

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL

Nano - Materiales de Lignina para el Tratamiento de Eliminación de Contaminantes Tóxicos de los Cuerpos de Agua: Revisión Sistemática

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERA AMBIENTAL

AUTORAS:

Moreno Sosa, Ruddy Yahaira (ORCID: 0000-0003-0871-1635)
Pretel Chicchon, Grecia Lucero (ORCID: 0000-0002-5332-0329)

ASESOR:

Mg. Honores Balcazar César Francisco (ORCID: 0000-0003-3202-1327)

LÍNEA DE INVESTIGACIÓN:

Tratamiento y Gestión de los Residuos

LIMA – PERÚ 2022

DEDICATORIA

Dedico de manera especial a Dios y a mis padres que me han apoyado y han hecho que el trabajo se realice; mucho de mis logros se lo debo a ellos que se incluye este.

Dedico este trabajo a mis padres por apoyarme y siempre estar presente en cada logro que he podido obtener.

AGRADECIMIENTOS

Agradecemos a nuestros formadores, personas de gran sabiduría quienes se han esforzado para ayudarnos a llegar al punto en el que nos encontramos. sencillo no ha sido el proceso, pero gracias a las ganas de transmitirnos sus conocimientos, hemos logrado importantes objetivos como culminar el desarrollo de nuestra tesis con éxito y afable titulación profesional.

ÍNDICE DEL CONTENIDO

CARÁTULA	
DEDICATORIA	i
AGRADECIMIENTOS	ii
ÍNDICE DE CONTENIDO	iv
ÍNDICE DE TABLAS	V
ÍNDICE DE FIGURAS	
ÍNDICE DE ABREVIATURAS	v
RESUMEN	vi
ABSTRACT	vii
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	14
3.1. Tipo y diseño de investigación	14
3.2. Categoría, subcategoría y matriz de categorización	14
3.3. Escenario de estudio	15
3.4. Participantes	15
3.5. Técnicas e instrumentos de recolección de datos	16
3.6. Procedimiento	16
3.7. Rigor científico	18
3.8. Método de análisis de información	18
3.9. Aspectos éticos	19
IV. RESULTADOS Y DISCUSIÓN	20
V. CONCLUSIONES	29
VI. RECOMENDACIONES	30
REFERENCIAS	31
ANEXOS	

ÍNDICE DE TABLAS

Tabla 1. Contaminantes, efectos y fuentes emergentes del agua	6
Tabla 2. Matriz de categorización apriorística	15
Tabla 3. Tabla de selección de artículos	17
Tabla 4. Método de análisis	19
Tabla 5. Nanomateriales de lignina más empleados	20
Tabla 6. Capacidad de adsorción de los nano - materiales de lignina empleados	23
Tabla 7. Isoterma de adsorción de ano materiales de lignina	27
ÍNDICE DE FIGURAS	
Figura 1. Contaminantes tóxicos de los cuerpos de agua	5
Figura 2. Diagrama ilustrativo de la estructura de la lignina	8
Figura 3. Diversas aplicaciones de la lignina técnica/extraída y de los (nano)ma	ateriales
derivados de la lignina	9

RESUMEN

El presente estudio tuvo como objetivo determinar la importancia de los nano - materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua; donde se desarrolló un tipo de investigación aplicada, de diseño narrativo y utilizando el análisis documental se pudo seleccionar los estudios que se añadieron a la investigación, obteniendo lo siguiente.

Los nanomateriales de lignina más empleados son los basados en NPs de lignina, lignina en complejo con Fe(III), NPs de lignina sin alear y NPs de lignina infundida con Fe_3O_4 ; ello debido a que la lignocelulosa es muy prometedora como soporte sólido para los nano catalizadores debido a su elevado número de grupos funcionales, que pueden promover y mejorar la deposición/decoración y dispersión de NPs de metal/óxido de metal. La capacidad de adsorción de los nano materiales depende en gran medida del estado de oxidación de los metales pesados. Así también se tiene que la adsorción asistida por lignina se da en mayor porcentaje con los metales Zn^{2+} , Cu^{2+} , Pb^{2+} , Cd^{2+} y Ca^{2+} y se encontró que el orden de afinidad era Pb^{2+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Ca^{2+} .

Palabras clave: Nano materiales, Lignina, Tratamiento, Tóxicos, Contaminantes.

ABSTRACT

The present study aimed to determine the importance of lignin nano-materials used for the treatment of elimination of toxic pollutants from water bodies; where a type of applied research was developed, of narrative design and using documentary analysis it was possible to select the studies that were added to the research, obtaining the following.

The most employed lignin nanomaterials are those based on lignin NPs, lignin in complex with Fe(III), unalloyed lignin NPs and lignin NPs infused with Fe₃O⁴; this because lignocellulose is very promising as a solid support for nanocatalysts due to its high number of functional groups, which can promote and enhance the deposition/decoration and dispersion of metal/metal oxide NPs. The adsorption capacity of nanomaterials is highly dependent on the oxidation state of heavy metals. Thus it is also found that lignin-assisted adsorption occurs in higher percentage with Zn^{2+} , Cu^{2+} , Pb^{2+} , Cd^{2+} and Ca^{2+} metals and the affinity order was found to be $Pb^{2+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Ca^{2+}$.

Keywords: Nano materials, Lignin, Treatment, Toxics, Contaminants, Water bodies.

I. INTRODUCCIÓN

El agua es de gran importancia para la existencia de todas las vidas en el mundo (Bilal Muhammad et al., 2017, p.1). Por desgracia, la rápida industrialización y urbanización han provocado un crecimiento exponencial de los contaminantes peligrosos que se liberan en las masas de agua, poniendo en peligro los recursos de agua dulce del mundo (Wong Syieluing et al., 2018, p.2).

Ello debido al abuso y el vertido incontrolado de sustancias químicas en las masas de agua que crean efectos adversos a largo plazo sobre la vida acuática y la salud humana (Vardhan Hatsha K. et al., 2019, p.2). Estos contaminantes, que incluyen productos químicos orgánicos (tintes, pesticidas, antibióticos, etc.) y metales inorgánicos (Cd, Pb, As, Hg, etc.), son particularmente tóxicos y se acumulan fácilmente en las cadenas alimentarias y ponen inevitablemente en peligro a los seres humanos (Van Zijl Magdalena C. et al., 2017, p.1).

La situación se ve agravada por el hecho de que la mayoría de los contaminantes de los procesos industriales son iones metálicos o moléculas orgánicas recalcitrantes que son persistentes en las masas de agua (Rashed Tahir et al., 2019, p.2). La presencia de estos contaminantes hace que el agua de los ríos no sea apta para beber ni para actividades recreativas (Gomes Inés B. et al., 2018, p.1).

Por otra parte, el 70% de los residuos industriales en los países en desarrollo se desechan en el agua sin tratamiento, y el 90% de las aguas residuales de estos países acaban en ríos, lagos y zonas costeras (UNESCO, 2017, p.1). A pesar que el 50% de los productos químicos es clasificados como ambientalmente nocivos y el 70% con un impacto ambiental significativo (Vargas Berrones K. et al., 2020, p.1).

En 2017, 97,8 millones de toneladas fueron declaradas como peligrosas para el medio ambiente y 91,8 millones de toneladas como peligrosas para la salud (EUROSTAT, 2019, p.1).

Por ello, la accesibilidad a suficiente agua limpia y dulce para el consumo humano es uno de los problemas más importantes en todo el mundo y, por lo tanto, se han realizado investigaciones exhaustivas para abordar este problema (Li Xingang et al., 2018, p.2).

Hoy en día, la nanotecnología se ha convertido en una tecnología de rápido crecimiento debido a las características de los nanomateriales artificiales (NM) (Sen Sanghamitra et al., 2016, p.3). Y es que, en la actualidad, se han realizado grandes esfuerzos para buscar biosorbentes novedosos, rentables y prácticos derivados de recursos de biomasa, con especial atención al valor agregado, materiales renovables basados en biomasa (Sun Zhuohua et al., 2018, p.2).

La lignina y las entidades derivadas de lignina adornadas con (nano) materiales pueden eliminar de manera eficiente y rentable los contaminantes orgánicos / inorgánicos de los medios acuosos (Varjani Sunita et al., 2020, p.3). Dado que el bajo costo de preparación es crucial para sus amplias aplicaciones en el tratamiento de agua / aguas residuales (particularmente agua industrial), las investigaciones futuras deben dedicarse a refinar y procesar la viabilidad económica de (nano) materiales derivados de la lignina verde de bajo costo (Nasrollahzadeh M. et al., 2020, p.4).

En la introducción del contexto presentado se plantea un problema general, siendo este:

¿Cuál es la importancia de los nano - materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua?; y como problemas específicos se propuso:

PE1: ¿Cuáles son los nano - materiales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua?

PE2: ¿Cuál es la capacidad de adsorción de los nano - materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua?

PE3: ¿Cuál es la isoterma de adsorción que describe el equilibrio en el que ocurre la adsorción de los contaminantes tóxicos de los cuerpos de agua a base de nano - materiales de lignina?

Y como objetivo general se propuso: Determinar la importancia de los nano - materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua; y los objetivos específicos son:

OE1: Clasificar los nano - materiales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua

OE2: Identificar la capacidad de adsorción de los nano - materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua

OE3: Analizar la isoterma de adsorción que describe el equilibrio en el que ocurre la adsorción de los contaminantes tóxicos de los cuerpos de agua a base de nano - materiales de lignina

Debido al análisis sistemático que se realizará de estudios ya existentes para resolver la problemática de la contaminación de los cuerpos agua por contaminantes tóxicos, este trabajo de investigación presenta una justificación teórica; así mismo se tiene el objetivo determinar la importancia de los nano - materiales de lignina basados en el enfoque de la búsqueda del tratamiento de eliminación de contaminantes tóxicos del medio hídrico; sirviendo como aporte literario de futuros investigadores con un estudio actualizados de investigaciones a nivel nacional e internacional.

II. MARCO TEÓRICO

El suministro de agua potable asequible y suficientemente limpia para el consumo humano es uno de los problemas ambientales más importantes del mundo, donde varios contaminantes ambientales peligrosos / tóxicos en los cuerpos de agua, tanto inorgánicos como orgánicos (específicamente metales pesados y tintes), se han convertido en un grave problema mundial (Sajjadi Mohaddeseh et al., 2021, p.2).

Si bien es cierto, el agua es una fuente excepcionalmente esencial para la presencia de vida en la tierra, el rápido crecimiento de la población y la contaminación resultante de las fuentes de agua dulce están creando condiciones de estrés hídrico en el mundo en un futuro próximo (Gavrilescu et al., 2016, p.1). Debido a que, la calidad del agua se ha visto seriamente afectada por el crecimiento excesivo de la población, las actividades humanas, la rápida industrialización, la utilización no calificada de los recursos hídricos naturales y la urbanización no planificada (Vardhan Hatsha K. et al., 2019, p.2).

Además, en los dos últimos siglos, el uso de productos químicos ha contribuido al desarrollo económico y social en todo el mundo (Bilal Muhammad et al., 2019, p.3). Como resultado, miles de mezclas químicas (sintéticas y naturales) están ahora presentes en el medio ambiente y en la vida cotidiana (Naidu Ravi et al., 2016, p.2).

La producción mundial de productos químicos sintéticos ha aumentado exponencialmente, entre 1903 y 2000 la producción anual de productos químicos pasó de 1 millón a 400 millones de toneladas y de 2002 a 2011, el 50% de los productos químicos fueron clasificados como ambientalmente nocivos y el 70% con un impacto ambiental significativo (Chatha S. et al., 2017, p.2). Hay 80.000 sustancias químicas que se utilizan en la fabricación de productos para satisfacer las necesidades humanas como, productos de limpieza, medicamentos (con y sin receta), cosméticos, fragancias, productos de cuidado personal, entre otros (Berenblyum A. et al., 2016, p.2).

Así mismo, entre los contaminantes como los metales pesados (MP) para que sean considerados como tóxicos, deben ser un grupo de metales y metaloides con una densidad atómica superior a los 4000 kg / m 3, lo que provocaría graves enfermedades para la salud de los seres humanos y los animales, incluso en concentraciones muy bajas (Ahmed I. et al., 2017, p.2). Estos iones metálicos

ingresan al sistema acuático a través de la escorrentía agrícola y los vertidos industriales (Hernandez Vargas G. et al., 2018, p.2).

Los elementos potencialmente tóxicos son la plata, el oro y el uranio, entre otros y aunque estos a partir de soluciones acuosas tratadas químicamente pueden ser rentables, el tratamiento de elementos potencialmente tóxicos en las aguas residuales es un desafío no solo desde un punto de vista económico sino también ambiental (Ullah Sana et al., 2018, p.1). (Ver figura 1).

Contaminantes emergentes Falta de regulación **Implications** High concentrations in environment en América Latina Environmental risks Human risks Ecological risk Lack of regulation in Latin America Examples of different sources Domestic Industry Direct discharges Wastewater Others Proposal Set permissible limits in official standards Environmental monitoring of surface water Development of new surfactants and detergents 4-nonylphenol ethoxylate 4-nonylphenol ОН O_2 Microorganisms

Figura N°1: Contaminantes tóxicos de los cuerpos de agua

Fuente: Modificado de Karla Vargas-Berrones et al., (2020)

Estos productos utilizados y eliminados globalmente en el medio ambiente tras un proceso de fabricación como residuos industriales repercuten directamente en la calidad del agua (Naidu et al., 2016, p.2). Así como en el medio ambiente estos compuestos, incluidos los disruptores endocrinos; pesticidas, hormonas, productos farmacéuticos y contaminantes de tintes textiles sintéticos, pueden causar trastornos del sistema nervioso, hormonal y reproductivo, lo que plantea resultados adversos para la salud (Bilal Muhamm et al., 2018, p.2).

Hasta la fecha, se han identificado los efectos adversos de estos contaminantes sobre el cuerpo humano y los animales, y la Organización Mundial de la Salud (OMS) ha

establecido normas de seguridad para los vertidos (Vithanage Meththika et al., 2017, p.2). Siendo detallado en la tabla 1 algunos de los contaminantes con sus efectos y fuentes mencionadas.

Tabla N°1: Contaminantes, efectos y fuentes emergentes del agua

Contaminante	Efectos adversos	Fuente		
Compuestos disruptores endocrinos y productos para el cuidado personal	Interrupción del sistema endocrino	Aguas residuales		
Productos farmacéuticos	Desconocido	Aguas residuales		
Genes de resistencia a antibióticos	Resistencia de patógenos a los antibióticos	Antibióticos humanos y animales.		
Cianotoxinas	Daño al hígado y al sistema nervioso	Alga verde azul		
Parásitos humanos, bacterias, virus.	Infecciones	Aguas residuales		
Parásitos zoonóticos, bacterias, virus patógenos para los humanos.	Infecciones	Desecho animal		
N-nitrosodimetilamina	Carcinogénesis	subproducto de la cloración de aguas residuales		
Perclorato	Incierto	Propelente de cohetes y misiles		
1,4-dioxano	Carcinogénesis	Estabilizador de disolventes		
Metilterc butiléter	Toxicidad	Combustible oxigenado		
Alquilfenolpolietoxilatos	Toxicidad	Degradación de tensioactivos.		
Tensioactivos de alquilo fluorados Toxicidad Procesos industriales	Toxicidad	Procesos industriales		
Éteres de difenilo polibromados	Toxicidad	Retardantes de llama		
Benzotriazoles	Toxicidad	Anticorrosivos, aguas residuales		
Ácidos nafténicos	Toxicidad	Petróleo crudo, aguas residuales		
Plaguicidas nuevos, quirales y transformados	Toxicidad, carcinogénesis	Aguas residuales		
Subproductos de desinfección	Toxicidad	Subproductos de la cloración de contaminantes emergentes		

Fuente: Kumar M. et al., (2020)

Aunque se han aplicado diferentes técnicas para tratar los contaminantes de las aguas residuales, como la filtración por membrana, el intercambio iónico, la precipitación química, los procesos electroquímicos, etc., sigue siendo un reto desarrollar el enfoque de tratamiento económico y eficiente (Zhu Lingli et al., 2020, p.3).

El proceso de depuración basado en sólidos porosos se ha considerado como un tratamiento de aguas residuales prometedor debido a su bajo consumo energético, su fácil funcionamiento y su mayor capacidad de ciclado (Erdem Ahmet et al., 2017, p.2).

En particular, se ha reconocido que los materiales porosos (por ejemplo, los carbones porosos, los marcos orgánicos metálicos y los marcos orgánicos covalentes) superan a otros adsorbentes y catalizadores tradicionales (Naimenov Alzhan et al., 2018, p.3). Esto es debido a su gran SBET, su desarrollada porosidad, su excelente estabilidad y su química superficial controlable, que aumentan la accesibilidad y la cooperatividad de las funcionalidades (Xu Junsong et al., 2020, p.1).

Recientemente, los materiales porosos respetuosos con el medio ambiente para el tratamiento del agua con bajo coste y sin generación de contaminación secundaria han atraído una atención creciente (Liu Huayu et al., 2021, p.2).

La lignina, el segundo recurso de biomasa más abundante en la tierra después de la celulosa, es producida por las plantas y se encuentra en las paredes (Liu Kun et al., 2021, p.2). La lignina y las entidades derivadas de lignina adornadas con (nano) materiales pueden eliminar de manera eficiente y rentable los contaminantes orgánicos / inorgánicos de los medios acuosos (Perovic Milena Q. et al., 2020, p.1). Dado que el bajo costo de preparación es crucial para sus amplias aplicaciones en el tratamiento de agua / aguas residuales (particularmente agua industrial) (Lobato Peralta D. et al., 2021, p.2).

La lignina es un polímero (macromolécula polifenólica) abundantemente disponible, respetuoso con el medio ambiente, barato, natural y amorfo, formado por tres tipos diferentes de unidades monoméricas de fenilpropano; a saber, los alcoholes sinapilo (S), coniferilo (G) y p-cumarilo (H) y los monolignoles primarios (Li Zhili et al., 2016, p.2).

Es así que, la lignina se ha generado como uno de los principales subproductos de la industria de la pasta de papel (70 millones de toneladas/año), donde, más del 95% de la lignina industrial no se aprovecha del todo (Li Changzhi et al., 2016, p.2).

En la naturaleza, la lignina es un polímero aromático complejo y heterogéneo formado por unidades fenilpropanoides reticuladas al azar (unidades de p-hidroxifenilo, guayacol y siringilo) y otros grupos funcionales (como se muestra en la Fig. 1), que pueden modificarse químicamente en multitud de reacciones (Zhou Xuan et al., 2021, p.2).

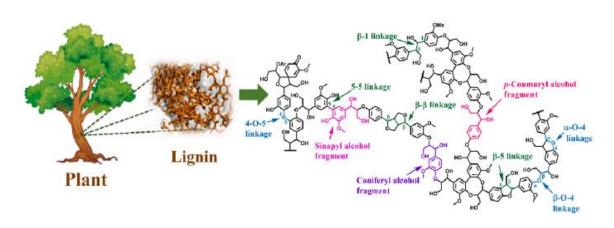


Figura N°2: Diagrama ilustrativo de la estructura de la lignina

Fuente: Meng Yi et al., (2019)

Como alternativa renovable prometedora a los recursos fósiles petroquímicos, la lignina ha encontrado una amplia gama de aplicaciones en emulsionantes, adhesivos, aglutinantes de polímeros, dispersantes y biocombustibles en las últimas décadas (Supanchaiyamat N. et al., 2019, p.2).

Es así que, la estructura de la lignina sugiere varias perspectivas de explotación para la fabricación de numerosos productos valiosos; por ejemplo, la lignina puede utilizarse directamente con/sin modificación/funcionalización en la industria de los polímeros (Pérez Page M. et al., 2016, p.2). Además, la lignina puede mezclarse con diversos materiales, como poliésteres, poliuretanos y poliolefinas, en forma de copolímeros, mezclas y compuestos, para la preparación de plásticos respetuosos con el medio ambiente con características mejoradas (Mandlekar Neeraj et al., 2018, p.3).

La lignina y los nanomateriales derivados de la lignina con una toxicidad nula y/o menor, una biodegradabilidad notable buena estabilidad y rentabilidad podrían aplicarse fácilmente para la recuperación del medio ambiente, especialmente para el tratamiento de los contaminantes del agua y las aguas residuales (Mohazzab Bahareh F. et al., 2020, p.2).

Un resumen de varias aplicaciones técnicas/de extracción de lignina y de remediación ambiental de (nano)materiales derivados de la lignina se muestra en la figura 3.

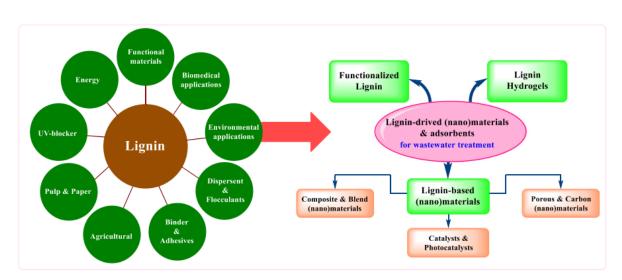


Figura N°3: Diversas aplicaciones de la lignina técnica/extraída y de los (nano)materiales derivados de la lignina

Fuente: Loh Xian J. et al., (2018)

De manera análoga, la lignina es una materia prima de escasa eficacia para la eliminación de metales pesados (~10 mg g-1) del agua contaminada, debido a su estructura enrollada y tridimensional (Xu Jun et al., 2017, p.2). Sin embargo, la modificación de la lignina ha recibido una atención creciente debido a las posibilidades (por métodos térmicos/químicos) de mejorar la afinidad de la lignina por contaminantes específicos en el agua (Zhang Xiaomei et al., 2018, p.1).

Las modificaciones químicas, que incluyen la metilación/desmetilación, la fenolación hidrotérmica y la despolimerización/licuefacción, implican principalmente la funcionalización de los grupos hidroxilos fenólicos, nuevas fragmentaciones y la generación de sitios químicamente activos (Zhang Xueyan et al., 2017, p.1).

Es así que, el pretratamiento de los materiales a base de lignina afecta notablemente a la adsorción de los colorantes (Nakagawa Izumi A. et al., 2017, p.4). En general, el

KL puede ser pretratado mediante fenolación, la desmetilación, la hidroximetilación, la reducción o la oxidación para mejorar su reactividad/eficiencia para la posterior sulfonación de sulfito de sodio y/o tratamiento con ácido sulfúrico para preparar lignina altamente sulfonada (Ovejero Pérez A. et al., 2020, p.3).

En base a los estudios analizados se detalla a continuación los artículos más resaltantes:

Zhou Haifeng et al., (2020), se preparó un biosorbente a base de lignina (LSMA) reticulando lignosulfonato y N-metilanilina con la ayuda de persulfato de amonio para la eliminación eficaz de Cr (VI) de la solución acuosa. Dado que LSMA posee tanto grupos amino como grupos funcionales que contienen oxígeno, como grupos fenólicos, carboxilo y sulfónicos, la capacidad máxima de adsorción de 1264,8 mg / g se alcanzó a 318 K según la isoterma de Langmuir. LSMA también mostró un excelente rendimiento en una solución de baja concentración de Cr (VI). La solución peligrosa de Cr (VI) de 50 mg / L se puede eliminar por completo en 10 minutos. Concluyendo que, el mecanismo de eliminación era la adsorción de aniones Cr (VI) en LSMA con abundantes grupos funcionales, y la reducción de Cr (VI) a Cr (III) menos tóxico por los grupos donantes de electrones adyacentes, además, el Cr (III) generado se inmovilizó en LSMA mediante complejación superficial y precipitación.

Huang Chunde et al., (2019), en este estudio, la lignina preparada por la reacción de Mannichcon licor negro se activó con trietilentetramina (TETA) para lograr un adsorbente novedoso con altas tasas de adsorción y una fuerte selectividad por aniones específicos que contienen oxígeno. Se investigó sistemáticamente la capacidad de adsorción de la lignina activada (a-CL) en tres aniones que contienen oxígeno (es decir, As (V), P (V) y Cr (VI)). El mecanismo de adsorción de a-CL se dilucidó teóricamente mediante el método de la teoría funcional de la densidad (DFT). Donde, los resultados de la simulación FT-IR y DFT revelaron que el enlace de hidrógeno entre HAsO4²⁻ y N dominaba la notable selectividad de As (V), produciendo una capacidad de adsorción máxima de hasta 62,5 mg g⁻¹; además, la adsorción fue muy rápida con una gran constante cinética de adsorción calculada. La eliminación de As (V) alcanzó el 100% en 60 min. Concluyendo que, este estudio proporciona una forma de eliminar de forma selectiva el As (VI) del agua contaminada con la lignina.

Jin Yanqiao et al., (2019), como tipo de biomasa que existe ampliamente en las plantas, la lignina muestra mucha diversidad como material funcional. Para mejorar la capacidad de adsorción, la lignina se modificó químicamente con ácido 5-sulfosalicílico y luego se usó para adsorber azul de metileno (MB) y Pb²⁺ de soluciones acuosas. Donde los resultados mostraron que la lignina modificada con ácido 5-sulfosalicílico exhibía una alta capacidad de adsorción de tintes o metales pesados. La capacidad máxima de adsorción del adsorbente se acercó a 83,2 mg / g para MB y 39,3 mg / g para Pb²⁺ con la dosis de adsorbente de 5 g / L a pH 5,85 o 5,35 (correspondiente a MB o Pb²⁺, respectivamente), inicial concentración de adsorción de 200 mg / L, temperatura de 318 K y tiempo de contacto de 12 h. Concluyendo que, el SSAL propuesto es de bajo costo, ecológico y altamente eficiente, por lo tanto, un material prometedor para la eliminación por adsorción de MB y Pb²⁺ de las aguas residuales.

Kwak Hyo W. et al., (2020), en este estudio, se preparan partículas esféricas de lignina con alta estabilidad fisicoquímica y excelente capacidad de adsorción de Cr (VI) utilizando una estrategia de modificación de polietilenimina (PEI). Dando como resultado que, las partículas de PEI-lignina exhiben una capacidad superior de eliminación de Cr (VI) (657,9 mg / g, el valor más alto para un adsorbente natural modificado con PEI), que se atribuye a su estabilidad estructural y grupos funcionales amina introducidos. La eliminación de Cr (VI) con partículas de PEI-lignina se realiza mediante difusión y adsorción intrapartículas seguidas de enlace covalente combinado con un proceso de reducción. Concluyendo que, los resultados de este documento apoyan fuertemente el uso potencial de partículas de PEI-lignina como un material de bioadsorción de alto rendimiento para la eliminación de metales pesados y su desintoxicación en corrientes de aguas residuales acuosas; además, el sistema de fabricación de bioadsorbentes a base de lignina puede proporcionar un reciclaje sostenible de recursos biológicos y una rentabilidad.

Bahrpaima K. et al., (2019), En este trabajo, se sintetizaron lignosulfonatos 1-carboxipropilado (1-CPRLS) y 5-carboxipentilado (5-CPELS) utilizando ácido 2-clorobutanoico y ácido 6-clorohexanoico como donantes de grupos carboxilato mediante mecanismos S N 1 y S N 2, respectivamente. Se produjeron lignosulfonatos de 1-carboxipropilo y 5-carboxipentil con densidades de carga de -3,45 y -2,94 meq g -1 y pesos moleculares de 87.900 y 42.400 g · mol -1 , respectivamente, en condiciones suaves. Donde, el contenido de carboxilato y el grado de sustitución (DS)

del producto 1-CPRLS fueron 2,37 mmol · g -1 y 0,70 mol · mol -1 , mientras que los de los productos 5-CPELS fueron 2,13 mmol · g -1 y 0,66 mol · mol -1, respectivamente. El injerto de grupos carboxipropilo y carboxipentilo en lignosulfonato se confirmó mediante espectroscopias de infrarrojos por transformada de Fourier (FT-IR) y resonancia magnética nuclear (1 H-NMR y 13 C-NMR). Además, se aplicaron 1-CPRLS y 5-CPELS como coagulantes para eliminar el tinte violeta de etilo (EV) de una solución simulada, y su desempeño se relacionó con sus densidades de carga y pesos moleculares.

Li Hao et al., (2019), en este trabajo, se encontró que la capacidad de adsorción de lignina a colorante catiónico (azul de metileno, MB) de una solución acuosa podría mejorarse significativamente mediante un simple fraccionamiento con acetona. Dando como resultado que la eficiencia de eliminación de MB por lignina kraft insoluble en acetona (AIKL) fue 10 veces mayor que la de la lignina kraft no fraccionada (KL). Y la capacidad máxima de AIKL podría alcanzar hasta 623,4 mg g –1. Y la alta tasa de eliminación podría lograrse incluso a bajas concentraciones. Se investigaron sistemáticamente los efectos de la fuerza iónica, la temperatura y la dosis de adsorbente. La cinética de adsorción mostró que el comportamiento de adsorción obedecía al modelo cinético de pseudo-segundo orden. Los datos de equilibrio fueron más consistentes con el modelo de isoterma de Langmuir.

Ogunsile B. et al., (2017), Se llevaron a cabo experimentos de bioadsorción para la eliminación de Pb +2 de la solución acuosa, utilizando nuevos geles de lignina (lignina sódica y lignina sódica resinificada sulfonada) extraídos de latas de fruta Nypa. Los efectos de las principales variables que gobiernan la eficiencia del proceso, como el pH, la dosis de adsorbente, el tiempo de contacto, la concentración inicial y la temperatura, fueron estudiados por el proceso discontinuo. Donde, se encontró que el proceso de adsorción es endotérmico y espontáneo. De manera similar, la optimización de la dosis de biosorbente en un diseño de lote de una sola etapa reveló que UL requiere más del doble de la cantidad de biosorbente SRL para eliminar más del 94% de los iones de plomo (II) de la solución acuosa.

Qin Yanlin et al., (2020), en su estudio se preparó un colorante nano disperso con un tamaño de partículas promedio de 94 nm por autoensamblaje utilizando un dispersante de lignina alcalina sulfonada con hidroxipropilo (HSAL) y un colorante azo disperso (CI Disperse Blue 79). Donde, el colorante nano disperso exhibió una

excelente dispersión y estabilidad a alta temperatura (130 ° C), el tamaño de partícula fue de 1,97 µm. El efecto reductor del nano colorante (estructura azo) se redujo al 5,39% y la absorción del colorante alcanzó el 94,27%. Concluyendo que, el presente estudio proporcionó un método de preparación novedoso de colorante nano disperso, que ampliaría la utilización eficiente y rentable de la lignina de biomasa en el campo del teñido y la impresión.

Xu Jun et al., (2017), se investigaron los efectos del pH, la temperatura de reacción, el tiempo de reacción y la concentración inicial de iones Cu (II) sobre la capacidad de adsorción. Donde, se utilizaron modelos de isoterma y cinética de adsorción para ilustrar los comportamientos de adsorción de AL. Dando como resultado que, AL fue más eficaz que los residuos de hidrólisis enzimática (EHR) y la lignina separada (SL) para eliminar los iones Cu (II) en una solución acuosa. La capacidad de adsorción de AL para Cu (II) iones fue mejor en pH casi neutro. En las condiciones óptimas de adsorción, la capacidad de adsorción de AL podría alcanzar hasta 37,14 mg g⁻¹. Concluyendo que, AL podría utilizarse como una especie de materia prima prometedora para productos de alto valor agregado para eliminar los iones Cu (II) en las aguas residuales de manera efectiva.

Zhang Xiaomei et al., (2018), en este artículo, se describió la eliminación simultánea de azul de metileno (MB) y Pb²+ del sistema de componentes binarios mediante un bioadsorbente de lignosulfonato reticulado (CLLS) de fácil preparación. La CLLS se caracterizó por FTIR, SEM / EDS y TGA. Se investigaron las influencias del pH, la temperatura, el tiempo de contacto y las concentraciones iniciales de MB y Pb²+ sobre el rendimiento de adsorción. Los resultados demostraron una buena capacidad de CLLS para eliminar MB y Pb²+ simultáneamente. Usando una carga de 1.0 g L⁻¹, la eficiencia de remoción de MB y Pb²+ alcanzó 98.0% y 97.8%, respectivamente. Concluyendo que, los resultados rudimentarios mostraron que habría tres tipos diferentes de sitios de adsorción en CLLS: sitio MB, sitio Pb²+ y sitios compartidos MB / Pb²+.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Se empleó una investigación aplicada, este tipo de investigación permite solucionar problemas directos generados en nuestra realidad, por ello se dice que se genera conocimientos aplicando directamente en los problemas. Su fin es encontrar nuevos conocimientos para así mejorar los procesos de las personas o la vida de las personas. Según Gutiérrez en este tipo de investigación se usa como base conocimientos ya adquiridos hasta el momento para adquirir otros nuevos y resolver el problema central (2016, p.1).

El diseño aplicado para esta investigación es narrativo, donde el investigador plasme las experiencias contadas por los participantes involucrados con el fenómeno a estudiar de manera que no se involucre la subjetividad del investigador. Esto permite que el investigador comprenda los hechos sucedidos para poder resolver la problemática.

3.2 Categoría, subcategoría y matriz de categorización

Las categorías y sub categorías fueron divididos por la matriz de apriorística la cual se describe a continuación.

Tabla N° 2: Matriz de categorización apriorística

PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	CATEGORÍAS	SUB CATEGORÍAS	UNIDAD DE ANALISIS
¿Cuáles son los nano – materiales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos?	Analizar los nano – materiales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos	Nano – materiales de lignina (Vargas Berrones K. et al., 2020, p.1)	Nanocompuestos (foto)catalizadores Materiales porosos y/o carbonosos	(Mohazzab Bahareh F. et al., 2020, p.2), (Pérez Page M. et al., 2016, p.2), (Li Changzhi et al., 2016, p.2).
¿Cuáles es la capacidad de absorción de los nano – materiales de lignina empleados para el tratamiento de eliminación?	Definir la absorción de los nano – materiales de lignina empleados para el tratamiento de eliminación	Absorción de los nano – materiales de lignina (Nakagawa Izumi A. et al., 2017, p.4)	Capacidad de adsorción Porcentaje de remoción	(Perovic Milena Q. et al., 2020, p.1), (Liu Kun et al., 2021, p.2), (Naidu et al., 2016, p.2), (Zhang Xueyan et al., 2017, p.1).
¿Cuál es la isoterma de absorción que describe el equilibrio en el que ocurre la absorción de los contaminantes tóxicos?	Clasificar la isoterma de absorción que describe el equilibrio en el que ocurre la absorción de los contaminantes tóxicos	Isoterma de absorción de los nano materiales de lignina (Nakagawa Izumi A. et al., 2017, p.4)	Langmuir Freundlich Redlich-Peterson	(Ovejero Pérez A. et al., 2020, p.3), (Jin Yanqiao et al., 2019, p.2), (Bahrpaima K. et al., 2019, p.2), (Xu Jun et al., 2017, p.2).

3.3 Escenario de estudio

Al ser esta investigación una revisión sistemática se hizo uso de artículos científicos por ello el escenario de estudio se encuentra en cada espacio usado por los investigadores de las lecturas extraídas y usadas en el presente informe como son laboratorios o campos donde se estudiaron el fenómeno.

3.4 Participantes

Se usaron plataformas virtuales para la extracción de información y análisis de estos para el desarrollo del presente trabajo de investigación, por ello el uso de bibliotecas virtuales o red de revistas científicas son las participantes de esta investigación ya que la información extraída de ellas respaldaron este trabajo de investigación, ellas son: Sciencedirect, Redalyc y Pubmed.

3.5 Técnicas e instrumentos de recolección de datos

El análisis documental es una técnica que nos permite recopilar información de diferentes fuentes y analizarlas para poder sintetizar todo en un solo documento nuevo generado para el fácil acceso a toda la información extraída. Es así como con este nuevo documento donde se podrán encontrar las ideas más relevantes de lo estudiado se le hace más fácil al lector encontrar y recuperar su información.

Para emplear el análisis documental como técnica se hizo uso de la ficha de análisis de contenido como instrumento de recolección de datos. **ANEXO 1**

3.6 Procedimientos

Para poder seleccionar las fuentes se siguieron una serie de pasos; como son la recolección, el uso de palabras claves, así como se incluyeron y excluyeron, como se muestra en el siguiente gráfico.

Tabla 3: Tabla de selección de artículos

	ARTÍCULOS RE REVISTAS CIENTÍFICAS				
Tipo de documentos	Palabra clave	Fuente	Exclusión	Inclusión	Exclusión
Artículo Científico	Nano materials, Lignin, Treatment, Toxics, Contaminants, Water bodies, Adsorption isotherm, Adsorption isotherm	- Sciencedirect = 35 - Redalyc = 18 - Pubmed = 14	- Por duplicidad = 12 - Estudio con antigüedad mayor a 5 años = 8	- Investigación potencialmente relevantes al tema = 18	 No presenta los nano materiales de lignina = 12 No indica el isoterma de absorción de los nano materiales = 10 No presenta la absorción de los nano materiales = 17
TOTAL DE ARTÍCULO	S	67	47	65	26

3.7 Rigor científico

El rigor científico nos permite evaluar la veracidad del contenido de una investigación por ello según Castillo E. y Vásquez M.L (2003) se usan tres criterios comúnmente para evaluar la calidad de una investigación y ellos son:

La credibilidad, este criterio se basa en que la información leída tiene que ser reconocida por los participantes quienes han narrado lo sucedido con el fenómeno estudio, es decir en los resultados puedan encontrar congruencia con los hechos sucedidos y vividos. Por ello este criterio permite evidenciar tal cual se dieron los hechos y son percibidos por los sujetos. Se aplicó este criterio teniendo la veracidad de la información brindada para el desarrollo de la investigación.

Conformabilidad, este criterio nos permite garantizar la veracidad donde los datos no están manipulados. Donde el investigador sigue la línea de la investigación principal y esta permite llegar a una conclusión congruente siendo así que siguiendo otras lecturas se puedan confirmar los resultados.

La transferibilidad, si bien cada fenómeno es vivido es un espacio y las vivencias de las personas con ello son intransferibles, sin embargo, con este criterio se busca ser un referente para poder aplicar ciertos instrumentos o fases de la investigación y poder ser aplicadas en otro contexto para ello se debe tener un grado alto de la descripción de los hechos y de los participantes.

3.8 Método de análisis de información

El procedimiento seguido se basa en las categorías y sub categorías obtenidas de los problemas y objetivos específicos; como se muestra en la siguiente tabla:

Tabla N°4: Método de análisis

MÉTODO	TIPO	DESCRIPCIÓN
Ca TRIANGULACIÓN	Categorías	 Absorción de los nano materiales de lignina Isoterma de absorción de los nano materiales de lignina Los nano materiales de lignina
USO DE LA MATRIZ APRIORISTICA	Sub categorías	 Nanocompuestos (foto)catalizadores Materiales porosos y/o carbonosos Capacidad de adsorción Porcentaje de remoción Langmuir Freundlich Redlich-Peterson

3.9 Aspectos éticos

Se hizo uso de los siguientes aspectos éticos para el desarrollo del presente trabajo de investigación:

Respeto a la autoría: uso de la norma ISO 690 con respecto a las referencias bibliográficas y su correcta aplicación

Autenticidad: a través del programa turnitin demostrando la originalidad de lo plasmado

Respeto del código de ética: guía de productos observables de la Universidad Cesar Vallejo, se cumplió con lo estipulado

IV. RESULTADOS Y DISCUSIÓN

En base a la búsqueda de determinar la importancia de los nano - materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua se tiene la necesidad de analizar los nanomateriales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua; presentando para ello la tabla 5.

Tabla N°5: Nanomateriales de lignina más empleados

TIPO DE NANOMATERIAL (LIGNINA)	FUENTE
Lignosulfonato / N-metilanilina compuesto	Zhou Haifeng et al., 2020
Lignina/Fe₃O₄	De Araujó P. et al., 2020
Trietilentetramina activada lignina	Huang Chunde et al., 2019
Ácido 5-sulfosalicílico modificado lignina	Jin Yanqiao et al.,
Polietilenimina (PEI) modificada con lignina	Kwak Hyo W. et al., 2020
Lignosulfonato carboxipropilado, carboxipentilado y carboxietilado (CPRLS, CPELS y CELS)	Bahrpaima K. y Fatehi P., 2019
Lignina Kraft insoluble en acetona	Li Hao et al., 2019
Lignina de sosa resinificada sulfonada	Ogunsile B. y Bamgboye M., 2017
Hidroxipropil sulfonado alcalino dispersante a base de lignina	Qin Yanlin et al., 2020
Lignina aminada	Xu Jun et al., 2017
Lignosulfonato reticulado	Zhang Xiaomei et al., 2018
Lignina injertada con ácido gálico	Zhang Xueyan et al., 2017
Nanotubos de carbono injertados con lignina	Li Zhili et al., 2017
Lignina funcionalizada con aminoácidos y sulfatos	Ge Yuanyuan et al., 2015
Resina de xantato de lignina porosa	Li Zhili et al., 2016
Lignina dopada con Cu/N	Shi Xiafen et al., 2020
NPs de Fe₃O₄ recubiertas de lignina y lignina amina	Li Xingang et al., 2018

Perlas de mezcla de sericina de seda y lignina Kraft	Kwak Hyo W. et al., 2016
Sulfonato de lignina-poli (ácido acrílico-r-acrilamida)	Tang Yufang et al., 2016
NPs alcalinas de lignina-dopamina/Fe ₃ O ₄	Dai Lin et al., 2019
NPs magnéticas de carbono a base de lignina	Ma Ying Zhi et al., 2018
Compuesto a base de quitosano/nano- lignina	Sohni Saima et al., 2019
Lignina de injerto-alcalina cargada con nanoescala hidróxido de lantano	Zong Enmin et al., 2018
Nanocompuestos híbridos de MOFs a base de Zn (ZIF-8) @lignina	Xu Wenjing et al., 2019
Compuesto polimérico poroso de lignina	Gonzáles López M. et al., 2020
Floculantes alcalinos a base de lignina	Guo Kangying et al., 2019
Fieltro de polipirrol/lignina-grafito	Huang Hailan et al., 2018
Floculante a base de lignina (LBF) combinado con PACa (monómeros AMb y DADMACc injertados)	Guo Kangying et al., 2018
NPs de Pd@Fe ₃ O ₄ -lignina	Nasrollahzadeh M. et al., 2020

De acuerdo a los resultados presentados en la tabla 5 se tiene que los nanomateriales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua son los basados en NPs de lignina, lignina en complejo con Fe(III), NPs de lignina sin alear y NPs de lignina infundida con Fe₃O₄.

La lignocelulosa es muy prometedora como soporte sólido para los nanocatalizadores debido a su elevado número de grupos funcionales, por ejemplo, hidroxilo carbonilo metoxi y carboxilo, que pueden promover y mejorar la deposición/decoración y dispersión de NPs de metal/óxido de metal (Thakur V. et al., 2016, p.3).

Sohni Saima et al., 2019, apoya los resultados obtenidos, quien fabricó un nuevo material compuesto de quitosano/nanolignina como absorbente; elaborando esferas huecas de NPs de lignina (138 \pm 39 nm) a partir de biomasa de cáscara de palma

utilizando tetrahidrofurano como disolvente y sin ninguna modificación química; estas NPs de lignina (LNP) se utilizaron para fabricar un nanocompuesto de lignina basado en quitosano (chit/LNP) para la eliminación eficiente de MB de medios acuosos como lo demuestra la eliminación eficiente (~83 %) del azul de metileno(MB) colorante en condiciones de pH natural.

Presentando respaldo a los autores mencionados se encuentras los autores; De Araujó P. et al., 2020, Huang Chunde et al., 2019, Kwak Hyo W. et al., 2020, Li Hao et al., 2019, Xu Jun et al., 2017, Zhang Xiaomei et al., 2018, Zhang Xueyan et al., 2017, Li Zhili et al., 2017, Ge Yuanyuan et al., 2015, Guo Kangying et al., 2019.

Mientras que De Araujó P. et al., 2020, empleó nanopartículas de Fe₃O₄ para inmovilizar la β-glucosidasa mediante enlace covalente, exhibiendo mejor estabilidad que la enzima libre.

Pero, Zhang Xiaomei et al., 2018, refuta los resultados, señalando que un enfoque altamente eficiente y rentable para preparar nuevos nano materiales magnéticas híbridas soportadas en lignina (Fe₃O₄@SiO₂-NHMFL) comprenden un núcleo magnético y una cáscara de sílice (NPs magnéticas amino funcionalizadas) conjugadas con una lignina reticulada (lignina carboximetilada) utilizando un ECH (~10-20 nm).

Tabla N°6: Capacidad de adsorción de los nano - materiales de lignina empleados

Tipo de nanomaterial (Lignina)	Dosis del adsorbente	Contaminante	Capacidad de adsorción	Eliminación (%)	Fuente
Lignosulfonato/N- metilanilina compuesto	50 mg	Cr(VI) (50 mL, 800 mg L-1	1264.8	100% a 45 °C, pH 2,0, 10 min	Zhou Haifeng et al., 2020
Trietilentetramina activada lignina	10 mg	As(V) (20 mg L-1)	62.5	100% en 60 min.	Huang Chunde et al., 2019
Ácido 5-sulfosalicílico modificado lignina	5,0 g L-1	No indica	83.2 (MB), 39.3 (Pb ²⁺)	99,8 y 71,1% con un pH 5,85 y 5,35 para MB y Pb ²⁺ y 45 °C 12 h	Jin Yanqiao et al.,
Polietilenimina (PEI) modificada con lignina	0,1 g	Cr(VI) (200 mg L-1)	657.9	>80% con 20 °C, pH 1,0-2,0, 24 h	Kwak Hyo W. et al., 2020
Lignosulfonato carboxipropilado, carboxipentilado y carboxietilado (CPRLS, CPELS y CELS)	1 g L-1	EV (10 mL, 100 mg L- 1)	No indica	82-98 %	Bahrpaima K. y Fatehi P., 2019
Lignina Kraft insoluble en acetona	0,04 g, 1,8 g L-1	MB (1 g L-1)	200	100% a 30 °C	Li Hao et al., 2019
Lignina de sosa resinificada sulfonada	0,25 g	Pb ²⁺ (50 mL, 100 mg L-1)	96.34%	96.34% a pH 6,0	Ogunsile B. y Bamgboye M., 2017
Hidroxipropil sulfonado alcalino dispersante a base de lignina	2,0 g	Solución de acetona colorante (0,02 g L-1)	94.27%	94.27% a 45 minutos	Qin Yanlin et al., 2020
Lignina aminada	100 mg	Cu ²⁺ (50 mL, 100 mg L-1)	37.14 %	37.14 % a 25 °C, pH 5,5, 240 min	Xu Jun et al., 2017
Lignosulfonato reticulado	50 mg, 1,0 g L-1	MB (100 mg L-1) y Pb ²⁺ (50 mg L-1)	132.6 (MB), 64.9 (Pb ²⁺)	98 y 97,8% para MB y Pb ²⁺ , en el	

				sistema binario MB, 358,4 mg/g para MB y 100,9 mg/g para Pb2+ en el sistema de un solo componente con un pH 6,0, 25 °C.	
Lignina injertada con ácido gálico	20 mg/10 mL	Pb ²⁺ (200 mg L-1)	119.1	Con un pH 6,0, 35 °C	Zhang Xueyan et al., 2017
Nanotubos de carbono injertados con lignina	10 mg	Pb ²⁺ (40 mL, 10 mg L- 1)	251	Alto coeficiente de distribución (3,6 × 105 mL g-1) a 40 °C	Li Zhili et al., 2017
Lignina funcionalizada con aminoácidos y sulfatos	0,15 g/50 mL	Solución de Pb ²⁺ y Cu ²⁺ (50 mg L-1)	$(Cu^{2+}) = 0.71$ mmol/g $(Pb^{2+}) = 0.26$ mmol/g	25 ± 0,5 °C, pH 6,0, 90 min	Ge Yuanyuan et al., 2015
Resina de xantato de lignina porosa	0,04 g/50 mL	Pb ²⁺ (50 mL, 2 mg L- 1)	62.6	30 °C, pH 5,0	Li Zhili et al., 2016
Lignina dopada con Cu/N	10,0 mg	As(V) (20 mg L-1)	253.5	25 °C, pH 8,0, 30 minutos	Shi Xiafen et al., 2020
NPs de Fe3O4 recubiertas de lignina y lignina amina	20 mg	MB (20 mL, 50 mg L- 1) Ácido escarlata GR (AS-GR) (20 mL, 50 mg L-1)	211.42 176.49	25 °C, pH 10 25 °C, pH 2, 10 h	Li Xingang et al., 2018
Perlas de mezcla de sericina de seda y lignina kraft	1,0 g L-1	Cr(VI) (100 mg L-1)	65.72	>90% con 25 °C, pH 2,0	Kwak Hyo W. et al., 2016

Sulfonato de lignina-poli (ácido acrílico-racrilamida)	0,05 g, 1,0 g L-1	MG (50 mL, 100 mg L-1)	97	97% 24 °C, pH 7,0, 240 min	Tang Yufang et al., 2016
NPs alcalinas de lignina- dopamina/Fe3O4	0,2 g	Cr(III) (100 mL, 100 mg L-1)	44.56	25 °C, pH 5,0, 6 h	Dai Lin et al., 2019
NPs magnéticas de carbono a base de lignina	20 mg	MO (20 mL, 120 mg L-1)	113	20 °C, pH 5,0	Ma Ying Zhi et al., 2018
Compuesto a base de quitosano/nano-lignina	100 mg	MB (150 μg mL-1)	74.07	83% con pH natural	Sohni Saima et al., 2019
Lignina de injerto- alcalina cargada con nanoescala hidróxido de lantano	40 mL, 50 mg P L-1	Violencia de metilo (MV)	65.79	94% con 25 °C, 60 min	Zong Enmin et al., 2018
Nanocompuestos híbridos de MOFs a base de Zn (ZIF-8)@lignina	25 mg	MV (50 mL, 100 mg L-1)	1001.2	Con un pH 8,0, 24 h	Xu Wenjing et al., 2019
Compuesto polimérico poroso de lignina	50 g L-1	MB (40 mg L-1	8.1	80%	Gonzáles López M. et al., 2020
Floculantes alcalinos a base de lignina	2 mg L-1	Amarillo disperso (DY) (5,5 mg L-1)	94.5%	94.5%	Guo Kangying et al., 2019
Fieltro de polipirrol/lignina-grafito	No indica	Naranja ácido (AO7) (10 mg L-1)	92.55%	92.55% en 20 min	Huang Hailan et al., 2018
Floculante a base de lignina (LBF) combinado con PACa (monómeros AMb y DADMACc injertados)	Dosis óptima de PAC + LBF (15 mg L-1 + 1 mg L- 1)	DY (0,1 g)	93.58%	93.58%	Guo Kangying et al., 2018
NPs de Pd@Fe3O4- lignina	10,0 mg	Cr (VI)	100%	Con 24 min, 50 °C	Nasrollahzadeh M. et al., 2020

En los últimos años, los bioadsorbentes a base de lignina han mostrado un excelente rendimiento en la eliminación de contaminantes de metales pesados como el cromo (Cr³+ o Cr⁶+), el zinc, el níquel, el plomo, el cobre, el cadmio el mercurio o el cobalto debido a ello se buscó definir la capacidad de adsorción de los nano materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua; donde de acuerdo con la tabla 6 se tiene que la capacidad de adsorción de la lignina depende en gran medida del estado de oxidación de los metales pesados.

Así también se tiene que la adsorción asistida por lignina se da en mayor porcentaje con los metales Zn^{2+} , Cu^{2+} , Pb^{2+} , Cd^{2+} y Ca^{2+} y se encontró que el orden de afinidad era $Pb^{2+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Ca^{2+}$.

Ello debido a su estructura enrollada y tridimensional, donde la lignina renovable en bruto tiene una escasa eficacia para la eliminación de metales pesados; así mismo, para una eliminación eficaz de los metales pesados y los colorantes tóxicos, la lignina puede ser modificada térmica y/o químicamente para mejorar su capacidad de bioadsorción (Qin Yanlin et al., 2020, p.4). Respaldan do lo mencionado se encuentra Chen Hang et al., 2020, quien afirma que la lignina como adsorbente de nanomateriales presenta una eficiencia de adsorción que podría llegar a 113,5 mg/g y 91,72 % en las condiciones óptimas.

Por su parte Yan Miingfang et al., 2019, señala que la capacidad máxima de adsorción de GLCA a azul de metileno (MB) fue de 1023,9 mg/g, más alta que la de otros compuestos GO/polímero y carbón activado informados; además, el porcentaje de remoción llegó a 99%.

Así también, De Araujó P. et al., 2020 afirma que, en los experimentos de adsorción, las nanopartículas de lignina/Fe₃O₄ mostraron un bajo tiempo de equilibrio y una alta capacidad de adsorción de los colorantes azul de metileno (203,66 mg/g), azul de cibacrón (112,36 mg/g) y rojo de remazol (96,46 mg/g); además, después de cuatro ciclos, la adsorción del colorante azul de metileno sobre las nanopartículas de lignina/Fe₃O₄ se redujo en un 43,68% utilizando HCl 0,1 M como eluyente.

Además, la excelente adsorción de los nano materiales a base de lignina se atribuye al enlace de hidrógeno, a la atracción electrostática, a las estabilidades

térmicas/químicas, a la gran área superficial, a las características de resistencia al agua y a los disolventes orgánicos, y a las estructuras porosas multicapa que estos presentan (Budnyal Tetyana M. et al., 2018).

Así también Zong Enmin et al., (2018), afirma en base a los resultados de su estudio que se propuso el mecanismo de adsorción del colorante azul de metileno (MB), debido a los altos valores de eficiencia de regeneración de la superficie de ambos materiales híbridos lignina-sílice en HCl 0,1 M (hasta 75%) y etanol (99%), ya que, podrían aplicarse como absorbentes efectivos en procesos de tratamiento de aguas residuales industriales.

Por último, se buscó clasificar la isoterma de adsorción que describe el equilibrio en el que ocurre la adsorción de los contaminantes tóxicos de los cuerpos de agua a base de nano materiales de lignina, donde los resultados se exponen en la tabla 7.

Tabla N°7: Isoterma de adsorción de ano materiales de lignina

Tipo de isoterma usada	Fuente
Langmuir	Li Xingang et al., 2018
Freundlich	Kwak Hyo W. et al., 2016
Langmuir	Bahrpaima K. y Fatehi P., 2019
Langmuir	Ogunsile B. y Bamgboye M., 2017
Langmuir	Tang Yufang et al., 2016
Langmuir	Dai Lin et al., 2019
Langmuir	Ma Ying zhi et al., 2018
Langmuir	Ge Yuanyuan et al., 2015
Langmuir	Sohni Saima et al., 2019
Langmuir	Zong Enmin et al., 2018
Langmuir	Xu Wenjing et al., 2019
Langmuir	Wu Zijun et al., 2020
Langmuir y Redlich-Peterson	Abdolmaleki S. et al., 2019
Langmuir	Chen Hang et al., 2020
Langmuir	Yan Miingfang et al., 2019
Langmuir	De Araujó P. et al., 2020
Langmuir	Budnyal Tetyana M. et al., 2018
Langmuir	Gonzáles López M. et al., 2020

De acuerdo con el objetivo de clasificar la isoterma de adsorción que describe el equilibrio en el que ocurre la adsorción de los contaminantes tóxicos de los cuerpos de agua a base de nano materiales de lignina, se tiene que de 26 estudios 17 investigadores presentaron el modelo de isoterma de adsorción de Langmuir como el

que mejor se ajustó a la adsorción de los contaminantes tóxicos de los cuerpos de agua con una excelente eliminación del 100% al valor de pH original.

Es así que Wu Zijun et al., (2020), también afirma que el estudio de isoterma de adsorción mostró que el proceso de adsorción se ajusta al modelo de adsorción de isoterma de Langmuir y el proceso fue una adsorción de una sola capa. Ello también es apoyado por lo señalado en el estudio de Abdolmaleki S. et al., 2019, donde los datos de equilibrio se ajustaron a las ecuaciones de las isotermas de Langmuir, Freundlich, Temkin, Redlich-Peterson; pero se mostró el ajuste favorable con dos isotermas de Langmuir y Redlich-Peterson (R 20,98).

Presentando resultados similares se encuentra Chen Hang et al., 2020, donde los resultados de ajuste de los modelos de isoterma de adsorción y los modelos cinéticos de adsorción se ajustaron a los modelos de Langmuir y de pseudo-segundo orden, respectivamente. Así también las características cinéticas y de equilibrio de la absorción de MB en el estudio de Budnyal Tetyana M. et al., 2018, por parte de los híbridos siguieron el modelo de isoterma de Langmuir y el modelo de pseudo segundo orden, en lugar del modelo de Freundlich y Temkin.

De manera análoga, en la investigación de Ponomarev Nikolai et al., (2019, p.1), para eliminar Ni²⁺, Cd²⁺ y Pb²⁺ del agua, desarrolló un nanocompuesto de lignina-Mg(OH)2 (LH-MH) utilizando residuos de lignina hidrolítica con posible regeneración tras la captación de metales; donde se describieron perfectamente los resultados de adsorción por los modelos de Langmuir, mientras que la cinética fue aclarada por modelos de pseudo-primer orden y pseudo-segundo orden.

Así mismo, para Li Xingang et al., (2018), el equilibrio de adsorción obedeció mejor a la isoterma de Langmuir con una capacidad máxima de adsorción de 176,49 mg/g mientras que los datos cinéticos siguieron el modelo de pseudo-primer orden.

V. CONCLUSIONES

De acuerdo a los estudios realizados para determinar la importancia de los nano - materiales de lignina empleados para el tratamiento de la eliminación de contaminantes tóxicos de los cuerpos de agua se presenta las siguientes conclusiones:

- 1. Los nanomateriales de lignina más empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua son los basados en NPs de lignina, lignina en complejo con Fe(III), NPs de lignina sin alear y NPs de lignina infundida con Fe₃O₄; ello debido a que la lignocelulosa es muy prometedora como soporte sólido para los nanocatalizadores debido a su elevado número de grupos funcionales, por ejemplo, hidroxilo carbonilo metoxi y carboxilo, que pueden promover y mejorar la deposición/decoración y dispersión de NPs de metal/óxido de metal.
- 2. La capacidad de adsorción de los nano materiales de lignina empleados para el tratamiento de eliminación de contaminantes tóxicos de los cuerpos de agua depende en gran medida del estado de oxidación de los metales pesados. Así también se tiene que la adsorción asistida por lignina se da en mayor porcentaje con los metales Zn²+, Cu²+, Pb²+, Cd²+ y Ca²+ y se encontró que el orden de afinidad era Pb²+ > Cu²+ > Zn²+ > Cd²+ > Ca²+. Ello debido a su estructura enrollada y tridimensional, donde la lignina renovable en bruto tiene una escasa eficacia para la eliminación de metales pesados.
- 3. La isoterma de adsorción que describe el equilibrio en el que ocurre la adsorción de los contaminantes tóxicos de los cuerpos de agua a base de nano materiales de lignina, se tiene que de 26 estudios 17 investigadores presentaron el modelo de isoterma de adsorción de Langmuir como el que mejor se ajustó a la adsorción de los contaminantes tóxicos de los cuerpos de agua con una excelente eliminación del 100% al valor de pH original.

VI. RECOMENDACIONES

De acuerdo a la búsqueda y selección realizada de estudios a nivel mundial se puede realizar las siguientes recomendaciones a los futuros investigadores:

- 1. Las nanopartículas híbridas también pueden usarse directamente como adsorbentes para la eliminación de contaminantes en efluentes industriales pero la eliminación de exactos contaminantes implica altos costos de operación y mantenimiento, así como una compleja generación de lodos; por tal motivo se recomienda realizar estudios centrándose en la comparación del tiempo de equilibrio y el reciclaje de las ligninas más usadas con los adsorbentes convencionales.
- Se recomienda desarrollo nuevos estudios enfocados en las mejores rutas y más sencillas para modificar las ligninas y sustituir las metodologías químicas, así como utilizar nuevos residuos biológicos para la preparación de lignina.
- Se recomienda realizar estudios aplicando procesos biológicos más ecológicos para minimizar o eliminar el coste de la fabricación de (nano)materiales en condiciones suaves y realizar la comparación de la mejora en la capacidad de adsorción.

REFERENCIAS

- ABDOLMALEKI, Sara; AMININASAB, S. Mojtaba; GHADERMAZI, Mohammad. Modification of Fe 2 O 3-contained lignocellulose nanocomposite with silane group to remove nitrate and bacterial contaminations from wastewater. Iranian Polymer Journal, 2019, vol. 28, no 10, p. 859-872. Disponibe en: https://doi.org/10.1007/s13726-019-00749-9
- AHMED, Ishtiaq; IQBAL, Hafiz MN; DHAMA, Kuldeep. Enzyme-based biodegradation of hazardous pollutants—An overview. J. Exp. Biol. Agric. Sci, 2017, vol. 5, no 4, p. 402-411.
- BAIMENOV, Alzhan, et al. Novel amphoteric cryogels for Cd2+ ions removal from aqueous solutions. En Key Engineering Materials. Trans Tech Publications Ltd, 2018. p. 376-382. Disponibe en: https://doi.org/10.4028/www.scientific.net/KEM.775.376
- BAHRPAIMA, Khatereh; FATEHI, Pedram. Preparation and coagulation performance of carboxypropylated and carboxypentylated lignosulfonates for dye removal. Biomolecules, 2019, vol. 9, no 8, p. 383. Disponibe en: https://doi.org/10.3390/biom9080383
- BERENBLYUM, A. S., et al. Catalytic methods for the manufacturing of highproduction volume chemicals from vegetable oils and fats. Petroleum Chemistry, 2016, vol. 56, no 8, p. 663-671. Disponibe en: https://doi.org/10.1134/S0965544116080028
- BILAL, Muhammad, et al. Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants a review. Science of the Total Environment, 2017, vol. 576, p. 646-659. Disponibe en: https://doi.org/10.1016/j.scitotenv.2016.10.137
- BILAL, Muhammad, et al. Emerging contaminants of high concern and their enzyme-assisted biodegradation—a review. Environment international, 2019, vol. 124, p. 336-353. Disponibe en: https://doi.org/10.1016/j.envint.2019.01.011

- 8. BILAL, Muhammad, et al. Biosorption: an interplay between marine algae and potentially toxic elements—a review. Marine drugs, 2018, vol. 16, no 2, p. 65. Disponibe en: https://doi.org/10.3390/md16020065
- BUDNYAK, Tetyana M., et al. Methylene Blue dye sorption by hybrid materials from technical lignins. Journal of Environmental Chemical Engineering, 2018, vol. 6, no 4, p. 4997-5007. Disponibe en: https://doi.org/10.1016/j.jece.2018.07.041
- 10.CHATHA, Shahzad Ali Shahid; ASGHER, Muhammad; IQBAL, Hafiz MN. Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environmental Science and Pollution Research, 2017, vol. 24, no 16, p. 14005-14018. Disponibe en: https://doi.org/10.1007/s11356-017-8998-1
- 11. CHEN, Hang, et al. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, vol. 603, p. 125281. Disponibe en: https://doi.org/10.1016/j.colsurfa.2020.125281
- 12. DAI, Lin, et al. Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium (III) removal. International journal of biological macromolecules, 2019, vol. 132, p. 478-486. Disponibe en: https://doi.org/10.1016/j.ijbiomac.2019.03.222
- 13.DE ARAÚJO PADILHA, Carlos Eduardo, et al. Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal. Industrial Crops and Products, 2020, vol. 146, p. 112167. Disponibe en: https://doi.org/10.1016/j.indcrop.2020.112167
- 14.ERDEM, Ahmet; NGWABEBHOH, Fahanwi Asabuwa; YILDIZ, Ufuk. Novel macroporous cryogels with enhanced adsorption capability for the removal of Cu (II) ions from aqueous phase: Modelling, kinetics and recovery studies. Journal of environmental chemical engineering, 2017, vol. 5, no 1, p. 1269-1280. Disponibe en: https://doi.org/10.1016/j.jece.2017.02.011

- 15. EUROSTAT, 2019. Chemicals Production and Consumption Statistics.
- 16. GAVRILESCU, Maria, et al. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New biotechnology, 2015, vol. 32, no 1, p. 147-156. Disponibe en: https://doi.org/10.1016/j.nbt.2014.01.001
- 17.GE, Yuanyuan, et al. Heavy metal ions retention by bi-functionalized lignin: Synthesis, applications, and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 2015, vol. 20, no 6, p. 4429-4436. Disponibe en: https://doi.org/10.1016/j.jiec.2014.02.011
- 18.GOMES, Inês B.; SIMÕES, Lúcia C.; SIMÕES, Manuel. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Science of the total environment, 2018, vol. 643, p. 1348-1356. Disponibe en: https://doi.org/10.1016/j.scitotenv.2018.06.263
- 19. GONZÁLEZ-LÓPEZ, Martín Esteban, et al. Highly porous lignin composites for dye removal in batch and continuous-flow systems. Materials Letters, 2020, vol. 263, p. 127289. Disponibe en: https://doi.org/10.1016/j.matlet.2019.127289
- 20.GUO, Kangying, et al. Evaluation of molecular weight, chain architectures and charge densities of various lignin-based flocculants for dye wastewater treatment. Chemosphere, 2019, vol. 215, p. 214-226. Disponibe en: https://doi.org/10.1016/j.chemosphere.2018.10.048
- 21.HERNANDEZ-VARGAS, Gustavo, et al. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors, 2018, vol. 8, no 2, p. 29. Disponibe en: https://doi.org/10.3390/bios8020029
- 22. HUANG, Chunde, et al. Boosted selectivity and enhanced capacity of As (V) removal from polluted water by triethylenetetramine activated lignin-based adsorbents. International journal of biological macromolecules, 2019, vol. 140, p. 1167-1174. Disponibe en: https://doi.org/10.1016/j.ijbiomac.2019.08.230

- 23.HUANG, Hailan, et al. Lignin combined with polypyrrole as a renewable cathode material for H2O2 generation and its application in the electro-Fenton process for azo dye removal. Electrochimica Acta, 2018, vol. 259, p. 637-646. isponibe en: https://doi.org/10.1016/j.electacta.2017.11.014
- 24.JIN, Yanqiao, et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin. International journal of biological macromolecules, 2019, vol. 123, p. 50-58. Disponibe en: https://doi.org/10.1016/j.ijbiomac.2018.10.213
- 25.KWAK, Hyo Won, et al. Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. International journal of molecular sciences, 2016, vol. 17, no 9, p. 1466. Disponibe en: https://doi.org/10.3390/ijms17091466
- 26. Kumar, M., Borah, P., & Devi, P. (2020). Priority and emerging pollutants in water. Inorganic Pollutants in Water, 33–49. Disponibe en: https://doi.org/10.1016/b978-0-12-818965-8.00003-2
- 27. KWAK, Hyo Won; LEE, Hyunji; LEE, Ki Hoon. Surface-modified spherical lignin particles with superior Cr (VI) removal efficiency. Chemosphere, 2020, vol. 239, p. 124733. Disponibe en: https://doi.org/10.1016/j.chemosphere.2019.124733
- 28.KWAK, Hyo Won, et al. Preparation of silk sericin/lignin blend beads for the removal of hexavalent chromium ions. International journal of molecular sciences, 2016, vol. 17, no 9, p. 1466. Disponibe en: https://doi.org/10.3390/ijms17091466
- 29.LI, Changzhi, et al. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical reviews, 2015, vol. 115, no 21, p. 11559-11624. Disponibe en: https://doi.org/10.1021/acs.chemrev.5b00155
- 30.LI, Hao, et al. Acetone fractionation: a simple and efficient method to improve the performance of lignin for dye pollutant removal. RSC advances, 2019, vol. 9, no 61, p. 35895-35903. Disponibe en: https://doi.org/10.1039/C9RA07017F

- 31.LI, Xingang, et al. One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials, 2018, vol. 8, no 3, p. 162. Disponibe en: https://doi.org/10.3390/nano8030162
- 32.LI, Zhili, et al. Enhancing lead adsorption capacity by controlling the chain length of alkyl amine grafted lignin. BioResources, 2015, vol. 10, no 2, p. 2425-2432. Disponible en: https://doi.org/10.15376/BIORES.10.2.2425-2432
- 33.LI, Zhili; KONG, Yan; GE, Yuanyuan. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chemical Engineering Journal, 2016, vol. 270, p. 229-234. Disponible en: https://doi.org/10.1016/j.cej.2015.01.123
- 34.LI, Zhili; CHEN, Junyi; GE, Yuanyuan. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes. Chemical Engineering Journal, 2017, vol. 308, p. 809-817. Disponible en: https://doi.org/10.1016/j.cej.2016.09.126
- 35.LIU, Huayu, et al. Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, vol. 165, p. 113425. Disponible en: https://doi.org/10.1016/j.indcrop.2021.113425
- 36.LIU, Kun, et al. Recent advances in cellulose and its derivatives for oilfield applications. Carbohydrate Polymers, 2021, vol. 259, p. 117740. Disponible en: https://doi.org/10.1016/j.carbpol.2021.117740
- 37. LOBATO-PERALTA, Diego Ramón, et al. A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy applications. Journal of Cleaner Production, 2021, p. 126123. Disponible en: https://doi.org/10.1016/j.jclepro.2021.126123
- 38.LOH, Xian Jun; KAI, Dan; LI, Zibiao (ed.). Functional Materials from Lignin: Methods and Advances. World Scientific Publishing, 2018. Disponible en: <a href="https://books.google.es/books?id=yvF9DwAAQBAJ&lpg=PR5&ots=qcS_P4R_wAi&dq=7%5D%20Z.%20Li%2C%20Z.X.%20Toh%2C%20Y.%20Xiang%2C_%20E.%20Ye%2C%20X.J.%20Loh%2C%20Chemical%20modification%20of_%20lignin%2C%20Functional%20Materials%20from%20Lignin%20(2018)%2_081%E2%80%93120.&lr&hl=es&pg=PR5#v=onepage&q&f=true

- 39.MA, Ying-zhi, et al. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, vol. 559, p. 226-234. Disponible en: https://doi.org/10.1016/j.colsurfa.2018.09.054
- 40. MANDLEKAR, Neeraj, et al. An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-Trends Appl, 2018, vol. 207, p. 231. Disponible

 en:

 <a href="https://books.google.es/books?id=5WaQDwAAQBAJ&lpg=PA207&ots=NfHgSNtjuM&dq=%5D%20N.%20Mandlekar%2C%20A.%20Cayla%2C%20F.%20Rault%2C%20S.%20Giraud%2C%20F.%20Sala%C3%BCn%2C%20G.%20Malucelli%2C%20J.-

P.%20Guan%2C%20An%20overview%20on%20the%20use%20of%20lignin %20and%20its%20derivatives%20in%20fire%20retardant%20polymer%20sy stems%2C%20Lignin-

<u>Trends%20and%20Applications%20(2018)%20207%E2%80%93231.&lr&hl=es&pg=PA207#v=onepage&g&f=false</u>

- 41.MENG, Yi, et al. Lignin-based hydrogels: A review of preparation, properties, and application. International journal of biological macromolecules, 2019, vol. 135, p. 1006-1019. Disponible en: https://doi.org/10.1016/j.ijbiomac.2019.05.198
- 42.MOHAZZAB, Bahareh Feizi, et al. Upgraded valorization of biowaste: laser-assisted synthesis of Pd/calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation. ACS omega, 2020, vol. 5, no 11, p. 5888-5899. Disponible en: https://doi.org/10.1021/acsomega.9b04149
- 43.NAIDU, Ravi, et al. Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere, 2016, vol. 154, p. 350-357. Disponible en: https://doi.org/10.1016/j.chemosphere.2016.03.068
- 44.NAKAGAWA-IZUMI, Akiko, et al. Characterization of syringyl and guaiacyl lignins in thermomechanical pulp from oil palm empty fruit bunch by pyrolysisgas chromatography-mass spectrometry using ion intensity calibration.

- Industrial Crops and Products, 2017, vol. 95, p. 615-620. Disponible en: https://doi.org/10.1016/j.indcrop.2016.11.030
- 45. NASROLLAHZADEH, Mahmoud, et al. Recent progresses in the application of lignin derived (nano) catalysts in oxidation reactions. Molecular Catalysis, 2020, vol. 489, p. 110942. Disponible en: https://doi.org/10.1016/j.mcat.2020.110942
- 46.OGUNSILE, B. O.; BAMGBOYE, M. O. Biosorption of Lead (II) onto soda lignin gels extracted from Nypa fruiticans. Journal of environmental chemical engineering, 2017, vol. 5, no 3, p. 2708-2717. Disponible en: https://doi.org/10.1016/j.jece.2017.05.016
- 47.OVEJERO-PÉREZ, Antonio, et al. Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride. International journal of biological macromolecules, 2020, vol. 157, p. 461-469. Disponible en: https://doi.org/10.1016/j.ijbiomac.2020.04.194
- 48. PÉREZ-PAGE, María, et al. Template-based syntheses for shape controlled nanostructures. Advances in colloid and interface science, 2016, vol. 234, p. 51-79. Disponible en: https://doi.org/10.1016/j.cis.2016.04.001
- 49. PEROVIC, Milena; QIN, Qing; OSCHATZ, Martin. From molecular precursors to nanoparticles—tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization. Advanced Functional Materials, 2020, vol. 30, no 41, p. 1908371. Disponible en: https://doi.org/10.1002/adfm.201908371
- 50. PONOMAREV, Nikolai, et al. Lignin-based magnesium hydroxide nanocomposite. synthesis and application for the removal of potentially toxic metals from aqueous solution. ACS Applied Nano Materials, 2019, vol. 2, no 9, p. 5492-5503. Disponible en: https://doi.org/10.1021/acsanm.9b01083
- 51.QIN, Yanlin, et al. Preparation and interaction mechanism of Nano disperse dye using hydroxypropyl sulfonated lignin. International journal of biological

- macromolecules, 2020, vol. 152, p. 280-287. Disponible en: https://doi.org/10.1016/j.ijbiomac.2020.02.261
- 52. RASHEED, Tahir, et al. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environment international, 2019, vol. 122, p. 52-66. Disponible en: https://doi.org/10.1016/j.envint.2018.11.038
- 53. SAJJADI, Mohaddeseh, et al. Lignin-derived (nano) materials environmental pollution remediation: Current challenges and future perspectives. International Journal of Biological Macromolecules, 2021. Disponibe en: https://doi.org/10.1016/j.ijbiomac.2021.02.165
- 54.SEN, Sanghamitra; PATIL, Shradha; ARGYROPOULOS, Dimitris S. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chemistry, 2015, vol. 17, no 11, p. 4862-4887. Disponibe en: https://doi.org/10.1039/C5GC01066G
- 55. SHI, Xiaofeng, et al. Cu/N doped lignin for highly selective efficient removal of As (v) from polluted water. International Journal of Biological Macromolecules, 2020, vol. 161, p. 147-154. Disponibe en: https://doi.org/10.1016/j.ijbiomac.2020.06.016
- 56. SOHNI, Saima, et al. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. International journal of biological macromolecules, 2019, vol. 132, p. 1304-1317. Disponibe en: https://doi.org/10.1016/j.ijbiomac.2019.03.151
- 57.SUN, Zhuohua, et al. Bright side of lignin depolymerization: toward new platform chemicals. Chemical reviews, 2018, vol. 118, no 2, p. 614-678. Disponibe en: https://doi.org/10.1021/acs.chemrev.7b00588
- 58. SUPANCHAIYAMAT, Nontipa, et al. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource technology, 2019, vol. 272, p. 570-581. Disponible en: https://doi.org/10.1016/j.biortech.2018.09.139

- 59.TANG, Yufang, et al. Preparation of lignin sulfonate-based mesoporous materials for adsorbing malachite green from aqueous solution. Journal of environmental chemical engineering, 2016, vol. 4, no 3, p. 2900-2910. Disponible en: https://doi.org/10.1016/j.jece.2016.05.040
- 60.THAKUR, Vijay Kumar; VOICU, Stefan Ioan. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate polymers, 2016, vol. 146, p. 148-165. Disponible en: https://doi.org/10.1016/j.carbpol.2016.03.030
- 61. ULLAH, Sana, et al. Cypermethrin induced toxicities in fish and adverse health outcomes: its prevention and control measure adaptation. Journal of Environmental Management, 2018, vol. 206, p. 863-871. Disponible en: https://doi.org/10.1016/j.jenvman.2017.11.076
- 62.UNESCO, 2017. Facts and Figures-water Pollution Is on the Rise Glablly.

 Disponible en: www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-andfigures/all-facts-wwdr3/fact-15-water-pollution/
- 63. VAN ZIJL, Magdalena Catherina, et al. Estrogenic activity, chemical levels and health risk assessment of municipal distribution point water from Pretoria and Cape Town, South Africa. Chemosphere, 2017, vol. 186, p. 305-313. Disponibe en: https://doi.org/10.1016/j.chemosphere.2017.07.130
- 64. VARDHAN, Kilaru Harsha; KUMAR, Ponnusamy Senthil; PANDA, Rames C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 2019, vol. 290, p. 111197. Disponibe en: https://doi.org/10.1016/j.molliq.2019.111197
- 65. VARGAS-BERRONES, Karla, et al. Emerging pollutants (EPs) in Latin América: A critical review of under-studied EPs, case of study-Nonylphenol. Science of the Total Environment, 2020, vol. 726, p. 138493. Disponibe en: https://doi.org/10.1016/j.scitotenv.2020.138493

- 66. VARJANI, Sunita, et al. Treatment of wastewater from petroleum industry: current practices and perspectives. Environmental Science and Pollution Research, 2020, vol. 27, no 22, p. 27172-27180. Disponible en: https://doi.org/10.1007/s11356-019-04725-x
- 67. VITHANAGE, Meththika, et al. Interaction of arsenic with biochar in soil and water: a critical review. Carbon, 2017, vol. 113, p. 219-230. Disponible en: https://doi.org/10.1016/j.carbon.2016.11.032
- 68.WONG, Syieluing, et al. Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. Journal of Cleaner Production, 2018, vol. 175, p. 361-375. Disponible en: https://doi.org/10.1016/j.jclepro.2017.12.059
- 69.WU, Zijun, et al. Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue. International journal of biological macromolecules, 2020, vol. 143, p. 325-333. Disponible en: https://doi.org/10.1016/j.ijbiomac.2019.12.017
- 70.XU, Jun, et al. Adsorption of Cu (ii) ions in aqueous solution by aminated lignin from enzymatic hydrolysis residues. RSC advances, 2017, vol. 7, no 71, p. 44751-44758. Disponible en: https://doi.org/10.1039/C7RA06693G
- 71.XU, Junsong, et al. Vinylene-Linked Covalent Organic Frameworks (COFs) with Symmetry-Tuned Polarity and Photocatalytic Activity. Angewandte Chemie International Edition, 2020, vol. 59, no 52, p. 23845-23853. Disponible en: https://doi.org/10.1002/anie.202011852
- 72. XU, Wenjing, et al. Fabrication of ZIF-8 based on lignin with high yield for dye removal from water. Journal of the Iranian Chemical Society, 2019, vol. 16, no 2, p. 385-392. Disponible en: https://doi.org/10.1007/s13738-018-1517-6
- 73. YAN, Mingfang; HUANG, Wenxing; LI, Zhili. Chitosan cross-linked graphene oxide/lignosulfonate composite aerogel for enhanced adsorption of methylene blue in water. International journal of biological macromolecules, 2019, vol. 136, p. 927-935. Disponible en: https://doi.org/10.1016/j.ijbiomac.2019.06.144

- 74.ZHANG, Xiaomei, et al. Simultaneous removal of methylene blue and Pb2+ from aqueous solution by adsorption on facile modified lignosulfonate. Environmental technology, 2018. Disponible en: https://doi.org/10.1080/09593330.2018.1544666
- 75.ZHANG, Xueyan, et al. A novel gallic acid-grafted-lignin biosorbent for the selective removal of lead ions from aqueous solutions. BioResources, 2017, vol. 12, no 3, p. 5343-5357. Disponible en: https://doi.org/10.15376/biores.12.3.5343-5357
- 76.ZHOU, Haifeng, et al. Facile preparation of lignosulfonate/N-methylaniline composite and its application in efficient removal of Cr (VI) from aqueous solutions. International journal of biological macromolecules, 2020, vol. 154, p. 1194-1204. Disponible en: https://doi.org/10.1016/j.ijbiomac.2019.10.274
- 77.ZHOU, Xuan, et al. Functionalized lignin-based magnetic adsorbents with tunable structure for the efficient and selective removal of Pb (II) from aqueous solution. Chemical Engineering Journal, 2021, p. 130409. Disponible en: https://doi.org/10.1016/j.cej.2021.130409
- 78.ZHU, Lingli; SHEN, Dekui; LUO, Kai Hong. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of hazardous materials, 2020, vol. 389, p. 122102. Disponible en: https://doi.org/10.1016/j.jhazmat.2020.122102
- 79.ZONG, Enmin, et al. A lignin-based nano-adsorbent for superfast and highly selective removal of phosphate. Journal of Materials Chemistry A, 2018, vol. 6, no 21, p. 9971-9983. Disponible en: https://doi.org/10.1039/C8TA01449C

ANEXOS N° 1

UCV UNIVERSIDAD CÉSAR VALLEJO	FICHA DE ANÁLISIS DE CONTENIDO
DATOS DEL AUTOR:	
PÁGINAS UTILIZADAS	
AÑO DE PUBLICACIÓN	
LUGAR DE PUBLICACIÓN	
CÓDIGO / ISBN:	
PALABRAS CLAVES:	Nano, Lignin, Materials, Elimination, Treatment, Toxic, Contaminants, wáter, Bodies
NANO-MATERIALES DE LIGNINA	
ABSORCION DE LOS NANO-MATERIALES	
ISOTERMA DE ABSORCIÓN DE LOS NANO- MATERIALES	
RESULTADOS:	
CONCLUSIONES:	