

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Evaluación de las propiedades del concreto $f'c=210\ kg/cm^2$ adicionando fibras de plumas de aves y fibras de polipropileno reciclado, Callao-2023"

TESIS PARA OBTENER EL TITULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Simbala Chinga, Josemaria Milko (orcid.org/0000-0002-5066-8987)

ASESOR:

Mg. Huaroto Casquillas, Enrique Eduardo (orcid.org/0000-0002-8757-6621)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

CALLAO — PERÚ 2023

Dedicatoria

Dedico esta tesis a Dios por haberme permitido llegar hasta este punto de mi carrera y por darme la fortaleza de cumplir mis objetivos.

A mis padres Jose Luis Simbala Murguía y Patricia Chinga Zamora, por poner en mi toda su fe y su confianza, ya que, gracias a ustedes he logrado cumplir este sueño.

A mi hermana Sthefany Simbala Chinga, por su apoyo incondicional en cada momento de mi vida, eres mi ejemplo a seguir.

Para todos mis seres queridos que están en el cielo y jamás olvidare.

Agradecimiento

A mi familia por ser un pilar importante en mi vida, gracias a sus ejemplos de perseverancia y constancia que me han influenciado siempre para salir adelante y sin su apoyo esto no hubiera sido posible.

A mi novia Alexandra Junchaya por estar a mi lado en los momentos más difíciles, muchas gracias por tu apoyo, paciencia y aliento cuando veías que no podía más.

Índice de contenidos

Car	rátula	i
Ded	dicatoria	ii
Agr	radecimiento	iii
Índ	ice de contenidos	iv
Índ	ice de figuras	V
Índ	ice de Tablas	. viii
Res	sumen	ix
Abs	stract	>
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	5
III.	METODOLOGÍA	. 27
	3.1. Tipo y diseño de investigación	. 27
	3.2 Variables y operacionalización	. 27
	3.3. Población, muestra y muestreo	. 29
	3.4. Técnicas e instrumentos de recolección de datos	. 30
	3.5. Procedimientos	. 30
	3.6. Método de análisis de datos	. 35
	3.7. Aspectos éticos	. 35
IV.	RESULTADOS	. 36
٧.	DISCUSIÓN	. 81
VI.	CONCLUSIONES	. 87
VII.	RECOMENDACIONES	. 90
RE	FERENCIAS	. 91
ΔΝ	EXOS	97

Índice de figuras

Figura 1. Clasificación de fibras	9
Figura 2. Orientación de las fibras en el compuesto del concreto	. 10
Figura 3. Estructura de las plumas	. 10
Figura 4. Morfología de una pluma de pollo	. 11
Figura 5. Tipos de plumas	. 11
Figura 6. Estructura de mascarilla quirúrgica	. 12
Figura 7. Propiedades físicas de la mascarilla quirúrgica	. 13
Figura 8. Proceso de fabricación de fibras de polipropileno	. 14
Figura 9. Fibras de polipropileno monofilamento	. 15
Figura 10. Fibra de polipropileno multifilamento	. 15
Figura 11. Composición del concreto	. 16
Figura 12. Tipos de cemento portland	. 17
Figura 13. Análisis granulométrico del AF	. 17
Figura 14. Clasificación de los agregados finos en relación al módulo de finura	. 18
Figura 15. Límites permisibles del AG	. 18
Figura 16. Requisitos granulométricos del AG	. 22
Figura 17. Ensayo de asentamiento del concreto	. 21
Figura 18. Clases de consistencia según su asentamiento	. 22
Figura 19. Peso unitario según su uso	. 23
Figura 20. Ensayos en concreto fresco	. 23
Figura 21. Método de ensayo a tracción	. 24
Figura 22. Método de ensayo a compresión	. 25
Figura 23. Tipos de fracturas	. 25
Figura 24. Método de ensayo a flexión	. 26
Figura 25. Herramientas y equipos para ensayos	. 31
Figura 26. Flujograma de procedimiento	. 34
Figura 27. Ubicación de la zona de estudio (Bellavista – Callao)	. 36
Figura 28. Recorrido hacia la cantera AGRECOM S.A.	. 37
Figura 29. Traslado de los agregados al laboratorio LEM-ENGIL S.R.L	. 38
Figura 30. Características técnicas del cemento SOL tipo I	. 38

Figura 31. Recolección de plumas de aves procedentes del pollo broiler	39
Figura 32. Selección de plumas de vuelo	40
Figura 33. Primer ciclo de limpieza de plumas	40
Figura 34. Segundo ciclo de limpieza de plumas	41
Figura 35. Secado natural de plumas	41
Figura 36. Estado del arte de las plumas	42
Figura 37. Tercer ciclo de limpieza	42
Figura 38. Tratamiento final y almacenamiento de fibras de plumas de aves	43
Figura 39. Obtención de mascarillas quirúrgicas	43
Figura 40. Primera etapa de desinfección	44
Figura 41. Segunda etapa de desinfección	44
Figura 42. Secado de mascarilla al aire libre	44
Figura 43. Análisis microbiológico de mascarillas quirúrgicas	45
Figura 44. Corte y almacenamiento de fibras de polipropileno reciclado	45
Figura 45. Tamices empleados para el análisis granulométrico	46
Figura 46. Trazo granulométrico del AF	47
Figura 47. Trazo granulométrico del AG	48
Figura 48. Determinación del contenido de humedad	48
Figura 49. Determinación del peso unitario suelto y compactado del AF	49
Figura 50. Determinación del peso unitario suelto y compactado del AG	50
Figura 51. Ensayo de gravedad especifica del AF	51
Figura 52. Ensayo de gravedad especifica del AG	52
Figura 54. Selección de asentamiento de diseño	54
Figura 55. Selección de volumen unitario de agua de diseño	54
Figura 56. Selección del contenido de aire de diseño	55
Figura 57. Selección de relación a/c por resistencia y durabilidad	55
Figura 58. Peso del AG por unidad de volumen del concreto	56
Figura 59. Pesaje de fibras	59
Figura 60. Proceso de mezclado adicionando fibras	59
Figura 61. Llenado de probetas y vigas prismáticas	60
Figura 62. Medición de asentamiento del concreto	61

Figura 63. Variación de asentamiento de las mezclas de concreto	62
Figura 64. Medición de temperatura del concreto	62
Figura 65. Variación de temperatura del concreto patrón y con adición de fibras	. 63
Figura 66. Medición del PU	64
Figura 67. Variación del PU	64
Figura 68. Contenido de aire en el concreto	65
Figura 69. Variación de contenido de aire del concreto patrón y con adición de fibras	66
Figura 70. Medición de la exudación del concreto	66
Figura 71. Determinación de la resistencia a la compresión del concreto	68
Figura 72. Gráfico de resistencia a compresión a los 7 días de curado	69
Figura 73. Gráfico de resistencia a compresión a los 14 días de curado	70
Figura 74. Gráfico de resistencia a la compresión a los 28 días de curado	71
Figura 75. Tendencia de resistencia a compresión	72
Figura 76. Determinación de la resistencia a tracción indirecta	73
Figura 77. Gráfico de resistencia a la tracción indirecta a los 07 días de curado	74
Figura 78. Gráfico de resistencia a la tracción indirecta a los 14 días de curado	75
Figura 79. Gráfico de resistencia a la tracción indirecta a los 28 días de curado	76
Figura 80. Tendencia de resistencia a la tracción indirecta	77
Figura 81. Determinación de la resistencia a flexión	77
Figura 82. Gráfico de resistencia a la flexión a los 28 días de curado	78
Figura 84. Influencia de resistencia en flexión de la FPA y FPR	80

Índice de Tablas

Tabla 1. Distribución de muestras por grupos de ensayos	29
Tabla 2. Resultados granulométricos del AF	46
Tabla 3. Resultados granulométricos del AG	47
Tabla 4. Determinación del C.Humedad del AF	49
Tabla 5. Determinación del C.Humedad del AG	49
Tabla 6. Peso unitario suelto del AF	50
Tabla 7. Peso unitario compactado del AF	50
Tabla 8. Peso unitario suelto del AG	51
Tabla 9. Peso unitario compactado del AG	51
Tabla 10. Peso específico y absorción del AF	52
Tabla 11. Peso específico y absorción del AG	53
Tabla 12. Datos obtenidos de los ensayos de los agregados	53
Tabla 13. Diseño de mezcla concreto patrón f'c = 210kg/cm2	58
Tabla 14. Diseño de concreto patrón + FPA y FPR	58
Tabla 15. Resultados de asentamiento del concreto	61
Tabla 16. Resumen de temperatura del concreto	63
Tabla 17. Resultados de peso unitario y rendimiento del concreto	64
Tabla 18. Resultados de contenido de aire atrapado	65
Tabla 19. Resultados de exudación de concreto	67
Tabla 20. Resistencia a compresión a los 7 días de curado	69
Tabla 21. Resistencia a la compresión a los 14 días de curado	70
Tabla 22. Resistencia a la compresión a los 28 días de curado	71
Tabla 23. Resumen de resistencia a compresión	72
Tabla 24. Resistencia a la tracción indirecta a los 07 días de curado	73
Tabla 25. Resistencia a la tracción indirecta a los 14 días de curado	74
Tabla 26. Resistencia a la tracción indirecta a los 28 días de curado	75
Tabla 27. Resumen de resistencia a tracción	76
Tabla 28. Resistencia a la flexión a los 28 días de curado	78
Tabla 29. Influencia de la FPA y FPR en el comportamiento físico del concreto	79

Resumen

El presente proyecto de investigación tuvo como objetivo evaluar la influencia de la adición de fibras de plumas de aves y fibras de polipropileno reciclado en las propiedades del concreto f'c=210 kg/cm2, Callao – 2023. La metodología es de tipo aplicada, nivel explicativo, diseño cuasi experimental con enfoque cuantitativo. La población estuvo conformada por todos los testigos de concreto, contando como muestra con 72 probetas cilíndricas y 12 vigas de prismáticas de concreto ensayadas a los 7, 14 y 28 días con dosificaciones de 0.0%, 0.18%, 0.65% y 0.87%. Los resultados muestran el incremento en las propiedades mecánicas del concreto con respecto al C°Patrón: Resistencia a tracción y flexión, al 0.0% (19.7 kg/cm²), 36.7 kg/cm2), 0.18% (20.2 kg/cm2, 37.7 kg/cm2), 0.65% (21.5 kg/cm2, 39.7 kg/cm2) y 0.87% (22.3 kg/cm2, 42.8 kg/cm2) respectivamente, en las propiedades físicas: Asentamiento, temperatura, PUC y contenido de aire, obteniendo al 0.0% (4 1/4", 24.5 °C, 2322 kg/cm3, 0.80%), 0.18% (4", 23.7 °C, 2324 kg/cm3, 1.00%), 0.65% (3 3/4", 24.6 °C, 2346 kg/cm3, 1.10%) y 0.87% (3 1/2", 25.3 °C, 2324 kg/cm3, 1.20%) respectivamente. Las conclusiones muestran que el asentamiento del concreto disminuye al incrementar la dosificación con respecto al concreto patrón, a la vez se vuelve más denso y se incrementa levemente el contenido de aire. En cuanto a las propiedades mecánicas, se obtuvo la dosificación optima al 0.87% de fibras, incrementando su resistencia a la tracción y flexión en 13.19% y 16.62% respectivamente, siendo favorable para el uso en la producción del concreto.

Palabras clave: Macrofibras, propiedades del concreto, adición de fibras, fibras de origen animal, fibras de polipropileno.

Abstract

The objective of this research project was to evaluate the influence of the addition of bird feather fibers and recycled polypropylene fibers on the properties of concrete f'c=210 kg/cm2, Callao - 2023. The methodology is applied, explanatory level, quasi-experimental design with a quantitative approach. The population was made up of all the concrete witnesses, counting as a sample with 72 cylindrical specimens and 12 concrete prismatic beams tested at 7, 14 and 28 days with dosages of 0.0%, 0.18%, 0.65% and 0.87%. The results show the increase in the mechanical properties of the concrete with respect to the C°Standard: Tensile and flexural strength, at 0.0% (19.7 kg/cm2, 36.7 kg/cm2), 0.18% (20.2 kg/cm2, 37.7 kg/cm2), 0.65% (21.5 kg/cm2, 39.7 kg/cm2) and 0.87% (22.3 kg/cm2, 42.8 kg/cm2) respectively, in the physical properties: settlement, temperature, PUC and air content, obtaining 0.0 % (4 1/4", 24.5 °C, 2322 kg/cm3, 0.80%), 0.18% (4", 23.7 °C, 2324 kg/cm3, 1.00%), 0.65% (3 3/4", 24.6 °C, 2346 kg/cm3, 1.10%) and 0.87% (3 1/2", 25.3 °C, 2324 kg/cm3, 1.20%) respectively. The conclusions show that the concrete settlement decreases by increasing the dosage with respect to the standard concrete, at the same time it becomes denser and the air content slightly decreases. Regarding the mechanical properties, the optimum dosage was obtained at 0.87% of fibers, increasing its resistance to traction and flexion by 13.19% and 16.62% respectively, being favorable for use in the production of concrete.

Keywords: Macrofibers, Concrete properties, fiber improvement, animal fibers, polypropylene fiber.

I. INTRODUCCIÓN

A nivel internacional, la producción y el consumo a gran escala ha crecido considerablemente con el transcurso de los años, dando lugar a notables problemas ambientales por agentes contaminantes orgánicos e inorgánicos. Actualmente existe un aumento de residuos, generalmente en países con alto crecimiento poblacional (Estados Unidos, Indonesia, Egipto, Pakistán, Nigeria, etc.), además, tomando en consideración la pandemia provocada por el COVID-19, según Erh-Jen Hou et al. (2022), indica que "las pautas de la OMS sugieren que las personas utilicen máscaras quirúrgicas como medida de precaución todos los días, dando como resultado la generación de cantidades masivas de residuos sanitarios al medio ambiente" (párr. 1). El nivel de este residuo es alarmante considerando la mala disposición de desechos que solemos tener, por lo que no solo afecta al medio ambiente, sino que también afecta la salud humana, es por ello que se vienen proponiendo una serie de alternativas, en base a la reutilización de diversos residuos como mitigación de impacto ambiental, además de fomentar el aprovechamiento de materiales no convencionales, y a su vez incorporarlos al diseño del concreto. Según Salas (2021) nos comenta que "estas novedosas adiciones vienen dándose en poblaciones de bajos recursos y en vías de crecimiento socio-económico, pues dichos territorios presentan dificultades de contar con viviendas en estado óptimo" (p. 2).

A nivel nacional, existe una gran variedad de productos como aditivos que son elementos químicos fabricados y comercializados que se utilizan en diferentes construcciones para modificar ciertas propiedades del concreto y obtener resultados positivos contra diversos agentes nocivos, sin embargo, dentro de la producción de la misma, generan efectos negativos al medio ambiente debido a la contaminación por químicos industriales. Por lo que, hoy en día ante una coyuntura económica de sobrecostos, se busca implementar nuevas técnicas ecológicas en base a la innovación, a fin de optimizar el comportamiento del concreto y controlar la propagación de fisuras por retracción plástica, lo que ha dado como resultado nuevas investigaciones sobre el uso y la adición de productos reciclados, destacándose la adición fibras metálicas y sintéticas, ya que actualmente son

utilizadas con mayor frecuencia, sin embargo, "durante los últimos años se viene realizando investigaciones sobre el beneficio que ofrece la adicción de fibras naturales de origen vegetal y animal para reforzar el concreto, ya que, estas fibras son biodegradables, económicas y abundantes" (Romero, 2022, p. 2).

A nivel local, el aumento de procesamiento de la carne aviar en la industria avícola, centros de acopio y mercados de abastos, ha generado enormes cantidades de plumas como subproducto inútil siendo calificado como desecho peligroso, ocasionando un grave problema ambiental, ya que estos desperdicios son eliminados inadecuadamente, siendo los métodos más utilizados como la incineración, rellenos de tierras y como alimentos propios para las aves. Actualmente, estos residuos son cada vez menos aprovechados, por lo que es preciso indicar que estas también son consideradas como fibras de origen animal que otorga diversos beneficios al concreto.

De acuerdo a lo comentado líneas arriba, se formula el **problema general**: ¿En qué medida las propiedades del concreto f'c=210kg/cm2 son influenciadas por la adición de FPA y FPR, Callao-2023?

Por consiguiente, se formulan los **problemas específicos**: 1. ¿En qué medida las propiedades físicas del concreto f'c=210kg/cm2 son influenciadas por la adición de FPA y FPR, Callao-2023? 2. ¿En qué medida las propiedades mecánicas del concreto f'c=210kg/cm2 son influenciadas por la adición de FPA y FPR, Callao-2023? 3. ¿La dosificación propuesta de FPA y FPR incide positivamente en las propiedades del concreto f'c=210kg/cm2, Callao-2023?

Se precisa como justificación teórica al concreto, ya que es considerado particularmente como un material fundamental dentro del sector de la construcción, ya que, debido a su fácil y rápida preparación, hacen del concreto como el material más empleado en el mundo. Se busca brindar un aporte dentro de los conocimientos ya existentes acerca de la adición de diferentes materiales reciclables al concreto. Justificación metodológica; Se propone elaborar una metodología de forma ordenada, en base a una investigación cuantitativa, en donde se utilizarán ensayos de laboratorio, normas, antecedentes y técnicas de investigación para cumplir con los objetivos y comprobar las hipótesis. Una vez demostrada su confiabilidad y validez servirá de quía para futuros investigadores. Justificación técnica; Se busca dar a conocer el beneficio que ofrecen ambas fibras, ya que, es poco frecuente la adición de ambos productos en el sector de la construcción. Se cuenta con justificación social, ya que, se dará a conocer una nueva alternativa de concreto reforzado considerando materiales no convencionales dentro del rubro de la ingeniería. Justificación económica; La obtención de fibras de plumas de aves y fibras de polipropileno reciclado no generará costos adicionales, ya que, es importante resaltar que las fibras de origen animal se obtendrán de las plumas procedentes del pollo broiler, el cual es un desperdicio muy frecuente en centros de acopio, mercados y avícolas. Por otro lado, las fibras de polipropileno serán extraídas de mascarillas quirúrgicas que generalmente son desperdicios sanitarios muy frecuentes en hospitales y centros de salud. Por lo tanto, se pueden llegar a emplear en construcciones de bajo costo, logrando de esta manera incrementar la rentabilidad dado a la disponibilidad de estos insumos a nivel nacional. Finalmente, como justificación ambiental, se busca fomentar el reciclaje de plumas de aves y mascarillas quirúrgicas en la industria de la construcción, ya que, al estar expuestos durante un tiempo prolongado, pueden afectar de manera permanente al medio ambiente.

El **objetivo general** de esta investigación es, comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades del concreto f'c=210kg/cm2, Callao-2023. Así también los **objetivos específicos** son: 1. Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades físicas del concreto, Callao 2023. 2. Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades mecánicas del concreto f'c=210kg/cm2, Callao-2023. 3. Establecer la dosificación optima de fibras derivadas de plumas de aves y mascarillas quirúrgicas que influirá al adicionarse al concreto f'c=210kg/cm2, Callao-2023.

Por consiguiente, se formula la **hipótesis general**: ¿La adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas generará un impacto positivo en las propiedades del concreto f'c=210kg/cm2, Callao-2023?

Del mismo modo se formulan las **hipótesis específicas**: 1. ¿La adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas generará un impacto positivo en las propiedades físicas del concreto f'c=210kg/cm2, Callao-2023? 2. ¿La adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas generará un impacto positivo en las propiedades mecánicas del concreto f'c=210kg/cm2, Callao-2023? 3. ¿La dosificación propuesta de fibras derivadas de plumas de aves y mascarillas quirúrgicas generará un impacto positivo en las propiedades del concreto f'c=210kg/cm2, Callao-2023?

II. MARCO TEÓRICO

Como antecedente internacional se tiene, Romero (2022) indica en su DPI que su principal **objetivo** es sintetizar si las propiedades del mortero presentan resultados favorables, considerando la adición de plumas. Tiene una metodología aplicada con diseño experimental, así como un grado de investigación explicativa y un enfoque cuantitativo, con un total de 162 muestras como población, de las cuales 54 especímenes cúbicos se sometieron a pruebas de rotura a compresión y así mismo se utilizaron 54 prismas de 40x40x160mm a pruebas de rotura a flexión y 54 briquetas a pruebas de rotura a tracción. Se clasificaron en C°patrón y fibras de plumas de dos clases de aves en porcentajes de 0.75%, 1.25% y 1.75%; realizados a las edades de 7, 14 y 28 días, se obtuvieron los siguientes resultados (28 días de curado), en cuanto al ensayo de compresión y tracción todos los morteros evaluados cumplen según lo establecido en la normativa, lo cual exige una resistencia mínima de 63.2kg/cm2 y 26.4kg/cm2 respectivamente. Finalmente, con respecto al esfuerzo a flexión, el aumento fue significativo para las muestras que contenían 1.75% de fibras, aumentando la resistencia en un 75% en comparación al mortero patrón. Se concluye que el uso de fibras como agente de refuerzo generó un aumento en el comportamiento mecánico del mortero, lo cual ofrece notables resultados para elaborar morteros con fines de acabado en paredes, ya que reducirá significativamente las grietas que se presenten a edades tempranas.

Como antecedente nacional se tiene, Miranda (2021) en su DPI, su principal **objetivo** es evaluar el comportamiento del concreto al añadir independientemente fibras naturales (bagazo de caña de azúcar) y fibras sintéticas de polipropileno, contemplando una **metodología** aplicada, además de considerar un diseño cuasi experimental. Como población global se tuvo 35 muestras tipo viga con dimensión 100mmx100mmx350mm. Considerando dosificaciones de 0.5%, 1.0%, 1.5%, 2.5% y 3.0%, teniendo **resultados** positivos, en base a los esfuerzos a la flexión considerando 0.5% de fibra sintética (MR=38.862kg/cm2), caso contrario en base a las dosificaciones restantes, lo cual cuentan con porcentajes negativos con respecto al patrón (-5%, -8%, -10%, -19% y -26%). Por lo tanto, se **concluye** que las

propiedades del concreto son afectadas conforme se aumente la dosificación de fibras.

Davila & Vigo (2021) determinaron en su tesis como **objetivo** principal, analizar el efecto de fibras de polipropileno provenientes de mascarillas faciales como adición dentro del concreto, además de proponer su reciclaje, con el fin de contribuir con el medio ambiente. **Metodología** de diseño cuasi-experimental, además, de contar con un enfoque cuantitativo. Se elaboraron un total de 90 probetas tipo cilindro de 6"x12" para determinar la tracción indirecta y compresión, además de 45 vigas prismáticas para ensayos a flexión. Se tomaron en cuenta porcentajes de adición de 0.12%, 0.17%, 0.22% y 0.27%, obteniéndose los siguientes **resultados** en base a los 28 días de edad, teniendo como dosificación optima la adición de 0.22%, ya que, según las pruebas realizadas de tracción, compresión y flexión, se cuenta con un aumento considerable de 4.54%, 18.04% y 26.44% respectivamente. **Concluyendo** que, al adicionar este producto reciclado influye positivamente en el comportamiento mecánico de concreto, sin embargo, se tiene como consideración que según aumente la dosificación aplicada en la mezcla, la consistencia y trabajabilidad disminuirá progresivamente.

Fuentes & Perez (2021) en su DPI, contempla como **objetivo** principal estudiar experimentalmente que efecto produce la adicción de plumas de pollo dentro de la mezcla, analizando el impacto de la misma para brindarle una solución a la problemática que presenta la ciudad de Jaén, en cuanto a la ejecución de losas aligeradas. Se empleó una **Metodología** aplicada, además de presentar un nivel de investigación explicativo. La población está determinada por las losas aligeradas de la ciudad de Jaén, en donde se analizó un global de 48 muestras para la resistencia a compresión, contando con las siguientes dosificaciones de 0.3%, 0.5% y 1.5%. **Resultados**; durante la rotura a compresión (28 días) se obtuvo un promedio del diseño patrón un f´c de 211.00kg/cm2, con la adición de 0.3% un f´c de 213.00kg/cm2, con la adición de 0.5% un f´c de 217.00kg/cm2 y añadiendo 1.5% un f´c de 199.00kg/cm2, se **concluye** que al incorporar 0.5% de plumas de aves, aumenta la resistencia con respecto al C° patrón, por otro lado, se identificó que la

resistencia disminuye considerablemente como se evidencio con la adición de 1.5% de FNPA.

Caller (2022) en su investigación tiene como objetivo principal aportar datos relevantes en cuanto a la adición de plumas de pollo como refuerzo para el concreto, ya que es un subproducto económico dado a su adquisición como reciclaje. Presenta una Metodología aplicada, ya que se busca una posible utilidad práctica. Se tuvo una población total de 210 especímenes experimentales (63 probetas de tipo cilíndricas y 84 vigas tipo prismática). Se planteó experimentar con dosificaciones de fibras de plumas de pollo (fibra 1-plumas tratadas con parafina y fibra-2 vexilo de la pluma con parafina) en dosis de 0.175%, 0.290% y 2.352%, y determinar sus efectos en la trabajabilidad y resistencia ante los esfuerzos sometidos (compresión y flexión). Contemplando los siguientes resultados en cuanto al asentamiento del concreto, se reduce con el incremento de las fibras, para la dosis de 0.175% de fibra 2 (vexilo de la pluma con parafina), presentaba un SLUMP de 6.67" encontrándose la mezcla muy fluida y contando con una disminución del asentamiento en 9%, por otro lado, para la dosis de 2.352% de fibra 1 (plumas tratadas con parafina) presentaba un SLUMP de 1.67" encontrándose la mezcla seca y contando con una disminución del asentamiento en 77.22%. Dentro de la resistencia en los esfuerzos a compresión y flexión, se observa una mejora a los 7 y 14 días con el uso de la fibra 2 (vexilo de la pluma con parafina), sin embargo, la resistencia disminuye a los 28 días respecto al C° patrón (269.48 kg/cm2, siendo los resultados a la compresión para la fibra 1, 238.48 kg/cm2 (0.175%), 240.81 kg/cm2 (0.29%) y 216.28 kg/cm2 (2.352%) y para la fibra 2, 242.69 kg/cm2 (0.175%), 251.47 kg/cm2 (0.29%) y 203.18 kg/cm2 (2.352%). En cuento a la flexión se tiene C° patrón 45.17 kg/cm2, para la fibra 1, 43.03 kg/cm2 (0.175%), 46.90 kg/cm2 (0.29%) y 38.85 kg/cm2 (2.352%) y para la fibra 2, 49.55 kg/cm2 (0.175%), 46.60 kg/cm2 (0.29%) y 42.62 kg/cm2 (2.352%). Concluyendo que, existe una tendencia desfavorable a la compresión al adicionar cada tipo de fibra respecto al patrón, siendo la menor influencia de -6.68% con la adición de 0.29% de fibra 2 y -24.6% con la adición de 2.352% de fibra 2. Por otro lado, en relación a la resistencia a flexión, se observó un incremento de 9.71% con la adición de 0.175% de fibra 2. Recomendando emplear dosificaciones de menor porcentaje, a fin de no comprometer la calidad del concreto.

Jauregui (2019) en su investigación manifiesta que su **objetivo** es evaluar cómo se comporta física y mecánicamente el concreto mediante la adición de plumas de aves y fibras de polipropileno de la marca Z ADITIVOS, además buscó determinar la contribución de la mezcla para la mitigación de agrietamiento generalmente provocadas por la contracción plástica. Dentro de la Metodología tiene un diseño cuasi experimental, además de presentar nivel de investigación explicativo. La población consta de un total de 36 muestras, de los cuales 12 son de tipo cilindro, 12 muestras prismáticas de 21"x6"x6" y 12 muestras de molde tipo losa de 0.40x0.70cm con un espesor de 5cm que corresponde al potencial de fisuración. La dosificación de fibras propuestas fue de 0.11%, 0.19% y 0.27% en proporciones iguales en relación al peso del conglomerante (cemento). Según los resultados de los ensayos del concreto en estado fresco, se determinó que el asentamiento se reduce conforme se aumenta la dosis de fibras, por otro lado, tomando en cuenta su comportamiento mecánico, al adicionar 0.11% se presenta una mejora a la compresión y flexión de 4% (28 días), en comparación con la adición de 0.19% y 0.27%, en donde se identificó una reducción de -4% y -11% respectivamente respecto al patrón. Mientras que % de fisuramiento se redujo en -76.1% consideración la adición de 0.11%, siendo la dosificación optima. Por lo que, se concluyó que el uso de fibras empleadas, contribuye al potencial de fisuración y al comportamiento mecánico del concreto, además de contribuir con el factor económico y aporte ambiental.

Se tiene como variable independiente las fibras derivadas plumas de aves y mascarillas quirúrgicas, por lo que se presentarán las bases teóricas más relevantes de ambos productos: Concreto fibroreforzado; Para elaborar el concreto es muy común el uso del cemento, partículas de diferente granulometría (piedra y arena), agua y aditivos. Sin embargo, hoy en día se vienen adicionando diversos tipos de fibras, a fin de reemplazar parcial o completamente el refuerzo convencional, referente a las varillas de acero corrugado (Caballero, 2017, p. 23).

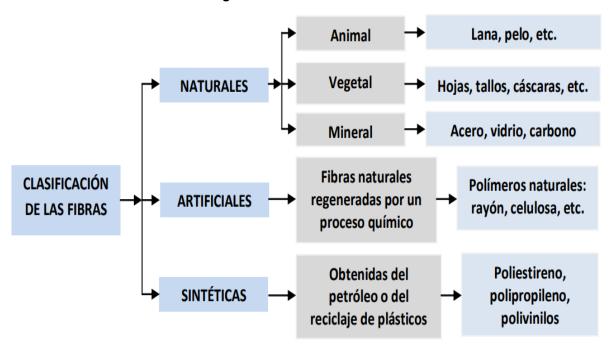
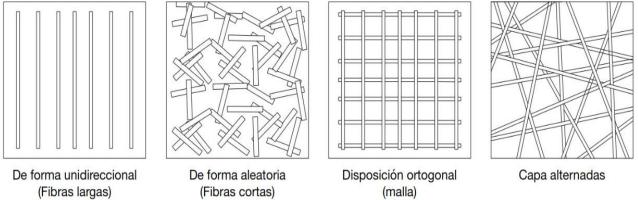


Figura 1. Clasificación de fibras


Fuente: López Roman (2015)

Fibras sintéticas; Están fabricados con materiales sintéticos que brindan resistencia a largo plazo al medio alcalino del concreto, reduciendo el agrietamiento e incrementando la resistencia a las fuerzas de impacto.

Fibras naturales de origen animal; son estructuras epidérmicas que derivan de la piel de los animales. Pueden ser pelo de cerdo, plumas de aves, lana de oveja, escamas de los reptiles, entre otros. Estas fibras son económicas y efectivas en la prevención de grietas durante la contracción plástica.

Las fibras están orientadas en diversas formas, mejorando varias propiedades del compuesto, "dentro de las cuales están la resistencia al agrietamiento, la contracción, expansión, la durabilidad, la resistencia al fuego y la resistencia a la flexión, el cual se ven beneficiadas a mayor proporción de fibras en la mezcla" (Miranda, 2021, p. 30).

Figura 2. Orientación de las fibras en el compuesto del concreto

Fuente: Romero Esparza (2022)

Plumas de aves; La pluma es una característica distintiva de las aves, lo cual está estructurada por una lámina subdividida por elementos como: Raquis, vexilo, ombligo superior, cálamo y ombligo inferior.

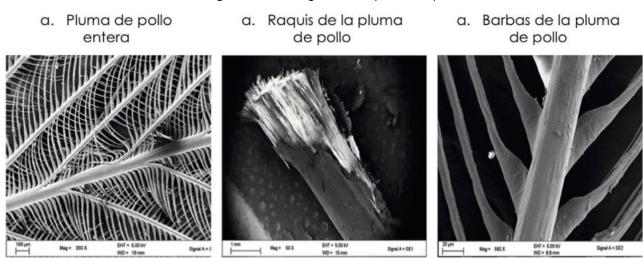
Pigura 3. Estructura de las plumas

Raquis

Barbillas

Barbillas

Ombligo inferior


Ombligo superior

Cálamo o cañón

Barbas

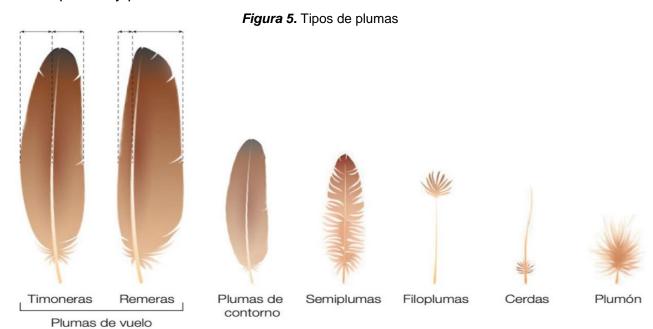

Fuente: Romero Esparza (2022)

Figura 4. Morfología de una pluma de pollo

Fuente: Tesfaye et al. (2017)

Tipos de plumas; En general, existen diferentes tipos de plumas, esto se debe a la posición del cuerpo y la función de cada una. Dentro de los principales tipos tenemos: Plumas de vuelo, de contorno, semiplumas, filoplumas, cerdas, semiplumas y plumón.

Fuente: Romero Esparza (2022)

Las plumas están compuestas de queratina, una proteína natural que se explota ampliamente en el ámbito textil y en otras industrias, esta proteína se forma en pequeños folículos de la piel de las aves.

Según Romero (2022) "En cuanto a las propiedades físicas, presentan diversas particularidades únicas, de las cuales tenemos: bajo espesor, escasa densidad, resistencia al calor y buena absorción del sonido, convirtiéndola en una fibra superior a las demás" (p. 18). Por otro lado, "las propiedades mecánicas están relacionadas de acuerdo a la estructura molecular de la queratina, por lo que cabe recalcar que la resistencia y dureza dependerán del estado climatológico, así como de la edad y el tipo de alimento que ingiere el ave" (Romero, 2022, p. 57).

Mascarilla quirúrgica; es una capa tipo mascara que cubre parte del rostro, específicamente la nariz y garganta, para evitar esparcir gotas al estornudar o toser. Ante la coyuntura actual por el COVID-19, la mascarilla forma parte de nuestra vida cotidiana como una prenda fundamental para combatir el contagio. Según Chávez Amaya (2021) "consta de 3 capas, en donde para su fabricación el material más utilizado es el polipropileno, debido a su capacidad de absorción e hidrofuga, asegurando un ambiente cómodo en la zona del rostro" (párr. 15).

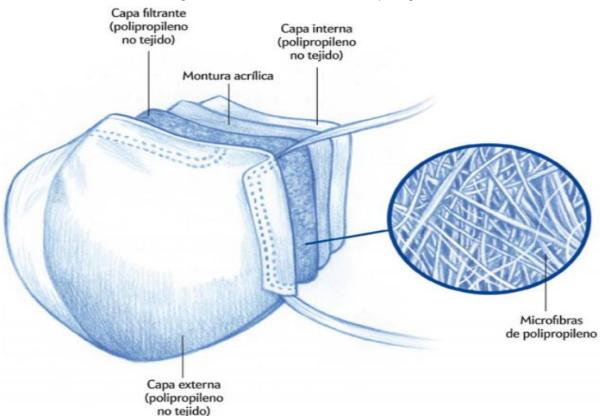


Figura 6. Estructura de mascarilla quirúrgica

Fuente: Investigación y ciencia (2020)

Figura 7. Propiedades físicas de la mascarilla quirúrgica

Propiedades físicas	SHM	Estándar
Peso especifico	0,91	ASTM D792-20 (2020)
Punto de fusion (°C)	160	ASTM D7138-16 (2016)
Absorción de agua 24 h (%)	8,9	ASTM D570-98 (2018)
Resistencia a la tracción (MPa)	4.25	ASTM D638-14 (2014)
Resistencia a la tracción de rotura (MPa)	3,97	ASTM D638-14 (2014)
Alargamiento a la rotura (%)	118,9	ASTM D638-14 (2014)
Fuerza de ruptura (N)	19.46	ASTM D638-14 (2014)
Relación de aspecto	24	

Fuente: Dávila & Vigo (2021)

Polipropileno; "Es un polímero termoplástico ampliamente utilizado, debido a que presenta buena rigidez con una alta cristalinidad, por otro lado, es el segundo polímero más consumido en Europa después del polietileno con una cuota de 19%" (Granda, 2016, p. 13). Su gran capacidad de aditivos le confiere tal versatilidad que ha permitido replicar sus aplicaciones, además de su bajo costo y baja densidad lo han hecho muy demandado, ya que ofrece flexibilidad y es fácil de reciclar, además de resistir altamente a los agentes químicos.

Composición química, el polipropileno se considera un polímero de vinilo relacionado con el polietileno, la desigualdad que existe entre ambos está en la estructura del PP, un componente medido de uno de los carbonos unidos a través de un grupo metilo. "Por otro lado, después de exponer el material de PP al calor y cierta coerción, el monómero de PP se mezcla para formar una larga cadena polimérica llamada propileno" (López y Ore, 2018, p. 21).

En cuanto a la característica más resaltante que presenta el polipropileno, es su versatilidad, ya que es empleada en diversos métodos de procesamiento, debido a que posee una adecuada rigidez y tenacidad. "El polipropileno se comporta perfectamente a temperatura ambiente, sin embargo, presenta una leve fragilidad cuando es expuesta a temperaturas menores a 0°" (López y Ore, 2018, p. 23).

Por medio de la extrusión del polipropileno se pueden obtener una serie de productos continuos, como tubos, láminas, fibras, etc. Las fibras son elaboradas por el corte y luego estirando una lámina, que luego se usa en telares para producir telas, bolsas, etc. "Para otro tipo de preparación de las fibras, el material fundido se plastifica en una extrusora y se fuerza a través de pequeños orificios, formando filamentos y así de esta manera, se producen tejidos de polipropileno" (Muñoz, 2011, p. 23).

Fibras de polipropileno; Estas fibras proporcionan diversas ventajas al concreto, puesto que reducen el fisuramiento en estado fresco como endurecido, así como también reducen la segregación de los insumos y la penetración de agua. "La eficiencia de las fibras está relacionada con la frecuencia, finura y dispersión. Por lo que, para determinar la dosificación adecuada dependerá del uso y aplicación del concreto" (Carhuapoma, 2018, p. 66).

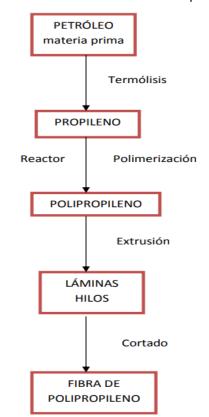


Figura 8. Proceso de fabricación de fibras de polipropileno

Fuente: Muñoz Cebrián (2011)

Dentro de los principales tipos tenemos; **Monofilamento**: "Debido a su excelente desempeño en términos de contracción plástica, adherencia al concreto y dispersión, se han desarrollado específicamente para sustituir a las fibras metálicas" (Muñoz, 2011, p. 17).

Figura 9. Fibras de polipropileno monofilamento

Fuente: Muñoz Cebrián (2011)

Multifilamento; "Fueron diseñadas y producidas especialmente para su adición con el concreto y mortero, debido a la reducción de fisuras superficiales, además de aportar un aumentar la dureza del concreto, así como mejorar la resistencia al impacto" (Muñoz, 2011, p. 18).

Figura 10. Fibra de polipropileno multifilamento

Fuente: Muñoz Cebrián (2011)

Clasificación según su tamaño; **Microfibras:** "Son fibras sintéticas con una longitud que varía entre 20mm y 30mm, por lo general previenen la contracción plástica y minimizan la segregación de la mezcla del concreto" (López Roman, 2015, p. 30).

Macrofibras; "son empleadas para prevenir fisuraciones, además trabajan estructuralmente e incrementan la tenacidad del concreto. La longitud de esta fibra varía entre 20mm a 60mm" (López Roman, 2015, p. 30).

Como variable dependiente tenemos al concreto, del cual es una composición cuyos principales componentes están representados de la siguiente manera en relación al volumen de la mezcla: Cemento (7%-15%), agregados (60%-75%), agua (14%-18%) y aire (1%-3%). Se debe encontrar la mejor dosificación para lograr las propiedades de diseño, siendo la más importante la resistencia. "Para obtener una adecuada resistencia, es importante tener en cuenta que los materiales que utilicemos en la mezcla estén libres de impurezas" (Salas, 2021, p. 10).

Figura 11. Composición del concreto

Fuente: Barreto & Chávez (2021)

Cemento; Sustancia en polvo obtenido de la cocción del Clinker a altas temperaturas añadiendo sulfato de calcio. Para Riva Lopez (1992) se debe tener en cuenta que "no se aceptarán en obra bolsa de cemento que se encuentren averiadas o cuyo contenido halla sido alterado por la humedad, con el fin de no alterar el compuesto de la mezcla" (p. 15).

Figura 12. Tipos de cemento portland

TIPOS	APLICACIONES
Tipo IP	Es de uso general, para proyectos que no requieran propiedades especiales.
Tipo II	Para cuando se requiera resistencia a los sulfatos o moderado calor de hidratación.
Tipo III	De alta resistencia inicial, este desarrolla una resistencia a la compresión máxima en tres días.
Tipo IV	De bajo calor de hidratación.
Tipo V	De alta resistencia a la sulfatación, para uso en proyectos hidráulicos expuestos a agua con alto contenido de alcalinidad, así como al mar.

Fuente: Abanto (2017)

Áridos; "Su composición proviene de materiales inertes (artificial, natural y/o mineral), comúnmente empleado en el ámbito de la construcción de obras civiles, por su combinación con aglomerantes y agua formando morteros y/o concretos" (Huaquisto y Belizario, 2018, p. 228). Los áridos están divididos en: **Árido fino**; Su naturaleza consiste en arenas naturales o manufacturadas, de acuerdo a su granulometría va desde el tamiz N° 3/8, hasta ser retenidos en la malla N°100. Según norma NTP 400.037 especifica que las partículas deben encontrarse libres de impurezas.

Figura 13. Análisis granulométrico del AF

TAMIZ	% QUE PASA
3/8" – 9.5 mm	100
N°4 – 4.75 mm	95 – 100
N°8 – 2.36 mm	80 – 100
N°16 – 1.18 mm	50 – 85
N°30 – 600 μm	25 – 60
N°50 – 300 μm	05 – 30
N°100 – 150 μm	0 – 10

Fuente: NTP 400.037 (2014)

Módulo de finura; Según la NTP 400.037 existen diferentes granulometrías que pueden tener igual módulo de finura, por lo que este dato es de vital utilidad para estimar las proporciones de los áridos finos y gruesos en la mezcla del concreto.

Figura 14. Clasificación de los agregados finos en relación al módulo de finura

MÓDULO DE FINURA	AGREGADO FINO
Menor que 2.00	Muy fino o extra fino
2 – 2.30	Fino
2.30 – 2.60	Ligeramente fino
2.60 – 2.90	Mediano
2.90 – 3.20	Ligeramente grueso
3.20 – 3.50	Grueso
Mayor que 3.50	Muy grueso o extra grueso

Fuente: Rivera (2002)

Árido grueso; "Se clasifica según la desintegración que presenta, ya sea artificial (Piedra chancada) o natural (Grava), seleccionado después de ser retenido en el tamiz N°4" (López Roman, 2015, p. 42). Este debe encontrarse limpio y libre de sustancias orgánicas.

Figura 15. Límites permisibles del AG

CARACTERISTICAS	REQU	UNIDAD	
	MIN	MAX	
Pasante de la malla N.º 200	N.A.	1	%
Cloruros solubles	N.A.	1000	Ppm
Sulfatos solubles	N.A.	10000	Ppm
Terrones de arcilla y partículas deleznables	N.A.	5	%
Abrasión por la máquina de los ángeles	N.A.	50	%
Inalterabilidad por sulfato de magnesio	N.A.	18	%

Fuente: Carrillo & Chávez (2017)

Figura 16. Requisitos granulométricos del AG

USO	TAMAÑO MAXIMO NOMINAL					PC	DRCENTAJE	QUE PASA	POR LOS T	AMICES NO	RMALIZADOS	3			
		100	90	75	63	50	37.50	25	19	12.5	9.5	4.75	2.36	1.18	300
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(um)
1	90 mm a 37.50 mm	100	90 a 100	-	25 a 60	-	0 a 15	-	0 a 5	-	-	-	-	-	-
2	63 mm a 37.50 mm	-	-	100	90 a 100	35 a 70	0 a 15	-	0 a 5	-	-	-	-	-	-
3	50 mm a 25 mm	-	-	-	100	90 a 100	35 a 70	0 a 15	-	0 a 5	-	-	-	-	-
357	50 mm a 4.75 mm	-	-	-	100	95 a 100	-	35 a 70	-	10 a 30	-	0 a 5	-	-	-
4	37.50 mm a 9 mm	-	-	-	-	100	90 a 100	20 a 55	0 a 15	-	0 a 5	-	-	-	-
467	37.50 mm a 4.75 mm	-	-	-	-	100	95 a 100	-	35 a 70	-	10 a 30	0 a 5	-	-	-
5	25 mm a 12.50 mm	-	-	-	-	-	100	90 a 100	20 a 55	0 a 10	0 a 5	-	-	-	-
56	25 mm a 9.50 mm	-	-	-	-	-	100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5	-	-	-
57	25 mm a 4.75 mm	-	-	-	-	-	100	95 a 100	-	25 a 60	-	0 a 10	0 a 5	-	-
6	19 mm a 9.50 mm	-	-	-		-	-	100	90 a 100	20 a 55	0 a 15	0 a 5	-	-	-
67	19 mm a 4.75 mm	-	-	-	-	-	-	100	90 a 100	-	20 a 55	0 a 10	0 a 5	-	-
7	12.50 mm a 4.75 mm	-	-	-	-	-	-	-	100	90 a 100	40 a 70	0 a 15	0 a 5	-	-
8	9.50 mm a 2.56 mm	-	-	-	-		-	-	-	100	85 a 100	10 a 30	0 a 10	0 a 5	-
89	9.50 mm a 1.18 mm	-	-	-	-	-	-	-	-	100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
9	4.75mm a 1.18 mm	-	-	-	-	-	-	-	-	-	100	85 a 100	10 a 40	0 a 10	0 a 5

Fuente: NTP 400.037 (2014)

Agua; Es un componente fundamental para la mezcla, de preferencia debe ser potable y libre de cantidades perjudiciales de sales, aceites, ácidos, etc. Para Riva Lopez (1992) "se debe evitar utilizar el agua con altas concentraciones de sales, ya que no solo afectan el tiempo de fraguado y la resistencia del concreto, sino que también pueden originar eflorescencias o corrosión del acero de refuerzo" (p. 24).

Propiedades físicas del concreto; **Trabajabilidad**; "Se debe tener en cuenta esta propiedad, ya que, hace que el concreto en estado fresco sea fácil de contraer y manejar sin riesgo de presentar segregación, por lo que es indispensable controlar su consistencia y cohesividad" (Riva Lopez, 1992, p. 31).

Consistencia; Es la capacidad plasticidad que presenta el concreto, del cual depende de la proporción de agua empleada. "El ensayo utilizado para evaluar la consistencia de una mezcla es el cono del slump test, consolidando una muestra dentro de un molde troncónico y de esta manera medir el asentamiento luego de desmoldarlo" (Riva Lopez, 1992, p. 34).

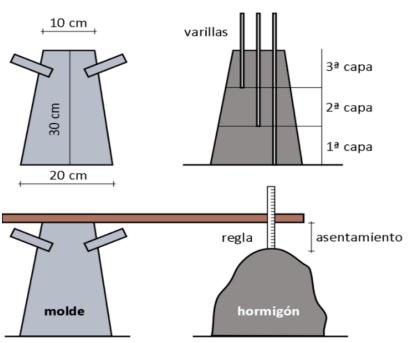


Figura 17. Ensayo de asentamiento del concreto

Fuente: Quispe (2021)

Asentamiento; según la norma NTP 339.035 (2009), esta propiedad está relacionada con la consistencia del concreto, del cual es obtenida por el nivel de asentamiento de la misma producto del ensayo de cono de Abrams y de esta manera se determina la aceptación o el rechazo de la mezcla.

Figura 18. Clases de consistencia según su asentamiento

Consistencia	Asentamiento
Sumamente seco	
Muy seco	<2mm
Seco	0°- 1"
Plástico seco	1"-3"
Plástico	3"-5"7
Muy plástico	5"-7 1/2"

Fuente: Abanto Castillo (2009)

Exudación; "Es un fenómeno que presenta una superficie al haberse aplicado concreto fresco, esto se debe al desbalance de finos versus agua, lo cual provoca que el agua ascienda a la superficie pudiendo afectar la resistencia del concreto" (Abanto, 2009, p. 22). La exudación presenta tres parámetros, de las cuales son: La velocidad de exudación, capacidad de exudación y la duración del proceso.

Segregación; "Es considerado como un fenómeno perjudicial para el concreto, lo cual comprende en la descomposición del concreto y agregado grueso, provocado por inadecuados procesos de manipulación y colocación" (Abanto, 2009, p. 50).

Contenido de aire; "es un factor que permite la expansión y compresión de las estructuras en zonas donde existen cambios bruscos de temperatura, con el fin de evitar el fisuramiento" (NTP 339.046, 2008).

Peso unitario; "Es el resultado de dividir el peso entre el volumen de la partícula, obteniendo de esta manera la masa volumétrica de una muestra de concreto" (NTP

339.046, 2008). Existen diferentes tipos de concreto que se utilizan en obras civiles, y no todos presentan el mismo peso unitario porque sirven para diferentes propósitos y, por lo tanto, no están en proporciones iguales en la mezcla.

Figura 19. Peso unitario según su uso

Tipo de concreto	Peso Unitario
Concreto convencional	2200 - 2400 kg/m3
Concreto Aisladores	240 kg/m3
Concreto Ligero	1900 kg/m3
Concreto Pesado	6000 - 6400 kg/m3

Fuente: Aceros Arequipa (2023)

Temperatura; "Es un parámetro de calidad del concreto, el cual se mide con un termómetro que debe contar con una precisión de 0.5 C°, introducido en la mezcla con un tiempo de 2 minutos como mínimo y 05 minutos como máximo" (NTP 339.184, 2008).

Figura 20. Elisayos eli colicielo llesco

Figura 20. Ensayos en concreto fresco

Fuente: Google (2023)

Fisuramiento por retracción plástica; "este tipo de fisuramiento ocurre en la cara superficial del concreto en estado fresco, generalmente aparece en las primeras horas (de 1 a 10 horas) y son causadas por una rápida pérdida de agua" (Huacho, 2021, p. 28). Cuando la fisura atraviesa el ancho del elemento, es considerado como grieta.

Método de ensayo a tracción; Esta característica que presenta el concreto es definida por ensayos de laboratorios mediante probetas cilíndricas, Según la NTP 339.084 (2017), "Se somete una probeta normalizada a una carga de compresión diametral entre los cabezales de una prensa hidráulica, según generatrices opuestas, hasta que ocurra la falla" (p. 3).

Figura 21. Método de ensayo a tracción

Fuente: Fotografía propia

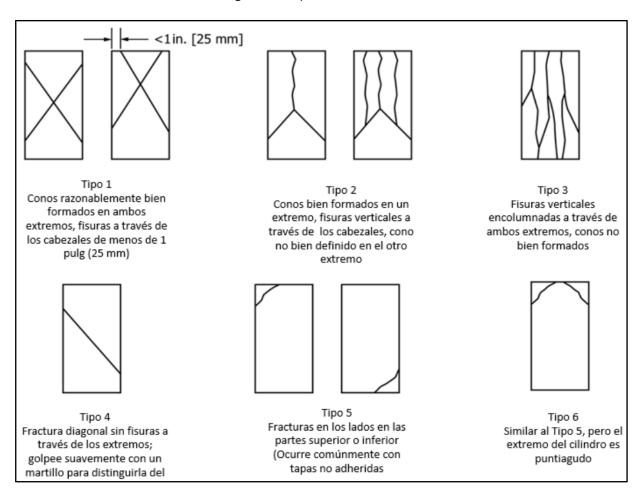

Método de ensayo a compresión: Esta característica que presenta el concreto es definida por ensayos de laboratorios mediante muestras cilíndricas, lo cual deberán contar con un tiempo de curado de 28 días y de esta manera someterse al ensayo realizado en una prensa hidráulica. Según la NTP 339.034 (2021), "Consiste en someter una probeta normalizada una carga de compresión axial a las probetas moldeadas, hasta obtener la ruptura repentina de las muestras y de esta manera determinar la carga máxima alcanzada" (p. 4).

Figura 22. Método de ensayo a compresión

Fuente: Fotografía propia

Figura 23. Tipos de fracturas

Fuente: Castillo & pastor (2022)

Método de ensayo a flexión; Esta característica que presenta el concreto es definida por ensayos de laboratorios mediante muestras cilíndricas o prismáticas, lo cual podría considerarse como una medida indirecta de la resistencia a la tracción. Según la NTP 339.078 (2022), "Consiste en someter una probeta o viga prismática normalizada una carga perpendicularmente a su eje longitudinal, hasta que se produzca la falla" (p .4).

Figura 24. Método de ensayo a flexión

Fuente: Fotografía propia

Diseño de mezcla; De acuerdo al método ACI 211, se consideran los pasos fundamentales en el proceso de selección de las proporciones de los componentes del concreto. Como requisito se necesita previamente los resultados obtenidos de los ensayos en agregados como el módulo de finura, tamaño máximo nominal, peso específico, pesos unitarios sueltos y compactados. Por consiguiente, mediante tablas se obtendrá la relación a/c, volumen del agregado grueso, entre otros.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Tipo de investigación: Se consideró aplicada, toda vez que se basó en la recopilación de datos en base a teorías utilizadas permitiendo formular hipótesis, y de esta manera llevar a cabo los objetivos establecidos.

Diseño de investigación: Experimental, "Consiste en verificar y cuantificar diferencias o efectos que afrontará una situación cuando se introduzca en ella una nueva causa, dejando a las demás en un estado similar" (Córdova, 2018, p. 114). Se contó con un sub diseño cuasi experimental, ya que el objetivo fue demostrar que los cambios en la variable dependiente fueron causados por la variable independiente aplicando muestras significativas.

Nivel de investigación: Según Córdova (2018), "Es aquella que tiene relación causal, va más allá de describir conceptos o establecer relaciones entre ellos, es decir, pretende responder a la causa de los hechos, centrándose en explicar por qué ocurre y se manifiesta un fenómeno" (p. 115). Se contó con un nivel de investigación explicativo para determinar la causa-efecto según los ensayos propuestos.

Enfoque de investigación: Fue cuantitativo, toda vez que se recopilaron y analizaron datos cuantificables, en base a un conjunto de valores numéricos obtenidos a través de pruebas realizadas mediante un laboratorio.

3.2 Variables y operacionalización

Variable Independiente: Fibras de plumas de aves y fibras de polipropileno reciclado de mascarillas quirúrgicas.

Definición conceptual: Según CONABIO (2020) "las fibras de origen animal provienen principalmente de animales domésticos, del cual presentan una gran variedad de aspectos" (párr. 1). Por otro lado, en relación a las fibras de polipropileno, según Mendoza, Aire y Dávila (2011), "son fibras sintéticas que se caracterizan por presentan una elevada resistencia a la tensión, definiéndose dos categorías, de bajo y alto módulo de elasticidad" (p. 3).

Definición operacional: Dentro del compuesto del concreto se tuvo: cemento portland, agregados, agua, fibras de origen animal y fibras de polipropileno reciclado de mascarillas quirúrgicas, el cual fueron agregados

en forma de filamentos cortados con una longitud de 5 cm.

Indicadores: Se tendrán dosificaciones de 0.18%, 0.65% y 0.87% de fibras de plumas de aves y fibras de polipropileno reciclado en base al peso del

cemento.

Escala de medición: Será de razón.

Variable Dependiente: Propiedades del concreto.

Definición conceptual: Según Terreros y Carvajal (2016), "son las principales exigencias para un adecuado funcionamiento en estado fresco y

endurecido" (p. 31).

Definición operacional: Dichas propiedades se evaluaron mediante ensayos de laboratorio considerando fichas técnicas, para recopilar toda la

información relevante.

Indicadores: Dentro de las propiedades en estado fresco se tendrá, asentamiento, exudación, PU, contenido de aire, temperatura y segregación. Dentro de las propiedades en estado endurecido se tendrá, resistencia a la flexión, compresión y tracción.

Escala de medición: Será de razón.

3.3. Población, muestra y muestreo

Población: Según Arias (2012), "Es un conjunto infinito o finito de elementos que comparten características frecuentes, lo que conlleva a una amplia gama de conclusiones de investigación" (p. 81). Por lo tanto, se tuvo población finita, el cual estuvo constituida por la totalidad de muestras que fueron estudiadas en la presente investigación.

Criterios de inclusión: Se consideraron fibras de plumas de aves y fibras de polipropileno reciclado, ya que presentan características físicas similares, buscando de esta manera mejorar la calidad del concreto.

Criterios de exclusión: Como condición no se utilizó otro tipo de fibras que no sean, las FPA y FPR.

Muestra; Según Arias (2012), "Es considerado como un subconjunto de la población accesible, el cual es extraído" (p. 83). En este sentido, las muestras estuvieron constituidas por 72 probetas de concreto de 15x30 cm y 12 vigas de concreto de 15x15x54 cm de concreto f'c=210kg/cm2 elaborados con y sin fibras, mediante el cual se ensayaron 3 muestras para edades de 7, 14 y 28 días para determinar los esfuerzos a compresión, tracción y flexión.

Tabla 1. Distribución de muestras por grupos de ensayos

C° Patrón					Dosificaciones de FPA+ FPR									
Ensayos		raut	JII	0.18%		0.65%		0.87%			Sub	Total		
	7d	14d	28d	7d	14d	28d	7d	14d	28d	7d	14d	28d	Total	
Compresión	3	3	3	3	3	3	3	3	3	3	3	3	36	72
Tracción	3	3	3	3	3	3	3	3	3	3	3	3	36	12
Flexión	-	-	3	-	-	3	-	-	3	-	-	3	12	12
Asentamiento		1			1			1			1		4	4
Temperatura		1			1			1			1		4	4
Peso unitario		1			1			1			1		4	4
Contenido de aire		1			1			1			1		4	4
Exudación		1			1			1			1		4	4

Fuente: Elaboración propia

Muestreo; Fue no probabilístico, ya que el procedimiento de selección de muestras fue completamente a conveniencia.

Unidad de análisis; Son todas las muestras que fueron estudiadas en la presente investigación.

3.4. Técnicas e instrumentos de recolección de datos

Técnica de investigación; Según Rojas (2011) indica que, "Generalmente existe dos tipos de técnicas, cuantitativas y cualitativas, con el fin de procesar la información que se obtenga, sirviendo como complemento a la investigación" (p. 279). Para recopilar la información de los ensayos a realizar, se empleó como diseño de técnica la observación directa, y de esta manera comprender sus causas y consecuencias.

Instrumentos de recolección de datos; "Tiene como finalidad recuperar la información mediante fichas de registro, herramientas de laboratorio y/o programas computacionales" (Rojas, 2011, p. 284). Es por ello, que se utilizaron fichas para gestionar la recolección de datos para su posterior estudio y evaluación.

Validez; Para asegurar el resultado de las variables, los instrumentos utilizados durante el proceso de recolección de datos fueron evaluados previamente por tres expertos con experiencia en el rubo.

Confiabilidad; La confiabilidad de los instrumentos de laboratorio fueron evaluados a través de las pruebas por un experto en la materia (ing. Civil colegiado), del cual se cuenta con su respectivo certificado de calibración vigente.

3.5. Procedimientos

En primer lugar, se recopiló información bibliográfica acerca de la adición de fibras dentro del compuesto del concreto, permitiendo formular hipótesis, y así cumplir con los objetivos establecidos. Se tuvo un sub diseño cuasi-experimental y enfoque cuantitativo, ya que, se obtuvo un conjunto de valores numéricos a través de ensayos previamente realizados.

Los agregados fueron extraídos de la cantera AGRECOM S.A y analizados en el laboratorio LEM-ENGIL S.R.L.

Caracterización de los agregados

Herramientas y equipos

Para realizar el ensayo granulométrico se requirió una serie de herramientas y equipos como: Balanza para el pesado de los agregados, tamices (según la NTP 400.012), una estufa con una temperatura constante de 110°C ± 5°C, moldes para ensayos, varilla metálica, cucharon de metal, bandeja, recipientes para secado, mazo de goma, escobilla para limpieza de tamices, etc.

Figura 25. Herramientas y equipos para ensayos.

Fuente: Control de calidad del concreto S.A.C. (2022)

Muestreo

La NTP 400.010 establece los procedimientos de muestreo de los agregados, para posteriormente mezclarlos y obtener una mezcla uniforme. Se realizó el método del cuarteo según la NTP 339.089, con el fin de conseguir muestras reducidas que fueron llevadas y analizadas en el laboratorio.

Granulometría AF

Para definir el agregado para el concreto, según la NTP 400.037 se utilizaron tamices de 3/8 ", N°4, N°8, N°16, N°30, N°50, N°100 y N°200, con el fin de obtener los % retenidos en cada malla, así como el MF.

Granulometría AG

Para definir el agregado para el concreto, según la NTP 400.037 se utilizaron tamices de 2", 1 ½ ", 1", 3/4 ", 3/8", N°4, y de esta manera determinar el TMN y el % que pasa en cada malla representadas en la curva granulométrica.

Contenido de humedad

De acuerdo a la NTP 339.185 se determinó el contenido de humedad en los agregados, con el fin de poder controlar la proporción de agua dentro del concreto.

Peso unitario suelto y compactado

Se tomaron en cuenta normas NTP 400.17 y ASTM C29. Para determinar el peso unitario suelto, se colocó el agregado de arena gruesa y piedra chancada en un molde, con la ayuda de un cucharon poco a poco hasta llenarlo completamente, nivelándose el excedente con una varilla de metal, posteriormente registrando el peso del molde solo y conjuntamente con los agregados sueltos obtenidos.

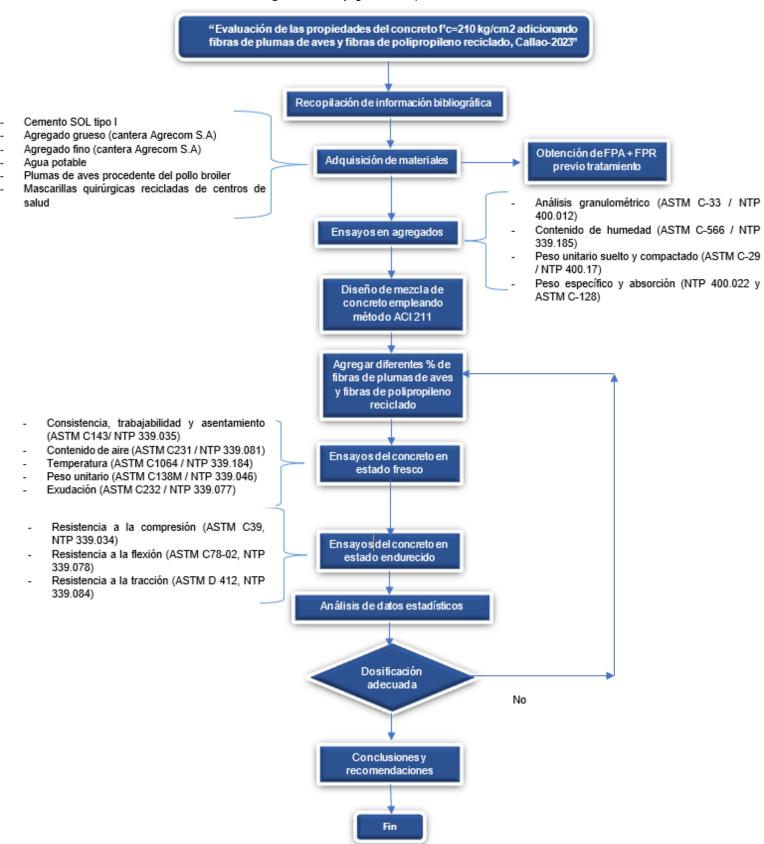
Para determinar el peso unitario compactado, se colocó en un molde el agregado de arena gruesa y piedra chancada, distribuidos en tres porciones de volumen compacto el agregado en cada porción mediante 25 golpes continuos utilizando una varilla metálica (16mm de diámetro y 60cm de largo), nivelándose el excedente con una varilla de metal, posteriormente registrando el peso del molde solo y conjuntamente con los agregados compactados obtenidos.

Peso específico y absorción del AF

Se tomaron en cuenta normas NTP 400.022 y ASTM C128. Para el procedimiento de dicho ensayo, se necesitó una serie de equipos y materiales como: muestra

de arena gruesa, picnómetro, recipiente de metal, equipo de medición de peso, molde y pisón. Se sumergió la muestra por un tiempo determinado de 24 horas para penetrar completamente los poros. Posteriormente se secó la muestra y se midió el volumen en un recipiente graduado.

Peso específico y absorción del AG


Se tomaron en cuenta normas NTP 400.021 y ASTM C127. Para el procedimiento de dicho ensayo, se necesitó una serie de equipos y materiales como: muestra de piedra chancada, canasta de metal, recipiente de metal y equipo de medición de peso. Se sumergió la muestra por un periodo de 24 horas, y se secó a temperatura ambiente, posteriormente se realizó el pesaje de la tara y colocación de la muestra en ella, consiguiente se colocó la muestra en la estufa por un periodo de 24 horas.

Procedimiento experimental

Se propuso trabajar con fibras de plumas de aves y fibras de polipropileno reciclado, el cual fueron obtenidas en centros de acopio y centros de salud respectivamente, teniendo como zona de estudio el distrito de Bellavista.

Cuando se haya completado la obtención de las fibras previamente tratadas, se tomó en cuenta lo establecido en el ACI 211, para elaborar el diseño de mezcla para un concreto f'c=210 kg/cm2, mezclando los materiales con las proporciones adecuadas, incluyendo las fibras propuestas en dosificaciones de 0.18%, 0.65% y 0.87%. Posteriormente se fabricó probetas y vigas prismáticas para los análisis de laboratorio, con el fin de determinar las propiedades físico-mecánicas del concreto, para ello se utilizaron las fichas ya antes mencionadas de recolección de datos para su posterior estudio.

Figura 26. Flujograma de procedimiento

3.6. Método de análisis de datos

De acuerdo con la recopilación de datos a través de los instrumentos planteados, se interpretó mediante Microsoft Excel los resultados obtenidos del laboratorio, empleando gráficos estadísticos y tablas de procesamiento. Posteriormente se utilizó estadística inferencial para el contraste de las hipótesis y su validez empleando el software SPSS stadistics.

3.7. Aspectos éticos

La presente tesis fue redactada por el investigador, del cual cumple con la normativa ISO-690 en base a la especificación de referencias bibliográficas respetando la propiedad intelectual de los autores. Por otro lado, se registró el filtro de Turnitin del cual debe contar con un porcentaje menor o igual a 20% de similitud establecido por la UCV.

IV. RESULTADOS

1. ASPECTOS GENERALES DE LA ZONA ESTUDIO

Ubicación Política

El Distrito de Bellavista es uno de los siete distritos que conforman la Provincia Constitucional del Callao, se encuentra ubicada a 34 m.s.n.m y cuenta con una superficie de 4.56 km2. Limita geográficamente por:

- Norte: Av. Oscar R. Benavides (Ex Colonial), limita con el Distrito del Callao.
- ➤ Este: Se extiende hasta el Hospital Naval o perímetro Oeste de la Universidad San Marcos limitando con el Cercado de Lima.
- Sur: Limita con los Distritos de San Miguel y La Perla.
- Oeste: Jr. Andrés Santiago Vigil limitando con el Cercado del Callao.

Figura 27. Ubicación de la zona de estudio (Bellavista – Callao)

Fuente: Google

Clima

Su clima es parcialmente nublado casi todo el año, generalmente durante el verano (enero, febrero y marzo) la temperatura varia de 21 °C a 35 °C y durante el invierno desciende hasta los 14°C, presentando un clima con ligera llovizna.

2. OBTENCIÓN DE LOS MATERIALES DE CONSTRUCCIÓN Agregados

Se analizaron los agregados de la cantera AGRECOM S.A, el cual sobresalen por la calidad de sus materiales, además de encontrarse ubicado a unos 6.4 km de la zona de estudio, con un tiempo aproximado de viaje de 14 minutos en vehículo particular.

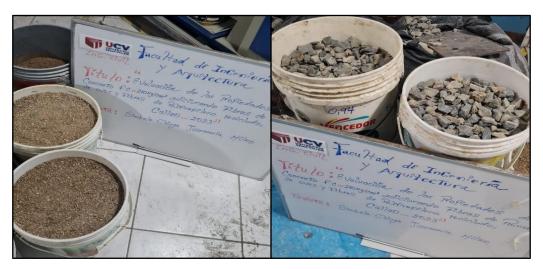


Figura 28. Recorrido hacia la cantera AGRECOM S.A.

Fuente: Google Maps

Se tomó en cuenta la calidad de los agregados, ya que representan cerca del 60% al 75% del volumen del concreto, por ello se realizaron los ensayos previos correspondientes en el laboratorio LEM-ENGIL S.R.L.

Figura 29. Traslado de los agregados al laboratorio LEM-ENGIL S.R.L

Cemento

Se empleó el cemento SOL tipo I, el cual cumple con los requisitos de la NTP 334.009 y ASTM C-150. Este tipo de cemento es de uso general y es aplicado en todo tipo de construcciones.

Figura 30. Características técnicas del cemento SOL tipo I

PARÁMETRO	UNIDAD	CEMENTO SOL	REQUISITOS NTP- 334.009/ ASTM C-150
Contenido de aire	%	7	Máximo 12
Expansión autoclave	%	0.09	Máximo 0.80
Superficie específica	m²/kg	323	Mínimo 260
Densidad	g/cm³	3.13	No especifica
RESISTENCIA A LA COMPRESIÓN			
Resistencia a la compresión a 3 días	kg/cm ²	303	Mínimo 122
Resistencia a la compresión a 7 días	kg/cm ²	382	Mínimo 194
Resistencia a la compresión a 28 días	kg/cm ²	449	Mínimo 285 (*)
TIEMPO DE FRAGUADO			
Fraguado Vicat inicial	min	129	45 a 375
COMPOSICIÓN QUÍMICA			
MgO	%	2.9	Máximo 6.0
SO3	%	2.8	Máximo 3.5
Pérdida al fuego	%	2.2	Máximo 3.5
Residuo insoluble	%	0.9	Máximo 1.5
FASES MINERALÓGICAS			
C2S	%	12	No especifica
C3S	%	55	No especifica
C3A	%	10	No especifica
C4AF	%	10	No especifica

Fuente: Cemento Sol (2023)

Agua

Se utilizó el agua potable proveniente de un grifo doméstico, el cual es suministrada por SEDAPAL (Servicio de Agua Potable y Alcantarillado de Lima).

3. PROCESO PARA LA OBTENCIÓN DE LAS FIBRAS

Fibras de plumas de aves

a) Recolección: Para adquirir las plumas de aves, se recurrió al centro de acopio más cercano ubicado en el distrito de bellavista, en donde, se recolectó las plumas procedentes del pollo broiler (producto cárnico de mayor consumo a nivel nacional). Es preciso indicar que estos residuos son cada vez menos aprovechados, provocando que sean incinerados y desechados en botaderos clandestinos generando contaminación al medio ambiente.

Figura 31. Recolección de plumas de aves procedentes del pollo broiler

Fuente: Fotografía propia

b) Selección: Durante este proceso se seleccionaron 2 tipos de plumas que corresponden a timoneras y remeras (plumas de vuelo), a fin de obtener la fibra requerida. Es importante tener en cuenta la protección personal adecuada.

Figura 32. Selección de plumas de vuelo

c) Limpieza (Pre-Tratamiento de plumas): Dado que las plumas se obtuvieron durante el sacrificio de cada ave, estas se encontraban sucias y con otros desechos propios del ave. Por lo tanto, durante el primer ciclo de limpieza, se sumergieron las plumas por 30 minutos con una dilución desengrasante, empleando 1 litro de agua y 20 ml de quita grasa, con el fin de eliminar las manchas o grasas que pudieran presentar estas. Es importante tener en cuenta la protección personal adecuada durante los ciclos de limpieza, y el tiempo sumergido, a fin de no debilitar la muestra.

Figura 33. Primer ciclo de limpieza de plumas

Fuente: Fotografía propia

Posteriormente, durante el segundo ciclo de limpieza se lavaron las plumas con abundante agua potable para eliminar los residuos del

producto desengrasante y por consiguiente se utilizó detergente, a fin de eliminar las impurezas restantes en las plumas.

Figura 34. Segundo ciclo de limpieza de plumas

Fuente: Fotografía propia

d) Secado: Al cumplirse el segundo ciclo de limpieza, se trasladaron las plumas a una marquesina artesanal para el secado natural de las mismas al aire libre.

Figura 35. Secado natural de plumas

Fuente: Fotografía propia

e) Corte: Continuando con el estado del arte de las plumas, en primer lugar, se retiró el estandarte de la pluma, utilizando solamente la parte del raquis y cálamo, a fin de incrementar la tenacidad del concreto. Posteriormente se realizó el corte correspondiente con una longitud de 5 cm.

Estandarte
de la pluma

Raquis

Callamo

Callamo

Figura 36. Estado del arte de las plumas

f) Tratamiento final y almacenamiento: Para culminar el ciclo de limpieza, se sometieron las plumas a un tercer ciclo de lavado y secado para eliminar por completo la cantidad de azucares en su interior.

Figura 37. Tercer ciclo de limpieza

Fuente: Fotografía propia

Posteriormente, como tratamiento final se rociaron las fibras con sellador para madera para reducir su absorción de agua y brindarles una protección adicional contra el ambiente alcalino de la mezcla. Finalmente, se almacenaron en fundas herméticas para su posterior adición al concreto.

Figura 38. Tratamiento final y almacenamiento de fibras de plumas de aves

Fibras de polipropileno reciclado

a) Obtención: Se recurrió al Hospital Essalud Alberto Sabogal ubicado en el distrito de bellavista, a fin de obtener mascarillas quirúrgicas recicladas, ya que su uso es obligatorio como medida sanitaria en centros de salud. Durante el proceso de obtención se tomó en cuenta las medidas necesarias para evitar posibles contagios. Dichas mascarillas fueron reutilizadas para adquirir las fibras de polipropileno.

Figura 39. Obtención de mascarillas quirúrgicas

Fuente: Fotografía propia

b) Desinfección: Considerando como primera etapa de desinfección, se lavaron las mascarillas con detergente normal y agua potable fría.

Figura 40. Primera etapa de desinfección

En una segunda etapa de desinfección, se sumergieron las mascarillas durante 30 minutos en una dilución de 20 ml de lejía por 1 litro de agua tibia, a fin de eliminar completamente los restos del virus. Posteriormente se lavaron las mascarillas con abundante agua para eliminar los restos lejía.

Figura 41. Segunda etapa de desinfección

Fuente: Fotografía propia

c) Secado: Las mascarillas tratadas fueron secadas al aire libre.

Figura 42. Secado de mascarilla al aire libre

d) Análisis microbiológico: Se trasladaron 02 muestras de mascarillas al laboratorio de análisis clínico, el cual se realizó un análisis microbiológico, para detectar restos de virus posterior al tratamiento empleado, determinando que no existe crecimiento de bacterias a las 72 horas de siembra.

LABORATORIO FLORES

NENDICO PATOLOGO CLÍNICO

ANALISIS CLINICOS

BIOQUIMICA - HEMATOLOGIA - INMUNOLOGIA - PAPANICOLAOU - BOPSIA - HORMONAS - CULTIVOS MARCADORES TUMORALES

SOLICITANTE 1 : JOSEMARIA MILKO SIMBALA CHINGA

MICROBIOLOGIA

EXAMEN DE LABORATORIO

EXAMEN: CULTIVO

MUESTRA: MASCARILLA QUIRURGICA RECICLADA

RESULTADO: NO SE OBSERVA CRECIMIENTO BACTERIANO
A LOS 72 HORAS DE SIEMBRA.

CULTIVO: NEGATIVO

FECHA: 14/05/23

Figura 43. Análisis microbiológico de mascarillas quirúrgicas

Fuente: Laboratorio Flores (2023)

e) Corte y almacenamiento: En el estado del arte se seleccionaron las mascarillas que presentaron buen estado de conservación, en donde se retiraron los sujetadores elásticos y clips nasales. Posteriormente se realizó el corte correspondiente con una longitud de 5 cm y espesor de 0.5 cm. Finalmente, se almacenaron en fundas herméticas para su posterior adición al concreto.

1. RESULTADOS DE ENSAYOS DE LABORATORIO

Granulometría de los agregados según la NTP 400.012 / ASTM C-33

Figura 45. Tamices empleados para el análisis granulométrico

Fuente: Fotografía propia

Tabla 2. Resultados granulométricos del AF

TAB417	ABERTURA	RETE	NIDO EN E	EL TAMIZ	PASA POR EL TAMIZ		CACIONES /I-C33
N°	N° DEL TAMIZ (mm)		% PARCIAL	% ACUMULADO	% ACUMULADO	MÍNIMO	MÁXIMO
3/8"	9.52				100	100	100
N° 4	4.76	12.7	2.5	2.5	97.5	95.0	100
N° 8	2.38	78.8	15.5	18.0	82.0	80.0	100
N° 16	1.19	120.4	13.7	41.7	58.3	50.0	85
N° 30	0.60	109.8	21.6	63.3	36.7	25.0	60
N° 50	0.30	84.3	16.6	79.9	20.1	5.0	30
N° 100	0.15	60.8	12.0	91.8	8.2	-	10
N° 200	0.07	22.3	4.4	96.2	3.8	-	5
Re	esiduo	0.1	0.0	96.2	-	-	-
	minado en vado	19.1	3.8	100.0	-	-	-
						M.F=	2.97
						T.M=	3/8"
						T.M.N=	N°4

Fuente: Elaboración propia

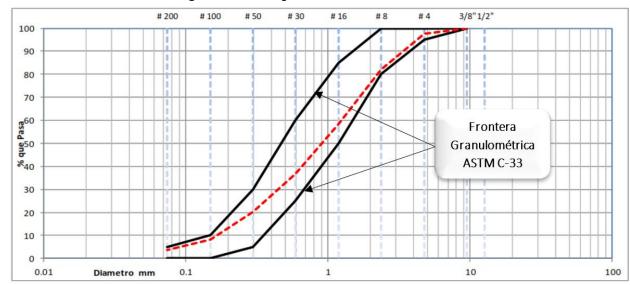


Figura 46. Trazo granulométrico del AF

Interpretación: De la tabla N°2 se obtuvo que el AF se encuentra dentro los rangos permitidos por la norma ASTM C-33 (Huso #9 se compone de tamaños de agregado fino de 3/8" — N°100), por lo que es considerado aceptable para la elaboración del concreto, además de presentar un MF de 2.97.

Tabla 3. Resultados granulométricos del AG

	ABERTURA	RETENIDO EN EL TAMIZ			PASA POR EL TAMIZ		CACIONES /I-C33
TAMIZ N°	DEL TAMIZ (mm)	PESO PARCIAL (g)	% PARCIAL	% ACUMULADO	% ACUMULADO	MÍNIMO	MÁXIMO
1 1/2"	38.10				100	100	100
1"	25.40	267.0	4.1	4.1	95.9	90	100
3/4"	19.05	3412.0	52.0	56.0	44	20	55
1/2"	12.70	2370.0	36.1	92.2	7.8	0	10
3/8"	9.52	311.0	4.7	96.9	3.1	0	5
N° 4	4.76	38.6	0.6	97.5	2.5	-	-
N° 8	2.38	29.7	0.5	97.9	2.1	-	-
N° 16	1.19	21.3	0.3	98.3	1.7	-	-
N° 200	0.60	70.4	1.1	99.3	0.7		
Residuo		1.0	0.0	99.9	-	-	
	ninado en vado	43.0	0.7	100.0	-	1	
						M.F=	7.47

Fuente: Elaboración propia

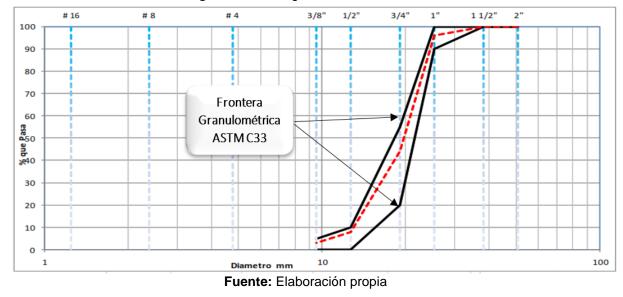


Figura 47. Trazo granulométrico del AG

Interpretación: De la tabla N°3 se verificó que el AG se encuentra dentro los rangos permitidos por la norma ASTM C-33 (Huso #5 se compone de tamaños de agregado grueso de 1 $\frac{1}{2}$ " – $\frac{3}{8}$ "), por lo que es considerado aceptable para la elaboración del concreto, además de presentar un MF de 7.47.

Contenido de humedad según la NTP 339.185 / ASTM C-566

Figura 48. Determinación del contenido de humedad

Tabla 4. Determinación del C.Humedad del AF

N°	IDENTIFICACIÓN	UNIDAD	DATOS	CANTERA			
1	Peso del recipiente	g	326.7				
2	Peso del recipiente + muestra húmeda	g	839.5				
3	Peso del recipiente + muestra seca	g	835.0				
4	Peso del agua contenida (2-3)	g	4.5	AGRECOM S.A.			
5	Peso de la muestra seca	g	508.3				
C	ONTENIDO DE HUMEDAD (4/5)*100	%	0.9				

Interpretación: De la tabla N°4 se obtuvo el %W del AF, el cual es equivalente a 0.9%.

Tabla 5. Determinación del C.Humedad del AG

N°	IDENTIFICACIÓN	UNIDAD	DATOS	CANTERA			
1	Peso del recipiente	g	634.0]			
2	Peso del recipiente + muestra húmeda	g	7204.0				
3	Peso del recipiente + muestra seca	g	7198.0	AGRECOM S.A.			
4	Peso del agua contenida (2-3)	g	6.0	AGRECOIVI S.A.			
5	Peso de la muestra seca	g	6564.0				
С	ONTENIDO DE HUMEDAD (4/5)*100	%	0.1				

Fuente: Elaboración propia

Interpretación: De la tabla N°5 se obtuvo el %W del AG, el cual es equivalente a 0.1%.

Peso unitario suelto y compactado según la NTP 400.17 / ASTM C-29

Figura 49. Determinación del peso unitario suelto y compactado del AF

Tabla 6. Peso unitario suelto del AF

N°	IDENTIFICACIÓN	UNIDAD	1	2	PROMEDIO
1	Peso de la muestra + molde	gr	6184.0	6195.0	6189.50
2	Peso del molde	gr	1774.0	1774.0	1774.00
3	Peso de la muestra (1-2)	gr	4410.0	4421.0	4415.50
4	Capacidad volumétrica del molde	cm3	2803.0	2803.0	2803.00
5	Peso unitario suelto de la muestra (1-2)/4	gr/cm3	1.573	1.577	1.575
	PROMEDIO PESO UNITARIO SUELTO	kg/m3		1580	

Interpretación: De la tabla N°6 se obtuvo el PU suelto del AF, el cual es equivalente a 1580kg/cm3.

Tabla 7. Peso unitario compactado del AF

N°	IDENTIFICACIÓN	UNIDAD	1	2	PROMEDIO
1	Peso de la muestra + molde	gr	6492.0	6508.0	6500.00
2	Peso del molde	gr	1774.0	1774.0	1774.00
3	Peso de la muestra (1-2)	gr	4718.0	4734.0	4726.00
4	Capacidad volumétrica del molde	cm3	2803.0	2803.0	2803.00
5	Peso unitario compactado de la muestra (1-2)/4	gr/cm3	1.683	1.689	1.686
	PROMEDIO PESO UNITARIO COMPACTADO	kg/m3		1690	

Fuente: Elaboración propia

Interpretación: De la tabla N°7 se obtuvo el PU compactado del AF, el cual es equivalente a 1690kg/cm3.

Figura 50. Determinación del peso unitario suelto y compactado del AG

Tabla 8. Peso unitario suelto del AG

N°	IDENTIFICACIÓN	UNIDAD	1	2	PROMEDIO
1	Peso de la muestra + molde	gr	19384.0	19393.0	19388.50
2	Peso del molde	gr	5600.0	5600.0	5600.00
3	Peso de la muestra (1-2)	gr	13784.0	13793.0	13788.50
4	Capacidad volumétrica del molde	cm3	9353.0	9353.0	9353.00
5	Peso unitario suelto de la muestra (1-2)/4	gr/cm3	1.474	1.475	1.474
	PROMEDIO PESO UNITARIO SUELTO	kg/m3		1470	

Interpretación: De la tabla N°8 se obtuvo el PU suelto del AG, el cual es equivalente a 1470kg/cm3.

Tabla 9. Peso unitario compactado del AG

N°	IDENTIFICACIÓN	UNIDAD	1	2	PROMEDIO
1	Peso de la muestra + molde	gr	20492.0	20544.0	20518.00
2	Peso del molde	gr	5600.0	5600.0	5600.00
3	Peso de la muestra (1-2)	gr	14892.0	14944.0	14918.00
4	Capacidad volumétrica del molde	cm3	9353.0	9353.0	9353.00
5	Peso unitario compactado de la muestra (1-2)/4	gr/cm3	1.592	1.598	1.595
	PROMEDIO PESO UNITARIO COMPACTADO	kg/m3		1590	

Fuente: Elaboración propia

Interpretación: De la tabla N°9 se obtuvo el PU compactado del AG, el cual es equivalente a 1590kg/cm3.

Peso específico y absorción del agregado fino según la NTP 400.022 / ASTM C-128

Figura 51. Ensayo de gravedad especifica del AF

Tabla 10. Peso específico y absorción del AF

	IDENTIFIACIÓN	UNIDAD	1	2	PROMEDIO
Α	Peso Mat. Sat. Sup. Seca (SSS)	gr	500	500	
В	Peso Frasco + Agua + Árido	gr	980.3	986.2	
С	Pesa muestra seco	gr	492.8	492.8	
D	Peso frasco + agua	gr	664.3	670.4	
	Peso específico Sat. Sup. Seca = A/D+A-B	gr/cm3	2.717	2.714	2.72
	Peso específico de masa = C/D+A-B	gr/cm3	2.678	2.675	2.68
	Peso específico aparente = C/D+C-B	gr/cm3	2.787	2.784	2.79
	Absorción de agua = ((A-C)/C)*100	%	1.46	1.46	1.46

Interpretación: De la tabla N°10 se obtuvo un peso específico de 2680kg/m3 y un porcentaje de absorción de 1.46%.

Peso específico y absorción del agregado grueso según la NTP 400.021 / ASTM C-127

ASAMER REGISTANCE OF THE PROPERTY OF THE PROPE

Figura 52. Ensayo de gravedad especifica del AG

Tabla 11. Peso específico y absorción del AG

	IDENTIFIACIÓN	UNIDAD	1
Α	Peso Agregado seco	gr	4613.1
В	Peso Agregado saturado con superficie seca	gr	4644
С	Peso Agregado sumergido	gr	2916
	Peso específico Sat. Sup. Seca = B/B-C	gr/cm3	2.717
	Peso específico de masa = A/B-C	gr/cm3	2.670
	Peso específico aparente = A/A-C	gr/cm3	2.718
	Absorción de agua = ((B-A)/A)*100	%	0.7

Interpretación: De la tabla N°11 se obtuvo un peso específico de

2670kg/m3 y un porcentaje de absorción de 0.7%.

2. DISEÑO DE MEZCLA

Tabla 12. Datos obtenidos de los ensayos de los agregados

ITEM	AGREGADO FINO	AGREGADO GRUESO		
Módulo de finura	2.97	7.47		
Tamaño máximo nominal	2.36 mm	1 in		
Peso unitario Suelto	1580kg/cm3	1470kg/cm3		
Peso unitario Compactado	1690kg/cm3	1590kg/cm3		
Peso especifico	2680kg/m3	2.717		
Contenido de humedad	0.9%	0.1%		
Absorción	1.46%	0.70%		
Peso específico del cemento	3130kg/m3			

Fuente: Elaboración propia

Se tomo en consideración el procedimiento establecido por el Comité ACI 211, para determinar las proporciones de los componentes del concreto:

a) Determinación de la resistencia promedio para el diseño

Figura 53. Consideraciones para el cálculo de resistencia promedio requerida

Resistencia especificada a la compresión F'c (Kg/cm2)	Resistencia promedio requerida a la compresión F'cr (Kg/cm2)
f 'c < 210 Kg/cm2	f 'cr = f'c + 70
210 ≤ f 'c ≤ 350 Kg/cm2	f 'cr = f'c + 84
f 'c > 350 Kg/cm2	f 'cr = f'c + 98

Fuente: Comité ACI 211

Según estándares del laboratorio, se consideró un factor de seguridad de 65, por lo tanto, se tiene un f'cr= 210kg/cm2 + 65 = 275 kg/cm2.

- b) Selección del T.M.N. del AGEl T.M.N. del agregado grueso, es: 1".
- c) Determinar el asentamiento

Figura 54. Selección de asentamiento de diseño

TIPO DE ESTRUCTURA	Slump Máximo	Slump Mínimo
Zapatas y muros de cimentaciones Reforzadas	3"	1"
Cimentaciones simples y calzaduras	3"	1"
Vigas y muros armados	4"	1"
Columnas	4"	1"
Losas y Pavimentos	3"	1"
Concreto Ciclópeo	2"	1"

Fuente: Comité ACI 211

Se seleccionó el Slump de 3" - 4".

d) Determinar agua de diseño

Figura 55. Selección de volumen unitario de agua de diseño

ASENTAMIENTO		TAMA	AÑO MA	XIMO DE	EL AGREGA	DO GRU	JESO	
/SLUMP	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	4"
	CONCRETO SIN AIRE INCORPORADO							
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
	CONCRETO CON AIRE INCORPORADO							
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	

Fuente: Comité ACI 211

Mediante la tabla se determinó el volumen unitario de agua, el cual es equivalente a 193lt/m3, sin embargo, se consideró 196 lt/m3 (consideración estándar de laboratorio), a fin de contar con un diseño mayor controlado.

e) Selección del aire atrapado

Figura 56. Selección del contenido de aire de diseño

TAMAÑO MÁXIMO NOMINAL DEL AGREGADO GRUESO	AIRE ATRAPADO
3/8 "	3.0 %
1/2 "	2.5 %
3/4 "	2.0 %
1 "	1.5 %
1 1/2 "	1.0 %
2 "	0.5 %
3 "	0.3 %
4 "	0.2 %

Fuente: Comité ACI 211

El contenido de aire atrapado para un agregado grueso de T.M.N. de 1" es de 1.5%.

f) Selección de relación a/c

Figura 57. Selección de relación a/c por resistencia y durabilidad

	RELACIÓN AGUA / CEMENTO EN PESO					
F'cr 28 días (kg/cm2)	CONCRETO SIN AIRE INCORPORADO	CONCRETO CON AIRE INCORPORADO				
150	0.8	0.71				
200	0.7	0.61				
250	0.62	0.53				
300	0.55	0.46				
350	0.48	0.40				
400	0.43					
450	0.38					

Fuente: Comité ACI 211

Para una resistencia promedio correspondiente a 275kg/cm2, por interpolación se obtuvo la relación a/c siendo de 0.59.

0.62	250
X = 0.59	275
0.55	300

Cantidad de cemento:

$$C = \frac{Agua}{a/c} = 335 \, kg$$

Factor cemento:

$$F = \frac{Contenido\ de\ cemento}{Peso\ de\ una\ bolsa\ de\ cemento} = \frac{335}{42.5} = 7.9\ bolsas$$

Peso de cemento SOL tipo I = 42.5 kg

g) Peso del Agregado grueso

El T.M.N. del agregado grueso es de 1" = 25.4 mm

El M.F del agregado fino es de 2.97.

Figura 58. Peso del AG por unidad de volumen del concreto

TAMAÑO MÁXIMO NOMINAL DEL AGREGADO GRUESO	MÓDULO DE FINEZA DEL AGREGADO FINO			DEL
	2.40	2.60	2.80	3.00
3/8 "	0.50	0.48	0.46	0.44
1/2 "	0.59	0.57	0.55	0.53
3/4 "	0.66	0.64	0.62	0.60
1 "	0.71	0.69	0.67	0.65
1 1/2 "	0.76	0.74	0.72	0.70
2 "	0.78	0.76	0.74	0.72
3 "	0.81	0.79	0.77	0.75
6 "	0.87	0.85	0.83	0.81

Fuente: Comité ACI 211

0.67	2.80
X = 0.65	2.97
0.65	3.00

Peso del agregado grueso = PUC AG x peso del AG

Peso del agregado grueso = 1041 kg

h) Cálculo de Volúmenes Absolutos

Peso específico del cemento SOL tipo I = 3130 kg/m3

$$a. Vol\ abs.\ del\ cemento = \frac{peso\ cemento}{peso\ especifico\ del\ cemento} = 0.11\ m3$$

b. Vol abs. del AG =
$$\frac{peso \ del \ AG}{peso \ especifico \ del \ AG} = 0.38 \ m3$$

c. Vol abs. del agua =
$$\frac{peso\ del\ agua}{peso\ especifico\ del\ agua} = 0.196\ m3$$

d. Vol abs. del aire =
$$\frac{\%}{100} = \frac{1.5}{100} = 0.015 \ m3$$

$$Suma\ total = 0.701\ m3$$

Determinando el volumen del AF:

$$Vol\ abs.\ del\ AF = 1 - (Vol.\ cemento + Vol.\ AG + Vol.\ agua + Vol.\ aire)$$

Vol abs.
$$del AF = 1 - (0.11 + 0.38 + 0.196 + 0.015) = 0.299 \, m3$$

Por lo tanto:

Peso del agregado fino = PUC del AF x Vol abs. del AF = 783 kg

Diseño de peso en seco:

$$a. Cemento = 335 kg$$

$$b.Agua = 335 kg$$

$$c.Agregado\ fino\ = 783\ kg$$

$$d.Agregado\ grueso = 1041kg$$

Volumen para 1 m3:

$$a.Cemento = 0.11 m3$$

$$b.Agua = 0.196 m3$$

$$c.Aire = 0.015 m3$$

$$d.Agregado\ fino = 0.29\ m3$$

$$e.Agregado\ grueso=0.38\ m3$$

i) Corrección por humedad

a. Agregado fino = Peso seco Af
$$x \left(1 + \frac{w\%}{100}\right)$$
 = 790 kg

a. Agregado grueso = Peso seco Ag
$$x \left(1 + \frac{w\%}{100}\right) = 1042 \text{ kg}$$

j) Aporte de agua a la mezcla

Aporte de agua =
$$\left(\frac{\%w - \%abs}{100}x \, Ps \, del \, Af + \frac{\%w - \%abs}{100} * Ps \, del \, Ag\right) = -10.63 \, lt$$

k) Agua efectiva

Agua efectiva = Vol. agua - Vol. agua aportada por la mezcla Agua efectiva = 196 - (-10.63) = 207 lt

I) Proporciones de diseño

Tabla 13. Diseño de mezcla concreto patrón f'c = 210kg/cm2

CANTIDAD DE MATERIALES POR M3								
MATERIALES	PESO SECO (kg/m3) PESO PROPORCIONES DEL DISEÑO DE MEZCLA EN PESO POR p3							
Cemento	335	335	1					
Agua (lt/m3)	196	207	26.2					
Agregado fino	783	790	2.4					
Agregado grueso	1041	1042	3.1					

Fuente: Elaboración propia

Diseño de la mezcla según dosificaciones de prueba

Se incorporó a la mezcla del concreto fibras derivadas de plumas de aves y mascarillas quirúrgicas con respecto al peso del cemento en proporciones de 0.18%,0.65% y 0.87%.

Tabla 14. Diseño de concreto patrón + FPA y FPR

CANTIDAD DE MATERIALES POR M3								
MATERIALES	PESO CORREGIDO (kg/m3)					SEÑO DE	CIONES MEZCL POR p3	
Dosificación (%)	0%	0.18%	0.65%	0.87%	0%	0.18%	0.65%	0.87%
Cemento	335	335	335	335	1	1	1	1
Agua (It/m3)	207	207	207	207	26.2	26.2	26.2	26.2
Agregado fino	790	790	790	790	2.4	2.4	2.4	2.4
Agregado grueso	1042	1042	1042	1042	3.1	3.1	3.1	3.1
Adición 1 fibras de plumas	0	0.302	1.089	1.457	0	0.038	0.138	0.185
Adición 2 fibras de polipropileno	0	0.302	1.089	1.457	0	0.038	0.138	0.185

Fuente: Elaboración propia

Application of the second of t

Figura 59. Pesaje de fibras

Mezclado de los materiales

Habiéndose pesado y calculado los volúmenes de los componentes a emplear, se realizó la mezcla utilizando una mezcladora de concreto tipo trompo introduciendo en primer lugar el cemento, arena gruesa, piedra chancada y agua dentro de la mezcladora durante 03 minutos aproximadamente, con el fin de conseguir una mezcla homogénea. Posteriormente se realizó el mezclado adicionando fibras de plumas de aves y fibras de polipropileno reciclado.

Figura 60. Proceso de mezclado adicionando fibras

Elaboración testigos de concreto

Los moldes utilizados para conformar las probetas estaban hechos de metal presentando una dimensión de 15x30 cm. Para los ensayos de resistencia a la compresión y tracción indirecta se requirió 03 probetas para cada edad de curado (7, 14 y 28 días), por lo que para cada mezcla se realizaron 09 probetas, siendo un total de 72 testigos de concreto.

Por otro lado, los moldes utilizados para conformar las vigas prismáticas estaban hechos de metal presentando una dimensión de 15x15x54 cm. Se requirió 03 vigas prismáticas para el ensayo de resistencia a la flexión para la edad de 28 días, por lo que para cada mezcla se elaboraron un total de 12 testigos de concreto.

La mezcla fue vertida en 03 capas de igual proporción, aplicando 25 golpes con un apisonador metálico por cada capa, distribuyendo los golpes de forma uniforme. Posteriormente luego de apisonar la última capa, a cada molde se aplicó 20 golpes a los lados con un mazo de goma cumpliendo con lo establecido en la NTP 339.033. Finalmente, la última capa se enrasó con una pieza metálica plana.

Figura 61. Llenado de probetas y vigas prismáticas

O.E N°1: Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades físicas del concreto f'c=210kg/cm2, Callao-2023.

Determinación de la consistencia, trabajabilidad y asentamiento del concreto según la NTP 339.035 / ASTM C-143

Se realizó la tabla N°15 tomando en consideración los resultados obtenidos:

Figura 62. Medición de asentamiento del concreto

Fuente: Fotografía propia

Tabla 15. Resultados de asentamiento del concreto

DOSIFICACIÓN	Slump	Slump	Slump CONSISTENCIA TRABA	
DOSIFICACION	(Pulg)	(cm)	CONSISTENCIA	TRABAJABILIDAD
Patrón + 0.00% (FPA + FPR)	4 1/4"	10.795	Plástica	Trabajable
Patrón + 0.18% (FPA + FPR)	4"	10.16	Plástica	Trabajable
Patrón + 0.65% (FPA + FPR)	3 3/4"	9.525	Plástica	Trabajable
Patrón + 0.87% (FPA + FPR)	3 1/2"	8.89	Plástica	Trabajable

Fuente: Elaboración propia

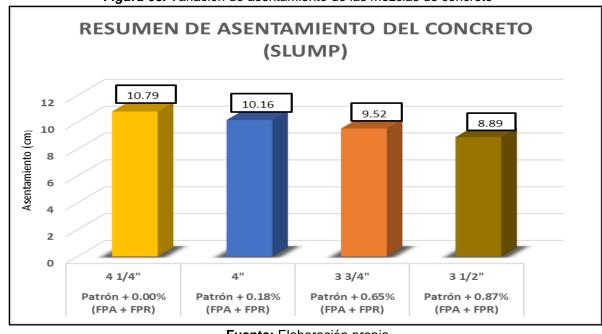


Figura 63. Variación de asentamiento de las mezclas de concreto

Interpretación: Tras el ensayo realizado se determinó las diferencias de asentamientos de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00%, 0.18%, 0.65 % y 0.87%. El asentamiento obtenido fue de 10.79 cm, 10.16 cm, 9.52 cm y 8.89 cm respectivamente, logrando concretar que, el asentamiento se reduce con respecto al patrón, además, se puede deducir que el concreto reduce su trabajabilidad conforme se incrementa la dosificación.

Temperatura del concreto según la NTP 339.184 / ASTM C-1064

Se realizó la tabla N°32 tomando en consideración los resultados obtenidos:

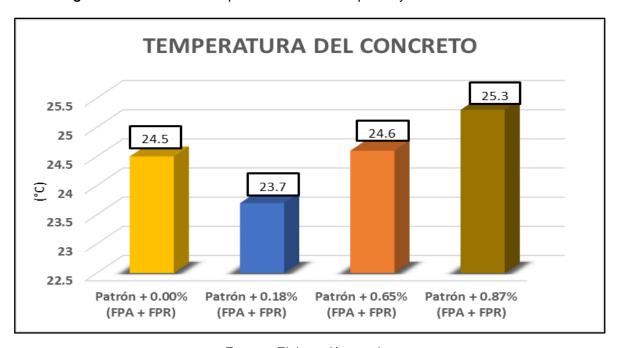


Figura 64. Medición de temperatura del concreto

Tabla 16. Resumen de temperatura del concreto

DOSIFICACIÓN	TEMPERATURA (°C)
Patrón + 0.00% (FPA + FPR)	24.5
Patrón + 0.18% (FPA + FPR)	23.7
Patrón + 0.65% (FPA + FPR)	24.6
Patrón + 0.87% (FPA + FPR)	25.3

Figura 65. Variación de temperatura del concreto patrón y con adición de fibras

Fuente: Elaboración propia

Interpretación: Tras el ensayo realizado se determinó las diferencias de temperaturas de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00%, 0.18%, 0.65 % y 0.87%. La temperatura obtenida fue de 24.5 °C, 23.7 °C, 24.6 °C y 25.3 °C respectivamente, logrando concretar que, las temperaturas obtenidas oscilan dentro del rango máximo admitido por la norma técnica de edificación E.060 concreto armado (32 °C).

Medición del peso unitario del concreto según la NTP 339.046 y ASTM C-138

Se realizó la tabla N°17 tomando en consideración los resultados obtenidos:

Figura 66. Medición del PU

Fuente: Fotografía propia

Tabla 17. Resultados de peso unitario y rendimiento del concreto

DESCRIPCCIÓN	UND	PATRÓN	0.18%	0.65%	0.87%
Peso del molde	kg	3.559	3.559	3.559	3.559
Volumen del molde	m3	0.007069	0.007069	0.007069	0.007069
Peso del molde + Concreto compactado	kg	19.972	19.987	20.145	19.988
Peso del concreto	kg	16.413	16.428	16.586	16.429
Peso unitario del concreto (A)	kg/m3	2322	2324	2346	2324
Peso unitario teórico (B)	kg/m3	2355	2355	2357	2358
Rendimiento del concreto (A)/(B)		0.99	0.99	1.00	0.99
		CUMPLE	CUMPLE	CUMPLE	CUMPLE

Fuente: Elaboración propia

PESO UNITARIO DEL CONCRETO 2346 2350 2345 2340 2335 2324 2324 2330 2322 2325 2320 2315 2310 Patrón + 0.00% Patrón + 0.18% Patrón + 0.65% Patrón + 0.87% (FPA + FPR) (FPA + FPR) (FPA + FPR) (FPA + FPR)

Figura 67. Variación del PU

Interpretación: Tras el ensayo realizado se determinó las diferencias de pesos unitarios de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00% (2322kg/m3), 0.18% (2324kg/m3), 0.65% (2346kg/m3) y 0.87% (2324kg/m3), logrando concretar que, los resultados cumplen con los límites de peso unitario indicado en la norma E0.60-Concreto Armado, el cual debe encontrarse en un rango de 2240 a 2460kg/m3.

Medición del contenido de aire del concreto según la NTP 339.080 y ASTM C-231

Se realizó la tabla N°18 tomando en consideración los resultados obtenidos:

Figura 68. Contenido de aire en el concreto

Fuente: Fotografía propia

Tabla 18. Resultados de contenido de aire atrapado

DOSIFICACIÓN	CONTENIDO DE AIRE DE DISEÑO (%)	CONTENIDO DE AIRE OLLA DE WASHINTONG (%)	VERIFICACIÓN
Patrón + 0.00% (FPA + FPR)	1.50	0.80	ОК
Patrón + 0.18% (FPA + FPR)	1.50	1.00	ОК
Patrón + 0.65% (FPA + FPR)	1.50	1.10	ОК
Patrón + 0.87% (FPA + FPR)	1.50	1.20	ОК

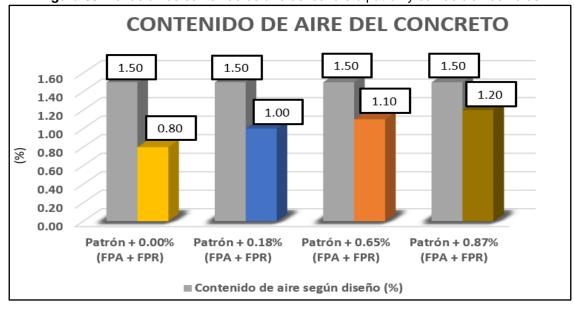


Figura 69. Variación de contenido de aire del concreto patrón y con adición de fibras

Interpretación: Tras el ensayo realizado se determinó las diferencias de contenido de aire de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00%, 0.18%, 0.65 % y 0.87%. El contenido de aire obtenido fue de 0.80%, 1.00%, 1.10% y 1.20% respectivamente, logrando concretar que, se encuentran dentro del rango según el diseño establecido.

Medición de la exudación según la NTP 339.077 y ASTM C-232

Se tomo una muestra y se realizó el control en 04 intervalos de tiempo de 10 min y 05 intervalos de tiempo de 30 min. Se realizó la tabla N°35 tomando en consideración los resultados obtenidos:

Figura 70. Medición de la exudación del concreto

Fuente: Fotografía propia

Tabla 19. Resultados de exudación de concreto

DOSIFICACIÓN	TIEMPO (min.)	VOLUMEN DE AGUA (ml)	AGUA DE EXUDACIÓN (ml/cm2)	PROMEDIO (ml/cm2)		
	10	10	0.02			
	10	9	0.02			
	10	7	0.01			
	10	6	0.01			
Patrón + 0.00% (FPA + FPR)	30	5	0.01	0.0187		
	30	4	0.01			
	30	3	0.01			
	30	2	0.00			
	30	1	0.00			
	10	9	0.02			
	10	8	0.02			
	10	7	0.01			
	10	6	0.01			
Patrón + 0.18% (FPA + FPR)	30	5	0.01	0.0174		
	30	4	0.01			
	30	3	0.01			
	30	2	0.00			
	30	0	0.00			
	10	9	0.02			
	10	7	0.01			
	10	6	0.01			
	10	6	0.01			
Patrón + 0.65% (FPA + FPR)	30	5	0.01	0.0167		
	30	4	0.01			
	30	3	0.01			
	30	1	0.00			
	30	1	0.00			
	10	8	0.02			
	10	7	0.01			
	10	6	0.01			
	10	6	0.01			
Patrón + 0.87% (FPA + FPR)	30	5	0.01	0.0164		
	30	5	0.01			
	30	2	0.00			
	30	1	0.00			
	30	1	0.00			

Interpretación: Tras el ensayo realizado se determinó las diferencias de exudación de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00%, 0.18%, 0.65 % y 0.87%. La exudación promedio fue de 0.0187 ml/cm2, 0.0174 ml/cm2, 0.0167 ml/cm2 y 0.0164 ml/cm2 respectivamente, logrando

concretar que, dichas muestras no presentan exudación al ser un concreto convencional.

Análisis estadístico

Se empleó el software SPSS stadistics para obtener el grado de asociación en relación a la hipotesis planteada, el desarrollo se describe en el anexo N°04.

O.E N°2: Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades mecánicas del concreto f'c=210kg/cm2, Callao 2023.

Resistencia a compresión del concreto según la NTP 339.034 / ASTM C39

Figura 71. Determinación de la resistencia a la compresión del concreto

Fuente: Fotografía propia

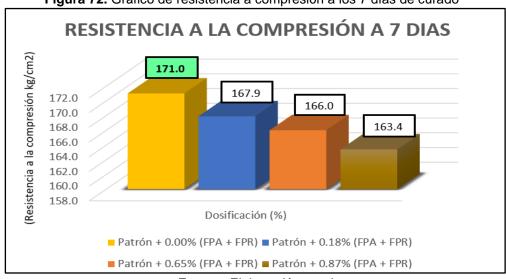

A. Rotura a compresión a los 7 días de curado

Tabla 20. Resistencia a compresión a los 7 días de curado

MUEST RA	EDA D	AREA DE PROBE TA (cm2)	TIPO DE FRACTU RA	CARGA MÁXI MA (kg)	RESISTENC IA A LA COMPRESI ÓN (kg/cm2)	RESISTENC IA A LA COMPRESI ÓN (%)	PROMEDI O DE RESISTEN CIA (kg/cm2)	PROMEDI O DE RESISTEN CIA (%)
Patrón	7	182.6	2	31236	171.1	81.5		
+ 0.00% (FPA +	7	181.21	2	30983	171.0	81.4	171.0	81.4
FPR)	7	181.41	2	31034	171.1	81.5		
Patrón	7	181.54	2	30330	167.1	79.6		
+ 0.18% (FPA +	7	180.92	2	30397	168.0	80.0	167.9	79.9
FPR)	7	180.87	2	30484	168.5	80.3		
Patrón	7	180.98	2	30108	166.4	79.2		
+ 0.65% (FPA +	7	181.07	2	30087	166.2	79.1	166.0	79.1
FPR)	7	181.32	2	30022	165.6	78.8		
Patrón	7	108.15	2	29554	164.1	78.1		
+ 0.87% (FPA +	7	180.72	2	29512	163.3	77.8	163.4	77.8
FPR)	7	181.03	2	29488	162.9	77.6		

Fuente: Elaboración propia

Figura 72. Gráfico de resistencia a compresión a los 7 días de curado

Fuente: Elaboración propia

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a compresión de acuerdo a las dosificaciones propuestas de FPA y FPR siendo el promedio para 0.00% (171.00kg/cm2), 0.18% (167.9kg/cm2), 0.65 (166.00kg/cm2) % y 0.87% (163.40kg/cm2), logrando concretar que, el C° patrón presenta una resistencia optima en comparación a las dosificaciones de fibras adicionadas al concreto para la edad de 7 días.

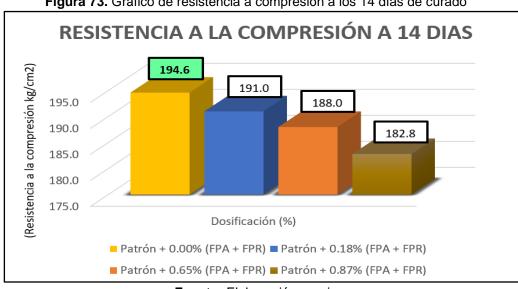

B. Rotura a compresión a los 14 días de curado

Tabla 21. Resistencia a la compresión a los 14 días de curado

MUEST RA	EDA D	ÁREA DE PROBE TA (cm2)	TIPO DE FRACTU RA	CARGA MÁXI MA (kg)	RESISTENC IA A LA COMPRESI ÓN (kg/cm2)	RESISTENC IA A LA COMPRESI ÓN (%)	PROMEDI O DE RESISTEN CIA (kg/cm2)	PROMEDI O DE RESISTEN CIA (%)
Patrón	14	181.32	2	35148	193.8	92.3		
+ 0.00%	14	181.01	2	35321	195.1	92.9	194.6	92.6
(FPA + FPR)	14	180.24	2	35089	194.7	92.7		
Patrón	14	181.43	2	34623	190.8	90.9		
+ 0.18%	14	181.06	2	34598	191.1	91.0	191.0	91.0
(FPA + FPR)	14	180.99	2	34612	191.2	91.1		
Patrón	14	181.04	2	33993	187.8	89.4		
+ 0.65%	14	180.98	2	34038	188.1	89.6	188.0	89.5
(FPA + FPR)	14	180.65	2	34009	188.3	89.6		
Patrón	14	180.45	2	33044	183.1	87.2		
+ 0.87%	14	180.91	1	32982	182.3	86.8	182.8	87.1
(FPA + FPR)	14	180.78	2	33102	183.1	87.2		

Fuente: Elaboración propia

Figura 73. Gráfico de resistencia a compresión a los 14 días de curado

Fuente: Elaboración propia

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a compresión de acuerdo a las dosificaciones propuestas de FPA y FPR siendo el promedio para 0.00% (194.6kg/cm2), 0.18% (191.0kg/cm2), 0.65 (188.00kg/cm2) % y 0.87% (182.8kg/cm2), logrando concretar que, el C° patrón presenta una resistencia optima en comparación a las dosificaciones de fibras adicionadas al concreto para la edad de 14 días.

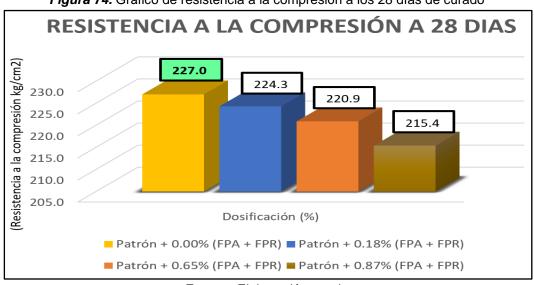

C. Rotura a compresión a los 28 días de curado

Tabla 22. Resistencia a la compresión a los 28 días de curado

MUEST RA	EDA D	AREA DE PROBE TA (cm2)	TIPO DE FRACTU RA	CARGA MÁXI MA (kg)	RESISTENC IA A LA COMPRESI ÓN (kg/cm2)	RESISTENC IA A LA COMPRESI ÓN (%)	PROMEDI O DE RESISTEN CIA (kg/cm2)	PROMEDI O DE RESISTEN CIA (%)
Patrón	28	181.04	2	41177	227.4	108.3		
+ 0.00%	28	180.92	2	40987	226.5	107.9	227.0	108.1
(FPA + FP)	28	180.83	2	41023	226.9	108.0	227.0	100.1
Patrón	28	180.98	2	40607	224.4	106.8		
+ 0.11%	28	181.23	2	40489	223.4	106.4	224.3	106.8
(FPA + FP)	28	180.82	2	40681	225.0	107.1	227.5	
Patrón	28	180.72	2	39745	219.9	104.7		
+ 0.19%	28	181.12	2	40183	221.9	105.6	220.1	105.2
(FPA + FP)	28	181.22	2	40027	220.9	105.2	220.1	105.2
Patrón	28	180.53	2	38782	214.8	102.3		_
+ 0.27%	28	181.12	2	39093	215.8	102.8	215.4	102.6
(FPA + FP)	28	180.92	2	39015	215.6	102.7	213.4	102.6

Fuente: Elaboración Propia

Figura 74. Gráfico de resistencia a la compresión a los 28 días de curado

Fuente: Elaboración propia

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a la compresión de acuerdo a las dosificaciones propuestas de FPA y FPR siendo el promedio para 0.00% (227.0kg/cm2), 0.18% (224.3kg/cm2), 0.65 (220.9kg/cm2) % y 0.87% (215.4kg/cm2), logrando concretar que, el C° patrón presenta una resistencia optima en comparación a las dosificaciones de fibras adicionadas al concreto para la edad de 28 días.

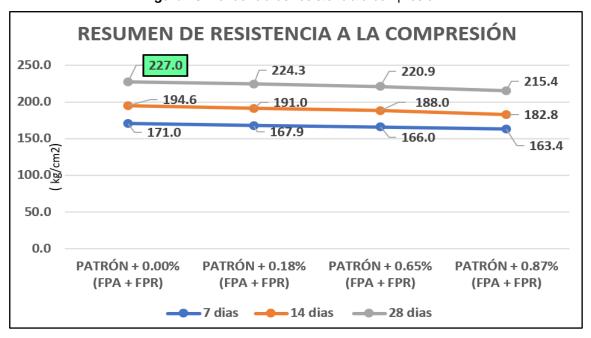

D. Tendencia de resistencia a compresión

Tabla 23. Resumen de resistencia a compresión

	RESUMEN DE RESISTENCIA PROMEDIO A LA COMPRESIÓN (kg/cm2)								
DIAS	PATRÓN + 0.00% (FPA + FPR)	PATRÓN + 0.18% (FPA + FPR)	PATRÓN + 0.65% (FPA + FPR)	PATRÓN + 0.87% (FPA + FPR)					
7 días	171.0	167.9	166.0	163.4					
14 días	194.6	191.0	188.0	182.8					
28 días	227.0	224.3	220.9	215.4					

Fuente: Elaboración Propia

Figura 75. Tendencia de resistencia a compresión

Fuente: Elaboración Propia

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a compresión de acuerdo a los tiempos de curado (7, 14 y 28 días) para el C° patrón y las dosificaciones propuestas de FPA y FPR siendo 0.00%, 0.18%, 0.65 % y 0.87%, observando que al considerar una mayor dosis de fibras, la resistencia se reduce respecto al C° patrón, logrando concretar que, el concreto patrón presenta una resistencia optima en todas las edades de rotura, superando a las dosificaciones establecidas.

Resistencia a tracción del concreto según la NTP 339.084 / ASTM C496

Figura 76. Determinación de la resistencia a tracción indirecta

Fuente: Fotografía Propia

A. Rotura a tracción indirecta a los 07 días de curado

Tabla 24. Resistencia a la tracción indirecta a los 07 días de curado

MUESTRA	EDAD	DIAMETRO PROMEDIO (cm)	LONGITUD PROMEDIO (cm)	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	
Patrón +	7	15.25	30.10	11654	16.2		
0.00%	7	15.19	30.10	11718	16.3	16.3	
(FPA + FPR)	7	15.19	30.07	11698	16.3	10.0	
Patrón +	7	15.19	30.12	11922	16.6		
0.18%	7	15.11	30.06	11914	16.7	16.7	
(FPA + FPR)	7	15.12	30.02	11952	16.8	10.7	
Patrón +	7	15.12	30.12	12837	17.9		
0.65%	7	15.08	30.06	12763	17.9	18.0	
(FPA + FPR)	7	15.11	30.02	12899	18.1	13.0	
Patrón +	7	15.09	30.04	13123	18.4		
0.87%	7	15.01	30.07	13145	18.5	18.5	
(FPA + FPR)	7	15.04	30.11	13203	18.6	13.3	

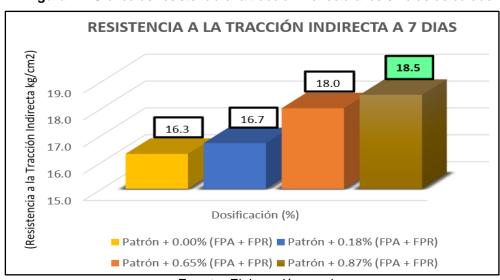


Figura 77. Gráfico de resistencia a la tracción indirecta a los 07 días de curado

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a la tracción de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00% (16.3kg/cm2), 0.18% (16.7kg/cm2), 0.65% (18.0kg/cm2) y 0.87% (18.5kg/cm2), logrando concretar que, el concreto adicionando 0.87% presenta una resistencia optima a los 7 días (+13.49% superando al patrón).

B. Rotura a tracción indirecta a los 14 días de curado

Tabla 25. Resistencia a la tracción indirecta a los 14 días de curado

MUESTRA	EDAD	DIAMETRO PROMEDIO (cm)	LONGITUD PROMEDIO (cm)	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
Patrón +	14	15.17	30.08	13122	18.3	
0.00% (FPA +	14	15.11	30.09	13287	18.6	18.5
FPR)	14	15.13	30.05	13273	18.6	
Patrón +	14	15.07	30.03	13328	18.7	
0.18% (FPA +	14	15.11	30.05	13480	18.9	18.9
FPR)	14	15.04	30.10	13442	18.9	
Patrón +	14	15.07	30.05	14199	20.0	
0.65%	14	15.01	30.09	14243	20.1	20.1
(FPA + FPR)	14	15.12	30.11	14390	20.1	20.1
Patrón +	14	15.12	30.08	14902	20.9	
0.87%	14	15.06	30.1	14829	20.8	20.9
(FPA + FPR)	14	15.03	30.1	14851	20.9	20.5

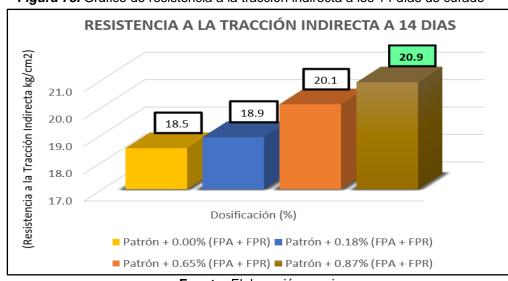


Figura 78. Gráfico de resistencia a la tracción indirecta a los 14 días de curado

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a la tracción de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00% (18.5kg/cm2), 0.18% (18.9kg/cm2), 0.65% (20.1kg/cm2) y 0.87% (20.9kg/cm2), logrando concretar que, el concreto adicionando 0.87% presenta una resistencia optima a los 14 (+12.97% superando al patrón).

C. Resistencia a la tracción indirecta a los 28 días de curado

Tabla 26. Resistencia a la tracción indirecta a los 28 días de curado

MUESTRA	EDAD	DIAMETRO PROMEDIO (cm)	LONGITUD PROMEDIO (cm)	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	
Patrón +	28	15.11	30.04	14023	19.7		
0.00% (FPA +	28	15.03	30.01	14002	19.8	19.7	
FPR)	28	15.05	30.03	14051	19.8		
Patrón +	28	15.03	30.01	14282	20.2		
0.18% (FPA +	28	15.04	30.02	14344	20.2	20.2	
FPR)	28	15.07	30.06	14489	20.4		
Patrón +	28	15.02	30.08	15083	21.3		
0.65% (FPA +	28	15.04	30.07	15331	21.6	21.5	
FPR)	28	15.01	30.03	15287	21.6		
Patrón +	28	15.11	30.09	15827	22.2		
0.87% (FPA +	28	15.08	30.03	15926	22.4	22.3	
FPR)	28	15.1	30.01	15920	22.4		

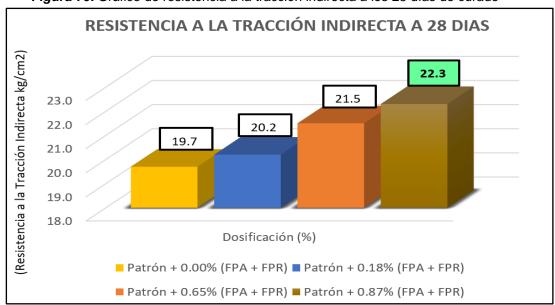


Figura 79. Gráfico de resistencia a la tracción indirecta a los 28 días de curado

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a la tracción de acuerdo a las dosificaciones propuestas de FPA y FPR siendo 0.00% (19.7kg/cm2), 0.18% (20.2kg/cm2), 0.65% (21.5kg/cm2) y 0.87% (22.3kg/cm2), logrando concretar que, el concreto adicionando 0.87% presenta una resistencia optima a los 28 días superando al concreto patrón en 13.19%, además se deduce que la resistencia aumenta conforme se incrementa la dosificación.

D. Tendencia de resistencia a la tracción indirecta

Tabla 27. Resumen de resistencia a tracción

	RESUMEN DE RESISTENCIA PROMEDIO A LA TRACCIÓN INDIRECTA (kg/cm2)								
DIAS	PATRÓN + 0.00% (FPA + FPR)	% PATRÓN + 0.18% PATRÓN + 0.659 (FPA + FPR) (FPA + FPR)		PATRÓN + 0.87% (FPA + FPR)					
7 días	16.3	16.7	18.0	18.5					
14 días	18.5	18.9	20.1	20.9					
28 días	19.7	20.2	21.5	22.3					

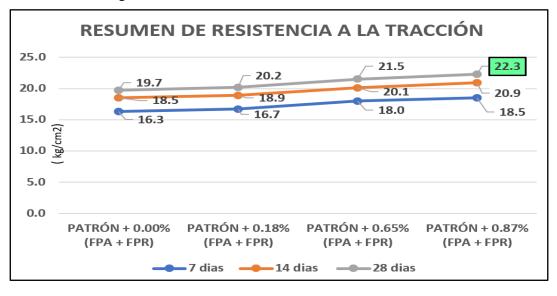


Figura 80. Tendencia de resistencia a la tracción indirecta

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a la tracción de acuerdo a los tiempos de curado (7, 14 y 28 días) para el C° patrón y las dosificaciones propuestas de FPA y FPR siendo 0.00%, 0.18%, 0.65 % y 0.87%, observando que conforme se incrementa la dosis de fibras, la resistencia presenta una tendencia mayor respecto al C° patrón, logrando concretar que, la dosificación de 0.87% presenta una resistencia optima en todas las edades de rotura, superando al C° patrón en 13.49%, 12.97% y 13.19% respectivamente.

Resistencia a flexión del concreto según la NTP 339.078 / ASTM C78

Figura 81. Determinación de la resistencia a flexión

Fuente: Fotografía Propia

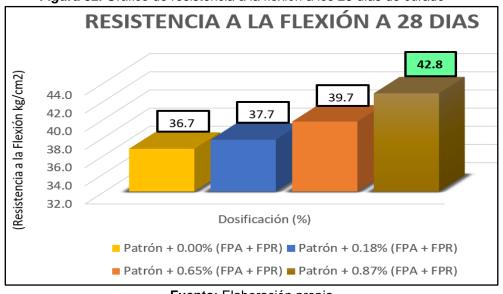

A. Rotura a flexión a los 28 días de curado

Tabla 28. Resistencia a la flexión a los 28 días de curado

MUESTRA	EDAD	TIPO DE FRACTURA	LARGO (cm)	ANCHO (cm)	ALTO (cm)	CARGA (kg)	MODULO DE ROTURA (kg/cm2)	PROMEDIO MODULO DE ROTURA (kg/cm2)
Patrón +	28	Tercio medio central	45.0	15.0	15.0	2767	36.9	
0.00% (FPA +	28	Tercio medio central	45.0	15.0	15.0	2782	37.1	36.7
FPR)	28	Tercio medio central	45.0	15.0	15.0	2755	36.7	
Patrón + 0.18% (FPA +	28	Tercio medio central	45.0	15.0	15.0	2813	37.5	
	28	Tercio medio central	45.0	15.0	15.0	2834	37.8	37.7
FPR)	28	Tercio medio central	45.0	15.0	15.0	2845	37.9	
Patrón +	28	Tercio medio central	45.0	15.0	15.0	3014	40.2	
0.65% (FPA +	28	Tercio medio central	45.0	15.0	15.0	3001	40.0	39.7
FPR)	28	Tercio medio central	45.0	15.0	15.0	3037	40.5	
Patrón +	28	Tercio medio central	45.0	15.0	15.0	3212	42.8	
0.87% (FPA +	28	Tercio medio central	45.0	15.0	15.0	3196	42.6	42.8
FPR)	28	Tercio medio central	45.0	15.0	15.0	3178	42.4	

Fuente: elaboración propia

Figura 82. Gráfico de resistencia a la flexión a los 28 días de curado

Interpretación: Tras el ensayo realizado se determinó las diferencias de resistencia a la flexión en base a las dosis propuestas de FPA y FPR siendo 0.00% (36.7kg/cm2), 0.18% (37.7kg/cm2), 0.65% (39.7kg/cm2) y 0.87% (42.8kg/cm2), logrando concretar que, el concreto adicionando 0.87% presenta una resistencia optima a los 28 días (+16.62% superando al patrón).

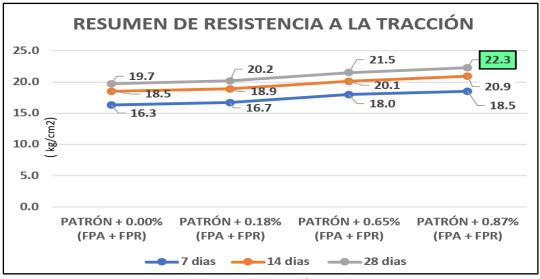
Análisis estadístico

Se empleó el software SPSS stadistics para obtener el grado de asociación en relación a la hipotesis planteada, el desarrollo se describe en el anexo N°04.

O.E N°3: Establecer la dosificación optima de fibras derivadas de plumas de aves y mascarillas quirúrgicas que influirá al adicionarse al concreto f'c=210kg/cm2, Callao-2023.

Influencia de la FPA y FRC en el comportamiento físico del concreto

Tabla 29. Influencia de la FPA y FPR en el comportamiento físico del concreto

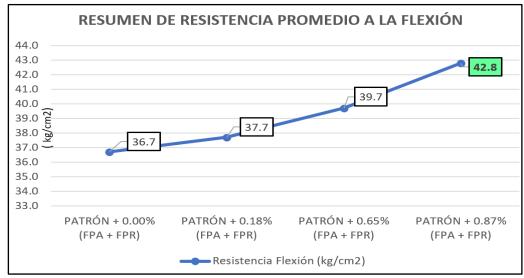

RESUMEN DEL ASENTAMIENTO, RENDIMIENTO Y CONTENIDO DE AIRE DE LAS FIBRAS PROPUESTAS EN EL CONCRETO					
DOSIFICACIÓN	ASENTAMIENTO (cm)	CONTENDIO DE AIRE OLLA DE WASHINTONG (%)	RENDIMIENTO		
Patrón + 0.18% (FPA + FPR)	10.16	1.00	Cumple		
Patrón + 0.65% (FPA + FPR)	9.525	1.10	Cumple		
Patrón + 0.87% (FPA + FPR)	8.89	1.20	Cumple		

Fuente: Fotografía propia

Interpretación: En la tabla N°29 se puede verificar que el concreto adicionando 0.18%, 065% y 0.87% de FPA y FPR, posee una buena trabajabilidad en base al asentamiento obtenido contando con una consistencia plástica. Sin embargo, se pudo observar que conforme se aumenta la dosificación, la trabajabilidad disminuye, siendo optima la dosificación de 0.18%. Por otro lado, se aprecia que se cumple los resultados de contenido de aire y el rendimiento en todas las dosificaciones establecidas, además, se determinó que la adición de FPA y FPR no perjudica al concreto convencional y satisface las características de diseño.

Influencia de la FPA y FRC en la resistencia a la tracción indirecta

Figura 83. Influencia de resistencia en tracción de la FPA y FPR



Fuente: Elaboración propia

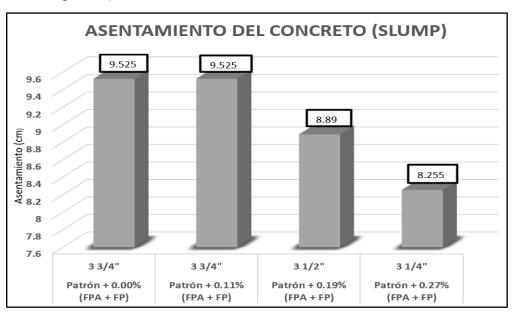
Interpretación: En la figura N°83 se puede observar el resumen de resistencia a la tracción de acuerdo a los días de curado (7, 14 y 28 días), identificando un aumento significativo en la dosis de 0.87%, superando al concreto patrón en las diferentes edades en 13.49%, 12.97% y 13.19% respectivamente, ya que la diferencia entre el concreto reforzado y no reforzado se debe principalmente al rol que cumplen las fibras dentro compuesto del concreto, proporcionándole una mayo tenacidad y ductilidad, logrando concluir que, a medida que se incrementa la dosis de FPR y FPR, se incrementa la resistencia en tracción.

Influencia de la FPA y FRC en la resistencia a la flexión

Figura 84. Influencia de resistencia en flexión de la FPA y FPR

Interpretación: En la figura N°84 se puede observar el resumen de resistencia a la flexión de acuerdo a los 28 días de curado, identificando un aumento significativo en la dosis de 0.87% superando al concreto patrón en 16.62%, además se logra observa que la resistencia no decae conforme se incrementa la dosis de fibras, quedando la alternativa de investigar posteriormente si la resistencia a la flexión sigue aumentando considerando dosis superiores a 0.87% de FPA y FPR.

Análisis estadístico

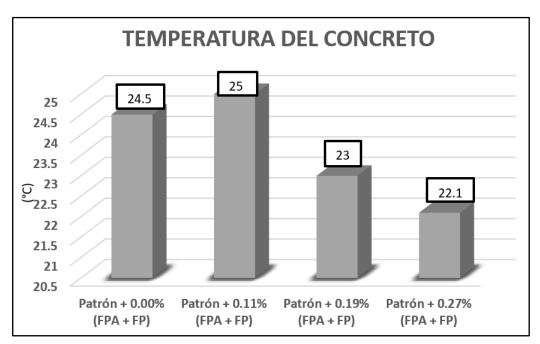

Se empleó el software SPSS stadistics para obtener el grado de asociación en relación a la hipotesis planteada, el desarrollo se describe en el anexo N°04.

V. DISCUSIÓN

O.E N°1: Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades físicas del concreto f'c=210kg/cm2, Callao-2023.

Asentamiento

Para Jauregui Leonor (2019), en su investigación, el SLUMP obtenido C°patrón fue de 3 ¾" y al añadir 0.11%, 0.19% y 0.27% de fibra de polipropileno de la marca Z ADITIVOS y plumas de aves fueron de 3 ¾", 3 ½" y 3 ¼", logrando identificar que al adicionar 0.19% y 0.27% el asentamiento disminuye en un -7% y -13% respectivamente con respecto al patrón (observar gráfico).

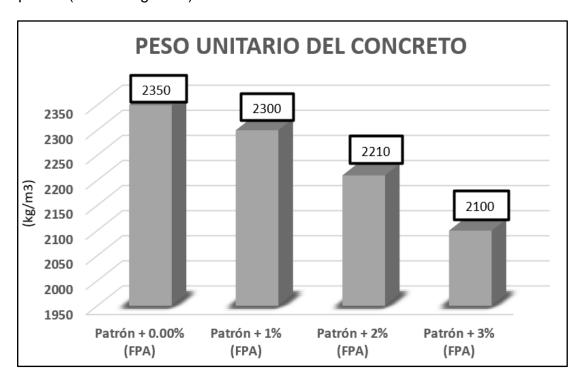


En esta tesis, el SLUMP obtenido del C° patrón fue de 4 ¼" y al adicionar 0.18%, 0.65% y 0.87% de fibras de plumas de aves y fibras de polipropileno reciclado fueron de 4", 3 ¾" y 3 ½", concluyendo que al adicionar 0.18%, 0.65% y 0.87% de fibras el asentamiento disminuye en un -6%, -12% y -18% con respecto al patrón, contando con una relación directa.

Tras los resultados de Jauregui Leonor (2019) cumplen con el asentamiento de diseño encontrándose en un rango de 3"-4" (ACI 211), del mismo modo para esta investigación, cumplen cuando se adiciona 0.18%, 0.65% y 0.87% de FPA y FPR.

Temperatura

Para Jauregui Leonor (2019), en su investigación, la temperatura del C° patrón fue de 24.5 °C y al adicionar 0.11%, 0.19% y 0.27% de fibra de polipropileno de la marca Z ADITIVOS y plumas de aves fueron de 25 °C, 23 °C y 22.1°C, logrando identificar que la temperatura aumenta en un 2.04% al adicionar 0.11% respecto al patrón y disminuye en un -6.12% y -9.8% al adicionar 0.19% y 0.27% respectivamente respecto al patrón (observar gráfico).

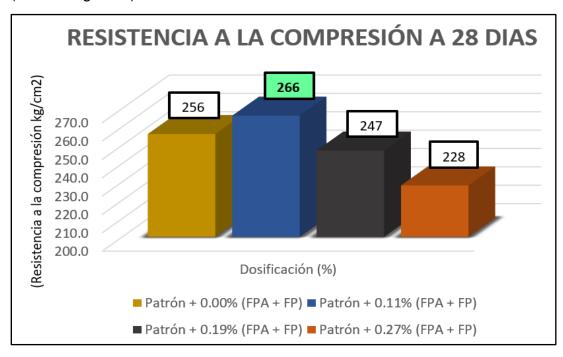

En esta tesis, la temperatura obtenida del C° patrón fue de 24.5 °C y al adicionar 0.18%, 0.65% y 0.87% de fibras de plumas de aves y fibras de polipropileno reciclado fueron de 23.7 °C, 24.6 °C y 25.3 °C, logrando identificar que la temperatura disminuye en un -3.2% al adicionar 0.18%

respecto al patrón y aumenta en un 0.4% y 3.2% al adicionar 0.65% y 0.87% respectivamente respecto al patrón.

Los resultados de Jauregui Leonor (2019) cumplen sus adiciones con la temperatura, de acuerdo al parámetro establecido en el RNE E060, el cual indica que la temperatura deberá ser mayor a 32 °C, del mismo modo para en esta investigación, cumplen cuando se adiciona 0.18%, 0.65% y 0.87% de FPA y FPR.

Peso unitario

Para Suarez Susan (2019), el PU obtenido del C° patrón fue de 2350kg/m3 y al considerar como adición 1%, 2% y 3% de fibras de plumas de aves fueron de 2300kg/m3, 2210kg/m3 y 2100kg/m3, logrando identificar que el peso unitario reduce en un -2.12%, -5.95% y -10.6% respectivamente respecto al patrón (observar gráfico).

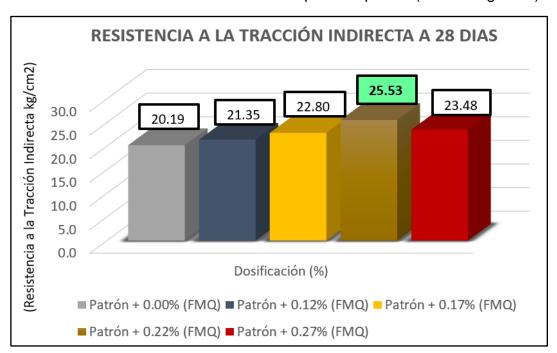

En esta tesis, el PU obtenido del C°patrón fue de 2322kg/m3 y al agregar 0.18%, 0.65% y 0.87% de fibras de plumas de aves y fibras de polipropileno reciclado fueron de 2324kg/m3, 2346kg/m3 y 2324kg/m3, logrando identificar que el peso unitario aumenta en un 0.08%, 1.03% y 0.08% respectivamente respecto al patrón.

Los resultados de Suarez Susan (2019) cumplen sus adiciones de 1% y 2% con el parámetro establecido en la norma, el cual indica que el PU para un tipo de concreto convencional debe encontrarse en una posición de 2200kg/m3 a 2400kg/m3, no cumpliendo la adición de 3%. Para esta investigación se cumple cuando se adiciona 0.18%, 0.65% y 0.87% de FPA y FPR.

O.E N°2: Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades mecánicas del concreto f'c=210kg/cm2, Callao-2023.

Resistencia a la compresión

Para Jauregui Leonor (2019), la resistencia promedio a la compresión (28 días) respecto al C°patrón fue de 256kg/cm2 y al considerar 0.11%, 0.19% y 0.27% de fibra de polipropileno de la marca Z ADITIVOS y plumas de aves fueron de 266kg/cm2, 247kg/cm2 y 228kg/cm2, logrando identificar que al adicionar 0.11%, la resistencia aumenta en un 4% respecto al patrón, mientras que las dosificaciones restantes disminuyen en -3% y -11% respecto al patrón (observar gráfico).

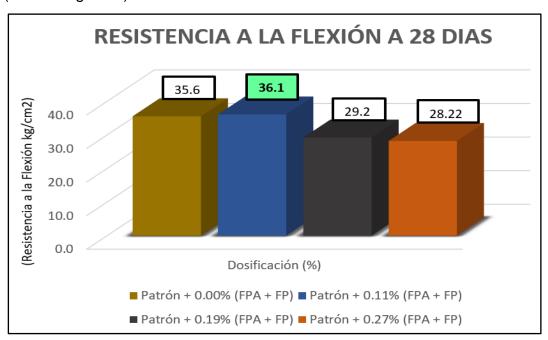

En esta tesis, la resistencia promedio a la compresión (28 días) respecto al C°patrón fue de 227kg/cm2 y al adicionar 0.18% (224.3kg/cm2), 0.65%

(220.9kg/cm2) y 0.87% (215.4kg/cm2) de fibras de plumas de aves y fibras de polipropileno reciclado, logrando identificar que el C°patrón presenta una mayor resistencia respecto a las dosis adicionadas al concreto, disminuyendo en -1.2%, -2.7% y -5.3% respecto al patrón, existiendo coincidencia en los resultados (la resistencia decrece conforme se aumente la dosis de fibras).

Los resultados de Jauregui Leonor (2019) si cumplen sus adiciones con la resistencia para un concreto f'c=210kg/cm2 según el ACI 211, del mismo modo para en esta investigación, cumplen cuando se adiciona 0.18%, 0.65% y 0.87%.

Resistencia a la tracción indirecta

Para Davila & Vigo (2021), en su investigación, la resistencia promedio a tracción (28 días) respecto al C° patrón fue de 20.19kg/cm2 y al adicionar 0.12% (21.35kg/cm2), 0.17% (22.80kg/cm2), 0.22% (25.53kg/cm2) y 0.27% (23.48kg/cm2) de fibras de mascarillas quirúrgicas, concluyendo que la resistencia aumenta en 5.74%, 12.91%, 26.44% y 16.29% respectivamente respecto al patrón, además se establece que al incrementar la dosis tiende a incrementar la resistencia a la tracción respecto al patrón (observar gráfico).

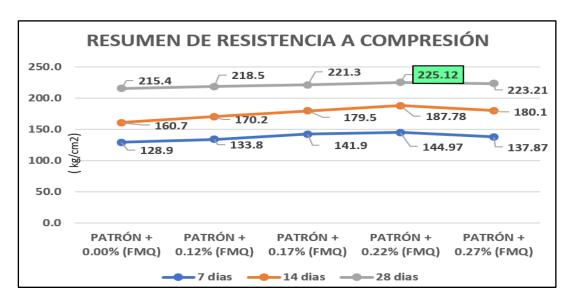

En esta tesis, la resistencia promedio a la tracción (28 días) respecto al C° patrón fue de 19. kg/cm2 y al adicionar 0.18% (20.2kg/cm2), 0.65% (21.5 kg/cm2) y 0.87% (22.3kg/cm2) de fibras de plumas de aves y fibras de

polipropileno reciclado, concluyendo que la resistencia aumenta en 2.5%, 9.1% y 13.1% respectivamente respecto al patrón, existiendo similitud en los resultados.

Los resultados de Davila & Vigo (2021) al adicionar fibras de mascarillas quirúrgicas, se tiene un alza favorable en la resistencia a la tracción en todas sus dosis respecto al patrón, del mismo modo para en esta investigación, cumplen cuando se adiciona 0.18%, 0.65% y 0.87%.

Resistencia a la flexión

Para Jauregui Leonor (2019), la resistencia promedio a la flexión (28 días) respecto al C°patrón fue de 35.55kg/cm2 y al adicionar 0.11%, 0.19% y 0.27% de fibra de polipropileno de la marca Z ADITIVOS y plumas de aves fueron de 36.09kg/cm2, 29.22kg/cm2 y 28.22kg/cm2, logrando identificar que al adicionar 0.11%, la resistencia aumenta en un 4% respecto al patrón, mientras que las dosificaciones restantes disminuyen en -4% y -11% respecto al patrón (observar gráfico).


En esta tesis, la resistencia promedio a la flexión (28 días) respecto al C°patrón fue de 36.7kg/cm2 y al adicionar 0.18%, 0.65% y 0.87% de fibras de plumas de aves y fibras de polipropileno reciclado fueron de 37.7kg/cm2, 39.7kg/cm2 y 42.8kg/cm2, concluyendo que la resistencia aumenta en 2.72%,

8.17% y 16.62% respectivamente respecto al patrón, además se establece que al incrementar la dosis la resistencia tiende a incrementar.

Los resultados de Jauregui Leonor (2019) al adicionar fibra de polipropileno de la marca Z ADITIVOS y plumas de aves, se tiene un incremento favorable a la flexión considerando la dosis de 0.11% respecto al patrón, sin embargo, en esta investigación se incrementó considerablemente la resistencia a la flexión al adicionar 0.18%, 065% y 0.87% de FPA y FPR.

O.E N°3: Establecer la dosificación optima de fibras derivadas de plumas de aves y mascarillas quirúrgicas que influirá al adicionarse al concreto f'c=210kg/cm2, Callao-2023.

Para Davila & Vigo (2021), en su investigación, la resistencia promedio (28 días) a la compresión, tracción y flexión optima se alcanzó con la dosis de 0.22% de fibras de mascarillas quirúrgicas, el cual fueron de 225.12kg/cm2, 25.53kg/cm2 y 36.61kg/cm2 correspondientemente, concluyendo que la resistencia aumenta en 4.54%, 26.44% y 18.04% respectivamente respecto al patrón.

En esta tesis, la resistencia promedio (28 días) a la tracción y flexión optima se alcanzó con la dosificación 0.87% de fibras de plumas de aves y fibras de polipropileno el cual fueron de 22.3kg/cm2 y 42.7kg/cm2 correspondientemente, estableciendo que la resistencia aumenta en 13.1% y 16.62% respectivamente respecto al patrón.

VI. CONCLUSIONES

 Respecto a la determinación de las propiedades del concreto en estado fresco se tiene:

En relación al SLUMP del concreto, el C° patrón dio 4 ¼" y al adicionar FPA y FPR en dosificaciones de 0.18%, 0.65% y 0.87%, el resultado fue 4", 3 ¾" y 3 ½". Concluyendo que, el asentamiento disminuye en un -6%, -12% y -18% con respecto al patrón; cumpliendo con el SLUMP de diseño establecido (3"-4"). Por lo tanto, al aumentar la dosificación de fibras, el asentamiento se reduce presentando una menor trabajabilidad.

En relación al PU y rendimiento del concreto, el C° patrón resulto con 2322kg/cm3 y al adicionar fibras de plumas de aves y fibras de polipropileno reciclado en adiciones de 0.18%, 0.65% y 0.87%, el resultado fue 2324kg/cm3, 2346kg/cm3 y 2324kg/cm3. Concluyendo que, el peso unitario aumenta en un 0.08%, 1.03% y 0.08% respectivamente respecto al patrón. El PU teórico es de 2358 kg/cm3, cumpliendo con el diseño establecido, encontrándose los resultados entre 2200 kg/cm3 a 2400 kg/cm3, rango aceptable del PU para un concreto convencional.

En relación al contenido de aire, el C° patrón resulto con 0.80% y al adicionar FPA y FPR en dosificaciones de 0.18%, 0.65% y 0.87%, el resultado fue 1%, 1.10% y 120%. Concluyendo que, el contenido de aire aumenta en un 25%, 37.5% y 50% respectivamente respecto al patrón, además se cumple con el contenido de aire de diseño (1.50%).

2. Respecto a la determinación de las propiedades del concreto en estado endurecido se tiene:

Se tuvo una resistencia en compresión del C° patrón (227.0kg/cm2) y al adicionar fibras de plumas de aves y fibras de polipropileno reciclado en dosificaciones de 0.18% (224.3 kg/cm2), 0.65% (220.9 kg/cm2) y 0.87% (215.4 kg/cm2), estos reducen su resistencia en -1.2%, -2.7% y -5.3% respectivamente respecto al patrón, sin embargo, se cumple con la resistencia mínima establecida en la NTE E0.60 (210 kg/cm2).

Se tuvo resistencia en tracción del C° patrón (19.7kg/cm2) y al adicionar fibras de plumas de aves y fibras de polipropileno reciclado en dosificaciones de 0.18% (20.2kg/cm2), 0.65% (21.5kg/cm2) y 0.87% (22.3kg/cm2), estos aumentan su resistencia en 2.5%, 9.1% y 13.1% respectivamente respecto al patrón. En síntesis, se concluye que, se obtiene una óptima resistencia al adicionar 0.87% de fibras.

Se tuvo una resistencia en flexión del C° patrón (36.7kg/cm2) y al adicionar fibras de plumas de aves y fibras de polipropileno reciclado en dosificaciones de 0.18% (37.7kg/cm2), 0.65% (39.7kg/cm2) y 0.87% (42.8kg/cm2), estos aumentan su resistencia en 2.72%, 8.17% y 16.62% respectivamente respecto al patrón. En síntesis, se concluye que, se obtiene una óptima resistencia al adicionar 0.87% de fibras.

3. Respecto a la influencia de las fibras en las propiedades del concreto se tiene:

Al adicionar fibras de plumas de aves y fibras de polipropileno reciclado influye positivamente dentro del compuesto del concreto, obteniendo su mejor resistencia en tracción al adicionar 0.87% (22.3 kg/cm2), mejorando un 13.1%. Por otro lado, en relación a la resistencia a flexión el adecuado comportamiento también se da al adicionar 0.87% (42.8 kg/cm), mejorando en 16.62%. Finalizando que, para la resistencia en tracción y flexión, estas incrementan su tendencia considerablemente con la dosis 0.87%, además se deduce que al aumentar la dosificación de fibras continúa aumentando la resistencia para ambos esfuerzos.

VII. RECOMENDACIONES

- Profundizar la investigación en base a la resistencia en tracción y flexión incrementando la dosificacion de fibras, ya que el aumento de la resistencia no se redujo en ninguna de las dosificaciones establecidas.
- Se recomienda utilizar el concreto en zonas donde sometan esfuerzos a flexión (pisos industriales, losas, vigas, entre otros), ya que presenta una resistencia optima para resistir estos esfuerzos.
- 3. Se recomienda profundizar el estudio de estas fibras derivadas de plumas de aves y mascarillas quirurgicas, en dosificaciones y condiciones diferentes, a fin de obtener mayor información sobre su adición al concreto.
- Evaluar nuevas condiciones para mejorar el asentamiento de la mezcla de concreto, incorporando un aditivo super plastificante, ya que el asentamiento se reduce al incrementar la dosis de fibras.
- Continuar con investigaciones futuras proponiendo nuevas alternativas de tratamiento, a fin de presentar resultados favorables a esfuerzos de compresión.
- 6. Importante tener en cuenta que durante el proceso de limpieza de las plumas de aves fueron sumergidas en una solución desengrasante por 30 minutos, no presentando reacción quimica. Sin embargo, despues de 2 horas se observó un marcado debilitamiento de las fibras.
- 7. Es beneficioso considerar la adición de fibras derivadas de plumas de aves y mascarillas quirurgicas como una opción rentable para la elaboración del concreto (sin comprometer la calidad del concreto), siendo esta una alternativa para mitigación ambiental.

REFERENCIAS

ERH-JEN, Hou et al. Using the concept of circular economy to reduce the

environmental impact of COVID-19 face mask waste, Sustainable Materials and

Technologies [online],

Volume 33, 2022, [Fecha de consulta: 15 de moviembre de 2022].

Disponible en

https://www.sciencedirect.com/science/article/pii/S2214993722000896

ISSN: 2214-9937

DIOSES, Valery. ALTERNATIVAS DE VALORIZACIÓN Y APROVECHAMIENTO

ENERGÉTICO A TRAVÉS DE CO-PROCESAMIENTO DE RESIDUOS SÓLIDOS

EN LA INDUSTRIA CEMENTERA. Tesis para obtener grado de ingeniero

Ambiental. Lima: Universidad Científica Del Sur. Escuela Profesional de Ingeniería

Ambiental, 2018.

Disponible en https://hdl.handle.net/20.500.12805/665

DÁVILA, Ricardina y VIGO, José. Utilización de fibras de polipropileno recicladas de

mascarillas faciales para evaluar las propiedades mecánicas del concreto 210

kg/cm2, Trujillo 2021. Tesis para obtener grado de ingeniero civil. Trujillo:

Universidad César Vallejo, Escuela profesional de Ingenieria Civil, 2021.

Disponible en https://hdl.handle.net/20.500.12692/83673

SALAS, Kevin. Influencia de la adición de fibra de zanahoria en las propiedades

mecánicas del concreto, Juliaca-Puno 2021. Tesis para obtener grado de ingeniero

civil. Lima: Universidad César Vallejo, Escuela profesional de Ingenieria Civil, 2021.

Disponible en https://hdl.handle.net/20.500.12692/64423

CARRASCO, Carlos. Concreto reforzado con pluma de aves. Tesis para obtener

grado de ingeniero civil. Chiclayo: Universidad De Chiclayo, Escuela profesional de

Ingenieria Civil, 2018.

103

Disponible en http://repositorio.udch.edu.pe/handle/UDCH/617

ROMERO, Alexis. Diseño experimental de un mortero de cemento reforzado con fibras naturales de origen animal "Plumas de aves". Tesis para obtener grado de Arquitecto. Ecuador: Universidad Internacional Del Ecuador – Sede Loja, Facultad para la ciudad, el paisaje y la arquitectura, 2022.

Disponible en https://repositorio.uide.edu.ec/handle/37000/4984

JAUREGUI, Leonor. Evaluación de las propiedades del concreto f'c=210kg/cm2 con adición de fibra de polipropileno y plumas de ave, Lima 2019. Tesis para obtener grado de ingeniero civil. Lima: Universidad César Vallejo, Escuela profesional de Ingenieria Civil, 2019.

Disponible en https://hdl.handle.net/20.500.12692/48821

FUENTES, Yhon y PÉREZ, Wilinton. Uso de Fibra Natural de Plumas de Aves Para Aumentar la Resistencia a la Compresión de Losa Aligerada Jaén 2021. Tesis para obtener grado de ingeniero civil. Moyobamba: Universidad César Vallejo, Escuela profesional de Ingenieria Civil, 2021.

Disponible en https://hdl.handle.net/20.500.12692/69927

CARHUAPOMA, Wilmer. Efecto de las fibras de polipropileno para concretos de resistencias a la compresión de 210 kg/cm2 y 280 kg/cm2, elaborados con agregados de la cantera de Cochamarca – Pasco. Tesis para obtener grado de ingeniero civil. Pasco: Universidad Nacional Daniel Alcides Carrión, Escuela profesional de Ingenieria Civil, 2018.

Disponible en http://repositorio.undac.edu.pe/handle/undac/332

BULLON, Joel y ESPÍRITU, Carlos. Análisis De Propiedades Físico-Mecánicas Del Concreto f'c=210 kg/cm² y f'c=280 kg/cm² Adicionando Fibra de Mascarilla Quirúrgica Reciclada, Huánuco 2021. Tesis para obtener grado de ingeniero civil. Lima: Universidad César Vallejo, Escuela profesional de Ingeniería Civil, 2021.

Disponible en https://hdl.handle.net/20.500.12692/73644

GRANDA, Luis. Evaluación de las propiedades de materiales compuestos fabricados a partir de fibras semiquímicas de Leucaena Collinsii y polipropileno. Tesis para obtener grado de doctor. España: Universidad de Gerona, Departamento de Ingeniería Química, Agraria y Tecnología Agroalimentaria, 2016.

Disponible en http://hdl.handle.net/10803/398953

LÓPEZ, Génesis y ORE, Nelson. Propiedades Físicas y Mecánicas de Paneles Elaborados con Residuos de Polipropileno - 2018. Tesis para obtener grado de ingeniero civil. Chimbote: Universidad César Vallejo, Escuela profesional de Ingenieria Civil, 2018.

Disponible en https://hdl.handle.net/20.500.12692/38764

MUÑOZ, Fernando. Comportamiento mecánico del hormigón reforzado con fibra de polipropileno multifilamento: influencia del porcentaje de fibra adicionado. Tesis para obtener grado en Ingeniería de Edificación. España: Universidad Politécnica de Valencia, Escuela Técnica Superior de Gestión en la Edificación, 2011.

Disponible en http://hdl.handle.net/10251/13552

MALLAUPOMA, Gavi. Comportamiento del concreto con adición de fibras de agave americana L para la mejora de sus propiedades en estado fresco, San Carlos - Huancayo 2017. Tesis para obtener grado de ingeniero civil. Huancayo: Universidad Continental, Escuela Académico Profesional de Ingeniería Civil, 2019.

Disponible en https://hdl.handle.net/20.500.12394/7108

CALLER, Sunlii. Efecto de las plumas de pollo en las propiedades mecánicas del concreto f'c 210 kg/cm2 con aditivo superplastificante para vaciado de techos de vivienda en Huancayo – Año 2020. Tesis para obtener grado de ingeniero civil. Huancayo: Universidad Nacional Del Centro Del Perú, Faculta de Ingenieria Civil, 2022.

Disponible en http://hdl.handle.net/20.500.12894/8520

ABANTO, Flavio. Tecnología del concreto [en línea]. 2ª ed. Lima - Perú: San Marcos, 2009. [fecha de consulta: 30 de mayo de 2022]

Disponible en: https://es.scribd.com/doc/306087568/Tecnologia-Del-Concreto-Flavio-Abanto

ISBN: 978-612-302-060-6.

MIRANDA, Angélica. Comportamiento Mecánico del Concreto con Adición de Fibras Naturales (Bagazo de Caña) y Fibras Sintéticas (Polipropileno). Tesis para obtener grado de Magister. Bogotá: Universidad Militar Nueva Granada, Facultad De Ingeniería, 2021.

Disponible en http://hdl.handle.net/10654/39794

DURAND, Gloria. Adición de fibra de polipropileno reciclada de un saco de arroz para incrementar la resistencia a la flexión evaluado en primas de concreto de 210 kg/cm2 según la NTP 339.078, Lima 2021. Tesis para obtener grado de ingeniero civil. Lima: Universidad Privada Del Norte, Escuela de Ingenieria Civil, 2021.

Disponible en https://hdl.handle.net/11537/27788

Instituto nacional de calidad (Perú). NTP 334.009: Cementos Pórtland. Requisitos. 7a Edición. Lima: INACAL, 2020, 24 pp.

Instituto nacional de calidad (Perú). NTP 339.034: Determinación de la resistencia a la compresión del concreto en muestras cilíndricas. Método de ensayo. 5a Edición. Lima: INACAL, 2021, 25 pp.

Instituto nacional de calidad (Perú). NTP 339.084: Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión diametral de una probeta cilíndrica. 3a Edición Lima: INACAL, 2017, 12 pp.

Instituto nacional de calidad (Perú). NTP 339.078: Determinación de la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios de la distancia entre apoyos. Método de ensayo. 4ª Edición. Lima: INACAL, 2022, 15 pp.

NORMA E.060.Concreto Armado. 2019.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.034: Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto, en muestras cilíndricas. Lima: INDECOPI, 2008.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.035: Método de ensayo para la medición del asentamiento del concreto de cemento Portland. Lima: INDECOPI, 2009.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.046: Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto). Lima: INDECOPI, 2008.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.079: Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas en el centro del tramo. Lima: INDECOPI, 2012.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.083: Método de ensayo normalizado para contenido de aire de mezcla de hormigón (concreto), fresco por el método de presión. Lima: INDECOPI, 2003.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.183: Práctica normalizada para la elaboración y curado de especímenes de concreto en el laboratorio. Lima: INDECOPI, 2013.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 339.185: Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. Lima: INDECOPI, 2013.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (Perú). NTP 400.010: Agregados extracción y preparación de las muestras. Lima: INDECOPI, 2016.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad

Intelectual (Perú). NTP 400.012: Análisis granulométrico del agregado fino y grueso.

Lima: INDECOPI, 2001.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad

Intelectual (Perú). NTP 400.017: Método de ensayo normalizado para determinar la

masa por unidad de volumen o densidad. Lima: INDECOPI, 2011.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad

Intelectual (Perú). NTP 400.021: Método de ensayo normalizado para la densidad,

densidad relativa y absorción del agregado grueso. Lima: INDECOPI, 2018.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad

Intelectual (Perú). NTP 400.022: Método de ensayo normalizado para la densidad,

peso específico, y absorción del agregado fino. Lima: INDECOPI, 2013.

Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad

Intelectual (Perú). NTP 400.037: Requisitos para agregado. Lima: INDECOPI, 2018.

ROJAS, Ignacio. Elementos para el diseño de técnicas de investigación: Una

propuesta de definiciones y procedimientos en la investigación científica [en línea].

Vol. 12. Toluca - México: Universidad Autónoma del Estado de México, 2011. [fecha

de consulta: 30 de mayo de 2022]

Disponible en: https://www.redalyc.org/articulo.oa?id=31121089006

ISBN: 1665-0824.

96

ANEXOS

Anexo 1.	Matriz de Consistencia
Anexo 2.	Matriz de Operacionalización de Variables
Anexo 2.	Cuadro de dosificación y resultados de antecedentes
Anexo 4.	Análisis estadístico de resultados
Anexo 5.	Certificado de validación del instrumento recolección de datos
Anexo 6.	Fichas de recolección de datos
Anexo 7.	Flujograma de procedimiento
Anexo 8.	Captura de pantalla turnitin
Anexo 9.	Ensayos de laboratorio
Anexo 10.	Certificados de calibración
Anexo 11.	Normativa
Anexo 12.	Mapas y planos
Anexo 13.	Panel fotográfico

ANEXO 1. MATRIZ DE CONSISTENCIA

TITULO: "Evaluación de las propiedades del concreto f'c=210 kg/cm2 adicionando fibras de plumas de aves y fibras de polipropileno reciclado, Callao-2023"

AUTOR: Simbala Chinga, Josemaria Milko

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIAI	BLES	DIMENSIONES	INDICADORES	INSTRUMENTOS	
Problema General:	Objetivo General:	Hipótesis General:	INDEPENDIENTE	Fibras de plumas de aves y fibras de polipropileno reciclado	Dosificación	0.18% (FPA + FPR)		
¿En qué medida las propiedades del concreto f'c=210kg/cm2 son influenciadas por la adición de FPA y FPR, Callao-2023?	Comprobar como la adición de fibras derivadas de plumas de	¿La adición de fibras derivadas de plumas de aves y mascarillas						
	aves y mascarillas quirúrgicas incide en las propiedades del concreto f'c=210kg/cm2, Callao- 2023.	quirúrgicas generará un impacto positivo en las propiedades del concreto f'c=210kg/cm2, Callao-2023?				0.65% (FPA + FPR)	Ficha de recolección de datos de la balanza	
Problemas Específicos:	Objetivos Específicos:	Hipótesis Específicos:	MOLI ENDIENTE				digital de medición	
¿En qué medida las propiedades físicas del concreto f'c=210kg/cm2 son influenciadas por la adición de FPA y FPR, Callao-2023?	Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades físicas del concreto, Callao-2023.	¿La adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas generará un impacto positivo en las propiedades físicas del concreto f'c=210kg/cm2, Callao-2023?				0.87% (FPA + FPR)		
¿En qué medida las propiedades mecánicas del concreto f'c=210kg/cm2 son influenciadas por la adición de FPA y FPR, Callao-2023?	Comprobar como la adición de fibras derivadas de plumas de aves y mascarillas quirúrgicas incide en las propiedades mecánicas del concreto f'c=210kg/cm2, Callao-2023.	-			Propiedades Físicas	Consistencia, Trabajabilidad y Asentamiento (cm)	Ficha de recolección de datos del ensayo de Cono de Abrams según Norma NTP 339.035 / ASTM C143	
		aves y mascarillas quirúrgicas generará un impacto positivo en las propiedades mecánicas del concreto				Contenido de aire (%)	Ficha de recolección de datos del ensayo de Contenido de aire según Norma NTP 339.046 / ASTM C234	
						Exudación (%)	Ficha de recolección de datos del ensayo de Exudación según Norma NTP 339.077 / ASTM C232	
		DEPENDIENTE	Concreto		Temperatura (°C)	Ficha de recolección de datos del ensayo de temperatura según Norma NTP 339.184 / ASTM C1064		
¿La dosificación propuesta de FPA y FPR contribuye en las propiedades del concreto f'c=210kg/cm2, Callao-2023?	Establecer la dosificación optima de fibras derivadas de plumas de aves y mascarillas quirúrgicas que influirá al adicionarse al concreto f'c=210kg/cm2, Callao-2023.					Peso Unitario (kg/m3)	Ficha de recolección de datos del ensayo de Peso unitario según Norma NTP 339.046 / ASTM C138	
					Resistencia a la Compresión (kg/cm2) 7, 14 y 28 días	Ficha de recolección de datos del ensayo de resistencia a la comprensión NTP 339.034 / ASTM C39		
		impacto positivo en las propiedades del	S		Propiedades Mecánicas	Resistencia a la tracción (kg/cm2) 7, 14 y 28 días	Ficha de recolección de datos del ensayo de resistencia a la tracción NTP 339.084 /ASTM C496	
		<u> </u>				Resistencia a la flexión (kg/cm2) 28 días	Ficha de recolección de datos del ensayo de resistencia a la flexión NTP 339.078 / ASTM C78	

ANEXO 2. MATRIZ DE OPERACIONALIZACIÓN DE VARIABLES

TITULO: "Evaluación de las propiedades del concreto f' c=210 kg/cm2 adicionando fibras de plumas de aves y fibras de polipropileno reciclado, Callao-2023"

AUTOR: Simbala Chinga, Josemaria Milko.

VARIABLE DE ESTUDIO	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIÓN	INDICADORES	ESCALA DE MEDICIÓN	
Fibras de plumas de aves y fibras de polipropileno reciclado	Según CONABIO (2020) "las fibras de origen animal provienen principalmente de animales domésticos, del cual presentan una gran variedad de aspectos" (párr. 1).	La elaboración del concreto estará compuesta por cemento portland, agregados, agua, fibras de polipropileno	Dosificación	0.18% (FPA + FPR)		
	Por otro lado, en relación a las fibras de polipropileno, según Mendoza, Aire y Dávila (2011), "son fibras sintéticas que se caracterizan por presentan una elevada resistencia a la tensión, definiéndose dos categorías, de bajo y alto módulo de elasticidad" (p. 3).	recicladas de mascarillas quirúrgicas y fibras de plumas de aves. Contando con una dosificación de 0.18%, 0.65% y 0.87%, lo cual serán agregados en forma de filamentos cortados con una longitud de 5		0.65% (FPA + FPR)	Razón	
		cm.		0.87% (FPA + FPR)		
Propiedades del concreto.	Según Terreros y Carvajal (2016), "las propiedades del concreto son las principales exigencias para un adecuado funcionamiento en estado fresco y endurecido" (p. 31).		Propiedades Físicas	Consistencia, Trabajabilidad y Asentamiento (cm)		
				Contenido de aire (%)	Razón	
				Exudación (%)		
				Temperatura (°C)		
				Peso unitario (kg/m3)		
			Propiedades Mecánicas	Resistencia a la Compresión (kg/cm2) 7, 14 y 28 días		
				Resistencia a la tracción (kg/cm2) 7, 14 y 28 días		
				Resistencia a la flexión (kg/cm2) 28 días		

ANEXO 3. CUADRO DE DOSIFICACIÓN Y RESULTADOS DE ANTECEDENTES

TITULO: "Evaluación de las propiedades del concreto f' c=210 kg/cm2 adicionando fibras de plumas de aves y fibras de polipropileno reciclado, Callao-2023"

AUTOR: Simbala Chinga, Josemaria Milko.

	PROCEDENCIA DE			Resistencia	Producto	osificación (%) (kg) (Kg/m3) (gr/m3)	Resistencia a la compresión (kg/cm2)	Resistencia a la tracción (kg/cm2)	Resistencia a la flexión (Mr=kg/cm2)				Long. Fibr							
AUTOR	ANTECEDENTE	TITULO	AÑO	f'c de C° Patron (kg/cm2)	Adicionado	Dosificac (kg) (K (gr/h	28 dias	28 dias	28 dias	(Pulg.) / Fluidez (%)	Consistencia	Trabajabilidad	(mm)							
						Patrón	211.00	-	-	3.7"	Plastico	Trabajable								
YHON DUVER FUENTES HUATANGARI &		USO DE FIBRA NATURAL DE PLUMAS DE AVES PARA			Adición de plumas	0.35%	213.00	-	-	3.5"	Plastico	Trabajable								
WILINTON ALEXANDER PÉREZ VILELA	NACIONAL	AUMENTAR LA RESISTENCIA A LA COMPRESIÓN DE LOSA ALIGERADA JAÉN 2021.	2021	2021	210	de aves	0.60%	217.00	-	-	3.3"	Plastico	Trabajable	30.00						
VILLEA						1.5%	199.00	-	-	2.9"	Plastico seco	Trabajable								
						Patrón	234.52 / 382.88	-	-	-	-	-								
		EFECTO DE LAS FIBRAS DE POLIPROPILENO PARA				2 kg (Macro)	253.73 / 406.25	-	-	6"	Muy plastico	Muy Trabajable	-							
WILMER RAPHAEL CARHUAPOMA	NACIONAL	CONCRETOS DE RESISTENCIAS A LA COMPRESIÓN DE 210 KG/CM2 Y 280	2018	210 / 280	Adición de macro y micro fibras de	5 kg (Macro)	259.10 / 433.89	-	-	6"	Muy plastico	Muy Trabajable	20 (Micro) / 4 (Macro)							
CARLOS		KG/CM2, ELABORADOS CON AGREGADOS DE LA CANTERA DE COCHAMARCA – PASCO			polipropileno.	9 kg (Macro)	262.73 / 371.89	-	-	6"	Muy plastico	Muy Trabajable								
		SOCI PRIVATE CA - FASCU				600 gr (Micro)	259.79 / 395.57	-	-	6"	Muy plastico	Muy Trabajable	-							
		ANÁLISIS COMPARATIVO DEL			Comparativo entre	2.00%	87.34 (FO) / 101.96 (FP)	-	108.90 (FO) / 108.90 (FP)	4" / 4"	Plastico	Trabajable								
ANCEL SILOS PAREDES FLORES & JUAN EDWIN	NACIONAL	COMPORTAMIENTO DEL CONCRETO ADICIONANDO FIBRAS NATURALES Y DE	2021	210	la adición de fibra de polipropileno y la	4.00%	65.9 (FO) / 57.82 (FP)	-	99.41 (FO) / 103.71 (FP)	3 1/2" / 3 1/2"	Plastico	Trabajable	40.00							
SEVILLANO MENDOZA		POLIPROPILENO EN LA URB. NICOLÁS GARATEA - NUEVO CHIMBOTE-ANCASH-202			adición de Fibra de lana de oveja.	6.00%	48.83 (FO) / 51.03 (FP)	-	100.28 (FO) / 107.56 (FP)	3 1/2" / 3"	Plastico	Trabajable	-							
		ADICIÓN DE FIBRA DE POLIPROPILENO RECICLADA DE				Patrón	212.29		63.04	3.7"	Plastico	Trabajable								
GLORIA ESTEFANY DURAND MATTA	NACIONAL	UN SACO DE ARROZ PARA INCREMENTAR LA RESISTENCIA A LA FLEXIÓN	2021	210	Fibra de polipropileno reciclada de saco	0.30%	237.95		67.63	3.5"	Plastico	Trabajable	30.00							
		EVALUADO EN PRIMAS DE CONCRETO DE 210 KG/CM2 SEGÚN LA NTP 339.078, LIMA 2021			de arroz.	0.40%	218.01		63.14	3.2"	Plastico	Trabajable	-							
		LIWA 2021				Patrón	363.71	-	-	3.4"	Plastico	Trabajable								
IRWING ALFREDO		ELABORACIÓN DE CONCRETO		210		0.03%	381.56	-	-	3.5"	Plastico	Trabajable	-							
BRAVO MONTEZA & KATERINE ROSSANA CARRASCO LOPEZ	NACIONAL	210 KG/CM2 ADICION DE POLIETILENO HDPE	2019		210	210	210	210	210	210	210	210	Fibra de polietileno HDPE	0.06%	404.41	-	_	3.7"	Plastico	Trabajable
						0.09%	405.98	-	_	3.8"	Plastico	Trabajable	-							
						Patrón	-	-	43.57	3.5"	Plastico	Trabajable								
IOEL ANGEL LAZARO LIRIO & YOEL NINER	NACIONAL	ADICIÓN DE FIBRA DE CABELLO HUMANO EN LA RESISTENCIA A LA FLEXIÓN PARA UN	2021	280	Adición de fibra de cabello humano	0.40%	-	-	42.20	3"	Plastico	Trabajable	20 - 50							
ORTIZ TRUJILLO		CONCRETO F`C=280KG/CM2, HUARAZ-2021			Caseno Hamano	0.70%	-	-	40.53	2.5"	Plastico seco	Trabajable	-							
						0.02%	295.18 / 221.08	30.94 / 26.82	45.07 / 33.93	3" / 3.05"	Plastico	Trabajable								
		ANÁLISIS DE PROPIEDADES				0.04%	314.66 / 235.46	31.97 / 27.80	46.47 / 34.93	2.95" / 2.90"	Plastico seco	Trabajable	-							
JOEL ALEXANDER BULLON INGAROCA & CARLOS RODOLFO	NACIONAL	FÍSICO-MECÁNICAS DEL CONCRETO F'C=210 KG/CM² Y F'C=280 KG/CM²	2021	280 / 210	Adición de fibras de polipropileno recicladas de	0.06%	300.65 / 226.21	32.59 / 28.02	47.40 / 35.67	2.60" / 2.65"	Plastico seco	Trabajable	50.00							
ESPIRITU PONCIANO		ADICIONANDO FIBRA DE MASCARILLA QUIRÚRGICA RECICLADA, HUÁNUCO 2021			mascarillas quirurgicas.	0.09%	294.20 / 219.76	33.83 / 29.60	48.47 / 36.33	2.50" / 2.60"	Plastico seco	Trabajable	-							
						0.11%	291.06 / 217.89	36.26 / 30.90	49.33 / 37.13	2.10" / 2.15"	Plastico seco	Trabajable	-							

ANEXO 4. ANÁLISIS ESTADÍSTICO DE RESULTADOS

Objetivo específico N°1:

A. PRUEBA DE NORMALIDAD

1. Formulación de hipótesis

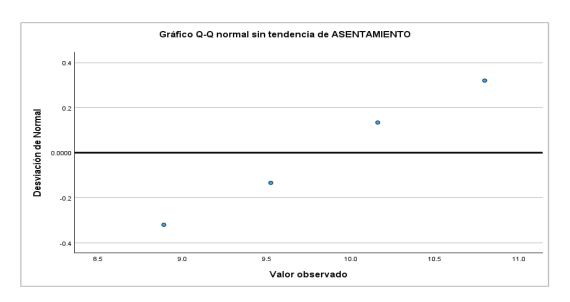
Ho: Los resultados de la variable propiedades físicas del concreto SI tienen normalidad.

H1: Los resultados de la variable propiedades físicas del concreto NO tienen normalidad.

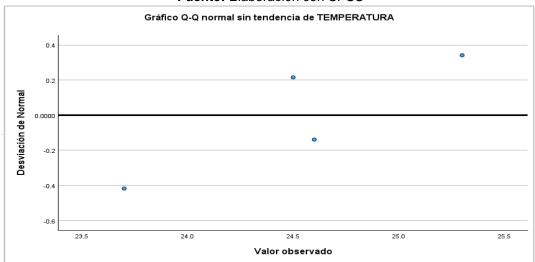
2. Nivel de significancia

 $\alpha = 5\% (0.05)$

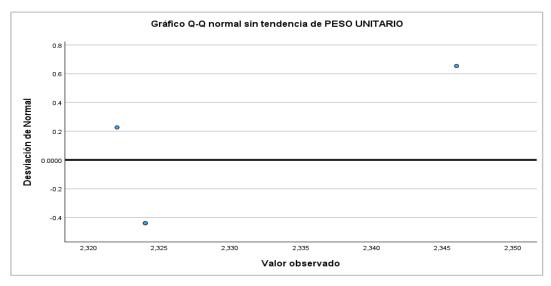
3. Elección de la prueba estadística

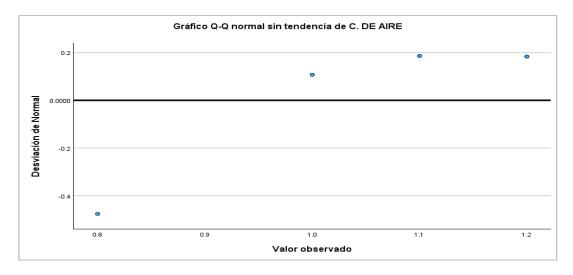

n>50 - Kolmogorov-Smimov

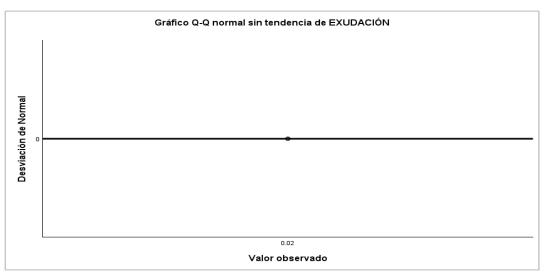
n≤50 – Shapiro-Wilk


Elección: Tras observar los datos y dado que la muestra es menor a 50 se tuvo en consideración la prueba de Shapiro-Wilk.

Pruebas de normalidad										
Kolmog	gorov-Smirn	10V ^a	Sh	apiro-Wilk						
Estadístico	gl	Sig.	Estadístico	gl	Sig.					
.151	4		.993	4	.972					
.235	4		.968	4	.828					
.420	4		.701	4	.012					
.192	4		.971	4	.850					
	4			4						
.151	4		.993	4	.972					
	Kolmon Estadístico 151 .235 .420 .192	Kolmogorov-Smirr Estadístico gl .151 4 .235 4 .420 4 .192 4	Kolmogorov-Smirnov ^a Estadístico gl Sig. .151 4235 4420 4192 4 .	Kolmogorov-Smirnov	Kolmogorov-Smirnov ^a Shapiro-Wilk Estadístico gl Sig. Estadístico gl .151 4 .993 4 .235 4 .968 4 .420 4 .701 4 .192 4 .971 4 .4 .4 .4 .4					


Fuente: Elaboración con SPSS


Fuente: Elaboración con SPSS


Fuente: Elaboración con SPSS

Fuente: Elaboración con SPSS

Fuente: Elaboración con SPSS

Fuente: Elaboración con SPSS

4. Regla de decisión

Si: p-valor <= 0.05; se rechaza la hipótesis nula (Ho).

- Asentamiento: p-valor=0.272>0.05, entonces se acepta la hipótesis nula.
- Temperatura: p-valor=0.828>0.05, entonces se acepta la hipótesis nula.
- Peso unitario: p-valor=0.012<0.05, entonces se rechaza la hipótesis nula.
- Contenido de aire: p-valor=0.850>0.05, entonces se acepta la hipótesis nula.
- Exudación: p-valor=0.522>0.05, entonces se acepta la hipótesis nula.

5. Conclusión

Los resultados de la variable propiedades físicas del concreto tienen normalidad (P-valor>0.05), excepto la propiedad de peso unitario (P-valor<0.05), a partir de ello se empleó la prueba de RHO de SPEARMAN (no paramétrica) para medir la correlación de variables.

GRADO DE ASOCIACIÓN

B. COEFICIENTE DE CORRELACIÓN DE SPEARMAN

1. Formulación de hipótesis

Ho: Los resultados de la variable propiedades físicas del concreto **NO** están relacionadas con la adición de fibras de plumas de aves y fibras de polipropileno reciclado.

H1: Los resultados de la variable propiedades físicas del concreto **SI** están relacionadas con la adición de fibras de plumas de aves y fibras de polipropileno reciclado.

2. Nivel de significancia

 $\alpha = 5\% (0.05)$

3. Elección de la prueba estadística

n≤50 - Shapiro-Wilk

Análisis de correlación de SPEARMAN

			Correlacion	es				
			ASENTAMIENT O	TEMPERATUR A	PESO_UNITAR IO	CONTENIDO_ DE_AIRE	EXUDACIÓN	FPA_FPR
Rho de Spearman	ASENTAMIENTO	Coeficiente de correlación	1.000	800	632	-1.000**		-1.000
		Sig. (bilateral)		.200	.368			
		N	4	4	4	4	4	
	TEMPERATURA	Coeficiente de correlación	800	1.000	.316	.800		.800
		Sig. (bilateral)	.200		.684	.200		.20
		N	4	4	4	4	4	
	PESO_UNITARIO	Coeficiente de correlación	632	.316	1.000	.632		.63
		Sig. (bilateral)	.368	.684		.368		.36
		N	4	4	4	4	4	
	CONTENIDO_DE_AIRE	Coeficiente de correlación	-1.000**	.800	.632	1.000		1.000
		Sig. (bilateral)		.200	.368			
		N	4	4	4	4	4	
	EXUDACIÓN	Coeficiente de correlación						
		Sig. (bilateral)						
		N	4	4	4	4	4	
	FPA_FPR	Coeficiente de correlación	-1.000**	.800	.632	1.000**		1.00
		Sig. (bilateral)		.200	.368			
		N	4	4	4	4	4	

Fuente: Elaboración con SPSS

4. Regla de decisión

Si: p-valor <= 0.05; se rechaza la hipótesis nula (Ho).

- Asentamiento: p-valor=No existe.
- Temperatura: p-valor=0.200>0.05, entonces se acepta la hipótesis nula.
- Peso unitario: p-valor=0.368>0.05, entonces se acepta la hipótesis nula.
- Contenido de aire: p-valor=No existe.
- Exudación: p-valor=No existe.

5. Conclusión

- Asentamiento: Existe evidencia estadística significativa para que decir que la variable asentamiento es constante.
- Temperatura: Existe evidencia estadística significativa para decir que los resultados de la variable temperatura no está relacionado con la adición de FPA y FPR de manera directa y negativa (r=-0.800).
- Peso unitario: Existe evidencia estadística significativa para decir que los resultados de la variable peso unitario no está relacionado con la adición de FPA y FPR de manera directa y negativa (r=-0.632).
- Contenido de aire: Existe evidencia estadística significativa para que decir que la variable contenido de aire es constante.
- Exudación: Existe evidencia estadística significativa para que decir que la variable exudación es constante.

Objetivo específico N°2:

A. PRUEBA DE NORMALIDAD

1. Formulación de hipótesis

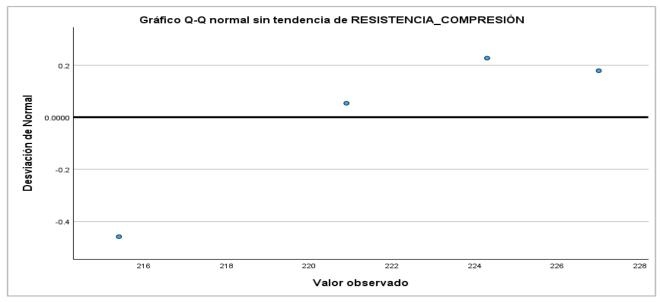
Ho: Los resultados de la variable propiedades mecánicas del concreto **SI** tienen normalidad.

H1: Los resultados de la variable propiedades mecánicas del concreto **NO** tienen normalidad.

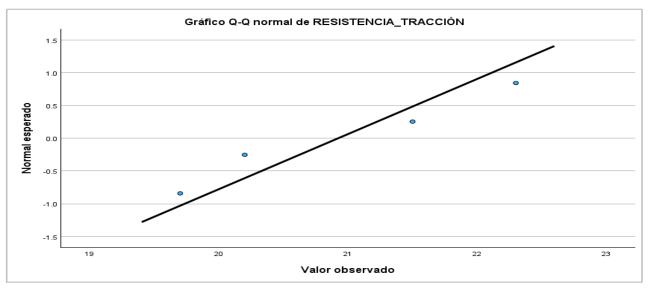
2. Nivel de significancia

 $\alpha = 5\% (0.05)$

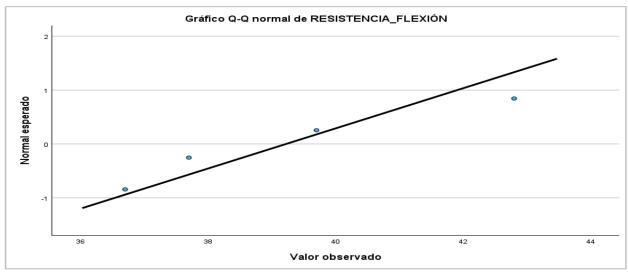
3. Elección de la prueba estadística


n>50 - Kolmogorov-Smimov

n≤50 - Shapiro-Wilk


Elección: Tras observar los datos y dado que la muestra es menor a 50 se tuvo en consideración la prueba de Shapiro-Wilk.

Pruebas de normalidad										
	Kolmo	gorov-Smirr	nov ^a	Shapiro-Wilk						
	Estadístico	gl	Sig.	Estadístico	gl	Sig.				
RESISTENCIA_COMPRESI ÓN	.184	4		.972	4	.852				
RESISTENCIA_TRACCIÓN	.229	4		.945	4	.683				
RESISTENCIA_FLEXIÓN	.215	4		.943	4	.674				
FPA_FPR	.151	4		.993	4	.972				
a. Corrección de significad	ión de Lilliefor	s								


Fuente: Elaboración con SPSS

Fuente: Elaboración con SPSS

Fuente: Elaboración con SPSS

Fuente: Elaboración con SPSS

4. Regla de decisión

Si: p-valor <= 0.05; se rechaza la hipótesis nula (Ho).

- Resistencia a compresión: p-valor=0.852>0.05, entonces se acepta la hipótesis nula.
- Resistencia a tracción: p-valor=0.683>0.05, entonces se acepta la hipótesis nula.
- Resistencia a flexión: p-valor=0.674>0.05, entonces se acepta la hipótesis nula.

5. Conclusión

Los resultados de la variable propiedades mecánicas del concreto tienen normalidad (P-valor>0.05), a partir de ello se empleó la prueba de coeficiente de PEARSON (paramétrica) para medir la correlación de variables.

GRADO DE ASOCIACIÓN

B. COEFICIENTE DE CORRELACIÓN DE PEARSON

1. Formulación de hipótesis

Ho: Los resultados de la variable propiedades mecánicas del concreto **NO** están relacionadas con la adición de fibras de plumas de aves y fibras de polipropileno reciclado.

H1: Los resultados de la variable propiedades mecánicas del concreto **SI** están relacionadas con la adición de fibras de plumas de aves y fibras de polipropileno reciclado.

Nivel de significancia

 $\alpha = 5\% (0.05)$

2. Elección de la prueba estadística

n≤50 – Shapiro-Wilk

Análisis de correlación de PEARSON.

	Cor	relaciones			
		RESISTENCIA _COMPRESIÓ N	RESISTENCIA _TRACCIÓN	RESISTENCIA _FLEXIÓN	FPA_FPR
RESISTENCIA_COMPRESI	Correlación de Pearson	1	980*	997**	986
ÓN	Sig. (bilateral)		.020	.003	.014
	N	4	4	4	4
RESISTENCIA_TRACCIÓN	Correlación de Pearson	980*	1	.978*	.987
	Sig. (bilateral)	.020		.022	.013
	N	4	4	4	4
RESISTENCIA_FLEXIÓN	Correlación de Pearson	997**	.978*	1	.974
	Sig. (bilateral)	.003	.022		.026
	N	4	4	4	4
FPA_FPR	Correlación de Pearson	986 [*]	.987*	.974*	1
	Sig. (bilateral)	.014	.013	.026	
	N	4	4	4	4

^{*.} La correlación es significativa en el nivel 0,05 (bilateral).

Fuente: Elaboración con SPSS

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

3. Regla de decisión

Si: p-valor <= 0.05; se rechaza la hipótesis nula (Ho).

- Resistencia a compresión: p-valor=0.014<0.05, entonces se rechaza la hipótesis nula.
- Resistencia a tracción: p-valor=0.013<0.05, entonces se rechaza la hipótesis nula.
- Resistencia a flexión: p-valor=0.026<0.05, entonces se rechaza la hipótesis nula.

4. Conclusión

- Resistencia a compresión: Existe evidencia estadística significativa para decir que los resultados de la variable resistencia a compresión está relacionado de manera directa y negativa con la adición de FPA y FPR (r=-0.987).
- Resistencia a tracción: Existe evidencia estadística significativa para decir que los resultados de la variable resistencia a tracción está relacionado de manera directa y positiva con la adición de FPA y FPR (r=0.986).
- Resistencia a flexión: Existe evidencia estadística significativa para decir que los resultados de la variable resistencia a flexión está relacionado de manera directa y positiva con la adición de FPA y FPR (r=0.974).

Objetivo específico N°3:

Conclusiones

- Existe evidencia estadística con nivel de significancia del 5% para afirmar que la propiedad
 física temperatura y peso unitario no está relacionado con la adición de FPA y FPR de manera
 directa y negativa, y no existe relación en cuanto a las propiedades de asentamiento, contenido
 de aire y exudación.
- Existe evidencia estadística con nivel de significancia del 5% para afirmar que las propiedades mecánicas del concreto están relacionadas de manera directa y negativa con respecto a la resistencia a la compresión y positiva con respecto a la resistencia a la tracción y flexión con la adición de FPR y FPR.

ANEXO 5. CERTIFICADO DE VALIDACIÓN DEL INSTRUMENTO RECOLECCIÓN DE DATOS

Autor del ineter	: Ingeniero Cul.	_	-	- 0		
	mento: Simbala chinga, Josemaria Milko					
msuumento de	evaluación: Análisis granulométrico de los agregados, Conter	nido	de l	hum	eda	đ
evaporable de l	os agregados, Peso unitario suelto y compactado de los agre	gad	os, F	eso	135	
especifico y abs	sorción de los agregados, Asentamiento del concreto, Temper	atu	ra de	el co	ncre	eto
Peso unitario de	el concreto, Contenido de aire del concreto, Resistencia a con-	pre	sión	del		
concreto, Resis	tencia a tracción del concreto y Resistencia a flexión del concr	reto				
II. ASPECTOS DE						
MUY DEFICIENTE	(1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EX	CE	LEN	TE (5)	
CRITERIOS	INDICADORES	1	2	3	4	T
CLARIDAD	Los items están redactados con lenguaje apropiado y libre	<u> </u>	_	۲	x	r
	de ambigüedades acorde con los sujetos muestrales. Las instrucciones y los items del instrumento permiten	-	_	-	^	L
OBJETIVIDAD	recoger la información objetiva sobre la variable en todes					
100000000000000000000000000000000000000	sus dimensiones en indicadores conceptuales y operacionales.				×	
1-252-2010-2010-2010-0010-	El instrumento demuestra vigencia acorde con el					H
ACTUALIDAD	conocimiento científico, tecnológico, innovación y legal inherente a la variable.				×	
	Los items del instrumento reflejan organicidad lógica entre la				-	H
ORGANIZACIÓN	definición operacional y conceptual respecto a la variable.					
	de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.		U.			1
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y					,
	calidad acorde con la variable, dimensiones e Indicadores. Los ítems del instrumento son coherentes con el tipo de	Н		Н	-	-
INTENCIONALIDAD	investigación y responden a los objetivos, hipótesis y váriable de estudio.				S-1	2
	La información que se recoja a través de los items del					Г
CONSISTENCIA	Instrumento, permitirá analizar, describir y explicar la realidad, motivo de la investigación.			×		
COHERENCIA	Los items del instrumento expresan relación con los				×	Г
- Concrete C	indicadores de cada dimensión de la variable. La relación entre la técnica y el instrumento propuestos		-		-	H
METODOLOGÍA	responden al propósito de la investigación, desarrollo)
	tecnológico e innovación. La redacción de los items concuerda con la escala valorativa	-				-
PERTINENCIA	del instrumento.		1			7
	PUNTAJE TOTAL a que el instrumento es válido cuando se tiene un puntaje mínimo de	***	-1			_

I. DATOS GENE	RALES TO CO CO TO UND FOLK PUT	du	Mc	01/0	sr)
Apellidos y non	nbres del experto: Janam Pa Cacha Huaray Ru	711	110	. IIO	00	
N° de registro (3458ed → : ak			_		
Especialidad	:Ingeniera Civil					
Autor del instru	mento: Simbala chinga, Josemaria Milko					
evaporable de le específico y ab Peso unitario de concreto, Resis II. ASPECTOS DE		egade eratur mpre creto	os, P ra de sión	Peso el con del	ncre	
CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los items están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.					X
OBJETIVIDAD	Las instrucciones y los items del instrumento permiten recoger la información objetiva sobre la variable en todas sus dimensiones en indicadores conceptuales y operacionales.					×
	El instrumento demuestra vigencia acorde con el				,	

CLARIDAD	de ambigüedades acorde con los sujetos muestrales.				X
OBJETIVIDAD	Las instrucciones y los Items del instrumento permiten recoger la información objetiva sobre la variable en todas sus dimensiones en indicadores conceptuales y operacionales.				×
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable.			×	
ORGANIZACIÓN	Los items del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.		×		
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.				X
INTENCIONALIDAD	Los items del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y váriable de estudio.				X
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la realidad, motivo de la investigación.			X	L
COHERENCIÁ	Los items del instrumento expresan relación con los indicadores de cada dimensión de la variable.	Ш	\perp	L	X
METODOLOGIA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo		\perp	X	L
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.	Ш		X	
	PUNTAJE TOTAL	441			-

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un

puntaje menor al anterior se considera al instrumento no	válido ni aplicable)	
III. OPINIÓN DE APLICABILIDAD		
Aplicable		
PROMEDIO DE VALORACIÓN: 44	OS de Abril	de 2023
	0.500	

RUTH MELISSA JANAMPA CACÑAHUARAY Ingeniera Civil CIP N° 242869

I. DATOS	GENERALES
----------	-----------

Apellidos y nombres	del	experto: Timchaya	Aquix	Stefanic	Abrandra
N° de registro CIP	:	264805		011	1300

N° de registro CIP : __2648.05

Especialidad : Imgemiera Civil

Autor del instrumento: Simbala chinga, Josemaria Milko

Instrumento de evaluación: Análisis granulométrico de los agregados, Contenido de humedad evaporable de los agregados, Peso unitario suelto y compactado de los agregados, Peso específico y absorción de los agregados, Asentamiento del concreto, Temperatura del concreto, Peso unitario del concreto, Contenido de aire del concreto, Resistencia a compresión del concreto, Resistencia a tracción del concreto y Resistencia a flexión del concreto.

II. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTÉ (5)

CRITERIOS	INDICADORES	1	2	13	IA	15
CLARIDAD	Los ítems están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales.	Ė	1	٦	X	Ť
OBJETIVIDAD	Las instrucciones y los Items del instrumento permiten recoger la información objetiva sobre la variable en todas sus dimensiones en indicadores conceptuales y operacionales.				X	
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento científico, tecnológico, innovación y legal inherente a la variable.			X		
ORGANIZACIÓN	Los ítems del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permiten hacer inferencias en función a las hipótesis, problema y objetivos de la investigación.					Х
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores.					X
INTENCIONALIDAD	Los ítems del instrumento son coherentes con el tipo de investigación y responden a los objetivos, hipótesis y váriable de estudio.				Χ	N.
CONSISTENCIA	La información que se recoja a través de los items del instrumento, permitirá analizar, describir y explicar la realidad, motivo de la investigación.					Χ
COHERENCIA	Los ítems del instrumento expresan relación con los indicadores de cada dimensión de la variable.		Ш			X
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo				X	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.				Х	Ц
	PUNTAJE TOTAL					

(Nota: Tener en cuenta que el instrumento es válido cuando se tiene un puntaje mínimo de 41; sin embargo, un puntaje menor al anterior se considera al instrumento no válido ni aplicable)

III. OPINIÓN DE APLICABILIDAD		
Apricable		
PROMEDIO DE VALÓBACIÓN:	05 de APRIL	de 2023
PROMEDIO DE VALORACIÓN: 43		

JUNCHAYA AQUIJE Ingeniera Civil CIP Nº 264805

INVESTIGACIÓN:	EVALUACIÓN DE LAS PROPIEDADES DEL CONCE AVES Y FIBRAS DE POLIP	The second secon		BRAS DE PLUMAS		
INVESTIGADOR:	SIMBALA	CHINGA JOSEMARIA				
ASESOR:	MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS					
ENSAYO:	CONTENIDO DE HUMEDAD EVAPORAB	LE DE LOS AGREGADO	OS (NTP 339.185 /	ASTMC-566)		
DATOS DE DISEÑO		FECHA	20-04-23]		
N°	IDENTIFICACIÓN	UNIDAD	DATOS	CANTERA		
1	Peso del recipiente	g	326.7	-		
2	Peso del recipiente + muestra húmeda	g	839.5	1		
3	Peso del recipiente + muestra seca	g	835.0	1,		
4	Peso del agia contenida (2-3)	g	4-5	Abietom		
5	Peso de la muestra seca	g	508.3	S.A		
	CONTENIDO DE HUMEDAD (4/5)*100	%	0.9			
II. AGREGADO GR	UESO					
N°	DESCRIPCIÓN	UND	DATOS	CANTERA		
1	Peso del recipiente	g	634.0			
2	Peso del recipiente + muestra húmeda	g	7204 0	1		
3	Peso del recipiente + muestra seca	g	4198.0	AGrecom		
4	Peso del agla contenida (2-3)	g	6.0	S.A		
5	Peso de la muestra seca	g	6564.0			
,	CONTENIDO DE HUMEDAD (4/5)*100	%	0.1	-		

	EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO FC≈210 kg/cm² ADICIONANDO PIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAG-2023							
WESTIGADOR:		SIMBALA CHINGA JOSEMARIIA						
SESOR:		MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS						
NSAYO:	T	ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO (NTP 400.012 / ASTM C-33)						
ATOS DE DISEÑO		CANTERA:	(Grecoth) PECHA: 22-04-33					
V STORY			RETENIDO EN EL	TAMIZ	PASA POR EL TAMIZ	ESPECIFIC ASTM		
TAMIZ N°	ABERTURA DEL TAMIZ (mm)	PESO PARCIAL (g)	% PARCIAL	% ACUMULADO	% ACUMULADO	MÍNIMO	мАхімо	
3/8"	9.52				100	100	100	
N*4	4.76	12.7	2.5	2.5	94.5	95.0	100	
N* 8	2.38	8.85	15.5	0.81	82-0	80.0	100	
N' 16	1.19	120.4	23-7	41.4	58-3	50.0	85	
N* 30	0.60	109.8	21-6	63.3	36.4	25.0	60	
N° 50	0.30	84-3	16.6	40.0	20.1	5.0	30	
N° 100	0.15	60.8	120	8.16	8.2		10	
N° 200	0.07	22.3	4.4	96-2	3.8		5	
Resid	tuo	0.1	0	96.2	_			
Fino elimi lava		19.1	3.8	100	-			
						T.M.N.	1978 1878	
		С	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
100		c	URVA DE AN	NÁLISIS GRANULO	MÉTRICO		3/8"	
100		c	URVA DE AN	NÁLISIS GRANULO	MÉTRICO		3/8"	
		c	URVA DE AN	NÁLISIS GRANULOI	MÉTRICO		3/8"	
90 80 70		c	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
90 80 70		C	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
90 80 70		C	URVA DE AF	NÁLISIS GRANULO	MÉTRICO		3/8"	
90 80 70		C	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
90		C	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
90		C	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
90		C	URVA DE AF	NÁLISIS GRANULOI	MÉTRICO		3/8"	
90		C	URVA DE AI	NÁLISIS GRANULO	MÉTRICO		3/8"	
90	0.00		0,1				3/8"	
90	0.		0,1	NÁLISIS GRANULO		T.M.N=	No4	
90	0.		0,1			T.M.N=	No4	
90	0.		0,1			T.M.N=	No4	
90	0.		0,1			T.M.N=	No4	
90			0,1			T.M.N=	No4	
90	0.		0,1			T.M.N=	No4	

ABERTURA DEL YAMIZ (mm) 38.10 25.40 19.05 12.70	CANTERA: CANTERA: RETI PESO PARCIAL (8)	MAG. ENRIQUE I	LA CHINGA JOSEM EDUARDO HUAROT L AGREGADO GRUI MIZ %	O CASQUILLAS	22-04-23 ESPECIFIC	CACIONES
38.10 25.40 19.05	CANTERA: CANTERA: RETI PESO PARCIAL (8)	AGI COM ENIDO EN EL TA	L AGREGADO GRUE	FECHA:	22-04-23 ESPECIFIC	CACIONES
38.10 25.40 19.05	CANTERA: RETI PESO PARCIAL (g) 261	AGI C COM ENIDO EN EL TA	MIZ	FECHA:	22-04-23 ESPECIFIC	CACIONES
38.10 25.40 19.05	CANTERA: RETI PESO PARCIAL (g) 261	AGI C COM ENIDO EN EL TA	MIZ	FECHA:	22-04-23 ESPECIFIC	ACIONES
38.10 25.40 19.05	PESO PARCIAL (g)	ENIDO EN EL TA		PASA POR EL	ESPECIFIC	ACIONES
38.10 25.40 19.05	PESO PARCIAL (g)	%		A COURT DO NATIONAL	-	ACIONES
38.10 25.40 19.05	(g) 264		%			1-C33
25.40 19.05	261	FARCING	ACUMULADO	% ACUMULADO	MÍNIMO	MÁXIMO
25.40 19.05			ncooutus	100	100	100
19.05		4-1	41	98.9	90	100
	3412	52	56	44	20	55
20.70	2310	36.1	92-2	7-8	0	10
9.52	311	4-1	96.9	3.1	0	5
4.76	38.4	0.6	91.5	2.5		
			91.9	2.1		
				~		1
10				-		1
			I I I I I I I I I I I I I I I I I I I			
						100
	2.38 1.19 0.60 0 en lavado	1.19 21-3 0.60 40-4 0 1-0 en lavado 43-0	1.19 21-3 0.3 0.60 ‡0.4 1.1 0 1.0 0.0 en lavado 43.0 0.4	1.19 21-3 0.3 98-3 0.60 ‡0.4 1 1 99.3 0 10 0.0 99.9 en lavado 43.0 0.4 100	1.19 21·3 0.3 98·3 1·4 0.60 40.4 1·1 99·3 0·4 0 1·0 0.0 99·9	1.19 21·3 0.3 98·3 1·4 0.60 ‡0·4 1·1 99·3 0·‡ 0 1·0 0·0 99·9 - en lavado 43·0 0·4 100

INVESTIGADOR:	EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO FC=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023					
	SIMBALA CHINGA JOSEMARIA					
ASESOR:	MAG. ENRIQUE EDGARDO HUAROTO CASQUILLAS					
ENSAYO:	PESO UNITARIO SUELTO Y COMPACTADO DE LOS AGREGADOS (NTP 400.817 / ASTM C-29)					
DATOS DE DISEÑO			24-04-23			
I. PESO UNITARIO		T			ancuernio	
N*	DESCRIPCIÓN	UND	1	2	PROMEDIO	
1	Peso de la Muestra + Molde	gr	6184-0	6495-0	6189.50	
2	Peso del Molde	87	0-4FF1	1774-0	1774.0	
3	Peso de la Muestra (1-2)	gr	4410.0	4451.0	4415.50	
4	Capacidad volumétrica del molde	cm3	2803.0	2803.0	3803.0	
5	Peso Unitario Suelto de la Muestra (1-2)/4	gr/cm3	1.543	1-574	1.375	
	PROMEDIO PESO UNITARIO SUELTO	kg/m3		1586		
II. PESO UNITARIO	COMPACTADO DEL AF					
N*	DESCRIPCIÓN	UND	1	2	PROMEDIO	
1	Peso de la Muestra + Molde	ğr	6492.0	6,508.0	6500.00	
2	Peso del Molde	gr	0.0241	1774-0	1174.0	
-	Peso de la Muestra (1-2)	-	4 418 · 0	U134-0	4726-0	
3		cm3		11.0	2803.0	
	Capacidad volumétrica del molde	Cm3	2903.0	2803.0		
4			1 (00	1700		
5	Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO COMPACTADO	gr/cm3 kg/m3	1-683	690	1-683	
	PROMEDIO PESO UNITARIO COMPACTADO	-	_		1.683	
5	PROMEDIO PESO UNITARIO COMPACTADO	-	1		PROMEDIO	
S III. PESO UNITARK	PROMEDIO PESO UNITARIO COMPACTADO SUELTO DEL AG	kg/m3		2 19393-0	PROMEDIO	
5 III. PESO UNITARK N°	PROMEDIO PESO UNITARIO COMPACTADO DE SUELTO DEL AG DESCRIPCIÓN	kg/m3	1	690	PROMEDIO	
5 III. PESO UNITARIO N*	PROMEDIO PESO UNITARIO COMPACTADO SUELTO DEL AG DESCRIPCIÓN Peso de la Muestra + Molde	kg/m3	1 193840	2 19393-0	PROMEDIO 19388-50 5600 O	
5 III. PESO UNITARIO N° 1	PROMEDIO PESO UNITARIO COMPACTADO SUELTO DEL AG DESCRIPCIÓN Peso de la Muestra + Molde Peso del Molde	kg/m3	1 193840 5600.b	1 19393-0 5600-0	PROMEDIO 19388-50 5600 O	
5 III. PESO UNITARIO N* 1 2 3 4	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde	kg/m3 UND SF SF cm3	1 193840 5600.0 13784.0 9353.0	1 19393-0 5600-0 13193-0 9353-0	PROMEDIO 19389-50 5600 0	
5 III. PESO UNITARIO N° 1 2 3	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4	kg/m3 UND gr gr gr cm3 gr/cm3	1 193840 5600.0 13784.0 9353.0 1-414	2 19393-0 5600-0 13193.0	PROMEDIO 19388-50 5600 O 13488-50 9353-0	
S III. PESO UNITARIO N° 1 2 3 4 5	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELTO	kg/m3 UND SF SF cm3	1 193840 5600.0 13784.0 9353.0 1-414	1 19393-0 5600-0 13193-0 9353-0 1-435	PROMEDIO 19388-50 5600 O 13488-50 9353-0	
5 III. PESO UNITARKO N* 1 2 3 4 5	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELYO COMPACTADO DEL AG	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3	1 193840 5600.0 13784.0 9353.0 1-474	1 19393-0 5600-0 13193-0 9353-0 1-435	PROMEDIO 19388-50 5600-0 13488-50 9353-0	
S III. PESO UNITARIO N° 1 2 3 4 5	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELTO DESCRIPCIÓN	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3	1 193840 5600.0 13784.0 9353.0 1-474	2 19303-0 5600-0 13193-0 9353-0 1-475 1410	PROMEDIO 19388-50 5600 0 13488-50 9353-0 1-944	
S III. PESO UNITARIO N° 1 2 3 4 5	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELTO DESCRIPCIÓN Peso de la Muestra + Molde	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3	1 193840 5600.0 13184.0 9353.0 1.414	1 19393-0 5600-0 13193-0 9353-0 1-475 1470 2	PROMEDIO 19388-50 5600 0 13488-50 9353-0 1-444	
S III. PESO UNITARIO N° 1 2 3 4 5 IV. PESO UNITARIO N° 1 2	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELYO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra + Molde Peso de la Muestra + Molde	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3 UND gr	1 193840 5600.0 13184.0 9353.0 1-414	2 9393-0 5600-0 3193.0 4353.0 -435 440	PROMEDIO 19388-50 5600-0 13488-50 9353-0 1-444 PROMEDIO 20518-0 5600-0	
S III. PESO UNITARIO N° 1 2 3 4 5 IV. PESO UNITARIO N° 1 2 3	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELTO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra + Molde Peso de la Muestra + Molde Peso de la Muestra (1-2) Peso de la Muestra (1-2)	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3 UND gr	1 193840 5600.0 13184.0 9353.0 1.414 1 20192.0 5600.0 14892.0	2 9393-0 5600-0 3193-0 -475 440 2 20544-0 5600-0 4944-0	PROMEDIO 19388-50 5600-0 13488-50 9353-0 1-444 PROMEDIO 20518-0 5600-0 14918-0	
S III. PESO UNITARK N° 1 2 3 4 5 IV. PESO UNITARK N° 1 2 3 4	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELTO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3	1 193840 5600.0 13184.0 9353.0 1.414 1 20192.0 5600.0 14892.0	2 9393-0 5600-0 3193-0 -475 440 2 20544-0 5600-0 4944-0 9353-0	PROMEDIO 19388-50 5600 0 13488-50 9353-0 1-444 PROMEDIO 20518-0 5600 0 14918-0 9353-0	
S III. PESO UNITARIO N° 1 2 3 4 5 IV. PESO UNITARIO N° 1 2 3	PROMEDIO PESO UNITARIO COMPACTADO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra (1-2) Capacidad volumétrica del molde Peso Unitario Suelto de la Muestra (1-2)/4 PROMEDIO PESO UNITARIO SUELTO DESCRIPCIÓN Peso de la Muestra + Molde Peso de la Muestra + Molde Peso de la Muestra + Molde Peso de la Muestra (1-2) Peso de la Muestra (1-2)	kg/m3 UND gr gr gr cm3 gr/cm3 kg/m3 UND gr	1 193840 5600.0 13184.0 9353.0 1.414 1 20192.0 5600.0 14892.0	2 9393-0 5600-0 3193-0 -475 440 2 20544-0 5600-0 4944-0	PROMEDIO 19388-50 5600-0 13488-50 9353-0 1-444 PROMEDIO 20518-0 5600-0 14918-0	

	EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAQ-2023				
NVESTIGADOR:	SIMBALA CHINGA JOSEMARIA				
ASESOR:	MAG. ENRIQUE ED JARDO HUAROTO CASQUILLAS				
ENSAYO:	PESO ESPECIFICO Y ABSORCIÓN	DEL AGREGADO	FINO (NTP 400.02	22 / ASTM C-128)	
DATOS DE DISEÑO	CANTERA: AGRECOM	כ			
	IDENTIFICACIÓN	UNIDAD	1	2	PROMEDIO
А	Peso Mat. Sat. Sup. Seca (SSS)	gr	500	500	
В	Peso Frasco + Agua + Árido	gr	980.3	986.2	
с	Pesa muestra seco	gr	492.8	492-8	
D	Peso Frasco + Agua	gr	664.3	670.4	
	Peso específico. Sat. Sup. Seca = , A/D+A-B	g/cm3	2-417	2.714	2-12
	Peso específico de masa = C/D+A-B	g/cm3	2.648	2.675	2.68
	Peso específico aparente = C/D+A-B	g/cm3	2- 787	2.784	5.49
	Absorción de agua ((B-C/C)*100)	%	1.46	1.46	1.46

M	UNIVERSIDAD	CÉSAR	VALLEJO

1
13.1
644
716
·688
.640
718
7.0

INVESTIGACIÓN:	EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f C=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023					
INVESTIGADOR:		SIMBALA CHINGA JOSEMARIA				
ASESOR:	MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS					
ENSAYO:	MEDICIÓN	MEDICIÓN DE LA CONSISTENCIA, TRABAJABILIDAD Y ASENTAMIENTO DEL CONCRETO (NTP 339.035 / ASTM C-143)				
DATOS DE DISEÑO	CEMENTO: 5	CANTERA	AGR, GRUESO:	CACCON CANTERA AGR, FINO:	ACuc on FECHA: 28-04	
DOSIFICACIÓN		Slump	Slump	CONSISTENCIA	TRABAJABILIDAD	
		(Pulg)	(cm)	CONSISTENCIA	TRABIGIABLIDAD	
Patr	ón + 0.00% (FPA +FPR)	41/411	10.495	Plastica	Trabacable	
Patr	ón + 0.18% (FPA +FPR)	4"	10.16	Plastica	TiaboJable	
Patr	ón + 0.65% (FPA +FPR)	33/4"	9.525	Pioistica	Trabasable	
Patr	ón + 0.87% (FPA +FPR)	31/211	8-89	Plastica	Tiabasable	
Nombre:	No	mbre:			Nombre:	

	REC	/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FI ICLADO, CALLAO-2023	BRAS DE POLIPROPILENO
NVESTIGADOR:		ALA CHINGA JOSEMARIA	
ISESOR:	MAG. ENRIQUE	EDUARDO HUAROTO CASQUILLAS	
NSAYO:	TEMPERATURA DE CO	DNCRETO (NTP 339.184 / ASTM C-1064)	
ATOS DE DISEÑO	CEMENTO: SON CANTERA AGR, GRUESO:	CANTERA AGR, FINO: AGRECTOR	FECHA: 2R.04
	DOSIFICACIÓN	TEMPERATURA (°C)	
	Patrón + 0.00% (FPA +FPR)	245	
	Patrón + 0.18% (FPA +FPR)	23.7	
	Patrón + 0.65% (FPA +FPR)	24.6	
	Patrón + 0.87% (FPA +FPR)	25.3	

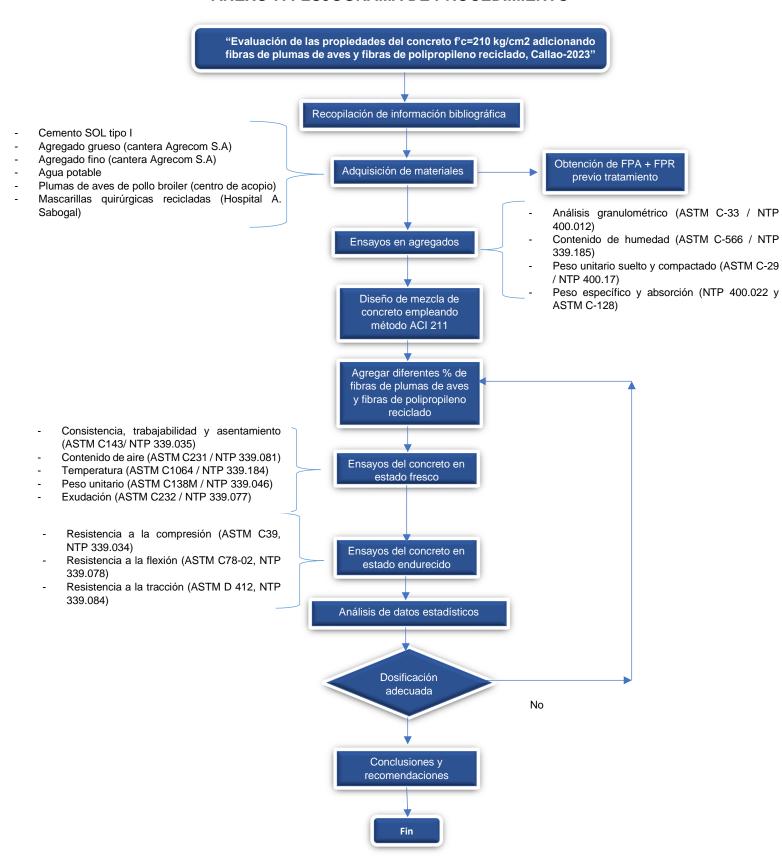
INVESTIGACIÓ	EVALUACION DE LAS PROPIEDAL	DES DEL CON		tm2 ADICIONANDO FI LADO, CALLAO-2023	BRAS DE PLUMAS DE AVES Y	FIBRAS DE POLIPROPILENC
INVESTIGADOR		SIMBALA CHINGA JOSEMARIA				
ASESOR:			MAG. ENRIQUE ED	DUARDO HUAROTO C	ASQUILLAS	
ENSAYO:		MEDICIÓN I	DEL PESO UNITARIO	DEL CONCRETO (NTF	339.046 / ASTM C-138)	
DATOS DE DISE	NO CEMENTO: SOI]	CANTERA AGR GRUESO	Acrecon	CANTERA AGR, FINO: AGIC (M	FECHA: 28-04
	DESCRIPCIÓN	UND	PATRÓN	0.18%	0.65%	0.87%
	Peso del moide	Kg	3.559	3-559	3-559	3.559
	Volumen del molde	m3	0.001069	0.007060	P30F00.0	0.001069
Peso del n	nolde + Concreto compactado	kg	19.912	19.984	20-145	19.988
	Peso del concreto	kg	16.413	16.428	16.586	16.429
Peso	unitario del concreto (A)	kg/m3	2322	2324	2346	2324
Pe	so unitario teórico (B)	kg/m3	2355	2355	2357	2358
Rendin	niento del concreto (A)/(B)		0.99	0.99	1.00	0.70
			Comple	Comple	Cumple	Cumple

SESOR:		MAG. ENRIQUE	EDUARD O HUAROTO CASQUILLAS					
NSAYO:			SIMBALA CHINGA JOSEMARIA MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS					
		MEDICIÓN DEL CONTENIDO DE	AIRE DEL CONCRETO (NTP 339.080 / ASTI	M C-231)				
ATOS DE DISEÑO	CEMENTO: Sol	CANTERA AGR, GRUESO:	Auteron CANTERA AGR, FINO: Aute	FECHA: 28.04				
DO	SIFICACIÓN	CONTENIDO DE AIRE DE DISEÑO (%)	CONTENIDO DE AIRE OLLA DE WASHINTONG (%)	VERIFICACIÓN				
Patrón +	0.00% (FPA +FPR)	1.50	0.80	ok				
Patrón +	0.18% (FPA +FPR)	1.50	1.00	ok				
Patrón +	0.65% (FPA +FPR)	1.50	1.10	OK				
Patrón +	0.87% (FPA +FPR)	1.50	1.20	OK				

WESTIGADO									
ESOR:		MAG.	ENRIQUE EDUARDO HUAROTO CASQUILLAS						
SAVO:		1							
CANTERA AGR, GRUESO AGIZCUM CANTERA AGR, FINO AGIZCOM FECHA: ZN-DY-									
	DOSIFICACIÓN	TIEMPO (min)	VOLUMEN DE AGUA (WI)	AGUA DE EXUDACIÓN [ml/cm2]	PROMEDIO (ml/cm2)				
		10	10	0.02					
		10	Q	0.02					
		10	7	0.01					
		10	6	0.01					
Patrós	+ 0.00% (FPA +FPR)	30	5	0-01					
		30	4	0.01	0.018				
		30	3	0.01					
		30	2	0.00					
		30		0.00					
		10	9	0.02					
		10	8	0.02					
		10	7	0.01					
		10		0.01	VF10.0				
Petrós	+ 0.18% (FPA +FPR)	30	6	0.01					
		30	U	0.01					
		30	3	0.01					
			2	0.00					
		30 30	6	0.00					
		10	9	20.0	1				
		10	4	0.01					
		10	6	0.01					
		10	6	0.01					
Patrós	+ 0.65% (FPA +FPR)	30	5	0.01	0.0164				
	-	30	4	0.01	-0.004				
		30	3	0.01	-				
	-	30	Ĭ	50.00					
	-	30	1						
		10	8	0.00	1				
	-		1	And the second second					
	-	10	- +	0.01					
	-	10	6	0.0	-				
	+ 0.87% (FPA +FPR)	30	5	0.01	00164				
Patrio	T U.O/A (PPA TPR)	30	5	0.01					
	-	30		0.0	-				
		30	2	0.00	-				
	-	30	1	00.00					
			7	0.00					

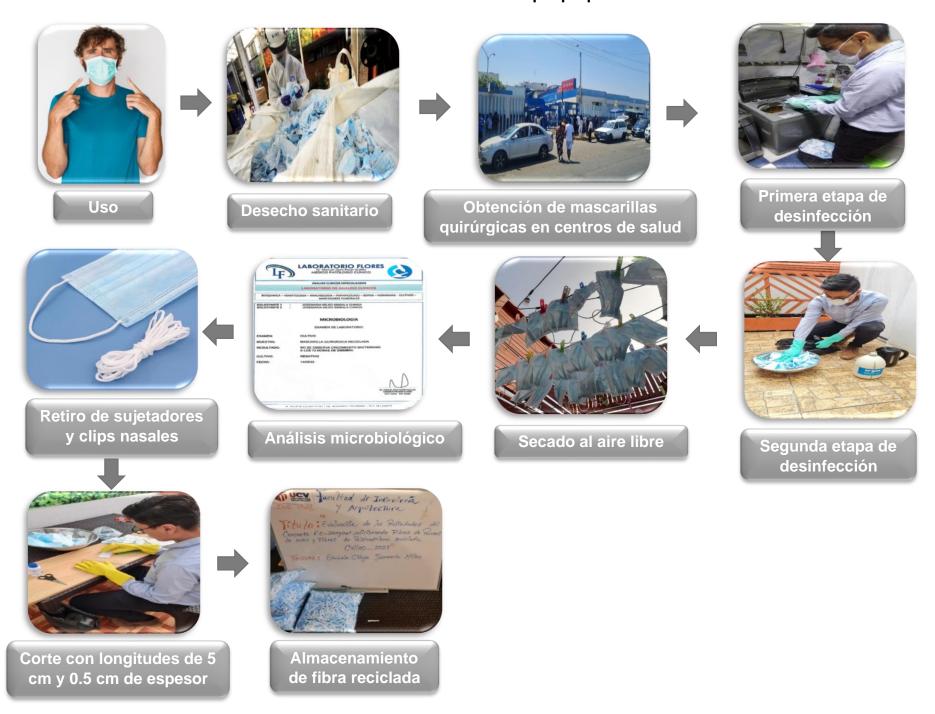
INVESTIGACIÓN:	EVALUACE	ÓN DE LAS PROPIEDADES	DEL CONCRETO Fc=210 kg/cm2 A	CALLAG-202		VES Y FIBRAS DE POUPRI	OPILENO RECICLADO,					
NVESTIGADOR:	SIMBALA CHINGA JOSEMARIA											
ASESOR:	MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS											
ENSAYO:			RESISTENCIA A LA COMPRESIÓ	N DEL CONCR	ETO (NTP 339.034 / ASTA	N C-39)						
DATOS DE DISEÑO	CEMENTO	SOLTIPOI	GRUESO: AGNOCOTA	AGR, FINO		AGUA:	Potable Don					
Dosificación (%)	Curado	Fecha de registro -	Dimensión Áres de probeta (cm2)	Tipo de fractura Carga Máxima (kg)		Resistencia a la compresión (kg/cm2)	Promedio de resistancia (kg/cm2)					
			Comcreto p	atrón								
		05-05-23	182.6	2	31236	141-01						
	7 dias	05-05-23-	181-21	2	30983	141.0	0.HI					
		05 -05 -23	181.41	2	31034	141-1						
0.00		12-05-23	181.32	2	35148	193-8						
	14 diles	12-05-23	181-01	2	35321	195.1	194.6					
		12-05-23	180.24	2	35089	194.4						
		26-05-23	181-04	2	41114	227.4	-					
	28 dias	28 dias	28 dias	28 dias	28 dias	28 dias	26 -05 -23	180.92	2	40987	226-5	227.0
		26 -05 - 23	180.83	2	41023	226.9	20 %					
			Fibras de plumas de aves + Fibra	s de polipropi	leno reciciado							
		13-05-23	181.41	Z	30330	164-0						
	7 dies	13-05-23	180.92	2	30394	168.0	167.9					
		13-05-23	180.87	2	30484	168.5						
		20-05-23	181-43	2	34623	190.8						
0.18	14 dies	20-05-23	181 - 06	2	34598	191-1	191.0					
		20-05-23	180.99	2	34612	191-2						
		03-06-23	180.98	2	40607	224.4						
	28 dies	03-06-23	181.23	2	40489	223-4	224-3					
		03-06-23	180.82	2	40681	225.0						

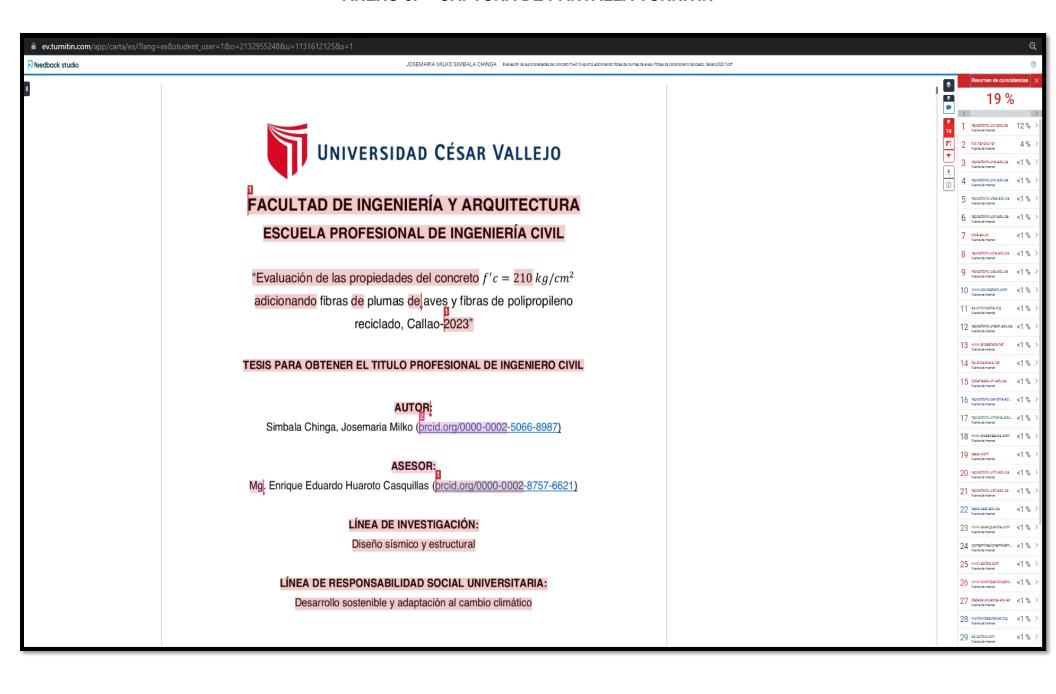
		65-66-23	180.92	2	39615	215.6	7.5
	28 días	05-66-23	181-12	2	39093	215.8	215.4
		05-06-23	180.53	2	38782	214.8	
		22-05-23	180.48	2	33102	183-1	
0.87	14 días	22-05-23	180.91	-2	32982	182.3	182.8
		22-05-23	180.45	2	33044	183.1	
		15-05-23	181.03	2	29488	162.9	
	7 días	15-05-23	180.72	2	29512	163.3	163.4
		15-05-23	180-15	2	29554	164-1	
		03-06-23	181.22	2	40027	220.9	
	28 días	03-06-23	181-12	2	39145	221.9	220.9
		03-06-23	180.72	2	40681	219.9	
		20-05-23	180-65	2	34009	188-3	
0.65	14 días	20-05-23	180-98	2	34038	188.1	0.881
	90	20-05-23	181-04	2	33993	187.8	
		13-05-23	181-32	2	30022	165.6	
	7 días	13-05-23	181.07	2	30087	166.2	166.0

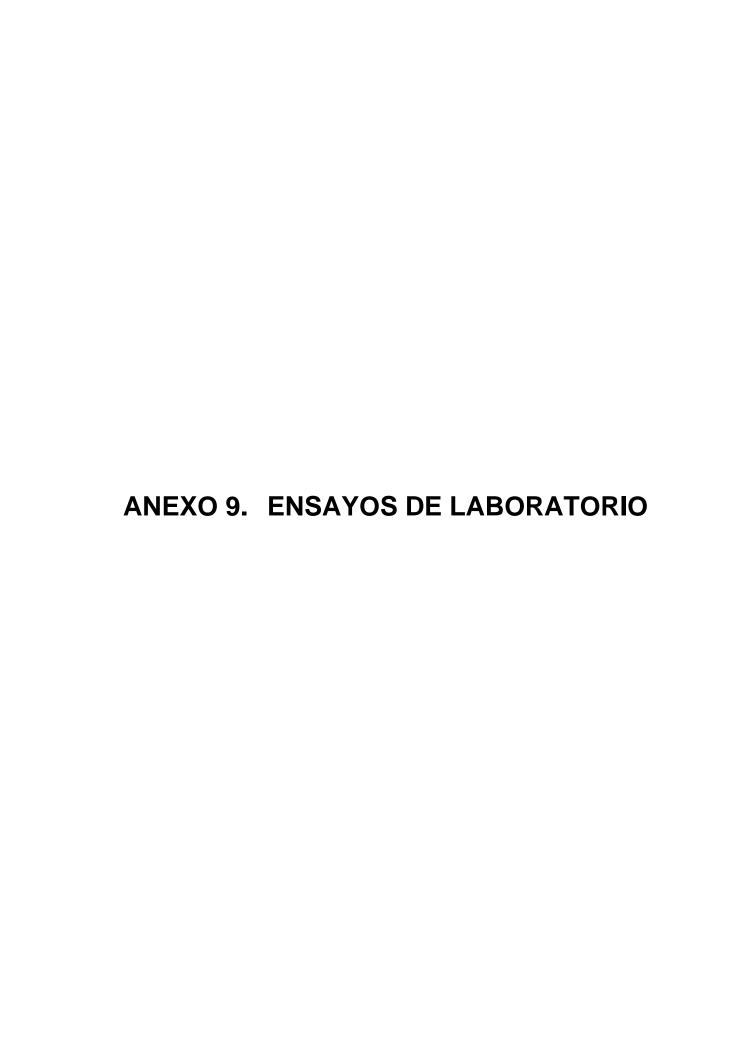

INVESTIGACIÓN:	EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO F¢=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICIADO, CALLAO-2023									
INVESTIGADOR:	SIMBALA CHINGA JOSEMARIA MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS RESISTENCIA A LA TRACCIÓN DEL CONCRETO (NTP 339.084 / ASTM C-496)									
ASESOR:										
ENSAYO:		RESIST	ENCIA A LA TRACCIÓN	DEL CONCRETO (NTF	339,084 / AS	TM C-496)				
DATOS DE DISEÑO	CEMENTO:	SoltipoI	CANTERA AGT, GRUESO:	AGIECOM	AGR, FINO					
Dosificación (%)	Curado	Fecha de registro	Diman: cha de registro Diámetro Promedio (cm)		Carga (kg)	Resistencia a la tracción (kg/cm2)	Promedio de resistencia a la tracción (kg/cm2			
			Concreto patró	n						
		05-05-23	15-25	30.10	11654	16-2				
	7 días	05-05-23	15.19	30.10	11118	16.3	16.3			
		65-05-23	15.19	30-07	11698	16.3				
		12 -65-23	15-17	30.08	131 22	18.3				
0.00	14 días	12-05-23	15.11	30.09	13284	18.6	18.5			
		12-05-23	15.13	30.05	13273	18.6				
		26-05-23	15.11	30.04	14023	19.4				
	28 dias	26-05-23	15.03	30.01	14002	19-8	19.7			
		26-65-23	15,05	30.03	14051	19-8				
		Fibras de plum	as de aves + Fibras de	polipropiler o recicla	ido					
		13-05-23	15.19	30.12	11922	16.6				
	7 días	13-05-23	15.11	30.06	11914	16.7	16.7			
		13-05-23	15.12	30.02	11952	16.8				
		20-05-23	15.07	30.03	13328	18.7				
0.18	14 dias	20-05-23	15-11	30.05	13480	18.9	18.9			
		20-05-23	15.04	30.10	13492	18.9				
		03-06-23	15.03	30.01	14282	20-2				
	28 días	03-06-23	15.04	30.02	14344	20.2	20.2			
		03-06-23	15.07	30.06	14489	20-4				

		13-05-23	15.12	30.12	12837	17.9	
	7 dias	13-05-23	15.08	30-06	12463	17.9	0.81
		13-05-23	15.11	30.02	12899	18.1	
1		20-05-23	15.07	30.05	13442	20.0	
0.65	14 días	20-05-23	15.04	30.09	14243	20.1	201
		20-65-23	15.12	30.11	14390	20.1	
		03-06-23	15.02	30.08	15083	21-3	
	28 días	03-06-23	15.04	30.07	15331	21.6	21.5
		03-06-23	15.01	30.03	15281	21.6	
		15-05-23	15.09	30.04	12899	18.4	
	7 días	15-05-23	15.01	30.07	13145	18-5	18.5
	14 días	15-05-23	15.04	30.11	13203	18.6	20.9
		22-05-23	15-12	30.08	14902	20.9	
0.87		22-65-23	15.06	30.1	14829	20.8	
		22-05-23	15.03	30.1	14851	20.9	
		05-06-23	18.11	30.9	15827	22.2	
	28 días	05-06-23	15.08	30.03	15926	22.4	22-3
		05-06-23	15.1	30.01	15920	22.4	

1811/2	EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO FC=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023 SIMBALA CHINGA JOSEMARIA									
INVESTIGADOR:	SIMBALA CHINGA JOSEMARIA MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS									
ASESOR:	MAG. ENRIQUE EDUARDO HUAROTO CASQUILLAS RESISTENCIA A LA FLEXIÓN DEL CONCRETO (NTP 339.078 / ASTM C-78)									
ENSAYO:		RESIS	TENCIA A LA I	FLEXIÓN DEL C	ONCRETO (NTI	339.078 / ASTM C-7	8)			
DATOS DE DISEÑ	CEMENTO:	SOI +11POI	CANTERA AGR,		AGR, FINO:	AGIECOM	AGUA:	Potable		
Dosificación	Curado	Fecha de registro		Dimensiones		Carga (kg)	Módulo de	Promedic		
(%)	Caraco	Tradition of regions	Alto (cm)	Ancho (cm)	Largo (cm)	Congo page	Rutura (kg/cm2)	(log/cm2		
				Concreto patr	ón					
0.00 28 dies		26-05-23	15	15	45	2464	36.9			
	28 dias	26-05-23	15	15	45	2482	34-1	36.7		
		26-05-23	15	15	45	2455	36.4			
		Fibras de	plumas de av	ves + Fibrar G	: polipropileno	reciclado				
	28 dias	03-06-23	15	15	45	2813	37.5			
0.18		03-06-23	15	15	45	2834	34.8	37.7		
		03-06-23	15	15	45	2845	37-9			
		03-66-23	15	15	45	3014	40.2	39.7		
0.65	28 días	03-06-23	15	15	45	3001	40.0			
		03-06-23	15	15	45	3037	40.5			
		05-66-23	15	15	45	3212	42.8			
0.87	28 días	05-06-23	15	15	45	3196	42.6	42.8		
		05-06-23	15	12	45	31 78	42.4			
								10		
Nombre:			Nombre:			Nombre:	-	-		


ANEXO 7. FLUJOGRAMA DE PROCEDIMIENTO


Proceso de obtención de fibras de plumas de aves




Proceso de obtención de fibras de polipropileno reciclado

ANEXO 8. CAPTURA DE PANTALLA TURNITIN

AGREGADOS. METODO DE ENSAYO NORMALIZADO PARA FORM-LEM-ENGIL-CHA-035 CONTENIDO DE HUMEDAD TOTAL EVAPORABLE DE NORMA APLICADA **REV. 03** AGREGADOS POR SECADO NTP 339.185 / ASTM C 566 **N° DE SOLICITUD** : LCE-052-04-2023 SOLICITANTE JOSEMARIA MILKO SIMBALA CHINGA N° DE CERTIFICADO: LEM-ENGIL-IAGC-23-010 EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE PROYECTO PLUM AS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE PROYECTO : CALLAO - LIMA N° CODIGO DE MUESTRA: LAC-2023-010 FECHA DE MUESTREO: 20/04/2023 MATERIAL. ARENA GRUESA FECHA DE ENSAYO: 20/04/2023 PROCEDENCIA CANTERA AGRECOM SA MUESTREADO POR: LEM-ENGIL SRL Muestra Total Condición de muestra Prueba N° Ν° E-T06 Tara (Recipiente) Peso de Suelo Húmedo más Recipiente 839 5 g. Peso de Suelo Seco más Recipiente 835.0 g. Peso del Recipiente 326.7 g. Peso del Agua g. 4.5 Peso del Suelo Seco 508.3 g. Humedad % 0.9 Promedio de Humedad % 0.9

RESULTADOS OBTENIDOS						
M aterial	Humedad (%)					
Muestra Total	1					

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO								
Procedimiento de Secado	Horno	Х	Horno :	HN02	N° de Certificado	: 291-CT-T-2022		
:	Cocina		N° Balanza 01 :	BL09	N° de Certificado	: 153-CM-M-2022		

Observaciones: NINGUNA.

LEM-ENGIL SRL FIRM AS Y SELLOS

VICTORY HERVIAS ACOSTA

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / lem.engil.com / lem.engi

AGREGADOS. METODO DE ENSAYO NORMALIZADO PARA FORM-LEM-ENGIL-M200-DETERMINAR MATERIALES MAS FINOS QUE PASAN POR EL TAMIZ NORMA APLICADA NORM ALIZADO 75 µm (N°200) POR LAVADO EN AGREGADOS NTP REV. 04 400.018 / ASTM C 177 N° DE SOLICITUD : LCE-052-04-2023 SOLICITANTE JOSEM ARIA MILKO SIMBALA CHINGA N° DE CERTIFICADO: LEM-ENGIL-IAGC-23-010 EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'e=210 kg/cm2 ADICIONANDO FIBRAS PROYECTO DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE PROYECTO CALLAO - LIMA N° CODIGO DE MUESTRA: LAC-2023-010 FECHA DE MUESTREO: 20/04/2023 MATERIAL ARENA GRUESA FECHA DE ENSAYO: 21/04/2023 PROCEDENCIA CANTERA AGRECOM SA MUESTREADO POR: LEM-ENGIL SRL "A" lavado con agua X Procediemiento de lavado: "B" lavado utilizando un agente Muestra Total Condición de muestra N° Prue ba Tara (Recipiente) N° Peso de Suelo sucio más Recipiente g. 508.3 Peso de Suelo lavado más Recipiente 489.1 g. Peso del Recipiente 0.0 g. Peso del Suelo lavado 489.1 g. Material mas fino que pasa el tamiz N°200 % 3.8

RESULTADOS OBTENIDOS						
M aterial	Malla N°200					
	(%)					
Muestra Total	4					

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO								
Procedimiento de Secado	Horno	X	Horno :	HN02	N° de Certificado :	291-CT-T-2022		
:	Cocina		N° Balanza 01 :	BL12	N° de Certificado :	256-CM-M-2022		
Observaciones:	NINGUNA.							

LEM-ENGIL SRL FIRM AS Y SELLOS

VICTOR HERVIAS ACOSTA

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com / proyectos@lem-engil.com

WEB. : www.lem-engil.com

ANALISIS GRANULOM ETRICO DEL AGREGADO FINO, GRUESO Y GLOBAL NORM AS APLICADAS (NTP 400.012:2001) /ASTM C 136-1996

FORM-LEM-ENGIL-GRANAF-054 **REV. 04**

N° DE SOLICITUD: LCE-054-04-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN DE PROYECTO CALLAO - LIMA

MATERIAL: ARENA GRUESA

PROCEDENCIA: CANTERA AGRECOM SA

UBICACIÓN: -

KM / N° CAPA: -

N° CERTIFICADO: LEM-ENGIL-IAGC-23-010

Nº CODIGO DE MUESTRA: LAC-2023-010 FECHA MUESTREO: 20/04/2023

FECHA ENSAYO: 22/04/2023 EMPLEO DEL AGREGADO: MEZCLA DE CONCRETO

I. - GRANULOMETRIA (NTP 400.012)

Peso muestra seca Inicial (g)

508.3

II.- MATERIAL FINO QUE LA MALLA # 200 (NTP 400.018)

Peso material seco sucio aprox. 0,1g (1)	508.3
Peso material seco lavado aprox. 0,1g (2)	489.1
Fino por lavado - aprox. 0.1%= (1- 2)/1x100	3.8

III. - SECADO A MASA CONSTANTE : (NTP 339.185:2002)

Condicción de muestra	Material sucio	Material lavado
Peso humedo (g)	512.8	
Peso seco 1 (g)	508.3	489.1
Peso seco 2 (g)	508.3	489.1
Peso seco 3 (g)	508.3	489.1
Diferencia 1 - 2 (%)		
Diferencia 2 - 3 (%)		
Humedad (%)	0.9	
Hora	-	-

Tamiz		Peso Retenido	% Retenido	% Retenido	% Acumulado		
mm	N°	Parcial	Parcial	Acumulado	que pasa		
9.52	3/8"				100.0		
4.76	N°4	12.7	2.5	2.5	97.5		
2.38	8	78.8	15.5	18.0	82.0		
1.19	16	120.4	23.7	41.7	58.3		
0.60	30	109.8	21.6	63.3	36.7		
0.30	50	84.3	16.6	79.9	20.1		
0.15	100	60.8	12.0	91.8	8.2		
0.07	200	22.3	4.4	96.2	3.8		
Residuo		0.1	0.0	96.2			
Fino elim	inado en lavado	19.1	3.8	100.0			
		2.97					
		3/8"					
	Tamañ	Nº4					

											- 1-11 - 1-11		_
Especificaciones ASTM C-33		100		# 200 # 100	# 50	# 30	# 16	#8	#4	3/8"1/2"	 	_	
TAM IZ	% que Pasa	% que Pasa								1/1			Ц
1/2"	100	100	80										Ц
3/8"	100	100	70				/		/				Щ
# 4	95	100	g60					1/					H
# 8	80	100	due Pasa				/	//					H
# 16	50	85	% ₄₀				/ //	/	+++				H
# 30	25	60	30			1	//						H
# 50	5	30	20			1.00							H
# 100		10	10		ميسيي								Ħ
# 200		5	0.01	Diametro mm	0.1			1			10		10
				FOUIDOS US									

Nº de Horno: Horno HN02 N° de Certificado: 291-CT-T-2022 Procedimiento de Secado : Cocina N° de Certificado : 256-CM-M-2022 Procedimiento de Secado : Manual N° de Certificado : -N° Tamizador : NINGIINA Observaciones:

ESTE CERTIFICADO SIN SELLOS Y FIRMAS CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com

WEB.: www.lem-engil.com

MÉTODO DE ENSAYO NORMALIZADO PARA DETERMINAR LA

FORM-LEM-ENGIL-PUSC-MASA POR UNIDAD DE VOLUMEN O DENSIDAD ("PESO UNITARIO") **NORM AS APLICADAS** 041 Y LOS VACÍOS EN LOS AGREGADOS (NTP 400.017:2011) /ASTM C **REV. 04** 29 N° DE SOLICITUD: LCE-052-04-2023 **SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA** PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE CALLAO - LIMA PROYECTO: **MATERIAL: ARENA GRUESA** Nº CERTIFICADO: LEM-ENGIL-IAGC-23-010 PROCEDENCIA: CANTERA AGRECOM SA Nº CODIGO DE MUESTRA: LAC-2023-010 **UBICACIÓN:** FECHA MUESTREO: 20/04/2023 KM / Nº CAPA: -FECHA ENSAYO: 24/04/2023 EMPLEO DEL AGREGADO: MEZCLA DE CONCRETO PESO UNITARIO COM PACTO Peso muestra compactada (Kg.) 4.718 4.734 0.002803 0.002803 **PROMEDIO** PUC Capacidad volumetrica del recipiente (m3) 1683 1689 1686 1690 Peso unitario compacto(Kg/m3) Procedimiento por Procedimiento por apisonado: X percusión PESO UNITARIO SUELTO 4.410 4.421 Peso muestra compactada (Kg.) 0.002803 0.002803 **PROMEDIO PUS** Capacidad volumetrica del recipiente (m3) 1573 1577 1580 Peso unitario compacto(Kg/m3) 1575 **EQUIPOS USADOS EN EJECUCIÓN DE ENSAYOS** Procedimiento de N° de Horno: Horno HN02 X N° de Certificado: 291-CT-T-2022 Secado: N° de Certificado : $^{153\text{-CM-M-}2022}$ N° de Balanza 01: BL09 Cocina Observaciones: NINGUNA LEM-ENGIL SRL FIRMAY SELLO ESTE CERTIFICADO SIN SELLOS Y FIRMAS CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

RUC: 20600588924

LEM-ENGIL SRL

NORMAS APLICADAS

M ETODO DE ENSAYO NORM ALIZADO PARA PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO FINO (NTP 400.022:2002) /ASTM C 128-1993

FORM-LEM-ENGIL-P.ESPFA-042 **REV. 04**

N° DE SOLICITUD: LCE-052-04-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN DE CALLAO - LIMA PROYECTO:

MATERIAL: ARENA GRUESA N° CERTIFICADO: LEM-ENGIL-IAGC-23-010

PROCEDENCIA: CANTERA AGRECOM SA Nº CODIGO DE MUESTRA: LAC-2023-010 **UBICACIÓN: FECHA MUESTREO: 20/04/2023**

KM / N° CAPA: -FECHA ENSAYO: 25/04/2023

EMPLEO DEL AGREGADO: MEZCLA DE CONCRETO

DATOS DE LABORATO	RIO	DATOS DE	LA MUESTRA	
Condiciones de Secado: Horno Eléctrico digit	al con Termostato	MUESTREADO POR	LEM-ENGIL SI	RL
Temperatura de Secado de Muestra en Horn	o: 110 °C +/- 5°C			
Clasificación SUCS (ASTM D2487) : -			000000000000000000000000000000000000000	
N° de Prueba	1	2]	
N° de Frasco	5	6		
Peso muestra Sat. Sup. Seca (gr) A	500.0	500.0		
Peso Frasco + Agua + Arido (gr) B	980.3	986.2		
Peso muestra Seco (gr) C	492.8	492.8		
Peso frasco + agua (gr) D	664.3	670.4	PROMEDIO	
Peso específico Sat. Sup. Seca = A/D+A-B (g/cm ³	2.717	2.714	2.72	
Peso específico de masa = C/D+A-B (g/cm³)	2.678	2.675	2.68	
Peso específico aparentea = C/D+C-B (g/cm³)	2.787	2.784	2.79	
Absorción de agua = ((A - C)/C)*100 (%)	1.46	1.46	1.46	
BOULDOO I	ICADOS EN E JECUCIÓN	DE ENCAVOS	1	

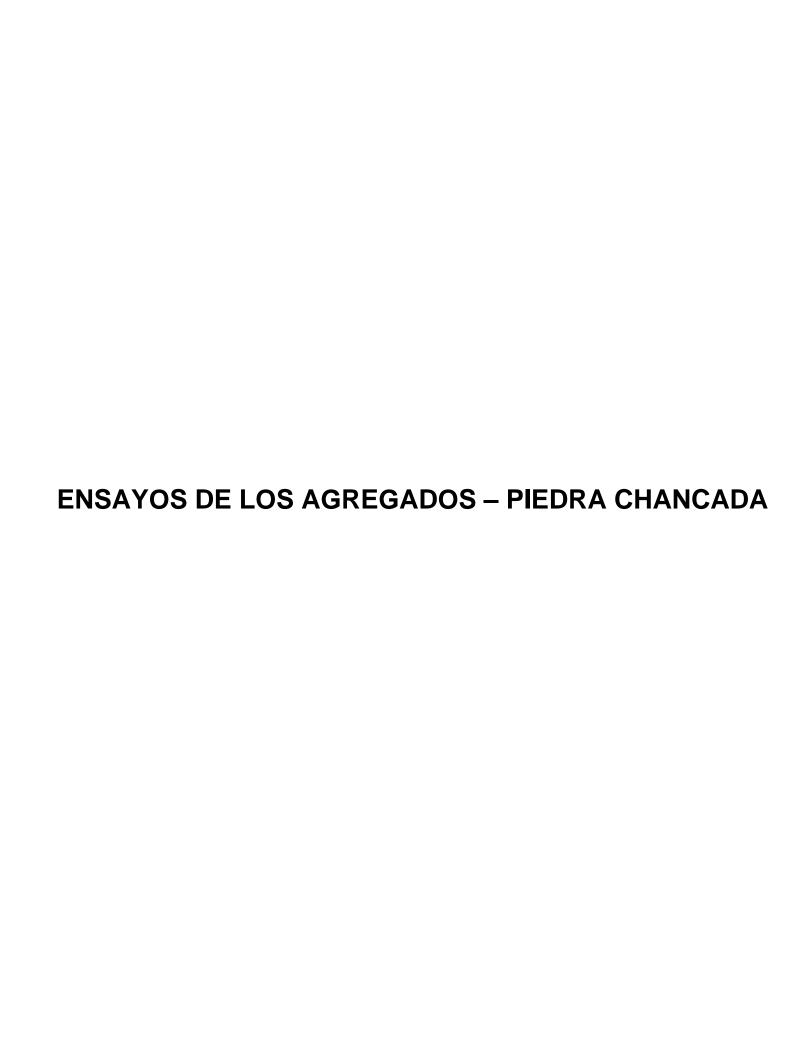
EQUIPOS USADOS	EN EJECUCIÓ	ON DE ENSAYOS
-----------------------	-------------	---------------

Procedimiento de Secado: Horno \mathbf{x} N° de Horno: HN02 N° de Certificado: 291-CT-T-2022

Cocina N° de Balanza 01: BL12 N° de Certificado : 256-CM-M-2022

NINGUNA Observaciones:

LEM-ENGIL SRL FIRMAY SELLO



ESTE CERTIFICADO SIN SELLOS Y FIRMAS CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com

WEB.: www.lem-engil.com

LEM-ENGIL SRL

NORMA APLICADA

ONTENIDO DE HUMEDAD TOTAL EVAPORABLE DE
AGREGADOS POR SECADO NTP 339.185 / ASTM C 566

REV. 03

N° DE SOLICITUD : LCE-052-04-2023

SOLICITANTE : JOSEMARIA MILKO SIMBALA CHINGA N° DE CERTIFICADO: LEM-ENGIL-IAGC-23-011

"EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE

PROYECTO : PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN DE PROYECTO : CALLAO - LIMA N° CODIGO DE MUESTRA: LAC-2023-011

MATERIAL : PIEDRA CHANCADA FECHA DE MUESTREO: 20/04/2023

PROCEDENCIA : CANTERA AGRECOM SA FECHA DE ENSAYO: 20/04/2023

MUESTREADO POR: LEM-ENGIL SRL

Condición de muestra	
Prueba	N°
Tara (Recipiente)	N°
Peso de Suelo Húmedo más Recipiente	g.
Peso de Suelo Seco más Recipiente	g.
Peso del Recipiente	g.
Pe so del Agua	g.
Peso del Suelo Seco	g.
Humedad	%
Promedio de Humedad	%

•						
	Muestra Total					
	1					
	B-B03					
	7204.0					
	7198.0					
	634.0					
	6.0					
	6564.0					
	0.1					
•	·	0.1				

RESULTADOS OBTENIDOS			
M aterial	Humedad (%)		
Muestra Total	0		

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO						
Procedimiento de Secado	Horno	х	Horno :	HN02	N° de Certificado	: 291-CT-T-2022
:	Cocina		Nº Balanza 01 :	BL09	N° de Certificado	: 153-CM-M-2022

Observaciones: NINGUNA.

LEM-ENGIL SRL FIRMAS Y SELLOS

VICTORY HERVIAS ACOSTA
INCENIERO CHIL

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / lem.engil.com / lem.engi

AGREGADOS. METODO DE ENSAYO NORMALIZADO PARA FORM-LEM-ENGIL-M200-DETERMINAR MATERIALES MAS FINOS QUE PASAN POR EL TAMIZ NORMA APLICADA NORM ALIZADO 75 μm (N°200) POR LAVADO EN AGREGADOS NTP **REV. 04** 400.018 / ASTM C 177 N° DE SOLICITUD : LCE-052-04-2023 SOLICITANTE JOSEM ARIA MILKO SIMBALA CHINGA N° DE CERTIFICADO: LEM-ENGIL-IAGC-23-01 EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE OBRA PLUM AS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE OBRA CALLAO - LIMA N° CODIGO DE MUESTRA: LAC-2023-011 PIEDRA CHANCADA FECHA DE MUESTREO: 20/04/2023 PROCEDENCIA CANTERA AGRECOM SA FECHA DE ENSAYO: 21/04/2023 MUESTREADO POR: LEM-ENGIL SRL "A" lavado con agua X Procediemiento de lavado: "B" lavado utilizando un agente Muestra Total Condición de muestra Prueba Tara (Recipiente) N Peso de Suelo sucio más Recipiente 6564.0 g. Peso de Suelo lavado más Recipiente 6520.0 g. 0.0 Peso del Recipiente g. Peso del Suelo lavado 6520.0 g. Material mas fino que pasa el tamiz N°200 0.7 % **RESULTADOS OBTENIDOS** M alla N°200 Material (%) Muestra Total EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO Horno Horno: HN02 N° de Certificado : 291-CT-T-2022 Procedimiento de Secado Cocina Nº Balanza 01 : BL12 N° de Certificado : 256-CM-M-2022 Observaciones: NINGUNA. LEM-ENGIL SRL FIRM AS Y SELLOS ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/ / proyectos@lem-engil.com

WEB. : www.lem-engil.com

LEM-ENGIL SRL

FORM-LEM-ENGIL. ANALISIS GRANULOM ETRICO DEL AGREGADO FINO, GRUESO Y GLOBAL NORMAS APLICADAS GRANAG5-039 (NTP 400.012:2001) /ASTM C 136-1996 REV. 2021 SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fe=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE PROYECTO: CALLAO - LIMA MATERIAL: PIEDRA CHANCADA N° CERTIFICADO: LEM-ENGIL-IAGC-23-011 PROCEDENCIA: CANTERA AGRECOM SA N° CODIGO DE MUESTRA: AGC-23-011 UBICACIÓN: -FECHA MUESTREO: 20/04/2023 KM / N° CAPA : FECHA ENSAYO: 22/04/2023 EMPLEO DEL AGREGADO: MEZCLA DE CONCRETO I. - GRANULOMETRIA (NTP 400.012) Peso muestra seca Inicial (g) II.- MATERIAL MAS FINO QUE LA MALLA # 200 (NTP 400.018) Peso material seco sucio aprox. 0,1g Peso Tamiz % Retenido Retenido Peso material seco lavado aprox. 0.1g Acumulado Parcial Parcial 6520.0 Fino por lavado - aprox. 0.1%= (1-1 1/2" 0 0.7 2)/1x100 1" 267 4.1 95.9 25.4 4.1 3/4' 19.05 3412 52.0 44.0 1/2 2370 III. - SECADO A MASA CONSTANTE : (NTP 339.185:2002) 9.52 3/8" 311 3.1 Material Material Condicción de muestra Nº4 38.6 2.5 4 76 0.6 97.5 lavado sucio 2.38 8 29.7 0.5 97.9 2.1 Peso humedo (g) 6570.0 1.19 16 21.3 0.3 98.3 1.7 Peso seco 1 (g) 6564.0 6520.0 0.60 200 70.4 1.1 99.3 0.7 Peso seco 2 (g) 6564.0 6520.0 1.0 99.3 Peso seco 3 (g) 6564.0 6520.0 Fino eliminado en lavado 43.0 100.0 Diferencia 1 - 2 (%) 0.7 Modulo de Finura 7.47 Diferencia 2 - 3 (%) Tamaño Maximo Humedad (%) 0.1 Tamaño Maximo Nomina 1 1/2" # 4 3/4" ASTM C-33 - HUSO # 5 # 16 3/8 1/2" 100 % que Pasa 90 Pasa 80 1 1/2" 70 1 " 90 3/4" 20 55 1/2" 0 10 3/8" 5 30 20 10 100 EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO Nº de Horno : HN02 N° de Certificado : 291-CT-T-2022 Procedimiento de Secado : Nº Balanza 01 : Cocina BL09 N° de Certificado: 153-CM-M-2022 N° Balanza 02: BL12 N° de Certificado: 256-CM-M-2022 Procedimiento de tamizado : Manual Nº Tamizador : N° de Certificado : -NINGUNA Observaciones: LEM-ENGIL SRL FIRMAY SELLO

ESTE CERTIFICADO SIN SELLOS Y FIRMAS CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmailto:laboratorio / laboratorio / <a href="mail

WEB.: www.lem-engil.com

RUC: 20600588924

NORMAS APLICADAS	MASA POR UNIDAD D		RA DETERMINAR LA DAD ("PESO UNITARIO") 400.017:2011) /ASTM C	FORM-LEM-E 04 REV.	1
N° DE SOLICITUD	: LCE-052-04-2023				
SOLICITANTE	: JOSEMARIA MILKO S	IMBALA CHINGA			
PROYECTO	"EVALUACIÓN DE LAS P	ROPIEDADES DEL CONC	CRETO f'c=210 kg/cm2 AI O RECICLADO, CALLAO-2	DICIONANDO FIE	BRAS DE
UBICACION DE	CALLAO - LIMA	RAS DE FOLIFROFILEN	O RECICLADO, CALLAO-2	023	
PROYECTO:	: PIEDRA CHANCADA		N° CERTIFICADO :	LEM-ENGIL-IAG	GC-23-011
PROCEDENCIA	CODIGO DE MUESTRA :				
UBICACIÓN :	: -		FECHA MUESTREO:	20/04/2023	
KM / N° CAPA	: -		FECHA ENSAYO :	24/04/2023	
	-	EMI	PLEO DEL AGREGADO :	MEZCLA DE CO	NCRETO
	PE	SO UNITARIO COM PA	сто		
Peso muestra compacta	ada (Kg.)	14.892	14.944		
Capacidad volumetrica	del recipiente (m³)	0.009353	0.009353	PROMEDIO	PUC
Peso unitario compacto	o(Kg/m³)	1592	1598	1595	1590
Procedimiento por		ESO UNITARIO SUEL	TO		
Peso muestra compacta	ada (Kg.)	13.784	13.793		
Capacidad volumetrica	del recipiente (m³)	0.009353	0.009353	PROMEDIO	PUS
Peso unitario compacto	o(Kg/m ³)	1474	1475	1474	1470
	EQUIPOS U	SADOS EN EJECUCI	ÓN DE ENSAYOS		
Procedimiento de	Horno x	N° de Horno:	N02 N° de Certificado:	291-CT-T-2022	
Secado:	Cocina	N° de Balanza 01: BI	N° de Certificado :	153-CM-M-202	2
Observaciones: NING	UNA				~
	LEI	M-ENGIL SRL FIRMA	Y SELLO		
	IN SELLOS V EIDMAS C	V°B°	VICTOR HE INGENIE	RVIASIACOSTA	

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.co

WEB.: www.lem-engil.com

RUC: 20600588924

FORM-LEM-ENGIL -P.ESPGA-043 AGREGADOS. MÉTODO DE ENSAYO NORMALIZADO PARA PESO ESPECÍFICO Y NORMA APLICADA ABSORCIÓN DEL AGREGADO GRUESO (NTP 400.021:2002) / ASTM C 127 **REV. 03** N° DE SOLICITUD : LCE-052-04-2023 SOLICITANTE : JOSEM ARIA MILKO SIMBALA CHINGA EVALUACION DE LAS PROPIEDADES DEL CONCRETO i c=210 kg/cm2 PROYECTO : ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE N° DE CERTIFICADO: LEM-ENGIL-IAGC-23-011 POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE : CALLAO - LIMA N° CODIGO DE MUESTRA: LAC-2023-011 PROYECTO MATERIAL : PIEDRA CHANCADA FECHA DE MUESTREO: 20/04/2023 PROCEDENCIA : CANTERA AGRECOM SA FECHA DE ENSAYO: 25/04/2023 **DATOS DE LABORATORIO** DATOS DE LA MUESTRA LEM-ENGIL SRL Condiciones de Secado: Horno Eléctrico digital con Termostato MUESTREADO POR: Temperatura de Secado de Muestra en Hor 110 °C +/-5°C Clasificación SUCS (ASTM D2487) : No de Prueba 1 Peso Agregado Seco (g) 4613.1 Peso Agregado saturado con superficie Seca (g) 4644.0 Peso Agregado Sumergido (g) 2916.0 A/(B-C) 2.670 Gravedad Específica (OD) B/(B-C) 2.688 Gravedad Específica Sat. Sup. Seca 2.718 Gravedad Específica Aparente A/(A-C) Densidad (OD) (Kg/m3) 2662.9 Densidad Sat. Sup. Seca (Kg/m3) 2680.8 2711.4 Densidad Aparente (Kg/m3) % Absorción (B-A)A 0.7 T° C-H2O 23.0 RESULTADOS OBTENIDOS (PROMEDIO) 2.72 Peso Específico Aparente (Base Seca) g/cm3 Peso Específico Bulk (Base Saturada) g/cm3 2.69 Peso Específico Bulk (Base Seca) g/cm3 2.67 Absorción 0.7 EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO N° de Horno: N° de Certificado: 291-CT-T-2022 Procedimiento de Horno N° de Certificado : 256-CM-M-2022Secado: Cocina Nº Balanza 01: BL12 Observaciones: NINGUNA LEM-ENGIL SRL FIRMAY SELLO ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / lem.engil.com / lem.engi

RUC: 20600588924

NORMA APLICADA	DISEÑO DE MEZCLA METODO A	FORM-LEM-ENGIL- DISEÑ.C-042A REV. 03	
N° DE SOLICITUD	: LCE-054-04-2023		
SOLICITANTE	: JOSEM ARIA MILKO SIMBALA CHINGA		
PROYECTO	"EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f c=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"	N° DE CERTIFICADO:	LEM- ENGIL- DMC- 23 - 012
UBICACION DE PROYECTO	: CALLAO, LIMA		
		FECHA DE MUESTREO:	20/04/2023
		FECHA DE EMISIÓN:	27/04/2023
		ноја:	01 / 02

Cemento : SOL TIPO I
Peso Especifico g/cm3 : 3.13

Agregado fino	:	Arena g	ruesa	
Procedencia	:	Agrecom sa		
Peso especifico de Masa	:	2.68	g/cm3	
Peso unitario suelto seco	:	1580	kg/m3	
Peso unitario compacto seco	:	1690	kg/m3	
Humedad natural	:	0.9	%	
Absorción	:	1.46	%	
Modulo de Fineza	:	2.97		
CRANIII O	METDÍA			

<u>GRANULOMETRÍA</u>				
Malla	:	% Pasante		
3/8"	:	100.0		
N°4	:	97.5		
N°8	:	82.0		
N°16	:	58.3		
N°30	:	36.7		
N°50	:	20.1		
N°100	:	8.2		
N°200	:	3.8		

Agregado grueso	:	Piedra cl	nancada
Procedencia	:	Agrece	om sa
TM N	:	1"	
Peso especifico de Masa		2.67	g/cm3
Peso unitario suelto seco		1470	-
Peso unitario compacto seco) :	1590	
Humedad natural	:	0.1	%
Absorción	:	0.70	%
Modulo de Fineza	:	7.47	
GRANULO)ME	ΓRÍA	
Malla	:	% Pasante	
1 1/2"	:	100.0	
1"	:	95.9	
3/4"	:	44.0	
1/2"	:	7.8	
3/8"	:	3.1	
N°4	:	2.5	
N°8	:	2.1	
N°16	:	1.7	
N°200	:	0.7	

LEM-ENGIL SRL FIRMAY SELLO

VICTORY HERVIAS ACOSTA

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

N° DE CERTIFICADO: LEM-ENGIL-DM C-23-012

FECHA DE MUESTREO: 20/04/2023 FECHA DE EMISIÓN: 27/04/2023 HOJA: 02 / 02

NORMA APLICADA DISEÑO DE MEZCLA METODO ACI 211	FORM-LEM-ENGIL- DISEÑ.C-042B REV. 03
--	--

N° DE SOLICITUD : LCE-054-04-2023

SOLICITANTE

: JOSEMARIA MILKO SIMBALA CHINGA "EVALUACION DE LAS PROPIEDADES DEL CONCRETO f'e=210 kg/cm2 ADICIONANDO FIBRAS PROVECTO DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO

RECICLADO, CALLAO-2023" UBICACION DE PROYECTO

DISEÑO DE MEZCLA

210 kg/cm2

CARACTERISTICAS

0.59 Ra/c Relación agua cemento Resistencia especificada a 210 kg/cm2 28 días

Asentamiento

Factor cemento 7.9 bolsa por m3

CANTIDAD DE MATERIAL POR m3

2355 kg/m3

Cemento 335 Agua 196 L 783 Arena kg 1041 kg

Materiales por m3 en estado húmedo corregido (P.U.C. = 2374 kg/m3

Cemento 335 kg 207 Agua 790 Arena kg Piedra 1042 kg

DOSIFICACIÓN 210 kg/cm2

Proporciones en peso seco (pie3)

cemento piedra arena agua

L / bolsa de 3.1 24.9 2.3 cemento

Proporciones en peso húmedo (pie3)

cemento arena piedra agua

L / bolsa de 2.4 3.1 26.2 cemento

OBSERVACIONES

1.En obra corregir por humedad.

LEM-ENGIL SRL FIRMAY SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

LEM-ENGIL SRL

DISEÑO DE MEZCLA – CONCRETO PATRÓN + 0.18% (FPA Y FPR)

NORMA APLICADA	DISEÑO DE MEZCLA METODO A	FORM-LEM-ENGIL- DISEÑ.C-042A REV. 03	
N° DE SOLICITUD	: LCE-054-04-2023		
SOLICITANTE	: JOSEM ARIA MILKO SIMBALA CHINGA		
PROYECTO	"EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fo=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"	N° DE CERTIFICADO:	LEM- ENGIL- DMC- 23 - 013
UBICACION DE PROYECTO	: CALLAO, LIMA		
		FECHA DE MUESTREO:	20/04/2023
		FECHA DE EMISIÓN:	28/04/2023

HOJA: 01 / 02

DISEÑO DE MEZCLA 210 kg/cm2 MAS ADICIÓN 0.18%

Agregado fino	:	Arena gruesa	
Procedencia	:	Agrecom sa	
Peso especifico de Masa	:	2.68	g/cm3
Peso unitario suelto seco	:	1580	kg/m3
Peso unitario compacto seco	:	1690	kg/m3
Humedad natural	:	0.9	%
Absorción	:	1.46	%
Modulo de Fineza	:	2.97	
GRANULO	METRÍA		

<u>GRANULOMETRÍA</u>				
Malla	:	% Pasante		
3/8"	:	100.0		
N°4	:	97.5		
N°8	:	82.0		
N°16	:	58.3		
N°30	:	36.7		
N°50	:	20.1		
N°100	:	8.2		
N°200	:	3.8		

Agregado grueso	:	Piedra c	hancada
Procedencia	:	Agrec	om sa
TMN	:	1"	
Peso especifico de Masa	:	2.67	g/cm3
Peso unitario suelto seco	:	1470	kg/m3
Peso unitario compacto sec	00:	1590	kg/m3
Humedad natural	:	0.1	%
Absorción	:	0.70	%
Modulo de Fineza	:	7.47	
GRANUL	омет	<u>`RÍA</u>	
Malla	:	% Pasante	е
1 1/2"	:	100.0	
1"	:	95.9	
3/4"	:	44.0	
1/2"	:	7.8	
3/8"	:	3.1	
N°4	:	2.5	
N°8	:	2.1	
N°16	:	1.7	

LEM-ENGIL SRL FIRMAY SELLO

N°200

0.7

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : $\underline{lem.engil.laboratorio@hotmail.com} / \underline{laboratoriocentral@lem-engil.com} / \underline{proyectos@lem-engil.com}$ WEB. : $\underline{www.lem-engil.com}$

RUC: 20600588924

NORMA APLICADA		DISEÑO DE	MEZCLA METO	DO ACI 2	211		FORM-LEM-ENGIL-DISE REV. 03	Ñ.C-042B
	: LCE-054-04-2							
SOLICITANTE		DE LAS PROPIED	ADES DEL					
PROYECTO	DE PLUM AS DE	AVES Y FIBRAS	CIONANDO FIBRAS DE		No Do	OF DATE TO A D.C.	I PM PNOU DMO CO CO	
URICACIÓN DE	POLIPROPILEN : CALLAO, LIMA	O RECICLADO, C	ALLAU-2023"	ne.	и пе	ERIIFICADO:	LEM-ENGIL-DMC-23-013	
PROTECTO						DE MUESTREO:		
					FECHA	DE EMISIÓN: HOJA:	28/04/2023 02 / 02	
	DISEÍ	ÑO DE MEZC	LA 210 kg	/cm2		MAS	ADICIÓN 0.18%	
		CAR	ACTERISTICAS					1
Relación agua cemento	: 0.	.59 Ra/c						
Resistencia especificada a		210 kg/cm2						
28 días Asentamiento	: 3" a							
Factor de adición total		.18 % / Peso	del cemento					
Factor cemento		7.9 bolsa por						
								_
Materiales por m3 en estad			2355 kg		13			
Cemento		 335 kg	2000 Kg	, 1110				
Agua		196 L						
Adición 1 fibra de plumas		302 kg						
Adición 2 fibra de polipropileno		302 kg						
Arena		783 kg						
Piedra		Ü						
Materiales por m3 en estad			= 2374 kg	/m2				-
			2574 kg	/1113				
Cemento		335 kg						
Agua		207 L						
Adición 1 fibra de plumas		302 kg						
Adición 2 fibra de polipropileno		302 kg 790 kg						
Arena Piedra		790 kg 042 kg						
ricuia	. 10	7+2 kg	1					_
		DOSIFICACI	ÓN 210 ^{kg} 2	/cm		MAS AD	ICIÓN 0.18%	
Proporciones en peso seco								
cemento arena	piedra	agua		adici			adición 2	
1 : 2.3 :	3.1 :	24.9	L / bolsa de cemento	: 0	.038	de cemento	: 0.038 kg / bolsa de cemento	0
Proporciones en peso húme	edo (pie3)							
cemento arena	piedra	agua		adic	ión 1		adición 2	
1 : 2.4 :	3.1 :	26.2	L / bolsa de cemento	0	.038	kg / bolsa de cemento	: 0.038 kg / bolsa de cemento	
								_
	OB	SERVACION	ES					
1.En obra corregir por hume	dad.							
		IPMI	ENGIL SRL FIRM	AYSEI	LO			
		Superior S	B° SSE		_	LEM-		L.
ESTE CERTIFICADO SIN SELL	O Y FIRM A CAF							

LEM-ENGIL SRL

DISEÑO DE MEZCLA – CONCRETO PATRÓN + 0.65% (FPA Y FPR)

NORMA APLICADA	DISEÑO DE MEZCLA METODO A	CI 211	FORM-LEM-ENGIL- DISEÑ.C-042A REV. 03
N° DE SOLICITUD	: LCE-054-04-2023		
SOLICITANTE	: JOSEM ARIA MILKO SIMBALA CHINGA		
PROYECTO	"EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO		
UBICACION DE PROYECTO	RECICLADO, CALLAO-2023" : CALLAO, LIMA	N° DE CERTIFICADO:	LEM- ENGIL- DMC- 23 - 014

FECHA DE MUESTREO: 20/04/2023 FECHA DE EMISIÓN: 28/04/2023 HOJA: 01 / 02

7.8

3.1

2.5

2.1

1.7

0.7

		DISEÑO DE MEZCLA	210 kg/cm2	MAS ADICIÓN 0.65%
Cemento	:	SOL TIPO I		

Peso Especifico g/cm3 : 3.13

Agregado fino	:	Arena gruesa		
Procedencia	:	Agrecom sa		
Peso especifico de Masa	:	2.68	g/cm3	
Peso unitario suelto seco	:	1580	kg/m3	
Peso unitario compacto seco	:	1690	kg/m3	
Humedad natural	:	0.9	%	
Absorción	:	1.46	%	
Modulo de Fineza	:	2.97		
CPANIII O	METDÍA			

<u>GRANULOMETRÍA</u>				
Malla	:	% Pasante		
3/8"	:	100.0		
N°4	:	97.5		
N°8	:	82.0		
N°16	:	58.3		
N°30	:	36.7		
N°50	:	20.1		
N°100	:	8.2		
N°200	:	3.8		

Agregado grueso	:	Piedra c	hancada
Procedencia	:	Agrec	om sa
TM N	:	1"	
Peso especifico de Masa	:	2.67	g/cm3
Peso unitario suelto seco	:	1470	kg/m3
Peso unitario compacto se	co:	1590	kg/m3
Humedad natural	:	0.1	%
Absorción	:	0.70	%
Modulo de Fineza	:	7.47	
		4 .	
GRANUL	OME	<u>rria</u>	
Malla	:	% Pasante	е
1 1/2"	:	100.0	
1"	:	95.9	
3/4"	:	44.0	

1/2"

3/8"

N°4

N°8

N°16

N°200

LEM-ENGIL SRL FIRMAY SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

NORMA APLICADA		DISEÑO D	E MEZCLA METO	DO ACI 211		FORM-LEM-ENGIL-DISEÑ REV. 03	i.C-042
N° DE SOLICITUD	: LCE-054-04-2	2023				<u> </u>	
SOLICITANTE	: JOSEMARIA I						
PROYECTO		210 kg/cm2 AD	ICIONANDO FIBRAS	1			
IDICACION DE	POLIPROPILENC			_ N° D	E CERTIFICADO	: LEM-ENGIL-DMC-23-014	
PROYECTO	: CALLAO, LIMA			FECE	IA DE MUESTREO	20/04/2023	
					HA DE EMISIÓN		
		_				: 02 / 02	
	DISEÑ	NO DE MEZO	CLA 210 kg	g/cm2	MAS	S ADICIÓN 0.65%	
		CAF	RACTERISTICA	S			
Relación agua cemento	: 0.	.59 Ra/c					
Resistencia especificada a 28 días	: 2	210 kg/cm2	}				
Asentamiento	: 3" a	4"					
Factor de adición total	: 0.	.65 % / Peso	del cemento				
Factor cemento		7.9 bolsa por					
		CANTIDAD	DE MATERIAL	DOD ma			_
Materiales por m3 en estad			DE MATERIAL 2357 kg				
Cemento		— 335 kg					
		.96 L					
Agua Adición 1 fibra de plumas							
	: 1.0 : 1.0						
Adición 2 fibra de polipropileno							
Arena		783 kg					
Piedra		041 kg					-
Materiales por m3 en estado) húmedo corr	regido (P.U.C	2376 kg	g/m3			
Cemento	: 3	335 kg					
Agua	: 2	207 L					
Adición 1 fibra de plumas	: 1.0)89 kg					
Adición 2 fibra de polipropileno	: 1.0)89 kg					
Arena	: 7	790 kg					
Piedra	: 10)42 kg					
		DOSIFICAC	IÓN 210 kg	g/cm	MAS AD	DICIÓN 0.65%	
Proporciones en peso seco	(pie3)						
cemento arena	piedra	agua		adición 1	l	adición 2	
1 : 2.3 :	3.1 :	24.9	L / bolsa de cemento	: 0.13	kg / bolsa de cemento	: 0.138 kg / bolsa de cemento	,
Proporciones en peso húme	edo (pie3)						
cemento arena	piedra	agua		adición	1	adición 2	
1 : 2.4 :	3.1 :	26.2	L / bolsa de cemento	0.13	kg / bolsa de cemento	: 0.138 kg / bolsa de cemento	
	0.00	SERVACIO	VPC				 ■
	UB	SERVACIO	1EO				
1.En obra corregir por hume	dad.						
	V°B°	TOWN DE SUE OF	ENGIL SRL FIRM	TA Y SELLO	LEM-E	HERVIAS ACOSTA	>
ESTE CERTIFICADO SIN SELL		RECEN DE VA	LIDEZ.			J.1.P. 54008	

LEM-ENGIL SRL

DISEÑO DE MEZCLA – CONCRETO PATRÓN + 0.87% (FPA Y FPR)

NORMA APLICADA	DISEÑO DE MEZCLA METODO A	ACI 211	FORM-LEM-ENGIL- DISEÑ.C-042A REV. 03
N° DE SOLICITUD	: LCE-054-04-2023		
SOLICITANTE	: JOSEM ARIA MILKO SIMBALA CHINGA		
PROYECTO	"EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO		
UBICACION DE PROYECTO	RECICLADO, CALLAO-2023" : CALLAO, LIMA	n° de Certificado:	LEM- ENGIL- DMC- 23-015
		FECHA DE MUESTREO:	20/04/2023

FECHA DE MUESTREO: 20/04/2023

FECHA DE EMISIÓN: 28/04/2023

HOJA: 01 / 02

DISEÑO DE MEZCLA 210 kg/cm2 MAS ADICIÓN 0.87%

Cemento : SOL TIPO I

Peso Específico g/cm3 : 3.13

Agregado fino Arena gruesa Procedencia Agrecom sa Peso especifico de Masa 2.68 g/cm3 Peso unitario suelto seco 1580 kg/m3 Peso unitario compacto seco: 1690 kg/m3 Humedad natural 0.9 % Absorción 1.46 % Modulo de Fineza 2.97

GRANULO	METR	<u>ÍA</u>
Malla	:	% Pasante
3/8"	:	100.0
N°4	:	97.5
N°8	:	82.0
N°16	:	58.3
N°30	:	36.7
N°50	:	20.1
N°100	:	8.2
N°200	:	3.8

Agregado grueso	:	Piedra ch	ancada
Procedencia	:	Agreco	m sa
TM N	:	1"	
Peso especifico de Masa	:	2.67	g/cm3
Peso unitario suelto seco	:	1470	kg/m3
Peso unitario compacto seco	:	1590	kg/m3
Humedad natural	:	0.1	%
Absorción	:	0.70	%
Modulo de Fineza	:	7.47	
CD A WWY O		ní.	
GRANULO	WE	<u>KIA</u>	
Malla	:	% Pasante	
1 1/2"	:	100.0	
1"	:	95.9	

Malla : % Pasante
1 1/2" : 100.0

1" : 95.9

3/4" : 44.0

1/2" : 7.8

3/8" : 3.1

N°4 : 2.5

N°8 : 2.1

N°16 : 1.7

N°200 : 0.7

LEM-ENGIL SRL FIRMAY SELLO

ESTE CERTIFICADO SIN SELLO Y FIRM A CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : $\frac{lem.engil.laboratorio@hotmail.com}{laboratorio@entral@lem-engil.com} / \frac{proyectos@lem-engil.com}{proyectos@lem-engil.com}$ WEB. : $\frac{www.lem-engil.com}{proyectos@lem-engil.com}$

RUC: 20600588924

NORMA APLICADA		D	ISEÑO DE	E MEZCLA METO	DO ACI 211		FORM-LEM-ENC RE	GIL-DISEÑ.C-042 V. 03
N° DE SOLICITUD	: LCE-05	4-04-2023						
SOLICITANTE		ARIA MILE		LA CHINGA				
PROYECTO	CONCRE		g/cm2 ADI	ICIONANDO FIBRAS				
UBICACIÓN DE	POLIPRO	PILENO RE	CICLADO, O	CALLAO-2023"	_ N° DE	CERTIFICADO:	LEM-ENGIL-DMC-2	3-015
PROYECTO	: CALLAO,	LIMA						
						A DE MUESTREO: IA DE EMISIÓN:		
							02 / 02	
]	DISEÑO D	E MEZC	CLA 210 kg	/ cm2	MAS	ADICIÓN 0.879	%
			CAR	ACTERISTICAS	3			
Relación agua cemento	:	0.59	Ra/c					
Resistencia especificada	ı .		kg/cm2					
28 días	•		Kg/ CIII2					
Asentamiento	:	3" a 4"						
Factor de adición total	:	0.87 9	% / Peso	del cemento				
Factor cemento	:	7.9 1	oolsa por	m3				
		CAN	TIDAD I	DE MATERIAL I	POR m3			
Materiales por m3 en est	ado seco P			2358 kg				
Cemento	:	335	kg					
Agua	:	196	L					
Adición 1 fibra de plumas	:	1.457	kg					
Adición 2 fibra de polipropilen		1.457	kg					
Arena	:	783	kg					
Piedra Materiales por m3 en esta	: ido húmed	1041	kg lo (P.U.C.	<u> </u>	/m3			
Cemento		335	kg	2070 Mg	, 1110			
	:		_					
Agua	:	207	L					
Adición 1 fibra de plumas	:	1.457	kg					
Adición 2 fibra de polipropilen	0 :	1.457	kg					
Arena	:	790	kg					
Piedra	:	1042	kg					
		DOS	IFICACI	ÓN 210 kg	/cm	MAS AD	ICIÓN 0.87%	
Proporciones en peso sec	o (pie3)			2				
cemento arena	piedra		agua		adición 1		adición 2	
1 : 2.3 :		:	24.9	L / bolsa de	: 0.185		: 0.185 kg	/ bolsa
Proporciones en peso hú:	medo (nie:3	: 1		cemento		de cemento	de	cemento
cemento arena	piedra	4	agua		adición 1		adición 2	
	_		_	L / bolsa de	0.185	ka / holea		/ bolsa
1 : 2.4 :	3.1	:	26.2	cemento	0.185	de cemento	0.100	cemento
		OBOBS	TIACION.	IFS				
		UBSER	VACION	ILO				
1.En obra corregir por hur	nedad.							
			LEM-	ENGIL SRL FIRM	A Y SELLO			
				V°B° SEL LABORATOR) ~	LEM-E	HERVIASAGENEROCHE	OSTA

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL SRL

ENSAYOS DE CONCRETO FRESCO

FORM-LEM-ENGIL-CONT-T- RD-CA-060 REV. 03

N° DE

SOLICITUD: LCE-063-04-2023

NORM A APLICADA

SOLICITANTE: JOSEM ARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO-LIMA

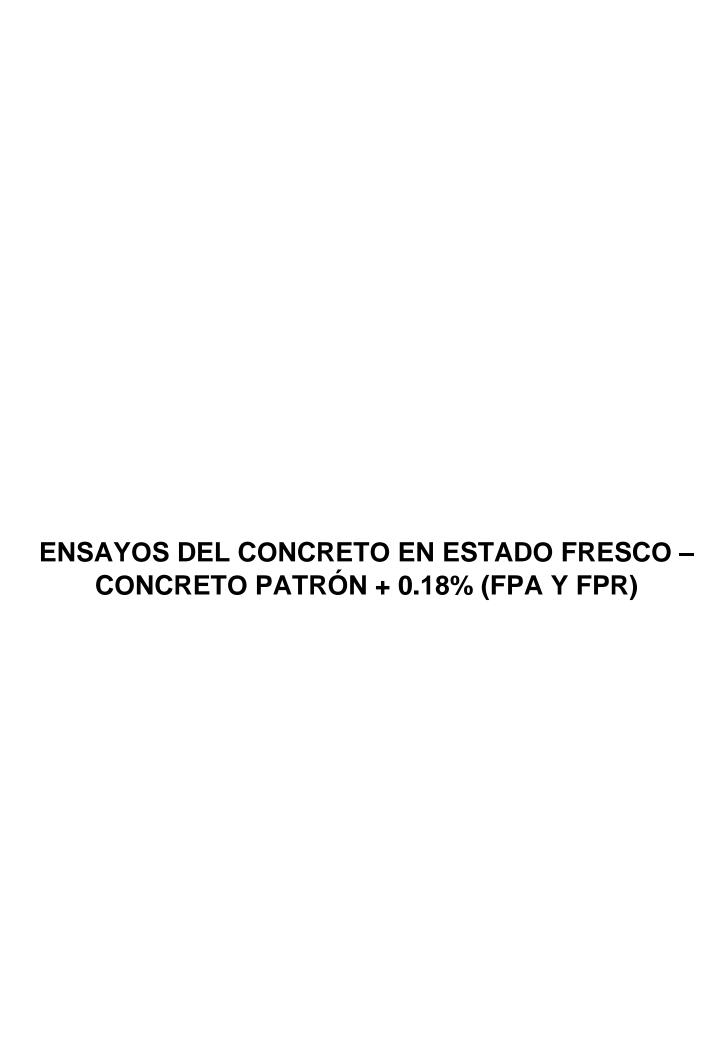
MEZCLA: MEZCLA PATRON

TMN DEL AGREGADO: Nº CERTIFICADO: LEM-ENGIL-SL-TE-REN-0023-005

FECHA ENSAYO: 28/04/2023

REGADO:						·			1	1			
	SLUMP	ASTM C 143	TEMPER	ATURA AST	M C 1064	PESO UNITA	RIO - REND	IMIENTO .	ASTM C 138	CONT	ENIDO DE	AIRE ASTM	C 231
						PESC	UNITARIO Y	RENDIMIE	NTO		CONTENI	DO DE AIRE	
Item	Slump de dise teorico (Pulg)	Slump toma (Pulg)	do Temperatura Concreto (°C)	Incertidumbre (°C)	Temperatura corregida (°C)	Peso del recipiente + concreto fresco (kg)	P.U.C. Real (kg/m3) (A)	P.U.C. Teórico (kg/m3) (B)	Rendimiento (A)/(B)	Lectura de aire en el dial (%) (C)	Correción (%) (D)	Factor del agregado (%) (E)	Contenido de aire del concreto (%) (C-D-E)
01	3" - 4" (+/-	1") 4 1/4"	24.2	0.3	24.5	19.972	2322	2355	0.99	2.5	0.2	1.5	0.8
							/						
	EQUIPO:	CONO DE ABRA	EQUIPO:	TERMOMETR	O DIGITAL	EQUIPO:	MOLDE CIL	INDRICO	•	EQUIPO:	-	OLLA WAS	HIGTON
	MARCA:	FORNEY	MARCA:	THERMOLA	В	MARCA:	FORNEY			MARCA:		FORNEY	
	MODELO:	-	MODELO:	TP101		MODELO:	LA-0316			MODELO	:	LA-0316	
	SERIE:	S/N	SERIE:	100-TT		SERIE:	571			SERIE:		571 / 544	
	CODIGO:	CA-LE-01				PESO DEL M	IOLDE (kg):	3.559					
	N° DE CERTIFICADO: LEM-ENGIL-CVI-23-027		N° DE CERTIFICADO:	042-CT-T-2	023	N° DE CERTIFICAL		(m3) : 031-CV-20	0.007069 023	od N° DE CERTIF	ICADO:	031-CV-2023 / 00	08-CP-2023

LEM-ENGIL SRL FIRMAY SELLO



FORM-LEM-ENGIL-EXUD-AGREGADOS. MÉTODO DE ENSAYO NORMALIZADO PARA EXUDACIÓN NORMA APLICADA 061 DEL CONCRETO (NTP 339.077) /ASTM C 232 REV. 03 N° DE SOLICITUD : LCE-052-04-2023 SOLICITANTE : JOSEM ARIA MILKO SIMBALA CHINGA N° DE CERTIFICADO: LEM-ENGIL-EX-23-001 EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PROYECTO PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE : CALLAO - LIM A PROYECTO MUESTRA : MUETRA PATRON FECHA DE ENSAYO: 28/04/2023 PESOS PARA TANDA Volumen de tanda 0.200 m3 Peso del cemento 67.01 kg 41.33 Peso del agua kg Peso del agregado fino kg 157.97 Peso del agregado grueso : kg 208 40 Peso total de tanda kg 474.71 DATOS DEL MOLDE DATOS DE LA MUESTRA Capacidad del molde 1/2 pie3 Peso del molde mas concreto : 39.577 kg Peso del molde 10.640 kg Peso del concreto 28.937 kg 25.4 Diámetro del molde cm Area del molde Hora de Inicio de ensayo 02:20:00 p.m. 506.7 cm2Agua de exudación tiempo transcurrido Tiempo parcial Volumen de agua Hora de ensavo (minutos) (minutos) (m1/cm2)(m1)02:30:00 p.m. 10 0.02 02:40:00 p.m. 20 10 9 0.02 7 02:50:00 p.m. 30 10 0.01 40 6 03:00:00 p.m. 10 0.01 03:30:00 p.m. 70 30 5 0.01 04:00:00 p.m. 100 30 4 0.01 3 04:30:00 p.m. 130 30 0.01 160 30 2 05:00:00 p.m. 0.00 05:30:00 p.m. 190 1 0.00 **RESULTADOS OBTENIDOS** Peso de cantidad de agua extraida de la 47 muestra de ensayo Peso del agua en la muestra de ensayo g/cm3 2519 Exudación 1.87 % EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO N° de Certificado: 040-CM-M-2023 N° Balanza 01 : BL08 N° Molde: N° de Certificado : LEM-ENGIL-CVI-23-017 Observaciones: NINGUNA LEM-ENGIL SRL FIRMAY SELLO

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.com/WEB.: www.lem-engil.com/

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

RUC: 20600588924

ENSAYOS DE CONCRETO FRESCO

FORM-LEM-ENGIL-CONT-T- RD-CA-060 REV. 03

N° DE

SOLICITUD: LCE-074-05-2023

NORM A APLICADA

SOLICITANTE: JOSEM ARIA MILKO SIMBALA CHINGA

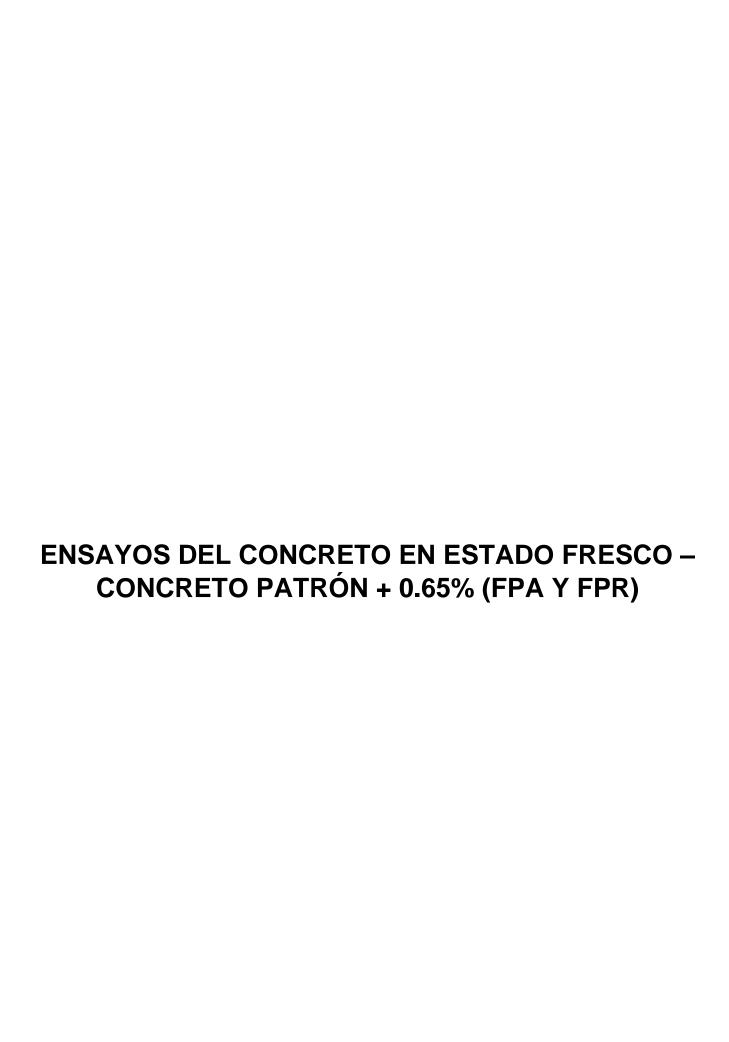
PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO-LIMA

MEZCLA: MEZCLA PATRON MAS 0.18% DE ADICIÓN Nº CERTIFICADO: LEM-ENGIL-SL-TE-REN-0023-006

TMN DEL FECHA ENSAYO: 06/05/2023 AGREGADO:

REGADO:														
	SLUMP	ASTM	I C 143	TEMPERA	ATURA ASTI	M C 1064	PESO UNITA	RIO - REND	IMIENTO A	ASTM C 138	CONT	ENIDO DE	AIRE ASTM	C 231
							PESC	UNITARIO Y	RENDIMIE	NTO		CONTENI	DO DE AIRE	
Item	Slump de dis teorico (Pulg)	eño S	Slump tomado (Pulg)	Temperatura Concreto (°C)	Incertidumbre (°C)	Temperatura corregida (°C)	Peso del recipiente + concreto fresco (kg)	P.U.C. Real (kg/m3) (A)	P.U.C. Teórico (kg/m3) (B)	Rendimiento (A)/(B)	Lectura de aire en el dial (%) (C)	Correción (%) (D)	Factor del agregado (%) (E)	Contenido de aire del concreto (%) (C-D-E)
01	3" - 4" (+/-	1")	4"	23.4	0.3	23.7	19.987	2324	2355	0.99	2.7	0.2	1.5	1.0
	_							/						
		/												
	EQUIPO:	CONO	DE ABRAMS	EQUIPO:	TERMOMETR	O DIGITAL	EQUIPO:	MOLDE CIL	INDRICO	•	EQUIPO:	·	OLLA WAS	HIGTON
	MARCA:	FORN	NEY	MARCA:	THERMOLA	В	MARCA:	FORNEY			MARCA:		FORNEY	
	MODELO:	-		MODELO:	TP101		MODELO:	LA-0316			MODELO	:	LA-0316	
	SERIE:	S/N		SERIE:	100-TT		SERIE:	571			SERIE:		571 / 544	
	CODIGO:	CA-LI	E-01				PESO DEL M	, 0,						
	N° DE CERTIFICADO: LEM-ENGL-CVI-23-027			N° DE CERTIFICADO:	042-CT-T-20)23	N° DE CERTIFICAL		(m3) : 031-CV-20	0.007069	ood N° DE CERTIF	ICADO:	031-CV-2023/00	8-CP-2023


LEM-ENGIL SRL FIRMAY SELLO

NORMA APLICADA		O DE ENSAYO NO RETO (NTP 33		ADO PARA EXUDACIÓN STM C 232	FORM-LEM-ENGIL-EXUD- 061 REV. 03
N° DE SOLICITUD	LCE-074-05-2023				
	: JOSEMARIA MILKO SII	M BALA CHINGA		N° DE CERTIFICADO	: LEM-ENGIL-EX-23-002
PROYECTO				TO f'c=210 kg/cm2 ADICI	
UBICACION DE	PLUMAS DE AVES Y FIBE CALLAO - LIMA	AS DE POLIPROF	ILENO RE	CICLADO, CALLAO-2023	
PROYECTO	: MUETRA PATRON MAS	0 100/ DE ADIO	rów.	FECHA DE ENSAYO	- - 06/05/0002
MUESIKA	MUEIRA PAIRON MAS	0.18% DE ADIC	ION	FECHA DE ENSATO	. 00/05/2023
P	ESOS PARA TANDA				
Volumen de tanda	: 0.200	m3			
Peso del cemento	: 67.01	kg			
Peso del agua	: 41.33	 kg			
Peso del agregado fino	: 157.97	 kg			
Peso del agregado grues		kg			
Peso total de tanda	: 474.71	kg			
I	DATOS DEL MOLDE	****		DATOS DE LA M	UESTRA
Capacidad del molde	: 1/2 pie3		Peso del	molde mas concreto :	39.655 kg
Peso del molde	: 10.640	kg	Peso del	concreto :	29.015 kg
Diámetro del molde	: 25.4	cm			
Area del molde	: 506.7	cm2	Hora de	Inicio de ensayo :	01:45:00 p.m.
Hora de ensayo	tiempo transcurrido	Tiempo pa	rcial	Volumen de agua	Agua de exudación
	(minutos)	(minuto	os)	(ml)	(m1/cm2)
01:55:00 p.m.	10	10		9	0.02
02:05:00 p.m.	20	10		8	0.02
02:15:00 p.m.	30	10		7	0.01
02:25:00 p.m.	40	10		6	0.01
02:55:00 p.m.	70	30		5	0.01
03:25:00 p.m.	100	30		4	0.01
03:55:00 p.m.	130	30		3	0.01
04:25:00 p.m.	160	30		2	0.00
04:55:00 p.m.	190	30		0	0.00
-					
	RESULTADOS OBT	PRIDOS			
Peso de cantidad de ag		ENIDOS			
muestra de ensayo	ua catrarua ut la	g	44		
Peso del agua en la mu	estra de ensayo g/	cm3	2526		
Exudación		%	1.74		
	FOIIDOS	USADOS EN EJI	CUCIÓN	DE ENGAVO	
			.08		rtificado: 040-CM-M-2023
		Nº Molde: PU			rtificado : LEM-ENGIL-CVI-23-01
Observaciones:	NINGUNA.	M-ENGIL SRL F	IDMAVE	FILO	
	SELLO Y FIRMA CARECEN	V°B° SELLANDO		EM-ENGIL S.R.L.	

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / proyectos@lem-engil.com / proyectos@lem-engil.com / proyectos@lem-engil.com / lem.engil.com / proyectos@lem-engil.com / lem.engil.com / lem

NORM A APLICADA **ENSAYOS DE CONCRETO FRESCO** FORM-LEM-ENGIL-CONT-T- RD-CA-060 REV. 03

N° DE

 ${\bf SOLICITUD:}\ {\bf ^{LCE-075-05-2023}}$

SOLICITANTE: JOSEM ARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

Nº CERTIFICADO: LEM-ENGIL-SL-TE-REN-0023-007

UBICACIÓN: CALLAO-LIMA

MEZCLA: MEZCLA PATRON MAS 0.65% DE ADICIÓN

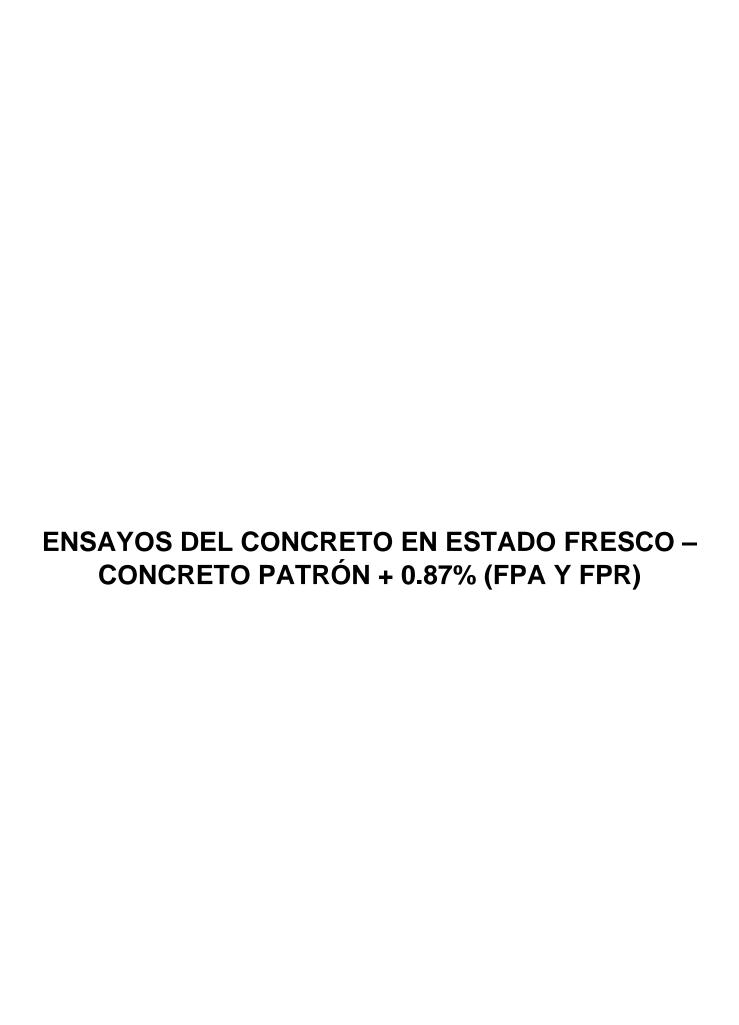
TMN DEL FECHA ENSAYO: 06/05/2023

AGREGADO: 1"

	SLUMP	ASTM C 14	3	TEMPERA	ATURA AST	M C 1064	PESO UNITA	RIO - REND	IMIENTO A	ASTM C 138	CONT	ENIDO DE	AIRE ASTM	C 231
							PESC	UNITARIO Y	RENDIMIE	NTO		CONTENI	DO DE AIRE	
Item	Slump de dis teorico (Pulg)	Slump to		Temperatura Concreto (°C)	Incertidumbre (°C)	Temperatura corregida (°C)	Peso del recipiente + concreto fresco (kg)	P.U.C. Real (kg/m3) (A)	P.U.C. Teórico (kg/m3) (B)	Rendimiento (A)/(B)	Lectura de aire en el dial (%) (C)	Correción (%) (D)	Factor del agregado (%) (E)	Contenido de aire del concreto (%) (C-D-E)
01	3" - 4" (+/-	1") 3 3/	'4"	24.3	0.3	24.6	20.145	2346	2357	1.00	2.8	0.2	1.5	1.1
	/							/				/		
			/											
	EQUIPO:	CONO DE AB	RAMS	EQUIPO:	TERMOMETR	O DIGITAL	EQUIPO:	MOLDE CIL	INDRICO		EQUIPO:	•	OLLA WAS	HIGTON
	MARCA:	FORNEY		MARCA:	THERMOLA	В	MARCA:	FORNEY			MARCA:		FORNEY	
	MODELO:	-		MODELO:	TP101		MODELO:	LA-0316			MODELO	:	LA-0316	
	SERIE:	S/N		SERIE:	100-TT		SERIE:	571		***************************************	SERIE:		571 / 544	
	CODIGO:	CA-LE-01					PESO DEL M	IOLDE (kg):	3.559					
	N° DE CERTIFICADO: LEM-ENGIL-CVI-23-027		N° DE CERTIFICADO:	042-CT-T-20	023	N° DE CERTIFICAT		(m3) : 031-CV-20	0.007069	N° DE CERTIF	ICADO:	031-CV-2023/00)8-CP-2023	

LEM-ENGIL SRL FIRMAY SELLO

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com


LEM-ENGIL SRL

	DEL CON	CRETO (NTP 3		ADO PARA EXUDACIÓN STM C 232	FORM-LEM-ENGIL-EXUD 061
					REV. 03
	: LCE-075-05-2023	M DAT A CHINCA		Nº DE CEDMINOAD	N. J. D. W. D. W. D. W. G.
	: JOSEM ARIA MILKO SI "EVALUACIÓN DE LAS P			N° DE CERTIFICADO FO f'c=210 kg/cm2 ADICI	O: LEM-ENGIL-EX-23-003 ONANDO FIBRAS DE
PROYECTO	•			CICLADO, CALLAO-2023	
UBICACION DE PROYECTO	: CALLAO - LIMA				-
MUESTRA	: MUETRA PATRON MAS	8 0.65% DE ADIO	CIÓN	FECHA DE ENSAYO	06/05/2023
P	PESOS PARA TANDA				
Volumen de tanda	: 0.200	m3			
Peso del cemento	: 67.01	kg			
Peso del agua	: 41.33	kg			
Peso del agregado fino	: 157.97	kg			
Peso del agregado grues		kg			
Peso total de tanda	. 200.10	kg			
	: 474.71	**\$			
	DATOS DEL MOLDE		D- : 1 1	DATOS DE LA M	
Capacidad del molde Peso del molde	: 1/2 pie3 : 10.640	kg		molde mas concreto : concreto :	39.476 kg 28.836 kg
Diámetro del molde	: 25.4	Kg 	reso dei	concreto .	20.030 Kg
Area del molde	: 506.7	cm2	Hora de	Inicio de ensayo :	05:10:00 p.m.
II d	tiempo transcurrido	Тіетро р	parcial	Volumen de agua	Agua de exudación
Hora de ensayo	(minutos)	(minu	tos)	(ml)	(m1/cm2)
05:20:00 p.m.	10	10		9	0.02
05:30:00 p.m.	20	10		7	0.01
05:40:00 p.m.	30	10		6	0.01
05:50:00 p.m.	40	10		6	0.01
06:20:00 p.m.	70	30		5	0.01
06:50:00 p.m.	100	30		4	0.01
07:20:00 p.m.	130	30		3	0.01
07:50:00 p.m.	160	30		1	0.00
08:20:00 p.m.	190	30		1	0.00
		-			
D 1 .:1.11	RESULTADOS OB	TENIDOS			
Peso de cantidad de ag muestra de ensayo	gua extraída de la	g	42		
Peso del agua en la mu	uestra de ensavo g	/cm3	2511		
Exudación	<u> </u>	%	1.67		
	FOILIPOS	USADOS EN E	IECUCIÓN	DE ENSAVO	
			BL08		rtificado: 040-CM-M-2023
		Nº Molde:	PU02	N° de Ce	rtificado : LEM-ENGIL-CVI-23-0
Observaciones:	NINGUNA.	OM ENCIL CDI	PIDM A V C	ELLO	
	LI	EM-ENGIL SRL	FIRMAY S	ELLU	
				V°B°	LEM-ENGIL S.R.L.
	SELLO Y FIRMA CARECEN			CONCRETO*4664	C.I.P. 54609

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / proyectos@lem-engil.com / proyectos@lem-engil.com / lem.engil.com / proyectos@lem-engil.com / lem.engil.com / lem.engil.com / proyectos@lem.engil.com / lem.engil.com / lem

RUC: 20600588924

NORM A APLICADA **ENSAYOS DE CONCRETO FRESCO** FORM-LEM-ENGIL-CONT-T- RD-CA-060 REV. 03

N° DE

SOLICITUD: LCE-077-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

MEZCLA: MEZCLA PATRON MAS 0.87% DE ADICIÓN

TMN DEL

AGREGADO:

Nº CERTIFICADO: LEM-ENGIL-SL-TE-REN-0023-008

FECHA ENSAYO: 08/05/2023

REGADO:													
	SLUMP A	STM C 143	TEMPER	ATURA AST	M C 1064	PESO UNITA	RIO - REND	IMIENTO A	ASTM C 138	CONT	ENIDO DE	AIRE ASTM	C 231
						PESC) UNITARIO Y	RENDIMIE	NTO		CONTENI	IDO DE AIRE	
Item	Slump de dise teorico (Pulg)	ño Slump tomado (Pulg)	Temperatura Concreto (°C)	Incertidumbre (°C)	Temperatura corregida (°C)	Peso del recipiente + concreto fresco (kg)	P.U.C. Real (kg/m3) (A)	P.U.C. Teórico (kg/m3) (B)	Rendimiento (A)/(B)	Lectura de aire en el dial (%) (C)	Correción (%) (D)	Factor del agregado (%) (E)	Contenido de aire del concreto (%) (C-D-E)
01	3" - 4" (+/-	1") 3 1/2"	25.0	0.3	25.3	19.988	2324	2358	0.99	2.9	0.2	1.5	1.2
	/												
	EQUIPO:	ONO DE ABRAMS	EQUIPO:	TERMOMETR	O DIGITAL	EQUIPO:	MOLDE CIL	INDRICO		EQUIPO:		OLLA WAS	HIGTON
	MARCA:	ORNEY	MARCA:	THERMOLA	В	MARCA:	FORNEY			MARCA:		FORNEY	
	MODELO:		MODELO:	TP101		MODELO:	LA-0316			MODELO	:	LA-0316	
	SERIE:	S/N	SERIE:	100-TT		SERIE:	571			SERIE:		571 / 544	
	CODIGO:	CA-LE-01				PESO DEL M		***************************************					
	N° DE CERTIFICADO: LEM-ENGIL-CVI-23-027		N° DE CERTIFICADO:	042-CT-T-20	023	N° DE CERTIFICAI		(m3) : 031-CV-20	0.007069	N° DE CERTIF	ICADO:	031-CV-2023 / 00	8-CP-2023

LEM-ENGIL SRL FIRMAY SELLO

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

LEM-ENGIL SRL

LABORATORIO ENSAYOS DE MATERIALES DE INGENIERIA

Y CONTROL DE CALIDAD FORM-LEM-ENGIL-EXUD-AGREGADOS. MÉTODO DE ENSAYO NORMALIZADO PARA EXUDACIÓN NORMA APLICADA DEL CONCRETO (NTP 339.077) / ASTM C 232 **REV. 03** N° DE SOLICITUD : LCE-077-05-2023 SOLICITANTE : JOSEM ARIA MILKO SIMBALA CHINGA N° DE CERTIFICADO: LEM-ENGIL-EX-23-004 EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PROYECTO PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023" UBICACIÓN DE : CALLAO - LIM A PROYECTO FECHA DE ENSAYO: 08/05/2023 MUESTRA : MUETRA PATRON MAS 0.87% DE ADICIÓN PESOS PARA TANDA 0.200 Volumen de tanda m3 Peso del cemento 67.01 kg Peso del agua 41.33 kg Peso del agregado fino kg 157.97 Peso del agregado grueso : kg 208.40 Peso total de tanda kg 474.71 DATOS DEL MOLDE DATOS DE LA MUESTRA Capacidad del molde 1/2 pie3 39,409 Peso del molde mas concreto: kg 10.640 Peso del molde kg Peso del concreto 28.769 kg 25.4 Diámetro del molde cm Area del molde 506.7 01:30:00 p.m. Hora de Inicio de ensavo cm2 Volumen de agua tiempo transcurrido Tiempo parcial Agua de exudación Hora de ensayo (minutos) (minutos) (m1/cm2)

10	10	8	0.02
20	10	7	0.01
30	10	6	0.01
40	10	6	0.01
70	30	5	0.01
100	30	5	0.01
130	30	2	0.00
160	30	1	0.00
190	30	1	0.00
	20 30 40 70 100 130	20 10 30 10 40 10 70 30 100 30 130 30 160 30	20 10 7 30 10 6 40 10 6 70 30 5 100 30 5 130 30 2 160 30 1

RESULTADOS	3 OBTENIDO	os
Peso de cantidad de agua extraida de la	g	41
muestra de ensayo	δ	
Peso del agua en la muestra de ensayo	g/cm3	2505
Exudación	%	1.64

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

Nº Balanza 01 : BL08 Nº Molde : PU02

N° de Certificado : LEM-ENGIL-CVI-23-017

N° de Certificado: 040-CM-M-2023

Observaciones: NINGUNA.

LEM-ENGIL SRL FIRMAY SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034: 2008 ASTM C-39)

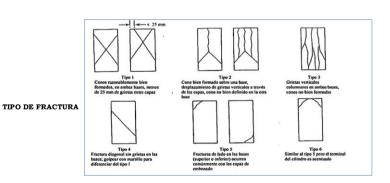
FORM-LEM-ENGIL-COMS

N° DE SOLICITUD: LCE-063-04-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0197

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 28/04/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA: MEZCLA PATRON	CONCRETERA:	-	ELEVACIÓN :		-
BLOOUE: -	VOLUMEN (m3):	_	TRAMO ·		_

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-383	-	05/05/2023	7	182.60	31236	kg	171.1	81.5	171.0	81.4	2
LCE-2023-384	-	05/05/2023	7	181.21	30983	kg	171.0	81.4			2
LCE-2023-385	-	05/05/2023	7	181.41	31034	kg	171.1	81.5			2

PROMEDIO DE RESISTENCIA (Mpa)

16.8

CONVERSIÓN: 1 k N = CONVERSIÓN: 2.2 lb = 101.972 kg

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Certificado: 020-CF-2022 N° de serie: N° de Prensa: PC-01 Marca: FORNEY 11037

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0197

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

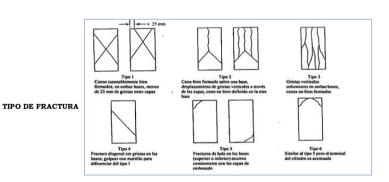
FORM-LEM-ENGIL-COMS

N° DE SOLICITUD: LCE-074-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0214

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 06/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA : MEZCLA PATRON MAS 0.18% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN:		-
BLOQUE: -	VOLUMEN (m3):	-	TRAMO:		-

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-580	-	13/05/2023	7	181.54	30330	kg	167.1	79.6			2
LCE-2023-581	-	13/05/2023	7	180.92	30397	kg	168.0	80.0	167.9	79.9	2
LCE-2023-582	-	13/05/2023	7	180.87	30484	kg	168.5	80.3			2

PROMEDIO DE RESISTENCIA (Mpa)

16.5

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado : 020-CF-2022

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0214

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/ / proyectos@lem-engil.com

WEB. : www.lem-engil.com

RUC: 20600588924

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

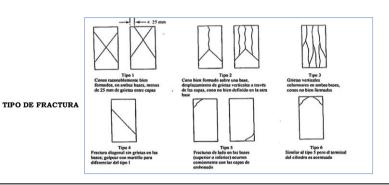
FORM-LEM-ENGIL-COMS-

N° DE SOLICITUD: LCE-075-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0216

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 06/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA : MEZCLA PATRON MAS 0.65% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN:		-
BLOOUE: -	VOLUMEN (m3):	-	TRAMO ·		_

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-603	-	13/05/2023	7	180.98	30108	kg	166.4	79.2			2
LCE-2023-604	-	13/05/2023	7	181.07	30087	kg	166.2	79.1	166.0	79.1	2
LCE-2023-605	-	13/05/2023	7	181.32	30022	kg	165.6	78.8			2

PROMEDIO DE RESISTENCIA (Mpa)

16.3

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado: 020-CF-2022

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

VICTORY HERVIAS ACOSTA

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0216

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/ / proyectos@lem-engil.com

WEB. : www.lem-engil.com

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034: 2008 ASTM C-39)

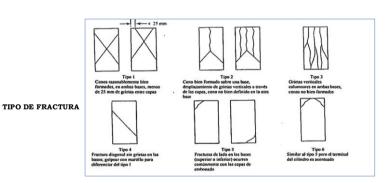
FORM-LEM-ENGIL-COMS

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0224

N° DE SOLICITUD: LCE-077-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 08/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA : MEZCLA PATRON MAS 0.87% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN :		-
BLOQUE: -	VOLUMEN (m3):	-	TRAMO:		-

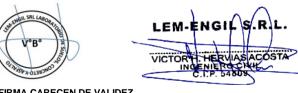
CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-626	-	15/05/2023	7	180.15	29554	kg	164.1	78.1			2
LCE-2023-604	-	15/05/2023	7	180.72	29512	kg	163.3	77.8	163.4	77.8	2
LCE-2023-605	-	15/05/2023	7	181.03	29488	kg	162.9	77.6			2

PROMEDIO DE

16.0

CONVERSIÓN: 1 k N = CONVERSIÓN: 2.2 lb = 101.972 kg

NOTAS:


1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: Marca: N° de serie: 11037 N° de Certificado: 020-CF-2022 FORNEY

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

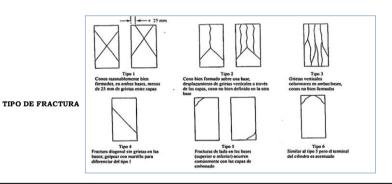
FORM-LEM-ENGIL-COMS-26 REV. 04

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0218

N° DE SOLICITUD: LCE-063-04-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE	: 28/04/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA	: MEZCLA PATRON	CONCRETERA:	-	ELEVACIÓN :		-
BLOQUE	: -	VOLUMEN (m3):	-	TRAMO:		-

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-386	-	12/05/2023	14	181.32	35148	kg	193.8	92.3			2
LCE-2023-387	-	12/05/2023	14	181.01	35321	kg	195.1	92.9	194.6	92.6	2
LCE-2023-388	-	12/05/2023	14	180.24	35089	kg	194.7	92.7			2

PROMEDIO DE RESISTENCIA (Mpa)

19.1

CONVERSIÓN : 1 k N = 101.972 kg CONVERSIÓN : 2.2 lb = 1 kg

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado : 020-CF-2022

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0218

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.co

WEB.: www.lem-engil.com

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034: 2008 ASTM C-39)

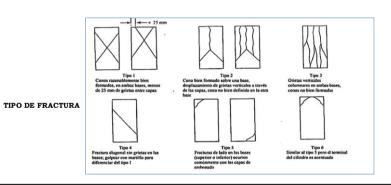
FORM-LEM-ENGIL-COMS

N° DE SOLICITUD: LCE-074-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0252

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 06/0	05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA : MEZO	CLA PATRON MAS 0.18% DE CIÓN	CONCRETERA:	-	ELEVACIÓN :		-
BLOOUE: -		VOLUMEN (m3):	-	TRAMO ·		_

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-583	-	20/05/2023	14	181.43	34623	kg	190.8	90.9			2
LCE-2023-584	-	20/05/2023	14	181.06	34598	kg	191.1	91.0	191.1	91.0	2
LCE-2023-585	-	20/05/2023	14	180.99	34612	kg	191.2	91.1			2

PROMEDIO DE RESISTENCIA (Mpa)

18.7

CONVERSIÓN: 1 k N = CONVERSIÓN: 2.2 lb = 101.972 kg

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 FORNEY N° de serie: 11037 N° de Certificado : 020-CF-2022

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

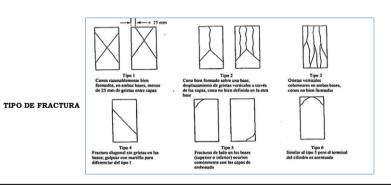
FORM-LEM-ENGIL-COMS

N° DE SOLICITUD: LCE-075-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0254

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: (06/05/2023	N° GUIA:	-	F'c:	210	kg/cm2
ESTRUCTURA:	MEZCLA PATRON MAS 0.65% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN :		-
BLOQUE: -		VOLUMEN (m3):	-	TRAMO:		-

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-606	-	20/05/2023	14	181.04	33993	kg	187.8	89.4			2
LCE-2023-607	-	20/05/2023	14	180.98	34038	kg	188.1	89.6	188.0	89.5	2
LCE-2023-608	-	20/05/2023	14	180.65	34009	kg	188.3	89.6			2

PROMEDIO DE RESISTENCIA (Mpa)

18.4

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

 N° de Prensa:
 PC-01
 Marca:
 FORNEY
 N° de serie:
 11037
 N° de Certificado:
 020-CF-2022

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

LEM-ENGIL S.R.L.

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0254

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / laboratorio@hotmail.com / lem.engil.com / proyectos@lem-engil.com www.lem-engil.com / <

RUC: 20600588924

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

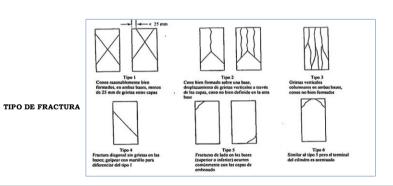
FORM-LEM-ENGIL-COMS-

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0256

N° DE SOLICITUD: LCE-077-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO f'c=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE:	08/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA :	MEZCLA PATRON MAS 0.87% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN:		-
BLOOUE :	_	VOLUMEN (m3):	-	TPAMO .		

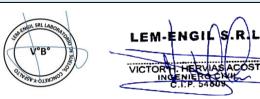
CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-629	-	22/05/2023	14	180.45	33044	kg	183.1	87.2			2
LCE-2023-630	-	22/05/2023	14	180.91	32982	kg	182.3	86.8	182.8	87.1	1
LCE-2023-631	-	22/05/2023	14	180.78	33102	kg	183.1	87.2			2

PROMEDIO DE RESISTENCIA (Mpa)

17.9

CONVERSIÓN : 1 k N = 101.972 kg CONVERSIÓN : 2.2 lb = 1 kg

NOTAS:


1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado: 020-CF-2022

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0256

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos.proyectos.proyectos.proyectos.proyecto

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

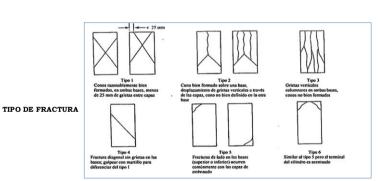
FORM-LEM-ENGIL-COMS-

N° DE SOLICITUD: LCE-063-04-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0288

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 28/04/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA: MEZCLA PATRON	CONCRETERA:	-	ELEVACIÓN:		-
BLOOUE · -	VOLUMEN (m3) ·		MD 4 1/0		

	-											
CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA	
LCE-2023-389	-	26/05/2023	28	181.04	41177	kg	227.4	108.3			2	
LCE-2023-390	-	26/05/2023	28	180.92	40987	kg	226.5	107.9	227.0	108.1	2	
LCE-2023-391	-	26/05/2023	28	180.83	41023	kg	226.9	108.0			2	

PROMEDIO DE RESISTENCIA (Mpa)

22.3

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

 N° de Prensa:
 PC-02
 Marca:
 PINZUAR
 N° de serie:
 364
 N° de Certificado:
 TC - 09355 - 2023

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0288

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.com/

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

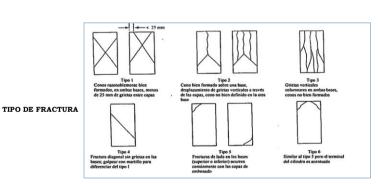
FORM-LEM-ENGIL-COMS-

N° DE SOLICITUD: LCE-074-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0300

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DAT	'OS	DE	T.A	PRO	BETA

FECHA DE MOLDAJE :	06/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA :	MEZCLA PATRON MAS 0.18% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN :		-
BLOOUE .		VOLUMEN (m3) ·		TDAMO.		

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-586	-	03/06/2023	28	180.98	40607	kg	224.4	106.8			2
LCE-2023-587	-	03/06/2023	28	181.23	40489	kg	223.4	106.4	224.3	106.8	2
LCE-2023-588	-	03/06/2023	28	180.82	40681	kg	225.0	107.1			2

PROMEDIO DE RESISTENCIA (Mpa)

22.0

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

 N° de Prensa:
 PC-02
 Marca:
 PINZUAR
 N° de serie:
 364
 N° de Certificado : TC - 09355 - 2023

Observaciones: -

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0300

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.com/

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034: 2008 ASTM C-39)

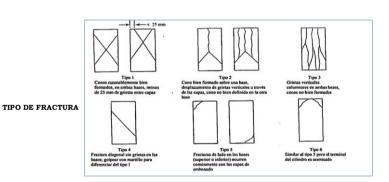
FORM-LEM-ENGIL-COMS

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0303

N° DE SOLICITUD: LCE-075-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE:	06/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA :	MEZCLA PATRON MAS 0.65% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN:		-
BLOOUE :	-	VOLUMEN (m3):	-	TRAMO ·		

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	CODIGO DEL SOLICITANTE	FECHA DE ROTURA	EDAD (DÍAS)	AREA DE PROBETA (cm2)	CARGA MAXIMA	UND. DE CARGA	RESITENCIA (kg/cm2)	RESISTENCIA (%)	PROMEDIO DE RESISTENCIA (kg/cm2)	PROMEDIO DE RESISTENCIA (%)	TIPO DE FRACTURA
LCE-2023-609	-	03/06/2023	28	180.72	39745	kg	219.9	104.7			2
LCE-2023-610	-	03/06/2023	28	181.12	40183	kg	221.9	105.6	220.9	105.2	2
LCE-2023-611	-	03/06/2023	28	181.22	40027	kg	220.9	105.2			2

PROMEDIO DE RESISTENCIA (Mpa)

21.7

CONVERSIÓN: 1 k N = CONVERSIÓN: 2.2 lb = 101.972 kg

NOTAS:

1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-02 PINZUAR N° de serie: 364 N° de Certificado : $\underline{\text{TC}}$ - $\underline{\text{09355}}$ - $\underline{\text{2023}}$

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com

RUC: 20600588924

LEM-ENGIL SRL

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA LA DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO, EN MUESTRAS CILÍNDRICAS (NORMA NTP 339.034 : 2008 ASTM C-39)

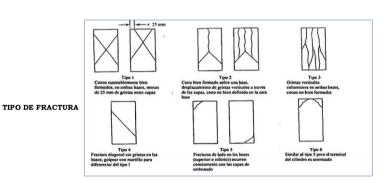
FORM-LEM-ENGIL-COMS 26 REV. 04

N° DE SOLICITUD: LCE-077-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0306

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE


PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DE LA PROBETA

FECHA DE MOLDAJE: 08/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA: MEZCLA PATRON MAS 0.87% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN:		-
BLOQUE: -	VOLUMEN (m3):	-	TRAMO:		_

CODIGO DE ESPECIMEN	CODIGO DEL	FECHA DE	EDAD	AREA DE PROBETA	CARGA	UND. DE		RESISTENCIA	PROMEDIO DE RESISTENCIA	PROMEDIO DE RESISTENCIA	TIPO DE FRACTURA
LEM-ENGIL SRL (LCE)	SOLICITANTE	ROTURA	(DÍAS)	(cm2)	MAXIMA	CARGA	(kg/cm2)	(%)	(kg/cm2)	(%)	FRACTURA
LCE-2023-632	-	05/06/2023	28	180.53	38782	kg	214.8	102.3			2
LCE-2023-633	•	05/06/2023	28	181.12	39093	kg	215.8	102.8	215.4	102.6	2
LCE-2023-634	-	05/06/2023	28	180.92	39015	kg	215.6	102.7			2

PROMEDIO DE RESISTENCIA (Mpa)

21.1

NOTAS:

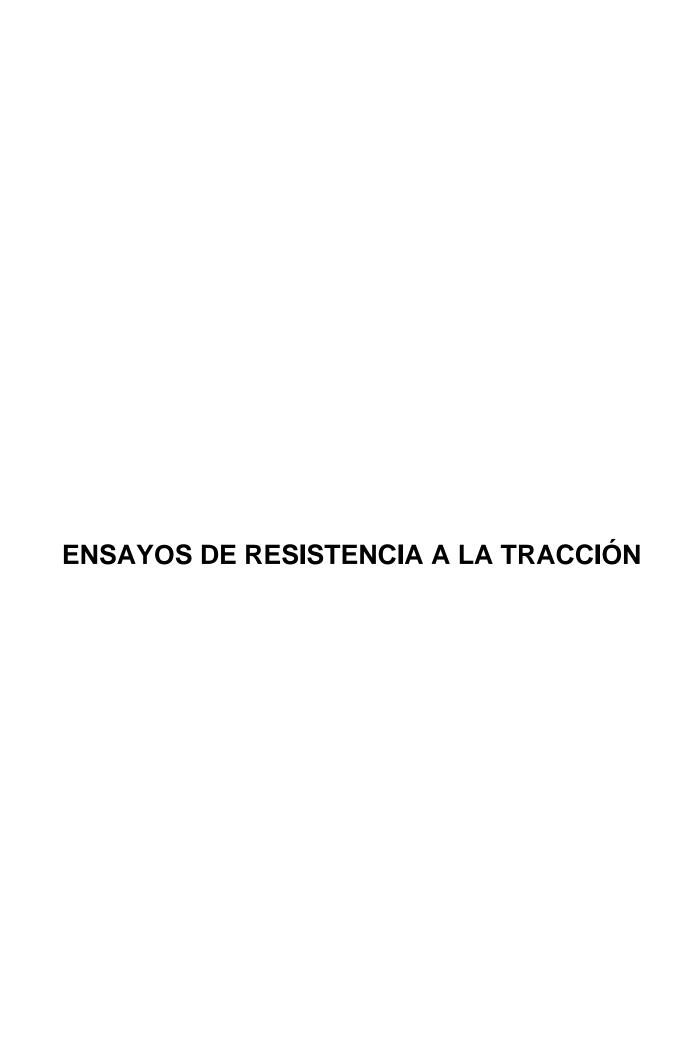
1.SE EMPLEÓ ALMOHADILLAS DE NEOPRENO: PRÁCTICA NORMALIZADA PARA LA UTILIZACIÓN DE CABEZALES CON ALMOHADILLAS DE NEOPRENO EN EL ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO ENDURECIDO ASTM C1231/C1231M:2014

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-02 Marca: PINZUAR N° de serie: 364 N° de Certificado : TC - 09355 - 2023

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO



ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0:

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel. : 979109925 / 943345511 Email. : lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/ / proyectos@lem-engil.com

WEB. : www.lem-engil.com

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0198

N° DE SOLICITUD: LCE-063-04-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y

FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 28/04/2023 N° GUIA: - F'c: 210 kg/cm2

ESTRUCTURA: MEZCLA PATRON CONCRETERA: - ELEVACIÓN:

BLOQUE: - VOLUMEN (m3): -

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-392	05/05/2023	7	15.25	30.10	kg	11654	16.2	
LCE-2023-393	05/05/2023	7	15.19	30.10	kg	11718	16.3	16.3
LCE-2023-394	05/05/2023	7	15.19	30.07	kg	11698	16.3	

MODULO DE ROTURA (Mpa)

1.59

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado: 020-CF-2022

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0198

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com / proyectos@lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com

RUC: 20600588924

NORMA **APLICADA**

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0215

N° DE SOLICITUD: LCE-074-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: F'c: kg/cm2

CONCRETERA: ELEVACIÓN: ESTRUCTURA: MEZCLA PATRON MAS 0.18% DE ADICIÓN

BLOQUE: -VOLUMEN (m3):

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-589	13/05/2023	7	15.19	30.12	kg	11922	16.6	
LCE-2023-590	13/05/2023	7	15.11	30.06	kg	11914	16.7	16.7
LCE-2023-591	13/05/2023	7	15.12	30.02	kg	11952	16.8	

MODULO DE ROTURA (Mpa)

1.63

CONVERSIÓN: 1 k N = 101.972 kg CONVERSIÓN: 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: Marca: N° de serie: 11037 N° de Certificado: 020-CF-2022 PC-01 FORNEY

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0215

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

RUC: 20600588924

NORMA **APLICADA**

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0217

N° DE SOLICITUD: LCE-075-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: F'c: kg/cm2

CONCRETERA: ELEVACIÓN: ESTRUCTURA: MEZCLA PATRON MAS 0.65% DE ADICIÓN

BLOQUE: -VOLUMEN (m3):

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-612	13/05/2023	7	15.12	30.12	kg	12837	17.9	
LCE-2023-613	13/05/2023	7	15.08	30.06	kg	12763	17.9	18.0
LCE-2023-614	13/05/2023	7	15.11	30.02	kg	12899	18.1	

MODULO DE ROTURA (Mpa)

1.76

CONVERSIÓN: 1 k N = 101.972 kg CONVERSIÓN: 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: Marca: FORNEY **N° de serie:** 11037 N° de Certificado: 020-CF-2022 PC-01

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ

LEM-ENGIL-CCE-23-0217

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0225

N° DE SOLICITUD: LCE-077-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 08/05/2023 N° GUIA: F'c: kg/cm2 ESTRUCTURA: MEZCLA PATRON MAS 0.87% DE ADICIÓN **CONCRETERA:** ELEVACIÓN:

BLOQUE: -VOLUMEN (m3):

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-635	15/05/2023	7	15.09	30.04	kg	13123	18.4	
LCE-2023-636	15/05/2023	7	15.01	30.07	kg	13145	18.5	18.5
LCE-2023-637	15/05/2023	7	15.04	30.11	kg	13203	18.6	

MODULO DE ROTURA (Mpa)

1.81

CONVERSIÓN : 1 k N = 101.972 kg CONVERSIÓN : 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: Marca: N° de serie: 11037 N° de Certificado: 020-CF-2022

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0225

WEB.: www.lem-engil.com

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0219

N° DE SOLICITUD: LCE-063-04-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y

FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 28/04/2023 N° GUIA: - F'c: 210 kg/cm2

ESTRUCTURA: MEZCLA PATRON CONCRETERA: - ELEVACIÓN:

BLOQUE: - VOLUMEN (m3): -

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROM EDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-395	12/05/2023	14	15.17	30.08	kg	13122	18.3	
LCE-2023-396	12/05/2023	14	15.11	30.09	kg	13287	18.6	18.5
LCE-2023-397	12/05/2023	14	15.13	30.05	kg	13273	18.6	

MODULO DE ROTURA (Mpa)

1.80

CONVERSIÓN: 1 k N = 101.972 kg CONVERSIÓN: 2.2 lb = 1 kg

7	DOG	TICADOC	EM E	TECTICION	DE ENSAYO
~	OIF OS	USADUS	EH E	OFCOCION	DE ENGAIO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado : 020-CF-2022

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0219

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com / proyectos@lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com

LEM-ENGIL SRL

RUC: 20600588924

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0253

N° DE SOLICITUD: LCE-074-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y

FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: - F'c: 210 kg/cm2

ESTRUCTURA: MEZCLA PATRON MAS 0.18% DE ADICIÓN CONCRETERA: - ELEVACIÓN:

BLOQUE: - VOLUMEN (m3): -

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROM EDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-592	20/05/2023	14	15.07	30.03	kg	13328	18.7	
LCE-2023-593	20/05/2023	14	15.11	30.05	kg	13480	18.9	18.9
LCE-2023-594	20/05/2023	14	15.04	30.10	kg	13442	18.9	

MODULO DE ROTURA (Mpa)

1.84

CONVERSIÓN : 1 k N = 101.972 kg CONVERSIÓN : 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado : 020-CF-2022

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

LEM-ENGIL S.R.L.

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0253

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com / proyectos@lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com / www.lem-engil.com

RUC: 20600588924

NORMA **APLICADA**

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0255

N° DE SOLICITUD: LCE-075-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: F'c: kg/cm2

ELEVACIÓN: ESTRUCTURA: MEZCLA PATRON MAS 0.65% DE ADICIÓN **CONCRETERA:**

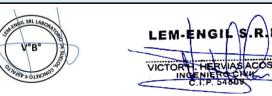
BLOQUE: -VOLUMEN (m3):

TRAMO: -

FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROM EDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
20/05/2023	14	15.07	30.05	kg	14199	20.0	
20/05/2023	14	15.01	30.09	kg	14243	20.1	20.1
20/05/2023	14	15.12	30.11		14390	20.1	
	20/05/2023 20/05/2023	ROTURA (DÍAS) 20/05/2023 14 20/05/2023 14	PROMEDIO(cm) PR	PROMEDIO (DÍAS) PROMEDIO (cm) PROMEDIO (cm) 20/05/2023 14 15.07 30.05 20/05/2023 14 15.01 30.09	PROMEDIO PROMEDIO Cm PROMEDIO CM CM CM CM	FECHA DE ROTURA (DÍAS) PROMEDIO (CM) PROME	PROMEDIO (cm) PR

MODULO DE ROTURA (Mpa)

1.96


CONVERSIÓN: 1 k N = CONVERSION: 2.2 lb =

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-01 Marca: FORNEY N° de serie: 11037 N° de Certificado: 020-CF-2022

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0255

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com

WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE SOLICITUD: LCE-077-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0257

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 08/05/2023 N° GUIA: 210 F'c: kg/cm2

ESTRUCTURA: MEZCLA PATRON MAS 0.87% DE ADICIÓN CONCRETERA: **ELEVACIÓN:**

BLOQUE: -VOLUMEN (m3):

TRAMO:

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROM EDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-638	22/05/2023	14	15.12	30.08	kg	14902	20.9	
LCE-2023-639	22/05/2023	14	15.06	30.10	kg	14829	20.8	20.9
LCE-2023-640	22/05/2023	14	15.03	30.10	kg	14851	20.9	

MODULO DE ROTURA (Mpa)

2.05

CONVERSIÓN: 1 k N = CONVERSIÓN: 2.2 lb = 101.972 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de serie: 11037 $\boldsymbol{N^{\circ}}$ de Certificado : $\underline{\text{020-CF-2022}}$ N° de Prensa: PC-01 Marca: FORNEY

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0257

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE SOLICITUD: LCE-063-04-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0289

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 28/04/2023 N° GUIA: 210 F'c: kg/cm2

ESTRUCTURA: MEZCLA PATRON CONCRETERA: **ELEVACIÓN:**

BLOQUE: -VOLUMEN (m3):

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROM EDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-398	26/05/2023	28	15.11	30.04	kg	14023	19.7	
LCE-2023-399	26/05/2023	28	15.03	30.01	kg	14002	19.8	19.7
LCE-2023-400	26/05/2023	28	15.05	30.03	kg	14051	19.8	

MODULO DE ROTURA (Mpa)

1.93

CONVERSIÓN: 1 k N = CONVERSIÓN: 2.2 lb = 101.972 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de serie: ___ N° de Prensa: PC-02 Marca: PINZUAR 364 N° de Certificado: TC - 09355 - 20

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ

LEM-ENGIL-CCE-23-0289

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

LEM-ENGIL SRL

RUC: 20600588924

NORMA APLICADA MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0301

N° DE SOLICITUD: LCE-074-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y

FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: - F'c: 210 kg/cm2

ESTRUCTURA: MEZCLA PATRON MAS 0.18% DE ADICIÓN CONCRETERA: - ELEVACIÓN:

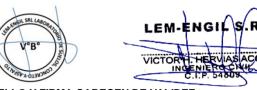
BLOQUE: - VOLUMEN (m3): -

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-595	03/06/2023	28	15.03	30.01	kg	14282	20.2	
LCE-2023-596	03/06/2023	28	15.04	30.02	kg	14344	20.2	20.2
LCE-2023-597	03/06/2023	28	15.07	30.06	kg	14489	20.4	

MODULO DE ROTURA (Mpa)

1.98


CONVERSIÓN : 1 k N = 101.972 kg CONVERSION : 2.2 lb = 1 kg

POTITION	TICADOC	TO BY TO	TECTION	DE ENSAYO
EUUIPUS	USADUS		JECUCION	DE ENSAIU

N° de Prensa: PC-02 Marca: PINZUAR N° de serie: 364 N° de Certificado : TC - 09355 - 2023

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0301

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0304

N° DE SOLICITUD: LCE-075-05-2023

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023	N° GUIA :	-	F'c:	210	kg/cm2
ESTRUCTURA: MEZCLA PATRON MAS 0.65% DE ADICIÓN	CONCRETERA:	-	ELEVACIÓN:		-
BLOQUE: -	VOLUMEN (m3):	-			

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-618	03/06/2023	28	15.02	30.08	kg	15083	21.3	
LCE-2023-619	03/06/2023	28	15.04	30.07	kg	15331	21.6	21.5
LCE-2023-620	03/06/2023	28	15.01	30.03	kg	15287	21.6	

MODULO DE ROTURA (Mpa)

2.08

CONVERSIÓN: 1 k N = 101.972 kg CONVERSIÓN: 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-02 Marca: PINZUAR N° de serie: 364 N° de Certificado: TC - 09355 - 2023

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ

LEM-ENGIL-CCE-23-0304

NORMA APLICADA

MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA TRACCIÓN INDIRECTA DE ESPECIMENES CILINDRICOS DE CONCRETO (ASTM C-496)

FORM-LEM-ENGIL-TRACC-73 REV. 2020

N° DE SOLICITUD: LCE-077-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0307

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 08/05/2023 N° GUIA: 210 F'c: kg/cm2

ESTRUCTURA: MEZCLA PATRON MAS 0.87% DE ADICIÓN **CONCRETERA: ELEVACIÓN:**

BLOQUE: -VOLUMEN (m3):

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	DIAMETRO PROMEDIO(cm)	LARGO PROMEDIO (cm)	UND. DE CARGA	CARGA (kg)	RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)	PROMEDIO DE RESISTENCIA A LA TRACCIÓN INDIRECTA (kg/cm2)
LCE-2023-641	05/06/2023	28	15.11	30.09	kg	15827	22.2	
LCE-2023-642	05/06/2023	28	15.08	30.03	kg	15926	22.4	22.3
LCE-2023-643	05/06/2023	28	15.10	30.01	kg	15920	22.4	

MODULO DE ROTURA (Mpa)

2.17

CONVERSIÓN: 1 k N = 101.972 kg CONVERSIÓN: 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: Marca: PINZUAR N° de serie: N° de Certificado: TC - 09355 - 2023

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0307

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 - San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: lem.engil.laboratorio@hotmail.com / laboratoriocentral@lem-engil.com / proyectos@lem-engil.com WEB.: www.lem-engil.com

LEM-ENGIL SRL

RUC: 20600588924

NORMA APLICADA MÉTODO DE PRUEBA ESTÁNDAR PARA RESISTENCIA A LA FLEXIÓN DEL HORMIGÓN (USANDO UNA VIGA SIMPLE CON CARGA DE TERCER PUNTO)

(ASTM C-78)

FORM-LEM-ENGIL-FLEX-44 REV. 03

N° DE SOLICITUD: LCE-063-04-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0290

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

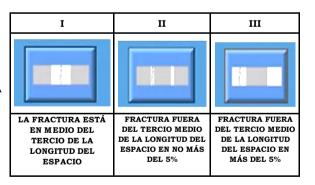
PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fe=210 kg/cm2 ADICIONANDO FIBRAS DE

PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 28/04/2023 N° GUIA: - F'c: 210 kg/cm2


ESTRUCTURA: MUESTRA PATRON CONCRETERA: - ELEVACIÓN:

BLOQUE: - VOLUMEN (m3): -

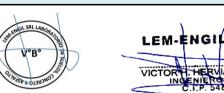
TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	CARGA ('kN)	CARGA (kg)	LARGO (cm)	ANCHO (cm)	ALTO (cm)	MODULO DE ROTURA (kg/cm2)	TIPO DE FRACTURA
LCE-2023-401	26/05/2023	28	-	2767	45.0	15.0	15.0	36.9	I
LCE-2023-402	26/05/2023	28	-	2782	45.0	15.0	15.0	37.1	I
LCE-2023-403	26/05/2023	28	-	2755	45.0	15.0	15.0	36.7	I

TIPO DE FRACTURA

PROMEDIO
MODULO DE ROTURA
(Mpa)

3.6


 $\begin{array}{cccc} \text{CONVERSION}: & 1 & \text{k N =} & 101.972 & \text{kg} \\ \text{CONVERSION}: & 2.2 & \text{lb =} & 1 & \text{kg} \\ \end{array}$

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-02 Marca: PINZUAR N° de serie: 364 N° de Certificado: TC - 09355 - 202

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0290

WEB.: www.lem-engil.com

NORMA APLICADA MÉTODO DE PRUEBA ESTÁNDAR PARA RESISTENCIA A LA FLEXIÓN DEL HORMIGÓN (USANDO UNA VIGA SIMPLE CON CARGA DE TERCER PUNTO)

(ASTM C-78)

FORM-LEM-ENGIL-FLEX-44 REV. 03

APLICADA

N° DE SOLICITUD: LCE-074-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0302

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE

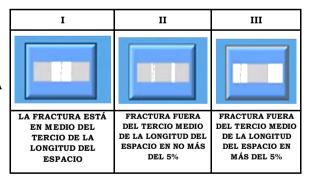
PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: - F'c: 210 kg/cm2

MUESTRA PATRON MAS


ESTRUCTURA: MUESTRA PATRON MAS CONCRETERA: - ELEVACIÓN:

BLOQUE: - VOLUMEN (m3): -

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	CARGA ('kN)	CARGA (kg)	LARGO (cm)	ANCHO (cm)	ALTO (cm)	MODULO DE ROTURA (kg/cm2)	TIPO DE FRACTURA
LCE-2023-598	03/06/2023	28	-	2813	45.0	15.0	15.0	37.5	I
LCE-2023-599	03/06/2023	28	-	2834	45.0	15.0	15.0	37.8	I
LCE-2023-600	03/06/2023	28	-	2845	45.0	15.0	15.0	37.9	I

TIPO DE FRACTURA

PROMEDIO MODULO DE ROTURA (Mpa)

CONVERSIÓN : 1 k N = 101.972 kg CONVERSION : 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-02 Marca: PINZUAR N° de serie: 364 N° de Certificado: TC - 09355 - 202

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

LEM-ENGIL-CCE-23-0302

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.com/

WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA MÉTODO DE PRUEBA ESTÁNDAR PARA RESISTENCIA A LA FLEXIÓN DEL HORMIGÓN (USANDO UNA VIGA SIMPLE CON CARGA DE TERCER PUNTO) (ASTM C-78)

FORM-LEM-ENGIL-FLEX-44 REV. 03

N° DE SOLICITUD: LCE-075-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0305

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE

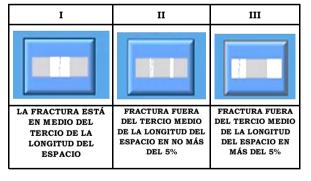
PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

FECHA DE MOLDAJE: 06/05/2023 N° GUIA: - F'c: 210 kg/cm2

ESTRUCTURA: MUESTRA PATRON MAS


CONCRETERA: - ELEVACIÓN: -

BLOQUE: - VOLUMEN (m3): -

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	CARGA ('kN)	CARGA (kg)	LARGO (cm)	ANCHO (cm)	ALTO (cm)	MODULO DE ROTURA (kg/cm2)	TIPO DE FRACTURA
LCE-2023-621	03/06/2023	28	-	3014	45.0	15.0	15.0	40.2	I
LCE-2023-622	03/06/2023	28	-	3001	45.0	15.0	15.0	40.0	I
LCE-2023-623	03/06/2023	28	-	3037	45.0	15.0	15.0	40.5	I

TIPO DE FRACTURA

PROMEDIO
MODULO DE ROTURA
(Mpa)
3.9

CONVERSIÓN: 1 k N = 101.972 kg CONVERSION: 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: PC-02 Marca: PINZUAR N° de serie: 364 N° de Certificado : TC - 09355 - 202

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0305

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.com/

WEB.: www.lem-engil.com

RUC: 20600588924

NORMA APLICADA MÉTODO DE PRUEBA ESTÁNDAR PARA RESISTENCIA A LA FLEXIÓN DEL HORMIGÓN (USANDO UNA VIGA SIMPLE CON CARGA DE TERCER PUNTO) (ASTM C-78)

FORM-LEM-ENGIL-FLEX-44 REV. 03

N° DE SOLICITUD: LCE-077-05-2023

N° DE CERTIFICADO: LEM-ENGIL-CCE-23-0308

SOLICITANTE: JOSEMARIA MILKO SIMBALA CHINGA

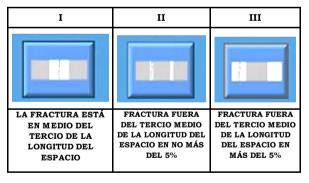
PROYECTO: "EVALUACIÓN DE LAS PROPIEDADES DEL CONCRETO fc=210 kg/cm2 ADICIONANDO FIBRAS DE

PLUMAS DE AVES Y FIBRAS DE POLIPROPILENO RECICLADO, CALLAO-2023"

UBICACIÓN: CALLAO - LIMA

DATOS DEL ESPECIMEN

 FECHA DE MOLDAJE:
 08/05/2023
 N° GUIA:
 F'c:
 210
 kg/cm2


 ESTRUCTURA:
 MUESTRA PATRON MAS 0.87% DE ADICIÓN
 CONCRETERA:
 ELEVACIÓN:

 BLOQUE:
 VOLUMEN (m3):

TRAMO: -

CODIGO DE ESPECIMEN LEM-ENGIL SRL (LCE)	FECHA DE ROTURA	EDAD (DÍAS)	CARGA ('kN)	CARGA (kg)	LARGO (cm)	ANCHO (cm)	ALTO (cm)	MODULO DE ROTURA (kg/cm2)	TIPO DE FRACTURA
LCE-2023-644	05/06/2023	28	-	3212	45.0	15.0	15.0	42.8	I
LCE-2023-645	05/06/2023	28	-	3196	45.0	15.0	15.0	42.6	I
LCE-2023-646	05/06/2023	28	-	3178	45.0	15.0	15.0	42.4	I

TIPO DE FRACTURA

PROMEDIO
MODULO DE ROTURA
(Mpa)

CONVERSIÓN : 1 k N = 101.972 kg CONVERSIÓN : 2.2 lb = 1 kg

EQUIPOS USADOS EN EJECUCIÓN DE ENSAYO

N° de Prensa: <u>PC-02</u> <u>Marca: PINZUAR</u> <u>N° de serie: 364</u> <u>N° de Certificado : TC - 09355 - 202</u>

Observaciones:

LEM-ENGIL SRL FIRMA Y SELLO

VICTORY HERVIAS ACOSTA

ESTE CERTIFICADO SIN SELLO Y FIRMA CARECEN DE VALIDEZ.

LEM-ENGIL-CCE-23-0308

Jr. Los Ingenieros Asoc. Ramón Castilla Mz. F6 Lt. 19 – San Juan de Lurigancho Cel.: 979109925 / 943345511 Email.: <a href="mailto:lem.engil.laboratorio@hotmail.com/laboratoriocentral@lem-engil.com/proyectos@lem-engil.com/

Certificado

Acreditación

La Dirección de Acreditación del Instituto Nacional de Calidad – INACAL, en el marco de la Ley N° 30224, **OTORGA** el presente de Renovación de la Acreditación a:

CORPORACIÓN 2M & N S.A.C.

Laboratorio de Calibración

En su sede ubicada en: Jr. Chiclayo Nº 489 Int. A, distrito del Rímac, provincia Lima, departamento Lima.

Con base en la norma

NTP-ISO/IEC 17025:2017 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Certificados de Calibración con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-06P-22F que forma parte integral del presente certificado llevando el mismo número del registro indicado líneas abajo.

Fecha de Renovación: 17 de febrero de 2021 Fecha de Vencimiento: 16 de febrero de 2025

ALEJANDRA RODRIGUEZ ALEGRÍA

Directora, Dirección de Acreditación - INACAL

Cedula N° : 061-2021-INACAL/DA Contrato N° : 004-2021/INACAL-DA

Registro Nº : LC - 024

Fecha de emisión: 17 de marzo de 2021

El presente cerrificado tiene validez con su correspondiente Alcance de Actuditación y cédula de nortificación dado que el alcance puede estar sujeto a ampliaciones, eclusciones, actualizaciones y suspensiones temporales. El alcance y vajencia debe conformanse en la págua andrewaw macal gob pe/acreditacion/caregitados al monerato de fueror uso del presente cartificado.

La Dirección de Acresistación del INACAL es firmante del Acuerdo de Reconocumiento Multilateral (MLA) de International Accreditation Cooperation (JAAC) e International Accreditation Forum (IAF) y del Acuerdo de Reconocumiento Multio con la International Laboratory Accreditation Cooperation (ILAC).

CERTIFICADO DE CALIBRACIÓN

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de

incertidumbre estándar por el factor de cobertura

k=2. La incertidumbre fue determinada según la

"guía para la Expresión de la incertidumbre en la

magnitud está dentro del intervalo de los valores

determinados con la incertidumbre expandida

con una probabilidad de aproximadamente 95%.

Los resultados son válidos en el momento y en

las condiciones de la calibración. Al solicitante le

corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

Los resultados no deben ser utilizados como una

certificación de conformidad con normas de

producto o como certificado del sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de los perjuicios que pueda

ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. El certificado

de calibración sin firma y sello carece de validez.

del equipo o reglamentaciones vigentes.

de

Generalmente, el valor de la

resulta

que

medición

medición".

calidad

256-CM-M-2022 Área de Metrología

Página 1 de 4

multiplicar

Expediente : 900-09-2022

Solicitante : LEM-ENGIL S.R.L.

Dirección : Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla -

San Juan de Lurigancho - Lima - Perú

Equipo/ Instrumento : BALANZA DE FUNCIONAMIENTO NO AUTOMÁTICO

Marca : OHAUS

Modelo CORPORACION 2M8N SA : COSE6001F

Serie : B615913870

Identificación : BL-LE-12 (*)

Ubicación : Laboratorio de Suelos

Procedencia RACION ZMAN S.A.: No indica

Capacidad máxima : 6000 g

Capacidad mínima 2 g (**)

División de escala (d) : 0,1 g

División de verificación (e) : 1 g (**)

Clase de exactitud (**)

Tipo : Man Sac Corporación : Man Electrónica

Fecha de calibración : 2022-09-19

Lugar 2MAN S A C CORPORACIÓN : MAN Laboratorio de Suelos

LEM-ENGIL S.R.L.

Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San Juan de Lurigancho - Lima - Perú

Método utilizado: Por comparación de las indicaciones de la balanza contra cargas aplicadas de valor conocido(pesas

patrón), según el PC-001 "Procedimiento para la Calibración de Instrumentos de Pesaje de

Funcionamiento No Automático Clase (III) y (IIII) ", 1ra. Edición, Mayo - 2019, DM - INACAL.

2022-09-22 Fecha de emisión

Cód. de Servicio: 01952-A COMPORACION MAN SA COMPOR

Certificado de calibración:

256-CM-M-2022 Página 2 de 4

Condiciones ambientales:

	Inicial	Final
Temperatura °C	RACION 2M 20,7	ACION 2MAN 21,7 CORPORACIO
Humedad Relativa %hr	C CORPO 66,3 2M8N S.A.	62,2

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrológica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración		
Patrones de Referencia a PESATEC	Pesa de 5 kg Clase M1	1324-MPES-C-2021		
Patrones de Referencia a PESATEC	Juego de Pesas de 1 mg a 2 kg Clase M1	0863-MPES-C-2022		

Observaciones:

- Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nº 01952-A y la fecha de calibración.
- (*) La Identificación se encuentra en una etiqueta pegada al equipo
- (**) Valores grabados en la placa de la balanza
- El delta del local proporcionado por el clientes es de: ΔT = 4 °C
- Se realizó una precarga a la balanza antes de comenzar la calibración en 6000 g indicando la balanza 6000,0 g
- No se realizó ningún tipo de ajuste a la balanza antes de su calibración

Cód. de Servicio: 01952-A CORPORACION ZMAN S.A.C. CORP

Certificado de calibración:

256-CM-M-2022 Página 3 de 4

Resultados de medición

Inspección visual							
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE				
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE				
PLATAFORMA	TIENEION 2M8	NIVELACIÓN	TIENES CORPOR				
SISTEMA DE TRABA	NO TIENE	N S					

Ensayo de Repetibilidad

Condiciones Ambientales									
Temperatura °C Inicial	20,7	Final	20,8	ACIO	Humedad Relativa %hr	Inicial	66,3	Final	64,7

(Carga = 3000	g
l(g)	∆L(mg)	E (mg)
3 000,0	50	2M8N S O C CORP
3 000,0	CIÓN 40 N S.A	C. CORF10 ACIÓN 2
3 000,0	CIÓN 40 N S A	C COR 10 ACION 2
3 000,0	COR 50 ACION	2M&N S O.C. CORP
3 000,0	COR 50 ACION	2M&N S.Q.C. CORP
3 000,0	CION 40 N S.A.	C. CORP10 ACION 2
3 000,0	CIÓN 40 N S.A	C. CORP10 ACION 2
3 000,0	40	2M&N S10 CORP
3 000,0	CORI 50 ACIÓN	2M&N S.O.C. CORP
3 000,0	50	C. CORPORACION 2

C	arga = 6000	g		
l(g)	I (g) ∆L(mg)			
5 999,9	60	-110		
6 000,0	ACION50 &N S.A	.C. CORODRAG		
5 999,9	ACIO 50 N S	-100		
5 999,9	COF50RACIO	-100		
5 999,9	cor60racio	√2м8-110		
6 000,0	40 8N S	C CO 10 RAC		
5 999,9	ACIO 50 8N S.A	-100 Ad		
5 999,9	40	-90		
6 000,0	c. cor50ració	1 2M&N OA.C.		
5 999,9	50	-100		

Carga (g)	Emáx Emín. (mg)	e.m.p. (mg)
CIÓN 2M&N 3 000 ORPORACI	OI 2M&N S.A.C. CO10ORACIÓN 2M&N	A.C. CORPOR 3000 ZM&N S.A.C.
6 000 N 2MAN S	120	PORACION ZMAI 3000 CORPORAC

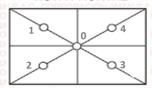
Ensayo de Pesaje

Condiciones Ambientales										
Temperatura °C	Inicial	21,2	Final	21,7	.C. CC	Humedad Relativa %hr	Inicial	63,7	Final	62,2

Carga	CRECIENTES					
(g)	M8	l (g)	∆L (mg)	E(mg)	Ec (mg)	
1,00	OR M8	1,0	70	-20		
2,00	OR.	2,0	. 70° OR	CIÓN-20 N S	A.C. CORPOR	
500,00	OR	500,0	A.C. 060PORA	ción-10 n s.	.c. c10por	
1 200,00	OR	1 200,0	60	-10 NS	10	
2 000,00	M8	2 000,0	60 Mar	SA -10	RACI10 2MR	
2 500,00	M8	2 500,0	DRACI50 2M&N	S.A.C OCORPO	RACI20 2M	
3 000,00	OK M8	3 000,0	БРАС 50 2М8	S.A.C.OORP	RA 20 2M	
3 500,00	OR M8	3 500,0	60	CION-10 NS	RACITO POP	
5 000,00	OR	4 999,9	A.C. C50PORA	CO-100 S	-80	
5 500,00	OR	5 500,0	C C50PORA	CIÓN 20 8N S.	20	
6 000,00	M8 OR	5 999,9	60	-110	-90	

	DECRECIENTES							
l (g)	∆L (mg)	E(mg)	Ec (mg)	(± mg)				
				AC an				
2,0	70	-20	C. CORPOR	1000				
500,0 A	c. cc70 or a	ION -20 N S.	.c. cOrpor	AC 1000 S				
1 200,0	60	-10	10	2000				
2 000,0	50	S.A.C.OORPO	20	2000				
2 500,0	ACIGOMAN	S.A.C-100RPC	RAC10 2M	3000				
3 000,0	60	SA -10	RAC10 2M	3000				
3 500,0	60	-10	10	3000				
5 000,0	50 RA	CIÓN 208N S.	C 20 PO	3000				
5 500,0	. c.50 ORA	CIÓN 208N S.	.c. 20 por	3000				
5 999,9	60	-110	-90	3000				

Cód. de Servicio: 01952-A) N 2MBN S.A.C. CORPORACIÓN 2



Certificado de calibración:

256-CM-M-2022 Página 4 de 4

Ensayo de Excentricidad

VISTA FRONTAL

Condiciones Ambientales

Temperatur	a °C	Inicial	20,8	Final	21,2	Hu	
Posición	Ca	arga	Determinación del error en cero Eo				
de carga	(g)	l (g)	∆L (m	g) Eo (mg)	
LC. COPO ORACIO	N 2M8	N S.A.C. CO	1,0	N 2 M&N 70	C. CORPORA2	0 N 2M8	
.C. CORPORACIO	N 2M&	N S.A.C. CO	RP1,0	N 2M&N 50	C. CORPORA	ON 2M8	
C. COF2 ORACIO	RPOR N 2ME	,00	1,0	50	C. CORPORAC	ON 2M8	
N 2M&N 3.A.C. CO	RPOR N 2M&	ACIÓN 211&N	1,0	70	2M& V S.A.C. 2	20	
N 2M&N 4.A.C. CO	RPOR	ACIÓN 21/18/	1,0	RPDRAC50	2M& V S.A.C.	ORPOR	

	of Abrillation Science	al 63,7				
Determinación del error corregido Ec						
(mg)	E(mg)	Ec (mg)				
60	-10 A	COF10 RAC				
60	N 2M-103.A.C	. COF10RAC				
60	-10	CO-10RAC				
40	-90	-70				
50	RPOROCIÓN	2M&N 0A.C. 0				
	50	PURACIUN ZIVIMIN'S.A.I.				

La lectura corregida del resultado de una pesada:

Rcorregida = R - 0,0000011 R

con una incertidumbre de medición:

$$U_R = 2.\sqrt{0,0051}$$
 $q^2 + 0,00000000027.$ R^2

NOTA

e.m.p: Error máximo permitido considerado para balanzas en uso de funcionamiento no automático de clase de exactitud (III)

- Lectura de la balanza
- E Error encontrado
- E_o Error en cero
- E_c Error corregido
- ΔL Carga incrementada
- R Lectura de la balanza después de la calibración (g)

Fin de Documento

Cód. de Servicio: 01952-A Cód. FT-M-01 Rev. 04

CERTIFICADO DE CALIBRACIÓN

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de

incertidumbre estándar por el factor de cobertura

k=2. La incertidumbre fue determinada según la

"guía para la Expresión de la incertidumbre en la

magnitud está dentro del intervalo de los valores

determinados con la incertidumbre expandida

con una probabilidad de aproximadamente 95%.

Los resultados son válidos en el momento y en

las condiciones de la calibración. Al solicitante le

corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

Los resultados no deben ser utilizados como una

certificación de conformidad con normas de

producto o como certificado del sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de los perjuicios que pueda

ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. El certificado de calibración sin firma y sello carece de validez.

del equipo o reglamentaciones vigentes.

de

Generalmente, el valor de la

resulta

que

medición

medición".

calidad

153-CM-M-2022 Área de Metrología

Página 1 de 4

multiplicar

Expediente : 488A-05-2022

Solicitante : LEM-ENGIL S.R.L.

Dirección : Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla -

San Juan de Lurigancho - Lima - Perú

Equipo/ Instrumento : BALANZA DE FUNCIONAMIENTO NO AUTOMÁTICO

Marca : OHAUS

Modelo CORPORACIÓN 2M&N S.A.: COR31P30

Serie : 8336290406

Identificación : BL-LE-09 (*)

Ubicación : No indica

Procedencia China

Capacidad máxima : 30000 g

Capacidad mínima 20 g (**)

División de escala (d) : 1 g

División de verificación (e): 10 g (**)

Clase de exactitud : III (**)

Tipo : Man Sac Corporación : Man Electrónica

Fecha de calibración : 2022-05-23

Lugar ZMAN S A CORPORACION : MA LEM-ENGIL S.R.L.

Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San Juan de Lurigancho - Lima - Perú

Método utilizado: Por comparación de las indicaciones de la balanza contra cargas aplicadas de valor conocido(pesas

patrón), según el PC-001 "Procedimiento para la Calibración de Instrumentos de Pesaje de

Funcionamiento No Automático Clase (III) y (IIII) ", 1ra. Edición, Mayo - 2019, DM - INACAL.

2022-05-24 Fecha de emisión

Cód. de Servicio: 01717-A CORPORACION MAN SA CORPOR

CERTIFICADO DE CALIBRACIÓN

La incertidumbre reportada en el presente

certificado es la incertidumbre expandida de

incertidumbre estándar por el factor de cobertura

k=2. La incertidumbre fue determinada según la

"guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud

con una probabilidad de aproximadamente 95%.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le

corresponde disponer en su momento la

eiecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

Los resultados no deben ser utilizados como una certificación de conformidad con normas de

producto o como certificado del sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de los perjuicios que pueda

ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. El certificado

de calibración sin firma y sello carece de validez.

del equipo o reglamentaciones vigentes.

está dentro del intervalo de los valores determinados con la incertidumbre expandida

de

resulta

que

040-CM-M-2023 Área de Metrología

Página 1 de 4

multiplicar la

Expediente : 137A-02-2023

Solicitante : LEM-ENGIL S.R.L.

Dirección : Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla -

San Juan de Lurigancho - Lima - Perú

Equipo/ Instrumento : BALANZA DE FUNCIONAMIENTO NO AUTOMÁTICO

Marca CORPORACION ZMAN S : OHAUS

Modelo : R31P30

Serie A C CORPORACIÓN 2M&N S 4: 0 8336290433

Identificación : BL-LE-08 (*)

Ubicación EN SAG CORPORACIÓ: 2M&Laboratorio de Suelos

Procedencia : China

Capacidad máxima : 30000 g

Capacidad mínima : 20 g (**)

División de escala (d) : 1 g

División de verificación (e) : 10 g (**)

Clase de exactitud : III (**)

Tipo ION 2M8N S.A.C. CORPORACIO: 2M Electrónica

Fecha de calibración : 2023-02-10

Lugar Laboratorio de Suelos

LEM-ENGIL S.R.L.

Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San Juan de Lurigancho - Lima - Perú

Método utilizado: : Por comparación de las indicaciones de la balanza contra cargas aplicadas de valor conocido(pesas

patrón), según el PC-001 "Procedimiento para la Calibración de Instrumentos de Pesaje de

calidad

Funcionamiento No Automático Clase (III) y (IIII) ", 1ra. Edición, Mayo - 2019, DM - INACAL.

MORATORIO

2023-02-10 Fecha de emisión Fernando G. Valencia Velasco Jefe de Metrología (Lab 02)

Mirian A. Velasco Navarro Gerente General

Cód. de Servicio: 02240-A CORPORACIÓN ZMAN SA CORPORACIÓN ZMAN SA CORPORACIÓN ZMAN SA CORPORACIÓN ZMAN SA CÓD. FT-M-01 Rev. 04

Certificado de calibración:

040-CM-M-2023 Página 2 de 4

Condiciones ambientales:

	Inicial	Final
Temperatura °C	S C CORPO 27,8 I ZMAN S A	CORPORACI(28,28N S A C. COR
Humedad Relativa %hr	C CORPO 68,3 2MAN S A	CORPORACI 61,2 N S A C. COR

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrologica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Juego de Pesas de 1 g a 2 kg Clase M2	231-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Pesas de 5 kg Clase M2	300-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Pesas de 10 kg Clase M2	299-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Pesas de 20 kg Clase M2	298-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Juego de Pesas de 100 mg a 500 mg Clase M2	082-CM-M-2022

Observaciones:

- Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nº 02240-A y la fecha de calibración.
- (*) La Identificación se encuentra en una etiqueta pegada al equipo
- (**) Valores grabados en la placa de la balanza
- El delta del local proporcionado por el clientes es de: ΔT = 8 °C
- Se realizó una precarga a la balanza antes de comenzar la calibración en 30 000 g indicando la balanza 30 000 g
- No se realizó ningún tipo de ajuste a la balanza antes de su calibración

Certificado de calibración:

040-CM-M-2023 Página 3 de 4

Resultados de medición

Inspección visual							
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE				
OSCILACIÓN LIBRE	TIENEION 2M&N	CURSOR	NO TIENE PORA				
PLATAFORMA	TIENE	NIVELACIÓN	TIENE				
SISTEMA DE TRABA	NO TIENE	(C)					

Ensayo de Repetibilidad

Condiciones Ambientales									
Temperatura °C Inicial	27,8	Final	28,2	A.C. C	Humedad Relativa %hr	Inicial	68,3	Final	64,7

C	Carga = 15000 g							
l(g)	∆L(mg)	E (mg)						
15 001	800	700						
15 001 s A	900	2M8N 600 CORF						
15 001	800	C CO 700 CON						
15 001	900	600						
RAC 15 001 S A	900	2M8N 600 CORF						
15 001	800	700						
M 15 001	ACIO 800 N S	C. COR700 ACIÓN :						
15 000	100	400						
RAC 15 001 S.A.	800	1 2M8N 700 CORF						
15 001	900	600						

Carga = 30000 g							
l(g)	∆L(mg)	E (mg)					
30 000	200	300					
30 000	400	2M8N 100					
30 000	600 SA	CO-100					
30 000	500	C CORPORACIO					
30 000	600	2M8N-100					
30 000	500	2M8N S 0 C C					
30 000	400 SA	COR100					
30 000	500	CORPORACIO					
30 000	CO 500 CO	2M&N SQ.C. C					
30 000	400	100					

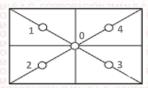
Carga (g)	Emáx Emín. (mg)	e.m.p. (mg)
RACIÓN 2M8/15/000 ORPORAC	CIÓN 2M&N.S.A.C, C300)RACIÓN 2M&N S	A.C. CORPOR/20000 &N S.A.C. COR
30 000	400	30000

Ensayo de Pesaje

Condiciones Ambientales								
Temperatura °C Inicial 28,2 Final 28,2 Humedad Relativa %hr Inicial 62,8 Final 61,2						61,2		

Carga	PC 2N	CRECIENTES						
(g)	[] I (g)	∆L (mg)	E(mg)	Ec (mg)				
8N 10,0co	PORACIO10M&N S	A C 600 POR	100 NS					
20,0	20	600	-100	ORACION ZM&				
1 500,0	2 1 500 R	ORA500 2M&	NS.A.COCORP	DRAC1002M8				
5 000,0	5 000	ORA500 2M8	N S.A. COCRP	100				
10 000,0	10 000	500	CIÓN O LORD	100				
12 000,0	12 000	A C 400 POR	CION100 N S	.c. 200 or				
15 000,0	15 000	900	-400	-300				
20 000,0	20 000	ORA800 2M8	-300	-200				
25 000,0	25 000	ORA 500 2M8	N S.A. OCORP	100				
27 000,0	27 000	500	CION OARN S	100				
30 000,0	RA 30 000	A.C. 500 POR	ación 0 /8/18	A.C. 100°OR				

	e.m.p.			
l (g)	∆L (mg)	E(mg)	Ec (mg)	(± mg)
. r - ra apont		A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.0	Old Strong Parkers
20	600	-100	C COPORIO	10000
1 500	400	A 100	A 200 M	10000
5 000	400	100	200	10000
10 000	500	ION 2NON S.A	100	20000
12 000	400 RAC	ON 100 S.A	200 R	20000
15 001	800	700	800	20000
20 000	600	A C-100 PO	ACIÓO 2M&II	20000
25 000	400	100	200	30000
27 000	500	ION 2NON S.A	100	30000
30 000	C500RAC	IÓN 2NON S.A	c. c100cr	30000 A



Certificado de calibración:

040-CM-M-2023 Página 4 de 4

Ensayo de Excentricidad

VISTA FRONTAL

Condiciones Ambientales

Temperatur	a °C	Inicial	28,1	Final	28,2	S.A.C. CC	Hun	
Posición	Ca	arga	Determinación del error en cero Eo					
de carga	(g)	I (g)	∆L (m	g)	Eo (mg	1)	
S.A.C. CORPORAC	IÓN 2N	18N S.A.C. C	ORP10AC	ON 2M8/800	C. COR	-300	2M8N	
ION 2M&N S.A.C.	CORPO	RACIÓN EME	10	600	C COR	-100	PORA	
IÓN 2M&2 S.A.C.	CORP1	0,0 ON EM	N 510	OR 600	2M8N :	A -100	PORA	
ION 2M8 3 S.A.C.	CORPO	RACIÓN 2M8	10	500	2M8 N 3	SACOOR	PORA	

10

dad Relativa	a %hr 📗 lı	nicial 63	,5 Fin	al 62,8
Carga	De	eterminaciór corregid		
(g)	l (g)	∆L (mg)	E(mg)	Ec (mg)
A.C. CORPORAC	10 000	300 ON	200	or 500 o
N 2M&N S.A.C. C	10 000	500	0 0 0 N 2	100
10 000,0	10 000	2M8 N S 500 OF	PORA O ÓN 21	I&N \$100 CO
A.C. CORFORAC IN 2M&N S.A.C. (10 000	200	300	300
A.C. CORPORAC	10 000	200	300	600

La lectura corregida del resultado de una pesada:

Rcorregida =
$$R - 0,0000031 R$$

800

con una incertidumbre de medición:

$$U_R = 2 \cdot \sqrt{0.19} \quad g^2 + 0.00000000067 \cdot R^2$$

-300

NOTA

e.m.p: Error máximo permitido considerado para balanzas en uso de funcionamiento no automático de clase de exactitud (III)

- I Lectura de la balanza
- E Error encontrado
- Eo Error en cero
- E_c Error corregido
- ΔL Carga incrementada
- R Lectura de la balanza después de la calibración (g)

Fin de Documento

Certificado de calibración:

153-CM-M-2022 Página 2 de 4

Condiciones ambientales:

	Inicial	Final
Temperatura °C	21,3 CORPO	ACION 2MAN 21,6 CORPORACIO
Humedad Relativa %hr	66,8 2M8N S.A.	65,2

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrologica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Juego de Pesas de 1 g a 2 kg Clase M2	094-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Pesas de 5 kg Clase M2	092-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Pesas de 10 kg Clase M2	109-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Pesas de 20 kg Clase M2	091-CM-M-2022
Patrones de Referencia a CORPORACIÓN 2M & N S.A.C.	Juego de Pesas de 100 mg a 500 mg Clase M2	082-CM-M-2022

Observaciones:

- Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nº 01717-A y la fecha de calibración.
- (*) La Identificación se encuentra en una etiqueta pegada al equipo
- (**) Valores grabados en la placa de la balanza
- El delta del local proporcionado por el clientes es de: ΔT = 6 °C
- Se realizó una precarga a la balanza antes de comenzar la calibración en 30 000 g indicando la balanza 30 000 g
- No se realizó ningún tipo de ajuste a la balanza antes de su calibración

Cód. de Servicio: 01717-A Cód. FT-M-01 Rev. 04

Certificado de calibración:

153-CM-M-2022 Página 3 de 4

Resultados de medición

Inspección visual						
AJUSTE DE CERO	TIENE	AC ESCALA	NO TIENE			
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE			
PLATAFORMA	TIENE ION 2M8	NIVELACIÓN	TIENE: CORPORA			
SISTEMA DE TRABA	NO TIENE	IN S				

Ensayo de Repetibilidad

Condiciones Ambientales									
Temperatura °C	Inicial	21,3	Final	21,4 CRAC	Humedad Relativa %hr	Inicial	66,8	Final	63,7

С	arga = 1500	0 g		
l(g)	∆L(mg)	E (mg)		
15 000	900	-400		
14 999	CON 200 S.A	C. COR-700 CIÓN 2		
14 999	200	-700		
14 999	200	2M8N -700 CORP		
14 999	200	2M&N-700 CORP		
14 999	300	-800 ON		
14 999	200	C COF-700 CON 2		
15 000	900	-400		
15 000	0.900	12M8N-400 CORP		
15 000	900	-400		

С	arga = 30000) g
l(g)	∆L(mg)	E(mg)
30 000	900	-400
30 000	ACIO 900 N S A	-400
30 000	1 000	-500
30 000	1 000	-500
30 000	co 900 Acio	-400
30 000	900	-400
30 000	ACIO 900 N S A	-400
30 000	900	-400
30 000 A	co 900 ACIO	√2ма-400
30 000	900	-400

Carga (g)	Emáx Emín. (mg)	e.m.p. (mg)
CIÓN 2M8N 15.000 RPORACIO	1 2M&N S.A.C. C(400)RACIÓN 2M&N	A.C. CORPOR20000M&N S.A.C. C
30 000	100	30000

Ensayo de Pesaje

Condiciones Ambientales									
Temperatura °C Inicial	21,4	Final	21,6	. CO	Humedad Relativa %hr	Inicial	64,6	Final	65,2

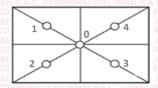
Carga	M8
(g)	M8
10,0	ORA M&N
20,0	ORA
500,0	ORA
2 000,0	ORA
5 000,0	M&M
10 000,0	M8N
15 000,0	M8N
20 001,0	ORA M&A
25 001,0	ORA
27 001,0	ORA
30 001,0	M8N ORA

Cód. de Servicio: 01717-A

CRECIENTES						
l (g)	∆L (mg)	E (mg)	Ec (mg)			
10	600	-100				
20 N S	500	CIÓN 2018N S.	100			
00 500 N S	.c. 500 ora	CIÓN 20 &N S.	. 100			
2 000	700	-200	-100			
5 000	700	-200	-100			
10 000	800 M&N	SA-300 RP	RA-200 M			
14 999	200	-700	-600			
20 000	800	-1 300	-1 200			
25 000	700 OR	-1 200	-1 100			
27 000	800	-1 300	-1 200			
30 000	900	-1 400	-1 300			

	DECREC	CIENTES	3	e.m.p.
I (g)	∆L (mg)	E(mg)	Ec (mg)	(± mg)
20 8	500	CIÓN 208N S	100	10000
2500 A	600 RA	-100 s	A.C. CORPOR	10000
2 000	700	-200	-100	10000
5 000	800	-300	-200	10000
10 000	AC 900/8N	SA-400RP	-300	20000
14 999	200	-700	-600	20000
19 999	100	-1 600	-1 500	20000
25 000	800 RA	-1 300	-1 200	30000
27 000	800	-1 300	-1 200	30000
30 000	900	-1 400	-1 300	30000

Cód. FT-M-01 Rev. 04



Certificado de calibración:

153-CM-M-2022 Página 4 de 4

Ensayo de Excentricidad

VISTA FRONTAL

Condiciones Ambientales

Temperatura	a °C Inio	cial 21,4	Final 21	,4	Humedad Relativ	a %hr In	icial 63	,7 Fin	al 64,6
Posición	Carga	Det	erminación de en cero Ed		Carga Determinación del error corregido Ec			J. CORPORACI	
de carga	(g)	l (g)	∆L (mg)	Eo (mg) (g)	l (g)	∆L (mg)	E(mg)	Ec (mg)
C. COPO ORACIC	N 2M&N S.A.	CORPC10CIC	600	-100	M&N S A.C. CORPORA	9 999	200	-700	-600
C. CORPORACIÓ	N 2M&N S.A.	c corpo10cio	N 2 M&N 600	-100	M&N S A.C. CORPORA	10 000	800	-300	-200
C. COF2 ORACIO	10,0	c. corpo10	700	-200	10 000,0	10 000	900	-400	-200
1 2M&N 3.A.C. CC	RPORACIÓN N 2M&N S A	2 10	500	N S.A.C. OORP	ORACION 2M&N S.A.C.	9 999	200	-700	-700
1 2M&N 4 A.C. CC	RPORACIÓN	21 8N S.A10 CO	600	-100	ORACION 2M&N S.A.C.	10 000	800	-300	-200

Carga	Determinación del error corregido Ec						
(g) I(g) ΔL (mg) E(mg) Ec (
A.C. CORPORA	9 999	200	-700	-600			
A.C. CORPORA	10 000	800	-300 A	-200			
10 000,0	10 000	900	-400	-200			
ON 2M&N S.A.C	9 999	200	-700	-700			
ON 2M&N S.A.C	10 000	800	-300	-200			
Error máxin	no permitido : ±	18N S.A.(200	00 mg	2M&N S.A.C. C			

La lectura corregida del resultado de una pesada:

Rcorregida =
$$R + 0,000041 \cdot R$$

con una incertidumbre de medición:

$$U_R = 2.\sqrt{0.20} \quad g^2 + 0.000000000 . R^2$$

NOTA

e.m.p: Error máximo permitido considerado para balanzas en uso de funcionamiento no automático de clase de exactitud (III)

- Lectura de la balanza
- E Error encontrado
- E_o Error en cero
- Error corregido Ec
- ΔL Carga incrementada
- Lectura de la balanza después de la calibración (g)

Fin de Documento

Cód. de Servicio: 01717-A Cód. FT-M-01 Rev. 04

CERTIFICADO DE CALIBRACIÓN

La incertidumbre reportada en el presente

incertidumbre estándar por el factor de cobertura

k=2. La incertidumbre fue determinada según la "guía para la Expresión de la incertidumbre en la

medición". Generalmente, el valor de la magnitud

determinados con la incertidumbre expandida con

Los resultados son válidos en el momento y en las

condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución

de una recalibración, la cual está en función del

uso, conservación y mantenimiento del equipo o

Los resultados no deben ser utilizados como una certificación de conformidad con normas de

producto o como certificado del sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados. El certificado de

calibración sin firma y sello carece de validez.

una probabilidad de aproximadamente 95%.

resulta

certificado es la incertidumbre

aue

dentro

reglamentaciones vigentes.

calidad

medición

291-CT-T-2022

Área de Metrología

de

del intervalo de los valores

Página 1 de 5

expandida de

multiplicar

Expediente : 900-09-2022

Solicitante : LEM-ENGIL S.R.L.

Dirección RECRACION 2MAN S: Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San

Juan de Lurigancho - Lima - Perú

Equipo CORPORACIÓN 2M&N S.A.C. HORNO

Marca 2M8N S.A.C. CORPORACI: N 2MYU FENG

Modelo CORPORACIÓN 2M8N S: C STHX-2A

Serie Name SAC CORPORAC : Name 11003

Identificación : HN-LE-02 (*)

Ubicación : Laboratorio de Suelos (**)

Procedencia : No indica

Tipo de Ventilación : Forzada

Nro. de Niveles : 2

Alcance del Equipo : 50 °C a 300 °C (***)

Características Técnicas del Controlador del Medio Isotermo

Descripción	TERMÓMETRO CONTROLADOR			
Marca / Modelo	C CORPORACIÓN 2M8 AutComp / TCD ON 2M8M S.A.C. CORP.			
Alcance de indicación 2M8N S A	C. CORPORACIÓN 2M&N 0 °C a 300.°C CIÓN 2M&N S.A.C. CORPO			
Resolución	C. CORPORACIÓN 2MBN S.A. (**ORPORACIÓN 2MBN S.A.C. CORPORACIÓN 2MBN 2MBN S.A.C. CORPORACIÓN 2MBN S.A.C. CORPORACIÓN 2MBN S.A.C. CORPORACIÓN 2MBN S.A.C			
Tipo PORACIÓN 2M&N S.A.C. CORPO	ACIÓN 2M&N S.A.C. CORPOF Digital M&N S.A.C. CORPORACIÓN 2			
Identificación 2M&N S.A.C. CORPO	RACIÓN 2M&N S.A.C. CORPONO INDICA &N S.A.C. CORPORACIÓN 2			

Fecha de Calibración : 2022-09-19

Lugar de Calibración : Laboratorio de Suelos - LEM-ENGIL S.R.L.

Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San Juan de Lurigancho - Lima - Perú

Método utilizado: Por comparación directa siguiendo el procedimiento, PC-018-"Procedimiento de Calibración o Caracterización

de Medios Isotermos con aire como medio termostático" SNM-INDECOPI (Segunda Edición) - Junio 2009.

2022-09-21 Fecha de emisión

Cód. de Servicio: 01953-A ON 2MAN S.A.C. CORPORACIÓN 2MAN S.A.C. CORPORACIÓN 2MAN S.A.C. CORPORACIÓN 2MAN S.A.C. CORPORACIÓN Cód. FT-T-03 Rev. 03

Certificado de Calibración 291-CT-T-2022

Página 2 de 5

Condiciones ambientales:

	Inicial	Final
Temperatura °C	RPORA 19,02M&N S.A.C	CORPORA 20,0 MSN SAC
Humedad Relativa %hr &N S A 00	DRPORAC 63 I 2M&N S.A.C	CORPORACI61 2M&N S.A.C.

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrológica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de Referencia CORPORACIÓN 2M & N S.A.C.	Termómetro Multicanal digital con doce termopares Tipo K con incertidumbres del orden desde 0,14 °C hasta 0,16 °C.	188-CT-T-2022
Patrones de Referencia a SAT	Termohigrómetro Digital con incertidumbre de U = 0,7 °C / 2,2 %hr	LT-0493-2022
Patrones de Referencia a ELICROM	Cronómetro Digital con exactitud 0,0012 % y incertidumbres de U = 0,00091 s a 0,080 s	CCP-0981-001-22
Patrones de Referencia a METROIL	Cinta Métrica Clase II de 0 m a 5m con resolución de 1 mm y con incertidumbre de U = 0,9 mm	L-0801-2021

Observaciones:

- Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nº 01953-A y la fecha de calibración.
- (*) Código indicado en una etiqueta adherida al equipo.
- (**) Dato proporcionado por el solicitante.
- (***) Dato tomado de la pagina web del fabricante.
- Los resultados obtenidos corresponden al promedio de 31 lecturas por punto de medición considerado, luego del tiempo de estabilización.
- Las lecturas se iniciaron luego de un tiempo de pre-calentamiento y estabilización de 2 h 40 min
- La calibración se realizó con 100% de la carga típica.
- · El tipo de carga que se empleó fueron envases metalicos con material
- El esquema de distribución y posición de los termopares en los puntos de medición se muestra en la página 5
- Las Temperaturas convencionalmente verdaderas mostradas en los resultados de medición son las de la Escala Internacional de Temperatura de 1990 (International Temperature Scale ITS-90)
- Para la temperatura de trabajo 110 °C ± 5 °C (**)

Durante la calibración y bajo las condiciones en que ésta ha sido hecha , el medio isotermo CUMPLE con los límites especificados de temperatura .

Se programó el controlador de temperatura en 110,3 °C para la temperatura de trabajo

El promedio de temperatura durante la medición fue 109,67 °C

La máxima temperatura detectada fue 114,16 °C y la mínima temperatura detectada fue 105,13 °C

Cód. de Servicio: 01953-A Cód. FT-T-03 Rev. 03

Certificado de Calibración 291-CT-T-2022 Página 3 de 5

Resultados de medición:

Temperatura de Calibración: 110 °C ± 5 °C

Tiempo	Term. Del equipo			Indicacio	ones correç	jidas de los	s sensores o	expresado	s en (°C)			T. prom	Tmax-Tmi
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
00	110,3	108,82	110,29	109,30	106,30	108,86	108,64	114,01	113,83	105,13	112,01	109,72	8,88
02	110,3	108,82	110,19	109,20	106,55	108,81	108,59	114,01	113,68	105,18	112,26	109,73	8,83
04	110,4 SN	108,92	110,24	109,25	106,50	108,86	108,59	114,16	113,63	105,48	111,28	109,69	8,68
06	110,3	108,87	110,24	109,25	106,64	108,81	108,54	114,06	113,78	105,13	109,86	109,52	8,93
08 A	110,3	108,87	110,29	109,35	106,55	108,86	108,64	114,11	113,93	105,72	111,52	109,78	8,39
10	110,2	108,87	110,34	109,35	106,50	108,96	108,74	114,06	113,58	105,33	112,21	109,79	8,73
12	110,3	109,02	110,29	109,25	106,55	108,86	108,74	114,01	113,73	105,23	110,25	109,59	8,78
18 14 A	110,3	108,82	110,19	109,20	106,30	108,81	108,69	114,01	113,93	105,38	109,91	109,52	8,63
16	110,3	108,87	110,29	109,35	106,64	108,81	108,59	114,16	113,73	105,28	112,21	109,79	8,88
18	110,4 N	108,97	110,29	109,30	106,50	108,81	108,54	114,16	113,58	105,13	110,20	109,55	9,03
20	110,3	108,87	110,24	109,30	106,60	108,81	108,54	114,06	113,93	105,23	112,26	109,78	8,83
18 22 A	110,3	108,92	110,24	109,25	106,60	108,81	108,64	114,06	113,73	105,13	112,16	109,75	8,93
24	110,3	108,87	110,29	109,35	106,55	108,81	108,69	114,16	113,83	105,28	110,01	109,58	8,88
26	110,3	108,82	110,24	109,30	106,55	108,86	108,74	114,01	113,83	105,67	111,57	109,76	8,34
28	110,3	108,87	110,34	109,35	106,30	108,86	108,74	114,11	113,88	105,52	112,21	109,82	8,58
30	110,3	108,87	110,24	109,30	106,55	108,96	108,69	114,11	113,83	105,57	110,15	109,63	8,54
32	ACI 110,3 8N	108,92	110,24	109,20	106,55	108,81	108,74	114,01	113,58	105,13	110,20	109,54	8,88
34	110,2	109,02	110,29	109,30	106,55	108,91	108,74	114,16	113,83	105,72	110,15	109,67	8,44
18 36 A	110,3	108,87	110,29	109,25	106,64	108,96	108,69	114,11	113,73	105,52	110,10	109,62	8,58
38	110,3	108,82	110,24	109,30	106,50	108,96	108,64	114,01	113,93	105,13	112,06	109,76	8,88
40	110,3	108,82	110,24	109,30	106,60	108,86	108,69	114,11	113,78	105,43	111,62	109,74	8,68
42	110,3	108,87	110,19	109,30	106,50	108,81	108,59	114,01	113,58	105,18	110,10	109,51	8,83
44	110,3	108,97	110,34	109,35	106,50	108,86	108,54	114,01	113,73	105,33	111,87	109,75	8,68
46	110,4	108,92	110,29	109,35	106,30	108,86	108,59	114,11	113,88	105,23	110,69	109,62	8,88
48	110,3	108,82	110,29	109,35	106,55	108,91	108,64	114,11	113,68	105,23	112,26	109,78	8,88
18 50 A	110,3	108,87	110,29	109,35	106,40	108,96	108,59	114,16	113,93	105,28	110,74	109,66	8,88
52	110,3	109,02	110,34	109,20	106,69	108,91	108,69	114,11	113,78	105,13	111,62	109,75	8,98
54	110,3	108,87	110,34	109,30	106,50	108,86	108,74	114,06	113,58	105,72	111,91	109,79	8,34
56	110,2	108,87	110,19	109,30	106,60	108,86	108,74	114,06	113,78	105,52	110,30	109,62	8,54
58	110,3	108,87	110,29	109,25	106,64	108,81	108,59	114,06	113,73	105,28	110,50	109,60	8,78
60	110,3	108,92	110,29	109,30	106,30	108,81	108,54	114,01	113,68	105,18	109,91	109,49	8,83
. PROM	110,3	108,89	110,27	109,30	106,51	108,86	108,65	114,08	113,76	105,34	111,10	109,67	CORPOR
г.мах	110,4	109,02	110,34	109,35	106,69	108,96	108,74	114,16	113,93	105,72	112,26	DRACION .	
Γ.MIN	110,2	108,82	110,19	109,20	106,30	108,81	108,54	114,01	113,58	105,13	109,86	DRACIÓN :	
DTTRPOF	ACIO 0,2 M&N	0,20	0,15	0,15	0,39	0,15	0,20	0,15	0,35	0,59	2,40	18N S.A.C	

Parámetro	Valor (ºC)	Incertidumbre Expandida (°C)
Máxima Temperatura Medida	114,16	0,57
Mínima Temperatura Medida N.S.A.C. CORPORACIÓN 2M&N.S.A.C.	CORPORACION 2M& 105,13 CORPORA	CIÓN 2M8N S.A.C. 0,46 ORACIÓN 2M8N S.A.
Desviación de Temperatura en el Tiempo	ACION 2M&N S A.C. COF 2,40 ACION 2 I&N	S.A.G. CORPORACO,05 2M&N S.A.C. CORPOR
Desviación de Temperatura en el Espacio AMANISTA CORPORA	ACIÓN 2M&N S A.C. COF8,74 ACIÓN 21 I&N	S.A.C. CORPORACO,70 2M&N S.A.C. CORPOR
Estabilidad Medida (±)	CORPORACION 2M&N 1,20 CORPURA	CIÓN 2M&N S.A.C. 0,03 ORACIÓN 2M&N S.A.
Uniformidad Medida ON 2MAN S.A.C. CORPORACION 2MAN S.A.C.	CORPORACION 2MAN 9,03 CORPURA	CIÓN 2M&N S A C 0,70 PORACIÓN 2M&N S A

T.PROM: Promedio de la temperatura en una posición de medición durante el tiempo de calibración.

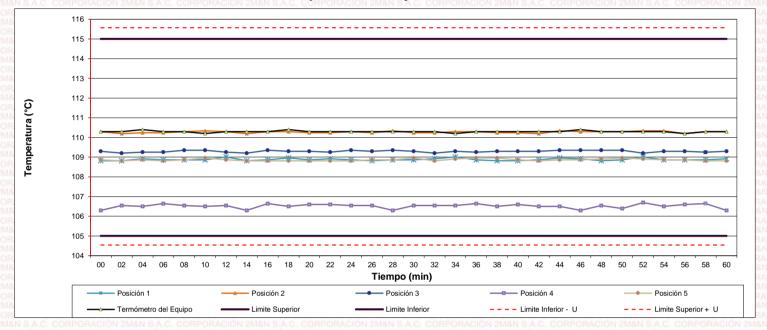
Tprom: Promedio de las temperaturas en las diez posiciones de medición en un instante dado.

T.MAX: Temperatura máxima. T.MIN: Temperatura mínima.

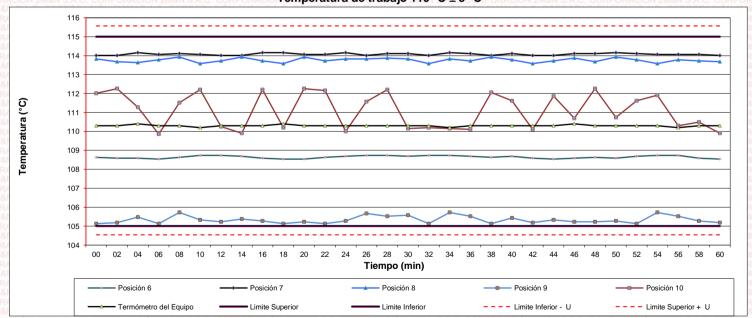
DTT: Desviación de temperatura en el tiempo.

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.


Incertidumbre de las indicaciones del termómetro propio del medio isotermo. 0.06 °C.

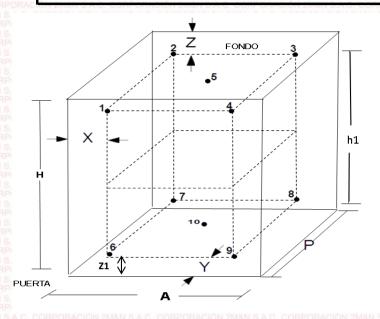
Cód. de Servicio: 01953-A CORPORACIÓN 2MAN SA CORPORACIÓN 2MAN SA



Certificado de Calibración 291-CT-T-2022 Página 4 de 5

Distribución de la temperatura en volumen interno del equipo Temperatura de trabajo 110 °C ± 5 °C

Distribución de la temperatura en volumen interno del equipo Temperatura de trabajo 110 °C ± 5 °C


Cód. de Servicio: 01953-A ON 2MBN S.A.C. CORPORACIÓN 2MBN S.A.C. CORPORACIÓN 2MBN S.A.C. CORPORACIÓN 2MBN S.A.C. CORPORACIÓN Cód. FT-T-03 Rev. 03

Certificado de Calibración 291-CT-T-2022 Página 5 de 5

Distribución de los sensores en el volumen interno del equipo

Dimensiones internas de la cámara

A= 55,0 cm

P= 44,0 cm

H= 55,0 cm

Ubicación de los sensores

X= 6,0 cm **Z**= 12,0 cm

Y= 4,5 cm Z1= 9,5 cm

Distancias entre planos

h1= 33,5 cm

Ubicación de parrillas durante la calibración:

Distancia de la parrilla superior a: 31,5 cm por encima de la base interna. Distancia de la parrilla Inferior a: 11,0 cm por encima de la base interna.

NOTA

- Los sensores 5 y 10 están ubicados en el centro de sus respectivos niveles .
- Los sensores del 1 al 5 están ubicados a 11,5 cm por encima de la parrilla superior.
- Los sensores del 6 al 10 están ubicados a 1,5 cm por debajo de la parrilla inferior.

Fotografía del Interior del Equipo

FIN DEL DOCUMENTO

Cód. de Servicio: 01953-A Cód. FT-T-03 Rev. 03

CERTIFICADO DE CALIBRACIÓN 042-CT-T-2023

La incertidumbre reportada en el presente

certificado es la incertidumbre expandida de

incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la

"Guía para la Expresión de la incertidumbre en la

medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores

determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95%.

Los resultados son válidos únicamente para el instrumento calibrado en el momento y en las

condiciones de la calibración. Al solicitante le corresponde disponer en su momento la

ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento

Los resultados no deben ser utilizados como una

certificación de conformidad con normas de producto o como certificado del Sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de los perjuicios que pueda

ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados

El certificado de calibración sin firma y sello

de la calibración aquí declarados.

carece de validez.

del equipo o reglamentaciones vigentes.

que resulta de

medición

Calidad

Área de Metrología

Página 1 de 2

multiplicar la

Expediente : 137B-02-2023

Solicitante : LEM-ENGIL S.R.L.

Dirección : Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla -

San Juan de Lurigancho - Lima - Perú

Equipo/ Instrumento : TERMÓMETRO DE INDICACIÓN DIGITAL

Marca : ThermoLab

Modelo REPORACION 2MAN S.A.: CO TP101

Serie : No indica

Identificación : 100-TT (*)

Ubicación : No indica

Procedencia : No indica

Intervalo de indicación : -50 °C a 300 °C (*)

Resolución : 0,1 °C

Elemento Sensor : No indica

Fecha de calibración : 2023-02-15

Lugar: ORPORACIÓN 2M8N SA: Caboratorio 01 - CORPORACIÓN 2M & N S.A.C.

Jr. Chiclayo Nro. 489, Int A - Rímac - Lima.

Método utilizado: : Por comparación directa siguiendo el procedimiento INDECOPI-SNM PC-017 "Procedimiento para la

Calibración de Termómetros Digitales" (2da Edición Diciembre 2012).

ÁREA METROLOGÍA

2023-02-20 Fecha de emisión

Cód. de Servicio: 02245-A CORPORACIÓN 2MAN S.A.C. CORP

Certificado de calibración 042-CT-T-2023 Página 2 de 2

Condiciones ambientales:

Temperatura °C	21,1 °C ± 1,7 °C
Humedad Relativa %hr	51,9 %hr ± 3,2 %hr

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrológica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
Patrones de Referencia al DM-INACAL	Dos termómetros Digitales con 2 sensores de platino con incertidumbres del orden desde 0,016 °C hasta 0,07 °C .	AN S.A.C. CORPORACION 2MAN S.A.C. CORPORACIO

Instrumentos Auxiliares

Medidor de Condiciones ambientales LT-0904-2022

Observaciones:

- · Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nº 02245-A y la fecha de calibración.
- Las temperaturas convencionalmente verdaderas mostradas en los resultados de medición son las de la Escala Internacional de Temperatura de 1990 "International Temperature Scale ITS-90
- (*) Datos grabados al indicador del instrumento de medición.

Resultados de medición:

	Indicación Termómetro (°C)	Corrección (°C)	TCV (°C)	Incertidumbre (°C)	
DRP SN2	ORACION 2M8N S 9,4 CORPORACION 2M	0,60	10,00	0,14 CORPORAL	
PRP	oración 2M&n 524,7 corporación 2M	N S.A.C. C 0,30 RACIÓN 2	48M S.A25,00 PORAC	IÓN 2M&N :0,14 CORPORAC	
ORP	ORACIÓN 2MAN 34,7 CORPORACIÓN 2M	0,30 RACION 2	35,00	ION 2MAN 0,14 CORPORA	

La Temperatura Convencionalmente Verdadera (TCV) resulta de la relación: TCV = Indicación del termómetro + Corrección

Nota

- La profundidad de inmersión del sensor fue de aproximadamente 7 cm
- El tiempo de estabilización fue de aproximadamente 5 min

Fin del documento

Cód. de Servicio: 02245-A CORPORACION 2MAN S.A.C. CORP

CERTIFICADO DE CALIBRACIÓN

certificado es la incertidumbre expandida de

incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la

"quía para la Expresión de la incertidumbre en la

medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores

determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95%.

Los resultados son válidos en el momento y en

las condiciones de la calibración. Al solicitante le

corresponde disponer en su momento la ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

del instrumento de medición o reglamentaciones

Los resultados no deben ser utilizados como una

certificación de conformidad con normas del producto o como certificado del sistema de

CORPORACIÓN 2M & N S.A.C. no

uso

responsabiliza de los perjuicios que pueda

instrumento, ni de una incorrecta interpretación de los resultados de la calibración

El certificado de calibración sin firma y sello

inadecuado

de

vigentes.

calidad

ocasionar el

carece de validez.

declarados.

de

que resulta

008-CP-2023

Área de Metrología

Página 1 de 2 La incertidumbre reportada en el presente

multiplicar

Expediente 137B-02-2023

Solicitante LEM-ENGIL S.R.L.

Dirección Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón

Castilla - San Juan de Lurigancho - Lima - Perú

Equipo / Instrumento MANÓMETRO

FORNEY Marca

Modelo No indica

Serie 0554

Identificación No indica

Ubicación No indica

Procedencia No indica

Intervalo de indicación 0 psi a 15 psi

Resolución 5 psi

Clase de exactitud No indica

Conexión / Rosca Rosca 1/4 NPT

Posición de trabajo Vertical

Diámetro de caja 11 cm

Aire Fluido de ensavo

Fecha de calibración

Lugar

2023-02-16

Laboratorio 01 - CORPORACIÓN 2M & N S.A.C.

Jr. Chiclayo 489 Int. A - Rímac - Lima - Perú

Método utilizado Se tomó como referencia el Procedimiento PC-004: "Procedimiento de Calibración de

instrumentos de medición de presión relativa con clase de exactitud igual o mayor a 0,05 %F.S.",

Edición 03, 2019, del DM-INACAL,

2023-02-21 Fecha de emisión

Cód. FT-P-01 Rev. 01 Código de serivicio: 05063

Certificado de calibración 008-CP-2023 Página 2 de 2

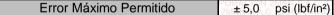
Condiciones ambientales

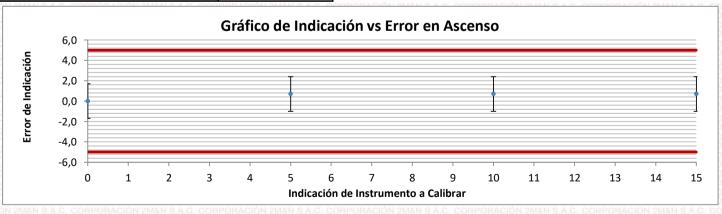
	Inicial	Final
Temperatura °C	21,0	21,7
Humedad Relativa %hr	N S.A.C 67 RPORA	CIÓN 2M 68 A.C. CO

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrológica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración
LO JUSTO	Reference Pressure Gauge Clase de Exactitud : 0,05	E1970-3199A-2021-1
ELICROM	Termohigrómetro de Indicación Digital - Lutron	CCP-0841-001-22


Observaciones:


• Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nº 05063 y la fecha de calibración.

Resultados de medición:

Presión indicada del	Indicación de Pat			Incertidumbre			
Instrumento a	rat	1011	De ind	icación	ión		
calibrar	Ascenso	Descenso	Ascenso	Descenso	De Histéresis		
psi (lbf/in²)	psi (lbf/in²)	psi (lbf/in²)	psi (lbf/in²)	psi (lbf/in²)	psi (lbf/in²)	psi (lbf/in²)	
N ZM&N SA.C. CORI C. CORION	PORACION M&N S.A 2M&N S.O,O CORPO	0,0	CORPO 0,0 ORPOR	0,0 ORACIO	PORACION 0,0 S.A.C. CORP	ORACION 2178N S.A.C M&N S.A. 1,7 ORPOR	
N 2M&N 5A.C. CORI	PORACIOS,7 M&N S.A	.C. COR 5,7 ACION 1	M&N S.A 0,7 ORPOR	ACIÓN 2MO,7S.A.C. CC	RPORACIÓN 20,0 S.A.C. CORP	ORACIÓN 1172N S.A.C	
N 2M8N 10 C. CORI	ORACI10,7/8N S./	10,7	M&N S.A 0,7 ORPOR	CIÓN 2M0,75 A.C. CC	RPORACIÓN 20,01 S.A.C. CORP	ORACIÓN 1,74N S.A.O	
N 2M&N 15 CORI	PORACI 15,7 /18N S./	.c. cor15,7ación :	M&N S.A 0,7CORPOR	ACIÓN 2M0,7S.A.C. CC	RPORACIÓN 20,01 S.A.C. CORF	ORACIÓN 1,7&N S.A.C	

Máximo Error Absoluto de Indicación:	N 2M8N 0,7	psi (lbf/in²)	ZM&N S.A.C. CORPORACIÓN ZM&N S.A.C. CORPORACIÓN ZM&N S.A.C. C C. CORPORACIÓN ZM&N S.A.C. CORPORACIÓN ZM&N S.A.C. CORPORACI
Máximo Error Absoluto de Histéresis:	N 2M8N0,0	psi (lbf/in²)	2M&M S.A.C. CORPORACIÓN 2M&N S

Fin del documento

Código de serivicio : PAC 05063 N.S.A.C. CORPORACIÓN 2M8N S.A.C. CORPORACIÓN 2

Expediente

CERTIFICADO DE CALIBRACIÓN 031-CV-2023

La incertidumbre reportada en el presente

certificado es la incertidumbre expandida de

k=2. La incertidumbre fue determinada según la

"Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud

está dentro del intervalo de los valores determinados con la incertidumbre expandida con

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le

corresponde disponer en su momento la

ejecución de una recalibración, la cual está en

función del uso, conservación y mantenimiento

Los resultados no deben ser utilizados como una certificación de conformidad con normas de

producto o como certificado del Sistema de

CORPORACIÓN 2M & N S.A.C. no se responsabiliza de lo perjuicios que pueda

ocasionar el uso inadecuado de este equipo, ni de una incorrecta interpretación de los resultados

El certificado de calibración sin firma y sello

de la calibración aquí declarados.

carece de validez.

del equipo o a reglamentaciones vigentes.

una probabilidad de aproximadamente 95%.

que resulta de multiplicar la

medición

Calidad

Área de Metrología

Página 1 de 2

137B-02-2023

Solicitante LEM-ENGIL S.R.L.

Dirección Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón incertidumbre estándar por el factor de cobertura

Castilla - San Juan de Lurigancho - Lima - Perú

Equipo/Instrumento **OLLA WASHINGTON**

FORNEY Marca

Modelo LA-0316

Serie 0571 .

Identificación OW-LE-02

Ubicación No indica

Procedencia U.S.A. >6 L

Volumen Nominal

Tiempo de descarga

Fecha de calibración

Lugar:

División de escala No aplica

Clase No indica

IN Tipo

Tolerancia No indica

Material Acero

Tiempo de espera No aplica

20 °C **Temperatura**

2023-02-15

No aplica

Jr. Chiclayo 489 Int-A - Rímac - Lima.

Laboratorio 02 - CORPORACIÓN 2M & N S.A.C.

Método utilizado: Se realizó por el Método Gravimétrico. Tomando como referencia el procedimiento PC-015

"Procedimiento para la calibración de material volumétrico de vidrio y Plástico", Quinta Edición, Enero

2017. DM-INACAL.

2023-02-17

Fecha de emisión

Código de servicio: 05062 Cód. FT-V-01 Rev. 01

Certificado de calibración 031-CV-2023 Página 2 de 2

Condiciones ambientales:

	Inicial	Final
Temperatura °C	20,2	20,4
Humedad Relativa %hr	61,2	61,9
Presión atmosférica (hPa)	M 993,1	993,1

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad metrologica a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración		
Patrón de Referencia a SAT S.A.C.	Balanza analítica 24 000 g con resolución de 0,1 g - Código M126	026-CMM-2022		
Patrón de Referencia a CORPORACIÓN 2M & N S.A.C.	Termómetro digital de 0,1 ºC - Código T047	ORACIÓN ZMAN SA C. CORPORACIÓN Z		

Observaciones:

- Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nro. 05062 y la fecha de calibración.
- Los resultados están dados a la temperatura de referencia de 20 °C

Resultados de medición:

Volumen Nominal	Volumen Contenido	Desviación	Incertidumbre
(L)	(L)	(L)	(L)
ORPORACIÓN 2M&N S.A-C. CORPORACIÓN 2M& ON 2M&N S.A.C. CORPORACIÓN 2M&N S.A.C. CC	7,0699	0,0699	0,0040

Resultados de medición % Aire:

Valor Nominal (%)	Indicación del Equipo (%)	Error (%)
ON 2M&N S.A.C. CORPOR O ION 2M&N S.A.C. CORPOR	ACION 20,1 S.A.C. C	DRPOR 0,10N 2M&N
ON 2M&N S.A.C. CORPOR 5:10N 2M&N S.A.C. CORPO	ACIÓN 215,2 S.A.C. C	DRPOR/0,2N 2M&N
A.C. CORPORACION 2M 100 A.C. CORPORACION 2M	100,0	0,0

Fin del documento

CERTIFICADO DE CALIBRACIÓN

020-CF-2022

Área de Metrología

certificado es la incertidumbre expandida de

incertidumbre estándar por el factor de

determinada según la "guía para la Expresión

dentro del intervalo de los valores determinados con la incertidumbre expandida

con una probabilidad de aproximadamente

Los resultados son válidos en el momento v

en las condiciones de la calibración. Al solicitante le corresponde disponer en su

momento la ejecución de una recalibración, la

cual está en función del uso, conservación y mantenimiento del instrumento de medición o

Los resultados no deben ser utilizados como una certificación de conformidad con normas

del producto o como certificado del sistema

CORPORACIÓN 2M & N S.A.C. no se

responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado del instrumento

ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

El certificado de calibración sin firma y sello

de la incertidumbre en la medición". Generalmente, el valor de la magnitud está

medición que resulta de

cobertura k=2. La

a reglamentos vigentes.

de calidad.

carece de validez.

95%.

Página 1 de 3 La incertidumbre reportada en el presente

multiplicar la

incertidumbre fue

Expediente : 537-05-2022

Solicitante : LEM-ENGIL S.R.L.

Dirección : Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San

Juan de Lurigancho - Lima - Perú

Equipo/ Instrumento : PRENSA DE CONCRETO

Marca A CORPORACIÓN ZIEM FORNEY

Modelo : F-25EX-B-TPILOT

Serie CIÓN 2M8N S.A.C. CORPC: ACIC11037

Identificación : PC-LE-01 (*)

Ubicación Laboratorio de Concreto

Procedencia : U.S.A.

Alcance de indicación: 250 000 lbs

División de escala : 1 kgf

Tipo de Indicación : Digital

Marca del Indicador : FORNEY

Modelo de Indicador : TA-1253

Serie del Indicador : 0111016

Dirección de Fuerza : Compresión

Fecha de calibración : 2022-05-23

Lugar : Laboratorio de Concreto - LEM-ENGIL S.R.L.

Mza. F6 Lote 19 Jr. Los Ingenieros Asoc. Ramón Castilla - San Juan de Lurigancho - Lima - Perú

Método utilizado: : Calibración por comparación con celda patrón tomando como referencia la norma ISO 7500 - 1.

AREA METROLOGÍA

2022-05-25

coho do emició

Fecha de emisión

Código de Servicio: 03684

Certificado de Calibración 020-CF-2022 Página 2 de 3

Condiciones ambientales:

	Inicial	Final
Temperatura (°C) A C CORPORACIÓN	2M8N21,0 COF	POR 20,92M&
Humedad Relativa (%hr)	Man 61 con	FORA 60

Patrones de referencia:

Este certificado de calibración documenta la trazabilidad a los patrones nacionales , que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Informe Técnico
Patrones de Referencia PUCP CATOLICA	Celda Patrón de 100 t	NEPORACION 2MAN SAC CORPORACIÓN SAC CORPORACIÓN 2MAN SAC COR

Observaciones:

- Se colocó una etiqueta autoadhesiva, indicando el código de servicio Nro. 03684 y la fecha de calibración
- El equipo cuenta con un transductor: Marca: Gefran; Modelo: TPS-7-V-PIOHT; Serie: 10Y50011.

Resultados de medición:

Dirección de Carga: Compresión

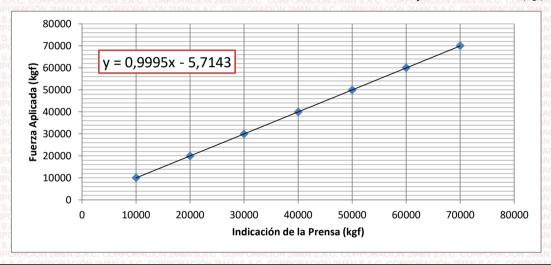
FUERZA A	PLICADA	SERIE 1 POSICIÓN 0° (kgf)	SERIE 2 POSICIÓN 120° (kgf	SERIE 3 POSICIÓN 240° (kgf)	P _{romedio}	ERROR (kgf)
%	kgf	ASCENSO	ASCENSO	ASCENSO	(kgf)	
ACIÓN 2M&N10 A.C. CO	RPDRAG 10000 &N S	A.C. CORP10000 ON 2M&N	S.A.C. CC10018 ACIÓN 2	I&N S.A.C10049 ORACIÓ	2M&N S A10022 RPORAC	ON 2M8-22 A.C.
CIÓN 2M8N ²⁰ A C. CO	20000	19885	19905	20135 CRACIO	19975 DORAG	25
S.A.C. CO30 ORACIO	30000	30015	29957	29961	29978	22
S.A.C. CO40 ORACIÓ	N 2 M&N 340000 ORF	DRACIÓN 39913 A.C. CO	PORACIÓ39943 N.S.A.C.	CORPOR/400162M&N S.A.	C. CORPO39957 N 2M&N :	SA.C. CC43PORAC
S.A.C. CO50 ORACIÓ	50000 or	DRACION 49841 AC CO	49881 SAC	CORPOR 50013 MAN S	49912 AMAN	S C C 88 ORAC
CION 2M& 60 A.C. CO	60000	59959	59622	60364	59982	18
CIÓN 2M&N70 A.C. CO	70000	70160	69863	69954	69992	M 2M8 8 S.A.C.

Errores Encontrados del Sistema de Medición de Fuerza

FUERZA APLICADA	EXACTITUD	ITUD REPETIBILIDAD REVERSIBILI		RESOLUCIÓN	ERROR ACCESORIOS	Incertidumbre del error de exactitud	
%	q (%)	b(%)	v (%)	a (%)	a (%)	U (%)	
S.A.C. CORPORACION 2	-0,22	0,49	A.G. CORPORACION	0,05	PORACION 2M&N	0,37	
S.A.C. CO20 ORACIÓN 2	^{A&N} 0,13	RPORA(1,25 2M&N S	A.C. COR <u>PO</u> RACIÓN	2M8N 0,05 COF	PORACIÓN 2M&N	S.A.C. (0,89)RAC	
S.A.C. CO30 ORACIÓN 2	0,08	RPORA 0,19 2M8N S	A.C. CORPORACION	2M8N 0,10 COF	PORAC IÓN 2M&N	SAC 0,73 RAC	
40 PRACTION	0,11	0,26	IN 2M&N S.A.C. COR A.C. CORPURACIÓN	0,10	S.A.C. CORPORA PORACIÓN 2M&N	0,29	
ION 2M8/50 A.C. CORP	0,18	0,35 PORACIO	N 2M&N S.A.C. COR	ORA 0,10 M&N	S.A.C. CORPORA	CION 2M 0,90 A.C. C	
DIÓN 2M&160.A.C. CORF	DRA 0,03 2M8	N S.A.C. 1,24PORACH	N 2M&N S.A.C. COR	ORAC0,102M8N	S.A.C. CORPORA	CIÓN 2M 0,75 A.C. O	
CIÓN 2M&N70.A.C. CORF	0,01	NSAC 0,42 PORACI	DN 2M&N S.A.C. COR	PORA 0,10	S.A.C. CURPORA	0,91	
Error relativo de co	ero f 0	N S A 0,00 RPOR	A.C. CURPURACION ÓN 2M&N S.A.C. CORI	ZIVI&N S.A.C. GOR PORACIÓN 2M&N	S.A.C. CORPORA	IS A.C. CURPURACI CIÓN 2M&N S.A.C. C	

Código de Servicio: 03684

Certificado de Calibración 020-CF-2022 Página 3 de 3


Valor máximo permitido % Según la Norma ISO 7500 - 1 Clase de la escala								
de la máquina	Exactitud	Repetibilidad	Reversibilidad	Resolución Relativa	Cero f_0			
	q	b	ν	а	Celo J 0			
CORPO 0,5 ION 2MA	NSA±0,5RPOR	ACION 0,5 N S.A.	± 0,75	ON 2M&N S. 40,25 ORPORACIÓ	± 0,05			
CORPORACIÓN 2M8	NSA±1,0RPOR	ACIÓN 1,0 N S.A.	± 1,5 AC	ÓN 2M&N S.A 0,500RPORACIÓ	21±0,1 A			
CORPOR ² CIÓN 2M8	± 2,0	2,0	± 3,0	S.A.U, CORPORACIÓN 2M&N S.A IÓN 2M&N S.A.C. CORPORACIÓ	± 0,2			
CIÓN 2M83 S.A.C. C	± 3,0	3,0	± 4,5	A.C. CORPORT,5 ON 2M&N S.A	± 0,3			

Ecuación de Ajuste : y = 0.9995 (f) - 5,7143

Donde:

f: Lectura de la Pantalla

y: Fuerza Promedio (kgf)

Fin del documento

Código de Servicio: 03384

Certificado

La Dirección de Acreditación del Instituto Nacional de Calidad – INACAL, en el marco de la Ley N. 30224, OTORGA el presente certificado de Renovación de la Acreditación a:

TEST & CONTROL S.A.C.

Laboratorio de Calibración

En su sede ubicada en: Calle Condesa de Lemos Nº 117, Urb. San Miguelito, distrito de San Miguel, provincia de Lima y departamento de Lima

Con base en la norma

NTP-ISO/IEC 17025:2006 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Certificados de Calibración con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-05P-21F que forma parte integral del presente certificado llevando el mismo número de registro indicado líneas abajo.

Fecha de Renovación: 24 de marzo de 2019 Fecha de Vencimiento: 23 de marzo de 2023

ESTELA CONTRERAS JUGO

Elout

Directora, Dirección de Acreditación - INACAL

Cedula Nº : 230-2019-INACAL/DA

Contrato Nº : Adenda al Contrato de Acreditación Nº004-16/INACAL-DA

Registro Nº :LC-016

Fecha de emisión: 05 de junio de 2019

El presente certificado tiene validez con su correspondiente Alcance de Acreditación y cédula de notificación dado que el alcance puede estar sujeto a ampliaciones, reducciones, actualizaciones y suspensiones temporales. El alcance y vigencia debe confirmarse en la página web www.inacul.gob.pe/acreditacion/categoria/acreditacios al momento de hacer uso del presente certificado.

La Dirección de Acreditación del INACAL es firmante del Acuerdo de Reconocimiento Multilateral (MLA) del Inter American Accreditation Cooperation (IAAC) e International Accreditation Forum (IAF) y del Acuerdo de Reconocimiento Multio con la International Laboratory Accreditation Cooperation (ILAC).

Certificado de Calibración TC - 09355 - 2023

Proforma 20295A Fecha de emisión: 2023-05-15 Página 1 de 2

Solicitante : LEM-ENGIL SOCIEDAD COMERCIAL DE RESPONSABILIDAD LIMITADA : Jr. Los Ingenieros Mz F6 Lote 19 Asoc Ramón Castilla San Juan De Lurigancho Dirección

: PRENSA DE CONCRETO Intrumento de medición

PINZUAR Marca Modelo PC42 N° de Serie 364 Alcance de indicación 2000 kN Resolución 0.1 kN Procedencia No Indica PC-LE-02 Identificación

Ubicación Laboratorio De Concreto

Fecha de Calibración 2023-05-11

Lugar de calibración

Instalaciones de LEM-ENGIL SOCIEDAD COMERCIAL DE RESPONSABILIDAD LIMITADA

Método de calibración

La calibración se efectuó por comparación directa tomando como referencia la norma UNE-EN ISO 7500-1:2018 (Maquinas de ensayo de tracción/ Compresión). Calibración y Verificación del sistema de medida de fuerza.

Condiciones de calibración

Magnitud	Inicial	Final
Temperatura	25,9 °C	24,8 °C
Humedad Relativa	65,2 %HR	66,2 %HR

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades

Con el fin de asegurar la calidad sus mediciones recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados una certificación conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar **Gerente Técnico** CFP: 0316

SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017

Certificado : TC - 09355 - 2023

Página : 2 de 2

Trazabilidad

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Patrones de Referencia de AEP TRANSDUCERS	Celda de carga de capacidad 3 MN Modelo CLFlex Indicador digital modelo MP6plus	LAT 093 9623F
Patrón de Referencia del DM-INACAL	Manómetro Digital 0 bar a 700 bar Clase de Exactitud 0,05	LFP-C-064-2022 Mayo 2022

Resultados de calibración

RESULTADOS				
INDICACIÓN DEL EQUIPO BAJO CALIBRACIÓN	INDICACIÓN DEL PATRÓN	ERROR	INCERTIDUMBRE	
kN	kN	kN	kN	
50,0	50,48	-0,48	0,06	
100,0	101,29	-1,29	0,06	
200,0	201,79	-1,79	0,06	
400,0	402,01	-2,01	0,06	
600,0	602,39	-2,39	0,06	
800,0	803,01	-3,01	0,06	
1 000,0	1 003,81	-3,81	0,06	
1 200,0	1 205,58	-5,58	0,06	
1 600,0	1 605,69	-5,69	0,06	

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. El equipo cuenta con un diámetro de acople de 1/2 in.

Incertidumbre expandida U

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

Ministerio de Vivienda Construcción y Saneamiento

REGLAMENTO NACIONAL DE EDIFICACIONES

NORMA E.060 CONCRETO ARMADO

LIMA – PERÚ 2009

PUBLICACIÓN OFICIAL

DISEÑO DE MEZCLAS Metodo ACI

Advancing concrete knowledge

NTP 400.037

2002

Comisión de Reglamentos Técnicos y Comerciales - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

AGREGADOS. Especificaciones normalizadas para agregados en hormigón (concreto)

AGGREGATES. Standard specification for concrete aggregates

2002-02-14 2ª Edición

NTP 400.012 2001

Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

AGREGADOS. Análisis granulométrico del agregado fino, grueso y global

AGGREGATES. Standard test method for sieve analysis of fine, coarse and global aggregates

2001-05-31 2" Edición

R.0071-2001/INDECOPI-CRT.Públicada el 2001-06-17

Precio basado en 14 páginas

LC.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Agregado, agregado grueso, agregado fino, serie, gradación, análisis por tamizado, análisis granulométrico

NTP 400.018 2002

Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perù

AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 µm (N° 200) por lavado en agregados

AGGREGATES. Standard test method for determine materials finer than 75 μ m (N° 200) sieve in aggregates by washing

2002-05-16 2ª Edición

R0048-2002/INDECOPIC RT Publicada d 2002-05-30

Precio basa do en 09 páginas

I.CS .: 91.100.30

ESTA NOR MAES RECOMENDABLE

NTP 400.017 2011

Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias - INDECOPI Calle De la Prosa 104, San Borja (Lima 41) Apartado 145 Lima, Perú

AGREGADOS. Método de ensayo normalizado para determinar la masa por unidad de volumen o densidad ("Peso Unitario") y los vacíos en los agregados

AGGREGATE. Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate

Esta Norma Técnica Peruana adoptada por el INDECOPI está basada en la Norma ASTM C 29/C29M-2009 Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate, Derecho de autor de ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. -Reimpreso por autorización de ASTM International

2011-02-02 3ª Edición

R.0002-2011/ CNB- INDECOPI. Publicada el 2011-03-12

Precio basado en 14 páginas

I.C.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Agregados, densidad de masa, agregado grueso, densidad, agregado fino, peso unitario, vacíos en agregados

NTP 339.185 2013

Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelarias - INDECOPI
Calle de La Prosa 104, San Borja (Lima 41) Apartado 145
Lima, Perú

AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado

CONCRETE. Standard test method for total evaporable moisture content of aggregate by drying

Esta Norma Técnica Peruana adoptada por el INDECOPI está basada en la norma ASTM C 566-13 Standard Test Method for Total Evaporabale Moisture Content of Aggregate by Drying, Derecho de autor de ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. -Reimpreso por autorización de ASTM International

2013-08-07 2° Edición

R.0054-2013/CNB-INDECOPI. Publicada el 2013-08-24

Precio basado en 08 páginas

I.C.S.: 91.100.30

Descriptores: Agregados, secado, contenido de humedad

ESTA NORMA ES RECOMENDABLE

@ ASTM 2013 - @ INDECOPI 2013

NTP 400.022 2002

Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perù

AGREGADOS. Método de ensayo normalizado para peso específico y absorción del agregado fino

AGGREGATES. Standard test method for specific gravity and absorption of fine aggregate

2002-05-16 2" Edición

R.0048-2002/INDECOPI-CRT.Publicada el 2002-05-30

Precio basado en 05 páginas

I.C.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Absorción, agregado, agregado fino, peso específico

NTP 400.021 2002

Comisión de Reglamentos Técnicos y Comerciales - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perú

AGREGADOS. Método de ensayo normalizado para peso específico y absorción del agregado grueso

AGGREGATES. Standard test method for specific gravity and absorption of coarse aggregate

2002-05-16 2ª Edición

R.0048-2002/INDECOPI-CRT.Publicada el 2002-05-30

Precio basado en 08 páginas

I.C.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

NTP 339.035 2009

Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

HORMIGÓN (CONCRETO). Método de ensayo para la medición del asentamiento del concreto de cemento Portland

CONCRETE. Standard test method for mesure slump of Portland cement concrete

Esta Norma Técnica Peruana adoptada por el INDECOPI está basada en la Norma ASTM C 143/C143-2008 Standard Test Method for Slump of Hydraulic Cement Concrete, Derecho de autor de ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. -Reimpreso por autorización de ASTM International

2009-12-23 3ª Edición

R.034-2009/INDECOPI-CNB. Publicada el 2010-02-20

Precio basado en 09 páginas

I.C.S.: 91.100.10

ESTA NORMA ES RECOMENDABLE

Descriptores: Concreto, cono, consistencia, plasticidad, asentamiento, trabajabilidad

NTP 339.184 2002

Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perù

HORMIGÓN (CONCRETO). Método de ensayo normalizado para determinar la temperatura de mezclas de hormigón (concreto)

CONCRETE. Standard test method for determining temperature of freshly mixed cement concrete

2002-05-16 1º Edición

R.0048-2002/INDECOPI-CRT.Publicada el 2002-05-30

Precio basado en 05 páginas

I.C.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Hormigón, hormigón (concreto), temperatura, mezcla fresca, cemento Portland

NTP 339.046 2008

Comisión de Normalización y de Fiscalización de Barreras Comerciales No Arancelarias - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145 Lima, Perú

HORMIGÓN (CONCRETO). Método de ensayo para determinar la densidad (peso unitario), rendimiento y contenido de aire (método gravimétrico) del hormigón (concreto)

HORMIGÓN. Método de prueba estándar para densidad (peso unitario), rendimiento y contenido de aire hormigón

Esta Norma Técnica Peruana adoptada por el INDECOPI está basada en la Norma ASTM C138 / C138M - 08 Método de prueba estándar para densidad (peso unitario), rendimiento y contenido de aire (gravimétrico) d Derecho de autor de ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, EE. UU. -Reimpreso por autorización de ASTM International

2008-09-03 2ª Edición

R.005-2008 / INDECOPI-CNB. Publicada el 2008-09-26

PROYECTO DE NORMA TÉCNICA PERUANA

PNTP 339.081 2011

Comisión de Reglamentos Técnicos y Comerciales Barreras Comerciales No Arancelarias - INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145 Lima, Perú

HORMIGÓN (CONCRETO) Método de ensayo volumétrico para determinar el contenido de aire del hormigón fresco

CONCRETE. Standard test method for air content of freshly mixed concrete by the volumetric method

2011-xx-xx 2ª Edición

"Este documento se encuentra en etapa de estudio, sujeto a posible cambio. No debe ser usado como Norma Técnica Peruana"

Precio basado en 15 páginas

ESTA NORMA ES RECOMENDABLE

I.C.S.: 91.100.30

Descriptores: Contracción por secado, cemento hidráulico, método, mortero

NTP 339.077 2013

Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelarias - INDECOPI Calle de La Prosa 104, San Borja (Lima 41) Apartado 145 Lima, Perú

CONCRETO. Métodos de ensayo normalizados para exudación del concreto

CONCRETE. Standard test methods for bleeding of concrete

2013-01-16 3º Edición

R.0006-2013/CNB-INDECOPI. Publicada el 2013-02-01

Precio basado en 12 páginas

LC.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Exudación, concreto, hormigón; exudación del concreto

© INDECOPI 2013

NTP 339.034 2008

Comisión de Reglamentos Técnicos y Comerciales-INDECOPI Calle de La Prosa 138, San Borja (Lima 41) Apartado 145

Lima, Perù

HORMIGÓN (CONCRETO). Método de ensayo normalizado para la determinación de la resistencia a la compresión del concreto, en muestras cilíndricas

CONCRETE . Standard Test method for Compressive Strength of cylindrical concrete specimens

Esta Norma Técnica Peruana adoptada por el INDECOPI está basada en la Norma ASTM C39/C39M-05e1 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Derecho de autor de ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. –Reimpreso por autorización de ASTM International

2008-01-02 3" Edición

R.001-2008/INDECOPI-CRT, Publicada el 2008-01-25

Precio basado en 18 páginas

LC.S.: 91,100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Hormigón, concreto, resistencia, resistencia a la compresión, muestras cilíndricas

NTP 339.084 2012 (revisada el 2017)

Dirección de Normalización - INACAL Calle Las Carnelias 817, San Isidro (Lima 27)

Lima, Perú

CONCRETO. Método de ensayo normalizado para la determinación de la resistencia a tracción simple del concreto, por compresión diametral de una probeta cilíndrica

CONCRETE. Standard test method for splitting of concrete, by diametral compression of cylindrical test specimen

2017-11-29 3ª Edición

R.D. N° 047-2017-INACAL/DN. Publicada el 2017-12-18

Precio basado en 12 páginas

I.C.S.: 91.100.30

ESTA NORMA ES RECOMENDABLE

Descriptores: Conditeto, resistencia a la tracción, compresión diametral, probeta cilíndrica, ensayo

NTP 339.079 2012

Comisión de Normalización y de Fiscalización de Barreras Comerciales no Arancelarias - INDECOPI Calle de La Prosa 104, San Borja (Lima 41) Apartado 145 Lima, Perú

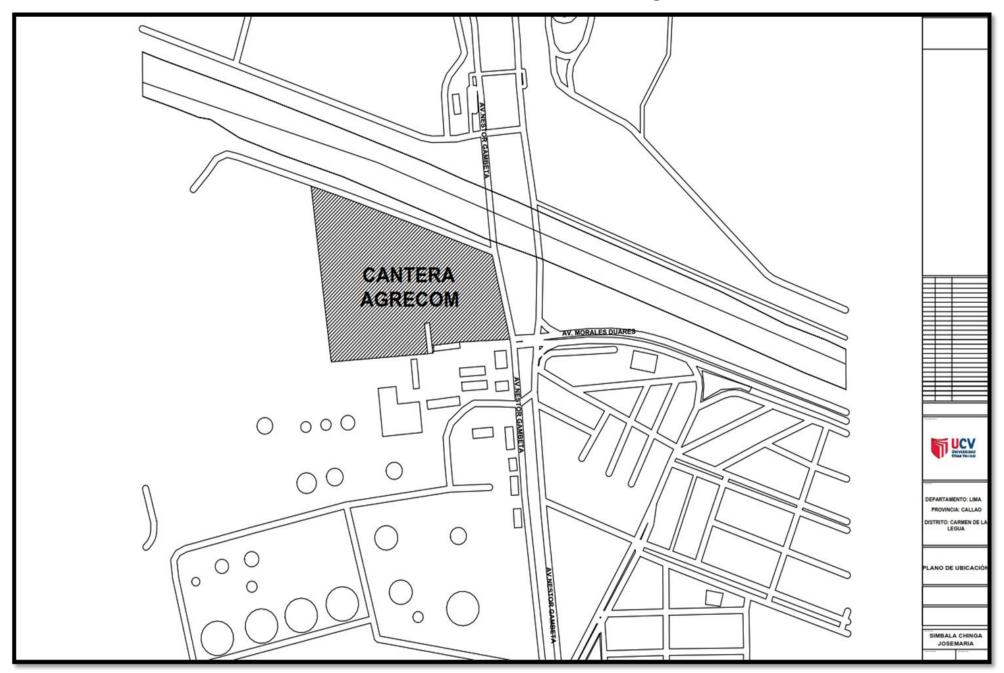
CONCRETO. Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas en el centro del tramo

CONCRETE. Standard test method for flexural strength of concrete (using simple beam with center-point loading)

2012-09-26 3ª Edición

ANEXO 12. MAPAS Y PLANOS

TITULO: "Evaluación de las propiedades del concreto f' c=210 kg/cm2 adicionando fibras de plumas de aves y fibras de polipropileno reciclado, Callao-2023".


AUTOR: Simbala Chinga, Josemaria Milko

12.1. Ubicación Política

DEPARTAMENTO : Lima **PROVINCIA** : Callao **DISTRITO** : Bellavista

12.2. Plano de ubicación - Acceso a la cantera Agrecom S.A.

ANEXO 13. PANEL FOTOGRÁFICO

Fotografia N°01: Asociación de comité de distribución Fotografia N°02: Adquisición de plumas de aves de aves.

procedente del pollo broiler.

Fotografia N°03: Selección de plumas de vuelo (timoneras y remeras).

Fotografia N°04: 1er y 2do ciclo de limpieza (pretratamiento)

Fotografia N°05: Secado natural. Retiro del estandarte de la pluma. Estado del arte de la fibra (corte). 3er ciclo de limpieza.

Fotografia N°06: Rosiado de fibras con sellador para madera (tratamiento final). Almacenamiento.

Fotografia N°07: Hospital EsSalud Alberto Sabogal Sologuren.

Fotografia N°08: Adquisición de mascarillas quirugicas.

Fotografia N°09: Desinfección de mascarillas.

Fotografia N°10: Secado de mascarillas.

Fotografia N°11: Proceso de elaboración de fibras de mascarillas.

Fotografia N°12: Almacenamiento.

Fotografia N°13: Adquisición de agregados (cantera AGRECOM S.A) y traslado a laboratorio.

Fotografia N°14: Cuarteo de los agregados.

Fotografia N°15: Determinación del contenido de humedad. Analisis granulometrico. Determinación del peso unitario suelto y compactado.

Fotografia N°16: Determinación del peso especifico y absorción de los agregados.

Fotografia N°17: Proceso de mezclado adicionando ambas fibras al concreto.

Fotografia N°18: Determinación de SLUMP. Lectura de temperatura del concreto.

The State of the S

Fotografia N°19: Medición del peso unitario, contenido de aire y exudación del concreto.

Fotografia N°20: Preparación de probetas cilindricas y vigas prismaticas.

Fotografia N°21: Curado de muestras.

Fotografia N°22: Ensayo de resistencia a compresión, tracción y flexión.

Fotografia N°23: Rotura de muestras.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, HUAROTO CASQUILLAS ENRIQUE EDUARDO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, asesor de Tesis titulada: "Evaluación de las propiedades del concreto f'c=210 kg/cm2 adicionando fibras de plumas de aves y fibras de polipropileno reciclado, Callao-2023", cuyo autor es SIMBALA CHINGA JOSEMARIA MILKO, constato que la investigación tiene un índice de similitud de 19.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 15 de Julio del 2023

Apellidos y Nombres del Asesor:	Firma	
HUAROTO CASQUILLAS ENRIQUE EDUARDO	Firmado electrónicamente	
DNI : 08120578	por: EHUAROTOC el 20-	
ORCID: 0000-0002-8757-6621	07-2023 16:13:20	

Código documento Trilce: TRI - 0593174

