FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:
Ingeniero Civil

AUTOR:

Ramos Trujillo, Jimmy Jhan Paul (orcid.org/0000-0001-8078-3858)

ASESOR:

Mg. Dolores Anaya, Dante (orcid.org/0000-0003-4433-8997)

LÍNEA DE INVESTIGACIÓN:

Diseño de obras hidráulicas y saneamiento

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

HUARAZ – PERÚ

2022

DEDICATORIA

Dedico este trabajo a mi madre que siempre estuvo apoyándome en las buenas y malas junto a mi familia, agradecer por el apoyo incondicionalmente de mi familia por los ánimos y cariño constante que me brindaron, de igual manera gracias a las personas que estuvieron siempre apoyándome por los buenos consejos que me brindaron en su momento y especialmente dedico este proyecto a mi hija Kristhel Astrid Aitana, por ser mi motivación más grande en la vida.

AGRADECIMIENTO

Agradecer a DIOS TODO PODEROSO por todo lo que me ha brindado en mi vida por cuidarme siempre y cuidar a mi familia, a las personar que me brindaron su apoyo incondicional en todo momento, agradecer a los docentes que brindaron sus conocimientos que consolido mi formación profesional. Agradecer al Mg. DANTE DOLORES, por todo el apoyo y asesoramiento constante para la elaboración del presente proyecto, así mismo agradecer a la Universidad Cesar Vallejo por acogerme en su universidad para dar este gran último paso en mi carrera profesional como Ingeniero Civil.

Índice de contenidos

Cara	átula	i
Ded	licatoria	ii
Agra	adecimiento	iii
Índio	ce de contenidos	iv
Índio	ce de tablas	V
Índio	ce de gráficos figuras	vi
Res	umen	vii
Abst	tract	viii
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	6
III.	METODOLOGÍA	16
	3.1 Tipo y diseño de investigación	16
	3.2 Variable y Operacionalización	17
	3.3 Población, muestra, muestreo, unidad de análisis	18
	3.4 Técnicas e instrumentos de recolección de datos:	18
	3.5 Procedimientos.	19
	3.6 Método de análisis de datos	40
	3.7 Aspectos éticos.	40
IV.	RESULTADOS	41
٧.	DISCUSIÓN	53
VI.	CONCLUSIONES	55
VII.	RECOMENDACIONES	57
REF	FERENCIAS	58
ANE	EXOS	64

Índice de tablas

Tabla 1.	Diámetro de buzones	15
Tabla 2.	Tipos de suelos en calicatas	27
Tabla 3.	Humedad vs Número de Golpes en escala logarítmica	29
Tabla 4.	Justificación Técnica de la Dotación	32
Tabla 5.	Población estimada para dotación	32
Tabla 6.	Periodo de diseño económico para las estructuras de los sistemas.	32
Tabla 7.	Calculo de densidad de población	33
Tabla 8.	Factores de capacidad relativa	36
Tabla 9.	Tiempo de digestión de lodos	37
Tabla 10.	Cuadro de bms.	41
Tabla 11.	Ubicación de calicatas	42
Tabla 12.	Clasificación de suelos	42
Tabla 13.	Resultados de límites de Atterberg	43
Tabla 14.	Resultados de perfil estratigráfico	43
Tabla 15.	Diseño hidráulico	47
Tabla 16.	Diseño del tanque imhoff	49
Tabla 17.	Matriz de operacionalización	65
Tabla 18.	Matriz de consistencia	66
Tabla 19.	Calculo de densidad de población	128

Índice de gráficos y figuras

Figura.1	Ubicación de estación de rastreo	23
Figura.2	Cámara de sedimentación	35
Figura.3	Figura tanque imhoff	38
Figura.4	Diseño de tanque imhhoff	50

RESUMEN

Esta tesis tiene como finalidad de realizar el diseño del sistema de alcantarillado para el C.P. Ingenio. En la presente tesis la metodología usada será de tipo aplicada donde se usa los conocimientos adquiridos de la realidad, como diseño de investigación será no experimental: transversal, descriptivo simple, teniendo como enfoque de investigación "cuantitativo". La recolección de información en la zona del proyecto fue mediante observación directa. Se desarrolló el levantamiento topográfico donde la toma de datos se obtuvo mediante fichas de campo, teniendo como área de influencia 14.60 hectáreas. Además, se realizaron calicatas para descartar la existencia de napa freática así mismo verificar la agresividad del suelo y ver el tipo de suelo para realizar los ensayos de suelos en el laboratorio. Se calculó y realizo el diseño con los siguientes datos obtenidos, teniendo en total 81 viviendas con una cantidad de población que asciende a 324 habitantes. En conclusión, se calculó en el sistema de alcantarillado que consta que consta de 55 buzones, con una longitud de tubería de 1922.39ml con un diámetro de 160 mm cada tubería además se obtuvo 81 conexiones domiciliarias, así mismo se realizó el diseño de un tanque imhoff para tratar las aguas residuales.

Palabras clave: Red de alcantarillado, aguas servidas, tratamiento de aguas residuales.

ABSTRACT

The purpose of this thesis is to carry out the design of the sewerage system for the C.P. Ingenio. In this thesis the methodology used will be of applied type where the knowledge acquired from reality is used, as research design will be non-experimental: transversal, simple descriptive, having as research approach "quantitative". The collection of information in the project area was through direct observation. A topographic survey was carried out where data collection was obtained by means of field cards, with an area of influence of 14.60 hectares. In addition, soil pits were dug to rule out the existence of a water table and to verify the aggressiveness of the soil and to determine the type of soil in order to carry out soil tests in the laboratory. The design was calculated and carried out with the following data obtained, having a total of 81 dwellings with a population of 324 inhabitants. In conclusion, the sewage system was calculated, which consists of 55 mailboxes, with a pipe length of 1922.39 ml with a diameter of 160 mm each pipe and 81 home connections, as well as the design of an imhoff tank to treat wastewater.

Keywords: Sewage system, sewage, wastewater, wastewater treatment.

I. INTRODUCCIÓN

La intención de esta tesis realizada, tiene como fin de mejorar las condiciones sanitarias de los pobladores que viven el C.P. Ingenio, que dentro del radio de influencia se puede apreciar la carencia de un sistema de alcantarillado ya que se ve la necesidad urgente de la realización, para mejorar la calidad de vida los ciudadanos de mencionado lugar. El Centro poblado Ingenio posee una gran concentración de viviendas, 81 viviendas que se ubican en el tramo de la carretera central de Huánuco - Ambo -Huacar – C.P. Ingenio, que descansa sobre una economía agrícola de auto subsistencia, no se halla localizado en el ámbito de ningún proyecto especial o corredor económico. Se pretende implementar en el diseño propuesto el funcionamiento de flujo por gravedad del sistema de alcantarillado, el flujo por gravedad tiene la ventaja que el mantenimiento que se realizan periódicamente constituyen un bajo costo de operación y poca capacidad de personal, según la OMS (2022), el 2020 el 54% de la población mundial que compone unos 4200 millones de habitantes usaba un servicio de saneamiento gestionado de forma segura, además más de 1700 millones de personas aún carecen de acceso a servicios básicos de saneamiento e higiene, como baños y letrinas, el 45% de las aguas residuales domésticas del mundo se eliminaron sin un tratamiento seguro se estima que por lo menos el 10% de la toda la población mundial consume alimentos que fueron producidos con el riego de aguas residuales. La falta de saneamiento básico seguro, conduce a la población a enfermedades y condiciones que afectan más a los niños, como diarrea, infecciones parasitarias, retraso en el crecimiento, Según Yee-Batista (2013) indica que el 80% de la población de Latinoamérica vive en ciudades y una gran cantidad en asentamientos y/o invasiones en la cual son fuentes propensos a sufrir contaminación, además indica que siendo América Latina, una de las regiones más diversas del mundo tiene posee más de un tercio de fuentes de agua del mundo, además afirma que el 70% de las aguas residuales de la región de Latinoamérica no son tratadas, donde el agua es usada para que posteriormente sea devuelta completamente contaminada a los ríos más cercanos. Según Reynolds

(2002) refiere que los pasos básicos para el tratamiento de aguas residuales inician con un pre tratamiento (quitarle los objetos grandes al agua residual), deposición primaria (sedimentación de las partículas sólidas de las aguas residuales), tratamiento secundario (realizar el uso de plantas de tratamiento para una correcta digestión biológica), tratamiento terciario (se define a un tratamiento con el uso de químicos mediante la precipitación, desinfección). Situación de tratamiento de las aguas residuales en Perú, nos sitúa a ver el gran incremento de contaminación debido al mal manejo y tratamiento de las aguas residuales. Según el estudio efectuado por la SUNASS (2008) indica que el 70% de las aguas residuales no tienen algún tipo de tratamiento, así mismo en el Perú existían 143 plantas de tratamiento donde solo el 14% cumplían con la normatividad vigente, a l actualidad debido al diagnóstico realizado, se identificaron las debilidades del sector saneamiento, donde la entidad recomendó propuestas de mejora para el tratamiento de aguas residuales con un incremento de 11% entre 2016 y el 2020 el cual el nuevo diagnostico indica que actualmente existen 202 plantas de tratamiento de aguas residuales en el Perú, las cuales se tienen 171 plantas de tratamiento de aguas residuales, indican que el 81% de están cumpliendo con su función de eliminar o remover las partículas contaminantes. Según la ONU, el 80% de las aguas residuales del mundo no se desinfectan antes de ser tratadas o reutilizadas, lo que no solo contamina la flora y la fauna, sino que también provoca enfermedades y muertes prematuras, con un costo de cientos de miles de dólares en daños al PBI anual. planetas, pero tomemos un momento para ver cómo son las cosas en Perú. Las autoridades reguladoras en Perú son responsables de monitorear el cumplimiento de las normas de aquas residuales, por ejemplo, OS090, DS037, además del cumplimiento de los límites máximos permisibles y los valores de ECA, que cualquier empresa privada o pública se compromete al solicitar un permiso, según el ECA, lo que quiere lograr: drenaje, riego o reutilización de aguas residuales; Realizan su trabajo con devoción, pero la obligación de acatar estas normas debe ser coherente no solo con evitar el castigo sino también con la conciencia y el respeto por el medio ambiente. De la misma manera una gran parte de los centros poblados de la región de Huánuco carecen de un sistema de

alcantarillado Para satisfacer sus necesidades fisiológicas, utilizan fosas sépticas ubicadas en su entorno exterior y/o doméstico, lo que permite combatir las condiciones causadas por bacterias, parásitos o virus. Ante este problema, podemos hacer un análisis y tener en cuenta que en el futuro sufrirán consecuencias muy graves si se sigue ignorando las necesidades básicas de la población, este proyecto trata de desarrollar un proyecto para salvaguardar la integridad sobre la salud y satisfacción de los habitantes. Las problemáticas encontradas en la zona del proyecto, las casas en su gran mayoría cuentan con pozos ciegos y/o letrinas. En tanto a las enfermedades en el lugar los pobladores tanto niño, jóvenes, adultos, ancianos se encuentran también expuestos en el mal manejo de las aguas servidas, los jóvenes no tienen conciencia de lo puede ocasionar los gérmenes y bacterias generadas por el mal manejo inadecuado de sus desechos, consecuencia de la inexistencia de una de red de alcantarillado de aguas servidas. Otra problemática es que el nivel de educación sanitaria que tienen los pobladores son casi nulas, por la cual se plantea con este proyecto de tesis dar a conocer los aspectos y criterios básicos para dar a conocer la importancia de la disposición sanitaria de excretas y el manejo correcto de las aguas servidas. Los grupos de familias que viven en el área de intervención del proyecto actualmente no tienen acceso a un sistema de alcantarillado y la mayoría utiliza letrinas y rellenos sanitarios informales para descargar sus aguas servidas y residuales. Por lo tanto, destacando la necesidad de investigar el problema nos lleva a realizar este proyecto de investigación con la única finalidad de realizar un adecuado proyecto de investigación para el C.P. Ingenio y consecuentemente dar solución a una problemática que se manifiesta en la zona del proyecto, donde se puede observar la inexistencia de una red de alcantarillado sanitario, por consiguiente, con este proyecto investigación se tiene como objetivo principal en aportar un adecuado y correcto desarrollo y un óptimo desarrollo del alcantarillado sanitario para el C.P. Ingenio. Cómo formulación de problema, se define la siguiente interrogante como pregunta general, ¿el diseño del sistema de alcantarillado sanitario mejorará las condiciones de Salubridad del C.P. Ingenio?, de la misma manera se tiene como preguntas específicas: ¿de qué manera el

estudio topográfico ayudara para el diseño del sistema de alcantarillado, del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022?; ¿de qué manera el estudio de la mecánica de suelos ayudara para el diseño del sistema de alcantarillado, del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022?;, del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022?; ¿de qué manera el resultado del cálculo de caudal e hidráulico ayudara para el diseño del sistema de alcantarillado, del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022?; ¿de qué manera el resultado del diseño de la planta de tratamiento ayudara para el diseño del sistema de alcantarillado, del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022?; Como justificación del problema de investigación se tienen las siguientes justificaciones jerárquicamente, Teniendo en cuenta la justificación teórica en este proyecto de investigación se plantea aplicar normas y reglamentos estipulados en el RNE, además aplicando conocimientos teóricos adquiridos en la etapa de formación académica, donde se tienen conocimientos y criterios esenciales sobre diseños de sistemas de alcantarillado y drenaje de la misma manera aplicando informaciones de fuentes confiables sobre diseño de sistemas de alcantarillado. En la justificación practica se mejorarán y plantearán soluciones concretas a las problemáticas al manejo de aguas residuales, así mismo busca reducir las enfermedades ocasionadas por el mal manejo de las aguas residuales, y como consecuencia de todo ello se logrará mejorar la calidad de vida de los habitantes. En la justificación social el proyecto será un beneficio para toda la población del C.P. Ingenio ya que con el diseño realizado tendrán una alternativa para la elaboración del sistema de alcantarillado, mediante esto logrando un beneficio social para el pueblo, además será de gran interés a personas que estén interesadas en la investigación. Finalmente, en la justificación metodológica se define que se tiene los instrumentos requeridos para realizar los estudios respectivos tanto en el campo como en gabinete, de tal manera los procedimientos serán realizadas siguiendo los lineamientos del RNE, manuales para optar un eficiente diseño del sistema de alcantarillado. De la misma manera planteamos los objetivos, teniendo como objetivo general, diseñar el sistema del alcantarillado sanitario del

Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022. Y teniendo como objetivos específicos realizar el estudio topográfico, realizar el estudio de mecánica de suelos (EMS), realizar el diseño y cálculo del caudal e hidráulico del sistema de alcantarillado, diseño de la planta de tratamiento. De la hipótesis se podría llegar a decir que se procederá a hacer el Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022. Para mejorar las condiciones sanitarias de los pobladores. Para finalizar en las hipótesis especificas tenemos el levantamiento topográfico el cual nos ayudara a conocer las características del todo el terreno. Así mismo el estudio de mecánica de suelos ayudara a conocer las características del suelo, diseño hidráulico del sistema de alcantarillado y para concluir el diseño de la planta de tratamiento de aguas residuales del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.

II. MARCO TEÓRICO.

En el marco de antecedentes se tiene a <u>nivel internacional</u> según; La tesis de Taco Freddy (2012) realizada en la Universidad de Ambato Ecuador, en su tema de tesis "las Aguas servidas y su incidencia en la salubridad de los Habitantes del barrio Pilacoto de la parroquia Guaytacama del cantón Latacunga provincia de Cotopaxi.". Donde su objetivo principal detallar el efecto de las aguas residuales en la salud de los pobladores, metodología tiene como enfoque tipo cuantitativo. En los resultados el estudio realizado por los residentes del vecindario Pilacoto asume que la implementación de este proyecto es necesaria por la falta de infraestructura completa para eliminar las aguas servidas. Teniendo como conclusiones; La libre contaminación del agua residual, el suelo en conjunto a los productos agrícolas en esta zona es evidente porque el agua de los hogares se utiliza para la agricultura y, por lo tanto, se convierte en una fuente de infección de diversas enfermedades, El manejo de las aguas servidas ayudara que las personas disfruten de mejores condiciones sanitarias y eliminarán el uso de fosas sépticas y tanques sépticos. El tratamiento adecuado de las aguas servidas es crucial para construir una comunidad saludable, ya que reducirá los niveles de contaminación por sedimentos y aumento de desechos debido a la falta de drenaje. Según; la tesis de Jony Alexander y Sergio Sebastián (2021) realizada en la Universidad Católica de Colombia, con su tema de tesis "Diseño hidráulico de la primera fase de la red de alcantarillado del casco urbano del Municipio de Chipaque". tuvieron como objetivo principal Diseñar la red sanitaria para en beneficio de la municipalidad de Chipaque, se precisó de la utilización de la metodología Descriptiva Experimental; que consiste en: Cronograma de ejecución del proyecto, recolección de datos en la zona, recopilación y procesamiento de encuestas socioeconómicas en cuanto a servicios básicos del recinto San Antonio de la Abundancia, información que ayude a conocer el clima de la zona (IDEAM), estudio y levantamiento topográfico del lugar. Como resultados, obtuvo el modelo hidráulico, diseños, planos y otros cálculos se proporcionan como archivos adjuntos. Como conclusiones planteo lo siguiente: Viendo que el alcantarillado que tiene la Municipalidad se encuentra en constante combinación de las aguas residuales con el agua de lluvias, sin forma de tratamiento en la quebrada Quente, se procedió a desarrollar el siguiente proyecto con el fin de crear una forma de manejo de las aguas residuales para dividir el sistema de alcantarillado y las aguas pluviales. Se buscó diseñar los tramos que tienen contrapendiente para así poder optimizar los colectores. Según; la tesis de Cristhian Armando (2019) realizada en la Universidad del Salvador con su tema de tesis, "Estudio de la red de alcantarillado sanitario de sector Chala". Donde su objetivo principal Examinar el sistema de alcantarillado existente en el sector La Chala, donde el objetivo del proyecto será brindar una vida digna a los habitantes. Como metodología el proyecto que se llevó a realizar fue del tipo descriptivo: explicativo. Este estudio se basa en el tipo de descriptivo de la prueba que considera la condición actual del estado de las aguas residuales donde los resultados calculados después de que la encuesta se verificaran si son resultados positivos o negativos. La investigación tendrá un tanto de tipo explicativo, al proceso de la investigación respectiva se tendrá en cuenta parámetros para mejorar los problemas según requiera el sector evaluado, como resultados los colectores de la red se encuentran en malas condiciones, sin dejar de lado la evaluación hidráulica como los parámetros constituidos en la norma, sin embargo a simple vista se pudo observar que no existe un constante mantenimiento de las redes de alcantarillado por este motivo la red no cumplirá el periodo para el que fue diseñado como conclusiones planteo que: Indica que las tuberías principales y secundarias se están en mal estado, a pesar de no haber podido verificar todos los tramos de la red debido a las pésimas condiciones encontradas y que cuentan con desniveles muy considerables, se recomienda inspeccionar cada cierto periodo de tiempo las tapas así mismo protegerlas con puntura anticorrosiva, al realizar cambios de tuberías se debe tener en cuenta las cotas del terreno al inicio y poder brindarle un adecuado pendiente para evitar problemas de colapso, realizar vigilancia continua en épocas de lluvia para ver y evitar taponamientos de las aguas residuales y así evitar el empoce de agua. A nivel nacional. Según; La tesis de IMMER ALEGRE (2020) en su tesis realizada en la Universidad Católica Los Ángeles Chimbote con su tema de

"Estudio diseño del sistema de la red de alcantarillado en el centro poblado de tunape", donde su objetivo principal Diseñar la red de alcantarillado sanitario, teniendo como objetivos del proyecto, la mitigación de las aguas servidas, también realizar el diseño de la planta de tratamiento de aguas servidas. Teniendo como metodología el estudio del proyecto será del tipo descriptivo. Resultados De acuerdo a la información de diseño este proyecto beneficio a 57 casas del centro poblado de tunape, teniendo en cuenta a 237 pobladores teniendo en la tasa de crecimiento que es de 14.1 hab/año para un tiempo de diseño de 20 años. En la obtención de la población de diseño fue de 517 Habitantes, con una Dotación: 110 lt/hab./día. De eta manera se realizó el cálculo el caudal de diseño óptimo, Q alc. = 1.17 "lt/s". como conclusiones planteo que: En el proyecto beneficia a 237 pobladores, la red de alcantarillado es por gravedad, en el proyecto se calculó y trabajo con un caudal de 110 lt/hab./día, los caudales tanto como caudal máximo diario y horario fueron los ideales para realizar el correcto diseño, el caudal de diseño calculado fue de a de 31.59 lts/s, lo cual según la norma se considerará tubería de 200 mm, se determinó las cotas de la topografía del terreno". "Cota máx": 31.50 m; Cota mín: 25.18 m. Según; la tesis de Lizarraga Rodriguez Arturo (2020) realizada en la universidad Cesar Vallejo con su tema de investigación "Diseño del sistema de alcantarillado de los sectores Chanquin y La Cobranza del distrito de Moche". su objetivo principal realizar el correcto diseño de la red sanitaria metodología el diseño fue cuantitativo, no-experimental, "transversal", (descriptivo simple). Como resultados, Los trabajos topográficos permitieron la recopilación de información actualizada sobre el área de intervención, así como los estudios básicos requeridos para el proyecto, así como la ejecución de estudios de impacto ambiental. como conclusiones se tiene los siguientes: Durante todo este trabajo, fue posible observar el estado actual del sistema de drenaje, así como estudiar la topografía, estudiar la mecánica del suelo, diseñar el sistema de drenaje y estudiar el impacto ambiental en la zona del proyecto. Todos los elementos y componentes del cálculo y diseño del proyecto han sido medidos, evaluados y presupuestados para el proyecto, junto con los análisis de costos apropiados y sus polinomios. Según; la tesis de Lucio Vargas (2020) realizada en la Pontificia Universidad Católica del Perú en su tema de tesis "Diseño de redes de alcantarillado de agua potable y alcantarillado de la comunidad campesina la ensenada de collanac distrito de Pachacamac mediante el uso de los programas watercad y sewercad", donde como su objetivo principal fue realizar el correcto diseño de la red de agua potable y alcantarillado con los objetivos de: Analizar la población futura de la comunidad en base al aumento poblacional y realizar un óptimo diseño, calcular la dotación del caudal y el promedio diario anual, promedio máx diario y máx horario, diseñar la red de alcantarillado para el modelamiento y análisis WaterCad y SewerCad, teniendo como metodología es diseño cuantitativo, no-experimental, "transversal", descriptivo simple. En los resultados se obtuvo el diseño y análisis del sistema de alcantarillado con el programa SewerCad en las conclusiones Se entiende que diseñar una red de alcantarillado con SewerCAD permite controlar los límites de profundidad, velocidad, tracción, pendiente, rigidez, material y diámetro de la tubería del buzón antes de iniciar el diseño, realizando así un diseño adecuado. Y en menos tiempo para cumplir con los estándares actuales conforme a la norma. Según; la tesis de Ushiñahua Jacob (2020) realizado en la Universidad Cesar Vallejo en su tema de investigación, "Diseño del sistema de alcantarillado sanitario para mejorar la salubridad de las AA.VV. la molina, distrito la banda de Shilcayo objetivo general: proyectar el sistema de aguas residuales para desarrollar la calidad de vida de los pobladores de La Molina en los objetivo principal diseño del sistema de alcantarillado sanitario metodología El diseño del estudio es preexperimental porque analiza las variables sin llegar a manipularlas, lo que nos permite abordar preguntas de investigación realistas y del tipo adecuado ya que nos permite verificar que la variable dependiente y la variable Independiente están relacionadas, teniendo como resultados respecto al estudio topográfico del terreno los valores obtenidos en la zona del proyecto fueron los puntos tanto horizontal vertical de terreno, para al EMS se realizaron las calicatas correspondientes la cual permitió hacer la clasificación SUCS para contar con los datos necesarios respecto a las características del suelo con estos estudios más el diseño del sistema de aquas residuales cumplen con los lineamientos de diseño según norma, teniendo como conclusiones, que el desnivel que se observa en la topografía del proyecto es accidentado con desniveles irregulares sumando a esto el suelo tipo CL no son amigables y buenos para la realización de las actividades en obra. Para 20 años se calculó una población futura de 3947hab. será preciso realizar:63 buzones de 1.20 m de diámetro y alturas diferentes que oscilan entre 1.5 m como mínimo y hasta 2.30 m como máximo. Cuentan con presencia de Iluvias, llegando a generar gastos y pausas de la obra, llevando esto a generar un mayor gasto presupuestal de la obra. Realizando las comparaciones correspondientes de cada investigación, donde fue necesario para cumplir con la norma y teniendo en cuenta las teorías de cada investigación, se definen de gran ayuda para interpretar el presente proyecto de tesis. Así mismo se presentan como bases teorías que apoyan al beneficio de proyecto, podemos definir el sistema de alcantarillado sanitario, que según la topografía el cual se define como una disciplina, según manifiesta Manuel Zamarripa (2014) sostiene que la topografía tiene muchos usos en la ingeniería, lo que le hace muy importante en la ingeniería, afirma que la ingeniería o trabajos civiles no serían posibles de realizar los proyectos. Tiene como objetivo las actividades fundamentales el levantamiento, trazo o replanteo. En su forma simplificada la topografía comprende y tiene diferentes mediciones las cuales son las siguientes: Planimetría comprende la toma de datos que permitirá proyectar en un plano horizontal, es decir comprenderá la toma de datos del área perimetral, así como los detalles naturales de la zona del proyecto. Altimetría o nivelación determina las elevaciones de distintos puntos del terreno con respecto a un plano, que generalmente se le la altura sobre el nivel del mar. Agrimensura determina la superficie de los terrenos por el cual de este procedimiento se obtiene los gráficos, mecánicos y analíticos así mismo estudia el fraccionamiento de los terrenos, el levantamiento topográfico se da cuando la extensión del levantamiento es menor a 30 Km, así mismo se tiene como otro tipo de levantamiento topográfico el levantamiento geodésico, el cual consiste cuando la extensión del terreno supera los 30 Km de distancia. Para el cual en este proyecto se optará por el levantamiento topográfico ya que no supera

los 30 Km el área de proyecto. También en las mismas definiciones teóricas encontramos clases o tipos de levantamiento topográfico las cuales se tiene: Levantamiento preciso, se realizan por medio de equipos electrónicos y métodos rigurosos para el cálculo del levantamiento, además fija los limites, perímetros y las localizaciones con gran exactitud, es decir es el más seguro, confiable y exacto. Levantamiento regular, se realizar para calcular las poligonales de áreas, linderos de propiedades. Levantamiento estadimétricos, se usa para trabajos previos de trazos de vías de comunicación, predios. Levantamiento expeditivo, para este tipo de levantamiento se usan aparatos portátiles con poca precisión, así como la brújula, podómetro, o la medición mediante pasos o a medición visual, son mediciones aproximadas mas no exactas, por lo tanto, en el presente proyecto se tendrá en cuenta el tipo de levantamiento topográfico y se optará por el más seguro el cual nos brindará confiabilidad y exactitud a la hora de realizar los planos topográficos. Según Unicen (2015), los perfiles longitudinales es parte de la topografía lineal, mediante el cual es posible ver las propiedades del terreno que se va a trabajar en el proyecto, de la misma manera ver el relieve del terreno a lo largo de forma de un corte. Como base teórica el estudio de mecánica de suelos (EMS), según RNE (OS.070) se realizará el reconocimiento global de todo el terreno para realizar un óptimo estudio y evaluación de sus características, en contexto con el EMS se determinará la agresividad del suelo con indicadores del PH que posee el suelo además ver los sulfatos, cloruros, y las sales que se encuentran en el suelo. En caso el estudio o evaluación lo requiera se definirán otros tipos de estudios para ver las características del suelo, el estudio de mecánica de suelos busca también ver la granulometría del suelo la cual consiste en la división de pequeñas partes del suelo llamando a la fracción más fina como arcilla y limo. Se realiza mediante el tamizado logrando separar las partículas más grandes con las partículas más pequeñas, logrando llegar a las partículas más finas de la muestra, los valores o cantidades que pasan o quedan en cada tamiz ayudaran para realizar un óptimo ensayo granulométrico. Así mismo se tiene en el EMS el contenido de humedad del suelo el cual ayudara a ver el contenido de humedad que posteriormente

ayudara a verificar las propiedades mecánicas, físicas del suelo, es decir para tener un óptimo resultado tener en consideración que la muestra del suelo una vez extraída debe ser usada ya que al esperar a que pase más tiempo el suelo insitu recién extraído pierde sus propiedades ya que este ensayo se basa la diferencia de peso del material húmedo y el material seco, un mal procedimiento conllevaría a un mal resultado del análisis ocasionando de esta manera fallos técnicos. Según MTC (2014) Así mismo tenemos la clasificación SUCS, este tipo de ensayo tiene como función verificar el tipo de simbología y en lo que se agrupa cada tipo de suelo para así poder tener la facilidad de identificar cada tipo de suelo en las simbologías de los tipos de suelos encontramos, Grava (G), Arena (S), Limo(M), Arcilla(C), Orgánico (O), Turba (Pt). Límites de consistencia o límites de atterberg. Según Atterberg (1991) indica la plasticidad que poseen los suelos para poder deformarse de tal forma ayuda a clasificar los suelos cohesivos según la humedad que poseen, los límites de consistencia se determinan empleando el material de la muestra que pasa por la malla N° 40, entones la diferencia del límite líquido (LL) y el limite plástico (LP) dará como resultado el índice plástico (IP), entonces se tendrán las siguientes definiciones que cuando el IP es igual 0 el suelo es NO plástico, cuando el IP<7 el suelo presenta baja plasticidad, cuando el 7 ≤ IP ≤ 17 el suelo es medianamente plástico cuando el IP > 17 el suelo es altamente plástico, todo el procedimiento se realiza con el equipo de copa de Casagrande. Donde cada muestra a emplear pesara de 150 g a 200 g. humedecer la muestra que pasa por la malla N° 40 dejar reposar por al menos 16 horas, posteriormente colocar la muestra en la copa Casagrande y realizar el ensayo con intervalos de golpes que van de 25 a 35 golpes, de 20 a 30 golpes, de 15 a 25 golpes, respectivamente la humedad determinada el limite liquido del suelo. Continuando con las bases teorías sobre sistema de alcantarillado, según la RNE (OS.100) para generar el diseño se debe tener en cuenta el periodo de diseño el método debe ser fijado por el mismo proyectista el más adecuado el cual recomiendan teniendo en cuenta algunos factores como el periodo de utilidad de equipos y estructuras, el nivel de complejidad del proyecto, crecimiento poblacional, economía de escala, por lo tanto se recomienda un periodo de diseño máximo de 20 años, el cual garantice un óptimo funcionamiento. Para una población futura considerando para asentamiento existentes se deberá guiar por bases estadísticos y/o planes reguladores de los programas de desarrollo regional, tratándose para nuevas habilitaciones se tiene que tener una densidad de 6 hab/vivienda. Asi mismo existen diferentes métodos y formas para hallar la población en un futuro, el cual una de ellas es la proyección aritmética, es el que se aplicara en el presente proyecto, el cual aplica a un número constante de crecimiento de una población. La tasa de crecimiento según INEI, que es el encargado de realizar censos para ver el crecimiento y decrecimiento de alguna determinada población, entidad que otorga anualmente la tasa de crecimiento en el Perú, donde los datos requeridos para la fórmula establecida por el INEI, r= (tasa de crecimiento), Pf= Población (final), Po= Población (inicial), n= Tiempo (años). Dotación de la misma manera según RNE (OS.100), la dotación se fijara a base de consumos justificados por lada vivienda con informaciones y estadísticas comprobadas, en caso de no existir algún tipo de información estadístico de consumo se considerara dotaciones de acuerdo al aspecto climático de las cuales son las siguientes dotaciones, para clima frio se usara 180 lt/hab/día en localidades que cuenten con sistemas de conexión domiciliaria, 120 lt/hab/día localidades de tengan viviendas con lotes < de 90m2, y 30 lt/hab/día para localidades de posean abastecimiento para cisternas y piletas, de la misma manera considera para un clima templado y cálido un dotación de 220 lt/hab/día en localidades que cuenten con sistemas de conexión domiciliaria, 150 lt/hab/día localidades de tengan viviendas con lotes < de 90m2, y 50 lt/hab/día para localidades de posean abastecimiento para cisternas y piletas, Así mismo la variación de consumo se tiene los coeficientes K1 y K2 referidos a los promedios diario y horario, las cuales tienen factores máximos permisibles las cuales son el coef máximo diario = 1.3 y el coef máximo horario = 1.8 para el cálculo del vol de contribución de excretas, cuando la eliminación es por digestión seca se considerara una contribución de 0.20 kg por habitante al. Así mismo para la contribución de alcantarillado se tomará el 80% del caudal que ingresa del agua consumido al sistema de

alcantarillado. Redes de alcantarillado, según: RNE (OS. 070) La norma ofrece parámetros y lineamientos exigibles para un diseño hidráulico, así mismo plantea los requisitos a los que deben seguir los proyectos de alcantarillado. Teniendo las siguientes definiciones: Redes de recolección. - Compuesto por tuberías principales y tuberías secundarias que ayudan a recolectar las aguas servidas de los lotes. Ramal Colector. - Tiende a ser la tubería de la acometida que dale del lote hacia el colector principal. Tubería Principal. -Es la matriz que reúne todas las aguas y desechos que provienen de las redes de recolección. Tensión Tractiva. Está asociado al flujo por gravedad en canales, impuesto por el fluido sobre el material sedimentario. Pendiente Mínima. - La pendiente mínima está determinada por la tensión de tracción para garantizar la capacidad de auto limpieza y transporte de aguas servidas en la tubería. Profundidad. -Diferencias de niveles en la topografía del terreno. Recubrimiento. -Desigualdad de altura entre la cara de la base y la barra colectora exterior superior de la tubería. Conexión Domiciliaria. - Compuesto de elementos instalados con la finalidad de conceder la eliminación de las aguas residuales que sale de cada lote. Los principales elementos de la red de drenaje descritos son: Acometida y/o acometida domiciliaria. - permiten la introducción de las aguas servidas de una vivienda o inmueble a un sistema de alcantarillado. Las redes de recolección secundaria. - son tuberías de mayor sección transversal, a menudo con entradas oblicuas, que recolectan las aguas residuales de las conexiones interiores y las dirigen al colector principal. Los colectores principales. - son los colectores más grandes de la red, recolecta grandes cantidades de aguas residuales y los traslada a su deposición final. (manual de operaciones alcantarillado) Población. - Se procederá a calcular la población para el tiempo de diseño aceptado, donde el cálculo para el diseño se realizará en base a la tasa de crecimiento, que establece el órgano que regula estos indicadores. Caudal de Diseño. - se calculará para el inicio y el fin del periodo de diseño. Se procederá a hacer con el valor del caudal máx. (diario y horario). Medición hidráulica de tuberías y de los accesorios tendrán que cumplir con los estándares técnicos actuales y aprobados de Perú. Ubicación y recubrimientos de tuberías. - como indica la norma OS.070 cumplir con todo lo que indica la norma. Las cámaras de inspección. - como indica la norma tienden a ser

cajas de inspección, buzones y buzonetas, se usan en las tuberías de vías peatonales donde la altura que oscila es menor de 1,00 m. Se proyectarán tuberías de hasta 200 mm de diámetro. Los diámetros de las buzonetas oscilaran hasta 0.60 cm como máximo. El diámetro interior de los buzones. – El diámetro máx. será de 1.20m en tubos de hasta 800 mm y de 1.50 m para tubos de hasta 1200 mm. Para tubos con mayor diámetro los buzones de inspección serán de un diseño especial. Las tapas de los buzones serán de 0,60 metros de diámetro. La distancia máxima entre cámaras de inspección y cámaras de limpieza. – viene a ser la separación máxima de buzón a buzón, esto dependerá del diámetro que tienen las tuberías. Para las tuberías principales su separación de buzón a buzón será de acuerdo a la siguiente tabla.

Tabla 1. Diámetro de buzones

DIÁMETRO NOMINAL DE LA TUBERÍA (mm)	DISTANCIA MÁXIMA (m)		
100-150	60		
200	80		
250 a 300	1 00		
Diámetros mayores	150		

Las cámaras de inspección podrán ser prefabricadas o construidas obra. En el fondo se proyectarán canaletas en la dirección del flujo.

Fuente: norma O.S 070

Según el RNE (OS.090) esta norma diseño de "planta de tratamiento de aguas residuales", tendrá como objetivo normar los proyectos la cual conlleva en el tratamiento de aguas residuales en una planta de tratamiento, el cual posibilitará el correcto diseño de la planta de tratamiento más adecuado y sus componentes respectivos.

III. METODOLOGÍA.

3.1 Tipo y diseño de investigación

Tipo de investigación:

La presente investigación llega a ser de tipo Aplicada el cual trae en su definición el concepto de aplicar el uso de los conocimientos que existen para solucionar problemas en la vida real, mediante soluciones prácticas existentes en el entorno de la realidad.

Para Murillo (2008), La investigación aplicada se conoce como "investigación práctica o empírica" y se caracteriza por el deseo de aplicar o utilizar los conocimientos adquiridos, mientras que otros conocimientos se adquieren después de la práctica, presentar y sistematizar las actividades de investigación. Utilizar el conocimiento y los resultados de la investigación de una forma coherente, estructurada y sistemática de entender la realidad.

Diseño de investigación:

El diseño de la investigación es no experimental: transversal, descriptivo simple teniendo como enfoque "cuantitativo", se toma el diseño no experimental por motivo a que no se logra modificar ninguna variable deliberadamente, y viene a ser transversal porque la recolección de datos serán por única vez es decir que el tipo de diseño es donde las incidencias y/o problemáticas que se llegaron a analizar es en un único tiempo, será descriptivo simple porque solo se manejara una sola variable para la realización del proyecto, en tanto al enfoque cuantitativo nos indica que el proyecto de investigación se rige con la elaboración del diseño de la red de alcantarillado y planta de tratamiento donde inciden valores de muestras de viviendas, habitantes, cálculos numéricos a realizar.

La investigación no experimental es aquella que se lleva a cabo sin la manipulación intencional de variables, en este tipo de investigación se observan y luego se acumulan los fenómenos de investigación que ocurren en el medio natural. (Hernández; Fernández y Baptista, 2014)

Los diseños transversales descriptivos están diseñados para investigar la frecuencia y el valor de una o más variables expresadas en métodos cuantitativos. (Hernández; Fernández y Baptista, 2014)

3.2 Variable y Operacionalización

En definición una variable es una característica o cualidad que tiene alguna persona, cosa o grupo de personas, una forma práctica del objetivo de la variable es ver el cambio del fenómeno y la evolución al momento del realizar el estudio de investigación. En operacionalización indica que se deberá llevar un conjunto de procedimientos para poder entender y medir la variable en estudio.

Las variables estudiadas son las propiedades y características cualitativas o cuantitativas de los objetos o fenómenos que obtienen diferentes valores, es decir, difieren según la unidad de medida. Tomando como ejemplo, la variable de (género) obtiene dos diferentes valores: femenino y masculino. (Nuez Bayolo et al. 2008)

Operacionalización esta actividad posee una serie de métodos, así como instrucciones para calcular las variables que se encuentran definidas conceptualmente. Trata en gran parte de obtener la mayor cantidad posible de información sobre alguna variable seleccionada para descifrar su significado y adaptarse a la realidad. (Cordero 2015)

Variable:

Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.

Operacionalización:

(Ver anexo 01)

3.3 Población, muestra, muestreo, unidad de análisis.

3.2.1. Población.

La población viene a ser un conjunto o grupo de personas que se dará a conocer para realizar un trabajo de investigación, el cual constituirá el área de todo el proyecto, de tal manera se conoce el número de viviendas que se beneficiarán asciendes a 81 viviendas, así mismo la cantidad de pobladores llega a 325 a la totalidad de los habitantes de la localidad del C.P. Ingenio que serán beneficiados con el estudio.

Indica que la población es un conjunto o grupo que componen determinadas características Hernández (2014)

Muestra y Muestreo:

Se realizará la muestra de toda el área de influencia es decir de todo el centro poblado, llevando esto a al número de muestra obtenida en la zona del proyecto, será del mismo tamaño de la población en investigación donde el proyecto comprende en totalidad de 81 domicilios. En lo que se define el muestreo no probabilístico intencional el muestreo será lo mismo que la muestra, debido al pequeño tamaño que posee del centro poblado, para la investigación se tomó la misma cantidad para la muestra.

La muestra viene a ser un subconjunto o una parte de un total de elementos las cuales son parte de un conjunto. Hernández (2014)

El muestreo no probabilístico intencional, supones un tipo de muestreo donde el autor y/o investigador es el encargado de recolectar los datos. Hernández (2014)

3.4 Técnicas e instrumentos de recolección de datos:

Inicialmente con este proyecto se determinaría por técnicas efectivas para la recolección de datos, por lo tanto, el inicio de todo trabajo sobre algún tipo de diseño se basa en procedimientos confiables para recolectar datos de algún determinado lugar. De tal manera el inicio y procedimiento para la obtención de datos será con visitas a la zona

del proyecto, en el cual se determinará y observará el estado actual del lugar, de tal manera los instrumentos optados para la recolección de datos se realizaron mediante la observación directa, formatos de campo, equipo topográfico, wincha de 50m, Gps y cámara digital. Asi mismo para la extracción de muestra del suelo se excavarán calicatas de exploración se usarán fichas de recolección de datos, de la misma manera se desarrollará con el uso del reglamento nacional de edificaciones del perú (Obras de saneamiento), además de artículos que sirven como guía informativa para realizar con correcto cálculo del diseño del sistema de alcantarillado y planta de tratamiento.

Validez

HERNÁNDEZ y et al, (2014). "Se relaciona al grado en que una herramienta mide efectivamente la variable, que cuantifica su valor".

Los diseños de sistemas de alcantarillado sanitario se han utilizado y validado en el contexto de levantamientos topográficos y de suelo, e incluso se han desarrollado diseños similares.

Confiabilidad

HERNÁNDEZ y et al, (2014). Que cita a KELLSTEDT y WHITTHEN, y que manifiestan que la confiabilidad de un instrumento de medición origina resultados consistentes y coherentes.

Los resultados del diseño de redes sanitarias son confiables ya que han sido validados a lo largo del tiempo por expertos y expertas en la materia.

3.5 Procedimientos.

Todo inicia con la verificación el área el proyecto para su estudio respectivo. Asi mismo planificar para el levantamiento topográfico definitivo el cual nos permitirá obtener puntos topográficos, información exacta de la zona del proyecto al que se va a investigar, las cuales nos facilitara el procesamiento de datos mediante el uso

del programa Excel, para posteriormente importarlos al programa Civil 3d, en dicho programa generaremos con gran exactitud la topografía real y las cotas del terreno mediante las curvas de nivel, para que posteriormente se genere los planos respectivos, Asi mismo poder realizar la modelación del sistema de alcantarillado realizando el correcto diseño cumpliendo con parámetros de diseño según indica el Reglamento Nacional de Edificaciones de la misma manera con la ayuda del programa Excel realizar el cálculo hidráulico del sistema de alcantarillado y la propuesta de diseño óptimo de una planta de tratamiento y sus componentes, de la misma manera se realizara excavaciones de calicatas en diferentes puntos de la zona de investigación para el cual se usaran fichas para la recolección de datos, posteriormente de llevaran las muestras del suelo al laboratorio para realizar los ensayos aplicando las normas y parámetros correspondientes y verificar las propiedades propias del suelo asi como características propias del suelo correspondiente a la zona de investigación.

Como primer objetivo se llevó a cabo el levantamiento topográfico el cual fue realizado con GPS diferencial mediante georreferenciación a la zona de investigación, teniendo en cuenta los parámetros correspondientes.

Levantamiento topográfico

El objetivo de hacer el proceso de Georreferenciación a la zona de investigación "Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.", En concordancia con la normatividad vigente para la correcta georreferenciación del proyecto de levantamiento del área del terreno y en coordinación se ha procedido para establecer 01 (UNO) punto de control terrestre o punto de control geodésico (1 PRINCIPAL DE ORDEN "C), y 1 punto de Apoyo Auxiliar en estático rápido, debidamente georreferenciados a la red geodésica principal nacional oficial (REGGEN), establecida por el Instituto Geográfico Nacional

(IGN), previos a Realizar el Levantamiento Topográfico a Detalle para posteriormente realizar el Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022, el cual fue ubicado de manera adecuada en el área de estudio, utilizando métodos globales y precisión milimétrica, para ello utilizamos la técnica de lectura en modo Estático con Post Proceso; dejando el hito debidamente monumentados de Concreto, que permita la identificación precisa de cada punto. Para realizar los trabajos se realizó, un recorrido a la zona de estudio y se pudo determinar la ubicación del proyecto aproximadamente a 56 km al Noreste de la Estación de Rastreo Permanente ERP Huánuco (HC03).

Objetivos y metas del levantamiento.

Para realizar el presente proyecto, se han puesto las siguientes metas: La georreferencia se basa en la Red Geodésica Nacional Geoespacial (REGGEN) del proyecto servirá para respaldar el trabajo de levantamiento topográfico utilizando técnicas clásicas, utilizando el punto geodésico de "orden 0" del Instituto Geográfico Nacional (IGN), denominado HC03 (ESTACION DE RASTREO PERMANENTE), ubicado en el Gobierno Regional en la Dirección de Agricultura de Huánuco a (25 km aprox.). Obtener coordenadas en Datum WGS84 en el sistema de Proyección Oficial para Perú (UTM) de UNO (01) punto PRINCIPAL DE ORDEN "C" EN MODO ESTATICO) y 1 Punto Auxiliar en modo Estático Rápido.

Recursos empleados para el levantamiento topográfico mediante GPS diferencial.

Para el desarrollo del presente servicio empleamos los siguientes recursos:

Receptores GNSS SOUTH GALAXY G6	2
 Trípode, bípode y Bases nivelantes 	1
Batería de 12 voltios	2
Laptop personal	1
• Software de gabinete Trimble Business Center v.3.50	1
Wincha de 05 metros	1
Navegador GPS Garmin	1
Cemento, hormigón, agua, formaletes	1
Operadores	1
Ayudantes	2
Comunicación (Radio)	2

Procedimiento de ejecución del levantamiento topográfico

En esta parte describimos de manera detallada las diferentes actividades realizadas para la colocación de los puntos de control geodésicos de orden "C".

Al inicio de los trabajos se tuvo una previa charla con el personal de campo y para ello se compró la información y los datos disponibles referentes a la estación de rastreo permanente ubicada en el Gobierno Regional de Huánuco (Dirección de Agricultura), de orden "0" y con código "HC03", al Instituto Geográfico Nacional (IGN), así mismo en coordinación con el Equipo Técnico, se planifico las rutas de acceso y posibles ubicación de los puntos geodésicos apoyándonos en las cartas nacionales, hoja 20-l (Panao) escala 1:100000 elaborado por el IGN y software libre para visualización de imágenes. Para garantizar las precisiones en posición para el presente proyecto según normas técnicas geodésicas vigentes para orden "C" son de 4.0 horas por punto observado.

Esta fase tiene en cuenta la ubicación física de hitos o monumentos para el caso en puntos predeterminados de acuerdo con especificaciones comunes, determinando las mejores ubicaciones para las estaciones de marcación y lectura, se hizo la exploración del sitio de trabajo, determinamos la ubicación de hitos individuales de acuerdo con la ubicación adecuada en el área del proyecto.

Para efectos de ubicación de puntos de orden C en función al lugar elegido la Varilla de acero deben ser incrustadas en un hito de concreto de 0.40m x 0.40m x 0.60m. en los trabajos de campo también se realizaron un conjunto de observaciones que se realizan sobre las marcas que se dejaron en el terreno, la medición será de acuerdo a las normas aplicables, se realizó la toma de datos con los receptores GNSS SOUTH GALAXY G6, en modo estático con Post proceso.

Georreferenciación.

Para georreferenciar se planteó como Punto Base las Estación de Rastreo Permanente (ERP) de Huánuco con codificación HC03, ubicada en el Gobierno Regional de Huánuco, la cual pertenece a la Red Geodésica Geocéntrica Nacional (REGGEN), establecido por Instituto Geográfico Nacional. En el terreno se determinó UNO (01) punto GEODESICO DE ORDEN C, denominado: "CU-01"; cuales están materializados en placas de Acero, incrustado con marca en Alto relieve.

Figura.1 Ubicación de estación de rastreo.

Fuente: elaboración Propia

Especificaciones del Proyecto gps.

Para el establecimiento de este trabajo se han establecido los siguientes parámetros geodésicos:

- Unidades lineales en metros (m).
- Unidades angulares en grados sexagesimales (°).
- Datum horizontal Elipsoide WGS 84.
- Meridiano central -75° W (huso 18S)
- Proyección cartográfica transversal de Mercator.
- Sistema de coordenadas UTM.

Control Horizontal

Para el control horizontal se procedió a utilizar el método diferencial o también el método estático, el cual consistió en colocar un dispositivo GPS (BASE) en un punto geodésico con coordenadas conocidas, se utilizó una posición GPS fija para este proyecto: HUANUCO "HC03", Orden "0", pertenece a la Red Geodésica Nacional del Instituto Geográfico Nacional del Perú.

Este proyecto usó 01 receptor Diferencial GPS L1/L2, de doble frecuencia con una precisión milimétrica de la marca SOUTH modelo GALAXY G6, para tener lecturas simultaneas de la red geodésica.

Los receptores del GPS diferencial (Rover), en simultaneo recibieron la información de radio emitidas por los satélites.

Las técnicas de medición fueron los siguientes:

- La lejanía de la Estación de Rastreo Permanente (ERP) de HUÁNUCO, a la zona de trabajo es aproximadamente de 25 km en promedio, con este dato y teniendo presente las especificaciones Técnicas para Levantamientos Geodésicos, se calculó que el tiempo de rastreo en modo estático es de 4.5 min horas por punto estático.

Procedimiento de cálculo:

Con la finalidad de disponer de valores de coordenadas que puedan ser empleados sin restricción en las etapas de levantamiento y replanteo topográfico, se han realizado las conversiones necesarias a un único sistema topográfico local de representación que incluye la localidad que comprende el proyecto, seleccionando un origen o base de conversiones del sistema. La base u origen común será una de las estaciones de la poligonal principal de apoyo (PUNTO GEODESICO DE ORDEN C), el otro servirá para la orientación (PUNTO GEODESICO AUXILIAR).

Los resultados de las conversiones realizadas se adjuntan en una planilla de coordenadas que contienen las coordenadas UTM y sus correspondientes coordenadas topográficas, así como los valores de conversión empleados (Factor de escala, factor de reducción al nivel medio del mar, y el ángulo de giro respectivo); de tal manera se presentan en los resultados.

Selección de la base u origen del sistema, para el proyecto se tomó la decisión de ubicar el origen del sistema en el punto GPS HC-01.

Resultados después del procedimiento de cálculo.

Los puntos topográficos obtenidos luego de realizar el levantamiento topográfico y los bms, son los que se muestran en resultados posteriormente al procesamiento de datos se supo que las pendientes superaban porcentajes mayores a 12% tal, entonces el terreno es óptimo para un diseño por arrastre hidráulico.

Como segundo objetivo se procedió a realizar el estudio de mecánica de suelos (EMS), se hizo el análisis de calicatas, las cuales fueron obtenidas de la zona del proyecto, en las siguientes líneas se menciona el procedimiento y análisis de las muestras del suelo en el laboratorio.

Estudio de mecánica de suelos (EMS)

Generalidades del estudio de mecánica de suelos

El estudio tiene como finalidad determinar la agresividad y propiedades del suelo, las capacidades de soporte del terreno de cimentación, el grado de agresividad del suelo, las características del suelo, el perfil estratigráfico del cual conforma el suelo en la zona, estos datos servirán

además de sustento para los diseños y para la formulación de los presupuestos de obra a futuras investigaciones.

Se realiza la inspección del todo el área del terreno, Así mismo se inspeccionan las calles para verificar la existencia de un sistema de alcantarillado, para que posteriormente se pueda proyectar o ampliar algún proyecto de sistema de alcantarillado sanitario. Para la planta de tratamiento de las aguas servidas. Se procede a la verificación del terreno y realizar el ensayo respectivo para ver las capacidades agresivas que tiene el terreno.

Exploración de campo.

La zona en estudio se desarrolla dentro de área urbana/rural en expansión con viviendas la mayoría de material rustico con calles poco alineadas y angostas, la población tiene como actividad principal la agricultura sobre todo el cultivo de papa, maíz, en los terrenos debajo de la población, tienen riego para los cultivos como alfalfa, frutas durante todo el año y crianza de algunos animales domésticos.

Para la exploración de campo se realizó el de acuerdo a lo exigido a la sección de tipo de muestras de la norma E.050 del RNE.

Numero de muestras.

Para esta investigación se fijaron 03 puntos para la excavación de calicatas para extraer las muestras de cada una, para que posteriormente sean llevado al laboratorio para realizar los respectivos ensayos.

Profundidad (P) mínima a alcanzar en cada calicata:

Según reglamento y para fines de proyecto las profundidades de las calicatas varían de 1.50m. a 3.00m. Para cimentaciones superficiales en la norma E-050 indica. Por lo tanto, las dimensiones de las 2 primeras calicatas fueron de X = 1.00m, Z = 1.00m, Y = 1.50m y la calicata representativa para la planta de tratamiento tendrá la dimensión de X = 1.00m, Z = 1.50m, Y = 3.00m. Considerándose que

para a esas profundidades se ubican las fuerzas que desarrollan las Zonas de falla (activa, transición y pasiva). por consecuencia se pudo observar en cada punto de excavación el perfil estratigráfico del suelo. Se excavaron 2 muestras a los costados de buzones de inspección, en la red de alcantarillado y 01 calicata para el PTAR las cuales se detallan en el siguiente cuadro y el tipo de suelo.

Tipos de suelo.

Tabla 2. Tipos de suelos en calicatas

NOMBRE	PROFUNDIDAD	NIVEL FREATICO	TIPO DE SUELO	COO ESTE	RDENADAS (UTM) NORTE	СОТА
C1	1.50m	NO PRESENTA	GRABA ARCILLOSA	365060.0180m	8875664.1430m	2171.335m
C2	1.50m	NO PRESENTA	SUELO ARCILLOSO	365048.4980m	8875843.1080m	2157.869m
C3 (PTAR)	3.00m	NO PRESENTA	SUELO LIMOSO	364945.3630m	8876332.4420m	2120.262m

Fuente: elaboración propia

Ensayos de laboratorio

Es importante tener siempre en cuenta las variaciones en la composición y el estado de consolidación de los sedimentos naturales del suelo, por lo que se necesita criterio al determinar los resultados de las pruebas, con base en el sentido común y la experiencia, al mismo tiempo que se conoce el nivel de confianza o descartarse.

Se realizaron los siguientes ensayos típicos con las muestras extraídas

Análisis Granulométrico.

Como se sabe el análisis granulométrico sirve para la distribución de partículas, las cuales son para que ayuden a determinar el % del suelo que pasan por los diferentes tamices, la serie clásica y la más empleada en los ensayos inicia por el tamiz de 75 mm (3") hasta el tamiz 0.075mm (200), asi mismo se requiere una estufa, capaz de mantener altas temperaturas

constantes y uniformes, además envases adecuados para un secado adecuado de las muestras.

Procedimiento

Para el análisis granulométrico se realizó mediante el uso de la muestra seca el cual fue extraído en la zona del proyecto, el cual la muestra pasa por una serie de tamices, el cual separa las partículas desde 3 pulgadas hasta el más fino que viene a ser de 0.0074 mm los cuales son colocados como una especie de columna de manera descendente, iniciando con el procedimiento el material de la muestra de hecho en el tamiz más grueso (3") donde la columna de tamices se procedió a realizar movimientos vibratorios y rotación para obtener una óptima separación da las partículas, de las cuales una vez culminado se realizó la separación de cada tamiz para que posteriormente en nuestra fincha de laboratorio anote el peso retenido de la muestra en cada tamiz, para finalizar y realizar en análisis y calculo granulométrico se debe tener en cuenta el peso total de los % retenidos en cada tamiz.

Para Límites de Atterberg.

El procedimiento aplicado para este tipo de ensayo, dio inicio con pesar la muestra a emplear que fue de 150g, el material usado fue la muestra que fue retenida en el tamiz N° 40, prosiguiendo se tuvo que humedecer la muestra con agua destilada para que posteriormente se dejara reposar por un aproximado de 16 horas, posteriormente colocamos el material en el equipo de casa grande y expandir uniformemente con un espeso aproximado de 8 a 10 mm en el punto céntrico o más profundo del molde de tal manera que la superficie sea uniforme y que no posea burbujas de agua.

Se realizó una ranura con el acanalador que viene con el equipo casa grade, se procede a girar el manubrio de la copa con un aproximado de 2 golpes por segundo, repetimos progresivamente los golpes hasta que la muestra que se dividió en la copa con el acanalador queden a ½" de longitud. Según la norma el ensayo requiere un intervalo de golpes a la muestra en la copa Casagrande la cuales son de un intervalo de 25 a 35, 20 a 30, 15 a 25 golpes para determinar el contenido de humedad corresponde a la intersección de 25 goles.

Curva de flujo

Limite liquido = 42

Limite liquido = 42

10

20

25

30

40

50

Número de golpes, N

Tabla 3. Humedad vs Número de Golpes en escala logarítmica.

Fuente: Elaboración propia

Para determinar la humedad del suelo se tomó parte de la muestra es decir se toma la mitad de la copa Casagrande por lo tanto se realizó el análisis del Limite Liquido y Limite Plástico.

Equipos y herramientas usados. Fueron una bandeja de porcelana, espátula, placa de vidrio, equipo Copa Casagrande, balanza, agua destilada, tamiz N° 40, uso de la guía según NTP (ASTMR D-438), teniendo como resultados de laboratorio los siguientes datos.

Perfil estratigráfico.

Se genera a partir de datos de perforación, datos de levantamientos geofísicos que proviene de secciones naturales o artificiales del terreno, en este caso son secciones naturales ya que cuando realizó la excavación a cielo abierto se pudo verificar como estaba conformado el perfil estratigráfico, las cuales estás representan las rocas o estrados que componen el suelo tiene forma de una columna estratigráfica.

Clasificación de suelos.

El suelo que predoma en toda la zona en estudio está conformado por suelos granulares con finos y presencia de fragmentos rocosos, que se comportan como roca suelta y en tramos cortos hay roca fija en menor proporción.

OBS. La napa freática es inexistente a todos los puntos donde se realizaron las respectivas calicatas.

Continuando con los objetivos específicos se tiene el desarrollo del diseño del sistema de alcantarillado.

DISEÑO DEL SISTEMA DE ALCANTARILLADO.

Parámetros de diseño de la red de alcantarillado.

Estimar la población futura del área según las características culturales, económicas y sociales pasadas y presentes de los habitantes del área para predecir el desarrollo futuro del área.

Para hallar la población futura optima se utilizará el método de crecimiento aritmético, adecuado a la población con buenas perspectivas de futuro, horizonte libre y perspectivas económicas claras, según la siguiente fórmula:

$$P_x=P_2*(1+r/100)^{(tx-tz)}$$

Tasa de crecimiento

La tasa para el crecimiento de población que fue asumida es de 0.6 %. Provincial — Rural del compendio estadístico 2008 — 2009 Habiendo quedado definida la población, y según lo indicado por la Guía, deberíamos proyectar la población con la Tasa de crecimiento distrital estimada por el INEI; sin embargo, esto no será posible por que la Tasa de Crecimiento Distrital, así como de la Provincial, son negativos en el período inter censal de los años 1,993-2,007: -1.02 % y - 0.03 % respectivamente. Por lo que se ha optado por hacer uso de la Tasa de Crecimiento del Departamento de Huánuco que es de 0.6 % en el período inter censal 1,993 2,007.

		OBLACION NOM					AL	
Y TASA DE CRECII Provincia	MENTO INTERC	Tasa de	Poblacio	, , , , , ,	Increme Interce	ento	Tasa de Crec	
	Total	Crecimiento	Urbana	Rural	Urbana	Rural	Urbana	Rur
Total	762 223	1,1	323 935	438 288	71 157	36 577	1,8	0,
Huánuco	270 233	1,4	163 235	106 998	37 549	9 345	1,9	0,
Ambo	55 483	-0,1	18 453	37 030	4 338	- 4 797	1,9	-0,9
Dos de Mayo	47 008	-5,6	16 433	30 575	- 7 789	- 49 969	-2,7	-6,
Huacaybamba	20 408	1,0	3 704	16 704	1 664	1 025	4,4	0,
Huamalies	66 450	1,2	18 696	47 754	3 454	6 877	1,5	1,1
Leoncio Prado	116 965	1,3	68 747	48 218	7 928	11 106	0,9	1,9
Marañón	26 620	2,0	4 007	22 613	1 980	4 534	5,0	1,6
Pachitea	60 321	1,9	8 629	51 692	3 055	11 104	3,2	1,7
Puerto Inca	31 032	-0,3	6 169	24 863	3 116	- 4 489	5,2	-1,2
Lauricocha	35 323	-	7 938	27 385	-	-	-	
Yarowilca	32 380	-	7 924	24 456	_	_		

Fuente: compendio estadístico 2008-2009

Dotación

La dotación en un cálculo no es una cantidad fija, sino que depende de muchos factores que la hacen casi exclusiva de una comunidad, sin embargo, estos factores deben conocerse de antemano para dar cuenta de las diferentes partes del proyecto.

Justificación Técnica de la Dotación de 100 Litros/Habitantes/Día:

Según la guía de formulación de Proyectos de Inversión Pública del MEF se tiene los siguientes cuadros con los cuales se podrá obtener la dotación suficiente para estas localidades:

Tabla 4. Justificación Técnica de la Dotación

ZONA	DOTACIÓN (L/hab/día)
SIERRA	50
COSTA	60
SELVA	70

Fuente: digesa

Tabla 5. Población estimada para dotación

	CLIMA				
POBLACION	FRIO	CALIDO			
RURAL	100	100			
2000 – 10000	120	150			
10000 - 50000	150	200			
50000 – A MAS	200	250			

Fuente: organización mundial de la salud

Periodo de diseño

Para el tiempo estimado de diseño se fijó en la vida útil toda la estructura, teniendo en cuenta los parámetros que rigen las normas que regulan los lineamientos de construcción y diseño.

Tabla 6. Periodo de diseño económico para las estructuras de los sistemas.

	COMPONENTE ⁴	TIEMPO (AÑOS)
-	Fuente de Abastecimiento	20
	Obras de Captación	20
-	Pozos	20
-	Planta de Tratamiento de Agua para Consumo Humano	20
	Reservorio	20
	Tuberias de Conducción, Impulsión y distribución	20
-	Estación de Bombeo de Agua	20
-	Equipo de Bombeo	10
	Estación de Bombeo de Aguas Residuales	20
	Colectores, emisores e interceptores	20
	Plantas de Tratamiento de Aguas Residuales	20

Fuente: programa nacional de saneamiento urbano (pnsu)

Por lo tanto, se tomó como periodo de diseño = 20 AÑOS

Densidad de población

La densidad e calculo mediante la recolección de datos en la zona del proyecto y se calculó como según se muestra en la siguiente tabla.

Tabla 7. Calculo de densidad de población.

Lotes/Manzana	N° de habitantes/ Lote
81	4
TOTAL	324
Densidad	4

Fuente: elaboración propia

Caudales y volúmenes de diseño para el sistema de alcantarillado

La determinación del caudal de diseño está calculada considerando en base a la población futura para del C.P. Ingenio y la dotación son los siguientes:

Caudal de diseño:

Caudal del diseño se calculará mediante la siguiente formula.

$$Q = Qd + Qe + Qi + Qc$$

Donde:

Q = #Caudal Optimo de Diseño (l/s)

Qd = #Caudal doméstico (l/s)

Qe = #Caudal Escorrentía en Buzones (l/s)

Qi = #Caudal de Infiltración en Tuberías (l/s)

Qc = #Caudal por número de alumnos (l/s)

Procedimiento de cálculo para Caudales y volúmenes para la propuesta de diseño de la planta de tratamiento

Indicar que el diseño del tanque imhoff propuesto en el proyecto debía a que es indispensable proyectar una planta de aguas residuales, ya que al uso será un beneficio para los pobladores ya que tratará las aguas residuales de forma continua, además recalcar que su disposición final será ya un agua tratada para poder usarlo para cualquier tipo de riego.

El diseño e realizo siguiendo los siguientes parámetros. Tomando en cuenta los criterios que maneja la normas OS. 090. El tanque imhoff está conformado por 3 componentes las cuales son:

- Cámara de inspección
- Cámara para la digestión de lodos
- Área para la ventilación y una cámara para las natas.
- Incluye como componente el diseño del lecho de secado.

Diseño de sedimentador.

La función principal del tanque de almacenamiento es promover la sedimentación al reducir la turbulencia y el caudal de las aguas residuales. (TILLEY et al. 2014).

Similar en trabajo a un filtro de residuos o desarenador, el cual solo está diseñado para eliminar partículas menos gruesas. (OPS 2005b).

Caudal de diseño:

Para el calculó del caudal se usó la siguiente formula.

$$Qp = \frac{Poblacion \times Dotacion}{1000} \times \% Contribucion$$

Posteriormente se calculó el área del sedimentador con la siguiente formula

$$As = \frac{Qp}{Cs}$$

Donde:

Cs: Carga Superficial = 1m3/(m2*hora)

Calculo del volumen de sedimentador teniendo como periodo de retención hidráulica de 1.5 a 2.5 horas (el periodo más recomendable a usar es de 2 horas). Asi mismo el fondo de tanque tendrá una sección transversal en forma de una V y las pendientes de os lados oscilaran entre 50° y 60° grados en nuestro caso se usó 50° grados, además se tiene la arista central para el paso de los sólidos, esta separación o abertura oscilara de 0.15 a 0.20 m, en nuestro caso usamos de 0.20m para la separación. También uno de los lados debe prolongarse más para que puede impedir la salida de gases flatulentos y solidos que puedan salir desprendidos. Se calculó mediante la siguiente formula.

$$Vs = Qp * R$$

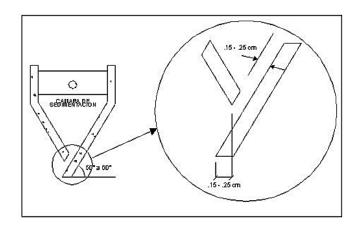


Figura.2 cámara de sedimentación

Fuente: Norma o.s 090

La longitud mínima del vertedero de salida (Lv, en m), se calculó de la siguiente manera.

$$Lv = \frac{Q \max}{Chv}$$

Donde:

Q(max) = Caudal máx diario (m3/día)

Chv = Carga que aplica sobre el vertedero el cual oscilará de 125 a m3/(m*día) lo más recomendable será de 250

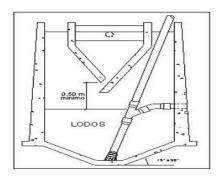
Cámara de digestión

El diseño para la cámara de digestión de inicia con el cálculo del Volumen de almacenamiento y digestión (Vd, en m3), esto ayudara como compartimiento para el almacenamiento y la digestión de lodos. Mediante la siguiente tabla se tienen los factores de capacidad relativa de acuerdo al aspecto climático en el que se construya. Además, el fondo de la cámara (tolva de lodos) para ayudar el retiro de los lodos que ya fueron digeridos, además las paredes tendrán una inclinación de 15° a 30° grados horizontalmente, la altura deberá estar de 0.50m por abajo del fondo de sedimentador.

Tabla 8. factores de capacidad relativa

Tabla 1						
Temperatura °C	Factor de capacidad relativa					
	(fcr)					
5	2,0					
10	1,4					
15	1,0					
20	0,7					
>25	0,5					

Fuente norma o.s 090


La fórmula a usar será:

$$Vd = \frac{70 * P * fcr}{1000}$$

Donde:

Fcr = factor de capacidad relativa

P = Población

Tiempo para la digestión de lodos, es el tiempo que requiere el tanque imhoff el cual varía según la temperatura, para esto se empleara la siguiente tabla.

Tabla 9. Tiempo de digestión de lodos

Tabla 2

Temperatura °C	Tiempo de digestión en días
5	110
10	76
15	55
20	40
>25	30

Fuente: norma o.s 090

Según indica el reglamento, la frecuencia con el que se retirarán los lodos serán de acuerdo a la tabla N° 2, la extracción de los lodos será por una tubería de 200 mm y debe estar ubicado por encima de 0.15 m del fondo del tanque, además se requerirá una carga hidráulica de

1.80m, el área para la ventilación de las natas el espaciamiento será de 1.0 m como mínimo, la superficie libre total será de 30% de la superficie total del tanque, el borde libre será de 0.30 cm. Todos estos parámetros se cumplen en los resultados del diseño del tanque imhoff.

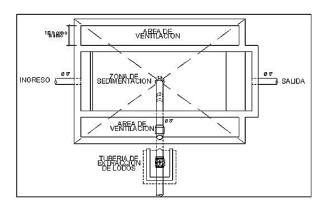


Figura.3 Figura tanque imhoff Fuente norma o.s 090

Lechos de secado de lodos

Se calculó cumpliendo los siguientes parámetros de diseño y cálculo.

Carga para sólidos que ingresa al sedimentador.

$$C = Q * SS * 0.0864$$

Donde:

SS = solidos suspendidos en el agua residual Q = Caudal.

La contribución se calculó con la siguiente formula:

$$C = \frac{Población * contribución \ percápita (grSS/hab * dia)}{1000}$$

Cuando es alcantarillado nuevo la contribución percápita será de 90 gr.SS/(hab*día)

Masa de solidos que conforman los lodos

$$Msd = (0.5*0.7*0.5*C) + (0.5*0.3*C)$$

Volumen digerido a diario

$$Vld = \frac{Msd}{\rho lodo * (\% de \ s\'olidos / 100)}$$

Donde:

PLodo = densidad de lodo (1.04kg/l)

% Solidos = % de sólidos en el lodo oscila de 8 a 12%

Volumen de lodos para extraer del tanque.

$$Vel = \frac{Vld * Td}{1000}$$

Donde:

Td = tiempo de digestión

Área del lecho de secado (Als, en m2)

$$Als = \frac{Vel}{Ha}$$

Donde:

Ha = Profundidad que oscila entre 0.20 a 0.40 generalmente los lechos de secado son de 3 a 6 m, pero para instalaciones más grandes tienden a sobrepasar más de 10m que no es el caso de nuestro proyecto.

3.6 Método de análisis de datos.

Como es el procedimiento lo primero que se planteará será recopilar o juntar todos los datos de la zona del proyecto, datos como del levantamiento topográfico, procediendo a procesar los datos en el Civil 3D 2021 en el cual nos ayudará con los trazos transversales y longitudinales, así mismo con el trazo de la red de tuberías, proyectar cada ubicación de buzones, calculará las pendientes, diferencia de cotas, tipo de tubería y AutoCAD 2021 se generará el plano de lotización y ubicación. Posteriormente el programa Excel nos ayudara para el correcto diseño del cálculo hidráulico según indica los procedimientos de diseño basado en el reglamento (RNE) para un óptimo y correcto diseño del sistema de alcantarillado, de la mima manera se deberá realizar el análisis de las muestras de las calicatas en el laboratorio de suelos, luego los datos procesados en el programa Excel nos ayudará para el correcto diseño del cálculo hidráulico según indica el reglamento (RNE), prosiguiendo de la misma manera el análisis de las muestras extraídas en el laboratorio de suelos.

3.7 Aspectos éticos.

Existe el compromiso de aplicar el principio ético de la autonomía y poner en práctica la autenticidad de todos los resultados obtenidos, respetando los derechos de legitimidad y trabajar con todo el profesionalismo que amerita de esa manera proteger los derechos del autor respetando las ideas proporcionados en cada concepto usado en este proyecto de investigación. Así mismo aplicando el principio ético de la beneficencia el cual aplica que el propósito de toda acción profesional es la de mejorar el estilo de vida tanto de las personas y/o grupos. Se realizó el requerimiento de la aprobación anticipadamente de las personas que brindaron información durante la recopilación de datos que sirvieron de mucha ayuda en la investigación.

IV. RESULTADOS

4.1 Levantamiento topográfico

4.1.1 Análisis de resultados.

Los puntos topográficos obtenidos luego de realizar el levantamiento topográfico, se muestran en la siguiente tabla.

Tabla 10. Cuadro de bms.

		CUADRO DI	E BMS	
N° PUNTO	NORTE	ESTE	ELEVACIÓN	DESCRIPCIÓN
2	8876028.77	364935.193	2122.51	BM-33
3	8875850.04	364886.811	2125.205	BM-34
4	8875686.08	364825.899	2136.616	BM-35
5	8875596.1	364671.195	2122.691	BM-36
6	8875438.76	364902.079	2145.983	BM-38
7	8875582.36	365075.634	2185.633	BM-41
8	8875715.85	365044.496	2164.39	BM-40
9	8875911.02	365071.245	2160.683	BM-39
10	8876260.76	365011.054	2131.313	BM-37

Fuente: elaboración propia

Interpretación: según lo realizado en el levantamiento topográfico, se procedió mediante la exploración del terreno las cuales los BMS fueron ubicados en puntos fijos de fácil ubicación, las cuales servirán para futuras ubicaciones en el terreno si se quisiera realizar algún replanteo, como resultado de toda el área de incidencia en él fue realizado el levantamiento topográfico fue de 14.60 Hectáreas, de las cuales con el levantamiento topográfico se obtuvo el plano de curvas de nivel de la zona del proyecto. Posteriormente al procesamiento de datos se supo que las pendientes superaban porcentajes mayores a 12% tal, entonces el terreno es óptimo para un diseño por arrastre hidráulico.

4.2 ESTUDIO DE SUELOS.

4.2.1 Análisis de resultados.

Se determinó el tipo de suelo mediante en cada calicata y la ubicación mediante coordenadas para su fácil ubicación. Los resultados de los ensayos se muestran en el siguiente recuadro de resumen.

Cuadro de resultados de Ubicación de las calicatas:

Tabla 11. Ubicación de calicatas

NOMBRE	PROFUNDIDA	NIVEL	COORDENADAS (UTM)		
	D	FREATICO	ESTE	NORTE	COTA
C1	1.50m	NO PRESENTA	365060.0180m	8875664.1430m	2171.335m
C2	1.50m	NO PRESENTA	365048.4980m	8875843.1080m	2157.869m
C3 (PTAR)	3.00m	NO PRESENTA	364945.3630m	8876332.4420m	2120.262m

Fuente: Elaboración propia

Cuadro de resultados de clasificación de suelos

Tabla 12. Clasificación de suelos

N° CALICATA	NIVEL FREATICO	CLASIFICACIÓN				
		AASHTO	sucs			
		se tiene la clasificación e tipo A-6(4) que	Se descubrió una única formación			
		tiene una consistencia de material	compuesta por suelo a una profundidad			
	NO	regular conformado material limoso -	de excavación de 1,50 m. CL - suelo de			
C.1	PRESENTA	arenoso en mayor parte tiene suelo	partículas finas, arcilla inorgánica de baja			
		arcilloso.	plasticidad gravosa.			
		se tiene la clasificación e tipo A-2-6(0)	Se descubrió una única formación			
		que tiene una consistencia de material	compuesta por suelo a una profundidad			
C.2	NO	regular conformado por grava y arena	de exploración de 1,50 m. CL - suelo de			
	PRESENTA	arcillosa o limosa.	partículas gruesas, con finos y grava			
			arcillosa.			
		se tiene la clasificación e tipo A-2-6(0)	Se descubrió una única formación			
		que tiene una consistencia de material	compuesta por suelo a una profundidad			
C.3	NO	limoso - arenoso pobre o malo para	de exploración de 3.00 m. ML - suelo de			
	PRESENTA	material.	partículas finas, limo inorgánico de baja			
			plasticidad arenoso.			

Fuente: elaboración propia

Cuadro de resultados de Ensayo de Límites de Atterberg.

Tabla 13. Resultados de límites de Atterberg

САЦСАТА	PROF.UNDIDAD		CLASIFICACIÓN	% QUE PASA POR LA MALLA 4"	% QUE PASA POR LA MALLA 200"	CONTENIDO DE HUMEDAD (%)	LIMITE	ES DE CONSI	STENCIA
		CLASIF (SUCS)	CLASIF. (ASHTO	ASTM D2216 NTP 33.127	ASTM D2216 NTP 33.127	ASTM D422 NTP 339.128	(%)	LP (%)	IP (%)
C – 1	1.50m	CL	A-6 (4)	68.17	53.71	4.07	27.18	14.25	2.93
C – 2	1.50m	GC	A-2-6 (0)	44.32	33.85	2.09	29.92	17.71	12.21
C-3	3.00m	ML	A-4 (0)	87.02	68.47	3.09	24.12	20.33	3.19

Fuente: elaboración propia

Cuadro de resultados de Perfil estratigráfico.

Tabla 14. Resultados de perfil estratigráfico

				CLASIF	ICACIÓN
N° DE CALICATA	ALTURA	ESTRATO	DESCRIPCIÓN	SUCS	AASHTO
C.1	0.00m – 0.20m	E-1	RELLENO	Pt	A-8
	0.20m – 1.70m	E-2	GRABA ARCILLOSA	GC	A-2-6 (0)
C.2	0.00m – 0.20m	E-1	RELLENO	Pt	A-8
	0.20m – 1.70m	E-2	GRABA ARCILLOSA	GC	A-2-6 (0)
C.3	0.00m – 0.20m	E-1	RELLENO	Pt	A-8
	0.30m – 2.70m	E-2	ARENA ARCILLOSA CON GRABA	SC	A-2-4(0)

Fuente: elaboración propia

Interpretación de resultados. El estudio de mecánica de suelos se definió con unos resultados óptimos en el que se puede observar que la Calicata N°01 obtuvo como resultado Limite liquido (LL) de 27.18%, Limite Plástico (LP) de 14.25%, con un Índice de plasticidad de (IP) de 2.93%. con un contenido de humedad de 4.07% perteneciendo a una clasificación de suelo según ASHTO se tiene la clasificación e tipo A-6(4) que tiene una consistencia de material regular conformado material limoso – arenoso en mayor parte tiene suelo arcilloso, con una clasificación SUCS (CL) el cual se descubrió una sola formación compuesta por suelo a una profundidad de exploración de 1,50 m. (CL - suelo de partículas finas, arcilla inorgánica de baja plasticidad gravosa). En la calicata N° 02 Calicata se obtuvo como resultado Limite liquido (LL) de 29.92%, Limite Plástico (LP) de 17.71%, con un Índice de plasticidad de (IP) de 12.21%. con un contenido de humedad de 2.09% perteneciendo a una clasificación de suelo según ASHTO se tiene la clasificación e tipo A-2-6(0) que tiene una consistencia de material regular conformado por grava y arena arcillosa o limosa, con una clasificación SUCS (CL) el cual se descubrió una sola formación compuesta por suelo a una profundidad de exploración de 1,50 m. (CL - suelo de partículas finas, arcilla inorgánica de baja plasticidad gravosa). Por último, se tiene la calicata N° 03 obtuvo como resultado Limite liquido (LL) de 27.18%, Limite Plástico (LP) de 14.25%, con un Índice de plasticidad de (IP) de 2.93%. con un contenido de humedad de 4.07% perteneciendo a una clasificación de suelo según ASHTO se tiene la clasificación e tipo A-4(0) que tiene una consistencia de material limoso - arenoso pobre o malo para material. con una clasificación SUCS (ML) el cual se descubrió una única formación compuesta por suelo a una profundidad de exploración de 3.00 m. ML - suelo de partículas finas, limo inorgánico de baja plasticidad arenoso. Cabe mencionar la inexistencia de napa freática por ende de los resultados obtenidos el tipo de suelo es admisible o apto para realizar proyectos en la zona, esto indica sobre la posibilidad de realizar un diseño de sistema de alcantarillado.

4.3 DISEÑO DE LA RED DE ALCANTARILLADO.

4.3.1 Análisis de resultados

Calculo del caudal de diseño para sistema de alcantarillado

PROYECTO:	"DISEÑO DEL SISTEMA DEL ALCANTARIL HUÁNUCO, 2022."	LADO SANITAI	RIO DEL CENTI	RO POBLADO INGE	ENIO ALTO, HUÁCAR, AMBO,
LUGAR	C.P INGENIO			LUGAR:	C.P. INGENIO
BACH:	RAMOS TRUJILLO, JIMMY JHAN PAUL			PROVINCIA:	AMBO
FECHA:	Abr-22			REGION:	HUÁNUCO
L-DATOS					
	Dato Domestico		_		
	Numero de viv. con alcantarillado:	81	viviendas		
	Densidad Familiar:	4.00			
	Población actual (Po):	324	Habitantes		
	Tasa de crecimiento (r):	0.60	%		
	Periodo de diseño (t):	20	años		
	Poblacion de diseño (Pd):	365	habitantes	Ecuación: Pf	= Po (1 + r)t
	Dotación (Dot):	100	l/hab/dia	ALC. ZONA SIERI	RA ` ´
	Coeficiente de Retorno (C):	0.8			
	K1:	1.3		$K_1 = 1.3;5$	Semin RNF
	K2:	2.0		N1 - 110/1	ocgan rate
				$1.8 \le K_2 \le 2.5$	5; Segun RNE
	Dato Inflitracion de Escorrentia de Buzo				
	Escorrentia de Iluvia en Bz:	380	L/bz/d:		
	# de Buzones:	55			
			_		
	Dato Inflitracion en Tuberias	***			
	Coeficiente de Infiltracion:	0.05	V(s.km)	0.05 a 1.0 ;	Segun RNE
	Longitud Total de red (Lt)	1922.62	m		
	Dato Poblacion de Alumnos en C.E.		_		
	# alumnos Inicial	0	hab:	DOTACION F	N CENTRO EDUCACTIVO (L/Hab/Dia)
	# alumnos Primaria	Ŏ	hab:	Inicial	Primaria Secundaria
	# alumnos Secundaria	•	hab:	15	15 20

Q = Qd + Qe + Qi + Qc			
Donde:			
Q = Caudal de Diseño (l/s)			
Qd = Caudal domestico (Vs)			
Qe = Caudal Escorrentia en Bu			
Qi = Caudal de Inflitracion en T			
Qc = Caudal por numero de alu	mnos (I/s)		
A) Caudal Domestico (Qd):	$Qd = k_2 \frac{PfxDotxC}{86400}$	0.68	lts/s
B) Caudal Escorrentia en Buzones (Qe):	Qe = #bz - Qescorrentia	0.24	lts/s.
			567.4
C) Caudal de Infiltracion en tuberias (Qi	$Qi = Ci \cdot L$	0.096	lts/s.
AUTO TO A ROOM OF THE ROOM OF THE PARTY OF T	$Qi = Ci \cdot L$ $q_a = \sum Pa \cdot Dot$	0.096	lts/s.

Interpretación de la determinación del caudal para el diseño optimo, está calculada considerando en base a la población futura para del C.P. Ingenio, considerando los datos obtenidos de la zona como cantidad de viviendas (81 viviendas), se calculó una densidad familiar de 4, con una población actual de 324 pobladores, con una tasa de crecimiento según INEI de 0.60%, para periodo de diseño de 20 años.

Con una dotación de 100 l/hab/día, por lo tanto, el caudal de diseño es de suma importancia ya que ayudo para realizar el cálculo hidráulico del sistema de alcantarillado.

Resultado del cálculo hidráulico que se realizó mediante un cuadro de Excel

Tabla 15. Diseño hidráulico

		_									DISEÑO			MA DE	ALCANT	ARILLA	DO									
PROYECTO:	:			IA DEL ALCA	NTARILLADO SA	ANITARIO DEL CE						ANUCO,	2022."													
LUGAR FECHA:		C.P INGEI Abr-22	NIO			LUGAR: PROVINCIA:	C.P. INGE AMBO	ENIO	REGION:	HUANUC	00															
Smin=	0.0055*0	21^-0.47=	4.55	%	Vmin-	0.30	m/seg	(a med	dio tubo)																	
Caudal min.			1.50	lts/seg	Vmin-	0.61	m/seg	(lleno)																		
					Vmax- Tipo Tuberia	5.00	m/seg																			
Caudal de Disef Longitud Total	io		1.014 1922.62	lts/seg m	PVC (n) DENSIDAD (p)	0.01 1000.00	kg/m3																			
Caudal Unitario	(qu=Q/Lt)		0.0005		GRAVEDAD (g	9.81	m/s2																			
	·		Cota d	e Terreno	TENSION min.	0.10 de Fondo	Kgf/m2			Caudal	Caudal	Caudal	-			0-	14-		_		Tiran.	Criterio	Obs	-	Fza.	Condición
Tramo	Del buzon	Al buzon	(m Del	Snm)	Del (r	nsnm)	Del	ldad (m)	Longitud	Unitario (lps)	Acumulado	Diseño (lps)	(mm)	Material	S (m/km)	Qo (lps)	(m/s)	Q/Qo	V/Vo	(m/s)	Relat Y/D	Hidraulico Y/D	Obs. Y/D	R _H	Tractiva Kgf/m2	hidráulica > 0,1 Kgf/n
Hamo	Bz 01	Bz 02	2184.66	2183.46	2179.130	2177.780	1.20	1.35		0.016	0.02	1.50	200		45.23	90.68	2.89	0.01654	0.35	1.00	0.08	0.75	"OK"	0.01020	0.46	"Cumple
	Bz 02 Bz 03	Bz 03 Bz 04		2177.78 2170.29	2171.850 2163.190	2170.290 2161.680	1.35 1.56	1.58	51.47	0.020	0.04		200	PVC	42.18 29.34	87.57 73.03	2.79	0.01713 0.02054	0.38	1.05 0.87	0.09	0.75 0.75	"OK"	0.01156 0.01145	0.34	"Cumple"
	Bz 04 Bz 05	Bz 05 Bz 08	2163.19 2154.00		2154.000 2151.550	2152.570 2150.350	1.51	1.43		0.023	0.05	1.50	200	PVC	32.68 26.28	77.08 69.12	2.45 2.20	0.01946	0.38	0.92	0.09	0.75 0.75	"OK"	0.01148		"Cumple"
	Bz 06	Bz 07	2151.55 2184.90	2150.35	2147.390 2182.590	2145.390 2181.260	1.20	2.00	28.20	0.015	0.01	1.50	200	PVC	70.92 34.86	113.55 79.61	3.61	0.01321 0.01884	0.35	1.26	0.08	0.75	"OK"	0.01029	0.73	"Cumple
	Bz 08 Bz 09	Bz 02	2182.59	2181.26	2179.130	2177.780	1.33	1.35	46.66	0.025	0.08	1.50	200	PVC	28.93	72.53	2.31	0.02068	0.38	0.87	0.09	0.75	"OK"	0.01157	0.33	"Cumple
	Bz 10 Bz 11	Bz 11 Bz 04	2164.18	2162.56 2162.16	2164.180 2163.190	2162.160 2161.680	1.20 2.02	1.51	47.15	0.023	0.02 0.13		200	PVC	45.89 32.03	91.34 76.30	2.91 2.43	0.01642	0.35	0.91	0.08	0.75 0.75	"OK"	0.01024	0.37	"Cumple"
	Bz 12 Bz 13	Bz 13	2171.33 2168.57		2168.570 2163.580	2165.790 2162.370	1.20 2.78	2.78 1.21		0.020	0.10 0.17		200	PVC	73.47 44.31	115.57 89.75	3.68 2.86	0.01298 0.01671	0.32	1.18	0.07	0.75 0.75	"OK"	0.00908		"Cumple"
	Bz 14	Bz 15	2163.58	2162.37	2158.420	2154.680 2150.350	1.21	3.74	31.10	0.016	0.19	1.50	200	PVC	120.26	147.86	4.71	0.01014	0.32	1.50	0.07	0.75	"OK"	0.00900	1.08	**Cumple
	Bz 15 Bz 16	Bz 14	2158.42 2166.77	2165.50	2163.580	2162.370	3.74 1.27	1.21	41.85	0.022	0.21 0.23	1.50	200	PVC	28.92 28.91		2.31	0.02069	0.38	0.87	0.09	0.75 0.75	**OK**	0.01157	0.33	"Cumple
	Bz 17 Bz 18		2168.55 2162.64		2162.640 2158.440	2159.640 2155.020	1.65 3.00	3.00		0.015	0.02		200			137.11			0.32	1.39	0.07	0.75	"OK"	0.00899		"Cumple
	Bz 19 Bz 20	Bz 20	2158.44		2147.970	2146.600 2145.390	3.42	1.37 2.00	54.92	0.029	0.03	1.50	200	PVC	24.95	67.34	2.14		0.40	0.86	0.10	0.75	"OK"	0.01271	0.32	"Cumple
	Bz 21	Bz 22	2168.42	2167.22	2170.110	2165.370	1.20	4.74	44.35	0.023	0.09	1.50	200	PVC	106.88	139.39	4.44	0.01076	0.32	1.42	0.07	0.75	**OK**	0.00905	0.97	"*Cumple
	Bz 22 Bz 23	Bz 24	2170.87	2165.37 2164.15	2158.220	2164.150 2157.020	4.74 6.72	6.72 1.20	47.55	0.019		1.50	200	PVC	25.24	182.20 67.73	2.16	0.00823	0.29	0.86	0.10	0.75		0.01260	0.32	"Cumple
	Bz 24 Bz 25			2157.02 2156.66		2156.660 2155.020	1.20 1.66	1.66 3.42		0.021		1.50	200	PVC		86.32 114.48		0.01738	0.38			0.75 0.75		0.01148		"Cumple"
	Bz 26	Bz 18	2163.38	2161.28 2159.99		2155.020 2157.120	2.10 1.20	3.42	37.05	0.020		1.50	200	PVC		129.54 105.78	4.12	0.01158	0.32	1.32	0.07	0.75 0.75	**OK**	0.00906	0.84	"Cumple"
	Bz 27 Bz 28	Bz 24	2159.14	2157.12	2158.220	2157.020	2.02	1.20	40.94	0.022	0.02	1.50	200	PVC	29.31	73.00	2.32	0.02055	0.38	0.87	0.09	0.75	**OK**	0.01146	0.34	""Cumple
	Bz 07 Bz 29			2145.39 2144.97	2146.240 2146.270	2144.970 2144.670	2.00 1.27	1.60		0.022	0.13 0.14		200	PVC	30.43 52.05	74.38 97.28		0.02017	0.38	1.08		0.75 0.75		0.01152		"Cumple"
	Bz 30 Bz 31	Bz 31	2146.27	2144.67 2144.03	2145.610 2143.520	2144.030 2141.900	1.6D 1.58	1.58		0.019	0.16 0.18	1.50	200	PVC	43.41 38.95	88.83 84.15	2.83 2.68	0.01689	0.38	1.06	90.09 90.0	0.75 0.75		0.01148		"Cumple"
	Bz 32	Bz 33	2143.52	2141.90 2141.61	2143.020 2142.780	2141.610 2141.230	1.62	1.41	29.84	0.016	0.43 0.45	1.50	200	PVC	47.25 41.16	92.68	2.95	0.01618	0.35	1.03		0.75 0.75	**OK**	0.01031	0.49	"Cumple"
	Bz 33 Bz 34	Bz 35	2142.78	2141.23	2141.740	2138.790	1.55	1.55 2.95	35.64	0.020	0.47	1.50	200	PVC	82.77	122.67	3.90	0.01223	0.32	1.25	0.07	0.75	"OK"	0.00906	0.75	"*Cumple
	Bz 35 Bz 36			2138.79 2138.69	2141.800 2141.180	2138.690 2138.170	2.95 3.11	3.11		0.018	0.49	1.50	200	PVC	89.55 94.03	127.59 130.75		0.01176	0.32	1.30		0.75 0.75	"OK"	0.00905	0.81	"Cumple
	Bz 37 Bz 38			2138.17 2136.00	2138.850 2138.380	2138.000 2135.580	3.01 2.85	2.85		0.022	0.04	1.50	200	PVC		111.47 118.98	3.55 3.79	0.01346	0.35	1.23		0.75 0.75	OK	0.01021	0.70	"Cumple
	Bz 39	Bz 40	2138.38	2135.58	2135.110	2133.680	2.80	1.43	36.69	0.019	0.02	1.50	200	PVC	38.98	84.18	2.68	0.01782	0.38	1.01	0.09	0.75	OK	0.01157	0.45	""Cumple
	Bz 40 Bz 41	Bz 42	2133.32	2133.68 2132.12	2133.320 2130.210	2132.120 2127.560	1.43 1.20	1.20 2.65	46.20	0.017		1.50	200	PVC		102.12	3.25	0.01469	0.38 0.35		0.08	0.75 0.75	**OK**	0.01142 0.01025	0.59	"Cumple
	Bz 42 Bz 43		2130.21 2129.58	2127.56 2127.37		2127.370 2124.920	2.65	1.30		0.010	0.83		200		118.06 68.75	146.50 111.80		0.01024	0.32	1.49		0.75		0.00903		"Cumple
	Bz 44 Bz 45	Bz 45	2126.22	2124.92 2121.19	2122.390 2121.260	2121.190 2119.310	1.30 1.20	1.20	24.24	0.013	0.85	1.50	200	PVC	49.50 62.64	94.87	3.02	0.01581	0.35	1.05	0.08	0.75 0.75	**OK**	0.01025	0.51	"Cumple
	Bz 47	Bz 48	2181.38	2180.18	2172.900	2170.250	1.20	2.65	40.66	0.021	0.02	1.50	200	PVC	65.17	108.85	3.46	0.01378	0.35	1.21	0.08	0.75	**OK**	0.01032	0.67	"Cumple
	Bz 48 Bz 49	Bz 50	2153.52		2151.410	2162.160 2148.900	2.65 1.20	2.02	31.41	0.022	0.04 0.02	1.50	200	PVC	49.47 79.91	120.53	3.84	0.01582 0.01244	0.35	1.23	0.07	0.75 0.75	"OK"	0.01026	0.73	"Cumple
	Bz 50 Bz 51			2148.90 2147.01	2148.530 2145.530	2147.010 2143.830	2.51 1.52	1.52		0.014	0.07		200		56.42 71.04				0.35 0.35	1.12		0.75 0.75	"OK"	0.01024		"Cumple"
	Bz 52	Bz 35	2145.53	2143.83 2156.27	2141.740 2148.510	2138.790 2145.770	1.70	2.95	11.05	0.006	0.02	1.50	200	PVC	266.97 65.07	220.31	7.01	0.00681	0.26		0.05	0.75	"OK"	0.00650	1.74	"Cumple"
	Bz 54 Bz 55			2156.27		2145.770	2.74		20.80					PVC				0.01379				0.75		0.01020		"Cumple"

Fuente: elaboración propia.

Interpretación Se inició con procesar los datos adquiridos del levantamiento topográfico, al AutoCAD Civil 3D, posteriormente se realizaron los trabajos respectivos y diseño de la red de alcantarillado, realizando los trazos por dónde iría la línea principal de la red de alcantarillado y la ubicación respectiva de los buzones siguiendo los métodos teóricos y criterios prácticos de campo para dicho trabajo.

En el cuadro de buzones tenemos el cuadro detallado de la cantidad exacta de buzones ver anexo (Anexo 08.01):

- Se optó el diámetro interior de 1.20m, que según reglamento se usa hasta tuberías de 800mm de diámetro.
- Se realizó el conteo del número de anclaje en cada buzón.
- Se obtuvo las cotas respectivas tanto superior e inferior del buzón, así como de tanto en cota de tapa de buzón y la cota de fondo de buzón.
- Se calculó las alturas respectivas de cada buzón en el terreno teniendo en cuenta como altura mínima de buzón según reglamento es de 1.20m sumándole los 0.10m de solado a cada buzón.
- También se tiene en presente las coordenadas de cada buzón.

El siguiente cuadro representa todo referente a la tubería y sus características obtenidas Ver anexo (Anexo 08.02):

- El diámetro nominal de tubería 160mm.
- Longitud de cada tubería en cada tramo.
- Se calculó la pendiente mínima en cada tramo.
- Así como también en el cuadro indica del tipo de material que vendría a ser la tubería de la red de alcantarillado.
- Se calcularon los parámetros y lo que indica el RNE.

En el siguiente cuadro se tienen las conexiones domiciliarias a cada vivienda ver anexo (Anexo 08.03):

- Se tiene el tipo de material.
- La longitud de cada conexión.

- El diámetro que sería de 110mm (4")
- Se tiene 80 conexiones domiciliarias

4.4 PLANTA DE TRATAMIENTO

Tabla 16. Diseño del tanque imhoff

	ERE DEL PROYECTO: Diseño del sistema del ro Poblado Ingenio, Huácar, Ambo, Huánuco		anitario del	
	-			
BACE		RAMOS TRUJILLO, JIMMY		
	ACIÓN		ACAR-C.P.INGENI	
UNIV	ERSIDAD	CESAF	VALLEJO	
A	PARAMETROS DE DISEÑO	Cantidad	Unidades	
1	Población actual	324.00	nº lotes x4	
2	Tasa de crecimiento (%)	0.60		
3	Período de diseño (años)	20.00		
4,-	Población fututa	363.00	habitantes	
5,-	Dotación de agua, l/(habxdia)	100.00		
6	Factor de retorno	0.80		
7	Altitud promedio, msnm	2156.27	m.s.n.m.	
8	Temperatura mes más frio, en °C	15.00	°C	
9	Tasa de sedimentación, m3/(m2xh)	1.00	m3/(m2 x h)}	
10	Periodo de retención, horas	2.00	horas	
11	Borde libre, m	0.30	m	
12	Volumen de digestión, l/hab a 15°C	80.00	L/hab a 15°C	
13	Relación L/B (teórico)	14.00	27 11110 11 20 0	
14	Espaciamiento libre pared digestor			
	al sedimentador, metros	1.20	m	
15	Angulo fondo sedimentador, radianes	50.00		
	The second secon	0.87	radianes	
16	Distancia fondo sedimentador			
	a altura máxima de lodos (zona neutra), m	0.50	m	
17	Factor de capacidad relativa	1.00		
18	Espesor muros sedimentador	0.20	m	
19	Inclinación de tolva en digestor	15.00	(15°-30°	
17.	inclination de torra en ingestor	0.26	radianes	
20	Numero de troncos de pirámide en el largo	1.00	Tambies	
21	Numero de troncos de pirámide en el ancho	1.00		
22	Altura del lodos en digestor, m	1.62	m	
23	Requerimiento lecho de secado	0.10	m2/hab.	
В	RESULTADOS			
24	Caudal medio, l/día	29.04	m3/día	
25	Área de sedimentación, m2	1.51	m2	
26	Ancho zona sedimentador (B), m	1.00	m	
27	Largo zona sedimentador (L), m	4.20	m	
28	Prof. zona sedimentador (H), m	2.00	m	
29	Altura del fondo del sedimentador	0.60	m	
30	Altura total sedimentador, m	2.90	m	
31	Volumen de digestión requerido, m3	29.04	m3	
32	Ancho tanque Imhoff (Bim), m	3.80	m	
33	Volumen de lodos en digestor, m3	29.92	m3	
34	Superficie libre, %	63%		
35	Altura del fondo del digestor, m	0.51	m	
36	Altura total tanque imhoff, m	5.52	m	

Fuente: Elaboración propia

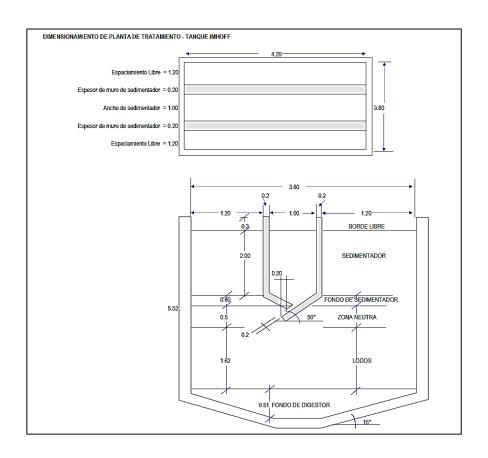
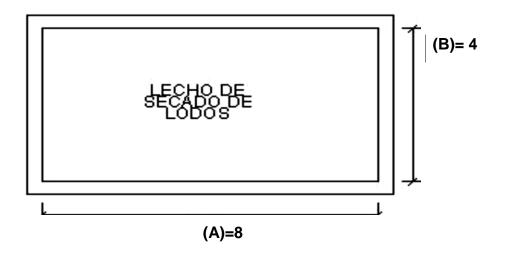


Figura.4 . Diseño de tanque imhhoff

Fuente: Elaboración propia.


Diseño de lecho de secado de lodos

A) Área de lecho de secado (Als, en m2)

Asumiremos una profundidad =	0.3 m
Als =	31.20 m2

B) Dimensiones del lecho de secado.

Considerando la relación de 1/3	=	3.22 m
Entonces para (B) se asume	=	4 m
Para (A)	=	7.80 m
Entonces para (A), se asume	=	8 m
Área de lecho de secado, m2	=	36.3 m2

Interpretación de resultados, Indicar que el diseño del tanque imhoff propuesto en el proyecto debía a ue es indispensable proyectar una planta de aguas residuales, ya que al uso será un beneficio ya que tratará las aguas residuales de forma continua, además recalcar que su disposición final será ya un agua trata para poder usarlo para cualquier tipo de riego. A partir de los cálculos se obtuvo diseño de nuestro Tanque Imhoff el cual tendrá un sedimentador que percibirá un caudal de 36.32 m3/día, en tanto los diámetros y dimensiones oscilan de 3.43 m y posee una profundidad de 3.40 m además cuenta con un volumen para el almacenamiento de digestión de 50.82m3, Relación L/B (valor teórico), distancia libre entre la pared del tanque y el tanque de sedimentación y la altura del lodo en el digestor para que el volumen de lodo en el tanque sea mayor o igual al volumen de digestión requerido. Además, se realizó el diseño del lecho de secado de lodos que vendría ser el componente que acompaña la conformación de la planta de tratamiento, teniendo como resultado obtenido para la contribución percápita (kg SS/día) de 32.67 Kg SS/día, para la materia de los sólidos que conforman los lodos 10.62 Kg SS/día, para Volumen diario de lodos digeridos (Vld, en Litros/día) de 85.08 lts/hab/días, para el volumen de lodos a extraerse del tanque (Vel, en m3) de 9.36 m3, para el área de lecho de secado (Als, en m2) se asumió 0.3m para obtener un resultado de area del lecho de secado de 31.20 m2, para finalizar se obtuvo las dimensiones del lecho de secado que vendría a ser de 4m de ancho y 8m de largo. Por lo tanto, será el que recibe los lodos que son extraídas del tanque, para que posteriormente realice un proceso de filtración por gravedad a través de un lecho filtrante de grava con arena.

Sobre la base de verificar las dimensiones, el volumen entre otros cumple con los requisitos de (NORMA O.S. 090)

V. DISCUSIÓN

En la presente investigación dando como principio el respeto a las normas que indica en el (RNE), según los lineamientos planteados en las normas O.S. 070, O.S 090, O.S 100 y otras normas, así como la revisión de artículos de investigación y libros bibliográficos se realizó el diseño el correcto diseño de la red de alcantarillado para el centro poblado Ingenio garantizando un buen calculo hidráulico de la red con los parámetros exigidos y verificando el buen funcionamiento para el periodo de diseño que fue diseñado.

Según el primer objetivo JACOB (2020) Su investigación muestra que para un buen diseño se debe tener en cuenta los estudios topográficos se pueden mostrar que la topografía del área investigada es de tipo empinada y por lo tanto muy empinada, que van del orden de 6 a 9 por ciento, en la tubería. proceso de cálculo Esto debe tenerse en cuenta para evitar el comportamiento anómalo y el comportamiento hidráulico típico del agua.; el proyecto presente tiene las mismas condiciones y características debido a que el C.P. Ingenio tiene características similares ya que su topografía tiene pendientes muy pronunciadas y que ayudaran mucho al traslado de las aguas residuales hacia su disposición final que es la planta de tratamiento.

Según el segundo objetivo, Martínez (2018), indica que todos los ensayos de suelos se deben realizar cumpliendo con los parámetros necesarios para determinar los parámetros físicos y mecánicos del suelo, como resultado obtuvo un suelo compuesto por arena el cual no presentaba material inorgánico ni residuos y tenía un color beige, en el cual durante la excavación de sus calicatas obtuvo napa freática en el subsuelo a una distancia de 2.20 m, El estudio de mecánica de suelos se definió con unos resultados óptimos en el que se puede observar que la Calicata N°01 obtuvo como resultado Limite liquido (LL) de 27.18%, Limite Plástico (LP) de 14.25%, con un Índice de plasticidad de (IP) de 2.93%. con un contenido de humedad de 4.07% perteneciendo a una clasificación de suelo según ASHTO se tiene la clasificación e tipo A-6(4) que tiene una consistencia de material regular conformado material limoso – arenoso en mayor parte tiene suelo arcilloso, con una clasificación SUCS (CL) el cual se descubrió una sola formación

compuesta por suelo a una profundidad de exploración de 1,50 m. (CL suelo de partículas finas, arcilla inorgánica de baja plasticidad gravosa). En la calicata N° 02 Calicata se obtuvo como resultado Limite liquido (LL) de 29.92%, Limite Plástico (LP) de 17.71%, con un Índice de plasticidad de (IP) de 12.21%, con un contenido de humedad de 2.09% perteneciendo a una clasificación de suelo según ASHTO se tiene la clasificación e tipo A-2-6(0) que tiene una consistencia de material regular conformado por grava y arena arcillosa o limosa, con una clasificación SUCS (CL) el cual se descubrió una sola formación compuesta por suelo a una profundidad de exploración de 1,50 m. (CL – suelo de partículas finas, arcilla inorgánica de baja plasticidad gravosa). Por último, se tiene la calicata N° 03 obtuvo como resultado Limite liquido (LL) de 27.18%, Limite Plástico (LP) de 14.25%, con un Índice de plasticidad de (IP) de 2.93%. con un contenido de humedad de 4.07% perteneciendo a una clasificación de suelo según ASHTO se tiene la clasificación e tipo A-4(0) que tiene una consistencia de material limoso arenoso pobre o malo para material. con una clasificación SUCS (ML) el cual se descubrió una única formación compuesta por suelo a una profundidad de exploración de 3.00 m. ML – suelo de partículas finas, limo inorgánico de baja plasticidad arenoso. Cabe mencionar la inexistencia de napa freática por ende de los resultados obtenidos el tipo de suelo es admisible o apto para realizar proyectos en la zona, esto indica sobre la posibilidad de realizar un diseño de sistema de alcantarillado.

Según el tercer objetivo IMMER (2020) Según su proyecto se puede observar que el sistema de alcantarillado proyectado propuesto en su proyecto tuvo como definición el uso de tubería de PVC UF DN 200 mm S-20, sus colectores en total tienen una longitud de 1291.30 ml, estas tuberías de PVC de 200 mm, además "Los buzones" tienen un diámetro interno de 1.20m". "los buzones de arranque en donde empieza la red de alcantarillado fueron diseñados con una altura mínima de" 1.00 m. "la profundidad máxima de buzón en este proyecto es de" 9.02 m; En el proyecto presente es de igual en características semejantes ya que realizo con el (RNE) misma norma peruana que se proyecta con tuberías PVC UF DN 160mm para toda la red de alcantarillado con una longitud total de 1922.62 ml así como los buzones

tienen un diámetro de 1.20m según pide la Norma (O.S.070) los buzones de arranque fueron diseñados con una altura mínima de 1.20, teniendo como altura máxima de buzón proyectado de 6.72m

Según el cuarto objetivo, COVEÑAS (2020). plantea un sistema de alcantarillo por gravedad con un Qd= 0.611 lps con una longitud total de 1790 ml de tubería PVC de 200 mm, y como alternativa para el tratamiento de aguas residuales un Tanque Imhoff. Según el ministerio de vivienda se utiliza este sistema de transporte de aguas residuales para poblaciones con una cantidad menos a 500moradores o en zonas rurales debido a que no se dispone de personal muy calificado para el mantenimiento. En este trabajo se plantea a partir de los cálculos se obtuvo diseño de nuestro Tanque Imhoff el cual tendrá un sedimentador que percibirá un caudal de 36.32 m3/día, en tanto los diámetros y dimensiones oscilan de 3.43 m y posee una profundidad de 3.40 m además cuenta con un volumen para el almacenamiento de digestión de 50.82m3, Relación L/B (valor teórico), distancia libre entre la pared del tanque y el tanque de sedimentación y la altura del lodo en el digestor para que el volumen de lodo en el tanque sea mayor o igual al volumen de digestión requerido.

VI. CONCLUSIONES

- 1. Se realizó el lugar de proyecto la inspección de toda el área del trabajo y se pudo verificar la inexistencia de la red de alcantarillado sanitario, y la situación en la que viven los pobladores del C.P. Ingenio, llevando esto a que se genere una necesidad urgente para realizar una propuesta de diseño de una red de alcantarillado y la planta de tratamiento en la zona de influencia.
- 2. Se realizó el levantamiento topográfico en la zona de estudio mediante el Gps diferencial, para que de esta manera se obtenga los puntos topográficos, para luego ser procesados, de esta manera obtener valores exactos y concisos del terreno, se obtuvieron cotas de toda la superficie del área del proyecto, el cual esto ayudara para realizar un correcto diseño.
- 3. Para el estudio de mecánica de suelos se realizaron las calicatas correspondientes, que son necesarias para verificar la agresividad del suelo, la consistencia y tipo de suelo que se puede ver en los resultados obtenidos en los ensayos correspondientes realizados.
- 4. Se realizó el diseño de la red de alcantarillado con todos los lineamientos de diseño que indican en el (RNE) llevando a cabo los cálculos necesarios de cantidad de población, el periodo de diseño, población de diseño, la dotación, así como también el cálculo del caudal promedio, caudal máximo diario y horario, así como también el caudal de diseño, que se usara para el diseño hidráulico del proyecto también se calculó el caudal de infiltración según estipula la norma.
- 5. Se realizó el diseño del sistema de planta de tratamiento, las cuales componen el tanque imhoff con un volumen de almacenamiento de 50.82 m3, y el lecho de secado con una capacidad de extracción de lodos de 31.20 m2, con un área de lecho de secado de 31.20 m2. Sobre la base de verificar las dimensiones, el volumen entre otros cumple con los requisitos de (NORMA O.S. 090)

VII. RECOMENDACIONES

- ✓ Se recomienda que al realizar el diseño tener en cuenta las variaciones de pendiente del terreno ya que existen desniveles muy pronunciadas y que pueden afectar en trazo y ubicación de las estructuras de buzones. Se recomienda a los futuros investigadores implementar el levantamiento geográfico con GPS Diferencial ya que el error con la que realiza el cálculo es mínimo a diferencia de otros equipos estándares conocidos en el ámbito de la ingeniería, que mediante la geolocalización permite la ubicación precisa de un objeto o punto en un sistema de coordenadas
- ✓ Respecto al estudio de suelos realizar las calicatas a mayor cantidad para tener una clara información del tipo de suelo en la que se va a trabajar, para así poder prevenir algún tipo de agresividad del suelo.
- ✓ Para futuras se recomienda seguir los lineamientos de los parámetros de diseño que se estipulan en el presente proyecto según el (RNE), ya que son los más acertados para un óptimo diseño de red de alcantarillado, asi como El uso de tubería de PVC de 160mm equivalente a 6" para el concreto a utilizar en los buzones usar concreto de resistencia mayores a 210 kg / cm2 para una óptima eficiencia y duración para el periodo de vida diseñado
- ✓ Se recomienda que al realizar el diseño de la planta de tratamiento en las cuales incluya todos los componentes necesarios para su buen funcionamiento, siguiendo los lineamientos que brinda la norma O.S. 090.

REFERENCIAS

Morán, A, (2019). Propuesta de Mejoramiento del Sistema de Alcantarillado Pluvial en el Sector de Mapasingue este Coop. 24 de octubre. [Universidad de Guayaqui]l. Obtenido de: http://repositorio.ug.edu.ec/handle/redug/42685

Contreras, E y Zumba, S. (2021). Evaluación del Sistema de Alcantarillado Sanitario del Recinto San Antonio de la Abundancia – Cantón Puerto Quito y Propuesta de Mejoras. [Universidad de Guayaquil. Colombia. 2021]. Obtenido de: http://repositorio.ug.edu.ec/handle/redug/53368.

Macas, C, (2019). Estudio y Evaluación de la Red de Alcantarillado Sanitario del Sector la Chala Cantón Guayaquil Provincia del Guayas. [Universidad de Guayaquil]. Obtenido de: http://repositorio.ug.edu.ec/handle/redug/42726.

Lizárraga, A, (2020). Diseño del sistema de alcantarillado de los sectores Chanquin y la Cobranza del Distrito de Moche – Trujillo - La Libertad. [Universidad César Vallejo]. Obtenido de: https://repositorio.ucv.edu.pe/handle/20.500.12692/44860.

Vargas, L, (2020). Diseño de Redes de Agua Potable y Alcantarillado de la Comunidad Campesina la Ensenada de Collanac Distrito de Pachacamac Mediante el uso de los Programas Watercad y Sewercad. [Pontificia Universidad Católica del Perú]. Obtenido de: https://repositorio.pucp.edu.pe/index/handle/123456789/172614

Ushiñahua, J. (2020). Diseño del Sistema de Alcantarillado Sanitario para Mejorar la Salubridad de la AA.VV. La Molina, Distrito La Banda de Shilcayo, 2020. [Universidad César Vallejo]. Obtenido de: https://repositorio.ucv.edu.pe/handle/20.500.12692/71894?show=full.

Alegre, I, (2020). Diseño del Sistema de la Red de Alcantarillado en el Centro Poblado Tunape, Ubicado en el Distrito de la Union, Provincia de Piura"", Departamento de Piura"", octubre 2020". [Universidad Católica los Ángeles Chimbote. Perú. 2020]. Obtenido de:

http://repositorio.uladech.edu.pe/bitstream/handle/20.500.13032/20878/RE DES_DE_ALCANTARILLADO_SALUD_EN_LA%20POBLACION_ALEGRE _COTOS_IMMER_%20HUMPRHEY.pdf?sequence=1&isAllowed=y.

Comisión Nacional del Agua (CONAGUA), Manual de agua potable, alcantarillado y saneamiento. México: McGraw-Hill, (2007). ISBN: 978-968-817-880-5.

Obtenido de:

https://files.conagua.gob.mx/conagua/mapas/SGAPDS-1-15-Libro4.pdf.

Guía de Diseño de Alcantarillado por Vacío. Ministerio de vivienda de Construcción y Saneamiento, (2019). Obtenido de: http://www3.vivienda.gob.pe/direcciones/Documentos/guia-diseno-alcantarillado-por-vacioMVCS-17072013.pdf

INSTITUTO NACIONAL DE ESTADÍSTICA E INFORMÁTICA HUÁNUCO (INEI). resultados definitivos, Lima, octubre de (2018). Obtenido de: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1570/10TOMO_01.pdf.

Norma Técnica de Diseño: Opciones Tecnológicas para Sistemas de Saneamiento en el Ámbito Rural, Ministerio de vivienda de Construcción y Saneamiento, (2018). Obtenido de: https://cdn.www.gob.pe/uploads/document/file/1743222/ANEXO%20RM%20192-2018-VIVIENDA%20B.pdf.pdf.

Compendio Estadístico, El Impacto de las Emergencias en la Gestión del Riesgo de Desastres en el Perú. Instituto nacional de defensa civil, noviembre, (2021). Obtenido de: https://portal.indeci.gob.pe/wp-content/uploads/2019/01/comp_2011.pdf.

Huánuco Compendio Estadístico Instituto Nacional de Estadística e Informática (INEI), (2018). Obtenido de: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib0808/Libro.pdf

Informe económico y social, noviembre 2015. Perfil Sociodemográfico Del Perú. Instituto Nacional de Estadística e Informática (INEI), (2007). Obtenido de:

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1539/

Estado de la Población en el Año del Bicentenario. Instituto Nacional de Estadística e Informática (INEI), (2021). Obtenido de:

https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1803/libro.pdf

Resolución Ministerial. Ministerio de Vivienda de Construcción y Saneamiento, (2019). Obtenido de: https://www.gob.pe/institucion/vivienda/normas-legales/305737-299-2019-vivienda

Hernández, J y Osorio, S, (2019) Diseño Hidráulico de la primera fase de la red de alcantarillado del casco urbano del Municipio de Chipaque. [Universidad de Católica de Colombia]. Obtenido de: https://repository.ucatolica.edu.co/bitstream/10983/23874/1/Tesis%20alcant arillado%20chipaque.pdf.

Flores, W, (2019). Diseño del alcantarillado del barrio san martín, municipio de soacha. [Universidad de Católica de Colombia]. Obtenido de: https://repository.ucatolica.edu.co/bitstream/10983/24079/1/TRABAJO%20 DE%20GRADO-.pdf.

Benito, H, (2018). "Diseño del sistema de alcantarillado sanitario en el Centro Poblado de Culqui, Laureles y el Caserío de Culqui Alto en el Distrito de Paimas, Provincia de Ayabaca - Piura". [Universidad Nacional de Piura]. Obtenido de: https://repositorio.unp.edu.pe/handle/UNP/1243.

Tapia, M, (2019). Evaluación del sistema de abastecimiento de agua potable de la zona operacional xii de la ciudad del cusco. [Universidad Nacional de San Antonio Abad Del Cusco]. Obtenido de: https://repositorio.unsaac.edu.pe/handle/20.500.12918/3746

Quispe, D, (2021). Propuesta de diseño para el sistema de agua potable y alcantarillado en la localidad de Kawachi – Pacanga – La Libertad usando los programas Watercad y Sewercad. [Universidad Nacional de Trujillo. Perú]. Obtenido de: https://dspace.unitru.edu.pe/handle/UNITRU/16778

Silva, C, (2021). Rediseño del sistema de alcantarillado sanitario y planta de tratamiento de las Aguas Residuales de la Localidad de San Miguel del Faique y Anexos (Pampa Alegre, Huayanay y Huando Bajo) Provincia de

Huancabamba, Departamento de Piura. [Universidad Nacional de Piura]. Obtenido de: https://repositorio.unp.edu.pe/handle/20.500.12676/2904

KACZOR, Grzegorz; CHMIELOWSKI, Krzysztof y BUGAJSKI, Piotr. Optimizing the Percentage of Sewage from Septic Tanks for Stable Operation of a Wastewater Treatment Plant. Kraków, Poland: Pol. J. Environ. Stud [en línea]. Vol. 25(4).2016 [fecha de consulta: 15 de marzo del 2022]

Vásquez, R, (2016). Diseño del sistema de alcantarillado pluvial urbano para la urbanización nueve de abril y sector los jardines, distrito de Tarapoto, provincia y región de San Martin. [Universidad Nacional de San Martín]. Obtenido de: https://repositorio.unsm.edu.pe/handle/11458/2436.

Des Moines University Library (2018). CINAHL (Cumulative Index to Nursing and Allied Health Literature). Obtenido de: https://lib.dmu.edu/db/cinahl/instruments#s-lg-box-2519492

Afshar, et al. (2016). Improving the Efficiency of Cellular Automata for Sewer Network Design Optimization Problems Using Adaptive Refinement. Procedía Engineering, 154, 1439–1447. Disponible en: https://www.sciencedirect.com/science/article/pii/S1877705816319063?via %3Dihub

Arias, J. (2020). Online Research Methods Book. Digital tools to collect data.

Disponible en:

https://repositorio.concytec.gob.pe/handle/20.500.12390/2237

Bravo, D, y Solís, E. (2018). Diseño del sistema de alcantarillado sanitario para el barrio Los Laureles, comunidad de Nero, de la parroquia Baños, cantón Cuenca. Disponible en: http://dspace.ucuenca.edu.ec/handle/123456789/31523

Duque, N, et al. (2017). Dynamic Programming over a Graph Modeling Framework for the Optimal Design of Pipe Series in Sewer Systems. Procedia Engineering, 186, 61–68. Obtenido de: https://www.sciencedirect.com/science/article/pii/S187770581731353X?via %3Dihub

Hernández, R, et al. (2014). Metodología de la investigación. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). Disponible en: https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf

Bellota, J. (2020). Diseño del sistema de alcantarillado sanitario empleando el sistema condominial, Agrupación Familiar 12 de octubre, San Juan de Lurigancho, 2020. [Universidad Cesar Vallejo]. Obtenido de: https://repositorio.ucv.edu.pe/handle/20.500.12692/66502?show=full Campo, C y Rivera, A, (2021) Diseño de red de alcantarillado en la localidad de San Isidro, para mejorar la evacuación de aguas residuales, El Dorado 2021, [Universidad Cesar Vallejo]. Obtenido de: https://repositorio.ucv.edu.pe/handle/20.500.12692/81232

Recalde, G. (2016). Acceso equitativo a servicios de agua potable y alcantarillado: una oportunidad para el activismo judicial y social a nivel local Equitable Access to Safe Drinking Water and Sanitation: An Opportunity for Judicial and Social Activism at Local Level. Revista De Derecho, 46, 250–301.

Obtenido de:

http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-86972016000200257

Methodology for the appropriation of basic sanitarion technologies in native comunities. Méndez Fajardo, S, [etal]. Bogotá: Cuadernos de desarrollo rural [en línea]. Vol. 8(60). Junio 2011 [fecha de consulta: 08 de Febrero del 2022] Obtenido de:

http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012214502011 000100007

Csicsaiová, R; et al. (2020). Application of mathematical models in design and assessment of sewer network facilities. IOP Conference Series: https://iopscience.iop.org/article/10.1088/1757-899X/867/1/012005.

El-Housni, H; et al. (2018). Identification of most significant factors for modeling deterioration of sewer pipes. Canadian Journal of Civil Engineering, 45(3), 215–226. Obtenido de: https://cdnsciencepub.com/doi/10.1139/cjce-2015-0293

Fouziya Sulthana, S; et al. (2020). Modelling and design of a drain cleaning robot. IOP Conference Series: Materials Science and Engineering, 912(2). Obtenido de: https://cdnsciencepub.com/doi/10.1139/cjce-2015-0293.

KRUSZYNSKI, Wojciech y DAWIDOWICZ, Jacek; Computer Modeling of Water Supply and Sewerage Networks as a Tool in an Integrated Water and

Wastewater Management System in Municipal Enterprises. Poland: Journal of Ecological Engineering [en línea]. Vol. 21. febrero 2020 [fecha de consulta 08 Junio del 2022].

Rucka, J; et al. (2016). Design of the pump controller of the low pressure sewer network. MM Science Journal, 2016(DECEMBER), 1654–1658. Obtenido de: https://www.mmscience.eu/journal/issues/december-2016/articles/design-of-the-pump-controller-of-the-low-pressure-sewer-network

Starkova, O. V; et al. (2019). Research on factors affecting the operational reliability of water and sewer utility networks. IOP Conference Series: Materials Science and Engineering, 708(1). Obtenido en: https://iopscience.iop.org/article/10.1088/1757-899X/708/1/012108

Sutherland, C; et al. (2021). Socio-technical analysis of a sanitation innovation in a peri-urban household in Durban, South Africa. Science of the Total Environment, 755. Obtenido en: https://www.sciencedirect.com/science/article/pii/S0048969720368157?via %3Dihub

Zhong, W, & Zhang, Y. (2020). Study on the Effect of Constructed Wetland in Treating Rural Domestic Sewage. IOP Conference Series: Earth and Environmental Science, 546(3). Obtenido en: https://iopscience.iop.org/article/10.1088/1755-1315/546/3/032030

Anexo 01. MATRIZ DE OPERACIONALIZACIÓN

Tabla 17. Matriz de operacionalización.

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
	Punto de inicio para realizar una serie de etapas dentro de la identificación y señalamiento del terreno a levantar. Tafur (2015).	Se realiza a través de un nivel, Estación Total, GPS Diferencial, GPS.	Realizar el estudio Topográfico.	 Georreferenciación. Cotas de terreno. Pendiente del terreno. Curvas de nivel. Perfil longitudinal. 	De razón.
Diseño del	Estudio del comportamiento y propiedades físicas del suelo en general. Das, (1999).	Obtención de datos mediante ensayos pertinentes al suelo de la zona del proyecto. Respetando los lineamientos y las normas que rigen un correcto EMS.	Realizar el estudio Mecánica de Suelos.	Granulometría.Límites de Atterberg.Estratigrafía.Clasificación de suelos.	De razón.
sistema del alcantarillado sanitario del C.P Ingenio.	Sistema unido por tuberías y estructuras complementarias para recibir y evacuar las aguas residuales de un sector. Herrera (2016).	Diseño de acuerdo a las normas establecidas en el reglamento peruano. O.S 070 y entre otras guías que aportan al correcto desarrollo del diseño del sistema de alcantarillado.	Realizar el diseño del Sistema de Alcantarillado.	 Caudal de diseño. Dimensionamiento. Hidráulico. Velocidad. Diámetros de tuberías. Pendiente. 	De razón.
	Es un conjunto de estructuras en la cual se realizan procesos tanto físicos, químicos y biológicos con el fin de tratar el agua contaminada proveniente de las redes de alcantarillado, con el propósito de reducir la contaminación.	Para realizar el diseño de una planta de tratamiento de aguas residuales se tomará en cuenta los parámetros establecidos en el reglamento nacional de edificaciones O.S. 090, además para los cálculos de la población de diseño, caudales de diseño, dimensionamiento y volumen de digestión, de las estructuras correspondientes de la PTAR.	Realizar el diseño de la planta de tratamiento.	Dimensiones.Población.Caudal.Volumen de digestión.	De razón.

ANEXO 02. MATRIZ DE CONSISTENCIA

Tabla 18. Matriz de consistencia

FORMULACION	OBJETIVOS	HIPOTESIS	JUSTIFICACION	VARIABLES	DISEÑO DE
DEL	OBSETTVOS	GENERAL	JUSTINICACION	VAINABLES	INVESTIGACION
PROBLEMA		GLNERAL			INVESTIGACION
ROBLEMA					
¿en qué	OBJETIVO	Para el diseño	JUSTIFICACIÓN	Diseño de la	METODO DE
magnitud el	GENERAL	del sistema del	DEL PROBLEMA	red de	INVESTIGACIÓN
proyecto de	Diseño del	alcantarillado		alcantarillado	Explorar: Precisar
investigación a	sistema del	sanitario del	lo que se propone	y planta de	aspectos previos a la
realizar ayudara	alcantarillado	Centro	en este proyecto	tratamiento	observación tales
a mejorar la	sanitario del	Poblado	de investigación	del C.P.	como:
calidad de vida	C.P. Ingenio,	Ingenio,	es revertir esta	Ingenio	
de los pobladores		Huácar, Ambo,	situación,	J	✓ En nivel socio
del C.P. Ingenio?	OBJETIVOS	Huánuco,	planteando un		económico de la
•	ESPEIFICOS	2022.	diseño adecuado		población.
	- Realizar el	Cumple para	de una red de		✓ La cantidad
	estudio	hacer el	alcantarillado. este		poblacional
	Topográfico	diseño de la	proyecto propone		✓ La topografía del
	- Realizar el	red de	ayudar a elaborar		terreno
	estudio	alcantarillado	un correcto		✓ Las fuentes
	Mecánica de	para mejorar	esquema del		posibles de
	Suelos	el estilo de	alcantarillado		evacuación de las
	- Realizar el	vida de los	sanitario.		aguas residuales.
	diseño del	beneficiarios			Reunir información
	Sistema de	en tanto	JUSTIFIACIÓN		para interpretar
	Alcantarillado	mejorar las	SOCIAL		hallazgos:
		condiciones de	este trabajo será		✓ Levantamiento
		salubridad	de gran ayuda a		topográfico.
		mediante el	futuros proyectos		✓ Estudios de
		correcto	de investigación,		laboratorio en
		manejo de las	que estén		suelos.
		aguas	interesados en		Describir hechos:
		servidas de la	realizar un		✓ Contaminación y
		zona del	proyecto basado		enfermedades.
		proyecto.	en esta línea de		✓ Necesidad de
			investigación		servicio de
			dando un aporte		alcantarillado.
			ético y profesional		Delimitación de los
			en la especialidad.		objetivos de la
					observación:
			JUSTIFICACIÓN		El autor se ha centrado
			EN LA SALUD		en el estudio que
			se aportará con		compromete al diseño
			este proyecto		del Sistema de
			detallando los		alcantarillado,
			problemas de		

salud generados las aguas por servidas У deposiciones que generan pobladores, ayudándoles а mejorar la calidad de vida

JUSTIFICACIÓN TEORICA

se

planteará y definirán todos los aspectos teóricos del diseño mediante las normas establecidas en las normas O.S 070, O.S 090.

realizando estudios tales como:

- Mecánica de suelos
- Estudios de aforo
- La cantidad poblacional y la dotación necesaria
- Diseño Hidráulico
- Diseño de la Planta de Tratamiento

Especificación del procedimiento o instrumentos de observación:

- Libreta de campo
- Envases para muestreo
- Reconocimiento de campo
- ✓ Levantamiento topográfico de la zona de estudio

Tipo Diseño de investigación

La investigación es de tipo Aplicada: La investigación tipo aplicada, el diseño de la investigación es no experimental: transversal, descriptivo simple teniendo como enfoque "cuantitativo", se toma el diseño no experimental para el Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.

ANEXO 03. INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Anexo 03.01. Guía de observación N° 01.

ENCUESTA DE INVESTIGACIÓN
NOMBRE DEL PROYECTO DE INVESTIGACIÓN:
Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.
UNIVERSIDAD: Cesar Vallejo.
OBJETIVO DE LA ENCUESTA: las siguientes preguntas de la encuesta son para verificar el estado situacional de la zona del proyecto a investigar y saber con exactitud la cantidad de habitantes en el C.P. Ingenio.
Persona Encuestada: - PAPÁ () - MAMÁ () - HIJO(A) () - OTRO ()
1 ¿Cuantos integran su núcleo familiar?
N°
2 ¿Alguno de sus familiares han sufrido enfermedades gastrointestinales?
a) SI
b) NO
3 ¿Usted cree que esto se debe a la falta de un mal manejo de las aguas residuales?
a) SI
b) NO
4 ¿Cree usted que esto se debe a la falta de un sistema sanitario para tratar las aguas residuales?
a) SI
b) NO
5 ¿Actualmente usted y su familia donde realizan sus necesidades?

a) Silo
b) Letrina
c) Campo
d) Otras alternativas
6 ¿A usted le gustaría contar con un sistema de alcantarillado sanitario?
a) SI
b) NO
7 ¿El C.P. cuenta con agua potable permanentemente?
a) SI
b) NO

Diario de Observación GPS

	Proyecto
Estación Nombre Completo:	Identificación (4 letras):
Inscripción en el monumento:	Fecha:
Coordenadas Aproximadas:	
Latitud: º ' " Longitud: º	' m
Receptor / Antena Tipo Mod	delo Nro. Serie
Receptor	
Antena	MATERIAL CONTRACTOR OF THE PROPERTY OF THE PRO
Software del Receptor (Versión):	
Longitud del Cable Antena-Receptor:	m
Altura de la Antèna sobre el monumento	Croquis de las medidas de la Antena (ejemplo)
Punto de referencia	
Vertical ó Inclinada	ref.
Antes de las Observaciones:m	(altura
Después de las Observaciones:m	inclinada)
Datos del Receptor:m	
Observación:	· 6
Nro. de la sesión del mismo día:	
Intervalo de Medición:seg.	
Elevación Mínima:	
Hora de Inicio:	**
Hora de Término:	
Operador / Institución:	

UNIVERSIDAD CÉSAR VALLEJO									
PERFIL ESTRATIGRAFICO									
PROY	PROYECTO:								
CALI	CATA:								
DATOS									
Profundidad	Tipo de	Espesor		Descripción	Nombre	SUCS	Contenido		
(M)	Excavación	de	Símbolo	del Material	de	AASHTO	de		
0.00		Estrato			Grupo		Humedad		
0.00									
0.20		E - 1							
0.40									
0.60									
0.80									
		E - 2							
1.00	Ê								
1.20	A (3								
1.20	CAT								
1.40	PROFUNDIDAD DE LA CALICATA (3m)								
	Š								
1.60	D DE								
	NDA								
1.80	ÜN								
	ROF								
2.00	ш.								
0.00									
2.20		E - 3							
2.40		L-3							
2.70									
2.60									
2.80									
2.00	1	I	Ì						

UNIVERSIDAD CÉSAR VALLEJO								
	CONTENIDO DE HUMEDAD							
PROYECTO:								
UBICACIÓN:	UBICACIÓN:							
CANTERA:	ERA:							
MUESTRA								
	DATOS							
1	Peso del Frasco + Peso del Suelo Húmedo (gr)							
2	Peso del Frasco + Peso del Suelo Seco (gr)							
3	Peso del Agua Contenida (gr)							
4	Peso del Frasco (gr)							
5	Peso del suelo Seco (gr)							
6	Contenido de Humedad (%)							

Anexo 03.05. Guía de observación N° 05.

ANEXO 04: Validez y confiabilidad de instrumentos.

Anexo 04.01 Matriz de evaluación de expertos N° 01

Universidad **César Vallejo**

	MATRIZ DE	EVALUACIÓ	N DE E	EXPER	гоѕ		
TITULO DE INVESTIGACIÓN			DISEÑO DEL SISTEMA DEL ALCANTARILLADO SANITARIO DEL CENTRO POBLADO INGENIO, HUÁCAR, AMBO, HUÁNUCO, 2022.				
LINEA DE	INVESTIGACIÓN	DISEÑO DE OBRA	S HIDRA	ULICAS Y	SANEAMIENTO		
APELLIDO	OS Y NOMBRES DEL EXPERTO:	Mgtr. Ing: PAJU	Mgtr. Ing: PAJUELO SOTO, LENIN EMILIANO				
	UMENTO DE MEDICIÓN QUE CE LA VARIABLE	DISEÑO DE LA RE	D DE AL	CANTARILI	LADO C.P. INGENIO		
PREGUNT	E LA MATRIZ DE EVALUACIÓN DE EXF TAS MARCANDO CON UNA "X" EN LAS CIÓN DE LOS ÍTEMS, INDICANDO SUS CIÓN SOBRE LA VARIABLE EN ESTUDI	OBSERVACIONES	O NO. AS Y/O SUG	IMISMO, L ERENCIAS	E EXHORTAMOS EN LA		
ITEMS	PREGUNTAS		APRECIA		OBSERVACIONES		
			SI	NO			
1	¿EL INSTRUMENTO DE MEDICIÓN Q DISEÑO ES ADECUADO?	UE PRESENTA EL	×				
2	¿EL INSTRUMENTO DE RECOLECCIÓN DE DATOS, TIENE RELACIÓN CON EL TÍTULO DE LA INVESTIGACIÓN?						
3	¿EN EL INSTRUMENTO DE RECOLEO SE MENCIONAN LAS VARIABLES DE		х				
4	¿EL INSTRUMENTO DE RECOLECCI FACILITARÁ LOGRO DE LOS OBJETI INVESTIGACIÓN?		ж				
5	¿EL INSTRUMENTO DE RECOLECCION RELACIONA CON LAS VARIABLES D		ж				
6	¿EL DISEÑO DEL INSTRUMENTO DE FACILITARÁ EL ANÁLISIS Y PROCES DATOS?		ж				
7	¿EL INSTRUMENTO DE MEDICIÓN S A LA POBLACIÓN SUJETO DE ESTU	DIO?	ж				
9	¿EL INSTRUMENTO DE MEDICIÓN ES CLARO? PRECISO SENCILLO DE MANERA QUE SE PUEDA OBTENER LOS DATOS REQUERIDOS?						
10							
Observaci	ones:						
Firma:		Wq. ing. LENN EMILENO INGENIERO CIPI 1563	PAJUELD SOTO	5			

Universidad **César Vallejo**

	MATRIZ DE E	VALUACIÓN	N DE E	XPERT	ros	
TITULO		DISEÑO DEL SISTEMA DEL ALCANTARILLADO SANITARIO DEL CENTRO POBLADO INGENIO, HUÁCAR, AMBO, HUÁNUCO, 2022.				
LINEA DE	E INVESTIGACIÓN [DISEÑO DE OBRAS HIDRAULICAS Y SANEAMIENTO				
APELLID	OS Y NOMBRES DEL EXPERTO:	Mgtr. Ing: CORI TRUJILLO, ARMANDO E.				
	UMENTO DE MEDICIÓN QUE ECE LA VARIABLE	DISEÑO DE LA RED DE ALCANTARILLADO C.P. INGENIO				
PREGUN	E LA MATRIZ DE EVALUACIÓN DE EXPE TAS MARCANDO CON UNA "X" EN LAS C CIÓN DE LOS ÍTEMS, INDICANDO SUS O CIÓN SOBRE LA VARIABLE EN ESTUDIO.	OLUMNAS DE SI (BSERVACIONES)	O NO. AS	IMISMO, LI	E EXHORTAMOS EN LA	
ITEMS	PREGUNTAS		APRECIA		OBSERVACIONES	
			SI	NO		
1	¿EL INSTRUMENTO DE MEDICIÓN QUE DISEÑO ES ADECUADO?		х			
2	¿EL INSTRUMENTO DE RECOLECCIÓN TIENE RELACIÓN CON EL TÍTULO DE LA INVESTIGACIÓN?		ж			
3	¿EN EL INSTRUMENTO DE RECOLECO SE MENCIONAN LAS VARIABLES DE IN		х			
4	FACILITARÁ LOGRO DE LOS OBJETIV INVESTIGACIÓN?		х			
5	¿EL INSTRUMENTO DE RECOLECCIÓN RELACIONA CON LAS VARIABLES DE I		х			
6	¿EL DISEÑO DEL INSTRUMENTO DE M FACILITARÁ EL ANÁLISIS Y PROCESAI		х			

Observaciones:

DATOS?

¿EL INSTRUMENTO DE MEDICIÓN SERÁ ACCESIBLE A LA POBLACIÓN SUJETO DE ESTUDIO?

¿EL INSTRUMENTO DE MEDICIÓN ES CLARO? PRECISO SENCILLO DE MANERA QUE SE PUEDA

OBTENER LOS DATOS REQUERIDOS? ¿CERTIFICA LA VALIDEZ Y CONFIABILIDAD DE LOS INSTRUMENTOS?

Firma:

К

К

Universidad **César Vallejo**

	MATRIZ DE	EVALUACIÓN	N DE E	XPER	ros	
TITULO DE INVESTIGACIÓN			DISEÑO DEL SISTEMA DEL ALCANTARILLADO SANITARIO DEL CENTRO POBLADO INGENIO, HUÁCAR, AMBO, HUÁNUCO, 2022.			
LINEA DE INVESTIGACIÓN		DISEÑO DE OBRA	S HIDRA	ULICAS Y :	SANEAMIENTO	
APELLIDOS Y NOMBRES DEL EXPERTO:		Mgtr. Ing:	Mgtr. Ing: CHAMOLI FALCÓN, JOHN WILLIAMS.			
EL INSTRUMENTO DE MEDICIÓN QUE PERTENECE LA VARIABLE		DISEÑO DE LA RE	D DE AL	CANTARILI	LADO C.P. INGENIO	
PREGUNT	E LA MATRIZ DE EVALUACIÓN DE EXF TAS MARCANDO CON UNA "X" EN LAS CIÓN DE LOS ÍTEMS, INDICANDO SUS CIÓN SOBRE LA VARIABLE EN ESTUDI	OBSERVACIONES	O NO. AS	IMISMO, L	E EXHORTAMOS EN LA	
ITEMS	PREGUNTAS		API	RECIA	OBSERVACIONES	
IIEMS	PREGUNTAS		SI	NO	OBSERVACIONES	
1	¿EL INSTRUMENTO DE MEDICIÓN QUE PRESENTA EL DISEÑO ES ADECUADO?					
2	¿EL INSTRUMENTO DE RECOLECCIÓN DE DATOS, TIENE RELACIÓN CON EL TÍTULO DE LA INVESTIGACIÓN?		Х			
3	¿EN EL INSTRUMENTO DE RECOLE SE MENCIONAN LAS VARIABLES DE		Х			
4	¿EL INSTRUMENTO DE RECOLECCI FACILITARÁ LOGRO DE LOS OBJETI INVESTIGACIÓN?	ÓN DE DATOS IVOS DE LA	Х			
5	¿EL INSTRUMENTO DE RECOLECCI RELACIONA CON LAS VARIABLES D		Х			
6	¿EL DISEÑO DEL INSTRUMENTO DE FACILITARÁ EL ANÁLISIS Y PROCES DATOS?	MEDICIÓN AMIENTO DE	Х			
7	¿EL INSTRUMENTO DE MEDICIÓN S A LA POBLACIÓN SUJETO DE ESTU		ж			
9	¿EL INSTRUMENTO DE MEDICIÓN E PRECISO SENCILLO DE MANERA QU OBTENER LOS DATOS REQUERIDO:	JE SE PUEDA	Х			
10						
Observaci	ones:		l			
Firma:						

ANEXO 05: LEVANTAMIENTO TOPOGRAFICO

Anexo 05.01 Certificado de calibración del equipo GPS Diferencial

Anexo 05.02 Reconocimiento del terreno C.P Ingenio.

ANEXO 06: Fotos de levantamiento topográfico

Anexo 6.1 Ubicación para el punto estático del Gps.

Anexo 6.2 Estación del Gps.

Anexo 6.3 Programando el Gps diferencial.

Anexo 8.4 Punto para BM.

Anexo 6.5 Estación de rastreo permanente.

Anexo 6.6 Colocación de BM en un punto Fijo.

Anexo 6.7 Colocación de BM en un punto Fijo.

Anexo 6.8 Colocación de punto de estación fijo.

Anexo 6.9 Puntos topográficos.

PUNTOS TOPOGRAFICOS						
N°	NORTE	ESTE	ALTITUD	DETALLE		
1	8876275.25	364985.456	2126.721	BC		
2	8876272.97	364987.768	2126.686	BC		
3	8876266.17	364984.572	2126.384	PORTON.M		
4	8876267.02	364979.899	2125.941	PORTON.M		
5	8876273.09	364983.012	2126.492	ESQ.TAPIAL		
6	8876272.40	364983.482	2126.289	ESQ.CALLE		
7	8876278.67	364958.042	2122.481	TAPIAL		
8	8876277.46	364958.193	2122.223	CALLE		
9	8876272.86	364957.09	2122.129	CALLE		
10	8876271.09	364956.893	2122.195	TAPIAL		
11	8876285.96	364926.916	2119.061	ESQ.TAPIAL		
12	8876284.66	364926.485	2119.017	ESQ.CALLE		
13	8876278.83	364925.424	2119.210	ESQ.CALLE		
14	8876277.07	364925.026	2119.333	ESQ.TAPIAL		
15	8876277.90	364924.674	2119.332	ESQ.CALLE		
16	8876279.68	364920.937	2119.064	CALLE		
17	8876251.95	364915.674	2118.996	TAPIAL		
18	8876252.47	364914.737	2118.975	CALLE		
19	8876255.33	364909.695	2118.915	CALLE		
20	8875481.87	364888.555	2147.275	BC		
21	8875484.73	364894.424	2147.365	BC		
22	8875505.54	364893.423	2148.089	TAPIAL		
23	8875526.18	364880.592	2147.497	BC		
24	8875525.07	364876.055	2147.693	BC		
25	8875542.81	364877.137	2147.846	BC		
26	8875542.26	364872.052	2148.185	BC		
27	8875555.31	364876.254	2148.004	BC		
28	8875554.66	364871.467	2148.311	BC		
29	8875551.35	364881.349	2149.535	TAPIAL		
30	8875549.58	364884.575	2149.914	TAPIAL		
31	8875571.42	364886.714	2149.836	ESQ.TAPIAL		
32	8875571.87	364886.64	2149.496	CASA		
33	8875579.70	364888.007	2149.653	CASA		
34	8875579.53	364892.745	2150.239	CASA		
35	8875588.85	364887.651	2150.324	PAP		
36	8875600.20	364884.202	2148.498	BC		
37	8875602.52	364878.576	2148.890	BC		
38	8875608.99	364896.577	2150.427	CANAL		
39	8875611.49	364898.151	2149.355	F.CANAL		
40	8875614.16	364898.694	2150.142	CANAL		
41	8875615.64	364898.854	2150.039	PAP		
42	8875637.88	364908.602	2147.757	BC		
43	8875643.73	364905.164	2147.729	BC		
44	8875656.70	364913.208	2147.501	POSTE		
45	8875661.54	364910.916	2145.291	ESQ.TAPIAL		
46	8875661.18	364914.303	2146.183	PAP		
47	8875663.62	364922.698	2146.921	ENTRADA		
48	8875669.79	364923.882	2146.856	ENTRADA		

49	8875666.90	364913.745	2144.609	ESQ.TAPIAL
50	8875669.03	364896.981	2142.663	ESQ.TAPIAL
51	8875666.91	364894.602	2142.825	CASA
52	8875676.52	364882.628	2141.195	CASA
53	8875691.40	364868.787	2138.599	ESQ.TAPIAL
54	8875716.20	364894.91	2137.774	CASA
55	8875725.00	364902.99	2137.848	CASA
56	8875728.32	364901.954	2137.967	CASA
57	8875725.76	364904.415	2138.201	CASA
58	8875831.45	364905.482	2128.451	TERRENO
59	8875827.98	364911.602	2132.53	TERRENO
60	8875817.65	364912.974	2135.562	TERRENO
61	8875813.88	364913.041	2135.043	CASA
62	8875813.79	364913.153	2135.017	ESQ.TAPIAL
63	8875828.18	364917.463	2135.457	TERRENO
64	8875826.58	364922.945	2138.388	TERRENO
65	8875823.26	364932.548	2139.281	TERRENO
66	8875829.94	364937.323	2135.76	TERRENO
67	8875847.51	364936.891	2134.722	PAP
68	8875854.79	364945.374	2135.924	TERRENO
69	8875868.68	364948.045	2135.228	TERRENO
70	8875867.22	364943.224	2132.018	TERRENO
71	8875880.21	364939.559	2127.117	PAP
72	8875868.05	364917.381	2125.56	CASA
73	8875882.41	364917.506	2124.298	CASA
74	8875882.43	364926.086	2124.692	CASA
75	8875887.35	364926.563	2123.845	CASA
76	8875897.44	364919.289	2122.606	CASA
77	8875896.51	364936.01	2123.594	CASA
78	8875896.54	364939.726	2124.058	CASA
79	8875911.9	364940.348	2123.193	CASA
80	8875912.78	364941.604	2122.923	PAP
81	8875926.83	364941.098	2122.105	CASA
82	8875936.9	364941.822	2121.648	CASA
83	8875936.01	364952.012	2123.077	CASA
84	8875936.14	364950.998	2122.824	VEREDA
85	8875934.75	364954.491	2123.206	PAP
86	8875935.15	364970.776	2127.749	CASA
87	8875933.64	364981.953	2134.774	TN
88	8875922.08	364974.316	2134.774	TN
89	8875940.45	364987.838	2135.081	TN
90	8875949.98	364972.525	2126.446	CASA
91	8875950.97	364952.712	2123.402	CASA
92	8875946.04	364951.578	2123.402	VEREDA
93	8875945.63	364943.513	2122.809	PAP
93			2121.941	
	8875951.39	364942.876		CASA
95	8875967.75	364924.476	2120.156	CASA
96	8875966.33	364944.221	2122.037	CASA
97	8875977.75	364945.893	2122.285	PAP
98	8875981.51	364944.663	2122.367	CASA
99	8875972.16	364954.535	2123.025	CASA
100	8875966.13	364953.657	2123.194	CASA

101	8875965.94	364957.782	2123.642	CASA
102	8875973.43	364973.9	2126.354	CASA
103	8875979.68	364974.086	2126.623	CASA
104	8875973.31	364977.745	2126.495	CASA
105	8875979.56	364978.15	2127.077	CASA
106	8875979.22	364977.105	2126.701	CASA
107	8875986.76	364977.525	2127.037	CASA
	8875986.67	364974.933	2126.772	CASA
108				
109	8875994.73 8876008.37	364975.331	2126.306	CASA
110		364989.002 364981.581	2127.422	CASA
111	8876009.22		2125.643	
112	8876010.76	364956.535	2123.192	CASA
113	8875995.75	364955.06	2123.63	CASA
114	8875995.99	364946.096	2122.422	CASA
115	8876006.44	364946.399	2122.413	CASA
116	8876010.82	364946.884	2122.556	CASA
117	8876010.89	364947.765	2122.586	PAP
118	8876025.67	364957.702	2123.078	CASA
119	8876026.75	364956.472	2122.987	ESQ.CALLE
120	8876026.91	364949.806	2122.696	ESQ.CALLE
121	8876034.31	364951.644	2123.513	PARED
122	8876026.19	364974.426	2124.152	PAP
123	8876024.49	364977.68	2124.604	CASA
124	8876010.06	364976.977	2125.012	CASA
125	8876009.97	364980.651	2125.012	CASA
126	8876014.27	364981.926	2125.058	CASA
127	8876013.86	364988.837	2125.737	CASA
128	8876017.24	364989.834	2126.044	TN
129	8876021.43	364990.549	2126.307	TN
130	8876030.12	364989.564	2126.855	TN
131	8876028.16	364993.436	2129.482	TN
132	8876024.18	364994.272	2130.028	TN
133	8876028.51	365002.154	2134.675	TN
134	8876023.95	365001.504	2134.587	PAP
135	8876015.67	365000.513	2134.722	TN
136	8876004.74	364997.815	2133.961	PAP
137	8875982.55	365000.193	2134.596	TN
138	8875973.21	364994.339	2134.789	PAP
139	8875956.67	364989.973	2134.323	TN
140	8875944.64	364996.777	2138.624	TAPIAL
141	8875938.87	364997.275	2138.448	TAPIAL
142	8875930.12	364990.777	2139.217	TAPIAL
143	8875923.46	364985.835	2139.825	TAPIAL
144	8875907.47	364977.185	2139.594	TAPIAL
145	8875882.11	364964.627	2140.172	TAPIAL
146	8875858.43	364953.124	2137.903	TAPIAL
147	8875833.96	364943.425	2140.077	ESQ.TAPIAL
148	8875719.43	364702.997	2122.476	TN
149	8875729.56	364710.273	2122.255	TN
150	8875737.12	364715.201	2122.283	TN
		1		<u> </u>
151	8875757.39	364710.644	2120.151	TAPIAL

153	8875769.05	364730.915	2123.098	TN
154	8875775.89	364736.457	2123.546	TN
155	8875781.68	364735.652	2123.188	TN
156	8875785.35	364734.06	2121.221	PAP
157	8875795.19	364727.427	2120.445	TAPIAL
158	8875808.62	364743.468	2120.546	CASA
159	8875817.95	364736.915	2120.048	PAP
160	8875822.45	364729.519	2119.829	TAPIAL
161	8875823.34	364744.594	2120.069	CASA
162	8875850.34	364736.432	2119.824	TAPIAL
163	8875850.32	364745.374	2119.063	TAPIAL
164	8875862.02	364738.822	2118.696	TAPIAL
165	8875863.25	364746.97	2118.835	TAPIAL
166	8875871.08	364754.686	2118.849	TAPIAL
167	8875862.12	364766.887	2118.967	ESQ.TAPIAL
168	8875846.63	364766.349	2119.813	PAP
169	8875770.61	364981.244	2149.063	PAP
170	8875769.22	364981.054	2148.746	CALLE
171	8875764.03	364979.277	2148.153	CALLE
172	8875772.73	364983.607	2149.141	CASA
173	8875781.04	364983.826	2149.053	CASA
174	8875772.86	364989.654	2150.076	CASA
175	8875775.83	364989.924	2150.225	CASA
176	8875776.13	364996.524	2150.858	CASA
177	8875768.32	365008.902	2154.084	CASA
178	8875765.89	365014.166	2155.341	PAP
179	8875765.63	365019.147	2156.542	CASA
180	8875764.68	365018.889	2156.385	VEREDA
181	8875764.18	365024.052	2158.017	CASA
182	8875763.28	365024.151	2157.403	VEREDA
183	8875766.52	365028.054	2157.682	CASA
184	8875766.33	365028.298	2156.787	VEREDA
185	8875774.61	365029.826	2157.365	CASA
186	8875773.95	365030.636	2158.059	VEREDA
187	8875779.72	365030.967	2158.325	CASA
188	8875794.65	365034.778	2157.562	CASA
189	8875764.92	365036.467	2159.042	PAP
190	8875769.03	365038.599	2159.115	CASA
191	8875767.51	365044.405	2159.996	CASA
192	8875761.11	365034.236	2158.991	ESQ.CALLE
193	8875762.18	365027.193	2157.972	ESQ.CALLE
194	8875776.71	365040.519	2158.904	CASA
195	8875784.74	365042.515	2158.911	CASA
196	8875792.46	365044.181	2158.917	CASA
197	8875800.33	365046.296	2159.137	CASA
198	8875800.57	365044.938	2159.041	PAP
199	8875802.15	365036.645	2157.358	CASA
200	8875795.75	365036.068	2157.336	CASA
201	8875805.21	365027.435	2155.454	CASA
-				
202	8875808.17	365047.831	2159.086	CASA
	8875817.06	365050.071	2158.589	CASA

205	8875818.52	365040.031	2157.864	TN
206	8875826.15	365042.128	2158.163	TN
207	8875823.28	365051.738	2159.234	CASA
208	8875830.61	365053.319	2159.525	CASA
209	8875836.66	365053.462	2159.243	PAP
210	8875841.83	365045.951	2157.493	ESQ.TAPIAL
211	8875847.13	365049.333	2157.757	ESQ.CALLE
212	8875843.11	365048.498		
			2157.869	ESQ.CALLE
213	8875846.85	365056.95	2158.683	CASA PAP
214	8875845.23	365058.924 365047.725	2159.799	CASA
215	8875849.59		2157.689	
216	8875855.86	365059.768	2158.737	CASA
217	8875864.53	365052.007	2158.215	CASA
218	8875862.36	365061.436	2158.833	CASA
219	8875870.09	365063.709	2159.45	CASA
220	8875871.91 	365064.104	2159.188	CASA
221	8875873.17	365062.523	2158.944	PAP
222	8875877.76	365065.81	2159.365	CASA
223	8875884.62	365061.246	2158.787	CALLE
224	8875887.43	365057.558	2156.757	TN
225	8875894.87	365064.526	2159.019	CALLE
226	8875895.39	365060.865	2156.292	CASA
227	8875902.72	365062.583	2157.023	CASA
228	8875903.51	365062.926	2156.946	CASA
229	8875905.02	365066.439	2159.455	CALLE
230	8875893.39	365070.275	2160.621	CASA
231	8875900.11	365071.905	2160.286	CASA
232	8875901.01	365071.978	2160.568	CASA
233	8875908.86	365074.146	2160.497	CASA
234	8875910.23	365071.769	2160.081	PAP
235	8875913.51	365068.387	2159.992	CALLE
236	8875927.02	365069.348	2158.605	CASA
237	8875920.29	365067.706	2158.576	CASA
238	8875910.89	365064.74	2157.503	CASA
239	8875915.1	365062.595	2156.804	TN
240	8875917.81	365079.86	2163.174	TN
241	8875906.52	365082.684	2164.672	CASA
242	8875898.75	365080.786	2164.562	CASA
243	8875885.33	365081.653	2164.449	TN
244	8875872.17	365084.008	2165.115	CASA
245	8875864.52	365081.968	2165.223	CASA
246	8875852.46	365085.848	2166.887	TN
247	8875841.41	365075.692	2164.181	CASA
248	8875829.37	365088.107	2168.434	CASA
249	8875825.7	365072.158	2164.399	CASA
250	8875828.19	365092.915	2169.797	CASA
251	8875830.03	365095.315	2170.172	ESQ.CALLE
252	8875820.32	365090.823	2169.144	CASA
253	8875825.72	365101.856	2171.858	CASA
254	8875828.03	365101.492	2171.964	ESQ.CALLE
255	8875833.24	365102.119	2172.258	PAP
256	8875829.29	365122.028	2178.236	CASA

257	8875830.45	365116.442	2176.59	CASA
258	8875838.52	365118.31	2177.155	CASA
259	8875813.26	365118.709	2177.439	CASA
260	8875817.01	365104.372	2172.536	CASA
261	8875824.63	365106.029	2172.974	CASA
262	8875818.12	365100.029	2171.629	CASA
263	8875816.93	365093.876	2171.029	CALLE
264	8875817.63	365099.886	2171.848	CASA
265	8875814.97	365099.275	2171.36	CASA
266	8875810.12	365098.155	2171.394	CASA
267	8875799.75	365094.397	2170.702	PAP
268	8875796.86	365085.669	2169.356	CASA
269	8875782.69	365082.608	2168.725	CASA
270	8875772.11	365089.029	2168.781	CASA
271	8875769.31	365086.994	2168.619	PAP
272	8875764.34	365087.264	2168.638	CASA
273	8875748.57	365083.247	2169.413	CASA
274	8875747.19	365084.81	2169.813	PAP
275	8875744.16	365102.378	2174.391	CASA
276	8875747.49	365082.012	2168.996	ESQ.CALLE
277	8875749.4	365074.818	2167.478	ESQ.CALLE
278	8875751.13	365073.988	2167.577	ESQ.TAPIAL
279	8875744.28	365074.833	2168.002	ESQ.CALLE
280	8875742.47	365080.323	2169.022	ESQ.CALLE
281	8875734.85	365077.55	2169.099	PAP
282	8875732.75	365076.985	2169.129	PAP
283	8875724.66	365082.013	2170.896	CASA
284	8875725.79	365076.052	2169.528	CASA
285	8875720.54	365074.586	2169.46	CASA
286	8875718.95	365074.025	2169.391	CASA
287	8875710.04	365072.207	2169.191	CASA
288	8875709.19	365071.918	2169.147	CASA
289	8875703.5	365069.182	2168.78	PAP
290	8875704.15	365065.224	2168.366	CALLE
291	8875702.59	365070.404	2168.737	CASA
292	8875701.32	365070.005	2168.644	CASA
293	8875694.45	365068.651	2168.806	CASA
294	8875690.44	365088.028	2173.242	CASA
295	8875669.23	365102.244	2178.033	CASA
296	8875674.33	365083.24	2174.31	CASA
297	8875666.7	365081.141	2175.272	CASA
298	8875671.74	365062.211	2171.529	CASA
299	8875668.96	365059.949	2171.626	PAP
300	8875664.14	365060.018	2171.335	CASA
301	8875654.04	365066.782	2175.137	TAPIAL
302	8875652.44	365072.757	2176.428	CASA
303	8875654.65	365098.153	2179.797	CASA
304	8875654.76	365094.43	2179.149	CASA
305	8875658.82	365099.501	2178.981	CASA
			i	
306	8875651.67	365100.029	2180.454	ESQ.CALLE
-		365100.029 365104.305	2180.454 2180.964	ESQ.CALLE ESQ.CALLE

309	8875689.37	365113.725	2178.933	CALLE
310	8875702.63	365110.92	2178.327	ESQ.TAPIAL
311	8875717.97	365115.111	2178.818	ESQ.TAPIAL
312	8875732.49	365122.617	2180.134	CALLE
313	8875732.04	365125.02	2180.333	CALLE
314	8875638.21	365123.448	2186.112	ESQ.TAPIAL
315	8875639.64	365118.012	2185.191	CASA
316	8875643.35	365105.458	2182.455	PORTON
317	8875644.53	365101.556	2182.193	PORTON
318	8875645.59	365097.956	2181.485	CASA
319	8875647.02	365093.144	2180.405	CASA
320	8875647.97	365094.108	2180.541	PAP
321	8875643.39	365090.607	2180.264	PAP
322	8875648.71	365092.163	2179.713	ESQ.CALLE
323	8875649.54	365086.444	2178.893	ESQ.CALLE
324	8875649.65	365083.494	2178.438	CASA
325			2180.303	CASA
	8875639.42	365090.955 365079.432		TAPIAL
326	8875634.82		2179.88	
327	8875627.68	365087.522	2182.008	CASA
328	8875627.75	365086.999	2181.669	VEREDA
329	8875619.03	365084.423	2181.884	VEREDA
330	8875619.04	365085.149	2182.231	CASA
331	8875623.35	365076.133	2180.617	CASA
332	8875623.45	365080.012	2181.522	TN
333	8875608.48	365082.302	2183.005	ESQ.TAPIAL
334	8875610.31	365081.668	2182.763	PAP
335	8875608.15	365080.693	2182.744	ESQ.CALLE
336	8875611.15	365072.915	2181.048	CASA
337	8875609.07	365075.644	2181.983	ESQ.CALLE
338	8875600.45	365080.806	2183.721	CASA
339	8875601.91	365079.943	2183.364	ESQ.CALLE
340	8875597.98	365088.076	2185.888	CASA
341	8875600.17	365112.177	2190.337	ESQ.TAPIAL
342	8875603.26	365074.822	2182.442	ESQ.CALLE
343	8875580.77	365077.094	2185.263	CASA
344	8875581.62	365076.19	2185.137	PAP
345	8875562.46	365068.424	2185.517	CALLE
346	8875563.59	365065.414	2184.831	CALLE
347	8875564.72	365061.806	2183.857	ESQ.TAPIAL
348	8875584.28	365067.109	2182.669	ESQ.TAPIAL
349	8875598.55	365059.379	2179.658	TN
350	8875606.82	365040.215	2175.341	CASA
351	8875611.77	365041.342	2175.154	CASA
352	8875613.28	365033.85	2173.452	CASA
353	8875614.37	365033.932	2173.53	PAP
354	8875622.12	365031.395	2172.196	TAPIAL
355	8875621.03	365035.629	2172.902	PORTON
356	8875620.08	365038.36	2173.564	PORTON
357	8875593.86	365028.947	2174.255	ESQ.TAPIAL
358	8875596.05	365021.538	2172.173	CASA
359	8875576.81	365016.495	2172.628	CASA
360	8875574.63	365024.113	2174.852	ESQ.TAPIAL

361	8875573.77	365023.07	2174.553	ESQ.CALLE
362	8875575.43	365017.818	2173.204	ESQ.CALLE
363	8875557.79	365073.542	2187.014	TN
364	8875558.19	365061.827	2184.097	TN
365	8875561.09	365051.892	2182.018	TN
366	8875563.12	365041.524	2179.266	TN
367	8875566.22	365030.249	2176.282	TN
368	8875567.51	365017.595	2173.109	TN
369	8875555.19	365028.924	2168.917	F.QUEBRADA
370	8875549.75	365049.107	2172.115	F.QUEBRADA
371	8875544.75	365048.334	2173.763	TN
372	8875549.31	365038.923	2172.438	TN
373	8875550.61	365022.639	2169.291	TN
374	8875553.97	365021.212	2167.933	F.QUEBRADA
375	8875580.47	365001.523	2168.806	CASA
376	8875579.73	365001.211	2168.641	PAP
377	8875586.23	364977.178	2162.274	PAP
378	8875587.04	364979.245	2162.905	CASA
379	8875585.03	364980.387	2163.059	ESQ.CALLE
380	8875583.72	364986.256	2164.226	ESQ.CALLE
381	8875589.37	364986.145	2164.447	PAP
382	8875595.12	364981.027	2163.805	CASA
383	8875602.93	364983.006	2163.744	CASA
384	8875599.12	364989.997	2165.129	CASA
385	8875604.01	364991.286	2165.155	CASA
386	8875601.83	364998.788	2167.122	CASA
387	8875610.49	364984.637	2164.143	CASA
388	8875619.99	364986.959	2164.108	CASA
389	8875619.79	364985.971	2164.304	CASA
390	8875625.91	364987.39	2163.624	CASA
391	8875621.97	364994.802	2164.807	PAP
392	8875623.93	364997.83	2165.664	PAP
393	8875625.81	364995.059	2164.662	ESQ.CALLE
394	8875631.25	364997.871	2165.235	CASA
395	8875630.04	364996.293	2164.493	ESQ.CALLE
396	8875631.35	364991.431	2163.716	ESQ.CALLE
397	8875626.68	364989.532	2163.667	ESQ.CALLE
398	8875626.29	364987.234	2163.617	CASA
399	8875644.76	365001.431	2164.314	CASA
400	8875644.96	365000.695	2163.435	VEREDA
401	8875650.71	365002.433	2163.939	VEREDA
402	8875650.93	365002.601	2163.774	CASA
403	8875656.26	364995.967	2163.819	ESQ.TAPIAL
404	8875663.98	364998.266	2163.825	ESQ.TAPIAL
405	8875671.56	365000.222	2163.348	CASA
406	8875673.03	365000.13	2162.637	PAP
407	8875673.08	365001.566	2162.976	ESQ.CALLE
408	8875678.92	365003.483	2162.579	CASA
-	8875676.53	365013.124	2164.407	CASA
409 I				27.07.
409		365007.798	2163.977	CASA
409 410 411	8875670.54 8875668.58	365007.798 365006.469	2163.977 2164.045	CASA PAP

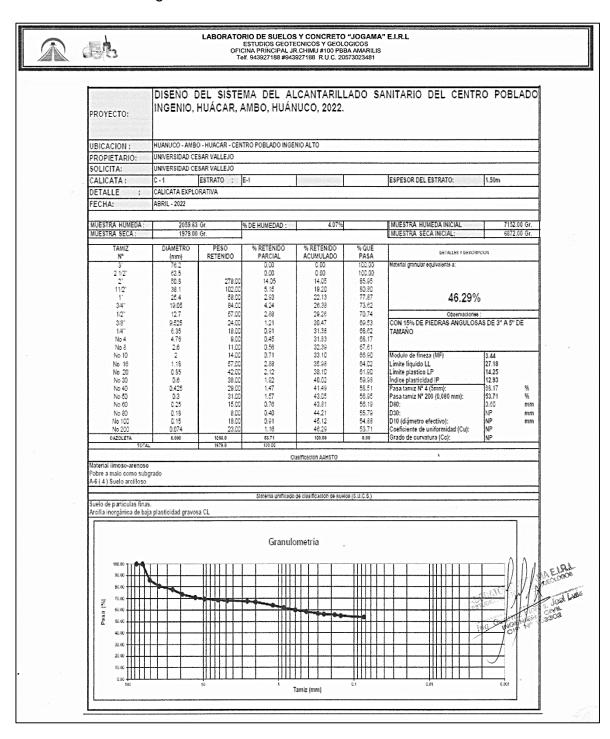
413	8875674.76	365019.214	2165.274	CASA
414	8875672.61	365026.666	2166.545	ESQ.TAPIAL
415	8875671.32	365027.42	2166.659	ESQ.CALLE
416	8875670.94	365031.042	2167.037	ESQ.CALLE
417	8875671.38	365032.147	2167.275	CASA
418	8875669.86	365037.769	2168.812	CASA
419	8875661.04	365041.327	2169.973	CASA
420	8875658.77	365054.304	2172.119	PAP
421	8875665.25	365031.359	2168.074	PAP
422	8875664.15	365028.82	2167.682	CASA
423	8875674.93	365031.923	2166.735	PAP
424	8875685.67	365035.934	2166.026	CASA
425	8875684.07	365041.871	2167.266	CASA
426	8875691.67	365031.966	2164.926	ESQ.TAPIAL
		365024.137		
427	8875694.27		2163.566	CASA
428	8875713.41	365029.765	2161.121	CASA
429	8875714.48	365029.841	2161.021	PAP
430	8875711.75	365038.882	2163.465	ESQ.CALLE
431	8875710.43	365041.41	2163.86	ESQ.CALLE
432	8875714.75	365044.637	2163.894	PAP
433	8875711.48	365046.317	2164.593	TN
434	8875706.07	365058.94	2166.033	TN
435	8875711.1	365062.322	2166.842	TN
436	8875720.73	365065.667	2167.708	TN
437	8875741.24	365072.926	2168.014	TN
438	8875742.23	365071.015	2166.172	TN
439	8875745.13	365068.989	2166.69	TN
440	8875745.13	365065.303	2165.684	TN
441	8875745.61	365058.701	2165.477	TN
442	8875732.73	365053.721	2165.357	TN
443	8875727.97	365065.618	2165.527	TN
444	8875746.76	365054.812	2163.781	TN
445	8875748.78	365048.846	2163.259	TN
446	8875733.04	365048.789	2163.472	TN
447	8875733.05	365045.067	2163.222	TN
448	8875717.15	365044.843	2163.546	TN
449	8875717.33	365041.394	2163.276	TN
450	8875721.18	365035.962	2161.212	TN
451	8875723.39	365027.594	2160.558	TN
452	8875725.75	365018.306	2158.936	TN
453	8875731.19	365008.729	2157.699	TN
454	8875741.42	365012.371	2157.647	TN
455	8875756.61	365017.803	2157.715	TN
456	8875752.58	365030.214	2158.279	TN
457	8875749.33	365041.588	2158.843	TN
458	8875739.24	365039.049	2158.778	TN
459	8875724.85	365035.611	2158.828	TN
460	8875727.72	365022.073	2158.197	TN
461	8875715.64	365022.056	2160.618	CASA
462	8875717.39	365014.486	2159.321	CASA
463	8875718.52	365009.994	2158.481	CASA
464	8875719.74	365006.215	2158.547	CASA

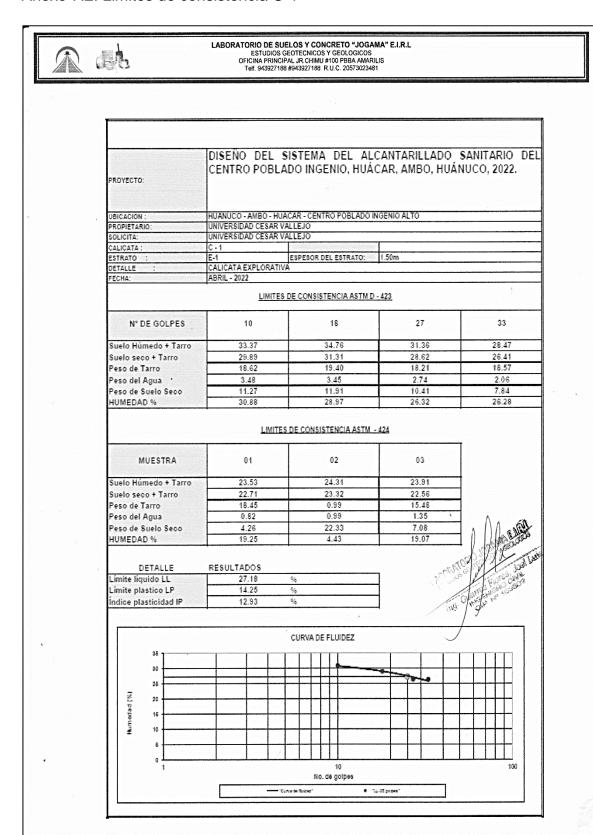
465	8875721.06	365004.521	2157.491	PAP
466	8875721.42	364999.103	2156.455	CASA
467	8875722.61	364994.325	2156.154	CASA
468	8875713.34	364991.466	2156.823	CASA
469	8875724.69	364987.658	2155.172	CASA
470	8875715.13	364984.657	2155.496	CASA
471	8875702.42	364992.986	2157.742	CASA
472	8875697.74	365008.667	2160.838	CASA
473	8875677.45	364977.51	2157.318	CASA
474	8875679.11	364977.883	2157.316	PAP
475	8875669.87	364975.386	2157.553	CASA
476	8875673.73	364960.281	2154.856	ESQ.TAPIAL
477	8875683.48	364962.197	2154.107	ESQ.CALLE
478	8875687.83	364963.347	2153.988	ESQ.CALLE
479	8875686.12	364952.158	2152.371	PAP
480	8875666.27	364958.066	2155.079	ESQ.TAPIAL
481	8875635.19	364947.573	2153.885	CASA
482	8875645.74		2153.865	CASA
		364947.803		
483	8875651.13	364942.348	2151.668	PAP
484	8875647.01	364941.11	2151.945	CASA
485	8875718.12	364971.768	2153.017	ENTRADA
486	8875719.89	364966.981	2152.475	ENTRADA
487	8875722.71	364969.229	2152.547	ENTRADA
488	8875726.41	364958.446	2150.583	BC
489	8875728.83	364961.042	2150.334	BC
490	8875683.92	364925.371	2145.872	TAPIAL
491	8875697.38	364931.06	2147.652	PTM
492	8875703.51	364929.237	2146.906	ESQ.TAPIAL
493	8875707.78	364933.078	2147.741	ENTRADA
494	8875703.37	364932.359	2147.666	ENTRADA
495	8875708.95	364940.585	2147.585	BC
496	8875710.37	364934.593	2147.769	BC
497	8875710.97	364933.245	2147.807	PAP
498	8875713.75	364932.518	2147.679	PAP
499	8875709.71	364930.031	2147.617	CASA
500	8875709.27	364930.899	2147.446	VEREDA
501	8875718.04	364931.913	2147.526	CASA
502	8875717.96	364932.528	2147.538	VEREDA
503	8875729.53	364935.915	2147.485	PORTON.M
504	8875732.08	364936.851	2147.431	PORTON.M
505	8875747.16	364942.991	2147.019	CASA
506	8875754.34	364946.599	2146.914	CASA
507	8875757.56	364940.739	2145.432	CASA
508	8875759.21	364943.701	2145.757	CASA
509	8875759.41	364944.412	2146.753	VEREDA
510	8875768.25	364948.343	2146.758	CASA
511	8875767.87	364948.85	2146.585	VEREDA
512	8875765.07	364949.785	2146.811	PAP
513	8875765.81	364950.283	2146.876	PAP
514	8875767.78	364957.61	2146.686	PTM
515	8875764.54	364959.34	2147.109	BC
516	8875759.76	364964.437	2147.402	BC

517	8875749.63	364961.031	2147.756	ENTRADA
518	8875754.81	364964.979	2147.601	ENTRADA
519	8875759.93	364967.292	2147.294	ENTRADA
520	8875766.27	364969.396	2147.101	ENTRADA
521	8875783.02	364989.137	2149.864	CASA
522	8875789.53	364990.644	2149.834	CASA
523	8875770.44	364980.727	2148.78	ESQ.CALLE
524	8875790.71	364991.134	2150.175	CASA
525	8875803.26	364991.991	2149.675	PAP
526	8875813.86	364996.628	2148.612	CASA
527	8875814.31	364996.653	2148.55	CASA
528	8875814.39	364996.009	2148.325	VEREDA
529	8875828.74	365000.607	2148.66	CASA
530	8875829.32	365000.369	2148.748	VEREDA
531	8875818.57	364990.799	2148.058	CASA
532	8875828.78	364991.768	2148.256	CASA
533	8875829.83	364987.989	2148.777	CASA
534	8875836.09	365001.544	2148.872	PAP
535	8875837.18	365003.231	2149.08	CASA
	8875837.38			
536		365002.742	2148.857	VEREDA VEREDA
537	8875842.07 8875841.87	365004.18	2148.861	CASA
538		365004.448	2149.155	
539	8875842.18	365003.736	2148.886	VEREDA
540	8875852.99	365006.844	2148.963	VEREDA
541	8875852.68	365007.65	2149.212	CASA
542	8875847.41	365026.434	2153.144	TAPIAL
543	8875854.72	365028.818	2153.323	CASA
544	8875851.23	365042.013	2156.103	CASA
545	8875858.64	365043.973	2156.057	CASA
546	8875866.65	365046.373	2155.657	CASA
547	8875857.98	365013.638	2149.787	PAP
548	8875859.45	365008.479	2148.814	ESQ.CALLE
549	8875853.51	365006.85	2148.982	ESQ.CALLE
550	8875860.37	365009.924	2148.668	CASA
551	8875860.63	365009.384	2148.715	VEREDA
552	8875861.53	365008.778	2148.927	PAP
553	8875865.02	365009.992	2148.266	C.AGUA
554	8875868.13	365012.322	2148.544	CASA
555	8875868.27	365011.806	2148.581	VEREDA
556	8875881.16	365015.851	2147.549	CASA
557	8875881.34	365015.291	2147.424	VEREDA
558	8875889.98	365017.815	2147.409	VEREDA
559	8875889.76	365018.267	2147.652	CASA
560	8875892.18	365018.108	2147.454	PAP
561	8875891.32	365018.819	2147.36	CASA
562	8875898.67	365020.779	2147.051	CASA
563	8875906.64	365022.819	2146.475	ESQ.TAPIAL
564	8875929.86	365028.917	2146.782	CASA
565	8875929.99	365028.333	2146.694	VEREDA
566	8875937.66	365030.715	2147.199	CASA
567	8875937.68	365030.181	2146.871	VEREDA
568	8875947.26	365027.346	2147.243	ESQ.TAPIAL

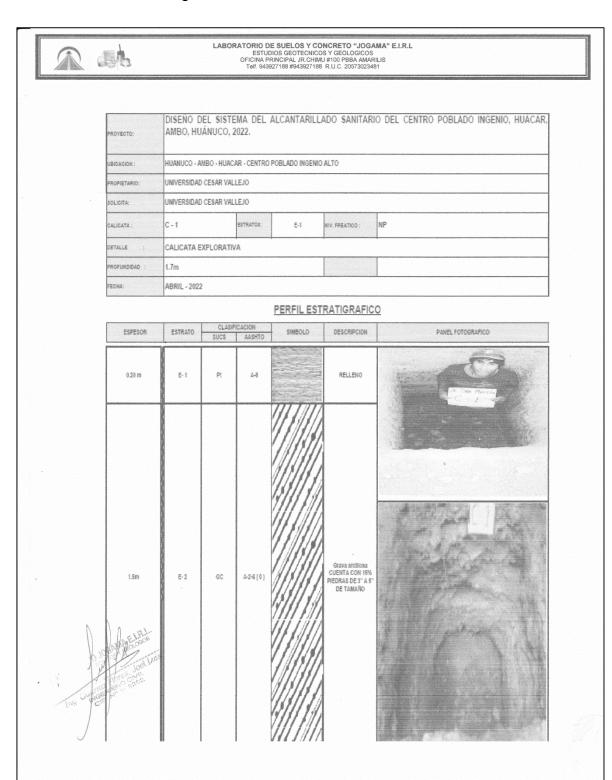
569	8875936.07	365035.776	2148.336	CASA
570	8875946.47	365036.89	2148.411	PAP
571	8875947.29	365040.425	2148.996	PORTON
572	8875947.64	365043.188	2149.254	PORTON
573	8875932.01	365049.497	2151.794	ESQ.TAPIAL
574	8875928.46	365062.358	2156.106	CASA
575	8875945.03	365066.664	2155.236	ESQ.TAPIAL
576	8875946.05	365067.257	2155.466	CASA
577	8875945.57	365070.943	2155.767	CASA
578	8875950.44	365071.969	2156.386	CASA
579	8875959.96	365073.808	2156.543	CASA
580	8875941.56	365077.833	2159.13	PAP
581	8875943.49	365075.909	2158.378	CASA
582	8875942.69	365082.63	2159.329	CASA
583	8875951.87	365079.969	2159.271	CASA
584	8875960.18	365079.326	2159.351	CASA
585	8875960.39	365083.347	2160.085	CASA
586	8875992.91	365081.187	2162.299	BC
587	8875992.21	365079.617	2160.997	BC
588	8876029.52	365063.429	2160.252	CASA
589	8876051.86	365058.901	2161.135	CASA
590	8876052.38	365062.827	2161.782	CASA
591	8876055.43	365059.605	2162.912	CASA
		365066.55	2161.738	CASA
592 593	8876055.18		2160.954	CASA
	8876063.76	365059.435		TN
594	8876069.06	365068.114	2161.382	
595	8876076.56	365071.406	2161.253	TN
596	8876083.37	365067.019	2163.041	TN
597	8876088.48	365063.271	2164.04	PAP
598	8876096.78	365076.371	2168.189	CASA
599	8876108.87	365076.066	2169.19	CASA
600	8876096.56	365071.653	2166.817	CASA
601	8876087.48	365052.461	2159.844	TN
602	8876085.2	365033.695	2150.276	TN
603	8876082.62	365021.837	2146.205	TN
604	8876112.78	365031.808	2146.509	CASA
605	8876112.43	365038.678	2150.856	CASA
606	8876100.57	365032.358	2146.728	CASA
607	8876110.23	365025.317	2145.746	TN
608	8876103.54	365026.427	2145.554	TN
609	8876111.62	365024.123	2143.106	TN
610	8876103.64	365025.17	2143.874	TN
611	8876106.04	365012.653	2141.601	TN
612	8876092.18	365000.227	2139.351	BC
613	8876089.54	364996.176	2139.315	BC
614	8876077.96	365001.713	2139.811	PTM
615	8876076.57	365002.453	2139.93	PAP
616	8876049.36	365011.45	2141.12	BC
617	8876048.78	365015.509	2141.338	BC
618	8876025.72	365010.702	2142.718	PTM
619	8876022.54	365010.954	2142.787	PAP
620	8876007.48	365012.381	2142.666	BC

621	8876006.46	365017.774	2142.614	BC
622	8875970.03	365012.622	2142.814	PAP
623	8875968.34	365019.434	2142.726	ENTRADA
624	8875975.07	365019.307	2142.642	ENTRADA
625	8875985.24	365037.182	2149.526	PAP
626	8875989.45	365055.871	2152.228	CASA
627	8875988.38	365051.879	2151.955	CASA
628	8875999.67	365049.546	2152.447	CASA
629	8875971.63	365060.641	2153.319	CASA
630	8875971.29	365056.406	2152.616	CASA
631	8875962.36	365056.55	2152.391	CASA
632	8875986.14	365040.379	2148.345	ESQ.TAPIAL
633	8875996.58	365037.901	2149.052	CASA
634	8876008.93	365034.783	2149.339	CASA
635	8875977.64	365040.827	2148.721	CASA
				CASA
636	8875976.92	365030.351	2146.597	
637	8875971.62	365030.04	2145.325	CASA
638	8875963.48	365027.739	2143.435	CASA
639	8875971.79	365028.062	2142.992	CASA
640	8875947.25	365010.253	2143.114	PTM
641	8875940.88	365009.943	2142.987	PAP
642	8875934.23	365008.751	2142.935	BC
643	8875932.34	365012.768	2143.036	BC
644	8875903.94	364997.423	2143.607	PORTON
645	8875901.12	364996.305	2143.224	PORTON
646	8875898.53	364996.494	2144.183	PAP
647	8875896.59	364995.688	2144.357	PTM
648	8875875.03	364987.717	2144.636	BC
649	8875871.39	364991.759	2144.734	BC
650	8875864.13	364982.69	2145.312	TAPIAL
651	8875864.33	364980.789	2145.491	CASA
652	8875856.38	364977.537	2145.554	CASA
653	8875855.43	364979.697	2145.433	TAPIAL
654	8875855.13	364980.601	2145.436	PAP
655	8875839.49	364975.165	2145.689	PTM
656	8875839.02	364973.818	2145.784	TAPIAL
657	8875823.43	364968.849	2145.849	ESQ.TAPIAL
658	8875818.87	364968.262	2146.097	PAP
659	8875809.14	364964.95	2145.682	PAP
660	8875811.53	364953.561	2142.879	CASA
661	8875804.57	364953.112	2142.292	CASA
662	8875814.94	364944.496	2141.189	CASA
663	8875814.91	364942.651	2141.662	CASA
664	8875815.96	364939.943	2141.522	CASA
665	8875812.26	364938.455	2141.343	CASA
666	8875817.13	364934.368	2141.011	PAP
667	8875798.72	364964.862	2146.389	BC
668	8875795.56	364970.857	2146.446	BC
669	8875797.82	364978.58	2149.955	TN
670	8875809.24	364979.589	2148.593	TN
671	8875831.01	364983.85	2147.081	TN
		+		

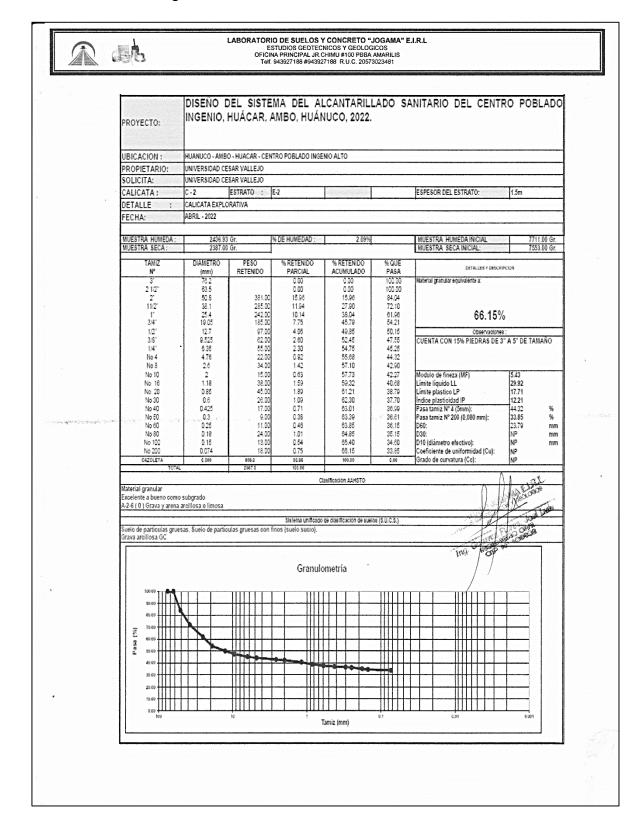

673	8875915.06	365001.654	2143.856	TAPIAL
674	8875912.34	365016.196	2145.008	TN
675	8875920.51	365011.674	2143.368	ENTRADA
676	8875925.01	365012.604	2143.146	ENTRADA
677	8875941.06	365023.467	2146.347	TN
678	8875953.41	365009.697	2142.86	TAPIAL
679	8875972.03	365011.398	2142.365	ESQ.TAPIAL
680	8876028.62	365011.987	2142.436	BC
681	8876030.38	365016.353	2142.295	BC
682	8876053.49	365044.637	2156.489	PAP
683	8876105.1	364993.393	2138.824	BC
684	8876102.83	364988.628	2138.987	BC
685	8876114.63	364981.51	2138.791	PTM
				PAP
686	8876133.38	364993.45	2140.617	
687	8876131.92	364990.806	2140.363	TN
688	8876148.87	364972.966	2137.205	PTM
689	8876174.41	364975.866	2135.242	BC
690	8876175.99	364981.784	2135.141	BC
691	8876182.65	364990.895	2135.479	PAP
692	8876186.14	364991.988	2135.196	CASA
693	8876182.46	365000.399	2136.625	CASA
694	8876194.97	364997.145	2135.103	CASA
695	8876201.54	365002.838	2135.012	CASA
696	8876203.27	365002.09	2135.421	CASA
697	8876208.93	365007.554	2135.321	CASA
698	8876214.38	365011.514	2134.55	CASA
699	8876216.16	365009.156	2134.027	CASA
700	8876220.83	365012.715	2134.787	CASA
701	8876219.19	365003.627	2134.186	PAP
702	8876211.82	365014.504	2135.982	CASA
703	8876206.22	365026.482	2139.076	PAP
704	8876210.11	365020.329	2137.446	CASA
705	8876205.13	365031.867	2140.373	CASA
706	8876214.35	365037.628	2140.404	CASA
707	8876212.35	365040.967	2141.387	CASA
708	8876220.27	365034.98	2138.727	CASA
709	8876219.81	365027.308	2138.134	CASA
710	8876220.96	365025.37	2138.048	CASA
711	8876220.87	365036.96	2139.377	CASA
712	8876220.32	365048.155	2145.387	CASA
713	8876220.15	365053.174	2148.344	CASA
714	8876229.37	365047.852	2145.127	CASA
715	8876186.53	365020.128	2141.028	CASA
716	8876189.93	365011.565	2139.888	CASA
717	8876181.81	365008.191	2139.958	CASA
718	8876197.51	365011.732	2138.202	CASA
719	8876181.98	365034.286	2145.969	CASA
720	8876184.15	365025.766	2144.074	CASA
721	8876176.27	365023.788	2145.055	CASA
722	8876169.71	365045.085	2152.112	CASA
723	8876171.58	365033.919	2148.509	CASA
724	8876163.44	365032.784	2148.655	CASA

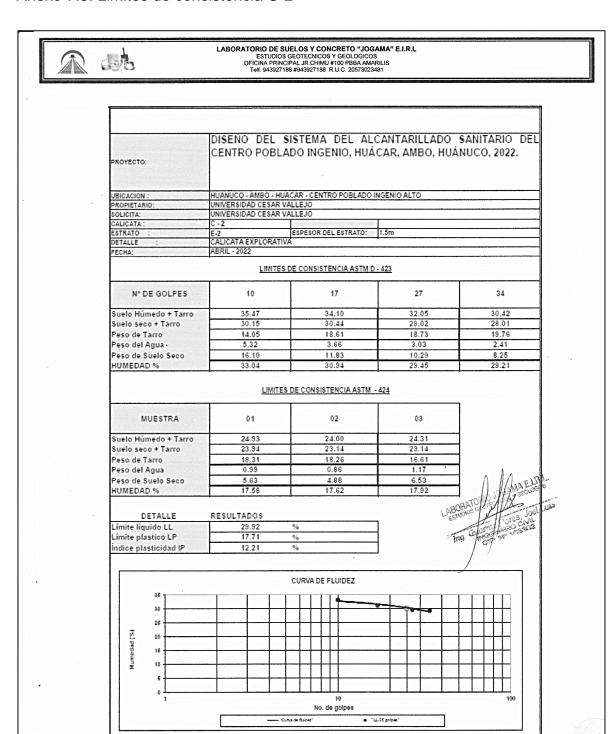

725	8876198.91	364980.411	2134.569	ВС
726	8876222.84	364985.742	2132.069	PTM
727	8876231.15	365005.669	2131.262	CASA
728	8876240.49	365007.516	2130.687	CASA
729	8876255.58	365008.418	2129.943	CASA
730	8876255.17	365006.279	2130.028	BC
731	8876256.18	364998.733	2129.971	BC
732	8876253.85	364995.036	2130.322	PTM
733	8876257.41	365010.36	2130.182	CASA
734	8876258.53	365011.279	2130.501	CASA
735	8876259.85	365010.922	2130.538	PAP
736	8876257.64	365017.086	2131.236	CASA
737	8876265.93	365018.39	2131.231	CASA
738	8876271.49	365018.045	2131.197	CASA
739	8876300.34	365004.773	2133.739	TN
740	8876376.26	364994.717	2128.117	TN
741	8876351.27	364997.926	2133.274	TN
742	8876366.2	365007.394	2136.399	CASA
743	8876357.95	365007.906	2136.226	CASA
744	8876357.45	365012.95	2138.011	CASA
745	8876380.66	364975.23	2121.956	CASA
746	8876384.52	364965.828	2119.696	CASA
				CASA
747	8876386.79	364960.684	2118.326	
748	8876385.51	364955.509	2118.099	CASA
749	8876384.69	364957.316	2119.156	ENTRADA HA
750	8876384.14	364958.495	2119.066	ENTRADA HA
751	8876342.38	364923.211	2116.956	CASA
752	8876332.44	364945.363	2120.262	CASA
753	8876346.34 8876345.85	364917.19	2116.23 2116.79	CANAL
754		364915.252		CANAL
755	8876346.11	364916.235	2115.007	F.CANAL
756	8876360.23 8876363.81	364930.025	2116.688	CASA
757		364927.039	2116.202	CANAL
758	8876364.91	364925.497	2116.005	CANAL
759	8876364.39	364926.246	2115.171	F.CANAL
760	8876354.98	364951.412	2118.941	CASA
761	8876375.92	364959.736	2118.914	CASA
762	8876385.16	364941.312	2118.184	CASA
763	8876390.44	364942.218	2115.382	CANAL
764	8876391.65	364941.508	2115.723	CANAL
765	8876391.05	364941.865	2114.644	F.CANAL
766	8876396.86	364950.647	2114.552	F.CANAL
767	8876396.45	364951.264	2115.534	CANAL
768	8876397.74	364950.192	2115.585	CANAL
769	8876412.41	364961.94	2115.932	CANAL
770	8876411.52	364963.92	2116.072	CANAL
771	8876411.98	364962.902	2114.453	F.CANAL
772	8876408.57	364996.001	2126.529	CASA
773	8876416.39	364996.617	2125.764	CASA
774	8876415.01	364985.813	2122.422	PAP
775	8876422.64	364986.284	2121.415	CASA
776	8876422.42	364982.883	2120.463	CASA

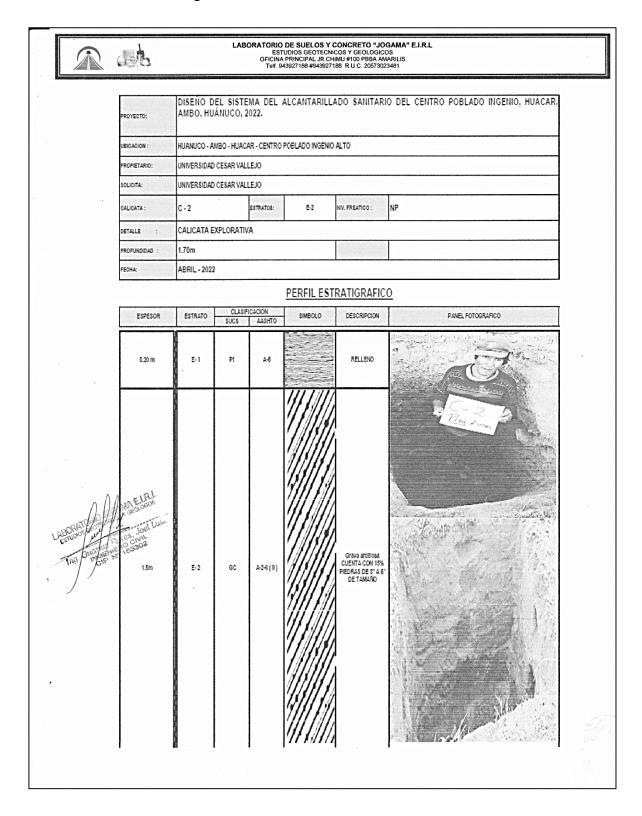
777	8876428.87	364982.561	2120.707	CASA
778	8876442.75	364981.535	2120.656	CASA
779	8876444.92	364987.284	2126.717	CASA
780	8876441.23	364988.09	2126.937	CASA
781	8876441.41	364992.269	2127.112	CASA
782	8876434.33	364995.144	2126.085	CASA
783	8876444.15	364993.101	2127.162	CASA
784	8876148.93	364975.807	2137.526	BC
785	8876149.69	364981.988	2137.419	BC
786	8876198.23	364984.922	2134.448	BC
787	8876222.46	364988.651	2132.023	BC
788	8876221.71	364993.959	2132.189	BC
789	8876284.42	364998.341	2129.15	BC
790	8876285.48	365002.264	2129.123	BC
791	8876413.69	364975.37	2119.712	BC
792	8876414.85	364979.304	2119.703	BC
793	8875953.04	365011.676	2142.923	BC
794	8875952.94	365016.46	2142.758	BC
795	8875900.69	364998.122	2143.201	BC
796	8875899.73	365002.541	2143.426	BC
797	8875838.12	364980.654	2145.623	BC
798	8875695.94	364933.527	2147.582	ВС

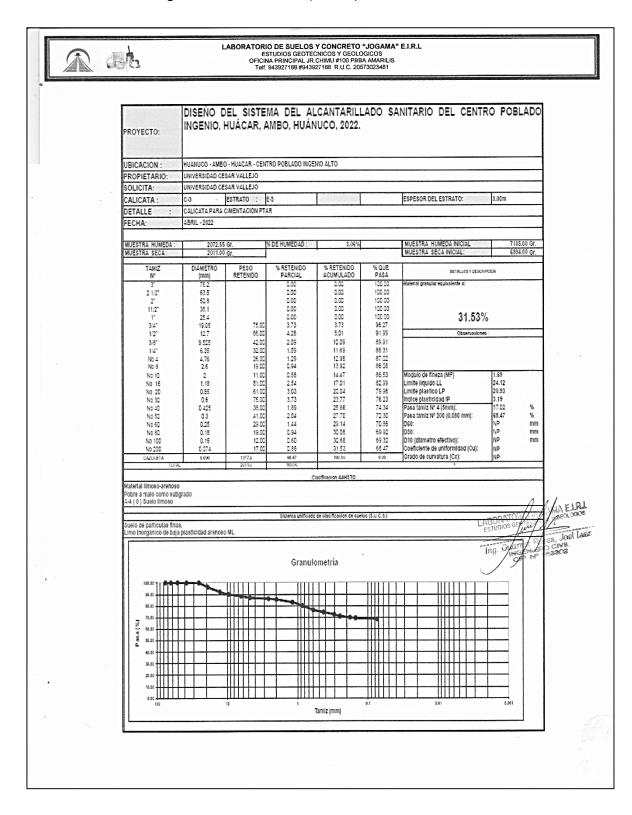

ANEXO 7: ENSAYOS DE LABORATORIO ESTUDIO DE SUELOS

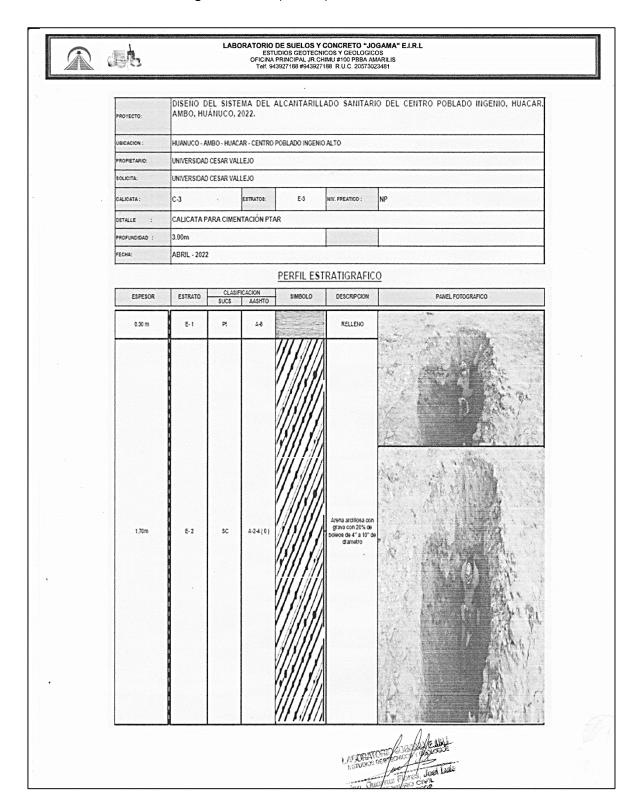
Anexo 7.1: Análisis granulométrico C-1






Anexo 7.3: Perfil estratigráfico C-1


Anexo 7.4: Análisis granulométrico C-2


Anexo 7.7: Análisis granulométrico C-3 (PTAR)

Anexo 7.8: Limites de consistencia C-3 (PTAR)

PROYECTO:	DISENO DEL	SISTEMA DEL AL	CANTARILLADO	
	oz.iiiio i ob	LADO INGENIO, HUÁ	CAR, AMBO, HUA	NUCO, 2022.
UBICACION:		IUACAR - CENTRO POBLADO	INGENIO ALTO	
PROPIETARIO: SOLICITA:	UNIVERSIDAD CESAF			
CALICATA:	C-3			
ESTRATO :	E-3	ESPESOR DEL ESTRATO:	3.00m	
DETALLE ; FECHA:	CALICATA PARA CIM ABRIL - 2022	ENTACION PTAR		
r Cona.				
	LIMIT	ES DE CONSISTENCIA ASTM D) - 423	
N° DE GOLPES	9	18	26	34
Suelo Húmedo + Tarro	32.22	29.58	29.70	31.89
Suelo seco + Tarro	29.19	27.12	27.28	29.04
Peso de Tarro	18.56	17.44	17.01	16.72
Peso del Agua	3.03	2.46	2.42	2.85
Peso de Suelo Seco HUMEDAD %	10.63	9.68 25.47	10.27	12.32
	LIMIT	ES DE CONSISTENCIA ASTM	- 424	7
MUESTRA	01	02	03	
Suelo Húmedo + Tarro	21.40	20.45	24.02]
Suelo seco + Tarro	20.69	20.02	23.50]
Peso de Tarro	17.30	17.98	21.04	- A
Peso del Agua Peso de Suelo Seco	0.71	0.43 2.04	0.51 2.46	1 1/10
HUMEDAD %	20.96	20.94	20.89	1 00/10/19
DETAILE	DESILITADOS		LABON ESTUD	
DETALLE Limite liquido LL	RESULTADOS 24.12	%		THOISE ST
Límite plastico LP	20.93	%	- Tro	MON 100
Indice plasticidad IP	3.19	96		/ -
		CURVA DE FLUIDEZ		
30				ППП
26			-	
.g 20			- - - 	++++
(%) Depte				+-+-+-
198				
10				
6		 		++++
0				
1		10 No. de goipes		100
			"LL-25 polent"	
		Curve de finides"	LT-32 buses.	

Anexo 7.8: Perfil Estratigráfico C-3 (PTAR)

Anexo 08. Sistema de alcantarillado Resultados.

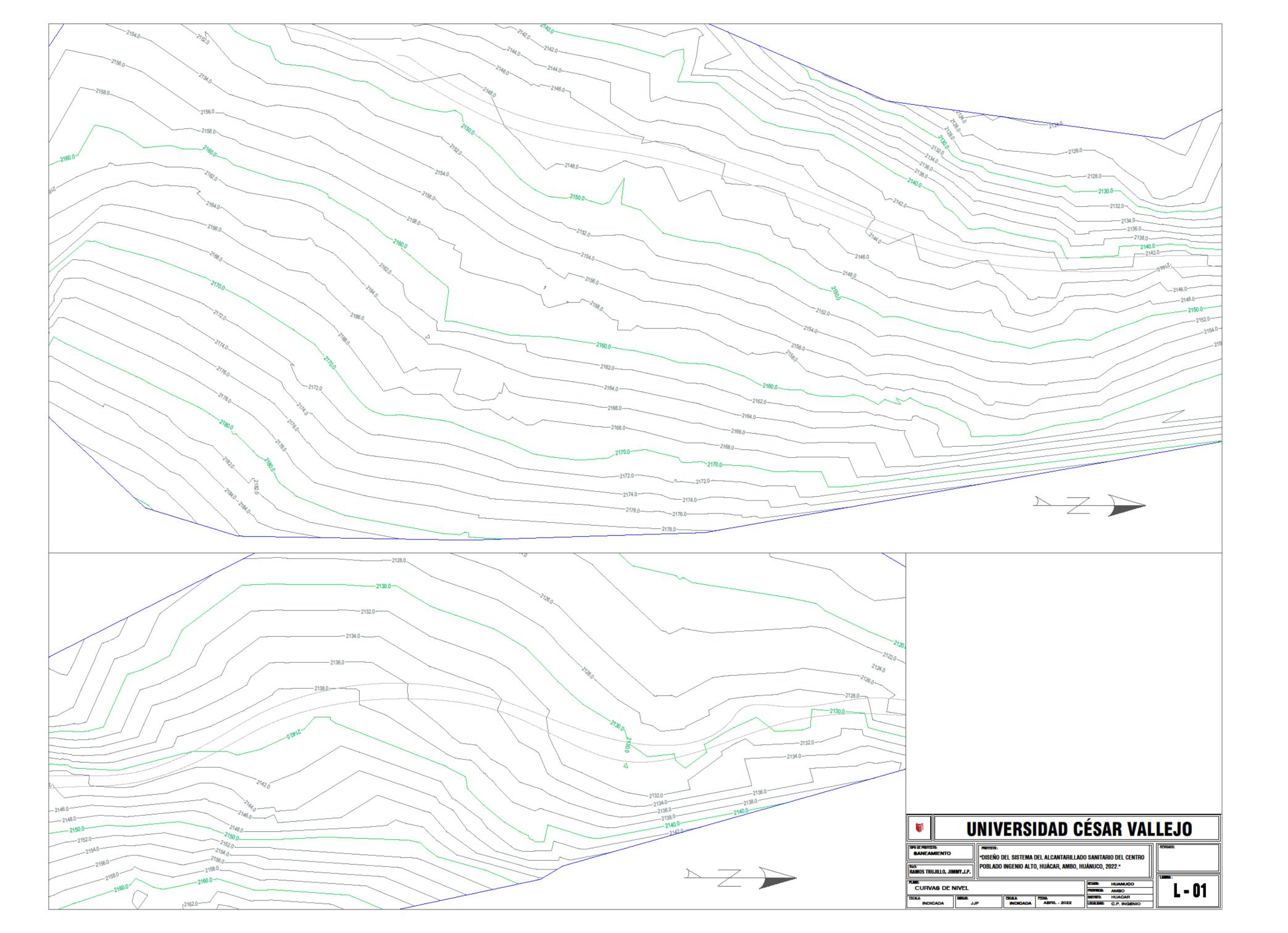
Anexo 08.01. Cuadro de buzones

	RESUMEN DE BUZONES								
NUMERO BUZON	DIAMETRO BUZON(m)	NUMERO	COTA TAPA DE BUZON	COTA FONDO DE BUZON	PROFUNDIDAD DE BUZON (m)	SOLADO(m)	PROFUNDIDAD NETA (m)	NORTE	ESTE
BZ:1	1.2	1	2184.66	2183.46	1.2	0.1	1.3	8875643.49	365119.2
BZ:2	1.2	3	2179.13	2177.78	1.35	0.1	1.45	8875651.31	365090.38
BZ:3	1.2	2	2171.85	2170.29	1.56	0.1	1.66	8875661.4	365054.8
BZ:4	1.2	3	2163.19	2161.68	1.5	0.1	1.6	8875674.77	365005.1
BZ:5	1.2	2	2154	2152.57	1.43	0.1	1.53	8875686.92	364963.06
BZ:6	1.2	3	2151.55	2150.35	1.2	0.1	1.3	8875731.94	364970.68
BZ:7	1.2	3	2147.39	2145.39	2	0.1	2.1	8875758.44	364961.06
BZ_8	1.2	1	2184.9	2183.68	1.21	0.1	1.31	8875569.32	365068.7
BZ_9	1.2	2	2182.59	2181.26	1.33	0.1	1.43	8875606.29	365078.15
BZ_10	1.2	1	2163.76	2162.56	1.2	0.1	1.3	8875586.2	364983.51
BZ_11	1.2	3	2164.18	2162.16	2.02	0.1	2.12	8875629.07	364993.49
BZ_12	1.2	1	2171.33	2170.13	1.2	0.1	1.3	8875669.03	365057.56
BZ_13	1.2	2	2168.57	2165.79	2.77	0.1	2.87	8875705.64	365067.06
BZ_14	1.2	3	2163.58	2162.37	1.21	0.1	1.31	8875712.96	365040.75
BZ_15	1.2	2	2158.42	2154.68	3.74	0.1	3.84	8875721.15	365010.75
BZ_16	1.2	1	2166.77	2165.5	1.28	0.1	1.38	8875672.59	365029.74
BZ_17	1.2	2	2168.55	2166.9	1.65	0.1	1.75	8875746.73	365079.16
BZ_18	1.2	3	2162.64	2159.64	3	0.1	3.1	8875752.83	365050.8
BZ_19	1.2	3	2158.44	2155.02	3.42	0.1	3.52	8875759.1	365030.68
BZ_20	1.2	2	2147.97	2146.6	1.37	0.1	1.47	8875766.66	364976.28
BZ_21	1.2	1	2168.42	2167.22	1.2	0.1	1.3	8875752.12	365079.43
BZ_22	1.2	3	2170.11	2165.37	4.73	0.1	4.83	8875794.98	365090.84
BZ_23	1.2	2	2170.87	2164.15	6.72	0.1	6.82	8875831.16	365097.59
BZ_24	1.2	3	2158.22	2157.02	1.2	0.1	1.3	8875844.42	365051.92
BZ_25	1.2	2	2158.32	2156.66	1.66	0.1	1.76	8875804.99	365042.67
BZ_26	1.2	1	2163.38	2161.28	2.1	0.1	2.2	8875716.86	365041.92
BZ_27	1.2	1	2161.19	2159.99	1.2	0.1	1.3	8875915.18	365072.74
BZ 28	1.2	2	2159.14	2157.12	2.02	0.1	2.12	8875883.69	365063.48
BZ_29	1.2	2	2146.24	2144.97	1.27	0.1	1.37	8875799.54	364968.26
BZ_30	1.2	2	2146.27	2144.67	1.6	0.1	1.7	8875829.22	364975.16
BZ_31	1.2	3	2145.61	2144.03	1.58	0.1	1.68	8875863.91	364986.18
BZ_32	1.2	2	2143.52	2141.9	1.61	0.1	1.71	8875902.59	365001.48
BZ_32	1.2	2	2143.02	2141.61	1.41	0.1	1.51	8875931.03	365010.51
BZ_34	1.2	2	2142.78	2141.23	1.55	0.1	1.65	8875968.33	365015.69
BZ_35	1.2	3	2142.76	2138.79	2.96	0.1	3.06	8876003.97	365015.16
BZ_36	1.2	2	2141.74	2138.69	3.11	0.1	3.21	8876038.7	365014.55
BZ_37			2141.18	2138.09	3.01				
DZ_3/	1.2	2	Z141.18	2130.17	3.01	0.1	3.11	8876070.15	365008.58

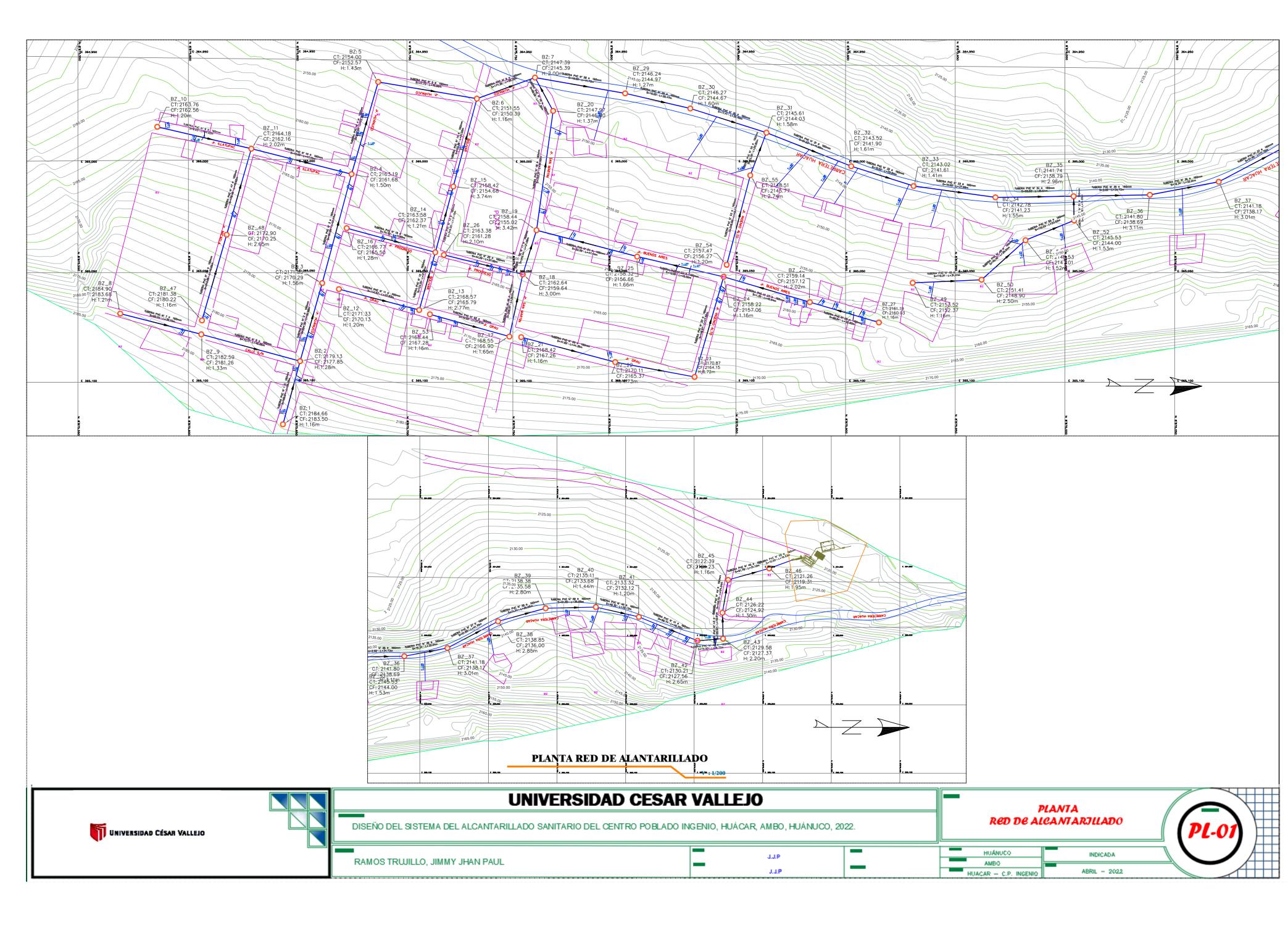
BZ_38	1.2	2	2138.85	2136	2.85	0.1	2.95	8876107.04	364989.13
BZ_39	1.2	2	2138.38	2135.58	2.8	0.1	2.9	8876141.71	364979.58
BZ_40	1.2	2	2135.11	2133.68	1.44	0.1	1.54	8876178.38	364978.73
BZ_41	1.2	2	2133.32	2132.12	1.2	0.1	1.3	8876209.7	364985.88
BZ_42	1.2	2	2130.21	2127.56	2.65	0.1	2.75	8876252.48	365003.31
BZ_43	1.2	2	2129.58	2127.37	2.2	0.1	2.3	8876271.14	365001.72
BZ_44	1.2	2	2126.22	2124.92	1.3	0.1	1.4	8876270.65	364982.81
BZ_45	1.2	2	2122.39	2121.19	1.2	0.1	1.3	8876274.82	364958.94
BZ_46	1.2	1	2121.26	2119.31	1.95	0.1	2.05	8876304.78	364950.51
BZ_47	1.2	1	2181.38	2180.18	1.2	0.1	1.3	8875606.56	365071.81
BZ_48	1.2	2	2172.9	2170.25	2.65	0.1	2.75	8875617.84	365032.74
BZ_49	1.2	1	2153.52	2152.32	1.2	0.1	1.3	8875930.61	365054.67
BZ_50	1.2	2	2151.41	2148.9	2.5	0.1	2.6	8875961.99	365053.28
BZ_51	1.2	2	2148.53	2147.01	1.52	0.1	1.62	8875982.01	365035.25
BZ_52	1.2	2	2145.53	2143.83	1.7	0.1	1.8	8876004.16	365026.21
BZ_53	1.2	1	2168.44	2167.24	1.2	0.1	1.3	8875710.51	365069.03
BZ_54	1.2	1	2157.47	2156.27	1.2	0.1	1.3	8875845.82	365046.42
BZ_55	1.2	2	2148.51	2145.77	2.74	0.1	2.84	8875856.55	365005.64

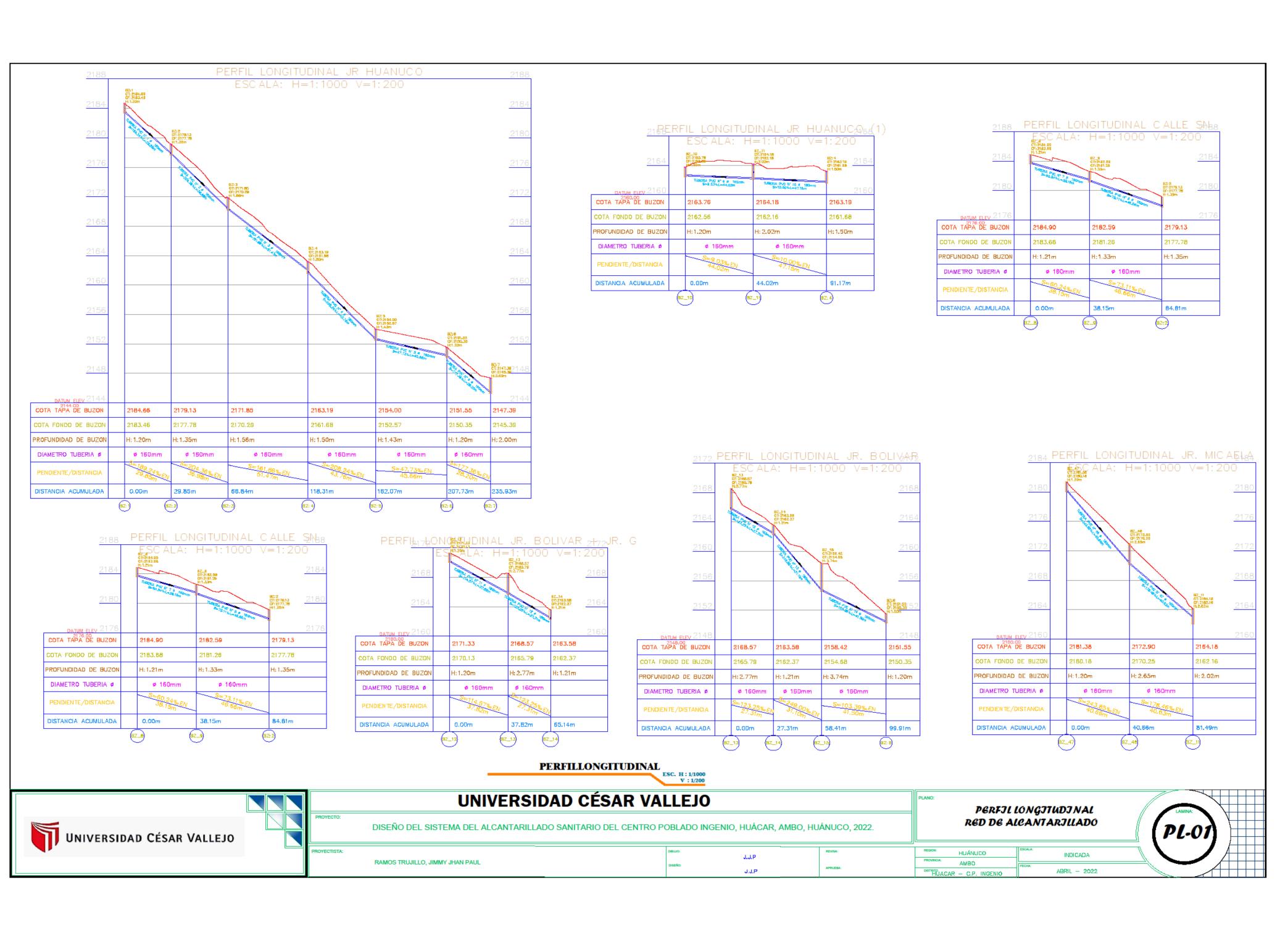
Anexo 08.02. Cuadro de tuberías

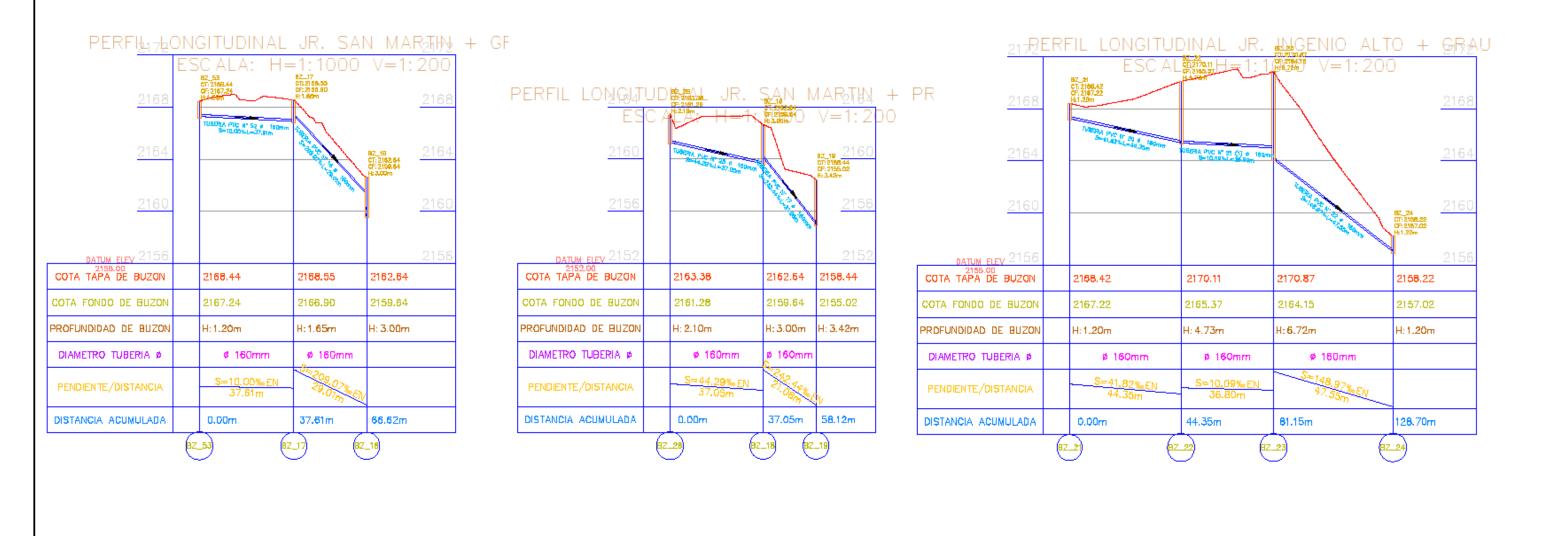
RESUMEN DE TUBERIA						
NUMERO TUBERIA	DIAMETRO DE TUBERIA (Ø)	LONGITUD (m)	PENDIENTE (%)	MATERIAL		
N° 1	160 mm	29.85 m	18.92%	PVC		
N° 2	160 mm	36.98 m	20.44%	PVC		
N° 3	160 mm	51.47 m	16.19%	PVC		
N° 4	160 mm	43.76 m	20.82%	PVC		
N° 5	160 mm	45.66 m	4.77%	PVC		
N° 6	160 mm	28.20 m	17.74%	PVC		
N° 7	160 mm	38.15 m	6.02%	PVC		
N° 8	160 mm	46.66 m	7.31%	PVC		
N° 9	160 mm	44.02 m	0.90%	PVC		
N° 10	160 mm	47.15 m	1.00%	PVC		
N° 11	160 mm	37.82 m	11.46%	PVC		
N° 12	160 mm	27.31 m	12.33%	PVC		
N° 13	160 mm	31.10 m	24.90%	PVC		
N° 14	160 mm	41.50 m	10.34%	PVC		
N° 15	160 mm	41.85 m	7.47%	PVC		
N° 16	160 mm	29.01 m	20.91%	PVC		
N° 17	160 mm	21.08 m	24.24%	PVC		
N° 18	160 mm	54.92 m	15.32%	PVC		
N° 19	160 mm	17.30 m	6.81%	PVC		
N° 20	160 mm	44.35 m	4.18%	PVC		
N° 21	160 mm	36.80 m	1.01%	PVC		
N° 22	160 mm	47.55 m	14.90%	PVC		
N° 23	160 mm	40.50 m	1.00%	PVC		
N° 24	160 mm	47.44 m	3.21%	PVC		
N° 25	160 mm	37.05 m	4.43%	PVC		
N° 26	160 mm	32.82 m	8.88%	PVC		
N° 27	160 mm	40.94 m	1.35%	PVC		
N° 28	160 mm	41.73 m	1.00%	PVC		
N° 29	160 mm	30.47 m	1.00%	PVC		
N° 30	160 mm	36.40 m	1.74%	PVC		
N° 31	160 mm	41.59 m	5.12%	PVC		
N° 32	160 mm	29.84 m	1.00%	PVC		
N° 33	160 mm	37.66 m	1.00%	PVC		
N° 34	160 mm	35.64 m	6.85%	PVC		
N° 35	160 mm	34.73 m	2.82%	PVC		
N° 36	160 mm	32.01 m	1.63%	PVC		
N° 37	160 mm	41.70 m	5.20%	PVC		
N° 38	160 mm	35.96 m	1.17%	PVC		
N° 39	160 mm	36.69 m	5.19%	PVC		

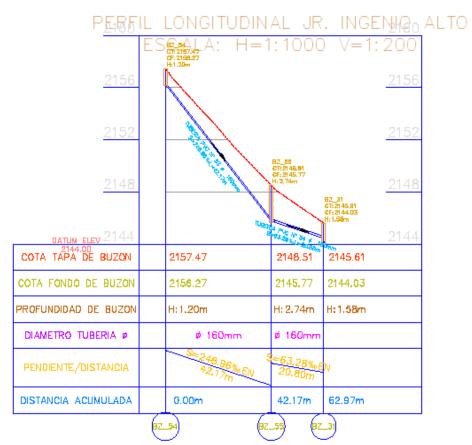

N° 40	160 mm	32.13 m	4.83%	PVC
N° 41	160 mm	46.20 m	9.87%	PVC
N° 42	160 mm	18.72 m	1.00%	PVC
N° 43	160 mm	18.91 m	12.96%	PVC
N° 44	160 mm	24.24 m	15.21%	PVC
N° 45	160 mm	31.13 m	6.18%	PVC
N° 46	160 mm	40.66 m	24.39%	PVC
N° 47	160 mm	40.83 m	17.85%	PVC
N° 48	160 mm	31.41 m	11.02%	PVC
N° 49	160 mm	26.94 m	7.05%	PVC
N° 50	160 mm	23.93 m	11.90%	PVC
N° 51	160 mm	11.05 m	25.00%	PVC
N° 52	160 mm	37.61 m	1.00%	PVC
N° 53	160 mm	42.17 m	24.90%	PVC
N° 54	160 mm	20.80 m	6.33%	PVC

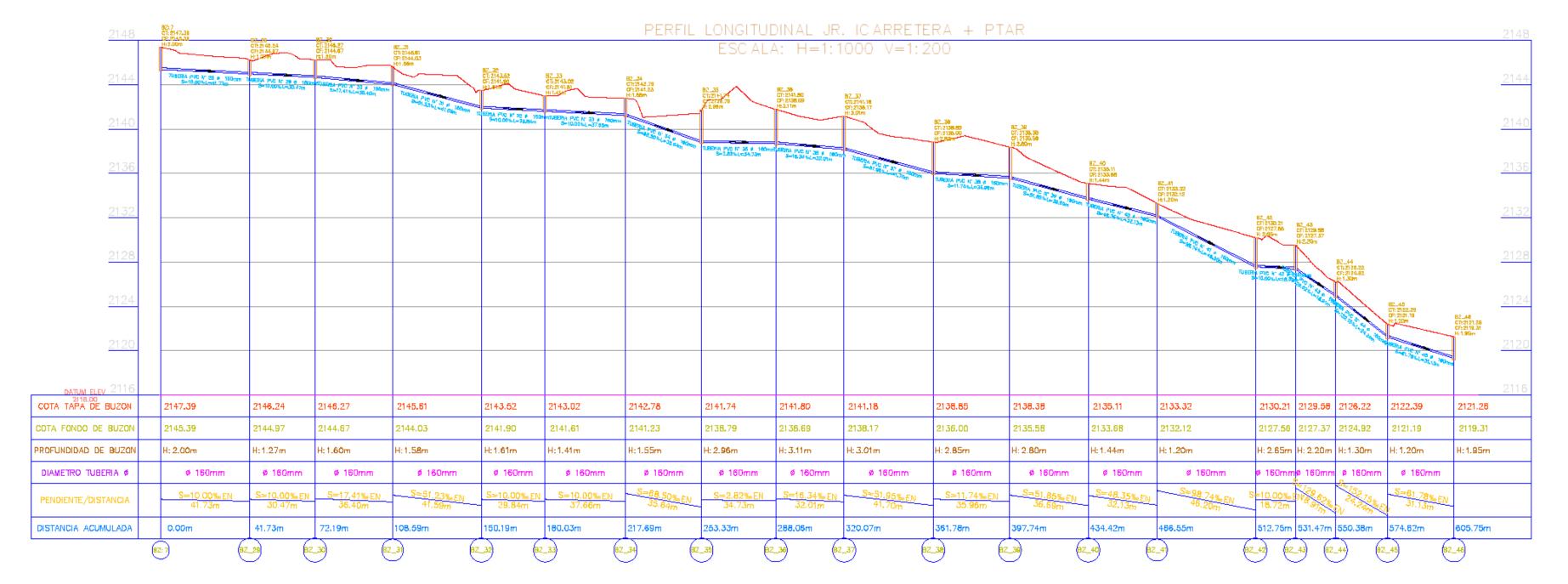
Anexo 08.03. Cuadro de conexiones domiciliarias


CUADRO DE CONEXION DOMICILIARIA						
NUMERO	MATERIAL	LONGITUD(m)	DIAMETRO(Ø)			
1	PVC	2.95	110mm			
2	PVC	2.07	110mm			
3	PVC	2.78	110mm			
4	PVC	3.73	110mm			
5	PVC	2.59	110mm			
6	PVC	2.94	110mm			
7	PVC	2.75	110mm			
8	PVC	3.11	110mm			
9	PVC	3.26	110mm			
10	PVC	2.28	110mm			
11	PVC	2.87	110mm			
12	PVC	2.82	110mm			
13	PVC	2.92	110mm			
14	PVC	2.99	110mm			
15	PVC	2.78	110mm			
16	PVC	2.16	110mm			
17	PVC	2.61	110mm			
18	PVC	3.08	110mm			
19	PVC	2.35	110mm			
20	PVC	1.87	110mm			
21	PVC	2.91	110mm			
22	PVC	3.12	110mm			
23	PVC	1.54	110mm			
24	PVC	1.67	110mm			
25	PVC	2.4	110mm			
26	PVC	2.38	110mm			
27	PVC	2.08	110mm			
28	PVC	1.98	110mm			
29	PVC	2.08	110mm			
30	PVC	1.55	110mm			
31	PVC	1.53	110mm			
32	PVC	1.48	110mm			
33	PVC	1.42	110mm			
34	PVC	1.41	110mm			
35	PVC	1.63	110mm			
36	PVC	1.66	110mm			
37	PVC	1.73	110mm			
38	PVC	3.45	110mm			
39	PVC	4.84	110mm			
40	PVC	3.28	110mm			
41	PVC	4.24	110mm			


42	PVC	2.82	110mm
43	PVC	2.74	110mm
44	PVC	4.17	110mm
45	PVC	2.43	110mm
46	PVC	2.65	110mm
47	PVC	2.74	110mm
48	PVC	4.65	110mm
49	PVC	2.55	110mm
50	PVC	2.61	110mm
51	PVC	3.48	110mm
52	PVC	2.76	110mm
53	PVC	2.75	110mm
54	PVC	2.72	110mm
55	PVC	3.76	110mm
56	PVC	3.5	110mm
57	PVC	2.65	110mm
58	PVC	3.8	110mm
59	PVC	2.73	110mm
60	PVC	7.64	110mm
61	PVC	23.59	110mm
62	PVC	23.61	110mm
63	PVC	10.63	110mm
64	PVC	22.86	110mm
65	PVC	20.16	110mm
66	PVC	19.41	110mm
67	PVC	17.95	110mm
68	PVC	17.51	110mm
69	PVC	7.32	110mm
70	PVC	6.02	110mm
71	PVC	10.14	110mm
72	PVC	10.22	110mm
73	PVC	21.03	110mm
74	PVC	20.92	110mm
75	PVC	3.12	110mm
76	PVC	18.8	110mm
77	PVC	6.6	110mm
78	PVC	6.97	110mm
79	PVC	7.11	110mm
80	PVC	6.19	110mm

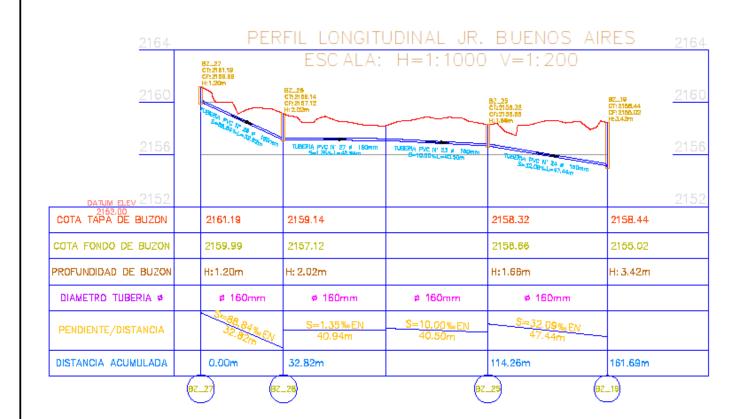


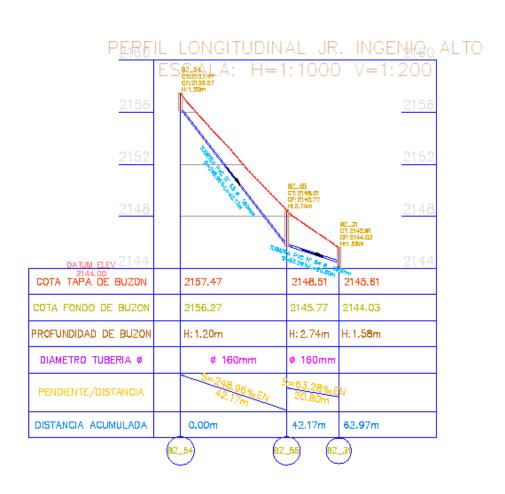


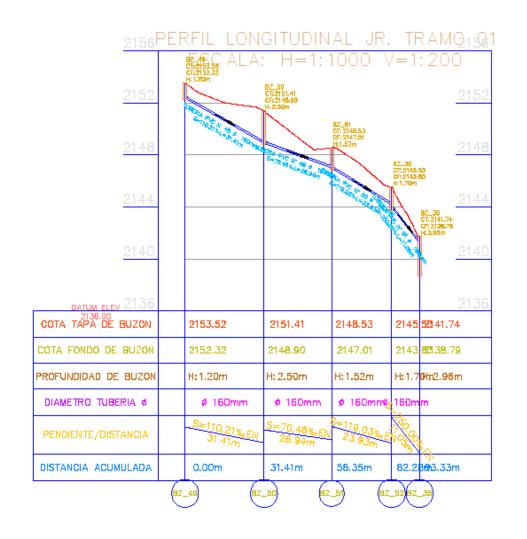


UNIVERSIDAD CÉSAR VALLEJO

PERFJL LONGJTUDJNAL RED DE ALCANTARJLLADO


LAMINA:	/
PL-02	
し ノ	1


DISEÑO DEL SISTEMA DEL ALCANTARILLADO SANITARIO DEL CENTRO POBLADO INGENIO, HUÁCAR, AMBO, HUÁNUCO, 2022.


RAMOS TRUJILLO, JIMMY JHAN PAUL

J.J.P

AMBO HUACAR - C.P. INGENIO

UNIVERSIDAD CÉSAR VALLEJO

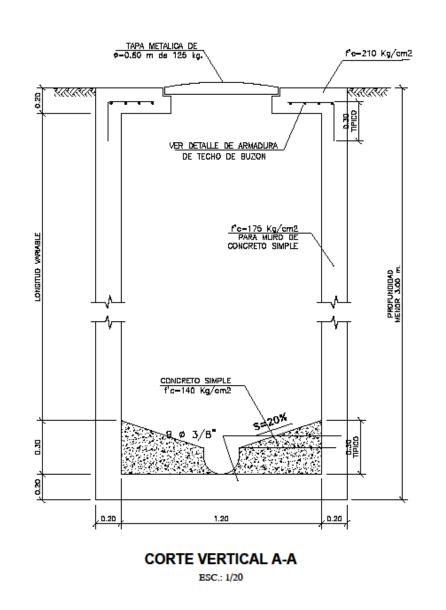
PERFJL LONGJTUDJNAL RED DE ALCANTARJLLADO

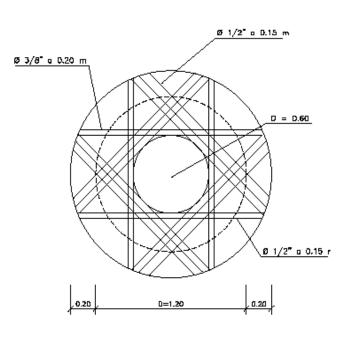
PL-03

DISEÑO DEL SISTEMA DEL ALCANTARILLADO SANITARIO DEL CENTRO POBLADO INGENIO, HUÁCAR, AMBO, HUÁNUCO, 2022.

J.J.P

RAMOS TRUJILLO, JIMMY JHAN PAUL

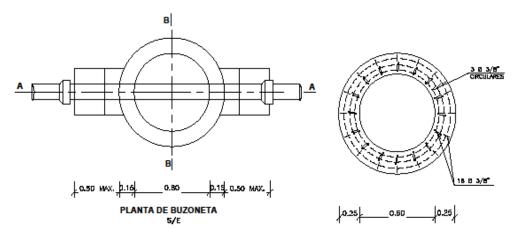

PROVINCIA: AMBO INDICADA


PROVINCIA: AMBO

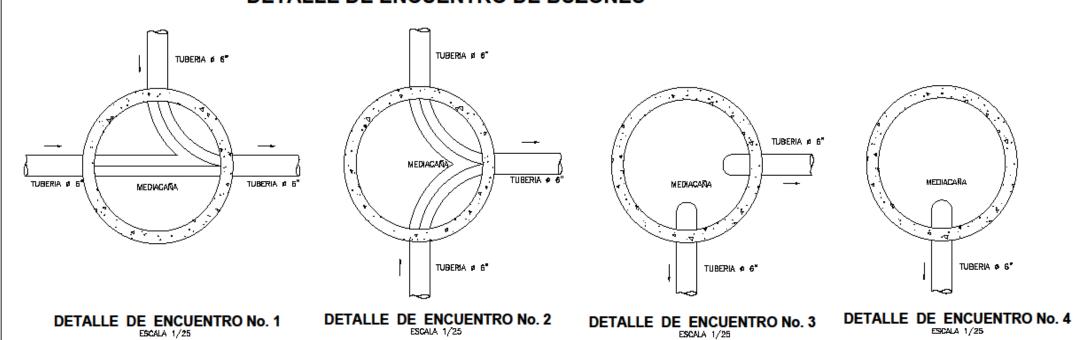
DISTRITO
HUAGAR - C.P. INGENIO

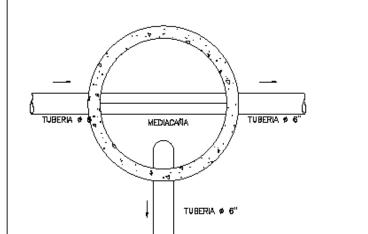
FECHA:

ABRIL - 2022

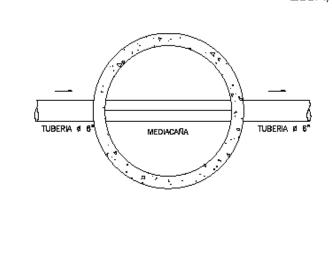

ARMADURA TECHO BUZON

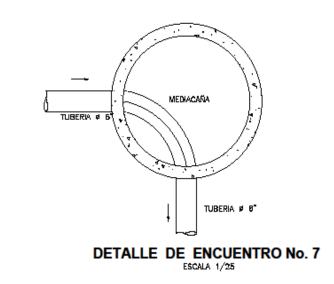
DE D = 1.20 m

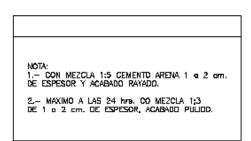

Fo corrugado Fy = 4200 kg/cm2

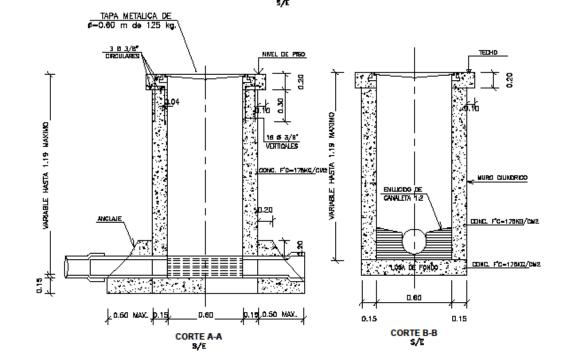

LOSA DE FONDO BUZON TIPICO ESC.: 1/20

DETALLE DE BUZONETAS





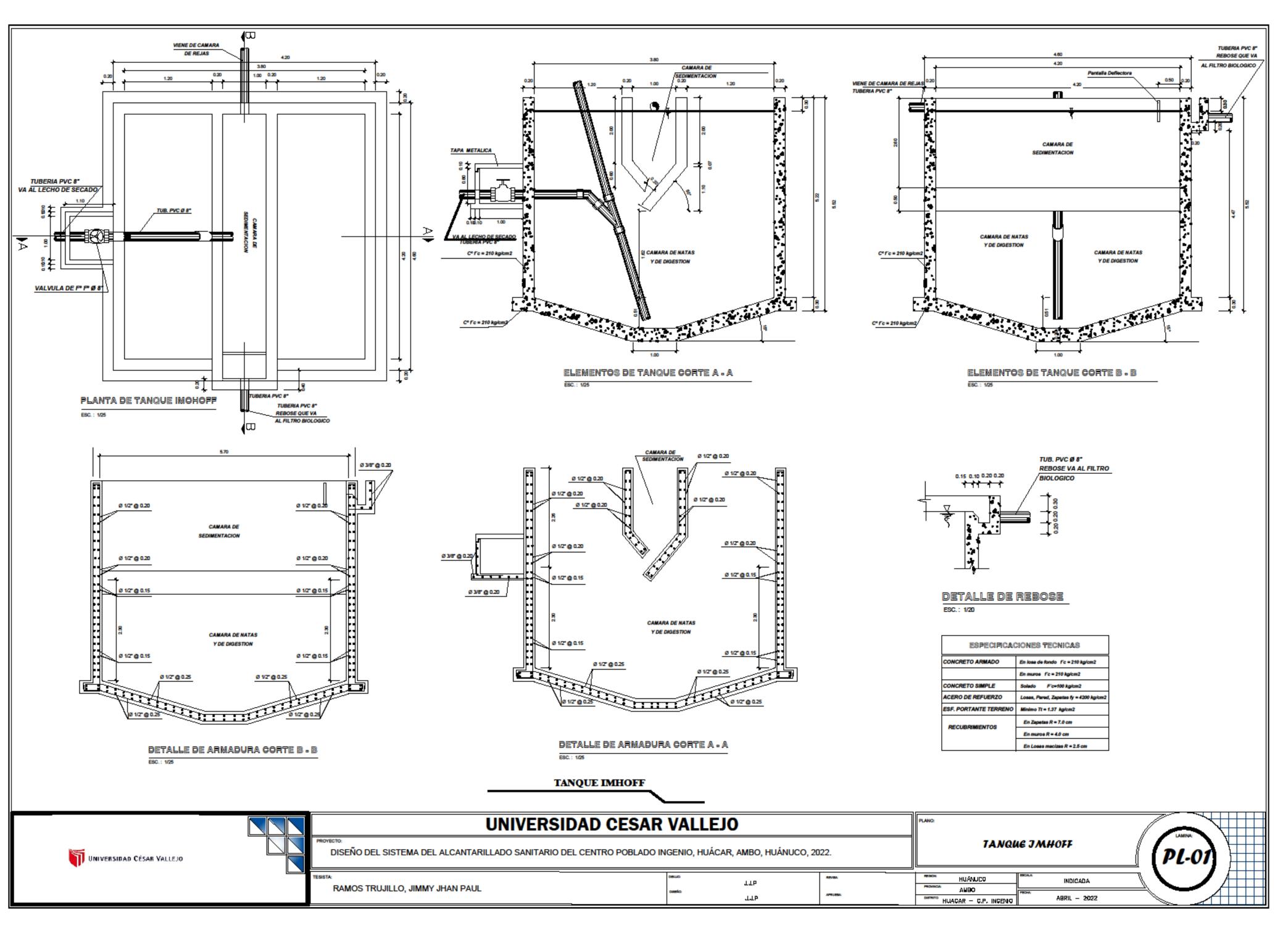


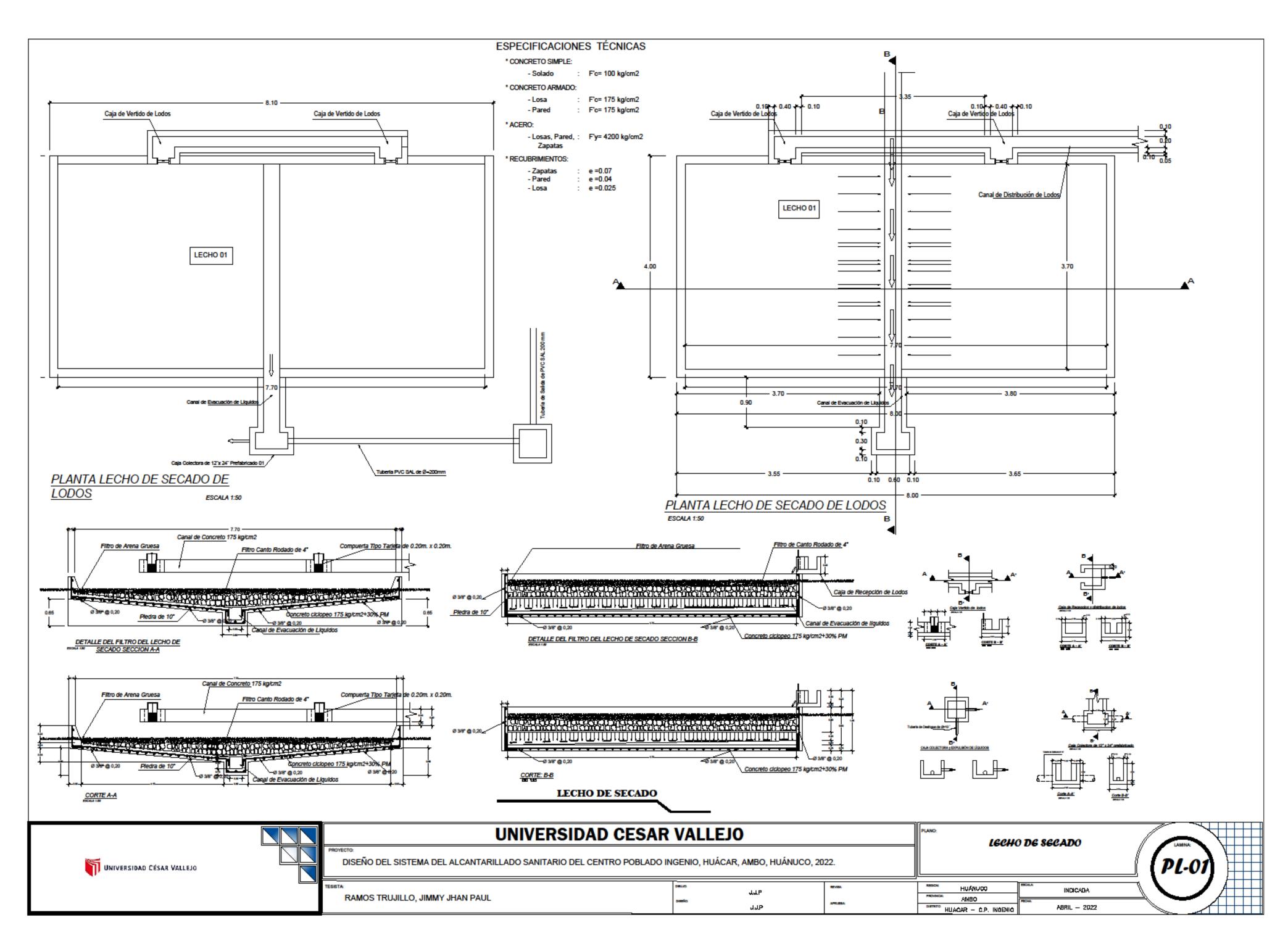

DETALLE DE ENCUENTRO No. 5
ESCALA 1/25

DETALLE DE ENCUENTRO No. 6
ESCALA 1/25

DETALLE TIPICO DE ARMADURA EN TECHO DE BUZONETA

ESPECIFICACIONES TECNICAS


CONCRETD MURCH Y LOSA DE FONDD: fe=175 kg/cm2


ACERO: fy=4200 kg/cm2

RECUBRIMIENTO:

MURCH Y FONDOS = 0.075 m.
TECHO = 0.03 m.

MEMORIA DE CÁLCULO

Proyecto: Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.

DISEÑO DEL SISTEMA DE ALCANTARILLADO.

Parámetros de diseño de la red de alcantarillado.

Estimar la población futura del área según las características culturales, económicas y sociales pasadas y presentes de los habitantes del área para predecir el desarrollo futuro del área.

Para hallar la población futura optima se utilizará el método de crecimiento aritmético, adecuado a la población con buenas perspectivas de futuro, horizonte libre y perspectivas económicas claras, según la siguiente fórmula:

$$P_x=P_2*(1+r/100)^{(tx-tz)}$$

Donde:

Pf : Población futura

Pa : Población actual (324 habitantes)

r : Coeficiente de crecimiento (0.60 %)

t : Tiempo en años (20 años)

DONDE:

Pf = 365	Hab.
----------	------

Tasa de crecimiento

La tasa para el crecimiento de población que fue asumida es de 0.6 %. Provincial — Rural del compendio estadístico 2008 — 2009 Habiendo quedado definida la población, y según lo indicado por la Guía, deberíamos proyectar la población con la Tasa de crecimiento distrital estimada por el INEI; sin embargo, esto no será posible por que la Tasa de Crecimiento Distrital, así como de la Provincial, son negativos en el período inter censal de los años 1,993-2,007: -1.02 % y - 0.03 % respectivamente. Por lo que se ha optado por hacer uso de la Tasa de Crecimiento del Departamento de Huánuco que es de 0.6 % en el período inter censal 1,993 2,007.

Y TASA DE CRECII		POBLACION NOM					AL	
Provincia	WIENTO INTERC	Tasa de	Poblacio	,	Increme	ento	Tasa de Crec	
	Total	Crecimiento	Urbana	Rural	Urbana	Rural	Urbana	Rura
Total	762 223	1,1	323 935	438 288	71 157	36 577	1,8	0,6
Huánuco	270 233	1,4	163 235	106 998	37 549	9 345	1,9	0,7
Ambo	55 483	-0,1	18 453	37 030	4 338	- 4 797	1,9	-0,9
Dos de Mayo	47 008	-5,6	16 433	30 575	- 7 789	- 49 969	-2,7	-6,7
Huacaybamba	20 408	1,0	3 704	16 704	1 664	1 025	4,4	0,5
Huamalies	66 450	1,2	18 696	47 754	3 454	6 877	1,5	1,1
Leoncio Prado	116 965	1,3	68 747	48 218	7 928	11 106	0,9	1,9
Marañón	26 620	2,0	4 007	22 613	1 980	4 534	5,0	1,6
Pachitea	60 321	1,9	8 629	51 692	3 055	11 104	3,2	1,7
Puerto Inca	31 032	-0,3	6 169	24 863	3 116	- 4 489	5,2	-1,2
Lauricocha	35 323	-	7 938	27 385	-	-	-	
Yarowilca	32 380	-	7 924	24 456		_		

Fuente: compendio estadístico 2008-2009

Dotación

La dotación promedio diaria anual por habitante, se fijará en base a un estudio de consumos técnicamente justificado, sustentado en informaciones estadísticas comprobadas.

La dotación en un cálculo no es una cantidad fija, sino que depende de muchos factores que la hacen casi exclusiva de una comunidad, sin embargo, estos factores deben conocerse de antemano para dar cuenta de las diferentes partes del proyecto.

Justificación Técnica de la Dotación de 100 Litros/Habitantes/Día:

Según la guía de formulación de Proyectos de Inversión Pública del MEF se tiene los siguientes cuadros con los cuales se podrá obtener la dotación suficiente para estas localidades:

	CLIMA			
POBLACION	FRIO	CALIDO		
RURAL	100	100		
2000 – 10000	120	150		
10000 - 50000	150	200		
50000 – A MAS	200	250		

Fuente: OMS.

Periodo de diseño

Para el tiempo estimado de diseño se fijó en la vida útil toda la estructura, teniendo en cuenta los parámetros que rigen las normas que regulan los lineamientos de construcción y diseño.

COMPONENTE ⁴	TIEMPO (AÑOS)
Fuente de Abastecimiento	20
Obras de Captación	20
Pozos	20
Planta de Tratamiento de Agua para Consumo Humano	20
Reservorio	20
Tuberias de Conducción, Impulsión y distribución	20
Estación de Bombeo de Agua	20
Equipo de Bombeo	10
Estación de Bombeo de Aguas Residuales	20
Colectores, emisores e interceptores	20
Plantas de Tratamiento de Aguas Residuales	20

Fuente: programa nacional de saneamiento urbano (pnsu)

Por lo tanto, se tomó como periodo de diseño = 20 AÑOS

Densidad de población

La densidad e calculo mediante la recolección de datos en la zona del proyecto y se calculó como según se muestra en la siguiente tabla.

Tabla 19. Calculo de densidad de población.

Manzanas	Lotes/Manzana	N° de habitantes/ Lote
1	1	3
	2	4
	3	2
6	4	5
o l	5	6
	6	4
	7	2
	8	8
	9	4
6	10	6
	11	8
	12	2
	13	8
	14	1
3	15	5
	16	3
	17	8
	18	6
-	19	4
7	20	5
	21	2
	22	7
	23 24	3
2	25	2
	26	2
	27	4
	28	4
7	29	3
•	30	5
	31	4
	32	7
	33	3
	34	2
5	35	2
	36	5
	37	4
1	38	5
	39	4
	40	3
	41	3
6	42	4
	43	3
	44	5

1	45	5
	46	4
	47	3
	48	5
8	49	4
	50	5
	51	4
	52	4
	53	5
	54	2
	55	4
	56	5
8	57	4
	58	4
	59	4
	60	3
	61	2
	62	5
7	63	4
7	64	3
	65	5
	66	3
	67	4
	68	2
	69	5
	70	3
	71	4
	72	2
	73	5
14	74	3
	75	4
	76	3
	77	4
	78	2
	79	5
	80	3
	81	4
	TOTAL	324
	Densidad	4
	_	

Caudales y volúmenes de diseño para el sistema de alcantarillado

La determinación del caudal de diseño está calculada considerando en base a la población futura para del C.P. Ingenio y la dotación son los siguientes:

DATOS COMPLEMENTARIOS.

Caudal de Contribución al Alcantarillado.

El caudal de contribución al alcantarillado debe ser calculado con un coeficiente de retorno (C) del 80 % del caudal de agua potable consumida.

$$C = 0.8$$

Variaciones de Consumo

En los abastecimientos por conexiones domiciliarias, los coeficientes de las variaciones de consumo, referidos al promedio diario anual de la demanda, deberán ser fijados en base al análisis de información estadística comprobada.

De lo contrario se podrán considerar los siguientes coeficientes:

Máximo anual de la demanda diaria: 1,3

Máximo anual de la demanda horaria: 1,8 a 2,5

Entonces se usaron los siguientes datos para la constante (K)

K1 =	1.3
K2 =	2.0

Caudal del diseño se calculará mediante la siguiente formula.

$$Q = Qd + Qe + Qi + Qc$$

Donde:

Q = #Caudal Optimo de Diseño

(l/s)

Qd = #Caudal doméstico (l/s)

Qe = #Caudal Escorrentía en Buzones (l/s)

Qi = #Caudal de Infiltración en Tuberías (l/s)

Qc = #Caudal por número de alumnos (l/s)

Caudal domestico se calculará mediante la siguiente formula.

$$Qd = k_2 \frac{PfxDotxC}{86400}$$

Donde:

Qd = #Caudal de Domestico (l/s)

K2 = #Coeficiente de caudal máximo horario (l/s) (k= 1 ; k=

k2)

Pf = #Población futura (365 hab)

Dot = #Dotación (I/s) (100)

C = #Coeficiente de retorno (0.80)

Qd =	0.68	l/s
------	------	-----

Caudal de Escorrentía en Buzones (Qe):

 $Qe = \#bz \cdot Qescorrentia$

Donde:

Qe = #Caudal de Domestico (l/s)

#Bz = # de buzones calculados (55 Bzs)

Qes = #Escorrentía (380 L/bz/d)

QE = 0.24 105	Qe =	0.24	lt/s
-------------------	------	------	------

Caudal de Infiltración en tuberías (Qi):

$$Qi = Ci \cdot L$$

Donde:

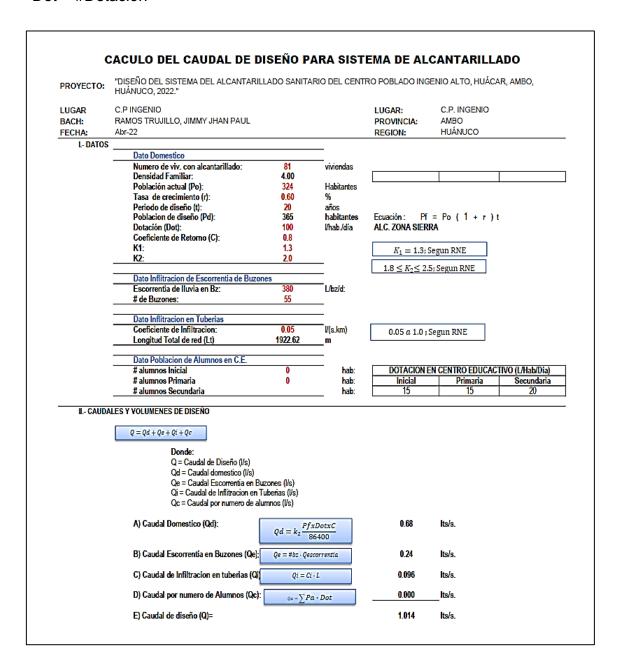
Qi = #Caudal de infiltración (l/s)

L = #Longitud total de la red (1922.62)

Qes = #Escorrentia (0.24)

Qi =	0.096	lt/s
------	-------	------

Caudal por número de Alumnos (Qc):


$$Qa = \sum Pa \cdot Dot$$

Donde:

Qc = #Caudal por número de alumnos (l/s)

Pa = #Dotación en centro educativo

Dot = #Dotación

Procedimiento de cálculo para Caudales y volúmenes para la propuesta de diseño de la planta de tratamiento

Indicar que el diseño del tanque imhoff propuesto en el proyecto debía a que es indispensable proyectar una planta de aguas residuales, ya que al uso será un beneficio para los pobladores ya que tratará las aguas residuales de forma continua, además recalcar que su disposición final será ya un agua tratada para poder usarlo para cualquier tipo de riego.

El diseño e realizo siguiendo los siguientes parámetros. Tomando en cuenta los criterios que maneja la normas OS. 090. El tanque imhoff está conformado por 3 componentes las cuales son:

- Cámara de inspección
- Cámara para la digestión de lodos
- Área para la ventilación y una cámara para las natas.
- Incluye como componente el diseño del lecho de secado.

Diseño de sedimentador.

La función principal del tanque de almacenamiento es promover la sedimentación al reducir la turbulencia y el caudal de las aguas residuales. (TILLEY et al. 2014).

Similar en trabajo a un filtro de residuos o desarenador, el cual solo está diseñado para eliminar partículas menos gruesas. (OPS 2005b).

Caudal de diseño:

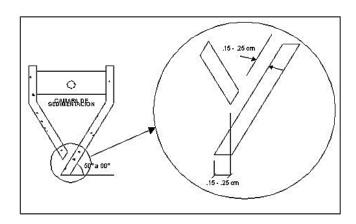
Para el calculó del caudal se usó la siguiente formula.

$$Qp = \frac{Poblacion \times Dotacion}{1000} \times \%Contribucion$$

Posteriormente se calculó el área del sedimentador con la siguiente formula

$$As = \frac{Qp}{Cs}$$

As =	1.51	m2
------	------	----


Donde:

Cs: Carga Superficial = 1m3/(m2*hora)

Calculo del volumen de sedimentador teniendo como periodo de retención hidráulica de 1.5 a 2.5 horas (el periodo más recomendable a usar es de 2 horas). Asi mismo el fondo de tanque tendrá una sección transversal en forma de una V y las pendientes de os lados oscilaran entre 50° y 60° grados en nuestro caso se usó 50° grados, además se tiene la arista central para el paso de los sólidos, esta separación o abertura oscilara de 0.15 a 0.20 m, en nuestro caso usamos de 0.20m para la separación. También uno de los lados debe prolongarse más para que puede impedir la salida de gases flatulentos y solidos que puedan salir desprendidos. Se calculó mediante la siguiente formula.

$$Vs = Qp * R$$

Vs =	4.2	m2

cámara de sedimentación

La longitud mínima del vertedero de salida (Lv, en m), se calculó de la siguiente manera.

$$Lv = \frac{Q \max}{Chv}$$

Donde:

Q(max) = Caudal máx diario (m3/día)

Chv = Carga que aplica sobre el vertedero el cual oscilará de 125 a 500 m3/(m*día) lo más recomendable será de 250

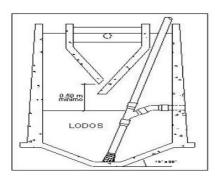
Cámara de digestión

El diseño para la cámara de digestión de inicia con el cálculo del Volumen de almacenamiento y digestión (Vd, en m3), esto ayudara como compartimiento para el almacenamiento y la digestión de lodos. Mediante la siguiente tabla se tienen los factores de capacidad relativa de acuerdo al aspecto climático en el que se construya. Además, el fondo de la cámara (tolva de lodos) para ayudar el retiro de los lodos que ya fueron digeridos, además las paredes tendrán una inclinación de 15° a 30° grados horizontalmente, la altura deberá estar de 0.50m por abajo del fondo de sedimentador.

Tabla 1		
Temperatura °C Factor de capacidad relativa		
•	(fer)	
5	2,0	
10	1,4	
15	1,0	
20	0,7	
>25	0,5	

Fuente norma o.s 090

La fórmula a usar será:


$$Vd = \frac{70 * P * fcr}{1000}$$

Donde:

Fcr = factor de capacidad relativa

P = Población

Vd = 29.04	m3
--------------	----

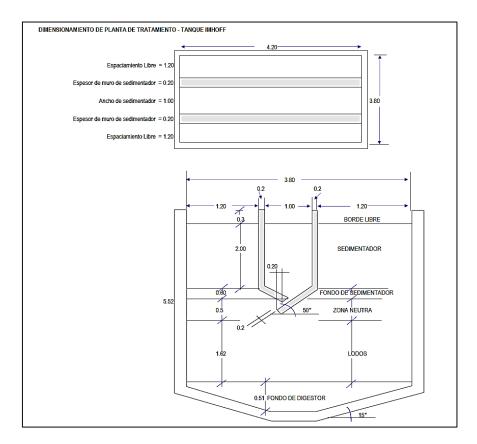

Tiempo para la digestión de lodos, es el tiempo que requiere el tanque imhoff el cual varía según la temperatura, para esto se empleara la siguiente tabla.

Tabla 2

Temperatura °C	Tiempo de digestión en días
5	110
10	76
15	55
20	40
>25	30

Según indica el reglamento, la frecuencia con el que se retirarán los lodos serán de acuerdo a la tabla N° 2, la extracción de los lodos será por una tubería de 200 mm y debe estar ubicado por encima de 0.15 m del fondo del tanque, además se requerirá una carga hidráulica de 1.80m, el área para la ventilación de las natas el espaciamiento será de 1.0 m como mínimo, la superficie libre total será de 30% de la superficie total del tanque, el borde libre será de 0.30 cm. Todos estos parámetros se cumplen en los resultados del diseño del tanque imhoff.

DISEÑO TANQUE IMHOFF			
NOMBRE DEL PROYECTO: Diseño del sistema del alcantarillado sanitario del			
Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.			
BACE	BACH. RAMOS TRUJILLO, JIMMY		
UBIC	ACIÓN	HUANUCO-HUA	ACAR-C.P.INGENIO
UNIV	ERSIDAD	CESAF	VALLEJO
A	PARAMETROS DE DISEÑO	Cantidad	Unidades
1	Población actual	324.00	nº lotes x4
2	Tasa de crecimiento (%)	0.60	
3	Período de diseño (años)	20.00	
4	Población fututa	363.00	habitantes
5	Dotación de agua. l/(habxdia)	100.00	L/(hab x día)
6	Factor de retorno	0.80	
7	Altitud promedio, msnm	2156.27	m.s.n.m.
8	Temperatura mes más frio, en °C	15.00	°C
9	Tasa de sedimentación, m3/(m2xh)	1.00	m3/(m2 x h)}
10	Periodo de retención, horas	2.00	horas
11	Borde libre, m	0.30	m
12	Volumen de digestión, l/hab a 15°C	80.00	L/hab a 15°C
13	Relación L/B (teórico)	14.00	
14	Espaciamiento libre pared digestor		
	al sedimentador, metros	1.20	m
15	Angulo fondo sedimentador, radianes	50.00	
		0.87	radianes
16	Distancia fondo sedimentador		
	a altura máxima de lodos (zona neutra), m	0.50	m
17	Factor de capacidad relativa	1.00	
18	Espesor muros sedimentador	0.20	m
19	Inclinación de tolva en digestor	15.00	(15°-30°
		0.26	radianes
20	Numero de troncos de pirámide en el largo	1.00	
21	Numero de troncos de pirámide en el ancho	1.00	
22	Altura del lodos en digestor, m	1.62	m
23	Requerimiento lecho de secado	0.10	m2/hab.
В	RESULTADOS		
24	Caudal medio, I/día	29.04	m3/día
25	Área de sedimentación, m2	1.51	m2
26	Ancho zona sedimentador (B), m	1.00	m
27	Largo zona sedimentador (L), m	4.20	m
28	Prof. zona sedimentador (H), m	2.00	m
29	Altura del fondo del sedimentador	0.60	m
30	Altura total sedimentador, m	2.90	m
31	Volumen de digestión requerido, m3	29.04	m3
32	Ancho tanque Imhoff (Bim), m	3.80	m
33	Volumen de lodos en digestor, m3	29.92	m3
34,-	Superficie libre, %	63%	
35	Altura del fondo del digestor, m	0.51	m
36	Altura total tanque imhoff, m	5.52	m
37	Área de lecho de secado, m2	36.30	

Lechos de secado de lodos

Se calculó cumpliendo los siguientes parámetros de diseño y cálculo. Según la norma O.S. 090. Teniendo como datos los siguientes.

	DISEÑO DE LECHO DE SECADO DE LODOS		
NOMBRE DEL PROYECTO: Diseño del sistema del alcantarillado sanitario del			
Cen	Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.		
BACH. RAMOS TRUJILLO, JIMMY			
UBI	CACIÓN	HUANUCO-HUAC	
UNI	VERSIDAD	CESAR V	ALLEJO
A	PARAMETROS DE DISEÑO	Cantidad	Unidades
1	Población Futura	363.00	Habitantes
2	Contribución Percápita	90	(g/hab.día)
3	Masa de solidos	Formula RNE	
4	Volumen diario de lodos digeridos	Formula RNE	lts/hab/días
	volumen diano de lodos digendos		
I	Volumen de lodos a extraerse del		
5	9	Formula RNE	(Vel, en M3)
5 6	Volumen de lodos a extraerse del	Formula RNE	(Vel, en M3) M2

C) Contribución percápita (kg SS/día)

$$C = \frac{Población * contribución \ percápita (grSS / hab * día)}{1000}$$

D) Masa de solidos que conforman los lodos. (Msd)

$$Msd = (0.5 * 0.7 * 0.5 * C) + (0.5 * 0.3 * C)$$

Msd =	10.62	Kg SS/día

E) Volumen diario de lodos digeridos (VId, en Litros/día)

$$Vld = \frac{Msd}{\rho lodo * (\% de s\'olidos/100)}$$

Donde:

plodo: Densidad de los lodos, igual a 1,04 Kg/l. % de sólidos: % de sólidos contenidos en el lodo, varía entre 8 a 12%.

VId =	85.08 lts/hab/días

F) Volumen de lodos a extraerse del tanque (Vel, en m3)

Volumen de lodos a extraerse del tanque (Vel, en m³).

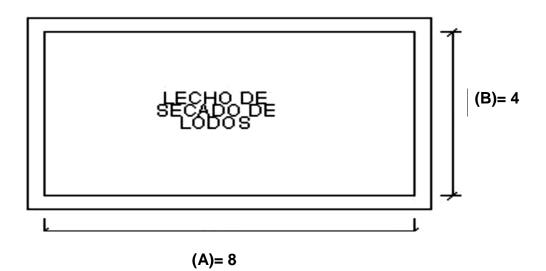
$$Vel = \frac{Vld * Td}{1000}$$

Donde:

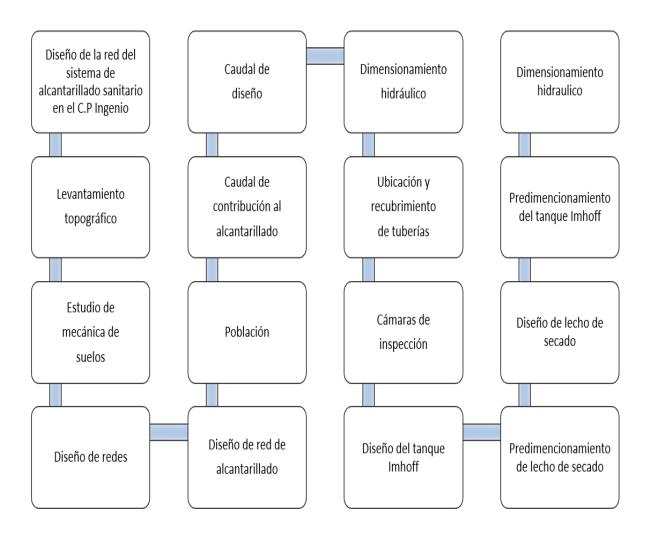
Td: Tiempo de digestión, en días (ver tabla 2).

Tabla 2		
Temperatura °C	Tiempo de digestión en días	
5	110	
10	76	
15	55	
20	40	
>25	30	

Vel =	9.36 m3


G) Área de lecho de secado (Als, en m2)

$$Als = \frac{Vel}{Ha}$$
 Donde: Ha: Profundidad de aplicación, entre 0,20 a 0,40m


Asumiremos una profundida	ad =	0.3 m
Área lecho secado	=	31.20 m2

H) Dimensiones del lecho de secado.

Considerando la relación de 1/3	=	3.22 m
Entonces para (B) se asume	=	4 m
Para (A)	=	7.80 m
Entonces para (A), se asume	=	8 m
Área de lecho de secado, m2	=	36.3 m2

Diagrama de flujo.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, DOLORES ANAYA DANTE, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - HUARAZ, asesor de Tesis Completa titulada: "Diseño del sistema del alcantarillado sanitario del Centro Poblado Ingenio, Huácar, Ambo, Huánuco, 2022.", cuyo autor es RAMOS TRUJILLO JIMMY JHAN PAUL, constato que la investigación tiene un índice de similitud de 17.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis Completa cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

HUARAZ, 03 de Octubre del 2022

Apellidos y Nombres del Asesor:	Firma
DOLORES ANAYA DANTE	Firmado electrónicamente
DNI: 31656954	por: DDOLORESAN el 03-
ORCID: 0000-0003-4433-8997	11-2022 11:18:04

Código documento Trilce: TRI - 0432331

