 25 golpes por capa	63
Tabla 56: Calculo de nuevos esfuersos corregidos de E-2 con 25 golpes	64
Tabla 57: Nº Ensayo penetración Molde E-3 con 56 golpes por capa	65
Tabla 58: Calculo de nuevos esfuersos corregidos de E-3 con 56 golpes	66
Tabla 59: CBR y densidad seca	68
Tabla 60: Compactación y humedad	68

Tabla 61: Ensayo de CBR C-2: M2	. 70
Tabla 62: Ensayo penetración Molde D-1 con 12 golpes por capa	. 71
Tabla 63: Calculo de nuevos esfuerzos corregidos de D-1 con 12 golpes	. 72
Tabla 64: Ensayo penetración Molde D-2 con 25 golpes por capa	. 73
Tabla 65: Calculo de nuevos esfuerzos corregidos de D-2 con 25 golpes	. 74
Tabla 66: Ensayo penetración Molde D-3 con 56 golpes por capa	. 75
Tabla 67: Calculo de nuevos esfuersos corregidos de D-2 con 25 golpes	. 76
Tabla 68: CBR - Densidad seca del suelo en molde D	. 77
Tabla 69: Compactación y Contenido de humedad del suelo en el molde D	. 77
Tabla 70 Conteo vehicular de la vía Bulgaria	. 79
Tabla 71: IMD _A por tipo de vehículo	. 82
Tabla 72: Transito en 4 años siguientes	. 83
Tabla 73: Procedimiento para hallar el FC Y FD	. 83
Tabla 74: Numero de repeticiones de 8.2 tn. en EEs	. 84
Tabla 75: Nro. De Repeticiones Acumuladas de EE	. 86
Tabla 76: Confiabilidad para bajo volumen de transito (R)	. 86
Tabla 77: Serviciabilidad para bajo volumen de transito	. 87
Tabla 78: CBR más bajo recomendado por el MTC	. 88
Tabla 79: Resumen Ko, K1 y Kc	. 90
Tabla 80: Resistencia Minima del concreto	. 92
Tabla 81: Coeficiente J	. 93
Tabla 82: Coeficiente Cd	. 93
Tabla 83: Valores predefinidos para estimar el espesor del pavimento	. 94
Tabla 84: Valores de los materiales para estimar el espesor del Pavimento	. 94
Tabla 85: Iteraciones realizadas para estimar espesor del pavimento	. 95

Índice de Figuras

Figura 1: Técnicas e Instrumentos para recolectar datos de ESAL	14
Figura 2: Técnicas de recolección de datos para hallar CBR	15
Figura 3: Técnicas de recolección de datos de las probetas	. 16
Figura 4: Instrumentos para recolectar información del trafico	. 17
Figura 5: Mapa ubicación de la vía Bulgaria	. 20
Figura 6: Curva granulométrica Grava	. 22
Figura 7: Curva de gradación del material fino M-1	. 25
Figura 8: Curva de distribución de partículas de caucho	. 29
Figura 9: Resultados de ensayo de vigas	. 35
Figura 10: Resultados de roturas y porcentajes de sustitución	. 36
Figura 11: Resultados de ensayo de vigas	. 37
Figura 12: Slump y % de sustitución de Caucho	. 37
Figura 13: Ejecución de ensayo DPL en la Calicata C-2	. 39
Figura 14: Curva Granulométrica de la calicata C-1: M: 1	. 41
Figura 15: Granulométrica del suelo C-2:M2	. 44
Figura 16: Ensayo del DPL en la calicata C- 1	. 45
Figura 17: Penetración y nro. Golpes de Martillo de calicata C-1	. 47
Figura 18: DLP diagrama estructural de CBR de Calicata C-1	. 49
Figura 19: DLP Capacidad de carga del suelo de la Calicata C-1 a 50 cm	. 49
Figura 20: Penetración y Nro. Golpes de Martillo de la Calicata: C-1	. 50
Figura 21: DLP diagrama estructural CBR de Calicata: C-1	. 51
Figura 22: DLP Capacidad de soporte del suelo Calicata: C-1 a 1. 50m	. 52
Figura 23: Penetración y Nro. Golpes de maso de C-1	. 53
Figura 24: DLP diagrama estructural de CBR de Calicata C-1 a 1.50 m	. 54
Figura 25: DLP Capacidad de carga del suelo de la Calicata C-1 a 1. 50 cm	. 54
Figura 26: Penetración y nro. Golpes de Martillo de calicata C-2	. 55
Figura 27: Diagrama estructural de CBR de Calicata C-2 a 1.50 m	. 56
Figura 28: DLP Capacidad de carga del suelo de la Calicata C-2 a 1. 50 cm	. 57
Figura 29: Curva proctor de la calicata C-1:M1	. 58
Figura 30: Curva humedad optima calicata C-2:M2	59

Figura 31: Curva esfuerzo penetración molde E-1 con 12 golpes	. 61
Figura 32: Curva esfuerzo penetración molde E-2 con 25 golpes	. 64
Figura 33: Curva esfuerzo penetración molde E-3 con 56 golpes	. 66
Figura 34: Curva esfuerzo vs penetración de CBR de calicata C-1	. 67
Figura 35: curvas corregidas de 12, 25 y 25 golpes de calicata 1 y 2	. 68
Figura 36: Densidad en estado seco y % humedad	. 69
Figura 37: Densidad seca vs CBR	. 69
Figura 38: Curva esfuerzo penetración molde D-1 con 12 golpes	. 71
Figura 39: Curva esfuerzo penetración molde D-2 con 25 golpes	. 73
Figura 40: Curva esfuerzo penetración molde D-3 con 56 golpes	. 75
Figura 41: Esfuerzo - deformación para 12, 25, 56 golpes	. 77
Figura 42: Curva Densidad Seca y contenido de agua	. 78
Figura 43: Curva Densidad seca y CBR	. 78
Figura 44: Transito_Vehicular durante la semana	. 80
Figura 45: Peaje más cercano a la Vía Bulgaria de Hunter Variante de Uchumayo.	80
Figura 46: Corrección para Vehículos ligeros	. 81
Figura 47: Corrección para Vehículos Pesados	. 81
Figura 48: Tasas de crecimiento	. 82
Figura 49: Tabla para clasificación de la Vía Bulgaria	. 85
Figura 50: Esquema de la sección transversal del pavimento	. 87
Figura 51: correlación CBR y Ko	. 89
Figura 52: Ecuación para hallar el Kc	. 90
Figura 53: estructuración del Pavimento	. 95
Figura 54: tendencia al usar cucho sin tratar y tratado a la misma vez	100

Resumen

Este trabajo de Investigación se realizó en el laboratorio RCF S.R.L. y tiene tres componentes, El primer componente trata del estudio de materiales para diseño de mezcla sustituyendo el caucho de tipo granulado y caucho tipo viruta al agregado fino en el concreto. Se aplicó el método ACI con sustitutos de 2% y 7% de caucho granulado luego el 7%, 10% y 13% de Caucho tipo viruta. La segunda parte consta del estudio de suelos para lo cual se han excavado 2 calicatas realizando el ensayo in situ con DPL a 0.5m y 1.5m de profundidad, posteriormente se obtiene el CBR en laboratorio. La tercera está compuesto por procedimientos para hallar el espesor del pavimento a través de la ecuación AASHTO93. Los resultados que se obtuvieron con la sustitución de 7% de caucho granulado presenta un valor máximo de resistencia a la flexión excediendo en 5% respecto de los otros diseños y a la misma vez su resistencia a la compresión bajo en 45% respecto del concreto convencional, para obtener el espesor de losa se utilizó la sustitución de 2% también se aprecia que a mayor porcentaje de sustitución mayor es el asentamiento.

Palabras claves: Suelos, Caucho, Concreto, Pavimento, DPL

Abstract

This research work was carried out in the RCF S.R.L. laboratory and has three components. The first component deals with the study of materials for mix design by substituting granulated rubber and chip rubber for fine aggregate in concrete. The ACI method was applied with substitutes of 2% and 7% of granulated rubber, then 7%, 10% and 13% of chip rubber. The second part consists of the study of soils for which 2 pits have been excavated, performing the in situ test with DPL at 0.5m and 1.5m depth, then the CBR is obtained in the laboratory. The third is composed of procedures to find the pavement thickness through the AASHTO93 equation. The results obtained with the substitution of 7% of granulated rubber show a maximum value of flexural strength exceeding by 5% with respect to the other designs and at the same time its compressive strength decreased by 45% with respect to conventional concrete, to obtain the thickness of the slab the substitution of 2% was used, it can also be seen that the higher the percentage of substitution, the higher the slump.

Keywords: Soil, Rubber, Concrete, Pavement, DPL.

I. INTRODUCCIÓN

La calle Bulgaria es una vía que se encuentra en el Distrito de Jacobo hunter que forma parte de la provincia de Arequipa. Esta vía tiene su origen en la intersección de las vías Irlanda, Av. Italia, Calle los Girasoles y Finaliza en la Av. Arequipa y tiene una distancia de 455 m, El 32.5% de la vía no está pavimentado y el 66.5% de la vía se encuentra en un estado deteriorado

Hernández, (2018). "define al caucho como un material de bastante duración y es resistente a muchos entornos naturales, además indica que es una preocupación en la sociedad la eliminación de neumáticos" (p.2). El Problema de esta tesis está formulado Primero identificando cual es el problema General ¿Cómo diseñar un pavimento rígido con la sustitución de caucho al agregado fino en el concreto de la vía Bulgaria Hunter-Arequipa 2022? Segundo, La investigación tuvo los problemas específicos de la siguiente manera: ¿De qué manera la sustitución de caucho a la arena gruesa de la mescla de concreto mejoraría la resistencia a la flexo tracción para estimar el espesor del pavimento rígido de la vía Bulgaria de Hunter- Arequipa?, ¿De qué forma la sustitución del caucho al agregado fino conserva las propiedades de compresión y flexión respecto al concreto convencional del pavimento de la vía Micaela Bastidas de Hunter- Arequipa 2022?, ¿De qué manera se podría definir una nueva alternativa diseño sustituyendo caucho al agregado fino del pavimento rígido de la calle Bulgaria-Hunter- Arequipa 2022?. La justificación de este trabajo de investigación estuvo basado en la importancia de hacer los estudios en los siguientes aspectos. Para la academia: por que se realiza una Propuesta como nueva alternativa de diseño para determinar espesores de pavimentos rígidos en vías donde sean pertinentes su aplicación, por que utiliza los materiales procedentes de los neumáticos en desuso. Para la Ciencia: Porque genera un precedente para estimar espesores de pavimentos rígidos basado en la utilización del caucho granulado y caucho tipo viruta como sustituto al agregado del concreto. Para la Sociedad: Aportara beneficios al poblador de hunter mejorando la transitabilidad de ida y vuelta de los vehículos así mismo una mejor calidad de vida. Para el autor: El diseño del pavimento rígido sustituyendo caucho al agregado fino en el concreto sea al menos de igual o menor costo que un diseño convencional.

La Justificación social: estuvo basado en que reducirá considerablemente los tiempos de ida y vuelta de la transitabilidad vehicular, así mismo una mejor calidad de vida lo cual es muy beneficiosa para la población. La Justificación económica: Se sustenta en el diseño del pavimento rígido sustituyendo caucho al agregado fino en el concreto sea al menos de igual o menor costo que un diseño convencional sin sustituciones de caucho. La Justificación teórica está basado en que atreves de este trabajo de investigación se dará a conocer el procedimiento que es necesario para el diseño de pavimentación rígida en una vía que asume un tránsito medianamente fluido, por medio del método AASHTO 93. Además de contribuir a la comunidad científica un nuevo conocimiento que permitirá nuevas alternativas de diseño de pavimentos rígidos. A la misma vez se determinaron Los objetivos específicos para detallar los trabajos necesarios para alcanzar el objetivo planteado tales son como la capacidad de soporte a la flexo tracción y la capacidad de soporte a la compresión del espécimen convencional y con sustitución de 2%, 7% caucho granulado y 7%, 10% y 13% de caucho tipo viruta al agregado fino curando 14 y 28 días de resistencia 280 kg/cm2. Otro objetivo específico fue realizar un análisis de resultados para determinar el comportamiento del espécimen con la sustitución del caucho al agregado fino en el concreto endurecido. Para determinar la Hipótesis primero se identificó la Hipótesis general: Supone que al utilizar el caucho tipo granulado y viruta mejorar la flexión respecto al concreto convencional el cual permitirá una mejor alternativa de diseño al pavimento rígido de la vía Bulgaria de Hunter. Otro aspecto a considerar fue la Hipótesis específica: Primero se supone el sustituto de 2% de caucho al menos tenga las mismas características mecánicas en referencia al diseño patrón. Segundo, el sustituto de 7% de caucho tipo viruta o granulado al agregado fino mejoraría la resistencia flexo tracción. Tercero, los sustitutos de 9% y 13% de caucho al agregado fino produciría resistencias dentro de los parámetros permitidos del diseño de espesores para pavimento rígido.

II. MARCO TEÓRICO

A nivel nacional

Castillo, (2020). En su investigación: "Propiedades físicas y mecánicas del concreto para pavimento rígido con adición de caucho reciclado en la Avenida Metropolitana, Comas 2019".

Su estudio se basó en evaluar las propiedades del concreto sustituyendo caucho reciclado al agregado fino, además utilizo dimensiones aproximadamente de 2 a 3.5mm caucho reciclado. En el diseño de 280kg/cm2 las proporciones que uso fue 5%, 7.5% y 10%

Abanto, Tantalean, (2020), en su tesis: "Efecto de la incorporación de caucho reciclado en el comportamiento del concreto para un pavimento rígido". Realizaron 32 testigos y los dividieron en primer grupo los que contienen adición de caucho reciclado en 5%, 10" y 15% y segundo grupo los de concreto patrón y ensayaron a 14 y 28 días de curado y el de mejor resultado fue con 5%

Lima, Lima, (2020), Son Autores de la tesis "Adición de caucho reciclado al concreto f´c=280 kg/cm² para el diseño de pavimento rígido en la Avenida Llanos, Ate 2020". Este estudio se basó en analizar los efectos producidos al adicionar caucho reciclado al concreto de 280kg/cm². Realizaron mezclas para concreto convencional y concretos empleando caucho con tamaños de 2.36mm-4.75mm en 4%, 8% y 12%. En reemplazando el agregado fino como resultado final obtuvo el 4% como óptimo y 12% de caucho como el más favorable para efectos de contracción.

Ricaldi, (2021), en su tesis "Diseño del pavimento rígido utilizando polímero para mejorar la resistencia del concreto en Urbanización Pedro Miguel Silva Arévalo, Sullana 2021".

Hizo su investigación empleando polímeros en relación al volumen del espécimen obteniendo un resultado superior en 9.63 por ciento en relación al concreto patrón, así mismo consideró que dicha mejora es in incremento de 20% a la resistencia de compresión.

García, (2020) en su tesis "Influencia de la adición de caucho granulado en 5%, 10% y 15% en la resistencia a compresión y flexión del concreto para la utilización en obras de ingeniería, lima 2020".

En su investigación realizaron ensayos de un diseño convencional y adicionando el caucho, los porcentajes que se añadieron estuvieron respecto al peso del cemento finalmente concluyeron que para el espécimen de 5 y 10 % se halló un aumento de 4 por ciento.

Velásquez Ocampo, B. M. (2022). En su trabajo de investigación denominado "Influencia de la incorporación del caucho granulado sobre las propiedades mecánicas del concreto simple para pavimentos rígidos en el distrito de San Martín de Porres, Lima 2022". Incorporo al concreto el caucho granulado que fue reciclado, los porcentajes de incorporación de caucho al agregado fino fue en referencia al volumen total que representa a la arena. Al incorporar 3% la autora indica que han mejorado en 4.29 por ciento la capacidad resistente a compresión y 9.28 por ciento para la capacidad resistente a flexión.

Panduro y Sharon,(2021) en su trabajo de investigación "Diseño de Pavimento Rígido Mediante el Uso del Concreto Estructural con Fibra de Caucho, Avenida Lima, Lurín, 2021". Adicionaron caucho tipo fibras y como resultado tuvieron que el de 5% se acercó al concreto convencional pero los valores obtenidos no alcanzan mínimo aceptable para el definir las dimensiones del pavimento estudiado.

Santiago, (2022). Realizo un estudio "Influencia del 11%, 12%, 13% y 14% de partículas de neumático fuera de uso en la resistencia axial, a flexión y tracción indirecta de un concreto f'c=210kg/cm2, empleando la norma técnica, lima – 2022". Santiago no tuvo buenos resultados en todos los porcentajes que ha empleado.

A nivel internacional

Sierra, Reyes, (2020) en su artículo titulado: "Aplicación de caucho reciclado para uso en pavimento Rígido: Revisión, análisis y perspectivas de investigación". Considero una relación agua y cemento de promedio 0.5 garantiza altas resistencias. También hace una recomendación que 10% de sustitución tanto al agregado fino o grueso debe ser como máximo.

López, (2018), Es autor de tesis denominado "Concreto Estructural con agregado triturado de llantas usadas".

Menciona en su conclusión que el 7% de polvillo de caucho para la sustitución al agregado fino o grueso califica como un concreto estructural

Silvestre, (2019), En la tesis "Análisis del concreto con caucho como aditivo para aligerar elementos estructurales". Adiciono caucho en 3%, 5%, 7% ,10% para comprobarla aliteración de las probetas así también recomendó que se podría probar con cauchos en sus diferentes tamaños nominales y conocer más de sus propiedades del agregado caucho.

Hernández, (2018). En su investigación denominado "Diseño de un material ecológico para la construcción mediante la adición de caucho de llanta al concreto". El autor pretendió utilizar como agregado al caucho en sus formas de fibras cilíndricas, fibras y polvo de caucho llegando a la conclusión que la mescla del concreto con 5 porciento de caucho es óptima en alternativas que no requieran alta resistencia.

Irshad, (2020). "A Review on using Crumb Rubber in Construction of Rigid Pavement" En su artículo indica que el caucho se puede usar como agregado grueso o agregado fino y a la misma vez concluyo que la trabajabilidad en proporción directa al caucho que se añade, así como también ayuda a reducir el peso de la estructura y considera que el caucho es un material del futuro para economizar y generar un ambiente más tendencia a áreas verdes.

Pitroda, Prajapati, (2020). "Utilization of Crumb Rubber in Rigid Pavement" en su Artículo concluyo que el caucho triturado de reemplazo aumenta significativamente las propiedades de absorción de agua del concreto.

Koch y pozzobon, (2018). Realizaron un trabajo que consistió en el "Analicé do comportamento do concreto com adição de residuos poliméricos com aplicabilidade em peças para pavimentação intertravada de calçadas".

Para establecer el mejor diseño de mezcla, adicionaron residuos de botellas de PET y caucho de neumáticos que sean finos y granos con diferentes niveles de sustitución ala agregado fino y grueso.

Zarei, Rooholamini, Ozbakkaloglu, (2021). "Evaluating the Properties of Concrete Pavements Containing Crumb Rubber and Recycled Steel Fibers Using Response Surface Methodology"

El uso delos neumáticos como partículas reduciría la contaminación ambiental por lo tanto un neumático está constituido de caucho y fibra de acero. Según los investigadores estos materiales puede introducirse al concreto. Su investigación tuvo como objetivo estudiar los efectos del polvo de caucho y de la fibra de acero provenientes de lo neumáticos. Evaluaron el caucho hasta 20% y la fibra de acero hasta 0.5% evaluando su comportamiento sujetos a flexión, rotura, compresión, congelación, descongelación, abrasión del concreto. Los resultados notables fue al evaluar la flexión mejorando la ductilidad y la incorporación del caucho redujo la resistencia a la abrasión.

Silva, Mouta, Costa, Gomes (2019). Concreto com borracha de recauchutagem de pneu para uso em pavimentação de baixo tráfego.

Realizaron los estudios para evaluar el comportamiento mecánico, masa específica absorción de agua y índice de vacío del concreto.

Normativas para el estudio de agregados y suelos

 Tabla 1: NTP para agregados

Nº	Nombre del Ensayo	NTP
1	Para las muestras de los agregados	400.010
2	Clasificación de agregados para concretos	400.011
2	Contenido de agua	339.185
3	Distribución granulométrica	400.012
4	Efecto de impurezas orgánicas del agregado	400.013
	fino.	
5	Peso unitario y los vacíos	400.017
6	Peso específico	400.021
7	Absorción	400.022
8	Requisitos	400.037
9	Ensayo de compresión	339.034
10	Concreto	339.047

Nota: Esta tabla muestra los ensayos utilizados en este trabajo de investigación

Tabla 2: Nomas para estudio del suelo

Nº	Nombre del Ensayo	NTP	ASTM
1	Calicatas		D 420
2	Muestreos		D 420
3	Perforación manual		D 1452
4	Descripción visual de	339.150-00	
	suelo		
5	CBR	339.145-99	D1883
6	SUCS	339-134-14	
7	Clasificación de suelos	339.135-99	
8	límite de consistencia		D 4318
9	LL,LP, IP, Proctor		D1557
10	DLP	339.159-01	

III. METODOLOGÍA

3.1. Tipo y diseño de investigación:

Tipo de Investigación:

Según Arias, Covinos, (2021) en su libro "Diseño y metodología de la investigación" considerando los aspectos según su finalidad este estudio se determina como investigación aplicada porque se basa en los resultados del comportamiento para cada unidad de análisis y a la misma vez se basa en plantear soluciones que se estableció en el objetivo de la investigación. Para mi caso de estudio cumple con las características y la definición del **tipo Aplicada** porque tiene el propósito de determinar las relaciones causa efecto y a la misma vez se basa en los comportamientos resultantes de un grupo comparado respecto a los comportamientos de otros grupos resultantes. Utiliza y aplica conocimientos para dar solución al problema del diseño del pavimento rígido de la Calle Bulgaria Hunter Arequipa.

Diseño de investigación

Según Arias, Covinos, (2021) "Diseño experimental es un proceso cuya principal característica es verificar cuantitativamente la causalidad de una variable sobre otra". (Pág. 73)

Para este caso de estudio se adoptó el esquema **diseño experimental** ya que se examina la influencia de las variables como son el caucho granulado y el caucho tipo arrocillo o viruta para la determinación de los parámetros del diseño de la vía Bulgaria-Hunter Arequipa

3.2. Variables y operacionalización

Variables independientes:

Variable A Caucho granulado características del agregado fino.

Variable B Caucho tipo arrocillo o viruta con características del agregado fino.

Variable dependiente:

Diseño del Pavimento rígido sustituyendo caucho al agregado fino en el concreto de la calle Bulgaria Distrito Jacobo Hunter de provincia de Arequipa

Definición conceptual:

Montejo, (2002). Define el **pavimentos rígido** de la siguiente forma "Constituido por una losa de concreto hidráulico, apoyada sobre la subrasante," (p.05) Ver en anexo 1 y 2 operacionalizacion de variables y la matriz de consistencia

Definición operacional:

Una forma de medir las variables de estudio es atreves del diseño de mezcla sin alterar su diseño original de 280kgf/cm2 para obtener resultados de los otros grupos al sustituir 2%G, 7%G, 7%V, 10%V y 13%V para analizar su comportamiento a los 14dias y 28 días de curados en agua.

3.3. Población, muestra, muestreo, unidad de análisis

Población

Según Arias, Covinos, (2021). "la población es la totalidad de elementos del estudio, es delimitado por el investigador según la definición que se formule en el estudio" (P.113). Para este estudio la población estaría determinado por 36 vigas de dimensiones 15x15x50cm3 y 36 probetas cilíndrica de dimensiones 15x30 cm ensayados a los 7 días y 14 días.

Muestra

Arias, Covinos, (2021), cita a Hernández-Sampier y Mendóza (2018) Para definir que la "muestra es un subgrupo considerado como una parte representativa de la población" (p.118).

Para mi caso de estudio se tomó en cuenta el tramo no pavimentado de la calle Bulgaria que tiene una longitud de 166 m. Para los cuales se ha elaborado 1 viga de dimensiones 15x15x50cm3 y 1 probeta cilíndrica de dimensiones 15x30 cm ensayados a los 7 días y 14 días.

Muestreo

Según (McGraw-hill, metodología de la investigación, 2011, Pág. 116) Para la verificación de las hipótesis de la investigación se diseñó la muestra utilizando la técnica de muestreo no probabilístico porque no es necesario la generalización de los

resultados obtenidos de la muestra. Finalmente para determinar el tipo específico de esta técnica se utilizó la técnica de muestreo por cuotas o cantidad por lo tanto mis muestras de análisis arbitrariamente son 36 vigas de 15x15x50 cm y 36 probetas cilíndricas de 15cmx30cm que corresponde a sustitución del agregado fino con 0% de caucho, 2% caucho granulado, 7% caucho granulado, 7% caucho tipo viruta o arrocillo, 10% de caucho tipo viruta o arrocillo y 13% de caucho tipo viruta en el concreto para la vía Bulgaria ubicado en zona A hunter de la ciudad de Arequipa.

Unidad de análisis

José y Mitsuo (2021) en su libro "Diseño y metodología de la investigación" define unidad de análisis: como un objeto estudio del cual se genera datos para la investigación que se está realizando".

Para mi caso de estudio las unidades de análisis estuvieron determinados por la elaboración de los especímenes cilíndricos y los especímenes rectangulares denominado vigas rectangulares y probetas cilíndricas.

3.4. Técnicas e instrumentos de recolección de datos

Técnica de recolección de datos

Según Fernández, Baptista, (2014) "Recolectar los datos implica elaborar un plan detallado de procedimientos que nos conduzcan a reunir datos con un propósito específico" (p.198)

Entrevista, Se tuvo una entrevista con vecinos usuarios de la vía con el propósito de obtener datos.

Técnica de la observación:

Para establecer el conteo vehicular, el tipo de tránsito y volumen. y registrar los vehículos motorizados que pasan por la zona, Para hacer de reconocimiento general de la vía, como son la geología, ubicación, accesos, evaluación superficial.

Técnica de campo y gabinete: se realizó el conteo de vehículos durante una semana utilizando fichas que permiten la clasificación de los vehículos (MTC-2013) que posteriormente se recopiló la información de las fichas utilizando el Excel del Microsoft para determinar la totalidad de vehículos que transitaron.

Instrumento de recolección de datos

Baena (2017). Define que "Los instrumentos son los apoyos que se tienen para que las técnicas cumplan su propósito, en el caso del cazador sería tu equipo, las armas inclusive botiquín o provisiones" (p.68)

Por lo tanto se tuvieron los siguientes instrumentos de apoyo.

Libreta de campo, publicaciones en los repositorios, Información vía satélite para la ubicación de la calle Bulgaria que son Sistemas de información computarizada como son las redes de internet, correos electrónicos, manual de AASHTO 93 para determinar el espesor del pavimento, Normas de MTC, Ensayo CBR para determinar los requisitos de la calidad del terreno.

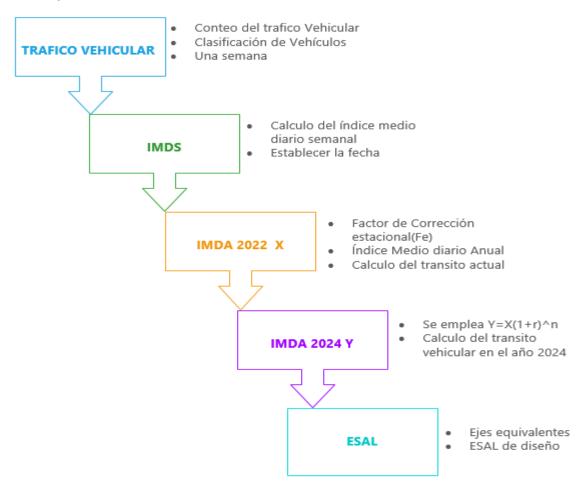


Figura 1: Técnicas e Instrumentos para recolectar datos de ESAL

Fuente: Esquema propio

A continuación se presenta las formas diferentes de recolectar datos y a la misma vez se presenta los instrumentos que ayudan para obtener los resultados planteados en el presente estudio.

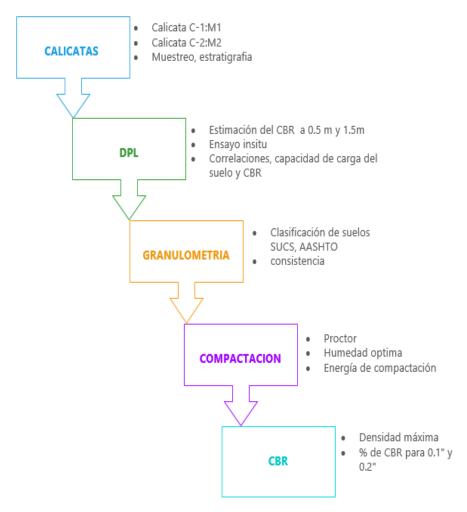


Figura 2: Técnicas de recolección de datos para hallar CBR

Fuente: Esquema propio

En esta sección se presenta los instrumentos utilizados para obtener resultados de comportamientos acerca del tratamiento del concreto y los sustitutos determinados para obtener una variabilidad de comportamientos basados en los porcentajes de sustitución.

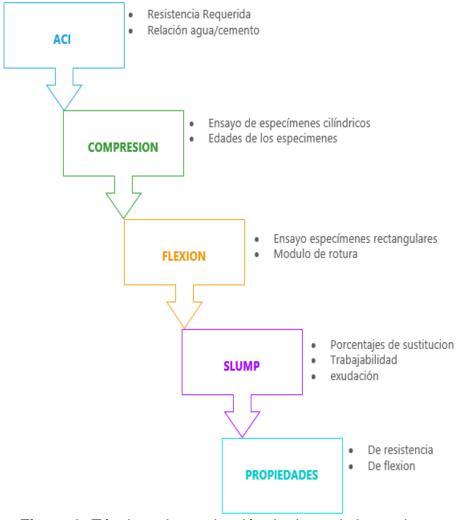


Figura 3: Técnicas de recolección de datos de las probetas

Fuente: Esquema propio

A continuación se presenta las técnicas utilizados para el análisis del tráfico de los vehículos que transitan en la zona de estudio y finalmente clasificar la vía para determinar los parámetros que serán necesarios en la ecuación AASHTO para determinar el espesor del pavimento sustituyendo caucho al agregado fino en el concreto.

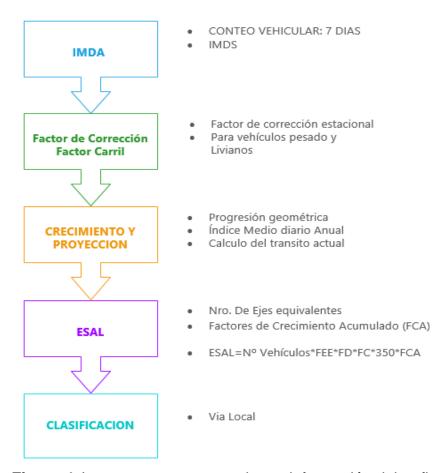


Figura 4: Instrumentos para recolectar información del trafico

Fuente: Esquema propio

3.5. Procedimientos

Solicitud al laboratorio para realizar los ensayos, Solicitud a la municipalidad distrital de hunter para realizar excavación de calicata 1 y 2, Traslado de los diferentes materiales hacia el laboratorio, luego se ha establecido tres componentes para generar los datos como son los suelos, tecnología del concreto y pavimento.

3.6. Métodos de análisis de datos

Según Cabezas, Andrade y Torres, (2018) "Para poder realizar el análisis y la interpretaciones de datos hay que partir de la tabulación que se realizó de las cualquier técnica e instrumento que se haya utilizado en todas la etapas que se tiene para el

proceso de investigación" (p23). Los datos se han analizado considerando tres aspectos primero es para el estudio de suelos y todo lo que es atribuido a ello para el procesamiento de datos, segundo el concreto y todo lo atribuido para alcanzar al objetivo principal finalmente lo que es atribuido a la estimación del pavimento rígido.

3.7. Aspectos éticos

"El código de ética del colegio de ingenieros del Perú Menciona una serie de cualidades del investigador que servirán de guía ejercitándose en la lealtad, honestidad, honor, responsabilidad, solidaridad, Respeto, Justicia, Inclusión Social profesional." (Código de ética del colegio de ingenieros del Perú, 1987, p.3)
Considerando los principios establecidos podemos decir que los procedimientos que

Considerando los principios establecidos podemos decir que los procedimientos que se realizaron de las diferentes metodologías se aplicaron correctamente a las normas, además se ha considerado la programación de actividades. Para la lo cual se procuró terminar cada actividad en el tiempo establecido. En todo momento se practicó el respeto hacia las autoridades, las personas, animales, propiedad pública y propiedad privada. Se ha utilizado instrumentos calibrado en el laboratorio acreditado RCF S.R.L la empresa cuenta con un personal especializado que fueron de ayuda y de guía para realizar los procedimientos.

IV. RESULTADOS

RESULTADOS

Ubicación de la vía

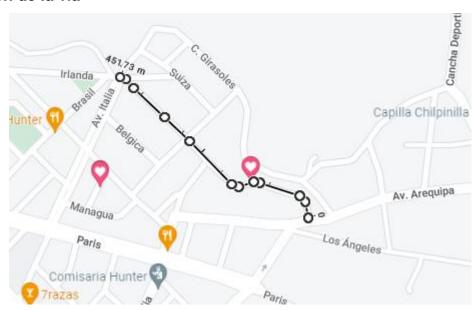


Figura 5: Mapa ubicación de la vía Bulgaria

Fuente: Google Maps

La vía Bulgaria está se encuentra en el distrito de Jacobo Hunter y en la parte sur de la ciudad Arequipa

Longitud de la Vía Bulgaria

Longitud de la Vía Bulgaria: 455 metros

Ancho de la vía: 5 m.

ESTUDIO DE LOS MATERIALES PARA ELABORACION DE ESPECIMENES CILINDRICAS Y PRISMATICAS

Análisis y estudio de la grava

Se le denomino grava a las partículas que fueron retenidos en el tamiz N°4. Luego se inició con el cuarteo empleado 90 kg de agregado grueso, se usó las mallas que van desde 1 ½ pulgada hasta la Nº 8 más el plato de fondo. Luego Se tomó una muestra de material de 10kg (22 lb), Se utilizó los tamices 1 1/2",1", 3/4", 1/2", 3/8", 3/16", Nº8,

fondo, Se tomó la humedad del agregado grueso, Para generar la curva granulométrica se determinó los límites granulométricos del árido grueso según el parámetro determinado en norma NTP 400.037-2018.

Tabla 3: Gradación de la grava

TAN	ΛIZ	WRet.	% WRet.	% Ret.	% Pasante
Pulg	mm	(gr)	Parcial	Acumulado	Acumulado (%)
1 1/2"	37,50	0,00	0,00	0,00	100,00
1"	25,00	1138,00	11,38	11,38	88,62
3/4"	19,00	4922,00	49,22	60,60	39,40
1/2"	12,50	3604,00	36,04	96,64	3,36
3/8"	9,50	201,00	2,01	98,65	1,35
3/16"	4,75	129,00	1,29	99,94	0,06
FONDO		6,00	0,06	100,00	0,00
TOTAL		10000,00	100,00	-	-

Fuente: Resultados de laboratorio RCF S.R.L.

Masa inicial=10000

Masa final =9994

Se determinó un error de 6 gr por lo tanto corresponde

$$Error = \frac{10000 - 9994}{1000} x100\%$$

$$Error = 3\%$$

Para ubicar los porcentajes del pasante acumulado en los tamices normalizados se utilizó el huso 5 para determinar los porcentajes de los límites inferior y superior.

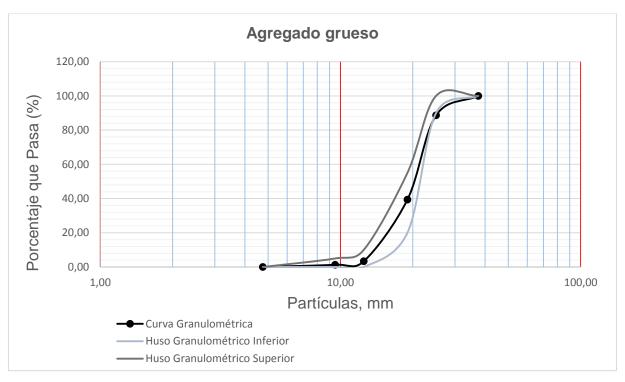


Figura 6: Curva granulométrica Grava

Fuente: Resultados en laboratorio RCF S.R.L.

Módulo de finura

$$MF = \frac{0+0+0+60.6+98.65+100+99.98+100+100+100}{100} = 7.59$$

Tabla 4: Absorción y densidad relativa de la grava

Procedimientos	Und	M_1	M_2
Masa del material SSS (aire)	g	3474,5	3474,5
Peso del Material SSS (agua)	g	2155,5	2155,5
Vol. de masa + Vol. de vacíos (bruto)	cm ³	1319	1319
Masa del material seco en horno 24h	g	3426	3426
Volumen de masa (neto)	cm ³	1270,5	1270,5
Absorción (%)	%	1,416	1,416
Densidad relativa	g/cm ³	2,597	2,597
Densidad Relativa (Base saturada)	g/cm ³	2,634	2,634
Densidad Rel. aparente (Base seca)	g/cm ³	2,697	2,697

Fuente: Resultado de laboratorio RCF S.R.L.

Para encontrar el valor de la densidad relativa y posteriormente analizar el grado de absorción de los materiales a continuación se presenta el procedimiento seguido.

Tabla 5: Densidad relativa y absorción de la grava

Descripción	PE	Und
Densidad relativa (Base seca)	2,597	g/cm3
Densidad relativa (Base saturada)	2,634	g/cm3
Densidad relativa aparente (Base seca)	2,697	g/cm3
Porcentaje de absorción	1,416	%

Fuente: Resultado de laboratorio RCF S.R.L.

La siguiente tabla presenta un procedimiento realizado para obtener un porcentaje de tal manera que se determine en referencia al estado natural de la muestra estudiada.

Tabla 6: Porcentaje de agua de la grava

Descripción	Und	muestra
Masa del material natural	g	906
Masa del material seco	g	904,7
Contenido de agua	%	0,143694042

Fuente: Resultado de laboratorio RCF S.R.L.

En esta sección se presenta los procedimientos realizados para obtener el valor del peso unitario suelto de la grava basado en el uso de un molde y su respectivo varillado en cada tercio del contenedor de la grava.

Tabla 7: Resultados de densidad suelta de la grava

Descripción	Und.	M1	M2	М3
December of the state (a)		5044	5044	5044
Peso del recipiente(g)	g	5011	5011	5011
Volumen del recipiente (cm3)	cm3	9564	9564	9564
Peso del material + recipiente (g)	g	18799	19523	18792
Peso Unitario suelto	g	1,442	1,517	1,441
Promedio de Peso Unitario suelto	g/cm3		1,467	

Fuente: Realizado en laboratorio RCF S.R.L.

Tabla 8: Resultados de densidad compactado de la grava

Descripción		M1	M2	М3
Masa del contenedor	g.	5011	5011	5011
Volumen del contenedor	cm3	9564	9564	9564
Peso del material + recipiente	g.	20115	20085	21319
Peso Unitario compactado	g.	1,579	1,576	1,705
Promedio de peso Unitario compactado	g/cm3		1,620	

Fuente: Realizado en laboratorio RCF S.R.L.

Granulometría de la arena para mezcla de concreto

Este ensayo inicio con el secado de la muestra de agregado denominado arena gruesa luego por cuarteo se obtuvo 500 gramos posteriormente se ha seleccionado los tamices con el código que pertenece a la norma ASTM.

Tabla 9: Distribución de partículas del material fino.

TAMIZ	Z	Masa Ret.	% Masa Ret.	% Ret.	% Pasante Acumulado (%)	
ASTM(Pulg)	mm.	(gr)	Parcial	Acumulado		
3/8"	9,500	0,00	0,00	0,00	100,00	
N°04	4,750	14,12	2,84	2,84	97,16	
N°08	2,360	75,80	15,24	18,08	81,92	
N°16	1,180	133,10	26,76	44,84	55,16	
N°30	0,600	101,50	20,41	65,25	34,75	
N°50	0,300	65,50	13,17	78,42	21,58	
N°100	0,150	59,90	12,04	90,47	9,53	
N°200	0,075	30,20	6,07	96,54	3,46	
FONDO		17,20	3,46	100,00	0,00	
TOTAL		497,32	100,00	-	-	

Fuente: Resultados de laboratorio RCF S.R.L.

Tabla 10: Valores máximo y mínimos de la arena gruesa

TAMIZ		% que pasa		
9,5 mm	3/8"	100		
4,75 mm	N°4	95 - 100		
2,36 mm	N°8	80 -100		
1,18 mm	N°16	50 - 85		
0,60 mm	N°30	25 - 60		
0,30 mm	N°50	5 - 30		
0,15 mm	N°100	0 - 10		
0,75 mm	N°200	$0 - 3, 0^{A,B}$		

Fuente NTP 400,037-2018

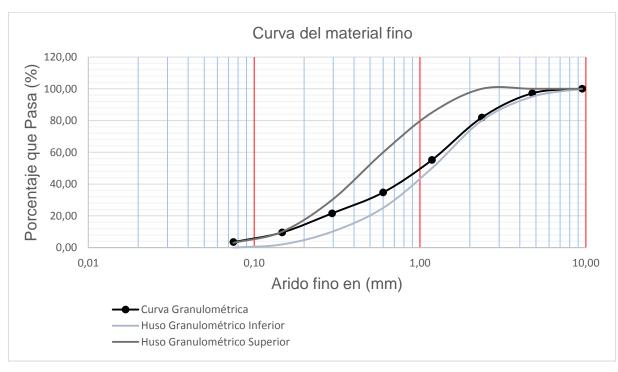


Figura 7: Curva de gradación del material fino M-1

Tabla 11 Verificación de la distribución granulométrica del material fino

TAMIZ		Inferior (%)	Pasante Acumulado (%)	Superior (%)	CONDICONAL
(Pulg)	(mm)				
3/8"	9,500	100%	100%	100%	Se ajusta
N° 4	4,750	95%	99%	100%	Se ajusta
N° 8	2,360	80%	88%	100%	Se ajusta
N° 16	1,180	50%	61%	85%	Se ajusta
N° 30	0,600	25%	43%	60%	Se ajusta
N° 50	0,300	10%	22%	30%	Se ajusta
N° 100	0,150	2%	10%	10%	Se ajusta

Fuente: NTP 400,037-2018

Módulo de finura del material fino

M. F. =
$$\frac{0.83 + 12.05 + 38.81 + 57.21 + 78.21 + 90.47 + 96.54}{100}$$

$$M. F. = 3.0$$

Tabla 12: Resultados de densidad suelta del material fino

Descripción	Und.	M1	M2	М3
Masa del Molde	g	1560	1560	1560
Volumen del Molde	cm3	2941	2941	2941
Masa del material + Molde	g	6227	6237	6242
Masa Unitario suelto	g/cm3	1,587	1,590	1,592
Masa Unitario suelto promedio	g/cm3		1,590	

Fuente: Resultados de laboratorio RCF S.R.L.

Tabla 13: Resultados de densidad compactada del material fino

DESCRIPCION	Und.	M1	M2	М3
Masa del molde	g	1560	1560	1560
Volumen del molde	cm3	2941	2941	2941
masa del material + Molde	g	6706	6681	6724
Densidad compactado	g/cm3	1,750	1,741	1,756
Densidad compactado promedio	g/cm3		1,749	

Fuente: Realizado en laboratorio RCF S.R.L.

Tabla 14: Calculo del agua en % que contiene la arena gruesa

Descripción	Und	muestra
Masa del material natural	g	600.0
Masa del material seco	g	597,4
Contenido de humedad	%	0,440

Fuente: Resultados de laboratorio RCF S.R.L.

Tabla 15: Valores de densidad relativa y absorción de la arena para concreto

Descripción	M-1	M-2	Und
Masa del Material SSS	500	500	g
Masa fiola + masa de agua	665,3	675,2	g
Masa fiola + muestra + agua	976,7	977,2	g
Vol. de masa + Vol. de vacíos (bruto)	188,6	198	cm3
Masa del material secado en horno 24h	489,1	488,5	g
Volumen de masa (neto)	177,7	186,5	cm3
% Absorción	2,229	2,354	%
Densidad relativa	2,593	2,467	g/cm3
Densidad relativa (Base saturada)	2,651	2,525	g/cm3
Densidad relativa aparente (Base seca)	2,752	2,619	g/cm3

Fuente: Resultados de laboratorio RCF S.R.L.

Tabla 16: Valores de densidad relativa y absorción de la arena gruesa

DESCRIPCION	Promedio	Und
Densidad relativa (Base seca)	2,530	g/cm ³
Densidad relativa (Base saturada)	2,588	g/cm ³
Densidad relativa aparente (Base seca)	2,686	g/cm ³
porcentaje de absorción	2,291	%

Fuente: Resultados de laboratorio RCF S.R.L.

Por lo tanto el material fino que es representado a través de la curva granulométrica obtenida, podemos decir que la gradación del material fino es apta para diseñar la mezcla de concreto.

Análisis granulométrico del caucho tipo viruta o arrocillo

Tabla 17: Análisis granulométrico del caucho tipo viruta o arrocillo.

Mal	la	WRet.	% WRet.	Ret. Acum.	Pasante
(Pulg)	(mm)	(Kg)		(%)	Acum (%)
3/8"	9,500	0,00	0,00	0,00	100,00
N° 04	4,750	0,00	0,00	0,00	100,00
N° 08	2,360	26,40	4,40	4,40	95,60
N° 10	2,000	108,00	17,99	22,39	77,61
N° 16	1,180	307,00	51,13	73,52	26,48
N° 30	0,600	129,20	21,52	95,04	4,96
N° 40	0,426	10,60	1,77	96,80	3,20
N° 50	0,300	6,00	1,00	97,80	2,20
N° 80	0,180	8,80	1,47	99,27	0,73
N° 100	0,150	2,20	0,37	99,63	0,37
N° 200	0,075	2,20	0,37	100,00	0,00
FONDO			0,00	100,00	0,00
TOTAL		600,40	100,00	-	-

Fuente: Resultados en laboratorio RCF S.R.L.

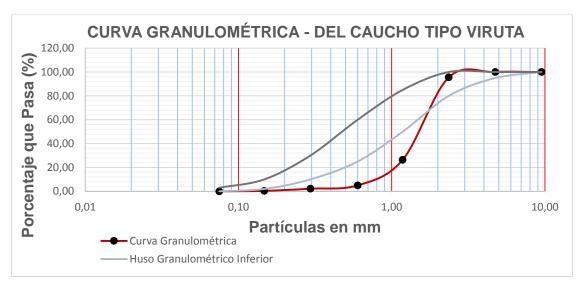
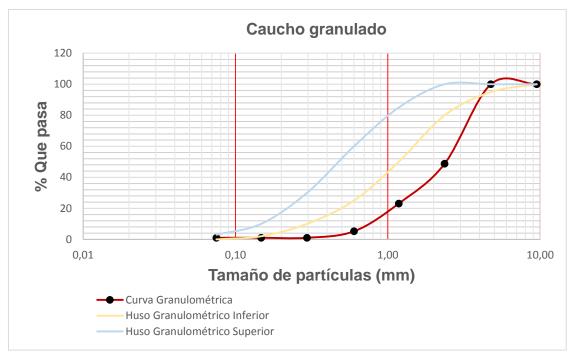


Figura 8: Curva de distribución de partículas de caucho

$$M.F. = \frac{0 + 4.4 + 73.57 + 95.03 + 97.8 + 99.63}{100}$$

$$M.F. = 3.7$$

Análisis granulométrico del caucho tipo granulado


Tabla 18 Granulometría del caucho tipo granulado

Tan	niz	Masa retenido	% Ret.	% Ret. acumulado	% 0	Que pasó	
(Pulg)	(mm)	(gr)	(%)	(%)	Agregado	Especific	ación
3/8"	9,50	0,00	0,00	0,00	100,00	100	100
N°4	4,75	0,00	0,00	0,00	100,00	95	100
N°8	2,36	358,70	51,24	51,24	48,76	80	100
N°16	1,18	179,60	25,66	76,90	23,10	50	85
N°30	0,60	125,30	17,90	94,80	5,20	25	60
N°50	0,30	29,20	4,17	98,97	1,03	10	30
N°100	0,15	0,00	0,00	98,97	1,03	2	10
N°200	0,075	0,00	0,00	98,97	1,03	0	3
FON	DO	7,20	1,03	100,00	0,00		
		700,00	100,00				

Fuente: Resultados de laboratorio.

$$M.F. = \frac{0+0+358,7+179,6+125,3+29,2+0}{100}$$

$$M.F. = 4,21$$

Fuente: Resultados de laboratorio RCF S.R.L.

Elaboración del concreto

Se ha seguido el procedimiento determinado el "American concrete institute committee 211, 2020".

Tabla 19 Requerimientos para diseñar Mezcla de concreto

Descripción	Se Requiere
Resistencia en Kg/cm2	280
Tipo de Estructura	Pavimento
Consistencia	Plástica
Condición Exposición	No tiene Aire Incorporado
Condiciones Específicas	No tiene Condición Especial
Concreto con exposición a Soluciones de Sulfatos	No tiene exposición a sulfatos

Tabla 20 Especificaciones de materiales para el diseño

Descripción	Und	Especificaciones
Cemento		Yura Tipo IP
Peso Específico	g/cm3	2,85
Tipo de Agua		Potable
ÁRIDO FINO		
Densidad Relativa	g/cm3	2,53
Absorción	%	0,02291
Contenido de agua del árido fino	%	0,0044
Módulo de Finesa		3
ÁRIDO GRUESO		
TMN		1"
Densidad Relativa	g/cm3	2,64
Densidad Seco Compactado	Kg/m3	1620,28
Absorción	%	0,0103
Contenido de Agua del árido grueso	%	0,00143

Fuente: Elaboración determinado en Laboratorio RCF S.R.L.

METODO ACI

Se empleó este procedimiento para obtener la mejor mescla al sustituir los diferentes porcentajes de sustitución de caucho tanto en forma de granos y en formas de tipo viruta o arrocillo

Resistencia requerida: F'cr = 280 Kg/cm2

Tam. Máximo nominal: TMN = 1"

Determinación del asentamiento: Slump =3 a 4 pulgadas

Vol. unitario de agua: 193 l/m3

Contenido de aire: 1,50%

Relación: A/C (Agua/Cemento)

A/C por resistencia 0,578

A/C por durabilidad

A/C de diseño es: 0,578

Factor cemento

333,91kg/m3

7,857 bls/m3

Volumen del agregado grueso

Vol. A.G. Seco = 0.65

Peso Agr. Grueso Seco = 1053,182 Kg/m3

Calculando los Vol. Absolutos

Cemento : 0,117

Agua : 0,193

Aire : 0,015

Grava : 0,399

 \sum Vol. Absolutos : 0,724

Calculo de masa de la arena gruesa

Vol. Absoluto Agr. Fino 0,276 m3

Masa Agr. Fino 698,28 kg/m3

Cantidades por volumen para la fabricación de mezcla

Cantidad_Cemento 333,91 kg/m3

Cantidad_Agua 193 L/m3
Arena gruesa 698,28 kg/m3
Grava 1053,182 kg/m3

Corrección considerando la humedad de los áridos

Agregado fino

Contenido de Humedad 0,44 %

Peso Húmedo A.F. 701,352 Kg/m3

Grava

Contenido de agua en la grava 0,143 %

Masa Húmedo Árido Grueso. 1054,688 Kg/m3

Humedad superficial de los materiales para mescla de concreto

H.S. Arena gruesa -1,851 %

H.S. Grava -0,887 %

Aporte de humedad de los materiales arena gruesa y grava

A.H. Arena -12,925 L/m3

A.H. Grava -9,342 L/m3

-22,267 L/m3

Agua_Efectiva 215,267 L/m3

Masa final de los materiales corregidos basada en el contenido de agua

 Cemento
 333,91 kg/m3 = 334 kg/m3

 Agua_Efectiva
 215,267 L/m3 = 215 L/m3

 Arena Gruesa Húmedo
 701,352 kg/m3 = 701 kg/m3

 Grava Húmedo
 1054,688 kg/m3 = 1055 kg/m3

PROPORCIÓNES DE LOS MATERIALES

Cemento 1

 Árido fino
 2,1

 Árido grueso
 3,159

 Agua
 27,398

DOSIFICACIÓN 1 : 2,1 : 3,159 : 27,398 Litros/Bolsa

Relación: A/C(agua/cemento) para Diseño: 0,578

Relación: A/C(Agua/Cemento) corregida Efectiva: 0,645 Corregida

CANTIDAD DE MATERIAL PARA UN DETERMINADO VOLUMEN

Longitud (m)	Ancho (m)	Alto (m)	N° Veces	Volum	en m3
0,5	0,15	0,15	3	0,03	
Cemento	10,02	Adicionamos		11,02	kg
Agua	6,45	0.1		7,1	kg
Agregado Fino	21,03	0,1		23,13	kg
Agregado Grueso	31,65	de Desperdic	ios	34,82	kg

Determinación de los Porcentajes de sustitución.

Se ha empleado el caucho tipo granulado y tipo viruta o arrocillo para realizar las diferentes sustituciones al agregado fino en el concreto.

Tabla 21 Porcentajes de sustitución del caucho granulado y tipo viruta

Descripción	0%Pat	2%G	7%G	7%V	10%V	13%V
Ag. grueso	Х	Х	Х	Х	Х	Х
Ag. fino	У	(y-0,02y)	(y-0,07y)	(y-0,07y)	(y-0,1y)	(y-0,13y)
Cemento	Z	Z	Z	Z	Z	Z
Agua	W	W	W	W	W	W
Caucho	0	C2G	C7G	C7V	C10V	C13V

FUENTE: Elaboración en el laboratorio RCF S.R.L.

Ensayo de especímenes cilíndricos 15 cm x 30 cm

Los cilindros que se emplearon para la elaboración del concreto tuvieron dimensiones de diámetro de 150mm y su altura de 300mm.

Tabla 22 Vigas endurecidas y codificadas después de desmoldar

Descripción de las viga	Codificación de viga
Concreto Patrón 280 Kg/cm2	0% Pat
Concreto 280 Kg/cm2 +02% Caucho Granulado	2%G
Concreto 280 Kg/cm2 +07%Caucho Granulado	7%G
Concreto 280 Kg/cm2 +07% Caucho tipo viruta	7%V
concreto 280 Kg/cm2 +10% Caucho tipo viruta	10%V
Concreto 280 Kg/cm2 +13% Caucho tipo viruta	13%V

FUENTE: Elaborados en laboratorios RCF S.R.L.

Tabla 23: Ensayo de compresión a 7 y 28 días

Código Viga	7 días	28 días
0% patrón	40557	49813
2%G	38930	46360
7%G	21340	27050
7%V	21040	24930
10%V	26090	30470
13%V	15370	23030

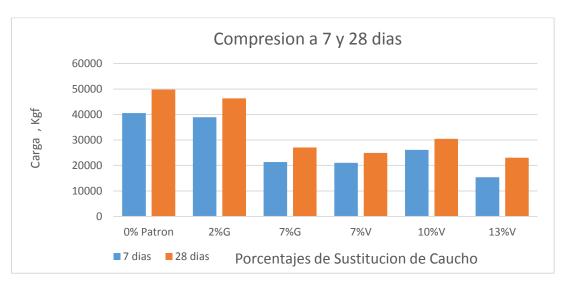


Figura 9: Resultados de ensayo de vigas

Las siguientes figuras muestran la composición interna de las vigas a la edad de 28 días

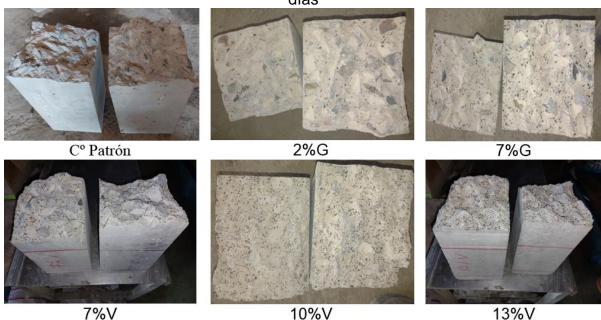


Figura 10: Resultados de roturas y porcentajes de sustitución

Fuente: Resultados de laboratorio RCF S.R.L.

Ensayos de vigas rectangulares de 15x15x50 cm3

Para este ensayo de realizo probetas rectangulares de: Largo: 50cm, Ancho: 15 cm y Alto: 15 cm.

Tabla 24: Ensayos a flexión del concreto elaborado

Código	Fu	Fuerza vertical a 14 días			Fu	ierza v	ertical	a 28 días
de viga	E1	E2	E 3	Carga(Kgf)	E-1	E-2	E-3	Carga(Kgf)
0% Pat	2520	2470	2490	2493,3	2910	2890	2960	2920
2%G	2370	1790	2050	2070	2750	2840	2640	2743,3
7%G	2630	2900	2360	2630	2930	2920	3340	3063,3
7%V	1840	1980	1830	1883,33	2080	2120	2220	2140
10%V	1810	1980	2210	2000	2270	2300	2850	2473,3
13%V	1730	1560	1670	1653,3	1820	2160	1950	1976,7

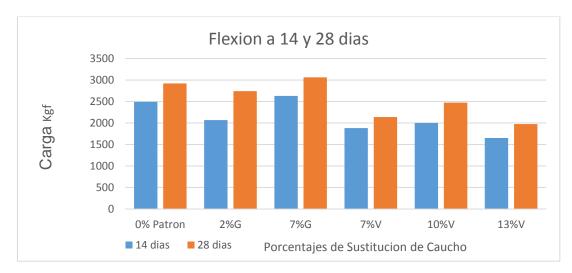


Figura 11: Resultados de ensayo de vigas

Tabla 25: Tendencia del Slump

Código Viga	Slump	Und
0% Patrón	3	Pulg
2%G	3,5	Pulg
7%G	4	Pulg
7%V	4	Pulg
10%V	4,5	Pulg
13%V	5	Pulg

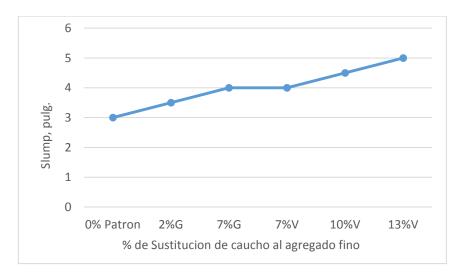


Figura 12: Slump y % de sustitución de Caucho

ESTUDIO DE SUELOS

El estudio de suelos consistió en la excavación de dos calicatas y en cada una de ellas se ha empleado el uso del penetrometro para calcular el índice de CBR in situ utilizando correlaciones normadas en las ASTM D6951 a profundidades de 0.50m y 1.50m. Finalmente se realizó el muestreo y se trasladó al laboratorio.

Análisis y estudio de la Calicata C-1:M1

Tabla 26: Localización Calicata C-1

Coordenadas geográficas		
Latitud	16°26'23.10"S	
Longitud 71°33'21.60"O		
Longitud		

Fuente: Google earth

A continuación se detallan los espesores, la profundidad y se describe todo lo que se ha observado mientras se ha realizado el proceso de excavación de la calicata C-1

Tabla 27: Descripción de los estratos encontrados de la Calicata C-1

Profundidad (m)	Espesor de estrato (m)	Descripción de Calicata C-1:M1
0,00	0,00	Trazo de la calicata 1 , es una vía seca
		Tierra café claro con boloneria de 2" - 6",
0,0-0,3	0,30	medianamente compactada
0,3-0,5	0,20	Tierra con boloneria de 2"-4" y compactada
		Tierra altamente densificada con presencia de
0,5-1,0	0,50	bolonerias menor a 4"
		Tierra bastante compactada color rojo
1,0-1,5	0,50	amarillento

ENSAYO DEL PENETROMETRO DINÁMICO LIGERO (DPL)

Figura 13: Ejecución de ensayo DPL en la Calicata C-2

El siguiente cuadro muestra la cantidad de golpes realizados y la penetración que se produce al aplicar golpes de 10 Kg a una profundidad de 0.50 m. y a 1.50 m.

Tabla 28: Ensayo en la calicata C-1 de DLP a 0.50 m

_	CANTIDAD DE GOLPES	PENETRACION ENTRE LECTURAS (mm)	FACTOR DE MAZO
-	0	0	1
	1	5	1
	1	3	1
	1	2	1
	1	5	1
	1	3	1

Fuente: Resultados de Gabinete.

Tabla 29: Ensayo en la Calicata C-1 de DLP a 1.50 m de profundidad

CANTIDAD DE GOLPES	PENETRACION ENTRE LECTURAS (mm)	FACTOR DE MAZO
0	0	1
1	5	1
1	7	1
1	3	1
1	2	1

Tabla 30 Granulometría del suelo Calicata C-1:M1

Tamiz	Abertura	Wrot .T (a)	Wret.	%Wret.	% WRet.	% que
ASTM	(mm)	Wret.+T (g)	Real(gr)	Pasante	Acum	pasa
4"	101,6			0,00	0,00	100,00
3"	76,2			0,00	0,00	100,00
2 1/2"	63,5			0,00	0,00	100,00
2"	50,8	638,00	451,00	3,6	3,58	96,42
1 1/2"	38,1	714,00	527,00	4,2	7,76	92,24
1"	25,4	727,00	540,00	4,3	12,05	87,95
3/4"	19,1	863,00	676,00	5,4	17,41	82,59
1/2"	12,5	1113,00	926,00	7,3	24,76	75,24
3/8"	9,53	733,00	546,00	4,3	29,10	70,90
N°4	4,76	1503,00	1316,00	10,4	39,54	60,46
N°8	2,36	111,70	67,00	7,4	46,91	53,09
N°10	2	62,10	17,40	1,9	48,82	51,18
N°16	1,19	95,00	50,30	5,5	54,35	45,65
N°30	0,6	112,40	67,70	7,4	61,79	38,21
N°40	0,425	80,90	36,20	4,0	65,77	34,23
N°50	0,3	83,10	38,40	4,2	70,00	30,00
N°80	0,177	102,50	57,80	6,4	76,35	23,65
N°100	0,149	69,30	24,60	2,7	79,06	20,94
N°200	0,074	121,90	77,20	8,5	87,54	12,46
Fondo		158	113,30	12,5	100,00	0,00

Tabla 31: Pesos de la muestra que se empleó para ensayo

Descripción	W _{muestra}	Unidad
Material Grueso > Nº 4	4035	g
Material Fino < Nº 4	10965	g
Total Material Seco	15000	g
Fracción Fina por cuarteo	800	g

Tabla 32: Descripción, Clasificación y Límites de Consistencia del suelo

Especificaciones	Descripción	Und.
C. SUCS	SP - SC	
C. AASHTO	A-1-B (0)	
Cont. de agua Natural	2,3	%
Limite Liquido	0	%
Limite Plástico	0	%
Índice plástico	0	%

Gradacion del suelo M-2:C-2

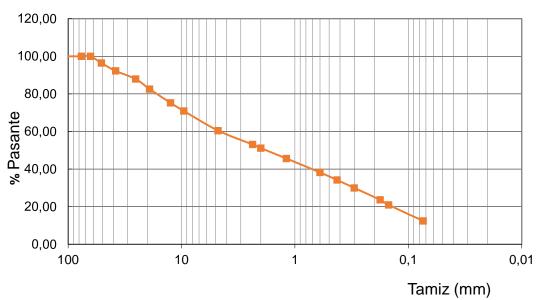


Figura 14: Curva Granulométrica de la calicata C-1: M: 1

Análisis y estudio de Calicata C-2:M2

Tabla 33: Localización Calicata C-2:M2

Coordenadas geográficas			
Latitud	16°26'22.90"S		
Longitud 71°33'12.50"O			

Fuente: Google earth

Tabla 34: Descripción de estratos de la calicata C-2

Profundidad (m)	Espesor de estrato (m)	Descripción de calicata C-2			
0,00	0,00	Trazo de la Calicata Nº2, es una vía seca			
0,0 - 0,15	0,15	Relleno compuesto de material de color gris claro y			
0,0 - 0,13	0,15	afirmado en estado seco			
0,15 - 0,3	0,15	Tierra color gris-café en estado seco			
0.20 0.45	0.45	Tierra de color gris, de consistencia material afirmado,			
0,30 - 0,45	0,15	seco			
0.45 4.05	0.00	Relleno Plásticos color azul y dos pedazos de ladrillo			
0,45 - 1,05	0,60	roto, boloneria de 2"-5", seco			
4.05.4.05	0.00	Tierra afirmado de chacra, Incluye boloneria de 2" a 4"y			
1,05 - 1,25	0,20	húmedo			
4.05.4.55	0.00	Tierra color café claro, también tiene boloneria de 2 a 4"			
1,25 - 1,55	0,30	y húmedo (muestra M-2)			

Tabla 35: Ensayo en la calicata C-2 de DLP a 0.50 m de profundidad

CANTIDAD DE GOLPES	PENETRACION ENTRE LECTURAS mm	FACTOR DE MAZO	
0	0	1	
1	15	1	
1	7	1	
1	8	1	
1	5	1	
1	5	1	
1	11	1	
1	4	1	

La Siguiente Tabla Corresponde al análisis de la distribución granulométrica perteneciente a la muestra obtenida de la calicata C-2 y realizada el tamizado en las instalaciones del laboratorio.

Tabla 36: Distribución granulométrica calicata C-2

Tamiz	Abertura del	WDat (a)	WRet. Real	%WRet.	% WRet.	% que
ASTM	tamiz (mm)	WRet. (g)	(gr)	Pasante	Acum.	pasa
4"	101,6	0,00	0,00	0,00	0,00	100,00
3"	76,2	0,00	0,00	0,00	0,00	100,00
2 1/2"	63,5	0,00	0,00	0,00	0,00	100,00
2"	50,8	0,00	0,00	0,00	0,00	100,00
1 1/2"	38,1	0,00	0,00	0,00	0,00	100,00
1"	25,4	683,00	683,00	4,55	4,55	95,45
3/4"	19,1	386,00	386,00	2,57	7,13	92,87
1/2"	12,5	984,00 984,00		6,56	13,69	86,31
3/8"	9,53	537,00 537,00		3,58	17,27	82,73
N°4	4,76	1445,00	7987,73	53,25	70,52	29,48
N°8	2,36	98,30	543,39	3,62	74,14	25,86
N°10	2	45,90	253,73	1,69	75,83	24,17
N°16	1,19	73,70	407,40	2,72	78,55	21,45
N°30	0,6	99,90	346,04	2,31	80,86	19,14
N°40	0,425	62,60	346,04	2,31	83,16	16,84
N°50	0,3	53,80	297,40	1,98	85,14	14,86
N°80	0,177	97,70	540,07	3,60	88,75	11,25
N°100	0,149	57,70	318,96	2,13	90,87	9,13
N°200	0,074	135,50	749,02	4,99	95,87	4,13
Fondo		74,9	414,04	2,76	98,63	1,37

Fuente: Resultados obtenidos en laboratorio RCF S.R.L.

Tabla 37: Cantidad de material utilizado de la calicata C-2:M2

Descripción	W _{muestra}	Unidad
Material Grueso > Nº 4	4035	g
Material Fino < Nº 4	10965	g
Total Material Seco	15000	g
Fracción Fina por cuarteo	800	g

Fuente: Resultados obtenidos en laboratorio RCF S.R.L.

Tabla 38: Clasificación y Limites de consistencia Calicata C-2:M2

Especificaciones	Descripción	Und.
C. SUCS:	SP - SC	
C. AASHTO:	A-2-7 (0)	
Cont. de Humedad Natural	3,02	%
Limite Liquido	0	%
Limite Plástico	0	%
Índice Plástico	0	%

Gradacion del suelo M-2:C-2

120,00
100,00
80,00
40,00
20,00
100
10
1
0,1
0,01

Figura 15: Granulométrica del suelo C-2:M2

Abertura del tamiz en mm

Esta tabla corresponde al ensayo realizado in situ con el penetrometro dinámico ligero una vez terminada la excavación se procede a realizar el ensayo con la ayuda de dos personas más uno para que sujete el DPL otro para ejecutar los golpes y el ultimo para registrar las lecturas para cada golpe ejecutado.

Tabla 39: Ensayo en la calicata C-2 de DLP a 1.50 m de profundidad

CANTIDAD DE	PENETRACION	FACTOR
-	ENTRE	DE
GOLPES	LECTURAS mm	MAZO
0	0	1
1	10	1
1	10	1
1	8	1
1	4	1
1	9	1
1	4	1
1	5	1
1	5	1

Figura 16: Ensayo del DPL en la calicata C-1

ESTIMACION DE CBR EN CAMPO EMPLEANDO EL DPL

Michael A. Thomas, Daniel E. Chitty, Martin L. Gildea, y Casey M. T'Kindt en su investigación "Constitutive Soil Properties flor Cuddeback Lake, California and Carson Sink, Nevada" en la pág. 126 Utilizaron la correlación de capacidad resistente del suelo y el valor del índice de CBR atraves de las siguientes ecuaciones:

Capacidad de soporte del suelo = -0.7051 $\textit{CBR}^2 + 167.99$ CBR + 754.53 Para la estimación del CBR se utilizó la correlación establecida en la norma, ASTM D 6951 - 03

$$CBR = \frac{0.292}{DPC^{1.12}}$$

Donde

DPC=tasa de penetración en mm/golpe para un mazo de 8kg

CALICATA C-1 DPL a 50 cm

La siguiente tabla es usada para simplificar y referenciar a las tablas siguientes y a las subsiguientes con la misma denominación para su mejor análisis y estudio. Los cuales corresponden a las calicatasC-1, calacataC-2 y respectivamente a la misma vez referenciando a las profundidades de 0.5m y 1.50m.

Tabla 40: Descripción y Denominación de variables de calicata C-1

Denominación	Descripción de variables
Nº G	Numero de golpes
P.A.(mm)	Penetración acumulada
P.A.(cm)	Penetración acumulada
P/L(mm)	Penetración entre lo leído
P.(mm)	Penetración
F.M.	Factor de Martillo
DLP	Penetrometro dinámico ligero

Fuente: Elaboración Propia

Esta tabla fue usado para estimar el índice de CBR promedio empleando las correlaciones mencionadas antes basado en las penetraciones acumulas y lecturas entre lo leído utilizando el penetrometro con un mazo de 10Kg.

Tabla 41: Estimación de CBR empleando el DLP para la calicata C-1:M1

Nº gol	PA(mm)	PA(cm)	P/L(mm)	P(mm)	F.M.	DLP	CBR%	C.B.R. PROMEDIO
0	560	56	0		1			
1	555	55,5	5	5,0	1	5,0	48	
1	552	55,2	3	3,0	1	3,0	85	80,2513838
1	550	55	2	2,0	1	2,0	134	00,2313030
1	545	54,5	5	5,0	1	5,0	48	
1	542	54,5	3	3,0	1	3,0	85	

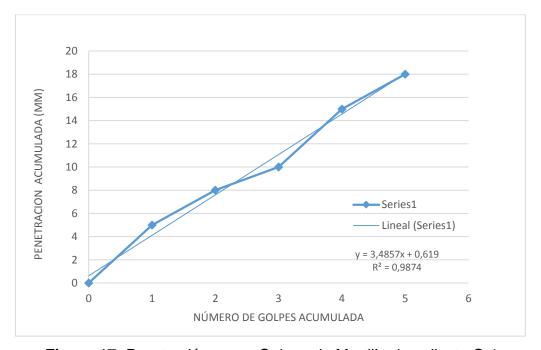


Figura 17: Penetración y nro. Golpes de Martillo de calicata C-1

Tabla 42: Ensayo DLP capacidad de carga del suelo para C-1, C-2

Denominación	Descripción de las denominaciones
А	Penetración/Cantidad golpes (mm)
В	Penetración/Golpe(mm)
С	factor de golpe del martillo
D	Índice DCP
E	CBR %
F	Profundidad in.
G	Profundidad mm
Н	Capacidad que soporta el suelo, psf
I	Capacidad que soporta el suelo, psi

Tabla 43: CBR y Capacidad de carga del suelo con DLP de C-1 a 0.50m

Α	В	С	D	E (CBR%)	F	G	Н	I
5	5	1	5	48,14	0	0	7207,865	50,055
5	5	1	5	48,14	0,197	5	7207,865	50,055
3	3	1	3	85,31	0,197	5	9954,249	69,127
3	3	1	3	85,31	0,315	8	9954,249	69,127
2	2	1	2	134,35	0,315	8	10597,042	73,591
2	2	1	2	134,35	0,394	10	10597,042	73,591
5	5	1	5	48,14	0,394	10	7207,865	50,055
5	5	1	5	48,14	0,591	15	7207,865	50,055
3	3	1	3	85,31	0,591	15	9954,249	69,127
3	3	1	3	85,31	0,709	18	9954,249	69,127

DIAG. ESTRUCTURAL PARA ESTIMACION DE % CBR

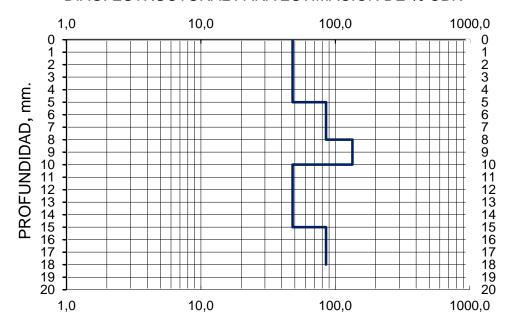


Figura 18: DLP diagrama estructural de CBR de Calicata C-1

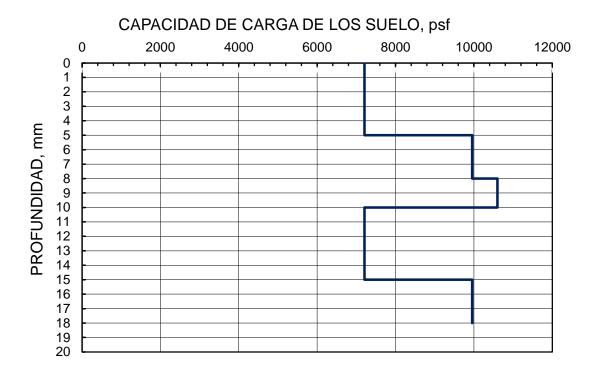


Figura 19: DLP Capacidad de carga del suelo de la Calicata C-1 a 50 cm

CALICATA C-1 DPL a 1.50 m

Tabla 44: Estimación de CBR empleando el DLP para la calicata C-1 A 1.50m

#	NºG	P.A.(mm)	P.A.(cm)	P/L(mm)	P.(mm)	F.M.	DLP	CBR%	C.B.R. PROMEDIO
1	0	1560	156	0		1			
2	1	1555	155,5	5	5,0	1	5,0	48	
3	1	1548	154,8	7	7,0	1	7,0	33	75,20736403
4	1	1545	1554,5	3	3,0	1	3,0	85	
5	1	1543	154,3	2	2,0	1	2,0	134	

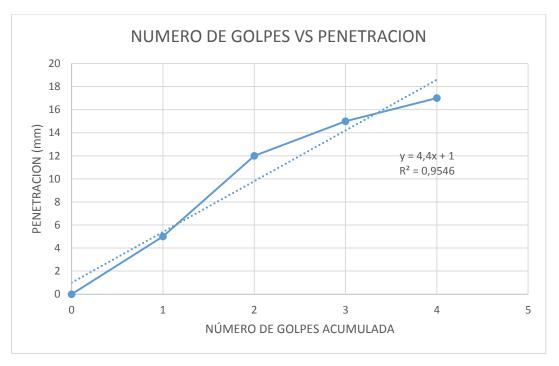


Figura 20: Penetración y Nro. Golpes de Martillo de la Calicata: C-1

Tabla 45: CBR y Capacidad de carga del suelo con DLP de C-1 a 1.50m

Α	В	С	D	E (CBR%)	F	G	Н	1
5	5	1	5	48,14	0	0	7207,865	50,055
5	5	1	5	48,14	0,197	5	7207,865	50,055
7	7	1	7	33,03	0,197	5	5533,661	38,428
7	7	1	7	33,03	0,472	12	5533,661	38,428
3	3	1	3	85,31	0,472	12	9954,249	69,127
3	3	1	3	85,31	0,591	15	9954,249	69,127
2	2	1	2	134,35	0,591	15	10597,042	73,591
2	2	1	2	134,35	0,669	17	10597,042	73,591
2	2	1	2	134,35	0,669	17	10597,042	73,591
2	2	1	2	134,35	0,669	17	10597,042	73,591

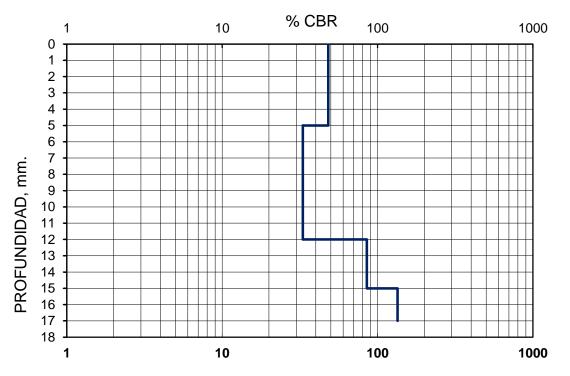


Figura 21: DLP diagrama estructural CBR de Calicata: C-1

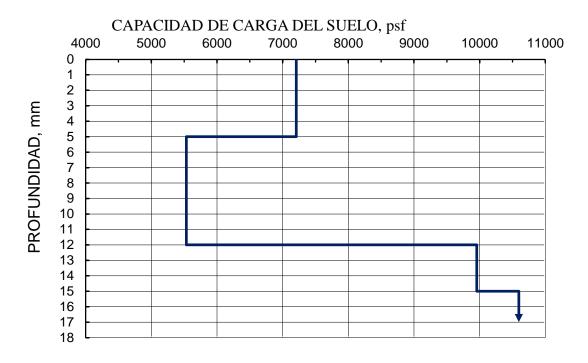


Figura 22: DLP Capacidad de soporte del suelo Calicata: C-1 a 1.50m

CALICATA C-2 DPL a 50 cm

Tabla 46: Estimación de CBR con DLP para la calicata C-1 a 0.50m

#	NºG	P.A. (mm)	P.A. (cm)	P/L (mm)	P. (mm)	F.M.	DLP	CBR%	C.B.R. PROMEDIO
1	0	560	56	0		1			
2	1	545	54,5	15	15,0	1	15,0	14	
3	1	538	53,8	7	7,0	1	7,0	33	
4	1	530	53	8	8,0	1	8,0	28	26 240046
5	1	525	52,5	5	5,0	1	5,0	48	36,219916
6	1	520	52	5	5,0	1	5,0	48	
7	1	509	50,9	11	11,0	1	11,0	20	
8	1	505	50,5	4	4,0	1	4,0	62	

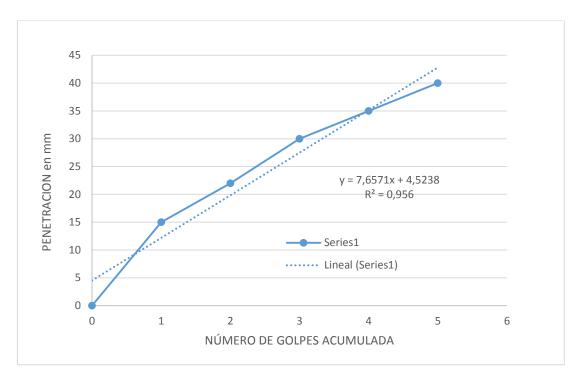


Figura 23: Penetración y Nro. Golpes de maso de C-1

Tabla 47: CBR y Capacidad de carga del suelo con DLP de C-2 a 0.50m

Α	В	С	D	E (CBR%)	F	G	Н	ı
15	15	1	15	14,07	0	0	2977,924	20,680
15	15	1	15	14,07	0,591	15	2977,924	20,680
7	7	1	7	33,03	0,591	15	5533,661	38,428
7	7	1	7	33,03	0,866	22	5533,661	38,428
8	8	1	8	28,44	0,866	22	4961,794	34,457
8	8	1	8	28,44	1,181	30	4961,794	34,457
5	5	1	5	48,14	1,181	30	7207,865	50,055
5	5	1	5	48,14	1,378	35	7207,865	50,055
5	5	1	5	48,14	1,378	35	7207,865	50,055
5	5	1	5	48,14	1,575	40	7207,865	50,055

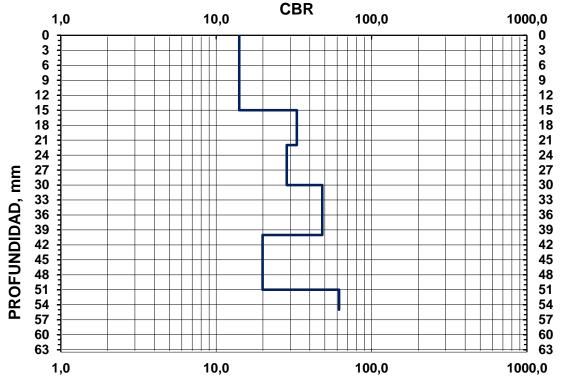


Figura 24: DLP diagrama estructural de CBR de Calicata C-1 a 1.50 m.

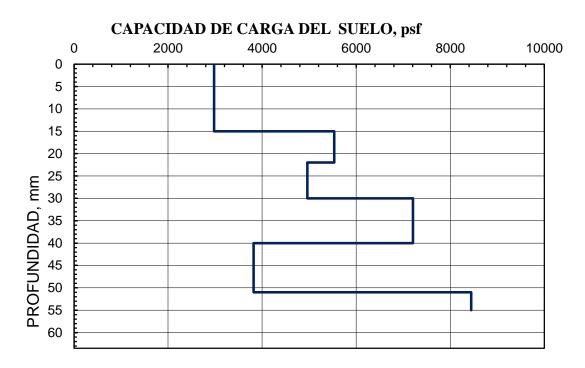


Figura 25: DLP Capacidad de carga del suelo de la Calicata C-1 a 1. 50 cm

CALICATA 2 Ensayo DPL a 1.50 m

Tabla 48: Estimación de CBR empleando el DLP para la calicata C-2 a 1.50m

#	NºG	P.A. (mm)	P.A. (cm)	P/L (mm)	P. (mm)	F.M.	DLP	CBR%	C.B.R. PROMEDIO
1	0	560	56	0		1			
2	1	545	54,5	15	15,0	1	15,0	14	
3	1	538	53,8	7	7,0	1	7,0	33	
4	1	530	53	8	8,0	1	8,0	28	36,219916
5	1	525	52,5	5	5,0	1	5,0	48	30,219910
6	1	520	52	5	5,0	1	5,0	48	
7	1	509	50,9	11	11,0	1	11,0	20	
8	1	505	50,5	4	4,0	1	4,0	62	

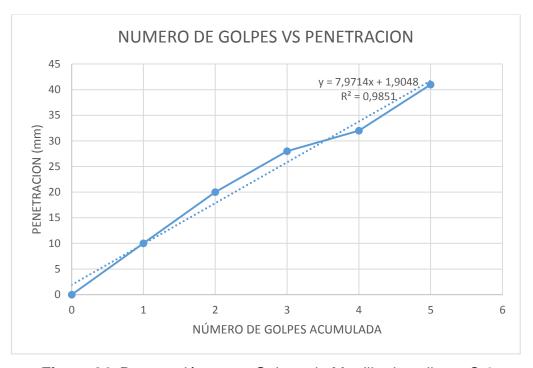


Figura 26: Penetración y nro. Golpes de Martillo de calicata C-2

Tabla 49: CBR y Capacidad de carga del suelo con DLP de C-2 a 1.50m

Α	В	С	D	E(CBR%)	F	G	Н	I
10	10	1	10	22,150	0,000	0	4129,634	28,678
10	10	1	10	22,150	0,394	10	4129,634	28,678
10	10	1	10	22,150	0,394	10	4129,634	28,678
10	10	1	10	22,150	0,787	20	4129,634	28,678
8	8	1	8	28,440	0,787	20	4961,794	34,457
8	8	1	8	28,440	1,102	28	4961,794	34,457
4	4	1	4	61,812	1,102	28	8444,369	58,641
4	4	1	4	61,812	1,260	32	8444,369	58,641
9	9	1	9	24,925	1,260	32	4503,603	31,275
9	9	1	9	24,925	1,614	41	4503,603	31,275

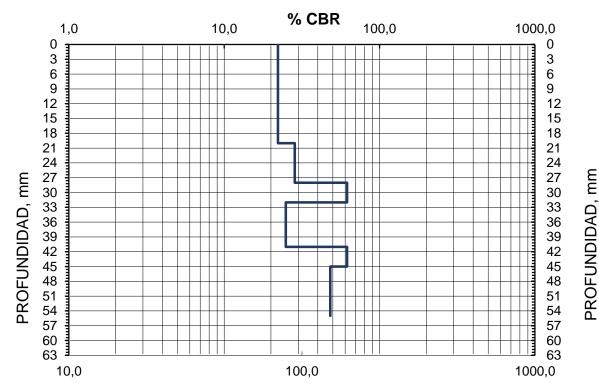


Figura 27: Diagrama estructural de CBR de Calicata C-2 a 1.50 m.

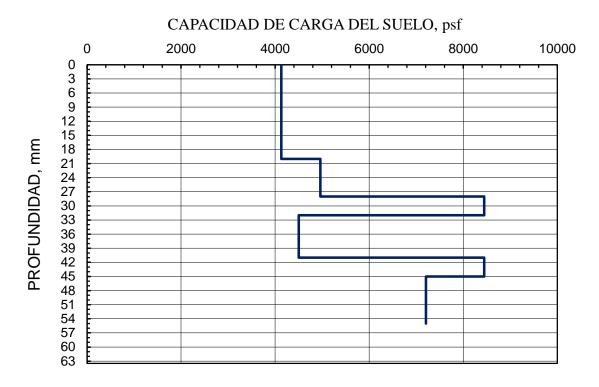


Figura 28: DLP Capacidad de carga del suelo de la Calicata C-2 a 1. 50 cm

ESTIMACION DE CBR EN LABORATORIO

Tabla 50: Proctor Calicata C- 1:M1

PROCEDIMIENTOS	CALC	CALCULO DE LA DENSIDAD				
Ensayo N⁰	P:1	P:2	P:3	P:4		
Humedad Teórica	5	7	9	11		
Peso cilindro + suelo (g)	10426	10622	10745	10590		
Masa cilindro (g)	6381	6381	6381	6381		
Masa húmedo del suelo (g)	4045	4241	4364	4209		
Vol. Molde (cm3)	2104,92	2104,9	2104,9	2104,9		
Densidad humedad, (g/cm3)	1,92	2,015	2,07	2,00		
Para encontrar contenido de agua						
Capsula Nº	В	С	D	E		
P. Muestra compactada húmeda. + capsula (g)	507	500	520	525		
P. Muestra seca. + capsula (g)	482,5	467,2	475,7	472,7		
Masa_Agua, g	24,5	32,8	44,3	52,3		
Masa_Contenedor, g.	0	0	0	0		
Masa Muestra Seca, g.	482,5	467,2	475,7	472,7		
Contenido Agua %w	5,08	7,02	9,31	11,1		
Densidad Seco g/cm3	1,83	1,88	1,90	1,800		

Fuente: Resultados laboratorio RCF S.R.L.

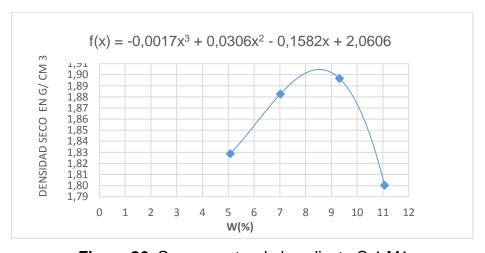


Figura 29: Curva proctor de la calicata C-1:M1

Humedad Optima: 8.5%

Tabla 51: Proctor calicata C-2:M2

PROCEDIMIENTOS	CALC	CULO DE	E LA DENS	SIDAD
Ensayo Nº	Nro-1	Nro-2	Nro-3	Nro-4
Humedad teórica	5	7	9	11
Masa Cilindro+ suelo (g)	10535	10631	10739	10731
Masa Cilindro (g)	6381	6381	6381	6381
Masa Húmedo Del Suelo (g)	4154	4250	4358	4350
Vol. de Molde (cm3)	2104,9	2104,9	2104,9	2104,9
Densidad del suelo humedecido (g/cm3)	1,973	2,019	2,070	2,067
Calculando el contenido de agua				
Capsula N⁰	В	С	D	Е
P. del suelo compactada húmeda. + capsula	499,1	473	516	537
P. de la Muestra_suelo seco. + Capsula	473,5	440,3	471,5	481,8
Masa Agua(g)	25,6	32,700	44,50	55,200
Masa_Contenedor(g)	0	0	0	0
Masa Muestra de suelo seco	473,5	440,30	471,5000	481,8
Contenido Agua %w	5,407	7,427	9,438	11,5
Densidad seca kg/m3	1,872	1,879	1,892	1,854

Fuente: Resultados laboratorio RCF S.R.L.

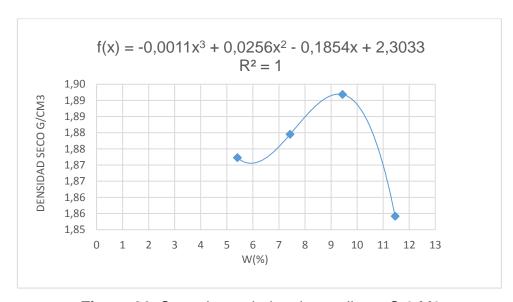


Figura 30: Curva humedad optima calicata C-2:M2

Humedad Optima: 9.5%

ENSAYO CBR

ESTUDIO DE LA CALICATA C-1:M1

Tabla 52: Ensayo de CBR C-1: M1

DESCRIPCION	Molde E-1	Molde E-2	Molde E-3
Numero de capas para cada molde	5	5	5
Nº Golpes Para cada capa	12	25	56
Estado de muestra	NO SAT.	NO SAT.	NO SAT.
Masa Tacho+Suelo húmedecido, g.	12210	12419	11493
Masa del molde y su base g.	8059	8173	7123
Masa Suelo húmedo, g.	4151	4246	4370
Vol. Molde, cm3	2123,06	2059,16	2086,77
Densidad húmeda en g/cm3	1,955	2,062	2,094
Código recipientes	T1	T2	Т3
Masa suelo húmedo+tacho en g.	670	630	627,7
Masa suelo seco+tacho en g.	618,6	575	570,5
Masa Tara en g.	0	0	0
Masa Agua en g.	51,4	55	57,2
Masa de suelo seco en g.	618,6	575	570,5
Contenido de agua (%)	8,31	9,57	10,03
Densidad seco en g/cm3	1,805	1,88	1,90

Fuente: Resultados laboratorio RCF S.R.L.

Tabla 53: Ensayo penetración Molde E-1 con 12 golpes por capa

Nº	Cronometro	Penetra	ción	Carga	Esfuerzo	Esfuerzo
		mm	pulg	Kgf	kgf/cm2	libra/pulg2
0	0	0	0	0	0	0
1	30"	0,64	0,025	95	4,84	68,82
2	1'	1,27	0,05	235	11,97	170,23
3	1 1/2'	1,91	0,08	389	19,81	281,79
4	2'	2,54	0,1	538	27,4	389,72
5	3'	3,81	0,15	803	40,90	581,68
6	4'	5,08	0,2	1020	51,95	738,87
7	6'	7,62	0,3	1267	64,53	917,80
8	8'	10,16	0,4	1222	62,24	885,20
9	10'	12,7	0,5			

Fuente: Resultados laboratorio RCF S.R.L.

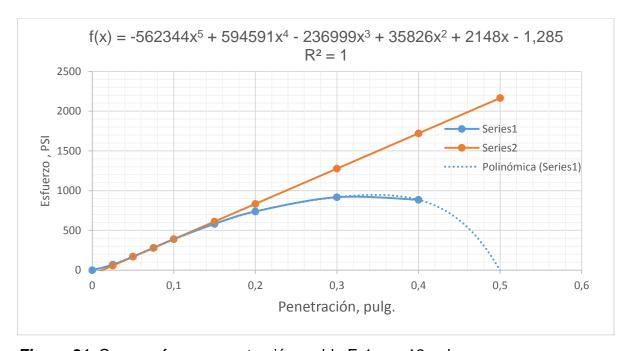


Figura 31: Curva esfuerzo penetración molde E-1 con 12 golpes

Punto de inflexión

X1=0,076

Y1=283,268

Recta tangente al polinomio que pasa a través del punto de inflexión

$$f(x) = 4437.x - 53,944$$

Tabla 54: Calculo de nuevos esfuerzos corregidos de E-1 con 12 golpes

X	F(x)
Penetración (Pulg.)	Esfuerzo (Lib/pulg2)
0,00	-53,94
0,03	57,85
0,05	167,91
,08	279,70
0,10	389,76
0,15	611,61
0,20	833,46
0,30	1277,16
0,40	1720,86
0,50	2164,56

Esfuerzo para la deformación 0,1 "(2,54mm)

%
$$CBR_{0,1}$$
" = $\frac{\sigma_{0,1}$ " $}{1000 \ kg/cm^2}$. 100 ; $\sigma \ en \ Kg/cm^2$

%
$$CBR_{0,1}$$
" = $\frac{389.76}{1000}$. 100 = 38.9 %

Esfuerzo para la deformación 0,2 "(5,08mm)

%
$$CBR_{0,2}$$
" = $\frac{\sigma_{0,2}$ " $}{1500~kg/cm^2}$. 100 ; σ en Kg/cm^2

%
$$CBR_{0,2}$$
" = $\frac{833,46}{1500}$. $100 = 55,56$ %

Tabla 55: Ensayo penetración Molde E-2 con 25 golpes por capa

-		Penet	ración	Carga	Esfuerzo	Esfuerzo
Nº	Cronometro	(mm) (pulg)	(p.ula)	(Kgf)	(kgf/cm2)	(libra/pulg2) o
			(Rgi)	(Kgi/Ciliz)	psi	
0	0	0	0	0	0	0
1	30"	0,64	0,03	300	15,27887	217,316016
2	1'	1,27	0,05	655	33,35888	474,473302
3	1 1/2'	1,91	0,08	1009	51,38795	730,906201
4	2'	2,54	0,10	1361	69,31516	985,890327
5	3'	3,81	0,15	1887	96,10412	1366,91774
6	4'	5,08	0,20	2255	114,8462	1633,49206
7	6'	7,62	0,30	2770	141,0749	2006,55122
8	8'	10,16	0,40	3136	159,7152	2271,67676
9	10'	12,7	0,50	3611	183,9067	2615,76045

Fuente: Resultados laboratorio RCF S.R.L.

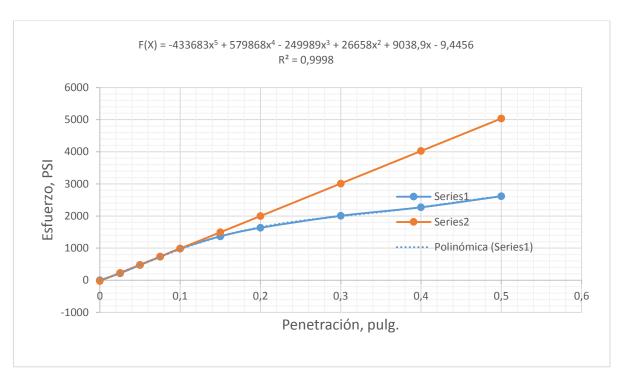


Figura 32: Curva esfuerzo penetración molde E-2 con 25 golpes

Punto de inflexión

X1=0,044

Y1=420.683

Recta tangente al polinomio que pasa a través del punto de inflexión

$$f(x) = 10120. x - 24,597$$

Tabla 56: Calculo de nuevos esfuersos corregidos de E-2 con 25 golpes

X Penetración	F(x) Esfuerzo
(Pulg.)	(Lib/pulg2)
0,00	-24,60
0,03	230,40
0,05	481,40
0,08	736,40
0,10	987,40
0,15	1493,40
0,20	1999,40

0,30	3011,40
0,40	4023,40
0,50	5035,40

Esfuerzo para la deformación 0,1 "(2,54mm)

% CBR0,1" =
$$\frac{\sigma_{0.1}}{1000 \ kg/cm^2}$$
. 100 ; σ en Kg/cm²

%
$$CBR_{0,1"} = \frac{987.40}{1000} \cdot 100 = 98.7403 \%$$

Esfuerzo para la deformación 0,2 "(5,08mm)

%
$$CBR_{0,2}$$
" = $\frac{\sigma_{0,2}$ " $\sigma_{0,2}$: $\sigma_{0,2}$:

%
$$CBR_{0,2}$$
" = $\frac{1999.4}{1500}$. $100 = 133,293$ %

Tabla 57: Nº Ensayo penetración Molde E-3 con 56 golpes por capa

Nº	Cronometro	Penet	ración	Carga	Esfuerzo	Esfuerzo
IN	Cronometro	(mm)	(pulg)	(Kgf)	(kgf/cm2)	(libra/pulg2)
0	0	0	0	0	0	0
1	30"	0,64	0,03	369	18,79302	267,2987
2	1'	1,27	0,05	732	37,28045	530,25108
3	1 1/2'	1,91	0,08	1105	56,27719	800,447326
4	2'	2,54	0,10	1485	75,63043	1075,71428
5	3'	3,81	0,15	2158	109,906	1563,22654
6	4'	5,08	0,20	2796	142,3991	2025,38527
7	6'	7,62	0,30	3950	201,1718	2861,32755
8	8'	10,16	0,40	4880	248,5364	3535,0072
9	10'	12,7	0,50	5530	281,6406	4005,85857

Fuente: Resultados laboratorio RCF S.R.L.

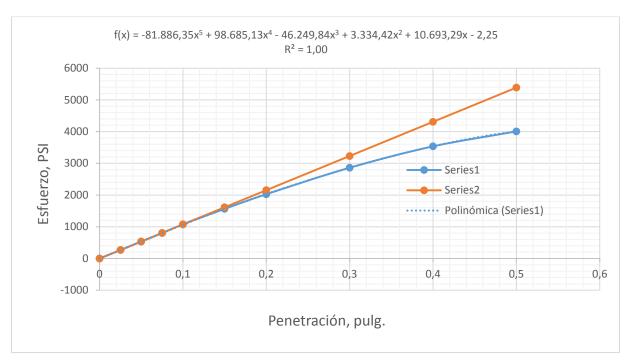


Figura 33: Curva esfuerzo penetración molde E-3 con 56 golpes

Punto de inflexión

X1=0,027 Y1=288,041

Recta tangente al polinomio que pasa a través del punto de inflexión

$$f(x) = 10780. x - 3.019$$

Tabla 58: Calculo de nuevos esfuersos corregidos de E-3 con 56 golpes

X: Penetración (Pulg.)	F(x): Esfuerzo (Lib/pulg2)
0,00	-3,02
0,03	268,60
0,05	535,98
0,08	807,60
0,10	1074,98
0,15	1613,98
0,20	2152,98
0,30	3230,98
0,40	4308,98
0,50	5386,98

Esfuerzo para la deformación 0,1 "(2,54mm)

%
$$CBR_{0,1}$$
" = $\frac{\sigma_{0,1}$ " $\sigma_{0,1}$: $\sigma_{0,1}$: $\sigma_{0,1}$: $\sigma_{0,1}$: $\sigma_{0,1}$: $\sigma_{0,1}$

%
$$CBR_{0,1}$$
" = $\frac{1074.98}{1000}$. 100 = 107.4981 %

Esfuerzo para la deformación 0,2 "(5,08mm)

%
$$CBR_{0,2}$$
" = $\frac{\sigma_{0,2}$ " $\sigma_{0,2}$: $\sigma_{0,2}$:

%
$$CBR_{0,2"} = \frac{2152.98}{1500}$$
. $100 = 143.532$ %

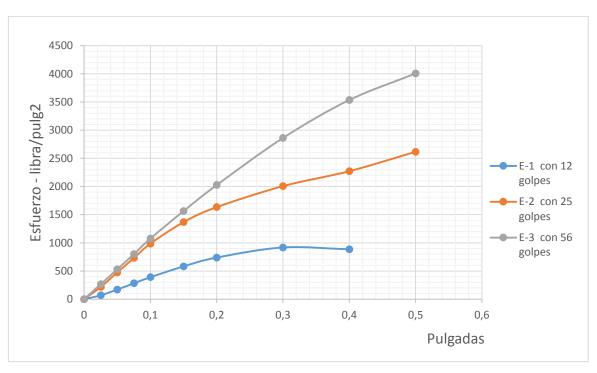


Figura 34: Curva esfuerzo vs penetración de CBR de calicata C-1

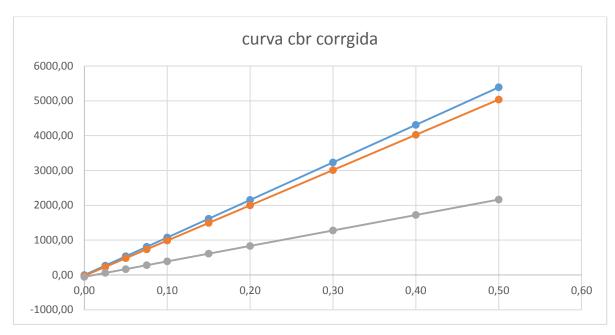


Figura 35: curvas corregidas de 12, 25 y 25 golpes de calicata 1 y 2

Tabla 59: CBR y densidad seca

DESCRIPCION	Molde E-1	Molde E-2	Molde E-3
CBR 0,1"	38,98	98,74	107,50
CBR 0,2"	55,56	133,29	143,53
Densidad Seca γs	1,805	1,88	1,90

Tabla 60: Compactación y humedad

DESCRIPCION	Molde E-1	Molde E-2	Molde E-3
Compactación	M1	M2	M3
Contenido Humedad	8,31	9,57	10,03
Densidad Seca γ _s	1,805	1,88	1,90

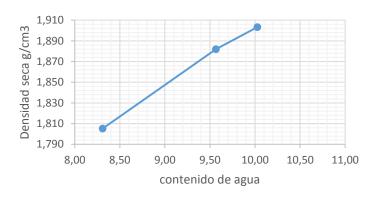


Figura 36: Densidad en estado seco y % humedad

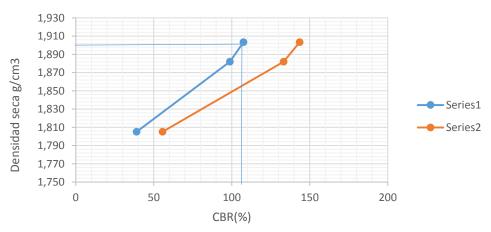


Figura 37: Densidad seca vs CBR

ESTUDIO DE LA CALICATA C-2:M2

Tabla 61: Ensayo de CBR C-2: M2

DESCRIPCION	Molde D-1	Molde D-2	Molde D-3
Capas N⁰	5	5	5
Numero Golpes para cada capa	12	25	56
Estado_Muestra	SIN SAT	SIN SAT	SIN SAT.
Masa moldeD + Suelo húmedo, en g	12606	12521	12650
Masa de MoldeD + base, en g.	8422	8275	8258
Masa suelo húmedo, en g.	4184	4246	4392
Vol. Molde D, cm3	2123,1	2059,2	2086,8
Densidad húmeda, g/cm3	1,971	2,062	2,105
CODIGO DE RECIPIENTE	VAS-001	VAS-002	VAS-003
Masa suelo húmedo + tara (g)	621,1	620,4	618,3
Masa suelo seco + tara (g)	568,5	564,5	561,7
Masa del contenedor, en g.	0	0	0
Masa Agua, en g.	52,6	55,9	56,6
Masa Suelo_Seco (g)	568,5	564,5	561,7
Contenido_Agua en %	9,252	9,903	10,077
Densidad_Seca en g/cm3	1,804	1,876	1,9120

Fuente: Resultados laboratorio RCF S.R.L.

Tabla 62: Ensayo penetración Molde D-1 con 12 golpes por capa

Nº	Cronometro	penetración		Carga	Esfuerzo	Esfuerzo
		(mm)	(pulg)	(Kgf)	(kgf/cm2)	psi
0	0	0	0	0	0	0
1	30"	0,64	0,025	79	4,023	57,23
2	1'	1,27	0,05	194	9,880	140,53
3	1 1/2'	1,91	0,075	355	18,08	257,16
4	2'	2,54	0,1	515	26,23	373,06
5	3'	3,81	0,15	795	40,49	575,89
6	4'	5,08	0,2	1032	52,56	747,57
7	6'	7,62	0,3	1412	71,91	1022,83
8	8'	10,16	0,4	1670	85,05	1209,73
9	10'	12,7	0,5	1860	94,73	1347,36

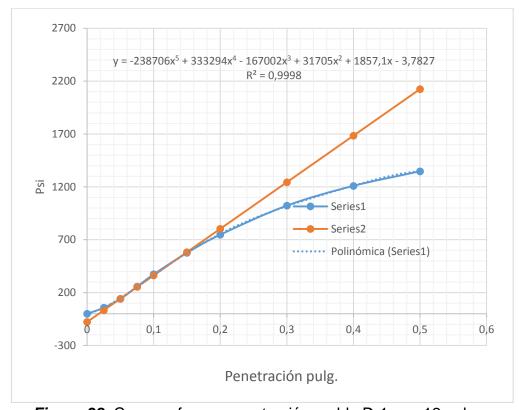


Figura 38: Curva esfuerzo penetración molde D-1 con 12 golpes

Punto de inflexión

X1=0,096

Y1=345.301

Recta tangente al polinomio que pasa a través del punto de inflexión

$$f(x) = 4405.x - 77.78$$

Tabla 63: Calculo de nuevos esfuerzos corregidos de D-1 con 12 golpes

X: Penetración (pulg.)	Y : Esfuerzo (lib/pulg2)
0,00	-77,58
0,03	33,41
0,05	142,67
0,08	253,66
0,10	362,92
0,15	583,17
0,20	803,42
0,30	1243,92
0,40	1684,42
0,50	2124,92

Esfuerzo para la deformación 0,1 "(2,54mm)

% CBR_{0,1"} =
$$\frac{\sigma_{0,1"}}{1000 \ kg/cm^2}$$
. 100 ; σ en Kg/cm²

$$\% CBR_{0,1}" = \frac{362.92}{1000}.100 = 36.2921 \%$$

Esfuerzo para la deformación 0,2 "(5,08mm)

%
$$CBR_{0,2}$$
" = $\frac{\sigma_{0,2}$ " $}{1500 \ kg/cm^2}$. 100 ; $\sigma en \ Kg/cm^2$

%
$$CBR_{0,2}$$
" = $\frac{803.42}{1500}$. $100 = 53.5614$ %

Tabla 64: Ensayo penetración Molde D-2 con 25 golpes por capa

Nº	Cronometro	penetración		Carga	Esfuerzo	Esfuerzo
		(mm)	(pulg)	(Kgf)	(kgf/cm2)	psi
0	0	0	0	0	0	0
1	30"	0,64	0,025	60	3,055775	43,4632032
2	1'	1,27	0,05	203	10,33871	147,050504
3	1 1/2'	1,91	0,075	421	21,44135	304,966809
4	2'	2,54	0,1	705	35,90536	510,692638
5	3'	3,81	0,15	1130	57,55043	818,556994
6	4'	5,08	0,2	1510	76,90367	1093,82395
7	6'	7,62	0,3	2136	108,7856	1547,29004
8	8'	10,16	0,4	2647	134,8106	1917,45165
9	10'	12,7	0,5	3010	153,298	2180,40403

3500 $y = -608967x^5 + 815666x^4 - 393973x^3 + 77277x^2 + 327x - 5,2298$ 3000 $R^2 = 0,9997$ 2500 2000 Esfuerzo 1500 Series1 Series2 1000 · · Polinómica (Series1) 500 0,1 0,2 0,3 0,4 0,5 0,6 -500 Penetración pulg.

Figura 39: Curva esfuerzo penetración molde D-2 con 25 golpes

Punto de inflexión

X1=0,105

Y1=516.384

Recta tangente al polinomio que pasa a través del punto de inflexión

$$f(x) = 6931.x - 465.47$$

Tabla 65: Calculo de nuevos esfuerzos corregidos de D-2 con 25 golpes

X : Penetración (pulg)	Y: Esfuerzo (lib/pulg2)
0,00	-211,37
0,03	-36,73
0,05	135,18
0,08	309,82
0,10	481,73
0,15	828,28
0,20	1174,83
0,30	1867,93
0,40	2561,03
0,50	3254,13

Esfuerzo para la deformación 0,1 "(2,54mm)

% CBR0,1" =
$$\frac{\sigma_{0,1}}{1000 \, kg/cm^2}$$
. 100 ; σ en Kg/cm^2

%
$$CBR_{0,1}$$
" = $\frac{481.73}{1000}$. 100 = 48.1729 %

Esfuerzo para la deformación 0,2 "(5,08mm)

%
$$CBR_{0,2}$$
" = $\frac{\sigma_{0,2}$ " $\sigma_{0,2}$: $\sigma_{0,2}$:

%
$$CBR_{0,2}$$
" = $\frac{1174.83}{1500}$. $100 = 78.3219$ %

Tabla 66: Ensayo penetración Molde D-3 con 56 golpes por capa

Nº	Cronometro	penetra	penetración		Esfuerzo	Esfuerzo
		(mm)	(pulg)	(Kgf)	(kgf/cm2)	(libra/pulg2)
0	0	0	0	0	0	0
1	30"	0,64	0,025	250	12,73	181,10
2	1'	1,27	0,05	597	30,40	432,46
3	1 1/2'	1,91	0,075	994	50,62	720,04
4	2'	2,54	0,1	1356	69,06	982,27
5	3'	3,81	0,15	2055	104,66	1488,61
6	4'	5,08	0,2	2691	137,05	1949,32
7	6'	7,62	0,3	3604	183,55	2610,69
8	8'	10,16	0,4	4356	221,85	3155,43
9	10'	12,7	0,5	4897	249,40	3547,32

Fuente: Resultados laboratorio RCF S.R.L.

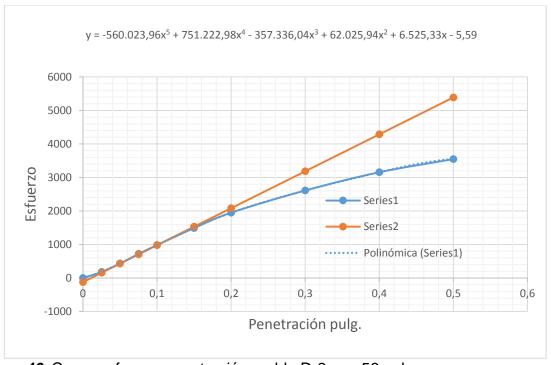


Figura 40: Curva esfuerzo penetración molde D-3 con 56 golpes

Fuente: Resultados laboratorio RCF S.R.L.

Punto de inflexión

X1=0,085

Y1=814.481

Recta tangente al polinomio que pasa a través del punto de inflexión

$$f(x) = 11020.x - 122.219$$

Tabla 67: Calculo de nuevos esfuersos corregidos de D-2 con 25 golpes

X	Υ
penetración	Esfuerzo
(Pulg.)	(lib/pulg2)
0,00	-122,22
0,03	155,45
0,05	428,78
0,08	706,45
0,10	979,78
0,15	1530,78
0,20	2081,78
0,30	3183,78
0,40	4285,78
0,50	5387,78

Esfuerzo para la deformación 0,1 "(2,54mm)

% CBR0,1" =
$$\frac{\sigma_{0,1}}{1000 \ kg/cm^2}$$
.100 ; σ en Kg/cm²

%
$$CBR_{0,1}$$
" = $\frac{979.78}{1000}$. 100 = 97.9781 %

Esfuerzo para la deformación 0,2 "(5,08mm)

%
$$CBR_{0,2}$$
" = $\frac{\sigma_{0,2}$ " $\sigma_{0,2}$: $\sigma_{0,2}$:

%
$$CBR_{0,2}$$
" = $\frac{2081.78}{1500}$. $100 = 2081.78$ %

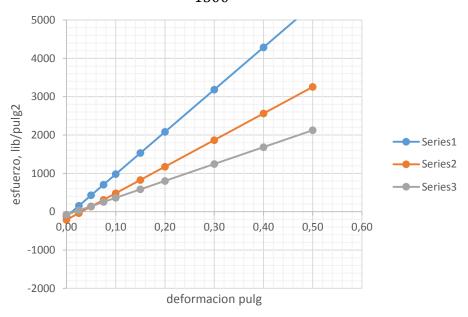


Figura 41: Esfuerzo - deformación para 12, 25, 56 golpes

Fuente: Resultados laboratorio RCF S.R.L.

Tabla 68: CBR - Densidad seca del suelo en molde D

DESCRIPCION	Molde D-1	Molde D-2	Molde D-3
CBR	12 G	25 G	56 G
CBR 0,1"	36,29	48,17	97,98
CBR 0,2"	53,56	78,32	138,79
Densidad Seca γs	1,804	1,88	1,91

Tabla 69: Compactación y Contenido de humedad del suelo en el molde D

DESCRIPCION	Molde D-1	Molde D-2	Molde D-3
Compactación	M1	M2	M3
Contenido Humedad	9,25	9,90	10,08

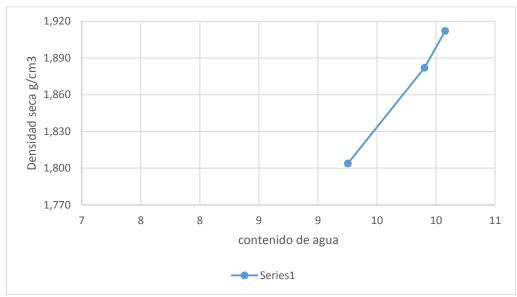


Figura 42: Curva Densidad Seca y contenido de agua

Fuente: Resultados laboratorio RCF S.R.L.

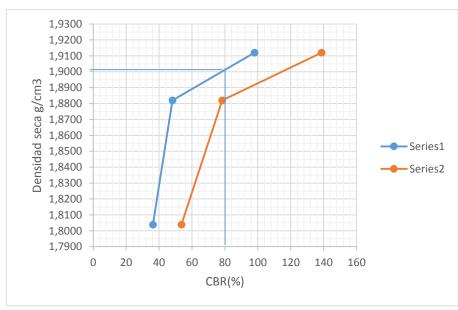


Figura 43: Curva Densidad seca y CBR

Fuente: Resultados laboratorio RCF S.R.L.

PAVIMETO RIGIDO

Conteo vehicular

Estación: Cruce de la vía Bulgaria y calle los Andes

Fecha: Domingo 24/04/2022 hasta Sábado 30/04/2022

Tabla 70 Conteo vehicular de la vía Bulgaria

Código	Dir.	Do	Lu	Ма	Mi	Ju	Vi	Sa	Total	IMDs	%
Vehículo	ЫI.	24	25	26	27	28	29	30	TOtal	IIVIDS	70
VHL1.	lda	22	26	20	48	28	41	21	206	55	53,79%
VIILI.	Vue.	38	14	15	26	10	23	51	177	55	46,21%
VHL2.	lda	3	1	0	3	1	2	1	11	3	55,00%
VIILZ.	Vue.	2	0	1	1	5	0	0	9		45,00%
C2.	lda	3	1	3	4	3	2	0	16	4	61,54%
02.	Vue.	1	0	4	2	0	3	0	10	4	38,46%
C3.	lda	0	1	0	2	0	1	0	4	1	66,67%
C3.	Vue.	0	0	1	0	0	0	1	2	I	33,33%
Taga	lda	0	0	2	0	0	0	0	2	1	66,67%
T2S2.	Vue.	0	0	0	0	0	0	1	1	1	33,33%

Calculo del IMDs

 V_j =Volumen de transito de 7 días durante la semana

$$IMD_S = \frac{V_D + V_L + V_M + V_M + V_J + V_V + V_S}{7}$$

$$VHL1. = \frac{206 + 177}{7} = 55$$

$$VHL2. = \frac{11 + 9}{7} = 3$$

$$T2S2 = \frac{2 + 1}{7} = 1$$

$$C2 = \frac{16 + 10}{7} = 4$$

$$C3 = \frac{4 + 2}{7} = 1$$

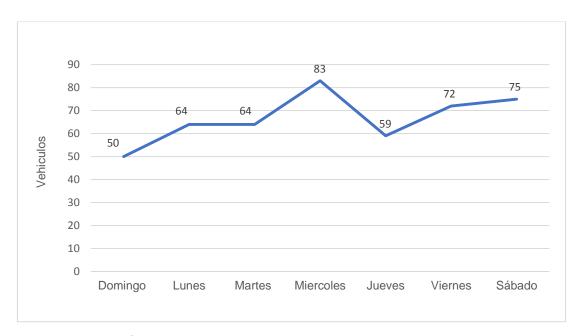


Figura 44: Transito_Vehicular durante la semana

Calculo del IMDA

 $IMD_A = IMD_S * fe$

Figura 45: Peaje más cercano a la Vía Bulgaria de Hunter Variante de Uchumayo.

Fuente: http://sig.sutran.gob.pe/mapas/mapa.php

En promedio para los años de 2010 al 2016 se tiene como fuente los datos proporcionados por el "Ministerio de economía y finanzas" para calcular el factor correccional de los vehículos ligeros y de la misma manera para los vehículos pesados.

Nº	Dogio	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio
IN	Peaje	Ligeros						
68	SOCOS	1,2201	0,9974	0,9997	0,8936	1,0904	1,0721	0,9417
69	TAMBOGRANDE	0,9319	0,9595	1,0447	1,1058	1,0969	1,0611	1,0462
70	TOMASIRI	0,9857	0,9170	1,0642	1,0853	1,1028	1,0928	1,0370
71	TUNAN	1,0782	1,0585	1,1034	1,0103	1,0405	1,0399	0,8655
72	UNION PROGRESO	1,0447	1,0363	1,0948	1,0397	1,0254	1,0172	0,9599
73	UTCUBAMBA	1,2615	1,0304	1,0861	1,0957	1,0591	1,0235	0,9403
74	VARIANTE DE PASAMAYO	0,9446	0,9314	1,0413	0,9953	1,0835	1,1120	0,9454
75	VARIANTE DE UCHUMAYO	0,7271	0,6706	1,0249	1,1471	1,1965	1,1952	1,1283
76	VESIQUE	0,8541	0,8934	1,0456	1,0853	1,1403	1,1558	1,0155

Figura 46: Corrección para Vehículos ligeros

FUENTE: https://www.gob.pe > mef

Para Vehículos Ligeros es: 1.1283

Código	Dagia	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio
Coulgo	Peaje	Pesados						
68	SOCOS	1,0895	1,0107	1,0057	1,0133	1,0501	0,9948	0,9791
69	TAMBOGRANDE	0,5981	0,7330	1,1320	1,4600	1,4249	1,2833	1,3179
70	TOMASIRI	0,9707	0,9200	1,0234	1,0693	1,0587	1,0722	1,0633
71	TUNAN	1,0667	1,0665	1,0946	1,0642	0,9824	0,9383	0,9359
72	UNION PROGRESO	1,1490	1,1263	1,0698	1,0555	1,0314	1,0245	0,9767
73	UTCUBAMBA	1,1972	1,0385	1,0281	1,0362	1,0103	0,9780	0,9674
74	VARIANTE DE PASAMAYO	0,9887	0,9310	0,9776	1,0407	1,0175	0,9947	1,0313
75	VARIANTE DE UCHUMAYO	1,0098	0,9718	1,0488	1,0730	1,0687	1,0488	1,0203
76	VESIQUE	1,0350	0,9958	1,0528	1,0910	1,0936	1,0812	1,0585

Figura 47: Corrección para Vehículos Pesados

FUENTE: https://www.gob.pe > mef

Para vehículos pesados es: 1.0313

Tabla 71: IMD_A por tipo de vehículo.

TIPO	IMDs	F. Corrección	Calc. IMD _A	IMDA
VHL1.	55	1,1283	62,0565	62
VHL2.	3	1,1283	3,3849	4
C2.	4	1,0313	4,1252	4
C3.	1	1,0313	1,0313	1
T2S2.	1	1,0313	1,0313	1

Proyección futura del poblamiento de vehículos para el año 2026 pesados y ligeros hasta el tiempo de inicio de ejecución.

n : Año

r : Tasa crecimiento al año

 T_n (veh/día): Tránsito futuro T_0 (veh/día): Tránsito actual

Tasa de Crecimiento de Vehículos Ligeros			
Vollication E	TC		
Amazonas	0,62%		
Ancash	0,59%		
Apurímac	0,59%		
Arequipa.	1,07%		
Ayacucho	1,18%		
Cajamarca.	0,57%		
Callao	1,56%		
Cusco.	0,75%		
Huancavelica.	0,83%		
Huánuco.	0,91%		

Tasa de Crecimiento de Vehículos Pesados			
	PBI		
Amazonas	3,42%		
Ancash	1,05%		
Apurimac	6,65%		
Arequipa.	3,37%		
Ayacucho	3,60%		
Cajamarca.	1,29%		
Cusco.	4,43%		
Huancavelica.	2,33%		
Huánuco.	3,85%		
Ica.	3,54%		

Figura 48: Tasas de crecimiento

FUENTE: https://www.gob.pe > mef

Para Livianos r: 1.07% Para Pesados r: 3.37%

n:4 (tiempo Inicio-Ejecución)

Estimación del nuevo IMD_A para el año 2026 en base a tasas de crecimiento anual de lo vehículos ligeros y pesados.

Tabla 72: Transito en 4 años siguientes

IMD _A (To)	r(%)	n	Tn=To(1+r)^(n-1)
62,06	1,07	4	64,07
3,3849	1,07	4	3,49
4,1252	3,37	4	4,56
1,0313	3,37	4	1,14
1,0313	3,37	4	1,14

Calculo del factor FD y FC

Tabla 73: Procedimiento para hallar el FC Y FD

Procedimiento	Descripción	Parámetros
Paso_1	Nº de Calzadas	1 Calzada
Paso_2	Nº de Sentidos	2 Sentidos
Paso_3	Nº de Carriles	1 Carril
Paso_4	Factor Carril (FC)	1,00
Paso_5	Factor Direccional (FD)	0,50

Fuente: MTC Manual de carreteras sección MC-05-14, Pág. 62

Factores de Crecimiento Acumulado (Fca)

Considerando el crecimiento anual de vehículos livianos (r=1.07%) y vehículos pesados(r=3.37%) dentro del periodo de diseño (n=20 años).

$$Fca = \frac{(1+r)^n - 1}{r}$$

$$Fca1 = \frac{(1+1.07)^{20} - 1}{1.07}$$

$$= 22.170$$

$$Fca2 = \frac{(1+3.37)^{20} - 1}{3.37}$$

$$= 27.905$$

Caculo del factor FEE

Menéndez, (2009). En su libro denominado "ingeniería de pavimentos" del ICG en la página 67. Establece las siguientes ecuaciones para calcular este factor.

$$\log\left(\frac{1}{FEE}\right) = 4.62 \times \log(18+1) - 4.62 \times \log(L_X + L_2) + 3.28 \times \log(L_2) + \frac{G_t}{\beta_X} - \frac{G_t}{\beta_{18}}$$
$$\beta_X = 1.00 + \frac{3.63 \times (L_X + L_2)^{5.20}}{(D+1)^{8.46} \times L_2^{3.52}} \qquad G_t = \log\left(\frac{4.5 - P_t}{4.5 - 1.5}\right)$$

FEE = factor de ejes equivalentes

 $L_x = peso del eje en kips (kilo Libras)$

 $L_2 = c\acute{o}digo\ del\ eje$: $(simple = 1,\ tandem = 2,\ Tridem = 3)$

 $\beta_X = Factor$ que depende del tipo y codigo de eje y del número estructural

 $S_N = N$ úmero estructural en pulgadas

D = Espesor de la losa en pulgadas

Estos valores se asumieron

$$Pt = 2.5$$

$$D = 4.0 \text{ pulg}$$

Calculo del ESAL de Diseño

$$ESAL = (Nro \ de \ Vehiculos) * (F. E. E.) * FD * FC * 350 * Fca$$

Tabla 74: Numero de repeticiones de 8.2 tn. en EEs

TIPO	IMDs	Delant.	E.N°1	E.N°2	FEE	ED	EC	۸ño	Fca	ESAL
VHL	IIVIDS	Delant.	E.IN I	E.IN Z	Total	ΓD	FC	Allo	гса	ESAL
VHL1.	55	0,00039	0,00039		0,00078	0,58	1	365	22,170	205
VHL2.	3	0,00435	0,059023		0,06337	0,55	1	365	22,170	846
C2.	4	0,51704	3,632285		4,14933	0,62	1	365	27,905	104030
C3.	1	0,51704	3,786467		4,30351	0,67	1	365	27,905	29222
T2S2.	1	0,51704	3,632285	3,786	7,93579	0,67	1	365	27,905	53886
			ESAL	de dise	eño =1747	'17				

Class do Via	EALs ^a	Nivel de	Factor de	EALs de diseño ^a
Clase de Vía	(millones)	Confiab.b (%)	Confiabil.(Fr)	(millones)
Expresas	7,5	90	3,775	28,4
Arteriales	2,8	85	2,929 84	0 000 8,3
Colectoras	1,3	80	2,390	3,0
Locales	0,43	75	2,010	0,84
Notos				

Notas:

Figura 49: Tabla para clasificación de la Vía Bulgaria

Fuente: RNE CE.010 Pag. 72

La vía Bulgaria se clasifica como una vía Local

<sup>a. Basados en una vida de diseño de 20 años, 4% de crecimiento, 50% de tráfico direccional
b. Basada en una desviación estándar de 0,45.</sup>

METODO DEL AASHTO 93

Paso_1: Determinación de vida útil del pavimento

Una parte esta pavimenta y la otra parte está sin pavimentar por lo tanto: 20 años

Paso_2: Transito

Tabla 75: Nro. De Repeticiones Acumuladas de EE

Catagoría	Rango De Trá	Tipo De Tráfico	
Categoría	Expresad	o En EE	Expresado En EE
Paia Valuman Da	De 150001	A 300000	TP1
Bajo Volumen De	De 300001	A 500000	TP2
Tránsito De 150,001	De 500001	A 750000	TP3
A 1'000,000 EE	De 750001	A 1000000	TP4

FUENTE: MTC Sección Suelos, pág. 213

El estudio de tráfico dio como resultado el número de repeticiones de eje equivalente agua a: 174717 por lo tanto se eligió a TP1 como tipo de transito que corresponde a bajo volumen de tráfico.

Paso_3: Desviación Estándar (S_0)

El límite superior e inferior que sugiere LA AASHTO es: $0.3 < S_o < 0.4$ por consiguiente el MTC sección suelos, pág. 215 $S_o = 0.35$ ya está recomendado.

Paso_4: Nivel De Confiabilidad(R)

Tabla 76: Confiabilidad para bajo volumen de transito (*R*)

Tipo De Tráfico	Rango de EE Acumulados		R	Z _R
TP1	De 150001	A 300000	70%	-0.385
TP2	De 300001	A 500000	75%	-0.524
TP3	De 500001	A 750000	80%	-0.674
TP4	De 750001	A 1000000	80%	-0.842

Fuente: MTC Sección Suelos, Pág. 215

Nivel de confiabilidad según para tráfico del tipo TP1 es: 70%

Paso_5: Probabilidad (Z_R)

De la tabla anterior (Z_R) es -0.524

Paso_6: Serviciabilidad al inicio (P_0)

Inmediatamente después de su construcción se establece la condición original del pavimento. La AASHTO estableció un valor de 4.5, en caso no se disponga de información para diseño.

Tabla 77: Serviciabilidad para bajo volumen de transito

Tipo de	Rangos del tráfico en ejes		Serviciabilidad al	Serviciabilidad al
tráfico	equivalentes		inicio (P_o)	final (P_F)
TP1	De 150001	A 300000	4,1	2,0
TP2	De 300001	A 500000	4,1	2,0
TP3	De 500001	A 750000	4,1	2,0
TP4	De 750001	A 1000000	4,1	2,0

FUENTE: MTC Sección Suelos, Pág. 214

Estos dos parámetros inicial y final de la ecuación de AASHTO fue elegido en base al tipo de trafico TP1 por lo tanto

$$P_o = 4.1$$
 $P_f = 2.0$

Paso_6: Parámetro para caracterizar la sub rasante (Kc en psi)

Para tener una idea de cuánto es el asentamiento de la subrasante en el momento que es aplicado el esfuerzo de compresión al suelo.

Figura 50: Esquema de la sección transversal del pavimento

Sub Base Granular (K1)

Sabiendo que la subrasante está caracterizado por el valor de Ko se procedió al uso del monograma y sub base granular está caracterizado por el valor de K1.

Rondon, Reyes, (2022) en su libro denominado "Pavimentos: materiales, construcción y diseño" en su 2da edición de la pág. 311 en la cual se puede ver la correlación entre el valor de K y CBR a través de las ecuaciones. Tiene uso para suelos compactados y suelos no alterados. Para hallar el Modulo de reacción del suelo o (Ko).

$$K = 2.55 + 52.5 \, LOG \, (CBR) \, , \frac{Mpa}{m} \qquad Si \, CBR \le 10\% \, ,$$

$$K = 46 + 9.08 \, \left(LOG \, (CBR) \right)^{4.34} , \frac{Mpa}{m} \qquad Si \, CBR > 10\%$$

Tabla 78: CBR más bajo recomendado por el MTC

Tráfico	Requerimiento
Para <= 15x106 EE	CBR mínimo 40 %
Para > 15x106 EE	CBR mínimo 60 %

FUENTE: MTC Sección Suelos, Pág. 217

Se eligió el CBR más bajo recomendado CBR = 40%

$$K1 = 46 + 9.08 \left(LOG (40)\right)^{4.34}$$

$$K1 = 116.2088 \frac{Mpa}{m}$$

$$K1 = 116.2088x \left(0,102040 \frac{Kg}{cm3}\right)$$

$$K1 = 11.8579 \frac{Kg}{cm3}$$

Sub Rasante (K0)

Para caracterizar la subrasante se empleó la correlación de Ko perteneciente al monograma y el CBR hallado en laboratorio.

$$Si CBR = 80\%$$

$$K0 = 195 \frac{Mpa}{m} del Monograma$$
 $K0 = 19.5 \frac{Kg}{cm3} del Monograma$

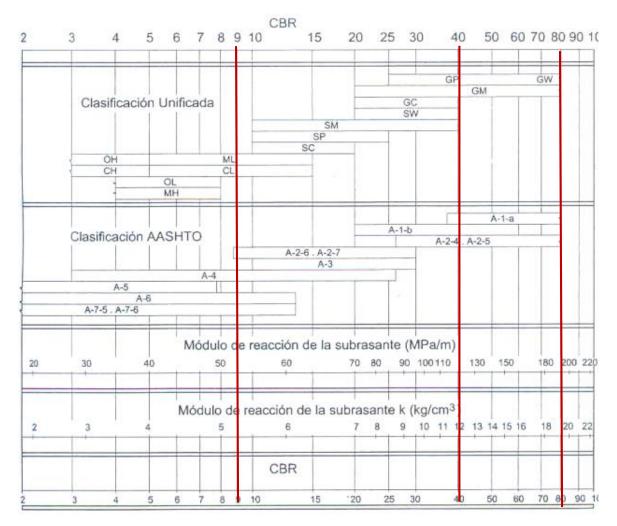


Figura 51: correlación CBR y Ko

Fuente: MTC Sección Suelos Pág. 216

También se comprobó haciendo uso la correlación del libro Rondon, Reyes, (2022). y se comprobó que se obtiene valores bastante similitud.

$$Si\ CBR > 10\%$$
, $Ko = 46 + 9.08 \left(LOG\ (CBR)\right)^{4.34}$, $\frac{Mpa}{m}$
 $Como\ mi\ CBR = 80\%$
 $Ko = 46 + 9.08 \left(LOG\ (80)\right)^{4.34}$
 $Ko = 194.23\ \frac{Mpa}{m}$
 $Ko = 194.23x \left(0,102040\ \frac{Kg}{cm3}\right)$

$$Ko = 194.23x \left(0,102040 \frac{Kg}{cm3}\right)$$
 $Ko = 19.8192 \frac{Kg}{cm3}$

$$\begin{split} K_{c} &= \left[1 + \left(\frac{h}{38}\right)^{2} x \left(\frac{K_{1}}{K_{0}}\right)^{2/3}\right]^{0.5} x K_{0} \\ F(K_{1}, K_{0}) &= \left[1 + \left(\frac{h}{38}\right)^{2} x \left(\frac{K_{1}}{K_{0}}\right)^{2/3}\right]^{0.5} x K_{0} \end{split}$$

Figura 52: Ecuación para hallar el Kc

h, cm: Altura de la SubBase granular

Kc, kg/cm3: Para caracterizar la reacción combinada

K₁, kg/cm₃: Para caracterizar sub base granular

Ko, kg/cm3: Para caracterizar la subrasante

$$K_{c} = \left[1 + \left(\frac{15\text{cm}}{38}\right)^{2} \times \left(\frac{11.8579}{19.8192}\right)^{2/3}\right]^{0.5} \times 19.8192$$

$$K_{c} = 20.8833 \frac{\kappa_{g}}{cm3}$$

$$K_{c} = 20.8833 \times 36,13 \frac{PSI}{lib}$$

$$K_{c} = 754.51 \frac{PSI}{PILIC} \quad o \quad (PCI)$$

Tabla 79: Resumen Ko, K1 y Kc

K	Mpa/m	kg/cm3	PCI o Lib/pulg3
Ko	194,23	19,81	
K1	116,21	11,85	
Kc	204,69	20,87	754,14

Paso_7: Rotura del concreto $(M_R en psi)$

28 días días después de haber realizado el curado de los especímenes se procede a hallar la resistencia a la tracción del concreto.

$$M_r = a \sqrt{f'c}$$
 1.99 $< a <$ 3.18 y f'c en kg/cm2 según ACI

Para concreto Patron: Si
$$a=2.6~y~f'c=280 \frac{kgf}{cm2}$$

$$M_r=2.6*\sqrt{280~kgf/cm2}$$

$$M_r=43.5~kg/cm2$$

$$M_r=43.5*0.098067~Megapascales$$

$$M_r=4.26~Mpa$$

Para el diseño del concreto con caucho granulado y sustitución de caucho al agregado fino en el concreto de 2%.

Resistencia a la Compresion
$$(f'c)=\frac{46037Kgf}{3.1416*(7.5cm)^2}=260.51\frac{Kgf}{cm^2}$$

$$f'c=261\frac{Kgf}{cm^2}$$

Resistencia a la Compresion(f'c) = 261 * 14.224 psiResistencia a la Compresion(f'c) = 3712.464 psif'c = 3712 psi

Si
$$a = 2.6$$
 y $f'c = 261 \, kgf/cm2$

$$M_r = 2.6 * \sqrt{261 \, kgf/cm2}$$

$$M_r = 42 \, kg/cm2$$

$$M_r = 42 * 14.223 \, PSI$$

$$M_r = 597.366 PSI$$

$$M_r = 42 * 0.098067 \; Megapascales$$

$$M_r = 4.11 \; Mpa$$

Tabla 80: Resistencia Mínima del concreto

Rango de tráfico	Resistencia Mín. a la Flexotraccion (Mr)	Resistencia mín. Equiv. a Compresión, f'c	
<5000000	40 kg/cm2	280 kg/cm2	
DE 5000000 A 15000000	42 kg/cm2	300 kg/cm2	
>15000000	45 kg/cm2	350 kg/cm2	

FUENTE: MTC Sección Suelos, Pág. 217

Paso_8: Elasticidad del concreto ($E_c en psi$)

$$E = 57000x\sqrt{f'c}$$
; (elf'c en PSI)

 $Si\ f'c = 261\ Kgf/cm2$
 $f'c = 261\ \frac{Kgf}{cm^2}x\frac{2.2046\ Libras}{1\ Kgf}x\frac{1\ cm^2}{\frac{1}{2.54^2}pulg^2}$
 $f'c = 3712\ Lib/Pulg2$
 $f'c = 3712\ PSI$
 $E_c = 57000 * \sqrt{3712\ PSI}$
 $E_c = 3472792.53\ PSI$
 $E_c = 3596986.886\ x\ 0.00689476MPA$
 $E_c = 24800.3613Mpa$

Paso_8: Parámetro para transferir las cargas carga (J)

En las juntas se transmite las cargas producidas por los vehículos de una losa a la siguiente losa con el objetivo de disminuir las deflexiones.

Tabla 81: Coeficiente J

Tipo De Berma	Granular o) Asfáltica	Concreto	Hidráulico
	Con	Sin	Con	Sin
Valores J	pasadores	pasadores	pasadores	pasadores
	3,2	3.8-4.4	2,8	3,8

FUENTE: MTC Sección Suelos, Pág. 219

J=2.8 Con pasadores

Paso_9: Drenaje (C_D)

Tabla 82: Coeficiente Cd

	T' ('1	0/ 1 (:				
	Tiempo transcurrido	% de tiempo en que la estructura del				
	para que el suelo	pavimento está expuesto a niveles de				
C_d	libere el 50% de su	humedad cercanas a la saturación				
	agua libre	< 1%	1 - 5%	5 - 25%	>25%	
Excelente	2 horas	1.25-1.20	1.20-1.15	1.15-1.10	1,10	
Bueno	1 día	1.20-1.15	1.15-1.10	1.10-1.00	1,00	
Regular	1 semana	1.15-1.10	1.10-1.00	1.00-0.90	0,90	
Pobre	1 mes	1.10-1.00	1.00-0.90	0.90-0.80	0,80	
Muy pobre	Nunca	1.00-0.90	0.90-0.80	0.80-0.70	0,70	

FUENTE: MTC Sección Suelos, Pág. 219

Cd = 1.0

Requisitos para diseño y propiedades de los materiales para diseñar el pavimento rígido sustituyendo caucho en el agregado Fino.

Tabla 83: Valores predefinidos para estimar el espesor del pavimento

Nº	Parámetros	Variables	Valores Definidos
1	Duración del Pavimento Rígido	Años	20
2	Nro. EE total	W18	174717
3	Serviciabilidad al inicio	Po	4,1
4	Serviciabilidad al final	Pf	2
5	Confiabilidad	R	70%
6	Desviación_Estándar	Zr	-0.524
7	Error_Estándar combinado	So	0,35

Tabla 84: Valores de los materiales para estimar el espesor del Pavimento

Nº	Parámetros	Variables	Valores Definidos
1	Compresión en kgf/cm2	f'c (kg/cm2)	261,00
2	Compresión en psi	f'c (psi)	3.712,00
3	Elasticidad del concreto	Ec (psi)	3.472.792,54
4	Ruptura del concreto(Mr)	S'C (psi)	597.37
5	Reacción del suelo	Kc (pci)	754.14
6	Transferencia_Carga	J	2,8
7	Coeficiente_Drenaje	Cd	1,00

Aplicación de la ecuación AASHTO 93 para hallar el valor de D

$$A = Z_R S_O + 7.35 \log_{10}(D+1)$$

$$B = 0.06 + \frac{log_{10} \left(\frac{\Delta PSI}{4.5 - 1.5} \right)}{1 + \frac{1.624 \times 10^7}{(D+1)^{8.46}}}$$

$$C = x log_{10} \left(\frac{S'_r C_d(D^{0.75} - 1.132)}{215,63xJ\left(D^{0.75} - \frac{18,42}{(E_c/k)^{0.25}}\right)} \right)$$

Calculo del espesor del pavimento con el uso de la ecuación de diseño AASHTO

$$log_{10}(W_{18}) = A - B + C$$

Tabla 85: Iteraciones realizadas para estimar espesor del pavimento

Cálculos realizados	Espesor		
Log10(W18) Nominal	5,24		
Log10(W18) Calculo	5,24		
D(Pulg.)	4,9		

Estructura del pavimento rígido con sustitución de caucho en el agregado fino del concreto de la vía Bulgaria hunter, Arequipa

Espesor(D)	4,9	5	Pulg.
Espesor(D)	12.45	13	cm
H. DE SubBASE GRANULAR	6	6	Pulg.
H. DE SubBASE GRANULAR	15	15	cm

Figura 53: Estructuración del Pavimento

V. DISCUSION

Brillit Milagros Velásquez Ocampo, (2022) en su tesis "influencia de la incorporación del caucho granulado sobre las propiedades mecánicas del concreto simple para pavimentos rígidos en el distrito de san Martín de Porres, lima 2022"

Incorporo al concreto el caucho granulado que fue reciclado, los porcentajes de incorporación de caucho al agregado fino fue en referencia al volumen total que representa a la arena. Al incorporar 3% la autora indica que han mejorado en 4.29 por ciento la capacidad resistente a compresión y 9.28 por ciento para la capacidad resistente a flexión. Para mi caso de estudio la incorporación de caucho fue una sustitución en peso al agregado fino en el concreto y de los tipos granulado y tipo virura o arrocillo al sustituir el 7% se obtuvo un mejor resultado 4.9% respecto al concreto convencional pero a la misma vez la resistencia a la compresión se redujo en 45%

Hernández, (2018). En su investigación denominado "Diseño de un material ecológico para la construcción mediante la adición de caucho de llanta al concreto". El autor pretendió utilizar como agregado al caucho en sus formas de fibras cilíndricas, fibras y polvo de caucho llegando a la conclusión que la mescla del concreto con 5 por ciento de caucho es óptima en alternativas que no requieran alta resistencia a diferencia de mi investigación se ha empleado una granulometría que tienes las características de un agregado fino además de que el tamaño máximo de la grava fue de 1 pulgada

Da Silva, (2019) en su trabajo denominado "Comportamento Do Módulo De Elasticidade Do Concreto Substituindo Parcialmente O Agregado Miúdo Por Borracha Proveniente De Pneus Inservíveis".

Su trabajo consistía en identificar como influyó el caucho al módulo de elasticidad del concreto y a la trabajabilidad al evaluar su comportamiento y los problemas que encontró fueron en respecto a la granulometría, al origen del material y su método de clasificación. Al sustituir caucho hasta un nivel de 10% al agregado fino del concreto concluyo que el asentamiento se redujo pero haciendo referencia a mi caso de estudio el asentamiento ha ido aumentando en la medida que he aumentado el porcentaje de caucho es decir a mayor porcentaje de sustitución de caucho mayor ha sido la medida del asentamiento en el cono de abrams es se debió a que el caucho no tiene el mismo

grado de absorción de agua que el agregado utilizado. Respecto a la trabajabilidad es verdadero que a mayor porcentaje de sustitución es más difícil la trabajabilidad en comparación al concreto sin sustitución. Otra variable que estudio fue el módulo de elasticidad del espécimen endurecido a partir de la ecuación con tendencia lineal. El autor menciona que a cada 2.5% de sustituida la arena el módulo de elasticidad tiene una caída del 13% en referencia al concreto patrón que para mí caso de estudio esta variable fue estudiado en dos formas uno como caucho de tipo viruta y otro como caucho granulado

Para el caso del tipo caucho viruta se ha presentado una caída promedio de 45% cuando analice la rotura las vigas de 15x15x50 cm3. Pero cuando se realiza una sustitución de 2% la caída es ínfimo.

Koch, pozzobon, (2018). En su investigación trabajó el "Analicé do comportamento do concreto com adição de resíduos poliméricos com aplicabilidade em peças para pavimentação intertravada de calçadas". Realizo su investigación basado en los materiales de PED y CAUCHO con disposición de granos y finos sustituyendo parcialmente al agregado fino y grueso coincido con la idea que las resistencias compresión bajan significativamente los valores no cumpliendo con lo establecido por las normativas a la misma ves indican que al agregar caucho y PET resultaron concretos con aspecto seco según Koch y pozzobon es porque no aborben agua y requirieron que los otros componentes tengan mayor absorción de agua de mezcla por consiguiente requieren una mayor relación agua cemento y un aditivo plastificante para mejorarla trabajabilidad todo ello basado en la idea de que los cauchos finos tienen mayor superficie que la superficie del agregado fino por mi parte considero que la mayor absorción de agua se da cuando no existe sustitución pero que cuando realizo sustitución para mi caso de estudio se observó que a mayor porcentaje de sustitución ocurrió que el la trabajabilidad disminuye y a la misma vez el asentamiento es mayor todo ello contribuye a que a la edad de 28 días se manifieste la reducción de la resistencia a la compresión y flexión.

Alwi, Mohammed, Salah, Mohammed, (2021). "properties of concrete with untreated and Treated Crumb Rubber – a Review".

Las propiedades mecánicas del concreto se reducen al adicionar caucho por lo tanto se plantea una nueva alternativa que consiste en el tratamiento adecuado de los materiales de caucho. Para esto podrían emplearse métodos como el tratamiento mecánico, químico, térmico y atreves de microondas se podría tratar el caucho para mejorar su adherencia con los componentes del concreto. Los autores en su artículo plantean algo deseable ya que podría obtenerse un resultado positivo atreves de la utilización del caucho en el concreto, Concuerdo con este planteamiento ya se generaría más variabilidad de muestras como unidades de análisis si nos enfocamos en cuanto a la adherencia del material esto generar muchos resultado más óptimos respecto a los materiales que no tienen similitud de propiedades en referencia a los agregados para concreto.

Saad, hammed, khadary, (2020). Desarrollaron un artículo denominado "Evaluate the Performance Of Using New Materials In Rigid Concrete Pavement".

Los autores consideran que el caucho es el producto obtenido de los neumáticos triturados por lo tanto se ha considerado un campo de estudio para investigadores, se ha empleado como sustituto parcial a los agregado fino y gruesos del concreto en su trabajo de investigación emplearon polvo de caucho y humo de sílice, reductor de agua, materiales cementicos y la relación de agua cemento como parámetros. Los resultados del experimento señalaron que la trabajabilidad del concreto fresco mejoró y la resistencia a flexión también mejora notablemente sin embargo la sustitución de 25% produce una caída en la capacidad de soporte a la compresión quizás esto se debió a que los parámetros para la ejecución del ensayo están en combinación del polvo de caucho y el humo de sílice.

Khuzaie, humeidawi, sa'idi, (2020), los autores en su paper denominado "Assessment Of The Mechanical Properties Of Concrete Pavement Containing Crumb Rubber Of Tires" Uno de los retos más grandes es la eliminación de los neumáticos en desuso y a la misma vez es una tarea grande para los países. En esta Investigación los autores mencionan que uno de los métodos de eliminación seria la utilización de estos residuos en pavimentos y proyectos a base de estructuras. Como consecuencia de ello los investigadores se centraron principalmente en el rendimiento de los pavimentos a base de concreto hidráulico. Para ello evaluaron las propiedades del concreto al adicionar

2%, 4%, 6%, 8% y 10% de partículas del peso total del agregado. La estrategia de trabajo consistió también en determinar cuánto afecta cada porcentaje de adición respecto al concreto que no es tratado. Otro aspecto que se investigo fue el tamaño de la distribución de partículas que afecta la propiedad mecánica del pavimento de concreto con sustitutos de caucho. Los resultados del trabajo investigado mostro que el polvo de caucho tratado químicamente podrían producir un concreto para pavimento con propiedades muy cercanas a un diseño de mezcla convencional sin influencias de adicionales. La sustitución de 2% y 4% de polvo de neumáticos da resultados con propiedades aceptables para un pavimento de una carretera, mientras que el 6% establece un límite de aceptación. Así mismo los de distribución granulométrica más gruesa presentaron mejores resultados. Finalmente respecto al tratamiento químico utilizando NaOH para polvo de neumáticos provocó una disminución de la capacidad de resistencia a la compresión del concreto en 7,6%, 15% y 28%, mientras que el método de inmersión en agua produjo la disminución de resistencia a la compresión en 52,5%, el 55,1% y el 65,8% respectivamente. Por otra parte en mi investigación no he ha hecho ningún tipo de tratamiento pero un buen resultado se obtiene al sustituir gránulos de caucho en 2%, mientras que la sustitución de gránulos de 7% produce un buen resultado para la flexión pero para la compresión se aleja en 45% respecto del concreto convencional

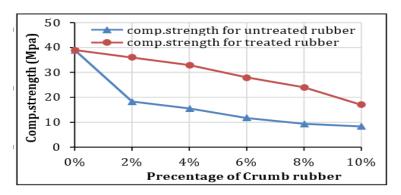


Figura 54: tendencia al usar cucho sin tratar y tratado a la misma vez

Fuente: Khuzaie, humeidawi, sa'idi, (2020), Paper

VI. CONCLUSIONES

Se ha obtenido la resistencia a la flexión máxima 3063 kgf de A los 28 días de curado, el cual superó a todos los diseños por sustitución y además al diseño convencional este valor corresponde a la sustitución de 7% de caucho granulado al agregado fino en el concreto, pero a la misma vez se ha obtenido una resistencia a la compresión de 21700 kg. Que corresponde al mismo diseño de Mezcla.

El resultado respecto al objetivo principal se ha obtenido con la sustitución de 7% de caucho granulado el cual corresponde al valor máximo de resistencia a la flexión superando en 5% respecto a todos los demás diseños y a la misma vez su resistencia a la compresión bajo en 45% respecto del concreto patrón.

Para la sustitución de caucho granulado con 2%G y 7%G son apropiados para estructuras donde importe más la resistencia a la flexo tracción ya que alcanzan y sobrepasan resistencias de flexión respecto al diseño patrón.

Para la sustitución de caucho granulado con 2%G se puede decir es un diseño que cumple con las características y propiedades mecánicas de un concreto de alta resistencia, se puede concluir que es apto para el diseño de estructuras y Para la sustitución de 7% del caucho granulado al agregado fino también se puede decir que es un diseño apto para estructuras donde la resistencia a la flexión sea más importante que la resistencia a la compresión.

Para la sustitución de 7%, 10% y 13% de caucho tipo viruta o arrocillo al agregado fino en el concreto se concluye que no es apto, ni es económico, ni es recomendable para aplicar en el diseño de elementos estructurales y no estructurales.

También se aprecia que a mayor porcentaje de sustitución de caucho del tipo viruta mayor es el Slump quizás porque la Absorción del material es distinto a la Absorción del caucho

Para diseñar el pavimento rígido se ha elegido el diseño con sustitución de 2% caucho granulado al agregado en el concreto porque cumple y además tiene las mismas características y propiedades que el diseño del concreto elaborado de manera convencional.

Respecto al estudio de suelos en las dos calicatas a una profundidad de 1.50m la realización de los ensayos para obtener el valor de CBR en laboratorio se halló que el índice de CBR de 100% para la calicata C-1:M1 y índice de CBR 80% para la calicata C-2:M2 y en comparación con el uso del DPL in situ para la calicata C-1 se obtuvo índice de CBR 75.2% y para la calicata C-2:M2 el CBR fue de 38.5% por consiguiente se puede concluir que guardan relación de capacidad de soporte y a la misma ves se puede afirmar que el estudio de la capacidad de carga del mismo suelo obtenido en laboratorio tiene valores que conducen a un mejor resultado basado en el sustento técnico adjunto en anexo 3 que los hallados con DPL en campo.

Respecto al estudio de suelos de las dos calicatas a una profundidad de 0.50m empleando el uso de DPL ensayo in situ se obtuvo que para la calicata C-1 presenta un índice de CBR de 80.3%. La calicata C-2 presenta un índice de CBR igual a 36.2%. Estos resultados nos lleva a concluir que la calicata C-1 es un terreno no alterado y el suelo de la calicata C-2 es un suelo compuesto con materiales de la zona ya que presenta un alto índice de CBR hallado en laboratorio.

Respecto a la Calicata 2 a la profundidad de 1.50m y a la profundidad de 0.50m haciendo uso del DLP in situ se obtuvo valores bastante bajos en referencia al resultado obtenido en laboratorio esto se debió a que la geología de dicho tramo esta compuesto con un suelo de la zona que tiene buena capacidad de carga con in índice de CBR de 80.3% correspondiente a calicata C-2:M:2.

VII. RECOMENDACIONES

Los dos tipos de caucho tanto el tipo granulado como el tipo arrocillo o viruta no se ubicaron en un gran porcentaje dentro de los límites establecidos de la norma ASTM para agregados de concreto para futuras investigaciones recomiendo se seleccione una distribución granulométrica apropiada para realizar sustituciones al agregado fino en el concreto.

Así mismo recomiendo una alternativa de selección de granulometría de caucho que sean los retenidos por el tamiz Nro. 40 y el pasante del tamiz Nro. 4 y el resto sea empleado para otros usos.

Para el caso de resistencia a la compresión y flexión los diseños con sustitución de caucho tipo viruta o arrocillo en 7%V, 10%V, 13%V los resultados obtenidos representan aproximadamente un 50% de reducción respecto del diseño de un concreto convencional por lo tanto no es recomendable emplear para concretos estructurales ni para concreto donde no importen la compresión y flexión porque su fabricación resultarían muy caro.

Recomiendo preparar el material caucho granulado hasta que su granulometría se ubique por encima del límite inferior y debajo del límite superior normados para agregado finos con esto podría obtenerse un mejor resultado.

Recomiendo no realizar sustituciones mayores de 7% de caucho al agregado fino en el concreto por razón de que todos los investigadores que he citado no han tenido resultados buenos al adicionar o sustituir en sus diferentes formas un resultado optimo

Recomiendo que se podría hacer sustituciones respeto del volumen o del peso al agregado grueso pero solo el pasante la del tamiz Nro.4 y el reteniendo en el tamiz Nro. 40 para tener más variabilidad en los resultados.

Para mejorar la adherencia al concreto se puede optar por alternativas como son los métodos de tratamiento químico, térmico del caucho granulado y tipo viruta o arrocillo

REFERENCIAS

Referencias en el Ámbito Nacional

- Castillo, (2020). "Propiedades físicas y mecánicas del concreto para pavimento rígido con adición de caucho reciclado en la Avenida Metropolitana, Comas 2019".
- 2. Abanto, Tantalean, (2020). "Efecto de la Fibra de caucho reciclado en el comportamiento del concreto para un pavimento rígido".
- 3. Lima, Lima, (2020). "Adición de caucho reciclado al concreto f´c=280 kg/cm2 para el diseño de pavimento rígido en la Avenida Llanos, Ate 2020".
- 4. Ricaldi, (2021). "Diseño del pavimento rígido utilizando polímero para mejorar la resistencia del concreto en Urbanización Pedro Miguel Silva Arévalo, Sullana 2021".
- Garcia, (2020). "Influencia de la adición de caucho granulado en 5%, 10% y 15% en la resistencia a compresión y flexión del concreto para la utilización en obras de ingeniería, lima 2020".
- 6. Sierra, Reyes. (2020). "Aplicación de caucho reciclado para uso en pavimento rígido: Revisión, análisis y perspectivas de investigación".
- 7. López, (2018). "Concreto Estructural con agregado triturado de llantas usadas".
- 8. Silvestre, (2019). "Análisis del concreto con caucho como aditivo para aligerar elementos estructurales".
- 9. Montejo, (2002). "Ingeniería de pavimentos para carreteras"
- 10. Velásquez, (2022). Influencia de la incorporación del caucho granulado sobre las propiedades mecánicas del concreto simple para pavimentos rígidos en el distrito de San Martín de Porres, Lima 2022.
- 11. Hernández, (2018). "Diseño de un material ecológico para la construcción mediante la adición de caucho de llanta al concreto".
- 12. Panduro y Sharon, (2021). "Diseño de Pavimento Rígido Mediante el Uso del Concreto Estructural con Fibra de Caucho, Avenida Lima, Lurín, 2021".
- 13. Santiago, (2022). "Influencia del 11%, 12%, 13% y 14% de partículas de neumático fuera de uso en la resistencia axial, a flexión y tracción indirecta de un concreto f'c=210kg/cm2, empleando la norma técnica, lima 2022".

Referencias en el Ámbito Internacional

- 14.Irshad, (2020). "A Review on using Crumb Rubber in Construction7 of Rigid Pavement"
- 15. Pitroda, Prajapati, (2020). "Utilization of Crumb Rubber in Rigid Pavement"
- 16.Zarei, Rooholamini, Ozbakkaloglu, (2021). "Evaluating the Properties of Concrete Pavements Containing Crumb Rubber and Recycled Steel Fibers Using Response Surface Methodology".
- 17. Jasmin m, hafiz hashimkutty, (2020). "Partial Replacement Of Fine Aggregate In Concrete By Tyre Rubber"
- 18. Sayed, abdullah, ghada, mousa, zainab, abd, shafy, mohamed, ashour mohamed (2017), "Investigation On Improving Rigid Pavement Properties By Adding Recycled Rubber"
- 19. Khuzaie, humeidawi, sa'idi, (2020), "Assessment Of The Mechanical Properties Of Concrete Pavement Containing Crumb Rubber Of Tires"
- 20. Javaid, ram, sharma, (2020), "Strength Characteristics Using Crumb Rubber And Steel Fiber In Rigid Pavement"
- 21. Saad, hammed, khadary, (2020), "Evaluate The Performance Of Using New Materials In Rigid Concrete Pavement"
- 22. Akasi, mohammed, (2018). "Crumb Rubber As Partial Replacement Of Coarse Aggregate In Asphaltic Concrete"
- 23. Ali, buller, abdul y noor (2022). "Effects Of Partial Replacement Of Fine Aggregates With Crumb Rubber On Skid Resistance And Mechanical Properties Of Cement Concrete Pavements"
- 24. Biligiri, (2018). "crumb rubber and silica fume inclusions in pervious concrete pavement systems: evaluation of hydrological, functional, and structural properties"
- 25. Alwi, mohammed, salah, mohammed, (2021). "Properties Of Concrete With Untreated And Treated Crumb Rubber A Review"

- 26. Diwakara, singhb, kumarc, (2019). "Efecto De La Miga De Caucho Sobre Las Propiedades Mecánicas Del Hormigón Y La Posibilidad Futura En La Estructura Del Edificio"
- 27. Souza, barata, ribamar, gouvêa, (2019). "Concreto Com Borracha De Recauchutagem De Pneu Para Uso Em Pavimentação De Baixo Tráfego"
- 28. Souza, marlos, kelly, da silva, da silva, (2019). "Concreto Alternativo Com Utilização De Resíduos De Borracha De Recauchutagem De Pneus Para Elementos E Componentes Pré-Fabricados"
- 29. Pereira, a. F., & souza, g. M. D. (2018). Efeitos da adição de borracha na resistência do concreto: aplicação sustentável.
- 30. Silva, I. S., mouta, j. D. R., costa, m. C. B. D., & gomes, I. G. (2019). Concreto com borracha de recauchutagem de pneu para uso em pavimentação de baixo tráfego.
- 31. David, w., & de marco, g. (2021). Vantagens da utilização de concreto borracha na construção civil.
- 32. Silva, I. C., & da silva fernandes, f. A. Produção de concreto poroso com adição de borracha de pneu reciclado.
- 33. Roloff, a., de matos, d. P., brinkhus, v. L., jordani, b., & nunes, d. B. Utilização de resíduo de pneu como agregado em concreto-análise de ensaios mecânicos.
- 34. Da silva, j. L., oliveira, k. R. M., & alkimim, d. T. Reutilização da borracha de pneus como agregado de concreto visando a mitigação dos impactos ambientais.
- 35. Silva, I. S., nogueira, m. H. P., lima, g. K. M., da silva cipriano, f., & da silva batista, n. J. (2019). Concreto alternativo com utilização de resíduos de borracha de recauchutagem de pneus para elementos e componentes préfabricados.
- 36. Rovaris, i. D. (2018). Estudo do efeito da borracha reciclada de pneus nas propriedades mecânicas do concreto geopolimérico e concreto de cimento portland.

- 37. Cunha, (2018). Análise das propriedades do concreto com substituição parcial do agregado miúdo por resíduo de borracha de pneus para aplicação em paredes de concreto.
- 38. Batista, I. S., & lintz, r. C. C. (2018). Desempenho mecânico de concreto com borracha e sílica ativa.
- 39. Marques, Campomanes, (2021). "Análise experimental do concreto estrutural com adição de resíduos do processo de recauchutagem de pneus"
- 40. Koch, pozzobon, (2018). "Analicé do comportamento do concreto com adição de resíduos poliméricos com aplicabilidade em peças para pavimentação intertravada de calcadas".
- 41.Leffa, (2018). Avaliação das propriedades do concreto com inserção de resíduos oriundos de borracha de pneu inservível.
- 42. Vendramini, silva. (2019). "comportamento do módulo de elasticidade do concreto substituindo parcialmente o agregado miúdo por borracha proveniente de pneus inservíveis".
- 43. Aderno, reis, silva, renato, (2019). "análise da resistência do concreto com resíduos de borracha de pneu".

ANEXOS

Anexo 1. Operacionalización de Variables

Variables	Definición	Definición	Dimensiones	- m	Dimensión	Indicadores(Instrumentos)
					Granulometría	Análisis de la distribución de partículas
Variable		la edefermina el		estudio del caucho	Humedad	Ensayo contenido de humedad
dependiente		diseño de un concreto			Absorción	Ensayo de absorción
F(A,B): Diseño de	"Un pavimento rigido está constituido por	convencional de				Análisis de la distribución de
pavimento rígido	una losa de concreto	280kgf/cm2 para		: :	Granulometria	particulas
sustituyendo	hidráulico, apoyada	obtener especimenes	40000	Estudio de	Absorción	Ensayo de absorción
agregado fino en	sobre la subrasante	2%G. 7%G. 7%V.	כסווכובוס	ayıcyadus	relativa	relativa
el concreto de la	(subbase) de material	10%V y 13%V para			Peso unitario	Balanza
vía Bulgaria	(Monteio 2002 n.5)	analizar su			Temperatura	termómetro
Hunter-Arequipa-	(montejo, 2002, p.o.).	comportamiento a los		Concreto	Ensayo slump	fluxómetro
2022		1dia, 14dias y 28 días		fresco	Exudación	Razón
			•		trabajabilidad	Ensayo cono de habrams
				Concreto	compresión	Ensayo compresión
				endurecido	flexión	Ensayo de flexión
					Humedad	Ensayo flexión
	"Fl caucho es un					Análisis de la distribución de
Variable	material due implica			Suplo	Granulometría	partículas
independiente(A):	ina degradación		otnomixed	Soletions	Proctor	Humedad optima
sustitución del	tardía, este se	El caucho de	pavillenio		CBR	Compactación 56 golpes
caucho granulado	encuentra presente	tipo granulado y viruta	•		Consistencia	Limite líquido, Limite plástico
al agregado fino del concreto y	en gran porcentaje de la composición de los	de color negro cuya composición es el		Transito	Conteo Vehicular	IMDs, IMDa
Variable independients/D):	neumáticos, los	SBR proviene de la			0% patrón	Balanza
Sustitución del	cuales actualmente	neumáticos reciclados	Proporciones	Caucho tipo Granulado	2%G	Balanza
cancho Tipo	muestran ina demanda	para múltiples usos	de los		2%C	Balanza
Viruta al agregado	creciente"(Abugattas,		ayı cyado para la preparación	orit oder	7%7	Balanza
IIIIo dei colicielo	Carnero,2020,p,2)		de la mezcla	caucilo tipo viruta	10%V	Balanza
					13%V	Balanza

Anexo 2. Matriz de consistencia

Problema General	Objetivo General	Hipótesis General
¿Cómo diseñar un pavimento rígido con la sustitución de caucho al agregado fino en el concreto de la vía Bulgaria Hunter-Arequipa 2022?	Determinar el espesor del pavimento rígido sustituyendo caucho al agregado fino en el concreto	Al utilizar el caucho mejorar la flexión respecto del concreto convencional el cual permitirá una mejor alternativa de diseño de pavimento rígido de la vía Bulgaria de Hunter
Problema específicos	Objetivo Específicos	Hipótesis Específicos
¿De qué manera la sustitución de caucho al agregado fino en el concreto mejora la resistencia a la flexión en el diseño del pavimento rígido de la vía Bulgaria de Hunter- Arequipa?	Determinar la resistencia axial y a flexión del espécimen convencional y con sustituciones de 2%, 7% caucho granulado y 7%, 10% y 13% de caucho tipo viruta al agregado fino curando 14 y 28 días	La sustitución del 2% de caucho al agregado fino mejoraría la resistencia a la compresión
¿De qué forma la sustitución de caucho al agregado fino mejora la resistencia a la compresión en el pavimento rígido de la vía Micaela Bastidas de Hunter- Arequipa 2022?	Analizar el comportamiento del slump respecto de las sutituciones de caucho tipo granulado y tipo viruta.	La sustitución del 7% de caucho tipo viruta o granulado al agregado fino mejoraría la resistencia a la flexión.
¿De qué manera el concreto con la sustitución de caucho al agregado fino mejora las propiedades físicas del pavimento rígido de la vía Micaela Bastidas de Hunter- Arequipa 2022?	Realizar los análisis de los resultados obtenidos para determinar la influencia de la sustitución en el concreto endurecido.	La sustitución del 9% y 13% de caucho al agregado fino daría resistencias dentro de los parámetros permitidos del diseño de espesores para pavimento rígido

Anexo 3. Certificados de Laboratorio

CODIGO DE INFORME LAB_TESIS_UCV 01

ASTM D422-30(2002):

Standard Test Method for Particle-Size Analysis of Soils

FECHA

01/07/2022

PROYECTO :

Arequipa 2022"

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle Bulgaria-Hunter-

LOCALIZACION:

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA

FECHA INICIO :

TESISTA UBICACIÓN JUSTO EMANUEL SAICO SAICO

5 de abril 2022

LATITUD LONGITUD 16°26'23.10"S **FECHA TERMINO:** 71°33'21.60"O

30 de junio 2022

Calicata

Clasificacion SUCS

C-1:M1

Profundidad :

1,50m

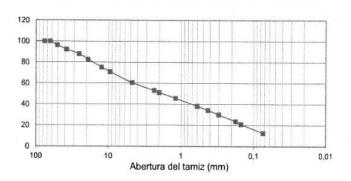
ENSAYADO EN :

Laboratorio RCF S.R.L.

Granulometria por Tamizado

ASTM D422-63(2002)

ASTM D2487-00


Tamiz ASTM	Abertura (mm)	Wret.+T(Wret. Real(g)	%Wret. Pasante	% W Ret. Acum	% que pasa
4"	101,6			0	0	100
3"	76,2			0	0	100
2 1/2"	63,5		Selectiva memoria	0	0	100
2"	50,8	638	451	3,58	3,58	96,4
1 1/2"	38,1	714	527	4,18	7,76	92,2
1"	25,4	727	540	4,29	12,05	88,0
3/4"	19,1	863	676	5,37	17,41	82,6
1/2"	12,5	1113	926	7,35	24,76	75,2
3/8"	9,53	733	546	4,33	29,10	70,9
N°4	4,76	1503	1316	10,44	39,54	60,5
N°8	2,36	111,7	67	7,37	46,91	53,1
N°10	2	62,1	17,4	1,91	48,82	51,2
N°16	1,19	95	50,3	5,53	54,35	45,6
N°30	0,6	112,4	67,7	7,44	61,79	38,2
N°40	0,425	80,9	36,2	3,98	65,77	34,2
N°50	0,3	83,1	38,4	4,22	70,00	30,0
N°80	0,177	102,5	57,8	6,36	76,35	23,6
N°100	0,149	69,3	24,6	2,70	79,06	20,9
N°200	0,074	121,9	77,2	8,49	87,54	12,5
Fondo		158	113,3	12,46	100.00	0,0

Pesos de muestra que	se ensayo
GRAVA	39%
AREANA	48%
FINOS	12%

Coeficientes		
- 1		

Limites de consistencia	Seculation National Programs
Limite Liquido	-
Limite Plastico	-
Indice plastico	-

Clasificación del Suelo		
Espepecificaciones	Descripcion	
Clasificación (SUCS):	SM	
Clasificación (AASHTO):	A-1-B	
Cont. de Humedad Natural	0,02	

APROBADO POR:

OBCERVACIONES

CODIGO DE INFORME LAB_TESIS_UCV 02

ASTM D422-30(2002):

Standard Test Method for Particle-Size Analysis of Soils

FECHA

01/07/2022

PROYECTO

TESIS "Diseño Del Pavimento Rigido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle Bulgaria-Hunter-

Arequipa 2022"

LOCALIZACION: **TESISTA**

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA JUSTO EMANUEL SAICO SAICO

FECHA INICIO :

5 de abril 2022

UBICACIÓN :

LATITUD

16°26'23.10"5 **FECHA TERMINO:** 71°33'21.60"O

30 de junio 2022

LONGITUD C-2:M2

ENSAYADO EN :

Laboratorio RCF S.R.L.

Calicata

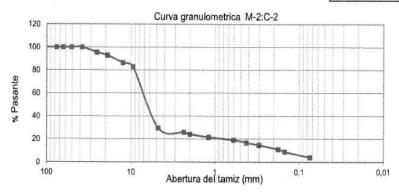
1,50m

Profundidad :

Granulometria por Tamizado Clasificacion SUCS

ASTM D422-63(2002)

ASTM D2487-00


Tamiz ASTM	Abertura (mm)	Wret.+T(g)	Wret. Real(g)	%Wret. Pasante	% W Ret. Acum	% que pasa
4"	101,6	0	0	0	0	100
3"	76,2	0	0	0	0	100
2 1/2"	63,5	0	0	0	0	100
2"	50,8	0	0	0,00	0,00	100,0
1 1/2"	38,1	0	0	0,00	0,00	100,0
1"	25,4	683	683	4,55	4,55	95,4
3/4"	19,1	386	386	2,57	7,13	92,9
1/2"	12,5	984	984	6,56	13,69	86,3
3/8"	9,53	537	537	3,58	17,27	82,7
N°4	4,76	1445	7987,7283	53,25	70,52	29,5
N*8	2,36	98,3	543,38664	3,62	74,14	25,9
N°10	2	45,9	253,72784	1,69	75,83	24,2
N°16	1,19	73,7	407,40178	2,72	78,55	21,5
N°30	0,6	99,9	346,04276	2,31	80,86	19,1
N°40	0,425	62,6	346,04276	2,31	83,16	16,8
N°50	0,3	53,8	297,39777	1,98	85,14	14,9
N°80	0,177	97,7	540,06993	3,60	88,75	11,3
N°100	0,149	57,7	318,95635	2,13	90,87	9,1
N°200	0,074	135,5	749,02227	4,99	95,87	4,1
Fondo		74,9	414,03519	2,76	98,63	1,4

Pesos de muestra que se en	sayo
Descripcion	W _m (g.)
Material Grueso > Nº 4	27%
Material Fino < Nº 4	73%
Total Material Seco	15000,00
Fraccion por cuarteo	800,00

Coeficientes	
CC	
CU	-
Indice plastico	

Limites de consistencia	
Limite Liquido	
Limite Plastico	
Indice plastico	

Clasificación del Suelo	
Espepecificaciones	Descripcion
Clasificación (SUCS) :	GM
Clasificación (AASHTO):	A-1-A
Cont. de Humedad Natural	0,03

APROBADO POR:

OBCERVACIONES

CODIGO DE INFORME LAB_TESIS_UCV 03

ASTM D 1557 -12 Standard Test Method for Particle-Size Analysis of Soils

FECHA

01/07/2022

PROYECTO

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle

Bulgaria-Hunter-Arequipa 2022"

LOCALIZACION: **TESISTA**

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA JUSTO EMANUEL SAICO SAICO

FECHA INICIO :

LATITUD

5 de abril 2022

UBICACIÓN

LONGITUD C-1:M-1

16°26'23.10"S 71°33'21.60"O

FECHA TERMINO: ENSAYADO EN :

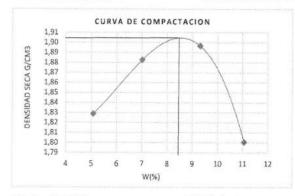
30 de junio 2022 Laboratorio RCF S.R.L.

Calicata Profundidad :

1,50m

Ensayo Proctor Modificado

Compactación de suelos en laboratorio usando una energia Modificada


T180-D

ASTM D 1557 -12

Procedimiento D	eterminacion de	la densidad		
ENSAYO N°	1	2	3	4
HUMEDAD TEORICA	5	7	9	11
PESO CILINDRO + SUELO (g)	10426	10622	10745	10590
PESO CILINDRO (g)	6381	6381	6381	6381
PESO HUMEDO DEL SUELO (g)	4045	4241	4364	4209
Volumen del molde (cm3)	2104,91734	2104,91734	2104,91734	2104,92
DENSIDAD HUMEDA g/cm3	1,922	2,015	2,073	2,000
Procedimiento Determi	nacion del conte	nido de hume	dad	
CAPSULA Nº	В	С	D	E
P. MUESTRA compactada + CAPSULA (g)	507	500	520	525
P. MUESTRA Seca. + CAPSULA (g)	482,5	467,2	475,7	472,7
PESO AGUA (g)	24,500	32,800	44,300	52,300
PESO CAPSULA (g)	0	0	0	0
PESO MUESTRA SECA (g)	482,5000	467,2000	475,7000	472,7
CONTENIDO DE AGUA (HUMEDAD) W%	5,078	7,021	9,313	11,064
DENSIDAD SECA g/cm3	1,829	1,883	1,897	1,800

DIAMETRO	15,2	cm.
ALTURA	11,6	cm.
VOLUMEN	2104,92	cm3.
PESO	6381	er.

Nº GOLPES/CAPA	56
Nº PISONADAS/C	5
Nº CAPAS	5
PASANTE TAMIZ	3/4"

 $f(x) = -0.0017x^3 + 0.0306x^2 - 0.1582x + 2.0606$

X(w%)	F(X)
0	0
5,07772021	1,82883
7,02054795	1,88263
9,31259197	1,89662
11,0640999	1,8004

Maxima densidad seca: Humedad optima

1,956 (gr/cm3 8,5 %

U	DC	ER	VA	CI	DIV	E2																							
-	-	-	-	-	_	_	_	_	-	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•
-	-	-	_	-	-	-	_	_	-	_	_	_	_	_	-	_	_	_	-	-	-	_	_	-	-	_	-	_	•

CODIGO DE INFORME LAB_TESIS_UCV 04

ASTM D 1557 -12 Standard Test Method for Particle-Size Analysis of Soils

FECHA

01/07/2022

PROYECTO

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle

Bulgaria-Hunter-Arequipa 2022"

LOCALIZACION: TESISTA

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA

FECHA INICIO :

JUSTO EMANUEL SAICO SAICO

5 de abril 2022

UBICACIÓN

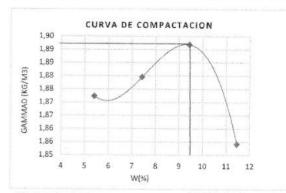
LATITUD LONGITUD 16°26'23.10"S 71°33'21.60"O **FECHA TERMINO:** ENSAYADO EN :

30 de junio 2022 Laboratorio RCF S.R.L.

Calicata Profundidad : C-2:M-2

1,50m Ensayo Proctor Modificado

T180-D


Compactacion de suelos en laboratorio usando una energia Modificada

ASTM D 1557 -12

Procedimiento D	eterminacion de	la densidad		
ENSAYO Nº	1	2	3	4
HUMEDAD TEORICA	5	7	9	11
PESO CILINDRO + SUELO (g)	10535	10631	10739	10731
PESO CILINDRO (g)	6381	6381	6381	6381
PESO HUMEDO DEL SUELO (g)	4154	4250	4358	4350
Volumen del molde (cm3)	2104,91734	2104,91734	2104,91734	2104,92
DENSIDAD HUMEDA g/cm3	1,973	2,019	2,070	2,067
Procedimiento Determi	nacion del conte	nido de hume	edad	
CAPSULA Nº	В	С	D	E
P. MUESTRA compactada + CAPSULA (g)	499,1	473	516	537
P. MUESTRA Seca. + CAPSULA (g)	473,5	440,3	471,5	481,8
PESO AGUA (g)	25,600	32,700	44,500	55,200
PESO CAPSULA (g)	0	0	0	0
PESO MUESTRA SECA (g)	473,5000	440,3000	471,5000	481,8
CONTENIDO DE AGUA (HUMEDAD) W%	5,407	7,427	9,438	11,457
DENSIDAD SECA g/cm3	1,872	1,879	1,892	1,854

DIAMETRO	15,2	cm.
ALTURA	11,6	cm.
VOLUMEN	2104,92	cm3.
PESO	6381	lor.

№ GOLPES/CAPA	56
Nº PISONADAS/C	5
Nº CAPAS	5
PASANTE TAMIZ	3/4"

y = -0,0011x3 + 0,0256x2 - 0,1854x + 2,3033

X(w%)	F(X)
5,40654699	1,87225
7,42675449	1,8795
9,43796394	1,89184
11,4570361	1,85416

Maxima densidad seca:

Humedad optima

1,895 (gr/cm3 9,5 %

APROBADO POR:

OBCERVACIONES

_	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	_		-	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

CODIGO DE INFORME LAB_TESIS_UCV 05

NTP 339.145:

Metodo de ensayo de CBR de selos compactados en laboratorio

FECHA . 01/07/2022

PROYECTO

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle

Bulgaria-Hunter-Arequipa 2022"

LOCALIZACION: TESISTA

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA

JUSTO EMANUEL SAICO SAICO

FECHA INICIO :

5 de abril 2022

UBICACIÓN

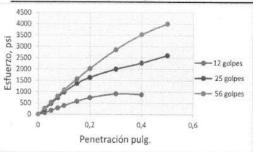
LATITUD 16°26'23.10"S

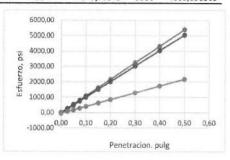
FECHA TERMINO:

30 de junio 2022

LONGITUD

71°33'21.60"O

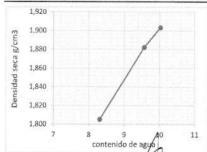

ENSAYADO EN :


Laboratorio RCF S.R.L.

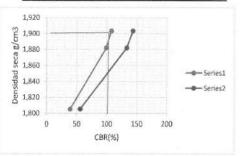
Calicata

C-1:M-1 Profundidad: 1,50m

				E-1 cor	1 12 golpes	E-2 cor	1 25 golpes	E-3 c	on 56 golpes
Nº	Relog	DIAL (mm)	(pulg)	Carga (Kgf)	Esfuerzo (libra/pulg2)	Carga (Kgf)	Esfuerzo (libra/pulg2)	Carga (Kgf)	Esfuerzo (libra/pulg2)
0	0	0	0	0	0	0	0	0	0
1	30"	0,64	0,03	95	68,8167385	300	217,316016	369	267,2986999
2	1'	1,27	0,05	235	170,230879	655	474,473302	732	530,2510795
3	1 1/2'	1,91	0,08	389	281,786434	1009	730,906201	1105	800,4473263
4	2'	2,54	0,1	538	389,720056	1361	985,890327	1485	1075,71428
5	3'	3,81	0,15	803	581,682537	1887	1366,91774	2158	1563,226543
6	4'	5,08	0,2	1020	738,874455	2255	1633,49206	2796	2025,385271
7	6'	7,62	0,3	1267	917,797975	2770	2006,55122	3950	2861,327547
8	8'	10,16	0,4	1222	885,200573	3136	2271,67676	4880	3535,007197
9	10'	12,7	0,5			3611	2615,76045	5530	4005,858565



Densidad seca y CBR para 0,1 y 0,2


DESCRIPCION	M. E-1	M. E-2	M. E-3
CBR 0,1"	38,9756	98,7403	97,9781
CBR 0,2"	55,5637	133,2935	138,7854
Densidad Seca ys	1,8052	1,881987	1,912020

DESCRIPCION	M. E-1	M. E-2	M. E-3
Compactacion	M1	M2	M3
C. Humedad	8,30909	9,565217	10,0262927
Densidad Seca ys	1,8052	1,881987	1,90331187

Puntos para correccion de la recta

	X	Y	m
Molde E-1	0,076	283,268	4437
Molde E-2	0,044	420,683	10120
Molde E-3	0,027	288,041	10780

OBCERVACIONES

CODIGO DE INFORME LAB_TESIS_UCV 06

NTP 339.145:

Metodo de ensayo de CBR de selos compactados en laboratorio

FECHA

01/07/2022

PROYECTO

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle

Bulgaria-Hunter-Arequipa 2022" PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA

LOCALIZACION: **TESISTA**

JUSTO EMANUEL SAICO SAICO

FECHA INICIO :

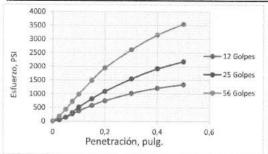
5 de abril 2022

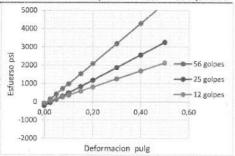
UBICACIÓN

LATITUD 16°26'23.10"S 71°33'21.60"O **FECHA TERMINO:**

30 de junio 2022

LONGITUD

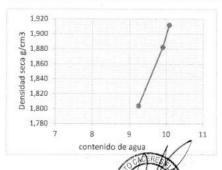

ENSAYADO EN :


Calicata

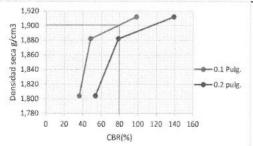
Laboratorio RCF S.R.L.

C-2:M-2 Profundidad: 1,50m

				D-1 cor	n 12 golpes	D-2 cor	n 25 golpes	D-3 c	on 56 golpes
Nº	Reloc	DIAL (mm)	(pulg)	Carga (Kgf)	Esfuerzo (libra/pulg2)	Carga (Kgf)	Esfuerzo (libra/pulg2)	Carga (Kgf)	Esfuerzo (libra/pulg2)
0	0	0	0	0	0	0	0	0	0
1	30"	0,64	0,03	79	57,2265509	60	43,4632032	250	181,0966802
2	1'	1,27	0,05	194	140,531024	203	147,050504	597	432,4588722
3	1 1/2'	1,91	0,08	355	257,157286	421	304,966809	994	720,0404003
4	2'	2,54	0,1	515	373,059161	705	510,692638	1356	982,2683932
5	3'	3,81	0,15	795	575,887443	1130	818,556994	2055	1488,614711
6	4'	5,08	0,2	1032	747,567096	1510	1093,82395	2691	1949,324665
7	6'	7,62	0,3	1412	1022,83405	2136	1547,29004	3604	2610,689741
8	8'	10,16	0,4	1670	1209,72582	2647	1917,45165	4356	3155,428555
9	10'	12,7	0,5	1860	1347,3593	3010	2180,40403	4897	3547,321771



Densidad seca y CBR para 0,1 y 0,2


DESCRIPCION	M. E-1	M. E-2	M. E-3
CBR 0,1"	36,2921	48,1729	97,9781
CBR 0,2"	53,5614	78,32193	138,7854
Densidad Seca ys	1,80384	1,881987	1,91202034

DESCRIPCION	M. E-1	M. E-2	M. E-3
Compactacion	M1	M2	M3
C. Humedad	9,25242	9,902569	10,0765533
Densidad Seca ys	1,80384	1,881987	1,91202034

Puntos para correccion de la recta

	Х	Y	m
Molde E-1	0,096	345,301	4405
Molde E-2	0,105	516,384	6931
Molde E-3	0,085	814,481	11020

OBCERVACIONES

CODIGO DE INFORME LAB_TESIS_UCV 07

NTP 339.215-2017: Nomar Tecnica Peruana

FECHA

01/07/2022

PROYECTO

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle

Bulgaria-Hunter-Arequipa 2022"

LOCALIZACION:

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA

FECHA INICIO :

TESISTA

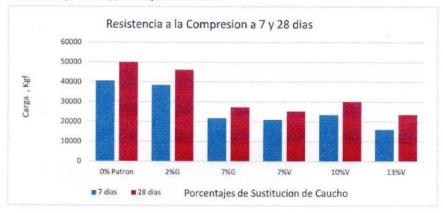
JUSTO EMANUEL SAICO SAICO

5 de abril 2022

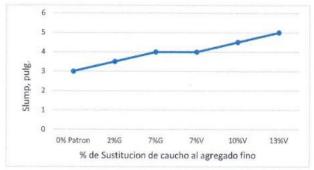
FECHA TERMINO:

30 de junio 2022

ENSAYADO EN :


Laboratorio RCF S.R.L.

Metodo de ensayo para la medidion de resistencias a la compresion


NTP 339.215-2017

Codigo de viga		Fuerz	a vertical a 7	dias	Fuerza vertical a 28 dias			
coulgo de viga	E-Nº 1	E-Nº 2	E-Nº 3	Promedios	E-N1	E-N2	E-N3	Promedios
SUST. 0% Pat	38920	39930	42820	40557	51180	49950	48310	49813
SUST. 2%G	38020	37980	38930	38455	46360	43770	47980	46037
SUST. 7%G	22810	20950	21340	21700	27050	23970	30530	27183
SUST. 7%V	19730	22010	21040	20927	24930	27150	23710	25263
SUST. 10%V	18230	25990	26090	23437	30470	25940	33730	30047
SUST. 13%V	17720	14840	15370	15977	23030	24960	22120	23370

Grafico carga vertical y porcentajes de sutitucion

Grafica variacion del Slump según % de sutitucion

Variacion del Slump

Codigo Viga	Slump	Und
0% Patron	3	Pulg
2%G	3,5	Pulg
7%G	4	Pulg
7%V	4	Pulg
10%V	4,5	Pulg
13%V	5	Pulg

OBCERVACIONES

CODIGO DE INFORME LAB_TESIS_UCV 08

NTP 339.078-2012: Nomar Tecnica Peruana

FECHA

01/07/2022

PROYECTO :

TESIS "Diseño Del Pavimento Rígido Sustituyendo Caucho Al Agregado Fino En El Concreto De La Calle Bulgaria-

Hunter-Arequipa 2022"

LOCALIZACION: TESISTA

PUEBLO JOVEN HUNTER ZONA A, CALLE BULGARIA, DISTRITO JACOBO HUNTER - AREQUIPA, AREQUIPA

JUSTO EMANUEL SAICO SAICO

FECHA INICIO : **FECHA TERMINO:** 5 de abril 2022

30 de junio 2022

ENSAYADO EN :

Laboratorio RCF S.R.L

Metodo de ensayo para determinar la resistencia a la flexion del concreto

NTP 339.078-2012

Tabla 1: Características de las vigas ensayadas

Codificacion	Descripcion de la viga 50x15x15 cm3	Dimension	Und
0% Pat	Concreto Patron 280 Kg/cm2	50x15x15	cm3
2%G	Concreto 280 Kg/cm2 +02% Caucho Granulado	50x15x15	cm3
7%G	Concreto 280 Kg/cm2 +07%Caucho Granulado	50x15x15	cm3
7%V	Concreto 280 Kg/cm2 +07% Caucho tipo viruta	50x15x15	cm3
10%V	cocnreto 280 Kg/cm2 +10% Caucho tipo viruta	50x15x15	cm3
13%V	Concreto 280 Kg/cm2 +13% Caucho tino vinuta	50v15v15	cm3

Tabla 2: Ensayo de vigas rectangulares a los 14 y 28 días

	Codigo		Fuerza	a vertical a 14	dias	Fuerza vertical a 28 dias			
	coulgo	E1	E2	E3	Carga(Kgf)	E-1	E-2	E-3	Carga(Kgf)
E1	0% Pat	2520	2470	2490	2493,3	2910	2890	2960	2920
E2	2%G	2370	1790	2050	2070	2750	2840	2640	2743,3
E3	7%G	2630	2900	2360	2630	2930	2920	3340	3063,3
E4	7%V	1840	1980	1830	1883,33	2080	2120	2220	2140
E5	10%V	1810	1980	2210	2000	2270	2300	2850	2473,3
E6	13%V	1730	1560	1670	1653,3	1820	2160	1950	1976.7

OBCERVACIONES		

ROBERTO CACERES FLORES S.R.L.

LABORATORIO DE ENSAYO ACREDITADO

ASESORÍA, CONTROL Y ASEGURAMIENTO DE CALIDAD EN OBRAS CIVILES

CONSTANCIA

El que suscribe, Ing. Roberto Cáceres Flores, gerente del Laboratorio RCF S.R.L.

HACE CONSTAR:

Que el Sr. Tesista de Ingeniería Civil que nuestra representada le ha brindado las instalaciones, equipos y asesoría al Sr. Bachiller:

JUSTO EMANUEL SAICO SAICO

DNI: 41764444

Para la ejecución de los ensayos de su tesis denominada: DISEÑO DEL PAVIMENTO RIGIDO SUSTITUYENDO CAUCHO AL AGREGADO FINO EN EL CONCRETO DE LA CALLE BULGARIA-HUNTER-AREQUIPA, AREQUIPA 2022 con fines de obtener el título profesional, realizado del 05 de abril al 30 de junio de 2022.

Se expide la presente constancia a favor de la interesada para los fines pertinentes.

Arequipa, 16 de julio de 2022

ROBERTO CACERES FLORES S.R.L.

Ing Roberto Caceres FloreGERENTE GENERAL

Está terminantemente prohibido la reproducción parcial o total de este documento sin la autorización escrita de RCF S.R.L.

El laboratorio no se hace responsable del mal uso, ni la incorrecta interpretación de los resultados aqui declarados.

Los resultados de este informe solo estan relacionados a la muestra ensayada y no debe ser utilizado como un certificado de conformidad de productos o certificados de sistema de calidad de la entidad que lo produce.

Laboratorio : Calle El Palomar Nº 107 Lote B-3B - Arequipa (detrás del Mercado El Palomar) - Móvil RPM * 414 995 - RPC: 956 781 874 Telf. (054) 214163 - E-mail: laboratorio@rcflaboratorio.com - spc_laboratorio@hotmail.com - Atn. 8:00 a 1:00 pm y 1:30 a 5:00 pm

Anexo 4. Panel Fotográfico

Obtención del material caucho del tipo granulado y tipo viruta

Materiales descargados en laboratorio de grava y arena gruesa

Cuarteo de la arena gruesa y el agregado grueso

Varillado y enrazado de la grava para calcular peso unitario

Granulometría del agregado fino y tamices normalizados

Granulometría del agregado grueso y pesos

Agregado fino y grueso por 24 horas para peso especifico

Agregado grueso sumergido 24 y en estado semiseco

Medición de temperatura del agua para ensayo de peso específico aparente y masa de la muestra en estado sumergido

Determinación de la distribución granulométrica del Caucho

Preparación de la muestra para realizar el ensayo del cono

Procedimiento para hacer el ensayo cono de arena

Verificación de la dosificación para 500g de cemento

Slump para los diferentes porcentajes de sustitución de caucho

Proceso de vaciad, frotachado y desmoldado de las vigas.

Curado de vigas y probetas cilíndricas

Curado de vigas y probetas cilíndricas en otro recipiente

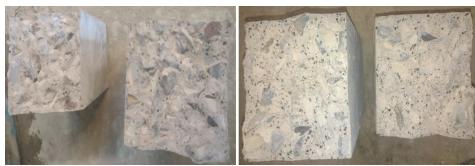
Proceso de curado, trazo de los tercios y verificación de alabeos

Trazo de tercios y verificación si corresponde a la medida

Verificación de escuadra y pulido para ensayo de compresión

Proceso de prueba a resistencia de flexión de una viga

Preparación de los especímenes para ensayo de compresión y flexión


Corrección de probetas cilíndricas para realizar ensayo de compresión

Ensayo de flexión de vigas Rectangulares

Probetas cilíndricas y prismáticas después del ensayo

Especímenes con sustitución de 2%G y 7%G a una edad de 28 días

Especímenes con sustitución de 10%G y 7%G a una edad de 28 días

Especímenes con sustitución de 0 %P y 13%G a una edad de 28 días

Excavación de la calicata 1 y ensayo de DLP

Excavación de la calicata 2 y ensayo de DLP

Preparación de muestras de suelo para Proctor y CBR

Preparación del suelo sustituyendo el reteniendo de la malla ¾"

Preparación de suelo para proctor y CBR

Muestras secadas en horno 24 horas de las dos calicatas para CBR

Moldes para ensayo CBR después de 96 horas de inmersión

Moldes para medir la expansión

Ensayo de CBR de las muestras de suelos

Muestras después del ensayo CBR

Ensayo de Limite líquido y límite Plástico