

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

"Propuesta para reemplazar DTL - 595 - SCU. por autómata programable comercial para reducir gastos en el mantenimiento de la central Hidroeléctrica Quanda 2018"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Mecánico Electricista

AUTOR:

Br. Orlando Salazar Yrigoin (ORCID: 0000-0002-2766-0717)

ASESOR:

Mg. Deciderio Enrique Díaz Rubio (ORCID: 0000-0001-5900-2260)

LINEA DE INVESTIGACIÓN:

Planes de Mantenimiento

CHICLAYO – PERÚ

DEDICATORIA

Mi tarea de tesis de grado está destinado a Dios, por concederme la vida a través de mis apreciados padres Avelinda Yrigoin Quintana y Victor Salazar Salazar que con muchísimo afecto, dilección, y modelo han hecho de mí un ser con valores para poder desempeñarme y alcanzar los ideales más apreciados de superación, mis padres en conjunto con mis hermanos son los que fueron los que en momentos más arduos de mí vida me dieron su comprensión, apoyo para superarme y poder salir victorioso en esta segunda carrera que el resto de mi vida personal como profesional que será muy útil para lograr éxitos y desenvolverme mejor.

Asimismo, ofrendar a "Mi esposa e hija", los amores de mi vida, a mis camaradas y compañeros de labores, quienes los antes mencionados me aconsejaron, apoyaron moralmente y comprendieron, ellos siempre estuvieron conmigo, implorando al Señor para salir adelante, y así lograr mis metas.

Orlando Salazar Yrigoin

AGRADECIMIENTO

Agradezco al Señor, por concederme la vida, energía y la ocasión de salir adelante adquiriendo nuevos conocimientos, para mejorar el desempeño en mi vida diaria y aportar en beneficio del desarrollo de la organización que actualmente trabajo; aportar con el crecimiento de mi localidad, región, país y el mundo.

Corresponder a mis padres por encaminarme como el ser humano que hoy día soy; mucho de los objetivos alcanzados es por la guía de ustedes entre uno de ellos esta esté. La formación que me inculcaron con valores, reglas y con algunas libertades, son claves para encaminarme y motivarme constantemente para lograr mis deseos.

Agradezco a los profesionales a la Universidad César Vallejos por haberme brindado la ocasión de realizar mi formación profesional. Agradecer en sobremanera a los ingenieros de la Facultad de Ingeniería, por habernos brindado sabiduría, siendo guía orientador de conocimientos fructíferos para mi formación profesional.

A los miembros del jurado por sus orientaciones y sugerencias que permitieron mejorar mi trabajo de investigación.

El Autor

ACTA DE SUSTENTACIÓN

ACTA DE SUSTENTACION

En la ciudad de Chiclayo, siendo las 12:00 horas del día 28 de junio del 2019, de acuerdo a los dispuesto por la resolución de dirección académica N° 1039-2019/UCV-CH, de fecha 24 de junio de 2018, se procedió a dar inicio al acto protocolar de sustentación de la tesis titulada: "PROPUESTA PARA REEMPLAZAR DTL - 595 - SCU. POR AUTOMATA PROGRAMABLE COMERCIAL PARA REDUCIR GASTOS EN EL MANTENIMIENTO DE LA CENTRAL HIDROELECTRICA QUANDA 2018", presentado por el(la) (los) bachiller: Salazar Yrigoin, Orlando, con la finalidad de obtener el título de ingeniero mecánico electricista, ante el jurado evaluador conformado por los profesionales siguientes:

Presidente

: Ing. Anibal Jesús Salazar Mendoza

Secretario

: Ing. Edilbrando Vega Calderón

Vocal

: Ing. Deciderio Enrique Díaz Rubio

Concluida la sustentación y absueltas las preguntas efectuadas por los miembros del jurado se

resuelve:

APROBADO POR MAYORIA

Siendo las 12:50 del mismo día, se dio por concluido el acto de sustentación, procediendo a la firma de los miembros del jurado evaluador en señal de conformidad.

Chiclayo, 28 de junio de 2019

Ing. Anibal Jestis zar Mendoza

Ing. Edilbrando Vega Calderón

Secretario

Ing. Decigerio Phrique Díaz Rubio

Vocal

DECLARATORIA DE AUTENTICIDAD

Yo, Orlando Salazar Yrigoin, identificado con DNI Nº 33593200, a efecto dar

cumplimiento con las disposiciones vigentes consideradas dentro del Reglamento

de Grados y títulos de la Universidad César Vallejo, Facultad de Ingeniería,

Escuela de Ingeniería Mecánica Eléctrica, manifiesto bajo lealtad que toda la

documentación adjuntada es sincera y verídica.

En mi tesis presentada, manifiesto bajo lealtad que toda la documentación e

testimonio presentado es legítimo y verídica.

Con tal conocimiento acepto el compromiso que corresponda ante cualquier copia

o plagio de la información, ocultamiento u omisión tanto de la documentación

como del testimonio aportado por lo tanto asumo la responsabilidad lo que indica

en las normativas académicas actuales de la Universidad César Vallejo.

Chiclayo, 29 de diciembre del 2018

Orlando Salazar Yrigoin /DNI: 33593200

PRESENTACIÓN

El actual proyecto de investigación que lleva como nombre "Propuesta para reemplazar DTL 595 – SCU por autómata programable comercial para reducir gastos en el mantenimiento de la Central Hidroeléctrica Quanda", está conformado por los siguientes partes:

- **I.- CAPÍTULO** Se explora la problemática, analizando la realidad del problema de los trabajos previos, hipótesis en concordancia con la tesis, enunciación del problema, argumento del estudio, hipótesis y objetivos.
- **II.- CAPÍTULO** Se implanta el procedimiento realizado el diseño de la tesis; el prototipo del análisis, las variantes independiente e dependiente, ejecución de variables, población y muestra, técnicas e instrumentos de recolección de datos, validez y confiabilidad, métodos de análisis de datos, y aspectos éticos.
- III.- CAPÍTULO Desarrollo las conclusiones tomando en consideración, la información adquirida de los instrumentos de recolección de datos, propuesta para reemplazar regulador digital de la turbina (DTL 595) por autómata comercial para reducir gastos de mantenimiento en la Central Hidroeléctrica Quanda, determinando las características, número de entradas, salidas analógicas y digitales del DTL 595 que sean compatibles con el PLC a reemplazar.
- IV.- CAPÍTULO Se procede con la controversia entre los resultados adquiridos y las teorías ejecutadas en el desarrollo de los antecedentes de investigación exteriorizada anticipadamente.
- V.- CAPÍTULO Los desenlaces, donde se presentan de manera clara las conclusiones agenciadas en el acrecentamiento de esta tesis.
- VI.- CAPÍTULO Las advertencias fundamentadas en las conclusiones para enriquecer la tesis, que dará mayor resultado en el proyecto de investigación.
- VII.- CAPÍTULO Las narraciones de esta tesis compromete todo el material didáctico de las bibliografías utilizadas en dicho proyecto de investigación.

Chiclayo, 29 de diciembre del 2018

Autor
Orlando Salazar Yrigoin

ÍNDICE

DEDICATORIA	ii
AGRADECIMIENTO	iii
ACTA DE SUSTENTACIÓN	iv
DECLARATORIA DE AUTENTICIDAD	V
PRESENTACIÓN	vi
ÍNDICE	vii
RESUMEN	x
ABSTRACT	xi
I. INTRODUCCIÓN	12
1.1. Realidad Problemática	12
1.1.1. Ámbito Internacional	12
1.1.2. Ámbito Nacional	12
1.1.3. Ámbito Local	13
1.2. Trabajos Previos	15
1.2.1. Ámbito Internacional	15
1.2.2. Ámbito Nacional	17
1.3. Teorías Relacionada al tema	19
1.3.1 Autómata Programable	19
1.3.2. Partes Constitutivas	20
1.3.3. Lenguajes De Programación	22
1.3.4. Partes De Una Automatización	24
1.3.5. Costos De Mantenimiento	25
1.4. Formulación al Problema	26
1.5. Justificación del estudio	26

	1.5.1. Justificación Técnica	. 26
	1.5.2. Justificación Económica	. 27
	1.5.3. Justificación Social	. 27
	1.5.4. Justificación Ambiental	. 27
	1.6. Hipótesis	. 28
	1.7. Objetivos	. 28
	1.7.1. Objetivo General	. 28
	1.7.2. Objetivos Específicos	. 28
II	. MÉTODO	. 29
	2.1. Diseño de investigación	. 29
	2.1.1. Tipo de investigación	. 29
	2.1.2. Aplicada:	. 29
	2.1.3. No experimental:	. 29
	2.2. Variables, Operacionalización	. 29
	2.2.1. Variable independiente	. 29
	2.2.2. Variable dependiente	. 29
	2.3. Población y muestra	. 31
	2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	1.31
	2.4.1. Técnicas e instrumentos de recolección de datos	. 31
	2.4.2. Validez y Confiabilidad	. 32
	2.5. Métodos de análisis de datos	. 32
	2.6. Aspectos éticos	. 32
II	I. RESULTADOS	. 33
	3.1. Determinar las características que controla el DTL 595 – SCU, en la Cer	ntral
	Hidroeléctrica Quanda	. 33
	3.2. Realizar el diagnóstico del equipo DTL 595 –SCU	48

3.3. Seleccionar un autómata programable comercial, para reemplaza	r el DTL
595 – SCU	51
3.4. Realizar una evaluación económica de la propuesta generada	64
3.4.1. Ingresos	64
3.4.2. Gasto	68
3.4.3. Balance económico	69
IV. DISCUSIÓN	70
V. CONCLUCIONES	73
VI. RECONMENDACIONES	74
VII. REFERENCIAS	75
ANEXOS	79
ANEXO 01 ESQUEMA, PLANOS Y REGISTROS DEL DTL 595	79
ANEXO 02 DATOS DEL PLC SELECCIONADO	104
ANEXO 03 PROGRAMA EN TIA PORTAL	126
ANEXO 04 DATOS PARA ESTABLECER LA EVALUACIO ECONOMICA	۱ 142
ANEXO 05 INSTRUMENTOS DE RECOLECIÓN DE DATOS	145
ACTA DE ORIGINALIDAD DE TURNITIN	149
FORMATO DE AUTORIZACION DE PUBLICACIÓN	150
AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIG	GACIÓN
	151

RESUMEN

La presente tesis denominada "Propuesta Para Reemplazar DTL 595 – SCU Por Autómata Programable Comercial Para Reducir Gastos En El Mantenimiento De La Central Hidroeléctrica Quanda - 2018", y tiene como objetivo el estudio reemplazar el regulador digital de la turbina por un controlador lógico programable comercial para reducir gastos de mantenimiento en la central de generación eléctrica, siendo de tipo aplicada por que los discernimientos establecidos darán solución al problema planteado y no experimental por que no se varían las variables para llegar a los resultados. Se detalla un estudio del funcionamiento actual de los turbogeneradores y se propone variaciones para mejorar su trabajo e incrementar la continuidad del servicio eléctrico, mejorando la funcionabilidad de los turbogeneradores nos da más confiabilidad para brindar un mejor servicio eléctrico. El proyecto se ha desarrollado en las bases existentes del suministro eléctrico con la que cuenta la central de generación eléctrica, reemplazando un autómata programable comercial para controlar la turbina, visualizando, registrando y almacenando datos en tiempo real. Este proyecto se justificó en lo técnico, económico, social y ambiental por ser una central eléctrica de generación hidráulica que brindar energía limpia renovable, técnicamente mejora el funcionamiento de los turbogeneradores, reduciendo las pérdidas económicas por tiempo muerto de la central y gastos de mantenimiento.

Se concluyó con la proyección de los beneficios que se obtendrá con la propuesta de reemplazar el regulador digital de la turbina (DTL 595 – SCU) con el controlador lógico programable comercial (PLC) para reducir gastos de mantenimiento.

Palabras claves: Confiabilidad, software, mantenimiento, automatización.

ABSTRACT

The present thesis called "Proposal To Replace DTL 595 - SCU By Programmable" Commercial Automata To Reduce Costs In The Maintenance Of Quanda Hydroelectric Plant - 2018", and has as objective the study to replace the digital regulator of the turbine with a programmable logic controller to reduce maintenance costs in the power generation plant, being of the applied type because the established knowledge will solve the problem and not experimental because the variables will not be manipulated to arrive at the results. A study of the current operation of the turbogenerators is detailed and changes are proposed to improve its operation and increase the continuity of the electric service, improving the functionality of the turbogenerators that gives us reliability to provide a better electrical service. The project has been developed in the existing electricity supply bases of the power generation plant, replacing a commercial programmable automaton to control the turbine, visualizing, recording and storing data in real time. This project was technically, economically, socially and environmentally justified as it is a hydraulic generation power plant that provides renewable clean energy, technically improves the operation turbogenerators, reducing economic losses due to plant downtime and maintenance costs.

It was culminated with the projection of the benefits that will be obtained with the proposal to replace the turbine digital regulator (DTL 595 - SCU) with the commercial programmable logic controller (PLC) to reduce maintenance costs.

Keywords: Reliability, software, maintenance, automation.

I. INTRODUCCIÓN

1.1. Realidad Problemática

1.1.1. Ámbito Internacional

La organización española de ingeniería y formación técnica RENOVETEC establecida en el 2009, la cual se dedica a desarrollar proyectos en el ámbito de Generación de Energía, Energías Renovables y Mantenimiento Industrial menciona que para proyectar una plan de mantenimiento en una industria, es decir, para establecer el conjunto de acciones de naturaleza preventiva que se requiere realizar en dicha industria se debe tomar como base lo indicado en los manuales de mantenimiento y operación de los fabricantes de cada una de las máquinas o equipos que la forman, lo que se manifiesta como la manera más habitual y cómoda de establecer un plan de mantenimiento. Pero este método por así decirlo presenta algunos inconvenientes importantes que son necesarios analizar antes de tomar la decisión de establecer las recomendaciones de los proveedores como base exclusiva para el plan de mantenimiento. (Renovetec, s.f., párr. 1).

Con lo que se puede conjeturar que aun siendo el mantenimiento determinado por el fabricante y siendo este mantenimiento el más óptimo para el correcto funcionamiento de la maquinaria existe un pero que genera inconvenientes. Uno de los planteamientos que formula esta empresa dedicada al sector es que en situaciones en que un plan de mantenimiento propuesto por el fabricante es tan integro que considera la revisión o sustitución de un alto número de piezas que evidencian no haber llegado a la totalidad de su vida útil, lo que aumenta de manera excesiva el gasto en mantenimiento. (Renovetec, s.f., párr. 11).

1.1.2. Ámbito Nacional

El tema de exclusividad en cuanto a cambio de piezas como repuesto es obviamente una situación contraproducente el poder contar con otros proveedores del mismo repuesto o de los repuestos que generen la misma funcionabilidad seria determinante para mantener la tecnología en funcionamiento, la empresa Arequipa S.A. dedicada a la generación eléctrica en su Pronunciamiento N° 1271-2013/DSU comenta:

Igualmente, en diversos lados de los orígenes, se percibe que la organización hace mención a la marca ABB, la cual habría sido normalizada para la presente evolución de selección por intermedio de la Resolución Gerencial funda en el párrafo originado. Sobre tal presencia, de convenio con el pliego definitivo de observaciones, el colaborador demuestra que no será incomodo obtener los accesorios de la marca ABB para asegurar el funcionamiento y operación del equipamiento prioritario, pues, según el competidor, la Empresa en varias ocasiones habría obtenido repuestos de la marca TURBO USA para el turbocompresor VTR de la central termoeléctrica de Mollendo, los que inclusive serían de mayor relevancia que los de la central termoeléctrica de Chilina. Igualmente, el postulante discute lo indicado en la Resolución de Gerencia General Nº 066/2013/EGASA (resolución que da el visto bueno de la estandarización), pues mencionada Resolución cumpliría en la recomendación dada por el fabricante de la máquina Sulzer el en manual de funcionamiento. Con relatividad, el postulante señala que dicha advertencia del fabricante tendría un interés económico (advertir la adquisición de una marca de más precio) y no basándose técnicamente; así mismo, el postulante indica que la realidad ha enseñado que el uso de repuestos para los turbocompresores VTR de marca diferente de "ABB" no altera el funcionamiento ni la operación las máquinas. (Arequipa, 2013, p. 5).

El direccionar el acceso a un equipo, repuestos y mantenimiento como se menciona en el párrafo citado genera un costo monopolizado.

1.1.3. Ámbito Local

En la central hidroeléctrica Quanda, se mantiene el acceso para obtener un equipo, repuestos, el código de acceso para ingresar al software y mantenimiento correctivo del DTL 595 – SCU con un especialista ex trabajador de la empresa fabricante de dicho equipo, este ha monopolizado el acceso de la Hidroeléctrica a las soluciones en cuanto a reparaciones cortas y/o pequeñas, genera un gasto excesivo de la central, la empresa

fabricante del DTL 595 – SCU desapareció del mercado y no es nacional; la importación de las piezas, equipo y software así como la asistencia del especialista en el tema determina un costo superior, del que se generaría si los repuestos y la mano especializada fuera nacional, proveedores nacionales. Cuando el personal de mantenimiento de la central hidroeléctrica (Electro Oriente) programa sus mantenimientos para corregir fallas como son mecánicas o eléctricas el autómata DTL 595 - SCU en algunos casos censa como falla al momento que se intervienen con los accesorios de los turbogeneradores o en salidas forzadas por interrupción del servicio eléctrico, se tiene que ingresar al software para identificar el problema del DTL 595 - SCU detectado como fallas y no permite el arranque del generador; con el especialista que presta servicios con la empresa al momento que requiere sus servicios se encuentra ocupado por lo que se tiene que esperar. Así mismo existe un costo tácito que se genera en el tiempo muerto de las generadoras por esperar el servicio del único especialista que tiene el código del software para solución de los problemas.

El funcionamiento de la turbina es gobernado por el equipo denominado DTL 595 – SCU, el cual se encarga de regular la velocidad del generador (Frecuencia 60 Hz), la regulación la realiza a través de una unidad oleohidráulica, 5 sensores lineales, 4 inyectores, 1 deflector y 2 sensor de velocidad. Adicionalmente del regulador digital de la turbina (DTL 595 SCU) interactúa con el equipo denominado AMG2 el cual se encarga de la visualización de los parámetros de funcionamiento, arranque, parada y protección del generador.

El regulador digital de la turbina al ser un equipo instalado en el año 2001 con respecto a la fecha de hoy se encuentra desactualizado por lo que se tienen los siguientes problemas técnicos:

- ❖ Es imposible encontrar repuestos actualizados tanto del CPU como de los Slots de entradas y salidas digitales y analógicos.
- No se tiene acceso al programa para poder identificar las fallas, modificarlo en caso de emergencia o para realizar mejoras al funcionamiento del turbogenerador.

❖ No se puede conectar con un sistema de adquisión de datos moderno para actualizar una mejor tecnología debido a que no se tiene las direcciones internas o clave de acceso del software.

Por lo indicado se plantea reemplazar el DTL 595 -SCU por un autómata programable comercial de alta gama que tenga una igual o mejorar performance que el regulador digital de la turbina (DTL 595 SCU).

Se concluye que el equipo DTL 595 - SCU es un elemento muy importante para la regulación de la frecuencia y funcionamiento del generador por tal motivo se requiere que sea reemplazado por un PLC comercial para poder tener un acceso controlado al programa del autómata y poder realizar mejoras en la operación y mantenimiento de los turbogeneradores de la central de generación eléctrica.

1.2. Trabajos Previos

1.2.1. Ámbito Internacional

Navas (2017) en su tesis "Automatización de las unidades que conforman la central hidroeléctrica Pucará" el propósito es fabricar e implementar los tableros de adquisición de datos y control automático de las unidades, como parte del proyecto principal de actualizar los equipos que se lleva a cabo en la central. Se ejecutó el reemplazo del sistema de control electromecánico por medio de la utilización de autómatas programables (PLC) con la determinación de perfeccionar la confiabilidad en la comprobación de las unidades de producción eléctrica. Se consideró los enlaces entre los distintos equipos bajo la construcción diseñada para atender los requerimientos del sistema de comprobación, calibrar las variables requeridas de la instrumentación de campo supervisadas en paneles locales que admiten optimizar el control, por medio de supervisión. En la planificación de los procesos de arrangue y parada se implementaron esquemas funcionales estandarizados que acepte desarrollar un modelo que reduzca la interpretación de las diversas sucesiones realizadas. Se concluye que se ejecutó el diseño, montaje y

puesta en funcionamiento del sistema eléctrico, de comprobación y monitoreo para las unidades de generación.

Mendoza (2016) en su tesis "Rediseño del sistema de control por un control programable PLC para una máquina de plástico de extrusión soplo modelo Bekum H-121" para obtener el título de Ingeniero Mecánico, cuya meta fue rediseñar el sistema de control de una máquina de plástico de extrusión por medio de un PLC, llegando a la conclusión que se enfocaron en la parte

eléctrica de la máquina, para esto determinaron mediante la información del mantenimiento en qué condiciones se encontraba la máquina, para realizar el rediseño requirieron conocer el funcionamiento y composición de los sistemas eléctricos de control y fuerza, así como la vinculación con otros sistemas de la máquina como el hidráulico, neumático, de enfriamiento y la temperatura, el PLC instalado se programó para realizar exactamente el mismo ciclo de trabajo, entre las conclusiones una de las más resaltantes es que por medio del PLC el proceso mejora su funcionabilidad por la rápida intervención y supervisión sobre este, también señala que la selección de elementos cubre las necesitadas del sistema y son económicamente más accesibles a la empresa conllevando esto a una reducción de costos en el proceso productivo.

Cañar (2015) en su tesis "Diseño y poner en funcionamiento de un módulo práctico para automatización de motores trifásicos por medio del PLC STEP S7 1200 en la Universidad Técnica de Cotopaxi, extensión la Maná, año 2015." El proyecto de graduación tiene por objetivo la fabricación de un módulo práctico para la automatización de motores trifásicos por medio de PLC STEP S7 1200, supervisado mediante el software TIA PORTAL para el Laboratorio de Electromecánica. Con la implementación del módulo práctico el estudiante de la especialidad de Ingeniería en Electromecánica tiene la posibilidad de hacer sus prácticas de laboratorio para mejorar su conocimiento experimental acerca de la operación y trabajo de los PLCs. En la actualidad los procesos de las

industrias se controlan a través de una interfaz gráfica para lo cual el presente proyecto está compuesto con un sistema de visualización industrial de nombre —Human Machine Interfacell (HMI) El objetivo es que el estudiante aprenda las tecnologías actuales de automatización, en el proyecto se desarrolla diez prácticas de laboratorio que enseñaran los conocimientos principales para que el alumno pueda trabajar con los equipos de tecnología de punta que formarán parte de su desarrollo profesional dentro de la institución educativa.

Ludeña (2009) en su tesis "Diseño un sistema de control automático para el sistema óleo hidráulico de la turbina en la central hidráulica San Francisco" Este proyecto desarrollado estudia y analiza la funcionabilidad de una de las partes principales de la central hidráulica, aparte de sus accesorios que la controlan para tener un sistema estable, uno de estos componentes de regulación es la central óleohidráulica que controla la presión hidráulica y sostener la presión indicada del sistema para que el gobernador regule la velocidad necesaria que necesita las turbinas y tengan la presión necesaria de trabajo los álabes en el sentido de abrir o cierre de acuerdo con la carga necesaria que requiera el gobernador de cuando a las necesidades para subir o bajar carga del turbogenerador.

El objetivo del estudio es mantener la presión mediante trabajo de las bombas que posee la central, que regula en forma intermitente las electroválvulas que se ubican en la salida de las bombas para alimentar presión al recipiente de reserva, al sistema presurizado, apertura la válvula mariposa y el Bypass para el inicio de funcionamiento.

1.2.2. Ámbito Nacional

Ramos (2013) en su tesis "Diseño de un control semiautomatizado usando PLC S7 – 200 con interfaz SCADA de una planta de tratamiento de aguas residuales biológico de lodos activados basado en la modalidad de aireación extendida" cuyo objetivo fue Diseñar un control semiautomatizado usando PLC que use como interfaz para un sistema SCADA de una planta de tratamiento para aguas residuales de riesgo

biológico de lodos activados, en su investigación concluye que el diseño propuesto permite manejar la operación de la planta por medio de menos personal, explica que en su diseño utiliza la filosofía del ON-OFF, y trabaja con el software LabVIEW, además su diseño se enfoca en mantener un bajo coste de la planta.

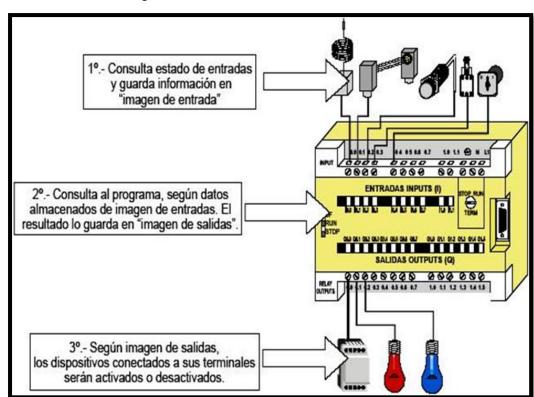
Sánchez (2011) en su tesis "Diseño e implementación de un sistema de automatización para mejorar la producción de carretes en la empresa la casa de Tornillo SRL" cuyo objetivo fue enfocado a mejorar la producción de carretes diseñando e implementado un sistema de automatización, en ella concluye que el incluir un sistema automatización logro una reducción significativa en las horas de trabajo (de 225 a 150) aumentando la productividad de la empresa en un 0.94 a 3.72 carretes por hora, su producción también aumento en un 33%, y genero un ahorro económico de S/ 1 237.5 mensual.

Castañeda y Gonzales (2016) en su tesis "Plan de mejora para reducir los costos en la gestión de mantenimiento de la empresa transportes Chiclayo S.A. Chiclayo" para obtener el título de Ingeniero Industrial tuvieron por meta mejorar la Gestión de Mantenimiento con la elaboración de un plan de mejora en el cual se plantea bajar los costos de la empresa Transportes Chiclayo S.A en ella concluyen que el mantenimiento en la empresa era deficiente, generando esta determinación mediante un diagrama de Pareto, establecieron que según las bases teóricas era de vital la importancia una buena gestión en mantenimiento ya que los mantenimientos preventivos, autónomos y programados son influyentes de gran manera en los costos de la empresa.

Fuentes (2015) en su tesis "Propuesta de un sistema de gestión de mantenimiento preventivo basado en los indicadores de Overall Equipment

Efficiency para bajar los costos de mantenimiento en la empresa hilados Richard'S S.A.C." cuya meta se enmarco en el título, las conclusiones más relevantes de su investigación fueron, que la implementación del sistema de gestión de mantenimiento preventivo genero S/ 103 020.53 de ahorro semestrales, menciona que uno de los costos que se genera por mantenimiento es el tiempo de espera para poner operativa la máquina, y además que la implementación del mantenimiento preventivo ha generado una reducción del 30% de las fallas en la máquina.

1.3. Teorías Relacionada al tema


1.3.1 Autómata Programable

Los autómatas programables (PLC), son equipos electrónicos fabricados para gobernar procesos secuenciales en tiempo real; para obtener información de diferentes sensores y controlar con precisión diversos sistemas eléctricos y mecánico, que cuentan con entradas y salidas de distintos modelos de señales, su función está sujeta de un programa que ha sido configurado anteriormente, con lo que trabaja cierta secuencia automáticamente, el programa es elaborado al iniciar de unos parámetros que ordenan el proceso de automatización y el tipo de señales que se desea mejorar. (Cárdenas, 2015, p. 10).

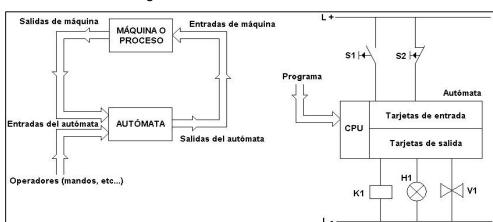
Los controladores lógicos programables o PLC, son equipos electrónicos muy usados en el ámbito del automatismo industrial. En nuestra actualidad el PLC no solo controla la lógica de trabajo de la máquina y fabricas industriales, también pueden gobernar estrategias de control, tales como controladores proporcional integral derivativo (PID), se comunican entre ellos y computadoras en redes de área local, son muy principales en los sistemas modernos de control. (Paredes, 2013, p. 9).

Los autómatas programables son actualmente una tecnología usada para automatización de procesos industriales de fácil manipulación y gran ámbito de aplicación, se entiende por Autómata Programable o controlador lógico programable según sus siglas en ingles PLC, a todo equipo electrónico, diseñado para realizar el control en tiempo real y en

medios industriales donde se aplican procesos secuenciales. Su programación y manejo se puede realizar por personal electrónico o eléctrico sin ser de requerimiento conocimientos de informática. Los PLC tienen como competencias realizar funciones lógicas, como circuitos en paralelo, serie, contajes, temporizadores y otras acciones de mayor complejidad como regulaciones, cálculos y demás. (Ramos, 2013, p. 4).

Fuente: Imagen tomada del manual de S7 – 200 de Siemens

Figura 1. Funcionamiento del PLC.


El autómata cuenta con entradas y salidas, este verifica la situación de sus entradas y asimila el estado de ellas como una imagen, interpreta el programa en el sobre esta imagen y genera una reacción como otra imagen que es enviada a sus salidas. (Ramos, 2013, p. 4).

1.3.2. Partes Constitutivas

Unidad central de procesos (CPU). – es el cerebro del PLC es quien contiene el programa y se encarga de interpretarlo, en donde se dirigen las órdenes del operario el cual usa para esto un módulo de entras y una

consola de programación, seguido a dicha acción esta unidad procesa la información y brinda respuestas por medio del módulo de salida. Cuenta con una memoria donde se establece el programa desarrollarlo por el operario que controlara el proceso. Esta unidad central de procesos está compuesta por imagen de entrada y salida, los datos, unidad centras y memoria del programa. (Ramos, 2013, p. 5)

Módulo de entrada. – es quien contiene los contactos que se usaran para ingresar la información en el PLC, en este módulo se conectan los finales de carrera, interruptores, pulsadores, sensores y demás captadores. Cada cierto periodo de tiempo la disposición de estas entradas es transferido a la memoria del PLC para que la procese de acuerdo al programa establecido. Se pueden establecer dos tipos de captadores que se conectan a este módulo de entradas, los activos y los pasivos, los captadores son elementos electrónicos que entregan tensión al autómata de manera variable el cual debe ser interpretado por el programa, y los pasivos son los que cambian de manera discreta como activada y no activada. (**Ramos, 2013, p. 5**)

Fuente: Imagen tomada del manual de S7 – 200 de Siemens

Figura 2. Diagrama de mando PLC

Módulo de salida. – es quien contiene los contactos que se usaran para accionar los dispositivos que el PLC determine por interpretación del programa que contiene, es decir es el modulo que contiene conectados

los actuadores. La información que se envía a las entradas de PLC se procesa como ya se mencionó y se envía a una memoria imagen de las salidas, es aquí donde se envía una interface a dichas salidas para que estas sean desactivadas o activadas según el requerimiento del programa lo que fuerza a que los actuadores conectados a ellas sufran el mismo fin. Así como existen diferentes procesos en el ámbito industrial depende de ellos que se determina los módulos de salida que requiere el autómata. Los dispositivos relé que son utilizados en circuitos de corriente continua o alterna, se basan en la conmutación mecánica, para la bobina del relé de un contacto llamado normalmente abierto por su posición inicial, también se pueden utilizar dispositivos electrónicos cuando se requiere maniobras muy rápidas como los triac que responden a ambas corrientes tanto alterna como continua. (Ramos, 2013, p. 6).

1.3.3. Lenguajes De Programación

La manera en que interpreta las órdenes la tecnología indicada para la automatización fue hasta hace un tiempo de manera muy rígida conforma a la tecnología utilizada que era los bloques de contactos, la evolución cuenta también en esta área:

Cuando aparecieron los controladores lógicos programables, lo diseñaron con la necesidad de remplazar a los grandes cuadros de operación fabricado con contactores y relés. Por lo tanto, el mensaje con el hombre y máquina debería ser compatible a la utilizada hasta la actualidad. El idioma usado, debe ser entendido, con facilidad, por los mismos técnicos electricistas que inicialmente estaban en contacto con la instalación. Estos idiomas han mejorado, en la actualidad, de tal manera que algunos de ellos ya no tienen nada que ver con el típico esquema eléctrico a relés (Ramos, 2013, p. 6).

Fuente: Imagen tomada del manual de S7 – 200 de Siemens

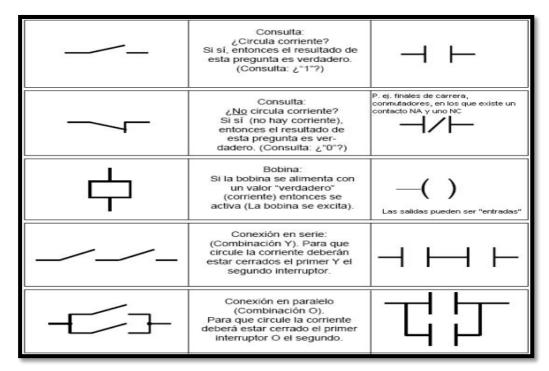


Figura 3. Lenguaje KOP.

Lenguaje de contactos. – es un lenguaje que se basa en dos tipos de contactos abiertos y cerrados actualmente surgen mayores aportes con bloques de diferentes funciones.

Es una imagen gráfica que tiene cierta analogía a los planos de contactos. Su organización sigue la semejanza que existe con los circuitos la comprobación lógica cableada, es manifestar que utiliza la misma función de los contactos (NA) y (NC), con la diferencia que su lectura es totalmente distinta. Además de los simples contactos que dispone, existen otros componentes que facultan realizar cálculos aritméticos, operaciones de cotejo, implementar algoritmos de ordenación. Su gran extensión se debe por simplificar el trabajo a los beneficiarios. (Ramos, 2013, p. 7).

Por lista de instrucciones. - sucede en algunos tipos de PLCs de gama baja en donde se da como único tipo de programación aquí se crea una lista de indicaciones (lenguaje de máquina) que son asociados a símbolos y sus combinaciones en un circuito eléctrico de contactos, cabe mencionar que este modelo de idioma en algunos casos es el método

más práctico de programación se podría decir que hasta más potente. (Ramos, 2013, p. 7).

1.3.4. Partes De Una Automatización

Un sistema automatizado se puede segregar en dos partes puntuales la parte operativa llamada en algunos casos de fuerza y la parte de mando. (Sánchez, 2011, p. 15)

La parte operativa es la que permite el accionamiento directo sobre el actuador estos son los que permiten el movimiento o las acciones de la máquina.

La fracción Operacional es la parte que trabaja directamente relativo a la máquina. Son las partes que manipulan que la máquina se mueva y ejecute la operación requerida. Los componentes que componen la parte operacional son los manipuladores de las máquinas como cilindros, compresores, motores y los captadores como finales de carrera, fotodiodos, etc. (Sánchez, 2011, p. 15)

La parte de mando es donde se plasma la lógica que se requiere que siga la máquina, es decir donde se "programa" las acciones que hará la máquina mediante el lenguaje elegido.

Lo componentes de ordenes suele ser un controlador lógico programable (tecnología programada), no hace mucho tiempo que se utilizaban relés electromagnéticos, módulos lógicos neumáticos o tarjetas electrónicas (tecnología cableada). En un procedimiento de trabajo automatizado el controlador lógico programable está en medio del sistema. Este debe ser capaz de trasmitir información con todos los componentes del sistema automático. (Sánchez, 2011, p. 16)

Fuente: Imagen tomada del manual de S7 – 200 de Siemens

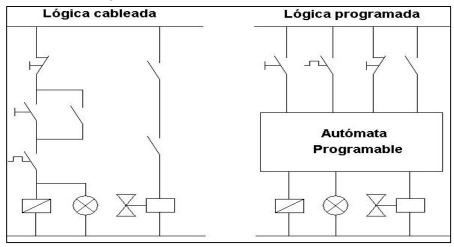


Figura 4. Tipo de lógicas.

1.3.5. Costos De Mantenimiento

Se puede agrupar en dos categorías aquellos que están directamente relacionados con las realizaciones de mantenimiento como los costos en administración (gastos administrativos), lo que conlleva la mano de obra, los materiales, las refracciones o repuestos, los costos por subcontratos, los costos que conllevan al almacenamiento del producto o activos y los de capital, en otra categoría los costos que se dan por perdidas en la producción a causa de fallas en los equipos, reducción de la producción y pérdidas generadas por mala calidad del producto debido a las fallas en funcionamiento de los equipos del proceso. (Espinosa, 2013, p. 53).

Los precios de elaboración de la manufactura o brindar un trabajo se constituye de tres componentes fundamentales en materiales directos los cuales son una amplia diversidad de materiales para fabricar un producto o brindar un beneficio. Esos materiales que componen la parte global del producto o beneficio que se puede reconocer de forma apropiada en el mismo, segundo la mano de obra directa; está especificación se guarda para aquellos costos de trabajo que pueden ser materialmente entregados a la producción de pertenencias y servicios que pueden ser facilitados sin costos o obstáculos suplementarias, son los costos de labor humana que no pueden reconocer o que de hacerlo traerían costos complementarios o

inadecuados didácticamente, son asignados mano de obra indirecta y son tratados como fracción de los costos indirectos de fabricación y por último en costos indirectos de elaboración que se denominan también costos principales de elaboración, excepto los materiales directos y la mano de obra directa, etc., los costos indirectos de elaboración se conocen con varios nombres como gastos generales de manufactura, gastos de fábrica, overhead o carga fabril. Todas estas declaraciones son sinónimos (Cuevas, 2001, p. 53).

1.4. Formulación al Problema

¿Si se propone el reemplazo del DTL 595 – SCU por autómata programable comercial se podrá reducir los gastos en mantenimiento correctivo del control de central hidroeléctrica Quanda?

1.5. Justificación del estudio

1.5.1. Justificación Técnica

Las conclusiones del proyecto de investigación se originan empleando una metodología recuperada de la teoría y otros trabajos de investigación trabajados en el área de automatización y autómatas programables, también se dirige a implementar un dispositivo moderno, comercia para poder adquirir otro equipo, repuestos cuando se requiera y que tenga igual o mejor performance que el autómata DTL 595 – SCU, que se acondicionará con las características y parámetros de funcionamiento del autómata original para que de manera segura y confiable desarrolle las funciones del dispositivo, así no se deberá rediseñar todo el sistema que está conectado directamente al DTL 595 – SCU. Se concluye que se requiere realizar una ingeniería inversa del DTL 595 para la obtención de la filosofía de control de arranque, parada, fallas, etc. y para realizar el control de la velocidad y potencia de la turbina se requiere realizar una nueva ingeniería basada en estudios y ensayos realizados en taller y campo.

1.5.2. Justificación Económica

Los resultados del proyecto de investigación indican justamente a precisar el objetivo que busca definitivamente reducir el gasto de la empresa eléctrica en el área de mantenimiento de los turbogeneradores de la central hidroeléctrica, romper el monopolio que se ha originado en cuanto a la corrección de las fallas por parte del equipo electrónico actual y que genera un elevado gasto constante.

Así mismo existe un costo tácito que se genera en el tiempo muerto de las generadoras por esperar el servicio del único especialista que cuando se necesita se encuentra en el extranjero u ocupado y es el único que tiene el código del software para solución los problemas.

No se puede conectar con un sistema de adquisión de datos moderno debido a que no se tiene las direcciones internas del programa.

1.5.3. Justificación Social

En el asunto social es tener en cuenta ya que el problema que se plantea solucionar es en una central hidroeléctrica la cual entrega energía eléctrica al Sistema Eléctrico de Interconectado Nacional (SEIN), la disposición de mantener la continuidad de la central eléctrica funcionando al 100 por ciento (%) de tiempo es para que genere un beneficio a la sociedad lo que sería contrario cada vez que la central eléctrica se detenga por fallas inesperadas.

1.5.4. Justificación Ambiental

La generación eléctrica de una central hidroeléctrica es una energía limpia renovable que no produce aspectos ambientales que ocasionan impactos ambientales que alteran el medio ambiente para produciendo recalentamiento global lo que sería contrario cuando deja de generar una central hidroeléctrica, sobre todo en las horas punta se tiene que compensar esa energía con generación de centrales termoeléctricas que producen diferentes contaminantes físicos y químicos muy nocivos con un impacto ambiental y negativo sobre la salud humana, los cambios adversos sobre el organismo humano se presentan a corto, medio y largo

plazo, generando y desencadenando lo producido por los contaminantes preexistentes. La generación térmica produce aspectos ambientales que ocasionan impactos ambientales alterando el medio ambiente.

1.6. Hipótesis

Si se realiza una propuesta para reemplazar DTL 595 – SCU por autómata programable comercial entonces se podrá reducir gastos en el control de central hidroeléctrica Quanda.

1.7. Objetivos

1.7.1. Objetivo General

Realizar una propuesta para reemplazar DTL 595 – SCU por autómata programable comercial para reducir gastos en el mantenimiento correctivo del control de central hidroeléctrica Quanda.

1.7.2. Objetivos Específicos

- A. Determinar las características que controla el DTL 595 SCU,
 en la Central Hidroeléctrica Quanda. (TEORIA RELACIONADA).
- B. Realizar el diagnóstico del equipo DTL 595 –SCU.
- C. Seleccionar un autómata programable comercial, para reemplazar el DTL 595 SCU.
- D. Realizar una evaluación económica de la propuesta generada.

II. MÉTODO

2.1. Diseño de investigación

El estudio del proyecto de investigación a desarrollar será NO EXPERIMENTAL, requerido a que los discernimientos darán en la investigación no alteran las variables, identificando los inconvenientes existentes para posteriormente estudiarlo y llevar a una conclusión.

2.1.1. Tipo de investigación

2.1.2. Aplicada:

Se superpone los discernimientos definidos para dar conclusión al problema planteado en el DTL 595, reemplazando con un autómata PLC para mejorar el funcionamiento y reducir gastos de mantenimiento de la central hidroeléctrica.

2.1.3. No experimental:

Porque no se manipularán las variables para llegar a los resultados.

2.2. Variables, Operacionalización

2.2.1. Variable independiente

Reemplazo de DTL 595 – SCU por autómata programable

2.2.2. Variable dependiente

Reducción de gastos en mantenimiento correctivo

Tabla 1. Cuadro de operacionalización de variables

Variable	Definición	Definición	Indicador	Escala de
independiente	Conceptual	Operacional		Medición
Reemplazo de DTL 595 – SCU por autómata programable	Sustituir cambiar o relevar el DTL 595 – SCU por un autómata programable	Determinar los parámetros de funcionamiento de las partes del sistema de carga Diseñar equipos que determinen funcionamiento de los componentes del sistema de carga Montar los	Intensidad Tensión Cumple / no cumple	Amperios Voltios Nominal
		dispositivos para las pruebas en un banco	cumple	
Variable	Definición	Definición	Indicador	Escala de
Dependiente	Conceptual	Operacional		Medición
Reducción de gastos en mantenimiento correctivo	Acción de reducir enfocada al tema económico producido por el mantenimiento.	Evaluar sistema de carga en varios regímenes de funcionamiento	Estado de la máquina	Nominal

Fuente: elaboración propia.

2.3. Población y muestra

Población: El turbogenerador hidráulico de marca Sulzer Hydro de la central Hidroeléctrica Quanda, es controlado por el regulador digital de la turbina (DTL 595 SCU).

Muestra: Se considerará al turbogenerador hidráulico de marca Sulzer Hydro. En la actual investigación las unidades de estudio serán cogidas de la muestra y el tipo de muestreo empleado es del tipo No Probabilístico debido a que en este estudio los sujetos se tomaran por los investigadores de transacción a nuestra realidad de la problemática, es decir no se interpone la aleatoriedad y el azar.

(Ñaupas, Mejía, Novoa y Villagómez, 2011, p. 237).

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad.

2.4.1. Técnicas e instrumentos de recolección de datos

TECNICAS	INSTRUMENTOS	OBJETIVO
Observación directa	Ficha de registro	Determinará los parámetros de funcionamiento del DTL 595
Análisis de documentos	Ficha de análisis de documentos	Determinar los costos por mantenimiento correctivo del DTL 595-SCU

2.4.2. Validez y Confiabilidad

Validez:

Será otorgada por la firma de un ingeniero especialista en centrales de hidráulicas.

Confiabilidad:

Se concederá por la fidelidad que se incorporará en el informe del proyecto de investigación donde se deberá establecer que los datos son confiables bajo fidelidad.

2.5. Métodos de análisis de datos

Se utilizará estadística descriptiva para constituir valores precisos como la varianza o promedios. Y identificar tipos de problemas por medio de gráficos y tablas.

2.6. Aspectos éticos

Se empleará las referencias solamente para este estudio involucrando que no se utilizaran para causar ningún perjuicio a la organización, y se organizara con ella directamente para la difusión de estos cuando se necesité. Se dirige el tema ético alineándonos al código Ontológico del Colegio de Ingenieros del Perú el cual delinea al Ingeniero como un especialista con proclividad de servicio, veraz objetico y ético.

III. RESULTADOS

3.1. Determinar las características que controla el DTL 595 – SCU, en la Central Hidroeléctrica Quanda.

El DTL 595 – SCU, gobierna el funcionamiento de la turbina regulando la velocidad del turbogenerador para mantener una frecuencia de 60 Hz, esta regulación la realiza a través de actuadores oleohidráulicos, existen dos turbinas en la central y cada una de ellas trabaja de manera independiente con un DTL, cada dispositivo DTL trabaja con sensores y actuadores con los que para regular la velocidad de la turbina son:

Tabla 2. Cantidad de actuadores y sensores

SENSORES		
Sensores de posición lineal	5	
Sensores de velocidad	2	
Sensores de vibraciones	1	
Sensores de temperatura	2	
Sensores de presión	1	
ACTUADORES		
Inyectores	4	
Finales de carrera	2	
Deflector	1	
Válvula solenoide para el baypass	1	
Válvula proporcional 4/3 en posición neutra normalmente cerrada	5	
Válvula direccional 4/2 en posición normalmente abierta	5	
Válvula direccional 4/2	1	
Válvula principal esférica	1	
Prensostato	1	
Filtro	2	

Fuente: elaboración propia.

La central hidroeléctrica presenta condiciones de trabajo que deben ser consideradas para seleccionar los dispositivos:

Tabla 3. Condiciones ambientales que debe tener la central

CONDICIONES AMBIENTALES DE LA CENTRAL		MEDIDA	UNIDAD
Temperatura ambiente		30	°C
Humedad relativa del aire	a 30°C	50	%
a 28°C		85	%
Protección de los tableros		IP54	
Presión del aire		86/106	kPA

Fuente: manual de la central Hidroeléctrica.

Parámetros eléctricos de la central hidroeléctrica que se exponen a continuación en la siguiente:

Tabla 4. Parámetros eléctricos de la central

	Voltaje	400/230	V
Corriente Alterna	Margen de tensión	85/110	%
	Frecuencia nominal	60	Hz
Carrianta Cantinua	Voltaje	24	V
Corriente Continua	Margen de tensión	85/110	%

Fuente: manual de la central Hidroeléctrica.

a) Características técnicas de los equipos y dispositivos mecánicos eléctricos de control de los turbogeneradores de la Central Hidroeléctrica.

Adicionalmente el Turbogenerador trabaja sincronizadamente con el dispositivo AMG2 el cual se encarga del mando de arranque, parada, subir carga, bajar carga, visualizar parámetros de operación, protección de señales eléctricas y mecánicas:

Tabla 5. Características del AMG 2

DISPLEY AMG 2		
Marca	Leonhard-Reglerbau Gmbh	
Tipo	AMG2S	
Frecuencia	50/60	Hz
Potencia	5	W
Voltaje	24	VDC

Fuente: manual de la central Hidroeléctrica.

Fuente: equipo de mando AMG2.

Figura 5. AMG2.

Siendo el 06 de abril del 2011 se determina la potencia efectiva de la Central Hidráulica Quanda, de resolución al Procedimiento N° 18 del COES y tomando como referencia la norma IEC 41: Turbogenerador 01 1253.33kw y Turbogenerador 02 1256.14 kw (2509.47kw).

Tabla 6. Características de la turbina Peltón

TURBINA 01 - 02			
Marca	Sulzer Hydro	Sulzer Hydro	
Tipo	PELTON Modelo e	PELTON Modelo eje vertical	
Modelo	Turbal 2268 - 2	Turbal 2268 - 2	
Altura neta nominal	255	m	
Caudal	650	Lt/seg.	
Velocidad	1200	RPM	
Año de fabricación	1997	Año	
Potencia 01	1256.14	KW	
Potencia 02	1256.14	kW	

Fuente: manual de la central Hidroeléctrica.

Fuente: placa de la turbina Peltón.

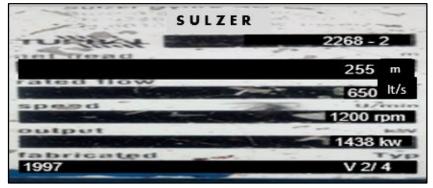


Figura 6. Turbina peltón.

Los generadores Otto Bartholdi AG, trabajan actualmente generando energía eléctrica para el Sistema Eléctrico de Interconectado Nacional (SEIN), a plena carga las 24 horas de día con valores de potencia que oscila entre 2505.43 y 2513.64 kw dicha variación estudiada de acuerdo al procedimiento PR-18 del COES y a la norma IEC 41, en su nivel de tensión de generación nominal 2300 voltios, factor de potencia 0.8 (Cos phi) y con 1200 revoluciones por minuto (rpm):

Tabla 7. Características del Generador

GENERADOR 01 – 02			
Marca	Otto Bartholdi AG		
Tipo	W.O 630/560) L6 (Síncrono)	
Potencia - 01	1 253,33	KW	
Potencia - 02	1 256,14	KW	
Voltaje	2300	V	
Corriente nominal	440	Α	
Factor de potencia	0.8	Cos	
Número de fases	3	Trifasico	
Frecuencia nomina	60	Hz	
Corriente de excitación	50	Α	
Tensión de excitación	63	V	
Velocidad de embalamiento	2020	RPM	
Momento de inercia	2,40	Kg/m2	
Paso	10500	Kg	
Año de fabricación	1997	Año	
Velocidad de rotación	1200	RPM	

Fuente: manual de la central Hidroeléctrica.

Fuente: placa del generador.

Figura 7. Generador.

Estudio de evaluación de la potencia efectiva de la Central Hidráulica Quanda realizado el 6 abril del 2011 con presencia de representantes del COES y fijando como punto la norma IEC 41. En origen al Procedimiento Nº 18: Definición de la potencia efectiva de las Centrales Hidráulicas del SINAC, define la potencia efectiva de las centrales de generación hidráulica del SINAC. La prueba de potencia efectiva está definido a comparar la capacidad electromecánica (potencia) de la central definida por la organización, mediante una prueba, este valor es indispensable para definir su potencia fija correspondiente que se estudia:

Tabla 8. Determinación de potencia de los turbogeneradores por el COES

Central Hidroeléctrica	Especificación	Potencia Efectiva (kW)	Caudal (m ³ /s)
	Potencia Efectiva Grupo 1	1 253,33	
Quanda	Potencia Efectiva Grupo 2	1 256,14	
Quanda	Potencia Efectiva Central	2 509,47	1,25

Fuente: htt://contenido.coes.org.pe

La regulación de la velocidad de los turbogeneradores se realiza el control por un modo de accionamiento del taquímetro digital, modo de accionamiento del regulador por aceite con presión que cierra el deflector en un tiempo mínimo de 1,5seg:

Tabla 9. Características técnicas del regulador de velocidad

REGULADOR DE VELOCIDAD		
Modo de accionamiento del taquímetro	Digital	
Modo de accionamiento del regulador	Aceite de presión	
Tiempo de cierre mínimo	1,5 seg. deflector	

a) Se determinaron también las características de los sensores y actuadores:

El turbogenerador trabaja con 2 sensores de velocidad de rotación / magnético /óptico / semi / contacto / con rosca. Estos sensores son robustos, durables y confiables están diseñados para trabajar en condiciones ambientales más exigentes:

Tabla 10. Características del sensor de velocidad

SENSOR DE VELOCIDAD DEL GENERADOR			
Marca	JAQUET		
Tipo	FTG 1087. 00S		
Señal de velocidad	0. 0520Hz = 0200%		
Voltaje	24	VDC	

Fuente: manual de la central Hidroeléctrica.

Fuente: sensor de velocidad del generador.

Figura 8. Sensor de velocidad.

En la central eléctrica cada turbogenerador trabaja con un sensor de vibración marca JAQUET, modelo 140 - T - 2, que sirve para registrar la aceleración, la velocidad o desplazamiento del generador:

Tabla 11. Características del sensor de vibración

SENSOR DE VIBRACIONES DEL GENERADOR			
Modelo	140 - T - 2		
Marca	JAQUET		
Corriente	420 mA		
Voltaje	24 VDC		

Fuente: sensor de vibración del generador.

Figura 9. Sensor de vibración.

La unidad oleohidráulica tiene como principal función abastecer de energía hidráulica al sistema como presión y caudal para su correcto funcionamiento del turbogenerador, la central hidroeléctrica está diseñado para que los turbogeneradores trabajen independientemente cada uno con su propia unidad oleohidráulica, que está compuesta por los siguientes accesorios: Tanque de aceita, motor eléctrico, bomba hidráulica, 5 Válvula proporcional 4/3 en posición neutra normalmente cerrada, 5 Válvula direccional 4/2 en posición normalmente abierta, una válvula direccional 4/2, un prensostato, un termostatos y un acumulador de energía hidráulica:

Tabla 12. Características de la unidad oleohidráulica

UNIDAD OLEOHIDRAULICA			
Marca	Bachofen Hydraulik		
Tipo	S - HMP4.6B/HV - L6. 5/132 - HP - DS2 - DWX2 - TS2 - DF2 - SBB2 - 2XNU2 - M1 - VB6/0394		
Serie	45813		
Volumen	185	Lt	
Año de fabricación	1997	Año	
Presión	120	Bar	

Fuente: placa del tanque de la unidad oleohidráulica

Figura 10. Unidad oleohidráulica.

La válvula principal de admisión o válvula principal esférica se encarga de abrir y cerrar el pase de agua de la tubería de presión a la turbina, con un tiempo de cierre de emergencia de 30 seg:

Tabla 13. Características de la válvula principal de admisión

VÁLVULA PRINCIPAL DE ADMISIÓN			
Modelo	Manual con bomba hidráulica		
Marca	ERHARD - ARMATUREN		
Tipo	Esférica		
Accionamiento	Contrapeso de gravedad		
Presión Normal	40	bar	
Diámetro Nominal	400	mm	
Tiempo de cierre de emergencia	30	seg	

Fuente: manual de la central Hidroeléctrica.

Fuente: placa de la válvula principal esférica.

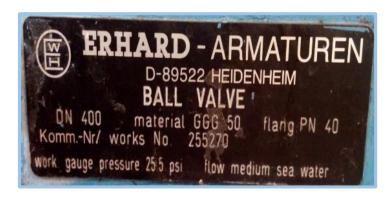


Figura 11. Válvula principal.

Cada turbogenerador está compuesto por cuatro inyectores y un deflector, que es gobernado por su propio Regulador Digital de la Turbina (DTL 595 SCU), los inyectores y el deflector recibe la orden de señal de interfaz mandando a abrir o cerrar y también retornan señales de aviso de operación de los actuadores por intermedio de los Sensores Lineales marca Temposonic, comandado por el DTL 595 SCU:

Tabla 14. Características del sensor de posición

SENSOR	LINEAL	
Marca	Temposonics	
Modelo	R-Series Modelo RH	
Tipo	RHM0065MD701S2G1100	
Voltaje de alimentación	24 VDC	
Tipo de señal de salida	Synchron Serial Interface 24 Bit (Gray Code) (SSI)	
Resolución	0.005 mm	

Fuente: manual de la central Hidroeléctrica.

Fuente: http://www.mtssensors.com/products/industrial/index.html

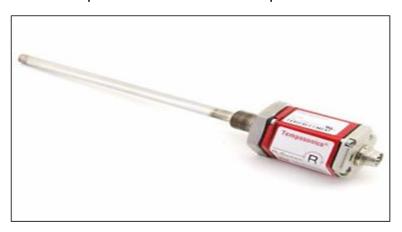


Figura 12. Sensor de posición lineal.

La unidad oleohidráulica está conformada por un prensostato de marca Digiswitch de tipo UDS 3, que cierra el circuito eléctrico para dar arranque y parada al motor eléctrico que comanda el accionamiento de la bomba para sostener la presión del sistema hidráulico (UPH) entre 95 bar y 110 bar:

Tabla 15. Características técnicas prensostato

ACTUADOR	PRENSOSTATO DE UPH	
Marca	Digiswitch	
Modelo	44 - 032571101	
Tipo	UDS 3	
Voltaje	24	VDC
Presión nominal	200	Bar
Presión maxima	300	bar
Corriente	4 - 20	mA

Fuente: manual de la central Hidroeléctrica

Fuente: placa del prensostato.



Figura 13. Prensostato.

El motor eléctrico de la unidad oleohidráulica acciona el funcionamiento de la bomba hidráulica para mantener la presión de trabajo del sistema hidráulico:

Figura 16. Características técnicas del motor del UPH

ACTUADOR	MOTOR ELÉCTRIC	
Marca	Riietschi	
Modelo	IM 472.11000	
Número de faces	3	
Voltaje	380	VAC
Potencia	1.5	Kw
Corriente	3.4	Α
Factor de potencia	0.82	Cos
Numero de revoluciones	1715	rpm

Fuente: placa del motor eléctrico.

Figura 14. Motor eléctrico.

La bomba hidráulica se encarga de mantener la presión del sistema oleohidráulica entre 95 bar y 110 bar:

Tabla 17. Características técnicas de la bomba

BOMBA HIDRÁULICA			
Marca Lamborghini			
Presión	110 bar		
Caudal	6.5	l/min	

Fuente: manual de la central Hidroeléctrica.

Los cilindros hidráulicos de los inyectores son de doble efecto con un tiempo de apertura y cierre 3 seg, los deflectores son de simple efecto tiempo de cierre 1,5 seg, cada turbogenerador está conformado por 4 inyectores y un deflector:

Tabla 18. Cilindros dispuestos en la turbina

Actuador	Cilindro Hidráulico de inyectores	Cilindro Hidráulico de Deflector
Marca	Rexroth	Rexroth
Modelo	63x28x48	63x28x50
Presión	160 bar	160 bar
Pipo	Doble efecto	simple efecto
Tiempo de cierre	30 s	1.5 s
Tiempo de apertura	30 s	

Cada turbogenerador de la central hidráulica cuenta con su propia unidad oleohidráulica de funcionamiento independiente que se compone de 5 válvulas proporcionales 4/3 en posición neutra normalmente cerrada, que se encargan de controlar el funcionamiento hidráulico de los inyectores y deflector, estas válvulas se pueden ajustar electrónicamente para una serie de cargas sin necesidad de accionamientos hidráulicos:

Tabla 19. Características técnicas de las válvulas proporcionales

VÁLVULA PROPORCIONAL 4/3 EN POSICIÓN NEUTRA NORMALMENTE CERRADA				
Marca	MOOG			
Tipo	R02KA1M	R02KA1MONSS2		
Modelo	D633-394A			
Presión máxima de operación	350	Bar		
Fluido máximo	80	l/min		
Voltaje	24	VDC		
Tipo de señal de entrada	4/20	mA		
Tipo de señal de salida	4/20	mA		

Fuente: manual de la central Hidroeléctrica.

Fuente: placa de la válvula proporcional 4/2- NA.

Figura 15. Válvula proporcional.

Los inyectores y deflector de los turbogeneradores aparte de las 5 válvulas proporcionales por cada unidad oleohidráulica se complementan con más 5 válvulas direccionales 4/2 en posición normalmente abierta accionadas por solenoides, con estos 2 tipos de válvulas se controlan los inyectores y deflector, abriendo y cerrando de acuerdo a la potencia que asuma cada turbogenerador, estas válvulas son utilizada principalmente

para el manejo de actuadores, permitiendo el desplazamiento de cilindros o el giro de motores en ambos sentidos:

Tabla 20. Características técnicas válvula direccional

VÁLVULA DIRECCIONAL 4/2 EN POSICIÓN NORMALMENTE ABIERTA				
Marca	DENIS	NC		
Modelo	026 54	026 54165 J		
Tipo	4D01 3181 0101 B1GO			
Presión máxima de operación	350 Bar			
Voltaje	24 VDC			
Tipo de señal de entrada	4/20 mA			
Tipo de señal de salida	4/20	mA		

Fuente: manual de la central Hidroeléctrica.

Fuente: placa de válvula proporcional 4/2-NA.

Figura 16. Válvula proporcional 4/2.

La válvula principal de admisión es accionada por una válvula direccional 4/2, que está montada en el tren de válvulas de la unidad oleohidráulica de cada turbogenerador:

Tabla 21. Características técnicas válvula direccional

VÁLVULA DIRECCIONAL 4/2-NA.				
Marca	DENISO	NC		
Modelo	026 54113 H			
Tipo	4D01 3151 0101 B1GOQ			
Presión máxima de operación	350 Bar			
Voltaje	24 VDC			
Tipo de señal de entrada	4/20 mA			
Tipo de señal de salida	4/20	mA		

Fuente: placa de la válvula direccional 4/2-NA.

Figura 17. Válvula direccional.

La válvula solenoide del baypass sirve para equilibrar las presionas de agua de la tubería forzada con la cámara de descarga que hace girar el rodete, dicha válvula acciona al iniciar del arranque del turbogenerador:

Tabla 22. Características válvula baypass

VÁLVULA SOLENOIDE PARA EL BAYPASS			
Marca burkert			
Voltaje	24 VDC		
Presión (PN1)	50 Bar		
Potencia	8	W	

Fuente: manual de la central Hidroeléctrica.

Fuente: placa de la válvula solenoide.

Figura 18. Válvula solenoide.

El turbogenerador trabaja con 2 finales de carrera, cuando la válvula esférica se abre un final de carrera cierra el circuito eléctrico indicando el led válvula abierta, y al cerrar la válvula esférica el siguiente final de carrera abre el circuito eléctrico señaliza el led válvula cerrada:

Tabla 23. Características de los finales de carrera

FINALES DE CARRERA				
Marca BERNSTIN				
Voltaje	300 V			
Corriente	·			

Fuente: manual de la central Hidroeléctrica.

Fuente: placa del final de carrea.

Figura 19. Final de carrera.

Para medir la presión de agua de la tubería forzada y la cámara del distribuidor se utiliza dos manómetros:

Tabla 24. Características de manómetro

MANÓMETRO				
Marca	WIKA			
Presión máxima	20W/20VA			
Voltaje	250 V			
Presión	Presión 40 bar			

Fuente: manual de la central Hidroeléctrica.

Fuente: manómetro de presión de agua.

Figura 20. Manómetro de presión.

3.2. Realizar el diagnóstico del equipo DTL 595 -SCU

El dispositivo en mención es un DTL 595-SCU alimentado con 24 V en corriente directa con un puerto de comunicación RS-232 x 4, y mantiene 32 slot (Módulos de señales analógicas, digital y regula la corriente) conectados su conexionado se describe:

Tabla 25. Características del DLT 595

DESCRIPCIO	N DE SEÑAL	TOTAL	TIPO DE SEÑAL		MODELO DEL SLOT	OBSERVACION
Entrada	Digitales	33	24	VDC	BI4B	
Salida	Digitales	10	24	VDC	BQ6C	
Entrada	analógica	1	0.05-20	KHz	Al2G	Sensor de velocidad del generador
Entrada	analógica	1	4-20	mA	Al1A	sensor de vibraciones del generador
Salida	analógica	5	4-20	mA	AQ1B	Actuador de válvula proporcional de unidad oleo hidráulica
Salida	analógica	1	0-20	mA	AQ1A	indicador de velocidad analógico
Salida	analógica	1	0-20	mA	AQ1A	indicador digital de varios valores
Entrada	Código gray	5	Interfac	ous Serial e 24 Bits SI)	Al2H	sensor de posición lineal de 4 inyectores - 1 deflector

Fuente: DTL 595 y módulos electrónicos.

Figura 21. DLT 595 y módulos.

Tabla 26. De manera más específica las entradas y salidas serán:

DESCRIBCIÓ	DESCRIPCIÓN DE SEÑAL TIPO OBSERVACION			
DESCRIPCIO	N DE SENAL	TIPO	OBSERVACION	
Entrada	Binary	7 mA	AMG2 (setpoints –aumentar ajuste, disminuir ajuste, aumentar velocidad, bajar velocidad – I00, I01, I02, I03)	
Entrada	Binary	7 mA	AMG2 (Turbina comienzo, detener de emergencia – 106, 107, 108, 109)	
Entrada	Binary	7 mA	AMG2 8(F1 alarma, F2 apagar, F3 apagar inmediato, sirena – I100, I101, I102, I103)	
Entrada	Binary	7 mA	AMG2 (Arranques manual, automático y test – 188, 180, 190, 191)	
Entrada	Binary	7 mA	BCD SWITCH Valor 10, 20, 40 y 80 (I120, I121, I122, I123)	
Entrada	Binary	7 mA	Generador interruptor listo, interruptor encendido –K2738, 2718, 2734, 2714	
Entrada	Binary	7 mA	Oil filter pluggeo (Filtro de aceite tapado – I150, I151, I152, I153) filtro de aceite	
Entrada	Binary	7 mA	Generador CB desconectador, CB alimentador (-K2812, -K2772)	
Entrada	Binary	7 mA	Bomba y Electro Válvula de Bypass (-S1132, - S1136, -S1138 ((160, 61, 62, 63)	
Entrada	Binary	7 mA	Manómetro de presión de agua (181, 182, 183) válvula bypass	
Entrada	Binary	7 mA	Gobernador presión, bomba pendida y apagada - prensostato S1 <100bar, S2 <95, S3<103, S4 >108 (I56, I57, I58, I59)	
Entrada	Binary	7 mA	Finales de carrera (184, 185, 186, 187)	
Entrada	Binary	7 mA	BCD SWITCH Valor 1, 2, 3 4, 8 (I116, I117, I118, I119)	
Salida	Binary		Punto decimal (Q150, Q151, Q152, 153)	
Salida	Binary		AMG2 (FM7, FN8, FM9, FM10, FM11, FM12 - Q106, Q107, Q108, Q109, Q110, Q111)	
Salida	Binary		AMG2) FM1, FM2, FM3, FM4, FM4, FM6 - Q100, Q101, Q102, Q103, Q104, Q105)	
Salida	Binary		Válvula principal abierta, cerrada, alarma, bypass entrada llena (Q71, Q72, Q73, 74) – (AMG2 – arrancar, parar y reset - Q75, Q76)	
Salida	Binary		Bypass, válvula solenoide, gen. Batería, sirena (Q34, Q35,Q36, Q37, Q38,Q39) (-K1262, - K1263, -K1264, -K1265, -K1266, -K1267)	
Salida	Binary		DTL OK, excitación, gobernador bomba, válvula deflector (Q20, Q21, Q22, Q23, 24, Q25) (-K1252, -K1253, -K1254, -K1255, -K1255A, -K1256,1257)	
Salida	Analógica	020mA200 %	Velocidad de turbina	
Salida	Analógica	020mA = 0	Varios valores	
Salida	Analógica	+/- 10mA = 0100%	Control deflector servo	

Salida	Analógica	+/- 10mA = 0100%	Control N° 4 servo	
Salida	Analógica	+/- 10mA = 0100%	Control N° 3 servo	
Salida	Analógica	+/- 10mA = 0100%	Control N° 2 servo	
Salida	Analógica	+/- 10mA = 0100%	Control N° 1 servo	
Entrada	Analógica	4-20mA	sensor de vibraciones del generador	
Entrada	Analógica	0.05-20mA sensor de velocidad del generador		
Entrada	Código gray	sensor de posición lineal de inyectores 4 - deflector 1		

Fuente: manual de la central Hidroeléctrica.

El regulador digital de la turbina (DTL 595 - SCU); cuenta con 34 entradas digitales, 10 salidas digitales, 2 entradas analógicas y 8 salidas analógicas.

El dispositivo actualmente presenta carencias, como se mencionan a continuación:

- No se le puede dar mantenimiento preventivo por tener repuestos fuera de circulación.
- La programación no se puede modificar en momentos de emergencia, porque Electro Oriente no cuenta con el software ni la dirección interna o clave para realizar los ajustes necesarios.
- No es compatible para tecnología moderna.

AMG G2 AMG G2 MÓDULO MÓDULO DTL 595- CC1 DTL 595-CC2 UNIDAD UNIDAD HIDRÁULICA HIDRÁULICA TURBOGENERADOR 1 **TURBOGENERADOR 2 TENSION DE GENERACIÓN** TURBINA GENERADOR GENERADOR EXITATRIZ **TURBINA** EXITATRIZ PELTON SALIDA 2300V SINCRONO SÍNCRONO PELTON 12 KVA 12 KVA 1750 KVA 1750 KVA 1438 KW 1438 KW 400 V 400 V 2.3 KV 2.3 KV

Fuente: elaboración propia.

Figura 22. Esquema de Conexión de Control del Turbogenerador.

3.3. Seleccionar un autómata programable comercial, para reemplazar el DTL 595 – SCU.

a) Parámetros del sistema

Según las disposiciones del manual de la central se dispone los siguientes parámetros de funcionamiento:

Tabla 27. Parámetros para configurar el sistema

ITEM	CRITERIO	DESCRIPCION	CONDICIÓN
			sola con carga
1	ESTABILIDAD	Debe controlar de manera estable la velocidad de la turbina en todo el rango de potencias.	sola sin carga
			Paralelo con otras turbinas de la central
			Paralelo con otras centrales
	INDICE DE	velocidad en estado estable sin carga o con carga	menor al 0.3%
2	ESTABILIDAD DE VELOCIDAD	velocidad nominal con el estatismo de velocidad - apertura o velocidad - carga	ajustado a 5%
3	INDICE DE ESTABILIDAD DE	regulación de carga en estado estable	no mayor al 0.4% de la potencia nominal
	POTENCIA	Con el estatismo de velocidad - apertura o velocidad - carga	ajustado al 5%
		máximo cambio de velocidad en estado estable para invertir dirección de los servomotores	no debe exceder 0.02% de la velocidad nominal
4	BANDA MUERTA	debe contar con función para modificar manualmente el rango de la banda muerta	ajustable desde el valor más bajo posible hasta 2% de la velocidad nominal
		contar con función de anular	poderse realizar en escalones de 5 mhz
5	TIEMPO MUERTO	Para un cambio súbito de carga más del 10%	no debe ser mayor a 0.2 segundos

6	ESTATISMO PERMANENTE/RE GULACION DE VELOCIDAD	El regulador debe estar equipado con ambas características	los controles deben permitir el ajuste desde 0 a 10% en operación
7	SISTEM MONITOR DE PARAMETROS DE	contar con un sistema de control adaptativo que permita verificar y ajustar automáticamente los parámetros de retroalimentación del sistema de amortiguación	cuando opere a velocidad sin carga, en sincronización o en paralelo
	RETROALIMENTA CION	las características del regulador deberá ajustar los parámetros para las diferentes condiciones de carga de operación de la unidad del sistema	automáticamente
8	SEÑAL DEL ELEMENTO DETECTOR DE VELOCIDAD	debe ser directamente proporcional a la velocidad de la turbina	para todos los grados de aceleración y desaceleración para todos los valores de sobre velocidades hasta la de embalsamiento
		control de velocidad en condición normal, sin carga y con el estatismo en cero	cubrir el rango desde 85% velocidad nominal
9	RANGO DE AJUSTE DE VELOCIDAD	a máxima potencia o máxima apertura del servomotor, con los estatismos en sus valores máximos	hasta el 105% de la velocidad nominal
		ajuste de la velocidad debe hacerse desde el gabinete del sistema	ajuste manual, 0- Max en potencia

Fuente: manual de la central Hidroeléctrica.

a) Filosofía de control

El PLC deberá realizar la gobernación total de la velocidad en la turbina a través de los sensores de posición de los inyectores-deflectores, sensores de velocidad y actuadores oleohidráulicos.

Fuente: elaboración propia.

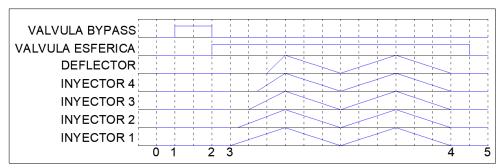


Figura 23. Diagrama de movimientos de los actuadores.

El funcionamiento que controlará el PLC será de acuerdo a las siguientes acciones:

Tabla 28. Tareas de los actuadores

ACTIVIDAD	DESCRIPCIÓN	CONTROL
0	Sin actividad, válvulas cerradas sin generación ni movimiento.	ninguno
1	Da marcha a la central, se debe activar la válvula bypass, hasta igualar presiones lo cual lo determina la señal de los manómetros a cada lado de la válvula esférica.	manómetros
2	La válvula esférica se abre, determinando su posición por los finales de carrera.	finales de carrera
3-4	se activan el deflector con los inyectores se abrirán según el requerimiento de carga, controlados por su posición	temposonic

Fuente: elaboración propia.

El AMG se encargará del mando del turbogenerador, recibir las señales de medida y protección del generador, la visualización de parámetros de generación que se observan en el equipo denominado BCD (tabla de códigos) será reemplazado por HMI donde se podrá mostrar los siguientes parámetros a tiempo real:

- Temperaturas de los rodajes del turbogenerador
- Temperatura del aceite de la unidad de presión oleohidráulica
- Temperaturas de los devanados del generador

- Frecuencia
- Voltaje
- Amperaje
- Potencia
- Cos phi
- Tensión del banco de baterías (VDC)
- Parámetros de protección del generador
- Horas de funcionamiento de generador

b) Selección del PLC

El PLC se determina teniendo en cuenta, la tabla 1:

Tabla 29. Tipo de entradas y salidas

SENSORES		TIPO DE SEÑAL
Sensores de posición lineal-temposonics	5	CÓDIGO GRAY
Sensores de velocidad	2	ANALOGICO
Sensores de vibraciones	1	ANALOGICO
Sensores de presión	1	ANALOGICO
Sensor de temperatura	2	DIGITAL
ACTUADORES		TIPO DE SEÑAL
Inyectores	4	DISCRETA
Deflector	1	DISCRETA
Finales de carrera	2	DIGITAL
Válvula solenoide para el baypass	1	DISCRETA
Válvula proporcional 4/3 en posición neutra normalmente cerrada	5	DISCRETA
Válvula direccional 4/2 en posición normalmente abierta	5	DISCRETA
Válvula direccional 4/2	1	DISCRETA
Manómetro	2	DIGITAL
Válvula principal esférica	1	DISCRETA

Por lo tanto, el PLC debe tener:

Tabla 30. Cantidad de entradas y salidas

ENTRADAS	CANTIDAD
ANALOGICAS	2
DIGITALES	34
SALIDAS	CANTIDAD
SALIDAS ANALOGICAS	CANTIDAD 7

Fuente: elaboración propia.

Otra característica que podría marcar la diferencia en cuanto a tecnología es que todo el mecanismo y componentes auxiliares son de origen alemán y su precisión ha sido durante la vida de la central indudable, por lo tanto, este argumento hace inclinar la decisión de elegir un PLC de marca SIMENS.

El modulo que se adapta o cumple con todas estas características es el:

Fuente:https://www.google.com.pe/Imagen+del+manual+de+S7++300+SIEMENS

SIMATIC S7-300, CPU 314C-2PN/DP CPU compacta con memoria de trabajo de 192 kbytes 24 DI/16 DO, 4 AI, 2 AO, 1 Pt100, 4 contadores rápidos (60 kHz), 1.ª interfaz MPI/DP 12 Mbits/s, 2.ª interfaz Ethernet PROFINET, con switch de 2 puertos, alimentación de DC 24V integrada, conector frontal (2x 40 polos) y Se necesita Micro Memory Card

Figura 24. PLC s7-300, 314C-2PN/DP seleccionado para reemplazo del DTL

Según las ficha técnica y manual que se adjunta en el anexo dos este PLC tendría 24 entradas digitales, 16 salidas digitales, 4 entradas analógicas y 2 salidas analógicas, en el estudio se ve que aparte de las entradas que se mencionan como obligación para el funcionamiento, además de plantear una sirena para aviso sonoro cuando una falla no haya sido revisada o se detenga las funciones por motivo de falla de la central se debe aumentar:

Tabla 31. Entradas extra

Entrada	Cantidad	Parametro
ANALOGICA	1	Temperatura de debanado
ANALOGICA	1	temperatura de aceite
ANALOGICA	1	Temperatura de rodajes
ANALOGICA	1	Frecuencia
ANALOGICA	1	Potencia
ANALOGICA	1	Voltaje
ANALOGICA	1	Amperaje
DIGITAL	1	Sirena

Fuente: elaboración propia.

El código gray de cada sensor de posición contiene 4 bits, por lo tanto, se requerirán cuatro entradas digitales por cada sensor de posición, hace que en total se requieran:

Tabla 32. Entradas y salidas totales

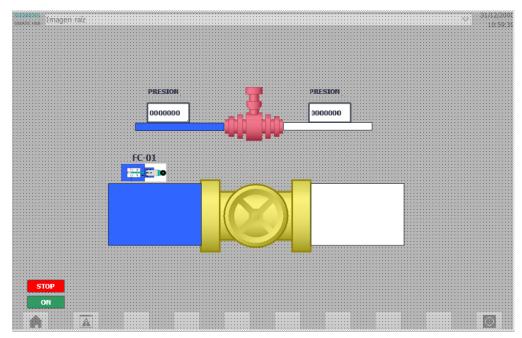
ENTRADAS	CANTIDAD
ANALOGICAS	9
DIGITALES	34
SALIDAS	CANTIDAD
SALIDAS ANALOGICAS	CANTIDAD 7

Fuente: elaboración propia.

Por lo tanto, no se podrá desarrollar el programa solo con el modulo base, se deberá agregar, módulos auxiliares de entradas y salidas analógicas y digitales, compatibles con la base seleccionada:

Tabla 33. Módulos expansión para el PLC S7 300

PARAMETRO	TIPO	CANTIDA	DESCRIPCION	CANTIDAD E/S
Entrada/Salida	Digital	1	6ES7 322-1BH01-0AA0-SERIE SIMATIC S7 300, 16 X ENTRADA/SALIDA 4 A, 20,4- 28,8 VDC	16
Entrada	Analógica	1	6ES7 331-7KF02-0AB0 - ENTRADA ANALOGICA DE - 0- 10VDC/ 4-20MA	8
Salida	Analógica	1	6ES7 332-5F00-0AB0 - SALIDA ANALOGICA O – 10VDC/ 4- 20MA	8


Fuente: manual de la central Hidroeléctrica.

c) Programa desarrollarlo para el control de la central

El software utilizado para desarrollar el programa de control fue el TIA PORTAL V14, en conjunto con el STEP7 el cual da la facilidad de comunicación entre el PLC y la Pantalla HMI.

El programa empieza según la gráfica de movimiento tendrá un sistema de visualización por medio de una pantalla HMI la cual se ha seleccionado para tener los dispositivos suficientes en cuanto a visualización, por la cantidad de dispositivos que se deberán tener en consideración se eligió una pantalla de 6", con 10 botones de función, según el fabricante es adecuada para el PLC que se estableció como ideal. La comunicación con el PLC será por el Puerto Ethernet, puerto que también fue considerado durante la selección del dispositivo.

La configuración por defecto es la que se presenta en la gráfica de la HMI que se presenta a continuación:

Fuente: pantalla de HMI.

Figura 25. Pantalla por defecto.

Se muestra la presión de ingreso en tiempo real, así como el final de carrera de la válvula principal que se muestra de amarrillo cerrada, Al iniciar presionando el botón verde "ON" la válvula de bypass se activará, hasta que la presión que se muestra en ambos lados sea la misma, cambiando la pantalla a la que se muestra:

Fuente: pantalla de HMI.

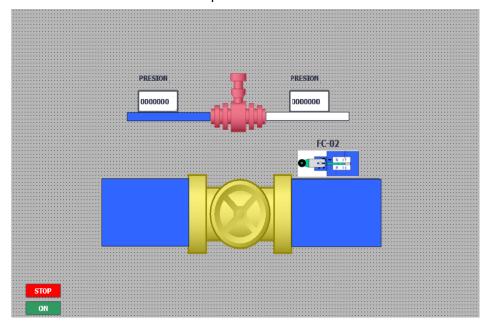


Figura 26. Válvula bypass activada.

Como se dijo al igualar las presionas la válvula principal se abrirá cerrando la válvula bypass como se muestra en la figura 23.

Fuente: pantalla de HMI.

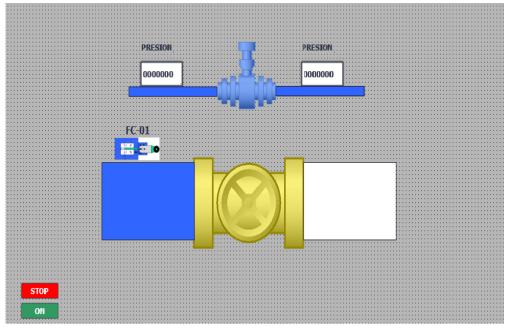


Figura 27. Válvula principal abierta.

El final de carrera 2 será quien determine que la válvula principal ha sido completamente abierta y cierre o de desconexión a la válvula de bypass.

En cuanto a los inyectores se realizar por medio de comparaciones estableciendo que estos podrán manipularse por medio de un set Point y comparación con la potencia generada regulando la velocidad del generador abriendo y cerrando los inyectores.

Se genera otra ventana de funcionamiento en el HMI para determinar el resto de control y parámetros que debe mostrar el sistema, en ella se mostrara el posicionamiento en porcentaje de los pistones que apertura y cierran los inyectores, así como el que manipula el deflector, esta pantalla por defecto arrancara con los valores en cero, como se muestra a continuación:

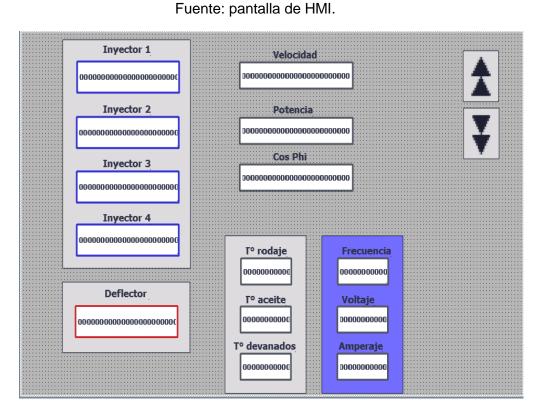
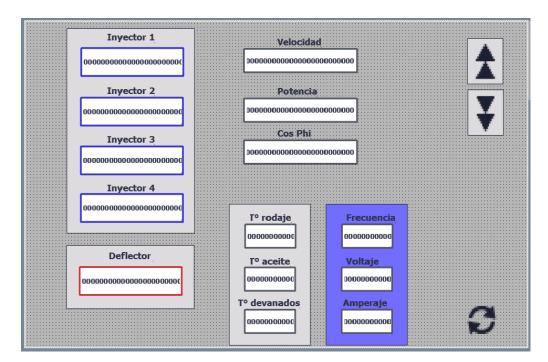



Figura 28. Pantalla 2 imagen por defecto al inicio del programa

Al iniciar el funcionamiento con el botón "ON" en la primera pantalla, tanto el deflector como el inyector apresuraran un 5% cuando la presión en la válvula bypass se establezca igual en ambos lados de la válvula principal. La pantalla empezara a registrar todos los parámetros establecidos, dejando la opción de aumentar la velocidad por medio de flechas en la parte superior derecha.

Se establecerán alarmas de acuerdo a lo establecido en el funcionamiento de la central:

Fuente: pantalla de HMI.

Figura 29. Segunda pantalla durante funcionamiento.

Al coordinarse alguna falla en el sistema saltara una alarma que establecerá la falla cuando el parámetro está fuera de lugar y detendrá la generación cuando el parámetro se acerque a valores peligrosos según lo establecido por los operarios.

Fuente: pantalla de HMI.

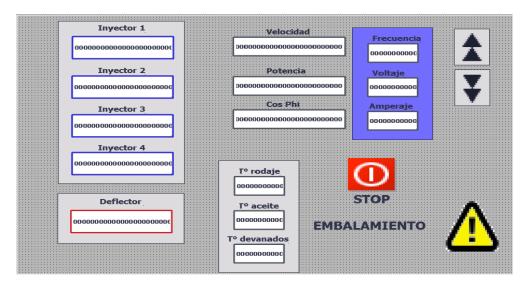


Figura 30. Pantalla con falla que no provoca fuera de servicio.

Durante una falla que se puede controlar como embalsamiento, sobretensión o exceso de carga por debajo del 5% o exceso de temperatura en rodajes, aceite o devanados por debajo del 30%, se mostrar un aviso, así como la disposición de la sirena que sonara después de 5 minutos que persista la falla.

Si la falla supera estos valores, así como en un 30% las temperaturas de funcionamiento del aceite, rodaje o devanados el sistema este detendrá sus funciones, y dejará en la pantalla suspendida con la falla que origino su fuera de servicio:

Figura 31. Pantalla con falla que origina fuera de servicio.

3.4. Realizar una evaluación económica de la propuesta generada.

Para evaluar económicamente el proyecto estableceremos un flujo de caja entre egresos e ingresos que tendrá, si se aplica, y estableceremos los indicadores económicos TIR y VAN para determinar si el proyecto es rentable o no.

3.4.1. Ingresos

Los ingresos estarían determinados por los gastos que se dejaran de realizar si es que se ejecutara la investigación estos gastos son los que originan el problema de esta tesis, es los gastos de mantenimiento correspondientes por el especialista que llega cada vez que se presenta una falla, ya que al tener la información muy reservada y ser tecnología antigua por así decirlo, no se tiene información para que se establezca la solución sin él.

En el anexo 04 se coloca una factura común sobre el tema de mantenimiento que se presenta aproximadamente cada 6 meses o 2 veces al año, lo que hace un costo anual por mantenimiento de:

Tabla 34. Gastos por mantenimiento

Costo	S/		7,616.00
Periodo	S/	6.00	meses
Anual	S/	15,232.00	

Fuente: elaboración propia.

En la tabla 34 se puede observar que el costo anual por mantenimiento correctivo asciende a S/. 15 232.00.

Las pérdidas de venta de energía también se considerarán como ingreso ya que al salir de funcionamiento la central este deja de percibir la venta que genera, se establece este criterio por que la reparación por

mantenimiento según los operarios y administrativos de la central no demora más de 1 hora, pero el tiempo que se demora en llegar el especializado es de dos a tres días por lo que la no venta de energía que se tomará será solo por el tiempo de llegada del especialista.

Tabla 35. Venta de energía de la central para un mes común

DIA	Kwh total
1	406,284.930
2	399,243.180
3	403,928.520
4	401,214.870
5	394,812.030
6	298,783.170
7	341576.400
8	401,036.250
9	385,805.460
10	386,574.900
11	381,978.870
12	385,358.910
13	383,064.330
14	389,954.940
15	205,378.650
16	414,707.550
17	407,823.810
18	427,107.900
19	392,558.670
20	410,283.270
21	405,048.330
22	413,402.250
23	405,371.220
24	397,766.130
25	412,893.870
26	403,145.340

Fuente: de medidor electrónico C.H. Quanda.

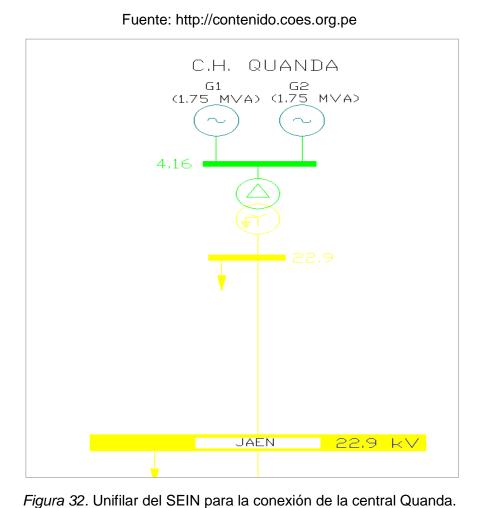

Con estos datos se genera la siguiente tabla:

Tabla 36. Venta de energía de la central para un mes común

Venta máxima	427,107.90
Venta mínima	205,378.65
Promedio	386,734.760

Resumen de venta de energía

La central de generación Quanda entrega su potencia a la barra de Jaén a 22.9 kv,

Para determinar la pérdida económica por dejar de producir energía se establecerá mediante el precio de barra en 22.9 kv según osinergmin este es:

Tabla 37. Precios en barra 01 de mayo 2017

	TENSIÓN	PPMo	PEMPo	PEMFo
	kV	S/./kW-mes	ctm. S/./kW.h	ctm. S/./kW.h
Sistema Eléctrico Intercone	ctado Nacional (SEIN	l)		
Sistemas Aislados - Res. Ba	rra (Cuadro 1) - Pred	ios en Barra		
Adinelsa	MT	22,34	29,08	29,08
Chavimochic	MT	22,34	29,08	29,08
Edelnor	MT	22,34	29,08	29,08
Eilhicha	MT	22,34	29,08	29,08
Electro Oriente	MT	22,34	39,07	39,07
Electro Sur Este	MT			
Electro Ucayali	MT	22,34	44,2	44,2
Electronorte	MT			
Hidrandina	MT	22,34	29,08	29,08
Seal	MT	22,34	52,83	52,83

Fuente: OSINERGMIN.

Considerando la mínima venta para determinar el costo tendremos por día una pérdida económica de:

Tabla 38. Venta de energía diaria

Costo kWh	S/ 0.390	
Energía	205,378.650	
Venta perdida	S/ 80,159.29	

Fuente: elaboración propia.

Si consideramos el mínimo tiempo que se demora el especialista (1 día) en llegar a solucionar el problema el gasto y pérdida económica en el que se incurre será de:

Tabla 39. Perdida por no vender energía anual

Perdida por venta	S/ 80,159.29	al día
Periodo	2	al año
Perdida anual	S/ 160,318.57	al año

Fuente: elaboración propia.

No se considera el gasto del personal técnico ni administrativo ya que el tomar la venta que no se realiza como pérdida total se está asumiendo

dentro de ella el gasto operativo y la utilidad que en suma deberían ser la perdida por no venta de energía.

Resumiendo, el ingreso se da por toda la pérdida económica que genera el no contar con la implementación del resultado de esta investigación, el ingreso para realizar la evaluación económica seria:

Tabla 40. Ingreso anual para evaluación económica

Mantenimiento	S/ 15,232.00
Venta de energía	S/ 160,318.57
Anual	S/ 175,550.57

Fuente: elaboración propia.

3.4.2. Gasto

El gasto que se realizar será tanto por el material utilizado y por el desarrollo técnico que se requiere, se cotizo en un proveedor especialista en desarrollo de estas tecnologías:

Tabla 41. Costo de instalación de PLC S7 - 300

Suministro de Hardware y tableros	S/ :	120,000.00
Servicio de desarrollo de ingeniería	S/ 2	200,000.00
TOTAL	S/ 3	320,000.00

Fuente: elaboración propia.

Para no incurrir en gasto de mantenimiento se estable una capacitación al técnico encargado por medio del especializa que cotizo el cual referencia que para los mantenimientos preventivos o que conllevan a la no reparación la capacitación sobre el software desarrollado seria de S/. 3 500.00

3.4.3. Balance económico

Para el balance económico primero desarrollamos un flujo de caja de la aplicación de los resultados para esto restamos los gastos de los ingresos que genera el proyecto implementado:

Tabla 42. Flujo de caja

Año	Gasto	Ingreso	Flujo de caja
0	S/ 323,500.00	S/ -	-S/ 323,500.00
1		S/ 175,550.57	S/ 175,550.57
2		S/ 175,550.57	S/ 175,550.57
3		S/ 175,550.57	S/ 175,550.57

Fuente: elaboración propia.

Considerando una tasa interna de retorno de 12% se tendrá un TIR y un VAN de:

Tabla 43. Evaluación económica

TIR	29%	
VAN	S/98,142.86	12%

Fuente: elaboración propia.

IV. DISCUSIÓN

La investigación aborda la problemática en la central generadora de Quanda donde la tecnología se estableció como moderna para la época pero se condiciono a un solo proveedor, siendo que las paradas por fallas o mantenimiento generen perdidas realmente altas al depender solo del fabricante inicial no se puede cotizar el arreglos por medio de otro profesional o proveedor, la tesis aborda la solución por medio de la instalación de un PLC que desarrolle las funciones de lógica y toma de decisiones que hasta el momento lo desarrolla un sistema DTL 595 SCU, el cual es responsabilidad única de su proveedor. Los gastos se vuelven excesivos por que el proveedor original no es de origen nacional al considerar una tecnología que mantenga el nivel adecuado para la generación de energía en el tiempo indicado de su instalación se consideró un proveedor de origen alemán este hasta el momento sigue regresando a dar solución contratiempo que origina cualquier desperfecto siendo completamente contraproducente ya que las paradas si bien producen una pérdida económica dedicada primero por la no generación de energía el tiempo muerto de la central por esperar al proveedor eleva más aún está perdida económica, sumándole a ello que el proveedor puede gestionar el cobro sin tener la oportunidad por parte de los administradores de la central de optar por otra cotización de competencia.

Al igual que **Navas** (2017) en su investigación donde se propone una tecnología para la automatización de las unidades de la central Pucara, la tecnología adecuada a nuestro parecer y que concuerda con las conclusiones de dicho antecedente fue el PLC en nuestro caso también se eligió por la facilidad de operar variables y modificar programación, actualmente este es el dispositivo más amplio y de mejor características programables, las herramientas que proyecta el equipo abundada en bondades, siendo muy delicia la elección, ya que mientras más herramientas presente dicho equipo mayor será el gasto,

como se desarrolló en el antecedente predicho esta investigación también se enfocó en determinar las variables y los procedimientos que desarrollara la central, simplificándose a las acciones de generación y control de los equipos que administra actualmente el DTL.

A diferencia de **Mendoza** (2016) esta investigación no desarrolla o recoge información de las fallas por mantenimiento para desarrollar las acciones que establezcan la operación y control de la central Quanda por parte del PLC, las acciones se establecen del ciclo operativo de los actuadores y sensores, desarrollándose un esquema de trabajo de la central, bajo este esquema es que se desarrolla todo el trabajo de la central Quanda, los únicos datos de mantenimiento que fueron generados se usaron para determinar el aspecto económico de la implementación de los resultados de esta investigación, pero cabe destacar que al igual que este trabajo previo la instalación del PLC se formuló para que realice extramente el mismo ciclo de trabajo que viene desarrollando la central Quanda.

Al igual que Cañar (2015) en su investigación tuvo que verse utilizando el software TIA PORTAL, dicho software ahonda mucho en programación, genera y tiene una gama de posibilidades para trabajar con sistemas PLC marca siemens muy amplia. Las herramientas que presenta deben tenerse en cuenta ya que el programa identifica muchas formas de programación, en cuanto a la lógica que utiliza, además ya que fue aprovechado en esta investigación este programa permite tener acceso a configuración de pantallas HMI que permiten controlar y supervisar según el programa desarrollado por el investigador las funcionalidades de la central, además el programa no es limitante y secciona los controles por bloques lo que permite establecer controles nuevos con bloques antiguos, así incluir cuando sea oportuno las alarmas y condiciones que sean condicionantes para el funcionamiento de la central. A diferencia de Ramos (2013) que este involucrar todo un sistema SCADA peros solamente trabaja con una

filosofía ON-Off, el TIA PORTAL también mantiene este formato que puede ser trabajable, pero se enumera solo en una de sus cualidades.

A diferencia de **Ludeña** (2009) este solo utiliza la automatización para el control del sistema oleohidraulica de la central, en diferencia con esta investigación el PLC establecido no controla también el ingreso de presión a las válvulas estableciendo el control del funcionamiento de la estación oleohidráulica, esta se suma más a las funciones de control del PLC mas no complica el funcionamiento del resto de características. Pero el funcionamiento de las centrales de ambas investigaciones concuerda en cuanto a que el control debe darse, también en la estación oleohidraulica.

En cuanto a los costos al igual que los trabajos previos de **Sánchez** (2011), Castañeda y Gonzales (2016) y Fuentes (2015) la intervención de esta nueva tecnología a la central genera ahorro una evaluación económica positiva, ya que el gasto que incurre la central cuando detiene su funcionamiento es enorme, aunque no se desarrolló un análisis basado con el diagrama de Pareto si se establecieron evaluadores de costos como el TIR y VAN., siendo estos positivos.

V. CONCLUCIONES

- Existen 2 turbinas Peltón cada una controlada por un DTL 595 SCU, cada uno mantienen para el control de la generación por medido de sensores lineales con control proporcional que establecen la regulación del fluido a la turbina, así como la velocidad, presión y vibraciones.
- El DTL 595 mantiene 34 entradas digitales para alarmas, 10 salidas digitales para aviso, todos estos como para visualización de alarmas y avisos, para su funcionamiento tiene 2 entradas analógicas para los sensores de velocidad y vibración, 5 sensores lineales para la posición de los inyectores y deflector, 2 salidas analógicas para indicadores en la pantalla. 5 salidas analógicas para controlar la posición de los inyectores y deflector.
- Se determinó un módulo base del PLC S7-300 marca Simatic, y para considerar las 9 entradas analógicas, 34 entradas digitales, así como para las 11 salidas digitales y 7 salidas analógicas, los módulos 6ES7 322-1BH01-0AA0-SERIE SIMATIC S7 300, 16 X ENTRADA/SALIDA 4 A, 20,4-28,8 VDC con 16 entradas y salidas digitales, el siguiente módulo 6ES7 331-7KB02 ENTRADA ANALOGICA DE 2 CANALES DE 0 10CDC/4-20M con 8 entradas analógicas, y por último el módulo 6ES7 332-5HB01-SALIDA ANALOGICA DE 2 CANALES DE 0 10CDC/4-20MA con 8 salidas analógicas. 1 pantalla HMI 6" con botones de función.
- Para la evaluación económica se consideró la cotización de la implementación junto con el material de S/. 323 500.00 y un ingreso anual a partir del proyecto instalado de S/. 175,550.57 generando un TIR de 29% y un VAN de S/ 98,142.86 al tercer año de implementado.

VI. RECONMENDACIONES

- Se recomienda que los operadores a cargo de la Central Hidroeléctrica tengan los conocimientos básicos de automatización, equipos de la central que interactúan con el controlador lógico programable y el funcionamiento del PLC.
- Para realizar alguna verificación del hardware y el software de programación en la automatización del turbogenerador, deberá llevarse a cabo por personal capacitado en el tema.
- Para realizar la incorporación de otros dispositivos se debe solicitar la información de las características de los equipos ya instalados, y no tener problemas de configuración para su correcto funcionamiento del sistema.
- Se recomienda que antes de entrar en funcionamiento el turbogenerador,
 se debe cerciorarse que las conexiones eléctricas estén ajustadas
 correctamente para mayor confiabilidad del funcionamiento.
- Seleccionar un autómata que pueda generar el menor gasto en funcionamiento siempre considerando que las cualidades de este en cuanto a comunicación con el resto de dispositivos serán apropiadas caso contrario conseguir uno de mejor gama, no limitarse por el ingresos e entradas o salidas del módulo base.
- Implementa cuando antes la investigación seria un avance en cuanto a la generación de beneficios económicos para la central.

VII. REFERENCIAS

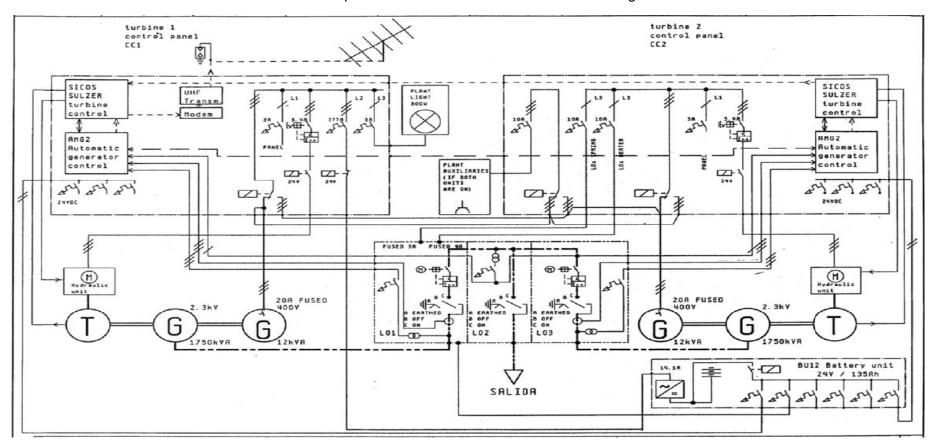
- CAÑAR Aguirre, Diego Armando. Diseño e implementación de un módulo didáctico para automatización de motores trifásicos mediante PLC STEP S7 1200 en la Universidad Técnica de Cotopaxi, Extensión la Maná, año 2015. Tesis (Ingeniero Electromecánica) Ecuador. Universidad Técnica de Cotopaxi Extensión la Maná, Unidad Académica De Ciencias De La Ingeniería Y Aplicada, 2015 131 pp.
- CÁRDENES Cáceres, Pablo. Desarrolla un sistema de automatización para máquinas de curado ultravioleta orientadas a la industria gráfica peruana. Tesis (Ingeniero Electrónica). Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería, 2015. 67 pp.
- CASTAÑEDA Muñoz, Jackson Steward, GONZALES Mino, Karim Sarita. Plan de mejora para reducir los costos en la gestión de mantenimiento de la empresa transportes Chiclayo S.A. Chiclayo. Tesis (Ingeniero Industrial). Chiclayo: Universidad Señor de Sipan, Facultad De Ingeniería Arquitectura y Urbanismo, 2016. 245 pp.
- Comité de Operación Económica del Sistema Interconectado Nacional. 2011.

 Determina la potencia efectiva de la Central Hidroeléctrica Quanda, basándose en su procedimiento N° 18 y normas técnicas internacionales. [En línea] 1 de junio del 2011. [Citado el: 24 de noviembre del 2018.]
- Cuevas Villegas, Carlos Fernando. 2010. Contabilidad de costos. Universidad autónoma de occidente, Colombia.

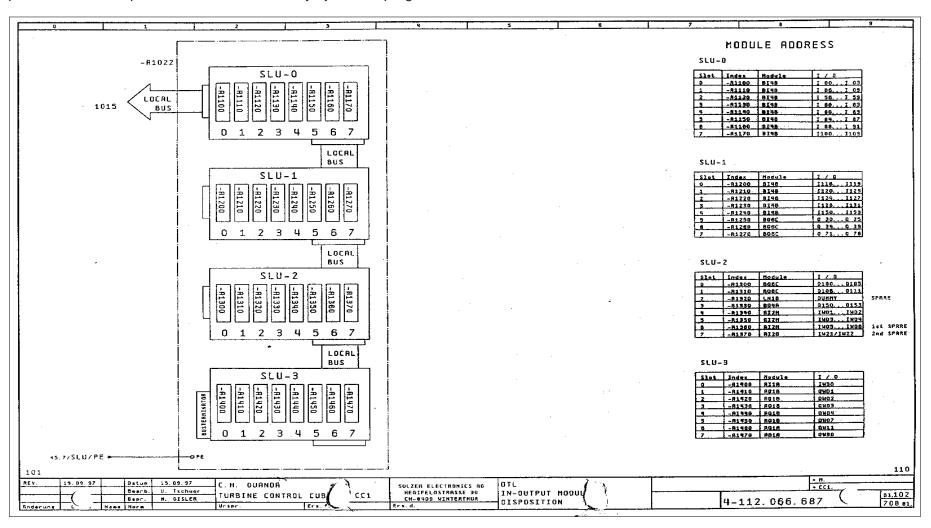
Disponible en:

ESPINOZA Albino, Pedro Moisés. Mejora de procesos para la reducción de fallas en el mantenimiento de equipos de aire acondicionado en la empresa de

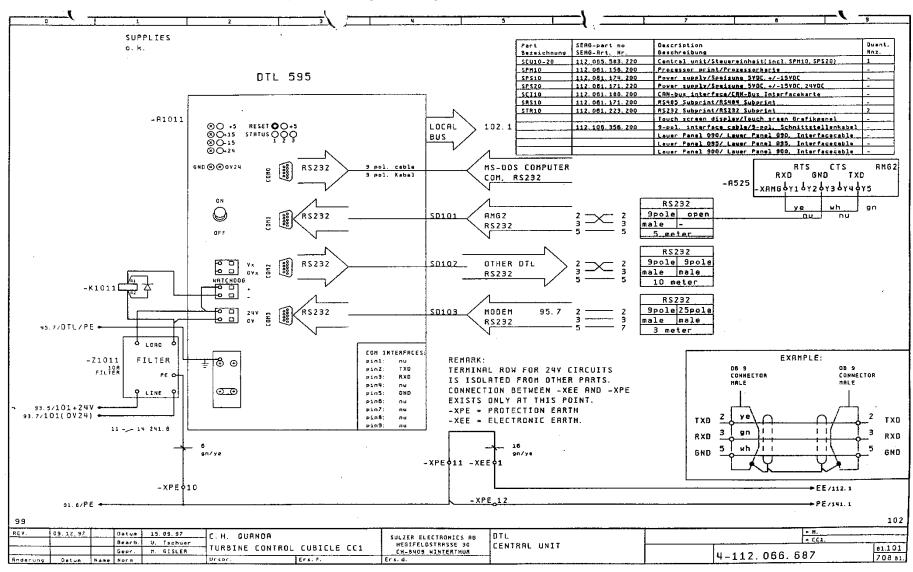
- servicio Esalb Grupo S.A.C. 2017. Tesis (Ingeniero Industrial) Lima: Universidad del Norte, Facultad de Ingeniería, 2017. 121 pp.
- FUENTES Zavala, Sebastian Moises. Propuesta de un sistema de gestión de mantenimiento preventivo basado en los indicadores de Overall Equipment Efficiency para la reducción de los costos de mantenimiento en la empresa Hilados Richard´S S.A.C. Tesis (Ingeniero Industrial). Chiclayo: Universidad Católica Santo Toribio De Mogrovejo, Facultad De Ingeniería Mecánica Eléctrica, Electrónica Y Sistemas, 2015. 111 pp.
- http://contenido.coes.org.pe/alfrescostruts/download.do?nodeld=ab9e5b43-322e-465e-874d-1537d6f9a366
- Jiménez Macías, Emilio. 2002. Técnicas de automatización avanzadas en procesos industriales. Universidad del rioja. Universidad del rioja servicio de publicaciones. Logroño- España.
- Lorenzo Lledó, Gonzalo.2006. Automatización de una planta industrial, Universidad de alicante. Alicante – España.
- LUDUEÑAS Chalanán, Juan. Diseño un sistema de control automático para el sistema óleo hidráulico de la turbina en la Central Hidroeléctrica San Francisco. Tesis (Ingeniería Electrónica y Telecomunicaciones). Ecuador: Escuela Politécnica Nacional, Facultad De Ingeniería Eléctrica y Electrónica, 2009. 115 pp.
- Manual y catálogo del Ingeniero en automatización 2003. Mice chneiderelectric
- MENDOZA Martínez, Ignacio Pedro. Rediseño del sistema de control por un control programable PLC, para una máquina de plástico de extrusión soplo modelo Bkum H-121. Tesis (Ingeniero Mecánico). México: Instituto Politécnico Nacional, Escuela superior de Ingeniería Mecánica Eléctrica, 2016. 157 pp.

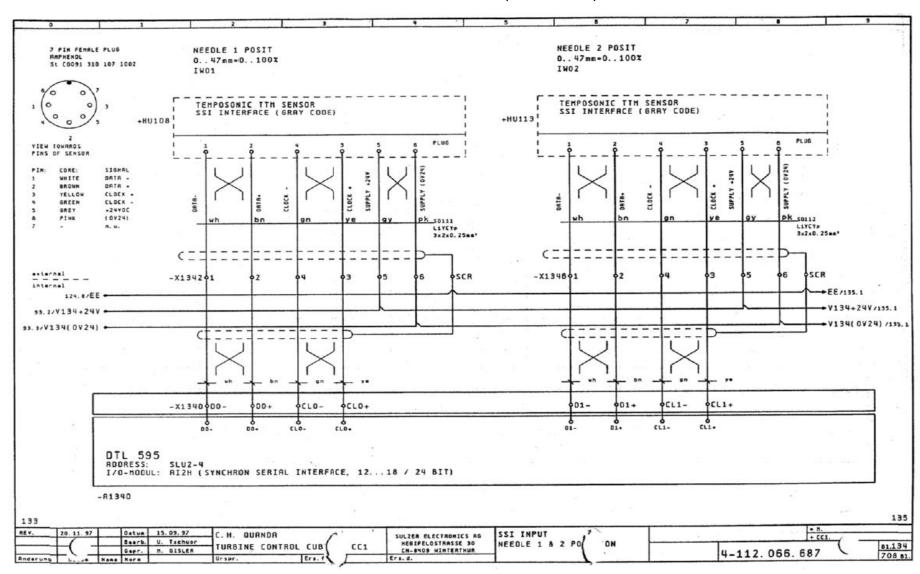

- Moreno Ramón, Piedrofino. 2004. Ingeniería de la automatización industrial. Segunda edición ampliada y actualizada, Biblioteca USAT.
- NAVAS Molina, Darwin Santiago. Automatización de las unidades de generación de la central hidroeléctrica Pucará. Tesis (Ingeniero Magister en sistemas de control y automatización industrial). Ecuador: Escuela Superior Politécnica de Chimborazo, 2017. 117 pp.
- Ñaupas, H., Mejía, E., Novoa, E., Villagómez, A. (2011). Procedimiento de la investigación científica y adiestramiento de estudio de proyectos de investigación. Lima, Perú: Centro de elaboración Editorial e imprenta de la Universidad Nacional Mayor de San Marcos.
- PAREDES Samana, John David. Estudio y diseño de la automatización del sistema de bombeo para el llenado de un tanque elevado de la Municipalidad Distrital de Pomalca. Tesis (Ingeniero Electrónico). Trujillo: Universidad Privada Antenor Orrego, Facultad de ingeniería Electrónica, 2013. 82 pp.
- Porras, Alejandro y montañero.1991. Autómatas programables. Mcgraw-hill
- RAMOS Calla, Wilson. Diseño de un control semiautomatizado usando PLC S7 200 con interfaz SCADA de una planta de tratamiento de aguas residuales biológico de lodos activados basado en la modalidad de aireación extendida. Tesis (Ingeniero Electrónico). Puno: Universidad Nacional Del Altiplano, Facultad De Ingeniería Mecánica Eléctrica, Electrónica Y Sistemas, 2013. 121 pp.
- RENOVEEC. (s.f.). Empresa de ingeniería de formación técnica y su especialización es el desarrollo de proyectos en el área de generación de energía, mantenimiento industrial y energías renovables, España.

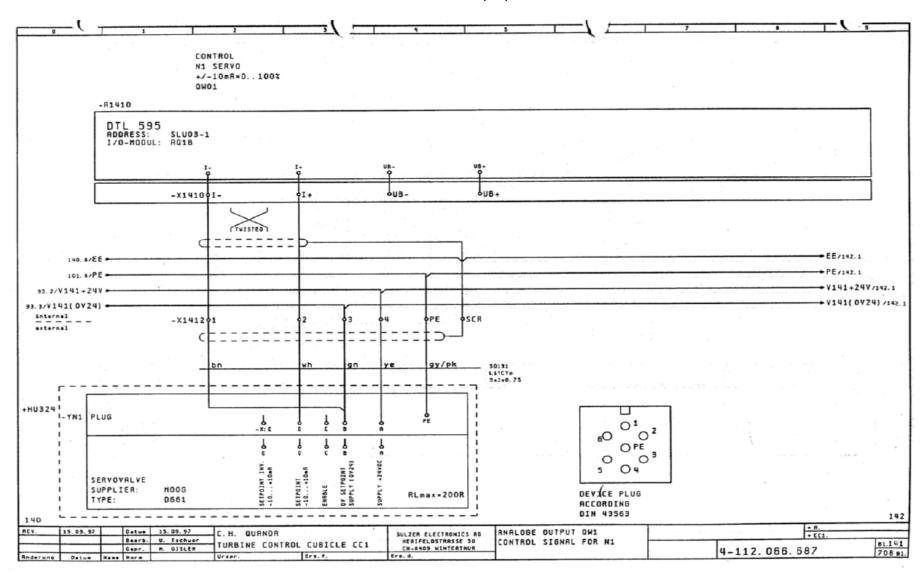
SÁNCHEZ Pérez, Joselito. Diseño e implementación de un sistema de automatización para mejorar la producción de carretes en la empresa la casa de Tornillo SRL. Tesis (Ingeniero Industrial). Chiclayo: Universidad Católica Santo 7. Toribio De Mogrovejo, Facultad De Ingeniería Mecánica Eléctrica, Electrónica Y Sistemas, 2011. 99 pp.

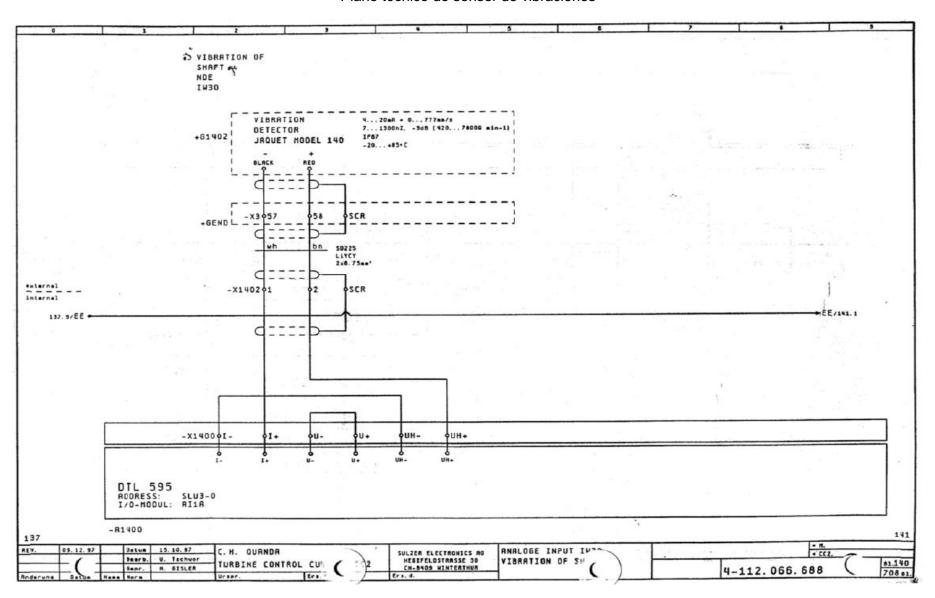

ANEXOS

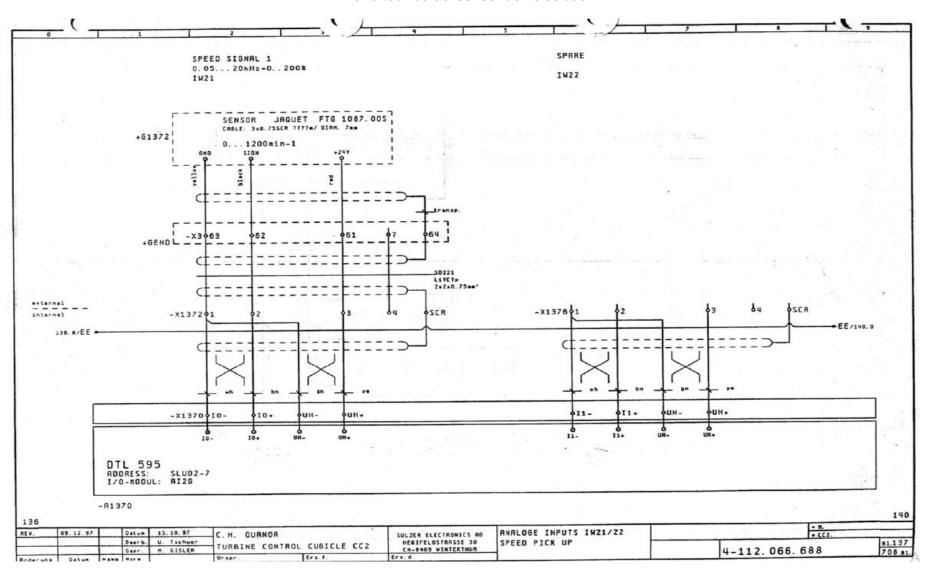
ANEXO 01.- ESQUEMA, PLANOS Y REGISTROS DEL DTL 595

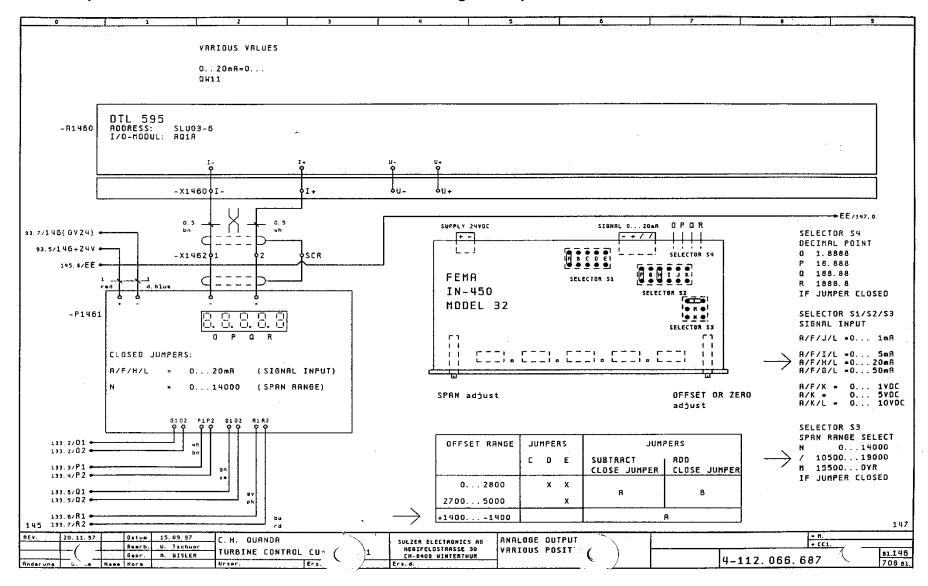

Esquema de Conexión de Control de los Turbogenerador.

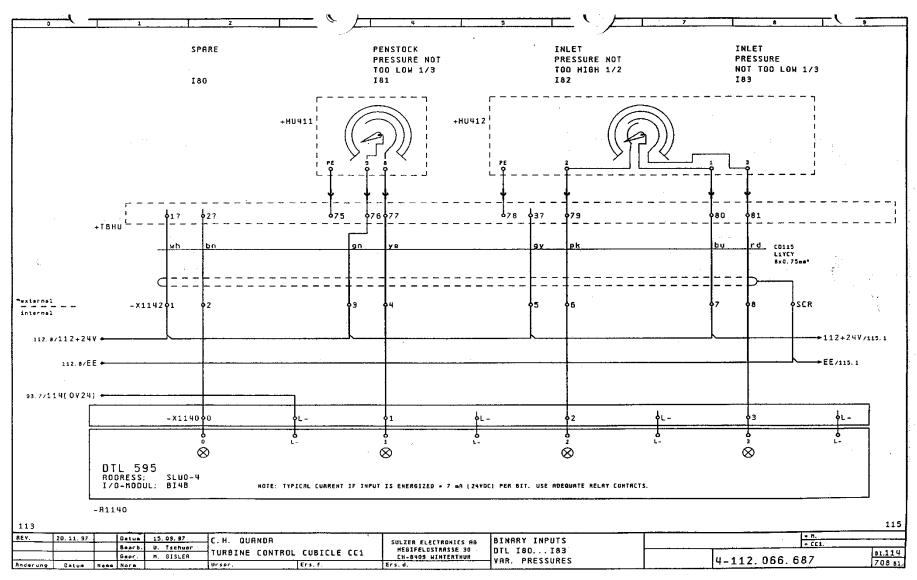

Esquema de los módulos. Son dispositivos de control electrónico, también denominado unidad de control electrónica, es el sistema integrado que se utiliza para controlar las funciones del sistema eléctrico. Estos módulos se encargan del trabajo de intercomunicación entre los dispositivos industriales exteriores al PLC y todos los circuitos electrónicos de baja potencia que comprenden a la unidad central de proceso del PLC, que es donde se almacena y ejecuta el programa de control.

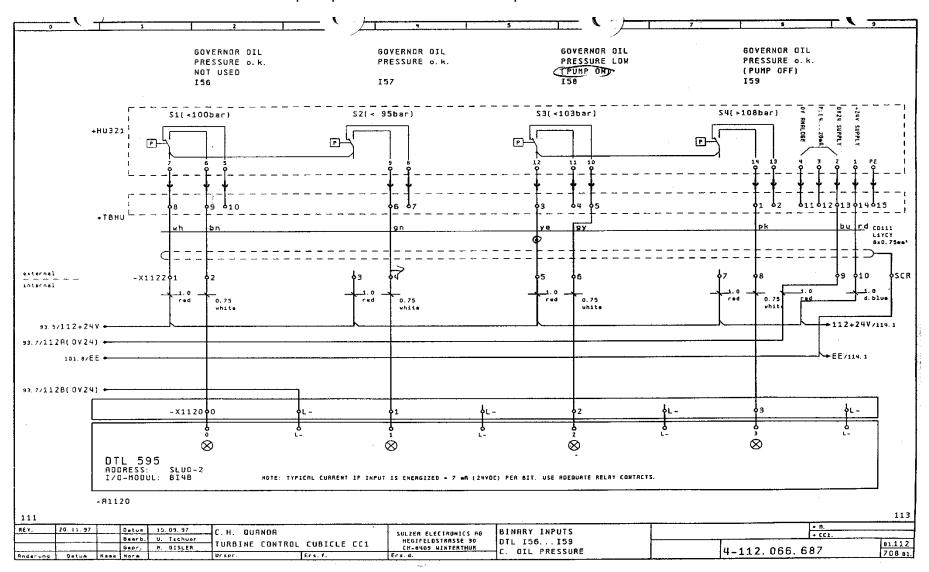

Esquema del regulador digital de la turbina (DTL 595 SCU)

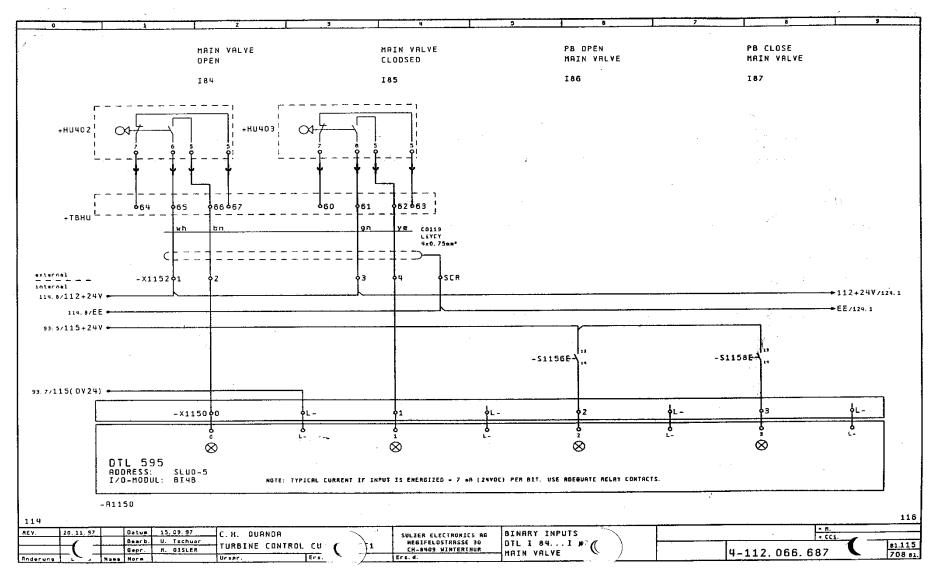

Plano técnico de sensor lineal de posicion Temposonic

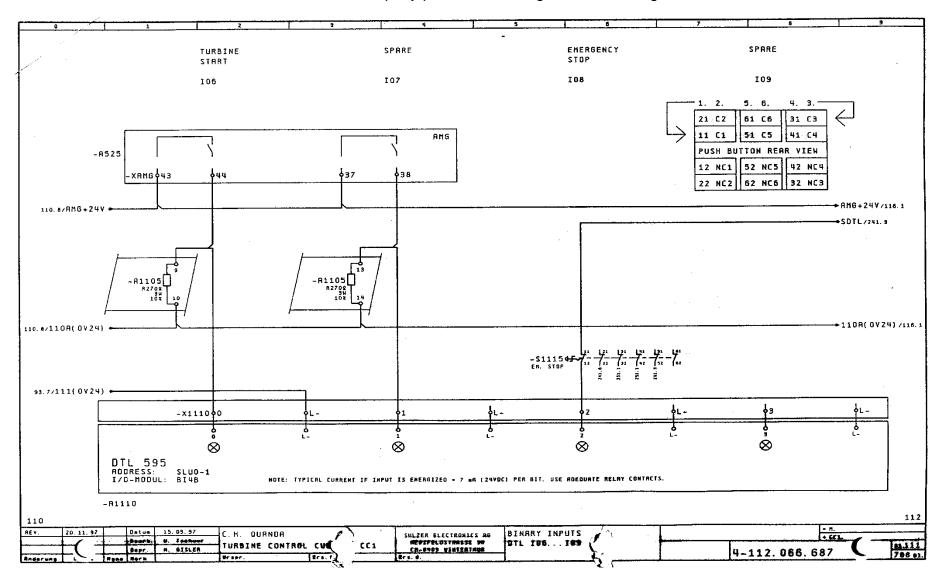

Plano técnico de válvula proposcional

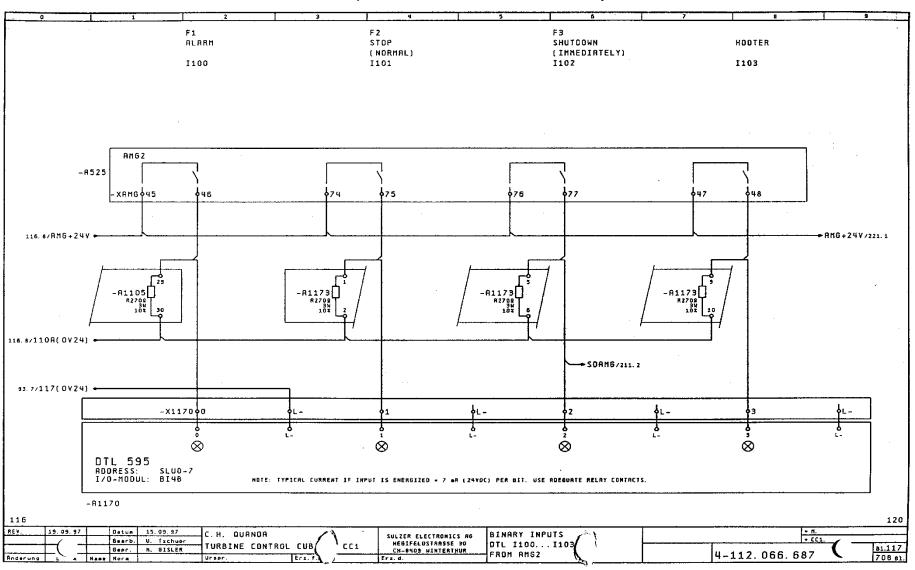

Plano técnico de sensor de vibraciones

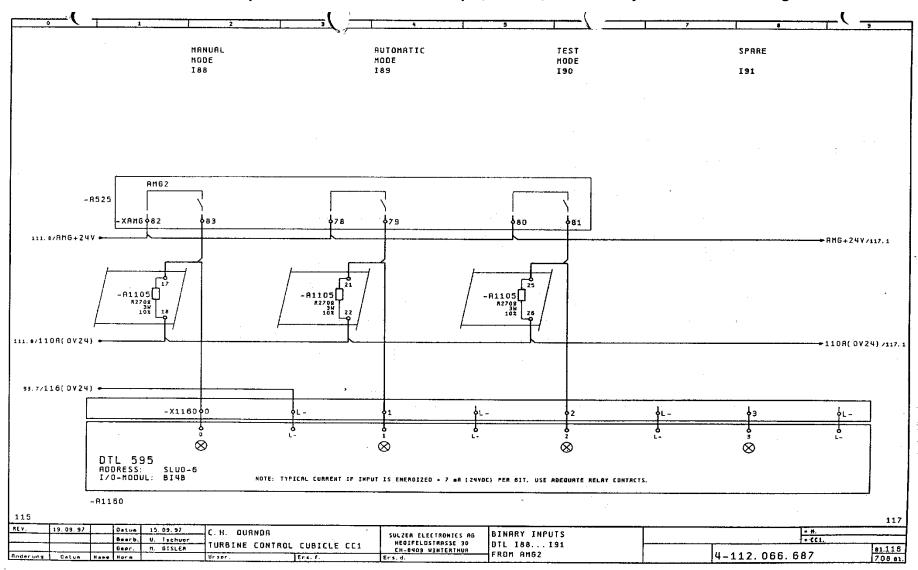

Plano técnico del sensor de velocidad

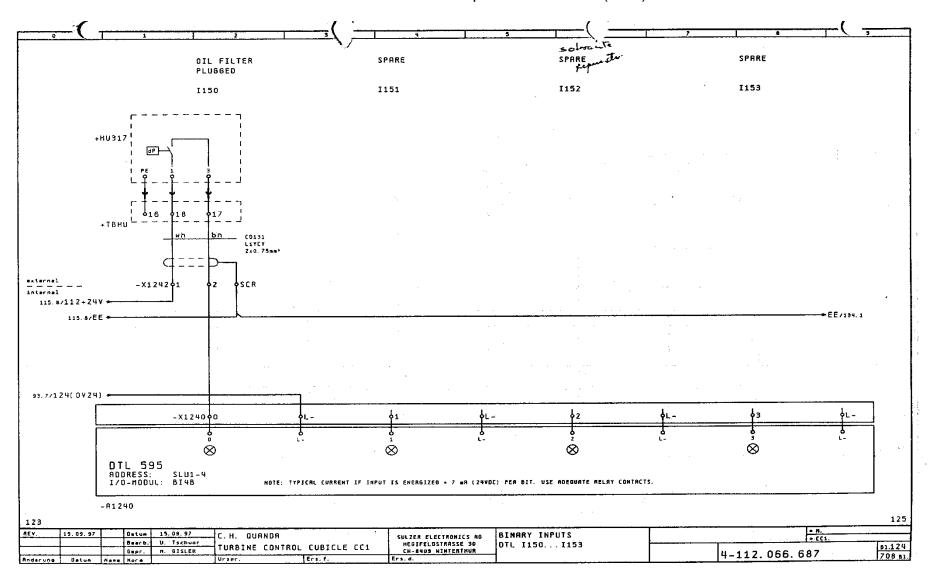

Esquema de conexión de visualización de señales analogicas de parametros de funcionamiento del turbobenerador

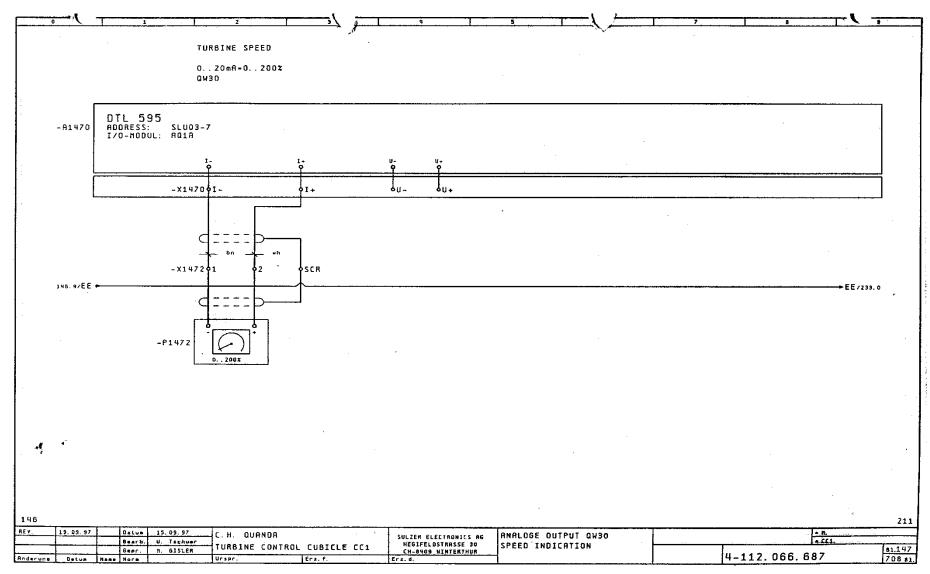

Plano técnico de instalacion de manometros


Plano técnico de prensostaro de contro de presión de sistema hidráulico


Plano técnico de los finales de carrera


Plano técnico de arranque y parada de emergencia del turbogenerador


Plano técnico parada normal, inmediata, alarma y bocina


Plano técnico de mandos para las condiciones de arranque, manual, automático y modo test del turbogenerador

Plano técnico del filtro de la unidad de presión hidráulica (UPH) de la turbina

Plano técnico del visualizador analógico de la velocidad de la turbina

Parámetros digitales de funcionamiento del turbogenerador. Decimales codificados en binario es un estándar para representar números decimales en el sistema binario, en donde cada dígito decimal es codificado con una secuencia de 4 bits (BCD)

SULZER ELECTRONICS AG

BCD - Tabla de código

para SULZER HYDRO AG

C.H. QUANDA

В	CD	Descripción	Unidad	Cambios Posible
Cóc	digo			+/ - Pulsador
0	0	Ajuste de principio: BCD Código 11		
		Planta		
0	1	Potencia activa completa entregada por la planta	KW	No, solamente aviso
0	2	Energía completa producida por la planta	MWh	No, solamente aviso
0	3	Horas completas de la marcha de la planta	h	No, solamente aviso
		Válvula de regulación		
1	0	Limitación de abertura de la tobera de aguja por el valor debido	%	Si, siempre
1	1	Tobera de aguja con abertura máxima	%	No, solamente aviso
1	2	Tobera de aguja con abertura minima	%	No, solamente aviso
1	3	Abertura de la tobera de aguja 1	%	si, prueba
1	4	Abertura de la tobera de aguja 2	%	si, prueba
1	5	Abertura de la tobera de aguja 3	%	si, prueba
1	6	Abertura de la tobera de aguja 4	%	si, prueba
1	7	Abertura del repartidor	%	No, solamente aviso
		Turbina		
3	0	Numero de revoluciones	r.p.m.	No, solamente aviso
4	0	Regulación de tension	V	Si,siempre
		TABLERO DEL TURBOGENERADOR	_	2300/440/60 Hz

Registro de parámetros de operación del turbogenerador 1 de la central de generación eléctrica.

											PAR	TE D	IARI	O DE	OPI	ERAC	IÓN									
Elect	cro C	<u>Cien</u>	te Tunio					CAS	A D	E M	AQUIN	IAS CE	NTRA	L HIDR	ROELÉ	CTRIC	A QUA	NDA			GRUP	O: 01			0	1/05/2018
																М	Á Q	U	- 1	N	Α					
Н	Т			F	PARÁN	/ETR	OS TÉC	NICC	S D	E GEN	IERAC	IÓN	-		1	TURBO	GENE	RADO	R	UNID.	HIDRÁ	ULICA	INETE	DE E	XCITAC	CONCLINA
0	е		TAB	LERO	DE M	AND	0	TR/	NSF	ORM	ADOR	CE	LDA M	ED.	Т	COJI	NETE	COJII	NETE		ACEITE	Ξ	TEM	PERAT	URA	CONSUM
R	m			DEL G	ENER	RADO	R			N°1		4.16/1	0/22.9	/60KV.	U	LAD.	TURB.	LAD.	EXC.	HIE	DRAULI	ICO	DE DI	EVANA	DOS	0
Α	р									TF	MP.				В	Temp	_	Temp.		Pres.	Flujo		°C	°C	°C	INTERNO
	Amb.	Α	٧	Kw	Cos	HZ	KWH	V	Α	ACEI		Kv	Α	Kw	BAR	°C	L/min	•	L/min		L/min	°C	1	2	3	1
00:00	28	325	2.38	1303	0.95	60	57971	V	^	37	51	22.9	67	2463	25.5	32	L/111111	51	L/111111	107	L/111111	36	61	60	6 0	6906.08
01:00	27	330	2.37	1295	0.95	60	57972			36	50	23	69	2441	25.5	31		52		106		35	61	59	60	6906.18
02:00	26	328	2.37	1298	0.95	60	57974			35	50	22.9	69	2484	25.5	31		52		103		35	60	58	61	6906.27
03:00	25	330	2.37	1301	0.95	60	57975			35	50	22.9	68	2468	25.5	30		53		100		34	59	57	61	6906.36
04:00	25	329	2.37	1289	0.95	60	57977			36	51	22.9	68	2466	25.5	30		53		99		33	59	57	61	6906.45
05:00	25	327	2.38	1279	0.95	60	57978			36	51	22.9	67	2451	25.5	39		52		105		32	58	56	62	6906.52
06:00	25	331	2.38	1310	0.96	60	57979			37	51	22.9	67	2483	25.5	39		52		107		32	57	56	62	6906.58
07:00	25	336	2.39	1301	0.94	60	57980			38	51	23	69	2458	25.5	38		52		103		31	57	56	62	6906.61
08:00	24	347	2.4	1310	0.92	60	57981			39	59 56	23.1	68 69	2470	25.5 25.5	28		52 52		95 98		31 31	56 58	56 56	61 62	6906.64 6906.68
09:00 10:00	26 27	345	2.4	1315 1303	0.92	60 60	57983 57984			35 41	56 57	23.2	68	2472	25.5	28 29		52 52		101		33	58	56 58	64	6906.68
11:00	29	343	2.38	1305	0.92	60	57985			43	59	23.1	68	2477	25.5	31		52		96		34	62	60	66	6906.71
12:00	31	341	2.38	1309	0.92	60	57986			45	60	23	69	2496	25.5	34		52		98		37	63	63	69	6906.78
13:00	33	342	2.4	1308	0.92	60	57988			47	61	23.1	68	2485	25.5	36		52		110		39	66	65	71	6906.81
14:00	34	342	2.39	1305	0.92	60	57989			48	62	23.1	69	2488	25.5	38		52		101		41	68	67	74	6906.85
15:00	35	340	2.39	1306	0.92	60	57990			47	62	23	68	2470	25.5	39		52		110		43	69	67	74	6906.89
16:00	34	341	2.39	1301	0.93	60	57991			45	62	23	68	2468	25.5	38		53		101		44	68	67	74	6906.92
17:00	34	340	2.39	1315	0.93	60	57993			42	62	23.1	68	2463	25.5	38		53		107		44	68	67	74	6906.95
18:00	33	333	2.38	1301	0.93	60	57994			38	60	23	68	2469	25.5	37		54		100		43	66	65	71	6906.99
18:15	32	334	2.38	1300	0.98	60	57994			38	56	22.8	68	2460	25.5	36		55		104		42	64	63	70	6907.01
18:30	32	310	2.4	1306	0.99	60	57995			36	55	22.8	67	2455	25.5	35		56		106		41	63	62	69	6907.03
18:45 19:00	31 31	308	2.4	1301 1304	1.00	60 60	57995 57995			36 36	52 52	22.8	64 64	2463 2460	25.5 25.5	35 34		55 54		105 108		41	62 62	61 61	68 68	6907.06 6907.09
19:00	31	320	2.4	1304	1.00	60	57996			36	55	22.7	64	2468	25.5	34		53		100		38	62	61	68	6907.09
19:30	31	322	2.4	1308	1.00	60	57996			38	56	22.7	64	2455	25.5	34		53		107		38	62	61	67	6907.11
19:45	31	323	2.41	1301	1.00	60	57996			38	56	22.7	64	2460	25.5	34		53		103		38	62	61	67	6907.15
20:00	30	324	2.42	1287	1.00	60	57997			38	56	22.7	64	2473	25.5	34		53		101		38	62	61	67	6907.17
20:15	30	322	2.41	1290	1.00	60	57997			37	58	22.7	64	2460	25.5	34		52		98		38	63	62	68	6907.19
20:30	30	320	2.41	1313	1.00	60	57997			37	58	22.7	64	2453	25.5	34		52		105		38	63	62	68	6907.21
20:45	30	318	2.42	1310	1.00	60	57998			40	60	22.8	63	2461	25.5	34		52		102		38	63	63	68	6907.23
21:00	30	317	2.42	1311	1.00	60	57998			40	60	22.9	63	2452	25.5	34		52		109		38	62	61	68	6907.25
22:00	30	320	2.4	1302	0.99	60	57999			38	52	22.9	64	2447	25.5	34		51		99		38	62	61	67	6907.33
23:00	29	317	2.4	1297	0.98	60	58001			40	56	23.1	65	2470	25.5	32		51		105		37	60	59	65	6907.41
24:00	28	319	2.4	1301	0.97	60	58002			38	57	23	66	2480	25.5	31		51		105		36	60	58	65	6907.51

Registro de parámetros de operación del turbogenerador 1 de la central de generación eléctrica.

)									PAR	TE D	IARI	O DE	OPI	ERAC	CIÓN									
Elect	roo	cien	te					CAS	A D	E MA	ÁQUIN	IAS CE	NTRA	L HIDR	ROELÉ	CTRIC	A QUA	NDA			GRUP	O: 02			C	01/05/2018
																М	Á Q	U	1	N	Α					
н	т			F	ARÁN	METR	OS TÉC	NICC	S DI	E GEN	NERAC	IÓN			-	TURBO	GENE	RADO	R	UNID.	HIDRÁ	ULICA	INFTE	DF F	XCITAC	╡ .
0	e		TΔR	LERO							ADOR		LDA M	FD	Т		NETE	COJI			ACEITE			PERAT		CONSUM
R	m			DEL C				1117		N°1	ADOIL		0/22.9		Ü		TURB.	LAD.			DRAULI	_		EVANA		0
_	···			DLL (/IX 		<u> </u>		MP.	7.10/	0, 22.3	00111	В		T			Pres.			.c	°C	°C	INTERNO
Α	P	Α	V			L		l								Temp		•						_	_	↓
00.00	Amb.			Kw	Cos	HZ	KWH	٧	Α	ACEI	DEV	Kv	Α	Kw	BAR	°C	L/min	°C	L/min		L/min	°C	1	2	3	
00:00		308	2.4	1211	0.95	60	75027								28	30		51		105		28	55	54	54	
01:00		310 313	2.4	1205 1209	0.95	60 60	75028 75029								28 28	30 31		52 52		110 96		28 29	55 56	54 55	54 55	
03:00		315	2.4	1203	0.95	60	75029	1							28	31		53		103		30	56	55	55	1
04:00		302	2.4	1159	0.93	60	75031	-							28	31		53		105		30	55	54	54	+
05:00		300	2.39	1162	0.94	60	75033								28	31		52		101		30	55	54	54	
06:00		300	2.39	1164	0.94	60	75034								28	31		52		95		30	55	54	54	1
07:00		281	2.4	1051	0.91	60	75035								28	31		52		106		30	54	53	53	
08:00		309	2.39	1200	0.92	60	75036								28	31		52		97		30	54	53	53	
09:00		310	2.39	1205	0.93	60	75038								28	31		52		100		30	55	54	54	
10:00		307	2.39	1201	0.93	60	75039								28	31		52		105		30	56	54	55	
11:00		311	2.39	1204	0.93	60	75040								28	31		52		106		30	56	54	55	
12:00		311	2.38	1205	0.93	60	75041								28	31		52		104		30	56	54	55	
13:00		313	2.4	1202	0.92	60	75042								28	32		52		100		30	56	55	56	
14:00 15:00		316 317	2.4	1212 1204	0.92	60 60	75044 75045								28 28	32 33		52 52		105 97		31 31	57 57	56 57	57 57	
16:00		317	2.4	1204	0.92	60	75045								28	33		53		101		32	59	57	58	-
17:00		310	2.39	1203	0.92	60	75047								28	33		53		103		34	59	57	58	1
18:00		298	2.38	1204	0.92	60	75048								28	34		54		102		34	59	57	58	
18:15		301	2.4	1206	0.98	60	75049								28	34		54		107		34	59	57	58	
18:30		293	2.4	1197	1.00	60	75049								28	34		54		100		34	58	57	58	
18:45		300	2.4	1203	1.00	60	75049								28	33		53		103		34	58	57	58	
19:00		301	2.4	1202	1.00	60	75050								28	33		53		106		34	58	57	58	
19:15		302	2.4	1200	1.00	60	75050								28	33		53		101		33	58	57	57	
19:30		300	2.4	1203	1.00	60	75050								28	33		53		107		33	58	57	57	<u> </u>
19:45		301	2.4	1198	1.00	60	75051	ļ							28	33		53		104		33	57	56	57	
20:00		305	2.4	1201	1.00	60	75051	ļ		<u> </u>		1	-	-	28	33	-	53		106	<u> </u>	33	57	56	56	
20:15		302 295	2.4	1200 1198	1.00	60 60	75052 75052								28 28	32 32		52 52		103 105		32 32	56 56	56 55	56 56	1
20:30		295	2.4	1198	1.00	60	75052 75052	1				1		1	28	32		52		105	1	32	56	55 55	56	+
21:00		295	2.4	1201	1.00	60	75053								28	32		52		108		32	56	55	56	
22:00		290	2.4	1198	1.00	60	75054								28	33		51		102		32	57	56	56	+
23:00		298	2.39	1191	0.97	60	75055								28	33		51		101		32	57	57	57	
24:00		303	2.4	1200	0.96	60	75056	1							28	32		51		106		32	56	55	56	

Hydro Power Andina

Av. Floral, Int-B304, Urb. San Luis de California, Trupillo-PERU Tel. Fax: +51 (0) 44-28 50 18 martiernol@bstroel.com

Suministro pera Centralas Hidosolúctricas: Turbinas - Centradores Sistemas de Caurol, Protección, Escriación y Sacroeización Modernización - Monteja - Paranta en Services - Mantenistriento Representante Osoberger

Trujillo, 02.08.2010

Señores ELECTRO ORIENTE S.A. Logistica

Jaén Presente.

OFERTA No. 00266-10

Vuestra Referencia:

Electro Oriente S.A.

Nuestra Referencia:

Oferta No. 00266-10, Martin Modispacher

Asunto:

Repuestos C.H. Quanda - DTL595

Estimado Ing. Beimer Delgado

En atención a su amable solicitud nos es grato elevar a su consideración nuestra propuesta por el suministro de lo siguiente:

ltem	Cant.	Descripción	Precio Unit. S/.	Precio Total S/.
1	1	Unidad de mando DTL595 Tipo: SCU10-20 / 112.065.583.220 incluye 2 STR RS232 para montaje en SCU10-20 Procedencia: SUIZA	77,400.00	77,400.00
IGV (1	Neto So 19%) Valor de	ies		77,400.00 14,706.00 92,106.00

Condiciones comerciales

Precios: Forma de pago: Nuevos Soles 100% contra entrega

Vigencia de oferta:

30 dlas

Lugar de entrega:

Almacenes Hydro Power Andina, Trujillo

Plazo de entrega: 7-8 semanas

Atentamente,

Martin Modispacher

Gerente Hydro Power Andina

Hydro Power Andina

Los Alganobos 558, Urb. California, Trajilla-PERU Tel./Par: +31 (0)44/26 83 93 metimos@botnel.com Seministro para Cartralisi Hidasefectricas:
Tarbinum – Generadores
Sistamas de Control, Protección, Beolitación y Sineconicuación
Modernicación – Mortajo – Paesta en survicia – Mantenimiento
Representante Casbonger
Aurageneradores

Trujillo, 4.07.2006

Señores ELECTRO ORIENTE S.A. Logistica Jaén Presente.

OFERTA No. 00125-06

Vuestra Referencia: Nuestra Referencia: Asunto Ing. Beimer Frederic Delgado Daza Oferta No. 00125-06, Martin Modispacher Inspección DTL595, C.H. Quanda

Estimado Ing. Beimer Frederic Delgado

En atención a su amable solicitud nos es grato elevar a su consideración nuestra propuesta por el suministro de lo siguiente:

ltam	Cant	Descripción	Precio Unit. Soles	Precio Total Soles
1	1	Inspección DTL595, Grupo N° 2 Incluye como sigue: • Inspección del DTL595 • Revisar el Software (SICOS ACCESS) del DTL595 • Deamontaje y montaje del DTL595 y los módulos	6,400.00	6,400.00
		Revisar el Hardware del DTL595, módulos y tarjetas. Costos de Viaje con Auto y chofer (Trujillo - San Ignacio - Trujillo). Alojamiento y Alimentación. Informe Técnico N° 00113-06.		
		Viaje relizado del 13 al 16 de Junio 2006 por el Ing. Martin Modispacher		
GV (1		evos Soles		6,400.00 1,216.00 7,616.00

Hydro Power Andina

Condiciones comerciales:

Precios: Nuevos Soles

Forma de pago: 100 % contra entrega

Vigencia de oferta: 30 días Lugar de entrega: C.H.Quanda Plazo de entrega: 1 semana

Atentamente,

Martin Modispacher Gerente Hydro Power Andina

Resultados del Estudió de Potencia Efectiva de la Central Hidroeléctrica Quanda

CENTRO DE CONSERVACIÓN DE ENERGIA Y DEL AMBIENTE

Tabla 2 Resultados de Potencia Efectiva de la Central Hidroeléctrica Quanda

Central Hidroeléctrica	Descripción	Potencia Efectiva (kW)	Caudal (m³/s)
	Potencia Efectiva Grupo 1	1 253,33	
Curanda	Potencia Efectiva Grupo 2	1 256,14	
Quanda	Potencia Efectiva Central	2 509,47	1,25

En la Tabla 3, se muestra el rango de valores de variabilidad de la potencia efectiva; dichos valores son menores a los limites establecidos en el procedimiento Nº 18 del COES.

Tabla 3 Resultados de Variabilidad de Potencia Efectiva

Descripción	Rango de Variabilidad (%)
Central hidroeléctrica Quanda	-0,164 a + 0,166

En la Tabla 4, se muestra el rango de valores de variabilidad de altura bruta durante el ensayo, dichos valores son menores a los limites establecidos en el procedimiento Nº 18 del COES.

Tabla 4 Resultados de Variabilidad de Altura Bruta

Descripción	Rango de Variabilidad (%)
Central hidroeléctrica Quanda	-0,0008 a +0,00115

Todos los parámetros medidos durante el ensayo para determinar la potencia efectiva, se mantuvieron en condiciones estables. Las temperaturas registradas del estator y de los cojinetes fueron aceptables.

ESTUDIO DE DETERMINACIÓN DE LA POTENCIA EFECTIVA DE LA CENTRAL HIDROELÉCTRICA QUANDA ADINELSA Página 4

1. INTRODUCCIÓN

El COES en base al Procedimiento Nº 18: Determinación de la potencia efectiva de las Centrales Hidroeléctricas del SINAC, determina la potencia efectiva de las centrales de generación hidráulica del SINAC. El ensayo de potencia efectiva está destinado a comprobar la capacidad electromecánica (potencia) de la central declarada por la empresa, mediante una medición. Este valor es necesario para determinar su potencia firme correspondiente.

Con este propósito, ADINELSA concurso dicho servicio invitando a CENERGIA a presentar su propuesta para la realización del servicio de "Medición y Cálculo de la Potencia Efectiva de la central hidroeléctrica Quanda", resultando favorecida.

CENERGIA, conformó un equipo de profesionales para la ejecución del ensayo de medición de la potencia efectiva de la central hidroeléctrica Quanda. El ensayo fue ejecutado el día 6 de abril del 2011. El Jefe de ensayo fue el Ingeniero David Herrera y su equipo técnico de especialistas en mediciones electromecánicas. El Ingeniero Andrés Vargas, fue el veedor del COES y el Ingeniero Hugo Gibaja, representante de ADINELSA.

El presente informe tiene por objetivo presentar los resultados del análisis de las mediciones, abarcando todo lo relacionado con el ensayo de medición de la potencia efectiva de la central hidroeléctrica Quanda. El ensayo se realizó con los dos grupos de generación de la central, operando a condiciones de potencia efectiva.

2. OBJETIVO DEL ESTUDIO

El objetivo del estudio es determinar la potencia efectiva de la central hidroeléctrica Quanda, de propiedad de ADINELSA, de acuerdo al Procedimiento Nº 18 del COES y tomando como referencia la norma IEC 41.

Para el presente estudio, se define como potencia efectiva de la central hidroeléctrica a la potencia continua entregada por dicha central cuando opera a condiciones de potencia efectiva.

7.4 Evaluación de la variabilidad de la potencia efectiva de la central

La variación de la potencia, osciló entre un mínimo de 2 505,34 kW y un máximo de 2 513,64 kW, la incertidumbre de la potencia efectiva con respecto al promedio de lecturas durante la prueba fue de -0,164% a + 0,166%. En la Tabla 10, se muestra la variabilidad de la potencia efectiva de la central y los valores máximos y mínimos.

De acuerdo al procedimiento PR-18 del COES y a la norma IEC 41 las fluctuaciones de la potencia efectiva no debe de exceder del ± 1.5 % del valor promedio de las mediciones. Los valores de variabilidad de la potencia efectiva de la central, obtenidos en la Tabla 10, son inferiores a los límites establecidos en el PR-18.

Tabla 10 Variabilidad de la Potencia Efectiva Central Hidroeléctrica Quanda

Hora	Total (kW)	Variabilidad (%)
10:16	2511,55	0,083
10:30	2506.30	-0,125
10:45	2505,83	-0,145
11:00	2511,84	0,097
11:15	2512.73	0,130
11:30	251 0.85	0,055
11:45	2513,84	0,188
12:00	2510,73	0,050
1215	2509,63	0,006
12:30	2508,84	-0,025
12.46	2609.99	0,021
13:00	2509,92	0,018
13:15	2509,04	-0,017
13:30	2506,15	-0,132
13.45	2510,41	0,038
14:00	2506,04	-0,137
14:16	2510,01	0,022
14:30	2511,25	0,071
14:45	2509,45	-0,001
15:00	2505,34	-0,164
Promedio	2509,47	
Máximo	2513,64	0,166
Mínimo	2505,34	-0,164

Conclusiones del estudio de determinación de la potencia efectiva de la Central Hidroeléctrica Quanda.

CENTRO DE CONSERVACIÓN DE ENERGIA Y DEL AMBIENTE

8. CONCLUSIONES

- La potencia efectiva de la central hidroeléctrica Quanda, es igual a 2509.47 kW.
- ✓ El caudal turbinado de la central hidroeléctrica Quanda, es igual a 1,25 m³/s.
- La altura bruta promedio medida en la central fue de 257,53 m.
- ✓ La variabilidad de los valores de la potencia efectiva medidos durante el ensayo oscilaron en el rango -0,164% a + 0,166%, los cuales no exceden el ±1.5% establecido en el procedimiento PR-18 del COES.
- ✓ La variabilidad de la altura bruta durante el ensayo de potencia efectiva de la central hidroeléctrica Quanda, fue de -0.0008% a +0.00115%, los cuales no exceden el ±1% establecido en la Norma IEC 41.
- Todos los parámetros hidráulicos, mecánicos y térmicos medidos durante el ensayo para determinar la potencia efectiva de la central, se mantuvieron en condiciones estables.

ANEXO 02.- DATOS DEL PLC SELECCIONADO

SIEMENS

Hoja de datos

6ES7314-6EH04-0AB0

SIMATIC S7-300, CPU 314C-2PN/DP CPU compacta con memoria de trabajo de 192 ktytes 24 D016 DO, 4 Al, 2 AO, 1 Pt100, 4 contadores rápidos (60 kHz), 1.º interfaz MPI/DP 12 Mbitws, 2.º interfaz Ethernet PROFINET, con switch de 2 puertos, alimentación de DC 24V integrada, conector frontal (2x 40 polos) y Se necesita Micro Memory Card

/ersión funcional del HW	01
Versión de firmware	V3.3
Ingenieria con	
Paquete de programación	STEP 7 V5.5 a superior can HSP 191
ensión de alimentación	
Valor nominal (DC)	
• 24 V DC	Si .
Rango admisible, limite inferior (DC)	19,2 V
Rango admisible, limite superior (DC)	28,8 V
Protección externa para líneas de alimentación (recomendación)	Automático magnetotérmico, curva C, min. 2 A; automático magnetotérmico, curva B, min. 4 A.
Puenteo de caldas de red y tensión	
Puentec de caídas de red/de tensión	5 ma
 Tasa de repetición, mín. 	1s
Tensión de carga L+	
Entradas digitales	
- Valor nominal (DC)	24 V

 Protección contra inversión de polaridad 	SI .
Salidas digitales	
- Valor nominal (DC)	24 V
 Protección contra inversión de polaridad 	No
Intensidad de entrada	
Consumo (valor nominal)	850 mA
Consumo (en marcha en vacío), típ.	190 mA
Intensidad de cierre, ti'p.	5 A
Pt	0,7 A ² -s
Entradas digitales	
 de la tensión de carga L+ (sin carga), máx. 	80 mA
Salidas digitales	
de la tensión de carga L+, máx.	50 mA
Pérdidas	
Pérdidas, típ.	14 W
Memoria	
Memoria de trabajo	
• integrada	192 kbyte
ampliable	No
Tamaño de la memoria no volátil para bioques	64 kbyte
de datos remanentes	
Memoria de carga	
enchufable (MMC)	Sí Sí
 enchufable (MMC), máx. 	8 Mbyte
Conservación de datos en MMC (tras última	10 y
programación), mín.	
Respaldo	
existente	SI; garantizado por la MMC (sin mantenimiento)
• sin pila	Sí; Programa y datos
Tiempos de ejecución de la CPU	
para operaciones de bits, tip.	0,06 µs
para operaciones a palabras, tip.	0,12 μs
para artitmética de coma fija, tip.	0,16 µs
para artitmética de coma flotante, típ.	0,59 µs
CPU-bloques	
Nº de bloques (total)	1 024; (DB, FG, FB); la cantidad máxima de bioques cargables
	puede verse reducida por la MMC utilizada por el usuarlo.
Número, máx.	1 024; Banda numérica: 1 a 16000
Tamaño, máx. Tamaño, máx.	64 kbyle
FB	

 Número, máx. 	1 024; Banda numérica: 0 a 7999
Tamaño, máx.	64 kbyte
FC	
 Número, máx. 	1 024; Banda numérica: 0 a 7999
Tamaño, máx.	64 kbyte
OB	
Descripción	Ver Lista de operaciones
Tamaño, máx.	64 kbyle
Nº de OBs de ciclo libre	1; 08 1
 Nº de OBs de alarma horaria 	1; 08 10
 Nº de OBs de alarma de retardo 	2; 08 20, 21
 Nº de OBs de alarma cíclica 	4; OB 32, 33, 34, 35
 Nº de OBs de alarma de proceso 	1; 08 40
 Nº de OBs de alarmas DPV1 	3; 08 55, 56, 57
 Nº de OBs de modo isócrono 	1; OB 61; sólo para PROFINET
Nº de OBs de arranque	1; 08 100
Nº de OBs de errores asíncronos	6; OB 80, 82, 83, 85, 86, 87 (OB 83 solo para PROFINET IO)
 Nº de OBs de errores síncronos 	2; 08 121, 122
Profundidad de anidamiento	
por cada prioridad	16
 adicional, dentro de un OB de error 	4
Contadores, temporizadores ∮ su remanencia	
Contadores 87	
Cartidad	256
Remanencia	
— Configurable	81
Configurable Limite inferior	8(
— Limite inferior	
Limite inferior Limite superior	0
Limite inferior Limite superior predeterminado	0 255
Limite inferior Limite superior predeterminado Rango de contaje	0 255
Limite inferior Limite superior predeterminado Rango de contaje Configurable	0 255 Z 0 a Z 7
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior	0 255 Z 0 a Z 7
Limite inferior Limite superior predeterminado Rango de contaje Configurable	0 255 Z 0 a Z 7 8í
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior - Limite superior	0 255 Z 0 a Z 7 8í
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior - Limite superior Contadores IEC	0 255 Z 0 a Z 7 81 0
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior - Limite superior Contadores IEC	0 255 Z 0 a Z 7 81 0 999
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior - Limite superior Contadores IEC • existente • Clase	0 255 Z 0 a Z 7 Sí 0 990
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior - Limite superior Contadores IEC • existente • Clase • Cantidad	0 255 Z 0 a Z 7 Sí 0 990
- Limite inferior - Limite superior - predeterminado Rango de contaje - Configurable - Limite inferior - Limite superior Contadores IEC • existente • Clase • Cantidad Temporizadores 87	0 255 Z 0 a Z 7 8f 0 999 8f 8FB ilimitado (limitado sólo por la memoria de trabajo)
Limite inferior Limite superior predeterminado Rango de contaje Configurable Limite inferior Limite superior Contadores IEC • existente • Clase • Cantidad Temporizadores S7 • Cantidad	0 255 Z 0 a Z 7 8f 0 999 8f 8FB ilimitado (limitado sólo por la memoria de trabajo)

— Limite inferior	0	
— Limite superior	255	
— predeterminado	sin remanencia	
Rango de tempo		
- Limite inferior	10 ms	
— Limite superior	9 900 s	
Temporizadores IEC		
existente	8(
Clase	SFB	
Cantidad	ilimitado (limitado sólo por la memoria de trabajo)	
Áreas de datos ∮ su remanencia		
Total de área de datos remanente	Todos, máx. 64 kbytes	
Marcas		
Número, máx.	256 byte	
Remanencia disponible	SI; MB 0 a MB 255	
Remanencia predeterminada	MB 0 a MB 15	
 Nº de marcas de ciclo 	8; 1 byte de marcas	
Bloques de datos		
Remanencia configurable	Sí; ajustando apropiadamente la propiedad de volatilidad del DB	
Remanencia predeterminada	8(
Datos locales		
por cada prioridad, máx.	32 kbyte; máx. 2048 bytes por bloque	
Área de direcciones		
Área de direcciones de periferia		
Entradas	2 048 byte	
Salidas	2 048 byte	
de ellas, descentralizadas		
— Entradas	2 003 byte	
— Salidas	2 010 byte	
Imagen del proceso		
Entrades	2 048 byte	
Salidas	2 048 byte	
Entradas, configurables	2 048 byte	
Salidas, configurables	2 048 byte	
Entrades, predeterminado	256 byte	
Salidas, predeterminado	256 byte	
Direcciones predeterminadas de los canales integrados		
— Entradas digitales	136.0 a 138.7	
— Salidas digitales	136.0 a 137.7	
— Entradas analógicas	800 a 809	
— Salidas analógicas	800 a 803	

Imágenes de subproceso	
 Nº de imágenes de subproceso, máx. 	1; en PROFINET IO la longitud de los datos útiles está limitada a 1600 bytes
Canales digitales	
• Entradas	16 048
- de las cuales centralizadas	1 016
Salidas	16 096
- de las cuales centralizadas	1 008
Canales analógicos	
Entrades	1 006
- de las cuales centralizadas	253
Salidas	1 007
— de las cuales centralizadas	250
Configuración del hardware	
Número de aparatos de ampliación, máx.	3
Nº de maestros DP	
• integrada	1
• via CP	4
Nº de FM y CP utilizables (recomendación)	
◆ FM	8
CP PaP	8
CP, LAN	10
Bastidores	
 Bastidores, máx. 	4
 Módulos por bastidor, máx. 	8; en el bastidor 3, máx. 7
Hora	
Reloj	
 Reloj de hardware (en tiempo real) 	81
 respaldado y sincronizable 	Si
Duración del respaldo	6 wk; a 40 °C de temperatura ambiente
 Desviación diaria, máx. 	10 s; tp.: 2 s
 Comportamiento del reloj tras RED CON 	El reloj continúa funcionando tras el corte de alimentación
 Comportamiento del reloj tras agotamiento de bateria 	El reloj continúa corriendo con la hora a la que se produjo la RED DES
Contador de horas de funcionamiento	
Cantidad	1
 Número/banda numérica 	0
Rango de valores	0 a 2^31 horas (si se usa el SFC 101)
Granularidad	1h
• remanente	SI; tiene que reiniciarse en cada reamanque
Sincronización de la hora	

Soporta	81
• en MPI, maestro	81
• en MPI, esclavo	81
on DP, maestro	SI; para esclavo DP, solo hora de esclavo
• en DP, esclavo	81
• en el autómata, maestro	81
 en el autómata, esclavo 	81
por Ethernet via NTP	Sí; Como eliente
Entradas digitales	
Nº de entradas digitales	24
De ellas, entradas usable para funciones	16
tecnológicas	
Canales integrados (DI)	24
Característica de entrada según IEC 61131, tipo 1	Sí
Número de entradas atacables simultáneamente	
Posición de montaje horizontal	
- hasta 40 °C, máx.	24
- hasta 60 °C, máx.	12
Posición de montaje vertical	
- hasta 40 °C, máx.	12
Tensión de entrada	
Valor nominal (DC)	24 V
• para señal "0"	-3 a +5 V
para señal "1"	+15 a +30 V
Intensidad de entrada	
• para señal "1", tip.	8 mA
Retardo a la entrada (a tensión nominal de entrada)	
para entradas estándar	
— parametrizable	SI; 0,1 / 0,3 / 3 / 15 ms (es posible cambiar la configuración del
	retardo de entrada de las entradas estándar durante el tiempo de ejecución del programa. Tenga en cuenta que es posible que su
	nuevo tiempo de fitro ajustado sólo sea efectivo tras una
	ejecución del tiempo de filtro anterior.)
— Valor nominal	3 ms
para funciones tecnológicas	
— en transición "0" a "1", máx.	8 µs; Minima anchura de impulsos/minima pausa entre impulsos
	con la máxima frecuencia de contaje
Longitud del cable	
apentaliado, máx.	1 000 m; 50 m para funciones tecnológicas
• no apentallado, máx.	600 m; Para funciones tecnológicas: No
para funciones tecnológicas	
- apantaliado, máx.	50 m; con la máxima frecuencia de contaje

— no apantallado, máx.	no permitido
	no permisso
Salidas digitales	
Número de salidas	16
de ellas, salīdas rāpidas	4; Atención: no debe conectar en paralelo las salidas rápidas de la CPU
Canales integrados (DO)	16
Protección contra cortocircuito	Sí; por pulsación electrónica
 Umbral de respuesta, tip. 	1A
Limitación de la sobretensión inductiva de corte a	L+ (-48 V)
Ataque de una entrada digital	81
Poder de corte de las salidas	
con carga tipo lámpara, máx.	5 W
Rango de resistencia de carga	
Limite inferior	48 Ω
Limite superior	4 ΙΩ
Tensión de salida	
• para señal "1", min.	L+ (-0,8 V)
Intensidad de salida	
para señal "1" valor nominal	500 mA
 para señal "1" rango admisible, mín. 	5 mA
 para señal "1" rango admisible, máx. 	0,6 A
 para señal "1" intensidad de carga mínima 	5 mA
 para señal "0" intensidad residual, máx. 	0,5 mA
Conexión en paralelo de dos salidas	
para aumentar la potencia	No
 para control redundante de una carga 	81
Frecuencia de conmutación	
con carga resistiva, máx.	100 Hz
con carga inductiva, máx.	0,5 Hz
 con carga tipo lámpara, máx. 	100 Hz
de las salidas de impulsos, con carga óhmica,	2,5 KHz
máx.	
Corriente total de salidas (por grupo)	
Posición de montaje horizontal	
— hasta 40 °G, máx.	3 A
— hasta 60 °C, máx.	2 A
Posición de montaje vertical	
— hasta 40 °C, máx.	2 A
Longitud del cable	
apantallado, máx.	1 000 m
• no apantallado, máx.	600 m

Entradas analógicas	
Nº de entradas analógicas	5
 Con medición de tensión/intensidad 	4
Con medición de resistencia/termorresistencia	1
Canales integrados (AI)	5; 4x intensidad/tensión, 1x resistencia
Tensión de entrada admisible para entrada de intensidad (límite de destrucción), máx.	5 V; permanente
Tensión de entrada admisible para entrada de tensión (límite de destrucción), máx.	30 V; permanente
Intensidad de entrada admisible para entrada de intensidad (límite de destrucción), máx	0,5 mA; permanente
Intensidad de entrada admisible para entrada de comiente (limite de destrucción). máx	50 mA; permanente
Tensión en vacío para emisores de resistencia, fip.	3,3 V
Intensidad de medida constante para sensores tipo resistencia, típ.	1,25 mA
Unidad técnica ajustable para medición de temperatura	Sí; Grados Celsius/grados Fahrenheit/Kelvin
Rangos de entrada	
Tensión	SI; ±10 V/100 kΩ; 0 V a 10 V/100 kΩ
Intensided	SI; ±20 mA/100 Ω; 0 mA a 20 mA/100 Ω; 4 mA a 20 mA/100 Ω
Termorresistencias	SI; Pt 100/10 MΩ
Resistencia	SI; 0 Ω a 600 Ω/10 MΩ
Rangos de entrada (valores nominales), tensiones	`
• 0 a +10 V	81
Resistencia de entrada (0 a 10 V)	100 kΩ
Rangos de entrada (valores nominales), intensidades	
◆ 0 a 20 mA	8(
 Resistencia de entrada (0 a 20 mA) 	100 Ω
• -20 mA a +20 mA	81
Resistencia de entrada (-20 mA a +20 mA)	100 Ω
• 4 mA a 20 mA	81
Resistencia de entrada (4 mA a 20 mA)	100 Ω
Rangos de entrada (valores nominales), termoresisten	ias
• Pt 100	81
Resistencia de entrada (Pt 100)	10 ΜΩ
Rangos de entrada (valores nominales), resistencias	
◆ 0 a 600 Chm	81
Resistencia de entrada (0 a 600 ohmios)	10 ΜΩ
Termopar (TC)	
Compensación de temperatura	
— parametrizable	No
Linealización de característica	

parametrizable	SI: software
— para termorresistencias	PHOO
Longitud del cable	
apantallado, máx.	100 m
	150 111
Salidas analógicas	
Nº de salidas analógicas	2
Canales integrados (AO)	2
Salida de tensión, protección contra contocircuito	8(
Salida de tensión, intensidad de contocirculto, máx.	55 mA
Salida de intensidad, tensión en vacío, máx.	14 V
Rangos de salida, tensión	
• 0 a 10 V	Si
• -10 V a +10 V	SI
Rangos de salida, intensidad	N/
• 0 a 20 mA	81
• -20 mA a +20 mA	Si .
• 4 mA a 20 mA	SI
Conexión de actuadores	
 para salida de tensión con conexión a 2 hilos 	Sí; sin compensación de la resistencia de los cables
 para salida de tensión con coneción a 4 hilos 	No
para salida de comiente con conexión a 2 hilos	Si
Resistencia de carga (en rango nominal de la salida)	
 con salidas de tensión, mín. 	1 kΩ
 con salidas de tensión, carga capacitiva, máx. 	0,1 μF
 con salidas de intensidad, máx. 	300 Ω
 con selidas de intensidad, carga inductiva, 	0,1 mH
mlox.	
Limite de destrucción por tensiones y comientes aplicad	
Tensiones en las salidas con respecto a MANA	16 V; permanente
Intensidad, máx.	50 mA; permanente
Longitud del cable	
apantaliado, máx.	200 m
Formación de valor analógico para entradas	
Principio de medición	Codificación instantánea (aproximación sucesiva)
Tiempo de integración y conversión/resolución por cana	il .
Resolución con rango de rebase (bits incl.	12 bit
signo), máx.	
Tiempo de integración parametrizable	SI; 16,6/20 ms
Supresión de perturbaciones de tensión para	50 / 60 Hz
frecuencia perturbadora f1 en Hz	
Frecuencia de entrada permitida, máx.	400 Hz
Constante del fitro de entrada	0,38 ms

 Tiempo de ejecución básico del módulo (todos 	1 ms
los canales habilitados)	
Formación de valor analógico para salidas	
Tiempo de integración y conversión/resolución por cana	ıl
Resolución con rango de rebase (bits incl.	12 bit
signo), máx.	
 Tiempo de conversión (por canal) 	1 ms
Tiempo de estabilización	
para carga resistiva	0,6 ms
para carga capacitiva	1 ms
pera carga inductiva	0,5 ms
Sensor	
Conexión de los sensores	
para medición de tensión	SI .
para medición de comiente como transductor a	SI; con alimentación externa
2 hilos	
• para medición de contente como transductor a	8(
4 hilos	
 para medición de resistencia con conexión a 2 	SI; sin compensación de la resistencia de los cables
hilos	
 para medición de resistencia con conexión a 3 	No
hilos	
 para medición de resistencia con conexión a 4 	No
hilos Sensores compatibles	
Sensor a 2 hilos	8(
	1.5 mA
 Intensidad permitida en reposo (sensor a 2 hilos), máx. 	Nan C,1
Error/precisiones	
Error de temperatura (referido al rango de entrada),	0,006 %/K
(+/-)	40 an
Diafonia entre las entradas, min.	60 dB
Precisión de repetición en estado estacionario a 25 "C (referido al rango de entrada), (+/-)	0,08 %
Ondulación de salida (referida al rango de salida.	0.1 %
ancho de banda 0 a 50 kHz), (+/-)	V,1 A
Error de linealidad (referido al rango de salida), (+/-)	0,15 %
Error de temperatura (referido al rango de salida),	0,01 %/K
(+/-)	
Diafonía entre las salidas, mín.	60 dB
Precisión de repetición en estado estacionario a 25	0,06 %
°C (referido al rango de salida), (+/-)	
Límite de error práctico en todo el rango de temperatura	ı .

 Tensión, referida al rango de entrada, (+/-) 	1%
• Intensidad, referida al rango de entrada, (+/-)	1%
• Flesistencia, referida al rango de entrada, (+/-)	1%
 Tensión, referida al rango de salida, (+/-) 	1%
• Intensidad, referida al rango de salida, (+/-)	1%
Limite de error básico (limite de error práctico a 25 °C)	
Tensión, referida al rango de entrada, (+/-)	0,8 %; Error de linealidad ±0,06%
• Intensidad, referida al rango de entrada, (+/-)	0,8 %; Error de linealidad ±0,06%
• Resistencia, referida al rango de entrada, (+/-)	0,8 %; Error de linealidad ±0,2%
 Termorresistencia, referida al rango de entrada, (+/-) 	0,8 %
 Tensión, referida al rango de salida, (+/-) 	0,8 %
• Intensidad, referida al rango de salida, (+/-)	0,8 %
Supresión de tensiones perturbadoras para (f1 +/- 1%),	f1 = frecuencia perturbadora
Perturbación en modo serie (pico de la	30 dB
perturbación < valor nominal del rango de	
entrada), min.	
 Perturbación en modo común, mín. 	40 dB
Interfaces	
Nº de interfaces Industrial Ethernet	1; 2 puertos (switch) RJ45
Nº de interfaces PROFINET	1; 2 puertos (switch) RJ45
Nº de interfaces RS 485	1; MPI/PROFIBUS DP combinado
Nº de interfaces RS 422	0
1. Interfaz	
Tipo de interfaz	Interfaz RS485 integrada
Norma física	R8 485
con aislamiento galvánico	8/
Alimentación en interfaz (15 a 30 V DC), máx.	200 mA
Protocolos	
* MPI	Si
Maestro PROFIBUS DP	81
 Esclavo PROFIBUS DP 	Sí
 Acoplamiento punto a punto 	No
MPI	
 Velocidad de transferencia, máx. 	12 Mbit/s
Servicios	
 Comunicación PG/OP 	8(
— Enrutado	8(
 Comunicación de datos globales 	8(
- Comunicación 87 básica	8(
- Comunicación 87	81
- Comunicación 37, como cliente	No; pero a través de CP y FB cargables

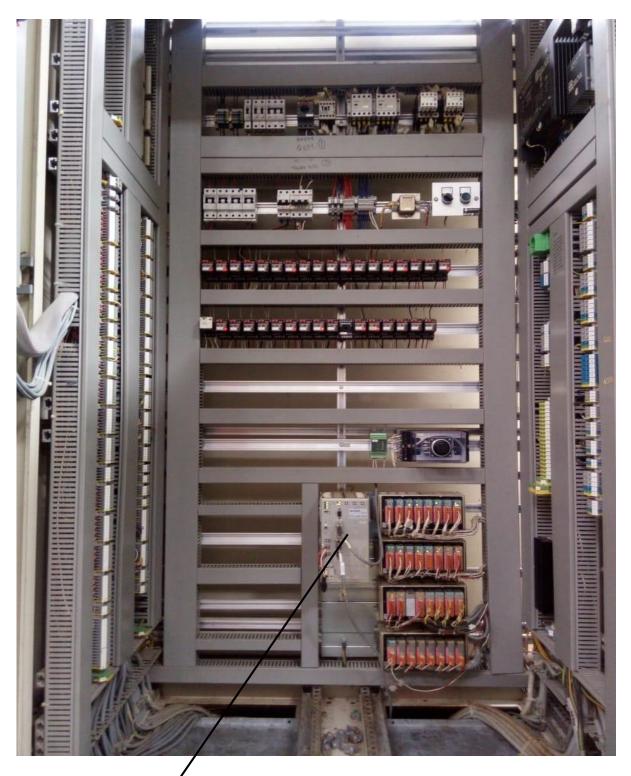
— Comunicación 87, como servidor	8(
— Comunicación 87, como servidor Maestro PROFIBUS DP	SI
Velocidad de transferencia, máx.	12 Mbitis
Nº de esclavos DP, máx.	124
N° de escavos DP, max. Senários	127
— Comunicación PG/OP	8/
	8/
Enrutado Comunicación de datos globales	No.
Comunicación de datos giocares Comunicación 37 básica	Sf: sólo bloques I
	SI SI
— Comunicación 87	No.
— Comunicación 87, como cliente	86
- Comunicación 87, como servidor	8/
— Equidatencia	
— Modo isócrono	No Si
— SYNCIFREEZE	
Activaridesactivar esclavos DP	81
 Nº de esclavos DP activables/desactivables simultáneamente. 	8
máx.	
 Comunicación directa de datos (esclavo- 	SI; como suscriptor
esclavo)	
— DPV1	81
Área de direcciones	
— Entradas, máx.	2 kbyte
— Salidas, máx.	2 kbyte
Datos útiles por esclavo DP	
— Entradas, máx.	244 byte
— Salidas, máx.	244 byte
Esclavo PROFIBUS DP	
Velocidad de transferencia, máx.	12 Mbit/s
 Búsquede automática de velocidad de transferencia 	SI; sólo con interfaz pasiva
Área de direcciones, máx.	32
 Datos útiles por área de direcciones, máx. 	32 byte
Servicios	
— Comunicación PG/OP	81
— Enrutado	SI; sólo con interfez active
- Comunicación de datos globales	No
- Comunicación 37 básica	No
— Comunicación 87	81
- Comunicación 87, como cliente	No
— Comunicación 87, como servidor	SI; Sólo conexión de configuración unidireccional

 Comunicación directa de datos (esclavo- 	81
esclavo)	
— DPV1	No
Memoria de transferencia	
— Entradas	244 byte
— Salidas	244 byte
2. Interfax	
Tipo de interfaz	PROFINET
Norma física	Ethemet RJ45
con aislamiento galvánico	8í
Detección automática de la velocidad de	SI; 10/100 Mbits/s
transferencia	
Autonegociación	81
Autocrossing	8í
Cambio de dirección IP en tempo de ejecución,	Sí
función soportada	
Física de la interfaz	
Número de puertos	2
Switch integrado	81
Redundancia del medio	
Soporta	81
Tiempo de conmutación en caso de rotura de	200 ms; PROFINET MRP
cable, tip.	
 Nº de estaciones en el anillo, máx. 	50
Protocolos	
• MPI	No
PROFINET IO-Controller	Sí; también con funcionalidad de IO-Device simultánea
PROFINET IO-Device	SI; también con funcionalidad de IO-Controller simultánea
PROFINET CBA	Sí
Meestro PROFIBUS DP	No
Esclavo PROFIBUS DP	No
Comunicación IE abierta	SI; mediante TCP/IP, ISO on TCP, UDP
Servidores web	81
PROFINET IO-Controller	
Velocidad de transferencia, máx.	100 Mbit/s
Servicios	
— Comunicación PG/OP	8(
— Enrutado	81
— Comunicación 37	SI; con FB cargables, conexiones configurables máx.: 10, máx.
	número de instancias: 32
- Modo isócrono	SI; OB 61
— Comunicación IE abierta	Si; mediante TCP/IP, ISO on TCP, UDP

— IRT	8(
- Shared Device	SI .
- Arranque priorizado	Si
- Número de dispositivos IO con amanque	32
preferente, máx.	
 — Nº de IO Devices que se pueden conectar 	128
en total, máx.	
 de los cuales, IO devices con IRT, máx. 	64
— de ellos, en línea, máx.	64
— Nº de IO Devices con IRT y la opción "alta flexibilidad"	128
— de ellos, en línea, máx.	61
 Nº de IO-Devices conectables para RT, máx. 	128
— de ellos, en línea, máx.	128
Activarides activar IO Devices	8(
 Nº de IO-Devices activables/desactivables 	8
simultáneamente, máx.	
- IO-Devices (puertos asociados) que	81
cambian en servicio, soportado	
 Nº de IO-Devices por herramienta, máx. 	8
- Cambio de aparato sin soporte removible	8(
— Tiempos de ciclo de envío	250 μs, 500 μs,1 ms; 2 ms, 4 ms (no con IRT y opción "Atta flexibilidad")
— Tiempo de actualización	250 µs a 512 ms (dependiendo del modo de servicio; más detalles en el manual de producto "87-300 CPU 31xC y CPU 31x, Datos técnicos")
Área de direcciones	
— Entradas, máx.	2 kbyte
— Salidas, máx.	2 kbyte
- Coherencia de datos útiles, máx.	1 024 byte
PROFINET IO-Device	
Servicios	
— Comunicación PG/OP	Sí
— Enrutado	8(
— Comunicación 87	Sí; con FB cargables, conexiones configurables máx.: 10, máx. número de instancias: 32
- Modo isócrono	No
- Comunicación IE abierta	SI; mediante TCP/IP, ISO on TCP, UDP
—IRT	8(
— PROFlenergy	Sí; Con SFB 73 / 74 preparado para FB estándar PROFlenergy para I-Device
— Shared Device	81

Nº de IO Controller con Shared Device.	
— N° de lO Controller con Shared Device, máx	2
Memoria de transferencia	
— Entradas, máx.	1 440 byte; por cada IO Controller con Shared Device
— Salidas, máx.	1 440 byte: por cada IO Controller con Shared Device
Submidulos	
— Número, máx.	64
Datos útiles por submódulo, máx.	1 024 byte
PROFINET CBA	· · · · · · · · · · · · · · · · · · ·
Transferencia aciclica	81
Transferencia ciclica	81
Comunicación IE abierta	
Número de conexiones máx.	8
Números de puerto locales utilizados en el	0, 20, 21, 23, 25, 80, 102, 135, 161, 443, 8080, 34962, 34963,
sistema	34964, 65532, 65533, 65534, 65535
Función Keep-Alive, soportada	81
Protocolos	
Comunicación IE abierta	
◆ TCP/IP	SI: a través de interfaz PROFINET y FB carcables
Número de conexiones máx.	8
Tamaño de datos con tipo de conexión	1 460 byte
01H, máx.	
- Tamaño de datos con tipo de conexión	32 768 byte
11H, máx.	
 varias conexiones pasivas por puerto, 	81
función soportada	
• ISO-on-TCP (RFC1006)	SI; a través de interfaz PROFINET y FB cargables
 Número de conexiones máx. 	8
— Tamaño de datos, máx.	32 768 byte
• UDP	SI; a través de interfaz PROFINET y FB cargables
 Número de conexiones máx. 	8
— Tamaño de datos, máx.	1 472 byte
Servidores web	
Soporta	81
Páginas web definidas por el usuario	81
N.º de clientes HTTP	5
Modo isócrono	
Modo isócrono (aplicación sincronizada hasta el	Sí; sólo en PROFINET
borne)	
Funciones de comunicación	
Comunicación PG/OP	81

Enrutado de registros	Si
Comunicación de datos globales	
Soporta	Si -
 Nº de círculos GD, máx. 	8
 Nº de paquetes GD, máx. 	8
 Nº de paquetes GD, emisor, máx. 	8
 Nº de paquetes GD, receptor, máx. 	8
 Tamaño de paquetes GD, máx. 	22 byte
 Tamaño de paquetes GD (de ellos, 	22 byte
coherentes), máx.	
Comunicación 87 básica	
Soporta	Si .
 Datos útiles por petición, máx. 	76 byte
 Datos útiles por petición (de ellos, coherentes), 	76 byte; 76 bytes (con X_SEND o X_RCV), 64 bytes (con X_PUT
máx.	o X_GET como servidor)
Comunicación 87	
Soporta	81
como servidor	Sí .
Como cliente	SI; a través de la interfaz PROFINET integrada y FB cargables o
	a través de CP y FB cargables ver ayuda en línea de STEP 7 ("Parámetros comunes de los
 Datos útiles por petición, máx. 	SFB/FB v las SFC/FC de la Comunicación 87")
Comunicación compatible con 85	,
Comunicación compatible con 85 • Scoorta	SI; a través de CP y FC cargables
Soporta	Sí; a través de CP y FC cargables
Soporta PROFINET CBA (con carga de comunicación ajustada	Sí; a través de CP y FC cargables
Soporta	Sí; a través de CP y FC cargables a su valor teórico)
Soporta PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de	Sí; a través de CP y FC cargables a su valor teórico)
Soporta PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU	Sí; a través de CP y FC cargables a su valor teórico) 50 %
Soporta PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos	Sí; a través de CP y FC cargables a su valor teórico) 50 %
Soporta PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo	Sí; a través de CP y FC cargables a su valor teórico) 50 % 32
Soporta PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interfocutores de interconexión remotos Nº de funciones maestro/esclave Suma de todas las conexiones	Sí; a través de CP y FC cargables a su valor teórico) 50 % 32
Soporta PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS Tamaño de los datos de las interconexiones	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS Tamaño de los datos de las interconexiones PROFIBUS y las interconexiones internas de los	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS Tamaño de los datos de las interconexiones PROFIBUS y las interconexiones internas de los dispositivos, máx.	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte 500 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS Tamaño de los datos de las interconexiones PROFIBUS y las interconexiones internas de los dispositivos, máx. Tamaño de los datos de cada conexión, máx.	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS Tamaño de los datos de las interconexiones PROFIBUS y las interconexiones internas de los dispositivos, máx Tamaño de los datos de cada conexión, máx.	Si; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte 500 4 000 byte
PROFINET CBA (con carga de comunicación ajustada Ajuste teórico de la carga de comunicación de la CPU Nº de interlocutores de interconexión remotos Nº de funciones maestro/esclavo Suma de todas las conexiones maestro/esclavo Tamaño de los datos de todas las conexiones maestro/esclavo entrantes, máx Tamaño de los datos de todas las conexiones maestro/esclavo salientes, máx. Número de interconexiones internas del dispositivo y por PROFIBUS Tamaño de los datos de las interconexiones PROFIBUS y las interconexiones internas de los dispositivos, máx. Tamaño de los datos de cada conexión, máx.	SI; a través de CP y FC cargables a su valor teórico) 50 % 32 30 1 000 4 000 byte 4 000 byte 500 4 000 byte


 Número de interconexiones entrantes 	100
 Número de interconexiones salientes 	100
 Tamaño de los datos de todas las interconexiones entrantes, máx. 	2 000 byte
 Tamaño de los datos de todas las interconexiones salientes, máx. 	2 000 byte
 Tamaño de los datos de cada conexión, máx. 	1 400 byte
Interconexiones remotas con transferencia cíclica	
 Frecuencia de transferencia: intervalo de transferencia, mín. 	10 ms
 Número de interconexiones entrantes 	200
 Número de interconexiones salientes 	200
— Tamaño de los datos de todas las	2 000 byte
interconexiones entrantes, máx.	
— Tamaño de los datos de todas las	2 000 byte
interconexiones salientes, máx.	
 Tamaño de los datos de cada conexión, máx. 	450 byte
Variables HMI via PROFINET (aciclicas)	
 Número de estaciones conectables para variables HMI (PN OPC/IMAP) 	3; 2x PN OPC/1x iMap
 Actualización de variables HMI 	500 ms
- Número de variables HMI	200
 Tamaño de datos de todas las variables HMI, máx. 	2 000 byte
Funcionalidad de proxy PROFIBUS	
— Soporta	8(
 Número de dispositivos PROFIBUS 	16
acopiados	
 Tamaño de los datos de cada conexión, 	240 byte; en función del esclavo
máx.	
Nº de conexiones	
• total	12
usable para comunicación PG	11
— reservadas para comunicación PG	1
 configurables para comunicación PG, mín. 	1
 configurables para comunicación PG, máx. 	11
 usable para comunicación OP 	11
— reservadas para comunicación OP	1
 configurables para comunicación OP, mín. 	1
 configurables para comunicación OP, máx. 	11
usable para comunicación básica 87	8

— reservadas para comunicación básica 87	0
 configurables para comunicación básica 87, min. 	0
 configurables para comunicación básica 87. máx. 	8
usables para la comunicación 87	10
— reservadas para comunicación 87	0
 configurables para comunicación 87, min. 	0
 configurables para comunicación 87, máx. 	10
Nº total de instancias, máx.	32
usable para enrutado	X1 como MPI: máx. 10; X1 como maestro DP: máx. 24; X1 como
·	esclavo DP (activo): máx. 14; X2 como PROFINET: máx. 24
Funciones de aviso S7	
Número de estaciones conectables para funciones	12; depende de las conexiones configuradas para la
de aviso, máx.	comunicación PG/OP y 87 básica
Avisos de diagnóstico de proceso	81
Bioques Alarm-S activos simultáneamente, máx.	300
Funciones de test ∮ puesta en marcha	
Estado de bloques	SI; hasta 2 simultáneas
Paso individual	81
Nº de puntos de parada	4
Estado/forzado	
Estado/forzado de variables	Sí
Variables	Entradas, salidas, marcas, DB, tiempos, contadores
 Nº de variables, míx. 	30
 de ellas, estado de variables, máx. 	30
 de ellas, forzado de variables, máx. 	14
Forzado permanente	
Forzado permanente	Si
Forzado permanente, variables	Entradas, salidas
 Nº de variables, máx. 	10
Büfer de diagnóstico	
existente	81
Nº de entradas, máx.	500
— Configurable	No
- de ellos seguros contra caída de red	100; Sólo son remanentes las 100 últimas entradas
 N.º de entradas legibles en RUN, máx. 	499
— Configurable	Si; de 10 a 499
— predeterminado	10
Datos de servicio técnico	
Legibles	Si

Alarmas/diagnósticos/información de estado	
LED señalizador de diagnóstico	
 Señalizador de estado entrada digital (verde) 	8(
Señalizador de estado salida digital (verde)	Si
Funciones integradas	
Nº de contadores	4; Ver manual "Funciones tecnológicas"
Frecuencia de contaje (contadores), máx.	60 kHz
Medida de frecuencia	81
Nº de frecuencimetros	4; hasta máx. 60 kHz (ver manual "Funciones tecnológicas")
Posicionamiento en lazo abierto	Si
Bloques de función integrados (regulación)	Sí; Regulador PID (ver manual "Funciones tecnológicas")
Regulador PID	Si .
Nº de salidas de impulsos	4; Modulación de ancho de impulso hasta máx. 2,5 kHz (ver manual "Funciones tecnológicas")
Frecuencia limite (impulsos)	2,5 kHz
Aislamiento galvánico Aislamiento galvánico módulos de E digitales	
	N/
 Aislamiento galvánico módulos de E digitales 	81
entre los canales	No
entre los canales y bus de fondo	81
Aislamiento galvánico módulos de 8 digitales	
 Aislamiento galvánico módulos de 8 digitales 	81
entre los canales	8/
 entre los canales, en grupos de 	8
 entre los canales y bus de fondo 	8/
Alsiamiento galvánico módulos de E analógicas	
 Aislamiento galvánico módulos de E analógicas 	Sí; junto para la unidad periférica analógica
• entre los canales	No
entre los canales y bus de fondo	8(
Aislamiento galvánico módulos de S analógicas	
Asiamiento galvánico módulos de S analógicas	Si; junto para la unidad periférica analógica
entre los canales	No
entre los canales y bus de fondo	Sí
Diferencia de potencial admisible	
entre las entradas y MANA (UCM)	8 V DC
Aislamiento	
Aislamiento ensayado con	600 V DC
Condiciones ambientales	
Temperatura ambiente en servicio	
• min.	010

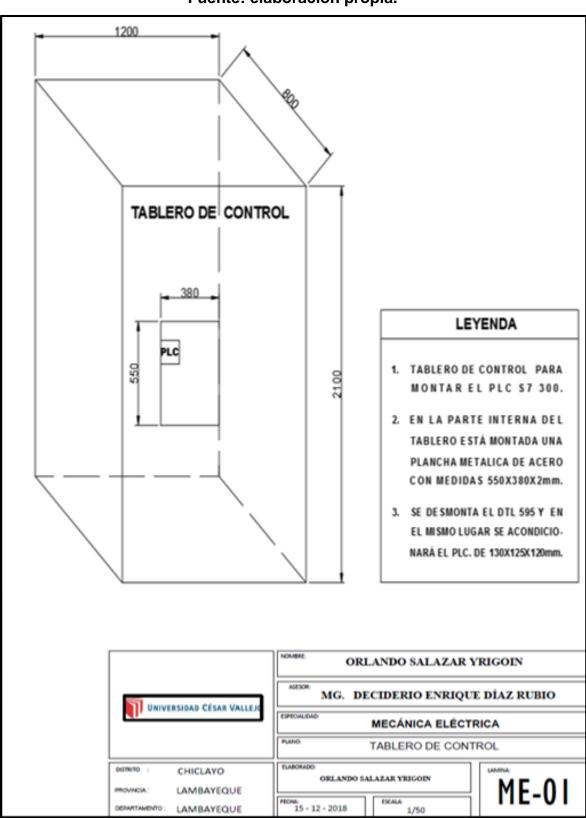
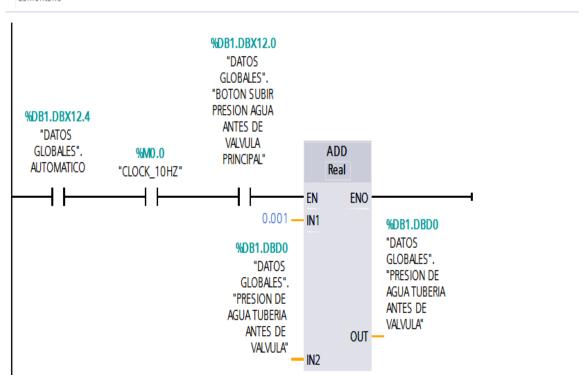

• máx.	60 °C
Configuración	
Software de configuración	
• STEP 7	SI; V 5.5 o superior
programación	
Juego de operaciones	Ver Lista de operaciones
Niveles de paréntesis	8
• Funciones de sistema (SFC)	Ver Lista de operaciones
 Bioques de función de sistema (SFB) 	Ver Lista de operaciones
Lenguaje de programación	
— KOP	81
— FUP	8(
— AWL	8(
—8CL	8(
— CFC	8(
— GRAPH	8(
— HiGraph/®	8(
Protección de know-how	
Protección de programas de usuarío/Protección	8(
por contraseña	
Codificación de bloque	SI; con bloque S7 Privacy
Dimensiones	
Ancho	120 mm
Alto	125 mm
Profundidad	130 mm
Pesos	
Peso, aprox.	730 g
Última modificación:	17/12/2018 [7

Foto del tablero de control del turbogenerador donde está montado el DTL.

REGULADOR DIGITAL DE LA TURBINA (DTL 595)

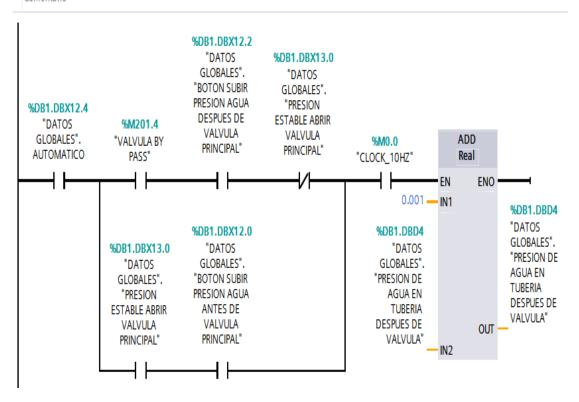
Plano del tablero de control del turbogenerador que se encuentra montado el DTL 595, y se reemplazara por el PLC S7 - 300.

Fuente: elaboración propia.

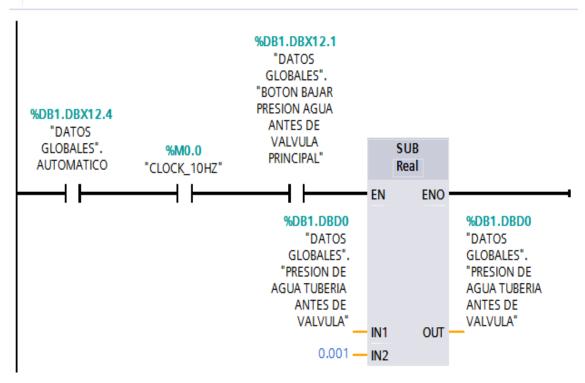

ANEXO 03.- PROGRAMA EN TIA PORTAL

Totally Integra Automation P							
SCADA HIDI	ROELEC	CTRICA QUAI	NDA				
Project							
Nombre:	Scada Hi Quanda	IDROELECTRICA	Fecha y hora de creación:	15/12/2018 22:38:25	Última modifi- cación:	26/12/2018 15:54:13	Autor:
Autor de la últi- ma modifica- ción:	Automati	os Pc}	Versión:				
Comentario:							
Sistema operativ	/0						
Nombre					Descripción		
Sistema operativo		Microsoft Windows 8.1 Pro					
Versión del sisten					6.3.9600.0		
Service Pack del s	istema op	erativo					
Versión del Intern	net Explore	er			11.0.9600.17416		
Nombre del equi	ро				AUTOMATIONPC		
Nombre del usua	rio				AutomationPC\Automatios Pc}		
Ruta de instalació	on del TIA F	Portal			C:\Program Files\	Siemens\Automation\Portal	V14

OPERACION CENTRAL MANUAL, AUTOMATICO VALVULA BY PASS START STOP VALVULA PRINCIPAL START STOP	MAIN VALVE OPEN OFF ON MAIN VALVE CLOSE OFF ON	PRESION AGUA TUBERIA (ANTES DE MAIN VALVE) OO,OO BAR SP NOMINAL 25 BAR RUN SP NOMINAL 21 BAR STOP PRESION AGUA TUBERIA (DESPUES DE MAIN VALVE) OO,OO BAR PRESION HIDROLINA OOO,OO BAR
---	---	--

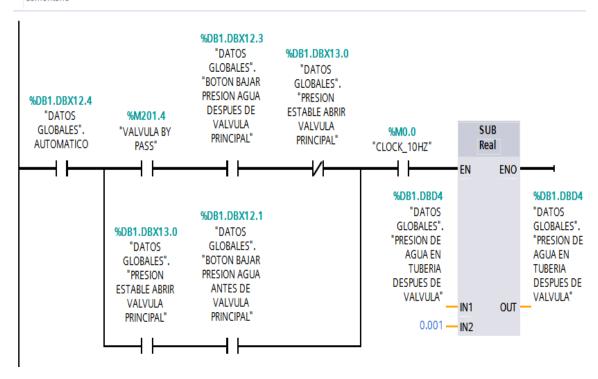

BLOQUES FC 1

▼ Segmento 1: SUBIR PRESION DE AGUA EN TUBERIA PARA SIMULACION (ANTES DE VALVULA PRINCIPAL)

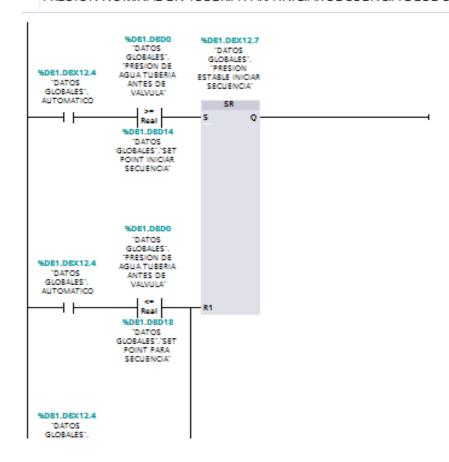


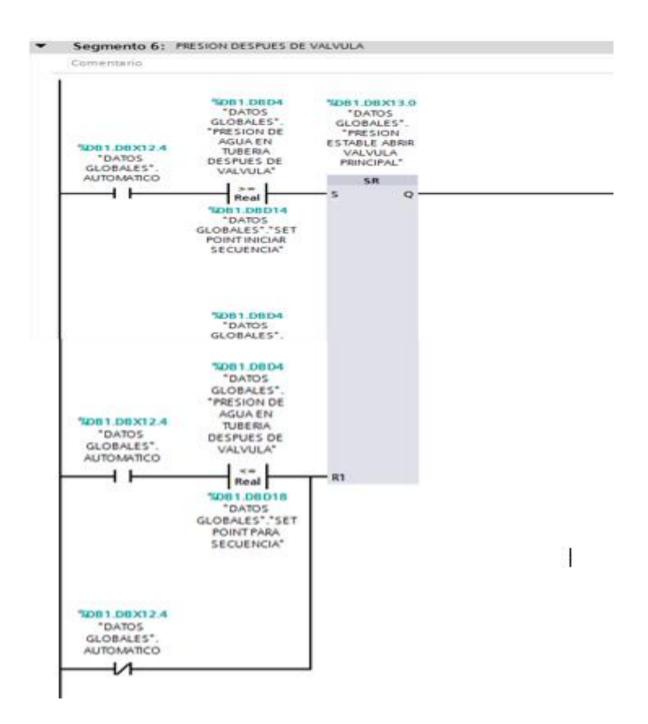
▼ Segmento 2: SUBIR PRESION DE AGUA EN TUBERIA PARA SIMULACION (DESPUES DE VALVULA PRINCIPAL)

Comentario

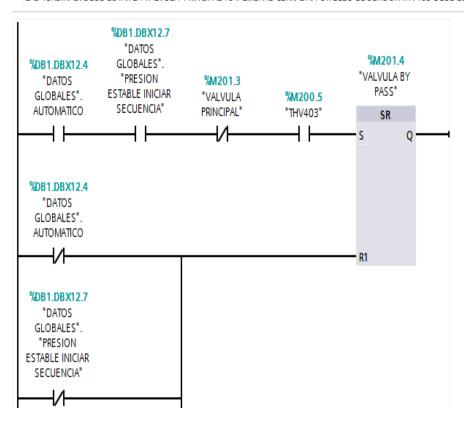


▼ Segmento 3: BAJAR PRESION DE AGUA EN TUBERIA PARA SIMULACION (ANTES DE VALVULA PRINCIPAL)


▼ Segmento 4: BAJAR PRESION DE AGUA EN TUBERIA PARA SIMULACION (DESPUES DE VALVULA PRINCIPAL)

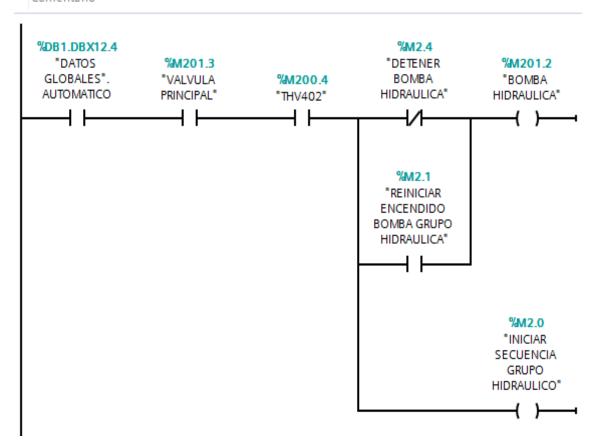

Comentario

▼ Segmento 5: COMPARAR PRESION DE TUBERIA PARA APERTURA SE BY PASS.

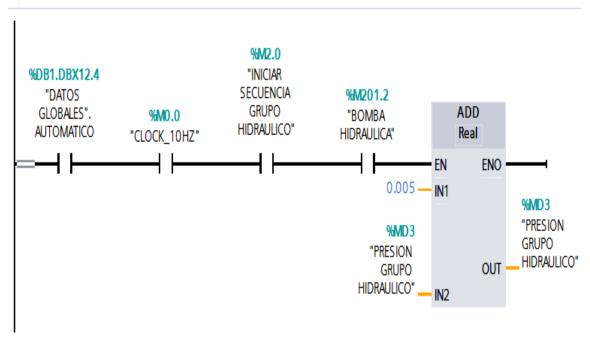

PRESION NOMINAL EN TUBERIA PARA INICIAR SECUENCIA DEBE SER APROX DE 25 BAR

▼ Segmento 7: DAR PASO A BY PASS

■ UNA VEZ ALCANZADO LA PRESION EN LA TUBERIA PRINCIPAL.SE ABRE EL BY PASS PARA RELLENAR DE AGUA EL TRAMO DE TUBERIA QUE VA HACIA LAS TURBINAS. DEBE ESTAR LA VALVULA PRINCIPAL TOTALMENTE CERRADA. POR ELLO EL SENSOR THV403 DEBE ESTAR ACTIVO

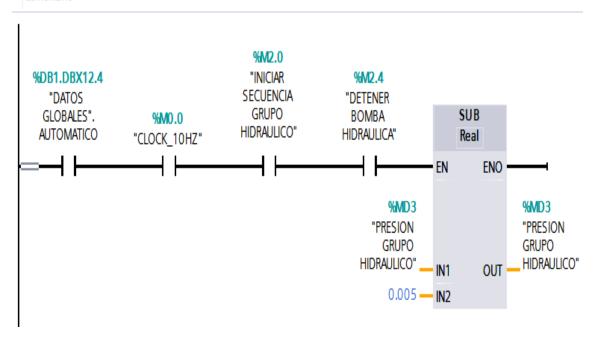


▼ Segmento 8: APERTURA DE VALVULA PRINCIPAL PARA DAR INICIO A LA SECUENCIA DE ARRANQUE DEL GRUPO HIDRAULICO

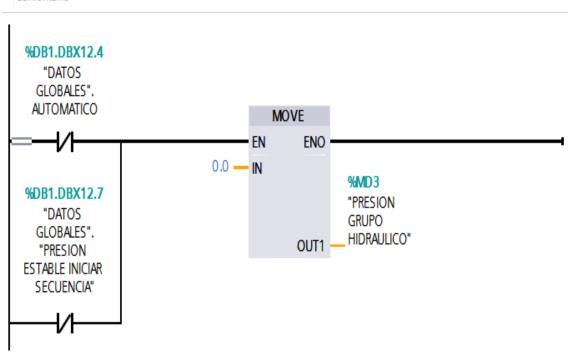

Comentario %DB1.DBX13.0 "DATOS GLOBALES" "PRESION %M201 3 %DB1.DBX12.4 ESTABLE ABRIR "VALVULA "DATOS GLOBALES" %M201.4 VALVULA PRINCIPAL" PRINCIPAL" "VALVULA BY AUTOMATICO PASS' SR Q %DB1.DBX12.4 "DATOS GLOBALES' AUTOMATICO R1 %DB1.DBX13.0 "DATOS GLOBALES". "PRESION ESTABLE ABRIR VALVULA PRINCIPAL

▼ Segmento 9: BOMBA GRUPO HIDRAULICO

Comentario

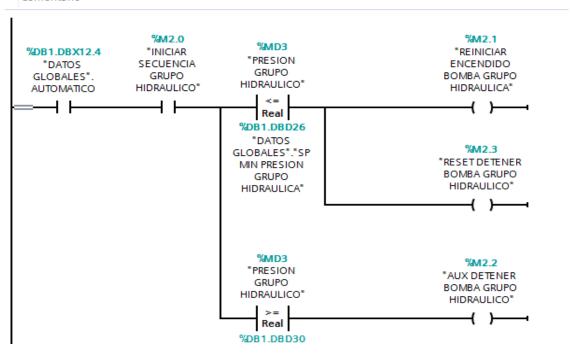


▼ Segmento 10: ANIMACION DE AUMENTO DE PRESION GRUPO HIDRAULICO

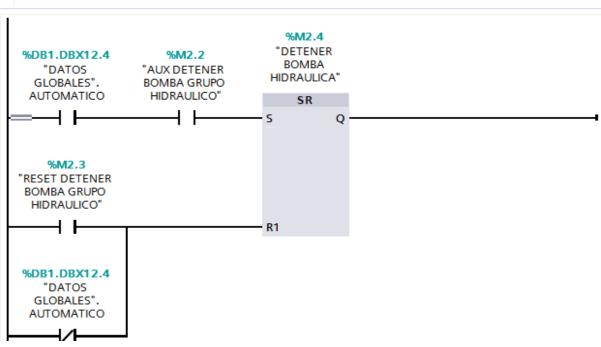


▼ Segmento 11: ANIMACION DE DISMINUCION DE PRESION GRUPO HIDRAULICO

Comentario



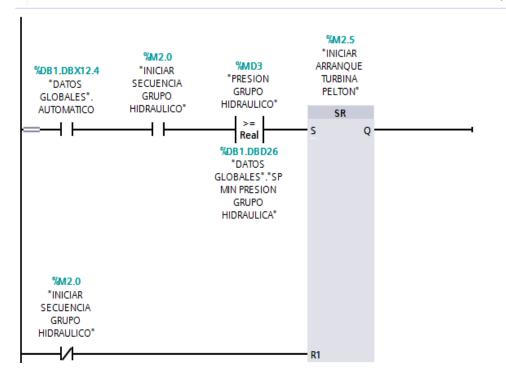
▼ Segmento 12: REINICIAR A O ANIMACION DE PRESION GRUPO HIDRAULICO



▼ Segmento 13: CONTROL DE PRESION MINIMO Y MAXIMO DEL GRUPO HIDRAULICO

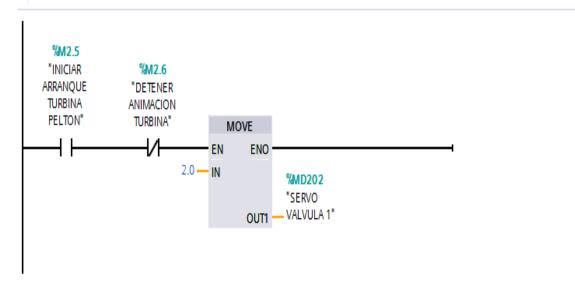
Comentario

▼ Segmento 14: DETENER BOMBA HIDRAULICA CUANDO ALCANZA LA PRESION MAXIMA

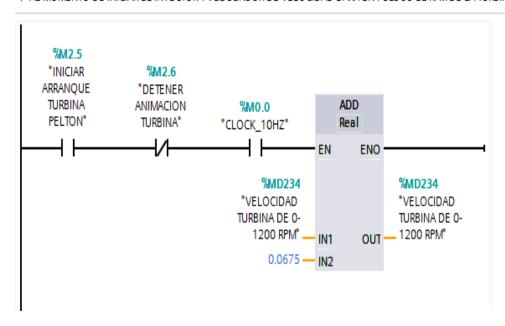


SECUENCIA DE ARRANQUE DE TURBINA PELTÓN

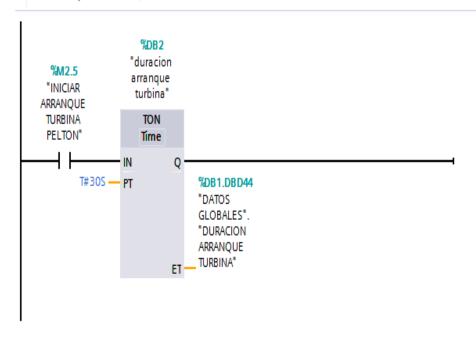
BLOQUES FC 2


▼ Segmento 1: SECUENCIA DE ARRANQUE DE TURBINA PELTON

UNA VEZ ALCANSADA LA PRESION HIDRAULICA MINIMA DE TRABAJO. SE DA INICIO A LA SECUENCIA DE ARRANQUE DE LA TURBINA


▼ Segmento 2: ETAPA DE ARRANQUE EN VACIO

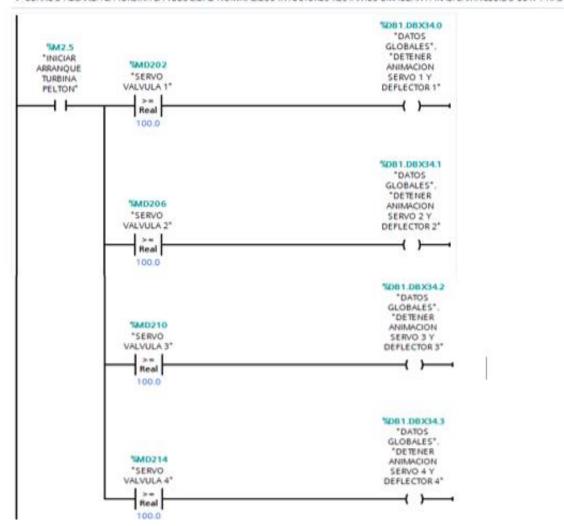
▶ PARA EL ARRANQUE EN VACIO DE LA TURBINA. EL INYECTOR 1 TRABAJA AL 2% PARA QUE LA TURBINA ALCANCE LA VELOCIDAD NOMINAL .

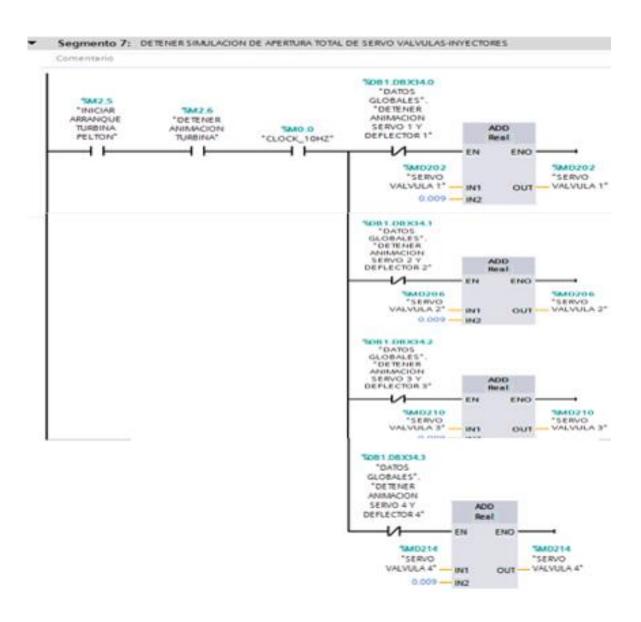

▼ Segmento 3: VELOCIDAD DE TURBINA

▶ AL MOMENTO DE INICIAR EL INYECTOR 1 . EL SENSOR DE VELOCIDAD DARA EN PULSOS EL RPM DE LA TURBINA HASTA ALCANZAR LOS

▼ Segmento 4: TIEMPO DE ARRANQUE DE TURBINA

▶ SE ESTIMA QUE EN 30 SEG, LA TURBINA DEBE ALCANZAR LA VELOCIDAD NOMINAL DE 1200 RPM PARA DAR INICIO A LA SECUENCIA DE .

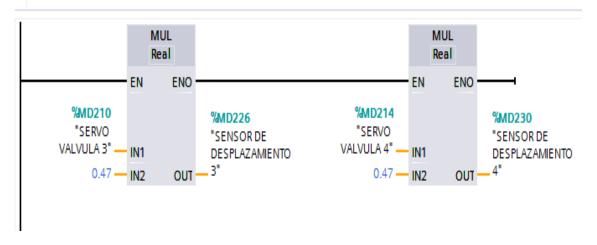

▼ Segmento 5: SIMULACION VEL TURBINA


ALCANZADO LOS 1200 RPM, SE DETIENE LA ETAPA DE SIMULACION DE AUMENTO DE VELOCIDAD NOMINAL..

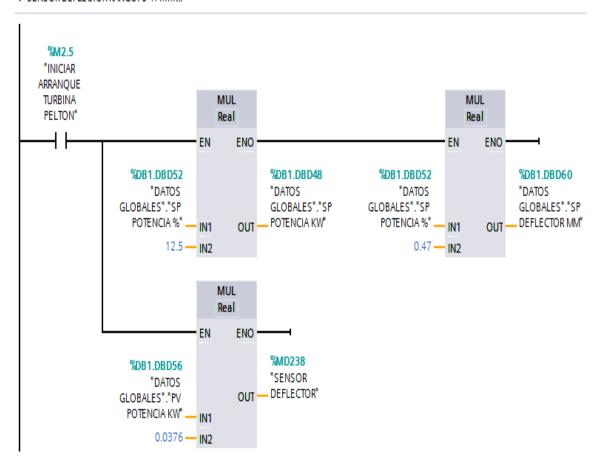
```
%M2.5
                   %MD234
 "INICIAR
                                                                           %M2.6
                 "VELOCIDAD
ARRANQUE
                                                                         *DETENER
                 TURBINA DE 0-
 TURBINA
                                                                        ANIMACION
                  1200 RPM*
 PELTON"
                                                                         TURBINA*
                     >=
                     Real
                    1200.0
                 %DB2.DBX6.0
                  "duracion
                  arranque
                  turbina".Q
```

▼ Segmento 6: INICIO DEL INGRESO DE LOS INVECTORES 2,3,4

▶ CUANDO ALCANZA LA TURBINA LA VELOCIDAD NOMINAL.LOS INVECTORES RESTANTES EMPIEZAN A TRABAJAR INCLUIDO EL Nº1 HASTA ...



▼ Segmento 8: MOVIMIENTO LINEAL SENSORES THEMPOSONIC 1 Y 2

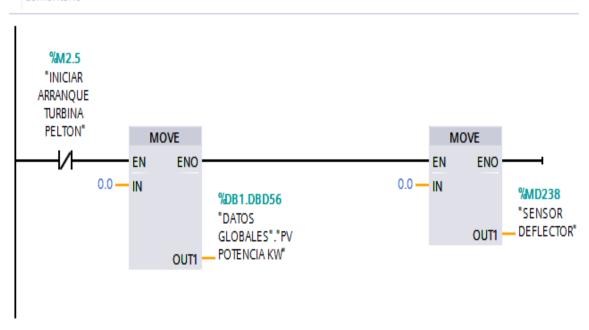

▼ Segmento 9: MOVIMIENTO LINEAL SENSORES THEMPOSONIC 3 Y 4

Comentario

▼ Segmento IU: regulación de potencia generador

▶ SENSOR DEFLECTOR RANGO: 0-47mm...

▼ Segmento 11: AJUESTE Y REGULACION DE POTENCIA ENTREGADA POR EL GENERADOR


Comentario 5M2.5 \$D81.D8D56 "INICIAR 5M2.6 *DATOS ARRANQUE "DETENER GLOBALES"."PV TURBINA ADD ANIMACION "MO.0 POTENCIA KW PELTON" TURBINA" "CLOCK 10HZ" Real 11 4 F EN ENO Real 5081.06048 %D81.D8D56 %DB1.DBD56 *DATOS "DATOS "DATOS GLOBALES"."SP POTENCIA KW GLOBALES", PV GLOBALES*.*PV POTENCIA KW - INT POTENCIA KW OUT 0.05 - IN2 1081,08056 "DATOS GLOBALES"."PV SUB POTENCIA KW Real ENO . EN Real 9081.08048 %DB1.DBD56 %D61.D8056 *DATOS *DATOS *DATOS GLOBALES", "SP GLOBALES" PV POTENCIA KW GLOBALES" PV POTENCIA KW* POTENCIA KW IN1 OUT

0.05 - IN2

▼ Segmento 12: REINICIO DE SIMULACION VELOCIDAD TURBINA Y SENSORES DE DESPLAZAMIENTO THEMPOSONIC

Comentario SM2 5 "INICIAR ARRANQUE TURBINA PELTON" MOVE MOVE EN ENO EN ENO 0.0 - IN 0.0-IN SMD234 **SMID218** *VELOCIDAD "SENSOR DE TURBINA DE O-DESPLAZAMENTO 1200 RPM OUTI oum MOVE MOVE ENO ENO EN EN 0.0-0.0-IN IN *M0226 **TMD230** "SENSOR DE DESPLAZAMENTO *SENSOR DE DESPLAZAMENTO OUTI OUTI MOVE MOVE ENO ENO EN EN 0.0 - IN 0.0 - IN "MD202 **WI0206** "SERVO "SERVO OUT VALVULA 1" VALVULA 2" OUTI MOVE MOVE EN ENO EN ENO: 0.0 - N 0.0 -194 SMD210 3M0214 "SERVO "SERVO VALVULA 4" VALVULA 3" OUTI

▼ Segmento 13: REINICIO SIMULACION POTENCIA ENTREGADA EN KWY DEFLECTOR

ANEXO 04.- DATOS PARA ESTABLECER LA EVALUACIO ECONOMICA.

Factura de servicio continúo para mantenimiento correctivo del DTL.

		Power Andina E.I.R.L.	n.o.o.	N° 2048	1003714
Sistemas	de Contr	Turbinas - Generadores ol, Protección, Excitación y Sincronización ontaje - Puesta en Servicio - Mantenimiento	FA	CTU	RA
Los Telef.: +51(IMPORT / EXPORT pos 558 - Urb. California, Trujillo - Perú pos 558 - urb. California, Trujillo - Urb. California, T	001 -	Nº 0	000031
Señor(es Dirección R.U.C.;	CALL	TRO ORIENTE S.A. E ALFREDO BASTOS 246 - 246 JAEN 3795631	Guia d	de emisión: _ e Remisión: . de Compra:_	
Por lo si	gulente:				
THIN	CANT	DESCRIPCIÓN	RE DE	PRECIO UNITARIO	TOTAL
7	. 1	SERVICIO DE INSPECCION Central Hidroelèctrica Quanda. Del Departamento de Generación, Amazor Cajamarca. Actividades realizadas: Inspección de los Grupos Hidráuticos. Analizar la falla de los Grupos Hidráuticos. Cambio de Software para las condicion de Arranque. Cambio de Software para la Apertura modo "TEST". Capacitación al personal. Informe Técnico Nº 80112-96. Precio incluye: Contos de viaje con Auto y chofer (Trujillo - San Ignacio - Trujillo) Alojamiento, Alimentación.	nas 2018.	6,400.00	6,400.00
IMPRENTA DII	TRIB. ERICK			VOS SOLES.	Sr. 6,408 bt
1	C. 20490082 96063 FA 14	8K 08/2004		LG.V. (19%)	S. 1,210.00

Venta de energía salida del medidor total.

	MEDIDOR	ELECTRONICO - SA	LIDA 22,9 Kv
DIA	Kwh total	Kwh - HP	Kwh - HFP
	4	5	7
	907.79	531.169	376.632
1	966.928	543.501	423.439
	406284.930	84720.840	321564.090
	966.928	543.501	423.439
2	1025.042	555.541	469.513
	399243.180	82714.800	316528.380
	1,025.042	555.541	469.513
3	1,083.838	567.873	515.977
	403928.520	84720.840	319207.680
	1,083.838	567.873	515.977
4	1,142.239	580.101	562.150
	401214.870	84006.360	317208.510
	1,142.239	580.101	562.150
5	1,199.708	591.195	608.418
	394812.030	76215.780	318596.250
	1,199.708	591.195	608.418
6	1,243.199	602.119	650.586
	298783.170	75047.880	223735.290
	1,243.199	602.119	650.586
7	1,292.919	614.977	677.955
	341576.400	88334.460	253241.940
	1,292.919	614.977	677.955
8	1,351.294	627.068	749.735
	401036.250	83065.170	317971.080
	1,351.294	627.068	749.735
9	1,407.452	638.383	769.079
	385805.460	77734.050	308071.410
	1,407.452	638.383	769.079
10	1,463.722	650.105	813.628
	386574.900	80530.140	306044.760
	1,463.722	650.105	813.628
11	1,519.323	662.02	857.309
	381978.870	81856.050	300122.820
	1,519.323	662.020	857.309
12	1575.416	673.923	901.505
	385358.910	81773.610	303585.300
	1,575.416	673.923	901.505
13	1631.175	685.41	946.392
	383064.330	78915.690	308373.690
	1,631.175	685.410	946.392
14	1687.937	696.988	991.041
	389954.940	79540.860	310414.080
	1,687.937	696.988	991.041
15	1717.832	709.320	1,008.524
	205378.650	84720.840	120657.810
	1,717.832	709.320	1,008.524

TOTAL	1,683,484,713.000	360,753,399.000	1,322,766,958.000
	405460.530	85291.050	320169.480
31	2,668.801	907.486	1,761.217
	2,609.782	895.071	1,714.615
	414796.860	85284.180	329512.680
30	2,609.782	895.071	1,714.615
	2,549.404	882.657	1,666.860
	407913.1200	85167.390	322745.730
29	2,549.404	882.657	1,666.860
	2,490.028	870.260	1,619.780
	387784.0200	85188.000	302596.020
28	2,490.028	870.260	1,619.780
	2,433.582	857.860	1,575.734
	427094.160	85215.480	341878.680
27	2,433.582	857.860	1,575.734
	2,371.414	845.456	1,525.970
	403145.340	84913.200	318232.140
26	2,371.414	845.456	1,525.970
	2,312.732	833.096	1,479.647
	412893.870	84968.160	327925.710
25	2,312.73	833.096	1,479.647
	2,252.631	820.728	1,431.914
	397766.130	84652.140	313113.990
24	2252.631	820.728	1,431.914
	2,194.732	808.406	1,386.387
23	405371.220	808.406 84720.840	320650.380
23	2,135.726	796.074	1,339.556 1,386.387
	413402.250 2,135.726	85105.560	328296.690 1 330 556
22	2135.726	796.074	1,339.556
22	2,075.551	783.686	1,291.878
	405048.330	85174.260	319874.070
21	2075.551	783.686	1,291.878
04	2,016.592	771.288	1,245.316
	410283.270	84789.540	325493.730
20	2,016.59	771.288	1,245.316
	1,956.871	758.946	1,197.829
	392558.670	85249.830	307308.840
19	1,956.871	758.946	1,197.829
	1,899.730	746.537	1,153.098
	427107.900	85139.910	341967.990
18	1,899.730	746.537	1,153.098
	1,837.560	734.144	1,103.428
	407823.810	85318.530	322505.280
17	1,837.560	734.144	1,103.428
	1,778.197	721.725	1,056.484
.,	414707.550	85222.350	329485.200
16	1,778.20	721.725	1,056.484

|ANEXO 05.- INSTRUMENTOS DE RECOLECIÓN DE DATOS

FICHA DE VALIDACIÓN DE INTRUMENTO DE RECOLECCIÓN DE DATOS

DATO	OS GENERALES DEL EXPERTO.
•	Apellidos y Nombres: Adanague Sanchez Losé Suis
•	Profesión: Inpeniero Mecanico Electricista
•	Grado académico: Titulado y Colegiacho
•	Actividad laboral actual: Supenvisor de obras Electricas, Proyectista de
	Proyects Electronicanico.

INGENIERO MECANICO ELECTRICISTA

INDICACIONES AL EXPERTO.

En la tabla siguiente, se propone una escala del 1 al 5, que va en orden ascendente del desconocimiento al conocimiento profundo. Marque con una "X" conforme considere su conocimiento sobre el tema de la tesis evaluada.

1	2	3	4	5
Ninguno	Poco	Regular	Alto	Muy alto

1. Sírvase marcar con una "X" las fuentes que considere han influenciado en su conocimiento sobre el tema, en un grado alto, medio o bajo.

FUENTES DE ARGUMENTACIÓN		GRADO DE INFLUENCIA DE CADA UNA DE LAS FUENTES EN SUS CRITERIOS		
		A (ALTO)	M (MEDIO)	B (BAJO)
a)	Análisis teóricos realizados. (AT)	X		(=====)
b)	Experiencia como profesional. (EP)	X		
c)	Trabajos estudiados de autores nacionales. (AN)	X		
d)	Trabajos estudiados de autores extranjeros. (AE)		V	
e)	Conocimientos personales sobre el estado del problema de investigación. (CP)		*	

Firma del entrevistado

Anexo: Hoja de vida.

Estimado(a) experto(a):

El instrumento de recolección de datos a validar es un Cuestionario, cuyo objetivo (indicar el objetivo de la tesis).

Con el objetivo de corroborar la validación del instrumento de recolección de datos, por favor le pedimos responda a las siguientes interrogantes:

1.	¿Considera pertinente la aplicación de este cuestionario para los fines
	establecidos en la investigación?
	Es pertinente: Y Poco pertinente: No es pertinente:
	Por favor, indique las razones:
	Petido a que el analisis va dirigido a Publico en General
	Debido a que el anatisis va dirigido a Publico en General o Beneficiados Com poco Comocimiento en el Tema Investigado
2.	¿Considera que el cuestionario formula las preguntas suficientes para los fines
	establecidos en la investigación?
	Son suficientes: X Insuficientes:
	Por favor, indique las razones:
	Para el tipo de estudio Considera que la establecida Son
	Su viente.
3.	¿Considera que las preguntas están adecuadamente formuladas de manera tal
	que el entrevistado no tenga dudas en la elección y/o redacción de sus
	respuestas?
	Son adecuadas: Inadecuadas:
4.	
4.	Por favor, indique las razones: porque Considers que las Prepurtas planteadas se encuentran bien planteadas.
4.	Por favor, indique las razones: Por que Consident que las Prepurtas planteadas Relucuentran hien planteadas. Califique los ítems según un criterio de precisión y relevancia para el objetivo
4.	Por favor, indique las razones: Por que Consident que las Prepurtas planteadas Relucuentran hien planteadas. Califique los ítems según un criterio de precisión y relevancia para el objetivo

		Precisión		Relevancia			
Ítem	Muy precisa	Poco precisa	No es precisa	Muy relevante	Poco Relevante	Irrelevante	Sugerencias
1		X		X			
2		×		X			
3		X		X			
4		X		X			

5.	¿Qué sugerencias haría Ud. Para mejorar el instrumento de recolección de datos?
	Le deben Kealizar Pregentas Lencillas para el Encuestado
	ya que de esta forma le tiene mudio mas relivancia
	en et producto final de la trusstagación.

Le agradecemos por su colaboración.

Fecha de evaluación:

Firma del Experto

ACTA DE ORIGINALIDAD DE TURNITIN

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Yo, Deciderio Enrique Díaz Rubio, docente de la Facultad Ingeniería y Escuela Profesional Mecánica Eléctrica de la Universidad César Vallejo, filial Chiclayo, revisor (a) de la tesis titulada: "PROPUESTA PARA REEMPLAZAR DTL - 595 - SCU. POR AUTOMATA PROGRAMABLE COMERCIAL PARA REDUCIR GASTOS EN EL MANTENIMIENTO DE LA CENTRAL HIDROELECTRICA QUANDA 2018", del bachiller:

SALAZAR YRIGOIN, ORLANDO

Constato que la Tesis tiene un índice de similitud de 14% verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Chiclayo, 01 de julio del 2019

Firma

Ing. Deciderio Enrique Díaz Rubio

16728343

FORMATO DE AUTORIZACION DE PUBLICACIÓN

investigación titulado:

AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

Código: F08-PP-PR-02.02

Versión: 07

Fecha: 31-03-2017 Página : 1 de 1

Yo Orlando Salazar Yrigoin, identificado con DNI N.º 33593200 egresada de la Escuela de Ingeniería Mecánica Eléctrica de la Universidad César Vallejo, autorizo (X), No autorizo () la divulgación y comunicación pública de mi trabajo de

"Propuesta para reemplazar DTL - 595 - SCU por autómata programable comercial para reducir gastos en el mantenimiento de la central Hidroeléctrica Quanda 2018"

UCV en el Repositorio Institucional de la (http://repositorio.ucv.edu.pe/), según lo estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art. 23 y Art. 33.

Fundamentación	en caso de	e no autorizad	ción:	
/	y			 ••••••
To free				11. 2
FIRMA				

DNI: 33593200

FECHA: 19 - 07 - 2019

Elaboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicerrectorado de Investigación y Calidad	Aprobó	Rectorado
		1	The state of the s		

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE INVESTIGACIÓN DE
E. P. de Ingeniería Mecánica Eléctrica
A LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA:
Br. Salazar Yrigoin Orlando
INFORME TÍTULADO:
"Propuesta para reemplazar DTL - 595 – SCU por autómata programable comercial para reducir gastos en el mantenimiento de la central Hidroeléctrica Quanda 2018"
PARA OBTENER EL TÍTULO O GRADO DE:

Ingeniero Mecánico Electricista

SUSTENTADO EN FECHA: 28 - 06 - 2019

NOTA O MENCIÓN: Aprobado por Mayoría