

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de la defensa ribereña con la utilización de gaviones del rio seco, Sector Shaurama - Huaraz-Ancash 2021

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTORES:

Ciriaco Celmi, Jhon Cesar (RCID: 0000-0002-6666-2678

Shuan Maguiña, Wendy Diana (ORCID: 0000-0002-8375-2755)

ASESOR:

Mg, Villegas Martines, Carlos Alberto (ORCID:0000-0002-4926-8586)

LÍNEA DE INVESTIGACIÓN:

Diseño de obras hidráulicas y saneamiento

HUARAZ – PERÚ

2021

Dedicatoria

A mis padres Isabel Margarita Celmi Efecto y Remigio Alberto Ciriaco que son mi fuente de inspiración, este logro es de ustedes por guiarme diariamente e impulsar el cumplimiento de mis metas. Aunque muchas veces el camino es un poco complicado me han motivado con sus consejos y aptitudes a realizar uno de mis primeros sueños Tomando en cuenta que este es el primer escalón para lograr subir a la escalera de la vida.

JHON

Con el reconocimiento debido y el aprecio correspondiente el presente trabajo de investigación va dedicado a Dios, a mis padres y hermanos quienes me apoyaron en todo momento y porque son ejemplo a seguir, en dedicación, trabajo y sacrificio.

WENDY

Agradecimiento

Agradezco a mis padres así mismo a los docentes de la carrera profesional de Ingeniería Civil de la Universidad Cesar Vallejo, por la gran labor en mi formación profesional y en especial a mi docente: Ing. Carlos Alberto Villegas Martínez que me van guiando en esta etapa importante de mi carrera.

JHON

Agradecer a los docentes de la carrera profesional de Ingeniería Civil de la Universidad Cesar Vallejo, por la gran labor en mi formación profesional, también a mi familia que estuvo ahí incondicionalmente y en especial a nuestro asesor quien ha hecho posible la realización del presente trabajo de investigación.

WENDY

Tabla de contenidos

Carátula Dedicatoria	
Agradecimiento	i
Tabla de contenidos	iii
Índice de tablas	iv
Índice de figuras	ν
Resumen	V
Abstract	vi
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	8
3.1 Tipo y diseño de investigación	8
3.2 Variables y operacionalización	8
3.3 Técnica e instrumento de recolección de datos	12
3.4 Método de análisis de datos	16
3.5 Aspectos éticos	16
IV. RESULTADOS	16
V. DISCUSIÓN	26
VI. CONCLUSIONES	28
VII. RECOMENDACIONES	30
REFERENCIAS	31
ANEXOS	33

Índice de tablas

Tabla 1: Datos de las coordenadas del levantamiento topográfico	19
Tabla 2: Determinacion De Contenido de humedad	20
Tabla 3: Determinacion límite de consistencia	21
Tabla 4: Determinación del límite plástico	21
Tabla 5: Guía de observación de la defensa rivereña	25
Tabla 6: matriz de consistencia	35
Tabla 7: matriz de operacionalización de variables	36
tabla 8: Guía de observación de la defensa rivereña	.37

Índice de figuras

Fig. 1Defensa Rivereña con gaviones	9
Fig. 2: Gaviones caja	
Fig. 3: Gaviones Colchon	
Fig. 4: Gaviones Saco	
Fig. 5: Área del rio seco	13
Fig. 6: Levantamiento topográfico	13
Fig. 7: Dibujo del levantamiento topográfico en civil 3D	14
Fig. 8: Excavación del terreno para el estudio de suelo	14
Fig. 9: Laboratorio para examinar la muestra	15
Fig. 10:Datos al Hec-ras. Para poder realizar el modelamiento	15
Fig. 11:Mapa de ubicación	
Fig. 12:Moldes CBR	20
Fig. 13:Vista lateral de la zona del desborde más critico	22
Fig. 14:Sección transversal del rio seco con desborde	22
Fig. 15: Sección transversal del rio seco sin desborde	23
Fig. 16: Modelamiento de la zona	23
Fig. 17:Ejes del rio Seco	24
Fig. 18:Imagen satelital del tramo del rio seco	38
Fig. 19:Vista previa del levantamiento topografico en civil 3D	39
Fig. 20: Determinación de la capacidad de carga de suelo	40
Fig. 21:Ensayos estándar de laboratorio	41
Fig. 22: Contenido de humedad	42
Fig. 23: Limite de consistencia	44

Resumen

El presente trabajo de investigación sobre la propuesta de un "Diseño de la defensa ribereña con la utilización de gaviones del río seco, sector shaurama—Huaraz — Áncash 2021" pertenece a la línea de investigación de Obras Hidráulicas y Saneamiento, donde tenemos como objetivo general "Realizar un diseño hidráulico para una defensa ribereña". Este tipo de investigación fue experimental, explicativa, cuantitativa así mismo, la población, muestra y muestreo realizada por la presente investigación está constituida por la misma Defensa Ribereña, donde se evaluamos la topografía, caudal, cuenca, diseño hidráulico, modelamiento. Además, los investigadores logramos los datos e información con los instrumentos utilizados en campo y gabinete. En conclusión, determinamos que la propuesta de una defensa ribereña es importante en toda la zona abarcada de estudio ya que con una defensa en la zona Shaurama se debe de prevenir los desastres a futuros, así mismo poder proteger a la población que rodea la zona.

Palabras Clave: "Levantamiento topográfico, Caudal, Diseño."

Abstract

The present research work on the proposal of a "Design of the riparian defense with the use of gabions of the dry river, sector shaurama - Huaraz - Áncash 2021" belongs to the line of investigation of Hydraulic Works and Sanitation, where we have as general objective "Carry out a hydraulic design for a riparian defense". This type of research was experimental, explanatory, quantitative likewise, the population and the sample carried out by the present investigation is constituted by the Riparian Defense itself, where the topography, flow, basin, hydraulic design, modeling are evaluated. In addition, the researchers obtained the data and information with the instruments used in the field and in the office. In conclusion, we determined that the proposal for a riparian defense is important in the entire study area since it is about preventing future disasters, as well as protecting the population.

Keywords: Topographic survey, Flow, Desig

I. INTRODUCCIÓN

Uno de los problemas con mayor relevancia para el hombre en los últimos años son las erosiones que afectan a los terrenos y carreteras que colindan con el margen del río Seco sector Shaurama que está ubicado en la ciudad de Huaraz, con orígenes en la zona denominada Cruz Punta, con un recorrido en dirección Ester-Oeste que desemboca en el río Santa, aproximadamente a la altura del lugar denominado Tacllán, en el tiempo de Iluvia se provoca el incremento del caudal de una manera considerable así provocando el desborde del rio produciendo grandes daños a la población cercana como las erosiones, socavaciones en márgenes de los ríos seco, sin embargo, debemos recordar que estas problemáticas no son de ahora sino que vienes presentándose a través de la historia y mayormente a causa de los fenómenos naturales en los tiempos de invierno entre los meses de noviembre a marzo donde el rio crece con una gran magnitud, en esta realidad observamos que el proyecto a investigar que por el incremento de los caudales a causa de los fenómenos naturales sufrió un gran desbordamiento a los colindantes del rio seco, pues la personas que circulan o viven por los márgenes del rio seco se están exponiéndose a sus vidas, ya que la negligencia de vivir en esas zonas tienen consecuencias ya mencionas de esta manera para evitar riesgos y tragedias este proyecto está dada para poder evitar todo tipo de desastre que se pueda dar en el sector Shaurama ,pues los fenómenos naturales puede ocurrir en cualquier momento, sin duda alguna es la realidad que padece muchas zonas en el Perú, que no cuentan con un plan de seguridad en la infraestructura, por ende nos proponemos a dar solución a este tipo de problemas que sufre esta zona el rio seco que sufrió un desbordamiento que aún no es solucionado por eso es que precisamente ahí nos proponemos realizar nuestro proyecto de investigación a la construcción de una defensa ribereña que sin duda ha sido marcado en nuestra historia en las investigaciones de ingeniería y arquitectura urbanística.

A nivel internacional según (Tibanta, 2012, p. 80). En su tesis presentada "Diseño de Diques de Gaviones para el Control de la Erosión en ríos de montaña considera como su objetivo identificar, evaluar y valorar los impactos ambientales que pueden ocasionarse debido a la construcción de obras de prevención y mitigación como es el caso de los muros de gaviones para la correcta sistematización del control de cauces llegando a la conclusión que los caudales de diseño que se mencionan, son valores a partir de los cuales se deben tomar una altura de seguridad para el establecimiento de la estructura de los

diques de gaviones".

"Y con eso poder tener en cuenta los riesgos, para que más adelante no tengamos problemas con los gaviones y evitar consecuencias no deseadas"

A nivel nacional (Alvarado y Henríquez, 2014). En su tesis "Diseño hidráulico y estructural de defensa ribereña del rio chicama tramo puente punta moreno – pampas de jaguey aplicando el programa river tienen como su objetivo general Diseñar una estructura de protección en la margen izquierda del rio Chicama para así evitar el paso de sus aguas hacia la vía de acceso a la zona Cas Cas y áreas cultivables aledañas en la margen izquierda del rio". (p.121)

"El objetivo que menciona tiene mucha concordancia para empezar a realizar el diseño hidráulico y estructural de la Diseño de la Defensa Ribereña con la utilización de gaviones del río seco, sector Shaurama".

A nivel local tenemos a (Cochachin Villanueva, 2006). En su trabajo de investigación realizada en la Universidad Nacional Santiago Antúnez de Mayolo sobre. "Diseño de muro de gaviones para la Protección de la margen izquierda del río mosna en el tramo km: 17+000 al km: 17+330 en el distrito de chavín, aplicando Hec ras, 2013 dio como resultados tales como: gráfico de las secciones transversales, gráfico del perfil del tramo, curvas de descarga, gráfico de la perspectiva del cauce X-Y-Z, hidrógrama de salida y, tablas de las características del cauce en cada sección transversal (velocidad. caudal, nivel de agua, N° de Froude, nivel de energía, etc.)".(p.17), formulación del problema ¿El diseño de la defensa ribereña para el margen izquierdo del río seco, sector Shaurama – Huaraz – Áncash 2021 soportara las socavaciones y erosiones a causa de las fuertes lluvias y fenómenos naturales? Con esto buscamos diseñar la defensa rivereña para las futuras socavaciones y la justificación es porque en nuestro país no cuentas con buenas gestiones de seguridad y que también el mismo clima de algunas zonas no ayudan a resolver los problemas de socavaciones y erosiones; así como también la justificación teórica buscar analizar la resistencia de los gaviones de la misma forma tenemos como justificación metodológica para este proyecto de investigación se planteó instrumentos de acuerdo a la necesidad de las dimensiones correspondientes, proceso de validez y confiabilidad, instrumento que nos permitirá culminar eficientemente la investigación proyectada, y así tenemos a la justificación social se buscara implementar el diseño de la defensa rivereña para poder así mejorar las condiciones de la población y disminuir los riegos de la población y sobre todo beneficiar a la población del rio seco y por ultimo tenemos la justificación practico- ambiental se utilizara gaviones para brindar una solución rápida ante los problemas

relaciones a los fenómenos naturales, ante ello nos planteamos el siguiente.

Objetivos:

Objetivo general Realizar el cálculo y así elaborar el diseño del sistema de defensa ribereña aplicado al tramo del río seco, ubicado en el sector Shaurama – Huaraz. Estas obras protegerían adecuadamente a la población. Y así mismo los **objetivos específicos a)** Levantamiento topográfico, estudio hidrológico y estudio de mecánica de suelos.

b) Diseño estructural de la defensa ribereña **c)** Examinar la vulnerabilidad y capacidad de perjuicio de las obras de la zona para ejecutar un modelamiento con el Hec-Ras.

Hipótesis:

Hipótesis general: Tenemos que planteamos ¿El diseño de la defensa ribereña para el margen izquierdo del río seco, sector Shaurama – Huaraz – Áncash 2021 soportara las socavaciones y erosiones a causa de las fuertes lluvias y fenómenos naturales?

II. MARCO TEÓRICO

A nivel internacional

Según (Galanton & Romero, 2007) nos indica en su trabajo de la "Descripción de Defensa Rivereña En la Universidad de Oriente –Barcelona concluyeron en que abundantes sucesos las estructuras de defensas ribereñas son dimensionas con unas fallas conceptuales, ya que quedan expuestas a la acción de la velocidad del agua en su base, el cual provoca socavamiento y erosión al pie de la obra. Llegando a la conclusión que el muro de gavión, es uno del más adecuados, ya que está constituido por materiales flexibles, que cumplen con las exigencias establecidas, y puede adecuarse a deformaciones que puedan producirse una vez puesta en funcionamiento Una solución adoptada para evitar este problema es la plataforma de deformación, que es compuesta por gaviones tipo colchón, son elementos flexibles posicionados en frente de la estructura, que, al deformarse, acompañan la erosión del fondo, evitando así que este alcance la base de la estructura y la desestabilice".

La defensa está en riesgo ya que la velocidad es un factor muy importante al realizar el diseño, como lo menciona en el texto anterior nos adecuamos a las exigencias de realizar una defensa ribereña echa de gaviones, para así evitar desastres

Según (Piñar Rafael, 2008). En su Proyecto de "Construcción de un muro de gaviones de 960 m3". En la Escuela de Ingeniería en Construcción, costa rica nos "menciona la importancia construir estructuras de contención basadas en un diseño apropiado y siguiendo las correctas técnicas de construcción radica en la necesidad de dar una solución duradera a los problemas de estabilidad que sufren ciertos sitios del país, en donde se invierte n millones de colones en reconstruir estructuras que fallaron y rehabilitar caminos que se han bloqueado por la ausencia de un elemento estabilizador". (p.1)

Según (Soto Contreras, 2017) en su proyecto de investigación en Bogotá titulado: "Presupuesto para muro en gavión a gravedad –para protección de la rivera del rio Magdalena tuvo por objetivo realizar el diseño y calcular el presupuesto para muros de gravedad para protección del rio Magdalena para evitar que se siga deteriorándose la banca en el corregimiento de Puerto Bogotá del municipio de Guaduas Cundinamarca. Y en su objetivo específico, facilitar el diseño y los costos de la obra para una posible ejecución en el futuro. Llegando

a la conclusión que la propuesta y diseño de los gaviones para solucionar los problemas de inundación que se presenta en el corregimiento del puerto Bogotá, siendo factible desde el punto de vista técnico y en vista presupuestal se llevara a la alcaldía".

A nivel nacional

Plasencia Carrera, (2003) En su trabajo realizado en Cajamarca que trata sobre el diseño de "Defensa ribereña con gaviones en el río Negro sector Maleas-Cajabamba", considera que: El proyecto en estudio tratará de evitar la pérdida de inundación de los terrenos agrícolas debido a la erosión de las márgenes del río Negro, de esta manera se evitará las pérdidas de 4 hectarias de terreno que son erosionadas por las grandes avenidas de agua en épocas de lluvia que se producen en los meses de noviembre a marzo, la ejecución del proyecto, se sustenta fundamentalmente en proteger la ribera de ambos márgenes del río negro, de esta manera contribuyendo a preservar 205.7 hectarias de tierras agrícolas según el padrón de uso agrícola".

(Zevallos Loaiza, 2015) en su tesis realizada en Piura para poder optar con el título en ingeniería civil con mención en recursos hídricos. Con nombre "Diseño de la defensa ribereña para el balneario turístico Cocalmayo, ubicado en la margen izquierda del río Urubamba. Tuvo por objetivo dar a conocer prácticas y métodos para realizar estudios de defensa ribereña en condiciones en las que no se tiene información disponible, así mismos procedimientos de toma de datos de campo y calculo y diseño del sistema de protección ribereña aplicado al tramo del río Urubamba, ubicado entre la quebrada Cocalmayo- quebrada Huallcas, que protegería adecuadamente el balneario de aguas termales de Cocalmayo. Entre sus principales conclusiones plantea que en el tramo estudiado se necesita un sistema de defensa ribereña porque en el río Urubamba se producen avenidas, a acusas de las intensas lluvias y precipitaciones pluviales provenientes de las zonas altas de su cuenca, las cuales generan inesperadas elevaciones del nivel del río".

Según (Flores, Omar, 2015) en su tesis "Propuesta y Análisis de Diseño de Defensas Ribereñas en el Rio Llave Zona Rural C.P. Santa Rosa de Huayllatallave" que tiene como objetivo principal, "Proponer el análisis y diseño de defensas ribereñas en el río Llave - sector C.P. Santa Rosa de Huayllata,

para reducir riesgo de inundaciones, y el objetivo específico Determinar los parámetros hidrológicos, geológicos-geotécnico y de hidráulica fluvial que inciden en la crecida del río Llave, para evitar inundaciones, y partir de un diseño adecuado proponer en expediente técnico para la solución del problema expuesto Base legal Ley N° 30557: Ley que declara de interés nacional y necesidad pública la construcción de defensas ribereñas y servidumbres hidráulicas Artículo 1. Declaración de interés nacional y necesidad pública de la construcción de defensas ribereñas y servidumbres hidráulicas bajo el enfoque de planificación nacional y de integración del ordenamiento territorial de las cuencas hidrográficas del territorio nacional, teniendo como base los criterios de sostenibilidad, prevención y adaptación al cambio con la finalidad de proteger a los pobladores de las inundaciones y desbordes provocados por la crecida de los ríos el Manual presentado por el ministerio de Agricultura "Procedimientos para la identificación de canteras, implementación de centros de acopio de roca y la construcción de defensas ribereñas provisionales ante las emergencias a causa de las inundaciones"

Y a nivel local tenemos a Vergara Saturno, (2006). En el trabajo de investigación realizada en la Universidad Nacional Santiago Antúnez de Mayolo sobre: "Estudio de vulnerabilidad de la infraestructura vial y riego en el sector de Yungar, por eventos máximos en la quebrada Collpadio como resultado: los cálculos obtenidos de las descargas máximas según el método racional para diferentes períodos de retomo, proporcionando resultados posibles sobre zonas de inundación se utilizó el programa HEC -RAS, Así mismo, se propone establecer soluciones de ingeniería correctivas- que fuesen necesarias para mitigar o eliminar los riesgos, orientando a reducir el grado de vulnerabilidad".

Según (Quiñones, D. Y Rojas, J, 2018, p.) En su tesis presenatda en Lima con el título "Modelamiento hidráulico del cauce en río huaycoloro mediante el programa HecRas para mitigar las inundaciones en Huachipa, 2018" cuyo objetivo fue "Identificar las zonas más críticas del río Huaycoloro mediante el modelamiento hidráulico del software Hec-ras en un tramo de 3 km para plantar soluciones al riesgo de inundaciones, 2018". Dando como en la conclusión que "con los resultados obtenidos del programa se conoció los distintos puntos, críticos y vulnerables existentes en la zona de estudio, por lo cual para su

solución se planteó el diseño de muros de gaviones ya que viene a ser la solución más viable y económica".

Y en otros idiomas se there is the thesis of the engineer Edgar Castelló, "Determination of the Hydraulic capacity of the Los Molinos - Córdoba channel". National University of Córdoba, Master in Engineering Sciences - Mention in Water Resources. Thesis to qualify for the Master's degree. Córdoba - Argentina 2009, which after having used the numerical models, in one of its conclusions mentions that by applying the HEC-RAS (hydrological engineering center - river analysis system) and SWMM (Water Management Model)) Pluvial), an adequate representation of the hydraulic characteristics of the canal was achieved. HEC-RAS will achieve the simulation of the sections with free surface flow and the visualization of the generated backwater curves. The pressure flow in the existing siphons was estimated by means of the SWMM model. There is the thesis of Mr. Oscar Lenin Juela Sivisaca, "Hydrological study and water balance of the upper basin of the Catamayo river to the sand station at the site of El Boquerón, Loja province. National University of Loja. Thesis to obtain the professional title of Agricultural Engineer. Loja - Ecuador 2011, indicating in its conclusions that: • The temporal distribution of gauges historically carried out at the Arenal station are not sequential and do not follow reliability, therefore the discharge curves of general duration and seasonal variation are not reliable

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Tipo de investigación

Este trabajo de investigación será de tipo experimental, explicativa, cuantitativa

- Sera experimental, porque se manipulará la variable independiente analizando los datos y el fenómeno a estudiar
- Sera explicativa, porque se recogerán datos de acuerdo a lo observado en campo y se describirán los procesos y análisis de interpretación del fenómeno a estudiar

Diseño de Investigación

Según (HERNANDEZ, 2014) El término diseño se refiere al plan o estrategia concebida para obtener la información que se desea con el fin de responder al planteamiento del problema por ello el diseño de la investigación elegida será de tipo Experimental, cuasi experimental

- Será experimental, porque se manipulará intencionalmente la variable de acción para así poder analizar sus posibles resultados, es decir manipular las causas para examinar las consecuencias sobre la variable dependiente
- Sera casi experimental, porque también se tendrá que manipular y calcular la variable independiente

3.2 Variables y operacionalización

Variables

Variables Independientes

MARGEN IZQUIERDO DEL RIO SECO

Variables Dependientes

Gaviones

A) Definición conceptual

DEFENSAS RIBEREÑAS: son aquellas estructuras implementadas que son utilizadas para poder proteger las áreas aledañas a los ríos. Para evitar que se produzcan los procesos de erosión, socavación e inundación que ejerce la crecida de los ríos a raíz de constantes precipitaciones. Estas obras se ubican en puntos localizados que por lo

general protegen zonas poblacionales, resultan efectivas para el área designada; sin embargo, también cambian el régimen natural del flujo, por ello, es de suma importancia un correcto análisis y diseño previo a su construcción".

Fig. 1Defensa Rivereña con gaviones

Las defensas ribereñas pueden ser continuas o discontinuas:

- •Las defensas ribereñas continuas, son las denominadas marginales o longitudinales. Están apoyadas sobre el lecho y talud y están en contacto permanente con las aguas del río. Pueden ser diques, muros de contención, tablestacados, etc. Es de suma importancia el diseño de la cimentación ya que influye el factor de profundidades de erosión que puede alcanzar el río en épocas de crecida.
- •Las defensas ribereñas discontinuas, son aquellas estructuras transversales a la orilla del río, las cuales son típicamente el sistema de espigones.
- **B) GAVIONES:** Según (TIBANTA,2012) "La construcción de gaviones se emplea tanto en obras provisionales como en obras semipermanentes en los casos en que se requiere una obra dúctil o se desea una obra de bajo valor económico, es provechoso conocer que cada día se están empleando 14 más los gaviones en obras en que se esperan estabilidades considerables".

Los gaviones tienen el refuerzo en sus extensiones estructurales, así mismo tiene una larga vida útil, así son utilizados en diversas obras, sobre todo en como contención y defensas ribereñas. También tienen las características funcionales, constructivas donde permiten una mayor ventaja en menor costo e instalación, así como recalcando tiene largo tiempo de vida.

TIPOS DE GAVIONES:

GAVION CAJA: Este tipo de gavión lo utilizan en la mayoría de casos donde las estructuras son sujetas a empuje, por ejemplo, en la estructura de contención.

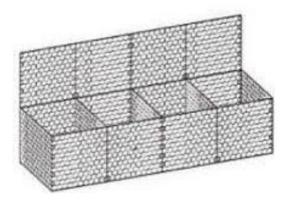


Fig. 2: Gaviones caja

GAVION COLCHON: Lo caracterizan a este tipo de gavión porque uno de sus lados laterales está reforzado por una malla hexagonal y por tener un parámetro frontal, este gavión tiene resistencia a la abrasión, así son especialmente usadas por obras hidráulicas.

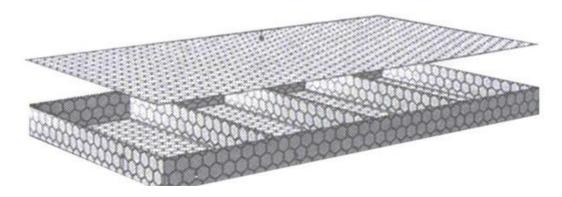


Fig. 3: Gaviones Colchón

GAVION SACO: Es una Malla tejido de doble torsión, guiándonos de la norma ASTM A975, estos deben de ser llenados con piedras que se colocan en obra permitiendo obtener una estructura flexible y permeable.

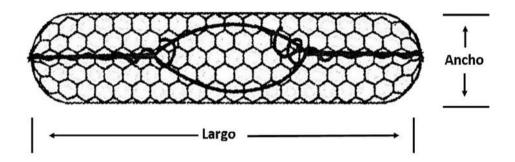


Fig. 4: Gaviones Saco

Definición Operacional

Para la evaluación y análisis de la estabilidad de taludes lo que se necesitan hacer varios estudios entre ellos el estudio de mecánica de suelos, también podemos encontrar el levantamiento topográfico.

Dimensión

Estabilización de taludes.

Indicadores

Levantamiento topográfico

Escala de medición

La escala de medición se realizará en "m"

Población, muestra y muestreo

Población

Según (Jiménez, 1994, p.45), "La población objeto de estudio es aquella sobre la cual se pretende que recaigan los resultados o conclusiones de la investigación". La población que vamos a estudiar es el total del área que abarca el margen izquierdo del rio seco, sector Shaurama.

Muestra

Según (Tamayo, T. Y Tamayo, 1997, p.38), define que la muestra "es un grupo de individuos donde se toma de la población, para estudiar un fenómeno estadístico" La muestra que usaremos será los 1000 km2 del margen izquierdo que será para poder analizar y estudiar.

Muestreo

Según (Arias, 2006, p.86) nos dice que "el muestreo un proceso en el que se conoce la probabilidad que tiene cada elemento de integrar la muestra".

Este proyecto llevara el procedimiento de un muestreo no probabilístico por conveniencia del estudio dado.

3.3 Técnica e instrumento de recolección de datos

Técnica de recolección de datos

En este periodo de estudio vamos a emplear la técnica de recolección de datos a la Observación y a la ficha Documental.

- La observación, porque permitirá conocer datos reales para el desarrollo de la aplicación de los materiales a usar.
- Ficha documental, porque nos va a permitir seleccionar, sistematizar y organizar los datos de la información obtenida de diversas fuentes, para así poder elaborar el marco teórico y conceptual.

Instrumentos de recolección de datos

Para (BAENA, 2017). Los instrumentos son los apoyos que se tienen para que así las técnicas puedan cumplir su propósito. Por tanto, se considerará como instrumento a la guía de observación y la ficha bibliográfica

✓ Guía de observación, porque nos permitirá enfocarnos en el objeto de estudio mediante la recolección y obtención de datos del fenómeno señalando los aspectos más relevantes .

3.4 Procedimientos

El trabajo de investigación lo ejecutamos de la siguiente manera:

✓ Realizamos el reconocimiento del terreno para así hacer el levantamiento topográfico.

Fig. 5: Área del rio seco

✓ El levantamiento topográfico y determinación de la cota

Fig. 6: Levantamiento topográfico

En este punto del procedimiento nosotros tomamos nota de cada punto para así poder pasar al siguiente punto, que es:

✓ Luego se procedió a subir los datos al AutoCAD



Fig. 7: Dibujo del levantamiento topográfico en civil 3D

 ✓ Después de esto se procedió con las excavación de las calicatas para el estudio de suelo

Fig. 8: Excavación del terreno para el estudio de suelo

✓ Procedimos ir al laboratorio para examinar la muestra.

Fig. 9: Laboratorio para examinar la muestra

✓ Después del levantamiento topográfico y la mecánica de suelos ingresamos los datos al Hec-ras. Para poder realizar el modelamiento

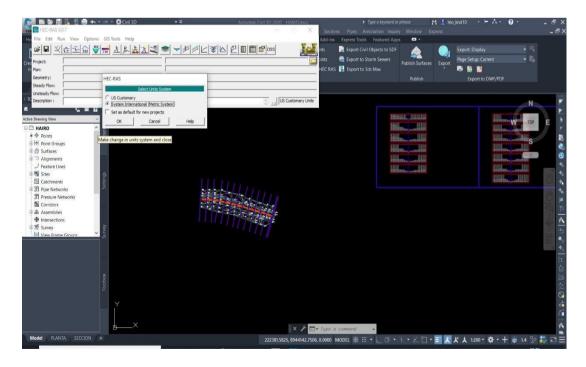


Fig. 10:Datos al Hec-ras. Para poder realizar el modelamiente

3.4 Método de análisis de datos

Para los análisis de datos de este proyecto se harán mediante diferentes métodos con la finalidad de brindar mayor comprensión del trabajo a realizar, entre ellos destacan:

- La observación: porque tendrá la capacidad para poder describir y explicar el fenómeno a estudiar, luego de poder obtener los datos convenientes y fiables que corresponden a la estabilización de taludes.
- Analítico: porque consistirá en la fragmentación de un todo, descomponiendo sus elementos para poder observar las causas, la naturaleza y los efectos.
- Experimental: porque habrá modificaciones en la variable creando las condiciones inevitables, para hacer la aclaración de las propiedades y relaciones del objeto, que serán de gran utilidad en la investigación.

3.5 Aspectos éticos

En este proyecto de investigación se realizará con mucha responsabilidad ya que los resultados serán totalmente verificados; con el fin de obtener resultados veraces respetando los parámetros de elaboración y ejecución, las teorías de los autores serán citados correctamente, valorando el trabajo ya realizado en sus investigaciones. Recordando siempre que la sociedad y el país entero busca vialidades seguras, duraderas económicas y de calidad

IV. RESULTADOS

4.1. DATOS GENERALES

La región Ancash provincia Huaraz, distrito de Huaraz del barrio Shaurama.

UBICACIÓN GEOGRÁFICA

La provincia de Huaraz se encuentra localizado en las siguientes coordenadas UTM es la latitud: 9°31′40″ S, longitud: 77°31′40″

O Altitud sobre el nivel del mar: 3059 m.

Fig. 11:Mapa de ubicación

4.2. RESULTADOS POR OBJETIVOS

Objetivo general

Realizar el cálculo y así elaborar el diseño del sistema de defensa ribereña aplicado al tramo del río seco, ubicado en el sector Shaurama – Huaraz 2021

Objetivos específicos

A) CONOCER EL TERRENO DE ESTUDIO, PARA ELLO SE REALIZÓ UN LEVANTAMIENTO TOPOGRÁFICO

El estudio contiene nuestro levantamiento topográfico donde nos va a permitir obtener los planos de planta, perfil longitudinal y secciones transversales del área de estudio. La zona de estudio se ha seleccionado en el tramo más crítico debido a que existe una población que no respeto la faja marginal del rio en el cual se procedió el levantamiento topográfico. Se utilizó el equipo usual para el levantamiento topográfico. Para el proyecto de investigación se realizó el levantamiento topográfico del cauce en una longitud 0.150 km. A su vez se realizó el reconocimiento visual y su posterior levantamiento topográfico

FACULTAD	Ingeniería civil	
ASESOR	Ing. Carlos Alberto Villegas Martínez	
AUTORES	Ciriaco Celmi Jhon y Shuan Maguiña Wendy	
FECHA	14/10/2021	

COORDENADAS DE PUNTOS DEL LEVANTAMIENTO TOPOGRAFICO EN EL SISTEMA UTMWGS-84

#	ESTE	NORTE	COTA	DESCRIPCIO
PUNTO				N
1	222291.9432	8944294.137	3074.2419	BM1
2	222288.3283	8944294.757	3073.5527	TN
3	222288.2706	8944294.775	3073.553	TN
4	222286.3361	8944295.354	3073.6129	TN
5	222282.3436	8944296.914	3073.1763	TN
6	222276.1381	8944298.92	3072.2526	TN
7	222269.9252	8944300.854	3071.8158	TN
8	222259.7238	8944303.389	3070.6782	TN
9	222256.9168	8944303.666	3070.668	TN
10	222252.8024	8944300.724	3070.289	TN
11	222262.9497	8944297.907	3071.4223	LV
12	222273.2325	8944294.933	3072.3691	LV
13	222280.742	8944292.279	3073.0291	LV
14	222280.286	8944289.251	3073.3473	LV
15	222288.8369	8944286.46	3073.5466	LV
16	222295.1628	8944284.152	3074.3599	LV
17	222308.8075	8944313.493	3075.9124	LV
18	222299.3696	8944315.423	3074.902	LV
19	222287.1947	8944317.803	3073.6106	LV
20	222270.2541	8944324.119	3071.6151	LV
21	222257.2532	8944328.744	3070.1168	LV
22	222252.3265	8944330.634	3069.9154	LV
23	222223.0426	8944330.286	3068.0072	TN
24	222245.9751	8944322.779	3069.3373	TN
25	222263.3629	8944318.731	3070.7044	TN
26	222264.2578	8944318.909	3071.1258	TN
27	222271.4671	8944316.824	3071.716	TN
28	222278.1948	8944314.912	3072.4715	TN
29	222289.7961	8944311.299	3073.6446	TN
30	222297.2364	8944309.288	3074.5812	TN
31	222302.2257	8944307.801	3075.1849	TN
32	222308.0294	8944305.922	3076	TN
33	222313.7087	8944303.97	3076.7298	TN
34	222313.2169	8944300.682	3074.3395	CAMINO
35	222308.95	8944293.478	3073.8448	CAMINO
36	222297.8773	8944296.948	3072.7589	CAMINO
37	222292.1032	8944297.666	3072.3165	CAMINO
38	222301.1694	8944305.824	3072.8879	CAMINO
39	222294.6016	8944306.923	3072.342	CAMINO
40	222288.6237	8944307.88	3071.7073	CAMINO
41	222285.3054	8944299.148	3071.6562	CAMINO
42	222272.74	8944302.492	3070.3652	CAMINO
43	222272.0171	8944314.351	3070.1925	CAMINO

44	222266.8188	8944314.968	3069.435	CAMINO
45	222261.5996	8944317.482	3069.0916	CAMINO
46	222253.6677	8944316.945	3068.2777	CAMINO
47	222233.5995	8944323.636	3066.4325	CAMINO
48	222246.0126	8944312.042	3067.556	CAMINO
49	222272.519	8944302.89	3070.249	CAMINO
50	222283.4955	8944300.161	3071.4777	CAMINO
51	222293.2996	8944298.117	3072.3231	CAMINO
52	222296.6033	8944297.345	3072.6452	CAMINO
53	222303.2288	8944295.634	3073.3643	CAMINO
54	222287.3985	8944302.674	3071.6184	CAMINO
55	222279.5198	8944306.49	3070.7997	CAMINO
56	222269.3819	8944309.438	3069.9379	CAMINO
57	222298.7031	8944300.287	3072.814	CAMINO
58	222253.1643	8944313.538	3068.1871	CAMINO
59	222234.4407	8944318.8	3066.5355	CAMINO
9993	222308.4026	8944289.883	3075.5	BM2
9998	222233.4786	8944314.17	3065.87	TALUD
10000	222222.3473	8944322.236	3064.68	rio
10001	222212.1811	8944324.909	3063.12	rio
10002	222201.531	8944324.835	3061.58	rio
10003	222190.8194	8944323.97	3060.31	rio
10004	222221.0036	8944317.153	3064.32	TALUD
10005	222211.0342	8944319.227	3063.42	TALUD
10006	222200.693	8944318.172	3060.87	TALUD
10008	222191.537	8944328.382	3061.03	TALUD
10009	222201.4613	8944328.939	3061.65	TALUD
10010	222212.2043	8944329.231	3063.87	TALUD
10011	222222.8148	8944326.827	3064.75	TALUD
10012	222245.4027	8944305.348	3069.87	CAMINO

Tabla 1: Datos de las coordenadas del levantamiento topográfico

Fuente: Elaboración propia

Descripción: De acuerdo con la tabla de las coordenadas del levantamiento topográfico, se puede observar las coordenadas correspondientes para la defensa rivereña en estudio tiene una cota máxima de 3093.1647 y mínima de 3074.2419, los cuales serán base fundamental para comenzar con el modelamiento del hec ras

B) **ESTUDIO DE MECÁNICA DE SUELOS.**

Este estudio contienes nuestro trabajo en el laboratorio de mecánica de suelos, donde vamos a ver la granulometría, humedad, límites de consistencia y limite plástico. La zona de estudio que ha sido selecciona es 3 zonas que lo tomamos por conveniencia, para poder realizar las calicatas. Se utilizó el equipo usual para poder hacer las calicatas y

también para el laboratorio Para el proyecto de investigación se realizó 3 calicatas de 1.00 x 1.50 m.En laboratorio hallamos el contenido de humedad que fue 11.82, los límites de consistencia fueron: I.L 27.63%, LP 23.39%, IP 4.27% y en el tamizado encontramos que el peso retenido es de 2923.40, así como la clasificación SUCS es graba bien graduada, limosa con arena.

Contenido de humedad

Como sabemos para hallar el contenido de humedad nosotros hicimos esta prueba en el laboratorio dándonos como resultado este cuadro presentado.

Recipiente N ^O	4	5
Peso Húmedo + Recipiente (gr)	314.20	302.30
Peso Seco + Recipiente (gr)	285.10	275.20
Peso recipiente (gr)	40.00	38.20
Peso del agua (gr)	28.10	27.10
Peso Suelo Seco (gr)	245.10	237.00
Contenido de Humedad (%)	9.82	101.81
HUMEDAD PROMEDIO (%)	9.82	

Tabla2: Contenido de humedad Fuente: Elaboración propia

Para estas pruebas necesitamos mandar las pruebas al horno.

Fig. 12:Moldes C

LIMITE DE CONSISTENCIA

DETERMINACION DEL LIMITE LÍQUIDO

N ^o de golpes	11	17	27	37
Peso frasco + Peso suelo Húmedo (gr)	35.20	34.00	35.60	37.30
Peso frasco + peso suelo seco(gr)	29.90	29.00	30.50	32.00
Peso frasco (gr)	12.00	11.40	12.00	12.12
Peso del agua (gr)	5.30	5.00	5.10	5.30
Peso Suelo Seco (gr)	17.90	17.60	18.50	19.88
Contenido de Humedad (%)	29.61	28.41	27.57	26.66

Tabla 3: límite de consistencia Fuente: Elaboración propia

DETERMINACIÓN DEL LÍMITE PLÁSTICO

Peso Frasco + peso suelo humedo (gr)	24.20	22.00	25.20
Peso frasco + peso suelo seco(gr)	22.50	20.50	23.10
Peso frasco (gr)	15.00	14.20	14.20
Peso del agua(gr)	1.70	1.50	2.10
Peso suelo seco(gr)	7.50	6.30	8.90
Contenido de humedad	22.67	23.81	23.60

Tabla 4: determinación del límite plástico Fuente: Elaboración propia

i dente. Liaboración prop	Fuente. Elaboración propia			
Limite liquid (LL)	27.63			
Limite plastic (LP)	23.36			
Indice de plasticidad(LP)	4.27			

MODELAMIENTO CON EL HEC-RAS

Para analizar los resultados en el programa, realizamos una simulación hidráulica la cual nos mostró las secciones transversales para poder seguir con el modelamiento donde se sufre el desborde. En este caso el lado más afectado es el margen izquierdo donde los pobladores han escavado para poder evitar el desborde.

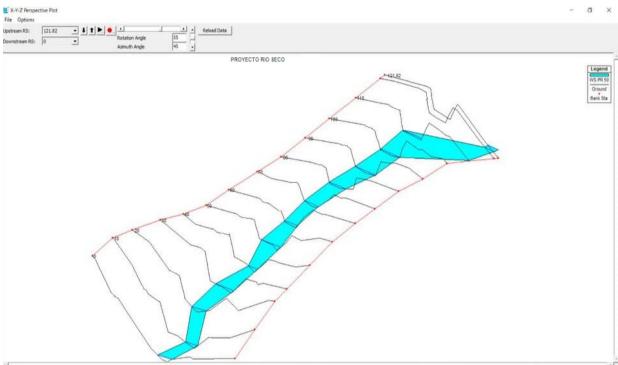


Fig. 13:Vista lateral de la zona del desborde más critico

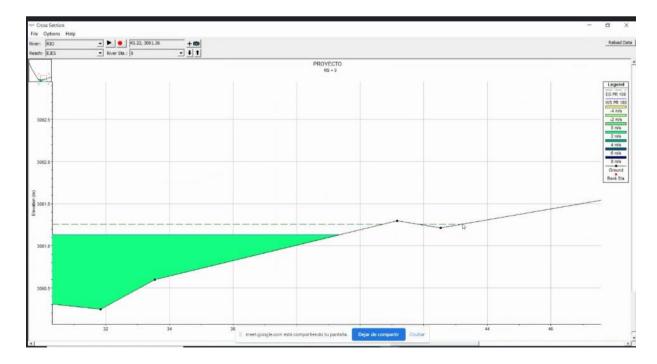


Fig. 14:Sección transversal del rio seco con desborde

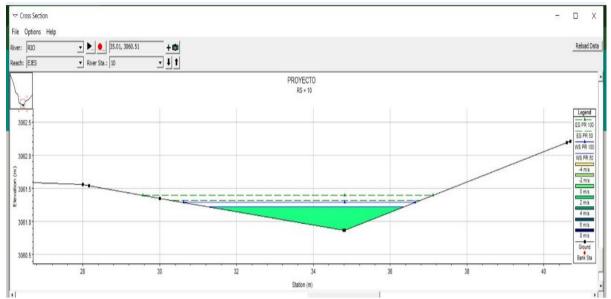


Fig. 15: Sección transversal del rio seco sin desborde

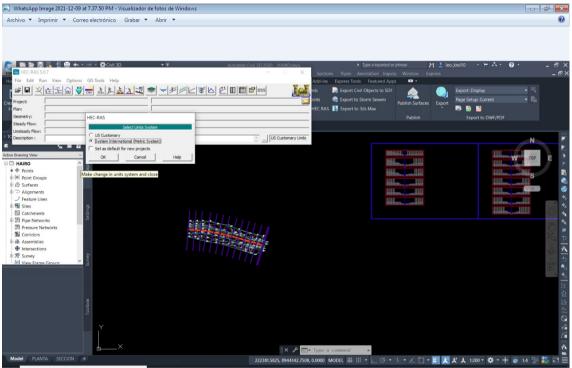


Fig. 16: Modelamiento de la zona

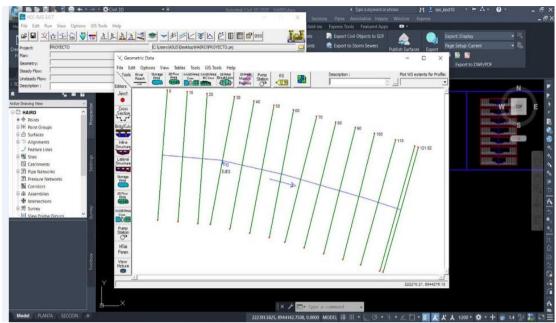


Fig. 17:Ejes del rio Seco

Tabla 5: Guía de observación de la defensa rivereña

GUIA DE OBSERVACION DE LA DEFENSA RIVEREÑA					
FACULTA	GUIA DE OBSEI		EFENSA KIV	EKENA	
D	Ingeniería civil	DEPARTAMENT O	Ancash		
ASESOR	Ing. Carlos Alberto Villegas Martínez	PROVINCIA	Huaraz		
AUTORES	Ciriaco Celmi Jhon Shuan Maguiña Wendy	DISTRITO	Huaraz		
FECHA	23/10/2021	LOCALIDAD	Sector Sha	urama	
		TERRENO			
A	ASPECTOS	SI			NO
RESPECTIVO RIVEREÑA AN	NTERIORMENTE				Х
	SA RIVEREÑA CUENTA O CORRESPONDE A UN GRICOLA				Х
c. EL PROPIETARIO					X
ALREDEDOR RIVEREÑA					X
DEFENSA R ANTECEDENT	D DE ESTUDIO DE LA RIVEREÑA YA TIENE TES DE HABER USADO ON EL MODELAMIENTO				X
POSIBLE DE					X
TIPO DE S	SUELO DEL TALUD	CARACTERISTICAS			
_	ESTRATOR)	ALTURA	TEXTUR A	COLOR	OBSERVACIONE S
1. ORGANICO) (L)	15 cm	Arenosa	Marrón claro	
2. LIMOSO (M	1)	20 cm	Arenosa	Marrón oscuro	ninguna
3. ARCILLOD	SO ©	20 cm	Arenosa	Marrón oscuro	
4. ARENOSO	(S)	45 cm	gruesa	Marrón oscuro	
5. GRABOSO	(G)	50 cm	gruesa	Marrón oscuro	

Descripción: Como se puede observar de acuerdo a los resultados de la guía de observación existen tramos del rio seco que no cuentan con una defensa rivereña que afectaría a la población en caso de desborde del rio en tiempos de lluvia por tal razón es necesario construir una defensa rivereña

V. DISCUSIÓN

La discusión de los resultados se hizo posible con todo el procedimiento realizado como el levantamiento topográfico, la mecánica de suelos y el modelamiento del HEC-RAS, esto permitió saber si se necesita o no la construcción de una defensa ribereña en el sector Shaurama, con presencia del factor sísmico y sobre todo con presencia de las aguas de lluvia.

A partir de los resultados encontrados, aceptamos la hipótesis que establece que el diseño de muros de gaviones que se realizara mediante un análisis por gravedad y consideraciones sísmicas cumpliendo las condiciones de seguridad a la estabilidad. Así mismo, entre las recopilaciones de las técnicas de construcción de muros de gaviones propuesta por (LUJAN, 2017) dice que con "El uso de gaviones mejora la resistencia a la erosión del rio Huaycoloro, zona Huachipa distrito de Lurigancho - Chosica 2017. Se logra la mejora de la socavación en un 27,83% que la significancia de la prueba T Student, aplicada a la dimensión socavación antes y después es de 0.000 por consiguiente".

Así como dice Lujan en el rio seco- sector Shaurama también hubo erosión en ese lado izquierdo es necesario la defensa de gaviones para evitar las consecuencias de los desastres. Ya que este sistema es muy económico como también factible.

Según (Zevallos, 2015) en su tesis "diseño de la defensa ribereña para el balneario turístico cocalmayo, ubicado en la margen izquierda del río Urubamba" nos dice que "El planteamiento de obras de defensas ribereñas requiere de una amplia información histórica en temas como la hidrología, geología, procesos morfológicos referentes a caudales y niveles. El no disponer de información apropiada puede originar cierta incertidumbre en los análisis hidráulicos".

Como interpreta Zevallos, para estos casos en el estudio debe de ser riguroso y contar con una variada información, en este caso los autores citados en nuestro trabajo, nos enseñaron y guiaron a lo largo de este trabajo realizado día a día con nuestro asesor. Nuestra defensa

ribereña en el rio seco- sector Shaurama, conto con todos los pasos ya mencionados como también se dieron los resultados mediante cada estudio realizado.

VI. CONCLUSIONES

- 1. En este proyecto de Defensa ribereña del sector Shaurama se llegó a la conclusión que si es necesario la construcción del muro de gaviones para mejorar la protección ribereña el río seco, por el peligro de que pueda ocurrir un desbordamiento sin que estas riberas estén protegidas. Encontramos el caudal para nuestro diseño, con toda la recopilación de datos obtenidos también con el levantamiento topográfico realizado incluyendo el modelamiento en Hec Ras.
- Como se mencionó para este tipo de estudio se necesita una amplia información y al no tener una información histórica geología, hidrológica o referencias en niveles y caudales nos retrasa en algunos análisis hidráulicos.
- 3. En el levantamiento topográfico con 1000 metros de zona de estudio, con la existencia de viviendas en pocos metros del rio, hemos determinado una pendiente promedio que es de 9 %.
- 4. En el estudio de mecánica de suelos con 3 calicatas realizadas llegamos al estudio que nuestro terreno es de Grava bien graduada, limosa con arena esto beneficia nuestra defensa ribereña como también teniendo como humedad 11.81 % esto tendrá la resistencia para poder soportar los gaviones.
- 5. En el modelamiento con el Hec-Rac, usando el análisis de socavación, cotas del levantamiento topográfico más el estudio de suelo llegamos al modelamiento de un muro con su esquema cálculo de pendiente 0.0125 aguas arriba y su retorno de caudal de 50 y 100 años. Ahí nos dimos cuenta la necesidad de la defensa rivereña con gaviones.

El uso de gaviones mejora la resistencia a la erosión del rio Seco, sector Shaurama distrito de Huaraz – Ancash 2021. Después de haberse realizado las conclusiones y revisar definiciones, conveniencias entre construir un muro de concreto de contención o un muro de contención de gavión, llegamos que construir un muro gaviones nos conviene porque cumple con las exigencias del RNE (Reglamento Nacional de Edificaciones), también por el tema presupuestal por su costo-beneficio,

como también el material es muy accesible ya que lo podemos encontrar en la misma zona, este muro nos ayudara a la protección ribereña del río seco. Así mismo el Rio Seco tiene estos problemas en épocas de lluvia frecuentemente, ya que es la estación donde el caudal llega a subir su intensidad.

VII. RECOMENDACIONES

- Antes que nada para poder realizar el estudio de una defensa ribereña con la finalidad de un diseño debemos investigar a organismos responsables y fuentes que tengan el argumento necesario, como también minimizar pérdidas económicas que se puedan causar.
- 2. A las autoridades municipales tener en cuenta el riesgo que tienen cada familia, no necesariamente se debe de tomar las medidas del caso cuando empiece la crecida del rio en tiempos de lluvia.
- 3. Como también a los entes nacionales encargados deben de mantener actualizados como también informados a los pobladores de estas zonas, no necesariamente en el rio de estudio de la investigación, si no en cada lugar del país ya que la población no toma en cuenta estos riesgos hasta que están a punto de suceder.
- 4. También recomendamos que la información siga creciendo para así en un futuro los parámetros de sedimentología e hidráulicos tenga información recopilada para establecer así un mapeo regional con la finalidad de distribuir los sedimentos de la cuenca del rio seco.

REFERENCIAS

Alvaro Aguilar, L. A., & Henriquez Fasanando, L. M. K. (2015, 25 marzo). Universidad Privada Antenor Orrego: Diseño hidráulico y estructural de defensa ribereña del rio Chicama tramo puente Punta Moreno – pampo de Jaguey aplicando el programa River. Repositorio Nacional. https://repositorio.upao.edu.pe/handle/20.500.12759/683

HERNANDEZ, Roberto., FERNANDEZ, Carlos. y BAPTISTA, Maria. 2014. *Metodologia de Investigacion.* 6ta ed. Mexico: McGraw-Hill/, 2014. 978-1-4562-2396-0.

SOTO CONTRERAS 2017
https://repository.ucatolica.edu.co/bitstream/10983/16402/1/TRABAJO%20DE%

RONDÓN, MARTÍN ALONSO, & RODRÍGUEZ, VIVIANA ALEJANDRA (2007). Algunos conceptos básicos para el cálculo del tamaño de la muestra. Universitas Medica, 48(3),334-339.[fecha de Consulta 21 de Noviembre de

2021]. ISSN: 0041-9095. Disponible en:

20GRADO%20GAVIONES%20final.pdf

https://www.redalyc.org/articulo.oa?id=231018668014

BORJA, Manuel. Metodología de la investigación científica para ingenieros [en línea]Chiclayo: 2012 [Fecha de consulta: 02 de mayo 2021]. Disponible en:

https://es.slideshare.net/manborja/metodologia-de-inv-cientifica-paraing-civil

Díaz, J. S. (2001). Control de erosión en zonas tropicales. Colombia: División editorial y de publicaciones Universidad Industrial de Santander.

EGEMSA. (2004). Estudio de naturalización de la información hidrológica del rio Vilcanota.

EGEMSA. (2008). Google earth. Retrieved Junio 17, 2014, from http://siar.regioncusco.gob.pe/sial_urubamba/index.php?accion=verListElement os &idTipoElemento=37

LUJAN. (2017). "Uso de gaviones para mejorar la defensa ribereña del Rio Huaycoloro, zona de Huachipa distrito de Lurigancho, Lima 2017" https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/12598/Luj%c3%a 1n LJL.pdf?sequence=1&isAllowed=v

QUISPE, D Y ROJAS, J (2018) "Modelamiento hidráulico del cauce en río huaycoloro mediante el programa HecRas para mitigar las inundaciones en Huachipa,

2018"

file:///C:/Users/PC%20House/Downloads/Modelamiento%20hidr%C3%A1ulico %20del%20cauce%20en%20r%C3%ADo%20huaycoloro%20mediante%20el% 20programa%20HecRas%20para%20mitigar%20las%20inundaciones%20en% 20Huachipa,%202018%E2%80%9D.pdf

ZEVALLOS (2015) "diseño de la defensa ribereña para el balneario turístico cocalmayo, ubicado en la margen izquierda del río urubamba" file:///C:/Users/PC%20House/Downloads/TESIS%20DE%20DISE%C3%91O%2 0DE%20DEFENSA%20RIBERE%C3%91A%20(1).pdf

Anexo 3: MATRIZ DE CONSISTENCIA

tabla 6: matriz de consistencia

DISEÑO DE LA	DISEÑO DE LA DEFENSA RIBEREÑA CON LA UTILIZACION DE GAVIONES DEL RÍO SECO, SECTOR SHAURAMA – HUARAZ – ANCASH 2021						
PROBLEMA	OBJETIVO	HIPOTESIS	VARIABLE	DIMENSION	INDICADORES		
iProblema	Objetivo	Hipótesis	Variable				
General	General	General	Independiente		Precipitación.		
¿El diseño de la defensa ribereña para	Realizar el cálculo y elaborar el	Esto ayudara a intentar		Inundación urbana	Coeficiente de escorrentía		
el margen izquierdo del río seco, sector Shaurama –	diseño del sistema de protección ribereña aplicado al	predecir si se hace un diseño hidráulico óptimo de defensa	MARGEN IZQUIERDO DEL	Levantamien to topográfico	Recopilación de información Análisis de errores del levantamiento		
Huaraz – Áncash 2021 soportara las socavaciones	tramo del río seco, ubicado en el sector Shaurama –	ribereña del río Seco se logrará la	RIO SECO	Faturdia da	Granulometría Contenido de humedad		
y erosiones a causa de las fuertes lluvias y fenómenos naturales?	Huaraz. Estas obras protegerían adecuadamente a la población.	protección de la población de Shaurama.		Estudio de mecánica de suelos.	Densidad relativa		
Problema Específico	Objetivos Específicos	Hipótesis General	Variable dependiente		Calculo del caudal		
¿Cómo podemos asegurar que el diseño de la defensa es eficaz y segura?	Determinar el estudio climático, la pluviometría de la zona, el cálculo de caudales y la explicación del estado actual de	Los estudios a realizar nos ayuda a diseñar una efectiva defensa ribereña, para la zona, con esto poder detener los		Estudio hidrológico	Pluviometría de la zona Usar el programa Hec-Ras Profundidad hidráulica		
	la zona.	riesgos que pueda causar las inundaciones.	Gaviones		máxima Caudal de diseño Pendiente		
¿Por qué el gavión es una buena opción	Realizar el estudio del diseño	El gavión nos ayudara como Diseño		máxima y Mínima.			
para la	estructural de la	como presas		estructural	calidad		
defensa?	defensa a base de Gaviones	filtrantes que permiten el flujo normal del agua y la			proceso constructivo Mayas metálicas		

	retención de azolves.			
--	--------------------------	--	--	--

Anexo 4: MATRIZ DE OPERACIONALIZACIÓN DE VARIABLES

tabla 7: matriz de operacionalización de variables

VARIABLE DE LA INVESTIGACIÓN	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA
VARIABLE DEPENDIENTE MARGEN IZQUIERDO DEL RIO SECO	Hacemos referencia generalmente a la ribera o lado izquierdo de un río o arroyo. Si nos imaginamos o		INUNDACIÓN URBANA	PRECIPITACIÓN COEFICIENTE DE ESCORRENTIA CAUDAL	
	inmediaciones de un río, mirando hacia donde fluye el río, es decir mirando aguas abajo, la margen izquierda es la orilla	hacer varios estudios entre ellos el estudio de mecánica de suelos, también podemos encontrar el levantamiento topográfico.	LEVANTAMIENTO TOPOGRÁFICO	RECOPILACION DE INFORMACION ANALISIS DE ERRORES DEL LEVANTAMIENTO	LA ESCALA DE
			Estudio de mecanica de suelos	GRANULOMETRIA	MEDICIÓN SE
				CONETNIDO DE HUMEDAD	REALIZARA EN METROS
				CONTENIDO DE HUMEDAD	
	Las defensas ribereñas son	Para poder	ESTUDIO	CALCULO DEL CAUDAL	
VARIABLE INDEPENDIENTE DEFENSA RIBEREÑA	estructuras implementadas que son utilizadas para poder proteger las áreas aledañas a los ríos. Para evitar que se produzcan los procesos de erosión, socavación e inundación que	realizar la	HIDROLÓGICO	PLUVIOMETRIA DE LA ZONA	
			ESTUDIO DEL DISEÑO ESTRUCTURAL	AREA DE LA ESTRUCTURA	
				PROFUNDIDAD HIDRAULICA	
				MAXIMA	
				PENDIENTE MINIMA Y	
	ejerce la crecida de			MAXIMA	ļ

los ríos a raíz de constantes precipitaciones		CAUDAL DEL DISEÑO
		DISEÑO
	GAVIONES	ESTRUCTURAL
		CALIDAD

ANEXO 5 GUIAS DE OBSEVACIÓN

Tabla 8: Guía de observación de la defensa rivereña

GUIA DE OBSERVACION DE LA DEFENSA RIVEREÑA						
FACULTA D	Ingeniería civil	DEPARTAMENT O	Ancash			
ASESOR	Ing. Carlos Alberto Villegas Martínez	PROVINCIA	Huaraz			
AUTORES	AUTORES Ciriaco Celmi Jhon Shuan Maguiña Wendy		Huaraz			
FECHA	23/10/2021	LOCALIDAD	Sector Sha	urama		
		TERRENO				
ļ ,	ASPECTOS	SI			NO	
RESPECTIVO RIVEREÑA b LA DEFENS CON ESTUD	SA RIVEREÑA CUENTA IO CORRESPONDE A	Х			V	
c. EL PROPIETARI	TERRENO TIENE				X	
d. EXISTEN SEMBRIOS ALREDEDOR ALREDEDOR DE LA DEFENSA RIVEREÑA			Х		Х	
e. EL TRAMO DE ESTUDIO DE LA DEFENSA RIVEREÑA YA TIENE ANTECEDENTES DE HABER USADO GAVIONES CON EL MODELAMIENTO HEC RAS					X	
f. EXISTE ALGUN RIESGO DE HACER POSIBLE DEFENSA RIVERÑA CON EL MODELAMIENTO HEC RAS QUE PERJUDIQUE LA CONDICION AMBIENTAL O HUMANA					X	
TIPO DE	SUELO DEL TALUD	CARACTERISTICAS				
(ESTRATOR)		ALTURA	TEXTUR A	COLOR	OBSERVACIONE S	
1. ORGANICO (L)		15 cm	Arenosa	Marrón claro	-	
2. LIMOSO (M)		20 cm	Arenosa	Marrón oscuro	ninguna	
3. ARCILLODSO ©		20 cm	Arenosa	Marrón oscuro		
4. ARENOSO (S)		45 cm	gruesa	Marrón oscuro		
5. GRABOSO (G)		50 cm	gruesa	Marrón oscuro		

Anexo 6: ÁREA DEL PROYECTO DE INVESTIGACIÓN

Fig. 18:Imagen satelital del tramo del rio seco

Fuente: Google Earth

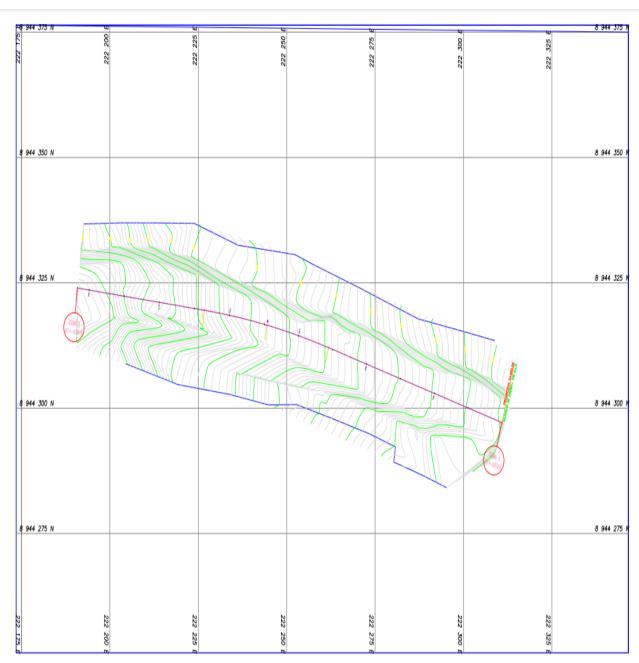


Fig. 19:Vista previa del levantamiento topografico en civil 3D

Página 1 de 5

DETERMINACION DE CAPACIDAD DE CARGA DEL SUELO (TEORIA DE TERZAGHI)

PROYECTO:

DISEÑO DE LA DEFENSA RIBEREÑA CON LA UTILIZACION DE GAVIONES DEL RIO SECO, SECTOR

SHAURAMA - HUARAZ - ANCASH 2021

SOLICITANTE: JHON CESAR CIRIACO CELMI Y WENDI DIANA SHUAN MAGUIÑA

LUGAR

SHAURAMA-HUARAZ-ANCASH

CALICATA Nº: C01 MUESTRA Nº: MAB 01

PROFUND.(m): 1.50 FECHA:

8/10/2021

CLASIFICACION SUCS DE LOS SUELOS

GW-GM

Nivel de cimentación

OBSERVACIONES:

Según la característica obtenida de los ensayos estandar de laboratorio para la Clasificación Unificada de Suelos, se tienen los siguientes parámetros para el cálculo de la capacidad de carga

POR TEORIA DE TERZAGHI

Se conoce que para una cimentación corrida la capacidad de carga última es:

$q_u = c.Nc + y.Df.Nq + 0.5y.B.Ny$

Se ha asumido los siguientes parâmetros para el cálculo:

0: Cohesión del suelo

0.00 Ton/m2 Peso Unitario del suelo 1.85 Ton/m3 Df: Profundidad de la cimentación 1.50 B : Ancho de cimentacion 1.00 m

Nc,Nq,N₇: Factores de Capacidad de carga

Angulo de fricción interna del suelo 29.50

No -28.95 Nq = 17.38 Ny = 20.8

67.47 qu = F.S. = 3.00 qu/F.S. qa = 22.49 Ton/m2 ga =

2.25

qa = 2.25 Kg/cm2

qa =

Kg/cm2 PRESION ADMISIBLE PARA EL PROYECTO

Muestra proporcionada e identificada por el solicitante. Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado de sistema de calidad de la entidad que la produce (Resolución Nº 0002-98/NDECOPI-CRT del 07.01.98). Este documento no autoriza el empleo de materiales analizados, siendo la interpretacion del mismo de exclusiva responsabilidad del usuario

Página 2 de 5

PROYECTO:

DISEÑO DE LA DEFENSA RIBEREÑA CON LA UTILIZACION DE GAVIONES DEL RIO SECO, SECTOR SHAURAMA - HUARAZ - ANCASH 2021

SOLICITANTE: JHON CESAR CIRIACO CELMI Y WENDI DIANA SHUAN MAGUIÑA

LUGAR:

SHAURAMA-HUARAZ-ANCASH

FECHA:

8/10/2021

HOJA RESUMEN DE ENSAYOS ESTANDAR DE LABORATORIO

CALICATA Nº:		C01	
MUESTRA Nº:	STRA Nº:		
PROFUND.(m):		1.50	
	3"	100.00	
	1 1/2*	100.00	
Towns and	3/4"	87.01	
	3/8"	67.54	
	Nº4	51.84	
Porcentaje de material que pasa la	B°N	39.36	
malla de porcion de material < 3"	Nº16	29.26	
	N ₀ 30	18.90	
	Nº50	12.47	
	Nº100	9.14	
	Nº200	7.49	
Coef. de Uniformidad Cu		38.62	
Coef. de Concavidad Co		1.28	
	Grava	48.16%	
Porcentaje de Material	Arena	44.35%	
	Finos	7.49%	
Mitad de Fraccion Gruesa		46.26%	
	L.L.	27.63%	
Limites de Consistencia	LP.	23,36%	
	I.P.	4.27%	
Contenido de Humedad Natural (%)		11.82	
Clasificación SUCS		GW-GM	
Descripción		Grave bien graduada, limosa con arena	

Fig. 21:Ensayos estándar de laboratorio

Página 3 de 5

PROYECTO:

DISEÑO DE LA DEFENSA RIBEREÑA CON LA UTILIZACION DE GAVIONES DEL RIO SECO, SECTOR SHAURAMA - HUARAZ - ANCASH 2021

SOLICITANTE: JHON CESAR CIRIACO CELMI Y WENDI DIANA SHUAN MAGUIÑA

SHAURAMA-HUARAZ-ANCASH

CALICATA Nº: CO1

MUESTRA Nº: MAB 01

PROFUND.(m): 1.50

FECHA:

8/10/2021

CONTENIDO DE HUMEDAD

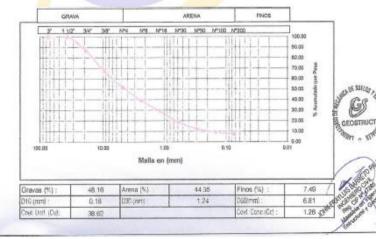
ASTM D 2216 NTP 339.127

Recipiente N°	4	5
Peso Húmedo + Recipiente (gr)	315.20	304.30
Peso Seco + Recipiente (gr)	286.10	276.20
Peso recipiente (gr)	40.00	38.20
Peso del agua (gr)	29.10	28.10
Peso Suelo Seco (gr)	246.10	238.00
Contenido de Humedad (%)	11.82	11.81

Humedad Promedio (%) 11.82

Pagina 4 de 5

PROYECTO UTILIZACION DE GAVIONES DEL RIO SECO, SECTOR SHAURAMA-HUARAZ- ANCASH

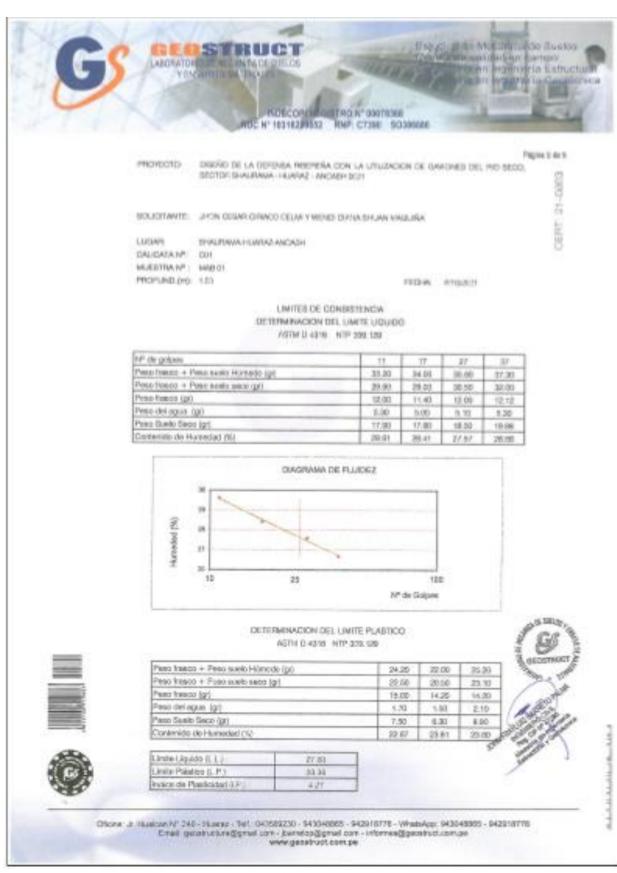
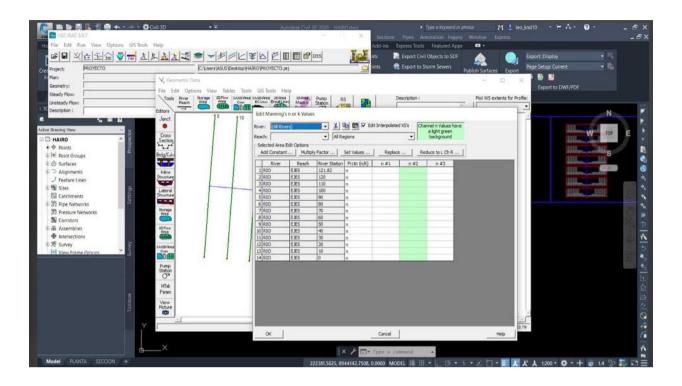
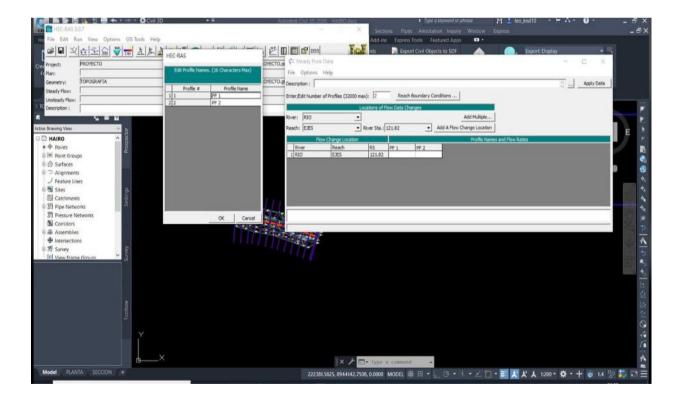
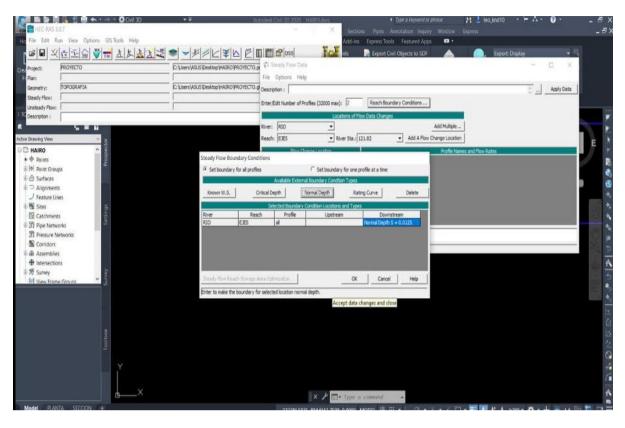

SOLICITANTE: JHON CESAR CIRIACO CELVI' Y WENDI DIANA SHUAN MAGUÑA

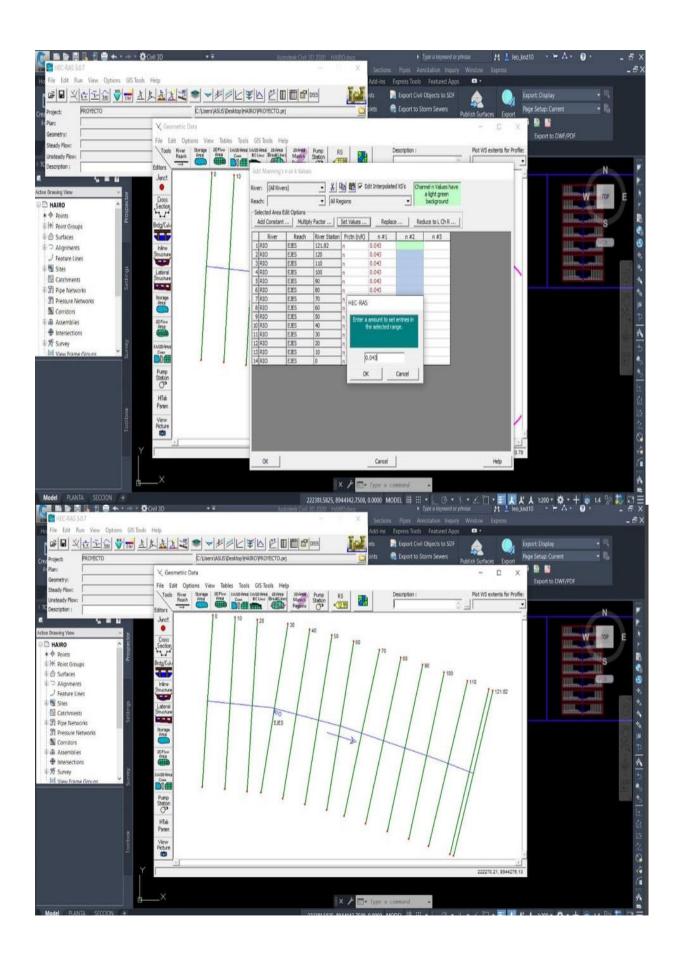
LUGAR: SHAURAMA-HUARAZ-ANCASH

CALICATA N°: CO2 PROFUND. (m):1.50 FECHA: 09/10/2021

ANALISIS GRANULOMETRICO POR TAMIZADO

TAMIZ ASTM	ABERTURA	RETENIDO (gr)	RETENIDO PARCIAL	RETENIDO ACUMULADO	ACUMULADO QUE PASA
	75 000	0 00	0.00	0.00	100.00
	37 500	0.00	0.00	0.00	100.00
	19000	410.60	12.99	12.99	87.01
	9.500	615 10	19.47	32.46	67.54
NC4	4.750	496 30	15.71	48.16	51.84
Nos	2.360	394.20	12.47	60.64	39.36
	1.180	319.20	10.10	70.74	29.26
veo	0.590	327.30	10.36	81.10	18.90
	0.295	203,20	6.43	87,53	12.47
tol 00	0.148	105.20	3.33	90.86	9.14
38-Q00	0.074	52.30	1.66	92.51	
< N°200	0.000	0.00	0.00	92.51	7.49
TOT	AL	2923.40	7		


Fig. 23: Limite de consistencia

