

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Evaluación de resistencia a compresión del concreto f'c 210 Kg/Cm2, con adición de ceniza de cascara de café, San Ignacio, Cajamarca

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Huamán Vela, Orlando (ORCID: 0000-0001-9022-366X)

ASESOR:

Mg. De La Cruz Vega, Sleyther Arturo (ORCID: 0000-0003-0254-301X)

LÍNEA DE INVESTIGACIÓN:

Diseño sísmico y estructural

CHICLAYO – PERÚ 2021

Dedicatoria

A Dios por darme vigor para superar todas las pruebas hacia el logro de mis metas personales y profesionales.

A mi padre, por el ejemplo de superación ya que gracias a su apoyo culmino mi carrera profesional.

A mi madre, por sus sabios consejos y amor incondicional que siempre me han motivado a seguir adelante, siendo el pilar en mi vida quien me acompaño hasta la mitad de mi carrera profesional.

Orlando

Agradecimiento

Mi especial agradecimiento a mi asesor Ing. De La Cruz Vega, Sleyther Arturo, quien me brindó la oportunidad de alcanzar este objetivo, por sus altos conocimientos y experiencia profesional.

Agradecer a todos los ingenieros y profesionales de la Escuela de Ingeniera Civil de la Universidad César Vallejo, que me brindaron sus conocimientos y experiencias, que fueron fundamentales para el desarrollo personal y profesional.

Orlando

Índice de contenidos

Ca	rátu	ıla	i
De	dica	atoria	ii
Agı	rade	ecimiento	iii
ĺnd	ice	de contenidos	iv
ĺnd	ice	de tablas	V
ĺnd	ice	de figuras	vi
		nen	
Ab	stra	ct	viii
ı.			
II.		INTRODUCCIÓN	
III.		ETODOLOGÍA	
3	3.1	Tipo y diseño de investigación	
3	3.2	Variables y operacionalización	
3	3.3	Población y muestra	
3	3.4	Técnicas e instrumentos y recolección de datos	12
3	3.5	Procedimientos	
3	3.6	Método de análisis de datos	13
3	3.7	Aspectos éticos	13
IV.	RE	SULTADOS	
٧.	DI	SCUSIÒN	27
VI.		ONCLUSIONES	
		ECOMENDACIONES	
		RENCIAS	
		OS	
, \ I		♥ ♥	

Índice de tablas

Tabla 1. Contenido de humedad del agregado fino	14
Tabla 2. Contenido de humedad del agregado grueso	14
Tabla 3. Análisis granulométrico del agregado fino	15
Tabla 4. Análisis granulométrico del agregado grueso	15
Tabla 5. Peso unitario suelto del agregado fino	16
Tabla 6. Peso unitario compactado del agregado fino	16
Tabla 7. Peso unitario suelto del agregado grueso	16
Tabla 8. Peso unitario compactado del agregado grueso	17
Tabla 9. Peso específico y absorción del agregado fino	17
Tabla 10. Peso específico y absorción del agregado grueso	18
Tabla 11. Diseño de mezcla de concreto patrón	18
Tabla 12. Diseño de mezcla de concreto adicionando 2.5% de ceniza de	
cascara de café	19
Tabla 13. Diseño de mezcla de concreto adicionando 5% de ceniza de cascara	
de café	19
Tabla 14. Diseño de mezcla de concreto adicionando 7.5 % de ceniza de	
cascara de café	20
Tabla 15. Diseño de mezcla de concreto adicionando 10 % de ceniza de	
cascara de café	20
Tabla 16. Diseño de mezcla de concreto adicionando 12.5% de ceniza de	
cascara de café	21
Tabla 17. Resultado de ensayo de asentamiento del concreto	21
Tabla 18. Resultado de ensayo de peso unitario	22
Tabla 19. Resultado del ensayo a la compresión del concreto –	
F'c=210 kg/cm2	22
Tabla 20. Resultado del ensayo a la compresión del concreto –	
F'c=245 kg/cm2	23
Tabla 21. Resultado del ensayo a la compresión del concreto –	
F'c=280 kg/cm2	23

Índice de figuras

Figura 1. Estructura del café.	8
Figura 2. Esquema de diseño	10
Figura 3. Diagrama de la metodología experimental	12
Figura 4. Comparativo de resultados de ensayo a la compresión – F'c=210	
kg/cm2	24
Figura 5. Comparativo de resultados de ensayo a la compresión – F'c=245	
kg/cm2	25
Figura 6. Comparativo de resultados de ensayo a la compresión – F'c=280	
kg/cm2	26

Resumen

El contenido de esta investigación tiene como finalidad mejorar las características

en el concreto a través de la implementación de polietileno de alta densidad al

concreto. Este producto es una de los más contaminantes hoy en día, este se

encuentra en botellas, envases de comida; que reciclándolos serían un gran avance

para el medio ambiente. Es así como para conseguir lo propuesto, se determinó

como objetivo principal Analizar la influencia del polietileno de alta densidad en las

propiedades físicas y mecánicas del concreto para uso de pavimentación en el

distrito La Victoria en la ciudad de Chiclayo.

Para ello, se determinó realizar ensayos de compresión y flexión a diferentes

muestras con material de polietileno de alta densidad a distintos tiempos de curado,

es así como se realizaron testigos de concreto sin modificar, y testigos adicionando

5%, 7.5%, 10% y 12.5% y 15% de polietileno de alta densidad para cada porcentaje,

en cada muestra experimental.

Se concluye que el polietileno de alta densidad influye de manera positiva, ya que

tras los ensayos se determinó la resistencia a la compresión del concreto

adicionando 15% de polietileno de alta densidad a los 28 días mejoro en 11.16%,

las resistencias de 210 Kg/cm2.

Palabra clave: Resistencia, polietileno de alta densidad, diseño de mezclas

vii

Abstract

The content of this research aims to improve the characteristics in concrete through

the implementation of high-density polyethylene to concrete. This product is one of

the most polluting nowadays, it is found in bottles, food containers; that recycling

them would be a great advance for the environment. Thus, to achieve what was

proposed, the main objective was to analyze the influence of high-density

polyethylene on the physical and mechanical properties of concrete for paving use

in the La Victoria district in the city of Chiclayo.

For this, it was determined to perform compression and bending tests on different

samples with high-density polyethylene material at different curing times, this is how

unmodified concrete controls were made, and controls adding 5%, 7.5%, 10% and

12.5% and 15% high-density polyethylene for each percentage, in each

experimental sample.

It is concluded that high-density polyethylene has a positive influence, since after

the tests the compressive strength of concrete was determined by adding 15% of

high-density polyethylene at 28 days improved by 11.16%, in resistance of 210 Kg

/ cm2.

Keywords: Strength, high-density polyethylene, mixture design

viii

I. INTRODUCCIÓN

En nivel internacional desafortunadamente muchas ciudades en los últimos años han elaborado una mala evaluación de resistencia a la comprensión de concreto, usando altas dosis de adictivos y de agua para favorecer la comprensión de concreto, la relación de adictivos/ agua y cemento eran utilizadas de manera elevada, los que conduce a hormigones muy susceptibles y porosos. Hoy en día existen malas prácticas sobre la utilización de adictivos, esto trayendo consecuencias fehacientes en las edificaciones construidas. (Figueroa, 2018)

La exposición a fuetes temperaturas producen fuertes daños a las estructuras esto por causa de muchos elementos que son sometidas, esto podría ser el nivel de temperatura expuesto, el tipo de enfriamiento o composición de algún material que resiste a la carga de temperatura. (Ciencia y sociedad, 2009)

Un problema ambiental y económico, es donde los residuos orgánicos en muchas empresas son arrojados a los vertederos, sin preocuparse en el destino final de estos residuos, es decir no quieren asumir costos en el proceso final de un producto, somos un país rico en variedad de café, la propuesta de esta investigación es el agregado adicional en la resistencia de concreto ya que este posee propiedades optimas, convirtiendo un agregado liviano con altos estándares de calidad para ser empleados en las construcciones civiles.

Las principales contaminaciones son causas por parte del consumidor es la industria de la construcción por emplear recursos naturales que no son renovables perjudicando al medio ambiente, donde se puede determinar que más del 50% de empresas utilizar este tipo de recursos. Siendo necesario emplear este proyecto de investigación para ayudar a renegar la industria de la construcción con elementos que si pueden ser renovables y utilizados evitando la contaminación ambiental. (Coral, 2019).

Un problema actual en muchos países en desarrollo es el residuos cuya tratamiento de los que se generan en la agricultura, siendo importante que en la materiales de construcción podría ser empleada en la industria en Jaén, se siembra grandes cantidades de café, lo cual convierte a la ciudad en uno de los grandes productores peruanos, donde se destaca que la producción de café ha ido evolucionado en estos últimos tiempos, la investigación que se pretende realizar es presentar una iniciativa para la utilización estos residuos, como una alternativa para utilizar en el concreto en las construcciones civiles, en donde se emplea la cascarilla de café para el análisis de resistencia del concreto para favorecer la economía y a la vez disminuir la contaminación ambiental. (Rodríguez, 2017)

Por tanto, para un mejor análisis de la cascara de café en el concreto, se analizó en 3 Resistencias. Por lo que presentamos la problemática siguiente: ¿Qué relación existe la adicción de ceniza de cascara de café como agregado en la resistencia de concreto f'c 210, f'c 245 y f'c 280 Kg/cm2 en la ciudad de San Ignacio de Cajamarca?

Por lo tanto, se plantea las siguientes justificaciones:

Justificación teórica: Para evaluar las características mecánicas de la ceniza de cascara de café, teniendo como base legal a la Norma Técnica E.070, cumpliendo con todos los parámetros establecidos para la prueba de resistencia de concreto.

Justificación metodológica: La metodología de esta investigación es el uso de la ceniza de la cascara de café conduciéndolo a un proceso para lograr la resistencia del concreto, de esta manera se disminuye la contaminación. Justificación ambiental: tiene una ventaja en la industria de la agricultura por el basto de residuos orgánicos que se generan en la producción, donde se proyecta en esta investigación aprovechar cuya ceniza de la cascara de café con la finalidad de producir este sobrante en el agregado al concreto.

Justificación económica: Favorece en el campo constructivo en este aspecto ganando eficiencia y expandiendo mercados con esta investigación a la vez generando una mayor economía a toda la sociedad con la utilización de este agregado.

Permitiendo realizar el objetivo general: Evaluar la resistencia a la comprensión de un concreto fabricado de f'c 210, f'c 245 y f'c 280 Kg/Cm2 con ceniza de cascara de café. En sus objetivos específicos: Determinar las características de los agregados a emplearse para evaluar la resistencia del concreto. Realizar los ensayos de Asentamiento y peso unitario del concreto f'c 210, f'c 245 y f'c 280 Kg/cm² utilizando la ceniza de cascara de café. Determinar la resistencia a la compresión alcanzada a los 7, 14, 28 días del concreto f'c 210, f'c 245 y f'c 280 Kg/cm² utilizando la ceniza de cascara de café, comparar la resistencia de comprensión adicionando la ceniza de cascara de café en las diferentes proporciones.

Finalmente, la hipótesis que se estipulo es la adicción de la ceniza de cascara de café como agregado para mejorar la resistencia a la compresión.

II. MARCO TEÓRICO

A nivel internación en Colombia Coral (2019) nos expresa en su investigación denominada "comportamiento del concreto con cascarilla de café y posibilidades ante textura y color" tiene como objetivo determinar las propiedades físicas que son aplicadas a la construcción proyectando esta investigación el empleo de componentes orgánicos naturales y a la elaboración de la resistencia de concreto en el sector arquitectónico potencializando sus propiedades y brindando un mejor mercado para su uso. La población y muestra el concreto que se utilizara mediante unas placas cuadradas de dicho material reforzado esto incorporando la cascara de café es mencionados porcentajes como 1.5%, 1.0%, 0.5%, con un total de 20 placas con una dimensión de 30x30 de concreto convencional agregando la cascara de café donde finalmente concluye que se llega a un factor optimo, cumpliendo con las especificaciones técnicas, para una mejor resistencia de concreto brindando flexibilidad y trabajabilidad dentro los porcentajes de 0.5 y 1.0% siendo este óptimo para su uso.

En la revista denominada "Comportamiento del mortero y el concreto hidráulico con adicción de ceniza de cascarilla de café" tiene como objetivo indagar el uso de las cascarilla de café en el sector de la construcción civil esto por la alta producción en la ciudad de Bogotá, donde muchos de estos residuos terminan depositados en lugares inadecuados generando contaminación ambiental, es por ello que es necesario aprovechar este elemento para evaluar el comportamiento al utilizarla como adictivo en las mezclas de concreto hidráulico, posteriormente su población y muestra son los moldes cúbicos metálico de 5cm de lado y en cilindros de 15m de altura con un diámetro de 7.5 cm con adicción de ceniza de café, empleando 14,28 y 90 días de curado en los ensayos de comprensión. Donde concluye finalmente que los resultados obtenidos se evidencian que la adicción en menores cantidades de ceniza produce un aumento considerable en la resistencia a la comprensión, donde se puede garantizar que el material no produce la reducción de la durabilidad en los concretos ya que esto no presentan acidez al interior de las muestras. (Ortiz, 2014)

(Figueroa, 2018) En su artículo denominado "Evaluación y diagnóstico de la resistencia a comprensión y a flexión del concreto simple después de expuesto a 450° C", teniendo como objetivo determinar la variabilidad de la comprensión y flexión, adicionando agua y adictivo. En su población y muestra proyecta en realizar 15 probetas cilíndricas con las siguientes características 10 x 20 centímetros para ser sometidas a comprensión y además quince probetas de tipo viguetas con la finalidad de igualar la firmeza a flexión, esto con el objetivo de identificar su comportamiento frente a los días se ensayó 7, 14 y 28 días de curado. Por último, concluye que la presencia de adictivos en el concreto con alta temperatura ayuda a comprimir el impacto formado en la estructura, facilitando una disminución más ligera en cuanto a la firmeza a comprensión del elemento, esto formando cambios menores a la resistencia de la comprensión del elemento es decir con poca fecundación de grietas y fallas de esta.

Puno, "Diseño de mezcla de concreto de F`c=280 kg/cm2 utilizando aditivos" tiene como objetivo diseñar un concreto en estribos del puente vehicular, con lo plasmado se tiene un concreto de 280kg/cm2 y el empleo de adictivos. Su metodología es de carácter aplicativo, su población es la rotura de probetas realizados en los días 7, 14 y 28 días, el muestreo de agregado es de acuerdo a la N.T.P. 400.010, donde concluye que los concretos de alta resistencia requiere de minucioso atención en el curado y preparación de las mezclas de diseño a temperatura adecuado natural que no perjudique del concreto mediante el A.C.I. donde ayuda a obtener datos satisfactorios, destacando que la aplicación de adictivos que se incorporan al diseño es una buena opción. (Sánchez, 2011) En su investigación denominada "Concreto con sustitución parcial del cemento por ceniza de cascara de arroz en la zona Antiplana - Puno" tiene el objetivo en esta investigación analizar la variación de la resistencia óptima a la comprensión esto con la incorporación de la ceniza de la cascara de arroz, esto con los parámetros de tiempo establecidos de acuerdo a un porcentaje determinado a su resistencia, estableciendo de igual manera que la población que la conforma son la resistencia de f'c=210 kg/cm2, en 130 probetas y 10 diseños de mezcla de concreto, comparando su evaluación en los respectivos porcentajes de 15%,

10% y 5%, siendo una investigación no probabilística y concluyendo finalmente que la incorporación del material en los porcentajes de 5% y 10% esta cumple en mantener su resistencia de diseño, detallando que en los 28 días alcanza toda la resistencia máxima donde se recomienda a sinceridad realizar la investigación en diseño de concreto de 210 kg/cm2 en un 10% en un periodo de 28 días de fraguado . (Quispe, 2018)

Jaén: El diseño de concreto F'c 250 kg/cm2 reforzado con cascarilla de café, su objetivo es educarse en el influjo de la adicción en porcentajes distintos de ceniza y cascar de café, en la firmeza de comprensión del hormigón. La población se conforma por probetas siendo un estimado de 180 especímenes de concreto con adicción y sin ella. Teniendo como fin dicha resistencia a la compresión con cascara de café aumente su resistencia en un porcentaje de 8.65% esto con la mayor escalara de número de días de fraguado, es necesario realizar esta investigación para comprobar lo mencionando en este antecedente, y que las nuevas tecnológicas de la construcción se emplean recursos naturales que son arrojados a verteros sin medir la contaminación de pueden traer a una determinada población. (Rodríguez, 2017)

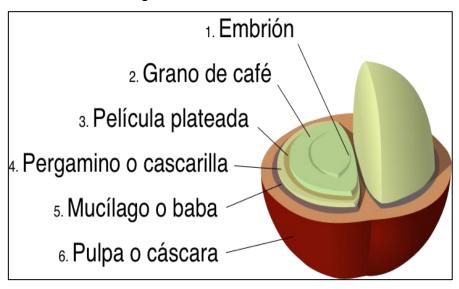
Ante ello se plantea esta investigación "Evaluación de resistencia a compresión del concreto f'c 210 Kg/Cm2, con adición de ceniza de cascara de café, San Ignacio, Cajamarca, para evaluar la variación de la resistencia a la comprensión con la incorporación de la ceniza de café así establecemos un determinado porcentaje adecuado en la resistencia de la comprensión y evaluar con 3 resistencias diferentes para analizar la influencia del material utilizado y por ende el costo de producción, de esta manera reutilizaremos desechos que son arrojados en lugares no indicados, de esta manera aprovecharemos la utilización de este material, evitando la contaminación ambiental.

Teorías relacionadas al tema

Concreto: Un elemento adherente están ingeridas fragmentos de agregados o partículas, es decir por arena, piedra, agua y cemento, esta presenta plasticidad y moldeabilidad, la finalidad de este concreto en adquirir propiedades

resistentes, este concreto se emplea en todas las construcciones civiles. Las ventajas de material es la capacidad de resistir a diferentes cambios climáticos en su vida útil, es un material con alta expectativa que puede ser fabricada en cualquier ciudad, su gran maleabilidad permite realizar formas estéticas y arquitectónicas siendo una de las grandes tecnologías de la construcción (Manual de diseño de pavimento de concreto ,2018)

Cemento: Esta determinada como material con propiedades cohesivas y adhesivas que le brindan una capacidad de unir los fragmentos para que el material sea durable y resistente, para la construcción se emplean los cementos hidráulicos estos tienen la particularidad en desarrollar sus propiedades de endurecimiento y fraguado, destacando que el cemento influye un 7% y 15% del volumen total de la mezcla, presentamos una tabla de los tipos de cemento Portland ASTM (Rosmel Quiroz & Antonio Tirado, 2017)


Agregados: Se considera como aquel material que está compuesto con las especificaciones de calidad y de resistencia para que no se afecte a las mezclas elaboradas y lleguen a garantizar una incorporación o adherencia necesaria con un cemento adecuado en una obra civil. (Natalia Pérez y otros 2018)

Resistencia la comprensión: 2Propiedad mecánica del concreto", tiene la capacidad de soportar la carga y esta es expresada en kg/cm2, de igual manera de mide con probetas cilíndricas en "máquina de comprensión", donde se realiza la ruptura en el área de la sección, permite resistir la acción de las fuerzas externas e internas. (Flores & Aguila 2017)

Cascarilla de café

El pergamino es la parte que envuelve al grano, constituyendo una excelente fuente de celulosa y lignina, estos residuos de café constituyen una fuente de contaminación y de problemas ambientales es por ellos que se han buscado métodos para ser empleados como materia prima.

Figura 1. Estructura del café.

Fuente: Inceptioncoffee (2016)

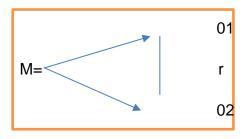
Cenizas en el concreto: Son el restante de la incineración de algún material, donde tiene particular muy infantas esto son compatibles con los cementos, las cenizas pueden útiles para controlar la reacción álcalisis de los agregados, que pueden ser empeladas como material de dosis o como un mecanismo del cemento mixto, donde mejora dichas propiedades de concreto y reducir el costo de este, en la actualidad de utilizan para mejorar la trabajabilidad del concreto fresco, para la mejora a la firmeza a los sulfatos, contribuyendo en la resistencia del concreto y durabilidad, reduce la prominencia de la calentura durante la absorción inicial. (Rodríguez 2017)

Ceniza: En el Perú las cenizas consiguen de la mata termoeléctrica y se emplean en concreto premezclado siendo es procedente como un subproducto del incinerado del carbono, existe muchas ventajas para el empleo de las cenizas en el concreto en la firmeza mecánica: prolonga el periodo de endurecimiento, mejora la relación de tracción-comprensión, brinda una mejor estabilidad, tiene una mayor durabilidad anverso a agresiones por gases de desintegración y exacerbación de elementos orgánicos, contiene un mejor rendimiento, es impermeable porque reduce la porosidad y evita la formación de eflorescencias, cuenta con alta plasticidad donde reduce su segregación evitando la exudación y el sangrado, es adherente y finalmente tiene un comportamiento térmico. (Coral 2019)

Residuos agrícolas: Son productos en base orgánica e inorgánica producidos por las actividades en el sector económico y agrario, estos residuos son ricos en sus propiedades naturales, siendo sus características principales la porosidad, solubilidad y ligereza al ser utilizado como un material adicional al concreto, las fibras naturales se pueden obtener de varias plantas y árboles, por el las hojas de sisal, el tallo de yute, la cascara de café, el bambú entre otras, siendo estos elementos fundamentales para una mayor resistencia al concreto. (Ortiz 2014)

.

.


III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Tipo de investigación: Es correlacional – Cuantitativo, tiene como finalidad relacional y asociar el concreto de las características del f'c 210, f'c 245 y f'c 280 Kg/cm2 (resistencia a la comprensión) con la adhesión, de la ceniza de cascará de café, de igual manera se realizará experimentos de acuerdo a periodos.

.

Figura 2. Esquema de diseño

Fuente: Elaboración propia

Dónde:

M: muestra

01: Variable 1

02: Variable 2

r=Relación de las variables de estudio

Nivel de investigación

El nivel de investigación es explicativo porque busca explicar en porqué del comportamiento mecánico que se obtendrá mediante el ensayo de laboratorio.

Diseño de investigación

El diseño es tipo es experimental siendo necesario obtener información o antecedentes. El estudio en su mayor parte se basará de suelos según los objetivos.

3.2 Variables y operacionalización

Variable dependiente: Evaluación de propiedades de concreto.

Definición conceptual: La resistencia de las propiedades de concreto de obtiene en consecuencia la rotura de las probetas de concreto mediante 28 días para luego pasar por la prensa hidráulica.

Definición operacional: Para tener una resistencia de concreto de f'c 210, f'c 245 y f'c 280 Kg/cm² se utilizará las proporciones dadas por Capeco, a través del diseño de mezclas, también realizaremos una evaluación económica de los agregados y de las cenizas de la cascará de café.

Variable independiente: Incorporación de la ceniza de la cascara de café

Definición conceptual: Son el residuo de la combustión, donde tiene particular muy pequeñas esto son compatible con el cemento, las cenizas pueden útiles para controlar la reacción álcalisis de los agregados, que pueden ser empeladas como dosificación o material en cemento mezclado como componente, donde mejorar las propiedades de concreto para mejorar la trabajabilidad del concreto fresco y contribuyendo la resistencia y durabilidad del concreto.

Definición operacional: Un elemento residual que sirve para proteger contra el ataque microbiológico por su alta alcalinidad del concreto y esta mejora su adherencia para diversas estructuras.

3.3 Población y muestra

La población: Conforma por la ceniza de la cascara de café y los materiales de concreto obtenido de la cantera de agregados "Huaquilla" utilizando el Cemento Portland tipo I.

La muestra: Esta conformado por el concreto patrón de resistencia de f'c 210, f'c 245 y f'c 280 Kg/cm², se realizará por cada diseño 54 probetas, es decir un total de 162 probetas de concreto, con sustitución de del elemento 5%, 10%,15% y 20%. además, para el concreto fresco, se realizarán 12 ensayos cada resistencia, dando un total de 36 ensayos.

3.4 Técnicas e instrumentos y recolección de datos

Técnicas de recolección:

Observación

Instrumentos de recolección de datos

 Ficha de ensayo de laboratorio a la comprensión de probetas de concreto.

Determinación de la resistencia de la comprensión de probetas de concreto utilizando la maquina comprensora según la norma ASTM

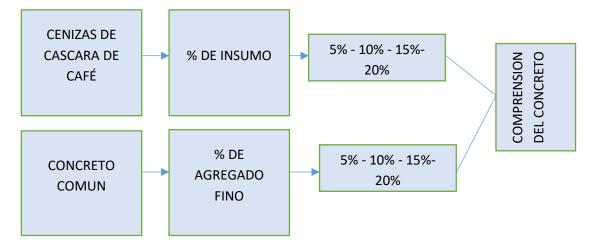


Figura 3. Diagrama de la metodología experimental

3.5 Procedimientos

Primer paso: El agregado a considerar para la elaboración de los ensayos de concreto se extrajo de la cantera "Huaquilla", para luego realizar los ensayos del agregado de acuerdo a los protocolos establecidos por el laboratorio de suelos, estos ensayos serán descritos en el informe final.

Segundo paso: Recolección de la cascara de café producido en la Zona de San Ignacio, para su calcinación y obtención de cenizas.

Tercer paso: Tamizado de las cenizas de cascara de café alcanzando que se emplearon como sustituto parcial del agregado fino en porcentajes.

Cuarto paso: Fabricación de las muestras de concreto es decir los testigos por cada aplicación porcentual para posteriormente ser curados y protegidos de la intemperie.

Quinto paso: Curado de las muestras

Sexto paso: Luego se procedió cumpliendo con el periodo de 28 días y 40 días a realizar las pruebas correspondientes para determinar su resistencia a la comprensión.

Séptimo paso: Se realizo a recolectar los datos de las probetas para encontrar el porcentaje que es recomendable.

3.6 Método de análisis de datos

Para desarrollar los ensayos aparte de los equipos técnicos que se utilizaran en laboratorio, haremos uso de los programas de Microsoft Office como son Word y Excel, estos programas nos ayudaran a llenar y crear hojas de cálculo, gráficos y tablas para el resultado final de la investigación.

3.7 Aspectos éticos

La investigación, tiene carácter ético, respetando las normas de UCV como el código ético, asumiendo con la responsabilidad recogiendo los datos en beneficio de la población.

IV. RESULTADOS

Se presentan los obtenidos resultados en los diferentes ensayos con la finalidad de conocer las propiedades del agregado fino y grueso que utilice en esta investigación.

Contenido de Humedad

Tabla 1. Contenido de humedad del agregado fino

	M1	M2
Peso de muestra húmeda	597.8	597.7
Peso de muestra seca	595.3	595.6
Peso de recipiente	97.4	97.4
Contenido de humedad	0.5	0.42
contenido de humedad (promedio	0.46	

Fuente: Elaboración propia

Tabla 2. Contenido de humedad del agregado grueso

	M1	M2		
Peso de muestra húmeda	587.8	587.9		
Peso de muestra seca	585.2	585.5		
Peso de recipiente	47	47		
Contenido de humedad	0.48	0.45		
contenido de humedad (promedio	0	0.46		

Tabla 3. Análisis granulométrico del agregado fino

Malla		Peso %		%	%	
pulg.	mm	retenido	Retenido	Acumulado	Acumulado	
				Retenido	que pasa	
1/2"	12.700	0.0	0.0	0.0	100.0	
3/8"	9.520	0.00	0.0	0.0	100.0	
N° 004	4.750	11.20	2.2	2.2	97.8	
N° 008	2.360	52.56	10.4	12.6	87.4	
N° 016	1.180	108.65	21.4	34.0	66.0	
N° 030	0.600	103.25	20.4	54.4	45.6	
N° 050	0.300	161.25	31.4	86.2	13.8	
N° 100	0.150	51.26	10.1	96.3	3.7	
FONDO		18.90	3.7	100	0	
M		ódulo de finez	za=	2.86		
Abertura		de malla de r	eferencia=	2.36		

Fuente: Elaboración propia

Tabla 4. Análisis granulométrico del agregado grueso

Ma	lla	Peso	%	% Acumulado	% Acumulado		
Pulg.	(mm.)	Retenido	Retenido	Retenido	Que pasa		
2"	50.000	0.0	0.00	0.0	100.0		
1 1/2"	38.000	0.0	0.0	0.0	100.0		
1"	25.000	0.0	0.0	0.0	100.0		
3/4"	19.000	70.7	4.6	4.6	95.4		
1/2"	12.700	741.6	48.6	53.3	46.7		
3/8"	9.520	512.4	33.6	86.9	13.1		
Nº 004	4.750	195.7	12.8	99.7	0.3		
FONDO	O 4.5 0.3		0.3	100.0	0.0		
		Tamaño Máximo =		1"			
Tamaño Máximo Nominal =				3/	4"		
Fuento: Eleboración propio							

Tabla 5. Peso unitario suelto del agregado fino

Descripción	Und.	M1	M2
Peso de muestra suelta + recipiente		7530	7530
Peso del recipiente	gr	3025	3025
Peso de muestra	_	4505	4505
Constante o Volumen	(m ³)	0.0028	0.0028
Peso unitario suelto húmedo		1594	1594
Peso unitario suelto húmedo (Promedio)	kg/m ³	1594	
Peso unitario suelto seco (Promedio)	_	1587	

Fuente: Elaboración propia.

Tabla 6. Peso unitario compactado del agregado fino

Descripción	UND.	M1	M2
Peso de muestra suelta + recipiente	gr.	7800	7800
Peso del recipiente	_	3025	3025
Peso de muestra	_	4775	4775
Constante o Volumen	(m ³)	0.0028	0.0028
Peso unitario suelto húmedo		1689	1689
Peso unitario compactado húmedo (Promedio)	_	16	89
	₋ kg/m³		
Peso unitario seco compactado (Promedio)		16	82

Fuente: Elaboración propia

Tabla 7. Peso unitario suelto del agregado grueso

Descripción	UND.	M1	M2	
Peso de muestra suelta + recipiente		21730	21725.1	
Peso del recipiente	gr.	6760	6760	
Peso de muestra		14970	14965.1	
Constante o Volumen	(m ³)	0.0094	0.0094	
Peso unitario suelto húmedo		1589	1588	
Peso unitario suelto húmedo (Promedio)	kg/m ³	1589		
Peso unitario suelto seco (Promedio)		1581		
Fuente: Flaboración propia				

Tabla 8. Peso unitario compactado del agregado grueso

Descripción	UND.	M1	M2	
Peso de muestra suelta + recipiente		21710	21714.6	
Peso del recipiente	gr.	6760	6760	
Peso de muestra		14950	14954.6	
Constante o Volumen	(m ³)	0.0094	0.0094	
Peso unitario suelto húmedo		1587	1587	
Peso unitario suelto húmedo (Promedio)	kg/m³	1587		
Peso unitario suelto seco (Promedio)		1580		

Fuente: Elaboración propia.

Tabla 9. Peso específico y absorción del agregado fino

Peso específico y absorción						
Peso de la arena superficialmente seca +		965.1	965.1			
peso del frasco + peso del agua				Р		
Peso de la arena superficialmente seca +	gr.	674.1	674.3	R		
peso del frasco				0		
Peso del agua	_	291.0	290.8	M		
Peso de la arena secada al horno + peso	m ³	672.5	672.2	E		
del frasco				D		
Preso del frasco		174.8	174.8	I		
Peso de la arena secada al horno	kg/m ³	497.7	497.4	0		
Volumen del frasco	_	500.0	500.0	-		
Resultados						
Peso específico de masa		2.381	2.378	2.379		
Peso específico de masa saturado		2.392	2.390	2.391		
superficialmente seco	gr/cm ³					
Peso específico aparente		1.090	1.089	1.090		
Porcentaje de absorción	%	0.47	0.52	0.49		

Tabla 10. Peso específico y absorción del agregado grueso

Peso específico y absorción									
P.S.H.		1723.5	1723.5	P					
P. Superficial Seco	gr	1731.7	1733.3	R					
P. dentro del agua + peso de la canastilla		2005.4	2005.4	– О М					
Canastilla	_	928.0	928.0	- E D					
Saturada	_	1077.4	1077.4	- I O					
Resultado	os								
P. E. M		2.634	2.628	2.631					
P. E. M. Y Saturado S.	gr/cm ³	2.647	2.643	2.645					
Peso Específico Aparente		2.668	2.668	2.668					
Porcentaje de absorción		0.48	0.57	0.52					
Frants: Flabouralf a manula									

Fuente: Elaboración propia

Análisis del concreto a 210 kg/cm2.

Diseño de mezcla:

Para la realización del diseño de mezcla se ha utilizado el método del ACI 318, donde se han obtenido dosificaciones de mezcla fluidas, lo cual brinda que al tener una buena dosificación las propiedades tanto físicas como mecánicas del concreto mejoren. Los cuales han sido diseñado para un concreto de una resistencia de 210 kg/cm²245 kg/cm² y 280 kg/cm², el cual se presentan en las siguientes tablas:

A. Concreto Patrón.

Tabla 11. Diseño de mezcla de concreto patrón

Material			Dosificación	
Tipo	Unidad	210 kg/cm2	245 kg/cm2	280 kg/cm2
Cemento	kg/m3	453	476	558
Agua	L	281	300	320
Agregado fino	kg/m3	744	681	581
Agregado grueso	kg/m3	925	947	943
Proporción en peso		1/1.04/1.69/24.4	1/1.43/1.99/26.8	1/1.64/2.04/6.4

B. Concreto adicionando 2.5% de ceniza de cascara de café

Tabla 12. Diseño de mezcla de concreto adicionando 2.5% de ceniza de cascara de café

Material			Dosificación	
Tipo	Unida	210 kg/cm2	245 2	80 kg/cm2
	d		kg/cm2	
Cemento	kg/m3	453	475	559
Agua	L	281	300	320
Agregado fino	kg/m3	752	688	588
Agregado grueso	kg/m3	918	939	936
C. cascara de	kg/m3	18.79	17.21	14.69
café				
Proporción en		1/1.66/2.03/.04/26	1/1.45/1.98/.04/26	1/1.05/1.67/.03/24
peso		.4	.8	.3

Fuente: Elaboración propia.

C. Concreto adicionando 5% de ceniza de cascara de café.

Tabla 13. Diseño de mezcla de concreto adicionando 5% de ceniza de cascara de café

		Dosificación	
Unida	210 kg/cm2	245 2	280 kg/cm2
d		kg/cm2	
kg/m3	453	475	559
L	281	300	320
	759	696	595
kg/m3	910	932	929
	37.95	34.8	29.74
	1/1.68/2.01/.08/2	1/1.46/1.96/.07/	26 1/1.06/1.66/.05/2
	6.4	.8	4.3
	d kg/m3 L	d kg/m3 453 L 281 759 kg/m3 910 37.95	Unida 210 kg/cm2 245 2 d kg/cm2 kg/m3 453 475 L 281 300 759 696 kg/m3 910 932 37.95 34.8

D. Concreto adicionando 7.5% de ceniza de cascara de café.

Tabla 14. Diseño de mezcla de concreto adicionando 7.5 % de ceniza de cascara de café

Material			Dosificación	
Tipo	Unidad	210 kg/cm2	245 kg/cm2	280 kg/cm2
Cemento	kg/m3	453	475	559
Agua	L	281	300	320
Agregado fino	kg/m3	766	703	602
Agregado grueso	kg/m3	903	924	922
C. cascara de café	kg/m3	57.48	52.75	45.13
Proporción en peso		1/1.69/1.99/.13/26.4	1/1.48/1.94/.11/26.8	1/1.08/1.65/.08/24.3

Fuente: Elaboración propia.

E. Concreto adicionando 10% de ceniza de cascara de café.

Tabla 15. Diseño de mezcla de concreto adicionando 10 % de ceniza de cascara de café.

Material	Dosificación							
Tipo	Unidad	210 kg/cm2	245 kg/cm2	280 kg/cm2				
Cemento	kg/m3	453	475	559				
Agua	L	281	300	320				
Agregado fino	kg/m3	774	711	609				
Agregado grueso	kg/m3	896	917	915				
C. cascara de café	kg/m3	77.37	71.06	60.88				
Proporción en		1/1.71/1.98/.17/26.4	1/1.49/1.93/.15/26.8	1/1.09/1.64/.11/24.3				
peso								

F. Concreto adicionando 12.5% de ceniza de cascara de café.

Tabla 16. Diseño de mezcla de concreto adicionando 12.5% de ceniza de cascara de café

Material	Dosificación						
Tipo	Unidad	210 kg/cm2	245 kg/cm2	280 kg/cm2			
Cemento	kg/m3	453	475	559			
Agua	L	281	300	320			
Agregado fino	kg/m3	781	718	616			
Agregado grueso	kg/m3	888	910	908			
C. cascara de café	kg/m3	97.6	89.71	76.95			
Proporción en		1/1.72/1.96/.22/26.4	1/1.51/1.91/.19/26.8	1/1.10/1.62/.14/24.3			
peso							

Fuente: Elaboración propia.

De las tablas anteriores se puede visualizar las cantidades de cemento, agua, agregado fino y agregado grueso que se emplearan para el concreto patrón. Además de la cantidad de cenizas de cascara de café que se emplearan para el concreto experimental

Características físicas del concreto

A. Ensayo de asentamiento

Tabla 17. Resultado de ensayo de asentamiento del concreto

Resistencia (kg/cm²)	Asentamiento (cm)					
	0%	2.5%	5%	7.5%	10%	12.5%
210	10.01	6.25	5.94	5.31	4.87	4.41
245	10.07	6.35	6.08	5.64	4.98	4.67
280	10.12	6.47	6.15	5.84	5.34	5.16

Fuente: Elaboración propia

De la tabla anterior se puede observar que las cenizas de cascara de café permite tener una mejor trabajabilidad en el concreto en las diferentes resistencias.

A. Ensayo de peso unitario

Tabla 18. Resultado de ensayo de peso unitario

Resistencia (kg/cm²)		Peso unitario (Kg/m3)					
	0%	2.5%	5%	7.5%	10%	12.5%	
210	2521.13	2485.78	2456.17	2399.91	2388.06	2371.78	
245	2546.69	2505.02	2473.93	2423.6	2396.95	2374.74	
280	2583.2	2518.35	2482.82	2428.04	2399.91	2380.66	

Fuente: Elaboración propia

De la tabla anterior, se puede observar que la ceniza de cascara de café, permite tener un concreto liviano a diferencia del concreto patrón.

Características mecánicas del concreto

A. Resistencia a la compresión

Para evaluar la resistencia en el concreto adicionando cascara de ceniza de café, se ha considero realizar el ensayo de probetas cilíndricas del concreto patrón y experimental. De esta manera se obtiene la resistencia promedio, el cual se presentan a continuación:

A.1 Concreto patrón

Tabla 19. Resultado del ensayo a la compresión del concreto – F'c=210 kg/cm2

Fecha de curado	Resistencia a la compresión (kg/cm2)					
	0%	2.5%	5%	7.5%	10%	12.5%
7	168.43	175.45	179.88	184.51	188.53	192.86
14	185.07	192.62	20.06	205.55	211.45	214.8
28	212.67	217.65	224.7	229.87	233.03	238.9

Fuente: Elaboración propia

En la tabla 19, se puede observar la resistencia promedio alcanzada del concreto convencional f'c=210 kg/cm2, el cual para un tiempo de curado de 28 día alcanzo una resistencia de 212.67 kg/cm2. Sim embargo al adicionarle

12.5% cenizas de cascara de café, se logró un aumento de la resistencia del 13.76% en comparación del concreto patrón.

Tabla 20. Resultado del ensayo a la compresión del concreto – F'c=245 kg/cm2

Fecha de	e curado	Resistencia a la compresión (kg/cm2)				
	0%	2.5%	5%	7.5%	10%	12.5%
7	198.1	206.62	211.37	216.33	219.41	222.47
14	223.6	234.97	240.46	245.21	248.35	254.97
21	246.88	254.03	258.36	261.7	264.73	269.27

Fuente: Elaboración propia

En la tabla 20, se puede observar la resistencia promedio alcanzada del concreto convencional f'c=245 kg/cm2, el cual para un tiempo de curado de 28 día alcanzo una resistencia de 246.88 kg/cm2. Sim embargo al adicionarle 12.5% cenizas de cascara de café, se logró un aumento de la resistencia del 9.91% en comparación del concreto patrón.

Tabla 21. Resultado del ensayo a la compresión del concreto – F'c=280 kg/cm2

Fecha de curado	Resistencia a la compresión (kg/cm2)					
	0%	2.5%	5%	7.5%	10%	12.5%
7	225.53	231.51	237.21	243.53	247.57	251.98
14	251	257.53	264.51	270.4	275.05	279.4
21	283.29	288.06	292.9	301.02	305.47	311.72

Fuente: Elaboración propia

En la tabla 21, se puede observar la resistencia promedio alcanzada del concreto convencional f'c=280 kg/cm2, el cual para un tiempo de curado de 28 día alcanzo una resistencia de 283.29 kg/cm2. Sim embargo al adicionarle 12.5% cenizas de cascara de café, se logró un aumento de la resistencia del 11.33% en comparación del concreto patrón.

En las tablas anteriores, presenta los resultados del ensayo a compresión del concreto para cada resistencia y las diferentes dosificaciones de cenizas de cascaras de café que se le adicionaron al concreto. Además, se observa

que al añadirle cenizas de cascara de café aumenta la resistencia a la compresión del concreto.

A.2 Comparación de resultados

Teniendo en cuenta los resultados mencionados, la mayor resistencia es de las probetas que tienen un tiempo de secado de 28 días, la cual adicionando 12.5% de cenizas de cascara de café da una mayor resistencia.

Figura 4. Comparativo de resultados de ensayo a la compresión – F'c=210 kg/cm2.

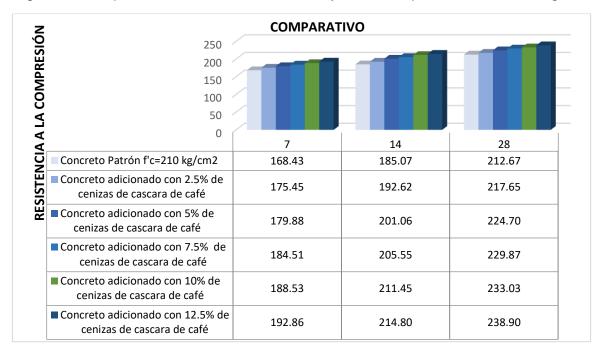


Figura 5. Comparativo de resultados de ensayo a la compresión – F'c=245 kg/cm²

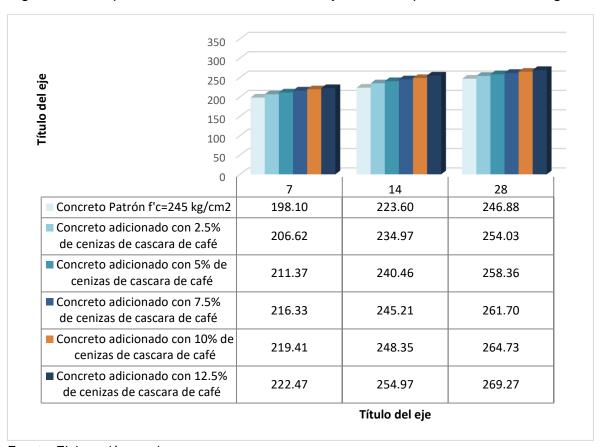
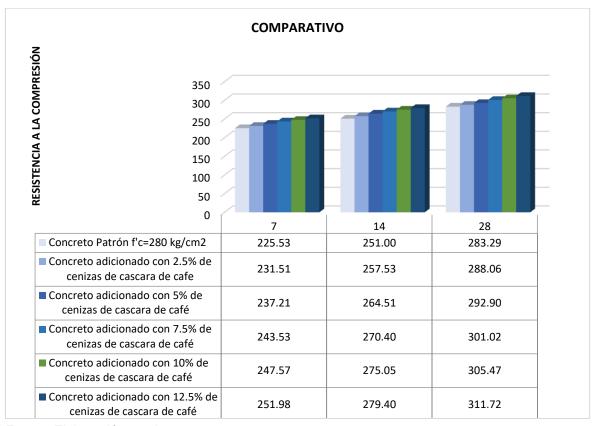



Figura 6. Comparativo de resultados de ensayo a la compresión – F'c=280 kg/cm2.

V. DISCUSIÓN

Así como menciona Quispe en su investigación titulada "Concreto con sustitución parcial del cemento por ceniza de cascara de arroz en la zona Antiplana en la ciudad de Puno", en la cual busca la variación optima en la resistencia del concreto al incorporar las cenizas de cascara de arroz, en la presente investigación se busca conocer la diferencia en los resultados de la resistencia a la compresión al adicionar cenizas de cáscaras de café al concreto; por consiguiente, se realizó este ensayo para distintas resistencias como: 210kg/cm2, 245kg/cm2 y 280 kg/cm2 teniendo como resultados que al adicionar 12.5% de cenizas de cáscara de café la resistencia aumenta en un 12.22% respecto al concreto patrón en un tiempo de curado de 28 días, mientras que para un tiempo de curado de 14 días la resistencia aumenta en un 16.06% respecto al concreto patrón, con una resistencia de 214.80 kg/cm2, es decir que con 14 días ya alcanzó la resistencia de diseño. Esto mismo menciona Coral (2019) nos expresa en su investigación denominada "Comportamiento del concreto con cascarilla de café y posibilidades ante textura y color" tiene como objetivo determinar las propiedades físicas que son aplicadas a la construcción proyectando esta investigación el empleo de componentes orgánicos naturales y a la elaboración de la resistencia de concreto en el sector arquitectónico potencializando sus propiedades y brindando un mejor mercado para su uso. Lo mismo menciona Ortiz (2014) en su investigación Comportamiento del mortero y el concreto hidráulico con adicción de ceniza de cascarilla de café" tiene como objetivo indagar el uso de las cascarilla de café en el sector de la construcción civil esto por la alta producción en la ciudad de Bogotá, donde muchos de estos residuos terminan depositados lugares inadecuados en generando contaminación ambiental, es por ello que es necesario aprovechar este elemento para evaluar el comportamiento al utilizarla como adictivo en las mezclas de concreto hidráulico, también recalca Diseño de mezcla de concreto de Fc=280 kg/cm2 utilizando aditivos" tiene como objetivo diseñar un concreto para los estribos del puente vehicular Santa lucia que de acuerdo con lo plasmado se tiene un concreto de 280kg/cm2 y el empleo de adictivos. Su metodología es de carácter aplicativo, su población es la rotura de probetas realizados en los días 7, 14 y 28 días, el muestreo de agregado es de acuerdo a la N.T.P. 400.010, donde concluye que los concretos de alta resistencia requiere de un cuidado minucioso en la elaboración y curado de los diseños de mezclas a temperatura adecuado en un ambiente natura que no perjudique el comportamiento del concreto mediante el método A.C.I. donde ayuda a obtener datos satisfactorios, destacando que la aplicación de adictivos que se incorporan al diseño es una buena opción. (Sánchez, 2011), esto nos garantiza que el estudio en curso es viable.

Por otro lado, se tiene la investigación propuesta por Rodríguez titulada "Diseño de concreto F'c 250 kg/cm2 reforzado con cascarilla de café en la ciudad de Jaén", esta investigación es más cercana a la presentada por tener las mismas condiciones de localidad, respecto a los resultados Rodríguez menciona que al implementar cascarilla de café al concreto la resistencia aumenta en un 8.65%, comparándolo con la presente investigación se tiene que para una resistencia de diseño de 245 kg/cm2 con un tiempo de curado de 14 días y adicionando 12.5% de cenizas de cáscara de café ya obtiene la resistencia de diseño con un 254.97 kg/cm2, aumentando un 14.03% respecto al concreto patrón, mientras que con un tiempo de curado de 28 días y aumentando un 12.5% de cenizas de cascara de café se tiene un aumento del 9.07% respecto al concreto patrón, esto menciona (Figueroa 2018) En su artículo denominado "Evaluación y diagnóstico de la resistencia a comprensión y a flexión del concreto simple después de expuesto a 450° C", teniendo como objetivo determinar la variabilidad de la comprensión y flexión, adicionando agua y adictivo. En su población y muestra proyecta en realizar 15 probetas cilíndricas con las siguientes características 10 x 20 centímetros para ser sometidas a comprensión y además quince probetas de tipo viguetas con la finalidad de igualar la firmeza a flexión, esto con el objetivo de identificar su comportamiento frente a los días se ensayó 7, 14 y 28 días de curado, también recalca (Sánchez, 2011) en su estudio Diseño de mezcla de concreto de Fc=280 kg/cm2 utilizando aditivos" tiene como objetivo diseñar un concreto para los estribos del puente vehicular Santa lucia que de acuerdo con lo plasmado se tiene un concreto de 280kg/cm2 y el empleo de adictivos. Su metodología es de carácter aplicativo, su población es la rotura de probetas realizados en los días 7, 14 y 28 días, el muestreo de agregado es de acuerdo a la N.T.P. 400.010, esto nos garantiza los datos obtenidos son óptimos

Por último, se tiene la investigación planteada por Sánchez, donde realiza un diseño de mezcla de concreto de 280 kg/cm2 utilizando aditivos, destacando la importancia en la resistencia que se obtiene al implementar aditivos a la mezcla de concreto, por lo que la presente investigación se optó por realizar un diseño de mezcla para concreto de 280kg/cm2 y adicionando cenizas de cáscara de café, es así como se tiene que al adicionar 12.5% de cenizas de cáscara de café la resistencia aumenta en un 10.03% respecto al concreto patrón con un tiempo de curado de 28 días. Esto menciona Quispe, (2018) lo cual manifiesta en su Concreto con sustitución parcial del cemento por ceniza de cascara de arroz en la zona Antiplana en la ciudad de Puno" tiene como objetivo en esta investigación analizar la variación de la óptima resistencia a la comprensión del concreto esto con la incorporación de la ceniza de la cascara de arroz, esto con los parámetros de tiempo establecidos de acuerdo a un porcentaje determinado a su resistencia, estableciendo de igual manera que la población que la conforma son la resistencia de f's 210 kg/cm2,también recalca (Rodríguez, 2017) manifiesta que Diseño de concreto F'c 250 kg/cm2 reforzado con cascarilla de café en la ciudad de Jaén" su objetivo es educarse en el influjo de la adicción en distintos porcentajes de ceniza y cascar de café, en la firmeza de comprensión del hormigón. La población se conforma por probetas siendo un estimado de 180 especímenes de concreto con adicción y sin ella, también tomemos en cuenta Coral (2019) nos expresa en su investigación denominada "Comportamiento del concreto con cascarilla de café y posibilidades ante textura y color" tiene como objetivo determinar las propiedades físicas que son aplicadas a la construcción proyectando esta investigación el empleo de componentes orgánicos naturales a la elaboración de la resistencia de concreto en el sector arquitectónico potencializando sus propiedades y brindando un mejor mercado para su uso. La población y muestra el concreto que se utilizara mediante unas placas cuadradas de dicho material reforzado esto incorporando la cascara de café es mencionados porcentajes como 1.5%, 1.0%, 0.5%, con un total de 20 placas con una dimensión de 30x30 de concreto convencional agregando la cascara de café donde finalmente concluye que se llega a un factor optimo, esto nos confirma los datos obtenidos son viables lo cual queda garantizado el diseño

VI. CONCLUSIONES

- 1. De los resultados que se han presentado en el capítulo de Resultados, en el diseño de mezclas se tiene que para la resistencia 210 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se tiene dosificaciones de 1/1.04/1.69/24.4, 1/1.66/2.03/.04/26.4, 1/1.68/2.01/.08/26.4, 1/1.72/1.96/.22/26.4 1/1.69/1.99/.13/26.4, У 1/1.69/1.99/.13/26.4 respectivamente. Para la resistencia 245 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se tiene dosificaciones de 1/1.43/1.99/26.8, 1/1.45/1.98/.04/26.8, 1/1.46/1.96/.07/26.8, 1/1.48/1.94/.11/26.8 y 1/1.51/1.91/.19/26.8 respectivamente. Y finalmente que para la resistencia 280 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se tiene dosificaciones de 1/1.64/2.04/6.4, 1/1.05/1.67/.03/24.3, 1/1.06/1.66/.05/24.3, 1/1.08/1.65/.08/24.3, 1/1.09/1.64/.11/24.3 y 1/1.10/1.62/.14/24.3 respectivamente.
- 2. De los resultados que se han presentado en el capítulo de Resultados, en los ensayos realizados para el concreto fresco se tiene que: Para la resistencia 210 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se obtuvo un asentamiento de 10.01, 6.25 ,5.94, 5.31, 4.87 y 4.41 respectivamente. Para la resistencia 245 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se obtuvo un asentamiento de 10.07, 6.35, 6.08, 5.64, 4.98 y 4.67 respectivamente. Y para Para la resistencia 280 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se obtuvo un asentamiento de 10.12, 6.47, 6.15, 5.84, 5.34 y 5.16 respectivamente. Por otro lado, para el ensayo de peso unitario (kg/m3) para la resistencia 210 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se obtuvo 2521.13, 2485.78, 2456.17, 2399.91, 2388.06 y 2371.78 respectivamente, para la resistencia 245 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se obtuvo 2456.69, 2505.02, 2473.93, 2423.6, 2396 y 2396.95 respectivamente. Y para la resistencia 210 kg/cm2 y agregando 2.5 %, 5%, 7.5%, 10% y 12.5% cenizas de cascara de café se obtuvo 2583.2, 2518.35, 2482.82, 2428.04. 2399.91 y 2380.66 respectivamente.

VII. RECOMENDACIONES

- Para la presente investigación, se recomienda tener en cuenta las dosificaciones obtenidas en el concreto al adicionarle la ceniza de cascara ya que su exceso o su disminución puede generar variaciones desfavorables en su resistencia.
- Se recomienda reutilizar el desperdicio de la ceniza de cascara de café para optimizar, mitigar y prevenir el índice de contaminación que genera en el medio ambiente.
- Se recomienda, realizar estudio relacionados a la ceniza de cascara de café para obtener un concreto de calidad dependiendo de los elementos que se van a construir para ampliar la información de este material en la construcción.
- 4. Se recomienda tener un buen proceso de elaboración para el concreto al añadirle las cenizas de cascara de café para evitar fallas o deficiencias de este.

REFERENCIAS

Abrigo, L. (2018). "Resistencia del Concreto f´c=210 Kg/cm2 añadiendo Fibra de Vidrio en Proporciones de 2%, 4% y 6%", tuvo como objetivo principal de estudio: Analizar la resistencia del hormigón f´c=210 Kg/cm2 añadiendo fibra de vidrio en proporciones de 2%, 4% y 6%. trujillo, peru.

Arapa, J. E. (2016). Análisis y diseño comparativo de concreto celular usando espuma de poliestireno y agente espumante. Universidad Andina Néstor Cáceres Velásquez, 2–200. Obtenido de http://repositorio.uancv.edu.pe/handle/UANCV/732

Castope, M. (2017). estudio definitivo de la carretera cp. insculas – cp. el faique, distrito de olmos, provincia Lambayeque, región Lambayeque. Lambayeque.

Castro, R. (2019). Evaluación del comportamiento de concreto hidráulico con adición de fibras de PET. Colombia.

Chávez Valerio, L. A. (2019). Influencia del poliestireno expandido reciclado y la fibra de polipropileno en la resistencia a la compresión del concreto f`c=210kg/cm2. Universidad Cesar Vallejo. Obtenido de Repositorio Institucional - UCV, 1–147.

Ciencia y sociedad. 2009. "La Resistencia a Compresión Del Hormigón, Condición Necesaria Pero No Suficiente Para El Logro de La Durabilidad de Las Obras." Ciencia y Sociedad 34 (4): 463–504. https://doi.org/10.22206/cys.2009.v34i4.pp463-504.

Codina Rodríguez, R. M. (2018). Resistencia a la compresión de un concreto f´c=210 kg/cm2 con agregado fino sustituido en 5% y 10% por vidrio molido reciclado. Iima.

CORDOVA, I. y. (2017). Uso del poliestireno expandido y su resistencia en las losas deportivas en el Distrito de Morales, Provincia y Región de San Martín. Universidad Científica del Perú.

Coral. 2019. "Comportamiento Del Concreto Con Cascarilla de Café y Posibilidades Ante Textura y Color." https://repositorio.unal.edu.co/handle/unal/77004#.YQIPOIXTv7c.mendeley. Digital, R. (2013). Construcción y Tecnología en Concreto. México. Obtenido de http://www.revistacyt.com.mx/index.php/contenido/posibilidades-del-concreto/82-poliestireno-en-la-fabricacion-de-concreto

Figueroa. 2018. "EVALUACIÓN Y DIAGNÓSTICO DE LA RESISTENCIA A COMPRESIÓN Y A FLEXIÓN DEL CONCRETO SIMPLE DESPUÉS DE EXPUESTO A 450°C." Gastrointestinal Endoscopy 10 (1): 279–88. http://dx.doi.org/10.1053/j.gastro.2014.05.023%0Ahttps://doi.org/10.1016/j.g ie.2018.04.013%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/29451164%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5838726%250A http://dx.doi.org/10.1016/j.gie.2013.07.022.

Flores & Águila. 2017. "Análisis de Resistencia a La Comprensión Del Concreto 210kg/Cm2 Adicionado Caucho Reciclado Para Estructuras de Albañilería Confinada, Lima 2018." Ucv, 358.

Florián Castillo, Odar R., Patricia Zanabria Kou, and Juan M. Deza Castillo. 2020. "Strategic Model and Its Impact on the Commercial Management of an PYME Company in the Automotive Sector." Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, no. July 2020: 27–31. https://doi.org/10.18687/LACCEI2020.1.1.164.

Galicia Pérez, M. A. (2016). análisis comparativo de la resistencia a la compresión de un concreto adicionado con ceniza de rastrojo de maíz elaborado con agregados de las canteras de cunyac y vicho con respecto a un concreto patrón de calidad f'c=210 kg/cm2. Obtenido de http://repositorio.uandina.edu.pe/bitstream/UAC/348/3/M%C3%B3nica_Mar co_Tesis_bachiller_2016.pdf

Galicia Pérez, M. A. (2016). Análisis comparativo de la resistencia a la compresión de un concreto adicionado con ceniza de rastrojo de maíz elaborado con agregados de las canteras de Cunyac y Vicho con respecto a un concreto patrón de calidad f'c=210 kg/cm2. Universidad Andina Del Cusco.

Obtenido de

http://repositorio.uandina.edu.pe/bitstream/UAC/348/3/M%C3%B3nica_Marco_Tesis_bachiller_2016.pdf

García chambilla, b. f. (2017). "Influencia de Fibra de Vidrio en las características Mecánicas del Concreto f´c=210 Kg/cm2, Puno. Puno.

Gestión. (25 de febrero de 2018). Recuperado el 07 de julio de 2018, de https://gestion.pe/economia/mtc-destinara-s-1-586-millones-reconstruccion-puentes-carreteras-2018-228068

Godoy, I. (2015). Comportamiento Mecánico de Hormigón Reforzado con Fibra de Vidrio. chile.

Hernández, G. (2016). EVALUACIÓN ESTRUCTURAL Y PROPUESTA DE REHABILITACIÓN DE LA INFRAESTRUCTURA VIAL DE LA AV. FITZCARRALD, TRAMO CARRETERA POMALCA – AV. VICTOR RÁUL HAYA DE LA TORRE. Pimentel.

Hernández, S., Fernández, C., & Baptista, M. (2014). Diseño de Investigación.

Izquierdo Cárdenas, M. y. (2018). Desarrollo y aplicación del concreto celular a base de aditivo espumante para la elaboración de bloques macizos destinados a tabiquerías no portantes en edificaciones. Obtenido de https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/622468/O RTEGA_RO.pdf?sequence=5&isAllowed=y

Izquierdo, J. M. (2003). ACI A CENTURY O PROGRESS. Concrete-A Century of Innovation, 117-99 ص 8: مساره 8.

María Celeste Torrijos, G. G. (2018). Glass macrofiber self-compacting concrete: Fiber distribution and mechanical properties in thin walls and slabs. Obtenido de file:///C:/Users/user/Downloads/Torrijos%20SC2018.pdf

Meza Castellar, P. T. (2016). Uso de poliestireno expandido reciclado para la obtención de un recubrimiento anticorrosivo. Producción + Limpia, 11(1), 13–21. Obtenido de https://doi.org/10.22507/pml.v11n1a1

Morales, G. (2016). análisis del comportamiento de hormigón con inclusión de vidrio reciclado en hormigones de resistencia normal. ecuador.

Manual de diseño de pavimento de concreto. 2018. Manual de Diseño de Pavimentos de Concreto Para Vías Con Bajos, Medios y Altos Volúmenes de Tránsito. https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/3807-manual-de-diseno-de-pavimentos-de-concreto-para-vias-con-bajos-medios-y-altos-volumenes-de-transito/file. Natalia Pérez y otros. 2018. "Evaluación de Las Propiedades Físicas y Mecánicas de Un Agregado de Concreto Reciclado." Instituto Mexicano Del Transporte, no. 514: 84.

https://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt514.pdf.

Ortiz. 2014. "Comportamiento Del Mortero y El Concreto Hidráulicos Con Adicción de Ceniza de Cascarilla de Café." Esta Obra Está Bajo Una Licencia de Creative Commons Reconocimiento 4.0 Internacional., no. 1: 10.

Paulino Fierro, J. C. (2017). Análisis comparativo de la utilización del concreto simple y el concreto liviano con perlitas de poliestireno como aislante térmico y acústico aplicado a unidades de albañilería en el Perú. UPC. Obtenido de http://hdl.handle.net/10757/621457

Peruana, N. T. (2019). Norma Técnica Peruana 339.088. Dirección de Normalización-INACAL, 3, 1–10. Obtenido de file:///C:/Users/USUARIO/Downloads/pdf-ntp-339088-aguas_compress.pdf Peruana, T. N. (2011). CEMENTOS. Definiciones y nomenclatura CEMENTS. Obtenido de file:///C:/Users/USUARIO/Downloads/428345536-Ntp-334-001-Cemento-Definiciones.pdf

Quispe. 2018. "EVALUACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DEL CONCRETO CON SUSTITUCIÓN PARCIAL DEL CEMENTO POR CENIZA DE CASCARA DE ARROZ EN LA ZONA ALTIPLÁNICA'. TESIS." Factores Que Influyen En El Inicio De Relaciones Sexuales En Los Adolescentes De La Institución Educativa Secundaria Independencia Nacional Puno, 2017, 113.

Reyes Montoya, I. M. (2018). Diseño de un concreto con fibras de Polietileno Tereftalato (pet) reciclado para la ejecución de losas en el asentamiento humano Amauta - Ate - Lima Este (2018). lima.

Rodríguez Chico, H. E. (2017). Concreto liviano a base de poliestireno expandido para la prefabricación de unidades de albañilería no estructural - Cajamarca. Universidad Nacional de Cajamarca. Obtenido de https://repositorio.unc.edu.pe/bitstream/handle/UNC/999/TESIS-

CLPPUBLICAFINAL.pdf?sequence=1&isAllowed=y

Rodríguez. 2017. "Diseño de Concreto F´c:250 Reforzado Con Cascarilla de Café En La Ciudad de Jaén," 1–23.

Rosmel Quiroz & Antonio Tirado. 2017. "Comparación de La Resistencia a La Comprensión Del Concreto F´c=280 Kg/Cm2 de Tres Tipos de Cemento Con Cantera de Ríos y Cerro, Cajamarca - 2018." Ucv, 358.

SAAVEDRA ARGANDOÑA, F. &. (2019). Análisis comparativo del módulo de elasticidad a compresión y peso volumétrico de concretos convencionales y concretos ligeros fabricados con perlas de poliestireno expandido (PPE). Universidad San Marín de Porres. Obtenido de http://dx.doi.org/10.4067/S0718-50732018000200161

Sánchez. 2011. "Diseño de Mezclas de Concreto de Fc= 280 Kg/Cm2 Utilizando Aditivos."

Torrijos, María Celeste, Graciela Giaccio, and Raúl Zerbino. 2019. "Glass Macrofiber Self-Compacting Concrete: Fiber Distribution and Mechanical Properties in Thin Walls and Slabs." Structural Concrete 20 (2): 798–807. https://doi.org/10.1002/suco.201800080.

Zerbino, Giaccio, And Barragán. 2014. "hormigones reforzados con microfibras de vidrio: comportamiento mecánico y aplicaciones." Asociación argentina de tecnología de hormigón, 167–74.

ANEXOS

Anexo 1. Matriz de operacionalización de variables

Variable	Definición conceptual	Definición	Dimensiones	Indicadores	Escalda de
		operacional			medición
Variable Independiente: Incorporación de la ceniza de la cascara de café	Son el residuo de la combustión, donde tiene particular muy pequeñas esto son compatible con el cemento, las cenizas pueden útiles para controlar la reacción álcalisis de los agregados, que pueden ser empeladas como material de dosificación o como un componente del cemento mezclado, donde mejora las propiedades de concreto para mejorar la trabajabilidad del	Es un elemento residual que sirve para proteger contra el ataque microbiológico por su alta alcalinidad del concreto y esta mejora su adherencia para diversas estructuras.	Propiedades físicas Porcentaje de dosificación	Granulometría Porosidad Peso especifico Contenido de humedad Proporción de 10% y 20%	Ordinal
v	concreto fresco y contribuye a la durabilidad y resistencia del concreto.		D: ~ .	-	
Variable Dependiente: Evaluación de las propiedades de concreto.	La resistencia de las propiedades de concreto de obtiene mediante la rotura de las probetas de concreto mediante 28 días para luego pasar por la prensa hidráulica.	Para tener una resistencia de concreto de f'c = 210 kg/cm2 se utilizará las proporciones dadas por Capeco, a través del diseño de mezclas, también realizaremos una evaluación económica de los agregados y de las cenizas de la cascará de café.	Diseño de mezcla de concreto de f´c = 210 kg/cm2 Evaluación Económica	Trabajabilidad Peso unitario Temperatura Resistencia a la compresión (kg/m2) Costos unitarios	Ordinal

Fuente: Elaboración propia

Anexo 2Matriz de consistencia

PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	INDICADORES	METODOLOGÍA
Problema general	Objetivo general	Hipótesis general	Variable	Granulometría Porosidad	
¿Qué relación existe la adicción	Evaluar la resistencia a la	Adicción de la ceniza de	V.Independiente: Incorporación De La	Contenido de humedad Peso especifico	 Diseño de investigación
de ceniza de cascara de café como agregado en la resistencia de concreto f'c	comprensión de un concreto fabricado de f'c 210 Kg/Cm2, f'c 245 Kg/Cm2	cascara de café como agregado para mejorar la resistencia a la compresión.	ceniza de la cascara de café	Proporción de 10% y 20%	 Experimental Tipo de Investigación Aplicada Nivel de
210 Kg/Cm2, f'c 245 Kg/Cm2 y f'c 280 Kg/Cm2 en la ciudad de San Ignacio de Cajamarca?	y f'c 280 Kg/Cm2 con ceniza de cascara de café.		V.dependiente: Evaluación de las propiedades de concreto.	Trabajabilidad Peso unitario Temperatura Resistencia a la compresión (kg/m2) Costos unitarios	Investigación

Fuente: Elaboración propia

Anexo 3 Ensayo de mecánica de suelos

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

Ensayos físicos para diseño de mezcla de concreto.

1.- GRANULOMETRIA: N.T.P. 400.012

Muestra Agregado Fino

Malla	Peso Retenido	% Retenido	% Ret. Acum.	% Que Pasa
3/8"	0	0	0	100
Nº4	10.3	2.0	2.0	98.0
N°8	50.1	9.8	11.9	88.1
N°16	110.5	21.7	33.6	66.4
N°30	105.4	20.7	54.3	45.7
N°50	163.3	32.1	86.4	13.6
N°100	52.3	10.3	96.6	3.4
FONDO	17.1	3.4	100.0	0.0

Muestra	Agregado Grueso
T >	2.4.5

T.M.N.:	3/4"			
Malla	Peso Retenido	% Retenido	% Ret. Acum.	% Que Pasa
2"	0	0	0	100
1 1/2"	0	0	0	100
1"	0	0.00	0.00	100.00
3/4"	70.65	4.63	4.63	95.37
1/2"	741.56	48.63	53.27	46.73
3/8"	512.36	33.60	86.87	13.13
N°4	195.7	12.83	99.70	0.30
FONDO	4.5	0.3	100.0	0.0

2.- PESO UNITARIO: N.T.P. 400.017

SUELTO	A	В
- Peso de la muestra húmeda	7530	7530
- Volumen del molde		0.002827
- Peso unitario suelto húmedo		1594
- PESO UNIT. SUELTO SECO		1587
COMPACT ALWAY PAR	37/2000//2 J/C 1	7/10003

IN. I.F.	400.01/				
	A	В	SUELTO		
	7530	7530	- Peso de la muestra húmeda	21730	21725.1
		0.002827	- Volumen del molde		0.00942
lo		1594	- Peso unitario suelto húmedo		1587
CO		1587	- PESO UNIT. SUELTO SECO		1580
(A+B)/2)	V)/1000)/(1+(CI	H./100))	COMPACTADO		
1	7800	7800	- Peso de la muestra húmeda	21710	21714.6
		0.00283	- Volumen del molde		0.00942
lo		1689	- Peso unitario suelto húmedo		1587
ADO SE	co	1682	- PESO UNIT. COMPACTADO SEC	0	1682

- Peso de la muestra húmeda	7800	7800	- Peso de la muestra húmeda	21710	21
- Volumen del molde		0.00283	- Volumen del molde		0
- Peso unitario suelto húmedo		1689	- Peso unitario suelto humedo		1
- PESO UNIT. COMPACTADO SI	ECO	1682	- PESO UNIT. COMPACTADO SEG	co	1
3 PEOS ESPECIFICO Y AB	SORCIÓN :	N.T.P. 400.0	21 Arena		

- PEOS ESPECIFICO Y ABSORCION :	N.1.P. 400.021 Arena	
A - Dator de la arena	N T P 400 022 Pinder	

ADatos de la arena N.T.P. 4	400.022 Piedra	
1 Peso de la Muest. Sat. Sup. Seca.	g	500.0
2Peso de la Muest. Sat. Sup. Seca + Peso frasco + Peso de	lagua. g	965.0
3Peso de la Muest. Sat. Sup. Seca + Peso del frasco.	(1+5) g	674.1
4 Peso del Agua.	(2-3) g	290.9
5 Peso del Frasco	g	672.7
6Peso de la muest. secada ahomo + Peso del frasco.	(5+7) g	175.0
7 Peso de la muest, seca en el horno.	g	497.7
8 Volumen del frasco.	cm ³	500.0
B Resultados		

APESO ESPECIFICO DE LA ARENA.	7/(8-4)	g/cm ³	2.380
B PESO ESPECIFICO DE LA MASA S.S.S.	7/(7-4)	g/cm ³	2.391
C - PESO ESPECIFICO APARENTE	7/((8-4)-(8-7))	g/cm ³	1.090
D - PORCENTAJE DE ABSORCIÓN.	((1-7)/7)*100	9/6	0.47

A Datos de la grava			
1 Peso de la muestra seca al homo		g	1723
2 Peso de la muestra saturada superficialmente seca		g	1732
3 peso de la muestra saturada dentro del agua + peso d	e la canastilla	g	2005
4 Peso de la canastilla		g	928
5 Peso de la muestra saturada dentro del agua	(3-4)	g	1077

B Resultados	0.2	11195	
A PESO ESPECIFICO DE LA GRAVA.	1/(2-5)	g/cm ³	2.633
B - PESO ESPECIFICO DE LA MASA S.S.S.	2/(2-5)	g/cm ³	2.647
C PESO ESPECIFICO APARENTE	1/(1-5)	g/cm ³	2.669
D PORCENTAJE DE ABSORCIÓN.	((2-1)/1)*100	%	0.50

4.- CONTENIDO DE HUMEDAD: N.T.P. 339.185

Aren ((A+B)/2)/(1+(C.H./100))	
1 Peso de la muest. húmeda	597.7
2 Peso de la muestra seca	595.3
3 Cont. Humedad	0.48
4 - Promedio	0.44

	Gi	a	V2
7		-	

Grava	
1 Peso de la muest. húmeda	587.8
2 Peso de la muestra seca	585.2
3 Cont. Humedad	0.48
4 Promedio	0.46

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

F'c =210 kg/cm²

CEMENTO

1.- Tipo de cemento

: Tipo I -Pacasmayo

2.- Peso específico

:3150 Kg/m³

AGREGADOS:

Agregado fino:

Agregado grueso:

: Arena - Tres Tomas

: Piedra Chancada - Tres Tomas 1.- Peso especifico de masa

2.633 gr/cm3

1.- Peso específico de masa 2.- Peso específico de masa S.S.S. 2.380 gr/cm³ 2.391 gr/cm³

2.-Peso específico de masa S.S.S. 3.- Peso unitario suelto

2.647 gr/cm3

3.- Peso unitario suelto

1587 Kg/m3

4.- Peso unitario compactado

1581 Kg/m3 1580 Kg/m3

4.- Peso unitario compactado 5.-% de absorción

1682 Kg/m³ 0.47 %

5.-% de absorción 6. - Contenido de humedad 0.50 %

6.- Contenido de humedad

0.44 % 2.85

0.46 %

7.- Módulo de fineza

7.- Tamaño máximo 8.- Tamaño máximo nominal 1"

Pulg. 3/4" Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
N° 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
Nº 30	20.7	45.7
№ 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2*	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

 $Fc = 210 kg/cm^2$

Resultados del diseño de mezcla:

Asentamiento obtenido 4 Pulgadas

Peso unitario del concreto fresco 2403 Kg/m³

Resistencia promedio a los 7 días 168 Kg/cm²

Porcentaje promedio a los 7 días 80 %

Factor cemento por M³ de concreto 10.7 bolsas/m³

Relación agua cemento de diseño : 0.620

Cantidad de materiales por metro cúbico:

 Cemento
 453
 Kg/m³
 : Tipo I - Pacasmayo

 Agua
 281
 L
 : Potable de la zona.

 Agregado fino
 752
 Kg/m³
 : Arena - Tres Tomas

Agregado grueso 918 Kg/m³ : Piedra Chancada - Tres Tomas

C. cascara de café 18.79 Kg/m³

Proporción en peso:	Cemento	Arena	Piedra	C. cascara de café	Agua	
	1.0	1.66	2.03	0.04	26.4	Lts/pie ³
Proporción en volumen:						
	1.0	1.57	1.93	0.04	26.4	Lts/pie ³

JORGE M. LICAN JACINTO

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

 $F'c = 210 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino : Agregado grueso :

: Arena - Tres Tomas Piedra Chancada - Tres Tomas 1.- Peso específico de masa 2.380 gr/cm³ 1.- Peso específico de masa 2.633 gr/cm³ 2.391 gr/cm³ gr/cm3 2.- Peso específico de masa S.S.S. 2.- Peso específico de masa S.S.S. 2.647 1587 Kg/m³ Kg/m3 3.- Peso unitario suelto 3.- Peso unitario suelto 1581 Kg/m3 4.- Peso unitario compactado 1682 Kg/m³ 4. - Peso unitario compactado 1580 0.50 5.- % de absorción 0.47 % 5.- % de absorción % % 0.44 % 0.46 6.- Contenido de humedad 6. - Contenido de humedad 7.- Módulo de fineza 2.85 7. - Tamaño máximo 1" Pulg. 8.- Tamaño máximo nominal 3/4" Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
N° 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL $F'c = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 días : 168 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 10.7 bolsas/m³

Relación agua cemento de diseño : 0.620

Cantidad de materiales por metro cúbico:

C. cascara de café 37.95 Kg/m³

 Proporción en peso :
 Cemento
 Arena
 Piedra
 C. cascara de café
 Agua

 1.0
 1.68
 2.01
 0.08
 26.4
 Lts/pie³

 Proporción en volumen :
 1.0
 1.59
 1.91
 0.08
 26.4
 Lts/pie³

INCELL
JORGE M. LICAN JACINTO
LABORATORISTA

Tesis:	'EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

 $F'c = 210 kg/cm^2$

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino:			Agregado grueso :		
: Arena - Tres Tomas			: Piedra Chancada - Tres Tomas		
1 Peso específico de masa	2.380	gr/cm ³	1 Peso específico de masa	2.633	gr/cm ³
2 Peso específico de masa S.S.S.	2.391	gr/cm ³	2 Peso específico de masa S.S.S.	2.647	gr/cm ³
3 Peso unitario suelto	1587	Kg/m ³	3 Peso unitario suelto	1581	Kg/m ³
4 Peso unitario compactado	1682	Kg/m ³	4 Peso unitario compactado	1580	Kg/m ³
5% de absorción	0.47	%	5% de absorción	0.50	%
6 Contenido de humedad	0.44	%	6 Contenido de humedad	0.46	%
7Módulo de fineza	2.85		7 Tamaño máximo	1"	Pulg.
			8 Tamaño máximo nominal	3/4"	Pulg

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
N° 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	% Detector	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL	F'c =	210	kg/cm ²
------------------------	-------	-----	--------------------

Resultados del diseño de mezcla:

Asentamiento obtenido 4 Pulgadas Peso unitario del concreto fresco 2403 $\, \text{Kg/m}^3$ Resistencia promedio a los 7 días 168 $\, \text{Kg/cm}^2$ Porcentaje promedio a los 7 días 80 $\, \%$ Factor cemento por $\, \text{M}^3 \,$ de concreto 10.7 bolsas/ $\, \text{m}^3 \,$ Relación agua cemento de diseño 0.620

Cantidad de materiales por metro cúbico :

Cemento	453	Kg/m ³	Tipo I -Pacasmayo
Agua	281	L	Potable de la zona.
Agregado fino	766	Kg/m^3	Arena - Tres Tomas
Agregado grueso	903	Kg/m^3	Piedra Chancada - Tres Toma

C. cascara de café 57.48 Kg/m³

Proporción en peso:	Cemento	Arena	Piedra	C. cascara de café	Agua	
	1.0	1.69	1.99	0.13	26.4	Lts/pie ³
Proporción en volumen:						
	1.0	1.60	1.90	0.12	26.4	Lts/pie ³

JORGE M. LICAN JACINTO
LABORATORISTA

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO FC 210 KGICM2. CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

 $F'c = 210 kg/cm^2$

CEMENTO

1.-Tipo de cemento Tipo I -Pacasmayo 2.-Peso específico 3150 Kg/m³

AGREGADOS:

Agregado fino :			Agregado grueso :		
: Arena - Tres Tomas			Piedra Chancada - Tres Tomas		
1Peso específico de masa	2.380	gr/cm3	1 Peso especifico de masa	2.633	gr/cm ³
2Peso específico de masa S.S.S.	2.391	gr/cm ³	2 Peso especifico de masa S.S.S.	2.647	gr/cm ³
3Peso unitario suelto	1587	Kg/m3	3 Peso unitario suelto	1581	Kg/m3
4Peso unitario compactado	1682	Kg/m ³	4 Peso unitario compactado	1580	Kg/m3
5% de absorción	0.47	%	5 % de absorción	0.50	%
6Contenido de humedad	0.44	%	6 Contenido de humedad	0.46	%
7Módulo de fineza	2.85		7 Tamaño máximo	1"	Pulg.
			8 Tamaño máximo nominal	3/4"	Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa	
3/8"	0.0	100.0	
Nº 04	2.0	98.0	
Nº 08	9.8	88.1	
Nº 16	21.7	66.4	
Nº 30	20.7	45.7	
Nº 50	32.1	13.6	
Nº 100	10.3	3.4	
Fondo	3.4	0.0	

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL	Dia -	210	kg/cm ²
DISENU DE MEZCLA FINAL	ru-	210	Kg/CIII

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 días : 168 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 10.7 bolsas/m³

Relación agua cemento de diseño : 0.620

Cantidad de materiales por metro cúbico:

 Cemento
 453
 Kg/m³
 : Tipo I-Pacasmayo

 Agua
 281
 L
 : Potable de la zona.

 Agregado fino
 774
 Kg/m³
 : Arena - Tres Tomas

 Agregado grueso
 896
 Kg/m³
 : Piedra Chancada - Tres Tomas

 C. cascara de café
 77.37
 Kg/m³

 Proporción en peso :
 Cemento
 Arena
 Piedra
 C. cascara de cafe
 Agua

 1.0
 1.71
 1.98
 0.17
 26.4
 Itspie³

 Proporción en volumen :
 1.0
 1.62
 1.88
 0.16
 26.4
 Itspie³

JORGE M. LICAN JACINTO
LABORATORISTA

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO FIC 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

 $F'c = 210 kg/cm^2$

8.- Tamaño máximo nominal

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino : Agregado grueso :

: Arena - Tres Tomas : Piedra Chancada - Tres Tomas gr/cm3 1.- Peso específico de masa 2.380 1.- Peso específico de masa 2.633 gr/cm³ 2.391 gr/cm³ 2.- Peso específico de masa S.S.S. 2.647 gr/cm³ 2.- Peso específico de masa S.S.S. 1587 1581 Kg/m³ 3. - Peso unitario suelto Kg/m³ 3.- Peso unitario suelto 4.- Peso unitario compactado 1682 Kg/m³ 4.- Peso unitario compactado 1580 Kg/m³ 5.- % de absorción 0.47 % 5.- % de absorción 0.50 % 0.44 0.46 % 6.- Contenido de humedad % 6.-Contenido de humedad 1" 2.85 Pulg. 7.- Módulo de fineza 7.- Tamaño máximo

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
N° 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

3/4"

Pulg.

JORGE M. LLICAN JACHNIO

DISEÑO DE MEZCLA FINAL $Fc = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Cantidad de materiales por metro cúbico:

 Cemento
 453
 Kg/m³
 : Tipo I - Pacasmayo

 Agua
 281
 L
 : Potable de la zona

 Agregado fino
 781
 Kg/m³
 : Arena - Tres Tomas

 Agregado grueso
 888
 Kg/m³
 : Piedra Chancada - Tres Tomas

C. cascara de café 97.60 Kg/m³

 Proporción en peso :
 Cemento
 Arena
 Piedra
 C. casara de café
 Agua

 1.0
 1.72
 1.96
 0.22
 26.4
 Itspie³

 Proporción en volumen :

 1.0
 1.63
 1.87
 0.20
 26.4
 Itspie³

JORGE M. LICAN JACINTO
LABORATORISTA

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

DISEÑO DE MEZCLA FINAL $F'c = 245 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

Agregado fino : Agregado grueso :

: Arena - Tres Tomas : Piedra Chancada - Tres Tomas

1 Peso específico de masa	2.380	gr/cm3	 Peso específico de masa 	2.633	gr/cm3
2 Peso especifico de masa S.S.S.	2.391	gr/cm ³	2 - Peso específico de masa S.S.S.	2.647	gr/cm ³
3 Peso unitario suelto	1587	Kg/m ³	3 Peso unitario suelto	1581	Kg/m3
4 Peso unitario compactado	1682	Kg/m^3	4 Peso unitario compactado	1580	Kg/m^3
5% de absorción	0.47	%	5% de abserción	0.50	%
6 Contenido de humedad	0.44	%	6 - Contenido de humedad	0.46	%
7 Módulo de fineza	2.85		7 Tamaño máximo	1"	Pulg.
			8 - Tamaño mávimo nominal	3/4"	Pula

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
Nº 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1*	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

JORGE M. LICAN JACINTO

DISEÑO DE MEZCLA FINAL	Ele -	245	ko/cm2

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas

Peso unitario del concreto fiesco : 2403 Kg/m²

Resistencia promedio a los 7 días : 196 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M² de concreto : 11.2 bolsas/m³

Relación agua cemento de diseño : 0.631

Cantidad de materiales por metro cúbico:

Cemento	475	Kg/m ³	: Tipo I -Pacasmayo
Agua	300	L	: Potable de la zona.
Agregado fino	688	Kg/m^3	: Arena - Tres Tomas
Agregado grueso	939	Kg/m^3	: Piedra Chancada - Tres Toma

C. cascara de café 17.21 Kg/m³

JORGE M. LICAN JACINTO

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO FC 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

 $F'c = 245 kg/cm^2$

CEMENTO

: Tipo I -Pacasmayo 1.- Tipo de cemento 2.- Peso específico : 3150 Kg/m³

AGREGADOS :

Agregado fino : Agregado gnieso: : Piedra Chancada - Tres Tomas : Arena - Tres Tomas 1.- Peso especifico de masa 2.380 gr/cm³ 1.-Peso específico de masa 2.633 gr/cm³ 2.- Peso específico de masa S.S.S. 2.391 gr/cm³ 2.-Peso específico de masa S.S.S. 2.647 gr/cm³ 1587 Kg/m³ 1581 Kg/m³ 3.- Peso unitario suelto 3.- Peso unitario suelto 1580 1682 Kg/m³ 4.- Peso unitario compactado 4. - Peso unitario compactado Kg/m3 5.- % de absorción 0.47 % 5.-% de absorción 0.50 % % 6.- Contenido de humedad 0.44 % 6.- Contenido de humedad 0.46 7.- Tamaño máximo 7.- Módulo de fineza 2.85 1" Pulg. 3/4" 8.- Tamaño máximo nominal Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
N° 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	% Retenido	% Acumulado
		que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL	F'c =	245	kg/cm ²
DISENO DE MEZCEA PINAL	1 0 -	270	Kg cin

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m²

Resistencia promedio a los 7 días : 196 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 11.2 bolsas/m³

Relación agua cemento de diseño : 0.631

Cantidad de materiales por metro cúbico:

 Cemento
 475
 Kg/m³
 : Tipo I-Pacasmayo

 Agua
 300
 L
 : Potable de la zona.

 Agregado fino
 696
 Kg/m³
 : Arena - Tres Tomas

 Agregado grueso
 932
 Kg/m³
 : Piedra Chancada - Tres Tomas

C. cascara de café 34.80 Kg/m³

Proporción en peso: Cemento Arena Piedra C. cascara de café Agua

1.0 1.46 1.96 0.07 26.8 Lts/pie³

Proporción en volumen:

1.0 1.39 1.86 0.07 26.8 Lts/pie³

JORGE M. LICEN JACONTO

Tesis:	"EVALUACIÓN [DE RESISTE			CONCRETO F'C: AN IGNACIO, CA		ON ADICIÓN DE	CENIZA DI
Tesista:	HUAMÁN VELA	A, ORLAND	0					
	DISEÑO DE R	ESISTEN	CIA			F'c =	245	Kg/cm ²
	agregado grueso			hancada -	Tres Tomas			
	Tamaño máxim							pulg.
02.	 Peso especifico 	seco de n	nasa					Kg/m ³
03.	- Peso Unitario c	ompactado	seco				1580	Kg/m ³
04.	Peso Unitario s	uelto seco					1581	Kg/m ³
05	- Contenido de h	umedad					0.464	%
06.	- Contenido de a	bsorción					0.540	%
II.) Datos de	l agregado fino		: Arena -	Tres Toma	is			
07.	Peso específico	seco de n	nasa				2380	Kg/m ³
08.	- Peso unitario se	eco suelto						Kg/m ³
09.	- Contenido de h	umedad					0.44	
10.	Contenido de a	bsorción					0.49	
11.	- Módulo de finez	za (adimer	nsional)				2.848	
III.) Datos de	e la mezcla y otro	os				9/		
12.	- Resistencia esp	ecificada a	a los 28 día	s		F'cr	294	Kg/cm ²
13	- Relación agua o	cemento				R a/c	0.628	
14.	Asentamiento						4	Pulg.
15.	- Volumen unitar	io del aqu	a	: Potable	de la zona.	205	205	L/m ³
16.	- Contenido Inco	rporado						%
17	- Volumen del ag	reaado ar	ueso				0.615	m ³
	- Peso específico			· Tipo I -	Pacasmayo			Kg/m ³
	de volúmenes ab					agua		1.19/
a Cemen		327	0.104		/	9		
bAgua		205	0.205					
c Aire		2.0	0.020	Corr	ección por hi	umedad	Agua Efect	iva
dArena		718	0.302	42	721		0.4	
e Grava		972	0.370	58	977		0.7	
		2224	1.000				1	
V.) Resultado	o final de diseño	(húmedo)		VI.) Tand	la de ensayo	0.025	5 m ³	
CEMENT	0	327	Kg/m ³	8.16	57 kg	F/cemento (en	bolsas)	
AGUA		206	L/m ³	5.15	53 L	R a/c de diseño	•	
ARENA		721	Kg/m ³	18.03	34 kg	R a/c de obra		
PIEDRA		977	Kg/m ³		L3 kg	스타		
ILLUKA	,	311	Rg/III	27.7.	LO NG			

1.353 kg

0.166

0.157

26.8

26.8

Lts/pie3

Lts/pie³

57.120

2.99

2.84

Kg/m³

2.21

2.09

54

2285

1.0

VII). Dosificación en volumen (materiales con humedad natural) 1.0

C. CASCARA DE CAFÉ

En bolsa de 1 pie3 Peso

En bolsa de 1 pie3 Volumen

ENSAYO : DISEÑO DE MEZCLAS DE CONCRETO REFERENCIA : RECOMENDACIÓN ACI 211

AJUSTE DE LA MEZCLA DE PRUEBA :

peso de tanda de ensayo57.120Peso unitario de la mezcla teorica2403Rendimiento0.0238

		254
Ajuste de agua de mezclado		300
Ajuste de cantidad de cemento		475
Ajuste de grava	(húmedo)	924
Ajuste de arena	(húmedo)	703
Ajuste por slump		0
Ajuste de % de Grava		-10

Materiales	Tanda		Dosi	ficación
	0.024		Peso	Volumen
Cemento	11.344		1.00	1.00
Agua	7.157		26.8	26.8
Arena	16.779	Arena	1.48	1.40
Grava	22.054	Grava	1.94	1.85
Total	57.333			3.3

Ra/c final

F. Cemento

% de grava

% de arena

0.631

11.2

57

43

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO FC 210 KGICMZ, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

DISEÑO DE R	ESISTE	NCIA				F'c	= 245 Kg/cm
I.) Datos del agregado grueso)	: Piedra C	hancada -	Tres To	mas		
01 Tamaño máxim	o nomina	al					3/4" pulg.
02 Peso específico	seco de	masa					2630 Kg/m ³
03 Peso Unitario co	ompactac	do seco					1580 Kg/m ³
04 Peso Unitario si	uelto seco	0					1581 Kg/m ³
05 Contenido de h	umedad						0.464 %
06 Contenido de al	bsorción						0.540 %
II.) Datos del agregado fino			Tres Toma	S			
07 Peso específico							2380 Kg/m ³
08 Peso unitario se		D					1587 Kg/m ³
09 Contenido de h							0.44 %
 Contenido de al Módulo de finez 		na sianal)					0.49 %
III.) Datos de la mezcla y otro		ensional)					% 20
12 Resistencia esp		a las 20 día				F' _{cr}	294 Kg/cm
		a 105 20 Gla	5			Ra/c	
 Relación agua o Asentamiento 	emento					K -	0.628 4 Pulg.
15 Volumen unitar	a del ser		: Potable	de le se	1	205	205 L/m ³
16 Contenido Inco		ua	: Potable	de la 20	na.		0 2%
17 Volumen del ag		ITHESO					0.615 m ³
18 Peso específico			: Tipo I -	Dacaema	11/0		3150 Kg/m ³
IV.) Calculo de volúmenes abs						nua	3130 Kg/III
a Cemento	327	0.104					
bAgua	205	0.205					
cAire	2.0	0.020	Соп	ección p	or hur	nedad	Agua Efectiva
dArena	718	0.302	42	721			0.4
e Grava	972	0.370	58	977			0.7
	2224	1.000					1
V.) Resultado final de diseño	(húmedo		VI.) Tand	la de ens	sayo	0.02	5 m ³
CEMENTO	327	Kg/m ³	8.16	7 kg		F/cemento (en	
AGUA	206	L/m ³	5.15	3 L		R a/c de diseñ	0
ARENA	721	Kg/m ³	18.03	4 kg		R a/cde obra	
PIEDRA	977	Kg/m ³	24.41	3 kg			
C. CASCARA DE CAFÉ	54	Kg/m ³	1.353	kg			
-	2285		57.12	20			
VII). Dosificación en volumen	(materia	les con hum	edad natur	al)			
En bolsa de 1 pie3 Peso	1.0	2.21	2.99		0.166	26.8	Lts/pie ³

ORIGE M. LICAN JACHTO

: DISEÑO DE MEZCLAS DE CONCRETO : RECOMENDACIÓN ACI 211 ENSAYO REFERENCIA

Ra/c final

F. Cemento

% de grava

% de arena

Volumen

1.00

26.8

1.40

<u>1.85</u>

Litros

Pie³

Pie³

Pie³

Dosificación Peso

1.00

26.8

1.48

1.94

0.631

11.2

57

43

AJUSTE DE LA MEZCLA DE PRUEBA :

peso de tanda de ensayo 57.120 Peso unitario de la mezcla teorica 2403 Rendimiento 0.0238

		254
Ajuste de agua de mezclado		300
Ajuste de cantidad de cemento		475
Ajuste de grava	(húmedo)	924
Ajuste de arena	(húmedo)	703
Ajuste por slump		0
Ajuste de % de Grava		-10

Total	57.333	
Grava	22.054	Grava
Arena	16.779	Arena
Agua	7.157	
Cemento	11.344	
Materiales	Tanda 0.024	

To	otal	57.333		3.3
Peso unitario t Peso unitario d		inal de la mezcla zcla corregida	2403 2403	31

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO FIC 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAV IGNACIO, CAJAMARCA"
Tesista:	HJAMÁN VELA, ORLANDO

DISEÑO DE MEZCLA FINAL $F'c = 245 \text{ kg/cm}^2$

CEMENTO

1.- Tipo de cemento : Tipo I -Pacasmayo : 3150 Kg/m³ 2.- Peso específico

AGREGADOS:

Agregado fino :

Agregado grueso : : Piedra Chancada - Tres Tomas : Arena - Tres Tomas 1.- Peso especifico de masa 2.380 gr/cm³ 1.- Peso especifico de masa 2.633 gr/cm³ 2.- Peso especifico de masa S.S.S. 2.391 gr/cm³ 2.- Peso especifico de masa S.S.S. 2.647 gr/cm³ 3.- Peso unitario suelto 1587 Kg/m³ 3.- Peso unitario suelto 1581 Kg/m3 4.- Peso unitario compactado 1682 Kg/m³ 4.- Peso unitario compactado 1580 Kg/m3 0.47 % 0.50 5.- % de absorción 5.- % de absorción % 0.44 % % 6.- Contenido de humedad 6.- Contenido de humedad 0.46 1" 7.- Módulo de fineza 2.85 7.- Tamaño máximo Pulg. 3/4" 8.- Tamaño máximo nominal Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
Nº 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	% Retenido	% Acumulado que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCIA FINAL Fe = 245 kg/cm^2

Resultados del diseño de mezcla:

 Asentamiento obtenido
 4
 Pulgadas

 Peso unitario del concreto fresco
 2403 Kg/m^3

 Resistencia promedio a los 7 días
 196 Kg/cm^2

 Porcentaje promedio a los 7 días
 80 %

 Factor cemento por M^3 de concreto
 11.2 bolsas/m^3

 Relación agua cemento de diseño
 0.631

Cantidad de materiales por metro cúbico:

Cemento	475	Kg/m^3	: Tipo I -Pacasmayo
Agua	300	L	: Potable de la zona.
Agregado fino	718	Kg/m^3	: Arena - Tres Tomas
Agregado grueso	910	Kg/m^3	: Piedra Chancada - Tres Tomas

C. cascara de café 89.71 Kg/m³

Proporción en peso:	Cemento	Arena	Piedra	C. cascara de café	Agua	
	1.0	1.51	1.91	0.19	26.8	Lts/pie
Proporción en volumen:						
	1.0	1.43	1.82	0.18	26.8	Lts/pie

INCELL JORGE M. LICAN JACINTO

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

DISEÑO D	E RESISTEN	ICIA				F'c	=[280	Kg/cm
I.) Datos del agregado gr	ueso	: Piedra C	hancada -	Tres Torr	as				
01 Tamaño ma	áximo nomina	ıl						3/4"	pulg.
02 Peso espec	ífico seco de i	masa						2630	Kg/m ³
03 Peso Unitar	rio compactad	lo seco						1580	Ka/m ³
04 Peso Unitar	rio suelto seco)						1581	Ka/m ³
05 Contenido	de humedad								1%
06 Contenido	de absorción							0.540	%
II.) Datos del agregado fi	no	: Arena -	Tres Toma	IS					
07 Peso espec	ífico seco de i	masa						2380	Kg/m ³
08 Peso unitar	io seco suelto)						1587	Kg/m ³
09 Contenido	de humedad							0.4418	%
10 Contenido								0.4934	
11 Módulo de		nsional)						2.848	
III.) Datos de la mezcla y							%	20	
12 Resistencia	especificada	a los 28 días	S			F'cr	L	336	Kg/cm
13 Relación ag	gua cemento					R a/c		0.570	
14 Asentamier	nto								Pulg.
15 Volumen u	nitario del agu	ıa	: Potable	de la zon	a. [205			L/m ³
16 Contenido	Incorporado						0		%
17 Volumen de	el agregado g	rueso					L	0.615	m ³
18 Peso espec	ífico del ceme	ento	: Tipo I -	Pacasmay	0				Kg/m ³
IV.) Calculo de volúmene	s absolutos, o	orrección po	or humedad	y aporte	de ag	gua			
a Cemento	360	0.114							
b Agua	205	0.205							
cAlre	2.0	0.020		ección po	r hun	nedad		jua Efect	Iva
dArena	693	0.291	42	696			0.4		
eGrava	972	0.370	58	977			0.	5	
	2232	1.000					1		
V.) Resultado final de dis	eño (húmedo)		VI.) Tano	la de ens	ayo	0.02	5 m	3	
CEMENTO	360	Kg/m ³	8.99	91 kg	- 1	F/ ^{cemento (er}	1 bolsas)	
AGUA	206	L/m ³	5.14	15 L		R a/c de diseñ	10		
ARENA	696	Kg/m ³	17.40	9 kg		R ^{a/cde obra}			
PIEDRA	977	Kg/m ³	24.42	20 kg					
C. CASCARA DE CAFÉ	17	Kg/m ³	0.435	kg					
	2256		56.40						
VII). Dosificación en volu	men (materia	les con hum	edad natur	al)					
En bolsa de 1 pie3 Peso	1.0	1.94	2.72		048	24.3	Lte	s/pie ³	
En bolsa de 1 pie3 Volum		1.84	2.72		046	24.3		s/pie ³	
Eli boisa de 1 pies volum	1.0	1.04	2.38	U	0+0	24.3	LU	s/pie	

INCELL JORGE M. LICKN JACHTO

: DISEÑO DE MEZCLAS DE CONCRETO : RECOMENDACIÓN **ACI 211** ENSAYO REFERENCIA

AJUSTE DE LA MEZCLA DE PRUEBA :

peso de tanda de ensayo 56.401 Peso unitario de la mezcla teorica 2403 Rendimiento 0.0235

= =		254
Ajuste de agua de mezclado		320
Ajuste de cantidad de cemento		559
Ajuste de grava	(húmedo)	936
Ajuste de arena	(húmedo)	588
Ajuste por slump		0
Ajuste de % de Grava		-10

320	Ra/c final	0.572
559	F. Cemento	13.2
936	% de grava	61
588	% de arena	39
0		
-10		

Materiales	Tanda
	0.024
Cemento	13.340
Agua	7.634
Arena	14.017
Grava	22.342
Total	57.333

Arena Grava

Dosit	ficación	
Peso	Volumen	
1.00	1.00	Pie ³
24.3	24.3	Litros
1.05	1.00	Pie ³
1.67	1.59	Pie ³
	2.6	Pie ³

Peso unitario teorico final de la mezcla Peso unitario de la mezcla corregida

2403 kg/m3 **2403** kg/m3

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F.C.210 KG/CM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Te sista:	HUAMÁN VELA. ORLANDO

 $F'c = 280 kg/cm^2$

CEMENTO

1.-Tipo de cemento : Tipo I -Pacasmayo 2.-Peso específico : 3150 Kg/m³

AGREGADOS :

TIOLE CLED CO.					
Agregado fino :			Agregado grueso :		
: Arena - Tres Tomas			: Piedra Chancada - Tres Tomas		
1Peso especifico de masa	2.380	gr/cm3	1 - Peso específico de masa	2.633	gr/cm3
2Peso específico de masa S.S.S.	2.391	gr/cm ³	2 Peso específico de masa S.S.S.	2.647	gr/cm3
3 Peso unitario suelto	1587	Kg/m3	3 Peso unitario suelto	1581	Kg/m3
4Peso unitario compactado	1682	Kg/m^3	4 Peso unitario compactado	1580	Kg/m3
5% de absorción	0.47	%	5 % de absorción	0.50	%
6 Contenido de humedad	0.44	%	6 Contenido de humedad	0.46	%
7Módulo de fineza	2.85		7 Tamaño máximo	1"	Pulg.
			8 - Tamaño máximo nominal	3/4"	Pulg

Granulometria:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
N° 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL $Fc = 280 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido 4 Pulgadas

Peso unitario del concreto fresco 2403 Kg/m³

Resistencia promedio a los 7 días 224 Kg/cm²

Porcentaje promedio a los 7 días 80 %

Factor cemento por M³ de concreto 13.2 bolsas/m³

Relación agua cemento de diseño 0.572

Cantidad de materiales por metro cúbico:

 Cemento
 559
 Kg/m^3 : Tipo I - Pacasmayo

 Agua
 320
 L
 : Potable de la zona.

 Agregado fino
 595
 Kg/m^3 : Arena - Tres Tomas

 Agregado grueso
 929
 Kg/m^3 : Piedra Chancada - Tres Tomas

C. cascara de café 29.74 Kg/m³

Proporción en peso:	Cemento	Arena	Piedra	C. cascara de café	Agua	
	1.0	1.06	1.66	0.05	24.3	Lts/pie3
Proporción en volumen:						
	1.0	1.01	1.58	0.05	24.3	Lts/pie ³

INCELL
JORGE M. LICAN JACINTO
LABORATORISTA

Tesis:	'EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO FC 210 KG/CM2, CON ADICIÓN DE CENZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA'
Tesista:	HUAMÁN VELA, ORLANDO

DISEÑO DE MEZCLA FINAL

 $F'c = 280 kg/cm^2$

CEMENTO

1.- Tipo de cemento : Tipo 1-Pacasmayo 2.- Peso específico : 3150 Kg/m³

AGREGADOS:

. rotal about					
Agregado fino :			Agregado grueso :		
: Arena - Tres Tomas			: Piedra Chancada - Tres Tomas		
1 Peso específico de masa	2.380	gr/cm ³	1 Peso específico de masa	2.633	gr/cm ³
2 Peso específico de masa S.S.S.	2.391	gr/cm ³	2 Peso específico de masa S.S.S.	2.647	gr/cm ³
3 Peso unitario suelto	1587	Kg/m ³	3 Peso unitario suelto	1581	Kg/m ³
4 Peso unitario compactado	1682	Kg/m^3	4 Peso unitario compactado	1580	Kg/m^3
5 % de absorción	0.47	%	5% de absorción	0.50	%
6 Contenido de humedad	0.44	%	6 Contenido de humedad	0.46	%
7 Módulo de fineza	2.85		7 Tamaño máximo	1"	Pulg.
			8 Tamaño máximo nominal	3/4"	Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
№ 16	21.7	66.4
№ 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCIA FINAL $F'c = 280 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 días : 224 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 13.2 bolsas/m³

Relación agua cemento de diseño : 0.572

Cantidad de materiales por metro cúbico:

 Cemento
 559
 Kg/m^3 : Tipo I - Pacasmayo

 Agua
 320
 L
 : Potable de la zona.

 Agregado fino
 602
 Kg/m^3 : Arena - Tres Tomas

 Agregado grueso
 922
 Kg/m^3 : Piedra Chancada - Tres Tomas

C. cascara de café 45.13 Kg/m³

 Proporción en peso :
 Cemento
 Arena
 Piedra
 C. cascara de café
 Agua

 1.0
 1.08
 1.65
 0.08
 24.3
 Lts/pie³

 Proporción en volumen :
 1.0
 1.02
 1.57
 0.08
 24.3
 Lts/pie³

JORGE M. LICAN JACHTO
LABORATORISTA

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KGICM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, CRLANDO

DISEÑO DE R	ESISTE	ICIA				F	'c =[280	Kg/cm
I.) Datos del agregado grueso			hancada -	Tres Tor	nas				
01 Tamaño máxim	o nomina	ıl							pulg.
02 Peso específico	seco de	masa					L	2630	Kg/m ³
03 Peso Unitario o	ompactac	lo seco						1580	Kg/m ³
04 Peso Unitario s	uelto seco)						1581	Kg/m ³
05 Contenido de h	umedad							0.5	%
06 Contenido de a	bsorción							0.540) %
II.) Datos del agregado fino		: Arena -	Tres Toma	S					-1
07 Peso específico	seco de	masa							Kg/m ³
08 Peso unitario se	eco suelto)					L		Kg/m ³
09 Contenido de h								0.4418	-
10 Contenido de a		1000 1000						0.4934	
11 Módulo de fine		ensional)						2.848	and .
III.) Datos de la mezcla y otr							%	20	
 Resistencia esp 		a los 28 dia	S			F _{cr}			Kg/cm
13 Relación agua	cemento					R a/c		0.570	-4
14 Asentamiento									Pulg.
15 Volumen unitar		ıa	: Potable	de la zo	na.	205			L/m ³
16 Contenido Inco	Branch Contact Contact						0		%
17 Volumen del ag	gregado g	rueso					ļ	0.615	
Peso específico			: Tipo I -				L	3150	Kg/m ³
IV.) Calculo de volúmenes ab			or humedad	y aporte	de a	gua			
aCemento	360	0.114							
bAgua	205	0.205		.,					
c Aire d Arena	2.0 693	0.020 0.291	42	ección p 696	or hur	nedad	Ag 0.4	ua Efect	tiva
e Grava	972	0.370	58	977			0.5		
e Grava	2232	1.000	36	3//			1	2	
V.) Resultado final de diseño	(húmedo)	VI.) Tand	a de ens	iavo	0.0)25 m ³		
CEMENTO	360	Ka/m ³		1 ka	10	r/cemento	(en bolsas)	
AGUA	206	L/m ³	5.14			R a/c de di	seño		
ARENA	696	Kg/m ³	17.40			R a/c de ob	ıra		
PIEDRA	977	Kg/m ³	24.42						
		Kg/m ³		-					
C. CASCARA DE CAFÉ	70	_ Kg/m	1.741	0.00					
	2308		57.70	/					
VII). Dosificación en volumen				8.				. 2	
En bolsa de 1 pie3 Peso	1.0	1.94	2.72).194	24.3		/pie ³	
En bolsa de 1 pie3 Volumen	1.0	1.84	2.58	(1.184	24.3	Lts	/pie ³	

JORGE M. LICAN JACHTO

ENSAYO : DISEÑO DE MEZCLAS DE CONCRETO REFERENCIA : RECOMENDACIÓN ACI 211

AJUSTE DE LA MEZCLA DE PRUEBA :

 peso de tanda de ensayo
 57.707

 Peso unitario de la mezcla teorica
 2403

 Rendimiento
 0.0240

		254
Ajuste de agua de mezclado		320
Ajuste de cantidad de cemento		559
Ajuste de grava	(húmedo)	915
Ajuste de arena	(húmedo)	609
Ajuste por slump		0
Ajuste de % de Grava		-10

icidad de cente	iito	339	r. Cemento
ava	(húmedo)	915	% de grava
ena	(húmedo)	609	% de arena
ump		0	
de Grava		-10	
Materiales			Dosificación
Matorialos I	Tanda		Dositicacion

Ra/c final

1.00 24.3

1.03

<u>1.56</u>

2.6

Litros Pie³

Pie³

Pie³

0.572 **13.2** 60 40

lateriales	Tanda		Do
	0.024		Peso
Cemento	13.340		1.00
gua	7.634		24.3
rena	14.523	Arena	1.09
Grava	21.836	Grava	1.64
otal	57 333		

 $\begin{array}{lll} \mbox{Peso unitario teorico final de la mezcla} & 2403 & \mbox{kg/m3} \\ \mbox{Peso unitario de la mezcla corregida} & 2403 & \mbox{kg/m3} \\ \end{array}$

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F.C.210 KGICN2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNIACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

DISEÑO DE MEZCLA FINAL $F'c = 280 \text{ kg/cm}^2$

CEMENTO

AGREGADOS :

Agregado fino : Agregado grueso :

: Arena - Tres Tomas : Piedra Chancada - Tres Tomas 2.380 gr/cm³ 1.- Peso específico de masa 2.633 1.- Peso específico de masa gr/cm³ 2.391 gr/cm³ 2.647 2.- Peso específico de masa S.S.S. 2.- Peso específico de masa S.S.S. gr/cm3 1587 Kg/m³ 1581 3.- Peso unitario suelto 3.- Peso unitario suelto Kg/m³ 4.- Peso unitario compactado 1682 Kg/m³ 4.- Peso unitario compactado 1580 Kg/m³ 5.-% de absorción 0.47 % 5.- % de absorción 0.50 % 6.- Contenido de humedad 0.44 % % 6.- Contenido de humedad 0.46 7.- Módulo de fineza 2.85 7.- Tamaño máximo Pulg. 3/4" 8.- Tamaño máximo nominal Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
No 08	9.8	88.1
Nº 16	21.7	66.4
N° 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL $Fc = 280 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

 Asentamiento obtenido
 :
 4
 Pulgadas

 Peso unitario del concreto fresco
 :
 2403 Kg/m^3

 Resistencia promedio a los 7 días
 :
 224 Kg/cm^2

 Porcentaje promedio a los 7 días
 :
 80 %

 Factor cemento por M^3 de concreto
 :
 13.2 bolsas/m^3

 Relación agua cemento de diseño
 :
 0.572

Cantidad de materiales por metro cúbico:

 Cemento
 559
 Kg/m³
 : Tipo I - Pacasmayo

 Agua
 320
 L
 : Potable de la zona.

 Agregado fino
 616
 Kg/m³
 : Arena - Tres Tomas

 Agregado grueso
 908
 Kg/m³
 : Piedra Chancada - Tres Tomas

C. cascara de café 76.95 Kg/m³

 Proporción en peso :
 Cemento
 Arena
 Piedra
 C. cascara de café
 Agua

 1.0
 1.10
 1.62
 0.14
 24.3
 Lts/pie³

 Proporción en volumen :
 1.0
 1.04
 1.55
 0.13
 24.3
 Lts/pie³

JORGE M. LICAN JACHTO
LABORATORISTA

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/CM2, CON ADICIÓN DE CENZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Te sista:	HUAMÁN VELA ORLANDO

DISEÑO DE MEZCLA FINAL

 $F'c = 210 kg/cm^2$

CEMENTO

: Tipo I -Pacasmayo : 3150 Kg/m³ 1.- Tipo de cemento 2.- Peso específico

AGREGADOS:					
Agregado fino :			Agregado grueso:		
: Arena - La Victoria			: Piedra Chancada - Patapo		
1 Peso específico de masa	2.380	gr/cm ³	1 - Peso específico de masa	2.633	gr/cm ³
2 Peso específico de masa S.S.S.	2.391	gr/cm ³	2 - Peso específico de masa S.S.S.	2.647	gr/cm ³
3 Peso unitario suelto	1587	Kg/m3	3 - Peso unitario suelto	1581	Kg/m3
4 Peso unitario compactado	1682	Kg/m ³	4 - Peso unitario compactado	1580	Kg/m3
5 % de absorción	0.47	%	5 % de absorción	0.50	%
6 Contenido de humedad	0.44	%	6 Contenido de humedad	0.46	%
7 Módulo de fineza	2.85		7 Tamaño máximo	1"	Pulg.
			8 - Tamaño máximo nominal	3/4"	Pulg.

Granulometría:

Malla	% Retenido	% Acumulado que pasa
3/8"	0.0	100.0
Nº 04	2.0	98.0
Nº 08	9.8	88.1
Nº 16	21.7	66.4
Nº 30	20.7	45.7
Nº 50	32.1	13.6
Nº 100	10.3	3.4
Fondo	3.4	0.0

Malla	%	% Acumulado
	Retenido	que pasa
2"	0.0	100.0
1 1/2"	0.0	100.0
1"	0.0	100.0
3/4"	4.6	95.4
1/2"	48.6	46.7
3/8"	33.6	13.1
Nº 04	12.8	0.3
Fondo	0.3	0.0

DISEÑO DE MEZCLA FINAL $Fc = 210 \text{ kg/cm}^2$

Resultados del diseño de mezcla:

Asentamiento obtenido : 4 Pulgadas

Peso unitario del concreto fresco : 2403 Kg/m³

Resistencia promedio a los 7 días : 168 Kg/cm²

Porcentaje promedio a los 7 días : 80 %

Factor cemento por M³ de concreto : 10.7 bolsas/m³

Relación agua cemento de diseño : 0.620

Cantidad de materiales por metro cúbico:

Cemento	453	Kg/m³	: Tipo I -Pacasmayo
Agua	281	L	: Potable de la zona.
Agregado fino	744	Kg/m ³	: Arena - La Victoria
Agregado grueso	925	Kg/m ³	: Piedra Chancada - Patapo

Proporción en peso:	Cemento	Arena	Piedra	Agua	
	1.0	1.64	2.04	26.4	Lts/pie
Proporción en volumen:					
	1.0	1.56	1.94	26.4	Lts/pie

INCELL JORGE M. LICAN JACHTO

Tesis:	"EVALUACIÓN DE RESISTENCIA A COMPRESIÓN DEL CONCRETO F'C 210 KG/GM2, CON ADICIÓN DE CENIZA DE CASCARA DE CAFÉ, SAN IGNACIO, CAJAMARCA"
Tesista:	HUAMÁN VELA, ORLANDO

DISEÑO DE R	ESISTE	ICIA			F'o	c = 245 Kg/cm
I.) Datos del agregado grues			hancada -	Patapo		
01 Tamaño máxim	no nomina	ıl				3/4" pulg.
Peso específico	seco de	masa				2630 Kg/m
03 Peso Unitario d	ompactad	lo seco				1580 Kg/m
04 Peso Unitario s	uelto seco)				1581 Kg/m
05 Contenido de h	umedad					0.464 %
06 Contenido de a	bsorción					0.540 %
II.) Datos del agregado fino		: Arena -	La Victoria			,
07 Peso específico	seco de	masa				2380 Kg/m
08 Peso unitario s	eco suelto)				1587 Kg/m
09 Contenido de l	umedad					0.44 %
10 Contenido de a						0.49 %
11 Módulo de fine		ensional)				2.848
III.) Datos de la mezcla y otr						% 20
12 Resistencia esp	ecificada	a los 28 días	5		F'cr	294 Kg/cn
13 Relación agua	cemento				R a/c	0.628
14 Asentamiento					F	4 Pulg.
15 Volumen unita		ıa	: Potable	de la zona.	205	205 L/m ³
16 Contenido Inco	rporado					0 2.0 %
17 Volumen del ag	gregado g	rueso				0.615 m ³
18 Peso específico				Pacasmayo		3150 Kg/m
IV.) Calculo de volúmenes ab	solutos, c		r humedad	y aporte de	e agua	
a Cemento	327	0.104				
bAgua	205	0.205				
c Aire	2.0	0.020		ección por l	numedad	Agua Efectiva
dArena	718	0.302	42 58	721 976		0.4
e Grava	972 2224	0.369 1.000	58	976		0.7 1
	2224	1.000				1
V.) Resultado final de diseño	(húmedo)	VI.) Tano	da de ensayo	0.0	25 m ³
CEMENTO	327	Kg/m ³	8.16	57 kg	F/cemento(en bolsas)
AGUA	206	L/m ³	5.15	53 L	R a/c de dis	eño
ARENA	721	Kg/m ³	18.03	37 kg	R a/c de obr	a
PIEDRA	976	Kg/m ³	24.41	10 kg		
, ILDINA	2231		55.76	10000		
VII). Dosificación en volumer				0.000		
En bolsa de 1 pie3 Peso	1.0	2.21	2.99	26.8	Lts/pie3	
En bolsa de 1 pie3 Volumen	1.0	2.09	2.84	26.8	Lts/pie3	

ENSAYO REFERENCIA : DISEÑO DE MEZCLAS DE CONCRETO : RECOMENDACIÓN **ACI 211**

AJUSTE DE LA MEZCLA DE PRUEBA :

peso de tanda de ensayo 55.767 Peso unitario de la mezcla teorica 2403 Rendimiento 0.0232

		254
Ajuste de agua de mezclado		300
Ajuste de cantidad de cemento		476
Ajuste de grava	(húmedo)	947
Ajuste de arena	(húmedo)	681
Ajuste por slump		0
Ajuste de % de Grava		-10

Materiales	Tanda	
	0.024	
Cemento	11.344	
Agua	7.157	
Arena	16.247	
Grava	22.586	

Total 57.333

	ficación	Dosif
	Volumen	Peso
Pie ³	1.00	1.00
Litros	26.8	26.8
Pie ³	1.36	1.43
Pie ³	1.89	1.99
Pie ³	3.3	

Ra/c final

F. Cemento

% de grava

% de arena

0.631

11.2

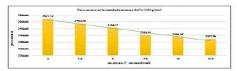
58

42

2403 kg/m3 Peso unitario teorico final de la mezcla Peso unitario de la mezcla corregida 2403 kg/m3

Arena Grava

RESULTADO DE ENSAYO DE PESO UNITARIO				
TEDIO	тильной не коротнека сентаров не короне по горне. По стать подана не стата не слока не слока стать на слока слокамом			
TESISTAS	MUNICAL STATE OF THE STATE OF T			


Ensayo de Peso Unita io

PESO UNITARIO DE LA MEZGLA DE F'G=110 kg/km² CON LOS DISTINTOS PORCENTAJES DE G. CASCARA DE CAFÉ

EXIG523	peso de la muestra + molde(kg)	peso del molde(kg)	area (cm2)	alous (cm)	volumen(cmi)	peso unitario (Kg/m²)
f c=210kg/an2	12.13	3.25	0.1767	0.0133	0.00271883	232L.L5
f ⊂ 210 kg/cm2* 2.5% C. casara de cafe	19.23	2.44	0.031413927	0.213	0.006734424	2483.78
For 210 legrand * 5% O. common de cade	19.03	2.44	0.031415927	0.213	0.000754424	2456.17
Po-210 logrand - 7.5% C. seasons de se A	18.65	2.44	0.031413927	0.215	0.006754424	2399.91
For 210 log and + 10% C. common de code	18.57	2.44	0.021415927	0.215	0.000754424	2288.06
f ⊂ 210 kg/am2+12.5% C. carcanada cafe	18.46	2.44	0.031415927	0.215	0.006754424	2371.78

PESO UNITARIO DE LA MEZGLA DE F-C=?16 kg/km? CON LOS DISTIVTOS PORCENTAJES DE C. CASCARA DE CAFÉ

HANDES .	% de C. cascarra de carfé	pago usutan o
f =210kpan2	0	2321.13
f G=210 kg/gm2+ 2.3% C. casara de cafe	2.5	2463.76
Po-210 log/am2 * 5% C. assume de as A	S	2436.17
for 210 kg/au2+7.5% C. manu de mit	7.5	2399.91
Pa-210 kg/au2+10% C. mana de mit	10	2388.06
f ⇔21.0 kp/on2+12.5% C. case and 4 cafe	12.5	2371.78

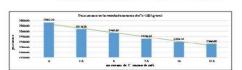


PESO UNITARIO DE LA MEZCLA DE FC=145 lycur con los distintos porcentajes de C. Cabcara de Capé

EM4373	peso de la muesza + molde(kg)	peso del motde(kg)	area (cm2)	atoura (cm)	volumen(aml)	pezo uniterio (Ngrad)
f ←245kg/sed2	12.20	3.23	0.1767	0.0133	0.00273883	2346.69
For 245 log/and * 2.5% C. somero de suite	19.36	2.44	0.031415927	0.215	0.006754424	2505.02
For 245 legrow2 + 5% C. commondo confe	19.15	2.44	0.021415927	0.215	0.006754424	2473.93
Pc:145 logicul+7.5% C. cacanada cafe	18.81	1.44	0.031415937	0.215	0.006754434	1411.60
f an 245 log an 2+10% C. common de carb	18.63	2.44	0.031415927	0.215	0.006754424	239695
f = 245 kg/cm2+12.5% C. cazara de cafe	18.48	2.44	0.031415927	0.215	0.006754424	2374.74

PESO UNITARIO DE LA MEZGLA DE FIG.=145 kg/cm2 con los distintos porcentajes de G. Cascara de Capt

BANK PRO	'te de C. cascara de cafe	pago umitario
Fo=24Slog/and	0	2546.69
Fu-245 layand - 2.5% C. unesare de units	2.5	2505.02
Po-245 log/and + 5% C. anoma de anfe	- 5	2473.93
For:245 legrow2+7.5% C. coccord do colib	7.5	2431.60
f (= 145 kg/cm2+10% C. cascara de caño	10	2396.95
f on 245 legroun2+12.5% C. concern de carlo	12.5	2374.74



PESO UNITARIO DE LA MEZGLA DE P'G=180 19/cm) CON LOS DESTINTOS PORGENTAJES DE C. DE C. CASCARA DE CAFE

NAME OF THE PERSON OF THE PERS	pero de La conezca ^ coobbellos)	pero del moldellos)	mm (md)	atours (unit	volument(mal)	pero ominerio (Naturi)
P == 280kg/aud	12.30	5.23	0.1767	0.0155	0.00273885	2583.1
P == 200 kg/maid = 2.5% C. maran da miti	19.45	2.44	0.021415927	0.215	0.006754424	2510.
f == 180 kpr/om2+5% C. cracava da cafe	19.31	2.44	0.031415927	0.215	0.006754424	3483.8
f or 280 logram2+7.5% C. causare de carb	18.84	2.44	0.031415927	0.215	0.006754424	2428.0
f⇔280 korom2+10% C. cascara de caña	18.65	2.44	0.031415927	0.215	0.006754424	2399.9
Fcm280 legtow2+12.5% C. common da corto	18.52	2 44	0.011415927	0.215	0.0000754424	2,000

PESO UNITARIO DE LA MEZCLA DE F'C=180 bytes CON LOS DISTINTOS PORCENTAJES DE C. CASCARA DE CAPE

SERVICE STATE OF THE SERVICE S	'A de C. savacca de sa A	
Fo=28Okg/am2	0	2583.20
Fc=380 logrand+3.5% C. caccara da caña	2.5	2518.35
For 280 log/and+5% C. coccum do cuto	5	2483.83
f o=280 logram2+7.5% C. cascara de cada	7.5	2428.04
f o=280 log/and+10% C. cascara de carlo	10	2399.91
f c=280 kg/am2+12.5% C. cascara de caño	12.5	2380.66

Anexo 4 Panel fotográfico

Foto 01. Muestra en horno

Fuente: 2021

Foto 02:Analisis granulometría

Fuente: 2021

Foto 03:Rotura de probeta

Fuente: 2021

Foto 04: Ensayo de Slump

Fuente: 2021

Foto 05: Curado de probetas

Fuente: 2021