

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

APLICACIÓN DE LA INGENIERÍA DE MÉTODOS EN EL ÁREA DE VACÍOS PARA MEJORAR LA PRODUCTIVIDAD EN LOS TRASLADOS DE LOS CONTENEDORES EN LA EMPRESA UNIMAR S.A. CALLAO 2017

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO INDUSTRIAL

AUTOR:

JEFFERSON CRISTHOFER SANCHEZ SALAS

ASESOR

MGTR. DANIEL RICARDO SILVA SIU

LÍNEA DE INVESTIGACIÓN

SISTEMA DE GESTIÓN EMPRESARIAL Y PRODUCTIVA

LIMA - PERÚ

2017

PÁGINA DEL JURADO

Ing.	-
Ing.	
lna.	_

Dedicatoria

El presente trabajo va dedicado a mi esposa Rosa y mis hijas Jimena y Daniela, ya que son el motor y los motivos fundamentales para en mi instrucción profesional familiar. У transmisión basada en la de conocimientos, valores, virtudes У demás características que me conllevan a ser un correcto profesional.

Este trabajo va dedicado a mis padres y profesores que con un enorme tesón sembraron en mi la perseverancia de cumplir mis metas, ya que lo importante en el camino profesional no es empezar, sino más bien terminar siendo una mejor persona y más aún buen profesional para la sociedad.

Esta demás decir que nosotros somos el futuro de la sociedad y la cadena de conocimiento sea infinita hacia la nueva generación de jóvenes con inmensas ambiciones de lograr las metas trazadas.

Agradecimiento

Mi agradecimiento eterno a la EMPRESA UNIMAR S.A. que con paciencia y motivación encaminaron a nuestras lluvias de preguntas e ideas.

El agradecimiento a cada uno de los Catedráticos que con paciencia y motivación encaminaron nuestra lluvia de ideas con las que llegamos el primer día de clases. Asimismo a mis compañeros de carpeta, ya que sin ellos no hubiera habido el buen intercambio de conocimientos y al final a nuestra Alma Mater Universidad Cesar Vallejo que nos acobijo y lleno de manera constante de enseñanzas y nos catapulto al éxito profesional.

DECLARACIÓN DE AUTENTICIDAD

Yo Sánchez Salas, Jefferson Cristhofer con DNI Nº 40082211 a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Industrial, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, Julio del 2017

Jefferson Cristhofer Sánchez Salas

PRESENTACIÓN

Señores miembros del jurado:

En cumplimiento con el reglamento de Grado y Títulos de la Universidad César Vallejo presento ante ustedes la Tesis titulada: "Aplicación de la Ingeniería de Métodos en el área de vacíos para mejorar la productividad en los traslados de los contenedores en la empresa Unimar S.A., 2017", la misma que someto a vuestra consideración y espero que cumpla con los requisitos de aprobación para obtener el título Profesional de Ingeniero Industrial.

El Autor

INDICE

PÁGINA DEL JURADO	O				ii
DEDICATORIA	•••••				iii
AGRADECIMIENTO					iv
DECLARACIÓN DE A	UTENTICIDA	۸D			V
PRESENTACIÓN					vi
RESUMEN					. xiv
ABSTRACT					XVV
I INTRODUCCIÓN				15	56
1.1Realidad Problemática				.167	
1.1.1. Internacional				167	
1.1.2 Nacional				167	
1.1.3 Regional				178	
1.1.4 Local					
1.1.5 estratificación 1.2. previos				Traba	
1.2.1Antecedentes Internacionales			278		
1.2.2. Antecedentes n	acionales				.32
1.3 tema	Teorías		relacionadas 345		al

1.3.1 Ingeniería de	
Métodos	345
1.3.1.1. Herramienta para la solución de los proble	emas36
1.3.1.1.1 Herramienta de registros y análisis	37
1.3.1.1.1. Diagrama de flujo del proceso	37
1.3.1.1.2. diagrama de proceso hombre maquin	a38
1.3.1.2. Dimensiones de ingeniería de métodos	40
1.3.1.2.1. Estudio de tiempos y movimientos	40
1.3.1.2.1.1. Cálculo de estudio de tiempos y movi	mientos40
1.3.1.2.1.1. Cálculo de jornada efectiva	41
1.3.1.2.1.2. Cálculo de factor de concesiones	41
1.3.2	
Productividad	41.42
1.3.2.1. Importancia de la productividad	43
1.3.2.2. Técnica para incrementar la productividad	d44
1.3.2.3. Pilares de la productividad	44
1.3.2.4. Factores para medir la productividad	45
1.3.2.5. Dimensiones de productividad	46
1.3.2.5.1. Eficacia y eficiencia	46
1.3.2.5.1.1 Eficiencia	46
1.3.2.5.1.2. Eficacia	47
1.4Formulación del problema	478
1.4.1Problema	
general	478
1.4.2Problema	
específico	<i>1</i> 78

1.5 Justificación del estudio	478
1.5.1. Justificación	
institucional478	
1.5.2. Justificación social	489
1.5.3. Justificación metodológica	489
1.5.4Justificación	
Económica489	
1.6. Hipótesis	50
1.6.1. Hipótesis general	50
1.6.2. Hipótesis especificas	50
1.7 Objetivos	50
1.7.1Objetivos generales	50
1.7.2. Objetivos específicos	50
II METODO DE INVESTIGACIÓN	51
2.1-Diseño de investigación	52
2.1.1-Tipo de investigación	53
2.1.2Nivel de investigación	53
2.1.3 Enfoque de investigación	53
2.2 Operacionalización de variables	54
2.3 Población y Muestra	56
2.3.1 Población	56
2.3.2 Muestra	56
2.4. Técnicas e instrumentos de recopilación de datos,	, validez y
confiabilidad	-
2.4.1 técnica de recolección de datos	56
2.4.2 Instrumentos De Recolección De Datos	57
2.4.3 Validez	58
2.4.4 Confiabilidad	58

	2.5. Métodos de análisis de datos	.59
	2.6. Aspectos Éticos	.59
	2.7 Desarrolló de la Implementación	.60
2	.7.1 Situación actual de la Implementación	.60
2	.7.1.2- Diagrama de flujo al momento de su despacho	61
2	.7.1.3 Toma de tiempo de medición	.62
	.7.1.4 Antes de la implementación del estudio de tiempo, movimientos y roductividad	65
2	.7.1.5 Stock de contenedores operativos y reparados	66
2	.7.2Propuesta de mejora6	38
2	.7.2.1 Implementación de la mejora6	38
2	.7.2.2. analisis de alternativas6	68
2	.7.2.2.3. Decisión y elección	68
2	.7.2.4. layout actual de la zona de vacios antes6	39
2	.7.2.5. Cronograma de la implementación antes	70
2	.7.3Implementación de la propuesta	.72
2	.7.3.1 Ejecución de la propuesta	.72
2	.7.3.2. Evidencia antes y depues para su despacho	73
2	.7.4. Resultado	.76
2	.7.4.1. Nuevo proceso para su asignación	76
2	.7.4.2. diagrama de flujo al momento de su despacho mejora	.77
2	.7.4.3. Toma de tiempo de medición	.78
	.7.4.4. Despues de la impmenetación del estudio de tiempo, movimient	_
2	.7.4.5. Stock de contenedores operativos y reparados	82
2	.7.4.6. Actual layout de la zona de vacíos	84

III. RESULTADOS
3.2. Análisis inferencia
3.2.1. Análisis de la hipótesis general
3.2.2. Análisis de la primera hipótesis específica
3.2.3. Análisis de la segunda hipótesis especifica
IV. DISCUSIÓN
V. CONCLUSIONES
VIIREFERENCIAS BIBLIOGRÁFICAS
VIIREFERENCIAS BIBLIOGRÁFICAS
VIIREFERENCIAS BIBLIOGRÁFICAS
INDICE DE TABLA Tabla N° 1: Identificación de los problemas de los contenedores vacíos
INDICE DE TABLA Tabla N° 1: Identificación de los problemas de los contenedores vacíos 211 Tabla N° 2: Problemas con las asignaciones de contenedores vacíos 245 Tabla N° 3: Alternativas de solución
Tabla N° 1: Identificación de los problemas de los contenedores vacíos 211 Tabla N° 2: Problemas con las asignaciones de contenedores vacíos 245 Tabla N° 3: Alternativas de solución
Tabla N° 1: Identificación de los problemas de los contenedores vacíos 211 Tabla N° 2: Problemas con las asignaciones de contenedores vacíos 245 Tabla N° 3: Alternativas de solución
Tabla N° 1: Identificación de los problemas de los contenedores vacíos 211 Tabla N° 2: Problemas con las asignaciones de contenedores vacíos 245 Tabla N° 3: Alternativas de solución
Tabla N° 2: Problemas con las asignaciones de contenedores vacíos
Tabla N° 2: Problemas con las asignaciones de contenedores vacíos
Tabla N° 3: Alternativas de solución
Tabla N° 4: Simbología del Diagrama de Análisis de Procesos (DAP)
Tabla N° 6: Causa de Tiempo muertos
Tabla N° 7: MATRIZ DE CONSISTENCIA "Aplicación De la Ingeniería de Métodos en El área de vacíos para mejorar la productividad en los traslados de los contenedores en la empresa Unimar S.A., 2017"
Métodos en El área de vacíos para mejorar la productividad en los traslados de los contenedores en la empresa Unimar S.A., 2017"
los contenedores en la empresa Unimar S.A., 2017"
Tabla N° 8: Datos de los expertos
Tabla N° 9: Presupuesto71
Tabla N° 10: Costo Beneficio
Tabla N° 11: Prueba de normalidad de Productividad con Shapiro Wilk 89

2.7.5.- Análisis de costo beneficio......85

Tabla N° 12: Comparación de medias de productividad antes y después c	on
Wilcoxon	90
Tabla N° 13: Estadísticos de prueba de Wilcoxon para Productividad	90
Tabla N° 14: Prueba de normalidad de eficiencia con Shapiro Wilk	91
Tabla N° 15: Comparación de medias de eficiencia antes y después c	on
Wilcoxon	92
Tabla N° 16: Estadísticos de prueba de Wilcoxon para Eficiencia	93
Tabla N° 17: Prueba de normalidad de eficacia con Shapiro Wilk	94
Tabla N° 18: Comparación de medias de eficacia antes y después c	on
Wilcoxon	95
Tabla N° 19: Estadísticos de prueba de Wilcoxon para Eficacia	96

INDICE DE GRAFICO

Grafico N°: 1 Diagrama de Ishikawa	220
GraficoN°: 2: Diagrama Pareto de la problemática de la empresa	222
Grafico N°: 3: Asignación de contenedores vacios	26
Grafico N° 4: Oportunidades a través de la aplicación de la Ing	jeniería de
Metodos	345
Grafico N° 5: Principales etapas de un programa de ingeniería de mo	étodos 356
Grafico N° 6: Conjunto de símbolos de diagrama de procesos de ac	cuerdo con
el estándar ASME	367
Grafico N° 7: Diagrama de proceso del trabajador y de la máqui	na para la
operación de una fresadora	389
Grafico N° 8: Diagrama de flujo de la pre asignación	61
Grafico N° 9: Toma de tiempo de medición antes de la mejora	62
Grafico N° 10: Instrumento de medición antes de la mejora	63
Grafico N° 11: Instrumento de medición antes de la mejora	64
Grafico N°: 12: Medición de Pre (antes)	65

Granco N 13.5lock de contenedores operativos y reparados antes	ue la
mejora	66
Grafico N° 14:Stock de contenedores operativos y reparados antes	de la
mejora	67
Grafico N° 15: layout de la zona de vacios antes de la mejora	69
Grafico N° 16: Cronogrma de implementación antes d	le la
mejora	70
Grafico N° 17: medición de la variable independiente antes de la mejora.	74
Grafico N° 18:medición de la variable independiente(antes de la mejora).	75
Grafico N° 19: diagrama de flujo de Asignación mejora	77
Grafico N°20: Toma de tiempo de medición con la mejora	78
GraficoN° 21: medición de la variable independiente mejora	79
Grafico N° 22: medición de la variable independiente mejora	80
Grafico N°: 23: Medición de Pre y Pos(despues)	81
Grafico N° 24:Stock de contenedores operativos y reparados o	con la
mejora	82
Grafico N° 25:Stock de contenedores operativos y reparados o	con la
mejora	83
Grafico N° 26: Layout zona de Vacíos(mejora)	84
Grafico N° 27: medición de eficacia pre y eficacia post	87
Grafico N° 28: medición de eficiencia pre y eficiencia post	87
Grafico N° 29: Medición de productividad pre y productividad post	88

RESUMEN

El objetivo principal de la investigación es determinar la mejoría entre la aplicación del estudio de tiempo y el estudio de movimiento con la productividad en la asignación de los contenedores vacíos en la empresa Unimar S.A., Callao - 2017.

Se pudo identificar que ciertas actividades concernientes al servicio presentan falta de control y seguimiento en las asignaciones de los contenedores, es decir; no existe una herramienta en donde se controlen los tiempos y movimientos por cada servicio y asimismo no se cumplen con el número de asignaciones que se programa en el día, originando un alto grado de insatisfacción y obstaculizando el incremento de la productividad. Es por ello que se aplicó una herramienta de ingeniería que ayudó a medir los tiempos muertos y los movimientos innecesarios. Se realizó una ficha de observaciones para medir la eficiencia en la que se produce una asignación del servicio de contenedores vacíos que se brinda en el día. También se utilizó la eficacia para conocer las unidades de movimientos por hora que se realiza por cada contenedor asignado. La población de estudio fueron 14 observaciones que se realizaron en el servicio de Pre asignación en la empresa Unimar S.A., en la cual se dio un pre test y un post test en un periodo de 30 días. Con respecto a la muestra se ha tomado a toda la población. Los datos fueron recogidos a través la hoja de observaciones del estudio de tiempos, la hoja de seguimiento de las actividades eficientes, la hoja de resumen de la eficiencia de los contenedores vacíos y la hoja de seguimiento para la eficacia de los contenedores asignados. Los datos fueron procesados a través del SPSS, en el cual se aplicó la prueba Wilcoxon. La aplicación del estudio de tiempos y movimientos en los traslados de los contenedores vacíos se ha ejecutado y controlado de manera óptima en base a la aplicación de herramientas de ingeniera. Los resultados obtenidos mostraron un incremento en la productividad del 48.7 %

Palabras clave: Estudio de tiempos y movimientos, productividad, eficacia, eficiencia, Pre asignación, Asignación en el servicio de contenedores vacíos.

ABSTRACT

The main objective of the research is to determine the improvement is between the application of time study and study of movement with productivity in the allocation of empty containers in the company Unimar S.A., Callao - 2017.

It was possible to identify that certain activities concerning the service present lack of control and monitoring in the assignments of the containers, that is to say; there is no tool to control the times and movements for each service and also do not comply with the number of assignments scheduled in the day, causing a high degree of dissatisfaction and hampering the increase of productivity. That is why we applied an engineering tool that helped to measure downtime and unnecessary movements. An observation sheet was made to measure the efficiency in which an empty container service assignment occurs during the day. Efficacy was also used to know the units of movements per hour that is performed per each container assigned. The study population consisted of 14 observations that were performed in the Pre-assignment service at the company Unimar S.A., in which a pre-test and a post-test was given in a period of 30 days. With regard to the sample has been taken to the entire population. The data were collected through the time study observations sheet, the efficient activity tracking sheet, the summary sheet of the efficiency of the empty containers and the tracking sheet for the efficacy of the assigned containers. Data were processed through the SPSS, in which the Wilcoxon test was applied. The application of the study of times and movements in the movements of the empty containers has been executed and controlled in an optimal way based on the application of engineering tools. The results obtained showed the productivity increased in 48.7 %.

Keywords: Study of times and movements, productivity, efficacy, efficiency, preallocation, allocation in the service of empty containers