

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de drenaje pluvial para mejorar evacuación de precipitación de aguas en la localidad de Shimbillo, Pucacaca, San Martin, 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE Ingeniero Civil

AUTORES:

Calloquispe Rodríguez, Gerald (orcid.org/0000-0001-9988-7614)
Guerra Vargas, LLoyser Joel (orcid.org/0000-0001-5801-2926)

ASESOR:

Mag. Aybar Arriola, Gustavo Adolfo (orcid.org/0000-0001-8625-3989)

LÍNEA DE INVESTIGACIÓN:

Diseño de Obras Hidráulicas y Saneamiento

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo Sostenible y Adaptación al Cambio Climático

TARAPOTO - PERÚ 2022

Dedicatoria

A mis padres, seres que me trajeron y otorgaron la existencia de mi ser en este mundo.

Gerald

A Dios, por su sagrada sabiduría que, plasmada en los santos escritos bíblicos, iluminan mi camino.

A mis padres, que son mi motivo y razón de seguir adelante hasta cumplir y alcanzar el éxito de mis metas.

LLoyser Joel

Agradecimiento

A mis padres, seres que depositaron su tiempo, esfuerzo, dedicación y la libertad que se me fue otorgada para mi formación como ser pensante, con creencias y fortalezas propias.

Gerald

A Dios, por la salud y bienestar, en cuerpo y espíritu.

A mis padres, por brindarme su apoyo, su dedicación en cuerpo y espíritu a través del esfuerzo y la confianza mutua, quienes impulsan mi formación como profesional en el cumplimiento de mis metas y objetivos.

LLoyser Joel

Índice de contenidos

Carátula	i
Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de tablas	V
Índice de gráficos y figuras	vi
Resumen	vii
Abstract	viii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	18
3.1. Tipo y diseño de investigación	18
3.2. Variables y operacionalización	18
3.3. Población, muestra, muestreo y unidad de análisis	18
3.4. Técnicas e instrumentos de recolección de datos	19
3.5. Procedimientos	20
3.6. Método de análisis de datos	21
3.7. Aspectos éticos	21
IV. RESULTADOS	22
V. DISCUSIÓN	37
VI. CONCLUSIONES	40
VII. RECOMENDACIONES	42
REFERENCIAS	44
ANEXOS	40

Índice de tablas

Tabla 1. Resultado de Estudio de Suelos	26
Tabla 2. Parámetros Geomorfológicos de la Cuenca Aportante Shimbillo	30
Tabla 3. Parámetro Geomorfológico del Área de Influencia	31
Tabla 4. Cálculo de Caudales Máximos para un Periodo de Veinticinco Años	31
Tabla 5. Diseño Hidráulico de Canales - Jr. Progreso	31
Tabla 6. Diseño Hidráulico de Canales - Jr. Bolognesi	32
Tabla 7. Diseño Hidráulico de Canales - Jr. San Martín	32
Tabla 8. Diseño Hidráulico de Canales - Jr. Fernando Belaunde Terry	33
Tabla 9. Diseño Hidráulico de Canales - Jr. Huallaga	33
Tabla 10. Presupuesto	35
Tabla 11. Cronograma	35
Tabla 12. Determinación de Impacto Potencial	36
Tabla 13. Alteración de Acuerdo a las Actividades y Fase del Proyecto	36
Tabla 14. Cuadro Comparativo de Estudios de Suelos	38
Tabla 15. Cuadro Comparativo de Presupuestos	39

Índice de gráficos y figuras

Figura 1. Ciclo del Agua	10
Figura 2. Cuenca Hidrográfica	10
Figura 3. Estación Meteorológica Convencional	11
Figura 4. Fases del Ciclo Hidrológico	12
Figura 5. Hidrología Urbana	12
Figura 6. Tipos de Bocas de Tormenta o Coladeras Pluviales	14
Figura 7. Trazo de una Red de Alcantarillado	14
Figura 8. Secciones Transversales de Conductos Cerrados	15
Figura 9. Secciones Transversales de Conductos Abiertos	15
Figura 10. Curva de Nivel	23
Figura 11. Perfil Longitudinal	24
Figura 12. Variaciones de las Precipitaciones en 24 Horas	27
Figura 13. Representación Outlier	27
Figura 14. Distribución Normal	28
Figura 15. Curva de Intensidad, Duración y Frecuencia	28
Figura 16. Hietograma	29
Figura 17. Cuenca Aportante Shimbillo	30
Figura 18. Sistema de Drenaje Pluvial	34

Resumen

La tesis de investigación tiene como objetivo, proyectar un sistema de

drenaje pluvial para el mejoramiento de evacuación de precipitación de aguas en

la localidad de Shimbillo; que trata la problemática sobre inundaciones pluviales,

en base a una metodología de trabajo aplicativa, no experimental transversal

descriptiva, tomando como población de estudio el sector Shimbillo y cinco de sus

calles (jirones) como muestra.

Como resultado se determinó que el terreno es de forma irregular, de

superficie moderadamente plana con depresiones regulares, conformada por una

capa de material granular con un sub suelo de material fino del tipo arcilla

inorgánica, de color marrón a marrón rojizo, con consistencia media de mediana

plasticidad. Los parámetros hidrológicos basados en un período de retorno de 25

años con una precipitación máxima de 103,2mm con caudales de 0,2 - 0,3 m3/s,

que procesado mediante software HCANALES, el flujo como factor predominante

es el supercrítico y subcrítico, por lo que en conclusión se diseñó un sistema de

hormigón armado de dimensiones 0,60 m x 0,70 m estimado por la pendiente del

terreno, resistencia y abrasión del agua, que trabajará por acción de la gravedad

con dirección al rio Huallaga.

Palabras clave: Inundación pluvial, drenaje pluvial, transitabilidad.

νii

Abstract

The objective of the research thesis is to project a storm drainage system to improve the evacuation of water precipitation in the town of Shimbillo; that deals with the problem of pluvial floods, based on an applicative, non-experimental, cross-descriptive work methodology, taking the Shimbillo sector and five of its streets (shreds) as a sample.

As a result, it was determined that the terrain is irregular in shape, with a moderately flat surface with regular depressions, made up of a layer of granular material with a subsoil of fine material of the inorganic clay type, brown to reddish brown in color, with a medium consistency of medium plasticity. The hydrological parameters based on a return period of 25 years with a maximum rainfall of 103.2mm with flows of 0.2 - 0.3 m3/s, which processed by HCHANALES software, the flow as the predominant factor is supercritical and subcritical. Therefore, in conclusion, a reinforced concrete system of dimensions 0.60 m x 0.70 m was designed, estimated by the slope of the land, resistance and abrasion of the water, which will work by gravity towards the Huallaga river.

Keywords: Pluvial flood, pluvial drainage, trafficability.

I. INTRODUCCIÓN

Las precipitaciones en el sector urbano son aguas que llegan a focalizarse por falta o mantenimiento de un sistema estructural, que genera malestar, esto por el crecimiento urbano, que a través de un amplio aumento de la población y de infraestructura, alteran el estado natural del entorno, produciéndose poca o nula permeabilidad de los suelos, lo que ocasiona que los volúmenes de escurrimiento sean altas (Comición Nacional del Agua [CONAGUA], 2019).

En el ámbito internacional, anualmente cerca de 829 000 personas de países que registran ingresos bajos y medianos, fallecen a consecuencia de la insalubridad del agua, por lo que mayormente el saneamiento al ser un factor deficiente, representa la principal causa de decesos, cuyo valor aproximado es de 432 000 muertes, que corresponden a causa de distintas enfermedades tropicales que no son atendidas (lombrices intestinales, esquistosomiasis y tracoma) de tal manera que contribuye a la malnutrición (World Health Organization [OMS], 2022).

Por otra parte, el factor del cambio climático en el Perú, se da por la existencia de un vasto ecosistema frágil que generan lluvias muy intensas y sequias muy largas, siendo susceptible a experimentar inundaciones en distintas ciudades del territorio. En este aspecto es fundamental establecer las condiciones óptimas para el bienestar de las personas, a través construcciones dentro de un ambiente saludable y sostenible (Pavco Wavin, 2022).

En el distrito de Pucacaca, el clima es seco - templado con sequias leves y una precipitación que promedia los 294mm, pero que en temporada de lluvias su acceso es difícil por problemas de estancamiento pluvial e inundación de sus calles, que expone a los pobladores en una situación de vulnerabilidad frente a problemas de sanidad, por lo que en el centro poblado de Shimbillo, las calles del jirón Progreso, San Martin, Huallaga, Bolognesi y Fernando Belaunde Terry (Anexo 2), se consideran como los más críticos, debido al escurrimiento de las aguas que provienen de barrios paralelos que se conectan con la plazuela y la calle principal, las cuales se descargan en un cauce natural.

Las principales causas al problema de las inundaciones, se dan a raíz de lluvias intensas que generan una escorrentía superficial, saturando el suelo e impidiendo el almacenamiento de más agua (Victores, 2014) y representan un peligro geohidrológico en función del ciclo del agua (Chiroque, 2021). En el sector de estudio, la causa más relevante, es la concentración de aguas que provocan la saturación y asentamientos en los suelos que deterioran las vías públicas.

Las inundaciones reflejan un impacto negativo, que perjudica a las personas y a las comunidades, con consecuencias sociales, económicas y ambientales (Haltas et al, 2021); de este modo las consecuencias se reflejarían tanto a largo como a corto plazo.

Por lo anteriormente descrito, la investigación planteada en este informe se enfoca en determinar la incidencia de las precipitaciones pluviales para establecer un modelo de gestión urbana que este acorde con el tema en cuestión y así mismo, para las variables de drenaje pluvial - mejorar la evacuación, se desarrollarán de acuerdo a la Norma CE.040 (Ministerio de Vivienda, Construcción y Saneamiento, 2021).

Para esta investigación, como problema general se formuló la interrogante de: ¿cómo influye diseñar un sistema de red de drenaje para mejorar la evacuación de aguas pluviales en la localidad del centro poblado Shimbillo?, mientras que de manera específica se formularon otras sub-interrogantes de: ¿cómo el estudio topográfico incide en el desarrollo de un sistema de red de drenaje para mejorar la evacuación de aguas pluviales?, ¿cómo el estudio mecánico de suelos incide en el desarrollo de un sistema de red de drenaje para mejorar la evacuación de aguas pluviales?, ¿cómo el estudio hidrológico - hidráulico incide en el desarrollo de un sistema de red de drenaje para mejorar la evacuación de aguas pluviales?, ¿cómo es que los costos y presupuestos inciden en el desarrollo de un sistema de red de drenaje para mejorar la evacuación de aguas pluviales? y ¿cómo el estudio de impacto ambiental incide en el desarrollo de un sistema de red de drenaje para mejorar la evacuación de aguas pluviales?

La investigación se justifica teóricamente por el estudio y análisis sobre drenaje pluvial e infraestructura hidráulica, basado en la información de fuentes bibliográficas y reglamentos; por su implicancia metodológica, que precisa del uso de técnicas de investigación y desarrollo de campo, como mecanismo de recolección y análisis de la información, en base datos pluviométricos del SENAMHI; por su viabilidad, cuyos resultados podrán ser referidos para su gestionamiento por parte de la autoridad local, como parte de un plan de desarrollo urbano; por su practicidad, que mejorará el tránsito, reduciendo el deterioro extensivo de las vías que pueden darse a causa de la infiltración, la escorrentía y acumulación de aguas; por su conveniencia, el cual los resultados que se manejen, sentarán las bases para la gestión y ejecución del expediente técnico por parte de la autoridad local e instituciones a fines; y por el impacto social dentro del marco socio-económico, que tendrá un incremento positivo en la población en cuanto a desarrollo urbano y productividad, mejorando los niveles de calidad de vida, a fin de establecer un entorno saludable y sostenible.

Como objetivo general se estableció: Proyectar un sistema de drenaje pluvial para mejorar la evacuación de precipitación de aguas en el centro poblado Shimbillo, perteneciente al distrito de Pucacaca, de la provincia de Picota, del departamento de San Martín; que establecen los objetivos específicos de: Efectuar el estudio topográfico en el área de influencia para determinar la morfología del terreno, efectuar el estudio mecánico de suelos a fin de determinar las características físico-mecánicas del terreno, ejecutar el estudio hidrológico-hidráulico a fin de determinar las precipitaciones e intensidades máximas de las lluvias y el comportamiento hidráulico de los cauces que atraviesan en la zona objeto de estudio, elaborar los costos-presupuestos, a fin de establecer los fondos económicos para la gestión del proyecto y efectuar los estudios de impactos ambientales para prever daños que perjudiquen el entorno ambiental durante todo el proceso de la gestión de la obra.

Mediante hipótesis general se plantea que el diseño de una red de drenaje, optimizará la evacuación de aguas pluviales, teniendo un impacto positivo social, económico y ambiental en la población de la localidad del centro poblado de Shimbillo.

II. MARCO TEÓRICO

Dentro de las bases teóricas o conceptuales, Carrero (2021) señala que son revisiones bibliográficas o documentales que guardan relación con las variables a desarrollar, en referencia a los diversos enfoques teóricos que se emplean en investigaciones previas en base a la temática de la misma.

En Ecuador, Ceme (2022) diseñó un sistema de alcantarillado pluvial en la cabecera parroquial de Noboa, Cantón 24 de Mayo - Provincia de Manabí, el cual se trazó como objetivo. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en la Parroquia Noboa (14,39 ha de 800 Hab) y la muestra no probabilística, fue de 60 personas mediante encuesta socioeconómica con 100% de aprobación. Como resultado determinó un periodo de diseño de vida útil de 25 años, con un periodo de retorno de 10 años, en un área de aportación de 14,40 ha, adoptando el método racional para el caudal de diseño, por lo que concluyó que, para el sistema de red de tuberías, los colectores o pozos estarán dispuestos en cada esquina, mientras que las canaletas laterales, con rejillas metálicas, el cual protegerá la estructura de la carga de los vehículos y el ingreso de material solido que obstruya el sistema, en cumplimiento con las velocidades mínimas de 0,75 m/s a tubería llena que deberán tener los canales para una autodepuración.

En México, Ojeda et al. (2020) desarrollaron un sistema de drenaje pluvial sostenible como alternativa para la gestión de las aguas pluviales en la Universidad de Sonora, el cual se trazaron como objetivo. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en la universidad misma y la muestra, fue la sección urbana de Hermosillo. Como resultado identificaron un total de 12 microcuencas, 03 externas (02 con mayor caudal) y 09 internas al campus, que presentaron variaciones de duración de lluvias entre 33 y 12.9 minutos, seguido de precipitaciones máximas entre 40 y 25 mm, con intensidades entre 71.3 y 116.2 mm/hr, tanto de las microcuencas internas como externas respectivamente, datos que determinaron que el escurrimiento del agua es agresivo, que provoca inundación cuando esta es retenida por estructuras que impiden su paso. Concluyeron que, para el sistema,

esta se efectuaría en dos fases, la de captar las aguas pluviales empleando tuberías de PVC enterradas, evitando conflicto al interior del campus y la de aprovechar la misma agua, dirigiéndola hacia una caja receptora y derivadora, que lo transportaría hacia un canal de tierra generando infiltración del agua al subsuelo.

En Colombia, Bautista & Sanguino (2020) propusieron el diseño de un sistema urbano de drenaje sostenible con el objetivo de reducir los niveles de inundación en la intersección entre la avenida 12E y la calle 2N en la ciudad de Cúcuta Norte de Santander. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en la red de alcantarillado existente en dicha ciudad y la muestra, fue el área dada por la intersección entre la Av. 12E y la calle 2N y áreas colindantes. Como resultado obtuvieron un caudal pico de 8.48 m3/s, el cual indicó que el diámetro de las tuberías a utilizar seria mayor para el diseño y que encarecería su implementación, por lo que concluyeron optar por un sistema dividido en dos etapas empleando 09 rejillas, 07 pozos de inspección y 02 desarenadores, para el transporte e infiltración que evitaran la contaminación e inundación pluvial de la avenida, mejorando el panorama paisajístico.

En Colombia, Otálora (2018) propuso un sistema de alcantarillado pluvial para el drenaje de escorrentía superficial del barrio San Vicente Suroriental, localidad de San Cristóbal – Bogotá D.C., el cual se trazó como objetivo en base a la problemática de las inundaciones en sectores aguas abajo. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en el barrio San Vicente Suroriental y como muestra, fueron las redes existentes que cubren un área de 21 ha. Como resultado determinó que el área cuenta con pendientes topográficas altas, generando un flujo supercrítico con velocidades mayores en el diseño, velocidades que varían entre 1.57 a 8.8 m/s con esfuerzo cortante que va por encima de los 0.30 kg/m2, estableciendo que los conductos con velocidades superiores a 5 m/s, contar de un revestimiento interno que soporte la abrasión a largo plazo, por lo que concluyó optar por un sistema de 06 colectores principales de alcantarillado pluvial, conectadas a otras redes existentes, de las cuales 04 se enlazarán a un sistema de drenaje de

aguas pluviales y 02 a una red troncal mixta, cuyos interceptores (03), dispondrán de sus respectivos ramales para efectuar la evacuación de las aguas pluviales, cumpliendo con una profundidad mínima de 1m desde la rasante hasta la cota clave para las tuberías.

A nivel nacional, Dueñas (2022) estudió la precipitación pluvial y red de drenaje de evacuación en la Avenida Cultura entre Manuel Prado hasta Marcavalle, distrito Wánchaq – Cusco, con el objetivo de diseñar un sistema de red de drenaje para la evacuación de aguas pluviales. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en la provincia de Cusco y la muestra, fue la Av. Cultura desde la Urb. Manuel Prado hasta la Urb. Marcavalle. Como resultado determinó un tiempo de retorno de 10 años, con precipitación máxima diaria de 41.86 mm, con una intensidad máxima de 19.10 mm/hr, obteniendo un caudal de diseño de 0.311 m3/s, el cual resolvió que el caudal circundante es elevado en comparación con el caudal máximo, catalogándolo como zona inundable, por lo que estableció que las cunetas para este caso serán rectangulares dispuestas de manera longitudinal y transversal de la vía, con sus respectivas rejillas para su óptima operación y mantenimiento, partiendo desde la Prog. 0+000.00 hasta la Prog. 1+350.00 con pendientes de 0.46%.

A nivel nacional, Chávez & Vargas (2021) diseñaron un sistema de red de drenaje pluvial en la avenida Perú y el Jirón Unión – Trujillo, el cual se trazaron como objetivo. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en la Urb. Libertad de Trujillo y la muestra, fue la Av. Perú y el Jr. Unión. Como resultado determinaron que el terreno es relativamente plano al no superar el 3% de pendiente, por lo que consideraron, mediante norma OS.060, un periodo de retorno de 25 años, trabajando con escorrentías de 0.86 y 0.88, para suelos SUCS: SP, SM y SW, obteniendo caudales máximos de 53.149 L/S y velocidades máximas de 2.5 m/s en la avenida Perú y 2.6 m/s del jirón Unión, el cual concluyeron optar por un sistema de tuberías de 10 pulgadas y pozos de visita con alturas de 0.56 a 1.05 metros de profundidad, a fin de evitar perjudicar las estructuras existentes.

A nivel nacional, Aguilar (2021) evaluó el sistema de drenaje pluvial de vías urbanas para establecer puntos críticos de inundación del distrito de Chilca – Huancayo – Junín, con el objetivo de comprobar si el diseño de drenaje pluvial que se planteó, genera mejores resultados para los puntos críticos de inundación. Su metodología fue aplicativa, pre experimental, descriptivo explicativo, cuya población de estudio se basó en el Distrito de Chilca, y la muestra no probabilística por conveniencia, fue la Av. Los Próceres tramo: Canal CIMIRM – Av. Panamericana Sur y su área de influencia hidráulica. Como resultado, localizó los puntos críticos en la Av. Próceres y el Sector 8 y 9, en base a un Pre test de 26.53 y Post Test de 66.52 obteniendo un valor de Zc = - $2.81 > Z\alpha = 1.96$; el cual concluyó que, para el diseño en base al caudal de cada área de influencia hidráulica, la Av. Los Próceres consistirá de colectores conformado por cunetas de concreto armado, ubicado a lo largo de la Av. Próceres y de la Av. Torre Tagle, que descargaran sus aguas hacia el Río Ahalí, mientras que, en los puntos de descarga establecido por estructuras existentes, para el Sector 08 y 09 consistirán de un colector que discurre por debajo las vías de Augusto B. Leguía, Jr. 28 de Julio, Jr. Arequipa, Jr. Progreso, Torre Table, y Jr. Humboldt descargando con dirección al rio Ahalí.

A nivel nacional, Corrales (2018) evaluó y diseñó un sistema de alcantarillado para mejorar la evacuación de aguas pluviales en el sector San Blas del distrito de Cusco, el cual se trazó como objetivo. Su metodología fue aplicativa, no experimental transversal descriptiva, cuya población de estudio se basó en el sistema de drenaje pluvial que atraviesan por las viviendas, calles, avenidas, callejones, pasajes y plazoletas del barrio San Blas - Cusco, y la muestra por conveniencia no probabilístico, fueron los colectores principales de la ciudad. Como resultado determinó que el sistema está en situación crítica y que no son las más óptimas para una población de 8,788 habitantes en San Blas, que registró una tasa de crecimiento poblacional de 1.30%, superando las expectativas de diseño del sistema, ya que las de tuberías no disponen de una dimensión apropiada por estar sub dimensionado, en comprobación a través del modelado del colector principal del Canal Rio Choquechaca y que mediante el uso del software HEC-RAS, estableció un periodo de retorno de 25 años, por lo

que 13 de 23 secciones transversales mostraron inundaciones, el cual concluyó por la proyección de un sistema de alcantarillado urbano que comprenderá de 18 tramos de tuberías de PVC, 16 sumideros de distintas dimensiones y 6 colectores, que descargarán al colector principal que conforma el Canal del Rio Choquechaca.

A nivel local, Ramírez & Waller (2019) diseñaron una red de drenaje pluvial para mejorar la accesibilidad en las localidades de Alfonso Ugarte y Paucar, Picota, San Martín, el cual se trazaron como objetivo. Su metodología fue aplicativa, pre experimental transversal descriptiva, cuya población de estudio se basó en las localidades de Alfonso Ugarte y Paucar, la muestra fue una periferia total de 18 calles. Como resultado determinaron que el terreno cuenta con pendientes ligeramente pronunciadas, con propiedades físico mecánicas de presiones considerables que aumenta a medida se profundice y que a través de una proyección de 25 años con precipitación máxima de 103.2mm, el caudal mediante escorrentía de 0.88 (Norma OS.060) fue de 0.08 - 0.02 m3/s, que sumado a la aplicación del software H CANALES, determinaron un flujo supercrítico, el cual concluyeron optar por un sistema de cunetas de concreto armado con dimensiones de 0.50 x 0.80 cm.

A nivel local, Sánchez (2019) diseñó una estructura de drenaje pluvial para mejorar la transitabilidad en el Caserío de Santo Tomás, Pucacaca, San Martín; el cual se trazó como objetivo. Su metodología fue aplicativa, pre experimental transversal descriptiva, cuya población de estudio se basó en el caserío de Santo Tomás y la muestra, fue de cuatro calles. Como resultado determinó que el terreno presenta pendientes semi pronunciadas con valores de 0.004 - 0.038m/m, de propiedades físico-mecánicas de clasificación SUCS: CL, LL, con intensidad de lluvia de 184.70 - 269.59mm/hr y un caudal (en base al coeficiente de escorrentía de 0.88 y un periodo de retorno de 25 años) de 0.02 – 0.05m3/s que sumado a la aplicación del software H CANALES, determinó un flujo supercrítico, el cual concluyó optar por un sistema de concreto armado.

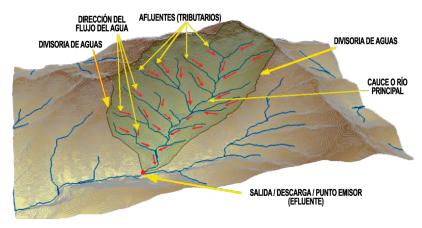
A nivel local, Tapullima (2018) diseñó un sistema de red de drenaje pluvial para el mejoramiento de la transitabilidad en la localidad de San Cristóbal, Picota; el cual se trazó como objetivo. Su metodología fue aplicativa, pre experimental transversal descriptiva, cuya población de estudio se basó en el área existente de localidad de Puerto Rico y la muestra, fue de 20 calles. Como resultado determinó que la morfología del terreno es parcialmente plana con pendientes muy bajas, de propiedades físico-mecánicas SUCS: CL, GM, CH, SC y SM, con caudales de 0.0263 - 3.7074 m3/s, que sumado a la aplicación del software H CANALES, determinó un flujo subcrítico, el cual concluyó optar por un sistema de alcantarillas de concreto armado, cunetas con fondo de concreto simple y paredes de concreto armado, zanjas de drenajes de tierra, colectores primarios y finales, para 11,605.11 ml de cunetas de concreto de capacidad f'c = 175 kg/cm2. y 1,026.00ml de alcantarillas de PVC RIB LOC DIAM=1.3M.

A nivel local, Mori (2018) diseñó un sistema de red de drenaje pluvial para el mejoramiento de la transitabilidad del sector; en la localidad de San Roque de Cumbaza, San Martín; el cual se trazó como objetivo. Su metodología fue aplicativa, pre experimental transversal descriptiva, cuya población de estudio se basó en la localidad de San Roque de Cumbaza y la muestra, fue de 14 calles. Como resultado determinó que la morfología del terreno es semiplana, de propiedades físico-mecánicas SUCS: CL y SM, con caudales máximos para distintos periodos de retorno de entre 3.84 - 34.79 m3/seg, que sumado a la aplicación del software H CANALES, determinó un flujo subcrítico, el cual concluyó optar por un sistema de concreto armado, cunetas con fondo de concreto simple con pared de concreto armado, zanjas de drenajes de tierra, colectores primarios y finales, para 3565.605.113ml de perfil longitudinal con capacidad de f'c = 175 kg/cm2 y para el concreto de f'c = 210 kg/cm2.

Hidrología es según Villón Béjar (2002), la ciencia que mediante estudios evalúa y determina la propiedad química y física del agua en relación con el entorno ambiental e implicando a los seres vivos, el cual repercute a través de los métodos prácticos que, puestos en manos de expertos, establece soluciones a diversos problemas que guardan relación con el diseño y los cálculos de ingeniería hidráulica.

Ciclo Hidrológico es según Ordoñez (2011), el movimiento constante de las masas de aguas entre diferentes puntos geográficos de la Tierra, que atraviesa por diferentes estados físicos como: líquido, gaseoso y sólido, en base a dos parámetros como temperatura (generado por radiación solar), y presión atmosférica, el cual Sánchez (2020) asume que esta sube por evaporación y baja por precipitación, que luego da lugar a la escorrentía superficial y subterránea.

Figura 1
Ciclo del Agua

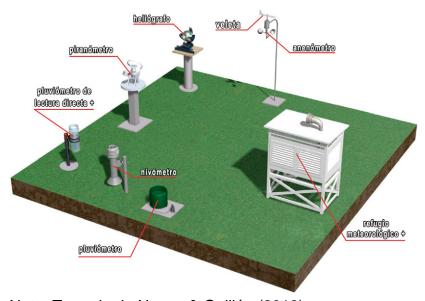


Nota: Tomado de Empresas Municipales de Tuluá [EMTULUA] (2022)

Cuencas Hidrográficas es según Aparicio (1992), zonas donde la escorrentía del agua de lluvia se dirige a la superficie a través de un conjunto de arroyos que desemboca en un solo punto de drenaje.

Figura 2

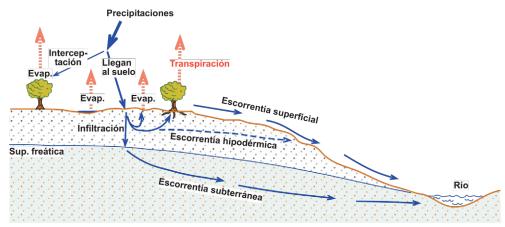
Cuenca Hidrográfica



Nota: Tomado de Rivasplata Flores (2019)

Precipitación es según Ordoñez (2011), la evaporación del agua que, como complemento de la atmósfera, llega a enfriarse y luego se condensa y cayendo como hidrometeoros (partículas de agua líquida o sólida). Es uno de los factores más relevantes del ciclo hidrológico, el cual es importante cuantificarla.

Estación convencional es una forma de medición manual, siendo así que, en el Perú, la mayoría de las estaciones son operadas por el Servicio Meteorológico e Hidrológico, que toman lecturas manualmente en 07:00 y 19:00, por lo que solo acumulan 12 horas de datos de lluvia.


Figura 3
Estación Meteorológica Convencional

Nota: Tomado de Novoa & Guillén (2018)

Escorrentía es según Aparicio (1992), el agua de lluvia que fluye por encima o por debajo de la superficie drenando hasta salir de la cuenca. Los factores más importantes son la infiltración del suelo los flujos de aguas subterráneas. El agua que fluye sobre la superficie sin infiltrarse, que arrastra sedimentos, erosiona el terreno por el que discurre y crea barrancos o quebradas tras su paso, es la escorrentía superficial, que se determina efectivamente por la cobertura y tipo de suelo, en el que discurren las aguas y la pendiente en las que se encuentra.

Fases del Ciclo Hidrológico

Nota: Tomado de Sánchez San Román (2020)

Hidrología Urbana es según Andrade (2011), las áreas destinadas para la actividad residencial y comercial dentro de una urbanización establecida. El crecimiento y desarrollo poblacional e industrial son las causas inmediatas de la formación de nuevas metrópolis que cambian en términos de topografía y uso del suelo. Esto implica cambios en las vías pluviales naturales que anteriormente ya no podían fluir libremente. Las infiltraciones de precipitación, más el movimiento del agua subterránea cambian significativamente, por lo que al analizarlos deben considerarse fuera de la unidad hidrográfica a la cual pertenecen.

Figura 5 Hidrología Urbana

Nota: Tomado de Latin American Division of the International Association for Hydraulic Research [IAHR - LAD] (2000)

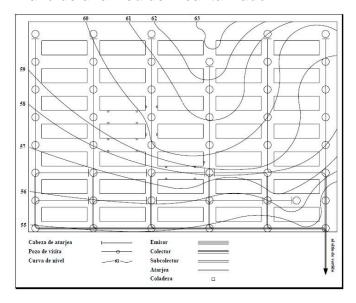
Los sistemas de drenaje son infraestructuras que juegan un papel importante, en otras palabras, evacuar el agua de lluvia. La función de estos sistemas es descargar agua a fuentes naturales como ríos, arroyos, riachuelos, quebradas o a fuentes artificiales como alcantarillas, plantas de tratamiento de aguas residuales. El Sistema de drenaje según decreto legislativo N° 1356 establece que todos los nuevos desarrollos urbanos tengan un sistema de evacuación para evitar inundaciones durante la temporada de lluvias. designados (Ministerio de Vivienda, Construcción y Saneamiento, 2018).

Drenaje Pluvial es un servicio fundamental establecido mediante ley general N°1356 en el Perú, siendo parte estructural de la infraestructura de todos los centros residenciales, que comprende la recolección, el transporte, el almacenamiento y la descarga de aguas pluviales a los puntos de recepción designados (Ministerio de Vivienda, Construcción y Saneamiento, 2018).

De acuerdo con el Ministerio de Vivienda, Construcción y Saneamiento (2021), a través de la Norma Técnica Peruana CE.040 Drenaje Pluvial, menciona que la infraestructura de drenaje pluvial se compone de los siguientes elementos: instalaciones de drenaje pluvial para edificaciones, tubería de entrega, cuneta, vereda y pista, sumidero, subcolector y colector, registro, estructura de unión, depresiones para drenaje pluvial, tipos de evacuación y dren o emisor principal, estructuras complementarias de ser el caso.

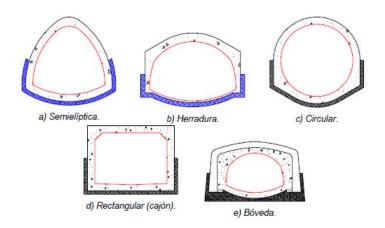
Estructuras de Captación son elementos que recolectan el agua para su transporte, cuyos usos se dan por medio de sumideros o coladeras pluviales (denominados como bocas de tormenta), aunque también puede haber conexiones domésticas donde la lluvia cae sobre los techos y patios. Tanto como las coladeras pluviales, por lo general la escorrentía pluvial también se recolecta en el camino, vado, cuneta y contra cuneta, para ser dirigidos a los sistemas de drenaje de aguas pluviales (Sistema Intermunicipal de Agua Potable y Alcantarillado [SIAPA], 2019).

Figura 6 *Tipos de Bocas de Tormenta o Coladeras Pluviales*



Nota: Tomado de ConstruBIM (2021)

Estructuras de Conducción son elementos que transportan el agua recogida de la estructura de captación hasta el punto de tratamiento o vertido. Son parte fundamental en los sistemas de alcantarillados, formados por conductos cerrados y abiertos, denominados tuberías y canales, respectivamente (SIAPA, 2019).


Figura 7

Trazo de una Red de Alcantarillado

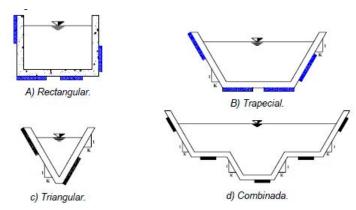

Nota: Tomado de SIAPA (2019).

Figura 8
Secciones Transversales de Conductos Cerrados

Nota: Tomado de SIAPA (2019).

Figura 9
Secciones Transversales de Conductos Abiertos

Nota: Tomado de SIAPA (2019).

Estructuras de Conexión y Mantenimiento (Pozos y Cajas de Visita) son elementos subterráneas construidas al nivel del suelo o del pavimento y cubiertas de una tapa que ayudan en la conexión y mantenimiento de los ductos que componen la red de alcantarillado, ya que no solo permiten conectar varias tuberías, incluso de diferentes diámetros o materiales, sino que también hay espacio suficiente para que una persona pueda bajar y efectúe las maniobras de limpieza y revisión de las tuberías; esta estructura se conoce como pozos de visita (SIAPA, 2019).

Estructuras de Descarga son elementos terminales que protegen y aseguran la descarga final del sistema de alcantarillado sin obstrucciones, impidiendo que se generen daños por las corrientes que se descarga por el sistema, esto en el último tramo o sección de la tubería (SIAPA, 2019).

Estructuras o Instalaciones Complementarias son elementos parte del sistema de alcantarillado pluvial, en cuyos casos particulares resuelven un problema específico y son importantes para el buen funcionamiento del sistema, las cuales son: plantas de bombeo, estructuras o estanques de retención, estructuras o depósitos de detención, estructuras de infiltración, estructuras de filtración, estructuras de limpieza remoción y medición (SIAPA, 2019).

Disposición Final son elementos que disponen la salida final del agua captada por la red de alcantarillado no es una estructura que lo conforme, pero es parte esencial del proyecto en sí, debido a que, si la ubicación de las aguas residuales o pluviales no se identifican antes de la construcción del proyecto, puede causar daños graves al medio ambiente e incluso a los residentes atendidos o cercanos al área de vertido (SIAPA, 2019).

NTP CE.040 corresponde al reglamento nacional de edificaciones, aprobada por el Ministerio de Vivienda, Construcción y Saneamiento (2018), del cual se desglosan otros términos esenciales:

- Agua pluvial: agua de precipitación natural.
- Alcantarilla: conducciones subterráneas para el traslado de las aguas de Iluvia, aguas residuales domésticas o mixtas.
- Alcantarillado pluvial: redes de alcantarillas que transportan aguas pluviales.
- Captación: estructuras que permiten el ingreso de agua de lluvia a la infraestructura de drenaje pluvial.
- Caudal o gasto: volumen por unidad de tiempo determinado por hidrología u otro método adecuado.
- Coeficiente de escorrentía: factor en representación de la fracción de agua del total de lluvia que fluye desde la superficie.

- Colector pluvial: estructuras que recogen agua de lluvia de grandes cuencas (comunidades, distritos, etc.) que pueden ser abiertos o cerrados.
- Cuenca hidrográfica: área de terreno en el que la escorrentía superficial de la precipitación (lluvia) se dirige a una sola salida o punto de descarga.
- Cuneta: estructura hidráulica longitudinal estrecha y abierta, situado generalmente a lo largo del costado de un camino o sendero, que se usa para drenar las aguas pluviales.
- Escorrentía: parte de la precipitación que llega continua o periódicamente al caudal superficial de agua en la cuenca.
- Hietograma: distribución de la precipitación a lo largo del tiempo que suele representarse gráficamente. El eje horizontal corresponde al tiempo y el eje vertical a la intensidad de lluvia.
- Pendiente longitudinal: inclinación de los conductos en dirección a su eje longitudinal.
- *Pendiente transversal:* inclinación de los conductos dentro de un plano perpendicular a su eje longitudinal.
- Periodo de retorno: intervalo medio de recurrencias para eventos de igual y mayor magnitud.
- Precipitación: fenómeno atmosférico relacionado con los efectos de impacto del agua sobre la tierra en forma de lluvia, llovizna, nieve o granizo.
- Tiempo de concentración: tiempo transcurrido de una gota de lluvia que tarda en llegar desde el punto más alejado de la cuenca al punto de interés.

III. METODOLOGÍA

De acuerdo con Hernández et al. (2014), cabe resaltar que *el enfoque de la investigación será cuantitativo*, debido a que esta se fundamentará dentro de un marco lógico y deductivo a fin de establecer ciertas preguntas e hipótesis para su posterior comprobación.

3.1. Tipo y diseño de investigación

Es de tipo aplicada o práctica, el cual consistirá de la aplicación de teorías y conocimientos en base a la "Norma CE.040", a fin de establecer como alternativa de solución a la problemática de las inundaciones, un sistema o red de drenaje pluvial, que a causa y efecto tenga un impacto positivo en la población.

De acuerdo con Hernández et al. (2014) y Ander-Egg. (2006), el diseño de la investigación será no experimental transversal descriptivo, ya que no se manipularán las variables deliberadamente, en base a las observaciones reales y puntuales de los fenómenos que ocurren en contextos naturales para una interpretación correcta; esto en cuanto a caudal, intensidades pluviométricas, incidencia de sólidos de arrastre y la determinación de ciertos parámetros de diseño para el sistema de una red de drenaje pluvial.

3.2. Variables y operacionalización

- Drenaje pluvial (variable independiente)
- Mejorar evacuación (variable dependiente)

La operacionalización de las variables descritas se refleja en el *Anexo* 3.

3.3. Población, muestra, muestreo y unidad de análisis

Población

Estará comprendida por el centro poblado de Shimbillo, que como criterio de inclusión se tomará en cuenta las calles, manzanas e infraestructuras que conforman dicha localidad y a criterio de exclusión, los pobladores.

Muestra

Estará comprendida por el Jr. Progreso. Jr. San Martín, Jr. Huallaga, Jr. Bolognesi y el Jr. Fernando Belaunde, considerados como puntos críticos.

Muestreo

El método empleado para la selección muestral será mediante el muestreo por conveniencia o no probabilístico; por lo que no se emplearan fórmulas de estadística para determinar el tamaño de la muestra.

Unidad de Análisis

Estará comprendida por el tramo de las calles que conforman los jirones antes mencionados en la muestra.

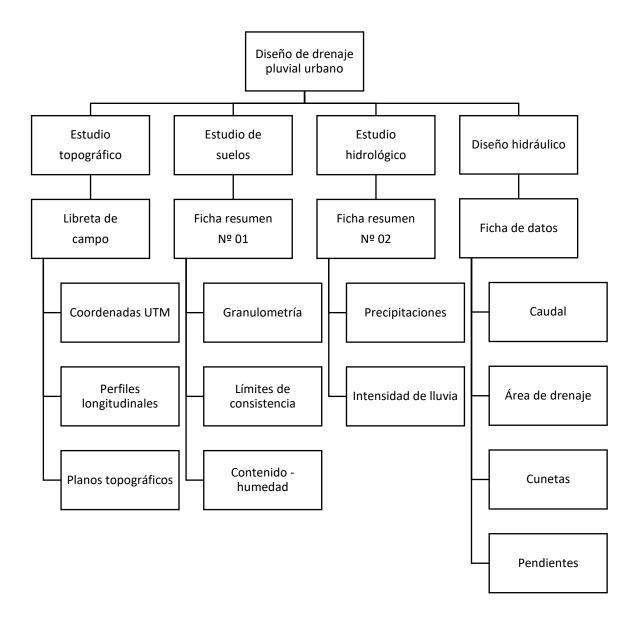
3.4. Técnicas e instrumentos de recolección de datos

Técnicas

De acuerdo con Behar (2008) dentro del marco metodológico para la recolección de datos, se aplicarán *técnicas de observación* mediante estudios básicos, del cual se efectuarán estudios topográficos, de suelos, de hidrología e hidráulica, presupuesto y de impacto ambiental; asi como *técnicas de análisis documental* a través de revisión de información bibliográfica, en el que se analizarán expedientes técnicos, artículos científicos, normas y reglamentos.

Instrumentos

Se empleará la *guía de observación de campo*, a través del uso de la libreta de campo, *ficha de investigación* y fichas de resumen (*Anexo 4*).


Validez

Será supervisada por profesionales expertos en ingeniería civil bajo juicio crítico personal.

Confiabilidad

Estará garantizado a través de la certificación de los equipos calibrados y software, para los respectivos estudios que se desarrollarán en laboratorio y campo, en cumplimiento con la normatividad vigente del RNE.

3.5. Procedimientos

Cabe resaltar que el diseño del sistema de drenaje pluvial comprenderá los parámetros de la Norma Técnica CE.040_Drenaje Pluvial Urbano del RNE y algunas especificaciones del Manual de Hidrología, Hidráulica y Drenaje del MTC, apoyado de algunos que otros formatos bibliográficos de ser necesario.

3.6. Método de análisis de datos

Los datos se analizarán en trabajo de gabinete, empleando el uso de herramientas de software de programación Excel, AutoCAD - AutoCAD Civil 3D 2022, ArcGIS Pro, ArcMap 10.8, Hcanales 3.1 e Hidroesta 2, cuyos valores o resultados se trabajarán mediante estadística descriptiva.

3.7. Aspectos éticos

En base a los buenos principios, mediante normatividad APA 7ma edición se respetará la autoría de los investigadores citados contextualmente en esta investigación y se cumplirá con los lineamientos que exige la norma vigente de la casa de estudios UCV, cuya originalidad se apoyará en los resultados del porcentaje de similitud TURNITIN.

IV. RESULTADOS

Objetivo General: Se diseñó un sistema de red de drenaje de concreto armado que trabajará por gravedad, el cual cumplirá con el mejoramiento de evacuación de precipitación de aguas en el Centro Poblado de Shimbillo, Distrito de Pucacaca, Provincia de Picota, Región San Martín, en conformidad de los Objetivos Específicos (O.E.) desarrollados.

O.E. Estudio Topográfico: Mediante el uso de estación total LEYCA con una precisión de 3seg, con un ángulo y de 1mm de distancia y 2 prismas, se trabajaron en base a coordenadas UTM con datum horizontal de WG-84 y datum vertical con nivel media del mar, iniciando con dos puntos de referencia, tomados con GPS navegador, que posteriormente fueron digitados en la estación, sirviendo como BM, efectuándose el levantamiento general de toda la zona en base a puntos de referencia, el cual se tomaron en detalle el nivel de piso, bordes de carretera existente como de tierra, cunetas, canal de tierra, estructuras existentes, entre otros.

Figura 10

Curva de Nivel

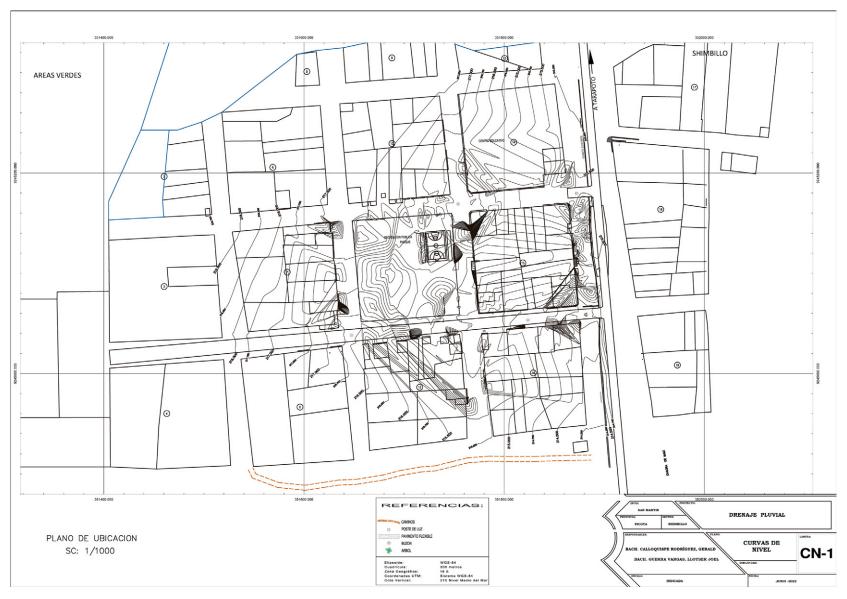
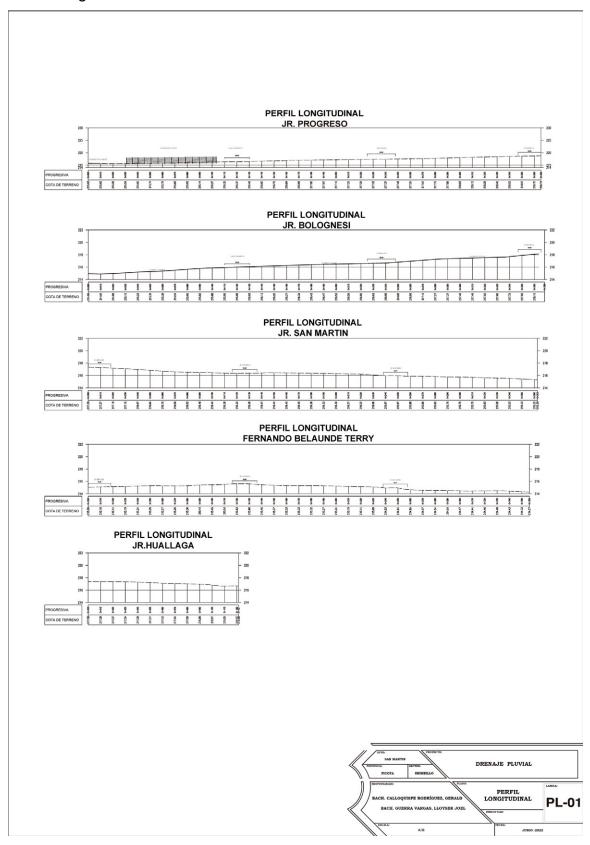



Figura 11
Perfil Longitudinal

- O.E. Estudio de Mecánica de Suelos: Se verificó la tipología y característica geomecánica del suelo existente en condiciones normales, donde se proyectará la construcción de la red de drenaje pluvial, el cual se obtuvo las características físicas y mecánicas (propiedad de resistencia, asentamiento particular del suelo, tipo y profundidades de cimentaciones y capacidades portantes admisibles) del sector por medio de procesos efectuados tales como:
 - Inspección del área del terreno
 - Asignación de calicatas, en el que se efectuaron 04 con profundidad máxima de 2m.
 - Toma de especímenes o muestras inalteradas.
 - Trabajos de ensayos de laboratorio, efectuándose el análisis de granulometría por tamizado, límite de consistencias, humedad natural, clasificación de suelos mediante SUCS y ensayos de corte directo.
 - Estimación de los trabajos de campo y laboratorio
 - Registro de excavación
 - Observación de la capacidad portante admisible
 - Cálculos admisibles permisibles

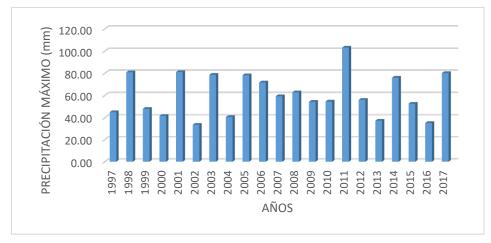
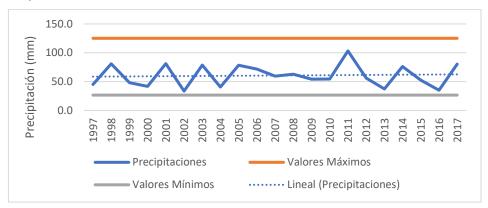

Cabe destacar que los trabajos se realizaron en base a las Norma E-50, de Suelo y Cimentación del RNE.

Tabla 1Resultado de Estudio de Suelos

	Calicatas			C-1	C-2	C-3	C-4
Perforación Cielo Abierto	Coordenadas			Jirón Progreso intersección con Jirón Huallaga	Jirón Bolognesi intersección con Jirón Huallaga	Jirón Progreso intersección con Jirón San Martín	Jirón Bolognesi intersección con Jirón San Martín
	Muestra			M-1	M-1	M-1	M-1
	Profundidad [m]			0.20 - 2.00	02.0 – 2.00	0.20 – 1.00	0.10 – 1.00
Análisis Granulométrico	Humedad Natural [%]		19.50	15.80	18.60	20.50	
	Grava [%]			0.00	0.00	0.00	0.00
	Arena [%]			2.37	4.79	8.93	0.23
	Fino [%]			97.63	95.21	91.07	99.77
	Límites de Atterberg	Límite Líquido	[%]	44.80	43.50	34.10	36.10
		Límite Plástico	[%]	18.30	22.30	16.10	16.90
		Índice Plástico	[%]	26.50	21.20	18.00	19.20
	Potencial de Expansión [HOLTS Y GIBBS]			MEDIA	MEDIA	MEDIA	MEDIA
	Suelos Colapsables	Densidad Natural Seco	[gr/cm3]	1.449	1.490	1.457	1.427
		Tipo de suelos	SECO	NO COLAPSABLE	NO COLAPSABLE	NO COLAPSABLE	NO COLAPSABLE
	Clasificación S.U.C.S.			CL	CL	CL	CL
	Clasificación A.A.S.H.T.O.			A – 7 – 6 (15)	A – 7 – 6 (13)	A – 6 (11)	A – 6 (12)
	Índice de Consistencia			Estable (1.2)	Estable (1.2)	Estable (1.2)	Estable (1.2)
	Profundidad [m]		[m]	2.00	2.00	1.00	1.00
Ensayo Corte	Cohesión "C" Kg/cm2		0.141	0.136	0.126	0.143	
Directo	Ángulo de Fricción "Ø" (°)		14.50	14.60	16.40	16.00	
	Densidad Natural gr/cc		1.729	1.720	1.733	1.717	
Parámetro de	Prof. Cimentación "Df" [m]		1.60	1.60	1.60	1.60	
Diseño de	Cimentación Corrida 1.00mx1.00m	Carga admisible "qadm"	kg/cm2	0.70	0.69	0.64	0.69
Cimentación		Asentamiento Si	[cm]	0.63	0.62	0.57	0.60
	Profundidad		[m]	2.00		1.00	
	Potencial de Hidrógeno [PH]		4.10		4.01		
Análisis	Conductividad Eléctrica "C.E" [dS/m]		0.472		0.471		
Químico	Sales Solubles [PPM]		0.520		0.532		
	Cloruros [PPM]		120		115		
	Sulfatos [PPM]		[PPM]	98		102	

O.E. Estudio Hidrológico – Hidráulico: Se trabajó mediante datos de precipitaciones proporcionados por el SENAMHI, a través de la estación meteorológica PICOTA, situado en la provincia de Picota, mediante el cual se obtuvieron los registros de precipitación mensual, cuyos reportes datan desde los años de 1997 hasta 2017, valores que luego fueron procesados en este informe a través del software Excel.

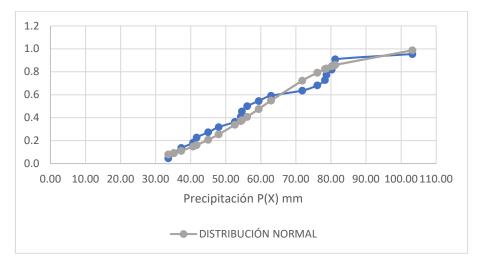
Figura 12
Variaciones de las Precipitaciones en 24 Horas



Nota: Elaboración propia de los tesistas

Los resultados determinan que las precipitaciones máximas y mínimas son de 103.20 mm y 81.00 mm respectivamente, el cual pasaron a una prueba de datos dudosos mediante Outlier, cuyos valores se ajustaron sin ningún inconveniente.

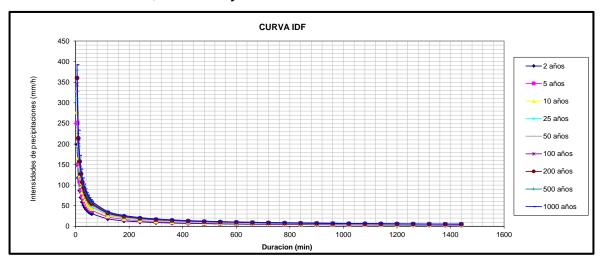
Figura 13


Representación Outlier

A través de pruebas de bondad de ajuste de Kolmogorov Smirnov, se calcularon las diferentes distribuciones efectuadas y se determinó que la Distribución Normal se ajustó más a la serie de datos.

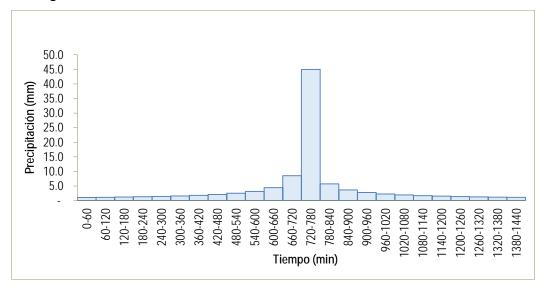
Figura 14

Distribución Normal



Nota: Elaboración propia de los tesistas

Luego se obtuvieron las intensidades de lluvia por medio de representación gráfica de la Curva IDF en base a periodos de retorno de: 2, 5, 10, 25, 50, 100, 500, 1000 años con una duración variable en minutos.


Figura 15

Curva de Intensidad, Duración y Frecuencia

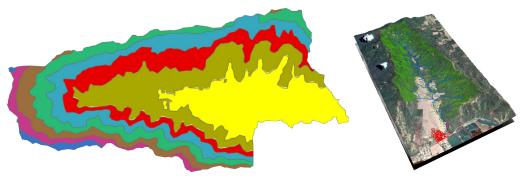

Por último, se efectuó los cálculos en base al análisis de regresión múltiple para determinar las intensidades máximas, que después mediante el método del bloque alterno se estableció el hietograma de precipitación de diseño, que para este caso será de un periodo de retorno de 25 años.

Figura 16
Hietograma

El cálculo hidráulico para el diseño se efectuó en base al estudio geomorfológico de la cuenca aportante shimbillo como dato adicional para determinar el flujo del caudal, dirección de las cuencas para luego centrarnos en el diseño hidrológico.

Figura 17
Cuenca Aportante Shimbillo

Nota: Elaboración propia de los tesistas

Parámetros Geomorfológicos

Tabla 2Parámetros Geomorfológicos de la Cuenca Aportante Shimbillo

	Parámetros			Und.	Nomenclatura	Cuenca
Superficie to	otal de la c	cuenca		Km²	At	15.128
Perímetro				Km.	Р	19.731
		Zona d	le Proyección UTM	s/U	Zona	18
Ubicación			Χ	m	Coord. X	351692.87
			Υ	m	Coord. Y	9245117.90
	Factor	Coeficion (Gravel	ente de Compacidad ius)	s/U	$Kc = 0.28 P / (At)^{1/2}$	1.431
	de	Factor	Longitud de la Cuenca	Km.	LB	8.063
Б	Cuenca	de	Ancho Medio de la Cuenca	Km.	AM = At / LB	1.876
Relaciones		Forma	Factor de Forma	s/U	Kf = AM / LB	0.233
de Forma	Rectángulo Equivalente		Lado Mayor	Km.	$Kc * (pi * A)^{1/2}/2 * (1 + (1 - 4/pi * Kc^2))$	8.063
			Lado Menor	Km.	$Kc * (pi * A)^{1/2}/2 * (1 - (1 - 4/pi * Kc^2))$	1.876
Desnivel total de la cuenca			la cuenca	Km./Km ² .	Dd = Lt / At	2.005
Desnivel total de la cuenca		Km.	Ht	0.442		
Altura media de la cuenca		m.s.n.m.	Hm	379		
Pendiente cuenca (Met. Rectángulo Equivalente)			%	Ht / Lma	5.48%	
Tiempo de 0	Concentra	ción Kirp	ich	min.	0.0195(L^3/h)^0.385	60.75

Parámetros Geomorfológicos de las Microcuencas

Tabla 3Parámetro Geomorfológico del Área de Influencia

Cuenca	Área (km2)	Cota Max.	Cota Min.	Long Principal (km)	Pendiente (m/m)	Tc Kirpich	Tc Temez	Tc SCS Rancer	Tc Promedio (min)
Jr. Progreso	0.007	218.740	215.630	0.365	0.009	11.22	8.54	11.46	10.41
Jr. Bolognesi	0.007	218.100	214.960	0.368	0.009	11.29	8.59	11.53	10.47
Jr. San Martín	0.007	217.350	215.300	0.363	0.006	13.06	9.19	13.37	11.87
Jr. Fernando Belaunde Terry	0.007	215.050	214.270	0.356	0.002	19.65	11.15	18.97	16.59
Jr. Huallaga	0.002	217.360	216.660	0.121	0.006	5.61	3.99	5.69	5.09

Nota: Elaboración propia de los tesistas

Caudales máximos para un periodo de 25 años mediante software HCANALES

Tabla 4Cálculo de Caudales Máximos para un Periodo de Veinticinco Años

Cuenca	Área (km2)	Coeficiente de Escorrentía	Tiempo de concentración	Intensidad (mm/hr)	Caudal Q (m3/s)
Jr. Progreso	0.007	0.88	10.41	167.32	0.3
Jr. Bolognesi	0.007	0.88	10.47	166.60	0.3
Jr. San Martín	0.007	0.88	11.87	151.63	0.3
Jr. Fernando Belaunde Terry	0.007	0.88	16.59	117.96	0.2
Jr. Huallaga	0.002	0.88	5.09	286.15	0.2

Nota: Elaboración propia de los tesistas

Tabla 5Diseño Hidráulico de Canales - Jr. Progreso


Tabla 6Diseño Hidráulico de Canales - Jr. Bolognesi

Tabla 7Diseño Hidráulico de Canales - Jr. San Martín

Tabla 8Diseño Hidráulico de Canales - Jr. Fernando Belaunde Terry

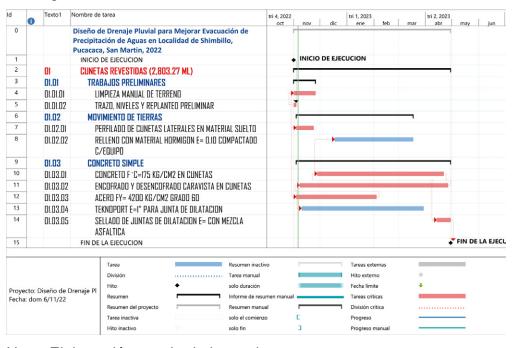
Tabla 9Diseño Hidráulico de Canales - Jr. Huallaga

Figura 18
Sistema de Drenaje Pluvial

O.E. Costos y Presupuestos: se estableció el respectivo presupuesto mediante la ejecución de metrados y tiempo de ejecución de obra.

Tabla 10

Presupuesto


Presupuesto	1101001 "Diseño de Drenaje Pluvial para Mejorar Evacua Pucacaca, San Martin, 2022"	ción de Precipit	ación de Aguas	en la Localidad c	le Shimbillo,
Subpresupuesto Lugar	002 1 SAN MARTIN - PUCACACA - SHIMBILLO				
Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	CUNETAS REVESTIDAS (2,803.27 ML)				903,214.01
01.01	TRABAJOS PRELIMINARES				7,280.09
01.01.01	LIMPIEZA MANUAL DE TERRENO	m2	1,962.29	1.73	3,394.76
01.01.02	TRAZO, NIVELES Y REPLANTEO PRELIMINAR	m2	1,962.29	1.98	3,885.33
01.02	MOVIMIENTO DE TIERRAS				62,878.06
01.02.01	PERFILADO DE CUNETAS LATERALES EN MATERIAL SUELTO	m3	1,149.34	6.04	6,942.01
01.02.02	RELLENO CON MATERIAL HORMIGON E= 0.10 COMPACTADO C/EQUIPO	m3	560.65	99.77	55,936.05
01.03	CONCRETO SIMPLE				833,055.86
01.03.01	CONCRETO F'C=175 KG/CM2 EN CUNETAS	m3	1,159.62	402.02	466,190.43
01.03.02	ENCOFRADO Y DESENCOFRADO CARAVISTA EN CUNETAS	m2	5,606.54	40.08	224,710.12
01.03.03	ACEROS FY = 4200KG/CM2 DE GRADO 60	kg	22,921.28	5.24	120,107.51
01.03.04	TEKNOPORT E=1" PARA JUNTA DE DILATACION	m	1,401.64	6.76	9,475.09
01.03.05	SELLADO DE JUNTA DE DILATACION E= DE MEZCLAS ASFÁLTICAS	m	1,401.64	8.97	12,572.71
	Costo Directo				903,214.01

SON: NOVECIENTOS TRES MIL DOSCIENTOS CATORCE Y 01/100 NUEVOS SOLES

Nota: Elaboración propia de los tesistas

Tabla 11

Cronograma

O.E. Estudio de Impactos Ambientales: se evaluaron algunos aspectos de impacto en torno al área de desarrollo y ejecución del proyecto.

Tabla 12Determinación de Impacto Potencial

Det	Determinación de Impacto Potencial					
Medios	Impactos		Bajo	Regular	Alto	
Condición del aire	Ingramento de los niveles de emisió	Partículas de polvo		•		
Condicion del alle	Incremento de los niveles de emisión	Metal pesado		•		
Ruido	Aumento de los niveles sonoros	Continuos		•		
Ruido	Aumento de los niveles sonoros	Puntuales		•		
Climas	Cambio Climático			•		
Geología – Geomorfología	Aumento de intensidades de ladera	y superficie	•			
	Cambio en las fases de erosiones y sedimentaciones					
Hidrografías Superficiales y Subterráneas	Pérdidas de calidad de las aguas			•		
Gubierraneas	Compactación			•		
	Demoliciones superficiales directas			•		
	Compactaciones	•				
Suelo	Erosión en incremento					
Suelo	Demolición directa en la vegetación					
	Cambios por tránsito, pisoteo					
	Cambio del relieve			•		
	Cambio del panorama			•	•	
Paisaje	Ruido y sonido no deseable en aumento			•		
	Variación de acceso			•		

Nota: Elaboración propia de los tesistas

Tabla 13 *Alteración de Acuerdo a las Actividades y Fase del Proyecto*

Problema o Alteración de Acuerdo a la Actividad y Fase del Proyecto				
Medio	Alteración	Actividades del Proyecto	Fase	
Aumento del nivel de emisiones Condición del Aire Partículas Metales Pesados		Movimiento de tierrasFormación de terraplenes	OBRAS	
Ruido	Incremento de los niveles sonoros Continuo Puntual	Transporte de cargamento y descargas de materialesTránsitos	OBRAS	
Geología – Geomorfología	Incremento de intensidades de laderas y superficies	 Desplazamientos de tierras Movimiento de maquinas Extracciones de material de canteras 	OBRAS Y OPERACIONES	
Hidrografías Superficiales y Subterráneas	Cambio en las fases de erosiones y sedimentaciones Pérdidas de la calidad de las aguas Compactación	 Derrames imprevistos de aceites y combustibles Movimiento de tierras Nivelación de tierras 	OBRAS	
Paisaje	Ruido y sonido no deseable en aumento	- Aumento de la comunicación	OBRAS Y OPERACIONES	
	Cambio del panorama demográfico Cambios de accesibilidad	- Aumento del acceso	OBRAS	
Social	Cambios de rendimiento productivo	- Aumento del acceso	OBRAS	

V. DISCUSIÓN

Objetivo General: Respecto al diseño del sistema de red de drenaje pluvial para el mejoramiento de evacuación de precipitación de aguas en el centro poblado de Shimbillo, distrito de Pucacaca, provincia de Picota, región San Martín, esta tiene algunas comparativas y similitudes con los proyectos de Sánchez (2019) de "diseño de estructura de drenaje pluvial para mejoramiento de la transitabilidad en el Caserío de Santo Tomás, Pucacaca, San Martin", Ramírez & Waller (2019) de "diseño de sistema red de drenaje pluvial para el mejoramiento de la accesibilidad en la localidad de Alfonso Ugarte y Paucar, Picota, San Martín" y Tapullima (2018) de "diseño de sistema de drenaje pluvial para mejoramiento de la transitabilidad en la localidad de San Cristóbal, Picota, San Martín", en cuanto a procesos y cálculos desarrollados, las cuales se refieren a continuación:

O.E. Estudio Topográfico: El área de estudio presenta tramos con pendientes que varían entre los 0.57% - 0.85% lo cual clasifica a la orografía en plana. Estos resultados son casi similares a los resultados obtenido por Sánchez (2019) que posee pendientes que van desde 0.4% - 3.8%, Ramírez & Waller (2019), con pendientes de 0.3% - 1.8%, por lo que podemos coincidir que, para el desarrollo de sistemas de redes de drenajes pluviales, no se requerirá de movimientos excesivos de tierra, de tal forma que favorecerá su rentabilidad.

O.E. Estudio de Suelos: En el área de influencia del sector estudiado, se obtuvo en promedio ciertos resultados en comparación con Sánchez (2019), Ramírez & Waller (2019) y Tapullima (2018) son:

Tabla 14Cuadro Comparativo de Estudios de Suelos

Descripción	Resultado Propio	Sánchez (2019) Ramírez & Waller (2019)	Tapullima (2018)
Clasificación S.U.C.S.	CL	CL	CL - SC
Capacidad Portante	0.68 kg/cm^2	1.095 kg/cm^2	
Contenido de Humedad	5.19%	14.44%	18.41%
Limite Liquido	39.63%	37.92%	31.97%
Limite Plástico	18.40%	21.28%	17.73%
Índice de Plasticidad	21.23%.	16.63%	14.24%

Según el método SUCS se puede coincidir en gran parte que los estratos se clasifican en CL, es decir que el terreno se compone de arcilla inorgánica de plasticidades bajas a medianas, gravosa, arenosa, limosa y magra, a excepción de Tapullima (2018) que presenta otro estrato de tipo SC que significa que se compone de arenas arcillosas (mezclas de arena y arcilla)

Las diferencias entre los tipos de suelos son poco regulares, debido a que en gran parte los trabajos o proyectos efectuados se encuentran dentro del área de la Provincia de Picota, del departamento de San Martin, por lo que se puede apreciar variaciones mínimas en cuanto a contenidos de humedad, límites líquidos, límites plásticos e índice de plasticidad.

O.E. Estudio Hidrológico – Hidráulico: En base a parámetros hidrológicos se proyecta un período de retorno de 25 años con una precipitación máxima de 103,2mm, en concordancia con Sánchez (2019) y Ramírez & Waller (2019), cuyos datos recopilados derivan de la estación PICOTA, obteniendo un histograma de diseño mediante el procedimiento de curvas IDF. La pendiente de la superficie es de 0,002 - 0,009 m/m y el caudal del método racional es de 0,2 - 0,3 m3/s. La red de drenaje es de hormigón armado de dimensiones 0,60 m x 0,70 m estimado por la pendiente del terreno, resistencia y abrasión del agua. Se empleó el software H CANALES para determinar las propiedades del flujo, cuyo factor predominante es el supercrítico o rápido; con profundidad de descarga pequeña y gran velocidad de flujo; subcrítico, con gran profundidad de descarga y velocidad pequeña.

O.E. Costos y Presupuestos: Para el área del proyecto desarrollado se obtuvo en promedio ciertos resultados en comparación con Sánchez (2019) y Ramírez & Waller (2019) que son:

Tabla 15Cuadro Comparativo de Presupuestos

Descripción	Resultado Propio	Sánchez (2019)	Ramírez & Waller (2019)
Presupuesto	S/ 903.214.01	S/ 476.203.70	S/ 2.553.492.02

Nota: Elaboración propia de los tesistas

Los resultados son notorios, por lo que cabe resaltar que los presupuestos varían de acuerdo a la envergadura o área del proyecto, esto en mención de la logística que contempla el costo material, mano de obra y equipos.

O.E. Estudio de Impacto Ambiental: En este apartado solamente se puede coincidir que con Sánchez (2019) y Ramírez & Waller (2019), se precisará de un plan de manejo y de contingencia para prever daños al entorno durante la etapa de planificación, construcción, operación, mantenimiento y cierre de operaciones.

VI. CONCLUSIONES

Objetivo General: Se logró efectuar el diseño del sistema de drenaje pluvial para el mejoramiento de evacuación de precipitación de aguas en el centro poblado de Shimbillo, distrito de Pucacaca, provincia de Picota, región San Martín y que, bajo ciertos parámetros normativos, esta constará de cunetas rectangulares de concreto armado de 0.60 x 0.70 m con un área hidráulica de 0.40 x 0.45 m, solucionando la falta de dicho sistema y a su vez resolviendo el problema de las inundaciones o formación de charcos en todo el trayecto de la calles referidas. Debido a su viabilidad y factibilidad se precisan de las siguientes conclusiones respecto a los estudios efectuados.

O.E. Estudio Topográfico: Los resultados topográficos determinan que el terreno presenta pendientes semi pronunciadas entre los 0.002 m/m hasta 0.009 m/m, que establecen que la morfología del terreno es de forma irregular con una superficie moderadamente plana con depresiones regulares, que impiden el escurrimiento libre de las aguas pluviales, ocasionando acumulaciones superficiales, situación que se da por la presencia de micro relieves con mínimas o regulares depresiones que forman áreas inundables temporadas de lluvias.

O.E. Estudio de Suelos: El suelo está conformado por una capa de material granular en toda la zona del estudio, el sub suelo en su totalidad está conformado por material fino del tipo arcilla inorgánica, de color marrón a marrón rojizo, encontrando de mayor espesor en las calicatas C-01 y C-02. se encuentra con consistencia media, de mediana plasticidad, el cual servirá de receptor y transportador de aguas pluviales.

Para el diseño de la cimentación del conducto principal, será superficial por medio de cimientos armados y/o cimientos corridos, cimentados en estratos de suelos. No se permitirá la cimentación directa sobre suelo arcilloso, por lo que tendrá que apoyarse sobre un suelo no expansivo o con potencial de expansión mínimo.

El nivel de agresividad química del suelo de fundación es leve, ya que el valor de los sulfatos y sales se encuentran por debajo de los 1.000 ppm, y no se evidenciaron niveles de capa freática, en consecuencia, el suelo es viable para la construcción.

- O.E. Estudio Hidrológico Hidráulico: El funcionamiento del sistema de drenaje pluvial trabajará por acción de la gravedad en base a un flujo supercrítico o rápido; con profundidad de descarga pequeña y gran velocidad de flujo; subcrítico, con gran profundidad de descarga y velocidad pequeña.
- O.E. Costos y Presupuestos: Mediante el cálculo de planilla de metrado estructurado a través de subpartidas, que procesadas mediante el software S10, el costo total del proyecto asciende a S/ 903.214.01.
- O.E. Estudio de Impacto Ambiental: Los estudios determinan que las actividades del proyecto son ambientalmente viables dentro de las medidas preventivas y/o correctivas que deben adoptarse para su normal funcionamiento.

VII. RECOMENDACIONES

Objetivo General: Efectuar un plan de operación y mantenimiento posteriores a la implementación (pos-ejecución) del proyecto, que aseguren el drenaje adecuado de las aguas pluviales y la gestión adecuada de la infraestructura para evitar su degradación (deterioro).

O.E. Estudio Topográfico: en este apartado como parte del análisis topográfico, se recomienda efectuar varios puntos de medición (levantamiento), para obtener muestras más confiables del terreno, poder estimar mejor la estructura apropiada y representar de forma más precisa el plano topográfico de la zona utilizando una escala adecuada. Así mismo, se deberá seguir sin limitación alguna, todo lo previsto en el proyecto de diseño, en consideración con la Norma de Drenaje Pluvial Urbano CE.040 y de la Norma Técnica Geodésica del Instituto Geográfico Nacional, que al establecer ciertos parámetros de diseño y el disponer de equipos modernos, se podrá asegurar conseguir datos reales evitando errores mayores de cálculos topográficos.

O.E. Estudio de Suelos: Con la finalidad de mejorar las condiciones del suelo fino arcilloso existente, con el área de contacto de estructura a cimentar, se recomienda aumentar los suelos naturales con material grava limosa, o grava con poco fino, ya sea proveniente de rio o material de cantera cerro (previo zarandeo para los dos casos) con espesor de 20 cm, compactando al 95% de su máxima densidad propia del suelo de apoyo y elevar su resistencia al esfuerzo cortante reduciendo los asentamiento probables.

El material propuesto para mejoramiento del terreno es material granular procedente de la cantera "Rio Huallaga", ubicado en la misma localidad donde se desarrolla el estudio. Para la construcción de las estructuras se recomienda utilizar CEMENTO TIPO Ico Para el desarrollo de diseño de mezcla de concreto, la fuente de agua que se utilizará será proveniente de las redes de agua Potable del centro poblado de Shimbillo.

O.E. Estudio Hidrológico – Hidráulico: Se recomienda tener en cuenta el período de diseño considerando la normatividad vigente del RNE y las características del área de estudio. Para mayor seguridad en cuanto a resultados hidrológicos se obtenga, deberán ser validados y comprobados mediante software, de tal forma que se pueda comparar los resultados efectuados en Excel, para mayor precisión.

Verificar la elevación (cotas) de las áreas donde el agua de lluvia drena en canales, arroyos o ríos, a fin de determinar si el caudal será de mayor afluente durante los períodos de máxima precipitación para evitar que las redes principales colapsen.

O.E. Costos y Presupuestos: Para obtener un resultado preciso de los costos y presupuestos, se deberá tomar precauciones al momento de efectuar el cálculo de metrados, examinar los planos del proyecto y las especificaciones técnicas, en correlación con las representaciones de los planos, perfiles y detalles de las zanjas o cunetas, para evitar costos adicionales excesivos durante la implementación o desarrollo del proyecto.

Mantener registros actualizados de todos los costos de equipos, materiales e insumos que se abonaran al proyecto y el costo de la mano de obra a disponer, a fin de evitar sobre costos.

O.E. Estudio de Impactos Ambientales: Se recomienda que los trabajos relacionados con las actividades de instalaciones, operaciones y de mantenimiento del sistema de drenaje pluvial en el sector Shimbillo, se realicen de acuerdo al modelo del plan de manejo ambiental que se propuso, garantizando de que dichas actividades no afecten el entorno natural.

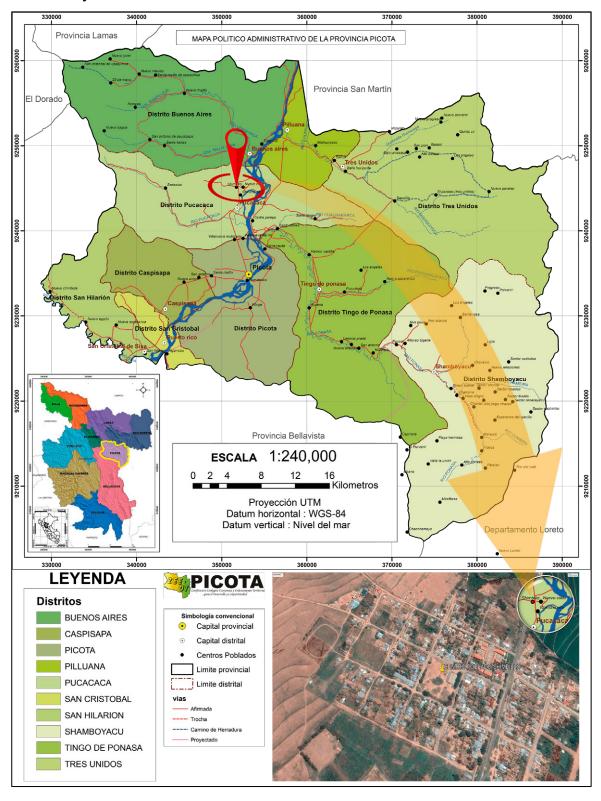
Presupuestarse y desarrollar un plan que incluya medidas de mitigación y monitoreo de las actividades. De igual forma, los planes de emergencia deben aplicarse dentro de las fases de planificación, de construcción, de operación, de mantenimiento y cierre.

REFERENCIAS

- Aguilar Fernandez, K. F. (2021). Evaluación del Drenaje Pluvial de Vías Urbanas para Establecer Puntos Críticos de Inundación en un Distrito [tesis de titulación, Universidad Peruana Los Andes]. *Repositorio institucional UPLA*. https://hdl.handle.net/20.500.12848/3020
- Ander-Egg, E. (2006). Técnicas de Investigacién Social. HVMANITAS.
- Andrade A, E. E. (2011). Hidrología Urbana. *CivilGeeks.com*. https://civilgeeks.com/2011/12/15/hidrologia-urbana/
- Aparicio Mijares, F. J. (1992). Fundamentos de Hidrología de Superficie. LIMUSA.
- Bautista Bautista, C. A., & Sanguino Flórez, A. F. (2020). Propuesta de diseño de un sistema urbano de drenaje sostenible para reducir los niveles de inundación en la intersección entre la avenida 12e y la calle 2n en la ciudad de Cúcuta Norte de Santander [tesis de titulación, Universidad Francisco de Paula Santander]. Repositorio institucional UFPS. http://repositorio.ufps.edu.co/handle/ufps/4550
- Behar Rivero, D. S. (2008). *Metodología de la Investigación*. Shalom.
- Carrero, E. (2021). ¿Cuáles bases teóricas, referentes teóricos o conceptuales debo desarrollar en mi tesis de grado? *TODOSOBRETESIS*. https://todosobretesis.com/bases-teoricas
- Ceme Acosta, R. E. (2022). Diseño del sistema de alcantarillado pluvial en la cabecera parroquial de Noboa, Cantón 24 de Mayo Provincia de Manabí [tesis de titulación, Universidad Estatal del Sur de Manabí]. *Repositorio institucional UNESUM.* http://repositorio.unesum.edu.ec/handle/53000/3606
- Chavez Cortes, R., & Vargas Tanta, E. (2021). Diseño del sistema de drenaje pluvial en la avenida Perú y el Jirón Unión Trujillo [tesis de titulación, Universidad César Vallejo]. *Repositorio institucional UCV*. https://hdl.handle.net/20.500.12692/85069
- Chiroque Herrera, C. A. (2021). Assessment of danger due to pluvial flooding in the La Despensa property, district of Leonardo Ortiz, province of Chiclayo,

- Lambayeque region [Informe Técnico;N° A7116]. *INGEMMET Institutional Repository*. https://hdl.handle.net/20.500.12544/3070
- Comición Nacional del Agua [CONAGUA]. (2019). *Manual de Agua Potable, Alcantarillado y Saneamiento. Drenaje Pluvial Urbano.* Mexico.

 https://files.conagua.gob.mx/conagua/mapas/SGAPDS-1-15-Libro19.pdf
- ConstruBIM. (2021). Tipos de Estructuras de Drenaje Pluvial. https://www.facebook.com/construbimPeru/photos/a.353553972165572/93 1240707730226
- Corrales Corrales, J. A. (2018). Evaluación y diseño del sistema de alcantarillado para mejorar la evacuación de aguas pluviales en el sector San Blas del distrito de Cusco [tesis de titulación, Universidad Andina del Cuzco]. Repositorio institucional UAndina. https://hdl.handle.net/20.500.12557/2499
- Dueñas Caballero, Y. J. (2022). Precipitación pluvial y red drenaje de evacuación en la Avenida Cultura entre Manuel Prado hasta Marcavalle, distrito Wánchaq Cusco 2021 [tesis de titulación, Universidad César Vallejo]. *Repositorio institucional UCV.* https://hdl.handle.net/20.500.12692/95253
- Empresas Municipales de Tuluá [EMTULUA]. (2022). Zona de niños. https://emtulua.gov.co/zona-de-ninos/
- Haltas, I., Yildirim, E., Oztas, F., & Demir, I. (2021). A comprehensive flood event specification and inventory: 1930–2020 Turkey case study. *International Journal of Disaster Risk Reduction, 56*(102086). https://doi.org/10.1016/j.ijdrr.2021.102086
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. (2014). *Metodología de la Investigación.* McGrawHill.
- Latin American Division of the International Association for Hydraulic Research [IAHR LAD]. (2000). Hidrología Urbana: Manejo de Excesos Pluviales en Areas Urbanas. Medidas Estructurales y No-Estructurales. *IAHR LAD*. https://members.tripod.com/~iahr_lad/Curso_UNL.htm


- Ministerio de Vivienda, Construcción y Saneamiento. (2018). Decreto Legislativo N°1356: Ley General de Drenaje Pluvial. *gop.pe*. https://www.gob.pe/institucion/vivienda/normas-legales/177942-1356
- Ministerio de Vivienda, Construcción y Saneamiento. (2021). Resolución Ministerial N.º 126-2021-VIVIENDA: Modificación de la Norma Técnica OS.060 Drenaje Pluvial Urbano a Norma Técnica CE.040 Drenaje Pluvial del Reglamento Nacional de Edificaciones. *gob.pe.* https://www.gob.pe/institucion/vivienda/normas-legales/1881161-126-2021-vivienda
- Mori Honorio, J. J. (2018). Diseño del drenaje pluvial para mejorar la transitabilidad en la localidad de San Roque de Cumbaza, San Martín [tesis de titulación, Universidad César Vallejo]. *Repositorio institucional UCV*. https://hdl.handle.net/20.500.12692/27406
- Novoa Casanova, G. A., & Guillén Arauz, B. F. (2018). Desarrollo de una estación agro-meteorológica automática remota para el levantamiento de información climática en la cuenca del Río Pisque [tesis de titulación, Universidad Politécnica Salesiana]. Repositorio institucional UPS. https://dspace.ups.edu.ec/handle/123456789/15601
- Ojeda de La Cruz, A., Álvarez Chávez, C. R., & Orona Llano, D. C. (2020). Sustainable stormwater drainage. A rain water management alternative at the University of Sonora. *CONTEXT. Journal of the Faculty of Architecture of the Autonomous University of Nuevo León, 14*(20). https://doi.org/10.29105/contexto14.20-4
- Ordoñez Gálvez, J. J., & SENAMHI. (2011). *Cartilla Técnica: Ciclo Hidrológico*. Sociedad Geográfica de Lima.
- Otálora Pardo, E. (2018). Propuesta de alcantarillado pluvial para garantizar el drenaje para la escorrentía superficial Barrio San Vicente suroriental, localidad de San Cristóbal Bogotá D.C. [tesis de titulación, Universidad Catolica de Colombia]. *Repositorio institucional RIUCaC*. https://hdl.handle.net/10983/22829

- Pavco Wavin. (2022). Los sistemas de drenaje pluvial urbano mitigarán inundaciones en las ciudades del norte del país. https://shre.ink/c0Gm
- Ramírez Chasnamote, E., & Waller López, K. (2019). Diseño de la red de drenaje pluvial para mejorar la accesibilidad en las localidades de Alfonso Ugarte y Paucar, Picota, San Martín [tesis de titulación, Universidad César Vallejo]. Repositorio institucional UCV. https://hdl.handle.net/20.500.12692/39209
- Rivasplata Flores, L. F. (2019). Generación de escorrentía superficial a partir de información climática en la cuenca de la quebrada Huertas Chilete, Cajamarca [tesis de titulación, Universidad Nacional de Cajamarca]. Repositorio institucional UNC. http://hdl.handle.net/20.500.14074/3580
- Sánchez Gatica, M. (2019). Diseño de la estructura de drenaje pluvial para mejorar la transitabilidad en el Caserío de Santo Tomás, Pucacaca, San Martín, 2018 [tesis de titulación, Universidad César Vallejo]. *Repositorio institucional UCV*. https://hdl.handle.net/20.500.12692/39007
- Sánchez San Román, F. J. (2020). El Ciclo Hidrológico. *Hidrología Hidrogeología*. https://hidrologia.usal.es/temas.html
- Sistema Intermunicipal de Agua Potable y Alcantarillado [SIAPA]. (2019). Criterios y lineamientos técnicos para factibilidades en la A.M.G. Drenaje Pluvial. SIAPA. https://www.siapa.gob.mx/transparencia/criterios-y-lineamientos-tecnicos-para-factibilidades-en-la-zmg
- Tapullima Gálvez, F. (2018). Diseño del sistema de drenaje pluvial para mejorar la transitabilidad en la localidad de San Cristóbal, Picota [tesis de titulación, Universidad César Vallejo]. Repositorio institucional UCV. https://hdl.handle.net/20.500.12692/27428
- Victores, I. (2014). Causas de las inundaciones. *Tierra y Tecnología*. https://www.icog.es/TyT/index.php/2014/10/causas-las-inundaciones/
- Villón Béjar, M. (2002). HIDROLOGÍA. Tecnológica de Costa Rica.
- World Health Organization [OMS]. (2022). *Sanitation*. https://www.who.int/news-room/fact-sheets/detail/sanitation

ANEXOS

Anexo 1: Localización

Ubicación y Área de Influencia de Estudio

Fuente: Adaptado del Mapa Político de la Provincia de Picota - GRSM - SGAT

Anexo 2: Estado situacional de las vías públicas

Foto 1

Jr. Progreso intersección con Jr. Huallaga

Foto 2

Jr. Bolognesi

Foto 3

Jr. Bolognesi intersección con Jr. San Martín

Foto 4 *Jr. San Martín con Jr. Progreso*

Anexo 3: Tabla de operacionalización de variables

VARIABLES		DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
		Sistema de tuberías que establece un mejor control y manejo de las aguas pluviales, en cuanto a	efectúa en base a ciertos parámetros que mediante norma están establecidos	Estudio de Topografía	 Formas del relieve en Planta Formas del relieve en Perfil 	
RIABLE PENDIENTE	Drenaje	dirección y transporte de las mismas.	en el RNE_CE.040 y de datos hidrológicos proporcionadas por el SENAMHI y estudios complementarios.	Estudio Mecánico de suelos	 Característica del suelo Contenido de Humedad 	
VARIABLE INDEPENDIENTE	pluvial			Estudio hidrológica- hidráulica	 Cálculo de Intensidad Cálculo del Caudal 	Razón
				Costo y Presupuesto	MetradosAnálisis del costo y precio unitario	
				Estudio de impactos ambientales	Plan de contingencia	
VARIABLE DEPENDIENTE	Mejorar evacuación	Propuesta técnica de infraestructura hidráulica para optimizar el drenaje pluvial de las vías públicas.	Resultados en función de parámetros de diseño, intensidad precipitación, caudales de diseño y solidos de arrastre.	Recolección Transporte Almacenamiento Drenaje mediante una estructura	Jirones e intersecciones	Razón

Anexo 4: Instrumentos de recolección de datos

Libreta Topográfica

UNI	VERSIDAD	CÉSAR \	VALLEJO
-----	----------	---------	---------

LIBRETA DE CAMPO - ESTUDIO TOPOGRÁFICO

Proyecto	:
----------	---

Ubicación:	
Foolso:	

Fecha:				
Puntos	COORDI	ENADAS	DIST.	DESCRIPCÓN
Fulltos	ESTE	NORTE	Dist.	DESCRIPCON
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
	• • •			•••

Ficha Resumen de Estudio de Suelos

Profundidad

Sales Solubles

Cloruros

Sulfatos

Análisis

Químico

Potencial de Hidrógeno

Conductividad Eléctrica "C.E"

[m]

[PH]

`[dS/m]

[PPM]

[PPM]

[PPM]

J u	NIVERSIDA	AD CÉSAR VALLE	:10		FICHA RESUMEN - E	ESTUDIO DE SUELOS	
Proyecto:							
Ubicación:				Latitud Sur:		Departamento:	
Mes:				Longitud Oeste:		Provincia:	
Año:				Altitud:		Distrito:	
	Calicatas						
Perforación	Coordenadas						
Cielo Abierto	Muestra						
	Profundidad		[m]				
	Humedad Na	tural	[%]				
	Grava		[%]				
	Arena [%]						
	Fino [%]						
	Límite Líquido		[%]				
	Limites de	Límite Plástico	[%]				
	Atterberg	Índice Plástico	[%]				
Granulométrico	Potencial de	Expansión [HOLTS Y GIBE					
Análisis Granulomátrico	Suelos	Densidad Natural Seco	[gr/cm3]				
	Colapsables	Tipo de Suelos	SECO				
	Clasificación		· ·				
	Clasificación	A.A.S.H.T.O					
	Índice de Cor	sistencia					
	Profundidad		[m]				
Ensayo Corte	Cohesión "C"		kg/cm2				
Directo	Ángulo de Fri	cción "Ø"	(°)				
	Densidad Nat		gr/cc				
Douémostus de	Prof. Cimenta	ación "Df"	[m]				
Parámetro de Diseño	Cimentación Corrida	Carga admisible "gadm"	kg/cm2				
de Cimentación	0.00m x 0.00m	Asentamiento Si	[cm]				

Ficha de Datos Pluviométricos

	UNIVERSIDAD CÉSAR VALLEJO	FIC	HA DE DATOS PLU	VIOMETR	RICOS
Proyec	to:				
Tesistas:			Fed	ha: 00/00/	/0000
х		Longitud		Dpto:	
		Latitud:		Prov:	
		Altitud:		Distr:	

									Altitud:			Distr:			
					P	recipitacio	n Diaria N	laxima en	24 hras (m	ım)					
ITEM	AÑO	ENE	FEBR	MARZ	ABR	MAY	JUN	JUL	AGOST	SET	ОСТ	NOV	DIC	MÁXIMO	MEDIA
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															
13															
14															
15															
16															
17															
18															
19															
20															
21															
Med	ia														
Desv															
Varia															
Máxi															_
Míni															
		1era	Precipitad	1era Precipitacion Maxima Mensual 2da Precipitacion Maxima Mensual											

Anexo 5: Validez y confiabilidad de los instrumentos de recolección de datos

ANEXO : Certificado de validación del instrumento de recolección de datos
I. DATOS GENERALES
Apellidos y nombres del experto: Padilla Maldanado Luisa del C.
Institución donde labora: CES AR VALLESO
Especialidad: INGENTERO CIVIL
Instrumento de evaluación: Estudio topográfico del punto de estudio, estudio de suelo, Contenido de humedad, Clasificación de suelos SUCS AASHTO, Limite líquido, Limite plástico, Índice de plasticidad. Estudio de cálculo hidrologico-hidraulico y Análisis de costos unitarios.
Proyecto: "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la
Localidad de Shimbillo, Pucacaca, San Martin, 2022"
II. ASPECTOS DE VALIDACIÓN MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales					×
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recoger la información objetiva sobre la variable: Diseño de Drenaje Pluvial en todas sus dimensiones en indicadores conceptuales y operacionales					>
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legalidad inherente a la variable: Diseño de Drenaje Pluvial					>
ORGANIZACIÓN	Los ítems del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a las variables, de manera que permitan hacer inferencias en función a las hipótesis, problemas y objetivos de la investigación.					,
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y calidad acorde con las variables, dimensiones e indicadores.					>
INTENCIONALIDAD	Los ítems del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variables de estudio.					>
CONSISTENCIA	La información que se recoge a través de los ítems del instrumento, permite analizar, describir y explicar la realidad, motivo de la investigación					>
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de las variables					1
METODOLOGÍA	La relación entre la técnica y el instrumento propuesto responde al propósito de la investigación, desarrollo tecnológico e innovación.					>
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					1
	PUNTAJE TOTAL				50)

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

III. OPINIÓN DE APLICABILIDAD

LOS INSTRUMENTOS DE APLICABILIDAD DE DATOS SE ENCUENTRAN DENTRO DEL VALOR ACEPTABLE.

PROMEDIO DE VALORACIÓN:

Luisa del C. Padilla Maldonado

48

Lima 10 de OCTUBRE de 2022

ANEXO : Certificado de validación del instrumento de recolección de datos

DATOR	CENEDA	EC

Apellidos y nombres del experto	Podillo Maldonado	Luisa dec C.
Institución donde labora:	CESOr Vallejo	
Especialidad: INGENIE	STUIL OS	

Instrumento de evaluación: Estudio topográfico del punto de estudio, estudio de suelo, Contenido de humedad, Clasificación de suelos SUCS AASHTO, Limite líquido, Limite plástico, Índice de plasticidad. Estudio de cálculo hidrologico-hidraulico y Análisis de costos unitarios.

Proyecto: "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022"

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales					X
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recoger la información objetiva sobre la variable: Mejorar la evacuación en todas sus dimensiones en indicadores conceptuales y operacionales					×
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legalidad inherente a la variable: Mejorar la evacuación.					×
ORGANIZACIÓN	Los ítems del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a las variables, de manera que permitan hacer inferencias en función a las hipótesis, problemas y objetivos de la investigación.					×
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y calidad acorde con las variables, dimensiones e indicadores.					X
INTENCIONALIDAD	Los ítems del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variables de estudio.					×
CONSISTENCIA	La información que se recoge a través de los ítems del instrumento, permite analizar, describir y explicar la realidad, motivo de la investigación					X
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de las variables					×
METODOLOGÍA	La relación entre la técnica y el instrumento propuesto responde al propósito de la investigación, desarrollo tecnológico e innovación.					X
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					X
	PUNTAJE TOTAL		8		50	

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

III. OPINIÓN DE APLICABILIDAD

LOS INSTRUMENTOS DE APLICABILIDAD DE DATOS SE ENCUENTRAN DENTRO DEL VALOR ACEPTABLE.

PROMEDIO DE VALORACIÓN:

48

Lima 10 de OCTUBRE de 2022

Luisa del C. Padilla Maldonado

ANEXO : Certificado de validación del instrumento de recolección de datos

D 4	TOS	OFA	IFDA	LEC

Apellidos y nombres del e	experto: Mend	1020 Jel AG	vila Tron	
Institución donde labora:	CESAR	VALLEZO		
Especialidad:	INGENIERO	CIUIL		

Instrumento de evaluación: Estudio topográfico del punto de estudio, estudio de suelo, Contenido de humedad, Clasificación de suelos SUCS AASHTO, Limite líquido, Limite plástico, Índice de plasticidad. Estudio de cálculo hidrologico-hidraulico y Análisis de costos unitarios.

Proyecto: "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022"

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales					×
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten recoger la información objetiva sobre la variable: Mejorar la evacuación en todas sus dimensiones en indicadores conceptuales y operacionales		711			×
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legalidad inherente a la variable: Mejorar la evacuación.					×
ORGANIZACIÓN	Los ítems del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a las variables, de manera que permitan hacer inferencias en función a las hipótesis, problemas y objetivos de la investigación.					×
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y calidad acorde con las variables, dimensiones e indicadores.					×
INTENCIONALIDAD	Los ítems del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y variables de estudio.					×
CONSISTENCIA	La información que se recoge a través de los ítems del instrumento, permite analizar, describir y explicar la realidad, motivo de la investigación					×
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de las variables					×
METODOLOGÍA	La relación entre la técnica y el instrumento propuesto responde al propósito de la investigación, desarrollo tecnológico e innovación.					×
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					×
	PUNTAJE TOTAL			GAIN S	50)

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

III. OPINIÓN DE APLICABILIDAD

LOS INSTRUMENTOS DE APLICABILIDAD DE DATOS SE ENCUENTRAN DENTRO DEL VALOR ACEPTABLE.

PROMEDIO DE VALORACIÓN:

48

Lima 10 de OCTUBRE de 2022

ANEXO : Certificado de validación del instrumento de recolección de datos

I. DATOS GENERALES

Apellidos y nombres del experto: Cuzco Trigozo Luiz Armando

Institución donde labora: Universidad Nacional de San Martín

Especialidad: Metodología de la investigación

Instrumento de evaluación: Estudio topográfico del punto de estudio, estudio de suelo, Contenido de humedad, Clasificación de suelos SUCS AASHTO, Limite líquido, Limite plástico, Índice de plasticidad. Estudio de cálculo hidrologico-hidraulico y Análisis de costos unitarios.

Proyecto: "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022"

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están redactados con lenguaje apropiado y libre					Х
	de ambigüedades acorde con los sujetos muestrales					
OBJETIVIDAD	Las instrucciones y los ítems del instrumento permiten					Х
	recoger la información objetiva sobre la variable: Diseño de					
	Drenaje Pluvial en todas sus dimensiones en indicadores					
	conceptuales y operacionales					
ACTUALIDAD	El instrumento demuestra vigencia acorde con el					Х
	conocimiento científico, tecnológico, innovación y legalidad					
	inherente a la variable: Diseño de Drenaje Pluvial					
ORGANIZACIÓN	Los ítems del instrumento reflejan organicidad lógica entre					Χ
	la definición operacional y conceptual respecto a las					
	variables, de manera que permitan hacer inferencias en					
	función a las hipótesis, problemas y objetivos de la					
	investigación.					
SUFICIENCIA	Los ítems del instrumento son suficientes en cantidad y					Х
	calidad acorde con las variables, dimensiones e					
	indicadores.					
INTENCIONALIDAD	Los ítems del instrumento son coherentes con el tipo de					Х
	investigación y responden a los objetivos, hipótesis y					
	variables de estudio.					
CONSISTENCIA	La información que se recoge a través de los ítems del					Х
	instrumento, permite analizar, describir y explicar la					
	realidad, motivo de la investigación					
COHERENCIA	Los ítems del instrumento expresan relación con los					Х
	indicadores de cada dimensión de las variables					
METODOLOGÍA	La relación entre la técnica y el instrumento propuesto					Х
	responde al propósito de la investigación, desarrollo					
	tecnológico e innovación.					
PERTINENCIA	La redacción de los ítems concuerda con la escala					Х
	valorativa del instrumento.					
PUNTAJE TOTAL		50				

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

III. OPINIÓN DE APLICABILIDAD

LOS INSTRUMENTOS DE APLICABILIDAD DE DATOS SE ENCUENTRAN DENTRO DEL VALOR ACEPTABLE.

PROMEDIO DE VALORACIÓN:

48 hughun Lima 10 de OCTUBRE de 2022

M.Sc. Ing. Luis Armando Cuzco Trigozo CIP: 125258

Anexo 6: Autorización de aplicación del instrumento

"AÑO DEL FORTALECIMIENTO DE LA SOBERANIA NACIONAL"

Trujillo, 24 de junio del 2022

Señor:

JEFE DE INVESTIGACION DEL CURSO DE TITULACION PROFESIONAL

Referencia: CTP-252-TRUJILLO

Asunto: Autorización de la ejecución del proyecto de investigación

De mi mayor consideración:

Es muy grato dirigirme a usted, para saludarlo muy cordialmente.

Yo AYBAR ARRIOLA GUSTAVO ADOLFO autorizo a fin de que los Bach. GERALD CALLOQUISPE RODRIGUEZ y LLOYSER JOEL GUERRA VARGAS del Programa de Titulación, Taller de Elaboración de Tesis de la Escuela Académica Profesional de Ingeniería Civil, pueda ejecutar su investigación titulada: "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022", en la Universidad Cesar Vallejo.

Sin otro particular, me despido de Usted, no sin antes expresar los sentimientos de mi especial consideración personal.

Atentamente

ING. GUSTAVO ADOLFO AYBAR ARRIOLA

ESTUDIO TOPOGRÁFICO

PROYECTO

"DISEÑO DE DRENAJE PLUVIAL PARA MEJORAR EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA, SAN MARTIN, 2022"

UBICACIÓN

LOCALIDAD : CENTRO POBLADO SHIMBILLO

DISTRITO : PUCACACA

PROVINCIA: PICOTA

REGION : SAN MARTÍN

ASUNTO : DISEÑO DRENAJE PLUVIAL

Tarapoto
Julio del 2022

INFORME TOPOGRÁFICO

1. RESUMEN

En resumen, todo sobre el estudio topográfico de la localidad de Shimbillo fue la metodología adaptada a los términos de referencia en lo que respecta a la topografía.

- Los trabajos ejecutados en el levantamiento topográfico están referidos a coordenadas UTM con datum horizontal: WG-84 y datum vertical: con nivel medio del mar, se dejaron marcas definidas en tramos específicos del levantamiento que servirán de control, con fines de replanteo para futuras obras.
- La realización del trabajo de campo se efectuó en el día de la siguiente manera: se realizó la toma de datos de campo durante el día, la transmisión de la información de campo a una computadora, la verificación de la computadora de la información tomada en campo, el procesamiento de la información para obtener los planos topográficos a escala conveniente.
- Para el levantamiento topográfico se inició con dos puntos de referencia que fueron tomados con GPS navegador, la cual posteriormente fueron introducidos a la estación, por ende, estos puntos nos sirvieron como BM de inicio al levantamiento.
- A partir de los dos BM se realizó el levantamiento topográfico general de toda la zona que involucra el proyecto, de acuerdo a los términos de referencia, se tomó detalles como niveles de pisos, borde de carretera existente tanto de tierra, cunetas, canales de tierra, servicios existentes, las prospecciones realizadas para el estudio de suelos, etc.
- Para el levantamiento topográfico se utilizó 01 estación total LEYCA con precisión de 3seg. En ángulo y de 1mm de distancia, 2 prismas.
- Después de haber terminado el trabajo en campo de topografía se procedió al procesamiento en gabinete de la información topográfica en el software AutoCAD, elaborando planos a escalas convenientes.

2. ASPECTOS GENERALES

2.1 OBJETIVO DEL PROYECTO

Diseñar un sistema de drenaje pluvial para mejorar la evacuación de precipitación de aguas en la localidad de shimbillo, Pucacaca, San Martín.

2.2 OBJETIVO DEL ESTUDIO TOPOGRAFICO

El objetivo de un levantamiento topográfico es la determinación, tanto en planimetría como en altimetría, de puntos del terreno necesario para adquirir la presentación correspondiente a fin de:

- Ejecutar los trabajos de campo que permitan elaborar los planos topográficos.
- Proporcionar información de base para los estudios de geotecnia y de impacto ambiental.
- Posibilitar la definición precisa de la ubicación y las dimensiones de elementos estructurales.
- Establecer puntos de referencia para el replanteo durante la construcción.

2.3 DESCRIPCION DEL AREA DEL PROYECTO

2.3.1 UBICACIÓN

El estudio se encuentra en la localidad de Shimbillo distrito de Pucacaca Provincia de Picota.

La Provincia de Picota se encuentra ubicada en la parte central de la Región San Martín, en el valle del Huallaga Central y su posición Geográfica es de 06º 51' 02" latitud sur, 76º 20' 31" de latitud norte, de latitud oeste, en terrenos de la Selva Alta. Su extensión es de 230.72 km2.

2.3.2 VIAS DE ACCESO

El distrito de Pucacaca y el centro poblado de intervención, materia de la propuesta del presente proyecto, están unidas por la carretera Fernando Belaunde de Terry.

2.4 METODOLOGÍA

Todo levantamiento topográfico contempla las siguientes etapas:

2.4.1 PLANTEAMIENTO

La etapa de planteamiento consiste en el establecimiento de las condiciones geométricas, técnicas, económicas y de factibilidad que permite la ejecución del proyecto a mención para ejecutar dicho levantamiento, destinado a satisfacer una determinada necesidad. esta etapa está ligada con la pre evaluación, por ende,

se tendrá en cuenta factores de precisión requerida, disponibilidad de equipo, materiales, personal y demás facilidades, incluyendo la consideración de factores ambientales previsto, de modo que sea posible establecer un planteamiento optimo.

2.4.2 RECONOCIMIENTO Y MONUMENTACIÓN

El reconocimiento y la documentación consisten en las operaciones de campos destinados a verificar sobre el terreno las características definidas por el planeamiento y a establecer las condiciones y modalidades no previstas por el mismo. Las operaciones que en este punto se indican deben desembocar necesariamente en la elaboración del proyecto definitivo. Por otra parte, esta etapa contempla el establecimiento físico de las marcas o monumentos del caso en los puntos pre establecidos.

2.4.3 TRABAJOS DE CAMPO

Los trabajos de campo están constituidos por el conjunto de observaciones que se realizan directamente sobre el terreno para realizar las mediciones requeridas por el proyecto, de acuerdo con las normas aplicables. Los cálculos y comprobaciones de campo se considerarán como parte integral de las observaciones, se hacen inmediatamente al final de las mismas. Tienen como propósito verificar la adherencia de los trabajos a las normas establecidas.

2.4.4 TRABAJOS DE GABINETE

Los cálculos de gabinete proceden inmediatamente a la etapa anterior y están constituidos por todas aquellas operaciones que, en forma ordenada y sistemática, calculan las correcciones y reducciones a las cantidades observadas y determinan los parámetros de interés mediante el empleo de criterios y fórmulas apropiadas que garanticen la exactitud requerida. El ajuste o compensación deberá seguir, cuando sea aplicable, al cálculo de gabinete.

2.4.5 MEMORIA DE LOS TRABAJOS

Al final de cada trabajo se elabora una memoria que contenga los datos relevantes del levantamiento, incluyendo antecedentes, justificación, objetivos, criterios de diseño, personal, instrumental y equipo usados, normas,

especificaciones y metodologías particulares empleadas, relación de los trabajos de campo con mención de las circunstancias que pueda haber influido en el desarrollo de los trabajos, información gráfica que muestre su ubicación, descripciones definitivas de los puntos, resultados de los cálculos y ajustes en forma de listados de parámetros finales.

3. TRABAJOS DE CAMPO

3.1 RED DE CONTROL HORIZONTAL

El levantamiento topográfico fue realizado con coordenadas relativas ya que no existen puntos de primer orden cercanos para amarrar el levantamiento topográfico, dando al punto BM1 las coordenadas UTM en el Datum Horizontal WGS-84 obtenidas con el GPS navegador, luego se hizo vista atrás a otro punto BM1 cuyas coordenadas también se obtuvieron con el GPS navegador, para obtener las otras estaciones. A partir de estos puntos se empezó con el levantamiento topográfico general de la zona del proyecto, de acuerdo a los términos de referencia, se tomó detalles como niveles de pisos, Buzones, Veredas, Roca fija, servicios existentes, las prospecciones realizadas para el estudio de suelos, etc.

El modo levantamiento con Estación Total se hizo con el método de colección de datos por coordenadas, obteniendo ángulos horizontales, verticales, distancia inclinada y la altura de instrumento, así como también las coordenadas Norte y Este y altura de cada punto radiado:

- La medición de distancia horizontal entre estación a estación se hizo con el modo fino (el rayo infrarrojo recorre desde la estación hasta donde está ubicado el prisma 999 veces para dar la longitud horizontal deseado).
- La medición de los ángulos horizontales de los rellenos topográficos se dará por el método de radiación.
- La medición de la distancia vertical se realizará por el método de nivelación Trigonométrica.

Para el trabajo de replanteo, de todos los BM obtenidos, se establecieron los puntos de control; BM1, BM2, BM3 ubicados tal como se muestran en el Plano Topográfico.

3.2 EQUIPOS UTILIZADOS

Una Estación Total Leyca, con las siguientes especificaciones técnicas:

- Un trípode de soporte.
- > Tres prismas con sus respectivos porta prismas.
- Wincha de fibra de lona de 30m.
- Libreta topográfica.

3.3 PERSONAL

- O1 Topógrafo a cargo de los equipos topográficos.
- > 03 Personas encargadas de los prismas

4. TRABAJOS DE GABINETE

Durante y una vez terminado el trabajo en campo de topografía se procedió al procesamiento en gabinete de la información topográfica en el software AutoCAD Civil 3D, elaborando planos topográficos a escala 1:2000, 1:3000 y 1/1500 en la planta y con una equidistancia de curvas de 2m; perfil longitudinal a 1:1000.

Los trabajos de gabinete consistieron básicamente en:

- Procesamiento de la información topográfica tomada en campo.
- Elaboración de planos topográficos y de ubicación a escalas adecuadas.

4.1 SOFTWARE UTILIZADO

Los datos correspondientes al levantamiento topográfico han sido procesados en sistemas computarizados, utilizando los siguientes equipos y software:

- 01 Laptop ASUS CORE i7 2.67 GHz de 4GB de RAM
- Software "Topcon link", para transmitir toda la información tomada en el campo a una PC.
- Software AutoCAD Civil 3D 2019 para el procesamiento de los datos topográficos.

 Software AutoCAD Civil 3D 2019 para la elaboración de los planos correspondientes.

5. CONCLUSIONES

- La automatización del trabajo de campo se efectuó en el día utilizando: Una Estación Total LEYCA, un GPS GARMIN 64CSx, software "Topcon link", para transmitir toda la información tomada en el campo a una PC, software AutoCAD Civil 3D para el procesamiento de los datos topográficos, software AutoCAD Civil 3Dpara la elaboración de los planos correspondientes.
- Los trabajos referentes al levantamiento topográfico están referidos a coordenadas UTM con datum horizontal: WGS-84 y datum vertical: nivel medio del mar.
- Los trabajos referentes al levantamiento topográfico están referidos a coordenadas UTM con datum horizontal: WGS-84 y datum vertical: nivel medio del mar, se han planteado los cambios de estaciones adecuadas para cada localidad. Y se han dejado 2 BMs sobresalientes que servirán para el replanteo en cada localidad.

6. ANEXOS

Proyecto: Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022

Centro Poblado Shimbillo Ubicación: Fecha: 04/07/2022 COORDENADAS COORDENADAS COORDENADAS DESCRIPCÓN Puntos **DESCRIPCÓN Puntos** DESCRIPCÓN **ESTE** NORTE NORTE **ESTE** NORTE 215.189 61 213.918 121 217.291 1 9245054.96 351851.96 NA 9245065.485 351843.362 CASA 9245039.683 351745.344 PL 2 9245057.868 351856.739 215.102 E2 62 9245046.951 351840.628 215.316 CASA 122 9245020.81 351779.628 215.675 ΤN 3 63 123 9245055.909 351842.78 215.254 E2 9245046.038 351832.221 215.327 CASA 9245042.97 351760.021 216.025 TN 4 9245057.868 351856.739 215.102 NA 64 9245045.981 351829.32 215.38 CASA 124 9245043.439 | 351764.697 | 215.954 TN 5 9245062.233 351898 858 215 446 TN 65 9245045.35 351821.311 215.39 CASA 125 9245040.86 351760.575 215.86 TN 6 9245070.288 351898.1 215.463 ΤN 66 9245064.548 351843.783 215.465 VDA 126 9245041.124 351764.908 215.888 ΤN 7 351899 474 215 458 9245041 326 351769 067 215 844 9245054 808 TN 67 9245064 993 351849 325 215.455 VDA 127 TN 8 9245052.926 351893.08 214.761 ΤN 68 9245066.409 351865.076 215.166 VDA 128 9245041.442 351772.786 215.756 ΤN 9 9245059.601 351883.645 214.955 69 9245066.982 351871.983 215.192 VDA 129 9245043.726 351769.403 215.95 TN TN 10 9245068.019 351883.198 215.013 ΤN 70 9245049.588 351877.289 214.978 PL 130 9245051.853 351772.288 215.949 ΤN 351861.801 214.999 71 351855.077 PL 131 215.649 11 9245057.942 TN 9245050.221 215.065 9245057.433 351802.309 TN 12 9245048.973 351862.69 214.957 ΤN 72 9245046.744 351818.587 217.855 PL 132 9245047.023 351796.575 215.815 ΤN 13 9245066.514 351856.24 215.039 TN 73 9245065.185 351839.125 215.69 PL 133 9245057.147 351764.657 215.969 TN 14 9245065.25 351838.236 215.298 ΤN 74 9245065.185 351839.125 215.69 CASA 134 9245051.11 351764.758 215.989 ΤN 9245050.724 | 351757.316 | 216.003 15 9245056.511 351844.072 215.237 TN 75 135 9245047.991 351765.676 216.025 EST-1 TN 16 9245047.926 351852.483 215.088 TN 76 9245047.991 351765.67 216.025 EST-1 136 9245037.356 | 351742.676 | 216.114 TN 17 9245048 871 351819 767 215 446 ΤN 77 9245047.941 137 9245044 489 351716.938 216.321 351765.21 216.031 **R7** TN 18 9245046.855 351839.008 215.253 ΤN 78 9245058.856 351881.83 215.027 ΒZ 138 9245041.077 351742.249 216.191 ΤN 351818.168 215.44 216.248 19 9245058.892 79 351865.97 215.24 ARBOL 139 9245079.018 351768.81 TN 9245052.13 TN 20 9245047.475 351803.579 215.689 ΤN 80 9245058.057 351796.791 215.812 ARBOL 140 9245077.864 351755.817 216.232 ΤN 351796.35 215.852 351772.208 21 9245040.965 ΤN 81 9245053.331 351823.814 215.412 ΒZ 141 9245078.684 215.963 TN 22 351793.711 215.814 82 9245061.641 ΤN 9245047.991 351765.67 216.025 NA 142 9245069.535 351772.841 215.914 ΤN 23 351776.085 215.967 83 9245039.231 351777.552 CASA 143 9245077.41 351747.422 216.062 9245049.651 TN 215.988 TN 24 9245044.01 351772.58 215.832 TN 84 9245039.665 351783.658 215.989 CASA 144 9245058.004 | 351755.919 | 215.991 TN 25 351778.963 215.957 145 9245056.173 TN 85 9245064.137 351823.504 215.572 CASA 9245066.103 351740.321 216.085 TN 26 9245046.867 351741.739 216.15 ΤN 86 9245063.598 351817.404 CASA 146 9245067.144 351728.448 216.235 TN 27 9245042.206 351755.655 216.033 87 9245063.416 351814.783 147 9245054,289 351747,264 216,164 ARBOL ΤN 215.6 CASA 351754.149 215.935 TN 9245062.944 351809.017 CASA 9245053.668 351738.518 216.299 ARBOL 28 9245056.61 88 215,698 148 29 9245045.574 351726.761 216.263 ΤN 9245062.725 351808.245 149 9245052.835 351730.489 216.266 ARBOL 89 215.625 CASA 30 9245038.057 351731.482 216.101 ΤN 90 9245062.253 351802.502 215.968 CASA 150 9245051.866 351718.188 216.311 ARBOL 91 31 9245055.025 351731.342 216.191 ΤN 9245062.093 351800.622 215.794 CASA 151 9245050.77 351701.261 217.252 ARBOL 32 92 152 9245043.738 351705.959 216.428 ΤN 9245061.681 351794.565 215.93 CASA 9245049.297 351685.342 217.095 ARBOL 33 9245034.6 351706.656 216.18 ΤN 93 9245061.21 351788.453 215.755 CASA 153 9245058.132 351755.714 ARBOL 216.124 34 9245054.792 351704.243 216.299 ΤN 94 9245060.797 351783.433 215.986 CASA 154 9245062.891 351755.548 216.214 ARBOL 95 35 351674.31 216.576 155 216,277 9245041.427 TN 9245060.215 351775.395 215,949 CASA 9245066.555 351754.905 ARBOL 351754.434 36 9245036.893 351675.054 216.496 ΤN 96 9245059.515 351774.546 215.801 VDA 156 9245070.844 216.245 ARBOL 37 9245030.194 351675.499 216.496 ΤN 97 9245060.191 351783.418 VDA 157 9245074.963 351753.914 216.294 ARBOL 215.895 9245047.523 351673.284 216.557 ΤN 98 9245060.498 351788.509 158 9245083.981 351753.397 ARBOL 38 215.745 VDA 216.27 39 9245038.74 351645.437 216.687 99 9245060.977 351794.592 159 9245089.92 351752.964 ΤN 215.832 VDA 216.356 ARBOL 40 9245031.937 351647.454 216.658 ΤN 100 9245061.14 351800.622 VDA 160 9245104.285 351751.604 216.572 ARBOL 215.745 41 9245043.604 351643.385 216.682 ΤN 101 9245061.357 351802.667 215.629 VDA 161 9245109.812 351751.011 216.61 ARBOL 42 ΤN 102 ARBOL 9245036.003 351621.427 217.02 9245062.882 351817.505 215.411 VDA 162 9245130.516 351749.687 216.773 43 9245028.465 351611.431 217.192 103 9245063.423 351823.387 215.401 VDA 163 9245118.792 351758.679 216.386 TN TN 44 9245041.95 351621.931 216.983 TN 104 9245044.935 351808.175 215.408 164 9245117.352 351768.101 216.313 **VDA** TN TN VDA 351749.673 45 9245032.402 351583.814 217.41 105 9245044.434 351802.58 215.609 165 9245111.491 216.425 ΤN 215.809 46 9245024.4 351569.839 217.499 ΤN 9245043.076 351781.698 PL 9245172.038 351763.457 216.325 ΤN 106 166 47 9245040.16 351600.651 217.33 TN 107 351777.04 216.686 ΡI 9245159.923 351748.002 216.435 TN 9245023.034 167 108 48 9245030.095 351554.252 217.612 ΤN 9244927.829 351776.642 215.223 ΤN 9245171.839 351767.303 216.236 ΤN 168 49 9245021.869 351544.534 217.762 ΤN 109 9244929.021 351790.035 215.152 TN 169 9245212.032 351752.075 216.505 ΤN 50 9245035.904 351553.441 217.556 ΤN 110 9244926.749 ΤN 170 9245199.626 351761.197 ΤN 351763.215 215.265 216.443 51 9245026.861 351523.209 218.147 ΤN 111 9244969.713 351762.94 217.075 CASA 171 9245193.553 351744.774 216.432 TN 172 52 9245019.236 351522.856 218.161 TN 112 9244975.567 351762.496 217.102 CASA 9245240.697 351751.044 216.776 TN ΤN 113 9244984.787 VDA 9245244.992 351757.706 53 9245033.139 351521.795 218.187 351762.738 215.665 173 216.839 ΤN 54 9245067.861 351871.797 213.659 CASA 114 9244973.508 351763.548 215.627 VDA 174 9245238.087 351739.366 216.678 ΤN 115 55 351865.28 175 351743.613 9245067.315 213.67 CASA 9244959.422 351774.116 215.545 ΤN 9245297.086 217.348 TN 56 9245050.249 351874.842 213.489 CASA 116 9244955.14 351762.477 215.362 TN 176 9245297.949 351752.577 217.296 TN 57 9245048.425 351857.236 213.584 CASA 117 9244959.157 351786.242 215.202 ΤN 177 9245295.359 351732.814 217.417 ΤN 58 9245048.194 351852.481 213.588 CASA 118 9244993.017 351769.871 215.744 ΤN 178 9245039.132 351755.37 216.134 CASA 59 9245047.697 351847.5 213.578 119 9244992.409 351758.454 215.545 ΤN 179 9245038.229 351749.453 216.252 CASA CASA 60 9245065.96 351849.225 213.906 CASA 120 9244993.798 351779.986 215.458 ΤN 180 9245036.855 351743.992 216.647 CASA

Proyecto: Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022

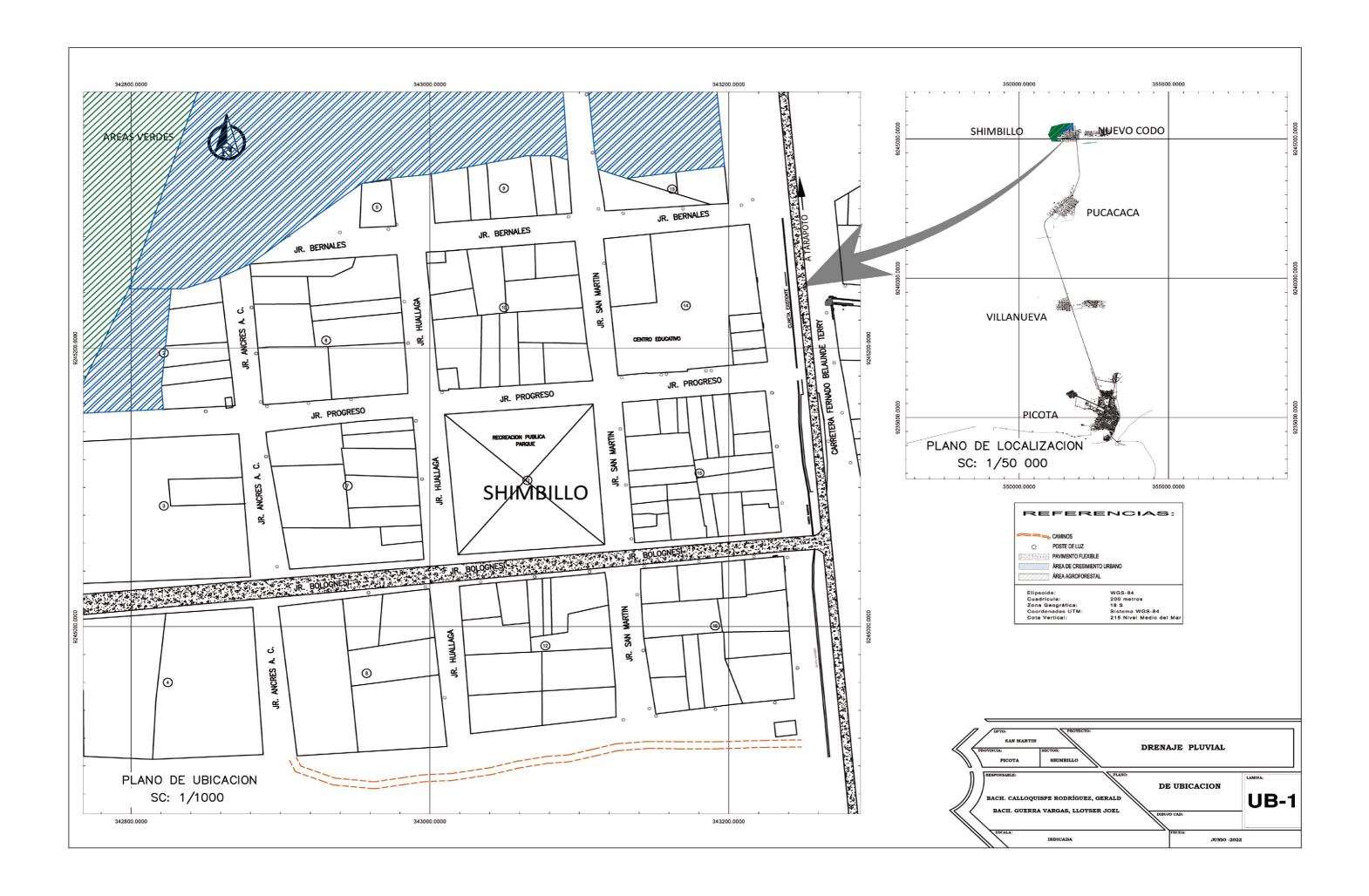
Localidad de Shimbillo, Pucacaca, San Martin, 2022

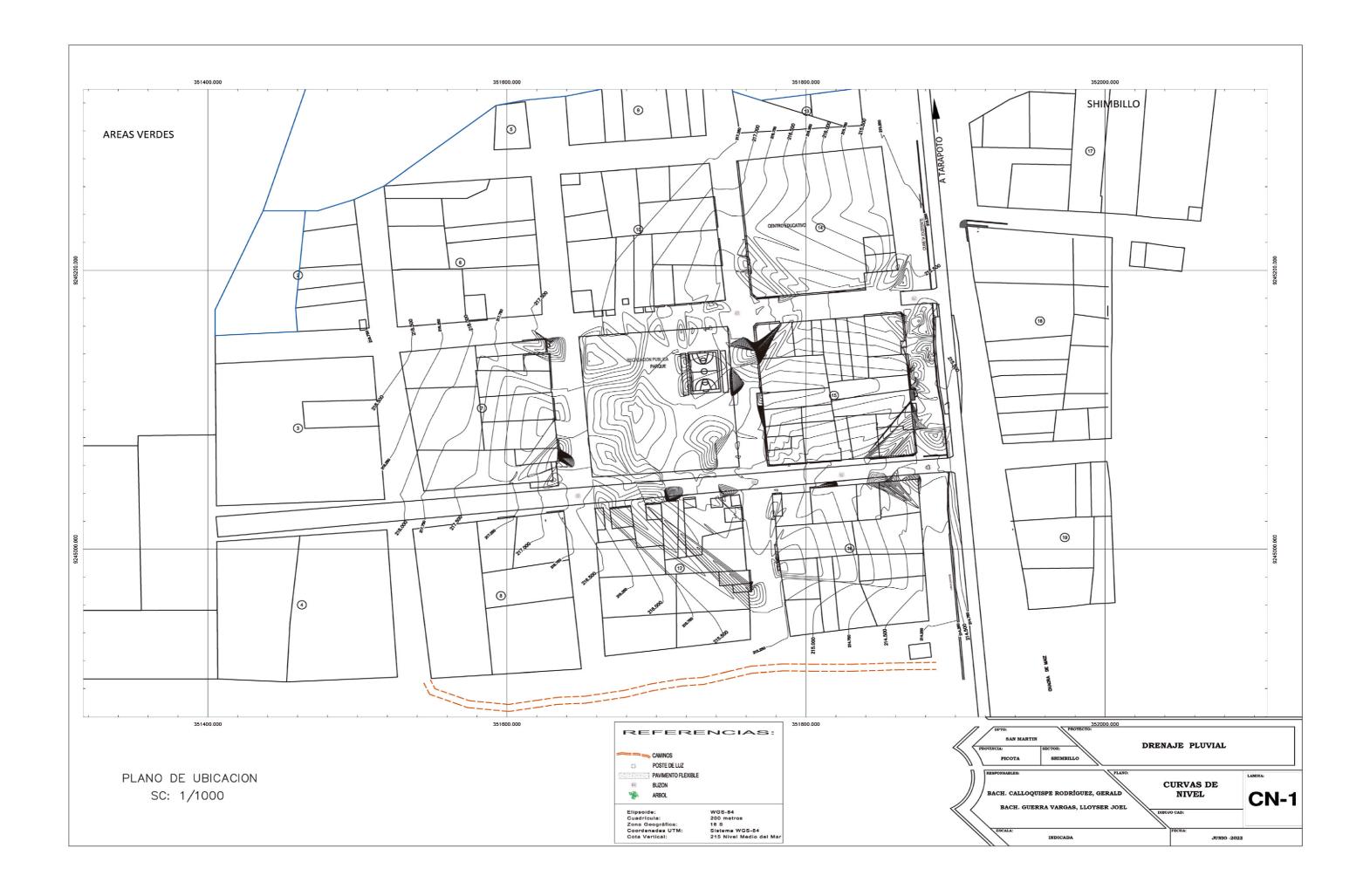
Ubicación: Centro Poblado Shimbillo

	ción:	Centro Pol		mbillo										
Fecha		04/07/202	!2											
Puntos	COORDE		DIST.	DESCRIPCÓN	Puntos	COORDE		DIST.	DESCRIPCÓN	Puntos	COORDE		DIST.	DESCRIPCÓN
	ESTE	NORTE				ESTE	NORTE				ESTE	NORTE		
181	9245036.288			CASA	241	9245151.458		217.39	TN	301	9245072.493	351634.114	216.092	CASA
182	9245036.168	351726.08	216.111	CASA	242	9245173.572	351636.933	217.347	TN	302	9245076.415	351633.603	216.406	CASA
183	9245035.419		216.031	CASA	243	9245156.863		217.646	TN	303	9245078.506	351634.527	216.231	VDA
184	9245034.582	351712.434	216.01	CASA	244	9245148.209	351599.949	217.632	TN	304	9245093.241	351631.91	216.219	CASA
185	9245039.699	351745.373	217.982	PL	245	9245172.679	351615.52	217.506	TN	305	9245038.3	351639.129	216.757	TN
186	9245035.935	351708.609	220.627	PL	246	9245152.913	351558.174	218.236	TN	306	9245065.507	351643.989	216.952	TN
187	9244992.077	351780.403	215.485	VDA	247	9245144.347	351558.797	218.211	TN	307	9245092.161	351642.373	217.049	TN
188	9244984.907	351782.912	216.609	CASA	248	9245161.583	351557.291	218.213	TN	308	9245115.55	351640.507	217.272	TN
189	9245003.553	351780.543	216.058	CASA	249	9245149.501	351507.507	218.758	TN	309	9245158.806	351614.659	217.553	TN
190	9245170.03	351756.418	216.376	EST-1	250	9245139.041	351507.871	218.704	TN	310	9245108.701	351706.49	216.627	TN
191	9245170.03	351756.418	216.376	NA	251	9245158.389	351505.667	218.746	TN	311	9245100.876	351715.159	216.432	TN
192	9245160.919	351767.16	216.546	CASA	252	9245171.493	351723.924	216.757	ARBOL	312	9245096.248	351727.345	216.336	TN
193	9245159.663	351766.204	216.542	CASA	253	9245173.665	351742.062	216.907	ARBOL	313	9245099.359	351738.927	216.251	TN
194	9245162.377	351784.614	216.238	CASA	254	9245152.039	351652.686	218.007	ARBOL	314	9245129.66	351723.383	216.6	TN
195	9245162.872	351790.628	216.583	CASA	255	9245152.4	351656.734	218.041	ARBOL	315	9245080.055	351714.642	216.29	TN
196	9245159.776	351764.938	216.419	VDA	256	9245152.755	351660.773	218.031	ARBOL	316	9245108.945	351715.892	216.586	TN
197	9245162.034	351766.774	216.386	VDA	257	9245153.333	351668.642	217.741	ARBOL	317	9245129.339	351692.083	216.777	TN
198	9245163.438	351782.316	216.231	VDA	258	9245153.878	351678.653	217.748	ARBOL	318	9245124.255	351714.432	216.663	TN
199	9245148.381	351765.919	216.47	VDA	259	9245154.22	351682.657	217.711	ARBOL	319	9245140.324	351710.683	216.743	TN
200	9245142.041	351765.967	222.294	PL	260	9245154.825	351690.479	217.484	ARBOL	320	9245070.271	351774.343	216.845	CASA
201	9245101.909	351769.706	222.345	PL	261	9245155.892	351702.419	217.522	ARBOL	321	9245080.332	351773.396	216.996	CASA
202	9245112.48	351750.856	221.586	PL	262	9245156.82	351716.443	217.589	ARBOL	322	9245086.42	351772.889	217.079	CASA
203	9245181.715	351888.179	215.713	TN	263	9245157.417	351724.455	217.341	ARBOL	323	9245101.768	351771.522	217.22	CASA
204	9245187.606	351887.624	215.725	TN	264	9245157.797	351728.465	216.929	ARBOL	324	9245111.869	351770.743	217.535	CASA
205	9245176.448	351888.499	215.713	TN	265	9245157.979	351732.38	217.022	ARBOL	325	9245124.2	351769.382	216.868	CASA
206	9245179.751	351872.388	215.645	BZ	266	9245158.283	351736.236	217.073	ARBOL	326	9245132.717	351768.669	217.446	CASA
207	9245175.649	351823.276	215.713	TN	267	9245151.675	351748.153	216.955	ARBOL	327	9245080.213	351772.418	215.819	VDA
208	9245167.053	351840.101	215.54	TN	268	9245146.336	351748.743	216.866	ARBOL	328	9245086.358	351771.965	215.924	VDA
209	9245185.812	351838.472	215.538	TN	269	9245141.054	351720.986	216.853	PAVIM	329	9245102.653	351767.585	216.13	VDA
210	9245172.945	351797.469	215.891	TN	270	9245142.75	351740.94	216.802	PAVIM	330	9245111.808	351767.04	216.111	VDA
211	9245163.836	351798.465	215.868	TN	271	9245140.279	351716.973	216.936	CR	331	9245112.268	351769.707	216.133	VDA
212	9245182.144	351797.174	215.851	TN	272	9245140.425	351718.464	216.958	CR	332	9245134.869	351720.197	215.494	PL
213	9245167.956	351783.009	216.151	TN	273	9245111.103	351723.221	216.68	VDA	333	9245116.789	351721.658	215.339	PL
214	9245176.527	351781.833	216.181	TN	274	9245111.695	351725.275	216.887	EST-1	334	9245101.438	351684.92	215.307	PL
215	9245179.455	351767.608	216.295	TN	275	9245150.453	351625.564	218.553	CASA	335	9245067.138	351668.835	217.636	PL
216	9245183.384	351763.743	216.347	TN	276	9245141.17	351626.245	218.51	CASA	336	9245069.977	351687.43	215.856	PL
217	9245178.271	351746.317	216.36	TN	277	9245173.342	351705.601	217.225	PL	337	9245066.132	351740.133	218.019	PL
218	9245169.465	351739.128	216.538	TN	278	9245176.417	351721.649	216.79	CASA	338	9245077.742	351739.176	217.711	PL
219	9245177.829	351739.761	216.463	TN	279	9245177.143	351729.846	216.888	CASA	339	9245141.854	351765.951	215.29	PL
220	9245168.913	351731.105	216.623	TN	280	9245176.224	351729.959	216.614	VDA	340	9245132.489	351682.381	218.025	PL
221	9245158.901	351731.748	216.638	TN	281	9245140.618	351721.502	216.884	EST-1	341	9245147.868	351629.375	219.551	PL
222	9245159.589	351743.24	216.519	TN	282	9245183.394	351763.941	216.737	CASA	342	9245134.867	351654.871	218.763	PL
223	9245151.697	351741.934	216.511	TN	283	9245180.395	351767.21	216.868	CASA	343	9245065.511	351637.016	220.642	PL
224	9245151.626	351747.933	216.566	TN	284	9245181.765	351782.385	217.246	CASA	344	9245170.105	351751.523	216.387	CASA
225	9245152.176	351758.096	216.438	TN	285	9245196.745	351762.727	217.283	CASA	345	9245179.784	351872.768	215.633	E2
226	9245151.405	351750.318	216.459	TN	286	9245203.995	351762.073	217.291	CASA	346	9245197.118	351838.991	216.393	CASA
227	9245153.049	351764.845	216.442	TN	287	9245202.659	351763.2	217.308	CASA	347	9245194.639	351839.24	216.387	CASA
228	9245162.724	351774.631	216.276	TN	288	9245210.114	351761.499	217.454	CASA	348	9245192.91	351839.411	216.364	CASA
229	9245180.711	351781.694	216.213	TN	289	9245033.864	351703.084	215.491	CASA	349	9245200.184	351861.601	214.729	CASA
230	9245181.252	351762.384	216.456	PL	290	9245031.921	351692.741	215.462	CASA	350	9245202.651	351861.386	214.659	CASA
231	9245178.583	351766.769	216.603	PL	291	9245029.673	351664.486	215.326	CASA	351	9245186.343	351856.766	215.777	PL
232	9245221.111	351758.892	216.774	PL	292	9245029.205	351659.004	216.237	CASA	352	9245191.037	351864.9	216.54	PL
233	9245176.024	351736.731	217.432	PL	293	9245037.306	351725.41	216.02	VDA	353	9245167.615		215.37	PL
234	9245166.706	351711.551	216.93	TN	294	9245038.155	351705.377	216.152	VDA	354	9245169.003	351863.064	216.034	CASA
235	9245157.123		216.81	TN	295	9245032.657	351693.606	214.893	VDA	355	9245167.771			CASA
236	9245174.258	351710.491	216.878	TN	296	9245045.531	351634.575	216.866	VDA	356	9245160.364	351865.19	214.74	CASA
237	9245162.974	351664.49	217.248	TN	297	9245059.214	351633.222	215.978	VDA	357	9245168.18	351865.443	215.534	VDA
238	9245154.4	351677.956	217.1	TN	298	9245072.512	351635.131	215.658	VDA	358	9245170.053	351863.413	215.496	VDA
239	9245171.692	351676.56	217.15	TN	299	9245049.205	351630.961	216.129	CASA	359	9245120.354	351877.442	215.332	EST-1
240	9245150.188		217.493	TN	300	9245063.106			CASA	360	9245163.773		215.436	TN

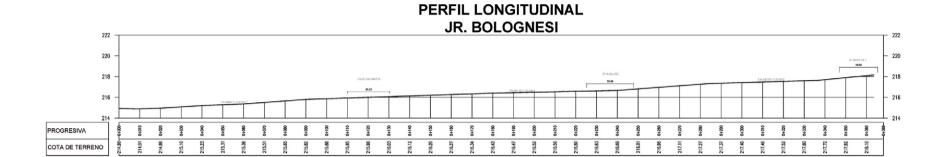
Proyecto: Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la

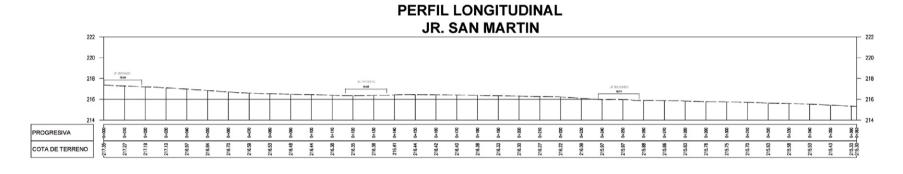
Localidad de Shimbillo, Pucacaca, San Martin, 2022

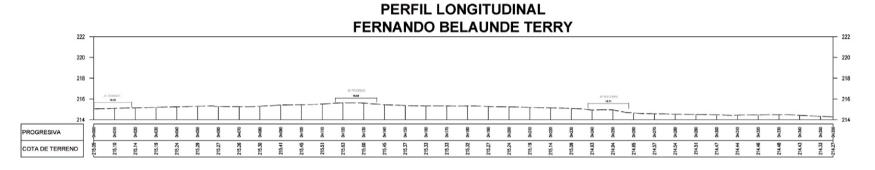

Ubica	ción:	Centro Poblado Shimbillo												
Fecha	:	04/07/202	22											
Puntos	COORDE	NADAS	DIST.	DESCRIPCÓN	Puntos	COORDE	NADAS	DIST.	DESCRIPCÓN	Duntos	COORDE	NADAS	DIST.	DESCRIPCÓN
Funtos	ESTE	NORTE	DIST.	DESCRIFCON	runtos	ESTE	NORTE	DIST.	DESCRIPCON	Fulltos	ESTE	NORTE	DIST.	DESCRIFCON
361	9245162.867			TN	421	9245029.541			TN	481	9245184.206		215.714	TN
362	9245163.687	351884.977	215.401	TN	422	9245029.95		214.569	TN	482	9245183.107	351807.355	215.802	TN
363	9245137.013	351876.784	215.333	TN	423	9245028.777	351876.209	214.536	TN	483	9245164.791	351809.587	215.804	TN
364	9245136.441			TN	424	9244997.808			TN	484	9245174.731	351805.308	215.814	TN
365	9245137.338	351884.143	215.246	TN	425	9244998.755	351896.723	214.354	TN	485	9245162.341	351767	216.273	TN
366	9245122.491		215.554	TN	426	9244996.67	351878.554	214.493	TN	486	9245169.104		216.287	TN
367	9245121.422			TN	427	9244970.572	351890.832	214.486	TN	487	9245175.234	351774.069	216.257	TN
368	9245120.679			TN	428	9244971.779		214.485	TN	488	9245167.216		216.801	TN
369	9245120.276		215.293	TN	429	9244969.931	351880.411	214.447	TN	489	9245174.84	351718.873	216.765	TN
370	9245120.076		215.124	TN	430	9244938.697		214.198	TN	490	9245157.938	351720.39	216.747	TN
371 372	9245119.894 9245106.192			TN TN	431 432	9244939.961 9245105.197	351901.729 351894.989		TN PAVIM	491 492	9245167.605 9245176.215	351719.773 351730.967	216.742 216.604	TN TN
373	9245106.192			TN	433	9245103.197		215.309	PAVIM	492	9245176.215		217.024	TN
374	9245107.782	351882.185	215.241	TN	434	9245129.723	351899.52	215.487	PAVIM	494	9245175.320	351694.739	216.978	TN
375	9245107.782			TN	435	9245127.746			PAVIM	495	9245165.416			TN
376	9245108.422	351890.641	215.434	TN	436	9245112.367	351893.567	215.43	ARBOL	496	9245174.544	351701.357	216.967	TN
377	9245071.273			TN	437	9245097.534	351884.59	215.468	ARBOL	497	9245165.837	351700.969	216.981	TN
378	9245069.985		215.07	TN	438	9245102.636	351884.161	215.373	ARBOL	498	9245157.165		216.896	TN
379	9245069.308			TN	439	9245081.545	351886.53	216.405	ARBOL	499	9245171.414			TN
380	9245064.384	351883.35	214.919	TN	440	9245155.233	351880.488	216.513	ARBOL	500	9245160.798	351637.527	217.346	TN
381	9245069.341	351874.256	214.893	VDA	441	9245144.067	351881.238	216.591	ARBOL	501	9245153.795	351665.126	217.232	TN
382	9245085.345	351872.68	215.202	VDA	442	9245161.638	351879.678	216.46	ARBOL	502	9245151.087	351532.971	218.541	TN
383	9245099.204	351874.268	215.1	VDA	443	9245171.91	351878.555	216.393	ARBOL	503	9245159.433	351532.538	218.554	TN
384	9245104.729	351873.622	215.11	VDA	444	9245164.599	351869.648	215.802	ARBOL	504	9245141.922	351534.066	218.526	TN
385	9245104.624	351871.043	215.177	VDA	445	9245156.6	351870.476	215.974	ARBOL	505	9245160.669	351547.522	218.349	TN
386	9245107.094	351873.099	215.202	VDA	446	9245141.257	351871.762	215.833	ARBOL	506	9245143.064	351546.964	218.361	TN
387	9245109.418	351872.747	215.284	VDA	447	9245132.453	351872.363	216.2	ARBOL	507	9245152.571	351547.78	218.362	TN
388	9245109.785	351874.553	215.259	VDA	448	9245128.449	351872.736	215.904	ARBOL	508	9245162.946	351572.796	218.018	TN
389	9245111.935	351874.423	215.213	VDA	449	9245124.085	351873.08	216.236	ARBOL	509	9245145.764	351574.607	217.998	TN
390	9245111.886			VDA	450	9245119.817	351873.593		ARBOL	510	9245155.382			TN
391	9245114.678			VDA	451	9245115.386		216.201	ARBOL	511	9245053.911		214.901	TN
392	9245115.678			VDA	452	9245091.837	351875.818		ARBOL	512	9245056.766		215.025	TN
393	9245116.985	351870.023		VDA	453	9245088.761	351874.113	216.712	PL	513	9245030.748		215.463	TN
394	9245123.001			VDA	454	9245128.976			PL	514	9245030.437			TN
395	9245126.194		215.233	VDA	455	9245146.713		215.925	CASA	515	9245137.684	351887.454		TN
396	9245138.755	351868.276		VDA	456	9245147.465	351863.343	215.906	CASA	516	9245163.81	351886.665	215.601	TN
397	9245145.185		215.482 215.462	VDA VDA	457 458	9245149.355		215.681	CASA	517 518	9245151.049	351874.636	215.353	TN TN
398 399	9245144.773 9245139.947	351865.3 351866.891	215.449	CASA	459	9245149.434 9245136.328		215.696 216.205	CASA CASA	519	9245151.84 9245129.952	351887.398 351880.504	215.584 215.345	TN
400	9245125.058		216.855	CASA	460	9245133.724		215.604	CASA	520	9245130.85	351887.083	215.482	TN
401	9245124.206			CASA	461	9245134.015			CASA	521	9245087.728			TN
402				CASA		9245150.477			TN		9245087.712			TN
403	9245114.331	351869.993		CASA	463	9245151.616			TN	523	9245086.86			TN
404	9245104.598			CASA	464	9245129.016			TN	524	9245085.896			TN
405	9245098.465		216.96	CASA	465	9245130.971			TN	525	9245055.289			TN
406	9245179.653		215.641	TN	466	9245175.362	351819.062		TN	526	9245048.204		214.707	TN
407	9245179.219		215.585	TN	467	9245181.188			TN	527	9245040.216			TN
408	9245180.977		215.669	TN	468	9245170.417			TN	528	9245041.852			TN
409	9245212.906		215.421	TN	469	9245183.99	351817.869	215.732	TN	529	9245042.278			TN
410	9245213.92	351882.703	215.28	TN	470	9245165.612		215.724	TN	530	9244940.591	351909.83	214.667	TN
411	9245212.014	351860.317	215.276	TN	471	9245187.172	351856.147	215.557	TN	531	9244971.687	351907.11	214.942	TN
412	9245245.919	351867.219	215.331	TN	472	9245170.09	351857.149	215.562	TN	532	9244999.18	351904.595	214.972	TN
413	9245246.951	351879.885	215.234	TN	473	9245170.77	351677.612	217.225	PL	533	9245062.581	351803.196	215.636	TN
414	9245244.491	351856.105	215.312	TN	474	9245186.803	351847.6	215.501	TN	534	9245045.055	351781.321	215.824	TN
415	9245305.201			TN	475	9245185.383			TN	535	9245041.986			TN
416	9245305.653			TN	476	9245175.634			TN	536	9245049.066			TN
417	9245303.798			TN	477	9245184.591	351863.156		TN	537	9245037.643		216.416	TN
418	9245054.644			TN	478	9245175.114			TN	538	9245050.106		216.318	TN
419	9245059.608			TN	479	9245162.295			TN	539	9245038.789			TN
420	9245058.917	351874.793	214.912	TN	480	9245165.771	351824.451	215.707	TN	540	9245035.863	351717.718	216.154	TN

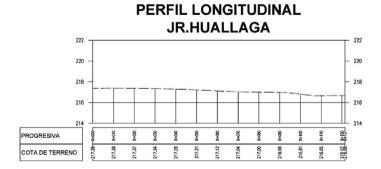


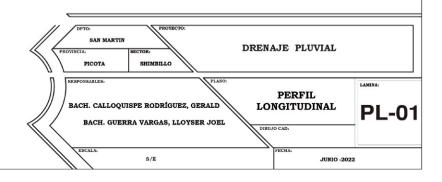
Proyecto: Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022

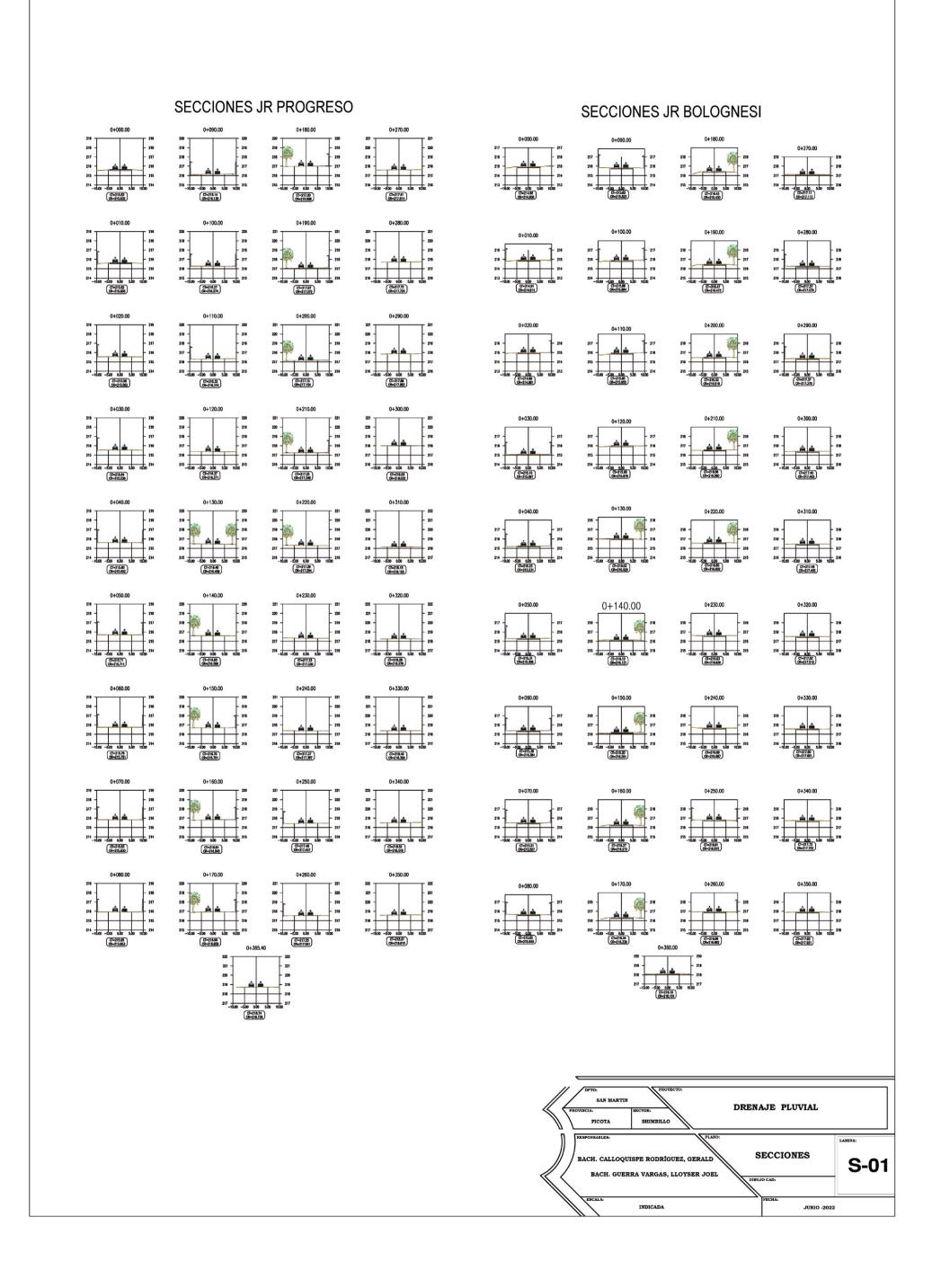

Ubicación: Centro Poblado Shimbillo

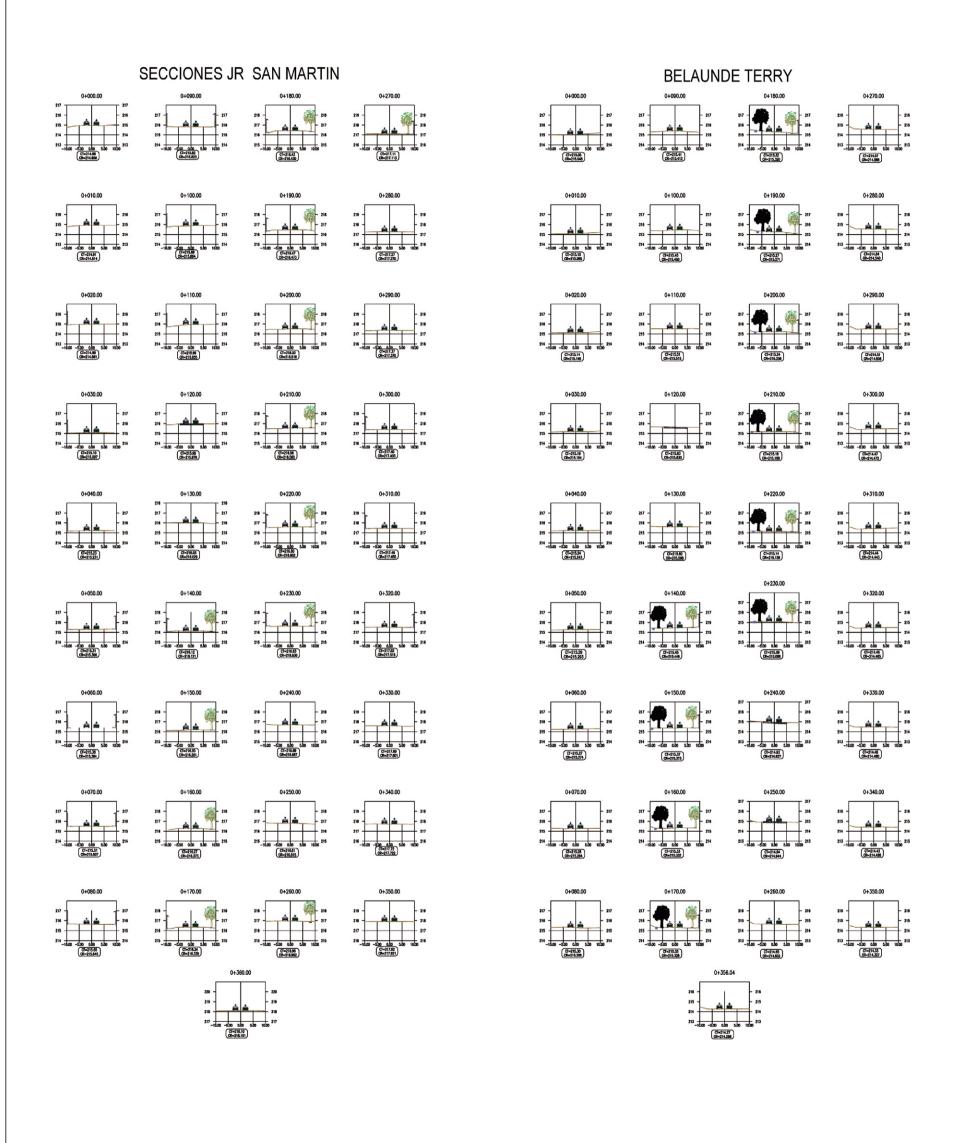

Ubica		Centro Pol		MIDITIO										
Fecha		04/07/202	.2											
Puntos	COORDE	NADAS	DIST.	DESCRIPCÓN	Puntos	COORDE	NADAS	DIST.	DESCRIPCÓN	Puntos	COORDE	NADAS	DIST.	DESCRIPCÓN
- unicos	ESTE	NORTE	Disti	DESCRII CON	i diitos	ESTE	NORTE	Dion	DESCRIII COR	runtos	ESTE	NORTE	Distr	DESCRIII CON
541	9245055.793	351716.721	216.221	TN	601	9244958.93	351784.438	215.501	TN					
542	9245039.731	351727.317	216.257	TN	602	9244955.621	351764.608	215.507	TN					
543	9245051.067	351726.581	216.241	TN	603	9244942.912	351764.399	215.399	TN					
544	9245056.531	351726.45	216.207	TN	604	9244947.617	351785.072	215.381	TN					
545	9245036.623	351727.837	216.145	TN	605	9244942.844	351775.588	215.389	TN					
546	9245052.228			TN	606	9244976.589	351771.761	215.632	TN					
547	9245057.663			TN	607	9244978.679			TN					
548	9245016.459	351551.515	217.631	TN	608	9244976.585	351764.736		TN					
549	9245037.422	351567.602	217.489	TN	609	9244979.266		215.551	TN					
								215.537						
550	9245018.656			TN	610	9244976.469			TN					
551	9245045.169	351580.61	217.431	TN	611	9244993.524		215.709	TN					
552	9245043.643			TN	612	9244992.572	351762.855	215.701	TN					
553	9245040.375			TN	613	9245019.183	351757.51	215.658	TN					
554	9245014.324	351523.021	218.101	TN	614	9245022.831	351772.791	215.872	TN					
555	9245015.412	351545.208	217.714	TN	615	9245021.809	351761.091	215.817	TN					
556	9245025.772	351584.592	217.405	TN	616	9245014.572	351762.586	215.805	TN					
557	9245020.617	351585.549	217.357	TN	617	9245007.675	351776.195	215.754	TN					
558	9245033.549	351601.423	217.351	TN	618	9245006.927	351762.86	215.772	TN					
559	9245027.565	351601.862	217.329	TN	619	9245044.932	351820.131	215.422	TN					
560	9245022.312	351602.553	217.273	TN	620	9245141.512	351714.477	216.743	TN					
561	9245023.03	351611.757		TN	621	9245144.058			TN					
562	9245029.639	351622.171		TN	622	9245178.076	351846.9	215.574	TN					
563	9245024.486	351622.642		TN	623	9245169.299		215.541	TN					
564	9245046.498		217.305	TN	624	9245111.695	351725.275	216.887	NA					
	9245052.83													
565	9245052.83	351645.751		TN	625	9245036.694		215.925	CASA				1	
566				TN	626	9245034.857	351714.624		CASA					
567	9245051.596	351656.956		TN	627	9245034.589	351712.449	215.676	CASA					
568	9245058.948			TN	628	9245111.695		216.887	NA					
569	9245060.801		216.798	TN	629	9245170.105			NA					
570	9245058.908	351633.176		TN	630	9245179.784	351872.768		NA					
571	9245066.59	351655.766	216.934	TN	631	9245120.354	351877.442	215.332	NA					
572	9245065.752	351634.729	216.931	TN										
573	9245079.938	351643.621	217.001	TN										
574	9245081.377	351654.408	216.984	TN										
575	9245080.194	351633.223	216.993	TN										
576	9245093.578	351653.335	217.027	TN										
577	9245092.16	351632.028	217.03	TN										
578	9245116.681	351651.29	217.251	TN										
579	9245115.386		217.287	TN										
580	9245133.995			TN										
581	9245134.982	351649.606	217.348	TN										
582		351629.284		TN										
	9245133.91							l					.	
583	9245152.362		217.36	TN										
584	9245150.854			TN										
585	9245068.512			TN										
586	9245069.365	351771.12	216.057	TN										
587	9245068.173			TN										
588	9245061.182			TN										
589	9245102.679	351760.358	216.317	TN										
590	9245102.774	351770.941	216.286	TN										
591	9245101.585	351751.907	216.309	TN										
592	9245199.279	351752.778	216.461	TN										
593	9245207.635			TN										
594	9245209.345			TN										
595	9245228.542			TN										
596	9245228.597			TN										
597	9245219.331			TN										
								1					+	
598	9245266.49	351746.386		TN										
599	9245264.347			TN										
600	9245267.16	351755.433	217.067	TN										

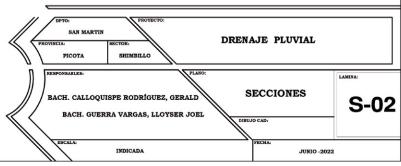


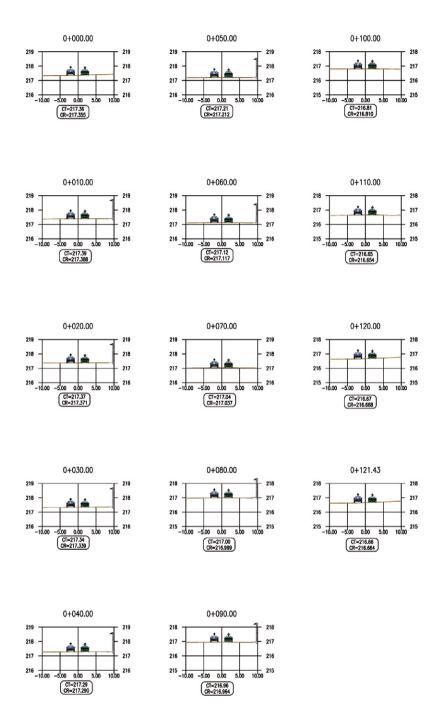


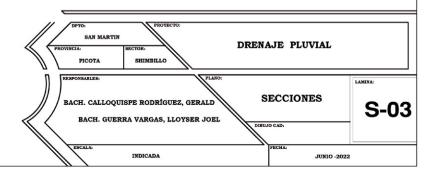












JR HUALLAGA

ESTUDIO DE MECÁNICA DE SUELOS

Contenido

1. GENERALIDADES	•••••	2
1 1 OR IFTIVO DEL ESTUDIO		2
1.2 DESCRIPCION DEL ESTUDIO		2
1.3 LIBICACIÓN DEL AREA EN ESTUDIO		3
1.4 CONDICIONES CLIMATICAS DE LA ZONA		4
1.5 ALTITUD DE LA ZONA		4
1.6 ACCESO AL AREA DE ESTUDIO		4
1.7 METODOLOGIA		4
1.8 TIPO DE ESTUDIO		6
1.9 ENSAYOS DE CAMPO		6
1 10 CALICATA O POZO DE EXPLORACION		6
1.11. MUESTREO Y REGISTRO DE EXPLORACION		6
1.12 ENSAYOS DE LABORATORIO		/
1 13 ENSAYO ESTANDAR		/
1 14 DEDEIL ESTRATIC PAGICO DEL SUELO		/
1.15 SUELOS COLAPSABLES	•••••	9
2. GEOMORFOLOGÍA, GEOLOGÍA Y SISMICIDAD EN EL ÁREA DE ESTUDIO	•••••	10
2.1 GEOMOREOLOGIA		10
2.2 GEOLOGIA		
2.2.1 MARCO GEOLOGICO REGIONAL	•••••	11
2.2.2 LITO ESTRATIGRAFIA GENERAL		12
2.2.3 GEOLOGIA LOCAL		12
2.2.4 ESTRATIGRAFIA LOCAL	•••••	12
2.2.5 GEODINAMICA EXTERNA	•••••	13
2.3. ASPECTO SISMICO		13
2.3.1 SISMICIDAD.		13
2.3.2 ALCANCE	•••••	13
2.4 ANÁLISIS SISMOGRÁFICO DE LA REGIÓN		15
2.5 OBJETIVO DEL DISEÑO SISMO - RESISTENTE		16
2.5.1 PRESENTACION DEL PROYECTO ESTRUCTURAL		16
A ANTHUSIS DE LA CIMENTACIÓN		18
3.1 DESLIMEN DE LAS CONDICIONES DE CIMENTACIÓN		18
3.1.1 TIPO DE CIMENTACION		18
3.1.3 PROSLINDIDAD DE CIMENTACION		18
3 L 2 ESTRATO DE APOYO A LA CIMENTACION		18
32 CÁLCULO Y ANALISIS DE CAPACIDAD ADMISIBLE (gad)		18
3.2.1 PARAMETRO DE CALCULO		18
3.2.2 PARAMETRO DE DISEÑO PARA LA CIMENTACION		19
3.2.3 CALCULO DE ASENTAMIENTO		20
4. NIVEL FREATICO	• • • • • • • • • • • • • • • • • • • •	22
AGRESIÓN DEL SUELO AL CONCRETO DE LA CIMENTACIÓN		22
6. CONCLUSIONES Y RECOMENDACIONES		23
6.1 CONCLUSIONES		23
6.2 RECOMENDACIONES		22
BIBLIOGRAFIA	t/	ŋ26
	1	1

1. GENERALIDADES

El presente informe ha sido elaborado en base a la investigación geotécnica en campo, para la verificación de las características del suelo en la zona urbana para el: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022".

1.1 OBJETIVO DEL ESTUDIO

El objetivo del presente trabajo es verificar la tipología y características geomecánicas del suelo existente en condiciones normales, donde se proyecta la construcción de la red de drenaje pluvial, dadas las características físicas y mecánicas, su propiedad de resistencia y asentamiento particular del suelo, tipo y profundidad de cimentación, capacidad portante admisible, permitiendo de esta manera presentar una buenas conclusiones y recomendaciones.

El proceso seguido para los fines propuestos, son los siguientes:

- Reconocimiento del terreno.
- Distribución y ejecución de calicatas.
- Tomas de muestras inalteradas y disturbadas.
- Ejecución de ensayos de laboratorio.
- Evaluación de los trabajos de campo y laboratorio.
- Registro de excavación.
- Análisis de la Capacidad Portante Admisible.
- Cálculo admisible permisible.
- Conclusiones y Recomendaciones.

1.2. DESCRIPCIÓN DEL ESTUDIO

El Estudio contempla realizar el diseño de un sistema de drenaje pluvial, mediante la construcción de cunetas revestidas donde se evacuará el flujo el cual transportará las aguas de lluvia captadas en los jirones, Progreso, Bolognesi, San Martin y Huallaga.

Se prevé que esta propuesta de drenaje pueda satisfacer las exigencias de la zona urbana referentes a la colección, transporte y evacuación durante un evento de precipitación, reduciendo la escorrentía a un nivel adecuado conforme indica la norma para sectores urbanos y en consecuencia proporcione un correcto tránsito vehicular y peatonal.

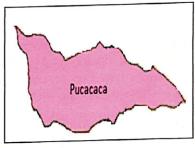
Ing. Francisco Grandez Rengifo INGENIERO CIVIL CIP Nº 101293

1.3. UBICACIÓN DEL AREA EN ESTUDIO

El proyecto se encuentra ubicado geográficamente en el distrito de Pucacaca, localidades de Shimbillo:

Localidad: Shimbillo Distrito : Pucacaca Provincia : Picota

Departamento: San Martín


Coordenadas:

Latitud Sur: 6° 49' 39.4" \$ (-6.82761457000) Longitud Oeste: 76° 20' 31" W (-76.34195771000)

Altitud: 223 m.s.n.m.

PLANO DE UBICACIÓN

IMAGEN SATELITAL - LOCALIDAD DE SHIMBILLO - PUCACACA

Ing. Fracisco Grández Rengtio INGENIERO CIVIL CIP Nº 101293

1.4. CONDICIONES CLIMATICAS DE LA ZONA

Las características climáticas de la localidad de Shimbillo, perteneciente a la provincia de Picota, los veranos son cortos, tórridos, bochornosos y parcialmente nublados y los inviernos son calurosos, opresivos, mojados y mayormente nublados. Durante el transcurso del año, la temperatura generalmente varía de 22 °C a 35 °C y rara vez baja a menos de 20 °C o sube a más de 38 °C.

1.5. ALTITUD DE LA ZONA

La zona de estudio se encuentra a una altitud aproximada de 217 m.s.n.m. aproximadamente.

1.6 ACCESO AL AREA DE ESTUDIO

Se accede por vía terrestre desde la ciudad de Tarapoto, en un viaje de 1hr 05 mins aproximadamente por la vía asfaltada Fernando Belaunde Terry hasta la localidad de shimbillo, (km 59).

1.7. METODOLOGIA

El programa desarrollado acuerdo al estudio geotécnico, ha sido elaborado específicamente con la finalidad de obtener información de la conformación existente, así como la formación estratigráfica de los suelos subyacentes y de acuerdo a los objetivos propuestos, dividiéndose en varias fases:

En primer lugar, se procedió a efectuar el reconocimiento y evaluación detallada de la zona además de la revisión de la bibliográfica y documentación (técnica y cartográfica) referente al tema y objeto de estudio.

En la segunda fase se llevó a cabo el estudio de campo de las calles donde se proyecta la construcción del drenaje pluvial, realizando calicatas con el objetivo observar el tipo y características de los estratos presentes en la misma, hacer la identificación geotécnica del terreno, toma de muestras con las que se realizó los análisis, ensayos de las muestras obtenidas y el reportaje fotográfico

En la tercera fase, corresponde realizar en el laboratorio de mecánica de suelos de suelos todos los ensayos Correspondientes, a lo indicado por fas Normas Técnicas Peruana y Normas ASTM.

Con las muestras alteradas e inalteradas, obtenidas en la inspección de campo, se realizaron los siguientes ensayos de laboratorio:

Ing. Francisco Grández Rengtio INGENIARO CIVIL CIP N 101293

TELF: (042)526582 CEL/RPM: #948 481 681 email: genkxp@hotmail.com Jr. Leonclo Prado 1091 Tarapoto

• Ensayos Estándar: se realizaron los ensayos estándar de clasificación de

suelos y propiedades físicas que consisten en:

Los ensayos se ejecutaron siguiendo las normas de la American Society For
Testing and Materiales (ASTM), las normas para estos ensayos son las

siguientes:

- Análisis granulométrico por tamizado ASTM D-422.
- Límites de Atterberg ASTM D-4318.
- Contenido de humedad ASTM D-2216.
- SUCS ASTM D-2487.
- Ensayo de Corte Directo: Con la finalidad de obtener los parámetros resistentes del suelo se realizaron en total 08 ensayos. Este ensayo consiste en colocar el espécimen en una caja de cizalladura directa, se fundamenta en aplicar un esfuerzo normal y luego un movimiento a velocidad constante en trayectoria horizontal, se mide la fuerza y desplazamiento a medida que es cizallada. Este ensayo se rige al ASTM D-3080.
- Ensayos Químicos: Los ensayos químicos permiten determinar el grado de agresividad del suelo con la cimentación u otras estructuras que estarán en contacto con el suelo, para esto se ejecutaron 01 ensayo químico, para determinar la concentración de sulfatos y cloruros presentes en el suelo.

En la cuarta fase, el desarrollo en gabinete donde se efectúa una sinopsis de los datos obtenidos y finalmente se procesa el expediente técnico del estudio.

 Descripción general del proyecto: Consiste en la descripción del proyecto, así como de sus características más importantes desde el punto de vista geotécnico.

También se incluyen objetivos y alcances del proyecto, información geográfica y metodologías de trabajo.

- Descripción de geología y sismicidad: Consiste en la descripción de la geología y la sismicidad de la zona.
- Fundamentación geotécnica: Consiste en determinar un programa de investigaciones geotécnicas. Además se visualizarán los resultados obtenidos en los ensayos.
- Análisis y diseño de cimentaciones: Mediante este proceso se busca establecer la zonificación del terreno de fundación de las cimentaciones, y comprende los siguientes pasos lógicos:

INGENIERO CIVIL

- Metodología de cálculo.
- Condiciones de análisis
- Definición de los tipos de terreno.
- Determinación de la capacidad portante.
- Análisis de asentamiento.

1.8. TIPO DE ESTUDIO

El presente estudio es de "tipo investigación" y las recomendaciones dadas son suficientes para la planeación de la parte constructiva del estudio.

Además, las recomendaciones vertidas en este estudio son solo para los fines diseño; también para otras estructuras, tomar al presente informe con carácter de antecedente o referencial.

1.9. ENSAYOS DE CAMPO

Correspondió a la etapa de prospección in-situ, donde se tomaron muestra de las excavaciones, realizadas con máquina retroexcavadora, permitiendo esta manera caracterizar al suelo de fundación mediante la descripción visual manual (ASTM D 2488) en el área correspondiente, tomándose muestras de las capas de suelo encontrado.

1.10. CALICATA O POZO DE EXPLORACIÓN

Se programó la ejecución de cuatro (04) calicatas o pozos de exploración "A Cielo Abierto", con profundidad máxima de 2.0 metros, las calicatas se ubicaron convenientemente y con profundidades suficientes para la elaboración del informe de suelos.

CUADRO Nº1

CALICATA	CALLE	PROFUNDIDAD EXCAVACION
C-01	Progreso / Huallaga	2.00 m
C-02	Bolognesi / Huallaga	2.00 m
C-03	Progreso / San Martin	1.00 m
C-04	Bolognesi / San Martin.	1.00 m

1.11. MUESTREO Y REGISTRO DE EXPLORACION

Se tomaron un total de **04 muestras** obtenidas en los trabajos de campo las cuales fueron analizadas en el laboratorio, para determinar sus propiedades y características físico – mecánicas fundamentales, tales como, Análisis humedad, granulométricos por tamizado, Límites de Consistencia, Corte Directo, estos ensayos fueron realizados siguiendo las normas establecidas de **EMS**.

ing. Francisco Grandez Rengiño INGENIERO CIVIL

1.12. ENSAYOS DE LABORATORIO

Las investigaciones se han realizados por medio de Las pruebas de laboratorio se han desarrollado siguiendo los procedimientos normalizados de ensayo, establecidos por la ASTM y recopilados por la Norma Técnica Peruana N.T.P.

1.13 ENSAYO ESTANDAR

Se realizaron los siguientes ensayos.

CUADRO Nº 2

ENSAYO	NORMA	NTP
Contenido de humedad Natural	ASTM D 2216	339.127
Análisis Granulométrico	ASTM D422	339.128
Límites de Atterberg (Limite Liquido, Limite Plástico, Índice de plasticidad)	ASTM D 4318	339.129
Clasificación Unificada de suelos SUCS	ASTM D 2487	339.134
Ensayo de Corte Directo	ASTM D 3080-04	339.171
Contenido de Cioruros Solubles en suelo	AASTHO T291	339.177
Contenido de Sulfatos Solubles en suelos	AASTHO T291	339.178
Contenido de Sales Solubles totales en suelos	BS 1377	339.152

1.14. PERFIL ESTRATIGRÁFICO DEL SUELO

Jr. Progreso/Huallaga

Calicata: C-01

De **0.00 a 0.20 m**. Material Afirmado Carpeta de rodadura.

De **0.20 a 2.00 m**. Arcilla inorgánica, de consistencia firme, color marrón rojizo, suelo con contenido de humedad natural de 19.50%, presenta 2.37% de arena, finos menores a la malla N° 200 de 97.63%, límite líquido de 44.80%, índice de plasticidad de 26.50%, suelo de mediana plasticidad, Clasificación **SUCS**: CL.

<u>Jr. Bolognesi/Huallaga</u>

Calicata: C-02

De **0.00 a 0.20 m**. Material afirmado.

De **0.20 a 2.00 m.** Arcilla inorgánica, de consistencia media, color marrón rojizo, suelo con contenido de humedad natural de 15.80%, presenta 4.79% de arena, suelo fino menor a la malla N° 200 de 95.21%, límite líquido de 43.50%, índice de plasticidad de 21.20%, suelo de mediana plasticidad, Clasificación **SUGS**: **CL**.

7

ing. Francisco Grández Rengifo INGENIERO CIVIL

Jr. Progreso/San Martin

Calicata: C-03

De 0.00 a 0.20 m. Material orgánico.

De **0.20 a 1.00 m**. Arcilla inorgánica con arena, de consistencia media, color marrón, suelo con contenido de humedad natural de 18.60%, presenta 8.93% de arena, finos menores a la malla N° 200 de 91.07%, límite líquido de 34.10%, índice de plasticidad de 18.00%, suelo de mediana plasticidad, Clasificación **SUCS: CL.**

Jr. Bolognesi/San Martin

Calicata: C-04

De 0.00 a 0.10 m. Material orgánico.

De **0.10 a 1.00 m**. Arcilla inorgánica, de consistencia media, color marrón rojizo, suelo con contenido de humedad natural de 20.50%, presenta 0.23% de arena, fino menor a la malla N° 200 de 99.77%, límite líquido de 36.10%, índice de plasticidad de 19.20%, suelo de mediana plasticidad, Clasificación **SUCS: CL.**

1.15 POTENCIAL DE EXPANSIÓN

Los suelos plásticos o arcillosos son aquellos capaces de deformarse sin agrietarse ni producir rebote elástico, cambiando su consistencia al variar su contenido de humedad, en función a éstos cambios se dan diferentes estados físicos siendo los límites de consistencia líquido y plástico, e índice de plasticidad el punto de partida para la estimación de la expansividad de un suelo, (Constantes físicas).

En forma general y orientativa el grado de expansividad se puede determinar en función de algunas propiedades geotécnicas de los suelos según RNE -50:

CUADRO Nº3.- POTENCIAL DE EXPANSIÓN DE LOS SUELOS

Potencial de expansión	Expansión en consolidómetro bajo presión vertical de 7 kPa (0,07 kgf/cm²)	Índice de plasticidad	Porcentaje de particulas menores que dos micras
%	%	%	%
Muy alto	> 30	> 32	> 37
Alto	20 - 30	23 - 45	18 - 37
Medio	10 - 20	12 - 34	12 - 27
Baio	< 10	< 20	< 17

Bajo < 10
Fuente: RNE E050.

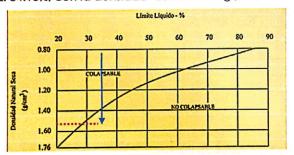
De acuerdo a los ensayos de laboratorio se llega a la conclusión que el estrato que gobierna la configuración estratigráfica de la zona en estudio y considerando el estrato de cimentación, que es del tipo limosa (ML), con índices de plasticidad MEDIO, calificándolo como suelos de bajo potencial de expansión, por lo cual debería tenerse en cuenta en el diseño de la cimentación.

Ing. Franc

INGE

ERO CIVIL

1.15 SUELOS COLAPSABLES


Se identifican como suelos colapsables aquellos depósitos formados por arenas y limos, en algunos casos cementados por arcillas y sales (sulfatos de calcio) que si bien resisten cargas considerables en su estado seco, sufren pérdidas de su conformación estructural, acompañadas de severas reducciones en volumen exterior cuando se humedecen o se saturan.

Son suelos que cambian violentamente de volumen por la acción combinada o individual de las siguientes acciones:

- al ser sometidos a un incremento de carga o
- al humedecerse o saturarse.

Estos suelos se sustentan con un análisis basado en la determinación de la plasticidad del suelo NTP 339.129 (ASTM D4318), del ensayo para determinar el peso volumétrico NTP 339.139 (BS 1377), y del ensayo de humedad NTP 339.127 (ASTM D2216), con la finalidad de evaluar el potencial de colapso del suelo en función del Límite Liquido (LL) y la densidad natural seco (y). La relación entre los colapsables y no colapsables y los parámetros antes indicados se muestra en la gráfica siguiente:

Tomando en LL: 34.10%, con la densidad seca: 1.457 gr/cm³

A partir de la gráfica, se asume riesgo de colapso para un suelo que – en función de su plasticidad y densidad seca – se sitúe por encima de la curva de Gibbs.

 Nota: En el área de estudio el suelo encontrado NO es susceptible colapso al encontrarse en estado natural seco y no densificado.

CUADRO Nº 4

MUESTRA	LIMITE	DENSIDAD NATURAL SECO (gr/cm3)	TIPO DE SUELOS
M-1	44.80%	1.449	NO COLAPSABLE EN ESTADO SECO
M-2	43.50%	1.490	NO COLAPSABLE EN ESTADO SECO
M-3	34.10%	1.457	NO COLAPSABLE EN ESTADO SECO
M-4	36.10%	1.427	NO COLAPSABLE EN ESTADO SECO:

Ing. Francisco Grández Rengsio INGENIERO CIVIL CIP Nº 101293

CUADRO Nº 5- RESUMEN

CUADRO RESUMEN								
CAUCATAS	C-01	C-02	C-03	C-04				
COORDENADAS	Progreso / Huallaga	Bolognesi / Huallaga	Progreso / San Martin	Bolognesi / San Martin				
MUESTRA	M-01	M-01	M-01	M-01				
PROFUNDIDAD [m]	0.20 - 2.00	0.20 - 2.00	0.20 -1.00	0.10 - 1.00				
HUMEDAD NATURAL [%]	19.50	15.80	18.60	20.50				
LIMITE LIQUIDO [%]	44.80	43.50	34.10	36.10				
LIMITE PLASTICO [%]	50000	22.30	16.10	16.90				
INDICE PLASTICO [%]	26.50	21.20	18.00	19.20				
MATERIAL < № 200 [%]	and the second	95.21	91.07	99.77				
POTENCIAL DE EXPANSION (HOLTZ Y GIBBS)	MEDIA	MEDIA	MEDIA	MEDIA				
CLASIFICACIÓN S.U.C.S.	CL	CL	CL	СІ				
CLASIFICACIÓN A.A.S.H.T.O.	A-7-6(15)	A-7-6(13)	A-6(11)	A-6(12)				

CUADRO Nº 6 RESUMEN DE LOS ENSAYOS ESPECIALES – ENSAYO CORTE DIRECTO

)E			-	CLASIF.	CORTE DIRECTO			
CALICATA	JIRON	MUESTRA	PROF. (m)	sucs	C: kg/cm2	ø(°)	DEN. NATURAL gr/cc	
C-01	Progreso / Huallaga	M-1	2.00 m	CL	0.141	14.50	1.729	
C-02	Bolognesi / Huallaga	M-1	2.00 m	CL	0.136	14.60	1.720	
C-03	Progreso / San Martin	M-1	1.00 m	CL	0.126	16.40	1.733	
C-04	Bolognesi / San Martin	M-1	1.00 m	CL	0.143	16.00	1.717	

PARTE II

2. GEOMORFOLOGÍA, GEOLOGÍA Y SISMICIDAD EN EL ÁREA DE ESTUDIO

2.1. GEOMORFOLOGIA

La geomorfología se encuentra formando parte de la Faja Subandina y la cordillera oriental, se caracteriza por el desarrollo geotécnico reciente (Paleogeno-Neogeno - Cuaternario), los que han ocasionado el plegamiento y levantamiento de bloques por la acción de fallas inversas asociadas con fallas y bloques. El modelo morfo estructural actual se definió durante el Mesozoico y desde fines del Cretáceo la sedimentación en las cuencas ha sido mayormente de depósitos continentales.

La zona de estudio esta diferenciada por la presencia de tres grupos de unidades geomorfológicas: Faja Subandina, Llanura amazónicas y la cordillera Oriental

Ing. Francisco Grández Rengiño INGENIERO CIVIL

2.2 GEOLOGÍA

Se realizó la evaluación geológica del área en estudio, esta evaluación tuvo por objetivo conocer las características geomorfológicas, litoestratigráficas y estructurales. La zona de estudio pertenece a la unidad geográfica denominada Faja Sub Andina y llanuras amazónicas la cual esta conformad por zonas de topografía ondulada con altitudes que varían entre 200 y 1000 msnm en su mayor parte, las cadenas montañosas presentan por lo general direcciones NO SE y alcanzan altitudes de 2300 msnm en los sectores ubicados en Nueva Cajamarca, destaca también planicies rodeadas de zonas bajas y disectadas por quebradas y ríos.

2.2.1 MARCO GEOLOGICO REGIONAL

El estudio se ha realizado basándose en el boletín Nº 94 "Geología del Cuadrángulo de Utcurarca" hojas 14-K. INGEMMET, Noviembre 1997, a escala 1:100,000; realizándose la correspondiente evaluación de la zona.

Ing. Francisco Grández Rengsio INGEN ERO CIVIL

2.2.2 LITO ESTRATIGRAFIA GENERAL

La Geología de la zona de estudio se caracteriza por presentar pendientes suaves, constituyendo zona no inundable de terrazas bajas que corresponde a la aérea de la influencia del Rio Huallaga, con altitud promedio de 220 msnm. El principal agente geomorfológico lo constituye el Rio Huallaga y las condiciones meteorológicas a actuar sobre terreno relativamente erosivas han dado la fisiografía actual.

Deposito Aluvial.- Se caracterizan estos materiales por presentar de solidos de suelos minerales y partículas de roca, que han sido efectuados por las Corrientes de agua del Rio Huallaga, estos suelos tiene textura limo arcillosa.

Depositos Fluvio- Aluviales.- Se encuentran formado por terrazas inferiores, formando suelos de textura gruesa, estos materiales son depósitos de grava gruesa con dimensiones muy Heterogéneas, del tipo arenisca cuarzosas blanquecinas de mediana durabilidad, materiales como lulitas y limolitas, los materiales de menor tamaño son suelos arenosas de gano media a fina, con alto porcentaje de limo y arcilla.

Formación Ipururo (N-i)

Se caracteriza por estar constituida mayormente de areniscas gris claras a marrones con tonalidades pardas amarillentas, las que se encuentran intercaladas con lodolitas marrones rojizos y abigarrados así como con algunos niveles conglomerádicos y brechoides. Las capas de areniscas son sublíticas, subarcósicas y líticas de grano grueso y tienen grosores que varían entre 2 y 30 metros, sus límites son ondulados irregulares, presentan laminación y estratigrafía sesgada en depresión.

2.2.3. GEOLOGÍA LOCAL

El área de estudio geomorfológicamente se encuentra en la unidad de Valle Amazónico, se caracteriza por presentar Colinas de mediana altitud y de inclinación moderada a elevada.

Las formaciones geológicas del área de estudio, corresponde a laderas de montañas, colinas alargas y valles, están comprendidas en la era cenozoica y en el sistema paleógeno - cuaternario, son depósitos de arcillas, limos, arena, de color marrón claro a gris claro de la serie Paleocena y Holocena. No obstante en toda la extensión del área estudiada y en la región en general, existe una cobertura inconsolidada de suelo residual y orgánico producto de la actividad biológica de la flora y fauna a lo que se suma la actividad Antrópica.

2.2.4 ESTRATIGRAFÍA LOCAL

A continuación, se describen las siguientes unidades litoestratigráficas identificadas en área de estudio:

Cenozoico Cuaternario

Depósitos Fluviales (Qh-fl)

Estos depósitos corresponden a los materiales que conforman el lecho del río Mayo y están en constante movimiento por la dinámica del río, temporalmente estos se acumulan en forma de terrazas donde se intercalan gravas y arenas.

Ing. Francisto Grandez Rengifo INGENIARO CIVIL

CIP N1 101291

Cenozoico Neógeno

Presenta sesgada arcosicas-líticas con intercalaciones de pizarras arcillosas y lodolitas rojas.

Formación Ipururo (N-I)

Se conforma por areniscas de color gris bruno a pardos y conglomerados polimicticos de grano medio a grueso y estratificación sesgadas.

2.2.5 GEODINAMICA EXTERNA

Está asociada a los fallamientos de tipo inversa, que generan inestabilidad en el terreno. Posibles ocurrencias de fenómenos telúricos que pueden llegar a generar movimientos provocando inestabilidad en los materiales litológicos, los cuales podrían ocasionar desprendimientos de taludes y excepcionalmente movimiento en masa.

2.3. ASPECTO SISMICO

2.3.1 SISIMICIDAD

Según análisis sismo tectónicos, existen en el mundo dos zonas muy importantes de actividad sísmica conocidas como: el Círculo Alpino Himalayo y el Circulo Pacifico. En esta última zona han ocurrido el 80 % delos eventos sísmicos, quedando el 15 % para el Circulo Alpino Himalayo, y el 5 % restante se reparte en todo el mundo.

Se concluye que de acuerdo al área sísmica donde se ubica la zona en estudio existe la posibilidad de que ocurran sismos de intensidades del orden IV -V en la escala de Mercalli.

2.3.2 ALCANCE

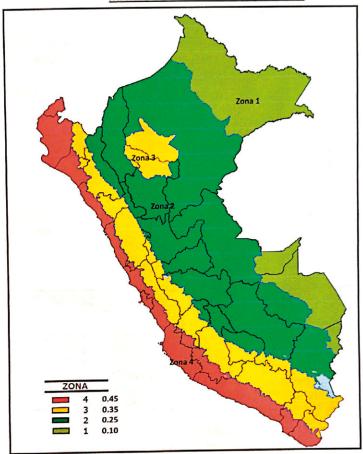
Las especificaciones de la norma técnica E-030, establecen los requisitos mínimos para que las edificaciones tengan un adecuado comportamiento sísmico con el fin de reducir el riesgo de pérdidas de vidas y daños materiales, de ígual modo posibilitar que las edificaciones puedan funcionar durante y después de un sismo.

2.3.3 GEODINÁMICA LOCAL

GEODINÁMICA INTERNA LOCAL

Según el Mapa de Regionalización Sísmica del Perú, el área del proyecto se encuentra clasificado en la Zona 2.

Según las Normas de Diseño Sismo-resistente incluidas en el Reglamento Nacional de Edificaciones, deberá asignársele un periodo de vibración de 0.60 seg.


g. Francisco Grandez Rengtle

NGENIERO CIVIL

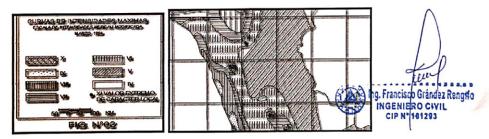
Según el mapa de iso-aceleraciones del CISMID – UNI, la máxima aceleración presentada con una excedencia de 10% en 50 años de vida útil es de 0.29g.

MAPA DE ZONIFICACION SISMICA

Según la ubicación del proyecto, los parámetros sísmicos para el diseño de la carpeta de rodadura son:

FACTORES DE ZONA "Z"

ZONA	1
4	0,45
3	0,35
2	0,25
1	0,10


Un rápido análisis de los registros sísmicos de la Región San Martín, denotan la presencia de varios Focos Sísmicos, asociados principalmente a las fallas geológicas superficiales de Nueva Cajamarca, las que de acuerdo a los hipocentros sísmicos muestran cierta continuidad a profundidades mayores a los 33 km; y que además, la presencia de hipocentros a profundidades mayores a los 100 km son un reflejo de la interacción de las placas Sudamericana y de Nazca.

2.4 ANÁLISIS SISMOGRÁFICO DE LA REGIÓN

En la Región San Martín la actividad sísmica está vinculada a fallas geológicas superficiales y/o de reciente formación, presentándose también hipocentros a profundidades mayores a 33 Km.; son un reflejo de la interacción de las placas Sudamericana y de Nazca. El número de terremotos registrados en la zona en estudio, es 1 a una profundidad entre 0 y 33 Km; 1 entre 33 Km y 100 Km, y 1 entre 100 Km y 300 Km.

Considerada como Zona Sísmica de Intensidad V a VI en la Escala de Mercalli Modificada.

MAPA DE INTESIDAD SISMICA

La presencia de los terremotos ocurridos en los últimos 20 años (Rioja - 1990, Moyobamba - 1991), han puesto de manifiesto en forma catastrófica la extraordinaria vulnerabilidad sísmica de las ciudades afectadas y de la región en general. El 29 de Mayo de 1990 ocurrió un terremoto de magnitud Ms = 6.6

que afectó la zona centro-sur del Dpto. de San Martín, ocasionando funestas consecuencias en Moyobamba el 90% de edificaciones tapiales fueron destruidas, en Rioja casi el 100% de las construcciones de tapial quedaron inhabitables, puesto que presentaban daños severos o habían colapsado, en Nueva Cajamarca, esta vez más afectada por su mayor cercanía al epicentro, los daños producidos por la poca resistencia sísmica del adobe se acrecentaron.

2.5 OBJETIVO DEL DISEÑO SISMO - RESISTENTE

El proyecto y la construcción de esta edificación deberá desarrollarse con la finalidad garantizar un compartimiento que haga posible, resistir sismos que sufran daños estructurales importantes, evitando el colapso súbito de la estructura.

La memoria descriptiva y los planos del proyecto estructural deberán como mínimo tener la siguiente información:

- Sistema Estructural Sismo Resistente.
- Parámetro para definir la fuerza sísmica o el espectro del
- Desplazamiento máximo del último nivel y el máximo desplazamiento relativo del entrepiso.

2.5.1 PRESENTACION DEL PROYECTO ESTRUCTURAL

Parámetros de Sitio

Al ser dividido el territorio nacional en cuatro zonas, según se muestra la zona de estudio se encuentra en la zona 2, zona de media sismicidad, por tanto:

Las fuerzas sísmicas horizontales pueden calcularse de acuerdo a las formas de Diseño Sismo-resistente según relación siguiente:

$$H = \frac{Z \times U \times S \times C \times F}{P}$$

Donde:

Factor suelo (S = 1.20) S

Periodo (Ts = 1.00 seg.)

Factor de zona (Z = 0.25g)

Aceleración máxima de terreno con una probabilidad del 10%, de ser excedida en 50 años.

U = Factor de uso, categoría a (U = 1.5)

Factor de la ampliación sísmica de acuerdo a las características de sitio, por consiguiente, se expresa:

$$C = 2.5 \times (Tp/T) \le 2.5$$

Interpretándose como el factor de amplificación de la respu

estructural respecto a la aceleración en el suelo.

• Coeficiente Sísmico Elástico

$$V = \frac{Z \times U \times S \times C}{R} \times P$$

Donde:

 U = Factor de suelo corresponde a la importancia de la edificación

P = El peso de la estructura

Z = Factor de suelo

R = denominado coeficiente de reducción de la fuerza sísmica y permite diseñar las estructuras con fuerzas menores a las que soportarían de comportarse elásticamente durante el sismo diseñado

C = Factor de la ampliación sísmica

• Control de Desplazamiento

En los últimos años se ha determinado con mayor claridad entre el daño estructural y los niveles de desplazamiento lateral al que son llevadas las estructuras durante un sismo, esto ha hecho evidente la necesidad de contar con limites seguros para los desplazamientos laterales, considerado para tal efecto lo siguiente.

$$(\Delta / he) = 0.007$$

• Junta de Separación Sísmica

Se define por la siguiente ecuación:

s = 0,006 h ≥ 0,03 m

Donde:

S = Junta de separación sísmica

h = Altura medida desde el nivel de terreno natural hasta el nivel considerado de la edificación (cm).

El factor de seguridad al volteo no será menor que 1.50.

Para efectos de diseño de la estructura se consideran elementos de conexión, los cuales soportarán esfuerzos de tracción o compresión, con una fuerza horizontal mínima equivalente al 10% de la fuerza vertical que soporta el cimento.

Ing. Franc

INGENERO CIVIL

PARTE III

3. ANÁLISIS DE LA CIMENTACIÓN

3.1 RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN

3.1.1 TIPO DE CIMENTACIÓN

De acuerdo al EMS para el proyecto se presenta dos cálculos de capacidad portante al tipo de cimentación como es el caso de cimentación continua y cimentación cuadrada, estos elementos estructurales serán de concreto armado; f'c = 175 Kg./ cm² y acero fy = 4200 kg/cm².

3.1.2 PROFUNDIDAD DE CIMENTACIÓN

La profundidad de cimentación para las cunetas, se presenta a 1.60 m y 1.0 m según los resultados obtenidos de las excavaciones realizadas.

3.1.3 ESTRATO DE APOYO DE LA CIMENTACIÓN

El estrato que servirán de soporte a los diferentes elementos estructurales del proyecto en mención, según el Sistema Unificado de Clasificación de Suelos (SUCS) se clasifican como:

Suelos tipo CL: Suelo arcillosa de consistencia blanda a firme, color de mediana plasticidad, por lo tanto, es en este tipo de suelo se apoyará la cimentación.

3.2 CÁLCULO Y ANALISIS DE CAPACIDAD ADMISIBLE (qad)

Se puede apreciar que los estratos de suelo de las calicatas realizadas en la zona evaluada presentan características físico mecánico similar.

3.2.1 PARAMETRO DE CÁLCULO

Se empleará para él cálculo de capacidad de carga última y capacidad admisible por falla por corte general, y falla por corte general, propuesta por Terzaghi, según la ecuación de la capacidad de carga aplicable para una cimentación superficial, utilizando las siguientes expresiones:

Capacidad de Carga Limite de una Cimentación Corrida o Continua para Falla

por Corte General;

qd = c.Nc + y.Z.Nq + 0.5.y.B.Nw

Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP Nº 101293

Donde:

 q_u = capacidad ultima de carga

B =ancho de la zapata

q odm = capacidad admisible de carga

D_f = profundidad de cimentación

F_s = factor de seguridad

C = cohesión

 γ = densidad natural

 N_c' , N'_q , N'_n , factores de carga en función de ϕ .

3.2.2 PARAMETRO DE DISEÑO PARA LA CIMENTACIÓN

Debido a las características variadas con respecto a las características físico mecánico de los suelos en el área de estudio, se realizó **cuatro** ensayos de corte directo, agrupados de la siguiente manera:

ENSAYO Nº 1 Calicatas: C-01; Jr. Progreso/Huallaga

Clasificación SUCS: CL

- Ø =14.50°

 $C = 0.141 \text{ Kg/cm}^2$

- Densidad Natural γ = 1.729 kg/cm³

- Factor de Carga:

 $N'_{C} = 9.49; N'_{q} = 2.92; N'_{r} = 0.67$

- Profundidad: 1.60 m.

- Ancho (B): 1.00 m.

- Presión admisible: 0.70 kg/cm2

- Factor de seguridad por corte: 3.0

ENSAYO N° 2 Calicata: C-2; Jr. Bolognesi/Huallaga

Clasificación SUCS: CL

- Ø =14.60°

C = 0.136 Kg/cm2

- Densidad Natural y = 1.720 Kg/cm³

- Factor de Carga:

 $N'_{c} = 9.53; N'_{g} = 2.66; N'_{r} = 0.53$

- Profundidad: 1.60 m.

- Ancho (B): 1.00 m.

- Presión admisible: 0.69 kg/cm2

- Factor de seguridad por corte: 3.0

Ing. Francisco Grández Rengifo
INGEN ERO CIVIL

ENSAYO Nº 3 Calicata: C-3; Jr. Progreso/San Martin

Clasificación SUCS: CL

- Ø =16.40°
- $C = 0.126 \text{ Kg/cm}^2$
- Densidad Natural γ = 1.733 Kg/cm³
- Factor de Carga:

 $N'_{c} = 10.55; N'_{g} = 3.0; N'_{r} = 0.71$

- Profundidad: 1.00 m
- Ancho (B): 1.00 m.
- Presión admisible: 0.64 kg/cm2
- Factor de seguridad por corte: 3.0

ENSAYO Nº 4 Calicata: C-04; Jr. Bolognesi/San Martin

Clasificación SUCS: CL

- Ø =16.00°
- C = 0.143 Kg/cm2
- Densidad Natural γ = 1.717 Kg/cm³
- Factor de Carga:

 $N'_{c} = 10.06; N'_{q} = 2.92; N'_{r} = 0.67$

- Profundidad: 1.00 m
- Ancho (B): 1.00 m.
- Presión admisible: 0.67 kg/cm2
- Factor de seguridad por corte: 3.0

3.2.3 CALCULO DE ASENTAMIENTO

Aplicando el método elástico.

Se calculará en Base a la teoría de la elasticidad conociendo el tipo de cimentación superficial recomendado, el asentamiento inicial elástico para la capacidad portante más alta y la más baja:

 $\delta i = qa.B (1-u^2)$ If

Es

Para tal caso se toma el valor obtenidos en los ensayos de capacidad portante.

Ing. Francisco Grández Rengifo INGENIERO CIVIL CIP Nº 101293

TELF: (042)526582
CEL/RPM: #948 481 681
email: genixrp@hotmail.com
Jr. Leoncio Prado 1091 Tarapoto

CUADRO DE REFERENCIA

Tipo de Suelo	os	Es (ton/m2)	Tip
Arcilla muy blanda		30 -300	Arcilla
Blanda		200 -400] '
Media		450 -900]
Dura		700 -2000] [
Arcilla Arenosa		3000 - 4250]]
Suelos Glaciares		1000 - 16000	Limo
Loess		1500 - 6000	
Arena Limosa		500 - 2000	Arena
Arena	: Suelta	1000 - 2500]
	: Densa	5000 - 10000]
			Roca
Grava Arenoso	: Densa	8000 - 20000	loess
	: Suelta	5000 - 1400	11
Arcilla Esquistosa		14000 - 140000	Hielo
Limos		200 - 2000	Concreto

	Tij	pos de Suelos	μ (-)
	Arcilla	: Saturada	0.4 - 0.5
		: No Saturada	0.1 - 0.3
		: Arenoso	0.2 - 0.3
4			
1	Limo		0.3 - 035
$\left \cdot \right $	Limo		
$\left\{ \right.$	Arena	: Densa	0.2 - 0.4
+		: De Grano Grueso	0.15
1		: De Grano Fino	0.25
1	Roca	4	0.1 - 0.4
	loess		0.1 - 0.3
$\frac{1}{1}$	Hielo		0.36
1	Concreto)	0.15

ENSAYO N°1 Calicata: C-01.Jr. Progreso/Huallaga

Clasificación SUCS: CL

Cálculo de asientos, Schleicher (1926)

Carga admisible (q): Módulo de Young (E): Coeficiente de Poisson (v): Ancho cimentación (b): Largo cimentación (i): m:	7.00 ton/m ² 900 Ton/m ² 0.30 1.00 m 1.00 m	0.70 kg/cm ² 90 kg/cm ² 0.30 100 cm 100 cm 1.00	
in:		0.56	

Asientos	Asie	ntos carga f	lexible	TO VIDE AT YOU
Carga rigida (cm)	Esquina (cm)	Centro (cm)	Valor medio (cm)	Carga total (T)
0.63	0.40	0.79	0.67	7.00

ENSAYO N°2 Calicata: C-02.Jr. Bolognesi/Huallaga

Clasificación SUCS: CL

a deviable (A):	6.90 ton/m ²	0.69 kg/cm ²
Carga admisible (Q): Módulo de Young (E):	900 Ton/m²	90 kg/cm ²
Coeficiente de Poisson (v):	0.30	0.30
Ancho cimentación (b):	1.00 m	100 cm
Largo cimentación (I):	1.00 m	100 cm
		1.00
m: lp:		0.56

Asientos	Asio	ntos carga f		
Carga rigida	Esquina (cm)	Centro (cm)	Valor medio (cm)	Carga total (T)
0.62	0.39	0.78	0.66	6.90

ENSAYO N°3 Calicata: C-03; Jr. Progreso/San Martin

Clasificación SUCS: CL

Carga admisible (Q):	6.40 ton/m ²	0.64 kg/cm ²
Módulo de Young (E):	900 Ton/m ²	90 kg/cm ²
Coeficiente de Poisson (v):	0.30	0.30
Ancho cimentación (b):	1.00 m	100 cm
Largo cimentación (I):	1.00 m	100 cm
m:		1.00
lp:		0.56

Asientos	Asie	ntos carga f	lexible	AND THE PROPERTY.
Carga rígida (cm)	Esquina (cm)	Centro (cm)	Valor medio (cm)	Carga total (T)
0.57	0.36	0.73	0.62	6.40

ENSAYO N°4 Calicata: C-04; Jr. Bolognesi/San Martin

Clasificación SUCS: CL

Carga admisible (q):	6.70 ton/m ²	0.67 kg/cm ²
Módulo de Young (E):	900 Ton/m ²	90 kg/cm ²
Coeficiente de Poisson (v):	0.30	0.30
Ancho cimentación (b):	1.00 m	100 cm
Largo cimentación (I):	1.00 m	100 cm
1771		1.00
m: lp:		0.56

Asientos	Asie	ntos carga f	lexible	The state of the state of
Carga rígida (cm)	Esquina (cm)	Centro (cm)	Valor medio (cm)	Carga total (T)
0.60	0.38	0.76	0.64	6.70

4. NIVEL FREÁTICO

No se encontró Napa freática en la zona del estudio.

5. AGRESIÓN DEL SUELO AL CONCRETO DE LA CIMENTACIÓN

La agresión que ocasiona el suelo está en función de la presencia de elementos químicos que actúan sobre el concreto y el acero de refuerzo, causándole efectos nocivos y hasta destructivos sobre las estructuras (sulfatos y cloruros). Sin embargo, la acción química del suelo sobre el concreto sólo ocurre a través del agua subterránea que reacciona con el concreto; el deterioro del concreto ocurre bajo el nivel freático, zona de ascensión capilar o presencia de agua infiltrada por otra razón (rotura de tuberías, lluvias extraordinarias, inundaciones, etc.).

Las concentraciones de estos elementos en proporciones nocivas, aparecen en el análisis químico la fuente de esta información corresponde a las recomendaciones del ACI (Comité 319-83) en el caso delos sulfatos presentes en el suelo y a la experiencia en los otros casos.

Ing. Francisco Grandez Rengifo
INGENIERO CIVIL

CUADRO Nº 7

Contenido de Sulfatos y su Grado de Agresividad al Concreto

PRESENCIA EN EL SUELO DE:	[ppm]	GRADO DE ALTERACIÓN	CONSECUENCIA
*Sulfatos [SO4]	0 - 1 000 1 000 - 2 000 2 000 - 20 000 >20 000	Leve Moderado Severo Muy Severo	Ocasiona Agresión Química al Concreto de la Cimentación
*Cloruros [CL-]	>300	Perjudicial	Ocasiona Problemas De Corrosión De Armaduras O Elementos Metálicos

6. CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

De acuerdo al resultado de los Cálculos, Características Físico – Mecánicas de los Suelos, se establecen las siguientes consideraciones finales:

- •El Presente Trabajo ha consistido en base a las normas técnicas E-50, de suelos y cimentaciones del Reglamento Nacional de Edificaciones (RNE) para la ejecución del: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022".
- •El Trabajo de campo ha consistido en la excavación de **04** calicata teniendo como profundidad máxima de **2.00 m.**
- Las calicatas se han ubicado convenientemente en el área del terreno y así poder contar con la información y resultados correctos. De las calicatas se extrajeron muestras alteradas para realizar ensayos Análisis Granulométrico por tamizado, Límites de Consistencia, Humedad natural, Clasificación de Suelos SUCS, y Ensayos de Corte Directo.
- •El Perfil Estratigráfico que se presenta ha sido elaborado mediante la interpretación del tipo de suelo encontrada en la zona evaluada.
- El suelo está conformado por una capa de material granular, en toda la zona del estudio, el sub suelo en su totalidad está conformado por material fino del tipo arcilla inorgánica, de color marrón a marrón rojizo, encontrando de mayor espesor en las calicatas C-01 y C-02, se encuentra con consistencia media, de mediana plasticidad, el cual servirá de receptor de y transportador de aguas fluviales.

INGENIERO CIVII

 Para el diseño de la cimentación del conducto principal, será superficial por medio de cimientos armados y/o cimentos corridos, cimentadas en estratos de suelos, opteniendo de esta manera las siguientes capacidades admisibles;

		CA STREET A ROOM OF STREET	Df [m]	CIMENTACION CORRIDAS		
CAUCATA	MUESTRA	CLASIF.		qadm [kg/cm²]	Asentamiento Si [cm]	
		sucs		B[1.0 x 1.0]	8[1.0 x 1.0]	
C-01	M-1	cı	1.60	0.70	0.63	
C-02	M-1	CL	1.60	0.69	0.62	
C-03	M-1	CL	1.00	0.64	0.57	
C-04	M-1	CL	1.00	0.69	0.60	

- No estará permitido cimentar directamente sobre estos suelos arcillosos, la cimentación deberá apoyarse sobre suelos no expansivos o con potencial de expansión bajo.
- Los niveles de agresividad química del suelo de fundación son leves, dado que su valor de sulfatos y sales están por debajo de los 1,000 ppm, y no se evidencia niveles de capa freática, en consecuencia, el suelo es recomendable para la construcción.

N° CALICATA	PROFUNDIDAD	РН	C.E	SALES SOLUBLES (PPM)	CLORUROS (PPM)	SULFATOS (PPM)
01	2.00	4.10	0.472	0.520	120	98
03	1.00	4.01	0.471	0.532	115	102

6.2 RECOMENDACIONES

- •Con la finalidad de mejorar las condiciones del suelo finos arcillosos existente, con el área de contacto de la estructura a cimentar, se podrá mejorar los suelos naturales con material grava limosas, o gravas con poco finos, ya sea proveniente de rio, o material de cantera cerro (Previo zarandeo para los dos casos) con espesor de 20 cm, compactando al 95% de su máxima densidad seca del proctor modificado, incrementando asi la densidad propia del suelo de apoyo y elevar su resistencia al esfuerzo cortante reduciendo los asentamientos probables.
- El material propuesto para mejoramiento del terreno es material granular procedente de la cantera "Rio Huallaga", ubicado en la misma localidad, donde se desarrolla el estudio.

Ing. Francisco Grández Rengifo INGENIERO CIVIL

- Se recomienda para la construcción de las estructuras la utilización de **CEMENTO TIPO Ico.**
- Para la elaboración de los diseños de mezcal de concreto la fuente de agua que se utilizará será proveniente de la red de agua Potable de la localidad de Shimbillo.

Ing. Francisco Grández Rengido
INGENIERO CIVIL
CIP 101293

BIBLIOGRAFÍA

Bowles, J.E. 1987. Elastic foundation settlement on sand deposits. *Journal of Geotechnical Engineering*, ASCE, 113(8): 846-860.

Jimenez Salas, J. A. et al., 1980. Geotecnia y Cimientos III. Cimentaciones, excavaciones y aplicaciones de la Geotecnia. (2 volumenes).

Terzaghi, K. (1943) Theoretical Soil Mechanics, John Wiley and Sons, New York. 510p.

Meyerhof, G.G. (1963) Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, Vol. 1, pp. 16-31.

Ing. Francisco Grández Rengifo INGENIERO CIVIL CIF Nº 101293

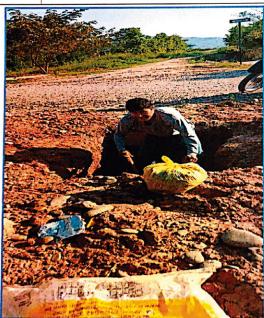
RESULTADOS DE LABORATORIO

PROYECTO		"DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"							
SOLICITANTE	Bach, Lloyser Joel Guerra Vargas / Bach, Gerald Colloquispe Rodríguez.								
CALICATA	C-01	TEC. RESP.	G. RAMIREZ	DESCRIPCIÓN: terreno natural					
COTA		PROF.(m)	2.00	JIRON: Progreso / Huallaga					
N.F. (m)		FECHA	ogo-22						

M.F. (111	,					Mark Market William Co.
Prof. (m)	NIVEL DE NAPA FREATICA	HUMEDAD NATURAL (%)	MUESTRA	DESCRIPCION DEL ESTRATO	SIMBOLO	sucs
0.00		•	S/M	Material Alirmado Carpeta de rodadura		
		19.50	М-1	Arcilla inorgánica, de consistencia firme, color marrón rojizo, el suelo presenta 2.37% de arena, finos menores a la malla Nº 200 de 97.63%, limite líquido de 44.80%, índice de plasticidad de 26.50%, suelo de mediana plasticidad		CL

bservaciones:

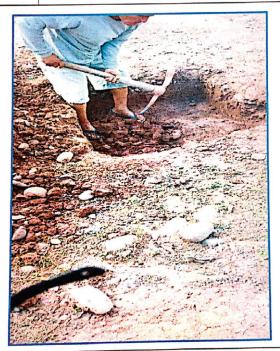
Genis Raminez Pinedo TEC SUELOS Y PAVIMENTOS Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP Nº 101293



	"DISEÑO DEI	DRENAJE PL	UVIAL PARA A SAN MARTIN	MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUA	S EN LA LOCALIDAD	DE
	SHIMBILLO,	ruCACACA	- Manager / De	och Corald Calloquispe Rodríguez.	11 V. A	
OLICITANTE	C-02	TEC. RESP.	G. RAMIREZ	DESCRIPCION: Terreno natural		
ALICATA	C-02	PROF.(m)	2.00	JIRON: Bolognesi / Huallaga		
OTA F (m)		FECHA	ogo-22			
.F. (m)		1				
Prof. NIVEL DE NAPA (m) FREATICA	HUMEDAD NATURAL (%)	MUESTRA	SIMBOLO	sucs		
0.00		S/M		Material Afirmado Carpeta de rodadura		
্য মুখ্য বিভাগ ব	15.80	M-1	suela prose	rgánica, de consistencia media, color marrón rojizo, enta 4.79% de arena, suelo fino menor a la malla № 21%, limite líquido de 43.50%, indice de plasticidad de 21.20%, suelo de mediana plasticidad	el oo	CL
	Prined				Ing. Francis INGENUE CIPN	CO Grandez Re

PROYECTO	"DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022" Bach, Lloyser Joel Guerra Vargas / Bach, Gerald Calloquispe Rodríguez.							
SOLICITANTE								
CALICATA	C-03	TEC. RESP.	G. RAMIREZ	DESCRIPCIÓN: terreno natural				
COTA		PROF.(m)	1.00	JIRON: Progreso / San Martin				
N.F. (m)	-	FECHA	ago-22					

N.F. (III	,					
Prof. (m)	NIVEL DE NAPA FREATICA	HUMEDAD NATURAL (%)	MUESTRA	DESCRIPCION DEL ESTRATO	SIMBOLO	sucs
0.00 0.10 0.15 0.20 0.20			S/M	Material Alirmado Carpeta de rodadura		
0.25 0.30 0.30 0.40 0.45 0.45 0.45 0.45 0.45 0.45 0.4		18.60	M-1	Arcilla inorgánica con arena, de consistencia media, color marrón, el suelo presenta 8.93% de arena, finos menores a la malla Nº 200 de 91.07%, límite líquido de 34.10%, índice de plasticidad de 18.00%, suelo de mediana plasticidad,		CL


Observaciones:

Genis Ramirez Pinedo TEC SUELOS Y PAVIMENTOS Ing. Francisco Grández Rengtio INGENIERO CIVIL CIP Nº 101293

PROYECTO	"DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"							
SOLICITANTE	Bach, Lloyser Joel Guerra Vargas / Bach.Gerald Calloquispe Rodríguez.							
CALICATA	C-04	TEC. RESP.	G. RAMIREZ	DESCRIPCIÓN: terreno natural				
COTA		PROF.(m)	1.00	JIRON: Progreso / Huallaga				
N.F. (m)		FECHA	ago-22					

14.1. (11.						
Prof. (m)	NIVEL DE NAPA FREATICA	HUMEDAD NATURAL (%)	MUESTRA	DESCRIPCION DEL ESTRATO	SIMBOLO	sucs
0.00			S/M	Material Afirmado Carpeta de rodadura	I-I-I	
0.15 0.20 0.20 0.20 0.33 0.40 0.40 0.555 0.60 0.60 0.60 0.60 0.60 0.60 0.		20.50	М-1	Arcilla inorgánica, de consistencia media, color marrón rojizo, el suelo presenta 0.23% de arena, fino menor a la malla Nº 200 de 99.77%, limite líquido de 36.10%, índice de plasticidad de 19.20%, suelo de mediana plasticidad.		CL

)bservaciones:

Geris Ramírez Pinedo TEC SUELOS Y PAVIMENTOS Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP Nº 101293

CUADRO DE RESUMEN

PROYECTO

"DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

SOLICITA

Bach. Lloyser Joel Guerra Vargas / Bach.Gerald Calloquispe Rodríguez.

FECHA: ago-22

CUADRO RESUMEN CALICATAS C-04 C-01 C-02 C-03 COORDENADAS Progreso / Huallaga Bolognesi / Huallaga Progreso / San Martin Bolognesi / San Martin. MUESTRA M-01 M-01 M-01 M-01 PROFUNDIDAD [m] 0.20 - 2.000.20 - 2.00 0.20 -1.00 0.10 - 1.00 HUMEDAD NATURAL [%] 19.50 15.80 18.60 20.50 LIMITE LIQUIDO [%] 44.80 43.50 34.10 36.10 [%] 18.30 22.30 LIMITE PLASTICO 16.10 16.90 [%] 21.20 INDICE PLASTICO 26.50 18.00 19.20 MATERIAL < N° 200 97.63 95.21 91.07 99.77 MEDIA MEDIA POTENCIAL DE EXPANSION (HOLTZ Y GIBBS) MEDIA MEDIA CL CL CLASIFICACIÓN S.U.C.S. CL CL A-7-6(15) A-7-6(13) CLASIFICACIÓN A.A.S.H.T.O. A-6(11) A-6(12)

OBSERVACIONES

Geais Ramirez Pinedo TEC. SUELOS Y PAVIMENTOS Ing. Francisco Grández Rengiño INGENIERO CIVIL CIP Nº 101293

Escaneado con CamScanner

CLASIFICACION DE SUELOS ESTÁNDAR

PROYECTO : "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022

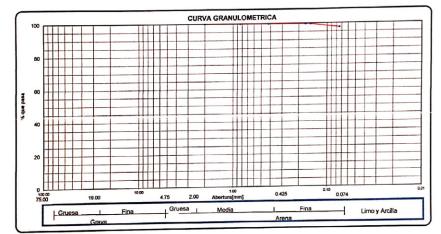
SOLICITADO : Bach. Lloyser Joel Guerra Vargas / Bach. Gerold Calloquispe Rodríguez.

DESCRIPCION : Suelo Natural de excavación Jiron: Progreso / Huallaga

CALLONAN : MUESTRA: M-1 PROFUNDIDAD (m): 0.00 - 2.00

CAUCATA : C-1 MUESTRA: M-1 PROFUNDIDAD (m): 0.00 - 2.00

ENSAYOS ESTANDAR DE CLASIFICACION.


1. ANALISIS GRANULOMETRICO POR TAMIZADO

Peso Inicial Seco. [gr]	200.00
Peso Lavado y Seco, Igri	4.70

Mallas	Abertura [mm]	Peso retenido [grs]	Porcentaje Ref. [%]	Porcentaje Ref. Acumulado [%]	Porcentaje Acum Pasante [%]
3-	76.000				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				
Nº 4	4.760				
N° 10	2.000				100.00
N° 20	0.840	0.03	0.02	0.02	99.99
N° 40	0.420	0.06	0.03	0.04	99.96
N° 80	0.170	0.34	0.17	0.21	99.79
N° 100	0.150	0.21	0.10	0.32	99.68
N° 200	0.074	4,11	2.05	2.37	97.63
< N° 200	0,000	195.30	97.63	100.00	0.00

	CARA	CTERISTICAS F	ISICAS	1200		
P. E. RELAT. DE	SOLIDOS [com	egido por f"]	[gr/cc]			
HUMEDAD NA	[%]	19.50)			
LIMITE LIQUID	0	[%]	44.80			
LIMITE PLASTIC	0	[%]	18.30			
INDICE PLASTI	[%]	26.50				
MATERIAL ME	NOR TAMIZ # 20	00	[%]	97.63		
LIMITE DE CO	NTRACCION		[%]			
POTENCIAL DI	EXPASION			Medio		
CLASIFICACIO	N S.U.C.S.			CL		
	N A.S.S.H.T.O.			A-7-6	[14	
INDICE DE CO	Estable	1.2				
% Grava	% Arena	% Finos				
0.00	-97.63	97.63				

FECHA: ogo.-22

2. UMITES DE CONSISTENCIA (ASTM D 4318)

A. LIMITE LIQUIDO		Tara N°		
Procedimiento		44	100	48
		35	24	16
1. No de Golpes		25.98	16.23	22.68
2. Peso Tara, [gr]		40.81	32.08	38.47
3. Peso Tara + Suelo Húmedo, [gr]				33.37
4. Peso Tara + Suelo Seco, [gr]		36.39	27.15	
5, Peso Agua. [gr]	(3)-(4)	4.42	4.93	5.10
	(4)-(2)	10,41	10.92	10.69
6. Peso Suelo Seco, [gr] 7. Contenido de Humedad, [%]	(5)/(6)X100	42.50	45.10	47.70

B. LIMITE PLASTICO	1100 Per 127 California	Tara N*		
Procedimiento	Procedimiento		16	
1. Peso Tara, [gr]		19,31	10.20	
2. Peso Tara + Suelo Húmedo, [gr]		41.93	36.42	
3. Peso Tara + Suelo Seco, [gr]		38.45	32.34	
4. Peso Agua, [gr]	(2)-(3)	3,48	4.08	
5. Peso Suelo Seco, [gr]	(3)-(1)	19.14	22.14	
6. Contenido de Humedad. [%]	(4)/(5)X100	18.20	18.40	
7. Contenido de Humedad Promedio, [%]		18.	.30	

3, CONTENIDO DE HUMEDAD (ASTM D 2216)

3, CONTENIDO DE HUMEDAD (AS Procedimiento	Print Court City	Tara Nº
1, Peso Tara, [gr]		0
2. Peso Tara + Suelo Húmedo, [gr]		914.0
3. Peso Tara + Suela Seco. [gr]		765.0
4. Peso Agua, [gr]	(3)-(4)	149
5. Peso Suelo Seco, [gr]	(4)-(2)	765
4 Contonido de Humedad (%)	(5)/(6)X100	19.50

Gen's Ramirez Pinedo TEC SUELOS Y PAVIMENTOS ing. Francisco Grández Rengrio INGENIERO CIVIL CIP N 101293

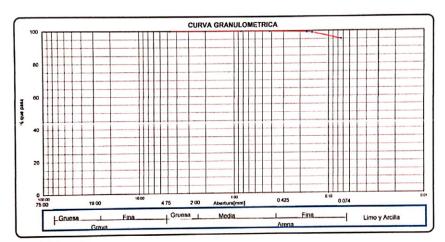
PROYECTO : "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

SOUICITADO : Bach, Lloyser Joel Guerra Vargas / Bach, Gerald Calloquispe Rockfguez.

DESCRIPCION : Suelo Natural de excavación Jlinn: Bolognesi / San Martin.

CAUCATA : C-02 MUESTRA: M-1 PROFUNDIDAD (m): 0.00 - 2.00 ENSAYOS ESTANDAR DE CLASIFICACION.


J. ANALISIS GRANULOMETRICO POR JAMIZADO

Peso Inicial Seco. [gr]	200.00
Peso Lavado y Seco. [gr]	9.60

Malai	Abertura [mm]	Peso retenido (grs)	Parcentaje Ref.	Porcentaje Ref. Acumulado (%)	Parcentaje Acum Pasante [%]
3"	76.000				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				
Nº 4	4.760				100.00
Nº 10	2.000	0.03	0.02	0.02	99.99
N° 20	0.840	0.07	0.03	0.05	99.95
N° 40	0.420	0.18	0.09	0.14	99.86
N° 80	0.170	1.00	0.50	0.64	99.36
Nº 100	0.150	0.52	0.26	0.90	99.10
N° 200	0.074	7.79	3.89	4.79	95.21
< N° 200	0.000	190.40	95.21	100.00	0.00

WW 1-11/	CARA	CTERISTICAS F	ISICAS		
P. E. RELAT. DE	SOLIDOS (com	egide por f*)	[gr/cc]		
HUMEDAD NATURAL (%)				15.8	0
LIMITE LIQUID	0		[%]	43.5	9
LIMITE PLASTIC	O		[%]	22.3	Ó
INDICE PLASTI	co		[%]	21.2	
MATERIAL ME	NOR TAMIZ # 20	00	[%]	95.2	
LIMITE DE COL	NIRACCION		[%]		
POTENCIAL DE	EXPASION			Med	0
CLASIFICACIO	ON S.U.C.S.			CL	
CLASIFICACIO	N A.S.S.H.I.O.			A-7-6	[1:
INDICE DE CO	INSISTENCIA			Estable	1.2
% Grava	% Arena	% finos	_		
0.00	4.79	95.21			

FECHA: ago-22

2. UMITES DE CONSISTENCIA (ASIM D 4318)

A. LIMITE LIQUIDO		Tare N°		
Precedimiento 1. No de Golpes		109	102	91
		34	25	17
2. Peso Tara. [gr]		17.25	16.04	18.05
3. Peso Tara + Suelo Húmedo, (gr		31.98	33.29	31.52
4. Peso Tara + Suelo Seco, [gr]		27.63	28.06	27.30
5. Peso Agua. (gr)	(3)-(4)	4.35	5.23	4.22
6. Peso Suelo Seco, (gr)	(4)-(2)	10.38	12.02	9.25
7. Contenido de Humedad, [%]	(5)/(6)X100	41.90	43.50	45.60

B. LIMITE PLASTICO			
Min.	Carried States Contact Science	lore	3 N*
Procedimiento		23	17
1. Peso tara, [gr]		23.90	6.93
2. Peso Tara + Suelo Húmedo. [gr]		47.97	28.45
3. Peso Tara + Suelo Seco, [gr]		43.38	24.71
4. Peso Agua, [gr]	(2)-(3)	4.59	3.74
5. Peso Suelo Seco, [gr]	(3)(1)	19.48	17.78
6. Contenido de Humedad, [%]		23.60	21,00
O. Comerado de Hamadad, par	COMMON CO. LANS OF THE PARTY OF	22	30

(5)/(6)X100

7. Contenido de Humedad (tramadio, (%) 22.

3. CONTENIDO DE HUMEDAD (ASTM D 2214)

Procedindento 1. Procedindento 0. 1 Tara M* 0. 1. Procedindento 0. 1 Procedindento 1. Procedindento

6. Contenido de Humedad, [%]

DIAGRAMA DE FLUIDEZ

47 0

46 0

46 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

41 0

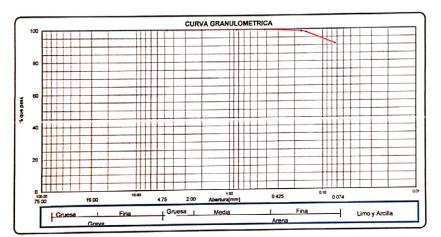
41

Genis Hamirez Pinedo TEC SUELOS PAVIMENTOS Ing. Francisco Grández Rengifo INGENIERO CIVIL CIP Nº 101293

"DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS PROYECTO

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

SOUCITADO : Boch, Lloyser Joel Guerra Vargas / Boch, Gerald Callaquispe Rodríguez. Jiron: Progreso/ San Martin.
PROFUNDIDAD (m): 0.00 - 1.00
ENSAYOS ESTANDAR DE CLASIFICACION. DESCRIPCION : Suelo Natural de excavación C-3 MUESTRA: M-1 CAUCATA


FECHA: ago.-22

1. ANALISIS GRANULOMETRICO POR TAMIZADO

Peso Inicial Seco. [gr]	200.00
Peso Lavado y Seco. (ar)	17.90

Molos	Abertura [mm]	Peso retenido [grs]	Porcentaje Ref.	Porcentaje Ret. Acumulado [%]	Parcentaje Acum Pasante (%)
3*	76.000				
2"	50.800				
1 1/2	38.100				
1.	25.400				
3/4	19.050				
3/5"	9.525				
Nº 4	4.760				100.00
Nº 10	2,000	0.01	0.01	0.01	100.00
N° 20	0.840	0.04	0.02	0.03	99.98
Nº 40	0.420	0.12	0.06	0.09	99.92
Nº 80	0.170	2.04	1.02	1.10	98.90
Nº 100	0.150	1.46	0.73	1.83	98.17
N° 200	0.074	14.20	7.10	8.93	91.07
< N° 200	0.000	182.10	91.07	100.00	0.00

P E PELAT DE	SOLIDOS [com	naido por tº1	[gr/cc]		
HUMEDAD NA		ograo por r j	[%]	18.60)
LIMITE LIQUID	0		[%]	34.10)
LIMITE PLASTICO [%])
INDICE PLASTICO [%]				18.00	
MATERIAL ME	NOR TAMIZ # 20	0	[%]	91.0	1
LIMITE DE CO	MTRACCION		[%]		
POTENCIAL DE	EXPASION				
CLASIFICACIO	N S.U.C.S.			CL	
CLASIFICACIO	A-6	[11			
INDICE DE CO	INSISTENCIA			Estable	1.2
% Grava	% Arena	% Finos	_		
0.00	8.93	91.07			

2. LIMITES DE CONSISTENCIA (ASTM D 4318)

A. LIMITE LIQUIDO			Tara Nº	and a read from the
Procedimiento		107	50	47
		107	24	15
I. No de Golpes		35		
2. Peso fara, (ar)		16.44	14.83	24.49
3. Peso Tara + Suelo Húrnedo. [gr]		33.15	30.77	40.83
		29.06	26.70	36.46
4. Peso Tara + Sueto Seco, [gr]		4.09	4.07	4.37
5. Peso Agua, [gr]	(3)+4)			11.97
6. Peso Suelo Seco, [gr]	14-(2)	12.62	11.87	
7. Conterido de Humedad. [%]	(5)/(6/X 100	32.40	34.30	36.50

	Loc	200
Procedenienio		19
	7.13	8.25
	30.50	32,52
2. Peso Tara + Suelo Húmedo, [gr] 3. Peso Tara + Suelo Seco. [gr]		
00	3.26	3.35
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	20.11	20.92
641/548 100	16.20	16.00
	(2) (2) (2) (1) (4) (2)	30.50 27.24 (2) (2) 3.26 (2) (1) 20.11

7. Contenido de Humedad Promedia. (%)

3. CONTENIDO DE HUMEDAD (ASTM D 2216)				
Procedimiento	Tare Nº			
1. Peso Tara. [gr]	0			
2. Peso Tara + Suelo Húmedo, [gr]	9190			
3. Peso Tara + Suelo Seco. [gr]	775.0			
4. Peso Agua. [gr]	[3)-(4)	144		
5. Peso Sueio Seco. (gr)	775			
6 Contenido de Humedod. [%]	12/16/X100	18.60		

DIAGRAMA DE FLUIDEZ

Ing. Francisco Grández Rengino
INGENIERO CIVIL
CIP Nº 101293

PROYECTO : "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

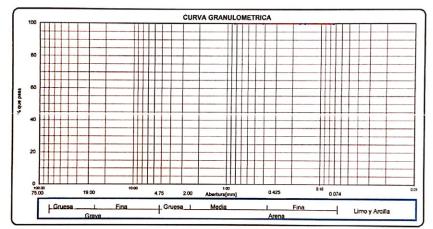
 SOLICITADO
 :
 Bach, Lloyser Jeel Guerra Vargas / Bach, Gerald Callequispe Rodríguez,

 DESCRIPCION
 :
 Suelo Natural de excavación
 Jiron:
 Bolognesi/ San Mortin,

 CALICATA
 :
 C-4
 MUESTRA:
 M-1
 PROFUNDIDAD (m): 0.00 - 1.00

 ENSAYOS ESTANDAR DE CLASIFICACION.

UNDIDAD (m): 0.00 - 1.00 FECHA: ago-22


AYOS ESTANDAR DE CLASIFICACION

1. ANALISIS GRANULOMETRICO POR TAMIZADO

Peso inicial Seco. [gr]	200.00
Peso Lavado y Seco. [gr]	0.50

Molas	Abertura [mm]	Peso retenido (grs)	Porcentaje Ref. [%]	Porcentaje Ret. Acumulado (%)	Parante [%]
3"	76.000				
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
3/8"	9.525				
Nº 4	4.760				
N° 10	2.000		And Annual Control of the Control		
N° 20	0.840				100.00
Nº 40	0.420	0.01	0.01	0.01	100.00
N° 80	0.170	0.09	0.05	0.05	99.95
Nº 100	0.150	0.02	0.01	0.06	99.94
N° 200	0.074	0.34	0.17	0.23	99.77
< N° 200	0.000	199.50	99.77	100.00	0.00

127 11 17	CARA	CTERISTICAS F	ISICAS	AT 1727	
P. E. RELAT. D	E SOLIDOS (con	regido por f°)	[gr/cc]	T	
HUMEDAD NA	TURAL		[%]		0
LIMITE LIQUID	0		[%]	36.1	0
LIMITE PLASTIC	co	[%]	16.90		
INDICE PLAST	CO	[%]	19.20		
MATERIAL ME	NOR TAMIZ # 20	[%]	99.77		
LIMITE DE CO	NTRACCION		[%]		
POTENCIAL D	EXPASION			Medio	
CLASIFICACIO	ON S.U.C.S.			CL	
CLASIFICACIO	A-6	[13			
INDICE DE CO	NSISTENCIA			Estable	1.2
% Grava	% Arena	% Finos			-
0.00	-99.77	99.77			

2. LIMITES DE CONSISTENCIA (ASTM D 4318)

Procedimiento		Tara N*		
		32	33	99
1. No de Golpes	35	24	16	
2. Peso Tara, [gr]		30.85	22.26	22.78
3. Peso Tara + Suelo Húmedo, [gr]		43.63	35.85	37.59
4. Peso Tara + Suelo Seco, [gr]		40.35	32.23	33.50
5. Peso Agua, [gr]	(3)-(4)	3.28	3.62	4.09
6. Peso Suelo Seco, [gr]	(4)-(2)	9.50	9.97	10.72
7. Contenido de Humedad, [%]	(5)/(6)X100	34.50	36.30	38.20

. LIMITE PLASTICO

Procedimiento			lara Nº		
		18	11		
1. Peso lara. (gr)	9.69	7.75			
2. Peso Tara + Suelo Húmedo, (gr)		31.94	27.66		
3. Peso Tara + Suelo Seco, (gr)		28.70	24.80		
4. Peso Agua, [gr]	(2) (3)	3.24	2.86		
5. Peso Suelo Seco. [gr]	(9) (1)	19.01	17.05		
6. Contenido de Humedad, [%]	(41/(51X100	17.00	16.80		
7. Contenido de Humedad Promed	16	90			

3. CONTENIDO DE HUMEDAD (ASTM D 2216)

Procedimiento	Tuelman de Santa Stati	Tora H
1. Peso Tara, [gr]		0
2. Peso Tara + Suelo Húmedo, [gr]		905.0
3. Peso Tara + Suelo Seco. [gr]		751.0
4. Peso Agua, [gr]	(3)-(4)	154
5. Peso Suelo Seco, [gr]	(4)-(2)	751
6. Contenido de Humedad. (%)	(S)//A)VIO	20.50

DIAGRAMA DE FLUIDEZ

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30 0

30

Genis Ramírez Pinedo TEC, SUELOS Y PAVIMENTOS Ing. Francisco Grández Rengifo
INGENIERO CIVIL
CIP N 101293

ENSAYO DE CORTE DIRECTO

ENSAYO DE CORTE DIRECTO

ASTM D3080-04

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS Proyecto

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

: Bach. Lloyser Joel Guerra Vargas / Bach. Gerald Calloquispe Rodríguez. Solicitante

Certificado Nº

: Prov: Picota Dist: Pucacaca Ubicación

: Ago.-22 Fecha : CL Clasif, S.U.C.S.

: C-1 Jr. Progreso / Huallaga Callcata : M-1

Muestra

. 0.20-2.00 Velocidad : 0.28mm/min Prof. (m)

ESPECIMEN 2 ESPECIMEN 3 ESPECIMEN 1 22.0 mm Altura: 22.0 mm Altura: 22.0 mm Alfura: 60.0 mm Lado: Lado: 60.0 mm Lado: 60.0 mm cm² 36.0 cm² Area Inicial: Area Inicial: 36.0 cm Area Inicial: 36.0 1.729 gr/cm³ gr/cm³ Densidad Nat.: gr/cm3 Densidad Nat.: 1.729 Densidad Nat.: 1.729 gr/cm3 Densidad seca: 1.449 gr/cm3 gr/cm³ Densidad seca: 1.449 Densidad seca: 1.449 Humedad: 19.3 % 19.3 Humedad: 19.3 Humedad: kg/cm^{*} 1.00 kg/cm² Est. Normal: 1.50 kg/cm^e Est. Normal: 0.50 Est. Normal: kg/cm² kg/cm² Esf. Corte: 0.626 kg/cm² Esf. Corte: 0.440 0.288 Est. Corte:

Deformacion horizontal (%)	Estuerzo de Corte (kg/cm2)	Estuerzo Normalizado (t/s)	Deformacion horizontal (%)	Esfuerzo de Corfe (kg/cm2)	Esfuerzo Normalizado (f/s)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Esfuerzo Normalizado (†/s)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.030	0.005	0.010	0.030	0.041	0.041	0.030	0.072	0.048
0.060	0.028	0.056	0.060	0.082	0.082	0.060	0.116	0.077
0.120	0.051	0.102	0.120	0.101	0.101	0.120	0.175	0.117
0.180	0.071	0.142	0.180	0.132	0.132	0.180	0.210	0.140
0.300	0.101	0.202	0.300	0.175	0.175	0.300	0.270	0.180
0.450	0.135	0.270	0.450	0.216	0.216	0.450	0.315	0.210
0.600	0.156	0.312	0.600	0.256	0.256	0.600	0.359	0.239
0.750	0.187	0.374	0.750	0.286	0.286	0.750	0.395	0.263
0.900	0.200	0.400	0.900	0.298	0.298	0.900	0.435	0.290
1,050	0.221	0.442	1.050	0.315	0.315	1.050	0.456	0.304
1,200	0.231	0.462	1.200	0.342	0.342	1.200	0.471	0.314
1,500	0.251	0.502	1,500	0.362	0.362	1.500	0.502	0.335
1,800	0.258	0.516	1.800	0.380	0.380	1.800	0.512	0.341
2.100	0.261	0.522	2.100	0.384	0.384	2.100	0.515	0.343
2,400	0.265	0.530	2.400	0.389	0.389	2.400	0.520	0.347
2.700	0.270	0.540	2.700	0.399	0.399	2.700	0.528	0.352
3,000	0.265	0.530	3.000	0.395	0.395	3.000	0.524	0.349
3,600	0.244	0.528	3.600	0.392	0.392	3.600	0.521	0.347
4,200	0.243	0.526	4.200	0.390	0.390	4.200	0.518	0.345
4.800	0.242	0.524	4.800	0.387	0.387	4.800	0.514	0.343
5,400	0.240	0.520	5.400	0.385	0.385	5.400	0.510	0.340
6,000	0.258	0.516	6.000	0.384	0.384	6.000	0.506	0.337

OBSERVACIÓN

1).-Muestra provista e identificada.

2).-El Especimen fue tallado de la muestra Inalterada.

Genis Reminez Pinedo

Ing. Francisco Grández Rengifio INGENIERO CIVIL CIP Nº 101293

Escaneado con CamScanner

ENSAYO DE CORTE DIRECTO UU ASTM D3080-04

Dist: Pucacaca

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

Solicitante

: Bach. Lloyser Joel Guerra Vargas / Bach. Gerald Calloquispe Rodríguez.

Certificado Nº

Ubicación

: Prov : Picota

Fecha

: Ago.-22

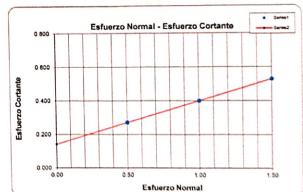
Clast. S.U.C.S. Calicata

: CL

Muestra

: C-1 : M-1


: 1


Prof. (m)

: 0.00-2.00

: 0.28mm/min

Resultados

Cohesión C

Anguio de fricción (Ø)

: 0.141 Kg/cm²

14.5 *

A Ing. Francisco Grandez Rengito INGENIERO CIVIL CIP Nº 101293

ENSAYO DE CORTE DIRECTO ASTM D3080-04

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

Solicitante

: Bach. Lloyser Joel Guerra Vargas / Bach.Gerald Calloquispe Rodríguez.

: 2 Certificado Nº

: Prov : Picota

Dist : Pucacaca

Ubicación Fecha

: Ago.-22

: CL

mm

mm

cm²

gr/cm^a

gr/cm³

kg/cm^{*}

kg/cm⁴

Clasif. S.U.C.S. Calicata

Altura:

Lado:

Area Inicial:

Humedad:

Est. Normal:

Densidad Nat.:

Densidad seca:

: C-2

Jr. Bolognesi / Huallaga

Est. Normal:

Esf. Corte:

Muestra Prof. (m) : M-1 . 0.20-2.00

1.00

0.440

: 0.28mm/min

ESPECIMEN 3

ESPECIMEN 1

22.0

60,0

36.0

1,720

1,490

15.5

0.50

Altura: Lado:

ESPECIMEN 2 22.0 0.03 36.0 Area inicial: 1.720 Densidad Nat.: 1.490 Densidad seca: 15.5 Humedad:

mm mm cm gr/cm⁴ gr/cm³ kg/cm²

kg/cm²

Velocidad

Alfura: Lado: Area Inicial: Densidad Nat.: Densidad seca: Humedad: Est. Normal:

Est. Corte:

22.0 mm 60.0 mm cm* 36.0 1.720 1.490 15.5

gr/cm³ gr/cm³ kg/cm^e 1.50 kg/cm² 0.626

Est. Corte:	0.288	kg/cm²	Esf.
Deformacion horizontal (%)	Esfuerzo de Corle (kg/cm2)	Esfuerzo Normalizado (†/s)	ľ
0.000	0.000	0.000	
0.030	0.015	0.030	11
0.060	0.032	0.064	П
0.120	0.050	0.100	11
0.180	0.070	0.140	П
0.300	0.105	0.210	П
0.450	0.139	0.278	П
0.600	0.162	0.324	11
0.750	0.188	0.376	Ш
0.900	0.202	0.404	Ш
1.050	0.220	0.440	11
1,200	0.226	0.452	11
1,500	0.245	0.490	

0.250

0.255

0.260

0.267

0.260 0.255

0.250

0.245

0.244

0.244

	Deformacion horizontal	Esfuerzo de Corte (kg/cm2)	Esfuerzo Normalizado (1/s)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Esfuerzo Normalizado (†/s)
_	(%)	0.000	0000	0.000	0.000	0.000
1	0.000	0.000	0.041	0.030	0.072	0.048
1	0.030	0.075	0.075	0.060	0.095	0.063
- 1		0.065	0.065	0.120	0.118	0.079
- 1	0.120	0.095	0.095	0.180	0.156	0.104
- 1	0.180	0.075	0.135	0.300	0.215	0.143
- 1	0.300	0.135	0.175	0.450	0.268	0.179
- 1	0.450	0.175	0.218	0.600	0.299	0.199
- 1	0.600	0.218	0.251	0.750	0.336	0.224
- 1	0.750	0.251	0.268	0.900	0.371	0.247
- 1	0.900	0.265	0.290	1.050	0.392	0.261
- 1	1,050		0.320	1.200	0.425	0.283
- 1	1.200	0.320	0.342	1,500	0.475	0.317
	1,500	0.342	0.342	1.800	0.492	0.328
	1,800	0.362	0.362	2.100	0.510	0.340
	2.100	0.372		2.400	0.515	0.343
	2.400	0.381	0.381	2.700	0.527	0.351
	2.700	0.393	0.393	3.000	0.520	0.347
	3.000	0.385	0.385		0.517	0.345
	3.600	0.375	0.375	3.600	0.512	0.341
	4.200	0.372	0.372	4.200	0.512	0.340
	4.800	0.365	0.365	4.800		0.340
	5,400	0.362	0.362	5.400	0.508	0.337
	6,000	0.355	0.355	6.000	0.506	0.337

6.000 **OBSERVACIÓN**

1,500

1,800

2,100

2,400

2.700

3,000

3,400

4.200

4.800

5,400

1).-Muestra provista e identificada.

0.500

0.510

0.520

0.534

0.520

0.510

0.500

0.490

0.488

0.488

2).-El Especimen fue tallado de la muestra Inalterada.

Gegis Ramirez Pinedo SULLOS PAVIMENTOS Ing. Francisco Grandez Rengito INGENIERO CIVIL

Escaneado con CamScanner

ENSAYO DE CORTE DIRECTO UU ASTM D3080-04

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022" : Bach. Lloyser Joel Guerra Vargas / Bach.Gerald Calloquispe Rodríguez.

Solicitante Certificado Nº

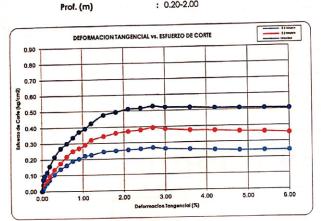
: 2

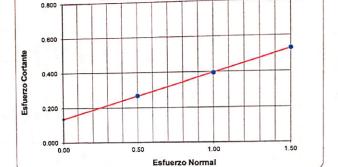
: Prov: Picota

Dist: Pucacaca

Ubicación Fecha Clastf. S.U.C.S.

: Ago.-22 : CL


Jr. Bolognesi / Huallaga


Calicata Muestra

: C-2 : M-1

: 0.20-2.00

Velocidad : 0.28mm/min

Esfuerzo Normal - Esfuerzo Cortante

Resultados:

Cohesión C

: 0.136 Kg/cm² Angulo de fricción (Ø) : 14.6 °

ig ing. rrancisco Grandez Rengito INGENIERO CIVIL CIP Nº 101293

• Series1

Series2

ENSAYO DE CORTE DIRECTO ASTM D3080-04

Dist: Pucacaca

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022

: Bach, Lloyser Joel Guerra Vargas / Bach, Gerald Calloquispe Rodríguez. Solicitante

Certificado Nº

: Prov: Picota Ubicación

: Ago.-22 Fecha : CL

Clasif. S.U.C.S. : C-3

Jr. Progreso / San Martin Calicata : M-1

Muestra

. 0.20-1.00 Velocidad : 0.29mm/min Prof. (m)

ESPECIMEN 3 ESPECIMEN 2 ESPECIMEN 1 mm Altura: 22.0 mm Altura: Altura: Lodo: 60.0 mm Lado: 60.0 mm Lado: 36.0 cm cm⁴ Area Iniciat 36.0 cm² Area Inicial: 36.0 Area Inicial: 1,733 gr/cm² Densidad Nat.: or/cm Densidad Nat.: 1.733 gr/cm³ Densidad Nat.: 1.733 1.457 gr/cm² gr/cm3 Densidad seca: Densidad seca: 1.457 gr/cm³ Densidad seca: 1.457 18.9 7 Humedad: 18.9 Humedad: 18.9 Humedad: kg/cm⁴ kg/cm^e kg/cm⁴ Est. Normal: 1.50 Est. Normal: 0.50 Est. Normal: 1.00 kg/cm² Est. Corte: 0.626 kg/cm² Esf. Corte: 0.288 kg/cm² Esf. Corte: 0.440

Deformacion horizontal (%)	Estuerzo de Corte (kg/cm2)	Estuerzo Normalizado (t/s)	Deformacion horizontal (%)	Estuerzo de Corte (kg/cm2)	Estuerzo Normalizado (t/s)	Deformacion horizontal (%)	Estuerzo de Corte (kg./cm2)	Estuerzo Normalizado (t/s)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.030	0.018	0.036	0.030	0.051	0.051	0.030	0.072	0.048
0.060	0.039	0.078	0.060	0.081	0.081	0.060	0.095	
0.120	0.052	0.104	0.120	0.071	0.071	0.120	0.118	0.079
0.180	0.072	0.144	0.180	0.102	0.102	0.180	0.156	0.104
0.300	0.100	0.200	0.300	0.135	0.135	0.300	0.221	0.147
0.450	0.142	0.284	0.450	0.175	0.175	0.450	0.286	0.191
0.600	0.169	0.338	0.600	0.218	0.218	0.600	0.342	0.228
0.750	0.190	0.390	0.750	0.251	0.251	0.750	0.384	0.256
0.900	0.210	0.420	0.900	0.270	0.270	0.900	0.415	0.277
1.050	0.224	0.448	1.050	0.295	0.295	1.050	0.456	0.304
1.200	0.228	0.456	1.200	0.332	0.332	1.200	0.489	0.326
1,500	0.251	0.502	1.500	0.380	0.390	1.500	0.529	0.353
1.800	0.263	0.526	1.800	0.406	0.406	1.800	0.559	0.373
	0.275	0.550	2,100	0.415	0.415	2.100	0.569	0.379
2.100	0.270	0.540	2,400	0.410	0.410	2.400	0.556	0.371
2.400	0.267	0.534	2,700	0.402	0.402	2.700	0.535	0.357
2.700		0.524	3.000	0.395	0.395	3.000	0.531	0.354
3.000	0.262	0.516	3.600	0.390	0.390	3.600	0.526	0.351
3.600	0.258	0.512	4.200	0.388	0.388	4.200	0.521	0.347
4.200	0.256	0.500	4.800	0.385	0.385	4.800	0.518	0.345
4.800	0.250		5.400	0.382	0.382	5.400	0.516	0.344
5.400	0.248	0.496	6.000	0.378	0.378	6.000	0.514	0.343

OBSERVACIÓN

1).-Muestra provista e identificada.

2).-El Especimen fue tallado de la muestra Inalterada.

Genis Ramirez Pinedo TEX SUELDS Y PAVIMENTOS

Ing. Francisco Grandez Rengiño INGENIERO CIVIL

ENSAYO DE CORTE DIRECTO UU ASTM D3080-04

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022" : Bach. Lloyser Joel Guerra Vargas / Bach. Gerald Calloquispe Rodríguez.

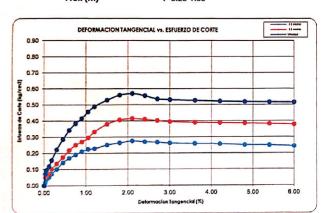
Solicitante Certificado Nº

: 3

Dist: Pucacaca

Ubicación Fecha

: Prov: Picota : Ago.-22


Clasif. S.U.C.S. Calicata

: CL : C-3

Jr. Progreso / San Martin

Muestra Prof. (m) : M-1 : 0.20-1.00

Velocidad : 0.28mm/min

Esfuerzo Normal - Esfuerzo Cortante 0.800

Resultados:

Cohesión C

: 0.126 Kg/cm²

Angulo de fricción (Ø) : 16.4 °

0.600 Esfuerzo Cortante 0.400 0.200 0.000 0.50 0.00 1.00 1.50 Esfuerzo Normal

TEC SUELOS Y PAVIMENTOS

Ing. Francisco Grández Rengflo INGENIERO CIVIL CIP Nº 101293

ENSAYO DE CORTE DIRECTO ASTM D3080-04

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

Solicitante

: Bach. Lloyser Joel Guerra Vargas / Bach. Gerald Calloquispe Rodríguez.

Certificado Nº

Ubicación

: Prov : Picota

Dist: Pucacaca

Fecha Clasif. \$.U.C.S. : Ago.-22

Calicata

: CL : C-4 : M-1

Jr. Bolognesi / San Martin.

Muestra Prof. (m)

Lado:

Area Inicial:

Humedad:

Est. Normal:

Est. Corte:

Densidad Nat.:

Densidad seca:

ESPECIMEN 2

. 0.00-1.00

kg/cm*

kg/cm²

Velocidad

: 0.28mm/min

	ESPECIMEN
Altura:	

22.0	mm
60.0	mm
36.0	cm²
1.717	gr/cm ³
1.427	gr/cm ³
20.3	%

0.50

0.288

Altura: Lado: Area Inicial: Densidad Nat.: Densidad seca: Humedad: Est. Normal:

Esf. Corte:

22.0 60.0 36.0 1.717 1.427 20.3 1.00 0.440

mm mm cm² gr/cm3 gr/cm³ kg/cm^x

kg/cm²

Altura: Lado: Area Inicial: Densidad Nat.: Densidad seca: Humedad: Esf. Normal:

Esf. Corte:

ESPECIMEN 3

60.0 mm cm² 36.0 1.717 gr/cm³ 1.427 20.3 1.50

0.626

22.0

gr/cm³ kg/cm² kg/cm²

mm

Deformacion horizontal (%)	Estuerzo de Corte (kg/cm2)	Esfuerzo Normalizado (t/s)	Deformacion horizontal (%)	Estuerzo de Corte (kg/cm2)	Esfuerzo Normalizado (†/s)	Deformacion horizontal (%)	Esfuerzo de Corte (kg/cm2)	Esfuerzo Normalizado (†/s)
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.030	0.036	0.072	0.030	0.042	0.042	0.030	0.072	0.048
0.060	0.052	0.104	0.060	0.085	0.085	0.060	0.085	0.057
0.120	0.068	0.136	0.120	0.115	0.115	0.120	0.112	0.075
0.180	0.081	0.162	0.180	0.133	0.133	0.180	0.150	0.100
0.300	0.116	0.232	0.300	0.161	0.161	0.300	0.217	0.145
0.450	0.145	0.290	0.450	0.199	0.199	0.450	0.280	0.187
0.600	0.172	0.344	0.600	0.232	0.232	0.600	0.332	0.221
0.750	0.196	0.392	0.750	0.263	0.263	0.750	0.384	0.256
0.900	0.215	0.430	0.900	0.286	0.286	0.900	0.415	0.277
1.050	0.226	0.452	1.050	0.310	0.310	1.050	0.456	0.304
1.200	0.231	0.462	1.200	0.350	0.350	1.200	0.489	0.326
1.500	0.262	0.524	1.500	0.385	0.385	1.500	0.529	0.353
1.800	0.279	0.558	1.800	0.416	0.416	1.800	0.559	0.373
2.100	0.288	0.576	2.100	0.426	0.426	2.100	0.575	0.383
2.400	0.282	0.564	2.400	0.418	0.418	2.400	0.568	0.379
2.700	0.272	0.544	2.700	0.402	0.402	2.700	0.535	0.357
3.000	0.270	0.540	3.000	0.395	0.395	3.000	0.523	0.349
3.600	0.266	0.532	3.600	0.390	0.390	3.600	0.514	0.343
4.200	0.261	0.522	4.200	0.388	0.388	4.200	0.505	0.337
4.800	0.258	0.516	4.800	0.385	0.385	4.800	0.505	0.337
5.400	0.252	0.504	5,400	0.382	0.382	5.400	0.500	0.333
6.000	0.250	0.500	6.000	0.378	0.378	6.000	0.500	0.333

OBSERVACIÓN

1).-Muestra provista e identificada.

2).-El Especimen fue tallado de la muestra Inalterada.

Genis Ram rez Pinedo TEC. SUELOS T PAVIMENTOS Ing. Francisco Grández Rengifo INGEN ERO CIVIL

Escaneado con CamScanner

ENSAYO DE CORTE DIRECTO UU ASTM D3080-04

Proyecto

: "DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS

EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022"

Solicitante

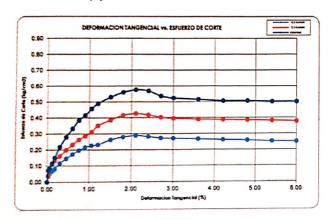
: Bach. Lloyser Joel Guerra Vargas / Bach.Gerald Calloquispe Rodríguez.

Jr. Bolognesi / San Martin.

Certificado Nº

Dist: Pucacaca

Ubicación Fecha Clasif. S.U.C.S. : Prov : Picota : Ago.-22 : CL


Calicata Muestra Prof. (m)

: M-1 : 0.00-1.00

: C-4

Velocidad : 0.28mm/min

0.400

Esfuerzo Normal - Esfuerzo Cortante Series2 0.800

Esfuerzo Cortante 0.200 0.000 0.50 1.00 0.00 Esfuerzo Normal

Resultados:

Cohesión C

: 0.143 Kg/cm²

Angulo de fricción (Ø) : 16.0 °

• Series1

1.50

ENSAYOS QUIMICOS DE SUELOS

"DISEÑO DEL DRENAJE PLUVIAL PARA MEJORAR LA EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA - SAN MARTIN, 2022".

UBICACIÓN: PROV. PICOTA - DIST: PUCACACA - LOCALIDAD SHIMBILLO

SOLICITANTE: Bach. Lloyser Joel Guerra Vargas / Bach. Gerald Calloquispe Rodríguez.

FECHA: AGOSTO-22

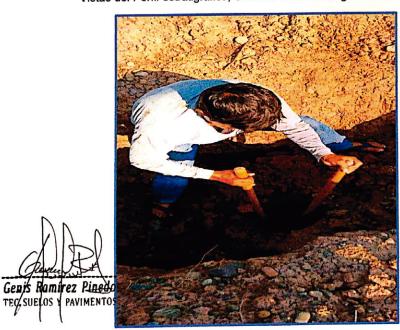
ANÁLISIS QUÍMICOS DE SUELOS (CALICATAS)

N° CALICATA	PROFUNDIDAD	РН	C.E	SALES SOLUBLES (PPM)	CLORUROS (PPM)	SULFATOS (PPM)
01	2.00	4.10	0.472	0.520	120	98
03	1.00	4.01	0.471	0.532	115	102

Geris Ramirez Pinedo TEL SUELOS Y PAVIMENTOS

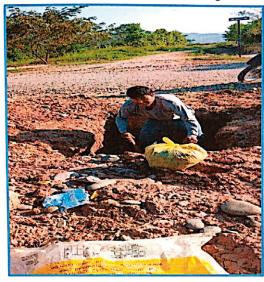
Escaneado con CamScann

Ing. Francisco Grández Rengino INGENIERO CIVIL CIP Nº 101293

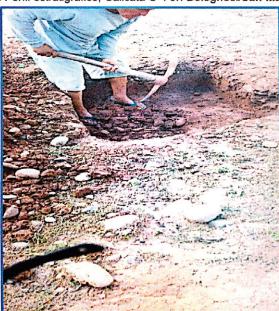

PANEL FOTOGRAFICO

Vistas de la Excavación de la, Calicata C-1 – Jr. Progreso/Huallaga

Vistas del Perfil estratigráfico, Calicata C-2 Jr. Bolognesi/Huallaga


Suelo conformado por arcilla inorgánica de color marrón rojizo, de consistencia media

Escaneado con CamScanner


INGE NERO CIVIL

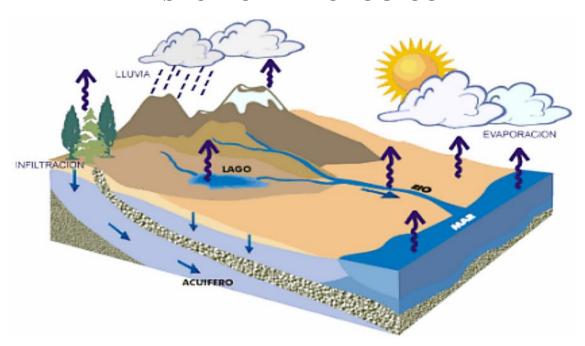
Vistas de la Excavación de la, Calicata C-3 Jr. Progreso/San Martin

Vistas del Perfil estratigráfico, Calicata C-4 Jr. Bolognesi/San Martin

Suelo conformado por arcilla inorgánica de color marrón a marrón rojizo, de consistencia media

Genis Rumitez Pinedo TEC SUELOS Y PAVIMENTOS Ing. Francisco Grandez Rengfio INGENIERO CIVIL CIP Nº 101293

FICHA RESUMEN - ESTUDIO DE SUELOS


Proyecto: Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022

Ubicación:	Centro Poblado Shimbillo	Latitud Sur:	6° 49' 39.4" S	Departamento:	SAN MARTIN
Mes:	Agosto	Longitud Oeste:	76° 20' 31" W	Provincia:	PICOTA
Año:	2022	Altitud:	223 m.s.n.m.	Distrito:	PUCACACA

	Calicatas			C-01	C-2	C-3	C-4
Perforación	Coordenadas			Jr. Progreso / Jr. Huallaga	Jr. Bolognesi / Jr.Huallaga	Jr. Progreso / Jr.San Martín	Jr. Bolognesi / Jr. San Martín
Cielo Abierto	Muestra			M-1	M-1	M-1	M-1
	Profundidad		[m]	0.20 - 2.00	0.20 - 2.00	0.20 - 1.00	0.10 - 1.00
	Humedad Natural		[%]	19.50	15.80	18.60	20.50
	Grava		[%]	0.00	0.00	0.00	0.00
	Arena		[%]	2.37	4.79	8.93	0.23
	Fino		[%]	97.63	95.21	91.07	99.77
	Límites de	Límite Líquido	[%]	44.80	43.50	34.10	36.10
Análisis	Atterberg	Límite Plástico	[%]	18.30	22.30	16.10	16.90
Granulométrico	Atterberg	Índice Plástico	[%]	26.50	21.20	18.00	19.20
Grandiometrico	Potencial de E	xpansión [HOLTS Y GIBB	S]	MEDIA	MEDIA	MEDIA	MEDIA
	Suelos	Densidad Natural Seco	[gr/cm3]	1.449	1.490	1.457	1.427
	Colapsables Tipo de Suelos		SECO	NO COLAPSABLE	NO COLAPSABLE	NO COLAPSABLE	NO COLAPSABLE
	Clasificación S	S.U.C.S.		CL	CL	CL	CL
	Clasificación A			A-7-6(15)	A-7-6(13)	A-6(11)	A-6(12)
	Índice de Con	sistencia		Estable (1.2)	Estable (1.2)	Estable (1.2)	Estable (1.2)
	Profundidad		[m]	2.00	2.00	1.00	1.00
Ensayo Corte	Cohesión "C"		kg/cm2	0.141	0.136	0.126	0.143
Directo	Ángulo de Fri	cción "Ø"	(°)	14.50	14.60	16.40	16.00
	Densidad Nat		gr/cc	1.729	1.720	1.733	1.717
Parámetro de	Prof. Cimenta		[m]	1.60	1.60	1.00	1.00
Diseño		Carga admisible "gadm"	kg/cm2	0.70	0.69	0.64	0.69
de Cimentación	1.00m x 1.00m	Asentamiento Si	[cm]	0.63	0.62	0.57	0.60
	Profundidad		[m]	2.00		1.00	
	Potencial de Hidrógeno álisis Conductividad Eléctrica "C.E"		[PH]	4.10		4.01	
Análisis			`[dS/m]	0.472		0.471	
Químico	Sales Solubles	5	[PPM]	0.520		0.532	
	Cloruros		[PPM]	120		115	
	Sulfatos		[PPM]	98		102	

ESTUDIO HIDROLÓGICO

PROYECTO

"DISEÑO DE DRENAJE PLUVIAL PARA MEJORAR EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA, SAN MARTIN, 2022"

UBICACIÓN

LOCALIDAD : CENTRO POBLADO SHIMBILLO

DISTRITO : PUCACACA

PROVINCIA: PICOTA

REGION : SAN MARTÍN

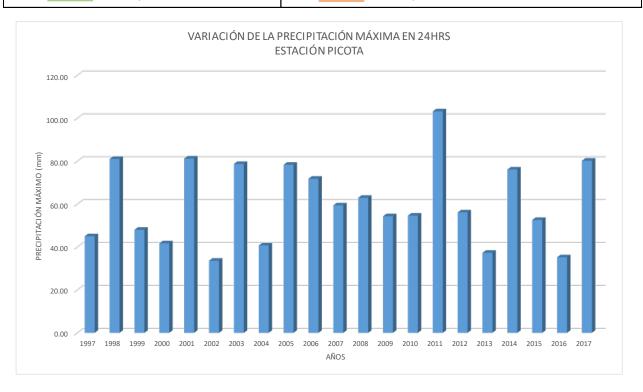
ASUNTO : DISEÑO DRENAJE PLUVIAL

Tarapoto
Agosto del 2022

FICHA DE DATOS PLUVIOMETRICOS Nº: 2022 - 01

Proyecto: Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022

 Tesistas:
 Bach. Calloquispe Rodríguez, Gerald
 Fecha: 01/10/2022


 Bach. Guerra Vargas, LLoyser Joel
 Fecha: 01/10/2022

Х	ESTACION PLUVIOMÉTRICA "PICOTA"	Longitud:	76°20′02" "S"	Dpto:	SAN MARTIN
		Latitud:	06°54'59" "W"	Prov:	PICOTA
		Altitud:	220 m.s.n.m.	Distr:	VILLA PICOTA

					Pı	recipitacio	n Diaria N	laxima en	24 hras (m	ım)					
ITEM	AÑO	ENE	FEBR	MARZ	ABR	MAY	JUN	JUL	AGOST	SET	ОСТ	NOV	DIC	MÁXIMO	MEDIA
1	1997	0.00	27.00	39.00	45.00	21.00	0.00	21.50	31.00	33.20	7.50	35.00	5.00	45.00	22.10
2	1998	13.00	52.00	74.00	27.00	9.00	32.00	9.00	22.00	81.00	34.00	49.00	12.00	81.00	34.50
3	1999	39.50	29.00	48.00	24.50	34.00	23.00	10.00	24.00	22.50	35.00	34.00	13.00	48.00	28.04
4	2000	6.50	27.00	15.80	21.20	14.00	14.90	29.40	41.70	22.80	20.00	20.20	21.70	41.70	21.27
5	2001	27.10	25.50	60.90	81.20	13.60	11.20	45.70	22.00	41.60	55.00	52.30	54.70	81.20	40.90
6	2002	15.90	13.80	12.20	15.60	22.20	12.10	21.70	19.50	33.60	12.20	10.00	19.00	33.60	17.32
7	2003	13.40	21.60	62.20	5.90	27.10	24.60	14.00	15.50	67.60	40.50	28.00	78.70	78.70	33.26
8	2004	40.70	8.50	6.60	4.40	12.80	23.20	18.60	35.00	21.40	33.90	19.70	26.50	40.70	20.94
9	2005	43.30	78.30	5.00	64.10	13.50	9.50	15.80	28.60	12.00	29.30	69.80	53.30	78.30	35.21
10	2006	11.10	44.20	71.80	14.50	12.20	12.50	37.40	15.50	32.90	16.20	51.10	8.60	71.80	27.33
11	2007	8.20	4.10	37.70	11.40	28.00	8.80	14.70	12.40	30.40	48.80	59.40	22.10	59.40	23.83
12	2008	11.80	43.50	18.10	62.90	6.10	5.20	21.30	10.40	24.50	25.60	39.60	7.50	62.90	23.04
13	2009	54.30	16.60	21.60	45.50	16.60	35.40	8.80	46.00	47.00	21.10	11.20	4.90	54.30	27.42
14	2010	6.80	45.10	13.60	15.30	22.90	10.20	29.00	19.10	36.40	29.30	54.60	21.00	54.60	25.28
15	2011	12.20	5.40	35.20	103.20	19.40	25.50	8.70	23.00	24.30	39.20	35.00	53.80	103.20	32.08
16	2012	29.40	38.40	38.50	56.10	6.00	17.60	32.50	7.10	31.70	47.80	49.60	22.20	56.10	31.41
17	2013	37.30	35.00	18.90	24.90	9.60	24.60	12.60	30.00	14.00	26.30	26.80	30.00	37.30	24.17
18	2014	7.40	13.70	27.80	22.50	19.00	26.30	45.60	16.60	62.30	42.00	76.10	16.10	76.10	31.28
19	2015	14.70	52.60	15.50	37.40	16.50	17.00	17.80	24.10	16.60	28.60	35.00	10.60	52.60	23.87
20	2016	16.50	30.10	27.20	33.70	31.90	16.70	26.00	8.10	35.20	24.80	6.30	29.90	35.20	23.87
21	2017	27.70	80.20	30.20	34.80	15.70	39.00	30.40	22.00	25.50	23.40	80.20	47.60	80.20	38.06
Med	ia	20.80	32.93	32.37	35.77	17.67	18.54	22.40	22.55	34.12	30.50	40.14	26.58		
Desv		14.87	21.13	20.78	25.70	7.89	10.07	11.38	10.23	17.68	12.22	21.15	19.95		
Varia	nza	221.18	446.51	431.94	660.46	62.32	101.37	129.56	104.75	312.63	149.22	447.14	398.18		
Máxi	imo	54.30	80.20	74.00	103.20	34.00	39.00	45.70	46.00	81.00	55.00	80.20	78.70		
Míni	mo	0.00	4.10	5.00	4.40	6.00	0.00	8.70	7.10	12.00	7.50	6.30	4.90		

1era Precipitacion Maxima Mensual

2da Precipitacion Maxima Mensual

PRUEBA DE DATOS DUDOSOS - ESTACIÓN:

	OTA	

PRECIPITACIÓN MAXIMA EN 24 HORAS							
N	AÑO	P24hr - mm	Log(P24hr)				
1	1997	45.00	1.653				
2	1998	81.00	1.908				
3	1999	48.00	1.681				
4	2000	41.70	1.620				
5	2001	81.20	1.910				
6	2002	33.60	1.526				
7	2003	78.70	1.896				
8	2004	40.70	1.610				
9	2005	78.30	1.894				
10	2006	71.80	1.856				
11	2007	59.40	1.774				
12	2008	62.90	1.799				
13	2009	54.30	1.735				
14	2010	54.60	1.737				
15	2011	103.20	2.014				
16	2012	56.10	1.749				
17	2013	37.30	1.572				
18	2014	76.10	1.881				
19	2015	52.60	1.721				
20	2016	35.20	1.547				
21	2017	80.20	1.904				
22	-	-	-				
23	-	-	-				
24	-	-	-				
25	-	-	-				
26	-	-	-				
27	-	-	-				
28	-	-	-				
29	-	-	-				
30	-	-	-				
31	-	-	-				
32	-	-	-				
33	-	-	-				
34	-	-	-				
35	-	-	-				
36	-	-	-				
37	-	-	-				
38	-	-	-				
39	-	-	-				
40	-	-	-				

PÁRAMETROS ESTADISTICOS	P24hr	Log(P24hr)	
Numero de datos (N)	21	21	
Sumatoria	1271.90	36.9863	
Valor Máximo	103.20	2.014	
Valor Mínimo	33.60	1.526	
Media	60.567	1.761	
varianza	364.253 0.019		
Desviación Estandar	19.085	0.140	
Coeficiente Variación	0.315	0.079	
Coeficiente de Sesgo	0.3911 -0.1010		
Se considera	Aplicar pruebas para detectar datos dudosos altos y bajos		

n	=	21	
Kn	:	Valor recon	nendado, Varia según el valor de n (significancia 10%)
Kn	=	2.408	

DATOS DUDOSOS ALTO	DATOS DUDOSOS ALTOS				
Umbral de datos dudosos altos (xH: unidad. Logaritmicas)					
$x_H = \bar{x} + k_n * s$					
Precipitación maxima aceptada					
$PH = 10^{xH}$ PH = 125.1 mm					
NO EXISTEN DATOS DUDOSOS ALTOS EN LA MUESTRA					

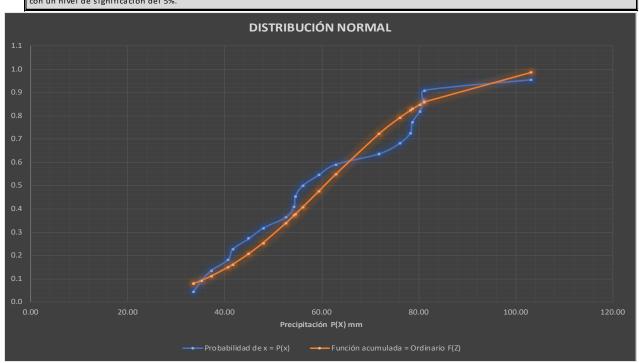
DATOS DUDOSOS BAJOS					
Umbral de datos dudosos bajos (xH: unidad. Logaritmicas)					
$x_L = \bar{x} - k_n * s$					
Precipitación minima aceptada					
$PH = 10^{xL} \qquad PH = 26.61 \text{mm}$					
NO EXISTEN DATOS DUDOSOS BAJOS EN LA MUESTRA					

LOS DATOS SE AJUSTAN A LA PRUEBA DE DATOS DUDOSOS PROCEDE

DISTRIBUCIONES <u>DISTRIBUCIÓN NORMAL - ESTACIÓN:</u>

PCIOTA

	5 44)	P. de Localización	P. de Escala	Probabilidad		Func. Densidad	F. Acumulada	Delta Teorico
m	P = X (mm)	Media (Xm)	D. Estandar (S)	P (X) =m/n+1	Z = X-Xm/S	f(Z)	Ordinario F(Z)	Δ
1	33.60			0.0455	-1.4129	0.1470	0.0788	0.0334
2	35.20			0.0909	-1.3291	0.1649	0.0919	0.0010
3	37.30			0.1364	-1.2191	0.1898	0.1114	0.0250
4	40.70			0.1818	-1.0409	0.2321	0.1490	0.0329
5	41.70			0.2273	-0.9885	0.2447	0.1614	0.0658
6	45.00			0.2727	-0.8156	0.2861	0.2074	0.0654
7	48.00			0.3182	-0.6584	0.3212	0.2551	0.0631
8	52.60			0.3636	-0.4174	0.3657	0.3382	0.0255
9	54.30			0.4091	-0.3283	0.3780	0.3713	0.0378
10	54.60			0.4545	-0.3126	0.3799	0.3773	0.0773
11	56.10	60.5667	19.0854	0.5000	-0.2340	0.3882	0.4075	0.0925
12	59.40			0.5455	-0.0611	0.3982	0.4756	0.0698
13	62.90			0.5909	0.1223	0.3960	0.5487	0.0423
14	71.80			0.6364	0.5886	0.3355	0.7219	0.0856
15	76.10			0.6818	0.8139	0.2865	0.7921	0.1103
16	78.30			0.7273	0.9292	0.2591	0.8236	0.0963
17	78.70			0.7727	0.9501	0.2540	0.8290	0.0562
18	80.20			0.8182	1.0287	0.2350	0.8482	0.0300
19	81.00			0.8636	1.0706	0.2249	0.8578	0.0058
20	81.20			0.9091	1.0811	0.2224	0.8602	0.0489
21	103.20			0.9545	2.2338	0.0329	0.9873	0.0327


Numero de datos (N)	
21	

0.1103	<	0.2968
	SE AJUSTA	

Δ teorico	0.1103
Δ tabular - 5%	0.29678

Ajuste con momentos ordinarios

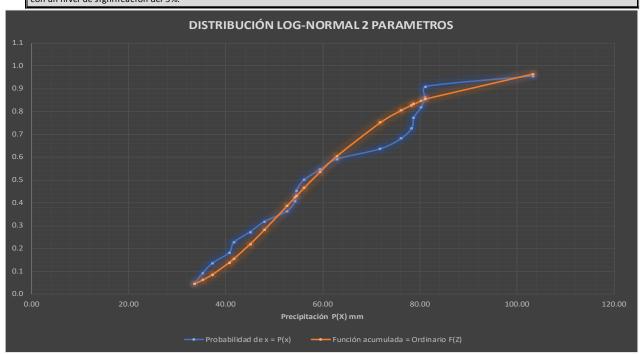
Como el delta teórico 0.1103 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: Normal con un nivel de significación del 5%.

DISTRIBUCIONES

DISTRIBUCIÓN LOG-NORMAL 2 PARAMETROS - ESTACIÓN:

PCIOTA

m	P = X (mm)	Y=Ln(X)	Probabilidad P(X) = m/n+1	P. de Localización - Media Ln(X)	P. de Escala - D. Estandar (S)	Z = (X-Xm)/S	Función Densidad f(Z)	Función Acumulada Ordinario F(Z)	Delta Teorico Δ
1	33.60	3.5145	0.0455			-1.6828	0.0090	0.0462	0.0008
2	35.20	3.5610	0.0909			-1.5380	0.0108	0.0620	0.0289
3	37.30	3.6190	0.1364			-1.3578	0.0132	0.0873	0.0491
4	40.70	3.7062	0.1818			-1.0864	0.0169	0.1387	0.0432
5	41.70	3.7305	0.2273			-1.0109	0.0179	0.1560	0.0712
6	45.00	3.8067	0.2727			-0.7739	0.0204	0.2195	0.0532
7	48.00	3.8712	0.3182			-0.5731	0.0219	0.2833	0.0349
8	52.60	3.9627	0.3636			-0.2884	0.0226	0.3865	0.0229
9	54.30	3.9945	0.4091			-0.1895	0.0224	0.4249	0.0158
10	54.60	4.0000	0.4545			-0.1723	0.0224	0.4316	0.0230
11	56.10	4.0271	0.5000	4.0554	0.3214	-0.0880	0.0220	0.4649	0.0351
12	59.40	4.0843	0.5455			0.0898	0.0208	0.5358	0.0097
13	62.90	4.1415	0.5909			0.2679	0.0190	0.6056	0.0147
14	71.80	4.2739	0.6364			0.6796	0.0137	0.7516	0.1153
15	76.10	4.3320	0.6818			0.8605	0.0113	0.8053	0.1234
16	78.30	4.3605	0.7273			0.9492	0.0101	0.8287	0.1015
17	78.70	4.3656	0.7727			0.9651	0.0099	0.8327	0.0600
18	80.20	4.3845	0.8182			1.0238	0.0092	0.8470	0.0289
19	81.00	4.3944	0.8636			1.0547	0.0088	0.8542	0.0094
20	81.20	4.3969	0.9091			1.0623	0.0087	0.8560	0.0531
21	103.20	4.6367	0.9545			1.8082	0.0023	0.9647	0.0102


Nume	ro de datos (N)
	21

0.1234	<	0.2968
	SE AJUSTA	

Δ teorico	0.1234
Δ tabular - 5%	0.2968

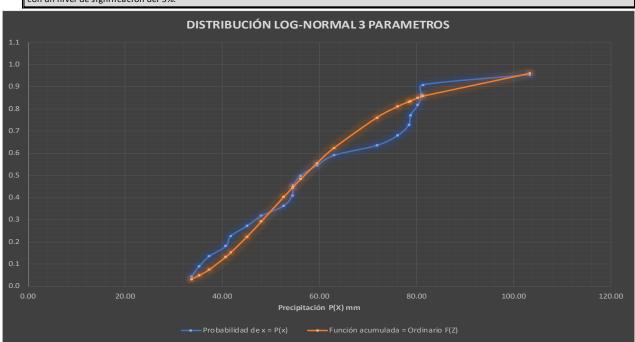
Ajuste con momentos ordinarios:

Como el delta teórico 0.1234 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: **Log-Normal 2 Para.** con un nivel de significación del 5%.

DISTRIBUCIÓN LOG-NORMAL 3 PARAMETROS - ESTACIÓN:

<u>PCIOTA</u>

m	P= X(mm)	Probabi. P(X)= m/n+1	Mediana	Paramet. de posición X0	(x-xo)	Y=Ln(X- X0)	P. de Loca Media= Ln(X-x0)	P. de Esca D. Estan. (S) = Ln(x- x0)	Z = (X-Xm)/S	Función Densidad f(Z)	Función Acumulada Ordinario F(Z)	Delta Teorico Δ
1	33.60	0.0455			20.57927	3.0243			-1.8263	0.0088	0.0339	0.0116
2	35.20	0.0909			22.17927	3.0992			-1.6454	0.0112	0.0499	0.0410
3	37.30	0.1364			24.27927	3.1896		0.4137	-1.4267	0.0144	0.0768	0.0595
4	40.70	0.1818			27.67927	3.3207			-1.1099	0.0188	0.1335	0.0483
5	41.70	0.2273			28.67927	3.3562	3.7799		-1.0241	0.0199	0.1529	0.0744
6	45.00	0.2727			31.97927	3.4651			-0.7609	0.0226	0.2234	0.0494
7	48.00	0.3182			34.97927	3.5548			-0.5442	0.0238	0.2932	0.0250
8	52.60	0.3636			39.57927	3.6783			-0.2455	0.0236	0.4030	0.0394
9	54.30	0.4091			41.27927	3.7204			-0.1439	0.0231	0.4428	0.0337
10	54.60	0.4545			41.57927	3.7276			-0.1264	0.0230	0.4497	0.0048
11	56.10	0.5000	56.1000	13.021	43.07927	3.7630			-0.0407	0.0224	0.4838	0.0162
12	59.40	0.5455			46.37927	3.8369			0.1377	0.0206	0.5548	0.0093
13	62.90	0.5909			49.87927	3.9096			0.3135	0.0184	0.6231	0.0322
14	71.80	0.6364			58.77927	4.0738			0.7104	0.0127	0.7613	0.1249
15	76.10	0.6818			63.07927	4.1444			0.8810	0.0104	0.8108	0.1290
16	78.30	0.7273			65.27927	4.1787			0.9639	0.0093	0.8324	0.1052
17	78.70	0.7727			65.67927	4.1848			0.9786	0.0091	0.8361	0.0634
18	80.20	0.8182			67.17927	4.2074			1.0332	0.0084	0.8493	0.0311
19	81.00	0.8636			67.97927	4.2192			1.0618	0.0081	0.8558	0.0078
20	81.20	0.9091			68.17927	4.2221			1.0689	0.0080	0.8575	0.0516
21	103.20	0.9545			90.17927	4.5018			1.7449	0.0023	0.9595	0.0050


Numero de datos (N) 21

0.1290	<	0.2968				
SE AJUSTA						

Δ teorico	0.1290
Δ tabular - 5%	0.2968

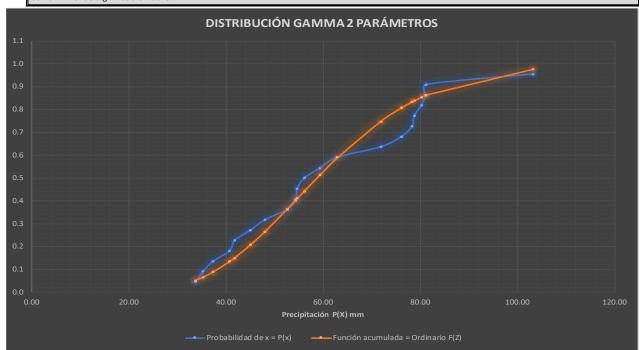
Ajuste con momentos ordinarios:

Como el delta teórico 0.1290 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: **Log-Normal 3 Para.** con un nivel de significación del 5%.

DISTRIBUCIÓN GAMMA 2 PARAMETROS - ESTACIÓN:

PCIOTA

	P= X(mm)		Probabi. P(X)=	Media X	Media=	Υ	Υ	0	Función Densidad	Función	Delta Teorico
m	X	Ln x	m/n+1	iviedia X	Ln(X)	Ť	'	β	f(X)	Acumulada Ordinario F(X)	Δ
1	33.60	3.5145	0.0455						0.0084	0.0513	0.0058
2	35.20	3.5610	0.0909						0.0099	0.0659	0.0250
3	37.30	3.6190	0.1364						0.0119	0.0889	0.0475
4	40.70	3.7062	0.1818						0.0152	0.1351	0.0468
5	41.70	3.7305	0.2273						0.0161	0.1507	0.0766
6	45.00	3.8067	0.2727						0.0187	0.2083	0.0645
7	48.00	3.8712	0.3182						0.0205	0.2673	0.0509
8	52.60	3.9627	0.3636						0.0221	0.3660	0.0023
9	54.30	3.9945	0.4091						0.0222	0.4037	0.0054
10	54.60	4.0000	0.4545						0.0223	0.4103	0.0442
11	56.10	4.0271	0.5000	60.5667	4.0554	0.0483	10.51349	5.7609	0.0222	0.4437	0.0563
12	59.40	4.0843	0.5455						0.0216	0.5161	0.0294
13	62.90	4.1415	0.5909						0.0202	0.5894	0.0015
14	71.80	4.2739	0.6364						0.0152	0.7483	0.1120
15	76.10	4.3320	0.6818						0.0125	0.8080	0.1262
16	78.30	4.3605	0.7273						0.0112	0.8341	0.1069
17	78.70	4.3656	0.7727						0.0110	0.8386	0.0659
18	80.20	4.3845	0.8182						0.0101	0.8544	0.0362
19	81.00	4.3944	0.8636						0.0097	0.8624	0.0013
20	81.20	4.3969	0.9091						0.0096	0.8643	0.0448
21	103.20	4.6367	0.9545						0.0021	0.9769	0.0224


Numero de datos (N)	
21	Ī

0.1	262	<	0.2968
	SE	AJUSTA	

Δ teorico	0.1262
Δ tabular - 5%	0.2968

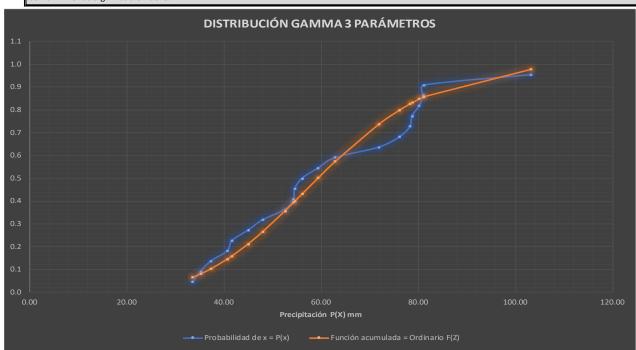
Ajuste con momentos ordinarios:

Como el delta teórico 0.1262 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: **Gamma 2 Parámet.** con un nivel de significación del 5%.

DISTRIBUCIÓN GAMMA 3 PARAMETROS - ESTACIÓN:

PCIOTA

m	P=X(mm)	Probabi. P(X)=	Media X	D. Estan. (S)	Coefici. de Sesgo	Paramet. de posición	(X-X0)	Beta β	Gamma	Función Densidad	Función Acumulada	Delta Teorico
	^	m/n+1		(-)	Cs	XO		ī		f(X)	Ordinario F(X)	Δ
1	33.60	0.0455					70.6396			0.0084	0.0665	0.0211
2	35.20	0.0909					72.2396			0.0096	0.0809	0.0100
3	37.30	0.1364					74.3396			0.0113	0.1028	0.0335
4	40.70	0.1818					77.7396			0.0140	0.1457	0.0361
5	41.70	0.2273					78.7396			0.0147	0.1601	0.0672
6	45.00	0.2727				1 -37.0396	82.0396			0.0171	0.2126	0.0601
7	48.00	0.3182					85.0396	5 5 5 3.7319 2 5 5		0.0189	0.2666	0.0516
8	52.60	0.3636					89.6396			0.0207	0.3581	0.0056
9	54.30	0.4091					91.3396			0.0210	0.3936	0.0155
10	54.60	0.4545					91.6396			0.0211	0.3999	0.0547
11	56.10	0.5000	60.5667	19.0854	0.3911		93.1396		26.155	0.0212	0.4316	0.0684
12	59.40	0.5455					96.4396			0.0210	0.5016	0.0439
13	62.90	0.5909					99.9396			0.0202	0.5739	0.0170
14	71.80	0.6364					108.8396			0.0159	0.7363	0.1000
15	76.10	0.6818					113.1396			0.0133	0.7992	0.1174
16	78.30	0.7273					115.3396			0.0120	0.8270	0.0998
17	78.70	0.7727					115.7396			0.0118	0.8318	0.0591
18	80.20	0.8182					117.2396			0.0109	0.8487	0.0306
19	81.00	0.8636					118.0396			0.0104	0.8573	0.0064
20	81.20	0.9091					118.2396			0.0103	0.8593	0.0498
21	103.20	0.9545					140.2396			0.0021	0.9791	0.0246


Numero de datos (N)	
21	

0.1174	<	0.2968
	SE AJUSTA	

∆ teorico	0.1174		
Δ tabular - 5%	0.2968		

Ajuste con momentos ordinarios:

Como el delta teórico 0.1174 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: **Gamma 3 Parámet.** con un nivel de significación del 5%.

DISTRIBUCIÓN LOG PEARSON TIPO III - ESTACIÓN:	PCIOTA
---	--------

	P= X(mm)		Probabi.	"		Coefici.	Paramet.	Beta	Gamma		Función	Función	Delta
m	х	Y=Ln (x)	P(X)=	Media Ln(X)	D. Estan. (S)=Lnx	de Sesgo	de posición	β	Υ	Ln(x)-X0	Densidad	Acumulada	Teorico
	^		m/n+1		(0,	Cs=Ln(x)	XO	Þ	· ·		f(X)	Ordinario F(X)	Δ
1	33.60	3.5145	0.0455							-6.9076	#¡NUM!	#¡NUM!	#¡NUM!
2	35.20	3.5610	0.0909							-6.8611	#¡NUM!	#¡NUM!	#¡NUM!
3	37.30	3.6190	0.1364							-6.8031	#¡NUM!	#¡NUM!	#¡NUM!
4	40.70	3.7062	0.1818							-6.7159	#¡NUM!	#¡NUM!	#¡NUM!
5	41.70	3.7305	0.2273							-6.6916	#¡NUM!	#¡NUM!	#¡NUM!
6	45.00	3.8067	0.2727			0.3214 -0.1010	10.4221			-6.6154	#¡NUM!	#¡NUM!	#¡NUM!
7	48.00	3.8712	0.3182		0.3214					-6.5509	#¡NUM!	#¡NUM!	#¡NUM!
8	52.60	3.9627	0.3636							-6.4594	#¡NUM!	#¡NUM!	#¡NUM!
9	54.30	3.9945	0.4091							-6.4276	#¡NUM!	#¡NUM!	#¡NUM!
10	54.60	4.0000	0.4545					-0.0162	392.30	-6.4221	#¡NUM!	#¡NUM!	#¡NUM!
11	56.10	4.0271	0.5000	4.0554						-6.3950	#¡NUM!	#¡NUM!	#¡NUM!
12	59.40	4.0843	0.5455							-6.3378	#¡NUM!	#¡NUM!	#¡NUM!
13	62.90	4.1415	0.5909							-6.2806	#¡NUM!	#¡NUM!	#¡NUM!
14	71.80	4.2739	0.6364							-6.1482	#¡NUM!	#¡NUM!	#¡NUM!
15	76.10	4.3320	0.6818							-6.0901	#¡NUM!	#¡NUM!	#¡NUM!
16	78.30	4.3605	0.7273							-6.0616	#¡NUM!	#¡NUM!	#¡NUM!
17	78.70	4.3656	0.7727							-6.0565	#¡NUM!	#¡NUM!	#¡NUM!
18	80.20	4.3845	0.8182							-6.0376	#¡NUM!	#¡NUM!	#¡NUM!
19	81.00	4.3944	0.8636							-6.0277	#¡NUM!	#¡NUM!	#¡NUM!
20	81.20	4.3969	0.9091							-6.0252	#¡NUM!	#¡NUM!	#¡NUM!
21	103.20	4.6367	0.9545							-5.7854	#¡NUM!	#¡NUM!	#¡NUM!

Numero de datos (N) 21

	<	0.2968
NO SE	AJUSTA	

Δ teorico	#¡NUM!
Δ tabular - 5%	0.2968

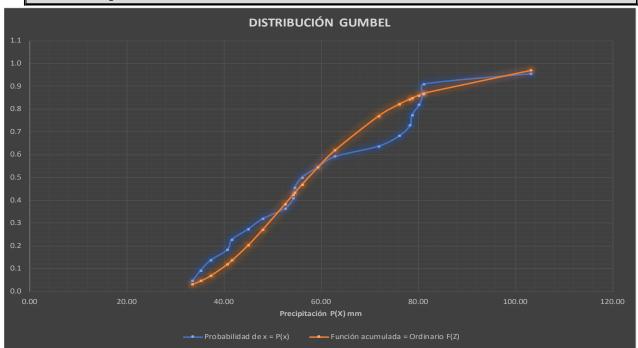
Ajuste con momentos ordinarios:

Como el delta teórico #¡NUM! es mayor que el delta a tabular 0.2968 los datos no se ajustan a la distribución: Log Pearson tipo III con un nivel de significación del 5%.

DISTRIBUCIÓN GUMBEL - ESTACIÓN:

PCIOTA

m	P= X(mm)	Probabi. P(X)=	Media X	D. Estandar.	P. Posición mu	P. Escala	Función Densidad	Función Acumulada	Delta Teorico
	Х	m/n+1		(S) =(x)	μ	α	f(X)	Ordinario F(X)	Δ
1	33.60	0.0455					0.0016	0.0321	0.0133
2	35.20	0.0909					0.0023	0.0456	0.0453
3	37.30	0.1364					0.0034	0.0685	0.0679
4	40.70	0.1818					0.0059	0.1184	0.0634
5	41.70	0.2273				14.88	0.0068	0.1360	0.0913
6	45.00	0.2727					0.0102	0.2022	0.0705
7	48.00	0.3182		19.0854	51.9782		0.0136	0.2708	0.0474
8	52.60	0.3636					0.0193	0.3832	0.0196
9	54.30	0.4091					0.0214	0.4251	0.0160
10	54.60	0.4545					0.0217	0.4324	0.0222
11	56.10	0.5000	60.5667				0.0235	0.4686	0.0314
12	59.40	0.5455					0.0274	0.5448	0.0006
13	62.90	0.5909					0.0311	0.6188	0.0279
14	71.80	0.6364					0.0386	0.7680	0.1317
15	76.10	0.6818					0.0412	0.8206	0.1388
16	78.30	0.7273					0.0424	0.8432	0.1159
17	78.70	0.7727					0.0426	0.8470	0.0743
18	80.20	0.8182					0.0432	0.8606	0.0424
19	81.00	0.8636					0.0436	0.8674	0.0038
20	81.20	0.9091					0.0437	0.8691	0.0400
21	103.20	0.9545					0.0487	0.9685	0.0140


Numero de datos	(N)
21	

0.1388	<	0.2968
	SE AJUSTA	

Δ teorico	0.1388
Δ tabular - 5%	0.2968

Ajuste con momentos ordinarios:

Como el delta teórico 0.1388 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: **Gumbel** con un nivel de significación del 5%.

ON LOG GUMBEL	

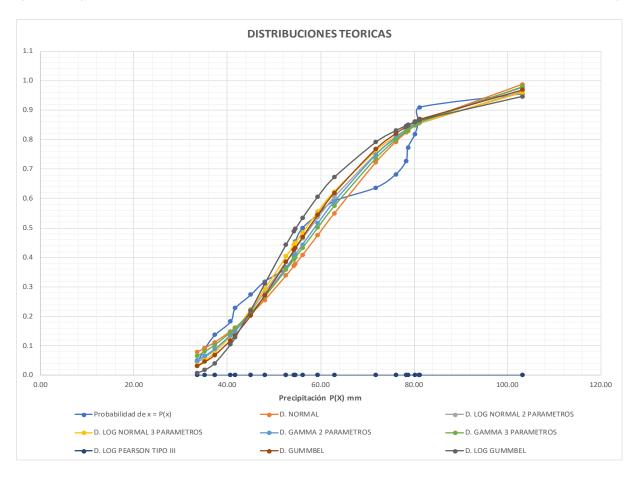
<u>PCIOTA</u>

m	P= X(mm)	Probabi. P(X)=	Y=Ln (x)	Media Ln(X)	D. Estandar. (S) =Ln(x)	P. Posición	P. Escala alfa	Función Densidad	Función Acumulada	Delta Teorico
		m/n+1				mu μ	α	f(X)	Ordinario F(X)	Δ
1	33.60	0.0455	3.5145					0.0252	0.0077	0.0377
2	35.20	0.0909	3.5610					0.0573	0.0177	0.0733
3	37.30	0.1364	3.6190					0.1319	0.0406	0.0957
4	40.70	0.1818	3.7062					0.3383	0.1042	0.0777
5	41.70	0.2273	3.7305					0.4169	0.1283	0.0989
6	45.00	0.2727	3.8067					0.7139	0.2198	0.0529
7	48.00	0.3182	3.8712					1.0070	0.3100	0.0082
8	52.60	0.3636	3.9627		0554 0.3214	3.9108	0.2506	1.4408	0.4436	0.0800
9	54.30	0.4091	3.9945					1.5874	0.4887	0.0796
10	54.60	0.4545	4.0000					1.6123	0.4964	0.0418
11	56.10	0.5000	4.0271	4.0554				1.7323	0.5333	0.0333
12	59.40	0.5455	4.0843					1.9692	0.6063	0.0608
13	62.90	0.5909	4.1415					2.1811	0.6715	0.0806
14	71.80	0.6364	4.2739					2.5681	0.7907	0.1543
15	76.10	0.6818	4.3320					2.6961	0.8301	0.1483
16	78.30	0.7273	4.3605					2.7506	0.8469	0.1196
17	78.70	0.7727	4.3656					2.7599	0.8497	0.0770
18	80.20	0.8182	4.3845					2.7927	0.8598	0.0416
19	81.00	0.8636	4.3944					2.8091	0.8649	0.0012
20	81.20	0.9091	4.3969					2.8131	0.8661	0.0430
21	103.20	0.9545	4.6367					3.0735	0.9463	0.0083

Numero de datos (N)
21

0.1543	<	0.2968
	SE AJUSTA	

Δ teorico	0.1543
Δ tabular - 5%	0.2968


Ajuste con momentos ordinarios:

Como el delta teórico 0.1543 es menor que el delta a tabular 0.2968 los datos se ajustan a la distribución: **Log Gumbel** con un nivel de significación del 5%.

PRUEBA DE BONDAD DE AJUSTE SMIRNOV-KOLGOMOROV

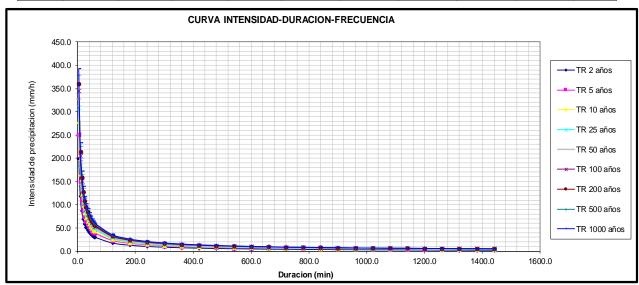
	ΔΤΕÓRICO DE LAS DISTRIBUCIONES									
Δ tabular - 5%	D. NORMAL NORMAL2 NORMAL3		D. GAMMA 2 PARAMETROS	D. GAMMA 3 PARAMETROS	D. LOG PEARSON TIPO III	D. GUMMBEL	D. LOG GUMMBEL			
	SE AJUSTA	SE AJUSTA	SE AJUSTA	SE AJUSTA	SE AJUSTA	NO SE AJUSTA	SE AJUSTA	SE AJUSTA		
0.21503	0.1103	0.1234	0.1290	0.1262	0.1290	-	0.1388	0.1543		
ΜΙΝ Δ	0.1103									
IVIIIV A		D. NORMAL								

Precipitación máxima para diferentes periodos de retorno							
T (años)	T (años) P						
2	0.500	60.19					
5	0.200	76.29					
10	0.100	84.72					
25	0.040	93.70					
50	0.020	99.50					
100	0.010	104.72					
200	0.005	109.49					
500	0.002	115.28					
1000	0.001	119.34					
Δ	0.2150	0.1103					

Precipitación máxima para diferentes periodos de retorno							
T (años)	Distribución Normal X ^t						
2	0.500	68.01					
5	0.200	86.21					
10	0.100	95.73					
25	0.040	105.88					
50	0.020	112.44					
100	0.010	118.33					
200	0.005	123.72					
500	0.002	130.27					
1000	0.001	134.85					
Δ	0.21503	0.1103					

Relacion entre Precipitación máxima verdadera y precipitación en intervalos fijos						
Número de Intervalo de Observacion	Relación					
1	1.13					
2	1.04					
3-4	1.03					
5-8	1.02					
9-24	1.01					

Fuente: Hidrología para ingenieros (Linsley. Kohler y Paulhus)


Caudales máximos para diferentes periodos de retorno para una distribución normal							
T (años)	Probabilidad de Excedencia P = F(x)	Probabilidad de no Excedencia 1-F(x)	Z				
2	0.500	0.500	68.01				
5	0.200	0.800	86.21				
10	0.100	0.900	95.73				
25	0.040	0.960	105.88				
50	0.020	0.980	112.44				
100	0.010	0.990	118.33				
200	0.005	0.995	123.72				
500	0.002	0.998	130.27				
1000	0.001	0.999	134.85				

Modelo de Dick Peschke

				Precipi	tación en 24	horas (mm)			
Duración	68.01	86.21	95.73	105.88	112.44	118.33	123.72	130.27	134.85
(Minutos)				Perio	do de Retorr	no (Años)			
(IVIIIIulos)	2	5	10	25	50	100	200	500	1000
				P	recipitación	(mm)			
5	16.51	20.93	23.24	25.70	27.29	28.72	30.03	31.62	32.74
10	19.63	24.89	27.64	30.57	32.46	34.16	35.72	37.60	38.93
15	21.73	27.54	30.58	33.83	35.92	37.80	39.53	41.62	43.08
20	23.35	29.59	32.86	36.35	38.60	40.62	42.47	44.72	46.29
25	24.69	31.29	34.75	38.43	40.81	42.95	44.91	47.29	48.95
30	25.84	32.75	36.37	40.23	42.72	44.96	47.00	49.49	51.23
35	26.86	34.04	37.80	41.81	44.39	46.72	48.85	51.44	53.25
40	27.77	35.19	39.08	43.23	45.90	48.31	50.51	53.18	55.05
45	28.60	36.25	40.25	44.52	47.27	49.75	52.02	54.77	56.70
50	29.36	37.21	41.33	45.71	48.53	51.08	53.41	56.23	58.21
55	30.07	38.11	42.32	46.81	49.71	52.31	54.70	57.59	59.62
60	30.73	38.95	43.25	47.84	50.80	53.46	55.90	58.85	60.93
120	36.54	46.32	51.44	56.89	60.41	63.58	66.47	69.99	72.46
180	40.44	51.26	56.92	62.96	66.85	70.36	73.57	77.46	80.18
240	43.46	55.08	61.17	67.65	71.84	75.61	79.05	83.23	86.16
300	45.95	58.24	64.68	71.53	75.96	79.95	83.59	88.01	91.11
360	48.09	60.96	67.69	74.87	79.50	83.67	87.49	92.11	95.36
420	49.98	63.35	70.35	77.81	82.63	86.96	90.92	95.73	99.10
480	51.68	65.50	72.74	80.45	85.43	89.91	94.01	98.98	102.47
540	53.22	67.46	74.92	82.86	87.99	92.60	96.82	101.94	105.53
600	54.64	69.26	76.92	85.07	90.33	95.07	99.40	104.66	108.35
660	55.96	70.93	78.77	87.12	92.51	97.37	101.80	107.18	110.96
720	57.19	72.49	80.50	89.03	94.55	99.51	104.04	109.54	113.40
780	58.35	73.96	82.13	90.83	96.46	101.52	106.14	111.75	115.69
840	59.44	75.34	83.66	92.53	98.26	103.42	108.13	113.84	117.85
900	60.47	76.65	85.12	94.14	99.97	105.22	110.01	115.83	119.90
960	61.46	77.90	86.51	95.67	101.60	106.93	111.80	117.71	121.85
1020	62.40	79.09	87.83	97.14	103.15	108.56	113.50	119.51	123.72
1080	63.29	80.23	89.09	98.53	104.63	110.12	115.14	121.23	125.50
1140	64.16	81.32	90.30	99.87	106.06	111.62	116.70	122.88	127.20
1200	64.98	82.37	91.47	101.16	107.43	113.06	118.21	124.46	128.85
1260	65.78	83.38	92.59	102.40	108.74	114.45	119.66	125.99	130.43
1320	66.55	84.35	93.67	103.60	110.02	115.79	121.06	127.46	131.95
1380	67.29	85.30	94.72	104.76	111.25	117.08	122.41	128.89	133.43
1440	68.01	86.21	95.73	105.88	112.44	118.33	123.72	130.27	134.85

				.,
Intesidad	de l	Precu	nıta	cion
IIIICSIGGG	uc :		Pitu	

Domesian	Domesian	Periodo de Retorno (Años)								
Duracion (Horse)	Duracion (min)	2.00	5.00	10.00	25.00	50.00	100.00	200.00	500.00	1000.00
(Horas)	(min)		Intensidad (mm/hr)							
0.083	5	198.12	251.12	278.87	308.43	327.52	344.70	360.40	379.46	392.82
0.167	10	117.80	149.32	165.82	183.39	194.74	204.96	214.30	225.63	233.57
0.250	15	86.92	110.16	122.34	135.30	143.68	151.22	158.10	166.47	172.33
0.333	20	70.05	88.78	98.59	109.05	115.79	121.87	127.42	134.16	138.88
0.417	25	59.25	75.10	83.40	92.24	97.95	103.09	107.79	113.48	117.48
0.500	30	51.68	65.50	72.74	80.45	85.43	89.91	94.01	98.98	102.47
0.583	35	46.04	58.35	64.80	71.67	76.10	80.10	83.75	88.17	91.28
0.667	40	41.65	52.79	58.62	64.84	68.85	72.46	75.76	79.77	82.58
0.750	45	38.13	48.33	53.67	59.36	63.03	66.34	69.36	73.03	75.60
0.833	50	35.23	44.66	49.59	54.85	58.24	61.30	64.09	67.48	69.86
0.917	55	32.80	41.58	46.17	51.06	54.22	57.07	59.67	62.82	65.04
1.000	60	30.73	38.95	43.25	47.84	50.80	53.46	55.90	58.85	60.93
2.000	120	18.27	23.16	25.72	28.44	30.20	31.79	33.24	35.00	36.23
3.000	180	13.48	17.09	18.97	20.99	22.28	23.45	24.52	25.82	26.73
4.000	240	10.86	13.77	15.29	16.91	17.96	18.90	19.76	20.81	21.54
5.000	300	9.19	11.65	12.94	14.31	15.19	15.99	16.72	17.60	18.22
6.000	360	8.02	10.16	11.28	12.48	13.25	13.95	14.58	15.35	15.89
7.000	420	7.14	9.05	10.05	11.12	11.80	12.42	12.99	13.68	14.16
8.000	480	6.46	8.19	9.09	10.06	10.68	11.24	11.75	12.37	12.81
9.000	540	5.91	7.50	8.32	9.21	9.78	10.29	10.76	11.33	11.73
10.000	600	5.46	6.93	7.69	8.51	9.03	9.51	9.94	10.47	10.83
11.000	660	5.09	6.45	7.16	7.92	8.41	8.85	9.25	9.74	10.09
12.000	720	4.77	6.04	6.71	7.42	7.88	8.29	8.67	9.13	9.45
13.000	780	4.49	5.69	6.32	6.99	7.42	7.81	8.16	8.60	8.90
14.000	840	4.25	5.38	5.98	6.61	7.02	7.39	7.72	8.13	8.42
15.000	900	4.03	5.11	5.67	6.28	6.66	7.01	7.33	7.72	7.99
16.000	960	3.84	4.87	5.41	5.98	6.35	6.68	6.99	7.36	7.62
17.000	1020	3.67	4.65	5.17	5.71	6.07	6.39	6.68	7.03	7.28
18.000	1080	3.52	4.46	4.95	5.47	5.81	6.12	6.40	6.73	6.97
19.000	1140	3.38	4.28	4.75	5.26	5.58	5.87	6.14	6.47	6.69
20.000	1200	3.25	4.12	4.57	5.06	5.37	5.65	5.91	6.22	6.44
21.000	1260	3.13	3.97	4.41	4.88	5.18	5.45	5.70	6.00	6.21
22.000	1320	3.03	3.83	4.26	4.71	5.00	5.26	5.50	5.79	6.00
23.000	1380	2.93	3.71	4.12	4.55	4.84	5.09	5.32	5.60	5.80
24.000	1440	2.83	3.59	3.99	4.41	4.68	4.93	5.16	5.43	5.62

ANÁLISIS DE REGRESIÓN MÚLTIPLE

$$I_{max} = \frac{K \times T^m}{D^n}$$

Imax = intensidad máxima de lluvia, en mm/hr T = periodo de retorno, en años D = duración, en minutos

Resumen

Estadísticas de la regresión	
Coeficiente de correlación múltiple	0.998877097
Coeficiente de determinación R^2	0.997755456
R^2 ajustado	0.997741068
Error típico	0.026237764
Observaciones	315

$$\log I_{max} = \log K \times T^m \times D^{-n}$$

$$\log I_{max} = \log K + \log T^m + \log D^{-n}$$

$$y = X_1 + mX_2 - nX_3$$

Propiedades de los logaritmos

$$log_b 1 = 0$$

$$log_b(x \cdot y) = log_b x + log_b y$$

$$log_b\left(\frac{x}{y}\right) = log_b x - log_b y$$

$$log_b(x^n) = n \cdot log_b x$$

$$log_b(x) = rac{log_a x}{log_a b}$$
 Cambio de base de un logaritmo

ANÁLISIS DE VARIANZA

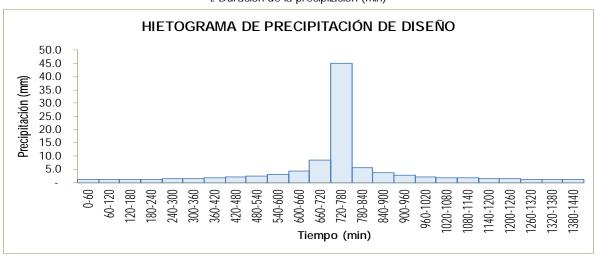
* *					
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F
Regresión	2	95.47818855	47.73909427	69345.8592	0
Residuos	312	0.21478712	0.00068842		
Total	314	95.69297567			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	2.846131985	0.005759194	494.1893103	0	2.834800215	2.857463754	2.834800215	2.857463754
Variable X 1	-0.75	0.002039242	-367.7837862	0	-0.754012405	-0.745987595	-0.754012405	-0.745987595
Variable X 2	0.100487347	0.00171659	58.53891888	2.6008E-170	0.09710979	0.103864905	0.09710979	0.103864905

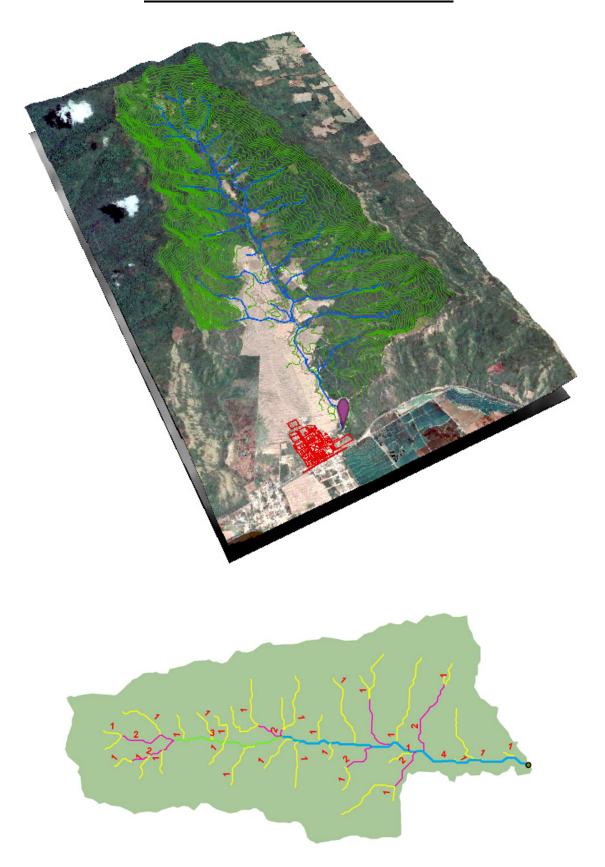
HIETOGRAMA DE PRECIPITACION DE DISEÑO

K = 701.669 T = 25 m = 0.1005 n = 0.750 $I = \frac{701,669 \times T^{0,1005}}{D^{0,750}}$

METODO DEL BLOQUE ALTERNO								
DURACION	INTENSIDAD	PROFUNDIDA ACUMULADA	PROFUNDIDAD INCREMENTAL	TIEMPO	PRECIPITACION			
min	mm/hr	mm	mm	min	mm			
60	44.977	44.977	44.977	0-60	1.054			
120	26.744	53.487	8.510	60-120	1.126			
180	19.731	59.194	5.706	120-180	1.212			
240	15.902	63.608	4.414	180-240	1.314			
300	13.451	67.257	3.649	240-300	1.440			
360	11.732	70.393	3.137	300-360	1.597			
420	10.451	73.159	2.766	360-420	1.801			
480	9.455	75.643	2.483	420-480	2.079			
540	8.656	77.903	2.260	480-540	2.483			
600	7.998	79.982	2.079	540-600	3.137			
660	7.446	81.911	1.929	600-660	4.414			
720	6.976	83.712	1.801	660-720	8.510			
780	6.570	85.404	1.692	720-780	44.977			
840	6.214	87.001	1.597	780-840	5.706			
900	5.901	88.515	1.514	840-900	3.649			
960	5.622	89.955	1.440	900-960	2.766			
1020	5.372	91.328	1.374	960-1020	2.260			
1080	5.147	92.643	1.314	1020-1080	1.929			
1140	4.942	93.904	1.261	1080-1140	1.692			
1200	4.756	95.116	1.212	1140-1200	1.514			
1260	4.585	96.283	1.167	1200-1260	1.374			
1320	4.428	97.409	1.126	1260-1320	1.261			
1380	4.283	98.498	1.089	1320-1380	1.167			
1440	4.148	99.551	1.054	1380-1440	1.089			


CURVA INTENSIDAD-DURACION-FRECUENCIA

I: Intensidad máxima (mm/h)


T: Período de retorno en años = 25.00

años

t: Duración de la precipitación (min)

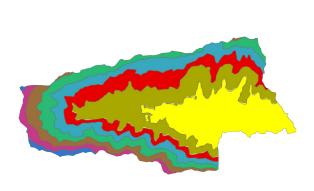
CUENCA APORTANTE SHIMBILLO

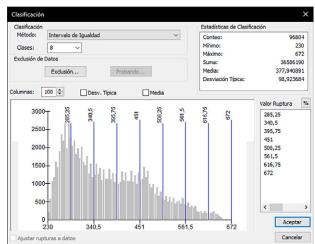
PRINCIPALES PARÁMETROS DE LA CUENCA APORTANTE - CUENCA SHIMBILLO

Se ha utilizado el Software ArcGis 10.8 para obtener las áreas parciales entre curvas de nivel. Para finalmente obtener las principales caracteristicas de la Cuenca Shimbillo, que a continuación se detalla:

1.- AREA DE LA CUENCA

1.1.- DATOS OBTENIDOS DE LA CUENCA DEL RIO:


A través del programa ArcGis 10.8, obtenemos lo siguiente:

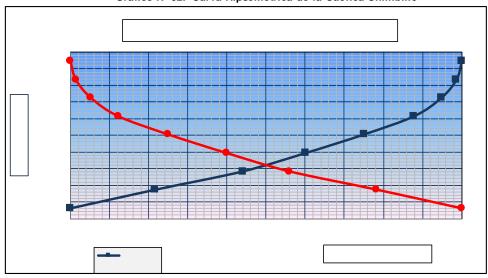

Área total de la cuenca
Perímetro de la cuenca
15.13
Km2
19.73
Km

1.2.- CUADRO DE AREAS PARCIALES Y ACUMULADOS SEGÚN LA ALTITUD

Con el Software ArcGis 10.2 obtenemos el Areado entre curvas de nivel o cotas, obtenemos las Areas Parciales:

Grafico N° 01: Areas parciales y acumuladas para elaboracion de Curva Hipsometrica

Fuente: ArcGis 10.8


Cuadro Nº 01: Areas parciales y acumuladas para elaboracion de Curva Hipsometrica

	Cadaro II Off Anda parolated y adamatada para ciaboración do Carta impositionida									
ALTITUD	AREAS PARCIALES		AREAS ACUMULADAS							
ALIIIOD	AREAS F	ANCIALES	POR D	EBAJO	POR E	NCIMA				
m.s.n.m.	Km2	(%)	(KM2)	(%)	KM2	(%)				
Punto más bajo										
230	0.00	0.00	0.00	0.00	15.13	100.00				
286	3.28	21.68	3.28	21.68	11.85	78.32				
341	3.38	22.36	6.66	44.04	8.46	55.96				
396	2.42	16.03	9.09	60.07	6.04	39.93				
452	2.27	14.98	11.35	75.05	3.77	24.95				
507	1.94	12.81	13.29	87.87	1.84	12.13				
562	1.05	6.93	14.34	94.80	0.79	5.20				
617	0.58	3.86	14.92	98.66	0.20	1.34				
672	0.20	1.34	15.13	100.00	0.00	0.00				
Punto más alto										
TOTAL	15.13	100.00								

2.- FACTOR DE RELIEVE

2.1.- Cálculo de la curva Hipsométrica

Grafico Nº 02: Curva Hipsometrica de la Cuenca Shimbillo

2.2.- Cálculo de la Altitud Mediana

Altitud Mediana =

360.00 msnm (Intersección de las curvas hipsométicas)

2.3.- Cálculo de la Altitud Media Ponderada

Altitud media Ponderada: $H = \frac{\left(\sum a_i c_i\right)}{A}$

$$H = \frac{\left(\sum a_i c_i\right)}{A}$$

$$c_i = \frac{\left(c_i + c_{i-1}\right)}{2}$$

Donde:

ai Area parcial de terreno entre curvas de nivel

ci Altitud media de cada área parcial entre dos curvas de nivel.

A Area de la cuenca

Cuadro N° 02: Areas parciales entre curvas de nivel

ai	i(altitud media	ai*ci
3.28	258.0	846.04
3.38	313.5	1060.32
2.42	368.5	893.44
2.27	424.0	960.82
1.94	479.5	929.33
1.05	534.5	560.56
0.58	589.5	343.94
0.20	644.5	131.01
15.13		5725.46

378.53 msnm

2.4.- Cálculo de la Altitud Media Simple:

Altitud Media Simple:

$$H_{ms} = \frac{\left(c_M + c_m\right)}{2}$$

Donde:

CM = Cota o altitud más alta de la cuenca Cm = Cota o altitud más baja de la cuenca

451.00 msnm Hms=

2.5.- Cálculo del Polígono de Frecuencia de Areas Parciales:

COTA (msnm. PARCIAL (%) 0.00 230.00 286.00 21.68 341.00 22.36 396.00 16.03 452.00 14.98 507.00 12.81 562.00 6.93 617.00 3.86 672.00 1.34

Altitud mas Frecuente: Porcentaje de Incidencia:

Grafico N° 03: Poligono de Frecuencias Polígono de Frecuencias de Areas Parciales 672 617 562 6.93 507 12.81 452 14.98 16.03 396 341 22.36 286 21.68 230 0.00 0.00 5.00 10.00 15.00 20.00 25.00 Areas Parciales (%)

3.- PARAMETROS DE FORMA:

3.1.- Cálculo del Indice de Gravelius (K):

El Indice de Gravelious (K)
$$K=0.28*\frac{P}{\sqrt{A}}$$

Donde:

P =Perímetro de la cuenca en Km A =Area de la cuenca en Km2

Entonces:

K = 1.4311

19.73 Km 15.13 Km2

Como el valor de K no se encuentra entre los rangos de 1.00 - 1.25, la forma de la cuenca es ALARGADA, caso contrario hubiese sido REDONDA.

3.2.- Cálculo del Rectángulo Equivalente:

Rectángulo Equivalente:

Lado Mayor =
$$L = \frac{K\sqrt{A}}{1.12} \left(1 + \sqrt{1 - \left(\frac{1.12}{K}\right)^2}\right)$$

Lado Menor

$$l = \frac{K\sqrt{A}}{1.12} \left(1 - \sqrt{1 - \left(\frac{1.12}{K}\right)^2} \right)$$

Donde:

K = Coeficiente de Compacidad o Indice de Gravelious

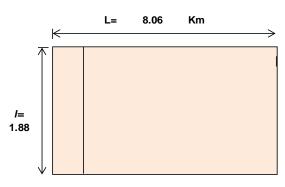
A = Area de la cuenca en Km2

1.4311 15.13

0.622

$$\frac{K\sqrt{A}}{1}$$

4.970


(1.12/K)^2 = 0.613

$$\left(\sqrt{1-\left(\frac{1.12}{K}\right)^2}\right)$$

L = 8.063 I = 1.876

Cuadro N° 03: Rectangulo Equivalente

Cuadro N 03. Rectangulo Equivalente								
Cota (msnm)	Area Parcial ai (Km2)	Ancho, ci (Km)						
	, ,	. ,						
230.00	0.00	0.00						
286.00	3.28	1.75						
341.00	3.38	1.80						
396.00	2.42	1.29						
452.00	2.27	1.21						
507.00	1.94	1.03						
562.00	1.05	0.56						
617.00	0.58	0.31						
672.00	0.20	0.11						
	Suma ci= L=	8.06						

3.3.- Cálculo del Factor Forma:

Factor Forma:

$$F_f = \frac{l}{L} = \frac{A}{L^2}$$

Donde:

l = Lado menor del rectángulo equivalente

L = Lado mayor del rectángulo equivalente

A = Area de la cuenca

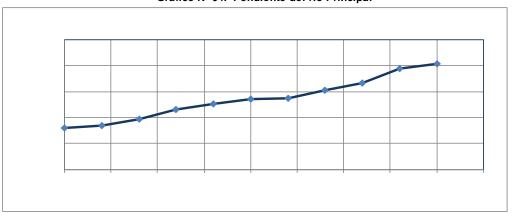
1.88	Km
8.06	Km
15.13	Km2

Ff =

0.2327 0.2327

4.- PERFIL LONGITUDINAL DEL RIO

	Progresiva	Long. (m)	ong Acum (n	Cota	Desnivel	S	1/(S)^0.5	
0	0+000	0.00	0.00	232.00				
1	0+400	400.00	400.00	233.50	1.50	0.0064	12.4766	
2	0+800	400.00	800.00	239.00	5.50	0.0230	6.5920	
3	1+200	400.00	1200.00	246.00	7.00	0.0285	5.9281	
4	1+600	400.00	1600.00	250.47	4.47	0.0178	7.4856	
5	2+000	400.00	2000.00	254.00	3.53	0.0139	8.4826	
6	2+400	400.00	2400.00	255.00	1.00	0.0039	15.9687	
7	2+800	400.00	2800.00	261.00	6.00	0.0230	6.5955	
8	3+200	400.00	3200.00	266.50	5.50	0.0206	6.9609	
9	3+600	400.00	3600.00	277.56	11.06	0.0398	5.0096	
10	4+000	400.00	4000.00	281.25	3.69	0.0131	8.7304	
-	Г 72							


$$S = \left[\frac{n}{\frac{1}{\sqrt{S_1}} + \frac{1}{\sqrt{S_2}} + \dots + \frac{1}{\sqrt{S_n}}} \right]^{\frac{1}{2}}$$

(Según Taylor y Schwarz)

Pendiente del rio (%)=

8.51 %

Grafico N° 04: Pendiente del rio Principal

5.- PARAMETROS RELACIONADOS CON LA RED HIDROGRÁFICA

5.1.- Cálculo de la Densidad de Drenaje:

Densidad de Drenaje:

$$D_d = \frac{L_i}{A}$$

Donde:

L = Longitud del cauce principal

Longitud de cauces aportantes

Li = Longitud total de ríos A= Area de la Cuenca

4.12	Km
26.21	Km
30.33	
15.13	Km2

Dd = 2.00

5.2.- Cálculo de la Frecuencia de los Ríos:

224

5.3.- Cálculo de la Extensión media del Escurrimiento Superficial (Es):

Extensión media del Escurrimiento Superficial

$$Es = A/4Li$$

0.125

5.4.- Cálculo del Tiempo de Concentración (Tc), Según Kirpich

Tiempo de Concentración (Tc)

$$Tc = \left(\frac{0.87 L^3}{H}\right)^{0.385}$$

6.- OTROS PARAMETROS:

6.1 - Cálculo del Indice de Pendiente (Ip)

$$I_p = \sum_{i=1}^n \sqrt{\beta_i (a_i - a_{i-1})} \frac{1}{\sqrt{L}}$$

Indice de Pendiente (Ip):

$$\beta_i = \frac{A_i}{A_t}$$

Cuadro N° 04: Cuadro para el calculo de Indice de pendiente

1/(L)^0.5 0.352161152

Ai	Bi = Ai/At	ai - ai-1	Bi* (ai -Ai-1)	Raíz (4)	5 * 1/(L)^0.5
1	2	3	4	5	6
0.00	0.00	0	0.00	0.00	0.00
3.28	0.22	56.00	12.14	3.48	1.23
3.38	0.22	55.00	12.30	3.51	1.23
2.42	0.16	55.00	8.82	2.97	1.05
2.27	0.15	56.00	8.39	2.90	1.02
1.94	0.13	55.00	7.05	2.65	0.93
1.05	0.07	55.00	3.81	1.95	0.69
0.58	0.04	55.00	2.12	1.46	0.51
0.20	0.01	55.00	0.74	0.86	0.30
15.13				lp =	6.96602

6.2.- Cálculo de la Pendiente de la Cuenca

$$S = \frac{H}{I} H = \frac{H}{I}$$

442.00	
8.063.38	Ī

CUADRO PARA EL CÁLCULO DE PENDIENTE MEDIA DE LA CUENCA

COADRO FARA LE CALCOLO DE FERDIENTE MEDIA DE LA COLINCA								
Nº	RANGO P	ENDIENTE	PROMEDIO	NÚMERO DE	PROMEDIO x			
	INFERIOR	SUPERIOR	PROMEDIO	OCURRENCIA	OCURRENCIA			
1	0	5	2.5	8331	20827.5			
2	5	12	8.5	18253	155150.5			
3	12	18	15.0	14685	220275			
4	18	24	21.0	14984	314664			
5	24	32	28.0	14904	417312			
6	32	44	38.0	13082	497116			
7	44	100	72.0	11106	799632			
		95345	2424977					

RESUMEN: PARAMETROS GEOMORFOLOGICOS DE LA MICROCUENCA SHIMBILLO

Cuadro N° 05: Resumen de los Calculos Geomorfologicos de la Cuenca Shimbillo

		PARAM	IETROS	UND	NOMENCLATURA	CUENCA
Superficie to	tal de la	acuenca		Km²	At	15.128
Perímetro				Km.	Р	19.731
<i>*</i>		Zona	de Proyeccion UTM	s/U	Zona	18
UBICACIÓN		X			Coord. X	351692.87
UBIL	***************************************	Υ			Coord. X	9245117.90
		Coeficier	Coeficiente de Compacidad (Gravelius)		Kc = 0.28 P / (At) ^{1/2}	1.431
RELACIONES DE FORMA	C DE	CUENCA CUENCA FACTOR DE FORMA	Longitud de la Cuenca	Km.	LB	8.063
	E E		Ancho Medio de la Cuenca	Km.	AM = At / LB	1.876
CIONES	A A		Factor de Forma	s/U	Kf = AM / LB	0.233
ELA	REC	TANGULO	Lado Mayor	Km.	Kc*(pi*A) ^{1/2} /2*(1+(1-4/pi*Kc²))	8.063
≅	EQU	IVALENTE	Lado Menor	Km.	Kc*(pi*A) ^{1/2} /2*(1-(1-4/pi*Kc²))	1.876
	Densi	idedad de	drenaje	Km./Km².	Dd = Lt / At	2.005
Desnivel total de la cuenca			Km.	Ht	0.442	
Altura media de la cuenca			m.s.n.m.	Hm	379	
Pendiente cuenca (Met. Rectangulo Equivalente)			%	Ht / Lma	5.48%	
Tiempo de C	oncent	racion Kirp	ich	min.	0.0195(L^3/h)^0.385	60.75

DISEÑO HIDRÁULICO

PROYECTO

"DISEÑO DE DRENAJE PLUVIAL PARA MEJORAR EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA, SAN MARTIN, 2022"

UBICACIÓN

LOCALIDAD : CENTRO POBLADO SHIMBILLO

DISTRITO : PUCACACA

PROVINCIA: PICOTA

REGION : SAN MARTÍN

ASUNTO : DISEÑO DRENAJE PLUVIAL

Tarapoto
Septiembre del 2022

1. CÁLCULO DEL PERIODO DE RETORNO

Sea "p" la probabilidad de un evento extremo: $p = P(X \ge XT)$

Esa probabilidad está relacionada con el periodo de retorno T en la forma:

$$p = 1/T$$

Por tanto, la probabilidad de no ocurrencia de un evento extremo, para un año, será:

$$P(X < X_T) = 1 - P = 1 - 1/T$$

Para N años, vida útil del proyecto, la probabilidad de no ocurrencia de la lluvia de cálculo es:

$$P(X < X_T) = \left(1 - \frac{1}{T}\right)^N$$

En el caso que nos ocupa:

- Periodo de vida útil del proyecto es de: N = 50 años.
- Probabilidad de no ocurrencia de la lluvia de cálculo para N=50 años:

$$P(X < X_T) = 10\%$$

Sustituyendo en esa expresión:

$$P(X < X_T) = 0.1 = \left(1 - \frac{1}{T}\right)^{50}$$
$$0.1^{\frac{1}{50}} = 1 - \frac{1}{T}$$
$$T = 22.22 \ a\tilde{n}os$$

2. CÁLCULO DE LA PRECIPITACÓN MEDIA MÁXIMA DIARIA

Como se nos indica, la intensidad máxima de lluvia se ajusta a una distribución de Normal, que tiene la forma:

$$F(X_T) = P(X < X_T) = exp\left[-exp\left(-\frac{X_T \times u}{\alpha}\right)\right]$$

Donde:

$$lpha=rac{\sqrt{6} imes S_X}{\pi},\,S_X=desviación\,estándar \ u=ar{X}-0.5572 imeslpha,\,ar{X}=media\,muestral$$

Vamos a obtener el valor de precipitación X_T para el periodo de retorno T:

$$\frac{1}{T} = P(X \ge X_T) = 1 - P(X < X_T) = 1 - F(X_T)$$

$$F(X_T) = \frac{T - 1}{T}$$

Si hacemos:
$$y_T = \frac{X_T - u}{\alpha}$$

$$F(X_T) = exp[-exp(-y_T)]$$
$$y_T = -ln\left[ln\left(\frac{T}{T-1}\right)\right]$$

Como:
$$y_T = \frac{X_T - u}{\alpha}$$

$$X_T = \alpha \times y_T + u$$

Calculamos la media muestral y la desviación estándar, usando los datos de los registros de intensidad máxima diaria en la estación pluviométrica "PICOTA":

Año	I(mm/día)	$(X_i - \overline{X})^2$
1997	45.00	251.286
1998	81.30	418.121
1999	48.00	165.174
2000	45.00	251.286
2001	81.00	405.942
2002	48.00	165.174
2003	41.70	366.799
2004	81.20	414.041
2005	33.60	742.672
2006	78.70	318.551
2007	40.70	406.103
2008	78.30	304.433
2009	71.80	119.859
2010	59.40	2.108
2011	62.90	4.194
2012	54.30	42.929
2013	54.60	39.088
2014	103.20	1793.353
2015	56.10	22.582
2016	37.30 554.69	
2017	76.10	232.502
Sum	1278.2	7020.894

$$\bar{X} = \frac{\Sigma_n X_i}{n} = \frac{1278.2}{20} = 63.91 \frac{mm}{dia}$$

$$S_X = \sqrt{\frac{\Sigma (X_i - \bar{X})^2}{n - 1}} = \sqrt{\frac{7020.894}{20}} = 18.7362$$

Obtenemos el valor de los parámetros α y u:

$$\alpha = \frac{\sqrt{6} * S_X}{\pi} = \frac{\sqrt{6} * 18.7362}{\pi} = 14.6086$$

$$u = \bar{X} - 0.5572 * \alpha = 63.91 - 0.5572 * 14.6086 = 55.7701$$

Hallamos el valor de la precipitación media máxima:

$$y_T = -ln\left[ln\left(\frac{T}{T-1}\right)\right] = -ln\left[ln\left(\frac{22.22}{22.22-1}\right)\right] = 3.07806$$

 $X_T = \alpha * y_T + u = 14.6086 * 3.07806 + 55.7701 = 100.74 mm/día$

La precipitación media máxima para un periodo de retorno $T=22.22\,a\|os$ es $XT=100.74\,mm/d\|a$

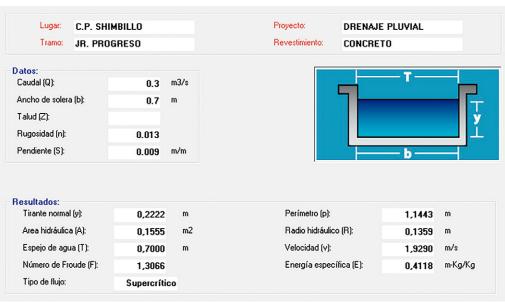
3. Parámetro Geomorfológicos de las microcuencas

CUENCA	AREA (km2)	СОТА МАХ.	COTA MIN.	LONG. PRINCIPAL (km)	PENDIENTE (m/m)	Tc KIRPICH	Tc TEMEZ	Tc SCS RANCER	Tc Promedio (min)
JR. PROGRESO	0.007	218.740	215.630	0.365	0.009	11.22	8.54	11.46	10.41
JR. BOLOGNESI	0.007	218.100	214.960	0.368	0.009	11.29	8.59	11.53	10.47
JR. SAN MARTIN	0.007	217.350	215.300	0.363	0.006	13.06	9.19	13.37	11.87
JR. FERNANDO BELAUNDE TERRY	0.007	215.050	214.270	0.356	0.002	19.65	11.15	18.97	16.59
JR. HUALLAGA	0.002	217.360	216.660	0.121	0.006	5.61	3.99	5.69	5.09

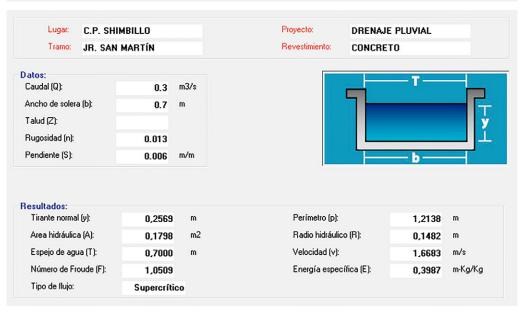
4. Cálculo de caudales máximos

$$Q = 0.278 * CIA$$

Donde:

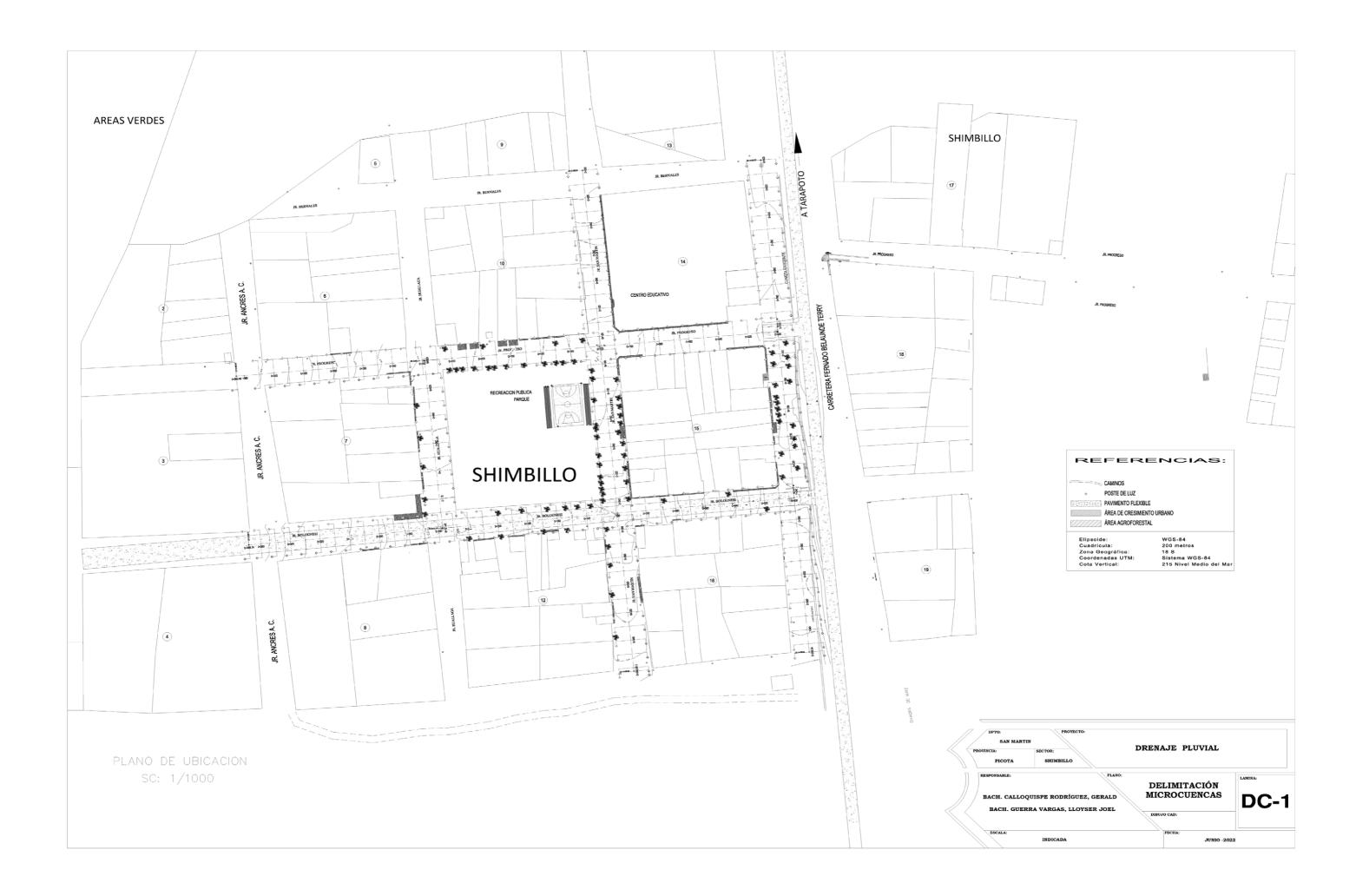

C: Coeficiente de escorrentía (adimensional)

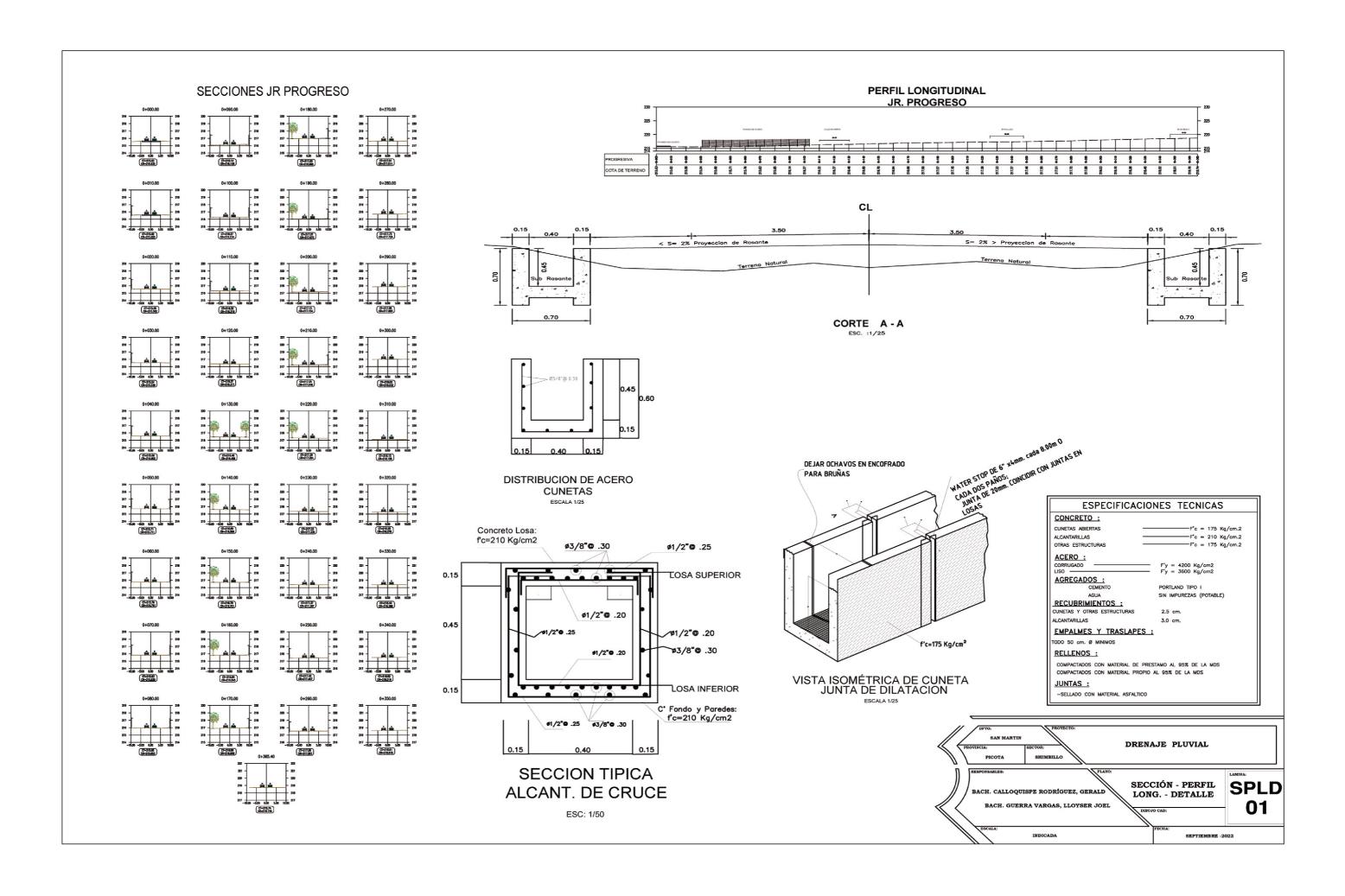
I: Intensidad en mm/hr

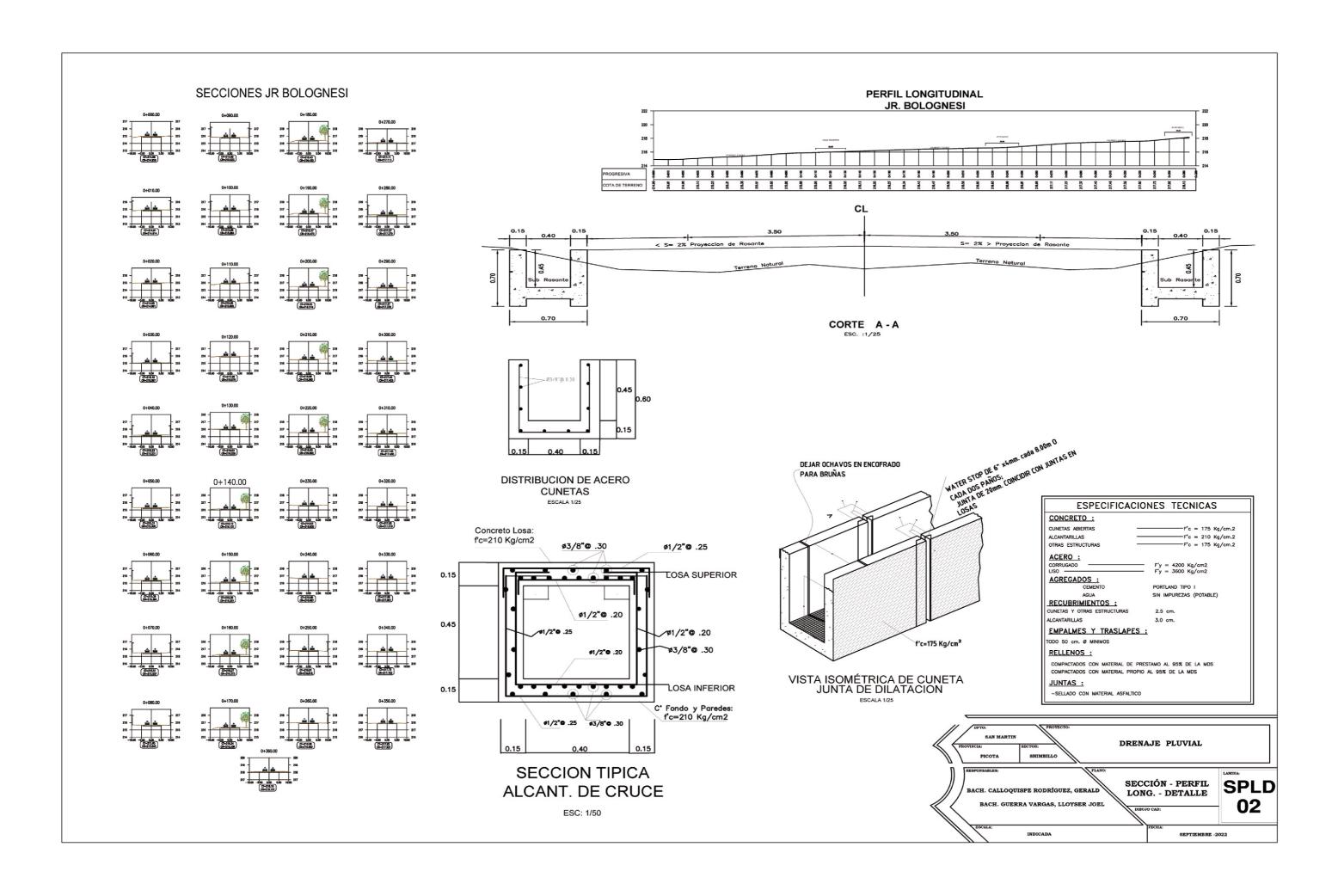

A: Área de drenaje (km^2)

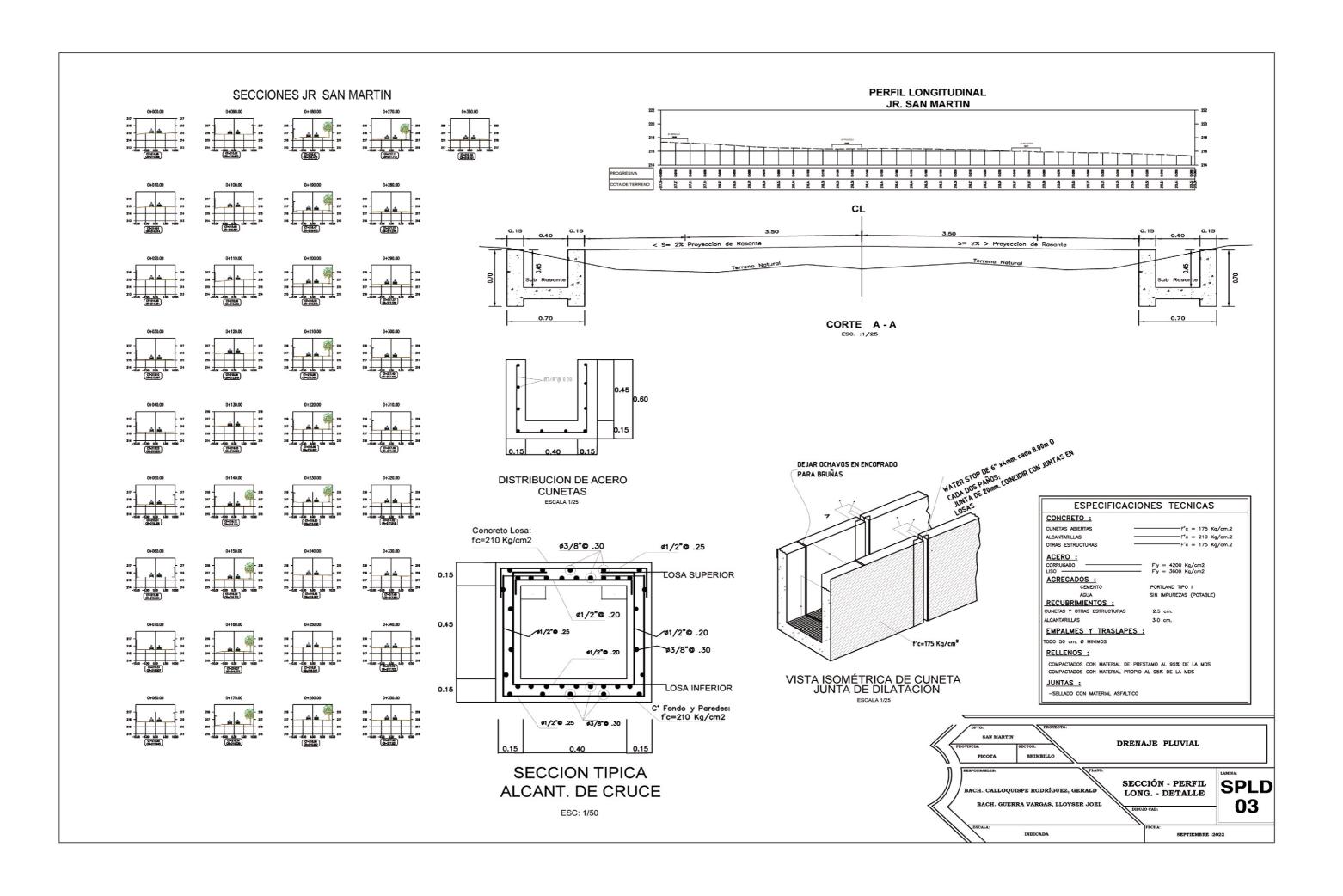
Nota: $Tr = 25 \, a\tilde{n}os$

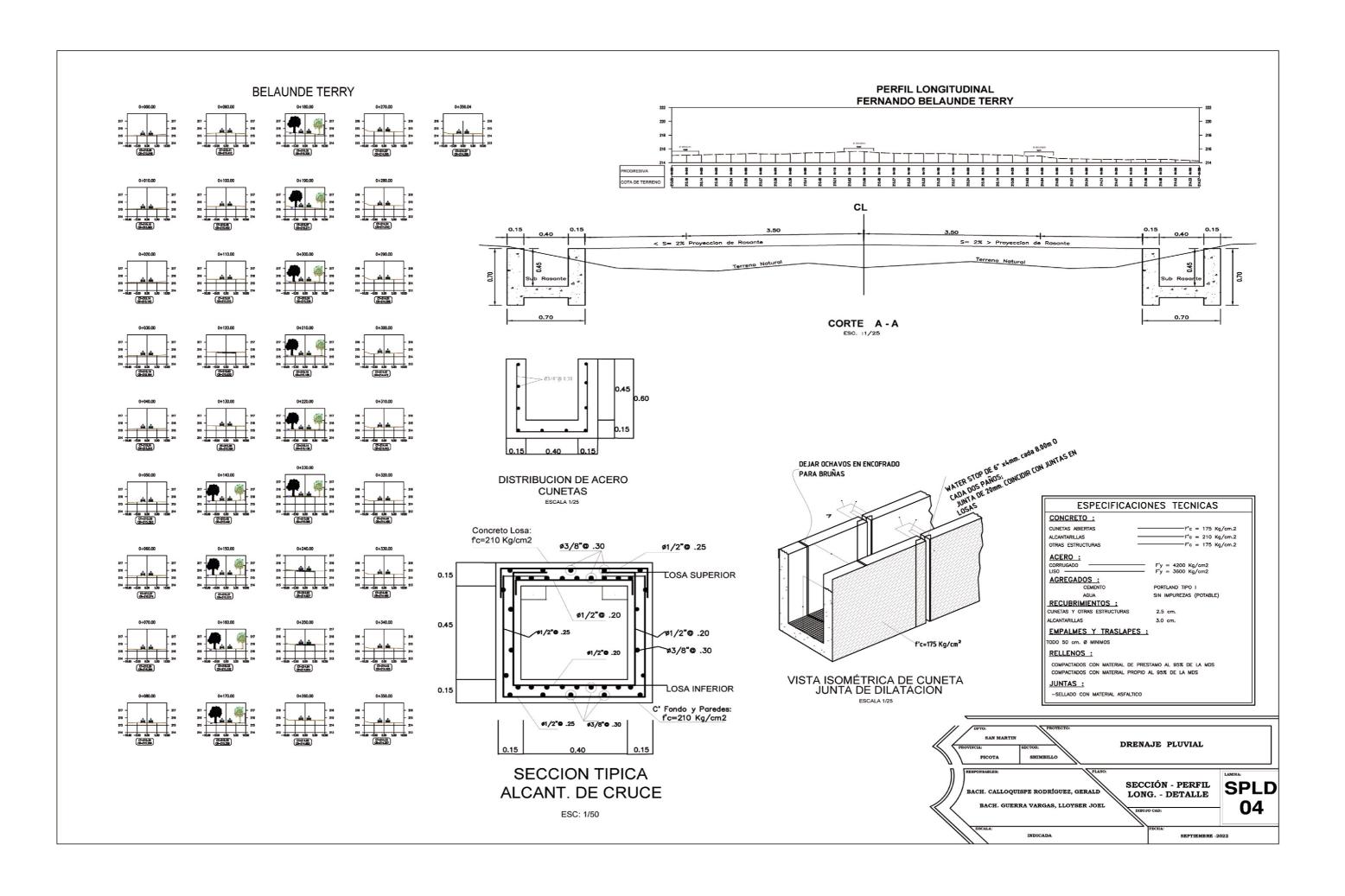
CUENCA	AREA (km2)	С	Тс	I (mm/hr)	Q (m3/s)
JR. PROGRESO	0.007	0.88	10.41	167.32	0.3
JR. BOLOGNESI	0.007	0.88	10.47	166.60	0.3
JR. SAN MARTIN	0.007	0.88	11.87	151.63	0.3
JR. FERNANDO BELAUNDE TERRY	0.007	0.88	16.59	117.96	0.2
JR. HUALLAGA	0.002	0.88	5.09	286.15	0.2

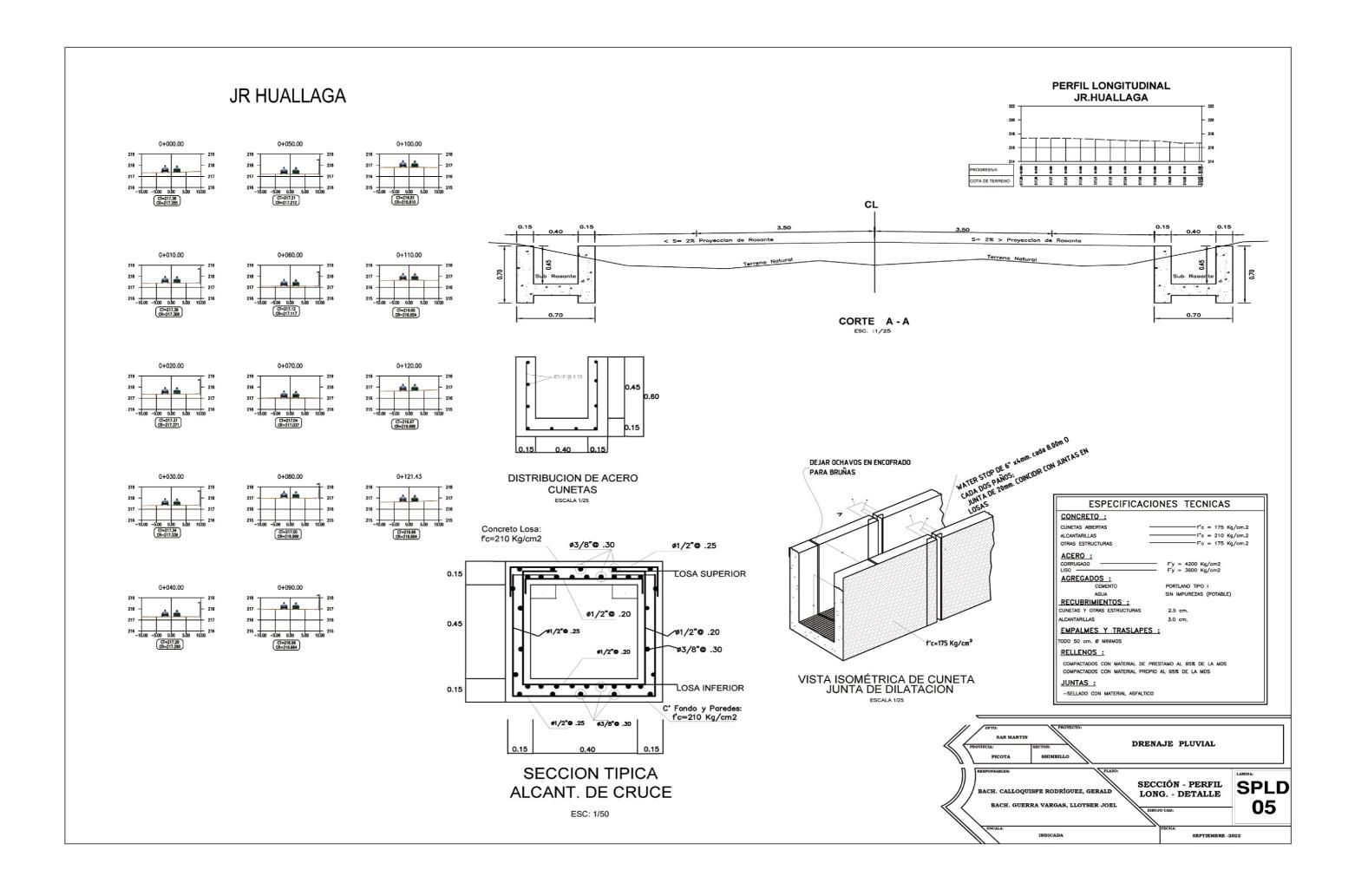












COSTOS Y PRESUPUESTOS

PROYECTO

"DISEÑO DE DRENAJE PLUVIAL PARA MEJORAR EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA, SAN MARTIN, 2022"

UBICACIÓN

LOCALIDAD : CENTRO POBLADO SHIMBILLO

DISTRITO : PUCACACA

PROVINCIA: PICOTA

REGION : SAN MARTÍN

ASUNTO : DISEÑO DRENAJE PLUVIAL

Tarapoto
Septiembre del 2022

PLANILLA DE METRADOS

COD.	DESCRIPCION	N°	N° DIMENSIONES UNIDAD							
		Veces	L (m)	A (m)	H (m)	Kg	M2	М3	OTRAS	Unid.
01.00	TRABAJOS PRELIMINARES									
01.01	LIMPIEZA MANUAL DE TERRENO						1,962.29			m2
	MARGEN IZQUIERDA									
	jiron progreso	1.00	457.83	0.70	ļ		320.48		ļ	}
	jiron bolognesi	1.00	469.13	0.70	ł		328.39			╁
					 				 	
	MARGEN DERECHA		***************************************	-	 					}
***************************************	jiron progreso	1.00	440.51	0.70		**********	308.36			†
	jiron bolognesi	1.00	467.72	0.70			327.40			1
01.02	INTERSECCIONES									
***********	MARGEN IZQUIERDA					********			ļ	J
	jiron andres A.C.	1.00	144.93	0.70			101.45			
	jiron huallaga	1.00	140.26	0.70	ļ		98.18		ļ	
	jiron san martin	1.00	137.61	0.70	 		96.33			
	MADOEN DEDECHA	1.00	139.69	0.70	 		97.78		 	
	MARGEN DERECHA	1.00	145.06	0.70	 		101.54	******		
***********	jiron andres A.C. jiron huallaga	1.00 1.00	145.06 140.46	0.70 0.70	 		101.54 98.32	*********		
	jiron rualiaga jiron san martin	1.00	120.07	0.70	 		96.32 84.05		 	†
	jii on oan maran	1.00	.20.01	0.70	 		54.00		†	†
				1	† -				1	1
*************					1					1
02.00	MOVIMIENTO DE TIERRAS									
02.01	PERFILADO DE CUNETAS LATERALES EN	MATERIAL SUELT	0				1,149.34			М3
	MARGEN IZQUIERDA								ļ	<u> </u>
	jiron progreso	1.00	457.83	0.20	Perimetro = 2.05		187.71			
	jiron bolognesi	1.00	469.13	0.20	Perimetro = 2.05		192.34		ļ	
					ł					
	MADCEN DEDECHA				 				}	
	MARGEN DERECHA jiron progreso	1.00	440.51	0.20	Perimetro = 2.05		180.61			
****************	jiron bolognesi	1.00	467.72	0.20	Perimetro = 2.05	**********	191.77			
02.02	INTERSECCIONES	1.00	407.72	0.20	11 Climetro = 2.00		131.77		 	
	MARGEN IZQUIERDA			-	1				†	†
	jiron andres A.C.	1.00	144.93	0.20	Perimetro = 2.05		59.42			1
	jiron huallaga	1.00	140.26	0.20	Perimetro = 2.05	***********	57.51			
	jiron san martin	1.00	137.61	0.20	Perimetro = 2.05		56.42			
		1.00	139.69	0.20	Perimetro = 2.05		57.27		ļ	<u> </u>
	MARGEN DERECHA						ļ		ļ	ļ
	jiron andres A.C.	1.00	145.06	0.20	Perimetro = 2.05		59.47			
************	jiron huallaga	1.00	140.46	0.20	Perimetro = 2.05	**********	57.59			
	jiron san martin	1.00	120.07	0.20	Perimetro = 2.05		49.23		ļ	
02.03					 				 	
	RELLENO CON MATERIAL HORMIGON E=	0.10 COMPACTADO	C/FQUIPO		 		560.65		 	M3
	MARGEN IZQUIERDA				†					1
	jiron progreso	1.00	457.83	Ar	ea = 0.200		91.57		†	†
	jiron bolognesi	1.00	469.13	Ar	ea = 0.200		93.83		1	1
										1
					<u> </u>					
	MARGEN DERECHA	I			1		ļ			ļ
	jiron progreso	1.00	440.51		ea = 0.200		88.10		ļ	
	jiron bolognesi	1.00	467.72	Ar	ea = 0.200		93.54		}	
02.04	INTERSECCIONES				∤		ļ	**********		
	MARGEN IZQUIERDA jiron andres A.C.	1.00	144.93	^-	ea = 0.200		28.99		ļ	
	jiron andres A.C. jiron huallaga	1.00	140.26	Area = 0.200 Area = 0.200			28.99			
	jiron rualiaga jiron san martin	1.00	137.61	Area = 0.200 Area = 0.200			27.52		 	†
	jii on oan maran	1.00	139.69	Area = 0.200 Area = 0.200			27.94		†	†
***************************************	MARGEN DERECHA			AIGA - 0.200						†
	jiron andres A.C.	1.00	145.06	Ar	ea = 0.200		29.01	***********		1
	jiron huallaga	1.00	140.46	Ar	ea = 0.200		28.09			1
	jiron san martin	1.00	120.07	1	ea = 0.200		24.01		T	T

COD.	DESCRIPCION	N°	D	IMENSION	ES		ι	JNIDAD		
		Veces	L (m)	A (m)	H (m)	Kg	M2	М3	OTRAS	Unid.
03.00	CONCRETO ARMADO									
03.01	CONCRETO F'C=175 KG/CM2 EN CUNETAS							1,159.62		m3
	MARGEN IZQUIERDA									<u> </u>
	jiron progreso y jiron bolognesi	2.00	926.96	Are	ea = 0.250			463.48		ļ
		_				 		ļ		↓
			ļ							ļ
	MARGEN DERECHA			ļ		-			ļ	
	jiron progreso y jiron bolognesi	2.00	908.23	Are	ea = 0.250	 		454.12	ļ	
03.02	INTERSECCIONES		}				**********			ļ
03.02	MARGEN IZQUIERDA					 		 		
	jiron andres A.C.	1.00	144.93	Are	ea = 0.250	·		36.23		·
	jiron huallaga	1.00	140.26		ea = 0.250			35.07		†
	jiron san martin	1.00	137.61		ea = 0.250	†		34.40		†
		1.00	139.69	Are	ea = 0.250	1		34.92		†
	MARGEN DERECHA						***************************************	/		1
	jiron andres A.C.	1.00	145.06	Are	ea = 0.250	1		36.27		1
	jiron huallaga	1.00	140.46	Area = 0.250				35.12		
	jiron san martin	1.00	120.07	Are	ea = 0.250			30.02		
		<u> </u>				ļ				ļ
03.03	ENCOFRADO Y DESENCOFRADO CARRAVISTA	EN CUNETA	S 1	ļ		 		5,606.54	ļ	M2
	MARGEN IZQUIERDA								2803.27	
	jiron progreso y jiron bolognesi	1.00	926.96		2.00	 		1,853.92		
	MA DOEN DEDECHA			 		-		ļ		
	MARGEN DERECHA	1.00	908.23	ļ	2.00	·		1,816.46	ļ	
	jiron progreso y jiron bolognesi	1.00	906.23		2.00	 		1,010.40		
03.04	INTERSECCIONES	+	ļ	 		1		 	ļ	t
	MARGEN IZQUIERDA					·			·	1
	jiron andres A.C.	1.00	144.93		2.00	1		289.86		†
	jiron huallaga	1.00	140.26		2.00			280.52		1
	jiron san martin	1.00	137.61		2.00		***********	275.22		
		1.00	139.69		2.00			279.38		
	MARGEN DERECHA									
	jiron andres A.C.	1.00	145.06		2.00			290.12		
	jiron huallaga	1.00	140.46	ļ	2.00			280.92		ļ
	jiron san martin	1.00	120.07		2.00		**********	240.14		ļ
03.05	ACERO FY=4200 KG/CM2 GRADO 60					 		ļ	22,921.28	KG
	01115710 05071110111 1050	NO. /	ļ		<u> </u>	# 0/01		ļ		
	CUNETAS RECTANGULARES	N°Veces	long (m) inc/tras.	ancho (m)	Perimetro (m)	peso Ø 3/8"		ļ	4040E E0	
	ACERO LONGITUDINAL 3/8"	7.00 11213.08	3,348.35	 	1.56	0.560 0.560		 	13125.53 9795.75	
	ACERO TRANSVERSAL 3/8" @ 03.0	11213.00	ļ		1.56	0.360		 	9795.75	
	TECKNOPOR PARA JUNTAS		 			 	*********		1,401.64	ml
	cunetas retangulares	934.42		 	1.50	1		 	1401.64	
	ounded rotal galardo				1.00	·	**********	}		·

03.06	SELLADO DE JUNTAS DE DILATACION E=1" C	ON MEZCLA	SFALTICA					1,401.64		ML
	CUNETAS RECTANGULARES		ļ				*********	ļ		
	Cunetas rectangulares	934.42		<u> </u>	1.50	<u> </u>		1401.64		<u></u>

COD	DESCRIBCION	N°	D	IMENSIONES			UI	NIDAD		
COD.	DESCRIPCION		L (m)	A (m)	H (m)	Kg	M2	М3	OTRAS	Unid
01.06.04.01.01.02	TRAZO, NIVELES Y REPLANTEO PRELIMINAR									
01.06.04.01.02	MOVIMIENTO DE TIERRAS		•							
01.06.04.01.02.01	PERFILADO DE CUNETAS LATERALES EN MATERIAL SUELTO						105.00			m2
	MARGEN IZQUIERDA							<u> </u>		
	PROG. 0+000 A 0+080 (M. SUELTA)	1.00	80.00	0.70			56.00			
					ļ					
	MARGEN DERECHA									
	PROG. 0+000 A 0+070 (MAT. SUELTO)	1.00	70.00	0.70			49.00			
01.06.04.01.02.02	RELLENO CON MATERIAL HORMIGON E=0.10 COMPACTADO C/EQUIPO						105.00	1		m2
71100.04.01.02.02		1.00	105.00					ļ		1112
	material suelto	1.00	105.00				105.00			
01.06.04.01.03	CONCRETO SIMPLE									
01.06.04.01.03.01	CONCRETO FC= 175 KG/CM2 EN CUNETAS			<u> </u>				61.50		m3
	MARGEN IZQUIERDA							01.00		1110
	PROG. 0+000 A 0+080 (M. SUELTA)	1.00	80.00	0.20	Perimetro = 2.05			32.80		
		1100		0.20	1 011110110 2100			02.00		
	MARGEN DERECHA							İ		
	PROG. 0+000 A 0+070 (MAT. SUELTO)	1.00	70.00	0.20	Perimetro = 2.05			28.70		

01.06.04.01.03.02	ENCOFRADO Y DESENCOFRADO CARAVISTA EN CUNETAS							36.00		m3
	MARGEN IZQUIERDA									
	PROG. 0+000 A 0+080 (M. SUELTA)	1.20	80.00	Are	ea = 0.200			19.20		
					·					
	MARGEN DERECHA									
	PROG. 0+000 A 0+070 (MAT. SUELTO)	1.20	70.00	Are	ea = 0.200			16.80		
01.06.04.01.03.03	TEKNOPORT E=1" PARA JUNTA DE DILATACION		•	ļ				_		
01.06.04.01.03.04	SELLADO DE JUNTAS DE DILATACION E=1" CON MEZCLA ASFALTICA							37.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m3
	CUNETAS RECTANGULARES							ļ		
	Cunetas rectangulares	1.00	150.00	Are	ea = 0.250			37.50		
								1		
01.06.04.02	CUNETA REVESTIDA DE CONCRETO ARMADO TIPO RECTANGULAR (150.00 ML)						300.00	ļ		m2
	CUNETAS RECTANGULARES						000.00			
	Cunetas rectangulares	1.00	150.00		2.00		300.00			
01.06.04.02.01	TRABAJOS PRELIMINARES						ļ		4 220 40	KG
	TRADAJUS FRELIMINARES							-	1,226.49	NG
	CUNETAS RECTANGULARES	N°Veces	long (m) inc/tras.	ancho (m)	Perimetro (m)	peso Ø 3/8"				
	ACERO LONGITUDINAL 3/8"	7.00	179.17	anono (III)	T elimeno (III)	0.560			702.33	
	ACERO TRANSVERSAL 3/8" @ 03.0	600.00	170.17		1.56	0.560			524.16	
	70210 11 10 12 10 2 0 0 0 0 0 0 0 0 0 0 0	***								
01.06.04.02.01.01	LIMPIEZA MANUAL DE TERRENO								75.00	ml
	CUNETAS RECTANGULARES	50.00			1.50				75.00	
	Cunetas rectangulares						ļ	ļ		
01.06.04.02.01.02	TRAZO, NIVELES Y REPLANTEO PRELIMINAR					***************************************	ļ	<u> </u>	75.00	ml
	CUNETAS RECTANGULARES	50.00			1.50			ļ	75.00	
	Cunetas rectangulares						ļ			
		1								

PRESUPUESTO

Presupuesto 1101001 "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo,

Pucacaca, San Martin, 2022"

Subpresupuesto 002 1

Lugar SAN MARTIN - PUCACACA - SHIMBILLO

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	CUNETAS REVESTIDAS (2,803.27 ML)				903,214.01
01.01	TRABAJOS PRELIMINARES				7,280.09
01.01.01	LIMPIEZA MANUAL DE TERRENO	m2	1,962.29	1.73	3,394.76
01.01.02	TRAZO, NIVELES Y REPLANTEO PRELIMINAR	m2	1,962.29	1.98	3,885.33
01.02	MOVIMIENTO DE TIERRAS				62,878.06
01.02.01	PERFILADO DE CUNETAS LATERALES EN MATERIAL SUELTO	m3	1,149.34	6.04	6,942.01
01.02.02	RELLENO CON MATERIAL HORMIGON E= 0.10 COMPACTADO C/EQUIPO	m3	560.65	99.77	55,936.05
01.03	CONCRETO SIMPLE				833,055.86
01.03.01	CONCRETO F°C=175 KG/CM2 EN CUNETAS	m3	1,159.62	402.02	466,190.43
01.03.02	ENCOFRADO Y DESENCOFRADO CARAVISTA EN CUNETAS	m2	5,606.54	40.08	224,710.12
01.03.03	ACEROS FY = 4200KG/CM2 DE GRADO 60	kg	22,921.28	5.24	120,107.51
01.03.04	TEKNOPORT E=1" PARA JUNTA DE DILATACION	m	1,401.64	6.76	9,475.09
01.03.05	SELLADO DE JUNTA DE DILATACION E= DE MEZCLAS ASFÁLTICAS	m	1,401.64	8.97	12,572.71
	Costo Directo				903,214.01

SON: NOVECIENTOS TRES MIL DOSCIENTOS CATORCE Y 01/100 NUEVOS SOLES

ANÁLISIS DE PRECIOS UNITARIOS

Presupuesto	1101001	Pucacaca, San				.	as en la Localidad d	
Subpresupuesto	002	1					Fecha presupuesto	07/09/202
Partida	01.01.01		LIMPIEZA MA	NUAL DE TERR	ENO			
Rendimiento	m2/DIA	80.0000	EQ.	80.0000	Costo unitario	directo por : m2	1.73	
Código	Descripción R			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
		Mano de Obra						
0101010005	PEON			hh	1.0000	0.1000	16.76	1.68
								1.68
		Equipos						
0301010006	HERRAMIENTAS	MANUALES		%mo		3.0000	1.68	0.05
								0.05
Partida	01.01.02		TRAZO, NIVEL	ES Y REPLANT	EO PRELIMINAR			
Rendimiento	m2/DIA	1,200.0000	FO	1,200.0000	Costo unitario	directo por : m2	1.98	
		-,	LG.	-,======	CCC.O GIMANO	and pointing		
Código	Descripción R	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
		Mano de Obra						
0101010005	PEON			hh	2.0000	0.0133	16.76	0.22
0101030000	TOPOGRAFO			hh	1.0000	0.0067	26.42	0.18
							-	0.40
		Materiales						
02041200010010	CLAVOS PARA	MADERA C/C 3"		kg		0.0500	4.20	0.21
02130300010003	YESO EN BOLS	AS DE 25 KG.		BOL		0.0300	14.00	0.42
0231040002	ESTACA DE MA	DERA		p2		0.0500	8.00	0.40
0240020016	PINTURA ESMA	LTE SINTETICO		gln		0.0100	37.00	0.37
								1.40
		Equipos						
0301000021	ESTACION TOTA	AL		hm	1.0000	0.0067	20.00	0.13
0301010006	HERRAMIENTAS	MANUALES		%mo		3.0000	0.40	0.01
03014700010012	WINCHA DE 50	MTRS.		pza		0.0010	42.50	0.04
								0.18
Partida	01.02.01		PERFILADO DE	CUNETAS LAT	ERALES EN MAT	ERIAL SUELTO		
Rendimiento	m 3/DIA	450.0000	EQ.	450.0000	Costo unitario	directo por : m3	6.04	
Código	Descripción R	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S
-		Mano de Obra						
0101010005	PEON			hh	4.0000	0.0711	16.76	1.19
								1.19
		Equipos						
0301010006	HERRAMIENTAS			%mo		5.0000	1.19	0.06
03012000010004	MOTONIVELAD	ORA DE 130 - 13	5 HP	hm	1.0000	0.0178	269.00	4.79
								4.85

Presupuesto	1101001	Pucacaca, San		-			ıas en la Localidad d	ŕ
Subpresupuesto	002	1					Fecha presupuesto	07/09/202
Partida	01.02.02		RELLENO CON	MATERIAL H	ORMIGON E= 0.10 C	OMPACTADO C	/EQUIPO	
				. =				
Rendimiento	m3/DIA	25.0000	EQ.	25.0000	Costo unitario d	firecto por : m3	99.77	
Código	Descripción R	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra						
0101010005	PEON			hh	1.0000	0.3200	16.76	5.36
01010100060002	OPERADOR DE	EQUIPO LIVIANO		hh	2.0000	0.6400	26.42	16.91
								22.27
		Materiales						
0207030002	HORMIGON (PU	ESTO EN CENTRO	DE ACOPIO)	m3		1.0000	69.00	69.00
								69.00
	 	Equipos						
0301010006	HERRAMIENTAS			%mo		5.0000	22.27	1.11
0301100008	COMPACTADO	R VIBR. TIPO PLA	NCHA 7 HP	hm	1.0000	0.3200	15.00	4.80
		Out months						5.91
040040040400	A CUA DA DA L	Subpartidas		O		0.4000	24.55	2.50
010318010102	AGUA PARA LA	A OBRA (IVIS)		m3		0.1200	21.55	2.59 2.59
								2.39
Partida	01.03.01		CONCRETO F'C	:=175 KG/CM	2 FN CUNFTAS			
- unuu	01100101		CONTONEIO	-11011070111	2 LI CONLITIO			
Rendimiento	m 3/DIA	20.0000	EQ.	20.0000	Costo unitario d	lirecto por : m3	402.02	
Código	Descripción R	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra						
0101010003	OPERARIO			hh	2.0000	0.8000	23.44	18.75
0101010004	OFICIAL			hh	1.0000	0.4000	18.53	7.41
0101010005	PEON			hh	10.0000	4.0000	16.76	67.04
01010100060002	OPERADOR DE	EQUIPO LIVIANO		hh	2.0000	0.8000	26.42	21.14
								114.34
		Materiales	. ==== ==				22.22	
02070200010003		`				0.4400	60.00	26.40
0207020004		CADA 3/4" (PUEST				0.7400	80.00	59.20
02130100010005	CEMENTO POR	ILAND HPOT		BOL		7.4500	24.14	179.84
		Equipos						265.44
0301010006	HERRAMIENTAS	Equipos		%mo		3.0000	114.34	3.43
03012900010005			1.35"	hm	1.0000	0.4000	11.80	4.72
03012900010003					1.0000	0.4000	25.00	10.00
333120000000T		JOHOLE TO IAW	DON TOTAL TITO		1.0000	0.7000	20.00	18.15
		Subpartidas						10.10
010318010102	AGUA PARA LA			m3		0.1900	21.55	4.09
		,						4.09

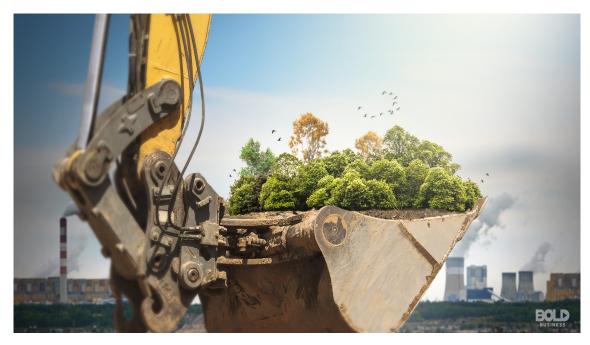
Presupuesto	1101001	"Diseno de Dre Pucacaca, San	•	ara wejorar 🗈	vacuación de Preci	pitación de Agi	ias en la Localidad	ue Snimbillo
Subpresupuesto	002	1					Fecha presupuesto	07/09/2022
Partida	01.03.02		ENCOFRADO Y	DESENCOFRA	DO CARAVISTA EN	CUNETAS		
De a dissiente	0/DIA	25 0000	F0	25 2000	Ozaka zwikania di	·	40.00	
Rendimiento	m 2/DIA	35.0000	EQ.	35.0000	Costo unitario di	irecto por : m2	40.08	
Código	Descripción Re	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra						
0101010003	OPERARIO			hh	2.0000	0.4571	23.44	10.71
0101010004	OFICIAL			hh	1.0000	0.2286	18.53	4.24
								14.95
		Materiales						
02040100010004			3	kg		0.3000	4.07	1.22
02041200010010				kg		0.1700	4.20	0.71
02041200010011				kg		0.1700	5.00	0.85
0222140006	LACA DESMOLE			gln		0.0300	126.00	3.78
0231000002		ONAL P/ENCOFRA		p2		3.2000	2.85	9.12
02310500010007	IRIPLAY LUPUN	√A 4'x 8'x 10 mr	n	pln		0.3000	30.00	9.00
		— . •						24.68
0301010006	HERRA MIENTA S	Equipos		%mo		3.0000	14.95	0.45
0301010006	HERRAIVIIENTAS	NANUALES		701110		3.0000	14.95	0.45
								0.43
Partida	01.03.03		ACERO FY= 42	200 KG/CM2 GI	RADO 60			
	0.1.00.00		7.02.0					
Rendimiento	kg/DIA	250.0000	EQ.	250.0000	Costo unitario o	lirecto por : kg	5.24	
	_							
Código	Descripción Re	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra						
0101010003	OPERARIO			hh	1.0000	0.0320	23.44	0.75
0101010005	PEON			hh	1.0000	0.0320	16.76	0.54
								1.29
		Materiales						
02040100010003				kg		0.0500	4.07	0.20
0204030001	ACERO CORRU	GADO FY = 4200	KG/CM2 GRAD	(kg		1.0500	3.40	3.57
								3.77
0004040000		Equipos		0/		0.0000	4.00	0.00
0301010006	HERRAMIENTAS		NTA 411	%mo		2.0000	1.29	0.03
0301330008	CIZALLA P/FIEF	RRO CONST. HAS	OTA T	und		0.0150	10.00	0.15 0.18
								0.18
Partida	01.03.04		TEKNOPORT E	∣ =1" PARA JUN	TA DE DILATACION			
Rendimiento	m/DIA	200.0000	EQ.	200.0000	Costo unitario	directo por : m	6.76	
Código	Descripción Re	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/
		Mano de Obra		Siliuuu	- Jauai iiia	Jantidud	. 10010 01.	1 a. olai 0/
0101010004	OFICIAL	and at onla		hh	1.0000	0.0400	18.53	0.74
						3.3 100	10.00	0.74
		Materiales						VII T
02100400010009	TEKNOPOR DE 1			m2		0.4000	15.00	6.00
	-					- 244	13.00	6.00
		Equipos						
0301010006	HERRAMIENTAS			%mo		3.0000	0.74	0.02

Presupuesto	1101001	"Diseño de Dr Pucacaca, San	•	ara Mejorar E	vacuación de Preci _l	pitación de Agı	ıas en la Localidad (de Shimbillo,
Subpresupuesto	002	1					Fecha presupuesto	07/09/2022
Partida	01.03.05		SELLADO DE J	UNTAS DE DIL	ATACION E=1" CON	MEZCLA ASFA	LTICA	
Rendimiento	m/DIA	90.0000	EQ.	90.0000	Costo unitario o	directo por : m	8.97	
Código	Descripción R	ecurre		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra						
0101010004	OFICIAL			hh	1.0000	0.0889	18.53	1.65
0101010005	PEON			hh	2.0000	0.1778	16.76	2.98
								4.63
		Materiales						
0201050006	ASFALTO RC-2	50		gln		0.1000	14.00	1.40
02070200010004	ARENA FINA (P	UESTO EN CENT	RO DE ACOPIO)	m3		0.0400	70.00	2.80
								4.20
		Equipos						
0301010006	HERRAMIENTAS	S MANUALES		%mo		3.0000	4.63	0.14
								0.14
						Fecha:	07/09/2022 17:21	:37

PRECIOS Y CANTIDADES DE RECURSOS REQUERIDOS POR TIPO

1101001 "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Obra

Shimbillo, Pucacaca, San Martin, 2022"


Subpresupuesto 002 Fecha 08/09/2022

Lugar	221001 SAN MARTIN - PUCACACA - SH	IMBILLO			
Código	Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
	MANO E	E OBRA			
0101010003	OPERARIO	hh	4,223.9264	23.44	99,008.83
0101010004	OFICIAL	hh	1,926.1749	18.53	35,692.02
0101010005	PEON	hh	6,185.3282	16.76	103,666.10
01010100060002	OPERADOR DE EQUIPO LIVIANO	hh	1,286.5120	26.42	33,989.65
0101030000	TOPOGRAFO	hh	13.1473	26.42	347.35
				_	272,703.95
	MATER	RIALES			
0201050006	ASFALTO RC-250	qln	140.1640	14.00	1,962.30
02040100010003	ALAMBRE NEGRO RECOCIDO #16	kg	1,146.0640	4.07	4,664.48
02040100010004	ALAMBRE NEGRO RECOCIDO # 8	kq	1,681.9620	4.07	6,845.59
0204030001	ACERO CORRUGADO FY = 4200 KG/CM2 GRADO 60	kg	24,067.3440	3.40	81,828.97
02041200010010	CLAVOS PARA MADERA C/C 3"	kg	1,051.2263	4.20	4,415.15
02041200010011	CLAVOS PARA MADERA C/C 5"	kq	953.1118	5.00	4,765.56
02070200010003	ARENA GRUESA (PUESTO EN CENTRO DE ACOPIO)	m3	510.2328	60.00	30,613.97
02070200010004	ARENA FINA (PUESTO EN CENTRO DE ACOPIO)	m3	56.0656	70.00	3,924.59
0207020004	PIEDRA CHANCADA 3/4" (PUESTO EN CENTRO DE	m3	858.1188	80.00	68,649.50
0207030002	HORMIGON (PUESTO EN CENTRO DE ACOPIO)	m3	560.6500	69.00	38,684.85
02100400010009	TEKNOPOR DE 1"	m2	560.6560	15.00	8,409.84
02130100010005	CEMENTO PORTLAND TIPO I	BOL	8,639.1690	24.14	208,549.54
02130300010003	YESO EN BOLSAS DE 25 KG.	BOL	58.8687	14.00	824.16
0222140006	LACA DESMOLDEADORA	qln	168.1962	126.00	21,192.72
0231000002	MADERA NACIONAL P/ENCOFRADO	p2	17,940.9280	2.85	51,131.64
0231040002	ESTACA DE MADERA	p2	98.1145	8.00	784.92
02310500010007	TRIPLAY LUPUNA 4' x 8' x 10 mm	pln	1,681.9620	30.00	50,458.86
0240020016	PINTURA ESMALTE SINTETICO	gln	19.6229	37.00	726.05
				_	588,432.69
	EQU	IPOS			
0301000021	ESTACION TOTAL	hm	13.1473	20.00	262.95
0301100008	COMPACTADOR VIBR. TIPO PLANCHA 7 HP	hm	179.4080	15.00	2,691.12
03012000010004	MOTONIVELADORA DE 130 - 135 HP	hm	20.4583	269.00	5,503.28
03012200050005	CAMION CISTERNA (AGUA) 2,000 GALNES	hm	40.3808	120.00	4,845.70
03012900010005	VIBRADOR DE CONCRETO 4 HP 1.35"	hm	463.8480	11.80	5,473.41
03012900030004	MEZCLADORA CONCRETO TAMBOR 18 HP 11P3	hm	463.8480	25.00	11,596.20
0301330008	CIZALLA P/FIERRO CONST. HASTA 1"	und	343.8192	10.00	3,438.19
03014700010012	WINCHA DE 50 MTRS.	pza	1.9623	42.50	83.40
				_	33,894.25
				Total S/.	895,030.89

ESTUDIO DE IMPACTO AMBIENTAL

PROYECTO

"DISEÑO DE DRENAJE PLUVIAL PARA MEJORAR EVACUACIÓN DE PRECIPITACIÓN DE AGUAS EN LA LOCALIDAD DE SHIMBILLO, PUCACACA, SAN MARTIN, 2022"

UBICACIÓN

LOCALIDAD : CENTRO POBLADO SHIMBILLO

DISTRITO : PUCACACA

PROVINCIA: PICOTA

REGION : SAN MARTÍN

ASUNTO : DISEÑO DRENAJE PLUVIAL

Tarapoto
Octubre del 2022

ESTUDIO DE IMPACTO AMBIENTAL

1. Generalidades

El informe determina las condiciones e impactos ambientales del proyecto dentro del marco de las actividades de construcción y operación, por medio de análisis y evaluación para la toma de decisiones basadas no solo en criterios económicos, sino también en parámetros sociales y ambientales, esto como elemento de diseño importante a considerar en la ejecución del proyecto.

La evaluación actual del área de influencia del proyecto es para determinar el impacto potencial del movimiento de tierra en el medio ambiente; de tal forma que se pueda proponer las medidas técnicas necesarias para controlar los daños previsibles e irreversibles al ecosistema.

El lugar de estudio comprende la superficie de influencia donde se ha planificado el: "Diseño de drenaje pluvial para mejorar evacuación de precipitación de aguas en la localidad de Shimbillo, Pucacaca, San Martin", comprende de un área aproximada de 105756.76 m2.

2. Objetivo

Crear un conjunto de medidas correctivas, preventivas y/o mitigadoras para minimizar el impacto ambiental negativo en los componentes físico, económico, social y ambiental de las actividades a desarrollar en el proyecto, considerando medidas apropiadas de monitoreo ambiental.

3. Metodología

Para identificar y evaluar el impacto ambiental potencial que se presenta durante la etapa de construcción y operación, se utilizará una matriz de impacto ambiental de tipo causa - efecto, la cual permitirá evaluar la magnitud del impacto ambiental del proyecto, en la zona que puede verse afectada (Cuadro de Determinación de Impactos Potenciales).

4. Descripción del Área de Proyecto

Como característica general, el área o sector al que se destine la ejecución del proyecto, se realizará de acuerdo al ámbito de influencia, a saber:

4.1. Área de Influencia Directa (AID):

Consiste en el área urbana del distrito de Pucacaca del Centro Poblado Shimbillo, conformado por calles, jirones conectados al eje vial de la calle a construir.

Vista del lugar a proyectar en el Centro Poblado Shimbillo – Pucacaca, San Martín.

4.2. Área de Influencia Indirecta (AII)

Se considera el ámbito del Distrito de Pucacaca como uno de los centros urbanos de creciente desarrollo y actividad antrópica, cuyos habitantes concurren de manera directa a la localidad del Centro Poblado Shimbillo.

Área de Influencia directa Centro Poblado Shimbillo – Pucacaca, San Martín.

5. Acciones antrópicas del proyecto

Consta del análisis de los elementos del entorno (susceptibles de verse afectados) y de las actividades que se realizan durante el proyecto que pueden generar impactos ambientales. Para identificar estos efectos y analizarlos para su descripción final, primero se procederá a su identificación.

6. Identificación de Impactos ambientales

Después de analizar y describir las características del entorno, para el desarrollo en obra del proyecto, nos hemos fijado como objetivo identificar el posible impacto sobre entorno ambiental que se produciría como consecuencia de la ejecución del correspondiente proyecto, y se desarrollará en tres etapas: antes, durante y después de la ejecución de obra.

6.1. Actividades previas a la construcción de la obra

Comprende las actividades necesarias para iniciar las operaciones de ejecución de obra. En esta fase de construcción, las actividades iniciales del proyecto generan cambios en el entorno, las cuales se encuentran:

- Cartel de obra
- Traslado de equipo y materiales

Entre los elementos ambientales afectados tenemos:

- La atmósfera que consta de la calidad del aire
- Suelos
- Paisaje
- Transporte

6.2. Actividades en la fase de construcción:

Comprende las actividades necesarias para la adecuada disposición de las obras. En esta etapa se llevan a cabo las acciones de mayor impacto, que se detallan a continuación:

- Movimiento de tierra
- Transporte de materiales

Entre los elementos ambientales con afectaciones mínimas.

- Agua
- Suelos
- Aire
- Mano de obra

6.3. Fase final de la obra

En esta etapa, se consideran los efectos positivos que comprende la cobertura final y funcionamiento normal de los trabajos realizados en condiciones estables.

- Suelo
- Paisaje
- Vegetación
- Mano de obra

7. Descripción de los impactos ambientales

7.1. En el medio físico

- a) Agua: El impacto ambiental de quebradas o ríos locales no se verá afectado porque no tiene forma o cauce en la zona de impacto.
- b) Aire: Durante esta fase, la calidad del aire cambiará levemente debido a la presencia de partículas en suspensión provocadas por el movimiento del suelo y vehículos durante la fase de construcción del proyecto. Además, los niveles y las fuentes de ruido durante la construcción serán mínimos, ya que no es un área que requiera maquinaria grande, ya que en su mayoría es manejable.
- c) Suelos: La tierra no será contaminada. Los cambios de relieve en relación con la proyección serán pequeños porque estas son las áreas excavadas más pequeñas.

- **d)** Flora: La implementación del proyecto no afectará la flora, que debido al entorno y la poca presencia de áreas verdes como pastizales, malezas no representan mayor impacto.
- e) Fauna: La fauna en el área del proyecto no se verá afectada.

7.2. En el aspecto socio económico cultural

a) Grupos humanos perjudicados o beneficiados

Los residentes ubicados en el área de influencia del proyecto se verán inmediatamente afectados por el impacto ambiental de la implementación del proyecto.

b) Mano de obra

Este impacto es positivo ya que creará oportunidades de empleo para la población local.

8. Impactos ambientales positivos

- Mejoramiento del tránsito vehicular
- Creación de trabajos temporales principalmente durante la etapa de ejecución de la obra de drenaje.
- Mejora de la accesibilidad y la calidad de vida de los residentes.

9. Determinación de impacto potencial

	DETERMINACIÓN DE IN	//PACTO POTENCIAL	MAG	NITUD - EF	ЕСТО
MEDIOS		MUY BAJO	REGULAR	MUY ALTO	
Condición del	Incremento de los	Partículas de polvo		•	
aire	niveles de emisión	Metal Pesado		•	
Ruido	Aumento del los	Continuos		•	
Kuluo	niveles sonoros	Puntuales		•	
Climas	Cambio Climático			•	
Geología -	Aumonto do intoncid	ades de ladera y superficie			
Geomorfología	Aumento de intensid	ades de ladera y superficie	•		
Hidrografías	Cambio en las fases d	e erosiones y sedimentaciones	•		
Superficiales y	Pérdidas de la calidad	l de las aguas		•	
Subterráneas	Compactación			•	
	Demoliciones superfi	ciales directas		•	
	Compactaciones		•		
Suelo	Erosión en increment	0	•		
Suelo	Demolición directa e	n la vegetación	•		
	Cambios por transito,	pisoteo	•		
	Cambio del relieve		•		
	Cambio del panorama	3		•	
Paisaje	Ruido y sonido no de:	seable en aumento		•	
	Variación de acceso			•	

10. Problema o alteración de acuerdo a la actividad y fase del proyecto

	PROBLEMA O ALTERACION DE ACUERDO A LA ACTIVIDAD Y FASE DEL PROYECTO						
MEDIO	ALTERACIÓN	ACTIVIDADES DEL PROYECTO	FASE				
Condición del aire	Aumento del nivel de emisiones Partículas Metales Pesados	- Movimiento de tierras - Formación de terraplenes	OBRAS				
Ruido	Incremento de Nivel sonoro Continuo Puntual	- Transporte de cargamento y descargas de materiales - Transitos	OBRAS				
Geología - Geomorfología	Incremento de intensidades de laderas y superficies	- Desplazamientos de tierras - Movimiento de maquinas - Extracciones de material de canteras	OBRAS Y OPERACIONES				
Hidrografías Superficiales y Subterráneas	Cambio en las fases de erosiones y sedimentaciones Pérdidas de la calidad de las aguas Compactación	- Derrames imprevistos de aceites y combustibles - Movimiento de tierras - Nivelación de tierras	OBRAS				
Paisaio	Ruido y sonido no deseable en aumento	- Aumento de la comunicación	OBRAS Y OPERACIONES				
Paisaje	Cambio del panorama demográfico Cambios de accesibilidad	- Aumento del acceso	OBRAS				
Social	Cambios de rendimiento productivo	- Aumento del acceso	OBRAS				

11. Plan de Contingencia

El objetivo es desarrollar un plan que describa las acciones a tomar, en caso de un evento natural o provocado que afecte el trabajo, tanto como a los trabajadores, la comunidad o al desarrollo socioeconómico de la región. Estos eventos pueden ser:

- Bloqueos de vías por derrumbes y/ deslizamientos
- Embalses e inundaciones
- La contaminación del agua
- Accidentes personales
- Epidemias

En este sentido, el contratista debe contar con un plan de contingencia para enfrentar estos problemas, que básicamente se pueden resumir en equipación pesada de maquinaria para despejar bloqueos, botiquines de primeros auxilios, instalaciones médicas, equipos de evacuación de emergencia, entre otros.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, AYBAR ARRIOLA GUSTAVO ADOLFO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TARAPOTO, asesor de Tesis titulada: "Diseño de Drenaje Pluvial para Mejorar Evacuación de Precipitación de Aguas en la Localidad de Shimbillo, Pucacaca, San Martin, 2022", cuyos autores son CALLOQUISPE RODRIGUEZ GERALD, GUERRA VARGAS LLOYSER JOEL, constato que la investigación tiene un índice de similitud de 18.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TARAPOTO, 03 de Diciembre del 2022

Apellidos y Nombres del Asesor:	Firma
AYBAR ARRIOLA GUSTAVO ADOLFO	Firmado electrónicamente
DNI: 08185308	por: GAYBARA el 03-12-
ORCID: 0000-0001-8625-3989	2022 15:46:32

Código documento Trilce: TRI - 0470153

