

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera Condado Pichikiari - Chanchamayo, Junín - 2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Catpo Nuncevay, Iason Jair (orcid.org/0000-0001-6119-2681)

ASESORA:

Mg. Arriola Moscoso, Cecilia (orcid.org/0000-0003-2497-294X)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo Sostenible y Adaptación al Cambio Climático

LIMA – PERÚ

2019

Dedicatoria

Este proyecto está dedicado a las personas que más han influenciado en mi vida, dándome los mejores consejos, guiándome y haciéndome una persona de bien.

Agradecimiento

A Dios por guiarme constantemente y por bendecirme cada día, gracias a todas las personas que fueron participes de este proceso, ya sea de manera directa o indirecta, gracias a ustedes, que fueron responsables de realizar un pequeño aporte.

Gracias a mis padres, que quienes fueron mi principal apoyo durante este proceso desde el inicio de la carrera.

A la Universidad Cesar Vallejo, por haber permitido que me formase en ella, en especial a mi tutor Mg. Arriola Moscoso Cecilia, por su paciencia en el desarrollo de este trabajo de investigación.

Declaratoria de Autenticidad del Asesor

Yo, **ARRIOLA MOSCOSO**, **Cecilia** docente de la Facultad de Ingeniería y Arquitectura de la Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo sede Lima Norte, asesor del Informe de Investigación titulada:

"Análisis de la estructura del pavimento flexible reforzado con geomalias biaxiales en la carretera condado Pichikiari - Chanchamayo, Junín-2019" del autor CATPO NUNCEVAY, lason Jair constato que la investigación tiene un índice de similitud de 13% verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender el trabajo de tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lima 17 de diciembre de 2019

Apellidos y Nombres del Asesor ARRIOLA MOSCOSO, Cecilia	
DNI: 76698616	Firma October
ORCID: 0000-0002-0520-1325	Fab.

Declaratoria de Originalidad del Autor

Yo, CATPO NUNCEVAY, lason Jair estudiante de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo sede Lima Norte, declaro bajo juramento que todos los datos e información que acompañan al Informe de Investigación titulado:

"Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, Junín-2019", es de mi autoría, por lo tanto, declaro que la Tesis:

- No ha sido plagiado ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicado ni presentado anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Lima 17 de diciembre de 2019

Apellidos y Nombres del Autor	
CATPO NUNCEVAY, lason Jair	
DNI: 46413641	Firma
ORCID: 0000-0001-6119-2681	July 1

ÍNDICE

Carátula	i
Dedicatoria	ii
Agradecimiento	iii
Declaratoria de autenticidad del asesor	iv
Declaracion de originalidad del autor	v
Índice	vi
Índice de tablas	vii
Índice de figuras	ix
Resumen	X
Abstract	xi
I. INTRODUCCIÓN	14
II. MARCO TEÓRICO	19
III. METODOLOGÍA	24
3.1 Tipo y diseño de investigación	25
3.2 Operacionalozación de variables	26
3.3 Población, muestra y muestreo	33
3.4 Técnica e instrumentos de recolección de datos, validez y confiabilidad	34
3.5 Procedimiento	36
3.6 Métodos de análisis de datos	37
3.7 Aspectos éticos	37
IV. RESULTADOS	38
V. DISCUSIÓN	88
VI. CONCLUSIONES	91
VII. RECOMENDACIONES	93
REFERENCIAS	95
ANEXOS	100

Índice de tablas

Tabla 01.	Instrumentos de recolección de datos	34
Tabla 02.	Nota promedio de expertos	35
Tabla 03	Tráfico Promedio Diario Anual Existente (TPDA)	40
Tabla 04	Tráfico Promedio Diario Anual Generado (TPDA)	40
Tabla 05	Tráfico Promedio Diario Anual Asignado (TPDA)	41
Tabla 06	. Tasas de Crecimiento del Tráfico (%) Provincia Chanchamayo	41
Tabla 07	. Proyección del TPDA asignado al proyecto	42
Tabla 08	. Proyección del trafico	43
Tabla 09	. Factor de carga equivalente	44
Tabla 10	Resumen de ejes equivalentes	53
Tabla 11.	. Percentil para C.B.R. de diseño	54
Tabla 12.	. C.B.R. De Diseño	54
Tabla 13	Numero estructural	58
Tabla 14.	. Resumen de parámetros para el diseño de la estructura de pavimentos	59
Tabla 15.	. Diseño de pavimento tramo Pichikiari – Pichanaki pavimento sin reforzamiento period de 20 años	
Tabla 16.	. Diseño de pavimento tramo Pichikiari – Pichanaki pavimento sin reforzamiento period de 10 años	
Tabla 17	. Diseño de pavimento sin refuerzo y reforzado	62
Tabla 18.	. Diseño de pavimento flexible reforzado tramo Pichikiari – Pichanaki	64
Tabla 19	. Resumen de análisis de costo de la sub-base sin geomalla y con geomalla biaxial	65
Tabla 20	. Costo de la sub-base (e=15cm) de los 100 metros de la carretera Condado Pichikiari	66
Tabla 21.	. Costos de transporte de material granular para la subbase de e=15cm para D<= 1km y D> 1km	
Tabla 22.	. Costo de sub-base de e=10cm con geomalla biaxial de la carretera Condado Pichikiari.	67
Tabla 23	. Costo unitario de la base granular (e=10cm) con geomalla biaxial	68
Tabla 24	. Cálculo del flete de la geomalla biaxial	69
Tabla 25.	. Costos de transporte de subbase (e=10cm) para D<= 1km y D> 1km. De acuerdo a la influencia de la geomalla biaxial	70
Tabla 26	. Resumen del análisis de tiempo	70
Tabla 27	. Tiempo de ejecución de cada partida, sin refuerzo	71
Tabla 28.	. Tiempo de ejecución de cada partida, reforzado	71
Tabla 29.	. Cantidad mínima de muestra	91
Tabla 30.	. Masa mínima para el agregado fino	92
Tabla 31.	. Masa mínima para el agregado grueso	92

Tabla 32.	Serviciabilidad inicial	. 92
Tabla 33.	Serviciabilidad media	. 92
Tabla 34.	Serviciabilidad final	. 92
Tabla 35.	Periodo de análisis	. 93
Tabla 36.	Nivel de confianza recomendado	. 93
Tabla 37	Valores de (Zr)- Nivel de confianza (R)	. 93
Tabla 38.	Especificaciones de geotextil no tejido	. 98
Tabla 39.	Características de la geomalla MACGRID EGB 20S	. 99
Tabla 40.	Valores del coeficiente (mi)	100
Tabla 41.	Condiciones de drenaje	100
Tabla 42.	Espesores mínimos	100
Tabla 43.	Análisis de costos unitarios, partida sub-base (e=15cm) de la carretera Condado	
	Pichikiari	101
	Análisis del costo unitario, subpartida "agua para la obra" de la carretera Condado Pichikiari	101
	Análisis de costo unitario, subpartida material granular para subbase de la carretera Condado Pichikiari.	102
	Análisis de costo unitario, subpartida carguío - material granular de la carretera Condado Pichikiari	102
Tabla 47.	. Análisis de costo unitario, subpartida zarandeo de la carretera Condado Pichikiari	103
	Análisis de costo unitario, subpartida extracción de cantera y apilamiento de material para subbase de la carretera Condado Pichikiari.	
Tabla 49.	Análisis del costo unitario de geomalla biaxial	104
	Análisis de costo unitario, partida transporte de material subbase para D<= 1km de la carretera Condado Pichikiari	
	Análisis de costo unitario, partida transporte de material subbase para D > 1km de la	105

Índice de figuras

Figura 01. Geomalla uni-axial	ļ
Figura 02. Detalle de costilla geomalla uni-axial	ļ
Figura 03. Geomalla biaxial	;
Figura 04. Detalle de costilla geomalla biaxial	;
Figura 05. Tramo Pichikiari-Pichanaki.)
Figura 06. Ubicación del tramo de estudio)
Figura 07. Estado actual de la carreta.	L
Figura 08. Muestra extraída 01	;
Figura 09. Muestra extraída 02	;
Figura 10. Contenido de humedad	7
Figura 11. Granulometría por tamizado	3
Figura 12. Límite Líquido)
Figura 13. Límite Plástico)
Figura 14. Proctor Modificado	L
Figura 15. Gráfico CBR de diseño.	7
Figura 16: Coeficiente de capa para carpeta asfáltica	3
Figura 17. Coeficiente de capa a_2	3
Figura 18. Coeficiente de capa a_3)
Figura 19. LCR VS % CBR63	3
Figura 20. Ubicación de la geomalla	ļ
Figura 21. Clasificaciones y pesos de los vehículos	L
Figura 22. Tiempo para la subbase sin refuerzo y transporte en la obra)
Figura 23. Tiempo influyente de la subbase (e=0.10m) y transporte en el cronograma de obra	ı

Resumen

En esta investigación se tiene como objetivo principal analizar la estructura del pavimento

flexible reforzado con geomalla biaxial en la carretera Condado Pichikiari, provincia de

Chanchamayo, departamento de Junín.

El procedimiento para realizar el análisis fue primeo diseñar la estructura del

pavimento flexible mediante el método tradicional (sin refuerzo) con el método AASHTO

93 para lo cual se requiere analizar una serie de parámetros de los cuales dos son los más

importantes el diseño de tráfico y el cálculo del módulo de resilencia a través del CBR de

diseño, el cual es obtenido por medio de los ensayos de laboratorio realizadas a las muestras

de suelo extraída del lugar de estudio, a partir de esto se empieza a diseñar con la geomalla

biaxial MACGRID EGB 20S cuya resistencia es de 20KN, para determinar los espesores de

base y subbase se realizó en función del número estructural de la sub-rasante y usando la

ecuación AASHTO para pavimento flexible incorporando el Layer Coefficient Ratio (LCR)

de la geomalla biaxial, a través de los espesores de puede determinar donde se localizara la

geomalla biaxial, también, se realizó los metrados para el diseño con el fin de analizar el

costo y tiempo del proceso constructivo.

La metodología utilizada es de diseño experimental, investigación tipo aplicada con

enfoque cuantitativo y como muestra a la carretera Condado Pichikiari.

Del análisis realizado se obtuvo que la geomalla MACGRID EGB 20S genera una

disminución de 33.33% en la subbase siendo la única capa que se reduce, por otro lado, el

costo se reduce en 3.21% y el tiempo en 5.55%.

Palabras clave: Base, costo, espesor, geomalla biaxial, subbase.

Х

Abstract

The main objective of this research is to analyze the structure of the flexible pavement

reinforced with biaxial geogrid on the Pichikiari County Road, Chanchamayo province,

Junin department.

The procedure to perform the analysis was first to design the structure of the flexible

pavement using the traditional method (without reinforcement) with the AASHTO 93

method for which it is required to analyze a series of parameters of which two are the most

important traffic design and The calculation of the resilience module through the design

CBR, which is obtained by means of laboratory tests carried out on soil samples taken from

the place of study, from this it begins to design with the biaxial MACGRID EGB geogrid

20S whose resistance is 20KN, to determine the base and subbase thicknesses was performed

based on the structural number of the sub-grade and using the AASHTO equation for flexible

pavement incorporating the Layer Coefficient Ratio (LCR) of the biaxial geogrid, through

of the thicknesses of can determine where the biaxial geogrid will be located, also, the

metrados for the design were made in order to analyze r the cost and time of the construction

process. The methodology used is experimental design, applied type research with a

quantitative approach and as shown to the Pichikiari County Road.

From the analysis carried out, it was obtained that the MACGRID EGB 20S geogrid

generates a 33.33% decrease in the subbase being the only layer that is reduced, on the other

hand, the cost is reduced by 3.21% and the time by 5.55%.

Keywords: Base, cost, thickness, biaxial geogrid, subbase.

χi

I. INTRODUCCIÓN

En el transcurso de la historia, se ha buscado la manera de incrementar la capacidad de soporte de los suelos considerados blandos. Una forma de alcanzar este objetivo ha sido confinar literalmente el material e incorporarle resistencia a tracción, este método se usó antiguamente utilizando ramas trenzadas o insertando troncos en forma perpendicular, es por eso que hoy en día; los diversos tipos de geosintéticos nos proporcionan mayor confinamiento lateral y resistencia a tracción. La variedad que existe en la rama de la ingeniería son las siguientes: geotextiles, geomallas, geo membranas, geo redes, geocompuestos y para el control de erosión de los mencionados anteriormente, mantos originados de una formación sobre unas cualidades, así como características referentes a ellos, utilizada sobre el mismo suelo o también con diversos tipos de material en la ingeniería civil.

Podemos mencionar que en el año 1926 se intentó usar un tipo de fibra sintética para mejor la estructura del pavimento, el "Departamento de Vías de Carolina del Sur en Estados Unidos" impulso este experimento; lo cual radicó en considerar una capa de algodón de una fibra sintética y protegerla incorporando con fina capa de arena, estos estudios realizados dieron conclusiones en 1935, estos dieron como resultado la disminución de las fallas localizadas presentando mejores condiciones de servicio y agrietamientos en la estructura poco antes que la fibra sintética se perdiera totalmente. Se concluyó que dicha prueba permitió determinar cómo las cargas ejercidas por el tráfico influenciaban en el mejoramiento del pavimento, generando mejoras tales como, zona de contacto entre neumáticos y pavimento, espesores de sub-base y módulo de reacción de la subrasante.

También podemos mencionar que en la investigación hecha en la "Escuela de Ingeniería Civil de la Universidad del Salvador", nos mencionan que los geo sintéticos realizan funciones como, separación, refuerzo, drenaje y filtración, cumpliendo muchas funciones al mismo tiempo, siendo una de las alternativas que solucionan estos inconvenientes que con mucha frecuencia se evidencian al momento de construir este tipo de obras, presentando suelos con niveles freáticos elevados, poca capacidad de soporte, altos costo en materiales, tamaño de la obra restringidos, etc.

Los geosintéticos ofrecen durabilidad, facilidad de colocación, rentabilidad a largo plazo, por ello se diferencia de otros métodos tradicionales de construcción, además porque las geosintéticos tienen un costo menor en comparación a otros.

Díaz González, Escobar Velásquez, & Olivo Martínez (2014), "existe una diversidad de formas para incrementar la facilidad del soporte del suelo blando. Desde la antigüedad se vino trabajando con un método eficaz que tenía por finalidad el refuerzo de los suelos con unos confinamientos laterales sobre la partícula del material, generando aumento sobre la resistencia a la tensión" (p.34).

El estudio que se ha ejecutado por Escobar Velásquez (2010). Señala que dichos productos facilitan ventajas en la economía de producto, facilitando la colocación en la obra, menor tiempo de ejecución, mejores soluciones medioambientales, utilización de materiales de calidad verificable y utilizando trabajadores de la zona.

En conclusión, estos materiales hoy en día toman mayor protagonismo por sus diversos beneficios en mejora de la estructura, de la misma manera genera mayor diferencia en el tema de presupuesto teniendo en cuenta también todas las responsabilidades técnicas que se necesitan.

En el estudio ejecutado Anselmo Núñez Condori (Octavio, 2010, p. 23): menciona que el uso de los geosintéticos es la solución próxima a las soluciones del problema económico y técnico en todo el proyecto referente a la ingeniería, teniendo en cuenta esto cabe mencionar que los geosinteticos has sido una solución exitosa; así mismo podemos señalar que en ciertos casos por no usar una adecuada metodología de diseño, es que no se aprovechan y pierden ciertos benefícios de dicha tecnología en su totalidad.

Hoy en día, se está permitiendo el uso de productos sintéticos especialmente para lograr la misma resistencia a la tensión y mismo efecto de confinamiento lateral, como pueden ser la geomalla biaxial, y su principal función es el refuerzo.

Para definir el uso de geomalla biaxial, Octavio sostiene al respecto: El compuesto entre la geomalla biaxial y el suelo favorece en la resistencia al movimiento, dado este caso, la implementación las geomallas biaxiales producen la condición de cohesión, incluyendo el material granular, sus componentes combinan una resistencia sobre la tensión de la geomalla y compresión del suelo, generando así sistemas presentando mayores rigideces y estabilizadas que el suelo sin elementos de refuerzo. Sus capacidades de la geomalla biaxial tales como la distribución de las cargas de la superficie aumentan la resistencia hacia el desplazamiento estructural cuando es sometido a las cargas dinámicas y estáticas. Varios

estudios que se realizaron en diferentes laboratorios llegaron concluir que se reduce el espesor de la base y la subbase y así ocasionara menor costo (2010, p. 21).

Hoy en día las obras de infraestructura vial en nuestro país tienen distintas variables determinantes para su diseño y construcción; esto se debe principalmente a: la geomorfología diversa de nuestro país, los distintos materiales geológicos existentes, la variación de precios en materiales, entre otros.

Finalmente podemos indicar que hoy en día se realiza un estudio más profundo sobre este tema, elaborando diseños que ayuden a reducir el espesor de los pavimentos a través de la aplicación de geomallas biaxiales.

Si bien es cierto que en el Perú se evidencia un óptimo proceso constructivo en la estabilización y construcción de los diferentes tipos de suelo; pero estamos en una época donde buscamos una optimización de recursos con el fin de brindar calidad, seguridad y economía de manera más eficiente. En la actualidad damos importancia al uso de los geosintéticos (geomallas biaxiales), debido a sus propiedades físicas y mecánicas que ayudan en la estabilización de suelos.

Los geosintéticos se bienes usando desde la antigüedad en varias construcciones en la ingeniería civil tales como, obras de drenaje, protección de taludes, rellenos sanitarios, etc. No obstante, en el Perú, se evidencia un escaso uso en sus carreteras. Con el uso de geomallas biaxiales en el diseño de pavimentos flexibles se pretende dar soluciones a todo problema que transcurra en la construcción del pavimento sobre sub rasante, además el problema de la disponibilidad de los materiales (canteras alejadas), por lo cual se pretende diseñar con un espesor menor, pero con la misma capacidad de soporte de la estructura y con una factibilidad en la economía.

Según, ORREGO Cabanillas nos dice al respecto: Las geomallas nos brindan un aporte magnífico en cuanto al refuerzo en la base de la estructura del pavimento generando reducción en la base, así como incrementa la vida útil del pavimento. Este refuerzo en la base consiste en la combinación del confinamiento de la geomalla con las aberturas que posee, dicho refuerzo se asoció al comportamiento en el largo plazo, es por ello que la incidencia de la geomalla se va medir con la vida útil del pavimento (2014, p. 32).

El aplicativo del geo sintético para refuerzo en la base, AASHTO trabajó con dos guías: AASHTO PP 46 que se publicó en 2001, y AASHTO R-50 publicado el 2015, actualmente no se cuenta con un método valido que determine el beneficio de la aplicación de la geomalla, pero existen varias investigaciones con un modelo real que facilitan como el inicio para realizar un diseño que se asemeje a la realidad. En dichas investigaciones se emplean conceptos adecuados que determinan el espesor final de la estructura, así como el tránsito que soportará y la disminución del espesor de la base de la estructura para la vida útil del pavimento.

Este aplicativo de las geomallas se usaron en diversos pases como en EE.UU. y también en Colombia, en el Perú realizaron un diseño, así como la construcción en un tramo final en Iquitos – Nauta, el diseño se realizó con el uso de la geomalla biaxial reforzando la base de la estructura por 13 km, y el resultado fue que se redujeron los costos de la pavimentación en un aproximado de un millón de dólares, debido al elevado costo del agregado.

II. MARCO TEÓRICO

Arévalo Sequian, Fredy (2016). Cuyo objetivo fue llevar a cabo un análisis al momento de utilizar la geomalla biaxial dentro del diseño de un pavimento flexible. El aporte de esta investigación para la infraestructura vial responde a lo siguiente: ¿Será la mejor metodología para el área rural el uso de geomallas en el diseño de vías de comunicación? Esta pregunta buscara relacionar dos variables: como variable dependiente el uso de geomalla y como variable independiente la subrasante con un CBR entre 1% y 3%. La metodología de esta investigación aborda principalmente la AASHTO 93 como el medio para diseñar un pavimento flexible con geomalla biaxial, haciendo uso del método tradicional. Tomaremos los parámetros de diseño de esta investigación y luego llegando a la conclusión que tras la revisión, se extrajo los coeficientes de drenaje y se obtuvo el Numero Estructural de la capa, para introducirlos en la investigación; se analizó los espesores con refuerzo en base, subbase y se hizo uso del método AASHTO 93 para así reducir el espesor de subbase y base; al hacer la comparación de los resultados, observamos que el precio del pavimento flexible es el mínimo con respecto a que se use o no geomalla, pero debido a esto, se reduce los espesores de capa del pavimento flexible.

Leopoldo Ortega, Lira (2015). Cuyo objetivo fue hacer un diseño de Pavimento Flexible, con esta investigación se pretende realizar un aporte de conocimientos que beneficiará a los pobladores de la colonia Santa Rosa, un buen diseño aumentará la seguridad y el buen funcionamiento de este tramo, esta investigación es de tipo no experimental, los instrumentos que se usaron fueron el AUTOCAD y hoja Excel, la finalidad del diseño del pavimento es llegar a obtener los espesores de las capas de la estructura, adecuándolo a un funcionamiento ideal tomando en cuenta los materiales a usar, concluyendo que el adecuado método de diseño para este tramo es el de la UNAM debido a que es la más usada en dicho país; en la práctica vial mexicana se distinguen varias clasificaciones respecto a los tipos de caminos existentes tales como: clasificación por aspecto administrativo en las que se encuentran los federales, estatales, vecinales, o rurales y los concesionales, en la clasificación por transitabilidad están los caminos de terracería, revestidos y pavimentados y en la clasificación por técnica oficial están los tipos A, B y C, siendo este último tipo referente a lo estudiado en la tesis; además se concluyó que los proyectos de la pavimentación de las calles y las carreteras son de suma importancia para la población, debido a que mediante esta se puede llegar de un lugar a otro de una manera rápida y segura y que se deben de cuidar que en el proceso constructivo los materiales a usar sean los

señalados en la norma de construcción, ya que en la mayoría de los casos de las fallas ocurrentes en el pavimento son debido a algún error en el proceso de construcción o al material usado.

Baltazar Hernández, Gutiérrez. (2014). Cuyo objetivo fue elaborar un análisis comparativo de diseño de pavimento flexible con el método IMT-PAVE, CR-ME y AASHTO 93, analizando cada uno los parámetros de diseño y las variables generadas en el transcurso del diseño del pavimento flexible, desarrollando así un método alternativo de diseño particular, los ensayos que se realizaron fueron: ensayo de módulo dinámico, módulo de resilencia CBR y penetración, en sus variables consideró en función al tiempo y en función al tránsito, desarrollar las capacidades viales que se encuentran en cambios, relativamente a las vías nuevas, así como a la reconstrucción y la reparación. Generalmente, esta investigación alrededor del lugar es poco, por ello se dio lugar al traslado constante de las técnicas, la metodología y a los reglamentos existentes, que se desarrollaron a lo largo de varios países avanzando significativamente en las carreteras, debidamente con una inversión mayor aplicando estas técnicas en estas naciones. Dada la existencia de ciertos enfoques en el diseño del pavimento es pertinente conocer bien estas metodologías, especialmente porque en el Salvador no están tan familiarizados referente a los diversos diseños, con un objetivo de la comparación entre los resultados, en la característica del diseño arrojado de cada uno, analizando su desempeño, funcionalidad y sus ventajas en la economía al aplicar un método sobre otro, llegando a la conclusión que en base a los aspectos de carga calculados, presenta niveles elevados de sobrecarga, observándose porcentajes mayores de 20% en cada uno de ellas; los vehículos que más daños ocasionan son los: T3-S2-R2 y T2-S2-R2; en cuanto a espesores requeridos, la metodología basada en los conceptos mecanicistas, presentan un diseño más preciso debido que presenta una cuantificación más detallada de los parámetros de diseño.

Nuñez Condori, Anselmo (2016). Cuyo objetivo fue estudiar el espesor de la base y subbase de una carretera aplicando geosintéticos, a través de su característica físico mecánica, para mejorar tiempo y costo del proceso constructivo, examinando las consecuencias negativas y positivas que produce en un largo plazo. Además, consistió en analizar el uso de las geomallas biaxial reforzado en la sub base de la estructura del pavimento, cuando de optimizar el espesor se trata, nada mejor que dicho método, ya que

alarga el tiempo de duración del pavimento, es mejor económicamente, duradera y eficiente; en la investigación se aplicó teóricamente en el expediente de una carretera con buenos materiales para construir cada capa. Esta investigación fue tipo aplicativo experimental, nivel correlacional y enfoque cuantitativo, la población fue el espesor del pavimento subbase. Se obtuvo 14,830.63m3 de material de una cantera para la sub-base y se analizaron varias muestras para ensayos de CBR, lo cual nos ayudó determinar el Módulo Resilente y que la subbase con aplicación de geomalla aumenta la resistencia en las capas, llegando a la conclusión que con la geomalla biaxial MacGrid EGB 40 disminuye el espesor de la subbase a 5 cm, obteniendo así un ahorro del 75% de material, por ende, generando una optimización en los costos; muestra también una evaluación positiva del uso de geomalla ya que el impacto ambiental es el mínimo, debido a la menor explotación de canteras, es decir un ahorro de material subbase, también se observa que reduce el utilización de agua en la estructura de la subbase granular, equivalente a la conformación de la capa sub-base.

Sarmiento y Arias (2015). Menciona lo siguiente: el problema principalmente que presentan las vías es referente al daño existente sobre la carpeta asfáltica son visuales, ocasionados debido al aumento del tráfico vehicular liviano y pesado, por lo tanto, su objetivo es hacer un análisis y diseño de pavimentos buscando una adaptación de la superficie de rodadura a las exigencias del tráfico pesado y lograr dar una buena serviciabilidad vial. El tipo de investigación es experimental, la población y muestra estuvo configurada por la Av. Mártir Olaya que se encuentra en el distrito de Lurín, en Lima. Uso métodos como AASHTO 93. Se concluye lo siguiente con respecto al método AASHTO 93, principalmente este método contiene herramientas completas sobre analiza y diseñar pavimentos porque se analiza todo el daño de los vehículos por separado como deformaciones y agrietamientos por fatigas. Es más, AASHTO exige tener los datos del clima, los materiales, el tráfico vehicular del lugar donde se realizará dicha construcción, para llegar a recolectar todos estos datos es pertinente la implementación de los modelos referente al deterioro del pavimento y así anticipar fallas tales como las fatigas, las deformaciones, el ahullamiento, entre otras fallas. Además, se deben trabajar con bases referentes a los aspectos de las cargas para varias vías, realizar la medición del coeficiente sobre la expansión térmica y elaborar bases de los datos referente a los módulos de resiliencia; lo que se refiere al alto tráfico de vehículos pesado que pueden circular en la Av. Mártir Olaya y pese a que muestra un daño considerable, este incrementa en relación a los índices de crecimiento económico futuros.

Rengifo Arakaki, Katherine (2014). Dice lo siguiente: dentro del territorio peruano las vías de comunicación terrestres son las mayormente usadas. En las que presenciamos los caminos, carreteras, etc. Se diseño mediante el método del Instituto del Asfalto (IA) y la AASHTO, realizando una comparación entre ellas y optar por lo mejor. La investigación es de tipo explicativo, con un diseño de investigación pre-experimental. Tomo la via Huacho a Pativilca (Km 188 - 189). Como conclusión: mediante la formulación del número estructural se permiten obtener varias opciones en la conformación estructural. Así también AASHTO presenta varias opciones para que se analicen en el ámbito económico; al hacer el estudio de tráfico concluyo que el (IMDA) hallada gracias a lo proporcionado por el MTC es de 8,702 vehículos por día, también obtiene el Número de Ejes Equivalentes de Diseño para pavimento flexible y rígido. Con esto considera monitorear el tráfico continuo y el máximo tonelaje que se permite por eje de vehículo, para evitar que la carretera pavimentada este soportando cargas mayores a la esperada las cuales causen que la estructura falle; en cuanto a los estudios de la cantera, cumple con las especificaciones tanto para la capa base y subbase. [...]. Del estudio pluviométrico se concluye que es una zona con poca lluvia. De la medición del aire se obtiene una relación entre 16°C y 18°C. [...]. Se obtuvo una precipitación máxima anual de 11.8mm de agua.

Para ejecutar el Análisis de los Pavimentos flexibles con refuerzo de geomallas biaxiales, se consideró los puntos básicos de los temas principales de Infraestructura de Obras Viales lo cual nos servirá como sustento para realizar este trabajo como investigación, teniendo referencia que dicha población carece de la implementación de este tipo de estructuras, tratando de buscar una solución óptima y acorde a las exigencias de la población.

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Según Niño, R. (2014, p. 23): el marco metodológico tiene como propósito la validación o comprobación de hipótesis. Estudia un objeto a través de varias variables en un proceso de experimentación, en situaciones donde el investigador pueda controlar y conocer la variable y observar los resultados que esta produzca.

De acuerdo a lo citado anteriormente tendremos presente que esta investigación es de acuerdo al **método científico.**

Tipo de Investigación

Según MCMillan, J. y Schumacher, S (2015, p.43). La investigación experimental es sin lugar a dudas, la mejor aproximación decidir el efecto causal de una variable única separada a otra, también es un proceso que somete a objetos o grupos de individuos, para ser estudiados con la finalidad de determinar los efectos y reacciones que pueden realizar estos.

De acuerdo a lo citado anteriormente en esta investigación es Aplicada.

Diseño de Investigación

Según Feliberto, M, (2014, p. 21). En el diseño experimental el investigador puede manipular una variable que sea experimental, cuyo objetivo es el encargado de averiguar el porqué de los hechos mediante la relación causa –efecto, de esa manera pueda describir porque causa se produce el fenómeno.

Es por ello que esta investigación tiene como diseño experimental.

Nivel de Investigación

Para Fidias, G. (2014, p. 15) el nivel de investigación experimental es netamente explicativa, ya que parten del problema los cuales permiten tener conocimiento de la relación causa-efecto, este tipo de estudio pretende explicar las causas del problema.

Es por ello que esta investigación es de Nivel Explicativa.

3.2 Operacionalización de Variables

Según Jacqueline Wigodski (2015, párr. 2) se refiere forma en que se puede medir y observar las características del objeto a estudiar.

Variable Dependiente:

Análisis de Estructura de Pavimento

La estructuración del pavimento costa de tres capas las cuales son la sub base, base y la carpeta asfáltica que está conformada por un material bituminoso (MTC, 2014 p. 4).

Básicamente está conformado por una capa compacta, que está apoyado en otras capas que son la base y sub base las cuales dependen sobre la calidad de la sub rasante, el diseño de un pavimento flexible tiene una duración mínima de 8 años.

Los espesores de pavimento son diseñados de acuerdo al periodo de diseño, por lo que en esta investigación se tomará un periodo de 15 años.

(MTC, 2014, p. 13) sobre la sub rasante se colocará la estructura del pavimento flexible, la subrasante es el terreno en sí mismo nivelado y listo para colocar sobre ella la estructuración del pavimento flexible.

Encima de la sub rasante se colocará el pavimento, esto es un parte que se excava en el terreno natural que soportara al pavimento, que se conforma mediante el suelo clasificado con dimensiones razonables, a su vez formados a fin de la constitución de una parte estabilizada y en óptimas condiciones y así no ser afectada por el diseño de la capa proveniente de los vehículos que transitaran sobre él. La capacidad en soporte de las condiciones del servicio, conjunto con el tránsito y además las características del material para la formación de la carpeta de rodadura forman la dimensión básica del diseño estructural del pavimento, el cual estará colocado encima.

Se puede mencionar que la sub base está conformado por materiales que cumplen ciertos volúmenes del diseño, cuya finalidad es el soporte entre la base y la carpeta de rodadura, también se usa como parte para drenar y controlar el paso de las aguas.

(MTC, 2014, p. 14) El material a utilizar sobre la estructuración del pavimento debe tener ciertas condiciones específicos de calidad, presentes en la sección 403 del Manual de Carreteras: Especificaciones Técnicas Generales Para la Construcción, actualizado. Además, debe de cumplir con los requisitos mínimos referentes a los equipos.

La ubicación de la geomalla se basa de acuerdo a la metodología AASHTO 93 para reforzar el pavimento con el uso de geomalla biaxial, se realiza en función de los resultados de ensayos obtenidos en laboratorio (MACCAFERRI, 2014).

Variable Independiente:

Geomalla Biaxial

las geomallas biaxiales son materiales geosintéticos formados mediante costillas paralelas unidas entre sí con huecos que son lo suficientemente facilitando la trabajabilidad con el material al cual está en contacto (Koerner, 2015).

Las geomallas biaxiales son geosintéticos que se emplean para el refuerzo y estabilización. Están fabricadas con polímeros resistentes y duraderos.

Las geomallas biaxiales son un material utilizado para alargar la vida útil del pavimento, también ayuda en la reducción de la capa de base, se aplica entre la sub base – base.

La función primordial de la geomalla biaxial es reforzar el pavimento, en la ingeniería civil tienen un papel muy importante ya que facilitan el refuerzo en los muros, estabilizar el talud, en el pavimento y en diversas estructuras. Hay diversos tipos de geomallas que se diferencian por el tipo de material por los cuales están formados, los procesos de sus fabricaciones, las uniones con los que fueron fabricadas, etc. Poseen diferente beneficio y propiedad dependiendo el uso aplicativo.

La geomalla es básicamente la que transmite los esfuerzos en toda la estructura que se va a reforzar, en una estructura de pavimentos, la presión que genera el tráfico, son disparados en varios sentidos, por ello el diseño con la geomalla que va soportar el esfuerzo debe contar con iguales propiedades físico-mecánicas en dirección transversal y también en el longitudinal. Las geomallas vienen siendo utilizadas exitosamente para reforzar las estructuras del pavimento flexible desde 1980 en Estados Unidos. (GEOSISTEMAS PAVCO DE MEXICHEN, JULIO 2014).

La geomalla uni-axial está alineada en un sentido, con juntas transversales, se utiliza para el soporte de cargas éstas, llegando así a soportar grandes cargas de tracciones en su dirección, tales como los refuerzos en taludes y los muros, se fabrican de polietileno.

Generalmente se utiliza para reforzar el suelo primario, facilitándole resistencia a la misma, facilitando generar ángulos inclinados en forma vertical en los taludes.

Actúa facilitando tensión de resistencia al suelo mediante el empuje transversal y además genera esfuerzo con fricción en el suelo y las costillas horizontales, y así crean un esfuerzo eficiente.

Figura 01. Geomalla uni-axial

Fuente: Geosistemas Pavco

Figura 02. Detalle de costilla geomalla uni-axial

Fuente: Geosistemas Pavco

La geomalla biaxial tiene una facilidad de carga en ambas direcciones, son de forma perpendicular entre ellas, y su uso es para carreteras aportando un refuerzo de doble dirección. Son resistentes a grandes cargas prolongadas durante cierto tiempo aplicados en cualquier dirección a la que fue colocada.

Se fabrican con resinas de polipropileno, son de gran resistencia a los desgastes, al rasgado y a los punzonamientos, diseñados con el medio de soportar las cargas que se aplican en cualquier dirección de la malla.

La principal función de la geomalla biaxial es de facilitar el refuerzo de las capas de la estructura de pavimento flexible, facilitando el soporte del tránsito vehicular.

En las investigaciones realizadas en Estados Unidos que concluyo que, referente al reforzado en la base del pavimento flexible, la geomalla biaxial debe estar a una profundidad de 25 y 35 cm de la carpeta asfáltica y así obtener mayores beneficios que brinda la geomalla.

Figura 03. Geomalla biaxial

Fuente: Geosistemas Pavco

Figura 04. Detalle de costilla geomalla biaxial

Fuente: Geosistemas Pavco

Las geomallas biaxiales están diseñadas de tal manera que haya interacción entre los suelos y agregados pétreos, con elevado módulo de deformación a las estructuras y elevada resistencia a la tensión de las que forma parte. Las fibras de geomalla son altas con el exclusivo Multifilamento G5 de poliéster de alta tenacidad (PET) y están revestidas con un copo limero que le proporciona mayor rigidez dimensional y la protección necesaria en su instalación (MACCAFERRI, 2014).

Resistencia a Tensión: se define como la resistencia al alargamiento o deformación, no es una propiedad determinante.

Resistencia a Torsión: es la resistencia que presenta la geomalla ante el movimiento de rotación.

Resistencia a Juntas: Tiene como objetivo lograr el mejor funcionamiento de las juntas, o sea, que presenten la resistencia necesaria para trasmitir las cargar hacia las costillas.

Problema

Para definir este punto, Pérez y Merino sostienen que en lo que amerita al problema de la investigación se refiere a todo aquello mediante el cual se explicará. El problema está vinculado con el fin a investigar y por ello es dar una solución (2015, p. 45).

¿Cómo es el análisis de la estructura del pavimento reforzado con geomalla biaxial en la carretera Centro Poblado Condado Pichikiari – Chanchamayo, Junín-2019?

- ¿Cuál es el espesor adecuado de la estructura de pavimento reforzado con geomalla biaxial de la carretera Condado Pichikiari- Chanchamayo, Junín-2019?
- ¿Cuál es la ubicación adecuada de la geomalla biaxial en la estructura del pavimento flexible reforzado de la carretera Condado Pichikiari- Chanchamayo, Junín-2019?
- ¿Cuál es la productividad de reforzar con geomalla biaxial la estructura del pavimento flexible de la carretera Condado Pichikiari- Chanchamayo, Junín-2019?

La **justificación de un proyecto** es donde se presentan las razones por las cuales se realiza un proyecto o una investigación, en ella, se mostrará el interés que persigue dicho trabajo como compromisos académicos o sociales.

Pilar Colas y Joaquín Ramírez (2016, p. 1). En la justificación se deben colocar los argumentos más relevantes en el tema de investigación. Claramente es resaltar conocimientos que deben de responder a la pregunta "porqué realizo esta investigación", además del beneficio que aportará los resultados que se obtendrá.

Dicha investigación determinara la eficacia real de los acontecimientos de un adecuado diseño de pavimentos flexibles, a través del método AASHTO 93 usado principalmente

en el Manual de Suelos, Carreteras , Geotecnia, Geología y Pavimentos, tomando principalmente como datos de diseño los números CBR de la sub base – base de la carretera Condado Pichikiari - Chanchamayo, Junín y a su vez usando las Geomallas Biaxiales, las cuales nos dará una mejor eficiencia en la construcción de pavimentos, teniendo en cuenta que en la localidad de Pichanaqui se observa un déficit en sus carreteras pavimentadas con este método, las cuales permitirán una mejor respuesta ante cualquier tipo de fallas, también nos proporcionara un confortable y seguro tráfico de vehículos a velocidades estándar y sometidas a diversas condiciones climáticas, reduciendo costos y mejorando la eficiencia de la estructura.

En la medida de que este proyecto de investigación sea tomado en cuenta por las autoridades pertinentes y encargadas de las Infraestructuras de Obras Viales del Distrito de Pichanaqui, los principales beneficiados serán la población de Chanchamayo debido a que esta implementación de refuerzo en la estructura de pavimento flexible será aprovechada por muchas personas ya que transitan diariamente por esta carretera además el costo de la obra será optimizado totalmente de manera que reducirá el gasto del presupuesto inicial.

Esta investigación radica su importancia debido a que presenta un detallado análisis incorporando en la sub base las geomallas biaxiales, de manera que nos brinde una mejor estructura de acuerdo a las necesidades y requerimientos del Distrito de Pichanaqui, a comparación de los pavimentos existentes actualmente, mejorando los procesos constructivos y aminorando costos desde el inicio del proyecto.

Las hipótesis son las posibles respuestas a los resultados de una investigación que los investigadores especulan.

Real Academia Española (2017, p. 15) Una hipótesis es generada mediante diversos fines, aunque en realidad es un resultado referente a los procesos inducidos, ya que ahí surge una teoría. Después de esto se deduce y así se llega a la hipótesis real, falsa y además que se verifique.

Analizar la estructura del pavimento flexible reforzado con geomalla biaxial es óptimo en la carretera Condado Pichikiari – Chanchamayo, Junín-2019.

- 1. La aplicación de geomalla biaxial reduce el espesor de la estructura del pavimento flexible de la carretera Condado Pichikiari- Chanchamayo, Junín-2019.
- 2. la ubicación adecuada de la geomalla biaxial mejora la estructura del pavimento flexible reforzado de la carretera Condado Pichikiari Chanchamayo, Junín-2019.
- 3. La aplicación de geomalla biaxial optimiza la productividad de la estructura del pavimento flexible de la carretera Condado Pichikiari- Chanchamayo, Junín-2019.

A través de esto se puede indicar el propósito de la investigación, proyecto, estudio o trabajo los cuales abarcan una hipótesis o un problema.

El objetivo es lo primordial para la investigación científica, así como para diversos tipos de estudios a realizar, mediante el objetivo se predice, se explica y se describe todo fenómeno y se percibe el conocimiento del fenómeno estudiado (Ruiz, 2017).

Analizar la estructura del pavimento reforzado con geomalla biaxial en la carretera Centro Poblado Condado Pichikiari – Chanchamayo, Junín-2019.

- 1. Determinar el espesor de la estructura de pavimento flexible reforzado con geomalla biaxial de la carretera Condado Pichikiari Chanchamayo, Junín-2019.
- 2. Conocer la ubicación adecuada de la geomalla biaxial en la estructura del pavimento flexible reforzado de la carretera Condado Pichikiari Chanchamayo, Junín-2019.
- 3. Calcular la productividad del uso de reforzar con geomalla biaxial en la estructura del pavimento flexible de la carretera Condado Pichikiari Chanchamayo, Junín-2019.

3.3 Población, Muestra y Muestreo

Población

Wigodski, J. (2015, p.45). La población, son un grupo de individuos, objetos o medidas las cuales presentan características similares que se observan en cierto momento y el lugar adecuado, para realizar una investigación se deben considerar especificaciones primordiales al momento de la selección de la población a estudiar.

Es por ello que en esta investigación se toma como población la carretera del Distrito de Pichanaqui – Provincia de Chanchamayo – Región Junín-2019

Muestra

Ludewig, C. (2014, p. 65). Viene a ser parte de la población en la que se realizara la investigación. Hay varios procedimientos para obtener una cantidad significativa de componentes de la muestra, es intrigante de que es una impresión de la población, lo que es ilustrativo de ello.

Es por ello que en esta investigación se toma como muestra a la carretera Condado Pichikiari – Chanchamayo – Junín-2019. (ver anexo 01)

Muestreo

Rodríguez, R. (2014, p. 5). Mediante el muestreo se facilita el procedimiento o la técnica mediante el cual se extraerá parte del todo o la población a estudiar, también para el análisis característico que sean de mayor relevancia y así llegar a la afirmación del todo. Concluyendo, el procedimiento dado es para realizar la obtención de la muestra de la población, además de llegar a obtener resultados relacionados al análisis.

Para la investigación el muestreo será la carretera Condado Pichikiari – Chanchamayo – Junín-2019.

En esta investigación se eligió un muestreo no probabilístico intencional.

Se eligió el tramo de la rasante 6+000 - 6+100 por ser la más crítica con presencia de desgaste y filtración de agua.

3.4 Técnicas e instrumento de recolección de datos, Validez y Confiabilidad

Técnica

Se refieren a la aplicación de las técnicas y las herramientas que utilizará el analizador para construir el sistema de la información, estas podrían ser las encuestas, cuestionarios, las observaciones, diagramas de flujo, las entrevistas y los diccionarios de los datos. Dichos instrumentos serán aplicados en el momento adecuado, llegando al fin de buscar todas las informaciones útiles en la investigación. (Carrasco, 2015, p. 174).

De esta manera, en esta investigación se aplicó la observación, como una técnica para la obtención de datos, en la carretera Condado Pichikiari – Chanchamayo, Junín-2019.

Instrumento

Entendemos por esto a los distintos recursos que el investigador va usar y empaparse de todas las informaciones y los datos referentes al tema a estudiar. Mediante estos instrumentos, el investigador llega a obtener informaciones sintetizadas las cuales puede usar e interpretarlas adecuadamente con el Marco Teórico. Todos los datos que se recolectan deben ser específicamente correlacionados con las variables a estudiar y también los objetivos dados. (Schiffma, 2014, p. 35).

Para estudiar la variable independiente se hace uso de laboratorio, estación total para el levantamiento topográficos, se desarrollarlo una detallada descripción de forma cualitativa usando gráficos y se analizaron los ensayos usando las geomallas biaxiales que se implementaran como refuerzo en la estructuración del pavimento flexible, los ensayos determinaran el transcurso de las variables y dimensiones que se determinaron.

Tabla 01. *Instrumentos de recolección de datos*

Dimensiones	Instrumento	
Dimensiones	Metodologic	Análisis de Resultados
Espesor	Observación y recolección	CBR
Ubicación de la geomalla	Observación y recolección	Granulometria
Productividad	Observación	Trabajo en Gavinete

Fuente: Elaboración propia

Validez

Yin, referente a esto nos indica que una investigación debe ser verdadero y tener lógica donde llegan a juzgar la calidad diseñada mediante pruebas lógicas. (2014, p.41)

Por ende, esta investigación será validada con los distintos ensayos extraídos de las pruebas en laboratorio. Estos ensayos serán validados por ingenieros competente en el tema los cuales se encargarán de certificar dichos ensayos. (ver anexo 03).

Confiabilidad

Ander-Egg nos menciona que la confiabilidad es la exactitud a la que el instrumento va a medir. (2014, p.43).

El autor, explica que la investigación debe tener congruencia amplia, estabilidad y debe ser previsible.

Por lo tanto, en dicho proyecto de investigación se denominó confiabilidad a la calibración de las herramientas y equipos que nos ayudaran a medir las variables.

Tabla 02: Nota promedio de expertos

Expertos	Nota promedio
Experto 1	15
Experto 2	14
Experto 3	15

Fuente: Elaboración propia

En esta tabla podemos observar la nota promedio de las fichas de recolección de datos consignadas en el anexo 02 las cuales fueron calificados por expertos en dichos temas, con esto se concluye que se goza de una buena confiabilidad.

3.5 Procedimiento

Para desarrollar dicho proyecto de investigación, se trabajó a través de la recolección de datos y muestras de suelo extraída de la carretera en cuestión, posteriormente analizadas en laboratorio, por la cual, se determinó la resistencia que el provee, de igual manera, se tomó el Conteo Vehicular para determinar el (TPDA). Una vez obtenido todos estos datos, será posible analizar la estructura del pavimento flexible, con ello será posible determinar qué tipo de refuerzo aplicar, en este caso geomalla biaxial.

3.6 Método de análisis de datos

Este método toma lugar una vez terminada la acumulación de la información del Instrumento de Recolección de Datos usado al analizar la muestra.

El método de recolección, así como el análisis de los datos se deben elegir referente a las preguntas, la clave de evaluación y todos los recursos que estén a disposición en la evaluación. (Leónxy Montero, 2014, p. 76).

El método utilizado en esta investigación es el cuantitativo.

3.7 Aspectos Éticos

En la elaboración de este proyecto se tendrá presente la responsabilidad de presentar datos verídicos que avalen dicha investigación; respetando las ideas de autores ajenos; teniendo la responsabilidad social y ética del investigador.

Por ende, esta investigación será subida al programa TURNITIN la cual verifica que no haya plagio en dicha tesis o haya sido citada incorrectamente las aportaciones de otros autores.

En caso de los equipos se garantizará mediante certificaciones y licencias de funcionamientos. Es por ello que esta investigación realizo los análisis de suelos en el laboratorio JBO Ingenieros S.A.C. (ver anexo 02)

IV. RESULTADOS

DESCRIPCIÓN DE LA ZONA DE ESTUDIO

Las siguientes pruebas de realizaron en la carretera ya existente en el poblado ubicado en Pichikiari-Distrito Pichanaqui, Chanchamayo Junín en la progresiva, km 6+000 a 6 +100. Se eligió este tramo ya que corresponde a la zona más crítica de la cual se realizó los ensayos pertinentes para la elaboración de la tesis, la carretera se encuentra a nivel de base en su estructura.

En esta investigación se hace el análisis a los 100 metros que es el tramo de estudio de la carretera Condado de Pichikiari-Chanchamayo-Junín, aplicado al tramo Pichikiari-Pichanaqui, ubicado en la provincia de la Chanchamayo.

Nos centramos en estudiar esta zona de la carretera, dado que presenta un gran desgaste, deslizamiento del material granular y filtración de agua, por lo que pretende reforzar con geomalla biaxial.

Figura 05. Tramo Pichikiari-Pichanaki.

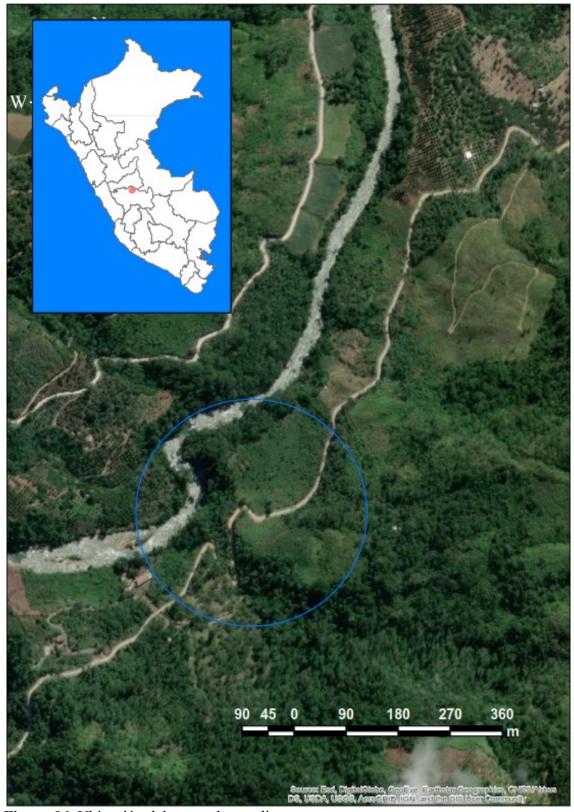


Figura 06. Ubicación del tramo de estudio

Fuente: Elaboración propia

TRABAJOS PRELIMINARES

En primera instancia se puede notar que la carretera se encuentra con una base deteriorada mal compactado con presencia de material suelto (suelo blando), las calicatas se tomaron en dos puntos dentro de los 100 metros a los 20m y los 70m respectivamente, también se tomó el conteo vehicular lo cual es un factor importante en esta carretera.

Figura 07. Estado actual de la carreta.

Tráfico

En este proyecto se va estudiar el óptimo desempeño de la estructura del pavimento flexible, y para hacer el análisis se va diseñar con el método tradicional y reforzado con geomalla, experimentando en los 100 metros del tramo Pichikiari - Pichanaqui.

Uno de los principales parámetros para lograr diseñar la estructuración del pavimento flexible es el Trafico, con lo cual se pretende determinar el Trafico Promedio Diario Anual (TPDA).

TPDA y conteo vehicular

Los resultados para el tramo Pichikiari – Pichanaki, se obtienen de la observación realizado en campo a través de contajes volumétricos manuales de clasificación vehicular, corroborados por el Ministerio de Transporte y Comunicaciones (MTC).

Esto nos da a conocer el tráfico que existe para analizar la estructuración del pavimento flexible en las vías de dicha carretera.

Para realizar este conteo de volumen vehicular se realizó de manera manual en campo, se tomó una semana respectivamente entre el 24 al 30 de marzo del 2019. (ver anexo 02)

Tráfico promedio diario anual existente (TPDA)

El TPDA, se refiere al tráfico actual que circula por la zona de estudio, el cual es importante para asignar el TPDA de la zona de estudio, los resultados adquiridos en campo se presentan a continuación:

Tabla 03. Tráfico Promedio Diario Anual Existente

Tramo: Pichikiari – Pichanaki (sentido: 2 carriles)

Vehículo	Livianos	D:	us	Camion Ei	es de 2	Com	niones Pes	ndos	TPDA
Veniculo	Livialios	2 Ejs	3 Ejs	Liviano	Medio	3 Ejs	5 Ejs	6 Ejs	ITDA
# Vehículos	3900	312	0	208	265	20	0	0	4705
%	82.89	6.63	0	4.40	5.65	0.43	0	0	100

Fuente: Elaboración propia

Los datos consignados en la tabla 03 son del ministerio de transportes MTC para el distrito de Pichikiari (ver anexo 02).

Tráfico Promedio Diario Anual Generado

Es el tráfico esperado con el mejoramiento de la carretera, acá se consignan los resultados adquiridos en campo.

El TPDA generado que se consiguió en campo se muestra en la siguiente tabla:

Tabla 04. Tráfico Promedio Diario Anual Generado

Tramo: Pichikiari – Pichanaki (sentido: 2 carriles)

Vehículo	Liviano Bus		Buses a Camiones de 2 Ejes		Camiones Pesados			TPDA	
Verniculo	Liviano	2 Ejs	3 Ejs	Liviano	Medio	3 Ejs	5 Ejs	6 Ejs	IFDA
# VEHICULOS	744	52	0	16	6	18	0	0	836
%	88.99	6.22	0	1.92	0.72	2.15	0	0	100

Fuente: Elaboración propia

Asignación del Tráfico

Este punto nos servirá para diseñar la estructura del pavimento flexible. Esto viene a ser la suma del tráfico existente y generado.

El tráfico asignado se muestra en la siguiente tabla:

Tabla 05. Tráfico Promedio Diario Anual Asignado.

Tramo: Pichikiari – Pichanaki (sentido: 2 carriles)

Tráfico	Liviono	Buses a		Camiones	Camiones Pesados			TDDA	
Tranco	Liviano	2 Ejs	3 Ejs	Liviano	Medio	3 Ejs	5 Ejs	6 Ejs	TPDA
Existente	3900	312	0	208	265	20	0	0	4705
Generado	744	52	0	16	6	18	0	0	836
Asignado	4644	364	0	223	272	38	0	0	5541

Fuente: Elaboración propia

El TPDA se desarrolla con una proyección a futuro, al cual se denomina "vida útil" del proyecto, en este trabajo se hace la proyección de 20 años.

La expresión o fórmula matemática a utiliza para calcular la proyección del TPDA se muestra a continuación:

$$TPDA_t = TPDA_0x(1+\alpha)^t$$

Donde:

 $TPDA_t = Tráfico$ Promedio Diario Anual futuro.

 $TPDA_o = Tráfico$ Promedio Diario Anual actual.

 α = Tasa de crecimiento del parque automotor.

t = Año de la proyección respecto al año base.

Tabla 06. Tasas de Crecimiento del Tráfico (%) Provincia Chanchamayo.

Periodo	Liviano	Bus	Camiones
2005 - 2010	2,98	2,24	2,45
2011 - 2015	2,65	1,99	2,18
2016 - 2020	2,39	1,79	1,96
2021 - 2030	2,17	1,63	1,78

Fuente: MTC

Haciendo uso de la anterior tabla proporcionada por el MTC se usa la fórmula matemática del TPDA, se proyecta el tráfico respectivamente.

Proyección del TPDA

Tabla 07. Proyección del TPDA asignado al proyecto

Tramo: Pichikiari - Pichanaki.

Años	Liviano	Bus	Camión 2	Camión 3	Camión 5	Camión 6	Total
			Ejs	Ejs	Ejs	Ejs	
2010	4644	364	495	38	0	0	5541
2011	4767	371	506	39	0	0	5683
2012	4893	379	517	40	0	0	5829
2013	5023	386	528	41	0	0	5978
2014	5156	394	540	42	0	0	6132
2015	5293	402	551	43	0	0	6289
2016	5351	405	556	43	0	0	6355
2017	5479	412	567	44	0	0	6502
2018	5610	420	578	44	0	0	6652
2019	5744	427	589	45	0	0	6805
2020	5881	435	601	46	0	0	6963
2021	6008	442	612	47	0	0	7109
2022	6139	449	623	48	0	0	7259
2023	6272	457	634	49	0	0	7412
2024	6408	464	645	49	0	0	7566
2025	6547	472	656	50	0	0	7725
2026	6689	479	668	51	0	0	7887
2027	6835	487	680	52	0	0	8054
2028	6983	495	692	53	0	0	8223
2029	7134	503	704	54	0	0	8395
2030	7289	511	717	55	0	0	8572
2031	7447	520	730	56	0	0	8753

Fuente: Elaboración propia

Cálculo de los Ejes Equivalentes (ESAL'S)

Los volúmenes de tráfico y la carga de cada vehículo son fundamental para desarrollar el diseño de cualquier estructuración de pavimento. Esto se conoce como la cantidad de repeticiones de un eje de carga equivalente de 18 lib. (80KN), para un periodo fijado.

Para determinar estas repeticiones se hace uso de los factores equivalentes propuestos por la AASTHO y basándonos en datos estipulados por el MTC sobre la clasificación de los vehículos (ver figura 21 en anexos), con lo cual se puede armar el siguiente cuadro.

Tabla 08. Proyección del tráfico

Tipo de Vehículos	TPDAo	%	TPDA f (10 Años)	TPDA f (20 Años)
Livianos	4644	84	5881	7289
Bus Medianos	364	7	435	511
Camión 2DB	495	9	601	717
Camión 3A	38	1	46	55
Camión 2S2	-	-	-	-
Camión 3S2	-	-	-	-
Camión 3S3	-	-	-	-
Suma	5541	100	6963	8572

Fuente: Elaboración propia

Factor de Carga Equivalente

Cada uno de los factores equivalentes se calcula mediante su respectiva formula la cual se muestra a continuación.

•
$$FQE_{SS} = (\frac{L_{SS}}{6.6})^4 * \% (EJE SIMPLE)$$

• FQE_{SD} =
$$(\frac{L_{SD}}{8.2})^4 * \%$$
 (EJE SIMPLE CON LLANTA DOBLE)

•
$$FQE_{TD} = (\frac{L_{TD}}{15})^4 * \% (EJE TANDEM)$$

•
$$FQE_{TR} = (\frac{L_{TR}}{23})^4 * \% (EJE TRIDEM)$$

Tabla 09. Factor de carga equivalente

Tipos de Vehículos	Carga Total (Tn)	_	a Por (Tn)	TPDAo	%	TPDA f (10 Años)	TPDA f (20 Años)	Factor De Carga Equivalente (FCE)
Liviano	2,4	0,7	SS	4644	84	5881	7289	0.0001062
LIVIGITO	۷,۰۰	1,7	SS	7077	07	3001	7203	0.0036974
Bus	13,1	3,9	SS	364	7	435	511	0.0085345
Medianos	13,1	9,2	SD	304	/ 435	311	0.1109159	
Camion	18	6	SS	495	9	601	717	0.0614712
2DB	10	12	SD	495	9 001	717	0.4127738	
Camion 3A	26	6	SS	38	1	46	55	0.0068301
Camion 3A	20	20	TD	36	1	40	JJ	0.0316049
Camian		6	SS					0.0000000
Camion	38	12	SD	0	0	0	0	0.0000000
2S2		20	TD					0.0000000
Comica		6	SS					0.0000000
Camion	46	20	TD	0	0	0	0	0.0000000
3S2		20	TD					0.0000000
Causiau		6	SS					0.0000000
Camion	50 (48)	20	TD	0	0	0	0	0.0000000
3S3		24	TR					0.0000000
	•		t.	5541	100	6963	8572	0.6359340

Fuente: Elaboración propia

Cálculo de los Ejes Equivalentes (ESAL'S)

$$N_{(8.2\,T)} = \frac{(TPDA_0 + TPDA_f)}{2} * 365 * Dt * n * F.\,C.\,E$$

A. Periodo 10 años

$$D_t = \ 0.50$$

 $n = 10 \, a \tilde{n} o s$

$$F. C. E = 0.6359340$$

$$N_{(8.2\,T)}=~7255943.437$$

$$N (8.2 T) = 7,2559*10^{6}$$

B. Periodo 20 años

$$D_t = 0.50$$

 $n = 20 \, anos$

F. C. E = 0.6359340

$$N_{(8.2 \text{ T})} = 14511886.69$$

$$N (8.2 T) = 14,5118*10^{6}$$

Descripción de los ensayos bajo norma

Ensayos de Campo

Los respectivos ensayos se ejecutaron en el Laboratorio JBO Ingenieros S.A.C. para lograr obtener el tipo de suelo, y de esta manera poder realizar los cálculos para diseñar el pavimento flexible reforzado con geomalla en la zona de estudio de la carretera Condado Pichikiari.

Ensayos según ASTM se realiza los ensayos:

a. Calicata 01

Se toma un punto dentro de los 100 metros correspondientes a la zona critica de la carreta Condado Pichikiari en la progresiva del km 6+020, con una profundidad de 1.50m. Ver Figura 08:

Figura 08. Muestra extraída 01

b. Calicata 02

Se toma otro punto dentro de los 100 metros correspondientes a la zona critica de la carreta Condado Pichikiari en la progresiva del km 6+070, con una profundidad de 1.50m. Ver Figura 09:

Figura 09. Muestra extraída 02

Ensayos de Laboratorio

Contenido de Humedad (ASTM D2216, AASHTO 265)

Mediante este ensayo logramos obtener la cantidad de agua que alberga el suelo, y es representada como el porcentaje resultante relacionada entre la masa o peso del agua que contiene una muestra y el peso de la muestra después de haber sido secada en un horno. (ver anexo 02)

- ✓ Se obtiene la cantidad necesaria de suelo para el ensayo, la cual depende la máxima cantidad de partículas que puede contener dicho suelo, los valores para obtener dicha masa se muestra a la table 29 en anexos.
- ✓ Luego de obtener las masas y el número del recipiente (m_1) se pesó y se registró.
- ✓ Se colocó la muestra en condiciones normales, para luego pesar el recipiente más la muestra húmeda y se apunta su masa (m_2) .

✓ Siguiendo con el proceso se colocó la muestra con el recipiente en el horno hasta tener un peso o masa constante, por un periodo entre 15 y 16 horas.

Figura 10. Contenido de humedad.

Granulometría por Tamizado (AASHTO T-88, ASTM D 422)

Gracias a este ensayo se puede clasificar el tipo de suelo por su tamaño, los cuales serán retenidos en los diferentes números de tamices, también se obtiene la proporción de masa de los áridos gruesos y finos. (ver anexo 04)

- ✓ Después de obtener una cantidad representativa de muestra, se colocó en un horno por 24 horas o por lo menos hasta obtener una masa constante.
- ✓ Una vez que la muestra ha secado, se procedió a retirar del horno, luego que se dejó enfriar se registró su peso.
- ✓ Ahora, para saber lo va tomar para hacer el ensayo, nos regimos por las normas ASTM D 422 y MTC las cuales se indican en la tabla 30 en anexo.

Figura 11. Granulometría por tamizado

Límite Líquido (LL) (AASHTO-89, ASTM D 4318)

Gracias a este ensayo se logra obtener la cantidad de agua que alberga en un suelo, durante su comportamiento plástico y líquido, mediante el uso del instrumento, Copa de Casagrande. (ver anexo 02)

- ✓ Se tamizo una cantidad de suelo representativo para el ensayo, mediante el tamiz N°40, del suelo que logra pasar se tomó un aproximado de 100 gramos, para luego mezclarlo con 15 a 20ml de agua, y de esta manera obtener un suelo homogéneo que sea fácil de moldear.
- ✓ Se colocó una cantidad del suelo homogéneo en la Copa de Casagrande, nivelando dicha mezcla paralelamente a la altura de la base con ayuda de una espátula, de manera que tenga una profundidad de 10mm.

Figura 12. Límite Líquido

Límite Plástico (AASHTO T-90, ASTM D 4318)

Gracias a este ensayo se logra obtener la cantidad de agua que alberga en un suelo, durante su comportamiento plástico y semisólido. (ver anexo 04)

Procedimiento:

- ✓ Se obtiene una muestra de 20 gramos, extraída del tamiz N°40, a la cual se le va agregando agua hasta obtener una pasta de suelo homogéneo, luego se va amoldando con las manos hasta formar una bola, entonces empezamos a rodar la bola entre la yema de las manos y una superficie plana formando un rollo en forma de fideo de 3mm de diámetro.
- ✓ Cuando el rollo se deshacer antes de alcanzar los 3mm, se le proporciona más agua a la mezcla, se repite el proceso anterior hasta que se agriete y si no se disgregase a los 3mm de diámetro, se sigue amasando hasta que se agriete.

Figura 13. Límite Plástico

Índice de plasticidad (I_p)

Es una diferencia entre límite líquido (L_L) y limite plástico (L_n)

$$I_p = L_L - L_p$$

Por lo que, cuando se presenta un suelo con $I_p = 2$, es considerado de plasticidad muy baja y cuando su índice está bordando los 30, se entiende como un índice de plasticidad muy altas, en esta tesis de obtuvo un incide de 14 lo cual es considerado índice normal (ver anexo 04).

Proctor Modificado (AASHTO T180-01, ASTM D 1557-02)

Gracias a este ensayo se logra obtener la relación entre la densidad del suelo y su contenido de humedad al compactarlo en un molde de forma cilíndrica metálico con un pisón de 4.54 kg., dicho pisón deber caer de una altura de 18". (ver anexo 04)

Figura 14. Proctor Modificado.

C.B.R. (ASTM D1883-73)

Gracias a este ensayo se logra determinar cuánto es que un suelo puede resistir al esfuerzo normal de compactación y de humedad en condiciones favorables, es por ello que el C.B.R. que obtenemos nos muestra la calidad del suelo con el cual se puede saber si este es utilizable o no, en la estructura o capas del pavimento flexible. (ver anexo 04)

- ✓ Del Proctor modificado se obtiene los resultados de densidad máxima y la humedad óptima.
- ✓ Se toma una cantidad de suelo aproximado de 4.54 kg en suelos finos y 5.44 kg en suelos granulares, para la mezcla de la muestra, con el resultado en % de humedad obtenido del Proctor.
- ✓ Como se puede observar en la siguiente imagen, se obtiene los CBR de 32.2 al 100% el cual será usado en el diseño para el análisis de la estructura.

Especificaciones geotextiles no tejido MACTEX Nº 40.1

Características técnicas

Este Geotextil está elaborado con fibra de polipropileno. El geotextil presenta alta resistencia a la degradación por parte de la luz ultravioleta, resistencia a componentes biológicos y químicos que mayormente se encuentran en el suelo (ver tabla 38 en anexo).

Geomallas MACGRID EGB 20S

Características Técnicas

En los diseños tradicionales se emplea mayores espesores de material granular, por lo que estos generan mayor tiempo y costo, más aún que posee una resistencia limitada. Es por ello que se emplea geomallas para mejorar la sub rasante.

Es por ello que las geomallas están diseñadas con una alta resistencia al desgaste, punzonamientos y rasgaduras, por lo que pueden resistir cargas dinámicas en todos los sentidos que estas se trasladen.

Para este trabajo se hace uso de la geomalla MACGRID EGB 20s para el diseño de la estructura por sus propiedades (ver tabla 39 en anexo).

Aplicación de la Geomalla

Esto es aplicado sobre el geotextil, la que será usado como separador de la capa del material granular y el suelo.

Este procedimiento se realiza de forma manual sobre la subrasante o suelo natural que este ya preparada, lo primero es colocar el geotextil separador y sobre este se coloca la geomalla biaxial

Diseño de Pavimento

Diseño por la AASHTO 93

Para diseñar la estructura del pavimento será usado el método de la AASHTO 93, también seguido de las indicaciones dadas por el MTC.

Gracias al análisis de tráfico determinado se optará por el tipo de pavimento a aplicar en la carretera. El lugar a estudiar consta de 100 metros de la carretera Condado Pichikiari y es donde se llevará a cabo el diseño.

Parámetros para el diseño

Para este diseño se tomará en consideraciones el método que influirá notablemente en este diseño del pavimento, los cuales son: Nivel de Serviciabilidad, Variables de Tiempo, Drenaje, Confiabilidad, Propiedades de los materiales y Trafico.

Niveles de Serviciabilidad (Po y Pt)

Esto nos ayuda a medir el cómo se comporta un pavimento, también es referido a la comodidad y seguridad que puede brindar al usuario que transitan por la vía.

Serviciabilidad Inicial (Po): Se refiere a las condiciones iniciales que presenta el pavimento. Para este parámetro la AASHTO nos recomienda lo siguiente: ver tabla 32 en anexo.

Serviciabilidad Final (Pt): Referido al comportamiento que deseamos que adquiera el pavimento al finalizar la vida útil del mismo. Para este parámetro la AASHTO nos recomienda lo siguiente: ver tabla 33 y 34 en anexo.

Variables de Tiempo

Hay que tener en cuenta dos variables: vida útil del pavimento y periodo de análisis o diseño.

Periodo de análisis se toma en cuanta de acuerdo al volumen rural. El tiempo de la vida útil del pavimento comienza desde su construcción hasta el momento donde su serviciabilidad la mínima. Es por ello que se toma el mismo tiempo de vida útil como periodo de análisis, para optar por esta variable se considera la categoría de la vía.

Para el análisis de la estructura del pavimento en este trabajo se diseñará con un tiempo de vida útil de 20 años, considerando una intrusión de refuerzo y mantenimiento a los 10 años. Ver tabla 35 en anexo.

Tránsito (ESALs)

Esto se conoce como la cantidad de repeticiones de un eje de carga equivalente de 18 lib. (80KN o 8.2T), todas conversiones de cargas por eje se realizan mediante factores equivalentes de carga, esto es algo que se explicó anteriormente en el capítulo 3.2 trabajos previos.

Tabla 10. Resumen de ejes equivalentes

Tramo	ESALs (10 años)	ESALs (20 años)	
Pichikiari - Pichanaki	7,2559 E+06	14,5418 E+06	

Fuente: Elaboración propia.

Confiabilidad (R)

Hace referencia a la posibilidad de que la estructuración del pavimento cumpla con sus funciones estimadas dentro de su tiempo de vida útil, en condiciones menos favorables del medio ambiente existente. (Darter y Hudson, 1973).

En nivel adecuado de confiabilidad de un pavimento está regido por el uso que se espera tenga dicho pavimento. El sobre dimensionamiento del espesor de un pavimento hace que este falle, ya que puede ser diseñado para un volumen te tráfico bajo cuando en realidad presenta alto volumen de tráfico o viceversa, en cualquier de los dos casos la serviciabilidad puede alcanzar su punto critica antes de lo previsto.

Los niveles de confianza están dados por la siguiente tabla: ver tabla 36 en anexo.

Dado que nuestra carretera corresponde a una arteria principal, se toma un Nivel de confianza del 90% siento este el promedio del nivel de confianza urbano.

Procederemos a calcular la Desviación Normal Estándar (Zr):

Para seleccionar el adecuado Zr no guiamos de la tabla 37 en anexo.

- Desviación Estándar Total (So)
- Para pavimento flexible el So se encuentra entre 0.40 a 0.50
- Para pavimento rígido el So se encuentra entre 0.03 a 0.40

Escogemos un Zr de -1.282 basado en la confiabilidad y un valor promedio de So de 0.45

Características de los materiales

En la metodología AASTHO 93, se remplaza el CRB de la subrasante, base y subbase por el Módulo Resilente, este módulo es de proporción dinámico que se basa solo en las deformaciones que pueden ser recuperables.

Luego se debe proceder a calcular el percentil para el diseño para lo cual debemos basarnos en los ejes equivalentes establecidas por el Istitutd Norteamerican del Asfalto, la cual se presenta a continuación:

Tabla 11. Percentil para C.B.R. de diseño

Número de eje equivalente a 8,2Ton en el carril de diseño durante el periodo de análisis	Percentil de diseño (%)
≤ 10 ⁴	60
10 ⁴ - 10 ⁶	75
≥ 10 ⁶	87.5

Fuente: Instituto Norteamericano del Asfalto

De acuerdo a lo presentado en la tabla 11 se toma como percentil de diseño de 87.5, ya que se obtiene un eje equivalente mayor a 10⁶ y luego se grafica en Excel los valores de C.B.R. obtenido en campo.

Tabla 12. C.B.R. De Diseño

Abscissa	C.B.R.	Orden Creciente	# Ensayos	%
0+020	7.70	6.44	3	100
0+070	6.44	7.70	1	50

Fuente: Elaboración propia

En esta tabla se muestra los CBR que se obtuvieron en los ensayos de laboratorio de las muestras de suelo extraída de la zona de estudio, lo cual se procede a graficada en Excel haciendo uso del percentil de diseño de 87.5, con el cual se extrae el CBR de diseño para finalmente obtener uno de los datos más importantes para el diseño que es el Módulo Resilente (M_R).

C.B.R. DE DISEÑO

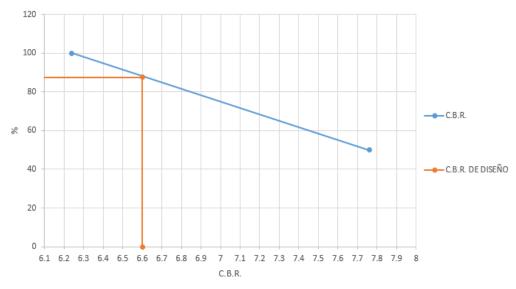
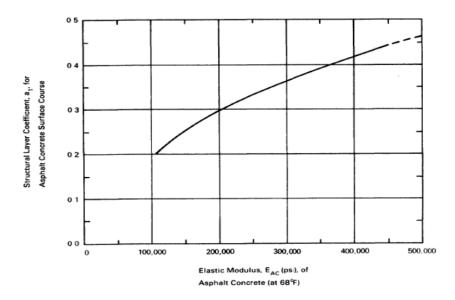


Figura 15: Gráfico CBR de diseño.

Fuente: Elaboración propia

Lamentablemente en nuestro país no existen los equipos ni la experiencia para calcular el Módulo Resilente $\mathbf{M}_{\mathbf{R}}$ de la subrasante, por ello se hace uso de la siguiente ecuación en relación con el C.B.R.:


$$MR = 1500 * CBR (psi), si C.B.R. < 7.2\%$$

Obtenemos un valor de CBR de diseño de 6.60% por lo tanto un módulo Resilente igual a 9900.

Coeficientes Estructurales (ai)

Cada material que se puede encontrar en las diferentes capas de un pavimento, posee características distintas, de acuerdo a eso, tiene un coeficiente estructural (ai). Este "ai" es la representación de la capacidad de un material para resistir cargas.

Gracias a las pruebas AASHTO se obtiene la siguiente relación de coeficientes las cuales se presentan a continuación.

Figura 16. Coeficiente de capa para carpeta asfáltica Fuente: Instituto Norteamericano del Asfalto

Basado en el módulo elástico de 400.000 Psi del concreto asfaltico, se determina un coeficiente de capa $a_1 = 0.43$ pulg.

Coeficiente de capa para base granular

Luego de realizar los ensayos se obtuvo el CBR con un valor de 38.5% (ver anexo 04) por lo que se toma $a_2 = 0.112$, basándonos en la tabla establecida por el Instituto Norteamericano del Asfalto, y un Módulo Elástico de 20.000 Psi, los cálculos se pueden apreciar en la figura 17.

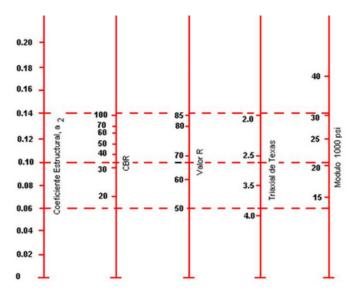
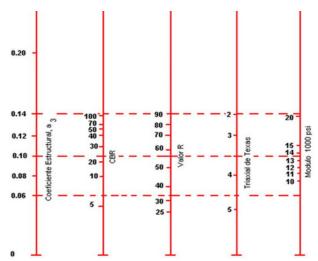



Figura 17. Coeficiente de capa a_2

Fuente: Instituto Norteamericano del Asfalto

Coeficiente de capa para subbase granular

Luego de realizar el ensayo se obtuvo el CBR con un valor de 32.2% (ver anexo 04) por ello tomamos $a_3 = 0.110$ y con Módulo Elástico igual a 13.000 Psi, calculado en la figura 18.

Figura 18. Coeficiente de capa a_3

Fuente: Instituto Norteamericano del Asfalto

Drenaje

Cuando se habla de drenaje nos referimos a las capacidades que presentaran las diferentes capas de la estructura del pavimento para drenar el agua, y de acuerdo al contenido de humedad de 12.30 % (ver anexo 04) se considera suelo bueno con un tiempo para la subrasante mejorada con niveles de saturación al 50% por día, y para la condición de drenaje nos basamos en lo establecido por el Instituto Norteamericano del Asfalto (ver tabla 40 y 41 en anexo).

Basándonos en las condiciones de drenaje es que se va a obtener el mi = 1 para carpeta asfáltica; 0,95 para base; 0,90 para subbase, estos dos últimos según el Instituto Norteamericano del Asfalto.

Número Estructural (NE)

Para desarrollar este proceso según la AASHTO la recomendación que nos brinda para las condiciones de caminos con periodos extensos de análisis y como mínimo un tiempo de rehabilitación.

Con la presente formula se puede obtener el número estructural.

$$Log (W_{18}) = Z_{R*}S_0 + 9,36 Log (NE + 1) - 0,20 + \frac{Log \left[\frac{(4,2 - P_t)}{(4,2 - 1,5)}\right]}{0,4 + \frac{1094}{(NE + 1)^{5,19}}} + 2,32 Log M_R - 8,07$$

Donde:

 $W_{18} = \text{Número previsto de } 80 \text{ KN}$

NE = Número Estructral

Zr = Desviación Normal Estándar

So = Valor de Error Estándar

Pt = Servicia bilidad Final

Mr = Modulo de Resiliencia

Haciendo uso de la fórmula matemática se obtiene los siguientes números estructurales:

Tabla 13. Numero estructural

Periodo de diseño	NE
Tramo: Pichikiari -	- Pichanaki
20 años	5,36
10 años	4,76

Fuente: Elaboración propia

Luego de haber obtenido el Numero Estructural, seguimos a resolver dicho NE, usando los coeficientes de capas, y con ello lograr obtener los espesores de las capas de pavimento, las cuales satisfagan en (NE) obtenido de acuerdo a sus características.

La estructuración no cuenta con solo una solución, se puede presentar varias combinaciones que satisfagan la ecuación del (NE).

Gracias al número estructural es que se puede determinar los espesores de capa, en función a los coeficientes de capa y drenaje, así como el espesor mínimo sugerido por AASHTO.

Para la obtención de los espesores mínimos según la AASHT 93 gústese ver tabla 42 en enexo.

Tabla 14. Resumen de parámetros para el diseño de la estructura de pavimentos

Parametros				
ESALs 10 años	7'255.943,437			
ESALs 20 Años	14'511.886,690			
R	90%			
Zr	-1.282			
Desviación Estándar (So)	0.45			
Ро	4.2			
Pt	2.5			
CBR sub-rasante	6.60%			
MR	9900 Psi			

Espesores mín.				
Carpeta Asfáltica	10 cm			
Capa de Base	15 cm			

Coeficiente de Capa	Coef. Estructurales (ai) pulg.	Coef. de Drenaje (mi)		
Carpeta Asfáltica	0.430	1.00		
Base	0.112	0.95		
Subbase	0.110	0.90		

Fuente: Elaboración propia

Determinación de Espesores por Capas

Primero se diseña para un pavimento sin reforzamiento (sin geomalla), para ello tomamos el (ai) de 0.43 pulg. de carpeta asfáltica según los resultados ESALs. (figura 16)

Basándonos en la siguiente fórmula matemática se puede obtener la estructuración del pavimento en las distintas capas, donde sus espesores nos brindan la capacidad de soporte correspondiente al NE que se obtiene para la subrasante.

$$NE = a_1 \cdot D_1 + a_2 \cdot D_2 \cdot m_2 + a_3 \cdot D_3 \cdot m_3$$

Donde:

 a_1 , a_3 y a_3 = Coeficiente estructural

 D_1 , D_3 y D_3 = Espesores de la carpeta

 $m_2 \ y \ m_3 = Coeficiente \ de \ drenaje$

Tabla 15. Diseño de pavimento tramo Pichikiari – Pichanaki pavimento sin reforzamiento periodo de 20 años.

ESPESOR DE CAPA							
Capas	Coef. De Capas (PULG.)	Coef. De Drenaje (mi)	Espesor (cm)				
Carpeta Asfáltica	0.43	1	10				
Base Granular	0.112	0.95	25				
Subbase	0.11	0.9	25				
Mejoramiento	0.1	0.9	40				
		Total	100				

Fuente: Elaboración propia

Tabla 16. Diseño de pavimento tramo Pichikiari – Pichanaki pavimento sin reforzamiento periodo de 10 años

ESPESOR DE CAPA							
Capas	Coef. De Capas (pulg.)	Coef. De Drenaje (mi)	Espesor (cm)				
Carpeta Asfáltica	0.43	1	10				
Base Granular	0.112	0.95	15				
Sub-Base	0.11	0.9	15				
Mejoramiento	0.1	0.9	60				
		TOTAL	100				

Fuente: Elaboración propia

Espesor de la estructura del pavimento flexible reforzado con geomalla biaxial.

Diseño con geomalla biaxial.

Para diseñar la estructura tomamos comoguia las normas estipuladas por AASHTO 93, este método fue acoplada para explicar el aporte estructural del diseño, elaborado por Filippo Montanelli, Pietro Rimoldo y Aigen Zhao, los cuales se basaron en resultados de laboratorio y verificación en campo y así demostrar este método con geomalla biaxial.

El geosintético o geomalla a usar en este diseño es la MACGRID EGB 20S, con una resistencia a la tensión es de 20KN/m.

 Luego de haber obtenido el número estructural de la subrasante de acuerdo al diseño, lo cual usamos para hacer un cálculo de la estructura, determinado espesores equivalentes. A este espesor se le va denominar D3, el cual es obtenido con la siguiente formula.

$$NE = a_1 \cdot D_1 + a_3 \cdot D_3 \cdot m_3$$

2. Luego obtenemos el coeficiente que aporta la geomalla biaxial de 20KN, mediante la gráfica que se muestra a continuación obtenemos el valor de LCR para una subrasante con C.B.R. = 6.60%.

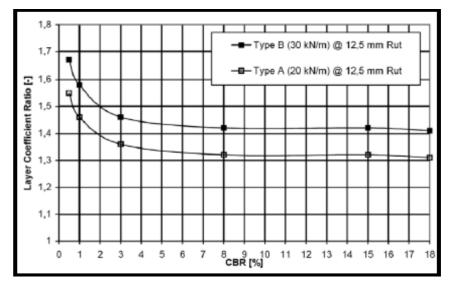


Figura 19. LCR VS % CBR

Fuente: AASHTO 93

De la cual obtenemos un valor de LCR = 1.32

Para lograr obtener una disminución de espesores y determinar lo que la geomalla biaxial va aportar a la estructura del pavimento, se tiene que mantener hasta este punto el valor del NE sin reforzar, para lo cual:

$$NEref. = NE sin ref.$$

3. Una vez establecido el NE pasamos a determinar el D_{3ref} para la capa granular incluyendo el reforzamiento que vendría a ser un todo en la estructuración.

$$NEref = a_1 * D_1 + a_3 * LCR * D_{3ref} * m_3$$

4. Una vez determinado el D_{3ref} en la capa granular reforzada, podemos obtener el NEref.

$$NE_3ref = a_3 * D_{3ref} * m_3$$

5. Una vez obtenido el NE_3ref , procedemos a obtener el espesor la base y subbase y se determinan el espesor de las mismas en función del NE de la capa reforzada.

$$\textit{NEref} = \textit{a}_2 * \textit{D}_{2ref} * \textit{m}_2 + \textit{a}_3 * \textit{LCR} * \textit{D}_{3ref} * \textit{m}_3$$

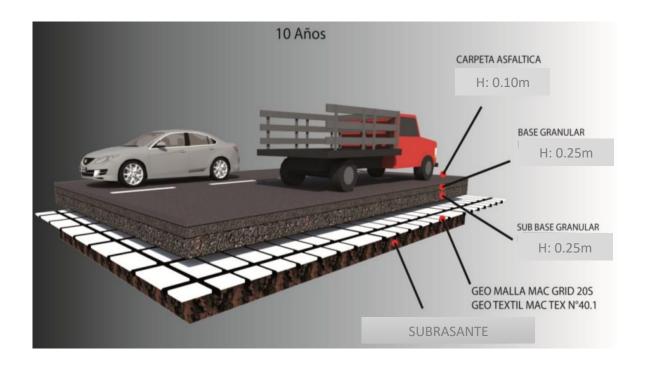
Para despejar el espesor para la subbase con refuerzo, se considera un espesor para la base que mínimo de 15cm o se mantiene el ya obtenido (sin refuerzo).

Entonces haciendo uso de las fórmulas presentadas anteriormente se determinan los nuevos espesores ver a continuación.

Tabla 17. Diseño de pavimento sin refuerzo y reforzado

Canas	Sin Re	fuerzo	Con Refuerzo		
Capas	20 años	10 años	20 años	10 años	
Carpeta Asfáltica	10 cm	10 cm	10 cm	10 cm	
Subbase	25 cm	15 cm	25 cm	10 cm	
Base	25 cm	15 cm	25 cm	15 cm	

Fuente: Elaboración propia


Ubicación adecuada de la geomalla biaxial en la estructura del pavimento flexible.

Se muestra en la tabla 32 como varia los espesores de la carpeta de la sub-base (D3), en los diseños de pavimento sin reforzar y reforzado del periodo de 10 años, son los únicos que muestran una variación en los espesores, por lo que, la geomalla biaxial será colocada en la sub-base granular. En esta tabla se presenta un resumen con refuerzo en los espesores.

Tabla 18. Diseño de pavimento flexible reforzado tramo Pichikiari – Pichanaki

Número	Espesores Equivalente		LCR Fig.	Número Estrctural	Equiv	sores alente rzado	NE Refuerzo	base refuerzo	Base refuerzo	D3 refuerzo	D3 refuerzo
de años	D'3 (pulg)	D'3 (cm)	20 (NE)	D3 ref (pulg)	D3 ref (cm)	a3*D3r*m3	(cm)	(pulg)	(cm)	(cm)	
20 años	33.5	85.20	1.32	5.37	25.05	63.60	2.75	25	9.84	24.01	25
10 años	28.35	72.01	1.32	4.81	21.16	53.74	2.32	15	5.91	9.64	10

Fuente: Elaboración propia

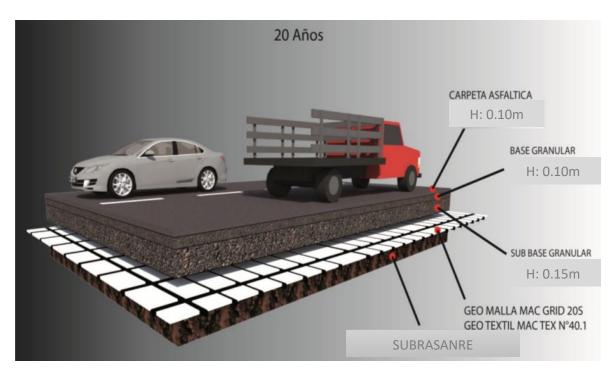


Figura 20. Ubicación de la geomalla

Fuente: basada en el modelo de la AASHTO 93

Productividad del uso de reforzar con geomalla biaxial la estructura del pavimento flexible.

Análisis de costos de la sub-base sin reforzar (e=15cm) y reforzado (e=10cm).

Presentamos un resumen de análisis de costo en la capa sub-base, además se presenta en el cuadro una serie de metrados de las distancias de transporte de materia los cuales irán anexadas (ver anexo 02). Dichos metrados son referentes a la sub-base granular sin reforzar o tradicional de e=15cm.

Tabla 19. Resumen de análisis de costo de la sub-base sin geomalla y con geomalla biaxial.

Сара	Sub-base esp	esor de 15cm (Sin Refuerzo)	Sub-base espesor de 10cm (con Refuerzo)				
Subbase	Volumen de suelo (m3)	Transl. de suelo D<=1km (m3-km)	Transl. de suelo D>1km (m3-km)	Volumen de suelo (m3)	Transl. de suelo D<=1km (m3-km)	Transl. de suelo D>1km (m3-km)		
Metrado	154.5	192.5	4,331.25	103	128.75	2,896.88		
Precio unitario (s/.)	26,13	3,78	0,66	48,5	3,78	0,66		
Parcial (s/.)	4,037.09	727.65	2,858.63	4,980.05	486.68	1,911.94		
Total (s/.)		7,623.37		7,378.67				
Ahorro (s/.)		244.7						
Ahorro (%)		3.21%						

Fuente: Elaboración propia

Cuando hacemos un análisis sobre este punto, observamos que la capa sub-base necesita $154.50 \ m^3$ de material o suelo (sin esponjamiento) que viene a ser de los $100 \ \text{metros}$ del tramo por $10.30 \ \text{metros}$ del ancho de la carretera, por los $0.15 \ \text{m}$ de espesor de la sub-base y con esponjamiento para el traslado de material $D \le 1 \ \text{km}$ ($154.50 \ m^3 \ \text{x}$ $1.25 = 192.50 \ m^3$). Al analizar los rendimientos y metrados del transporte de material notamos que la distancia media de trasporte es $22.5 \ \text{km}$ (ver anexo 02), entonces para $D > \ \text{km}$ se tiene ($192.50 \ m^3 \ \text{x}$ $22.5 = 4,331.25 \ m^3$ -km). De esta manera se prosigue con la aplicación de la geomalla, los precios unitarios se explican a continuación.

Costos de la sub-base sin geomalla biaxial (e=15cm)

A continuación, se presentará el cálculo de los costos que influyen en la sub-base de la carretera de los 100 metros en el 6+100 km, ver la siguiente tabla.

Tabla 20. Costo de la sub-base (e=15cm) de los 100 metros de la carretera Condado Pichikiari.

Сара	Progresiva (Km)	Vol. de suelo (m3)	Costo de suelo (s/m3)	Costo Total Por Capa (s/.)
Capa de subbase	6+100 154.50 26.13		4,037.09	
_			TOTAL	S/. 4,037.09

Fuente: Elaboración propia

Los costos unitarios de la sub-base es de acuerdo a los datos realizado en campo, donde se puede observar las subpartidas de agua y material en la sub-base, que requieren ser analizados (ver tabla 43 en anexo), como se puede observar en esta tabla la subpartida sobre el "agua para la obra" tiene un precio de S/. 11.47, la cual se demuestra cómo se obtiene en la tabla 44. La subpartida "material granular para subbase" se observa un precio de S/. 12.97 y tiene más subpartidas como: carguío de material granular, cantera y material de subbase y zarandeo, los cuales se presentarán en la tabla 45 y así sucesivamente se va demostrando como se obtiene los costos de esta subpartida en las tablas 46, 47 y 48 en anexo.

Luego determinamos el costo de transporte de material lo que viene a ser la conformación de la capa subbase en la siguiente tabla.

Tabla 21. Costos de transporte de material granular para la subbase de e=15cm para $D \le 1$ km $y D \ge 1$ km.

Tranporte	Metrado de Material (m3-km)	Costo de Material (s//m3)	Costo por Capa (s/)
D<= 1KM	192.50	3.78	727.75
D> 1KM	4,331.25	0.66	2,858.63
		Total	S/. 3,586.38

Fuente: Extraído del expediente de la carretera Condado Pichikiari.

Para hacer el análisis del transporte de material en las respectivas distancias, nos guiamos del análisis hecho en obra. (ver anexo 02)

Costo de la sub-base con geomalla biaxial (e=10cm)

A continuación, se presentará los cálculos del costo con la geomalla biaxial, lo cual nos arrojó un espesor de e=10cm, de los 100 metros de la progresiva 6+100. Las especificaciones técnicas de la geomalla se presentan en el anexo 02.

Tabla 22. Costo de sub-base de e=10cm con geomalla biaxial de la carretera Condado *Pichikiari*.

Сара	Progresiva (Km)	Vol. de material (m³)	Precio de material (s//m³)	Precio total por capa (s/)
Capa de sub-base	6+100 103 48.		48.35	4,980.05
			Total	S/. 4,980.05

Fuente: Elaboración propia.

Como podemos observar el precio unitario de material de la subbase (e=10cm) es de S/. 48.35. En este precio está incluido el monto del agua puesta en obra, el costo del material para sub-base y el monto de la geomalla biaxial.

Se puede ver en la tabla 48 que en la partida de geomalla biaxial tiene un precio de S/. 2.73, para lo que se requiere la cantidad de 8.14 m² de geomalla biaxial, este metrado se explicara a continuación:

Largo de la subbase = 2.06m

Ancho de la subbase incluyendo sobreancho = 9.70m

Ancho de la geomalla = 3.95m

Si:

- ✓ 1m3 de material de la sub-base = $(2.06\text{m}) \times (9.70\text{m}) \times (0.10\text{m})$
- ✓ La medida de geomalla biaxial por lote es de: (50m) x (3.95m)

Por lo tanto:

- ✓ 1m3 de material sub-base abarca (2.06m) x (9.70m) = 19.98m2 de vía.
- ✓ Lo que se requiere de geomalla biaxial por 1m3 es: 3.95 m x 2.06 m = 8.14 m2.

Tabla 23. Costo unitario de la base granular (e=10cm) con geomalla biaxial.

Partida	tida 02.05.01 Subbase granular						
Rendimient	m³/día	m³/día MO: 388 EQ: 388			Costo uni	48.35	
código	Descripc	ión recurso	Unidad	Cuadrill a	Cantida d	Precio s/	Parcial s/
	Mano	de obra					
	Operario		Hh	1.00	0.0207	19.17	0.40
	Oficial		Hh	1.00	0.0207	15.90	0.33
	Peón		Hh	6.00	0.1235	14.30	1.77
							2.5
	Eq	uipos					
	Herramien	ta manual	%MO		5.000	2.50	0.13
	Rodillo lisc autopropu HP 7-9 ton	Isado 70-100	Hm	1.00	0.0206	144.08	2.98
	Motonivel	ador	Hm	1.00	0.0206	186.443	3.83
	Code						6.94
		oartidas obro	M ³		0.100	11.46	1.15
	Agua para	ODIa	IVI		0.100	11.46	1.15
	Material g subbase	ranular para	M ³		1.200	12.95	15.54
	Geomalla Biaxial MACGRID EGB 20S				8.14	2.73	22.22
	l		1	I	I	I	38.91

Fuente: Elaboración propia.

Se puede observar a la tabla 49 en anexo, el análisis de costo total es de 2.73 soles y el pecio de la geomalla es de S/ 2.10, la geomalla será traída del distrito de Lurín de la empresa MACCAFERRI, la cantidad es de $3.95 \,\mathrm{m} \,\mathrm{x} \, 100 \,\mathrm{m} = 395 \,\mathrm{m} 2$. Es decir, un lote tiene $197.5 \,\mathrm{m} 2$: $(395 \,\mathrm{m} 2) / (197.5 \,\mathrm{m} 2) = 2$ lotes de geomalla biaxial.

Tabla 24. Cálculo del flete de la geomalla biaxial.

Traslado

Origen	Destino	D.V. (kmv)	(S/). (tn)	FRV	(S/). (tn)	índice 32 dic- 05	índice 32 ago- 19	Readjuste	Sub Total
Lima	La Merced	379.76	69.03	1.000	69.03	371.50	472.50	1.272	87.81

Cálculo de fletes a la obra:

Calculo en base a lo estipulado por el D.S. N° 033-2006-MTC

Origen	Destino	Region	Altitude promedio	Tipo carretera	Distance km	F.C.	DV
La Merced	OBRA	Selva	1000 - 2500	Asfaltada	73.50	1.20	88.20

Factor de corrección

Dogića	Tipo de caretera				
Región	Asfaltada	Afirmado	Trocha		
Costa 0 - 100 msnm. Gradiente (0 - 3%)	1.00	1.58	2.15		
Selva: 1000 - 2500 msnm. (3 - 5%)	1.20	2.10	2.90		
Sierra:> 2500 msnm. Gradiente (5 - 7%)	1.40	2.80	3.90		

Tipos Transporte	Carga Útil (Ton)	D.V (kmv)	(S/). (tn)	(S/). (tn)	Indices 32 dic-05	Indices 32 ago- 19	Reajuste	Sub Total
Normal	30	88.20	660.30	22.015	371.50	472.50	1.272	28.00

Cálculo de fletes a obra:

Traslado

Origen	Destino	Flete a La Merced	Flete Merced - Obra	Flete xtm	Flete x kg	
Lima	0bra	87.81	28.00	115.81	0.115	

Cotización de Materiales

Descripción	Unid	Peso (kg/u)	Procedencia	Precio S/.	Costos Meccaferri S/
Geomalla biaxial MACGRID EGB 20S	m2	1.02	Lima	1.87	1.87

Cálculo del precio de Material:

Lima a Obra: (s//kg): 0.115

Descripción	Unid	Peso (kg/u)	Origen	Precio Base Sin IGV (S/)	Flete	Alm.Man 2.00%	Precio S/
Geomalla biaxial MACGRID EGB 20S	m2	1.02	LIMA	1.87	0.115	0.1136	2.10

Fuente: Elaboración en base al modelo MTC.

El cálculo del flete se determina siguiendo las normas dadas por el INEI (ver anexo 02)

Ahora analizamos el costo de transporte del material sub-base reforzado con geomalla biaxial para el e=10cm, siguiendo los mismos pasos de sin reforzar con geomalla se obtiene el siguiente resumen:

Tabla 25. Costos de transporte de subbase (e=10cm) para $D \le 1km$. De acuerdo a la influencia de la geomalla biaxial.

Transportes	Metrado de material (m3-km)	precio de Material (s/. /m3)	precio total por capa (s/)
D<= 1km	128.75	3.78	486.68
D> 1km	2,896.88	0.66	1,911.94
		Total	S/. 2,398.62

Fuente: Elaboración propia.

Cálculo del tiempo de realización de la sub-base sin reforzar (e=15cm) y reforzado con geomalla biaxial (e=10cm).

Se indica el análisis de acuerdo a las partidas y al proyecto (ver figura 22 en anexo), donde se puede observar el tiempo reducido en 30 días que muestra un ahorro de 5.55%. Este resultado, se debe a que solo la base y sub base son influyentes y afectan la ruta crítica. Con esto presentamos el siguiente resumen.

Tabla 26. Resumen del análisis de tiempo.

		ANÁLISIS DE PARTIDA INFLUYENTE	Tiempo de Ejecución (días)	27.11.11.11.12.12)
	CON	SUB-BASE Y BASE	120		120	
INFLUNCIA	GEOMALLA	Sub base granular	120		120	
DE LA		Base granular	90		90	
GEOMALLA	SIN GEOMALLA	SUB-BASE Y BASE	90		90	
BIAXIAL		Sub base granular	30	30		
		Base granular	90		90	
		Se muestra el ahorro en dias entre las			_	30
		barras azules: 120 - 90 = 30 días				30
Ahorro (%)		[%)		5.55%		

Fuente: Extraído de la figura 22.

Análisis del tiempo de ejecución de la sub-base sin geomalla biaxial

Para el tiempo que se necesita para ejecutar cada partida se obtiene de la tabla 40 que su vez es extraída de la figura 22, donde se consignan los datos que se obtuvieron en campo a través del programa Ms Project, con esto se puede hacer el siguiente cuadro de resumen:

Tabla 27. Tiempo de ejecución de cada partida, sin refuerzo.

Capa	Compactación de La Subbase		Transporte de material sub-base					
Sub Base	Vol. (m3)	Tiempo (días)	D<= 1km (m3- km)	Tiempo (días)	D> 1km (m3-km)	Tiempo (días)		
	154.50	120	192.5	90	4,331.25	80		

Fuente: Elaboración propia.

Análisis del tiempo de ejecución de la sub-base con geomalla biaxial

Para el tiempo que se necesita para ejecutar la obra en cada una de las partidas se obtiene de la figura 23 (ver anexo 02), con esto se puede hacer el siguiente cuadro de resumen.

Tabla 28. Tiempo de ejecución de cada partida, reforzado.

Capa Sub Base	Compacta subl		Transporte de material sub-base				
	Vol. (m3)	Tiempo (días)	D<= 1KM (m3-km)	Tiempo (días)	D> 1KM (m3-km)	Tiempo (días)	
	(1113)	(uias)	(1113-1111)	(uias)	(1113-1111)	(uias)	
	103	30	128.75	22	2,896.88	20	

Fuente: Elaboración propia.

Todo esto se desarrolla en base al tiempo de la obra sin refuerzo, también se presenta un resumen en el tiempo de ejecución del proyecto. Para poder hacer el análisis de cómo influye la geomalla en el tiempo nos basamos en los transportes de materiales para la respectiva capa y esto se ve reflejado en la ruta crítica.

Por ello el punto principal a analizar es la ruta crítica, en este caso se encuentra en la sub base granular; pero también con una influencia de la base en la ruta crítica, por lo que la nueva ruta crítica vendría a ser 90 días

CONTRASTACIÓN DE HIPÓTESIS

La aplicación de la geomalla biaxial reduce el espesor de la estructura del pavimento flexible.

Ho: La aplicación de la geomalla biaxial no reduce el espesor de la estructura del pavimento flexible.

Ha: La aplicación de la geomalla biaxial reduce el espesor de la estructura del pavimento flexible.

Al analizar el cálculo de espesores del pavimento flexible aplicando el refuerzo (geomalla), se obtuvo una disminución en la sub-base granular de 33.33%, es decir tenemos un espesor de 10cm (ver tabla 17); también se puede ver que en la capa base no se reduce, por lo que este ya tiene un espesor establecido de 15cm lo cual teóricamente no debe ser menor a esta.

Por consiguiente, se acepta la Ha y se rechaza la Ho.

La ubicación adecuada de la geomalla biaxial mejora la estructura del pavimento flexible.

Ho: La ubicación de la geomalla biaxial no mejora la estructura del pavimento flexible.

Ha: La ubicación de la geomalla biaxial mejora la estructura del pavimento flexible.

La ubicación de la geomalla biaxial por norma se puede aplicar solo a dos capas de la estructura del pavimento flexible, están son la base granular y la subbase granular, entonces mediante el análisis del cálculo de espesores nos podemos dar cuenta que el cambio se presenta en la subbase granular indicando de esta manera la ubicación de la geomalla (ver tabla 18), esto debido a los parámetros de diseño explicados anteriormente.

Por lo tanto, se acepta la Ha y se rechaza la Ho.

La aplicación de la geomalla biaxial optimiza la productividad de la estructura del pavimento flexible.

Ho: La aplicación de la geomalla biaxial no optimiza la productividad de la estructura del pavimento flexible.

Ha: La aplicación de la geomalla biaxial optimiza la productividad de la estructura del pavimento flexible.

Como se puede observar en la tabla 19, el uso de la geomalla biaxial logra reducir el consto en 3.21% = 244.70 soles, por los 100 metros reforzados de la carretera, una cifra significativa si nos ponemos analizar por kilómetros de pavimento reforzado y respecto al tiempo de aplicación, en la subbase es de 30 días como se observa en la tabla 26 lo que resulta en una reducción del tiempo de 5.55% respecto a la programación de obra.

Por consiguiente, se acepta la Ha y se rechaza la Ho.

V. **DISCUSIÓN**

- A partir de las muestras tomadas de la carretera Condado-Pichikiari, Chanchamayo, Junín, se tienes que según los análisis realizados en laboratorio (CBR ver anexo 04) muestra un suelo que es grava arcillosa con arena, un suelo con una resistencia a resistir cargas, así como poder disminuir el espesor de la sub-base. Esta optimización de subbase logra dar solución a los acarreos de material desde canteras lejanas y al mismo tiempo al haber reducción de espesores de la sub-base existe menor explotación de cantera por lo tanto menor consumo de agua para obra; acción descrita por Chacon, Jimbo, J. T. (2014). Mediante el análisis de la estructura de pavimento flexible reforzado podemos ver que el espesor de la sub base en el diseño tradicional es de 15cm, mientras que al reforzarla con geomalla biaxial se obtiene un espesor de 10cm habiendo reducido en 5cm (33.33%) la sub base, como se indica en la tabla 17. En referencia a esto, Anselmo Nuñez Condori (2016), logra obtener una subbase con espesor de 15cm para luego con aplicación de geomalla llegar a reducir en 66.67% (5cm de subbase).
- Ahora lo referente a la ubicación de la geomalla biaxial, según la AASHTO 93 la geomalla puede ir ubicada en dos capas de la estructura del pavimento: la base granular y subbase granular, por ser donde más efecto tiene la geomalla biaxial, en nuestro caso se puede observar una reducción de 5cm en la subbase de la estructura del pavimento flexible (ver tabla 17), demostrando esto, donde la geomalla tiene mayor efecto y por ende donde será ubicada. Conforme a esto, Gavilanes Davila Estefania (2014), muestra en su trabajo una reducción de la subbase siendo 20cm sin geomalla y 15cm aplicando geomalla. Cabe recalcar que nos estamos centrando en el periodo de 10 años por que es donde se va hacer la intervención de mantenimiento y refuerzo de la carretera.
- Respecto a la optimización de la productividad (costo y tiempo) de la estructura del pavimento flexible, se obtuvo de acuerdo al análisis de los costos, que la aplicación de la geomalla biaxial MACGRID EGB 20S reduce el costo en 3.21% (ver tabla 19) para los 100 metros que es el tramo de investigación y de la misma forma para el tiempo de ejecución de la obra con geomalla biaxial MACGRID EGB 20S nos muestra una reducción del 5.55% (ver tabla 26), el autor Fredy Jacinto Arévalo Suquitana (2016), determino que la geomalla redujo en 22.15% el costo de la obra así como un 5% en el tiempo de ejecución de la obra.

VI. CONCLUSIONES

- Teniendo presente que se debe hacer una máxima reducción de espesor de la capa de pavimento sobre la subrasante con un CBR de diseño de 6.60%. según la teoría referente a los geosintéticos (aplicación y clasificación), es que logramos hacer uso de la geomalla biaxial MACGRID EGB 20S, dado que este geosintético cuenta con las características físico-mecánicas necesarias que mejora la funcionabilidad estructural de la sub-base. Así lo demuestra el ensayo CBR promedio de 35.35% a una altura de 2.5cm, obteniendo una sub-base de mejor funcionabilidad estructural y mejor calidad.
- Como se puede observar la capa base no se ve reducida en lo más mínimo, su espesor es de 15cm (ver tabla 17) debido a su funcionabilidad estructural, lo que quiere decir que no presenta ninguna variación la optimización en tiempo y costo. Pero en la capa sub-base, al realizar los cálculos con el uso de la geomalla biaxial MACGRID EGB 20S, se presenció variaciones y por ello existe una reducción de espesor de 15cm a 10cm, también de este modo dándonos a conocer la ubicación de la geomalla (donde debería ser colocada la geomalla biaxial).
- El análisis de la capa sub-base con geomalla biaxial MACGRID EGB 20S demostró una disminución en el espesor de 15cm a 10cm, ahorrando un 33.33% de material para sub-base lo que nos da como resultado una optimización en costo de 3.21% un ahorro de S/. 244.70 para la zona de estudio respecto al monto inicial y para el tiempo de ejecución, en la capa sub-base el tiempo es de 30 días, lo que dio como resultado un tiempo de transporte de material de sub-base para distancia menor o igual a 1km de 22 días y para distancia mayor a 1km igual a 20 días, produciendo una reducción del tiempo de 5.5% equivalente a 30dias respecto a lo programado en obra.

VII. RECOMENDACIONES

- Para la utilización de geomalla biaxial en pavimentos flexibles, se debe hacer un estudio a nivel estructural, puesto que hay que considerar que no se puede disminuir la capa base a menos de 15cm, por la funcionabilidad de la misma, también se debe tener en cuenta para futuros proyectos que usen este tipo de geomalla en el distrito de Pichinaki debido a que trae grandes beneficios como la disminución de espesores de las capas y por ser un material de fácil instalación que nos ahora tiempo y dinero en la construcción del pavimento.
- Se recomienda el uso de geomalla biaxial MACGRID EGB 20S en la sub-base ya que logra garantizar la estabilización de la estructura, generando un aumento en la vida útil del pavimento, además se debe verificar que la aplicación de este geosintético sea en las mejores condiciones, vigilar su procedimiento de construccion para asegurar su máxima resistencia, para ello se requiere tener un buen material granular que vaya de acuerdo a las características de la geomalla.
- Realizar más estudios con otros tipos de geosintéticos para reducir y estabilizar la
 estructura del pavimento, puesto que estos materiales nos generan menor explotación de
 canteras, por otra parte, que son de bajo precio. También se debe ejecutar un permanente
 y adecuado mantenimiento de toda la va.

REFERENCIAS

BALTAZAR, Hernández, Gutiérrez. Análisis comparativo para diseño de pavimentos flexibles mediante las alternativas: IMT-PAVE y CR-ME del método mecanicista empírico, con el método AASHTO 93. Tesis (Título Profesional en Ingeniería Civil). San Salvador: Universidad de El Salvador, Facultad de Ingeniería y Arquitectura Escuela de Ingeniería Civil, 2014.

BATISTA, Adrián. Chequeo de estructuras de pavimento flexible a través del software (MEPDG). Tesis (Título Profesional en Ingeniería Civil). Cuba: Universidad Central "MARTA ABREU" de Las Villas, facultad de construcciones departamento de ingeniería civil, 2014.

BENDEZÚ, Zorrilla, Luis. Diseño de pavimento flexible. Tesis (Título Profesional en Ingeniería Civil). Junín: Universidad Continental de Ciencias e Ingeniería, 2014

BORJA, Suárez, M. (2014). metodología de la investigación científica para ingenieros. Chiclayo.

CHACON, Jimbo, J. T. (septiembre 2014). uso de geomateriales para reforzamiento. universidad de cuenca - escuela de ingeniería civil, Cuenca.

CARRASCO Diaz, Sergio (2015). Metodología de la investigación científica. Lima: Universidad Nacional de San Marcos.

DÍAZ González, Escobar Velásquez, & Olivo Martínez. Aplicación de geosintéticos en la aplicación de suelos. Revista CALAMEO [en línea] 2014. Disponible en: https://es.calameo.com/books/0046379076f26a04b75ad

DICCIONARIO de La Real Academia Española. Barcelona: 1988.17 pp. ISBN: 84-254-1991-3

EGOAVIL, Perea H. (septiembre 2014). refuerzo de cimentaciones superficiales con geosintéticos. mecánica de suelos e ingeniería geotécnica, Madrid.

ESCOBAR, Bellido y Huincho. Diseño de pavimento flexible, bajo influencia de parámetros de diseño debido al deterioro del pavimento en Santa Rosa-Sachapite, Huancavelica. Tesis (Título Profesional en Ingeniería Civil). Lima: Universidad Nacional de Ingeniería, 2017.

FACULTAD Regional Buenos Aires. (Julio 2014). diseño de pavimentos flexibles. universidad tecnológica nacional - departamento de ingeniería civil, Buenos Aires.

FELIBERTO, Martins. Metodología de la investigación. Revista Metodolologiaecs [en línea] 2014.

Disponible en: https://metodologiaecs.wordpress.com/2015/09/06/metodologia-de-la-investigacion-cuantitativa-3ra-ed-2012-santa-palella-stracuzzi-y-feliberto-martins-pestana-2/

GAVILANES, Nydia. Diseño de pavimento con reforzamiento de geosintéticos aplicada a un tramo de la carretera Latacunga – Zumbahua – La Maná. Tesis (Título Profesional en Ingeniería Civil). Ecuador: Pontifica Universidad Católica del Ecuador, 2014.

KOERNER. Manual de diseño con geosintéticos. Departamento de ingeniería. 8va. ed. Bogota-Colombia: PAVCO, 2015 [fecha de consulta: junio del 2018]. Disponible en: https://es.slideshare.net/castilloaroni/manual-de-diseo-con-geosintticos

LIZÁRRAGA, López J. M. (octubre 2014). Diseño y construcción de pavimentos flexibles aplicando geomallas de polipropileno como sistema de reforzamiento estructural. universidad nacional autónoma de México - programa de maestría y doctorado en ingeniería - ingeniería civil y construcción, México.

LUDEWIG, Cristina. Universo y muestra. Revista Ciencias de la Educación [en línea]. Julio-diciembre 2014, n° 46. [Fecha de consulta: 8 de noviembre de 2018]. Recuperado de http://servicio.bc.uc.edu.ve/educacion/revista/46/art13.pdf

ISSN:316-5917. 151-167

MINISTERIO De Transportes y Comunicaciones. (2014). Manual De Carreteras - Especificaciones Técnica Para Construcción (EG-2013). Lima: Publicaciones MEGABYTE

MINAYA S. & Ordoñez A. (2015). Diseño, Construcción y Supervisión de Proyectos en Pavimentos Asfalticos. Lima: Publicaciones CENCA propen.

MACCAFERRI. (2014). REFERENCE MANUAL – MACREAD 2.0 AASHTO. E.E.U.U.: Maccaferri.

MACCAFERRI. (2014). MANUAL TECNICO – REFUERZO DE SUELO. Brasilia: Maccaferri.

METODOLOGÍA de la investigación. [Publicación en un blog]. Chile: Wigodski, J., (14 de julio de 2014). [Fecha de consulta: 8 de noviembre de 2018]. Recuperado de http://metodologiaeninvestigacion.blogspot.com/2010/07/poblacion-y-muestra.html

NUÑEZ Condori, Anselmo. Optimización de espesores de pavimento con aplicación de geo-sintéticos. Tesis (Título Profesional en Ingeniería Civil). Puno-Perú: Universidad Nacional del Altiplano Puno, 2015. Disponible en:

file:///C:/Users/johan/Downloads/Anselmo Nu%C3%B1ez Condori.pdf

ORREGO, Cabanillas Daniel. Análisis técnico-económico del uso de geomallas como refuerzo de bases granulares en pavimentos flexibles. Tesis (Título Profesional en Ingeniería Civil). Lima: Universidad Católica del Perú, 2014.

PÉREZ, Porto y María Merino. Publicado: 2013. Actualizado: 2015. Definiciones: Definición de problemas de investigación https://definicion.de/problemas-de-investigacion/PILAR, Colas y Joaquín, Ramírez (2016). Justificación del estudio. Universidad de Sevilla-Ciencia de la Educación, Sevilla.

ROBLES, Vives, D. (2016). Aplicación de geomallas en vías. Revista Especializada De Peruvias, 4.

RUIZ, Javib Peraza (2017). Los objetivos y las tareas de la investigación, su relación con la estructura de la tesis. Capítulo 2. Conceptos y características de los objetivos. Recuperado de: https://www.monografias.com/trabajos43/objetivos-de-investigacion/objetivos-de-investigacion2.shtml

RODRÍGUEZ, R. Procedimientos de muestreo. Revista Ciencias de la Educación [en línea]. Julio-diciembre 2014, n° 46. [Fecha de consulta: 8 de noviembre de 2018]. Recuperado de http://servicio.bc.uc.edu.ve/educacion/revista/46/art13.pdf ISSN:316-5917. 151-167

RENGIFO, Katherine. Diseño de los pavimentos de la nueva carretera panamericana norte en el tramo de Huacho a Pativilca (Km 188 A 189). Tesis (Título Profesional en Ingeniería Civil). Lima: Universidad Católica del Perú, 2014.

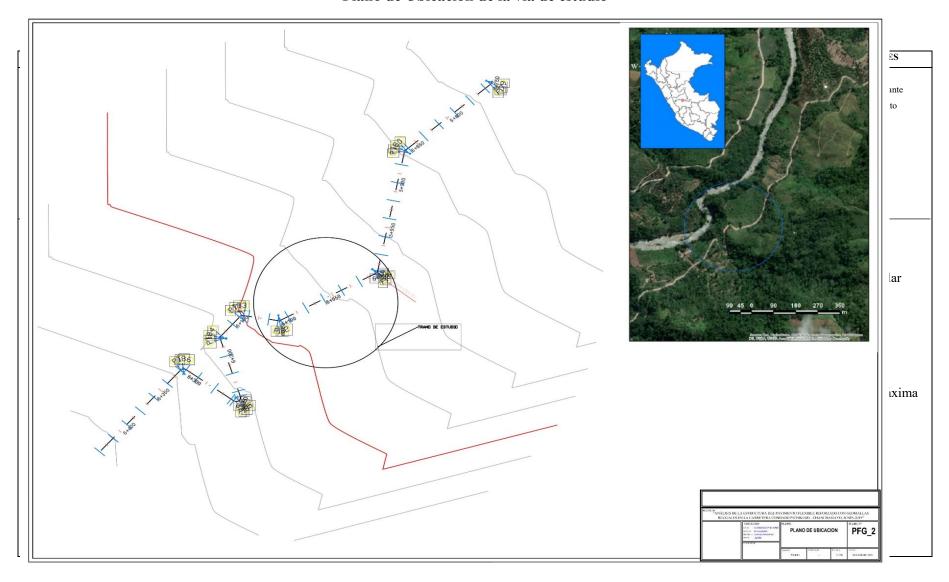
SARMIENTO y Arias. Análisis y diseño vial de la avenida Martir Olaya ubicada en el distrito de Lurín del departamento de Lima. Tesis (Título Profesional en Ingeniería Civil). Lurín: Universidad Peruana de Ciencias Aplicadas, 2015.

SALAMANCA, Muñoz, María, Angélica, Zuluaga, Bautista y Santiago, Arturo: (2014). Diseño de la estructura de pavimento flexible por medio de los métodos invias, aashto 93 e instituto del asfalto para la vía la ye - santa lucia barranca lebrija entre las abscisas k19+250 a k25+750 ubicada en el departamento del cesar. Universidad Católica De Colombia - Facultad De Ingeniería Pavimentos, Bogotá.

TENSAR, E. (2014). Sistema de mejoramiento de carreteras. Geomallas de tensar, 20.

ANEXO

ANEXO 01.


Operacionalización de variable

VARIABLE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	INSTRUMENTOS
V.D. ANALISIS DE ESTRUCTURA DE PAVIMENTO	"La estructura de pavimento es una estructura compuesta por capas tales como la sub base, base y la carpeta asfáltica que está conformada por un material bituminoso" (MTC, 2014 p. 4).	Básicamente está conformado por una capa compacta, que está apoyado en otras capas que son la base y sub base que dependen sobre la calidad de la sub rasante, el diseño de un pavimento flexible tiene una duración mínima de 8 años.	ESPESOR UBICACIÓN DE LA GEOMALLA PRODUCTIVAIDAD	SUB RASANTE SUB BASE GRANULAR BASE GRANULAR PROFUNDIDAD MAXIMA COSTO TIEMPO	CBR CBR, Límite Líquido, Límite Plástico, Contenido de Humedad y Granulometría De acuerdo al diseño y ensayos de laboratorio
	"las geomallas biaxiales son materiales geosintéticos formados mediante costillas	Las geomallas biaxiales son geosintéticos que se emplean para el refuerzo y estabilización. Están fabricadas con polímeros resistentes y	FUNCIONES	REDUCCION DE ESPESOR MAYOR CAPACIDAD PORTANTE CONTROL DE ASENTAMIENTO	Fichas técnicas
V.I. GEOMALLA BIAXIAL	paralelas unidas entre sí con huecos que son lo suficientemente facilitando la trabajavilidad con el material	duraderos. Las geomallas biaxiales son un material utilizado para prolongar el tiempo de vida del pavimento flexible, también	TIPOS	UNIAXIALES BIAXIALES MULTIAXIALES	Fichas técnicas
	al cual está en contacto" (Koerner, 2015).	ayuda en la reducción de la capa de base, se aplica entre la sub base – base.	RESISTENCIA	TENSION TORSION JUNTAS	Fichas técnicas

Matriz de Consistencia

Título: "Diseño de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera Condado Pichikiari - Chanchamayo, Junín-2019"

Plano de Ubicación de la vía de estudio

ANEXO 02

5. ANTECEDENTES DEL ESTUDIO

La Dirección de Inversiones de la Oficina General de Planeamiento y Presupuesto del Ministerio de Transportes y Comunicaciones (MTC), realiza estudios de tráfico a nivel nacional, para mantener actualizada la demanda de transporte y realizar la planificación y el requerimiento de inversiones. De acuerdo al registro de la base de datos, se tiene datos del IMD anual de dos a tres años para algunos tramos y de uno a dos en otros tramos. No se dispone de información con una data histórica de años contiguos, lo que no facilita mayor análisis. Ver cuadro siguiente:

INDICE MEDIO DIARIO ANUAL, POR TIPO DE VEHICULO, SEGÚN TRAMOS VIALES

	INDIC		DIAMO	MINU	ML, FU	IV III	ULE	4 Line	ULU,	JEU	וו ווע	VIIIIU	0 114	ш,									
TRAM	0			I K	8 8	H					T	IPO D	EVEH	CULO)			TO SERVICE			-3/		
	10 3 33	RUTA	80			0		-		B	IS.	C	amio	n	S	emi	Traile	r	Ш	H	railer	T.	
INCIO	FIN	DR.	IMDa	Auto	8W	PickUp	Panel	Combi	Micro	2E	3E	2E	3E	4E	281 7	283	381 V	>=383	2T2	2T3	372	313	4T3
						Año	200	6															
Concepción	Santa Rosa de Ocopa	R-104	294	30	196	20	2	3	0	2	0	27	13	0	0	0	0	1	0	0	0	0	0
Comas	Satipo	R-104	4	0	2	2	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0	0
ov. San Antonio de Ocopa	Comas	R-104	4	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mazamari	Pto. Ocopa	R-05S	275	114	- 0	88	0	25	0	0	0	40	7	0	0	0	0	0	- 1	0	0	0	0
Pichanaqui	Satipo	R-05S	964	120	0	349	0	193	8	63	26	146	37	5	16	0	0	0	1	0	0	0	0
Satipo	Mazamari	R-05S	592	224	0	90	0	123	25	19	13	72	. 17	0	0	0	0	0	9	0	0	0	0
						Año 2	008															_	
Concepción	Santa Rosa de Ocopa	PE-24A	6116	870	1555	877	80	1368	246	70	5	386	136	159	25	83	24	123	12	12	35	50	0
Comas	Satipo	PE-24A	350	70	118	45	7	1	3	17	2	46	16	4	0	13	2	5	0	0	0	0	0
ov. San Miguel de Pangoa	Pto. Ocopa	PE-05S	195	5	56	52	0	0	0	0	0	32	39	11	0	0	0	0	0		0	0	0
Pichanaqui	Satipo	PE-05S	4705	1371	855	1582	1	89	2	312	0	207	266	20	0	0	0	0	0	0	0	0	0
Satipo	Mazamari	PE-05S	1227	18	588	230	0	154	5	18	1	132	70	2	1	1	1	6	0	0	0	0	0
Año 2010																							
Comas	Satipo	PE-24A	25	0	4	7	0	12	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Pto. Ocopa	Juan Santos	PE-5SA	69	2	43	23	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Santa Rosa	Comas	PE-24A	326	9	207	38	4	13	3	0	0	49	2	0	0	0	0	1	0	0	0	0	0
Santa Rosa	Comas	PE-24A	326	9	207	38	4	13	3	0	0	49	2	U	0	U	U	1	U	U		U	0 0

Fuente: MTC

GONSORCIO VIAL CONCEPCION

Informe Techno N° 03: Informe Final

CONSORCIO VIAL CONCEPCIÓN

FELICITA ISASEL HERRIMOEZ COTRINA ESPECIALISTA EN TRAFICO Y ECONOMIA DE TRANSPORTES CEL 3476

Estudio de preinversión a nivel de perfil para la elaboración del proyecto de mejoramiento de la carretera: Emp. PE-3S (Concepción) - Comas - Emp. PE-5S (Satipo) / Emp. PE-5S (Pto. Ocopa) - Atalaya / Emp. PE-5S (Dv. Bajo Kimiriki) - Buenos Aires - Pto. Prado - Mazarobeni - Camajeni - Poyeni, por niveles de servicio.

Figura 21. Clasificaciones y pesos de los vehículos

TIPO	DISTRIBUCIÓN MÁXIMA DE CARGA POR EJE		DESCRIPCIÓN		PESO MÁXIMO PERMITIDO (Ton.)	MÁXIN	NGITUDI IAS PERN (metros)	NITIDAS
2 D	€		ΙΙ	CAMIÓN DE 2 EJES PEQUEÑO	7	5,00	2,60	3,00
2DA	ADS I		ΙĪ	CAMIÓN DE 2 EJES MEDIANOS	10	7,50	2,60	3,50
2DB	2 DB		ΙĪ	CAMIÓN DE 2 EJES GRANDES	18	12,20	2,60	4,10
3-A	3A 28		I II	CAMIÓN DE 8 EJES	27	12,20	2,60	4,10
4-C	# * * * * * * * * * * * * * * * * * * *		I III	CAMIÓN DE 4 EJES	31	12,20	2,60	4,10
4-0 ocrorus	400 menses		II II	CAMIÓN CON TAMDEM DIRECCIONALY TAMDEM POSTERIOR	32	12,20	2,60	4,10
V2DB		-	ΙĪ	VOLQUETA DE DOS EJES 8 m³	18	12,20	2,60	4,10
V3A			I II	VOLQUETA DE TRES EJES 30-34 m²	27	12,20	2,60	4,10
vzs			I II	VOLQUETA 25 DE 3 E/ES 16 m³	27	12,20	2,60	4,10
Т2	72		ΙĪ	TRACTO CAMIÓN DE 2 EJES	18	8,50	2,60	4,10
тз	7 T8	6 ~~	I II	TRACTO CAMIÓN DE 8 EJES	27	8,50	2,60	4,10
83	53 F 24	- 000	III	SEMIREMOLOUE DE 3 EJES	24	13,00	2,60	4,10
82	52 P 95		II	SEMIREMOLQUE DE 2 EJES	20	13,00	2,60	4,10
S1	S1 11		Ī	SEMIREMOLQUE DE 1E/E	11	13,00	2,60	4,10
R2	R2	-00-	ĪĪ	REMOLQUE DE 2 EJES	22	10,00	2,60	4,10
R3	R3	-0-00-	I II	REMOLQUE DE 8 EJES	31.	10,00	2,60	4,10
B1	91		Ī	REMOLQUE BALANCEADO DE 1EJE	11	10,00	2,60	4,10
B2	82		II	REMOLQUE BALANCEADO DE 2 E/ES	20	10,00	2,60	4,10
B3	83	-000-	III	REMOLQUE BALANCEADO DE 3 EJES	24	10,00	2,60	4,10

Tabla 29. Cantidad mínima de muestra

Tamaño máx. de la	Γamaño máx. de las partículas			
INEN (mm)	ASTM	1		
50	2"	1000		
25	1"	500		
12.5	1/2"	300		
4.75	N°4	100		
0.425	N°40	10		

Fuente: norma ASTM-D.2216

Tabla 30. Masa mínima para el agregado fino

Porcentaje	Masa mín. de la muestra
Un mínimo del 95% pasa por el tamiz N°8	100 g
Un mínimo del 85% pasa por el tamiz N°4 y más del 5% es	500 g
retenido en el tamiz N°8	

Fuente: Norma MTC

Tabla 31. Masa mínima para el agregado grueso

Tamaño Máx. Nominal De Las Partículas	Masa Mín. De La Muestra
3"	5 kg
2"	4 kg
1"	2 kg
3/8"	0,5 kg

Fuente: Norma ASTM-D.422

Tabla 32. Serviciabilidad inicial

Serviciabilidad in	icial (Po)
Rígido	4.5
Flexible	4.2

Fuente: AASHTO 93

Tabla 33. Serviciabilidad media

Serviciabilidad final (Pt)						
Autopistas	Carreteras de Importancia Media	Carreteras de Importancia Baja				
3	2.5	2				

Fuente: AASHTO 93

Tabla 34. Serviciabilidad final

Serviciabilidad final (Pt)					
Final (Pt)	Características				
5	Muy Bueno				
4	Bueno				
3	Dogular				
2	Regular				
1	Muny Mala				
0	Muy Malo				

Fuente: AASHTO 93

Tabla 35. Periodo de análisis

Condicones de la vía	Periodo de análisis (años)
Alto volumen urbano	30 a50
Alto volumen rural	20 a 50
Bajo volumen pavimentdo	15 a 25
Bajo volumen revestido	10 a 20

Fuente: AASHTO 93

Tabla 36. Nivel de confianza recomendado

Clasificación Funcional	Nivel de confianza recomendado					
Clasificación Funcional	Urbano	Rural				
Interestatal y autopistas	85 - 99.9	80 - 99.9				
Arterias principales	80 - 99	75 - 95				
Calles colectoras	80 - 95	75 - 95				
Calles locales	50 - 80	50 - 80				

Fuente: AASHTO 93

Tabla 37. Valores de (Zr)- Nivel de confianza (R)

Confiabilidad (%)	Desviación Estandar (Zr)	Confiabilidad (%)	(Zr)
50	0	92	-1.405
60	-0.253	93	-1.476
70	-0.254	94	-1.555
75	-0.674	95	-1.645
80	-0.841	97	-1.881
85	-1.037	98	-2.054
90	-1.282	99	-2.327
91	-1.34	99.9	-3.09

Fuente: AASHTO 93

Especificaciones Técnicas de Geomallas EGB.

1. ESPECIFICACIONES TÉCNICAS DE LA GEOMALIA BIANIAL ENTRUIDA MACGRID EGB.

ESPECIFICACIONES TÉCNICAS DE LA GEOMALLA BIAXIAL EXTRUIDA MACGRID EGB.

1.0 MATERIALES.

El material para refuerzo será una geomalla biaxial extruida de polipropileno, con resistencia a la tracción longitudinal y transversal, indicada para refuerzo y estabilización de suelos.

La geomalla debe ser químicamente inerte, debe ofrecer una gran resistencia a la degradación causada por los rayos ultravioleta, y una óptima interacción en todo tipo de terreno.

2.0 MÉTODO DE CONSTRUCCIÓN.

Las geomallas extruidas deberán ser provistas en rollos embalados en bolsas de polietileno. Dicho embalaje no deberá ser removido hasta el momento de la instalación. Los rollos de geomalla deberán ser almacenados en ambientes cubiertos, limpios y secos, en pilas no superiores a 3.0 metros de altura, y encima de ellos no deberá ser colocada ninguna sobrecarga. Debido a su peso, los rollos podrán necesitar de izaje mecánico para su traslado; en este caso se deberá realizar el movimiento con sumo cuidado, previniendo daños en el material.

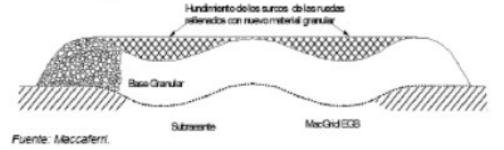
Las geomallas extruidas deberán ser instaladas de acuerdo con las especificaciones del proyecto y los planos respectivos, en los cuales se deberá señalar el sentido de la instalación.

La geomalla deberá ser desenrollada por partes y en la dirección de instalación como se indica en los planos. La parte libre de la geomalla deberá ser fijada por estacas o pesos en la posición exacta prevista en el diseño. Se desenrolla entonces cuidadosamente la parte restante asegurándose que no se formen ondulaciones (no se deberá lanzar el relleno sobre la geomalla con ondulaciones). Cuando el material esté totalmente desenrollado, el final del rollo deberá ser estirado y fijado por estacas o pesos. Las geomallas adyacentes necesitan de traslapes laterales. El traslape deberá de ser como mínimo de 60cm.


ww.maccaterri.com.pe

MACCAFERRI

Se deberá evitar en todo momento el contacto directo de los equipos mecánicos con las geomallas (vea figura 01), se debe de mantener un mínimo de 15cm de cobertura entre los neumáticos o las orugas y las geomallas.


Figura 01: Correcto colocado del material de cobertura y la Geomalla.

Fuente: Maccaferri.

Verificar que las propiedades del relleno satisfagan las especificaciones del proyecto y el drenaje sea adecuado en todas las etapas de la construcción. No trate de remover los hundimientos de los surcos de las ruedas, al contrario rellênelos con más material y compacte para regularizar la superficie antes de aplicar las camadas asfalticas. Tal comportamiento mantendrá el estado de prétensado del refuerzo (vea figura 02).

Figura 02: Hundimiento de los surcos de las ruedas.

3.0 CERTIFICACIÓN Y ACEPTACIÓN.

Para asegurar la calidad de la materia prima, los procesos del fabricante y el producto final, se deberá exigir que el proveedor, así como el fabricante del producto a instalarse, posean la Certificación ISO 9001:2000

Mounted or reserva et de recto de fectoir redos especificamente en malejair messante, de amuente con las canadaciones de de protucios fipricados.

Catacal Company

MACCAFERRI

ESPECIFICACIONES TÉCNICAS DE LA GEOMALLA BIAXIAL EXTRUIDA MACGRID EGB.

Los materiales despachados a obra serán acompañados por un Certificado de Calidad original del fabricante.

4.0 MÉTODO DE MEDICIÓN.

La geomalla deberá ser medida en metros cuadrados (m²) contabilizados de las secciones indicadas en los planos y/o de las indicadas por escrito por la Supervisión.

5.0 BASES DE PAGO.

Las cantidades aceptadas de geomalla deberán ser pagadas al precio unitario por metro cuadrado indicado en el contrato.

6.0 ANÁLISIS DE COSTOS UNITARIOS REFERENCIALES.

Tabla 01: Análisis de costos unitarios referenciales de geomalla EGB.

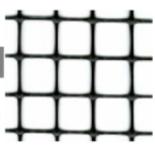
1.0	Geomalia Biaxiai Ext	rulda EGB						
•						TOTAL (UDA		
			REND/dla	UNIDAD		TOTAL (US\$ UNIDAD)		
			1,000.00	m ²		0.00		
1 MANO DE OBRA								
CÓDIGO	DESCRIPCIÓN	UNIDAD	CUAD	CANTIDAD	PRECIO	TOTAL		
	Capataz	hh	0.50	0.004	0.00	0.00		
	Operario	hh	1.00	0.008	0.00	0.00		
	Oficial	hh	1.00	800.0	0.00	0.00		
	Peón	hh	2.00	0.016	0.00	0.00		
				St	ib Total =	0.00		
2 MATE	RIALES							
CÓDIGO	DESCRIPCIÓN	UNIDAD	CUAD	CANTIDAD	PRECIO	TOTAL		
	Geomalia Biaxial Extruida EGB	m²		1.05	0.00	0.00		
				SI	ib Total -	0.00		
3 EQUIP	os					•		
CÓDIGO	DESCRIPCIÓN	UNIDAD	CUAD	CANTIDAD	PRECIO	TOTAL		
	Herramientas	%		3%	0.00	0.00		
				St	ib Total -	0.00		

Fuente: Maccaferri.

Las características de la geomalla deberán ser conforme a las siguientes hojas técnicas:

Microbiel or manta el de sobre de nomer estas equeficaciones en mulgaler memorio, de amuedo can la canadacisticas de begraducos baccados.

www.maccaterri.com.pe


tistema de Gestina de Galidad Silvetinado de Contemidad con la Norma (SO 9001-2000 2000)

MacGrid® EGB 20

Geomalla Biaxial Extruida

Características técnicas

MacGrid[®] EGB 20 es una geomalia biaxial extruida de poliproplieno, indicada para refuerzo y estabilización de suelos.

Propiedades Fisicas	Unidades	Ensayo	EGB 20
Abertura nominal de la maila longitudinal (MD) (1)	mm		38
Abertura nominal de la maila transversal (TD) (1)	mm		38
Polimero			Polpropileno
Color			negro

Propiedades Mecánicas	Unidades	Ensayo	EGB 20
Resistancia longitudinal a la tracción (MD)	kN/m	ASTM D 6637	20.0
Resistencia transversal a la tracción (TD)	kN/m	ASTM D 6637	20.0
Resistencia longitudinal al 2% de deformación (MD)	kN/m	ASTM D 6637	7.0
Resistencia transversal al 2% de deformación (TD)	kNim	ASTM D 8637	7.0
Resistencia longitudinal al 5% de deformación (MD)	kNfm	ASTM D 6637	14.0
Resistencia transversal al 5% de deformación (TD)	kN/m	ASTM D 6637	14.0
Eficiencia de las juntas	%	GRI GG2	93
Rigidez Flexural	mg-cm	ASTM D 1388	1,000,000
Espesor mínimo de la costilla Longitudinal (MD)	mm	ASTM D 1777	1.30
Espesor mínimo de la costilla Transversal (TD)	mm	ASTM D 1777	1.00
Establidad de las Aperturas	m-N/deg	COE Method	0.70

Presentación del Rollo	Unidades	Eneayo	EGB 20
Ancho del rollo	m		3.95
Largo del rollo	m		50

⁽¹⁾ La tolerancia de las dimensiones de la abertura es de a 2mm.

Los debus Monicos e informaciones indicadas en la presente Roja Monica están basedos en la más reclarárs informaciones disposibles y pueden estar sujetas a vertacio debido a modificaciones de los procesos productivos y de la potição comercial.

Material de recente el devecto de revisor estas especificaciones en configuramentos, de accento con les canadirários de los productos finiciones.

www.maccaferri.com.pe

Sistema de Gestión de Calidad Certificado de Conformidad con la Notrea ISO 9001:2000

Tabla 38. Especificaciones de geotextil no tejido

Propiedades	Unidad	Metodo de Ensayos	Valores Tipicos
	Mecáni	cas	
Resistencia a la Tracción	N	ACTM D 4622	580
"Grab Test"	IN	ASTM D 4632	580
Elongacion a la Tracción	0/	ACTNA D 4622	C.F.
"Grab Test"	%	ASTM D 4633	65
Resistencia al Punzonamiento	N	ASTM D 4833	360
CBR Resistencia al Punzonamiento	N	ASTM D 6241	1802
Resistencia al Estallido	Кра	ASTM D 3786	1930
"Mullen Burst Test"	Кра	A31101 D 3700	1550
Resistencia al Desgarre Trapezoidal	N	ASTM D 4533	290
	Hidrauli	icas	
Permeabilidad	cm/s	ASTM D 4491	0.42
Permisividad	s^{-1}	ASTM D 4491	2.5
Tamaño de Abertura Aparente (ASO)	mm	ASTM D 4751	0.2 - 0.18
	Durabili	dad	
Resistencia a los Rayos (UV)	%	ASTM D 4355	80 ⁽¹⁾
Tipo de polimero	Polipropileno		

Fuente: Empresa Maccaferri

Tabla 39. Características de la geomalla MACGRID EGB 20S

Propiedad	Uni	Metodos de Ensayos	Valor Tipico
Fis	icas		
Abertura Nominal de la Malla Longtudinal (MD)	m		38
Abertura Nominal de la Malla Longtudinal (MD)	mm		36
Plimer			Polypropylene
Color			Negro
Mec			
Resitencia Longtudinal a la Tracción (MD)	KN/m	ASTM D 6637	20
Resitencia Longtudinal a la Tracción (TD)	KN/m	ASTM D 6637	20
Resitencia Longtudinal al 2% de Deformación (MD)	KN/m	ASTM D 6637	7
Resitencia Longtudinal al 2% de deformación (TD)	KN/m	ASTM D 6637	7
Resitencia Longtudinal al 5% de deformación (MD)	KN/m	ASTM D 6637	14
Resitencia Longtudinal al 5% de deformación (TD)	KN/m	ASTM D 6637	14
Efficiencies de las Juntas	%	GR GG2	93
Rigedez Flexual	mg-cm	ASTM D 1388	1'000000
Espesores Mínimos de la Costilla Longitudinal (MD)	mm	ASTM D 1777	1.3
Espesores Mínimos de la Costilla Longitudinal (MD)	mm	ASTM D 1778	1
Stabilator de las Apertura	m-n/seg	COE Method	0.7
Presentaci	on del rollo		
Ancho del rollo	m		3.95
Largo del rollo	m		50

Fuente: Empresa Maccaferri

Tabla 40. Valores del coeficiente (mi)

I thought 1017	tubia 10.7 and es act coeffectence (mil)								
CALIDAI	D DEL DRENAJE	% Del tiempo en que la estructura del pavimento está expuesta a niveles de humedad cerca a la saturación							
CONDICIÓN	Extracción de	Menor a	1 a 5%	5 a 25%	Mayor				
CONDICION	agua	1%	1 a 3 %	3 a 23%	a 25%				
EXCELENTE	2 horas	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20				
BUENO	1 día	1.25 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00				
REGULAR	1 semana	1.25 - 1.15	1.15 - 1.05	1.05 - 0.80	0.80				
MALO	1 mes	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60				
MUY MALO	No drena	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40				

Fuente: Instituto Norteamericano del Asfalto

Tabla 41. Condiciones de drenaje

Drenaje	Agua eliminada en
EXCELENTE	2 horas
BUENO	1 día
REGULAR	1 semana
POBRE	1 mes
MALO	No drena el agua

Fuente: Instituto Norteamericano del Asfalto

Tabla 42. Espesores mínimos

Tránsito (ESALs) en Ejes Equivalentes	Carpetas De Concreto Asfáltico	Bases Granulares
Menos de 50,000	1,0 ó T.S.	4,0
50,001 - 150.000	2,0	4,0
150,001 - 500,000	2,5	4,0
500,001 - 2,000,000	3,0	6,0
2,000,001 - 7,000,000	3,5	6,0
Mayor de 7,000,000	4,0	6,0

Fuente: AASHTO 93

Tabla 43. *Análisis de costos unitarios, partida sub-base (e=15cm) de la carretera Condado Pichikiari.*

Partida	01.02.02 Sub-Base Granular					
Rendimiento	m ³ /día MO: 387	EQ:	387	Costo unita	ario por: m³	26.14
código	Descripción recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/
	Mano de obra					
	Operario	Hh	1	0.0206	19.18	0.4
	Oficial	Hh	1	0.0206	15.9	0.33
	Peón	Hh	6	0.1237	14.3	1.77
						2.5
	Equipos					
	Herramientas manuales	%MO		5	2.5	0.13
	Rodillo liso vibrador autopropulsado 70-100 HP 7-9 ton.	Hm	1	0.0206	144.07	2.97
	Motoniveladora	Hm	1	0.0206	186.44	3.84
						6.94
	Subpartidas					
	Agua para obra	M^3		0.1	11.47	1.14
	Material granular para subbase	M^3		1.2	12.97	15.54
						16.69

Tabla 44. Análisis del costo unitario, subpartida "agua para la obra" de la carretera Condado Pichikiari.

Subpartida			Agua para la Obra					
Rendimiento	m³/día	MO: 77	EQ	: 77	Costo unita	rio por: m ³	11.47	
código	Descripció	n recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/	
Mano de obra								
	Peón		Hh	0.5	0.0526	14.3	0.75	
							0.75	
	Equ	ipos						
	Camion ciste 120 HP 2,00	-	Hm	1	0.1053	101.69	10.72	
				•	•		10.72	

Tabla 45. Análisis de costo unitario, subpartida material granular para subbase de la carretera Condado Pichikiari.

Subpartida		Material Granular Para Sub Base						
Rendimiento M ³ /día		MO: 0.0	EQ: 0.0		Costo unitario por: m³		12.97	
código	Descripció	n recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/	
	Subpa	rtidas						
	Carguío de mat	erial granular	m ³		1.00	2.68	2.68	
	Zarandeo		m ³		1.00	4.45	4.45	
	cantera y mate subbase	rial para la	m ³		1.00	5.84	5.84	
	•		•	·	•		12.97	

Tabla 46. Análisis de costo unitario, subpartida carguío - material granular de la carretera Condado Pichikiari.

Subpartida			Car	guío para–N	laterial Gra	nular	
Rendimient o	M³/día	MO: 560	EQ	: 560	Costo unitario por: m ³		2.68
código	Descripci	ón recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/
	Mano de obra						
	Peón		Hh	0.500	0.0070	15.90	0.12
							0.12
	Eq	uipo					
	Cargador s llantas 200 4.	sobre 0-240 HP 4-	Hm	1.00	0.0143	178.91	2.57
			•				2.57

Tabla 47. Análisis de costo unitario, subpartida zarandeo de la carretera Condado Pichikiari.

Subpartida			Zarandeo					
Rendimiento	M³/día	M ³ /día MO: 360		: 360		tario por: 1 ³	4.45	
código	Descripci	ón recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/	
	Mano	de obra						
	Oficial		Hh	0.10	0.0022	15.90	0.03	
	Peón		Hh	1.00	0.0022	14.30	0.32	
						0.35		
	Equ	iipos						
	Herrar	mientas						
	man	uales	%MO		5.000	0.35	0.02	
	vibratoria 4 motor eléct		Hm	1.000	0.0222	52.42	1.16	
	Cargador so		Hm	1.000	0.0222	131.36	2.92	
							4.10	

Tabla 48. Análisis de costo unitario, subpartida extracción de cantera y apilamiento de material para subbase de la carretera Condado Pichikiari.

Subpartida	Ext	racción de cai	ntera y Ap	ilamiento d	e material p	ara subbas	е
rendimiento	M³/día	MO: 460	EQ: 460		Costo unitario por: m ³		5.83
código	Descripció	n recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/
	Mano de obra						
	Operario		Hh	0.2000	0.0035	19.18	0.07
	Oficial		Hh	0.2000	0.0035	15.90	0.06
	Peón		Hh	2.0000	0.0348	14.30	0.50
							0.62
	Mate	riales					
	Material de d	antera	M3		1.000	0.60	0.60
							0.60
	Equipos						
	Herramienta	s manuales	%MO		5.000	0.63	0.03
			Hm	1.000	0.0174	262.71	4.57

1	I.	I.	I.	I.	4.60
240 HP					
Tractor de oruga de 200-					

Tabla 49. Análisis del costo unitario de geomalla biaxial.

item	Geomalla Biaxial MA	Geomalla Biaxial MACGRID EGB 20S						
		Ren/día Unidad Total (s/						
		1,000.00	m2	2.73				

1.- Mano de obra

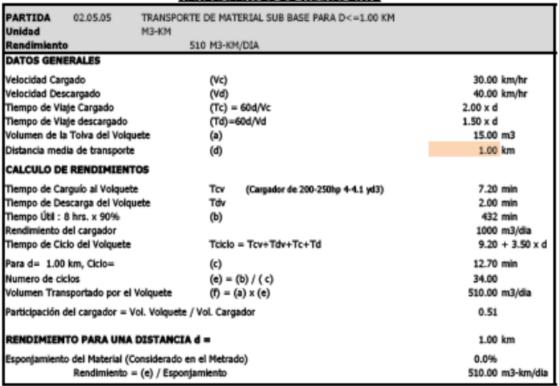
Código	Descripción	Unidad	Cuadrilla	Cantidad	Precio	Total
	Operario	Hh	1.00	0.008	19.18	0.15
	Oficial	Hh	1.00	0.008	15.90	0.13
	Peón	Hh	2.00	0.016	14.30	0.23
				Sub to	otal	0.51

2.- Material

Código	Descripción	Unidad	Cuadrilla	Cantidad	Precio	Total
	Geomalla Biaxial MACGRID EGB 20S	m2		1.05	2.10	2.20
				Sub to	otal	2.20

3.- Equipo

Código	Descripción	Unidad	Cuadrilla	Cantidad	Precio	Total
	Herramienta	%		3%	0.51	0.02
				Sub to	otal	0.02


Fuente: Empresa MACCAFERRI

GOBIERNO REGIONAL DE PICHANAKI

PARTIDA	02.05.06	TRANSPORTE DE MATERIAL SUB BASE PARA D>1.00 KM	
Unidad Rendimient	to	M3-KM 1796 M3-KM/DIA	
DATOS GEN	ERALES		
Velocidad Ca			30.00 km/hr
Velocidad De			40.00 km/hr
Петро de V	laje Cargado	(Tc)	2.00 x d
Tiempo de V	laje descargado	(Td)	1.50 x d
Volumen de	la Tolva del Volqu	eete (a)	15.00 m3
Distancia de	transporte	(d)	23.94 km
CALCULO D	E RENDIMIENT	os	
Tlempo Útil :	8 hrs. x 95%	(b)	456 min
	icio del Volquete	Tciclo = Tc+Td	3.50 x d
Para d= 23.	94 km, Ciclo=	(c)	83.79 min
Numero de c	iclos	(e) = (b) / (c)	5
Volumen Tra	nsportado por el		75.00 m3/dia
RENDIMIE	NTO PARA UNA	DISTANCIA d =	23.94 km
Esponjamien		onsiderado en el Metrado) - (e) / Esponjamiento	0.0% 1796 m3-km/di

Tabla 50. Análisis de costo unitario, partida transporte de material subbase para D<= 1km de la carretera Condado Pichikiari.

Partida	02.02.02	•	Traslado d	le Material	Subbase Pa	ıra D< = 1kr	n
Rendimie	M3-KM/día	MO: 510 EQ: 510 Costo unitario por: m3-km		EQ: 510		•	
código	Descripción	recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/
	Mano de	obra					
	Oficial		Hh	0.500	0.0078	15.90	0.12
							0.12
	Equip	os					
	Camión volqu 14m³.	uete de	Hm	1.000	0.0157	144.07	2.26
	Cargador sob 200-250 HP 4		Hm	1.000	0.0078	178.91	1.4
				1	1		3.66

Tabla 51. Análisis de costo unitario, partida transporte de material subbase para D > 1km de la carretera Condado Pichikiari.

Partida	02.02.02		Traslado d	de Material	Subbase Pa	ra D > 1km	
rendimient	M3-KM/día	MO: 1700	EQ:	EQ: 1700 Costo unitario por: m3-km		0.66	
código	Descripció	n recurso	Unidad	Cuadrilla	Cantidad	Precio s/	Parcial s/
Mano de obra							
	Oficial		Hh	0.200	0.0009	15.90	0.01
	•						0.01
	Equi	pos				•	
	Camión volqu 14m³.	uete de	Hm	1.000	0.0045	144.09	0.65
			1	1	1	1	0.65

Indice Unificado, Fletes y Cálculo del Rendimiento de Transporte de la Carretera Condado Pichikiari

108 NORMAS LEGALES Miércoles 18 de setiembre de 2019 / W El Peruano

Nacional de Equipos Terminales Móviles

Artículo 2.- Encargar a la Gerencia General disponer las acciones necesarias para que la presente resolución y su anexo sean publicados en el Diario Oficial El Peruano. Asimismo, se encarga a la Gerencia General disponer

Asimismo, se entanga a la decentra deponer las acciones necesarias para que la presente resolución y su anexo, conjuntamente con el Proyecto Normativo señalado en el artículo precedente, así como su Exposición de Motivos y el Informe Nº 00118-GPRC/2019; sean publicados en el Portal Electrónico del OSIPTEL

(página web institucional: http://www.osiptel.gob.pe).

Articulo 3.- Definir un plazo de quince (15) días calendario, a ser contado a partir del día siguiente de la fecha en que la presente resolución sea publicada en el Diario Oficial El Peruano, para que los interesados

el Diario Oficial El Peruano, para que los interesados puedan presentar sus comentarios respecto del Proyecto Normativo referido en el artículo 1.

Los comentarios serán presentados por escrito, en la oficina principal del OSIPTEL (Calle De La Prosa Nº 136, San Borja, Lima). En el caso de remisión de comentarios mediante correo electrónico a la dirección sid@osiptel. gob.pe. se deberá obtener una constancia de acuse de recibo emitida por el OSIPTEL. En todos los casos, los comentarios deben enviarse de acuerdo al formato establecido en el anexo adjunto a la presente resolución.

Artículo 4.- Encargar a la Gerencia de Políticas Regulatorias y Competencia del OSIPTEL el acopio, procesamiento y sistematización de los comentarios que se presenten, así como la presentación a la Alta Dirección de sus correspondientes recomendaciones.

Artículo 5.- Aprobar el Régimen de Infracciones

Artículo 5.- Aprobar el Régimen de Infracciones y Sanciones del Decreto Supremo № 007-2019-IN, Reglamento del Registro Nacional de Equipos Terminales Móviles para la Seguridad, el cual estará vigente a partir del día siguiente de la publicación de la presente Resolución en el Diario Oficial El Peruano, en los siguientes términos:

RÉGIMEN DE INFRACCIONES Y SANCIONES DEL DECRETO SUPREMO N° 007-2019-IN

Ν°	TIPIFICACIÓN	INFRACCIÓN
1	El concesionario móvil que incumpla con cual- quier requerimiento que efectúe el OSIPTEL en la forma y plazo establecido, respecto de la re- misión de mensajes de advertencia a los abona- dos o usuarios, el bloqueo y/o suspensión del servicio de los IMEI de los equipos terminales móviles detectados como alterados.	GRAVE
2	El concesionario móvil que, no cumpla con cual- quiera de sus obligaciones establecidas en la Decisión 786 de la Comisión de la Comunidad Andina, conforme al Literal I) del artículo 32 del Reglamento del Decreto Legislativo N° 1338.	
3	El concesionario móvil que no realice campañas de difusión de acuerdo a la Primera Disposición Complementaria Final del Reglamento del De- creto Legislativo N° 1338.	LEVE
4	El concesionario móvil que, hasta la imple- mentación del RENTESEG, no remita al OSIP- TEL, hasta el décimo día calendario de cada mes, la relación de IMEI y de IMSI o MSISDN vinculados, conforme a la Segunda Disposición Complementaria Transitoria del Reglamento del Decreto Legislativo N° 1338.	
5	El concesionario móvil que no informe, de manera mensual, a los abonados sobre las implicancias de tener un equipo terminal móvil con IMEI alterado o que no se encuentre registrado en la Lista Blanca, de acuerdo a la Tercera Disposición Complementaria Transitoria del Reglamento del Decreto Legislativo N° 1338.	
6	El concesionario móvil que no remita mensajes de advertencia a los abonados o usuarios, y pedidos de información sobre los casos relativos a equipos terminales móviles; conforme al artículo 8.1, literal e), del Decreto Legislativo N° 1338, y al artículo 32, literal i), del Reglamento del Decreto Legislativo N° 1338.	LEVE

N°	TIPIFICACION	INFRACCION						
	La información falsa, incompleta, inexacta o remitida por el conce-							
sionar	rio móvil fuera del plazo establecido, en el marc	o del Decreto						
Legis	ativo N° 1338 o su reglamento, será evaluada d	e acuerdo a lo						
previs	to en el Reglamento de Fiscalización, Infraccione	s y Sanciones.						
o la n	orma que lo modifique o sustituya.							

Artículo 6.- Habilítese a la Gerencia General del OSIPTEL para que mediante resolución apruebe el respectivo Instructivo Técnico, cuyas indicaciones serán de observancia obligatoria para el cumplimiento de las Normas Complementarias para la Implementación del Registro Nacional de Equipos Terminales Móviles para la

Registrese, comuniquese y publiquese.

RAFAEL MUENTE SCHWARZ Presidente del Consejo Directivo

ANEXO

Formato para la presentación de comentarios

PROYECTO NORMATIVO QUE APRUEBA LAS "NORMAS COMPLEMENTARIAS PARA LA IMPLEMENTACIÓN DEL REGISTRO NACIONAL DE EQUIPOS TERMINALES MÓVILES PARA LA SEGURIDAD'

Artículo del Proyecto	Comentario
X	
Y	
Z	
()	
Comentarios generales	
Otros comentarios	

1806927-1

ORGANISMOS TECNICOS ESPECIALIZADOS

INSTITUTO NACIONAL DE ESTADISTICA E INFORMATICA

Aprueban Índices Unificados de Precios de la Construcción para las seis Áreas Geográficas correspondientes al mes de agosto de 2019

RESOLUCIÓN JEFATURAL Nº 292-2019-INEI

Lima, 16 de setiembre de 2019

CONSIDERANDO:

Que, de acuerdo a lo dispuesto en la Novena Disposición Complementaria y Transitoria del Decreto Ley 25862, de 18.11.92, se declara en desactivación y disolución al Consejo de Reajuste de Precios de la Construcción; Que, asimismo la Undécima Disposición Complementaria y Transitoria del referido Decreto Ley, dispone transferir al Instituto Nacional de Estadística e Informática (INEI) las funciones de elaboración de los Indices de los elementos que determinen el costo de las Obras;

Obras; Que, la Dirección Técnica de Indicadores Económicos ha elaborado el Informe Nº 02-08-2019/DTIE, referido a

los Índices Unificados de Precios de la Construcción para las Áreas Geográficas 1, 2, 3, 4, 5 y 6, correspondientes al mes de Agosto de 2019 y que cuenta con la conformidad de la Comisión Técnica para la Aprobación de los Indices Unificados de Precios de la Construcción, por lo que resulta necesario expedir la Resolución Jefatural correspondiente, así como disponer su publicación en el Diario Oficial El Peruano, y; Con las visaciones de la Sub Jefatura de Estadística;

de la Dirección Técnica de Indicadores Económicos y de la Oficina Técnica de Asesoría Jurídica; y,

En uso de las atribuciones conferidas por el artículo 6 del Decreto Legislativo Nº 604, Ley de Organización y Funciones del Instituto Nacional de Estadística e Informática.

SE RESUELVE:

Artículo 1.- Aprobar los Índices Unificados de Precios de la Construcción (Base: julio 1992 = 100,0) para las seis (6) Áreas Geográficas correspondientes al mes de Agosto de 2019, que se indican en el cuadro siguiente:

				Á	REAS	GE	OGR	ÁFICA	S				
Cód.	1	2	3	4	5	6	Cód.	1	2	3	4	5	6
01	981,15	981,15	981,15	981,15	981,15	981,15	02	562,55	562,55	562,55	562,55	562,55	562,55
03	541,62	541,62	541,62	541,62	541,62	541,62	04	566,24	957,14	1058,82	594,14	374,92	745,08
05	449,16	215,26	434,38	602,24	(*)	628.62	06	930,35	930,35	930,35	930,35	930,35	930,35
07	673,90	673,90	673,90	673,90	673,90	673,90	80	870,81	870,81	870,81	870,81	870,81	870,81
09	283,76	283,76	283,76	283,76	283,76	283,76	10	431,38	431,38	431,38	431,38	431,38	431,38
11	257,42	257,42	257,42	257,42	257,42	257,42	12	320,05	320,05	320,05	320,05	320,05	320,05
13	1792,19	1792,19	1792,19	1792,19	1792,19	1792,19	14	262,90	262,90	262,90	262,90	262,90	262,90
17	621,71	676,61	705,20	840,21	765,82	882,36	16	354,83	354,83	354,83	354,83	354,83	354,83
19	764,80	764,80	764,80	764,80	764,80	764,80	18	329,32	329,32	329,32	329,32	329,32	329,32
21	471,42	423,68	449,56	438,28	449,56	415,71	20	2185.03	2185.03	2185.03	2185.03	2185.03	2185.03
23	439,25	439,25	439,25	439,25	439,25	439,25	22	367,30	367,30	367,30	367,30	367,30	367,30
27	479,43	479,43	479,43	479,43	479,43	479,43	24	236,65	236,65	236,65	236,65	236,65	236,65
31	383,56	383,56	383,56	383,56	383,56	383,56	26	385,32	385,32	385,32	385,32	385,32	385,32
33	868,10	868,10	868,10	868,10	868,10	868,10	28	595,19	595,19	595,19	582,26	595,19	595,19
37	312,66	312,66	312,66	312,66	312,66	312,66	30	505,07	505,07	505,07	505,07	505,07	505,07
39	458,56	458,56	458,56	458,56	458,56	458,56	32	472,50	472,50	472,50	472,50	472,50	472,50
41	436,63	436,63	436,63	436,63	436,63	436,63	34	523,79	523,79	523,79	523,79	523,79	523,79
43	755,57	702,36	936,28	658,47	1160,36	909,85	38	441,32	961,20	878,58	569,52	(*)	643,85
45	330,45	330,45	330,45	330,45	330,45	330,45	40	397,51	454,20	446,75	352,72	272,89	331,41
47	619,76	619,76	619,76	619,76	619,76	619,76	42	289,73	289,73	289,73	289,73	289,73	289,73
49	317,45	317,45	317,45	317,45	317,45	317,45	44	389,68	389,68	389,68	389,68	389,68	389,68
51	302,11	302,11	302,11	302,11	302,11	302,11	46	449,86	449,86	449,86	449,86	449,86	449,86
53	830,52	830,52	830,52	830,52	830,52	830,52	48	374,19	374,19	374,19	374,19	374,19	374,19
55	515,31	515,31	515,31	515,31	515,31	515,31	50	666,91	666,91	666,91	666,91	666,91	666,91
57	390,98	390,98	390,98	390,98	390,98	390,98	52	321,14	321,14	321,14	321,14	321,14	321,14
59	212,21	212,21	212,21	212,21	212,21	212,21	54	452,20	452,20	452,20	452,20	452,20	452,20
61	233,71	233,71	233,71	233,71	233,71	233,71	56	541,04	541,04	541,04	541,04	541,04	541,04
65	260,83	260,83	260,83	260,83	260,83	260,83	60	295,99	295,99	295,99	295,99	295,99	295,99
69	389,45	327,82	428,87	488,52	269,39	451,51	62	470,86	470,86	470,86	470,86	470,86	470,86
71	660,29	660,29	660,29	660,29	660,29	660,29	64	348,21	348,21	348,21	348,21	348,21	348,21
73	558,01	558,01	558,01	558,01	558,01	558,01	66	726,60	726,60	726,60	726,60	726,60	726,60
77	338,43	338,43	338,43	338,43	338,43	338,43	68	262,29	262,29	262,29	262,29	262,29	262,29
							70	218,25	218,25	218,25	218,25	218,25	218,25
							72	438,75	438,75	438,75	438,75	438,75	438,75
							78	507,97	507,97	507,97	507,97	507,97	507,97
							80	110,44	110,44	110,44	110,44	110,44	110,44

(*) Sin Producción Nota: El cuadro incluye los indices unificados de código: 30, 34, 39, 49 y 53, que fueron aprobados mediante Resolución Jefatural Nº 270-2019-INEI; así como, la modificación del Índice modificado de código 47, aprobado mediante Resolución Jefatural Nº 288-2019-INEI.

Artículo 2.- Las Áreas Geográficas a que se refiere el artículo 1, comprende a los siguientes departamentos:

Área 1: Tumbes, Piura, Lambayeque, La Libertad, Cajamarca, Amazonas y San Martín

Área 2 : Ancash, Lima, Provincia Constitucional del

Callao e Ica

Huánuco, Pasco, Junín, Huancavelica, Ayacucho y Ucayali Área 3:

Área 4: Arequipa, Moquegua y Tacna

Área 5: Loreto

Área 6: Cusco, Puno, Apurímac y Madre de Dios.

Artículo 3.- Los Índices Unificados de Precios de la Articulo 3. Los indices Unitrados de la Construcción, corresponden a los materiales, equipos, herramientas, mano de obra y otros elementos e insumos de la construcción, agrupados por elementos similares y/o afines. En el caso de productos industriales, el precio utilizado es el de venta ex fábrica incluyendo los impuestos de ley y sin considerar fletes.

Registrese y comuniquese.

JOSÉ GARCÍA ZANABRIA

Jefe (e)

1808052-1

329102

MORMAS LEGALES

El Peruano sábado 30 de setiembre de 2006

Origen - Destino o viceversa	DV Parcial	DV Acum.	S/. x TM
De Lima a:	(Km.)	(Km.)	
Bagua Grande	24.48	1292.59	213.45
Pedro Ruíz gallo	64.55	1357.14	224.11
Rioja	174.48	1531.62	252.93
Tarapoto	133.65	1665.27	275.00
Yurimaguas	206.90	1872.17	309.16

Origen - Destino o viceversa	DV Parcial	DV Acum.	S/. x TM
De Lima a:	(Km.)	(Km.)	
Dvo Puquio (Ruta 26)	445.01	445.01	76.37
Puquio	435.32	880.33	145.38
Challhuanca	261.31	1141.64	188.53
Abancay	147.52	1289.16	212.89
Curahuasi	101.78	1390.94	229.70
Cuzco	175.49	1566.43	258.68
Quincemil	742.58	2309.01	381.30
Inambari	118.74	2427.75	400.91
Pto. Maldonado	399.47	2827.22	466.88
Alerta	247.25	3074.47	507.71
Iberia	133.30	3207.77	529.72
lñapari	144.05	3351.82	553.51
Rio Acre (Frontera Perú Brasil)	0.00	3351.82	553.51

Origen - Destino o viceversa	DV Parcial	DV Acum.	S/. x TM
De Lima a:	(Km.)	(Km.)	
Cañete	144.30	144.30	42.50
Chincha Alta	53.70	198.00	48.55
San Clemente	30.00	228.00	51.93
Dvo. Pisco (Ruta 24)	4.50	232.50	52.44
Pisco	38.45	270.95	56.77
lca	32.26	303.21	60.40
Palpa	92.10	395.31	70.78
Nazca	48.20	443.51	76.21

Ruta: Lima - La Oroya - Tarma - La Merced					
Origen - Destino o viceversa	DV Parcial	DV Acum.	S/. x TM		
De Lima a:	(Km.)	(Km.)			
Matucana	83.96	83.96	35.71		
San Mateo	26.04	110.00	38.64		
Morococha	63.00	173.00	45.74		
La Oroya	47.88	220.88	51.13		
Tarma	78.06	298.94	59.92		
San Ramón	70.45	369.39	67.86		
La Merced	10.37	379.76	69.03		
Pte. Chanchamayo Emp R05S	12.18	391.94	70.40		

Ruta: Lima - La Oroya - Cerro de Pasco - Huánuco - Tingo María - Pucalipa					
Origen - Destino o viceversa De Lima a:	DV Parcial (Km.)	DV Acum. (Km.)	S/. x TM		
La Oroya	220.88	220.88	51.13		
Junin	78.12	299.00	59.93		
Carhuamayo	42.00	341.00	64.66		
Chasquitambo	12.32	353.32	66.05		
Cerro de Pasco	47.24	400.56	71.37		
Ambo	116.98	517.54	85.47		
Huánuco	28.68	546.22	90.20		
Tingo María	135.97	682.19	112.65		
San Alejandro	219.16	901.35	148.85		
Pucalipa	139.97	1041.31	171.96		

Ruta: Lima - Pacasmayo - Cajamarca - Chachapoyas - Tarapoto - Yurimaguas					
Origen - Destino o viceversa	DV Parcial	DV Acum.	S/. x TM		
De Lima a:	(Km.)	(Km.)			
Cajamarca	875.11	875.11	144.51		
Yanacocha	140.00	1015.11	167.63		
Celendin	304.89	1180.00	194.86		
Leymebamba	345.61	1525.61	251.93		
Chachapoyas	190.85	1716.46	283.45		
Rodriguez de Mendoza	134.58	1851.05	305.68		
Soritor	135.41	1986.45	328.04		

Origen - Destino o viceversa De Lima a:	DV Parcial (Km.)	DV Acum. (Km.)	S/. x TM
DO CONTROL OF THE PARTY OF THE			
Moyobamba	29.36	2015.81	332.89
Tarapoto	110.95	2126.76	351.21
Yurimaguas	206.12	2332.88	385.25

Origen - Destino o viceversa De Lima a:	DV Parcial (Km.)	DV Acum. (Km.)	S/. x TM
Huaytará	348.89	348.89	65.55
Ayacucho	300.50	649.38	107.24
Andahuaylas	729.68	1379.06	227.73
Abancay	366.94	1746.00	288.33
Curahuasi	101.78	1847.78	305.14
Izcuchaca	129.79	1977.57	326.57
Cuzco	36.64	2014.21	332.62

"ANEXO III

TABLA DE DETERMINACIÓN DE CARGA ÚTIL EN FUNCIÓN A LAS CONFIGURACIONES VEHICULARES CONTEMPLADAS EN EL REGLAMENTO NACIONAL DE VEHÍCULOS

CONFIGURACIÓN VEHICULAR	CARGA ÚTIL (TM)
C2	10
C3	15
T2S1, C2RB1	17
C4	18
8x4	20
T2S2, T3S1, C2RB2, C3RB1	22
C4RB1	25
T2Se2, C2R2, T3S2S1S2, T3Se2S1Se2	26
T3S2, C3RB2, 8x4RB1, T3S2S2, T3Se2Se2	27
T2S3, 8x4R2, 8x4R4	28
C4R3, 8x4R3, C4RB3	29
T3Se2, T3S3, T2Se3, T3Se3, C2R3, C3R2, C3R3, C3R4, C4R2, C4RB2, 8x4RB2	30

NOTA: Para verificar gráficamente la configuración del vehículo puede consultarse el numeral 1 del Anexo IV "Pesos y Medidas" del Reglamento Nacional de Vehículos, aprobado por Decreto Supremo № 058-2003-MTC

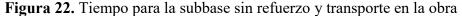
Artículo 4º.- Incorporación de nuevas rutas a la tabla de valores referenciales para el servicio de transporte de bienes por carretera

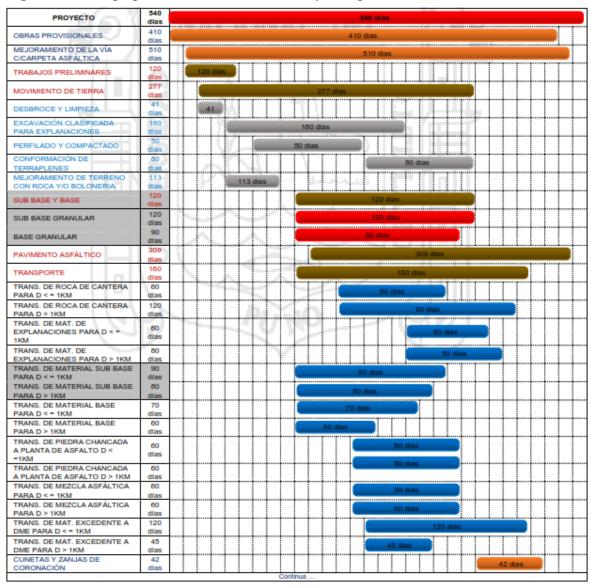
La Dirección General de Circulación Terrestre realizará, en un plazo de 90 días, la revisión de los valores referenciales que premita la incorporación de un un para la la incorporación de un un para la la incorporación de un un para la la incorporación de la la la incorporación de la la incorporación de la incorpor

referenciales que permita la incorporación de nuevas rutas, así como las modificaciones y ajustes que sean necesarios para la mejor aplicación del sistema. Al finalizar el plazo señalado se incorporarán las rutas no comprendidas y sus valores referenciales correspondientes dentro de los alcances del artículo 3º del presente Decreto Supremo.

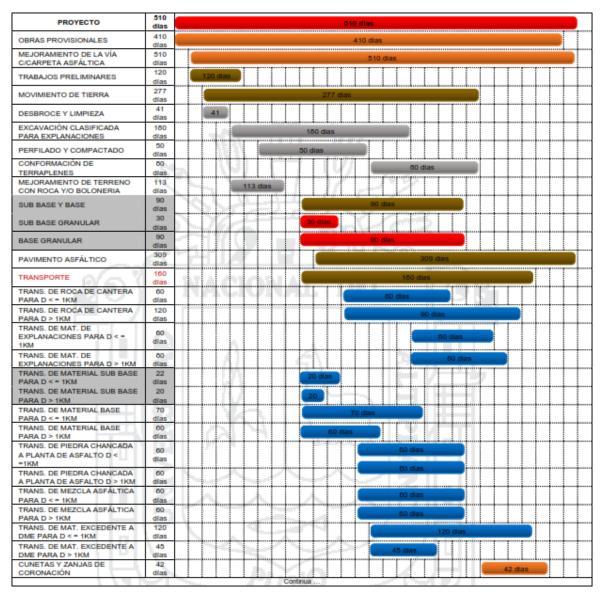
Artículo 5º.- Prórroga de suspensión del control

Artículo 8°.- Prorroga de suspension del control de peso por ejes
Prorróguese hasta el 31 de marzo del 2007 la medida de suspensión dispuesta en el artículo 1º del Decreto Supremo Nº 023-2005-MTC y prorrogada por los Decretos Supremos N°s. 012-2006-MTC y 023-2006-MTC


Artículo 6º.- Refrendo El presente Decreto Supremo será refrendado por el Ministro de Transportes y Comunicaciones.


Dado en la Casa de Gobierno, en Lima a los veintinueve días del mes de setiembre del año dos mil

ALAN GARCÍA PÉREZ Presidente Constitucional de la República


VERÓNICA ZAVALA LOMBARDI Ministra de Transportes y Comunicaciones

02633-5

Figura 23. Tiempo influyente de la subbase (e=0.10m) y transporte en el cronograma de obra.

ANENO 03

FICHA DE RECOLECCIÓN DE DATOS I

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

ENSAYOS DE LABORATORIO

Ensayos de laboratorio	Expertos				
	Deficiente	Aceptable	Bueno	Excelente	
Análisis granulométrico por tamizado			N		
Contenido de humedad			0		
Límites de consistencia		c 2	X		
Relación densidad/humedad (proctor)			Ø		
Relación de capacidad de soporte, CBR			b		

Puntua	ción	S. Constant
Deficiente	00-05	
Aceptable	05-10	
Bueno	10-15	
Excelente	15-20	

Melous S VICHEZ CHIMORRO
INGENIERO GIVIL
GIP Nº 79329

FICHA DE RECOLECCIÓN DE DATOS II

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASHTO 93

$$Log (W_{18}) = Z_{R*}S_0 + 9,36 Log (NE + 1) - 0,20 + \frac{Log \left[\frac{(4,2 - P_t)}{(4,2 - 1,5)}\right]}{0,4 + \frac{1094}{(NE + 1)^{5,19}}} + 2,32 Log M_R - 8,07$$

1.- PARAMETROS DE DISEÑO

-	Expertos				
Ensayos de laboratorio	Deficiente	Aceptable	Bueno	Excelente	
ESAL's 10-Años			X		
ESAL's 20 Años			×		
Confiabilidad R			X		
Desviación Normal Estándar (Zr)			p		
Desviación Estándar (So)			P		
Serviciabilidad Inicial (Po)			4		
Serviciabilidad Final (Pt)			1 9		
CBR sub-base			1-4		
Módulo Resilente (MR)			1 4	<u></u>	

2.- CALCULO DE LOS ESPESORES

$$NE = a_1 \cdot D_1 + a_2 \cdot D_2 \cdot m_2 + a_3 \cdot D_3 \cdot m_3$$

	Expertos			
Datos	Deficiente	Aceptable	Bueno	Excelente
Numero Estructural (NE)			9	
Coeficiente Estructural (a_i)			4	
Coeficiente de Drenaje (m_i)				

Puntua	ción
Deficiente	00-05
Aceptable	05-10
Bueno	10-15
Excelente	15-20

FICHA DE RECOLECCIÓN DE DATOS III

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

CONTEO VEHICULAR Y TPDA

$$TPDA_t = TPDA_0x(1+\alpha)^t$$

$$N_{(8.2 \text{ T})} = \frac{(TPDA_0 + TPDA_f)}{2} * 365 * Dt * n * F. C. E$$

TRAFICO PROMEDIO DIARIO ANUAL

Asignación del tráfico	Expertos				
Asignacion dei tranco	Deficiente	Aceptable	Bueno	Excelente	
Trafico promedio diario anual (TPDA)			X		
Factor de Carga Equivalente (FQE)			X		
Ejes Equivalentes (N _(8.2 T))			X		

Puntua	ción
Deficiente	00-05
Aceptable	05-10
Bueno	10-15
Excelente	15-20

FICHA DE RECOLECCIÓN DE DATOS I

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

ENSAYOS DE LABORATORIO

Ensayos de laboratorio	Expertos				
	Deficiente	Aceptable	Bueno	Excelente	
Análisis granulométrico por tamizado					
Contenido de humedad					
Límites de consistencia					
Relación densidad/humedad (proctor)			/		
Relación de capacidad de soporte, CBR					

Puntua	ción
Deficiente	00-05
Aceptable	05-10
Bueno	10-15
Excelente	15-20

MARCO ANTONIO MORENO FLORES INGENIERO CIVIL Reg. CIP Nº 176318

FICHA DE RECOLECCIÓN DE DATOS II

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASHTO 93

$$Log\left(W_{18}\right) = Z_{R*}S_{0} + 9,36 \text{ Log}\left(NE + 1\right) - 0,20 + \frac{Log\left[\frac{(4,2 - P_{t})}{(4,2 - 1,5)}\right]}{0,4 + \frac{1094}{(NE + 1)^{5,19}}} + 2,32 \text{ Log } M_{R} - 8,07$$

1.- PARAMETROS DE DISEÑO

Ensayos de laboratorio	Expertos				
	Deficiente	Aceptable	Bueno	Excelente	
ESAL's 10 Años					
ESAL's 20 Años					
Confiabilidad R			/		
Desviación Normal Estándar (Zr)					
Desviación Estándar (So)			/		
Serviciabilidad Inicial (Po)					
Serviciabilidad Final (Pt)			/		
CBR sub-base			/		
Módulo Resilente (MR)					

2.- CALCULO DE LOS ESPESORES

$$NE = a_1.D_1 + a_2.D_2.m_2 + a_3.D_3.m_3$$

D-4	Expertos				
Datos	Deficiente	Aceptable	Bueno	Excelente	
Numero Estructural (NE)			//		
Coeficiente Estructural (a_i)			1		
Coeficiente de Drenaje (m_i)			1		

Puntuación		
Deficiente	00-05	
Aceptable	05-10	
Bueno	10-15	
Excelente	15-20	

MARCO ANTONIO MORENO FLORES INGENIERO CIVIL Reg. CIP Nº 176318

FICHA DE RECOLECCIÓN DE DATOS III

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

CONTEO VEHICULAR Y TPDA

$$TPDA_t = TPDA_0x(1+\alpha)^t$$

$$N_{(8.2 \text{ T})} = \frac{(TPDA_0 + TPDA_f)}{2} * 365 * Dt * n * F. C. E$$

• TRAFICO PROMEDIO DIARIO ANUAL

Asignación del tráfico	Expertos				
Asignación del tranco	Deficiente	Aceptable	Bueno	Excelente	
Trafico promedio diario anual (TPDA)			/	//	
Factor de Carga Equivalente (FQE)			1		
Ejes Equivalentes (N _(8.2 T))			/		

Puntua	ción
Deficiente	00-05
Aceptable	05-10
Bueno	10-15
Excelente	15-20

FICHA DE RECOLECCIÓN DE DATOS I

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

ENSAYOS DE LABORATORIO

	Expertos				
Ensayos de laboratorio	Deficiente	Aceptable	Bueno	Excelente	
Análisis granulométrico por tamizado			X		
Contenido de humedad			X		
Límites de consistencia			X		
Relación densidad/humedad (proctor)			X		
Relación de capacidad de soporte, CBR			X		

Puntuación		
Deficiente	00-05	
Aceptable	05-10	
Bueno	10-15	
Excelente	15-20	

Yuri Christian Bonilla García INGENIERO CIVIL CIP Nº 89469

FICHA DE RECOLECCIÓN DE DATOS II

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

DISEÑO DE PAVIMENTO FLEXIBLE METODO AASHTO 93

$$Log (W_{18}) = Z_{R*}S_0 + 9,36 Log (NE + 1) - 0,20 + \frac{Log \left[\frac{(4,2 - P_t)}{(4,2 - 1,5)}\right]}{0,4 + \frac{1094}{(NE + 1)^{5,19}}} + 2,32 Log M_R - 8,07$$

1.- PARAMETROS DE DISEÑO

Ensayos de laboratorio	Expertos					
Ensayos de laboratorio	Deficiente	Aceptable	Bueno	Excelente		
ESAL's 1θ Años			X			
ESAL's 20 Años			X			
Confiabilidad R			X			
Desviación Normal Estándar (Zr)			X			
Desviación Estándar (So)			X			
Serviciabilidad Inicial (Po)			X			
Serviciabilidad Final (Pt)			X			
CBR sub-base			X			
Módulo Resilente (MR)			X			

2.- CALCULO DE LOS ESPESORES

$$NE = a_1.D_1 + a_2.D_2.m_2 + a_3.D_3.m_3$$

Datos	Expertos				
	Deficiente	Aceptable	Bueno	Excelente	
Numero Estructural (NE)			X		
Coeficiente Estructural (a_i)			X		
Coeficiente de Drenaje (m_i)			X		

Puntuación		
Deficiente	00-05	
Aceptable	05-10	
Bueno	10-15	
Excelente	15-20	

Yuri Christian Bonilla Garcia INGENIERO CIVIL CIP W 89489

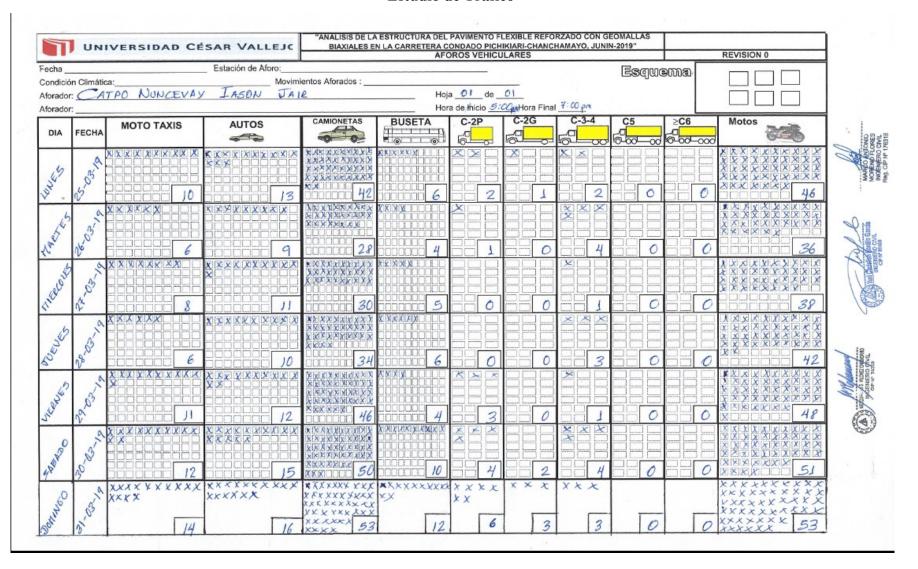
FICHA DE RECOLECCIÓN DE DATOS III

Tesis: Análisis de la estructura del pavimento flexible reforzado con geomallas biaxiales en la carretera condado Pichikiari - Chanchamayo, junín-2019

CONTEO VEHICULAR Y TPDA

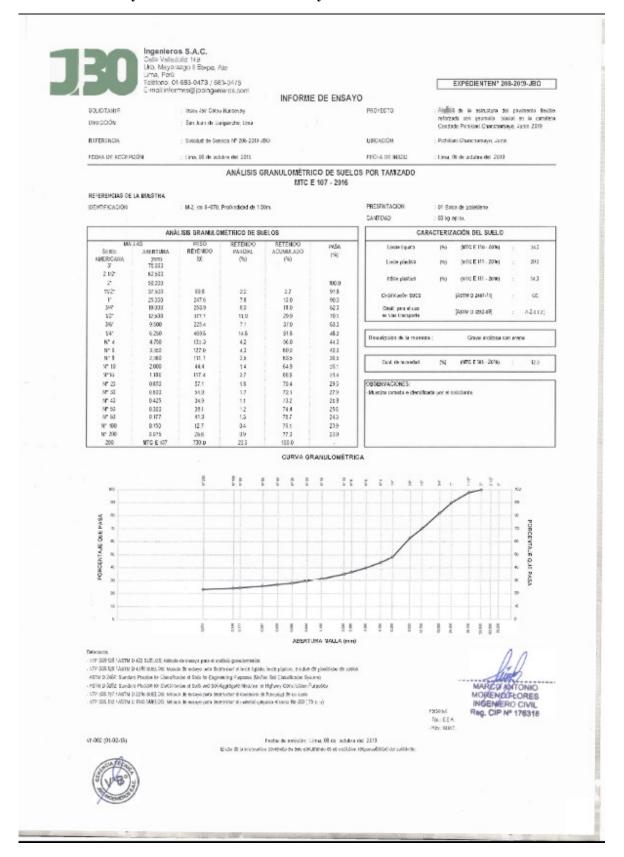
$$TPDA_t = TPDA_0x(1+\alpha)^t$$

$$N_{(8.2 \text{ T})} = \frac{(TPDA_0 + TPDA_f)}{2} * 365 * Dt * n * F. C. E$$


TRAFICO PROMEDIO DIARIO ANUAL

Asignación del tráfico	Expertos				
Asignacion dei tranco	Deficiente	Aceptable	Bueno	Excelente	
Trafico promedio diario anual (TPDA)			X		
Factor de Carga Equivalente (FQE)			X		
Ejes Equivalentes (N _(8.2 T))			X		

Puntuación		
Deficiente	00-05	
Aceptable	05-10	
Bueno	10-15	
Excelente	15-20	


Yuri Christian Bonilla Garcia
INGENIERO CIVIL
CIP Nº 89469

Estudio de Tráfico

ANEXO 04

Ensayo de suelos en laboratorio y Calibración de Instrumentos

INFORME DE ENSAYO

SOUCITANTE

: lason Jair Catpo Nuncevay

PROYECTO

; Atelitis de la estructura del pavimento ficzible

DIRECCIÓN

: San Juan de Lurigancho, Lima

reforzado con geomala bisolal en la carretera Condado Pichikieri-Chanchamayo, Junin-2019

REFERENCIA

UBICACIÓN : Pichikisri-Chanchamayo, Junin

: Solicitud de Servicio Nº 205-2019-JBD : Lima, 06 de l'octubre del 2019

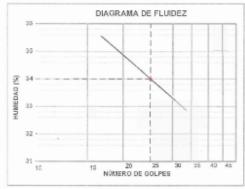
FECHA INICIO : Lima, 06 de octubre del 2019

DETERMINACIÓN DEL LÍMITE LÍQUIDO DE SUELOS MTC E 110 - 2016

DETERMINACIÓN DEL LÍMITE PLÁSTICO (L.P.) DE LOS SUELOS E ÍNDICE DE PLASTICIDAD (I.P.) MTC E 111 - 2016

REFERENCIAS DE LA MÜESTRA

IDENTIFICACIÓN : M-1, km 6+020, Profundidad de 1.50m.


PRESENTACIÓN : 01 Bolsa de poletileno

DESCRIPCIÓN

Grava arollosa con arena

CANTIDAD ; 02 kg aprox.

DESCRIPCIÓN	LIMITE LIQUIDO			LIMITE PLÁSTICA		
ENSAYO No.	1	2	3	4	1	2
CÁPSULA No.	176	173	T56	123	T55	T62
PESO CÁPSULA+ SUELO HÚMEDO, g	30.72	33,13	29.82	29.84	23,31	22.19
PESO GÁPSULA + SUELO SECO, g	26.46	28.62	25.15	25.30	21.96	21.03
PESO AGUA, g	4,26	4.51	3.67	3.54	1.35	1.15
PESO DE LA CÁPSULA, g	14.37	15,54	15.27	75,67	15.23	15.21
PESO SUELO SECO, g	12.09	13,08	10.88	10.63	6,73	5.82
CONTENIDO DE HUMEDAD,%	35.24	34.45	33.76	33.30	20.09	19.93
NÚMERO DE GOLPES	18	23	26	30		

RESULTADOS DE ENSAYOS		
LIMITE LÍQUIDO (%)	34	
LÍMITE PLÁSTICO (%)	20	
NO, PLASTICIDAD (%)	14	

OBSERVACIONES

Enexyo efectuado al material pasante la mata Nº 40.

Muestra tomada e identificada por el solicitante.

- NTP 339-129 / ASTM D 4318 SUELOS: Métado de enseyo pera determinar el limite liquido, limite plástico, e indice de plasticidad de suelbe

-Téc: EEA

- Rev. : M.M.F.

VF-002 (01-02-18)

Facha de emisión: Lima, 08 de, octubre del 2019. El uso de la información contenida en este documento es responsabilidad del colicitante.

INFORME DE ENSAYO

SOLCITANTE DIRECCIÓN

: lason Jair Catpo Nuncevay ; San Juan de Lurigancho, Lima PROYECTO

: Amisis de la estructura del pavimento flexible reforzado con

geomalia biaxiol en la carretera Condado Pichikiari-

Chanchamayo, Junin-2019

REFERENCIA

: Solicitud de Servicio Nº 206-2019-JBO

UBICACIÓN

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN : Lima, 06 de octubre del 2019

FECHA DE NICIO : Lima, 06 de octubre de: 2019

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD DE UN SUELO MTC E 108 - 2016

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN:

: M-1. km 6+020, Profundidad de 1.50m.

PRESENTACIÓN

: 01. Bolsa de polietieno

DESCRIPCIÓN

: Graya arcillosa con arena

CANTIDAD

: 05 kg aprox.

IDENTIFICACIÓN	M-1, km 6+020, Profundidad de 1.50m.
Peso de sue o númedo (g)	3564.4
Peso del suelo seco (g)	3174.0
CONTENDO DE HUMEDAD (%)	12 30

OBSERVACIONES:

- Muestra tomada e identificada por el so icitante.

REFERENCIA:

NTP 339,127 / ASTM D 2216 SUELOS; Método de ensayo para determinar el contenido de humedad

Personal: Téc: E.E.A. Rev.: M.M.F.

VF-002 (01-02-18)

Fecha de emisión: Lima, 08 de octubre del 2019

El uso de la información contenida en este documento es responsabilidad del solicitante.

FLORES

INFORME DE ENSAYO

SOLIC/TANTE

: lason Jair Catpo Nuncevay

PROYECTO

: Analisis de la estructura del pavimonto flexible reforzado con geomalla biaxial en la carretera Condado Pichikiari-Chanchamaiyo, Junin-2019

DIRECCIÓN REFERENCIA : San Juan de Lurigancho, Lima

UBICACIÓN

: Pichikiari-Chanchamayo, Junin

FECHA RECEPCIÓN

: Lima, 06 de octubre del 2019

FECHA INICIO

: Lima, 06 de octubre del 2019

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN

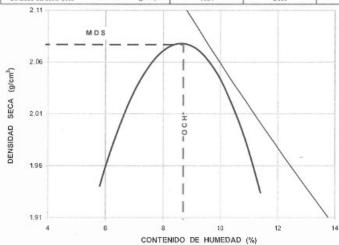
: M-1, km 6+020, Profundidad

: Solicitud de Servicio Nº 205-2019-JBO

PRESENTACIÓN

: 02 Sacos de polipropileno

DESCRIPCIÓN


: Grava arcillosa con arena

CANTIDAD

: 80 kg. aprox.

ENSAYO DE PROCTOR MODIFICADO (MTC E 115 - 2016)

Nº de Capas : 5 Altura de	caida del pisón ;	45.72 cm	Peso del p	pisón :	4.54 Kg	Volumen del	Moide :	2120 g/cm²	
Energia de Compactación Modificad	а;	27.4 kg-cm/ci	m ^a		100	Número de Go	lpes / capa	: 56 Golpes	2011 01925
Peso Suelo Humado + Molde	(g)	71	072	73	323	73	393	7	244
Peso dei Molde	(g)	21	501	28	501	26	501	2	601
Peso Suelo Humedo	(g)	4	471	47	722	47	792	4	543
Volumen del Mode	(cm ⁻)	2	120	21	120	21	120	2	120
Densidad Suelo Humedo	(g/cm²)	2.	109	2.	227	2.	260	2	190
Tarro №		167	158	388	297	9	226	322	482
Peso suelo humedo + tarro	(g)	387.3	414.4	459.0	458.3	472.6	342.4	484.2	480.9
Peso suelo seco + tarro	(g)	368.3	394.7	431.0	430.3	437.9	318.8	444.0	441.5
Peso del agua	(g)	19.0	19.7	28.0	28.0	34.7	23.6	40.2	39.4
Peso del tarro	(g)	68,4	80.2	73.9	69.3	67.2	69.4	76.5	81.8
Peso suelo seco	(g)	299.9	314.5	357,1	361.0	370.7	249.4	367.5	359.7
Contenido de Humedad	(%a)	6.3	6.3	7.8	7.8	9.4	9.5	10.9	11.0
Promedio de Humedad	(%)	6	(3	7	8	9	5	1	1.0
Densidad del Suelo Seco	(g/cm²)	15	984	2.0	366	2.0	064	1	973

PREPAR	ación de la	MUESTRA
Serie Americana	Ret. Parc. (%)	Pasa (%)
2 1/2"		100
2"		100
3/4"	18	82
3/8"	19	63
N°4	19	44
<n*4< td=""><td>44</td><td></td></n*4<>	44	
MÉTOD	0	*C*

MDS	2.078 g/cm²
OCH	8.6%4

MARCO MITONIO MORENO ELORES INGENIERO CIVIL Reg. CIP Nº 176318

OBSERVACIONES:

- Muestra tomada e identificada por el solicitante.

ASTM 0 1557-32: Standard test methods for laboratory compaction characteristics of soil using modified effort - 56000 (Libritis (2700 kN-mins))

Téc: E.E.A.

Fecha de Emisión : Lima, 09 de octubre del 2019

El uso de la información contenida en este documento es de esclusiva responsabilidad del sofictante

INFORME DE ENSAYO

SOLICITANTE

REFERENCIA

lason Jair Catpo Nuncevay

PROYECTO

: Analisis de la estructura del pavimento flexible reforzado

con geornalla biaxial en la carretera Condado Pichkiari-Charchamayo, Junin-2019

DIRECCIÓN : San Juan de Lurigancho, Lima

: Solicitud de Servicio Nº 205-2019-JBO

.

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN

: Lima, 06 de octubre del 2019

UBICACIÓN FECHA DE INICIO

: Lima, 06 de octubre del 2019

REFERENCIAS DE LA MUESTRA

DENTIFICACIÓN

: M-1, km 6+020, Profundidad de 1.50m.

PRESENTACIÓN

: 01 Sacos de polipropileno.

DESCRIPCIÓN

: Grava arcillosa con arena

CANTIDAD

: 03 kg aprox.

PASANTE MALLAN® 4 (%) :

METODO USADO

: A (Para especimenes humedos)

METODO DE ENSAYO ESTENDAR PARA LA GRAVEDAD ESPECIFICA DE SOLIDOS DE SUELO MEDIANTE PICNOMETRO DE AGUA- MTC E 113

DESCRIPCIÓN		SUELO
Peso material saturado y superficie seca (en aire)	(g)	300.0
Peso fiola + H2O	(g)	656.5
Peso fiola + H2O + material	(g)	956.5
Peso fiola + H2O + material saturado y superficie seca	(g)	844.8
Volumen sòlidos + volumen de vacios	(cm3)	111.7
Peso material seco a 105 °C	(g)	289.4
Volumer de söldos	(cm3)	101.1
Peso buk base seca	(g/cm3)	2.592

OBSERVACIONES:

- Muestra tomada e identificada por el solicitante.

Referencia:

- ASTM D 854-10 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

Personal Tèc.: E.E.A. Rev. : M.M.F.

VF-002 (01-02-18)

Fecha de emisión : Lima, 09 de octubre del 2019

El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante

ACCIMINATE OF

MARCO ANTONIO MORENO/FLORES INGENIERO CIVIL Rég. CIP Nº 176318

INFORME DE ENSAYO

SOLICITANTE

: lason Jair Catpo Nuncevay

PROYECTO

: Analisis de la estructura del pavimento flexible reforzado

con geomalla biaxial en la carretera Condado Pichikiari-

Chanchamayo, Junin-2019

DIRECCIÓN REFERENCIA : San Juan de Lurigancho, Lima

: Solicitud de Servicio Nº 208-2019-JBO

UBICACIÓN

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN

Lima, 06 de octubre del 2019

FECHA DE INICIO

Lima, 06 de octubre del 2019

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN

: M-2, km 6+070, Profundidad de 1.50m.

PRESENTACIÓN

: 01 Sacos de polipropileno.

DESCRIPCIÓN

: Grava arcillosa con arena

CANTIDAD

03 kg aprox.

PASANTE MALLAN® 4 (%)

METODO USADO

: A (Para especimenes humedos)

METODO DE ENSAYO ESTENDAR PARA LA GRAVEDAD ESPECIFICA DE SOLIDOS DE SUELO MEDIANTE PICNOMETRO DE AGUA - MTC E 113

DESCRIPCIÓN		SUELO
Peso material saturado y superficie seca (en aire)	(9)	300.0
Peso fiola + H2O	(9)	656.5
Peso fiola + H2O + material	(9)	956.5
Peso fiola +H2O + material saturado y superficie seca	(9)	844.8
Volumen sólicos + volumen de vacios	(cm3)	111.7
Peso material seco a 105 °C	(g)	269.4
Volumen de sóldos	(cm3)	101.1
Peso bulk base seca	(g/cm3)	2.592

OBSERVACIONES

- Muestra tomada e identificada por el solicitante.

Referencia:

- ASTM D 854-10 Standard Test Methods for Specific Gravity of Soil Solids by Water Pychometer

MARCO ANTONIO MORENO PLORES INSENIERO CIVIL Reg. CIP Nº 176318

Personal: Tég. : E.E.A.

Rev. : M.M.F.

VF-002 (01-02-18)

Focha de emisión : Lima, 09 de octubre del 2019

El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante.

INFORME DE ENSAYO

SOLICITANTE DIRECCIÓN

: Iason Jair Catpo Nuncevay : San Juan de Lurigancho, Lima PROYECTO

: Atelisis de la estructura del pavimento flexible reforzado con geomata biaxial en la carretera Condado Pichikiari-Chanchamayo,

Junin-2019

REFERENCIA

: Solicitud de Servicio Nº 205-2019-JBO

UBICACIÓN

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN : Lima, 06 de octubre del 2019

FECHA DE INICIO : Lima, 06 de octubre del 2019

CBR DE SUELOS COMPACTADOS EN LABORATORIO (MTC E 132 - 2016)

REFERENCIAS DE LA MUESTRA

DENTIFICACIÓN

: M-1, km 6+020, Profundidad de 1.50m.

PRESENTACIÓN : 02 Sacos de polipropileno.

DESCRIPCIÓN

: Grava arcillosa con arena

CANTIDAD

: 80 Kg aprox.

CARACTERÍSTICAS FÍSICAS DE LA MUESTRA DE ENSAYO

Granulometria de la M	uestra (MTC E 107 -	MTC E 202)	Limites de Atterberg (MTC E 110 - M	ITC E 111)
Serie Americana	Ret Parcial(%)	Pasa(%)	Limite Liquido	: 34.0 %
2*	*,*	100	Índice Plástico	: 14.0%
3/4"	18	82		
3/8"	19	63	Clasificación de Suelos	
N°4	19	44	SUCS (ASTM D-2487)	: GC
N°200	21	23	Vias Transporte (ASTM D-3282)	: A-2-6 (0)
- A16700	22			

CARACTERISTICAS DE LOS ESPECIMENES DE ENSAYO

Descripción		Especimen N° 1	Especimen Nº 2	Especimen N° 3
Energia de Compactación	(kg-cm/cm ³)	27.4	12.2	6.1
Densidad Seca Antes del Remojo	(g/cm ³⁾	2.077	2.002	1.973
Humedad de Compactación	(%)	8.6	8.5	8.8
Humedad de Penetración	(%)	11.1	12.2	13.6
Absorción	(%)	2.5	3.7	4.8
Expansión	(%)	2.75	3.80	5.10
Tiempo de Embebido	(dias)	4	4	4
Sobrecarga	(kg)	4.5	4.5	4.5

RESUMEN DE RESULTADOS DE ENSAYOS

Proctor Modificado (MTC E 115 - 2016)

C.B.R. a 2,5 mm de Penetración (MTC E 132 - 2016) C.B.R. al 100 % de la M.D.S.

: 32.2 % : 15.6 %

Método de Compactación : C (g/cm³) : 2.078 Máxima Densidad Seca Óptimo Contenido de Humedad : 8.6 (%)

C.B.R. a 5,0 mm de Penetración (MTC E 132 - 2016)

C.B.R. al 100 % de la M.D.S. C.B.R. al 95 % de la M.D.S.

C.B.R. al 95 % de la M.D.S.

; 38.5 % : 19.4 %

Condiciones del Ensayo

: Embebido

MARCO ANTONIO MORENO FLORES INGENIERO CIVIL Reg. CIP Nº 176318

OBSERVACIONES:

- Muestra tomada e identificada por el solicitante.
- La muestra fue compactada, luego se saturó por 4 d'as y posterio mente se realizó el ensayo de penetración

REFERENCIA:

ASTM D 1883: Standard test method for CBR (California Bearing Ratio) of laboratory-compacted soils

ASTMID 1557: Standard test methods for laboratory compaction characteristics of soil using modified effort - 96000 N-bf/H3 (2700 kN-m/m3)

Personal - Tec: E.E.A. - Rev: M.M.F.

Fecha de Emisión: Lima, 14 de octubre del 2019 El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante.

INFORME DE ENSAYO

SOLIC TANTE DRECCIÓN

; lason Jair Calpo Nuncevay

: San Juan de Lurigancho, Lima

PROYECTO

: Analisis de la estructura del pavimento flexible reforzado con geomala blaxial en la carretera Condado Pichikian-Chanchamayo, Junin-2019

REFERENCIA : Solicitud de Servicio Nº 205-2019 JBO FECHA DE RECEPCIÓN : Lima, 06 de octubre del 2019

UBICACIÓN

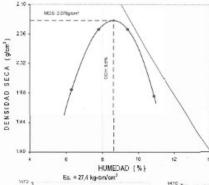
: Pichikiari-Chanchamayo, Junin FECHA DE INICIO : Lima, 06 de octubre dal 2019

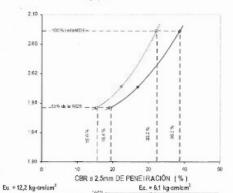
CBR DE SUELOS COMPACTADOS EN LABORATORIO (MTC E 132 - 2016)

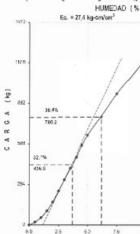
REFERÊNCIAS DE LA MUESTRA

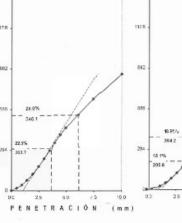
IDENT FICACIÓN

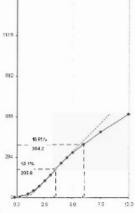
: M-1, km 6+020, Profundidad de 1.50m.


PRESENTACIÓN : 02 Sacos de polipropileno


DESCRIPCIÓN


Grava arciliosa con arena


CANTIDAD


: 80 kg aprox.

OBSERVACIONES:

- Muestra tomaca e identificada por el solicitante.

La muestra lue compactada, vego se saturó por 4 días y posteriormente se realizó el ensayo de penetración

References: ASTM D 1983: Standard lest method for CBR (California Bearing Ratio) of laboratory-compacted sola ASTM D 657: Standard test methods for introducy compection characteristics of soll using modified effort 55000 8,0445 (2700 <4 m/m³)

VF: 001 (10-11-17)

Fecha de Emissón: Lima, 14 de octubre del 2019 El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante. MARCO ANTONIO MORENO FLORES INGENIERO CIVIL Reg. CIP Nº 176318

	Ingenieros S.A.C.	
1	Urb. Mayorazgo II Etapa, Are	
	Link, Petu Telefona 01-683-0473 / 683-0476	
	E-mallinformes@j0cingenleros.com	

: Solicitud de Servicio Nº 205-2019-JBO

Lima, 05 de octubre del 2019

REFERENCIAS DE LA MUESTRA

DENTIFICACIÓN

FECHA DE RECEPCIÓN

REFERENCIA DIRECCIÓN

San Juan de Lurigancho, Lima

lason Jair Catpo Nuncevay

SOLCITANTE

: M-1, km 6+020, Profundidad de 1.50m.

PROYECTO INFORME DE ENSAYO

Analisis de la estructura del pavimento flexible reforzado con geomalla biaxial en la carrelera Condado Pichikiari-Chanchamayo, Junin-2019

EXPEDIENTEN° 205-2019-JBO

: Pichikiari-Chanchamayo, Junin : Lima, 06 de octubre del 2019

UBICACIÓN

FECHA DE INICIO

: 02 Sacos de polipropileno. **PRESENTACIÓN**

DESCRIPCION			: Grava arcillosa con arena	sa con ar	епа						CANTIDAD		: 80 kg aprox.					
	PRÓCTO	R MODIFI	PRÓCTOR MODIFICADO (MTC E 115 - 2016)	115 - 2016	-					0	BR DE SUEL	CBR DE SUELOS CÓMPACTADOS EN LABORATÓRIO (MTC E 132 - 2016)	S EN LABORAT	ORIÓ (MTC E 132.	2016)			
VOLUMEN DEL MOLDE:	2123rm3	Em3	VETODO	VETODO DE COMPACTACIÓN	TACION		0	VOL. MOLDE : INDICADO		W DE C	N DE CAPAS S	CAP. DB. AN LLO: 45 Ton	LO: 45 Tan.	CBRT. DE CALBRACIÓNS	340	- Plana CBR 90M (F-0/35/90) (07-(6-19)	(F-50-TQ) 10818174-	
N-DEWLTE	NS.	-	**		× s		SW	N'TEWART COMO TENOTE	E 3.APG-04	SSWCBB	8 44 15 7	NWOLE	18.	(SS Colpas)	080	(25 Oxford)	(12.0	(12 Golpas)
N- COLPES	2		tx	-	ts		19	Nº DE GOLPES	18	10	ę,	PEN Imm	CARGAMI	Calconia	CARGAIN	CARGA(bg)	CARCAIN	CARGAINE
P. MOLDE - S. HONEDO ()	2002.0	g	7323.0		7383.0		7244.0	VOLUMEN DE MOLDE (cm3)	2122.0	2720	2179.0	90	00	00	90	0.0	20	50
PESO VIOLUE (M)	28010	10	25010		25013	14	2901.0	P. NOLDE+S HÜMEDO (I)	8944.5	99999	9,651.9	65	0.805	12	143.5	92	170.5	0.
PESO SUBLO HÚMEDO (gl	44710	10	47220		4.8.50	9.	F. 19.	PESO WOLDE (g)	in in	1897	F.0.1	0.	521.7	B	\$85.2	H	260.9	2
V* TARRO	187	158	386 2	9 785	238	22	482	PESO SUELO HÚVEDO (g)	4786.9	67179	4877.8	15	1006.2	103	704,3	22	513.	ās.
P. TARRO +B. HOVED G (p. I	363	15	480 48	4 2 4 2	2 6 304	84.2	6'039	R-PARRO	8	- E	280	2.0	109.7	6.7	11478	p.7	8 8 8	z
P, TARRO +8, SECO (M	2863	364.7	4010 40	4303 437.9	19.68	644.0	64.3	P. TARSED +S. HÜWEDD 100	389.1	4493	385.0	525	24222	285	\$ 580.	173	1211.1	\$24
RED IEAGUA & 1	18.0	1.00	20 5	2.0 347	7 26	4 52	7 7	P. TARC+5SEO NI	3 648	485	36.0	3/0	324	in pa	2235.4	22	1811.7	134
PIESO DE TARRO (M	45.89	60.2	73.9	103 871	2 694	78.5	8.8	PESO DE AQUA. UII	243	288	243.	3.5	(0433	217	2003	389	2021.0	3116
MESC 90810 8500 (M)	296.9	3/4.5	357.1 38	3512 3767	17 249.4	367.5	388.7	PESO DE TARRO (91	1.58	130	781	07	6529	585	33764	26	24129	575
HUNBOAD (%)	6.3	6.3	7.8	7.8 8.7	58	40.	11.0	PERO SUBLIC SECO	282.7	3465	3816	4.5	5827:	574	3838.0	376	2813.5	CASE .
HUMEDAD PROMEDIO (%)	60		1.1		976		10.9	CONTENIDO DE HUMEDAD 190	8.93	8,60	815	09	1,000	879	4447.5	121	84769	200
DENSITY OF HUNEDA (\$10H)	2.103	13	2227		2280		2110	DENSIOND HOMEDA. (grand)	2,257	2172	2147	25	17608	786	19084	900	46488	7.77
DEMSERAD SECA (9" tm ?)	PO.B.	78	B . Fl. 2	7.	6,9,7,	¢.19.		TENNE XIVE U.X. (grad)	2,077	2002	1973	£.0	11850.4	1208	8295.2	25	3,8,3,5	6.04
		AB	ABSORCIÓN						EXPANSIÓN					RESUMEN DE P	RESUMEN DE RESULTADOS DE ENSAYÓS	E ENSAYÓS		
N" MOLDE			37 NPG-04		28 I MCB-20	9	61MPG-07	FECHA. HORA	TEC. DIAL	LED, DAVL	LEC. DIAL.	MAXIMA DENSIDAD BECA	*			(Jugal)	21	2378
PER O BUELOHUK.+PLATO+MOLDE	9		1938		11756		13133	10-oct-99 69:33a.m.	0000	.0001	,4000	OPTINOCCNTENDODEHUMEDAD	SHUMEDAD			8	8	8.8
PESCOLLP LA T 0+MODE			100		0 %		60	Hearth				BRA 25mDE RE NE TRADO AL 103% DELAND S	THOD A 103%	DELANDS.		18	11	12.2
PLSO SUELD HOWEDO EMBERDO			9577		4839		1987	12 ceb 19				CBR A 2,5 nm DE PENETRACION AL 95% DE LA M.D.S.	TRACKON AL BEN, DI	E LA M.D.S.		(%)	15	15,6
Section of the Party and Assessment Section Se		-			-						Value of Section 1	The second second second second						

- ASTM D 1883. Standard test method for CBR (California Bearing Ratio) of laboratory-compacted solis Referencie

ASTM D 1557: Standard test methods for informatory compaction characteristics of soll using modified effort- 55000 fluib/HS (2700 Not-m/mS).

 Muestre tomada e identificada por el solicitante. Observaciones:

La muestra fue compectada, luego se saturó por 4 dies y posteriormente se realizó el ensayo de panetración.

N"200 R 88 N" 200

8 A26(0)

F ē

> REENDOWROM (%) NOICE DE PLASTICIDAD

0.241 6.10

0.179 3,60

0.67 276

04-30 a.m.

12 cet. 19 13-0 01 8 14-01/19

> 8 23 * 4283 30.6

9 10 4 4818

600

428 4410 250

PESO SUEDH UNE D O ST. BABBER

PESO DEL SUELO SEDO

ABSORCION DE AGUA

PERO SUELO HONDO DABLIBDO PESO DEAMAR STURBULA. ENPANSION (N

DONOR SEMIN

BENEAN ENCANA

318

SUCS

El uso do la información contanida en esta documento es de axclusiva responsabilidad del solicitanta. Feche de Emisión: Lima, 14 de octubre del 2019

MOREMOPICORES INGENIERO CIVIL Reg. CIP Nº 176318

Ingenieros S.A.C.

Ingenieros S.A.C. Cale Vallacold 149 Urb. Mayorazgo I Etapa, Axe Lims. Perú Teléfono: 01-683-0473 / 683-0476 E-mai: informes@jboingenieros.com

INFORME DE ENSAYO

EXPEDIENTEN® 208-2019-JBO

SOLICITANTE

; tason Jair Catpo Nuncevay

PROYECTO

Analisis de la estructura del paymento flexible recordado con geomolia biasial en la comatera Condado Pichikari-Chanchamayo, Junin-2019

DIRECCIÓN REFERENCIA : San Juan de Lurigancho, Lima ; Solicitud de Servicio Nº 208-2019-JBO

DBICACIÓN

: Pichikiari Chanchamayo, Junin

FECHA DE RECEPCIÓN

Lima, 06 de octubre del 2019

FECHA DE INICIO

: Lima, 05 de octubre del 2019

ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO MTC E 107 - 2016

REFERENCIAS DE LA MUESTRA

DENTIFICACIÓN

: M 2, km 6+070, Profundidad de 1.50m.

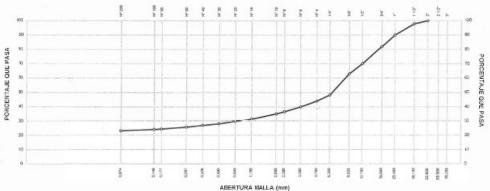
PRESENTACION

: 01 Bolsa de polietieno

CANTIDAD

: 03 kg aprox.

	ANÁ	LISIS GRANULO	METRICO DE SU	ELOS	
	LAS	PESO	RETENDO	RETENDO	PASA
SERE AMERICANA 3"	ABERTURA (mm) 75,000	RETENDO (9)	PARCIAL (%)	ACUMULADO (%)	(%)
2 1/2"	62.500				
2	50.000				100.0
11/2"	37 500	69.8	22	2.2	97.8
1"	25.000	247.6	7.8	10.0	90.0
3/4"	19,000	253.9	8.0	18.0	82.0
1/2"	12.500	377.7	11.9	29.9	70.1
3/6"	9.500	225.4	7.1	37.0	63.0
- 1/4"	6.250	469.8	14.8	51.8	48.2
N° 4	4.750	133,3	4.2	56.0	44.0
W 6	3,350	127.0	4.0	60.0	40.0
Nº B	2.363	111.1	3.5	63,5	36.5
N* 10	2.000	44.4	1.4	64.9	35.1
N°1€	1.180	117.4	3.7	8,89	31.4
N° 20	0.850	57.1	1.8	70.4	29.5
N* 30	0.600	54.0	1.7	72.1	27.9
N* 40	0.425	34.9	1.1	/32	25.9
N° 50	0.300	38.1	1.2	74.4	25.6
N* 50	0.177	41.3	1.3	75.7	24.3
N° 100	0.150	12.7	0.4	76.1	23.9
N° 200	0,075	28.6	0.9	77.0	23.0
-200	MTC E 137	730 p	23.0	100.0	


Limite liquich	194	(MTC E 110 - 2016)	4	34.0
Limite plastico	1941	(MTC E 111 - 201s)	;	20.0
incide plastics	(%)	(MTC E 111 - 2016)	:	14.0
Clasificación SUCS		(ASTM D 2487-11)	1	GC
Clasifi, para el uso en Vise transporte		(ASTM 0 3282-09)		A26 (C

Desc	cripción de la muestra	11	Grava arcitosa o	on aren	a
	Cont. de Numedad	(%)	pmrq E 108 - 2016)	:	12.3

OBSERVACIONES:

Muestra tomaca e identificada por el solicitante

CURVA GRANULOMÉTRICA

- NTP 339 tzB / ASTM II 422 SUELDS. Método de énsayo para el análisis granulométrico
- htt 335 bit 74 of 10 d. 25 SELDS. Michael de exapp parts delibration in intelligible, invite ligition, in hallon on phasic dud de station. ASTW D 2487. Standard Phasible for Classification of Solis for Engineering Purposes (Unified Soli Classification System). ASTW D 2582. Standard Phasible for Classification of Solis and Solid-gaylegae Misturies for Highway Constitution Purposes ASTW D 3282. Standard Phasible for Classification of Solis and Solid-gaylegae Misturies for Highway Constitution Purposes ASTW D 3282 ASTW D 2245 SELDS: Mistorde de area yo got a delibration if meeting culipsian of terms No. 200 (75 tim).

Tac.: EEA. Rev.: M.M.F

MARCG ANTONIO MORENO FLORES INGENIERO CIVIL Reg. CIP Nº 176318

WF-002 (01-02-18)

Fecha de emisión: Lima, 68 de octubre del 2019 El uso de la información contenida en este documento es de exclusiva responsabilidad del solicionte.

INFORME DE ENSAYO

SOLICITANTE DIRECCIÓN

: Iason Jair Catpo Nuncevay

PROYECTO

: Diseño de la estructura del pavimento flexible

reforzado con geomalla biaxial en la carretera Condado Pichikiari-Chanchamayo, Junín-2019

REFERENCIA

: San Juan de Lurigancho, Lima

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN

: Solicitud de Servicio Nº 208-2019-JBO : Lima, 06 de octubre del 2019

UBICACIÓN

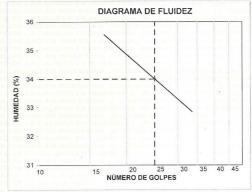
FECHA INICIO : Lima, 06 de octubre del 2019

DETERMINACIÓN DEL LÍMITE LÍQUIDO DE SUELOS MTC E 110 - 2016 DETERMINACIÓN DEL LÍMITE PLÁSTICO (L.P.) DE LOS SUELOS E ÍNDICE DE PLASTICIDAD (I.P.)

MTC E 111 - 2016

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN


: M-2, km 6+070, Profundidad de 1.50m.

PRESENTACIÓN : 01 Bolsa de polietileno

: Grava arcillosa con arena

CANTIDAD : 02 kg aprox.

DESCRIPCIÓN		LÍMITE L	ÍQUIDO	FILE STATE AND	LÍMITE P	LÁSTICO
ENSAYO No.	1	2	3	4	1	2
CÁPSULA No.	T76	T73	T56	T23	T55	T62
PESO CÁPSULA + SUELO HÚMEDO, g	30.72	33.13	29.82	29.84	23.31	22.19
PESO CÁPSULA + SUELO SECO, g	26.46	28.62	26.15	26.30	21.96	21.03
PESO AGUA, g	4.26	4.51	3.67	3.54	1.35	1.16
PESO DE LA CÁPSULA, g	14.37	15.54	15.27	15.67	15.23	15.21
PESO SUELO SECO, g	12.09	13.08	10.88	10.63	6.73	5.82
CONTENIDO DE HUMEDAD, %	35.24	34.48	33.76	33.30	20.09	19.93
NÚMERO DE GOLPES	18	23	26	30		La a a se se se se

RESULTADOS DE ENSAYOS				
LÍMITE LÍQUIDO	(%)	34		
LÍMITE PLÁSTICO	(%)	20		
IND. PLASTICIDAD	(%)	14		

OBSERVACIONES:

- Ensayo efectuado al material pasante la malla N° 40. Muestra tomada e identificada por el solicitante.

- NTP 339.129 / ASTM D 4318 SUELOS: Método de ensayo para determinar el límite líquido,

limite plástico, e índice de plasticidad de suelos

Personal:

- Téc. : E.E.A

- Rev. : M.M.F.

VF-002 (01-02-18)

Fecha de emisión: Lima, 08 de octubre del 2019

El uso de la información contenida en este documento es responsabilidad del solicitante.

INGENIERO CIVIL Reg. CIP Nº 176318

INFORME DE ENSAYO

SOLICITANTE DIRECCIÓN : Iason Jair Catpo Nuncevay

PROYECTO

: Diseño de la estructura del pavimento flexible reforzado con

geomalla biaxial en la carretera Condado Pichikiari-

Chanchamayo, Junin-2019

REFERENCIA

: San Juan de Lurigancho, Lima

UBICACIÓN

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN : Lima, 06 de octubre del 2019

DEN INGENIERIA JBO ASE

: Solicitud de Servicio Nº 208-2019-JBO

FECHA DE INICIO

: Lima, 06 de octubre del 2019

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD DE UN SUELO MTC E 108 - 2016

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN

: M-2, km 6+070, Profundidad de 1.50m.

PRESENTACIÓN

: 01 Bolsa de polietileno

DESCRIPCIÓN

: Grava arcillosa con arena

CANTIDAD

: 05 kg aprox.

IDENTIFICACIÓN	M-2, km 6+070, Profundidad de 1.50m.
Peso del suelo húmedo (g)	3564.4
Peso del suelo seco (g)	3174.0
CONTENIDO DE HUMEDAD (%)	12.30

OBSERVACIONES:

- Muestra tomada e identificada por el solicitante.

REFERENCIA:

- NTP 339.127 / ASTM D 2216 SUELOS: Método de ensayo para determinar el contenido de humedad de un suelo

Personal: Téc.: E.E.A. Rev.: M.M.F.

VF-002 (01-02-18)

Fecha de emisión : Lima, 08 de octubre del 2019

El uso de la información contenida en este documento es responsabilidad del solicitante.

MARICO ANTONIO
MORENO FLORES
INGENIERO CIVIL
Reg. CIP Nº 176318

INFORME DE ENSAYO

SOLICITANTE

: lason Jair Catpo Nuncevay

PROYECTO

: Diseño de la estructura del pavimento flexible reforzado con geomalla biaxial en la carretera Condado Pichikiari

DIRECCIÓN

: San Juan de Lurigancho, Lima

UBICACIÓN

Chanchamayo, Junin-2019 Pichikiari-Chanchamayo, Junin

REFERENCIA FECHA RECEPCIÓN : Solicitud de Servicio Nº 208-2019-JBO : Lima, 06 de octubre del 2019

FECHA INICIO

: Lima, 06 de octubre del 2019

REFERENCIAS DE LA MUESTRA

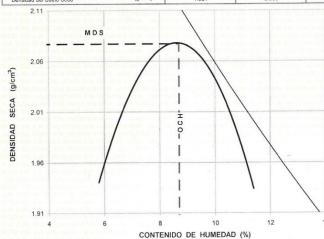
IDENTIFICACIÓN

: M-2, km 6+070, Profundidad

PRESENTACIÓN

: 02 Sacos de polipropileno

DESCRIPCIÓN


: Grava arcillosa con arena

CANTIDAD

: 80 kg. aprox.

ENSAYO DE PROCTOR MODIFICADO (MTC E 115 - 2016)

N° de Capas : 5	Altura de caida del pisón :	45.72 cm	Peso del p	isón :	4.54 Kg	Volumen del N	Molde :	2120 g/cm³	
Energia de Compactación M	Modificada :	27.4 kg-cm/cr	m³		11 (15)	Número de Go	pes / capa	: 56 Golpes	AMILIE
Peso Suelo Humedo + Molde	(9)	7(072	73	123	73	93	7.	244
Peso del Molde	(9)	26	501	26	601	26	01	2	601
Peso Suelo Humedo	(g)	4	471	47	22	47	92	4	643
Volumen del Molde	(cm²)	2	120	21	20	21	20	2	120
Densidad Suelo Humedo	(g/cm ³)	2.	109	2.2	227	2.2	260	2.	190
Tarro N°		167	158	388	297	9	226	322	482
Peso suelo humedo + tarro	(g)	387.3	414.4	459.0	458.3	472.6	342.4	484.2	480.9
Peso suelo seco + tarro	(g)	368.3	394.7	431.0	430.3	437.9	318.8	444.0	441.5
Peso del agua	(g)	19.0	19.7	28.0	28.0	34.7	23.6	40.2	39.4
Peso del tarro	(g)	68.4	80.2	73.9	69.3	67.2	69.4	76.5	81.8
Peso suelo seco	(9)	299.9	314.5	357.1	361.0	370.7	249.4	367.5	359.7
Contenido de Humedad	(%)	6.3	6.3	7.8	7.8	9.4	9.5	10.9	11.0
Promedio de Humedad	(%)	(5.3	7	.8	9	.5	ASFOLK	1.0
Densidad del Suelo Seco	(g/cm³)	1.	984	2.0	066	2.0	064	1.	.973

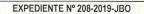
Serie	Ret. Parc.	Pasa
Americana	(%)	(%)
2 1/2"		100
2"		100
3/4"	18	82
3/8"	19	63
N°4	19	44
<n°4< td=""><td>44</td><td></td></n°4<>	44	
MÉTOD	0	"C"

_	MDS	2.078 g/cm ³	
	OCH	8.6%	

MARCO ANTONIO MORENO FLORES INSENIERO CIVIL

OBSERVACIONES:

Muestra tomada e identificada por el solicitante.


Referencia:

NATIO 1157-02: Standard test methods for laboratory compaction characteristics of soil using modified effort - 56000 It-lbt/fl3 (2700 kN-m/m3)

Rev.: M.M.F.

Fecha de Emisión : Lima, 09 de octubre del 2019

El uso de la información contenida en este documento es de esclusiva responsabilidad del solicitante

INFORME DE ENSAYO

SOLICITANTE DIRECCIÓN

REFERENCIA

: Iason Jair Catpo Nuncevay

PROYECTO

Diseño de la estructura del pavimento flexible reforzado con geomalla biaxial en la carretera Condado Pichikiari-Chanchamayo, Junin-2019

: San Juan de Lurigancho, Lima

UBICACIÓN

: Solicitud de Servicio Nº 208-2019-JBO

: Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN

: Lima, 06 de octubre del 2019

FECHA DE INICIO

: Lima, 06 de octubre del 2019

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN

: M-2, km 6+070, Profundidad de 1.50m.

PRESENTACIÓN

: 01 Sacos de polipropileno.

: 03 kg aprox.

DESCRIPCIÓN

PASANTE MALLA N° 4 (%)

: Grava arcillosa con arena

CANTIDAD METODO USADO

: A (Para especimenes humedos)

METODO DE ENSAYO ESTENDAR PARA LA GRAVEDAD ESPECIFICA DE SOLIDOS DE SUELO MEDIANTE PICNOMETRO DE AGUA - MTC E 113

DESCRIPCIÓN	THE STATE OF THE STATE OF THE STATE OF	SUELO
Peso material saturado y superficie seca (en aire)	(9)	300.0
Peso fiola + H2O	(9)	656.5
Peso fiola + H2O + material	(9)	956.5
Peso fiola + H2O + material saturado y superficie seca	(9)	844.8
Volumen sólidos + volumen de vacios	(cm3)	111.7
Peso material seco a 105 °C	(9)	289.4
Volumen de sólidos	(cm3)	101.1
Peso bulk base seca	(g/cm3)	2.592

OBSERVACIONES:

- Muestra tomada e identificada por el solicitante.

Referencia:

- ASTM D 854-10 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

Personal: Téc. : E.E.A. Rev.: M.M.F.

VF-002 (01-02-18)

Fecha de emisión : Lima, 09 de octubre del 2019

El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante.

INFORME DE ENSAYO

SOLICITANTE DIRECCIÓN

: Iason Jair Catpo Nuncevay : San Juan de Lurigancho, Lima PROYECTO

: Diseño de la estructura del pavimento flexible reforzado con geomalla biaxial en la carretera Condado Pichikiari-Chanchamayo,

Junin-2019

REFERENCIA

: Solicitud de Servicio Nº 208-2019-JBO UBICACIÓN : Pichikiari-Chanchamayo, Junin

FECHA DE RECEPCIÓN : Lima, 06 de octubre del 2019

FECHA DE INICIO : Lima, 06 de octubre del 2019

CBR DE SUELOS COMPACTADOS EN LABORATORIO (MTC E 132 - 2016)

REFERENCIAS DE LA MUESTRA

IDENTIFICACIÓN

: M-2, km 6+070, Profundidad de 1.50m.

PRESENTACIÓN : 02 Sacos de polipropileno.

DESCRIPCIÓN

CANTIDAD

: 80 Kg aprox.

CARACTERÍSTICAS FÍSICAS DE LA MUESTRA DE ENSAYO

Granulometría de la I	Muestra (MTC E 107 -	MTC E 202)	Limites de Atterberg (MTC E 110 - M	ITC E 111)
Serie Americana	Ret. Parcial (%)	Pasa (%)	Limite Liquido	: 34.0 %
2"	DEN INITERIA	100	Índice Plástico	: 14.0 %
3/4"	18	82		
3/8"	. 19	63	Clasificación de Suelos	
N°4	19	44	SUCS (ASTM D-2487)	: GC
N°200	21	23	Vias Transporte (ASTM D-3282)	: A-2-6 (0)
< N°200	23			

CARACTERÍSTICAS DE LOS ESPECÍMENES DE ENSAYO

Descripción		Especimen N° 1	Especimen N° 2	Especimen N° 3
Energia de Compactación	(kg-cm/cm ³)	27.4	12.2	6.1
Densidad Seca Antes del Remojo	(g/cm ³)	2.077	2.002	1.973
Humedad de Compactación	(%)	8.6	8.5	8.8
Humedad de Penetración	(%)	11.1	12.2	13.6
Absorción	(%)	2.5	3.7	4.8
Expansión	(%)	2.75	3.80	5.10
Tiempo de Embebido	(dias)	4	4	4
Sobrecarga	(ka)	4.5	4.5	4.5

RESUMEN DE RESULTADOS DE ENSAYOS

Proctor Modificado (MTC E 115 - 2016)

: C Método de Compactación : 2.078 (g/cm3) Máxima Densidad Seca : 8.6 Óptimo Contenido de Humedad (%)

C.B.R. a 2,5 mm de Penetración (MTC E 132 - 2016)

C.B.R. al 100 % de la M.D.S. : 32.2 % C.B.R. al 95 % de la M.D.S. : 15.6 %

C.B.R. a 5,0 mm de Penetración (MTC E 132 - 2016)

C.B.R. al 100 % de la M.D.S. : 38.5 % C.B.R. al 95 % de la M.D.S. : 19.4 % : Embebido Condiciones del Ensavo

> - Téc.: E.E.A. - Rev.: M.M.F.

OBSERVACIONES:

- Muestra tomada e identificada por el solicitante

- La muestra fue compactada, luego se saturó por 4 días y posteriormente se realizó el ensayo de penetración.

REFERENCIA:

ASTM D 1883: Standard test method for CBR (California Bearing Ratio) of laboratory-compacted soils

ASTM D 1557: Standard test methods for laboratory compaction characteristics of soil using modified effort - 56000 ft-lbf/ft3 (2700 kN-m/m3)

MORENO PLORES INGENIERO CIVIL Reg. CIP Nº 176318 Personal

Fecha de Emisión: Lima, 14 de octubre del 2019

El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante

Ingenieros S.A.C. Calle Valladolid 149 Urb. Mayorazgo II Etapa, Ate Lima, Perú Teléfono: 01-683-0473 / 683-0476 E-mail:informes@jboingenieros.com

EXPEDIENTE Nº 208-2019-JBO

INFORME DE ENSAYO

SOLICITANTE DIRECCIÓN

: Iason Jair Catpo Nuncevay : San Juan de Lurigancho, Lima

PROYECTO

12

UBICACIÓN : Pichikiari-Chanchamayo, Junin

: Diseño de la estructura del pavimento flexible reforzado con geomalla biaxial en la carretera Condado Pichikiari-Chanchamayo, Junin-2019

: Solicitud de Servicio Nº 208-2019-JBO REFERENCIA FECHA DE INICIO : Lima, 06 de octubre del 2019 FECHA DE RECEPCIÓN : Lima, 06 de octubre del 2019

CBR DE SUELOS COMPACTADOS EN LABORATORIO (MTC E 132 - 2016)

REFERENCIAS DE LA MUESTRA

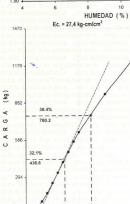
IDENTIFICACIÓN

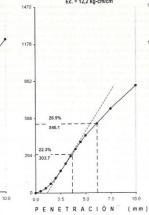
1.94

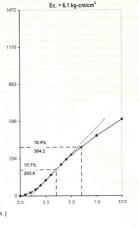
: M-2, km 6+070, Profundidad de 1.50m.

1.94

Ec. = 12,2 kg-cm/cm³


PRESENTACIÓN : 02 Sacos de polipropileno


: Grava arcillosa con arena DESCRIPCIÓN


(g/cm3) 2.02 DENSIDAD SECA

CANTIDAD : 80 kg aprox. 2.06 2.02

CBR a 2.5mm DE PENETRACIÓN (%)

OBSERVACIONES:

- La muestra fue compactada, luego se saturó por 4 días y posteriormente se realizó el ensayo de per

Referencia ASTM D 1833. Standard test method for CBR (California Bearing Rafio) of laboratory-compacted sols ASTM D 1857: Standard test methods for laboratory compaction cheraderistics of soil using most 55000 R-Ib/R3 (2700 kN-m/m3)

VF: 001 (10-11-17)

Fecha de Emisión: Lima, 14 de octubre del 2019 El uso de la información contenida en este documento es de exclusiva re

MARCO INTONIO
MORENO FLORES
INGENIERO CIVIL
Reg. CIP Nº 176318

PROYECTO INFORME DE ENSAYO

: Diseño de la estructura del pavimento flexible reforzado con geomalla biaxial en la carretera Condado Pichikian-Chanchamayo, Junín-2019

EXPEDIENTE Nº 208-2019-JBO

: Pichikiari-Chanchamayo, Junín : Lima, 06 de octubre del 2019

FECHA DE INICIO UBICACIÓN

: Solicitud de Servicio Nº 208-2019-JBO

Lima, 06 de octubre del 2019

REFERENCIAS DE LA MUESTRA

FECHA DE RECEPCIÓN

REFERENCIA DIRECCIÓN

: San Juan de Lurigancho, Lima

: lason Jair Catpo Nuncevay

SOLICITANTE

- Prensa CBR: SCM LF-07051901 (07-05-19) CBR DE SUELOS COMPACTADOS EN LABORATORIO (MTC E 132 - 2016) CERT. DE CALIBRACIÓN: : 02 Sacos de polipropileno. : 80 kg aprox. **PRESENTACIÓN** CANTIDAD : M-2, km 6+070, Profundidad de 1.50m. Grava arcillosa con arena MÉTODO DE COMPACTACIÓN: PROCTOR MODIFICADO (MTC E 115 - 2016) S/N S/N IDENTIFICACIÓN DESCRIPCIÓN VOLUMEN DEL MOLDE

(26 Golpes) 205.0 1006.2 521.7 N* MOLDE PEN. (mm) 0.0 3/MPG-04 25/MCB-20 6/MPG-07 2179.0 4776.1 4155.6 4788.9 N* DE MOLDE / CODIGO DE MOLDE PESO SUELO HÚMEDO (g) (cm3) P. MOLDE + S. HÚMEDO (g) P. TARRO + S. HÚMEDO VOLUMEN DE MOLDE N* DE GOLPES PESO MOLDE N* TARRO 482 7244.0

7393.0

7323.0

7072.0

P. MOLDE + S. HÜMEDO (g) PESO SUELO HÚMEDO (g)

PESO MOLDE N* GOLPES

N* DE MOLDE

P. TARRO + S. HÚMEDO (g) P. TARRO + S. SECO (g)

LEC. DIAL LEC. DIAL 364.8 24.3 82.1 282.7 8.60 2.077 2.257 HORA CONTENIDO DE HUMEDAD (g) DENSIDAD HÜMEDA (g/cm3) DENSIDAD SECA (g/cm3) P. TARRO + S. SECO PESO SUELO SECO PESO DE TARRO PESO DE AGUA 10-oct-19 76.5 81.8 367.5 359.7 10.9 11.0 13003 8118 4884 4678
 437.9
 318.6

 34.7
 23.6

 67.2
 69.4

 370.7
 248.4
 9 228 472.6 342.4 9.5 2601.0 4792.0 9.4 2.260 10788 5909 4879 4718 2.066 9.4 2601.0 4722.0 2227 2.066 11938 7039 4899 4789 7.8 167 158 6.3 6.3 2601.0 4471.0 2109 6.3 PESO SUELO HUM. + PLATO + MOLDE PESO SUELO HUMEDO SIN EMBEBER

(%)

HUMEDAD

HUMEDAD PROMEDIO (%) DENSIDAD HÜMEDA (g/cm²) DENSIDAD SECA (glorn*)

PESO SUELO SECO (g)

PESO DE TARRO PESO DE AGUA

474 324 909

2412.9 3176.9

3938.9

6353.7

9.0 10.0

8.80 2.147

8.50

2.172 2.002

4.5

3378.1

412 492 574 648 948

4043.3

24.3

4825.9 5627.1 9297.7

1211.1 503.1 819.8

2.078 8.6 32.2

(g/cm²)

(%) (%)

CBR A 2,5 mm DE PENETRACION AL 100% DE LA M.D.S. 2BR A 2,5 mm DE PENETRACION AL 95% DE LA M.D.S.

DPTIMO CONTENIDO DE HUMEDAD

LEC. DIAL

RESUMEN DE RESULTADOS DE ENSAYOS

1208

- ASTM D 1557; Standard test methods for laboratory com of soil using modified effort - 56000 ft-lbf/ft3 (2700 kN-m/m/ - ASTM D 1883: Standard test method for CBR (Celifornia Bearing Ratio) of laboratory-compacted soils

- Muestra tomada e identificada por el solicitante. Observaciones:

- La muestra fue compactada, luego se saturó por 4 días y posteriormente se realizó el ensayo de penetración.

El uso de la información contenida en este documento es de exclusiva responsabilidad del solicitante. Fecha de Emisión: Lima, 14 de octubre del 2019

A-2-6(0)

9

SUCS

N*200

å.

3/8" 18

3/4"

RETENIDO PARCIAL (%)

0.241

0.179*

0.127

09:30 a.m.

208 4.80 4299

161 4348

110 4410

PESO DEL AGUA ABSORBIDA

PESO DEL SUELO SECO

PESO DEL PLATO + MOLDE

LIMITE LIQUIDO

5.10

3.80

2.75

EXPANSION (%)

SERIE AMERICANA

21

Calibración de instrumentos

"Año del buen Servicio al Cludadano"

CERTIFICADO DE CALIBRACIÓN SCM - LM 14051903

Página 1 de 3

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de

medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura

k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la

medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores

determinados con la incertidumbre expandida

con una probabilidad de aproximadamente 95 %.

Los resultados sólo están relacionados con los

ítems calibrados y son válidos en el momento y

en las condiciones de la calibración. Al solicitante

le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento del instrumento de medición o a

SCM S.A.C. no se responsabiliza de los

perjuicios que pueda ocasionar el uso

inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

reglamentaciones vigentes.

calibración aquí declarados.

1. SOLICITANTE : JBO INGENIEROS S.A.C.

DIRECCIÓN : Calle Valladolid 149 Urb. Mayorazgo II Etapa , Ate.

: 6000 g

: 19

: USA

: ELECTRÓNICA

: 14/05/2019

2. INSTRUMENTO DE : BALANZA

MEDICIÓN

MARCA : OHAUS

MODELO : SE6001F

NÚMERO DE SERIE : B832476166

ALCANCE DE INDICACIÓN

DIVISIÓN DE ESCALA

REAL (d)

DIVISIÓN DE ESCALA DE VERIFICACIÓN (e)

PROCEDENCIA

IDENTIFICACIÓN : JBO-001-BAL-01

TIPO

UBICACIÓN

FECHA DE CALIBRACIÓN

FECHA DE EMISIÓN : 15/05/2019

SERVICIO DE CALIDAD EN MAGNITUD. SERV

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

SALA DE COMPACTACIÓN - JBO INGENIEROS S.A.C.

3. PROCEDIMIENTO DE CALIBRACIÓN

Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II: PC - 011 del SNM-INDECOPI, 4ta edición abril 2010.

4. LUGAR DE CALIBRACIÓN

SALA DE COMPACTACIÓN - JBO INGENIEROS S.A.C.

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408

3-18.F04 Revisión

Revisado JREE

SERVICIOS DE CALIDAD EN MAGNITUD S.A.C.

Aprobado JSSG

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perú Telefonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm: # 419090. E-maltinformessom@gmail.com

CERTIFICADO DE CALIBRACIÓN Nº SCM LM - 14051903

Página 2 de 3

5. CONDICIONES AMBIENTALES :

	Inicial	Final
Temperatura	19,1	19,5
Humedad Relativa	86,9	89,9

6. TRAZABILIDAD :

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Código	Certificado de calibración
Patrones de referencia de INACAL	Pesas (exactitud E1)	G0917697	LM - C - 416 - 2015
Patrones de referencia de INACAL	1 kg (exactitud F1)	PF1-01-02	LM - C - 453 - 2017
Patrones de referencia de INACAL	2 kg (exactitud F1)	PF1-01-02 PF1- 01-03	LM - 305 - 2017 LM - 306 - 2017

7. OBSERVACIONES :

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

8. RESULTADOS DE MEDICIÓN :

INSPECCIÓN VISUAL GALIDAD EN TUL					
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE		
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE		
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE		
NIVELACIÓN	TIENE	2 CALIF	7741		

ENSAYO DE REPETIBILIDAD

	Inicial	Final
Temp. (°C)	19,5	19,2
Humedad. (%)	89,9	89,4

Medición	Carga L1=	3 000,00 g	LIDAD EN MAG	Carga L2=	6 000,03	GUETUD SERVIC
Nº CA	1040 ET (g) ANTUD	ΔL(g)	E(0)	1(g)	AL(g)	E(g)
SERVICE DE CA	2 999,90	0,020	-0,070	6 000,20	0,010	0,210
2 2	3 000,00	0,020	0,030	6 000,40	0,020	0,400
D SET3 CIC DE	3 000,00	0,020	0.030	6 000,40	0,010	0,410
4	2 999,90	0.040	-0,090	6 000,50	0,030	0,490
TUD (SHVICIO	3 000,00	0,020	0,030	6 000,40	0,040	D EH (\$0,380 LLD
STUD GERMAN	3 000,00	0,020	0,030	6 000,50	0,030	0,490
7	3 000,00	0,020	0,030	6 000,60	0,010	0,610
CHITUS SERVI	3 000,00	0,040	0,010	6 000,60	0,040	0,580
AGMITT 9	3 000,10	0,010	0.140	6 000.40	0,010	0,410
10	3 000,10	0,040	0,110	6 000,50	0,010	0,510
Xiferencia Máxima	ERVICIO DE GALIDAD	EN MACHITUE	0,230	LIDAD EN MAGNITL	D SERVICIO DE	0,400
Error máximo permitio	to ±	1,000 g	STICVICIO DE S	WILLIAM F. WWO.	2,000	g

SERVICIOSIDES CALIDAD EN MAGNITUD S.A.C.

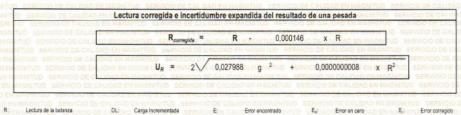
JULIO ROY ESTRELLA ESPINOZA
INGENIERO DE SISTEMAS
Reg, CIP N° 142408 Telefonos: (511) 683 0477 / 583 0476 / 975 578787, rpc: 994269669, rpm: # 419090.
E-mail:informesscm@gmail.com

139

CERTIFICADO DE CALIBRACIÓN Nº SCM LM - 14051903

Página 3 de 3

ENSAYO DE EXCENTRICIDAD


	Inicial	Final
Temp. (°C)	19,5	19,9
Humedad. (%)	79,2	79,9

		ôn de E _e	CALIFICATION IN IT	ACANTLES SERVE	Determinación del Error corres					
Carga minima (g)	l(g)	ΔL(g)	Eo(g)	Carga (g)	I(g)	ΔL(g)	E(g)	Ec(g)		
CALIDAD EN N	1,00	0,020	0,030	EN MAGNETUD S	2 000,00	0,030	0,020	-0,010		
E CALIDAD EN E	1,00	0.060	-0,010	EN MAGNITUD 4	1 999,90	0,070	-0,120	-0,110		
1,00	1,00	0,020	0,030	2 000,00	2 000,00	0,030	0,020	-0,010		
DE CALIDAD E	1,00	0,030	0,020	AD EN MAGNETUS	2 000,10	0,020	0,130	0,110		
O DE CALIDADE	1,00	0,070	-0,020	DAD EN MAGNITU	2 000,00	0,020	0,030	0,050		
	CALIDAD EN EL	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	minima (g) I(g) AL(g) 1.00 0.020 1.00 0.060 1.00 0.020 1.00 0.020 1.00 0.030	minima (g)	minima (g) I(g) AL(g) Eo(g) (g) (g) (g) (g) (g) (1,00 1,00 1,00 0,020 0,030 2,000,00 1,00 0,030 0,020 1,00 0,070 -0,020 (g) (g)	M(g)	minima (g) H(g) AL(g) Eo(g) (g) H(g) AL(g) 1,00 0,020 0,030 2,000,00 0,030 1,00 0,060 -0,010 1,999,90 0,070 1,00 1,00 0,020 0,030 2,000,00 2,000,00 0,030 1,00 0,030 0,020 2,000,00 2,000,10 0,020 1,00 0,070 -0,020 2,000,00 0,020	H(g)		

ENSAYO DE PESAJE

Temp. (°C) 19,3 19,2 Humedad. (%)

Carga		CRECIEN	TES	SERVICIO E	EGA. IIQ EN MA	DECRE	CIENTES		emp(**)
L(g)	l(g)	$\Delta L(g)$	E(g)	Ec(g)	l(g)	$\Delta L(g)$	E(g)	Ec(g)	±(g)
1,00	1,00	0,003	0,047	D SERVICE	DE CALIDAD EN	Ú			1,000
2,00	5,00	0,002	3,048	3,001	O DE 05,000 40 ET	0,009	3,041	2,994	1,000
100,00	99,90	0,003	-0,053	-0,100	100,00	0,007	0,043	-0,004	1,000
200,00	199,90	0,003	-0,053	-0,100	200,00	0,005	0,045	-0,002	1,000
500,00	499,90	0,004	-0,054	-0,101	499,90	0,007	-0,057	-0,104	1,000
1 000,00	999,90	0,005	-0,055	-0,102	999,90	0,002	-0,052	-0,099	1,000
2 000,00	1 999,90	0,004	-0,054	-0,101	2 000,00	0,005	0,045	-0,002	1,000
3 000,00	3 000,10	0,001	0,149	0,102	3 000,20	0,004	0,246	0,199	1,000
4 000,00	4 000,40	0,005	0,445	0,398	4 000,00	0,004	0,046	-0,001	1,000
5 000,02	5 001,20	0,006	0.1,224	EN 1,177 MA	5 001,20	0,004	MAG 1,2280 88	1,179	2,000
6 000,03	6 001,70	0,002	1,718	1,671	6 001,80	0,002	1,818	1,771	2,000

R: en g

Ejemplo del calculo de Roorregida para la capacidad máxima.

(6000,8 ± 0,47) g

Revisión 00 Revisado JREE

SERVICIOS DE CALIDAD EN MAGNITUD S.A.C.

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS

Reg. CIP Nº 142408

Calle Valladolid 15° Urb. Mayorazgo II Etapa Ate, Lima Perú
Teléfonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm: # 419090.

E-mail:informesscm@gmail.com

Página: 1 de 7

Informe de calibración Nº: SCM LT - 11051916

CERTIFICADO DE CALIBRACIÓN

1. SOLICITANTE : JBO INGENIEROS S.A.C.

2. DIRECCIÓN : Calle Valladolid149-urb.Mayorazgo II Etapa - Ate

3. EQUIPO CALIBRADO : Homo Electrico

Marca : FAEL : JBO-102-HOR-01 Código : ER-120LT : 0° - 110° °C Rango de trabajo Serie : 250320112 Procedencia : Perú

4. PATRÓN DE REFERENCIA :

INSTRUMENTO	MARCA	MODELO	SERIE	CERTIFICADO
Termohigrómetro De	TRACEABLE	4247	122058580	LFP-284-2017
Sensores Tipo T	DELTA OUIM	UD 00 0		LT-775-2015
Datalogger Termopar	DELTA OHM	HD-32.8	12013628	LT-775-2015
Regla Métrica	Mitutoyo	182-309	No Indica	LLA-142-2015

5. RESULTADOS DE MEDICIÓN :

PUNTO DE CALIBRACIÓN : 110 °C ± 5 °C

Parámetro DE CALIDA	Valor (°C)	Incertidumbre expandida (°C)
Máxima Temperatura Medida	114,0	итор закись 0,2 ден масито
Mínima Temperatura Medida	98,6	BRITTO SERVICIO DE CO,4 AD EN MAGRITTO
Desviación de Temperatura en el Tiempo	0,6	ARM THE SERVICE OF 0,1 HAS BUTTANK
Desviación de Temperatura en el Espacio DE DAL DAD BILLE	ra rub SERVIC-14,6 CALIDAD EN	MAGNITUD SERVICIO DEO, TILIDAD EN MAGN
Estabilidad Medida (±)	0,3	MAGNITUD BERVIOLO CO.O. ALIDAD EN MAD
Uniformidad Medida	4,2	STORE STORE O.1 COLUMN EN M.

La incertidumbre expandida de medición reportada en este documento es el valor de la incertidumbre estándar de medición multiplicada por un factor de cobertura k=2 que corresponde a un nível de confianza de aproximadamente 95 %.

6. PROCEDIMIENTO:

INDECOPI - SNM PC-018 (2º Edición Junio 2009)

Determinación de la temperatura en distintos puntos del interior del medio isotermo con un termómetro calibrado contra las indicaciones del instrumento de medición del medio isotermo.

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408

SERVICIOS DE CALIDAD EN MAGNITUD S.A.C. JHEFERSON I NANCISCO VITOR

Página: 2 de 7

Informe de calibración Nº: SCM LT - 11051916

7. CONDICIONES AMBIENTALES :

S CALIDAD EN MAGNITUD SERVICIO DI CA	Máxima Máxima	DAD EN MAGNETUL Mímina 10 DE CALIDAD
Temperatura Ambiental	CAL DAD EN M 17,8 °C	LIDAD EN MAGNITUT7,1.°C IGIO DE CALIDA
Humedad Relativa	CA 1000 EH # 88% LD SERVICEO DE C	ALIGNO EN MAGNITU85% RVIGIO DE CALIDA
Presión Atmosférica	983,2	979,1

8. LUGAR Y FECHA DE CALIBRACIÓN :

Laboratorio de Suelos - JBO INGENIEROS S.A.C.

Lima, 11 de Mayo del 2019

9. FECHAS DE EMISIÓN :

Lima, 13 de Mayo del 2019

10. OBSERVACIONES:

- a.- El instrumento de medición y el selector son accesorios del medio isotermo.
- b.- Accesorios del Medio Isotermo :

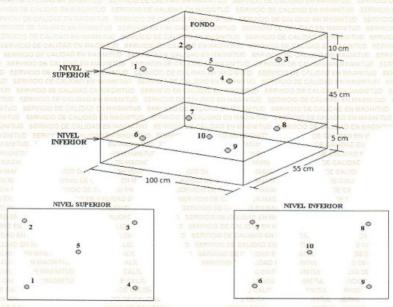
Marca	Modelo	Alcance de indicación	Div. de Esc.	Serie MAGN
AUTONICS	TZ4ST	No indica	JALIDA 0,1 GALTIA	No indica

- c.- Se ha colocado una etiqueta autoadhesiva con la indicación del número de certificado y la fecha de calibración. Se adjunta copia del certificado de calibración del patrón utilizado.
- d.- Las lecturas se iniciaron luego de un tiempo de precalentamiento, preenfriamiento, estabilización de 2 horas y se tomaron cada 2 minutos por 60 minutos.
- e.- Con el fin de asegurar la calidad de sus mediciones el usuario está obligado a recalibrar sus equipos a intervalos apropiados. Este documento documenta la trazabilidad de la medición a los patrones nacionales, los cuales representan las unidades de medida en concordancia con el Sistema Internacional de Unidades (SI). Los resultados consignados en este documento se refieren únicamente al equipo sometido a calibración, al momento y condiciones en las que se realizaron las mediciones. SCM Servicio de Calidad en Magnitud S.A.C. no se responsabiliza por los perjuicios que puedan derivarse del uso inadecuado del equipo calibrado o de este documento.

SERVICIOS DE CALIDAD EN MAGNITUD S.A.C. Autor D JHEFERSON FRANCISCO VITOR

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408

> SERVICIO DE CALIDAD EN MAGNIT SERVICIO DE CALIDAD EN MACHI


Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Peru Telefonos: (511) 683 0477 / 683 0476 / 975 578787, rpc. 994269669, rpm: # 419090. E-mail:informesscm@gmail.com

Página: 3 de 7

ANEXO A INFORME DE CALIBRACIÓN SCM LT - 30101816 DISTRIBUCIÓN DE LOS TERMOPARES

El esquema de distribución de los termopares en el volumen interno y en los planos se muestra en los siguientes gráficos:

Los termopares ubicados en los niveles superior e inferior se colocaron a 15 cm de las paredes laterales y a 10 cm del fondo y frente del medio isotermo. Los termopares ubicados en el centro se encuentran ubicados a 50 cm de las paredes laterales y a 22.5 cm del fondo y frente del medio isotermo. Los termopares 5 y 10 estan ubicados en la parte central de sus respectivos planos.

 POSICIÓN DE LOS PLANOS
 POSICIÓN DE LOS PARRILLAS

 NIVEL SUPERIOR
 : 1
 PARRILLA SUPERIOR
 : 2

 NIVEL INFERIOR
 : 8
 PARRILLA INFERIOR
 : 7

CONDICIONES DE CALIBRACIÓN EN EL MEDIO ISOTERMO

TEMPERATURA	POSICIÓN DEL SELECTOR	POSICIÓN DE VENTILACIÓN	% CARGA	DESCRIPCIÓN DE LA CARGA
110 °C	110	Encendido	100 %	10 tarros aluminio con muestra .

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP Nº 142408 SERVICIOS DE CALIDAD EN MAGNITUD S.A.C. JHEFERSON FRANCISCO VITOR

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perú
Telefonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm: # 419090.

E-mail:informesscm@gmail.com

Página: 4 de 7

ANEXO B

INFORME DE CALIBRACIÓN SCM LT - 30101816 MEDIO ISOTERMO : HORNO

PUNTO DE CALIBRACIÓN : 110 °C ± 5 °C

Tiempo	T ind. (°C)	summer.	TEMPERATURAS EN LAS POSICIONES DE MEDICIÓN (°C)							T. prom.	T máx T min		
(min.)	(TERMÓMETRO	- municipal		L SUPER			awinio r		VEL INFER		0.00	(°C)	(°C)
CALIDA	HORNO)	11	2	3	4	5	6	7	8	9	10	acto de cu	A LONG THE PARTY OF
0	D EN M 109	110,6	113,5	111,3	113,8	112,8	109,7	112,1	111,5	110,1	112,2	111,8	ALIDA 4 LA D
2 2	109	110,6	113,6	111,2	113,9	112,9	109,8	112,1	111,4	110,0	112,2	111,8	cal mal4en
4	108	110,7	113,6	111,3	113,8	113,0	109,8	112,2	111,4	110,1	112,3	111,8	CALIDA4 EN
6	109	110,5	113,6	111,4	113,8	113,1	109,9	112,1	111,3	110,1	112,2	111,8	3,9
8	110	110,6	113,2	111,3	113,8	113,0	109,8	112,1	111,1	110,2	112,2	111,7	4,0
10	110 MAGN	110,6	113,4	111,2	113,8	113,1	109,9	112,1	111,3	110,1	112,0	111,8	3,9
12	ALIDA 111 MAG	110,7	113,5	111,2	113,8	113,2	110,1	112,0	111,3	110,3	112,2	111,8	3,7
14	CATIONALLENING	110,7	113,5	111,3	113,8	113,2	110,0	112,0	111,3	110,2	112,1	111,8	3,8
16	112	110,5	113,5	111,3	113,8	113,2	110,1	112,1	111,2	110,1	112,1	111,8	3,7
18	112	110,7	113,4	111,2	113,8	113,2	110,1	112,1	111,3	110,0	112,1	111,8	3,8
20	112	110,7	113,6	111,4	113,9	113,3	110,2	112,1	111,2	110,1	112.2	111,9	3.8
22	114	110,7	113,7	111,5	114,0	113,4	110,1	112,2	111,3	110,1	112,2	111,9	3,9
24	113	110,8	113,7	111,4	114,0	113,4	110,3	112,2	111,3	110,3	112,2	112,0	3,7
26	113	110,7	113,7	111,4	114,0	113,4	110,2	112,2	111,4	110,1	112,3	111,9	3,9
28	112	110,6	113,6	111,3	113,9	113,3	110,1	112,2	111,3	110,1	112,2	111,9	3,8
30		110,6	113,4	111,1	113,8	113,1	110.0	112,1	111,2	110,2	112,2	111,8	3,8
32	111	110,6	113,5	111,3	113,8	113,2	110,1	112,1	111,2	110,1	112,0	111,8	3,7
34	110	110,6	113,5	111,3	113,9	113,2	110,1	112,1	111,3	110,3	112,2	111,9	3,8
36	110	110,7	113,5	111,3	113,8	113,2	110,3	112,2	111,3	110,2	112,1	111,9	3,6
38	109	110,5	113,5	111,2	113,8	113,2	110,1	112,1	111.2	110,1	112,1	111,8	3,7
40	109	110,6	113,4	111,3	113,8	113,2	110,1	112,1	111,3	110,1	-112,1	111,8	3,7
42	108	110,6	113,5	111,2	113,8	113,2	110,2	112,1	111,3	110,2	112,2	111,8	3,6
44	109	110,7	113,5	111,3	113,8	113,2	110,1	112,1	111.3	109,8	112,2	111,8	4,0
46	109	110,7	113,6	111,4	114,0	113,4	110,3	112,2	111,4	109,8	112,3	111,9	4,2
48	110	110,8	113,6	111,3	113,9	113,3	110,2	112,2	111,4	109,9	112,3	111,9	4,0
50	110	110,7	113,5	111,3	113,9	113,2	110,1	112,2	111,3	109,8	112,1	111,8	4,1
52	111	110,7	113,6	111,3	113,9	113,2	110,1	112,1	111,3	109,9	112,2	111,8	4,0
54	111	110,7	113,6	111,3	113,9	113,3	110,2	112,1	111,3	110,1	112,3	111,9	3,8
56	112	110,7	113,6	111,4	113,9	113,4	110,2	112,2	111,2	110,0	112,3	111,9	3,9
58	112	110,7	113,7	111,4	114,0	113,4	110,2	112,2	111,3	110,1	112,2	111,9	3.9
60	112	110,6	113,5	111,3	113,9	113,3	110,1	112,2	111,3	109,7	112,2	111,8	4,2
PROM.	111	110,7	113,5	111,3	98,9	113,2	110,1	100	111,3	110,1	112,2	99,6	làgh
T. MAX	114	100,0	100,0	100,0	114,0	113,4	100	100	111,5	100	100	1000	MACH
T. MIN	108	110,5	113,2	111.1	98,6	112,8	109,7	112,0	111,1	109.7	112,0	Prop.	
DTT	6	0,3	0,5	0.4	0,6	0,6	0,6	0,2	0,4	0,6	0,3	CIG-DE CA	

Temperatura ambiental promedio :21,4 °C Tiempo de calibración del equipo : 60 min

PARÁMETRO DE GALDAD EN MA	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)		
Máxima Temperatura Medida	THE SE 114,00 DE CALI	DATER MAGNITO,2 SERV		
Minima Temperatura Medida	98,6	DAD EN MAGNE 0,4 SER		
Desviación de Temperatura en el Tiempo	HAGNITUD S-0,6 ICIG DE CA	0,082		
Desviación de Temperatura en el Espacio	14,6	0,086		
Estabilidad Medida (±)	0,3	0,041		
Uniformidad Medida	4.2	0,082		

T.PROM : Promedio de la temperatura en una posición de medición durante el tiempo de calibración.

T. prom. Promedio de las temperaturas en las diez posiciones de medición para un instante dado.

T. MAX : Temperatura máxima. T. MIN : Temperatura minima.

DTT : Desviación de temperatura en el tiempo.

> Filella JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408

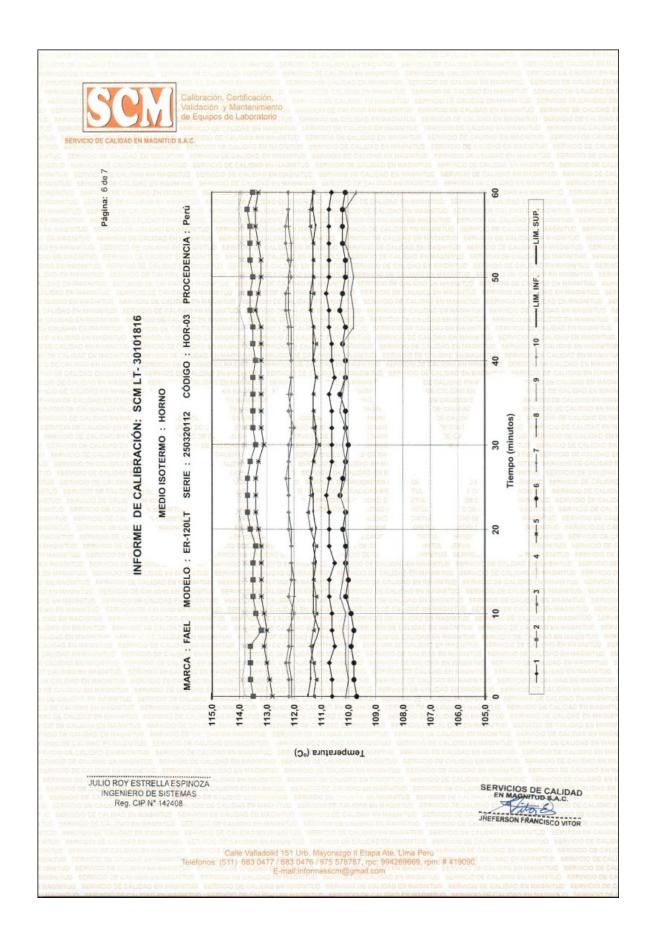
SERVICIOS DE CALIDAD EN MAGNITUD S.A.C. TOTAL

JHEFERSON FRANCISCO VITOR

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perú Teléfonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm: # 419090. E-mail:informesscm@gmail.com

Página: 5 de 7

ANEXO B


INFORME DE CALIBRACIÓN SCM LT - 11051916

Observaciones:

- 1.- Para cada posición de medición su "desviación de temperatura en el tiempo" DTT esta dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición.
- 2.- Entre dos posiciones de medición su "desviación de temperatura en el espacio" esta dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.
- La Uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo. La Estabilidad es considerada igual a ±1/2 máx. DTT.

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Llma Perú Teléfonos: (511) - 683 0477 / 683 0476 / 975 578787 ; pc: 994269669, rpm: # 419090. E-mail:informesscm@gmail.com

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408 SERVICIOS DE CALIDAD EN MAGNITUD S.A.C.

Página: 7 de 7

ANEXO B: INFORME DE CALIBRACIÓN SCM LT - 30101816

MEDIO ISOTERMO : HORNO

Foto de distribución de la carga y termopares dentro de camara del Horno.

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408 SERVICIOS DE CALIDAD EN MACNITUD S.A.C.

Página Nº 1 de 1

Informe de verificación Nº: SCM LL-10051905

INFORME DE VERIFICACIÓN

1. SOLICITANTE : JBO INGENIEROS S.A.C.

2. DIRECCIÓN : Calle Valladolid 149 - Urb.Mayorazgo II Etapa, Ate.

3. EQUIPO CALIBRADO :

Copa Casagrande

Marca : FORNEY

Serie : 855

Código JBO-102-CCG-01

Presión: 982.5 mbar

4. PATRONES DE USADOS :

PATRÓN E CALIDAD EN	MARCA	MODELO	NÚMERO DE CERTIFICADO	TRAZABILIDAD
Termohigrómetro	Traceable	4247	LFP - 284 - 2017	INACAL
Barómetro	Traceable	4247	PLIDAD EN MADINITU LFP - 284 - 2017 CALIDAD EN MAGNI	INACAL
Pie de rey	Ugustools	No Indica	LL - 1182 - 2017	PUNTO DE PRECISIÓN S.A.C.

5. PROCEDIMIENTO :

La verificación se realizó tomando como referencia la norma ASTM D 4318 "Standard test methods for liquid limit, plastic limit, and plasticity index of soils".

6. RESULTADOS :

La base endurecida cumple con su referencia de rebote

En la Tabla Nº 1 se dan los resultados promedios de la siguiente forma:
Diámetro : 2 mediciones
Altura : 4 mediciones
La calibración está referida a las siguientes condiciones ambientales:

Temperatura : 17,2 °C Humedad : 88,6 %

7. MEDICIONES :

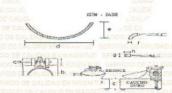


Tabla Nº1

SOCIAL PARENTAGENT IS A	COPA CASAGRANDE (mm)	OCCURRIO DE CALIDAD EN MAZO
MEDIDAS	MEDIDAS DE EQUIPO	MEDIDAS DE NORMA
CIO DE CALIDA BEN MAGNITUR.	126,04	126 ± 0.5
локо ре спициво ен мионатор	5 MICHO CE (150,04) EN HACH TU	151 ± 0.5
WICHO DE GALIDOO EN MAGNITUR	51,02 DE 1	51 ± 0.5
WUCKO DE CATA PO EN MAGINITU	93,02	93 ± 0.5
ERVICIO DE CAL PAD EN MAGNIT	26,09	27 ± 0.5
Desgaste de base	UU BERUKEID SE BALLEAU EN MAN	0.5

8. LUGAR Y FECHA DE VERIFICACIÓN:

Laboratorio de suelos - JBO INGENIEROS S.A.C.

Lima, 10 de Mayo del 2019

9. FECHA DE EMISIÓN :

Lima, 11 de Mayo del 2019

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP Nº 142408

SERVICIOS DE CALIDAD EN MAGNITUD S.A.C. JHEFERSON FRANCISCO VI

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perú Teléfonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm: # 419090. E-ma1.informesscm@gmail.com

Página Nº 1 de 1

Informe de verificación Nº: SCM LL - 14051929

INFORME DE VERIFICACIÓN

1. SOLICITANTE : JBO INGENIEROS S.A.C.

2. DIRECCIÓN : Calle Valladolid Nº 149 Urb. Mayorazgo II Etapa, Ate.

3. EQUIPO VERIFICADO:

Molde de Proctor Modificado - Molde 2 - 4"

4. PATRONES DE REFERENCIA :

E MADE	PATRÓN	MARCA	MODELO	NÚMERO DE CERTIFICADO	TRAZABILIDAD
ET LA	Termohigrómetro	Traceable	4247	LFP - 284 - 2017	INACAL
ENI	Barómetro Barómetro	Traceable	4247	LFP - 284 - 2017	INACAL
DEN	Regla metálica	Mitutoyo	182 - 309	LLA - 142 - 2015	INACAL

5. PROCEDIMIENTO :

La verificación se realizó comprobando los parámetros establecidos en la norma ASTM D 698,D 1557

6. RESULTADOS :

En la tabla Nº 1 se dan los resultados promedios de la siguiente forma:

Diámetro : 2 mediciones

Altura : 4 mediciones

La verificación está referida a las siguientes condiciones ambientales:

Temperatura: 17,4 °C Humedad: 81,5 % Presión: 981,0 mbar

7. LUGAR Y FECHA DE VERIFICACIÓN :

Sala de Compactación - JBO INGENIEROS S.A.C.

Lima, 14 de Mayo del 2019

8. MEDICIONES :

MOLDE	Tabla N°1 DE PROCTOR MODIFICADO	(mm) O DE CALIDAD EN MACIN		
MEDIDAS	MEDIDAS SEGÚN NORMA	MEDIDAS DE EQUIPO		
SERVICIO DE CAL A DESIMASTORIO	63.5 aprox	63.1		
ID SERVICIO DE CAL DIAD EN MAGNIT	101.6 ± 0.41	101,85		
UP SERVICIO DE CA COMO SIN MAGAI	116.4 ± 1.36	115,43		
Volumen	942.95 ± 14.16 cm ³	939		

9. FECHA DE EMISIÓN :

Lima, 15 de Mayo del 2019

INGENIERO DE SISTEMAS
Reg. CIP Nº 142408

SERVICIOS DE CALIDA.
EN MAGNITUD S.A.C.

JULIUS

JEFERSON FRANCIS

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perú Telefonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm: # 419090. E-mall:informesscm@gmail.com

Página Nº 1 de 3

Informe de calibración Nº: SCM LF - 07051901

CERTIFICADO DE CALIBRACIÓN

1. SOLICITANTE : JBO INGENIEROS S.A.C.

2. DIRECCIÓN : Calle Valladolid 149 Urb.Mayorazgo II etapa - Ate

3. EQUIPO CALIBRADO:

Prensa de CBR (PRM-02)

 Marca
 :
 Mavin

 Modelo
 :
 No Indica

 Celda "s"
 Capacidad
 :
 5 Tn

 N° de serie
 :
 E2900571

 Código
 :
 CEL-01

NITUO SERVICIO DE C	Marca		Weighing Indicador
			X3A
Indicador	Serie/Código	:	X3A
	Tipo	314	No indica
	Resolución	:	No indica

4. EQUIPO EMPLEADO :

Celda de carga

Marca : OAP

Serie : 55P4336 Tipo : ZSF-A

Capacidad : 10 Tn

Certificado de Calibración : INF-LE 190-14B

5. PROCEDIMIENTO :

La verificación se realializo según el Método C de la norma ASTM E4-10.

El procedimiento consistió en la aplicación de tres series de cargas referenciales. En cada serie, para los diferentes valores leidos, se registrarón las lecturas del patrón utilizado para la verificación.

Indicador Digital: MCC

Modelo: SAFIR

Código : SCMF-100TN-001-12

6. RESULTADOS

En la tabla Nº 1 se presentan las tres series de verificación obtenidas, la serie promedio, el error absoluto y la repetibilidad La calibración está referida a las siguientes condiciones ambientales:

Temperatura : 18,4 °C

Humedad : 74,5 %

Presión : 495,9 mbar

7. LUGAR Y FECHA DE CALIBRACIÓN :

Laboratorio de Compactación Lima, 07 de Mayo del 2019

8. FECHA DE EMISIÓN : Lipra, 08 de Mayo del 2019

JULIO ROY ESTRELLA ESPINOZA INGENIERO DE SISTEMAS Reg. CIP N° 142408

> Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perù Telefonos: (511) 683 0477 / 683 0476 / 975 578787 rpc: 994269669, rpm: # 419090. E-mail:informesscm@gmail.com

Página Nº 2 de 3

Informe de calibración Nº:SCM LF - 07051901

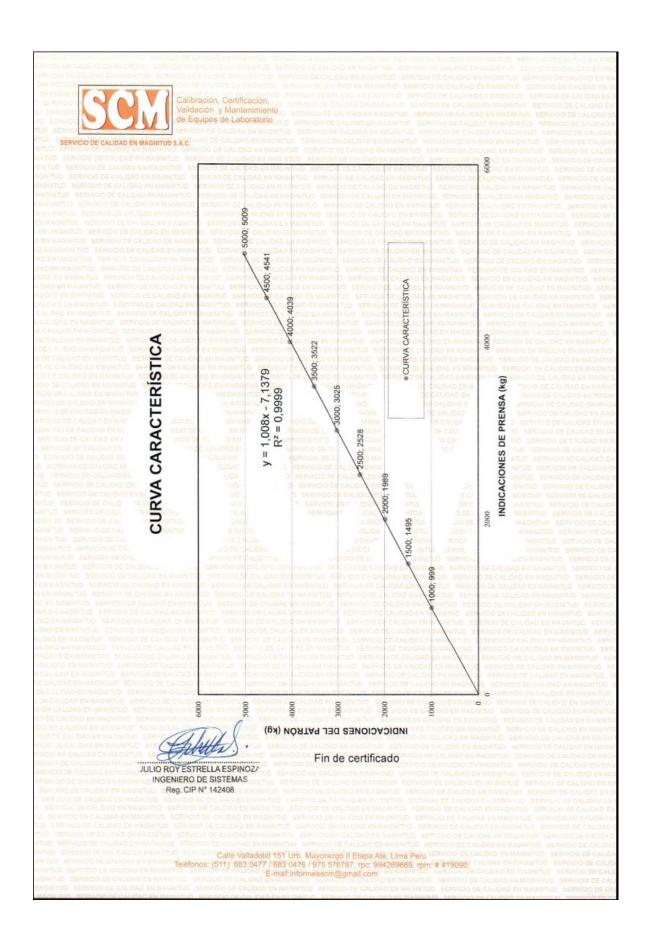
Tabla N 1: Prensa de CBR (PRM-02)

RVIDIO DE G			RES	SULTADOS DE	CALIBRACI	ON			
Lectura de la máquina (kg)	Lectura del patrón (kg)			Fuerza Patrón PROMEDIO	Fuerza Curva de ajuste	Errores			CALIDAD EN
	Serie 1	Serie 2	Serie 3	(kg)	(kg)	Ea (%)	b' (%)	b (%)	(kg)
0	0	0	0	0	3	O LE GALIDA	DENSMORE	UD BENUICE	DE CALIE
1000	1000	995	1000	998,50	1001	0,2	0,5	294,5	13,3
1500	1499	1495	1490	1494,83	1500	0,3	0,6	293,6	13,3
2000	1990	1990	1988	1989,36	1999	0,5	0,1	298,8	13,3
2500	2523	2533	2528	2527,83	2498	1,1	0,4	298,5	13,3
3000	3024	3029	3021	3024,80	2997	0,8	0,2	300,2	13,3
3500	3526	3518	3521	3521,50	3496	0,6	0,2	300,4	13,3
4000	4043	4039	4037	4039,36	3995	1,0	0,1	298,0	13,3
4500	4536	4542	4546	4541,33	4494	0,9	0,2	299,5	13,3
5000	5014	5009	5005	5009,43	4993	0,2	0,2	300,0	13,3

Calle Valladolid 151 Urb. Mayorazgo II Etapa Ate, Lima Perù Teléfonos: (511) 683 0477 / 683 0476 / 975 578787, rpc: 994269669, rpm. # 419090. E-mail:informesscm@gmail.com

Donde:

Valor medio: Promedio de las lecturas del patrón en cada valor de verificación.


Ea: Error absoluto de acuerdo a la norma ASTM E4-10

b: Error de repetibilidad de acuerdo a la norma ASTM E4-10

b: Error de reproducibilidad de acuerdo a la norma ASTM E4-10

U: Incertidumbre con un factor de cobertura de k = 2.

JULIO ROY ESTRELLA ESPINOZ/ INGENIERO DE SISTEMAS Reg. CIP N° 142408

