

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Mejoramiento de propiedades físico-mecánicas de suelos con adición de aditivos orgánicos en la carretera Yaurisque – Ranraccasa, Cusco-2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniera Civil

AUTORAS:

Arana Ordoñez, Marycruz (orcid.org/0000-0001-7129-3590)

Paredes Baca, Flor del Carmen (orcid.org/0000-0002-9209-6307)

ASESOR:

Dr. Vargas Chacaltana, Luis Alberto (orcid.org/0000-0002-4136-7189)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LIMA – PERÚ 2022

Dedicatoria

Este trabajo está dedicado en primer lugar a Dios, a nuestras familias quienes siempre estuvieron demostrando apoyo incondicional y empuje a seguir adelante pese a pasar por momentos difíciles y también agradecer a cada persona que nos apoyaron para poder lograr nuestra meta.

Agradecimiento

Agradecemos en primer lugar a Dios por guiarnos en el camino del bien a nuestros padres por siempre estar con nosotras y nunca dejar de creer en nuestros logros, a nuestro asesor Dr. Vargas Chacaltana, Luis Alberto por su paciencia, a nuestros familiares y amigos por siempre estar ahí animándonos a seguir con nuestros objetivos

Índice de contenidos

Caratula	i
Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de tablas	V
Índice de figuras	vi
Resumen	ix
Abstract	x
I. INTRODUCCIÓN	11
II. MARCO TEÓRICO	15
III. METODOLOGÍA	28
3.1 Tipo y diseño de investigación	28
3.2. Variables y operacionalización	28
3.3 Población, muestra y muestreo	29
3.4 Técnicas e instrumentos de recolección de datos	29
3.5. Procedimientos de aplicación	30
3.6. Método de análisis de datos	33
3.7. Aspectos éticos	33
IV. RESULTADOS	34
V. DISCUSIÓN	74
VI. CONCLUSIONES	79
VII. RECOMENDACIONES	81
REFERENCIAS	82
ANEXOS	86

Índice de tablas

Tabla 1: Requisitos de los materiales20	6
Tabla 2 Granulometría C-0.3 suelo natural30	6
Tabla 3 Composición granulométrica y coeficientes C-03	7
Tabla 4 Granulometría de C-06 estado natural38	В
Tabla 5 Composición granulométrica y coeficientes C-06	В
Tabla 6 Granulometría de C-08 estado natural39	9
Tabla 7: Composición granulométrica y coeficientes C-0340	0
Tabla 8: Contenido de humedad de suelo natural C-03, C-06, C-084	1
Tabla 9: Clasificación de suelos	2
Tabla 10: Resultados de límite de consistencia de suelo natural43	3
Tabla 11: Límites de consistencia de suelo natural con adición de ceniza de	
cascarade habas44	4
Tabla 12. Límites de consistencia de suelo natural con adición de ceniza de	
cascarade habas40	6
Tabla 13: Humedad Optima y Densidad máxima seca de suelo natural50	0
Tabla 14: Humedad Optima y Densidad máxima seca de suelo natura con adición	
ceniza de cascara de habas52	2
Tabla 15: Humedad Optima y Densidad máxima seca de suelo natura con adición	
ceniza de aserrín de madera53	3
Tabla 16: Resultados de ensayo de CBR del suelo natural50	6
Tabla 17: Resultados de ensayo de CBR del suelo natural con adición de cascara	
dehabas57	7
Tabla 18: Resultados de ensayo de CBR del suelo natural con adición de aserrín	
demadera60	0
Tabla 19 Influencia de dosificación en las propiedades físicas y mecánicas del	
suelocon cáscara de haba64	4
tabla 20: Influencia de dosificación en las propiedades físicas y mecánicas del	
suelocon ceniza de aserrrín68	В

Índice de figuras

Figura 1: Caras de habas	.21
Figura 2: Aserrín de madera	. 22
Figura 3: Equipo de compactación e inmersión del ensayo CBR	. 24
Figura 4: Equipo para el ensayo de granulometría	. 25
Figura 5: Equipo para determinar límites de consistencia	. 26
Figura 6: Equipo para el ensayo de gravedad especifica	. 27
Figura 7: Mapa del cusco	. 34
Figura 8: Mapa de ubicación	. 35
Figura 9: Curva granulométrica del suelo C-03	. 37
Figura 10: Curva granulométrica del suelo C-06	.38
Figura 11: Curva granulométrica del suelo C-08	.40
Figura 12: Curva de contenido de humedad	.41
Figura 13: Ensayo de límites de consistencia	. 43
Figura 14: Límites de consistencia de suelo natural	.43
Figura 15: Limite líquido, limite plástico e IP con adición cascara de habas de C-03	44
Figura 16: Limite líquido, limite plástico e IP con adición de ceniza de cascara dehal	oas
de C-06	. 45
Figura 17: Limite líquido, limite plástico e IP con adición de ceniza de cascara dehal	oas
de C-08	. 46
Figura 18: Limite líquido, limite plástico e IP con adición de ceniza de aserrín	de
madera de C-03	. 47
Figura 19: Limite líquido, limite plástico e IP con adición de ceniza de aserrín	de
madera de C-06	. 47
Figura 20: Limite líquido, limite plástico e IP con adición de ceniza de aserrín	
madera de C-08	. 48
Figura 21: Adición de ceniza de cascara en la muestra natural de suelo	.49
Figura 22: Adición de ceniza de habas en la muestra natural de suelo	
Figura 23: Adición de ceniza de aserrín en la muestra natural de suelo	
Figura 24: Adición de ceniza de aserrín de madera en la muestra natural de suelo	.50
Figura 25: Contenido de humedad óptimo de suelo natural	.51

Figura 26: Densidad máxima seca de suelo natural51
Figura 27: Contenido de humedad óptimo de suelo natural con adición de ceniza de
cascara de habas52
Figura 28: Densidad máxima seca de suelo natural con adición de ceniza de cascara
de habas53
Figura 29: Contenido de humedad óptimo de suelo natural con adición de ceniza de
aserrín madera55
Figura 30: Densidad máxima seca de suelo natural con adición de ceniza de aserrín.
55
Figura 31: Ensayo de CBR56
Figura 32: CBR al 100% y 95% de suelo natural57
Figura 33: CBR al 100% y 95% de patrón C-03 con adición de ceniza de cascara de
habas58
Figura 34: CBR al 100% y 95% de patrón C-06 con adición de ceniza de cascara de
habas59
Figura 35: CBR al 100% y 95% de patrón C-03 con adición de ceniza de cascara de
habas59
Figura 36: CBR al 100% y 95% de patrón C-06 con adición de ceniza de aserrín de
madera62
Figura 37: CBR al 100% y 95% de patrón C-08 con adición de cascara de habas62
Figura 38: Compactación de suelo con adición de ceniza de aserrín de madera64
Figura 39: Índice de plasticidad con dosificación de ceniza de cascara de habas en
C-0365
Figura 40: Índice de plasticidad con dosificación de ceniza de cascara de habas en C-
0665
Figura 41: Índice de plasticidad con dosificación de ceniza de cascara de habas en C-
0865
Figura 42: Máxima densidad seca con dosificación de ceniza de cascara de habaser
C-03,C-06 y C-0866
Figura 43: CBR con dosificación de ceniza cascara de habas en C-0366
Figura 44: CBR con dosificación de ceniza en C-0367
Figura 45: CBR con dosificación de ceniza en C-0667

Figura 46: Índice de plasticidad con dosificación de ceniza de aserrín de mader	
03 Figura 47: Índice de plasticidad con dosificación de ceniza de aserrín de mader 06	ra enC
Figura 48: Índice de plasticidad con dosificación de ceniza de aserrín de mader	ra enC
Figura 49: Máxima densidad seca con dosificación de ceniza de cascara de ha	abas er
C-03,C-06 y C-08	70
Figura 50: CBR con dosificación de ceniza aserrín de madera en C-03	71
Figura 51: CBR con dosificación de ceniza en C-06	72
Figura 52: CBR con dosificación de ceniza en C-08	72
Figura 53: Comparación de indie de plasticidad	74
Figura 54: Comparación de indie de plasticidad	74
Figura 55: Comparación de indie de densidad máxima seca	75
Figura 56: Comparación de indie de densidad máxima seca	76
Figura 57: Comparación de índice de plasticidad	77
Figura 58: Comparación de densidad máxima seca	77
Figura 59: Comparación de CBR	77
Figura 60: Comparación de Indice de plasticidad	
Figura 61: Comparación de Indice de plasticidad	78

Resumen

Para poder tener el buen desarrollo de un país se debe considerar en conectar poblaciones lejanas con rapidez y también poder promover diversas actividades entre localidades como por ejemplo el comercio, turismo nacional o internacional y también oportunidad de crecimiento a los nuevos mercados que están en crecimiento, por este motivo se considera a la infraestructura vial como una de las principales estructuras para generar un óptimo desarrollo del país, no obstante se tiene que tener en cuenta que dichas carreteras deben de perdurar con el paso del tiempo y también con uso que le den, por ende deben ser de calidad. Sin embargo, este desarrollo se está realizando de manera lenta o de baja calidad debido al poco estudio que le dan a los suelos ya que existen diferentes tipos de suelos y normalmente no tienen una adecuada resistencia. Por este motivo es que se aplican muchas técnicas o métodos para aumentar la resistencia, entre estas se encuentra la adición de aditivos químicos u orgánicos.

El suelo de la carretera Yaurisque, Ranraccasa del departamento de Paruro de la provincia del Cusco, al momento de ser estudiado para poder empezar a asfaltar demostraron tener una resistencia poco adecuada debido a que se encuentra, por sectores, la presencia de arcillas y se buscará mejorar la estabilización de suelos mediante la adición de productos orgánicos en la que se usará ceniza de aserrín de madera y cáscara de haba.

De acuerdo a referencias pasadas la ceniza de aserrín de madera contiene propiedades químicas casi similares a las del cemento, lo que nos animó a probarla en dicha carretera, observar resultados y analizar si es conveniente utilizarla en este suelo del Perú o no y experimentar con la ceniza de cáscara de haba a modo de tener y observar detalladamente los resultados para verificar si es conveniente utilizarla o no. Ambos productos a aplicarse son considerados como residuos orgánicos y que comúnmente se encuentran hasta en el uso diario de los desechos de los hogares, resultándonos favorable su reutilización.

Palabras clave: Ceniza de madera y cáscara de haba, estabilización, subrasante, mejoramiento.

Abstract

In order to have the good development of a country, it is necessary to consider connecting distant populations quickly and also being able to promote various activities between localities such as trade, national or international tourism and also the opportunity for growth in new markets that are growing. For this reason, the road infrastructure is considered one of the main structures to generate an optimal development of the country, however, it must be taken into account that these roads must last over time and also with the use they give them, therefore they must be of quality. However, this development is being carried out slowly or of low quality due to the little study that is given to the soils since there are different types of soils and normally they do not have adequate resistance. For this reason, many techniques or methods are applied to increase resistance, among these is the addition of chemical or organic additives.

The soil of the Yaurisque, Ranraccasa highway in the department of Paruro in the province of Cusco, at the time of being studied in order to begin asphalting, showed inadequate resistance due to the fact that, by sectors, the presence of clay was found and it will be sought improve soil stabilization through the addition of organic products in which wood sawdust ash and bean husk will be used.

According to past references, wood sawdust ash contains chemical properties almost similar to those of cement, which encouraged us to test it on said road, observe results and analyze whether it is convenient to use it on this Peruvian soil or not and experiment with the bean husk ash in order to have and observe the results in detail to verify if it is convenient to use it or not. Both products to be applied are considered organic waste and are commonly found even in the daily use of household waste, making their reuse favorable.

Keywords: Wood ash and bean husk, stabilization, subgrade, improvement.

I. INTRODUCCIÓN

A nivel internacional y debido al desarrollo de cada país se encuentra necesario tener una buena infraestructura vial, hasta se podría considerar de manera primordial tener las vías pavimentadas para que de esta manera se pueda facilitar el acceso de personas y también de mercancías a diferentes países ya que es el sistema de transporte más importante. De esta manera, se considera como una base importante para el desarrollo de los países, sobre todo en el desarrollo de la economía. Para poder tener pavimentadas las carreteras y poder tener acceso se hacen varios estudios previos, ya que se tiene que conocer primero el tipo de suelo que se va a trabajar y este es el principal problema que se tiene, sabiéndose que se tienen que encontrar soluciones mediante estudios para poder evitar hacer una pavimentación deficiente; el tipo de suelo más común son las arcillas, conociéndose que este tipo de suelo causa muchas dificultades; sin embargo, al pasar los años se ven mejoras considerables en cuanto a la pavimentación de diferentes vías con la adición de aditivos (tanto químicos como naturales), los que brindan mayor estabilidad. El uso de la madera a nivel internacional es constante, se usa para diferentes fines: construcción de casas, encofrados, decoración, mampostería, etc., sobre todo de manera procesada y dejando residuos (aserrín) que se desechan creando mayor contaminación. Al igual sucede con las cáscaras de haba, legumbre que se consume en muchos países y que se desechan los residuos a la basura.

A nivel nacional, en nuestro país hay un problema, ya que existe demasiadas zonas las cuales no están dentro de los parámetros con las para los proyectos viales, porque tiene baja capacidad portante, para mejorar hacer que estos suelos cumplan con los parámetros establecidos se emplea alternativas no convencionales como la estabilización la cual mejorara el suelo a bajos costos. (Pérez, 2012, p.17)¹ La pavimentación de carreteras, calles y caminos es esencial porque gracias a esta se permite la circulación de vehículos y transeúntes. De esta manera existe una accesibilidad y movilidad más eficaz entre ciudades y poblaciones; sin embargo, las pistas que existen en el país deterioran, ya sea por falta de mantenimiento o porque no se utilizan los aditivos correctos (productos químicos elevados en cuanto a costo).

.

¹ (Pérez, 2012, p.17)

En el ámbito local, el crecimiento poblacional ha ido en aumento acelerado en Distrito de Yaurisque Provincia de Paruro de la región Cusco, esto ha generado, en la misma magnitud, un crecimiento en la demanda de la construcción de una carretera de acceso por lo que se hace prioritario la construcción de manera sostenible y económica de esta obra de ingeniería. La Provincia de Paruro, históricamente ha sido un enclave para la producción de granos que abastece al mercado de Cusco, a pesar de las limitaciones de interconectividad vial, al respecto se realizaron diversos intentos para mejorar esta problemática, pero estos no cumplieron con lo propuesto, quedando en soluciones parciales y aisladas. (Mantenimiento de la vía, de manera extemporánea).

Actualmente las condiciones para el servicio de transporte son deficientes, debido al deterioro de la vía, aspecto que dificulta la circulación de las unidades vehiculares y consecuentemente de las personas y productos de la zona. Formulación del problema: se plantea para esta investigación un problema general: ¿Cómo influye la agregación de la mezcla de cáscara de habas y ceniza de madera en el mejoramiento propiedades físicas-mecánicas en la subrasante de la carretera Yaurisque, Ranraccasa Paruro, Cusco - 2022? Es de esta manera que se platea los siguientes problemas específicos ¿Cómo influye la dosificación de elementos orgánicos en las propiedades de la subrasante en la carretera Yaurisque—Ranraccasa Paruro, Cusco-2022?, ¿Cómo influye la adición de cáscara de haba y ceniza de madera en la compactación para el mejoramiento de la subrasante de la carretera Yaurisque—Ranraccasa Paruro, Cusco-2022? y ¿Cómo influye la adición de cáscara de haba y ceniza de madera en la resistencia para el mejoramiento de la subrasante de la carretera Yaurisque—Ranraccasa Paruro, Cusco-2022?

Justificación de la investigación: Esta investigación cuenta con una justificación teórica La información obtenida de esta investigación, posteriormente analizada y procesada, servirá de apoyo para las futuras investigaciones que vaya a ser relacionadas a la ingeniería de infraestructura vial, de esta manera es que se contribuye con el marco teórico y/o cuerpo de conocimiento existente referente al tema. Así mismo cuenta con una justificación metodológica La presente investigación busca tomar como iniciativa la aplicación de las cáscaras de haba y ceniza de madera en diversas proporciones para que la investigación futura pueda iniciarse con la proporción óptima de materiales no tradicionales en suelos inestables, que genere una

buena realización y puedan profundizar en la utilización de estos materiales. Como también presenta una justificación **técnica** Sabemos que los suelos están constituidos de materiales granulares o finos, en muchos casos, no exhiben un comportamiento que cumpla con los requisitos mínimos de desempeño durante la obra civil. Es esta razón lo que nos lleva a estudiar una nueva alternativa de la adición de materiales orgánicos con la finalidad de encontrar nuevos materiales como una opción de estabilización y mejora. Así miso presenta una Justificación social. Los beneficiarios no solo presentaran mejoras en la accesibilidad de transporte sino también mejoras en sus actividades agropecuarias con mejor accesibilidad a los mercados. Igualmente, en mostrar las zonas turísticas que posee la localidad, serán beneficiarios directos del proyecto, que se verán facilitados por la presencia de servicio por una vía de fácil acceso a la localidad de Yaurisque, llegando así a bajar sus costos de operación y mantenimiento, además de ofrecer seguridad y confort. También los pobladores de las Provincias aledañas como Chumbivilcas, Paruro y del Cusco, que podrán acceder a mercados y servicios en forma oportuna y con niveles de competitividad. Como también presenta una Justificación económica. La investigación y mejora de los parámetros mecánicos y físicos se llevan a cabo con el fin de reducir el costo. Normalmente se trabaja en terreno natural para dejarlo solo durante la operación; no siempre es capaz de llevar la carga, lo que aumenta los costos a largo plazo. Esto se debe a que se debe realizar un mantenimiento continuo para mantener la calzada en condiciones aceptables para el tráfico vehicular. En otros casos se utilizan materiales de canteras cercanas al proyecto, que pueden ser de mala calidad por la inaccesibilidad como las que se encuentran alrededor de la red terciaria. Es por ello que se crea la necesidad de obtener un material estable para este suelo. En cuanto a la justificación Ambiental La eliminación de los materiales de desechos es un problema grave en todo el mundo, los restos de desecho de la producción de yuca, habas y huevos forma parte de estos residuos de desecho que se adicionan a los residuos generales. En general, depositar estos residuos se ha convertido en la forma más barata y fácil de descomponerlos. Sin embargo, esto permitirá dar un segundo uso estos desperdicios naturales que se encuentran de manera cotidiana, utilizando para el mejoramiento de las propiedades físico-mecánicas del suelo, así mismo nos permitirá reducir costos en su traslado.

Es por esto por lo que se presenta el objetivo general: evaluar la influencia de la adición de elementos orgánicos en el mejoramiento de la subrasante de la carretera Yaurisque—Ranraccasa Paruro, Cusco-2022. Para esta investigación será necesario tomar en cuenta los siguientes objetivos específicos: Determinar la influencia de índice de plasticidad de la cáscara de haba y ceniza de madera en el mejoramiento de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022. Determinar la influencia de la compactación de la cáscara de haba y ceniza de madera en el mejoramiento de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022. Determinar la influencia de la resistencia de la cáscara de haba y ceniza de madera en el mejoramiento de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022. Determinar la influencia de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022.

Por consiguiente, la formulación de la hipótesis general: La influencia de la adicción de la cáscara de habas y ceniza de madera es considerable en el mejoramiento de la subrasante de la carretera Yaurisque—Ranraccasa Paruro, Cusco-2022. Y como hipótesis específicas: La influencia de índice de plasticidad de cáscara de haba y ceniza de madera es significativa en el mejoramiento de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022. La influencia de la compactación de cáscara de haba y ceniza de madera es significativa en el mejoramiento de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022. La influencia de la resistencia de cáscara de haba y ceniza de madera es significativa en el mejoramiento de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022.

II. MARCO TEÓRICO

Como antecedentes a nivel Internacional se contemplan las siguientes investigaciones, para PARRA (2018)² en su tesis el objetivo es realizar la estabilización del suelo arcilloso con dos aditivos: cal y ceniza volante utilizando diferentes porcentajes y así determinar cuál es el óptimo a utilizarse. Para poder llegar a encontrar el porcentaje óptimo de la adición de estos dos aditivos PARRA hizo 20 ensayos de laboratorio. Los porcentajes con los que se hizo los diferentes ensayos fueron de 2%, 4%, 6% y 8%; aplicó una metodología de tipo aplicada, con enfoque cuantitativo de nivel experimental, se tuvo una población el suelo en estudio (caolín) sometiendo a diferentes pruebas en laboratorio mediante calicatas obteniendo los siguientes resultados: se obtuvo la mejor resistencia con la adición del 4% de cal siguiéndole el 6%, 8% y por último el 2%. Cuando usó la ceniza volante se diferenció que no posee efecto de absorber la humedad como lo hace la CAL pero que sí incrementa la capacidad de adherencia, por otro lado, se obtuvo que la adición de ceniza incrementa la resistencia del suelo. La única muestra que mejor resistencia a la compresión tuvo fue la de 4% de ceniza volante, siendo la única óptima. Como conclusión, a tracción utilizando la CAL demostró un buen comportamiento mecánico, deformación (menor deformación) y rigidez para la adición del 8%, la adición del 4% resultó ser el porcentaje óptimo refiriéndose al esfuerzo máximo. Usando la ceniza volante, se concluyó que no mostró un comportamiento tan satisfactorio demostrando que el cuerpo se vuelve más dúctil, sin embargo, el porcentaje óptimo refiriéndose a esfuerzo máximo fue del 4% y también refiriéndose a rigidez, el 8% refiriéndose a deformación. En el caso de (LOZANO, 2019)³ en la investigación realizada por ambos buscaron utilizar cenizas de carbón y cal para mejorar propiedades físico-mecánicas de una subrasante con tipo de suelo arcilloso, así también analizar si fue conveniente o no utilizar aditivos no convencionales en cuanto a costo. De acuerdo con los antecedentes previos que tuvieron llegaron a la conclusión que los porcentajes a utilizar de ambos aditivos serían de 10%, 20% y 40%. Esta investigación optó por una metodología con enfoque cuantitativa, de tipo aplicado y nivel experimental; la población fue en el laboratorio, ya que no especificaron exactamente de dónde sacaron la muestra e hicieron algo más experimental desde el laboratorio, para

² (PARRA, 2018)

³ (LOZANO, 2019)

realizar las diferentes pruebas usaron calicatas. Tuvieron como resultados que el aditivo que requirió menos cantidad de agua fue el de cenizas, las muestras con cenizas exactamente requirieron entre 15% y 19% menos agua, de igual manera de concluyó que las muestras que tenían el aditivo de ceniza son mucho más resistentes que las muestras con cal, también concluyeron que en los ensayos de compresión la cal actúa mejor en bajas concentraciones mientras que las cenizas actúan mucho mejor en altas concentraciones. Las conclusiones a las que llegaron, después de diferentes ensayos en laboratorio, es que los mejores resultados obtenidos fueron de las muestras con cenizas, sobre todo al utilizar el 40% de las cenizas en las pruebas, con la Cal se recomienda utilizar el 10% siendo el más óptimo. En el aspecto económico sucede de la misma manera, el utilizar las cenizas de carbón mineral resultó mucho más económico que utilizar Cal.

A nivel nacional se tiene Los suelos en el Perú presentan distintas características según su región, pero a nivel nacional se presenta el desafío de adaptar los mismos para mejorar de forma exitosa su desempeño y resistencia. Por tanto se tomó la investigación de **CAMACLLANQUI**, y otros, 2021),⁴ se tiene como objetivo determinar cómo influye el añadir ceniza de madera y fibra de coco en las propiedades de la subrasante de la Av. Andrés Avelino Cáceres perteneciente a la provincia de Huancavelica, ambos aplican una metodología con enfoque cuantitativa así mismo de nivel experimental, realizándose en Huancavelica, teniendo como muestra a toda la subrasante de dicha avenida, en la cuadra 1 donde se ejecutaron dos calicatas de 1.50m de profundidad a cada 50m. Se obtuvo como resultado que al agregar la fibra de coco y también la ceniza de madera al 13% y 18% si muestran una mejora mientras que al adicionar el 7% existe una leve mejora demostrando que no es la cantidad adecuada; por ende, se concluye que el añadir ceniza de madera positiva pero no suficiente en la plasticidad como también desfavorable compresibilidad y resistencia. La ceniza de coco tuvo un efecto adverso en todos los estudios realizados.

(ARRIEGA, 2020)⁵ En su tesis presentada en la Universidad Peruana Unión enfatizó que la necesidad de materiales aptos para la construcción de caminos urbanos y rurales llevó a la búsqueda de formas de mejorar las propiedades físicas y mecánicas del suelo de baja resistencia. En el trópico existen suelos de laterita que contienen una cantidad de minerales arcillosos que no garantizan su capacidad de soportar

⁻

⁴ (CAMACLLANQUI, y otros, 2021)

⁵ (ARRIEGA, 2020)

cargas debido a la presencia de humedad. El contenido de minerales arcillosos en el suelo de laterita crea una gran plasticidad del suelo, que es la causa del deterioro de los caminos construidos. La remediación del suelo se puede lograr a través de la corrección, la estabilización o ambas. La estabilización de suelos es un método de tratamiento para mejorar la capacidad portante y la durabilidad, los materiales estabilizadores de suelos más conocidos son el cemento Portland, la cal, los materiales bituminosos y los aditivos químicos. Algunos estudios han encontrado que la ceniza orgánica contiene sílice, lo que la convierte en puzolánica; Por otro lado, las cenizas volantes son un subproducto de la quema de carbón pulverizado en las centrales eléctricas y deben manipularse con cuidado ya que este material se considera dañino para el medio ambiente. Puede ser nocivo para la salud humana. Por lo tanto, es necesario aprovechar al máximo las cenizas volantes porque tiene propiedades puzolánicas como material cementoso para ayudar a estabilizar los suelos de laterita con baja capacidad de carga. La estabilización de suelos con cenizas de productos orgánicos ha sido sugerida por varios autores en estudios de mejoramiento de suelos, permitiéndonos comparar la resistencia a cenizas y cenizas volantes de productos orgánicos con la Tasa de Soporte de California (CBR) y simplemente valores diferentes ilimitados. durabilidad (UCS) y por lo tanto actúa como un estabilizador de cenizas en laterita. Según los resultados comparativos de este estudio, incluso con los beneficios del uso de cenizas volantes, el uso de cenizas de productos orgánicos mejorará el suelo, construirá caminos que conecten a las personas y eso permitirá que la economía del país vuelva a crecer. Se puede observar que la ceniza de cascarilla de yuca es fácil de obtener, tiene propiedades adecuadas al suelo, y al mismo tiempo cuenta con las condiciones de sustentación necesarias. (BRANDAM, 2020)⁶ en su investigación tiene como objetivo general evaluar la influencia de aplicación de ceniza de madera de fondo para estabilizar la subrasante en Avenida San Felipe con Universitaria, Comas-2020. Aplicando un enfoque cuantitativo de diseño experimental que se aplicará en Avenida San Felipe y Avenida Universitaria (población). Exactamente la muestra se tomará en el cruce de ambas avenidas. De acuerdo con lo estudiado y analizado en dicha tesis se obtiene como resultado que en las 4 dosificaciones que se realizaron solo una dosificación fue la óptima, aplicar el 50% de ceniza de madera del fondo del suelo natural, se ha

-

⁶ (BRANDAM, 2020)

demostrado que el contenido de humedad óptimo será del 6,7%, esta dosificación es óptima; lo mismo ocurre con la máxima densidad seca.

En otros idiomas se cuenta con.

(Corrêa, 2018)⁷ desarrolló su indagación de post grado Os materiais granulares são geralmente considerados primordiais no uso de pavimentos de camada de base e sub-base. Em cada caso, o principal que se destaca é a gestão de materiais alternativos nas obras civis, a fim de minimizar os impactos ao meio ambiente. Materiais adequados disponíveis para uso em camadas de pavimento

Esta tese decidiu investigar com o objetivo de observar o comportamento de três amostras de solo da Formação Rio do Sul, para a pavimentação do trecho Rodovia SC 422 Rio 6 Negrinho - Vila Volta Grande e verificar as condições que permitem sua utilização como frascos de camadas de pavimento . Objetivos específicos A investigação desenvolveu-se também com os seguintes objetivos específicos: Investigar as características geotécnicas das amostras retiradas do solo selecionado; Investigue as propriedades e características da cal que você considera adequada para uso em análises químicas; veja a reação entre o solo e o calcário; Determinar a porcentagem de calcário necessária para melhorar os solos em estudo; Verificar a ação da cal para controlar a expansão e alterar as propriedades mecânicas dos solos. O solo com comportamento não laterítico (NG '), segundo a classificação HBR, é do tipo A-7-5. A amostra AM-02, com cerca de 60% argila, 82% LL e 48% IP, é um solo argiloso com comportamento laterítico (LG '), segundo a classificação HBR, é do tipo A-7-5. - A amostra AM-03, com aproximadamente 4,42% argila e 67,63% silte, LL 42% e IP 17%, é um solo na transição silte-argiloso com comportamento não laterítico (NS '-NG'). En esta investigación Corrêa, (2018) se centra en los elevados costo del uso de agentes granulométricos en la preparación de la subrasante en ciertas áreas donde los materiales mas comunes para los métodos de modificación de propiedades son escasos, aquí el propone que el estudio del área debe ser fundamental al momento de caracterizar el suelo y definir un método de estabilización mediante materiales locales para tener un manejo de costos adecuado. Comparando el manejo de estabilización en tres áreas distintas se encontró que la utilización de CAL como elemento estabilizante en todos los suelos de distintas propiedades resulto en porcentajes distintos de resistencia y deformación ante las pruebas de las muestras,

⁷ (Corrêa, 2018)

siendo que los estabilizantes deben ajustarse según la composición del suelo a trabajar.

Por ello se considera la investigación de (Eren & Filiz, 2019)⁸, study sought to improve the local soil without carrying out any excavation The. For its improvement, the mixed stabilization method with lime and cement was used. In this research, the Isparta Daridere material that today is used by the Public Administration of Sanitary Works of Isparta to achieve impermeability to water and liquids in the construction of dams, filling works, etc., was used as material of poor soil to improve its bearing capacity. All the additives added to the Isparta Daridere natural flooring material, turned out to be not suitable for use as a bearing in any road construction, because they did not increase significantly. En este estudio se tuvo como objetivo mejorar las propiedades del suelo en Isparta Daridere sin llevar a cabo una excavación exhaustiva por ello se empleó un método de estabilización mixto en el cual aplicaron una mezcla del cal y cemento como método tradicional de mejora mezclado con aditivos Consolid444 + Solidry que son aditivos alternativos estudiados en la mejora de las propiedades físico-mecánicas de los suelos. Y se hicieron pruebas separadas que permitieron comparar los resultados de las propiedades, en este estudio se demostró que los aditivos Consolid444 + Solidry presentan mayor impermeabilidad en su aplicación a los suelos.

De la misma manera (Ramaji, 2019)⁹ busco encontrar alternativas viables en la estabilización de los suelos en su proyecto The purpose of the research is to review the stabilization of the soil by adding low-cost products. These methods include chemical additive soil improvement, wetting, soil replacement, compaction control, moisture control, overburdening, and thermal methods. According to the sources used, Portland cement, lime, fly ash and discarded tires are reused products with a lower cost and with good results for soil impr ovement. Fly ash is fine particulate ash created by the combustion of a solid fuel, such as coal, and discharged as an airborne emission, or recovered as a by-product for various commercial uses. Fly ash is mainly used as a reinforcing agent in the manufacture of bricks, concrete, etc. There are two main classes of fly ash, C and F. According to the literature, one of the solutions is the use of waste rubber of different sizes in the soil reinforcement. Aquí se demuestra que es posible emplear alternativas de bajo costo para la estabilización de los suelos, más

^{8 (}feliz, 2009)

⁹ (Ramaji, 2019)

específicamente en suelos donde resulta muy caro emplear métodos tradicionales como el cemento y cal o donde se sospechas que dichos métodos, como la compactación, el agregado de polímeros pueda ser poco efectivo se recomienda el agregado de cenizas como un excelente agente de estabilización que emplea un material de descarte accesible a bajos costos y con resultados óptimos.

En Artículos científicos tenemos. (Valiev, 2018)10 en su artículo destaco que actualmente, hay un rápido crecimiento en la construcción de varias instalaciones de infraestructura de transporte. La mayor parte del territorio de Rusia carece de materiales tradicionales de construcción de carreteras, lo que predetermina su déficit y provoca un aumento en el costo total del proyecto de construcción. En este sentido, para el pavimento del dispositivo es recomendable utilizar suelos locales. Para poder utilizar, por ejemplo, se sabe que los suelos arcillosos, que son más comunes en la Federación Rusa, tienen una alta cohesión y resistencia en un estado de saturación de agua seco e insignificante, que son abultados, es necesario asegurar su durabilidad y estabilidad, independientemente de por cambios en la humedad, condiciones climáticas y cargas variables durante el tránsito. Esto se puede lograr solo bajo la condición de un cambio cualitativo radical en las propiedades naturales de tales suelos. El desarrollo de compuestos basados en el suelo con compuestos inorgánicos (cemento, cal, cenizas volantes, etc.) y orgánicos (betún, betún, alquitrán, resinas de polímeros, etc.) se dedicó a la unión de muchos científicos desde los años 20. del siglo pasado. El análisis de los resultados de su trabajo mostró que las composiciones a base de cemento se distinguen por su alta rigidez y, en consecuencia, el craqueo. Además, los suelos de cemento tienen una mayor abrasión, lo que no permite que se utilicen para pavimentar carreteras sin una capa protectora de desgaste. Los suelos de cal no les dan resistencia a las heladas. Los aglutinantes orgánicos contribuyen al desarrollo de la formación de surcos, así como a la deformación plástica de la capa base.

(Valiev, 2018)¹¹ expone los resultados negativos a largo plazo del empleo de distintos métodos de estabilización de suelos para climas húmedos fríos, explicando que aquellos métodos que aportan rigidez tienden a crear grietas y desgaste, o los métodos orgánicos presentan deformación. Por lo que se concluye que una

^{10 (}Valiev, 2018)

¹¹ (Valiev, 2018)

combinación innovadora de métodos de estabilización a bajos costos es factible para lograr la conservación de rutas a largo plazo.

Se tiene como bases teóricas: a las habas El haba (Vicia faba L.)¹² Es una de las principales leguminosas y ocupa el quinto lugar de consumo de la población mundial. Las semillas secas son ricas en carbohidratos y proteínas, por lo que tienen un alto valor energético. La cáscara de haba. La semilla de haba (Vicia faba L.)¹³ presenta una cubierta seminal o cáscaras llamadas testeros. Este es el principal residuo que se obtiene de estas plantas. Este residuo tiene una estructura leñosa. En otras palabras, está compuesto por lignina, celulosa y hemicelulosa, que juntas exhiben propiedades lignocelulósicas. Por lo tanto, su proceso de descomposición natural es lento y problemático debido a la falta de disposición final adecuada, e incluso pueden ser incinerados o abandonados en el momento de la producción que es responsable de la producción y contaminación de microorganismos.

Figura 1: Caras de habas

La madera. En esta investigación se propone emplear la ceniza del aserrín que se obtiene de la madera, cabe recalcar que la madera es de origen vegetal y se encuentra en los troncos de los árboles y se utiliza para diferentes fines.

El aserrín. Polvillo que se desprende de la madera una vez entra en proceso de cortado o lijado quedando como residuo.

^{12 (}Vicia faba L.)

¹³ (Vicia faba L.)

Figura 2: aserrín de madera

Propiedades físico-mecánicas del suelo. Las características físicas y mecánicas de los suelos van en relación con la aprobación a la carga, la permeabilidad, la distribución del tamaño de partículas y el desempeño bajo presión. Las propiedades más notables para realizar la estabilización son la firmeza volumétrica, la comprensibilidad, la permeabilidad y la resistencia a cargar. Al elegir el tipo de producto que mejora las propiedades del suelo, la investigación debe centrarse en comprobar si mejora alguna de estas propiedades. (Bermejo, 2019).14

Estabilización en pavimentos. La necesidad de adecuar los suelos a las condiciones requeridas para las obras de construcción a gran escala y hacerlos viables ha llevado a estudios de estabilización, Da origen a tener el propósito de construir carreteras asequibles que puedan adaptarse a ciertas restricciones de tráfico y tener una estructura interna que pueda soportar las cargas transportadas por las capas de rodadura. Para (Arriaga et al., 2020)¹⁵ La estabilización del suelo es una serie de trabajos previos que se realizan para mejorar la capacidad de portante del suelo, mejorando así las partículas del suelo, que es una forma más eficiente y asegura que las condiciones de humedad del suelo cambien dentro del rango establecido, logrando una buena estabilidad de carga, mínimo cambio de volumen y mayor resistencia en dicha capa.

Métodos de estabilización de suelos. Existen técnicas de estabilización que pueden ser mecánicas de modo que se mezclen al menos dos suelos con propiedades adicionales, dando como resultado mejores propiedades granulométricas, mejor

4

¹⁴ (bermejo, 2019)

¹⁵ (ARRIEGA, 2020)

ductilidad y permeabilidad al agua, o mejor impermeabilización del suelo. Asimismo, se pueden utilizar diferentes aditivos que tengan un efecto físico o químico sobre el suelo. Los aditivos más utilizados son la cal y el cemento, pero también se utilizan cloruro de sodio, cloruro de magnesio, betún líquido, etc.

Los métodos más usados son: Estabilidad mecánica o estabilidad a la compactación: Es el proceso por el cual el equipo transmite fuerza al suelo mediante amasado, presión, impacto, vibración o su combinación. Al compactar el suelo, cuanto mayor es la densidad, mejor es la distribución de las fuerzas que actúan sobre el suelo, mejor es la estabilidad y desaparece el asentamiento desigual en la estructura. Este método es el más utilizado. De hecho, es casi obligatorio en la construcción de pavimentos. No se colocarán capas de pavimento que no hayan sido compactadas según determinados requisitos técnicos. (Arriaga et al., 2020). 16 Estabilización por variación del tamaño de grano: implica la combinación de dos o más suelos para lograr el tamaño de grano deseado. Este tipo de estabilizador por sí solo no tendrá el efecto deseado y siempre requerirá alguna compactación como complemento. (Farfán, 2015)¹⁷. Estabilidad química: Se utiliza añadiendo aditivos químicos específicos. Esta tecnología busca reacciones químicas entre el suelo y los estabilizadores para lograr cambios en las propiedades del suelo. Los aditivos más utilizados son la cal, el cemento y el betún. (Farfán, 2015)¹⁸. Polímeros estabilizados: Los polímeros actúan como catalizadores de intercambio iónico para las partículas de arcilla, reduciendo su potencial electrostático y anulando su capacidad de absorber agua. Para impermeabilizar y aumentar la capacidad de carga del suelo. (Farfán, 2015)¹⁹

Resistencia de la subrasante. El señor (García Gonsales 2017)²⁰ "La capacidad de un suelo soportará cuando esté en condiciones de servicio, junto con el tráfico y las propiedades del material del pavimento, estos factores forman las variables fundamentales para el diseño del pavimento. (2015, p.6)²¹. Considerando que en toda estructura vial se debe tener en cuenta el valor de la resistencia del suelo y se debe optimizar el resultado para obtener las dimensiones de los demás componentes que conforman el pavimento, la cimentación, la cimentación y la capa asfáltica. Según

¹⁶ (ARRIEGA, 2020)

¹⁷ (Vicia faba L.)

¹⁸ (Farfán, 2015)

^{19 (}Farfan, 2015)

²⁰ (Aguilar & Borda, 2015)

²¹ (2015, p.6

Pariona, explica que "la capacidad de carga de un tramo de carretera varía con el tiempo y el espacio debido a la inevitable variabilidad del suelo, el grado de compactación y el contenido de humedad" (201, p. 2526)²². Para calcular la capacidad de carga del suelo de pavimentación, se requiere el contenido de humedad óptimo y la densidad seca máxima, ya que esta será la guía de prueba

Ensayo CBR. Se emplea para evaluar capacidad portante de terrenos compactados. Según Pariona, en Latinoamérica el CBR es el ensayo que más se utiliza y es aceptado a nivel mundial debido a que su realización es de bajo costo, ya que se asocia a un número de correlaciones y métodos semi-empíricos de diseño de pavimentos y especialmente es para diseñar y evaluar suelos estructurales en carreteras (2014, p.27)²³. En comparación con otras pruebas, el costo de realizar la prueba CBR es el más económico, lo que la convierte en la prueba más utilizada en el mundo y ayuda en el diseño y evaluación de las superficies de las carreteras. Los equipos y materiales utilizados para la compactación e inmersión para el ensayo CBR (ver Figura 3) deberán tener medidas estandarizadas y precisas.

Figura 3: Equipo de compactación e inmersión del ensayo CBR

Según la ASTMD 1883 nos indica que "este método de prueba se utiliza para evaluar a rsistencia potencial de la subrasante, subbase y materiales bas, incluidos los materiales rciclados para su uso en el diseño de pavientos de carretas" (2016, p.3)²⁴.

²² (201, p. 2526).

²³ (2014, p.27)

²⁴ (ASTM, 2016)

Para ASTM, esta prueba se aplica como parte del diseño del pavimento para evaluar los diversos componentes que componen el pavimento, así como la resistencia de los materiales renovables. Para hacer caminos. En este procedimiento, los resultados de confirmación se obtendrán de muestras de prueba con la misma unidad de masa y contenido de humedad que se encuentran en el suelo. Las condiciones adversas del suelo ocurren cuando el suelo está saturado. (INVIAS, 2018, sp)²⁵. Para el Manual de Pruebas de Materiales, esta prueba se utiliza para calcular la resistencia de varias secciones del pavimento, como el subsuelo, la subbase y la subbase, incluidos Otros materiales han sido reciclados para el uso de pistas y plataformas de aterrizaje. Como producto de este experimento, este experimento proporcionará valor como parte de una serie de enfoques de diseño de pavimentos flexibles. (2016, p. 248)²⁶

Granulometría. La determinación del tamaño de partícula (granulometría) es la distribución del tamaño de partícula de los agregados de los cuales las partículas se separan por tamiz o tamiz. Para conseguirlo se utilizan una serie de pantallas de diferentes diámetros, que se montan sobre postes. En la parte superior del tamiz con el diámetro más grande, se agrega la materia prima (suelo o sedimento mixto), y la columna del tamiz se somete a una fuerte vibración y rotación en una máquina especial. Después de unos minutos, se sacan y retiran los tamices, se cuenta por separado la masa del material que queda en cada tamiz, cuya suma debe corresponder al peso total del material de partida colocado en la columna de tamices.

Figura 4: Equipo para el ensayo de granulometría

²⁵ (INVIAS, 2018, sp)

²⁶ (2016, p. 248)²⁶

Los requisitos de los materiales presentes según en el Ministerio De Transportes Y Comunicaciones (2014)²⁷, El material del sustrato se obtendrá de excavaciones del lugar en estudio, tierra prestada lateralmente o de canteras y deberá estar libre de elementos extraños. Si solo hay material absorbente de aire en el área, debe acondicionarse antes de su uso y debe cumplir con las características que se dan en la tabla a continuación.

Tabla 1: Requisitos de los materiales

Condición	Partes del terraplén		
	Base	Cuerpo	Corona
Tamaño máximo (cm)	15	10	7.5
% Máximo de fragmentos de roca >	30	20	
7.62 cm			
Índice de plasticidad (%)	<11	<11	<10

Fuente: Ministerio De Transportes Y Comunicaciones (2014)

Limites de consistencia. El límite de Atterberg, también conocido como límite de densidad, se basa en la suposición de que los suelos finos que se encuentran en la naturaleza se pueden encontrar en diferentes estados según sus propiedades y la cantidad de agua en la que se encuentran. Por lo tanto, el suelo puede ser sólido, semisólido, plástico y líquido o cohesivo. Por ejemplo, si la arcilla está seca, está muy líquida o grumosa, agrega agua y obtendrás una pasta, agrega agua y obtendrás una consistencia líquida.

Figura 5: Equipo para determinar límites de consistencia

²⁷ (MTC, 2014)

Gravedad específica: Se utiliza para determinar la gravedad específica del suelo y los rellenos minerales (rellenos) utilizando un picnómetro. Cuando el suelo contiene partículas más grandes que el tamiz de 2,38 mm (n.º 8), se utilizará el método de ensayo para determinar la gravedad específica y la tasa de absorción del agregado grueso (MTC E 206)²⁸. Si el suelo incluye Para partículas más grandes y pequeñas a 2,38 tamiz mm (N° 8), se aplicará el método de ensayo respectivo para cada sección. El valor de la gravedad específica del suelo será la media de los dos valores así obtenidos. Cuando se utiliza el valor de la gravedad específica en el cálculo de la parte hidrológica del análisis del tamaño de grano del suelo (modo de funcionamiento MTC E 109)²⁹, la gravedad específica del suelo que pasa por el tamiz de 2,00 mm (N° 10). por los métodos descritos en esta norma.

Figura 6: Equipo para el ensayo de gravedad especifica

²⁸ (MTC E 206)²⁸.

²⁹ MTC E 109

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Tipo de investigación: De acuerdo con el desarrollo de la metodología para

demostrar la hipótesis, se define a esta tesis como un tipo de investigación

aplicada, esto con el fin de uso de técnicas innovadoras para mejoramiento de

propiedades físico-mecánicas de los suelos. En este proyecto la investigación

es de enfoque cuantitava, puesto que de los resultados obtenidos en el

laboratorio se obtendrán valores numéricos medibles para después evaluar a

detalle los resultados para poder ponerlos en práctica.

Diseño de la investigación: Se utilizó para el desarrollo de la tesis el diseño

de investigación experimental, debido a que se realizaron combinaciones con

el fin de obtener varios resultados para analizarlos y llegar a la conclusión del

porcentaje óptimo a utilizar. De acuerdo con esto podemos identificar que la

investigación realizada tiene un diseño de tipo Prospectivo, ya que la

información se obtiene en campo para luego analizarla mediante los ensayos

respectivos en laboratorio.

Nivel de investigación: El nivel de investigación es descriptivo, porque se

explicará paso a paso los ensayos realizados en laboratorio y así saber cuál es

el porcentaje óptimo para utilizar para mejorar las propiedades físico-mecánicas

del suelo.

Enfoque de la investigación: Esta es cuantitativa, ya que se utilizarán datos

numéricos y estadísticos, con el propósito de verificar hipótesis previamente

establecidas utilizando los parámetros a evaluar y, a su vez, se utilizarán los

métodos Los datos recopilados, a través de observaciones, se utilizarán para

interpretar los resultados.

3.2. Variables y operacionalización

Variable independiente: cáscara de haba y ceniza de madera

28

En la ingeniería civil, particularmente en el área de suelos, la técnica de

mejoramiento de suelos con la agregación de distintos aditivos es muy utilizada.

En esta investigación se hará de uso de cáscara de habas y ceniza de madera

para mejorar el comportamiento de suelos.

Dimensión: Dosificación

Indicadores: PORCENTAJES

Variable dependiente: Subrasante: Los ensayos realizados en laboratorio que

determinan el comportamiento físico, mecánico de los suelos así mismo incluyen los

ensayos de caracterización: como análisis granulométrico, compactación de suelos

(Proctor modificado), límites de consistencia, CBR y peso específico.

3.3 Población, muestra y muestreo

Población: (Valderrama, 2013, p. 184)30 Viene a ser una parte seleccionada

de la población, es de carácter representativo porque nos representara a la

población cuando se la elija mediante el método del muestreo,

Muestra: La muestra es esencialmente un subgrupo de la población.

Supongamos que es un subconjunto de los elementos de este conjunto definido

en sus características lo que llamamos el conjunto.

Las muestras se obtendrán luego de realizar las calicatas para posteriormente

ser llevadas al laboratorio y hacer los ensayos correspondientes y obtener

resultados.

3.4 Técnicas e instrumentos de recolección de datos

Técnica de investigación: La técnica que usa para esta investigación es la

técnica de observación directa para la recolección de datos y conocer nuestro

objeto en estudio, Porque el diseño de nuestro estudio es experimental para

que Podamos medir, observar y, por lo tanto, comprender la causa y el efecto.

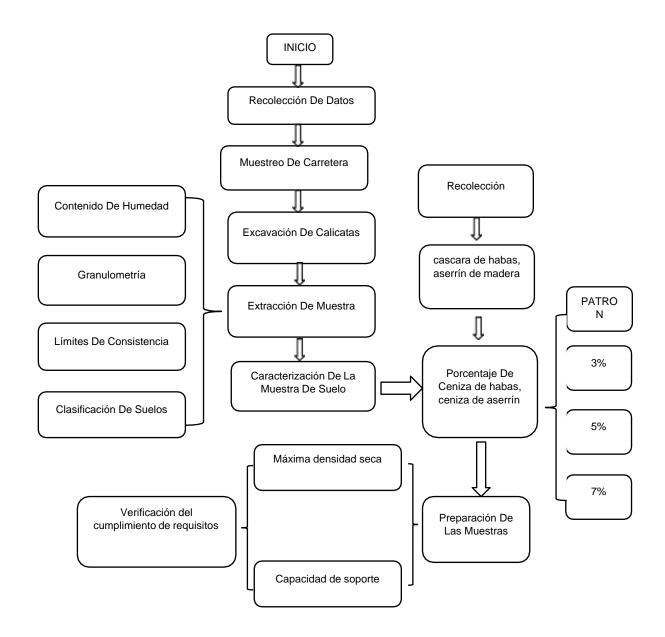
³⁰ (VALDERAMA, 2013, P. 180)

29

Observación directa: La observación es un método que dé permite a los investigadores tener una recoleccion de datos informativa que permitira observar la materia en estudio sin la necesidad de ser alterada.

La observación directa nos permitira obtener información, problematicas

Validez: Consiste en asegurar en la necesidad de confirmar los resultados de nuestra variable independiente tanto como las variables dependientes y demás factores que intervengan en nuestra investigación.


Confiabilidad: La finalidad de este estudio es demostrar mediante pruebas de laboratorio su confiabilidad que viene a ser la capacidad de no mostrar errores.

Nuestro estudio este certificado mediante pruebas, ensayos y los equipos de laboratorio previamente calibrados, así mismo se obtuvo asesoramiento de un experto en la materia para su manipulación.

3.5. Procedimientos de aplicación

Primeramente, debemos tener lista la muestra, secar la muestra en el horno, zarandear por la malla N° 1 O y luego se una cantidad en gr de muestra. Posteriormente preparar solución agua más defloculante; se pesa una cantidad en gramos de defloculante, medir una cantidad de agua destilada para luego mezclar ambos componentes, la solución se deja reposar por un tiempo para que el defloculante penetre en la muestra.

Obtención de la muestra: Para la obtención de la muestra, nos tendremos que dirigir a la zona en estudio que se encuentra situado al norte de la ciudad de Cusco, zona con una topografía accidentada, en este lugar, se puede obtener la muestra haciendo una calicata de 1*1*1.50 y la profundidad que nos permita observar. La calicata nos permite hacer una revisión visual del contenido de humedad. Luego de obtener la muestra estas serán llevad al laboratorio trasladas en bolsas hermética

Obtención de la ceniza de cascara de habas y ceniza de aserrín de madera

Recolección, se procedió a recolectar las cascaras de habas de las centrales de abasto de la ciudad de cusco al igual que el aserrín se recolecto de las madereras cercanas.

Secado, se procedió con el secado del material a la intemperie siempre protegiéndolo de las precipitaciones pluviales.

Incineración, se incinero las cascaras de habas secas a una temperatura de mayor de 00° C (550°C temperatura optima) sobre bandejas metálicas para contener la ceniza y no contaminarla. Así mismo se incinero el aserrín de madera

Tamizado, se procedió a tamizar la ceniza obtenida de la incineración, pasándose por el tamiz numero 40 liberándose de algunas impurezas orgánicas y restos de carbón.

b. Estabilización de subrasantes blandas con ceniza de tallo de banano

Para la estabilización de subrasante adicionando 5% 7%, 9% y 11% de ceniza de cascara de habas y ceniza de aserrín se procedió a mezclar estos porcentajes de ceniza con la muestra patrón, las cuales serán evaluadas en el laboratorio "laboratorio GEOMIN HIDRO AZ EIRL". Ubicado en el distrito de San Sebastián, Cusco.

Estudios Topográficos

Mediante una estación total se realizó la toma de datos topográficos de acuerdo con las condiciones y características de la morfología del terreno, posteriormente procesándose los datos con el software civil 3D, obteniendo así los planos topográficos en planta y las respectivas secciones del tramo en estudio así como la toma de las respectivas coordenadas de la ubicación de las calicatas de estudio.

Estudios de exploración de suelos

Se ejecuto según El Minsterio De Transportes Y Cumunicaciones $(2014)^{31}$ donde indica el número de calicatas para la exploración de suelos para bajo volumen de tránsito indica que con un IMD \leq 200 veh/día, se realizaran 01 calicata por kilómetro y a una profundidad de 1.50 m. Con esta información por las características de la zona se realizó 03 calicatas para la mezcla de suelo patrón con ceniza

Estudios de Laboratorio

Los estudios de laboratorios serán efectuados según las especificaciones técnicas del Ministerio De Transportes Y Comunicaciones (2013)³², se tendrán que realizar en el laboratorio correspondiente con las muestras de la calicata 1, calicata 2 y calicata 3 mezclando conjunto con los porcentajes de la ceniza de tallos de banano.

³¹ MTC (2014)

³² MTC 2013

- Ensayos de granulometría: norma ASTM D-422 y MTC E 107 (ver anexo)
- Densidad seca: norma ASTM D-1557 (ver anexo)
- Peso específico: norma ASTM C127-04 (ver anexo)
- Límite liquido (LL) y límite plástico (L.P.): norma ASTM D-423 y MTC E 110 (ver anexo)
- compactación de suelos (Proctor modificado), norma ASTM D-1557 (ver anexo)
- CBR de suelos (Laboratorio): norma ASTM D-1883 (ver anexo)

3.6. Método de análisis de datos

En este estudio se utilizaron los conocimientos de mecánica de suelos en las 08 calicatas, observando que los suelos tenían propiedades similares tomándose 03 calicatas, efectuados mediante laboratorios debidamente certificados y siguiendo los respectivos procesos y secuencias.

3.7. Aspectos éticos

Esta investigación se basará en la transparencia, la honestidad, el compromiso y la responsabilidad, el respeto por el contexto claro, el cumplimiento de las normas ASTM y las normas planteadas por el Ministerio De Transporte Y Comunicación (MTC) para los resultados durante las pruebas. Por otro lado, se llenará con los estándares internacionales ISO, se citará información como tesis, artículos científicos, revistas, etc., respectivamente según los estándares internacionales ISO, donde se compararán todas las Búsquedas realizadas con el motor Web de Turnitin.

IV. RESULTADOS

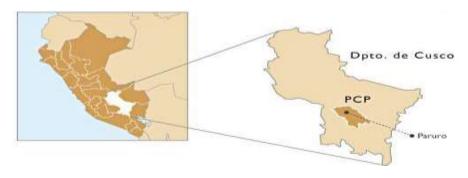
Ubicación

Figura 7: mapa del cusco

- 3.1 Norte: La divisoria de la cuenca del Ccorca con el Huatanay, limite con la Provincia de Anta y la Divisoria entre la Cuenca del Apurímac y la Cuenca del Vilcanota, limite con la provincia de Cusco.
- **3.2 Sur:** La quebrada Maranura y el río Chuñunusa, límites con la provincia de Chumbivilcas.
- **3.3 Este:** La divisoria entre la cuenca del Apurímac y la cuenca del Vilcanota, límite con la provincia de Quispicanchi; limite con la provincia

de Acomayo; y el río Livitaca, límite con la provincia de Chumbivilcas.

3.4 Oeste: El río Apurímac, el río Santo Tomas y la divisoria del Velille hasta la quebrada Maranura; límite con la provincia de Cotabambas del departamento de Apurímac.


Extensión Territorial

La provincia de Paruro tiene una extensión superficial de 1,984.42 Km². caracterizado por pertenecer a la cuenca del Apurímac y cuyo territorio comprende cuatro regiones naturales: quechua baja, quechua alta, suni y puna.

Localización del Proyecto

Mapa: Ubicación de la zona del proyecto a nivel regional y local.

Figura 8: mapa de ubicación

Extensión Territorial

La provincia de Paruro tiene una extensión superficial de 1,984.42 Km². caracterizado por pertenecer a la cuenca del Apurímac y cuyo territorio comprende cuatro regiones naturales: quechua baja, quechua alta, suni y puna.

Trabajo de campo

Lo que se realizo es un sondeo para el reconocimiento y póstumamente analizar la zona la cual se hará el estudio la carretera Paruro Ranraccasa haciendo un recorrido de 8 km. con el objetivo de determinar las características de terreno posteriormente se realizó 8 calicatas una por cada kilómetro según el IMDA.

Trabajo de laboratorio

En esta investigación, los resultados que se obtuvieron en el laboratorio, fueron de los suelos extraídos de la zona de estudio estos se realizaron al suelo natural de la carretera Yaurisque Ranraccasa de la provincia de Paruro, a la cual se adicionó el 5%, 7%, 9% y 11 % de ceniza cascara de habas y ceniza de aserrín de madera, con la finalidad de lograr mis objetivos que se plantearon para esta investigación, dichos ensayos cumpliendo con la norma ASTM y MTC correspondiente al manual de ensayos de materiales. Se realizo los ensayos para, C-03, C-06y C-08 de suelo natural, sin embargo, para los resultados con adición de ceniza de cascara de habas y ceniza de aserrín de madera se añadió únicamente para la calicata C-03, C-06 y c-08 que las propiedades físicas y mecánicas del suelo son similares.

Objetivo específico 1: Determinar cómo influye la adición de elementos orgánicos en las propiedades físicas de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022.

En esta parte, presentaremos los siguientes ensayos como la granulometría, contenido de humedad y clasificación SUCS y AASTHO para las calicatas que se estudiaron; posteriormente se mostrara los límites de consistencia tanto para suelo natural como para las dosificaciones con ceniza de cascara de habas y aserrín de madera.

Análisis granulométrico por tamizado

En el laboratorio teniendo el equipo para realizar el ensayo de análisis granulométrico mediante tamices que está ligado a las normas ASTM D-422, MTC E 107, NTP 339.128, mediante la cual se puede obtener las características físicas del suelo natural, y su clasificación según su tamaño, este ensayo se realizó haciendo uso de diferentes mallas con una variación de aberturas.

Tabla 2 granulometría C-0.3 suelo natural

Calicata 01

MALLA	ABERTURA	% QUE
	(mm)	PASA
3"	76.200	100.00
2 ½"	63.500	100.00
2"	50.600	100.00
1 ½"	38.100	97.70
1"	25.400	93.50
3/4"	19.050	92.40
1/2"	12.700	91.80
3/8"	9.525	89.50
1/4"	6.350	87.50
N° 4	4.760	86.30
N° 8	2.360	80.70
N° 10	2.000	78.80
N° 16	1.190	74.10
N° 30	0.600	63.80
N° 40	0.420	52.90
N° 50	0.300	46.50

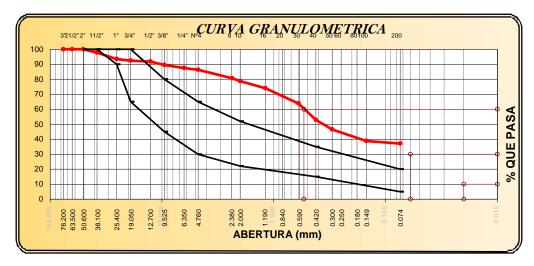

N° 100	0.149	38.80
N° 200	0.074	37.10

Tabla 3 Composición granulométrica y coeficientes C-03

Calicata	% Grava	% Arena	% Finos
C-01	40.93	56.89	2.18

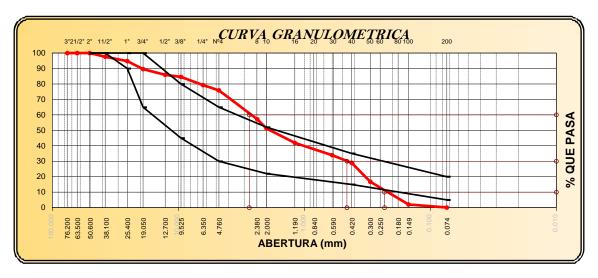
Fuente: Elaboración propia

Figura 9: Curva granulométrica del suelo C-03

Interpretación: En la figura 9 se observa la variación que presenta la curva granulométrica en función al porcentaje que pasa por el tamaño de partículas del suelo de la calicata c-01.

Como se observa en tabla.3 indica la fracción dominante de la Muestra M1 son las arenas al representar el 56.89%, seguida de las gravas al encontrarse en un 40.93% y los finos se encuentran en un 2.18%. Si se suma la fracción constituyente compuesta por partículas gruesas (gravas + arenas) representan alrededor del 100%, característica típica de un suelo o material granular.

Calicata 02


Tabla 4 Granulometría de C-06 estado natural

MALLA	ABERTURA	% QUE
	(mm)	PASA
3"	76.200	100.0
2 1/2"	63.500	100.0
2"	50.600	100.0
1 ½"	38.100	98.2
1"	25.400	95.8
3/4"	19.050	93.0
1/2"	12.700	91.5
3/8"	9.525	89.4
1/4"	6.350	88.2
N° 4	4.760	86.1
N° 8	2.360	77.8
N° 10	2.000	76.3
N° 16	1.190	71.6
N° 30	0.600	66.8
N° 40	0.420	63.7
N° 50	0.300	62.0
N° 100	0.149	45.1
N° 200	0.074	30.1
	unto: Elaboronió	in propio

Tabla 5 Composición granulométrica y coeficientes C-06

Calicata	% Grava	% Arena	% Finos
C-02	52.70	45.32	1.98

Figura 10: Curva granulométrica del suelo C-06

Interpretación: En la figura 10 podemos observar la variación que presenta la curva granulométrica en función al porcentaje que pasa por el tamaño de partículas del suelo de la calicata c-03.

Según la tabla 5 indica la fracción dominante de la Muestra M2 de la ason las gravas al representar el 52.70%, seguida de las arenas al encontrarse en un 45.32% y los finos se encuentran en un 1.98%. Si se suma la fracción constituyente compuesta por partículas gruesas (gravas + arenas) representan alrededor del 100%, característica típica de un suelo o material granular.

Calicata 03

Tabla 6 Granulometría de C-08 estado natural

MALLA	ABERTURA	% QUE
	(mm)	PASA
3"	76.200	100.00
2 1/2"	63.500	100.00
2"	50.600	100.00
1 1/2"	38.100	97.70
1"	25.400	93.50
3/4"	19.050	92.40
1/2"	12.700	91.80
3/8"	9.525	89.50
1/4"	6.350	87.50

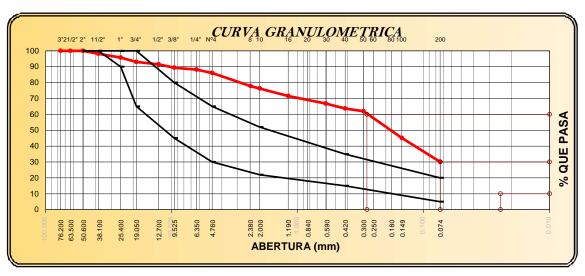

N° 4	4.760	86.30
N° 8	2.360	80.70
N° 10	2.000	78.80
N° 16	1.190	74.10
N° 30	0.600	63.80
N° 40	0.420	52.90
N° 50	0.300	46.50
N° 100	0.149	38.80
N° 200	0.074	37.10

Tabla 7: Composición granulométrica y coeficientes C-03

Calicata	% Grava	% Arena	% Finos
C-03	10.6	59.3	30.1

Fuente: Elaboración propia

Figura 11: Curva granulométrica del suelo C-08

Fuente: Elaboración propia

Interpretación: En la figura 11 podemos observar la variación que presenta la curva granulométrica en función al porcentaje que pasa por el tamaño de partículas del suelo de la calicata c-03.

Según la tabla 7 indica la fracción dominante de la Muestra M3 son las gravas al representar el 10.6%, seguida de las arenas al encontrarse en un 59.3% y los finos se encuentran en un 30.1%. Si se suma la fracción constituyente compuesta por partículas gruesas (gravas + arenas) representan alrededor del 94%, característica típica de un suelo o material granular.

Contenido de humedad

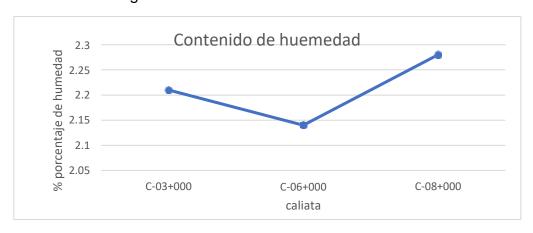

Con respecto al porcentaje de humedad natural en las muestras de suelo extraídas de las calicatas C-03, C-06, C-08, realizadas en la zona de la avenida Independencia, se obtuvieron los siguientes resultados:

Tabla 8: Contenido de humedad de suelo natural C-03, C-06, C-08

Descripción	Resultados de calicatas			
Descripcion	C-01 C-02 C		C-03	
Contenido de humedad	2.14	2 21	2.28	
(%)	2.14	2.21	2.20	

Fuente: Elaboración propia

Figura 12: Curva de contenido de humedad

Fuente: Elaboración propia

Interpretación: En la tabla 8 y figura 12 se detalla el contenido de humedad natural de cada muestra C-03, C-06 y C-08 siendo de 2.1, 2.14 y 2.28 respectivamente.

El contenido de humedad que se realiza en cada ensayo nos da una referencia para saber si es mayor o menor su contenido óptimo para así poder realizar la compactación, significa entonces que los resultados obtenidos existen una variación de cada análisis realizado, cabe agregar que en la muestra C-08, su contenido de humedad es más elevado.

Clasificación de suelo SUCS Y AASTHO

Tabla 9: Clasificación de suelos

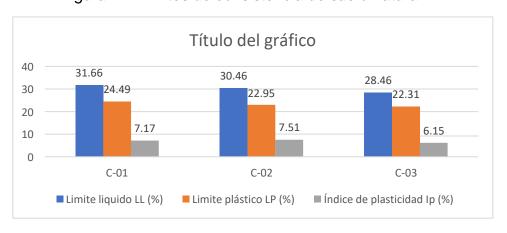
Calicata	C-01	C-02	C-03	Denominación
Profundidad	1.50	1.50	1.50	
(m)				
Muestra	M-1	M-2	M-3	
Grava (%)	40.93	52.70	10.6	
Arena (%)	84.4	59.3	47.82	
Finos (%)	0.1	1.98	30.1	
Clasificación	SM	SM	SM	
SUCS				
Clasificación	A-2-4	A-2-4	A-2-4	SM
AASTHO	(0)	(0)	(1)	A-2-4
Coeficiente				
de curvatura	0.34	0.82	0.36	
(CC.)				
Coeficiente				
de	27.04	15	25	
uniformidad	21.04	13	20	
(Cu)				

Fuente: Elaboración propia

Interpretación: En la tabla 9, se detalla la clasificación de los suelos por SUCS y AASHTO con sus coeficientes que se ensayaron en la C-1, C-2 y C-3 presento una continuidad en su clasificación obteniendo un suelo de grava pobremente graduada (SM). También presentaron sus coeficientes en la C-1 (CC.=0.34, Cu=27.04), en la C-2 el coeficiente es (CC.=0.82, Cu=15), en la C-3 el coeficiente es (CC.=0.32, Cu=25)

Límites de consistencia

De los datos que se recolecto en los ensayos de laboratorio se determinó el límite líquido, limite plástico e índice de plasticidad de cada suelo se obtuvo lo siguiente:

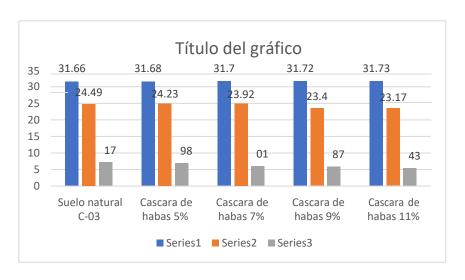

Figura 13: Ensayo de límites de consistencia

Fuente: Elaboración propia

Tabla 10:Resultados de límite de consistencia de suelo natural

Descripción	C-01	C-02	C-03
Limite liquido LL (%)	31.66	30.46	28.46
Limite plástico LP (%)	24.49	22.95	22.31
Índice de plasticidad Ip (%)	7.17	7.51	6.15

Figura 14: Límites de consistencia de suelo natural



Interpretación: En la tabla 10 y figura 14, muestra la calicata C-3 con un LL de 31.66%, un LP de 24.49% y un IP de 7.17% clasificando como un suelo con índice de plasticidad baja; para la calicata C-6 muestra un LL de 30.46%, un LP de 22.95% y un IP de 7.51% clasificando como un suelo con índice de plasticidad baja; para la calicata C-8 muestra un LL de 28.46%, un LP de 22.31% y un IP de 6.15%; dado que las muestras de suelos de C-3, C-6 y C-8 presentan una plasticidad baja según la clasificación de suelos poco arcillosos que está en rango de IP<7, por lo cual necesita poca humedad para pasar de un estado semisólido a líquido.

Tabla 11: Límites de consistencia de suelo natural con adición de ceniza de cascara de habas

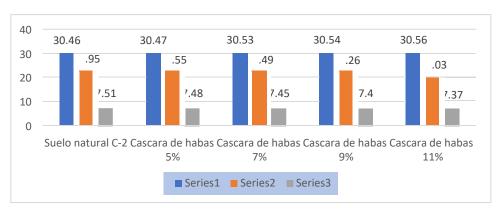
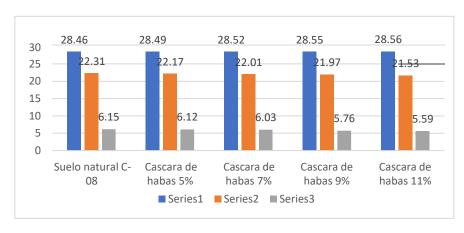

Mezclas	LL (%)	LP (%)	IP (%)
Suelo natural C-1	31.66	24.49	7.17
Cascara de habas 5%	31.68	24.23	6.98
Cascara de habas 7%	31.70	23.92	6.01
Cascara de habas 9%	31.72	23.40	5.87
Cascara de habas	31.73	23.17	5.43
11%			
Suelo natural C-2	30.46	22.95	7.51
Cascara de habas 5%	30.47	22.55	7.48
Cascara de habas 7%	30.53	22.49	7.45
Cascara de habas 9%	30.54	22.26	7.40
Cascara de habas 11%	30.56	20.03	7.37
Suelo natural C-3	28.46	22.31	6.15
Cascara de habas 5%	28.49	22.17	6.12
Cascara de habas 7%	28.52	22.01	6.03
Cascara de habas 9%	28.55	21.97	5.76
Cascara de habas 11%	28.56	21.53	5.59

Figura 15: Limite líquido, limite plástico e IP con adición cascara de habas de C-03

Interpretación: En la tabla 11 y figura 15, muestra la calicata C-3 con adición de la fibra de carrizo; con 0% de adición presentó un LL de 31.66%, un LP de 24.49% y un IP de 7.17%; para 5% de adición presentó un LL de 331.68%, un LP de 24.23% y un IP de 7.45%; para 7% de adición presentó un LL de 31.7%, un LP de 24.42% y un IP de 6.01%; para 9% de adición presentó un LL de 31.72%, un LP de 24.4% y un IP de 5.87%; y para 11% de adición presentó un LL de 31.73%, un LP de 24.38% y un IP de 5.43%.

Figura 16:Limite líquido, limite plástico e IP con adición de ceniza de cascara de habas de C-06



Fuente: Elaboración propia

Interpretación: En la tabla 11 y figura 14, muestra la calicata C-3 con adición de la ceniza de cascara de habas ; con 0% de adición presentó un LL de 31.46%, un LP de 22.95% y un IP de 7.51%; para 5% de adición presentó un LL de 30.47%, un LP de 22.55% y un IP de 7.48%; para 7% de adición presentó un LL de 30.53%, un LP de 22.49% y un IP de 7.45%; para 9% de adición presentó un LL de 30.54%,

un LP de 22.26% y un IP de 7.40%; y para 11% de adición presentó un LL de 30.56%, un LP de 20.03% y un IP de 7.37%.

Figura 17: Limite líquido, limite plástico e IP con adición de ceniza de cascara de habas de C-08

Fuente: Elaboración propia

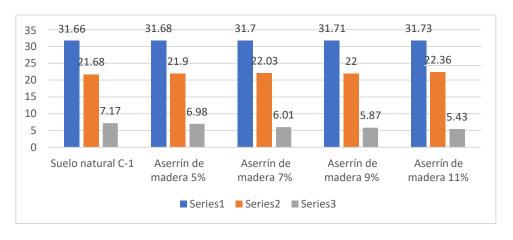
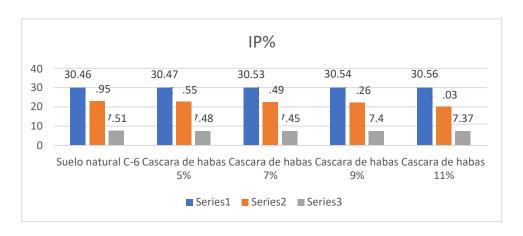

Interpretación: En la tabla 11 y figura 17, muestra la calicata C-06 con adición de la ceniza de cascara de habas ; con 0% de adición presentó un LL de 28.50%, un LP de 22.31% y un IP de 6.15%; para 5% de adición presentó un LL de 28.49%, un LP de 22.17% y un IP de 6.12%; para 7% de adición presentó un LL de 28.59%, un LP de 21.97% y un IP de 5.76%; para 9% de adición presentó un LL de 28.59%, un LP de 21.5% y un IP de 5.76%; y para 11% de adición presentó un LL de 28.63%, un LP de 21.53% y un IP de 5.59%.

Tabla 12. Límites de consistencia de suelo natural con adición de ceniza de cascara de habas

Mezclas	LL (%)	LP (%)	IP (%)
Suelo natural C-1	31.66	21.68	7.17
Aserrín de madera 5%	31.68	21.90	6.98
Aserrín de madera 7%	31.70	22.03	6.01
Aserrín de madera 9%	31.71	22.	5.87
Aserrín de madera	31.73	22.36	5.43
11%			
Suelo natural C-3	30.46	22.95	7.51
Aserrín de madera 5%	30.47	22.55	7.48
Aserrín de madera 7%	30.53	22.49	7.45

Aserrín de madera 9%	30.54	22.26	7.40
Aserrín de madera 11%	30.56	20.03	7.37
Suelo natural C-3	28.46	22.31	6.15
Aserrín de madera 5%	28.49	22.17	6.12
Aserrín de madera 7%	28.52	22.01	6.03
Aserrín de madera 9%	28.55	21.97	5.76
Aserrín de madera 11%	28.56	21.53	5.59


Figura 18:Limite líquido, limite plástico e IP con adición de ceniza de aserrín de madera de C-03

Fuente: Elaboración propia

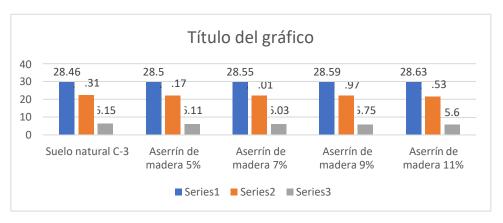

Interpretación: En la tabla 12 y figura 18, muestra la calicata C-06 con adición de la ceniza de cascara de habas ; con 0% de adición presentó un LL de 31.66%, un LP de 21.68% y un IP de 7.17%; para 5% de adición presentó un LL de 31.68%, un LP de 21.9% y un IP de 6.98%; para 7% de adición presentó un LL de 31.7%, un LP de 22.03% y un IP de 6.01%; para 9% de adición presentó un LL de 31.71%, un LP de 22% y un IP de 5.87%; y para 11% de adición presentó un LL de 31.73%, un LP de 22.36% y un IP de 5.43%.

Figura 19: Limite líquido, limite plástico e IP con adición de ceniza de aserrín de madera de C-06

Interpretación: En la tabla 11 y figura 19, muestra la calicata C-06 con adición de la ceniza de cascara de habas ; con 0% de adición presentó un LL de 30.47%, un LP de 22.55% y un IP de 2.1%; para 5% de adición presentó un LL de 30.53%, un LP de 22.49% y un IP de 1.98%; para 7% de adición presentó un LL de 28.55%, un LP de 21.97% y un IP de 5.76%; para 9% de adición presentó un LL de 30.54%, un LP de 22.26% y un IP de 1.5%; y para 11% de adición presentó un LL de 30.56%, un LP de 20.03% y un IP de 1.63%.

Figura 20: Limite líquido, limite plástico e IP con adición de ceniza de aserrín de madera de C-08

Fuente: Elaboración propia

Interpretación: En la tabla 11 y figura 20, muestra la calicata C-06 con adición de la ceniza de cascara de habas ; con 0% de adición presentó un LL de 28.46%, un LP de 22.31% y un IP de 6.15%; para 5% de adición presentó un LL de 28.50%, un LP de 22.17% y un IP de 6.11%; para 7% de adición presentó un LL de 28.55%, un LP de 21.01% y un IP de 6.03%; para 9% de adición presentó un LL de 28.59%,

un LP de 21.97% y un IP de 5.75%; y para 11% de adición presentó un LL de 28.63%, un LP de 21.53% y un IP de 5.60%.

Interpretación final: Para las cuatro adiciones de ceniza de aserrín de madera se clasifico como un suelo con índice de plasticidad baja; por lo cual necesita poca humedad para pasar de un estado semisólido a líquido. Cabe recalcar que el índice de plasticidad con la adición de ceniza resulta similar al suelo natural dado que la ceniza de cascara de habas no pasa por el tamiz correspondiente N°40 es por ello que nos resulta un suelo con baja plasticidad.

Objetivo específico 2: Determinar cómo influye la adición de elementos orgánicos en las propiedades mecánicas de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022.

Proctor modificado

Para el presente ensayo se tuvo como referencia el método "C", en donde se determinó el contenido de humedad con relación a la densidad seca obteniendo así la curva de compactación. Cabe recalcar que para obtener el optimo contenido de humedad y máxima densidad seca del suelo con las adiciones de fibra se debe conocer el peso específico de la muestra del suelo natural con que se combinara posterior a ello adicionar la ceniza de cascara de habas y aserrín de madera 5%, 7% 9% y 11%

Figura 21: Adición de ceniza de cascara en la muestra natural de suelo.

Figura 22: Adición de ceniza de habas en la muestra natural de suelo

Figura 23: Adición de ceniza de aserrín en la muestra natural de suelo.

Fuente: Elaboración propia

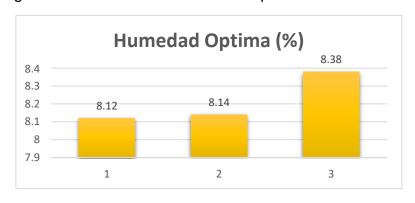

Figura 24: Adición de ceniza de aserrín de madera en la muestra natural de suelo

Tabla 13: Humedad Optima y Densidad máxima seca de suelo natural

Musotro	Identificación	Humedad	Densidad Máxima
Muestra	identification	Optima (%)	Seca (gr/cm3)
C-01	Estado natural	8.12	2.14
C-02	Estado natural	8.14	2.21
C-03	Estado natural	8.38	2.28

Figura 25: Contenido de humedad óptimo de suelo natural

Fuente: Elaboración propia

Interpretación: En la figura 25 se detalla la humedad optima el cual se ensayó con el suelo natural C-03, C-06 y C-08 resultando 8.12%, 8.14% y 8.32% respectivamente.

Figura 26: Densidad máxima seca de suelo natural

Fuente: Elaboración propia

Interpretación: En la figura 26 se detalla la máxima densidad seca el cual se ensayó con el suelo natural C-03, C-06 Y C-03 resultando 2.14 gr/cm 2.21 gr/cm3, 2.28 gr/cm3 respectivamente.

Tabla 14: Humedad Optima y Densidad máxima seca de suelo natura con adición ceniza de cascara de habas

Muestra	Identificación	Humedad Optima (%)	Densidad Máxima Seca (gr/cm3)
C-03	Estado natural	8.12	2.14
C-03	5 % ceniza de cascara de habas	8.12	2.14
C-03	7 % ceniza de cascara de habas	8.12	2.14
C-03	9 % ceniza de cascara de habas	8.12	2.14
C-03	11%ceniza de cascara de habas	8.12	2.14
C-06	Estado natural	8.14	2.21
C-06	5 % ceniza de cascara de habas	8.14	2.21
C-06	7% ceniza de cascara de habas	8.14	2.21
C-06	9 % ceniza de cascara de habas	8.14	2.21
C-06	11%ceniza de cascara de habas	8.14	2.21
C-08	Estado natural	8.32	2.28
C-08	5 % ceniza de cascara de habas	8.32	2.28
C-08	7 % ceniza de cascara de habas	8.32	2.28
C-08	9 % ceniza de cascara de habas	8.32	2.28
C-08	11%ceniza de cascara de habas	8.32	2.28

Figura 27: Contenido de humedad óptimo de suelo natural con adición de ceniza de cascara de habas

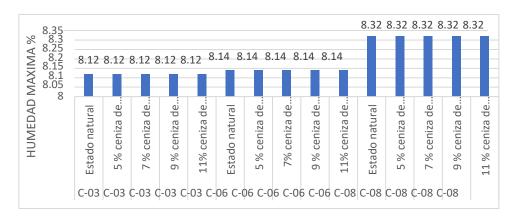
Interpretación: En la figura 27 se muestra los resultados de OCH con la dosificación de fibra de madera tanto para la muestra de la C-03, C-0.6 y C-0.8 Para la muestra patrón C-03 es 2.14% y al adicionar la ceniza de casara de habas al 5%, 7%, 9% y 11%, se trabaja con las humedades del suelo natural los. Para la muestra patrón C-06 es 2.21% y al adicionar casara de habas al 5%, 7%, 9% y 11%los las cuales se trabaja son los resultados de suelo natural. C-08 es 2.28% y al adicionar casara de habas al 5%, 7%, 9% y 11%los resultados con los cuales se trabaja son los resultados de suelo natural

2.28 2.28 2.28 2.28 2.28 2.3 **DENSIDAD MAXIMA SECA%** 2.25 2.2 2.14 2.14 2.14 2.14 2.14 2.15 2.1 2.05 % ceniza de.. % ceniza de.. 11% ceniza de. % ceniza de. 5 % ceniza de. 7% ceniza de. % ceniza de. 11% ceniza de. Estado natural % ceniza de. % ceniza de. % ceniza de. ceniza de. Estado natural Estado natural 11% C-03 C-03 C-03 C-03 C-03 C-06 C-06 C-06 C-06 C-06 C-08 C-08 C-08 C-08 C-08 C-08

Figura 28: Densidad máxima seca de suelo natural con adición de ceniza de cascara de *habas*

Fuente: Elaboración propia

Interpretación: En la figura 28 se muestra los resultados de MDS con la dosificación de ceniza de cascara de habas tanto para la muestra de la C-03, C-06 y C-08. Para la muestra patrón C-03 es 2.14gr/cm3 y al adicionar al 5%, 7%, 9% y 11%, no presenta variación por que se trabaja con suelo natural respectivamente. Para la muestra patrón C-03 es 2.21gr/cm3 y al adicionar ceniza de cascara de habas al 5%, 7%, 9% y 11 no presenta variación por que se trabaja con suelo natural respectivamente. Para la muestra patrón C-08 es 2.28gr/cm3 y al adicionar ceniza de cascara de habas al 5%, 7%, 9% y 11 no presenta variación por que se trabaja con suelo natural respectivamente


Tabla 15: Humedad Optima y Densidad máxima seca de suelo natura con adición ceniza de aserrín de madera

Humedad Densidad Máxima Muestra Identificación Optima (%) Seca (gr/cm3) C-03 Estado natural 8.12 2.14 C-03 % ceniza de 8.12 2.14 aserrín de madera C-03 % ceniza de 2.14 8.12 aserrín de madera C-03 % ceniza de 8.12 2.14 aserrín de madera 11% C-03 ceniza de 8.12 2.14 aserrín de madera C-06 Estado natural 8.14 2.21 C-06 % ceniza de 8.14 2.21 aserrín de madera C-06 7% ceniza de 8.14 2.21 aserrín de madera C-06 % ceniza de 8.14 2.21 aserrín de madera C-06 11% ceniza de 8.14 2.21 aserrín de madera C-08 Estado natural 8.32 2.28 C-08 % ceniza de 8.32 2.28 aserrín de madera C-08 % ceniza de 2.28 8.32 aserrín de madera C-08 % ceniza 8.32 2.28 aserrín de madera C-08 % ceniza de 8.32 2.28 aserrín de madera

Elaboración propia

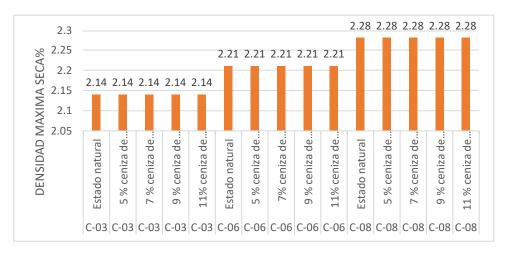

Fuente:

Figura 29: Contenido de humedad óptimo de suelo natural con adición de ceniza de aserrín madera

Interpretación: En la figura 29 se muestra los resultados de OCH con la dosificación de ceniza de aserrín de madera tanto para la muestra de la C-03, C-06 y C-08. Para la muestra patrón C-03 es 8.12% y al adicionar ceniza de aserrín de madera al 5%, 7%, 9% Y 11%, los resultados con los que se trabaja son los resultados de suelo natural respectivamente. Para la muestra patrón C-03 es 8.14% y al adicionar ceniza de aserrín de madera al 5%, 7%, 9% Y 11%, los resultados con los que se trabaja son los resultados de suelo natural respectivamente. Para la muestra patrón C-03 es 8.32% y al adicionar ceniza de aserrín de madera al 5%, 7%, 9% Y 11%, los resultados con los que se trabaja son los resultados de suelo natural respectivamente.

Figura 30: Densidad máxima seca de suelo natural con adición de ceniza de aserrín.

Interpretación: En la figura 30 se muestra los resultados de MDS con la dosificación de ceniza de aserrín madera tanto para la muestra de la C-03, C-06 y C-08. Para la muestra patrón C-03 es 2.14gr/cm3 y al adicionar al 5%,7%,9% 11% los resultados son los mismo por que se trabaja con los resultados de suelo natural. Para la muestra patrón C-06 es 2.21 gr/cm3 y al adicionar al 5%,7%,9% 11% los resultados son los mismo por que se trabaja con los resultados de suelo natural. Para la muestra patrón C-08 es 2.28 gr/cm3 y al adicionar al 5%,7%,9% 11% los resultados son los mismo por que se trabaja con los resultados de suelo natural.

CBR

Los ensayos de CBR se determinó para el suelo natural y las dosificaciones de 5%, 7%, 9% y 11% realizando con la humedad optima que se halló en el ensayo de Proctor modificado. Para la expansión de las tres probetas se midieron durante cuatro días, dichas mediciones se observan en el anexo 00 referente a los resultados de los ensayos de laboratorio. Para determinar la capacidad portante de las muestras de suelo se tuvo que realizar 3 especímenes cada uno sometido a diferentes energías estando en función al número de golpes de 10, 25 y 56.

Figura 31:Ensayo de CBR

Tabla 16: Resultados de ensayo de CBR del suelo natural

Muestra	Estado de la	CBR AL	CBR al	
	muestra	100%	95%	
C-03	Suelo natural	25.0%	19.7%	

C-06	Suelo natural	28.0%	19.6%
C-08	Suelo natural	26.0%	19.8%

Figura 32: CBR al 100% y 95% de suelo natural

Fuente: Elaboración propia

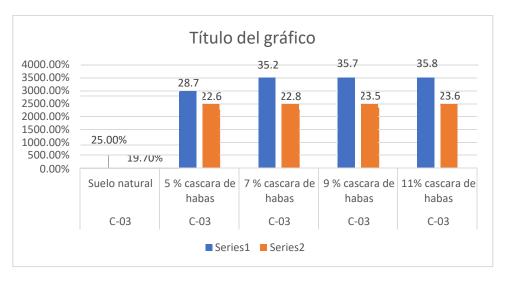

Interpretación: En la figura 32 se detalla la máxima densidad seca el cual se ensayo al suelo natural obtenido de CBR (100%MDS) y CBR (95%MDS) 01" penetración, para el suelo C-03 al 100% MDS presento un 25.00% y al 95%MDS presento un 19.70%; para el suelo C-03 al 100% MDS presento un 28.00% y al 95%MDS presento un 19.60%; el suelo C-08 al 100% MDS presento un 26.00% y al 95%MDS presento un 19.80% Cabe recalcar que presento una expansión de 0% en todas las muestras de suelo.

Tabla 17: Resultados de ensayo de CBR del suelo natural con adición de cascara de habas

Muestra	Estado de la muestra	CBR al (100% MDS)	CBR al (95% MDS)
C-01	Suelo natural	25.0%	19.7%
C-01	5 % de adición de ceniza de cascara de	28.7	22.6
	habas		
C-01	7 % de adición de ceniza de cascara de	35.2	22.8
	habas		
C-01	9 % de adición de ceniza de cascara de	35.7	23.5
	habas		
C-01	11% de adición de ceniza de cascara	35.8	23.6
	de habas		
C-06	Suelo natural	28.0%	19.6%
C-06	5 % de adición de ceniza de cascara de	29.0	21.7
	habas		

C-06	7 % de adición de ceniza de cascara de	30.1	21.8
	habas		
C-06	9 % de adición de ceniza de cascara de	31.3	24.6
	habas		
C-06	11% de adición de ceniza de cascara	30.0	23.8
	de habas		
C-08	Suelo natural	26.0%	19.8%
C-06	5 % de adición de ceniza de cascara de	27.5	20.1
	habas		
C-06	7 % de adición de ceniza de cascara de	28.6	21.0
	habas		
C-06	9 % de adición de ceniza de cascara de	29.2	22.0
	habas		
C-06	11% de adición de ceniza de cascara	29.6	22.1
	de habas		
	F . F!! '/		

Figura 33: CBR al 100% y 95% de patrón C-03 con adición de ceniza de cascara de habas

Fuente: Elaboración propia

Interpretación: En la figura 33 se detalla la máxima densidad seca el cual se ensayó al suelo natural de la C-03 obtenido de CBR (100%MDS) y CBR (95%MDS) 01" penetración, para el suelo sin adición de ceniza de cascara de habas al 100% MDS presento un 25.0% y al 95%MDS presento un 19.7%; para el suelo con adición de 5% de ceniza de cascara de habas al 100% MDS presento un 28.1% y al 95%MDS presento un 22.6 %para el suelo con adición de 7% de ceniza de

cascara de habas al 100% MDS presento un 31.3 % y al 95%MDS presento un 21.8%; para el suelo con adición de 9% de ceniza de cascara de habas al 100% MDS presento un 35.7% y al 95%MDS presento un 24.6% y para el suelo con adición de 11 % de fibra ceniza de cascara de habas al 100% MDS presento un 35.8% y al 95%MDS presento un 23.6%

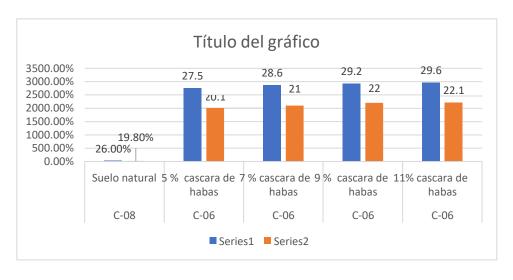

Título del gráfico 4000.00% 31.5 31 31.3 29.4 25.2 25 3000.00% 22.3 22.5 2000.00% 19.60% 28.00% 1000.00% 0.00% Suelo natural 5 % aserrín de 7 % aserrín de 9 % aserrín de 11% aserrín de madera madera madera madera C-06 C-06 C-06 C-06 C-06 Series1 Series2

Figura 34:CBR al 100% y 95% de patrón C-06 con adición de ceniza de cascara de habas

Fuente: Elaboración propia

Interpretación: En la figura 34 se detalla la máxima densidad seca el cual se ensayó al suelo natural de la C-06 obtenido de CBR (100%MDS) y CBR (95%MDS) penetración, para el suelo sin adición de ceniza de cascara de habas al 100% MDS presento un 28% y al 95%MDS presento un 19.6%; para el suelo con adición de 5% de ceniza de cascara de habas al 100% MDS presento un 29.4% y al 95%MDS presento un 22.3%para el suelo con adición de 7% de ceniza de cascara de habas al 100% MDS presento un 31 % y al 95%MDS presento un 22.5%; para el suelo con adición de 9% de ceniza de cascara de habas al 100% MDS presento un 31.5% y al 95%MDS presento un 25% y para el suelo con adición de 11 % de fibra ceniza de cascara de habas al 100% MDS presento un 31.5% y al 95%MDS presento un 25.2%

Figura 35:CBR al 100% y 95% de patrón C-03 con adición de ceniza de cascara de habas

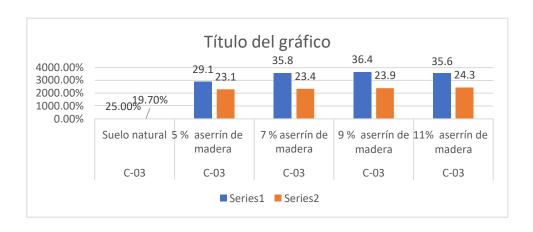

Interpretación: En la figura 35 se detalla la máxima densidad seca el cual se ensayó al suelo natural de la C-03 obtenido de CBR (100%MDS) y CBR (95%MDS) penetración, para el suelo sin adición de ceniza de cascara de habas al 100% MDS presento un 26.0% y al 95%MDS presento un 19.80%; para el suelo con adición de 5% de ceniza de cascara de habas al 100% MDS presento un 27.5% y al 95%MDS presento un 20.1 %para el suelo con adición de 7% de ceniza de cascara de habas al 100% MDS presento un 28.6 % y al 95%MDS presento un 21%; para el suelo con adición de 9% de ceniza de cascara de habas al 100% MDS presento un 29.2% y al 95%MDS presento un 22% y para el suelo con adición de 11 % de fibra ceniza de cascara de habas al 100% MDS presento un 29.6% y al 95%MDS presento un 22.1%

Tabla 18: Resultados de ensayo de CBR del suelo natural con adición de aserrín de madera

		CBR al	CBR al
Muestra	Estado de la muestra	(100%	(95%
		MDS)	MDS)
C-03	Suelo natural	25.0%	19.7%
C-03	5 % de adición de ceniza de aserrín de	29.1	23.1
	madera		
C-03	7 % de adición de ceniza de aserrín de	35.8	23.4
	madera		
C-03	9 % de adición de ceniza de aserrín de	36.4	23.9
	madera		

C-03	11% de adición de ceniza de aserrín	35.6	23.4
	de madera		
C-06	Suelo natural	28.0%	19.6%
C-06	5 % de adición de ceniza de aserrín de	29.4	22.3
	madera		
C-06	7 % de adición de ceniza de aserrín de	31.0	22.5
	madera		
C-06	9 % de adición de ceniza de aserrín de	31.3	25.0
	madera		
C-06	11% de adición de ceniza de aserrín	31.5	25.2
	de madera		
C-08	Suelo natural	26%	19.8%
C-08	5 % de adición de ceniza de aserrín de	28.5	21.1
	madera	20.0	
C-08	7 % de adición de ceniza de aserrín de	28.9	21.3
	madera		
C-08	9 % de adición de ceniza de aserrín de	29.7	22.2
	madera		
C-08	11% de adición de ceniza de aserrín	29.9	22.3
	de madera		
	Fuente: Elaboración p	ropia	

Figura 36: CBR al 100% y 95% de patrón C-03 con adición de ceniza de aserrín de madera

Fuente: Elaboración propia

Interpretación: En la figura 36 se detalla la máxima densidad seca el cual se ensayó al suelo natural de la C-03 obtenido de CBR (100%MDS) y CBR (95%MDS) 01" penetración, para el suelo sin adición de ceniza de aserrín de madera al 100% MDS presento un 25.00% y al 95%MDS presento un 19.70%; para el suelo con

adición de 5% de ceniza de aserrín de madera al 100% MDS presento un 29.1% y al 95%MDS presento un 23.1%; para el suelo con adición de 7% de ceniza de aserrín de madera al 100% MDS presento un 35.8% y al 95%MDS presento un 23.4%; para el suelo con adición de 9% de ceniza de ceniza de aserrín de madera al 100% MDS presento un 36.4% y al 95%MDS presento un 62.9% y para el suelo con adición de 2 % de ceniza de aserrín de madera al 100% MDS presento un 84% y al 95%MDS presento un 24.3%.

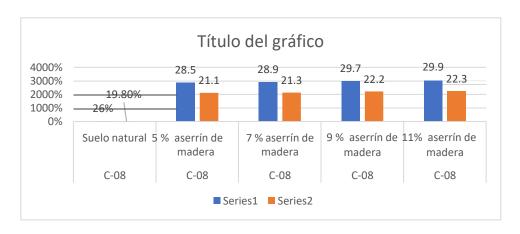

Título del gráfico 4000.00% 31.3 31 29.4 25.7 25.9 3000.00% 22.3 22.5 2000.00% 19.60% 1000.00% 28.00% 0.00% Suelo natural 5 % aserrín de 7 % aserrín de 9 % aserrín de 11% aserrín de madera madera madera madera C-06 C-06 C-06 C-06 C-06 ■ Series1 ■ Series2

Figura 37:CBR al 100% y 95% de patrón C-06 con adición de ceniza de aserrín de madera

Fuente: Elaboración propia

Interpretación: En la figura 37 se detalla la máxima densidad seca el cual se ensayó al suelo natural de la C-06obtenido de CBR (100%MDS) y CBR (95%MDS) 01" penetración, para el suelo sin adición de ceniza de aserrín de madera al 100% MDS presento un 28.00 % y al 95%MDS presento un 19.60%; para el suelo con adición de 5% de ceniza de aserrín de madera al 100% MDS presento un 29.4% y al 95%MDS presento un 22.3%; para el suelo con adición de 7% de ceniza de aserrín de madera al 100% MDS presento un 31% y al 95%MDS presento un 22.5%; para el suelo con adición de 9% de ceniza de ceniza de aserrín de madera al 100% MDS presento un 31.3% y al 95%MDS presento un 25.7% y para el suelo con adición de 11 % de ceniza de aserrín de madera al 100% MDS presento un 25.9%.

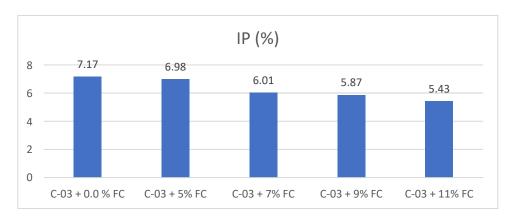
Figura 37: CBR al 100% y 95% de patrón C-08 con adición de cascara de habas

Interpretación: En la figura 37 se detalla la máxima densidad seca el cual se ensayó al suelo natural de la C-03 obtenido de CBR (100%MDS) y CBR (95%MDS) 01" penetración, para el suelo sin adición de ceniza de aserrín de madera al 100% MDS presento un 26% y al 95%MDS presento un 19.8%; para el suelo con adición de 5% de ceniza de cascara de habas al 100% MDS presento un 28.5% y al 95%MDS presento un 21.1%; para el suelo con adición de 1% de ceniza de aserrín de madera al 100% MDS presento un 80.5% y al 95%MDS presento un 62.1%; para el suelo con adición de 1.5 % de ceniza de ceniza de aserrín de madera al 100% MDS presento un 79.4% y al 95%MDS presento un 62.9% y para el suelo con adición de 2 % de ceniza de aserrín de madera al 100% MDS presento un 84% y al 95%MDS presento un 22.3%.

Interpretación final: En cuanto al OCH incrementa a medida que aumenta la dosificación, la MDS disminuye e iguala al añadir ceniza y el CBR presenta un incrementó mínimo de ceniza de cascara de habas.

Objetivo específico 3: Cómo influye la dosificación de elementos orgánicos en las propiedades de la subrasante en la carretera Yaurisque–Ranraccasa Paruro, Cusco-2022

Figura 38:Compactación de suelo con adición de ceniza de aserrín de madera



Fuente: Elaboración propia

Tabla 19 Influencia de dosificación en las propiedades físicas y mecánicas del suelo con cáscara de haba

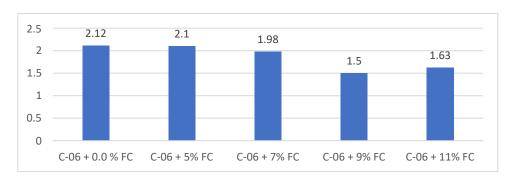

Descripción	IP (%)	OCH (%)	MDS (gr/cm3)	CBR (%)
C-03 + 0.0 % FC	4.73	2.140	8.12	19.7%
C-03 + 5% FC	4.40	2.140	8.12	22.6
C-03 + 7% FC	4.19	2.140	8.12	22.8
C-03 + 9% FC	4.06	2.140	8.12	23.5
C-03 + 11% FC	4.01	2.140	8.12	23.6
C-03 + 0.0 % FC	2.12	2.21	8.14	19.6%
C-06 + 5% FC	2.10	2.21	8.14	21.7
C-06 + 7% FC	1.98	2.21	8.14	21.8
C-06 + 9% FC	1.50	2.21	8.14	24.6
C-06 + 11% FC	1.63	2.21	8.14	23.8
C-06 + 0.0 % FC	6.15	2.28	8.32	19.8%
C-08 + 5% FC	6.12	2.28	8.32	20.1
C-08 + 7% FC	6.03	2.28	8.32	21.0
C-08 + 9% FC	5.76	2.28	8.32	22.0
C-08 + 11% FC	5.59	2.28	8.32	22.1

Figura 39:Índice de plasticidad con dosificación de ceniza de cascara de habas en C-03

Interpretación: En la figura 39 podemos observar que el IP de la muestra patrón C-01 es 7.17 %, y al adicionar ceniza cascara de habas al 5%, 7%, 9% y 11%, los resultados son: 6.98%, 6.01%, 5.87%, y 5.43% respectivamente; se evidencia una disminución porcentual de. Existe una disminución de 0.19% 1.16% 1.3% y 1.74% IP al adicionar las dosificaciones de ceniza cascara de habas.

Figura 40:Índice de plasticidad con dosificación de ceniza de cascara de habas en C-06

Fuente: Elaboración propia

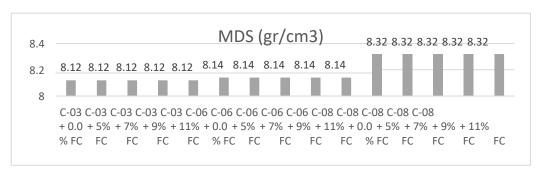

Interpretación: En la figura 40 podemos observar que el IP de la muestra patrón C-03 es 2.12%, y al adicionar ceniza de cascara de habas al 5%, 7%, 9% y 11%, los resultados son: 2.1%, 1.98%, 1.75%, y 1.63% respectivamente; Existe un disminución de 0.02% 0.14% 0.37% y 0.49% IP al adicionar las dosificaciones de ceniza de cascara de habas.

Figura 41: Índice de plasticidad con dosificación de ceniza de cascara de habas en C-08

Interpretación: En la figura 41 podemos observar que el IP de la muestra patrón C-08 es 6.15%, y al adicionar ceniza de cascara de habas al 5%, 7%, 9% y 11%, los resultados son: 6.12%, 6.03%, 5.76%, y 5.59% respectivamente; Existe un disminución de 0.03%, 0.12%, 0.39% y 0.59% IP al adicionar las dosificaciones ceniza de cascara de habas.

Figura 42: Máxima densidad seca con dosificación de ceniza de cascara de habas en C-03,C-06 y C-08

Fuente: Elaboración propia

Interpretación: En la figura 42 podemos observar que la MDS de la muestra patrón C-01 es 8.12 gr/cm3, y al ceniza de cascara de habas al 5%, 7%, 9% y 11%, los resultados son: 8.12%, 8.15% 8.12 % y 8.12% respectivamente; no se observa cambios por que se trabajó con el MDS del suelo natural.

En la figura 0 podemos observar que la MDS de la muestra patrón C-03 es 8.14gr/cm3, y al ceniza de cascara de habas al 5%, 7%, 9% y 11%, los resultados no varían por que se trabaja con la MDS de suelo natural.

Figura 43:CBR con dosificación de ceniza cascara de habas en C-03

Interpretación: En la figura 43 podemos observar que el CBR de la muestra patrón C-01 es 19.70%, y al adicionar ceniza de cascara de habas al 5%, 7%, 9% y 11%, los resultados son: 22.6%, 22.8%23.5% Y 23.6 respectivamente; se evidencia un incremento porcentual de 2.9% 3.1%, 3.8% y 3.9%. Existe un mejor incremento de CBR al adicionar ceniza de cascara de habas.

Figura 44:CBR con dosificación de ceniza en C-03

Interpretación: En la figura 44 podemos observar que el CBR de la muestra patrón .C-03 es 19.60 %, y al adicionar fibra de carrizo al 5%, 7%, 9% y 11%, los resultados son: 21.7%, 21.8%, 24.6%, y 23.8% respectivamente; se evidencia un incremento porcentual de 2.1%, 2.2%, 5% y 4.2%. Existe un mejor incremento de CBR al adicionar ceniza de cascaras de habas.

Figura 45: CBR con dosificación de ceniza en C-06

Interpretación: En la figura 45 podemos observar que el CBR de la muestra patrón C-03 es 19.8%, y al adicionar ceniza cascara de habas al 5%, 7%, 9% y 11%, los resultados son: 20.1%, 21%, 22%, y 22.1% respectivamente; se evidencia un incremento porcentual de 0.3%, 1.2%, 2.2% y 2.3%. Existe un mejor incremento de CBR al adicionar de ceniza cascara de habas.

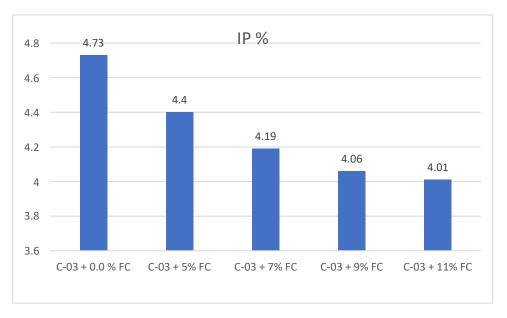
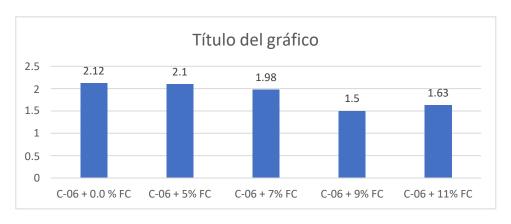

Interpretación final: En cuanto a IP de la muestra C-0.3 aumentar al añadir las dosificaciones de ceniza cascara de habas del mismo modo incrementa para la muestra C-06. En cuanto a OCH presenta un incremento significativo al adicionar el 5%, 7%, 9% y11% de ceniza de cascara de habas; por otro lado, la MDS presenta disminución e igualdad al adicionar de ceniza cascara de habas. En cuanto a CBR presenta incremento mínimo al adicionar ceniza cascara de habas

tabla 20: Influencia de dosificación en las propiedades físicas y mecánicas del suelo con ceniza de aserrrín

Descripción	IP (%)	OCH (%)	MDS (gr/cm3)	CBR (%)
C-03 + 0.0 % FC	7.17	2.140	8.12	19.70
C-03 + 5% FC	6.98	2.140	8.12	29.1
C-03 + 7% FC	6.01	2.140	8.12	35.8
C-03 + 9% FC	5.87	2.140	8.12	36.4
C-03 + 11% FC	5.43	2.140	8.12	35.6
C-03 + 0.0 % FC	2.12	6.45	8.14	19.6
C-06 + 5% FC	2.10	2.210	8.14	29.4
C-06 + 7% FC	1.98	6.83	8.14	31.0

C-06 + 9% FC	1.75	7.31	8.14	31.3
C-06 + 11% FC	1.60	6.83	8.14	31.5
C-06 + 0.0 % FC	6.15	2.28	8.32	19.8
C-08 + 5% FC	6.12	2.210	8.32	28.5
C-08 + 7% FC	6.03	6.83	8.32	28.9
C-08 + 9% FC	5.76	7.31	8.32	29.7
C-08 + 11% FC	5.59	6.83	8.32	29.9


Figura 46: Índice de plasticidad con dosificación de ceniza de aserrín de madera en C-03

Fuente: Elaboración propia

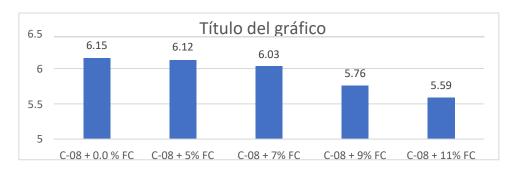
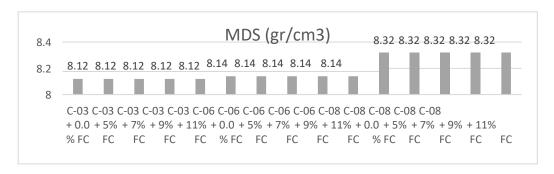

Interpretación: En la figura 46 podemos observar que el IP de la muestra patrón C-03 es 4.73%, y al adicionar ceniza aserrín de madera al 5%, 7%, 9% y 11%, los resultados son: 4.4%, 4.19%, 4.06%, y 4.01% respectivamente; se evidencia una disminución porcentual de. Existe una disminución de IP al adicionar las dosificaciones de aserrín de madera.

Figura 47Índice de plasticidad con dosificación de ceniza de aserrín de madera en C-06

Interpretación: En la figura 47 podemos observar que el IP de la muestra patrón C-03 es 2.12%, y al adicionar aserrín de madera al 5%, 7%, 9% y 11%, los resultados son: 2.1%, 1.98%, 1.75%, y 1.63% respectivamente; Existe un disminución de 0.02% 0.14% 0.37% 0.49% IP al adicionar las dosificaciones de ceniza de aserrín de madera.


Figura 48:Índice de plasticidad con dosificación de ceniza de aserrín de madera en C-08

Fuente: Elaboración propia

Interpretación: En la figura 48 podemos observar que el IP de la muestra patrón C-06 es 6.15%, y al adicionar ceniza de aserrín de madera al 5%, 7%, 9% y 11%, los resultados son: 6.12%, 6.03%, 5.76%, y 5.59% respectivamente; Existe un disminución de 0.03% 0.12% 0.39% y 0.56% IP al adicionar las dosificaciones de aserrín de madera.

Figura 49:Máxima densidad seca con dosificación de ceniza de cascara de habas en C-03,C-06 y C-08

Interpretación: En la figura 49 podemos observar que la MDS de la muestra patrón C-03 es 8.12gr/cm3, y al ceniza de aserrín de madera al 5%, 7%, 9% y 11%, los resultados no varían por que se trabaja con la MDS de suelo natural.

En la figura 49 podemos observar que la MDS de la muestra patrón C-03 es 8.14gr/cm3, y al ceniza de aserrín de madera al 5%, 7%, 9% y 11%, los resultados no varían por que se trabaja con la MDS de suelo natural.

En la figura 49 podemos observar que la MDS de la muestra patrón C-03 es 8.32gr/cm3, y al ceniza de aserrín de madera al 5%, 7%, 9% y 11%, los resultados no varían por que se trabaja con la MDS de suelo natural.

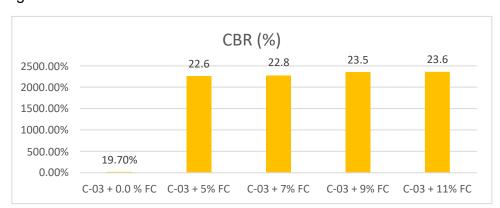


Figura 50: CBR con dosificación de ceniza aserrín de madera en C-03

Fuente: Elaboración propia

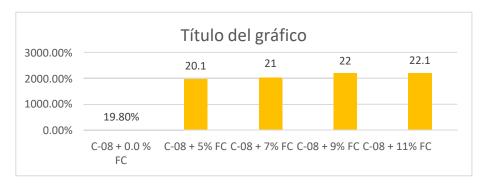

Interpretación: En la figura 50 podemos observar que el CBR de la muestra patrón C-01 es 19.70%, y al adicionar ceniza de aserrín de madera al 5%, 7%, 9% y 11%, los resultados son: 22.6%, 22.8%23.5% Y 23.6 respectivamente; se evidencia un incremento porcentual de 2.9% 3.1%, 3.8% y 3.9%. Existe un mejor incremento de CBR al adicionar ceniza de aserrín de madera.

Figura 51: CBR con dosificación de ceniza en C-06

Interpretación: En la figura 51 podemos observar que el CBR de la muestra patrón .C-03 es 19.60 %, y al adicionar aserrín de madera al 5%, 7%, 9% y 11%, los resultados son: 21.7%, 21.8%, 24.6%, y 23.8% respectivamente; se evidencia un incremento porcentual de 2.1%, 2.2%, 5% y 4.2%. Existe un mejor incremento de CBR al adicionar ceniza de aserrín de madera.

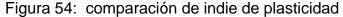
Figura 52:CBR con dosificación de ceniza en C-08

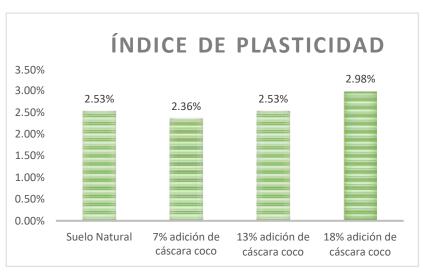
Fuente: Elaboración propia

Interpretación: En la figura 52 podemos observar que el CBR de la muestra patrón C-03 es 19.8%, y al adicionar ceniza aserrín de madera al 5%, 7%, 9% y 11%, los resultados son: 20.1%, 21%, 22%, y 22.1% respectivamente; se evidencia un incremento porcentual de 0.3%, 1.2%, 2.2% y 2.3%. Existe un mejor incremento de CBR al adicionar de ceniza aserrín de madera.

Interpretación final: En cuanto a IP de la muestra C-0.3 aumentar al añadir las dosificaciones de ceniza aserrín de madera del mismo modo incrementa para la muestra C-06. En cuanto a OCH presenta un incremento significativo al adicionar el 5%, 7%, 9% y11%de ceniza de aserrín de madera; por otro lado, la MDS

presenta disminución e igualdad al adicionar de ceniza aserrín de madera. En cuanto a CBR presenta incremento mínimo al adicionar ceniza aserrín de madera.


V. DISCUSIÓN


O1: Determinar cómo influye la adición de elementos orgánicos en las propiedades físicas de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022

Para la investigación de Camacllanqui Ccoillar Gino Josué y River Cervantes Jhonatan Stiven (2021) titulada "Estabilización de la subrasante incorporando cenizas de madera y fibra de coco en la Av. Andrés Avelino Cáceres, Huancavelica-2021", los autores corroboran a través de los ensayos físicos requeridos la clasificación de su muestra, donde se obtuvo como resultado en ciertos porcentajes que la plasticidad resulta baja y en otros que el comportamiento vario de manera positiva demostrando un comportamiento positivo.

Figura 53: comparación de indie de plasticidad

Como resultado se obtuvo que al utilizar el 7% y 13% de la adición de cáscara de coco el comportamiento vario favorablemente; sin embargo, al utilizar el 18% se observo que no hay mejora en la plasticidad del suelo. De esta manera se concluyó que 7 y 13% de cáscara de coco si es recomendable utilizar.

En el caso de la ceniza de madera, al utilizar el 7%, 13% y 18% se observó una mejora favorable, haciendo que el comportamiento sea positivo. Al momento de realizar los ensayos con cáscara de haba y ceniza de madera para la carretera de Yaurisque-Ranraccasa, Cusco añadiendo el 5%, 7%, 9% y 11%, se observa que no hay mejora en plasticidad por lo que los resultados no resultan favorables y pueden generar cierta incongruencia. Definitivamente en la presente tesis los resultados son desfavorables por no mejorar la cantidad de arcillas, cabe recalcar que los resultados obtenidos son reales.

O2: Determinar cómo influye la adición de elementos orgánicos en las propiedades mecánicas de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022.

Continuando con los resultados de la tesis (Camacllanqui Ccoillar Gino Josué y River Cervantes Jhonatan Stiven 2021), propusieron que para el ensayo de Proctor Modificado su muestra en estado natural tuvo que pasar por la malla Nro 4 para tener un cuarto uniforme y homogéneo de modo que este no altere el proceso de compactación y así obtener resultados óptimos.

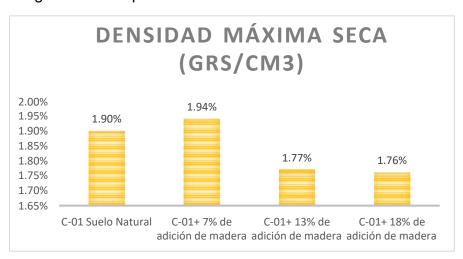


Figura 55: comparación de indie de densidad máxima seca

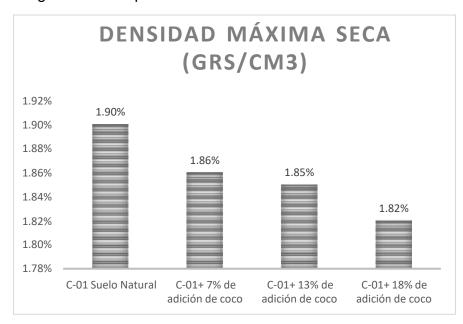
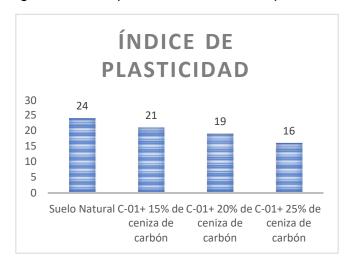


Figura 56: comparación de indie de densidad máxima seca

Fuente elaboración propia


Obteniendo como resultado que al utilizar el 7% de ceniza de madera la compactación mejora, en cambio al utilizar el 13% y 18% la mejora es desfavorable. Al utilizar la ceniza de coco también sucede lo mismo, 7% de ceniza de coco y 13% mejora la compactación y al utilizar el 18% varia desfavorablemente. Como resumen se podría decidir por añadir el 7% ya que en ambos casos resulta favorable.

En esta investigación, al añadir ceniza de madera y ceniza de cáscara de coco se obtienen los siguientes resultados.

O3: Determinar cómo influye la dosificación de elementos orgánicos en las propiedades físico-mecánicas de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022.

La investigación titulada "Estabilización de suelos con cenizas de carbón para uso como subrasante mejorada" de Goñas Labajos Olger (2019) se concluyó que la dosificación óptima es de añadir cenizas de carbón al 25% logrando mejorar la plasticidad, la compactación y la resistencia al suelo.

Figura 57: comparación de índice de plasticidad

Fuente elaboración propia

Figura 58:comparación de densidad máxima seca

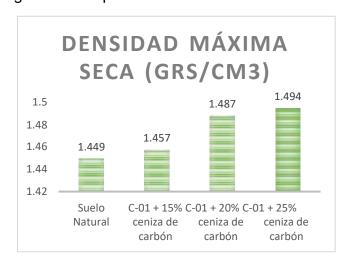
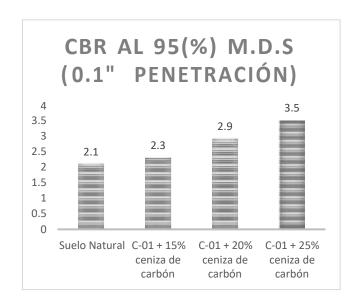



Figura 59:comparación de CBR.

A diferencia de Goñas Labajos Olger, en esta investigación se tuvieron los siguientes resultados al adicionar ceniza de madera y de cáscara de haba.

Figura 60: Comparación de Indice de plasticidad

Figura 61: Comparación de Indice de plasticidad

VI. CONCLUSIONES

- 1. Se determinó que la adición de Cenizas de cascara de habas y de aserrín de madera en 5%, 7%, 9% y 11%, el IP en la muestra de suelo, C-03 al 0% presenta un IP de 7.17, disminuye en las dosificaciones de 5%, 7%, 9%, 11% (6.98%), (6.01), (5.87), (5.43) respectivamente; respecto a la muestra patrón C-06 0% (7.51%), incrementa en las dosificaciones de 5%, 7%, 9%, 11%, (7.48), (7.45), (7.40), (7.37). respecto a la muestra patrón C-08 al 0% (6.15%), incrementa en las dosificaciones de 5%, 7%, 9%, 11% (6.12), (6.03), (5.76), (5.59). respectivamente, cumpliendo con el valor mínimo exigido por la NTP 339.129 y MTC suelos y pavimentos 2014 con un mínimo de 0% y un máximo de 7 denominándolo como suelo de baja plasticidad ya que el suelo presentaría como no riesgoso, evitando la sensibilidad al agua y obteniendo una buena subrasante.
- 2. De las propiedades mecánicas con adición de Cenizas de cascara de habas para la estabilización de la subrasante se tiene los porcentajes de 5%, 7%, 9% y 11%. Las propiedades mecánicas de la subrasante de la carretera Yaurisque-Ranraccasa respecto al Proctor Modificado hallando un CHO un valor de 8.12 % y MDS de 2.14 gr/cm3 con respecto a la calicata c.03 así mismo se obtuvo los siguientes valores de CHO 8.14% y de MDS 2.21 gr/cm3 para la calicata C.06 y los siguientes valores para la calicata C.08 CHO DE 8.32 % y un MDS 2.28 gr/cm3 respetivamente. Para la prueba CBR se obtuvo buenos resultados en el 11% para el suelo natural de la calicata C.03 SE obtuvo un valor de 25.0% se obtuvo 35.8% haciendo un incremento 10.8% al adicionar cascara de habas. Para el aserrín de madera, se tiene un CBR al suelo natural de 25.0% al adicionar el 11% de aserrín de madera se obtuvo un resultado de 35.6% de esta manera tenemos un incremento de 10.5 % haciendo que haya una mejora en los suelos de la carretera Yaurisque Ranraccasa.
- 3. La adición de ceniza de cascara de habas y ceniza de aserrín de madera para dosificaciones de 5%, 7%, 9% y 11%, en suelos de C-03 con IP= 7.17, 7.51

y 6.15, baja la plasticidad disminuyendo características de trabajabilidad, sin embargo, para el suelo de la subrasante de la presente investigación, los valores del índice de plasticidad obtenidos permiten mantener la clasificación de un suelo de plasticidad baja para cada dosificación que presenta dicha investigación. con respeto al CHO y el MDS tenemos los siguiente CHO un valor de 8.12 % y MDS de 2.14 gr/cm3 para la calicata C-03 y CHO 8.14% y de MDS 2.21 gr/cm3on respecto a C-06. Y CHO DE 8.32 % y un MDS 2.28 gr/cm3 respecto a C-08.

VII. RECOMENDACIONES

- 1. De acuerdo a los resultados obtenidos en el laboratorio en esta tesis, la adición de Cenizas de cascara de habas y Cenizas aserrín de madera se logra estabilizar la subrasante del suelo granular mejorando su resistencia, se recomienda investigar para otro tipo de suelo arcilloso, limoso entre otros, incorporando las cenizas de asara de habas.
- 2. Se recomienda que, en cuanto al análisis granulometría, la clasificación de los límites de consistencia del suelo, ya sea como muestras o productos del suelo, sea cuidadoso y manipulado, y registre la fecha y la hora para una fácil identificación y manipulación física. Procese la muestra sin alterar los resultados
- 3. Se recomienda con respecto al ensayo de CBR registrar las lecturas más precisas y objetivas dentro de los limites programados así evitar errores técnicos que alteren los resultados, de igual manera el equipo debe estar calibrado presentando confiabilidad en los resultados.
- 4. Se recomienda realizar estudios e investigaciones con adición de ceniza de cascara de habas en mayores porcentajes para poder obtener niveles óptimos de las adiciones de ceniza de cascara de habas y para estabilizar el suelo.

Referencias

Aguiar, S., Chicaiza, E., Domínguez-Santana, K., & Caicedo, W. (2019). Composición quí•mica de subproductos agroindustriales destinados para la alimentación de cerdos. Revista Caribeña de Ciencias Sociales, 2019–04.

Aguilar, C., & Borda, Y. (2015). Revisión del estado del arte del uso de polímeros en la estabilización de suelos. Universidad Santo Tomás Facultad De Ingeniería Civil Bogotá D.C. 2015, 102.

Arriaga, M. S., Lindaura, L. S., & Salvatierra, A. (2020). Evaluación del mejoramiento de suelos lateríticos con cenizas de productos orgánicos y cenizas volantes. 1–93. https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/14615/Moran_P aucar_Estrés_académico_apoyo social1.pdf?sequence=1&isAllowed=y

Bermejo, J. S. (2019). INFLUENCIA DE LA ADICIÓN DE LA MEZCLA CENIZA VOLANTE DE CASCARILLA DE CEBADACON CAL EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS EN EL SUELO DE BUENOS AIRES DISTRITO DE VICTOR LARCO HERRERA -TRUJILLO –LA LIBERTAD-2018. Articulo de Financial Distress, 1–123. http://www.upt.edu.pe/upt/web/home/contenido/100000000/65519409

Corrêa, J. F. (2018). Avaliação das melhorias das propriedades físicas e mecânicas de solos originados de rochas sedimentares pela adição de cal para fins de pavimentação. 151.

Eren, Ş., & Filiz, M. (2009). Comparing the conventional soil stabilization methods to the consolid system used as an alternative admixture matter in Isparta Daridere material. Construction and Building Materials, 23(7), 2473–2480. https://doi.org/10.1016/J.CONBUILDMAT.2009.01.002

Fabre, V. E., Tirner, M. B., & Jirina, B. (2017). Comportamiento Resistente de Suelos Orgánicos Estabilizados con Tanino Strength Behavior of Organic Soils Stabilized with Tannin. Información Tecnológica, 21(N°2-2010), 103–112. https://doi.org/doi:10.1612/inf.tecnol.4147it.08

Farfan, P. (2015). Uso de concha de abanico triturada para Mejoramiento de subrasantes arenosas. 104.

González Guerra, A. J. F. (2014). Estabilización Mecánica De Suelos Cohesivos a Través De La Utilización De Cal - Ceniza Volante [Universidad de San Carlos de Guatemala]. http://www.repositorio.usac.edu.gt/1044/1/08_3698_C.pdf

Lozano, E., Ruiz Ramos, J. M., & Alfonso, J. C. (2015). Análisis del mejoramiento de un suelo de subrasante con un aditivo orgánico. Universidad Catolica (Bogota), 1–6.

Martínez, C. V. V., Murillo, X. S. Z., Demera, M. H. D., Briones, G. A. B., & Palacios, C. A. C. (2021). ALMIDONES DE CÁSCARA DE YUCA (MANIHOT ESCULENTA) Y PAPA (SOLANUM TUBEROSUM) PARA PRODUCCIÓN DE BIOPLÁSTICOS: PROPIEDADES MECÁNICAS Y EFECTO GELATINIZANTE. Revista Bases de La Ciencia,

https://doi.org/https://doi.org/10.33936/rev_bas_de_la_ciencia.v%25vi%25i.3293

Ramaji, A. E. (2012). A review on the soil stabilization using low-cost methods. Journal of Applied Sciences Research, 8(4), 2193–2196.

Rojas Rivera, M. A. (2012). Estudios de las caracterisricas fisiologicas de la yuca. Universidad Tecnológica De Pereira, 1(1), 111.

Valiev, K. E. (2018). Refuerzo de suelos en la construcción de carreteras. Métodos integrales para la transformación de suelos cohesivos. Visión general de la estabilización del suelo. T.T. Abramova (Universidad Estatal de Moscú. MV Lomonosov).

PEREIRA , DE ASSIS LEANDRO y CARVALHO , DE COSTA DIOGENES. 2021. 2021.

PIARC, Asociacion Mundial de Carreteras.

Prabu. M, y otros. 2019. A STUDY ON THE MECHANICAL PROPERTIES OF BANANA STEM ASH. 2019.

SALAZAR P., CECILIA y DEL CASTILLO G., SANTIAGO. 2018. FUNDAMENTOS BÁSICOS DE ESTADÍSTICA. 2018.

SALINAS", PEDRO JOSÉ. 2012. METODOLOGÍA DE LA INVESTIGACIÓN. 2012.

SEED, BOLTON h. 1967. Prediction of Flexible Pavement Deflections from Laboratory Repeated-Load Test traducido libro. 1967.

SILVA, Dias da, Marcos Vinicius y Oliveira Guimarães, SANTOS, Rafaella. 2021. USO DE MATERIAIS ALTERNATIVOS EM CAMADAS DE PAVIMENTOS ASFÁLTICOS: UMA ANÁLISE BIBLIOGRÁFICA. 2021.

VALERINO, Elizabethe, YABER, Guillermo y CEMBORAIN, María. 2015. Metodología de la investifacion: paso a paso. 2015.

Camacllanqui Ccoillar Gino Josué y River Cervantes Jhonatan Stiven "Estabilización de la subrasante incorporando cenizas de madera y fibra de coco en la Av. Andrés Avelino Cáceres, Huancavelica-2021", (2021)

Goñas Labajos Olger "Estabilización de suelos con cenizas de carbón para uso como subrasante mejorada" de (2019)

CARRASCO edgar, SMITS mônica, MANTILLA judy, norka rodo. resistencia al corte del enlace bambú-bambú: Influencia de la presión de pegado.2017

García Rolando Michel. PROCESO DE OBTENCIÓN DE FIBRA DE COCO PARA FABRICAR COLCHONES ECOLÓGICOS HIPOALERGÉNICOS EN LA COMUNA "SACACHÚN". Revista Empresarial, ICE-FEE-UCSG Octubre - Diciembre 2017. Edición No. 44 Vol. 11 – No. 4 – Pág 14-19

VETTORELO, Paula Vanesa; CLARIÁ, Juan José. Suelos Reforzados con Fibras: Estado del Arte y Aplicaciones. 2014.

GUERRA, Kehila; MOSQUEIRA, Miguel. Bearing capacity (CBR) of three clay soils incorporating banana pseudostem fiber in different percentages [Capacidad Portante de tres suelos arcillosos incorporando fibra de pseudotallo de plátano en diferentes porcentajes]. 2020.

LAM, Tian Fook; YATIM, Jamaludin Mohamad. Mechanical properties of kenaf fiber reinforced concrete with different fiber content and fiber length. Journal of Asian Concrete Federation, 2015, vol. 1, no 1, p. 11-21.

MINISTERIO DE VIVIENDA, CONSTRUCCION Y SANEAMIENTO CE.010 pavimentos urbanos. 2010

MINISTERIO DE TRANSPORTES Y COMUNICACIONES (Perú). MTC: MANUAL DE CARRETERAS- SUELOS Y PAVIMENTOS. Lima, 2014

MINISTERIO DE TRANSPORTES Y COMUNICACIONES (Perú). MTC: MANUAL DE ENSAYOS DE MATERIALES, EM. Lima, 2016

ROJAS, Víctor Miguel Niño. Metodología de la Investigación: diseño, ejecución e informe. Ediciones de la U, 2021.

VETTORELO, Paula Vanesa; CLARIÁ, Juan José. Suelos Reforzados con Fibras: Estado del Arte y Aplicaciones. 2014.

SANTIAGO, Gislene A.; BOTARO, Vagner R. FIBRAS DE SISAL IMPERMEABILIZADAS CON BETÚN PARA REFUERZO EN MATRICES DE SUELO ARCILLOSO.2009

DEFOIRDT, N. et al. Evaluación de las propiedades de tracción de fibra de coco, bambú y fibra de yute. Compuestos Parte A: ciencia aplicada y fabricación, Elsevier, v. 41, No. 5, pág. 588–595, 2010.

CONSOLI, N. et al. Efecto de la densidad relativa en las pruebas de carga de placas en arena reforzada con fibra. Geotécnica, Thomas Telford Ltd, v. 59, núm. 5, pág. 471–476, 2009

DEEPAK Kaushik, SITESH Kumar Singh. Uso de fibra de coco y análisis de propiedades geotécnicas del suelo. Volumen 47, Parte 14, 2021, Páginas 4418-4422

PRIYANKA Sarma, SANDEEP Singh, MANDEEP Kaur. Optimización del uso de fibra de sisal y ceniza de cascarilla de arroz en suelos lateríticos para la construcción de carreteras. Volumen 33, Parte 3, 2020, páginas 1720-1726

CASAS GARAY, Jhonatan Smith. 2020. *ESTABILIZACION DE SUELOS COHESIVOS EN SUBRASANTE EN EL PASAJE 30 DE MAYO- JIRON MARIATEGUI DE ANEXO UÑAS, JUNIN.* JUNIN : s.n., 2020.

ANEXOS

ANEXO 1: MATRIZ DE CONSISTENCIA

Título: Mejoramiento de propiedades físico-mecánicas de suelos con adición de aditivos orgánicos en la carretera Yaurisque-Ranraccasa Paruro, Cusco-2022

Autores: Arana Ordoñez Marycruz, Paredes Baca Flor del Carmen

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIA	BLES	DIMENSIONES	INDICADORES	INSTRUMENTOS		
Problema general	Objetio general	Hipótesis general				0% de ceniza de			
¿Cómo influye la agregación de la mezcla de elementos orgánicos en el	Evaluar la influencia de la adición de elementos orgánicos en el	La influencia de la adicción de elementos orgánicos es				madera y cáscara de haba			
mejoramiento propiedades físicas y mecánicas en la subrasante de la carretera Yaurisque, Ranraccasa Paruro, Cusco-2022?	mejoramiento de la subrasante de la carretera Yaurisque– Ranraccasa Paruro, Cusco-2022	considerable en el mejoramiento de la subrasante de la carretera Yaurisque–Ranraccasa Paruro, Cusco-2022	Cáscara de		hahas v		Desificación	5% de ceniza de madera y cáscara de haba 7% de ceniza de madera y	Ficha de recolección de datos
Problemas específicos	Objetivos específicos:	Hipótesis específicas	INDEPENDIENTE	ceniza de	Dosificación	cáscara de haba	de la balanza digital de medición		
¿Cómo influye la adición de elementos orgánicos en las propiedades físicas de la subrasante de la carretera Yaurisque–Ranraccasa Paruro, Cusco-2022?	Determinar la influencia la adicion de elementos orgánicos en las propiedades físicas de la subrasante de la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022	La adición de elementos orgánicos influye en las propiedades físicas de la subrasante en la carretera Yaurisque-Ranraccasa, Paruro, Cusco-2022		madera		9% de ceniza de madera y cáscara de haba 11% de ceniza de madera y cáscara de haba	medicion		
		elementos en las necánicas nte de la La adición de elementos orgánicos influye en las propiedades mecánicas de la subrasante en la carretera Yaurisque-			Propiedades Físicas	Granulometria	Standard Test Method for Particle-size Analysis of Soils. ASTM D422		
¿Cómo influye la adición elementos orgánicos en las	Determinar cómo influye la adición de elementos orgánicos en las					Densidad seca y Contenido de humedad óptima	Contenido de Humedad. NTP 339.127		
propiedades mecánicas de la subrasante de la carretera Yaurisque-	propiedades mecánicas de la subrasante de la					Límite líquido	Mètodo de ensayo para determinar el límite líquido. NTP 339.129 Metodo de ensayo para		
Ranraccasa Paruro, Cusco-2022?	carretera Yaurisque- Ranraccasa, Paruro,	Ranraccasa, Paruro, Cusco-2022				Límite plastico	determinar el llímite plástico. NTP 339.129		
00300 2022	Cusco-2022? Cusco-2022	04300 2022	DEPENDIENTE	Subrasante		Indice de plasticidad	Método de ensayo para determinar índice de plasticidad de suelos. NTP 339.129		
¿Cómo influye la dosificación de elementos orgánicos en las propiedades de la	Determinar cómo influye la dosificación de elementos orgánicos en las propiedades de la	La dosificación de elementos orgánicos influye en las propiedades de la subrasate de la			Propiedades	Proctor modificado	Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada. NTP 339.141		
subrasante en la carretera Yaurisque-Ranraccasa Paruro, Cusco-2022?	subrasante de la carretera Yaurisque- Ranraccasa, Paruro, Cusco-2022	carretera Yaurisque- Ranraccasa, Paruro, Cusco-2022			Mecánicas	CBR	Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils. ASTM D1883		

Anexo 2: matriz de operacionalización de las variables

Variables	Definicion Conceptual	Dimensiones	Indicadores	Instrumentos
INDEPENDIENTE	Este subproducto muestra alto contenido de Materia Orgánica (97,64 %), apreciable contenido		porcentaje de3%	Experimento por M3 de suelo
Cascara habas y ceniza	de materia seca (32,74 %), Fibra		porcentaje de 5%	Ensayo de laboratorio
de madera	Bruta (49,03 %), Extractos Libres de Nitrógeno (43,43 %).	Dosificación de las	porcentaje de 7%	Ficha de recoleccion
		Contenido de humedad	Proctor modificado	ensayo de proctor modificado en el laboratorio
DEPENDIENTE	Las principales propiedades del	Indice de plasticidad	limite liquido y limite plastico	ensayo Atterberg
Propiedades físicos-	suelo a estudiar son: la resistencia a las cargas, su	Capacidad portante del suelo	CBR	Ensayo CBR
mecánicas de suelos	permeabilidad, su granulometría y su desempeño bajo presión.	Densidad Maxima	Gr/cm3	medida de laboratorio

Anexo 3 Análisis estadístico

DOSIFICACION OPTIMA

PRUEBA DE NORMALIDAD

Paso 1: Planteamiento de normalidad:

H0: hipótesis nula: Datos de la variable x (Dosificación optima) tienen normalidad

H1: hipótesis alterna: Datos de la variable x (Dosificación optima) No tienen normalidad

Paso 2: Nivel de significancia: α =5%= 0.05

Paso 3: Prueba estadística:

Pruebas de normalidad

	Suelo	Kolmo	ogórov-Smi	rnov ^a	Shapiro-Wilk			
		Estadístico	gl	Sig.	Estadístico	gl	Sig.	
Resistencia 1,00		,262	5	,200*	,939	5	,657	

- *. Este es un límite inferior de la significación verdadera.
- a. Corrección de la significación de Lilliefors

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula p - valor = 0.657 0.657>0.05. Entonces no se rechaza la hipótesis nula.

Paso 5: Decisión estadística:

Los datos de la variable dosificación optima que ingreso si tiene una distribución normalidad.

Prueba de T de Student (si tiene normalidad)

Prueba de los rangos con signos de Wilcoxon (si no tiene normalidad)

PRUEBA DE T DE STUDENT

Hipótesis de investigación:

La adición de la fibra de carrizo mejora considerablemente en la dosificación para la estabilización de la subrasante.

Paso 1: Hipótesis estadísticas:

H0: hipótesis nula: la dosificación no mejora con la adición de ceniza de cascara de habas y ceniza de aserrín de madera

H1: hipótesis alterna: la dosificación si mejora con la adición ceniza de cascara de habas y ceniza de aserrín de madera

Paso 2: Nivel de significancia: α =5%= 0.05

Paso 3: Prueba estadística: Prueba de T de Student

Prueba de muestras relacionadas

	Diferencias relacionadas					t	gl	Sig.
								(bilateral)
	Media	Desviació	Error tío.	95% Inte	rvalo de			
		n	de la	confianz				
-		típ.	media					
- · · ·	-	2,71256	1,21310	-	-55,37191	-	4	,000
Par 1 S u e I o Resistencia	58,740			62,10809		48,42		

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula

p- valor = 0.000001 $0.000001 \Gamma 0.05$.

Entonces se rechaza la hipótesis nula

Paso 5: Decisión estadística:

Existe evidencia estadísticamente significativa para rechazar la hipótesis nula, permitiendo aceptar como verdadera la hipótesis alterna, indicando que la dosificación si está relacionada de manera directa y positiva mejorando con la adición de fibra de carrizo.

PROPIEDADES FISICAS

INDICE DE PLASTICIDAD- PRUEBA DE NORMALIDAD

Paso 1: Planteamiento de normalidad:

H0: hipótesis nula: Datos de la variable x (Índice de plasticidad) tienen normalidad

H1: hipótesis alterna: Datos de la variable x (Índice de plasticidad) No tienen normalidad

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística:

Pruebas de normalidad

	Suelo	Kolmogó	rov-Smirr	NOV	Shapiro-			
		Estadístico	gl	S	Estadístico	gl	Sig.	
	1,00	,473	5	,0	,552	5	,000	
		,473 5 ,0		,552	5			

a. Corrección de la significación de Lilliefors

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula

p - valor = 0.000131 $0.000131 \Gamma 0.05$.

Entonces se rechaza la hipótesis nula.

Paso 5: Decisión estadística:

Los datos de la variable Índice de plasticidad que ingreso no siguen una distribución normalidad.

Prueba de T de Student (si tiene normalidad

prueba de los rangos con signos de Wilcoxon (si no tiene normalidad)

PRUEBA DE LOS RANGOS CON SIGNOS DE WILCOXON

Hipótesis de investigación:

La adición ceniza de cascara de habas y ceniza de aserrín de madera mejora considerablemente en el índice de plasticidad para la estabilización de la subrasante.

Paso 1: Hipótesis estadística:

H0: hipótesis nula: Datos de la variable x no están relacionadas (El incremento de Índice de plasticidad No está relacionado con la adición de fibra de carrizo)

H1: hipótesis alterna: Datos de la variable x están relacionadas (El incremento de Índice de plasticidad Si está relacionado con la adición ceniza de cascara de habas y ceniza de aserrín de madera)

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística: Prueba de los rangos con signos de Wilcoxon

Rangos

	N	Rango promedio	Suma de rangos
Rangos negativos	₁ a	1,00	1,00
Rangos positivos	gb	6,00	54,00
Índice de plasticidad - Suelo	0с		
indice de plasticidad - Suelo	10		

- a. Índice de plasticidad < Suelo
- b. Índice de plasticidad > Suelo
- c. Índice de plasticidad = Suelo

Estadísticos de contraste^a

	Indice de plasticidad -
7	-2,737 ^o
	,006

- a. Prueba de los rangos con signo de Wilcoxon
- b. Basado en los rangos negativos.

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula p- valor = 0.006

0.006 < 0.05. Entonces se rechaza la hipótesis nula

Paso 5: Decisión estadística:

Existe evidencia estadísticamente significativa para decir que la variable Índice de plasticidad si está relacionada de manera directa y positiva con la adición de ceniza de cascara de habas y ceniza de aserrín de madera.

PROPIEDADES MECANICAS

OPTIMO CONTENIDO DE HUMEDAD- PRUEBA DE NORMALIDAD

Paso 1: Planteamiento de normalidad:

H0: hipótesis nula: Datos de la variable x (Optimo contenido de humedad) tienen normalidad

H1: hipótesis alterna: Datos de la variable x (Optimo contenido de humedad) No tienen normalidad

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística:

Pruebas de normalidad

	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Optimo contenido de	,338	5	,0	,860	5	,230
1,00 humedad	,230	5	,200	* ,897	5	,392

^{*.} Este es un límite inferior de la significación verdadera.

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula

Entonces no se rechaza la hipótesis nula aceptando la hipótesis alterna.

Paso 5: Decisión estadística:

En vista que el p-valor obtenido es mayor a 0.05, no existe evidencia suficiente para rechazar la hipótesis nula, confirmando que los resultados siguen una distribución normal.

Prueba de T de Student (si tiene normalidad)

Prueba de los rangos con signos de Wilcoxon (si no tiene normalidad)

PRUEBA DE T DE STUDENT

Hipótesis de investigación:

La adición ceniza de cascara de habas y ceniza de aserrín de madera mejora considerablemente el contenido de humedad para la estabilización de la subrasante.

Paso 1: Hipótesis estadísticas:

H0: hipótesis nula: El óptimo contenido de humedad no mejora con la adición ceniza de cascara de habas y ceniza de aserrín de madera)

a. Corrección de la significación de Lilliefors

H1: hipótesis alterna: el óptimo contenido de humedad si mejora con la adición ceniza de cascara de habas y ceniza de aserrín de madera

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística: Prueba de T de Student

Prueba de muestras relacionadas

		Diferencias relacionadas					gl	Sig. (bilateral)
	Media	Desviaci	Error típ.		o de confianza			
		ón típ.	de la	para la (diferencia			
		on tip.	dola	Inferior Superior				
Suelo -	-	1,38809	,43895	-5,71198	-3,72602	-10,751	9	,000
Par Optimo_	4,7190							
de humedad	0							

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula

p- valor = 0.000002 $0.000002 \Gamma 0.05$.

Entonces se rechaza la hipótesis nula

Paso 5: Decisión estadística:

Existe evidencia estadísticamente significativa para rechazar la hipótesis nula, permitiendo aceptar como verdadera la hipótesis alterna, indicando que el óptimo contenido de humedad si está relacionada de manera directa y positiva mejorando con la adición ceniza de cascara de habas y ceniza de aserrín de madera.

MAXIMA DENSIDAD SECA- PRUEBA DE NORMALIDAD

Paso 1: Planteamiento de normalidad:

H0: hipótesis nula: Datos de la variable x (Máxima Densidad Seca)

tienen normalidad

H1: hipótesis alterna: Datos de la variable x (Máxima Densidad Seca)

No tienen normalidad

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística:

Pruebas de normalidad

Su	elo	Kolm	nogorov-S	smirnov ^a	Shapiro-		
		Estadístic gl Sig E		Estadísti	gl	Sig	
1,00		,23	5	,200	,90	5	,46
Máxima densidad seca		,37	5	,02	,68	5	2

^{*.} Este es un límite inferior de la significación verdadera.

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula

valor = 0.006 $0.006 \Gamma 0.05$

Entonces no se rechaza la hipótesis nula y se rechaza la hipótesis nula.

Paso 5: Decisión estadística:

En vista que el p-valor obtenido existe evidencia suficiente para no rechazar la hipótesis nula y aceptar la hipótesis alterna. Este resultado nos confirma que los datos no siguen una distribución normal.

Prueba de T de Student (si tiene normalidad)

Prueba de los rangos con signos de Wilcoxon (si no tiene normalidad)

PRUEBA DE LOS RANGOS CON SIGNOS DE WILCOXON

Hipótesis de investigación:

a. Corrección de la significación de Lilliefors

La adición de ceniza de cascara de habas y ceniza de aserrín de madera mejora considerablemente la máxima densidad seca para la estabilización de la subrasante.

Paso 1: Hipótesis estadística:

H0: hipótesis nula: El incremento de Máxima densidad seca no está relacionado
con la adición de ceniza de cascara de habas y ceniza de aserrín de madera.
H1: hipótesis alterna: El incremento de Máxima densidad seca Si está relacionado

con la adición de ceniza de cascara de habas y ceniza de aserrín de madera.

Paso 2: Nivel de significancia: α =5%= 0.05

Paso 3: Prueba estadística: Prueba de los rangos con signos de Wilcoxon

		Rar	igos			
•			N	Rango		Suma de
	Rang	jos	5a		3,00	15,0
nogatives I	- Máxima densida	nd coco	5b		8,00	40,0
riegalivos i	viaxiiiia ueiisiua	0c				
Rangos	positivos	Suelo	10			

- a. Máxima densidad seca < Suelo
- b. Máxima densidad seca > Suelo
- c. Máxima densidad seca = Suelo

Estadísticos de contraste^a

	Máxima densidad seca -
Z	-1,275 ⁰
_	,202
Sig. asintót. (bilateral)	,

- a. Prueba de los rangos con signo de Wilcoxon
- b. Basado en los rangos negativos.

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula p- valor = 0.202 0.202 >0.05. Entonces no se rechaza la hipótesis nula

Paso 5: Decisión estadística:

Existe evidencia estadísticamente significativa para decir que la variable máxima densidad seca no está relacionada de manera directa y positiva con la adición de fibra de carrizo.

CBR-PRUEBA DE NORMALIDAD

Paso 1: Planteamiento de normalidad:

H0: hipótesis nula: Datos de la variable x (CBR) tienen normalidad

H1: hipótesis alterna: Datos de la variable x (CBR) No tienen normalidad

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística:

Pruebas de normalidad

Suelo	Kolmogorov-Smirnov ^a		Sh			
	Estadístico	g	Sig	Estadístico	g	Sig.
1,00	,262	5	,200	,939	5	,657
	,370	5	,02	,694	5	

^{*.} Este es un límite inferior de la significación verdadera.

a. Corrección de la significación de Lilliefors

Paso 4: Regla de decisión:

Si p- valor ≤ 0.05.... se rechaza la hipótesis nula

p - valor = 0.657

0.657 > 0.05 p - valor = 0.657

0.008<0.05

Entonces no se rechaza la hipótesis nula aceptando la hipótesis alterna y rechaza la hipótesis nula.

Paso 5: Decisión estadística:

En vista que el p-valor obtenido existe evidencia suficiente para no rechazar la hipótesis nula y aceptar la hipótesis alterna. Este resultado nos confirma que los datos no siguen una distribución normal.

Prueba de T de Student (si tiene normalidad)

Prueba de los rangos con signos de Wilcoxon (si no tiene normalidad)

PRUEBA DE LOS RANGOS CON SIGNOS DE WILCOXON

Hipótesis de investigación:

La adición de ceniza de cascara de habas y ceniza de aserrín de madera mejora considerablemente el CBR para la estabilización de la subrasante.

Paso 1: Planteamiento de normalidad:

H0: hipótesis nula: El incremento de CBR no está relacionado con la adición de ceniza de cascara de habas y ceniza de aserrín de madera

H1: hipótesis alterna: El incremento de CBR si está relacionado con la adición de ceniza de cascara de habas y ceniza de aserrín de madera.

Paso 2: Nivel de significancia: $\alpha = 5\% = 0.05$

Paso 3: Prueba estadística: Prueba de los rangos con signos de Wilcoxon

Rangos

N	Rango	Suma de
₀ a	,00	,00
10 ^b	5,50	55,0

Rangos	0c	
negativos	10	
Rangos		

- a. Resistencia < Suelo
- b. Resistencia > Suelo
- c. Resistencia = Suelo

Estadísticos de contraste^a

	Resistencia - Suelo
7	-2,803 ^b
	,005

- a. Prueba de los rangos con signo de Wilcoxon
- b. Basado en los rangos negativos.

Paso 4: Regla de decisión:

```
Si p- valor ≤ 0.05.... se rechaza la hipótesis nula p- valor = 0.005....
0.005<0.05. Entonces se rechaza la hipótesis nula.
```

Paso 5: Conclusión:

Existe evidencia estadísticamente significativa para decir que la variable CBR si está relacionada de manera directa y positiva con la adición de ceniza de cascara de habas y ceniza de aserrín de madera

Anexo 3. Instrumento de recolección de datos

II. ASPECTOS DE VAI	de consistencia, California Bearing Ratio (CBR) y LIDACIÓN) DEFICIENTE (2) ACEPTABLE (3) BUENA (4					
CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los items están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales					X
OBJETIVIDAD	Las instrucciones y los items del instrumento permitten recoger la información objetiva sobre la variable: SUBRASANTE en todas sus dimensiones en indicadores conceptuales y operacionales					×
ACTUALIDAD	El instrumento demuestra vigencia acorde con el conocimiento ciertifico, tecnológico, innovación y legal inherente a la variable: SUBRASANTE					X
ORGANIZACIÓN	Los items del instrumento reflejan organicidad lógica entre la definición operacional y conceptual respecto a la variable, de manera que permite hacer inferencias en función a las hipótesis, problema y objetivos de la investigación					×
SUFICIENCIA	Los items del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indicadores					X
INTENCIONALIDAD	Los items del instrumento son coherentes con el					X
CONSISTENCIA	La información que se recoja a través de los items del instrumento permitra analizar, describr y explicar la realidad, motivo de la investigación					×
COHERENCIA	Los items del instrumento expresan relación con los indicadores de cada dimensión de la variable SUBRASANTE					X
METODOLOGÍA	La relación entre la técnica y el instrumento propuestos responden al propósito de la investigación, desarrollo tecnológico e innovación					X
PERTINENCIA	La redacción de los items concuenta con la escala valorativa del instrumento					X
	PUNTAJE TOTAL	5	0			
PROMEDIO DE VALO	DRACIÓN: 5.0	c	usco 2	@de I	Enero d	el 2022

1. DATOS GENERALES

Especailidad

Autores del Instrumento: Br. Arana Ordoñez, Marycruz.

Br. Paredes Baca, Flor del Carmen

Instrumentos de evaluación: Análisis granulométrico de suelos, Compactación de suelos (Proctor modificado), Limit esde consistencia, California Bearing Ratio (CBR) y Peso específico.

11. ASPECTOS DE VALI DA CIÓN

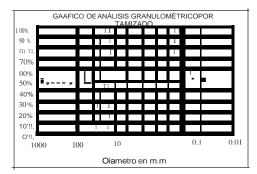
MUY DEFICENTE(1)	DEFICIENTE (2) ACEPTABLE(3) BUENA (4)	EXCE	LENTE (5)		
CRITERIOS	INDICADORES	1	2	3	4	S
CLARIDAD	los items están redactados con lenguaje apropiado y libre de ambigüedades acorde con los sujetos muestrales					'X
OBJETIVIDAD	Lasinstruccionesy los i temsdelinstrumento permiten recoger la infonnación objetiva sobrela variable: SUBRA SA NTE eo lodas sus dimensiones enindicadores conceptuales y operacionales)(
ACTUALIDAD	El i nstrumento demuestra vigencia acorde con el conocimiento científico, tecnológico. Innovación y lecal Inherenlea la vanabl:eSUBRASANTE					X
org <i>i</i> nización	Los Items del Instrumento reflejanorganitadal lógica entre la definición operacional y conceptual respecto a la variable, demaneraque permitehacer inferenciasen funcióna las hipótesis, probtema y Objetivos dela investigación					у
SUFICIENDA	Los itemsdelinstrumento sonsuficien1es en cantidad y calktad acorde conla vañable dimensiones e indicadores					X
INTENCIONALIDAD	Los items delinstrumentoson coherentes conel tipo dede investigación y responden a los objetivos, hloólesis v varible deesludic					X
CONSISTENCIA	La mformación que serecoja a través de los ítems del instrumento permitirá analiza, rdesaiblr y exclicar ta realidad. motivo de la investioación					><
COHERENCIA	Lositems del instrumento expresanrelacion conlos Indicadores de cada dimensión de la variable SUBRASANTE)(
METODOLOGIA	La relación entre la técnica y el instrumento propuestos responden al propósi10 de la Investinaciónd,esarrollo tecnolMicoe innovación					'f
PERTIN E ICIA	La redacción detos items concuerda con la escala valorativadel instrumento					
	PUNTAJE TOTAL		•		50	•

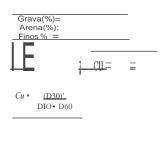
 $(\mathsf{NOTA}\,: \mathsf{Tener}\,\mathsf{en}\,\mathsf{cuenta}\,\mathsf{que}\,\mathsf{el}\,\mathsf{instrumento}\,\mathsf{esv\'alido}\,\mathsf{cuando}\,\mathsf{se}\,\mathsf{tiene}\,\mathsf{un}\,\mathsf{puntaje}\,\mathsf{m\'inimo}\,\mathsf{de}\,41;$ sin embargo, un puntaje mejor al anterior seconsidera al instrumento no válido ni aplicable)

111. **OPINIÓN DE APLICABILIDAD**

PROMEDIO DE VALORACIÓ:NE

CUSCO 22 de Enero del 2022





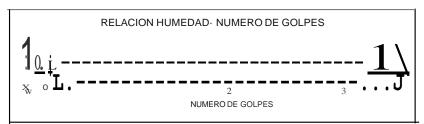

ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO MTC E 107 ASTM D422

REFERENC IA S OLICIT ANTE	DATOS DE LABORATORIO Arana Ordonez MaNcruz Paredes Baca Flor DelCarmen
TITULO	'Mejo,ami ento de propiedades ílslco-mecánicas de suelos con adición de ad ivos orgánicos en la carrelera Yaurisque - Ranraccasa Cusco-2021-
UBICACION	YAURISQUE-RANRACCASA IFECHA DE ENSATO. 1
CALI C ATA	
MUE STRA	
PROFUNDIDAD	

,o Infetal Ste -	"		l				
PesoFtnaf. Secot	r						
TAMIZ	Abertura mm	PesoRe:len Idni nr \	'/, Rett-nfdo Pard al	% Retenido Acumulado	% Que Pasa	Límite Mln	Limite Max
5° 4°							
3.	-						
2 HZ"							
2.							
1 111"							
314"							
112-							
3/8"							
N" •							
NTO							
N" ZO							
111"40							
111''80							
N" 100							
111" 200						_	
< N° 200							

COMPACTACIÓN DE SUELOS EN LABORATORIO UTILIZANDO UNA ENERGIA MODIFICADA (PROCTOR MODIFICADO). MTC E 115 NTP 339.141

	I\IZ Paredes Baca)(opledades II slco-me	etanicas de su	elos con adición		gn I cos en la
ÜBIČAČIÓN Yairi ueRarraco	.÷!R !!!bbdcasa <u>C</u> ,,;us o casa Paru ro	co (12 <u>11</u> 1	 FECHA DE B	 NSAYO:	
CALICATA					
MUESTRA					
PROFUNDIDAD					
Volumen Molde:		_			
MUMERODE-ENGAMOS	gr.	2	3	4	5
Peso Suelo • Molde	gr.				
Prosponicional distribution of the Comme	gr.				1
Peso Volumétri co Húmedo	30.				
Recl ntaNume,o	-				
Pe.soSuetoHúmedo+ Tara	gr,				
Peso Suelo Seco+ Tara	36.				
Peso da la Tara	yr.				
Pesodela ua	gr.				
Peso del suelo seco	gr.				
Contenido de ua	%				
Densidad Seca	gree				
Densidad Máxim Contenido HumedadOptima:	a S	Seca:			
: r,	Prelagion Hum	EDAD - DEN	SIDAD SECA	- <u> r</u>	·:
: ,t,		· -\	+t-	-	j
UI 1	-r i i	t	- +	4	# J
1.u ₁₀ i,	, , ,	14 DE HUMEDAD	15	16	JJ -17



LIMITES DE CONSISTENCIA ASTM 0 -4318

REFERI!N CIA	DATOS OE LABORATORIO			
SOLICITANTE	Arana Ordollez Ma" cruz Paredes Baca Flor del Carmen			
TITULO	"Mo ramiento de propiedades físico-me nicas de suelos con adid Onde adrivos organ, cos en la carretera Yauri-ue - Ranraca Cusco 2021			
UBICACION	Yaun=ue Ranraccasa- PanJfo 1FECHA DE ENSAYO: 1			
CALICATA				
MUESTIUI				
PROFUNDIDAD				

		Material Pasante Tamiz No											
DESCRIPTION	UNIDA	LIC		_)			LIMITE PLASTCO					
Nro. De Recipiente		1	2	3				1	2	3			П
Peso Recipiente + Suelo Húmedo (A)	gr.	1	_)				1					
Peso Recipiente + Suelo Seco (B)	gr.												
Peso de Recipiente (C)	gr.												
Peso del Agua (A-B)	gr.												
Peso del Suelo Seco (B-C)	gr.												
Conten do de Humedad W=(A-B)i(B- C •100	%												
N"De Gol s													

	delMI.T_,sE_g_Ec@Q		INDICE PLÁSTICO
RESULTADOS OBTENIDOS	ÚQUIDO	PlASTICO	
RESULTADOS OBTENIDOS			



1 III I,\ IJI RI.CUI i,LCICIN DI Di\ 10S

CBR DE SUELOS (LABORATORIO) MTC E 132 ASTMDt883

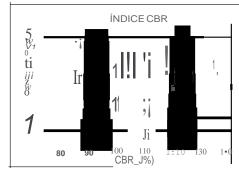
REFERENCIA	DATOS DE LABORATO R O					
SOLICITANTE	Arana Ordot\ez Marvcruz Paredes Baca Flor del Carmen					
TITULO	"Mejoramiento de propiedades ffsico-mecAnicas de suelos con adición de adrtivos organicos en la carretera Yauri, ue - Ranraccasa Cusco-2021'					
UBICACION	Yaurisaue Ranraccasa• Paruro 1FECHA DE ENSAYO: 1					
CALICATA						
MUESTRA						
PROFUNDIDAD						

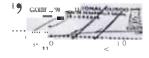
MOLDEN				2				3					
N" Caoas													
N"'d e oolm s													
CONO. MUESTRA		NO SATURAGO	SA.TUft	ADO	SATU	RADO	SATUPIA	00	NO SA	TURADO	SATIJRAO)	
P. Suelo+Mo	lde (gr)											
Peso Moldel	nr\												
Pe90 sueloco													
Volumendel I													
Densidad Hú	meda {	or/em3l											
Hum@dad %,													
Denaidad sed													
CONTENID)										
Tara •&Uelo													
Tara • suelos		or\											
Peso Mu,a													
Peso Tara rn													
Pesode suel		,,											
Humedad(%													
I:XPANSIC	Ж												
	Н		0111	,, - _{II}		0111		t.qt-, ,lón mm		11111		ezpa to	L
• • • • • • • • • • • • • • • • • • • •			0111									mm	-
													+
1													1
													-
PI N ST RACIO	N			•		-						•	
		G. 1 1	MOLDEN-01	OLDEN-01 c«tt <dm< td=""><td colspan="3"><u></u> N•02</td><td colspan="3">MOLOE,t-ol</td></dm<>		<u></u> N•02			MOLOE,t-ol				
Penetrac:IOfl (pulg,J	C,rg., Standard (kw <m21< td=""><td>••.1</td><td colspan="2">CWCCVGI</td><td colspan="2">C•g., Co,rt:c:don</td><td colspan="2">●, 75 u</td><td colspan="2">Co««:clón</td></m21<>		••.1	CWCCVGI		C•g., Co,rt:c:don		● , 75 u		Co««:clón			
(puig,J	(1/44/1	112 1		Kucmz	CoR%	-	Karc. 2	TITICITIZ	CBR !		kokm2	fflrcm2	C8R
													1
				\vdash							\vdash		†
							 						t
						1		1			•		
					1								1

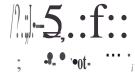
1 || 11 \ | || 1{1 || || || || || || || || 11 || 11 || 1 || т,

COR DE SUEL OS(LABORATORIO) MTC E 132 ASTM DI88J

REFERENCIA	DATOS DE LABORATORIO					
SOLICI TANTE	Arana Ordonez Ma~=n PaedesBaca F1o <del carmen<="" th="">					
TITULO	• Mei01amoento de p.op.edades nsoco-m Icas do suelos ton adra6n de adIllivOs organicos en la carretera Yal.JrtCt*llue Rar.a <casa cusco-2022-<="" th=""></casa>					
UBICACION	Yaunsqoe ranraccasa• FECHA DEENSAYO					
CALICATA						
MUESTRA						
PROFUNDIDA						
0						


Datos de ll Nnl Ci Mélodo de comi>actadOn MaXJma Densidad Seca lqi lcm:z Ma,nmaDen\$idar, Seca al 95%


Qpbmo Conteru:lo de Humedad



C 9 R P** ti 100% de III MD 5 O I"
CBR p..... 115%ClelaMOSO 1CBR Pr.>e4100%cleloMOS02'
C BR P,nd 95%dol*MOS02'

PESO ESPECIFICO ASTM D- 854

REFERENCIA	DATOSDELABORATORIO					
SOLICITANTE	Arana Ordonez M Ncruz Paredes Baca Flor del Carmen					
TITULO	"Mejoramiento de propiedades fIslco-me nicas de suelos con adición de adrtivos org nico-; en la carretera Yaurisaue - Ranraccasa Cusco-2021"					
UBICACION	YaurisnueRanraccasa- Paruro 1FECHA DE ENSAYO: 1					
CALICATA						
MUESTRA						
PROFUNDIDAD						

LATA	1	2	3	
PESOFRASCO+AGUA+SUELO				grs.
PESOFRASCO+AGUA				grs.
PESO SUELO SECO				gr
PESO SUELO EN AGUA				gr
VOLUMEN DEL SUELO				cm3
PESOESPECIFICO				grs.tcm3
PROMEDIO 1				grs.tcm3

I. DATOSGENERALES	(Q <i>Ül</i> i:::	-	ijΤ':!	l.	,	t.:h.	d'4	5½1	\1 ₋				
Apellidos y nombres del cMperto:	CIII.	- 4	1,7	0	1	,,- Jl.	₁₁ (₂ / ₄ /	t/-1	/1-	_ :	_ :		
:f.'e	_		-										
N de registro CIP	<u>"2"6211 :: \\Z".!J-</u>	_ :	-	_	-	_	_	_	_	_	_	_	
	4 (PNY : 4 L4C (O. /	_	A 11		, -	_			_		_	_	

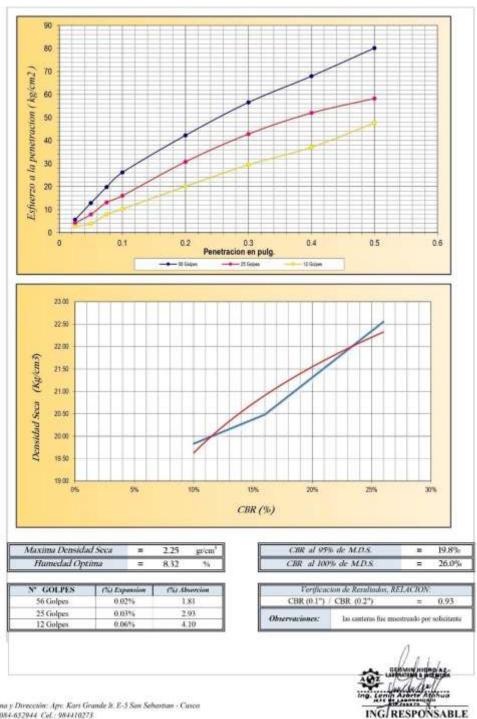
Autores del Instrumento: Br. Arana oriooez, Marycruz.

Br. Paredes Baca, Flor del Qirmen

Instrumentos de evaluación: Análisis granulométricode suelos, Compactación de suelos (Proctor modificado), limites decon-sistencia, Californ ia Bearing Ratio (CBR) y Pesoespecífico .

11. ASPECTOS DE VALIDACIÓN

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUEN A (4) EXCELENTE (5)


CRITERIOS	INDICADORES	1	Z	3	4	5
CLARIDAD	Los Items cst.ln redactados con lenguaje apropiado y hbre de ambig0cdades acorde con los sujelos muestr.Jles					X
OBJETIVIDAD	Lasinstrucciones ylos Items del instrumento permitenrecoger la inrormaclón objetiva sobre la vartable:SUBRASANTEen todas sus dimensiones enindicadores conceptuales yoperacionales					X
ACTUALIDAD	Elinstrumento demuestra vigencia aco rde con el conocimiento científico, tecnológico,innovación y lenalinherente a la vertable: SUBRASANTE					X
ORGANIZACIÓN	Los Items del instrumentorenejanorganicidad lógica entrela definición operacional y conceptual respecto e la variable, de manera que permite hacer inferencias en íunción a las hipótesis,problema y objetivos de la investi					'J-
SUFICIENCIA	Los Uems del instrumento son suficientes en cantidad y calidad acorde con la variable, dimensiones e indtcadores					Χ
INTENCIONAUDAD	Los ílems del instrumento soncoherentes con el tipo dede investigacióny responden a los objetivos, hioótesis V varible de estudio					X
CONSISTENCIA	La in formación que se recoja a través de los rtems del instnJmento permitirá analizar, describir y e-mlicarla realidad motivo de la investinación					X
COHERENCIA	Los Items del instrumento expresan relaciónconlos indicadores do cada dimensión de la variable: SUBRASANTE					X
METOOOLOGIA	La relación entre la técnica y el instrumenlo propuestos responden al propósito de la investinación desarrollo tecnofOOico e innovación					X
PERTINENCIA	La redacción de los rtems concuerda con la escala valoretiva del ins1rumento					><
_	PUNTAJE TOTAL		7.0	0.0		

 $\{ \hbox{NOTA}; \hbox{Teneren cuenta que el Instrumento es v\'alido cuando setiene un punta}_i\hbox{e m\'inimo de 41}; \\ \hbox{sin embargo, un puntaJem or al anterior seconsidera al instrumento no v\'alido ni aplicable)}$

III. OPINION DE APLICABILIDAD	III. OPINION DE APLICABILIDAD										
PROMEDIO DE VALORACIÓN:	CUSC	CO de Enero del 2022									

Anexo 4.

Officina y Dirección: Apr. Kurs Grande It. E-5 San Sebastian - Cusco Tlf.: 084-652944 Cel.: 984410273

RESISTENCIA A LA ABRASION - 1<..:: SA YO DE LOS ANGELES, KOR'1A MTC - E 207-2016

RI:ALIZADO POK S. Q. F.

REVIZADO POR: LA.A.

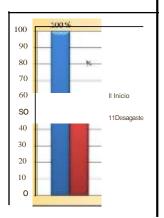
Laboratorio de Mecánica de Suelos, Materiales y Pavimentos

D''tos del proyecto

""Mejoramiento de sucios con aditivos organícos en la carretera Yaurisque - Ranracasa, Cusco - 2022" Proyecto

Ubicacion : Calicata 06+000 al 0&+o00

: Arana Ordoñes Marycruz - Baca .flor del Cannen Solicita11te


: 16102/2022 Fecha

Muestra *Km*.: 08+000

Tamaño Maximo	Graduación	Nº Revoluciones
1"	A	500

Nº Billas	Peso Inicial	Peso Final
12	5003	2495

Desgaste
50.13%

Lado: IZQUIERDO

las canteras li.ic muestreado por Ob se rvaciones

olicitante

ING. RESPONSABLE

Oficina y Dirección: A¡w. Kari Gm nde Ir. 1:-5 San Sehastian - Cusen **nf:** 08./-652944 Ce/.: 98 ././10 27 3

ENSAYO DE PROCTOR MODIFICADO. NO $\;$ IU $\cdot IA$:\1' 1'C , 1; 11:'i - 2016

REALIZADO POR:

REVEATO I'OR:

l.ahoralorio de Mec:única de Suelos , Malen·a/es y Pavimentos L.A A.

Datos del proyecto

·Mejoramiento de sucios con aditivos organicos en la carretera Yaurisque - Ranracasa. Cusco - 2022' Proyect'

Km.: 08 1000

Uhicado11 : Calicata 06+000 al 08+000

: Arana Ordoñes Marycmt. - Llaca "1or del Carmen Solicitante

1610212022 Fecha

% de humeda d

: C-03 J'1. 11es tr

lado : 1/.QU TERIX J

8.70

1060

10.60

Detalles del emmJ*0: MO LDE N'	Unidad		1	2	;		3		4	
Peso del .me /o h l lmedo + Mold e	gr.		7846 8017				8251	8097		
f>e.m del mo l de	gr.		3313 3313		13		3313	3313		
Pe.w ,le / suelo h11me,lo	gr.		4533		4704		4938		4784	
Volumen ,/elmolde	cm3		1984		1984		1984		1984	
/)(-iti Jud del .iuelu humedú	Qr/cm 3		2.28	2.3	37	2.49		2.41		
CAPSULA		Α	В	е	D	E	F	G	Н	
Pesode la capsula	gr.	24.90		25.6		24.61		24.44		
Capsula + Suelo humedo	gr.	152.36	6	149.96		145.99		183.81		
Capsula + Suelo seco	9'-	145.33	5	141.98		136.27		168.54		
Peso del agua	9'-	7.01		7.98		9.72		15.27		
Peso del suelo seco	g,	120.4	k	116.38		111.66	5	1441		

Obseri aciones : /m,; c ,mtera s fu e 11111estr e ,u /o por s1Jli citm1te

Oficina y Dirección: A¡w. Kari Gmnde lr.1:-5 San Sehastian - Cusen **nf:** 08./-65 2944 Ce/.: 98 ././10 273

ING. RESPONSABLE

E NS AYO VALOR DE SOPORTE DE $S \, \mbox{UELOS}$ - \mbox{CBR} , \mbox{NOR} 1 A MTC E 1a2 -

2016 Laborat01•;0 de Mecánica de Suelos, At/aterialesy Pavime1110s REALIZADO POR:

REVIZADO POR:

/,. A. A.

Datos del proyecto

 ${\it Proyecto} \ \ "{\it Mejoramiento de sucios con aditivos organicos en la carretera \ Yaurisque-Ranracasa, Cusca-2022"}$

Ubiclicion : Calicata 06+000 al 08+000

Solicital Ite: Arana Ordoiks Marycrn1 - Baca flor delCam1cn

Fecha : 16/02/2022

Km. : 08+000

lado : IZQUERDO

OATOSOF.L MOLDE (c m.)	Moltle	N" 01	MtJ/ti	le N" 02	1lf oltl	e N'' 03	D,,tm∙ Gene rt	ule.,·
Altura	CIU	17	.92	1	7.85	1	7.85	Dens, Max Se<;;a	225
Diámetro	cm	15	.18	1	5.25	1	5.23	HumedadOptin a	832
Volumen	en,'	213	0.2	21	137.1	21	31.5	HumedadNatural(%):	2002
O ATOS OF. COMPACT ACTON	l	56 Ge	olpes	1 250	Golpes	12 (Golpes	Pesodel martillo	10 lbs
Peso del Molde y Muestra Compacta	gr.	99	87	9	602	9	487	AJtura del martillo:	18 pulg
Peso del Molde	gr.	47	84	1 4	859	4	902	Pesodeldisco esp ·	9 lbs
Peso de la ,\fuesirn Compacta	g,.	52	203	4	743	4585		Mura del disco esp	2.4 pulg
IDemidu d Ilumedt,	gr/cm ³	2.	44	2	2.22	2.15		Número de Capas-	5 capas
!Densidad Seca	v icm ³	2.	25	2	2.05	1	.98	Númerodegolpes:	56 und
Peso del Ta1TO	g,.	24.50	24.30	24.60	25.10	24.70	24.20		
Peso del Tan·o + Suelo Humedo	g, .	167.22	164.58	154.45	160.74	154.82	159.47	1	
Peso del Tarro I Suelo Seco	g,·.	155.84	154.23	j 144.25	150.48	144.57	149.03		
Peso del Agua	gr.	11.38	10.35	10.20	10.26	10.25	10.44		
Peso del Suelo Seco	g,.	131.34	129.93	119.65	125.38	119.87	124.83		
Contenido de l/11meclt1d	%	8.66	7.97	8.52	8.18	8.55	8.36]	
Conrenido de Humedad Promedio	%	8.	32	. 8	35	8	.46		
Peso M+M C. des;me\.· de lnmer\. i{m	g,·	100	081	1 9	741	9	675	_	
Peso del Molde y Muestra Compacra	g,·.	99	87	9	602	9487		1	
Porcenraje de Absorción	%	1.	81	2	2.93		.10	-	

CTE. DIALEX	KPANSTON	1		1 o/de N' (01	1	o/de NV	0	М	o/1/ e NV ()
FECHA	HORA	Tiempo	Dial mn	n Pulg.	% Ехр.	Dial mm	Pulg.	% Exp.	Dial mm	Pulg.	% Exp.
16/02/2022	1600	00 horas	0.00	0.000	0.00%	0.00	0.000	0.00%	0.00	0.000	0.00%
17/02/2022	16.00	24 horas	0.02	0 00	- 01%	0.03	0.001	0.02%	0.04+	002	0 .02%
18/02/2022	16.00	48 horas	0.02	0.001	0.01%	0.03	0.00	1 0.02%	0.06	0.002	0.03%
19/0212022	16.00	72 horas	0.04	0.002	0.02%	0.04	0.002	0.02%	0.08	0.003	0.04%
20/0212022	16.00	96 horns	0.04	0.002	0.02%	0.05	0.002	0.03%	0.11	0.004	0.06%

Constante de	el Amllo 1			Molde N' 01		1	Molile N•	02	Λ	4oldeN• (03
Area Pistón 11	19.3	cm I		56Golpes			25 Golpe	25		12 Golpes	
Tiempo		TRACION (p11/g)	Dial	Carga Kgf	F.:ifier. Kulcm	Dial	Carga Kgf	F.ifuer: K f!lcm¹	Dial	Carga Kgf	Fsfiier. Kt;!/cm
0.5 m.i.n	0.64	0.025	18	108	6	13	80	4	8	52	3
l.Omin	1.27	0.050	43	248	13	26	153	8	12	74	4
1.5min	1.91	0.075	67	382	20	44	253	13	26	153	8
2.0 min	2.54	0.100	89	504	26	54	309	16	34	197	10
4.0 mi.n	5.08	0.200	145	815	42	105	593	31	68	387	20
6.0 min	7.62	0.300	195	1091	57	147	826	43	100	568	29
8.0 min	10.16	0.400	235	1312 :	68	179	1003	52	127	715	37
!O.Omin	12.70	0.500	278	1548	80	201	1125	58	164	920	48

ING. RESPONSABLE

Oficina y Dirección: A¡w. Kari Gmnde lr.1:-5 San Sehastian - Cusen Tif:08 ./-6 52944 Ce/.: 98 ././10 273

A1" \L ISIS GI{ AN UL OM .ETIU CO 1'0 1{ TAMiilADO Y LÍMITES DE 00 1"SIS TEN CIA DE ATT ERil ERG :\fT C E 107 - 110 - 111

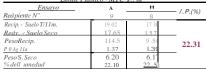
!,abora/Orio de Mecánica de Suelos, Materiales y Pavimentos

REALIZADO POR: S.O.FREVIZADO POR:

Datos del proyecto

Proyecto io r..nni e nlo de suelos con aditivos organicos en la carre tera Yaurisque - Ranracasa, Crn;co - 2022"

Ubicaci**u** Solicitunte Fecha Ilf Iwstra : Calicata 06+000 al 08+000 : Arana Ordoñes Marycru/ - Baca Flor dd Carmen : 16/02/2022

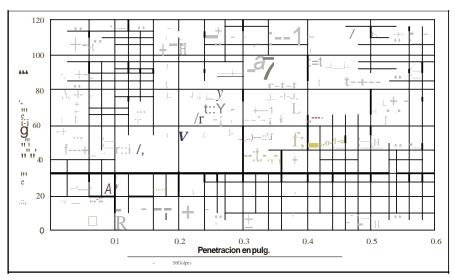

Lím ite Líquido - M TC E 110								
Ensayo	1	1	3					
N" de Golpes	JO	26	18					
Recipiente N"	JI	12	JO					
Ret:i s Suelo Hum.	45 66	43 87	45 13					
Reeiv Suelo Seco	41.25	39.55	40.23					
Peso Recip.	24.87	24.32	24.17					
Pe@ Ag I h	4.41	4 32	4.90					
PesoS. Seco	16.38	15.28	16.06					
%de Humedad	26.92	_21U7	30.51					

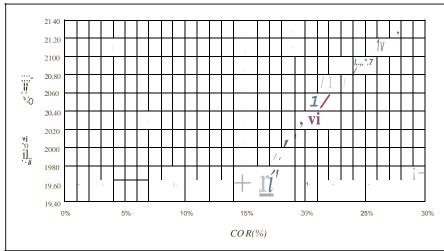
	a - 1.,,1,1 n •	и					
n atos de IISIIYO							
'eso Toral	-	3210.0					
"" m d mu ra/.rado	-	3210.0					
Co,rte ui do de ll um edad Natu r <u>l</u>							
05/16 1:115/1							

 Co,rte ui do de ll um edad Natu r	1
osae .i:,iis(i 'o	
	136.1
-	113.4
	0

I\l a	1	Peso	3/4Ret	34Ret o/	que -:s.	cci fi	c 11cio	nl'.
Ta miz	mm.	far\	Padal	.Acum .	Pasa	_		_
3"	76.200	0.0	0.0	0.0	100.0			
2 1/2"	63.500	0.0	0.0	0.0	100.0			_
2"	50.600	O 0_		0.0	I D0.0		100	
1112"	38.100	58.8	1.8	1.8	98.2		Too	
1"	25.400	77.5-	- 2 A	4.2	95.8	90		lilic
314"	19.050	88.7	- 2 A 2.8_	7.0	93.0	65		JIJζ
112"	12.700	49.2_	1.5	8.5	91.5			
318"	9.525	67.0_	2.1	10.6	89.4	45		L 80
114"	6.350	38.7	,. J.2	11.8	88.2			Γ
No4	4.760	67.5	2.1	13.9	86.1	30		65
8	2.360	60.6	15.7	29.6	70.4			
10	2.000	108	2.8	32.4	67.6	22		52
16	1.190	34.7	9.0	41.4	58.6			
30	0.600	35.4	9.2	50.6	49.4			
40	0.420	22.4	5.8	56.4	43.6	15		35
50	0.300	12.8	3.3	59.7	40 3			
100 200	0.149	124.2 1100	32.2 285	91.9 1204	8.1 -20.4	5		20
	0.074				-20.4	,		21
< 200		0.0	0.0	120.4				
Cltu-ifiC1	lci ,ín Sl.l	c.\' •	SI		1. 1	•	. 2	8.46
G1asifica			A-2-4	. (0)	1. 1			5.15

318"	9.525	67.0	2.1	10.6	89.4	45	_ 80	111	_
114"	6.350	38.7	,J.2	11.8	88.2				
No4	4.760	67.5	2.1	13.9	86.1	30	65	110	7
8 10	2.360 2.000	60.6 108	15.7 2.8	29.6 32.4	70.4 67.6	22	52	II '·	,
16 30	1.190 0.600	34.7 35.4	9.0 9.2	41.4 50.6	58.6 49.4			,:: ,.	\pm
40 50	0.420 0.300	22.4 12.8	5.8 3.3	56.4 59.7	43.6 40.3	15	35	.II. 2	n
100 200	0.149 0.074	124.2 1100	32.2 285	91.9 1204	8.1 -20.4	5	20	. ,	-
< 200		0.0	0.0	120.4					


OJ 0 1 0.16


11 0.25

												VA C																	
,00		211	" 2"	""	,•	3,-4-		Ţ.,	, ,	_		Ι΄	<u>"</u>	"	<u>"</u> '	ΊI	.	, 	00 0	10	0, 00	0		,00					
80		1		1	7	F	е	!		Ţ,						H	H	+					H	_	1	H			
60		l					"			1	r	····		L.	Ι'	1		İ							1				<(
20		l						1		r		_				Π	-	Ţ			_			_	7	F	-		
0		Ī					1	1						1		Ħ	9	3		,	_ [,		 			<u> </u>			?f.
.,0	Н	┞		*8 :;	8	Ī	•	7		1 1			<u> </u> 		r	-	,	<u>8</u> 					,,	:	+		+		_
,,		-										-	-		-		-						_						
												A	BERT	ΓUR	A (mm)													

Observacio /ns canterllsf11e mu estrearlo por solicitt m te

ING/RESPONSABLE

MaXll11a Densidad Seca	2.11	gr/cm ²
Hum a Optima	8.15	26

N" GOLPES	(°/o) fu.pmuion	(°/4) Absorcion
56Golpes	0.02%	LIS
25 Cmlpes	0.03%	3.10
12Golpes	0.05%	4.20

CBR al 95% de M.D.S.	=	19.6%
CBR al 100% de M.D.S.	=	28.0%

rerpicaciii	n de Resultados, i	KELAK BAY	
CBR (0.1") / (CBR (0.2")	=	0.78
en]acio]]es :	las canteras fue mu		Linitant

ING RESPONSABLE

Proyecto

RES ISTENCIA A LA ABRASION - 1<..:: SA YO DE LOS A N G E L E S , KOR '1A MTC - E 207-2016

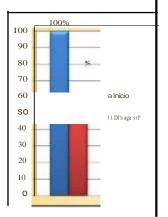
RI:ALIZADO POK: S. Q. F. REVIZADO POR,

Laboratorio de Mecánica de Suelos, Materiales y Pavimentos

D''tos del proyecto

"Mejoramiento de sucios con aditivos organicos en la carretera Yaurisque - Ranracasa, Cusco - 2022"

Ubicacion : calicata 03+000 - 06+000


Solicitante : Arana Ordofíes Marycruz - ílaca flor del Carmen

Feclta : 16/02/2022

limrnño Maximo	Graduación	N º Rl"Voluciones
I"	Α	500

	Peso Tnidal	Peso Final
12	5001	2285

Desgaste
54 .31 %

Observaciones las canteras fue muestreado por

solicitante

Oficina y Dirección: Ajw. Kari Gm nde lr. 1:-5 San Sehastian - Cusen Nf: 08/-652944 Ce/.: 98 //10 273

ING. RESPONSABLE

E NS AYO VALOR DE SOPORTE DE SUELOS - CBR, NOR 1AMTCE la2 -2016

Laborat01•;0 de Mecánica de Suelos, At/aterialesy Pavime1110s

REALIZADO POR: SQ.1-' **REVIZADO POR:**

/,. A. A.

Datos del proyecto

Proyecto "Mejoramiento de sucios con aditivos organicos en la carretera Yaurisque-Ranracasa, Cusca - 2022"

Ubiclicion : calicata 03+000 - 06+000

Solicita11te : Arana Ord011cs Marycrn1 - Baca flor delCam1cn Fecha : 16/02/2022

Fecha

Km. : 06+000 lado : DERECHO : C-02

OATO	SOF.L MO	LDE (cm.)		Mo	ltle N" 01	MtJ	tle N" 02	Ilf a	ltl e N" 03	D,,	t m · Gene r	d e.,·
Altura			CIII		17.91		17.81		17.86	Dens, Max Se	;;;a	211
Di ám etro			cm		15.18		15.24		15.22	HumedadOptin a		815
Volumen			en,'		2128 .3	2	1 27.0	2	2130.5	Humedad Na	tural (%):	1624
OATOS	OF.COMPAC	CT ACTON		5	6 Golpes	25	Golpes	12	Golpes :	Pesodel mart	illo	10 lbs
Peso del Molde y	Muestra Con	ıpacta	gr.		9967 9		9655		9464	AJtura del ma	rtillo:	18 pulg
Peso del Molde			gr.		5103		4879		4942	Pesodeldisco	esp ·	9 lbs
Peso de la ,\ues	Irn Compacta		gr.		4864		4776		4522	Mura del disc	2.4 pulg	
IDemidad Ilume	dt,		r/cm ³		2.29		2.25		2.12	Número de C	apas.	5 capas
!DensidadSeca		1	icm ³		2.11		2.08		1.96	Númerode go	lpes:	56 und
Peso del TalTO			gr.	0.00	0.00	0.00	0.00	0.00	0.00			
Peso del Tan·o +	Suelo Humed	lo	gr.	168.7	9 166.59	156.17	161.92	156.8	159.02			
Peso del Tarro	Suelo Seco		g,·.	156.3	9 153.71	j 144.31	150.27	145.03	3 147.13			
Peso del Agua			gr.	12.40	12.88	11.86	11.65	11.75	11.90	ļ		
Peso del Suelo Seco			g,.	156.3	9 153.7 1 j	144.31	150.27	145.08	147.13			
Contenido de líum eclt1d		%	7.93	8.38	8. 2 2	7.75	8.10	8.08	ļ			
Conrenido de Hui	medad Prome	dio	%		8.15		7.99		8.09			
Peso M+M C. des;mes de Inmer .Ii{m		g,·		10023	9	9803		9654				
Peso del Molde y		праста	g,·.		9967		9655	9464				
Porcenraje de Al	bsorción		%		1.15		3.10		4.20			
CTE. DIALEX	PANSTON	1			1 o/de N' 01		1	otáe NV	0	N	lolt/ e N" O	
FECHA	HORA	Tiemp	0	Dialm	m Pulg.	% Exp	Dial mm	Pulg.	% Ехр.	Dial mm	Pulg.	% Exp.
16/02/2022	16.00	00 hor	as	0.00	0.000	0.00%	0.00	0.000	0.00%	0.00	0.000	0.00%
17/02/2022	16.00	24 hor	as	0.01	0.OOWo	.0 1%	0.02	0.001	0.01%	0.04+	002	U .U2%
18/02/2022	16.00	48 hor	as	0.02	0.001	0.01%	0.03	0.00	0.02%	0.05	0.002	0.03%
19/0212022	16.00	72 hor	as	0.03	0.001	0.02%	0.04	0.002	0.02%	0.08	0.003	0.04%
20/0212022	16.00	96 hori	าร	0.04	0.002	0.02%	0.05	0.002	0.03%	0.09	0.004	0.05%
Constante de	Amllo 1				Molde N' 01		Λ	Molile N	02	Λ	1oldeN• ()3
1 Area Pistón 11	19.3	cm.	1		56Golpes			25 Golp	2S		12 Golpes	
l'ENETRACION		TRACION		Dial	Carga	F.:ifier.	Dial	Carga	F.i:fuer.	Dial =	Carga	Fsfiier.
Tiomno	• 23. 12.				77 ° C	Kulcm	Diai	Kgf	K f!lcm 1	Diai	Kgf	K t;!/cm 1
Tiempo	(mm)	(p11/g)		Kgf	Kutcm		11-87	K j. icm		Kgj	,
Tiempo 0.5 m.in	(mm) 0.64	0.025	5	17	102	5	14	85	4	10	63	3
, ,	(mm)	0.025	5	17 45	102 259		36	85 209	_	21	- 00	
0.5 m.in	(mm) 0.64	0.025	5		102	5		85	4		63	3

1047

1531

1870

2197

275

521

69 2

920

1114

;;;l::rṛñ

92

122

199

50

63

965 1207

1493

172

216

268

114

36

48

58

Oficina y Di rección: A¡w. Kari Gmnde lr.1:-5 San Sehastian - Cusen Tif: O8./-65 2944 Ce/.: 98.//10273

7.62

10.16

12.70

0.300

0.400

0.500

INGI ESPOOTSABLE

1114

ENSAYO DE PROCTOR MODIFICADO.

REALIZADO POR:

NO $\;$ IU $\cdot I$ A :\ 1' 1'C , 1; 11:'i - 2016

REVIZAS I'OR:

l.ahoralorio de Mec:únic:a de Suelos , Malen a/es y Pavim entos

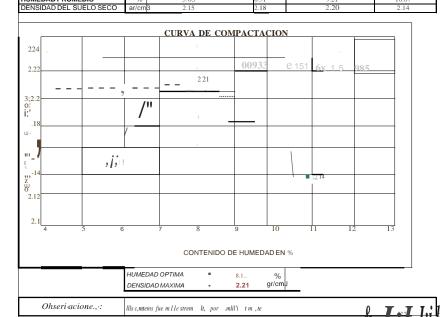
L.A A.

Datos del proyecto

Pwyecl" "Mejoramientode suelos con aditivos organicos en la can-etera Yamisque - Ranrncasa, Cusco - 2022"

: calicata 03+000 - 06 000 llbicado11

: Arana Ordoiics Marycruz - Baca Flor del Cannon : 16/02/2022 Solicital Ite


Feclw

i\f ueslm

Km.: 06+-000

J.mlt, : DERECHO

Nro. de Golpes por capa Diámetro del molde	: 56 14.92 1	11	IINro. de Ca IIA/t .Mold .		5 11.35	11 11		10(100)	:,4 1984.39	
Detalle., · del e11.711_) 0:										
MOLDE N''	Unidad		I		2	3		4	1	
Peso del suelo humedo+ Molde	gr.	,	7370		7471	762	7	75	65	
Peso del molde	gr.		2862		2862	286	2	286	52	
Peso del suelo h11medo	gr.		4508	4609		4765		470	4703	
Volumendel molde	cm3		1984		1984		4	198	84	
lk nsid"d del suelohl Imedo	ar/cm3		2.27		2.32	2.4	D	2.3	37	
CAPSULA		Α	В	е	D	E	F	G	Н	
Peso de fa capsula	gr.	50.0		50.0		50.0		50.0		
Capsula + Suelo humecto	gr.	151.75		149.51		132.26		162.56		
Capsula + Suelo seco	gr.	146.33		143.42		125.32		151.52		
Peso del agua	gr.	5.42		6.09		6.94		11.04		
Pesodel suelo seco % de humedad	gr. %	96.33 5.63	5.63	93.424 6.51	6.51	75.32 9.21	9.21	101.52 10.87	10.87	
HUMEDAD PROMEDIO	%		5.63		6.51	9.2	1	10.	87	

Vji, r ~7/J1 ,;;9:;:e;,1;1 AfOn7A;'tFi'''u·a

Oficina y Dirección: A;w. Kari Gmnde lr.1:-5 San Sehastian - Cusen n;_.08 -1-65 294 4 Ce/.: 98-1-110273

IN 1:S'I>'O SABLE

A1" \L ISIS GI{ AN ULOM.E'I'IU CO 1'0 1{ TAMiilADO Y LÍMITES DE 00 1"S IS TEN CIA DE ATT ERil ERG :\fT C E 107 - 110 - 111

!,abora/Ori o de Mecánica de Suelos, Materiales y Pavimentos

REALIZADO POR: S.Q.F

REVIZADO POR: L. A. A.

Lado: IJF.RF.CHO

Datos del proyecto

iódijo r..nn ie nlo de suelos con aditivos organicos en la carre tera Yaurisque - Ranracasa, Crn;co - 2022" Provecto

Ubicac**ia** Solicitunte : calicata 03+000 - 06+000

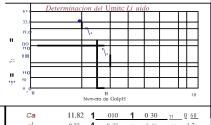
: Arana Ordoñes Marycru/ - Baca Flor dd Carmen : 16/02/2022

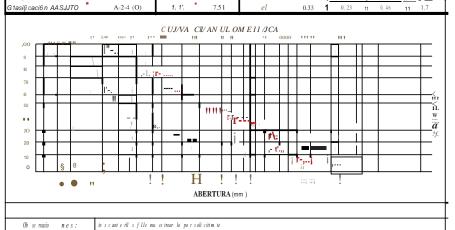
,11/g/mitelts.ale - 1.1/3111/On

Co,rte ui do de ll um edad Natı

Fecha Ilf Iwstra

Cltu-ificllci,ín SllC.\'


En sayo Lim i	te Liquido - _I M TC	Líquido - M TC E 110				
		1				
N" de Golpes	31	25	19			
Recipiente N"	8	53	4			
Ret:is Suelo Hum.	41.52	41.35	42.88			
Reeiv Suelo Seco	32.35	31.66	32.31			
Peso Recip.	0.00	0.00	0.00			
PesO Ag IIa	9.17	9.69	10-57			
Peso S Seco	32.35	31.66	32.31			
%de Humedad	2/U S	30.61	32.71			


		_						
Ta miz	mm.	Pes o farl	¾ Ret Pard al	¾ Reto	o q ue Pasa	cci fi c	l lcio nl'	
2 1/2"	63.500	0.0 9 -9_	0.0_ O. 0	0.0	100.0		-	
2" 1 112"	50.600 38.100	51.6	2.4	0.0	IDO.0 97.6		100 Too	
1" 314"	25.400 19.050	61.4 _ 112.2	2&_ 5.2	5.2 10.4	94.8 89.6	90 65		JQO 100
112" 318"	12.700 9.525	78.8 302	3.7 1.4	14.1 15.5	85.9 84.5	45		80
114" No4	6.350 4.760	114.8 73.I	i,? 3 3.4	20.8 24.2	79.2 75.8	30		65
10 16 30	2.000 1.190 0.600	83.0 260 41.2 35.3	18.7 5.9 9.3 8.0	42.9_ 48.8 58.1 66.I	57.1 51.2 41.9 33.9	22		52
40 50	0.420	22.0 54.0	5.0 122	71.1	28.9 16.7	15		35
100 200	O.149 0.07 4	65 .0 8.3	14.7 1. 9	98 .0 99 9	2. 0 0 .1	5		20
< 200		0.0	0.0	99 .9				

SP

l. l..

	istico -MTC	`J:: lll	
Ens ayo	A	"	/P.(%)
Reá piente N"	6		7(70)
Recip Suelo T/11m.	19.37	20.28	
Reá v Su elo Seco	18.33	18.1	2
PesoRecip.	13.36	9.47	22.95
P 0 Ag 11a	1.04	2.16	
PesoS.Seco	4.97	8.65	
%dell umedud	20.93	24.9	7

30.46

RES IS TENCIA A LA ABRASION - 1<..:: SA YO DE LOS A N G E L E S , KOR '1A MTC - E 207-2016

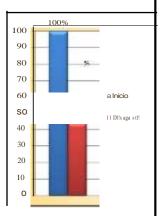
RI:ALIZADO POK: S. Q. F. REVIZADO POR,

Laboratorio de Mecánica de Suelos, Materiales y Pavimentos

D''tos del proyecto

Proyecto "Mejoramiento de sucios con aditivos organicos en la carretera Yaurisque - Ranracasa, Cusco - 2022"

Ubicacion : Calicata oo+OO0 al 03+-000

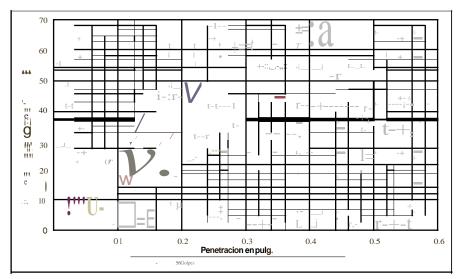

Solicitante : Arana Ordof'íes Marycruz - ílaca flor del Carmen

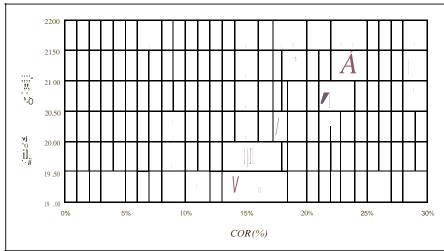
Feclta : 16/02/2022

limrnño Maximo	Graduación	N º Rl"Voluciones
I"	Α	500

	Peso Tnidal	Peso Final
12	5000	2191

Desgaste
56.18%


Observaciones las Muestra fue muestreado por


solicitante

Oficina y Dirección: A¡w. Kari Gm nde lr.1:-5 San Sehastian - Cusen Nf.: 08./-652944 Ce/.: 98 //10 27 3

Cashming Highpaz

ING. RESPONSABLE

2.14	gr/cm ²
8.24	26
	2.14 8.24

N" GOLPES	(°/o) fu.pmuion	(°/4) Absorcion
56Golpes	0.02%	2.57
25 Cmlpes	0.03%	5.19
12 Golpes	0.06%	6.77

CBR al 95% de M.D.S.	19.7%
CBR al 100% de M.D.S.	= 25.09

	ion de Revultados, b	Harris Anna Control	
CBR (0.1")	CBR (0.2")		0.89
Obsen1acio11es :	las Muestra fue mu		

Oficina y Dirección: A;w. Kari Gmnde lr.1:-5 San Sehastian - Cusen Nf. 08./-652944 Ce/.: 98 //10 27 3

ENSAYO VALOR DE SOPORTEDE SUELOS - CBR, NOR 1AMTCE la2 -2016

Laborat01•;0 de Mecám·ca de Suelos, At/ater;a fes y Pavime1110s

REALIZADO POR: SQ.1-'. **REVIZADO POR:**

/,. A. <u>A</u>.

Datos del proyecto

Proyecto "Mejoramientode sucios con aditivos organicos en la carretera Yaurisque-Ranracasa, Cusco - 2022"

Ubiclicion: Calicata Oo+oOO al 03+000

Solicital1te: Arana Ordoik s Marycrn1 - Baca flor delCam1cn
Fecha: 16/02/2022

Km. : 03+000 lado : DERECHO : C-01

OATOSOF.L MOLOF. (c m.)		M tJl	tl e N" 01	, MtJlt	∕e N" 02	1lf ol	Itle N " 03	D,,tm · Gene r	√ e _,
Altura	CIII	•	17.90		7.80	1	7.85	Dens. Max Se<::a	214
Diámetro	cm		15.19	1	5.25	1	5.23	Humedad Optima-	824
Volumen	en,'	2	2129 .3	2	127.9	21	131.5	HumedadNatural(%):	806
OATOS OF.COMPACTACTON		.56	Golnes	1 2.5	Gal nes	12.0	Golnes	Pesodel martillo	10 lbs
Peso del Molde y Muestra Compacta	gr.	9	9962	9	486	9	332	AJtura del martillo:	18 pulg
Peso del Molde	gr.		5023	4	859	4	902	Pesodeldisco esp ·	9 lbs
Peso de la ,\fuesim Compacta	gr.	4939 4627 4430		Mura del discoesp	2.4 pulg				
IDemidu d Ilumedt,	gr/cm ³		2.32	2	2.17	2	2.08	Número de Capas-	5 capas
Densidad Seca	v -/cm ³		2.14	2	2.01	1	.92	Número de golpes:	56 und
Peso del Ta1TO	gr.	25.09	24.95	24.69	25.10	24 .87	24.88		
Peso del Tan·o + Suelo Humedo	gr.	167.86	165.43	155.61	162.11	154.82	159.17		
Peso del Tarro i Suelo Seco	g,.·	157.01	154.71	145.78	151.89	145.32	149.05		
Peso del Agua	gr.	10.85	10.72	9.83	10.22	9.50	10. 12		
Peso del Suelo Seco	g,.	131.92	129.76	121.09	126.79	120.45	124.17		
Contenido de l/11meclt1d	%	8.22	8.26	8.12	8.06	7.89	8.15		
Conrenido de Humedad Promedio	%		8.24	. 8	.09	8	.02		
Peso M+M C. des1me \. de lnmer.Ii{m	.g,·	1	0089	9.	726	963	3 2		
Peso del Molde y Muestra Compacta	g,·.	9	9962	9	486	9.	332		
Porcenraje de Absorción	%		2. 57	5	5.19	6	5.77	•	
CTE DIALEXPANSTON 1			1 olde N' (07	1	olde NV ()		Molle NV (

CTE. DIALEX	KPANSTON	1		1 olde N' 01		1	olde NV	0	М	lol,le NV ()	
FECHA	HORA	Tiemp o	Dial mn	n Pulg.	% Exp.	Dial mm	Pulg.	% Exp.	Dial mm	Pulg.	%Exp.
16/02/2022	16.00	00 horas	0.00	0.000	0.00%	0.00	0.000	0.00%	0.00	0.000	0.00%
17/02/2022	16.00	24 horas	0.01	O.OOWo	.0 1%	0.02	0.001	0.01%			0.02%
18 / 0 2/ 2022	16.00	48 horas	0.02	0.001	0.01%	0.03	000	0.02	0. 04 + 0.05	002 0.002	0.03%
19/0212022	16.00	72 horas	0.04	0.002	0.02%	0.04	0.002	0.02%	0.08	0.003	0.04%
20/0212022	16.00	96 horns	0.04	0.002	0.02%	0.06	0.002	0.03%	O.JO	0.004	0.06%

Constan te d	el Aml lo 1			Molde N' 01		Λ	Aolile N•	02		Molde N• 0	13
Area Pistón 11	19.3	cm l		56Golpes			25 Golpe	es		12Golpes	
Tiempo	l'ENE (mm)	TRACION (p11/g)	Dial	Carga [†] Kgf	F.:ifuer Kulcm'	Dial	Carga Kgf	F.i:fuer. Kf!lcm¹	Dial	Ca rga Kgf	Fsfi-ier . Kt;!/cm ¹
0.5 min	0.64	0.025	16	97	5	10	63	3	8	52	3
l.Omin	1.27	0.050	38	220	11	29	169	9	17	102	5
1.5min	1.91	0.075	59	337 1	17	48	276	14	3.4	1 97	10
2 .0 min	2.54	0.100	85	482	25	62	354	18	46	264	14
4.0 mi.n	5.08	0.200	145	815	42	111	627	32	75	426	22
6.0 min	7.62	0.300	175	98 1	51	142	7 99	41	105	596	31
8 .0 min	10 . 16	0.400	197	1102	57	162	909	47	135	760	39
10.0 min	12.70	0.500	202	1130	59	185	1036	54	164	920	48

; $i[re\tilde{n}il, ii;r?;:1t1. \cdot \overline{a}]$

IN I!SV'O SABLE

Oficina y Dirección: A_Iw. Kari Gmnde lr.1:-5 San Sehastian - Cusen Tif:08./-652944 Ce/.: 98.//10 273

|| || ||

ENS AY O DE PROCTOR MOD IF ICAD O.

N O IU ·I A :\ 1' 1' C , 1; 1 1 : i - 20 16

REALIZADO POR:

REVEXASO FOR:

L.A A.

l.ahoralorio de Mec:única de Suelos , Malen·a/es y Pavimentos

Datosdel proyecto

Pwyecl" "Mejoramientode suelos con aditivos organicos en la can-etera Yamisque - Ranrncasa, Cusco - 2022"

llbicad o11

: Calicata 00±000 al 031000 : Arana Ordoiics Marycruz - Baca Flor del Cannon Soli cital1te

16/02/2022 Feclw

i\f uestr

J.mlt, : DERECHO

Vro. de Go lpe s por capa	: 56	,	11	IINro . de Capas	5	11	ill o (lb s)	:, 4
Diámetrodel molde	14	.92	11	HA/t .Mold . (cm)	11.65	11	(cm 3)	2036.8 4 11

MOLDE N"	Unidad	I	2	3	4
Peso delsuelohumedo+ Molde	gr.	7284	7499	7598	7469
Peso del molde	gr.	2862	2862	2862	2862
Peso del suelo h11medo	gr.	4422	4637	4736	4607
Volumendel molde	cm3	2037	2037	2037	2037
/k 11si d"d del suelo h11medo	ar/cm3	2.17	2.28	2.33	2.26

CAPSULA		Α	В	е	D	E	F	G	Н
Peso de fa capsula Capsula + Suelo humecto	gr. gr.	0.00 155 .26		0.00 154.06		0.00 121.65		0.00 185.81	
Capsula + Suelo seco	gr.	146.72		143.68		111.82		168.28	
Peso del agua	gr.	8.54		10.38		9.83		17.53	
Pesodel suelo seco % de humedad	gr. %	146.72 5.82	5.82	143.68 7.22	7.22	111.82 8.79	8.79	168.28 10.42	10.42
HUMEDAD PROMEDIO	%		5.82		7.22	1	8.79	10	.42
DENSIDAD DEL SUELO SECO	ar/cm(3	2.05		2.12		2.14	2	.05

Oficina y Dirección: Ajw. Kari Gm nde Ir.1:-5 San Sehastian - Cusen nf: 08-1-65 294 4 Ce/ .: 98././10273

ING. RESPONSABLE

A1"\L IS IS, GI{ AN ULOM ETIU CO 1'01{ TAMiilADO Y LÍMITES DE 00 1"S IS T EN CIA DE

REALIZADO POR: ATTERILERG:\fTC E 107-110-111 REVIZADO POR:

!,abora/Ori o de Mecánica de Suelos, Materiales y Pavimentos

L. A. A.

Datos del proyecto

"Mejoramiento de sucios con aditivos organicos en la carretera Yaurisque - Ranracasa, Cusco - 2022" Proyecto

Ubicacim,

Soli cital 1/e Fecha

l udo : IJERECIIO

	Gra,,11/om etría - MT C E 10	07
PoM TMnl	Uatos til'i t.mgo	2326

m.temdo de	1/umedud 1Vutu	ırut
	È l / 11H1yo	
de la ll fue stra h l Imeda	=	116.3
Iwc.m de la,\fue straseca	-	1u7 .b
% ,üiII1Imedml	-	81

Límit e	e, J íquitl" - MT C I	E 110	
Ensayo Nºde (',o/pes	1 33	2	3 19
Reciviente .11.""	34	20	25-0
Redµ = Suelo llum	45.16	45.06	45.16
Recip - S11efo Seco feso Recip	40.56 24.7 1	40.21 24.98	39.85 24.23
/esoAKIIO PesoS.Seco	4.60 15.85	4.85 15.23	5.31 15.62
%de !Jwnedad	29.02	31.85	33.99

.Ma	lla	Peso	% K.ct	°/• K.ct	√o a uc			
Ti1mi1.	mm.	/vel	P11rchil	Acum.	P11s 11",	r e cifi (c act 1:	ne.
3 "	76 .200	0.0	0.0	0.0	10 0 .0			
2 1/2"	63.500	0.0	0.0	0.0	100.0			
2"	50.600	0.0	0.0	0.0	100.0		100	
1.112"	38,100	54.0	2.3	2.3	97.7		100	
1"	25.400	97.0	4.2	6.5	93.5	90		100
314"	19.050	25.0	1.1	7.6 8.2	92.4	65		100
1/2"	12.700	14.0	0.6	8.2	91.8			
318"	9.525	54.0	2.3	10.5	89.5	45		80
1/4"	6.350	47.0	2.0	12.5	87.5			
No4	4.760	29.0	1.2	13.7	86.3	30		65
8	2.360	47.0	5.6	19.3	80.7			
10	2.000	16.0	1.9	21.2	78.8	22		52
16	1.190	40.0	4.7	25.9	74.I			
30	0.600	87.0	10.3	36.2	63.8			
40	0.420	92.0	10.9	47.I	52.9	15		35
50	0.300	54.0	6.4	53.5	46.5			
100	0.149	65.0	7.7	61.2	38.8			
200	0.074	14.0	1.7	62.9	37.I	5		20
< 200		5.4	0.6	63.5				
Clasifica	icion 50	-3	SI	4	1 , <i>i</i> 1		3	1.66
Clt1si fict1c	i6 11 A ASH	TO =	A - 4	(1)	1 J. F	P.	7	17

		tico - MT	C E 111	
	Ensayo	A	R	L.P.('3/4)
Recipiem e	N°	9-A	2	2.1 :(/4/
Recip Si	uelo ll um.	17.95	16.82	
Re cip . S	uelo Seco	16.68	15.34	
Peso Re c:ip	١.	11.44	9.36	- 24.49
Peso AR"a		1.27	1.48	24.47
Peso S. Sec	0	5.24	S.98	_
%de H11me	d ad	24.24	24.75	
10 	Oeterminacion o	"	ida ida	
. 1 ;;;				ш
.i . ,		٦.		
27.0			1	
· _ •	10 Num	II ero de Golpes		,-,

tIcib I							-4 (1	_		_	J.				. /				je			0.3		1	-	12		0.0	_	11	0.3
											CUR			RAN		OM	1ET	L	IC.	1											
o –	3" 111	2" 7	11.	,.	3,44	,	,,, ,	•	ı.	٠,	,.		W	,	"	ro	•			j(I (30	11 11	111		""						
, -			_	_	, 1	4						_	4			Ш		L			Ц			4	\perp	_		\perp			_
				\		1	N	11				4	ŀ		•			ı	ı												
				Ì	Г	T	-	i					7		•••	•		r								T					
F	ı			1	+					1		1	1		Г		į,	t						1	T	_			_		
							ľ	1				ļ						ı,								1					
H	┢	\vdash		╁	+	+	- (1	-	-	-	_		Ť	_	ļ.,	H		H	-	i	Н			Ť	+	+	+	+	-		
Н	-	+		-	╁	+		-	-	-			+		-	·		Ͱ	┢	1	,			+	╆	\dashv		+			
H	Ͱ	+		+	╁	+	-	-	-	-		H	#			H		Ͱ	<u>'</u> -	┢	Н			+	Н	+		+			+
H	┢	+			+	+	\dashv	\dashv	-				+			Н		Ͱ		\vdash	Н			'n	╅┼	-	\vdash	+			+
	L	_			L	4	_	_	_	_		_	4			<u> </u>	1	L	<u>,</u>	_	Ц		Ι,	Щ	ж	_			_		
	١,	§	8		§			l		_								1	S			-1		't-	Ų.				1		
	и	3			3			В	1			I	Η			١,		•		1					-						1
	1	5i			•			D					_			٠						11 11	1								
												,	AB	ERTU	RA	(m	m)														_
																														4	tıh
_				_				_					_			_		_			_										uv

Obserbaciolles:

lt,s 1\ fu es lr t1/11e mu es tre atl t1 por so li citu11te

ING. SPONSABLE

Oficina yDirecc.:ión: Apv. Km1 Grande h. E-5 San Sebw;fitm - Cw-co 17/.-084-6 529N Ce/.- 98 4410273

GIOMIX 8IDIO LIII RELACION SO PORTE DE CALIFORNIA - C. B.R. (ASTM D 1883 - MTCE 132) PROYECTO *Mejoramiento de sue los con a ditivosoro, anicos en la carretera Yaurisque - Ranracasa, OJsco2022* UBICACIÓN : Calicata 00+000 al 0J+000 Fecha: 28/02/2022

L Patos Generales

 PROCEDENCIA : Tramo 00+000 - 03+000
 CLASF. (S UCS) : SM

 ESTRUCTURA : Buse Con Establización
 a.ASF. (AASHTO) : A-4(1)

 MATERIAL : Suelo De OrigenColuvial Ofi)anico
 LADO : L/Der.

 0 1 SENO : Cest iza hibita Sou.
 LADO : L/Der.

	DENSID	AD,	2.140	1 HIIIEDAD	OOPTIIIA(%1 8.12		
Molde No				20		21	
Capas N ^o	5			5	5		
Golpes porca pa N"	56			25			
Condición de la muestra	NO SAIURADO	SATUIW>O	,_, SAT\KWJO	SATURADO	_, SAT\KWJO	SATIIW>O	
Peso de molde+ Suelo húmedo (q)	12790		12240		12781		
Peso de molde (g)	7939		1111		a30 7		
Peso del suelo húmedo (g)	4.001		5271		4474		
Volumen del molde tcm3\			2366		2121		
Densidad húmeda (a/cm³l	2.317		2.22,		2.109		
Tara (N")			7		9		
Peso suelo húmedo+ tara (g)	118.50		145.90		127.20		
Peso suelo seco+tara (g)	109.50		134.70		117.60		
Peso de tara (o)	0.00		0.00		0.00		
Peso deagua (g)	9.00		11.20				
Peso de suelo seco (g)	109.50		134.70		117.60		
Contenido de humedad (%)	8.22		8.31		8.16		
Densidad seca (o/cm3l	2.141		2.057		1.950		

EXPANSION

Г	FECHA	HORA	T1EWO	DIAL	EICPMSION		DIAL	1 EICP	MSIOII	IOII DIAL		. ,,	
ш								1			• •	•	
	28A12/202	10:35	0					1					
Г	1"3/202	10:35	24					1					
	2m/202	10:35	48			210		. 1					
	:wJ/202	10:35	72			NO	EXPANSIV()					
	W1/202	10:35						1					
								1					
Г								1					

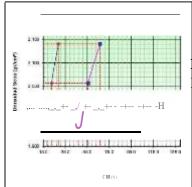
PENETRACION

		CARGA STAM>.	-CJ\	Rďl∖º	ΕΝ' ti - °C,	.= cc	, -+	-c	JEN' 5 C	.,1	-c	- co ^{Mg}	RREぜ	·c,
PEJIEIIL	ACDI	11g1cm2	Dillle:IV)	'G	'G	'llo	Dillll :IV)	'G	'G	'llo	Oill(ctvt	'G	'G	'llo
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025			2.0							30 .0	1.5		
1.270			87 .0	,.3			67 .0	3.3			47 .0	2.3		
1.905			17 6 .0	8.8			1.15.0	7.2			112 .0	5.6		
2540	0.100	70.5	-'34.0	21.6	20.3	28.7	312.0	15.5	15.9	22.6	232.0	11.5		18.4
3.810			881.0	-'3.8			710.0	35.3			622.0	30.9		
	0.200	105.7	1-'15.0	70.4	70.3	66.5	1265.0	62.9	58.9	SS.8	1054.0	52.4		
6.'50	0.250		1999.0	99.			1.583 .0	78.7			1.342 .1	66.7		
7.620	0,00		276 0	123.1			2165.0	107.7			1 865 .1	92.7		
10.160	0400		3156.0	156.9			26750	133.0			2412.0	119.9		

-	
	A UNZ LANGUE
	Just Just

RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM D 1883 - MTCE 132)

- r-wjor:amiri o de u. len con *ditillo5orga,niccn., F u rreter dY:aurisque R*-:r*ce. , CUKO - 2022* PROYETO

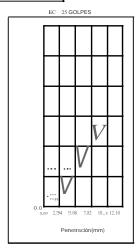

Regist ro Nº: 001-2022-INVES

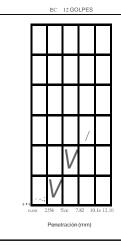
UBICACIÓN : !cal icata oo+ooo al 03+000

I Pato::t Gcoc raln

PRO CEDENCI A	: Tra mo 00+000 - 0 3+00 0	CLAS F. (Sucs:	: SM
ESTRUCTURA	: Base Con Estabilización	CLA SF. (AA SH	: A-4(1)
MATERIAL	: Suelo De Orioe n COluv ia I on;¡a nico	LADO	: L/Oer.

DIS EÑO : Con se haba 5%.




METOOO OE COMPACTACIO N	: ASTM D1557
MAXIMADENSIDAD SECA (g cmJ)	: 2.140
OPTIMOCONTENIDO DE HUMEDAD (% 1	: 8.12
95 % MAJOMA DE NSIDAD SEC A (g/cml)	, 2.033
DENSIDAIINSTU/a/cm31	

C.B.R al 100% de M.O.S.(%)	or.	28.7	ro.	: 66.5 1
C.B.R. at95 % de M.D.S. (%)	0.1-		10.	: ss.s 1
				1
RESULTA.DOS CBR a 0.1":			28.7	r11
Valor de C.B.R. al 95% de la M.I	D.S.		22.6	r11

OBSERVACIONES,

EC- 56 GOIPES Penetración (mm)

C9 R (O. FJ U .1"4 C9R(0.2"J

C9 R (t . f") BR j0 .2") can arri ses

1 Patos Ga1ecnles

PR OCEDENC	ZIA: Tramo 00+000 - 03+000	CLASF. (SOCS): SM
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO): A-4(1)
MATERI AL DISEÑO	: Suelo De Origen Coluvial organico : Ceniza haba 7%	LADO: 1/ Der.

•	DENSIIAD	MAXIIA	2.140	I-UIEOAI	DDPrMA(fili) 1 8.12		
M:llde N"	13					15	
Capas Nº	5			5	5		
Golpes por capa Nº	56			25	12		
Condición de la muestra	NOSATURADO	SATURADO	NOSATURADO	SATURADO	NO SATURADO	SATUIADO	
Peso de molde + Suelo húmedo (g)	12910		13200		12560		
Peso de molde (g)	7994		8525				
Peso del suelo húmedo (g)	4916		4675		4546		
Volumen del molde (cm3)	2118		2098		2136		
Densidad húmeda (a/cnl)	2.321		2.228		2.128		
Tara (N")	0		0		0		
Peso suelohúmedo + tara (g)	131.00		119.00		128.20		
Peso sueloseco+tara (g)	121.00		11000		118.50		
Peso de tara (g)	000		000		000		
Peso de agua (g)	10.00		9.00		9.70		
Peso de suelo seco (g)	121.00		110.00		118.50		
Contenido de humedad(%)	8.26		8.18		8.19		
Densidad seca (a/cm3)	2.1-4-4		2.059		1.967		

EXPANSION

FECHA	HORA	TIEMPO	••••	EJIPANSION			EliPANSION		tJIAI.	exp,,.	
				mm	- 11		mm	- 11		• • •	=
28/02/2022	10:35	0									
1i03 /2022	10:35	24									
2103/2022	10:35	48		1		1					
3i03/2022	10:35	72			NO) EXPANSIVO	1				
4i03/2022	10:35	96				1					
						1					
						1					

PENETRACION

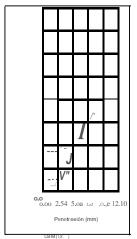
		CARAN		MOLE	DEN"13			MOLI	DEN"5		II> LDEN• t			
PENETRM	LIDN		C''	""A	COARECOON		C"""A		CORRECCION		CA	RGA	CORRECC	ION
***	;n		D il l(CIV	•	•••		D il Il CIV.	••	• •		D II 1 (CIV	••	• •	
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025		46.0	2.3			360	1.8			28.0	1.4		
1.270	0.050		107.0	5.3			76.0	3.8			54.0	2.7		
1.905	0.075		213.0	10.6			123.0	6.1			980	4.9		
2.540	0.100	70.5	578.0	28.6	24.8	35.2	407.0	20.2	16.1	22.8	312.0	15.5	12.1	172
3.810	0.150		995.0	49.3			7'98.0	39.5			621.0	>1.8		
5.000	0.200	105.7	1878.0	93.0	89.7	84.9	1365.0	67.6	72.5	68.6	1076.0	53.3	60.2	57.0
6.350	0.250		2 54 2.0	125.9			2076.0	102.8			1876 .0	92.9		
7.620	0.>J0		2997 .0	148.5			2767.0	13 7.1			2317.0	114.8		
10.160	0.400		3321.0	164.5			3054.0	151.3			2754.0	136.4		

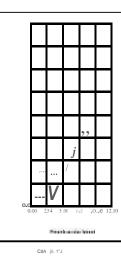
Observaciones:

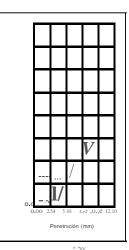
L Patos Gs::oe raln

: Tramo 00+000 - 03+000 : Base Con Estabilización CLASf. (SUCS) CL.ASF.(AASHTO) PROCEDENCI A : SM : A-4(1) ESTRUCTURA MATERIA L : Sue lo De Origen Coluvial orga nico : Ceniza haba 791 LADO : UDer. DIS EÑO

METODO DE COMPACTACJON


	95W	METODO DE COMPACTAC. MAX IMA DENSIDAD SECA OPTIMOCONTENIDO DE H
	21 &1 +== = ± =	95% MAXIMA DENSIDAD S DENSIDAD INSITU (glcm 31
j	2 10g*+1.d;r _a i,	C.B.R. al 100 % de M.O.S. (%)
j	2000 + 1 + + + + + + + + + + + + + + + +	RESULTA DOS CBR a 0.1": Valor de CB .R. al 95% de i
	11 11 11 11 11 11 11 11 11 11 11 11 11	OBSERVACIONES:
	CBR (%)	


MAX IMA DENSIDAD SECA (glcm J)
OPTIMOCONTENIDO DE HUMEDAD(%) : 2.140 : 8.12 : 2.033 95% MAXIMA DENSIDAD SECA (g/cmJ) DENSIDAD INSITU (glcm 31


: ASTM D1557

RESULTA DOS CBR a 0.1":	352	(%)
Valor de CB R al 95% de la M D.S	22.8	(3/4)

OBSERVACIONES:

CBA (0 .2°)

C8A (Or. J ".2%

CHE IS SAN USIN

\$!!		!t	REL.ACIO N SOPO RTE DE CALIFORNIA - C,B,R, (AST M D 1883 - MTCE 132)		
PROYECT	·Me	joram i	iento de	s uelos con aditivos organicos en la carrete ra Yaurisque - Ranracasa, C Usco - $202\mathrm{r}$	Registro N°:	001-202 2/N /ES
UBICAC ÓN	: C icat	a 00+0	000 a 1 0	3+000	Fecha:	29/03/2021

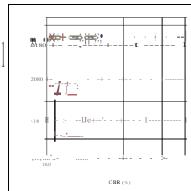
L Datos Generales

	einza hal	за 9.,.	DENSIDAD	ΠΑΧΙΠΙΑ	2.140 1	trua:DAD (PTNA(%) 8 12			
M:llde N°			16		1		31 110 ((/6)	0.12		
capas Nº			5		5			5		
Gopes por capa Nº)		56	3	25	5		12		
Condición de la mue	estra		NO SATURADO	S ATURADO	NO SATURADO	SATURADO	NOSATURADO	SATURADO		
Pesode molde + S	ueb hú	medo (g)	12850				124-00			
Pesode mOlde (a)			7960				7970			
Pesodel suelo rum	iedo (g)	4890		4672		4430			
Volooiendel molde	(cm ³)		2110		2112		2115			
Densidad tl.Jmeda (a	a/cm ^o)		2.JU I		2.212		2.095			
Tara (Nº)			0		0		0			
Peso suelohúmedo	+tara	(!1)	134.00		129.00		145.00			
Peso suelo seco+	tara(g)		123.eo		119.20		133.90			
Pesode tara (g)			0.00		0.00		0.00			
Pesode aaua (a)			10.20		9.80		,, ., 0			
Pesode suelo seco	o(g)		123.80		119.20		133.90			
Contenidode htme	dad(%)	8.24		8.22		8.29			
Densidad seca fa/cm ³)			2.141		2.044		1.934			
			•	EXP	ANSI ON		-			
FECHA H	ORA	T6"' 0	OIAI.	U PM S ION	OIAI. 1	EXPM SIO N	0W.	-		
				- 11	1		l "'''	U P ANSION		

PENE	TRACION	
	1	
	1	
	1	

CAR<			IIOLDE 16				MOLDE5				■ Ol.DE6			
PENETRN:ION in		STAND.	CA	RGA	CORRI	ECCION	CM	IG A	CORREC	CION	CM	G A	CORRECCI	ON
		"8/CM2	DillllclV)	kg	- 1	71,	Oill(clV)	kg	- 11	JI.	Oilll(clVI	lg	••	II
0000	0.000		0.0	00			0.0	0.0			0.0	0.0		
0.635	0.025		47.0	2.3			11.0	19			"0	1.4		
1. 270			112.0	5.6			81.0	4.0			11.0	2.9		
	0.0 75		217.0	10.8			132.0				110.0			
2.540	0.100	70.5	582 .0	28.9	25.1	35.7	413.0	20.5	16.5	23 5	321.0	16.0	12.6	17.
3.810	0.150		996.0	49.6			eoso	40.o			628.0	31.2		
5.080	0.200	105.7	tMS .0	93.7	90.4	85.5	1374.0	68.3	73.1	69.2	loe2.o	53.a	60.9	57.6
6.350	0.250										1885.0	93.7		
7.620	0.300		3000.0	\49.2			2773.0	137.9			2326.0	115.7		
10.160	0.400		3328.0	165.5			3062.0	152.3			2760.0	137.3		

NO E<PANSIVO 1

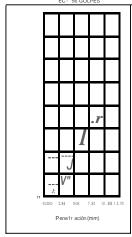

Observadone ·s

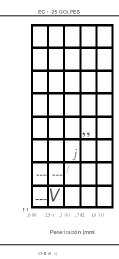
GERMAN HUMBAR AZ LEPRATURA
RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTMO 1883 - MTC E 132) - M* jon mi*nto 6a suelos con d itivos O/9/ln;cos en Ill : 1 dtr Il Yllurisque Rann,uu, O.seo 2022 Registro N°: 001-2022INVES PROYECTO UBICACIÓN : ¡ea licata oo+ooo a l 03+000 Fec ha: 29/03/2 021

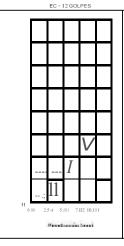
· 1 patos Generales

CLAS F. (SUCS) CLASF. (AASff LADO PRO CEDEN CIA Tfi!lm O 00 +0 00 - 03 +000 : SM : A-4 (1) : UDe r. Base Con Estabilización
 Suelo De Origen Coluvial organico ESTRU CTURA MATERJAL

DIS EÑO : Ceniza haba 9 %




METODO DE COMPACTACION	: ASTM D1557
MAXIMA DENSIDAD SECA (g/cm J)	: 2_140
OPTIMO CONTENIDO DE HUMEDAD(%)	: 8.12
95% MAXIMA DENSIDAD SECA(g/cm3J	: 2.033
DENSIDADINSITI I/a/cm31	


69.2 l C.B.R. al 95% de M.O.S

('/4) Valor de C.8 .R. al 95% de la M.D.S. 23.5 (%)

	UBSERVACIONES:	
10.0		
CBR (%)		
EC + 56 GOLPES	EC+ 25 GOLPES	EC+12 GOLPES

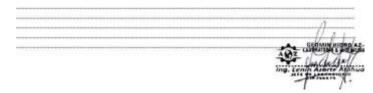
C8 R (Or.)

C8R (0.1 "J

1 Patos Ga1ecnles

PR OCEDENC	IA: Calicata 06+000 - 08+000	CLASF. (SOCS): SP
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO): A-2-4(0)
MATERI AL	: Suelo De Origen Coluvial	LADO: 1/ Derec.
DISEÑO	. Caniza madara 70/	

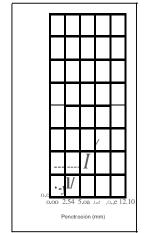
	DENSIIAD	MAXIIA	2.280	I-UIEOAD	OPrlMA(flli) 1	8.38	
M:llde N"	1		17	7	18		
Capas Nº	5		5	;		5	
Golpes por capa N ^o	50	5				12	
Condición de la muestra	NOSATURADO	SATURADO	NOSATURADO	SATURADO	NO SATURADO	SATUIADO	
Peso de molde + Suelo húmedo (g)	12818		12062		12458		
Peso de molde (g)	7901				7970		
Peso del suelo húmedo (g)	49 17		,07()		4488		
Volumen del molde (cm³)			2283		2115		
Densidad húmeda (a/cnl)	2.35]		2.221		2.122		
Tara (N*)			•		12		
Peso suelohúmedo + tara (g)	131.90		128.70		111.50		
Peso sueloseco+tara (g)	121.30		119.40		103.10		
Peso de tara (g)	000		000		000		
Peso de agua (g)	10.60		9.3J		8.40		
Peso de suelo seco (g)	121.30		119.40		103.10		
Contenido de humedad(%)	8.74		7.79		8.15		
Densidad seca (a/cm3)	2.164		2.060		1.962		

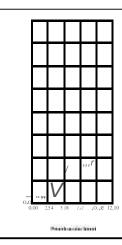

EXPANSION

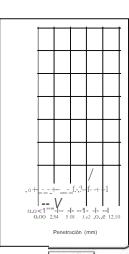
FECHA	HORA	TIEMPO	••••	EJIPA	ANSION		EIIPANSION		OIAI.	exp,,.	
				mm	=		mm	=		***	=
28/02/2022	10:35	0									
110312022	10:35	24									
2103/2022	10:35	***			NT/C	EVDANCINO	1				
3 i03/2022	10:35	72			NO	EXPANSIVO	1				
4/0312022	10:35	96				1					
						1					
						1					

PENETRACION

		CHAINA		MOI.I	DEN" 1			MOL	DEN" 5		II> LDEN∗ t			
PEI\ETRMJON ;n			C''	""A	COAF	RECOON	C''	''''A	CORRECT	CION	CAI	RGA	CORRECCI	DN
			Dill(CIV	•	• • •		Dilllel V.	••	• •		D II 1 { CIV	••	• •	
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025		67.0	3.3			53.0	2.6			40.0	2.0		
1.270	0.050		123.0	6 1			109.0	5.4			97.0	4.8		
1 905	0.075		327.0	162			158.0	7.8			128.0	6.3		
2.540	0.100	70.5	499.0	24.7	20.3	28.9	338.0	16.7	15.0	21.3	224.0	11.1	1 3.2	18.7
3.810	0.150		737.0	36.5			620.0	3J.7			448.0	222		
5.000	0.200	105.7	1029.0	51.0	59.1	55.9	959.0	47.5	47.3	44.8	861.0	42.6	35.6	33.7
6.350	0.250		1668.0	82.6			11770	58.3			10290	51.0		
7.620	O.:JJO		2079 .0	103.0			1n2.0	87.8			1167.0	57.8		
10.160	0.400		2441.0	120.9			2038.0	100.9			1978.0	980		
													1	


\circ 1	
()heer	vaciones





L Patos Gs::oe raln

	,, ,, t- 1 <u></u> -1f-*1,	METODO DE COMPACT ACJON MAX IMA DENSIDAD SECA (gicm J) OPTIMOCONTENIDO DE HUMEDAD(%) 95% MAXIMA DENSIDAD SECA (g/cmJ) DENSIDAD INSITU (gicm 31	: ASTMD1557 , 2.280 : 8_4 : 2.166	
1	2 100 t- /,_ ++i -+ l	C.B.R. al 100 % de M.O.S. (%) 0.1*	28.9 0.2":	55.9
l	/ J.	C.B.R. al 95% de M0S. (%) 0.1•	21.3 0.2":	44.8
f. a	2 000 + i+-j++H+++++ + +	RESULTA DOS CBR a 0.11": Valor de CB .R. al 95% de la M.D.S.		(%) (¾)
	,.,	OBSERVACIONES:		
	C B R (%)			_

CBM (O.r)

CBR j0. 1" J

CONTRACTOR ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED ASSESSEDA

<u>-ft-</u>	CEOIUMEDRO.Uflli	R ELACIO N SOPO RTE DE CALI FORNIA - C,B,R, (AST M D 1883 - MTCE 132)		
PROYE © T	·Me joramiento de	Registro N∘:	001-202 21N /ES	

L Datos Generales

PROCEDENCIA: Cillica 06+000-08 ESTRUCTURA: Base Con Esta biliaci MATERIAL: Suelo De Ori9e n COlu DISEÑO: Ceitza madera 9+1	ón					P(SUC5): SP ASHTO): A-2-4(0) LADO: 1/Derec.
	DENSIDAD	HAXIIIA	2.230 1	trua:DAD	OPTNA(%)	22*
M:llde N°			15	5		16
capas Nº		5	5			5
Gopes por capa Nº	5	6	25	5		12
Condición de la muestra	NOSATURADO	S ATURADO	NO SATURADO	SATURADO	NOSATURADO	SATURADO
Pesode molde + Sueb húmedo (g)	12808		12761		12501	
Pesode mOlde (a)	13/5		8014		8085	
Pesodel suelo rumedo (g)	0 0		4747		4416	
Volooien del molde (cm ³)	2112		777"		2062	
Densidad tl.Jmeda (a/cm °)	2.336		2.222		2.121	
Tara (N°)	0		0		0	
Peso suelohúmedo + tara (!1)	123.62		139.00		131.00	
Pesosuelo seco+tara(n)	114.48		126.70		121.20	

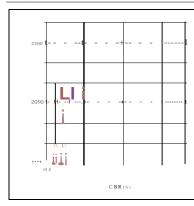
EXP ANSI ON

FEC HA	HORA	T6"' 0	OIAI.	UPN	A SION	OIAI.	1 EXI	PM SION	0W.		
					H		1	II.		UPA	NSION
29.'03/2021	10:35	0					1				
JQ/03/2021	10:35	24					1				
31/03/2021	10:35	48					1				
1/04/2021	10:35	72			NO	E <pansivo< td=""><td></td><td></td><td></td><td></td><td></td></pansivo<>					
2/04/2021	10:35	96					1				
							1				
							1				

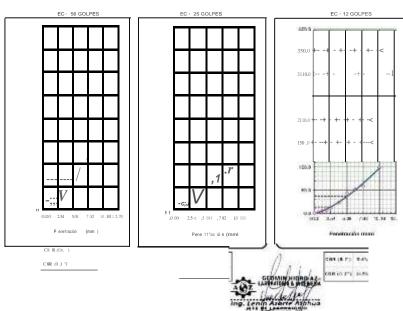
PENETRACION

		CAR<#I		HOLD	E 14			MOL	DE5				I.DE.I	
PENETRN	:ION	STAND.	CA	RGA	CORR	ECCION	CM	G A	CORRECO	CION	CM	G A	CORRECCI	ON
	in	"8/CM2	OillllclV)	kg		TI,	Oill(clV)	kg	- 11	JI.	Oilll(clVI	lg	••	-
0000	0.000		0.0	00			0.0	0.0			0.0	0.0		
0.635	0.025		68.0	3.4			1110	27			41.0	2.0		
1.270			134.0	,6 7			117.0	5.8			99.0	4.9		
	0.075		335.0	16. 7			167.0				137.0	6.8		
2.540	0.100	70.5	512.0	25.5	20.9	29.7	346.0	17. 2	15.6	222	2380	11.8	13.7	
3.810	0.150		745.0	37.0			638.0	31.7			459.0	22.8		
5.080	0.200	105.7	1037.0	51.6	59.8	56.6	966.0	48.0	48.2	4S.6	675.0	43.5	36.4	34.5
6.350	0.250						1193.0	59.3			1043.0	51.9		
7.620	0.300		2088.0	103.8			1786.0	88.8			1184.0	58.9		
10.160	0.400		2454.0	122.0			2051.0	102.0			1992.0	99.1		
	•													

Observadone-s



·1 patos Generales


PRO CEDEN CIA CLAS F. (S UCS) Calica ta 06+0 00 08+000 : Base Con Estabilización : Suelo De Origen Coluvial : A-24 {0) : UDe rec. ESTRUCTURA MATERJAL CLASF. (AASff LADO DISEÑO : Ceniza mad era 9-Jo

METODO DE COMPACTACION

: ASTMD1557 : 2_280 MAXIMA DENSIDAD SECA (g/cm J)
OPTIMO CONTENIDO DE HUMEDAD(%) : 8.4 95% MAXIMA DENSIDAD SECA(g/cm3J DENSIDAD INSITU(g/cm31 : 2.166

C.B.R. al 100 % de M.O.S. (%)	0.1*	29.7	0.	r: 56.6
C.B.R. al 95% de M.O.S.(%)	0.1*	22.2	0.2	": 45.6
RESULT ADOS CBR a o.1-:			29.7	('/4)
Valor de C.8.R. al 95% de la M.D.	S.		222	(%)
OBSERVACIONES:				
OBSERVACIONES:				

RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM O 1883 - MTC E 132)

•Mejoramido de suebscxmaditivos or9anioos en la eamitera Yaurisque - Rili⊲acasa, Cusoo -202r

Re9istro N": 001

001-2021NVES

UBI CA CIÓN : TRAMO 06+ 000 al 08 + 000

Fec ha:

29/03/2021

PROCEDENDA: Calicata 06+000 - 08+000
ESTRUCTURA: Base Con Estabilización
MATERIAL: Suelo De Origen Coluvial
DISEÑO: Conica madera 11%

CLASF. (SUCS): SP a.ASF. (AASHTO): A-2-4(0) LADO: VDen!lc.

	OfNSIIAL	MAXaIA.	11111	ttJIEMD.	,- (%1	1 '."	
Molde N"	17	7		18	19		
capasN"	5			5	5		
Golpes por capa N"	50	6		25		12	
CoOOicioo de la m.Jestra	NO SATURADO	SAT\RADO	NO SATURADO	SAT\RADO	NO SATURADO	SATIJIWJO	
Pesode molde +Suelo tImedo (g)	12346		12670		12381		
Pesode molde (g)	6992		7970		1939		
Pesodel sueJonúrnedo (g)	5354		4700		4442		
Vdumen del molde (an 3)	2283		2115		2094		
Densidad túneda lolcm³l	2.3"45		2.222		2.121		
Tara(N1	0		0		0		
Pesosuelo núrnedo + taa (a)	134.11		133.M		134.20		
Peso suelo seoo + taa (a)	123.61		124.29		124.30		
Peso de tara (g)	0.00		000		0.00		
Peso de agua (g)	10.50		9.55				
Peso de sueloseco(O)	123.61		E429		124.30		
Conl.eridode tunedad(%)	8.49				7.96		
Densi <jad \<="" cm="" fa="" seca="" td=""><td>2.162</td><td></td><td>2.064</td><td></td><td>1.965</td><td></td></jad>	2.162		2.064		1.965		

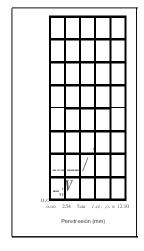
EXPANSION

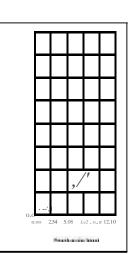
FECHA	HOIIA	TIEWO	E>CP.	ANSION 1		ANSION	EXP	ANSK»I
			I		1 =	• •		•
2"'03/2021	10:1S			1	1			
30/03/202	10:1S	24		1	1			
31/03/202	10:IS				1			
1 "'4/202	10:1S	72		NO EXPANS	SIVO			
2"'4/202	10:1S			1	1			
				1	1			
				1	1			

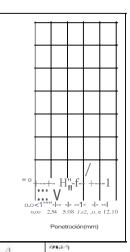
PENETRAQON

		CARGA		IIOI.	DE11			lla.□	E 5			IIO	LDE 1	
PENETAAO	OON	BYLACHIZ, =	mic CAAC	Aare =	= GOAAE C ∓ =:==z€u/		 GAAGA===== OAAEG=== c========GA			AGA===== C=OAAEC===c===:=-:			∓:=-≾	
0.000	0.000		0.0	0.0			00	0.0			0.0	0.0		
ĺ	0.025		68.0	3.4			SS.O	2.7			410	2.0		
1.270			137.0	6.8			119.0	5.9			101.0	5.0		
1.905			114.1	167			120.0	14			13970	6.2		
2540	0.100	70.5	514.0	25.6	211	29.9	341.0		15.7	22.3	241.0	120		19.6
3.810	0.150		749.0	37.2			641.0	31.9			461.0	22.9		
5.000		105.7	1039.0	51.7	59.9	56.7	968.0	48.1	48.3	45.7	an.o	43.6	36.6	34.6
6.350	0.250		16TT.O	83.4			1197.0	59.5			1047.0	52.1		
7.620	0.300		2091.0	104.0			1789.0	89.0			1188.0	59.1		
10.160			2457.0	122.2			2054.0	102.1			1997.0	99.3		
•														
						<u> </u>			-				-	

Observaciones






I Patos Gcoc@les

PROCEDENCI A	: Calica ta 06+000 - 08+000	CLASf. (S UCS)	SP
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO)	A-2-4(0)
MATER IAL	: Sue lo De Origen Coluvial	LADO	UDerec.
DIS EÑO	: Ceniza madera 11%		

2,e0>1	METODO DE CO MPACTACJO N MAX IMA DENSIDAD SECA (glorn J) OPTIMOCONTENIDO DE HUMEDAD(%) 95% MAXIMA DENSIDAD SECA (glornJ) DENSIDAD INSITU (glorn 31	: ASTMD1557 , 2.280 : 8_4 : 2.166
2 110 tt+, f-:t t+i	C.B.R. al 100 % de M.O.S. (%) 0.1*	0.2"" : 56.7 1
1 _ <i>i</i>	C.B.R. al 95 % de M0S. (%) 0.1•	- 0.2": 45.7
1 1 /		1
11.1	RESULTA DOS CBR a 0.1":	29.9 (%)
J <u>10</u> 1	Valor de CB .R. al 95% de la M.D.S.	22.J (¾)
ii	_OBSERVACION ES:	
C B R (%)		<u> </u>

Stevensunger

RELACION SOPORTE DE CALIFORNIA - C.8.R. (ASTM O 1883 - MTC E 132)

Mejoramiento de suelos con aditivos organicos en la carretera Yaurisque - Ranracasa, Cusco- $202\mathrm{r}$ PROYECTO

Registro Nº:

001-2022-1 ES

UBICACI ÓN : TRAMO 06+ 000 al 08+0 00

Fec ha:

1 Patos Ga1ecnles

PR OCEDENCL	A: Calicata 06+000 - 08+000
ESTRUCTURA	: Base Con Estabilización
MATERI AL DISEÑO	: Suelo De Origen Coluvial

CLASF. (SOCS): SP CLASF. (AASHTO): A-2-4(0) LADO: l/ Derc.

	DENSIIAD	MAXIIA	2.280	I-UIEOAI	DP#MA(fill)	1 8.38
M:llde N"	11		1	2		1J
Capas Nº	5		5	5		5
Golpes por capa Nº	5	6				12
Condición de la muestra	NOSATURADO	SATURADO	NOSATURADO	SATURADO	NO SATURADO	SATUIADO
Peso de molde + Suelo húmedo (g)	13548		13112		12278	
Peso de molde (g)	8261		0053		7875	
Peso del suelo húmedo (g)	5287				4403	
Volumen del molde (cm3)	2249		2278		2113	
Densidad húmeda (a/cnl)	2.351		2.221		2.08(
Tara (N*)			9		12	
Peso suelohúmedo + tara (g)	131.00		12800		106.00	
Peso sueloseco+tara (g)	120.80		118.60		98.10	
Peso de tara (g)	000		000		000	
Peso de agua (g)	10.20		9.40		7.90	
Peso de suelo seco (g)	120.80		118.60		98.10	
Contenido de humedad(%)	8.44		7.93		8.05	·
Densidad seca (a/cm3)	2.168		2.058		1.928	

EXPANSION

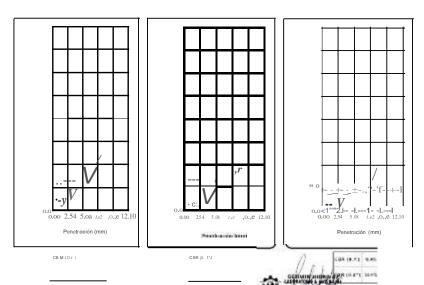
FECHA	HORA	TIEMPO	 EJIPA	NSION	NSION		NSION	ISION OIAI.		exp,,.	
			mm	"		mm	"		• • •		
28/02/2022	10:35	0									
1i03 /2022	10:35	24									
2103/2022	10:35	48			- EWDANGWO	1					
3i03/2022	10:35	72		NO) EXPANSIVO	1					
4i03/2022	10:35	96			1						
					1						
					1						

PENETRACION

		CARA		MOLDEN"11				MOLDEN" 5				II> LDEN• t			
PEI\ETRI	ION		C''	''''A	COARECOON		C'''''A		CORRECCION		CARGA		CORRECC	ION	
444	;n		D il l(CIV	•	••		D il Il CIV.	••	• •		D II 1 (CIV	••	• •		
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0			
0.635	0.025		66.0	3.3			52.0	2.6			40.0	2.0			
1.270	0.050		117.0	5.8			105.0	5.2			91.0	4.5			
1.905	0.075		321.0	15.9			154.0	7.6			123.0	6.1			
2.540	0.100	70.5	498.0	24.7	20.1	28.6	332.0	16.4	14.8	21.0	222.0	11.0	12.9	18.4	
3.810	0.150		nl.o	36.3			615.0)'.)5			443.0	21.9			
5.000	0.200	105.7	1023.0	'1:J.7	58.8	55 .7	956 .0	47 .4	47.0	44.5	857 .0	42 .4	35.3	33.4	
6.350	0.250		1663.0	82.4			1171.0	58.0			1025.0	,0_8			
7.620	0.3'.JO		2074 .0	102 .7			1767 .0	87.5			1163.0	57.6			
10.160	0.400		2437.0	120.7			2034.0	100.8			1975.0	97.8			

Ω 1		
Obse	rvacu	mes:

I Patos Gs::oe raln


 PROCEDENCI A : Calicata 06+000 - 08+000
 CLASF. (8 UCS) : SP

 ESTRUCTURA : Base Con Estabilización
 CLASF. (AS HTO) : A-2-4[0]

 MATER IAL : Suelo De Origen Coluvial
 LADO : UDerc.

 DIS EÑO : Ceniza haba 79/
 ...

_	R ELACIO N SOPO RTE DE CALIFORNIA - C,B,R, (AST M D 1883 - MTCE 132)		
PROYECT	-Me joram iento de s uelos con adit ivos organicos en la carrete ra Yaurisq ue - Ranracasa , CUsco - $202\mathrm{r}$	Registro N•:	001-2028N/ES
UBICAC ÓN	: TRAMO 06+000 al 08+000	Fecha:	29/03/2021

L Datos Generales

PROCEDENCI A : C _i ilica 06+000-08 ESTRUCTURA : Base Con Esta bilicació MATERIAL : Suelo De Ori9e n COluv DISEÑO : Ceitza haba 9.,-	n					(SUC5): SP ASHTO): A-2-4(0 LADO: I/Oere.
	DENSIDAL	HAXIIIA	2.230	trua:DAD	OPTNA(%)	_ ,,,
M:llde N°'			1:	5	1	16
capas N°		5	5			5
Gopes por capa Nº	5	6	25	5	1	12
Condición de la muestra	NO SATURADO	S ATURADO	NO SATURADO	SATURADO	NOSATURADO	SATURADO
Pesode molde + Sueb húmedo (g)	12808		12761		12501	
Pesode mOlde (a)	13/5		8014		8085	
Pesodel suelo rumedo (g)	• •		4747		4416	
Volooiendel molde (cm ³)	2112		777"		2062	
Densidad ti.Jmeda (a/cm °)	2.336		2.222		2.121	
Tara (N°)	0		0		0	
Peso suelohúmedo + tara (!1)	131.00		139.00		131.00	
Peso suelo seco+tara(g)	121.40		126.70		121.20	
Pesode tara (g)	0.00		0.00		0.00	
Pesode aaua (a)	9.60		10.30		9.30	
Pesode suelo seco(g)	121.40		128.70		121.20	

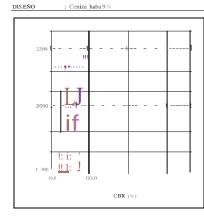
EXP ANSI ON

					LAI	ANOI ON					
FEC HA	HORA	T6"' 0	OIAI.	U PN	M SION	OIAI. 1	EXI	M SION	0W.		
					H	1		- 11		UPA	NSION
29.'03/2021	10:35	0				1					
3QIOJ12021	10:35	24				1					
3 1/0 3/2021	10:35	48				E DAMON/O	1				
1/04/2021	10:35	72			NO	E <pansivo< td=""><td></td><td></td><td></td><td></td><td></td></pansivo<>					
2/04/2021	10:35	96				1					
						1					
						1					

PENETRACION

		CAR<#I		HOLD	E 14			MOL	DE5			■ C	0l.DE I	
PENETRN	:ION	STAND.	CARGA		CORRECCION		CM	CMG A		CORRECCION		IG A	CORRECCION	
	in "8/CN		OilllclV)	kg		TI,	Oill(clV)	kg	- 11	JL	Oilll(ctv 1	kg	• •	-
0000	0.000		0.0	00			0.0	0.0			0.0	0.0		
0.635	0.025		67.0	3.3			S1.0	2.5			41.0	2.0		
1.270			129.0	6.4			117.0	5.8			99.0	4.9		
	0.0 7S		332.0	16. S			168.0				134.0	6.7		
2.540	0.100	70.S	504.0	25.1		29.4	346 O	17.2	15.S	22.0	237.0	11.8	13.6	19.3
3.810	0.150		743.0	36.9			628.0	31.2			486.0	22.7		
	0.200	105.7	1031.0	51.3	59.6	56.4	967.0	43.1	48.1	4S.5	869.0	43.2	36.3	34.4
6.350	0.250		1673.0	83.2			1195.0	59.4			1043.0	51.9		
7.620	0.300		2085.0	103.7			1784.0	88.7			1185.0	58.9		
10.160	0.400		2446.0	121.6			2056.0	102.2			1994.0	99.2		
	•													

Observadone s

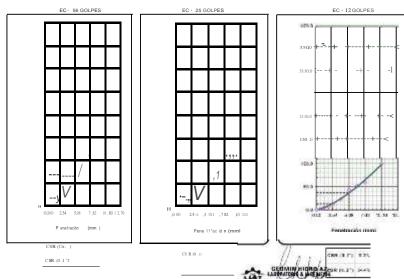


GIOMIHBIDBO Anlt RELACION SOPORTE DE CALIFORNIA - C.B.R. (A STM O 1883 - MTCE 132) LIIORIIORIO&I\GI\ ItRÍ Mejoram iento de suelos con aditivos organicos en la carre tera Yaurisque - Ranr acasa , Cus co - $20\,22$ Registro N -: 001 -2022 -INVES PROYECTO : ITRAMO 06 +000 al 08 + 000 UBICAC IÓN Fec ha: 29/03/2021

1 patos Generales

PRO CEDEN CIA CLAS F. (S UCS) ESTRUCTURA : Base Con Estabilización : A-24 (0) CLAS F. (AASff MATERJAL : Suelo De Origen Coluvial LADO : UDe rc.

METODO DE COMPACTACION



: ASTMD1557 : 2_280 : 8.4 MAXIMA DENSIDAD SECA (g/cm J)
OPTIMOCONTENIDO DE HUMEDAD(%) 95% MAXIMA DENSIDAD SECA(g/cm3J : 2.166 DENSIDAD INSITU(g/cm31

C.B.R. al 100% de M.O.S. (%

Valor de C.8.R. al 95% de la M.D.S. 22.0 (%)

OBSERVACIONES:

RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM O 1883 - MTC E 132)

-Mejoramie $\it mo$ de suebs cxm aditivosor9arioos en la eamltera Yaurisque - Rlf-acasa, Cusoo - 202r

Re9istro N":

001-2022INVES

: TRAMO 06+ 000 al 08 + 000

Fecha:

29/03/20 21

PROCEDENOA: Calicata06+000-08+000
ESTRUCTURA: Base Confestabilización
MATERIAL: Suelo DeOrigen Colu vial
DISEÑO: Cenizahaba11½

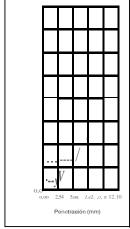
CLASF. (SUCS): SP a.ASF. (AASHTO): A-2-4(0) LADO: VDerc.

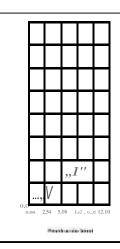
	OTNSIIAL	MAXAIA.		ttJIEMD.	,- (%1	
Molde N"	14	1		15		16
ca pas N"						
Golpes por capa N"	51	ŝ		25		12
CoOOicioo de la m.Jestra	NO SATURADO	SAT\RADO	NO SATURADO	SAT\RADO	NO SATURADO	SATIJIWJO
Peso de molde + Suelo tImedo (g)	12a16		12743		1201	
Peso de molde (g)	7U5		• •			
Peso del sue Jo núrnedo (g)	, 1		'734		,	
Vdumen del molde (an ^o)	2112					
Densidad túneda lolcm°l	2.339		2.216		2.116	
Tara(N1	0		0		0	
Pesosuelo núrnedo+ taa (a)	12a.oo		1 .00		1 34.20	
Pesosuelo seoo + taa (a)	118.40		13' JO		12 3)	
Peso de tara (g)	0.00		000		0.00	
Pesode agua (g)	9.60		10.70		9.90	
Peso de sueloseco(O)	118.40		134.30		124.30	
Conl.eridode tunedad (%)	8.11		7.97		7.96	
Densi <jad \<="" cm="" fa="" seca="" td=""><td>2.164</td><td></td><td>2.063</td><td></td><td>1.960</td><td></td></jad>	2.164		2.063		1.960	

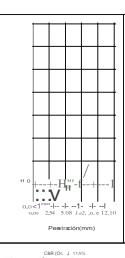
EXPANSION

FECHA	HOIIA	TIEWO	E>CPANSION 1 1 E>CPANS				EXPANSK»I		
			I		1 =				
29,'03/2021	10:1S	0		1	1				
30/03/202	10:1S			1	1				
31/03/202	10:IS				1				
1""'202	10:1S	72		NOEXPAN	ISIVO				
,,,,	BIS	96		1	1				
				1	1				
				1	1				

PENETRAQON


		CARGA		HOID	E14		lla.DE 5				IIOLDE 1			
PENETAA	OON	security, mic GAAGAare =			GOAAE C =:€		IAAGA==	AAGA==== OAAEG=== c========GA			AGA= ==== C=OAAEC==;c====:=-:			
0.000	0.000		0.0	0.0			00	0.0			0.0	0.0		
	0.025		68.0	3.3			616	2.9			40.0	2.0		
1.270			132.0	6.6			118.0	5.9			101.0	5.0		
1905			194.2	16.7			170 8	1.1			184	1.0		
,,	0.100	70 .5	SOS.O	25.1	20.8	29.6	348.0		15.6	22.1	239.0	11.9	13.7	19.4
3.810	0.150						629.0	31.3			458.0	22.8		
1 1110		105 .7	1 015 .0	51.5	59.8	56.6	969 .0	48 .2	48 .2	45.6	871.0	43.3	"."	"."
6.350	0.250		16n. O	83.			1197 .0	59.5			18 €	51.9		
7 .620	0.300		2068.0	103.8			1787.0	88.9			1186.0	59.0		
10.160			2449.0	121.8			2058.0	102.3			1997.0	99.3		
	•													




L Patos Gcoc @les

PROCEDENCI A	: Calicata 06+000 - 08+000	CLASf. (S UCS)	SP
ESTRUCTURA	: Base Con Estabilización	CL.ASF. (AA SHT O)	A-2-4{0}
MATERIA L	: Sue lo De Origen Coluvial	LADO	UDerc.
DIG ENG	Coning habe 11 /		

				MET ODO DE CO MPACTAC JON MAX IMA DENSIDA D SECA (glcm J) OPTIMOCONTENIDO DE HUMEDAD(%)	: AST , 2.28 : 8 4		
• • 21(t()				95% MAXIMA DENSIDAD SECA (g/cmJ) DENSIDAD INSITU(glcm31	: 2.16		
ii, ,, /	i. / -			C.B.R. al 100 % de M.O.S. (%) 0.1"	296		: 56.6
•'i	<i>j</i> -			C.B.R. al 95 % de M0S. (%) 0.1"	22.1	0.2"' :	45.6
j	71			RESULTADOS CBR a 0.1'": Valor de CB .R. al 95% de la M.D.S.		29.6 22.1	(%) (%)
,,	-+			OBSERVACIONES:			
		R (%)					

CBM(O.r)

CBR j0. 1*J

C8R (Or. J 11A%

Communique az Languago A por Languag

-\$-	GWMINHIDI AUIIT	RELA CION SO PORTE DE CALIFORNIA - C.B.R. (AS TM D 1883 - MTCE 132)		
PROYECTO	"Mejo ramiento de	suelos con aditivos o roanicos e n la carretera Yall isque - Ranracasa, Cusca - 202r	Registro N":	0012021NVES
UBICACIÓN	, TRAMO 06+-000al 0	8+000	Fecha:	2&'02/2022

LPatos Generales

 PROCEDENCIA : Calicata 06+000 - 08+000
 CLASF. (S UCS) : SP

 ESTRUCTURA : B.s.e Con Est abi Eización
 a ASF. (AASHTO) : A-2-4(0)

 MATERIAL : Suelo De OrigenColuvial
 LADO : L/Derec.

 0.656/0 : Ceniza madera 3*/

	DENSID	DAD,	2280 1	OPTIIIA(%1	A(%1		
Molde No			S				
Capas N ^o	S		S		S		
Golpes porcapa N"			25	5			
Condición de la muestra	NO SAIURADO	SATUIW>O	_, SAT\KWJO	SATURADO	_, SAT\KWJO	SATIIW>O	
Peso de molde + Suelo húmedo (q)	13219		11887		12814		
Peso de molde (g)	8176		7177		8323		
Peso del suelo húmedo (g)	5043		4710		4491		
Volumen del molde tcm3\	2155		2121		2121		
Densidad húmeda(a/cm³l	2.3'0		2.221		2.117		
Tara (N")	S		3		2		
Peso suelo húmedo + tara (g)	187.50		13S.30		154.00		
Peso suelo seco+tara (g)	173.50		125.30		142.71		
Peso de tara (o)	0.00		0.00		0.00		
Peso deagua (g)	14.00		10.00		11.29		
Peso de suelo seco (g)	173.50		125.30		1427 1		
Contenido de humedad (%)	8.07		7.98		7.91		
Densidad seca (o/cm3l	2.165		2.057		1.962		

EXPANSION

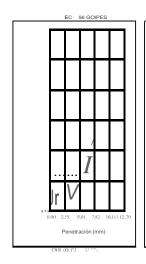
FECHA	HORA	TIEWO	DIAL	EICF	MSION	DIAL	1 EIC	PMSIOII	DIAL		,,
							1			• •	•
28A12/20	10:35	0					1				
1"3/202	10:35	24					1				
""3/202	10:35	43			210		1				
:wJ/202	10:35	72			NO	EXPANSIV	0				
4'Q3/20	10:35						1				
							1				
							1				

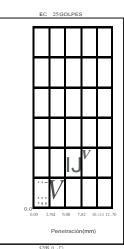
PENETRACION

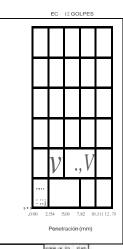
				,-	cc,	-+C		c,	1 -(co-A	REC	>,
DI	11g1cm2	Dilllc:IV)	'G	'G	'llo	Dillllc:IV)	'G	'G	,i,.	Oilllctvt	'G	'G	,i,
0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.025						52.0	2.6			39.0	1.9		
0.080		121.0	6.0			99.0	4.9			89.0	4.4		
		312.0	15.5			161.0	8.0			132.0	6.6		
0.100	70.5	499.0	24.8	20.1	28.5	332.0	16.5	14.9	21.1	233.0	11.6	126	17.9
		732.0	36.4			612.0	30.4			456.0	22.7		
0.200	105.7	1017.0	50.6	59.1	55.9	963.0	47.9	47.2	44.7	762.0	37.9	345	32.6
0.250		1669.0	83.0			1161.0	57.7			986.0	49.0		
0300		20760	103.2			1774.0	88.2			1168.0	58.1		
		20 4.0	121.0			2043.0	101.6			1867.0	92.8		
	0.025 0.0SO 0.100 0.200 0.250 0.300	0.000	0.000 O.O 0.025 121.0 0.080 121.0 0.100 70.5 499.0 0.200 105.7 1017.0 0.250 1669.0 0 0.300 20760 20760	0.000 0.0 0.0 0.025 121.0 6.0 0.080 121.0 15.5 0.100 70.5 499.0 24.8 0.200 105.7 1017.0 50.6 0.250 1669.0 83.0 0300 20760 103.2	0.000 O.O. O.O. 0.025 121.0 6.0 0.080 121.0 15.5 0.100 70.5 499.0 24.8 20.1 0.200 105.7 1017.0 50.6 59.1 0.250 1669.0 83.0 83.0 0300 20760 103.2	0.000 O.O O.O 0.025 121.0 6.0 0.050 121.0 6.0 312.0 15.5 15.5 0.100 70.5 499.0 24.8 20.1 28.5 732.0 36.4 0.0 59.1 55.9 0.200 105.7 1017.0 50.6 59.1 55.9 0.250 1669.0 83.0 0.0 0.0 103.2 0.0	0.000 O.O O.O O.O 0.025 121.0 6.0 92.0 0.080 121.0 6.0 99.0 112.0 15.5 161.0 0.100 70.5 499.0 24.8 20.1 28.5 332.0 0.200 105.7 1017.0 50.6 59.1 55.9 963.0 0.250 166.0 83.0 1161.0 0300 103.2 1774.0	0.000 O.O D.O D.O </td <td>0.000 O.O O.O<!--</td--><td>0.000 O.O O.O<!--</td--><td>0.000 O.O O.O O.O O.O 0.025 121.0 6.0 99.0 4.9 89.0 0.080 121.0 6.0 99.0 4.9 89.0 132.0 0.100 70.5 499.0 24.8 20.1 28.5 332.0 16.5 14.9 21.1 233.0 0.200 105.7 1017.0 50.6 59.1 55.9 963.0 47.9 47.2 44.7 762.0 0.250 1669.0 83.0 1161.0 57.7 7 986.0 0.300 20760 103.2 1774.0 88.2 1168.0</td><td>0.000 O.O D.O D.O<!--</td--><td>0.000 O.O O.O<!--</td--></td></td></td></td>	0.000 O.O O.O </td <td>0.000 O.O O.O<!--</td--><td>0.000 O.O O.O O.O O.O 0.025 121.0 6.0 99.0 4.9 89.0 0.080 121.0 6.0 99.0 4.9 89.0 132.0 0.100 70.5 499.0 24.8 20.1 28.5 332.0 16.5 14.9 21.1 233.0 0.200 105.7 1017.0 50.6 59.1 55.9 963.0 47.9 47.2 44.7 762.0 0.250 1669.0 83.0 1161.0 57.7 7 986.0 0.300 20760 103.2 1774.0 88.2 1168.0</td><td>0.000 O.O D.O D.O<!--</td--><td>0.000 O.O O.O<!--</td--></td></td></td>	0.000 O.O O.O </td <td>0.000 O.O O.O O.O O.O 0.025 121.0 6.0 99.0 4.9 89.0 0.080 121.0 6.0 99.0 4.9 89.0 132.0 0.100 70.5 499.0 24.8 20.1 28.5 332.0 16.5 14.9 21.1 233.0 0.200 105.7 1017.0 50.6 59.1 55.9 963.0 47.9 47.2 44.7 762.0 0.250 1669.0 83.0 1161.0 57.7 7 986.0 0.300 20760 103.2 1774.0 88.2 1168.0</td> <td>0.000 O.O D.O D.O<!--</td--><td>0.000 O.O O.O<!--</td--></td></td>	0.000 O.O O.O O.O O.O 0.025 121.0 6.0 99.0 4.9 89.0 0.080 121.0 6.0 99.0 4.9 89.0 132.0 0.100 70.5 499.0 24.8 20.1 28.5 332.0 16.5 14.9 21.1 233.0 0.200 105.7 1017.0 50.6 59.1 55.9 963.0 47.9 47.2 44.7 762.0 0.250 1669.0 83.0 1161.0 57.7 7 986.0 0.300 20760 103.2 1774.0 88.2 1168.0	0.000 O.O D.O D.O </td <td>0.000 O.O O.O<!--</td--></td>	0.000 O.O O.O </td

	4
	1/01
	GEOWING HIGH

-	GEOKIMHIDRO LUORITOIOOi I(CI	RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM D 1883 - MTCE 132)		
	PROYETO - r-wjor:am	o de u. kn. con ∗d killo5 orga,niccn., F. u. rreter dY:aurisqu e. R•r ce. , CUKO - 2022•	Regist ro N°:	001-2022-INVES
	UBICACIÓN : ITRAMO 06+0	al 0a+000	Fe cha:	28 / 02/2022


I Pato::t Gcoc raln


PRO CEDENCI A	: Calicata 06+000 - 08 +000	CLAS F. (Sucs:	: SP
ESTRUCTURA	: Base Con Estabilización	CLA SF. (AAS H	: A- 2-4(0)
MATERIAL	: Suelo De Orioe n COluv ia l	LADO	: L/Oerl'!C.
DIS EÑO	5 Walter 2017 20 Wes		


1	
1 /	
17/1	
1/ 11	
4	

_	
METOOO OE COMPACTACIO N	: ASTM D1557
MAXIMADENSIDAD SECA (gcmJ)	: 2280
OPTIMOCONTENDODEHUMEBID(%1	: 8.4
95 % MAJOMA DE NSIDAD SEC A (g/cml)	: 2.166
DENSIDAIINSTU (g/cm31	
C.B.R al 100% de M.O.S. (%) 0.	ro. : SS.9
C.B.R. at95% de M.D.S. (%) 0.1-	ro. : 44.7

RESULTA.DOS CBR a 0.1*:	28.5	r11
Valor de C.B.R. al 95% de la M.D.S.	21.1	r1.1
OBSERVACIONES,		

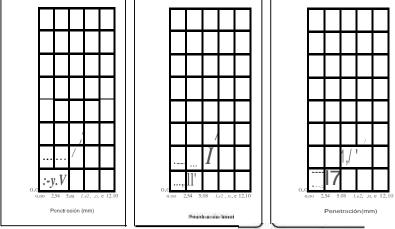
BR j0 .2")

COR (6.7) SUS-

RE LACIO N SO POR TE DE CALIFOR NIA - C.B.R. (ASTM O 1883 - MTCE 132) PROYECTO -M-jon mir ato ó a sue los con di irvos Offin,200 en IIII e + reer II Yllaria; ue Rann,uu, O.seo · 2022 Regist o N ·: 001-2022INVES UBICACIÓ N : !Tramo 03+000 a 106+000 Fec ha: 28/02/2022

L Patos Gs::oe raln

 PROCEDENCI A : Calicata 03+000 - 06+000
 CLASI. (S UCS) : SP


 ESTRUCTURA : Base Con Estabilización
 CLASF. (AAS HTO) : A-2-4(0)

 MATERIAL : Suelo De Origen Coluvial
 LADO : UDerc.

 DIS EÑO
 LADO : UDerc.

	scelo		, M						METODO DE COMPACTACJON MAX IMA DENSIDAD SECA (glcm J) OPTIMOCONTENIDO DE HUMEDAD(%) 95% MAXIMA OENSIOAD SECA (g/cmJ) DENSIDAD INSITU (glcm 31
• 3	1mt ^t -H-	_=,	η-ivi	-	F:-	j =	1	Ī	C.B.R. al 100 % de M.O.S. (%) 0.1*
	- <u>-</u> -	 	$\{$					ŀ	C.B.R. al 95% de M0 .S. (%) 0.1'''
j 2	s 50 HI 1 +	- J	il	+		f	+ l l		RESULTA DOS CBR a 0.1": Valor de CB .R. al 95% de la M.D.S.
	- -						\vdash		OBSERVACIONES:
	10.0	Į	·	+-	+-		†I		
				CBR(%)				

10.0	OBSERVACIONES:
C B R (%)	
	++++++++++++++++++++++++++++++++++++

CBM (Or.) CBR j0.1"J 22.8%

: ASTMD1557 : 2.210 : 8.1 : 2.100

> 31.0 22.5

(%) (¾)

		Gromihhidioaziji Lymmi, iurio&1/c1/1uh	R ELACIO N SOPO RTE DE CALIFORNIA - C,B,R, (AST M D 1883 - MTCE 132)			
PROYECT Me joram iento de s uele			suelos con adit ivos organicos en la carrete ra Yaurisq ue - Ranracasa , CUsco - $202\mathrm{r}$	Registro N-: 001-2029N/ES		
UBI	CAC ÓN	: Tramo 03+000 a106	+000	Fecha:	29/03/2021	

L Datos Generales

PR OCEDEN CI A	: C;ilica 03+000-06	5+000			CLA	SF(SUC5): SP
ESTRUCTURA	: Base Con Estabilitació	ón			CLASF.	(AASHTO): A-2-4(0)
MATERIAL DISEÑO	: Suelo De Ori9e n COlu : Ce inza madera 9+1	v ia 1				LADO: 1/Oere.
		DENSIDAD HAXIIHA	2.210	1	trua:DAD OPTNA(%)	8.14
Millide Nist				_		_

	DENSIDAD	HAAIIHA	2.210 I	II da.DAD	OI IIVA(78)	0.14
M:llde N°'			5			•
capas Nº	5		5	i		5
Gopes por capa N ^o	50	5	25	5		12
Condición de la muestra	NO SATURADO	S ATURADO	NO SATURADO	SATURADO	NOSATURADO	SATURADO
Pesode molde + Sueb húmedo (g)	12890		13370		12820	
Pesode mOlde (a)	7960				8323	
Pesodel suelo rumedo (g)	4930		4702		4497	
Volooiendel molde (cm ³)	2110		2112		2121	
Densidad tl.Jmeda (a/cm ^o)	2.336		2.226		2.120	
Tara (N°)	0		0		0	
Peso suelohúmedo + tara (!1)	131.00		139.00		131.00	
Peso suelo seco+ tara(g)	121.40		126.70		121.20	
Pesode tara (g)	0.00		0.00		0.00	
Pesode aaua (a)	9.60		10.30		9.30	
Pesode suelo seco(g)	121.40		128.70		121.20	
Contenidode htmedad (%)	7.91		8.00		8.09	
Densidad seca fa/cm ³)	2.165		2.061		1.962	

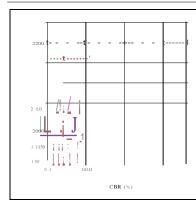
EXP ANSI ON

FEC HA	HORA	T6" 0	OIAI.	U PN	A SION	ON OIAI.		PM SION	SION OW.		
					H		1	- 1		UPA	NSION
29.'03/2021	10:35	0					1				
IQ/03/2021	10:35	=					1				
3 1/0 3/2021	10:35					5 DANION (O. 1					
1/0 4/2021	10:35	72			NO	E <pansivo -<="" td=""><td></td><td></td><td></td><td></td><td></td></pansivo>					
2/04/2021	10:35						1				
							1				
							1				

PENETRACION

		CAR<#I		HOLI	DE N"4			HOLI	DE N"S			■ C	l.DEN"I	
PENETRN	:ION	STAND.	CA	RGA	CORR	ECCION	CM	G A	CORRECO	CION	CM	G A	CORRECCI	ON
in		"8/CM2	OillllclV)	kg	-	TI,	Oill(clV)	kg	- 11	JI.	Oill(clVI	kg	• •	II
0000	0.000		0.0	00			0.0	0.0			0.0	0.0		
0.635	0.025		7A.O	37			69.0	3.4			AL.O	2.0		
1.270			137.0	6.8			99.0	4.9			79.0	3.9		
	0.075		311.0	15. S			196.0	9.7			116.0			
2.540	0.100	70.5	277.0	13.8	22 1	31.3	2280	11.3	17.6	25.0	172.0	8.6	124	
3.810	0.150		999.0	49.7			918.0	45.7			642.0	31.9		
5.080	0.200	105.7	1457.0	72.5	70.5	66.7	1071.0	53.3	56.7	53.6	966.0	48.0	4,67	44.2
6.350	0.250						1542.0	76.7			1251 .0	62.2		
7.620	0.300		2458.0	122.2			2087.0	103.8			1788.0	88 .9		
10.160	0.400		3079.0	153 .1			2766 .0	137.6			2262 .0	113.5		
	'													

Observadone ·s


·1 patos Generales

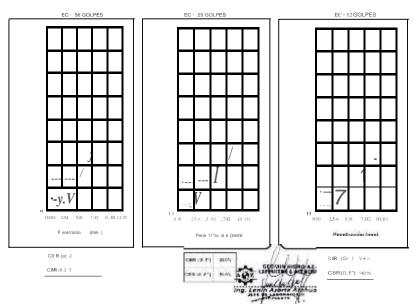
 PROCEDENCIA
 : Calicata 03+000 06+000
 CLASF. (SUCS)
 : SP

 ESTRUTURA
 : Base Con Estabilización
 CLASF. (AASIF
 : A-24 (0)

 MATERJAL
 : Suelo De Origen Coluvial
 LADO
 : UDerc.

 DIS EÑO
 : Ceniza madera 9-Jo

 METODO DE COMPACTACION
 : ASTMD1557


 MAXIMA DENSIGAD SEGA (g/cm J)
 : 2,210

 OPTIMO CONTENIDO DE HUMEDAD(%)
 : 8, 1

 95% MAXIMA DENSIGAD SECA(g/cm3J)
 : 2,100

 DENSIDADINSITU(g/cm31
 : 2,100

0.1+	31.3	rc	D.: 66.71
0.1*	25.0	01	r: S3.6 l
		31.3	(1/4)
S.		25.0	(%)
J.		20.0	(//
		0.1* 25.0	0.1• 25.0 01

-ft-Giomio AU Lioritoioj Gour H RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM O 188 3 - MTC E 132) - Mejoramiento de suelos cxm ad itivos or9 anioos en la car n!lte ra Yaurisq ue - Rlir-acasa, Cusoo - Resistro N': OCI-2022INVES UBI CACIÓN : Trama 03 + 000 al 08+00 0 Fec ha: 29/0 3/20 21

1. Datos Berendes

	OfNSIIAL	MAXaIA.	2.210	tt/IEMD	,- (%1	8.14	
Molde N"	11	0		11	12		
ca pas N"	5	i		5	5		
Golpes por capa N"	5	6		25		12	
CoOOicioo de la m.Jestra	NO SATURADO	SAT\RADO	NO SATURADO	SAT\RADO	NO SATURADO	SATIJIWJO	
Peso de molde + Suelo timedo (g)	12870		13278				
Peso de molde (g)	7904				11053		
Peso del sue Jo núrnedo (g)			5017				
Vdumen del molde (an 3)	2123		22<9		227'		
Densidad túneda lolcm ³ l	2.339		2.231		2.119		
Tara(N1	0		0		0		
Peso suelo núrnedo + taa (a)	128.00		148.00		134.20		
Peso suelo seoo + taa (a)	118.40				124.30		
Pesode tara (g)	0.00		000		0.00		
Pesode agua (g)	9.60		10.70		9.90		
Peso de sueloseco(O)	118.40		134.30		124.30		
O:ml.eriOO de tunedad (%)	8.11		7.97		7.96		
Densi <jad cm³,<="" fa="" seca="" td=""><td>2.164</td><td></td><td>2.066</td><td></td><td>1.963</td><td></td></jad>	2.164		2.066		1.963		

EXPANSION

FECHA	HOIIA	T1EWO	E>CP.	ANSION 1	1 EXPA	NSION	EXPA	NSK»I
				•• 1	1 =	• •	•	• •
2"'03/2021	10:IS	0		1	1			
30/03/2021	10:1S	=		1	1			
31/03/2021	10:1S	=		NOEXPANS	N/O 1			
1""'2021	10:1S	72		NUEXPANS	100 —			
2""2021	10:1S			1	1			
				1	1			
				1	1			

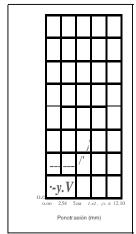
PENETRAQON

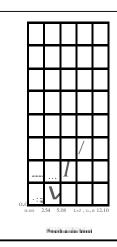
		CARGA	1101DE10				lla.D	E 5		HOLDE 1				
PENETAA	OON	SEAH:2 =	EIII(cGAA	шис СААСАате ==		G@AAE C =:==		=== OA	AEGe== c=	== c==================================		===== C=OAAEC========		==;=-:<
0.000	0.000		0.0	0.0			00	0.0			0.0	0.0		
	0.025		75.0	3.7			69.0	3.4			410	2.0		
1.270			139.0	6.9			102.0	5.1			80.0	4.0		
1.905			315.0	15.7			199.0	9.9			117.0	5.6		
1110	0.100	70.5	279.0	13.9	222	31.5	231.0	11.5	17.7	25.2	174.0	6.7	12.5	17.6
	0.150		1003.0	49.9			920.0	45.6			645.0	32.1		
3.810		105 .7	14 59 .0	72.6	7,06	66.8	1076.0	53 .5	56.9	53.6	968.0	48.1	9	= .
9" 35(F	0.250		1902.0	94.6			1545 .0	76.6			12 .0	62.3		
7.620	0300		2461.0	1224			2069.0	103.9			1790.0	39.0		
10.160			3082.0	153.3			2771.0	137.8			2235.0	113.6		

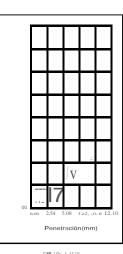
Observaciones:

Common Higher Az

RELACION SOPORTE DE CALIFORNIA - C.B.R. $({\it ASTM} \quad {\it O} \ 1883 - {\it MTC} \ E \ 132)$ **'/**4 L!!!O 1 10RIO 1 1 GI:\IERÍ - M* jon mi*nto 6a suelos — con .d itivos Of9lin;cos en Illic i r dar - 11 Y11 urisque — Rann,uu, O sco \cdot 2022 Registro N: 001-2022INVES PROYECTO UBICACIÓN : !Tramo 03+000 a1 06+000 29/03/2 021


I Patos Gcoc@les


PRO CEDENCI A	: Calica ta 03+000 - 06+000	CLASf. (S UCS)	SP
ESTRUCTURA	: Base Con Estabilización	CL.ASF. (AASHTO)	A-2-4(0)
MATERI AL	: Sue lo De Origen Coluvial	LADO	UDerc.
DIS EÑO	: Ceniza madera 11%		


								METODO DE CO
								MAX IMA DENSI
								OPTIMOCONTE
								95% MAXIMA D
	2 1(!()							DENSIDADINSI
••	2 11 0	/!					Į.	
п	2110							C.B.R. al 100 % o
l "i	,,						ŀ	C.B.R. al 95 % de
'i	,,						ŀ	C.D.C III 95 % GO
ø							ľ	
i								RESULT ADOS O
J								Valor de CB .R.
								OBSERVAC
	,,	10	 					
				CBR (%)			

METODO DE COMPACT ACJON	: ASTMD1557
MAX IMA DENSIDAD SECA (glcm J)	: 2.210
OPTIMOCONTENIDO DE HUMEDAD(%)	: 8.1
95% MAXIMA DENSIDAD SECA (g/cmJ)	: 2.100

DENSIDAD INSITU (glcm31				
C.B.R. al 100 % de M.O.S.(%)	0.1"	315	0.2	: 66.8
C.B.R. al 95 % de M0S.(%)	0.1"	25.2	0.2	: 53.8
RESULT ADOS CBR a 0.11**: Valor de CB .R. al 95% de la M.	D.S.		31.5 252	(%) (%)
OBSERVACIONES:				

CBM(Or.)

CBR j0.1"J

C8R (Or. J 17.1%

CRE (847) 4425

	CEON!NIIDAOAIiIL	RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM D 1883 - MTCE 132)		
PROYECTO	"Mejo ramiento de	suelos con aditivos o roanicos e n la carretera Yall isque - Ranracasa, Cusca - $202\mathrm{r}$	Registro N":	0012021NVES
UBICACIÓN	, TRAMO 06+-000al 0	3+000	Fec ha:	2&'02/2022

PROCEDENCIA: Calicata 06+000- 08+000
ESTRUCTURA: B₁₈ Con Est abi Bización
MATERIAL: Suelo De Origencoluvial
DI SEÑO: Ceniza haba S¾ CLASF.(S UCS): SP a.ASF.(AASHTO): A-2-4(0) LADO: L/Derc.

	DENSIE	DAD,	2280	1 HIIIEDADO	OPTIIIA(%1	,.,.	
Moldo IX						4-4-	
Capas N⁰	5			S	S		
Golpes porcapa N"	56			25			
Condición de la muestra	NO SAIURADO	SATUIW>O	_, SAT\KWJO	SATURADO	,_, SAT\KWJO	SATHW>0	
Peso de molde + Suelo húmedo (q)	12199		12192		12943		
Pesode molde (g)	7228		***99		1.1.1.11		
Peso del suelo húmedo (g)	4971				,		
Volu me n d el moldetcm3\	212'		2107				
Densidad húmeda(a/cm³l	2.343		2.217		2.082		
Tara (N")	S						
Peso suelo húmedo + tara (g)	188.50		136.50		155.10		
Peso suelo seco+tara (g)	174.50		126.30		143.70		
Peso de tara (o)	0.00		0.00		0.00		
Pesodeagua (g)	14.00		10.20		1140		
Peso de suelo seco (g)	174.50		126.30		143.70		
Contenido de humedad (%)					7.93		
Densidad seca (o/cm ³ l	2.169		2.052		1.929		

EXPANSION

FECHA	HORA	T1EWO	DIAL	EICF	MSION	DIAL	DIAL 1 EICPM		DIAL	•,••••	
				• • •			1 • • •			• • •	
28A12/202	10:35	0					1				
1"'3/202	10:35	24					1				
""3/202	10:35	48			210	vo respublicanto 1					
:wJ/202	10:35	72			NO	EXPANSIVO ()				
4'Q3/202	10:35						1				
							1				
							1				

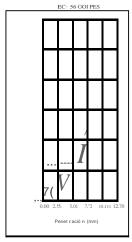
PENETRACION

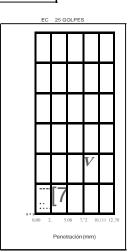
STANGA			-0""	(::;.=	сс,	-+0		C,	1 -(co-X	REC	o,1
PEJIEIIL	ACDI	11g1cm2	Dillle:IV)	'G	'G	'llo	Dillllc:IV)	'G	'G	,i,.	Oill(ctvt	'G	'G	٠, أ,
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025		65.0	3.2			51.0	2.5						
1.270	0.080		106.0	5.3			92.0	4.6			M.O	4.2		
1.905			296.0	14.7			14,30	7.1			115.0	5.7		
2.540	0.100	70.5	<las0< td=""><td>24.1</td><td>19.3</td><td>27.4</td><td>319.0</td><td>15.9</td><td>14.2</td><td>20.1</td><td>216.0</td><td>!0.7</td><td>12.6</td><td>17.8</td></las0<>	24.1	19.3	27.4	319.0	15.9	14.2	20.1	216.0	!0.7	12.6	17.8
3.810			718.0	35.7			5970	2,97			432.0	21.5		
5.080	0.,00	105.7	1002.0	49.8	58.3	SS.2	943.0	46.9	46.4	43.9	847.0			
6.350	0.250		1655.0	82.3			115-4.0	57 .4			1002 .0	49.8		
7.620			2063.0	102.6			1754.0	87.2			115-4.0	57 .4		
10.160	0.400		2413.0	120.0			2023.0	100.6			1954.0	97.2		

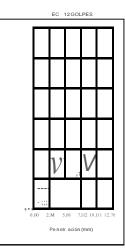
4
111
A COLUMN TO A PARTY OF THE PART

GOGNHDIOMM LAOMIRIO IICIMIN RELACION SOPORTE DE CALIFORNI A - C.B.R. (ASTM D 1883 - MTCE 132) PROYECTO - r-wjoramini o dis u. km com -d k iilo 5 orga, nicen... k u rreter d'i aurisque R--r-ce. , CUKO - 2022- Registro N°: 001-2022-INVES UBICACIÓN : ITRAMO 66 +00 0 al 0a+000 Fe cha : 28 02 /20 22

I Pato ::t Gcoc raln


PROCEDENCI A	: Calicata 06+000 - 08+000	CLAS F. (Sucs:	: SP
ESTRUCTURA	: Base Con Estabilización	CLA SF. (AA SH	: A-2-4(0)
MATERI AL	: Suelo De Orioen COluvia l	LADO	: L/Oerc.
DIS EÑO	: Corns habs 5%		


	•		1.			$\frac{1}{1}$
2150	/					t
2.100	ı - /	J	⊦t+-	+		H
4.000	19.1	HIZ				T
2 mi		1				ł
1.807		4				
1 800		W.C. 19		90 0	ne .	200


ME TOOD O E COMPA C TA CIO N	: ASTMD1557
MAXIMADENSIDAD SECA (g cm3)	: 2280
OPTIMO CONTENIDO DE HUMEDAD	(%1 : 8.4
95% MAJOMA DENSIDAD SECA (g/c	ml) : 2.166
DOMESTO MANDET LA-A04	

C.B.R al 100% de M.O.S. (%)	Ø.	27.4	D.	: SS.2 1
C.B.R. at95% de M.D.S. (%)	0.1-		ro.	: 43.9
RESULTADOS CBR a 0.1":			27t	r11
Valor de C.B.R. al 95% de la M.C.	S		20.1	r1.1

OBSERVACIONES,		

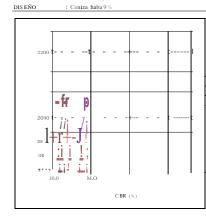
C9R (O.f"J

C8R (0.2°)

C8 R (t . f')

BR (0 .2")

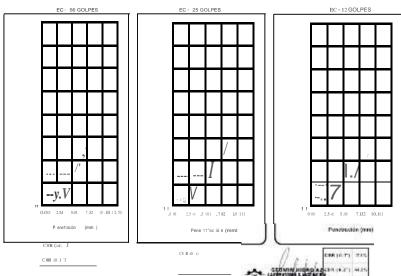
CBA co.i- 1 II.0%



·1 patos Gen e ra les

PRO CEDEN CIA CLAS F. (S UCS) : Calica ta 03+000 06+000 : A-24 (0) : UDe rc. ESTRUCTURA MATERJAL : Base Con Estabilización : Suelo De Origen Coluvial CLASF. (AASff LADO

METODO DE COMPACTACION



: ASTMD1557 :2_210 MAXIMA DENSIDAD SECA (g/cm J) : 8. 1 : 2. 1 00 OPTIMO CONTENIDO DE HUMEDAD(%) 95% MAXIMA DENSIDAD SECA(g/cm3J DENSIDAD INSITU(g/cm31 o.r: 66.s1

('/4) Valor de C.B.R. al 95% de la M.D.S. 24.6 (%)

OBSERVACIONES:

C.B.R. al 95% de M.O.S.

R ELACIO N SOPORTE DE CALIFORNIA - C.B.R. (ASTM O 1883 - MTC E 132)

-Mejoramiento de suelos cxm ad itivos or
9 anioos en la eam! Itera Yaurisq ue - Rllr
-cacasa, Cusoo - 202
r

Re9istro N": 001-2022INVES 29/03 / 2021 Fec ha:

1. Datos Generales

PROCEDENO A : Calicata 03+000 - 06+000
ESTRUCTURA : Base Con Estab ilización
MATERIAL : Suelo De Origen Coluvial
DISEÑO : Ceniza haba 11¾

:Trama 03 + 000 al 06+-00 0

CLASF. (S UCS): SP a.ASF. (AASHTO): A-2-4(0) LADO: VDerc.

	OfNSIIAL	MAXaIA.	2.210	ttJIEMD	,- (%1	1 8.14
Molde N"	10)		11		12
capas N"	5			5		5
Golpes por capa N"	56	6		25		12
CoOOicioo de la m.Jestra	NO SATURADO	SATIRADO	NO SATURADO	SATIRADO	NO SATURADO	SATIJIWJO
Peso de molde + Suelo tImedo (g)	12870		13278			
Peso de molde (g)	7904				11053	
Peso del sue Jo núrnedo (g)			5017			
Vdumen del molde(an 3)	2123		22<9		227'	
Densidad túneda lolcm°l	2.339		2.231		2.119	
Tara(N1	0		0		0	
Peso suelo núrnedo + taa (a)	128.00		148.00		1 34.20	
Peso suelo seoo + taa (a)	118.40				124.30	
Peso de tara (g)	0.00		000		0.00	
Peso de agua (g)	9.60		10.70		9.90	
Peso de sueloseco(O)	118.40		134.30		124.30	
O:ml.eriOO de tunedad (%)	8.11		7.97		7.96	
Densi <jacj (<="" cm³="" fa="" seca="" td=""><td>2.164</td><td>•</td><td>2.066</td><td></td><td>1.963</td><td></td></jacj>	2.164	•	2.066		1.963	

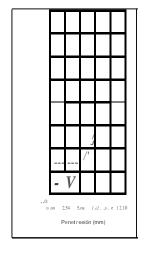
EXPANSION

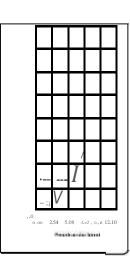
FECHA	HOIIA	T1EWO	E>CP.	ANSION 1	_1 EXPA	NSION	EXPA	NSK»I
				•• 1	1 =	•	•	• •
2"'03/2021	10:IS	0		1	1			
30/03/2021	10:1S	- 11		1	1			
31/03/2021	10:1S	=		NOEVDANCE	vo 1			
1""'2021	10:1S	72		NOEXPANSI	vo —			
2""2021	10:1S			1	1			
				1	1			
				1	1			

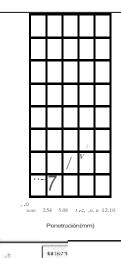
PENETRAQON

PENETAAOON		CARGA		1101	DE10			lla.D	E 5			IIOI	LDE 1	
		SEAH:2 =	EIII(cGAA	GAare ==	G@AAB	£:	GAAGA=	=== 0A	AEG=== c=	===:===6	A.AGA;= ==	== C=0A	AEC=====	==:=-:
0.000	0.000		0.0	0.0			00	0.0			0.0	0.0		
	0.025		73.0	3.6			6.0	3.2			40.0	2.0		
1.270			124.0	6.2			91.0	4.5			71.0	3.5		
1.905			2870	14.3			176.0	8.8			101.0	5.0		
1110	0.100	70.5	264.0	13.1	21 1	JO.O	215.0	10.7	16.6	23.6	154.0	7.7		16.4
	0.150		976.0	46.5			904.0	45.0			625.0	31.1		
3.610		105 . 7	14 3,7 0	71.5	69.4	65.6	10470	52.1	- 8	52.6	937.0	46.6	45.5	43.1
#.350	0.250		18790	93.4			1525.0	75.6			1226.0	61.0		
7.620	0300		24,360	12,11			2075.0	103.2			1767.0	6,79		
10.160			3058.0	152.1			27',8 0	136 .7			2265.0	112.6		

Observaciones:


t cto aq ...1




LPatos Gcoc@les

PROCEDENCI A	: Calica ta 03+000 - 06+000	CLASf. (S UCS)	SP
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO)	A-2-4{0)
MATERI AL	: Sue lo De Origen Coluvial	LADO	UDerc.
DIS EÑO	: Ceniza haba 11o./		

		METODO DE COMPACT ACJON	: ASTM D1557
		MAX IMA DENSIDAD SECA (glcm J)	: 2.210
		OPTIMOCONTENIDO DE HUMEDAD(%)	: 8.1
		95% MAXIMA DENSIDAD SECA (g/cmJ)	: 2.100
	2 1(!()	DENSIDAD INSITU (glcm 31	
in.	2110	C.B.R. al 100 % de M.O.S. (%) 0.1"	J00 0.2" : 65.6
9184	,, . M. M	C.B.R. al 95% de M0S. (%) 0.1"	23.6 0.2": 52.8
Densided Secs Ignore	SEED A		1
- Spin	21.0	RESULT ADOS CBR a 0.1":	JO.O (%)
ã	1111	Valor de CB .R. al 95% de la M.D.S.	23.8 (3/4)
	7887		
	1610	OBSERVACIONES:	
	260 100 1000 1000	101	
	CBR (%)		

PROYECTO "Mejoramiento de suelos con aditivos o roanicos en la carretera Yallisque - Ranracasa, Cusca - Registro N°: 0012022 NES UBICACIÓN , Tramo 03+000al 06+000 Fecha: 28/02/202

L Patos Generales

 PROCEDENCIA : Calicatu 03+000- 06+000
 CLASF. (S UCS) : SP

 ESTRUCTURA : B;ac Con Bat abi Itzación
 a.ASF. (AASHTO) : A-2-4(0)

 MATERIAL : Suelo De Origen Coluvial oi Seño : Centiza madera 3* /.
 LADO : L/Derc.

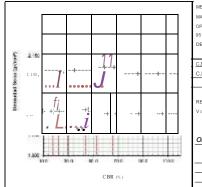
	DENSID	DAD,	2.210 1	HIIIEDADO	OPTIIIIA(%1	8.14
Molde No	7					•
Capas N ^o	5		5			5
Golpes porcapa N"	5	6	25	5		
Condición de la muestra	NO SAIURADO	SATUIW>O	_, SAT\KWJO	SATURADO	,_, SAT\KWJO	SATIIW>0
Peso de molde + Suelo húmedo (q)	1231-4		12635		12180	
Peso de molde (g)	7369		7938		7690	
Peso del suelo húmedo (g)	4945				4490	
Volumen del molde tcm3\	2129		2115		2119	
Densidad húmeda (a/cm³l	2.323		2.221		2.119	
Tara (N")	6		7			
Peso suelo húmedo+ tara (g)	188.50		136.50		155.10	
Peso suelo seco+tara (g)	174.50		126.30		143.70	
Peso de tara (o)	0.00		0.00		0.00	
Peso deagua (g)	14.00		10.20		1140	
Peso de suelo seco (g)	174.50		126.30		143.70	
Contenido de humedad (%)	8.02				7.93	
Densidad seca (o/cm ³ l	2.150		2.055		1.963	

EXPANSION

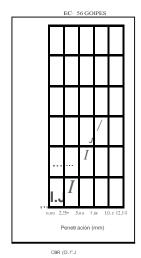
FECHA	HORA	TIEWO	DIAL	EICF	MSION	DIAL	1 EICP	MSIOII	DIAL	• • •	,
				• • •			1 • • •			•••	
28A12/202	10:35	0					1				
1"3/202	10:35	24					1				
""3/202	10:35	11			210		. 1				
:wJ/202	10:35	72			NO	EXPANSIV	U				
4'Q3/202	10:35						1				
							1				
							1				

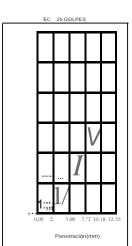
PENETRACION

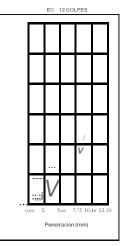
		STANGA	-0""	C, = cc, -+		-+c ^{MOLDEN' 5} ,1 -(co-ARECc,1						
PEJIEIIIA	CDI	11g1cm2	Dillle:IV)	'G	'G	'llo	Oilll(c:IV)	'G	'G	'llo	Oill(ctvt	'O	'O	'llo
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025						68.0	3.4			-46.0	2.3		
1.270	O.OSO		119.0	5.9			91.0	4.5			79.0	3.9		
1.905			282.0	14.0			184.0	9.2			121.0	6.0		
2.540	0.100	70.5	249.0	12 4	20.7	29.4	211.0	10.5	15.7	22.3	162.0	8.1	124	17.6
3.810			9700	4a.2			793.0	39.4			648.0	32.2		
5080	0.200	105.7	1441.0	71.7	69.4	65.7	1075.0	53.5	S5.6	52.6	958.0	47.6		
6.350	0.250		1884.0	93.7			1573.0	78.2			1226.0	61.0		
7.620			2445.0	121.6			2066.0	102.7			1781.0	88.6		
10.160	0.400		3054.0	151.9			2734.0	136.0			2284.0	113.6		


obsecvad ooes.	

GEOMIKHDROMM | LIORIORIOH | CELITUL | RELA CIO N SOFOR TE DE CALIFORNI A - C.B.R. (ASTM D 1883 - MTC E 132) | Registro Nº: 001-2022-INVES | | UBICACIÓN : !Tramo 03+000 a106+000 | Fecha: 28.02/2022


L Pato::t Gcoc raln


PROCEDENCI A	: Calicata 03+000 - 06+000	CLAS F. (Suc s:	: SP
ESTRUCTURA	: Base Con Estabilización	CLA SF. (A AS H	: A-2-4(0)
MATERIA L	: Suelo De Orioen COluv ia l	LADO	: L/Oerc.
DIS FÑO			



MET O OO O E COMPA C TAC IO N	: ASTM D1557
MAX IMA DENS IDA D SE CA (g cm J)	: 2210
OPT IMO CO NTEN IDO DE HUMED AD (%1	: 8.1
95% MAJOMA DENSIDAD SECA (g/cm I)	: 2.100
DENSIDAD INSITU (g/cm 31	

C.B.R at 100% de M.O.S. (%)	O.			: 65.7 I
C.B.R. at95% de M.D.S. (%)	0.1-	223	ro.	: 52.6 l
			_	
RESULTADOS CBR a 0.1":			29.4	r1.1
Valor de C.B.R. al 95% de la M.	D.S.		22.3	r1.1
OBSERVACIONES,				

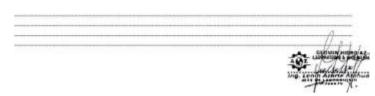
C9R (O.1°J

C 9R (t.f") BR j0.2") car or 1 100

1 Patos Ga1ecnles

PR OCEDENC	IA: Calicata 03+000 - 06+000	CLASF. (SOCS): SP
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO): A-2-4(0)
MATERI AL	: Suelo De Origen Coluvial	LADO: 1/ Derc.
DISEÑO	: Ceniza madera 7%	

	DENSIIAD	MAXIIA	2.210	I-UIEOAD	OPrIMA(flli) 1	8.14	
M:llde N"	1			2	3		
Capas Nº	5			5	5		
Golpes por capa N ^o	56			25	12		
Condición de la muestra	NOSATURADO	SATURADO	NOSATURADO	SATURADO	NO SATURADO	SATUIADO	
Peso de molde + Suelo húmedo (g)	12943		13212		12000		
Peso de molde (g)	7994		8525				
Peso del suelo húmedo (g)	4949		4687		4400		
Volumen del molde (cm³)	2118		2098		2107		
Densidad húmeda (a/cnl)	2.3J7		2.234		2.126		
Tara (N'')	0		0		0		
Peso suelohúmedo + tara (g)	125.00		128.00		106.00		
Peso sueloseco+tara (g)	115.70		118.60		98.10		
Peso de tara (g)	000		000		000		
Peso de agua (g)	9.30		9.40		7SIJ		
Peso de suelo seco (g)	115.70		118.60		98.10		
Contenido de humedad(%)	8.04		7.93		8.05		
Densidad seca (a/cm³)	2.163		2.070		1.968		


EXPANSION

FECHA	HORA	TIEMPO	••••	EJIPANSION	••••	EllPA	NSION	tJIAI.	exp,,.		
			*****	mm	=	*****	mm	- 11			-
28/02/2022	10:35	0									
1i03 /2022	10:35	24									
2J03/2022	10:35	***			N	EXPANSIVO					
3 i03 /202 2	10:35	72					1				
4i03/2022	10:35	96				1					
						1					
						1					

PENETRACION

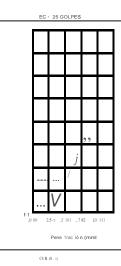
		CARAX		MOI.DE				MOL	MOLDEN" 5			II> LDEN• t			
PEI\ETRI	4.DN		C''	""A	COAR	RECOON	C''	''''A	CORRECT	CION	CA	RGA	C ORRECC 10	ON	
***	;n		D il l(CIV	•	•••		D il Il CIV.	••	• •		D II 1 (CIV	••	• •		
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0			
0.635	0.025		77.0	3.8			65.0	3.2			42.0	2 1			
1.270	0.050		139.0	6.9			89.0	4.4			860	4.3			
1 905	0.075		XJ7.0	152			185.0	9.2			131.0	6.5			
2.540	0.100	70.5	275.0	13.6	21.9	31.0	226.0	11.2	15.9	22.5	168.0	8.3	12.6	17.9	
3.810	0.150		993.0	492			812.0	40.2			642.0	31.8			
5.000	0.200	105.7	1459.0	72.3	70.2	66.4	1064.0	52.7	55.5	52.5	974.0	'8 .2	46.7	44.2	
6.350	0.250		1900.0	94.1			1558.0	77.2			1248 0	61.8			
7.620	0.300		2463.0	122.0			2089.0	103.5			1792.0	88.8			
10.160	0.400		3084.0	152.8			2751.0	136.3			2275.0	112.7			

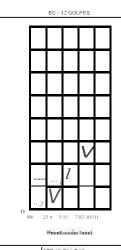
vaciones

RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTMO 1883 - MTCE 132) -M* jon mi*nto ó⊲ suelos con d itivos Ol'9'lln;cos en Ill t + retr 11 Y11urisque Rann,uu, O.seo. 2022 Registr o N=: 001-20210RCOKUNA PROYECTO UBICACIÓN : ¡ea licata oo+ooo a 1 03+000 Fec ha: 29/03/2 021

·1 patos Generales

: Tfi!lmO 00 +0 00 • 03 +000 : Base Con Estabilización CLASF. (SUCS)
CLASF. (AASff
LADO PROCEDENCIA : SM : A-4(1) : UDer. ESTRUCTURA MATERJAL : Suelo De Origen Coluvial orga nioo


> METODO DE COMPACTACION MAX IMA DENSIDAD SECA (g/cm J)


DIS EÑO PolvCom 0.020 k9/ m'

	2180 +++
1	21.30
3/4	
	2080 ++ ++ '''++ +
	m 15 + ()+
	Ji
	,,++ +-
	CBR (%)

: 8.1	2	
: 2.0	033	
36.4	ro.	: 86.1
23.9	0.2	": 69.6
	36A	('/4)
	23.9	(%)
	36.4	23.9 0.2 36A

EC - 56 GOLPES P ene1ración (mm)

: ASTMD1557 : 2_140

C8 R (Or.)

C8R (0.1 "J

R E LACIO N SOPORTE DE CALIFORNIA - C.B.R. (ASTM O 1883 - MTC E 132)

-Mejoramiento de suelos cxmaditivos or9anioos en la earn!ltera Yaurisque - Rlir
-acasa, Cusoo- $202 {\rm r}$

Re9istro N":

: Calicata 00 + 000 ai 03+000

Fec ha:

001-2012-00.CK0/NA

29/03/2021

I. Ibatos Researches

PROCEDENO A: Tramo 00+000 - 03+000

ESTRUCTURA.: Base Con Estabilización

MATERIAL: Suelo De Origen Coluviai organico

DISEÑO: PolyCom 0.022 ka/ml

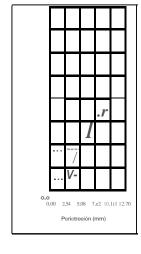
CLASF. (SUCS): SM a.ASF. (AASHTO): A-4(1) LADO: V Der.

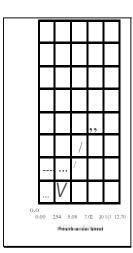
	OfNSIIAD	MAXaIA.	2.140	ttJIEMD	,- (%1] 8.12		
Molde N"	3	3	;	36		37	
ca pas N"	5			5	5		
Golpes por capa N"	56		2	25	12		
CoOOicioo de la m.Jestra	NO SATURADO	SAT\RADO	NO SATURADO	SAT\RADO	NO SATURADO	SATIJIWJO	
Pesode molde + Suelo tImedo (g)	13160				'1006		
Pesodemolde (g)	8335		7151				
PesodelsueJonúrnedo (g)	4825		4739		4462		
Vdumen del mole (an)	2000		2122		y* · ·		
Densidad túneda lolcm ³ l	2.320		2.233				
Tara(N1	0		0		0		
Peso suelo núrnedo + taa (a)	123.22		133.73		142.40		
Pesosuelo seoo +taa (a)	113.87		123 54		131.60		
Peso de tara(g)	0.00		000		0.00		
Peso de agua (g)	9.35		10.19		10.80		
Peso desuelo seco(O)	113.87		123.54		131.60		
Conl.eridode tunedad (%)	8.21		8.25		8.21		
Densi< lad Seca fa/cm	2.144				1 020		

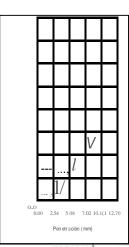
EXPANSION

FECHA	HOIIA	TIEWO	E>CP.	ANSION 1	1 E>CP	ANSION	EXP	ANSK»I
					1 =			
29,'03/2021	10:1S	0		1	1			
30/03/202	10:1S	24		1	1			
31/03/202	10:1S				1			
1 "'4/202	10:1S	72		NO EXPANSIVO	, —			
2"'4/202	10:IS	96		1	1			
				1	1			
				1	1			

PENETRAQON


	CARGA 1101DE >>			lla.DE 5			HOLDE 1							
PENETAA	OON	SECURCOME, =	m(.CA A6	Ame ==	GOAAEC	.≣::=d	IAAGA==	= OAAl	EGe== c=	:CA	AGA;= ===	= C=0AA	EC==:c===	∓:= - <
0.000	0.000		0.0	0.0			00	0.0			0.0	0.0		
	0.025		46.0	2.3			36.0	1.8			28.0	1.4		
1.270			110.0	5.5			82.0	4.1			56.0	2.8		
1.905			217.0	10.8			133.0	6.6			109.0	5.4		
2540	0.100	70.5	584.0	29.0	25.1	1S.6	413.0	20.5	16.5	23.4	318.0	15.8	12.5	17.7
3.810	0.150		9940	49.4			803.0	39.9			626.0	31.1		
5.000		1057	1883.0	93.6	90.3	85.5	1372.0	68.2	73.1	69.2	1042.0	53.8	60.7	57.5
6.350	0.250		2551.0	126.9			2061.0	103.5			1882.0	93.6		
7.620	0.300		3001.0	149.2			27720	137.8			2320.0	115.4		
10.160			3327.0	16,5 4			306 1.0	152.2			2761.0	137.3		
	•													


PROYECTO -M*- jon mi*-nto 6-a suclos con di kivos O'9lin;cos en Ilica ratr Il Yllurisque Rann,aux, O.seo - 2022 Regist o N*: 001-20240RC0kUNA UBICACIÓ N : jea licata oo+ooo a 103+000 Fee ha: 29/03/2 021


LPatos Gcoc@les

PROCEDENCI A	: Tramo 00+000 - 03+000	CLASf. (S UCS)	SM
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO)	A-4(1)
MATERIAL	: Suelo De Origen Coluvial orga nico	LADO	UDer.
DIS EÑO	: PolyCom 0.0 22 kg/ m1		

		METODO DE COMPACTACJON	: ASTMD1557
		MAX IMA DENSIDAD SECA (glcm J)	: 2.140
		OPTIMOCONTENIDO DEHUMEDAD(%)	: 8.12
		95 % MAXIMA DENSIDAD SECA (g/cmJ)	, 2.033
	2 ,eo ,+ 11	DENSIDAD INSITU (glcm 31	
200	***		
grices 1	212	C.B.R. al 100 % de M.O.S. (%) 0.1"	35.6 or: as.s1
	-1-	C.B.R. al 95% de M0S. (%) 0.1"	23.4 0.2": 69.2
3	2200		1
Debrided	714	RESULTADOS CBR a 0.1 ^{rs} : Valor de CB .R. al 95% de la M.D.S.	35.6 (%) 23A (¾)
-	rec d		
	18%	OBSERVACION ES:	
	(28C 1		
	CBR (%)		

THE T PL

RELA CION SOPO RTE DE CALIFORNIA - C. B.R. (AS TM D 1883 - MTCE 132)

PROYECTO "Mejoramiento de suelos con aditivos oroani<:osen la carretera Yall isque- Ranracasa, Cusca202r

Registro N": 001 2022I N\ES
Fec ha: 28/02/2022

UBI CACIÓN , Tramo 03+000al 06+000

L Patos Generales

 PROCEDENCIA : Calicata (3± 000 · 06+000
 CLASF. (S UCS) : SP

 ESTRUCTURA : 8,se Con Estabilización
 a.ASF. (AASHTO) : A·2·4(0)

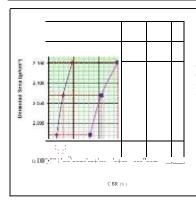
 MATERIAL : Suelo De Origen Coluvial DISENO : Certa; haba S %
 LADO : L/Derc.

	DENSID	AD,	2.210	1 HIIIEDAD	OPTIIIA(%1	8.14	
Molde No			2	20			
Capas Nº	S			S	S		
Golpes porcapa N"	56			25			
Condición de la muestra	NO SAIU RAOO	SATUIW>O	,_, SAT\KWJO	SATURADO	,_, SAT\KWJO	SATHW>0	
Pesode molde + Suelo húmedo (q)	12811		12256		11838		
Peso de molde (g)	7939		1111		6992		
Pesodel suelohúmedo (g)	0 (5267		4846		
Volumen del molde tcm3\							
Densidadhúmeda (a/cm ³ l	2.327		2.235		2.123		
Tara (N")			7		9		
Peso suelo húmedo + tara (g)	16940		13S.M>		1 34.80		
Pes o suelo seco+tara (g)	156.70		12s.ao		125.20		
Peso de tara (o)	0.00		0.00		0.00		
Peso de agua (g)	12.70		10.00				
Peso de suelo seco (g)	156.70		12S.80		12S.20		
Contenido dehumedad (%)	8.10		7.95		7.67		
Densidad seca (o/cm ³ l	2.152		2.070		1.971		

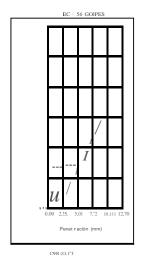
EXPANSION

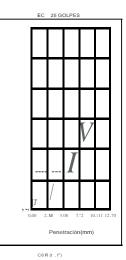
FECHA	HORA	TIEWO	DIAL	EICF	PMSION	DIAL	1 EICP	MSIOII	DIAL	• • • •	,
				• • •			1000			• • •	
28A12/202	10:35	0					1				
1"3/202	10:35	24					1				
2"3/202	10:35	11			210		. 1				
:wJ/202	10:35	72			NO.	EXPANSIV	U				
4")3/202	10:35						1				
							1				
							1				

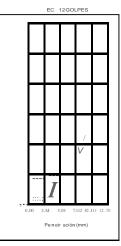
PENETRACION


		STAMA	-0""	C	,.=	сс,	-+c		C,-	1 -с		co-Ål	KECc	,
PEJIEIIIA	CDI	llglcm2	OillouTV				Oilll(c:IV)			-,-	Oill(ctv)) -	-	-,-
0.000	0.000		0.0	0.0			0.0	0.0			••	••		
0.635	0.025		75.0	3.7			68.0	3.4				2.3		
1.270	0.050		115.0	5.7			37.0	4.3			74.0	3.7		
1.905			27,60	13.7			176.0	6.8			9,70	4.8		
2.540	0.100	70.5	243.0	12.1	20.5	29.0	203.0	10.1	15.3	21.7	143.0	7.1		16.5
3.810			964.0	47.9			78,50	39.0			636.0	31.6		
	0.200	105.7	1432.0	71.2	69.0	6S.3	1065.0	SJ.O	55.1	52.1	94S .O	47.0		
6.350	0.2SO		1876.0	93.3			1563.0	n.1			1216.0	60.S		
7.620	0300		24320	120.9			2053.0	102.1			1765.0	87.6		
10.160	0.400		3043.0	151.3			2712.0	134.9			2265.0	112.6		

	-
	- 1
	- //


-\$---GrownBID!OilDI RELACION SOPORTE DE CALIFORNIA - C.B.R. (AS TM D 1883 - MTCE 132) PROYETO - r-wjor:amiri o de u. len con *d itillo5 orga,niccn., F u meter dY:aurisqu e R*-,r* ce. , CUKO - 2022* Regist ro Nº: 001-2022-INVES : !Tramo 03+000 a106+000


I Pato::t Gcoc raln


PRO CEDENCI A	: Calicata 03+000 - 06+000	CLAS F. (Sucs:	: SP
ESTRUCTURA	: Base Con Estabilización	CLA SF. (AAS H	: A-2-4(0)
MATERIAL	: Suelo De Orioe n COluv ia 1	LADO	: L/Oerc.
DIS EÑO	: Meason to 0.0264 kg/m²		

METOOO OE COMPACTACIO N	: ASTM D1557
MAXIMADENSIDAD SECA (gcm3)	: 2210
OPTIMOCONTENDODE HUMEIAD(%)	: 8.1
95 % MAJOMA DE NSIDAD SEC A (g/cml)	: 2.100
DBNSIDA @NSIT U (g/cm31	
C.B.R al 100% de M.O.S. (%)	29.0 ro. : 65.3 I
C.B.R. at95% de M.D.S. (%) 0.1-	го. : 52.1 1
	1
RESULTA.DOS CBR a 0.1":	29.0 r1.1
Valor de C.B.R. al 95% de la M.D.S.	21.7 rl.1
OBSERVACIONES.	
l	

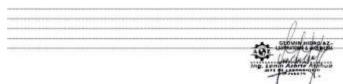
C8R(0.2")

CUR IS TO MEN

1 Patos Ga1ecnles

PR OCEDENC	TA: Calicata 03+000 - 06+000	CLASF. (SOCS): SP
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO): A-2-4(0)
MATERI AL	: Suelo De Origen Coluvial	LADO: 1/ Derc.
DISFÑO	· Ceniza haha 7%	

	DENSIIAD	MAXIIA	2.210	I-UIEOAI	DP#MA(fill)	1 8.14
M:llde N"	22		2	23		•
Capas Nº	5			5		5
Golpes por capa N ^o	56					12
Condición de la muestra	NOSATURADO	SATURADO	NOSATURADO	SATURADO	NO SATURADO	SATUIADO
Peso de molde + Suelo húmedo (g)	13573		11896		12765	
Peso de molde (g)	8279		7191		8176	
Peso del suelo húmedo (g)	5294		4705		4589	
Volumen del molde (cm ³)	2274		2102		2155	
Densidad húmeda (a/cnl)	2.328		2.238		2.129	
Tara (N")	0		0		0	
Peso suelohúmedo + tara (g)	131.76		128.20		126.47	
Peso sueloseco+tara (g)	121.90		118.74		117.10	
Peso de tara (g)	000		000		000	
Peso de agua (g)	9.86		9.40		9.37	
Peso de suelo seco (g)	121.90		118.74		117.10	
Contenido de humedad(%)	8 09		7SII		8.00	
Densidad seca (a/cm3)	2.154		2.073		1.972	

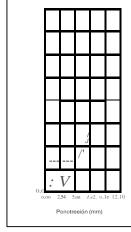

EXPANSION

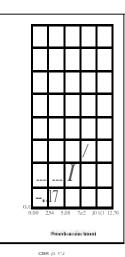
FECHA	HORA	TIEMPO	••••	EJIPA	NSION		EIIPA	NSION	OIAI.	exp	,,.
				mm	**		mm	- 11		• • •	-
28/02/2022	10:35	0									
110312022	10:35	24									
2103/2022	10:35	48			NIC	EVDANCINO	1				
3i03/2022	10:35	72			NC	EXPANSIVO	1				
4/0312022	10:35	96				1					
						1					
						1					

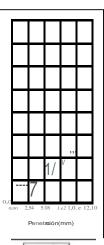
PENETRACION

		CARAN	MOLDEN"22			MOLDEN" 5				II> LDEN• t				
PEI\ETRI	MON		C''	''''A	COAR	RECOON	C''	''''A	CORRECO	CION	CA	RGA	CORRECCI	DN
1 21(211()	;n		D il l(CIV	•	• • •		Dilllcl V.	••	• •		D II 1 { CIV	••	• •	
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025		76.0	3.8			65.0	3.2			43.0	2.1		
1.270	0.050		1280	6.3			84.0	4.2			79.0	3.9		
1.905	0.075		293.0	14.5			171.0	8.5			112.0	5.5		
2.540	0.100	70.5	263.0	13.0	21.2	30.1	217.0	10.7	15.4	21.8	156.0	7.7	11.9	16.9
3.810	0.150		977.0	48.4			799.0	39.6			630.0	312		
5.000	0.200	105.7	1447.0	71.7	69.5	65.8	1054.0	52.2	54.9	51.9	9560	47.4	45.9	43.4
6.350	0.250		1890.0	93.6			1545.0	76.5			1232.0	61.0		
7.620	O.:JJO		2 449.0	121.3			2075.0	102.8			1TT4.0	87 .9		
10.160	0.400		3 0 6 2 . 0	151.7			2734.0	135.4			2261.0	112.0		

<u>Observaciones</u>	:






I Patos Gs::oe raln

PROCEDENCI A ESTRUCTURA CLASF. (S UCS) CLASF. (AASHTO) : Calica ta 03 + 000 - 06 + 000 : Base Con Estabilización : SP : A-2-4{0) MATERIAL DIS EÑO : Sue Io De Origen Coluvial : Ceniza haba 791 LADO : UDerc.

	25W	METODO DE COMPACTACJON MAX IMA DENSIDA D SECA (glcm J) OPTIMOCONTENIDO DE HUMEDAD(%)	: ASTMD1557 : 2.210 : 8.1
1	2 1m F /"="*aaataJI4- + f	95% MAXIMA OENSIOADSECA (g/cmJ) DENSIDAD INSITU(glcm3I	: 2. 100
j₽	2 100 t	C.B.R. al 100% de M.O.S. (%) 0.1*	JO' 0.2": 65.6
٠.5	2100 100 100 100 100 100 100 100 100 100	C.B.R. al 95% de M0S. (%) 0.1"	21.6 0.2" : 51.9
1 j	/! 1: ""1+f!	RESULTADOS CBR a 0.1": Valor de CB .R. al 95% de la M.D.S.	30.1 (%) 21.8 (¾)
	10.0	OBSERVACION ES:	
	C BR (%)		

CBM(Or.)

COR (R.F) BIPS

-f1	E—GEOMIMODIO UIIBI	R EL.ACIO N SOPO RTE DE CALIFORNIA - C,B,R, (AST M D 1883 - MTCE 132)		
PROYEC	•Me joram iento de	e s uelos con aditivos organicos en la carrete ra Yaurisque - Ranracasa, CUsco - 202r	Registro N:	001-2029N/ES
UBICAC Ó	ήN : Tramo 03+000 a106	i+000	Fecha:	29/03/2021

L Datos Generales

PR OCEDEN CIA	: C;ilica 03+000-06	5+000			CL.	ASF(SUC5): SP
ESTRUCTURA	: Base Con Esta bilitació	n			CLASF	. (AASHTO): A-2-4(0)
MATERIAL DISEÑO	: Suelo De Ori9e n COlu : Ce inza haba 9.,.	via l				LADO: 1/Oere.
		DENSIDAD IIAXIIIIA	2.210	1	trua:DAD OPTNA(%)	8.14
M:llde N°				5		•
capas N°		5		5		5
0	110					

M:llde N°			5				
capas N°	5		5	i		5	
Gopes por capa N ^o	56	ŝ	25	5		12	
Condición de la muestra	NOSATURADO	S ATURADO	NO SATURADO	SATURADO	NOSATURADO	SATURADO	
Pesode molde + Sueb húmedo (g)	13182		11917		12439		
Pesode mOlde (a)	8176		7177		'323		
Pesodel suelo rumedo (g)	5006				45 16		
Vo Iooi en de I mo Ide (cm 3)	2 155		2 121		2 121		
Densidad tl.Jmeda (a/cm ³)	2.323		2.235		2.129		
Tara (N°)	0		0		0		
Peso suelohúmedo + tara (!1)	131.55		139.21		132.10		
Peso suelo seco+ tara(g)	121.78		126.86		122.20		
Pesode tara (g)	0.00		0.00		0.00		
Pesoele aaua (a)	9.77		10.35		9.90		
Pesoele suelo seco(g)	121.78		128.86		122.20		
Contenidode htmedad (%)	8.02		8.03		8.10		
Densidad seca fa/cm ³)	2.150		2.069		1.970		

EXPANSION

FECHA	HORA	T6" 0	OIAI.	U PN	A SION	OIAI.	1 EXI	PM SION	0W.		
					=	_	1 •••	=		UPA	NSION
29.'03/2021	10:35	0					1				
30/03/2021	10:35	=					1				
31/03/2021	10:35				- : 0	5 DANISH 6 1					
1/0 4/2021	10:35	72			NO	E <pansivo -<="" td=""><td></td><td></td><td></td><td></td><td></td></pansivo>					
2/04/2021	10:35	• •					1				
							1				
							1				

PENETRACION

		CARGIN		HOLI	DE N"4			HOLI	DE N"S			■ 0	l.DEN"I	
PENETRN:ION		STAND.	CA	RGA	CORR	CORRECCION		CMG A		CORRECCION		G A	CORRECCION	
	in	"8/CM2	OillllclV)	kg		TI,	Oill(clV)	kg	- 11	JI.	Oilll(clVI	lg	• •	- II
0000	0.000		0.0	00			0.0	0.0			0.0	0.0		
0.635	0.025		75.0	3.7				3.3			42.0	2.1		
1.270			131.0	6.5			95.0	4.7			76.0	3.*		
	0.075		307.0	15.3			190.0				110.0			
25'0	0.100	705	2720	135	21.8	310	2220	11.0	17.3	24.6	167.0	8.3	122	17.3
3.810	0.150		996.0	49.5			915.0	45.5			6370	31.7		
5.080	0.200	105.7	1453.0	72.3	7,0 3	66.5	1067.0	53. t	56.5	53.4	962.0	47.8	46.5	44.0
6.350	0.250						1537.0	76.4			1249 .0	62.1		
7.620	0.300		2455 .0	122.1			2084.0	103.6			1785.0	88.8		
10.160	0.400		3074.0	152.9			2765.0	137.5			2278.0	113.3		

Observadone s

1. Dates Generales

·	OfNSIIAD	MAXalA.	2.140	ttJIEMD	,- (%1 1	8.12
Molde N"	2:	2	2	3		24
ca pas N"	5			5		5
Golpes por capa N"	56	S	2	5		12
CoOOicioo de la m.Jestra	NO SATURADO	SAT\RADO	NO SATURADO	SAT\RADO	NO SATURADO	SATIJIWJO
Peso de molde +Suelo tImedo (g)	13560				12391	
Peso de molde (g)			719 1		7790	
Peso del sue Jo núrnedo (g)	5281		4699		4601	
Vdumen del molde (an 3)	2274		2102		2171	
Densidad túneda lolcm ³ l	2.322		2.235		2.119	
Tara(N1	0		0		0	
Peso suelo núrnedo + taa (a)	178.10		161.00		142.40	
Peso suelo seoo + taa (a)	164.50		143.80		131.60	
Pesode tara (g)	0.00		000		0.00	
Pesode agua (g)	13.60		12.20		10.80	
Peso de sueloseco(O)	164.50		148.80		131.60	
O:ml.eriOOde tunedad(%)	8.27		8.20		8.21	
Densi <jad \<="" cm³="" fa="" seca="" td=""><td>2.1-45</td><td></td><td>2.066</td><td></td><td>1.959</td><td></td></jad>	2.1-45		2.066		1.959	

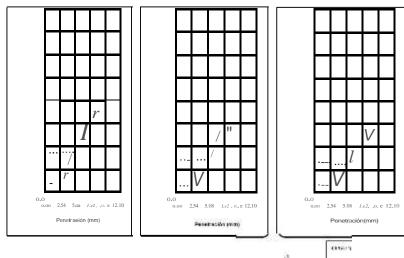
EXPANSION

FECHA	HOIIA	TIEWO	E>CPANSION 1 1		1 EXPANSION		EXPANSK®I		
			I		1 =				
2"'03/202	10:1S	0		1	1				
30/03/202	10:IS	24		I	1				
31/03/202	10:IS	0.0			1				
1 "'4/202	10:1S	72		NO EXPANSIVO					
2"'4/202	10:IS	96		1	1				
				1	1				
				1	1				

PENETRAQON

				1101D	E 22			lla.D	E 5		HOLDE 1				
PENETAA	OON	SQAdH:2. =	=====================================		GAAGA==== OAAEG=== c=======			AAGA===== C=OAAEC===c===%==-:							
0.000	0.000		0.0	0.0			00	0.0			0.0	0.0			
	0.025		47.0	2.3			37.0	1.8			28.0	1.4			
1.270			113.0	5.6			84.0	4.2			59.0	2.9			
1.905			219.0	10.9			134.0	6.7			112.0	5.6			
2540	0.100	70.5			25.2	IS.8	416.0	20.7	16.6	23.6	320.0	15.9	12.6	17.9	
3.810	0.150		999.0	49.7			807.0	40.1			629.0	313			
5.080		105.7	18870	93.8	90.5	85.6	1376.0	68.4	73.3	69.3	1065.0	54.0	61.0	57.7	
6.350	0.250		2554.0	1 27.0			2085.0	103.7			1887.0	93.8			
7.620	0300		3004.0	14,94			2776.0	138.0			2327.0	115.7			
10.160			3330.0	165.6			3065.0	152.4			2763.0	137.4			

Obse rva ciones:



LPatos Gcoc@les

PROCEDENCI A	: Tramo 00+000 - 03+000	CLASf. (S UCS)	SM
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO)	A-4(1)
MATERIAL	: Suelo De Origen Coluvial orga nico	LADO	UDer.
DIS EÑO	: Ceniza haba 11o/		

2,00,	METODO DE CO MPACTAGJON : ASTM D1557 MAX IMA DENSIDAD SECA (glorm J) : 2, 140 OPTIMOCOSTIPOSIDO DE HUMEDAD (%) : 8, 12 95% MAXIMA DENSIDAD SECA (glorm J) ; 2,033 DENSIDAD INSITU (glorm 31
5 zw ///	C.B.R. al 100% de M.O.S. (%) 0.1" 35.8 <i>OT</i> : as.6. C.B.R. al 95% de M.O. S. (%) 0.1" 23.6 <i>OT</i> : &9.3.
3 2.00 / / / / / / / / / / / / / / / / / /	RESULTA DOS CBR a 0.1": 35.8 (%) Valor de CB .R. al 95% de la M.D.S. 236 (34)
,-,=+	OBSERVACIONES:
CBR (%)	

	GIOXINHIDIO.Ufm UIIOR VOIIKU:WE. VIUI	RELA CION SO PO RTE DE CALIF ORNIA - C.B.R. (AS TM D 188 3 - MT C E 132)		
PRO YECTO	Mejoramiento de sue 2022"	elos con a ditivosoro, anicos en la carretera Yaurisque - Ranracasa, OJsco-	Registro N":	001-20210 RCOKHA
UBICACIÓN	: Calicata 00+000 al C	J+000	Fec ha:	29{12/2021

I PatosGenerales

	DENSIL	AD,	2.140	I HIIIEDADO	OPTIIIIA(%1 8.12			
Molde No	25	5	2	27		28		
Capas N ^o	S			S	S			
Golpes porca pa N"	56	3		25				
Condición de la muestra	NO SAIURADO	SATUIW>O	,_, SAT\KWJO	SATURADO	_, SAT\KWJO	SATIIW>O		
Peso de molde + Suelo húmedo (q)	12171		13219		11321			
Peso de molde (g)	7248		8225		7359			
Pesodel suelohumedo(g)	4923		4994		4462			
Volumen del molde tcm3\	2120		227S		2121			
Densidad húmeda (a/cm³l	2.322		2.195		2.104			
Tara (N")	6		7					
Peso suelo húmedo+ tara (g)	134.68		125.15		126.59			
Pesosuelo seco+tara (g)	124.34		115.76		117.22			
Peso de tara (o)	0.00		0.00		0.00			
Pesodeagua (g)	10.14		9.39		9.37			
Peso de suelo seco (g)	124.14		115.76		117 22			
Contenido de humedad (%)	8.32		8.11		7.99			
Densidad seca (o/cm3l	2.14-4		2.0JO		1.948			

EXPANSION

FECHA	HORA	TIEWO	DIAL	EICPMSION		DIAL	1 EICPMSIOII		DIAL	٠,	,
				• • •	-		000				
29112/202	10:35	0					1				
30112/202	10:35	24					1				
31/12/202	10:35	48				1					
1/01/202	10:35	72			NO	EXPANSIV(U				
2/01/202	10:35						1				
							1				
							1				

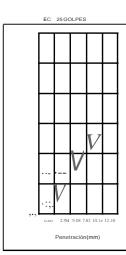
PENETRACION

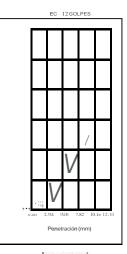
		STAM	-0""	""HOII	DEN'M ::,:=	сс,	-+(:	C,	1 -(co-X	REC	O,
PEJIEIIIA	CDI	11g1cm2	Dillle:IV)	'G	'G	'llo	Dillllc:IV)	'G	'G	Tlo	Oill(ctvt	'G	'G	%
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025		4,50	2.2							30.0	1.5		
1.270	0.050		91.0	4.5			73.0	3.6			51.0	2.5		
1.905			179.0	8.9			151.0	7.5			123.0	6.1		
2.540	0.100	70.5	438.0	21.8	20.5	29.1	319.0	15.9	16.3	23.1	241.0	12.0	13.4	19.0
3.810			&,870	4-4.1			721.0	35.9			629.0	31.3		
5080	0.200	105.7	1420.0	70.6	70.6	66.8	1273.0	63.3	S9.S	56.3	1061.0	52.8		41.2
6.'50	0.250		2006.0	99.8			1595.0	79.3			1350.0	67.1		
7.620	0,00		241.0	1234			2176	1082			1869)	929		
10.160	0.400		3161.0	157.2			2663.0	133.4			2422.0	120.4		
10.160	0.400		3161.0	157.2			2663.0	133.4			2422.0	120.4		ı

cvad ooes·	
	/1
	111
	ASE CHARLES
	ing. Lenih Ashrte Athhua

RELACION SOPORTE DE CALIFORNIA - C.B.R. (ASTM D 1883 - MTCE 132) - r-wjoramiri o de u. len con *ditillo5orga,niccn., F u rreter dY:aurisque R*-,r*ce. , CUKO - 2022* 001-2021-OR@KUNA PROYETO Regist ro Nº: UBICACIÓN : !cal icata oo+ooo al 03+000

I Pato::t Gcoc raln


PRO CEDENCI A	: Tra mo 00+000 - 03+000	CLAS F. (Sucs:	: SM
ESTRUCTURA	: Base Con Estabilización	CLA SF. (AA SH	: A -4(1)
MATERIAL	: Suelo De Orioe n COluv ia l on;¡a nico	LADO	: L/Oer.
DIS EÑO	: Corps maders 2%.		


	Δ
1	2.100 t+ t · +, -
1	t
	ii
	C BR (%)

METOOO OE COMPACTACION		: ASTM	D1557						
MAXIMADENSIDAD SECA (g cr	n3)	: 2.140							
OPTIMOCONTENIDO DE HUME	DAD (% 1	: 8.12							
95 % MAJOMA DE NSIDAD SEC A	: 2.033								
DENSIDALINGTU (g/cm31									
C.B.R al 100% de M.O.S.(%)	or.		ro.	:	66.8 I				
C.B.R. at95 % de M.D.S. (%)	0.1-	23.1	ro.	:	56.J				
					1				

V≡Jor de C.B.R. ≡195% de la M.D.S.

OBSERVACIONES,

C9R (O.f'J C9R(0.2"J

BRj0.2")

CER (6.T) 9.05

	G[MHIDBOAURL	RELACION SOPORTE DE CALIFORNIA - C.8.R. (ASTM O 1883 - MTC E 132)		
YECTO	Mejoramiento de	suelos con aditivos organicos en la carretera Yaurisque - Ranracasa, Cusco - $202r \label{eq:constraint}$	Registro Nº:	001-2021-0RCOKUN
CACIÓN	: Calicata 00 +000 al 03	+000	Fecha:	29/12/2021

1 Patos Ga1ecnle

PR OCEDENCI	A: Tramo 00+000 - 03+000	CLASF. (SOCS): SM
ESTRUCTURA	: Base Con Estabilización	CLASF. (AASHTO): A-4(1)
MATERI AL	: Suelo De Origen Coluvi al organico	LADO: 1/ Der.

	DENSIIAD	MAXIIA	2.140	I-UIEOAI	DP#MA(fll)	1 8.12
M:llde N"	13	3				15
Capas Nº	5			5		5
Golpes por capa Nº	5	6		25		12
Condición de la muestra	NOSATURADO	SATURADO	NOSATURADO	SATURADO	NO SATURADO	SATUIADO
Peso de molde + Suelo húmedo (g)	12910		13200		12560	
Peso de molde (g)	7994		8525			
Peso del suelo húmedo (g)	49 16		4675		4546	
Volumen del molde (cm³)	2118		2098		2136	
Densidad húmeda (a/cnl)	2.321		2.228		2.128	
Tara (N")	0		0		0	
Peso suelohúmedo + tara (g)	131.00		119.00		128.20	
Peso sueloseco+tara (g)	121.00		11000		118.50	
Peso de tara (g)	000		000		000	
Peso de agua (g)	10.00		9.00		9.70	
Peso de suelo seco (g)	121.00		110.00		118.50	
Contenido de humedad(%)	8.26		8.18		8.19	
Densidad seca (a/cm3)	2.1-4-4		2.059		1.967	

EXPANSION

FECHA	HORA	TIEMPO	 EJIPA	ANSION		EIIPANSION		ISION tJIAI.		exp,,.	
			mm	- 11		mm II			***	=	
29 11 2/202 1	10:35	0									
30112/2 021	10:35	24									
31112/2021	10:35	48		370		1					
1()1/2022	10:35	72		l NC	EXPANSIVO	1					
2()1/2 022	10:35	96			1						
					1						
					1						

PENETRACION

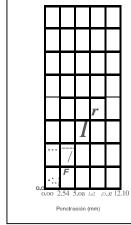
		CARAA		MOLE	DEN"13			MOLI	DEN"5			ll>	LDEN• t	
DEI\ETDI/	EINETRIMJON		C'''	''''A	COAR	ECOON	C''	''''A	CORREC	CION	CA	RGA	CORRECC	ION
in in			D il l(CIV	•	• • •		Dil llel V,	••	• •		Dll1(CIV	••	• •	
0.000	0.000		0.0	0.0			0.0	0.0			0.0	0.0		
0.635	0.025		45.0	2.2			37.0	1.8			V.0	1.3		
1.270	0.050		113.0	5.6			79.0	3.9			58.0	2.9		
1.905	0.075		221.0	10.9			129.0	6.4			104.0	5.2		
2.540	0.100	70.5	586.0	29.0	25.2	35.8	416.0	20.6	16.5	23.4	3230	16.0	12.5	17.8
3.810	0.150		1006.0	49.8			812.0	40.2			629.0	312		
5.000	0.200	105.7	1887.0	93.5	90.3	85.4	1373.0	68.0	72.9	69.0	1085.0	53.7	60.6	57.4
6.350	0.250		2555.0	U6.6			2083.0	103.2			18840	93.3		
7.620	O.:JJO		3007 .0	148.9			2n_5 0	13 7.5			232 4.0	115.1		
10.160	0.400		3333.0	165.1			3061.0	151.6			2766.0	137.0	1	

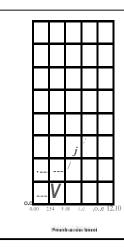
Observaciones	
Observaciones	:

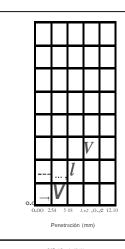
 	 	//
		a general molecules
		A G Z LES CATERIO & BOTTON
		Jose (Section)
		MIT DE LABORATO EN
		-1 /

PROYECTO -M- jon mi*nto 6-a suclos con di kivos O'9lin;cos en lil (1 atr 11 Y11 urisque Rann,aux, O.seo - 2022 Registro N-: 001-20240RC0kUNA UBICACIÓ N : jea licata 00+000 a 103+000 Fee ha : 29/12/2021

L Patos Gs::oe raln

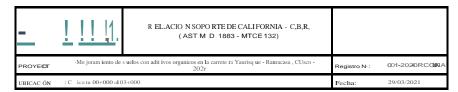

 PROCEDENCIA
 : Tramo 00 + 000 - 03 + 000
 CLASF. (SUCS)
 : SM


 ESTRUCTURA
 : Base Con Estabilización
 CLASF. (AASHTO)
 : A-4(1)


 MATERIA L
 : Suelo De Origen Coluvial orga nico
 LADO
 : UDer.

 DIS EÑO
 : PolyCom 0.018 kg/ml
 ...
 ...

CO MPACT ACJON NSIDAD SECA (glcm.) ITENIDO DEHUMED DENSIDAD SECA (ISITU (glcm 31	DAD(%)	: 2.14 : 8.12 : 2.03	2	
% de M.O.S. (%)	0.1*	35.8 23.4		as.41
	0.1"" S.	23.4	35.8 23A	(%)
		R. al 95% de la M.D.S.	R. al 95% de la M.D.S.	R. al 95% de la M.D.S. 23A



CBM(O.r)

CBR j0.1"J

C8R (Or. J 17.1%

Communication of the Communica

L Datos Generales

PR OCEDEN CIA:	: Tramo 00 -+-000 - 0 3 + 00 0	C LASF . (SUC5): SM
ESTRUCTURA	: Base Con Esta bilii a ción	CLASF. (AASHTO): A-4(1)
	: Suelo De Ori9e n COluv ia l on; ja nico	LADO: 1/Oer.
DISEÑO	: PolyCom 0.020 kg/m I	

	DENSIDAD	DIIAXIIIA	2.140	1 trua:DAD 0	OPTNA(%)	8.12
M:llde N°				31		32
capas Nº	5	5		5		5
Gopes por capa Nº	5	6		25		12
Condición de la muestra	NO SATURADO	S ATURADO	NO SATURADO	SATURADO	NOSATURADO	SATURADO
Pesode molde + Sueb húmedo (g)	13923		11943		12731	
Pesode mOlde (a)	8641					
Pesodel suelo rumedo (g)	5282		4654		4411	
Volooiendel molde (cm ²)	2m		2113		2111	
Densidad tl.Jmeda (a/cm °)	2.JU I		2.203		2.090	
Tara (N°)	0		0		0	
Peso suelohúmedo + tara (!1)	124 24		129.77		14S.34	
Peso suelo seco+tara(g)	114,95		119.94		133.90	
Pesode tara (g)	0.00		0.00		0.00	
Pesode aaua (a)	9.29		9.83		11.44	
Pesode suelo seco(g)	114.9S		119.94		133.90	
Contenidode htmedad (%)	8.06		6.20		6.S4	
Densidad seca fa/cm ³)	2.144		2.036		1.92S	

EXP ANSI ON

1 24 7400 01											
FE C HA	HORA	T6''' 0	OIAI.	U PM	SION	OIAI. EXPM SIO		M SIO N	0W.		
					=	_		-		UPA	NSION
29.'03/2021	10:35	0					1				
30/03/2021	10:3S	24					1				
3 1/0 3/2021	10:35	48			- :-	E BANION/0	1				
1/04/2021	10:3S	72			NO	E <pansivo< td=""><td></td><td></td><td></td><td></td><td></td></pansivo<>					
2/04/2021	10:35	96					1				
							1				
							1				

PENETRACION

CAF			HOLDEN- 15				MOLDE N-5				■ OLDE N-1				
TRN:ION STAN		CNIGA		CORRECCION		CNIGA		CORRECCION		CNIGA		CORRECCI	ON		
in	"8/CM2	OillllclV)	kg		TI,	Oill(clV)	kg	- 11	JL	Oilll(clVI	kg	• •	=		
0.000		0.0	00			0.0	0.0			QO	0.0				
0.025		0	23			36.0				9.9	1.4				
		121.0	6.0			87.0	4.3			6' .0	3.2				
0.0 7S		223.0				141.0	7.0			116.0					
0.100	70.S	S96.0	29.6	2S.6	36.4	416.0	20.8	16.8	23.9	329.0	16.4	13.0			
0.150		1011.0	50.3			81,10	40.3			63,7 0	31.7				
0.200	105.7	1893.0	94 .1	91.0	86.1	1382.0	66.7	73.6	69.6	1093.0	S4.4	61.4	58.1		
0.250		2567.0	127.7												
0.300		3012.0	\49.8			2782.0	138.3			2JJS.0	116.1				
0.400		3337.0	16S.9			3071.0	1S2.7			2772.0	137.6				
'															
	0.000 0.025 0.078 0.100 0.150 0.200 0.250	in "8/CM2 0.000 0.025 0.078 0.100 70.8 0.150 0.150 0.200 105.7 0.250 0.300	STAND. CN	STAND. CNIGA	STAND CNIGA CORR	CNIGA CORRECCION	CNIGA CORRECCION CN CN CN CN CN CN CN	STAND CN GA CORRECCION CN GA C	STAND CN GA CORRECCION CN GA CN GA	STAND CNIGA CORRECCION CNIGA CORRECCION CNIGA CORRECCION CNIGA CORRECCION CNIGA CORRECCION CNIGA CORRECCION CNIGA CNIGA	STAND	STAND STA	STAND		

Observadone-s

Consideration of the constant
Anexo 5 certificados de calibración

LABORATORIO DE METROLOGÍA CALIDAD Y RESPONSABILIDAD IS NUESTRA MAYOR GARANTÍA

CERTIFICADO DE CALIBRACION 313 - 2022 GLML

Fecha: 2020-10-28

Solicitante: GEOMIN HIDRO AZ E.I.R.L.

MZA. C LOTE: 3 APV EL EDEN CUSCO - SAN SEBASTIAN Dirección:

MÁQUINA DE LOS ÁNGELES Instrumento / Tipo: HUMBOLDT Marca:

H-3860A.2F / 12053860A.2F Modelo / Serie: 2020-10-17 Fecha de Calibración: ASTM C 131 - 1

Norma Utilizada Como

Pie de Rey Digital Certificado: N° L - 0815 - 2020 Balanza Chaus Certificado: N° 0317 - 2020 GLM Cronómetro Certificado: N° 1025-4813435 Referencia: Instrumentos Utilizados:

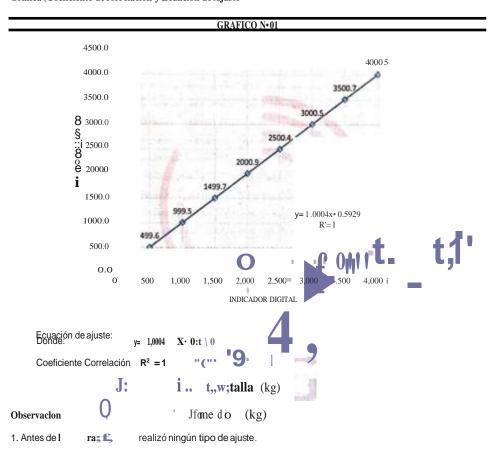
Comparación Directa

Método de Calibración:

AL I	Estera	s Maquina de lo	s Angele	
Valor Nominal	Pesa (g)	Diametro 1	in n 02	I omedio L
٧	390 g - 445 y ± 1 g	(mm)	(mm)	(mm)
1	419.60	46.8	46.70	46.87
2	420.10	40.6		46.81
3	420 60		4674	46.73
4.	397.00	48.92	46.03	45.98
- 5	420.00	46.80	46,63	46.72
6	419.80	44	46.83	46.82
7	419.70		46.85	46.84
8	419.90	6.89	46.89	46.89
9	418.80	46.80	46.69	46.75
	41630	46.86	46.66	46.76
A T LA	4 1 3 0	46.83	46.70	46.77
12	20.70	46.78	46.79	46.79
Mara To	5012.90	5000 ± 25 a	The said and the said	

Numero de vueltas					
Nº de vuoltas programado en el indicador del equipo	Nº de vuetas contadas				
5	5				
10	10				
50	50				
100	100				
150	160				
300	300				
400	400				
500	500				
411/00/05	- 0				

Numero de vueltas				
Tiempo (min)	Nº de vueltas contadas			
(1)	32			
6	190			
12	379			


BORATO

(°) Este informe expresa felmente el resultado de las mediciones resistados G & L LABORATORIO S. A.C. no se responsablica de los perjuicios que p

CERTIFICADO DE CALIBRACIÓN N° 652-063-2022

P6glna 3 de 3

Gráfica (Coeficiente de correlación y Ecuación de Ajuste

- $2.\,La\,incertidumbre\,de\,la\,medici\'on\,ha\,sido\,calculada\,para\,un\,nivel\,de\,confianza\,de\,aproximadamente\,del\,95\,^{\rm 1}16$
- 3. j•jCodigo indicado en una etiqueta adherida al Instrumento.
- 4. Con fines de identificaciónse colocó una etiqueta autoadheslva con la Indicación "CALIBRADO"

ARSOU GROUP S.A.C.

Asoc. devlv. Las Flores de San Diego Mz C Lote 01, San M artln de Porrcs, Urna, Perú Telf: $+S1\ 301$ - $16\ 80$ / Cel: $+S1\ 928196793$ / Cel: $+S1\ 925\ 151\ 437$ ventas@arsougr ou p.com www.arsougroup.com

ARSO PSAC

ln9. Hugo / rlu lo C1rnlc1
,,, 'RO OO IA

CALI.BRACIONES PERO S.A.C.

LAB OR ATORIO OE M TROt.OGIA

CERTIFICADO DE CALIBRACIÓN Nº LMM - 095-2022

1 <u>de 3</u>

r echn do t m, sión 7021 0;, 06 C•pediente :>06

GEOMIN HIDRO AZ. EMPRES A INDIVIDUAL DE RESPONSA81UOAO LIMITADA 1.- Solocítante

MZA. A LOTE 4 URB LA CAMPINA ZONA B CUSCA- CUSCA SAN Dirección

SEBASTIAN

2.- Instrumento de Medición BALANZA

Marca OHAUS M odelo R21PE30 Serie 8340110200 Código NO INDICA Procedencia USA Capacidad máxima 30000 g Div de Escala (d) 1 g $10g(\bullet)$ Div de verificación(e) Clase de exactitud 111 (..) Capacidad mínima 200 9 (-)

3.- Fecha de Calibración 2022-02-06

4.- Lugar de Calibración En las instalaciones de CALIBRACIONES PERÚS.A.C

5.- Método de Calibración La comparación de las indicaciones de la balanza contra las cargas aplicadas de

valor conocido (pesas patrón).

6.- Procedimiento de Calibración PC-001 "Procedimiento para la calibración de instrumentos de pesaje de

funcionamiento no automático clase 111 y 1111". IN A CAL - Primera edición - Mayo 2021

7.- Trazabilidad

Trazabilidad Metrológica	Pesas utilizada	Código del patrón	Cenificado de cahbración
HAFNER	Juego de pesas de 1 mg a 200 g	LM025	M-0900-2022
HAFNER	Pesa de 1 kg	LM027	M-0902-2022
HAFNER	Pesa de 2 kg	LM028	M-0899-2022
CALPE	Pesa de 5 kg	LM004	LMM-044-2022
CALPE	Pesa de 10 kg	LM005	LMM-045-2022
CALPE	Pesa de 20 kg	LIM006	LMM-046-2022

Leonel Palomino Jefe de Laboratorío de II1InII lng.

Vanessalzatra Tupía.

Gerente General C.I.P.: 221730

CALBACIONESERUSAC. CALBACIONEERUSA C.• RUC 20800820959

Jr. Paseo N° 3312 San Martín De Porres, Line - Pero
Tell : (01) 397 8754 Cel · 949

111111t a s ((ilcnl1bracio n esperu laboratir i o@cn lib r:i c 1o nespcr u.pe www.ca libr::icio nespc ru.pe

CERTIFICADO DE CALIBRACIÓN Nº 652-063-2022

PRETAZORE

Patrones e Instrumentos auxiliares

Transbilidad	Patrón Utilizado	Certificado de Calibración
Patrones de referencia de PUCP	Celita de Cargo de 5 TN	MT-LF-263-2019 con trazabilidad INF-LF G35-198

Condiciones ambientales durante la calibración

Temperatura Ambiental

Inicial: 18,4 %

Final: 18,9 9C

Humedad Relativa

Irricial: 87 Whr

Final: 87 tithe

Presión Atmosférica

Inicial: 1015 mbar

Final: 1015 mbar

Resultados

CALIERACION DE CELDA DE CARGA

SISTEMA DIGITAL	SERIÉS DE VERIFICACIÓN PATRON (Kg)			PROMEDIC	ENGOR.	leter.	
"A" KE	SERIE (1) Kg	SERVE (2) Kg	ERROR %	STRACE (2)	1	FC	C/
500	499.8	499.3	-0.04	-0.14	4994	4750	0.07
1000	999.4	999.5	-0.05	-0.05	CENT.	-0.65	0.01
1500	1499.6	1499.8	OF	-04%	\$499.7	-0.02	0.01
2000	2000.9	2000	0.05	POP	2000.9	0.04	0.00
2500	1500,2	25005	ALC: U	0.02	2500.4	0.01	0.01
3000	- 3/10 A	3000 3	0:01	0.03	3000.5	0.02	0.01
3500	1500.9	6.00	0.03	0.01	3500.7	0.02	0.01
2000	4000	4000.2	0.02	0.00	4000.5	0.01	0.01

NOTAS SCORE CALLINGON

- 1. La Calibratión se hizo según el Método C de la norma ISO 7500-1
- 2.- Ep y Rp son el Error Porcentual y la Repetibilidad definidos en la citada Norma:

1.- La norma exige que Ep y Sp no excedan el +/- 1.0%

ARSOU GROUP S.A.C.

Assoc de Viv. Las Flores de San Diego Mr C'Sate OS, Sen Martin de Porres, Lima, Perù Telt: +51 353-3680 / Cel: +51 928 356 293 / Cel: +51 505 251 437 ventas@anlougnoup.com www.anlougnoup.com

ANEXO 5: CUADRO DE PORCENTAJE DE DOSIFICACIÓN Y RESULTADOS

Mejoramiento de propiedades físico-mecánicas de suelos con adición de ditivos orgánicos en la carretera Yaurisque – Ranraccasa, Paruro-2021

AUTORES: Arana Ordoñez, Marycruz /

Paredes Baca, Flor del Carmen

	1 dicaco	Paredes Baca, Flor dei Carmen							
	AUTOR	TITULO	A ñ o	Ad itiv o	Porce ntaje de adici ón (%)	Indi ce de Plas ticid ad (IP = %)	Ópt ima Con teni do de Hu me dad (OC H = %)	Má xim a De nsi dad Sec a (M DS = gr/ cm 3)	Cal ifor nia Be ari ng Rat io (CB R= %)
	Branda n	de fondo para estabilizar la subrasate en Avenida San	2	a de fon	Suelo CH CC	59.3 4 0.00	82.7 1 29.1	1.3 0	9.3 0 10.
	Calero, Yoselin Anaiss (Lima)		0 2 0		10% CC 30%	0.00	0 29.6 0	1.3 2	20 10. 20
				do	CC 50%	19.8 7	6.70	2.1 84	11. 20
	Camacll anqui Ccoillar, Gino			Ce niz	Suelo SM	2.53	39.2 7	1.0 7	76. 67
nales		Estabilización de la subrasante incorporando cenizas de madera y fibra de coco en la Av Andres Avelino Cáceres, Huancavelica-2021		a de	C-01 7%	2.36	38.1 4	1.0 3	70. 22
acio	Josué Rivera		0	ma der	C-01 13%	2.53	51.1 7	0.9 9	85. 32
Tesis nacionales	Cervant es, Jhonata n Stiven (Lima)		2 1	a y fibr a de co co	C-01 18%	2.98	42.1 0	0.9 9	101 .55
	Peláez Quispe,	Mejoramiento de las	2	Cá	Suelo SM	35.5 8	39.2 7	1.1 5	76. 67
	Juan David	propiedades mecánicas en la subrasante de suelos arenosos	0 2	sc ara de	CBCA 5%	0.00	38.6 9	1.1	62. 28
	Benites adicionando ceniza de cáscara Pachec o, Julio		0		CBCA 10%	0.00	54.0 0	0.9 8	83. 00

	César (Lima)			y cal	CBCA 15%	0.00	47.6 1	0.9 6	99. 13
				Cá	Suelo A-2- 4(0)	10.0	5.30	1.5 6	5.6 9
	Rimachi Pariona , Ivan	Estabilización de suelos con adición de ceniza de cáscara de		sc ara de	CCC 0.50 %	0.00	9.10	1.7 8	11. 25
	Sánche z Ruíz Robert	coco al 0.5%, 1.5%, 3%, 5% y 8%, a nivel de subrasante en el sector de	2 0 1	co co l y	1.50 %	0.00	9.40	1.8 6	11. 71
	Francis co (Ancas	Lampanin Distrito de Cáceres del Perú Provincia del Santa, Ancash –	9	ce niz a	3.00 %	0.00	6.70	1.9 5	16. 54
	h)	2019		vol ant e	5.00 %	0.00	9.10	1.7 8	18. 26
					8.00 %	0.00	8.50	1.8 8	15. 80
	Lozano Gomez,			Се					
is	Juan Pablo Ramos Vásque z, Juan David (Colom bia)	Estabilización de suelos mediante aditivos alternativos		niz a de ca bó n y cal					
Tesi	,			0-1	Suelo CH	24.0 0	18.2 0	1.4 49	2.1
	Parra Gomez,		2	Cal y	CC 2%	21.0	19.1 0	1.4 57	2.3
	Manuel Gerard	Estabilización de un suelo con	0	ce niz	CC	19.0	21.5	1.4	2.9
	0	caly ceniza volante	2	a vol	4% CC	0	0	87	0
	(Colom bia)			ant e	6% CC	16.0	24.7	1.4	3.5
					8%	0	0	94	0
tros		Avaliação Das Melhorias Das Propriedades Físicas E		CA L y					
en c	0	Mecânicas De Solos Originados	2	ce niz					
Artículos en otros	Correa	De Rochas Sedimentares Pela Adição De Cal Para Fins De Pavimentação		a vol ant e				_	

Eren & Filiz	Comparing the conventional soil stabilization methods to the consolid system used as an alternative admixture matter in Isparta Daridere material	2 0 1 9	Cal y ce me nto			
Ramanj i	A Review on the Soil Stabilization Using Low- Cost Methods	2 0 1 8	Cal y ce me nto			

NORMA	TÍTULO	DESCRIPCION	
MTC E 107	ANALISIS GRANULOMETRICO DE SUELOS POR TAMIZADO	Este Modo Operativo describe el método para determinar los porcentajes de suelo que pasan por los distintos tamices de la serie empleada en el ensayo. Usando los tamices que se muestra en el cuadro.	

MTC E 108	DETERMINACIÓN DEL CONTENIDO DE HUMEDAD DE UN SUELO	La humedad del suelo o humedad del suelo es la relación entre la masa de agua y la masa de sólidos para una determinada masa de suelo, expresada como porcentaje. Este modo de operación determina el peso del agua removida al secar el suelo húmedo hasta peso constante en un horno a 110°C. El peso de la tierra que queda después del secado se usa como el peso de los gránulos	
MTC E 110	DETERMINACIÓN DEL LÍMITE LIQUIDO DE LOS SUELOS	El punto de fusión del suelo, el punto de fusión y el índice de rendimiento se usan ampliamente solos o en combinación con otras propiedades del suelo para correlacionar las especificaciones del suelo, como la resistencia a la compresión, la permeabilidad, la permeabilidad, la resistencia a la compresión, la contracción y la resistencia. La fracción de rendimiento del suelo se puede expresar como un porcentaje de densidad relativa o tasa de flujo en relación con el contenido de agua natural o la actividad del suelo de menos de 2 m. Los suelos ricos en materia orgánica dieron como resultado rendimientos significativamente más bajos cuando el suelo se secó antes de la prueba.	
MTC E 111	DETERMINACIÓN DEL LÍMITE PLÁSTICO DE LOS SUELOS E INDICE DE PLASTICIDAD	Los puntos de fusión del suelo, los puntos de fusión y los índices de rendimiento se usan ampliamente, individualmente o en combinación, para relacionar otras propiedades del suelo con sus especificaciones, como compresibilidad, permeabilidad, resistencia a la compresión, contracción, expansión y resistencia. Los plastificantes del suelo pueden usar la composición natural del agua del suelo para representar su densidad relativa o tasa de flujo, o usar un porcentaje menor a 2 micrones para cuantificar la actividad o función del agua del suelo. El suelo es la relación, expresada como un porcentaje en peso de agua a peso de sólidos en un volumen dado de suelo.	

	MTC 115	E	COMPACTACIÓN DE SUELOS EN LABORATORIO UTILIZANDO UNA ENERGIA MODIFICADA (PROCTOR MODIFICADO)	como la compresibilidad, la permeabilidad, la capacidad de	
--	------------	---	--	--	--

Н

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Autorización de Publicación en Repositorio Institucional

Nosotros, ARANA ORDOÑEZ MARYCRUZ, PAREDES BACA FLOR DEL CARMEN identificados con DNIs N° 73578262, 72545764, (respectivamente) estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA y de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, autorizamos (X), no autorizamos () la divulgación y comunicación pública de nuestra Tesis: "Mejoramiento de propiedades físico-mecánicas de suelos con adición de aditivos orgánicos en la carretera Yaurisque – Ranraccasa, Cusco-2021".

En el Repositorio Institucional de la Universidad César Vallejo, según esta estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art. 23 y Art. 33.

F	Fundamentación en caso de NO autorización:						

LIMA, 31 de Marzo del 2022

Apellidos y Nombres del Autor	Firma
ARANA ORDOÑEZ MARYCRUZ	
DNI: 73578262	Firmado digitalmente por: AARANAOR el 31-03-2022
ORCID 0000-0001-7129-3590	14:31:45
PAREDES BACA FLOR DEL CARMEN	
DNI: 72545764	Firmado digitalmente por: DPAREDESBA93 el 31-03-
ORCID 0000-0002-9209-6307	2022 14:25:00

Código documento Trilce: INV - 0659785

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad de los Autores

Nosotros, ARANA ORDOÑEZ MARYCRUZ, PAREDES BACA FLOR DEL CARMEN estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, declaramos bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Mejoramiento de propiedades físico-mecánicas de suelos con adición de aditivos orgánicos en la carretera Yaurisque – Ranraccasa, Cusco-2021", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- 2. Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma	
ARANA ORDOÑEZ MARYCRUZ DNI : 73578262 ORCID 0000-0001-7129-3590	Firmado digitalmente por: AARANAOR el 31-03-2022 14:31:36	
PAREDES BACA FLOR DEL CARMEN DNI: 72545764 ORCID 0000-0002-9209-6307	Firmado digitalmente por: DPAREDESBA93 el 31-03- 2022 14:24:48	

Código documento Trilce: INV - 0659783

