

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño y sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Jose Brick Pimentel Cuevas

ASESOR:

Dra. Maria Ysabel Garcia Alvarez

LÍNEA DE INVESTIGACIÓN:

Diseño de Obras Hidráulicas y Saneamiento

LIMA – PERÚ

2018

Acta de aprobación de tesis

ACTA DE APROBACIÓN DE LA TESIS

Código : F07-PP-PR-02.02

Versión : Fecha : 09

23-03-2018

Página 1 de 29

El Jurado encargado de evaluar la tesis presentada por don (a), PIMENTEL CUEVAS, JOSE BRICK

Cuyo título es: "DISEÑO Y SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE MEDITANTE LA CAPTACIÓN DE AGUAS PLUVIALES EN EL CENTRO POBLADO MANTACRA DISTRITO DE PAMPAS, HUANCAVELICA 2018"

Reunido en la fecha, escuchó la sustentación y la resolución de preguntas por el estudiante, otorgándole el calificativo de: 11 (número) ONCE (letras).

Lima, San Juan de Lurigancho, 17 de Diciembre de 2018

Mgtr. Ing. ESPINOZA SANDOVAL JAIME HEMAN

PRESIDENTE

Mgtr. Ing. RODRIGUEZ SOLIS CARMEN BEATRIZ

SECRETARIO

Ing: DE LA CRUZ HERRERA ANDRES EDUARDO

VOCAL

Elaboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicerrectorado de Investigación y Calidad	Aprobó	Rectorado	

Dedicatoria

A Dios por cuidarme y protegerme día a día, a mi padre por su apoyo incondicional y a mis hermanos, por su constante apoyo.

÷

Agradecimientos

Agradezco a mi padre, a quien quiero y amo. A la Universidad César Vallejo, por haberme brindado la oportunidad de realizar mis estudios de Ingeniería, del mismo modo agradezco a los profesores de la Facultad de Ingeniería Civil, por su constante apoyo en cada trabajo realizado.

Declaratoria de autenticidad

Yo Jose Brick Pimentel Cuevas con DNI Nº 47597527, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela Profesional de Ingeniería Civil, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica. Asimismo, declaro también bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces. En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, 14 de Diciembre del 2018

Jose Brick Pimentel Cuevas

DNI: 47597527

Presentación

Señores miembros del jurado:

En cumplimiento del Reglamento de Grados y Títulos de la Universidad César Vallejo presento ante ustedes la Tesis Titulada "Diseño y Sistema de Abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018" la misma que comprende los capítulos de Introducción, metodología, resultados, conclusiones y recomendaciones. Ya que el objetivo de la presente tesis fue determinar el adecuado diseño de un sistema de abastecimiento mediante el aprovechamiento de aguas pluviales en el distrito de pampas, la misma que someto a vuestra consideración y espero que cumpla con los requisitos de aprobación para obtener el Título Profesional de Ingeniero Civil.

Atte.,	
	José Brick Pimentel Cuevas

VI

ÍNDICE

_	IAS PRELIMINARES de aprobación de tesis	1
	atoria	
	lecimientos	
•	ratoria de autenticidad	
	ntación	
-	DE FIGURAS	
-	DE TABLAS	
	MEN	
	ACT	
	roducción	
1.1.	Realidad problemática	
1.2.	Trabajos previos	
1.3.	Teorías relacionadas al tema	
1.4.	Formulación del problema	
1.5.	Justificación del problema	
1.6.	Hipótesis	
1.7.	Objetivos	
	TODO	
2.1.	Diseño de investigación	
2.2.	Variables, operacionalización	
2.3.	Población y muestra	
2.4.	Técnicas e instrumentos de recolección de datos, validez y confiabilidad	
2.5	•	
2.6.	Métodos de análisis de datos	
	RESULTADOS	
3.1.	Características de la zona de estudio	
3.2.	Precipitación media anual	
3.3.	Precipitación Media Mensual	
	Precipitación aprovechable	
	DISCUSIÓN	
	ONCLUSIONES	
	DECOMENDACIONES	۰ ۰ ۰۰

VII. REFERENCIAS	48
VIII. Anexos	51
Anexo 01: Cálculo de Precipitación Aprovechable	52
Anexo 02: Topografía	59
Anexo 03: Lluvia captada	61
Anexo 04: Reservorio	62
Anexo 05: Metrado	73
Anexo 06: Presupuesto	76
Anexo 07: Análisis de Precios Unitarios	77
Anexo 08: Planos	84
Anexo 09: Acta de probación de originalidad de tesis	85
Anexo 10: Autorización de publicación de tesis	87
Anexo 11: Pantallazo turnitin	88
Anexo 12: Autorización de entrega de versión final del trabajo de investigación	89

ÍNDICE DE FIGURAS

Figura 1: Lugar a implementar el sistema de abastecimiento
Figura 2: Curva intensidad-duracion-frecuencia
Figura 3: Valores Referenciales de escorrentia
Figura 4: Eficiencia de aplicacion
Figura 5: Diametro Mojado
Figura 6: Valores de M
Figura 7: Valores de fe para los diámetros más frecuentes
Figura 8: Mapa Geopolitco de Tayacaja-Huancavelica
Figura 9: Zona a implementar el diseño
Figura 10: Area de Estudio
Figura 11: Dato Metereologico
Figura 12: Grafica entre la probabilidad de lluvia y el promedio de precipitación para abril
Figura 13: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para mayo
Figura 14: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para junio
Figura 15: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para julio
Figura 16: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para agosto

Figura 17: Gráfica entre la probabilidad de lluvia y el promedio de precipitación
para noviembre57
Figura 18: Estación total Leica TS0259
Figura 19: Trípode59
Figura 20: Prisma
Figura 21: Bastón porta prisma 60
Figura 22: GPS Garmin eTrex® H 60
Figura 23: intercomunicadores
Figura 24: Abastecimiento de Agua
Figura 25: Tasa de crecimiento anual en Distritos de Lima
Figura 26: Parámetros de Diseño
Figura 27: Diseño de Reservorio parte 1
Figura 28: Diseño de Reservorio parte 2
Figura 29: Grafica de Reservorio diseñado
Figura 30: Diseño de Cisterna
Figura 31: Diseño de Linea de Conducción parte 1
Figura 32: Diseño de Línea de Conducción parte 2
Figura 33: Grafica de Línea de Conducción Diseñada

ÍNDICE DE TABLAS

Tabla 1: Operacionalización de variables	35
Tabla 2: Data histórica de precipitaciones pluviales	42
Tabla 3: Precipitación Media Mensual de 2000 al 2018	43
Tabla 4: Matriz de Consistencia	51
Tabla 5: Acumulado de Iluvias en Abril	52
Tabla 6: Probabilidad de Iluvias en Abril	52
Tabla 7: Acumulado de lluvias en Mayo	53
Tabla 8: Probabilidad de Iluvias en Mayo	53
Tabla 9: Acumulado de lluvias en Junio	53
Tabla 10: Probabilidad de Iluvias en Junio	54
Tabla 11: Acumulado de Iluvias en Julio	54
Tabla 12: Probabilidad de lluvias en Julio	55
Tabla 13: Acumulado de Iluvias en Agosto	56
Tabla 14: Probabilidad de Iluvias en Agosto	56
Tabla 15: Acumulado de Iluvias en Noviembre	57
Tabla 16: Probabilidad de lluvias en Noviembre	57
Tabla 17: Cantidad de Iluvia al 75% de probabilidad de ocurrencia	58

Tabla 18: Cantidad de Iluvia captada	. 61
Tabla 19: Características del Reservorio Diseñado	. 67
Tabla 20: Resumen de Reservorio Diseñado	. 67
Tabla 21: Resumen de Diseño en Cisterna	. 69
Tabla 22: Metrados	. 73
Tabla 23: Presupuesto	. 76
Tabla 24: Análisis de Precios Unitarios	77

RESUMEN

La escasez de un adecuado sistema de aprovechamiento de aguas pluviales es abundante en muchas provincias de nuestro país, la cual es sumada a la inadecuada utilización de dicho elemento para la distribución para el consumo humano, ya que se desconoce los medios adecuados para poder implementar dicho sistema, el cual solucionaría muchos inconvenientes y deficiencias que presentan muchas viviendas en la zona estudiada. Lima genera un numeroso mayor consumo de agua, el cual es potabilizada por la empresa encargada del mismo, así mismo, los pobladores de nuestra capital, en su mayoría no presenta incomodidades de la misma, como en otros departamentos donde no se cuenta con dicho elemento que es fundamental para todo ser humano. Problemática que se puede disminuir con la utilización de nuevas tecnologías.

Por lo que en el presente trabajo de investigación se diseñará un sistema de abastecimiento a partir de la captación de aguas pluviales en el centro poblado Mantacra en el distrito de Pampas, Huancavelica, como alternativa de solución ante la escasez del recurso en épocas de sequía. Para ello se necesitará obtener desde datos hidrometereológicos de la zona de estudio, pasando por la geomorfología del terreno hasta llegar a los cálculos tanto numéricos como con ayuda de distintos programas informáticos.

De esta manera se determinará la cantidad de agua recolectada en base a los históricos de precipitaciones, así como también el cálculo del requerimiento de agua y de esta manera determinar la capacidad del reservorio que almacenará el líquido elemento para posterior a ello enviarlo en la red del sistema de distribución. De esta manera se llegó a la conclusión que si es posible el diseño de este sistema con las metodologías actuales.

Palabras clave: captación de lluvia, escasez hídrica, red de distribución

ABSTRACT

The shortage of an adequate rainwater harvesting system is abundant in many

provinces of our country, which is added to the inadequate use of this element for

distribution for human consumption, since the adequate means to implement said

system, which would solve many problems and deficiencies that many homes have

in the area studied. Lima generates a large water consumption, which is made

drinkable by the company in charge of it, likewise, the residents of our capital, mostly

does not present discomforts of it, as in other departments where there is no such

element which is fundamental for every human being. Problem that can be reduced

with the use of new technologies.

So in this research work will design a supply system from the collection of rainwater

in the town center Matacra in the district of Pampas, Huancavelica, as an alternative

solution to the shortage of the resource in times of drought. For this, it will be

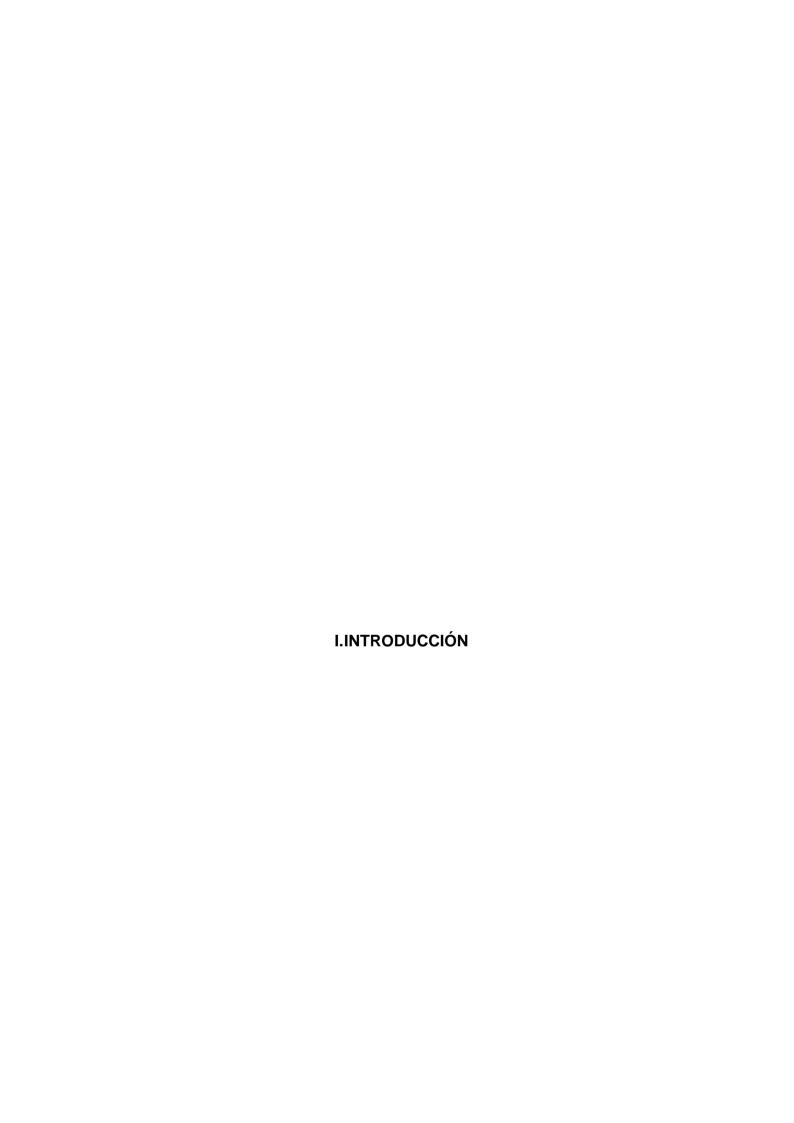
necessary to obtain from hydrometeorological data of the study area, passing

through the geomorphology of the terrain until arriving at the calculations both

numerical and with the help of different computer programs.

In this way, the amount of water collected will be determined based on the rainfall

history, as well as the calculation of the water requirement and in this way determine


the capacity of the reservoir that will store the liquid element and then send it to the

water network, distribution system. In this way, it was concluded that the design of

this system with the current methodologies is possible.

Keywords: rain catchment, water scarcity, distribution network

XIV

1.1. Realidad problemática

En la realización de la presente tesis se pudo analizar la situación actual de la realidad problemática de la misma zona y se conoció lo siguiente:

(Rodríguez, 2015) La importancia del recurso agua en la vida del hombre es fundamental, pues este elemento es la base de su existencia, sin este recurso en cantidad y calidad adecuada, la vida de todo ser viviente sufre primero un grave deterioro y si dicha carencia continua en el tiempo, la vida se extingue; por lo tanto, su importancia no admite discusión, y su preservación debe ser la mayor prioridad para el hombre.

(Castillo, 2013) Los sistemas de recolección de agua de lluvia no tienen variaciones significativas entre sí, la mayoría constan básicamente de tres componentes: captación, conducción, almacenamiento y distribución. En general la diferencia tiene que ver con su captación (de acuerdo al área, geometría y material de los techos) y el tipo de almacenamiento, según el material escogido para su fabricación. Es necesario entonces, adoptar medidas alternativas que permitan la sostenibilidad del recurso, y conocer las técnicas de su aprovechamiento, que son parte fundamental para lograr este propósito.

A nivel local, existen muchos distritos de la zona centro afectado por la escasez y temporalidad de las lluvias, siendo una de éstas el centro poblado Mantacra distrito de Pampas en la Provincia de Tayacaja, creada en 1825, cuya población asciende a 2220 personas; de la cual la mayoría se dedica a la agricultura como actividad económica. Estos pobladores, actualmente se encuentran propensos a diversas enfermedades, debido a que no cuentan con un sistema de abastecimiento de agua potable, ya que no cuentan con dicho elemento que es fundamental para la vida humana.

Los pobladores de dicho sector, como ya se mencionó, no cuenta con un respectivo sistema de agua potable, por lo que tienen que recurrir a abastecerse de dicho líquido elemento, mediante la napa freática que abastece sus pozos diseñados rústicamente, por otro lado en muchas instancias, recurren al rio cercano a los pobladores de dicha zona, lo cual no es muy saludable para estos mismos, ya que el rio mencionado, transporta desechos tóxicos que son perjudiciales para los pobladores de la zona de estudiada en la presente investigación.

Figura 1: Centro poblado Mantacra - Huancavelica

Fuente: Elaboración Propia

1.2. Trabajos previos

Para la presente investigación, se indagó en la literatura y se encontró pocos trabajos que relacionen ambas variables, en consecuencia, se enfocó la investigación de trabajos relacionados a las variables por separado cuyos resultados se mostraran a continuación:

1.2.1. Relacionados al aprovechamiento de las aguas pluviales

(Rodríguez, 2015) En la tesis denominada "Aprovechamiento de agua de Iluvia, para optimizar el uso de agua potable" consideró como objetivo proponer un adecuado modelo de gestión y condiciones, las cuales son adecuadas y viables para poder implementar una red de agua para usos domésticos, la cual sería recolectada por la captación de aguas de lluvia en las distintas regiones de importante precipitación pluvial, para ello, se estudió la cantidad de agua de precipitación disponible en la zona, y las dotaciones necesarias para suplir las necesidades de las familias en cuestión con la finalidad de optimizar el uso del agua potable, y llegó a la conclusión que los sistemas de abastecimiento a través de agua de lluvia, son en realidad factibles en algunas zonas donde la precipitación es considerable, y que su poco uso hoy en día se debe únicamente a que la facilidad de abastecerse a través de aguas superficiales frenó el desarrollo de las tecnologías en cuanto a captación pluvial.

(Ruiz, 2014) En la tesis denominada "Sistema de Captación de Aguas Pluviales Adaptable a casas-habitación" considero como objetivo proponer un adecuado sistema de captación de aguas pluviales en casas, como medida correctiva y a su vez poder diseñar una correcta propuesta de un sistema integral de captación mediante el aprovechamiento de agua de lluvia de bajo costo fácil implementación y mantenimiento como alternativa para el ahorro de agua potable, la disminución de los gastos debidos al consumo y un uso eficiente del recurso, y llegó a la conclusión que; es técnicamente viable para hacer un uso eficiente del agua dentro de las viviendas en la zona estudiada.

Palacio (2010), en su artículo "Propuesta de un sistema de aprovechamiento de agua de Iluvia, como alternativa para el ahorro de agua potable, en la Institución Educativa María Auxiliadora de Caldas, Antioquía" considera como objetivo el proponer un sistema de aprovechamiento de aguas Iluvias de bajo costo, fácil implementación y mantenimiento, como alternativa para el ahorro de agua potable, la disminución de los gastos debidos al consumo y un uso eficiente del recurso, y llegó a la conclusión que; es técnicamente viable para hacer un uso eficiente del agua.

1.2.2. Relacionados al sistema abastecimiento de agua

(Barreto, 2016) en la tesis de grado denominada Diseño de Sistema de Captación de aguas de lluvias para el abastecimiento total de la finca agropecuaria Mesopotamia finca hotel ubicada en la vereda caney bajo en el km 14 via Villavicencio - camaral considera como objetivo el, diseñar un adecuado sistema de captación de agua de lluvias para el abastecimiento de la finca hotel Mesopotamia, y así mismo identificar el estado de cubierta con un análisis del agua de lluvia recolectada en la cubierta de la finca, y llega a la conclusión que, al realizar el adecuado diseño de abastecimiento, se podría solucionar muchos inconvenientes en dicha finca, como es el flujo constante del agua para el consumo humano.

Por su parte, Parra (2012), en la tesis de grado denominado "Diseño de un sistema de abastecimiento de agua con fines constructivos", considera como objetivo el diseñar un sistema de abastecimiento es de suma importancia, ya que con este mismo se podrá solucionar diversos problemas para el bienestar de la población que se ve afectada por la ausencia de dicho líquido elemento, y llegó a la conclusión que; el diseño e instalación de un sistema de abastecimiento, es de suma

importancia, ya que es un mecanismo moderno para poder solucionar diversos problemas en los distintos sectores de cada país.

1.3. Teorías relacionadas al tema

1.3.1. Aprovechamiento de aguas pluviales

1.3.1.1. Agua y sostenibilidad

(Castillo, 2013) Sostiene que, para la distribución de las lluvias, se debe considerar que no es constante ni uniforme a lo largo de todo el país, teniendo consecuencias para las poblaciones entre las cuales se puede sufrir de sequías las cuales pueden derivar en conflictos sociales.

El agua de lluvia puede tener consecuencias nocivas para los campos de cultivo porque provoca erosión la cual es agravada por la deforestación, exceso de pastoreo entre otros.

Por lo tanto, el uso de agua de lluvia está fundamentado dado que sería adecuado para las zonas que tienen lluvias ocasionales pues sería una reserva de agua en caso de sequía y beneficioso para las zonas de lluvias porque ayudaría a prevenir la erosión.

1.3.1.2. Factores de la precipitación pluvial

Intensidad

(Amaya, 1998)Es la altura de la lluvia expresada en milímetros, que se calcula mediante el pluviómetro el cual se mide por periodos de tiempo; estos datos se consideran de importancia debido a que una mayor intensidad genera mayores problemas como la erosión del suelo.

Tanque de Almacenamiento:

(Amaya, 1998) Son aquellos recipientes, los cuales son normalmente fabricados de una forma cilíndrica, que sirven para almacenar y conservar productos líquidos o solidos

Red de Distribución:

(Castillo, 2013) Es aquel conector que sirve o aporta en la distribución del líquido, para poder ser evocado en un tanque o recipiente netamente diseñado para tal fin.

Régimen:

(Diaz & Pretel, 2014) Son aquellas condiciones en las que se va a dar un tratamiento al agua captada, para poder utilizarla como un consumo humano.

Calidad

(Diaz & Pretel, 2014) Son aquellas propiedades va a adquirir el líquido después de ser tratado mediante por químicos e ingredientes purificadores.

Topografía

(Diaz & Pretel, 2014) Es la técnica que consiste en describir un plano en una superficie, para así poder realizar un adecuado proceso constructivo

Frecuencia

(Leon, 2016) Es la continuidad con la cual llueve en el periodo de un año.

Duración

(Fernandez) Es el tiempo por el cual llueve, y junto con la intensidad y la frecuencia se obtiene las curvas de intensidad-duración-frecuencia que sirven para calcular los escurrimientos máximos.

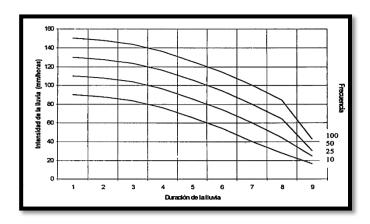


Figura 2: Curva intensidad-duración-frecuencia

Fuente: Elaboración Propia

Precipitación aprovechable

(Jara, 2015) Cuando la variabilidad de la lluvia es constante, se debe tomar el promedio para el cálculo de lluvia aprovechable, pero en zonas donde la lluvia es menos frecuente y la necesidad de agua sea crítica se debe tomar la precipitación de lluvia que tenga la más alta posibilidad de ocurrir. Estas consideraciones para el cálculo de la precipitación aprovechable son necesarias dadas las variaciones de las lluvias y la elevada cantidad de factores que intervienen en estas.

Para el cálculo de la probabilidad de Iluvia, Critchley y Sievert (1996) propusieron la siguiente ecuación, en la cual las precipitaciones se colocan de mayor a menor, y se les asigna un número de orden que se aplica en la ecuación para obtener probabilidad de Iluvia.

$$P(\%) = \frac{m - 0.375}{N + 0.25} x 100$$

Ecuación 1 Probabilidad de Iluvia

En donde:

P=Probabilidad de Iluvia %

m=Número de orden

N=Número de observaciones

1.3.1.3. Consideración para los cálculos

Escorrentía superficial

(Jara, 2015) Es la cantidad de agua que no es absorbida por la superficie del terreno y depende de muchos factores. Esta variable, es muy importante porque describe

la cantidad de agua que no es aprovechada y que se pierde en la evapotranspiración del suelo o la evaporación directamente; esta cantidad puede ser aprovechada para calcular la cantidad de agua que se puede aprovechar de la lluvia.

Coeficiente de escorrentía superficial (C)

(rigan, 2001) Aunque la mejor forma de calcular la escorrentía de un lugar, es medirlo en el mismo lugar donde se realizará la captación de la lluvia, esto resulta tedioso dado que en una misma cuenca existen diferentes escorrentías dependiendo de su ubicación. Por este motivo, existen cuadros que toman medidas promedio dependiendo del tipo de suelo o material.

Tipos de superficie o coberturas del área de captación	Coeficiente de escorrentía (C)
Lâmina plástica de polietileno	0,90
Mortero (mezcla de cemento y arena)	0,88
Asfalto	0,88
Tejas de arcilla recocida	0,75
Manta plástica + grava	0,70
Suelo de textura fina (arcilloso), emparejado con lámina	0,55
Suelo de textura fina (arcilloso), en barbecho	0,24
Suelo de textura gruesa (arenoso)	0,20
Pasto bullel (Cenchrus ciliaris)	0,15
Areas cultivadas	0,08 - 0,41
Pastos	0,12 - 0,62
Techos	0,75 - 0,95
Hormigón	0,70 - 0,95

Figura 3: Valores Referenciales de escorrentía

Estos valores de la imagen sirven como punto de partida para el cálculo inicial del agua aprovechable de las lluvias.

Relación entre el área de captación y de cultivo

Es un parámetro que sirve para establecer el tamaño del área que se dedicara para la captación de agua adicional de la escorrentía de otros sectores y se expresa CAPT: CULT, la función básica es que si no hay suficiente agua para una siembre hay que traerla de otro lado.

1.3.1.4. Técnicas de captación de aguas pluviales

(Castillo, 2013) Se pueden dividir en varias modalidades que se mencionarán a continuación:

- Micro captación: Cuando se capta el agua dentro del mismo terreno de cultivo y generalmente adyacente a este.
- Cosecha de agua de techos de vivienda u otras estructuras impermeables: Obtención del agua de lluvia de lugares impermeables para el uso doméstico.
- Captación de agua atmosférica: Capturar el agua en forma de niebla en los lugares donde lo permita el clima y la geografía.

Técnicas de micro captación

(Barreto, 2016) Dado la gran cantidad de forma de captación de aguas pluviales solo se las mencionará a continuación y en el desarrollo de este trabajo de investigación, se explicará y describirá el método escogido.

- Micro captación a dos aguas entre hileras
- Método Guimarães Duque
- ➤ Método ICRISAT
- Surcos interceptados
- Surcos y camellones en contorno
- Surcos y camellones en contorno interceptados
- Bordos semicirculares
- Bordos (camellones) tipo Negaron
- Terrazas individuales de banco o bancales individuales
- Terrazas de banco o bancales

1.3.1.5. Sistema de captación en techos y pisos

(Cruz, 2009) La Iluvia en América Latina y El Caribe, en promedio es variada de 500 a 1500 mm, y la mayoría de éstas caen en aproximadamente alrededor de 4 meses, dejando el resto del año con sequía varios sectores de los diversos países que lo conforman lo que origina que se pierdan cosechas y la muerte de animales. Considerando este hecho, la solución que se encontró fue que recolectando el agua

de lluvia en recipientes de hasta 70 m3, se puede reemplazar esta necesidad por lo que se trata de replicar en otros países fuera del continente americano. Debido a que son muchas las ventajas, a continuación, se mencionarán las que a consideración del autor de este trabajo de investigación son necesarias para el desarrollo del tema.

Ventajas

- Se pueden construir en paralelo con las casas
- > El agua recolectada puede ser usada en caso de emergencia
- El agua es limpia, costo nulo e incluso de mejor calidad que de otras fuentes de agua.

Desventajas

- ➤ Si bien se construye junto con la casa, la cisterna necesaria para su funcionamiento es inaccesible para las familias de bajo recursos.
- ➤ El agua puede ser contaminada por materia orgánica y/o animales que entren en contacto con ella.

Costos y eficiencia

(Ala Huaura, 2010) Los costos varían dependiendo el país donde se desarrollará el sistema de captación de agua pluviales, el costo del tanque de recolección se puede abaratar comprando tanques prefabricados, y la eficiencia de este sistema es muy elevada, pero debe considerarse un 80% debido a factores externos como salpicaduras, coeficiente de fricción cinética entre otros.

1.3.1.6. Área de captación (CAPT)

Cálculo de área de captación necesaria

(Amaya, 1998) Para el cálculo del área de captación, se aplicará la siguiente ecuación propuesta por Critchley y Sievert en 1991:

$$CAPT = \frac{\text{\'A}rea\ cultivada\ x\ (Necesidad\ de\ agua\ de\ las\ plantas - lluvia\ de\ dise\~no)}{Lluvia\ de\ dise\~no\ x\ coeficiente\ de\ escorrent\'(a\ x\ factor\ de\ eficiencia)}$$

Ecuación 2 CAPT necesario para un cultivo determinado

Hay que tener en cuenta, que el suelo de captación debe tener la mayor escorrentía posible.

Sistema de conducción

(Soliclima, s.f.) Para la conducción de agua de lluvia, se aplicarán canaletas, en el caso de captación de techos y muros, además, de tubería de PVC en la mayoría de los casos pues estos transportaran el agua recolectada; para sistemas que usen la escorrentía del suelo solo se usará tuberías de PVC.

Estructura y filtración del agua pluvial

Las estructuras de almacenamiento de agua de lluvia pueden ser de diferentes materiales como plásticos, fibra de vidrio, PVC, etc. equilibrio entre calidad y precio; metales en todas sus variedades; concreto y madera (el de mejor calidad, pero también el que tiene el precio más elevado)

A veces, durante la recolección del agua de lluvia, estas se mezclan con sólidos por lo que se requiere un sistema que los separe o evite que se mezclen, el método más conocido y económico es el de las mallas de protección; pero éstos, no evitan que las partículas entren en contacto con el agua. Para estos casos específicos, se puede usar un sistema de filtro de arenas y gravas para una limpieza profunda del agua recolectada.

Sistema de distribución

(Cruz, 2009) Los sistemas de distribución más conocidos son los de PVC, cuando se quiere usar el agua directamente, o sistemas diseñados la distribución a las viviendas involucradas en las misma con los métodos antes mencionados.

1.3.1.7. Consideraciones para las estructuras de almacenaje

(PNUD, 2015) Las condiciones responderán a los siguientes factores.

- El tipo de uso previsto para el agua recolectada (agrícola, doméstico o animal)
- Permitir el mejoramiento de la calidad del agua mediante sistemas adicionales
- Facilidad de manejo, mantenimiento y funcionamiento.
- De bajo costo, dentro del uso previsto, de manera que el costo pueda ser asumido por los beneficiarios

1.3.1.8. Diseño

(Ala Huaura, 2010) Esta es la parte fundamental del sistema, dado que, una vez realizados los cálculos, generalmente no se dan modificaciones al mismo. A menos que sea por factores de fuerza mayor, pasa por tres etapas; la primera: el diseño de abastecimiento que determina la cantidad de agua necesaria por el uso doméstico, seguido del diseño geométrico donde se calcula la distribución óptima de las tuberías, y finalmente el diseño hidráulico donde se calculan las dimensiones de las tuberías.

1.3.1.8.1. Diseño Geométrico

(Ala Huaura, 2010) En esta parte se deben distribuir adecuadamente las tuberías para mantener constante la aplicación del agua en todas las viviendas afectadas; para esto. Se deben tomar en cuenta las siguientes consideraciones:

- a) La red de distribución debe estar lo más cercana la zona de influencia
- b) Los laterales deben seguir las curvas de nivel
- c) Se deben usar reguladores de presión cuando sea necesario

CLIMAS ARIDOS						
Profundidad radicular (cm)	Textura					
	Gravosa	Gruesa	Media	Fina		
< 75 cm	0.85	0.90	0.95	0.95		
75 a 150	0.90	0.90	0.95	0.95		
> 150	0.95	0.95	1.001	1.00		
	10000		100			
Profundidad radicular (cm)	CLIMA	S HUMEDO Text				
277	CLIMA Gravosa			Fina		
277		Text	ura			
radicular (cm)	Gravosa	Text Gruesa	ura Media	Fina		

Figura 4: Eficiencia de aplicación

a) Determinación de número, caudal y disposición de los emisores

El cálculo del número de emisores depende de la distancia entre viviendas, el número de líneas de riego por fila de lote, el emisor elegido y el tipo de suelo. Debemos tener siempre encueta que los bulbos mojados deben solaparse y la separación de emisores se calcula mediante la siguiente fórmula:

Separación entre emisores = \emptyset Mojado x 0,95

Ecuación 3 Separación entre emisores

Luego tenemos que verificar el porcentaje de suelo mojado (%P):

$$%P = \frac{Area\ mojada\ por\ los\ emisores}{Area\ ocupada\ por\ la\ planta}\ x\ 100$$

Ecuación 6 Porcentaje de suelo mojado

El diámetro mojado por lo emisores se obtiene de la tabla que se aprecia en la Figura 5, de este diámetro se obtiene el área.

Profundidad	Grado de estratificación del suelo				
de raices y textura de suelo	Homogéneo	Estratificado	En capa		
	diámetro mojado (D _s), en m.				
Profundidad 0.8 m					
Ligera	0.50	0.80	1.10		
Media	1.00	1.25	1.70		
Gruesa	1.10	1.70	2.00		
Profundidad 1.7 m					
Ligera	0.80	1.50	2.00		
Media	1.25	2.25	3.00		
Gruesa	1.70	2.00	2.50		

Figura 5: Diámetro Mojado

Se recomienda un porcentaje de 50% uso doméstico necesario:

1.3.1.8.2. Diseño Hidráulico

(Allen, 2006) En esta fase, se diseñan las tuberías de manera que cumplan su función con eficiencia; para esto, se impone el CU en esta fase que se mantendrá durante todo el diseño hidráulico, cuyo único factor es el precio pues a mayor CU mayor precio y viceversa. Primero, tenemos que calcular el caudal mínimo de diseño mediante la siguiente fórmula:

$$q_{min} = \frac{CU \times q_a}{100\left(1 - \frac{1,27 \times CV}{\sqrt{e}}\right)}$$

Ecuación 7 Caudal mínimo

Donde

q_a = caudal medio

q_{min} = caudal mínimo

Pa = presión media

Hmin = Pmin = presión mínima

Pmax = presión máxima

CV = coeficiente de variación de fabricación

Luego, mediante la ecuación del emisor que tiene la siguiente forma:

$$q = Kh^x$$

Ecuación 8 Ecuación del emisor

Donde M, es un factor que depende de las características del terreno y el número de diámetros que se unen a la misma tubería, y se expresa en la Figura 8; el valor calculado debe repartirse entre los laterales y la tubería terciaria.

	M
Diámetro constante	4.3
2 diámetros	2.7
3 diámetros	2.0

Figura 6: Valores de M

Pérdidas de cargas laterales

Para calcular las pérdidas de cargas, se aplica la ecuación de Darcy-Weisbach:

$$hf = 0.0826 \ x \ f \ x \ \frac{Q^2}{D^5} \ x \ L$$

Ecuación 8 Pérdida de carga tubería de diferente diámetro

Donde

$$f = \frac{0.25}{[\log(\frac{K}{3.71D} + \frac{5.74}{Re^{0.9}})]^2}$$

$$Re = \frac{vD}{\gamma}$$

L = Lreal + Lequiv

Lequiv = $fe \times n^0$ de emisores

Para el cálculo fe usamos el cuadro de la Figura 6:

Di mas frecuente	fe			
	Grande	Estándar	Pequeño	
10.3	0.32	0.24	0.18	
13.2	0.20	0.15	0.11	
16	0.14	0.11	0.08	

Figura 7: Valores de fe para los diámetros más frecuentes

Y si en caso no se encuentra nuestro diámetro de tubería, aplicamos las siguientes relaciones:

$$fe = \frac{23.04}{D^{1.84}}$$
 $fe = \frac{18.91}{D^{1.87}}$ $fe = \frac{14.38}{D^{1.89}}$ fe = 0.23m
Grande Estándar Chica Interlínea

Ecuación 9 Valores fe para tuberías no convencionales

Cálculo de presiones en el lateral

a) Cuando el desnivel es menor a las pérdidas por fricción

$$Pinicial = Pa + 0.75hf - 0.5hg$$

Ecuación 10 Presión inicial cuando desnivel < Pérdida por fricción

$$Pmin = Pmax - t'x hf$$

Ecuación 11 Presión mínima y máxima cuando desnivel < Pérdida por fricción

$$Pfinal = Pa - 0.25hf + 0.5hg$$

Ecuación 12 Presión final cuando desnivel < Pérdida por fricción

$$t' = 1 - \frac{hg}{hf} + 0.375 x \left(\frac{hg}{hf}\right)^{1.57}$$

Ecuación 4 Cálculo de t'

b) Cuando el desnivel es mayor a las pérdidas por fricción

En estos casos, la pendiente sí compensa la pérdida por carga de fricción, se usan las ecuaciones anteriores, y se permite el uso de tuberías laterales más finas.

Diseño de líneas terciarias o de abastecimiento

(Allen, 2006) El diseño es similar a los del cálculo hidráulico, solo que se iguala el P inicial del lateral con P media de la terciaria y a partir de estos se calcula P máx. y P min de la terciaria, la diferencia de estos valores debe ser al menos tolerado por la terciaria.

1.3.1.9. Equipo y herramientas

Para la instalación del equipo y de las herramientas se tomarán en cuenta las siguientes recomendaciones:

- Almacenar las herramientas en un lugar adecuado para esta función
- Verificar la calidad de los equipos
- Almacenar los equipos en un lugar cercano para facilitar el trabajo

1.3.1.10. Ensamblado de piezas y tubos

(Castillo, 2013) Para el ensamblado de piezas y tubos se tomarán en cuenta las siguientes recomendaciones:

- Antes de instalar, colocar las tuberías al lado de la zanja que le corresponda para evitar errores a la hora de la instalación.
- 2. Antes de pegar las tuberías aplicar las correctas medidas de limpieza.

1.3.1.11. Instalación de líneas

Para la instalación de líneas laterales, se tomarán en cuenta las siguientes recomendaciones:

- Mantener cerradas las líneas laterales para evitar la entrada de tierras.
- Una vez instalados todos los laterales, abrir la válvula para eliminar cualquier impureza que haya ingresado a la tubería.

1.3.1.12. Mantenimiento

Para el mantenimiento de sistema de abastecimiento se deben tomar en cuenta las siguientes consideraciones:

- Verificar la calidad del agua regularmente
- Realizar el lavado de las cintas para evitar las obstrucciones que puedan originar el mal funcionamiento del sistema.
- Si la cinta se rompe se reparará lo antes posible para evitar problemas en la uniformidad del riego.
- ➤ En lo posible no mover las cintas y de ser necesario moverlas con mucho cuidado.

1.4. Formulación del problema

1.4.1. Problema general

¿Cuáles serán los efectos de implementar un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018?

Problemas específicos

- ➢ ¿De qué manera el régimen influye en el diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?
- ¿De qué manera la calidad influye en el diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?
- ¿De qué manera la topografía influye en el diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?

1.5. Justificación del problema

El presente trabajo, se justifica por la necesidad de un sistema de abastecimiento, por parte de las familias de la zona involucrada, que derive de las lluvias pero que no dependa directamente de éstas. Esto debido a que se están observando variaciones, consecuencias del efecto invernadero, que de una u otra forma se pretende aprovechar para el consumo humano la cual pretende ser derivada, de la cantidad de agua disponible su propio beneficio. Además, se pretende reducir el consumo de sus pozos de aguas rústicos, que de una u otra forma causan en muchas ocasiones enfermedades en los pobladores de las mismas, ya que estas aguas, contienen en diversos casos material toxico, este aporte significara mejoras en la calidad de vida en las familias involucradas.

1.6. Hipótesis

1.6.1. Hipótesis general

Con las metodologías actuales, se obtuvo el adecuado diseño de un Sistema de Abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018

Hipótesis específicas

- > El Régimen adquirido es el adecuado para la zona.
- La calidad del agua adquirida es la adecuada para el diseño de abastecimiento
- La topografía de la zona presenta condiciones favorables para la recolección de aguas de lluvia.

1.7. Objetivos

1.7.1. Objetivo general

Determinar el adecuado diseño de un Sistema de Abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018

Objetivos específicos

- > Determinar el régimen adecuado de agua para el consumo humano
- > Determinar la calidad adecuada para el diseño
- Analizar el levantamiento topográfico de la zona de estudio.

II. MÉTODO

2.1. Diseño de investigación

La presente investigación está definida como cuantitativa cuasi-experimental, de alcance explicativo.

2.2. Variables, operacionalización

2.2.1. Variables

Las variables presentes en el proyecto de investigación son las siguientes:

Variable Independiente:

Captación de aguas pluviales: Consiste en filtrar el agua de lluvia captada en una superficie determinada, generalmente el tejado o azotea, y almacenarla en un depósito. Después, el agua tratada se distribuye a través de un circuito hidráulico independiente de la red de agua potable.

Variable Dependiente:

Diseño de Sistema De Abastecimiento: Es una actividad que consiste en satisfacer, en el tiempo apropiado y de la forma adecuada, las necesidades de las personas en lo referente al consumo de algún recurso o producto comercial

2.2.2. Operacionalización

Se explica la manera en la que será la medición de las variables, así como la interpretación de cada una, las cuales son variable dependiente y variable independiente.

Tabla 1: Operacionalización de variables

VARIABLE	DEFINICION OPERACIONAL	DEFINICION CONCEPTUAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICION
Guzmán (2014)"La lluvia es un fenómeno natural que se VI: CAPTACION DE AGUAS PLUVIALES presenta de cada año en distintas intensidades de distribución de acuerdo a la ubicación geográfica"	Guzmán (2014)''l a lluvia es	"Consiste en filtrar el agua de lluvia captado en una superficie determinada, generalmente el tejado o azotea, y almacenarla en un	Régimen	Condiciones climatológicas, Precipitación	
	un fenómeno natural que se		Calidad	Agua, químicos	
	depósito, Después el agua tratada se distribuye a través de un circuito hidráulica independiente de la red de agua potable"	Topografía	Tipo de Suelo, pendiente de terreno	mediciones en campo	
Agua potable , que inclui instalaciones de depós. SISTEMA DE válvulas y tuberías, ABASTECIMIENTO contribuye con una distribución mediante	Chalco (2016) Suministro de	I CONSISTE EN SATISTACET EN EL I	Tanque de Almacenamiento	Volumen, Tipo de tanque	Calculos y planos
	agua potable , que incluye las instalaciones de depósitos, válvulas y tuberías, contribuye con una distribución mediante sus principales características		Red de Distribución	Caudal, Diámetro de tubería, Pendiente de tubería	

2.3. Población y muestra

Población

Diseño y Sistema de Abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018

Muestra

Diseño y Sistema de Abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

La finalidad de la presente investigación es lograr alcanzar los objetivos para lo cual se realizó la recolección de datos mediante la siguiente estructura:

La inspección ocular: en la primera visita se realizó el reconocimiento de la zona, así como la determinación del área a implementar el sistema de abastecimiento. Mediante la visita, se obtuvo la situación actual en la que se encuentra el Centro Poblado Mantacra, Distrito de Pampas, Lima Huancavelica 2018.

Levantamiento topográfico: en la siguiente visita a realizar se acudirá a la zona con un equipo topográfico para tomar los datos de la morfología de la superficie del terreno que será la muestra del estudio.

Curvas de nivel: habiendo realizado el trabajo de topografía, se llevará a cabo el procesamiento de información mediante la asistencia del programa Civil3D, y de esta manera, se obtendrán las curvas de nivel para realizar el diseño del sistema de captación y posterior a ellos el sistema de distribución.

Se investigará y obtendrá información de datos hidrometeoro lógico. Con esta información, se obtendrá la cantidad de lluvia que precipita en la zona y de esta cantidad cuánto puede ser aprovechable para la distribución.

Obtenida esta información, se diseñará el sistema de captación de aguas pluviales, el cual consistirá en la colocación de geo membranas en las cuencas inactivas que se evidencian en la Imagen 1; y a su vez, la implementación de un reservorio de volumen determinado que permitirán el almacenamiento de las aguas, para posteriormente pasar al sistema de distribución, donde se diseñará el sistema y se distribuirá el agua captada que utilizará tuberías para su distribución.

2.5. Métodos de análisis de datos

- Se visitará la zona en la cual se aplicará el sistema de abastecimiento y la captación de aguas pluviales.
- Se escogerá el área donde se aplicarán los métodos mencionados anteriormente.
- Una vez implementado, se compararán los resultados con un área de similares dimensiones, al de la muestra, en la que no se implementaron los sistemas.

2.6. Aspectos éticos

El presente proyecto, está en concordancia con los aspectos éticos, pues el investigador, no infringe ninguna norma estipulada, y a su vez, se responsabiliza de brindar información verídica y fidedigna de los resultados obtenidos,

III. RESULTADOS

3.1. Características de la zona de estudio

3.1.1. Datos generales del centro poblado Mantacra – distrito Pampas

La zona de estudio presentada en la presente investigación es el denominado como centro poblado Mantacra se encuentra al suroeste de la Provincia de Tayacaja en el Departamento de Huancavelica. La capital distrital se localiza a 12° 23'42 de latitud sur y 74°'52' 02 de longitud oeste. La extensión territorial del distrito es de 109,07 km² que equivale al 8.87% de la Provincia de Tayacaja. El espacio geográfico del centro poblado Mantacra está localizado dentro de la sub-cuenca del Valle Upa mayo donde se localiza el área urbana de Pampas, los centros poblados del norte en la sub—cuenca de Huinche y los centros poblados localizados al sur, tributarios directos del Río Mantaro.

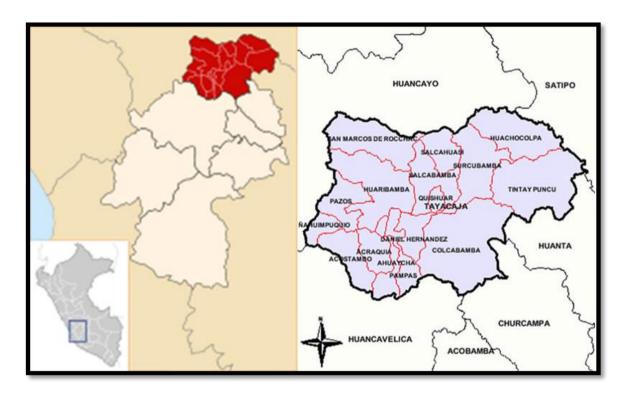


Figura 8: Mapa Geopolítico de Tayacaja-Huancavelica

Fuente: >Google Imágenes

El distrito, cuenta con una población de 2220 personas de las cuales el 75% están dedicadas a la actividad agrícola.

El centro poblado Mantacra según datos obtenidos, está conformado por 300 viviendas

3.1.2. Características de las viviendas

Figura 9: Zona a implementar el diseño

Las viviendas del Centro Poblado Mantacra. Son en su mayoría casas de albañilería confinada, con elementos de concreto armado con cobertura ligera como calaminas y esteras.

3.1.3. Ubicación del área de estudio

La zona en la que se llevó a cabo el presente estudio y de la cual se obtuvieron los datos para el diseño del sistema de abastecimiento, y aprovechamiento de aguas de lluvia se encuentran en:

Figura 10: Área de Estudio

3.1.4. Diseño de Sistema de Aprovechamiento de Aguas Pluviales

En el presente apartado, se detallan los procedimientos para poder llevar a cabo este diseño; para el cual se requirió de los siguientes datos:

3.1.5. Datos Hidrometereológicos

Para la recolección de los datos hidrometereológicos, se tuvo que acceder a la página web del Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). De esta manera, se pudieron obtener los datos históricos de las precipitaciones pluviales del Centro Poblado Pativilca.

Dichos datos, fueron registrados desde 1969 hasta la actualidad, mediante la estación convencional - meteorológica Pampa Libre, ubicada en el distrito de Chacras Provincia de Huara Departamento de Lima.

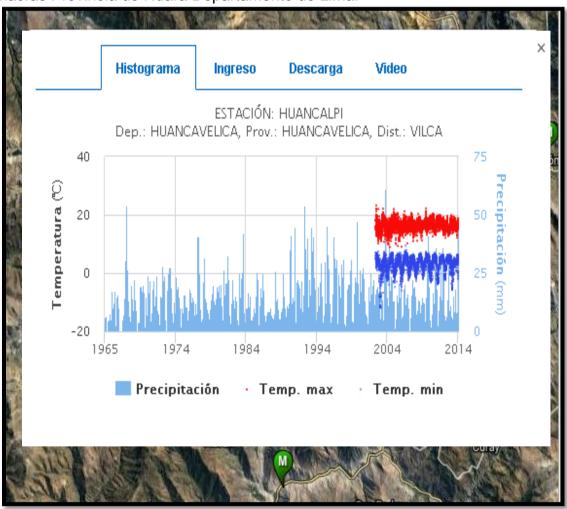


Figura 11: Dato Meteorológico

Fuente: Senahmi

Tabla 2: Data histórica de precipitaciones pluviales

				PREC	IPITACIO	ом тот	AL MEN	ISUAL E	N (mm)			
Año	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
2000	0.00	0.00	4.40	0.00	11.76	4.53	30.33	30.54	0.00	0.00	43.83	0.00	125.39
2001	0.00	0.00	1.00	0.00	40.05	18.51	37.41	25.71	0.00	0.00	63.42	0.00	186.1
2002	0.00	0.00	1.60	0.00	6.33	9	35.97	29.34	0.00	0.00	74.22	0.00	156.46
2003	0.00	0.00	4.70	0.00	14.76	1.83	2.46	59.07	0.00	0.10	42.33	0.00	125.25
2004	0.00	1.40	18.31	8.60	27.99	30.9	20.67	13.86	0.00	0.00	68.67	0.00	190.4
2005	0.73	4.20	7.02	12.80	10.68	4.74	14.76	16.11	0.00	0.00	36.21	2.02	109.27
2006	0.00	0.00	0.00	3.02	5.13	10.68	2.82	15.45	0.00	0.00	49.26	13.60	99.96
2007	0.00	0.70	0.00	1.00	10.62	2.49	39.72	1.98	0.00	0.00	36.81	14.10	107.42
2008	0.00	2.20	0.00	6.50	30.15	5.43	3.69	8.25	0.00	0.00	50.52	3.80	110.54
2009	1.00	6.40	0.00	16.52	12.84	1.11	8.55	12.6	0.00	0.00	54.42	6.20	119.64
2010	0.70	0.00	0.00	4.40	4.92	8.22	0.09	9.15	0.00	0.00	48.12	0.10	75.7
2011	1.20	0.00	0.00	0.00	11.22	3.06	8.13	5.28	0.00	0.01	45.39	0.93	75.22
2012	0.00	4.20	0.00	12.80	6.81	6.81	21.51	20.13	0.00	0.00	35.28	2.81	110.35
2013	0.00	0.00	1.60	3.02	16.86	7.02	12.72	28.77	0.00	0.00	112.77	4.50	187.26
2014	0.00	0.70	4.70	1.00	8.28	10.14	13.95	0.33	0.00	0.00	68.85	2.60	110.55
2015	13.42	2.20	18.31	6.50	11.43	2.16	12.93	37.95	0.00	0.00	46.86	3.30	155.06
2016	0.00	6.40	7.02	0.00	6.39	0.84	0.51	8.64	0.00	0.00	48.42	0.00	78.22
2017	0.00	0.00	0.00	0.00	7.95	0.33	2.88	12.45	0.00	0.00	64.67	3.10	91.38
2018	0.00	0.00	0.00	0.00	3.51	2.82	9.24	42.63	0.00	2.80	16.32	0.00	77.32

3.2. Precipitación media anual

Es el promedio de la precipitación pluvial anual, que será tomada a partir de los últimos 20 años (2000 – 2018). Se determina, con la suma de las precipitaciones totales en cada año y dividiéndola entre los años de estudio. Para la presente tesis se utilizaron los datos de la Tabla 2, obtenidas del SENAMHI, y se calculó que la precipitación media anual es de 738.47mm de lluvia.

3.3. Precipitación Media Mensual

Es al igual que la precipitación media anual la suma de todos los datos de cada uno de los meses de estudio. Se tomó los datos desde el año 2000 al 2018 y se determinaron los siguientes resultados:

Tabla 3: Precipitación Media Mensual de 2000 al 2018

Ī	MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
	MEDIA	0.90	1.49	3.61	4,00	13.04	6.87	20.16	19.91	0,00	0.14	52.80	3,00

Fuente: Elaboración propia, con información de SENAMHI

3.4. Precipitación aprovechable

Como primer paso para poder determinar la lluvia que puede ser captada y aprovechada se realizó el cálculo de la probabilidad de lluvia según Critchley y Sievert (1996) mediante la fórmula:

$$P(\%) = \frac{m - 0.375}{N + 0.25} x100$$

Dónde: P = Probabilidad de Iluvia %

m = Número de orden

N = Número de observaciones

Y para el cálculo del periodo de retorno de dicha lluvia se hizo uso de la fórmula siguiente según SAGARPA:

$$T = \frac{N+1}{m}$$

Para el presente estudio se ha tomado las precipitaciones de los últimos 20 años, consideradas suficiente, desde 2000 al 2018, respecto a los meses de Enero, Febrero, Marzo, Abril, Mayo, Junio, Julio, Agosto, Septiembre, Octubre, Noviembre y Diciembre. Para cada uno de los meses se ordenó de manera descendente como se muestran en las Tablas 4, 6, 8, 10, 12 y 14, para así realizar seguidamente la Ecuación1: Probabilidad de Iluvia, la cual ya se había mencionado y obtener los datos de las Tablas 5, 7, 9, 11, 13 y 15.

Seguidamente, de los datos procesados, se llega a la Tabla 16, en la que se presenta la cantidad de lluvia al 75% de probabilidad de ocurrencia y el periodo de ocurrencia.

3.4.1. Área de recolección de aguas de lluvia

Es aquella cantidad de área determinada para el sistema de captación de aguas pluviales, realizando el levantamiento topográfico que fue procesada en el software Autodesk AutoCAD Civil3D 2017 Metric es de 1,250.00 m2

3.4.2. Cantidad de agua recolectada

Utilizando la Iluvia total al año de 44.92 mm (o 44.92 l/m2), presentada en la Tabla 16 juntamente con el área determinada, mediante el software Autodesk AutoCAD Civil3D 2017 Metric, que es de 1,250.00 m2. Además, tomando en cuenta que se realizara el recubrimiento del área de captación con una lámina plástica de polietileno, para la cual su coeficiente de escurrimiento es de 0.9 se puede determinar la cantidad de agua a recolectar en un año que se presenta en la Tabla 18 que es de 50,535.00 litros o 50.54 m³ de agua.

3.4.3. Reservorio

Para el almacenamiento de las lluvias captadas se determinó el uso de un (01) reservorio de 60 m³, el cual es suficientes para contener los 50.54 m³ de agua calculada en el apartado anterior. Los cálculos se encuentran en el Anexo 4.

IV. DISCUSIÓN

En base a los resultados obtenidos en la presente investigación pude encontrar que el abastecimiento de agua en tiempos de sequía si es posible con la recolección de lluvias y su posterior almacenamiento en un reservorio.

Ahora bien, no se concuerda con la investigación realizada por León (2016), "Aprovechamiento sostenible de recursos hídricos pluviales en zonas residenciales", ya que obtuvo como resultados el poco o escaso aprovechamiento según sus cálculos de precipitaciones, mientras que, en la tesis presentada ante ustedes, se obtiene un nivel confiable de aprovechamiento de aguas pluviales, ya que las precipitaciones mensuales y anuales en dicho sector cumplen los parámetros requeridos. Es por ello que, en la presente investigación se pudo determinar la recolección de lluvia en zonas de baja precipitación como se muestra en la Tabla 19 y con dicha cantidad se pudo suplir la demanda de agua, de los 5 meses de diseño, con la diferencia de que fue aplicada para la siembra de palta en vez de viviendas.

Por otro lado, se está de acuerdo, en relación con la guía práctica del Programa de Naciones Unidas para el Desarrollo (PNUD, 2015) denominada "Cosecha de agua de lluvia para enfrentar la escasez de agua en áreas de secano"; mantiene que mientras los cálculos del tanque de almacenamiento sean los adecuados, según sus procedimientos y estándares se podrá abastecer a una determinada población con el líquido elemento almacenado. Es así con el resultado planteado con dicho autor ya que, para hacer un mejor aprovechamiento de las aguas de lluvia, la mejor opción es el uso adecuado de los parámetros de diseño tal como se muestra en la presente investigación.

Finalmente no se está de acuerdo con la tesis de Castillo, P. A. (2013) "Propuesta metodológica para evaluar sistemas. propuesta metodológica para evaluar sistemas. Guatemala", pues dicho autor simplifica los valores obtenidos mediantes la recoleccion anual y mensual, mientras que en la tesis presentada se obtiene los valores netos, calculados para la conservacion y distribucion del agua captada para consumo humano.

V. CONCLUSIONES

- 1. En la presente investigación se llegó a la conclusión que el adecuado diseño de un sistema de abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018, si es posible con las actuales metodologías y con la ayuda de las nuevas tecnologías conforme a los procedimientos realizados además de la asistencia de diversos softwares para cada una de las etapas dentro del diseño.
- 2. Se realizó el levantamiento topográfico de la zona de estudio en la que se determinó que la geomorfología era accidentada, pero con los valores de las pendientes existentes y con la adaptación ante dicha problemática se obtuvo un buen funcionamiento del sistema de captación para el abastecimiento y distribución de agua.
- Mediante el diseño del abastecimiento de agua potable se determinó que la cantidad de agua a entregar a cada vivienda se encuentra controlado. Lo que genera un mayor ahorro en el consumo total por cada mes en el centro poblado Mantacra.
- 4. Se llevó a cabo el diseño del sistema de abastecimiento de agua potable conforme a la topografía de la zona y a su vez conforme a la cantidad de viviendas relacionadas al agua de lluvia recolectada. Así como se concluyó un buen comportamiento hidráulico en base a la topografía lo que garantizó una presión adecuada, que se encuentra dentro de lo permitido por la normativa vigente.

VI. RECOMENDACIONES

Debido a la temporalidad de las lluvias en el centro poblado Mantacra, Provincia de Tayacaja en el 2018 se recomienda como solución ante el déficit de agua para el consumo humano, la captación de dicho líquido vital mediante el sistema planteado el cual es sumamente fácil de instalar y económico.

Ante la poca cantidad de precipitación en la zona. Se recomienda el uso del sistema de captación mediante geo membranas debido a que su coeficiente de escorrentía superficial es de 0.9; lo que permite que el 90% de la lluvia precipitada sea aprovechable.

También se recomienda que en zonas de sequía el almacenamiento de las aguas captadas sea en reservorios con tapa para que la evaporación del líquido sea la menor posible.

Finalmente, para poder hacer un mejor uso del poco recurso hídrico captado en la zona se recomienda la utilización del sistema de distribución en el que se controla la cantidad de agua necesaria que requiere cada vivienda

VII. REFERENCIAS

- Ala Huaura. (2010). Evaluación de recursos hídricos superficiales en la cuenca del río Huaura. Lima: Ministerio de Agricultura.
- Allen, R. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Roma: FAO.
- Amaya, M. (1998). Sistemas de captación de agua de lluvia para uso doméstico en América Latina y El Caribe. México: IICA.
- Barreto, J. C. (2016). diseño de sistema de captación de aguas lluvias para el abastecimiento total de la finca agroturística mesopotamia finca hotel ubicada en la vereda caney bajo en el km 14 vía villavicencio cumaral. diseño de sistema de captación de aguas lluvias para el abastecimiento total de la finca agroturística mesopotamia finca hotel ubicada en la vereda caney bajo en el km 14 vía villavicencio cumaral. colombia.
- Bellido, L. E. (2013). manual de carreteras suelos,geología,geotecnia. manual de carreteras suelos,geología,geotecnia. lima.
- Bioenciclopedia. (s.f.). Aguacate. Recuperado el 15 de noviembre de 2017, de http://www.bioenciclopedia.com/aguacate/
- Castillo, P. A. (2013). propuesta metodológica para evaluar sistemas. propuesta metodológica para evaluar sistemas. guatemala.
- Ccopa., D. G. (10 de 2016). Evaluación de las fallas de la carpeta asfáltica mediante el método PCI en la Av. Circunvalación Oeste de Juliaca. Juliaca, Juliaca, Peru.
- Cruz, J. (2009). Diseño de un sistema de riego por goteo controlado y automatizado para Uva Italia. Lima: Pontificia Universidad Católica del Perú.
- Diaz, C., & Pretel, E. (2014). Diseño hidráulico y agronómico para un sistema de riego tecnificado del sector La Arenita, Distrito Paiján-Chicama. Trujillo: Universidad Privada Antenor Orrego.
- Duarte, J. P. (10 de 2017). Evaluación del estado de pavimentos flexibles en la zona urbana de La Calera". Bogota, Bogota, Colombia.
- Fernandez, D. [. (s.f.). Estimación de las demandas de consumo de agua. Montecillo: Secretaría de agricultura, ganadería, desarrollo rural, pesca y alimentación.
- Graziano, J. [. (2016). El Estado Mundial de la Agricultura y la Alimentración. Roma: FAO.
- Hayashi, R. (ND). Riego localizado. Uruguay.

- Hernandez, F. (2005). Captación de agua de lluvia como alternativa para afrontar la escasez del recurso. México: Global Entrepreneurship Monitor.
- Hernandez, R. (2014). Metodologia de la Investigacion.
- Hurtado, T. (2005). Paradigas y Método de Investigación en tiempos de cambio. Paradigas y Método de Investigación en tiempos de cambio.
- Jara, A. L. (18 de 07 de 2015). Evaluación integral de pavimentos flexibles Pativilca-Conocoha (tramo Km. 0+00- Km. 20+000). Lima, Lima, Lima.
- Jimenez, C. (1983). Pedagogía Experimental II. Pedagogía Experimental II. Madrid: UNED.
- Leon, L. (2016). Aprovechamiento sostenible de recusos hídricos pluviales en zonas residenciales. Lima: Pontificia Universidad Católica del Perú.
- Lopez, O. (2007). Recomendaciones para el cultivo del melocotón (prunus persica stokes) en el occidente de Guatemala. Guatemala: Universidad de San Carlos de Guatemala.
- Martinez, M., Fernandez, D., & Salas, R. (s.f.). Hidrología aplicada a las pequeñas obras hidráulicas. Montecillo: Secretaría de agricultura, ganadería, desarrollo rural, pesca y alimentación.
- Mendoza, A. (2013). Riego por goteo. El Salvador: MAG.
- Palacio, N. (2010). Propuesta de un sistema de aprovechamieto de agua Iluvia, como alternativa para el ahorro de agua potable, en la Institución Educativa María Auxiliadora de Caldas, Antioquia. Medellín: Universidad de Antioquia.
- Parra, H. (2012). Diseño de un sistema de riego por goteo automatizado. Sonora: Instituto tecnológico de Sonora.
- Peru opportunity fund. (2011). Diagnóstico de la Agricultura en el Perú. Lima: Libélula.
- Pineda, J. (1994). Tecnica de Datos. Tecnica de Datos. Bogota, Bogota, Colombia.
- PNUD. (2015). Cosecha de agua de lluvia para enfrentar la escazes de agua en áreas de secano. Chile: Simple!Comunicación.
- Predes. (2005). Manual de operación y mantenimiento de un sistema de riego por goteo. Arequipa: ©PREDES.
- rigan, w. (2001). Analisis de Datos. Analisis de Datos. Estados Unidos: Analysis.
- Rodríguez, P. G. (2015). "aprovechamiento de agua de lluvia, para optimizar el uso de agua potable residencial". "aprovechamiento de agua de lluvia, para optimizar el uso de agua potable residencial". lima, lima, peru.
- Ruiz, S. F. (2014). Sistema de Captacion de Aguas Pluviales Adaptable a casas habitacion. Sistema de Captacion de Aguas Pluviales Adaptable a casas habitacion. mexico.

- Sampieri, H., Collado, F., & Lucio, B. (2010). Metodologia de la Investigacion. Mexico.
- Senamhi. (s.f.). Servicio Nacional de Meteorología e Hidrología del Perú. Recuperado el 03 de Octubre de 2017, de http://www.senamhi.gob.pe/
- Soliclima. (s.f.). Soliclima, energía solar. Recuperado el 15 de junio de 2017, de http://www.soliclima.es/aguas-pluviales
- Swisscontact peru. (2009). Cultivo de melocotonero. Manual práctico para productores. Oyon: SN POWER.
- Universitat Jaume I. (ND). Riego por goteo: Fundamentos del diseño. España.
- Van, J. [. (2013). Captación y almacenamiento de agua de Iluvia. Chile: FAO.

VIII. Anexos

Tabla 4: Matriz de Consistencia

TITULO: "Diseño y sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado					
		Mantacra d	listrito de Pampas, Hu	ıancavelica 2018"	
PROBLEMA		OBJETIVOS	HIPOTESIS	VARIABLE DEPENDIENTE:	DISEÑO DE SISTEMA DE ABASTECIMIENTO
	THODELINA	023211103	1111 012313	DIMENSIONES	INDICADORES
GENERAL	¿Cuáles serán los efectos de implementar un sistema de abastecimiento de agua potable mediante la captación de aguas	Determinar el adecuado diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas	Con las metodologías actuales, se obtuvo el adecuado diseño de un sistema de abastecimiento de agua potable	Tanque de Almacenamiento	Volumen, Tipo de tanque
GEN	pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?	pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018	mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018	Red de Distribucion	Cudal, Diametro de tuberia, Pendiente de tuberia
				VA	ARIABLE INDEPENDIENTE:
	_			CAPTA	ACIÓN DE AGUAS PLUVIALES
ESPECIFICO	¿De qué manera el regimen influye en el diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?	Determinar el regimen adecuado de agua para el consumo humano	El Regimen adquirido es el adecuado para la zona.	Regimen	Condiciones climatologicas, Precipitacion
	¿De qué manera la calidad influye en el diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?	Determinar la calidad adecuada para el diseño	La calidad del agua adquirida es la adecuada para el diseño de abastecimiento	Calidad	Agua, quimicos
	¿De qué manera la topografia influye en el diseño de un sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018?	Analizar el levantamiento topográfico de la zona de estudio.	La topografía de la zona presenta condiciones favorables para la recolección de aguas de Iluvia.	Topografia	Tipo de Suelo, pendiente de terreno

Anexo 01: Cálculo de Precipitación Aprovechable

Tabla 5: Acumulado de Iluvias en Abril

Mes y Año	Lluvia (mm)	Número de orden
Abr-2011	104.49	1
Abr-2003	65.82	2
Abr-2003	64.11	3
Abr-2000	60.18	4
Abr-2013	59.61	5
Abr-2002	56.79	6
Abr-2012	54.66	7
Abr-2006	51.72	8
Abr-2005	45.00	9
Abr-2017	41.97	10
Abr-2009	32.64	11
Abr-2008	32.31	12

Mes y	Lluvia	Periodo de	Probabilidad
Año	(mm)	Retorno T (años)	de Lluvia (%)
Abr-2011	104.49	13	5.1
Abr-2003	65.82	6.5	13.27
Abr-2003	64.11	4.3	21.43
Abr-2000	60.18	3.3	29.59
Abr-2013	59.61	2.6	37.76
Abr-2002	56.79	2.2	45.92
Abr-2012	54.66	1.9	54.08
Abr-2006	51.72	1.6	62.24
Abr-2005	45.00	1.4	70.41
Abr-2017	41.97	1.3	78.57
Abr-2009	32.64	1.2	86.73
Abr-2008	32.31	1.1	94.9

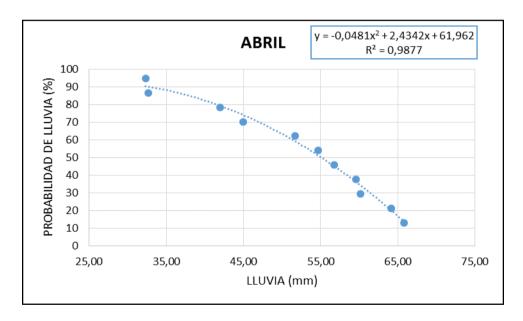


Figura 12: Grafica entre la probabilidad de lluvia y el promedio de precipitación para abril Fuente: > Elaboración propia calculado a partir de la Tabla 5

Para el mes de abril, se obtuvo la gráfica de la Figura 12. Aplicando la ecuación para una probabilidad al 75%, se obtuvo el valor de 6.09 mm, el cual será tomado como la cantidad de lluvia para el mes mencionado con un periodo de retorno de 1 año

Tabla 7: Acumulado de Iluvias en Mayo

Mes y Año	Lluvia (mm)	Número de orden
May-2001	40.05	1
May-2008	30.15	2
May-2004	27.99	3
May-2013	16.86	4
May-2003	14.76	5
May-2009	12.84	6
May-2000	11.76	7
May-2015	11.43	8
May-2011	11.22	9
May-2005	10.68	10
May-2007	10.62	11
May-2014	8.28	12

Mes y Año	Lluvia (mm)	Periodo de Retorno T (años)	Probabilidad de Lluvia (%)
May-2001	40.05	13	5.1
May-2008	30.15	6.5	13.27
May-2004	27.99	4.3	21.43
May-2013	16.86	3.3	29.59
May-2003	14.76	2.6	37.76
May-2009	12.84	2.2	45.92
May-2000	11.76	1.9	54.08
May-2015	11.43	1.6	62.24
May-2011	11.22	1.4	70.41
May-2005	10.68	1.3	78.57
May-2007	10.62	1.2	86.73
May-2014	8.28	1.1	94.9



Figura 13: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para mayo Fuente: > Elaboración propia calculado a partir de la Tabla 7

Para el mes de mayo, se obtuvo la gráfica de la Figura 13. Aplicando la ecuación para una probabilidad al 75%, se obtuvo el valor de 9.47 mm, el cual será tomado como la cantidad de lluvia para el mes mencionado con un periodo de retorno de 1 año

Tabla 9: Acumulado de Iluvias en Junio

Mes y Año	Lluvia (mm)	Número de orden
Jun-2004	30.9	1
Jun-2001	18.51	2
Jun-2006	10.68	3
Jun-2014	10.14	4
Jun-2010	8.22	5
Jun-2013	7.02	6
Jun-2012	6.81	7
Jun-2008	5.43	8
Jun-2005	4.74	9
Jun-2000	4.53	10
Jun-2011	3.06	11
Jun-2018	2.82	12

		Davida da	
		Periodo	
Mes y	Lluvia	de	Probabilidad
Año	(mm)	Retorno	de Lluvia (%)
		T (años)	
Jun-2004	30.9	13	5.1
Jun-2001	18.51	6.5	13.27
Jun-2006	10.68	4.3	21.43
Jun-2014	10.14	3.3	29.59
Jun-2010	8.22	2.6	37.76
Jun-2013	7.02	2.2	45.92
Jun-2012	6.81	1.9	54.08
Jun-2008	5.43	1.6	62.24
Jun-2005	4.74	1.4	70.41
Jun-2000	4.53	1.3	78.57
Jun-2011	3.06	1.2	86.73
Jun-2018	2.82	1.1	94.9

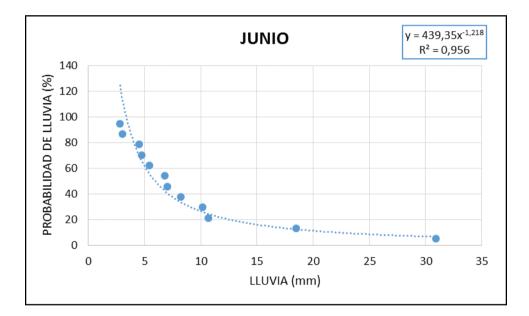


Figura 14: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para junio Fuente: > Elaboración propia calculado a partir de la Tabla 9

Para el mes de junio, se obtuvo la gráfica de la Figura 14. Aplicando la ecuación para una probabilidad al 75%, se obtuvo el valor de 0.23 mm, el cual será tomado como la cantidad de lluvia para el mes mencionado con un periodo de retorno de 1 año.

Tabla 11: Acumulado de Iluvias en Julio

Mes y Año	Lluvia (mm)	Número de orden
Jul-2007	39.72	1
Jul-2001	37.41	2
Jul-2002	35.97	3
Jul-2000	30.33	4
Jul-2012	21.51	5
Jul-2004	20.67	6
Jul-2005	14.76	7
Jul-2014	13.95	8
Jul-2015	12.93	9
Jul-2013	12.72	10
Jul-2018	9.24	11

		Periodo	
Mes y	Lluvia	de	Probabilidad
Año	(mm)	Retorno	de Lluvia (%)
		T (años)	
Jul-2007	39.72	13	5.1
Jul-2001	37.41	6.5	13.27
Jul-2002	35.97	4.3	21.43
Jul-2000	30.33	3.3	29.59
Jul-2012	21.51	2.6	37.76
Jul-2004	20.67	2.2	45.92
Jul-2005	14.76	1.9	54.08
Jul-2014	13.95	1.6	62.24
Jul-2015	12.93	1.4	70.41
Jul-2013	12.72	1.3	78.57
Jul-2018	9.24	1.2	86.73
Jul-2009	8.55	1.1	94.9

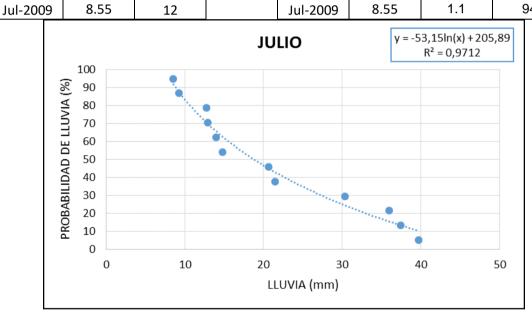


Figura 15: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para julio

Fuente: > Elaboración propia calculado a partir de la Tabla 11

Para el mes de julio, se obtuvo la gráfica de la Figura 15. Aplicando la ecuación para una probabilidad al 75%, se obtuvo el valor de 11.74 mm, el cual será tomado como la cantidad de lluvia para el mes mencionado con un periodo de retorno de 1 año

Tabla 13: Acumulado de lluvias en Agosto

Mes y Año	Lluvia (mm)	Número de orden
Ago-2003	59.07	1
Ago-2018	42.63	2
Ago-2015	37.95	3
Ago-2000	30.54	4
Ago-2002	29.34	5
Ago-2013	28.77	6
Ago-2001	25.71	7
Ago-2012	20.13	8
Ago-2005	16.11	9
Ago-2006	15.45	10
Ago-2004	13.86	11
Ago-2009	12.60	12

		Periodo	
Mes y	Lluvia	de	Probabilidad
Año	(mm)	Retorno	de Lluvia (%)
		T (años)	
Ago-2003	59.07	13	5.1
Ago-2018	42.63	6.5	13.27
Ago-2015	37.95	4.3	21.43
Ago-2000	30.54	3.3	29.59
Ago-2002	29.34	2.6	37.76
Ago-2013	28.77	2.2	45.92
Ago-2001	25.71	1.9	54.08
Ago-2012	20.13	1.6	62.24
Ago-2005	16.11	1.4	70.41
Ago-2006	15.45	1.3	78.57
Ago-2004	13.86	1.2	86.73
Ago-2009	12.60	1.1	94.9

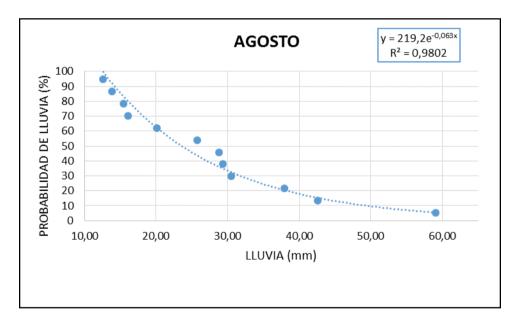


Figura 16: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para agosto

Fuente: > Elaboración propia calculado a partir de la Tabla 13

Para el mes de agosto, se obtuvo la gráfica de la Figura 16. Aplicando la ecuación para una probabilidad al 75%, se obtuvo el valor de 17.02 mm, el cual será tomado como la cantidad de lluvia para el mes mencionado con un periodo de retorno de 1 año

Tabla 15: Acumulado de lluvias en Noviembre

Mes y Año	Lluvia (mm)	Número de orden
Nov-2013	112.77	1
Nov-2002	74.22	2
Nov-2014	68.85	3
Nov-2004	68.67	4
Nov-2017	64.67	5
Nov-2001	63.42	6
Nov-2009	54.42	7
Nov-2008	50.52	8
Nov-2006	49.26	9
Nov-2016	48.42	10
Nov-2010	48.12	11
Nov-2015	46.86	12

		Periodo	
Mes y	Lluvia	de	Probabilidad
Año	(mm)	Retorno	de Lluvia (%)
		T (años)	
Nov-2013	112.77	13	5.1
Nov-2002	74.22	6.5	13.27
Nov-2014	68.85	4.3	21.43
Nov-2004	68.67	3.3	29.59
Nov-2017	64.67	2.6	37.76
Nov-2001	63.42	2.2	45.92
Nov-2009	54.42	1.9	54.08
Nov-2008	50.52	1.6	62.24
Nov-2006	49.26	1.4	70.41
Nov-2016	48.42	1.3	78.57
Nov-2010	48.12	1.2	86.73
Nov-2015	46.86	1.1	94.9

* Production and Production

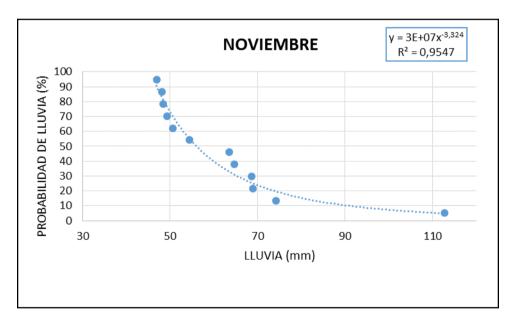


Figura 17: Gráfica entre la probabilidad de lluvia y el promedio de precipitación para noviembre

Fuente: > Elaboración propia calculado a partir de la Tabla 15

Para el mes de noviembre, se obtuvo la gráfica de la Figura 17. Aplicando la ecuación para una probabilidad al 75%, se obtuvo el valor de 0.37 mm, el cual será tomado como la cantidad de lluvia para el mes mencionado con un periodo de retorno de 1 año

De los cálculos anteriormente realizados, se obtienen la tabla 16, la cual es el resumen de la cantidad de lluvias, con una probabilidad al 75% de ocurrencia para cada uno de los meses en los cuales se van a realizar la captación.

Tabla 17: Cantidad de Iluvia al 75% de probabilidad de ocurrencia

Mes	Lluvia (mm)	Periodo de Retorno T (años)
abril	6,09	1
mayo	9,47	1
junio	0,23	1
julio	11,74	1
agosto	17,02	1
Noviembre	0,37	1
Total	44.92	1

Fuente: >Elaboración Propia

Anexo 02: Topografía

Instrumentos para levantamiento topográfico del área de captación

Para la presente investigación, se realizó un reconocimiento y levantamiento topográfico en la zona de estudio: para lo cual, se hizo el uso de los siguientes instrumentos:

Figura 18: Estación total Leica TS02

Figura 19: Trípode

Figura 20: Prisma

Figura 21: Bastón porta prisma

Figura 22: GPS Garmin eTrex® H

Figura 23: intercomunicadores

Anexo 03: Lluvia captada

Cálculo de cantidad de lluvia captada

Tabla 18: Cantidad de lluvia captada

Mes	Lluvia	Área de Captación	Coef. De Escorrentía	Lluvia Recolectada	
	а	b	С	ах	bxc
	(I/m2)	(m2)		Litros	М3
Abril	6.09	1,250.00	0.9	6,851.25	6.85
Mayo	9.47	1,250.00	0.9	10,653.75	10.65
Junio	0.23	1,250.00	0.9	258.75	0.26
Julio	11.74	1,250.00	0.9	13,207.50	13.21
Agosto	17.02	1,250.00	0.9	19,147.50	19.15
Setiembre	0	1,250.00	0.9	0.00	0.00
Octubre	0	1,250.00	0.9	0.00	0.00
Noviembre	0.37	1,250.00	0.9	416.25	0.42
Diciembre	0	1,250.00	0.9	0.00	0.00
Enero	0	1,250.00	0.9	0.00	0.00
Febrero	0	1,250.00	0.9	0.00	0.00
Marzo	0	1,250.00	0.9	0.00	0.00
7	Total, de Lluv	ria Recolectad	da:	50,535.00	50.54

Fuente: >Elaboración Propia

Mediante los cálculos realizados para el área de captación mencionada, y la cantidad de lluvias con una probabilidad del 75% de ocurrencia, se obtuvo un volumen de $50.54~\rm m^3$ de agua de lluvia recolectada.

Como posterior procedimiento, se llevó a cabo el cálculo del reservorio para el almacenamiento del volumen de agua anteriormente mencionado.

Adicionalmente, se tiene el área de la quebrada no recubierta por geo membrana que también cuenta como un aporte de cantidad de lluvia con un nuevo coeficiente.

Anexo 04: Reservorio

Cálculo del reservorio para el almacenamiento del agua

Para el diseño del reservorio, se tomó en cuenta el volumen del agua a almacenar, por lo que se decidió contemplar 1 reservorios de 51 m³, de las siguientes dimensiones: largo = 5.00m, ancho = 4.00m y altura de muro = 2.40m, los cuáles serán de concreto armado; para una mayor durabilidad, y cuyos cálculos fueron realizados manualmente, según los conocimientos adquiridos en la universidad, dichos datos fueron realizados con apoyo del programa Microsoft office Excel.

Dinámica Poblacional

ABASTECIMIENTO DE AGUA					
FICHA TÉCNICA					
PROYECTO: "Diseño y Sistema de Abasto	"Diseño y Sistema de Abastecimiento de agua potable Mediante la captación de Aguas Pluviales en el centro poblado Mantacra Distrito de Pampas, Huancavelica 2018"				
DISTRITO: Tayacaja- Huancavelica					
METODOS	DE ESTIMACION POE	BLACIONAL	L Y TASA DE CRECIMIENTO		
PROYECCIÓN DE	POBLACIÓN				
POBLACIÓN ACTUAL=	864	HABIT.			
TASA DE CRECIMIENTO POBLACIONAL=	3.1	%			
AÑO ACTUAL=	2018				
EJECUCIÓN DEL PROYECTO=	1	AÑOS			
TIEMPO DE PROYECCIÓN=	15	AÑOS			
PROYECCION DEL PROYECTO	16	AÑOS			
AÑO DE PROYECCIÓN=	2034				
METODO SUNASS:					
Pf = Pa((1+r*t)				
POBLACIÓN FUTURA =	Pf= 1293	HABIT			

Figura 24: Abastecimiento de Agua

LA POBLACIÓN CENSADA, SEGÚN DISTRITO, 1981, 1993 Y 2007			
(Por cien)		
Distrito	1981-1993	1993-200	
Total	2,7	2,	
Lima	-0,7	-0,	
Ancon	7,3	3,	
Ate	7,4	4,	
Barranco	-1,1	-1,	
Breña	-1,8	-0,	
Carabayllo	6,0	5,	
Chadacayo	1,1	0,	
Chamillos	3,6	2,	
Cieneguilla	5,9	7.	
Comas	2,8	1	
El Agustino	1,5	1	
Independencia	1,6	0	
Jesús Maria	-2.0	0	
La Molina	15,0	3	
La Victoria	-1.5	-1	
Lince	-2.0	-0	
Los Olivos	8.3	2	
Lurigancho	3.7	3	
Lurin	5.8	4	
Magdalena del Mar	-1.0	ō	
Magdalena Vieja	-1.0	ō	
Micefores	-1.4	-ō	
Pachacamac	9.4	9	
Purusana	0.3	6	
Puente Piedra	9.7	5.	
Punta Hermosa	10.3	4.	
Punta Negra	12.9	5.	
Rimac	0.2	-0.	
San Rarinin	1.1	4	
San Borja	4,9	ō	
San Isidro	-0,8	-0.	
San Juan de Lurigandho	-0,6 7,0	-0, 3,	
San Juan de Kingliones	4,6	1,	
San Luis	-0.3	0,	
San Martin de Porres	-0,3 2.1	3,	
San Miguel	1.4	0.	
Santa Anita	4,4		
Santa Anta Santa Maria del Mar	4,4 5,4	3, 10.	
Santa Rosa	18.8		
		7,	
Santiago de Surco	3,1	2	
Surquillo	-0,5	0,	
Villa El Salvador	5,4	2,	
Villa Maria del Triunfo Fuente: INEI - Censos Nacionales de Pobla	3,3	2,	

Figura 25: Tasa de crecimiento anual en Distritos de Lima

Parámetros de Diseño

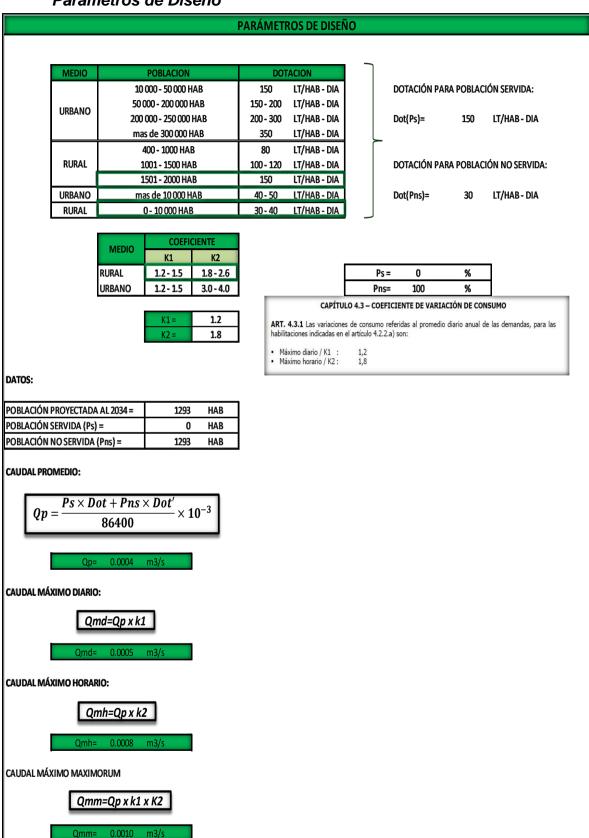


Figura 26: Parámetros de Diseño

Diseño de Reservorio y cisterna

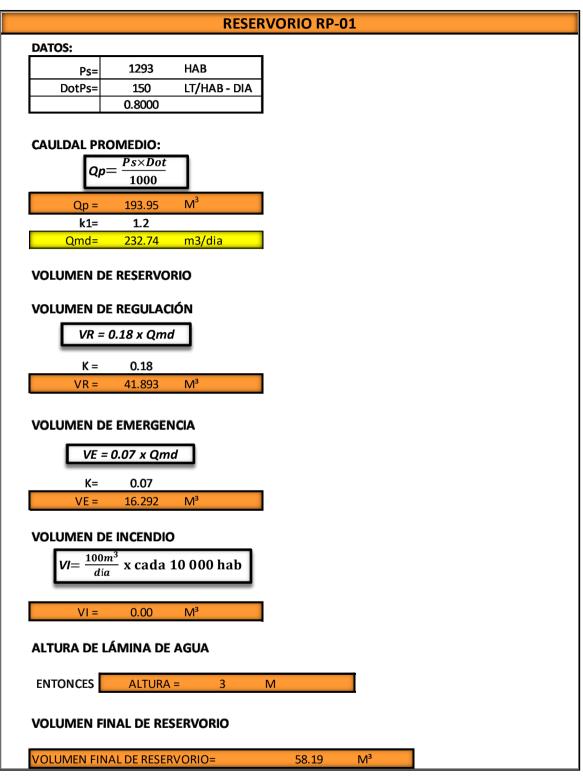


Figura 27: Diseño de Reservorio parte 1

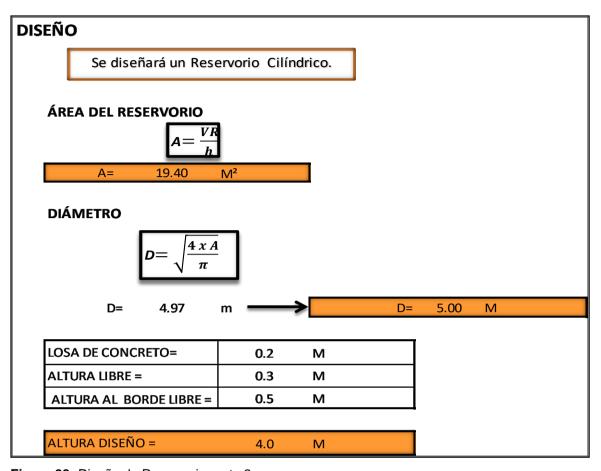


Figura 28: Diseño de Reservorio parte 2

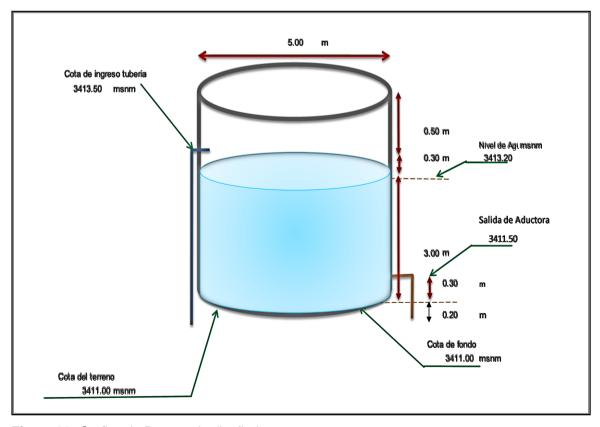


Figura 29: Grafica de Reservorio diseñado

CARACTERÍSTICAS - RESERVORIO RP-01			
CLASIFICACIÓN	RESERVORIO		
GEOMETRÍA	CIRCULAR		
POSICIÓN	APOYADO		
MATERIALES	CONCRETO ARMADO		

Tabla 19: Características del Reservorio Diseñado

RESERVORIO RP-01			
Caudal promedio (Qp)	0.8000	LT/SEG	
Maxima demanda diaria (MDD)	193.95	м³/DÍA	
Volumen de Regulacion	41.89	M³/DIA	
Volumen de Emergencia	16.29	M³	
Volumen contra Incendio	0.00	M³	
Volumen Final del Reservorio	58.19	M³	
Lamina de agua	3	m	
Area del Reservorio	19.40	M ²	
Dimensiones finales			
Diametro del reservorio	5.00	m	
Altura de Reservorio	4.00	m	
Cotas			
Nivel del terreno	3411.00	msnm	
Ingreso de tuberia	3413.50	msnm	
Nivel lamina de agua	3413.20	msnm	
Salida de la Aductora	3411.50	msnm	
Cota de fondo	3411.00	msnm	

Tabla 20: Resumen de Reservorio Diseñado

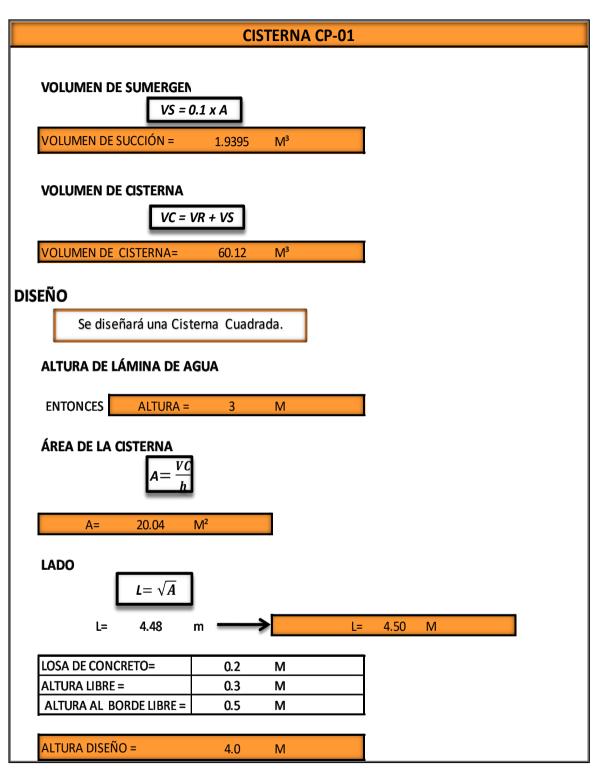


Figura 30: Diseño de Cisterna

Tabla 21: Resumen de Diseño en Cisterna

CISTERNA CP-01		
Caudal promedio (Qp)	0.8000	LT/SEG
Maxima demanda diaria (MDD)	193.95	м³/DÍA
Volumen de Regulacion	41.89	M³/DIA
Volumen de Emergencia	16.29	M³
Volumen contra Incendio	0.000	M ³
Volumen Final de la Cisterna	60.12	M ³
Lamina de agua	3	m
Area del Cisterna	20.04	M ²
Dimensiones finales		
Lado de la Cisterna	4.50	m
Altura de Reservorio	4.00	m
Cotas		
Nivel del terreno	3360.00	msnm
Ingreso de tuberia	3360.30	msnm
Nivel lamina de agua	3360.60	msnm
Salida de Línea de Impulsión	3360.90	msnm
Cota de fondo	3361.20	msnm

Línea de Conducción:

Desde la Matriz (Fuente) hasta la Cisterna Propuesta CP-01

CAUDAL PROMEDIO

Qp = 0.45 litros/seg

CAUDAL MÁXIMO DIARIO

Qmd = 0.54 litros/seg

COTAS

Cota de la fuente C1=	3354.00	msnm
Cota de llegada de tuberia a la cisterna Cx=	3330.00	msnm
L1 =	58.00	m

SOLUCIÓN GRÁFICA

PENDIENTE GRÁFICA

$$Sg = \frac{C1 - Cx}{L1}$$

Sg = 0.414

SOLUCIÓN ANALÍTICA

PRIMERA ITERACIÓN

DIÁMETRO DE LA TUBERÍA

Figura 31: Diseño de Línea de Conducción parte 1

por ser diámetro comercial

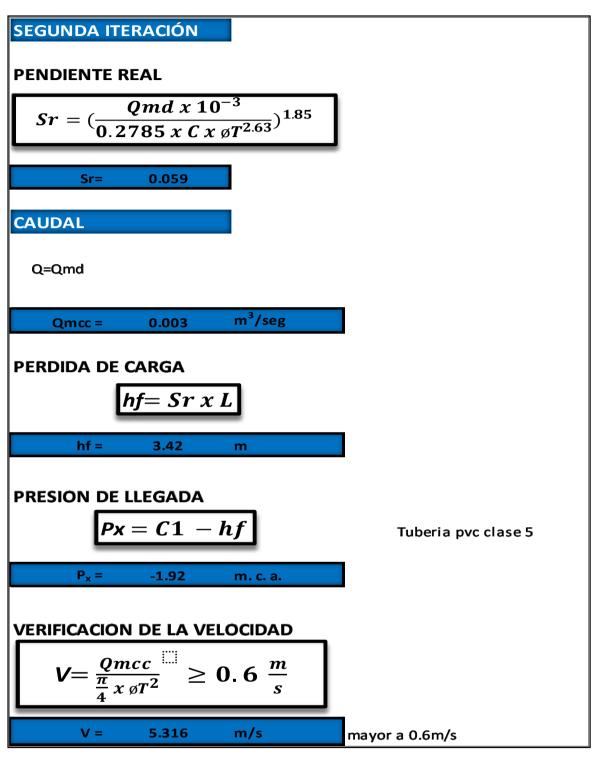


Figura 32: Diseño de Línea de Conducción parte 2

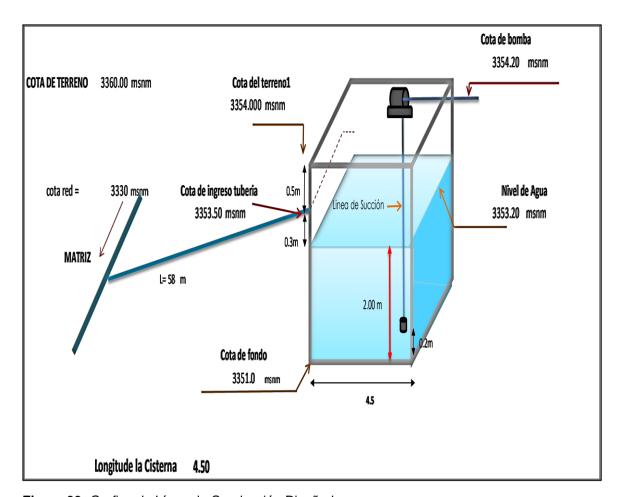


Figura 33: Grafica de Línea de Conducción Diseñada

Anexo 05: Metrado

Tabla 22: Metrados

Ítem	Descripción	Can t.	Ve z	Larg o	Ancho	Alt o	Parcial	Total	Un d
01.	Sistema de Captación								
01.01	Recubrimiento con Polietileno							3,218. 51	m2
				106.7 5	30.15	-	3,218. 51		
01.02	Muro de ala							10.10	m3
	.25 .65 N.T.N. .15 .20			21.96	Área sección	0.4	10.10		
01.04	Tubería de ingreso								
01.04. 01	Excavación			36.60	0.30	0.5 0	5.49	5.49	m3
01.04. 02	Relleno			36.60	0.30	0.5	5.49	5.49	m3
01.04. 03	Tubería de 30mm			56.60			56.60	56.60	ml
Ítem	Descripción	Can	Ve	Larg	Ancho	Alt	Parcial	Total	Un
02.	Reservorios	t.	Z	0	Allello	0	1 arciai	1 Otal	d
02.	Reservoiros								
02.01	Muros del reservorio								
02.01. 01	Concreto							32.40	m3
<u> </u>	M1 (ver plano R-01)	3		5.0	0.2	3.0	9.00		
	M2 (ver plano R-02)	3		5.0	0.2	3.0	9.00		
	M3 (ver plano R-01)	3		4.0	0.2	3.0	7.20		
	M4 (ver plano R-02)	3		4.0	0.2	3.0	7.20		
02.01. 02	Acero en muros							2,398. 80	kg
	M1 (ver plano R-01)	3		Cant.	220.40		661.20		
	M2 (ver plano R-02)	3		Cant.	179.40		538.20		
	M3 (ver plano R-01) M4 (ver plano R-02)	3		Cant.	220.40 179.40		661.20 538.20		
02.01. 02	Encofrado en muros							324.00	m2
	M1 (ver plano R-01)	3	2	5.0	-	3.0	90.00		
	M2 (ver plano R-02)	3	2	5.0	-	3.0	90.00		
	M3 (ver plano R-01) M4 (ver plano R-02)	3	2	4.0 4.0	-	3.0	72.00 72.00		
						1.0	1 = 100		
02.02 02.02.	Pilares del reservorio								
117 117	Concreto en pilares		I	1		1	1	1.24	m3

			1	1 1			1	1	
	C1 (ver plano R-03)	3		0.2	0.2	2.6 0	0.31		
	C2 (ver plano R-03)	3		0.2	0.2	2.6 0	0.31		
	C3 (ver plano R-03)	3		0.2	0.2	2.6	0.31		
	C4 (ver plano R-03)	3		0.20	0.20	2.6	0.31		
02.02.									
02	Acero en pilares							300.00	kg
	C1 (ver plano R-03)	3		Cant.	25.00		75.00		
	C2 (ver plano R-03) C3 (ver plano R-03)	3		Cant.	25.00 25.00		75.00 75.00		
	C4 (ver plano R-03)	3		Cant.	25.00		75.00		
	,								
02.02. 03	Encofrado en pilares							26.88	m2
	C1 (ver plano R-03)	3		0.80		2.8	6.72		
	C2 (ver plano R-03)	3		0.80		2.8	6.72		
	C3 (ver plano R-03) C4 (ver plano R-03)	3		0.80		2.8	6.72 6.72		
	04 (vei piailu K-03)	3		0.00		2.0	0.72		
02.03	Losas del reservorio								
02.03. 01	Concreto en losas							24.00	m3
	Base (ver plano R-04)	3		4.00	5.00	0.2	12.00		
	Techo (ver plano R-05)	3		4.00	5.00	0.2	12.00		
02.02									
02.03. 02	Acero en losas							720.63	kg
	Base (ver plano R-04)	3		Cant.	154.87		464.60		
	Techo (ver plano R-05)	3		Cant.	85.34		256.03		
02.03.									
02.03.	Encofrado en losas							57.96	m2
	Base (ver plano R-04)						0.00		
				19.32			57.96		
	Techo (ver plano R-05)	3		13.02			37.30		
	Techo (ver plano R-05)		Va			A IA	37.90		Ha
Ítem	Techo (ver plano R-05) Descripción	Can	Ve	Larg	Ancho	Alt	Parcial	Total	Un d
Ítem			Ve z		Ancho	Alt o		Total	Un d
03.	Descripción Sistema de Irrigación	Can		Larg	Ancho				d
	Descripción Sistema de Irrigación Cinta de riego de 1/2"	Can		Larg o	Ancho		Parcial	Total	
03.	Descripción Sistema de Irrigación	Can		Larg	Ancho				d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD	Can		Larg o	Ancho		Parcial	158.00	d ml un
03.	Descripción Sistema de Irrigación Cinta de riego de 1/2"	Can		Larg o	Ancho		Parcial		d ml
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD	Can		Larg o	Ancho		Parcial	158.00	d ml un
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD	Can	Z	Larg o	Ancho		Parcial	158.00	d ml un
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros	Can	Z	Larg o	Ancho		Parcial	158.00	ml un d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD	Can	Z	Larg o	Ancho		Parcial	158.00	d ml un
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros	Can	78	Larg o	Ancho		158.00 78.00	158.00	d ml un d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros	Can	Z	Larg o	Ancho		Parcial	158.00	d ml un d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros Codo	Can	78	Larg o	Ancho		158.00 78.00	78.00 2.00	un d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros	Can	78	Larg o	Ancho		158.00 78.00	158.00	ml un d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros Codo	Can	78	Larg o	Ancho		158.00 78.00	78.00 2.00	un d
03.01	Descripción Sistema de Irrigación Cinta de riego de 1/2" WaterCAD Goteros Codo	Can	78	Larg o	Ancho		78.00 2.00	78.00 2.00	un d

	66	26		26.00		
03.06	Mini válvula				14.00	un d
	********	14		14.00		
03.07	Conexión de 4 puntos				11.00	un d
	+	11		11.00		

Anexo 06: Presupuesto

Tabla 23: Presupuesto

Ítem	Descripción	Und	Metrado	Precio Unitario	Valor Parcial
01.00	Sistema de Captación				S/20,082.81
01.01	Recubrimiento con Polietileno	m2	3,218.51	S/10.87	S/24,985.20
01.02	Muro de ala (asentado de muro)	m3	10.10	S/96.87	S/978.39
01.03	Bocatoma				
01.03.01	Concreto en Bocatoma	m3	6.57	\$/304.05	S/1,997.61
01.03.02	Encofrado en bocatoma	m2	23.98	S/34.73	S/832.83
01.03.02	Plancha de acero de 2" x 3mm	ml	79.40	S/3.37	S/267.58
01.04	Tubería de ingreso				
01.04.01	Excavación	m3	5.49	S/80.64	S/442.71
01.04.02	Relleno	m3	5.49	S/13.10	S/71.92
01.04.03	Tubería de 30mm	ml	56.60	S/8.95	S/506.57
02.00	Reservorios				
02.01	Muros del reservorio				S/43,882.35
02.01.01	Concreto en muros	m3	32.40	S/304.05	S/9,851.22
02.01.02	Acero en muros	kg	2,398.80	S/6.48	S/10,544.22
02.01.02	Encofrado en muros	m2	324.00	S/34.73	S/11,252.52
02.02	Pilares del reservorio				
02.02.01	Concreto en pilares	m3	1.24	S/304.05	S/377.02
02.02.02	Acero en pilares	kg	300.00	S/6.48	S/1,944.00
02.02.03	Encofrado en pilares	m2	26.88	S/34.73	S/933.54
02.03	Losas del reservorio				
02.03.01	Concreto en losas	m3	24.00	S/304.05	S/2,297.20
02.03.02	Acero en losas	kg	720.63	S/6.48	S/4,669.68
02.03.03	Encofrado en losas	m2	57.96	\$/34.73	S/2,012.95
				Costo Directo	S/54,207.76
				IGV (18%)	S/9,757.39
				Presupuesto Total	S/63,965.16

Anexo 07: Análisis de Precios Unitarios

Tabla 24: Análisis de Precios Unitarios

01.01 R	ecubrimier	nto con Polieti	leno		
Rendimiento: Costo unitario directo por:	400.00 m2	m2/día S/ 10.87			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.0200	19.30	0.39
Peón	hh	4.0000	0.0800	14.40	1.15
					1.54
Materiales					
Geo membrana HDPE e = 1mm.	m2		1.0300	8.98	9.25
					9.25
Equipos					
Herramientas Manuales	%mo		5.0000	1.54	0.08
					0.08

01.02 Mu	ro de ala (asentado de r	nuro)		
Rendimiento:	13.00	m3/día	<u> </u>	•	
Costo unitario directo por:	m3	S/ 96.87			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	2.0000	1.2308	19.30	23.75
Peón	hh	2.0000	1.2308	14.40	17.72
					41.47
Materiales					
Piedra Grande de 8"	m3		0.8500	8.98	7.63
Hormigón	m3		0.2712	45.00	12.20
Cemento Portland Tipo V (42.5kg)	bol		1.5700	21.00	32.97
Agua	m3		0.0530	10.00	0.53
					53.33
Equipos					
Herramientas Manuales	%mo		5.0000	41.47	2.07
					2.07

01.03	.01 Concre	to en Bocator	na		
Rendimiento:	21.00	m3/día			
Costo unitario directo por:	m3	S/ 304.05			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	2.0000	0.7619	19.30	14.70
Peón	hh	4.0000	1.5238	14.40	21.94
					36.64
Materiales					
Piedra Chancada de 1/2"	m3		0.5300	55.00	29.15
Arena Gruesa	m3		0.5200	42.00	21.84
Cemento Portland Tipo V (42.5kg)	bol		9.7300	21.00	204.33
Agua	m3		0.1880	10.00	1.88
					257.20
Equipos					
Herramientas Manuales	%mo		5.0000	36.64	1.83
Vibrador para Concreto	hm	1.0000	0.3810	10.00	3.81
Mezcladora de Concreto	hm	1.0000	0.3810	12.00	4.57
					10.21

01.03	.02 Encofra	do en bocato	ma		
Rendimiento: Costo unitario directo por:	14.00 m2	m2/día S/ 34.73			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.5714	19.30	11.03
Peón	hh	2.0000	1.1429	14.40	16.46
					27.49
Materiales					
Alambre Negro Recocido N° 8	kg		0.2600	3.20	0.83
Clavos para Madera	kg		0.1600	3.75	0.60
Madera Tornillo	bol		1.3300	3.75	4.99
					6.42
Equipos					
Herramientas Manuales	%mo		3.0000	27.49	0.82
					0.82

01.03.02	Plancha de	acero de 2" x	3mm	•	
Rendimiento: Costo unitario directo por:	150.00 ml	ml/día S/ 3.37	•	•	•
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Peón	hh	1.0000	0.0533	14.40	0.77
					0.77
Materiales					
Plancha de acero de 2" x 3mm	ml		1.0300	2.50	2.58
					2.58
Equipos					
Herramientas Manuales	%mo		3.0000	0.77	0.02
					0.02

	01.04.01 E	xcavación	•	•	
Rendimiento: Costo unitario directo por:	3.00 m3	m3/día S/ 80.64	•	•	
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Peón	hh	2.0000	5.3333	14.40	76.80
					76.80
Equipos					
Herramientas Manuales	%mo		5.0000	76.80	3.84
					3.84

	01.04.02	Relleno			
Rendimiento:	20.00	m3/día			
Costo unitario directo por:	m3	S/ 13.10			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Peón	hh	2.0000	0.8000	14.40	11.52
					11.52
Materiales					
Agua	m3		0.1000	10.00	1.00
					1.00
Equipos					
Herramientas Manuales	%mo		5.0000	11.52	0.58

0.58

01.	.04.03 Tube	ería de 30mm			
Rendimiento:	150.00	ml/día			
Costo unitario directo por:	ml	S/ 8.95			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.0533	19.30	1.03
Peón	hh	2.0000	0.1067	14.40	1.54
					2.57
Materiales					
Tubería de polipropileno de 30 mm.	ml		1.0500	6.00	6.30
					6.30
Equipos					
Herramientas Manuales	%mo		3.0000	2.57	0.08
					0.08

02.01.01 Concreto en muros							
Rendimiento:	21.00	m3/día					
Costo unitario directo por:	m3	S/ 304.05					
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.		
Mano de Obra							
Operario	hh	2.0000	0.7619	19.30	14.70		
Peón	hh	4.0000	1.5238	14.40	21.94		
					36.64		
Materiales							
Piedra Chancada de 1/2"	m3		0.5300	55.00	29.15		
Arena Gruesa	m3		0.5200	42.00	21.84		
Cemento Portland Tipo V (42.5kg)	bol		9.7300	21.00	204.33		
Agua	m3		0.1880	10.00	1.88		
					257.20		
Equipos							
Herramientas Manuales	%mo		5.0000	36.64	1.83		
Vibrador para Concreto	hm	1.0000	0.3810	10.00	3.81		
Mezcladora de Concreto	hm	1.0000	0.3810	12.00	4.57		
					10.21		

02.01.02 Acero en muros								
Rendimiento:	200.00	kg/día	•	•	•			
Costo unitario directo por:	kg	S/ 6.48						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	1.0000	0.0400	19.30	0.77			
Peón	hh	1.0000	0.0400	14.40	0.58			
					1.35			
Materiales								
Alambre Negro Recocido N° 16	kg		0.1000	4.40	0.44			
Acero Corrugado y = 4200 kg/cm2	kg		1.0500	4.40	4.62			
•					5.06			
Equipos								

Herramientas Manuales	%mo	5.0000	1.35	0.07
				0.07

02.01.02 Encofrado en muros								
Rendimiento:	14.00	m2/día		-				
Costo unitario directo por:	m2	S/ 34.73						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	1.0000	0.5714	19.30	11.03			
Peón	hh	2.0000	1.1429	14.40	16.46			
					27.49			
Materiales								
Alambre Negro Recocido N° 8	kg		0.2600	3.20	0.83			
Clavos para Madera	kg		0.1600	3.75	0.60			
Madera Tornillo	bol		1.3300	3.75	4.99			
					6.42			
Equipos								
Herramientas Manuales	%mo		3.0000	27.49	0.82			
					0.82			

02.02.01 Concreto en pilares								
Rendimiento:	21.00	m3/día	•	•	•			
Costo unitario directo por:	m3	S/ 304.05						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	2.0000	0.7619	19.30	14.70			
Peón	hh	4.0000	1.5238	14.40	21.94			
					36.64			
Materiales								
Piedra Chancada de 1/2"	m3		0.5300	55.00	29.15			
Arena Gruesa	m3		0.5200	42.00	21.84			
Cemento Portland Tipo V (42.5kg)	bol		9.7300	21.00	204.33			
Agua	m3		0.1880	10.00	1.88			
					257.20			
Equipos								
Herramientas Manuales	%mo		5.0000	36.64	1.83			
Vibrador para Concreto	hm	1.0000	0.3810	10.00	3.81			
Mezcladora de Concreto	hm	1.0000	0.3810	12.00	4.57			
					10.21			

02.02.02 Acero en pilares								
Rendimiento:	200.00	kg/día	•	•				
Costo unitario directo por:	kg	S/ 6.48	•	•				
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	1.0000	0.0400	19.30	0.77			
Peón	hh	1.0000	0.0400	14.40	0.58			
					1.35			
Materiales								
Alambre Negro Recocido N° 16	kg		0.1000	4.40	0.44			
Acero Corrugado fy = 4200 kg/cm2	kg		1.0500	4.40	4.62			
					5.06			
Equipos								
Herramientas Manuales	%mo		5.0000	1.35	0.07			
					0.07			

02.02.03 Encofrado en pilares					
Rendimiento:	14.00	m2/día	•		

Costo unitario directo por:	m2	S/ 34.73			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.5714	19.30	11.03
Peón	hh	2.0000	1.1429	14.40	16.46
					27.49
Materiales					
Alambre Negro Recocido N° 8	kg		0.2600	3.20	0.83
Clavos para Madera	kg		0.1600	3.75	0.60
Madera Tornillo	bol		1.3300	3.75	4.99
					6.42
Equipos					
Herramientas Manuales	%mo		3.0000	27.49	0.82
					0.82

02.03.01 Concreto en losas								
Rendimiento:	21.00	m3/día		-				
Costo unitario directo por:	m3	S/ 304.05						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	2.0000	0.7619	19.30	14.70			
Peón	hh	4.0000	1.5238	14.40	21.94			
					36.64			
Materiales								
Piedra Chancada de 1/2"	m3		0.5300	55.00	29.15			
Arena Gruesa	m3		0.5200	42.00	21.84			
Cemento Portland Tipo V (42.5kg)	bol		9.7300	21.00	204.33			
Agua	m3		0.1880	10.00	1.88			
					257.20			
Equipos								
Herramientas Manuales	%mo		5.0000	36.64	1.83			
Vibrador para Concreto	hm	1.0000	0.3810	10.00	3.81			
Mezcladora de Concreto	hm	1.0000	0.3810	12.00	4.57			
					10.21			

02.03.02 Acero en losas							
Rendimiento:	200.00	kg/día					
Costo unitario directo por:	kg	S/ 6.48					
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.		
Mano de Obra							
Operario	hh	1.0000	0.0400	19.30	0.77		
Peón	hh	1.0000	0.0400	14.40	0.58		
					1.35		
Materiales							
Alambre Negro Recocido N° 16	kg		0.1000	4.40	0.44		
Acero Corrugado fy = 4200 kg/cm2	kg		1.0500	4.40	4.62		
					5.06		
Equipos							
Herramientas Manuales	%mo		5.0000	1.35	0.07		
					0.07		

02.03.03 Encofrado en losas								
Rendimiento:	14.00	m2/día	•	•				
Costo unitario directo por:	m2	S/ 34.73						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	1.0000	0.5714	19.30	11.03			
Peón	hh	2.0000	1.1429	14.40	16.46			
					27.49			

Materiales				
Alambre Negro Recocido N° 8	kg	0.2600	3.20	0.83
Clavos para Madera	kg	0.1600	3.75	0.60
Madera Tornillo	bol	1.3300	3.75	4.99
				6.42
Equipos				
Herramientas Manuales	%mo	3.0000	27.49	0.82
				0.82

	3.01 Cinta de	riego de 1/2"			
Rendimiento:	175.00	ml/día	•	•	•
Costo unitario directo por:	ml	S/ 1.38			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.0457	19.30	0.88
					0.88
Materiales					
Cinta de Riego de 1/2"	ml		1.0500	0.45	0.47
					0.47
Equipos					
Herramientas Manuales	%mo		3.0000	0.88	0.03
					0.03

3.02 Goteros								
Rendimiento: Costo unitario directo por:	300.00 und	und/día S/ 0.93						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								
Operario	hh	1.0000	0.0267	19.30	0.51			
					0.51			
Materiales								
Goteros para riego	und		1.0000	0.40	0.40			
					0.40			
Equipos								
Herramientas Manuales	%mo		3.0000	0.51	0.02			
					0.02			

	3.03	Codo	•	•	•
Rendimiento: Costo unitario directo por:	300.00 und	und/día S/ 2.10			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	Operario hh 1.0000		0.0267	19.30	0.51
					0.51
Materiales					
Codo	und		1.0000	1.57	1.57
					1.57
Equipos					
Herramientas Manuales	%mo		3.0000	0.51	0.02
					0.02

3.04 Te								
Rendimiento:	300.00	und/día	•	•	•			
Costo unitario directo por:	und	S/ 1.28						
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.			
Mano de Obra								

Operario	hh	1.0000	0.0267	19.30	0.51
					0.51
Materiales					
Tee	und		1.0000	0.75	0.75
					0.75
Equipos					
Herramientas Manuales	%mo		3.0000	0.51	0.02
					0.02

	3.05 Tap	ón final			
Rendimiento: Costo unitario directo por:	300.00 und	und/día S/ 1.51			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.0267	19.30	0.51
·					0.51
Materiales					
Tapón final	und		1.0000	0.98	0.98
•					0.98
Equipos					
Herramientas Manuales	%mo		3.0000	0.51	0.02
					0.02

	3.06 Mini válvula								
Rendimiento: Costo unitario directo por:	300.00 und	und/día S/ 3.53							
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.				
Mano de Obra									
Operario	hh	1.0000	0.0267	19.30	0.51				
					0.51				
Materiales									
Tapón final	und		1.0000	3.00	3.00				
·					3.00				
Equipos									
Herramientas Manuales	%mo		3.0000	0.51	0.02				
					0.02				

3	3.07 Te estre	ella 4 puntas	•	•	
Rendimiento:	300.00	und/día		•	
Costo unitario directo por:	und	S/ 1.48			
Recurso	Und	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Mano de Obra					
Operario	hh	1.0000	0.0267	19.30	0.51
					0.51
Materiales					
Conexión de 4 puntos	und		1.0000	0.95	0.95
					0.95
Equipos					
Herramientas Manuales	%mo		3.0000	0.51	0.02
					0.02

Anexo 08: Planos

Relación de planos

✓	Captación	CA-01
✓	Arquitectura y Planta de Reservorio de 60 m3	AC-01
✓	Arquitectura y Elevación de Reservorio	AER-01
✓	Detalle de Escalera Tipo Gato	ETG-01
✓	Estructura de Reservorio	ER-01
✓	Plano de Ubicación, Topografía y Matriz	UTM-01
✓	Diseño de Línea de Conducción	DC-01
✓	Ubicación y Topografía General	U-01
✓	Plano de Planta y Perfil	PP-01

✓ Plano de Secciones PS-01

Anexo 09: Acta de probación de originalidad de tesis

ACTA DE APROBACIÓN DE ORIGINALIDAD DE

Código: F06-PP-PR-02.02

Versión : 09

23-03-2018 Fecha Página : 1 de 1

Yo, Dra, Inge Maria Ysabel Garcia Alvarez docente de la Facultad de Ingenieria y Escuela Profesional de Ingenierla Civil de la Universidad César Vallejo Lima Este, revisor (a) de la tesis titulada

"Diseño y sistema de abastecimiento de agua potable mediante la captación deaguas pluviales centro poblado Mantacra, Pampas, Huancavelica 2018", dell estudiante José Brick Pimentel Cuevas constato que la Investigación tiene un índice de similitud de 23 % verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

San Juan de Lurigancho, 17 de diciembre 2018

Dra, Ingº Maria Ysabel Garcia Alvarez

DNI: 21453567

Baboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicereclorado de Investigación y Calidad	Aprobó	Rectorado
--------	-------------------------------	--------	--	--------	-----------

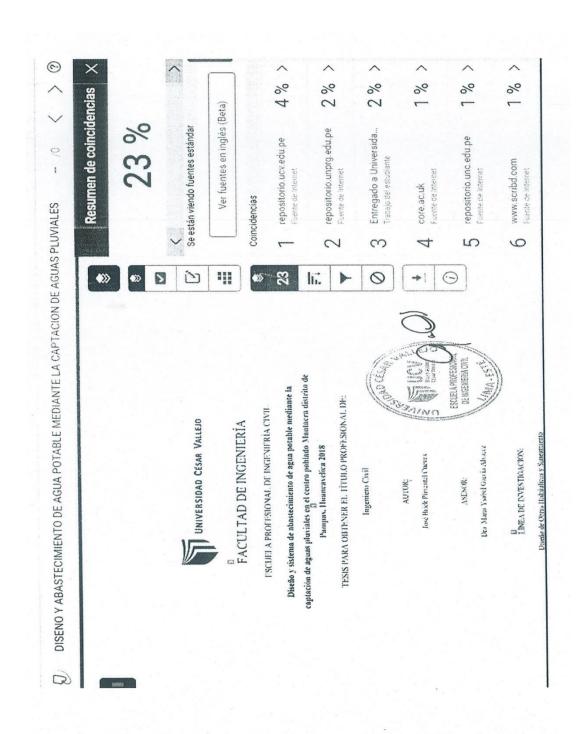
Anexo 10: Autorización de publicación de tesis

AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

Código: F08-PP-PR-02.02 Versión : 09 23-03-2018 Fecha

Yo Jose Brick Pimentel Cuevas identificado con DNI No 47597527, egresado de la Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo, autorizo (X) No autorizo () la divulgación y comunicación pública de mi trabajo de investigación titulado "Diseño y sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra, distrito de Pampas, Huancavelica 2018", en el Repositorio institucional de la UCV (http://repositorio.ucv.edu.pe/), según lo estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art. 23 y Art. 33

Fundamentación en caso de no autorización:


FIRMA

DNI: 47597527

FECHA: 17 de diciembre del 2018

Elaboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicemectorado de Investigación y Calidad	Aprobó	Rectorado	
---------	-------------------------------	--------	--	--------	-----------	--

Anexo 11: Pantallazo turnitin

Anexo 12: Autorización de entrega de versión final del trabajo de investigación

AUTORIZACIÓN DE ENTREGA LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE INVESTIGACIÓN DE LA ESCUELA DE INGENIERIA CIVIL, DRA. ING. GARCIA ALVAREZ MARIA YSABEL A LA RECEPCION DE LA DOCUMENTACION SOLICITADA PARA LA ENTREGA DE LA VERSION FINAL DEL TRABAJO DE INVESTIGACION QUE PRESENTA:

PIMENTEL CUEVAS JOSE BRICK

INFORME TÍTULADO:

Diseño y sistema de abastecimiento de agua potable mediante la captación de aguas pluviales en el centro poblado Mantacra distrito de Pampas, Huancavelica 2018

PARA OBTENER EL TÍTULO O GRADO DE:

INGENIERO CIVIL

FIRMA DEL ENCARGADO DE INVESTIGACIÓN

SUSTENTADO EN FECHA: San Juan de Lurigancho, 17 de diciembre del 2018

NOTA O MENCIÓN: 11 (Once)