

# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Estudio comparativo de los métodos L-moments y Creager en la optimización de obras hidráulicas en tributarios no aforados del río Tumbes

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

#### **AUTOR:**

Palmer Murga, Gianmarco (0000-0003-4922-5115)

#### ASESOR:

Dr. Gutiérrez Vargas, Leopoldo Marcos (0000-0003-2630-6190)

#### LÍNEA DE INVESTIGACIÓN

Diseño de Obras Hidráulicas y Saneamiento

TRUJILLO-PERÚ

2020

## **DEDICATORIA**

A mi madre y a mi padre

## **AGRADECIMIENTO**

Al Dr. Leopoldo Gutiérrez, por su compromiso.

# **ÍNDICE DE CONTENIDOS**

| ÍNDICE DE TABLAS                                                             | vii    |
|------------------------------------------------------------------------------|--------|
| ÍNDICE DE GRÁFICOS Y FIGURAS                                                 | xi     |
| RESUMEN                                                                      | xiii   |
| ABSTRACT                                                                     | xiv    |
| I. INTRODUCCIÓN                                                              | 1      |
| II. MARCO TEÓRICO                                                            | 8      |
| III. METODOLOGÍA                                                             | 27     |
| 3.1. Tipo y diseño de investigación                                          | 27     |
| 3.2. Variables y operacionalización de variables                             | 27     |
| 3.2.1. Variables                                                             | 27     |
| V <sub>1</sub> : Método L-moments                                            | 27     |
| V <sub>2</sub> : Método Creager                                              | 27     |
| 3.2.2. Dimensiones                                                           | 27     |
| 3.2.3. Sub-dimensiones                                                       | 27     |
| 3.2.3. Matriz de operacionalización de variables                             | 28     |
| 3.3. Población, muestra y muestreo                                           | 28     |
| 3.3.1. Población                                                             | 28     |
| Cuencas de la vertiente del pacífico en Perú                                 | 28     |
| Criterio de inclusión: cuencas que permitan la aplicación tanto del método C | reager |
| como L-moments                                                               | 28     |
| 3.3.2. Muestra                                                               | 28     |
| 3.4. Técnicas e instrumentos de recolección de datos                         | 28     |
| 3.4.1. Técnica                                                               | 28     |
| 3.4.2. Instrumento de recolección de datos                                   | 28     |
| 3.4.3. Validación del instrumento de recolección de datos                    | 28     |

| 3.5. Procedimientos                                                                                                     | 29     |
|-------------------------------------------------------------------------------------------------------------------------|--------|
| 3.6. Método de análisis de datos                                                                                        | 30     |
| 3.7. Aspectos éticos                                                                                                    | 31     |
| IV. RESULTADOS                                                                                                          | 32     |
| 4.1. Determinación de la eficiencia, a nivel de cuenca de los L-moments y Creage                                        | er.32  |
| 4.1.1. Estudio de frecuencias hidrológicas                                                                              | 32     |
| 4.1.2. Análisis regional a nivel de cuenca                                                                              | 36     |
| 4.1.3. Comparación estadística                                                                                          | 40     |
| 4.2. Determinación del ajuste, a nivel de subcuencas, de los L-moments y Creage                                         | er. 42 |
| 4.2.1. Modelamiento hidrológico a nivel de subcuencas                                                                   | 42     |
| 4.2.2. Análisis regional a nivel de subcuencas                                                                          | 49     |
| 4.2.3. Comparación estadística                                                                                          | 50     |
| V. DISCUSIÓN                                                                                                            | 54     |
| VI. CONCLUSIONES                                                                                                        | 59     |
| VII. RECOMENDACIONES                                                                                                    | 60     |
| REFERENCIAS                                                                                                             | 61     |
| ANEXOS                                                                                                                  | 67     |
| Anexo N° 01 – Declaratoria de autenticidad del autor                                                                    | 67     |
| Anexo N° 02 – Declaratoria de autenticidad del Asesor                                                                   | 68     |
| Anexo N° 03                                                                                                             | 69     |
| Anexos N° 03.01 - Matriz de Operacionalización de Variables                                                             | 69     |
| Anexo N°04 - Instrumentos de recolección de datos                                                                       | 71     |
| Anexo N° 04.01 – Guía de observación 1- Ficha de recolección de datos de precipitación máxima mensual (mm) Alto Puyango | 71     |
| Anexo N° 04.02 – Guía de observación 2- Ficha de recolección de datos de precipitación máxima mensual (mm) Bajo Puyango | 72     |
| Anexo N° 04.03 – Guía de observación 3- Ficha de recolección de datos de                                                |        |

| precipitación máxima mensual (mm) Bajo Tumbes                                                                             | 73 |
|---------------------------------------------------------------------------------------------------------------------------|----|
| Anexo N° 04.04 – Guía de observación 4- Ficha de recolección de datos de precipitación máxima mensual (mm) Cazaderos      | 74 |
| Anexo N° 04.05 – Guía de observación 5 - Ficha de recolección de datos de precipitación máxima mensual (mm) Medio Puyango | 75 |
| Anexo N° 04.06 – Guía de observación 6 - Ficha de recolección de datos de precipitación máxima mensual (mm) Medio Tumbes  | 76 |
| Anexo N° 04.07 – Guía de observación 7 - Ficha de recolección de datos de precipitación máxima mensual (mm) "El tigre"    | 77 |
| Anexo N° 04.07 – Guía de observación 7 - Ficha de recolección de datos de caudales (mm) "El tigre"                        | 78 |
| Anexo N°05 – Tablas complementarias                                                                                       | 80 |

# **ÍNDICE DE TABLAS**

| Tabla 1: Constantes regionales para Perú para método Creager                   | 21  |
|--------------------------------------------------------------------------------|-----|
| Tabla 2 Cuantiles regionales en la región hidrográfica del Pacífico            | 25  |
| Tabla 3 Caudales máximos diarios anuales del río Tumbes en estación El tigre   | .32 |
| Tabla 4 Caudales máximos instantáneos del río Tumbes                           | 33  |
| Tabla 5 Caudales máximos de diseño del río Tumbes para diferentes tiempos      | de  |
| retorno                                                                        | 34  |
| Tabla 6 Resultado del criterio de Akaike                                       | 35  |
| Tabla 7 Parámetros morfométricos de la cuenca del río Tumbes                   | 37  |
| Tabla 8 Área de la cuenca - punto de salida estación "El tigre"                | 38  |
| Tabla 9 Caudales máximos de cuenca - método Creager                            | 38  |
| Tabla 10 Caudales máximos de cuenca - método L-moments                         | 40  |
| Tabla 11 Caudales máximos de diseño en comparación                             | 40  |
| Tabla 12 Indicadores estadístico de comparación I                              | 41  |
| Tabla 13 Principales parámetros físicos a nivel de subcuencas de Puyango-      |     |
| Tumbes y sus valores de precipitaciones máximas de avenidas para diferentes    | 3   |
| tiempos de retorno. Fuente: elaboración propia                                 | 47  |
| Tabla 14 Caudales máximos de avenidas generados con HEC-HMS a nivel de         | !   |
| subcuencas. Fuente: Elaboración propia                                         | 48  |
| Tabla 15 Caudales máximos de avenida generado por el método Creager            | 49  |
| Tabla 16 Caudales máximos de avenida generado por el método L-moments          | 49  |
| Tabla 17 Comparación de los caudales máximos generados para un TR= 25 a        | ños |
|                                                                                | 50  |
| Tabla 18 Comparación de los caudales máximos generados para un TR= 50 a        | ños |
|                                                                                | 51  |
| Tabla 19 Comparación de los caudales máximos generados para un TR= 100         |     |
| años                                                                           | 51  |
| Tabla 20 Comparación de los caudales máximos generados para un TR= 1000        | )   |
| años                                                                           | 52  |
| Tabla 21 Eficiencia de Nash-Sutcliffe según método y tiempo de retorno, a nive | əl  |
| de subcuencas I                                                                | 52  |

| Tabla 22 Error cuadrático medio (RMSE) de los métodos, a nivel de subcuenc    | as I  |
|-------------------------------------------------------------------------------|-------|
|                                                                               | 52    |
| Tabla 23 Coeficientes de determinación de los métodos, a nivel de subcuenca   | as I  |
|                                                                               | 53    |
| Tabla 24 Eficiencia de Nash-Sutcliffe según método y tiempo de retorno, a niv | 'el   |
| de subcuencas II                                                              | 53    |
| Tabla 25 Error cuadrático medio (RMSE) de los métodos, a nivel de subcuenc    | as II |
|                                                                               | 53    |
| Tabla 26 Coeficientes de determinación de los métodos, a nivel de subcuenca   | as II |
|                                                                               | 53    |
| Tabla 27 Matriz de operacionalización de variables                            | 69    |
| Tabla 28 Precipitación máxima corregida para cada subcuenca                   | 80    |
| Tabla 29 Precipitaciones máximas asociadas a tiempos de retorno para cada     |       |
| subcuenca                                                                     | 81    |
| Tabla 30 Factor de frecuencia para la función Gumbel                          | 82    |
| Tabla 31 Resultados función GEV (máxima verosimilitud)                        | 83    |
| Tabla 32 Resultados función LogNormal (Máxima verosimilitud)                  | 84    |
| Tabla 33 Resultados función Gamma (máxima verosimilitud)                      | 85    |
| Tabla 34 Resultados función Gumbel (Método de momentos)                       | 86    |
| Tabla 35 Resultados función Log-Pearson tipo III                              | 87    |
| Tabla 36 Caudales máximos por función probabilística                          | 88    |
| Tabla 37 Precipitaciones máximas para diferente duración y tiempo de retorno  | en e  |
| subcuenca Alto Puyango                                                        | 89    |
| Tabla 38 Precipitaciones máximas para diferente duración y tiempo de retorno  | en    |
| subcuenca Medio Puyango                                                       | 89    |
| Tabla 39 Precipitaciones máximas para diferente duración y tiempo de retorno  | en    |
| subcuenca Bajo Puyango                                                        | 90    |
| Tabla 40 Precipitaciones máximas para diferente duración y tiempo de retorno  | en    |
| subcuenca Cazaderos                                                           | 90    |
| Tabla 41 Precipitaciones máximas para diferente duración y tiempo de retorno  | en    |
| subcuenca Medio Tumbes                                                        | 91    |
| Tabla 42 Precipitaciones máximas para diferente duración y tiempo de retorno  | en    |
| subcuenca Bajo Tumbes                                                         | 91    |

| Tabla 43 Intensidades de lluvia para diferentes duraciones y tiempos de retorno   |
|-----------------------------------------------------------------------------------|
| en subcuenca Alto Puyango92                                                       |
| Tabla 44 Intensidades de lluvia para diferentes duraciones y tiempos de retorno   |
| en subcuenca Medio Puyango93                                                      |
| Tabla 45 Intensidades de lluvia para diferentes duraciones y tiempos de retorno   |
| en subcuenca Bajo Puyango94                                                       |
| Tabla 46 Intensidades de lluvia para diferentes duraciones y tiempos de retorno   |
| en subcuenca Cazaderos95                                                          |
| Tabla 47 Intensidades de lluvia para diferentes duraciones y tiempos de retorno   |
| en subcuenca Medio Tumbes96                                                       |
| Tabla 48 Intensidades de lluvia para diferentes duraciones y tiempos de retorno   |
| en subcuenca Bajo Tumbes97                                                        |
| Tabla 49 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| oara tiempo de retorno de 25 años98                                               |
| Tabla 50 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| oara tiempo de retorno de 50 años99                                               |
| Tabla 51 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| oara tiempo de retorno de 100 años100                                             |
| Tabla 52 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| para tiempo de retorno de 1000 años101                                            |
| Tabla 53 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| iempo de retorno de 25 años102                                                    |
| Tabla 54 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| iempo de retorno de 50 años102                                                    |
| Tabla 55 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| iempo de retorno de 100 años103                                                   |
| Tabla 56 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| tiempo de retorno de 1000 años103                                                 |
| Tabla 57 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| para tiempo de retorno de 25 años, cuencas menores106                             |
| Tabla 58 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| para tiempo de retorno de 50 años, cuencas menores107                             |

| Tabla 59 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
|-----------------------------------------------------------------------------------|
| para tiempo de retorno de 100 años, cuencas menores108                            |
| Tabla 60 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, |
| para tiempo de retorno de 1000 años, cuencas menores109                           |
| Tabla 61 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| tiempo de retorno de 25 años, subcuencas menores110                               |
| Tabla 62 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| tiempo de retorno de 50 años, subcuencas menores110                               |
| Tabla 63 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| tiempo de retorno de 100 años, subcuencas menores111                              |
| Tabla 64 Determinación de error cuadrático medio, a nivel de subcuencas, para     |
| tiempo de retorno de 1000 años, subcuencas menores111                             |

# ÍNDICE DE GRÁFICOS Y FIGURAS

| Figura 1 Mapa de regionalización de las avenidas del Perú. Fuente: Traus, 197 |                |
|-------------------------------------------------------------------------------|----------------|
| Figura 2 Regiones hidrológicas homogéneas para la estimación de caudales      | ∠∠             |
| máximos en región del Pacífico. Fuente: SENAMHI, 2018                         | 24             |
| Figura 3 Ajuste del modelo seleccionado a la serie de caudales del río Tumbes |                |
| Fuente: Hyfran Plus                                                           | 35             |
| Figura 4 Mapa hidrográfico de la cuenca binacional Puyango-Tumbes. Fuente:    |                |
| Elaboración Propia                                                            | 36             |
| Figura 5 Cuantil regional de máximos en región 2                              | 39             |
| Figura 6 Curva regional caudal máximo versus área                             | 39             |
| Figura 7 Método Creager vs Log Normal                                         | 41             |
| Figura 8 Método L-moments vs Log Normal                                       | 41             |
| Figura 9 Mapa del número de curva - CN en cuenca Puyango-Tumbes. Fuente       | <del>)</del> : |
| elaboración propia                                                            | 42             |
| Figura 10 Mapa del número de retención máxima del suelo. Fuente: Elaboració   | 'n             |
| propia                                                                        | 43             |
| Figura 11 Mapa de precipitación máxima 24 h para TR=25 años. Fuente:          |                |
| Elaboración propia.                                                           | 44             |
| Figura 12 Mapa de precipitación máxima 24 h para TR=100 años. Fuente:         |                |
| Elaboración propia.                                                           | 45             |
| Figura 13 Esquematización del modelo de cuenca en HEC-HMS. Fuente:            |                |
| Elaboración propia.                                                           | 46             |
| Figura 14 Configuración de parámetro para modelo de lluvia-escorrentía en HE  | C-             |
| HMS. Fuente: Elaboración propia.                                              | 46             |
| Figura 15 Esquematización del modelo meteorológico a nivel de subcuencas el   | n              |
| Pmax desagregadas por método del Bloque alterno. Fuente: Elaboración propia   | a.             |
|                                                                               | 47             |
| Figura 16 Probabilidad de no-excedencia para las funciones                    | 88             |
| Figura 17 Gráfico de las curvas IDF en subcuenca Alto Puyango                 | 92             |
| Figura 18 Gráfico de las curvas IDF en subcuenca Medio Puyango                | 93             |

| Figura 19 Gráfico de las curvas IDF en subcuenca Bajo Puyango               | 94   |
|-----------------------------------------------------------------------------|------|
| Figura 20 Gráfico de las curvas IDF en subcuenca Cazaderos                  | 95   |
| Figura 21 Gráfico de las curvas IDF en subcuenca Medio Tumbes               | 96   |
| Figura 22 Gráfico de las curvas IDF en subcuenca Bajo Tumbes                | 97   |
| Figura 23 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 25 años                                                | 104  |
| Figura 24 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 50 años                                                | 104  |
| Figura 25 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 100 años                                               | 105  |
| Figura 26 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 1000 años                                              | 105  |
| Figura 27 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 25 años, cuencas menores                               | 111  |
| Figura 28 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 50 años, cuencas menores                               | 112  |
| Figura 29 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 100 años, cuencas menores                              | 112  |
| Figura 30 Gráfica del coeficiente determinación para ambos métodos, según   |      |
| tiempo de retorno de 1000 años, cuencas menores                             | 113  |
| Figura 31 Modelo digital de elevación de la cuenca Puyango-Tumbes           | 114  |
| Figura 32 Mapa hidrográfico de la cuenca Puyango-Tumbes                     | 115  |
| Figura 33 Número de curva de la cuenca Puyango-Tumbes                       | 116  |
| Figura 34 Mapa de estaciones meteorológica e hidrológicas en ámbito de esta | udio |
|                                                                             | 117  |
| Figura 35 Mapa de subcuencas en el ámbito de estudio                        | 118  |

RESUMEN

La presente tesis es del tipo aplicada, desarrollada en la cuenca Puyango-Tumbes.

Se obtuvo información hidrométrica de la estación "El tigre" y al aplicar el criterio de

Akaike se obtuvo que la función Log-normal tenía mayor ajuste, a partir de ella se

estima caudales máximos confiables. Se aplicó los dos métodos en estudio, a nivel

de cuenca, para diferentes tiempos de retorno se aplicó el test del error cuadrático

medio y el coeficiente de determinación comparando los caudales máximos

estimados en cada método. A nivel de subcuencas, se hizo también el análisis

comparativo con los caudales máximos estimados de la modelación hidrológica. La

modelación hidrológica se desarrolló en entorno GIS y HEC-RAS con datos PISCO.

Se aplican ambos métodos en estudio, para las 13 subcuencas incluidas.

A nivel de cuenca, que Creager presenta una mejor condición en calidad predictiva

que L-moments, pero ambos métodos no son recomendables para cuencas

mayores a 1000 km<sup>2</sup>. A nivel de subcuencas, L moments presentó una eficiencia

de Nash del 0.95 contra el 0.82 de Creager. Se evidencia una superioridad en

eficiencia y menor error para L-moments en tiempos de retorno entre 50 y 500 años.

Palabras claves: Creager, L-moments, caudales, optimización.

xiii

**ABSTRACT** 

The present thesis is of the applied type, developed in the Puyango-Tumbes basin.

Hydrometric information was obtained from the "El tigre" station and by applying

Akaike's criteria, it was obtained that the Log-normal function had a greater

adjustment, from which maximum reliable flows are estimated. The two methods

under study were applied at the basin level, for different return times, the test of the

mean square error and the coefficient of determination was applied comparing the

maximum flows estimated in each method. At sub-basin level, the comparative

analysis with the maximum estimated flows of the hydrological modeling was also

made. The hydrological modeling was developed in GIS and HEC-RAS environment

with PISCO data. Both methods are being applied for the 13 sub-basins included.

At basin level, Creager presents a better condition in predictive quality than L-

moments, but both methods are not recommended for basins larger than 1000 km2.

At the sub-basin level, L moments presented a Nash efficiency of 0.95 versus 0.82

for Creager. There is evidence of superior efficiency and less error for L-moments

in return times between 50 and 500 years.

**Keywords:** Creager, L-moments, flows, optimization.

xiv

#### I. INTRODUCCIÓN

A nivel mundial, las obras hidráulicas son obras únicas que se desarrollan según el contexto geomorfológico e hidrológico de la zona. Verbigracia, presas que generan embalses de agua, conductos de derivación de caudales a centrales hidroeléctrica, diques que conducen canales de agua. Esto nos hace ver que las características de estas estructuras son únicas, empero se pueda tener como referencias casos anteriores similares para tener un punto de partida y prever ciertas características. Adicionalmente, las obras mencionadas construcciones de suma importancia para la sociedad de un alto costo, no es aceptable un sobredimensionamiento ya que en el Perú el costo de una obra hidráulica es 10 veces más cara que la construcción de la misma en los países vecinos (Gálvez, 2016, párr. 2); en cambio un subdimensionamiento generaría una vulnerabilidad de la estructura ante eventos extremos con mayor frecuencia que lo establecido previamente si se hubiera realizado un correcto estudio (Ureña, 2013, p.10).

En Perú, muchas de las obras que se han construido quedan obsoletas debido al mal diseño. Generalmente, el subdimensionamiento es frecuente y las obras que deberían funcionar para determinados años terminan siendo útiles menos años de lo proyectado, es decir, la vida útil considerada en la etapa de diseño pocas veces llega a cumplirse. Este problema junto a la demora en la gestión de obras de reconstrucción o mejoramiento por escasez de presupuesto, generan malestar en la población y retardan el desarrollo que, con obras bien diseñadas, no se verían estancadas. Durante la etapa de la ejecución, el 55% de las obras de agua y saneamiento paralizaron debido a deficiencias en los expedientes técnicos: en sus diseños, selección de fuentes de agua y saneamiento de los terrenos (Redacción Gestión, 2016, párr. 3). A un corto plazo de 5 años, en el Perú necesita cubrir una brecha en infraestructura hidráulica de 6.679 millones de soles mientras que para infraestructura de agua y saneamiento de 34.838 millones de soles; para el caso de un largo plazo (20 años) se necesita cubrir 14.625 y 95.789 millones de soles para infraestructura hidráulica y de agua y saneamiento, respectivamente (MEF, 2018, p. 19-20), como se aprecia hay una necesidad por ofrecer expedientes técnicos de calidad.

Para lograr la predicción de posibles eventos tales como crecientes, se realiza el análisis y aplicación de métodos hidrológicos que se encargan de transformar precipitación de diseño en caudales, teniendo en cuenta las características físicas de la cuenca (Suárez, 2019, p. 194). El análisis de eventos extraordinarios como precipitaciones y caudales, es el comienzo necesario para estudiar los problemas de la región en el tema de inundaciones y viene a ser la base de la data básica para proyectos que incluyan mitigación y puesta en marcha de actividades que especifiquen la disminución de daños que puedan generar afectaciones en cualquier subcuenca que tenga similares características a las subcuencas del río Tumbes (Parizaca, 2015, p.58). La necesidad de conocer con mucho mayor acierto los detalles de los caudales máximos es establecer fajas marginales. El problema de futuras inundaciones siempre es latente en nuestro país y un problema mayor es el asentamiento de las poblaciones dentro de estas llanuras de inundación las cuales deberían respetarse, sin embargo, podemos ver instalados cultivos y hasta actividades industriales que con el tiempo se puedan ver perjudicadas debidas a la inundación de estas zonas.

En nuestro país, la escasez de información hidrométrica y climatológica representa uno de los problemas más limitantes en la evolución de estudios hidrológicos y el adecuado diseño de obras hidráulicas para las diversas actividades del ser humano. No poseer datos de precipitaciones y caudales de buena calidad -e insuficientes- forman parte de la problemática peruana. Según las instituciones encargadas del monitoreo climatológico, las redes de estaciones están en un estado de mucha variación dado los requerimientos de mantenimiento de las instituciones a cargo.

Sería mucho más útil tener estaciones hidrométricas con una alta densidad, es decir, que estén localizadas en la mayoría de ríos y quebradas. Con esa información sería más confiable encontrar u estimar caudales futuros, determinar caudales promedios o caudales ecológicos que puedan ocasionar diseños hidráulicos óptimos en proyectos de inversión. Sin embargo, la realidad en cuanto a la existencia de este tipo de estaciones es inversa dado que son muy

pocas las estaciones hidrométricas, esto debido al alto costo de mantenimiento y de personal técnico que conlleva tener estas estaciones en funcionamiento.

Se opta por la instalación de estaciones pluviométricas y pluviográficas. Entre estos dos tipos de estaciones lo ideal es tener en mayor cantidad estaciones pluviográficas ya que estás describen la intensidad de precipitación en cada tormenta que se suscite, conocer esta intensidad también facilita y permite llegar a obtener caudales promedios y estimar caudales máximos futuros con una buena calidad y muy cercanos a la realidad. No obstante, y haciendo semejanza con las estaciones hidrométricas estas estaciones se hallan en un número muy pequeño. En lugar de todo ello se tienen las estaciones pluviométricas, las encargadas de medir la lámina de lluvia que cae. Estas lecturas son tomadas dos veces por día y registradas en una base de datos. Es aquí donde encontramos una primera dificultad para llegar a datos de caudales partiendo de datos de lluvia diaria, el procesamiento se hace más difícil y existe la necesidad de recurrir a modelos hidrológicos y fórmulas empíricas desarrollados en otros países (Parizaca, 2015, p.58).

Un primer problema en la transformación de datos de lluvia a datos de caudales es la elección de metodologías. Muchas veces se eligen métodos y modelos hidrológicos que no van acorde con el contexto en que fueron desarrollados, desestimando los parámetros que se tuvieron en cuenta para la calibración y obtención de ese modelo toman valores únicamente de dónde se desarrollaron. Además de ello, debemos sumar el bajo desarrollo de la investigación en cuanto a los modelos hidrológicos desarrollados en territorio peruano.

El norte peruano, una de las partes del mundo en donde menos agua hay se observa un asentamiento masivo de personas, lo que obliga a tener proyectos hidráulicos que permita distribuir el elemento hídrico de la mejor manera y garantizar en el tiempo la supervivencia de la población. El autor de este trabajo ha visto necesario la adaptación de algunos modelos existentes a las condiciones de la zona particular de la cuenca Puyango-Tumbes con el fin de que futuros proyectos pueden tener diseños óptimos que garanticen su

funcionalidad. El fenómeno de las inundaciones en nuestro país es un problema muy frecuente evidenciado en el transcurrir de los años esto causado por los constantes cambios que sufren las precipitaciones en un año. Para la vertiente del pacífico, en la zona andina se cuenta con una época seca y húmeda. Si además tenemos en cuanto los años donde estuvo presente el fenómeno del Niño podemos ver que hay caudales en los ríos que han multiplicado su magnitud, llegando a desbordarse muchos ríos en el norte peruano ocasionando pérdidas incalculables (ANA, 2015, p. 51).

La labor de los profesionales estudiosos de la materia resulta demasiado difícil, dado lo imprevisible que puede resultar los eventos climáticos y que no se cuenta con datos que consideren periodos de tiempo, lo suficientemente largos como para obtener los resultados óptimos. A partir del siglo veinte que se ha dado inicio a la observación del clima de manera constante en nuestro país gracias al aumento moderado de estaciones meteorológicas e hidrológicas, pero que no terminan de ser suficientes para lograr los objetivos ideales (MINAM, 2015, p. 12).

El estado peruano muestra mucha intención en el destino de dinero para la construcción de obras hidráulicas que tengan como fin la prevención, conducción, optimización y mitigación de los efectos que trae consigo el recurso hídrico. Para el año 2015, el estado destinó dos mil millones de soles en obras de prevención y mitigación de desastres, puntualmente para la lucha contra los efectos que genere el fenómeno del Niño, pero, solo ciento cincuenta millones fueron usados debido al desconocimiento y la proactividad de las autoridades encargadas para el manejo de la situación (MEF, 2015 p. 13).

La falta de datos para estimar un caudal máximo de diseño en ríos no aforados ocasiona que los métodos se simplifiquen tratando de representar el comportamiento de los procesos hidrológicos en una fórmula que admita pocos valores de entrada. Debido a que las variaciones de los parámetros hidrológicos varían dependiendo de la zona en donde suceden los procesos, estos métodos asignan ciertos coeficientes dependiendo de la zona de estudio. Sin embargo,

qué sucede cuando se tiene disponibles dos o más métodos que pueden ser aplicados. ¿Por cuál optar? ¿La aplicación de uno u otro traería los mismos resultados?

De forma equivocada muchas veces se establece que un promedio de los métodos obtenidos es lo mejor a fin de reducir el error que la aplicación de cualquiera pueda arrastrar, pero esto no es garantía. Aún peor, está el caso en que se opta, al azar, por un método que ofrece los resultados con menor eficiencia de todos los métodos disponibles. En este sentido, como futuros ingenieros civiles responsables del diseño de obras hidráulicas de protección, captación, almacenamiento o conducción los métodos no deberían ser seleccionados sin tener el criterio adecuado para garantizar buenos resultados.

Los casos mencionados, posiblemente, se deben a que los métodos no establecen requisitos o restricciones para su aplicación pese a que, como ya se mencionó, han asignado ciertos coeficientes según la zona de aplicación. Sin embargo, debemos tener en cuenta que estos métodos han sido desarrollados teniendo en cuenta parámetros de diversas zonas del país, pero en realidad, debido a lo cambiante que es la hidrología en pequeñas extensiones del territorio, parece no resultar del todo suficiente generalizar el método para las zonas que se definen en él. Es decir, mientras el método considere coeficientes para un mayor número de zonas de menor áreas nos entregaría mejores resultados, pero con dificultad existen disponibles estos métodos, así como el desarrollo de investigaciones.

La falta de experiencias e investigaciones que puedan aportar conocimientos acerca de la aplicabilidad de los métodos L-moments y Creager disponibles representan también una causa por la que se seleccionen estos indistintamente. Es un hecho que quedan muchos conocimientos por desarrollar en esta línea de investigación con la finalidad que los diseños hidráulicos a cargo de los ingenieros civiles se vean optimizados con el tiempo.

Lo que se pretende en esta investigación es generar un nuevo conocimiento acerca de cuál es el método más aplicable en las subcuencas de los tributarios del río Tumbes para que se pueda seleccionar en los futuros diseños hidráulicos,

ya sea de protección (ya que en estas zonas se puede visualizar muchas viviendas y cultivos muy cerca a los cauces de los tributarios y quebradas), como obras de almacenamiento y captación de agua (ya que en esta región no existe hasta ahora una buena gestión del recurso hídrico en beneficio de la población) y obras de drenaje en carreteras.

De no desarrollarse esta investigación y al pretender realizar un diseño -como los ya mencionados- estos podrían resultar sobredimensionados (generando una mala inversión) o, por el contrario, subdimensionados (lo que ocasionará la reducción del tiempo de vida útil de las estructuras y, también siendo una muy mala inversión por parte de las entidades), y todo esto debido a la aplicación indebida de alguno de los métodos. Si bien es cierto que el diseño puede funcionar en los primeros años lo que se debe analizar es la inversión a largo plazo, que esta se vea justificada con el tiempo de vida útil de la estructura y garantizar el funcionamiento óptimo que beneficie a la población.

Muchas experiencias evidencian en el tiempo lo mencionado, y queda claro que de ello se debe aprender, es por ello que resulta muy necesario el desarrollo de la investigación que en este documento se plantea. Recomendar ya sea el método L-moments o Creager podrá optimizar el diseño de las futuras obras hidráulicas que se proyecten en la zona.

Teniendo en cuenta lo mencionado y conociendo lo importante que es desarrollar esta investigación se propone la siguiente interrogante ¿Cómo es el estudio comparativo de los métodos L-moments y Creager en la optimización de obras hidráulicas en tributarios no aforados del río Tumbes?

Esta investigación tiene un enfoque comparativo acerca de los métodos regionales que estiman caudales máximos para el diseño de obras hidráulicas, justificando su desarrollo toda vez que permitirá, en la fase de diseño de obras, tener una certeza al momento de la selección de un método regional. Esto beneficiará al profesional en acción ya que podrá tener datos estimados con mayor calidad. Además, existirá un mayor beneficio a largo plazo con la población ya que podrán elevar su calidad de vida al tener obras de calidad y larga duración.

Este trabajo se ejecuta con la finalidad de sumar al conocimiento hidrológico existente sobre la selección del mejor método regional para la estimación de caudales máximos de diseño en cursos naturales de agua, para que a futuro sea incorporado en las ciencias de la hidrología e hidráulica, ya que se estaría demostrando que un método regional siempre puede superar en aplicabilidad al otro y por ende ofrecer mejores resultados.

Se justifica por su practicidad ya que existe la necesidad de optimizar los diseños de obras hidráulicas de protección, almacenamiento y conducción que en la zona de estudio requiere para el desarrollo económico de su población, esto a partir de la selección adecuada de un método que ofrezca los caudales máximos de diseño más probables.

El presente trabajo se justifica metodológicamente ya que se realizará siguiendo los métodos científicos, conclusiones que la ciencia podrá garantizar. Toda vez que se demuestre la validez y confiabilidad, los resultados de este documento servirán para el desarrollo de futuros trabajos de investigación en nuestro país.

La hipótesis que se maneja en este trabajo es que el método L-moments tiene mayor calidad que el método Creager para la optimización de obras hidráulicas en tributarios no aforados del río Tumbes

El objetivo general es realizar el estudio comparativo de los métodos L-moments y Creager para la optimización de obras hidráulicas en tributarios no aforados del río Tumbes

Como primer objetivo específico se tiene determinar la calidad predictiva, a nivel de cuenca, de los métodos L-moments y Creager para la optimización de obras hidráulicas en ríos no aforados, región Tumbes. Como segundo objetivo específico se consideró determinar la eficiencia, a nivel de subcuencas, de los métodos L-moments y Creager para la optimización de obras hidráulicas en ríos no aforados, región Tumbes.

#### II. MARCO TEÓRICO

Para esta investigación, se tienen en cuenta trabajos previos de otros autores del ámbito local, nacional e internacional.

Jiménez (2015), en su tesis "Desarrollo de metodologías para mejorar la estimación de los hidrogramas de diseño para el cálculo de los órganos de desagüe de las presas" muestra como objetivo general realizar la contrastación de metodologías que brinden una mejoría en el cálculo de las avenidas de proyectos y extrema empleadas en la seguridad hidrológica de las presas. Los autores inician realizando el análisis del esquema regional más correcto según los parámetros de las cuencas de la parte peninsular de España según la data disponible en el muestreo. Seguidamente se revisaron los modelos estadísticos con mejor ajuste en las diferentes zonas de la España peninsular, analizando su capacidad de representación del comportamiento estadístico bajo periodos de retorno. También se desarrollaron procedimientos que permitirán describir la dependencia estadística entre el caudal pico y el volumen total que trae consigo una avenida de forma sencilla y robusta. Se concluye que la función de distribución de valores extremos generalizada (GEV) muestra un buen comportamiento en la mayoría de subcuenca, siendo una función recomendada para su aplicación en este país.

La investigación mostrada nos ayuda a visualizar la correcta aplicación de las funciones de probabilidad en series hidrológicas y la forma para la determinación de la selección de alguna según el mejor ajuste. Si bien es cierto la investigación concluye en que la función GEV resulta muy aceptable en la zona peninsular de España, esto no implica que resulta más aceptable para la zona en donde se pretende realizar esta investigación.

Mejía y Hernández (2015), en su tesis "Curvas de rendimiento de caudales máximos instantáneos asociados a diferentes periodos de retorno en Colombia, caso de estudio río Magdalena" tiene como objetivo general encontrar las curvas que representan el rendimiento de caudales máximos para tiempos de retorno de 5, 10, 25, 50, 100 y 500 años en la cuenca del rio Magdalena. El autor inicia

estimando caudales máximos de diseño del río en estudio a partir de distribuciones viendo cuál es la que mejor mejor ajuste muestre a la serie histórica de caudales. Los tests aplicado son Chi cuadrado, X² y Kolmogorov-Smirnoff. De manera similar a los trabajos anteriores, la distribución que muestra un mejor ajusta es el método GEV, seguida por la distribución probabilística pearson tipo III y log-pearson tipo III.

Este trabajo nos aporta conocimientos acerca de la aplicación de modelos probabilísticos, adicionalmente a ello la forma correcta de aplicar los tests estadísticos para verificar el ajuste de las series hacia las funciones. Nos deja ideas más claras acerca de lo que nos muestran los indicadores estadísticos.

Liendo y Neyra (2019), en su tesis "Modelación probabilística de las crecientes máximas en ríos de la vertiente peruana del pacífico" tuvo como objetivo general modelar bajo un enfoque probabilístico las crecientes máximas en río pertenecientes a las vertientes del pacífico con la finalidad de mostrar una regionalización de las cuencas para que posteriormente sirva como punto de partida en el diseño de obras hidráulicas y, a su vez, establecer áreas de inundación para generar planes de contingencia a futuro.

Del trabajo realizado se pudo establecer ecuaciones regionalizadas para estimar caudales de las cuencas de muy poca información sobre otras que cuentan con datos. Las ecuaciones generadas están fundamentadas en la utilización de parámetros geomorfológicos de cuenca. De estos parámetros, el coeficiente de compacidad tiene un mejor ajuste en la parte norte, para la zona centro el área de la cuenca se muestra relevante mientras que para la zona sur el perímetro.

De esta investigación se puede rescatar la influencia de los tiempos de retorno en una serie hidrométrica estableciéndose que para mayor cantidad de tiempo de retorno mayores la distribución extrema tipo I o Gumbel (esto encaja con lo ya establecido o estandarizado para Perú, donde se sabe que esta es la función con mejor ajuste para series hidrométricas en nuestro país) presenta mejores

resultados mientras que para tiempos de retorno menos a 20 años la función log pearson tipo III muestra un mejor desempeño.

Galeano (2015), en su tesis "Adaptación del método L-moments para la regionalización de eventos máximos para las cuencas de Colombia" tiene como objetivo general establecer una relación entre las precipitaciones máximas y las variables de la geografía de ubicación que están dentro del territorio colombiano. El manejo de inferencias estadística y de funciones probabilística es de vital importancia para la regionalización ya sea de precipitación máximas. Así el trabajo consiguió generar un modelo regional que permite estimar caudales en cualquier punto del territorio colombiano. Toda la investigación se dio partiendo de datos pluviométricos de las estaciones disponibles en la cuenca del territorio colombiano, realizando las pruebas de bondad de ajuste según Smirnov-Kolmogorov para determinar la función más adecuada. La mayoría de estaciones se ajustaron a la distribución Log Normal de 3 parámetros, seguidas por Log Gumbel y Log Pearson III. Al final se pudo establecer una fórmula que relaciona los parámetros climáticos y geográfico como latitud, longitud y altitud, para tiempos de retorno de dos a doscientos años.

Esta investigación nos ayudó a comprender la idea de regionalización y como factores como la ubicación y las condiciones climático pueden representar su incidencia en una fórmula. En nuestro caso, nosotros ya tenemos fórmulas que han sido generadas teniendo en cuentos estos factores, pero siempre es importante entender cómo se llega finalmente a una.

Portuguez (2017), en su tesis "Aplicación de la geoestadística a modelos hidrológicos en la cuenca del río Cañete" tuvo como objetivo general realizar un análisis de la data hidrológica, luego de ello interpolar de manera espacial las precipitaciones para 4 tiempos de retorno. Finalmente estiman la escorrentía directa aplicando modelos hidrológicos escalares. A través de la exploración, corrección y tratamiento de la data pluviométrica, se alcanzó la examinación de la distribución de las series, se detectó valores anómalos, se exploró en cuanto

a la autocorrelación según el espacio y variación directiva de los datos, para finalmente ejecutar transformaciones de la data si se hubiese requerido. Para el caso si fue necesario realizar dichas transformaciones. En cuanto a la simulación hidrológica, se concluye que el uso del hidrograma unitario de Clark, ofrece los mejores coeficientes de eficiencia y además obtiene mínimos errores en porcentaje, de esta manera se establece que el comportamiento del hidrograma en mención es eficiente y goza de confiabilidad en la estimación de caudales máximos de diseño.

Esta investigación aporta conocimientos acerca de la confiabilidad del hidrograma unitario de Clark, en la transformación de lluvia a escorrentía. Deja claro que este hidrograma tiene un buen comportamiento en esta zona de estudio. Considerar un hidrograma unitario es necesario para asignarle al modelo HEC-HMS el mejor hidrograma que nos pueda generar finalmente los caudales máximos más confiables.

Atoche y Alemán (2019), en su tesis "Estimación de caudales máximos en Cuencas secas y aplicación en diseño de obras de defensas ribereñas: caso Quebrada Angostura, tumbes, 2019" tuvo objetivo general realizar el análisis de parámetros geomorfológicas de la cuenca Quebrada Angostura Cabuyal. Así mismo, se estiman las características hidroclimatológicas de la cuenca en mención. Se estiman los caudales máximos con diferentes tipos de modelos: empíricos, matemáticos, estocásticos y estadísticos. Finalmente, con estos datos estimados se realizan los diseños hidráulicos de defensas ribereñas En esta ocasión el autor realiza un promedio entre el método racional modificado y método Creager para diferentes periodos de retorno, usando finalmente este valor. Sin embargo, discrepamos con este procedimiento ya que deberían establecerse el nivel de confiabilidad de cada método. La cuenca se caracteriza por ser poco achatada, posee un área de 187.81 km. Posee un tiempo de concentración estimado de 9 horas, la que define las curvas de intensidadduración-frecuencia. En este trabajo se utiliza la distribución Gumbel, ya que es la que muestra el mejor ajuste, utilizando también para determinar la intensidad

los coeficientes de duración propuestos en el manual de hidrología e hidráulica del Ministerio de Transporte.

La investigación mostrada nos ayuda a conocer las características de una de las subcuencas que incluimos en el estudio. A conocer como es el cálculo del tiempo de concentración, la determinación de áreas y otras características geomorfológicas. Así mismo, a generar las curvas de intensidad-duración-frecuencia y los hietogramas necesarios para la modelación hidrológica en HEC-HMS.

Montesinos (2018), en la investigación realizada para SENAMHI, "Estimación de umbrales de inundación en la región hidrográfica del Pacífico", este trabajo tuvo como objetivo general generar una herramienta que permita determinar los umbrales de inundación, siempre con base en la metodología L-moments para a partir de esto enunciar funciones regionalizadas con la finalidad de estimar caudales máximos en tributarios y/o cuenca no aforadas asociadas a un periodo de retorno solo para las cuencas que escurren sus aguas hacia el Pacífico. Primero, se identifican las regiones que tienen características similares u homogéneas en la costa peruana que es la zona en donde se ubica las cuencas que drenan sus aguas al pacíficos, luego se identifican o detectan una apropiada función de probabilidad para relacionar los valores de las precipitaciones máximas con la frecuencia de ocurrencia, finalmente se llega a enunciar la fórmula basados en los L-moments para inundaciones regionales. Se consideraron 43 estaciones entre todas las que están instaladas en la costa peruana, no se tomaron en cuenta aquellas estaciones que no cumplían con una longitud mínima de 15 años. Los resultados de esta investigación nos permiten ser utilizados con un alto grado de confiabilidad en estudio para sus etapas de prefactibilidad y factibilidad, pero con cierta reserva en la etapa de diseño. También se establece que la zona en estudio está marcada por cuatro regiones homogéneas. La función de distribución que muestra una mejor performance es la de GNO. Finalmente, queda establecido que para zona no aforada es muy recomendable usar la fórmula desarrollada en este trabajo, dejando en claro que no debe ser utilizado para otras zonas ya que estos umbrales fueron

desarrollados en función del periodo de retorno y la extensión de drenaje de cuencas incluidas en el estudio.

Este trabajo es vital para el desarrollo de esta tesis, ya que será pieza fundamental para realizar la comparación. Se usará la formula desarrollada en este trabajo para verificar si efectivamente resulta más robusta que la de Creager. Además, al revisar este trabajo se pudo revisar cual fue la metodología que el investigador estableció para llegar a la fórmula.

Como bases teóricas tenemos empezaremos hablando sobre el estudio probabilístico que tiene por objetivo poder predecir un posible escenario a futuro para un tiempo de retorno asignado, esto aplicable para variables como precipitación, granizo, caudales. En el caso de los caudales mediante funciones de distribución o probabilística se pretende estimar valores en un escenario extremo para que se pueden realizar medidas de mitigación frente a estos valores (Davydova, 2016, p. 26).

En el estudio de proyectos de aprovechamiento hidráulica y la determinación de área de inundación, es necesario conocer el caudal máximo de diseño que viene representado por un valor con unidades de metros cúbicos por segundo que se estima a partir de funciones de probabilidad teniendo en cuenta un tiempo de retorno, es decir, establecemos cierto número de años a futuros para estimar cuál sería el caudal con el mayor valor en todo ese tiempo futuro. Esto puede ser calculado a partir de datos de una estación hidrométrica, sin embargo, hay mucha incertidumbre debido a que la mayoría de cuencas no poseen este tipo de información. En este caso la hidrología nos da la posibilidad de realizar una reconstrucción de caudales en cualquier cuenca hidrográfica (Arias, 2017, p. 22).

La información a incluir en un estudio de caudales debe ser extraída de una estación hidrométrica, en un punto que logre representar la totalidad de la cuenca. La información extraída debe ser lo más actualizada. Generalmente, estas estaciones se hallan en el cauce del río principal, en una sección no muy irregular y en donde diariamente se miden los niveles y se monitorea la velocidad

del flujo, posteriormente se puede tener los valores de los caudales que escurren por ese punto. Es importante que la información contenida en las series históricas sea evaluada a fin de que no contenga errores, saltos o tendencias que nos alejen de la realidad de los caudales históricos (Gutiérrez, 2018, p.155-156).

Las funciones de probabilidad permiten estimar mediante base estadísticas. Para este proceso se trata de describir las cualidades de aleatoriedad, ya que con esto se podría realizar la inferencia con respecto a la probabilidad que guardan relación con valores futuros posible de la serie. Para que se realice una generalización se dice que la serie en estudio se extrae de un grupo de variables aleatorias que están distribuidas en forma agrupada. Si fuera posible especificar la función estadística de la serie luego sería posible determinar acerca de la probabilidad del resultado a futuro. Empero, especificar completamente una función para determinada serie siempre resulta poco posible (Díaz, 2016, p. 173).

Las pruebas de bondad de ajuste vienen siendo pruebas hipotéticas que tienen por objetivo la verificación de los datos observados sobre una muestra aleatoria muestran un ajuste con un nivel de significancia a cierta función de probabilidad. Para llevar a cabo la prueba, se debe clasificar los datos observados en cierto número de clases o también llamadas categorías, luego se realiza la contabilidad del número de observaciones para cada categoría, para finalmente realizar la comparación de la frecuencia observada en cada categoría con la frecuencia esperada en esa categoría si la hipótesis nula está correcta (Benjamín, 1981, p. 232).

Hay varios procedimientos para poder determinar la bondad de ajuste. Una de las más aplicada es la prueba Ji-cuadrada, basada e en estadístico que a continuación se menciona: (Benjamin, 1981, p. 233)

$$Y = \sum_{i=1}^K \frac{(\boldsymbol{O}_i - \boldsymbol{e}_i)^2}{\boldsymbol{e}_i}$$

En donde se puede apreciar que la distribución tiene k-r-1 grados de libertad. Si se da el caso que que la diferencia entre o y e son muy pequeñas, el valor del estadístico también lo será, y similarmente de manera inversa (Benjamín, 1981, p. 233).

La prueba de Kolmogorov Smirnoff es un procedimiento bastante usada en la hidrología aplicada como prueba de bondad de ajuste, ya que permite realizar una medición del grado de concordancia que hay entre una distribución de un grupo de datos y una función de distribución teóricamente disponible. Persigue el objetivo de indicar se los datos proceden de una población que la función probabilística, o sean realiza una contrastación si lo observado podría derivar de la distribución teórica. Esta prueba no paramétrica utiliza estadísticos tales como desviación típica, mínimo, media, máximo, números de casos que no se perdieron y cuantiles (Benjamin,1981, p. 233).

El criterio de información de Akaike se refiere a la medición de la calidad de un modelo o método estadístico, para un grupo mostrado de datos. Así, este criterio brinda la metodología para seleccione el mejor modelo (Hosking, 1993, p.113).

Este criterio busca el mejor modelo balanceando entre la bondad de ajuste y su complejidad. Está basado en la entropía de la data: brinda un ofrecimiento de una estimación de información que se ha perdido para el caso del uso de un modelo determinado para realizar la representación del procedimiento que genere aquellos datos (Hosking, 1993, p.113).

El criterio de información queda representado bajo la siguiente expresión:

$$AIC = 2K - 2ln(L)$$

"k" hace referencia al número de parámetros del modelo, mientras que L viene siendo el valor máximo de la función para el modelo esperado (Hosking, 1993, p.113).

La base de este criterio es la teoría de la información. Si suponemos que los datos son generados por cierto proceso que no se conoce f, tenemos dos modelos que son candidatos para representarlo, tales son g<sub>1</sub> y g<sub>2</sub>. Si se diera el caso de conocer f, implica que sería posible determina la información que se ha perdido de la aplicación de g<sub>1</sub> para la representación de f calculando la divergencia de Kullback-Leibler, igualmente para g<sub>2</sub>. Por lo tanto, seleccionaríamos el mejor modelo que no cae en la maximización de la pérdida de información (Hosking, 1993, p.113).

El problema de tener cuencas no instrumentadas o sin datos de caudales, ha generado que los profesionales recurran a la generación de modelos que permitan transformar las precipitaciones en valores de caudales, siempre tomando en cuenta las características físicas de suelo, vegetación, entre otros factores de la cuenca hidrográfica. Entonces, cuando se aplica el modelo con fines de conocer caudales ya sean máximos o mensuales, para un evento o de forma continua nos estamos refiriendo a un modelamiento hidrológico (Loizu, 2017, p. 27). Entonces, a nivel de cuenca, realizar un modelamiento hidrológico resulta siendo un componente muy indispensable en el manejo, gestión e investigación de los recursos hídricos (Esquivel, 2016, p.4).

La cuenca es la unidad fundamental que se encarga de la recepción del agua precipitada para una respuesta hidrológica. Esta posee un área determina y otras características que la diferencia de otras. La gestión y el manejo del recurso hídrico en la cuenca es de vital importancia para el desarrollo de la población. Sin embargo, muchas veces la actividad humana perjudica drásticamente la calidad del agua que la cuenca dispone. Es importante conocer las características de la cuenca para poder prever sobre la respuesta hidrológica la cual pude generar inundaciones en eventos extremos (Balza, 2019, p. 97).

Las propiedades morfométricas de una cuenca corresponden al área, perímetro, longitud y ancho (De Oliveira, 2019, p.562). Esto nos permite conocer de dónde a dónde se extiende la cuenca. Es primordial conocer los valores de área debido a que la mayoría de modelos hidrológicos considera como insumo principal este

valor, y es lógico, la respuesta hidrológica se corresponde proporcionalmente con el área (Esquivel, 2016, p.7).

Las características geomorfológicas son tales como relieve, pendientes, curvas hipsométricas. También lo son las características geológicas, uso del suelo en esta, tipo de suelo, presencia de vegetación y grado de infiltración del agua. Todas estas características influyen en la respuesta que pueda tener la cuenca al momento de manifestar caudales en el punto de salida. Por ejemplo, mientras las pendientes son más acentuadas se generará caudales mayores; si hay presencia de vegetación los caudales serán menores y las inundaciones serán menos latentes; si el tipo de suelo corresponde a la familia de las arcillas la infiltración será menor y por ende los valores que adopten los caudales serán mayores (Planasdemunt, 2016, p. 6).

La precipitación viene a ser agua que cae a la superficie terrestre en diferentes formas. El monitoreo de estas se da mediante estaciones pluviométricas y mediante monitoreo satelital como los hace el proyecto TRMM (Assis, 2020, p.3) Realizar el análisis espacial de variables como la precipitación, sigue siendo en esto tiempos un reto para la ciencia de la hidrología. Además de ello poder representar la precipitación espacialmente también resulta todo un reto y una labor que requiere de mucha precisión. Esto se puede lograr toda vez que se disponga de una densidad de estaciones de medición, a partir de ello se define la estructura del espacio y las tendencias del comportamiento para cierta zona geográfica. A partir de ello se pueden aplicar diferentes métodos tales como kriging, previamente se debe verificar aspectos como la homogeneidad de los datos (López, 2018, p. 4).

Los pluviógrafos son los instrumentos encargados de registrar mediante pluviogramas el comportamiento de la precipitación medidas en milímetros según el tiempo. Esto se traduce a que se alcanza una mayor intensidad cuando hay una mayor altura de precipitación para un mismo intervalo de tiempo. Dicho esto, para realizar un análisis correcto de las lluvias intensas es necesario

establecer relaciones con características como la distribución, frecuencia y duración (Monsalve, 2002, p.108).

Las curvas I-D-F, son usadas en hidrología para representar la intensidad de la precipitación teniendo en cuenta su duración y el tiempo de retorno. Estos gráficos son de vital importancia para realizar un plan sobre la gestión de los recursos hídricos y, sobre todo, para el diseño de obras hidráulicas. Es importante llevar a cabo un análisis de frecuencia para determinar el incremento en el volumen de agua que escurre y, en efecto, en el caudal relacionado con lo que la cuenca da como respuesta resultados del proceso de lluvia-escorrentía. Sin embargo, hoy se no se pone la atención merecida en el significado de los parámetros que van relacionadas con la duración de tormentas en las curvas intensidad-duración-frecuencia (López, 2019, p. 1).

A partir de los registros pluviográficos se pueden representar curvas de masa, o también llamados curvas de precipitación acumuladas, o simplemente la cantidad de agua que ha precipitado desde el inicio de la tormenta. Las curvas mencionadas de intensidades, serán ordenadas en una curva que es llamada hietograma, por su parte en las abscisas queda representado el tiempo. Para los modelos hidrológicos, tales como HEC-HMS, una de las opciones para ingresar precipitación es mediante hietogramas. Como es común, al no haber instrumentos pluviográficos estos hietogramas deben ser construidos de manera sintética y uno de los métodos más recomendados es el método de los bloques alternos (Monsalve, 2002, p.114).

Para que la hidrología superficial puede seguir su curso en su desarrollo, necesariamente se necesita de esquemas que simplifique los procesos hidrológicos, pero que la simplificación sea coherente con las bases teóricas. Dentro de una cuenca hidrográfica se pueden observar muchos factores que influyen en la respuesta que esta puede dar, dentro de estos, dependiendo de la cuenca unos procesos predominan sobre otros. En este sentido lo que pretende un modelo hidrológico es simplificar los procesos, incluyendo los que tienen mayor relevancia en la generación de los caudales, de esta manera se busca

tener un modelo con buena predicción de los escurrimientos pero que no requiere un alto número de datos de entrada o de alta calidad. Algunos de los modelos conocidos son EPIC, TETIS y SWAT (Paz, 2017, p. 330).

El tiempo de concentración viene a ser el tiempo que tarda, una gota de lluvia, en recorrer desde la parte más alejada del punto de salida de una cuenca hasta el punto de drenaje. Han sido desarrolladas múltiples métodos para la estimación del tiempo de concentración tales como Kirpich, California, Giandotti, Témez, etc. Están han sido desarrolladas en ciertas zonas y con determinadas características por lo que se debe poner especial atención al momento de la selección de alguno, teniendo en cuenta las características de la cuenca en estudio. Este parámetro es requisito e insumo para los modelos hidrológicos ya que permite realizar la transformación de lluvia a escorrentía (Jaiswal, 2003, p.128)

Un hidrograma unitario viene a ser el hidrograma de escorrentía superficial total que resulta de un volumen unitario de precipitación neta, distribuido de forma uniforme en tiempo y espacio. Se debe tener en cuenta que las variaciones estacionales dentro de las características de la superficie de una cuenca no se consideran. O sea, se tiene en cuenta las lluvias antecedentes no causan influencia en la distribución sobre el tiempo del escurrimiento superficial producida por una precipitación determinada. Para estimar el escurrimiento superficial producto por cualquier precipitación neta, que no sea una precipitación neta unitaria, se asume que el sistema es no variante y lineal en el tiempo. Con todo esto, el hidrograma unitario resulta una herramienta muy útil para la transformación de la data de precipitaciones en un caudal (Monsalve, 2002, p.201).

Este es un indicador adimensional que trata con su valor de dar luces acerca de la información del tipo y uso del suelo. El rango de valores está entre el 0 y 100 y va a depender de muchos factores que ocasionan la generación de escurrimiento superficial en una cuenca. Entones estaríamos hablando de grupo hidrológico; tipo y uso de suelo; estado superficial del suelo; y la humedad que

antecede a las zonas en estudio- Asi pues, obtener el número de curva tendrá que estimarse a partir de información de cartografía. Esta información cartográfica debe contener el tipo de suelo, el estado de la cobertura vegetal y pendiente. Es importante establecer si el proceso de lluvia-escorrentía se está dando para condiciones seca o húmedas, sin embargo, muchas veces se desconoce este aspecto y se considera en condiciones normales (Duque, 2019, p.352).

El HEC-HMS, es un programa diseñado en los Estados Unidos, por el cuerpo de Ingenieros, que brinda varias opciones para la simulación del proceso de Iluvia a caudales, además del tránsito de avenidas. Este programa simula hidrogramas pertenecientes a una cuenca, a partir de la entrega de los datos físicos de la cuenca y con esto realiza la estimación de los hidrogramas resultantes de una cuenca mayor o las subcuencas que esta contiene, todo esto para condiciones extremas. Este trabaja siguiendo los siguientes pasos: A) realiza la separación de la lluvia neta de la total (la lluvia neta corresponde a la lluvia que genera escorrentía superficial o directa). B) realiza una transformación, bajo el hidrograma elegido, de la lluvia neta hacia escorrentía directa. C) adiciona a la escorrentía directa la escorrentía básica (si esta se considerase). D) Estima el hidrograma resultante según el tramo que discurre ya sea en un cauce del río o también en un embalse (Duque, 2019, p.352).

Realizar la modelación hidrológica en una cuenca consiste en plasmar una relación de las variables a ingresar; la relación consiste en el ingreso de valores de parámetros que simulen de la mejor manera posible la variable saliente. Como estos valores desde un inicio no se conoce, se necesita de un proceso de calibración para determinar sus valores. Así definimos a la calibración como un proceso mediante el cual se determinan el valor del parámetro de un modelo cuyos resultados se ajusten bastante bien a los datos que han sido observados. Ahora, teniendo en cuenta el uso o la aplicación de estos resultados se requiere, en algunos casos, que estos resultados pasen por un proceso de validación, que es un proceso que tiene como objetivo encontrar la bondad de ajuste del modelo

para predecir en cierto lugar, para un periodo diferentes al período de calibración (Neves, 2019, p. 13).

El análisis regional termina siendo un desafío complicado para la hidrología, debido a que es improbable que se cuenta con información adecuada para realizar la estimación de eventos extremos en lugares puntuales y luego su correspondiente asociación a las regiones. Lo que se realiza es establecer regiones que son homogéneas bajo un enfoque estadístico en un área particular con la finalidad de relacionar estaciones a estas zonas y realizar la estimación de frecuencias a partir de los datos hidrológicos (Núñez, 2015, p.28).

Se considera al método Creager como el método estandarizado en nuestro país para la estimación de caudales máximos de diseño en lugares que carecen de información hidrométrica. Bajo este método, Trau, realizó el análisis regional de avenidas en los ríos peruanos, donde propone dividir el territorio peruano en 7 regiones; generalizando la envolvente de Creager, viéndose que los caudales máximos se dan en función del área de las cuencas hidrográficas y el periodo de retorno seleccionado que se ven afectados por 4 coeficientes constantes según el tiempo pero que ven su variación dependiendo de la región en donde nos ubicamos (Trau, 1979, p.13).

$$Q_{max} = (C_1 + C_2) * Log(T) * A^{mA^{-n}}$$

Siendo Q<sub>máx</sub>, el caudal máximo, T, el tiempo de retorno y A, el área de la cuenca. Los coeficientes se ven presentes en el siguiente cuadro (Narváez, 2012, p. 18).

Tabla 1: Constantes regionales para Perú para método Creager

| Región | C <sub>1</sub> | C <sub>2</sub> | n    | m    |
|--------|----------------|----------------|------|------|
| 1      | 1.01           | 4.37           | 1.02 | 0.04 |
| 2      | 0.10           | 1.28           | 1.02 | 0.04 |
| 3      | 0.27           | 1.48           | 1.02 | 0.04 |
| 4      | 0.09           | 0.36           | 1.24 | 0.04 |
| 5      | 0.11           | 0.26           | 1.24 | 0.04 |
| 6      | 0.18           | 0.31           | 1.24 | 0.04 |

| 7 | 0.22 | 0.37 | 1.24 | 0.04 |
|---|------|------|------|------|
|   |      |      |      |      |

Fuente: Traus, 1998, p.14.



Figura 1 Mapa de regionalización de las avenidas del Perú. Fuente: Traus, 1979.

Sobre el método L-moments, cuando queremos determinar qué tan frecuente suele ocurrir un evento estamos hablando implícitamente de un análisis de frecuencia. En hidrología, tener conocimiento de estos análisis es de suma importancia, ya que hay una serie de fuentes de incertidumbre con respecto a los procesos físicos que originan la data observada. Así pues, lo métodos de la estadística pueden detectar la presencia de incertidumbre y sus consecuencias, con la finalidad de poder cuantificarlos (Hosking, 1997, p. 20).

Si suponemos que las observaciones realizada se dan en intervalos de tiempo en cierta región, se llama a Q como el evento que sucede en cierto momento en un lugar puntual. Entonces se considera que Q es una variable aleatoria que según la teoría podría tomar valores del cero al infinito. El análisis está

fundamentado en la distribución de probabilidad de los valores factibles de Q. Así, se llama F(x) la probabilidad para que el valor de Q no exceda a x, expresada de la siguiente manera:

$$F(x) = O(Q \le X)$$

La función inversa a esta expresión viene siendo la función de densidad, que guarda relación a los cuantiles de la función de frecuencia. Además, expresa la magnitud de algún evento particular con la terminología probabilística de no exceder a F. El cuantil relacionado al tiempo de retorno T, se denomina Q<sub>T</sub>, viene a ser la magnitud de algún evento muy extremo que tiene una probabilidad 1/T de excederse a otro evento (Hosking, 1997, p. 20). Se verá expresado:

$$Q_T = x \left( 1 - \frac{1}{T} \right)$$

$$F(Q_T)=1-\frac{1}{T}$$

Cuando hablamos de eventos extremo con una magnitud minúscula que están ubicada en la parte inferior de la curva de distribución de frecuencia, queda así:

$$Q_T = x\left(\frac{1}{T}\right)$$

$$F(Q_T) = \frac{1}{T}$$

La idea es obtener estimaciones de cuantiles Q<sub>T</sub> y probabilidades relacionadas a los diferentes tiempos de retorno. En algunos casos estos tiempos de retorno son igualados al tiempo de vida útil de una infraestructura hidráulica. Frecuentemente, un cuantil relacionado a un tiempo de retorno específico poder estimarse de manera confiable usando una serie histórica de longitud adecuada, es decir, que sea mayor al tiempo de retorno a considerar. Esto sabemos que no es posible, en ingeniería al consultar la data vemos que difícilmente se pueda cumplir. Es por ello que se desarrollan este tipo de metodologías (Hosking, 1997, p. 20).

Para llevar a cabo el método basado en L-moments se tiene que pasar por 5 etapas. A) realizar un análisis de datos, es decir, prepara una base de datos del parámetro que nos interesa. B) Realizar el cálculo de los L-moments, según

estación. C) Realizar la delimitación de las zonas homogéneas. D) Seleccionar la función de probabilidad y estimar los cuantiles. E) Finalmente, generar los mapas de los eventos máximos (Núñez, 2015, p.32).

Este método, para algunos especialistas, muestra características robustas en el análisis regional de frecuencias hidrológicas. El SENAMHI, muestra un estudio referente donde se estima los umbrales de inundación, pero solo para ríos de la vertiente del pacífico, proponiendo, a diferencia de la metodología anterior, solo 4 regiones para la costa peruana (SENAMHI, 2018, p. 14).

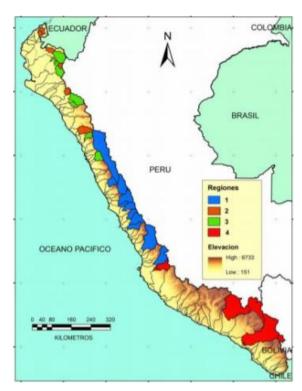



Figura 2 Regiones hidrológicas homogéneas para la estimación de caudales máximos en región del Pacífico.

Fuente: SENAMHI, 2018.

Tabla 2 Cuantiles regionales en la región hidrográfica del Pacífico.

|         | Parámetros Cuantiles regionales para probabilidades de no excedencia F |        |         |       |       |          |       |       |       |       |       |        |
|---------|------------------------------------------------------------------------|--------|---------|-------|-------|----------|-------|-------|-------|-------|-------|--------|
| Distrib | Xi                                                                     | Alpha  | l.      | F=0.5 | 0.8   | 0.9      | 0.95  | 0.98  | 0.99  | 0.995 | 0.998 | 0.999  |
|         | (x)                                                                    | (a)    | k       | TR=2  | 5     | 10       | 20    | 50    | 100   | 200   | 500   | 1000   |
|         |                                                                        |        |         |       |       | Región 1 |       |       |       |       |       |        |
| GEV     | 0.7860                                                                 | 0.3225 | -0.0804 | 0.906 | 1.300 | 1.581    | 1.868 | 2.264 | 2.581 | 2.915 | 3.386 | 3.765  |
|         | Región 2                                                               |        |         |       |       |          |       |       |       |       |       |        |
| GNO     | 0.7976                                                                 | 0.5027 | -0.7083 | 0.797 | 1.376 | 1.847    | 2.363 | 3.128 | 3.775 | 4.488 | 5.539 | 6.423  |
|         |                                                                        |        |         |       |       | Región 3 |       |       |       |       |       |        |
| GLO     | 0.7403                                                                 | 0.3261 | -0.3974 | 0.740 | 1.343 | 1.885    | 2.564 | 3.774 | 5.017 | 6.647 | 9.615 | 12.695 |
|         |                                                                        |        |         |       |       | Región 4 |       |       |       |       |       |        |
| GNO     | 0.8874                                                                 | 0.5671 | -0.3826 | 0.887 | 1.450 | 1.825    | 2.186 | 2.657 | 3.015 | 3.376 | 3.864 | 4.240  |

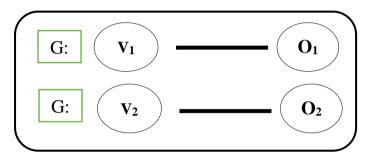
Conocer los caudales adecuados nos va a permitir determinar, por ejemplo, la altura óptima de una obra hidráulica de protección o dique. Para esto debemos realizar un estudio topográfico de la zona a intervenir. Según Espinoza (2019, p. 28), un estudio topográfico nos ayudará a conocer las secciones transversales del tramo del río. Conocer los niveles del fondo del cauce, de los bancos y de las llanuras de inundación permitirán conocer los tirantes máximos ante un evento de avenida y con esto poder ubicar los diques adecuadamente y sobre todo asignarles la altura correcta. Es también de Vidal importancia averiguar cual es el número de Manning tanto de las llanuras de inundación como del cauce principal ya que este factor influye directamente en la determinación de los tirantes para diseño.

Según lo anterior, una modelación hidráulica requiere de ciertos elementos como topografía, rugosidad de las superficies y el caudal máximo adecuado. Con esto Ramos (2017, p. 4) recomienda el uso de HEC-RAS ya que este software tiene la capacidad para realizar simulación para distintos escenarios como flujo permanente, flujo cuasi no permanente y flujo con sedimentos. También recomienda que para la determinación de los caudales máximos el uso del software HEC-HMS resulta de mucha ayuda debido a su performance.

Hay que tener en cuenta que las márgenes de los ríos están compuestas por arena y limo. Debido a esto es necesario mantener el agua alejada de sus bancos que son sensibles a la erosión. Ya que esas márgenes son muy afectadas por los caudales máximos, y a su vez aumentan los tirantes de agua

y esto genera que se incremente la fuerza de arrastre generando erosión. (Puelles, 2015, p. 82).

## III. METODOLOGÍA


## 3.1. Tipo y diseño de investigación

# 3.1.1. Tipo de investigación:

Este trabajo es del tipo aplicada, debido a que se utiliza otras teorías para realizar su desarrollo.

## 3.1.2. Diseño de investigación

Este trabajo es del tipo no experimental descriptiva, porque no se manipular variables y solo se observan.



#### Donde:

G: Tributarios no aforado del río Tumbes

V<sub>1</sub>: método L-moments

V<sub>2</sub>: método Creager

O<sub>1</sub>: Observación 1

O2: Observación 2

## 3.2. Variables y operacionalización de variables

#### 3.2.1. Variables

V<sub>1</sub>: Método L-moments

V<sub>2</sub>: Método Creager

## 3.2.2. Dimensiones

- Eficiencia de los métodos, a nivel de cuenca.
- -Ajuste de los métodos, a nivel de subcuenca.

#### 3.2.3. Sub-dimensiones

- Estudio de frecuencias hidrológicas
- Análisis regional, a nivel de cuenca

- -Comparación estadística, a nivel de cuenca
- -Modelamiento hidrológico a nivel de subcuencas.
- -Análisis regional, a nivel de subcuencas.
- -Comparación estadística, a nivel de subcuencas.

#### 3.2.3. Matriz de operacionalización de variables

Ver Anexo N° 03.01

## 3.3. Población, muestra y muestreo

#### 3.3.1. Población

Cuencas de la vertiente del pacífico en Perú

Criterio de inclusión: cuencas que permitan la aplicación tanto del método Creager como L-moments.

#### 3.3.2. Muestra

Río Tumbes

El tamaño de la muestra es de un elemento dado que un número mayor aumentaría drásticamente la complejidad de los procedimientos. Se elige el río Tumbes dada la disponibilidad de datos necesarios para el estudio.

#### 3.4. Técnicas e instrumentos de recolección de datos

#### 3.4.1. Técnica

La técnica utilizada será la observación

#### 3.4.2. Instrumento de recolección de datos

- Fichas de recolección de información pluviométrica
- Ficha de recolección de información hidrométrica

#### 3.4.3. Validación del instrumento de recolección de datos

En la validación de los instrumentos a utilizar se tomarán en cuenta juicios de expertos en el tema, como por ejemplo en la obtención de los datos de pluviometría e hidrometría, se contará con un ingeniero civil especializado en la línea de diseño de obras hidráulicas, quien con su experiencia garantice la confiabilidad de los resultados.

#### 3.5. Procedimientos

El estudio de frecuencias hidrológicas inicia con la obtención de información hidrométrica de la estación "el tigre" en el río Tumbes. Se realiza el tratamiento de la data. Se fijarán tiempos de retorno de 5, 10, 25, 50, 100, 500, 1000, 5000, 10000 años. Luego de ello se aplicarán 5 modelos probabilísticos los cuales serán: Log normal, gamma, log Pearson II, GEV, Gumbel, luego determinaremos el modelo con el mejor ajuste con el criterio de información de Akaike. Este modelo nos permitirá estimar los caudales máximos finales.

El modelamiento hidrológico en cada subcuenca de los tributarios será realizado con modelo HEC-HMS, para esto es indispensable realizar el procesamiento de información base tales como Número de curva, precipitaciones máximas, tiempos de concentración, intensidad-duración-frecuencia de la lluvia máxima y hietograma de diseño. Para el caso de la precipitación la data será procesada del producto grillado PISCOp, correspondiente a precipitaciones máximas diarias, luego se realiza el análisis de frecuencia de máximos de lluvia a nivel de subcuencas. La determinación de curvas IDF considerándose el procesamiento de desagregación basados en el método de Dyck y Peschke. El número de curvas será procesado mediante la metodología del Servicio de Conservación de Suelos de los EEUU-SCS y basándose en productos satelitales globales disponibles de alta resolución espacial.

En esta etapa se construirá el modelo para reproducir eventos extremos de caudal para los tiempos 5, 10, 25, 50, 100, 500, 1000, 5000, 10000 años, en las subcuencas de Alto Puyango, Medio Puyango, Bajo Puyango, Cazaderos, El tigre, Puente tumbes, Cabuyal, Ceibal, Las Peñas, Guanábanos, Rica Playa, Cayana y San Jacinto. Así Mismo, en esta etapa se generarán caudales promedios mensuales con el modelo GR2M para estimar los caudales promedios máximos por cada subcuenca.

En la etapa de la aplicación de los métodos regionales en estudio, estos aplicarán para las subcuencas de Alto Puyango, Medio Puyango, Bajo Puyango, Cazaderos, El tigre, Puente tumbes, Cabuyal, Ceibal, Las Peñas, Guanábanos, Rica Playa, Cayana y San Jacinto. Previamente, se determinará una ecuación del tipo exponencial con lo cual se pretende aproximar el caudal máximo promedio en cuencas no aforadas en función al área de la cuenca (estos caudales van a provenir de la modelación hidrológica con GR2M). Con la ecuación resultante se procede a aplicar las dos metodologías en estudio y se obtendrán los caudales máximos de avenidas.

Finalmente, como se puede notar en los procedimientos anterior todos traen consigo el objetivo de estimar caudales máximos de diseños, las dos primeras metodologías traen consigo ya una aplicabilidad garantizada por encima de nuestros métodos en estudio, claro está que las primeras metodología exigen mayor cantidad de datos y de mayor calidad que los que requieren los métodos de L-moments y Creager. Es por ello que en esta etapa final se comparan estadísticamente los caudales estimados con metodología superiores y los que arrojan nuestras metodologías que son materia de estudio.

#### 3.6. Método de análisis de datos

Los datos recopilados de pluviometría e hidrometría tendrán que pasar por un procedimiento de análisis estadístico para detectar la consistencia, tendencia y presencia de saltos. Analizando la media y la desviación estándar con pruebas como T-Student y F de Fisher. En caso los datos no se adecúen a los lineamientos estadísticos correctos estos serán corregidos.

Un primer caso de comparación será entre los resultados de los métodos de estudio a nivel de la estación El tigre con los resultados del análisis de frecuencias hidrológicas de los datos hidrométricos. Este análisis se dará

para distintos tiempos de retorno mediante las pruebas de eficiencia de Nash-Sutcliffe, error cuadrático y R de determinación.

El segundo caso de comparación será entre los resultados de los métodos de estudio en los tributarios del río Tumbes con los resultados de la modelación hidrológica en cada subcuenca de los tributarios. Igualmente se analizará para diferentes tiempos de retorno mediante las pruebas de bondad de ajuste: eficiencia de Nash-Sutcliffe, "error cuadrático" y R de determinación.

## 3.7. Aspectos éticos

El presente trabajo de investigación tendrá en consideración las normas sobre la ética en la investigación de la Universidad, así como la Ley del Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica – Concytec (28613).

No se incluirá la invención, falsificación, manipulación o distorsión de información, experimentos y datos, alteración de resultados y conclusiones y, por ningún motivo, se entregará información o documentación falsa. Se guardará reserva respecto a información confidencial a la que el investigador tenga acceso.

#### IV. RESULTADOS

# 4.1. Determinación de la eficiencia, a nivel de cuenca de los L-moments y Creager

Para conseguir este primer objetivo, se realizó tres procedimientos. Inicialmente el estudio de frecuencias hidrológicos con los datos de caudales, luego se aplican los métodos en estudio a nivel de cuenca y finalmente se realizan las comparaciones para determinar la eficiencia de los métodos, a nivel de cuenca.

## 4.1.1. Estudio de frecuencias hidrológicas

El análisis probabilístico de realizó partiendo de la serie de caudales máximos registrados en la estación El tigre, correspondiente al periodo de 1964 al 2019. Una serie de que nos garantiza ser de una longitud adecuada para la aplicación de funciones de probabilidad.

Los datos fueron descargados de una fuente oficial que es la Autoridad Nacional del Agua (ANA) y con información proporcionada por el Proyecto Especial Binacional Puyango-Tumbes. Se desestimó la información de SENAMHI ya que carecía de consistencias.

Tabla 3 Caudales máximos diarios anuales del río Tumbes en estación El tigre

| Año         | Caudal<br>máx | Año         | Caudal<br>máx | Año         | Caudal<br>máx |
|-------------|---------------|-------------|---------------|-------------|---------------|
| Hidrológico | (m3/s)        | Hidrológico | (m3/s)        | Hidrológico | (m3/s)        |
| 1963-1964   | 537           | 1982-1983   | 2950          | 2002-2003   | 432.9         |
| 1964-1965   | 669.3         | 1983-1984   | 1095          | 2003-2004   | 500           |
| 1965-1966   | 427,5         | 1984-1985   | 320.4         | 2004-2005   | 622.6         |
| 1966-1967   | 582           | 1985-1986   | 896.4         | 2005-2006   | 1010.5        |
| 1967-1968   | 278.8         | 1986-1987   | 1605.7        | 2006-2007   | 575.5         |
| 1968-1969   | 866.7         | 1987-1988   | 500.6         | 2007-2008   | 1203.5        |
| 1969-1970   | 310.1         | 1988-1989   | 1251.7        | 2008-2009   | 1467.1        |
| 1970-1971   | 1370.2        | 1989-1990   | 344.6         | 2009-2010   | 1077.4        |
| 1971-1972   |               | 1990-1991   | 452           | 2010-2011   | 613.2         |
| 1972-1973   | 1191.4        | 1991-1992   | 1378.1        | 2011-2012   | 1339.3        |
| 1973-1974   |               | 1992-1993   | 1128.8        | 2012-2013   | 539.7         |
| 1974-1975   | 1224.6        | 1993-1994   | 752.1         | 2013-2014   | 571.6         |
| 1975-1976   | 645.6         | 1994-1995   | 373.7         | 2014-2015   | 1159.7        |

| 1976-1977 | 723   | 1995-1996 | 690.3  | 2015-2016 | 793.3  |
|-----------|-------|-----------|--------|-----------|--------|
| 1977-1978 | 371.4 | 1996-1997 | 914.6  | 2016-2017 | 1010.3 |
| 1978-1979 | 578.2 | 1997-1998 | 1916.1 | 2017-2018 | 415.2  |
| 1979-1980 | 358.6 | 1998-1999 | 1418.8 | 2018-2019 | 512.4  |
| 1980-1981 |       | 1999-2000 | 813.1  | 2019-2020 | 436.7  |
| 1981-1982 | 406   | 2000-2001 | 1477.7 |           |        |
| 1981-1982 |       | 2001-2002 | 1694   |           |        |

Fuente: ANA y PEBPT

#### Criterio de Fuller

El criterio de Fuller permitió convertir la serie de máximos diarios presentadas en el cuadro anterior a valores de caudales máximos instantáneos teniendo en cuenca el área de la cuenca detrás del punto de control, es decir, de la estación hidrométrica El Tigre. La fórmula está descrita de la siguiente manera:

$$F_f = 1 + \frac{2.66}{A^{0.30}}$$

Por procedimientos con software ARCGIS, que en el siguiente ítem se explicará con detalle, obtuvimos que el área de recepción de la cuenca detrás del punto de estación fue de 4969.29 km². Entonces considerando esta área, el criterio de Fuller y la serie de máximos diarios se obtuvo la siguiente tabla.

Tabla 4 Caudales máximos instantáneos del río Tumbes.

| Año<br>Hidrológico | Caudal<br>máx<br>(m3/s) | Año<br>Hidrológico | Caudal<br>máx<br>(m3/s) | Año<br>Hidrológico | Caudal<br>máx<br>(m3/s) |
|--------------------|-------------------------|--------------------|-------------------------|--------------------|-------------------------|
| 1963-1964          | 648.2                   | 1982-1983          | 3560.7                  | 2002-2003          | 522.5                   |
| 1964-1965          | 807.9                   | 1983-1984          | 1321.7                  | 2003-2004          | 603.5                   |
| 1965-1966          | 516.0                   | 1984-1985          | 386.7                   | 2004-2005          | 751.5                   |
| 1966-1967          | 702.5                   | 1985-1986          | 1082.0                  | 2005-2006          | 1219.7                  |
| 1967-1968          | 336.5                   | 1986-1987          | 1938.1                  | 2006-2007          | 694.6                   |
| 1968-1969          | 1046.1                  | 1987-1988          | 604.2                   | 2007-2008          | 1452.6                  |
| 1969-1970          | 374.3                   | 1988-1989          | 1510.8                  | 2008-2009          | 1770.8                  |
| 1970-1971          | 1653.8                  | 1989-1990          | 415.9                   | 2009-2010          | 1300.4                  |
| 1971-1972          |                         | 1990-1991          | 545.6                   | 2010-2011          | 740.1                   |

| 1972-1973 | 1438.0 | 1991-1992 | 1663.4 | 2011-2012 | 1616.5 |
|-----------|--------|-----------|--------|-----------|--------|
| 1973-1974 |        | 1992-1993 | 1362.5 | 2012-2013 | 651.4  |
| 1974-1975 | 1478.1 | 1993-1994 | 907.8  | 2013-2014 | 689.9  |
| 1975-1976 | 779.2  | 1994-1995 | 451.1  | 2014-2015 | 1399.8 |
| 1976-1977 | 872.7  | 1995-1996 | 833.2  | 2015-2016 | 957.5  |
| 1977-1978 | 448.3  | 1996-1997 | 1103.9 | 2016-2017 | 1219.4 |
| 1978-1979 | 697.9  | 1997-1998 | 2312.8 | 2017-2018 | 501.2  |
| 1979-1980 | 432.8  | 1998-1999 | 1712.5 | 2018-2019 | 618.5  |
| 1980-1981 |        | 1999-2000 | 981.4  | 2019-2020 | 527.1  |
| 1981-1982 | 490.0  | 2000-2001 | 1783.6 |           |        |
| 1981-1982 |        | 2001-2002 | 2044.7 |           |        |

## Modelos probabilísticos

Se aplicó cinco modelos probabilísticos recomendados por la literatura revisada las cuales fueron LogNormal (máxima verosimilitud), Gamma (máxima verosimilitud), Log-Pearson III (Método SAM), GEV (máxima verosimilitud) y Gumbel (método de momentos).

Se establecieron, con fines de análisis, 9 periodos de retorno los cuales fueron 5, 10, 25, 50, 100, 500, 1000, 5000, 10000. De esta manera, al realizar la comparación con los resultados que arrojen los métodos materia de estudio de este trabajo podamos visualizar si la eficiencia disminuye o aumente a mayor tiempo de retorno.

Los modelos probabilísticos fueron ejecutados utilizando el software Hyfran Plus en su versión 2.1. Para lo cual se obtuvieron los siguientes resultados:

Tabla 5 Caudales máximos de diseño del río Tumbes para diferentes tiempos de retorno

| Tiempo<br>de      | Modelos probabilística |       |                    |      |        |  |  |
|-------------------|------------------------|-------|--------------------|------|--------|--|--|
| retorno<br>(años) | LogNormal              | Gamma | Log<br>Pearson III | GEV  | Gumbel |  |  |
| 5                 | 1670                   | 1710  | 1650               | 1630 | 1730   |  |  |
| 10                | 2130                   | 2090  | 2120               | 2160 | 2140   |  |  |
| 25                | 2760                   | 2560  | 2770               | 3000 | 2670   |  |  |
| 50                | 3270                   | 2900  | 3310               | 3780 | 3060   |  |  |
| 100               | 3800                   | 3220  | 3880               | 4710 | 3440   |  |  |
| 500               | 5150                   | 3940  | 5410               | 7670 | 4340   |  |  |

| 100   | 5790 | 4240 | 6150 | 9390  | 4720 |
|-------|------|------|------|-------|------|
| 5000  | 7420 | 4930 | 8120 | 14900 | 5610 |
| 10000 | 8200 | 5210 | 9070 | 18100 | 5990 |

## Criterio de Akaike

Como podemos ver los 5 modelos se ajustan a la serie en estudio, sin embargo, debemos seleccionar únicamente una y quedarnos con los resultados de este modelo. Para el caso se utiliza el criterio de Akaike el cuál fue explicado anteriormente y que ya viene listo para usarse dentro del software Hyfran Plus. Al realizar las comparaciones bajo este criterio y usando el software se pudo determinar que el mejor método por tener el mejor ajuste fue el modelo Log Normal. Es decir, se consideró todos los resultados de este, verbigracia, para un tiempo de retorno de 50 años se obtendrá un caudal máximo de diseño de 3270 m³/s.

Tabla 6 Resultado del criterio de Akaike

| Modelos<br>Probabilísticos | Nb. | хт       | P(Mi) | P(Mi x) | BIC     | AIC     |
|----------------------------|-----|----------|-------|---------|---------|---------|
| LogNormal                  | 2   | 4357.738 | 20    | 64.48   | 816.208 | 812.305 |
| Gamma                      | 2   | 3537.84  | 20    | 16.82   | 818.895 | 814.992 |
| Log-Pearson tipo III       | 2   | 4507.686 | 20    | 9.86    | 819.963 | 814.109 |
| GEV                        | 2   | 5832.051 | 20    | 5.08    | 821.29  | 815.436 |
| Gumbel                     | 2   | 3828.523 | 20    | 3.76    | 821.89  | 817.987 |

Fuente: Elaboración propia.

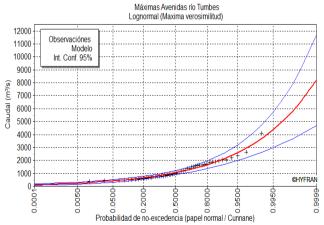



Figura 3 Ajuste del modelo seleccionado a la serie de caudales del río Tumbes. Fuente: Hyfran Plus

## 4.1.2. Análisis regional a nivel de cuenca

## Parámetros de forma de la cuenca

Principalmente, la cuenca del río Tumbes corresponde a la parte media y baja de la cuenca binacional Puyango-Tumbes, que está formada por territorio peruano y ecuatoriano. La cuenca binacional en su totalidad tiene un área de 5 460 km², sin embargo, el área que pertenece a la cuenca del río Tumbes solo son 1802 km².

En la cuenca del río Tumbes, se puede notar extensas llanuras con leves accidentes, poca vegetación y muestra característica de desieto. En general, la cuenca del río Tumbes va desde los 0 m.s.n.m hasta los 1500 m.s.n.m., aproximadamente.

Se recopiló información satelital DEM correspondientes a SRTM con una resolución de 30 m. Con la que, mediante el software GIS, se pudo elaborar un mapa hidrográfico de la cuenca del río Puyango-Tumbes.

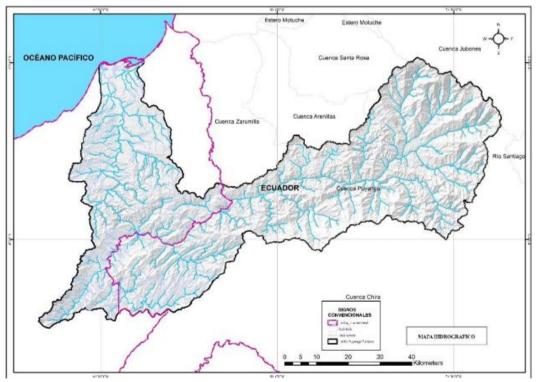



Figura 4 Mapa hidrográfico de la cuenca binacional Puyango-Tumbes. Fuente: Elaboración Propia.

A partir de los procesamientos realizados en el software GIS, tales como: importación de imagen DEM, georreferenciación, ubicación del punto de salida de la cuenca hacia el mar, aplicación de la herramienta hidrology (como relleno de sumideros, creación del raste de dirección de flujos, acumulación de flujos y delimitación de cuencas), recorte de límites de cuenca y cálculo de parámetros directos como área, perímetros, pendientes, densidad de cursos de agua y longitud de cauce principal.

Luego de ello, apoyados en las fórmulas disponibles en la literatura y con los datos calculados en el software se pasó a calcular el resto de parámetros de forma para la cuenca tanto para los parámetros de forma como los de relieve. A continuación, se resumen los parámetros calculados.

Tabla 7 Parámetros morfométricos de la cuenca del río Tumbes

| Parámetros morfométricos | Unidades | Puyango -<br>Tumbes |
|--------------------------|----------|---------------------|
| Área de la cuenca        | km2      | 5409.09             |
| Perímetro de la cuenca   | km       | 602.65              |

Fuente: Elaboración Propia

El valor del resto de parámetros calculados se podrá visualizar en el anexo 04.01, los cuales fueron ingresados al instrumento de observación correspondiente.

### Aplicación del método Creager

De acuerdo a los criterios considerados para la aplicación de este método se seleccionan los coeficientes de la región 1, que es la región a la que pertenece la región Tumbes. Es decir, para C<sub>1</sub>, C<sub>2</sub>, m y n le corresponden los valores de 1.01, 4.37, 1.02 y 0.04. Estos coeficientes son reemplazados en la fórmula:

$$Q_{max} = (C_1 + C_2) * Log(T) * A^{mA^{-n}}$$

Se obtuvieron resultados para tiempos de retorno de 2, 5, 10, 20, 25, 50, 100, 500 y 1000.

Tabla 8 Área de la cuenca - punto de salida estación "El tigre"

| Cuenca   | Sub | Área<br>(km2) | Qpromedio<br>máximo |
|----------|-----|---------------|---------------------|
| El Tigre | 5   | 4969.3        | 951.1               |

Fuente: Elaboración Propia

Tabla 9 Caudales máximos de cuenca - método Creager

| Envolventes de<br>Creager |         |  |  |  |
|---------------------------|---------|--|--|--|
| TR                        | Qmáx    |  |  |  |
| 2                         | 1809.6  |  |  |  |
| 5                         | 2589    |  |  |  |
| 10                        | 3619.2  |  |  |  |
| 20                        | 4398.6  |  |  |  |
| 25                        | 5178    |  |  |  |
| 50                        | 6987    |  |  |  |
| 100                       | 7767    |  |  |  |
| 500                       | 9576.6  |  |  |  |
| 1000                      | 10355.9 |  |  |  |

Fuente: Elaboración Propia

## Aplicación del método L-moments

Para a aplicación de este método se consideró los datos correspondientes a la región 2. Cuya curva de crecimiento es la que se presenta a continuación:

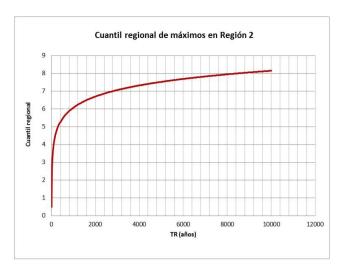



Figura 5 Cuantil regional de máximos en región 2

La utilidad de esta curva es que permite obtener de manera rápida el caudal máximo de avenidas para cualquier tiempo de retorno, conociendo sólo el caudal máximo promedio del sitio de interés de la siguiente manera,

$$Q_{m\acute{a}x-TR} = Q_{medios-m\acute{a}ximos} * Cuantil Regional$$

Para la estimación de los caudales máximos promedios en cada subcuenca se ha determinado una ecuación del tipo exponencial con la cual se aproxima el caudal máximo promedio en cuencas no aforadas, en función del área de la cuenca, como se observa:

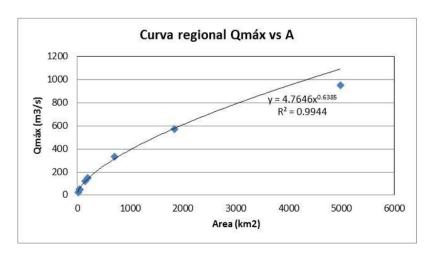



Figura 6 Curva regional caudal máximo versus área

Finalmente, con estos análisis previos se estima para cada subcuenca los caudales máximos de avenidas como se ve:

Tabla 10 Caudales máximos de cuenca - método L-moments

| L- moments |         |  |  |  |
|------------|---------|--|--|--|
| TR         | Qmáx    |  |  |  |
| 2          | 1130.8  |  |  |  |
| 5          | 1271.9  |  |  |  |
| 10         | 2326.6  |  |  |  |
| 20         | 2786.8  |  |  |  |
| 25         | 2893.6  |  |  |  |
| 50         | 3387.3  |  |  |  |
| 100        | 3843.66 |  |  |  |
| 500        | 4926    |  |  |  |
| 1000       | 5405.4  |  |  |  |

Fuente: Elaboración Propia

# 4.1.3. Comparación estadística

En esta etapa se aplicaron error cuadrático medio y el R de determinación al comparar los resultados de los métodos con los resultados de la función de probabilidad:

Tabla 11 Caudales máximos de diseño en comparación

| Tr (2~22) | Caudales máximos de diseño<br>(m³/s) |               |                |  |  |  |  |
|-----------|--------------------------------------|---------------|----------------|--|--|--|--|
| Tr (años) | Creager                              | L-<br>moments | Log-<br>normal |  |  |  |  |
| 2         | 1809.6                               | 1130.8        | 1670           |  |  |  |  |
| 5         | 2589                                 | 1271.9        | 2130           |  |  |  |  |
| 10        | 3619.2                               | 2326.6        | 2760           |  |  |  |  |
| 20        | 4398.6                               | 2786.8        | 3270           |  |  |  |  |
| 25        | 5178                                 | 2893.6        | 3800           |  |  |  |  |
| 50        | 6987                                 | 3387.3        | 5150           |  |  |  |  |
| 100       | 7767                                 | 3843.66       | 5790           |  |  |  |  |
| 500       | 9576.6                               | 4926          | 7420           |  |  |  |  |
| 1000      | 10355.9                              | 5405.4        | 8200           |  |  |  |  |

Fuente: Elaboración Propia

# Lo que se obtuvo fue:

Tabla 12 Indicadores estadístico de comparación I

| Estadístico | Creager | L-<br>moments |
|-------------|---------|---------------|
| RMSE        | 1517.4  | 1605.4        |
| R2          | 0.9935  | 0.9692        |

Fuente: Elaboración Propia

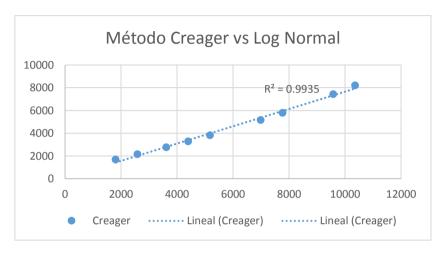



Figura 7 Método Creager vs Log Normal

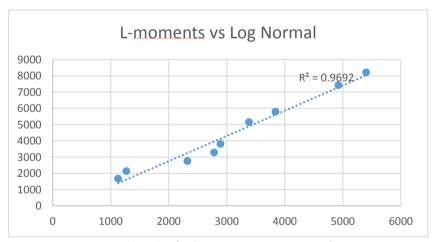



Figura 8 Método L-moments vs Log Normal

# 4.2. Determinación del ajuste, a nivel de subcuencas, de los L-moments y Creager

# 4.2.1. Modelamiento hidrológico a nivel de subcuencas

El modelamiento hidrológico de la cuenca ha sido realizado con modelo HEC-HMS para el cual es clave el procesamiento de información base como son Número de Curva, precipitaciones máximas, tiempos de concentración, la intensidad-duración-frecuencia de las lluvias máximas y hietogramas de diseño.

## Número de curva (CN) y retención máxima del suelo

El Número de Curva ha sido procesado siguiendo la metodología del Servicio de Conservación de Suelos de los EEUU-SCS y en base a productos satelitales globales disponibles alta resolución espacial. Para el siguiente estudio se ha elaborado el Mapa del Número de Curva para condiciones normales y húmedas.

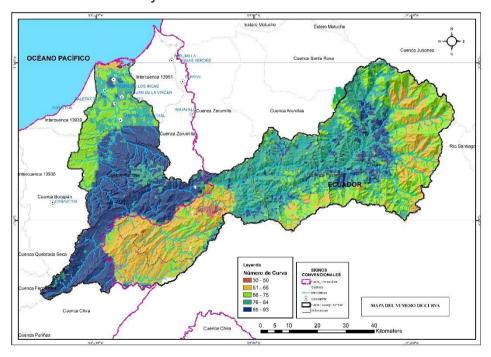



Figura 9 Mapa del número de curva – CN en cuenca Puyango-Tumbes. Fuente: elaboración propia

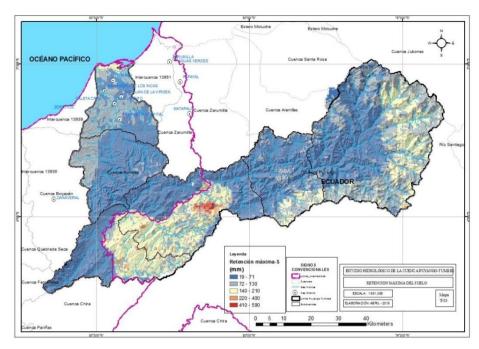



Figura 10 Mapa del número de retención máxima del suelo. Fuente: Elaboración propia.

# Cálculo de la precipitación e intensidad máximas para diferentes duraciones y tiempos de retorno

Las precipitaciones máximas han sido procesadas en base a la información de máximos del Producto PISCO que corresponde a precipitaciones máximas diarias. En base a esto se realiza el análisis de frecuencia de máximos de lluvias a nivel de subcuencas.

Las precipitaciones máximas diarias para convertirlas en máximas en 24 horas se multiplican por el factor 1.13 recomendada por OMM, puesto que las observaciones de lluvia son medidas en pluviómetros. Este factor es utilizado universalmente, sin embargo, puede tener algunas variantes según las regiones climáticas del mundo.

Las intensidades de lluvia se analizan a través de las curvas Intensidad-Duración-Frecuencia (IDF), considerando en primer término un procedimiento de desagregación de las lluvias máximas diarias a horarias y minutales basado en el método de Dyck y Peschke, que tiene la siguiente expresión matemática:

$$P_d = P_{24h} * \left(\frac{d}{1440}\right)^{0.25}$$

P<sub>d</sub>: es la precipitación estimada para cualquier duración, en mm
P<sub>24h</sub>: es la precipitación máxima diaria en 24 horas
D: es la duración de la tormenta, en horas.

Los resultados de todo el análisis de lluvias máximas, intensidades máximas y curvas I-D-F de cada subcuenca, se presentan en anexos, a continuación, se presentan dos mapas de precipitación máxima para TR=25 Y TR=100 años.

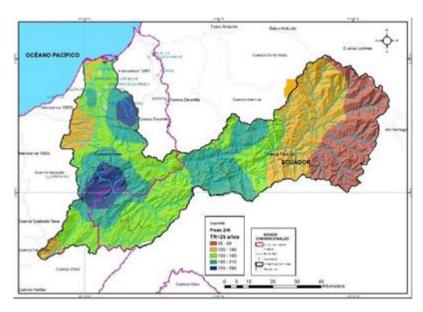



Figura 11 Mapa de precipitación máxima 24 h para TR=25 años. Fuente: Elaboración propia.

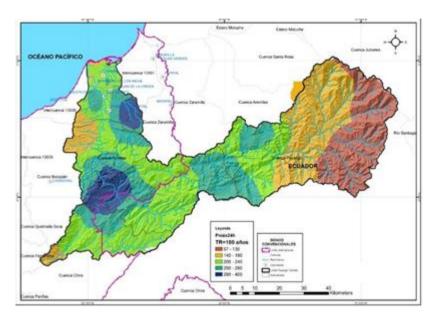



Figura 12 Mapa de precipitación máxima 24 h para TR=100 años. Fuente: Elaboración propia.

Los Hietogramas de diseño se elaboran aplicando la metodología del Bloque alterno.

# Modelamiento de eventos con HMS

Con toda la información precedente se construyó el modelo HEC-HMS para reproducir eventos extremos de caudal para los tiempos de retorno de 25, 50, 100, 1000, 5000 y 10000 años.

El modelo de cuenca se construyó a un nivel detallado con la inclusión de quebradas aportantes al río Tumbes en todo su curso, tal como se ilustra en Figura. El modelo se calibra con información de la Estación hidrológica "El Tigre".

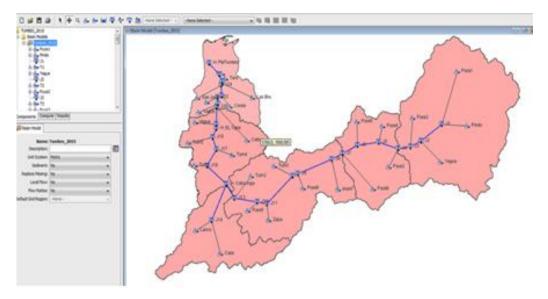



Figura 13 Esquematización del modelo de cuenca en HEC-HMS. Fuente: Elaboración propia.

Para el modelo meteorológico se utiliza la información de precipitaciones máximas en 24 horas para cada una de las subcuencas del modelo meteorológico propuesto. Para la desagregación de las lluvias se utiliza el método del Bloque alterno para tormentas de diseño de 24 horas de duración.

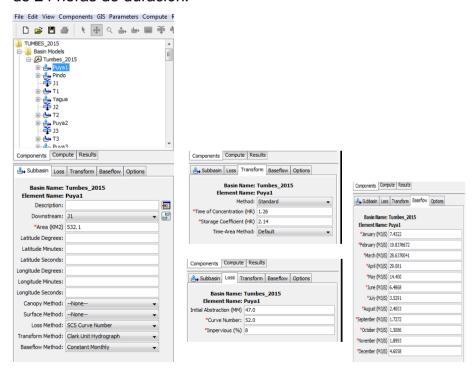



Figura 14 Configuración de parámetro para modelo de lluvia-escorrentía en HEC-HMS. Fuente: Elaboración propia.

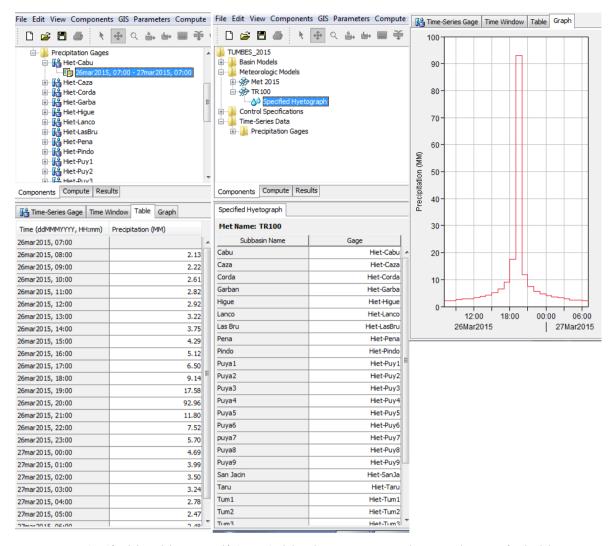



Figura 15 Esquematización del modelo meteorológico a nivel de subcuencas en Pmax desagregadas por método del Bloque alterno. Fuente: Elaboración propia.

A continuación, se presentan los principales parámetros físicos a nivel de subcuencas y quebradas de Puyango-Tumbes, con sus valores de precipitaciones máximas de avenidas para diferentes tiempos de retorno.

Tabla 13 Principales parámetros físicos a nivel de subcuencas de Puyango-Tumbes y sus valores de precipitaciones máximas de avenidas para diferentes tiempos de retorno. Fuente: elaboración propia.

| Subauanaa | Área          | Ро  | CN  | Тс   | K     |       |        |         |       |
|-----------|---------------|-----|-----|------|-------|-------|--------|---------|-------|
| Subcuenca | Área<br>(km2) | FU  | CIN | /h\  | TR=25 | TR=50 | TR=100 | TR=1000 |       |
| Puya 1    | 532.1         | 47  | 52  | 1.26 | 2.14  | 129.2 | 142.4  | 155.3   | 198.7 |
| Pindo     | 525.1         | 51  | 50  | 1.25 | 2.13  | 119.9 | 136    | 152.5   | 206.7 |
| Yaguachi  | 385           | 191 | 21  | 1.84 | 3.12  | 150.7 | 168.6  | 186.9   | 246.9 |
| Puya 2    | 190.7         | 82  | 38  | 1.66 | 2.83  | 150.3 | 165.4  | 180.1   | 229.6 |
| Puya 3    | 102           | 118 | 30  | 0.61 | 1.03  | 209.2 | 229    | 248.9   | 312.9 |
| Puya 4    | 76.1          | 51  | 50  | 0.76 | 1.29  | 156.9 | 169.8  | 182     | 223.5 |

| Puya 5     | 87.9  | 51  | 50 | 1.26 | 2.15 | 154.2 | 165.5 | 176.6 | 213.3 |
|------------|-------|-----|----|------|------|-------|-------|-------|-------|
| Puya 6     | 250   | 203 | 20 | 1.19 | 2.03 | 183.1 | 202.2 | 222.1 | 287.9 |
| Puya 7     | 117   | 203 | 20 | 1.25 | 2.13 | 181.3 | 201.3 | 222.7 | 292.6 |
| Puya 8     | 79.1  | 62  | 45 | 0.78 | 1.33 | 177.5 | 197.7 | 218.6 | 287.5 |
| Zapallos   | 297.7 | 203 | 20 | 1.12 | 1.91 | 172   | 189.9 | 207.8 | 267.7 |
| Puya 9     | 37.3  | 152 | 25 | 0.59 | 1    | 159.2 | 175.5 | 191.4 | 245.3 |
| Cazaderos  | 369.3 | 38  | 57 | 4.31 | 7.33 | 165.1 | 181.7 | 198   | 253.1 |
| Lancones   | 204.6 | 38  | 57 | 1.76 | 2.99 | 156.2 | 175.2 | 194.1 | 257.4 |
| Tum 1      | 84.5  | 62  | 45 | 1.12 | 1.91 | 167   | 187.6 | 209.2 | 279.6 |
| Tum 2      | 81.3  | 62  | 45 | 1.24 | 2.11 | 154.5 | 171.6 | 188.4 | 245.1 |
| Tum 3      | 89.8  | 42  | 55 | 0.95 | 1.61 | 148.8 | 166.1 | 183.7 | 241.8 |
| Tum 4      | 47.9  | 42  | 55 | 0.9  | 1.53 | 152.9 | 172.3 | 191.1 | 254.9 |
| Tum 5      | 55.8  | 42  | 55 | 0.88 | 1.5  | 149.8 | 171.5 | 192.9 | 264.6 |
| Higueron   | 30.3  | 12  | 82 | 0.81 | 1.38 | 148.2 | 169.5 | 190.2 | 260.2 |
| Cabuyal    | 187.8 | 42  | 55 | 1.7  | 2.9  | 159.4 | 182.1 | 204.9 | 280.7 |
| Vaquera    | 26.5  | 13  | 80 | 0.96 | 1.62 | 145.2 | 165.5 | 185.4 | 252.4 |
| Pena       | 13.8  | 12  | 80 | 0.52 | 0.89 | 144.5 | 164.7 | 184.8 | 252   |
| Cordalito  | 39    | 38  | 57 | 1.29 | 2.19 | 159.1 | 183.2 | 206.9 | 286.7 |
| S. Jacinto | 33.1  | 34  | 60 | 1.13 | 1.92 | 139.6 | 158.3 | 176.1 | 236.3 |
| Las Brujas | 139   | 37  | 58 | 2.15 | 3.65 | 166.6 | 193.3 | 220.4 | 309.8 |
| Tarucal    | 7.2   | 10  | 83 | 0.56 | 0.95 | 159   | 183.7 | 208.3 | 290   |
| Garbanzal  | 3.4   | 9   | 85 | 0.2  | 0.34 | 157.5 | 180.4 | 204.6 | 282.7 |

Después de obtener las precipitaciones para diferentes tiempos de retorno se procedió determinar la intensidad de lluvia en cada zona. Luego de ello se generaron los hietogramas de precipitación. Estos hietogramas junto a los parámetros ya calculados fueron ingresados al software obteniéndose como caudales máximos según tiempo de retorno por cada subcuenca en estudio los siguientes resultados.

Tabla 14 Caudales máximos de avenidas generados con HEC-HMS a nivel de subcuencas. Fuente: Elaboración propia.

|               | Área   | Caudales | Caudales en m3/s según tiempo de retorno |        |        |  |  |  |  |
|---------------|--------|----------|------------------------------------------|--------|--------|--|--|--|--|
| SUBCUENCAS    | (km²)  | 25       | 50                                       | 100    | 1000   |  |  |  |  |
| Alto Puyango  | 1831   | 1296.0   | 2120.0                                   | 2645.0 | 4593.0 |  |  |  |  |
| Medio Puyango | 2501.8 | 1606.0   | 2357.0                                   | 2905.0 | 4966.0 |  |  |  |  |
| Bajo Puyango  | 3621.5 | 2255.0   | 3216.0                                   | 3894.0 | 6448.0 |  |  |  |  |
| Cazaderos     | 692.4  | 428.0    | 1106.0                                   | 1323.0 | 2086.0 |  |  |  |  |
| El tigre      | 4969.3 | 2700.0   | 3250.0                                   | 3928.0 | 6470.0 |  |  |  |  |
| Puente Tumbes | 5510.7 | 3058.0   | 3432.0                                   | 4136.0 | 6768.0 |  |  |  |  |
| Cabuyal       | 187.8  | 140.0    | 518.0                                    | 656.0  | 1139.0 |  |  |  |  |
| Ceibal        | 39     | 29.1     | 146.5                                    | 186.0  | 320.0  |  |  |  |  |

| Las Peñas   | 139  | 104.0 | 405.0 | 515.0 | 895.0 |
|-------------|------|-------|-------|-------|-------|
| Guanábanos  | 48   | 36.0  | 189.0 | 235.0 | 396.0 |
| Rica Playa  | 55.8 | 42.0  | 222.0 | 283.0 | 497.0 |
| Cayana      | 89   | 67.0  | 316.0 | 390.0 | 648.0 |
| San Jacinto | 33.1 | 25.0  | 115.0 | 142.0 | 236.0 |

# 4.2.2. Análisis regional a nivel de subcuencas

## De la aplicación del método Creager

Luego de aplicar el método Creager de forma similar a como se aplicó a nivel de cuenca se obtuvieron los siguientes resultados:

Tabla 15 Caudales máximos de avenida generado por el método Creager

|               | Área   | Caudal          | Caudales | en m3/s seg | gún tiempo | de retorno |
|---------------|--------|-----------------|----------|-------------|------------|------------|
| Subcuencas    | (km²)  | medio<br>máximo | 25       | 50          | 1000       | 1000       |
| Alto Puyango  | 1831   | 576             | 2189.9   | 2661.5      | 3133.1     | 4699.6     |
| Medio Puyango | 2501.8 | 677             | 2576.1   | 3130.9      | 3685.6     | 5528.4     |
| Bajo Puyango  | 3621.5 | 816             | 3103.1   | 3771.3      | 4439.5     | 6659.3     |
| Cazaderos     | 692.4  | 336             | 1278.1   | 1553.3      | 1828.5     | 2742.7     |
| El tigre      | 4969.3 | 921.7           | 3619.2   | 4398.6      | 5178.0     | 7767.0     |
| Puente Tumbes | 5510.7 | 1000            | 3801.9   | 4620.6      | 5439.3     | 8159.0     |
| Cabuyal       | 187.8  | 150             | 571.8    | 694.9       | 818.1      | 1227.1     |
| Ceibal        | 39     | 50              | 189.6    | 230.5       | 271.3      | 407.0      |
| Las Peñas     | 139    | 123             | 468.4    | 569.3       | 670.1      | 1005.2     |
| Guanábanos    | 48     | 58.2            | 221.4    | 269.0       | 316.7      | 475.1      |
| Rica Playa    | 55.8   | 65              | 247.2    | 300.5       | 353.7      | 530.6      |
| Cayana        | 89     | 91              | 345.0    | 419.3       | 493.6      | 740.4      |
| San Jacinto   | 33.1   | 44              | 167.5    | 203.6       | 239.6      | 359.4      |

Fuente: Elaboración propia.

## De la aplicación del método L-moments

La aplicación del método L-moments teniendo en cuenta los coeficientes generados según tiempo de retorno nos arrojó los siguientes resultados:

Tabla 16 Caudales máximos de avenida generado por el método L-moments

|              | ,             | Caudal          | Caudales                | en m3/s seg             | gún tiempo              | de retorno              |
|--------------|---------------|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Subcuencas   | Área<br>(km2) | medio<br>máximo | L-<br>moments<br>(2.27) | L-<br>moments<br>(3.13) | L-<br>moments<br>(3.78) | L-<br>moments<br>(8.14) |
| Alto Puyango | 1831          | 576             | 1307.4                  | 1802.9                  | 2177.3                  | 3697.9                  |

| Medio Puyango | 2501.8 | 677   | 1536.6 | 2119.0 | 2559.1 | 4346.3 |
|---------------|--------|-------|--------|--------|--------|--------|
| Bajo Puyango  | 3621.5 | 816   | 1852.1 | 2554.1 | 3084.5 | 5238.7 |
| Cazaderos     | 692.4  | 336   | 762.6  | 1051.7 | 1270.1 | 2157.1 |
| El tigre      | 4969.3 | 921.7 | 2091.9 | 2884.8 | 3493.9 | 5917.1 |
| Puente Tumbes | 5510.7 | 1000  | 2269.7 | 3130.0 | 3780.0 | 6420.0 |
| Cabuyal       | 187.8  | 150   | 340.5  | 469.5  | 567.0  | 963.0  |
| Ceibal        | 39     | 50    | 113.5  | 156.5  | 189.0  | 321.0  |
| Las Peñas     | 139    | 123   | 279.2  | 385.0  | 464.9  | 789.7  |
| Guanábanos    | 48     | 58.2  | 132.1  | 182.2  | 220.0  | 373.6  |
| Rica Playa    | 55.8   | 65    | 147.5  | 203.5  | 245.7  | 417.3  |
| Cayana        | 89     | 91    | 206.5  | 284.8  | 344.0  | 584.2  |
| San Jacinto   | 33.1   | 44    | 99.9   | 137.7  | 166.3  | 282.5  |

## 4.2.3. Comparación estadística

En primer lugar, se aplicó la eficiencia de Nash-Sutcliffe para cada método, agrupados en tiempos de retorno de 25. 50. 100 y 1000 años. Esto con la finalidad de visualizar el desenvolvimiento de los métodos a mayor o menor tiempo de retorno. Se aplica esta comparación siguiendo las 13 subcuencas en estudio, las cuales cada una posee un curso principal son tributarios del río Tumbes. Se obtuvo lo siguiente:

Tabla 17 Comparación de los caudales máximos generados para un TR= 25 años

|               |           | L-      |           |      |
|---------------|-----------|---------|-----------|------|
| Subcuenca     | Creager   | moments | Promedio  | МН   |
| Alto Puyango  | 2189.9136 | 1307.4  | 1748.6568 | 1296 |
| Medio Puyango | 2576.1189 | 1536.6  | 2056.3595 | 1606 |
| Bajo Puyango  | 3103.1062 | 1852.1  | 2477.6031 | 2255 |
| Cazaderos     | 1278.0502 | 762.6   | 1020.3251 | 428  |
| El tigre      | 3619.2463 | 2091.9  | 2855.5732 | 2700 |
| Puente Tumbes | 3801.917  | 2269.7  | 3035.8085 | 3058 |
| Cabuyal       | 571.81156 | 340.5   | 456.15578 | 140  |
| Ceibal        | 189.64421 | 113.5   | 151.57211 | 29.1 |
| Las Peñas     | 468.3935  | 279.2   | 373.79675 | 104  |
| Guanábanos    | 221.3764  | 132.1   | 176.7382  | 36   |
| Rica Playa    | 247.2295  | 147.5   | 197.36475 | 42   |
| Cayana        | 345.03143 | 206.5   | 275.76571 | 67   |
| San Jacinto   | 167.49292 | 99.9    | 133.69646 | 25   |

Fuente: Elaboración propia.

Tabla 18 Comparación de los caudales máximos generados para un TR= 50 años

|               | _         | L-      |           |       |
|---------------|-----------|---------|-----------|-------|
| Subcuenca     | Creager   | moments | Promedio  | MH    |
| Alto Puyango  | 2661.4859 | 1802.9  | 2232.1929 | 2120  |
| Medio Puyango | 3130.8559 | 2119    | 2624.928  | 2357  |
| Bajo Puyango  | 3771.3237 | 2554.1  | 3162.7119 | 3216  |
| Cazaderos     | 1553.2634 | 1051.7  | 1302.4817 | 1106  |
| El tigre      | 4398.6086 | 2884.8  | 3641.7043 | 3250  |
| Puente Tumbes | 4620.6153 | 3130    | 3875.3076 | 3432  |
| Cabuyal       | 694.94448 | 469.5   | 582.22224 | 518   |
| Ceibal        | 230.48187 | 156.5   | 193.49094 | 146.5 |
| Las Peñas     | 569.25655 | 385     | 477.12827 | 405   |
| Guanábanos    | 269.04721 | 182.2   | 225.62361 | 189   |
| Rica Playa    | 300.46748 | 203.5   | 251.98374 | 222   |
| Cayana        | 419.3299  | 284.8   | 352.06495 | 316   |
| San Jacinto   | 203.56056 | 137.7   | 170.63028 | 115   |

Tabla 19 Comparación de los caudales máximos generados para un TR= 100 años

|               |           | L-      |           |      |
|---------------|-----------|---------|-----------|------|
| Subcuenca     | Creager   | moments | Promedio  | МН   |
| Alto Puyango  | 3133.0581 | 2177.3  | 2655.179  | 2645 |
| Medio Puyango | 3685.5929 | 2559.1  | 3122.3465 | 2905 |
| Bajo Puyango  | 4439.5413 | 3084.5  | 3762.0206 | 3894 |
| Cazaderos     | 1828.4765 | 1270.1  | 1549.2883 | 1323 |
| El tigre      | 5177.9709 | 3493.9  | 4335.9354 | 3928 |
| Puente Tumbes | 5439.3135 | 3780    | 4609.6568 | 4136 |
| Cabuyal       | 818.07739 | 567     | 692.5387  | 656  |
| Ceibal        | 271.31953 | 189     | 230.15977 | 186  |
| Las Peñas     | 670.1196  | 464.9   | 567.5098  | 515  |
| Guanábanos    | 316.71803 | 220     | 268.35901 | 235  |
| Rica Playa    | 353.70546 | 245.7   | 299.70273 | 283  |
| Cayana        | 493.62838 | 344     | 418.81419 | 390  |
| San Jacinto   | 239.62819 | 166.3   | 202.9641  | 142  |

Fuente: Elaboración propia.

Tabla 20 Comparación de los caudales máximos generados para un TR= 1000 años

|               |           | L-      |           |      |
|---------------|-----------|---------|-----------|------|
| Subcuenca     | Creager   | moments | Promedio  | МН   |
| Alto Puyango  | 4699.5871 | 3697.9  | 4198.7436 | 4593 |
| Medio Puyango | 5528.3894 | 4346.3  | 4937.3447 | 4966 |
| Bajo Puyango  | 6659.3119 | 5238.7  | 5949.006  | 6448 |
| Cazaderos     | 2742.7148 | 2157.1  | 2449.9074 | 2086 |
| El tigre      | 7766.9563 | 5917.1  | 6842.0282 | 6470 |
| Puente Tumbes | 8158.9703 | 6420    | 7289.4851 | 6768 |
| Cabuyal       | 1227.1161 | 963     | 1095.058  | 1139 |
| Ceibal        | 406.9793  | 321     | 363.98965 | 320  |
| Las Peñas     | 1005.1794 | 789.7   | 897.4397  | 895  |
| Guanábanos    | 475.07704 | 373.6   | 424.33852 | 396  |
| Rica Playa    | 530.55819 | 417.3   | 473.92909 | 497  |
| Cayana        | 740.44256 | 584.2   | 662.32128 | 648  |
| San Jacinto   | 359.44229 | 282.5   | 320.97115 | 236  |

## El cuadro siguiente, muestra las eficiencias calculadas:

Tabla 21 Eficiencia de Nash-Sutcliffe según método y tiempo de retorno, a nivel de subcuencas I

| Tr   | Creager   | L-<br>moments | Promedio  |
|------|-----------|---------------|-----------|
| 25   | 0.6714654 | 0.910201      | 0.9278518 |
| 50   | 0.8018227 | 0.9612195     | 0.9768533 |
| 100  | 0.8478413 | 0.9575215     | 0.9833883 |
| 1000 | 0.9477333 | 0.9634217     | 0.9887899 |

Fuente: Elaboración propia.

## Se presentan el error cuadrático medio encontrado para cada método.

Tabla 22 Error cuadrático medio (RMSE) de los métodos, a nivel de subcuencas I

| Tr   | Creager    | L-<br>moments |
|------|------------|---------------|
| 25   | 752.744286 | 393.543554    |
| 50   | 685.486375 | 303.234603    |
| 100  | 726.579427 | 383.901081    |
| 1000 | 705.462499 | 590.164557    |

Fuente: Elaboración propia.

En la tabla siguiente se muestra el coeficiente de determinación en las comparaciones de los métodos.

Tabla 23 Coeficientes de determinación de los métodos, a nivel de subcuencas I

| Tr   | Creager | L-<br>moments |
|------|---------|---------------|
| 25   | 0.977   | 0.9781        |
| 50   | 0.994   | 0.993         |
| 100  | 0.9931  | 0.9921        |
| 1000 | 0.9898  | 0.9885        |

Nuevamente, se realizó la comparación, pero excluyendo las subcuencas con mayor área y quedándonos con subcuenca por debajo de los 1000 km<sup>2</sup>.

#### Para el caso de la eficiencia de Nash-Sutcliffe se obtuvo:

Tabla 24 Eficiencia de Nash-Sutcliffe según método y tiempo de retorno, a nivel de subcuencas II

| Tr   | Creager    | L-<br>moments | Promedio   |
|------|------------|---------------|------------|
| 25   | 0.47836874 | 0.82937009    | 0.38943731 |
| 50   | 0.82842601 | 0.96850909    | 0.97981797 |
| 100  | 0.88929126 | 0.95514737    | 0.9879868  |
| 1000 | 0.96775006 | 0.94457959    | 0.98066685 |

Fuente: Elaboración propia.

#### El error cuadrático medio encontrado en esta nueva agrupación fue:

Tabla 25 Error cuadrático medio (RMSE) de los métodos, a nivel de subcuencas II

| Tr   | Creager    | L-<br>moments |
|------|------------|---------------|
| 25   | 441.488249 | 135.40915     |
| 50   | 244.825726 | 108.765007    |
| 100  | 244.219155 | 159.882662    |
| 1000 | 229.299158 | 305.39564     |

Fuente: Elaboración propia.

## Finalmente, para el caso de coeficiente R de determinación:

Tabla 26 Coeficientes de determinación de los métodos, a nivel de subcuencas II

| Tr   | Creager | L-<br>moments |
|------|---------|---------------|
| 25   | 0.9496  | 0.9494        |
| 50   | 0.9967  | 0.9968        |
| 100  | 0.9937  | 0.9938        |
| 1000 | 0.9841  | 0.9842        |

Fuente: Elaboración propia.

## V. DISCUSIÓN

Una primera discusión gira entorno a la selección de la función de distribución. Según los antecedentes de este trabajo tanto para Jiménez (2015, p. 98) como para Mejía (2015, p. 114) se establece que la función que muestra mejor desempeño es la función GEV mientras que para Liendo y Neyra (2019, p. 103) resulta más bien aceptable la función Log Pearson Tipo III. Sin embargo, en este trabajo gracias a la aplicación al criterio de Akaike se establece que la mejor opción es la función Log-Normal, esto pues es evidencia que no existe una función de distribución probabilística establecida para los análisis hidrométricos, sino que por ser estas series aleatorias podrán tener un mayor ajuste a algunas funciones en ciertas regiones mientras que para otras zonas la tendencia será hacia otras. De esta manera dejamos claro que es una necesidad aplicar el criterio de Akaike para futuros trabajos similares a este.

Como lo sugería Trau (1979, p. 1), es una necesidad tener elementos de juicio que a los ingenieros nos permite evaluar problemas de inundaciones y realizar el análisis técnico y económico para seleccionar correctamente los sitios tanto de aprovechamiento como de obras de defensa. Es a partir de este punto en que gira este trabajo de investigación. Queda claro que las envolventes de Creager adecuadas para la zona de Perú por Trau (1979, p. 16) es una herramienta que hasta el día de hoy se sigue aplicando en proyectos de obras hidráulicas de protección, conforme a las conclusiones del autor en su estudio. A continuación, detallaremos lo determinado en este trabajo con respecto a los resultados. En un primer momento, al realizar el análisis para toda una cuenca, es decir, tanto para este método como para L-moments, las características físicas de la cuenca son constantes y lo cambiante son los tiempos de retorno. Los valores resultantes comparados con los de la función probabilística tienen mayores índices sobre el otro método tal como un menor error cuadrático medio, sin embargo, tiende a estar muy por encima de los valores más confiables, que en este caso son los resultantes de la función probabilística. De acuerdo con Campos (2011, p. 192), el método de las envolventes de Creager por subregiones termina siendo el método regional menos complejo para estimar caudales máximos de diseño en tributarios o cuencas que no cuenten con datos.

Sin embargo, con lo comentado hasta este punto no se termina de evidenciar la mayor eficiencia predictiva del método Creager sobre el método L-moments, en la zona de estudio.

Por su parte, el método L-moments, método que se caracteriza por asignar un coeficiente según el tiempo de retorno que se aplicó, mostró un mayor detalle en la subregionalización, lo que quizás implique tener mejor resultados en comparación con el método Creager, sin embargo, hasta este punto, los valores estadísticos obtenidos luego de la comparación muestran resultados que están por debajo que el método Creager en cuanto a eficiencia predictiva. Se pudo observar que los valores arrojados por el método L-moments estuvieron por debajo de los valores resultantes de la función probabilística, lo que podría ser perjudicial ya que se estaría subdimensionando la obra a proyectar.

Para el cumplimiento del primer objetivo, debemos tener en cuenta que las condiciones físicas de la cuenca han sido constantes para todos los tiempos de retorno y, además, que se realizó la aplicación para una cuenca con dimensiones superiores a los cuatro mil kilómetros cuadrados. Se menciona esto ya que, como veremos más adelante, la aplicación de los métodos para cuencas de mayor o menor extensión puede modificar su calidad predictiva y eficiencia.

La optimización de obras hidráulicas en este trabajo hace referencia a evitar, mediante la recomendación de uno de los métodos, la subdimensión o sobredimensionamiento en el diseño de algún tipo de obra hidráulica, ya sea de protección (defensas ribereñas) o de drenaje (alcantarillas, pontones, etc). En ese sentido, según Núñez (2015, p. 143) -que hace referencia en que sus resultados obtenidos, basados en el método L-moments desarrollado en ámbito colombiano- pueden ser utilizado para el diseño de estructuras hidráulicas en tributarios no aforados según el tiempo de retorno que se considere. Sin embargo, SENAMHI (2018, p. 44), respecto al uso de los valores obtenido a partir del método L-moments para el territorio peruano, concluye que, si bien tiene un alto grado de confiabilidad en estudio de prefactibilidad y factibilidad, se debe tener especial reserva al momento de ser usado en el diseño de una estructura

hidráulica. A qué se debe la discrepancia. Pues, posiblemente, a la diferencia en la densidad de estaciones que existe entre Perú y Colombia, esto quiere decir que mientras alcancemos una mayor densidad de estaciones se podría regionalizar mejor las zonas hidrológicas. Esto hace ver también que, dentro de la regionalización de Perú, los valores encontrados puedan rendir mejores resultados en las zonas donde haya mayor presencia de estaciones hidrometeorológica como lo evidencian los resultados de este trabajo.

Dicho lo anterior y con la finalidad de establecer si alguno de los dos métodos muestra evidencias de poder ser usados en la cuenca del río Tumbes para la optimización de obras hidráulicas con los resultados obtenidos se discutió lo siguiente: Inicialmente, se consideró 13 subcuenca de la cuenca Puyango-Tumbes, para lo cual teniendo en cuenta tiempos de retorno de 25, 50, 100 y 1000 años se aplicó ambos métodos. Las subcuencas incluidas tenían áreas pequeñas desde los 33.1 km² hasta los 5510.7 km². Así mismo, se obtuvo los resultados de la modelación hidrológica usando HEC-HMS (los resultados de esta metodología son tomada en cuenta para diseño de obras hidráulicas siempre que haya podido ser calibrada y validada con datos de aforo). Con estos tres grupos de resultados obtenidos, se aplicó el coeficiente de Nash comparando el método Creager con los resultados de la modelación hidrológica y el método L-moments con los resultados de la modelación hidrológica. Los resultados fueron contundentes obteniendo valor de eficiencia de Nash por encima de 0.9 para el método L-moments, y aumentando la eficiencia directamente proporcional al tiempo de retorno, el mismo comportamiento mostrada el método de Creager, sin embargo, la eficiencia en tiempos de retorno bajos está muy por debajo de la eficiencia de L-moments, la eficiencia más cercana entre ellos se obtiene para un tiempo de retorno de 1000 años.

Se pudo observar con los resultados del método Creager, que están muy por encima de los resultados de la modelación hidrológica (pudiendo generar diseños sobredimensionados), mientras que en los resultados del método L-moments apareció un detalle importante, sus valores están ligeramente por encima de los resultados de la modelación hidrológica para área menores de

1000 km², pero para áreas mayores a esta los resultados que muestra L-moments son muy por debajo de la modelación hidrológica (pudiendo generar subdimensionamientos). Entonces, se puede inferir que L-moments no mantiene una buena performance para áreas de subcuencas mayores en la zona del río Tumbes a diferencia de Creager (aunque arroja valores elevados estos se mantienen sin importar el área). Esto último explicaría los resultados del primer objetivo específico de esta investigación: Creager se muestra como mejor opción (obteniéndose menos error cuadrático medio y mayor coeficiente de determinación) ya que para áreas extensas la calidad y confiabilidad del método L-moments decrece considerablemente. Esta evidencia no es enunciada en los trabajos de Núñez (2015) y SENAMHI (2018), sin embargo, esto está limitado a la zona de estudio del presente trabajo.

Con la anterior, quisimos indagar más acerca de los límites de buena performance para el método L-moments, a sabiendas que tiene mejor indicadores de eficiencia y error frente al método Creager. Es por ello, de las 13 subcuencas en estudio se decidió eliminar las subcuencas con áreas por encima de los 1000 km<sup>2</sup> por las razones antes explicadas. Los resultados de la comparación nuevo confirman en este grupo, que el error considerablemente hasta una tercera parte para ambos métodos pero siempre L-moments mostrando menores errores, lo que terminaría por confirmar su aplicación para áreas no mayor a 1000 km² para el caso de la zona en estudio. Sin embargo, se puede observar que los valores de eficiencia caen muy levemente en cuanto a eficiencia y coeficiente de determinación, sobre todo para tiempo de retorno de 25 años, una explicación a este decremento en la calidad se debe a que a tiempos de retorno como el de 25 años ambos métodos tiendan a elevar considerablemente los valores de caudales máximos de diseño. Con esto hemos logrado delimitar la aplicación de ambos métodos para las subcuencas en Tributarios no aforados del río Tumbes referente a áreas y tiempos de retorno.

Dado esto, según lo estipulado por MTC (2018, p. 24-25) en el Manual de hidrología, hidráulica y drenaje para obras hidráulicas de drenaje como puentes,

alcantarillas de paso, badenes, subdrenes y defensas ribereñas, teniendo en cuenta los porcentajes de riesgo admisible y vida útil se podrán calcular el tiempo de retorno a considerar (teniendo desde 1 hasta 19 900 años). Para obras hidráulicas, aproximadamente, se considera como obras de protección frente a inundaciones de 20 a 100 años, alcantarillas y badenes 71 años, para puentes y pontones medianos 140 año, bocatomas 40 a 50 años, estudios de socavación en puentes mayores 500 años y para represas 1000 años. recomienda como métodos para el cálculo de caudales máximos el método racional y racional modificado (MTC, 2018, p. 48, métodos que son demasiado simplificados y que tiene una limitación en su aplicación ya que solo puede ser usado para cuencas hasta 10 km<sup>2</sup>, sin embargo, no existe una restricción en el tiempo de retorno. El método racional incrementa en demasía los valores esperado de caudal máximo, en ese caso sería muy importante reemplazar su uso con el método L-moments para el diseño de obras hidráulicas de drenaje o de protección ya que luego del método racional el manual recomienda métodos que requieren, necesariamente, de información que muchas veces no está disponible.

#### VI. CONCLUSIONES

- 1. Se determinó que la calidad predictiva, a nivel de cuenca, favorece al método Creager, método que obtuvo un error cuadrático medio de 1517.4 y un coeficiente de determinación de 0.9935, frente a 1605.4 y 0.9692, respectivamente, del método L-moments. Sin embargo, ambas muestran valores muy lejanos de la prueba "gold estándar" con diferencias ente 1000 a 3000 m³/s (diferencia inaceptable). Mientras Creager muestra valores sumamente elevados L-moments muestra valores muy por debajo. En ambas situaciones su utilización generaría sub y sobre dimensionamientos, por lo que se concluye que la aplicación de cualquiera de los dos métodos en cuencas de áreas extensas resulta inadecuada en la zona de estudio.
- 2. Se determinó la eficiencia, a nivel de subcuencas, obteniéndose en promedio una eficiencia de 0.94 para el método L-moments y 0.82 para Creager. Además, se verificó un mayor error cuadrático medio con valores promedios de 600 y un menor coeficiente de determinación para el método Creager con valores cercanos al 0.9. Los indicadores de eficiencia mejoran aún más si es que la aplicación se da en subcuencas menores a 1000 km<sup>2</sup> y tiempos de retornos mayores a 50 años y que no excedan los 500 años. En ese sentido hay una probada superioridad de eficiencia del método L-moments, aplicable para obras hidráulicas tales como alcantarillas de paso, badenes, pontones y bocatomas siempre que el tiempo de retorno producto de la vida útil y el riesgo admisible se ubique en el rango recomendado, para tributarios no aforados del río Tumbes. Por otro lado, debido a que el método Creager es más antiguo, eso implica que la regionalización fue desarrollada con valores de lluvia hasta el año de su enunciado, mientras que el método L-moments muestra una mayor longitud de años de lluvia incluido en el estudio ya que este data del año 2018, por lo que se tendría una mejor data debido a la extensión y a la calidad de lectura de datos porque de un tiempo atrás el equipo tecnológico climatológico ha tenido avances en la medición de variables climatológicas.

#### VII. RECOMENDACIONES

- Se recomienda siempre utilizar el criterio de Akaike cuando se pretenda encontrar el mejor ajuste de una función de probabilidad con fines de encontrar caudal máximo de diseño.
- 2. Los sistemas de información geográfica son muy importantes para determinar valores de condiciones hidrológicas tales como uso del suelo y tipos de suelo, pero se recomienda que las bases de datos constantemente se actualicen ya que, aunque el tipo de suelo no cambiará, el uso de suelo es cambiante y puede influir en los resultados como el caudal máximo de diseño en una modelación hidrológica.
- 3. El uso del software HEC-HMS y sus hidrogramas unitarios que vienen con él deben ser usados siempre que los resultados se puedan calibrar y validar con datos hidrométricos, de no tener estos datos los resultados pueden no ser muy confiables y los diseños de obras hidráulicas podrían resultar inadecuados.
- 4. Se recomienda a partir de la metodología planteada sumar más métodos como el racional modificado para estimar caudales máximos de diseño en tributarios no aforados en la misma zona de estudio del presente trabajo, con la finalidad de recomendar un método mejor al del método L-moments para los fines que la ingeniería civil persigue que es la de diseñar obras hidráulicas.
- 5. Se recomienda cambiar la zona de estudio hacia otras cuencas de la vertiente del pacífico para verificar si, efectivamente, la tendencia del método L-moments, como mejor método de regionalización, se mantiene frente a otros métodos disponibles.

#### **REFERENCIAS**

- ÁLVAREZ, Manuel, PUERTAS, Jerónimo y SOTO, Benedicto. Análisis regional de las precipitaciones máximas en Galicia mediante el método del índice de avenida. España, 1999. 8 pp.
- ASSIS DOS REIS, Alberto [et. al.]. Assessing two precipitation data sources at basins of special interest to hydropower production in Brazil. Revista Brasilera de Recursos Hídricos [en línea]. 2020. ISSN 2318-0331. [fecha de Consulta 11 de Septiembre de 2020]. Disponible en: <a href="https://www.scielo.br/scielo.php?script=sci">https://www.scielo.br/scielo.php?script=sci</a> arttext&pid=S2318-03312020000100210
- 3. ATOCHE, Gabriel y ALEMÁN, Waldir. Estimación de caudales máximos en Cuencas secas y aplicación en diseños obras de defensas ribereñas: caso Quebrada Angostura, Tumbes. Tesis (Título de Ingeniero Agrícola). Perú: Tumbes, Universidad Nacional de Tumbes, Ingeniería Agrícola, 2019. 144 pp.
- AYROS, Eduardo y SALAZAR, Jack. Análisis regional de avenidas usando el método I-Moment Caso de estudio: la costa central del Perú. Lima, Universidad Nacional Mayor de San Marcos, III Congreso Nacional del Agua UNMSM, 2011.
- 5. BALZA, Elianny [et. al.]. Evaluación de la calidad y el caudal de aguas de una subcuenca hidrográfica ubicada en un parque nacional. Revista INGENIERÍA UC [en linea]. Volumen 26: 105-118, enero-abril 2019. [fecha de Consulta 25 de Septiembre de 2020]. Disponible en: <a href="https://www.redalyc.org/jatsRepo/707/70758484009/index.html">https://www.redalyc.org/jatsRepo/707/70758484009/index.html</a>
- 6. BENJAMIN, Jack y CORNELL, Allin. Probabilidad y estadística en ingeniería civil. Traducido por Sin, A. y Prieto, V. 9na edición, 1981. 685 pp. ISBN: 9684510500 9789684510500
- 7. CABEZAS Beaumont, Álvaro. Effect of the river disturbance regime on floodplain structure and organic matter accretion at the Middle Ebro River. Tesis (Licenciatura en Ciencias Biológicas). España, Universidad de León, Facultad de Ciencias Biologicas, 2018. 133 pp.
- 8. CÓRDOVA, Liendo [et. al.]. Modelación Probabilística de las Crecientes Máximas en ríos de La Vertiente Peruana del Pacífico. Perú: Lima, Universidad de Ciencias Aplicadas, Facultad de Ingeniería, 2019. 198 pp.

- DAVYDOVA-BELITSKAYA, Valentina [et. al.]. Un modelo de verificación de pronósticos de precipitación. Revista científica de américa latina [en linea]. Volumen 20: 24-33, 2016. ISSN: 1665-529X. [fecha de Consulta 20 de Septiembre de 2020]. Disponible en: <a href="https://www.redalyc.org/pdf/467/46750927003.pdf">https://www.redalyc.org/pdf/467/46750927003.pdf</a>
- 10. DÍAZ, Abelardo y GUEVARA, Edilberto. Modelación estocástica de los caudales medios anuales en la cuenca del rio Santa, Perú. Revista INGENIERÍA UC [en linea]. Volumen 23, agosto 2016. ISSN: 1316-6832. [fecha de Consulta 21 de Septiembre de 2020]. Disponible en: <a href="https://www.redalyc.org/pdf/707/70746634009.pdf">https://www.redalyc.org/pdf/707/70746634009.pdf</a>
- 11. DUQUE Sarango, Paola [et. al.]. Evaluación del Sistema de Modelamiento Hidrológico HECHMS para la Simulación Hidrológica De una Microcuenca Andina Tropical. Artículo Científico [en línea]. 2019. ISSN 0718-0764. [fecha de Consulta 21 de Septiembre de 2020]. Disponible en: <a href="https://scielo.conicyt.cl/scielo.php?script=sci\_arttext&pid=S0718-07642019000600351">https://scielo.conicyt.cl/scielo.php?script=sci\_arttext&pid=S0718-07642019000600351</a>
- 12. ESQUIVEL Arriaga, Gerardo. Hydrological modeling of a basin in Mexico's arid northern region and its response to environmental changes. Artículo científico [en línea]. 2017. DOI: 10.5154/r.inagbi.2016.12.008. [fecha de Consulta 14 de Septiembre de 2020]. Disponible en: <a href="https://www.researchgate.net/publication/318037770">https://www.researchgate.net/publication/318037770</a> Hydrological modeling of a basin in Mexico's arid northern region and its response to environ mental changes
- GALLEGO Arias, Santiago, CARVAJAL Serna, Luis Fernando. regionalización de Curvas de duración de caudales en el departamento de Antioquia-Colombia. Revista EIA [en linea]. 2017, 14(27), 21-30. [fecha de Consulta 27 de Septiembre de 2020]. ISSN: 1794-1237. Disponible en: <a href="https://www.redalyc.org/articulo.oa?id=149252659003">https://www.redalyc.org/articulo.oa?id=149252659003</a>
- 14. GÁLVEZ, Viviana. Inclam: Una obra hidráulica en el Perú es 10 veces más cara. [en línea]. elcomercio.pe. 11 de marzo de 2016. [Fecha de consulta: 02 de diciembre de 2020]. Disponible en: <a href="https://elcomercio.pe/economia/peru/inclam-obra-hidraulica-peru-10-veces-cara-212756-noticia/?ref=ecr">https://elcomercio.pe/economia/peru/inclam-obra-hidraulica-peru-10-veces-cara-212756-noticia/?ref=ecr</a>
- 15. GAMBA Mejía, José. Curvas de rendimiento de caudales máximos instantáneos asociados a diferentes periodos de retorno en Colombia, caso de estudio Río Magdalena. Colombia: Cartagena de Indias, Universidad Tecnológica de Bolívar, 2015. 124 pp.

- 16. GONZÁLEZ Sanchis, María. Flooding dynamics and nutrient retention in the middle Ebro floodplainexperimental assessment and numerical modeling. Tesis. España, Universidad Politécnica de Valencia, 2012.
- 17. GUTIÉRREZ López, Alfonso y BARRAGÁN Regalado, Raisa. Ajuste de curvas IDF a partir de tormentas de corta duración. Instituto Mexicana de tecnología del agua [en línea]. 2019. [fecha de Consulta 28 de Septiembre de 2020]. Disponible en: <a href="http://revistatyca.org.mx/ojs/index.php/tyca/article/view/1875/1676">http://revistatyca.org.mx/ojs/index.php/tyca/article/view/1875/1676</a>
- 18. GUTIÉRREZ Varón, Sandra y VARGAS Cuervo, Germán. Análisis de la susceptibilidad por inundaciones asociadas con la dinámica fluvial del río Guatiquía en la ciudad de Villavicencio, Colombia. Revista Colombiana de Geografía [en línea]. 28 (1): 152-174. doi: 10.15446/rcdg.v28n1.70856.2. [fecha de Consulta 27 de Septiembre de 2020]. Disponible en: <a href="http://www.scielo.org.co/scielo.php?pid=S0121-215X2019000100152&script=sci\_abstract&tlng=es">http://www.scielo.org.co/scielo.php?pid=S0121-215X2019000100152&script=sci\_abstract&tlng=es</a>
- 19. GUTIÉRREZ López, Alfonso [et. al.]. Análisis de la variabilidad espacial en la precipitación en la zona metropolitana de Querétaro empleando ecuaciones de anisotropía. Instituto de Geografía [en línea]. 2019. ISSN 2448-7279. [fecha de Consulta 28 de Septiembre de 2020]. Disponible en: <a href="http://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S0188-46112019000200104">http://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S0188-46112019000200104</a>
- 20. HOSKING, John. L-Moments: Analysis and estimation of distribution using linear combinations of order statics. Journal of the Royal Statistics Society. 1990. DOI: <a href="https://doi.org/10.1111/j.2517-6161.1990.tb01775.x">https://doi.org/10.1111/j.2517-6161.1990.tb01775.x</a> . 250 pp.
- 21. HOSKING, Jim [et. al.]. Some statistics useful in regional frequency analysis, Water Resource. 1993. DOI: <a href="https://doi.org/10.1029/92WR01980">https://doi.org/10.1029/92WR01980</a>. 140 pp.
- 22. HOSKING, Jim & WALLIS, James. Regional frequency analysis. 1<sup>st</sup> edition: Cambrige University Press, 1997. 210 pp.
- 23. JHONES DA SILVA, Amorin [et. al.]. Streamflow regionalization for the Mortes River Basin upstream from the Funil Hydropower Plant, MG. Revista Ambiente & Água [en línea]. 2020. ISSN 1980-993X. [fecha de Consulta 16 de Septiembre de 2020]. Disponible en: <a href="https://www.scielo.br/scielo.php?pid=S1980-993X20200003003038script=sci">https://www.scielo.br/scielo.php?pid=S1980-993X20200003003038script=sci</a> arttext
- 24. JIMÉNEZ Álvarez, Antonio. Desarrollo de metodologías para mejorar la estimación de los hidrogramas de diseño para el cálculo de los órganos de

- desagüe de las presas. Tesis (Doctorado en Ingeniería de caminos, canales y puertos). España: Universidad Politécnica de Madrid, 2016. 169 pp.
- 25. JULCA, Sarango [et. al.]. Uso de series sintéticas de caudales medios mensuales en la planificación de la operación del sistema eléctrico interconectado nacional del Perú. Revista INGENIERÍA UC. Volumen 27, 54-68, 2020. [fecha de Consulta 24 de Septiembre de 2020]. Disponible en: https://www.redalyc.org/jatsRepo/707/70763088007/html/index.html
- 26. KITE, Geoff. Frequency and risk analyses in hydrology. Colorado, Fort Collins: Water Resources Publications, 1977. 224 pp.
- 27. KUMAR, Rakesh [et. al.]. Development of regional flood formulae using L moments for gauged and ungauged catchments of North Brahmnaputra river system. 1st Edition. India, 2003.
- 28. LANDWEHR, Maciunas, MATALES, N.C & WALLIS, James. Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Mónaco, 1979. 240 pp.
- 29. LINSLEY, Ray. Flood estimates. How goog are they?. Water Resources Research, 1986. DOI: https://doi.org/10.1029/WR022i09Sp0159S. 20 pp.
- 30. LOIZU, Javier. Evaluation of the improvement of streamflow prediction through the assimilation of remotely sensed soil moisture observations. Tesis. España: Universidad de Navarra, 2017.
- 31. Ministerio de Transportes y Comunicaciones. Manual de hidrología, hidráulica y drenaje. Perú: Lima, dirección general de caminos y ferrocarriles, 2018. 222 pp.
- 32. MONSALVE, German. Hidrología en la ingeniería. Colombia: Bogotá, 2005. 360 pp.
- Redacción Gestión. MVCS advierte un total de 142 obras paralizadas de agua y saneamiento [en línea]. Gestión.PE. 24 de agosto de 2017. [Fecha de consulta: 02 de febrero de 2020]. Disponible en: <a href="https://gestion.pe/economia/mvcs-advierte-total-142-obras-paralizadas-agua-saneamiento-142256-noticia/">https://gestion.pe/economia/mvcs-advierte-total-142-obras-paralizadas-agua-saneamiento-142256-noticia/</a>

- 34. NEVES Lima, Fernando [et. al.]. Joint calibration of a hydrological model and rating curve parameters for simulation of flash flood in urban areas. Revista Brasilera de Recursos Hídricos [en línea]. 2019. ISSN 2318-0331. [fecha de Consulta 12 de Septiembre de 2020]. Disponible en: <a href="https://www.scielo.br/scielo.php?script=sci">https://www.scielo.br/scielo.php?script=sci</a> arttext&pid=S2318-03312019000100222
- 35. NÚÑEZ, Jorge y VERBIST, Koen. Guía metodológica para la aplicación del Análisis Regional de Frecuencia de Sequías basado en L-momentos y resultados de aplicación en América Latina. Chile: Santiago, 2010. 87 pp.
- 36. NÚÑEZ Galeano, Lisandro. Adaptación del método L-moments para la regionalización de eventos máximos para las cuencas de Colombia. Tesis (Maestría en Hidrosistemas). Colombia: Universidad Javeriana, Facultad de Ingeniería, 2015. 161 pp.
- 37. Ministerio de economía y finanzas. Plan nacional de infraestructura para la competitividad. Perú: PNIC, 2018. Disponible en https://www.mef.gob.pe/contenidos/inv\_privada/planes/PNIC\_2019.pdf
- 38. OLIVEIRA LIMA, Alexandre [et. al.]. Morphometry and longitudinal profile of the river cobras sub-basin in planning the location of underground dams. Revista Ciencia agronómica [en línea]. 2019. ISSN 1806-6690. [fecha de Consulta 16 de Septiembre de 2020]. Disponible en: <a href="https://www.scielo.br/scielo.php?pid=S1806-66902019000400562&script=sci-arttext&tlng=en">https://www.scielo.br/scielo.php?pid=S1806-66902019000400562&script=sci-arttext&tlng=en</a>
- 39. PAZ, Fernando, LÓPEZ, Eliezer y MARÍN, Isabel. Validación del modelo expolineal precipitación-escurrimiento en un simulador de Iluvia. Revista Terra Latinoamericana [en linea]. Volumen 35: 329-341, 2017. ISSN: 1870-9982. [fecha de Consulta 18 de Septiembre de 2020]. Disponible en: <a href="http://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S0187-57792017000400329">http://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S0187-57792017000400329</a>
- 40. PLANASDEMUNT, Roig. Characterization of hydrological processes in a Mediterranean mountain research catchment by combining distributed hydrological measurements and environmental tracers. Tesis (Título en Ingeniería Civil y Ambiental). España, Universidad Politécnica de Catalunya, 2016. 171 pp.

- 41. PORTUGUEZ Maurtua, Domingo. Aplicación de la geoestadística a modelos hidrológicos en la cuenca del río cañete. Tesis (Magister en Recursos Hídricos) Perú: Lima, Universidad agraria la molina, 2017. 246 pp.
- 42. SENAMHI. Estimación de umbrales de inundación en la región hidrográfica del pacífico. Perú: Lima, dirección de hidrología, Ministerios del ambiente, 2018. 53 pp.
- 43. SINGH, Munindar [et. al.]. L moments based flood frequency modelling. Journal of the Institution of Engineers. 1st Edition. India, 2003. ISSN: 0020-336X
- 44. SÚAREZ Aguilar, Zagalo [et. al.]. Modelo matemático para estimar curvas de intensidad, duración y frecuencia de lluvias extremas en Tunja, Colombia. Artículo Científico [en línea]. 2020. ISSN 0718-0764. [fecha de Consulta 14 de Septiembre de 2020]. Disponible en: <a href="https://scielo.conicyt.cl/scielo.php?script=sci">https://scielo.conicyt.cl/scielo.php?script=sci</a> arttext&pid=S0718-07642020000100193
- 45. TRAUS, Wolfang y GUTIÉRRES, Raúl. Análisis regional de las avenidas en los ríos del Perú. Perú: Lima, Comisión multisectorial del plan nacional de ordenamiento de los recursos hidráulicos, 1979. 16 pp.
- 46. VALENÇA Virães, Múcio y ALMIR Cirilo, José. Regionalization of hydrological model parameters for the semi-arid region of the northeast Brazil. Revista Brasilera de Recursos Hídricos [en línea]. 2019. ISSN 2318-0331. [fecha de Consulta 11 de Septiembre de 2020]. Disponible en: <a href="https://www.scielo.br/scielo.php?script=sci\_arttext&pid=S2318-03312019000100244">https://www.scielo.br/scielo.php?script=sci\_arttext&pid=S2318-03312019000100244</a>
- 47. VARAS, Eduardo y BOIS, Philippe. Hidrología probabilística. Chile: Santiago, Universidad Católica de Chile, 1998. 156 pp.
- 48. VÉLEZ Upegui, Jorge [et. al.]. Redesign of a water quantity, quality, and sediment-monitoring network in a tropical region. Revista Facultad de Ingeniería Universidad de Antioquia [en línea]. 2020. ISSN 2422-2844. [fecha de Consulta 11 de Septiembre de 2020]. Disponible en: <a href="http://www.scielo.org.co/scielo.php?script=sci">http://www.scielo.org.co/scielo.php?script=sci</a> arttext&pid=S0120-62302020000300064

#### **ANEXOS**

#### Anexo N° 01 – Declaratoria de autenticidad del autor

Yo, Gianmarco Palmer Murga, estudiante de la escuela profesional de Ingeniería Civil de la Facultad de Ingeniería de la Universidad César Vallejo sede Trujillo, declaro bajo juramento que todos los datos e información que acompañan al Trabajo de Investigación titulado "Estudio comparativo de los métodos L-moments y Creager en la optimización de obras hidráulicas en tributarios no aforados del río Tumbes", son:

- 1. De mi autoría.
- El presente trabajo de investigación no ha sido plagiado ni total, ni parcialmente.
- El presente trabajo de investigación no ha sido publicado ni presentado anteriormente.
- 4. Los resultados presentados en el presente trabajo de investigación son reales, no han sido falseados, ni duplicados, ni copiados.

En tal sentido, asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Trujillo, noviembre de 2020

Palmer Murga, Gianmarco

DŃI: 73018682

#### Anexo N° 02 – Declaratoria de autenticidad del Asesor

Yo, , docente de la escuela profesional de Ingeniería Civil de la Facultad de Ingeniería de la Universidad César Vallejo sede Trujillo, revisor del trabajo de investigación titulado "Estudio comparativo de los métodos L-moments y Creager en la optimización de obras hidráulicas en tributarios no aforados del río Tumbes", del estudiante Gianmarco Palmer murga, constato que la investigación tiene un índice de similitud de % verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a los dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Trujillo, noviembre de 2020

Dr. Leopoldo Marcos Gutiérrez Vargas

Anexo N° 03 Anexos N° 03.01 - Matriz de Operacionalización de Variables

Tabla 27 Matriz de operacionalización de variables

| VARIABLES | DEFINICIÓN<br>CONCEPTUAL                                                    | DEFINICIÓN<br>OPERACIONAL                                 | DIMENSIONES                                                | SUB-<br>DIMENSIONES                                                        | INDICADORES                                                                | ESCALA DE MEDICION |
|-----------|-----------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|
|           |                                                                             |                                                           |                                                            | Estudio de frecuencias hidrológicas                                        | Longitud de serie (años) Tiempos de retorno (años) Caudales máximos (m3/s) |                    |
|           | . Método que                                                                |                                                           | Calidad pradiativa                                         |                                                                            | Latitud y longitud (°)                                                     | _                  |
|           | permite<br>establecer                                                       | Mmétodo que muestra                                       | Calidad predictiva,<br>a nivel de cuenca<br>del río Tumbes | Análisis regional a nivel de cuenca                                        | Área (m2) Caudales máximos (m3/s)                                          | Razón              |
|           | Método moments  Zonas homogéneas con la finalidad de aplicar una            | características<br>robustas en el análisis<br>regional de | del 110 Tullibes                                           | Comparación estadística                                                    | Error cuadrático medio y R<br>de determinación                             |                    |
| Método    |                                                                             | frecuencias.                                              |                                                            | Modelamiento                                                               | Caudales promedios (m <sup>3</sup> /s)                                     |                    |
| L-moments |                                                                             | Desarrollados para                                        |                                                            | hidrológico a nivel                                                        | Número de curva                                                            |                    |
|           | misma fórmula                                                               | ríos de la vertiente del                                  | Eficiencia a nivel                                         | de subcuencas                                                              | Tiempo de retardo (min)                                                    |                    |
|           | considerando los                                                            | pacífico, proponiendo                                     | Eficiencia, a nivel                                        |                                                                            | Caudales máximos (m3/s)                                                    |                    |
|           | mismos coeficientes para                                                    | 4 regiones para la costa peruana.                         | de subcuencas del río Tumbes                               | Análisis regional a                                                        | Tiempos de retorno (años)                                                  | Razón              |
|           | la zona<br>homogénea.                                                       |                                                           |                                                            | nivel de<br>subcuencas                                                     | Áreas de subcuencas (km²)                                                  |                    |
|           |                                                                             |                                                           |                                                            | Comparación<br>estadística                                                 | Eficiencia de Nash-Sutcliffe,<br>RMSE y R de<br>determinación.             |                    |
|           | Método de más<br>uso a nivel Método estandarizado<br>en nuestro país para 7 |                                                           | Estudio de frecuencias hidrológicas                        | Longitud de serie (años) Tiempos de retorno (años) Caudales máximos (m3/s) | Razón                                                                      |                    |

|         | mundial que                               | regiones a los largo y                             | Calidad predictiva                               |                                        | Latitud y longitud (°)                                         |       |
|---------|-------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------------------------|-------|
|         | tiene como<br>finalidad la                | ancho de nuestro país para la estimación de        | a nivel de cuenca<br>del río Tumbes              | Análisis regional a<br>nivel de cuenca | Área (m2)                                                      |       |
| Método  | estimación de la                          | caudales máximos de                                | der 110 Turribes                                 | niver de cuenca                        | Caudales máximos (m3/s)                                        |       |
| Creager | magnitud de<br>eventos<br>extraordinarios | diseño en lugares que<br>carecen de<br>información |                                                  | Comparación<br>estadística             | Error cuadrático medio y R de determinación                    |       |
|         | en los Estados<br>Unidos                  | hidrométrica                                       |                                                  | Modelamiento                           | Caudales promedios (m³/s) Número de curva                      |       |
|         |                                           |                                                    |                                                  | hidrológico a nivel<br>de subcuencas   | Tiempo de retardo (min)                                        |       |
|         |                                           |                                                    |                                                  | de Subcuericas                         | Caudales máximos (m3/s)                                        |       |
|         |                                           |                                                    | Eficiencia, a nivel de subcuencas del río Tumbes | Análisis regional a                    | Tiempos de retorno (años)                                      | Razón |
|         |                                           |                                                    | no rumbes                                        | nivel de<br>subcuencas                 | Áreas de subcuencas (km²)                                      | Nazon |
|         |                                           |                                                    |                                                  | Comparación<br>estadística             | Eficiencia de Nash-Sutcliffe,<br>RMSE y R de<br>determinación. |       |

Fuente: Elaboración propia

Anexo N°04 - Instrumentos de recolección de datos

Anexo N° 04.01 – Guía de observación 1- Ficha de recolección de datos

de precipitación máxima mensual (mm) Alto Puyango

| AÑO  | ENE   | FEB   | MAR   | ABR   | MAY  | JUN  | JUL | AGO | SEP | ОСТ  | NOV  | DIC   |
|------|-------|-------|-------|-------|------|------|-----|-----|-----|------|------|-------|
| 1981 | 4.7   | 15.2  | 52.7  | 19.0  | 2.7  | 4.2  | 0.5 | 0.8 | 0.2 | 17.1 | 19.5 | 6.1   |
| 1982 | 4.0   | 9.3   | 3.7   | 43.8  | 6.1  | 0.6  | 0.2 | 0.0 | 3.4 | 26.3 | 40.1 | 53.0  |
| 1983 | 80.5  | 53.0  | 101.9 | 146.2 | 84.0 | 30.8 | 2.1 | 0.3 | 4.4 | 30.2 | 11.9 | 24.9  |
| 1984 | 11.5  | 32.4  | 27.6  | 16.4  | 6.4  | 2.8  | 0.8 | 0.6 | 1.6 | 15.1 | 13.1 | 3.7   |
| 1985 | 4.2   | 14.8  | 18.1  | 4.4   | 20.3 | 0.7  | 0.2 | 1.4 | 2.1 | 12.0 | 4.9  | 5.3   |
| 1986 | 37.1  | 16.2  | 10.8  | 31.5  | 11.2 | 0.1  | 0.2 | 0.3 | 0.4 | 9.9  | 39.9 | 10.7  |
| 1987 | 44.4  | 44.0  | 33.8  | 58.9  | 4.7  | 0.6  | 1.8 | 0.7 | 1.3 | 16.9 | 15.3 | 1.6   |
| 1988 | 34.9  | 9.1   | 4.4   | 48.3  | 12.9 | 0.9  | 0.1 | 0.1 | 0.7 | 2.9  | 18.8 | 2.1   |
| 1989 | 42.2  | 36.3  | 28.6  | 28.6  | 9.8  | 6.5  | 0.1 | 0.4 | 0.7 | 20.0 | 3.4  | 0.9   |
| 1990 | 5.6   | 6.8   | 28.3  | 8.9   | 4.9  | 2.4  | 0.3 | 0.2 | 5.4 | 12.9 | 31.3 | 5.7   |
| 1991 | 4.7   | 22.0  | 19.6  | 18.2  | 7.4  | 2.6  | 0.3 | 0.1 | 0.5 | 6.4  | 12.9 | 8.8   |
| 1992 | 14.0  | 23.5  | 82.1  | 144.7 | 40.7 | 2.3  | 0.1 | 0.5 | 1.3 | 7.8  | 20.1 | 3.2   |
| 1993 | 8.5   | 26.7  | 36.3  | 31.8  | 11.5 | 2.4  | 0.8 | 0.3 | 1.0 | 26.1 | 17.9 | 9.1   |
| 1994 | 22.7  | 23.3  | 62.6  | 57.0  | 7.5  | 8.0  | 0.2 | 0.6 | 1.6 | 2.9  | 4.9  | 25.3  |
| 1995 | 12.8  | 48.7  | 14.1  | 34.3  | 10.7 | 1.1  | 0.7 | 0.3 | 1.3 | 11.0 | 22.4 | 19.6  |
| 1996 | 14.4  | 17.8  | 13.2  | 11.4  | 9.9  | 2.1  | 0.4 | 0.5 | 1.2 | 15.5 | 12.4 | 5.3   |
| 1997 | 5.8   | 16.7  | 64.4  | 42.7  | 9.2  | 10.1 | 1.4 | 0.3 | 6.3 | 33.6 | 66.6 | 103.6 |
| 1998 | 123.8 | 116.9 | 145.1 | 124.2 | 57.3 | 3.4  | 0.7 | 0.5 | 2.5 | 42.6 | 16.5 | 6.3   |
| 1999 | 33.2  | 68.3  | 65.5  | 63.4  | 13.9 | 7.0  | 0.4 | 0.2 | 3.1 | 22.4 | 2.7  | 13.7  |
| 2000 | 23.1  | 13.2  | 30.7  | 54.7  | 23.7 | 10.5 | 0.1 | 0.4 | 2.1 | 0.6  | 5.4  | 31.1  |
| 2001 | 29.6  | 15.1  | 80.9  | 71.4  | 4.2  | 1.2  | 0.6 | 0.3 | 1.2 | 6.3  | 56.2 | 8.2   |
| 2002 | 3.2   | 61.5  | 129.5 | 235.3 | 7.1  | 0.5  | 0.6 | 0.2 | 0.4 | 41.6 | 17.6 | 12.4  |
| 2003 | 38.6  | 39.9  | 13.3  | 15.4  | 5.3  | 4.7  | 0.7 | 0.2 | 1.3 | 1.5  | 18.6 | 22.2  |
| 2004 | 20.5  | 7.5   | 15.7  | 50.8  | 11.0 | 2.6  | 1.5 | 0.1 | 3.7 | 20.2 | 7.7  | 17.6  |
| 2005 | 11.6  | 8.7   | 28.6  | 42.2  | 2.0  | 2.8  | 0.1 | 0.2 | 0.9 | 13.1 | 7.2  | 7.8   |
| 2006 | 26.6  | 40.6  | 50.0  | 17.4  | 3.3  | 5.3  | 0.7 | 0.4 | 0.7 | 3.7  | 21.6 | 13.2  |
| 2007 | 30.9  | 4.7   | 25.8  | 24.1  | 9.4  | 1.5  | 0.3 | 1.0 | 0.2 | 13.0 | 21.4 | 4.8   |
| 2008 | 39.6  | 79.4  | 38.5  | 50.9  | 5.2  | 3.4  | 0.9 | 0.3 | 0.7 | 14.3 | 22.5 | 1.4   |
| 2009 | 61.0  | 36.3  | 30.7  | 31.9  | 3.0  | 3.3  | 0.3 | 0.4 | 1.1 | 3.5  | 35.2 | 9.0   |
| 2010 | 11.7  | 97.6  | 46.4  | 69.4  | 16.1 | 6.3  | 0.6 | 0.1 | 0.6 | 27.3 | 20.1 | 5.9   |
| 2011 | 38.1  | 22.7  | 11.8  | 84.7  | 15.0 | 2.3  | 2.2 | 0.2 | 1.1 | 8.3  | 25.9 | 11.4  |
| 2012 | 39.9  | 49.2  | 50.3  | 80.3  | 6.1  | 4.1  | 0.3 | 0.1 | 0.2 | 10.2 | 17.1 | 4.7   |
| 2013 | 17.1  | 47.6  | 71.8  | 43.0  | 38.3 | 0.7  | 0.4 | 0.7 | 0.3 | 30.4 | 1.0  | 4.3   |
| 2014 | 14.5  | 14.4  | 24.7  | 25.6  | 12.6 | 5.4  | 0.9 | 0.2 | 1.0 | 31.1 | 9.2  | 11.7  |
| 2015 | 10.9  | 16.9  | 77.7  | 39.7  | 29.6 | 4.8  | 0.6 | 0.1 | 0.1 | 15.0 | 23.8 | 7.5   |
| 2016 | 29.3  | 38.9  | 93.6  | 64.5  | 8.7  | 16.5 | 0.2 | 0.5 | 1.9 | 1.6  | 0.8  | 5.0   |
| 2017 | 63.8  | 59.8  | 104.3 | 58.7  | 45.4 | 2.8  | 0.2 | 1.3 | 0.7 | 20.1 | 4.3  | 6.5   |
| 2018 | 18.3  | 16.2  | 12.3  | 55.3  | 15.3 | 2.5  | 0.2 | 0.3 | 1.5 | 6.7  | 20.9 | 31.1  |

Anexo N° 04.02 – Guía de observación 2- Ficha de recolección de datos de precipitación máxima mensual (mm) Bajo Puyango

| AÑO  | ENE   | FEB   | MAR   | ABR   | MAY  | JUN | JUL | AGO | SEP | ОСТ  | NOV  | DIC  |
|------|-------|-------|-------|-------|------|-----|-----|-----|-----|------|------|------|
| 1981 | 3.0   | 14.2  | 41.6  | 17.2  | 0.9  | 0.5 | 0.2 | 0.1 | 0.1 | 4.3  | 7.8  | 2.1  |
| 1982 | 6.3   | 6.7   | 1.5   | 38.6  | 1.9  | 0.1 | 0.1 | 0.0 | 0.5 | 6.4  | 18.9 | 22.5 |
| 1983 | 90.9  | 76.0  | 82.3  | 180.1 | 39.6 | 5.2 | 1.8 | 0.1 | 0.4 | 7.2  | 3.6  | 9.5  |
| 1984 | 13.9  | 41.6  | 24.4  | 14.8  | 3.5  | 0.7 | 0.3 | 0.1 | 0.1 | 3.4  | 8.1  | 1.1  |
| 1985 | 4.2   | 19.2  | 17.6  | 2.6   | 8.3  | 0.2 | 0.0 | 0.3 | 0.3 | 3.1  | 1.0  | 2.1  |
| 1986 | 48.3  | 23.8  | 5.8   | 34.2  | 4.1  | 0.0 | 0.1 | 0.0 | 0.0 | 2.8  | 17.3 | 8.2  |
| 1987 | 49.1  | 60.0  | 28.9  | 57.8  | 4.1  | 0.1 | 0.7 | 0.1 | 0.4 | 4.1  | 5.8  | 0.4  |
| 1988 | 33.8  | 7.0   | 2.8   | 47.5  | 4.5  | 0.1 | 0.1 | 0.0 | 0.1 | 0.4  | 8.1  | 0.9  |
| 1989 | 61.7  | 57.3  | 35.5  | 35.9  | 2.5  | 1.3 | 0.1 | 0.1 | 0.0 | 5.0  | 2.2  | 0.2  |
| 1990 | 4.7   | 7.3   | 23.2  | 6.5   | 2.0  | 0.2 | 0.2 | 0.0 | 1.4 | 4.4  | 15.3 | 2.8  |
| 1991 | 3.8   | 24.5  | 20.4  | 11.1  | 4.7  | 0.3 | 0.1 | 0.0 | 0.2 | 2.6  | 3.7  | 3.6  |
| 1992 | 25.9  | 44.8  | 73.5  | 152.7 | 20.7 | 0.4 | 0.3 | 0.1 | 0.1 | 2.4  | 6.8  | 1.9  |
| 1993 | 7.1   | 50.9  | 50.6  | 68.1  | 8.9  | 0.7 | 0.9 | 0.1 | 0.1 | 11.5 | 5.4  | 4.5  |
| 1994 | 42.4  | 36.9  | 33.9  | 48.7  | 3.1  | 0.1 | 0.2 | 0.1 | 0.1 | 1.6  | 1.3  | 22.7 |
| 1995 | 22.9  | 50.9  | 9.2   | 29.2  | 6.2  | 0.1 | 0.9 | 0.1 | 0.1 | 4.1  | 7.6  | 6.3  |
| 1996 | 16.6  | 17.0  | 13.5  | 10.5  | 2.2  | 0.2 | 0.1 | 0.1 | 0.1 | 3.1  | 3.5  | 1.4  |
| 1997 | 8.4   | 16.2  | 50.6  | 73.8  | 17.2 | 3.6 | 1.5 | 0.2 | 6.0 | 12.8 | 39.7 | 61.4 |
| 1998 | 167.7 | 198.5 | 86.4  | 140.5 | 32.0 | 2.1 | 1.2 | 0.1 | 0.4 | 13.4 | 3.9  | 4.5  |
| 1999 | 23.2  | 65.7  | 78.6  | 145.2 | 11.0 | 0.7 | 0.2 | 0.0 | 0.3 | 3.0  | 0.4  | 3.8  |
| 2000 | 19.7  | 29.4  | 27.7  | 55.0  | 10.8 | 1.8 | 0.1 | 0.1 | 0.1 | 0.0  | 1.7  | 8.4  |
| 2001 | 42.3  | 25.7  | 57.1  | 63.2  | 2.3  | 0.1 | 0.2 | 0.1 | 0.1 | 0.6  | 22.9 | 3.9  |
| 2002 | 2.3   | 65.4  | 142.8 | 250.4 | 1.3  | 0.3 | 0.2 | 0.1 | 0.1 | 11.9 | 3.9  | 7.7  |
| 2003 | 28.8  | 37.4  | 22.6  | 20.0  | 1.3  | 1.1 | 0.4 | 0.1 | 0.1 | 0.2  | 4.2  | 8.3  |
| 2004 | 20.1  | 23.3  | 22.3  | 54.7  | 3.8  | 1.1 | 0.8 | 0.0 | 0.4 | 8.8  | 1.7  | 4.2  |
| 2005 | 7.4   | 5.0   | 23.3  | 33.8  | 0.4  | 1.7 | 0.0 | 0.1 | 0.0 | 2.7  | 4.8  | 5.4  |
| 2006 | 39.0  | 61.1  | 31.8  | 16.0  | 5.2  | 0.4 | 0.4 | 0.1 | 0.1 | 0.7  | 10.5 | 6.6  |
| 2007 | 51.6  | 5.2   | 28.9  | 27.7  | 1.8  | 0.1 | 0.2 | 0.2 | 0.0 | 2.4  | 6.2  | 5.3  |
| 2008 | 50.4  | 116.5 | 43.5  | 52.7  | 4.9  | 0.3 | 1.3 | 0.0 | 0.1 | 4.1  | 4.9  | 0.3  |
| 2009 | 103.1 | 73.7  | 30.3  | 38.5  | 3.3  | 0.5 | 0.1 | 0.2 | 0.1 | 0.5  | 9.3  | 3.8  |
| 2010 | 23.0  | 86.9  | 60.8  | 124.0 | 11.8 | 2.2 | 0.6 | 0.0 | 0.1 | 3.1  | 6.6  | 2.1  |
| 2011 | 30.2  | 25.0  | 6.6   | 87.7  | 7.0  | 2.0 | 2.3 | 0.0 | 0.1 | 6.8  | 5.6  | 4.6  |
| 2012 | 37.2  | 59.4  | 75.4  | 105.2 | 5.5  | 1.3 | 1.1 | 0.0 | 0.0 | 3.3  | 5.7  | 1.4  |
| 2013 | 26.5  | 32.3  | 44.6  | 36.4  | 10.3 | 0.1 | 0.2 | 0.1 | 0.0 | 9.9  | 0.2  | 1.3  |
| 2014 | 17.3  | 18.5  | 16.8  | 13.6  | 10.0 | 1.4 | 0.7 | 0.1 | 0.0 | 12.7 | 2.7  | 5.1  |
| 2015 | 13.3  | 22.6  | 64.2  | 102.0 | 22.7 | 2.7 | 0.8 | 0.0 | 0.0 | 4.7  | 7.1  | 11.9 |
| 2016 | 21.0  | 77.8  | 92.0  | 66.2  | 1.0  | 3.0 | 0.2 | 0.1 | 0.1 | 0.5  | 0.3  | 2.8  |
| 2017 | 109.9 | 88.7  | 113.6 | 80.9  | 23.8 | 0.8 | 0.2 | 0.3 | 0.2 | 4.9  | 1.2  | 1.7  |
| 2018 | 21.7  | 15.8  | 5.5   | 41.6  | 11.4 | 0.1 | 0.1 | 0.1 | 0.9 | 3.8  | 6.3  | 33.8 |

# Anexo N° 04.03 – Guía de observación 3- Ficha de recolección de datos de precipitación máxima mensual (mm) Bajo Tumbes

| AÑO  | ENE  | FEB   | MAR   | ABR  | MAY  | JUN | JUL | AGO | SEP | ОСТ | NOV | DIC  |
|------|------|-------|-------|------|------|-----|-----|-----|-----|-----|-----|------|
| 1981 | 0.3  | 9.8   | 22.2  | 5.1  | 0.4  | 0.4 | 0.2 | 0.1 | 0.0 | 0.1 | 0.3 | 1.2  |
| 1982 | 1.6  | 1.1   | 0.4   | 11.4 | 0.6  | 0.0 | 0.0 | 0.0 | 0.6 | 0.3 | 2.8 | 8.0  |
| 1983 | 42.8 | 68.7  | 105.9 | 42.0 | 32.8 | 5.5 | 1.5 | 0.1 | 8.0 | 0.5 | 0.4 | 10.5 |
| 1984 | 1.2  | 15.1  | 13.9  | 1.0  | 0.4  | 1.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.1 | 0.6  |
| 1985 | 8.0  | 3.9   | 13.6  | 0.5  | 2.9  | 0.2 | 0.1 | 0.1 | 0.0 | 0.5 | 0.1 | 1.2  |
| 1986 | 16.6 | 9.7   | 1.2   | 12.5 | 1.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 1.2 | 4.1  |
| 1987 | 22.8 | 26.3  | 48.5  | 10.3 | 0.6  | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.3  |
| 1988 | 4.8  | 11.9  | 2.3   | 9.4  | 1.2  | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.2 | 0.9  |
| 1989 | 18.4 | 101.9 | 14.3  | 5.8  | 0.7  | 1.2 | 0.0 | 0.3 | 0.0 | 0.4 | 0.1 | 0.1  |
| 1990 | 1.5  | 20.1  | 3.8   | 1.1  | 1.2  | 0.5 | 0.1 | 0.1 | 0.4 | 0.6 | 0.7 | 1.0  |
| 1991 | 0.7  | 13.8  | 27.9  | 1.7  | 10.2 | 0.2 | 0.0 | 0.1 | 0.0 | 0.4 | 0.4 | 3.4  |
| 1992 | 11.6 | 56.1  | 74.4  | 52.9 | 23.8 | 1.2 | 0.1 | 0.1 | 0.3 | 0.2 | 1.3 | 1.5  |
| 1993 | 4.6  | 34.8  | 22.5  | 11.0 | 11.0 | 8.0 | 0.4 | 0.3 | 0.0 | 0.9 | 0.1 | 2.6  |
| 1994 | 39.3 | 22.7  | 16.9  | 5.8  | 1.2  | 0.2 | 0.3 | 0.2 | 0.5 | 0.1 | 0.2 | 6.1  |
| 1995 | 19.9 | 12.2  | 11.0  | 1.3  | 6.3  | 0.2 | 0.2 | 0.3 | 0.0 | 0.5 | 3.2 | 5.8  |
| 1996 | 4.9  | 13.3  | 5.7   | 4.1  | 0.4  | 0.4 | 0.1 | 0.2 | 0.6 | 0.4 | 1.6 | 1.2  |
| 1997 | 2.4  | 11.9  | 76.3  | 24.7 | 11.9 | 3.0 | 1.4 | 0.2 | 1.0 | 1.4 | 9.8 | 69.0 |
| 1998 | 68.1 | 200.4 | 69.7  | 48.6 | 32.1 | 8.0 | 0.6 | 0.2 | 0.2 | 1.2 | 0.4 | 3.8  |
| 1999 | 3.7  | 36.3  | 106.1 | 24.7 | 5.7  | 0.9 | 0.2 | 0.1 | 0.5 | 0.6 | 0.5 | 1.4  |
| 2000 | 7.7  | 21.4  | 19.7  | 17.2 | 13.5 | 2.1 | 0.0 | 0.4 | 0.2 | 0.0 | 1.1 | 2.1  |
| 2001 | 15.5 | 16.8  | 69.5  | 17.0 | 1.1  | 0.1 | 0.1 | 0.2 | 0.3 | 0.0 | 5.1 | 2.9  |
| 2002 | 1.0  | 84.7  | 81.2  | 58.2 | 0.3  | 0.1 | 0.0 | 0.1 | 0.2 | 0.9 | 0.2 | 2.8  |
| 2003 | 13.9 | 18.5  | 9.1   | 4.8  | 1.5  | 1.0 | 0.4 | 0.2 | 0.1 | 0.0 | 0.5 | 16.4 |
| 2004 | 11.2 | 16.2  | 10.5  | 26.9 | 3.2  | 0.3 | 0.3 | 0.0 | 1.2 | 0.6 | 0.1 | 1.8  |
| 2005 | 3.5  | 6.0   | 13.2  | 25.9 | 0.1  | 0.5 | 0.0 | 0.1 | 0.0 | 0.5 | 2.3 | 5.4  |
| 2006 | 25.1 | 68.0  | 15.8  | 2.8  | 0.9  | 0.6 | 0.6 | 0.2 | 0.1 | 0.1 | 2.1 | 3.2  |
| 2007 | 36.5 | 3.0   | 19.0  | 3.8  | 1.0  | 0.2 | 0.1 | 8.0 | 0.1 | 0.7 | 2.6 | 1.4  |
| 2008 | 54.7 | 73.6  | 33.9  | 6.2  | 2.1  | 0.5 | 0.1 | 0.0 | 0.2 | 0.2 | 1.0 | 0.1  |
| 2009 | 53.7 | 51.8  | 11.0  | 5.9  | 0.6  | 0.2 | 0.0 | 0.3 | 0.3 | 0.1 | 1.8 | 1.3  |
| 2010 | 5.5  | 49.5  | 57.1  | 46.6 | 2.4  | 1.2 | 0.2 | 0.0 | 0.1 | 0.1 | 1.0 | 1.3  |
| 2011 | 5.7  | 16.8  | 3.8   | 15.7 | 1.7  | 0.4 | 1.4 | 0.0 | 0.0 | 0.2 | 0.7 | 1.7  |
| 2012 | 12.7 | 50.2  | 43.6  | 29.4 | 5.4  | 2.6 | 0.2 | 0.0 | 0.0 | 0.2 | 0.9 | 1.2  |
| 2013 | 5.7  | 17.6  | 25.2  | 27.7 | 2.3  | 0.5 | 0.2 | 0.1 | 0.0 | 0.9 | 0.0 | 1.4  |
| 2014 | 13.8 | 14.3  | 4.5   | 5.0  | 10.3 | 2.7 | 0.4 | 0.1 | 0.1 | 1.3 | 0.2 | 4.9  |
| 2015 | 7.3  | 19.9  | 45.0  | 32.4 | 30.5 | 1.0 | 0.5 | 0.0 | 0.0 | 0.6 | 0.4 | 3.9  |
| 2016 | 9.0  | 81.0  | 83.9  | 20.3 | 1.1  | 2.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.0 | 2.2  |
| 2017 | 67.4 | 51.5  | 66.0  | 23.2 | 21.4 | 1.0 | 0.1 | 0.3 | 0.3 | 0.4 | 0.2 | 0.4  |
| 2018 | 6.2  | 17.1  | 4.8   | 2.2  | 14.2 | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | 0.8 | 34.4 |

# Anexo N° 04.04 – Guía de observación 4- Ficha de recolección de datos de precipitación máxima mensual (mm) Cazaderos

| AÑO  | ENE   | FEB   | MAR   | ABR   | MAY  | JUN | JUL | AGO | SEP | ОСТ | NOV  | DIC  |
|------|-------|-------|-------|-------|------|-----|-----|-----|-----|-----|------|------|
| 1981 | 1.5   | 14.2  | 52.4  | 7.7   | 0.6  | 0.2 | 0.1 | 0.1 | 0.0 | 1.6 | 2.7  | 1.5  |
| 1982 | 3.7   | 6.1   | 1.3   | 12.6  | 1.5  | 0.0 | 0.1 | 0.0 | 0.6 | 2.2 | 7.3  | 17.6 |
| 1983 | 74.6  | 97.6  | 106.0 | 86.2  | 22.9 | 3.0 | 1.4 | 0.1 | 0.4 | 2.5 | 1.3  | 5.2  |
| 1984 | 9.4   | 53.8  | 34.9  | 6.7   | 1.8  | 0.3 | 0.2 | 0.1 | 0.2 | 1.2 | 3.6  | 8.0  |
| 1985 | 2.4   | 25.8  | 24.6  | 0.9   | 4.9  | 0.1 | 0.0 | 0.3 | 0.1 | 0.9 | 0.3  | 1.5  |
| 1986 | 34.2  | 25.2  | 6.1   | 14.3  | 2.3  | 0.0 | 0.1 | 0.0 | 0.0 | 0.8 | 6.2  | 4.8  |
| 1987 | 35.5  | 85.6  | 51.6  | 25.8  | 2.0  | 0.1 | 0.4 | 0.1 | 0.1 | 1.6 | 2.1  | 0.3  |
| 1988 | 20.8  | 7.1   | 2.9   | 25.3  | 2.2  | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 3.2  | 0.5  |
| 1989 | 47.2  | 66.0  | 23.7  | 16.4  | 1.4  | 0.7 | 0.1 | 0.0 | 0.1 | 1.2 | 1.0  | 0.1  |
| 1990 | 2.9   | 8.2   | 10.6  | 2.6   | 0.9  | 0.1 | 0.1 | 0.0 | 0.4 | 1.1 | 6.7  | 2.7  |
| 1991 | 2.7   | 31.8  | 23.3  | 4.2   | 2.1  | 0.1 | 0.1 | 0.0 | 0.2 | 0.8 | 1.2  | 2.3  |
| 1992 | 15.1  | 59.0  | 91.6  | 67.8  | 11.5 | 0.2 | 0.2 | 0.0 | 0.1 | 0.4 | 1.5  | 1.3  |
| 1993 | 3.3   | 59.0  | 27.1  | 29.6  | 4.1  | 0.6 | 0.7 | 0.1 | 0.1 | 2.8 | 2.1  | 3.6  |
| 1994 | 24.2  | 42.1  | 40.3  | 21.9  | 1.7  | 0.0 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3  | 18.5 |
| 1995 | 11.0  | 40.5  | 9.3   | 11.2  | 2.8  | 0.0 | 0.9 | 0.1 | 0.2 | 8.0 | 2.6  | 5.2  |
| 1996 | 10.6  | 15.8  | 17.8  | 4.1   | 1.4  | 0.1 | 0.1 | 0.0 | 0.1 | 0.6 | 0.5  | 0.7  |
| 1997 | 5.5   | 19.4  | 55.4  | 25.6  | 10.2 | 2.3 | 1.1 | 0.2 | 2.3 | 2.7 | 11.9 | 48.7 |
| 1998 | 118.3 | 221.6 | 103.6 | 57.1  | 17.4 | 1.3 | 1.1 | 0.1 | 8.0 | 2.9 | 8.0  | 3.0  |
| 1999 | 16.9  | 80.9  | 80.2  | 56.4  | 6.3  | 0.4 | 0.2 | 0.0 | 0.4 | 0.7 | 0.1  | 3.6  |
| 2000 | 11.4  | 37.3  | 30.7  | 26.2  | 7.1  | 1.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.4  | 7.6  |
| 2001 | 29.8  | 30.5  | 63.2  | 27.1  | 1.1  | 0.0 | 0.1 | 0.0 | 0.1 | 0.2 | 6.9  | 3.0  |
| 2002 | 1.5   | 68.3  | 79.5  | 110.6 | 0.5  | 0.2 | 0.1 | 0.2 | 0.2 | 2.7 | 1.2  | 5.9  |
| 2003 | 18.6  | 44.3  | 29.1  | 14.6  | 0.7  | 0.5 | 0.2 | 0.1 | 0.1 | 0.1 | 1.5  | 5.6  |
| 2004 | 13.5  | 29.8  | 29.7  | 17.5  | 1.7  | 0.7 | 0.6 | 0.0 | 0.3 | 1.9 | 0.5  | 3.3  |
| 2005 | 4.5   | 6.8   | 30.5  | 11.4  | 0.1  | 1.1 | 0.0 | 0.0 | 0.1 | 0.7 | 1.5  | 4.2  |
| 2006 | 20.5  | 70.7  | 38.2  | 5.8   | 2.8  | 0.1 | 0.4 | 0.1 | 0.1 | 0.2 | 3.9  | 5.2  |
| 2007 | 26.3  | 5.8   | 38.9  | 11.1  | 0.8  | 0.0 | 0.2 | 0.1 | 0.0 | 0.4 | 1.4  | 3.8  |
| 2008 | 36.0  | 149.4 | 57.0  | 22.1  | 2.7  | 0.2 | 1.2 | 0.0 | 0.1 | 0.9 | 1.4  | 0.2  |
| 2009 | 64.0  | 89.8  | 43.8  | 19.1  | 1.8  | 0.6 | 0.1 | 0.1 | 0.1 | 0.1 | 2.6  | 3.2  |
| 2010 | 16.9  | 112.9 | 75.2  | 46.3  | 6.3  | 1.3 | 0.7 | 0.0 | 0.0 | 1.0 | 1.7  | 1.6  |
| 2011 | 18.9  | 33.4  | 8.3   | 39.1  | 3.9  | 1.3 | 2.3 | 0.0 | 0.1 | 1.3 | 1.7  | 2.5  |
| 2012 | 22.0  | 69.9  | 98.0  | 40.8  | 3.8  | 0.5 | 1.1 | 0.0 | 0.0 | 0.7 | 1.9  | 1.0  |
| 2013 | 18.5  |       | 61.8  | 10.4  | 6.7  | 0.0 | 0.1 | 0.0 | 0.0 | 2.1 | 0.0  | 0.9  |
| 2014 | 7.2   | 24.4  | 21.0  | 7.8   | 5.6  | 0.9 | 0.5 | 0.0 | 0.1 | 2.7 | 0.8  | 2.8  |
| 2015 | 6.8   | 20.5  | 91.5  | 50.4  | 9.9  | 1.9 | 0.5 | 0.0 | 0.0 | 0.7 | 2.3  | 10.2 |
| 2016 | 13.8  | 69.7  | 121.8 | 23.2  | 0.4  | 1.7 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1  | 1.7  |
| 2017 | 66.2  | 115.8 | 184.2 | 29.7  | 12.0 | 0.3 | 0.1 | 0.2 | 0.2 | 1.3 | 0.4  | 1.3  |
| 2018 | 14.0  | 14.8  | 5.8   | 22.4  | 6.1  | 0.1 | 0.0 | 0.0 | 0.1 | 0.7 | 2.5  | 24.2 |

# Anexo N° 04.05 – Guía de observación 5 - Ficha de recolección de datos de precipitación máxima mensual (mm) Medio Puyango

| AÑO  | ENE   | FEB   | MAR   | ABR   | MAY  | JUN | JUL | AGO | SEP | ОСТ  | NOV  | DIC  |
|------|-------|-------|-------|-------|------|-----|-----|-----|-----|------|------|------|
| 1981 | 5.0   | 19.1  | 65.6  | 14.9  | 1.7  | 1.0 | 0.2 | 0.2 | 0.1 | 6.3  | 8.3  | 3.6  |
| 1982 | 6.3   | 11.2  | 3.5   | 36.8  | 3.8  | 0.1 | 0.1 | 0.0 | 1.0 | 9.7  | 17.7 | 39.2 |
| 1983 | 108.1 | 87.8  | 125.3 | 121.5 | 63.2 | 8.2 | 1.3 | 0.1 | 1.1 | 10.9 | 4.0  | 19.1 |
| 1984 | 16.8  | 47.8  | 36.2  | 11.9  | 4.4  | 0.7 | 0.4 | 0.1 | 0.4 | 5.2  | 6.3  | 2.3  |
| 1985 | 5.2   | 22.0  | 24.0  | 3.0   | 12.6 | 0.2 | 0.1 | 0.4 | 0.7 | 4.2  | 1.4  | 3.1  |
| 1986 | 53.9  | 25.3  | 10.5  | 27.9  | 7.7  | 0.0 | 0.1 | 0.1 | 0.1 | 3.7  | 15.6 | 10.9 |
| 1987 | 63.4  | 68.2  | 45.4  | 49.5  | 5.0  | 0.2 | 0.9 | 0.2 | 0.5 | 5.6  | 5.9  | 0.9  |
| 1988 | 45.1  | 11.0  | 4.2   | 40.6  | 8.3  | 0.2 | 0.0 | 0.0 | 0.1 | 0.8  | 7.8  | 1.2  |
| 1989 | 64.7  | 56.4  | 32.3  | 26.9  | 5.4  | 2.0 | 0.1 | 0.1 | 0.1 | 7.5  | 1.6  | 0.5  |
| 1990 | 6.4   | 9.2   | 23.6  | 6.7   | 3.3  | 0.5 | 0.1 | 0.0 | 2.0 | 4.7  | 13.5 | 4.0  |
| 1991 | 5.4   | 32.3  | 25.6  | 11.7  | 7.0  | 0.6 | 0.1 | 0.0 | 0.2 | 2.5  | 4.1  | 5.1  |
| 1992 | 21.8  | 41.2  | 110.6 | 115.6 | 33.8 | 0.5 | 0.1 | 0.1 | 0.3 | 3.1  | 8.2  | 2.0  |
| 1993 | 11.1  | 41.3  | 50.7  | 32.3  | 10.5 | 0.8 | 0.6 | 0.1 | 0.2 | 11.3 | 6.3  | 5.7  |
| 1994 | 36.1  | 34.6  | 67.8  | 48.1  | 4.9  | 0.2 | 0.1 | 0.1 | 0.3 | 1.1  | 2.1  | 18.1 |
| 1995 | 21.7  | 70.8  | 15.1  | 30.4  | 8.1  | 0.3 | 0.3 | 0.1 | 0.4 | 4.6  | 9.7  | 12.7 |
| 1996 | 18.8  | 24.3  | 17.6  | 9.1   | 5.7  | 0.5 | 0.2 | 0.1 | 0.3 | 6.1  | 5.8  | 3.8  |
| 1997 | 8.3   | 22.1  | 100.4 | 44.9  | 10.6 | 3.1 | 1.0 | 0.1 | 2.9 | 14.7 | 32.3 | 84.8 |
| 1998 | 185.4 | 210.8 | 167.1 | 114.9 | 48.9 | 1.2 | 0.4 | 0.1 | 0.7 | 16.9 | 6.4  | 7.4  |
| 1999 | 39.4  | 84.9  | 109.8 | 66.6  | 9.5  | 1.5 | 0.2 | 0.1 | 0.6 | 7.2  | 0.7  | 7.6  |
| 2000 | 29.6  | 23.6  | 38.5  | 38.5  | 16.6 | 2.8 | 0.1 | 0.1 | 0.4 | 0.1  | 2.1  | 19.0 |
| 2001 | 40.7  | 22.8  | 98.2  | 54.2  | 2.9  | 0.2 | 0.3 | 0.1 | 0.3 | 1.7  | 24.1 | 5.1  |
| 2002 | 3.7   | 93.7  | 118.7 | 199.1 | 4.0  | 0.1 | 0.3 | 0.1 | 0.1 | 15.7 | 5.7  | 8.1  |
| 2003 | 47.0  | 54.3  | 19.4  | 12.9  | 2.0  | 1.4 | 0.4 | 0.1 | 0.3 | 0.4  | 6.0  | 16.8 |
| 2004 | 27.1  | 15.4  | 23.0  | 46.1  | 7.4  | 0.8 | 0.8 | 0.0 | 0.9 | 8.2  | 2.5  | 10.5 |
| 2005 | 13.4  | 9.8   | 32.3  | 38.2  | 1.1  | 1.0 | 0.0 | 0.1 | 0.2 | 4.0  | 3.5  | 5.7  |
| 2006 | 43.7  | 56.1  | 55.2  | 14.0  | 3.3  | 1.2 | 0.3 | 0.1 | 0.2 | 1.1  | 9.4  | 8.3  |
| 2007 | 43.2  | 5.3   | 31.8  | 18.6  | 5.1  | 0.4 | 0.2 | 0.3 | 0.1 | 4.2  | 7.8  | 6.4  |
| 2008 | 58.5  | 123.3 | 56.8  | 35.6  | 3.7  | 1.0 | 0.6 | 0.1 | 0.2 | 5.0  | 7.1  | 8.0  |
| 2009 | 88.6  | 62.2  | 36.1  | 22.0  | 1.8  | 0.8 | 0.1 | 0.1 | 0.3 | 1.0  | 12.2 | 5.3  |
| 2010 | 18.3  | 134.2 | 67.4  | 76.5  | 12.1 | 1.9 | 0.3 | 0.0 | 0.1 | 7.7  | 8.1  | 3.7  |
| 2011 | 47.1  | 29.1  | 11.8  | 63.5  | 10.0 | 0.9 | 1.4 | 0.0 | 0.2 | 4.1  | 8.5  | 6.5  |
| 2012 | 51.0  | 69.1  | 78.6  | 76.3  | 6.0  | 1.5 | 0.3 | 0.0 | 0.0 | 3.2  | 6.5  | 2.7  |
| 2013 | 23.9  | 58.9  | 87.1  | 41.6  | 24.0 | 0.2 | 0.2 | 0.2 | 0.1 | 11.0 | 0.3  | 2.6  |
| 2014 | 23.7  | 22.2  | 27.0  | 18.4  | 11.9 | 1.8 | 0.6 | 0.1 | 0.2 | 13.5 | 3.1  | 9.2  |
| 2015 | 14.2  | 18.3  | 99.4  | 46.9  | 29.2 | 1.8 | 0.4 | 0.0 | 0.0 | 6.6  | 8.7  | 7.2  |
| 2016 | 34.9  | 68.6  | 136.0 | 49.8  | 2.3  | 4.4 | 0.1 | 0.2 | 0.4 | 0.6  | 0.2  | 3.6  |
| 2017 | 114.2 | 94.5  | 151.0 | 60.6  | 39.0 | 0.9 | 0.1 | 0.3 | 0.2 | 6.5  | 1.4  | 3.8  |
| 2018 | 23.4  | 20.4  | 12.1  | 37.3  | 15.2 | 0.4 | 0.1 | 0.1 | 0.7 | 3.1  | 7.1  | 31.4 |

# Anexo N° 04.06 – Guía de observación 6 - Ficha de recolección de datos de precipitación máxima mensual (mm) Medio Tumbes

| AÑO  | ENE   | FEB   | MAR  | ABR  | MAY  | JUN | JUL | AGO | SEP | ОСТ | NOV  | DIC  |
|------|-------|-------|------|------|------|-----|-----|-----|-----|-----|------|------|
| 1981 | 0.4   | 18.8  | 19.6 | 11.0 | 0.4  | 0.4 | 0.1 | 0.0 | 0.0 | 0.3 | 0.7  | 2.0  |
| 1982 | 0.7   | 1.5   | 0.3  | 10.6 | 0.8  | 0.0 | 0.0 | 0.0 | 0.4 | 1.6 | 3.6  | 9.6  |
| 1983 | 51.2  | 44.4  | 73.7 | 65.7 | 42.0 | 5.9 | 1.5 | 0.0 | 1.7 | 2.9 | 1.1  | 4.4  |
| 1984 | 1.9   | 27.3  | 29.3 | 1.5  | 0.6  | 2.2 | 0.1 | 0.0 | 0.1 | 0.3 | 0.6  | 8.0  |
| 1985 | 1.7   | 6.1   | 26.7 | 1.5  | 2.7  | 0.6 | 0.0 | 0.1 | 0.0 | 2.8 | 0.1  | 2.5  |
| 1986 | 14.1  | 20.2  | 1.3  | 24.2 | 1.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 7.1  | 2.3  |
| 1987 | 54.3  | 30.4  | 21.9 | 32.2 | 1.4  | 0.4 | 0.4 | 0.2 | 0.4 | 0.3 | 0.6  | 0.7  |
| 1988 | 8.2   | 8.1   | 5.2  | 7.5  | 2.0  | 0.0 | 0.1 | 0.2 | 0.1 | 0.1 | 1.5  | 2.0  |
| 1989 | 24.2  | 80.6  | 14.0 | 6.3  | 0.8  | 2.8 | 0.0 | 0.0 | 0.0 | 1.5 | 0.4  | 0.1  |
| 1990 | 3.9   | 8.8   | 8.4  | 3.0  | 2.7  | 0.3 | 0.3 | 0.0 | 0.2 | 2.0 | 3.0  | 1.7  |
| 1991 | 8.0   | 23.9  | 35.2 | 2.3  | 7.2  | 0.2 | 0.0 | 0.0 | 0.0 | 2.4 | 1.5  | 6.8  |
| 1992 | 11.8  | 70.9  | 75.7 | 86.3 | 29.4 | 0.5 | 0.4 | 0.0 | 0.1 | 1.6 | 2.3  | 3.4  |
| 1993 | 3.5   | 52.2  | 19.1 | 36.1 | 11.6 | 1.4 | 0.9 | 0.4 | 0.1 | 3.8 | 0.3  | 3.0  |
| 1994 | 35.2  | 41.2  | 19.1 | 26.1 | 2.3  | 0.4 | 0.3 | 0.1 | 0.1 | 0.7 | 0.3  | 21.2 |
| 1995 | 25.1  | 21.9  | 11.2 | 2.5  | 10.3 | 0.0 | 0.5 | 0.4 | 0.1 | 1.1 | 4.2  | 5.0  |
| 1996 | 9.8   | 11.6  | 9.5  | 4.9  | 0.3  | 0.2 | 0.1 | 0.1 | 0.3 | 1.3 | 1.7  | 1.2  |
| 1997 | 4.9   | 10.4  | 26.6 | 41.4 | 16.2 | 5.4 | 1.3 | 0.4 | 3.3 | 4.1 | 20.1 | 78.0 |
| 1998 | 107.0 | 201.9 | 61.8 | 53.6 | 29.6 | 2.3 | 0.6 | 0.3 | 8.0 | 4.0 | 0.3  | 2.9  |
| 1999 | 8.2   | 56.3  | 61.3 | 84.8 | 15.5 | 8.0 | 0.4 | 0.1 | 0.4 | 0.6 | 0.1  | 3.2  |
| 2000 | 6.2   | 32.9  | 25.9 | 26.9 | 14.5 | 2.1 | 0.1 | 0.1 | 0.2 | 0.0 | 0.9  | 4.3  |
| 2001 | 24.5  | 25.7  | 51.4 | 28.0 | 3.0  | 0.3 | 0.0 | 0.1 | 0.1 | 0.0 | 7.7  | 4.1  |
| 2002 | 1.4   | 56.4  | 62.1 | 83.8 | 0.8  | 0.3 | 0.0 | 0.1 | 0.2 | 2.8 | 0.3  | 9.0  |
| 2003 | 24.1  | 27.3  | 19.3 | 5.9  | 1.1  | 1.6 | 0.5 | 0.4 | 0.1 | 0.1 | 0.7  | 6.3  |
| 2004 | 6.6   | 33.5  | 21.4 | 21.7 | 2.5  | 1.2 | 0.8 | 0.0 | 0.6 | 2.1 | 0.1  | 1.2  |
| 2005 | 3.4   | 6.3   | 22.7 | 12.0 | 0.1  | 1.8 | 0.0 | 0.3 | 0.0 | 1.6 | 2.7  | 5.0  |
| 2006 | 23.2  | 59.4  | 18.0 | 5.6  | 4.9  | 0.3 | 0.4 | 0.5 | 0.2 | 0.5 | 3.2  | 6.0  |
| 2007 | 53.5  | 5.4   | 24.7 | 10.3 | 0.4  | 0.2 | 0.4 | 0.4 | 0.2 | 1.1 | 2.7  | 2.0  |
| 2008 | 30.9  | 91.5  | 30.7 | 27.9 | 5.0  | 0.9 | 0.5 | 0.1 | 0.1 | 1.1 | 1.1  | 0.1  |
| 2009 | 65.6  | 68.5  | 30.3 | 14.0 | 3.2  | 0.2 | 0.1 | 0.5 | 0.3 | 0.4 | 2.2  | 3.7  |
| 2010 | 15.1  | 49.8  | 60.1 | 64.2 | 9.7  | 2.2 | 0.4 | 0.0 | 0.1 | 0.4 | 1.2  | 1.6  |
| 2011 | 10.9  | 21.4  | 4.5  | 48.4 | 5.8  | 2.2 | 1.2 | 0.0 | 0.1 | 2.0 | 1.9  | 2.0  |
| 2012 | 17.9  | 70.9  | 72.7 | 42.9 | 8.1  | 3.3 | 0.5 | 0.1 | 0.0 | 0.8 | 1.4  | 8.0  |
| 2013 | 12.8  | 19.8  | 28.6 | 9.4  | 3.9  | 0.2 | 0.3 | 0.2 | 0.1 | 3.3 | 0.0  | 1.1  |
| 2014 | 12.2  | 17.7  | 7.6  | 10.8 | 10.0 | 3.3 | 0.9 | 0.2 | 0.2 | 4.1 | 0.5  | 3.8  |
| 2015 | 9.9   | 42.6  | 56.1 | 67.3 | 29.2 | 3.0 | 1.2 | 0.0 | 0.0 | 3.0 | 1.9  | 11.1 |
| 2016 | 10.5  | 124.6 | 74.5 | 36.0 | 0.7  | 4.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.3  | 4.0  |
| 2017 | 68.0  | 82.2  | 68.6 | 38.5 | 31.9 | 1.6 | 0.3 | 0.6 | 0.6 | 1.7 | 0.3  | 0.4  |
| 2018 | 14.8  | 15.2  | 2.4  | 6.9  | 14.1 | 0.0 | 0.1 | 0.2 | 0.5 | 2.1 | 1.5  | 48.9 |

Anexo N° 04.07 – Guía de observación 7 - Ficha de recolección de datos de precipitación máxima mensual (mm) "El tigre"

| AÑO  | ENE   | FEB   | MAR   | ABR   | MAY  | JUN  | JUL | AGO | SEP | ОСТ  | NOV  | DIC  |
|------|-------|-------|-------|-------|------|------|-----|-----|-----|------|------|------|
| 1981 | 3.3   | 14.2  | 48.0  | 14.3  | 1.5  | 1.8  | 0.3 | 0.3 | 0.1 | 8.0  | 10.1 | 3.6  |
| 1982 | 4.4   | 7.5   | 2.4   | 32.3  | 3.2  | 0.2  | 0.1 | 0.0 | 1.5 | 12.3 | 22.0 | 32.5 |
| 1983 | 75.1  | 69.6  | 97.4  | 119.3 | 51.6 | 14.1 | 1.7 | 0.1 | 1.9 | 14.0 | 5.5  | 14.8 |
| 1984 | 11.3  | 39.0  | 26.6  | 10.6  | 3.2  | 1.5  | 0.4 | 0.3 | 0.7 | 6.9  | 7.9  | 2.1  |
| 1985 | 3.5   | 17.7  | 19.2  | 2.7   | 11.0 | 0.3  | 0.1 | 0.7 | 0.9 | 5.6  | 2.2  | 2.8  |
| 1986 | 38.7  | 21.2  | 7.6   | 25.4  | 6.4  | 0.0  | 0.1 | 0.1 | 0.1 | 4.7  | 21.6 | 7.3  |
| 1987 | 41.6  | 55.2  | 33.0  | 45.2  | 3.7  | 0.3  | 1.0 | 0.3 | 0.6 | 7.5  | 7.8  | 8.0  |
| 1988 | 30.5  | 7.7   | 3.3   | 38.1  | 7.2  | 0.3  | 0.1 | 0.1 | 0.3 | 1.2  | 10.0 | 1.2  |
| 1989 | 47.2  | 44.4  | 25.2  | 24.8  | 5.0  | 2.9  | 0.1 | 0.2 | 0.3 | 9.4  | 1.9  | 0.5  |
| 1990 | 4.4   | 7.3   | 19.9  | 6.0   | 3.1  | 1.0  | 0.2 | 0.1 | 2.5 | 6.5  | 17.5 | 3.8  |
| 1991 | 3.8   | 23.8  | 22.8  | 11.3  | 5.2  | 1.1  | 0.2 | 0.1 | 0.3 | 3.1  | 6.2  | 4.7  |
| 1992 | 16.4  | 41.7  | 85.2  | 119.2 | 26.7 | 1.0  | 0.2 | 0.2 | 0.5 | 3.4  | 10.1 | 2.3  |
| 1993 | 6.7   | 41.4  | 34.2  | 40.0  | 9.2  | 1.3  | 8.0 | 0.2 | 0.4 | 14.0 | 8.6  | 5.0  |
| 1994 | 30.6  | 32.6  | 47.2  | 41.0  | 4.5  | 0.4  | 0.2 | 0.3 | 0.6 | 1.6  | 2.3  | 22.0 |
| 1995 | 17.5  | 44.1  | 11.3  | 24.8  | 7.9  | 0.4  | 0.6 | 0.2 | 0.6 | 5.6  | 11.2 | 10.6 |
| 1996 | 14.1  | 17.5  | 14.0  | 8.3   | 5.0  | 0.8  | 0.2 | 0.2 | 0.5 | 7.1  | 6.0  | 2.9  |
| 1997 | 6.6   | 16.9  | 58.6  | 46.8  | 12.2 | 5.4  | 1.3 | 0.2 | 3.9 | 17.4 | 40.7 | 74.5 |
| 1998 | 122.9 | 173.6 | 116.7 | 102.7 | 40.1 | 2.3  | 0.7 | 0.2 | 1.3 | 21.0 | 7.6  | 4.8  |
| 1999 | 25.4  | 65.3  | 76.8  | 83.2  | 9.8  | 2.8  | 0.2 | 0.1 | 1.3 | 9.5  | 1.1  | 7.0  |
| 2000 | 19.2  | 24.4  | 30.4  | 39.4  | 14.6 | 4.5  | 0.1 | 0.2 | 0.8 | 0.2  | 2.7  | 16.8 |
| 2001 | 30.5  | 20.7  | 67.1  | 49.2  | 2.9  | 0.5  | 0.3 | 0.1 | 0.5 | 2.6  | 29.9 | 5.0  |
| 2002 | 2.3   | 66.5  | 109.2 | 193.6 | 3.4  | 0.3  | 0.3 | 0.2 | 0.2 | 19.9 | 8.0  | 8.7  |
| 2003 | 30.0  | 39.5  | 19.7  | 12.3  | 2.5  | 2.3  | 0.5 | 0.2 | 0.5 | 0.7  | 8.4  | 13.6 |
| 2004 | 18.3  | 19.0  | 21.3  | 41.7  | 6.2  | 1.5  | 1.0 | 0.1 | 1.6 | 10.6 | 3.5  | 9.2  |
| 2005 | 8.4   | 6.4   | 21.8  | 29.4  | 0.9  | 1.9  | 0.0 | 0.1 | 0.4 | 5.6  | 4.4  | 6.0  |
| 2006 | 30.4  | 50.6  | 38.1  | 12.9  | 3.8  | 2.1  | 0.4 | 0.2 | 0.3 | 1.6  | 12.0 | 7.6  |
| 2007 | 34.9  | 4.0   | 26.8  | 20.2  | 4.5  | 0.6  | 0.3 | 0.5 | 0.1 | 5.3  | 10.4 | 4.6  |
| 2008 | 43.1  | 107.4 | 44.5  | 32.7  | 3.3  | 1.4  | 0.9 | 0.1 | 0.3 | 6.5  | 10.1 | 0.7  |
| 2009 | 72.0  | 60.9  | 28.6  | 25.1  | 2.2  | 1.5  | 0.1 | 0.3 | 0.5 | 1.4  | 16.6 | 4.7  |
| 2010 | 15.3  | 95.9  | 52.2  | 77.8  | 12.1 | 3.4  | 0.5 | 0.1 | 0.2 | 11.3 | 9.9  | 3.5  |
| 2011 | 30.7  | 22.4  | 8.5   | 63.4  | 9.2  | 1.8  | 2.0 | 0.1 | 0.4 | 5.4  | 11.6 | 6.1  |
| 2012 | 35.2  | 52.8  | 70.8  | 73.9  | 5.6  | 2.4  | 0.6 | 0.1 | 0.1 | 4.5  | 8.6  | 2.4  |
| 2013 | 19.9  | 41.9  | 59.3  | 30.7  |      | 0.3  | 0.2 | 0.3 | 0.1 | 13.6 | 0.4  | 2.4  |
| 2014 | 14.6  | 18.5  | 20.6  | 17.0  | 10.1 | 2.8  | 0.7 | 0.1 | 0.4 | 16.3 | 4.2  | 7.3  |
| 2015 | 10.4  | 18.7  | 71.4  | 59.6  | 24.6 | 3.2  | 0.6 | 0.0 | 0.1 | 7.4  | 11.5 | 9.3  |
| 2016 | 22.6  | 64.0  | 100.7 | 46.3  | 3.7  | 7.7  | 0.2 | 0.2 | 0.8 | 0.8  | 0.3  | 3.5  |
| 2017 | 82.2  | 82.0  | 122.4 | 54.5  | 30.2 | 1.4  | 0.1 | 0.6 | 0.4 | 9.3  | 2.0  | 3.4  |
| 2018 | 18.6  | 15.2  | 8.3   | 38.2  | 12.7 | 1.0  | 0.1 | 0.1 | 0.9 | 4.0  | 10.1 | 32.7 |

### Anexo N° 04.07 – Guía de observación 7 - Ficha de recolección de datos de caudales (mm) "El tigre" DIRECCION DE REDES DE OBSERVACION DE DATOS

DPTO: TUMBES LONG: 80°27" "W"

: EL TIGRE /200202/

**ESTACION** DZ - 01 LAT : 03°46" "S" PROV: TUMBES : CAUDALES MENSUALES

: SAN

PARAMETRO (m3/s) ALT : 44 DIST **JACINTO** msnm

| AÑO       | SET   | ОСТ   | NOV   | DIC    | ENE    | FEB    | MAR    | ABR     | MAY    | JU     | JUL   | AGO   |
|-----------|-------|-------|-------|--------|--------|--------|--------|---------|--------|--------|-------|-------|
| 1966-1967 | 17.71 | 20.38 | 17.07 | 16.47  | 58.17  | 264.76 | 235.84 | 110.87  | 63.25  | 38.57  | 25.97 | 18.02 |
| 1967-1968 | 11.72 | 10.88 | 10.05 | 7.90   | 21.24  | 46.58  | 153.36 | 80.98   | 35.87  | 22.64  | 16.21 | 11.03 |
| 1968-1969 | 9.95  | 11.96 | 8.69  | 9.74   | 31.94  | 104.58 | 204.70 | 421.17  | 132.54 | 65.95  | 43.93 | 30.30 |
| 1969-1970 | 18.53 | 16.20 | 16.56 | 55.79  | 133.52 | 196.21 | 163.87 | 83.47   | 101.30 | 61.11  | 33.66 | 26.64 |
| 1970-1971 | 10.40 | 9.76  | 9.02  | 16.82  | 55.70  | 152.58 | 263.65 | 280.90  | 220.65 | 36.68  | 23.63 | 15.83 |
| 1971-1972 | 13.11 | 11.37 | 10.23 | 31.02  | 80.47  | 153.85 | 577.74 | 312.53  | 110.43 | 52.29  | 29.92 | 20.87 |
| 1972-1973 | 16.39 | 14.54 | 12.67 | 37.31  | 169.17 | 476.32 | 652.45 | 458.70  | 188.91 | 63.96  | 32.00 | 23.22 |
| 1973-1974 | 21.23 | 19.28 | 18.57 | 21.85  | 57.47  | 190.48 | 242.58 | 130.44  | 124.91 | 52.53  | 31.74 | 14.85 |
| 1974-1975 | 9.81  | 15.28 | 13.07 | 43.92  | 69.11  | 283.89 | 691.42 | 468.97  | 203.81 | S/D    | 58.58 | 40.08 |
| 1975-1976 | S/D   | S/D   | S/D   | S/D    | S/D    | S/D    | D/D    | S/D     | S/D    | S/D    | 58.58 | 40.08 |
| 1977-1978 | 23.96 | 16.41 | 19.68 | 19.28  | 58.35  | 63.47  | 103.57 | 163.32  | 94.40  | 55.34  | 32.19 | 22.36 |
| 1978-1979 | 18.17 | 16.80 | 16.40 | 21.69  | 45.65  | 116.23 | 327.07 | 177.40  | 84.58  | 49.98  | 31.77 | 22.94 |
| 1979-1980 | 20.88 | 12.60 | 12.37 | 13.67  | 26.39  | 151.25 | 96.46  | 98.29   | 65.22  | 48.63  | 25.21 | 17.64 |
| 1980-1981 | 15.25 | 12.82 | 12.94 | 33.37  | 57.59  | 184.42 | 356.52 | 159.54  | 82.90  | 37.30  | 23.50 | 15.68 |
| 1981-1982 | 13.60 | 13.36 | 12.37 | 25.74  | 56.10  | 151.74 | 114.65 | 1544.71 | 82.22  | 55.58  | 31.47 | 22.12 |
| 1982-1983 | 16.92 | 31.07 | 99.87 | 440.44 | 602.67 | 575.59 | 637.95 | 604.07  | 463.97 | 322.87 | S/D   | 98.24 |
| 1983-1984 | 43.14 | 39.83 | 35.52 | 84.40  | 103172 | 313.18 | 440.11 | 273.26  | 199.09 | 84.36  | 58.75 | 38.61 |

| 1984-1985 | 33.38 | 34.12 | 28.84 | 52.41  | 97.65  | 101.26 | 140.53 | 101.26 | 53.84  | 31.36  | 22.06 | 17.74 |
|-----------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| 1985-1986 | 16.17 | 14.10 | 13.52 | 36.36  | 99.25  | 165.32 | 120.07 | 170.47 | 103.51 | 50.16  | 32.73 | 22.66 |
| 1986-1987 | 16.08 | 11.40 | 16.74 | 16.70  | 113.19 | 26.12  | 301.76 | 240.95 | 185.71 | 62.64  | 62.56 | 43.86 |
| 1987-1988 | 32.57 | 32.21 | 18.66 | 13.64  | 75.46  | 157.70 | 111.62 | 92.78  | 68.47  | 40.61  | S/D   | S/D   |
| 1997-1999 | 19.07 | 23.34 | 91.29 | 395.84 | 398.31 | 580.56 | 591.00 | 593.61 | 270.78 | 99.18  | 53.32 | 37.03 |
| 1998-1999 | 25.54 | 20.10 | 19.53 | 17.23  | 47.28  | 332.99 | 498.25 | 223.52 | 186.05 | 71.23  | 48.74 | 34.51 |
| 1900-2000 | 24.98 | 20.85 | 17.81 | 62.32  | 81.68  | 201.10 | 416.60 | 376.43 | 201.50 | 83.50  | 51.72 | 34.82 |
| 2000-2001 | 29.00 | 19.94 | 15.24 | 20.14  | 73.10  | 139.50 | 322.19 | 289.49 | 98.31  | 56.51  | 35.78 | 26.20 |
| 2001-2002 | 18.74 | 12.54 | 15.83 | 15.02  | 38.92  | 115.38 | 400.81 | 478.02 | 119.92 | 56.73  | 35.47 | 24.01 |
| 2002-2003 | 16.85 | 16.50 | 19.77 | 34.34  | 47.99  | 117.81 | 153.37 | 155.42 | 75.46  | 41.79  | 28.62 | 18.84 |
| 2003-2004 | 14.48 | 13.01 | 11.73 | 22.47  | 41.32  | 125.95 | 106.18 | 157.89 | 77.13  | 44.50  | 27.19 | 17.65 |
| 2004-2005 | 15.64 | 15.69 | 16.38 | 24.05  | 28.95  | 107.14 | 278.09 | 144.56 | 74.12  | 37.55  | 23.08 | 16.56 |
| 2005-2006 | 12.52 | 12.51 | 11.25 | 14.64  | 36.37  | 239.39 | 284.55 | 276.42 | 70.38  | 42.98  | 25.77 | 19.03 |
| 2006-2007 | 14.25 | 11.54 | 20.34 | 74.44  | 100.50 | 125.00 | 273.20 | 226.23 | 97.39  | 58.32  | 35.36 | 23.24 |
| 2007-2008 | 17.24 | 13.63 | 14.11 | 17.26  | 97.81  | 465.81 | 556.61 | 421.00 | 199.16 | 80.25  | 47.49 | 33.45 |
| 2008-2009 | 24.52 | 21.81 | 23.58 | 28.65  | 213.67 | 449.73 | 402.19 | 213.15 | 156.71 | 65.46  | 43.39 | 32.85 |
| 2009-2010 | 20.45 | 17.00 | 14.83 | 26.07  | 72.13  | 196.21 | 379.80 | 281.43 | 131.92 | 55.47  | 39.69 | 26.20 |
| 2010-2011 | 19.47 | 15.31 | 16.02 | 27.11  | 93.55  | 221.91 | 93.36  | 313.25 | 101.83 | 49.29  | 34.55 | 24.58 |
| 2011-2012 | 17.62 | 18.26 | 16.99 | 50.78  | 231.85 | 720.36 | 553.69 | 424.04 | 153.00 | 71.15  | 45.16 | 30.35 |
| 2012-2013 | 21.23 | 18.09 | 25.52 | 30.29  | 72.94  | 221.72 | 249.64 | 139.03 | 74.62  | 56.47  | 32.64 | 21.12 |
| 2013-2014 | 14.52 | 14.27 | 14.16 | 18.87  | 55.93  | 119.47 | 230.77 | 96.01  | 249.43 | 86.90  | 40.05 | 25.66 |
| 2014-2015 | 18.79 | 16.15 | 15.34 | 22.79  | 76.16  | 135.38 | 403.56 | 411.77 | 153.60 | 85.58  | 45.26 | 31.38 |
| 2015-2016 | 20.09 | 16.81 | 16.76 | 16.59  | 65.72  | 105.12 | 291.43 | 272.79 | 101.76 | 51.46  | 33.09 | 22.93 |
| 2016-2017 | 17.48 | 14.40 | 11.99 | 23.47  | 93.58  | 332.39 | 598.17 | 525.25 | 348.47 | 100.61 | 53.14 | 34.14 |
| 2017-2018 | 25.47 | 21.40 | 15.88 | 22.82  | 44.59  | 148.69 | 114.87 | 139.89 | 101.14 | 49.71  | 30.46 | 20.44 |
| 2018-2019 | S/D   | 21.40 | 15.88 | 22.82  | -      | -      | -      | -      | -      | -      | -     | -     |

### Anexo N°05 – Tablas complementarias

Tabla 28 Precipitación máxima corregida para cada subcuenca

|      | Alto P            | uyango    | Вајо р            | uyango    | Вајо Т            | umbes     | Caza              | deros     | Medio I           | Puyango   | Medio             | Tumbes    | El t              | igre      |
|------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|
| Año  | Pmáx<br>Corregida | Pmáx*1.13 |
| 1981 | 45.6              | 51.5      | 36.4              | 41.2      | 19.2              | 21.7      | 45.3              | 51.2      | 56.8              | 64.1      | 17.0              | 19.2      | 17.0              | 19.2      |
| 1982 | 45.9              | 51.8      | 33.8              | 38.2      | 9.9               | 11.1      | 15.2              | 17.2      | 34.0              | 38.4      | 9.2               | 10.4      | 9.2               | 10.4      |
| 1983 | 126.5             | 143.0     | 157.7             | 178.2     | 91.7              | 103.6     | 91.7              | 103.6     | 108.5             | 122.6     | 63.7              | 72.0      | 63.7              | 72.0      |
| 1984 | 28.1              | 31.7      | 36.4              | 41.1      | 13.1              | 14.8      | 46.5              | 52.5      | 41.4              | 46.8      | 25.4              | 28.7      | 25.4              | 28.7      |
| 1985 | 17.6              | 19.8      | 16.8              | 19.0      | 11.8              | 13.3      | 22.3              | 25.2      | 20.8              | 23.5      | 23.1              | 26.1      | 23.1              | 26.1      |
| 1986 | 34.5              | 39.0      | 42.2              | 47.7      | 14.4              | 16.2      | 29.6              | 33.4      | 46.7              | 52.8      | 20.9              | 23.7      | 20.9              | 23.7      |
| 1987 | 51.0              | 57.6      | 52.5              | 59.4      | 42.0              | 47.5      | 74.0              | 83.7      | 59.0              | 66.7      | 47.0              | 53.1      | 47.0              | 53.1      |
| 1988 | 41.8              | 47.3      | 41.6              | 47.0      | 10.3              | 11.6      | 21.9              | 24.8      | 39.0              | 44.1      | 7.1               | 8.0       | 7.1               | 8.0       |
| 1989 | 36.5              | 41.3      | 54.0              | 61.0      | 88.3              | 99.7      | 57.1              | 64.5      | 56.1              | 63.3      | 69.7              | 78.8      | 69.7              | 78.8      |
| 1990 | 27.1              | 30.6      | 20.3              | 23.0      | 17.5              | 19.7      | 9.2               | 10.4      | 20.5              | 23.1      | 7.6               | 8.6       | 7.6               | 8.6       |
| 1991 | 19.0              | 21.5      | 21.4              | 24.2      | 24.1              | 27.3      | 27.5              | 31.1      | 27.9              | 31.6      | 30.4              | 34.4      | 30.4              | 34.4      |
| 1992 | 125.2             | 141.5     | 133.7             | 151.1     | 64.5              | 72.9      | 79.3              | 89.6      | 100.1             | 113.1     | 74.6              | 84.3      | 74.6              | 84.3      |
| 1993 | 31.4              | 35.5      | 59.6              | 67.4      | 30.2              | 34.1      | 51.1              | 57.7      | 43.9              | 49.6      | 45.1              | 51.0      | 45.1              | 51.0      |
| 1994 | 54.2              | 61.2      | 42.7              | 48.2      | 34.0              | 38.5      | 36.5              | 41.2      | 58.7              | 66.3      | 35.6              | 40.3      | 35.6              | 40.3      |
| 1995 | 42.2              | 47.7      | 44.5              | 50.3      | 17.3              | 19.5      | 35.0              | 39.6      | 61.3              | 69.2      | 21.7              | 24.5      | 21.7              | 24.5      |
| 1996 | 15.4              | 17.4      | 14.9              | 16.9      | 11.5              | 13.0      | 15.4              | 17.4      | 21.1              | 23.8      | 10.0              | 11.3      | 10.0              | 11.3      |
| 1997 | 89.6              | 101.3     | 64.6              | 73.0      | 66.1              | 74.7      | 47.9              | 54.2      | 87.0              | 98.3      | 67.5              | 76.3      | 67.5              | 76.3      |
| 1998 | 125.6             | 141.9     | 173.8             | 196.4     | 173.6             | 196.2     | 191.7             | 216.6     | 182.5             | 206.2     | 174.7             | 197.4     | 174.7             | 197.4     |
| 1999 | 59.1              | 66.8      | 127.1             | 143.7     | 91.9              | 103.9     | 70.0              | 79.1      | 95.0              | 107.4     | 73.4              | 82.9      | 73.4              | 82.9      |
| 2000 | 47.3              | 53.5      | 48.2              | 54.4      | 18.5              | 20.9      | 32.3              | 36.5      | 33.4              | 37.7      | 28.5              | 32.2      | 28.5              | 32.2      |
| 2001 | 70.0              | 79.2      | 55.3              | 62.5      | 60.2              | 68.1      | 54.7              | 61.8      | 85.0              | 96.0      | 44.5              | 50.3      | 44.5              | 50.3      |
| 2002 | 203.7             | 230.1     | 219.2             | 247.7     | 73.4              | 82.9      | 95.7              | 108.1     | 172.4             | 194.8     | 72.5              | 82.0      | 72.5              | 82.0      |
| 2003 | 34.5              | 39.0      | 32.7              | 37.0      | 16.0              | 18.1      | 38.3              | 43.3      | 47.0              | 53.1      | 23.6              | 26.7      | 23.6              | 26.7      |
| 2004 | 44.0              | 49.7      | 47.9              | 54.2      | 23.3              | 26.3      | 25.8              | 29.1      | 39.9              | 45.1      | 29.0              | 32.8      | 29.0              | 32.8      |
| 2005 | 36.5              | 41.3      | 29.6              | 33.5      | 22.5              | 25.4      | 26.4              | 29.9      | 33.1              | 37.4      | 19.6              | 22.2      | 19.6              | 22.2      |
| 2006 | 43.3              | 48.9      | 53.5              | 60.4      | 58.9              | 66.6      | 61.2              | 69.1      | 48.6              | 54.9      | 51.4              | 58.1      | 51.4              | 58.1      |

| 2007    | 26.8 | 30.2  | 45.2  | 51.0  | 31.6 | 35.7 | 33.7  | 38.1  | 37.4  | 42.3  | 46.3  | 52.3  | 46.3  | 52.3  |
|---------|------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2008    | 68.7 | 77.7  | 102.0 | 115.2 | 63.8 | 72.1 | 129.3 | 146.1 | 106.7 | 120.6 | 79.2  | 89.5  | 79.2  | 89.5  |
| 2009    | 52.8 | 59.7  | 90.3  | 102.0 | 46.6 | 52.6 | 77.7  | 87.8  | 76.7  | 86.7  | 59.2  | 66.9  | 59.2  | 66.9  |
| 2010    | 84.5 | 95.5  | 108.5 | 122.6 | 49.4 | 55.9 | 97.7  | 110.4 | 116.2 | 131.3 | 55.6  | 62.8  | 55.6  | 62.8  |
| 2011    | 73.3 | 82.8  | 76.8  | 86.7  | 14.5 | 16.4 | 33.8  | 38.2  | 55.0  | 62.1  | 41.9  | 47.3  | 41.9  | 47.3  |
| 2012    | 69.5 | 78.5  | 92.1  | 104.0 | 43.5 | 49.1 | 84.8  | 95.8  | 68.0  | 76.8  | 62.9  | 71.1  | 62.9  | 71.1  |
| 2013    | 62.1 | 70.2  | 39.1  | 44.1  | 24.0 | 27.2 | 53.4  | 60.4  | 75.4  | 85.2  | 24.8  | 28.0  | 24.8  | 28.0  |
| 2014    | 26.9 | 30.4  | 16.2  | 18.3  | 12.4 | 14.0 | 21.1  | 23.8  | 23.4  | 26.4  | 15.3  | 17.3  | 15.3  | 17.3  |
| 2015    | 67.2 | 76.0  | 89.3  | 100.9 | 39.0 | 44.1 | 79.2  | 89.5  | 86.1  | 97.3  | 58.3  | 65.8  | 58.3  | 65.8  |
| 2016    | 81.0 | 91.6  | 80.6  | 91.0  | 72.7 | 82.2 | 105.4 | 119.1 | 117.8 | 133.1 | 107.8 | 121.8 | 107.8 | 121.8 |
| 2017    | 90.3 | 102.1 | 99.5  | 112.4 | 58.4 | 66.0 | 159.3 | 180.1 | 130.7 | 147.7 | 71.1  | 80.4  | 71.1  | 80.4  |
| 2018    | 47.9 | 54.1  | 36.5  | 41.2  | 29.8 | 33.6 | 20.9  | 23.7  | 32.3  | 36.5  | 42.3  | 47.8  | 42.3  | 47.8  |
| PROM    | 59.1 | 66.8  | 66.7  | 75.4  | 41.8 | 47.3 | 57.8  | 65.4  | 67.0  | 75.7  | 46.3  | 52.3  | 46.3  | 52.3  |
| DESVEST | 37.5 | 42.4  | 46.6  | 52.7  | 33.2 | 37.5 | 40.5  | 45.8  | 40.1  | 45.4  | 32.3  | 36.5  | 32.3  | 36.5  |

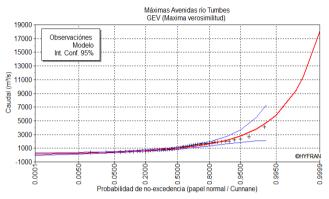
Tabla 29 Precipitaciones máximas asociadas a tiempos de retorno para cada subcuenca

|      | Alto  | Puyango   | Bajo  | Puyango   | Bajo  | Tumbes    | Ca    | zaderos   | Medi  | o Puyango | Medi  | o Tumbes  |       | El tigre  |
|------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|
| TR   | Pmáx  | Pmáx*1.13 |
| 5    | 86.1  | 97.3      | 100.3 | 113.3     | 65.7  | 74.3      | 87.0  | 98.3      | 95.9  | 108.3     | 69.5  | 78.6      | 69.5  | 78.6      |
| 10   | 108.0 | 122.1     | 127.6 | 144.2     | 85.2  | 96.2      | 110.7 | 125.1     | 119.3 | 134.9     | 88.4  | 99.9      | 88.4  | 99.9      |
| 25   | 135.7 | 153.4     | 162.1 | 183.1     | 109.7 | 124.0     | 140.7 | 159.0     | 149.0 | 168.4     | 112.3 | 126.9     | 112.3 | 126.9     |
| 50   | 156.3 | 176.6     | 187.6 | 212.0     | 127.9 | 144.5     | 162.9 | 184.1     | 171.0 | 193.3     | 130.1 | 147.0     | 130.1 | 147.0     |
| 100  | 176.7 | 199.7     | 213.0 | 240.7     | 146.0 | 165.0     | 185.0 | 209.1     | 192.9 | 217.9     | 147.7 | 166.9     | 147.7 | 166.9     |
| 500  | 223.9 | 253.0     | 271.7 | 307.0     | 187.8 | 212.2     | 236.0 | 266.7     | 243.4 | 275.0     | 188.4 | 212.8     | 188.4 | 212.8     |
| 1000 | 244.1 | 275.9     | 296.9 | 335.5     | 205.7 | 232.5     | 257.9 | 291.5     | 265.1 | 299.5     | 205.8 | 232.6     | 205.8 | 232.6     |

Tabla 30 Factor de frecuencia para la función Gumbel

|      |                 | k(F             | ACTOR FF       | RECUENCIA | DE GUMBI         | EL)             |          |
|------|-----------------|-----------------|----------------|-----------|------------------|-----------------|----------|
| TR   | Alto<br>Puyango | Bajo<br>Puyango | Bajo<br>Tumbes | Cazaderos | Medio<br>Puyango | Medio<br>Tumbes | El tigre |
| 5    | 0.719457        | 0.719457        | 0.719457       | 0.719457  | 0.719457         | 0.719457        | 0.719457 |
| 10   | 1.304563        | 1.304563        | 1.304563       | 1.304563  | 1.304563         | 1.304563        | 1.304563 |
| 25   | 2.043846        | 2.043846        | 2.043846       | 2.043846  | 2.043846         | 2.043846        | 2.043846 |
| 50   | 2.592288        | 2.592288        | 2.592288       | 2.592288  | 2.592288         | 2.592288        | 2.592288 |
| 100  | 3.136681        | 3.136681        | 3.136681       | 3.136681  | 3.136681         | 3.136681        | 3.136681 |
| 500  | 4.394689        | 4.394689        | 4.394689       | 4.394689  | 4.394689         | 4.394689        | 4.394689 |
| 1000 | 4.935524        | 4.935524        | 4.935524       | 4.935524  | 4.935524         | 4.935524        | 4.935524 |

Tabla 31 Resultados función GEV (máxima verosimilitud)


#### GEV (Maxima verosimilitud)

Numero de observaciones

52

Parámetros

alpha 425.3731 k -0.26855 u 848.5304



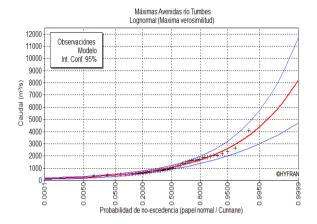
#### Quintiles

q = F(X): probabilidad de no-excedencia

| Т        |        | VT       | Desviación | Intomial | do confian | (OF9/)   |
|----------|--------|----------|------------|----------|------------|----------|
| <u>'</u> | q      | XT       | estándar   | mtervai  | de confian | Za (95%) |
| 10000    | 0.9999 | 1.81E+04 | 1.29E+04   | N/D      | N/D        |          |
| 2000     | 0.9995 | 1.15E+04 | 6340       | N/D      | N/D        |          |
| 1000     | 0.999  | 9390     | 4570       | N/D      | N/D        |          |
| 500      | 0.998  | 7670     | 3200       | N/D      | N/D        |          |
| 200      | 0.995  | 5830     | 1990       | N/D      | N/D        |          |
| 100      | 0.99   | 4710     | 1340       | 2090     | 7340       |          |
| 50       | 0.98   | 3780     | 872        | 2070     | 5490       |          |
| 25       | 0.96   | 3000     | 541        | 1940     | 4060       |          |
| 20       | 0.95   | 2780     | 465        | 1870     | 3690       |          |
| 10       | 0.9    | 2160     | 276        | 1620     | 2700       |          |
| 5        | 0.8    | 1630     | 160        | 1320     | 1950       |          |
| 3        | 0.6667 | 1280     | 109        | 1070     | 1500       |          |
| 2        | 0.5    | 1010     | 80.9       | 854      | 1170       |          |

Tabla 32 Resultados función LogNormal (Máxima verosimilitud)

### Lognormal (Maxima verosimilitud)


Numero de observaciones 52

#### Parámetros

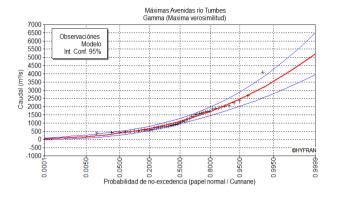
mu 6.955681 sigma 0.552755

#### Quintiles

q = F(X): probabilidad de no-excedencia



|       |        |      | Desviación |          |             |          |
|-------|--------|------|------------|----------|-------------|----------|
| Т     | q      | XT   | estándar   | Interval | de confianz | za (95%) |
| 10000 | 0.9999 | 8200 | 1780       | 4700     | 1.17E+04    |          |
| 2000  | 0.9995 | 6470 | 1270       | 3990     | 8.95E+03    |          |
| 1000  | 0.999  | 5790 | 1080       | 3680     | 7900        |          |
| 500   | 0.998  | 5150 | 902        | 3380     | 6920        |          |
| 200   | 0.995  | 4360 | 699        | 2990     | 5730        |          |
| 100   | 0.99   | 3800 | 564        | 2690     | 4900        |          |
| 50    | 0.98   | 3270 | 444        | 2390     | 4140        |          |
| 25    | 0.96   | 2760 | 339        | 2100     | 3430        |          |
| 20    | 0.95   | 2600 | 308        | 2000     | 3210        |          |
| 10    | 0.9    | 2130 | 221        | 1700     | 2560        |          |
| 5     | 0.8    | 1670 | 149        | 1380     | 1960        |          |
| 3     | 0.6667 | 1330 | 107        | 1120     | 1540        |          |
| 2     | 0.5    | 1050 | 80.4       | 891      | 1210        |          |


Tabla 33 Resultados función Gamma (máxima verosimilitud)

## Gamma (Maxima verosimilitud)

Numero de observaciones 52

Parámetros

alpha 0.002859 lambda 3.48551



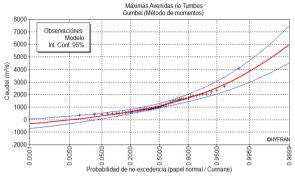
#### Quintiles

q = F(X): probabilidad de no-excedencia

| Т     | q      | XT   | Desviación<br>estándar | Interva | ıl de confia | nza (95%) |
|-------|--------|------|------------------------|---------|--------------|-----------|
| 10000 | 0.9999 | 5210 | 652                    | 3940    | 6490         |           |
| 2000  | 0.9995 | 4540 | 539                    | 3480    | 5600         |           |
| 1000  | 0.999  | 4240 | 491                    | 3280    | 5210         |           |
| 500   | 0.998  | 3940 | 443                    | 3080    | 4810         |           |
| 200   | 0.995  | 3540 | 380                    | 2790    | 4280         |           |
| 100   | 0.99   | 3220 | 332                    | 2570    | 3870         |           |
| 50    | 0.98   | 2900 | 284                    | 2340    | 3460         |           |
| 25    | 0.96   | 2560 | 237                    | 2100    | 3030         |           |
| 20    | 0.95   | 2450 | 222                    | 2020    | 2890         |           |
| 10    | 0.9    | 2090 | 176                    | 1750    | 2440         |           |
| 5     | 0.8    | 1710 | 132                    | 1450    | 1970         |           |
| 3     | 0.6667 | 1400 | 104                    | 1200    | 1610         |           |
| 2     | 0.5    | 1100 | 84.7                   | 939     | 1270         |           |

Tabla 34 Resultados función Gumbel (Método de momentos)

## Gumbel (Método de momentos)


Numero de observaciones 52

#### Parámetros

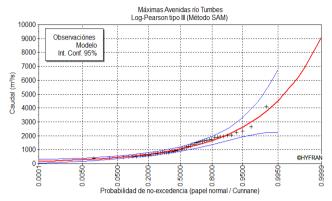
u 900.0385 alpha 552.9812

### Quintiles

q = F(X) : probabilidad de no-excedencia



|       |        |      | Desviación |          | •          |          |
|-------|--------|------|------------|----------|------------|----------|
| Т     | q      | XT   | estándar   | Interval | de confian | za (95%) |
| 10000 | 0.9999 | 5990 | 752        | 4520     | 7470       |          |
| 2000  | 0.9995 | 5100 | 624        | 3880     | 6330       |          |
| 1000  | 0.999  | 4720 | 569        | 3600     | 5830       |          |
| 500   | 0.998  | 4340 | 513        | 3330     | 5340       |          |
| 200   | 0.995  | 3830 | 441        | 2960     | 4690       |          |
| 100   | 0.99   | 3440 | 386        | 2690     | 4200       |          |
| 50    | 0.98   | 3060 | 331        | 2410     | 3710       |          |
| 25    | 0.96   | 2670 | 277        | 2130     | 3210       |          |
| 20    | 0.95   | 2540 | 259        | 2030     | 3050       |          |
| 10    | 0.9    | 2140 | 205        | 1740     | 2550       |          |
| 5     | 0.8    | 1730 | 152        | 1430     | 2030       |          |
| 3     | 0.6667 | 1400 | 115        | 1170     | 1620       |          |
| 2     | 0.5    | 1100 | 90.3       | 926      | 1280       |          |


Tabla 35 Resultados función Log-Pearson tipo III

## Log-Pearson tipo III (Método SAM)

Numero de observaciones 52

Parámetros

alpha 70.63848 lambda 276.7252 m -0.89667



#### Quintiles

q = F(X): probabilidad de no-excedencia

|       |        |      | Desviación |          |            |          |
|-------|--------|------|------------|----------|------------|----------|
| Т     | q      | XT   | estándar   | Interval | de confian | za (95%) |
| 10000 | 0.9999 | 9070 | 4480       | N/D      | N/D        |          |
| 2000  | 0.9995 | 6960 | 2730       | N/D      | N/D        |          |
| 1000  | 0.999  | 6150 | 2160       | N/D      | N/D        |          |
| 500   | 0.998  | 5410 | 1670       | N/D      | N/D        |          |
| 200   | 0.995  | 4510 | 1150       | 2250     | 6770       |          |
| 100   | 0.99   | 3880 | 843        | 2230     | 5540       |          |
| 50    | 0.98   | 3310 | 596        | 2140     | 4480       |          |
| 25    | 0.96   | 2770 | 405        | 1980     | 3560       |          |
| 20    | 0.95   | 2610 | 356        | 1910     | 3300       |          |
| 10    | 0.9    | 2120 | 232        | 1660     | 2570       |          |
| 5     | 0.8    | 1650 | 150        | 1360     | 1940       |          |
| 3     | 0.6667 | 1320 | 110        | 1100     | 1530       |          |
| 2     | 0.5    | 1040 | 84         | 873      | 1200       |          |

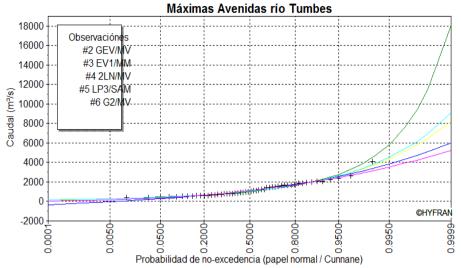



Figura 16 Probabilidad de no-excedencia para las funciones

|      |               | MODE  | LO PROBAB             | ILISTICO |        |
|------|---------------|-------|-----------------------|----------|--------|
| TR   | LOG<br>NORMAL | GAMMA | LOG<br>PEARSON<br>III | GEV      | GUMBEL |
| 5    | 1670          | 1710  | 1650                  | 1630     | 1730   |
| 10   | 2130          | 2090  | 2120                  | 2160     | 2140   |
| 25   | 2760          | 2560  | 2770                  | 3000     | 2670   |
| 50   | 3270          | 2900  | 3310                  | 3780     | 3060   |
| 100  | 3800          | 3220  | 3880                  | 4710     | 3440   |
| 500  | 5150          | 3940  | 5410                  | 7670     | 4340   |
| 1000 | 5790          | 4240  | 6150                  | 9390     | 4720   |

Tabla 36 Caudales máximos por función probabilística

|       |       |      |                                                                                                                 |      |      |      |      |      |      | Lluvia | ıs máx | imas d | uenca  | Alto F  | Puyang | go   |      |     |     |     |     |     |     |     |     |      |
|-------|-------|------|-----------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|--------|--------|--------|--------|---------|--------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| TR    | Pmax  |      |                                                                                                                 |      |      |      |      |      |      |        |        | I      | Duraci | ón en i | minuto | os   |      |     |     |     |     |     |     |     |     |      |
| IK    | 24 h  | 10   | 20                                                                                                              | 30   | 40   | 50   | 60   | 70   | 80   | 90     | 100    | 110    | 120    | 150     | 180    | 210  | 240  | 270 | 300 | 330 | 360 | 390 | 420 | 450 | 480 | 1440 |
| 5     | 97.3  | 28.1 | 33.4 37 39.7 42 44 45.7 47.2 48.6 49.9 51.1 52.3 55.3 57.8 60.1 62.2 64 65.7 67.3 68.8 70.2 71.5 72.7 73.9 97.3 |      |      |      |      |      |      |        |        |        |        |         |        |      | 97.3 |     |     |     |     |     |     |     |     |      |
| 10    | 122.1 | 35.2 |                                                                                                                 |      |      |      |      |      |      |        |        |        |        |         |        |      |      | 122 |     |     |     |     |     |     |     |      |
| 25    | 153.4 | 44.3 | 52.7                                                                                                            | 58.3 | 62.6 | 66.2 | 69.3 | 72   | 74.5 | 76.7   | 78.7   | 80.6   | 82.4   | 87.1    | 91.2   | 94.8 | 98   | 101 | 104 | 106 | 109 | 111 | 113 | 115 | 117 | 153  |
| 50    | 176.6 | 51   | 60.6                                                                                                            | 67.1 | 72.1 | 76.2 | 79.8 | 82.9 | 85.7 | 88.3   | 90.7   | 92.9   | 94.9   | 100     | 105    | 109  | 113  | 116 | 119 | 122 | 125 | 127 | 130 | 132 | 134 | 177  |
| 100   | 199.7 | 57.6 | 68.5                                                                                                            | 75.9 | 81.5 | 86.2 | 90.2 | 93.8 | 96.9 | 99.8   | 103    | 105    | 107    | 113     | 119    | 123  | 128  | 131 | 135 | 138 | 141 | 144 | 147 | 149 | 152 | 200  |
| 500   | 253   | 73   | 86.8                                                                                                            | 96.1 | 103  | 109  | 114  | 119  | 123  | 127    | 130    | 133    | 136    | 144     | 150    | 156  | 162  | 167 | 171 | 175 | 179 | 183 | 186 | 189 | 192 | 253  |
| 1000  | 275.9 | 79.6 | 94.7                                                                                                            | 105  | 113  | 119  | 125  | 130  | 134  | 138    | 142    | 145    | 148    | 157     | 164    | 171  | 176  | 182 | 186 | 191 | 195 | 199 | 203 | 206 | 210 | 276  |
| 10000 | 351.9 | 102  | 121                                                                                                             | 134  | 144  | 152  | 159  | 165  | 171  | 176    | 181    | 185    | 189    | 200     | 209    | 218  | 225  | 232 | 238 | 244 | 249 | 254 | 259 | 263 | 267 | 352  |

Tabla 37 Precipitaciones máximas para diferente duración y tiempo de retorno en subcuenca Alto Puyango.

|       |       |      |      |      |      |      |      |      | L    | Juvias | máxin | nas cu | enca l  | Medio | Puvan | iao  |      |      |      |      |      |      |      |     |     |      |
|-------|-------|------|------|------|------|------|------|------|------|--------|-------|--------|---------|-------|-------|------|------|------|------|------|------|------|------|-----|-----|------|
| TD    | Pmax  |      |      |      |      |      |      |      |      |        | -     |        | Ouració |       |       |      |      |      |      |      |      |      |      |     |     |      |
| TR    | 24 h  | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90     | 100   | 110    | 120     | 150   | 180   | 210  | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450 | 480 | 1440 |
| 5     | 108.3 | 31.3 | 37.2 |      |      |      |      |      |      |        |       |        |         |       |       |      |      |      |      |      |      |      |      |     |     |      |
| 10    | 134.9 | 38.9 | 46.3 | 51.2 | 55.1 | 58.2 | 60.9 | 63.3 | 65.5 | 67.4   | 69.2  | 70.9   | 72.5    | 76.6  | 80.2  | 83.3 | 86.2 | 88.7 | 91.1 | 93.3 | 95.4 | 97.3 | 99.1 | 101 | 103 | 135  |
| 25    | 168.4 | 48.6 | 57.8 | 64   | 68.7 | 72.7 | 76.1 | 79.1 | 81.7 | 84.2   | 86.4  | 88.5   | 90.5    | 95.7  | 100   | 104  | 108  | 111  | 114  | 117  | 119  | 122  | 124  | 126 | 128 | 168  |
| 50    | 193.3 | 55.8 | 66.3 | 73.4 | 78.9 | 83.4 | 87.3 | 90.7 | 93.8 | 96.6   | 99.2  | 102    | 104     | 110   | 115   | 119  | 124  | 127  | 131  | 134  | 137  | 139  | 142  | 145 | 147 | 193  |
| 100   | 217.9 | 62.9 | 74.8 | 82.8 | 89   | 94.1 | 98.5 | 102  | 106  | 109    | 112   | 115    | 117     | 124   | 130   | 135  | 139  | 143  | 147  | 151  | 154  | 157  | 160  | 163 | 166 | 218  |
| 500   | 275   | 79.4 | 94.4 | 105  | 112  | 119  | 124  | 129  | 134  | 138    | 141   | 145    | 148     | 156   | 164   | 170  | 176  | 181  | 186  | 190  | 195  | 198  | 202  | 206 | 209 | 275  |
| 1000  | 299.5 | 86.5 | 103  | 114  | 122  | 129  | 135  | 141  | 145  | 150    | 154   | 158    | 161     | 170   | 178   | 185  | 191  | 197  | 202  | 207  | 212  | 216  | 220  | 224 | 228 | 300  |
| 10000 | 380.9 | 110  | 131  | 145  | 156  | 164  | 172  | 179  | 185  | 191    | 196   | 200    | 205     | 216   | 227   | 235  | 243  | 251  | 257  | 264  | 269  | 275  | 280  | 285 | 289 | 381  |

Tabla 38 Precipitaciones máximas para diferente duración y tiempo de retorno en subcuenca Medio Puyango

|       |              |      |      |                                                  |      |      |      |      | Llu  | vias m | áxima | s cuer | nca Ba | ajo Pu | yango  |     |     |     |     |     |     |     |     |     |     |      |
|-------|--------------|------|------|--------------------------------------------------|------|------|------|------|------|--------|-------|--------|--------|--------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| TR    | Pmax 24 h    |      |      |                                                  |      |      |      |      |      |        |       |        | Duraci | ón en  | minuto | os  |     |     |     |     |     |     |     |     |     |      |
| 111   | FIIIAX 24 II | 10   | 20   | 30                                               | 40   | 50   | 60   | 70   | 80   | 90     | 100   | 110    | 120    | 150    | 180    | 210 | 240 | 270 | 300 | 330 | 360 | 390 | 420 | 450 | 480 | 1440 |
| 5     | 113.3        | 32.7 | 38.9 | <del>                                     </del> |      |      |      |      |      |        |       |        |        |        |        |     |     | 113 |     |     |     |     |     |     |     |      |
| 10    | 144.2        | 41.6 |      |                                                  |      |      |      |      |      |        |       |        |        |        |        |     | 110 | 144 |     |     |     |     |     |     |     |      |
| 25    | 183.1        | 52.9 | 62.9 | 69.6                                             | 74.8 | 79   | 82.7 | 86   | 88.9 | 91.6   | 94    | 96.3   | 98.4   | 104    | 109    | 113 | 117 | 121 | 124 | 127 | 130 | 132 | 135 | 137 | 139 | 183  |
| 50    | 212          | 61.2 | 72.8 | 80.6                                             | 86.6 | 91.5 | 95.8 | 99.6 | 103  | 106    | 109   | 112    | 114    | 121    | 126    | 131 | 136 | 140 | 143 | 147 | 150 | 153 | 156 | 159 | 161 | 212  |
| 100   | 240.7        | 69.5 | 82.6 | 91.4                                             | 98.3 | 104  | 109  | 113  | 117  | 120    | 124   | 127    | 129    | 137    | 143    | 149 | 154 | 158 | 163 | 167 | 170 | 174 | 177 | 180 | 183 | 241  |
| 500   | 307          | 88.6 | 105  | 117                                              | 125  | 133  | 139  | 144  | 149  | 154    | 158   | 161    | 165    | 174    | 183    | 190 | 196 | 202 | 207 | 212 | 217 | 222 | 226 | 230 | 233 | 307  |
| 1000  | 335.5        | 96.8 | 115  | 128                                              | 137  | 145  | 152  | 158  | 163  | 168    | 172   | 176    | 180    | 191    | 200    | 207 | 214 | 221 | 227 | 232 | 237 | 242 | 247 | 251 | 255 | 336  |
| 10000 | 430          | 124  | 148  | 163                                              | 176  | 186  | 194  | 202  | 209  | 215    | 221   | 226    | 231    | 244    | 256    | 266 | 275 | 283 | 291 | 298 | 304 | 310 | 316 | 322 | 327 | 430  |

Tabla 39 Precipitaciones máximas para diferente duración y tiempo de retorno en subcuenca Bajo Puyango

|       |           |      |      |      |      |      |      |      | LI   | uvias | máxin | nas cu | enca ( | Cazad | eros |      |      |      |      |      |      |      |      |      |      |      |
|-------|-----------|------|------|------|------|------|------|------|------|-------|-------|--------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| TD    | D 04.1    |      |      |      |      |      |      |      |      |       |       |        | Duraci |       |      | os   |      |      |      |      |      |      |      |      |      |      |
| TR    | Pmax 24 h | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90    | 100   | 110    | 120    |       | 180  |      | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  | 1440 |
| 5     | 98.3      | 28.4 | 33.8 | 37.4 | 40.1 | 42.4 | 44.4 | 46.2 | 47.7 | 49.2  | 50.5  | 51.7   | 52.8   | 55.9  | 58.5 | 60.8 | 62.8 | 64.7 | 66.4 | 68   | 69.5 | 70.9 | 72.3 | 73.5 | 74.7 | 98.3 |
| 10    | 125.1     | 36.1 | 43   | 47.5 | 51.1 | 54   | 56.5 | 58.8 | 60.7 | 62.6  | 64.2  | 65.8   | 67.2   | 71.1  | 74.4 | 77.3 | 79.9 | 82.3 | 84.5 | 86.6 | 88.5 | 90.3 | 92   | 93.6 | 95.1 | 125  |
| 25    | 159       | 45.9 | 54.6 | 60.4 | 64.9 | 68.6 | 71.8 | 74.7 | 77.2 | 79.5  | 81.6  | 83.6   | 85.4   | 90.3  | 94.5 | 98.3 | 102  | 105  | 107  | 110  | 112  | 115  | 117  | 119  | 121  | 159  |
| 50    | 184.1     | 53.2 | 63.2 | 70   | 75.2 | 79.5 | 83.2 | 86.5 | 89.4 | 92.1  | 94.5  | 96.8   | 98.9   | 105   | 110  | 114  | 118  | 121  | 124  | 127  | 130  | 133  | 135  | 138  | 140  | 184  |
| 100   | 209.1     | 60.4 | 71.8 | 79.4 | 85.3 | 90.2 | 94.5 | 98.2 | 102  | 105   | 107   | 110    | 112    | 119   | 124  | 129  | 134  | 138  | 141  | 145  | 148  | 151  | 154  | 156  | 159  | 209  |
| 500   | 266.7     | 77   | 91.6 | 101  | 109  | 115  | 121  | 125  | 130  | 133   | 137   | 140    | 143    | 152   | 159  | 165  | 170  | 176  | 180  | 185  | 189  | 192  | 196  | 199  | 203  | 267  |
| 1000  | 291.5     | 84.1 | 100  | 111  | 119  | 126  | 132  | 137  | 142  | 146   | 150   | 153    | 157    | 166   | 173  | 180  | 186  | 192  | 197  | 202  | 206  | 210  | 214  | 218  | 222  | 292  |
| 10000 | 373.7     | 108  | 128  | 142  | 153  | 161  | 169  | 176  | 181  | 187   | 192   | 197    | 201    | 212   | 222  | 231  | 239  | 246  | 253  | 259  | 264  | 270  | 275  | 279  | 284  | 374  |

Tabla 40 Precipitaciones máximas para diferente duración y tiempo de retorno en subcuenca Cazaderos

|       |              |      |      |      |      |      |      |      |      | Lluvia | s máx | imas I | Medio   | Tumb  | es     |      |      |      |      |      |      |      |      |      |      |      |
|-------|--------------|------|------|------|------|------|------|------|------|--------|-------|--------|---------|-------|--------|------|------|------|------|------|------|------|------|------|------|------|
| TR    | Pmax 24 h    |      |      |      |      |      |      |      |      |        |       |        | Ouracio | ón en | minute | os   |      |      |      |      |      |      |      |      |      |      |
| IK    | FIIIdX 24 II | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90     | 100   | 110    | 120     | 150   | 180    | 210  | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  | 1440 |
| 5     | 78.6         | 22.7 | 27   | 29.8 | 32.1 | 33.9 | 35.5 | 36.9 | 38.1 | 39.3   | 40.3  | 41.3   | 42.2    | 44.6  | 46.7   | 48.5 | 50.2 | 51.7 | 53.1 | 54.3 | 55.5 | 56.7 | 57.7 | 58.7 | 59.7 | 78.6 |
| 10    | 99.9         | 28.8 | 34.3 | 38   | 40.8 | 43.1 | 45.1 | 46.9 | 48.5 | 50     | 51.3  | 52.5   | 53.7    | 56.8  | 59.4   | 61.8 | 63.9 | 65.8 | 67.5 | 69.1 | 70.7 | 72.1 | 73.4 | 74.7 | 75.9 | 99.9 |
| 25    | 126.9        | 36.6 | 43.6 | 48.2 | 51.8 | 54.8 | 57.4 | 59.6 | 61.6 | 63.5   | 65.2  | 66.7   | 68.2    | 72.1  | 75.5   | 78.4 | 81.1 | 83.5 | 85.8 | 87.8 | 89.8 | 91.6 | 93.3 | 94.9 | 96.5 | 127  |
| 50    | 147          | 42.4 | 50.5 | 55.8 | 60   | 63.4 | 66.4 | 69   | 71.4 | 73.5   | 75.5  | 77.3   | 79      | 83.5  | 87.4   | 90.8 | 93.9 | 96.7 | 99.3 | 102  | 104  | 106  | 108  | 110  | 112  | 147  |
| 100   | 166.9        | 48.2 | 57.3 | 63.4 | 68.1 | 72   | 75.4 | 78.4 | 81   | 83.4   | 85.7  | 87.7   | 89.7    | 94.8  | 99.2   | 103  | 107  | 110  | 113  | 116  | 118  | 120  | 123  | 125  | 127  | 167  |
| 500   | 212.8        | 61.4 | 73.1 | 80.9 | 86.9 | 91.9 | 96.2 | 99.9 | 103  | 106    | 109   | 112    | 114     | 121   | 127    | 132  | 136  | 140  | 144  | 147  | 151  | 154  | 156  | 159  | 162  | 213  |
| 1000  | 232.6        | 67.1 | 79.9 | 88.4 | 95   | 100  | 105  | 109  | 113  | 116    | 119   | 122    | 125     | 132   | 138    | 144  | 149  | 153  | 157  | 161  | 165  | 168  | 171  | 174  | 177  | 233  |
| 10000 | 298.2        | 86.1 | 102  | 113  | 122  | 129  | 135  | 140  | 145  | 149    | 153   | 157    | 160     | 169   | 177    | 184  | 191  | 196  | 201  | 206  | 211  | 215  | 219  | 223  | 227  | 298  |

Tabla 41 Precipitaciones máximas para diferente duración y tiempo de retorno en subcuenca Medio Tumbes

|       |              |      |      |      |      |      |      |      |      | Lluvia | as má | ximas | Bajo T  | Гumbе | :S     |      |      |      |      |      |      |      |      |      |      |      |
|-------|--------------|------|------|------|------|------|------|------|------|--------|-------|-------|---------|-------|--------|------|------|------|------|------|------|------|------|------|------|------|
| TR    | Pmax 24 h    |      |      |      |      |      |      |      |      |        |       |       | Ouracio | ón en | minuto | os   |      |      |      |      |      |      |      |      |      |      |
| IK    | FIIIAX 24 II | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90     | 100   | 110   | 120     | 150   | 180    | 210  | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  | 1440 |
| 5     | 74.3         | 21.4 | 25.5 | 28.2 | 30.3 | 32.1 | 33.6 | 34.9 | 36.1 | 37.1   | 38.1  | 39    | 39.9    | 42.2  | 44.2   | 45.9 | 47.5 | 48.9 | 50.2 | 51.4 | 52.5 | 53.6 | 54.6 | 55.5 | 56.4 | 74.3 |
| 10    | 96.2         | 27.8 | 33   | 36.6 | 39.3 | 41.5 | 43.5 | 45.2 | 46.7 | 48.1   | 49.4  | 50.6  | 51.7    | 54.7  | 57.2   | 59.5 | 61.5 | 63.3 | 65   | 66.6 | 68   | 69.4 | 70.7 | 71.9 | 73.1 | 96.2 |
| 25    | 124          | 35.8 | 42.6 | 47.1 | 50.6 | 53.5 | 56   | 58.2 | 60.2 | 62     | 63.6  | 65.2  | 66.6    | 70.4  | 73.7   | 76.6 | 79.2 | 81.6 | 83.8 | 85.8 | 87.7 | 89.4 | 91.1 | 92.7 | 94.2 | 124  |
| 50    | 144.5        | 41.7 | 49.6 | 54.9 | 59   | 62.4 | 65.3 | 67.9 | 70.2 | 72.3   | 74.2  | 76    | 77.7    | 82.1  | 85.9   | 89.3 | 92.4 | 95.1 | 97.7 | 100  | 102  | 104  | 106  | 108  | 110  | 145  |
| 100   | 165          | 47.6 | 56.6 | 62.7 | 67.4 | 71.2 | 74.5 | 77.5 | 80.1 | 82.5   | 84.7  | 86.7  | 88.6    | 93.7  | 98.1   | 102  | 105  | 109  | 112  | 114  | 117  | 119  | 121  | 123  | 125  | 165  |
| 500   | 212.2        | 61.3 | 72.8 | 80.6 | 86.6 | 91.6 | 95.9 | 99.6 | 103  | 106    | 109   | 112   | 114     | 121   | 126    | 131  | 136  | 140  | 143  | 147  | 150  | 153  | 156  | 159  | 161  | 212  |
| 1000  | 232.5        | 67.1 | 79.8 | 88.3 | 94.9 | 100  | 105  | 109  | 113  | 116    | 119   | 122   | 125     | 132   | 138    | 144  | 149  | 153  | 157  | 161  | 164  | 168  | 171  | 174  | 177  | 233  |
| 10000 | 299.8        | 86.5 | 103  | 114  | 122  | 129  | 136  | 141  | 146  | 150    | 154   | 158   | 161     | 170   | 178    | 185  | 192  | 197  | 203  | 207  | 212  | 216  | 220  | 224  | 228  | 300  |

Tabla 42 Precipitaciones máximas para diferente duración y tiempo de retorno en subcuenca Bajo Tumbes

|       |       |       |       |       |       |       | Intension | dades m | náxima | ıs - Cu | enca / | Alto Ρι | ıyango | o (mm/ | /hora) |      |      |      |      |      |      |      |      |      |
|-------|-------|-------|-------|-------|-------|-------|-----------|---------|--------|---------|--------|---------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
| TR    |       |       |       |       |       |       |           |         |        | Dura    | ción e | n mini  | utos   |        |        |      |      |      |      |      |      |      |      |      |
| IK    | 10    | 20    | 30    | 40    | 50    | 60    | 70        | 80      | 90     | 100     | 110    | 120     | 150    | 180    | 210    | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  |
| 10    | 168.5 | 100.2 | 73.9  | 59.6  | 50.4  | 44    | 39.2      | 35.4    | 32.4   | 30      | 27.9   | 26.1    | 22.1   | 19.3   | 17.2   | 15.5 | 14.2 | 13.1 | 12.2 | 11.5 | 10.8 | 10.2 | 9.7  | 9.2  |
| 20    | 211.4 | 125.7 | 92.8  | 74.8  | 63.2  | 55.2  | 49.1      | 44.4    | 40.7   | 37.6    | 35     | 32.8    | 27.7   | 24.2   | 21.6   | 19.5 | 17.9 | 16.5 | 15.4 | 14.4 | 13.5 | 12.8 | 12.2 | 11.6 |
| 50    | 265.7 | 158   | 116.5 | 93.9  | 79.5  | 69.3  | 61.7      | 55.9    | 51.1   | 47.2    | 44     | 41.2    | 34.9   | 30.4   | 27.1   | 24.5 | 22.4 | 20.7 | 19.3 | 18.1 | 17   | 16.1 | 15.3 | 14.6 |
| 100   | 305.9 | 181.9 | 134.2 | 108.2 | 91.5  | 79.8  | 71.1      | 64.3    | 58.9   | 54.4    | 50.6   | 47.4    | 40.1   | 35     | 31.2   | 28.2 | 25.8 | 23.9 | 22.2 | 20.8 | 19.6 | 18.5 | 17.6 | 16.8 |
| 500   | 345.8 | 205.6 | 151.7 | 122.3 | 103.4 | 90.2  | 80.4      | 72.7    | 66.6   | 61.5    | 57.3   | 53.6    | 45.4   | 39.6   | 35.3   | 31.9 | 29.2 | 27   | 25.1 | 23.5 | 22.2 | 21   | 19.9 | 19   |
| 1000  | 438.1 | 260.5 | 192.2 | 154.9 | 131   | 114.3 | 101.8     | 92.1    | 84.3   | 77.9    | 72.5   | 68      | 57.5   | 50.1   | 44.7   | 40.4 | 37   | 34.2 | 31.8 | 29.8 | 28.1 | 26.6 | 25.2 | 24   |
| 10000 | 477.8 | 284.1 | 209.6 | 168.9 | 142.9 | 124.6 | 111       | 100.5   | 92     | 85      | 79.1   | 74.1    | 62.7   | 54.7   | 48.7   | 44.1 | 40.3 | 37.3 | 34.7 | 32.5 | 30.6 | 29   | 27.5 | 26.2 |

Tabla 43 Intensidades de lluvia para diferentes duraciones y tiempos de retorno en subcuenca Alto Puyango

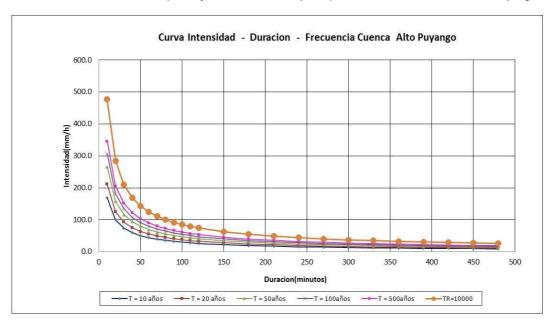



Figura 17 Gráfico de las curvas IDF en subcuenca Alto Puyango

|       |       |       |       |       |       | I     | ntensida | ades má | áximas | - Cue | nca M  | ledio F | Puyang | go (mn | n/hora) | )    |      |      |      |      |      |      |      |      |
|-------|-------|-------|-------|-------|-------|-------|----------|---------|--------|-------|--------|---------|--------|--------|---------|------|------|------|------|------|------|------|------|------|
| TR    |       |       |       |       |       |       |          |         |        | Dura  | ción e | n mini  | utos   |        |         |      |      |      |      |      |      |      |      |      |
| IK    | 10    | 20    | 30    | 40    | 50    | 60    | 70       | 80      | 90     | 100   | 110    | 120     | 150    | 180    | 210     | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  |
| 10    | 187.6 | 111.5 | 82.3  | 66.3  | 56.1  | 48.9  | 43.6     | 39.4    | 36.1   | 33.4  | 31.1   | 29.1    | 24.6   | 21.5   | 19.1    | 17.3 | 15.8 | 14.6 | 13.6 | 12.8 | 12   | 11.4 | 10.8 | 10.3 |
| 20    | 233.6 | 138.9 | 102.5 | 82.6  | 69.9  | 60.9  | 54.3     | 49.1    | 45     | 41.5  | 38.7   | 36.2    | 30.6   | 26.7   | 23.8    | 21.5 | 19.7 | 18.2 | 17   | 15.9 | 15   | 14.2 | 13.4 | 12.8 |
| 50    | 291.6 | 173.4 | 127.9 | 103.1 | 87.2  | 76.1  | 67.8     | 61.3    | 56.1   | 51.9  | 48.3   | 45.2    | 38.3   | 33.4   | 29.7    | 26.9 | 24.6 | 22.8 | 21.2 | 19.8 | 18.7 | 17.7 | 16.8 | 16   |
| 100   | 334.7 | 199   | 146.8 | 118.3 | 100.1 | 87.3  | 77.8     | 70.4    | 64.4   | 59.5  | 55.4   | 51.9    | 43.9   | 38.3   | 34.1    | 30.9 | 28.3 | 26.1 | 24.3 | 22.8 | 21.4 | 20.3 | 19.3 | 18.4 |
| 500   | 377.5 | 224.5 | 165.6 | 133.5 | 112.9 | 98.5  | 87.7     | 79.4    | 72.6   | 67.1  | 62.5   | 58.6    | 49.5   | 43.2   | 38.5    | 34.8 | 31.9 | 29.4 | 27.4 | 25.7 | 24.2 | 22.9 | 21.7 | 20.7 |
| 1000  | 476.3 | 283.2 | 209   | 168.4 | 142.5 | 124.2 | 110.7    | 100.1   | 91.7   | 84.7  | 78.9   | 73.9    | 62.5   | 54.5   | 48.6    | 43.9 | 40.2 | 37.2 | 34.6 | 32.4 | 30.5 | 28.9 | 27.4 | 26.1 |
| 10000 | 518.8 | 308.5 | 227.6 | 183.4 | 155.2 | 135.3 | 120.6    | 109.1   | 99.8   | 92.3  | 85.9   | 80.5    | 68.1   | 59.4   | 52.9    | 47.8 | 43.8 | 40.5 | 37.7 | 35.3 | 33.2 | 31.4 | 29.9 | 28.5 |

Tabla 44 Intensidades de lluvia para diferentes duraciones y tiempos de retorno en subcuenca Medio Puyango

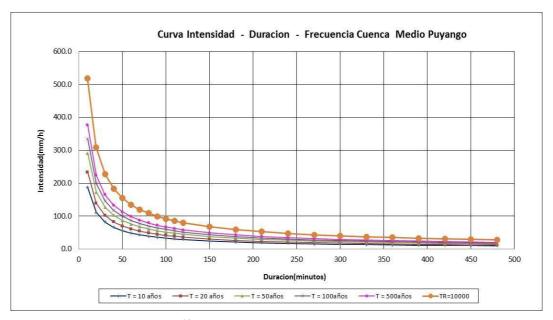



Figura 18 Gráfico de las curvas IDF en subcuenca Medio Puyango

|       |       |       |       |       |       |       | Intens | idades ı | máxima | s - Cuei | nca Ba | ajo Pu | yango | (mm/h | nora) |      |      |      |      |      |      |      |      |      |
|-------|-------|-------|-------|-------|-------|-------|--------|----------|--------|----------|--------|--------|-------|-------|-------|------|------|------|------|------|------|------|------|------|
| TR    |       |       |       |       |       |       |        |          |        | Durac    | ión en | minut  | os    |       |       |      |      |      |      |      |      |      |      |      |
| IK    | 10    | 20    | 30    | 40    | 50    | 60    | 70     | 80       | 90     | 100      | 110    | 120    | 150   | 180   | 210   | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  |
| 10    | 196.3 | 116.7 | 86.1  | 69.4  | 58.7  | 51.2  | 45.6   | 41.3     | 37.8   | 34.9     | 32.5   | 30.4   | 25.8  | 22.5  | 20    | 18.1 | 16.6 | 15.3 | 14.3 | 13.4 | 12.6 | 11.9 | 11.3 | 10.8 |
| 20    | 249.7 | 148.5 | 109.5 | 88.3  | 74.7  | 65.1  | 58     | 52.5     | 48.1   | 44.4     | 41.3   | 38.7   | 32.8  | 28.6  | 25.5  | 23   | 21.1 | 19.5 | 18.1 | 17   | 16   | 15.1 | 14.4 | 13.7 |
| 50    | 317.2 | 188.6 | 139.1 | 112.1 | 94.9  | 82.7  | 73.7   | 66.7     | 61     | 56.4     | 52.5   | 49.2   | 41.6  | 36.3  | 32.3  | 29.3 | 26.8 | 24.7 | 23   | 21.6 | 20.3 | 19.2 | 18.3 | 17.4 |
| 100   | 367.2 | 218.4 | 161.1 | 129.8 | 109.8 | 95.8  | 85.3   | 77.2     | 70.7   | 65.3     | 60.8   | 57     | 48.2  | 42    | 37.4  | 33.9 | 31   | 28.6 | 26.7 | 25   | 23.5 | 22.3 | 21.1 | 20.1 |
| 500   | 416.9 | 247.9 | 182.9 | 147.4 | 124.7 | 108.8 | 96.9   | 87.6     | 80.2   | 74.1     | 69     | 64.7   | 54.7  | 47.7  | 42.5  | 38.4 | 35.2 | 32.5 | 30.3 | 28.4 | 26.7 | 25.3 | 24   | 22.9 |
| 1000  | 531.7 | 316.2 | 233.3 | 188   | 159   | 138.7 | 123.6  | 111.8    | 102.3  | 94.6     | 88     | 82.5   | 69.8  | 60.8  | 54.2  | 49   | 44.9 | 41.5 | 38.6 | 36.2 | 34.1 | 32.2 | 30.6 | 29.2 |
| 10000 | 581.1 | 345.5 | 254.9 | 205.4 | 173.8 | 151.6 | 135    | 122.2    | 111.8  | 103.3    | 96.2   | 90.1   | 76.2  | 66.5  | 59.2  | 53.6 | 49.1 | 45.3 | 42.2 | 39.5 | 37.2 | 35.2 | 33.4 | 31.9 |

Tabla 45 Intensidades de lluvia para diferentes duraciones y tiempos de retorno en subcuenca Bajo Puyango

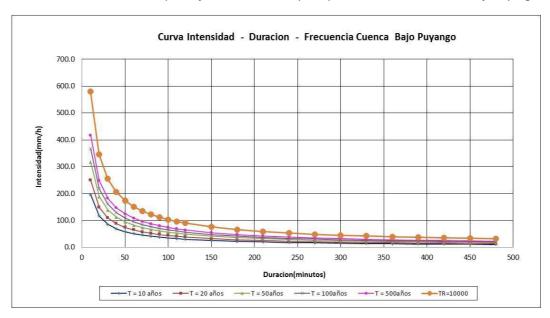



Figura 19 Gráfico de las curvas IDF en subcuenca Bajo Puyango

|       |       |       |       |       |       |       | Intens | idades | máxim | as - C | uenca  | Caza   | deros | (mm/h | ora) |      |      |      |      |      |      |      |      |      |
|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|--------|--------|--------|-------|-------|------|------|------|------|------|------|------|------|------|------|
| TR    |       |       |       |       |       |       |        |        |       | Dura   | ción e | n mini | utos  |       |      |      |      |      |      |      |      |      |      |      |
| IK    | 10    | 20    | 30    | 40    | 50    | 60    | 70     | 80     | 90    | 100    | 110    | 120    | 150   | 180   | 210  | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  |
| 10    | 170.3 | 101.3 | 74.7  | 60.2  | 50.9  | 44.4  | 39.6   | 35.8   | 32.8  | 30.3   | 28.2   | 26.4   | 22.3  | 19.5  | 17.4 | 15.7 | 14.4 | 13.3 | 12.4 | 11.6 | 10.9 | 10.3 | 9.8  | 9.3  |
| 20    | 216.7 | 128.9 | 95.1  | 76.6  | 64.8  | 56.5  | 50.4   | 45.6   | 41.7  | 38.5   | 35.9   | 33.6   | 28.4  | 24.8  | 22.1 | 20   | 18.3 | 16.9 | 15.7 | 14.7 | 13.9 | 13.1 | 12.5 | 11.9 |
| 50    | 275.4 | 163.7 | 120.8 | 97.4  | 82.4  | 71.8  | 64     | 57.9   | 53    | 49     | 45.6   | 42.7   | 36.1  | 31.5  | 28.1 | 25.4 | 23.2 | 21.5 | 20   | 18.7 | 17.6 | 16.7 | 15.9 | 15.1 |
| 100   | 318.9 | 189.6 | 139.9 | 112.8 | 95.4  | 83.2  | 74.1   | 67     | 61.4  | 56.7   | 52.8   | 49.5   | 41.8  | 36.5  | 32.5 | 29.4 | 26.9 | 24.9 | 23.2 | 21.7 | 20.4 | 19.3 | 18.4 | 17.5 |
| 500   | 362.1 | 215.3 | 158.9 | 128   | 108.3 | 94.5  | 84.1   | 76.1   | 69.7  | 64.4   | 60     | 56.2   | 47.5  | 41.4  | 36.9 | 33.4 | 30.6 | 28.2 | 26.3 | 24.6 | 23.2 | 21.9 | 20.8 | 19.9 |
| 1000  | 461.9 | 274.7 | 202.6 | 163.3 | 138.1 | 120.5 | 107.3  | 97.1   | 88.9  | 82.1   | 76.5   | 71.6   | 60.6  | 52.9  | 47.1 | 42.6 | 39   | 36   | 33.5 | 31.4 | 29.6 | 28   | 26.6 | 25.3 |
| 10000 | 504.8 | 300.2 | 221.5 | 178.5 | 151   | 131.7 | 117.3  | 106.1  | 97.2  | 89.8   | 83.6   | 78.3   | 66.2  | 57.8  | 51.5 | 46.6 | 42.6 | 39.4 | 36.7 | 34.4 | 32.3 | 30.6 | 29.1 | 27.7 |

Tabla 46 Intensidades de lluvia para diferentes duraciones y tiempos de retorno en subcuenca Cazaderos



Figura 20 Gráfico de las curvas IDF en subcuenca Cazaderos

|       |       |       |       |       |       | lı    | ntensio | dades | máxim | as - C | uenca  | Medic | Tumb  | es (m | m/hora | a)   |      |      |      |      |      |      |      |      |
|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|--------|--------|-------|-------|-------|--------|------|------|------|------|------|------|------|------|------|
| TR    |       |       |       |       |       |       |         |       |       | Du     | ración | en mi | nutos |       |        |      |      |      |      |      |      |      |      |      |
| IK    | 10    | 20    | 30    | 40    | 50    | 60    | 70      | 80    | 90    | 100    | 110    | 120   | 150   | 180   | 210    | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  |
| 10    | 136.1 | 80.9  | 59.7  | 48.1  | 40.7  | 35.5  | 31.6    | 28.6  | 26.2  | 24.2   | 22.5   | 21.1  | 17.9  | 15.6  | 13.9   | 12.5 | 11.5 | 10.6 | 9.9  | 9.3  | 8.7  | 8.2  | 7.8  | 7.5  |
| 20    | 173.1 | 102.9 | 75.9  | 61.2  | 51.8  | 45.1  | 40.2    | 36.4  | 33.3  | 30.8   | 28.7   | 26.8  | 22.7  | 19.8  | 17.6   | 16   | 14.6 | 13.5 | 12.6 | 11.8 | 11.1 | 10.5 | 10   | 9.5  |
| 50    | 219.9 | 130.7 | 96.5  | 77.7  | 65.8  | 57.4  | 51.1    | 46.2  | 42.3  | 39.1   | 36.4   | 34.1  | 28.8  | 25.2  | 22.4   | 20.3 | 18.6 | 17.2 | 16   | 15   | 14.1 | 13.3 | 12.7 | 12.1 |
| 100   | 254.6 | 151.4 | 111.7 | 90    | 76.1  | 66.4  | 59.2    | 53.5  | 49    | 45.3   | 42.1   | 39.5  | 33.4  | 29.1  | 26     | 23.5 | 21.5 | 19.9 | 18.5 | 17.3 | 16.3 | 15.4 | 14.7 | 14   |
| 500   | 289   | 171.9 | 126.8 | 102.2 | 86.4  | 75.4  | 67.2    | 60.8  | 55.6  | 51.4   | 47.9   | 44.8  | 37.9  | 33.1  | 29.5   | 26.7 | 24.4 | 22.5 | 21   | 19.7 | 18.5 | 17.5 | 16.6 | 15.8 |
| 1000  | 368.7 | 219.2 | 161.7 | 130.3 | 110.3 | 96.2  | 85.7    | 77.5  | 70.9  | 65.6   | 61     | 57.2  | 48.4  | 42.2  | 37.6   | 34   | 31.1 | 28.8 | 26.8 | 25.1 | 23.6 | 22.3 | 21.2 | 20.2 |
| 10000 | 402.9 | 239.6 | 176.7 | 142.4 | 120.5 | 105.1 | 93.6    | 84.7  | 77.5  | 71.6   | 66.7   | 62.5  | 52.9  | 46.1  | 41.1   | 37.2 | 34   | 31.4 | 29.3 | 27.4 | 25.8 | 24.4 | 23.2 | 22.1 |

Tabla 47 Intensidades de lluvia para diferentes duraciones y tiempos de retorno en subcuenca Medio Tumbes

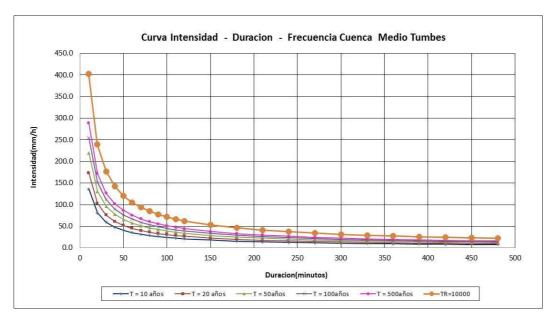



Figura 21 Gráfico de las curvas IDF en subcuenca Medio Tumbes

|       |       |       |       |       |       |      | Intens | sidade | s máxi | mas - | Cuenc  | a Bajo | Tumb   | es (mi | m/hora | ι)   |      |      |      |      |      |      |      |      |
|-------|-------|-------|-------|-------|-------|------|--------|--------|--------|-------|--------|--------|--------|--------|--------|------|------|------|------|------|------|------|------|------|
| TR    |       |       |       |       |       |      |        |        |        | D     | uració | n en m | inutos |        |        |      |      |      |      |      |      |      |      |      |
| IK    | 10    | 20    | 30    | 40    | 50    | 60   | 70     | 80     | 90     | 100   | 110    | 120    | 150    | 180    | 210    | 240  | 270  | 300  | 330  | 360  | 390  | 420  | 450  | 480  |
| 10    | 128.6 | 76.5  | 56.4  | 45.5  | 38.5  | 33.6 | 29.9   | 27     | 24.8   | 22.9  | 21.3   | 20     | 16.9   | 14.7   | 13.1   | 11.9 | 10.9 | 10   | 9.3  | 8.8  | 8.2  | 7.8  | 7.4  | 7.1  |
| 20    | 166.7 | 99.1  | 73.1  | 58.9  | 49.8  | 43.5 | 38.7   | 35     | 32.1   | 29.6  | 27.6   | 25.9   | 21.9   | 19.1   | 17     | 15.4 | 14.1 | 13   | 12.1 | 11.3 | 10.7 | 10.1 | 9.6  | 9.1  |
| 50    | 214.7 | 127.7 | 94.2  | 75.9  | 64.2  | 56   | 49.9   | 45.1   | 41.3   | 38.2  | 35.5   | 33.3   | 28.2   | 24.6   | 21.9   | 19.8 | 18.1 | 16.8 | 15.6 | 14.6 | 13.8 | 13   | 12.4 | 11.8 |
| 100   | 250.4 | 148.9 | 109.8 | 88.5  | 74.9  | 65.3 | 58.2   | 52.6   | 48.2   | 44.5  | 41.5   | 38.8   | 32.8   | 28.6   | 25.5   | 23.1 | 21.1 | 19.5 | 18.2 | 17   | 16   | 15.2 | 14.4 | 13.7 |
| 500   | 285.7 | 169.9 | 125.4 | 101   | 85.5  | 74.5 | 66.4   | 60.1   | 55     | 50.8  | 47.3   | 44.3   | 37.5   | 32.7   | 29.1   | 26.4 | 24.1 | 22.3 | 20.8 | 19.4 | 18.3 | 17.3 | 16.4 | 15.7 |
| 1000  | 367.5 | 218.5 | 161.2 | 129.9 | 109.9 | 95.9 | 85.4   | 77.3   | 70.7   | 65.4  | 60.8   | 57     | 48.2   | 42.1   | 37.5   | 33.9 | 31   | 28.7 | 26.7 | 25   | 23.5 | 22.3 | 21.2 | 20.2 |
| 10000 | 402.7 | 239.4 | 176.6 | 142.4 | 120.4 | 105  | 93.6   | 84.6   | 77.5   | 71.6  | 66.7   | 62.5   | 52.8   | 46.1   | 41     | 37.1 | 34   | 31.4 | 29.2 | 27.4 | 25.8 | 24.4 | 23.2 | 22.1 |

Tabla 48 Intensidades de lluvia para diferentes duraciones y tiempos de retorno en subcuenca Bajo Tumbes

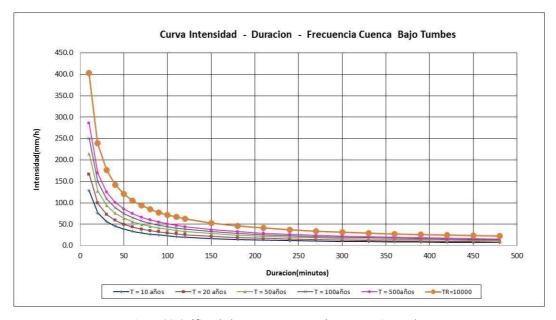



Figura 22 Gráfico de las curvas IDF en subcuenca Bajo Tumbes

Tabla 49 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 25 años

|               | Caudales<br>máximos |               |           |           |         |         |               |           |          |          |         |         |
|---------------|---------------------|---------------|-----------|-----------|---------|---------|---------------|-----------|----------|----------|---------|---------|
|               | de diseño           |               | TR=       | 25        |         |         |               |           |          |          |         |         |
| Subcuenca     | Creager             | L-<br>moments | Promedio  | МН        |         |         | EFICIEN       | NCIA DE N | NASH-SUT | CLIFFE   |         |         |
| Alto Puyango  | 2189.9136           | 1307.4        | 1748.6568 | 1296      | 799082  | 151614  |               | 129.96    | 151614   |          | 204898  | 151614  |
| Medio Puyango | 2576.1189           | 1536.6        | 2056.3595 | 1606      | 941131  | 489128  |               | 4816.36   | 489128   |          | 202824  | 489128  |
| Bajo Puyango  | 3103.1062           | 1852.1        | 2477.6031 | 2255      | 719284  | 1818120 |               | 162328    | 1818120  |          | 49552.1 | 1818120 |
| Cazaderos     | 1278.0502           | 762.6         | 1020.3251 | 428       | 722585  | 229080  |               | 111957    | 229080   |          | 350849  | 229080  |
| El tigre      | 3619.2463           | 2091.9        | 2855.5732 | 2700      | 845014  | 3216201 |               | 369786    | 3216201  |          | 24203   | 3216201 |
| Puente Tumbes | 3801.917            | 2269.7        | 3035.8085 | 3058      | 553413  | 4628423 |               | 621417    | 4628423  |          | 492.463 | 4628423 |
| Cabuyal       | 571.81156           | 340.5         | 456.15578 | 140       | 186461  | 587711  |               | 40200.3   | 587711   |          | 99954.5 | 587711  |
| Ceibal        | 189.64421           | 113.5         | 151.57211 | 29.1      | 25774.4 | 770047  |               | 7123.36   | 770047   |          | 14999.4 | 770047  |
| Las Peñas     | 468.3935            | 279.2         | 373.79675 | 104       | 132783  | 644204  |               | 30695     | 644204   |          | 72790.3 | 644204  |
| Guanábanos    | 221.3764            | 132.1         | 176.7382  | 36        | 34364.4 | 757985  |               | 9235.21   | 757985   |          | 19807.2 | 757985  |
| Rica Playa    | 247.2295            | 147.5         | 197.36475 | 42        | 42119.1 | 747573  |               | 11130.3   | 747573   |          | 24138.2 | 747573  |
| Cayana        | 345.03143           | 206.5         | 275.76571 | 67        | 77301.5 | 704967  |               | 19460.3   | 704967   |          | 43583.1 | 704967  |
| San Jacinto   | 167.49292           | 99.9          | 133.69646 | 25        | 20304.2 | 777259  |               | 5610.01   | 777259   |          | 11814.9 | 777259  |
|               |                     |               |           |           |         |         |               |           |          |          |         |         |
|               |                     |               |           | 906.62308 | 5099616 | 1.6E+07 |               | 1393889   | 1.6E+07  |          | 1119906 | 1.6E+07 |
|               |                     |               |           |           |         |         |               |           |          |          |         |         |
|               |                     |               |           | CREAGER   | 0.67147 |         | L-<br>MOMENTS | 0.9102    |          | PROMEDIO | 0.92785 |         |

Tabla 50 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 50 años

|               | Caudales<br>máximos<br>de diseño |               | TR=       | 50        |         |         |               |          |          |          |         |         |
|---------------|----------------------------------|---------------|-----------|-----------|---------|---------|---------------|----------|----------|----------|---------|---------|
| Subcuenca     | Creager                          | L-<br>moments | Promedio  | MH        |         |         | EFICIEN       | CIA DE N | IASH-SUT | CLIFFE   |         |         |
| Alto Puyango  | 2661.4859                        | 1802.9        | 2232.1929 | 2120      | 293207  | 611704  |               | 100552   | 611704   |          | 12587.3 | 611704  |
| Medio Puyango | 3130.8559                        | 2119          | 2624.928  | 2357      | 598853  | 1038596 |               | 56644    | 1038596  |          | 71785.4 | 1038596 |
| Bajo Puyango  | 3771.3237                        | 2554.1        | 3162.7119 | 3216      | 308384  | 3527317 |               | 438112   | 3527317  |          | 2839.63 | 3527317 |
| Cazaderos     | 1553.2634                        | 1051.7        | 1302.4817 | 1106      | 200045  | 53770.5 |               | 2948.49  | 53770.5  |          | 38605.1 | 53770.5 |
| El tigre      | 4398.6086                        | 2884.8        | 3641.7043 | 3250      | 1319302 | 3656185 |               | 133371   | 3656185  |          | 153432  | 3656185 |
| Puente Tumbes | 4620.6153                        | 3130          | 3875.3076 | 3432      | 1412806 | 4385319 |               | 91204    | 4385319  |          | 196522  | 4385319 |
| Cabuyal       | 694.94448                        | 469.5         | 582.22224 | 518       | 31309.3 | 672211  |               | 2352.25  | 672211   |          | 4124.5  | 672211  |
| Ceibal        | 230.48187                        | 156.5         | 193.49094 | 146.5     | 7052.95 | 1419397 |               | 100      | 1419397  |          | 2208.15 | 1419397 |
| Las Peñas     | 569.25655                        | 385           | 477.12827 | 405       | 26980.2 | 870274  |               | 400      | 870274   |          | 5202.49 | 870274  |
| Guanábanos    | 269.04721                        | 182.2         | 225.62361 | 189       | 6407.56 | 1319936 |               | 46.24    | 1319936  |          | 1341.29 | 1319936 |
| Rica Playa    | 300.46748                        | 203.5         | 251.98374 | 222       | 6157.15 | 1245198 |               | 342.25   | 1245198  |          | 899.025 | 1245198 |
| Cayana        | 419.3299                         | 284.8         | 352.06495 | 316       | 10677.1 | 1044248 |               | 973.44   | 1044248  |          | 1300.68 | 1044248 |
| San Jacinto   | 203.56056                        | 137.7         | 170.63028 | 115       | 7842.97 | 1495447 |               | 515.29   | 1495447  |          | 3094.73 | 1495447 |
|               |                                  |               |           |           |         |         |               |          |          |          |         |         |
|               |                                  |               |           | 1337.8846 | 4229024 | 2.1E+07 |               | 827561   | 2.1E+07  |          | 493942  | 2.1E+07 |
|               |                                  |               |           |           |         |         |               |          |          |          |         |         |
|               |                                  |               |           | CREAGER   | 0.80182 |         | L-<br>MOMENTS | 0.96122  |          | PROMEDIO | 0.97685 |         |

Tabla 51 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 100 años

|               | Caudales<br>máximos |               |           |           |         |         |               |           |         |          |         |         |
|---------------|---------------------|---------------|-----------|-----------|---------|---------|---------------|-----------|---------|----------|---------|---------|
|               | de diseño           | -             | TR=       | 100       |         |         |               |           |         |          |         |         |
| Subcuenca     | Creager             | L-<br>moments | Promedio  | МН        |         |         | EFICIEN       | ICIA DE N | ASH-SUT | CLIFFE   |         |         |
| Alto Puyango  | 3133.0581           | 2177.3        | 2655.179  | 2645      | 238201  | 1022743 |               | 218743    | 1022743 |          | 103.613 | 1022743 |
| Medio Puyango | 3685.5929           | 2559.1        | 3122.3465 | 2905      | 609325  | 1616223 |               | 119647    | 1616223 |          | 47239.5 | 1616223 |
| Bajo Puyango  | 4439.5413           | 3084.5        | 3762.0206 | 3894      | 297615  | 5108991 |               | 655290    | 5108991 |          | 17418.6 | 5108991 |
| Cazaderos     | 1828.4765           | 1270.1        | 1549.2883 | 1323      | 255506  | 96529.7 |               | 2798.41   | 96529.7 |          | 51206.4 | 96529.7 |
| El tigre      | 5177.9709           | 3493.9        | 4335.9354 | 3928      | 1562427 | 5263848 |               | 188443    | 5263848 |          | 166411  | 5263848 |
| Puente Tumbes | 5439.3135           | 3780          | 4609.6568 | 4136      | 1698626 | 6261544 |               | 126736    | 6261544 |          | 224351  | 6261544 |
| Cabuyal       | 818.07739           | 567           | 692.5387  | 656       | 26269.1 | 955882  |               | 7921      | 955882  |          | 1335.08 | 955882  |
| Ceibal        | 271.31953           | 189           | 230.15977 | 186       | 7279.42 | 2095813 |               | 9         | 2095813 |          | 1950.08 | 2095813 |
| Las Peñas     | 670.1196            | 464.9         | 567.5098  | 515       | 24062.1 | 1251472 |               | 2510.01   | 1251472 |          | 2757.28 | 1251472 |
| Guanábanos    | 316.71803           | 220           | 268.35901 | 235       | 6677.84 | 1956340 |               | 225       | 1956340 |          | 1112.82 | 1956340 |
| Rica Playa    | 353.70546           | 245.7         | 299.70273 | 283       | 4999.26 | 1824370 |               | 1391.29   | 1824370 |          | 278.981 | 1824370 |
| Cayana        | 493.62838           | 344           | 418.81419 | 390       | 10738.8 | 1546771 |               | 2116      | 1546771 |          | 830.257 | 1546771 |
| San Jacinto   | 239.62819           | 166.3         | 202.9641  | 142       | 9531.26 | 2225146 |               | 590.49    | 2225146 |          | 3716.62 | 2225146 |
|               |                     |               |           |           |         |         |               |           |         |          |         |         |
|               |                     |               |           | 1633.6923 | 4751259 | 3.1E+07 |               | 1326420   | 3.1E+07 |          | 518711  | 3.1E+07 |
|               |                     |               |           |           |         |         |               |           |         |          |         |         |
|               |                     |               |           | CREAGER   | 0.84784 |         | L-<br>MOMENTS | 0.95752   |         | PROMEDIO | 0.98339 |         |

Tabla 52 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 1000 años

|               | Caudales<br>máximos<br>de diseño |               | TR=       | 1000      |         |         |               |           |          |          |         |         |
|---------------|----------------------------------|---------------|-----------|-----------|---------|---------|---------------|-----------|----------|----------|---------|---------|
| Subcuenca     | Creager                          | L-<br>moments | Promedio  | MH        |         |         | EFICIEN       | ICIA DE N | IASH-SUT | CLIFFE   |         |         |
| Alto Puyango  | 4699.5871                        | 3697.9        | 4198.7436 | 4593      | 11360.8 | 3478799 |               | 801204    | 3478799  |          | 155438  | 3478799 |
| Medio Puyango | 5528.3894                        | 4346.3        | 4937.3447 | 4966      | 316282  | 5009333 |               | 384028    | 5009333  |          | 821.126 | 5009333 |
| Bajo Puyango  | 6659.3119                        | 5238.7        | 5949.006  | 6448      | 44652.7 | 1.4E+07 |               | 1462406   | 1.4E+07  |          | 248995  | 1.4E+07 |
| Cazaderos     | 2742.7148                        | 2157.1        | 2449.9074 | 2086      | 431274  | 411966  |               | 5055.21   | 411966   |          | 132429  | 411966  |
| El tigre      | 7766.9563                        | 5917.1        | 6842.0282 | 6470      | 1682096 | 1.4E+07 |               | 305698    | 1.4E+07  |          | 138405  | 1.4E+07 |
| Puente Tumbes | 8158.9703                        | 6420          | 7289.4851 | 6768      | 1934798 | 1.6E+07 |               | 121104    | 1.6E+07  |          | 271947  | 1.6E+07 |
| Cabuyal       | 1227.1161                        | 963           | 1095.058  | 1139      | 7764.45 | 2524432 |               | 30976     | 2524432  |          | 1930.9  | 2524432 |
| Ceibal        | 406.9793                         | 321           | 363.98965 | 320       | 7565.4  | 5797723 |               | 1         | 5797723  |          | 1935.09 | 5797723 |
| Las Peñas     | 1005.1794                        | 789.7         | 897.4397  | 895       | 12139.5 | 3359325 |               | 11088.1   | 3359325  |          | 5.95213 | 3359325 |
| Guanábanos    | 475.07704                        | 373.6         | 424.33852 | 396       | 6253.18 | 5437506 |               | 501.76    | 5437506  |          | 803.072 | 5437506 |
| Rica Playa    | 530.55819                        | 417.3         | 473.92909 | 497       | 1126.15 | 4976675 |               | 6352.09   | 4976675  |          | 532.267 | 4976675 |
| Cayana        | 740.44256                        | 584.2         | 662.32128 | 648       | 8545.63 | 4325760 |               | 4070.44   | 4325760  |          | 205.099 | 4325760 |
| San Jacinto   | 359.44229                        | 282.5         | 320.97115 | 236       | 15238   | 6209297 |               | 2162.25   | 6209297  |          | 7220.1  | 6209297 |
|               | •                                |               |           |           |         |         |               |           |          |          |         |         |
|               |                                  |               |           | 2727.8462 | 4479096 | 8.6E+07 |               | 3134648   | 8.6E+07  |          | 960667  | 8.6E+07 |
|               |                                  |               |           |           |         |         |               |           |          |          |         |         |
|               |                                  |               |           | CREAGER   | 0.94773 |         | L-<br>MOMENTS | 0.96342   |          | PROMEDIO | 0.98879 |         |

| ER        | ROR CUADE | RÁTICO MEI | OIO       |
|-----------|-----------|------------|-----------|
| ffCreager | L-moments | c2         | 12        |
| -893.9136 | -11.4     | 799081.57  | 129.96    |
| -970.1189 | 69.4      | 941130.71  | 4816.36   |
| -848.1062 | 402.9     | 719284.09  | 162328.41 |
| -850.0502 | -334.6    | 722585.4   | 111957.16 |
| -919.2463 | 608.1     | 845013.83  | 369785.61 |
| -743.917  | 788.3     | 553412.5   | 621416.89 |
| -431.8116 | -200.5    | 186461.22  | 40200.25  |
| -160.5442 | -84.4     | 25774.445  | 7123.36   |
| -364.3935 | -175.2    | 132782.62  | 30695.04  |
| -185.3764 | -96.1     | 34364.41   | 9235.21   |
| -205.2295 | -105.5    | 42119.15   | 11130.25  |
| -278.0314 | -139.5    | 77301.475  | 19460.25  |
| -142.4929 | -74.9     | 20304.232  | 5610.01   |
|           |           |            |           |
|           |           |            |           |
|           |           | 566623.96  | 154876.53 |
| 1.71      | RMSE      | 752.74429  | 393.54355 |

Tabla 53 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 25 años

| ER        | ROR CUADE | RÁTICO MEI | OIO       |
|-----------|-----------|------------|-----------|
| Creager   | L-moments | c2         | 12        |
| -541.4859 | 317.1     | 293206.93  | 100552.41 |
| -773.8559 | 238       | 598852.99  | 56644     |
| -555.3237 | 661.9     | 308384.44  | 438111.61 |
| -447.2634 | 54.3      | 200044.52  | 2948.49   |
| -1148.609 | 365.2     | 1319301.7  | 133371.04 |
| -1188.615 | 302       | 1412806.2  | 91204     |
| -176.9445 | 48.5      | 31309.347  | 2352.25   |
| -83.98187 | -10       | 7052.955   | 100       |
| -164.2565 | 20        | 26980.213  | 400       |
| -80.04721 | 6.8       | 6407.5566  | 46.24     |
| -78.46748 | 18.5      | 6157.1455  | 342.25    |
| -103.3299 | 31.2      | 10677.069  | 973.44    |
| -88.56056 | -22.7     | 7842.9722  | 515.29    |
|           |           |            |           |
|           |           |            |           |
|           |           | 469891.57  | 91951.224 |
|           | RMSE      | 685.48638  | 303.2346  |

| ER        | ROR CUADE | RÁTICO MEI | OIO       |
|-----------|-----------|------------|-----------|
| Creager   | L-moments | c2         | 12        |
| -488.0581 | 467.7     | 238200.7   | 218743.29 |
| -780.5929 | 345.9     | 609325.34  | 119646.81 |
| -545.5413 | 809.5     | 297615.28  | 655290.25 |
| -505.4765 | 52.9      | 255506.5   | 2798.41   |
| -1249.971 | 434.1     | 1562427.2  | 188442.81 |
| -1303.314 | 356       | 1698626.1  | 126736    |
| -162.0774 | 89        | 26269.081  | 7921      |
| -85.31953 | -3        | 7279.4225  | 9         |
| -155.1196 | 50.1      | 24062.089  | 2510.01   |
| -81.71803 | 15        | 6677.8361  | 225       |
| -70.70546 | 37.3      | 4999.2616  | 1391.29   |
| -103.6284 | 46        | 10738.84   | 2116      |
| -97.62819 | -24.3     | 9531.2642  | 590.49    |
|           |           |            |           |
|           |           |            |           |
|           |           | 527917.66  | 147380.04 |
|           | RMSE      | 726.57943  | 383.90108 |

Tabla 55 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 100 años

| ER        | ROR CUADE | RÁTICO MEI | OIO       |
|-----------|-----------|------------|-----------|
| Creager   | L-moments | c2         | 12        |
| -106.5871 | 895.1     | 11360.816  | 801204.01 |
| -562.3894 | 619.7     | 316281.85  | 384028.09 |
| -211.3119 | 1209.3    | 44652.72   | 1462406.5 |
| -656.7148 | -71.1     | 431274.27  | 5055.21   |
| -1296.956 | 552.9     | 1682095.7  | 305698.41 |
| -1390.97  | 348       | 1934798.3  | 121104    |
| -88.11609 | 176       | 7764.4452  | 30976     |
| -86.9793  | -1        | 7565.3982  | 1         |
| -110.1794 | 105.3     | 12139.499  | 11088.09  |
| -79.07704 | 22.4      | 6253.1786  | 501.76    |
| -33.55819 | 79.7      | 1126.1518  | 6352.09   |
| -92.44256 | 63.8      | 8545.6278  | 4070.44   |
| -123.4423 | -46.5     | 15237.999  | 2162.25   |
|           |           |            |           |
|           |           |            |           |
|           |           | 497677.34  | 348294.2  |
|           | RMSE      | 705.4625   | 590.16456 |

Tabla 56 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 1000 años

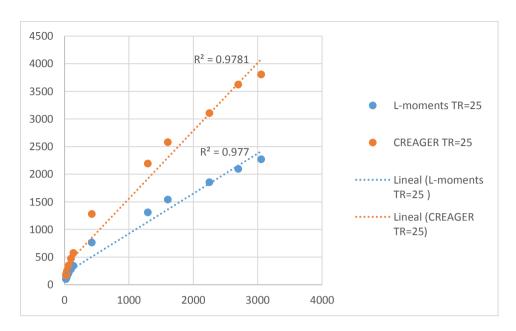



Figura 23 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 25 años

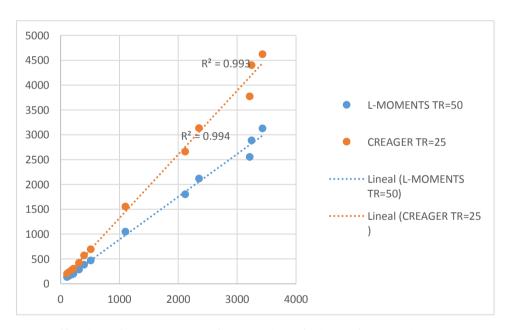



Figura 24 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 50 años

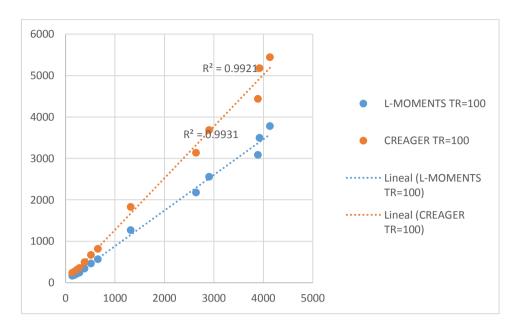



Figura 25 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 100 años

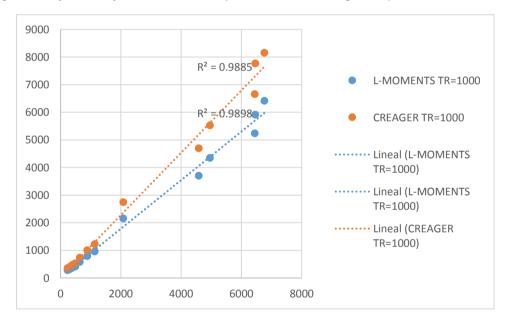



Figura 26 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 1000 años

Tabla 57 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 25 años, cuencas menores

| Caudales        | máximos de | e diseño      | TR=       | 25        |         |         |               |           |          |          |         |         |
|-----------------|------------|---------------|-----------|-----------|---------|---------|---------------|-----------|----------|----------|---------|---------|
| Subcuenca       | Creager    | L-<br>moments | Promedio  | МН        |         |         | EFICIEN       | ICIA DE N | IASH-SUT | CLIFFE   |         |         |
| Alto<br>Puyango | 2189.9136  | 1307.4        | 1748.6568 | 1296      | 799082  | 1113470 |               | 129.96    | 1113470  |          | 204898  | 1113470 |
| Cazaderos       | 1278.0502  | 762.6         | 1020.3251 | 428       | 722585  | 35048   |               | 111957    | 35048    |          | 350849  | 35048   |
| Cabuyal         | 571.81156  | 340.5         | 456.15578 | 140       | 186461  | 10158.4 |               | 40200.3   | 10158.4  |          | 99954.5 | 10158.4 |
| Ceibal          | 189.64421  | 113.5         | 151.57211 | 29.1      | 25774.4 | 44812.2 |               | 7123.36   | 44812.2  |          | 14999.4 | 44812.2 |
| Las Peñas       | 468.3935   | 279.2         | 373.79675 | 104       | 132783  | 18711.2 |               | 30695     | 18711.2  |          | 72790.3 | 18711.2 |
| Guanábanos      | 221.3764   | 132.1         | 176.7382  | 36        | 34364.4 | 41938.5 |               | 9235.21   | 41938.5  |          | 19807.2 | 41938.5 |
| Rica Playa      | 247.2295   | 147.5         | 197.36475 | 42        | 42119.1 | 39517   |               | 11130.3   | 39517    |          | 24138.2 | 39517   |
| Cayana          | 345.03143  | 206.5         | 275.76571 | 67        | 77301.5 | 30202.6 |               | 19460.3   | 30202.6  |          | 43583.1 | 30202.6 |
| San Jacinto     | 167.49292  | 99.9          | 133.69646 | 25        | 20304.2 | 46564.8 |               | 5610.01   | 46564.8  |          | 11814.9 | 46564.8 |
|                 |            |               |           |           |         |         |               |           |          |          |         |         |
|                 |            |               |           | 240.78889 | 2040775 | 1380423 |               | 235541    | 1380423  |          | 842835  | 1380423 |
|                 |            |               |           |           |         |         |               |           |          |          |         |         |
|                 |            |               |           | CREAGER   | -0.4784 |         | L-<br>MOMENTS | 0.82937   |          | PROMEDIO | 0.38944 |         |

Tabla 58 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 50 años, cuencas menores

| Caudales        | máximos do | e diseño      | TR=       | 50        |         |         |               |           |          |          |         |         |
|-----------------|------------|---------------|-----------|-----------|---------|---------|---------------|-----------|----------|----------|---------|---------|
| Subcuenca       | Creager    | L-<br>moments | Promedio  | МН        |         |         | EFICIEN       | ICIA DE N | NASH-SUT | CLIFFE   |         |         |
| Alto<br>Puyango | 2661.4859  | 1802.9        | 2232.1929 | 2120      | 293207  | 2399917 |               | 100552    | 2399917  |          | 12587.3 | 2399917 |
| Cazaderos       | 1553.2634  | 1051.7        | 1302.4817 | 1106      | 200045  | 286403  |               | 2948.49   | 286403   |          | 38605.1 | 286403  |
| Cabuyal         | 694.94448  | 469.5         | 582.22224 | 518       | 31309.3 | 2791.36 |               | 2352.25   | 2791.36  |          | 4124.5  | 2791.36 |
| Ceibal          | 230.48187  | 156.5         | 193.49094 | 146.5     | 7052.95 | 180059  |               | 100       | 180059   |          | 2208.15 | 180059  |
| Las Peñas       | 569.25655  | 385           | 477.12827 | 405       | 26980.2 | 27500.7 |               | 400       | 27500.7  |          | 5202.49 | 27500.7 |
| Guanábanos      | 269.04721  | 182.2         | 225.62361 | 189       | 6407.56 | 145797  |               | 46.24     | 145797   |          | 1341.29 | 145797  |
| Rica Playa      | 300.46748  | 203.5         | 251.98374 | 222       | 6157.15 | 121685  |               | 342.25    | 121685   |          | 899.025 | 121685  |
| Cayana          | 419.3299   | 284.8         | 352.06495 | 316       | 10677.1 | 64940   |               | 973.44    | 64940    |          | 1300.68 | 64940   |
| San Jacinto     | 203.56056  | 137.7         | 170.63028 | 115       | 7842.97 | 207784  |               | 515.29    | 207784   |          | 3094.73 | 207784  |
|                 |            |               |           | 570.83333 | 589679  | 3436877 |               | 108230    | 3436877  |          | 69363.2 | 3436877 |
|                 |            |               |           | CREAGER   | 0.82843 |         | L-<br>MOMENTS | 0.96851   |          | PROMEDIO | 0.97982 |         |

Tabla 59 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 100 años, cuencas menores

| Caudales        | máximos d | e diseño      | TR=       | 100       |         |         |               |           |          |          |         |         |
|-----------------|-----------|---------------|-----------|-----------|---------|---------|---------------|-----------|----------|----------|---------|---------|
| Subcuenca       | Creager   | L-<br>moments | Promedio  | МН        |         |         | EFICIEN       | ICIA DE I | NASH-SUT | CLIFFE   |         |         |
| Alto<br>Puyango | 3133.0581 | 2177.3        | 2655.179  | 2645      | 238201  | 3750678 |               | 218743    | 3750678  |          | 103.613 | 3750678 |
| Cazaderos       | 1828.4765 | 1270.1        | 1549.2883 | 1323      | 255506  | 377815  |               | 2798.41   | 377815   |          | 51206.4 | 377815  |
| Cabuyal         | 818.07739 | 567           | 692.5387  | 656       | 26269.1 | 2738.78 |               | 7921      | 2738.78  |          | 1335.08 | 2738.78 |
| Ceibal          | 271.31953 | 189           | 230.15977 | 186       | 7279.42 | 272832  |               | 9         | 272832   |          | 1950.08 | 272832  |
| Las Peñas       | 670.1196  | 464.9         | 567.5098  | 515       | 24062.1 | 37377.8 |               | 2510.01   | 37377.8  |          | 2757.28 | 37377.8 |
| Guanábanos      | 316.71803 | 220           | 268.35901 | 235       | 6677.84 | 224044  |               | 225       | 224044   |          | 1112.82 | 224044  |
| Rica Playa      | 353.70546 | 245.7         | 299.70273 | 283       | 4999.26 | 180908  |               | 1391.29   | 180908   |          | 278.981 | 180908  |
| Cayana          | 493.62838 | 344           | 418.81419 | 390       | 10738.8 | 101336  |               | 2116      | 101336   |          | 830.257 | 101336  |
| San Jacinto     | 239.62819 | 166.3         | 202.9641  | 142       | 9531.26 | 320733  |               | 590.49    | 320733   |          | 3716.62 | 320733  |
|                 |           |               |           | 708.33333 | 583265  | 5268464 |               | 236304    | 5268464  |          | 63291.1 | 5268464 |
|                 |           |               |           | CREAGER   | 0.88929 |         | L-<br>MOMENTS | 0.95515   |          | PROMEDIO | 0.98799 |         |

Tabla 60 Determinación de la eficiencia de Nash-Sutcliffe, a nivel de subcuencas, para tiempo de retorno de 1000 años, cuencas menores

| Caudales        | máximos d | e diseño      | TR=       | 1000      |         |         |               |           |         |          |         |         |
|-----------------|-----------|---------------|-----------|-----------|---------|---------|---------------|-----------|---------|----------|---------|---------|
| Subcuenca       | Creager   | L-<br>moments | Promedio  | мн        |         |         | EFICIEN       | ICIA DE N | NASH-SU | CLIFFE   |         |         |
| Alto<br>Puyango | 4699.5871 | 3697.9        | 4198.7436 | 4593      | 11360.8 | 1.2E+07 |               | 801204    | 1.2E+07 |          | 155438  | 1.2E+07 |
| Cazaderos       | 2742.7148 | 2157.1        | 2449.9074 | 2086      | 431274  | 783028  |               | 5055.21   | 783028  |          | 132429  | 783028  |
| Cabuyal         | 1227.1161 | 963           | 1095.058  | 1139      | 7764.45 | 3857.79 |               | 30976     | 3857.79 |          | 1930.9  | 3857.79 |
| Ceibal          | 406.9793  | 321           | 363.98965 | 320       | 7565.4  | 776357  |               | 1         | 776357  |          | 1935.09 | 776357  |
| Las Peñas       | 1005.1794 | 789.7         | 897.4397  | 895       | 12139.5 | 93704   |               | 11088.1   | 93704   |          | 5.95213 | 93704   |
| Guanábanos      | 475.07704 | 373.6         | 424.33852 | 396       | 6253.18 | 648204  |               | 501.76    | 648204  |          | 803.072 | 648204  |
| Rica Playa      | 530.55819 | 417.3         | 473.92909 | 497       | 1126.15 | 495772  |               | 6352.09   | 495772  |          | 532.267 | 495772  |
| Cayana          | 740.44256 | 584.2         | 662.32128 | 648       | 8545.63 | 305932  |               | 4070.44   | 305932  |          | 205.099 | 305932  |
| San Jacinto     | 359.44229 | 282.5         | 320.97115 | 236       | 15238   | 931439  |               | 2162.25   | 931439  |          | 7220.1  | 931439  |
|                 |           |               |           | 1201.1111 | 501267  | 1.6E+07 |               | 861411    | 1.6E+07 |          | 300499  | 1.6E+07 |
|                 |           |               |           | CREAGER   | 0.96775 |         | L-<br>MOMENTS | 0.94458   |         | PROMEDIO | 0.98067 |         |

| ERROR CUADRÁTICO MEDIO |           |           |           |  |  |  |  |
|------------------------|-----------|-----------|-----------|--|--|--|--|
| Creager                | L-moments | c2        | 12        |  |  |  |  |
| -893.9136              | -11.4     | 799081.57 | 129.96    |  |  |  |  |
| -850.0502              | -334.6    | 722585.4  | 111957.16 |  |  |  |  |
| -431.8116              | -200.5    | 186461.22 | 40200.25  |  |  |  |  |
| -160.5442              | -84.4     | 25774.445 | 7123.36   |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
| -142.4929              | -74.9     | 20304.232 | 5610.01   |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           | 194911.87 | 18335.638 |  |  |  |  |
|                        |           | 441.48825 | 135.40915 |  |  |  |  |

Tabla 61 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 25 años, subcuencas menores

| ERROR CUADRÁTICO MEDIO |           |           |           |  |  |  |  |
|------------------------|-----------|-----------|-----------|--|--|--|--|
| Creager                | L-moments | c2        | 12        |  |  |  |  |
| -541.4859              | 317.1     | 293206.93 | 100552.41 |  |  |  |  |
| -447.2634              | 54.3      | 200044.52 | 2948.49   |  |  |  |  |
| -176.9445              | 48.5      | 31309.347 | 2352.25   |  |  |  |  |
| -83.98187              | -10       | 7052.955  | 100       |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
| -88.56056              | -22.7     | 7842.9722 | 515.29    |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           | 59939.636 | 11829.827 |  |  |  |  |
|                        |           | 244.82573 | 108.76501 |  |  |  |  |

Tabla 62 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 50 años, subcuencas menores

| ERROR CUADRÁTICO MEDIO |           |           |           |  |  |  |  |
|------------------------|-----------|-----------|-----------|--|--|--|--|
| Creager                | L-moments | c2        | 12        |  |  |  |  |
| -488.0581              | 467.7     | 238200.7  | 218743.29 |  |  |  |  |
| -505.4765              | 52.9      | 255506.5  | 2798.41   |  |  |  |  |
| -162.0774              | 89        | 26269.081 | 7921      |  |  |  |  |
| -85.31953              | -3        | 7279.4225 | 9         |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |

| -97.62819 | -24.3 | 9531.2642 | 590.49    |
|-----------|-------|-----------|-----------|
|           |       |           |           |
|           |       |           |           |
|           |       | 59642.996 | 25562.466 |
|           |       | 244.21916 | 159.88266 |

Tabla 63 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 100 años, subcuencas menores

| ERROR CUADRÁTICO MEDIO |           |           |           |  |  |  |  |
|------------------------|-----------|-----------|-----------|--|--|--|--|
| Creager                | L-moments | c2        | 12        |  |  |  |  |
| -106.5871              | 895.1     | 11360.816 | 801204.01 |  |  |  |  |
| -656.7148              | -71.1     | 431274.27 | 5055.21   |  |  |  |  |
| -88.11609              | 176       | 7764.4452 | 30976     |  |  |  |  |
| -86.9793               | -1        | 7565.3982 | 1         |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
| -123.4423              | -46.5     | 15237.999 | 2162.25   |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           |           |           |  |  |  |  |
|                        |           | 52578.104 | 93266.497 |  |  |  |  |
|                        |           | 229.29916 | 305.39564 |  |  |  |  |

Tabla 64 Determinación de error cuadrático medio, a nivel de subcuencas, para tiempo de retorno de 1000 años, subcuencas menores

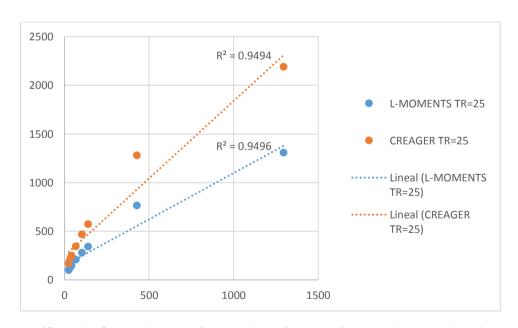



Figura 27 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 25 años, cuencas menores

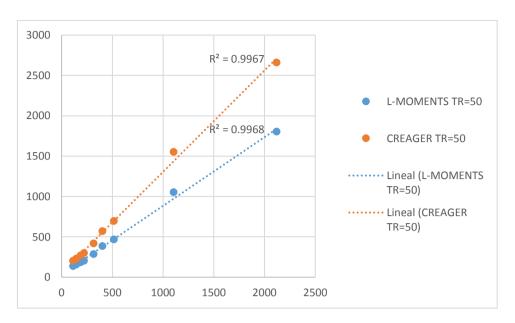



Figura 28 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 50 años, cuencas menores

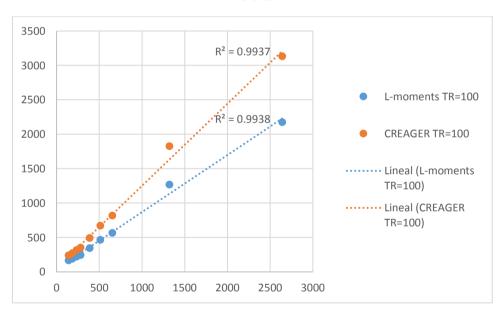



Figura 29 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 100 años, cuencas menores

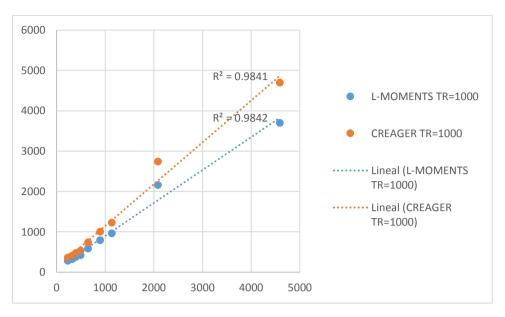



Figura 30 Gráfica del coeficiente determinación para ambos métodos, según tiempo de retorno de 1000 años, cuencas menores

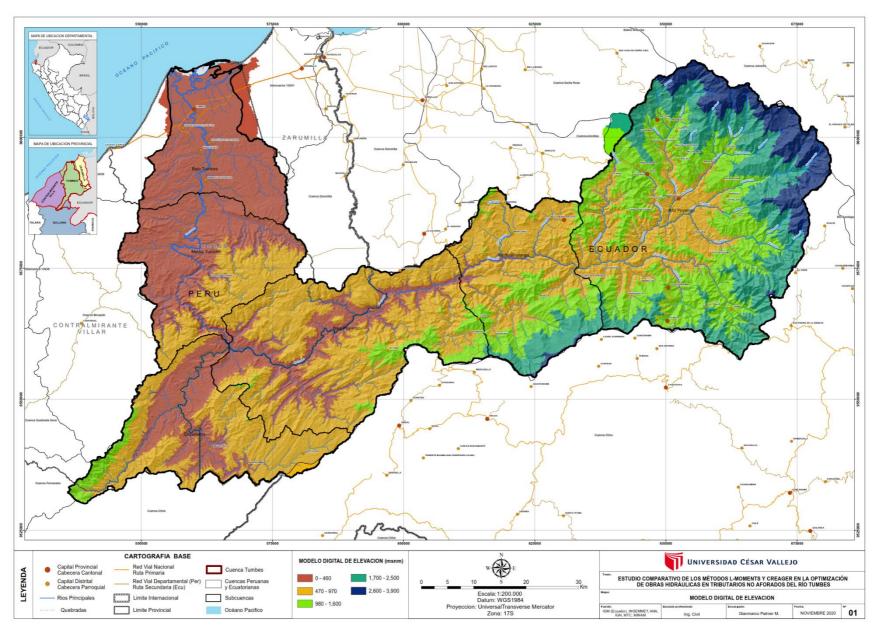



Figura 31 Modelo digital de elevación de la cuenca Puyango-Tumbes

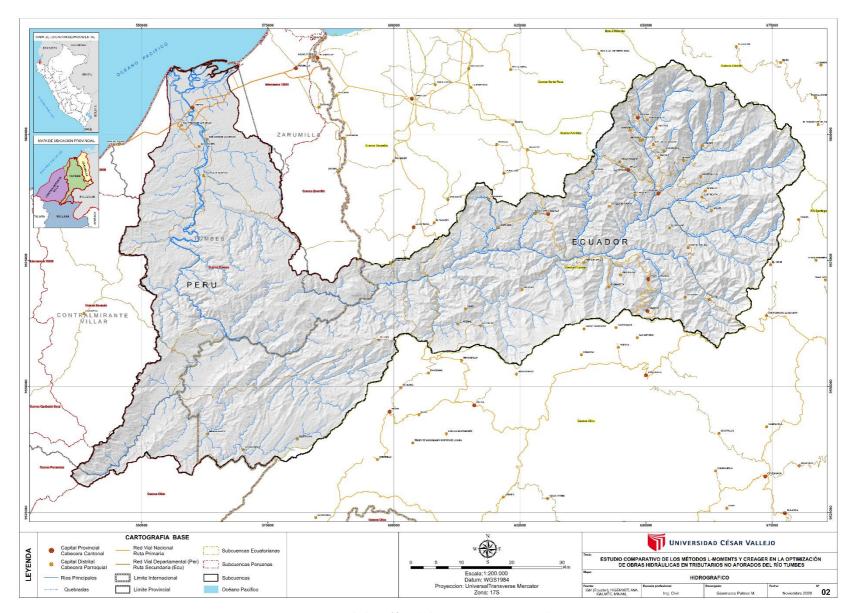



Figura 32 Mapa hidrográfico de la cuenca Puyango-Tumbes

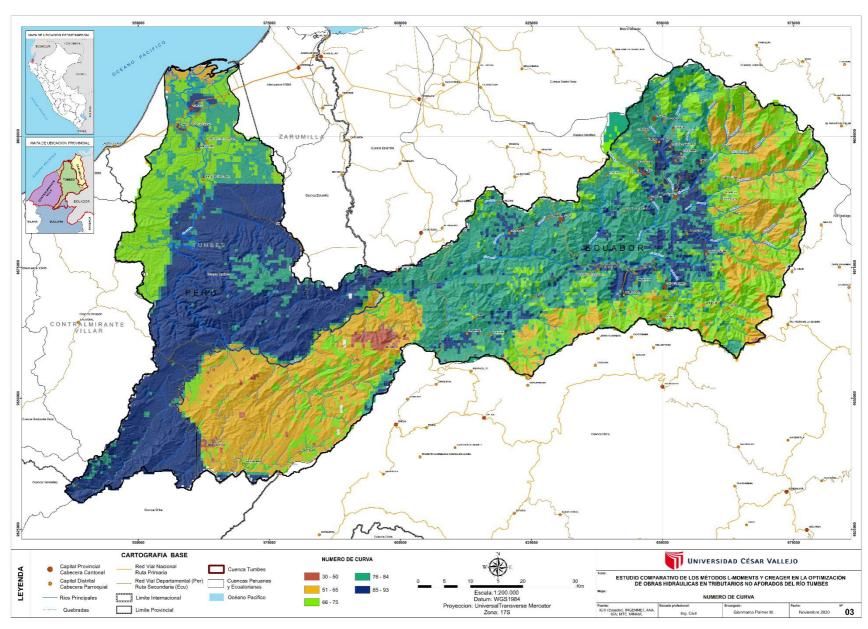



Figura 33 Número de curva de la cuenca Puyango-Tumbes

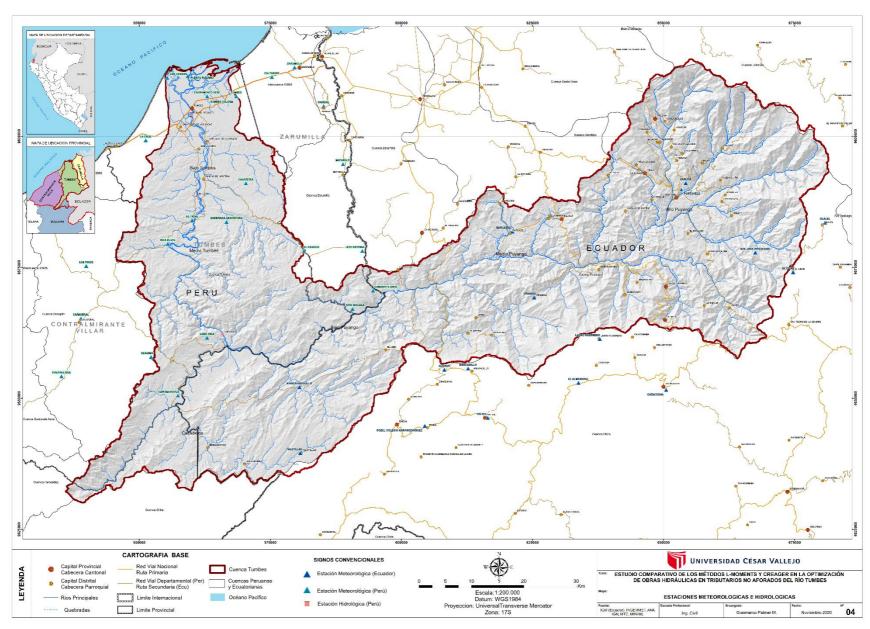



Figura 34 Mapa de estaciones meteorológica e hidrológicas en ámbito de estudio

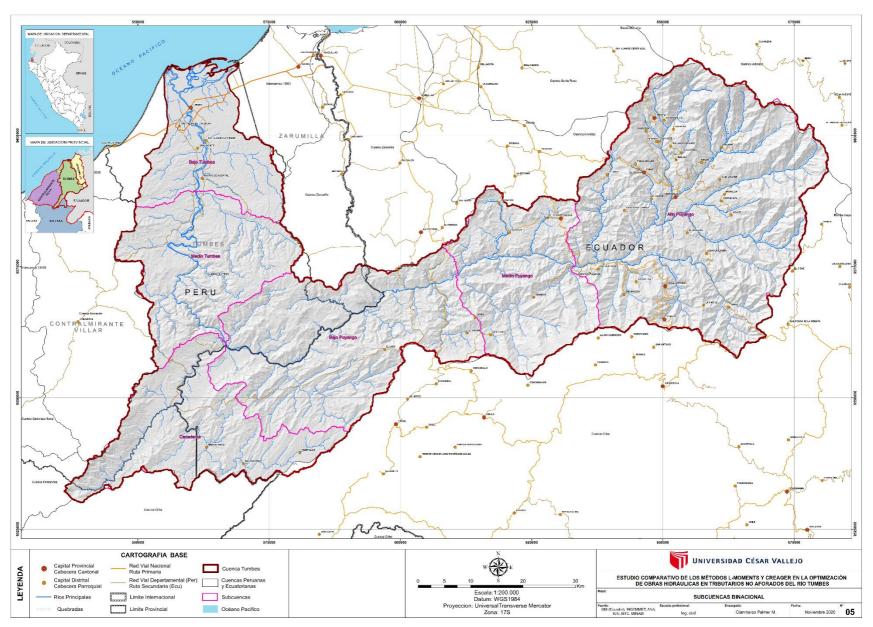



Figura 35 Mapa de subcuencas en el ámbito de estudio