

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

Vasquez Menor, Maycol Yordwin (ORCID:0000-0001-6836-0967)

Vilchez Ushiñahua, Alfredo (ORCID:0000-0003-3983-8129)

ASESOR:

Msc. Paredes Aguilar, Luis (ORCID:0000-0002-1375-179X)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura Vial

TARAPOTO - PERÚ 2020

Dedicatoria

Este trabajo de investigación está dedicado a mis padres por haberme forjado como la persona que soy en la actualidad; muchos de mis logros se los debo a ustedes entre los que se incluye este, a mis hermanos y hermanas por su apoyo incondicional en cada momento de esta etapa académica; y a mi fiel compañera de vida que es mi novia.

Gracias madre y padre.

Alfredo Vilchez Ushiñahua.

Este trabajo de investigación está dedicado a mis padres, por forjarme siempre buenos valores y convertirme en la persona que soy hoy en día, también este logro va dedicado a mis hermanos porque son un motivo por el cual siempre luche por lograr esta meta para ser un ejemplo a seguir como hermano mayor, y así mismo a mi enamora que siempre estuvo en mis momentos más difíciles de mi carrera brindándome ese apoyo moral el cual me incentivo a seguir siempre adelante. Maycol Yordwin Vasquez Menor.

Gracias madre y padre.

Agradecimiento

A Dios por su guía y protección todos estés años, a mi familia, amigos; y personales especiales en mi vida, no son nada más y nada menos que un conjunto de seres queridos que son de importancia inimaginable en mis circunstancias de humano, no podría sentirme más con la confianza puesta en mi persona, ya que especialmente he contado con su mejor apoyo desde que tengo memoria.

Este nuevo logro es en gran parte gracias a ustedes; he logrado concluir con éxito un proyecto que podría parecer interminable. Quisiera dedicar mi tesis a ustedes, personas de bien y a todos los demás en plural. Alfredo Vilchez Ushiñahua.

Muchas gracias a aquellos seres queridos que siempre aguardaron mi comunidad y mi tranquilidad.

A Dios por haberme guiado y acompañado a lo largo de mi carrera profesional, a mis padres por todo su apoyo incondicional en cada momento de dificultad, pese a cada adversidad que se presentaron durante toda esta trayectoria de mi vida siendo ellos mi gran motivación para alcanzar mis metas, a mis hermanos quien fueron motivo de inspiración de lograr esta meta y ser un ejemplo a seguir, a los docentes de la facultad de ingeniería civil de la Universidad Cesar Vallejo, por haber aportado a mi formación profesional, por sus enseñanzas y su amistad hacia mi persona. Maycol Yordwin Vasquez Menor.

Índice de contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de tablas	V
Índice de gráficos y figuras	vi
Resumen	viii
Abstract	ix
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	10
3.1. Tipo de diseño de investigación	10
3.2. Variables y operacionalización	11
3.3. Población, muestra y muestreo	12
3.4. Técnicas e instrumentos y recolección de datos	13
3.5. Procedimientos	14
3.6. Método de análisis de datos	16
3.7. Aspectos éticos	16
IV. RESULTADOS	18
V. DISCUSIÓN	26
VI. CONCLUSIONES	28
VII. RECOMENDACIONES	30
REFERENCIAS	31

Índice de tablas

Tabla 1: Primordiales usos de los adoquines de concreto	6
Tabla 2: Tipos y características de adoquines de concreto.	7
Tabla 3: Estructura Química de la Cáscara de Arroz y de las Escorias de la	
Cáscara de Arroz	8
Tabla 4: Precios de venta de adoquines de concreto	8
Tabla 5: Muestras de los adoquines	13
Tabla 6: Cuadro de técnicas e instrumentos	14
Tabla 7: Características físicas de los agregados	18
Tabla 8: Características químicas del cemento Pacasmayo.	18
Tabla 9: Propiedades físicas de la ceniza de la cascarilla de arroz	
Tabla 10: Propiedades químicas de la ceniza de la cascarilla de arroz	19
Tabla 11: Diseño de mezcla del concreto patrón y de concreto con (adición de	
5%, 10% y 15% de ceniza de cascarilla de arroz) para 1 m 3de concreto	20
Tabla 12: Resistencia a la compresión a los 7, 14 y 28 días	24
Tabla 13: Análisis granulométrico por tamizado del agregado fino	
Tabla 14: Gravedad específica y absorción del agregado fino	40
Tabla 15: Peso unitario suelto del agregado fino	
Tabla 16: Peso unitario varillado del agregado fino	
Tabla 17: Análisis granulométrico por tamizado del agregado Grueso	
Tabla 18: Peso específico y absorción del agregado grueso	
Tabla 19: Peso unitario suelto del agregado grueso	
Tabla 20: Peso unitario varillado del agregado grueso	
Tabla 21: Propiedades físico-químicas de la cascarilla de arroz	
Tabla 22: Adoquín sin adición de ceniza de cascarilla de arroz al 0%	44
Tabla 23: Adoquín con adición de ceniza de cascarilla de arroz al 5%	
Tabla 24: Adoquín con adición de ceniza de cascarilla de arroz al 10%	46
Tabla 25: Adoquín con adición de ceniza de cascarilla de arroz al 15%	47
Tabla 26: Resistencia a compresión al 0% a los 7 días	52
Tabla 27: Resistencia a compresión al 0% a los 14 días	52
Tabla 28: Resistencia a compresión al 0% a los 28 días	
Tabla 29: Resistencia a compresión al 5% a los 7 días	
Tabla 30: Resistencia a compresión al 5% a los 14 días	
Tabla 31: Resistencia a compresión al 5% a los 28 días	
Tabla 32: Resistencia a compresión al 10% a los 7 días	
Tabla 33: Resistencia a compresión al 10% a los 14 días	
Tabla 34: Resistencia a compresión al 10% a los 28 días	
Tabla 35: Resistencia a compresión al 15% a los 7 días	
Tabla 36: Resistencia a compresión al 15% a los 14 días	
Tabla 37: Resistencia a compresión al 15% a los 28 días	55
Tabla 38: Porcentajes de las propiedades físicas-químicas que conforman la	
escoria de la cascara del arroz	60

Índice de gráficos y figuras

Figura 1: Adoquín	
Figura 2: Proceso de fabricación de Estufa Aserrín.	15
Figura 4: Gráfico de la cantidad de materiales usados en el diseño de mezcla de	
concreto para 1 m3.	20
Figura 5: Gráfico de comparación de resistencia a la compresión del concreto patrón	y de
(5%, 10% y 15%) a los 7, 14 y 28 días	21
Figura 6: Gráfico de la resistencia a la compresión del concreto patrón	21
Figura 7: Optimo diseño del concreto patrón y del concreto con adición de escoria de	
cascara de arroz al 5%, 10% y 15%	22
Figura 8: Gráfico de la resistencia a la compresión del concreto con el 5% de adición	de
escoria de cascara de arroz.	
Figura 9: Gráfico de la resistencia a la compresión del concreto con el 10% de adición	n de
escoria de cascara de arroz.	23
Figura 10: Gráfico de la resistencia a la compresión del concreto con el 15% de adicio	ón
de escoria de cascara de arroz	23
Figura 11: Costo económico para 1 millar de adoquines sin y con adición de escoria o	le
cascara de arroz.	25
Figura 12: Gráfico del costo total de 1 millar de adoquines con y sin adición de escori	a de
cascara de arroz.	25
Figura 14: Curva Granulométrica del agregado fino	40
Figura 15: Curva Granulométrica del agregado grueso	42
Figura 16: Agregado grueso para la mezcla de concreto	80
Figura 17: Ensayos del agregado grueso	80
Figura 18: Ensayo para obtener el porcentaje de absorción	80
Figura 19: Agregado grueso para la mezcla de concreto	80
Figura 20: Ensayo del agua en la pipeta	81
Figura 21: Peso en la balanza la pipeta con agua	81
Figura 22: Verificación de la ceniza de cascarilla de arroz calcinada	81
Figura 23: Observación de la ceniza de cascarilla de arroz	81
Figura 24: Machacado de la ceniza de cascarilla de arroz.	82
Figura 25: Machacado y pasado por la malla Nº 16	82
Figura 26: Pesado de la ceniza de cascarilla de arroz	82
Figura 27: Introducción de la ceniza de cascarilla de arroz a la pipeta de ensayo	82
Figura 28: Llenado de la pipeta	83
Figura 29: Ensayo de la ceniza de cascarilla de arroz	83
Figura 30: Introducción de agua a la pipeta con la ceniza de cascarilla de arroz	83
Figura 31: Ensayo de la ceniza de cascarilla de arroz terminado	83
Figura 32: Pipeta con el ensayo de ceniza de la cascarilla de arroz	
Figura 33: Elementos usados para las características físicas de la ceniza de cascarilla	
arroz	84
Figura 34: Engrasamiento de los moldes de los adoquines	84
Figura 35: Peso del agregado grueso	
Figura 36: Preparación de los agregados.	
Figura 37: Mezcla de los agregados	
Figura 38: Peso de la cantidad de agua utilizado en la mezcla	
Figura 39: Batido de la mezcla manual.	
Figura 40: Incorporación de agua a la mezcla	
Figura 41: Diseño de mezcla en proceso	

Figura	42: Diseño de mezcla terminado	86
Figura	43: Compactación de la mezcla con una varilla de acero	86
Figura	44: Golpes al molde con el martillo de goma, para evitar la cangrejera de la	
mezcla	de concreto	87
Figura	45: Residuos restantes del diseño de mezcla de concreto	87
Figura	46: Planchado de los adoquines.	87
Figura	47: Diseño de mezcla de concreto patrón de adoquines terminado	87
Figura	48: Diseño de mezcla con incorporación de ceniza de cascarilla de arroz al 5%.	88
Figura	49: Diseño de mezcla con incorporación de ceniza de cascarilla de arroz al 5%	
termina	ıdo	88
Figura	50: Diseño de adoquines de concreto patrón al 0%	88
Figura	51: Diseño de concreto con incorporación de ceniza de cascarilla de arroz al 5%	-
_	52: Desencofrado de los adoquines de concreto.	
Figura	53: Adoquín terminado y listo para el curado respectivo	89
_	54: Adoquines al 0%, 5%, 10% y 15%	
_	55: Adoquines al 0% que será curado a los 7, 14 y 28 días	
Figura	56: Adoquines al 5% que será curado a los 7, 14 y 28 días	90
Figura	57: Preparación de mezcla con incorporación de ceniza de cascarilla de arroz al	
	58: Muestra de adoquín de concreto con incorporación de ceniza de cascarilla de	
	l 10%	
_	59: Muestra de adoquín de concreto con incorporación de ceniza de cascarilla de	
	15%	
_	60: Adoquines al 10% que será curado a los 7, 14 y 28 días	
Figura	61: Colocación de los adoquines, para su respectivo curado a los 7, 14 y 18 días	
 Figure	62. Adaminas al 150/ que cará curada a las 7.14 y 20 días	
_	62: Adoquines al 15% que será curado a los 7, 14 y 28 días	
_	63: Adoquines en estado de curado.	
_	64: Adoquines después de los respectivos días de curado	
_	65: Medición y centrado para la prensa de rotura a compresión	
_	66: Prensa que mide la resistencia a la compresión.	
_	67: Colocación de los adoquines en la prensa de rotura.	
_	68: Retiro de la rotura a compresión del adoquín patrón.	
_	69: Calculo de la resistencia del adoquín al 0% a los 7 días	
_	70: Rotura del adoquín de concreto patrón a los 7 días	
_	71: Estado del adoquín a rotura a los 7 días	
_	72: Roturas de los adoquines del 15% a los 7 días.	
	73: Preparación de la prensa a compresión	
_	74: Adoquin listo para la rotura	
_	75: Adoquines a los 28 días de curado	
	76: Rotura a los 28 días	
_	77: Rotura del adoquín al 0% a los 28 días	
_	78: Roturas de los adoquines, pasados a compresión	95
_	79: Entrega de formatos firmados y sellados del laboratorio de mecánica de	<u> </u>
suelos,	concreto y pavimentos ARGAD – Tarapoto	95

Resumen

La presente investigación "Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020" plantea diferentes proporciones (porcentajes) de ceniza de la cascarilla de arroz, adicionando en los adoquines, con la finalidad de poder obtener un diseño óptimo y con mejor resistencia al esfuerzo de compresión.

Se realizaron 36 adoquines de concreto, de los cuales 09 adoquines de concreto (patrón) sin adición de ceniza y 27 adoquines de concreto con adición de ceniza de cascarilla de arroz en proporciones de 5%, 10% y 15%, reemplazando estos porcentajes al cemento Pacasmayo, por lo que los análisis se realizaron a los 7, 14 y 28 días.

Los resultados promedio del esfuerzo a compresión obtenido a los 7 días, la muestra patrón fue de 340.11 kg/cm^2 , adoquín al 5% con adición de ceniza de cascarilla de arroz fue de 308.59 kg/cm^2 , al 10% fue de 217.10 kg/cm^2 , y al 15% fue de 241.64 kg/cm^2 y a los 14 días, adoquín patrón fue 356.36 kg/cm^2 , adoquín al 5% con adición fue 317.52 kg/cm^2 , al 10% fue de 245.51 kg/cm^2 , y del 15% fue de 141.64 kg/cm^2 ; a los 28 días el adoquín patrón fue de 379.58 kg/cm^2 , adoquín al 5% con adicción, fue de 341.84 kg/cm^2 , al 10% fue de 269.52 kg/cm^2 , y al 15% fue de 174.66 kg/cm^2 .

Palabras claves: Ceniza, Ceniza de cascarilla de arroz, resistencia a la comprensión.

Abstract

The present investigation "Design of pavers with the incorporation of rice husk ashes to improve compression resistance, Tarapoto 2020" proposes different proportions (percentages) of rice husk ash, adding in the pavers, in order to be able, obtain an optimal design with better resistance to compression stress.

36 concrete pavers were made, of which 09 concrete pavers (pattern) without the addition of ash and 27 concrete pavers with the addition of rice husk ash in proportions of 5%, 10% and 15%, replacing these percentages to the Pacasmayo cement, for which the analyzes were carried out at 7, 14 and 28 days.

The average results of compressive stress obtained after 7 days, the standard sample was 340.11 kg/cm^2 , 5% paving stone with the addition of rice husk ash was 308.59 kg/cm^2 , at 10% it was 217.10 kg/cm^2 , and at 15% it was 241.64 kg/cm^2 and at 14 days, standard paving stone was 356.36 kg/cm^2 , 5% paving stone with addition was 317.52 kg/cm^2 , 10% was 245.51 kg/cm^2 , and 15% was 141.64 kg/cm^2 ; At 28 days, the standard paving stone was 379.58 kg/cm^2 , 5% paving stone with addiction, was 341.84 kg/cm^2 , at 10% it was 269.52 kg/cm^2 , and at 15% it was 174.66 kg/cm^2 .

Keywords: Ash, Rice husk ash, resistance to compression.

I. INTRODUCCIÓN

En la realidad problemática, se describe desde el ámbito internacional, en el país de Colombia se ha realizado un estudio sobre la resistencia de adoquines con escoria de cáscara de caña de azúcar, se ha observado que la resistencia al esfuerzo a compresión de las muestras, son valores promedio de 23.1 Mpa y 23.7 Mpa. La mezcla referencia no presentó aumento significativo entre los 28 y 56 días de curado (2.56 %), en este caso la mezcla está constituida en su totalidad por cemento portland cuya resistencia máxima se adquiere alrededor de los 28 días. Por otra parte, la mezcla uno con un aumento del 25 % en su resistencia entre los 28 y 56 días de curado, casi igualando a la mezcla referencia a los 28 días (19.5 %) y superándolo a los 56 días de curado (24.4 %) (CAICEDO, 2016, pág. 106). Por lo tanto en ámbito nacional, en la ciudad de Trujillo se procedió en la elaboración de adoquines con cenizas de ladrillo artesanales, la cual se realizaron estudios sobre el esfuerzo de resistencia a la comprensión, en donde obtuvieron resultados, los adoquines con el 10 % de escorias de ladrillos artesanales mostró alta firmeza a la aplastamiento de 385.29 Kg/cm² a los 28 días y en cuanto a esto se estableció que si la proporción de escorias se incrementa, la resistencia se reduce ampliamente. (CRUZ, 2019, pág. 115) Como también en el ámbito local, en la ciudad de Tarapoto, se efectuó una publicación acerca del empleo de cáscara de arroz como sustituto equivalente del agregado fino con la producción de concreto de 210 Kg/cm², donde llegaron a la conclusión que el porcentaje adecuado al 1 % de la cascarilla de arroz mantienen su resistencia del concreto. (BURGOS, 2016, pág. 126). En mérito a los estudios presentados se realizará la presente investigación donde se diseñará un adoquín con incorporación de escoria de la cáscara de arroz. Posteriormente se logró la formulación del problema: ¿De qué manera el diseño de adoquines de concreto con incorporación de escoria de la cáscara de arroz va a perfeccionar la resistencia a la compresión, Tarapoto 2020?; También se obtuvieron los problemas específicos: ¿Cuáles son las propiedades físicas-químicas de los componentes que conforman la mezcla de concreto de los adoquines, Tarapoto 2020?; ¿Cuáles son las propiedades físicas-químicas de la cascarilla de arroz para mejorar la resistencia del concreto, Tarapoto 2020?; ¿Cuál es el diseño de mezcla de concreto de los adoquines de tránsito pesado sin adición de escoria de la

cáscara de arroz y con adición al 5%, 10% y 15%, Tarapoto 2020?; ¿Cuál es el resultado de la resistencia a compresión que aporta la ceniza de cascarilla de arroz a un porcentaje de 5%, 10% y 15% respecto al volumen de los adoquines, Tarapoto 2020?; ¿Cuál sería el costo económico de la elaboración de un millar de adoquines con incorporación de ceniza de la cascarilla de arroz, Tarapoto 2020?. Luego se procedió a elaborar la justificación teórica: Esta averiguación, se realizará con el fin de optar resultados de manera significativa ante la sociedad, con la elaboración de adoquines de concreto con incorporación de escoria de la cáscara de arroz. Sabiendo que el uso de los adoquines traerá mejoras en el ámbito de las construcciones de este producto que así será mucho más económico y rentable a nivel nacional. Así como la justificación práctica: En esta indagación se realizará ante la insuficiencia de mejorar la resistencia a la compresión del adoquín con la incorporación de ceniza de la cascarilla de arroz, de acuerdo a las propiedades físicas-químicas de la escoria de la cáscara de arroz y esto estará mejorado al utilizar ciertas propiedades del adoquín de concreto. De esta manera la justificación por conveniencia: Esta indagación posee tal propósito de mejorar la resistencia del adoquín de concreto, para poder aportar una mejora en las construcciones futuras con el uso del adoquín de concreto, que genere una manera de fácil acceso y bajo económico, permitiendo a la sociedad que puedan construir de una manera mucho más económico y de fácil acceso para una mejor elaboración. Por lo tanto, la justificación social: Esta investigación va contribuir de manera económica, ofreciendo un adoquín mejorado, al adoquín tradicional, haciendo de ello una alternativa de bajo costo hacia la construcción de parques, veredas en la ciudad de Tarapoto. Teniendo en cuenta con una mejor calidad de construcción, así mismo tener una mejor perspectiva física de dichas construcciones. Y por último la justificación metodológica: En esta investigación se va a plantear un nuevo estudio acerca del uso de adoquines con adición de escoria de la cáscara de arroz, la cual los datos obtenidos servirán como un análisis para investigaciones futuras de adoquines y así poder seguir contribuyendo con nuevas técnicas para la mejora de este material, como una alternativa de construcción. Con respecto al objetivo general: Elaborar el diseño de adoquines con refuerzo de escoria de la cáscara de arroz, para mejorar la resistencia a la compresión, Tarapoto 2020. Así mismo los objetivos específicos: Establecer las propiedades físicas-químicas de los componentes que conforman la mezcla de concreto de los adoquines de tipo tránsito pesado, Tarapoto 2020; determinar cuáles son las propiedades físicasquímicas de la escoria de la cáscara del arroz para mejorar la resistencia del concreto, Tarapoto 2020; determinar el diseño de mezcla de concreto de los adoquines de tránsito pesado sin adición de la escoria de la cáscara de arroz y con adición al 5%, 10% y 15% respecto a los adoquines de concreto, Tarapoto 2020; determinar el resultado de la resistencia a compresión que aporta la ceniza de la cascarilla de arroz a un porcentaje de 5%, 10% y 15% respecto a los adoquines de tránsito pesado, Tarapoto 2020; determinar el costo económico de la elaboración de un millar de adoquines de tránsito pesado con incorporación de escoria de la cáscara de arroz, Tarapoto 2020. Finalmente se consigue la hipótesis general: Los adoquines de tipo vehicular pesado de concreto utilizando el refuerzo de escoria de la cáscara de arroz mejorará de manera eficiente la resistencia a compresión, Tarapoto 2020. También se obtienen las hipótesis específicas: Las propiedades físicas y químicas de los componentes que conforman la mezcla de concreto, concurrirán en la mejora para la producción de los adoquines de ejemplo tránsito pesado, Tarapoto 2020. Las propiedades físicas y químicas de la escoria de la cáscara de arroz concurrirán a perfeccionar la resistencia del concreto en los adoquines de tránsito pesado, Tarapoto 2020. El diseño de adoquines para el uso de tránsito pesado, con complemento de escoria de la cáscara de arroz al 5%, 10% y al 15% corresponderá en perfeccionar la resistencia a la compresión, Tarapoto 2020. Los adoquines para tránsito pesado con adición de escoria de la cáscara de arroz a un porcentaje de 5%, 10% y 15% respecto a los adoquines de tránsito pesado, adquirirán resultados significativos a la resistencia al aplastamiento, Tarapoto 2020. Con la producción de un millar de adoquines de uso de tránsito pesado con incorporación de escoria de la cáscara de arroz se mejorará el precio de este material de construcción, Tarapoto 2020.

II. MARCO TEÓRICO

Según los antecedentes a nivel internacional se tiene: PULIDO, Jhon. En su investigación titulada: Escorias de cascarilla de arroz para mezclas binarias de activación alcalina. (Artículo científico). Infraestructura vial. 2016: 24 (1). Concluyó que: los morteros activados con escoria de salvado de arroz más hidróxido de sodio incrementan su resistencia a compresión en un 25% a los 28 días, por esta razón es que nosotros decidimos realizar este estudio con el fin de mejorar la resistencia en los adoquines de tránsito pesado y así de esta manera aprovechar esta materia prima que existe en grandes porcentajes en nuestra región de San Martín. Así mismo: CAICEDO, Sergio y PEREZ, Julián. En su investigación titulada: Estudio del uso agregados reciclados de residuos de construcción y/o demoliciones provenientes de la ciudad de Cali como material para la construcción de elementos prefabricados de concreto, caso de los adoquines. (Tesis de pregrado). Pontificia Universidad Javeriana Cali. Santiago de Cali, Colombia, 2016. (pág. 68). Concluyó que: se demostró que no es factible ejecutar concreto reciclado con reemplazó al 100%, ya que a prematuros tiempos posee una disminución en medida de rotura de 64% con relación a la mezcla con agregado originario, lo cual muestra que no consigue a efectuar la resistencia requerida en la norma NTC-2017 a los 28 días, ya que de acuerdo a los datos logrados en el estudio de gravedad específica y absorción, que los agregados reciclados presentan mayor capacidad de filtración al 9% que los agregados naturales al 1.8% completo a su valioso comprendido en material cerámico y mortero adherido; De acuerdo con esta conclusión podemos darnos cuenta que no es factible incrementar grandes porcentajes de agregados reciclados para la elaboración de los adoquines es por esa razón que nosotros agregaremos pequeños porcentajes de 5%, 10% y 15% de escoria de cáscara de arroz. Así mismo CAMARGO, N. HIGUERA, C. en su investigación titulada: Concrete hydraulic modified with silica obtained of the rice husk. (artículo científico) infraestructura vial. 2017: 27 (1). Concluye que: utilizar un 5% de sílice de cascarilla de arroz aumenta la resistencia a compresión, por lo tanto, se puede afirmar que la ceniza de cascarilla de arroz mejora la resistencia a compresión sin embargo en los porcentajes de 15% y 30% pierde significativamente la resistencia. Así mismo: ROBAYO, R. MATTEY, P. En su investigación titulada: comportamiento mecánico de un

concreto fluido adicionado con ceniza de cascarilla de arroz (CCA) y reforzado con fibras de acero. (artículo científico) infraestructura vial, 2013: 139-151. Concluye que: en dicho consecuencias derivadas durante su investigación se vio viable causar un concreto fluido adicionado escoria de la cáscara de arroz de descenso amorficidad y fortalecido con los cuerpos inferiores de potencias de acero, reduciendo hasta un 20% el consumo de cemento logrando un similar desarrollo de resistencia a edades de curados largas. Así mismo: a nivel nacional: BARRANTES, Jorge y HOLGUÍN, Rita. En su investigación titulada: Influencia del porcentaje de reemplazo de ceniza volante por cemento, sobre la resistencia a la compresión y absorción en la fabricación de adoquines de tránsito liviano. (tesis de pregrado). Universidad Nacional de Trujillo, Trujillo, Perú. 2016. (pág. 47). Concluyó que: El porcentaje de escoria volátil tal como reemplazo del cemento influyó creciendo la resistencia a la compresión, incluso hasta un 20% de sustitución a partir desde ahí la resistencia reduce y el porcentaje de filtración no será afectada hasta el 20,5%, pero a porcentajes generales la filtración no se ve afectada incluso al 20%, pero a proporciones mayores la filtración de agua aumentó, y se consiguió que la filtración de los adoquines con residuo volátil se ve afectada a partir del 20,5% en el que su aumento es de 5.31% a 8.52%, confrontando a los productos con lo que instituye la política NTP 399.611, adoquines con 30% de substitución no efectúan con la regla"; Teniendo en cuenta estas conclusiones, podemos afirmar que la resistencia de los adoquines no se verá afectado debido a que nosotros emplearemos porcentajes menores que al 20% de escoria de la cáscara de arroz. Así mismo a nivel local: BURGOS, Mónica. En su investigación titulada: Empleo de cáscara de arroz como sustituto porcentual del agregado fino en la elaboración de concreto 210 kg/cm². (tesis de pregrado). Universidad Nacional de San Martín, Tarapoto, Perú. 2016. (pág. 126). Concluyó que: la cáscara de arroz no aumenta la resistencia con relación a un concreto de 210 kg/cm² para un proceso constructivo con relación a la firmeza mecánica, se halló que la renovación arbitraria de CDA (Cascarilla de arroz) por agregado fino, no fue favorable, en cuanto a los concretos al 6% y 12% del CDA alcanzaron resistencias pequeñas con relación a un concreto convencional. Sin embargo, del concreto con un 6% de CDA a los 56 días progreso una firmeza aproximadamente a la del diseño (335 kg/ cm^2). Teniendo

en cuanta la esponjosidad general los concretos con CDA, muestran consecuencias muy semejantes a las del concreto convencional. Para esta investigación se utilizaron algunas teorías relacionadas a la variable independiente, principales usos de los adoquines, según: PRADA Y CORTÉS (2017). Manifestaron: "que al presente los adoquines de concreto son de manera muy usados en las obras de modo general y sus primordiales usos se especifican en la tabla 1". (pág. 156)

 Tabla 1:

 Primordiales usos de los adoquines de concreto

U	SOS DE LOS ADOQUINES DE CONCRETO
4	Calzadas de usa postanal

- 1. Calzadas de uso peatonal
- 2. Playas de estacionamiento.
- 3. Pistas de uso vehicular ligero y pesado
- 4. Parques y terrazas.
- 5. Escaleras, bordes de piscina

Fuente: Distribuidores autorizados.

Adoquín, según: PÉREZ Y MERINO (2017) Manifestó: "que es una piedra a la que se le concede de representación rectangular para que se utilice en el diseño de adoquinados ya que los adoquines pueden ser utilizados en el pavimento de las vías, los adoquines se diseñan de diferentes capas al igual que los pavimentos rígidos y dúctiles ya que la principal diferencia con estos actuales permanece en la composición de la carpeta de rodadura ya que está conformado por los adoquines intertrabados, que brinda al adoquinado un comportamiento estructural semi-flexible". (pág. 01). Características más relevantes de los adoquines, según: BUZÓN (2015) Manifestó: "que los adoquines corresponden mostrar un físico macizo, sin ninguna saltadura o dicha alteración que obtenga interceptar con su distribución. Su peso unitario de los adoquines secados al horno no debe ser menor a 2200 kg/ m^3 ; la proporción máxima de la filtración debe de ser de 6.5% en promedio y 7.5% en adoquines propios". (pág. 76). Composición de los adoquines de concreto, según: CASTRO (2015) Manifestó: "que los adoquines de concreto son bloques prefabricados, los adoquines se pueden diseñar de diferentes colores y para diferentes usos, cuyo principal objetivo es preservar el pavimento" (pág. 11). Tipos y características técnicas del adoquín, según: CEMENTO PACASMAYO (2015) Los tipos de los adoquines se muestran en la tabla 2" (pág. 08)

 Tabla 2:

 Tipos y características de adoquines de concreto.

TIPO	DIMENCIONES	RENDIMIENTO (UNIDADES POR m^2	RESISTENCIA APROXIMADA	USOS Y APLICACIONES
Adoquín 4	20x10x4 cm	50	Mínimo 31 megapascales	Pavimentos de tránsito peatonal.
Adoquín 6	20x10x6 cm	50	Mínimo 41 megapascales	Pavimentos de tránsito peatonal y vehicular
Adoquín 8	20x10x8 cm	50	Mínimo 37 megapascales	Pavimentos de tránsito pesado.

Fuente: Cemento Pacasmayo (2015). Adoquines y losetas de concreto. Lima.

El concreto, según: ASOCRETO Y NIÑO (2017) Manifestó: "que el concreto es una composición con material adhesivo (cemento), y materiales que son los agregados, y al añadirle agua forma un sólido compacto; de la misma manera es un material de construcción manejado a nivel internacional, ya que es usado como mecanismo estructural y no estructural. El cemento es una mezcla de materiales calizos y arcillosos u otro material que tenga sílice, alúmina y óxido de hierro, y estos son sometidos a grandes temperaturas; ya que en la actualidad se producen varias calidades de cementos. (pág. 228). Sus propiedades físicas del concreto son, según: SÁNCHEZ (2016) Manifestó: "que el cemento está compuesto por; silicato tricálcico (C_3S), silicato dicálcico (C_2S), aluminato tricálcico (C_3A) y Ferro aluminato tetracálcico (C_4Af)" (pág. 349). La ceniza, según: HUAQUISTO Y BELIZARIO (2018) Manifestó: "que la escoria volante se obtiene de la incineración de la hulla triturada en plantas generadoras de electricidad y es el material cementante muy usado en EE.UU. (pág. 17). Evaluación de sus propiedades de la ceniza de cascarilla de arroz, según: ORDOÑEZ (2016) Manifestó: "que la cáscara de arroz representa un aproximado de la cuarta fracción en peso del producto cosechado, modificando este conjunto de las condiciones de labranza y la diversidad del arroz" (pág. 02). Transformación de la forma de la escoria de la cáscara de arroz, según: OSPINA (2016) Manifestó: "que el porcentaje de SiO₂ (dióxido de silicio) en la escoria puede alcanzar el 95%, correspondiendo el 5% restante a otros diferentes óxidos, principalmente K_2O que es (óxido de potasio) ya que está elevado con el contenido de sílice amorfa que posee la escoria de la cáscara de arroz, y hace que resulte interesante su utilización como adición puzolánica del concreto basado en cemento Pórtland que esto permite el reemplazo del

cemento" (págs. 577 - 584). Estructura química de la cáscara de arroz y de la escoria de la cáscara de arroz, según: PRADA Y CORTÉS (2017) Manifestaron: "que la cáscara de arroz es de estabilidad frágil, áspera y su color mostaza ya que su consistencia es descenso, por lo tanto al aplicarse invade grandes áreas; su peso específico es 125 kg/ m^3 , es indicar 1 tonelada que ocupa una área de 8 m^3 a granel, su estructura química de la cáscara de arroz y de la ceniza de la cáscara de arroz se muestran en la tabla 3" (pág. 156).

 Tabla 3:

 Estructura Química de la Cáscara de Arroz y de las Escorias de la Cáscara de Arroz.

CÁSCARA DE	ARROZ	ESCORIA DE CÁSCARA DE A	RROZ
Componente	%	Componente	%
Carbono	39,1	Ceniza de Sílice (SiO ₂)	94,1
Hidrogeno	5,2	Óxido de Calcio (CaO)	0,55
Nitrógeno	0,6	Óxido de magnesio (MgO)	0,95
Oxigeno	37,2	Óxido de Potasio (K_2O)	2,10
Azufre	0,1	Óxido de Sodio (Na_2O)	0,11
Cenizas	17,8	Sulfato	0,06
		Cloro	0,06
		Óxido de titanio (TiO_2)	0,05
		Óxido de Aluminio (Al_2O_3)	0,12
		Otros componentes (P_2O_5, F_2O_3)	1,82
Total	100,0	Total	100,0

Fuente: Varón y Peña.

Precios actuales de los adoquines, en la tabla 4 muestra la colección de los costos presentes por m^2 de (50 unidades) de adoquines de concreto tipo I, II, y III tanto DINO a manera en UNIBLOCK.

 Tabla 4:

 Precios de venta de adoquines de concreto

EMPRESAS	PRECIOS DE VENTA POR m²
DINO	S/. 32.00 a S/. 35.00
UNIBLOCK	S/. 36.00 a S/. 38.00

Fuente: Distribuidores de adoquines.

<u>Teorías relacionadas a la variable dependiente</u> Resistencia a la compresión, según: NRMCA (NATIONAL READY MIXED CONCRETE ASSOCIATION) (2017) Manifestó: "que las composiciones del mortero (Agregado) se logran

plantear de diferentes maneras que asuman una extensa diversidad de diferentes mecanismos y tenga estabilidad que efectúen con las exigencias de diseño de las estructuras. La resistencia al aplastamiento del mortero es de la compostura más usual de ocupación que utilizan los profesionales para construir edificaciones. La resistencia al aplastamiento se calcula rompiendo probetas tubulares de mortero en un artefacto de ensayo a aplastamiento. Las exigencias para la resistencia al aplastamiento consiguen alterar a partir de 2.490 psi (17 MPa) hacia el mortero distinguido incluso a 3.998 psi (28 MPa) y más si son para edificaciones productivos. (pág. 01)

III. METODOLOGÍA

3.1. Tipo de diseño de investigación

El actual proyecto de investigación es de tipo experimental, teniendo en cuenta las estrategias y diseño para llevar un mayor control de la metodología cuantitativa en el procesamiento, análisis y evaluación de la investigación, para ello se revisaron las variables que intervienen, como la escoria de la cáscara de arroz en los adoquines de tránsito pesado de concreto y la resistencia al esfuerzo de compresión.

El diseño de la investigación es el siguiente:

Dónde:

 A_1 = Adoquín convencional.

C = Escoria de la cáscara de arroz.

 A_2 = Adoquín mejorado

A continuación, la gráfica del diseño experimental para los adoquines de concreto.

$GE_{(1)}$	C ₁ (Adoquín al 5% de escoria de cascara de arroz)	A ₁ (7d)	C ₁ (Adoquín al 5% de escoria de cascara de arroz)	A ₂ (14d)	C ₁ (Adoquín al 5% de escoria de cascara de arroz)	A ₃ (28d)
$GE_{(2)}$	C ₂ (Adoquín al 10% de escoria de cascara de arroz)	A ₁ (7d)	C₂ (Adoquín al 10% de escoria de cascara de arroz)	A ₂ (14d)	C ₂ (Adoquín al 10% de escoria de cascara de arroz)	A ₃ (28d)
$GE_{(3)}$	C ₃ (Adoquín al 15% de escoria de cascara de arroz)	A ₁ (7d)	C ₃ (Adoquín al 15% de escoria de cascara de arroz)	A ₂ (14d)	C ₃ (Adoquín al 15% de escoria de cascara de arroz)	A ₃ (28d)
$GC_{(4)}$	\mathcal{C}_0 (Adoquín sin adición de escoria de cascara de arroz)	A ₁ (7d)	C_0 (Adoquín sin adición de escoria de cascara de arroz)	A ₂ (14d)	 C₀ (Adoquín sin adición de escoria de cascara de arroz) 	A ₃ (28d)

Fuente: Elaboración de los Tesistas.

Donde:

GE: Grupo experimental.

GC: Grupo control (Adoquín sin adición de escoria de la cascara de arroz).

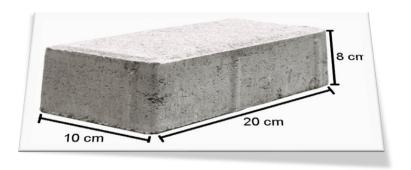
C1: Adoquín con adición al 5% de escoria de cascara de arroz.

C2: Adoquín con adición al 10% de escoria de la cascara de arroz.

C3: Adoquín con adición al 15% de escoria de cascara de arroz.

 A_1, A_2, A_3 : Medición.

3.2. Variables y operacionalización


Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición	
			Características	Granulometría.	Intervalo.	
		Para el diseño de adoquines se	físicas-	Contenido de humedad.	Intervalo.	
		utilizará una	químicas de	Peso específico.	Intervalo.	
	Los adoquines son	mezcla de arena,	los agregados.	Absorción.	Intervalo.	
	elementos	piedra, cemento y		% de sílice		
	prefabricados	agua; ceniza de		(SiO_2)	Intervalo.	
	macizos, elaborados	cascarilla de arroz		% de óxido de	Intervalo.	
Variable	con una mezcla de	con un porcentaje		Calcio (CaO)		
independiente	arena piedra y agua y	de 5%, 10% y		% de óxido de		
	cemento. CASTRO	15%.		Magnesio (MgO)	Intervalo.	
Diseño de un	(2015).	1070.	Características	% de óxido de	Intervalo.	
adoquín con		La escoria de	físicas-	Potasio (K ₂ O)	miorvaio.	
incorporación	La escoria de	cascará de arroz	químicas de la	% de óxido de	Intervalo.	
de escoria de	cascara de arroz	servirá como	ceniza de la	Sodio (Na_2O)		
cascara de	tiene componentes	refuerzo para	cascarilla de	% de Sulfato	Intervalo.	
arroz	similares a las del	obtener una mejor		% de Cloro	Intervalo.	
	cemento la cual	resistencia a la	% de óxido de	Intervalo.		
	permite obtener una	compresión y		titanio (TiO_2)	intorvalo.	
	estructura rígida.	obtener un		% de óxido de	Intervalo.	
	PRADA (2017).	producto de		Aluminio (Al_2O_3)	iritervaio.	
		calidad a un		% de otros		
		precio más		componentes	Intervalo.	
		económico.		(P_2O_{5}, F_2O_3)		
			Viabilidad	Costo unitario	Intervalo.	
	Es la capacidad del		económica			
	material para resistir					
	a las fuerzas que					
	intentan comprimirlo.	Para mejorar la				
Variable	Se caracteriza	resistencia a la				
dependiente Resistencia a la comprensión	porque presenta una	compresión se	Resistencia a	Prensa		
	reducción en su	adicionará la		hidráulica de	Intervalo.	
	volumen o un		ceniza de un		concreto	
	acortamiento en una	cascarilla de				
	determinada	arroz.				
	dirección.					

3.3. Población, muestra y muestreo

Población Muestral

PINEDA (2016) "son un grupo de personas u objetos que se quiere investigar. La población logra ser compuesta por individuos, animales, los tipos de laboratorio, entre otros" (pág. 03)

 Para la obtención de mejores resultados, se planteó que la población muestral será una cantidad de 36 adoquines de concreto de dimensiones de 20x10x08 cm para tránsito pesado.

Figura 1: Adoquín **Fuente:** Elaboración propia de los tesistas.

Determinación de la muestra

Según la norma NTP 399.611 Componentes de la construcción, adoquines de concreto para pavimentos. La Norma Técnica Peruana establece las exigencias que corresponden practicar los adoquines de concretos elaborados para las obras de pavimentos y se emplea a todos los adoquines de mortero predestinados para su uso en pavimentos peatonales, vehiculares, patios industriales o de contenedores. Sin embargo, se realizó un muestreo por conveniencia de 36 adoquines de concreto en estado seco de 20x10x08 cm. Con complemento de escoria de la cáscara de arroz al 5%, 10% y 15% de acuerdo al volumen del adoquín y se realizaron 9 réplicas para cada diseño de acuerdo a la NTP 399.611.

Tabla 5:

Muestras de los adoquines

Ceniza de la		Medición		Parcial
cascarilla de arroz	7 días	14 días	28 días	Parcial
0%	03 unid.	03 unid.	03 unid.	09 unid.
5%	03 unid.	03 unid.	03 unid.	09 unid.
10%	03 unid.	03 unid.	03 unid.	09 unid.
15%	03 unid.	03 unid.	03 unid.	09 unid.
	Total			36 unid.

Fuente: Elaboración propia de los tesistas.

3.4. Técnicas e instrumentos y recolección de datos

Técnica

HERNANDEZ (2016) "Una habilidad es un procedimiento reglamentario y modelos que se maneja a manera para alcanzar a una segura conclusión" (pág. 05)

- En esta investigación para la obtención de datos se utilizará como técnica la observación, para ello se realizará ensayos a compresión para obtener los resultados de los adoquines a 7, 14 y 28 días con adición de escoria de la cascará de arroz al 5%, 10% y al 15%.

Instrumento

HURTADO (2017) "Una herramienta de recolección de datos son los recursos de que se resguarda el estudio ya que se aproxima a los anómalos y obtener una buena encuesta" (pág. 427).

Los instrumentos para la obtención de datos son las siguientes:

- Ficha de búsqueda de antecedentes para las propiedades físicasquímicas de la cascara de arroz.
- Ficha de registro de las clasificaciones de los materiales.
- Ficha de registro de datos sobre la resistencia al esfuerzo de comprensión del adoquín.

Para la siguiente investigación se utilizará la técnica e instrumentos mencionados con la finalidad de comprobar los resultados, ya sea como ensayos primordialmente realizados en laboratorios y utilizando las fichas de registro para transcribir los datos obtenidos de dicha investigación.

Tabla 6:Cuadro de técnicas e instrumentos.

Técnicas	Instrumentos	Fuente
		NTP 399.611
Ensayo de las	Ficha de registro de datos para	GP 001:1995 Y GP 002:1995.
propiedades de los	las propiedades físicas-	NTP 334.009, NTP 334.082, NTP
materiales necesarios	químicas de los materiales del	334.090.
del adoquín.	adoquín.	NTP 339.088.
		NTP 400.037.
Ensayo de las	Ficha de registro de datos	
propiedades físico y	sobre las propiedades físicos y	NTP 399.604
químicas de la escoria de la cascara de arroz.	químicas de la escoria de la cascara de arroz.	NTP 334.127
Ensayo de la resistencia a la compresión del adoquín.	Ficha de registro de datos sobre la resistencia del esfuerzo a compresión del adoquín.	NTP 399.611

Fuente: Elaboración de los tesistas.

Validez y confiabilidad

HERNÁNDEZ (2016). "La validez y confiabilidad es lo que manifiestan la forma en que el instrumento se adecua a las insuficiencias de la indagación. La eficacia crea informe al aforo de un instrumento para medir de manera explicativa y conveniente el rasgo para cuyo cálculo ha sido diseñado. Cabe indicar, que mide la peculiaridad (o programa) hacia el cual fue diseñado y no otra equivalente" (pág. 346)

Para la validación del trabajo de investigación, se realizará el análisis estadístico básico para validar nuestra hipótesis, y con los ensayos que se obtendrán en cuenta los protocolos de la Universidad César Vallejo de Tarapoto – Escuela de ingeniería civil – Laboratorio de mecánica de suelos ARGAD.

3.5. Procedimientos

Producción de la escoria de la cascara de arroz (CCA)

Para el presente investigación primero se va a realizar en poner en un horno la cascarilla de arroz, la ceniza que se obtendrá tendría que ser a cielo abierto, con un método conocido como "Estufa de Aserrín", que consistirá en el uso de una lata de aceite, como contenedor de la cascarilla

de arroz (CA) ya que será introducida a compresión colocando ante una guía para los ductos de entrada y salida del flujo de aire para la combustión de la CA como muestra en la figura 02, ya que de esa manera se producirá la escoria de la cáscara de arroz de forma sistemática, se procesa el de moler la escoria de la cáscara de arroz, se obtendrá con una malla fina no graduada, para poder así eliminar objetos de mayor tamaño para que no perjudiquen a futuro el molido ya que para la etapa de la molienda se utilizara un molino de mano, cuyos discos moledores son de una aleación de hierro y acero y serán rectificados para la producción de granos finos, así mismo serán pasadas por el tamiz N° 100 y solo utilizaremos los pasantes a esta, para la preparación de los adoquines de mortero.

Figura 2: Proceso de fabricación de Estufa Aserrín.

Fuente: EDOMEX

Diseño de mezcla empleada

Se utilizará la metodología ACI (American concrete institute), como la totalidad de los métodos se necesitará la caracterización de los agregados, ya que se llevará al laboratorio, los agregados se obtuvieron del rio Huallaga, los estudios se estarán realizando previamente que son: el análisis granulométrico, peso unitario compactado, peso unitario suelto, peso específico, absorción y el contenido de humedad. Con estos resultados que se obtendrán para la muestra del adoquín de concreto, mediante una hoja de cálculo EXCEL.

Fabricación de los adoquines de concreto.

En la fabricación de los adoquines se iniciará mediante la medición del agua y pesado de los materiales con una balanza milimetrada propia del laboratorio de mecánica de suelos de la UCV filial Tarapoto, para así

mismo hacer la producción de 36 unidades de adoquines de cada proporción de escoria de la cáscara de arroz al 0%, 5%, 10% y 15%, ya que para el mezclado se llegara a utilizar un trompo mesclador de concreto u otras herramientas ya sea manuales, se iniciara con el mezclado del agregado con el cemento, y después el agua, así logrando una mezcla de consistencia homogénea. La mezcla se colocará en dos capas en los mismos moldes por hacerse, vibrándolos con una máquina lijadora por la misma parte interior del fondo del molde, además con una varilla lisa de acero, enrasada con una plancha metálica y dejándolos fraguar por 24 horas para su posterior curado que durará 28 días calendario.

Ensayo de adoquines

Los ensayos de esta investigación se realizarán a compresión, absorción peso unitario, contenido de humedad y variación dimensional en la cual comprobaremos si la incorporación de la escoria de la cáscara de arroz si mejora las propiedades de los adoquines de concreto tipo III, todos estos ensayos se realizarán de acuerdo a la norma técnica NTP 399.611 y NTP 399.604.

3.6. Método de análisis de datos

Los datos por recoger, se tiene de los ensayos por medio de materiales confiadas que nos consentirá almacenar los hechos reales y sin alterarlos, así mismo se recogerán los resultados ya conseguidos de las pruebas de resistencia al aplastamiento para establecer los efectos de la escoria de la cáscara de arroz en los adoquines de concreto, ya que para el proceso de los datos por obtener en laboratorio serán de una base de datos con el programa Microsoft Excel y así poder generar cuadro y figuras.

3.7. Aspectos éticos

Para desarrollar la investigación se respetará la norma de infraestructura vial, las citas en ISO que son la NTP, también se respetarán los derechos del autor realizando sus respectivas citas, también se utilizará el esquema

de la Universidad César Vallejo como formato para poder elaborar la investigación.

Dicha investigación se basará en los parámetros de las siguientes normas y reglamentos:

- NTP 399.611 Adoquines de concreto para pavimentos.
- NTP 334.009, NTP 334.082, NTP 334.090 cemento portland.
- NTP 339.088 Agua de Mezcla.
- NTP 400.037 Agregados.
- NTP 399.604 Muestreo y ensayo de albañilería.
- NTP 334.127 Adiciones minerales del cemento y concreto: puzolana natural cruda o calcinada y ceniza.

IV. RESULTADOS

4.1 Características físicas y químicas de los componentes que conforman la mezcla de concreto.

Tabla 7:Características físicas de los agregados

CARACTERÍSTICAS FÍSICAS DE LOS AGREGADOS	UNIDAD	AGREGADO FINO	AGREGADO GRUESO
Peso especifico	gr/cm ³	2.783	2.681
Absorción	%	1.06	0.66
Peso unitario suelto	kg/m^3	1650	1494
Peso unitario compactado	kg/m^3	1810	1608
Tamaño máximo nominal	pulg		3/4
Módulo de fineza	%	2.89	6.76
Contenido de humedad	%	1.2	0.43

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

 Tabla 8:

 Características químicas del cemento Pacasmayo.

CEMENTO PACASMAYO				
Componentes químicos	%			
Óxido de Sílice (Si θ_2)	21.0			
Óxido de Calcio (CaO)	64.0			
Óxido de magnesio (MgO)	2.4			
Sulfato	1.6			
Óxido de Aluminio ($Aoldsymbol{l_20_3}$)	5.5			
Óxido de hierro (FeO)	4.5			
Otros componentes	1.0			
Total	100,0			

Fuente: Cemento Pacasmayo.

Interpretación:

Con respecto al primer objetivo específico, características físicas y químicas del concreto afirmaríamos que los materiales los cuales utilizamos, cumplieron sus ensayos de granulometría como se establece en MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88, tantos los agregados finos y gruesos, así mismo cumplieron con las características establecidas por BURGOS, Mónica. (2016) pág. 75.

4.2 Propiedades físicas-químicas que conforman de la escoria de la cascara del arroz.

 Tabla 9:

 Propiedades físicas de la ceniza de la cascarilla de arroz

ESCORIA DE CASCARILLA DE ARROZ					
Componentes físicas	gr/cm^3				
Densidad real	0.780				
Densidad global sin compactar	0.108				
Densidad global compactado	0.143				

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

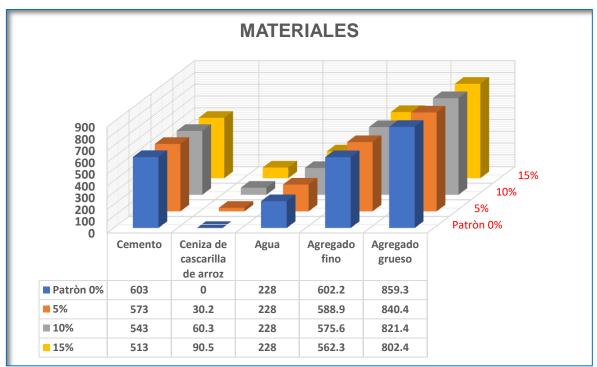
 Tabla 10:

 Propiedades químicas de la ceniza de la cascarilla de arroz

ESCORIA DE CASCARA DE ARROZ					
Componentes químicos	%				
Óxido de Sílice (Si o_2)	94,1				
Óxido de Calcio (CaO)	0,55				
Óxido de magnesio (MgO)	0,95				
Óxido de Potasio (K_20)	2,10				
Óxido de Sodio (Na_2O)	0,11				
Sulfato	0,06				
Cloro	0,06				
Óxido de titanio (TiO_2)	0,05				
Óxido de Aluminio (Al_2O_3)	0,12				
Otros componentes (P_2O_5, F_2O_3)	1,82				
Total	100,0				

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

Interpretación:


Con relación al segundo objetivo específico, características físicas y químicas de la escoria de la cascara de arroz podemos afirmar que la escoria de cascara de arroz tiene componentes muy similares a las del cemento Pacasmayo, ya que se puede apreciar que el cemento contiene Óxido de Sílice en un 21%, Óxido de Calcio (CaO) 64%, Óxido de magnesio (MgO) 2.4%, Sulfato1.6%, Óxido de Aluminio de 5.5%, el cual la única diferencia seria los porcentajes de estés componentes, los cuales cumplen con las características establecidos por VÁSQUEZ, Rosaura. (2017) pág. 16.

4.3 Diseño de mezcla de concreto de los adoquines de tránsito pesado sin adición de la escoria de la cascara de arroz y con adición.

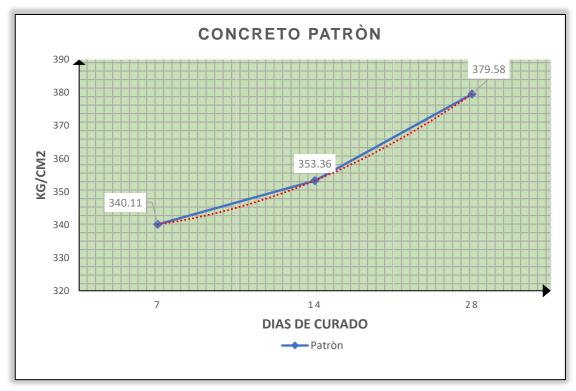
Tabla 11:Diseño de mezcla del concreto patrón y de concreto con (adición de 5%, 10% y 15% de ceniza de cascarilla de arroz) para 1 m^3 de concreto.

MATERIAL	UNIDAD	PATRÒN 0% (F´C=380 kg/m 3)	5% DE CENIZA DE CASCARILLA DE ARROZ	10% DE CENIZA DE CASCARILLA DE ARROZ	15% DE CENIZA DE CASCARILLA DE ARROZ
Cemento	Kg	603	573	543	513
Ceniza de cascarilla de arroz	Kg	0	30.2	60.3	90.5
Agua	L	228	228	228	228
Agregado fino	Kg	602.2	588.9	575.6	562.3
Agregado grueso	Kg	859.3	840.4	821.4	802.4

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

Figura 3: Gráfico de la cantidad de materiales usados en el diseño de mezcla de concreto para $1 m^3$.

Fuente: Elaboración propia de los tesistas.


Interpretación:

Con respecto al tercer objetivo específico, el diseño de mezcla de concreto de los adoquines para tránsito pesado con adición al 0%, 5, 10% y 15%, fueron los adecuados según CEMENTO PACASMAYO debido a que se respetaron las normas en las cuales están especificadas sus dimensiones y su capacidad de resistencia a compresión a la cual se van a exponer.

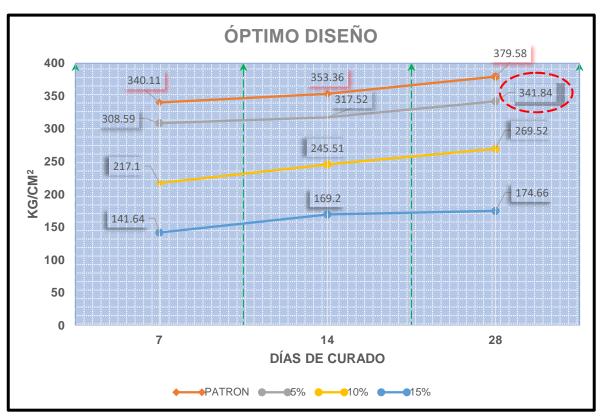

4.4 Resistencia a compresión que aporta la escoria de la cascara de arroz al 0%, 5%, 10% y 15% a los 7, 14 y 28 días.

Figura 4: Gráfico de comparación de resistencia a la compresión del concreto patrón y de (5%, 10% y 15%) a los 7, 14 y 28 días.

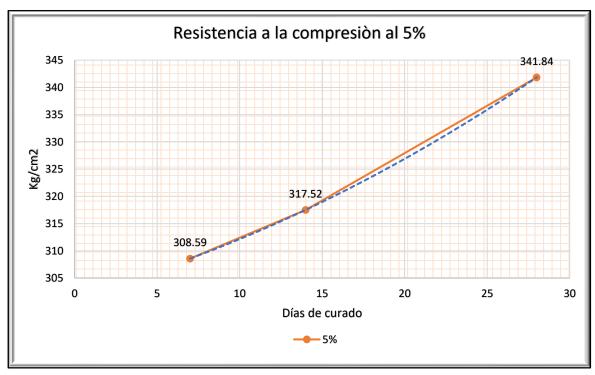


Figura 5: *Grafico de la resistencia a la compresión del concreto patrón. Fuente:* Elaboración propia de los tesistas.

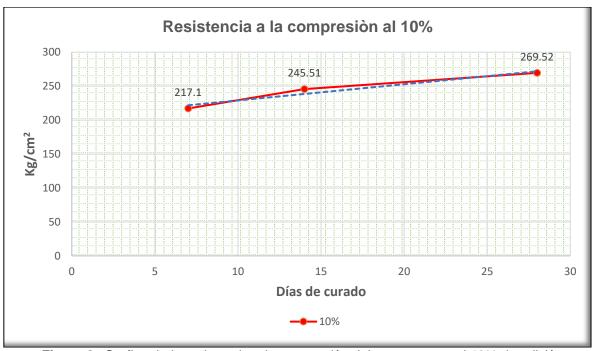


Figura 6: Optimo diseño del concreto patrón y del concreto con adición de escoria de cascara de arroz al 5%, 10% y 15%.

Fuente: Elaboración propia de los tesistas.

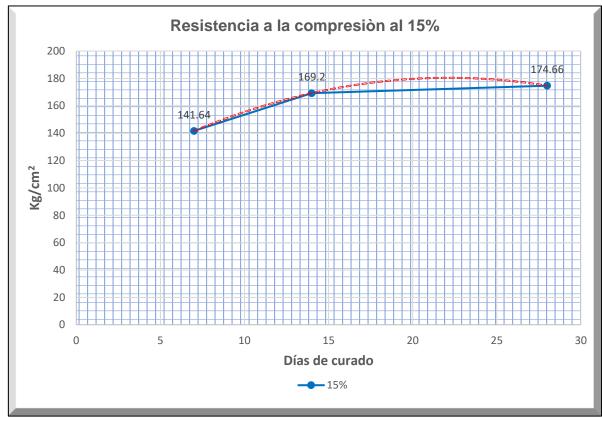


Figura 7: Grafico de la resistencia a la compresión del concreto con el 5% de adición de escoria de cascara de arroz.

Figura 8: Grafico de la resistencia a la compresión del concreto con el 10% de adición de escoria de cascara de arroz.

Fuente: Elaboración propia de los tesistas.

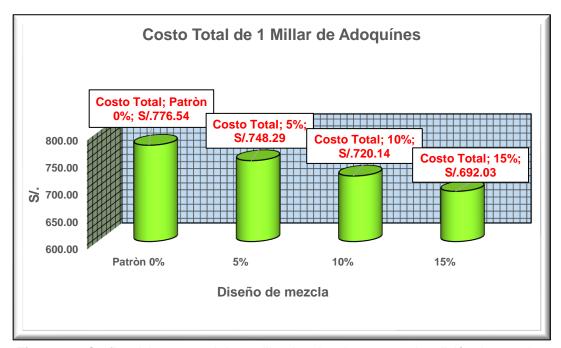
Figura 9: Grafico de la resistencia a la compresión del concreto con el 15% de adición de escoria de cascara de arroz.

Tabla 12:
Resistencia a la compresión a los 7, 14 y 28 días

Resistencia a la compresión	Días de curado				
Kg/cm2	7	14	28		
Muestra patrón al 0%	340.11	353.36	379.58		
5%	308.59	317.52	341.84		
10%	217.10	245.51	269.52		
15%	141.64	169.20	174.66		

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

Interpretación:


Con respecto al cuarto objetivo específico, el resultado a compresión que aporta la ceniza de cascarilla de arroz al porcentaje de 5%, a los 7 días fueron 308.59 kg/cm^2 , a los 14 días fueron 317.52 kg/cm^2 , y a los 28 días fueron 341.84 kg/cm^2 , y al porcentaje de 10% se obtuvo una resistencia de 217.10 kg/cm^2 , a los 14 días se obtuvo una resistencia de 245.51 kg/cm^2 , a los 28 días se obtuvo 269.52 kg/cm^2 ; y al porcentaje del 15% se obtuvo una resistencia a los 7 días de 141.64 kg/cm^2 , a los 14 días se obtuvo una resistencia de 169.20 kg/cm^2 , y a los 28 días se obtuvieron una resistencia de 169.20 kg/cm^2 . Por lo tanto, podemos afirmar que el porcentaje de 5% de ceniza de cascarilla de arroz, si es recomendable para trabajar como sustituto del cemento debido a que sus resultados de resistencia a compresión son muy similares a los de la muestra patrón.

4.5 Costo económico de la elaboración de un millar de adoquines para tránsito pesado con incorporación de escoria de la cáscara de arroz.

Figura 10:
Costo económico para 1 millar de adoquines sin y con adición de escoria de cascara de arroz

Material	lind	Precio	Patrón 0%		5%		10%		15%	
		Unitario	Cantidad	Costo (S/.)	Cantidad	Costo (S/.)	Cantidad	Costo (S/.)	Cantidad	Costo (S/.)
Cemento	Kg	0.565	1254.44	708.39	1191.56	672.88	1128.78	637.43	1066.11	602.04
Ceniza de cascarilla de arroz	Kg	0.140	0.00	0.00	62.67	8.77	125.44	17.56	188.11	26.34
Agua	L	0.0013	476.67	0.63	476.56	0.63	476.44	0.63	476.44	0.63
Agregado fino	Kg	0.0216	1267.78	27.33	1239.56	26.72	1211.56	26.12	1183.56	25.52
Agregado grueso	Kg	0.0224	1795.56	40.18	1755.44	38.29	1715.89	38.40	1676.22	37.51
Costo Total			776.5	54	748.2	29	720.	14	692.0)3

Fuente: Elaboración propia de los tesistas.

Figura 11: Grafico del costo total de 1 millar de adoquines con y sin adición de escoria de cascara de arroz.

Fuente: Elaboración propia de los tesistas.

Interpretación:

Con respecto al quinto objetivo específico, el costo económico de la elaboración de un millar de adoquines con incorporación de ceniza de cascarilla de arroz al porcentaje de un 5% es de S/.31.00 con respecto a los adoquines convencionales, con estos resultados podemos afirmar que si sería viable fabricar adoquines con incorporación de ceniza de cascarilla de arroz.

V. DISCUSIÓN

En la actualidad podemos observar la necesidad de ir mejorando la calidad de los materiales de construcción, es por ello que nosotros como futuros ingenieros civiles nos vemos en la necesidad de contribuir mediante los diversos estudios de investigación obtener estés materiales con las mismas características y a un mejor precio.

El objetivo de la presente investigación fue diseñar adoquines con incorporación de cenizas de cascara de arroz para mejorar la resistencia a la compresión, Tarapoto 2020; Así mismo investigar la composición físicas y químicas del diseño de los adoquines de concreto sin incorporación y con incorporación de escoria de cascara de arroz al mismo tiempo determinar cuál es el aporte de la resistencia a compresión que aporta la escoria de cascara de arroz a los porcentajes de 5%, 10% y 15%, y por ultimo ver cuan económico es diseñar un millar de adoquines con incorporación de escoria de cascara de arroz.

Los resultados obtenidos de nuestra primera variable diseño de un adoquín con incorporación de escoria de cascara de arroz fueron obtenidos mediante los diversos ensayos en el laboratorio mecánica de suelos, con respecto a la primera dimensión características físicas-químicas de los agregados se puede afirmar que los componentes que contienen los agregados son: Agregado fino; Peso específico 2.78 gm/cm^3 y del agregado grueso es 2.68 gm/cm^3 , absorción del agregado fino es de 1.06% y del agregado grueso es de 0.63%, Peso unitario suelto del agregado fino es de 1650 kg/m^3 y del agregado grueso es de 1494 kg/m^3 ; Peso unitario compactado del agrego fino es de 1810 kg/m^3 y del agregado grueso es de 1608 kg/m^3 ; Modulo de fineza del agregado fino es de 2.89% y del agregado grueso es de 6.76%; Contenido de humedad del agregado fino es de 1.2% y del agregado grueso es de 0.43%. Con respecto a la segunda dimensión características físicas-químicas de la escoria de cascara de arroz son: Densidad real $0.780 \ gm/cm^3$, densidad global sin compactar $0.108 \, gm/cm^3$, densidad global compactado $0.143 \, gm/cm^3$, y sus componentes químicos son: Óxido de Sílice 94.1%, óxido de Calcio (CaO) 0,55%, óxido de magnesio (MgO) 0,95%, óxido de Potasio 2,10 %, óxido de Sodio 0,11%, sulfato 0,06 %, cloro 0,06%, óxido de titanio 0.05%, óxido de Aluminio 0,12%, otros componentes 1,82%. Con respecto a nuestra tercera dimensión viabilidad económica, el costo económico de la elaboración de un millar de adoquines con incorporación de escoria de cascara de arroz al porcentaje de un 5% es de S/.31.00 con respecto a los adoquines convencionales, con estos resultados podemos afirmar que si sería viable fabricar adoquines con incorporación de escoria de cascara de arroz, con respecto a los porcentajes de 10% y 15% no son recomendables diseñar ya que no cumplen con los requisitos establecidos por la NTP. Con respecto a nuestra cuarta dimensión resistencia a la compresión podemos afirmar que la adición adecuada de la escoria de la cascara de arroz para el diseño de adoquines es un 5%, debido a que los demás porcentajes no alcanzan la resistencia requerida por la NTP.

Los resultados presentados no son similares al trabajo de investigación de BURGOS, Mónica. En su investigación titulada: *Empleo de cáscara de arroz como sustituto porcentual del agregado fino en la elaboración de concreto 210 kg/cm^2.* (tesis de pregrado). Universidad Nacional de San Martín, Tarapoto, Perú. 2016. Que obtuvo como conclusión que el porcentaje adecuado de cascarilla de arroz el cual cumplía con la NTP para un concreto 210 kg/cm^2 , es de 1% el cual sustituye al agregado fino. Esta información nos permite afirmar que la escoria de cascara de arroz tiene un mejor resultado que la cascarilla de arroz en aporte de la resistencia a compresión debido a que sus componentes orgánicos al momento de la calcinación desaparecen permitiendo obtener grandes porcentajes de sílice el cual es uno de los componentes del cemento y esto es lo que nos permitió estos resultados de hasta un 5% de sustitución de cemento por la escoria de cascara de arroz.

VI. CONCLUSIONES

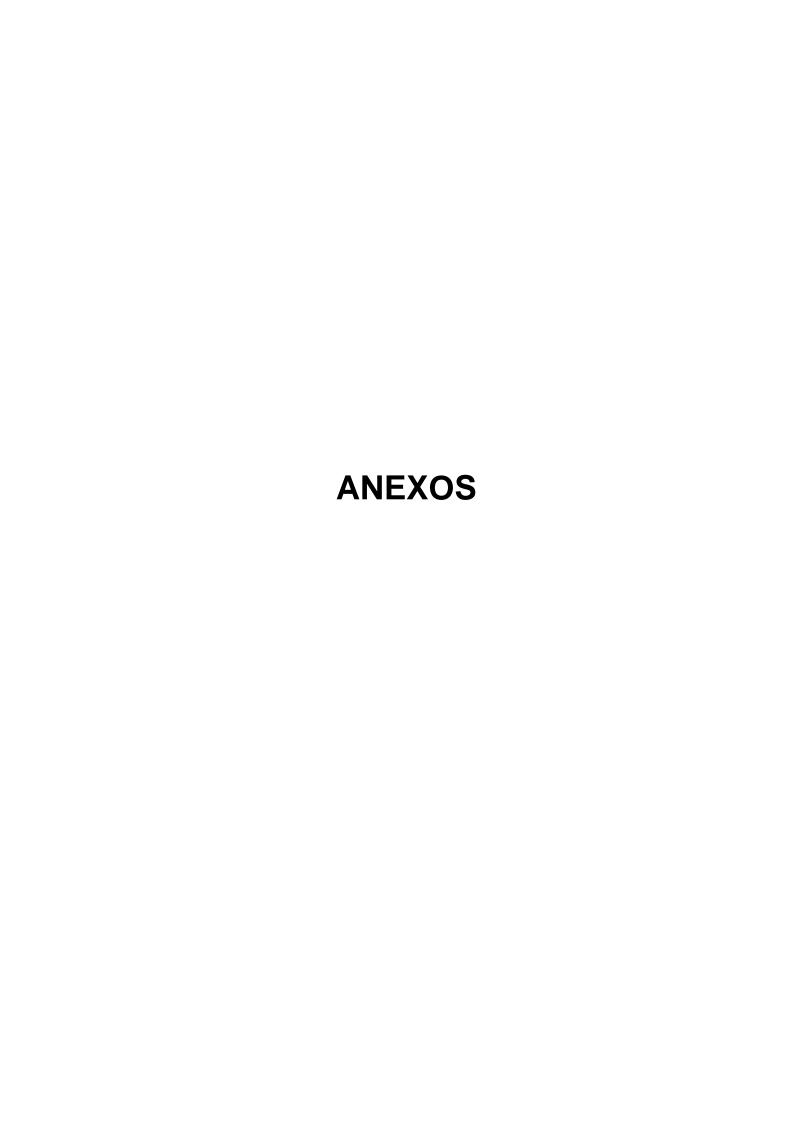
- 6.1 Mediante los ensayos realizados en el laboratorio de mecánica de suelos, concreto y pavimentos ARGAD Tarapoto, se determinaron las características del agregado fino obtenido de la cantera Amazónica S.A.C., con un peso específico de $2.783~gr/cm^3$, absorción 1.06~%, peso unitario suelto $1650~kg/m^3$, Peso unitario compactado $1810~kg/m^3$, Módulo de fineza 2.89%, contenido de humedad 1.2%; de igual manera, del agregado grueso correspondiente a la cantera Amazónica S.A.C. se obtuvo un peso específico $2.681~gr/cm^3$, absorción 0.66%, peso unitario suelto $1494~kg/m^3$, peso unitario compactado $1608~kg/m^3$, tamaño máximo nominal 34 pulg., módulo de fineza 6.76%, contenido de humedad 0.43%.
- 6.2 Mediante la información bibliográfica se identificó las características físicas y químicas de la escoria de la cascara de arroz se determinaron la densidad real con un 0.780 gm/cm³, densidad global sin compactar 0.108 gm/cm³, densidad global compactado 0.143 gm/cm³, y sus componentes químicos son: Óxido de Sílice 94.1%, óxido de Calcio (CaO) 0,55%, óxido de magnesio (MgO) 0,95%, óxido de Potasio 2,10 %, óxido de Sodio 0,11%, sulfato 0,06 %, cloro 0,06%, óxido de titanio 0.05%, óxido de Aluminio 0,12%, otros componentes 1,82%.
- 6.3 Se determinó que el óptimo diseño de mezcla para sustituir el cemento por escoria de cascara de arroz para adoquines de tránsito pesado es de un 5% debido a que los demás porcentajes no cumplen con las normas establecidos para el diseño de adoquines. La incorporación equivalente es de $30 \ kg/m^3$.
- 6.4 Se determino los resultados de resistencia optima a compresión fue a los 28 días de curado con incorporación del 0% la muestra patrón arrojo una resistencia de 379.58 kg/cm^2 , con incorporación de 5% de escoria de cascara de arroz arrojo una resistencia de 341.84 kg/cm^2 , con incorporación de 10% de ceniza de cascarilla de arroz arrojo una resistencia de 269.52 kg/cm^2 y con incorporación del 15% de escoria de

cascara de arroz arrojo una resistencia de 174.66 kg/cm^2 ; el porcentaje con adición que más se aproximo fue del 5% con una resistencia de 341.84 kg/cm^2 , el cual no alcanza la resistencia de la muestra patrón a los 28 días, pero podría superarlo a los 56 días.

6.5 Se determino el costo económico para un millar de adoquines con adición de escoria de cascara de arroz es de S/.748.29, y de los adoquines convencionales es de S/.776.54, obteniendo una diferencia de S/.28.25 nuevos soles por cada millar de adoquines.

VII. RECOMENDACIONES

- 7.1 Se recomienda hacer investigaciones con incorporaciones de otros porcentajes sustituyendo a los agregados finos, ya que se podrían obtener mejores resultados.
- 7.2 Se recomienda realizar investigaciones a los 56 días de curado con adición de escoria de cascara de arroz a un 6% y 8%, ya que se apreció que el fraguado es mucho más lento con estas adiciones, pero se observó que a mayor tiempo que paso los porcentajes de resistencia aumentan consideradamente.
- 7.3 Se recomienda utilizar la escoria de cascara de arroz para concreto 210 kg/cm^2 ya que es un producto el cual si contribuye la resistencia a la compresión.
- 7.4 Se recomienda realizar investigaciones la ceniza de cascarilla de arroz para otros materiales de construcción, ya sean ladrillos o concreto de menor resistencia, ya que podría traer grandes beneficios para los materiales de construcción.
- 7.5 Se recomienda a los proveedores que trabajan en la producción de adoquines, bloques de concreto usen ceniza de cascarilla de arroz reemplazando ciertos porcentajes por cemento, ya que es un producto mucho más económico y así ofrecer al público una mejor calidad de producto y a un mejor precio.


REFERENCIAS

- BARRANTES VILLANUEVA, Jorge Alejandro; HOLGUIN ROMERO, Rita Cristina;. (s.f.). Influencia del porcentaje de reemplazo de ceniza volante por cemento, sobre la resistencia a la compresión y absorción de adoquines de tránsito liviano. (Tesis de pregrado), Universidad Nacional de Trujillo, Trujillo, Perú. 2016.
- BURGOS ROSADO, Mónica Isabel. (s.f.). Empleo de la cascarilla de arroz como sustituto porcentual del agregado fino en la elaboración de concreto de 210kg/cm2. (Tesis de pregrado), Universidad Nacional de San Martín, Tarapoto, Perú. 2016.
- BURGOS ROSADO, Mónica Isabel. (s.f.). Empleo de la cascarilla de arroz como sustituto porcentual del agregado fino en la elaboración de concreto de 210kg/cm2. (Tesis de pregrado), Universidad Nacional de San Martin, Tarapoto, Perú. 2016.
- BUZON OJEDA, Jorge Elías. (Octubre de 2015). Fabricación de adoquines para uso en vías peatonales, usando cuesco de palma africana. *Inge-CUC*, 6(6).
- CABALLERO, Magdaleno; SILVA, Luis y MONTES, José. (2010). Resistencia Mecánica del Adobe Compactado Incrementado por Bagazo de Agave. Memorias del XVI congreso internacional Anual de la SOMIM. México.
- CAICEDO, Carlos Steven. (s.f.). Diseño de un pavimento articulado con adoquines compuestos por reciclados en concreto como fino y cenizas provenientes del bagazo de la azúcar como reemplazo parcial del cemento portland. (Tesis de pregrado), Pontificia Universidad Javeriana, Santiago de Cali. Colombia, 2016.
- CAICEDO CAMPO, Sergio Luis; PÉREZ HENAO, Julián Mauricio. (s.f.). Empleo de la cascarilla de arroz como sustituto porcentual del agregado fino en la elaboración de concreto de 210kg/cm2. (Tesis de pregrado), Pontificia Universidad Javeriana, Santiago de Cali, Colombia. 2016.
- CAMARGO, N., & HIGUERA, C. (s.f.). Concrete hydraulic modified with silica obtained of the rice husk. (artículo científico) infraestructura vial. 2017: 27 (1).

- CASTRO ALMENGOR, Johan. (2019). Limitación en la capacidad de producción de adoquines. Obtenido de Trabajo aplicativo Empresarial-Pacasmayo S,A: http://www.monografias.com/trabajos-pdf2/limitacion-capacidadproduccion-adoquines/limitacion-capacidad-produccion-adoquines.pdf
- CEMENTO PACASMAYO, S.A. (2015). Bloques y Ladrillos. Lima, Perú.
- CRUZ, Hilder. (s.f.). Influencia de cenizas de ladrillos artesanales en la resistencia a la compresión de adoquines de concreto, Trujillo 2019. (Tesis de posgrado), Universidad privada del norte, Trujillo, Perú, 2019.
- FUENTES, N., & FRAGOSO, O. (s.f.). Agro-industrial waste as additions in development of concrete blocks no structural. (Artículo científico). Infraestructura vial. 2017: 25 (2).
- HERNÁNDEZ, S y FERNÁNDEZ, C. (2016). *Metodología de la Investigación*. Guadalajara, México: Editorial McGraw-Hill.
- HERNÁNDEZ; FERNÁNDEZ y BAPTISTA. (2016). *Metodología de la investigación*. Antioquia, Colombia: ed. Panamericana Formas e Impresos.
- HUAQUISTO CÁCERES, Samuel y BELIZARIO QUISPE, Germán. (mayo/junio de 2018). Utilización de la ceniza volante en la dosificación del concreto como sustituto del cemento. *Revista de Investigaciones Altoandinas, 20*(2). Obtenido de http://dx.doi.org/10.18271/ria.2018.366
- HUAQUISTO CÁCERES, Samuel y BELIZARIO QUISPE, Germán. (Mayo/Junio de 2018). Utilización de la ceniza volante en la dosificación del concreto como sustituto del cemento. *Revista de Investigaciones Altoandinas, 20*(2). Obtenido de http://dx.doi.org/10.18271/ria.2018.366
- HURTADO, Jaime. (2017). *Metodología de la investigación holística*. Caracas, Venezuela: Editorial Sypal.
- LENDEZMA CHUMBES, Felipe; YAURI HUIZA, Wilder. (s.f.). Diseño de mezcla de concreto para elaboración de adoquines con material reciclado de neumáticos en la provincia de Huancavelica. (Tesis de pregrado), Universidad Nacional de Huancavelica, Huancavelica, Perú. 2018.
- MAFLA, Andrés. (s.f.). Uso de la cascarilla de arroz como material alternativo en la construcción. (Artículo científico). Diseño sísmico. 2009: 5 (3).

- MORALES, M., & AKASAKI, J. (s.f.). Assessment of the maturity concept in concrete with addition of rice husk ash. (Artículo científico). Diseño sísmico. 2016: 31 (3).
- NIÑO HERNANDEZ, Jairo René. (s.f.). *Tecnología del concreto Tomo 1: Materiales, propiedades y diseño de mezclas* (Tercera edición ed.). Bogotá D.C. Colombia. Asocreto 2017.
- NOVOA, M., & BECERRA, L. (s.f.). *Rice husk ash and its effect on adhesive mortars.* (Artículo científico). Diseño sísmico. 2016: 8 (5).
- ORDOÑEZ BELLOC, Luis Miguel. (s.f.). Reutilización de la Ceniza de Cáscara de Arroz como material de construcción: Valoración y Optimización de sus Propiedades Puzolánicas. (Tesis de pregrado), Universidad Politécnica de Valencia, Valencia. España. 2016.
- OSPINA, M; GUTIÉRREZ, R M; DELVASTO, S; MONZÓ, J; BORRACHERO, M V y PAYÁ, J. (2016). Modificación de la morfología de la ceniza de cascarilla de arroz por molienda de altas energías y su efecto en las propiedades reológicas de pastas de cemento portland adicionadas. *Revista Latinoamericana de Metalurgia y Materiales*, *51*(2), 577 584.
- PÉREZ PORTO, Julián y MERINO, María. (2017). *Definición de las características* de los adoquines de concreto. Obtenido de https://definicion.de/adoquin/
- PINEDA, Beatriz y ALVARADO, Eva Luz. (2016). *Manual para el desarrollo de personal de salud* (Segunda edición ed.). (F. d. Canales, Ed.) Washington, Estados Unidos: Organización Panamericana de la Salud.
- PRADA, Abelardo y CORTÉS, Caroll. (Septiembre de 2017). Descomposición térmica de la cascarilla de arroz: una alternativa de aprovechamiento integral. *Revista ORINOQUIA, 14*(1).
- PRADA, Abelardo y CORTÉS, Caroll E. (s.f.). La descomposición Térmica de la cascarilla de arroz: Una alternativa de aprovechamiento integral. (Revista). Infraestructura vial. 2017: 14 (1).
- PULIDO, Jhon;. (s.f.). Escorias de cascarilla de arroz para mezclas binarias de activación alcalina. (Artículo científico). Infraestructura vial. 2016: 24 (1).

- ROBAYO, R., & MATTEY, P. (s.f.). comportamiento mecánico de un concreto fluido adicionado con ceniza de cascarilla de arroz (CCA) y reforzado con fibras de acero. (artículo científico) infraestructura vial, 2013: 139-151.
- SANCHEZ DE GUZMAN, Diego. (s.f.). *Tecnología del concreto y del mortero* (3 ed ed.). Bogotá D.C. Colombia: bhandar editores Ltda. 2017.
- SILVER SPRING, Maryland. (2017). Lista de control para la Conferencia de Pre-Construcción de Concreto. NRMCA.
- TEJADA FERNÁNDEZ, María Alejandra; LOAYZA PALAZUELOS, Erick Gianfranco. (s.f.). Proyecto de inversión para la producción y comercialización de adoquines ecoamigables hechos a partir de residuos mineros en la provincia de Arequipa al 2017. (Tesis de pregrado), Universidad Católica San Pablo, Arequipa, Perú. 2017.
- VICTORIA, M; MONZO, Jose. (s.f.). Lightweight mortars with rice husk: mix design and properties evaluation. (Artículo científico). Infraestructura vial. 2016: 13 (5).

ANEXO Nº 01:

MATRIZ DE CONSISTENCIA

TÍTULO: "Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020".

Formulación del problema	Objetivos	Hipótesis	Técnica e Instrumentos
Problema general Ob	bjetivo general	Hipótesis general:	Técnica
¿De qué manera el diseño de adoquines de concreto con incorporación de escoria de la cáscara de arroz va a perfeccionar la resistencia a la compresión, Tarapoto 2020? Problemas específicos: ¿Cuáles son las propiedades físicasquímicas de los componentes que conforman la mezcla de concreto de los adoquines, Tarapoto 2020? ¿Cuáles son las propiedades físicasquímicas de la cascarilla de arroz para mejorar la resistencia del concreto, Tarapoto 2020? ¿Cuál es el diseño de mezcla de concreto de los adoquines de tránsito pesado sin adición de escoria de la cáscara de arroz y con adición al 5%, 10% y 15%, Tarapoto 2020? ¿Cuál es el resultado de la resistencia a compresión que aporta la ceniza de cascarilla de arroz a un porcentaje de 5%, 10% y 15% respecto al volumen de los adoquines, Tarapoto 2020? ¿Cuál sería el costo económico de la elaboración de un millar de adoquines con incorporación de ceniza de la cascarilla de arroz, Tarapoto 2020?	-	<u>•</u>	

	Diseño de investigació	n	Población y muestra	Var	iables y dimensiones
	ceniza de (14d) cascarilla de arroz) C_2 (Adoquín al 10% de ceniza de cascarilla de arroz) C_3 (Adoquín al 15% de ceniza de ceniza de arroz)		Población Muestral - Para la obtención de mejores resultados, se planteó que la población muestral será una cantidad de 36 adoquines de concreto de dimensiones de 20x10x08 cm para tránsito pesado.	Variables Diseño de un adoquín con incorporación de ceniza de cascarilla de arroz Resistencia a la comprensión	Dimensiones Características físicas-químicas de los agregados. Características físicas-químicas de la ceniza de cascarilla de arroz. Viabilidad económica Compresión
arroz) C_0 (Adoquín sin adición $GC_{(4)}$ de ceniza de cascarilla de arroz)	de ceniza de	arroz) C_0 (Adoquín sin adición de ceniza de cascarilla de arroz)			

ANEXO 2 TABLAS Y FIGURAS

Tabla 13:Análisis granulométrico por tamizado del agregado fino.

TAMIZ	ABERT. mm.	PESO RET.	%RET. PARC.	%RET. AC.	% Q' PASA	ESPECIFICACIÓN	DESCRI	CIÓN DE L	A MUESTRA	
3"	76.200		0.0	0.0	100.0		PESO TOTAL	=	930.7	gr
2 1/2"	63.500		0.0	0.0	100.0		PESO LAVADO	=	884.2	gr
2"	50.800		0.0	0.0	100.0		PESO FINO	=	900.0	gr
1 1/2"	38.100		0.0	0.0	100.0		LÍMITE LÍQUIDO	=	N.P.	%
1"	25.400		0.0	0.0	100.0		LÍMITE PLÁSTICO	=	N.P.	%
3/4"	19.050		0.0	0.0	100.0		ÍNDICE PLÁSTICO	=	N.P.	%
1/2"	12.700		0.0	0.0	100.0		Ensayo Malla #200	P.S. Seco.	P.S. Lavado	% 200
3/8"	9.525	0.0	0.0	0.0	100.0	100		930.7	884.2	5.00
# 4	4.760	30.7	3.3	3.3	96.7	95 - 100	MÓDULO DE FINURA	=	2.89	%
#8	2.360	126.6	13.6	16.9	83.1	80 - 100	EQUIV. DE ARENA	=	81.0	%
# 16	1.180	230.8	24.8	41.7	58.3	50 - 85	PE	SO ESPEC	ÍFICO:	
# 30	0.600	117.2	12.6	54.3	45.7	25 - 60	P.E. Bulk (Base Seca)	=	2.75	gr/cm ³
# 50	0.300	231.8	24.9	79.2	20.8	10 - 30	P.E. Bulk (Base Saturada	a) =	2.78	gr/cm ³
# 100	0.150	135.0	14.5	93.7	6.3	2 - 10	P.E. Aparente (Base Seca)	=	2.84	gr/cm ³
# 200	0.075	12.1	1.3	95.0	5.0	0 - 6	Absorción	=	1.06	%
< # 200	FONDO	46.5	5.0	100.0	0.0		PESO UNIT. SUELTO	=	1650	kg/m³
FINO		900.0					PESO UNIT. VARILLADO	=	1810	kg/m³
TOTAL		930.7					% HUMEDAD	P.S.H.	P.S.S	% Humedad
								760.0	750.8	1.2%
							OBSERVACIONES:			

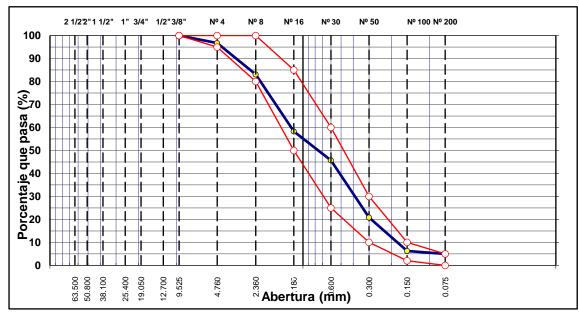


Figura 12: Curva Granulométrica del agregado fino

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto

Tabla 14:Gravedad específica y absorción del agregado fino

erar cada copocinica y assertion act agregate into									
AGREGADO FINO									
A Peso material saturado superficialmente seco (en Aire) (gr)	500.5	500.5							
B Peso frasco + agua (gr)	718	718							
C Peso frasco + agua + A (gr)	1218.5	1218.5							
D Peso del material + agua en el frasco (gr)	1038.3	1039							
E Volumen de masa + volumen de vacío = C-D (cm3)	180.2	179.5							
F Peso de material seco en estufa (105°C) (gr)	495.2	495.3							
G Volumen de masa = E - (A - F) (cm3)	174.9	174.3	PROMEDIO						
Pe bulk (Base seca) = F/E	2.748	2.759	2.754						
Pe bulk (Base saturada) = A/E	2.777	2.788	2.783						
Pe aparente (Base seca) = F/G	2.831	2.842	2.836						
% de absorción = ((A - F) /F) *100	1.070	1.050	1.06%						

Tabla 15:Peso unitario suelto del agregado fino

DESCRIPCIÓN	Und.		IDENTIFIC	CACIÓN	
DESCRIPCION	ona.	1	2	3	4
Peso del recipiente + muestra	(gr)	15698	15694	15681	
Peso del recipiente	(gr)	6516	6516	6516	
Peso de la muestra	(gr)	9182	9178	9165	
Volumen	(cm ³)	5559	5559	5559	
Peso unitario suelto húmedo	(kg/m³)	1652	1651	1649	
Peso unitario suelto promedio	(kg/m³)		165	0	

Tabla 16:Peso unitario varillado del agregado fino

DESCRIPCIÓN	l las al		IDENTIFI	CACIÓN	
DESCRIPCIÓN	Und.	1	2	3	4
Peso del recipiente + muestra	(gr)	16594	16536	16569	
Peso del recipiente	(gr)	6518	6518	6518	
Peso de la muestra	(gr)	10076	10018	10051	
Volumen	(cm ³)	5553	5553	5553	
Peso unitario compactado húmedo	(kg/m³)	1815	1804	1810	
Peso unitario compactado promedio	(kg/m³)		18	10	

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

Tabla 17:Análisis granulométrico por tamizado del agregado Grueso

TAMIZ	ABERT. mm.	PESO RET.	%RET. PARC.	%RET. AC.	% Q' PASA	HUSO AG-3	DESCRIPCIÓ	STRA		
3"	76.200						PESO TOTAL	=	78,537.0	gr
2 1/2"	63.500									
2"	50.800						MÓDULO DE FINURA	=	6.76	%
1 1/2"	38.100				100.0	100 - 100	PESO ESPECÍFICO:			
1"	25.400	0.0	0.0	0.0	100.0	95 - 100	P.E. Bulk (Base Seca)	=	2.664	gr/cm ³
3/4"	19.050	2,006.0	2.6	2.6	97.5		P.E. Bulk (Base Saturada)	=	2.681	gr/cm ³
1/2"	12.700	44,636.0	56.8	59.4	40.6	25 - 60	P.E. Aparente (Base Seca)	=	2.711	gr/cm ³
3/8"	9.525	17,201.0	21.9	81.3	18.7		Absorción	=	0.66	%
# 4	4.760	10,582.0	13.5	94.8	5.3	0 - 10	PESO UNIT. SUELTO	=	1494	kg/m³
#8	2.360	2,407.0	3.1	97.8	2.2	0 - 5	PESO UNIT. VARILLADO	=	1608	kg/m ³
< # 8	FONDO	1,705.0	2.2	100.0	0.0		CARAS	FRACTURADA	S	
							1 cara o más	=		%
							2 caras o más	=		%
							Partíc. Chatas y Alargadas	=		%
							Abrasión Los Ángeles	=	18.5	%
							% HUMEDAD	P.S.H.	P.S.S	% Humeda
								890.0	886.2	0.43%
							OBSERVACIONES:			

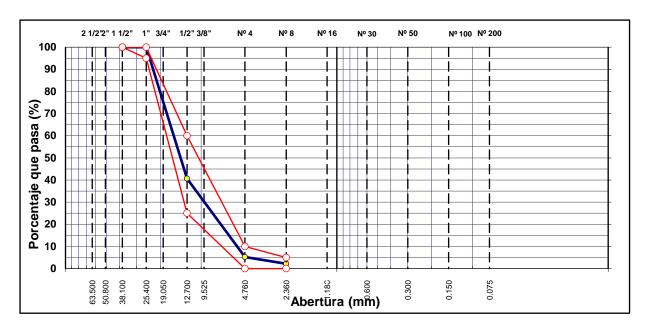


Figura 13: Curva Granulométrica del agregado grueso

Tabla 18:Peso específico y absorción del agregado grueso

	AGREGADO GRUESO									
Α	Peso material saturado superficialmente seco (en aire) (gr)	852.1	998.5							
В	Peso material saturado superficialmente seco (en agua) (gr)	535.9	624.2							
С	Volumen de masa + volumen de vacíos = A-B (cm³)	316.2	374.3							
D	Peso material seco en estufa (105 °C) (gr)	849.3	988.7							
Ε	Volumen de masa = C- (A - D) (cm ³	313.4	364.5	PROMEDIO						
	Pe bulk (Base seca) = D/C	2.686	2.641	2.664						
	Pe bulk (Base saturada) = A/C	2.695	2.668	2.681						
	Pe Aparente (Base Seca) = D/E	2.710	2.712	2.711						
	% de absorción = ((A - D) / D * 100)	0.330	0.991	0.66%						

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto

Tabla 19:Peso unitario suelto del agregado grueso

DESCRIPCIÓN	l lo d		IDENTIFICA	ACIÓN	
DESCRIPCION	Und.	1	2	3	4
Peso del recipiente + muestra	(gr)	14883	14951	14611	
Peso del recipiente	(gr)	6514	6514	6514	
Peso de la muestra	(gr)	8369	8437	8097	
Volumen	(cm ³)	5557	5557	5557	
Peso unitario suelto húmedo	(kg/m³)	1506	1518	1457	
Peso unitario suelto promedio	(kg/m³)		1494		

Tabla 20:
Peso unitario varillado del agregado grueso

DESCRIPCIÓN	l les el		IDENTIFIC	CACIÓN	
DESCRIPCION	Und.	1	2	3	4
Peso del recipiente + muestra	(gr)	15479	15444	15429	
Peso del recipiente	(gr)	6514	6514	6514	
Peso de la muestra	(gr)	8965	8930	8915	
Volumen	(cm ³)	5557	5557	5557	
Peso unitario compactado húmedo	(kg/m³)	1613	1607	1604	
Peso unitario compactado promedio	(kg/m³)		160	8	

Tabla 21:Propiedades físico-químicas de la cascarilla de arroz

CENIZA DE CASCARILLA DE	ARROZ
Componentes	%
Ceniza de Sílice (Si $\boldsymbol{\theta}_2$)	94,1
Óxido de Calcio (CaO)	0,55
Óxido de magnesio (MgO)	0,95
Óxido de Potasio (K_2O)	2,10
Óxido de Sodio (Na_2O)	0,11
Sulfato	0,06
Cloro	0,06
Óxido de titanio (TiO_2)	0,05
Óxido de Aluminio ($Aoldsymbol{l_2}oldsymbol{o}_3$)	0,12
Otros componentes (P_2O_5, F_2O_3)	1,82
Total	100,0

Tabla 22:Adoquín sin adición de ceniza de cascarilla de arroz al 0%

	С	ISEÑO	DE MEZ	ZCLA	DE CO	ONCRETO	O HIDI	RAULICO		
Fecha		26/10/20	20			Códig	o Mezc	la		
Diseño		Concrete	380			Hora	Vaciado		10:15	
Relación a/c		0.38				Técni	СО		Genix Ramírez Pu	tpaña
Relación AF: AG		40.3 - 5	9.7			Volun	nen de l	Prueba (m3)	0.01872	
CARACTERÍSTICA	AS FÍSICAS DE L	OS MATE	RIALES	Y DE L	A MEZO	LA DE PR	UEBA			
M.F. Arena M.F. Piedra # 5 M.F. Piedra # 57 M.F. Global	2.89 0.00 6.76 5.20	A Pi	ol. Agrega rena: iedra # 57 iedra # 67	' :	59.7	% % %		Cementante cascarilla de		0 kg %
Dosificación Sikament 140N Glenium SIKA AER Rheobuild VE Fibermesh	= 0.00 = 0.00 = 0.00 = 0.00	% = 0. % = 0. % = 0.	00 cc 00 cc 00 cc 00 cc 00 kg/m	3						
		, P. ESF	P HUM.	ABS.	PESO		PESO	CORRECCIÓN	TANDA DE PI	RUEBA
MATERIALES	PROCEDENCI	A kg/m ³		%	SECO kg/m³	VOL.	S.S.S. kg/m ³	POR HUMEDAD	DOSIFICACION	UNIDAD
Cemento	tipo I	2940			603.0	0.2051	603	603.0	11.29	kg
Ceniza de cascarilla de arroz		1364			0.0	0.000	0	0.00	0.00	kg
Agua	potable	1000			228.0	0.228	240	229.13	4.29	L
Arena	Huallaga	2783	1.200	1.06	602.2		608	609.38	11.41	kg
Piedra # 57	Huallaga	2681	0.430	0.66	859.3		868	863.03	16.16	kg
Piedra # 5	0:1	4000			0.0	0.000	0	0.00	0.00	kg
Sikament 140N	Sika Basf	1200 1220			0.0	0.000 0.000	0.00	0.00	0.00	CC
Rheobuild-VE Glenium	Basf	1022			0.0 0.0	0.000	0.00	0.00 0.0000	0.00 0.00	CC
SIKA AER	Sika	1010			0.000	0.000	0.00	0.00000	0.00	CC
Fibermesh	Oika	910			0.0	0.000	0.00	0.000	0.00	gr
Aire					3.00%					9.
TOTAL						1.000	2319	2304.5		
ENSAYOS DE	CONTROL							MOD	IFICACIONES	
Datos para P.U.							a/c		0.38	
Tara: Volumen:	kg m³							ucción :ión (Reducción) de	anua 1	ml L
Tara + concreto:	kg							ión de agua/m3	agua i	Ĺ
HORA:										
TEMP. (°C)		TENIDO	P.U. Teórico	P.U. R	eal _		_ Ti	iempo de fragua (n	nin) MUESTRE	0
Amb. Concr.	(Dilla)	DE RE (%)	(kg/m³)	(kg/n	n³) K	ENDIMIENT	ر Inic	cia Final	Probetas	:
30.3 28.2		3%	(3)						Probetas:	
OBSERVACIONES					OTROS	ENSAYOS				
1° FECHA DE MOLDI						ELTO DE LA			1650	
2° FECHA DE MOLDI		OCENE A			P. U. SUI	ELTO DE LA	PIEDRA		1494	
CARACTERISTICA APARIENCIA		OGENEA STOSA								
SE MUESTREARON		STIGOS								
Otros:							AD -			
Fuente: Laborat	orio de mecani	ca de sue	ios, con	creto y	pavime	entos ARG	AD – I	arapoto		

Tabla 23:Adoquín con adición de ceniza de cascarilla de arroz al 5%

	D	ISEÑO	DE MEZ	ZCLA	DE CO	NCRETO) HIDF	RAULICO		
Fecha		26/10/20	20			Códig	o Mezci	a		
Diseño		Concrete	o 380			Hora \	Vaciado	ı	10:15	
Relación a/c		0.38				Técnie	СО		Genix Ramíre	z Putpaña
Relación AF: AG		40.3 - 5	9.7			Volum	nen de F	Prueba (m3)	0.01872	·
CARACTERÍSTICA	AS FÍSICAS DE I		_	Y DE L	Δ MEZCI			,	0.0.0.	
M.F. Arena	2.89		ol. Agrega		0.53	-A DET NO	LDA	Dosificació	n·	603 kg
M.F. Piedra # 5 M.F. Piedra # 57 M.F. Global	0.00 6.76 5.20	A Pi	rena: iedra # 57 iedra # 67	' :	40.3 % 59.7 %	% % %		Cementant cascarilla c	e total:	573 kg 5 %
Dosificación Sikament 140N Glenium SIKA AER Rheobuild VE Fibermesh	= 0.00 = 0.00 = 0.00 = 0.00	% = 0. % = 0. % = 0.	.00 cc .00 cc .00 cc .00 cc .00 kg/m	3						
MATERIALES	PROCEDENCIA	P. ESF	_	ABS.	PESO SECO	VOL.	PESO S.S.S.	CORRECCIÓN POR	•	DE PRUEBA
Comento	tino I	ŭ			kg/m³	0.40405	kg/m³	HUMEDAD	10 704	le a
Cemento Ceniza de	tipo I	2940			573	0.19485	573	572.9	10.724	kg
cascarilla de arroz		1364			30.2	0.02210	0	30.15	0.564	kg
Agua Arena	potable Huallaga	1000 2783	1.200	1.06	228.0 588.9	0.22800 0.21159	240 595	229.13 595.93	4.289 11.156	L
Piedra # 57	Huallaga	2681	0.430	0.66	840.4	0.21139	849	843.98	15.799	kg kg
Piedra # 5	3				0.0	0.000	0	0.00	0.00	kg
Sikament 140N	Sika	1200			0.0	0.000	0.00	0.00	0.00	CC
Rheobuild-VE Glenium	Basf Basf	1220 1022			0.0	0.000	0.00	0.00 0.0000	0.00	CC
SIKA AER	Sika	1022			0.0 0.000	0.000 0.000	0.00	0.000000	0.00 0.00	CC
Fibermesh	Oilla	910			0.0	0.000	0.00	0.000	0.00	gr
Aire					3.00%	0.030				o o
TOTAL						1.000	2286	2272.0		
ENSAYOS DE Datos para P.U.	CONTROL						a/c _{ir}		DIFICACIONES	.38
Tara:	kg							ucción		ml
Volumen:	m^3							ión (Reducción) de	agua 1	L
Tara + concreto:	kg						Adic	ión de agua/m3		L
HORA:										
TEMP. (°C)	Extens	TENIDO DE	P.U. Teórico	P.U. R		NDIMIENTO) Ti	empo de fragua (min) MUE	STREO
Amb. Concr.	(Puig.) AIR	E (%)	(kg/m³)	(kg/n	13)		Inic	ia Final		oetas:
30.2 28.0	2"- 4"	3%			OTROS	ENSAYOS			Prol	oetas:
OBSERVACIONES 1° FECHA DE MOLDI	=0					LTO DE LA	ARFNA		16	50
2° FECHA DE MOLDE	ΞO					LTO DE LA			14	
CARACTERISTICA		OGENEA								
APARIENCIA SE MUESTREARON		STOSA STIGOS								
Otros:	orio do mocánio									

Tabla 24:Adoquín con adición de ceniza de cascarilla de arroz al 10%

	DISEÑO	DE ME	ZCLA	DE CO	NCRETO	O HIDE	RAULICO		
Fecha	26/10/20	20			Códig	o Mezcl	а		
Diseño	Concret	o 380			Hora \	Vaciado	•	10:15	
Relación a/c	0.38				Técnie	со		Genix Ramírez Pu	utpaña
Relación AF: AG	40.3 - 5	9.7			Volum	nen de F	Prueba (m3)	0.01872	
CARACTERÍSTICAS FÍSICAS DE	LOS MATE	ERIALES	Y DE L	A MEZC	LA DE PRU	JEBA	` ,		
M.F. Arena 2.89	V	ol. Agrega	ados:	0.51			Dosificació	n: 603.0	00 kg
M.F. Piedra # 5 0.00		rena:			%		Cementant		kg
M.F. Piedra # 57 6.76		iedra # 57			%		cascarilla d	le arroz: 10	%
M.F. Global 5.20	Р	iedra # 67	' :	0 9	%				
Dosificación Sikament 140N = 0.0	0 % = 0	.00 сс							
Glenium = 0.0		.00 cc							
SIKA AER = 0.0		.00 сс							
Rheobuild VE = 0.0		.00 cc							
Fibermesh	Ü	.00 kg/m	13						
							,	. TANDA DE P	DIIEDA
MATERIALES PROCEDEN	P. ESI	P HUM.	ABS.	PESO SECO	VOL.	PESO S.S.S.	CORRECCIÓN POR	I TANDA DE P	NULDA
WATERIALES PROCEDEN	kg/m ³	%	%	kg/m ³	VOL.	kg/m ³	HUMEDAD	DOSIFICACION	UNIDAD
Cemento tipo I	2940			543	0.18459	543	542.7	10.159	kg
Ceniza de cascarilla de arroz	1364			60.3	0.04421	60	60.3	1.129	kg
Agua potable	1000			228.0	0.22800	240	229.08	4.288	L
Arena Huallaga	2783	1.200	1.06	575.6	0.20682	581	582.49	10.904	kg
Piedra # 57 Huallaga	2681	0.430	0.66	821.4	0.30638	830	824.94	15.443	kg
Piedra # 5	4000			0.0	0.000	0	0.00	0.00	kg
Sikament 140N Sika Rheobuild-VE Basf	1200 1220			0.0 0.0	0.000 0.000	0.00	0.00 0.00	0.00 0.00	CC
Glenium Basf	1022			0.0	0.000	0.00	0.0000	0.00	CC
SIKA AER Sika	1010			0.000	0.000	0.00	0.0000000	0.00	CC
Fibermesh	910			0.0	0.000	0.00	0.000	0.00	gr
Aire TOTAL				3.00%	0.030 1.000	2253	2239.5		
ENSAYOS DE CONTROL					1.000	2255		DIFICACIONES	
Datos para P.U.						a/cii		0.38	
Tara: kg						Red	ucción		ml
Volumen: m ³ Tara + concreto: kg							ión (Reducción) de ión de agua/m3	e agua 1	L L
raid roomoroto.						7 talo	ion do agadimo		_
HORA:									
TEMP. (°C) Extens	NTENIDO	P.U.	P.U. R	leal		_ Ti	empo de fragua (min) MUESTRE	0
(Puig.)	DE MRE (%)	Teórico (kg/m³)	(kg/n		ENDIMIENTO) Inic	ia Final	Probetas	s :
30.0 28.0 2"- 4"	3%	(,						Probetas	:
OBSERVACIONES				OTROS I	ENSAYOS				
1° FECHA DE MOLDEO					LTO DE LA			1650	
2° FECHA DE MOLDEO CARACTERISTICA HO	MOGENEA			F. U. SUE	LTO DE LA	FIEDKA		1494	
APARIENCIA P	ASTOSA								
SE MUESTREARON 09 Otros:	TESTIGOS								
Fuente: Laboratorio de mecá	nica de sue	elos, con	creto y	pavime	ntos ARG	AD – T	arapoto		

Tabla 25: Adoquín con adición de ceniza de cascarilla de arroz al 15%

	D	ISEÑO	DE MEZ	ZCLA	DE CO	NCRETO	O HIDE	RAULICO		
Fecha		26/10/20	20			Códig	o Mezcl	a		
Diseño		Concrete	380			Hora \	Vaciado	•	10:15	
Relación a/c		0.38				Técnie	СО		Genix Ramírez Pu	utpaña
Relación AF: AG		40.3 - 5	9.7			Volum	nen de F	Prueba (m3)	0.01872	•
CARACTERÍSTICA	AS FÍSICAS DE LO	OS MATE	RIALES	Y DE L	A MEZCI			` ,		
M.F. Arena M.F. Piedra # 5 M.F. Piedra # 57 M.F. Global	2.89 0.00 6.76 5.20	Vo Ai Pi	ol. Agrega rena: edra # 57 edra # 67	ados: ':	0.50 40.3 59.7	% % %		Dosificación Cementante cascarilla de	total: 513	-
Dosificación Sikament 140N Glenium SIKA AER Rheobuild VE Fibermesh	= 0.00 = 0.00 = 0.00 = 0.00	% = 0. % = 0. % = 0.	00 cc 00 cc 00 cc 00 cc 00 kg/m	3						
		D 505		450	PESO		PESO	CORRECCIÓN	TANDA DE P	RUEBA
MATERIALES	PROCEDENCIA	P. ESF kg/m³	HUM. %	АВ 5.	SECO kg/m³	VOL.	S.S.S. kg/m ³	POR HUMEDAD	DOSIFICACION	UNIDAD
Cemento	tipo I	2940			513	0.17434	513	512.6	9.595	kg
Ceniza de		1364			90.5	0.06631	90	90.45	1.693	kg
cascarilla de arroz Agua	potable	1000			228.0	0.22800	239	229.06	4.288	L
Arena	Huallaga	2783	1.200	1.06	562.3	0.20204	568	569.04	10.652	kg
Piedra # 57	Huallaga	2681	0.430	0.66	802.4	0.29931	810	805.89	15.086	kg
Piedra # 5	0"				0.0	0.000	0	0.00	0.00	kg
Sikament 140N	Sika	1200			0.0	0.000	0.00	0.00	0.00	CC
Rheobuild-VE	Basf	1220			0.0	0.000	0.00	0.00	0.00	CC
Glenium SIKA AER	Basf Sika	1022 1010			0.0 0.000	0.000 0.000	0.00	0.0000 0.0000000	0.00 0.00	CC
Fibermesh	Sika	910			0.00	0.000	0.00	0.000	0.00	gr
Aire		0.0			3.00%	0.030	0.00	0.000	0.00	9,
TOTAL						1.000	2221	2207.0		
ENSAYOS DE	CONTROL							MOD	IFICACIONES	
Datos para P.U.	l						a/ci		0.38	
Tara: Volumen:	kg m³							ucción ión (Reducción) de	anua 1	ml L
Tara + concreto:	kg							ión de agua/m3	agua i	Ĺ
HORA:										
TEMP. (°C)	Extens	ENIDO	P.U.	P.U. R	eal	NDIMIENT	, Ti	empo de fragua (n	nin) MUESTRE	0
Amb. Concr.	(Puig.))E ≣ (%)	Teórico (kg/m³)	(kg/n		ENDIMIENTO) Inio		Probetas	s:
30.4 28.2		%	()						Probetas	:
OBSERVACIONES					OTROS E	ENSAYOS				
1° FECHA DE MOLD						LTO DE LA			1650	
2° FECHA DE MOLDI		CENE A			P. U. SUE	LTO DE LA	PIEDRA		1494	
CARACTERISTICA APARIENCIA		GENEA TOSA								
SE MUESTREARON		STIGOS								
Otros:							<u> </u>			
Fuente: Laborat	torio de mecánic	a de sue	los, cond	creto y	pavime	ntos ARG	AD – T	arapoto		

Tabla 26: Resistencia a compresión al 0% a los 7 días.

REG. №	FEC	НА	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROM	EDIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kg/Cm ²	%	VERIFICACIÓN
1	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	749.98	101.9716	76477	400.21	105.3	400	105.32	65 - 75
2	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	661.37	101.9716	67441	353.28	93.0	353	92.97	65 - 75
3	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	572.76	101.9716	58405	306.59	80.7	307	80.68	65 - 75

Tabla 27: Resistencia a compresión al 0% a los 14 días.

REG. Nº	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm²	19.09	10.01	191.09	711.81	101.9716	72584	379.84	100.0	380	99.96	75 - 80
2	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm²	19.09	10.00	190.90	710.35	101.9716	72436	379.44	99.9	379	99.85	75 - 80
3	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm²	19.05	10.00	190.50	708.88	101.9716	72286	379.45	99.9	379	99.86	75 - 80

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto

Tabla 28: Resistencia a compresión al 0% a los 28 días.

REG. Nº	FEC	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	23/11/2020	28	Diseño de concreto f´c 380 kg/Cm²	19.09	10.01	191.09	628.49	101.9716	64088	335.38	88.3	335	88.26	100
2	26/10/2020	23/11/2020	28	Diseño de concreto f´c 380 kg/Cm²	19.09	10.00	190.90	636.48	101.9716	64902	339.98	89.5	340	89.47	100
3	26/10/2020	23/11/2020	28	Diseño de concreto f´c 380 kg/Cm²	19.05	10.00	190.50	644.46	101.9716	65717	344.97	90.8	345	90.78	100

Tabla 29: Resistencia a compresión al 5% a los 7 días

REG. Nº	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	2/11/2020	7	Diseño de concreto f´c 380 kg/Cm ²	19.09	10.01	191.09	645.16	101.9716	65788	344.28	90.6	344	90.60	65 - 75
2	26/10/2020	2/11/2020	7	Diseño de concreto f´c 380 kg/Cm²	19.09	10.00	190.90	594.28	101.9716	60600	317.44	83.5	317	83.54	65 - 75
3	26/10/2020	2/11/2020	7	Diseño de concreto f´c 380 kg/Cm²	19.05	10.00	190.50	543.36	101.9716	55407	290.85	76.5	291	76.54	65 - 75

Tabla 30: Resistencia a compresión al 5% a los 14 días

REG. №	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACION
1	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm ²	19.09	10.01	191.09	631.40	101.9716	64385	336.93	88.7	337	88.67	75 - 80
2	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm²	19.09	10.00	190.90	577.56	101.9716	58895	308.51	81.2	309	81.19	75 - 80
3	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm²	19.05	10.00	190.50	523.72	101.9716	53405	280.34	73.8	280	73.77	75 - 80

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto

Tabla 31: Resistencia a compresión al 5% a los 28 días

REG. Nº	FEC	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	,
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	620.95	101.9716	63319	331.36	87.2	331	87.20	100
2	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	639.71	101.9716	65232	341.71	89.9	342	89.92	100
3	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	658.46	101.9716	67144	352.46	92.8	352	92.75	100

Tabla 32: Resistencia a compresión al 10% a los 7 días

REG. №	FEC	НА	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	EDIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	372.34	101.9716	37968	198.69	52.3	199	52.29	65 - 75
2	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	406.25	101.9716	41426	217.00	57.1	217	57.11	65 - 75
3	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	440.16	101.9716	44884	235.61	62.0	236	62.00	65 - 75

Tabla 33: Resistencia a compresión al 10% a los 14 días

REG. №	FEC	НА	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	VEDIEIOAOIÓN
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	9/11/2020	14	Diseño de concreto f´c 380 kg/Cm²	19.09	10.01	191.09	455.70	101.9716	46468	243.17	64.0	243	63.99	75 - 80
2	26/10/2020	9/11/2020	14	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	459.44	101.9716	46849	245.41	64.6	245	64.58	75 - 80
3	26/10/2020	9/11/2020	14	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	463.17	101.9716	47230	247.93	65.2	248	65.24	75 - 80

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto

Tabla 34: Resistencia a compresión al 10% a los 28 días

REG. Nº	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	534.22	101.9716	54475	285.08	75.0	285	75.02	100
2	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	504.41	101.9716	51435	269.44	70.9	269	70.90	100
3	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	474.60	101.9716	48396	254.05	66.9	254	66.85	100

Tabla 35: Resistencia a compresión al 15% a los 7 días

REG. №	FEC	НА	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	276.02	101.9716	28146	147.29	38.8	147	38.76	65 - 75
2	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	265.08	101.9716	27031	141.60	37.3	142	37.26	65 - 75
3	26/10/2020	2/11/2020	7	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	254.14	101.9716	25915	136.04	35.8	136	35.80	65 - 75

Tabla 36: Resistencia a compresión al 15% a los 14 días

REG. №	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	9/11/2020	14	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	321.92	101.9716	32827	171.79	45.2	172	45.21	75 - 80
2	26/10/2020	9/11/2020	14	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	326.86	101.9716	33330	174.60	45.9	175	45.95	75 - 80
3	26/10/2020	9/11/2020	14	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	331.79	101.9716	33833	177.60	46.7	178	46.74	75 - 80

Fuente: Laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto

Tabla 37: Resistencia a compresión al 15% a los 28 días

REG. №	FEC	СНА	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	NCIA	PROME	DIO	
PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversión Kg. F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.01	191.09	311.59	101.9716	31773	166.27	43.8	166	43.76	100
2	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.09	10.00	190.90	316.64	101.9716	32288	169.14	44.5	169	44.51	100
3	26/10/2020	23/11/2020	28	Diseño de concreto f'c 380 kg/Cm ²	19.05	10.00	190.50	321.69	101.9716	32803	172.20	45.3	172	45.31	100

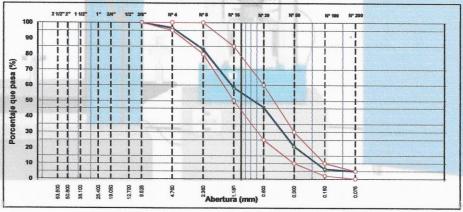
ANEXO Nº 03

CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DE LOS COMPONENTES QUE CONFORMAN LA MEZCLA DE CONCRETO.

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88

TESIS : "Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020"


CRUDAD : Tarapoto

MATERIAL: Arena natural para Concreto CANTERA: Amazonica S.A.C UBICACIÓN: Río Huallaga N° REGISTRO :
TÉCNICO : G.R.P.
FECHA : 12/10/2020
TESISTAS : ALFREDO VII

: ALFREDO VILCHEZ MAYCOL YORDWIN

TAMIZ	ABERT, mm.	PESO RET.	SURET. PARC.	%RET. AC.	% Q' PASA	ESPECIFICACIÓN	DESCRI	PCIÓN DE	LA MUESTR	A
3"	76.200						PESO TOTAL	=	930.7	gr
2 1/2"	63.500				<u> </u>	1	PESO LAVADO	=	884.2	gr
2"	50.800			***************************************		1	PESO FINO	=	900.0	gr
1 1/2"	38.100						LÍMITE LÍQUIDO	=	N.P.	%
1"	25.400	The second second					LÍMITE PLÁSTICO	=	N.P.	%
3/4°	19.050						ÍNDICE PLÁSTICO	=	N.P.	%
1/2"	12.700						Ensayo Malla #200	P.S.Seco.	P.S.Lavado	% 200
3/8"	9.525	0.0		***************************************	100.0	100		930.7	884.2	5.00
#4	4.760	30.7	3.3	3.3	96.7	95 - 100	MÓDULO DE FINURA	=	2.89	%
#8	2.360	126.6	13.6	16.9	83.1	80 - 100	EQUIV. DE ARENA	=	81.0	%
#16	1.180	230.8	24.8	41.7	58.3	50-85	PESO ESPECÍFICO:		***************************************	
#30	0.600	117.2	12.6	54.3	45.7	25-60	P.E. Bulk (Base Seca)	=	2.75	gricm
# 50	0.300	231.8	24.9	79.2	20.8	10-30	P.E. Bulk (Base Satura	eda) =	2.78	gr/cm ³
# 100	0.150	135.0	14.5	93.7	6.3	2-10	P.E. Aparente (Base S	eci =	2.84	gr/cm²
# 200	0.075	12.1	1.3	95.0	5.0	0-6	Absorción	=	1.06	%
#200	FONDO	46.5	5.0	100.0	0.0		PESO UNIT. SUELTO	=	1650	kg/m³
FINO		900.0					PESO UNIT. VARILLAD	0 =	1810	kg/m²
TOTAL		930.7					% HUMEDAD	P.S.H.	P.S.S	% Hurneda
7 300	7							760.0	750.8	1.2%
6 71							OBSERVACIONES:			d
		Total Control of					7			

CURVA GRANULOMÉTRICA

GENEBALES

JORGE CHRISTIAN ACUÑA CÁRDENAS

JEFE DE LABORATORIO

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS

(NORMA AASHTO T-84, T-85)

IESIS : "Diseño de adoquines con incorporación de cenizas de cascarilla de arroz ne REGISTRE : para mejorar la resistencia a la compresión, Tarapoto 2020" IECIMCO : GR P.
ATERIAL : Arena natural para concreto CANTERA : Amazonica S.A.C TESISTAS : ALFREDO VILCHEZ.
UBICACIÓN : Rio-Huallaga MAYCOL YORDWIN

DATOS DE LA MUESTRA

A	Peso material saturado superficialmente seco (en Aire) (gr)	500.5	500.5	
В	Peso frasco + agua (gr)	718	718	
C	Peso frasco + agua + A (gr)	1218.5	1218.5	
D	Peso del material + agua en el frasco (gr)	1038.3	1039	
Ε	Volumen de masa + volumen de vacio = C-D (cm3)	180.2	179.5	
F	Peso de material seco en estufa (105°C) (gr)	495.2	495.3	
G	Volumen de masa = E - (A - F) (cm3)	174,9	174.3	PROMEDI
	Pe bulk (Base seca) = F/E	2.748	2.759	2.754
	Pe bulk (Base saturada) = A/E	2.777	2.788	2.783
	Pe aparente (Base seca) = F/G	2.831	2.842	2.836
	% de absorción = ((A - F)/F)*100	1.070	1,050	1.06%

LABORATORIO
GONEROLES

JORGE CHRISTIAN ACUNA CARDENAS
JEFE DE LABORATORIO

PESO UNITARIO DE LOS AGREGADOS

MTC E 203 - ASTM C 29 - ASSHTO T-19

Diseño de adoquines con incorporación de cenizas de cascarilla de Nº REGISTRO arroz para mejorar la resistencia a la compresión, Tarapoto 2020" TÉCNICO : G.R.P. MATERIAL : Arena natural para Concreto FECHA : 12/10/2020 CANTERA : Amazonia S.A.C ALFREDO VILCHEZ TESISTAS UBICACIÓN : Rio Huallaga MAYCOL YORDWIN

AGREGADO FINO

	PESO	UNITARIO SI	JELTO					
DESCRIPCIÓN	Und.	IDENTIFICACIÓN						
	Onu.	1 3 10	2	3	4			
Peso del recipiente + muestra	(gr)	15698	15694	15681				
Peso del recipiente	(gr)	6516	6516	6516				
Peso de la muestra	(gr)	9182	9178	9165				
Volumen	(cm³)	5559	5559	5559	-			
Peso unitario suelto	(kg/m³)	1652	1651	1649				
Peso unitario suelto promedio	(kg/m³)	I HARD	The state of the s	1650				

	PESO L	INITARIO VAF	RILLADO						
DESCRIPCIÓN	Und.	IDENTIFICACIÓN							
	onu.	1	2	3	4				
Peso del recipiente + muestra	(gr)	16594	16536	16569	- 2				
Peso del recipiente	(gr)	6518	6518	6518					
Peso de la muestra	(gr)	10076	10018	10051					
Volumen	(cm³)	5553	5553	5553					
Peso unitario compactado	(kg/m³)	1815	1804	1810					
Peso unitario compactado promedio	(kg/m³)	1810							

OBS.:

JORGE CHRISTIAN ACUÑA CÁRDENAS JEFE DE LABORATORIO

INGENIERO CIVIL GIP Nº 198450

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

MTC E 107, E 204 - ASTM C 136 - AASHTO T-11, T-27 Y T-88

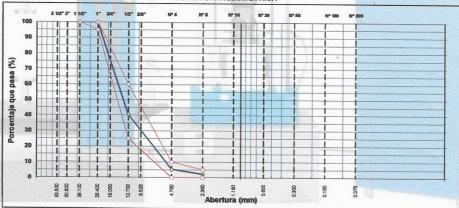
Diseño de adoquines con incorporación de cenizas de cascarilla de arroz TESIS para mejorar la resistencia a la compresión, Tarapoto 2020"

CIUDAD

MATERIAL : Agregado grueso para concreto CANTERA : Trasporte y Servicios Nicole

UBICACIÓN : Rio Huallaga

REGISTRO :


TEISTAS

TÉCNICO : G.R.P. FECHA : 12/10/2020

: ALFREDO VILCHEZ : MAYCOL YORDWIN

TAMIZ	ABERT, mm.	PESO RET.	%RET. PARC.	%RET. AC.	% Q' PASA	HUSO AG-3	DESCRIPO	CIÓN DE L	A MUESTE	RA.
3"	76.200						PESO TOTAL	=	78,537.0	Market Street,
2 1/2"	63.500				i .		1			
2"	50.800						MÓDULO DE FINURA	=	6.76	%
1 1/2"	38.100			•••••	100.0	100 - 100	PESO ESPECÍFICO:		••••••	
1"	25.400	0.0	0.0	0.0	100.0	95 - 100	P.E. Bulk (Base Seca)	=	2.664	gr/cm ³
3/4"	19.050	2,006.0	2.6	2.6	97.5		P.E. Bulk (Base Saturac	fa) =	2,681	gr/cm³
1/2"	12.700	44,636.0	56.8	59.4	40.6	25 - 60	P.E. Aparente (Base Se		2.711	gr/cm³
3/8"	9.525	17,201.0	21.9	81.3	18.7		Absorción	=	0.66	%
#4	4.760	10,582.0	13.5	94.8	5.3	0-10	PESO UNIT. SUELTO		1494	kg/m³
#8	2.360	2,407.0	3.1	97.8	2.2	0-5	PESO UNIT. VARILLADO	=	1608	kg/m²
<#8	FONDO	1,705.0	2.2	100.0	0.0		CARAS FRACTURADAS:			
						The state of the s	1 cara o más	= 8"		%
							2 caras o más	=		%
							Partic. Chatas y Alargada	ıs =		%
							Abrasión Los Ángeles	=	18.5	%
	1	and the same of th					% HUMEDAD	P.S.H.	P.S.S	% Humeda
							T	890.0	886.2	0.43%
	1						OBSERVACIONES:			***************************************
							1			***************************************
TOTAL		78,537.0			1 #0topi	1 100	1		***************************************	***************************************

CURVA GRANULOMÉTRICA

JOESE CHRISTIAN ACUÑA CÁRDENAS JEFE DE ABORATORIO

VIERO CIVIL CIP Nº 198450

PESO ESPECÍFICO Y ABSORCIÓN DE LOS AGREGADOS

(NORMA AASHTO T-84, T-85)

LABORATORIO MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020"

Tarapoto MATERIAL : Agregado grueso para concreto ING® RESP. FECHA : 12/10/2020 CANTERA : Trasporte y Servicios Nicole UBICACIÓN : Rio Huallaga : ALFREDO VILCHEZ : MAYCOL YORDWIN

DATOS DE LA MUESTRA

AGREGADO GRUESO									
A	Peso material saturado superficialmente seco (en aire) (gr)	852.1	998.5						
В	Peso material saturado superficialmente seco (en agua) (gr)	535.9	624.2						
С	Volumen de masa + volumen de vacios = A-B (cm³)	316.2	374.3						
D	Peso material seco en estufa (105 °C)(gr)	849.3	988.7						
E	Volumen de masa = C- (A-D) (cm³)	313.4	364.5	PROMEDIC					
	Pe bulk (Base seca) = D/C	2.686	2.641	2.664					
	Pe bulk (Base saturada) = A/C	2.695	2.668	2.681					
	Pe Aparente (Base Seca) = D/E	2.710	2.712	2.711					
150	% de absorción = ((A - D) / D * 100)	0.330	0.991	0.66%					

OBSERVACIONES:

PESO UNITARIO DE LOS AGREGADOS

MTC E 203 - ASSM C 29 - ASSMTO T-19

'Diseño de adoquines con incorporación de cenizas de cascarilia de arroz para mejorar la resistencia a la compresión, Tarapoto 2020:

MATERIAL CANTERA UBICACIÓN : Agregado grueso para concreto : Trasporte y Servicios Nicole : Rio Huallaga Nº REGISTRO TÉCNICO INGº RESP. FECHA HECHO POR

: G.R.P. : 12/10/2020 : ALFREDO VILCHEZ : MAYCOL YORDWIN

AGREGADO GRUESO

	PESC	UNITARIO S	UELTO		
DESCRIPCIÓN	Und.		IDEN	TIFICACIÓN	
DESCRIPTION OF THE PROPERTY OF	Oild.	1	2	3	4
Peso del recipiente + muestra	(gr)	14883	14951	14611	
Peso del recipiente	(gr)	6514	6514	6514	
Peso de la muestra	(gr)	8369	8437	8097	
Volumen	(cm³)	5557	5557	5557	
Peso unitario suelto	(kg/m³)	1506	1518	1457	
Peso unitario suelto promedio	(kg/m³)			1494	

PESO UNITARIO VARILLADO										
DESCRIPCIÓN	Und.	IDENTIFICACIÓN								
	Olic.	1	2	3	4					
Peso del recipiente + muestra	(gr)	15479	15444	15429						
Peso del recipiente	(gr)	6514	6514	6514						
Peso de la muestra	(gr)	8965	8930	8915	- CONTRACTOR					
Volumen	(cm³)	5557	5557	5557						
Peso unitario compactado	(kg/m³)	1613	1607	1604	-					
Peso unitario compactado promedio	(kg/m³)			1608						

-			
OBS.:			A POLICION DE LA CO
		1 -4333-1 1	Maria Maria Maria
		I ARR I I	
	HEALTH RESERVE		

JORGE CHRISTIAN ACUÑA CÁRDENAS JEFE DE LABORATORIO

CIP Nº 198450

ANEXO Nº 04

PROPIEDADES FÍSICAS-QUÍMICAS QUE CONFORMAN LA ESCORIA DE LA CASCARA DEL ARROZ.

Tabla 38:Porcentajes de las propiedades físicas-químicas que conforman la escoria de la cascara del arroz.

CENIZA DE CASCARILLA DE A	RROZ
Componentes	%
Ceniza de Sílice (Si $oldsymbol{0}_2$)	94,1
Óxido de Calcio (CaO)	0,55
Óxido de magnesio (MgO)	0,95
Óxido de Potasio ($K_2 O$)	2,10
Óxido de Sodio (Na_2O)	0,11
Sulfato	0,06
Cloro	0,06
Óxido de titanio (TiO_2)	0,05
Óxido de Aluminio (Al_2O_3)	0,12
Otros componentes (P_2O_5, F_2O_3)	1,82
Total	100,0

ANEXO Nº 05DISEÑO DE MEZCLA DE CONCRETO DEL ADOQUÍN

Frake						7							-
Fecha				26/10/202	20	_	Código Mezcla	а					
Diseño			Concreto 380			Hora Vaciado				10:	15		
Relación a/c				0.38]	Técnico			Ge	nix Ramir	ez Puto	aña
Relación AF: AG			40.3 - 59.7			Volumen de Prueba (m3)				0.01872			
CARACTERÍSTICAS FÍSICA	AS DE LOS MA	ATERU	ALES Y D	ELAME	ZCLAD	E PRUERA							
M.F. Arena	2.89			egados :	0.54	1					,		
M.F. Piedra #5	0.00		Arena	ryauus .	40.3	1%		Cementante total cascarilla de arro		603.00			
M.F. Piedra # 57	6.76		Piedra #	57	59.7	1%		Cascarna de arro	DZ I	0] %		
M.F. Global	5.20		Piedra #		0	96							
Dosificación					100								
Sikament 140N	= 0.00	% :	0.00	lcc	100								
Glenium	= 0.00		0.00	cc									
SIKA AER	= 0.00		0.00	cc									
Rheobuild-VE	= 0.00	% :	0.00	cc									
Fibermesh			0.00	kg/m3									
MATERIALES	PROCEDE	NCIA.	P. ESP	HUM.	ABS.	PESO SECO	VOL.	PESO S.S.S.	CORR	ECCIÓN	TANE	A DE PI	DIVER
			kg/m³	%	%	kg/m³		kg/m³		UMEDAD	DOSIFIC		
Cemento	tipo l	SALES OF	2940		HOL	603.0	0.20510	603	60	03.0	11.		I
Ceniza de cascarilla de arroz		100	1364		150	0.0	0.00000	0	0	.00	0.0		1
Agua	potable		1000			228.0	0.22800	240		9.13	4.2	29	
Arena Piedra # 57	huallag		2783	1.200	1.06	602.2	0.21637	608		9.38	11.		-
Piedra # 5/	huallag	ts .	2681	0.430	0.66	859.3	0.32053	868		3.03	16.		
Sikament 140N	Sika		1200			0.0	0.00000	0.00		.00	0.0		1
Rheobuild-VE	Basf		1220		-	0.0	0.00000	0.00		.00	0.0		-
Glenium	Basf		1022			0.0	0.0000000	0.0000		000	0.0		
SIKA AER	Sika	The last	1010			0.000	0.000000	0.000		00000	0.0		
Fibermesh			910			0.0	0.00000	0.000		000	0.0		
Aire TOTAL						3.00%	0.0300 1.0000	2319		04.5			
Tara : i	kg								a / c inici Reducció	n	de agua 1	0.38	n
Volumen ; Tara + concreto ;	m³ kg						9 1.		Adición (F Adición de	agua/m3	ao agaa i		1000
Volumen : Tara + concreto ; HORA:	kg	Icorr	CHIDO E						Adición de	e agua/m3	ao agua i		
Volumen : Tara + concreto ; HORA: TEMP. (°C)	kg		ENIDO DE			P.U. Real	RENDIMIEN		Adición de po de fragu	e agua/m3	М	UESTRE	0
Volumen : Tara + concreto ; HORA: TEMP. (°C)	kg	AIF	ENIDO DE RE (%) 3%	P.U. T- (kg/		P.U. Real (kg/m³)	RENDIMIEN		Adición de po de fragu	e agua/m3 ia (min) Final	M Probetas		0
Volumen : Tara + concreto : HORA: TEMP. (°C) Amb. Concr.	Extens (pulg.)	AIF	RE (%)				RENDIMIEN		Adición de po de fragu	e agua/m3 ia (min) Final	М		0
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	Alf	RE (%)		m³)	(kg/m³)			Adición de po de fragu icia	e agua/m3 ua (min) Final	M Probetas Probetas		0
Volumen : Tara + concreto : HORA: TEMP, (*C) Amb. Concr. 30.3 28.2	Extens (pulg.) 2"- 4"	AIF	RE (%)		m³)			In	Adición de po de fragu icia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ua (min) Final	M Probetas Probetas		
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.3 28.2 RESISTENCIA A	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³)	(kg/m³) ESISTENCIA A LA	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³) Ri (dias)	(kg/m²) SSISTENCIA A LA Mrc (kg/em²)	FLEXIÓN	In	Adición de po de fragulicia	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	Riddias)	(kg/m³) SISTENCIA A LA Miro (kg/em²)	FLEXIÓN % Mr	In	Adición de po de fraguericia PERDIO (foras)	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen : Tara + concreto : Hora + Concreto : Hora + Concreto : Hora + Concreto : Amb.	Extens (pulg.) 2"- 4"	AIF	RE (%) 3%	(kg/	m³) Ridias) OTROS	(kg/m²) ESISTENCIA A LA Miro (kg/cm²) ENSAYOS ETO DE LA AREI	FLEXIÓN % Mr	In	Adición de po de fragueros per de frague	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen :	Extens (pulg.) 2*- 4* LA COMPRESI Fe (kg/en/)	AIF	RE (%) 3% c a 28 d	(kg/	m³) Ridias) OTROS	(kg/m³) SISTENCIA A LA Miro (kg/em²)	FLEXIÓN % Mr	In	Adición de po de fraguericia PERDIO (foras)	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	
Volumen	Extens (pulg.) Extens (pulg.) Fe (kg/cm²) HOMC PAS	AIF	RE (%) 3%	(kg/	m³) Ridias) OTROS	(kg/m²) ESISTENCIA A LA Miro (kg/cm²) ENSAYOS ETO DE LA AREI	FLEXIÓN % Mr	In	Adición de po de fragueros per de frague	e agua/m3 ia (min) Final DA DE TR	M Probetas Probetas	: : : IDAD	

		DISEN	O DE IME	ZULA	DE CONCRE	TO HIDRA	ULICO				
Fecha			26/10/2020			Código Mezc	la				
Diseño			380			Hora Vaciado				10:15	
Relación a/c			0.38			Técnico				Senix Henrry Putp	aña
Relación AF:	AG	40.3		59.7		Volumen de l	Prueha (m	13)		0.01872	
		-	Harris and				,	-,	-		
CARACTERÍSTICAS FÍSICAS	S DE LOS MAT	TERIALES Y DE LA	MEZCLA	DE PRUE	3A		Dosificació	n	: 603	kg	
I.F. Arena	2.89	Vol. Agrega	ados ;	0.53			Cementant	e total	573	kg	
I.F. Piedra # 5	0.00	Arena	- 1	40.3	96	,	cascanila d	de arroz.	5	%	
I.F. Piedra # 57	6.76	Piedra # 57		59.7	%						
I.F. Global	5.20	Piedra # 67		0	76						
Oosificación				100.0							
Skament 140N	= 0.00	% = 0.00	oc								
Henium	= 0.00		cc								
IKA AER	= 0.00		cc								
heobuild-VE	= 0.00		cc								
bermesh		0.00	kg/m3								
MATERIALES	PROCEDE	NCIA P. ESP	HUM.	ABS.	PESO SECO	VOL	PESO	S.S.S.	CORRECCIÓN	TANDA DE I	PRUEBA
	-	kg/m³	%	%	kg/m³		kg/		POR HUMEDAD		
Cemento Ceniza de cascarilla de arroz	tipo I	2940			573 30.2	0.19485	57		572.9 30.15	10.724 0.564	kg
Agua Agua	potable	-			220.0	0.02210	24		229.11	4,289	kg
Agua	huallag		1.200	1.06	588.9	0.22800	59		595.93	11.156	L kg
Piedra # 57	huallag		0.430	0.66	840.4	0.31345	84		843.98	15.799	kg
Piedra # 5					0.0	0.00000)	0.00	0.00	kg
Sikament 140N	Sika	1200			0.0	0,00000	0.0		0.00	0.0000	cc
Rheobuild-VE	Basf	1220			0.0	0.00000	0.0		0.00	0.0000	cc
Glenium	Basf	1022			0.0	0.0000000	0.00		0.0000	0.000	CC
SIKA AER	Sika	1010			0.000	0.000000	0.0		0.0000000	0.0000	CC
Fibermesh Aire		910		1	0.0 3.00%	0.00000	0.0	000	0.000	0.000	gr
TOTAL					0.00%	1.0000	22	86	2272.0		
TOTAL ENSAYOS DE CONTROL eletos para P.U, ara : columen : ara + concreto :	kg m³ kg			1	3.50%		22	86	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n	0.in) de agua 1	38 ml L L
TOTAL ENSAYOS DE CONTROL Datos para P.U, ara : folumen : fara + concreto :		CONTENIDO DE	P.U. 1	eórico	P.U. Real				MODIFICACION a / c inicial : Reducción Adición (Reducció	0.in) de agua 1	ml L L
TOTAL ENSAYOS DE CONTROL Interest para P. U. Int	kg Extens (pulg.)	AIRE (%)	P.U. T			1.0000			MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min)	on) de agua 1 n3 MUEST Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P.U. ara : columen : ara + concreto : ORA: TEMP. (°C)	m³ kg				P.U. Real	1.0000		Tiempi	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min)	o.in) de agua 1	ml L L
NSAYOS DE CONTROL letos para P.U. ara : clumen : ara + concreto : ORA: TEMP. (*C) Amb. Concr. 30.2 28.0	Extens (pulg.)	AIRE (%) 3%		fm ³)	P.U. Real (kg/m²)	1.0000		Tiempi	MODIFICACION a / c inicial : Reducción (Reducció Adición (Reducció Adición de agua/n o de fragua (min) ia Final	o.in) de agua 1 m3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, are richiolimen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	n) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P.U. ara : columen : ara + concreto : ORA. TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.)	AIRE (%) 3%		(m³)	P.U. Real (kg/m²)	1.0000	ENTO	Tiempi	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	n) de agua 1 n3 MUEST Probetas: Probetas:	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, ator para + Concreto ORA. TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	n) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	n) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	n) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	n) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, ator para + Concreto ORA. TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, atos para P-U, ara re oloumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.2 28.0	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	(m³)	P.U. Real (kg/m³) ISTENCIA A LA FL	1.0000 RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n o de fragua (min) a Final PERDIDA DE T	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P-U, ar ra + concreto : ORA: TEMP. (*C) RESISTENCIA Edad (dias) BESERVACIONES	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	RES (dias)	P.U. Real (kg/m³) ISTENCIA A LA FL Mrc (kg/cm²)	RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C joiclat : Reducción (Reducción Adición (Reducción Adición de agua/m) a Final PERDIDA DE T horas) Stu	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL NSAYOS DE CONTROL atos para P.U. ara ra	Extens (pulg.) 2"- 4" A LA COMPRES	AIRE (%) 3%	(kg	RES (días) OTROS I P. U. SUE	P.U. Real (kg/m²) ISTENCIA A LA FL Mire (kg/cm²)	RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C piciat : Reducción (Reducció Adición (Reducció Adición de agua/m o de fragua (min) a Final PERDIDA DE T horas) Stu	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL INSAYOS DE CONTROL letos para P-U, ara ra ci columen : ara + concreto : lolomen : l	m² kg Edens (pulg) 2"-4" A LA COMPRES Fo (kg(cm²)	AIRE (%) 3% 100 100 100 100 100 100 100 100 100 10	(kg	RES (días) OTROS I P. U. SUE	P.U. Real (kg/m³) ISTENCIA A LA FL Mrc (kg/cm²)	RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C joiclat : Reducción (Reducción Adición (Reducción Adición de agua/m) a Final PERDIDA DE T horas) Stu	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL ENSAYOS DE CONTROL Jatos para P U, Jara + Concreto JORA TEMP, (*C) Amb. Concr. 30.2 28.0 RESISTENCIA Edad (dias) DBSERVACIONES * FECHA DE MOLDEO	m³ kg Extens (pulg) 2"-4" A LA COMPRES 1"c (kg/cm²)	AIRE (%) 3% IIÓN % Fo a 28 d	(kg	RES (días) OTROS I P. U. SUE	P.U. Real (kg/m²) ISTENCIA A LA FL Mire (kg/cm²)	RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C piciat : Reducción (Reducció Adición (Reducció Adición de agua/m o de fragua (min) a Final PERDIDA DE T horas) Stu	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L
TOTAL ENSAYOS DE CONTROL Datos para P U. fara : //olumen : fara + concreto : HORA TEMP. (*C) Amb. Concr. 30.2 28.0	m³ kg Extens (pulg.) 2"-4" A LA COMPRES Tc (kg/cm²)	AIRE (%) 3% 100 100 100 100 100 100 100 100 100 10	(kg	RES (días) OTROS I P. U. SUE	P.U. Real (kg/m²) ISTENCIA A LA FL Mire (kg/cm²)	RENDIMIE	ENTO	Tiempe Inici	MODIFICACION a / C piciat : Reducción (Reducció Adición (Reducció Adición de agua/m o de fragua (min) a Final PERDIDA DE T horas) Stu	o.in) de agua 1 n3 MUEST Probetas : Probetas :	ml L L

Fecha			2	6/10/2020	0	1	Código Mezo	cla				
Diseño				380		1	Hora Vaciado				10:15	
]		0				
Relación a/c				0.38		1	Técnico			G	enix Ramirez	Putpaña
Relación AF :	AG		40.3	-	59.7		Volumen de	Prueba	(m3)		0.0187	2
CARACTERÍSTICAS FÍSIC	AS DE LOS M	IATERIA	ALES Y DE	LA MEZ	CLA DE	PRUEBA					-	
M.F. Arena	2.89		Vol. Agrega	dos :	0.51	1		Dosifica Cements	oión : inte total :	603 543	kg kg	
M.F. Piedra # 5	0.00		Arena		40.3	96			a de arroz:	10	- 1 ⁴ 9	
M.F. Piedra # 57	6.76		Piedra # 57		59.7	96					٦	
M.F. Global	5.20		Piedra # 67		0	 %						
Dosificación					100.0							
Sikament 140N	= 0.00			cc								
Glenium SIKA AER	= 0.00		0.00	cc								
Rheobuild-VE	= 0.00		0.00	CC								
Fibermesh	_ [0.00	720		kg/m3								
MATERIAL ES	PROCEDE	NCIA	P. ESP	HUM.	ABS.	PESO SECO	VOL T	PESO	555 L 557	progián	1	
	THOOLDE	NO SA	kg/m³	%	%	kg/m ³	VOL			RECCIÓN HUMEDAD	DOSIFICA	DE PRUEBA CION UNIDA
Cernento Ceniza de cascarilla de arroz	tipo I		2940			543	0.18459	5		542.7	10.159	
			1364			60.3	0.04421	6		60.30	1.129	kg
Agua	potable		1000			228.0	0.22800	2		229.08	4.288	
Arena Piedra # 57	huallag huallag		2783 2681	1,200 0,430	1.06 0.66	575.6 821.4	0.20682	51		582.49	10.904	
Piedra # 5	Huanay	a	2001	0,430	0.00	0.0	0.30638	8:		824.94	15.443	
Sikament 140N	Sika	100	1200			0.0	0.00000	0		0.00	0.000	kg cc
Rheobuild-VE	Basf	ENORGH	1220			0.0	0.00000	0.	90	0.00	0.0000	
Glenium	Basf		1022			0.0	0.0000000	0.0	000	0.0000	0.000	
SIKA AER	Sika	Maria Palla	1010			0.000	0.000000	0.0		0000000	0.0000	
Fibermesh	Sika		1010 910		ii.	0.000	0.00000	0.0	00 0.		0.000	СС
Fibermesh Aire TOTAL ENSAYOS DE CONTROL	Sika					0.000	0.000000		00 0. 00 53 MODI	0000000 0.000 2239.5 FICACIONE	0.000) cc gr
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Folumen :	kg m³					0.000	0.000000 0.00000 0.0300	0.0	000 0. 53 MODI a / c ; Reduc Adición	0000000 0.000 2239.5 FICACIONE	0.000	СС
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Fara : Fara + concreto :	kg					0.000	0.000000 0.00000 0.0300	0.0	000 0. 53 MODI a / c ; Reduc Adición	0000000 0.000 2239.5 FICACIONE	0.000	0.38 ml
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. fara : //olumen : fara + concreto : HORA: TEMP. (*C)	kg m³ kg		910 ENIDO DE		eórico	0.000 0.0 3.00%	0.000000 0.00000 0.0300	22	MODI a / C ii Reduc Adición	0000000 0.000 2239.5 FICACIONE ción (Reducción de agua/m3	0.000	0.38 ml
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Idolumen : Tara + concreto : IdORA: TEMP. (°C) Amb. Concr.	kg m³ kg Extens (pulg.)	Alf	910 ENIDO DE RE (%)	P.U. T (kg.		0.000 0.0 3.00%	0.00000 0.0000 0.0300 1.0000	22	000 0. MODI a / C ii Reduc Adición	0000000 0.000 2239.5 FICACIONE ción (Reducción de agua/m3	0.000 de agua 1 MUE Probetas :	0.38 ml L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. fara : //olumen : ara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.0 28.0	kg m³ kg Extens (pulg.) 2"- 4"	Alf	910 ENIDO DE			0.000 0.0 3.00%	0.00000 0.0000 0.0300 1.0000	22	MODI a / C ii Reduc Adición	0000000 0.000 2239.5 FICACIONE ción (Reducción de agua/m3	0.000	0.38 ml L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Columen : rara + concreto : HORA: TEMP. (°C) Amb. Concr. 30.0 28.0	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. fara : //olumen : ara + concreto : HORA: TEMP. (*C) Amb. Concr. 30.0 28.0	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³)	0.000 0.0 3.00%	0.00000 0.0000 0.0300 1.0000	0.6 22	53 MODI a / C , Reduc Adiciór Adiciór Inicia	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 ml L L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Fara : : Folumen : : TEMP. (°C) Amb. Concr. 30.0 28.0 RESISTENCIA.	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Fara : : Folumen : : TEMP. (°C) Amb. Concr. 30.0 28.0 RESISTENCIA.	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Columen : rara + concreto : HORA: TEMP. (°C) Amb. Concr. 30.0 28.0	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Fara : : Folumen : : TEMP. (°C) Amb. Concr. 30.0 28.0 RESISTENCIA.	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Columen : rara + concreto : HORA: TEMP. (°C) Amb. Concr. 30.0 28.0	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Fara : : Folumen : : TEMP. (°C) Amb. Concr. 30.0 28.0 RESISTENCIA.	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	/m³) RES	0.000 0.0 3.00% P.U. Real (kg/m²)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : columen : rara + concreto : -10RA: TEMP. (PC) Amb. Concr. 30.0 28.0 RESISTENCIA. Edad (dias)	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	RES (dias)	P.U. Real (kg/m³)	0.000000 0.00000 0.0300 1.0000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE icial : ción (Reducción, de agua/m3 agua (min) Final	0.000 de agua 1 MUE Probetas : Probetas :	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Foliumen : Fara + concreto : FIGNA: FIEMP. (°C) Amb. Concr. 30.0 28.0 RESISTENCIA. Edad (dias)	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	RES (dias)	P.U. Real (kg/m²)	0.000000 0.000000 0.000000 1.00000 1.00000 1.00000 RENDIMIE	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE ción (Reducción, (Reducción) Final	0.000 de agua 1 Mue Probetas : Probetas : TRABAJABILIT TRABAJABILIT	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Jatos para P.U.	kg m³ kg Extens (pulg.) 2"- 4"	AIF	910 ENIDO DE RE (%)	(kg	(dias) OTROS P. U. SUE	P.U. Real (kg/m³) SISTENCIA A LA F Mrc (kg/cm²)	0.000000 0.000000 1.00000 1.00000 1.00000 1.00000 1.00000	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.00	0.000 de agua 1 MUE Probetas: Probetas: TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Jatos para P.U.	kg m³ kg Extens (pulg.) 2"- 4" A LA COMPRES FC (kg/cm²)	Alf	910 ENIDO DE RE (%) 3% c a 28 d	(kg	(dias) OTROS P. U. SUE	P.U. Real (kg/m²)	0.000000 0.000000 1.00000 1.00000 1.00000 1.00000 1.00000	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.000 2239.5 FICACIONE ción (Reducción, (Reducción) Final	0.000 de agua 1 MUE Probetas: Probetas: TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Datos para P.U. Fara : Columen : rara + concreto : HORA: TEMP. (°C) Amb. Concr. 30.0 28.0	kg m² kg Extens (pulg.) 2"- 4" A LA COMPRES F'c (kg/cm²)	AIF	910 ENIDO DE RE (%) 3% c a 28 d	(kg	(dias) OTROS P. U. SUE	P.U. Real (kg/m³) SISTENCIA A LA F Mrc (kg/cm²)	0.000000 0.000000 1.00000 1.00000 1.00000 1.00000 1.00000	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.00	0.000 de agua 1 MUE Probetas: Probetas: TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC	0.38 mi L L
Fibermesh Aire TOTAL ENSAYOS DE CONTROL Jatos para P.U. Jara : Jolumen : Jara :	kg m³ kg Extens (pulg.) 2"-4" A LA COMPRES T'c (kg/cm²)	Alf	enido de Re (%) 3% c a 28 d	(kg	(dias) OTROS P. U. SUE	P.U. Real (kg/m³) SISTENCIA A LA F Mrc (kg/cm²)	0.000000 0.000000 1.00000 1.00000 1.00000 1.00000 1.00000	0.6 22	MODII a / C ii Reduc Adición Adición Tiempo de fi	0000000 0.00	0.000 de agua 1 MUE Probetas: Probetas: TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC TRABAJABILIC	0.38 mi L L

Diseño				380			Código Me Hora Vacia			10:15	
Relación a/o				0.38		1	Técnico		G	enix Ramirez P	utnaña
Relación AF	: AG		40.3	-	59.7	i	Volumen d	e Prueba (m3	_	0.01872	афана
CARACTERÍSTICAS FÍSIC	AS DE LOS N	IATERIA	LES Y DE	LA MEZ	CLA DE I	PRUEBA	7	o i i doba (iiio	,	0.01072	
M.F. Arena	2.89					1		Dosificación		kg	
M.F. Piedra#5	0.00		Vol. Agreç Arena	gauos :	0.50 40.3	46		Cementante ti cascarilla de a		kg %	
M.F. Piedra # 57	6.76		Piedra # 5	57	59.7	%		cascarnia uc e	1102. [15	7300	
I.F. Global	5.20		Piedra # 6	57 :	0]%					
Dosificación					100.0						
Sikament 140N Slenium	= 0.0		-	CC							
SIKA AER	= 0.0			cc							
Rheobuild-VE	= 0.0			CC							
ibermesh	[0.0	2]~		kg/m3							
MATERIALES	PROCEE	ENCIA	P. ESP	HUM.	ABS.	PESO SECO	VOL.	PESO S.S.S.	CORRECCIÓN	TANDA DE I	PRUEBA
Cemento	tine		kg/m³	%	96	kg/m ³		kg/m ³		DOSIFICACION	UNIDAD
Ceniza de cascarilla de arroz	tipo	-	2940 1364		-	513 90.5	0.17434	513	512.6	9.595	kg
Agua	pota	ble	1000			220.0	0.06631	90	90.45	1.693	kg
Arena	huali		2783	1.200	1.06	562.3	0.22800	239 568	229.06 569.04	4.288	L
Piedra # 57	hualla		2681	0.430	0.66	802.4	0.20204	810	569.04 805.89	10.652	kg
Piedra # 5						0.0	0.00000	0	0.00	15.086 0.00	kg kg
Sikament 140N	Sik		1200			0.0	0.00000	0	0.00	0.0000	CC
Rheobuild-VE Glenium	Bas		1220			0.0	0.00000	0	0.00	0.0000	cc
	Bas		1022			0.0	0.0000000	0	0.0000	0.000	СС
	Cil										
SIKA AER	Sik	9	1010			0.000	0.000000	0	0.0000000	0.0000	CC
SIKA AER Fibermesh	Sik	a	910			0.0	0.00000	0	0.000	0.0000	gr
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara :	kg	a						2221		0.000	gr
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL aitos para P.U. ara (olumen : aira + concreto : ORA:	kg m³ kg					0.0	0.00000	2221	0.000 2207.0 MODIFICACION a / c inicial :	0.000	
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL latos para P.U. ara : olumen : ara + concreto : OGRA: TEMP. (*C)	kg m³ kg	CONTE	910 NIDO DE	P.U. Te		0.0 3.00%	0.00000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/m co de fragua (min)	0.000 NES 0.38 0.38 0.38	gr mt L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL aitos para P.U. ara (olumen : aira + concreto : ORA:	kg m³ kg	CONTE	910 NIDO DE E (%)	P.U. Te		9.0 3.00%	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/m to de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas:	gr mt L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara : olumen : ara + concreto : ORA: TEMP. (*C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (putg.) 2"-4"	CONTE	910 NIDO DE			0.0 3.00%	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/m to de fragua (min) icia Final	0.000 NES	gr mt L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL Iatos para P.U, ara iolumen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/m co de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt 'L L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara : olumen : ara + concreto : ORA: TEMP. (*C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (putg.) 2"-4"	CONTE AIR 3	910 NIDO DE E (%)		n³) RESIS	0.0 3.00% P.U. Real (kg/m³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt 'L L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara : olumen : ata + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas: TRABAJABILIDAI	gr mt L L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara : olumen : ata + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara John Holling Holling Holling Holling ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara : olumen : ata + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL Iatos para P.U, ara iolumen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL Iatos para P.U, ara iolumen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL Iatos para P.U, ara iolumen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL Iatos para P.U, ara iolumen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL Iatos para P.U, ara iolumen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL NSAYOS DE CONTROL atos para P.U. ara : olumen : ata + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	n³) RESIS	0.0 3.00% P.U. Real (kg/m ³)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL atos para P.U. ara : clumen : ara + concreto : ORA: TEMP. (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A Edad (días)	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	RESIS dias)	P.U. Real (kg/m²)	0.00000 0.0300 1.0000	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL aitos para P.U. ara : columen : ara + concreto : ORA: TEMP, (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A Edad (días) BSERVACIONES FECHA DE MOLDEO	kg m³ kg Extens (pulg.) 2"-4"	CONTE AIR 3	910 ENIDO DE E (%)	(kg/r	RESIS dias) OTROS E	P.U. Real (kg/m²) TENCIA A LA FU Mrc (kg/cm²)	0.00000 0.0300 1.0000 1.0000 RENDIMIE	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducción Adición de aguair po de fragua (min) icia Final PERDIDA DE D (horas) Stump (0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL INSAYOS DE CONTROL atas para P.U. ara ira : folumen : ara + concreto : IORA: TEMP. (*C) Amb. Concr. 30.4 28.2 RESISTENCIA A Edad (dias) BSERVACIONES FECHA DE MOLDEO FECHA DE MOLDEO	kg m³ kg Extens (pulg.) 2"-4" LA COMPRES Fe (kg/cm³)	CONTECTION OF SECTION	910 ENIDO DE E (%) a 28 d	(kg/r	RESIS dias) OTROS E	P.U. Real (kg/m²)	0.00000 0.0300 1.0000 1.0000 RENDIMIE	0 2221	0.000 2207.0 MODIFICACION a / C inicial : Reducción Adición (Reducció Adición de agua/n zo de fragua (min) icia Final	0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL ENSAYOS DE CONTROL atra : columen : ara + concreto : lora: TEMP. (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A Edad (días) BSERVACIONES FECHA DE MOLDEO FECHA DE MOLDEO FRACTERISTICA	kg m³ kg Extens (pulg.) Z*-4* LA COMPRES F*c (kg/cm²)	CONTEC AIR STATE OF THE STATE O	910 ENIDO DE E (%) a 28 d	(kg/r	RESIS dias) OTROS E	P.U. Real (kg/m²) TENCIA A LA FU Mrc (kg/cm²)	0.00000 0.0300 1.0000 1.0000 RENDIMIE	0 2221	0.000 2207.0 MODIFICACION a / 6 picial : Reducción Adición (Reducción Adición (Reducción Adición agua/min) icla Final PERDIDA DE (horas) Stump (0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermish Aire FIDERMISH Aire TOTAL INSAYOS DE CONTROL AIRO STATE STATE FIDERMISH AIRO STATE FIDERMISH AIRO STATE FIDERMISH AIRO STATE FIDERMISH BESERVACIONES FECHA DE MOLDEO FECHA DE MOLDEO FECHA DE MOLDEO ARACTERISTICA AARIENCIA AIRO FIDERMISH FIDERMISH AIRO FIDERMISH FIDER	kg m³ kg Extens (pulg.) 2"-4" LA COMPRES F°C (kg/cm²)	CONTENT ARREST	910 NIDO DE E (%) 3%	(kg/r	RESIS dias) OTROS E	P.U. Real (kg/m²) TENCIA A LA FU Mrc (kg/cm²)	0.00000 0.0300 1.0000 1.0000 RENDIMIE	0 2221	0.000 2207.0 MODIFICACION a / 6 picial : Reducción Adición (Reducción Adición (Reducción Adición agua/min) icla Final PERDIDA DE (horas) Stump (0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermesh Aire TOTAL ENSAYOS DE CONTROL altos para P.U. ara ira folumen TEMP. (°C) Amb. Concr. 30.4 28.2 RESISTENCIA A Edad (dias) BSERVACIONES FECHA DE MOLDEO FECHA DE MOLDEO RACIERISTICA PARIENCIA RESISTERISTICA PARIENCIA PECHA DE MOLDEO RACIERISTICA PARIENCIA PARIENCIA PRIESTERISTICA PARIENCIA PARIENCIA PRIESTERISTICA PARIENCIA PARIENCIA PRIESTERISTICA PARIENCIA PARIENCIA	kg m³ kg Extens (pulg.) 2"-4" LA COMPRES F°C (kg/cm²)	CONTEC AIR STATE OF THE STATE O	910 NIDO DE E (%) 3%	(kg/r	RESIS dias) OTROS E	P.U. Real (kg/m²) TENCIA A LA FU Mrc (kg/cm²)	0.00000 0.0300 1.0000 1.0000 RENDIMIE	0 2221	0.000 2207.0 MODIFICACION a / 6 picial : Reducción Adición (Reducción Adición (Reducción Adición agua/min) icla Final PERDIDA DE (horas) Stump (0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L
SIKA AER Fibermish Aire FIDERMISH Aire TOTAL INSAYOS DE CONTROL AIRO STATE STATE FIDERMISH AIRO STATE FIDERMISH AIRO STATE FIDERMISH AIRO STATE FIDERMISH BESERVACIONES FECHA DE MOLDEO FECHA DE MOLDEO FECHA DE MOLDEO ARACTERISTICA AARIENCIA AIRO FIDERMISH FIDERMISH AIRO FIDERMISH FIDER	kg m³ kg Extens (pulg.) 2"-4" LA COMPRES F°C (kg/cm²)	CONTENT ARREST	910 NIDO DE E (%) 3%	(kg/r	RESIS dias) OTROS E	P.U. Real (kg/m²) TENCIA A LA FU Mrc (kg/cm²)	0.00000 0.0300 1.0000 1.0000 RENDIMIE	0 2221	0.000 2207.0 MODIFICACION a / 6 picial : Reducción Adición (Reducción Adición (Reducción Adición agua/min) icla Final PERDIDA DE (horas) Stump (0.000 NES 0.38 0.38 MUESTR Probetas: Probetas:	gr mt L L

ANEXO Nº 06RESISTENCIA A LA COMPRESIÓN

resistencia a la compresión, Tarapoto 2020"

ESTRUCTURA : Testigos de concreto

Rio Huallaga

ALFREDO VILCHEZ USHIÑAHUA HECHO POR MAYCOL YORDWIN VASQUEZ MENOR : 26/10/2020 **FECHA**

; 4"

Tipo de Concreto : 380 Kgf/Cm

	FEC	НА	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO	VERIFICACIÓN	E	SPECIFICA	CIONES
REG. № PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACION	3	DIAS	40 - 68
1	26/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.09	10.01	191.09	749.98	101.9716	76477	400.21	105.3	400	105.32	65 - 75	7	DIAS	65 - 75
2	26/10/2020	02/11/2020	7	Diseño de cocreto f'o 380 kg/cm2	19.09	10.00	190.90	661.37	101,9716	67441	353.28	93.0	353	92.97	65 - 75			
3	26/10/2020	02/11/2020	7	Diseño de cocreto f°c 380 kg/cm2	19.05	10,00	190.50	572.76	101.9716	58405	306.59	80.7	307	80.68	66 - 75	14	DIAS	75 - 80
	la contraction de la contracti	Anna communication and the second	A CONTRACTOR OF THE PARTY OF TH	der vertre en	***************************************	A										21	DIAS	85 - 98
	-															28	DIAS	100

- OBSERVACION:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

ROTURA

02/11/2020

JORGE CHRISTIAN ACUÑA CÁRDENAS JEFE VE LABORATORIO

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

936497989 - 942888875

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020"

HECHO POR

ALFREDO VILCHEZ USHINAHUA MAYCOL YORDWIN VASQUEZ MENOR

FECHA

: 26/10/2020

ESTRUCTURA : Testigos de concreto

Slump

UBICACIÓN Rio Huallaga

Tipo de Concreto : 380 Kgf/Cm²

					RESIST	ENCIA A	LA CON	PRENC	ION DE CON	CRETO						-		
	FEC	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO		E	SPECIFICA	CIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 6
1	26/10/2020	09/11/2020	14	Diseño de cocreto f'o 380 kg/cm2	19.09	10.01	191.09	711.81	101.9716	72584	379.84	100.0	380	99,96	75 - 80	7	DIAS	65 - 7
,	26/10/2020	09/11/2020	14	Diseño de cocreto f'o 380 kg/cm2	19.09	10.00	190.90	710.35	101.9716	72436	379.44	99.9	379	99,85	76 - 80			
3	26/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	708.88	101.9716	72286	379.45	99.9	379	99.86	75 - 80	14	DIAS	76 - 8
,	26/10/2020	09/11/2020		District de cocieto i e dos Agrana.	1											21 28	DIAS	85

OBRA:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

ROTURA

09/11/2020

▼ Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

ESTRUCTURA : Testigos de concreto

Rio Huallaga

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la

resistencia a la compresión, Tarapoto 2020"

HECHO POR FECHA

ALFREDO VILCHEZ USHINAHUA MAYCOL YORDWIN VASQUEZ MENOR

: 26/10/2020

Tipo de Concreto : 380 Kgf/Cm²

RESISTENCIA A LA COMPRENCION DE CONCRETO

	-		EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO		E	SPECIFICA	CIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 61
1 2	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19,09	10,01	191.09	628.49	101.9716	64088	335.38	88.3	336	88.26	100	7	DIAS	65 - 7
2 2	26/10/2020	23/11/2020	28	Diseño de cocreto f'o 380 kg/cm2	19,09	10.00	190.90	636.48	101.9716	64902	339.98	89.5	340	89.47	100			
3 2	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	644.46	101.9716	65717	344,97	8.00	345	90.78	100	14	DIAS	75 - 8

OBSERVACION:

UBICACIÓN

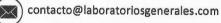
Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

ROTURA 28

23/11/2020

JORGE CHRISTION ACUÑA CÁRDENAS JEFE DE LABORATORIO



Jr. Ramon Castilla N° 550 - Tarapoto - San Martin

mejorar la resistencia a la compresión, Tarapoto 2020"

ESTRUCTURA : Testigos de concreto

Rio Huallaga UBICACIÓN

HECHO POR

ALFREDO VILCHEZ USHINAHUA

MAYCOL YORDWIN VASQUEZ MENOR

FECHA : 26/10/2020

Slump

: 3"

Tipo de Concreto : 380 Kgf/Cm²

	PERISTENCIA	AIA	COMPRENCION DE CONCRETO
--	-------------	-----	-------------------------

	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO	
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN
1	28/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.09	10.01	191.09	645.16	101.9716	65788	344.28	90.6	344	90.60	65 - 75
2	26/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.09	10.00	190.90	594.28	101.9716	60600	317.44	83.5	317	83.54	65 - 75
3	28/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	543,36	101.9716	55407	290.85	76.5	291	76.54	65 - 75

OBSERVACION:

OBRA:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

DIAS 26/10/2020

ESPECIFICACIONES DIAS

DIAS

DIAS DIAS 40 - 65

65 - 75

75 - 80

85 - 95

ROTURA

02/11/2020

936497989 - 942888875

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para mejorar la resistencia a la compresión, Tarapoto 2020" OBRA:

HECHO POR

ALFREDO VILCHEZ USHINAHUA MAYCOL YORDWIN VASQUEZ MENOR

FECHA : 26/10/2020

ESTRUCTURA : Testigos de concreto

Slump

: 3"

Rio Huallaga UBICACIÓN

Tipo de Concreto : 380 Kgf/Cm²

RESISTENCIA	AIA	COMPRENCION	DE CONCRETO

	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA	***********	RESIST	ENCIA	PRON	EDIO			ESPECIFICAC	CIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 65
1	26/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.09	10.01	191.09	631.40	101.9716	64385	336.93	88.7	337	88.67	75 - 80	7	DIAS	65 - 75
2	26/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.09	10.00	190.90	577.56	101.9716	58895	308.51	81.2	309	81.19	75 - 80			
3	28/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	523.72	101.9716	53405	280.34	73.8	280	73.77	75 - 80	14	DIAS	75 - 80

OBSERVACION:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

ROTURA

40 - 65 65 - 75

75 - 80 85 - 95

09/11/2020

UNA CÁRDENAS JEFE DE ABORATORIO

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

mejorar la resistencia a la compresión, Tarapoto 2020"

HECHO POR

Slump

ALFREDO VILCHEZ USHINAHUA MAYCOL YORDWIN VASQUEZ MENOR

FECHA

: 26/10/2020

: 3"

UBICACIÓN Rio Huallaga

ESTRUCTURA : Testigos de concreto

Tipo de Concreto : 380 Kgf/Cm²

	FEC	HA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO			ESPECIFICA	CIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	om	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 65
1.0	28/10/2020	23/11/2020	28	Diseño de cocreto f°c 380 kg/cm2	19.09	10.01	191.09	620.95	101.9716	63319	331,36	87.2	331	87,20	100	7	DIAS	65 - 75
2	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.09	10.00	190.90	639.71	101.9716	65232	341.71	89.9	342	89.92	100			
3	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	658.46	101.9716	67144	352,46	92.8	352	92.75	100	14	DIAS	75 - 80

OBSERVACION:

OBRA:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

23/11/2020

JORGE CHRISTIAN ACUNA CARDENAS

936497989 - 942888875

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

mejorar la resistencia a la compresión, Tarapoto 2020"

ESTRUCTURA ; Testigos de concreto

UBICACIÓN Rio Huallaga

ALFREDO VILCHEZ USHINAHUA **HECHO POR** MAYCOL YORDWIN VASQUEZ MENOR

FECHA : 26/10/2020 Slump : 3 1/2"

Tipo de Concreto : 380 Kgf/Cm²

TEC MI DOOD	FE	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO			ESPECIFICA	CIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ^g	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 6
1	26/10/2020	02/11/2020	7	Ddiseño de cocreto f'o 380 kg/cm2	19,09	10.01	191.09	372.34	101.9716	37968	198.69	52.3	199	52.29	65 - 75	7	DIAS	65 - 75
2	28/10/2020	02/11/2020	7	Diseño de cocreto f'o 380 kg/cm2	19.09	10.00	190.90	406.25	101.9716	41426	217.00	57.1	217	57.11	65 - 75			
3	26/10/2020	02/11/2020	7	Diseño de cocreto f'o 380 kg/cm2	19.05	10.00	190.50	440.16	101,9716	44884	235.61	62.0	236	62.00	65 - 75	44	DIAS	75 - 80

OBSERVACION:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

02/11/2020

JORGE CHRISTIAN ACUÑA CÁRDENAS JEFE DE ABORATORIO

936497989 - 942888875

www.laboratoriosgenerales.com

mejorar la resistencia a la compresión, Tarapoto 2020"

ESTRUCTURA : Testigos de concreto

UBICACIÓN Rio Huallaga

HECHO POR : ALFREDO VILCHEZ USHINAHUA : MAYCOL YORDWIN VASQUEZ MENOR

FECHA : 26/10/2020

Jmp : 3 1/2

Tipo de Concreto : 380 Kgf/Cm²

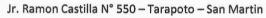
	FE	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PROM	EDIO	The second second second
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Gm ²	%	VERIFICACIÓ
1	26/10/2020	09/11/2020	14	Diseño de cocreto f'o 380 kg/cm2	19.09	10.01	191.09	455.70	101.9716	46468	243,17	84,0	243	63.99	75 - 80
2	26/10/2020	09/11/2020	14	Diseño de cocreto f'o 380 kg/cm2	19.09	10.00	190.90	459.44	101.9716	46849	245,41	64.6	245	64.58	75 - 80
3	28/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	463,17	101.9716	47230	247.93	85.2	248	65.24	75 - 80

	ESPECIFICA	ACIONES
3	DIAS	40 - 65
7	DIAS	65 - 75
14	DIAS	76 - 80
21 28	DIAS	85 - 95 100

OBSERVACION:

Be Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020


ROTURA 14

09/11/2020

JORGE CHRISTIAN ACUÑA CÁRDENAS
JEFE DY LABORATORIO

ESTRUCTURA ; Testigos de concreto

Rìo Huallaga

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para

mejorar la resistencia a la compresión, Tarapoto 2020"

FECHA

ALFREDO VILCHEZ USHINAHUA

HECHO POR

: MAYCOL YORDWIN VASQUEZ MENOR : 26/10/2020

Slump

: 3 1/2"

Tipo de Concreto : 380 Kgf/Cm²

	FE	CHA	EDAD	ESTRUCTURA	iargo	acho	AREA		LECTURA		RESIST	ENCIA	PROMEDIO				ESPECIFICA	CIONES
EG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Gonversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 -
1	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.09	10.01	191.09	534.22	101.9716	54475	285.08	75.0	285	75.02	100	7	DIAS	65 -
2	26/10/2020	23/11/2020	28	Diseño de cocreto f´c 380 kg/cm2	19.09	10.00	190.90	504.41	101.9716	51435	269.44	70.9	269	70.90	100			
3	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	474.60	101,9716	48396	254.05	68.9	254	66.85	100	14	DIAS	75 -

OBSERVACION

OBRA:

UBICACIÓN

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

23/11/2020

JORGE CHRISTIAN ACUÑA CÁRDENAS JEFE DE LABORATORIO

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

936497989 - 942888875

OBRA:

"Diseño de adoquines con incorporación de cenizas de cascarilla de arroz para

mejorar la resistencia a la compresión, Tarapoto 2020"

HECHO POR

: ALFREDO VILCHEZ USHINAHUA : MAYCOL YORDWIN VASQUEZ MENOR

FECHA

: 26/10/2020

Slump

: 3 3/4"

UBICACIÓN

Rio Huallaga

ESTRUCTURA : Testigos de concreto

Tipo de Concreto : 380 Kgf/Cm²

	FEC	NA	EDAD	POTRUCTURA			ADEA		LECTURA		acolori	ENGLA	DRO	maia		1988	ESPECIFIC	ACIONES
	"EL	INA	EDAU	ESTRUCTURA largo acho AREA			LEGIURA			RESISTENCIA		MEDIO		COI EGII IONGIGIALO				
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 -
1	26/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.09	10.01	191.09	276.02	101.9716	28146	147.29	38.8	147	38,76	65 - 75	7	DIAS	65 -
2	26/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.09	10.00	190.90	265.08	101.9716	27031	141.60	37.3	142	37.26	65 - 75			
3	26/10/2020	02/11/2020	7	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	254.14	101,9716	25915	136.04	35.8	136	35.80	65 - 75	14	DIAS	75 -

OBSERVACION:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

ROTURA

02/11/2020

JORGE CHRISTIAN ACUÑA CÁRDENAS JEFE DE LASCRATORIO

936497989 - 942888875

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

mejorar la resistencia a la compresión, Tarapoto 2020"

ESTRUCTURA : Testigos de concreto

UBICACIÓN Rio Huallaga

HECHO POR

ALFREDO VILCHEZ USHINAHUA MAYCOL YORDWIN VASQUEZ MENOR

FECHA : 26/10/2020

Slump

: 3 3/4"

Tipo de Concreto : 380 Kgf/Cm²

RESISTENCIA	ALAC	COMPRENCION	DE CONCRETO

	FEG	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESISTE	INCIA	PRO	MEDIO			ESPECIFIC	ACIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm ²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	3%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 65
1	26/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.09	10.01	191.09	321.92	101.9716	32827	171.79	45.2	172	45.21	75 - 80	7	DIAS	65 - 75
2	26/10/2020	09/11/2020	14	Diseño de cocreto f'c 380 kg/cm2	19.09	10.00	190.90	326.86	101.9716	33330	174.60	45.9	175	45.95	75 - 80			
3	26/10/2020	09/11/2020	14	Diseño de cocreto f'o 380 kg/cm2	19.05	10.00	190.50	331.79	101.9716	33833	177.80	48.7	178	46.74	75 - 80	14	DIAS	75 - 80
																21 28	DIAS	85 - 95 100

OBSERVACION:

OBRA:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

28/10/2020

ROTURA 14

09/11/2020

JORGE CHRISTIAN AGUNA CÁRDENAS JEFE DE LABORATORIO

Jr. Ramon Castilla N° 550 – Tarapoto – San Martin

936497989 - 942888875

HECHO POR

ALFREDO VILCHEZ USHINAHUA

mejorar la resistencia a la compresión, Tarapoto 2020"

FECHA

MAYCOL YORDWIN VASQUEZ MENOR : 26/10/2020

ESTRUCTURA : Testigos de concreto

Slump

: 3 3/4"

UBICACIÓN Rio Huallaga

Tipo de Concreto : 380 Kgf/Cm²

RESISTENC	A A LA COMPRE	NCION DE CONC	RETO

	FE	CHA	EDAD	ESTRUCTURA	largo	acho	AREA		LECTURA		RESIST	ENCIA	PRO	MEDIO			ESPECIFIC	ACIONES
REG. Nº PROB	MOLDEO	ROTURA	DIAS	DESCRIPCION	Cm	cm	Cm²	KN	Conversion Kg.F	DIAL	Kgf/Cm ²	%	Kgf/Cm ²	%	VERIFICACIÓN	3	DIAS	40 - 65
1	26/10/2020	23/11/2020	28	Diseño de cocreto f´c 380 kg/cm2	19.09	10.01	191.09	311.59	101.9716	31773	166.27	43.8	166	43.76	100	7	DIAS	65 - 75
2	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.09	10.00	190.90	316.64	101.9716	32288	169.14	44.5	169	44.51	100			
3	26/10/2020	23/11/2020	28	Diseño de cocreto f'c 380 kg/cm2	19.05	10.00	190.50	321.69	101.9716	32803	172.20	45.3	172	45.31	100	14	DIAS	75 - 80

OBSERVACION:

OBRA:

Se Utilizó Cemento Portland Tipo I ASTM C - 150

26/10/2020

ROTURA 28

23/11/2020

JORGE CHRISTIAN CUÑA CÁRDENAS JEFE DE ABORATORIO

936497989 - 942888875

ANEXO Nº 07PANEL FOTOGRÁFICO

Figura 14: Agregado grueso para la mezcla de concreto.

Figura 15: Ensayos del agregado grueso.

Figura 16: Ensayo para obtener el porcentaje de absorción.

Figura 17: Agregado grueso para la mezcla de concreto.

Figura 18: Ensayo del agua en la pipeta.

Figura 19: Peso en la balanza la pipeta con agua.

Figura 20: Verificación de la ceniza de cascarilla de arroz calcinada.

Figura 21: Observación de la ceniza de cascarilla de arroz.

Figura 22: Machacado de la ceniza de cascarilla de arroz.

Figura 23: Machacado y pasado por la malla Nº 16.

Figura 24: Pesado de la ceniza de cascarilla de arroz.

Figura 25: Introducción de la ceniza de cascarilla de arroz a la pipeta de ensayo.

Figura 26: Llenado de la pipeta.

Figura 27: Ensayo de la ceniza de cascarilla de arroz.

Figura 28: Introducción de agua a la pipeta con la ceniza de cascarilla de arroz.

Figura 29: Ensayo de la ceniza de cascarilla de arroz terminado.

Figura 30: Pipeta con el ensayo de ceniza de la cascarilla de arroz.

Figura 31: Elementos usados para las características físicas de la ceniza de cascarilla de arroz.

Figura 32: Engrasamiento de los moldes de los adoquines.

Figura 33: Peso del agregado grueso.

Figura 34: Preparación de los agregados.

Figura 35: Mezcla de los agregados.

Figura 36: Peso de la cantidad de agua utilizado en la mezcla.

Figura 37: Batido de la mezcla manual.

Figura 38: Incorporación de agua a la mezcla.

Figura 39: Diseño de mezcla en proceso.

Figura 40: Diseño de mezcla terminado.

Figura 41: Compactación de la mezcla con una varilla de acero.

Figura 42: Golpes al molde con el martillo de goma, para evitar la cangrejera de la mezcla de concreto.

Figura 43: Residuos restantes del diseño de mezcla de concreto.

Figura 44: Planchado de los adoquines.

Figura 45: Diseño de mezcla de concreto patrón de adoquines terminado.

Figura 46: Diseño de mezcla con incorporación de ceniza de cascarilla de arroz al 5%.

Figura 47: Diseño de mezcla con incorporación de ceniza de cascarilla de arroz al 5% terminado.

Figura 48: Diseño de adoquines de concreto patrón al 0%.

Figura 49: Diseño de concreto con incorporación de ceniza de cascarilla de arroz al 5%.

Figura 50: Desencofrado de los adoquines de concreto.

Figura 51: Adoquín terminado y listo para el curado respectivo.

Figura 52: Adoquines al 0%, 5%, 10% y 15%.

Figura 53: Adoquines al 0% que será curado a los 7, 14 y 28 días.

Figura 54: Adoquines al 5% que será curado a los 7, 14 y 28 días.

Figura 55: Preparación de mezcla con incorporación de ceniza de cascarilla de arroz al 10%.

Figura 56: Muestra de adoquín de concreto con incorporación de ceniza de cascarilla de arroz al 10%.

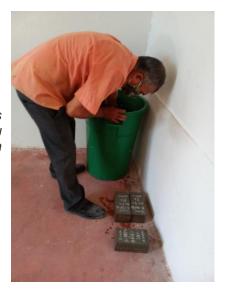

Figura 57: Muestra de adoquín de concreto con incorporación de ceniza de cascarilla de arroz al 15%.

Figura 58: Adoquines al 10% que será curado a los 7, 14 y 28 días.

Figura 59: Colocación de los adoquines, para su respectivo curado a los 7, 14 y 18 días.

Figura 60: Adoquines al 15% que será curado a los 7, 14 y 28 días.

Figura 61: Adoquines en estado de curado.

Figura 62: Adoquines después de los respectivos días de curado.

Figura 63: Medición y centrado para la prensa de rotura a compresión.

Figura 64: Prensa que mide la resistencia a la compresión.

Figura 65: Colocación de los adoquines en la prensa de rotura.

Figura 66: Retiro de la rotura a compresión del adoquín patrón.

Figura 67: Calculo de la resistencia del adoquín al 0% a los 7 días.

Figura 68: Rotura del adoquín de concreto patrón a los 7 días.

Figura 69: Estado del adoquín a rotura a los 7 días.

Figura 70: Roturas de los adoquines del 15% a los 7 días.

Figura 71: Preparación de la prensa a compresión.

Figura 72: Adoquín listo para la rotura.

Figura 73: Adoquines a los 28 días de curado

Figura 74: Rotura a los 28 días.

Figura 75: Rotura del adoquín al 0% a los 28 días.

Figura 76: Roturas de los adoquines, pasados a compresión.

Figura 77: Entrega de formatos firmados y sellados del laboratorio de mecánica de suelos, concreto y pavimentos ARGAD – Tarapoto.

