

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

Evaluación del riesgo sísmico y propuesta de reforzamiento estructural en viviendas autoconstruidas de albañilería confinada en el AA. HH. Villa Mercedes del distrito de Chaclacayo, Lima-2019

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

AUTOR:

Juarez Morccolla, Javier Dany (ORCID:0000-0001-6010-9348)

ASESOR:

Mg. Tacza Zevallos, John Nelinho (ORCID:0000-0002-1763-9375)

LÍNEA DE INVESTIGACIÓN

Diseño Sísmico y Estructural

Lima – Perú

2019

Dedicatoria

A Dios por guiarme en mi camino. A mis padres por su apoyo incondicional y formación en los valores.

Agradecimiento

A los ingenieros por el asesoramiento en esta investigación, a los propietarios de las viviendas que me permitieron acceder a sus domicilios para el desarrollo de esta tesis, a los docentes por la formación profesional.

Página del jurado

ACTA DE APROBACIÓN DE LA TESIS

Código : F07-PP-PR-02.02 Versión : 09

23-03-2018 Fecha

Página : 1 de 28

El Jurado encargado de evaluar la tesis presentada por don (a) JUAREZ MORCCOLLA JAVIER DANY cuyo título es: "EVALUACIÓN DEL RIESGO SÍSMICO Y PROPUESTA DE REFORZAMIENTO ESTRUCTURAL EN VIVIENDAS AUTOCONSTRUIDAS DE ALBAÑILERÍA CONFINADA EN EL AA. HH. VILLA MERCEDES DEL DISTRITO DE CHACLACAYO, LIMA-2019"

Reunido en la fecha, escuchó la sustentación y la resolución de preguntas por el estudiante, otorgándole el calificativo de: 12 (DOCE)

Lima, Ate 06 de julio del 2019.

MG. CHOQUE FLORES, LEOPOLDO PRESIDENTE

MG. CASUSOL IBERICO, GERMAN FERNANDO SECRETARIO

MG. TACZA ZEVALLOS, JOHN NELINHO VOCAL

Elaboró	Dirección de Investigación	Revisó	Responsable del SGC	Aprobó	Vicerrectorado de Investigación
---------	-------------------------------	--------	---------------------	--------	------------------------------------

Declaratoria de autenticidad

DECLARATORIA DE AUTENTICIDAD

Yo, Javier Dany Juarez Morccolla identificas DNI: 41702667, cumpliendo con el reglamento de Grados y títulos de la universidad Cesar Vallejo, Facultad de Ingeniería Civil, declaro bajo juramento que el trabajo de investigación realizado y toda la documentación presentado son auténticos y de fuentes veraces.

Por lo declarado, asumo bajo mi responsabilidad que corresponde ante cualquier omisión o falsedad de los documentos presentados, me someto a las normas establecidas por la universidad cesar vallejo.

Ate vitarte, 16 mayo del 2019

Juarez Morccolla Javier Dany

DNI:41702667

Presentación

A los señores miembros del jurado calificador.

Cumpliendo con los Reglamentos de Grados y Títulos de la universidad Cesar Vallejo presento mi tesis que tiene como título "Evaluación del riesgo sísmico y propuesta de reforzamiento estructural en viviendas autoconstruidas de albañilería confinada en el AA. HH. Villa Mercedes del distrito de Chaclacayo, Lima–2019", que someto a vuestra consideración y esperando que cumpla con los requisitos de aprobación para obtener el título profesional de ingeniero civil.

El autor

Índice

Carátula	i
Dedicatoria	ii
Agradecimiento	iii
Página del jurado	iv
Declaratoria de autenticidad	v
Presentación	vi
Índice	vii
Índice de tablas	ix
Índice de figuras	xi
Resumen	xii
Abstract	xiii
I. INTRODUCCIÓN	1
1.1 Realidad Problemática	1
1.2 Trabajos Previos	2
.4. Formulación del problema	16
.4.1. Problema General	16
.4.2 Problema Específicos	
1.5 Justificación del Estudio	16
1.6. Objetivos	17
1.7. Hipótesis	18
II. MÉTODO	18
2.1. Tipo y Diseño de Investigación	18
2.2. Variables, Operacionalización	19
2.3. Población, muestra y muestreo	20
2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	21
2.5. Métodos de análisis de datos	24
2.5.1. Análisis de la ficha de reporte	26
2.6 Aspectos éticos	38
III. RESULTADOS	38
IV. DISCUSIÓN	74
V. CONCLUSIONES	77
VI. RECOMENDACIONES	78
VII. REFERENCIAS	79
ANEXOS	83
PANEL FOTOGRÁFICO	214

Anexos

Anexo 1: Matriz de Consistencia	84
Anexo 2: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda A-4	85
Anexo 3: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda A-14	90
Anexo 4: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda A-16	95
Anexo 5:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-2	100
Anexo 6:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-4	105
Anexo 7: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-12	109
Anexo 8:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-9	114
Anexo 9: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda C-2	119
Anexo 10: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda C-4	125
Anexo 11:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda D-9	131
Anexo 12:Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda D-18	
Anexo 13: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda F-1	143
Anexo 14:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda F-3	149
Anexo 15: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda F-5	155
Anexo 16:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda G-9	161
Anexo 17:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda H-1	167
Anexo 18:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda H-2	173
Anexo 19:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda H-5	179
Anexo 20:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda I-3	185
Anexo 21: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda Local-comunal	191
Anexo 22: ensayos para la determinación del tipo de suelo	197
Anexo 23: Ensayo de diamantina para la determinación del f'c en las viviendas	203
Anexo 24:Resultado de las resistencias a la compresión de todas las diamantinas extraídas de las viviendos	das
F-3, F-5, C-2	
Anexo 25: Validación de la matriz de consistencia del instrumento	213
Anexo 26: ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS	221
Anexo 27:PANTALLAZO DEL SOFTWARE TURTININ	
Anexo 28: AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIO	NAL
UCV	223
Anexo 29: AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN	224

Índice de tablas

Tabla 1: Valores asignados al parámetro de Tipo de Suelo	11
Tabla 2. Operacionalización de Variables	
Tabla 3. Los parámetros para evaluar la vulnerabilidad sísmica	25
Tabla 4. Rango numérico para la evaluación de la vulnerabilidad sísmica	25
Tabla 5. Valores de los parámetros del peligro Sísmico	25
Tabla 6. Rango de valores para el cálculo de peligro sísmico	26
Tabla 7. Calificación del riesgo sísmico	26
Tabla 8:Definición de los factores de la densidad de muros	
Tabla 9:Definición de los parámetros de la fuerza cortante basal	
Tabla 10. Factor de zona	
Tabla 11. Categoría de las edificaciones	
Tabla 12: Parámetros de sitio	
Tabla 13. Factor de Suelo (S)	
Tabla 14. Periodo Tp y Tl	
Tabla 15: Tipos de perfiles de suelos	
Tabla 16: Condiciones para determinar el factor de amplificación (C)	
Tabla 17. Sistema estructural (R0)	
Tabla 18: Definición de los variables del peso de la vivienda	
Tabla 19: Valores de la fuerza cortante resistente	
Tabla 20: determinación del tipo de densidad en el muro	
Tabla 21:Parámetros de la carga sísmica	
Tabla 22: Peso específico según el tipo de muro de tabiquería y espesor del muro	
Tabla 23: Valores del coeficiente sísmico (C1)	
Tabla 24: Conceptos de las variables del momento actuante	
Tabla 25: Valores del coeficiente de momentos "m" y dimensión crítica "a", muros con 4 bordes arriostra	
Table 25. Valores del coefficient de momentos in y dimension entre a , maios con 4 bordes arrosar	
Tabla 26: Valores del coeficiente de momentos "m" y dimensión crítica "a", muros con tres bordes	
Tabla 27: Valores para muros solo en sus bordes y en voladizo	
Tabla 28: Definición de los factores del esfuerzo por flexión	
Tabla 29: Definición de los factores del momento resistente a tracción por flexión	
Tabla 30: Valores asignados al parámetro de Sismicidad	
Tabla 31 :Ensayo granulométrico y clasificación de suelo	
Tabla 32: Definición de la formula del método de Terzaghi	
Tabla 33 capacidad de qadm:	
Tabla 34: Resumen de los problemas en las viviendas en el AA.HH. Villa Mercedes	
Tabla 35: Rangos de pendientes identificados en el área urbana de Chaclacayo	
Tabla 36: Densidad de muros	
Tabla 37: Estado actual de las viviendas	
Tabla 38: Estabilidad de muros	
Tabla 39: Vulnerabilidad sísmica	
Tabla 40: Sismicidad	
Tabla 41:Tipo de suelo	
Tabla 42:Pendiente y topografía	
, , ,	
Tabla 43:Peligro sísmico	
Tabla 45:Cuadro de resultados del riesgo sísmico de las viviendas autoconstruidas de albañilería confina	
al AA. HH. Villa Mercedes, del distritito de Chaclacayo, Lima-2019	
Tabla 46:Resultados del ensayo de diamantinas realizados en las viviendas	
1 auta 40. Nesunadus dei ensayo de diamandhas teanzadus en las viviendas	
Table 47: Pasos on cada nivel de la vivienda R 2	
Tabla 48: Irragularidad da piso blando a irragularidad extrama da rigidaz	59
Tabla 47:Pesos en cada nivel de la vivienda B-2	59 64

Tabla 50:Irregularidad Geométrica Vertical	65
Tabla 51: Irregularidad torsional y torsional extrema	65
Tabla 52: Irregularidad de masa o peso	66
Tabla 53: Limites para la distorsión del entre piso	66
Tabla 54:Desplazamiento estático en el eje X	67
Tabla 55:Desplazamiento estático en el eje Y	67
Tabla 56: Irregularidad de masa o peso	69
Tabla 57: Cálculos de las irregularidades y desplazamientos máximos permitidos de todas las viviendas	72
Tabla 58: Cuadro de reforzamiento de todas las viviendas	73
Tabla 59 :Niveles de riesgo sísmico según investigaciones realizadas	74
Tabla 60: Niveles de vulnerabilidad sísmica según investigaciones realizadas	75
Tabla 61: Niveles de peligro sísmico según investigaciones realizadas	76

Índice de figuras

Figura 1. La costa en alerta	8
Figura 2: Tabla historia sísmica de Lima	9
Figura 3: Catalogo general de isosistas para sismos peruano	10
Figura 4: Configuración geométrica	12
Figura 5: Modelo de configuración geométrica de viviendas	12
Figura 6:(a) Pocos muros en la Dirección X, (b) Adecuada cantidad De muros	14
Figura 7: Irregularidad de rigidez de piso blando	16
Figura 8: Ficha de verificación de la vivienda	
Figura 9: Ficha de reporte	26
Figura 10:Muro con 4 bordes arriostrados.	34
Figura 11: Muro con 3 bordes arriostrados	
Figura 12:Momento resistente (Mr). En un muro de albañilería	
Figura 13: Ficha de reporte	
Figura 14: Plano de ubicación del AA. HH. Villa mercedes	
Figura 15: Mapa de clasificación de suelos SUCS, para el área urbana de Chaclacayo	40
Figura 16: Columna Litoestratigráfica para el área urbana de Chaclacayo	
Figura 17:Ubicación de las calicatas realizadas en el AA. HH. Villa Mercedes	
Figura 18: Viviendas sobre relleno formando sus calles principales con el sostén del muro de contención	
Figura 19: Muros portante con ladrillos pandereta	44
Figura 20: Muros sin confinamiento	
Figura 21: Muro sin vigas en el segundo piso	
Figura 22:Muros sin arriostramientos.	
Figura 23:Muro con acabados que contienen salitre	
Figura 24: Modelo de la topografía del AA. HH. Villa Mercedes	
Figura 25: Imagen de la zona de las viviendas del AA. HH. Villa Mercedes	
Figura 26: detección del acero en las columnas	
Figura 27: Colocación y sujeción en la columna del equipo perforador	
Figura 28: Espectro de diseño de la vivienda B-2	
Figura 29: Modelado con el software Etabs 2016 2.1 de la vivienda B-2	
Figura 30:Aceleración espectral de la vivienda B-2	
Figura 31: determinación del periodo fundamental	
Figura 32: Vivienda A-14 estado actual	
Figura 33: Propuesta de reforzamiento de la vivienda A-14	
Figura 34: Propuesta de columna, zapata y viga	
Figura 35:Plano reforzando de la vivienda F-5	70
Figura 36: Propuesta de columna, zapata v viga	71

Resumen

La presente investigación tiene como objetivo de determinar el riesgo sísmico de las

viviendas autoconstruidas del AA. HH. Villa Mercedes, realizando el análisis estructural,

por ello se llega a realizar cálculos para hallar los parámetros del riesgo sísmico que son la

vulnerabilidad sísmica y el peligro sísmico, y para determinar la vulnerabilidad sísmica será

con los indicadores como: la densidad de muros, estado actual de la vivienda y estabilidad

de muros; y para el peligro sísmico se determinará hallando los indicadores como: la

sismicidad, el tipo de suelo y la topografía de la vivienda.

Luego se realiza el modelamiento de las viviendas con el software Etabs 2016 para

determinar las irregularidades en altura y en planta de las viviendas y también determinar

los desplazamientos máximos permitidos según RNE, para posteriormente proponer el

reforzamiento en las viviendas que se encuentran que tienen un nivel medio y alto de riesgo

sísmico.

Esta investigación nace por la preocupación de los pobladores y necesidad de salvar sus

vidas, ya que son conscientes que fueron construidos sus viviendas sin asesoramiento

técnico, y una mano de obra calificada, también por no contar con las posibilidades

económicas para poder contratar a un profesional o técnico capacitado. En la primera parte

se realiza las fichas de recolección de datos y los croquis de cada vivienda y tener toda la

información necesaria para poder proponer el reforzamiento estructural. Luego en gabinete

se realiza el diseño de los planos y los cálculos. Se obtiene gráficos en Excel mostrando

valores de La vulnerabilidad sísmica de un 40% de nivel medio y el peligro sísmico de 60%

de nivel media y con estos resultados indicándonos el riesgo sísmico de un 60% de nivel

medio y un 40% de nivel alta. Esto se debe porque los resultados de los cálculos muestran

una densidad adecuada del 50% de las viviendas.

Palabras claves: Riesgo Sísmico, Vulnerabilidad, Peligro, Reforzamiento.

xii

Abstract

The present investigation has as objective to determine the seismic risk of the self-built

homes of the AA. H.H. Villa Mercedes, carrying out the structural analysis, therefore it is

possible to carry out calculations to find the parameters of the seismic risk that are the

seismic modification and the seismic danger, and to determine the seismic contamination

will be with the indicators such as: the density of walls, state current housing and stability

of walls; and for the seismic hazard, it will be determined by finding the indicators such as:

seismicity, type of soil and the topography of the dwelling.

Then the modeling of the houses is carried out with the Etabs 2016 software to determine

the irregularities in height and in the floor of the houses and also determine the maximum

displacements allowed according to RNE, to later propose the reinforcement in the houses

that are found to have a medium and high level of seismic risk.

This research was born due to the concern of the residents and the need to save their lives,

since they are problems that their homes were built without technical advice, and a skilled

workforce, also for not having the economic possibilities to be able to hire a Trained

professional or technician. In the first part, the data collection sheets and the sketches of each

house are made and have all the necessary information to be able to propose the structural

reinforcement. Then in the cabinet the design of the plans and the calculations is carried out.

Graphs are obtained in Excel showing values of the seismic evolution of a 40% of medium

level and the seismic danger of 60% of medium level and with these results indicating the

seismic risk of 60% of medium level and 40% of high level. This is because the results of

the calculations vary an adequate density of 50% of the houses.

Keywords: Seismic Risk, Vulnerability, Danger, Reinforcement.

xiii

I. INTRODUCCIÓN

1.1 Realidad Problemática

El Perú está ubicado en un lugar con más movimiento sísmico, donde se existe el "Cinturón de Fuego del Pacífico" teniendo registros de sismos que afectaron al país en su debido momento.

En el distrito de Chaclacayo en los últimos años se viene presentando desastres naturales como los huaycos, incendios forestales, caídas de rocas y no es ajeno a los sismos por tanto las viviendas autoconstruidas existentes en el distrito de Chaclacayo son vulnerables a estos fenómenos físicos naturales.

La constante expansión urbana en el distrito de Chaclacayo tiene como resultado a poblar y asentarse en las laderas de los cerros dando lugar a la aparición de viviendas autoconstruidas como el AA. HH. Villa Mercedes en zonas expuestas a desastres naturales como sismos de gran magnitud que viene ocurriendo en estos tiempos, lo más alarmarte es la construcción de sus viviendas que no cumplen las normas de albañilería, no contaron con un profesional especializado y su respectivo diseño para la zona.

El aumento de la población y el querer tener una vivienda propia y contando con bajos recursos da como resultado a poblar e instalarse en las faldas de los cerros sin importarles la exposición de peligros, construyen sus viviendas sin asesoramiento técnico como en el diseño y construcción, buscan la manera de acomodarse a la pendiente de los cerros, etc. Es donde nace la necesidad del investigador de analizar sus viviendas e identificar el riesgo que tendría estas frente a un sismo de gran magnitud.

Evaluar y conocer el riesgo sísmico de las viviendas de Villa Mercedes será beneficioso. Con los resultados se busca realizar propuestas de reforzamiento en las estructuras, con el objetivo de minimizar el riesgo sísmico de aquellas viviendas. Por lo descrito anteriormente presentamos la tesis que lleva el título de "Evaluación del riesgo sísmico y propuesta de reforzamiento en viviendas en el AA. HH. Villa Mercedes del distrito de Chaclacayo.

1.2 Trabajos Previos

Internacionales

(Valverde María, 2015) Universidad Politécnica de Madrid. España. Muestra en su tesis "Evaluación del riesgo sísmico en España a escala municipal y su evolución temporal". Analiza principalmente la diferencia temporal entre la vulnerabilidad sísmica y el riesgo sísmico sobre fallasen las estructuras residenciales. Llegando a conclusión que la vulnerabilidad sísmica será tediosa en analizarlo en aquellas estructuras ya que se encuentra varios factores que contribuyen a ser más vulnerables. Y el riesgo sísmico se llegó analizar tanto la vulnerabilidad el peligro dando como resultado que los edificios son muy vulnerables frente a un sismo.

(Triviño Marily, 2017) Universidad nacional de Colombia, en la tesis presentada con el título "Estimación de la amenaza sísmica causada por el proceso de subducción y su impacto sobre los asentamientos humanos para la región de América Latina y el Caribe" indica como objetivo general es dar a conocer las consecuencias ocurridas por el proceso de subducción que afectan en asentamientos humanos en la región analizando el proceso de una forma holística obteniendo un cierto grado de riesgo que están expuestas los habitantes y teniendo una bases de datos en la gestión de riesgos y desastres en cada país.

(Picazo Yasser, 2014) Universidad Nacional Autónoma de México. En su tesis titulado "Modelo simplificado para estimar las funciones de vulnerabilidad y riesgo sísmico de edificios asimétricos en planta". Hace referencia como objetivo principal en "Establecer un marco de referencia para el análisis de vulnerabilidad y de riesgo sísmico de estructuras de múltiples niveles, con planta asimétrica, a partir de las relaciones obtenidas de las funciones de la vulnerabilidad sísmica de sistemas de un nivel, con planta simétrica y asimétrica, para diferentes condiciones de tipo de suelo; se tomarán como punto de partida sistemas dañados de acuerdo con los criterios establecidos en las Normas Técnica [...]" Concluyendo "Sería factible en establecer un marco de referencia para el análisis de confiabilidad y riesgo sísmico de edificios asimétricos en planta a partir de relaciones obtenidas de las funciones de confiabilidad de estructuras de múltiples niveles con planta simétrica y asimétrica; [...]".

Nacionales

(Paucar Irineo, 2018) en su tesis titulado "Riesgo sísmico de las viviendas autoconstruidas en la urbanización la libertad en el distrito de Lurigancho Chosica-2018" Tiene como objetivo conocer el nivel del riesgo sísmico de las viviendas autoconstruidas. Concluyendo En un 75 % de viviendas presentan riesgo sísmico alto y que el 25 % de las viviendas un riesgo medio. Indicando que aquellas viviendas podrían sufrir graves problemas y colapsos ocasionados por sismos severos.

(Valverde Oswaldo, 2017) en la tesis "Riesgo sísmico de las viviendas autoconstruidas del distrito de pueblo nuevo Lambayeque en el 2017" el objetivo es brindar información del grado de riesgo sísmico de las construcciones existentes. Obteniendo como resultado un 72 % de casas están expuesta a un grado alto de riesgo, concluyendo que esto se debe a la autoconstrucción, no contar con un técnico o profesional capacitado, el mal uso de los materiales, siendo notorios en cada estructura de las viviendas.

(Giraldo Santiago, 2018) presentando su tesis "vulnerabilidad sísmica en las viviendas autoconstruidas de albañilería en el distrito de Tarica _Ancash 2018" priorizando en analizar la vulnerabilidad sísmica en el distrito, que compete en el comportamiento de la estructura. Llegando a un resultado que el 8.7% corre el riesgo muy alto de ser vulnerable frente a un sismo y que un 52.17% con un riesgo alto, demostrando que puedan sufrir pérdidas de vidas humanas y materiales en el distrito, y que se deberá tomar medidas de prevención.

(Becerra Richard, 2015) Universidad Privada del Norte, en la investigación titulada "Riesgo sísmico de las edificaciones en la urbanización Horacio Zevallos de Cajamarca" determina principalmente el riesgo sísmico para saber el estado de las estructuras y prevenir cuando la estructura se expone a un sismo de gran magnitud. Finalizando que realmente en el lugar las viviendas presentan un riesgo sísmico alto.

(Poma Cecilia, 2017) se centra en la "vulnerabilidad sísmica de las viviendas de autoconstrucción en la urbanización popular minas buenaventura – huacho – 2017" por motivo principal que las viviendas se encuentran en un terreno desfavorable en la zona y el material usado y para ello aplico un método empírico para poder obtener un resultado en poco tiempo y aproximado. Llegando a la conclusión que realmente las viviendas se encuentran expuestas durante un movimiento telúrico y el método es eficaz al no poder acceder al interior de las viviendas y tener otras restricciones mayores.

(Oc Jamhmer, 2017) Universidad nacional Toribio Rodríguez de Mendoza de amazonia. "Estimación del riesgo sísmico de las viviendas autoconstruidas en el barrio santa Isabel, Chachapoyas, amazonas, 2017". Considera principalmente estimar el riesgo sísmico de las viviendas autoconstruidas en el barrio Santa Isabel. Concluye que "el barrio Santa Isabel en la ciudad de Chachapoyas presenta un riesgo sísmico alto, debido a que la mayoría de las viviendas tiene una vulnerabilidad alta. Se creó un catálogo sísmico de intensidades de diferentes años, abarcando desde el año 1586 hasta el año 2010. El catálogo cuenta con 50 eventos sísmicos, caracterizados por fecha, hora, latitud, longitud, profundidad y reporte de la intensidad observada".

(Rojas Edwin, 2017) nos indica en la tesis titulada "Evaluación de la vulnerabilidad sísmica en viviendas de albañilería confinada del asentamiento humano san marcos de Ate, Santa Anita, 2017" se centra fundamentalmente en saber la vulnerabilidad sísmica del lugar encontrando las fallas tanto constructivas, como de diseño, mal uso de material, etc. Haciendo saber a la población que si corren riesgos peligrosos sus viviendas como sus propias vidas. Teniendo como resultado de un 60% de viviendas con alto grado a ser vulnerables.

(Ponte Gaudencio, 2017) publicado en su tesis "Análisis del diseño estructural de albañilería confinada para la vida útil de viviendas autoconstruidas en el distrito de Independencia-Lima 2017" se centra en analizar el diseño estructural de las viviendas para garantizar su vida útil modelando el software alternativo como el "Etabs" la estructura de las viviendas escogidas para el análisis y brindando alternativas de reforzamientos. Concluyendo que las estructuras sufren fallas al ocurrir un sismo.

(Pineda Edgar, 2017) realizó su investigación nombrada "Diseño Estructural de viviendas Sismo Resistente en la ribera del río Rímac y en las laderas del cerro en El Agustino, Lima 2017" tiene la finalidad de comprobar si las viviendas fueron construidas con los parámetros según las normas técnicas existentes de sismorresistencia en las viviendas ubicadas en terrenos diferentes.

1.3. Teorías relacionadas al tema

1.3.1. Riesgo Sísmico

Para Bonnet (2003) es cuando una estructura tiende a exponerse a fallar su resistencia intrínseca durante un sismo y clasificándose dentro de un nivel según las pérdidas y humanas como materiales. (p. 19).

Kuroiwa (2010). Nos define la vulnerabilidad y peligro sísmico son factores que determinan el riesgo sísmico que es aplicado independientemente a cada estructura (p.66).

Según nos dice Iñeguez (1992) el riego sísmico corresponde del peligro y vulnerabilidad sísmica ya que la peligrosidad sísmica está relacionándose con las características del lugar o la intensidad de las ondas sísmicas y el estado vulnerable que se encuentra la estructura. (p. 111).

Vulnerabilidad Sísmica

Nos afirma (Herráiz Miguel,1997), "Es la reacción de una estructura expuesta a las cargas de un sismo" (p. 101).

(Kuroiwa Julio, 1990). no existe sistemas para hallar la vulnerabilidad de una estructura. siendo este un deterioro en la estructura por un movimiento telúrico. (p. 18).

Calidad en la construcción

En la NORMA GE.030, (2016) "está relacionado con el diseño y proceso constructivo que son fundamentales para garantizar su vida útil, teniendo un control y conocimientos donde se aplique. Por otro lado, considerar la parte documentaria y normativa".

Materiales deficientes

(Laucata Johan, 2013). "Se realizará la evaluación y control que se utilizará en la vivienda, principalmente los ladrillos que son de arcilla. Se tendrá que inspeccionar si aquellos ladrillos están elaborados artesanalmente o industrialmente. El ladrillo artesanal tiene diferentes formas, dimensiones y resistencias que el ladrillo industrializado, teniendo una baja calidad".

Calidad de los materiales

En todo proyecto de construcción será importante la organización y controlar la producción y de recepción de los materiales, distinguiendo dos tipos de materiales:

1.- Tradicionales

2.- Nuevos materiales

Calidad de los procesos constructivos

Lo más importante es la obra de albañilería, realizando una evaluación y formar un sistema estratégico que contenga planes, concientizando al obrero de la constructora y todos los involucrados en la obra. Implementando la calidad de los procesos, también la calidad de la mano de obra, calidad de los materiales y calidad del producto final.

Cimentación

RNE, norma .070 (2016) "se colocará concreto ciclópeo o albañilería de piedra en las cimentaciones, y en zonas donde no llueve se puede usar cemento tipo II.

• Espesor de las juntas

De acuerdo con (RNE E. 070, 2016) "en el asentado de ladrillos las juntas deberán cubrirse verticalmente y horizontalmente con mortero con un espesor máximo de 1.5 cm.

• Unión columna-muro portante.

Las cargas que influyen en una estructura común, son de importancia la columna y el muro de ladrillos estén unidos fuertemente para que pueda trabajar en soportar las fuerzas.

Mortero

Es una mezcla de arena agua y cemento teniendo las características de ser mezclas plásticas aglomerantes. Su usó se da en asentados de unidades de albañilería, revestimiento de paredes y cielo rasos.

El concreto

El concreto está compuesto de mezcla de arena, cemento, agua y agregados.

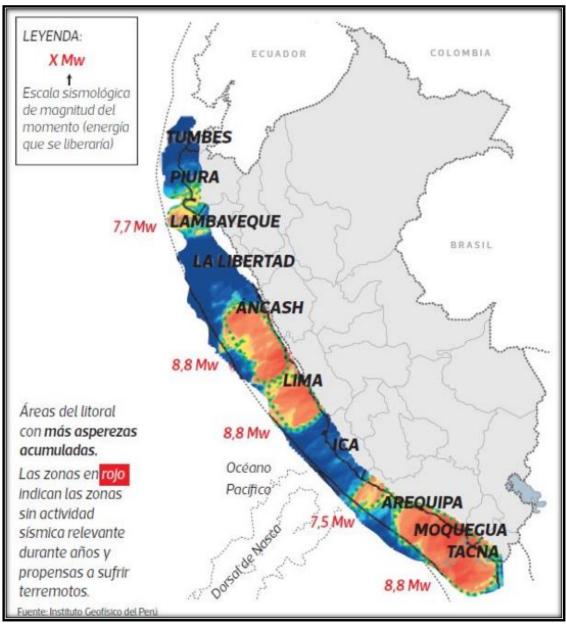
Peligro sísmico

Según Barbat, Oller, Vielma (2005), "En un determinado lugar si analizamos los efectos que tienen como consecuencias de un sismo de cualquier magnitud, podemos notar la aceleración, velocidades o como se desplaza las ondas sísmicas en aquella zona. Es posible en cualquier momento relacionando un tiempo específico y una región dada con cierta intensidad" (p. 6).

El peligro sísmico es la posibilidad que suceda un fenómeno físico como tsunamis, inundaciones, deformaciones tectónicas, etc. Causando daños perjudiciales a las personas por un terremoto.

Sismo

Según CENEPRED, (2014) Los sismos son aquellas liberaciones de energía por los desplazamientos de placas tectónicas que se propagan como ondas sísmicas y expansión de energía al ocurrir una fricción en el plano de falla formando energía mecánica y emergiendo hacia la superficie y vibrando el suelo superficial, esto ocurre exactamente en corteza terrestre o en el manto terrestre de la estructura de la tierra.


Sismicidad

Desde la antigüedad los impactos sísmicos ocurridos en el Perú registran daños a la actividad humana, a sus viviendas, reflejando que no contaron con la prevención estructural o quizás no se esperaban sismos con una elevada intensidad. En la actualidad se puede ver y analizar los registros de sismos ocurridos en lima.

Según (García Yahir, 2014). "La sismicidad describe la frecuencia e intensidad de los sismos generados en la corteza de la tierra, así como en el manto superior, y se mide contabilizando el número de sismos en un año presentados en un territorio delimitado en kilómetros cuadrados. De acuerdo con la teoría de la tectónica de placas, la gran mayoría de sismos o temblores son generados por la continua fricción entre los límites de las placas que colisionan, algunas describiendo un movimiento transcurrente y otras describiendo hundimientos en las llamadas zonas de subducción. Esta liberación súbita de energía elástica de deformación almacenada se traduce en ondas sísmicas, que son las que sentimos en la superficie terrestre una vez que han viajado desde algún lugar de origen en el interior de la tierra (hipocentro)".

La sismicidad es la relación de la intensidad y la frecuencia de ocurrencia del sismo en lugar determinado.

Figura 1. La costa en alerta

Fuente: Instituto Geofisico del Perú

Figura 2: Tabla historia sísmica de Lima

FECHA Y HORA	CARACTERÍSTICAS DEL EVENTO	DESCRIPCIÓN DE LOS EFECTOS		
1552: Julio 2 /05.30 h		Algunos daños en Lima. El rey carlos V ordenó que la altura de las construcciones se limitara a 6 varas(5,2m).		
1578:Junio 17/12.05 h	Intensidad: VII MM	Destrcucción de casas, templos y el palacio del virrey		
1586:Julio 09 /20.00 h		Destrucción de Lima y Callao, estuvo acompañado por maremotos. Cerca de 22 muertos.		
1655:Nov. 13 /14.55 h		Terremoto destructivo en Lima, agrieto la Plaza de Armas y la Iglesia de los jesuitas. Daños en el callao.		
1687: Oct. 20 / 04.15 h	Magnitud: 8:0 (Richter) Intensidad: IX MM	Fue el terremoto más destructor ocurrido en Lima desde su fundación. Lima y Callao quedaron reducidos a escombros. El maremoto en el callao causó 100 muertes.		
1746: Oct. 28 /22.30 h	Intensidad: X MM Epicentro: 11.6° S y 77.5° O	Es el terremoto más fuerte ocurrido en la historia de Lima, donde 3000 casas, solo 25 quedaron en pie, muriendo 1,141 de sus habitantes. En el callao fue totalmente destruidos por el sismo y el tsunami que lo sucedió, muriendo 4,800 de sus 5,000 habitantes. Fue sentido desde guayaquil hasta Tacna.		
1897: Sept. 20 /11.25 h		Fuerte sismo causo daños en las edificaciones. En el callao la intensidad fue muy alta.		
1904: Marzo 04 /05.15 h	Magnitud:7.2(Richter) Intensidad:VII-VIII MM	Los mayores daños en la Molina, Chorrillos y el Callao.		
1940:Mayo 24(11) 11:35h	Magnitud:8.2 Ms(Richter) Intensidad:VII MMAceleraciones =0.4g Epicentro=11.2° S y 77.79° O (120 Km. NO de Lima) Hipocentro: 50Km.	5,000 casas destruidas en el callao, 179 muertos y 3,500 heridos en Lima, 80% de viviendas colapsada en Chorrillos, el malecón se agrieto y en tramo. Grandes daños en cosntrucciones antiguas en Lima. Interrupción de la panamericana Norte por deslizamientos de arena en el sector de Pasamayo. Tsunami con olas de 3 m. que anegó totalmente los muelles.		
1970:Mayo 31(12) 15:33h	Magnitud:7.8Ms(Richter) Intensidad:VIII MM Aceleraciones =0.1g Epicentro=09.2° S y 78,8° Hipocentro: 35Km.	Uno de los mas destructivos de los sismos en el siglo en el hemisferio su. La mayor destrucción ocurió a 350 Km de Lima. Causo 65 mil muertes, 160 mil heridos y daños estimados en 550 millones de US\$. En Lima registro aceleraciones de 0.1 g a pesar que el epicentro estuvo a 400 Km al NO, los mayores daños en Lima ocurrieron en La Molina.		
2007, Agosto 15 /18:41 h	Magnitud: 7.0 (Ritcher) intensidad: PiscoVII-VIII Lima:VI MM, epicentro: 60 Km Pisco Hipocentro: 40 Km	El sismo causó la muerte a 593 personas, heridas a 1291, se censaron damnificados. Destruyo 48208 viviendas, 45500 otras quedaron inhabitables y 45813 fueron afectados 14 establecimientos de salud fueron destruidos y 112 afectados.		
2019, Mayo 26/2:41 h	Magnitud: 8.0 (Ritcher) intensidad:VI-VII epicentro: 0.74° y75.55° hipocentro: 135 Km	Sucedió en la Amozonia peruana, pero en cajamarca hubo una persona fallecida tras caerle una pared, 11 personas resultaron heridas, 86 familias damnificadas, 74 familias afectadas, 88 viviendas inhabitables, dos centros de salud colapsados, y carreteras afectadas, la mayoria de heridos se encontró en la ciudad Amazónica de Yurimaguas, la mas cercana al epicentro del terremoto (fuente del COEN)		

Fuente: Instituto geofísico del perú (IGP) 2019

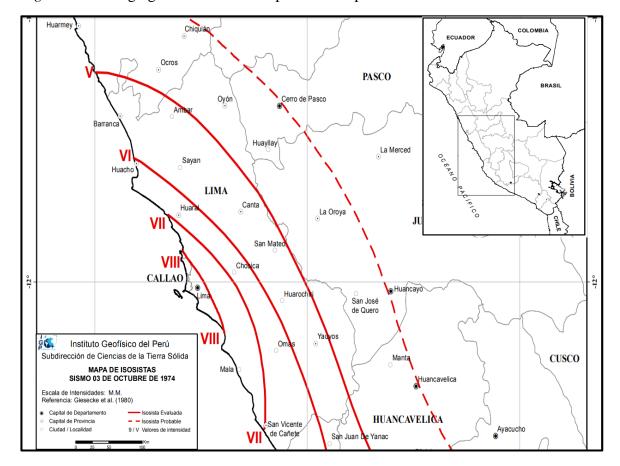


Figura 3: Catálogo general de isosistas para sismos peruano

Fuente: Tavera Hernando, Agüero Consuelo, Fernández Efraín

Lima se encuentra en un lugar de alta sismicidad con ocurrencia de sismos mayores a IV de intensidad en escala de MM (Mercalli modificada), esta se encuentra en zonas donde hace mucho tiempo no se libera fuerzas internas teniendo la probabilidad de un gran movimiento telúrico, Lima está ubicado en la zona costa del Perú con zonificación igual a Z=0.45 considerando en la zona 4 en el mapa del Perú.

Suelo

(Crespo Carlos, 2004) "Es una delgada capa sobre la corteza terrestre de material que proviene de la desintegración y alteración física y química de las rocas y de los residuos de las actividades de los seres vivos que sobre ella se asientan".

(Rodríguez Alfonzo y Del Castillo Hermilio, 2005). El suelo se divide en 3 fases sólida, líquido y aire, estando tan relacionados que la respuesta frente a cualquier esfuerzo tiende a reaccionar de manera que se convierte complejo para realizar un trabajo que el profesional tendrá que aplicar los conocimientos obtenidos en la práctica. (p. 112).

Tipo de suelo

(Tavera, 2012)Según la (Zonificación Sísmica Geotécnica del Área Urbana De Chaclacayo, 2012). "Concluye que después de realizar los ensayos y estudios especializados que el tipo de suelo existente en Chaclacayo es de dos tipos: "Roca o suelos Muy Rígidos" (S_1) y "Suelos Intermedios" (S_2) .

La determinación del parámetro tipo de suelo según (Mosqueira Miguel et al. 2005). En la siguiente tabla":

Tabla 1: Valores asignados al parámetro de Tipo de Suelo

Tipo De Suelo (40%)		
Rígido	1	
Intermedio	2	
Flexible	3	

Fuente: Mosqueira Miguel, 2005

1.3.2. Viviendas autoconstruidas

El director del instituto CAPECO (García Felipe, 2018). Nos dice que, "las viviendas informales son aquellas que se desarrollan de la siguiente manera: las autogestionadas y las auto construidas; siendo la primera las personas que no saben nada de construcción pero quiere hacer su vivienda y contrata a alguien y no necesariamente es un maestro de obra, y en la autoconstrucción son los mismos propietarios va construyendo de a poquitos y en algunos casos en la semana la mujer se queda avanzando un poco los muros, un poco de su vivienda. Ambos tipos de construcción tienen problemas muy serios, porque en el momento que haya un evento sísmico esas viviendas van a colapsar y las familias no van a tener tiempo ni siquiera de evacuar".

Configuración geométrica

(NORMA GE.030 2016). "Nos define que la configuración estructural se calificara como regulares e irregulares".

Regulares

Para que una estructura sea regular no deberá contar con discontinuidades importantes en el eje horizontal o vertical para que no sea afectado frente a cargas laterales como el sismo.

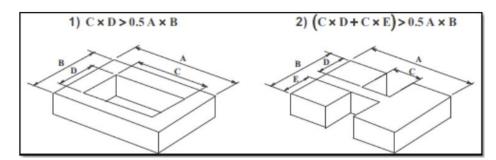


Figura 4: Configuración geométrica

Fuente Tesis: Evaluación de la vulnerabilidad estructural de edificios del centro de Bogotá utilizando el método del índice de vulnerabilidad, Mauricio Andrés

Irregulares

La irregularidad en una estructura se presenta por no contar con simetría, tener discontinuidades geométricas, en masa.

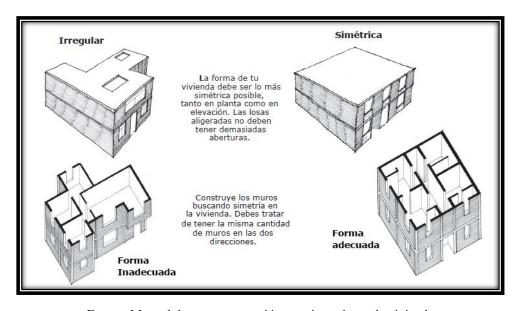


Figura 5: Modelo de configuración geométrica de viviendas

Fuente: Manual de autoconstrucción y mejoramiento de vivienda

Geométricos

(Jiménez María, 2004). "Los establecimientos de salud y en particular el hospitalario, por su naturaleza, tienden a presentar esquemas de configuración complejos, relacionándose con en el tipo, disposición, fragmentación, resistencia y geometría de la estructura de la edificación, y que puede generar respuesta estructural denominados configuraciones de riesgo, ante sismos o ante la acción de fuertes sismos. Siendo la irregularidad geométrica de la edificación uno de los factores causantes de efectos no deseados por efectos del sismo, será entonces un es fundamental determinar el grado de irregularidad de la estructura, la geometría en planta y en altura".

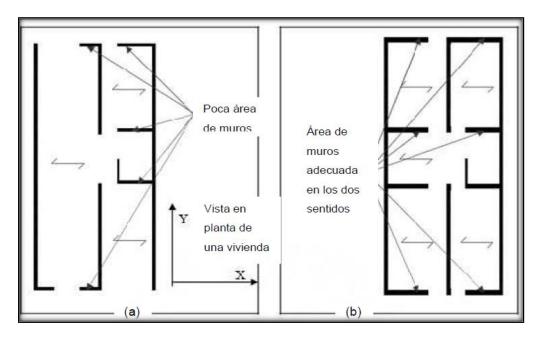
Rigidez

Es el resultado de medir cualitativamente la resistencia cuando ocurren deformaciones elásticas producidas por elementos estructurales, soportando esfuerzos sin que sufran extensas deformaciones. Se considera magnitudes físicas a los coeficientes de rigidez que medirán la rigidez de cada elemento estructural cuando están sometidos a cargas.

$$K_i = \frac{F_i}{\nabla_i}$$

 K_i = Coeficiente de rigidez

 F_i = Fuerza aplicada


 V_i = Desplazamiento obtenido por la aplicación de una fuerza

Muros

Según el Manual de albañilería (2010). "Los muros se definen como elemento de contención destinados a establecer y mantener una diferencia de niveles en el terreno con una pendiente de transición superior a lo que permitiría la resistencia del mismo [...]."

Densidad de muros inadecuada

Figura 6:(a) Pocos muros en la Dirección X, (b) Adecuada cantidad De muros

Fuente: Huarcaya Máximo, Contreras Alex

Calidad de materiales empleados

En la definición de la GE. 030 (2016), al ejecutar una obra se tomará en cuenta que los requerimientos de calidad se tendrán que aplicar a los materiales intermedios y finales al realizar los ensayos correspondientes y obligatorios para garantizar la calidad del material.

Cemento

El cemento tendrá un uso específico cumpliendo con el requerimiento establecidos en el proyecto, se encuentra en varios tipos o categorías para su uso:

Tipo I: Es el cemento normal que se utiliza en viviendas, estructuras, etc. No requiere de otro tipo de uso especial. Tipo II: Este tipo es contra los sulfatos. Tipo III: Su resistencia se incrementa más rápido en pocos días.

Agregados

Son aquellos materiales granulares que se usan frecuentemente en la construcción, donde es mezclado en la preparación del concreto, mortero, cimientos, etc. Estos tendrán que ser utilizados manteniendo su uniformidad.

Agua

Se utilizará el agua potable para combinar y crear concreto, tendrá efectos que se requiere en la construcción como propiedades elásticas y adhesivas.

Acero

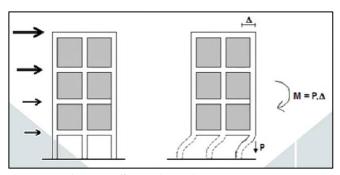
Nos indica Harmsen (2002), Es muy importante que este libre del oxido en el armado del elemento estructural de lo contrario pierde la adherencia con el concreto, al reducir su sección trasversal impactando a su resistencia. Si fuera así se realizará una limpieza con una escobilla de acero. (p. 41)

Reforzamiento de viviendas

"Son aquellos conocimientos y pasos para aumentar la resistencia, reestructurar, realizar el cambio en la estructura o a los elementos estructurales de las viviendas en este caso las autoconstruidas, ya que tienen la probabilidad de tener un alto de riesgo sísmico. Para evitar que la estructura sufra daños estructurales resistiendo sismos de mediana y de grandes magnitudes". (Valbuena Sergio, 2014).

Ensayos de diamantinas

Es un ensayo no destructivo que se aplica a elementos estructurales para determinar la resistencia del concreto. Se realiza con un equipo adecuado que contiene una broca cilíndrica hueca en la parte delantera que está compuesta con cristales de diamantes que desgasta al material en forma circular por medio de fricción a tal profundidad requerida.


Módulo de elasticidad

Es la división entre el esfuerzo y la deformación siendo una medición de la rigidez, al resistir el hormigón a que se deforme. El hormigón no tiene la propiedad netamente elástica que al endurecerse en su totalidad se podrá realizar una curva de esfuerzo de compresión y deformación, formando una recta en un rango de esfuerzos más comunes.

Irregularidad de rigidez de piso blando

Es una configuración estructural irregular

Figura 7: Irregularidad de rigidez de piso blando

Fuente: Víctor Rogelio Ramírez Márquez

1.4. Formulación del problema

1.4.1. Problema General

¿Cuál será el nivel del riesgo sísmico y que tipo de reforzamiento estructural se propondrá en las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima - 2019?

1.4.2 Problema Específicos:

- ¿Cuál es el nivel de vulnerabilidad sísmica en las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima 2019?
- ¿Cuál es el nivel del peligro sísmico en las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima 2019?
- ¿Cuál será el resultado del modelamiento para realizar la propuesta de reforzamiento de las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019?

1.5 Justificación del Estudio

Teórico

En el AA. HH. Villa Mercedes no existe el estudio del riesgo sísmico, las viviendas son autoconstruidas o construidas por albañiles sin asesoramiento técnico, incumpliendo el RNE (Reglamento nacional de edificaciones) y corren el riesgo de sufrir daños estructurales y poniendo en peligro la vida humana. Los pobladores del lugar no cuentan con medios económicos para poder realizar reforzamientos, es por eso que se realiza esta investigación

donde dará resultados del nivel de riesgo sísmico medio o alto para poder reforzarlas, e incentivar a futuros investigadores a realizar a este tipo de estudio en situaciones similares que existe mucho en nuestro país.

RNE E.070 (2016) Se debería realizar el estudio considerando la configuración estructural de las viviendas, las condiciones del lugar y la ubicación del terreno. Las viviendas autoconstruidas la mayoría no consideran estos factores siendo vulnerables a un sismo determinado.

Práctica

En la presente tesis se investigará el riesgo sísmico de las viviendas del AA. HH. Villa Mercedes, donde es necesario tener información del estado estructural para poder realizar acciones preventivas de reforzamiento estructural. Se considerará dos variables, el riesgo sísmico y la propuesta de reforzamiento; para poder resolver los problemas planteados en esta investigación, a estas variables se le medirá con las dimensiones e indicadores apropiados.

Metodológico

Se evalúa el riesgo sísmico calculando el grado de vulnerabilidad sísmica a través de la densidad de muros, estado actual de las viviendas y estabilidad de muros; y el peligro sísmico a través de la sismicidad, el tipo de suelo y la topografía-pendiente.

Riesgo Sísmico = Vulnerabilidad Sísmica \mathbf{x} Peligro Sísmico

1.6. Objetivos

1.6.1. Objetivo general

Determinar el nivel del riesgo sísmico y el tipo de reforzamiento estructural que se propondrán en las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.

1.6.2. Objetivos específicos

- Calcular el nivel de vulnerabilidad sísmica en las viviendas autoconstruidas del AA.
 HH. Villa Mercedes en el distrito de Chaclacayo, Lima 2019.
- Calcular el nivel del peligro sísmico en las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.

 Realizar el modelamiento estructural para proponer la propuesta de reforzamiento de las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.

1.7. Hipótesis

1.7.1. Hipótesis general

El nivel del riesgo sísmico será alto y por ende se reforzarán las estructuras de las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.

1.7.2. Hipótesis específicas

- El nivel de la vulnerabilidad sísmica en las viviendas autoconstruidas es alto en el AA.
 HH. Villa Mercedes en el distrito de Chaclacayo, Lima 2019.
- El nivel del peligro sísmico en las viviendas autoconstruidas es alto del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.
- La propuesta de reforzamiento mejorará las estructuras de las viviendas autoconstruidas reduciendo el riesgo sísmico del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.

II. MÉTODO

2.1. Tipo y Diseño de Investigación

2.1.1. Método

(Garza y Alfredo, 2005). "la investigación científica se puede definir como una serie de etapas a través de las cuales se busca el conocimiento mediante la aplicación de ciertos métodos y principios."

Se aplicará el método científico, basándose en acontecimientos observables de nuestro entorno como los sismos que son fenómenos naturales que dañen la actividad humana.

2.1.2. Tipo de estudio

(Daniela Rodríguez, 2003). "La investigación aplicada es el tipo de investigación en la cual el problema es enfocada por el investigador, por lo que utiliza la investigación para dar respuesta a preguntas específicas."

La presente investigación es aplicada, porque llegará a obtener información de las variables que son el riego sísmico y la propuesta de reforzamiento, para poder resolver los problemas planteados en esta investigación.

2.1.3. Nivel de estudio

Es aquella jerarquía de acercamiento con la que se estudia hechos que ocurre en nuestro entorno en la realidad social, relacionado a una realidad.

(Hernández Marisol, 2004). Nos define que "la investigación descriptiva se efectúa cuando se desea describir, en todos sus componentes principales, una realidad".

Valverde Oswaldo, (2017) nos recomienda "tener un método como: revisión bibliográfica y de documentos que permitan describir o detallar en forma escrita y gráfica, el riesgo sísmico en las viviendas informales".

2.1.4. Diseño de Investigación

(Kerlinger, 2007). "esta investigación no se manipula las variables por tanto según el autor es una investigación no experimental, y los sujetos de estudio son observados en su ambiente natural".

2.2. Variables, Operacionalización

2.2.1. Variables

V1: Riesgo Sísmico (Dependiente); V2: Reforzamiento Estructural (Independiente)

2.2.2. Operacionalización de Variables

Tabla 2. Operacionalización de Variables

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES
Riesgo Sísmico	Kuroiwa (2010). Nos define la vulnerabilidad y peligro sísmico son factores que determinan el riesgo sísmico que es aplicado independientemente a cada	Para el análisis del riesgo sísmico se emplearán los planos, las fichas técnicas de verificación,	Vulnerabilidad Sísmica	Densidad de muros Estado actual de vivienda Estabilidad de muros Sismicidad
	estructura (p.66).		Peligro Sísmico	Tipo de Suelo Topografía del lugar
Propuesta de Reforzamiento	Son aquellos conocimientos y pasos para aumentar, reestructurar, realizar el cambio en la estructura o a los elementos estructurales de las viviendas en este caso las autoconstruidas, ya que tienen la probabilidad de tener un alto de riesgo sísmico. Para evitar que la estructura sufra daños estructurales resistiendo sismos de mediana y de grandes magnitudes. (Valbuena Sergio, 2014).	Se realizará el análisis estructural de las viviendas con el programa Etabs, para luego proponer el reforzamiento estructural para el mejoramiento del comportamiento de la vivienda frente a un sismo de regular magnitud	Modelamiento Estructural de las viviendas	Desplazamientos Irregularidades en altura y en planta

Fuente: Propia

2.3. Población, muestra y muestreo

2.3.1. Población

"Población o población objetivo a: Un conjunto finito o infinito de elementos con características comunes para los cuales serán extensivas conclusiones de la investigación. Esta queda determinada por el problema y por los objetivos del estudio" (Arias, 2006, p. 13).

La población viene hacer un grupo limitado o no, con igualdad en rasgos o cualidades que se realizará con fines de investigación, y será medida con los problemas planteados y los objetivos propuestos.

Según el estudio del "Plan comunitario de gestión de riesgos" que realizo la diócesis de Chosica, en el AA. HH. de Villa mercedes existe 109 viviendas que vendría ser la población para esta investigación".

2.3.2. Muestra

Según (Hernández Roberto, 2014). "En la muestra no probabilística (desde una perspectiva cuantitativa) es conveniente cuando no es necesario tener una representatividad de elementos de la población en estudio, sino cuidando y controlando al elegir los casos con las características detalladas anticipadamente en el problema propuesto (en la presente tesis). (desde una perspectiva cualitativa), no es necesario generalizar los resultados, donde las muestras no probabilísticas serán de gran utilidad en la investigación obteniendo casos (personas, objetos, contextos, situaciones) que necesita el investigador y ofreciendo un gran aporte para la recolección de datos y el análisis respectivo".

En total existe 109 viviendas donde se determinó la muestra según lo siguiente:

- La vivienda que haya sido construido con albañilería confinada
- Que tenga mínimo el primer piso techado con losa aligerada
- Que contenga fallas estructurales al realizar una inspección ocular

En el proyecto de investigación la muestra es **No probabilística**, donde las viviendas autoconstruidas fueron seleccionadas de forma directa, y por ello se define la muestra igual a 20 viviendas que serán analizadas, por ser las más críticas, tener una estructura confinada, por no contar con la posibilidad de realizar el estudio, y el acceso al interior y exterior todas las viviendas, y el costo elevado que se tendría si llegara a realizar con las viviendas en la presente investigación.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1. Técnicas de recolección de datos

Ñaupas, Mejía, Novoa, Villagómez (2013) sostienen que "las técnicas de recolectar datos son los procedimientos y herramientas para la obtención de estos, con el objetivo de comprobar la investigación científica que se esté realizando".

El proyecto de investigación se realizó aplicando la observación directa, realizando inspecciones oculares a todas las viviendas de albañilería confinada, siendo algunos

autoconstruidos por los propios pobladores de la zona, con la finalidad de encontrar fallas estructurales más comunes.

2.4.2. Instrumento de recolección de datos

(Valverde Oswaldo, 2017). "El instrumento para este fin puede ser una variedad de recursos, dispositivo o formato teniendo en cuenta que sea por escrito o digital; que cumpla el requerimiento de conseguir, almacenar información."

Figura 8: Ficha de verificación de la vivienda

L DATOS GENERALES

Dirección de la vivienda: AA. HH. Villa Mercedes Mz. A. Lt. 4

Fecha: 10/10/2018

Nombre del propietario: Vilca Llactoy Gutierrez

D.N.I: 10774554

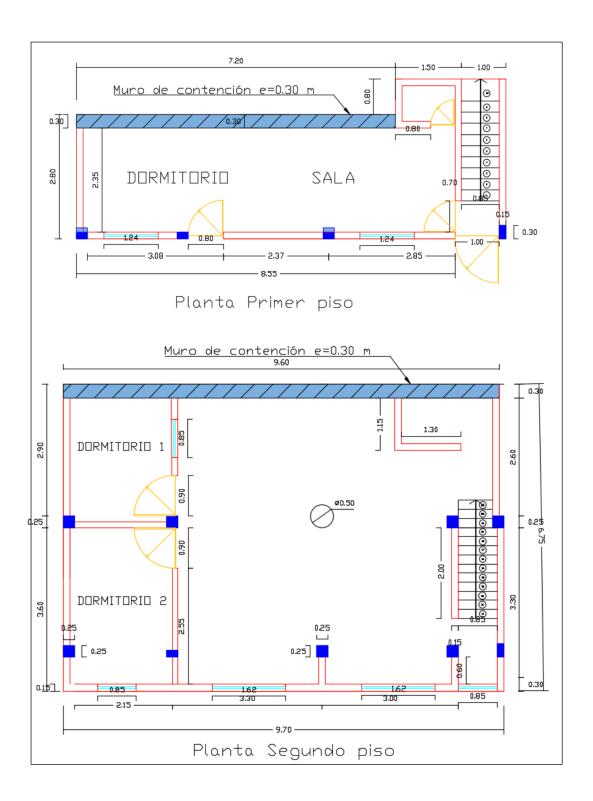
¿La edificación contó con asesoría técnica?

No Antigüedad de la vivienda: 20 años

Números de pisos construidos: 2

Cantidad de ocupantes 3

Estado actual de la vivienda: Se encuentra exteriormente en un estado regular, tiene los dos pisos techados con losa aligerada,


Y en la parte superior contiene parapetos sin confinarlos, se visualiza fierros expuestos a la corrosión

Elemento	Características				Observaciones		
Cimiento	Cimiento corrido		Sobrecimiento		Algunos cimientos están sobre rellenos como		
(m)	Profundidad	Sección	Altura	Sección	también en la roca.		
	0.8	0.4x0.80	0.5	0.15			
Zapata	Z - 1	Z - 1		L	Asentados en relleno y en la parte roca,		
(m)	Profundidad	Sección	Profundidad	Sección	dependiendo el terreno.		
	1	1.0x1.0					
Muros	Ladrillo Macizo		Ladrillo pandereta				
(cm)	Dimensiones	juntas	Dimensiones	Juntas	Los ladrillos panderetas son usados como mu		
	0.09x23.5x12.5	1.5-2.0	23x11x 9	1 - 2.5	portantes en el segundo piso		
Techo	Diafragma rígido		Otros				
(m)	Tipo	Peralte	Tipo	Peralte	Techo aligerado		
	aligerado	0.2					
columnas	Concret	to	Otros: Acero (), Madera ()			
(m)	Dimensiones		Dimensiones		Las columnas en la parte superior están traslapadas con diferentes diámetros		
	C-1	0.2x0.2					
	C-2	0.25x0.2 0					
	C-3						
Vigas	Concret	to	Otros: Acero (), Madera ()			
(m)	Dimensiones		Dimensiones				
	VS						
	VA						
	VP	0.20x0.4 0					

*el material usado como la arena es del propio cerro o lugar del terreno.
Fuente: Laucata, 2013

Plano de distribución de la vivienda A-4

* El propietario tiene proyección de su terreno en aumentar un piso más a su vivienda, que no es recomendable

III. INFORMACIÓN COMPLEMENT		Et D lt
Problema de Ubicación	Problemas de Estructuración	Factores Degradantes
(X) Vivienda sobre relleno natural () vivienda en quebrada () Vivienda con pendiente pronunciada () Vivienda con nivel freático superficial () Vivienda cerca de un río () Vivienda cerca al mar () Otros:	() Poca densidad de muros en eje X () Poca densidad en muros en eje Y (X) Muro portante de ladrillo pandereta () Tabiquería sin arriostre () Columnas cortas (X) Insuficiencia de junta sísmica (X) Losa de techo a desnivel con colindante (X) Cerco no aislado de la estructura () Juntas frías () Otros:	(X) Armaduras expuestas () Armaduras corroidas () Eflorescencia en cimientos () Humedad en muros () Muros agrietados (X) Muros sin revestimiento () Presencia de cangrejeras () Concreto pobre en cimiento () Concreto pobre en columnas () Otros:
Mano de Obra Empleada	Materiales Deficientes	Proyección a Futuro
() Muy mala () Muy buena () Mala () Buena (X) Regular () Aceptable	(X) Ladrillo: Dimensiones variadas () Agregados: () Otros:	(X) Ampliación () Remodelación () Demolición

Fuente: Ficha de verificación-fuente-Laucata, 2013

2.5. Métodos de análisis de datos

Para poder hallar la vulnerabilidad sísmica mediremos los indicadores que se menciona en el cuadro de operacionalización, donde se aplicará la metodología del artículo Estimación del riesgo sísmico de viviendas informales de albañilería confinada. Según la producción científica por el ingeniero Mosqueira Moreno Miguel Ángel (2005), siendo unas de las fuentes de esta investigación. Se halló con los datos obtenidos de la ficha de verificación para luego darle un valor según el rango que muestra el método

Tabla 3. Los parámetros para evaluar la vulnerabilidad sísmica

VULNERABILIDAD SÍSMICA					
ESTRUCTURAL NO ESTRUCTURAL					TURAL
Densidad (60%) Calidad en la construcción (30%) Estabilidad			Estabilidad de m	uros (10%)	
Adecuada	1	Buena calidad	1	Todos estables	1
Aceptable	2	Regular calidad	2	Algunos estables	2
inadecuada	3	Mala calidad	3	Todos inestables	3

Fuente: Miguel Mosqueira

Vulnerabilidad	= 0.6 x densidad de	x 0.3 calidad de	x 0.1 estabilidad de
sísmica	muros	construcción	muros

Tabla 4. Rango numérico para la evaluación de la vulnerabilidad sísmica

Vulnerabilidad sísmica	Rango			
Baja	1 a 1,4			
Media	1,5 a 2,1			
Alta	2,2 a 3			

Fuente: Miguel Mosqueira

El peligro sísmico se hallará sus indicadores como son la sismicidad que se determinará según el RNE (2016), El peligro sísmico se hallará conociendo la sismicidad y el tipo de suelo, obteniendo información de estudios previos realizados en el proyecto "Zonas Geográficas con gestión de Información Sísmica" dando como resultado final la "Zonificación Sísmica – Geotecnia del área urbana de Chaclacayo" (2012). Siendo responsable Hernando Tavera.

Tabla 5. Valores de los parámetros del peligro Sísmico

PELIGRO SÍSMICO					
Sismicidad (40%) Suelo (40%) Topografía y pendiente (20%)			e (20%)		
Baja	1	Rígido 1		Plana	1
Media	2	intermedio	2	Media	2
Alta	3	flexible	3	Pronunciada	3

Fuente: Miguel Mosqueira

Peligro Sísmico	=	0.4 Sismicidad	x 0.4 Suelo	x 0.2 Topografía y
				pendiente

Tabla 6. Rango de valores para el cálculo de peligro sísmico

Peligro Sísmico	Rango	
Bajo	1,8	
Medio	2 a 2,4	
Alto	2,6 a 3	

Fuente: Miguel Mosqueira

Teniendo como resultado ambos parámetros se conocerá el riesgo sísmico de la estructura de la vivienda seleccionada.

Tabla 7. Calificación del riesgo sísmico

RIESGO SÍSMICO				
Vulnerabilidad	1	2	3	
Peligro				
1	1	1,5	2	
2	1,5	2	2,5	
3	2	2,5	3	

RIESGO SÍSMICO				
Vulnerabilidad	Bajo	Medio	Medio	
Peligro				
Bajo	Bajo	Medio	Medio	
Medio	Medio	Medio	Alto	
Medio	Medio	Alto	Alto	

Fuente: Miguel Mosqueira

2.5.1. Análisis de la ficha de reporte

Se divide en tres partes, la primera es la identificación; donde resalta los datos del propietario, si tuvo asesoramiento técnico, estado de la vivienda. La segunda consta de aspectos técnicos de la vivienda divida en dos partes a) Elementos y características de la vivienda autoconstruida, b) Deficiencias de la estructura.

Figura 9: Ficha de reporte

L IDENTIFICACIÓN			
PROPIETARIO : Vilca Llactoy Gutierrez	FECHA:	10/10/2	2018
DNI : 10774554	N°VIVIENDA:		1
DIRECCIÓN : AA. HH. Villa Mercedes Mz.A, Lt. 4			
DIRECCIÓN TÉCNICA Y CONSTRUCCIÓN: NO			
ÁREA DE TERRENO POR PISO: 1º= 24.80 m2 2º= 48.22 m2 ÁREA TOTAL CONSTRUIDA: 73.02 m2 ANTIGÜEDAD : 20 años			
NUMERO DE PISOS CONSTRUIDOS 2 pisos TOPOGRAFÍA Y GEOLOGÍA: El terreno tiene pendiente media y el suelo es arena gravoso			
ESTADO DE CONSERVACIÓN DE LA VIVIENDA: La vivienda se encuentra en etapa de construcción, realizando los acabados de revestimiento pero sin la pintura en el segundo piso			
: Contiene humedad en el primer piso			
DAÑOS EN LA VIVIENDA POR DESASTRES NATURALES: NO			

IL ASPECTOS TÉCNICOS					
a ELEMENTOS Y C	a ELEMENTOS Y CARACTERISTICAS DE LA VIVIENDA AUTOCONSTRUIDA				
Elementos	Características				
Cimientos	ASENTADOS SOBRE SUELOS DESIGUALES TENDIENDO A ASENTAMIENTOS DE ELM	MENTOS ESTRUCTURALES			
Muros	LADRILLO PANDERETA EN TABIQUERIA, Y LADRILLO MASCISO EN MUROS PORTANT	TES			
Techo	ALIGERADO DE 0.2 m EM EL 1º PISO TANTO EN EL 2º PISO				
columnas		DIMENSIÓN: 0.25x0.20, 0.15x0.2			
Vigas	DIMENSION: 0.2x 0.4				
b DEFICIENCIAS D					
	PROBLEMAS DE UBICACIÓN	PROBLEMAS CONSTRUCTIVOS			
	POR LA ZONA SE ENCUENTRA EN PENDIENTE LA VIVIENDA	EXISTENCIA DE CANGREJERAS, JUNTAS SISMICAS DE 3 CM.			
	PROBLEMAS ESTRUCTURALES	EXISTENDIA DE CANGRESETAS, SONTIAS SISTINGAS DE S'ON,			
PRESENTA HUN	IEDAD EN LOS MUROS, ASENTADOS SOBRE SUELOS DESIGUALES TENDIENDO A	MANO DE OBRA			
	ASENTAMIENTOS DE ELEMENTOS ESTRUCTURALES				
		OTROS			

Fuente: Laucata, 2013

Análisis sísmico

El análisis sísmico se realiza en la Hoja de Cálculo Exel 2010 primero hallando la densidad de muros y luego la estabilidad de muros al volteo.

Densidad mínima de muros reforzados

En toda vivienda de albañilería confinada deberá cumplirse que los muros portantes tanto en el eje X como en el eje Y deberán ser:

$$\frac{Area de corte de los muros}{area de planta} \geq \frac{ZUSN}{56}$$

Densidad de muros

Donde:

Tabla 8:Definición de los factores de la densidad de muros

V = Fuerza cortante actuante originada por sismo severo (KN)
VR = Fuerza cortante resistente de muros en un nivel (KN)
Ar = Area requerida de muros (m2)
Ae = Área existente de muros confinados (m^2)
V = Fuerza cortante actuante originada por sismo severo (KN)

Fuente: RNE 2016

La fuerza cortante basal (fuerza cortante originada por sismo severo) "V "se expresa según (NTE-0.30, 2016), como:

$$V = \frac{Z.U.C.S}{R} *P$$
 (1.2)

Tabla 9:Definición de los parámetros de la fuerza cortante basal

Z = Factor de la zona
U = Factor de uso para viviendas
S = Factor de suelo
C = Factor de amplificación sísmica
R = Factor de reducción

Fuente: RNE 2016

RNE 030 (2016), "el factor de zona es según la estructura (vivienda) esté ubicada en diferentes zonas donde tendrá un Z distinto, que dependerá de la aceleración sísmica (es la que mide directamente las aceleraciones que impactan en la parte superficial del suelo) con una probabilidad de 10% de ser excedida en 50 años."

Tabla 10. Factor de zona

ZONA	Z
4	0.45

Fuente: RNE – 0.30, 2016

RNE 030 (2016), el factor de uso para vivienda (U) se determina según el tipo de edificaciones como se muestra en la tabla:

Tabla 11. Categoría de las edificaciones

Categoría	Descripción	Factor U
C Edificacione Comunes	Edificaciones comunes tales como: viviendas, oficinas, hoteles, restaurantes, depósitos e instalaciones industriales cuya falla no se acarree peligros adicionales de incendios o fugas de contaminantes.	1.0

Fuente: RNE -E. 030, 2016

Utilizando el factor del suelo y el factor de la zona podremos definir el T_p y T_L

Tabla 12: Parámetros de sitio

T _p :	Es la plataforma del factor "C"
T _L :	Es el inicio de la zona del factor "C" con desplazamiento constante.

Fuente: RNE – E.030, 2016

Tabla 13. Factor de Suelo (S)

	S_0	S_1	S_2	S_3	
Z_4	0.80	1.00	1.05	1.10	

Fuente: RNE – E.030, 2016

Se considera \mathbb{Z}_4 para zona de la costa de acuerdo a esta investigación.

Tabla 14. Periodo Tp y Tl

	Perfil de suelo							
	S_0 S_1 S_2 S_3							
T _p	0.3	0.4	0.6	1.0				
$T_{\rm L}$	3.0	2.5	2.0	1.6				

Fuente: RNE – E.030, 2016

Donde los tipos de perfiles de suelos son:

Tabla 15: Tipos de perfiles de suelos

S_0 :	Roca dura
S_1 :	Roca o suelos rígidos
S_2 :	Suelos intermedios
S_3 :	Suelos blandos
S_4 :	Condiciones excepcionales

Fuente: RNE – E.030, 2016

C= factor de ampliación de la aceleración estructural acerca de la aceleración del suelo

Se hallará según las características de cada lugar.

Tabla 16: Condiciones para determinar el factor de amplificación (C)

$$T < T_{p}; C = 2.5$$

$$T_{p} < T < T_{L}, C = 2.5 \left(\frac{T_{p}}{T}\right)$$

$$T > T_{L}; C = 2.5 \left(\frac{T_{p,T_{L}}}{T^{2}}\right); \text{ siendo "T" el periodo}$$

$$(1.3)$$

Fuente: NTE -E. 030, 2016

Se tomará el valor de C = 2.5

Coeficiente de reducción de las fuerzas sísmicas, R

Tabla 17. Sistema estructural (R_0)

Sistema Estructural	Coeficiente Básico de Reducción R ₀
Albañilería Confinada	3

Fuente: NTE -E. 030, 2016

Con la siquiente formula se hallará el peso de la vivienda

$$P = Att*V (1.6)$$

Tabla 18: Definición de los variables del peso de la vivienda

$V = Peso \ KN/m^2$	
Att = Suma de las áreas techadas (m²) en todos los pisos de la v	vivienda.

Fuente: Julio Arango; Análisis, diseño y construcción en albañilería, 2002

Para la fuerza cortante resistente será:

$$VR = 0.5(v'm.\alpha.t. I) + 0.23P_g$$
 (1.7)

Tabla 19: Valores de la fuerza cortante resistente

 α = Factor de reducción por esbeltez, varía entre $1/3 \le \alpha \le 1$

t = Espesor (m) del muro de análisis

I = Longitud (m) del muro en análisis

 $\mathbf{P_g}$ = Carga gravitacional (KN) de servicio con sobrecarga reducida.

V'm = Resistencia a la compresión diagonal en los muretes de albañilería. Para ladrillo que son fabricados artesanalmente. Según (NTE - 0.70, 2006 pág. 39). "Esto es 510 KPa."

Fuente: San Bartolomé, comportamiento sísmico y diseño estructural

Valverde Cielo (2017), "Según el autor la condición más conveniente para que las viviendas autoconstruidas no puedan colapsar, se determina cuando la fuerza sísmica o fuerza actuante sea equivalente a la fuerza resistente en los muros de la estructura."

Según la ecuación 1.1 sería lo siguiente:

$$\frac{V}{A_r} = \frac{\sum VR}{A_e} \tag{1.8}$$

Para hallar el VR simplificaremos la ecuación (1.7), asumiendo $\alpha = 1$ y $0.23P_g = 0$, dando como resultado:

$$VR = (0.5). \text{ v'm. } \alpha.\text{t.I}$$
 (1.9)

Si $A_e = \text{t.I}$ entonces:

Despejando el término Ar de la ecuación (1.8) y reemplazando las ecuaciones (1.2), (1.6) y (1.9) se obtiene:

$$Ar = \frac{z.s.A_{tt}.Y}{300}$$
 (1.10)

La relación $\frac{A_e}{A_r}$ será en base a los parámetros:

Tabla 20: determinación del tipo de densidad en el muro

Si $A_e/A_r \le 0.8$ entonces, se determina que la vivienda no presenta una adecuada densidad de muros.

Si $A_e/A_r \le 0.8$ entonces, se determina que la vivienda no presenta una adecuada densidad de muros.

Fuente: Valverde Cielo (2017)

Análisis de estabilidad de muros al volteo

(Valverde Oswaldo, 2017), los muros de tabiquería no tienen la función de soportar el peso de la estructura solo para dividir los ambientes, se analiza el Momento resistente (Mr) y el momento actuante (Ma) en función al sismo, siendo paralelos al plano de los muros.

Procedemos a calcular el Ma. Hallando la carga sísmica V.

$$V = Z. U. \boldsymbol{C_1}. P$$

Donde:

Tabla 21:Parámetros de la carga sísmica

 $V = \text{carga sísmica que actúa durante un sismo } (KN/m^2)$

Z = factor de zona

U = Factor de uso

 C_1 = Coeficiente sísmico

 $P = Peso del muro por unidad de área del plano del muro (KN/<math>m^2$)

Fuente: Valverde Cielo (2017)

El peso se determinará:

$$P = Y_m.t$$

Tabla 22: Peso específico según el tipo de muro de tabiquería y espesor del muro

 V_m = peso específico del muro

Para muro de ladrillo macizo m_V = 18 KN/ m^3 Para muro de ladrillo pandereta m_V = 14 KN/ m^3 t = Espesor del muro (m).

Fuente: NTE –E. 030, 2016

Los valores de C_1 según (RNE- 0.30, 2018) son:

Tabla 23: Valores del coeficiente sísmico (C_1)

VALORES DE C_1	
-Elementos que al fallar pueden precipitarse fuera de la edificación y cuya falla entrañe peligro para persona u otras estructuras.	3,0
-Muros y tabiques dentro de una edificación	2,0
-Tanques sobre la azotea, casa de máquinas, pérgola, parapetos en la azotea.	3,0
-Equipos rígidos conectados rígidamente al piso.	1,5

Fuente: RNE E.030-2018

Para Valverde Oswaldo (2017), El momento perpendicular al plano del muro se expresa de la siguiente manera:

$$M_a = \text{m.V. } a^2$$

Se define:

Tabla 24: Conceptos de las variables del momento actuante

Ma = Momento actuante (KN-m/ml)
m = coeficiente de momentos
a = Dimensión critica (m)
V = Carga sísmica perpendicular.

Fuente: RNE E.030-2018

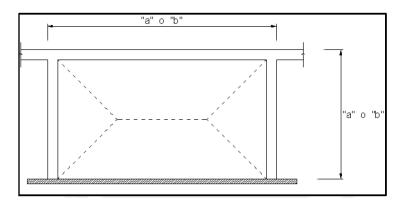

Los valores que se debe de tomar para los coeficientes de momentos "m "para cada valor de "b/a" son respectivamente de acuerdo con la tabla.

Tabla 25: Valores del coeficiente de momentos "m" y dimensión crítica "a", muros con 4 bordes arriostrados

Caso 1. MURO CON CUATRO BORDES ARRIOSTRADOS							
a = Menor d	imensión	l					
b/a =1,0	1,2	1,4	1,6	1,8	2,0	3,0	α
m = 0.0479	0.0627	0.0755	0.0862	0.0948	0.1017	0.118	0.125

Fuente: NTE -E. 030, 2016

Figura 10: Muro con 4 bordes arriostrados

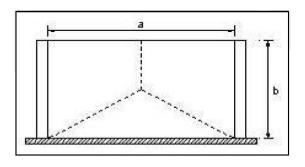

Fuente: Mosqueira y Tarque, 2005

Tabla 26: Valores del coeficiente de momentos "m" y dimensión crítica "a", muros con tres bordes

Caso 2. MU	Caso 2. MURO CON TRES BORDES ARRIOSTRADOS								
a = Longitud	d del boro	de libre							
b/a =0.5	0.6	0.7	0.8	9.0	1,0	1,5	2.0	α	
m = 0.0479	0.0627	0.0755	0.0862	0.0948	0.1017	0.118	0.132	0.133	0.125

Fuente: NTE -E. 030, 2016

Figura 11: Muro con 3 bordes arriostrados

Fuente: Mosqueira y Tarque, 2005

Tabla 27: Valores para muros solo en sus bordes y en voladizo

Caso 3. MURO ARRIOSTRADO SOLO EN SUS BORDES HORIZONTALES

a = Altura del muro

m = 0.125

Caso 4. MURO EN VOLADIZO

a = altura del muro

m = 0.5

Fuente: NTE –E. 030, 2016

Reemplazando la ecuación (1.13) nos da como resultado:

$$\mathbf{M_a} = \text{Z.U.C.P.m. } \mathbf{a^2}$$

Ma se expresa en KN-m/m.

El esfuerzo máximo de un elemento sometido a flexión se expresa:

$$\sigma_{\max} = \frac{Mr.c}{I}$$

Definiendo cada factor tendremos:

Tabla 28: Definición de los factores del esfuerzo por flexión

 $\sigma_{\text{max}} = \text{Esfuerzo por flexión } (KN/m^2)$

Mr = Momento resistente a tracción por flexión (KN/m).

c = distancia del eje neutro a la fibra extrema (m).

I = Momento de inercia de superficie (m⁴) de la sección, paralela al eje del momento.

Fuente: Mosqueira y Tarque, 2005

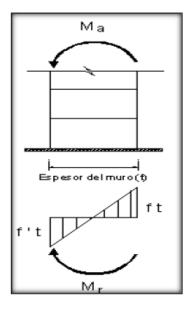
El momento resistente por flexión se tiene la siguiente formula:

$$\mathbf{M_r} = \frac{\mathbf{f_r.c}}{\mathbf{I}}$$

Por consiguiente:

Tabla 29:Definición de los factores del momento resistente a tracción por flexión

 f_r = esfuerzo de tracción por flexión de la albañilería = $150KN/m^2$, (NTE – 070, 2016)


I = Momento de inercia (m⁴) de la sección del muro

c = Distancia (m) del eje neutro a la fibra extrema de la sección

Fuente: Mosqueira y Tarque, 2005

Reemplazando el valor de f_r y hallando el momento de inercia de superficie para un metro de longitud de muro, se obtiene el momento resistente por metro de longitud de muro.

Figura 12: Momento resistente (Mr). En un muro de albañilería

Fuente: Mosqueira y Tarque, 2005

$$M_r = 150(\frac{t^3}{12}) (\frac{1}{\frac{t}{2}})$$

$$M_r = 25t^2 \qquad (KN - m/m)$$

Al finalizar, al comparar los valores de las ecuaciones (1.14) y (1.17)

Resultan las siguientes relaciones:

- Si Ma > Mr, entonces el muro resulta inestable, puesto que el momento actuante es mayor al momento resistente, por ende, fallara por volteo ante un sismo de 0.45g.
- Si Ma ≤ Mr, entonces el muro resulta estable, puesto que el momento actuante es menor al momento resistente.

Figura 13: Ficha de reporte

III. ANÁLISIS	S POR SISMO														
FACTORES Y	PARAMETROS SISMICOS														
Z= 0.45	U=1 C=2.5	R=3	S=1.2												
Resistencia	característica a corte (kP	a): v´m=510													
VR= Resiste	ncia al corte (Kn)= Ae (0.	5V`M +0.23 pg	g)												
Área	Cortante basal					Área de	MATINOC		Don	sidad	Doc	istencia	Vrn	Resultad	
techada	CUI	talite nasai				Aled ue	IIIuI US		Deli	Siudu	nesi	Stelltid	VIII	Nesuitau	J
Piso 1	Peso acum. (KN/m)		VEI = ZU	SCP/R	existen	te (Ae)	Requeri	da (Ar)	Ae/ Ar	Ae/Area		∑VR			
m2													KN		
	ANALISIS EN EL SENTIDO "	χ"													
24.8	8		262.	87	1.5	52	1.0)5	1.45	0.06		-	-	ADECUADO)
24.0	ANALISIS EN EL SENTIDO "	Υ"													
	8		262.	87	1.2	28	1.0)5	1.22	0.05		-	-	ADECUADO)
					ESTA	BILIDAD	DE MU	ROS AL	VOLTEO						
				FACTO)RFS					MOM	ΔCT	MOM. I	REST	Resultad	0
				TACIC	MEJ									nesuitau	0
MURO	C1	m			р		a		t	0.45C1		25 t		Ma:Mr	
	ADIMENSIONAL	ADIMENS	SIONAL	KN	I/M2	r	n		m	Kn-n	n/m	KN-m	/M		
M1	0.9	0.12	_		82		75	().13	0.2		0.42		ESTABLE	
M2	0.9	0.12	.5	1	82	2.	16	().13	0.4	3	0.42	2	INESTABLE	
M3	0.9	0.12	!5	1	82	0	.8	().13	0.0	0.06		2	ESTABLE	
	-	-			-		•		-	-		-		-	
	-	-			-		•		-	-		-		-	
			FACTORES PROPERTY NAMED IN COLUMN TO A COL	INFLUY	<u>'ENTES EN</u>				<u>unción (vu</u>	<u>Inerabilida</u>	d; Peligro				
						VU	<u>LNERAB</u>	LIDAD							
			Estru	<u>uctural</u>								No estri			
	Densidad (<mark>ano de o</mark>	bra		·		<mark>abiquería y</mark>	parapeto)S	
	Adecuada			X	Buena calidad			Todos es							
	Aceptable								Algunos					X	
	Inadecuad	a			Mala cal							_			
							PELIGR						.,		
	Sismic						Sı	<u>ielo</u>				Topogra	<mark>afía y pen</mark>	diente	
	Z = 4, COSTA DEL	. PERU ES ALT.	A		D / 11						D.I.				
<u>Baja</u>					Rígido	1.					Plana				
Media				-1 11 1	Intermedio X			X Media X							
Alta			Х		Flexibles						Pronunc	ciada			
1					1				· / · · · · · · · · · · · · · · · · · · ·		1 1				
	C	<u>ALIFICACIÓN</u>						CALIFICAC	ION				RESULT	ADO .	
	VULNERABILIE	DAD	BAJ	Α			PELIGRO		ME	DIA		RIESGO S	ÍSMICO	MEDIA	
]]				
DIACNOS	TICO														
DIAGNOS	de muros tanto en el eje X	-Yv al aia V V	ac adaquada	avicta m	uroc cin confi	naranala	agundo nico	nortanto l	a actabilidad	da muras					
			~~~~~				~~~~~~~~~								
	nuros son estables, estand						ra en un tipo	ae sueio c	ie SW arena c	on grava					
a vivienda p	resenta un nivel de riesgo	sismico medio	, se recomiei	iua contir	iar ios muros										

Fuente: Ficha de reporte-fuente-Laucata, 2013

# 2.6 Aspectos éticos

Se tomará en cuenta el derecho de autor, respetando las inclinaciones políticas, religiosas y morales, el medio ambiente y la biodiversidad tanto como la responsabilidad social, política, jurídica y ética; así como la privacidad, valores morales, etc.

#### III. RESULTADOS

# 3.1. Descripción de la zona de estudio

## Situación geográfica y entorno

El AA. HH. Villa Mercedes se ubica en el distrito de Chaclacayo, provincia de Lima departamento de Lima. Según el Plan de desarrollo local concertado Chaclacayo, (2017-2021)." El distrito de Chaclacayo se ubica en un territorio donde los factores naturales, rio Rímac y la cordillera de los Andes, determinan la expansión urbana que se genera en el distrito.

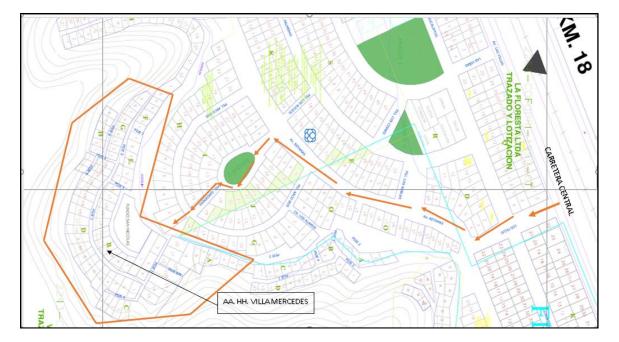



Figura 14: Plano de ubicación del AA. HH. Villa mercedes

Fuente: Plano catastral de Chaclacayo

3.2. Recopilación de información

3.2.1. Trabajo en campo

Llegue a participar en las asambleas organizadas por los dirigentes del lugar donde se

propuso la evaluación del riesgo sísmico y propuesta de reforzamiento de sus viviendas de

los pobladores interesados, donde se accederá a estas para la recolectar información del

estado estructural, a través de fichas de verificación.

3.2.1.1. Aspectos generales

Se realizó la recolección de los datos de las viviendas con las fichas de verificación, para

poder hallar los resultados de cada parámetro del método aplicado realizando cálculos,

definiendo conceptos básicos basándose en el reglamento nacional de edificaciones, para

poder determinar el riesgo sísmico.

3.2.1.2. Deficiencias en las viviendas

Se encontró salitre en los muros portantes, no tienen juntas sísmicas, tabiques no

arriostrados, columnas cortas, muros portantes con ladrillo pandereta

Determinación de la sismicidad

Según datos registrados de los sismos ocurridos en Lima ver figura 2 muestra la

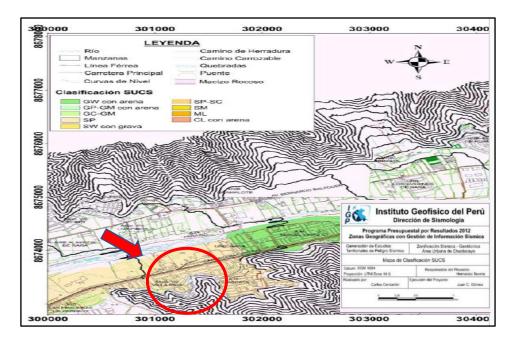
ocurrencia de movimientos telúricos en la capital, según el RNE toda la zona costa del

Perú es asignado con (Z=0.45).

Según (Mosqueira Miguel et. al. 2005). "Determinaremos el valor del parámetro con la

tabla":

Tabla 30: Valores asignados al parámetro de Sismicidad


Sismicidad (40%)				
Baja	1			
Media	2			
Alta	3			

Fuente: Mosqueira Miguel, 2005

39

# 3.2.2. Determinación del tipo de suelo

Figura 15: Mapa de clasificación de suelos SUCS, para el área urbana de Chaclacayo



Fuente: Instituto Geofísico del Perú (IGP)

El IGP (Instituto Geofísico del Perú) realizó un estudio "Zonificación Sísmica-Geotécnica del Área Urbana de Chaclacayo" (Comportamiento Dinámico del suelo) donde determinaron el tipo de suelo, llegando a la conclusión del estudio que el tipo del suelo es de tipo S1(para las laderas bajas) y S2. Con el objetivo de realizar el Mapa de Zonificación Sísmico-Geotécnica".

Figura 16: Columna Litoestratigráfica para el área urbana de Chaclacayo

CRONOESTRATIGRAFÍA				LITOEST	RATIGRAFÍA
ERATEMA	SISTEMA	SERIE	UNIDAD ESTRATIGRÁFICA	LITOLOGÍA	ROCAS INTRUSIVAS
CENOZOICO	CUATERNARIO	RECIENTE	Dep. aluviales		
CENO	COATERNARIO	PLEHISTOCENO	Dep. aluviales		SUPER TIPO DE ROCA
AESOZOICO	CRETACEO	SUPERIOR	Volc. Quilmaná		Santa Tonalita-Granodiorita Rosa Tonalita-Diorita
MESC			Gpo.Casma		Patap { Gabro-Diorita

Fuente: IGP (Zonificación Sísmica-Geotécnica del Área Urbana de Chaclacayo)

# $S_1$ : Roca o suelos rígidos

#### $S_2$ : Suelos intermedios

Figura 17: Ubicación de las calicatas realizadas en el AA. HH. Villa Mercedes



Fuente: Elaboración propia

Se realizó 3 calicatas (C1, C2, C3) como se observa en la figura 17 donde se extrajo una muestra de cada calicata, para analizarlo en el laboratorio de la universidad nacional de ingeniería UNI. En la tabla 16 se muestra, que el C1 y C3 muestra 1 y muestra 3 respectivamente se realizó el análisis granulométrico por tamizado – ASTM D422 y, en la C2 muestra 2 se realizó el ensayo por corte para determinar la capacidad portante del suelo ya que es el tipo de suelo donde están asentadas los cimientos de todas las viviendas analizadas y que será necesario para el modelamiento con el software en la presente tesis, llegando a obtener los resultados siguientes:

Tabla 31 :Ensayo granulométrico y clasificación de suelo

N°	N°	Profundidad	Grava	Arena	Finos	Clasificación
Calicata	Muestra	metros	%	%	%	SUCS
C1	1	3.00	34.3	39.4	26.4	-
C2	2	3.00	18.2	62.7	19.1	SM-Arena Limosa con Grava
C3	3	1.50	35.3	53.5	11.2	-

Fuente : Elaboración propia

# Hallando la capacidad de carga admisible ( $q_{adm}$ )

Luego de obtener el resultado del ensayo por corte directo se obtuvo los valores de:

Ø= 33.8° (Angulo de fricción)

 $\gamma = 1.666 \text{ gr/}cm^3$  (Peso volumétrico)

C' = 0 (Cohesión)

Con el método de Terzaghi se calculará la  $q_{adm}$ , para cimentaciones cuadradas:

$$q_u = 1.3 \ CN_c + qN_q + 0.4 \ \gamma BN_{\gamma}$$

$$q_{adm} = \frac{q_u}{FS}$$

Tabla 32: Definición de la formula del método de Terzaghi

 $q = \gamma * Df$  (esfuerzo efectivo al nivel del fondo de la cimentación)

B = 1 m (ancho de la cimentación)

Df = 1 m (Profundidad desplante de la cimentación)

FS = 3 (Factor de seguridad) Según el RNE E-050 de suelos y cimentaciones, el factor de seguridad de mínimo para el análisis por cargas estáticas es FS = 3

 $q_{adm} =$ (Capacidad de carga admisible)

Fuente : Karl Terzaghi

Factores de capacidad de carga

 $N_c = 41.46$ 

 $N_a = 28.77$ 

 $N_{\nu} = 39.89$ 

Luego de reemplazar los datos en la fórmula para hallar el  $q_u$ ( carga ultima) se divide por el FS (factor de seguridad), obteniendo como resultado el  $q_{adm}$  (capacidad admisible)

$$q_u = 3720 \text{ T/}m^2 = 3.720 \text{ Kg/}cm^2$$
  $q_{adm} = \frac{3.72}{3} = 1.24 \text{ Kg/}cm^2$ 

Tabla 33 capacidad de  $q_{adm}$ :

Método Terzagui	1.24 kg/cm ²
$q_{adm}$	1.24kg/cm ²

Fuente: Elaboración propia

En el lugar del AA. HH. Villa Mercedes existe un suelo Arena Limoso con grava que viene a ser el relleno que los pobladores colocaron para poder nivelar y fijar las cimentaciones de las viviendas.






Figura 18: Viviendas sobre relleno formando sus calles principales con el sostén del muro de contención

#### 3.2.3. Estado actual de las viviendas

# PROBLEMAS EN LA ESTRUCTURACIÓN

# Utilización de ladrillo pandereta en muros portantes

Los muros portantes contienen ladrillos tubulares (pandereta) que se caracterizan por tener baja la capacidad portante, llegando a destrozarse a si estén confinados.





Figura 19: Muros portante con ladrillos pandereta

# Fachadas no confinadas a partir del segundo piso

Esto ocurre cuando el propietario quiere ganar espacio en el segundo nivel de su vivienda, sacando un alero hasta 0.90 m, entonces la fachada queda sin confinarlo incluso dejando demasiadas dimensiones para las ventanas.





Figura 20: Muros sin confinamiento

# Inexistencia de confinamiento entre muro y techo

La albañilería confinada consiste que los elementos estructurales estén en sus 4 lados tanto verticales como horizontales, en el techo (calaminas) en estos casos no están confinado con

los muros, exponiéndose a vaciamientos laterales de los muros frente a un sismo de gran intensidad.

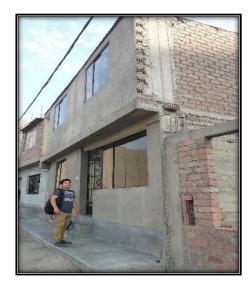





Figura 21: Muro sin vigas en el segundo piso

# Falta de arriostre entre el muro y la columna

Es cuando se construye primero los muros para luego de un tiempo determinado (hasta años) encofrar y llenar las columnas quedando expuestos los muros al volteo lateral, a su vez el muro no tiene dentados.



Figura 22: Muros sin arriostramientos

# DAÑOS POR FACTORES DETERIORANTES

# Afloramiento de salitre por la humedad

Es un daño común que se encuentra en casi todas las viviendas al no utilizar materiales adecuados para el afloramiento de sales o por la humedad que contenga las paredes, teniendo como resultado:





Figura 23: Muro con acabados que contienen salitre

El estado actual de materiales se determinó luego de inspeccionar las viviendas y tomar datos en las fichas de verificación.

Tabla 34: Resumen de los problemas en las viviendas en el AA.HH. Villa Mercedes

Problemas en la estructuración	Viviendas	%
Sin junta sísmica	5	26%
Tabiques no arriostrados	15	78%
Muros portantes con ladrillo pandereta	8	42%
Problemas por factores deteriorantes	Viviendas	%
Armaduras expuestas	16	84%
Armaduras corroídas	10	52%
Eflorescencia y salitre	19	100%
Humedad en muros	7	36%
Muros agrietados	9	47%

Fuente: Propia

#### 3.2.4. Determinación de la pendiente

En el distrito de Chaclacayo el lugar de investigación que se lleva acabo, en el AA. HH. Villa Mercedes se encuentra ubicado en la falda del cerro del sector 1 del distrito. Según el estudio realizado por IGP en el estudio de "Zonificación Sísmica-geotecnia del área urbana de Chaclacayo" basándose en datos de INGEMMET sobre las alturas que comprende entre 510 y 1408 m.s.n.m. para el área de Chaclacayo, se encontró cuatro unidades geomorfológicas teniendo relación con rangos de pendientes hallados en el modelo de elevación digital (MDE) que se muestra en la siguiente tabla:

Tabla 35: Rangos de pendientes identificados en el área urbana de Chaclacayo

Unidad Geomorfológica	Pendiente
Quebradas (Qb)	>20°
Terrazas (Te)	0° - 15°
Colinas (Co)	15° - 25°
Laderas de pendiente media (Lmp)	25° - 35°
Ladera empinada (Le)	>35°

Fuente: Instituto Geofísico del Perú (IGP)

Por la fuente del IGP, se demuestra que las viviendas ubicadas en el AA.HH. Villa Mercedes tienen ladera de pendiente media casi todas las viviendas evaluadas con excepción algunas con ladera empinada.

SECTOR 1- AA.HH.
VILLA MERCEDES

CHACLACAYO

Figura 24: Modelo de la topografía del AA. HH. Villa Mercedes

Fuente: Elaboración propia

En la figura 24 muestra una representación en 3D de la topografía del valle del cono este de Lima donde se encuentra el distrito de Chaclacayo y por ende el lugar de estudio de la presente tesis.

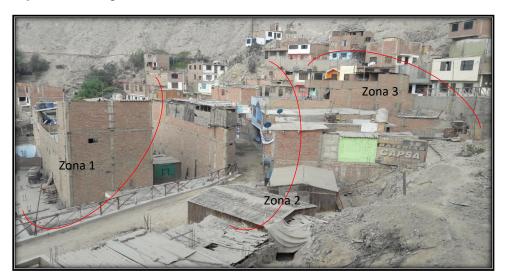



Figura 25: Imagen de la zona de las viviendas del AA. HH. Villa Mercedes

En la figura 25 se aprecia la topografía del AA. HH. Villa Mercedes, que se divide en tres zonas de que están relacionadas con diferentes alturas.

## 3.3. Procesado de la información recopilada

#### 3.3.1. Análisis de la vulnerabilidad sísmica en las viviendas

#### 3.3.1.1. Comprobación de la densidad de muros

Luego de hacer referencia de las fórmulas para los cálculos según el RNE de la norma E 030, en el ítem 1.3 de teorías relacionadas al tema y basándose en la fuente del articulo (Estimación del riesgo sísmico de viviendas informales de albañilería confinada) este método que se aplica en esta investigación de la presente tesis, se realiza los cálculos respectivos como ejemplo de la vivienda A- 4

Según el capítulo I, la ecuación 1.1

$$\frac{V}{A_r} = \frac{\sum VR}{A_e}$$

Obtenemos:

$$V = \frac{Z.U.C.S}{R} * P$$

$$Z = 0.45$$

U = 1

S = 1.2 (Según el tipo de suelo)

C = 2.50

R = 3.00

Si 
$$P = Att*V$$

 $V = 8 \text{ KN/m}^2 \text{ (Según Arango 2002)}$ 

Att = 73.02

$$V = \frac{Z.U.C.S}{R} *P = \frac{0.45*1.00*2.50*1.2*8*73.02}{3.00} = 262.87 \text{ KN}$$

Ar = 
$$\frac{z.s.A_{tt}.Y}{300}$$
 =  $\frac{0.45*1.20*2.50*1.2*8*73.02}{3.00}$  = 1.05 m²

Luego verificamos:

En la dirección X-X  $A_e = 1.52$ ,  $\frac{A_e}{A_r} = \frac{1.52}{1.05} = 1.45 \ge 1.1$  presenta una adecuada densidad de muros.

En la dirección Y-Y  $A_e = 1.28$ ,  $\frac{A_e}{A_r} = \frac{1.28}{1.05} = 1.22 \ge 1.1$  presenta una adecuada densidad de muros.

#### 3.3.1.2. Cálculo de estabilidad de muros al volteo

$$V = Z. U. C_1. P$$

$$P = \gamma_m * t$$

 $\gamma_m = 14 \ {\rm KN/m^3}$  (Por ser muro de ladrillo pandereta)

t = 0.13 m

C1 = 0.9 (Para tabiques)

m= 0.125 (El muro tiene arriostres en sus bordes horizontales)

a = 2.50 m

$$\mathbf{M_a} = \text{Z.U.C.P.m. } \mathbf{a^2}$$

Entonces  $\mathbf{M_a} = 0.45*1.00*0.9*14*0.13*0.125*2.50^2 = 1.85 \text{ KN} - \text{m/m}$ 

$$M_r = 25t^2$$
, en  $KN - m/m$  Entonces:  $M_r = 25t^2$ , en  $KN - m/m$ 

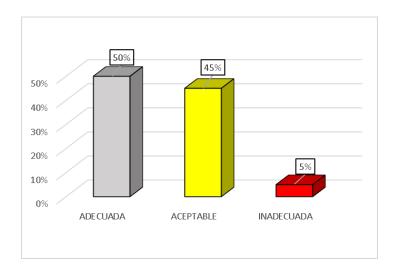
$$M_r = 25* t^2 = 25*0.13^2 = 0.56 \ KN - m/m$$

De los cálculos que tenemos se compara:

Ma > Mr es mayor, entonces el muro es inestable.

Realizados los cálculos correspondientes se muestra que el 74% de viviendas son de regular calidad de materiales y mano de obra, porque no se utilizó materiales de buena calidad y ser construido sin asesoramiento técnico.

# Resultado de la vulnerabilidad sísmica


A través de los parámetros establecidos se obtiene los resultados que se mostraran a continuación:

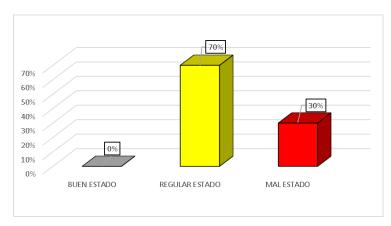
#### Densidad de muros

En la siguiente figura se muestra que, el 47% de las viviendas tiene densidad adecuada, el 47% presenta densidad aceptable y el 5% densidad inadecuada

Tabla 36: Densidad de muros

ADECUADA	50%
ACEPTABLE	45%
INADECUADA	5%




Fuente: Propia

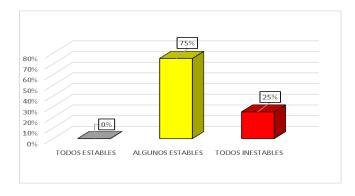
# Estado de actual de la vivienda

El resultado nos muestra que, un 0% de las viviendas son de buen estado, 60% de regular estado y 30% de mal estado.

Tabla 37: Estado actual de las viviendas

BUEN ESTADO	0%
REGULAR ESTADO	70%
MAL ESTADO	30%



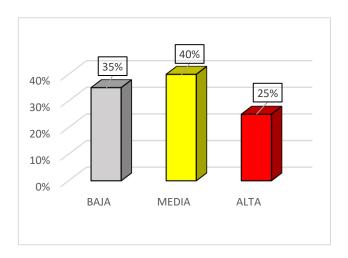

Fuente: Propia

#### Estabilidad de muros

Del grafico se obtiene que, un 0% de los muros de las viviendas son estables, 75% de los muros de las viviendas algunos son estables y el 25% de los muros de las viviendas son inestables.

Tabla 38: Estabilidad de muros

TODOS ESTABLES	0%
ALGUNOS ESTABLES	75%
TODOS INESTABLES	25%

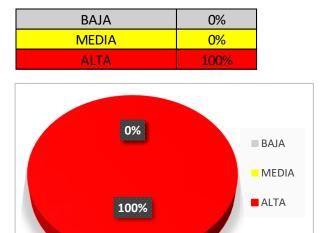



Fuente: Propia

Evaluando los parámetros para cada vivienda se obtiene como resultado que las viviendas tienen una vulnerabilidad media del 40 %, viviendas con vulnerabilidad alta con un 25% y viviendas con vulnerabilidad baja con un 35%.

Tabla 39: Vulnerabilidad sísmica

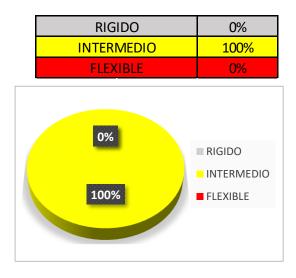
VULNERABILIDAD SÍSMICA				
BAJA	35%			
MEDIA	40%			
ALTA	25%			




Fuente: Propia

# Resultado del peligro sísmico

Se mostrará el peligro sísmico a través de los parámetros como sismicidad, tipo de suelo y pendiente y topografía de las viviendas que se **muestran** a continuación.


Tabla 40: Sismicidad

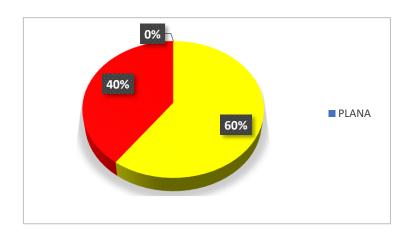


Fuente: Propia

De acuerdo al siguiente grafico se aprecia que todas las viviendas presentan una sismicidad alta, siendo un 100% debido a que se encuentra en la costa peruana.

Tabla 41:*Tipo de suelo* 




Fuente: Propia

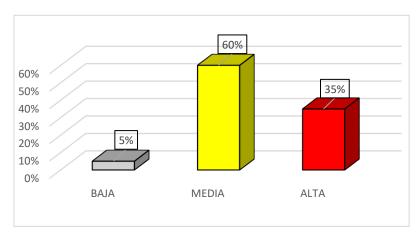
Se observa que el 100% de las viviendas se encuentra sobre un suelo intermedio.

Tabla 42:Pendiente y topografía

TOPOGRAFÍA Y PENDIENTE

PLANA	0%
MEDIA	60%
PRONUNCIADA	40%



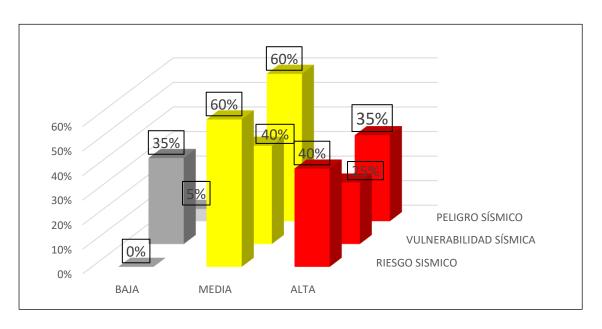

Fuente: Propia

Se puede apreciar que las viviendas presentan un 60% de pendiente pronunciada, 40% de pendiente media y 0% de pendiente plana.

Luego de analizar los parámetros del peligro sísmico se obtiene los resultados en el siguiente cuadro:

Tabla 43:Peligro sísmico

PELIGRO SÍSMICO					
BAJA	5%				
MEDIA	60%				
ALTA	35%				




Fuente: Elaboración propia

Luego de calcular la vulnerabilidad sísmica y el peligro sísmico se halla el riesgo sísmico, observándose que un 0% de las viviendas presentan riesgo sísmico baja, el 60% del riesgo sísmico de las viviendas es media y el 40% de las viviendas es alto.

Tabla 44:Resultado del riesgo sísmico

	RIESGO SÍSMICO	VULNERABILIDAD SİSMICA	PELIGRO SÍSMICO
BAJA	0%	35%	5%
MEDIA	60%	40%	60%
ALTA	40%	25%	35%



Fuente: Elaboración propia

Tabla 45:Cuadro de resultados del riesgo sísmico de las viviendas autoconstruidas de albañilería confinada en al AA. HH. Villa Mercedes, del distritito de Chaclacayo, Lima-2019

VIVIENDA N°	VULNERABILIDAD	DENSIDAD DE MUROS	ESTADO ACTUAL DE LAS VIVIENDAS	TABIQUERIA Y PARAPETOS	PELIGRO SÍSMICO	SISMICIDAD	SUELO	TOPOGRAFIA Y PENDIENTE	RIESGO SISMICO
VIVIENDA A-4	BAJA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	MEDIA ALTA		MEDIA	MEDIA
VIVIENDA F-5	ALTA	ACEPTABLE	MAL ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	ALTA
VIVIENDA F-1	MEDIA	ACEPTABLE	REGULAR ESTADO	TODOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	MEDIA
VIVIENDA H-1	MEDIA	ADECUADA	REGULAR ESTADO	TODOS INESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	MEDIA
VIVIENDA C-4	MEDIA	ACEPTABLE	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	MEDIA
VIVIENDA B-2	ALTA	INADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	ALTA
VIVIENDA C-2	MEDIA	ACEPTABLE	REGULAR ESTADO	TODOS INESTABLES	ALTA	ALTA	INTERMEDIO	PRONUNCIADA	ALTA
VIVIENDA A-14	BAJA	ACEPTABLE	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	MEDIA
VIVIENDA B-4	BAJA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	MEDIA
VIVIENDA D-18	BAJA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	PRONUNCIADA	MEDIA
VIVIENDA F-3	MEDIA	ACEPTABLE	REGULAR ESTADO	ALGUNOS ESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	MEDIA
VIVIENDA H-2	ALTA	ACEPTABLE	MAL ESTADO	TODOS INESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	ALTA
VIVIENDA A-16	BAJA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	ALTA	ALTA	INTERMEDIO	PRONUNCIADA	MEDIA
VIVIENDA B-12	MEDIA	ACEPTABLE	MAL ESTADO	TODOS INESTABLES	ALTA	ALTA	INTERMEDIO	MEDIA	ALTA
VIVIENDA D-9	ALTA	ACEPTABLE	MAL ESTADO	TODOS INESTABLES	MEDIA	ALTA	INTERMEDIO	MEDIA	ALTA
VIVIENDA G-9	BAJA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	ALTA	ALTA	INTERMEDIO	PRONUNCIADA	MEDIA
VIVIENDA H-5	MEDIA	ADECUADA	MAL ESTADO	ALGUNOS ESTABLES	ALTA	ALTA	INTERMEDIO	PRONUNCIADA	ALTA
VIVIENDA I-3	MEDIA	ADECUADA	MAL ESTADO	ALGUNOS ESTABLES	ALTA	ALTA	INTERMEDIO	PRONUNCIADA	ALTA
LOCAL COMUNA	ALTA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	BAJA	ALTA	INTERMEDIO	PRONUNCIADA	MEDIA
VIVIENDA B-19	BAJA	ADECUADA	REGULAR ESTADO	ALGUNOS ESTABLES	ALTA	ALTA	INTERMEDIO	PRONUNCIADA	MEDIA

Fuente : Elaboración propia

# 3.4 Ensayo de diamantina

Se realizó los ensayos en las viviendas para poder determinar la resistencia del concreto f´c y utilizarlo como dato en modelamiento. Para esto se tuvo que coordinar con los propietarios para el perforamiento. Se llevó acabo en las columnas centrales ya que cuentan con soporte de más cargas en las viviendas evaluadas.

#### Procedimiento:

#### Detección de los aceros

Se tiene que detectar los aceros en las columnas con el equipo GMS 120 Professionaldetector de metales. Para marcar tanto para sujeción del equipo perforador y la extracción del concreto en formas cilindricas con las medidas preestablecidas.

UNI-FIC UNII-FIC

Figura 26: detección del acero en las columnas

Luego se realiza la colocación del equipo perforador sujetándolo a la pared verticalmente y se realiza la perforación.

Figura 27: Colocación y sujeción en la columna del equipo perforador



# Resultado del ensayo

Se realizó el ensayo de diamantina en el laboratorio teniendo como resultado la resistencia a la compresión (f'c) del concreto de las columnas solicitadas (ver tabla 28)

Tabla 46: Resultados del ensayo de diamantinas realizados en las viviendas

Viviendas	Mues	tra 1	Mues	tra 2	Muestra 3		Muestra (F´c) Promedio	Concreto F´c 175 Kg/m2									
							1101110010	85 %	75%								
Vivienda F-3	C4-1	48.8	C4-2	62.7	C4-3	82.9	65	149	131								
Vivienda F-5	C5-1	54.1	C5-2	41.4	C5-3	88.6	61	149	131								
Vivienda C-2	C6-1	49.7	C6-2	41.9	C5-3	19.9	37	149	131								
El resto de las Viviendas	-		-		-		-		1		1		-		54	149	131

Fuente: Elaboración propia

Obteniendo los resultados del laboratorio se halló el promedio de las tres muestras de diamantinas por cada vivienda, F-3, F-5, C-2 que se denominó Muestra (F´c) Promedio teniendo como resultado 65, 61, 37 respectivamente. Para el resto de viviendas se usó 54 Kg/m2 de Muestra (F´c), al ser el promedio de 65, 61, 37.

#### 3.5 Análisis sísmico

#### Análisis estático

RNE E .030 (2016) nos afirma que la representación del método es de "las solicitaciones sísmicas mediante un conjunto de fuerzas actuando en el centro de masas de cada nivel de la edificación".

#### Peso sísmico de la edificación

Tabla 47: Pesos en cada nivel de la vivienda B-2

N° de niveles	P (tn)
Piso 2	18.37743
Piso 1	84.87357
Total	103.251

Fuente: Elaboración propia

#### Cálculo de la cortante en la base

$$V = \frac{Z.U.C.S}{R} * P$$

Los parámetros de la cortante en la base fueron detallados en el ítem 2.5.1 y se asumirá el valor  $I_a = 1$   $I_p = 1$  y luego se tomará nuevos valores según el análisis y se tendrá un nuevo espectro y se conseguirá un mejorado resultado.

$$V = \frac{Z.U.C.S}{R} *P$$

$$\frac{Z.U.C.S}{R} = 0.3938*103.251 = 40.66$$

#### Distribución de fuerzas en altura

Según el reglamento de edificaciones (RNE). "E .030 nos indica que las fuerzas sísmicas horizontales en cada nivel se hallaran con la siguiente formula:

$$F_i = \alpha_i * V; \quad \alpha_i = \frac{P_i (h_i)^k}{\sum_{j=1}^n P_j (h_j)^k}$$
; n= nivel del piso; K relacionado con el periodo

a) para T menor o igual a 0.5 segundos: K = 1,0

b) para T menor o igual a 0.5 segundos:  $K = (0.75 + 0.5T) \le 2,0$ 

	P(tn)	HI	$P_i(h_i)^k$	$P_i(h_i)^k$ acumulativo	α	$F_i$
Piso 1	18.3774	2.45	45.0247	45.0247	0.178	7.2374
Piso 2	84.8735	2.45	207.9400	252.9647	0.822	33.4225

#### Análisis dinámico

En el análisis dinámico se tendrá que tener el espectro de respuesta que está en función del periodo fundamental T = 0.037 y el  $S_a$ . Se considero el  $T_a = 0.90$  por tener discontinuidad en geometría vertical, en función al periodo fundamental C será igual: 2.5

$$S_a = \frac{Z.U.C.S}{R} * g$$

Aceleración espectral (g): 9.8 m/s ²



Figura 28: Espectro de diseño de la vivienda B-2

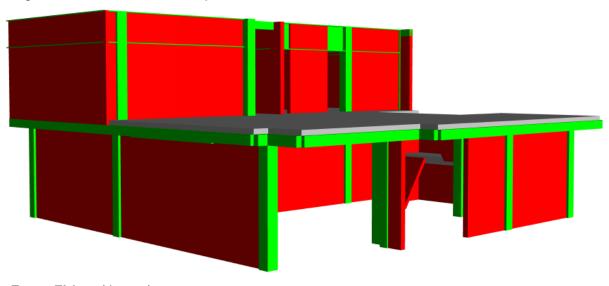



Figura 29: Modelado con el software Etabs 2016 2.1 de la vivienda B-2

Figura 30:Aceleración espectral de la vivienda B-2

C	T(s)	Sa/g	C	T(s)	Sa/g
2.5	0	0.4375	1.58	0.95	0.2763
2.5	0.02	0.4375	1.5	1	0.2625
2.5	0.04	0.4375	1.36	1.1	0.2386
2.5	0.06	0.4375	1.25	1.2	0.2188
2.5	0.08	0.4375	1.15	1.3	0.2019
2.5	0.1	0.4375	1.07	1.4	0.1875
2.5	0.12	0.4375	1	1.5	0.175
2.5	0.14	0.4375	0.94	1.6	0.1641
2.5	0.16	0.4375	0.88	1.7	0.1544
2.5	0.18	0.4375	0.83	1.8	0.1458
2.5	0.2	0.4375	0.79	1.9	0.1382
2.5	0.25	0.4375	0.75	2	0.1313
2.5	0.3	0.4375	0.62	2.2	0.1085
2.5	0.35	0.4375	0.52	2.4	0.0911
2.5	0.4	0.4375	0.44	2.6	0.0777
2.5	0.45	0.4375	0.38	2.8	0.067
2.5	0.5	0.4375	0.33	3	0.0583
2.5	0.55	0.4375	0.19	4	0.0328
2.5	0.6	0.4375	0.12	5	0.021
2.31	0.65	0.4038	0.08	6	0.0146
2.14	0.7	0.375	0.06	7	0.0107
2	0.75	0.35	0.05	8	0.0082
1.88	0.8	0.3281	0.04	9	0.0065
1.76	0.85	0.3088	0.03	10	0.0053
1.67	0.9	0.2917			

ETABS 2016 Ultimate 16.2.1 - vivienda B_2 O  $\times$ File Edit View Define Draw Select Assign Analyze Display Design Detailing Options Tools Help ▼ X | 3-D View Mode Shape (Modal) - Mode 3 - Period 0.024 3-D View Mode Shape (Modal) - Mode 1 - Period 0.037 Model Explorer Model Display Tables Reports Detailing ... Tables - Model - Analysis Besponse Spectrum Functions - Results - Modal Results 👔 3-D View Mode Shape (Modal) - Mode 2 - Period 0.032 **▼** × Modal Periods and Frequencies Modal Participating Mass Ratios Modal Load Participation Ratios Modal Participation Factors --- Modal Direction Factors ⊕ Structure Results ⊕ Shell Results Energy Virtual Work 🗓 - Design - Table Sets Modal Participating Mass Ratios **-** × de 12 | Neload Apply [4 4 1 UX UΖ Mode Period UY Sum UX Sum UY Sum UZ RΧ Modal 0.6381 0.1353 0 0.6381 0.1353 0 0.048 0.032 0.3104 0.4559 0 0.9486 0.5912 0 0.1724 Modal Modal 3 0.024 0.0206 0.3083 0 0.9692 0.8995 0.2038 Max = 0.092 at [0, 10.93, 4.9]; Min = -0.256 at [10.41, 10.33, 4.9] Start Animation << >> Global ∨ Units..

Figura 31: determinación del periodo fundamental

En primer lugar, se determinó el periodo fundamental T, teniendo como resultado T = 0.037

Luego se realizó el cálculo del "factor de amplificación sísmica" "C" donde se obtuvo según el tipo de suelo  $S_2$  y por ende el  $T_P=0.6$  y  $T_L=2.0$  es según el reglamento nacional de edificaciones.

$$T < T_p; \; C = 2.5; \; T_p < T < \; T_L \; , \; C = 2.5 \; (\frac{T_p}{T}); \; T > T_L \; ; \; C = 2.5 \; (\frac{T_{p.T_L}}{T^2});$$

Entonces el C = 2.5

#### Evaluación de la configuración estructural

Se realizó a la vivienda B-2, para la evaluación nos regiremos al RNE E. 030, que se considera la irregularidad estructural en altura  $(I_a)$  como la irregularidad en planta  $(I_p)$ .

#### Irregularidad Estructural en Altura ( $I_a$ )

Tabla 48: Irregularidad de piso blando e irregularidad extrema de rigidez

Direcció	Dirección en X-X							Δpermis (E.030) = <b>0.5</b> %			
Desplazamiento del centro de Derivas Deriva					Deriva		permis (E.030) = 0.5% Condiciones  Δ/ΔCM > 50%Δpermis.				
	masa	(C.M.)		C.M. UX	max.	500/5					
Story	Load	UX [m]	h [m]	(Δ/h)%	[%]	Δmax	/ACIVI	> 50%	permis.		
STORY2	CDX MAX	1.08	2.45	44.08%	0.003%	0.0001	Regular	1%	No Apli		
0	0	0.577	2.45	23.55%	0.004%	0.0002	Regular	1%	No Apli		

Direcci	Dirección en Y-Y							E.030) =	0.5%
					Deriva		Condi	ciones	
	masa	(C.M.)		C.M. UY	max.	Δmax/ΔCM > 50%Δpermi		normic	
Story	Load	UY [m]	h [m]	(∆/h)%	[%]	Διιιαλ	/ACIVI	> 30 /aL	iperiiis.
STORY2	CDY MA	0.735	2.5	29.400%	0.003%	0.0001	Regular	1%	No Apl
0	0	0.422	2.5	16.880%	0.005%	0.0003	Regular	1%	No Apl

Tabla 49:Irregularidad de masa o peso

					grave	dad (g) =	<b>9.81</b> r	n/s²
Story	Load	Loc	Pacum.	P.parc.	P.sism.	M.sism.	CONDIC	E.030
Story	Loau	LOC	[tonf]	[tonf]	[tonf]	[t-s²/m]	Pi/Pi+1:	> ±50%
STORY2	PESO	Тор	5.156	5.16				
STORY2	PESO	Bottom	7.256	2.10				
STORY1	PESO	Тор	17.013	9.76	11.12	1.13	1.00 F	Regular
STORY1	PESO	Bottom	17.635	0.62				

#### Irregularidad geométrica vertical

Se considera irregular si  $\frac{Drift\ i}{Drift\ i+1}$  si es mayor que 1.3 por tanto, no se considera irregular

Tabla 50:Irregularidad Geométrica Vertical

Piso	Drift Máximos	Drift / Drift + 1	Piso	Drift Máximos	Drift + 1 / Drift
Piso 2	0.02759	0	Piso 2	0.00003	0
Piso 1	0.00453	0.164	Piso 1	0.000039	1.3

Fuente: Elaboración propia

#### Discontinuidad en los elementos resistentes

Por no presentar desalineamiento vertical no presentan discontinuidad en los elementos resistentes

#### Irregularidades estructurales en planta $(I_p)$

Tabla 51: Irregularidad torsional y torsional extrema

Dirección	Dirección en X-X									
(C	D.C.M.)			Derivas	Deriva	Condiciones				
	•			C.M. UX	max.	Δmax/ΔCM				
Story	Load	UX [m]	h [m]	(Δ/h) %	[%]					
Piso 2	CDX MAX	1.08	2.45	44.08%	0.00%	0.0001 Regular				
Piso 1	CDX MAX	0.577	2.45	23.55%	0.00%	0.0002 Regular				

#### Dirección en Y-Y

Dirección en Y-Y								
Desplazamiento del centro de masa (C.M.)								
Story Load UX[m] h[m]				(Δ/h) %	[%]			
Piso 2	CDY MAX	0.735	2.45	29.40%	0.00%	0.0001 Regular		
Piso 1	CDY MAX	0.422	2.45	16.88%	0.00%	0.0002 Regular		

Fuente: Elaboración propia

#### Discontinuidad de diafragma

La vivienda no presenta este tipo de irregularidad por contar con áreas mínimas y por estar ubicadas en una topografía accidentada y pendiente de 25° y mayor de 35°.

Tabla 52: Irregularidad de masa o peso

					ç	gravedad (g) =	<b>9.81</b> m/s²
Story	Load	Loc	Pacum. [tonf]	P.parc. [tonf]	P.sism. [tonf]	M.sism. [t-s²/m]	CONDIC. E.030 Pi/Pi+1 > ±50%
Piso 2	PESO	Тор	5.156	0			
Piso 2	PESO	Bottom	7.256	0			
Piso 1	PESO	Тор	17.013	17.01	17.32	1.77	1 Regular
Piso 1	PESO	Bottom	17.635	0.62			

Fuente: Elaboración propia

#### Cálculo de los desplazamientos

Según el RNE nos muestra los desplazamientos laterales admisibles determinado por la tabla.

Tabla 53: Limites para la distorsión del entre piso

LIMITES PARA LA DISTORSIÓN DEL ENTREPISO							
Material predominante	$(\Delta_i / h_{ei})$						
Concreto Armado	0.007						
Acero	0.010						
Albañilería	0.005						
Madera	0.010						
Edificios de concreto armado	0.05						
con muros de ductilidad limitada							

Fuente: Reglamento nacional de edificaciones 2018

#### Desplazamiento estático en el eje X

Se presenta el desplazamiento en el eje X de la vivienda obtenido del resultado de la modulación.

Tabla 54: Desplazamiento estático en el eje X

Calculados para el caso de Sismo Estático Sísmico X								
N° Piso Altura <b>Drift eriva máxin Deriva lím</b>								
2° Piso	2.5	0.010821	0.0275936	0.005				
1° Piso	2.45	0.001779	0.0045365	0.005				
Base	-	-	-	-				

Fuente: elaboración propia

#### Desplazamiento estático en el eje Y

Se presenta el desplazamiento en el eje Y de la vivienda obtenido del resultado de la modulación.

Tabla 55:Desplazamiento estático en el eje Y

Calcula	Calculados para el caso de Sismo Estático Sísmico Y								
N° Piso	Altura	Drift	eriva máxin	Deriva límite					
2° Piso	2.5	0.006478	0.0165189	0.005					
1° Piso	2.45	0.00004	0.000102	0.005					
Base	-	-	-	-					

Fuente: elaboración propia

#### 3.6 Propuesta de reforzamiento

Las viviendas fueron evaluadas para tener como resultado el nivel de riesgo sísmico teniendo como resultado como muestra la tabla (ver tabla 26) de cada una de ellas para luego proponer un reforzamiento estructural a las viviendas que cuentan con vulnerabilidad media y alta.

En la propuesta de reforzamiento primero se realizará el modelamiento Dinámico modal espectral para todas las viviendas, con el programa Etabs 2016 versión 2.1 para determinar las irregularidades y desplazamiento de toda la estructura, basándose en el RNE de Irregularidades en Altura y en Planta y de los desplazamientos máximos permitidos.

#### Reforzamiento de la vivienda A-14

La vivienda presenta irregularidad extrema por rigidez luego de ser analizado las irregularidades, con el análisis modal espectral, se llegó a reforzar colocando una columna C-1 (0.28 x 0.28) en el muro de 0.23 m, ya que en la parte del segundo piso cuenta con muro de 0.13 m y tiene una longitud de 6.25 m.

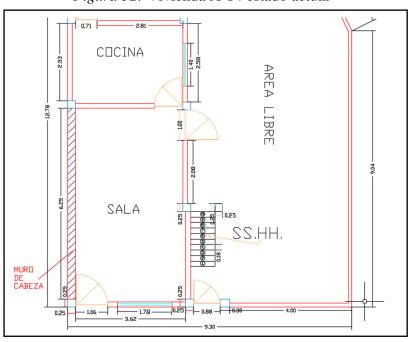



Figura 32: Vivienda A-14 estado actual

Fuente: Elaboración propia

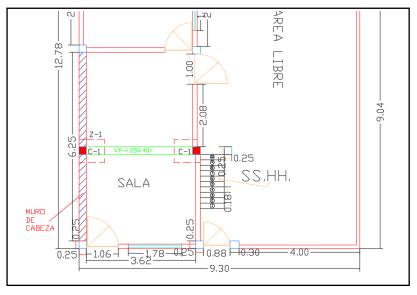
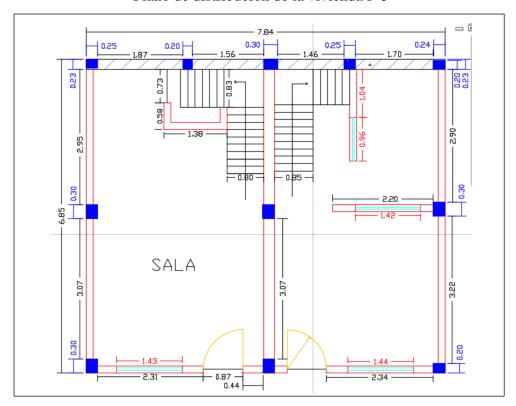



Figura 33: Propuesta de reforzamiento de la vivienda A-14

La propuesta de la columna es C-1 (0.28 x 0.28) es con aceros longitudinales de 4 Ø 5/8 y con estribos de Ø 3/8 y con una zapata Z-1 de 0.90x0.90, se utilizará concreto de f´c =  $210 \text{ kg/m}^2$  que se añadirá aditivo contra el salitre como se muestra en el esquema.

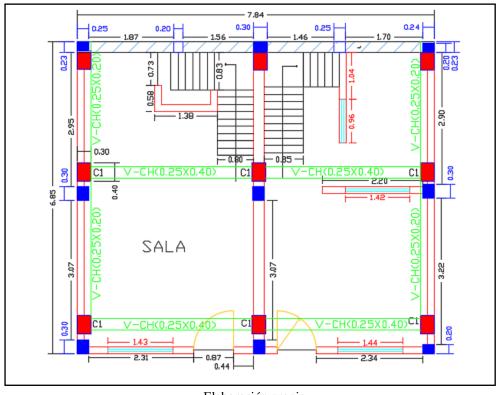
Figura 34: Propuesta de columna, zapata y viga

Fuente: Elaboración propia


#### Reforzamiento a la vivienda F-5

Después de evaluar la vivienda se pudo comprobar que presenta irregularidad de Peso o Masa, se realizó el pre - dimensionamiento para comprobar las dimensiones de las columnas, resultando mayor las dimensiones que las columnas existentes en la vivienda, se propuso en presentar el reforzamiento de la vivienda.

gravedad (g) = 9.81 m/s² CONDIC. E030 Pacum. P.parc. P. sism. M.sism. Loc. Load Story [tonf]  $[t-s^2/m]$  $Pi/Pi+1 > \pm 50\%$ [tonf] [tonf] Piso 2 PESO Top 79.079 79.08 113.52 11.57 Piso 2 PESO Bottom 147.97 68.89 149.79 1.82 Piso 1 **PESO** Top 61.36 6.25 1.85 Irregular PESO Bottom 199.98 50.19 Piso 1 174.89


Tabla 56: Irregularidad de masa o peso

#### Plano de distribución de la vivienda F-5



Fuente: Elaboración propia

Figura 35:Plano reforzando de la vivienda F-5



Elaboración propia

Se propone el reforzamiento con las columnas C1 y se las ubicará como muestra en plano, con el motivo de no demoler la columna existentes, La propuesta de la columna es C-1 (0.25 x 0.40) con aceros longitudinales de 4 Ø 5/8 y con estribos de Ø 3/8 y con una zapata Z-1 de 0.90 x 0.90, se utilizará concreto de f´c =  $210 \text{ kg/}m^2$  que se añadirá aditivo contra el salitre como se muestra en el esquema.

COLUMNA NUEVA

25

25

4 Ø 5/8"

2 Ø 1/2"

Df: 1.00m

Df: 1.00m

Df: 1.00m

Continue extremos)
ESC. 1.25

V-P (0.25 x 0.40)

Figura 36: Propuesta de columna, zapata y viga

Fuente: Elaboración propia

## 3.7 Resultados de las irregularidades y desplazamientos máximos permitidos de todas las viviendas

A cada una de las viviendas se realizó el modelado para las viviendas de dos pisos a más se aplicó el análisis dinámico modal espectral teniendo como resultados de las irregularidades en altura como en planta, y para las viviendas de un solo un piso se aplicó el análisis estático para determinar los desplazamientos máximos permitidos según el RNE.

A continuación, se presenta el resultado de las viviendas analizadas:

Tabla 57: Cálculos de las irregularidades y desplazamientos máximos permitidos de todas las viviendas

				ANÁL	ISIS DINÁMICO	DE LA S VIVIE	NDAS			
VIVIENDAS	MODOS DE VI PORCENTAJE PARTICIP	E DE MASA		GULARIDAD TO		BLANDO E IRE	DAD DE PISO REGULARIDAD DE RIGIDEZ	IRREGULARIDAD DE MASA O PESO	DESPLAZAI RELATIV ENTREPISO	O DE
	UX	UY	PISOS	EJE X	EJE Y	EJE X	EJE Y	VIVIENDAS	EJE X	EJE Y
			piso 2	Irregular Ext.	regular					
Vivivenda A-4	Cumple	Cumple	Piso 1	regular	regular	Irregular ext.	Irregular ext.	Irregular	No cumple	Cumple
X77::	C1-	NY1-	piso 2	regular	regular	D 1	D 1	December.	G1-	C1-
VIivienda A-14	Cumple	No cumple	Piso 1	regular	regular	Regular	Regular	Regular	Cumple	Cumple
Vivienda A-16	No cumple	Cumple	piso 2	regular	Irregular Ext.	Regular	Regular	Regular	Cumple	Cumple
vivienda A-10	140 cumple	Cumple	Piso 1	Irregular Ext.	Irregular Ext.	Regulai	Regulai	Regulai	Cumple	Cumple
Vivienda B-2	No cumple	No cumple	piso 2	regular	regular	Irregular ext.	Irregular ext.	Regular	Cumple	Cumple
vivienda B 2	- 110 cumpic	rio cumpie	Piso 1	regular	regular	meganar e.a.	meganar ear.		cumpie	Сапра
Vivienda B-4	Cumple	Cumple	piso 1	regular	regular	Regular	Regular	Regular	Cumple	Cumple
			piso 2	Irregular Ext.	regular					
Vivienda B-12	No cumple	No cumple	piso 2	Irregular Ext.	Irregular Ext.	Regular	Regular	Irregular	No cumple	No cumple
			Piso 1	Irregular Ext.	Irregular Ext.			30		
Vivienda B-19	Cumple	Cumple	piso 1	regular	regular	Regular	Regular	Irregular	Cumple	Cumple
			piso 2	regular	regular			30		
Vivienda C-2	No cumple	No cumple	piso 2	regular	Irregular Ext.	Irregular ext.	Regular	Irregular	No cumple	No cumple
	•		Piso 1	Irregular Ext.	Irregular Ext.				•	
Vivienda C-4	No cumple	No cumple	piso 2	regular	regular	Irregular ext.	Regular	Regular	No cumple	No cumple
			Piso 1	regular	regular		_			
Vivivenda D-9	No cumple	No cumple	piso 2	Irregular Ext.	Irregular Ext.	Regular	Regular	Irregular	No cumple	No cumple
			Piso 1	Irregular Ext.	Irregular Ext.					
Vivienda D-18	No cumple	No cumple	piso 2	regular	regular	Irregular ext.	Regular	Irregular	No cumple	No cumple
			Piso 1	regular	regular					
Vivienda F-5	Cumple	Cumple	piso 2 Piso 1	regular regular	regular regular	Regular	Regular	Irregular	No cumple	No cumple
			piso 2	Irregular Ext.	Irregular Ext.					
Vivienda F-1	No cumple	No cumple	Piso 1	regular	regular	Irregular Ext.	Regular	Regular	Cumple	Cumple
			Piso3	regular	regular					
Vivienda F-3	No cumple	No cumple	piso 2	regular	regular	Regular	Regular	Irregular	Cumple	Cumple
vivienda 1-3	140 cumple	Тосипри	Piso 1	regular	regular	Regulai	Regulai	niegulai	Сипріє	Ситріс
			piso 2	regular	regular					
Vivienda G-9	No cumple	No cumple	Piso 1	regular	regular	Regular	Regular	Regular	Cumple	Cumple
			piso 2	regular	regular					
Vivienda H-1	No cumple	No cumple	Piso 1	regular	regular	Regular	Regular	Irregular	Cumple	Cumple
			piso 2	Irregular Ext.	Irregular Ext.					
Vivienda H-2	No cumple	No cumple	Piso 1	Irregular Ext.	Irregular Ext.	Irregular Ext.	Regular	Irregular	Cumple	Cumple
			piso 2	Irregular Ext.	regular				~ .	
Vivienda H-5	Cumple	Cumple	Piso 1	regular	regular	Irregular ext.	Regular	Irregular	Cumple	Cumple
			piso 2	regular	regular		<b>.</b> .			
Vivienda I-3	Cumple	Cumple	Piso 1	Irregular Ext.	Irregular Ext.	Regular	Regular	Regular	Cumple	Cumple
			piso 2	regular	regular	Y	D 1	Y	G1	G
ocal comuna	Cumple	Cumple	Piso 1	Irregular Ext.	Irregular Ext.	Irregular Ext.	Regular	Irregular	Cumple	Cumple

Tabla 58: Cuadro de reforzamiento de todas las viviendas

		COLU	MNAS	ZAP	ATAS		VIGAS	
VIVIENDAS	IRREGULARIDADES	Cantidad	Dimensión	Cantidad	Dimensión	Cantidad	Dimensión	Longitud
		Und	m2	Und	m2	Und	m2	m
Vivivenda A-4	Masa o peso	4	30×25	4	0.9×0.90	1	0.25×0.40×	8.55
VIivienda A-14	Piso blando	1	30×30	1	1.0×1.0	1	0.25×0.40	3.62
Vivienda A-16	_	3	30×25	3	0.90×0.90	1	0.25×0.40	7.35
Vivienda B-2	Piso blando	2	0.25×0.25	2	0.90×0.90	1	0.25×0.25	3.83
Vivienda B-4	_	2	0.25×0.25	2	0.90×0.90	1	0.25×0.25	5.13
Vivienda B-12	Masa o peso	6	0.30×0.30	6	1.0×1.0	3	0.25×0.40	5.35
Vivienda B-19	-	1	0.25×0.25	1	0.90×0.90	_	_	_
Vivienda C-2	Masa o peso	3	0.30×0.25	2	0.90×0.90	1	0.25×0.40	6.56
Vivienda C-4	Piso blando	1	0.25×0.25	1	0.90×0.90	1	_	-
Vivivenda D-9	Masa o peso	9	0.30×0.30	9	1.0×1.0	1	_	1
Vivienda D-18	Masa o peso	6	0.30×0.30	6	1.0×1.0	2	0.25×0.40	8.00
Vivienda F-5	Masa o peso	6	0.30×0.25	6	1.0×1.0	2	0.25×0.40	7.84
Vivienda F-1	Piso blando	6	0.30×0.30	6	1.0×10	2	0.25×0.40	7.90
Vivienda F-3	Piso blando	2	0.30×030	2	1.0×1.0	1	0.25×0.40	8.07
Vivienda G-9	Masa o peso	2	0.30×0.30	2	1.0×1.0	1	0.25×0.40	7.5
Vivienda H-1	Masa o peso	8	0.15×0.40	8	1.0×1.0	2	0.40x.0.20	7.5
vivienda H-1	iviasa o peso		0.1370.40		1.001.0	4	0.40x.0.20	4.71
Vivienda H-2	Masa o peso	2	0.30x0.30	2	1.0×1.0			
		1	0.20x0.20	1	0.90×0.90	_	_	_
Vivienda H-5	<u> </u>	1	0.25×0.25	1	0.9×0.90		_	
Vivienda I-3	_	1	0.30×0.30	1	1.0×1.0	_	_	_
Local comunal	_	3	0.30×0.30	3	1.0×1.0	1	0.25×0.40	6.5

#### IV. DISCUSIÓN

La presente tesis se realizó con el fin de saber el "riesgo sísmico en las viviendas" ubicadas en el AA. HH. Villa Mercedes distrito de Chaclacayo, Lima.

#### Riesgo Sísmico

El estudio realizado por Sullcaray Paucar, 2018; Define como objetivo general determinar el nivel de riesgo de las viviendas autoconstruidas en la urbanización la Libertad en el distrito de Lurigancho Chosica, tiene como resultado de un 75% de un nivel de riesgo sísmico alto y un 25% de nivel de riesgo sísmico medio, afirma que las viviendas del lugar están propensas a sufrir deterioro ante un evento sísmico. En comparación con los resultados de esta tesis, se obtuvo un 60 % de un nivel de riesgo sísmico alto y un 40% de nivel de riesgo sísmico medio. Los datos obtenidos son casi próximos a la presente tesis que fue realizado con el mismo método, pero profundizando en los datos que se requiere en los parámetros, tanto en la vulnerabilidad sísmica y peligro sísmico realizando ensayos de suelos y ensayos para determinar f´c del concreto con extracción de diamantinas.

Tabla 59 :Niveles de riesgo sísmico según investigaciones realizadas

	Riesgo Sísmico (%)											
	Becerro Richard, 2015	Valverde Oswaldo, 2017	Paucar Irineo, 2018	Juarez Javier, 2019								
Alta	95%	68%	75%	40%								
Media	5%	32%	25%	60%								
Baja	0%	0%	0%	0%								

Fuente: Valverde Oswaldo

Comparando los resultados del riesgo sísmico con los otros autores en esta investigación predomina un nivel alto de 95% como también un 60% de nivel medio, poniendo en alerta a los propietarios ocurra un movimiento telúrico

#### Vulnerabilidad sísmica

En la tesis desarrollado por Giraldo Santiago donde analizó la "vulnerabilidad de las viviendas" obteniendo como resultado de 8.7% de viviendas contiene un nivel de vulnerabilidad muy alta mientras, un 52.17% de un nivel de vulnerabilidad alto, y un 30.34% de vulnerabilidad de nivel medio. en cambio, un 8.7% de un nivel de vulnerabilidad baja. En

la presente tesis se obtuvo un resultado de 25 % de nivel de vulnerabilidad alta, y un 40% de nivel de vulnerabilidad media, en cambio un 35% de un nivel de vulnerabilidad baja.

La vulnerabilidad depende de los parámetros como densidad de muros, estado actual de las viviendas y estabilidad de muros, llegue a diseñar los planos de arquitectura y estructura y a realizar el análisis sísmico de todas las viviendas seleccionadas de la muestra establecida, para obtener el resultado de la densidad de muros y la estabilidad de muros, se realizó las fichas de verificación y de reporte obteniendo como resultados el estado actual de las viviendas. Asu vez se realizó el análisis sísmico de todas las viviendas verificando las irregularidades en altura ( $I_a$ ) e irregularidad en planta ( $I_p$ ) y los desplazamientos máximos permitidos por RNE y con el software Etabs 2016 versión 2.1. Donde se hace más completo el análisis de cada uno de las viviendas, ya que el autor Giraldo Santiago solo realiza el análisis de algunas viviendas.

Se compara resultados obtenidos por otros autores:

Tabla 60: Niveles de vulnerabilidad sísmica según investigaciones realizadas

	Vulnerabilidad Sísmica (%)											
	Valverde Oswaldo, 2017	Giraldo Santiago, 2018	Paucar Irineo, 2018	Juarez Javier, 2019								
Alta	72%	52.17	70%	25%								
Media	16%	30.34	25%	40%								
Baja	12%	8.7	5%	35%								

fuente: Valverde Oswaldo

En la tabla se puede apreciar los resultados de investigaciones, con otros autores donde se llega a la conclusión que el investigador de esta tesis se asemeja a los resultados, donde la vulnerabilidad sísmica es media para todos.

#### Peligro sísmico

El investigador Becerra Richard, 2015 realizó el análisis del peligro sísmico teniendo como resultado un 95% de nivel alto del peligro sísmico, un 5% es un nivel medio del peligro sísmico. Por tanto, obtuve como resultado un 35% de nivel de peligro sísmico alto, un 60% de nivel del peligro sísmico medio y, un 5 % del nivel de peligro sísmico bajo. Se puede notar que existe una diferencia en los resultados, por consiguiente, se menciona que ambas investigaciones están en diferentes zonas sísmicas que influyen en los resultados. Además, en mi investigación realicé el estudio de suelos realizando 3 calicatas para darle una aproximación más significativa en los resultados de esta investigación.

• Se muestra los datos de los mismos autores para poder comparar el peligro sísmico

Tabla 61: Niveles de peligro sísmico según investigaciones realizadas

	Peligro Sísmico (%)										
	Becerra Richard, 2014	Valverde Oswaldo, 2017	Paucar, Irineo 2018	Juarez Javier, 2019							
Alta	95%	0%	20%	35%							
Media	5%	100%	70%	60%							
Baja	0%	0%	10%	0%							

fuente: Valverde Oswaldo

Se define que el peligro sísmico representa entre media y alta entre todos los autores ya que el tipo de suelo no es totalmente adecuado y presentando una alta sismicidad por pertenecer a la costa peruana.

#### Modelamiento de las viviendas

Según la tesis de Giraldo Santiago, en el 2018, donde analiza las viviendas según el RNE para revisar las irregularidades en altura y en planta, se necesitaba las derivas para el análisis de la estructura, en primer lugar asumió el  $I_a = 1$  y  $I_p = 1$  para realizar el análisis y luego se consiguió nuevos valores de  $I_a = 0.50$  y  $I_p = 1$ , que con esto se obtuvo distorsiones mayores en ambas direcciones "X" y "Y". De igual manera se realizó en la presente tesis considerando de esta forma coincidiendo con el autor, obteniendo distorsiones mayores en algunas viviendas.

#### V. CONCLUSIONES

Con los resultados obtenidos se puede concluir, existe un "nivel de riesgo sísmico" alto de 40% y un de 60% de nivel medio de en el AA. HH. Villa Mercedes, y presenta un 0% nivel de riesgo bajo. Esto demuestra que es debido a los problemas estructurales encontrados en las viviendas. Y la densidad de muros de algunas viviendas no cumple con los parámetros establecidos según RNE.

Del análisis para la vulnerabilidad sísmica se concluye, el nivel de vulnerabilidad alto de 25 % y un nivel de vulnerabilidad medio de 40% mientras un nivel de vulnerabilidad bajo de 35%. Se realizó a todas las viviendas un modelamiento de análisis sísmico para verificar la configuración estructural verificándose las irregularidades en altura ( $I_a$ ) e irregularidad en planta ( $I_p$ ) y los desplazamientos máximos permitidos por reglamentados RNE. Esto ocurre por la forma escalonada de construcción que realiza los pobladores sus viviendas, teniendo áreas techadas de menores en los primeros pisos a mayores en el los últimos pisos, ganando terreno hacia el empinado cerro en varias de las viviendas.

Con respecto al peligro sísmico se concluye que 35% de las viviendas tiene un nivel alto y 60% de las viviendas presenta un nivel medio y 5% de las viviendas tiene un nivel bajo. Esto se debe a que el lugar de la vivienda presenta pendiente de intermedia y alta elevación, por contar una capacidad portante de  $1.12 \, \text{kg/cm}^2$  y con presentar un suelo de Arena Limosa con grava (SM) según la clasificación SUCS en el ensayo que se realizó y, estar en una zona sísmica Z=4.

Respecto al modelamiento que se realizó verificando si presentan irregularidades en altura o en planta en las viviendas, se concluye que las viviendas analizadas tienen el 67% de irregularidad torsional y torsional extrema, y el 47% tiene irregularidad de piso blando e irregularidad extrema mientras tanto tiene un 60% de irregularidad de masa o peso.

La propuesta de reforzamiento se realizará en función de los resultados obtenidos de la evaluación del riesgo sísmico que presenta cada una de ellas, considerando las irregularidades que presentan, los desplazamientos máximos permitidos según establece el RNE, consultado a expertos y siguiendo las técnicas que existen en la actualidad.

Se llego a la conclusión que los daños que están expuestos las estructuras evaluadas han sido provocadas partiendo por el capricho de realizar su propio diseño los propietarios obligando al albañil construir de una manera incorrecto, y el desconocimiento que tiene este a su vez del comportamiento sísmico de las estructuras que son suficientes para tengan un riesgo sísmico alto en las viviendas frente a sismos de mediana o alta magnitud.

#### VI. RECOMENDACIONES

En las viviendas del AA. HH. Villa Mercedes se recomienda tener en cuenta antes de construir, aspectos de diseño, de estructuras, y el tipo de suelo. Para que las estructuras de la vivienda tengan una capacidad de resistencia frente a un sismo, y por ende tenga un nivel de riesgo sísmico bajo. En caso que las viviendas ya construidas se evaluará los parámetros del riesgo que son la vulnerabilidad y el peligro sísmico del método aplicado en esta investigación y poder determinar y el riesgo sísmico.

Se recomienda reforzar y reparar los muros portantes ya que cumple la función de soportar cargas, realizar trabajos de reparación de los problemas de construcción encontrados en toda la vivienda y reforzar los muros no portantes, ya que todo esto depende la vulnerabilidad sísmica sea baja y pueda resistir toda la estructura de la vivienda frente a un sismo.

Se debe evitar construir en terrenos con una pendiente considerable, ya que se realizó el estudio de suelo del lugar y presenta de tipo de suelo de Arena Limosa con grava (SM) que es desfavorable para la estructura de las viviendas. Y considerar que estamos ubicados en zona de alta sismicidad, frente a un peligro sísmico.

Ya que en esta investigación se llega a proponer el reforzamiento de las viviendas seleccionadas, se recomienda tomar los datos obtenidos y aplicarlas para asegurar la resistencia estructural frente a un sismo, que fueron asesorados por un ingeniero civil, para realizar correctamente, las reparaciones y reforzamientos.

#### VII. REFERENCIAS

BARBAT H, Oller S, Vielma J. Cálculo y diseño sismorresistente de edificios. Aplicación de la norma NCSE-02. España. Monografía CIMNE IS-56.2005. pp.6. ISSN: 1134-3249

BARTOLOME Ángel. CONSTRUCCIONES DE ALBAÑILERÍA-Comportamiento sísmico y diseño estructural. Lima. Pontificia Universidad Católica del Perú. 1994. 170 pp. ISBN: 84-8390-965-0

BECERRA Richard. Riesgo sísmico de las edificaciones en la urbanización Horacio Zevallos de Cajamarca. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2015.

BLONDET Marcial, Tarque Nicola, Mosqueira Miguel. Estimación del Riesgo Sísmico De Viviendas informales de albañilería confinada [en línea]. 2005. [Fecha de consulta:15 de abril de 2018]. Disponible en https://docplayer.es/21147916-N-a04-10-estimacion-delriesgo-sismico-de-viviendas-informales-de-albanileria-confinada.html

BRAJA M. Das Fundamentos de ingeniería de cimentaciones. 7.ª ed. México. Cengage learning. 2012. 181 pp. ISBN: 0-495-66812-5

CRESPO, Carlos. Mecánica de Suelos y Cimentaciones. Monterrey. Editorial LIMUSA. 1980. ISBN: 968-18-6489-1

GIRALDO Santiago. vulnerabilidad sísmica en las viviendas autoconstruidas de albañilería en el distrito de Tarica _Ancash 2018. Tesis (Tesis de Pregrado). Perú. universidad privada del Norte. 2018.

HERNÁNDEZ, Roberto, Fernández, C. y Baptista, L. (2014). Metodología de la investigación. Mc Graw Hill, México.

HERRÁIZ, Miguel. Conceptos Básicos de Sismología para Ingenieros. [en linea]. Perú. [fecha de consulta: 15 de noviembre de 2018]. Disponible en https://www.slideshare.net/freddyescaleracoca/conceptos-bsicos-de-sismologa-para-ingenieros?from_action=save.

Kringold, F., Green, M., Hattis, D., Welliver, B. y Heintz J. (2009). Risk Management Series Engineering Guideline for Incremental Seismic Rehabilitation FEMA (Agencia Federal para la Gestión de Emergencias). Estados unidos.

KUROIWA Horiuchi, Julio. Gestión de riesgo de desastres en las ciudades del Perú. [en línea]. Lima: 2016 [fecha de consulta: 2 de mayo del 2019]

KUROIWA Julio. Prevención y Mitigación de Desastres en el Perú. Seminarios CISMID. LIMA,1990

LAUCATA, Johan. Análisis de la vulnerabilidad sísmica de las viviendas informales en la ciudad de Trujillo. Tesis de pregrado. Pontificia Universidad Católica del Perú. 2013.

LAWRENCE M. Simplified Design of Reinforced concrete Buildings. 4.^a ed. EEUU. Portland Cement Association. 2011. pp. 8. ISBN: 978-0-89312-273-7

M. SHEARER Peter. Introduction to SEISMOLOGY. 2.^a ed. EEUU. Cambridge university. 2009. 22 pp. ISBN: 978-0-511-58010-9

MARCIAL Blondet, ALEJANDRO Muñoz, NICOLA Tarque, MIGUEL Mosqueira. Estimación del riesgo sísmico de viviendas informales de albañilería confinada [en línea] Perú, 2005 [fecha de consulta: 21 de mayo]. Disponible en: https://vdocuments.mx/n-a04-10-estimacion-del-riesgo-sismico-de-viviendas-informales-de-.html

MOSQUEIRA Miguel y TARQUE Sabino. Recomendaciones técnicas para mejorar la seguridad sísmica de viviendas de albañilería confinada de la costa peruana. Tesis (Magister en Ingeniería civil). Lima: Pontificia Universidad Católica del Perú, escuela de graduados, 2005. pp. 25.

MUNICIPALIDAD METROPOLITANA DE LIMA. Plan de prevención y reducción de riesgos de desastres de Lima metropolitana [en línea]. 2018 [fecha de consulta: 2 de mayo del 2018]. Disponible en: http://www.munlima.gob.pe

OC Jamhmer. Estimación del riesgo sísmico de las viviendas autoconstruidas en el barrio santa Isabel, Chachapoyas, amazonas, 2017. Tesis (Tesis de Pregrado). Perú. Universidad nacional Toribio Rodríguez de Mendoza de amazonia, 2017.

ORTIZ Koqui. Análisis de la respuesta sísmica de 3 instituciones educativas diseñadas con la norma e.030-2006 en contraste con la norma e.030-2016. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2016.

PAUCAR Ireneo. Riesgo sísmico de las viviendas autoconstruidas en la urbanización la libertad en el distrito de Lurigancho Chosica-2018. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2018.

PICAZO Yasser. Modelo simplificado para estimar las funciones de vulnerabilidad y riesgo sísmico de edificios asimétricos en planta. Tesis (Doctor en Ingeniería). México. Universidad Nacional Autónoma de México, 2014.

PILLACA Christian. Evaluación de vulnerabilidad en edificaciones causadas por sismos e inestabilidad de talud en el AA. HH. Jesús Nazareno El Arenal. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2017

PINEDA Edgar. Diseño Estructural de viviendas Sismo Resistente en la ribera del río Rímac y en las laderas del cerro en El Agustino, Lima 2017. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2016.

POMA Cecilia. vulnerabilidad sísmica de las viviendas de autoconstrucción en la urbanización popular minas buenaventura - huacho - 2017. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2017.

R. PARK & T. PAULAY. Estructuras de Concreto Reforzado. Departamento de Ingeniería Civil, Universidad de Canterbury, Christchurch – Nueva Zelandia. 1986, Editorial Limusa, S.A. de C.V. México, D.F.

RAMBERGER, Günter. Structural Engineering Documents, Volume six SED 6: Structural Bearings and Expansion Joints for Bridges. IABSE, International Association for Bridge and Structural Engineering., Zurich, Switzerland – 2002.

ROCHEL, Roberto. Análisis y diseño Sísmico de edificios. 2.ª ed. Colombia. Universidad EAFIT. 2012. pp. 84. ISBN: 978-958-720-117-8

ROJAS Edwin. Evaluación de la vulnerabilidad sísmica en viviendas de albañilería confinada del asentamiento humano san marcos de Ate, Santa Anita, 2017. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2017.

TAYLOR, Francis. Building Structures Millais. London EC4P 4EE. E & FN Spoon, 11New Fetter Lane. 1997. pp. 368-370. ISBN: 0-203036241-1

TRIVIÑO Marily. Estimación de la amenaza sísmica causada por el proceso de subducción y su impacto sobre los asentamientos humanos para la región de América Latina y el Caribe. Tesis (Magister en geografía). Colombia. Universidad nacional de Colombia, 2015.

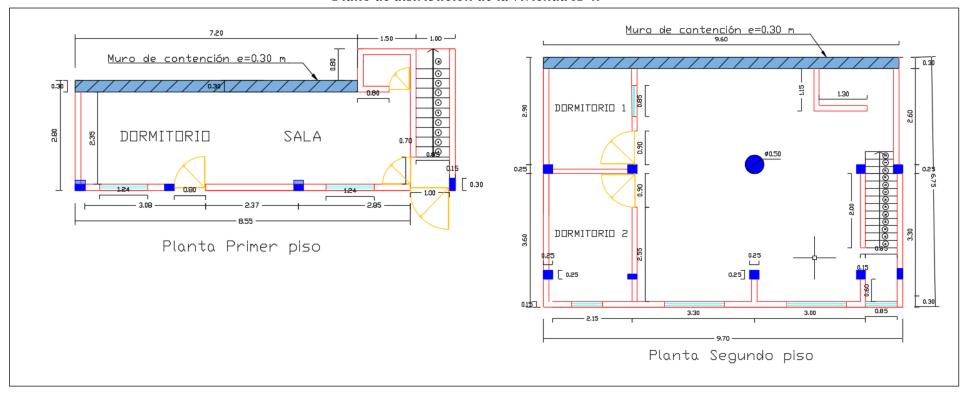
VALVERDE Almazán. Evaluación del riesgo sísmico en España a escala municipal y su evolución temporal. Tesis (Grado en ingeniería geomática y topográfica). España. Universidad Politécnica de Madrid, 2015.

VALVERDE Oswaldo. Riesgo sísmico de las viviendas autoconstruidas del distrito de pueblo nuevo Lambayeque en el 2017. Tesis (Tesis de Pregrado). Perú. Universidad césar vallejo, 2017.

Zonificación sísmica-geotécnica del área urbana de Chaclacayo [en línea]. Chaclacayo. TAVERA, Hernando. (2012). [fecha de consulta: 21 octubre de 2018]. Recuperado de https://repositorio.igp.gob.pe/bitstream/handle/IGP/1194/Informe%20Chaclacayo.pdf?sequ ence=1&isAllowed=y

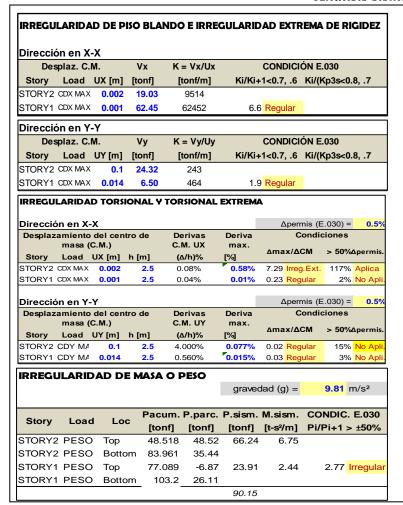


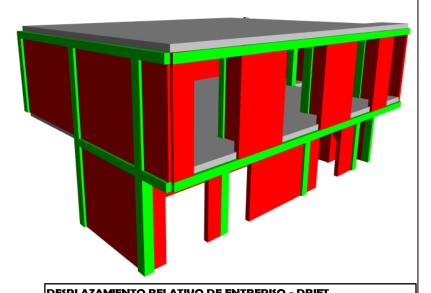
#### Anexo 1: Matriz de Consistencia


PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	E INDICADORES	METODOLOGÍA
General	General	General	VARIABLE 1:	RIESGO SÍSMICO	Diseño de investigación
			DIMENSIONES	INDICADORES	MÉTODO: Se aplicará el método científico, basándose en
¿Cuál será el nivel del riesgo sísmico y que tipo de reforzamiento	Determinar el nivel del riesgo sísmico y el tipo de reforzamiento	El nivel del riesgo sísmico será alto y por ende se reforzarán las	Vulnerabilidad sísmica	Densidad de muros  Estado actual de la vivienda	acontecimientos observables de nuestro entorno, como desastres naturales como un sismo.
estructural se propondrá en las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de	estructural que se propondrán en las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de	estructuras de las viviendas autoconstruidas del AA. HH. Villa Mercedes en el distrito de		Estabilidad de muros	TIPO DE ESTUDIO: La presente
Chaclacayo, Lima - 2019?	Chaclacayo, Lima – 2019.	Chaclacayo, Lima – 2019.	Peligro Sísmico	Sismicidad Tipo de suelo Topografía y pendiente	investigación es aplicada,
Específicos	Específicos	Específicos		PROPUESTA DE ZAMIENTO	NIVEL DE ESTUDIO: Nos preguntamos ¿Cómo es la realidad? En esta investigación donde se
¿Cuál es el nivel de vulnerabilidad sísmica en las viviendas	Calcular el nivel de vulnerabilidad sísmica en las viviendas	El nivel de la vulnerabilidad sísmica en las viviendas	DIMENSIÓN	INDICADORES	desarrolla una metodología de investigación descriptiva, (Valverde
autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima – 2019?	autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima – 2019.	autoconstruidas es alto en el AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.			Oswaldo, 2017)
¿Cuál es el nivel del peligro sísmico en las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima – 2019?	Calcular el nivel del peligro sísmico en las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima – 2019.	El nivel del peligro sísmico en las viviendas autoconstruidas es alto del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.	Modelamiento Estructural de las viviendas	Desplazamientos  Irregularidades en	DISEÑO DE INVESTIGACIÓN: Es no experimental de corte transversal porque no se manipulan las variables ni son inducidas por el investigador. También reúne
¿Cuál será el resultado del modelamiento para realizar la	Realizar el modelamiento estructural	La propuesta de reforzamiento		Altura y en Planta	información en un solo momento.
propuesta de reforzamiento de las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima – 2019?	para proponer la propuesta de reforzamiento de las viviendas autoconstruidas del AA. HH. Villa Mercedes En el distrito de Chaclacayo, Lima – 2019.	mejorará las estructuras de las viviendas autoconstruidas reduciendo el riesgo sísmico del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima – 2019.			

# Anexo 2: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda A-4 ficha de reporte de la vivienda A-4

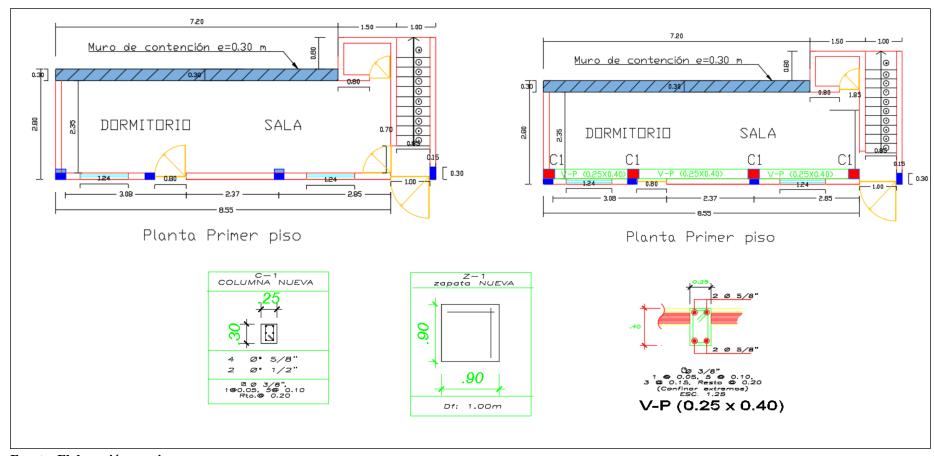
						FICH	A DE REPORT	E					
IDENTI	FICACIÓN					1101	T DE ILEI OR I						
ROPIETARI		ctoy Gutierr	'ez									FECHA:	10/10/2018
NI	: 10774											N° VIVIENDA	λ:
RECCIÓN			edes Mz.A, Lt.										
	TÉCNICA Y CONST			NO		,				T			
	RRENO POR PISO: PISOS CONSTRU		Lº= 24.80 m2	2º= 48.22 m 2 pisos		ÁREA TOTAL CONSTRU	IDA: 73.02 m2 GÍA: El terreno tiene pe	ndianta mad			AD : 20 años		
			NDA. Co oncu							alella gravi	750		
TADO DE	CONSERVACION	DE LA VIVIEI					ne los dos pisos techa nfinarlos, se visualiza fi						
AÑOS EN I	A VIVIENDA POR	R DESASTRES			ioi com	iene parapetos sin con	illianos, se visuanza n	CITOS EXPUES	103 4 14 1011031	J11			
	TOS TÉCNICO												
	ENTOS Y CARA	ACTERÍSTI	ICAS DE LA	VIVIENDA AU	JTOCC	ONSTRUIDA							
	entos AS	CENTADOS	C CODDE CI	EI OS DESICI I	IVIEGI	DDODENICOS A ACE	Caracter ENTAMIENTOS DE EL		ECTDI ICTI ID	AI EC			
							I MUROS PORTANTE		ESTRUCTUR	ALES			
				MEL 1° PISO TA									
			: 0.25x0.20, 0										
		IMENSIÓN :											
DEFIC	ENCIAS DE LA	A ESTRUC		MAC DE LIBIO	ACIÓN					DDOD! 5	MAC CONST	DUCTIVOS	
	DOD I	Δ <b>Ζ</b> ΩΝΑ 1 Λ		MAS DE UBIC		I ENDIENTE REGULA	R				MAS CONST		
	FURL	A ZUINA, LA		IAS ESTRUCT			II N	1	EXISTE	NCIA DE C	ANGREJERAS	S, JUNTAS DI	E 3 CM,
PRESE	NTA HUMEDAL	D EN LOS I				JELOS DESIGUALES	S PROPENSOS A			N	IANO DE OB	RA	
				ELEMENTOS							STADO REG		
	-										OTROS		
	ISIS POR SISM												
			a): v'm=510										
Área	encia al corte (K		V`M +0.23 pg	()		Área de	muros	Den	ısidad	Resi	stencia	Vrn	Resultado
Área techada		Cort	tante basal		D/R					Resi		Vrn	Resultado
Área techada Piso 1			tante basal	VEI = ZUSCI	P/R	Área de existente (Ae)	Requerida (Ar)		sidad Ae/Área	Resi	stencia ∑VR	Vrn	Resultado
Área techada		Cort	tante basal /m2)		P/R					Resi			Resultado
Área techada Piso 1 m2	Peso a	Cort acum. (KN, SENTIDO "x"	v'M +0.23 pg tante basal /m2)		P/R					Resi			Resultado  ADECUADO
Área techada Piso 1	Peso a	Cort acum. (KN, SENTIDO "x" 8 .SENTIDO "Y"	v'M +0.23 pg tante basal /m2)	VEI = ZUSCI 262.87	P/R	existente (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Área	Res	ΣVR -		ADECUADO
Área techada Piso 1 m2	Peso a	Cort acum. (KN, SENTIDO "x"	v'M +0.23 pg tante basal /m2)	VEI = ZUSCI	P/R	existente (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Área	Res	ΣVR		
Área techada Piso 1 m2	Peso a	Cort acum. (KN, SENTIDO "x" 8 .SENTIDO "Y"	v'M +0.23 pg tante basal /m2)	VEI = ZUSCI 262.87	P/R	existente (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Área	Resi	ΣVR -		ADECUADO
Área techada Piso 1 m2	Peso a	Cort acum. (KN, SENTIDO "x" 8 .SENTIDO "Y"	v'M +0.23 pg tante basal /m2)	VEI = ZUSCI 262.87	P/R	1.52 1.28	Requerida (Ar)	1.45	Ae/Área	Res	ΣVR -		ADECUADO
Área techada Piso 1 m2	Peso a	Cort acum. (KN, SENTIDO "x" 8 .SENTIDO "Y"	v'M +0.23 pg tante basal /m2)	VEI = ZUSCI 262.87		existente (Ae)  1.52  1.28  ESTABILIDA	1.05 1.05	1.45	0.06 0.05		- -	KN -	ADECUADO ADECUADO
Área techada Piso 1 m2 24.8	Peso a ANÁLISIS EN EL ANÁLISIS EN EL	Cort acum. (KN, SENTIDO "x" 8 .SENTIDO "Y"	W`M +0.23 pg tante basal /m2) "	VEI = ZUSCI 262.87	ACTOR	1.52 1.28 ESTABILIDA	1.05 1.05 DE MUROS AL	1.45 1.22	0.06 0.05	ACT	MOM.	KN -	ADECUADO  ADECUADO  Resultado
Área techada Piso 1 m2 24.8	Peso a ANÁUSIS EN EL ANÁUSIS EN EL	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	w`M +0.23 pg tante basal /m2) "	VEI = ZUSCI 262.87 262.87	ACTOP	1.52 1.28 ESTABILIDA	1.05 1.05 DE MUROS AL	1.45 1.22 VOLTEO	0.06 0.05 MOM 0.45C1	ACT	MOM.	KN REST.	ADECUADO ADECUADO
Área techada Piso 1 m2 24.8	Peso a ANÁLISIS EN EL ANÁLISIS EN EL C1 ADIMENSIC	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	w`M +0.23 pg tante basal /m2) /m2 /m2	262.87 262.87	ACTOP P KN/	1.52 1.28 ESTABILIDA RES 0.0 M2	1.05 1.05 DE MUROS AL	Ae/ Ar  1.45  1.22  VOLTEO	0.06  0.05  MOM. 0.45C1  Kn-m	ACT mPa2	MOM. 25 KN-r	KN REST.	ADECUADO  ADECUADO  Resultado  Ma:Mr
Área techada Piso 1 m2 24.8 MURO	Peso a ANÁLISIS EN EL	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	MYM +0.23 pg tante basal /m2) " "  ADIMENS 0.12	262.87 262.87 FA	ACTOF PKN/	1.52 1.28 ESTABILIDA RES 0 M2 32 1	1.05 1.05 DE MUROS AL	1.45  1.22  VOLTEO  t m 0.13	0.06  0.05  MOM. 0.45C1  Kn-n 0.6	ACT mPa2 n/m 3	- - - MOM. 255 KN-r	REST. t2 m/M 42	ADECUADO  ADECUADO  Resultado  Ma:Mr
Área techada Piso 1 m2 24.8	Peso a ANÁLISIS EN EL ANÁLISIS EN EL C1 ADIMENSIC	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	w`M +0.23 pg tante basal /m2) /m2 /m2	262.87  262.87  FA  IONAL 5 5 5	ACTOP P KN/	1.52 1.28 ESTABILIDA RES 0 M2 32 1.32 2 2	1.05  1.05  DEMUROS AL  a  m  7.75  1.16	Ae/ Ar  1.45  1.22  VOLTEO	0.06  0.05  MOM. 0.45C1  Kn-m	ACT mPa2 //m 3 3 6	MOM. 25 KN-r	REST	ADECUADO  ADECUADO  Resultado  Ma:Mr
Área techada Piso 1 m2 24.8 MURO M1 M2	PESO A ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIC 2 2 2	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	mmADIMENS 0.12 0.12	262.87  262.87  FA  IONAL 5 5 5	PACTOR   P   KN/  1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8   1.8	1.52 1.28 ESTABILIDA RES 0 M2 132 2 32 2 32 6	1.05  1.05  DE MUROS AL  a m .75 .16 .18	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13	MOM 0.05 MOM 0.45C1 Kn-n 0.6 0.9	ACT mPa2 //m 3 6 6 3 3	MOM. 255 KN-r. 0.0	REST. t2 ///////////////////////////////////	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE
Área techada Piso 1 m2 24.8 MURO M1 M2	Peso a ANÁUSIS EN EL ANÁUSIS EN EL  ANÁUSIS EN EL  C1 ADIMENSIC 2 2	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	m ADIMENS 0.12 0.12 0.12	262.87  262.87  FA  IONAL 5 5 5	PACTOR PROPERTY 1.8 1.8 1.8 1.8	1.52 1.28 ESTABILIDA RES 0 M2 132 2 32 2 32 6	1.05  1.05  DE MUROS AL  a  m  .75  .16  .88	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13	MOM 0.05 MOM 0.45C1 Kn-m 0.6 0.99	ACT mPa2 //m 3 6 6 3 3		REST. t2 ///////////////////////////////////	ADECUADO  ADECUADO  RESUltado  Ma:Mr  INESTABLE  ESTABLE  ESTABLE
Área techada Piso 1 m2 24.8 MURO M1 M2	PESO A ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIC 2 2 2	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	m ADIMENS 0.12 0.12 0.12	262.87  262.87  FA  TONAL 5 5 5 5	DACTOR P	1.52 1.28 ESTABILIDA RES 0 M2 32 1.22 2 32 0	1.05  1.05  DEMUROS AL  a  m  7.75  1.16  1.8  -  -	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 -	MOM 0.05 MOM 0.45C1 Kn-n-0.6 0.99	ACT mPa2 //m 3 6 6 3	MOM. 255 KN-1 0. 0. 0. 0.	REST. t2 ///////////////////////////////////	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE
Área techada Piso 1 m2 24.8 MURO M1 M2	PESO A ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIC 2 2 2	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	m ADIMENS 0.12 0.12 0.12	262.87  262.87  FA  TONAL 5 5 5 5	DACTOR P	1.52 1.28  ESTABILIDA  RES  0 M2 32 1 32 2 32 32 0 NTES EN EL RESU	1.05  1.05  DE MUROS AL  a  m  .75  .16  .18  .17  .18  .19  LTADO; Riesgo = F	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 -	MOM 0.05 MOM 0.45C1 Kn-n-0.6 0.99	ACT mPa2 //m 3 6 6 3	MOM. 255 KN-1 0. 0. 0. 0.	REST. t2 ///////////////////////////////////	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE
Área techada Piso 1 m2 24.8 MURO M1 M2	PESO A ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIC 2 2 2	Cort acum. (KN, .SENTIDO "x" 8 .SENTIDO "Y" 8	m ADIMENS 0.12 0.12 0.12	262.87  262.87  FA  IONAL  5  5  ACTORES INI	ACTOR  P  KN//  1.8  1.8  1.8  1.8	1.52 1.28  ESTABILIDA  RES  0 M2 32 1 32 2 32 32 0 NTES EN EL RESU	1.05  1.05  DEMUROS AL  a  m  7.75  1.16  1.8  -  -	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 -	MOM 0.05 MOM 0.45C1 Kn-n-0.6 0.99	ACT mPa2 //m 3 6 6 3	MOM.  255 KN-0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	REST. t2 2 42 42 42	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE
Área techada Piso 1 m2 24.8  MURO M1 M2	PESO A ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIS 2 2 2	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y" 8	m ADIMENS 0.12 0.12 0.12	262.87  262.87  FA  TONAL 5 5 5 5	ACTOR  P  KN//  1.8  1.8  1.8  1.8	### ESTABILIDA  ### ESTABILIDA  RES  ### M2  32	1.05  1.05  DE MUROS AL  a	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 -	MOM 0.05 MOM 0.45C1 Kn-n-0.6 0.99	ACT mPa2 n/m 3 6 6 3	MOM. 255 KN-r 0.0 0.0 0.0 0.0 0.0 No est	REST. t2 m/M 42 42 42	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE  -
Área techada Piso 1 m2 24.8 MURO M1 M2	Peso a ANÁUSIS EN EL ANÁUSIS EN EL  C1 ADIMENSIC 2 2 2	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y 8	m ADIMENS 0.12 0.12 0.12	262.87  262.87  262.87  FA  TONAL 5 5 5 5 CACTORES INI  Estruct	ACTOP P P KN// 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.	1.52 1.28  ESTABILIDA  RES  M2 32 12 32 232 (NTES EN EL RESU VU	1.05  1.05  DE MUROS AL  a  m  .75  .16  .18  .17  .18  .19  LTADO; Riesgo = F	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 -	MOM 0.05  MOM 0.45C1 Kn-m 0.0.09 0.11	ACT mPa2 ym 3 6 3 7	MOM. 255 KN-r 0.0 0.0 0.0 0.0 0.0 No est	REST. t2 2 42 42 42	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE  -
Área techada Piso 1 m2 24.8 MURO M1 M2	Peso a ANÁLISIS EN EL ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIC 2 2 2 De	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y 8 ONAL	m ADIMENS 0.12 0.12 0.12	262.87  262.87  262.87  FA  TONAL 5 5 5 5 CACTORES INI  Estruct	ACTOP P P KN// 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.	1.52 1.28  ESTABILIDA RES  M2 132 123 2 2 32 2 32 2 1 32 2	1.05  1.05  DE MUROS AL  a	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 -	0.06   0.05     MOM   0.45C1     Kn-m   0.9     0.1     -	ACT mPa2 y/m 3 6 3 3 d; Peligro	MOM. 255 KN-r 0.0 0.0 0.0 0.0 0.0 No est	REST. t2 m/M 42 42 42	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE  ESTABLE  -
Área techada Piso 1 m2 24.8 MURO M1 M2	Peso a ANÁLISIS EN EL ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIS 2 2 2 De Acc Acc	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y 8	m ADIMENS 0.12 0.12 0.12 E muros	262.87  262.87  262.87  FA  TONAL 5 5 5 5 CACTORES INI  Estruct	ACTOP  pp KN// 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.	1.52 1.28  ESTABILIDA  RES  M2 32 12 32 232 (NTES EN EL RESU VU	1.05  1.05  DE MUROS AL  a	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 función (vu	MOM 0.05  MOM 0.45C1 Kn-m 0.0.09 0.11	ACT mPa2 v/m 3 6 6 3 d; Peligro	MOM. 255 KN-r 0.0 0.0 0.0 0.0 0.0 No est	REST. t2 m/M 42 42 42	ADECUADO  ADECUADO  RESUltado  Ma:Mr  INESTABLE INESTABLE
Área techada Piso 1 m2 24.8 MURO M1 M2	Peso a ANÁLISIS EN EL ANÁLISIS EN EL ANÁLISIS EN EL  C1 ADIMENSIS 2 2 2 De Acc Acc	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y 8 ONAL ONAL onsidad d decuada ceptable adecuada	www.heo.23 pg tante basal /m2)  m ADIMENS 0.12 0.12 0.12 F	262.87  262.87  262.87  FA  TONAL 5 5 5 5 CACTORES INI  Estruct	ACTOP  pp KN// 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.	existente (Ae)  1.52  1.28  ESTABILIDA RES  M2  32  12  32  Control of the contro	Table 1.05  1.05  1.05  DE MUROS AL  a m 7.75 1.16 1.8 1.9 1.14 1.9 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 función (vu	MOMM 0.45C1 Kn-m 0.09 0.1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ACT mPa2 v/m 3 6 6 3 d; Peligro	MOM. 25 KN-0 0 0 0 1 No est	REST.  t2  t2  42  42  42  42  y parapete	ADECUADO  ADECUADO  RESUltado  Ma:Mr  INESTABLE  ESTABLE  -
Área techada Piso 1 m2 24.8  MURO M1 M2	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  C1  ADIMENSIC  2  2  2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "X" 8 SENTIDO "Y" 8 ONAL ONAL considad di decuada ceptable adecuada Sismici	m ADIMENS 0.122 0.122 0.122 0.124 6e muros	262.87  262.87  262.87  FA  SOUNAL  SS  SS  SS  Estruct	ACTOP  pp KN// 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.8. 1.	existente (Ae)  1.52  1.28  ESTABILIDA RES  M2  32  12  32  Control of the contro	a I I I I I I I I I I I I I I I I I I I	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 función (vu	MOMM 0.45C1 Kn-m 0.09 0.1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ACT mPa2 v/m 3 6 6 3 d; Peligro	MOM. 25 KN-0 0 0 0 1 No est	REST. t2 m/M 42 42 42	ADECUADO  ADECUADO  RESUltado  Ma:Mr  INESTABLE  ESTABLE  -
Area technida Piso 1 m2 24.8 24.8 MMURO MMURO M3	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  C1  ADIMENSIC  2  2  2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "X" 8 SENTIDO "Y" 8 ONAL ONAL considad di decuada ceptable adecuada Sismici	www.heo.23 pg tante basal /m2)  m ADIMENS 0.12 0.12 0.12 F	262.87  262.87  262.87  FA  SOUNAL  SS  SS  SS  Estruct	ACTOPP P P KN// 1.E. 1.E. 1.E. 1.E. 1.E. 1.E. 1.E. 1.	ESTABILIDA  RES  M2  1.32  2.32  1.28  ESTABILIDA  RES  WU  EST  Buena calidad  Mala calidad  Mala calidad	Table 1.05  1.05  1.05  DE MUROS AL  a m 7.75 1.16 1.8 1.9 1.14 1.9 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 función (vu	MOMM 0.45C1 Kn-m 0.09 0.1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ACT mPa2 y/m 3 6 6 3 3 d; Peligre ables estables	MOM. 25 KN-0 0 0 0 1 No est	REST.  t2  t2  42  42  42  42  y parapete	ADECUADO  ADECUADO  RESUltado  Ma:Mr  INESTABLE  ESTABLE  -
Area dechada dechada media dechada media m	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  C1  ADIMENSIC  2  2  2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "X" 8 SENTIDO "Y" 8 ONAL ONAL considad di decuada ceptable adecuada Sismici	m ADIMENS 0.122 0.122 0.122 0.124 6e muros	262.87  262.87  262.87  FA  SOUNAL  SS  SS  SS  Estruct	ACTOPP P KN//N 1.8.8 1.8.8 1.8.8 1.8.8 1.8 1.8 1.8 1.8	ESTABILIDA  ESTABILIDA  RES  M2  32  1.32  2.32  ENTES EN EL RESU  VU  EST  Buena calidad  Mala calidad  Mala calidad	Table 1.05  1.05  1.05  DE MUROS AL  a m 7.75 1.16 1.8 1.9 1.14 1.9 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13	MOM 0.05  MOM 0.45C1  Kn-m 0.6  0.9  0.1  Todos est Algunos est Algunos est Todos ine	ACT mPa2 v/m 3 6 3 3 d; Peligra cables estables estables	MOM. 25 KN-0 0 0 0 1 No est	REST.  t2  t2  42  42  42  42  y parapete	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE INESTABLE
Area echada medechada mede	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  C1  ADIMENSIC  2  2  2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "X" 8 SENTIDO "Y" 8 ONAL ONAL considad di decuada ceptable adecuada Sismici	m ADIMENS 0.122 0.122 0.122 0.124 6e muros	262.87  262.87  262.87  FA  SONAL  5 5 5 5 ESTRUCT	ACTOPP P P N KN// 1.8.E	ESTABILIDA RES  M2 132 232 232 CINTES EN EL RESU VU EST Buena calidad Mala calidad	Table 1.05  1.05  1.05  DE MUROS AL  a m 7.75 1.16 1.8 1.9 1.14 1.9 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13	MOMM 0.45C1 Kn-m 0.09 0.1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ACT mPa22 v/m 3 6 3 ables estables estables Plana Media	MOM.  25 KN-r- 0. 0. 0. 1. No estrabiquería	REST.  t2  t2  42  42  42  42  y parapete	ADECUADO  ADECUADO  RESUltado  Ma:Mr  INESTABLE  ESTABLE  -
Area echada medechada mede	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  C1  ADIMENSIC  2  2  2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "X" 8 SENTIDO "Y" 8 ONAL ONAL considad di decuada ceptable adecuada Sismici	m ADIMENS 0.122 0.122 0.122 0.124 6e muros	262.87  262.87  262.87  FA  SOUNAL  SS  SS  SS  Estruct	ACTOPP P P N KN// 1.8.E	ESTABILIDA  ESTABILIDA  RES  M2  32  1.32  2.32  ENTES EN EL RESU  VU  EST  Buena calidad  Mala calidad  Mala calidad	Table 1.05  1.05  1.05  DE MUROS AL  a m 7.75 1.16 1.8 1.9 1.14 1.9 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13	MOM 0.05  MOM 0.45C1  Kn-m 0.6  0.9  0.1  Todos est Algunos est Algunos est Todos ine	ACT mPa2 v/m 3 6 3 3 d; Peligra cables estables estables	MOM.  25 KN-r- 0. 0. 0. 1. No estrabiquería	REST.  t2  t2  42  42  42  42  y parapete	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE INESTABLE
Area techada mediada m	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  C1  ADIMENSIC  2  2  2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y 8 ONAL ONAL Cortain de decuada decuada ceptable adecuada Sismici COSTA DEL	m ADIMENS 0.122 0.122 0.122 0.124 6e muros	262.87  262.87  262.87  FA  SONAL  5 5 5 5 ESTRUCT	ACTOPP P P N KN// 1.8.E	ESTABILIDA RES  M2 132 232 232 CINTES EN EL RESU VU EST Buena calidad Mala calidad	Table 1.05  1.05  1.05  DE MUROS AL  a m 7.75 1.16 1.8 1.9 1.14 1.9 1.15 1.15 1.15 1.15 1.15 1.15 1.15	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 cunción (vu	MOM 0.05  MOM 0.45C1  Kn-m 0.6  0.9  0.1  Todos est Algunos est Algunos est Todos ine	ACT mPa22 v/m 3 6 3 ables estables estables Plana Media	MOM.  25 KN-r- 0. 0. 0. 1. No estrabiquería	REST.  t2  t2  42  42  42  42  y parapete	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE INESTABLE
Área techada Piso 1 m2 24.8 MURO M1 M2	Peso a  ANÁLISIS EN EL  ANÁLISIS EN EL  ANÁLISIS EN EL  ADIMENSIC  2 2 2  Dee  AC  AC  Ina	Cort acum. (KN) SENTIDO "x" 8 SENTIDO "Y 8 ONAL ONAL Cortain de decuada decuada ceptable adecuada Sismici COSTA DEL	m ADIMENS 0.12 0.12 0.12 0.12 0.12 0.14 Ele muros  Baddad  DERÚ ES ALTA	262.87  262.87  262.87  FA  SONAL  5 5 5 5 ESTRUCT	ACTOPP P P N KN// 1.8.E	ESTABILIDA RES  M2 132 232 232 CINTES EN EL RESU VU EST Buena calidad Mala calidad	ADO ACTUAL  Requerida (Ar)  1.05  1.05  D DE MUROS AL  a m 1.75 1.16 1.16 1.17 1.17 1.18 1.18 1.18 1.18 1.18 1.18	Ae/ Ar  1.45  1.22  VOLTEO  t m 0.13 0.13 0.13 cunción (vu	MOM 0.05  MOM 0.45C1  Kn-m 0.6  0.9  0.1  Todos est Algunos est Algunos est Todos ine	ACT mPa22 v/m 3 6 3 ables estables estables Plana Media	MOM. 255 KN-r 0. 0. 0. Topog	REST.  t2 m/M 42 42 42 42 42 42 42 42 42 42 42 42 42	ADECUADO  ADECUADO  Resultado  Ma:Mr  INESTABLE INESTABLE


Fuente: Laucata,2013


#### Plano de distribución de la vivienda A-4.





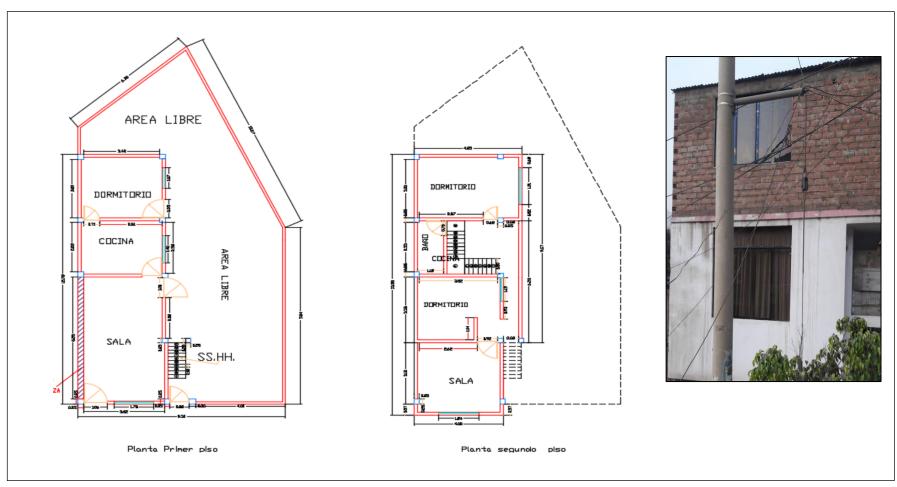

#### Análisis sísmico de la vivienda A-4



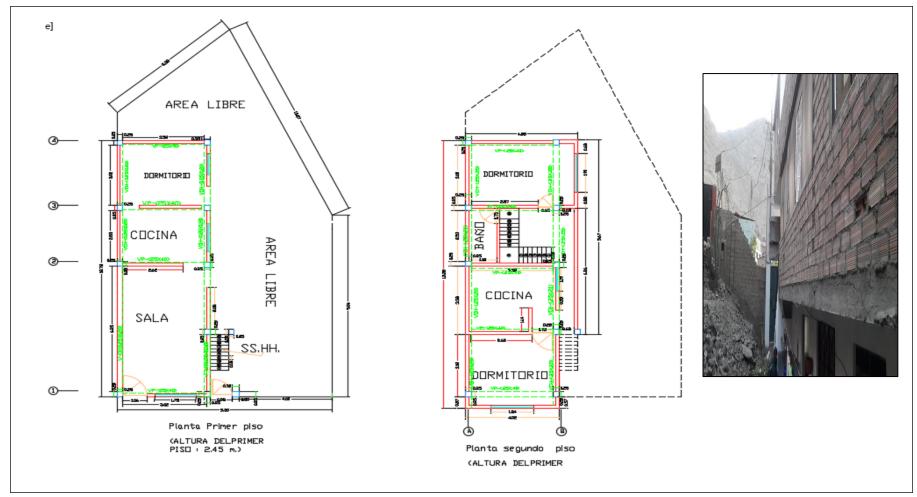


Story	Item	Load	Point	Х	Υ	Z	DriftX	DriftY
STORY	2 ıx Drift 2	K CDX	1344	0	6.63		0.0058	
STORY	2 x Drift \	CDX	1332	0		4.9		0.00077
STORY	2 ix Drift 2	K CDY	1344	0	6.63		0.0058	
STORY	2 x Drift \	CDY	1332	0	5	4.9		0.00077
STORY	1 ıx Drift 2	K CDX	1344	0	3.46		9.3E-05	
STORY	1 x Drift \	CDX	1360	0		2.45		0.00015
STORY	1 ıx Drift 2	K CDY	1344	0	3.46		9.3E-05	
STORY	1 x Drift \	CDY	1332	0		2.45		0.00015
				máx	cimo drif	ft (%) =	0.58%	0.08%
				drift a	dmisible	∍ (%) =	0.50%	0.50%
							NO!!	OK!!

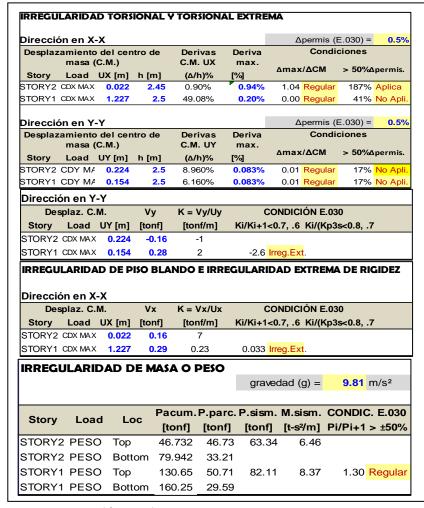
#### Reforzamiento de la vivienda A-4

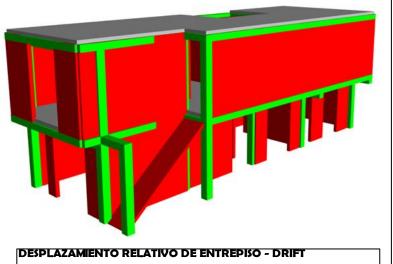



Anexo 3:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda A-14


						FICHA DE	REPORTE						
I. IDENTII	TICACIÓN												
PROPIETARIO	O : Irene Cruz G	onzales										FECHA:	18/11/2018
DNI	: 45625369											N° VIVIENDA	A: 2
DIRECCIÓN	: AA. HH. Vi	a Mercedes Mz.	, Lt. 14									i	
DIRECCIÓN T	TÉCNICA Y CONSTRUC	CIÓN:	NC	I									
ÁRFA DE TER	RENO POR PISO:	1º=49.46 m	2 29=53.6	8 m2	ÁREA TOTA	L CONSTRUIDA: 103.	14 m2			ANTIGÜED	AD: 25 años		
					<b></b>	ÍA Y GEOLOGÍA: El te		endiente med	lia v el suelo e	l			
	PISOS CONSTRUIDO		2 pisos		L								
	CONSERVACIÓN DE L			a de vivie	ndas de vivie	endas ubicadas a má	s altura procliv	ves a desnivel	es y caidas ine	speradas d	e muro de adobe	!	
	A VIVIENDA POR DES	ASTRES NATURAL	ES: NO										
	TOS TÉCNICOS												
	TOS Y CARACTERÍS entos	TICAS DE LA VIV	IENDA AUTOC	ONSTRUI	DA		Caracter	rísticas					
Cimie		dos sobre suelo	s arena-gravos	)			Caracter	isticus					
					o en muros	portantes y tenien	do muros de	contención.					
		do de 0.18 m er		el 2° piso									
		ión : 0.25x0.27, ión : peraltada		chatac d	0 N 2 v N 19								
Vig	gas uniten	ion . perartaua	7.2 x 0.4 y viga:	ciiatas t	E 0.2 X 0.18								
b DEFICIEN	NCIAS DE LA ESTRU	CTURA											
		PRO	BLEMAS DE U	BICACIÓN							EMAS CONSTRU		
Se encue	entra en pendiente i	nedia y con irreg	ular configurac	ión geom	etría en altu	ıra con la vivienda	colindante	e	xistencia de	cangrejeras	s, irregularidad	en Ias juntas	ae los muros
		PRO	BLEMAS ESTRU	CTURALE	s								
Pre	senta rajaduras en					tramiento viga-colu	mna				MANO DE OBR		
									r	egular por	ser construidos	por albañile:	<u> </u>
											OTROS		
III. ANÁLI	SIS POR SISMO												
FACTORES Y	PARÁMETROS SÍSMI	cos											
Z= 0.45	U=1 C=2		S=1.2										
	característica a con encia al corte (Kn)=	. ,											
	encia ai corte (Kii)=	4E (U.3V IVI +U.2.	pg)										
Área techada		Cortante ba	sal			Área de muro	s	Den	sidad	Res	istencia	Vrn	
		(140.1	1451 311	0 0 D / D		. (2.)	()				E1.49	V	Resultado
Piso 1 m2	Peso acur	n. (KN/m)	VEI = ZU	SCP/R	existen	ite (Ae) Requ	ierida (Ar)	Ae/ Ar	Ae/Área		∑VR	KN	
1112	ANÁLISIS EN EL SEN	IDO "x"			I.				1	1		KIV	
49.46	1		371.	30	1.	34	1.49	0.90	0.03		-	-	ACEPTABLE
45.40	ANÁLISIS EN EL SEN												
			371.	30	3.	/3	1.49	2.51	0.08		-	-	ADECUADO
					EST/	ABILIDAD DE N	<b>1UROS AL</b>	VOLTEO					
				FACTO	RES				мом	. ACT	MOM.	REST.	Resultado
MURO	C1		m		р	a		t	0.45C1	mDa2	25 t	2	Ma:Mr
IVIUKU													IVIG.IVII
	ADIMENSIONA	ADIM	ENSIONAL	KN	I/M2	m		m	Kn-n	n/m	KN-m	/M	
M1	2	(	1.125	1	.82	6.04		0.13	7.4	7	0.4	2	INESTABLE
M2	2	(	1.125	1	.82	2.12		0.13	0.9	12	0.4	2	INESTABLE
M3	2	(	0.125	1	.82	1.14		0.13	0.2		0.4	2	ESTABLE
	-		-		-	-		-	-		-		-
	-		-		-	-		-	-		-		-
			FACTORES	INELLIN	ENTES EN	EL RESULTADO	Riesgo	unción had	Inerahilida	d. Palian	n)		
			PACTORES	INFLUI	LIVIES LIV	VULNERA		uncion (vu	illerabiliua	u, religit	<u> </u>		
			Estr	uctural		702.12.13	15/12/15/15				No estr	uctural	
	Densi	lad de muro				ESTADO A	CTUAL				Tabiquería y		os
	Adec				Buena c				Todos es			para para	
	Acep			Х	Regular			х	Algunos				х
	Inade				Mala ca				Todos ine				
		_				PELI	GRO						,
	S	smicidad					Suelo				Topogra	afía y per	diente
		A DEL PERÚ ES	ALTA								. 56-50	/ PCI	
Baja					Rígido					Plana			1
			1		Interme	dio			x	-			x
Media									^	Media	-:		*
Alta			х		Flexibles	5				Pronun	ciada		<u> </u>
					1					1			
		CALIFICACIÓ	N		ļ		CALIFICA	CIÓN				RESULT	ADO
	VULNERA	BILIDAD	BAJ	A		PELIGF	RO	ME	DIA		RIESGO S	ÍSMICO	MEDIA
I													

Fuente: Laucata,2013.


#### Plano de distribución de la vivienda A-14.




Plano de aligerado y fotos de las viviendas A-14



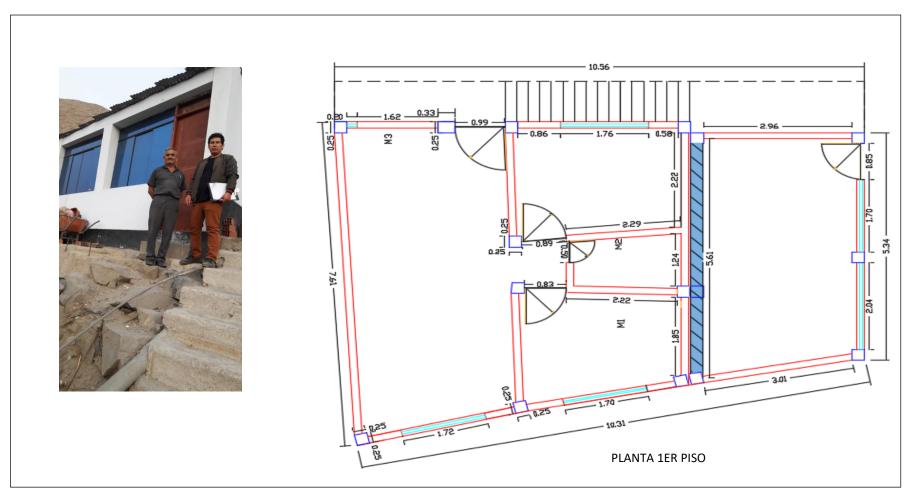
#### Análisis sísmico de la vivienda A-14



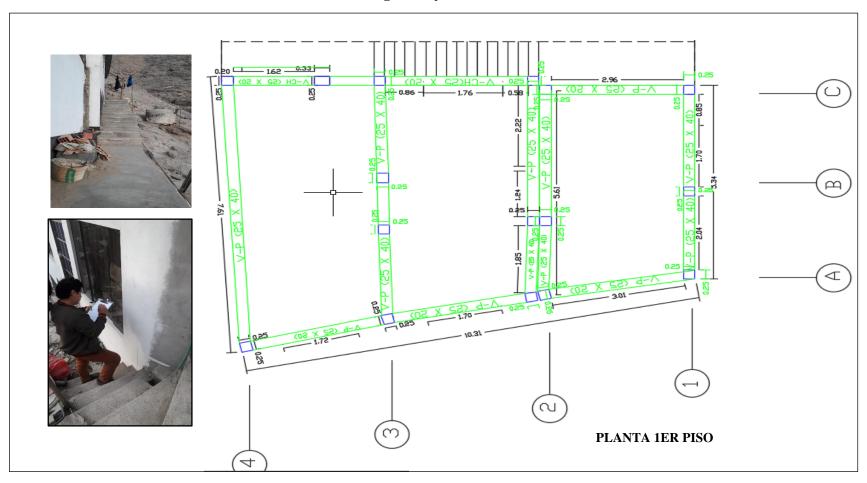


Story	Item	Load	Point	X	Υ	Z	DriftX	DriftY
STORY	2 ıx Drift X	CDX	99	1.31	9.13	3 4.9	0.0094	
STORY	2 x Drift Y	CDX	12	4.85	0.62	2.45	i	0.0008
STORY	2 ıx Drift X	CDY	99	1.31	9.13	3 4.9	0.0094	
STORY	2 x Drift Y	CDY						
STORY	1 ıx Drift X	CDX	60	3.02	0.62	2.45	0.002	
STORY	1 x Drift Y	CDX	12	4.85	0.62	2.45	i	0.0008
STORY	1 ıx Drift X	CDY	60	3.02	0.62	2.45	0.002	
STORY	1 x Drift Y	CDY						
			<u> </u>	má	ximo d	rift (%) =	0.94%	0.08%
				drift	admisil	ole (%) =	0.50%	0.50%
							NO!!	OK!!

### Z—1 zapata NUEVA AREA LIBRE AREA LIBRE 1.00 1.00 DORMITORIO DORMITORIO Df: 1.00m CICINA COCINA C-1 COLUMNA NUEVA (23 3/8" 0.10. 3 0.05, 850 0.10. (0.015, 850 0.10. (configration of the configration of the configratio 0° 5/8" ذ 1/2" ⊠ Ø 3/8", 1⊠0.05, 5© 0.10 Rto.© 0.20 Planta Primer piso-con refuerzo Planta Primer piso


Propuesta de reforzamiento de la vivienda A-14

Anexo 4: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda A-16

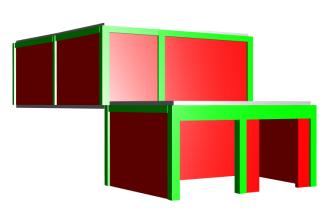

						FICHA	DE REPORTE						
I. IDENTIF	TCACIÓN											:	
PROPIETARIO		dal Campos										FECHA:	19/11/2018
DNI	: 04049593											N° VIVIENDA	: 3
DIRECCIÓN		a Mercedes Mz.A, Lt											
	ÉCNICA Y CONSTRUC		NO										
	RENO POR PISO:	1º=50.				L CONSTRUIDA				L	AD: 15 años		· · · · · · · · ·
	PISOS CONSTRUIDOS		2 pisos		l		: El terreno tiene i				arena gravoso, c	on rocas fract	uradas
proceso de o	construcción en la pa	A VIVIENDA: Esta con rte trasera y elevada ASTRES NATURALES:	de la vivienda.	parte m	ás alta de la	a zona, y no cue	enta con terrenos o	olindantes, y se	e encuentra e	1			
II. ASPECT	OS TÉCNICOS												
_		TICAS DE LA VIVIEN	DA AUTOCONS	TRUIDA			Caracte	ríations					
Eleme Cimie		sentados sobre ro	a pero fractura	ida y pro	clives a se	r escarvada y			en la parte tr	asera de la	vivienda		
Mu	ros ladrillo	macizo en el perím		o con m	uros de con	ntención en el	primer piso en la	parte del fond	0.				
Teo Colur		ido de peralte 0.20 siones: 0.25x0.20, 0											
Vig		siones : 0.20x 0.40											
h - DEFICIEN	ICIAS DE LA ESTRU	CTURA											
J DEFICIEN	. CAJ DE EM EJIKU		EMAS DE UBIC	ACIÓN						PROBLE	MAS CONSTRU	JCTIVOS	
		POR LA ZONA SE	ENCUENTRA EN	PENDIE	NTE ALTA		-	E	XISTENCIA DI		ERAS, JUNTAS D		TA DE 0.5 CM
			MAS ESTRUCT										
La config	uración geométrica	en altura y planta s				ión no con el	acero necesario				MANO DE OBR		
La comigi	aradion geometrica	c arturu y pranta S	on megalares, t	c, muio	ac content	ion no con en	accio necesario	construida p	or el propieta	irio, y no cu	uenta con una fo	ormación téc	nica
								1			UIKUS		
	SIS POR SISMO												
Z= 0.45	PARÁMETROS SÍSMI U=1 C=2		S=1.2										
	característica a cor		J 1.L										
VR= Resiste	ncia al corte (Kn)=	Ne (0.5V`M +0.23 pg	)										
Área		Cortante basa				Área de m	nuros	Den	sidad	Res	istencia		
techada												Vrn	Resultado
Piso 1 m2	Peso acu	m. (KN/m)	VEI = ZUSC	CP/R	existen	nte (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Área		∑VR	KN	
	ANÁLISIS EN EL SEN	IDO "x"										N.V	
50.45		8	181.62		3.	.26	0.73	4.48	0.06		-	-	ADECUADO
	ANÁLISIS EN EL SEN	8	181.62		0.	.90	0.73	1.24	0.02			-	ADECUADO
						<u> </u>		<u> </u>	-				
					ESTA	BILIDAD D	E MUROS AL	VOLTEO					
			E.	ACTO	RES				МОМ	ACT	MOM.	REST.	Resultado
MURO	C1	n			р	a		t	0.45C1	mPa2	25 t	2	Ma:Mr
	ADIMENSIONA	ADIMEN	SIONAL	KN	/M2	m		m	Kn-n	ı/m	KN-m	/M	
M1	2	0.1			.82	2.40		0.13	1.1		0.4		INESTABLE
M2	2	0.1			.82	2.33		0.13	1.1		0.4		INESTABLE
M3	2	0.1			.82	1.82		0.13	0.6		0.4		INESTABLE
M4	2	3.0			.82	3.01		0.13	12.		0.4		INESTABLE
	-	-			-	-		-	-		-		-
			FACTORES IN	IFLUYE	NTES EN	EL RESULTA	.DO; Riesgo = I	unción (vul	nerabilidad	; Peligro	)		
							ERABILIDAD						
			Estruc	tural							No estr		
		dad de muros					OO ACTUAL		T 1		<mark>Fabiquería y</mark>	parapeto	os
		table		Х	Buena c			х	Todos es				
		table cuada			Regular Mala ca			<b>-</b>	Algunos e Todos ine				x
	indue	cuaua			iviuia ca		PELIGRO		, odos ille	JUDICS			^
	-	ismicidad					Suelo				Topogra	afía y pen	diente
		TA DEL PERÚ ES ALT	Α				54610				- Popul	- y pen	
Ваја	., ., ., .,				Rígido					Plana			
Media					Interme	dio			x	Media			
Alta			х		Flexibles					Pronun	ciada		х
			1					1					1
		CALIFICACIÓN					CALIFICA	CIÓN				RESULT	ADO
		ABUUDAD					FLICRO				DIESCS -	(CANICC	
	VULNER	ABILIDAD	BAJA			P	ELIGRO	AI	.TA		RIESGO S	ISMICO	MEDIA

Fuente: Laucata,2013

## Plano de distribución de la vivienda A-16. _primer piso



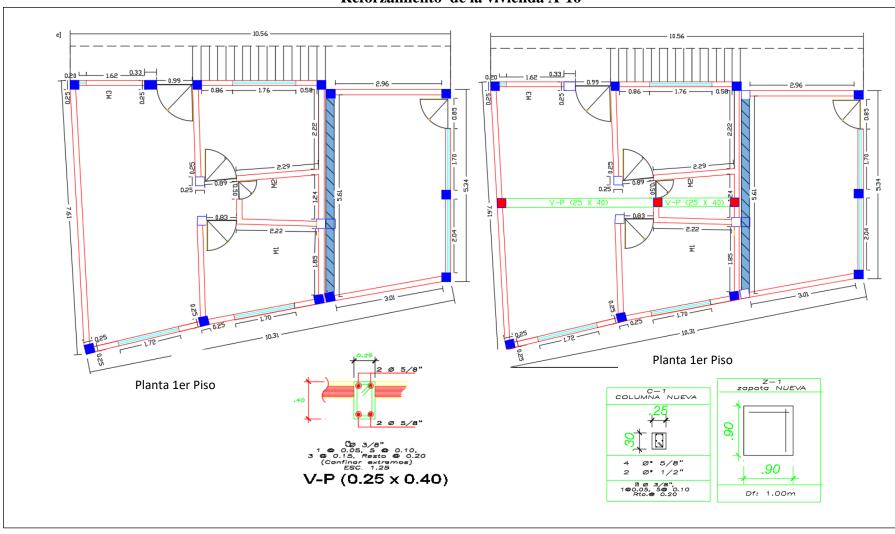
Plano de aligerado y fotos de las viviendas A- 16




Analisis sísmico de la vivienda A-16

D11 0 001	ón en X-	•Х				Δpermis	(E.030) = <b>0.5</b> %
Desplaz	zamiento		tro de	Derivas	Deriva	Condici	ones
	masa (	C.M.)		C.M. UX	max.	Δmax/ΔCM	> 50%∆permis.
Story	Load	UX [m]	h [m]	(Δ/h)%	[%]	инах/дом	> 30 /daperinis.
STORY2	CDX MAX	0.0003	2.5	0.01%	0.00%	0.00 Regular	0% No Apli
STORY1	CDX MAX	0.0002	2.5	0.01%	0.00%	0.00 Regular	0% No Apl
		.,				Δpermis	(E.030) = 0.5%
Direcci	on en Y-	· Y				•	(=:==;
	<u>on en Y-</u> zamiento		tro de	Derivas	Deriva	Condici	, ,
		del cen	tro de	Derivas C.M. UY	Deriva max.	Condici	ones
	zamiento masa (	del cen	tro de			<u> </u>	, ,
Desplaz	zamiento masa (	del cen C.M.) UY [m]		C.M. UY	max.	Condici	ones

IRREGULARIDAD DE PI	SO BLAN	IDO E IRREC	GULARIDAD EXTREMA DE	RIGIDEZ
Dirección en X-X				
Desplaz. C.M.	Vx	K = Vx/Ux	CONDICIÓN	E.030
Story Load UX [m]	[tonf]	[tonf/m]	Ki/Ki+1<0.7, .6	Ki/(Kp3s<0.8, .7
STORY2 CDX MAX 0.0003	7.18	23854		
STORY1 CDX MAX 0.0002	14.79	67549	2.8 Regular	
Dirección en Y-Y				
Desplaz. C.M.	Vy	K = Vy/Uy	CONDICIÓN	E.030
Story Load UY [m]	[tonf]	[tonf/m]	Ki/Ki+1<0.7, .6	Ki/(Kp3s<0.8, .7
STORY2 CDX MAX 0.0005	6.14	12878		
STORY1 CDX MAX 0.0004	11.30	28615	2.2 Regular	

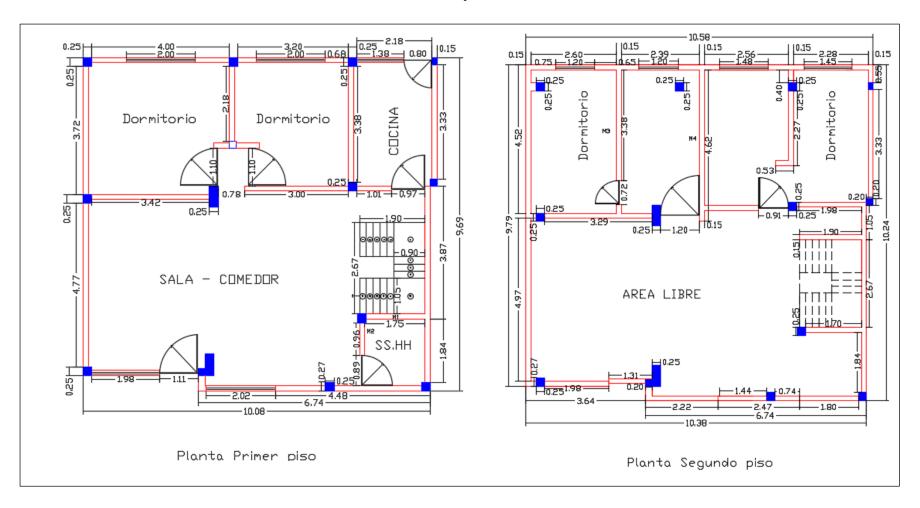

IRREGU	LARID/	AD DE N	AASA O F	PESO			
						gravedad (g) =	9.81 m/s ²
Story	Load	Loc	Pacum.	P.parc.	P.sism.	M.sism.	CONDIC. E.030
Story	LUau	LUC	[tonf]	[tonf]	[tonf]	[t-s²/m]	Pi/Pi+1 > ±50%
STORY2	PESO	Тор	62.473	62.47	78.06	7.96	
STORY2	PESO	Bottom	93.646	31.17			
STORY1	PESO	Тор	24.174	-69.47	-44.48	-4.53	-1.75 Regular
STORY1	PESO	Bottom	42.987	18.81			



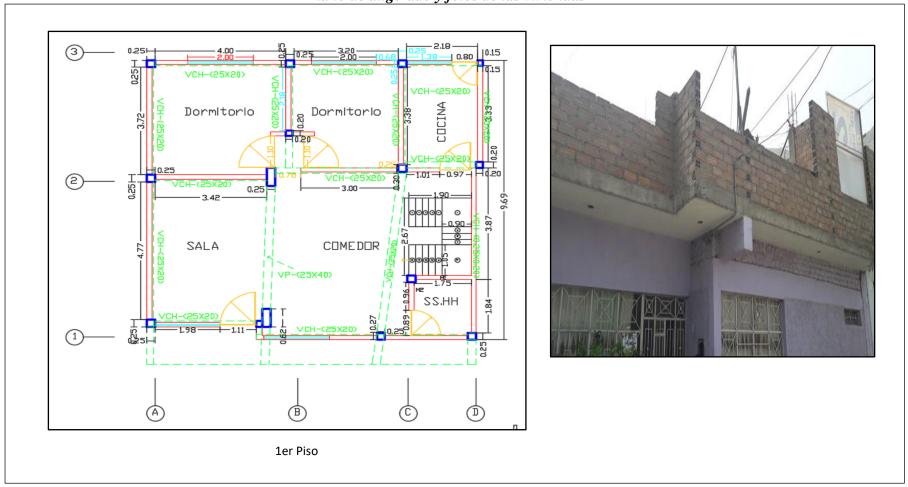
Vivienda A-16 modelada

DESPLA	AZAMIE	:NTO RE	LATIVO	DE F	ENTR	EPISO	- DRIFT		
Story	Item	Load	Point	Х	7	Υ	Z	DriftX	DriftY
STORY2	2 ıx Drift	X CDX	19		7.27	10.31	4.9	6.20E-05	,
STORY2	2 x Drift	Y CDX	1332		22	4.89	0	)	6.10E-05
STORY2	2 ıx Drift	X CDY	15	,	0	9.86	4.9	9 1.30E-05	)
STORY2	2 x Drift	Y CDY	1332		12	1.42	3.21		4.30E-05
STORY1	l ıx Drift	X CDX	9	:	3.43	3.48	4.9	9 4.50E-05	,
STORY1	x Drift	Y CDX	1360	)	22	4.89	0	)	1.80E-05
STORY1	l ıx Drift	X CDY	35	,	7.27	6.85	4.9	0.000124	,
STORY1	l x Drift	Y CDY	7	-	7.04	3.21	2.45	;	7.50E-05
			_			máx	imo drift (%) =	0.01%	0.01%
						drift a	dmisible (%) =	0.50%	0.50%
								OK!!	OK!!

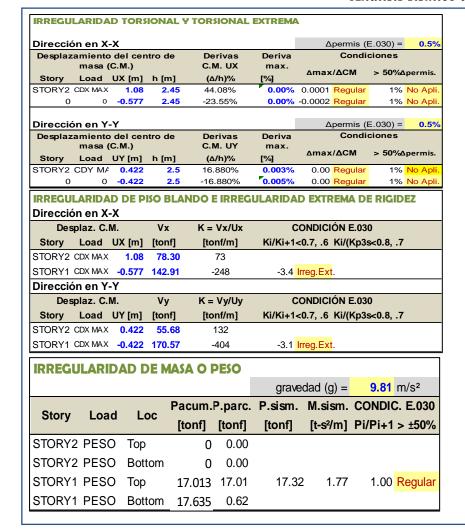
### Reforzamiento de la vivienda A-16

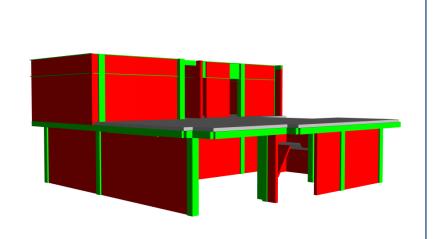



Anexo 5:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-2


							FICH	A DE RE	EPORT	E					
I. IDENTIF														:	
PROPIETARIO DNI	: Josue Caña : 06966070													FECHA: N° VIVIENDA	16/11/2018
DIRECCIÓN	: AA. HH. Vil		c M = D I +											IN VIVIENDA	: 4
	ÉCNICA Y CONSTRU		3 1412.0, Et.	NO NO											
<b></b>	RENO POR PISO:		2.6 m2	2º= 98.50 m	, 1	άρεα τοται	CONSTRUIT	DA: 191.10 m	2			ANTIGÜED.	AD : 32 años		
										endiente med	lia y el suelo e	<u></u>			
	PISOS CONSTRUIDO			2 pisos											
ESTADO DE C	ONSERVACIÓN DE I	.A VIVIENDA	A: Sin reve	estimiento en alg	unas ha	abitaciones	del primer p	oiso, en el se	gundo pis	o no cuenta c	on revestimie	nto ni acaba	idos en los pisos	5	
DAÑOS EN LA	VIVIENDA POR DE	SASTRES NA	TURALES:	: NO											
II. ASPECT	OS TÉCNICOS														
a ELEMEN	TOS Y CARACTERÍS	STICAS DE I	LA VIVIEN	NDA AUTOCON:	TRUID	Α									
Elem		. 4							Caracter	ísticas					
Cimie Mu		ado en arena lo macizo y j		nsa y grava areno n antiguos	sa										
Tec	ho Aliger	ado de 0.19	m de per	ralte											
Colu		NSIÓN : 0.		, 0.15x0.2 rigas chatas de 0.	25 v 0 2	10									
Vig	as DIVIE	A TOLUIN . U.	,.2A U.4, V	лдаз спашт ue 0.	∟JΛ U.2	v									
b DEFICI	ENCIAS DE LA E											nn 0		*********	
				EMAS DE UBIO									MAS CONSTR		
Se e	ncuentra en la parte	baja del lug	gar siendo	plana con una pe	ndiente	mínima en	algunas part	es del terren	0		Junta	frías, junta	s de espesor de	0.7 cm y de 3	cm
	_	PI	ROBLEN	MAS ESTRUCT	URAI	ES									
PRESEN	TA HUMEDAD F	EN LOS MU	UROS, A	SENTADOS SO	BRE S	UELOS DI	ESIGUALE	S PROCLIV	ES A		De mala		ANO DE OBE capacitación ni a		técnico
	A	SENTAMIE	ENTOS I	DE ELEMENTO	SESTE	RUCTURAI	ES				DC IIRIRI	zandau, sur	OTROS	isesoramiento	tecineo
III ANÁLI	SIS POR SISMO														
	Y PARÁMETRO	S SÍSMICO	os												
Z= 0.45	U=1 C=		R=3	S=1.2											
	aracterística a corte														
VR= Resister	ncia al corte (Kn)=						, .			_		_			
techada		Cortan					Àrea de				sidad		istencia	Vrn	Resultado
Piso 1 m2	Peso acur	n. (KN/m)	1)	VEI = ZUSC	P/R	existent	te (Ae)	Requerio	la (Ar)	Ae/ Ar	Ae/Årea		∑VR	KN	resurado
1112	ANÁLISIS EN EL	SENTIDO '	"x"											KIN	
92.6		8		687.96		1.8	30	2.7	5	0.65	0.02		-	-	INADECUADO
	ANÁLISIS EN EL	SENTIDO .	"Y"	687.96	Т	5.4	19	2.7	5	1.99	0.06				ADECUADO
		-				-				1.77	0.00				
						EC/E A D	T TD 1 D	DEMI	DOG 11	T TIOT OU	30				
							LIDAD	DE MUI	KUS A	L VOLTI					
				FA	CTO	RES					MOM.	ACT	MOM. F	REST.	Resultado
MURO	C1		m	ı	I	)	а	ı		t	0.45C1	mPa2	25 t	2	Ma:Mr
	ADIMENSION	AL A	ADIMENS	SIONAL	KN.	/M2	n	n		m	Kn-n	√m	KN-n	n/M	
M1	2		0.12	25	1.3	82	0.4	42	(	).13	0.0	4	0.43	2	ESTABLE
M2	2		0.12		1.5		2.			).13	0.9		0.43		INESTABLE
M3	2		0.12	25		82	0.	-	(	).13	0.1	3	0.43	2	ESTABLE
	-		-				-			-	-		-		-
										-					-
			FACTO	ORES INFL	JYEN	TES EN	EL RES	ULTADO	); Ries¤	o = Funci	ón ( <u>vul</u> nera	bilidad:	Peligro)		
								NERABI							
				Estruc	ural								No estr	uctural	
	Densi	dad de n	nuros				ESTA	DO AC	TUAL			7	Tabiquería y		os
		cuada				Buena ca					Todos est			- ransaport	
		otable				Regular				X	Algunos				X
	Inade	cuada			X	Mala cal	idad			<u></u>	Todos ine	stables			
								PELIGR							
	Sismicidad Suelo Topografía y pendiente  Z=4, COSTA DEL PERÚ ES ALTA														
	Z = 4, COST	A DEL PER	RÜ ES AI	LTA											
Baja						Rígido						Plana			
Media						Intermed					X	Media			X
Alta				X		Flexibles	3					Pronunc	ciada		
ı		CHIT	CA Cake	v					T TYPE	CIÁN —				DEGLES	SA DO
	VULNER	ABILIDAD	CACIÓN )	ALTA			1	PELIGRO	ALIFICA		EDIA		RIESGO S	RESULT ÍSMICO	ALTA

Fuente: Laucata,2013.

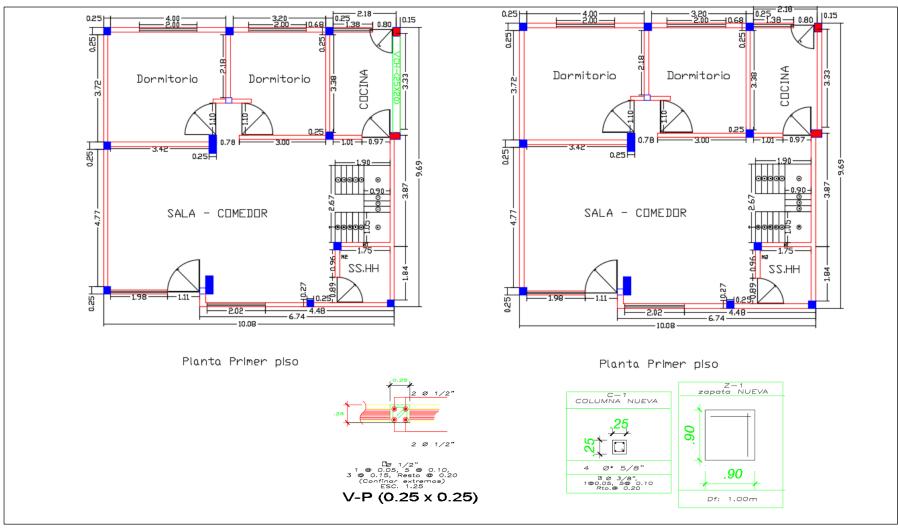

### Plano de distribución y fotos de la vivienda B-2.




Plano de aligerado y fotos de las viviendas B-2



#### Analísis sísmico de las viviendas B-2

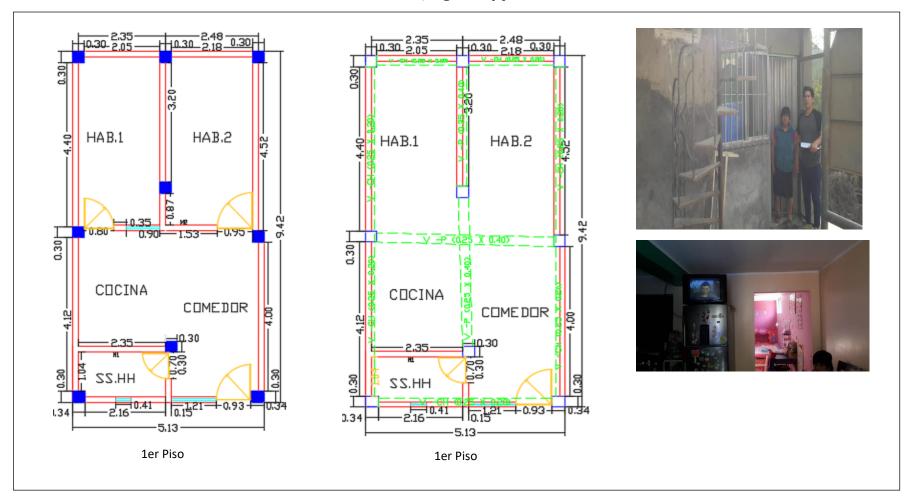




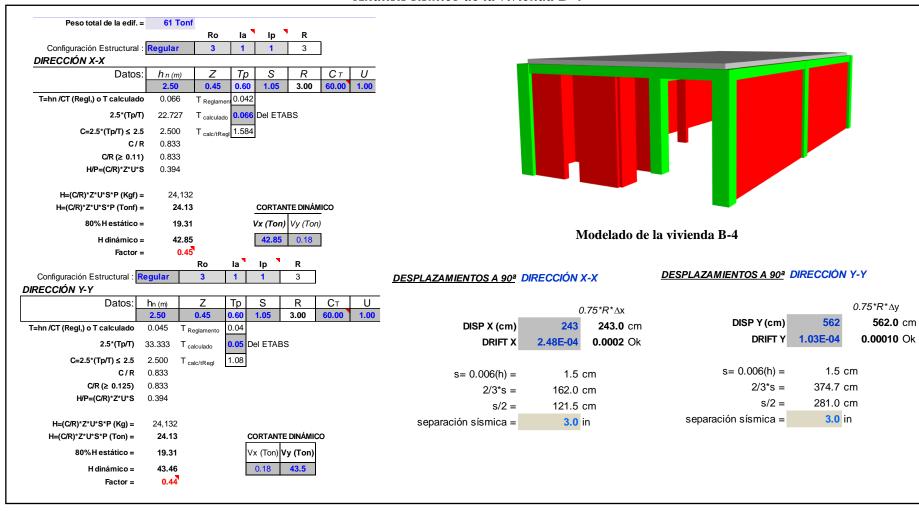

#### Modelado de la vivienda B-2

DESPLAZAMIEN	ITO REI	LATIVO I	DE ENT	REPISO -	DRIFT		
Story Item	Load	Point	Х	Υ	Z	DriftX	DriftY
STORY2 ix Drift X	CDX	208	10.41	6.24	4.9	3E-05	
STORY2 x Drift Y	CDX	174	10.41	10.93	4.9		2E-05
STORY2 ix Drift X	CDY	140	0	10.93	4.9	3E-05	
STORY2 x Drift Y	CDY	140	0	10.93	4.9		3E-05
STORY1 ix Drift X	CDX	88	3.67	0.89	2.45	4E-05	
STORY1 x Drift Y	CDX	14	8	10.33	2.45		3E-05
STORY1 ix Drift X	CDY	27	0.35	8.01	2.45	4E-05	
STORY1 x Drift Y	CDY	27	0.35	8.01	2.45		5E-05
			n	náximo dr	ift (%) =	0.00%	0.00%
			dri	ft admisib	le (%) =	0.50%	0.50%
						OK!!	OK!!

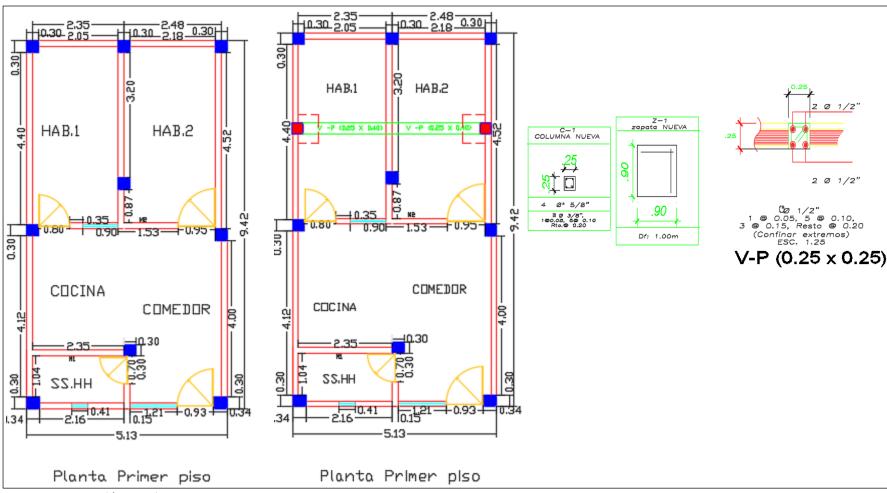
### Reforzamiento de la vivienda B-2




# Anexo 6:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-4


	•			_		FICE	IA DE R	EPOK.	IE					_	
I. IDENTIF	ICACIÓN												8		
PROPIETARIO	: Miria Angelin	Navarro Lava	do										FECHA:	17/11	1/2018
DNI	: 21255512												N° VIVIENDA	ı:	9
DIRECCIÓN	: AA. HH. Villa	Mercedes Mz.	B, Lt. 4												
DIRECCIÓN T	ÉCNICA Y CONSTRUCC	ÓN: NO													
ÁREA DE TER	RENO POR PISO:		1ª = 48.32 m2		ÁREA TOTA	L CONSTRUI	DA: 48.32 m	2			ANTIGÜED	AD: 30 años			
NÚMERO DE	PISOS CONSTRUIDOS:		1 piso		TOPOGRAF	A Y GEOLOG	SÍA: El terrer	o tiene pe	ndiente med	ia y el suelo e	arena grav	roso		***************************************	
ESTADO DE C	ONSERVACIÓN DE LA	/IVIENDA:			8										
201110000	011321171101011 02 01														
DAÑOS EN LA	VIVIENDA POR DESA	TRES NATURA	LES: NO												
II ASDECT	OS TÉCNICOS														
	NTOS Y CARACTE	RÍSTICAS D	E LA VIVIEI	NDA AUT	OCONSTI	RUIDA									
Elem								Caracte	rísticas						
Cimie		ADOS SOBRI								S ESTRUCT	URALES				
Mu Tec		LO PANDER ADO DE 0.2			Y LADRIL	LO MACI	ZO EN MUI	ROS POR	TANTES						
Colu		SIÓN : 0.25x0		130											
Vig		SÍON : 0.2x 0.													
L DEFICE	ENCLIC DE LA ECC	DUCTUDA													
D DEFICE	ENCIAS DE LA EST		LEMAS DE	UBICACI	ÓN						PROBLE	MAS CONSTR	UCTIVOS		
	DOD I A 7	ONA, LA VIV				IDIENTE			17			REJERAS, JUN		AS DE 2 C	м
	FOR LAZ					DIENTE.			Е	ALDMEI	DE CAINO	KEJEKAO, JUN	JIMEIC CELT	'm DE 3 CI	
			EMAS ESTE								1	IANO DE OBF	RA		
PRESENT	A HUMEDAD EN I	OS MUROS,	ASENTADO	S SOBRE	SUELOS D	ESIGUALE	S PROPEN	ISOS A				ESTADO REGU			
	ASE	TAMIENTO:	S DE ELEMEI	NTOS ES	TRUCTURA	LES						OTROS			
III. ANÁLIS	SIS POR SISMO														
	Y PARÁMETROS	SÍSMICOS													
Z= 0.45	U=1 C=2.:	R=3	S=1.2												
	aracterística a corte (k														
VR= Resiste	ncia al corte (Kn)= Ae	(0.5V°M +0.2	.3 pg)												
Área techada		Cortante ba	sal			Área de	muros		Den	sidad	Res	sistencia	Vrn		
							l			1			VIII	Resu	ltado
Piso 1 m2	Peso acum.	KN/m)	VEI = ZU	SCP/R	existen	te (Ae)	Requeri	da (Ar)	Ae/ Ar	Ae/Área		∑VR	KN		
1112	ANÁLISIS EN EL SI	NTIDO "x"							l	ı	l		KIN		
48.32	8		173.	95	1.	57	0.7	70	2.25	0.03		-	-	ADEC	UADO
10.32	ANÁLISIS EN EL SE 8	NTIDO "Y"	173.	05	2.	07	0.7	70	2.97	0.04	1			ADEC	UADO
	8		1/3.	73	2.0	07	0.7	10	2.91	0.04		-	-	ADEC	CADO
									ļ	1	l		l		
					ESTAB	ILIDAI	DE MU	JROS A	L VOLT	EO					
				FACT	ORFS					MOM.	ACT	MOM. F	REST	Resu	ltado
MIDO	Cl	_					a		t	0.45C1		25 t			:Mr
MURO			m		p		a		ı					IVIa	LIVII
	ADIMENSIONAL	ADIME	NSIONAL	KN	J/M2	1	n		m	Kn-r	n/m	KN-n	n/M		
M1	2		.125		.82		35		0.13	1.1		0.43			ΓABLE
M2	2	0	.125	1	.82		38	(	0.13	0.3	9	0.43	2	ESTA	ABLE
	-		-		-		-		-	-		-			-
	-	+	-		-	1	-		-	-		-			-
	-		-				-		-						-
		FAC	TORES IN	FLUYE	NTES EI	N EL RE	SULTAD	O; Ries	go = Func	ión (yulner	abilidad:	Peligro)			
							LNERAB					, , ,			
			Est	ructura	l							No estr	uctural		
		d de muro	s				DO AC	TUAL				<mark>Fabiquería y</mark>	<mark>parapet</mark> o	s	
	Adecua			X	Buena c					Todos est					
	Acepta				Regular				X	Algunos					X
	Inadecu	ada			Mala cal	ıdad	PP			Todos in	estables				
							PELIG						-		
		nicidad					Sı	uelo				Topogr	<mark>afía y pen</mark>	diente	
	Z = 4, COSTA I	EL PERÚ ÉS	ALTA										-		
Baja					Rígido						Plana				
Media			1		Intermed					X	Media				X
Alta			X		Flexible	S					Pronun	ciada			
					T										
		CALIFICACI	ÓN		ļ		C	ALIFICA	CIÓN				RESULT	ADO	
	VULNERAB	LIDAD	BAJ	Δ			PELIGRO		мі	EDIA		RIESGO S	ÍSMICO	ME	DIA
	CHILARAD		l DAG	•			LLLONO		.,,11					IVIL	
•								_							

Fuente: Laucata,2013.

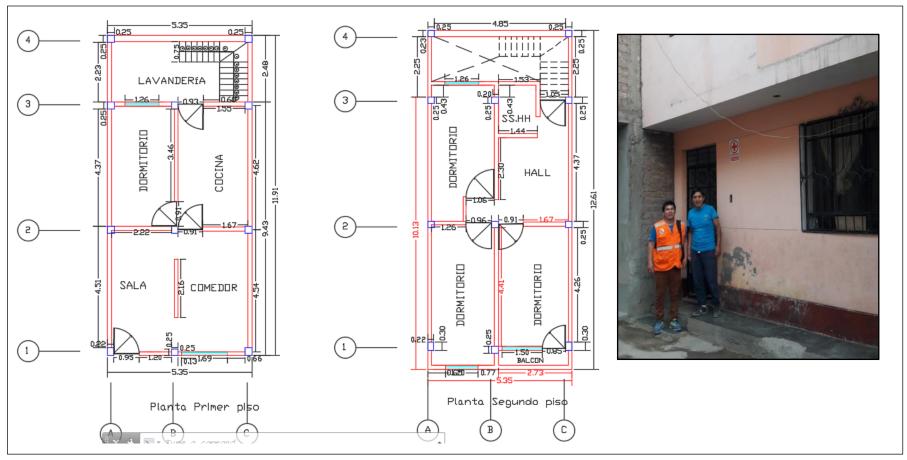

Plano de distribución, aligerado y fotos de la vivienda B-4



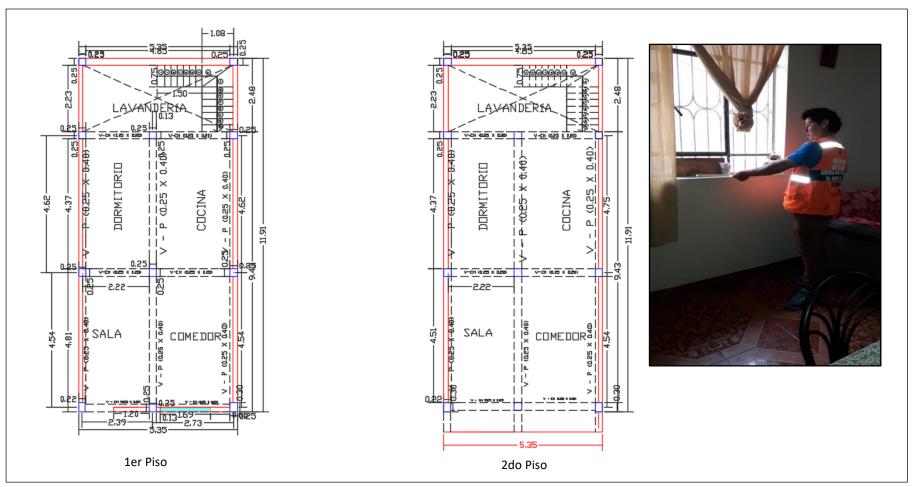
Analísis sísmico de la vivienda B-4



#### Reforzamiento de la vivienda B-4




Anexo 7:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-12


						FICH	IA DE R	EPORT	ΓE					
I. IDENTIF	ICACIÓN													
PROPIETARIO	: Marcela Flores	Urbano											FECHA:	15/11/2018
DNI	: 06781683		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						~~~~			~~~~~	N° VIVIENDA	.: 20
DIRECCIÓN	: AA. HH. Villa N	lercedes Mz.B	, Lt. 9										5	
DIRECCIÓN T	ÉCNICA Y CONSTRUCCIO	N:	NO	)										
	RENO POR PISO:		1º= 37.10 m2		ÁREA TOTAL	CONSTRUI	DA: 37.10 m	2			ANTIGÜED	AD: 14 años		
					TOPOGRAFÍ	A Y GEOLOG	i(Δ· Fl terre	no tiene ur	na nendiente i			arena gravoso		
	PISOS CONSTRUIDOS		1 pi	so	TOT OGIVAL	A I GLOLOG	in. Erterrer		ia periorente i	pronunciada y		archa gravoso		
ESTADO DE C	ONSERVACIÓN DE LA V	VIENDA:												
DAÑOS EN LA	VIVIENDA POR DESAS	RES NATURAL	ES: NO											
	OS TÉCNICOS													
	NTOS Y CARACTEI	ÁSTICAS D	E LA VIVIE	NDA AUT	OCONSTR	UIDA		~ .	4.1					
Elem Cimie		DOS SOBRE	SUELOS DI	ESIGUALE	S PROPEN	SOS A AS	ENTAMIE	Caracte NTOS DE		S ESTRUCT	IRALES			
Mu		O PANDERI								БЪТКССТ	OIC ILLO			
Tec		DO DE 0.2 r		ISO										
Colu		ÓN : 0.25x0.												
Viş	gas DIMENS	ON : 0.2x 0.4	+											
b DEFICI	ENCIAS DE LA EST	RUCTURA												
		PROBI	LEMAS DE	UBICACI	ÓN						PROBLEM	MAS CONSTR	UCTIVOS	
	POR LA ZO	NAS, LA VI	VIENDA SE	ENCUENT	RA EN PEN	NDIENTE			E	XISTENCIA	DE CANGI	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
		PROBL	EMAS ESTE	RUCTURA	LES									
DDECENIA	'A HUMEDAD EN L					ECICIIALE	C DDODEN	1000 4			M	ANO DE OBI	RA	
PRESENT							S PROPEN	15US A			EN PÉS	IMAS CONDI	CIONES	
	ASEN	FAMIENTOS	DE ELEME	NTOS EST	RUCTURA	LES						OTROS		
III. ANÁLI	SIS POR SISMO													
FACTORES	S Y PARÁMETROS S	SMICOS												
Z= 0.45	U=1 C=2.5	R=3	S=1.2	[										
	aracterística a corte (kF	*	•											
VR= Resiste	ncia al corte (Kn)= Ae	0.5V`M +0.2	3 pg)											
Área	C	ortante bas	sal			Área de	muros		Dens	sidad	Res	istencia		
techada													Vrn	Resultado
Piso 1	Peso acum. (	(N/m)	VEI = ZU	JSCP/R	existent	te (Ae)	Requeri	da (Ar)	Ae/ Ar	Ae/Área		∑VR		
m2	ANÁLISIS EN EL SEI	ITIDO "x"											KN	
27.1	8	TIDO X	133.	56	0.9	97	0.5	53	1.81	0.03		-	-	ADECUADO
37.1	ANÁLISIS EN EL SEI	TIDO "Y"												
	8		133.	56	1.4	19	0.5	53	2.79	0.04		-	-	ADECUADO
					ECEAD	W WD A D	DEM	TDOG A	TATOLOG	E0				
					ESTAB	шшац	DE MU	KUS A	L VOLT	LU				
				FACTO	DRES					MOM.	ACT	MOM. F	REST.	Resultado
MURO	C1		m		р	ā	a		t	0.45C1	mPa2	25 t	2	Ma:Mr
	ADIMENSIONAL	ADIME	NSIONAL	KN	I/M2	г	n		m	Kn-r	n/m	KN-n	v/M	
N/1	2		.125		.82				0.13	2.7		0.4		INESTABLE
M1 M2	2		.125		.82	3.	65		0.13	0.2		0.4.		ESTABLE ESTABLE
M3	2	_	.125		.82				0.13	0.2		0.4.		ESTABLE
1,13								`						
		FAC	TORES IN	FLUYE	NTES EN					ión (vulner	abilidad;	Peligro)		
						VUI	LNERAB	ILIDAD	)	1				
				ructura	<u> </u>							No estr		
		de muros	8		5		DO AC	TUAL		m 1		<mark>abiquería y</mark>	parapeto	os
	Adecuae Aceptab			X	Buena ca Regular				X	Todos est Algunos e				X
	Inadecua				Mala cal				А	Todos ine				Α
	шааесца	ud			iviaia cal	ıuau	PELIG	D()		10dos ine	stables			
	- Cr											m.	ev.	71
	Sismicidad Suelo Topografía y pendiente  Z=4, COSTA DEL PERÚ ES ALTA													
	Z = 4, COSTA D	L PERU ES .	ALTA						1					
Baja					Rígido						Plana			
Media					Intermed				1	X	Media			
Alta			X		Flexibles	3					Pronunc	ciada		X
	C	ALIFICACIO	ÓN				C.	ALIFICA	CIÓN				RESULT	ΓADO
	VULNERABII	IDAD					PELIGRO			ТА		RIESGO S	ísmico	MEDIA
	VULNEKABII	adab	BA	in			1 ELIGKO		AL	.1.14		KIESGUS.	ISMICO	IVIEDIA

Fuente: Laucata,2013

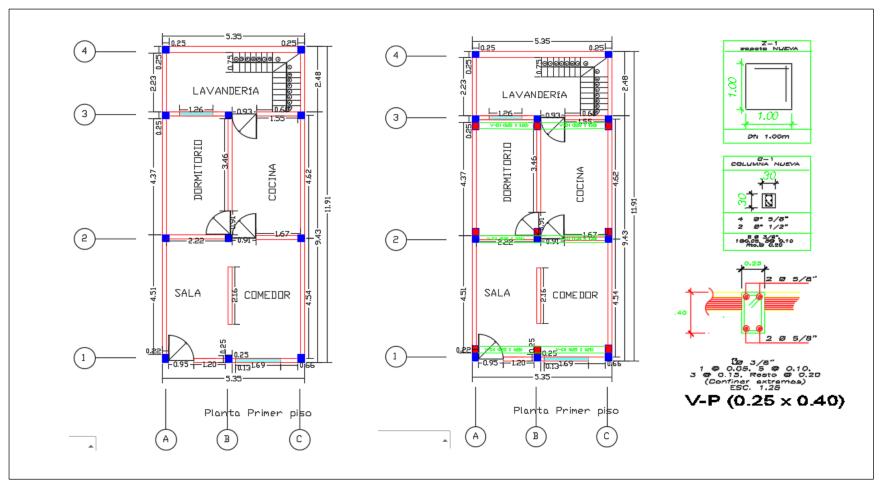
### Plano de distribución de la vivienda B-12




## Plano de aligerado y fotos de las viviendas



## Analísis sísmico de la vivienda B-12

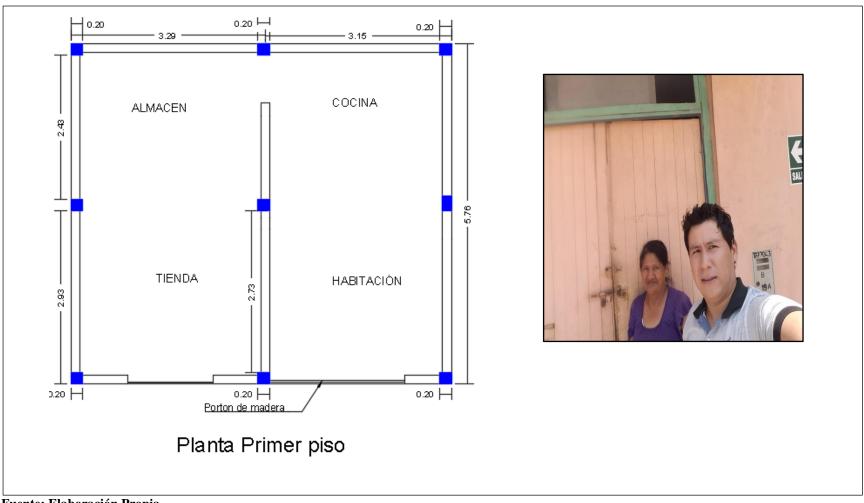

IRREGUL	ARIDAI	) TORSI	ONA	L Y TOR	SIONAL EX	TREMA						
Dirección	n en X-	X						Δpermi	s (E.030) =	0.5%		
Desplaza	miento	del cen	tro de	Dei	rivas I	Deriva		Condic	iones			
	masa (C	C.M.)		C.M	I. UX	max.	Δmax/	A CM	> 50%∆ı	ormic		
Story	Load	UX [m]	h [m]	(Δ/	h)% [%	<b>6</b> ]	Διιιαχ/	ΔCIVI	> 30 762	ermis.		
STORY2 C	DX MAX	0.676	2.4	<b>5</b> 27.		<b>422.00</b> %	15.29 <mark>I</mark>	Irreg.Ext.	84400%	Aplica		
STORY1 C	DX MAX	0.087	2.4	<b>5</b> 3.5	55% 1	242.00%	349.76 <mark>I</mark>	Irreg.Ext.	248400%	Aplica		
Dirección	n en Y-	Y						Δpermi	s (E.030) =	0.5%		
Desplazamiento del centro de Derivas Deriva Condiciones masa (C.M.) C.M. UY max.												
	masa (C	C.M.)		C.N	I. UY	max.	Δmax/	ΛСМ	> 50%∆r	nermis		
Story	Load 1	UY [m]	h [m]	(Δ/	'h)% [%	_	ΔIIIQX/I		> 50 /ш.	, ci i i i i i		
STORY2 C	DY MA	0.331	2.	5 13.2		90.000%	37.01 <mark>I</mark>	Irreg.Ext.	98000%	Aplica		
STORY1 C	DY MA	0.043	2.	<b>5</b> 1.7	20% <mark>2</mark>	45.000%	142.44 <mark>I</mark>	Irreg.Ext.	49000%	Aplica		
Direcció	n en X	<b>X-X</b>			O E IRRE	GULARII				EZ		
Direcció	plaz. C. Load	.M. UX [m	V ] [to		C = Vx/Ux [tonf/m] 37 460	Ki/k	CON (i+1<0.7,	NDICIÓN .6 I				
Direcció Des Story STORY2	plaz. C. Load CDX MAX	C-X .M. UX [m C 0.670	V ] [to	/x K onf] 5.23	X = Vx/Ux [tonf/m] 37	Ki/k	CON	NDICIÓN .6 I	E.030			
Direcció Des Story STORY2 STORY1 Direcció	plaz. C. Load CDX MAX	X-X .M. UX [m < 0.67 < 0.08	V ] [to 6 2: 7 4:	/x K onf] 5.23 0.00	X = Vx/Ux [tonf/m] 37	Ki/k	<b>CON</b> (i+1<0.7, 2.3 Regu	NDICIÓN .6 I	E.030 Ki/(Kp3s<(			
Direcció Des Story STORY2 STORY1 Direcció	plaz. C. Load CDX MAX CDX MAX on en Y	X-X .M. UX [m < 0.67 < 0.08	V ] [to 6 29 7 40	/x k onf] 5.23 0.00	( = Vx/Ux [tonf/m] 37 460	<b>Ki/K</b>	<b>CON</b> (i+1<0.7, 2.3 Regu	NDICIÓN .6 I Ilar NDICIÓN	E.030 Ki/(Kp3s<(	0.8, .7		
Direcció Des Story STORY2 STORY1 Direcció	plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load	(-X .M. UX [m < 0.67 < 0.08 '-Y .M. UY [m	V ] [to 6 29 7 44 V ] [to	/x k onf] 5.23 0.00	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy	<b>Ki/K</b>	CON (i+1<0.7, 2.3 Regu	NDICIÓN .6 I Ilar NDICIÓN	E.030 Ki/(Kp3s<0	0.8, .7		
Direcció  Des Story  STORY2 STORY1  Direcció Des Story	plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load	X-X .M. UX [m < 0.67 < 0.08 Y-Y .M. UY [m]	V ] [to 6 29 7 44 V ] [to	/x k pnf] 5.23 0.00 /y k pnf] 3.96	X = Vx/Ux [tonf/m] 37 460 X = Vy/Uy [tonf/m]	Ki/k	CON (i+1<0.7, 2.3 Regu	NDICIÓN .6 I llar NDICIÓN .6 I	E.030 Ki/(Kp3s<0	0.8, .7		
Direcció  Story  STORY2 STORY1  Direcció  Des Story  STORY2	plaz. C. Load CDX MAX on en Y plaz. C. Load CDX MAX on en Y con en Y con en Y	C-X .M. UX [m .C. 0.67( .C. 0.08 .C-Y .M. UY [m .C. 0.33( .C. 0.04)	V ] [to 6 2: 7 4:  V ] [to 1 6: 3 10	/x K onf] 5.23 0.00 /y F onf] 3.96 1.08	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy [tonf/m] 193 2351	Ki/k	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7,	NDICIÓN .6 I llar NDICIÓN .6 I	E.030 Ki/(Kp3s<0	0.8, .7		
Direcció  Story  STORY2  STORY1  Direcció  Des  Story  STORY2  STORY2	plaz. C. Load CDX MAX on en Y plaz. C. Load CDX MAX on en Y con en Y con en Y	C-X .M. UX [m .C. 0.67( .C. 0.08 .C-Y .M. UY [m .C. 0.33( .C. 0.04)	V ] [to 6 2: 7 4:  V ] [to 1 6: 3 10	/x K onf] 5.23 0.00 /y F onf] 3.96 1.08	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy [tonf/m] 193 2351	<b>Ki/K</b> 1 <b>Ki/K</b>	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7,	NDICIÓN .6 I NDICIÓN .6 I	E.030 Ki/(Kp3s<0	0.8, .7		
Direcció Des Story STORY2 STORY1 Direcció Des Story STORY2 STORY2 STORY2 STORY1	plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load CDX MAX	UX [m// 0.67/ 0.08/ 7-Y .M. UY [m// 0.33/ 0.04/ DAD E	V ] [to 6 29 7 44  V ] [to 1 6: 3 10	/x k onf] 5.23 0.00 /y k onf] 3.96 1.08	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy [tonf/m] 193 2351	Ki/k	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7, 2.2 Regu	NDICIÓN .6 I llar NDICIÓN .6 I	E.030   Ki/(Kp3s<0   E.030   Ki/(Kp3s<0	0.8, .7 0.8, .7		
Direcció  Story  STORY2  STORY1  Direcció  Des  Story  STORY2  STORY2	plaz. C. Load CDX MAX on en Y plaz. C. Load CDX MAX on en Y con en Y con en Y	UX [m// 0.67/ 0.08/ 7-Y .M. UY [m// 0.33/ 0.04/ DAD E	V ] [to 6 2: 7 40  V ] [to 1 6: 3 10  DE M	/x k onf] 5.23 0.00 /y k onf] 3.96 1.08	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy [tonf/m] 193 2351	Ki/k	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7, 2.2 Regu	NDICIÓN .6 I llar NDICIÓN .6 I llar	E.030 Ki/(Kp3s<) I E.030 Ki/(Kp3s<)	0.8, .7 0.8, .7 0.8, .7		
Direcció Des Story STORY2 STORY1 Direcció Des Story STORY2 STORY2 STORY2 STORY1	con en X plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load CDX MAX CDX MAX DI LOAD LOAD LOAD LOAD LOAD	UX [m. UX [m. 0.67/c 0.08/r-Y .M. UY [m. 0.33/c 0.04/r 0.0	V ] [to 6 29 7 40 V ] [to 1 63 3 10 DE M	/x konf] 55.23 0.00 /y konf] 3.96 1.08 ASA O	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy [tonf/m] 193 2351 PESO P.parc. [tonf]	Ki/K  1  Ki/K  1  grav  P.sism. [tonf]	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7, 2.2 Regu redad (g) M.sism [t-s²/m	NDICIÓN .6 I llar NDICIÓN .6 I llar	E.030   Ki/(Kp3s<)   E.030   Ki/(Kp3s<)   9.81 m/	0.8, .7 0.8, .7 0.8, .7		
Direcció Des Story STORY2 STORY1 Direcció Des Story STORY2 STORY2 STORY1 IRREGL	plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load CDX MAX CDX MAX DI LOAD LOAD LOAD LOAD LOAD LOAD LOAD LOAD	UX [m. UX [m. ( 0.67/c 0.08/r-Y	V ] [to 6 29 7 40 V ] [to 1 63 3 10 DE M	/x k onf] 5.23 0.00 /y k onf] 3.96 1.08 ASA O Pacum [tonf]	( = Vx/Ux [tonf/m] 37 460 ( = Vy/Uy [tonf/m] 193 2351 PESO . P.parc. [tonf] 44.77	Ki/K  1  Ki/K  1  grav  P.sism. [tonf]  57.89	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7, 2.2 Regu redad (g) M.sism [t-s²/m	NDICIÓN .6 I slar NDICIÓN .6 I slar	E.030   Ki/(Kp3s<)   E.030   Ki/(Kp3s<)   9.81 m/	0.8, .7 0.8, .7 0.8, .7		
Direcció Des Story STORY2 STORY1 Direcció Des Story STORY2 STORY2 STORY1 IRREGL	plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load CDX MAX DI LOAD CDX MAX	UX [m. UX [m. ( 0.67/ ( 0.08/ '-Y .M. UY [m. ( 0.33/ ( 0.04/ ) DAD E  DAD E  D Top D Bott	VV	/x k onf] 5.23 0.00 /y k onf] 3.96 1.08 ASA O Pacum [tonf] 44.774	(= Vx/Ux [tonf/m] 37 460 (= Vy/Uy [tonf/m] 193 2351 PESO . P.parc. [tonf] 44.77 26.24	Ki/K  1  Ki/K  1  grav  P.sism. [tonf]  57.89	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7, 2.2 Regu M.sism [t-s²/m	NDICIÓN .6 I slar NDICIÓN .6 I slar	E.030   Ki/(Kp3s<)   E.030   Ki/(Kp3s<)   9.81 m/	0.8, .7 0.8, .7 0.8, .7		
Direcció Des Story STORY2 STORY1 Direcció Des Story STORY2 STORY1 IRREGL Story STORY2 STORY2 STORY2	plaz. C. Load CDX MAX CDX MAX on en Y plaz. C. Load CDX MAX DI Load CDX MAX CDX MAX DI LOAD PESC PESC PESC PESC	(-X .M. UX [m ( 0.67/ ( 0.08/ (-Y .M. UY [m ( 0.33/ ( 0.04/ DAD E	VV	/x k onf] 5.23 0.00 /y k onf] 3.96 1.08 ASA O Pacum [tonf] 44.774 71.011	(= Vx/Ux [tonf/m] 37 460 (= Vy/Uy [tonf/m] 193 2351 PESO . P.parc. [tonf] 44.77 26.24 46.47	Ki/K  1  Ki/K  1  grav  P.sism. [tonf]  57.89	CON (i+1<0.7, 2.3 Regu CON (i+1<0.7, 2.2 Regu M.sism [t-s²/m	NDICIÓN .6 I NDICIÓN .6 I I II	9.81 m/ONDIC. E	0.8, .7 0.8, .7 0.8, .7		



Modelado de la vivienda B-12

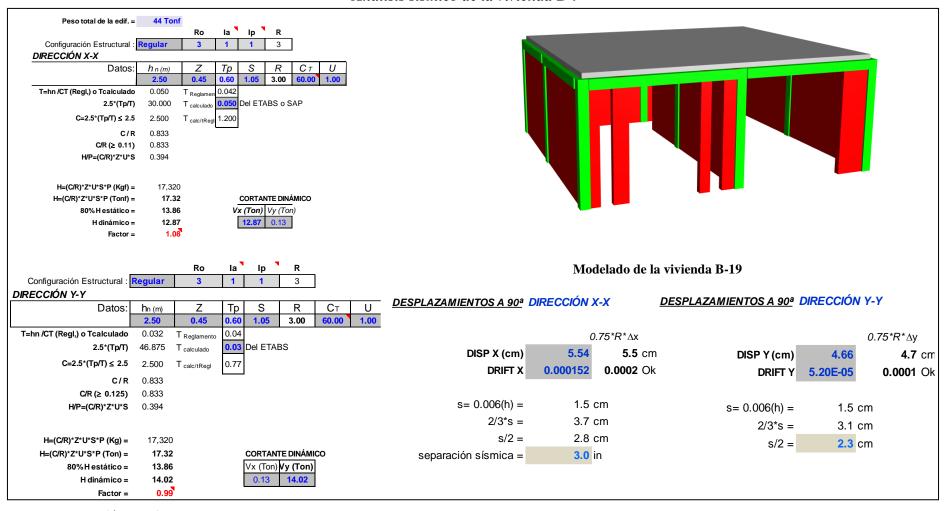
DESPLA	ZAMIEN	TO RE	LATIVO	DE ENT	REPISO	- DRIFT		
Story	Item	Load	Point	X	Υ	Z	DriftX	DriftY
STORY2	ıx Drift X	CDX	Χ	0.002	8	2.39	0	4.9
STORY2	x Drift Y	CDX	Υ	0.0004	54	5.12	4.22	4.9
STORY2	ıx Drift X	CDY	Χ	0.002	8	2.39	0	4.9
STORY2	x Drift Y	CDY	Υ	0.0004	54	5.12	4.22	4.9
STORY1	ıx Drift X	CDX	Χ	0.0002	55	4.33	0.78	2.45
STORY1	x Drift Y	CDX	Υ	0.0004	80	2.39	12.42	2.45
STORY1	ıx Drift X	CDY	Χ	0.0002	55	4.33	0.78	2.45
STORY1	x Drift Y	CDY	Υ	0.0004	80	2.39	12.42	2.45
			_	n	náximo	drift (%) =	1242.00%	490.00%
				dri	ft admis	sible (%) =	0.50%	0.50%
							NO!!	NO!!

## Reforzamiento de la vivienda B-12

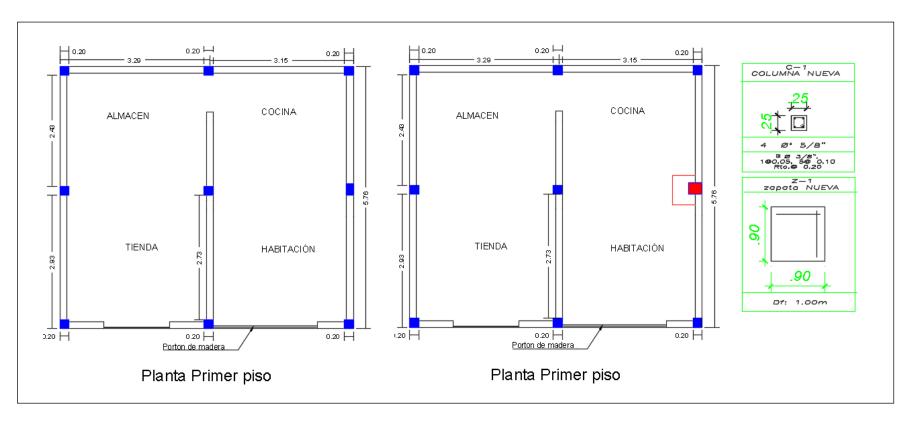



Anexo 8:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda B-9

						FICH	A DE R	EPORT	ГE					
I. IDENTIF	ICACIÓN													
PROPIETARIO	: Marcela Flores l	Irbano											FECHA:	15/11/2018
DNI	: 06781683												N° VIVIENDA	: 20
DIRECCIÓN	: AA. HH. Villa M	ercedes Mz.B	i, Lt. 9											
DIRECCIÓN T	ÉCNICA Y CONSTRUCCIÓ	N:	NO	)										
ÁREA DE TER	RENO POR PISO:		1º= 37.10 m2		ÁREA TOTAI	CONSTRUI	DA: 37.10 m	2			ANTIGÜED	AD: 14 años		
NÚMERO DE	PISOS CONSTRUIDOS		1 pi	so	TOPOGRAFÍ	A Y GEOLOG	iíA: El terrer	no tiene ur	na pendiente	pronunciada y	el suelo es	arena gravoso		
ESTADO DE C	ONSERVACIÓN DE LA VI	/IENDA:												
DAÑOS EN LA	A VIVIENDA POR DESAST	RES NATURAL	ES: NO											
II. ASPECI	OS TÉCNICOS													
	NTOS Y CARACTER	ÍSTICAS DI	E LA VIVIE	NDA AUT	OCONSTR	UIDA								
Elem Cimie		OS SOBRE	SUELOS DI	ESIGUALE	S PROPEN	SOS A AS	ENTAMIEN	Caracte		S ESTRUCT	IIRAI ES			
Mu			ETA EN TAB							5 L5 TRUCT	CIGILLO			
Tec			n EN EL 1° F	ISO										
Colu Viş		ON : 0.25x0. ON : 0.2x 0.4	.20, 0.15x0.2											
112	545	J11 . O.Z.4 O.												
b DEFICII	ENCIAS DE LA ESTR				A.,						nn o===		VIORE 10 C	
			LEMAS DE									MAS CONSTE		
	POR LA ZO					NDIENTE			E	XISTENCIA	DE CANGI	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
		PROBLI	EMAS ESTI	RUCTURA	LES					<del></del>				
PRESENT	A HUMEDAD EN LO	S MUROS,	ASENTADO	S SOBRE	SUELOS D	ESIGUALE	S PROPEN	SOS A				IANO DE OBI IMAS CONDI		
	ASENT	AMIENTOS	DE ELEME	NTOS EST	RUCTURA	LES						OTROS		
III. ANÁLIS	SIS POR SISMO													
	S Y PARÁMETROS SÍ	SMICOS												
Z= 0.45	U=1 C=2.5	R=3	S=1.2											
	aracterística a corte (kPa													
	ncia al corte (Kn)= Ae (0	0.5 V M +0.2	3 pg)											
Área techada	Co	rtante bas	sal			Área de	muros		Den	sidad	Res	istencia	Vrn	
	Dasa saum (V	NI/ma)	VEL - ZI	ICCD/D	oviotom	to (Aa)	Dagmani	do (An)	A = / A =	A = / Á == =		ΣVR	· · · · ·	Resultado
Piso 1 m2	Peso acum. (K	18/111)	VEI = ZU	SCP/K	existen	ie (Ae)	Requeri	Ja (AI)	Ae/ Ar	Ae/Área		<u>Z</u> VK	KN	
	ANÁLISIS EN EL SEN	ΓΙDO "x"												
37.1	8 ANÁLISIS EN EL SEN	FIDO "V"	133.	56	0.9	97	0.5	3	1.81	0.03	<u> </u>		-	ADECUADO
	8	IIDO I	133.	56	1.4	19	0.5	3	2.79	0.04	1		-	ADECUADO
									'					
					ESTAB	ILIDAD	DE MU	ROS A	L VOLT	EO				
				FACTO	ORES					MOM.	ACT	MOM. I	REST.	Resultado
MURO	C1		m		р	ä	a		t	0.45C1	mPa2	25 1	12	Ma:Mr
	ADIMENSIONAL	ADIME	NSIONAL	KN	I/M2	г	n		m	Kn-r	n/m	KN-r	n/M	
M1	2		.125		.82		65		0.13	2.7		0.4		INESTABLE
M2	2		.125		.82	3.			0.13	0.2		0.4		ESTABLE
M3	2	0.	.125	1	.82	1	1	(	0.13	0.2	0	0.4	2	ESTABLE
		EACT	TODES IN	ELLINE	NTEC EN	JEI DE	CIII TAD	O. Dioc.	go = Funci	ión (vulner	abilidadı	Doligro)		
		PAC	OKES IN	LUIL	HILD LI		LNERAB			ion (vuiner	aomuad;	r engro)		
			Est	ructura	1	, 01						No estr	uctural	
	Densidad	de muros				ESTA	DO AC	TUAL			1	abiquería y		os
	Adecuad			X	Buena ca					Todos est				
											X			
	Inadecuada Mala calidad Todos inestables													
	~-						PELIG					m	0/	
	Sismi						Sı	ıelo				Topogr	<mark>afía y per</mark>	diente
D.	Z = 4, COSTA DE	L PERU ES .	ALTA		D/ · ·				I		DI.			
Baja			-		Rígido					•-	Plana			
Media					Intermed					X	Media			
Alta			X		Flexibles	S					Pronunc	ciada		X
		Y TELOP OF	Ast		Ĭ			A T TENEVE	crós		ı		DEGET	2400
l	C.	LIFICACIÓ	JIN .				— С	ALIFICA	CION				RESULT	ADU
	VULNERABIL	DAD	BA.	A		1	PELIGRO		AI	TA		RIESGO S	ÍSMICO	MEDIA
l											I			


Fuente: Laucata,2013

Plano de distribución Y fotos de la vivienda B-9

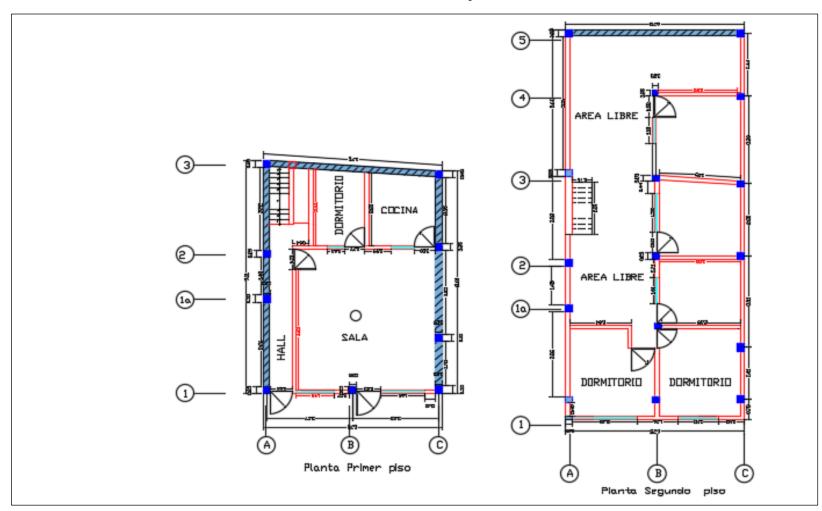



Plano de aligerado y fotos de las viviendas B-9 6.43 0.20 COCINA ALMACEN V- CH (0.25 X 0.20) V- CH (0.25 X 0.20) 0.15 TIENDA HABITACIÓN 0.20 Planta 1er Piso

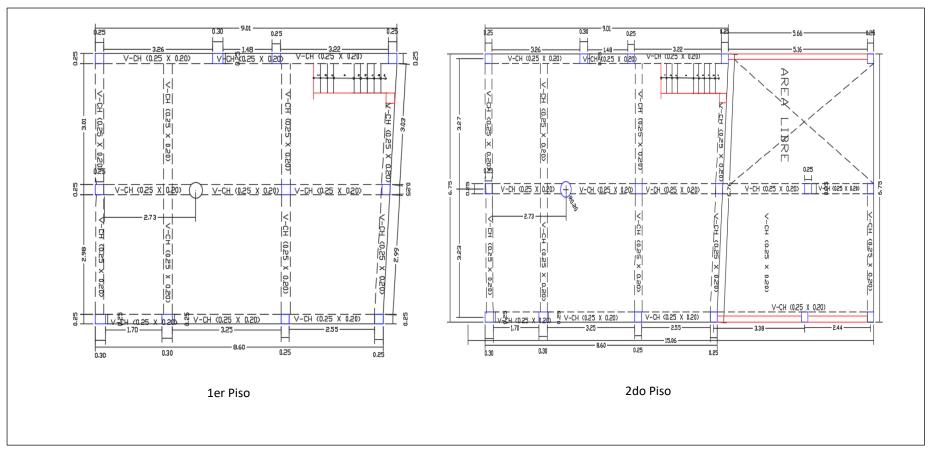
#### Analísis sísmico de la vivienda B-9



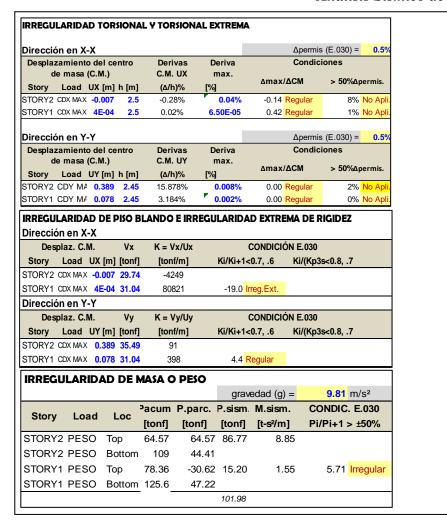
### Reforzamiento de la vivienda B -19

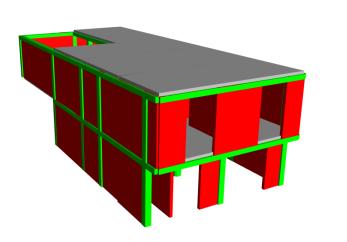



Anexo 9: Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda C-2


							FICH	A DE REPORT	E					
I. IDENTIF	TCACIÓN													
PROPIETARIO	: Vidal Rodri	guez Vel	arde										FECHA:	11/11/2018
DNI	: 28293561	1											N° VIVIENDA	k: 7
DIRECCIÓN	: AA. HH. Vil	lla Merce	des Mz.C, Lt. 2										.å	
	ÉCNICA Y CONSTRU		.,	NC							······································			
			1º=58.05 m2	2º=81.9		ÁDEA TOT:	CONCERT	DA - 140 03 2			ANTICOS	OAD : 18 años		
	RENO POR PISO:				8 m2			DA: 140.03 m2			L	JAD : 18 anos		
	PISOS CONSTRUIDO			2 pisos		TOPOGRAFI	A Y GEOLOG	iíA: El terreno es pron	unciada y el si	uelo es arena g	ravoso			
ESTADO DE O	ONSERVACIÓN DE	LA VIVIE	NDA:											
DAÑOS EN L	A VIVIENDA POR DE	ESASTRES	NATURALES: N	NO										
			***************************************											
II. ASPECT	OS TÉCNICOS													
	NTOS Y CARAC	TERÍS	TICAS DE LA	A VIVIEND	A AUTO	CONSTRU	IDA							
Elem	entos							Caracte	ísticas					
Cimi								TAMIENTOS DE EI		ESTRUCTUR	ALES			
								EN MUROS PORTA	NTES					
Colu			DE 0.2 m EN V: 0.25x0.20,		JIANIO	EN EL 2° I	150							
Vis			V: 0.2x 0.4	0.15.0.2										
b DEFICE	ENCIAS DE LA I	ESTRU		MACRE	DIC+~	N.Y			T T		DD OF T	MAGGOSTO	TIONAL CO	
				MAS DE U								MAS CONSTE		
	POR I	LA ZON	A, LA VIVIE	NDA SE EN	CUENTR	A EN PENI	DIENTE.		Е	XISTENCIA	DE CANG	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
			PROBLEM	IAS ESTRU	JCTURAI	ES								
PRESEN	TA HUMEDAD	EN LOS	MUROS. AS	ENTADOS	SOBRES	UELOS DE	SIGUALES	PROPENSOS A				MANO DE OBI		
									1	DE B	AJA CALI	DAD EN LA CO	ONSTRUCC	ION
		noen IA	AMIENTOS D	E ELEMEN	103 ES []	CUCTURAL	ES					OTROS		
III. ANÁLI	SIS POR SISMO													
FACTORES	S Y PARÁMETRO	OS SÍSM	IICOS											
Z= 0.45		=2.5	R=3	S=1.2										
	aracterística a corte			`										
	ncia al corte (Kn)=	Ae (0.5	v м +0.23 рg	9										
Área techada		Cor	rtante basal	1			Área de	muros	Den	sidad	Res	sistencia	Vrn	
								ı				_	VIII	Resultado
Piso 1	Peso acu	ım. (Kî	V/m)	VEI = ZU	SCP/R	existen	te (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Área		∑VR	IZM	
m2	ANÁLISIS EN EL	SENTII	OO "x"										KN	
50.05		8		504.	11	1.1	75	2.02	0.87	0.03		-	-	ACEPTABLE
58.05	ANÁLISIS EN EL	. SENTII	OO "Y"											
		8		504.	11	4.9	91	2.02	2.44	0.08		-	-	ADECUADO
									ļ					
						ESTABI	LIDAD	DE MUROS A	L VOLTE	O				
				1	FACTO	RES				MOM.	ACT	MOM. I	REST	Resultado
MIDO														
MURO	C1		m			p	i	a	t	0.45C1	mPa2	25	12	Ma:Mr
	ADIMENSION	NAL	ADIMENS	SIONAL	KN	I/M2	г	n	m	Kn-r	n/m	KN-r	n/M	
M1	2		0.12	.5	1	.82	4.	78	0.13	4.6	8	0.4	2	INESTABLE
M2	2		0.12	25	1	.82	2.	94	0.13	1.7	7	0.4	2	INESTABLE
M3	2		0.12	.5	1	.82	2.	34	0.13	1.1	2	0.4	2	INESTABLE
			-			-		-	-	-		-		-
	-		-			-		-	-	-		-		-
			FACTO	DRES INF	LUYEN	ITES EN		ULTADO; Riesg		ón (vulnera	bilidad;	Peligro)		
							VUL	NERABILIDAI	)					
				Estr	uctural							No estr	uctural	
	Dens	sidad o	de muros				ESTA	DO ACTUAL			,	Fabiquería y	y parapet	os
		ecuada				Buena ca				Todos est				
		eptable			X	Regular			X	Algunos				
	Inad	lecuada	a			Mala cal	idad			Todos ine	stables			X
								PELIGRO						
	9	Sismic	idad					Suelo				Topogr	afía y per	ndiente
	-		PERÚ ES AL	.TA								1 8	V 1	
Baja						Rígido					Plana			
Media						Intermed	lio		<u> </u>	X	Media			
Alta				x		Flexible			<u> </u>		Pronun	ciada		X
гина				Α.		1 TEXTURE	•		1		ı ıvıluli	viaua		A
			TELO LOS CONTRA			ı		Constant Constant	CIÁN				DEGE	ELDO
		CAI	LIFICACIÓN					CALIFICA	CION				RESULT	IADU
	VULNER	RABILII	DAD	MED	IA			PELIGRO	AI	.TA		RIESGO S	ÍSMICO	ALTA

Fuente: Laucata,2013.


## Plano de distribución Y fotos de la vivienda C-2




Plano de aligerado y fotos de las viviendas C-2

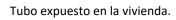


#### Análisis Sísmico de la vivienda C-2



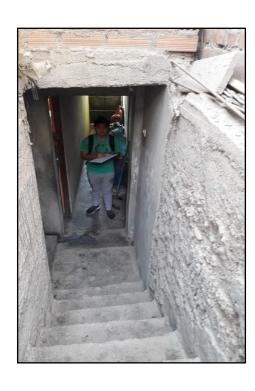


Modelado de la vivienda C-2


DECDI AZAMIENTO DEI ATILIO DE ENTREDICO. DRIET

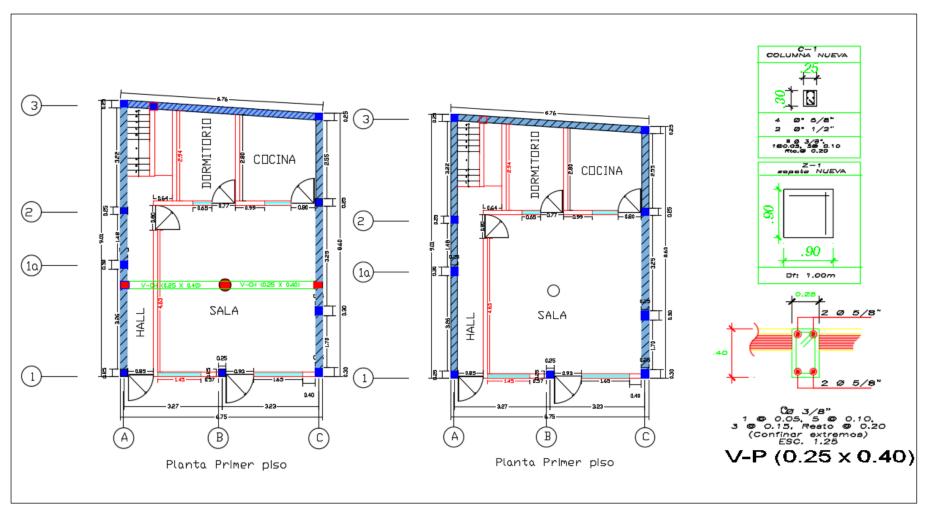
Story	Item	Load	Point X		Υ	Z	DriftX	DriftY
STORY	2 ıx Drift >	CDX	127	0	12.54	4.9	0.000386	
STORY	2 x Drift Y	CDX	25	0	8.69	4.9		4.50E-05
STORY	2 ix Drift >	CDY	126	0	11.6	4.9	1.70E-05	
STORY	2 x Drift Y	CDY	129	2.29	14.86	4.9		7.70E-05
STORY	1 ix Drift >	(CDX	65	5.58	0.69	2.45	6.50E-05	
STORY	1 x Drift Y	CDX	15	0	3.57	2.45		1.60E-05
STORY	1 ix Drift >	CDY	25	0	8.69	2.45	8.00E-06	
STORY	1 x Drift Y	CDY	151	0	2.71	2.45		9.00E-06
			<del>_</del>	má	áximo	drift (%) =	0.04%	0.01%
		0.50%	0.50%					
							OK!!	OK!!

Elaboración Propia.


## Fotos de la vivienda C-2





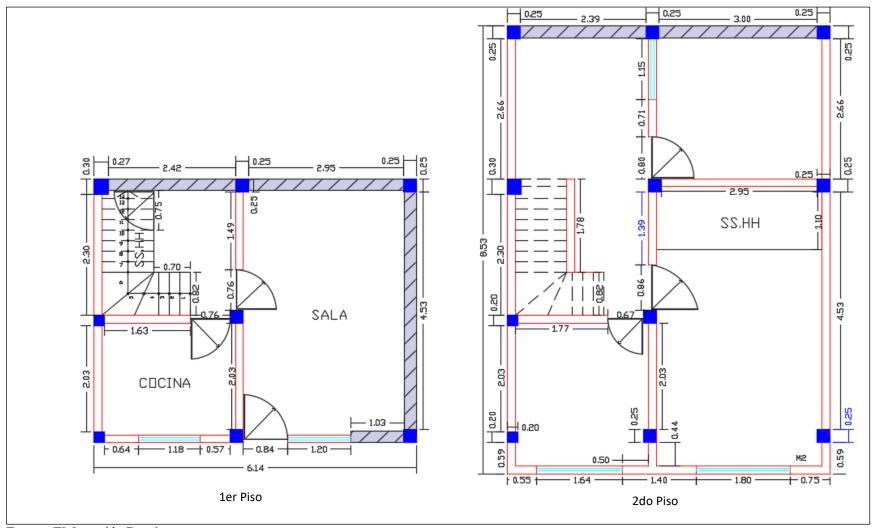



Diseño completo de la casa.



Infraestructura expuesta a deterioros

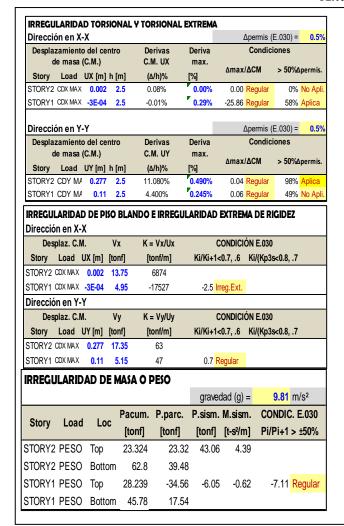
### Reforzamiento de la vivienda C-2

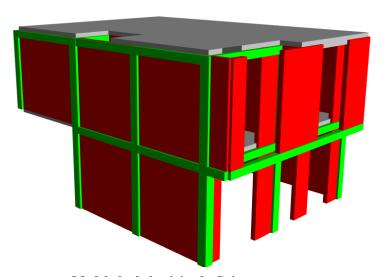



Anexo 10: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda C-4

I. IDENTIF				FICI	HA DE REPOR	ΓE					
	ICACIÓN										
PROPIETARIO	) : Marcela Grijaldo (	Quinto							FI	ECHA:	14/11/2018
DNI	: 80648730								N	I° VIVIENDA:	5
DIRECCIÓN	: AA. HH. Villa Me	rcedes Mz C It 4									
	ÉCNICA Y CONSTRUCCIÓN			(							
AREA DE	E TERRENO POR PISO:	1º=25.39 m2 2	9=85.14 m2	ÁREA TOTAL CONSTR				ANTIGÜEDA			
NÚMERO DE	PISOS CONSTRUIDOS:	2 pisos		TOPOGRAFÍA Y GEOL	OGÍA: El terreno tiene بـ	endiente med	ia y el suelo es	arena gravo	iso		
ESTADO DE C	ONSERVACIÓN DE LA VIV	ENDA:									
DAÑOS EN LA	A VIVIENDA POR DESASTRI	ES NATURALES: NO									
I. ASPECT	OS TÉCNICOS										
a ELEME	NTOS Y CARACTERÍS	STICAS DE LA VIV	IENDA AUTO	CONSTRUIDA							
Elem					Caracte						
Cimie		OS SOBRE SUELOS				ESTRUCTUR	ALES				
Mu					ZO EN MUROS PORT	ANTES					
Tec Colu		O DE 0.2 m EM EL 1 N: 0.25x0.20, 0.15x0		DEN EL 2º PISO							
Vig		N: 0.2x 0.4	-								
- DEFICI	ENCIAS DE LA ESTRU										
		PROBLEMAS	DE UBICACIO	ON				PROBLEM	IAS CONSTRU	ICTIVOS	
	POR LA ZO	NA SE ENCUENTR.	A EN PENDIEN	NTE LA VIVIENDA		E	XISTENCIA I	E CANGR	EJERAS, JUNTA	AS SÍSMICA	AS DE 3 CM.
		PROBLEMAS E				+					
						+		м	ANO DE OBRA	١	
PRESE	NTA HUMEDAD EN L	OS MUROS, ASENT	ADOS SOBRE	SUELOS DESIGUA	LES PROPENSOS	CONDIC	ONANDO AI				O POR EL ALBAÑII
	ASENT	AMIENTOS DE ELE	MENTOS EST	RUCTURALES					OTROS		
						•					
	Peso acum. (k ANÁLISIS EN EL SENT 8	ortante basal (N/m) VEI	= ZUSCP/R 397.91	Área existente (Ae)	de muros  Requerida (Ar)	Ae/ Ar   Ae/ Área			istencia Vrn ∑VR KN		Resultado
20.07	ANÁLISIS EN EL SENT	IDO "Y"								-	ACEPTABLE
23.37	ANALISIS EN EL SENT 8	IDO "Y"	397.91	2.29	1.59	1.44	0.09		-	-	ACEPTABLE
20.07		IDO "Y"	397.91	2.29	1.59	1.44			-	-	
20.07		IDO "Y"	397.91				0.09		-	-	
шэ.Э7		IDO "Y"		ESTABILIDA	1.59  D DE MUROS A		0.09			-	ADECUADO
20.07		IDO "Y"	397.91 FACTO	ESTABILIDA			0.09	ACT	MOM. RE	-	
		IDO "Y"		ESTABILIDA			0.09			-	ADECUADO
	CI	m	FACTO	ESTABILIDA DRES	D DE MUROS A	L VOLTE	0.09 MOM. 0.45C1	mPa2	MOM. RE	EST.	ADECUADO  Resultado
MURO	C1 ADIMENSIONAL	m ADIMENSIONA	FACTO	ESTABILIDA DRES P	D DE MUROS A	t m	0.09  MOM. 0.45C1: Kn-n	mPa2 v/m	MOM. RE	EST.	Resultado Ma:Mr
MURO M1	CI ADIMENSIONAL 2	m ADIMENSIONA 0.125	FACTO	ESTABILIDA  DRES  P  N/M2  1.82	D DE MUROS A  m  0.42	t m 0.13	0.09  MOM. 0.45C1: Kn-n	mPa2 v/m	MOM. RE 25 t2 KN-m/N 0.42	EST.	Resultado Ma:Mr
MURO M1 M2	C1 ADIMENSIONAL 2 2	m ADIMENSIONA 0.125 0.125	FACTO	ESTABILIDAI  DRES  P  N/M2  1.82  1.82	a m 0.42 2.16	t m 0.13 0.13	0.09  MOM. 0.45Cl: Kn-n 0.0	mPa2 1/m 4	MOM. RE 25 t2 KN-m/M 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1	C1 ADIMENSIONAL 2 2 2	m ADIMENSIONA 0.125	FACTO	ESTABILIDA  DRES  P  N/M2  1.82	D DE MUROS A  m  0.42	t m 0.13	0.09  MOM. 0.45C1: Kn-n	mPa2 1/m 4	MOM. RE 25 t2 KN-m/N 0.42	EST.	Resultado Ma:Mr
MURO M1 M2	C1 ADIMENSIONAL 2 2	m ADIMENSIONA 0.125 0.125	FACTO	ESTABILIDAI  DRES  P  N/M2  1.82  1.82	a m 0.42 2.16	t m 0.13 0.13	0.09  MOM. 0.45Cl: Kn-n 0.0	mPa2 1/m 4	MOM. RE 25 t2 KN-m/M 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2	m ADIMENSIONA 0.125 0.125	FACTO	ESTABILIDAI  DRES  P  N/M2  1.82  1.82	a m 0.42 2.16	t m 0.13 0.13	0.09  MOM. 0.45Cl: Kn-n 0.0	mPa2 1/m 4	MOM. RE 25 t2 KN-m/M 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2	m ADIMENSIONA 0.125 0.125 0.125 -	FACTO	ESTABILIDAD  DRES  P  N/M2  1.82  1.82  1.82	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 -	0.09  MOM. 0.45C1.  Kn-n 0.0- 0.99 0.11	mPa2 n/m 4 5	MOM. RE 25 t2 KN-m/N 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2	m ADIMENSIONA 0.125 0.125 0.125 -	FACTO	ESTABILIDAD  DRES  P  N/M2  1.82  1.82  -  -  NTES EN EL RI	a m 0.42 2.16 0.8	t m 0.13 0.13	0.09  MOM. 0.45C1.  Kn-n 0.0- 0.99 0.11	mPa2 n/m 4 5	MOM. RE 25 t2 KN-m/N 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2	m ADIMENSIONA 0.125 0.125 0.125	FACTO	ESTABILIDAD  DRES  P  N/M2  1.82  1.82   -  NTES EN EL RI  VUI	a m 0.42 2.16 0.8	t m 0.13 0.13	0.09  MOM. 0.45C1.  Kn-n 0.0- 0.99 0.11	mPa2 n/m 4 5	MOM. RE 25 t2 KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2	m ADIMENSIONA 0.125 0.125 0.125	FACTO	ESTABILIDAD  DRES  P  N/M2  1.82  1.82   -  NTES EN EL RI  VUI	a m 0.42 2.16 0.8	t m 0.13 0.13	0.09  MOM. 0.45C1.  Kn-n 0.0- 0.99 0.11	mPa2 n/m 4 5	MOM. RE 25 t2 KN-m/N 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2 Densidad	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros	FACTO	ESTABILIDA DRES  P  N/M2  1.82  1.82  1.82    NTES EN EL RI  VUI	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13	0.09  MOM. 0.45C1.  Kn-n 0.0- 0.99 0.11	mPa2 v/m  4 5 3	MOM. RE 25 t2 KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2 Densidad Addecuad	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros	FACTO  KE  INFLUYE  Estructural	ESTABILIDA    DRES	a m 0.42 2.16 0.8 ESULTADO; Ries LNERABILIDA	t m 0.13 0.13 0.13	0.09  MOM. 0.45C1  Kn-n 0.00 0.99 0.11	mPa2 ym 4 5 3 billidad;  T ables	MOM. RE 25 t2  KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S
MURO M1 M2	C1 ADIMENSIONAL 2 2 2 Densidad	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros	FACTO	ESTABILIDA DRES  P	a m 0.42 2.16 0.8 ESULTADO; Ries LNERABILIDA	t m 0.13 0.13 0.13	0.09  MOM. 0.45Cl: Kn-n 0.00 0.99 0.11	mPa2 ym 4 5 3 billidad;  T ables	MOM. RE 25 t2  KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE
MURO M1 M2	C1 ADIMENSIONAL 2 2 2 Densidad Addecuad	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a e	FACTO  KE  INFLUYE  Estructural	ESTABILIDA    DRES	a m 0.42 2.16 0.8 ESULTADO; Ries LNERABILIDA	t m 0.13 0.13 0.13	0.09  MOM. 0.45C1  Kn-n 0.00 0.99 0.11	mPa2 ym  4 5 8 billidad; l  Tables sstables	MOM. RE 25 t2  KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S
MURO M1 M2	C1 ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a e	FACTO  KE  INFLUYE  Estructural	P   DRES   P   DRES   P   DRES   P   DRES   DRES	a m 0.42 2.16 0.8 ESULTADO; Ries LNERABILIDA	t m 0.13 0.13 0.13	0.09  MOM. 0.45Ci  Kn-n 0.00 0.99 0.11 Sn (vulnera) Todos est Algunos c	mPa2 ym  4 5 8 billidad; l  Tables sstables	MOM. RE 25 t2  KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S
MURO M1 M2	C1 ADIMENSIONAL  2 2 2  Densidad Adecuad Aceptabl Inadecuad	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a e da	FACTO  KE  INFLUYE  Estructural	P   DRES   P   DRES   P   DRES   P   DRES   DRES	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13	0.09  MOM. 0.45Ci  Kn-n 0.00 0.99 0.11 Sn (vulnera) Todos est Algunos c	mPa2 ym  4 5 8 billidad; l  Tables sstables	MOM. RE 25 t2 KN-m/n 0.42 0.42 0.42 Peligro) No estructable abiquería y p	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S
MURO M1 M2	CI ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a a e e	FACTO  KE  INFLUYE  Estructural	P   DRES   P   DRES   P   DRES   P   DRES   DRES	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13	0.09  MOM. 0.45Ci  Kn-n 0.00 0.99 0.11 Sn (vulnera) Todos est Algunos c	mPa2 ym  4 5 8 billidad; l  Tables sstables	MOM. RE 25 t2  KN-mN 0.42 0.42 0.42	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S
MURO M1 M2 M3	CI ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a e da	FACTO  KE  INFLUYE  Estructural	ESTABILIDAD  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13	0.09  MOM. 0.45Ci  Kn-n 0.00 0.99 0.11 Sn (vulnera) Todos est Algunos c	mPa2 n/m  4 5 8 billidad;  Tables stables stables	MOM. RE 25 t2 KN-m/n 0.42 0.42 0.42 Peligro) No estructable abiquería y p	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE X
MURO MI M2 M3 Saja	CI ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a a e e	FACTO  KE  INFLUYE  Estructural	ESTABILIDA  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 X	0.09  MOM. 0.45Cl: Kn-n 0.00 0.94 0.11	mPa2 n/m  4 5 5 3 billidad;  Tables stables stables	MOM. RE 25 t2 KN-m/n 0.42 0.42 0.42 Peligro) No estructable abiquería y p	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S S
MURO MI M2 M3 Baja Media	CI ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a a e e	FACTO  IL KI  SINFLUYE  Estructural	ESTABILIDA  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 X	0.09  MOM. 0.45Ci  Kn-n 0.00 0.99 0.11 Sn (vulnera) Todos est Algunos c	mPa2 n/m 4 5 5 3 billidad;  Tables stables stables Plana Media	MOM. RE 25 t2 KN-mA 0.42 0.42 0.42 2eligro) No estructabiquería y j	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S
MURO MI M2 M3 Baja Media	CI ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a a e e	FACTO  KE  INFLUYE  Estructural	ESTABILIDA  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 X	0.09  MOM. 0.45Cl: Kn-n 0.00 0.94 0.11	mPa2 n/m  4 5 5 3 billidad;  Tables stables stables	MOM. RE 25 t2 KN-mA 0.42 0.42 0.42 2eligro) No estructabiquería y j	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S S
MURO MI M2 M3 Baja Media	CI ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a a e e	FACTO  IL KI  SINFLUYE  Estructural	ESTABILIDA  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 X	0.09  MOM. 0.45Cl: Kn-n 0.00 0.94 0.11	mPa2 n/m 4 5 5 3 billidad;  Tables stables stables Plana Media	MOM. RE 25 t2 KN-mA 0.42 0.42 0.42 2eligro) No estructabiquería y j	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S S
MURO MI M2 M3 Baja Media	C1 ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac Sismi Z=4, COSTA DE	m ADIMENSIONA 0.125 0.125 0.125 FACTORES de muros a a e e	FACTO  IL KI  SINFLUYE  Estructural	ESTABILIDA  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 X X	0.09  MOM. 0.45Cl: Kn-n 0.00 0.94 0.11	mPa2 n/m 4 5 5 3 billidad;  Tables stables stables Plana Media	MOM. RE 25 t2 KN-mA 0.42 0.42 0.42 2eligro) No estructabiquería y j	EST.	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S  X  diente
MURO M1 M2	C1 ADIMENSIONAL  2 2 2 Densidad Adecuad Aceptabl Inadecuac Sismi Z=4, COSTA DE	m ADIMENSIONA 0.125 0.125 0.125 FACTORES  de muros a e da  cidad L PERÚ ES ALTA	FACTO  IL KI  SINFLUYE  Estructural	ESTABILIDA  DRES  P N/M2 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.8	a m 0.42 2.16 0.8	t m 0.13 0.13 0.13 0.13 0.13	0.09  MOM. 0.45Cl: Kn-n 0.00 0.94 0.11	mPa2 n/m 4 5 5 3 billidad;  Tables stables stables Plana Media	MOM. RE 25 t2 KN-mA 0.42 0.42 0.42 2eligro) No estructabiquería y j	EST.  M  ctural parapetos	Resultado Ma:Mr  ESTABLE INESTABLE ESTABLE S  X  diente

Fuente: Laucata,2013.


### Planos de distribución de la vivienda C-4




0.25 25 2.39 2.39 V-CH<0.25X0.20) 3.00 V-CH(0.25X0.20) CHCU.25XU.20X CH(U.25XU.2U) V-CH(0.25X0.20) V-CH(0.25X0.20) SALA SALA -CH(0.25X0.20) COCINA COCINA V-CH(0.25X0.20) V-CH(0.25X0.20) V-CH(0.25X0.20) 1.03 V-CH(0.25X0.20) 0.50 1er Piso 2 do Piso

Anexo 34: Plano de aligerado de la vivienda C-4

#### Analísis sísmico de la vivienda C-4





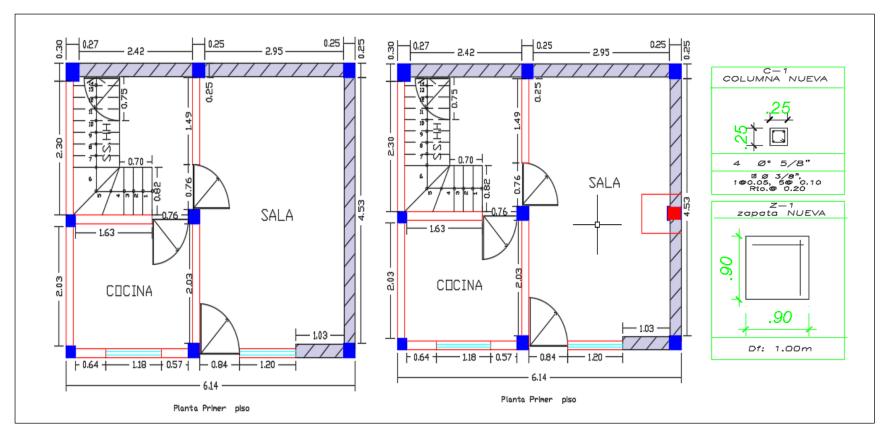
Modelado de la vivienda C-4

DESPLAZAMIENTO RELATIVO DE ENTREPISO - DRIFT											
Story	Item	Load	Point	Х	Υ	Z	DriftX	DriftY			
STORY2	ıx Drift X	CDX	Χ	0.000219	65	0.45	0	4.9			
STORY2	x Drift Y	CDX	Υ	0.000181	65	0.45	0	4.9			
STORY2	ıx Drift X	CDY	X	6.00E-05	65	0.45	0	4.9			
STORY2	x Drift Y	CDY	Υ	0.000372	67	1.82	0	4.9			
STORY1	ıx Drift X	CDX	X	3.40E-05	45	0.45	0.62	2.45			
STORY1	x Drift Y	CDX	Υ	2.00E-05	26	0	2.92	2.45			
STORY1	ıx Drift X	CDY	X	4.00E-06	45	0.45	0.62	2.45			
STORY1	x Drift Y	CDY	Υ	9.00E-06	26	0	2.92	2.45			
máximo drift (%) =								490.00%			
drift admisible (%) =								0.50%			
							NO!!	NO!!			

## Fotos de la vivienda C-4





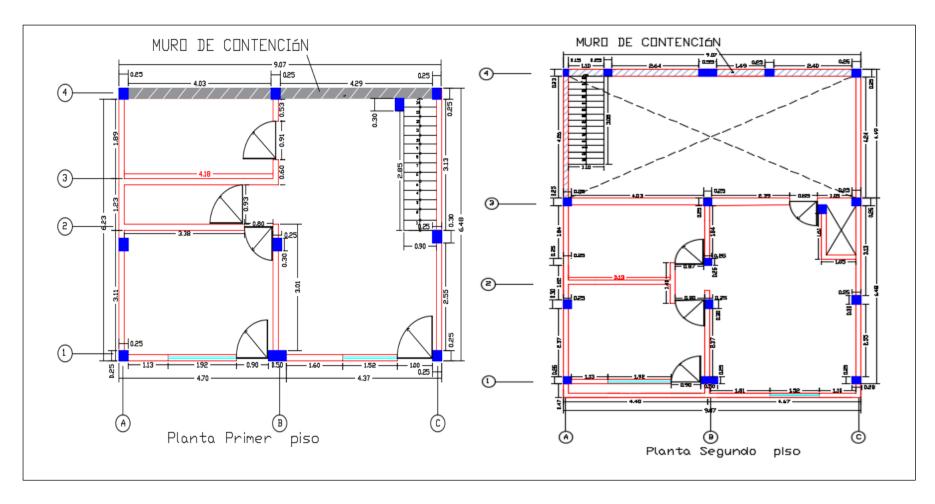



Mala infraestructura de la escalera.

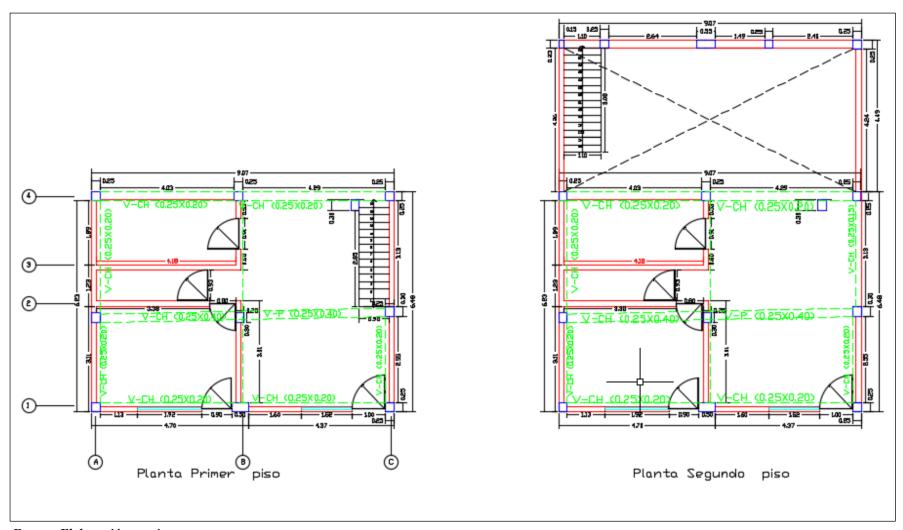
Metrado de la columna de la vivienda.

Fachada de la vivienda.

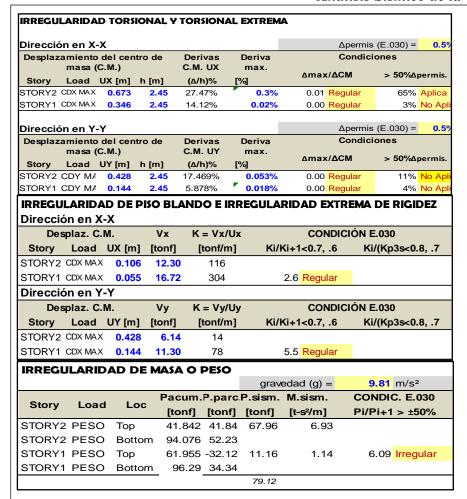
## Reforzamiento de la vivienda C-4

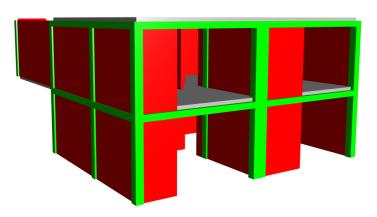



Anexo 11:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda D-9


I. IDENTIF	ICACIÓN					FICH	A DE REPO	RT	E					
PROPIETARIO		limenos Com	97										EECUA:	22/11/2018
	: Alejandrina Soila : 10438660	ndrina Soila Jimenez Gomez											FECHA:	
DNI													N° VIVIENDA	i: 15
DIRECCIÓN														
	ÉCNICA Y CONSTRUCCIÓN		NC								Ţ			
	RENO POR PISO:	1º=55.94m2	29=101.	73 m2			DA: 157.67 m2				3	AD: 28 años		
NÚMERO DE	PISOS CONSTRUIDOS		2 pis	os	TOPOGRAFÍ	A Y GEOLOG	iíA: El terreno tier	ne un	a pendiente r	nedia y el sue	lo es arena	gravoso		
ESTADO DE O	ONSERVACIÓN DE LA VIVI	ENDA:												
DAÑOS EN L	A VIVIENDA POR DESASTRI	ES NATURALES	5: NO											
							······································							
II. ASPECI	OS TÉCNICOS													
	NTOS Y CARACTERÍS	STICAS DE I	LA VIVIEN	DA AUTO	CONSTRU	ЛДА								
	Elementos         Características           Cimientos         ASENTADOS SOBRE SUELOS DESIGUALES PROPENSOS A ASENTAMIENTOS DE ELEMENTOS ESTRUCTURALES													
Mu		ASENTADOS SOBRE SUELOS DESIGUALES PROPENSOS A ASENTAMIENTOS DE ELEMENTOS ESTRUCTURALES  LADRILLO PANDERETA EN TABIQUERÍA, Y LADRILLO MACIZO EN MUROS PORTANTES												
Tec	cho ALIGERAD	O DE 0.2 m I	EN EL 1° PIS											
Colu		N: 0.25x0.20	), 0.15x0.2											
Viş	gas DIMENSIO	N: 0.2x 0.4												
b DEFICI	ENCIAS DE LA ESTRU				,									
		PROBL	EMAS DE U	BICACIO	ÓN						PROBLE	MAS CONSTR	UCTIVOS	
	POR LA ZO	NA SE ENCU	JENTRA EN	PENDIE	NTE LA VIV	/IENDA			E	XISTENCIA	DE CANG	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
		PROBLE	MAS ESTR	UCTURA	LES									
PRESEN	TA HUMEDAD EN LOS					SIGUALES	S PROPENSOS	A				IANO DE OBF		
		AMIENTOS I						•		MAL	A DISTRII	OTROS	OS AMBIEN	TES
	ASENT	AMIENTOS I	DE ELEMEN	IUS EST	KUUTUKA	LES						OTROS		
	SIS POR SISMO													
	Y PARÁMETROS SÍS		0 1 2											
Z= 0.45 Resistencia c	U=1 C=2.5 aracterística a corte (kPa):	R=3	S=1.2											
	ncia al corte (Kn)= Ae (0		pg)											
Área														
te chada	Со	rtante bas	al			Àrea de	muros		Dens	sidad	Res	istencia	Vrn	Resultado
Piso 1	Peso acum. (K	N/m)	VEI = ZU	JSCP/R	existen	te (Ae)	Requerida (A	Ar)	Ae/ Ar	Ae/Área		ΣVR		Resultatio
m2						` ′		_					KN	
	ANÁLISIS EN EL SENT	IDO "x"	567.	61		no	2.27		0.00	0.04	1			ACEPTABLE
55.94	ANÁLISIS EN EL SENT	IDO "Y"	36/.	01	2.09				0.92	0.04	-   -		-	ACEFTABLE
	8		567.	61	2.0	64	2.27		1.16 0.05		-		-	ADECUADO
											l			
					ESTAR	ILIDAD	DE MURO	S A	L VOLTE	EO				
				EACTO							ACT	MOM	DECT	Dogulto do
				FACTO					MOM. ACT MOM. REST.					Resultado
MURO	C1	n	n		p a			t	0.45C1	mPa2			Ma:Mr	
	ADIMENSIONAL	ADIMEN	SIONAL	KN	N/M2 m			m Kn-m/m			KN-m/M			
M1	2	0.1	25	1	1.82 4.33		33	0.13		3.8	4	0.42		INESTABLE
M2	2	0.1			.82			0.13		2.34		0.42		INESTABLE
M3	2	0.1	25	1	1.82 3.13		13	0.13		2.01		0.42		INESTABLE
	-	-											-	
	-	-			-		-		-	-		-		-
		EACT	ORES DE	et tive	ATES EN	FI DEC	SULTADO; R	ioss	o = Ermei	ón (values	hilidad	Poligre)		
		FACT	ORES IN	LUIL	TES EN		NERABILID			on (vainera	muau;	r engro)		
			Est	uctural		, CL						No estri	ıctural	
	Densidad	de muros	2.56			ESTA	DO ACTUA	\L			7	Tabiquería y		os
	Adecuada				Buena ca				Todos estables					
	Aceptable			X	Regular					Algunos				
	Inadecuad	a			Mala cal	idad			X	Todos ine	estables			X
							PELIGRO							
	Sismic	cidad					Suelo					Topogr	afía y pei	ndiente
	Z = 4, COSTA DEI	L PERÚ ES A	LTA											
Baja					Rígido						Plana			
Media					Intermed	lio			x		Media			X
Alta			X		Flexible	s					Pronunc	ciada		
	CA	LIFICACIÓ	N				CALIF	TCA	CIÓN				RESUL	ΓADO
'	**************************************	DAD					DELICA C			TDIA	1	pwass -	foresco	
	VULNERABILI	DAD	ALT	Α		¹	PELIGRO		ME	DIA		RIESGO S	ISMICO	ALTA

Fuente: Laucata,2013.

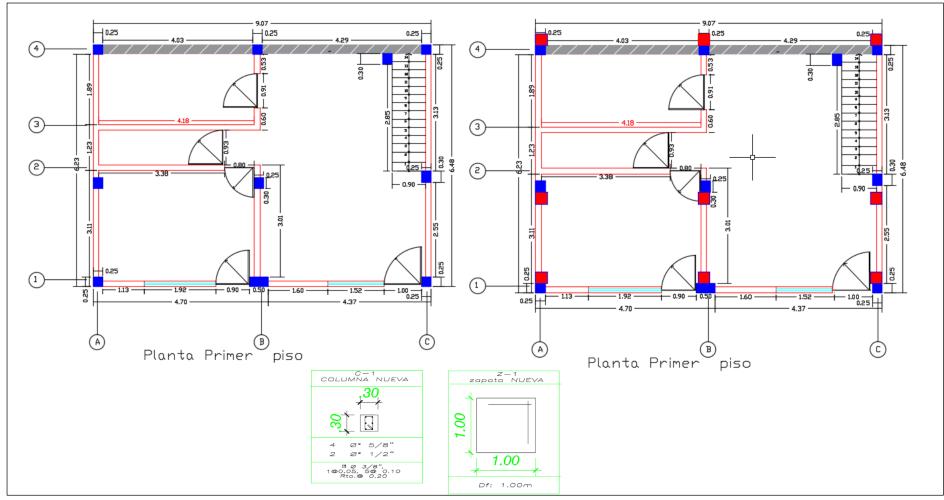

#### Plano de distribución de la vivienda D-9




## Plano de aligerado de la vivienda D-9

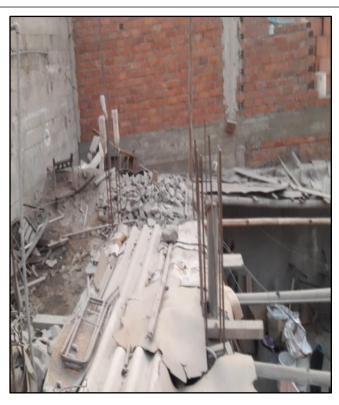


#### Analísis Sísmico de la vivienda D-9






Modelado de la vivienda D-9


Story	Item	Load	Point	Х	Υ	Z	DriftX	DriftY
STORY	2 ıx Drift X	CDX	62	8.8	7.54	4.9	0.003225	
STORY	2 x Drift Y	CDX	66	6.15	10.72	4.9		0.00053
STORY	2 ıx Drift X	CDY	62	8.8	7.54	4.9	0.003225	
STORY	2 x Drift Y	CDY	66	6.15	10.72	4.9		0.00053
STORY	1 ıx Drift X	CDX	26	6.15	0	2.45	0.000172	
STORY	1 x Drift Y	CDX	18	8.8	2.65	2.45		0.000183
STORY	1 ιχ Drift X	CDY	26	6.15	0	2.45	0.000172	
STORY	1 x Drift Y	CDY	18	8.8	2.65	2.45		0.000183
			_	n	náximo	drift (%) =	0.32%	0.05%
				dri	ft admi:	sible (%) =	0.50%	0.50%
							OK!!	OK!!

# Propuesta de Reforzamiento de la vivienda D-9



## Fotos de la vivienda D-9

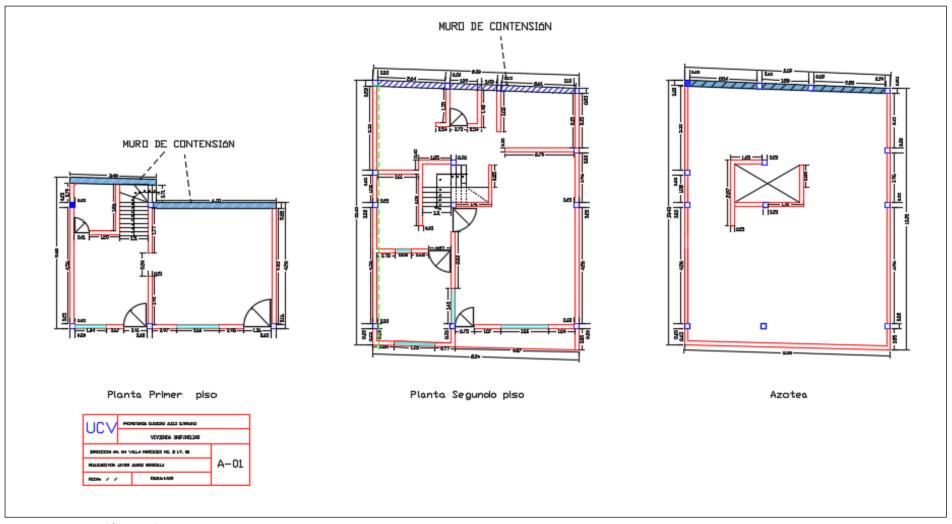




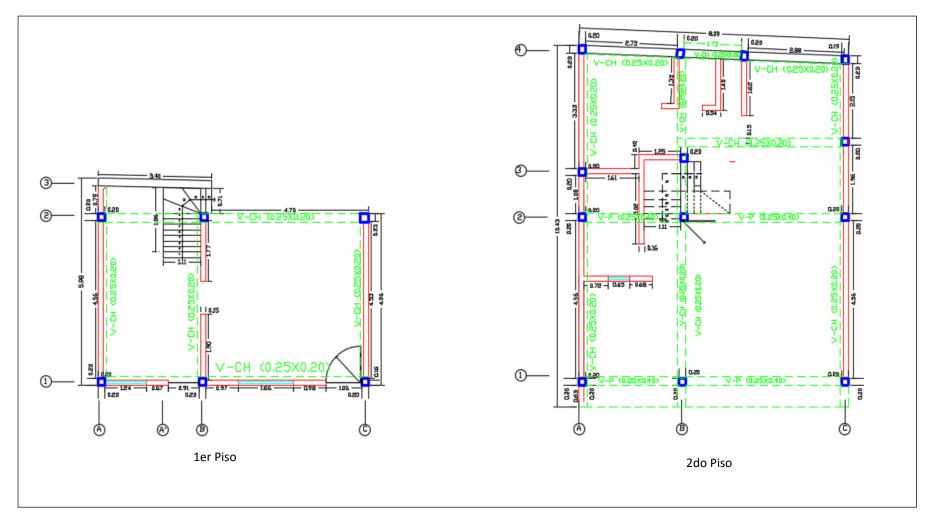


Fachada de la vivienda.

Corrosión de las columnas

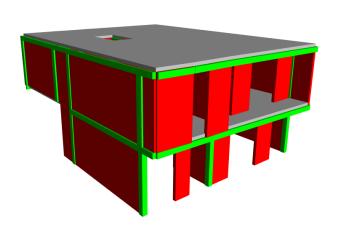

Escalera provisionada.

Anexo 12:Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda D-18


							FICH	A DE RI	EPORT	E					
I. IDENTIF	ICACIÓN														
PROPIETARIO	) : Eleudoro Au	qui Zamb	rano											FECHA:	28/10/2018
DNI	: 10502660													N° VIVIENDA	: 10
DIRECCIÓN	: AA. HH. Villa	Mercede	es Mz.D, Lt	t. 18										······································	
DIRECCIÓN T	ÉCNICA Y CONSTRUC	IÓN:		NO											
ÁREA DE TER	RENO POR PISO:	19=3	36.61 m2	2ª=53.6	3 m2	ÁREA TOTAL	CONSTRUIT	DA: 90.29 m2	2			ANTIGÜED	AD: 15 años		
NÚMERO DE	PISOS CONSTRUIDOS			2 pisos		TOPOGRAFÍ	A Y GEOLOG	iíA: El terren	o es pronu	inciada y el su	ielo es arena g	ravoso			
ESTADO DE C	ONSERVACIÓN DE LA	VIVIENDA				······································									
DAÑOS EN L	A VIVIENDA POR DESA	STRES NA	ATURALES:	: NO									······································		
		~~~~											······································		
II. ASPECT	OS TÉCNICOS														
a ELEME	NTOS Y CARACTI	ERÍSTIC	CAS DE L	A VIVIENI	OA AUTO	CONSTRU	ЛDA								
Elem		ADOC C	ODDECI	TELOS DES	CUALEC	DDODENIC	OC A ACE	NUT A NATIONY	Caracter		ECTDI ICTI	DALEC			
Cimi Mu				A EN TABIQ							ESTRUCTU	KALES			
Tec	cho ALIGE			N EL 1° PIS											
Colu				, 0.15x0.2											
V 15	gas DIMEN	SIÓN : 0	J.2X U.4												
b DEFICE	ENCIAS DE LA ES														
]	PROBLE	EMAS DE U	BICACIÓ	ON							MAS CONSTR		
	POR LA	ZONA, I	LA VIVIE	ENDA SE EN	CUENTR	A EN PENI	DIENTE.			E	XISTENCIA	DE CANGI	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
		P	ROBLEN	MAS ESTRU	JCTURA	LES									
PRESEN	TA HUMEDAD EN	LOS MU	UROS, AS	SENTADOS	SOBRE S	UELOS DE	SIGUALES	S PROPENS	SOS A				IANO DE OBE		
	ASI	NTAMII	ENTOS I	DE ELEMEN	TOS EST	RUCTURAI	ES					WIAL DIS	EÑO DE LA ES OTROS	CALEKA	
	. 101														
	ara non aras co														
	<mark>SIS POR SISMO</mark> S Y PARÁMETROS	cícmic	205												
Z= 0.45	U=1 C=2.		R=3	S=1.2											
	aracterística a corte (l			~											
VR= Resiste	ncia al corte (Kn)= A	e (0.5V`N	M +0.23 p	og)											
Área		Cortan	nte basa	ıl			Área de	muros		Dens	sidad	Res	istencia		
techada											,			Vrn	Resultado
Piso 1 m2	Peso acum	(KN/m	1)	VEI = ZU	SCP/R	existent	e (Ae)	Requeri	da (Ar)	Ae/ Ar	Ae/Area		∑VR	KN	
1112	ANÁLISIS EN EL S	ENTIDO	"x"											KIN	
36.61	. 8			325.0	14	1.9	90	1.3	0	1.46	0.05		-	-	ADECUADO
	ANÁLISIS EN EL S 8	ENTIDO	"Y"	325.0	и	2.6	56	1.3	in.	2.05	0.07		_		ADECUADO
										2.03	0.07				
						TOTAL TO	T TO 1 D	DD 1471	DOG 11	* ***O* /FF	30				
						ESTABL	LIDAD	DE MU	ROS A	L VOLTE	02				
					FACTO	RES					MOM.	ACT	MOM. F	REST.	Resultado
MURO	C1		m	ı		р	ε	a		t	0.45C1	mPa2	25 t	2	Ma:Mr
	ADIMENSIONA	L A	ADIMENS	SIONAL	KN	I/M2	n	n		m	Kn-n	n/m	KN-n	n/M	
M1	2		0.12	25	1.	.82	1.3	85	().13	0.7	0	0.42	2	INESTABLE
M2	2		0.12			.82	1.			0.13	0.2		0.42		ESTABLE
M3	2		0.12			.82	2.2			0.13	1.0		0.42		INESTABLE
M4	2		0.12			.82	2.:	50	(0.13	1.2	8	0.42	2	INESTABLE
	-		-			-		-		-	-		-		-
			FACTO	ORES IN	TUVE	ITES EN	ELRES	ULTAD	O: Riese	o = Funcie	ón (vulnera	hilidad•	Peligro)		
								NERABI							
				Estr	uctural								No estr	uctural	
	Densid		muros					DO AC	TUAL				abiquería y	parapeto	os
	Adecu					Buena ca				**	Todos est				
	Acept					Regular				X	Algunos				X
	Inadec	iada				Mala cal	idad	DELTOT	20		Todos ine	stables			
	G.		a					PELIGI					Trans	o fío r	dianta
	Z = 4, COSTA	micida		(TA				Si	ielo				Topogr	afía y per	imente
Daia	Z = 4, COSTA	DEL PE	KU ES Al	LIA		Dáni 1-						Dlar -		2	
Baja						Rígido	:				X	Plana			
Media				X		Intermed				-	л.	Media	nio de		X
Alta				A		Flexibles	,					Pronunc	adua		A
		CALTE	ICACIÓN	N .		[ALIFICA	CTÓN		·		RESULT	TADO
									CA						
	VULNERAL	ILIDAI	D	BAJA	4		1	PELIGRO		ME	DIA		RIESGO S	ÍSMICO	MEDIA
												l			

Fuente: Laucata,2013.

Plano de distribución de la vivienda D-18



Plano de aligerado de la vivienda D-18

Analísis Sísmico de la vivienda D-18

IRREGU	LARIDA	D TORSI	ONAL Y T	ORSIONA	L EXTREM	4		
Direcció	n en X	-X				Δρε	ermis (E.030) =	0.5%
Desplaz		del cent		Derivas	Deriva	Co	ndiciones	
	masa (•		C.M. UX	max.	Δmax/ΔCM	> 50%∆p	ermis.
		UX [m]		(Δ/h)%	[%]			
STORY2		0.194		7.92%	0.1%	0.02 Regul		No Apl
STORY1	CDX IVIA	0.078	2.45	3.18%	0.89%	0.28 Regul	ar 178%	Aplica
Direcció	n en Y	-Y				Δρε	ermis (E.030) =	0.59
Desplaz	amiento	del cent	ro de I	Derivas	Deriva	Cor	ndiciones	
	masa (C.M.)	(C.M. UY	max.	Δmax/ΔCM	> 50%∆p	armis
		UY [m]		(Δ/h)%	[%]			
STORY2		0.184		7.510%	0.063%	0.01 Regul		No Apl
STORY1	CDY N	0.077	2.45	3.143%	0.063%	0.02 Regul	ar 13% I	No Apl
			PISO BLA	NDO E II	RREGULA	RIDAD EXTR	EMA DE RIGI	DEZ
Direcci							_	
	splaz. C		Vx	K = Vx/l			ÓN E.030	
Story		UX [m]		[tonf/m] Ki/k	(i+1<0.7, .6	Ki/(Kp3s<0.	.8, .7
STORY2				32				
STORY1			1.39	18		0.6 Irreg.Ext.		
Direcci			.,	16 14 11		20110101	ÓN 5 000	
	splaz. C		Vy	K = Vy/l	•		ÓN E.030	
STORY2		UY [m]		[tonf/m	ıj Kı/r	(i+1<0.7, .6	Ki/(Kp3s<0.	.8, .7
STORY1				50		1.8 Regular		
IRREG	ULARI	DAD D	E MASA	O PESO				
					grav	edad (g) =	9.81 m/s ²	
01-				m. P.par	c. P.sism.	M.sism.	CONDIC. E.O	030
Story	Load	d Loc	; [ton	f] [tonf] [tonf]	[t-s²/m]	Pi/Pi+1 > ±5	0%
STORY	2 PES	О Тор	41.8	42 41.8	84 67.96	6.93		
STORY	2 PES	O Botton	n 94.0	<mark>76</mark> 52.2	23			
				55 -32.1	2 11.16	4 4 4	C OO Image	laa
STORY	1 PES	Э Тор	61.9	55 -32.1	2 11.10	1.14	6.09 Irreg	uiar

Modelado de la vivienda D-18

Story	Item	Load	Point	Х	Υ	Z	DriftX	DriftY
STORY2	: Drift X	CDX	77	7.89	0	4.9	0.000668	
STORY2	Drift Y	CDX	95	7.89	8.9	4.9		0.000314
STORY2	: Drift X	CDY	77	7.89	0	4.9	0.000668	
STORY2	Drift Y	CDY	107	1.34	0.21	4.9		0.00177
STORY1	Drift X	CDX	25	3.05	2.9	2.45	0.004442	
STORY1	Drift Y	CDX	25	3.05	2.9	2.45		0.004442
STORY1	: Drift X	CDY	44	5.75	5.71	2.45	0.000296	
STORY1	Drift Y	CDY	44	5.75	5.71	2.45		0.000296
				m	áximo	drift (%) =	0.44%	0.44%
				drif	t admis	sible (%) =	0.50%	0.50%
							OK!!	OK!!

Fotos de la vivienda D-18

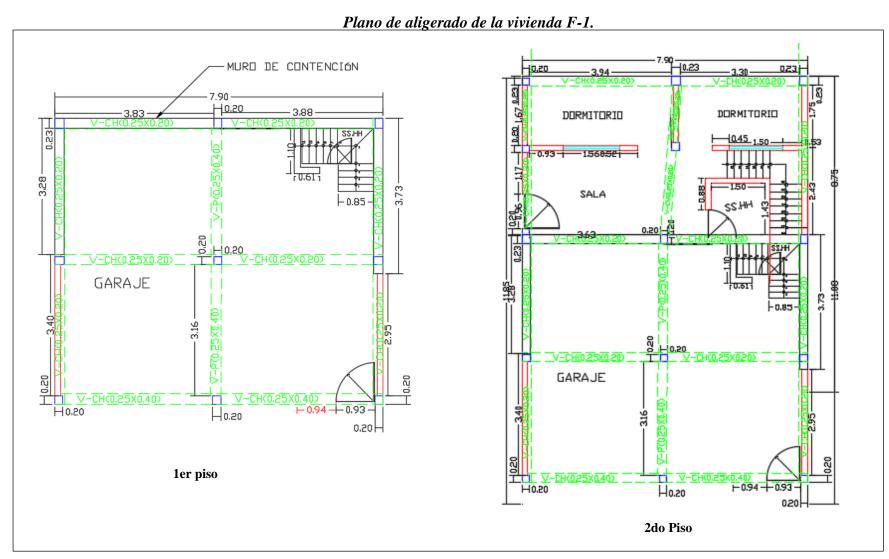


Fachada de la vivienda.

Estructura de la escalera.

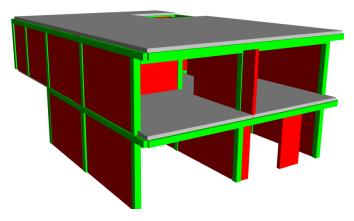
Humedad en las paredes de la vivienda.

Prepuesta de reforzamiento de la vivienda D-18


Anexo 13: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda F-1

							FICHA DE I	REPORT	E					
I. IDENTIF	TCACIÓN													
PROPIETARIO	C : Lorenzo S	Solis Ravio	hagua										FECHA:	20/10/2018
DNI	: 4425636	62											N° VIVIENDA	: 3
DIRECCIÓN	: AA. HH. \	Villa Merc	edes Mz.F, Lt.	1										
DIRECCIÓN T	ÉCNICA Y CONSTR	RUCCIÓN:		NO										
ÁREA DE TER	RENO POR PISO:		1º= 52.83 m2	29= 85.1	4 m2	ÁREA TOTAL	CONSTRUIDA: 137.9	7 m2			ANTIGÜED	AD : 28 años		
NIÚMEDO DE	PISOS CONSTRUIE			2 pis			A Y GEOLOGÍA: El ter		endiente med	lia v el suelo e	L			
ESTADO DEC	ONSERVACIÓN DE	E LA VIVIE	NDA:											
DA ÑOS EN L		DEC 4 CEDE	C NIATURAL EC.											
DANUS EN L	A VIVIENDA POR E	JESAS I KE	S NATURALES:	NU										
	,													
	OS TÉCNICOS		TICLODEL	A XZXZZZINIO	A ATTECO	ONGERN	m							
a ELEME Elem	NTOS Y CARA	CIERIS	TICAS DE L	A VIVIEND	A AUTOC	LONSTRU	IDA	Caracter	fsticas					
Cimi		ENTADO	S SOBRE SU	ELOS DESI	GUALES 1	PROPENSO	S A ASENTAMIE			ESTRUCTUR	ALES			
Mu							MACIZO EN MU	ROS PORTA	ANTES					
Tec			O DE 0.2 m El N : 0.25x0.20,		TANTO	EN EL 2° P	iso							
Colu Viș			N: 0.25x0.20, N: 0.2x 0.4	0.15X0.2										
b DEFICE	ENCIAS DE LA	ESTRU		MACDET	RICACIÓ	N					DDODIE	MAS CONSTR	HCTTVOC	
				MAS DE U										
Se	encuentra en la pa	ırte baja d					ilgunas partes del ten	reno		Junta	s frías, junta	s de espesor de	0.5 cm y de 3	cm
	-		PROBLEM	IAS ESTRU	CTURAI	ES								
PRESEN	TA HUMEDAD	EN LOS	S MUROS, AS	SENTADOS	SOBRE S	UELOS DE	SIGUALES PROPE	NSOS A		De mala		capacitación ni a		técnico
		ASENTA	AMIENTOS D	E ELEMEN	TOS ESTE	UCTURAL	ES			De metid		OTROS		
TTT ANTÁTT	ere non erem	0												
	SIS POR SISMO S Y PARÁMETR		AICOS											
Z= 0.45		C=2.5	R=3	S=1.2										
	aracterística a cor													
	ncia al corte (Kn)	⊨ Ae (0.5	V`M +0.23 pg	g)					ı					
Årea techada		Co	rtante basa	1			Área de muros		Dens	sidad	Res	istencia	Vrn	
Piso 1	Peso ac	cum. (K	N/m)	VEI = ZU	SCP/R	existent	te (Ae) Requ	erida (Ar)	Ae/ Ar	Ae/Área		∑VR	,	Resultado
m2	ANÁLIGIC EN E	CI OFNITE	DO " "										KN	
	ANÁLISIS EN E	8 8	DO -X-	496.6	59	1.9	98	1.99	0.99	0.04	I		I . I	ACEPTABLE
52.83	ANÁLISIS EN E	EL SENTI	DO "Y"											
		8		496.6	59	3.2	25	1.99	1.64	0.06		-	-	ADECUADO
						ESTABI	LIDAD DE M	UROS A	L VOLTE	Ю				
				1	FACTO	RES				MOM.	ACT	MOM. F	REST	Resultado
MIDO	C1						_		t	0.45C1		25 t		Ma:Mr
MURO			m			р	a							IVIA.IVII
	ADIMENSIO	NAL	ADIMENS	SIONAL	KN	/M2	m		m	Kn-1	n/m	KN-n	n/M	
M1	2		0.12			.1	2.00		0.15	0.9		0.50		INESTABLE
M2	2		0.12			.1	1.50	_	0.15	0.5		0.50		ESTABLE
M2	2		0.9)		.1	0.90	+	0.15	1.3		0.5	6	INESTABLE
	-		-			-	-	+		-		-		-
	-								•					-
			FACTO	RES INF	LUYEN	TES EN	EL RESULTAI	OO; Riese	o = Funció	ón (vulnera	bilidad:	Peligro)		
							VULNERA				,	- 		
				Estr	ıctural							No estr	uctural	
	Dom	reidad .	de muros	Esti	uiai		ESTADO A	CTUAL			7	Tabiquería v		ne
		isidad d lecuada				Buena ca		CIUAL		Todos est		anqueria y	parapett	J.S.
		eptable				Regular			X	Algunos				X
		decuada				Mala cal				Todos inc				
							PELIC	RO						
		Sismic	idad					Suelo				Topogr	afía y per	diente
	Z = 4, CO		. PERÚ ES AI	.TA										
Baja						Rígido					Plana			
Media						Intermed	io		2	X	Media			X
Alta				X		Flexibles					Pronun	ciada		
		CA	LIFICACIÓN	I				CALIFICA	.CIÓN				RESULT	TADO
	VIII NIE	RABILI	DAD	MED	10		PELIGR	0	ME	DIA		RIESGO S	ísmico.	MEDIA
	VOLNE	MADILA	LAD	IVIED	in		FELAGR		ME	a in		KILSGU S	LOWING	IVILDIA
					_						_		_	

Fuente: Laucata,2013.


MURD DE CONTENCIÓN MURO DE CONTENCIÓN H0.20 DORMITORIO DORMITORIO SALA GARAJE LOCAL CIICINA _1.06 __0.83 − DORMITORIO DORMITORIO 1er Piso 2do Piso

Anexo 43: Planos de distribución de la vivienda F-1.

Anexo 43: Analísis Sísmico de la vivienda F-1

IRREGU	LARIDA	D TORS	IONA	L Y TORS	IONAL EX	CTREMA				
Direcci	ón en X-	-X						Δpern	nis (E.030) =	0.5%
Desplaz	zamiento		tro de			eriva		Cond	liciones	
	masa (C.M.		nax.	Δmax	/ΔCM	> 50%∆r	ermis.
•	Load									
	CDX MAX		2.4			0.00%		Regular		No Apli
STORY1	CDX MAX	-0.002	2.4	5 -0.08	8%	0.00%	0.00	Regular	0%	No Apl
Direcci	ón en Y-	.Y						Δpern	nis (E.030) =	0.5%
Desplaz	zamiento	del cer	tro de	Deriv	vas D	eriva			diciones	
	masa (C.M.	UY n	nax.			500/-	
Story	Load	UY [m]	h [m]] (∆/h)% [%]		Δmax	/ΔCM	> 50%∆ր	ermis.
STORY2	CDY MA	0.033	2.	5 1.32	0% 0	.000%	0.00	Regular	0%	No Apl
STORY1	CDY MA	0.004	2.	5 0.16	0% 0	.000%	0.00	Regular	0%	No Apl
IRREGU	LARIDA	D DE P	ISO BI	ANDO E	IRREGUI	ARIDA	D EXTR	EMA DE	RIGIDEZ	
Direcci								,		
Des	splaz. C.I	M.	Vx	K = V	x/Ux	(CONDIC	ÓN E.03	30	
Story	Load	UX [m]	[tonf]	[tonf	/m] k	(i/Ki+1<(0.7, .6	Ki/(Kp	3s<0.8, .7	
STORY2	CDX MAX	0.001	28.2	2 282	15					
STORY1	CDX MAX	-0.002	7.4	7 -373	35	-0.1 Irı	reg.Ext.			
Direccio	ón en Y-	-Υ								
Des	splaz. C.I	M.	Vy	K = V	y/Uy	(CONDIC	ÓN E.03	30	
Story	Load	UY [m]	[tonf]	[tonf	/m] k	(i/Ki+1<(0.7, .6	Ki/(Kp	3s<0.8, .7	
STORY2	CDX MAX	0.033	37.9	8 115	51					
STORY1	CDX MAX	0.004	15.4	6 386	66	3.4 <mark>R</mark>	egular			
IRREG	ULARI	DAD I	DE M	ASA O	PESO					
							edad (g	,	9.81 m/	
Story	Loa	nd I	ос	Pacum.	P.parc.	o.sism	M.sis	m. (CONDIC. E	.030
Ciory				[tonf]	[tonf]	[tonf]	[t-s²/r	n] l	Pi/Pi+1 > :	± 50 %
STORY	2 PES	O Top)	3.1738	3.17	3.20	0	.33		
STORY	2 PES	O Bot	tom	3.2211	0.05					
STORY	1 PES	O Top)	2.1143	-1.11	-0.94	-0	.10	-3.39 Re	gular
STORY	1 PES	O Bot	tom	2.3927	0.28					
				"-		2.25				

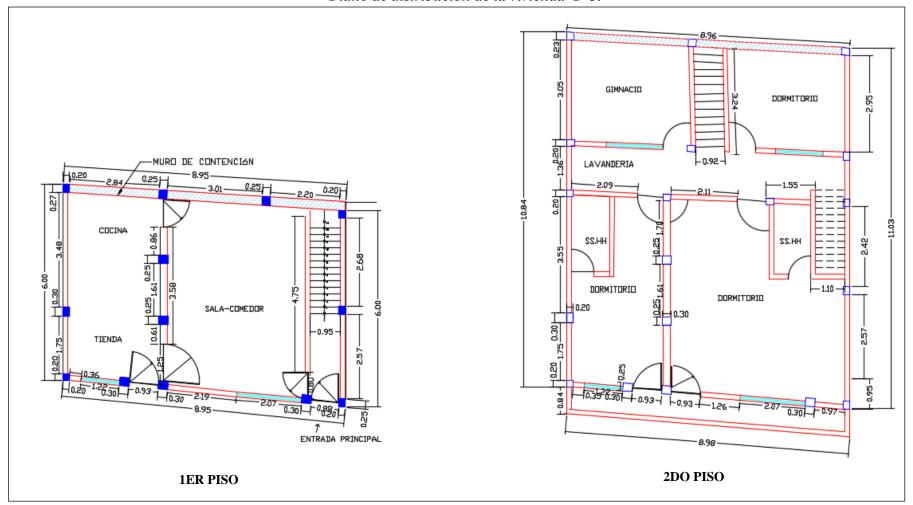
Modelado de la vivienda F-1

DESPL	ZAMIEN	ITO RE	LATIVO	DE EN	NTI	REPISO	0 - DRIF		
Story	Item	Load	Point	Х		Υ	Z	DriftX	DriftY
STORY2	ıx Drift X	CDX	Χ	7	7.7	0	4.9	0.00015	
STORY2	x Drift Y	CDX	Υ	1	25	0	8.1		6.90E-05
STORY2	ıx Drift X	CDY	X	7	7.7	0	4.9	1.60E-05	
STORY2	x Drift Y	CDY	Υ	1	00	5.73	8.91		9.10E-05
STORY1	ıx Drift X	CDX	X	4.	25	0.62	2.45	3.70E-05	
STORY1	x Drift Y	CDX	Υ		5	7.7	0.62		1.60E-05
STORY1	ıx Drift X	CDY	X	4.	25	0.62	2.45	6.00E-06	
STORY1	x Drift Y	CDY	Υ		5	7.7	0.62		1.10E-05
				ı	má	ximo d	drift (%) =	0.01%	0%
				dr	ift a	admisi	ible (%) =	0.50%	0.50%
								OK!!	OK!!

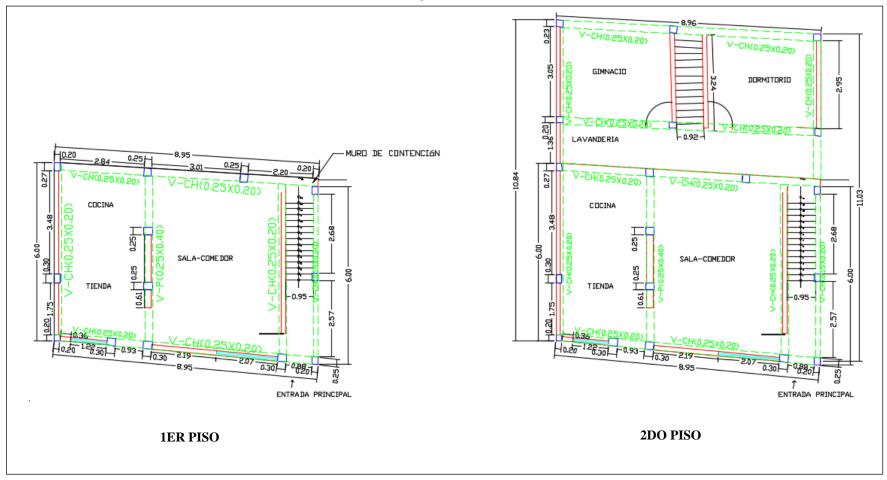
Fotos de la vivienda F-1

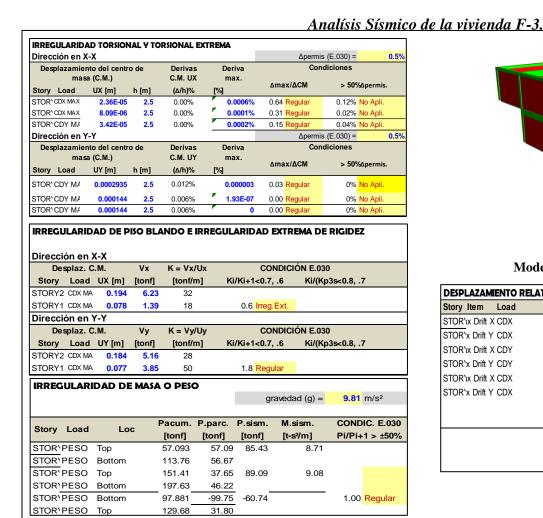
Reforzamiento de la vivienda F-1

-MURO DE CONTENCIÓN -MURO DE CONTENCIÓN Z—1 zapata NUEVA H0.20 1.00 Df: 1.00m COLUMNA NUEVA 1.73-Ho.20_1,73-0.20 160.03, 65 0.10 Rto. 6 0.20 V-CH(0,25X0,40) GARAJE V-CH(0,25X0,40) GARAJE LOCAL LOCAL H0.20 0.20 - 0.35 P (0.25 x 0.40) 0.20 **1ER PISO** 2DO PISO


Propuesta de reforzamiento de la vivienda F-1

Anexo 14:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda F-3


V VIDEO VOVO	na rozów					FICHA DE I	REPORT	E					
I. IDENTIF													45/40/2040
PROPIETARIO		uelles Ludena										FECHA:	16/10/2018
DNI	: 09726004	d 86 -5-16										N° VIVIENDA	: 11
DIRECCIÓN	: AA. HH. Villa N												
	ÉCNICA Y CONSTRUCCIO		N										
AREA D	E TERRENO POR PISO:	1º=50.76 m2	2º=101.		ļ	. CONSTRUIDA: 152.4					AD: 13 años		
NÚMERO DE	PISOS CONSTRUIDOS		2 pi:	sos	TOPOGRAFI	A Y GEOLOGÍA: El ter	reno tiene pe	endiente medi	a y el suelo es	arena grav	oso		
ESTADO DEC	ONSERVACIÓN DE LA VI	/IENDA:											
DAÑOS EN L	A VIVIENDA POR DESAS	RES NATURALES	NO .										
	TOS TÉCNICOS NTOS Y CARACTEI	ÍSTICAS DE I	A VIVIENI	DA AUTO	CONSTRU	IDA							
Elem							Caracter						
Cimi						OS A ASENTAMIEI MACIZO EN MUI			ESTRUCTUR	ALES			
Tec		DO DE 0.2 m E					too romi	LVILD					
Colu	mnas DIMENS	ÓN: 0.25x0.20	, 0.15x0.2										
Vi	gas DIMENS	IÓN : 0.2x 0.4											
b DEFICI	ENCIAS DE LA EST	RUCTURA											
			EMAS DE U	BICACIÓ	N					PROBLE	MAS CONSTR	RUCTIVOS	
	POR LA	ONA SE ENCU	JENTRA EN	PENDIEN	TE LA VIV	IENDA		E	XISTENCIA I	DE CANG	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
		PROBLE	MAS ESTR	UCTURAI	LES								
PDECE	NTA HUMEDAD EN					SIGUALES DECO	IVFS 4				IANO DE OBI		
1 KESEI							луцэ А		INST	ALACIÓN	SANITARIA (CON DEFEC	TOS
	ASEI	TAMIENTOS I	DE ELEMEN	TOS ESTI	RUCTURAL	ES					OTROS		
III. ANÁLI	SIS POR SISMO												
	S Y PARÁMETROS S		•	7									
Z= 0.45	U=1 C=2.5 aracterística a corte (kF	R=3	S=1.2	1									
	ncia al corte (Kn)= Ae	*	19)										
	(44)		8/										
Area techada	(Cortante base	al			Área de muros		Dens	sidad	Res	istencia	Vrn	
Piso 1	Peso acum.	(KN/m)	VEI = ZU	JSCP/R	existent	te (Ae) Reque	erida (Ar)	Ae/ Ar	Ae/Área		ΣVR		Resultado
m2						1	, ,					KN	
	ANÁLISIS EN EL SEI	TIDO "x"	510	0.6		NO. 1	2.20						A GERMAN DA E
50.76	8 ANÁLISIS EN EL SEI	ITIDO "Y"	548.	.96	2.3	59	2.20	1.09	0.05		-	-	ACEPTABLE
	8		548.	.96	2.6	52	2.20	1.19	0.05		-	-	ADECUADO
					FSTARI	LIDAD DE M	TIDOS AT	VOLTE	<u>'0</u>				
						LIDAD DE M	OROD A	L TODIE		. com	1014	n Fram	D 1, 1
				FACTO	RES				MOM.		MOM. I	REST.	Resultado
MURO	C1	n	n		p	a		t	0.45C1	mPa2	25 1	12	Ma:Mr
	ADIMENSIONAL	ADIMEN	SIONAL	KN	J/M2	m		m	Kn-n	n/m	KN-n	n/M	
M1	2	0.1	25	1	.82	4.75	-	0.13	4.6	2	0.4	2	INESTABLE
M2	2	0.1	25	1	.82	1.26		0.13	0.3	3	0.4	2	ESTABLE
M3	2	0.1	25	1	.82	3.25		0.13	2.1	6	0.4		INESTABLE
M4	2	0.8	37		.82	3.25	-	0.13	15.0		0.4	2	INESTABLE
	-	-			-	-		-	-		-		-
		FACT	ODES D	ei iivea	TECEN	EL RESULTAI	no. p:	o = Euro	n (varles)	hilidada	Poligra)		
		FACI	OKES IN	LUIL	LES EN	VULNERA		v – r uncl o	(vuinera	omuau;	r cugi 0)		
			Esti	ructural							No estr	uctural	
	Densida	d de muros				ESTADO A	CTUAL]	Tabiquería y		os
	Adecua	da			Buena ca				Todos est				
	Acepta			X	Regular			X	Algunos				X
	Inadecu	ada			Mala cal			<u> </u>	Todos ine	stables			
						PELIC							
		nicidad					Suelo				Topogr	<mark>afía y pe</mark> i	ndiente
	Z = 4, COSTA I	EL PERÚ ES A	LTA					_					
Baja					Rígido					Plana			
Media					Intermed			2	X	Media			X
Alta			X	(Flexibles	S				Pronun	ciada		
					Ī					ı			
		CALIFICACIÓ	N				CALIFICA	CIÓN				RESUL	rado .
i	VULNERAB	LIDAD	MED	DIA		PELIGR	:O	ME	DIA		RIESGO S	ÍSMICO	MEDIA
	. 52, 23,73					122301	-						


Fuente: Laucata, 2013

Plano de distribución de la vivienda F-3.

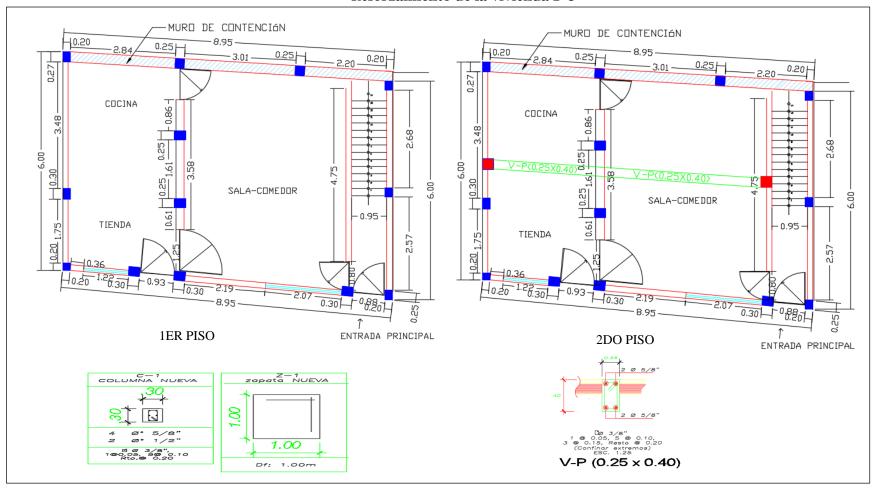
Plano de aligerado de la vivienda F-3.

Modelado de la vivienda F-3

AMIENTO RELATIVO DE ENTREPISO - DRIFT

Story Item Load	Point	Χ	Y Z	1	DriftX	DriftY
STOR'ıx Drift X CDX	Х	6.00E-06	250	1.33	0.00060%	0.00020%
STOR'x Drift Y CDX	Υ	2.00E-06	221	6.5	0.00010%	
STOR'ıx Drift X CDY	Χ	1.00E-06	250	1.33	0.00010%	0.00030%
STOR'x Drift Y CDY	Υ	3.00E-06	221	6.5	0.00001%	
STOR'ıx Drift X CDX	Χ	1.00E-06	24	0	0.00020%	0.00002%
STOR'x Drift Y CDX	Υ	1.93E-07	122	0	0.00001%	
				. 15. 60		
				drift (%) =	0.0006%	0.0003%
			drift admis	sible (%) =	0.50%	0.50%
					OK!!	OK!!

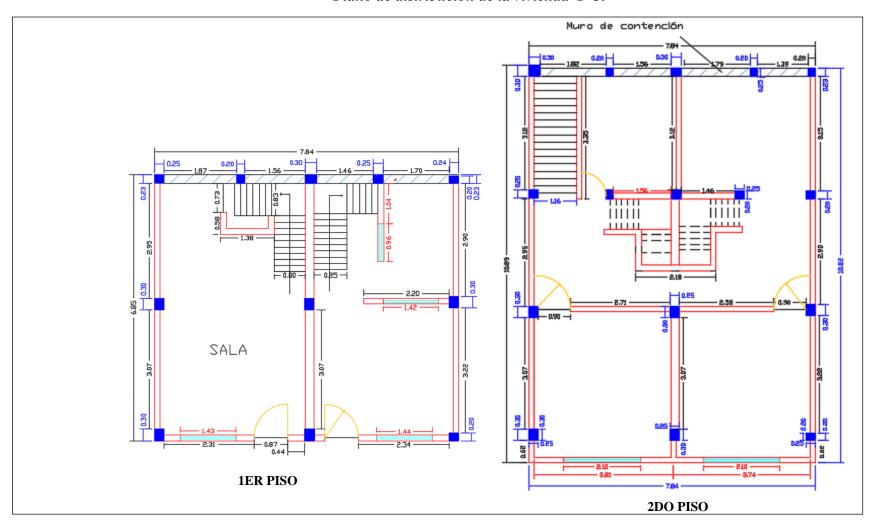
Fotos de la vivienda F-3



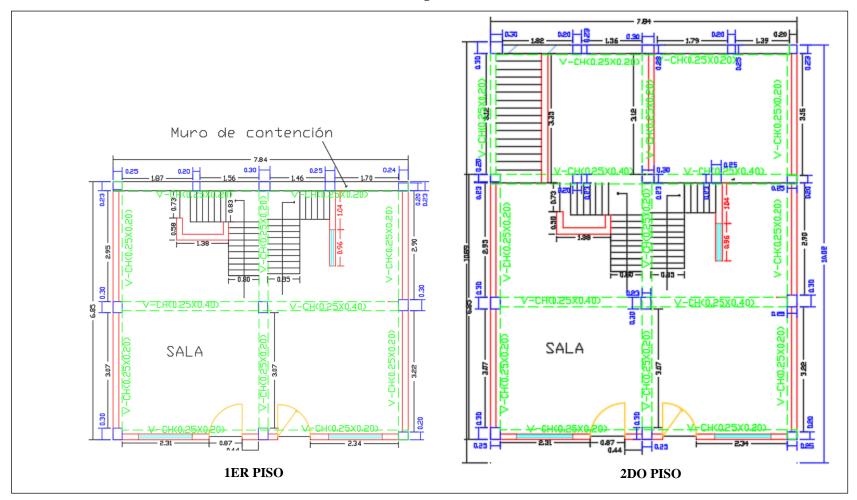
Grietas de la vivienda

Fachada de la vivienda.

Reforzamiento de la vivienda F-3

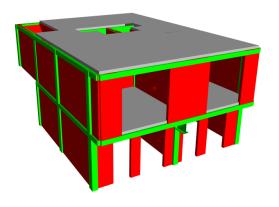


Anexo 15: Evaluación del riesgo sísmico, propuesta de reforzamiento de la vivienda F-5


I. IDENTIF						FICHA	A DE REPOR	TE					
1	FICACIÓN												
PROPIETARIO	O : Nicolaza Serr	aque Cobeñas										FECHA:	30/10/2018
DNI	: 09708392											N° VIVIENDA	
												N VIVIENDA	A: 2
DIRECCIÓN	: AA. HH. Villi	Mercedes Mz.	.F, Lt. 5										
DIRECCIÓN T	TÉCNICA Y CONSTRUC	IÓN:	NO										
ÁREA DE	E TERRENO POR PISO:	1º= 48 m2	29= 85.14	m2	ÁREA TOTA	L CONSTRUIDA	A: 133.14 m2			ANTIGÜED.	AD: 30 años		
NIÍMERO DE	PISOS CONSTRUIDOS		2 pisos		TOPOGRAFI	ÍA V GEOLOGÍA	A: El terreno tiene p	andianta mad	ia v al sualo a	J			
TYONIENO DE	11303 CONSTROIDOS				å				ia y ci sucio c	3 di Cila gia			
ESTADO DEC	ONSERVACIÓN DE LA	/IVIENDA	: TIPOLOG	IA DE LA	VIVIENDA: N	//ULTIFAMILIA	iR .						
CONFIGURAC	CIÓN ESTRUCTURAL		: REGULAI	R									
DAÑOS EN L	A VIVIENDA POR DESA	STRES NATURA	LES: NO										
T . approx	noa mhanirana												
	FOS TÉCNICOS	,											
	ENTOS Y CARACTI	RISTICAS E	DE LA VIVIENI	DA AUI	OCONSTI	RUIDA		<i>.</i>					
Cimie	nentos Cimiont	corrido Sobre	- cimionto				Caract	erísticas					
Mu		Macizo: 0.9x23											
Tec			digerado: 0.2m										
Colu	_	nes: C-1 0.2x		25x0.20	C-3 0.25 x 0	0.3							
		nes: VS 0.20x											
b DEFICI	ENCIAS DE LA ES												
		PROB	LEMAS DE U	BICACI	ÓN					PROBLE	MAS CONSTI	RUCTIVOS	
ī	DESNIVEL DEL TEI	RENO. CON	PENDIENTE P	OR EST	AR EN LAI	DERAS DEL	CERRO	CANGREJE	RAS EN CO	LUMNAS	JUNTAS SÍSN	MICAS DE 3	CM , 1 CM. DESNIV
·	ILIDEE ILI												ENO, EN ROCA
			EMAS ESTRU					_					-
			CON FALLAS MEDAD EN LOS					ELIE O	MCTDIIIDA		ALDAÑII SIN		MIENTO TÉCNICO
		HUN	MEDAD EN LOS	S MURU)3			FUECO	JNSTRUIDA	POR UN A	OTROS	ASESUKAN	MIENTO TECNICO
TIT. ANÁLT	ISIS POR SISMO										UINOS		
	S Y PARÁMETROS	efemteoe											
Z= 0.45	U=1 C=2.		S=1.2										
	característica a corte (l	_	3=1.2										
	encia al corte (Kn)= A		23 ng)										
Área						4 1		Б		_			
techada		Cortante ba	isai			Àrea de 1	muros	Den	sidad	Kes	istencia	Vrn	Resultado
Piso 1	Peso acum.	(KN/m)	VEI = ZUS	SCP/R	existen	te (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Área		∑VR		Resultado
m2	,											KN	
	ANÁLISIS EN EL S	NTIDO "X"	1	-				1				1	
48	8 ANÁLISIS EN EL S	NTIDO "V"	479.30)	1.3	80	1.92	0.94	0.04	l	-	-	ACEPTABLE
	8	NIIDO I	479.30)	3.	63	1.92	1.89	0.08				ADECUADO
 					5.		1.72	1.07	0.00			_	
	•		177.50										
	-		177.50										
			177.30		ESTAB	BILIDAD	DE MUROS A	L VOLT	EO	1			
				E A CITY		BLIDAD	DE MUROS A	L VOLT		A COT	Vov	D.F.G.T.	D to I
				FACTO		BLIDAD	DE MUROS A	L VOLT	EO MOM.	ACT	MOM.	REST.	Resultado
MURO	C1					BILIDAD		L VOLT			MOM. 1		Resultado Ma:Mr
MURO		ATAB W] m		ORES p	a		t	MOM. 0.45C1	mPa2	25	t2	
MURO	C1 ADIMENSIONA	. ADIMI	1		ORES				МОМ.	mPa2		t2	Ma:Mr
MURO M1] m	KN	ORES p	a		t	MOM. 0.45C1	mPa2	25	t2 m/M	
	ADIMENSIONA	(m ENSIONAL	KN 1	P N/M2	a m	0	t m	MOM. 0.45C1 Kn-1	mPa2 n/m	25 KN-1	t2 m/M	Ma:Mr
M1	ADIMENSIONA 2	(m ENSIONAL	KN 1	P N/M2	a m 2.50	0 0	t m	MOM. 0.45C1 Kn-1	mPa2 n/m 8	25 KN-1 0.4	t2 m/M 12 12	Ma:Mr INESTABLE
M1 M2	ADIMENSIONA 2 2	(m ENSIONAL 0.125 0.125	KN 1 1	P N/M2 .82 .82	2.50 2.00	0 0 0 1	t m 0.13	MOM. 0.45C1 Kn-1 1.2 0.8	mPa2 n/m 8 2 5	25 KN-1 0.4	t2 m/M 42 42 42	Ma:Mr INESTABLE INESTABLE
M1 M2	ADIMENSIONA 2 2 2	(m ENSIONAL 0.125 0.125 0.125 0.125	KN 1 1	P N/M2828282	a m 2.50 2.00	0 0 0 1	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5	25 KN-1 0.4 0.4	t2 m/M 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2	(m ENSIONAL 0.125 0.125 0.125 0.125	KN 1 1	P N/M2828282	a m 2.50 2.00	0 0 0 1	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5	25 KN-1 0.4 0.4	t2 m/M 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2	(m ENSIONAL 0.125 0.125 0.125	KN 1 1 1	P N/M2828282	a m 2.5(2.00 1.1	0 0 0 1	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5	25 KN-1 0.4 0.4 0.4	t2 m/M 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2	(m ENSIONAL 0.125 0.125 0.125	KN 1 1 1	P N/M2828282	a m 2.50 2.00 1.11 -	0 0 1 I	t m 0.13 0.13 0.13 - -	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5	25 KN-1 0.4 0.4 0.4	t2 m/M 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2	(m D.125 D.	KN 1 1 1	ORES P N/M2 .82 .82 .82 NTES E	a m 2.50 2.00 1.11 -	0 0 0 1	t m 0.13 0.13 0.13 - -	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5	25 KN-1 0.4 0.4 0.4 -	12 m/M 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2	(m D.125 D.	KN 1 1 1	ORES P N/M2 .82 .82 .82 NTES E	a m 2.50 2.00 1.11 -	0 0 1 I	t m 0.13 0.13 0.13 - -	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5	25 KN-1 0.4 0.4 0.4	12 m/M 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2	FAC	m D.125 D.	KN 1 1 1	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.5(2.00 1.11 VULN	0 0 1 IULTADO; Rie-	t m 0.13 0.13 0.13 - -	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5 abilidad;	25 KN-1 0.4 0.4 0.4 Peligro No estr	12 mvM 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2 Densida	FAC	m D.125 D.	KN 1 1 1	ORES P N/M2 .82 .82 .82 .82 . I	a mm 2.55 2.00 2.11	0 0 1 I	t m 0.13 0.13 0.13 - -	MOM. 0.45C1 Kn-1 1.2 0.8 0.2	mPa2 n/m 8 2 5 abilidad;	25 KN-1 0.4 0.4 0.4 -	12 mvM 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2 Densida Adecu	FAC	m D.125 D.	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.5(2.00 1.11	0 0 1 IULTADO; Rie-	t m 0.13 0.13 0.13 - -	MOM. 0.45CI Kn-1 1.2 0.8 0.2 - ión (vulner)	mPa2 n/m 8 2 5 abilidad;	25 KN-1 0.4 0.4 0.4 Peligro No estr	12 mvM 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE 008
M1 M2	ADIMENSIONA 2 2 2 Densida Adecu. Acepta	FAC	m D.125 D.	KN 1 1 1	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.56 2.00 1.1.1	0 0 1 IULTADO; Rie-	0.13 0.13 0.13 0.13 0.13 0.13 0.10	MOM. 0.45C1 Kn-r 1.2 0.8 0.2 - - ión (vulner) Todos est Algunos	mPa2 n/m 8 2 5 abilidad; Tables estables	25 KN-1 0.4 0.4 0.4 Peligro No estr	12 mvM 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONA 2 2 2 Densida Adecu	FAC	m D.125 D.	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.56 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	t m 0.13 0.13 0.13 - -	MOM. 0.45CI Kn-1 1.2 0.8 0.2 - ión (vulner)	mPa2 n/m 8 2 5 abilidad; Tables estables	25 KN-1 0.4 0.4 0.4 Peligro No estr	12 mvM 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE 008
M1 M2	ADIMENSIONA 2 2 2 Densida Adecu Acepta	FAC	m D.125 D.	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.56 2.00 1.1.1	0 0 1 IULTADO; Rie-	0.13 0.13 0.13 0.13 0.13 0.13 0.10	MOM. 0.45C1 Kn-r 1.2 0.8 0.2 - - ión (vulner) Todos est Algunos	mPa2 n/m 8 2 5 abilidad; Tables estables	25 KN-n 0.4 0.4 	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE X
M1 M2	ADIMENSIONA 2 2 2 Densida Adecu Acepta	FAC	m D.125 D.	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.56 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	0.13 0.13 0.13 0.13 0.13 0.13 0.10	MOM. 0.45C1 Kn-r 1.2 0.8 0.2 - - ión (vulner) Todos est Algunos	mPa2 n/m 8 2 5 abilidad; Tables estables	25 KN-n 0.4 0.4 	12 mvM 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE X
M1 M2	ADIMENSIONA 2 2 2 Densida Adecu Acepta	FAC d de muro da ala ala	m	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.56 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	0.13 0.13 0.13 0.13 0.13 0.13 0.10	MOM. 0.45C1 Kn-r 1.2 0.8 0.2 - - ión (vulner) Todos est Algunos	mPa2 n/m 8 2 5 abilidad; Tables estables	25 KN-n 0.4 0.4 	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE X
M1 M2 M3	ADIMENSIONA 2 2 2	FAC d de muro da ala ala	m	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.56 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	0.13 0.13 0.13 0.13 0.13 0.13 0.10	MOM. 0.45C1 Kn-r 1.2 0.8 0.2 - - ión (vulner) Todos est Algunos	mPa2 n/m 8 8 2 5 abilidad; Tables estables	25 KN-n 0.4 0.4 	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE X
M1 M2 M3 Baja	ADIMENSIONA 2 2 2	FAC d de muro da ala ala	m	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.5t 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2 6ón (vulner Todos est Algunos Todos ind	mPa2 n/m 8 2 5 abilidad; abiles estables estables	25 KN-n 0.4 0.4 	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE OS X
M1 M2 M3 Baja Media	ADIMENSIONA 2 2 2	FAC d de muro da ala ala	m ENSIONAL D.125 D.125 D.125 TORES INF	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES El Buena ca Regular Mala cal	a mm 2.5t 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.2 0.8 0.2 - - ión (vulner) Todos est Algunos	mPa2 n/m 8 2 5 abilidad; abiles estables estables Plana Media	25 KN-n 0.4 0.4 0.4 Peligro) No estr	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE X
M1 M2 M3 Baja	ADIMENSIONA 2 2 2	FAC d de muro da ala ala	m	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES E	a mm 2.5t 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2 6ón (vulner Todos est Algunos Todos ind	mPa2 n/m 8 2 5 abilidad; abiles estables estables	25 KN-n 0.4 0.4 0.4 Peligro) No estr	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE OS X
M1 M2 M3 Baja Media	ADIMENSIONA 2 2 2	FAC d de muro da ala ala	m ENSIONAL D.125 D.125 D.125 TORES INF	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES El Buena ca Regular Mala cal	a mm 2.5t 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2 - 6ón (vulner Todos est Algunos Todos ind	mPa2 n/m 8 2 5 abilidad; abiles estables estables Plana Media	25 KN-n 0.4 0.4 0.4 Peligro) No estr	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE OS X
M1 M2 M3 Baja Media	ADIMENSIONA 2 2 2 Densida Adecu Acepta Inadect Sist Z = 4, COSTA	FAC d de muro da ala ble ada	m PRISIONAL D.125	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES El Buena ca Regular Mala cal	a mm 2.5t 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	0.13 0.13 0.13 0.13 0.13 	MOM. 0.45C1 Kn-1 1.2 0.8 0.2 - 6ón (vulner Todos est Algunos Todos ind	mPa2 n/m 8 2 5 abilidad; abiles estables estables Plana Media	25 KN-n 0.4 0.4 0.4 Peligro) No estr	nmM 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE OS X
M1 M2 M3 Baja Media	ADIMENSIONA 2 2 2 Densida Adecu Acepta Inadect Sist Z = 4, COSTA	FAC d de muro da ala ala	m PRISIONAL D.125	KN 1 1 1 1 FLUYE	ORES P N/M2 .82 .82 .82 NTES El Buena ca Regular Mala cal	a mm 2.5t 2.00 1.1.1	O O O O O O O O O O O O O O O O O O O	0.13 0.13 0.13 0.13 0.13 	MOM. 0.45C1 Kn-1 1.2 0.8 0.2 - 6ón (vulner Todos est Algunos Todos ind	mPa2 n/m 8 2 5 abilidad; abiles estables estables Plana Media	25 KN-n 0.4 0.4 0.4 Peligro) No estr	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE OS X
M1 M2 M3 Baja Media	ADIMENSIONA 2 2 2 Densida Adecu Acepta Inadect Sist Z = 4, COSTA	FAC dde muro da ble ada bleL PERÚ ES	m PRISIONAL D.125	KN 11 11 11 FLUYE	ORES P N/M2 .82 .82 .82 NTES El Buena ca Regular Mala cal	a mm 2.5t 2.00 1.1.1 NEL RES VULN ESTAN alidad calidad lidad	O O O O O O O O O O O O O O O O O O O	t m 0.13 0.13 0.13 0.13	MOM. 0.45C1 Kn-1 1.2 0.8 0.2 - 6ón (vulner Todos est Algunos Todos ind	mPa2 n/m 8 2 5 abilidad; abiles estables estables Plana Media	25 KN-n 0.4 0.4 0.4 Peligro) No estr	nmM 12 12 12 12 12 12 12 12 12 1	Ma:Mr INESTABLE INESTABLE ESTABLE OS X

Fuente: Laucata,2013

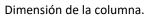
Plano de distribución de la vivienda F-5.



Plano de aligerado de la vivienda F-5

Analísis Sísmico de la vivienda F-5.

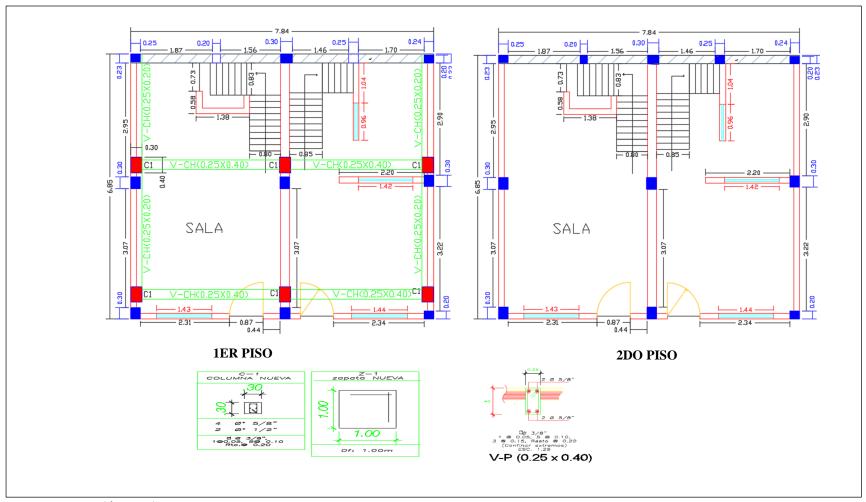
IRREGU	LARID	AD TORS	IONAL	Y TOR	SIONAL	EXTREM	A			
Direccio	ón en 🕽	X-X							(E.030) =	0.5%
Desplaz		o del cer	tro de	Deri		Deriva		Condici	ones	
Story		(C.M.) UX [m]	h [m]	C.M. (Δ/Ի		max. %]	Δmax	/ACM	> 50%	permis.
STORY2	CDX MA	0.289	2.5	11.5	6%	0.0%	0.00	Regular	8%	No Apli
STORY1	CDX MA	0.089	2.5	3.56	6%	0.02%	0.00	Regular	3%	No Apli
Direccio	ón en ۱	Y-Y						Δpermis	(E.030) =	0.5%
Desplaz		o del cer	tro de	Deri		Deriva		Condici	ones	
		(C.M.)		C.M.		max.	Δmax	/ΔCM	> 50% ∆	permis.
		UY [m]		(Δ/h	, -		0.00	Demile		
STORY2 STORY1			2.5 2.5		_	0.024% 0.011%		Regular Regular		No Apli No Apli
										NO Apri
Direcci			BO BL	ANDO	E IRREG	ULARIDA	AD EXIRI	EMA DE R	IGIDEZ	
Des	plaz. C	.М.	Vx	K = V	x/Ux		CONDICIO	ÓN E.030		
Story	Load	UX [m]	[tonf]	[ton	f/m]	Ki/Ki+1<	:0.7, .6	Ki/(Kp3s	< 0.8, .7	
STORY2	CDX MA	0.289	28.38	98	8					
STORY1	CDX MA	0.089	27.04	30)4	3.1 <mark>F</mark>	Regular			
Direccio	ón en ۱	Y-Y								
Des	plaz. C	.М.	Vy	K = V	y/Uy		CONDICIO	ÓN E.030		
		UY [m]	[tonf]	[toni	f/m]	Ki/Ki+1<	0.7, .6	Ki/(Kp3s	≤ 0.8, .7	
STORY2	CDX MA	0.3	25.16	84	4					
STORY1	CDX MA	0.111	27.65	24	9	3.0 F	Regular			
IRREG	ULAR	IDAD I	DE MA	SA O	PESO					
						grav	edad (g)	= 9	<mark>9.81</mark> m/s	2
Story	Loa	ad Lo	P.	acum.	P.parc	P.sism.	M.sism	. co	NDIC. E.	030
Story	LU	au LC		[tonf]	[tonf]	[tonf]	[t-s²/m]	Pi/I	Pi+1 > ±	50%
STORY	2 PES	SO Top		79.079	79.08	113.52	11.5	57		
STORY	2 PES	SO Botto	om '	147.97	68.89					
STORY	1 PES	SO Top		149.79	1.82	61.36	6.2	.5 °	1.85 Irrec	gular
STORY	1 PES	SO Botto	om '	199.98	50.19					
						174.89				



Modelado de la vivienda F-5

Story	Item	Load	Point	Х	Y	Z	DriftX	DriftY
STORY2	: Drift X	CDX	117	6.75	0	4.9	0.000412	
STORY2	Drift Y	CDX	24	7.59	4.07	4.9		0.000237
STORY2	Drift X	CDY	117	6.75	0	4.9	0.000412	
STORY2	Drift Y	CDY	24	7.59	4.07	4.9		0.000237
STORY1	Drift X	CDX	77	0.84	0.7	2.45	0.000151	
STORY1	Drift Y	CDX	33	7.59	7.28	2.45		0.000108
STORY1	: Drift X	CDY	77	0.84	0.7	2.45	0.000151	
STORY1	Drift Y	CDY	33	7.59	7.28	2.45		0.000108
			_	má	áximo d	rift (%) =	0.04%	0.02%
				drift	admisil	ole (%) =	0.50%	0.50%
							OK!!	OK!!

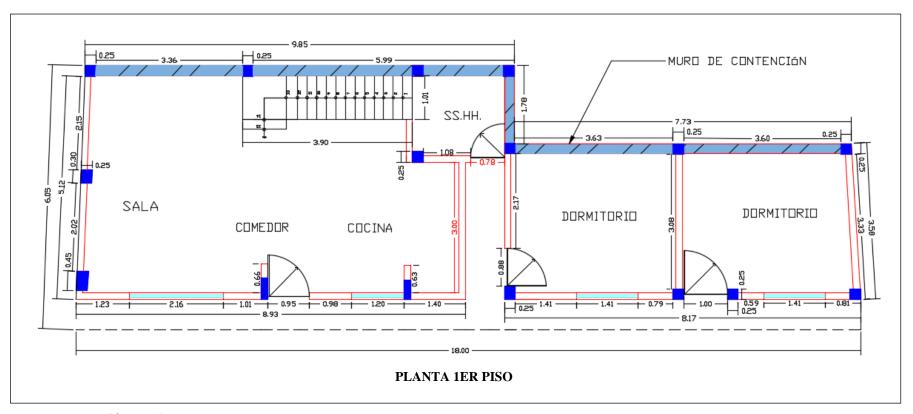
Fotos de la vivienda F-5.



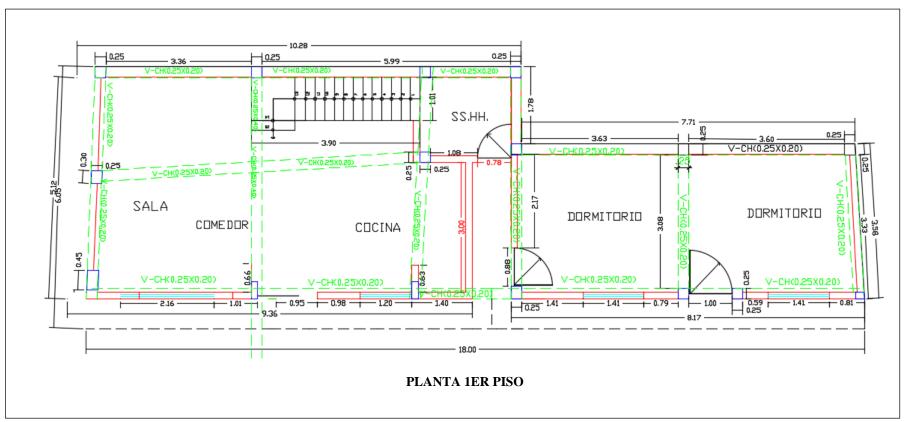
Cangrejeras en las columnas.

Cangrejeras en las columnas.

propuesta de reforzamiento de la vivienda F-5

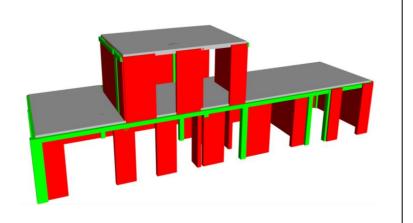


Anexo 16:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda G-9


FICHA DE REPORTE															
I. IDENTIF	ICACIÓN														
PROPIETARIO	: Lidia Nu	Lidia Nuñes Portal												FECHA:	26/11/2018
DNI	: 07679	105											***************************************	N° VIVIENDA	: 16
DIRECCIÓN	: AA. HH	I. Villa Me	rcedes Mz.G	i, Lt. 9										· · · · · · · · · · · · · · · · · · ·	
DIRECCIÓN T	DIRECCIÓN TÉCNICA Y CONSTRUCCIÓN: NO														
ÁRFA DE	TERRENO POR P	ISO:	1	.º= 106.66 m2		ÁREA TOTAL	CONSTRUI	OA: 106.66 n	n2			ANTIGÜED	AD: 16 años		
										a pendiente p	vonunciada v	l			
	PISOS CONSTRUI			1 pi	50	TOFOGRAFI	4 T GLOLOG	IA. LI LEITEI	io delle uli	a pendiente p	i oriunciaua y	ei sueio es	ilelia gravoso		
ESTADO DE C	ONSERVACIÓN D	DE LA VIVII	ENDA:												
DAÑOS EN LA	VIVIENDA POR	DESASTRE	S NATURALI	ES: NO											
II. ASPECT	OS TÉCNICOS	S													
	NTOS Y CARA	CTERÍS	TICAS DE	E LA VIVIE	NDA AUT	OCONSTR	UIDA								
Elem Cimie		ENTADO	S SOBRE	SHELOS DE	SIGHALE	S PROCLE	/FS A ASE	NTAMIEN	Caracte	risticas ELEMENTOS	FSTRUCTU	RALES			
Mu				TA EN TAB							Lorrocio	TO ILLO			
Tec	Techo ALIGERADO DE 0.2 m EN EL 1º PISO														
	Columnas DIMENSIÓN : 0.25x0.20, 0.15x0.2 Vigas DIMENSIÓN : 0.2x 0.4														
Vış	gas Dir	MENSIO.	N: 0.2x 0.4	•											
b DEFICI	ENCIAS DE LA	ESTRU	CTURA												
			PROBL	EMAS DE	UBICACI	ÓN						PROBLEM	AS CONSTR	UCTIVOS	
	POR	LA ZON	A, SE ENC	UENTRA EI	N PENDIE	NTE LA VI	VIENDA			E	XISTENCIA I	DE CANGI	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM
				MAS ESTR											
DDEGES	TA HUMEDA	DENTO					DEGLOTIVE	EC BROCE	TIVE			M	ANO DE OBI	RA	
PRESEN								ES PROCI	LIVES			EN E	STADO REGU	JLAR	
		ASENTA	MIENTOS	DE ELEMEI	NTOS EST	RUCTURA	LES						OTROS		
II. ANÁLIS	IS POR SISMO	O													
FACTORES	S Y PARÁMETI	ROS SÍSM	MICOS												
Z= 0.45		C=2.5	R=3	S=1.2											
	aracterística a co														
VR= Resiste	ncia al corte (Kn))= Ae (0.5	5V M +0.23	5 pg)											
Área		Cor	tante bas	al			Área de	muros		Dens	sidad	Res	istencia	¥7	
techada														Vrn	Resultado
Piso 1	Peso ac	um. (KN	√m)	VEI = ZU	JSCP/R	existent	e (Ae)	Requeri	ida (Ar)	Ae/ Ar	Ae/Area		∑VR	KN	
m2	ANÁLISIS EN I	SIS EN EL SENTIDO "x"											KIN		
106.66		383.	383.98		4.04 1.54		54	2.63	0.04		-	-	ADECUADO		
100.00	ANÁLISIS EN I	LISIS EN EL SENTIDO "Y"													
		8		383.	98	1.91 1.54			1.24	0.02		-	-	ADECUADO	
						FSTAR	п траг	DF MI	TROS A	L VOLT	FΩ				
					E A COTTO		LIDAL	DEMI	JACO A	MOM. ACT MOM. REST. Resultado					
					FACTO										
MURO	C1		1	m		р		a		t	0.45C1	mPa2	25 t2		Ma:Mr
	ADIMENSIO	ONAL	ADIMEN	SIONAL	KN	N/M2 m				m I		n/m	KN-n	νM	
M1	2		0.	125	1.	1.82 3			().13	1.8	84 0.42		2	INESTABLE
M2	2		0.	125	1.	.82	2.08		().13	0.89		0.42		INESTABLE
			T 1 60	10DE0 D		A TOTAL TO							.		
			FACI	ORES IN	FLUYE.	NTES EF		NERAB		go = Funci	on (vulner	abilidad;	Peligro)		
				Ect	ructura		VUI	NEKAB	ILIDAL	,			No estr	rotumal	
	Don	eidad d	le muros		luctura	1	FSTA	DO AC	TILL			7	abiquería y		ne
		ecuada	ic muros		X	Buena ca		DOAC	TUAL		Todos est		aniquena y	parapet	03
		eptable				Regular				X	Algunos				
	Inac	lecuada	l			Mala calidad					Todos inestables				X
								PELIG	RO						
		Sismici	idad						uelo				Topogr	afía y per	diente
	Z = 4, COS			ALTA									- 2P.081	J Per	
Baja						Rígido						Plana			
Media						Intermedio					X Media				
Alta				X		Flexibles				x Media Pronunciad			riada		X
. 11ta				A		LICATORES				<u> </u>		ronunc	-iuuu		.4
ı		CLX	JFICACIÓ	N					ALIFICA	CTÓN —		ı		RESULT	TADO.
		CAL										}		KE-JUL	
	VULNEI	RABILID	OAD	BAJ	Α			PELIGRO		AL	TA		RIESGO S	ÍSMICO	MEDIA

Fuente: Laucata,2013

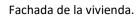
Plano de distribución de la vivienda G-9



Plano de aligerado de la vivienda G-9

Analísis Sísmico de la vivienda G-9

Direcció	ón en X-)	X					Δpermis (E.030) =	0.59		
Desplaz	amiento d	del ce	ntro	Der	ivas D	eriva	Con				
. de	masa (C	.M.)		C.M	l. UX	max.			500 /-		
Story	Load U	X [m]	h [m]	(Δ/	h)% [9	%]	Δmax/ΔCM	> 50%∆permis.			
STORY2	CDX MAX	0.444	2.5	17.	76%	0.10%	0.01 Regula	20%	No Apli.		
STORY1	CDX MAX	0.026	2.5	1.0)4%	0.10%	0.10 Regula	20%	No Apli.		
	on en Y-						Δpermis (
•	amiento d		ntro			eriva	Con	diciones			
	masa (C			C.M. UY		max.	Δmax/ΔCM	> 50%	ωpermis.		
	Load U			•	<u> </u>	%]					
STORY2	CDY MA	1.776	2.5	71.0		.008%	0.00 Regula		No Apli		
STORY1	CDY MA	0.131	2.5	5.2	40%	.008%	0.00 Regula	2%	No Apli.		
	JLARIDAI ón en X-		PISO I	BLAND	O E IRREG	ULARIE	DAD EXTRE	MA DE R	IGIDEZ		
Des	plaz. C.M		Vx	K =	Vx/Ux	СО	NDICIÓN E.0	30			
Story	Load L	JX [m]	[tonf]	[to	nf/m] K	(i/Ki+1<	0.7, .6 Ki/(Kp3	s<0.8, .7	,		
STORY2	CDX MAX	0.444	69.41	1	56						
STORY1	CDX MAX	0.026	33.40	1	284	8.2 F	Regular				
Direcci	ón en Y-	Υ									
Desplaz. C.M. Vy				K =	Vy/Uy	CO	NDICIÓN E.0	30			
	•				• •						
Story	Load l	JY [m]		[to			0.7, .6 Ki/(Kp3		,		
Story STORY2	Load U	JY [m] 1.776	10.57		nf/m] K 6 255	(i/Ki+1<					
Story STORY2 STORY1	Load U	JY [m] 1.776 0.131	10.57 33.40	2	6	(i/Ki+1<	0.7, .6Ki/(Kp3 Regular		,		
Story STORY2 STORY1	Load U	JY [m] 1.776 0.131	10.57 33.40	2	6	42.8 F	Regular	3s<0.8, .7			
Story STORY2 STORY1	Load U	JY [m] 1.776 0.131	10.57 33.40 DE	MASA	6 255 O PESO	42.8 F	Regular edad (g) =	9.81	m/s²		
Story STORY2 STORY1	Load U CDX MAX CDX MAX	1.776 0.131 DAD	10.57 33.40 DE	MASA Pacum	6 P.parc.	42.8 F grav P.sisn	Regular edad (g) = n. M.sism.	9.81 CONDIC	m/s² C. E.0 3		
Story STORY2 STORY1 IRREC	Load L CDX MAX CDX MAX	UY [m] 1.776 0.131 DAD	10.57 33.40 DE	MASA Pacum [tonf]	O PESO P.parc. [tonf]	42.8 F grav P.sisn [tonf	Regular edad (g) = n. M.sism.	9.81 CONDIC	m/s² C. E.0 3		
Story STORY2 STORY1 IRREC Story	Load L CDX MAX CDX MAX GULARI Loa	UY [m] 1.776 0.131 DAD	10.57 33.40 DE	MASA Pacum [tonf] 19.1	6 6 255 O PESO P.parc. [tonf] 19.05	9rav P.sisn [tonf	Regular edad (g) = n. M.sism.	9.81 CONDIC	m/s² C. E.0 3		
Story STORY2 STORY1 IRREC Story STORY STORY	Load L CDX MAX CDX MAX GULARI Loa (2 PESC	1.776 0.131 DAD o To	10.57 33.40 DE	MASA Pacum [tonf]	O PESO P.parc. [tonf]	9rav P.sisn [tonf	Regular edad (g) = n. M.sism.	9.81 CONDIC	m/s² C. E.0 3		
Story STORY2 STORY1 IRREC Story STORY STORY	Load L CDX MAX CDX MAX GULARI Loa	1.776 0.131 DAD o To	10.57 33.40 DE	MASA Pacum [tonf] 19.1	6 6 255 O PESO P.parc. [tonf] 19.05 13.20	9rav P.sisn [tonf	edad (g) = n. M.sism. [t-s²/m]	9.81 CONDIC Pi/Pi+1	m/s ² C. E.03 > ±50		
Story STORY2 STORY1 IRREC Story STORY STORY STORY STORY	Load L CDX MAX CDX MAX GULARI Loa (2 PESC	1.776 0.131 DAD o To O B	DE Loc	MASA Pacum [tonf] 19.1 32.2	6 6 255 O PESO P.parc. [tonf] 19.05 13.20	graw P.sism [tonf 5 25.6	edad (g) = n. M.sism. [t-s²/m]	9.81 CONDIC Pi/Pi+1	m/s² C. E.0 3		

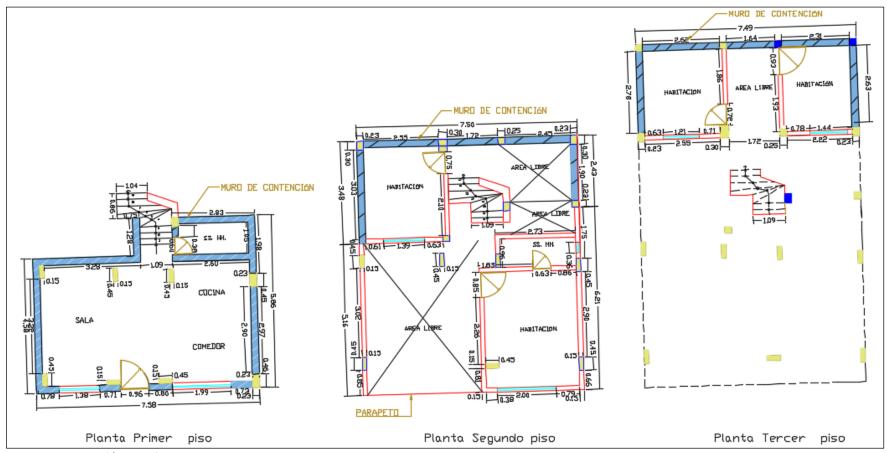


Modelado de la vivienda G-9

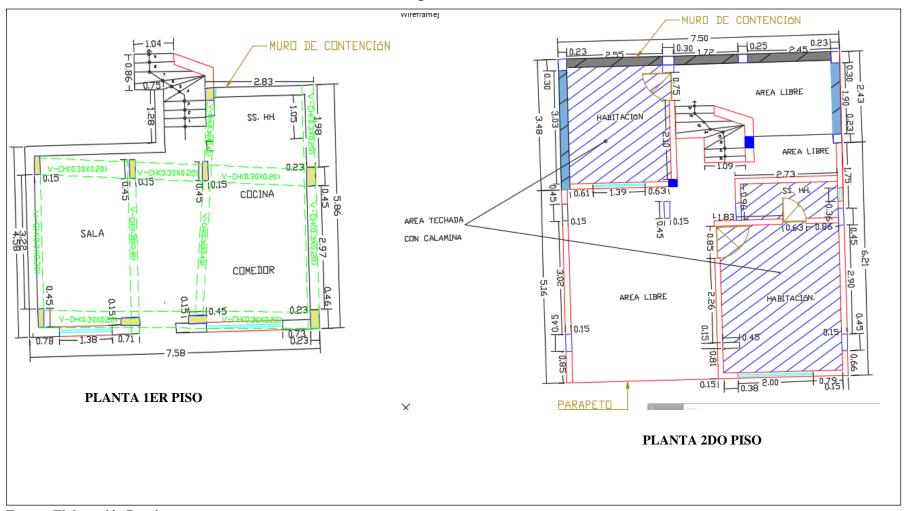
DESPLAZAMIENTO RELATIVO DE ENTREPISO - DRIFT												
Story	Item	Load	Point X		Υ	Z	DriftX	DriftY				
STORY2	ıx Drift	X CDX	41	3.81	0	6	0.10%					
STORY2	x Drift '	Y CDX	67	12.76	0	3		0.01%				
STORY2	ıx Drift	X CDY	117	3.81	4.05	6	0.06%					
STORY2	x Drift '	Y CDY	1	0	0	3		0.01%				
STORY1	ıx Drift	X CDX	41	3.81	0	6	0.10%					
STORY1	x Drift '	Y CDX	67	12.76	0	3		0.01%				
STORY1	ıx Drift	X CDY	117	3.81	4.05	6	0.06%					
STORY1	x Drift '	Y CDY	1	0	0	3		0.01%				
			_	ma	áximo d	rift (%) =	0.00%	0.00%				
				drift	admisik	ole (%) =	0.50%	0.50%				
							OK!!	OK!!				

Analísis Sísmico de la vivienda G-9

Falta de confinamiento en la parte superior de los muros.


Reforzamiento de la vivienda G-9 0.25 0.25 MURO DE CONTENCIÓN Z-1 zapata NUEVA SS.HH. 1.00 SALA DORMITORIO DORMITORIO COMEDOR COCINA Df: 1.00m COLUMNA NUEVA 0° 5/8" 0° 1/2" # @ 3/8" 1@0.05, 50 '0.10 0.25 0.25 - 3.36 -MURO DE CONTENCIÓN Ø 5/8" SS.HH. 7.73 — 0.25 0.25 2 Ø 5/8* DORMITORIO DORMITORIO COCINA COMEDOR SALA V-P (0.25 x 0.40) PLANTA 1ER PISO

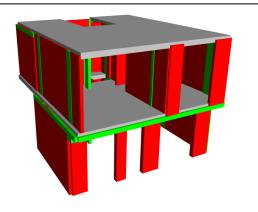
Anexo 17:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda H-1


FICHA DE REPORTE															
I. IDENTIF	ICACIÓN														
PROPIETARIO	Carmen Ir	ma Llacta	huaman Vilo	ta									FECHA:	16/10/2018	
DNI	: 097787	39							N° VIVIENDA:						
DIRECCIÓN	· AA HH \	/illa Morr	cedes Mz.H, I										£		
	ÉCNICA Y CONSTRI														
				20. 05.44 2	(DEA TOTA	I CONSTRUIS					ANTIGÜES	AD - 45 - 7			
AREA DE TER	RENO POR PISO:		1º=38.10 m2	2º= 85.14 m2		L CONSTRUID					<u> </u>	AD : 15 años			
NÚMERO DE	PISOS CONSTRUID	os		2 pisos	TOPOGRAF	ÍA Y GEOLOGÍ	íA: El terreno	tiene pe	ndiente medi	a y el suelo e	arena grav	oso			
ESTADO DE C	ONSERVACIÓN DE	LA VIVIE	NDA:												
DAÑOS EN L	VIVIENDA POR DE	ESASTRES	NATURALES	5: NO											
II. ASPECT	OS TÉCNICOS														
a ELEME	NTOS Y CARAC	CTERÍS	TICAS DE I	LA VIVIENDA AU	OCONSTR	UIDA									
Elem								Caracter							
Cimi				UELOS DESIGUAL						ESTRUCTU	RALES				
Mu	tros LADRILLO PANDERETA EN TABIQUERÍA, Y LADRILLO MACIZO EN MUROS PORTANTES ALIGERADO DE 0.2 m EM EL 1º PISO TANTO EN EL 2º PISO														
Colu	nnas DIMENSIÓN: 0.25x0.20, 0.15x0.2														
	Vigas DIMENSIÓN: 0.2x 0.4														
b DEFICE	ENCIAS DE LA	ESTRU		EMAS DE UBICAC	IÓN						PRORI E	MAS CONSTR	HCTIVOS		
	POR I	LA ZON	A, SE ENC	UENTRA EN PEND	ENTE LA VI	VIENDA			EX	USTENCIA I	DE CANGI	REJERAS, JUN	TAS SISMIC	AS DE 3 CM,	
			PROBLE	MAS ESTRUCTUR	ALES										
PRESE	NTA HUMEDAD	EN LOS	S MUROS,	ASENTADOS SOBI	E SUELOS I	DESIGUALE	S PROPENS	os	construi-l-	or ol pra-i-:		IANO DE OBI uenta con una f		nica	
	Α	SENTA	MIENTOS	DE ELEMENTOS ES	TRUCTURA	LES			construida p	or ei propieta	то, у по с	OTROS	ormacion tec	nica	
		IJLI VIII	MILITOD	DE LELENIE (105 E	TRUCTURA	14.0						OTROS			
	SIS POR SISMO														
	Y PARÁMETRO														
Z= 0.45		=2.5	R=3	S=1.2											
	aracterística a corte ncia al corte (Kn)=			no)											
Área	near three-rice (1211)		tante base			Área de	manua c		Dens	idad	Dog	istencia			
techada											Res		Vrn	Resultado	
Piso 1	Peso acu	ım. (KN	V/m)	VEI = ZUSCP/F	exister	ite (Ae)	Requerida	(Ar)	Ae/ Ar	Ae/Area		∑VR	KN	·	
m2	ANÁLISIS EN EI	SENTII	DO "x"										KIN		
38.1		8		443.66	2.	.00	1.77		1.13	13 0.05 -		-	-	ADECUADO	
36.1	ANÁLISIS EN EI		DO "Y"		_	T									
		8		443.66	2.	2.70 1.77			1.52	0.07		-	-	ADECUADO	
					-								!		
					ESTAB	ILIDAD I	DE MUR	OS A	L VOLTE	EO					
				FACT	ORES					MOM.	ACT	MOM. I	REST	Resultado	
MURO	C1		n	n	p	p a			t 0.45C1r				2	Ma:Mr	
	ADIMENSION	NAL	ADIMEN	SIONAL	N/M2	m	ı		m	Kn-m/m		KN-m/M			
M1	2		0.1	25	1.82	.82 2.5			0.13 1.2		28 0.4		2	INESTABLE	
M2	2	1	0.1	25	1.82	2.5	5	(0.13	1.2	8	0.4	2	INESTABLE	
	-		-		-	-			-	-		-		-	
	-		-		-	-						-		-	
	-		-		-	-			-	-		-		-	
			FACT	ORES INFLUY	ENTES EI	N EL RES	ULTADO	; Riesg	o = Funci	ón (vulner	abilidad;	Peligro)			
						VULN	NERABII	LIDAI)						
				Estructur	al							No estr	actural		
	Dens	idad d	le muros			ESTA	DO ACT	UAL			7	abiquería y	parapeto	OS	
		cuada		X	Buena c					Todos est		4			
	Ace	ptable			Regular				X	Algunos	estables				
	Inade	ecuada	1		Mala ca	lidad				Todos ine	estables			X	
				,			PELIGRO)							
	5	Sismici	idad				Sue					Topogr	afía y per	ndiente	
	Z = 4, COS'			LTA								-F-9.	JF		
Baja					Rígido						Plana				
Media														X	
				v							Media Pronunc	nio do		Α	
Alta				X	riexible	Flexibles						adua			
1			TITLO:					THE PARTY OF	ordan —		Ī		DESCRIPTION	NA D.O.	
		CAL	AFICACIÓ!	N .	4		CAI	LIFICA	LION		}		RESULT	IADO	
	VULNER	ABILID	OAD	MEDIO		F	PELIGRO		ME	DIO		RIESGO S	ÍSMICO	MEDIO	

Fuente: Laucata,2013.

Plano de distribución de la vivienda H-1

Plano de aligerado de la vivienda H-1

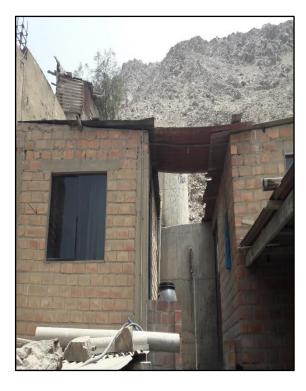


Análisis Sísmico de la viviendas H-1

Desplaz	amiento	del cen	tro de	Derivas	Deriva		Condici	ones			
	masa (C.M.)		C.M. UX	max.	Ama	v/ACM	► E00/A			
Story	Story Load UX [m] h [m]			(∆/h)%	[%]	Δmax/ΔCM		> 30 /01	> 50%∆permis.		
STORY2	CDX MAX	0.084	2.5	3.36%	0.00%	0.00	Regular	0%	No Apl		
STORY1			2.5	1.76%	0.00%	0.00	Regular Apermi	0% s (E.030) =			
Direcci	ón en Y amiento	-Y del cen		Derivas	0.00% Deriva	0.00		s (E.030) =			
Direcci	ón en Y	-Y del cen					Δpermi:	s (E.030) =			
Direcci	ón en Y amiento	-Y del cen C.M.)	tro de	Derivas	Deriva		Δpermi	s (E.030) =	0.5		
Direccio Desplaz	ón en Y amiento masa (Load	-Y del cen C.M.) UY [m]	tro de	Derivas C.M. UY	Deriva max.	Δma	Δpermi:	s (E.030) = ones > 50%Δ	0.5		

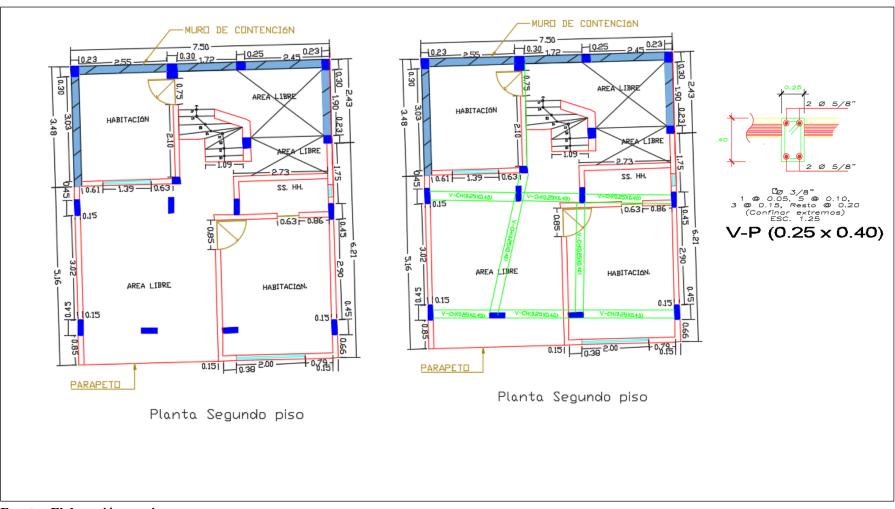
IRREGUL	.ARIDA	D DE P	ISO BLA	ANDO E IRRI	EGULARIDAD EXTR	REMA DE RIGIDEZ
Direcció	n en X	-X				
Desp	olaz. C.	М.	Vx	K = Vx/Ux	CONDIC	IÓN E.030
Story	Load	UX [m]	[tonf]	[tonf/m]	Ki/Ki+1<0.7, .6	Ki/(Kp3s<0.8, .7
STORY2	CDX MAX	0.084	19.25	229		
STORY1	CDX MAX	0.044	27.65	629	2.7 Regular	
Direcció	n en Y	-Y	•		•	
Desp	olaz. C.	м.	Vy	K = Vy/Uy	CONDIC	IÓN E.030
Story	Load	UY [m]	[tonf]	[tonf/m]	Ki/Ki+1<0.7, .6	Ki/(Kp3s<0.8, .7
STORY2	CDX MAX	0.47	24.99	53		
STORY1	CDX MAX	0.035	16.06	459	8.6 Regular	

IRREGU	LARID	AD DE N	MASA O	PESO				
					grave	edad (g) =	9.81	m/s²
Story	Load	Loc	Pacum.	P.parc.	o.sism	M.sism.	COND	IC. E.030
Story	Loau	LUC	[tonf]	[tonf]	[tonf]	[t-s²/m]	Pi/Pi+	1 > ±50%
STORY2	PESO	Тор	27.03	27.03	50.90	5.19		
STORY2	PESO	Bottom	74.77	47.74				
STORY1	PESO	Тор	39.74	-35.03	10.81	1.10	4.71	Irregular
STORY1	PESO	Bottom	83.67	43.93				
					61.71			


Modelado de la vivienda H-1

DESPLA	DESPLAZAMIENTO RELATIVO DE ENTREPISO - DRIFT										
Story	Item	Load	Point	Х		Υ	Z	DriftX	DriftY		
STORY2	ax Drift	X CDX	135	3	.99	3.12	6	0.000198			
STORY2	x Drift '	Y CDX	35	0	.67	0.78	3		1.50E-05		
STORY2	ıx Drift	X CDY	187	7	.29	7.06	6	3.20E-05			
STORY2	x Drift '	Y CDY	88	7	.29	0.97	3		4.00E-06		
STORY1	ıx Drift	X CDX	108	7	.29	0	6	1.00E-05			
STORY1	x Drift '	Y CDX	12	7	.29	3.12	3		2.00E-06		
STORY1	ıx Drift	X CDY	188	3	.99	7.06	6	4.40E-05			
STORY1	x Drift '	Y CDY	88	7	.29	0.97	3		6.00E-06		
					má	kimo (drift (%) =	0.00%	0.00%		
				dı	rift a	admis	ible (%) =	0.50%	0.50%		
								OK!!	OK!!		

Fotos de la vivienda H-1

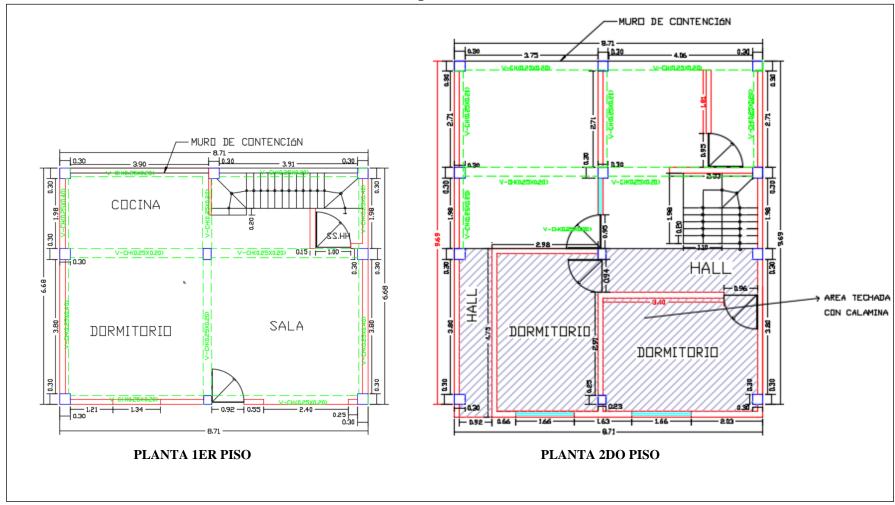


Fachada de la vivienda.

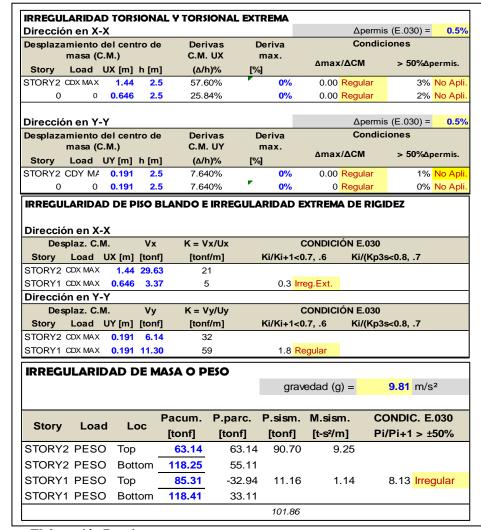
Presencia de Salitre en los muros.

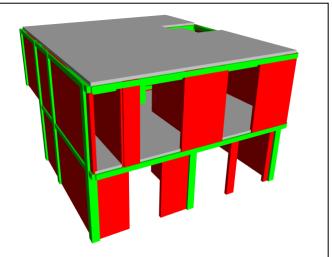
Mala distribución de los muros.

Reforzamiento de la vivienda H-1


Anexo 18:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda H-2

							FICHA	DE REI	PORT	E					
I. IDENTIF	ICACIÓN													, 	
PROPIETARIO	: Erlinda Rosa	e Escoba	ar Salazar											FECHA:	28/10/2018
DNI	: 40697408	3												N°VIVIENDA	: 12
DIRECCIÓN	: AA. HH. Vi	lla Mero	cedes Mz.H, Lt.	2											
DIRECCIÓN T	ÉCNICA Y CONSTRU	ICCIÓN:		NC)	~~~~~~~~~~~						***************************************	~~~~~		
ÁREA DE	TERRENO POR PISO	0:	1ª=50.76 m2	2º=101.7	73 m2	ÁREA TOTAI	.CONSTRUID	A: 152.49 m2				ANTIGÜED	AD: 19 años		
NÚMERO DE	PISOS CONSTRUIDO	os		2 pis	os	TOPOGRAFÍ	A Y GEOLOGÍ	A: El terreno	tiene un	a pendiente i	media y el sue	lo es arena	gravoso		
ESTADO DE O	ONSERVACIÓN DE I	Ι Δ \/Ι\/ΙΕ	ENDA:												
ESTADO DE C	ONSERVACION DE I	LA VIVIL	LINDA.												
DAÑOS EN LA	A VIVIENDA POR DE	SASTRE	S NATURALES:	NO											
5711105 211 2		57.57.11.	5 10 11 G10 ILLS.												
W. A CINE CAL	on what and														
	OS TÉCNICOS NTOS Y CARAC	TEDÍS	TICAS DE I	A VIVIEND	A AUTO	CONSTRU	ID A								
Elem		ILKIS	TICAS DE L	AVIVIEND	AAUIO	CONSTRU	IDA .	C	'aracterí	ísticas					
Cimie	entos ASEN		S SOBRE SU					TAMIENTO:	S DE EL	EMENTOS I	ESTRUCTUR	ALES			
Mu			PANDERETA					EN MUROS	PORTA	NTES					
Teo Colu			O DE 0.2 m El N : 0.25x0.20,		O TANTO	EN EL 2° F	ISO								
Vig			N: 0.2x 0.4	0.1540.2											
	•														
b DEFICI	ENCIAS DE LA E	ESTRU		MAS DE U	RICACIÓ	N						DD ()D1 Es	MAS CONSTI	DICTION	
	POR I	LA ZON	NA, SE ENCU				IENDA			Е	XISTENCIA :	DE CANGI	REJERAS, JUN	NTAS SISMIC	CAS DE 3 CM
			PROBLEM	IAS ESTRU	JCTURAI	ES									
PRESE	NTA HUMEDAD	EN LC	OS MUROS, A	SENTADOS	S SOBRE	SUELOS D	ESIGUALES	S TENDIENI	00	construide r	or el propiet		IANO DE OB		nica
	A	SENTA	AMIENTOS D	E ELEMEN	TOS ESTR	UCTURAL	ES			construiud p	o. ci piopieta	o, y 110 Cl	OTROS	.omacion tec	
(ara non ararro														
	SIS POR SISMO S Y PARÁMETRO		HCOS												
Z= 0.45		2.5	R=3	S=1.2											
	aracterística a corte	-		0-1.2											
VR= Resiste	ncia al corte (Kn)=	Ae (0.5	5V`M +0.23 pg	g)											
Área		Con	rtante basa				Área de 1	mmmoc		Don	sidad	Pos	istencia		
techada		Co	rtaine basa	1			Area de l	muros		Den	siuau	Res	istelicia	Vrn	Resultado
Piso 1	Peso acu	ım. (K	N/m)	VEI = ZU	JSCP/R	existent	te (Ae)	Requerida	ı (Ar)	Ae/ Ar	Ae/Área		∑VR		
m2	ANÁLISIS EN EL	CENITI	DO ""									<u> </u>		KN	
		8	DO "X"	548.9	96	2.3	39	2.20		1.09	0.05				ACEPTABLE
50.76	ANÁLISIS EN EL		DO "Y"				7			1.07	0.05				
		8		548.9	96	2.0	52	2.20		1.19	0.05		-	-	ADECUADO
						ESTABI	LIDAD I	DE MUR	OS AI	L VOLTE	EO				
					FACTO						MOM.	ACT	MOM.	DEST	Resultado
MIDO															
MURO	C1		m			p	a			t	0.45C1	mPa2	25		Ma:Mr
	ADIMENSION	AL	ADIMENS	SIONAL	KN	/M2	m	1		m	Kn-r	n/m	KN-	m/M	
M1	2		0.12	25	1.	.82	3.1	6).13	2.0	4	0.4	12	INESTABLE
M2	2		0.12			82	4.7).13	4.6		0.4		INESTABLE
M3	2		0.12			82	3.2			0.13	2.1		0.4		INESTABLE
M4	2		0.8	/		.82	3.0	01	(0.13	12.9		0.4	12	INESTABLE
	-	ļ	-			-	_			-	-		-		-
			FACTO	DRES INF	TUVEN	TES EN	EL RESI	ILTADO:	Riesa	o = Funció	ón (vulnera	bilidad:	Peligro)		
								NERABIL							
				Estr	uctural								No estr	uctural	
			de muros					DO ACT	UAL				abiquería	y parapet	os
		cuada				Buena ca					Todos est				
		ptable			X	Regular					Algunos				
	Inade	ecuada	a			Mala cal				X	Todos ine	estables			X
							1	PELIGRO							
		Sismic						Sue	elo				Topog	<mark>rafía y per</mark>	ndiente
	Z = 4, COST	TA DEL	L PERÚ ES AL	TA						r					
Baja						Rígido						Plana			
Media						Intermed					X	Media			X
Alta				X		Flexibles	3					Pronunc	ciada		
		CA	LIFICACIÓN	I				CAI	LIFICA	CIÓN				RESULT	ΓADO
]	VULNER	ARIT	DAD	ALT	Δ		n	PELIGRO		М	EDIA		RIESGO	SÍSMICO	ALTA
	, ULATER			ALI				LIJORO		WIE			KIESGO	,,,,,,,,,,	ALIA


Fuente: Laucata,2013.


Plano de Ubicación de la vivienda la vivienda H-2 e] MURO DE CONTENCIÓN HH.22 LAVADERO DORMITORIO MURD DE CONTENCIÓN COCINA SALA DORMITORIO DORMITORIO DORMITORIO Planta Primer piso Planta Segundo piso Azotea

Plano de aligerado de la vivienda H-2

Análisis Sísmica de la vivienda H-2

Modelado de la vivienda H-2

DESPLAZ	AMIEN'	TO REL	ATIVO D	E ENTREP	ISO - DE	RIFT		
Story	Item	Load	Point	Х	Υ	Z	DriftX	DriftY
STORY2 IX	Drift X	150	150	0	0	6	0.000125	
STORY2 x	Drift Y	45	45	5.93	0.43	3		4.50E-05
STORY2 IX	Drift X	215	215	8.41	7.91	6	7.20E-05	
STORY2 x	Drift Y	27	27	8.41	3.44	3		3.10E-05
STORY1 IX	Drift X	150	150	0	0	6	1.40E-05	
STORY1 x	Drift Y	45	45	5.93	0.43	3		8.00E-06
STORY1 IX	Drift X	214	214	0	7.91	6	7.90E-05	
STORY1 x	Drift Y	27	27	8.41	3.44	3		1.40E-05
				m	áximo d	rift (%) =	0.01%	0.00%
				drif	t admisik	ole (%) =	0.50%	0.50%
							OK!!	OK!!

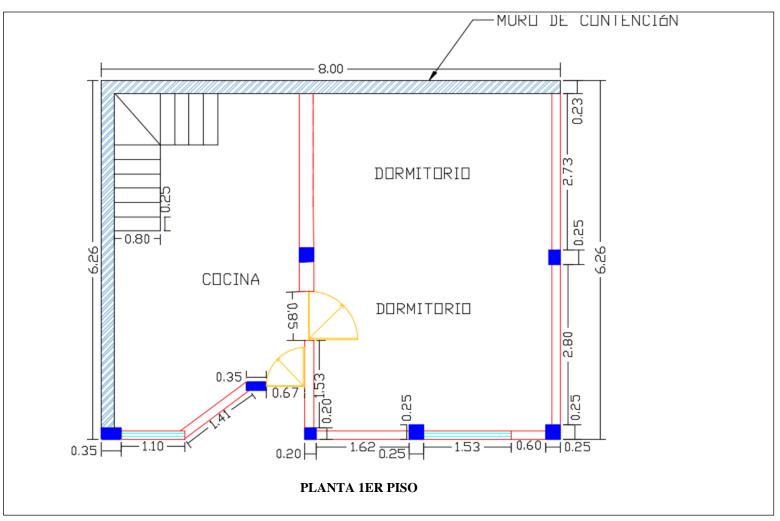
Fotos de la vivienda H-2

Medición de las juntas menores a 1 cm

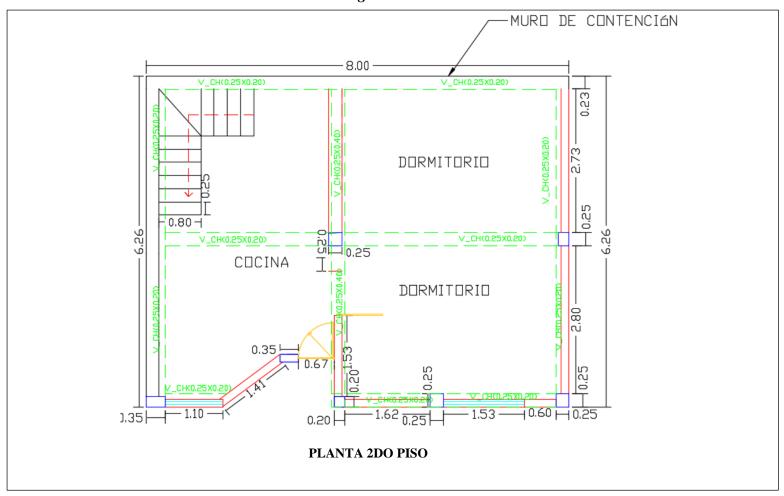
Fachada de la vivienda.

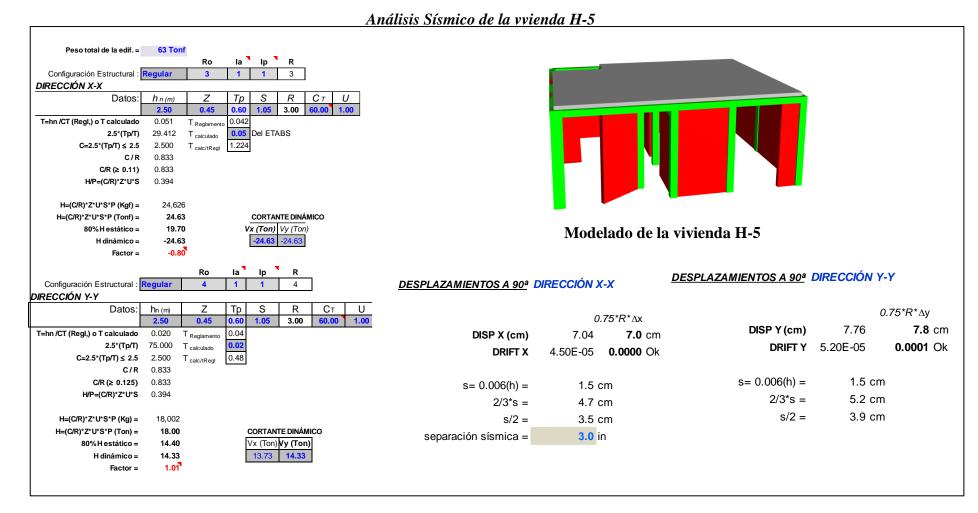
0.30 COCINA COCINA 0.15 - 1.00 - 1 SALA SALA DORMITORIO DORMITORIO - 1.21 - - 0.92 - 0.55 F 0.25 COLUMNA NUEVA PLANTA 2DO PISO PLANTA 1ER PISO

1 @ 3/8", 1 @ 0.05, 5 @ 0.10 Rto. @ 0.20


Reforzamiento de la vivienda H-2 en el primer piso

Anexo 19:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda H-5

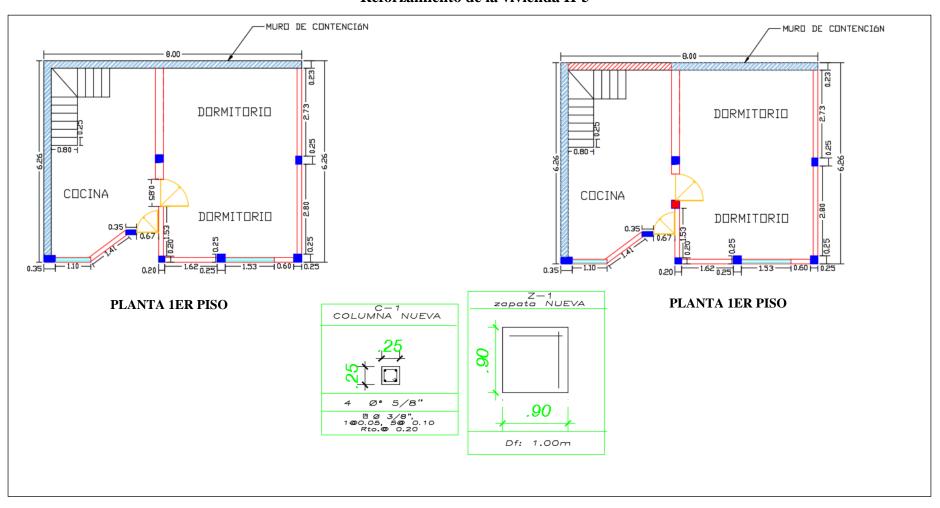

						FICHA	DE REPOR	TE					
ROPIETARI	FICACIÓN O : Roberto Jesus Vil	logas										FECHA:	02/12/2018
) NI	: 15246523	.ogas										N° VIVIENDA	
DIRECCIÓN	: AA. HH. Villa Me	rcedes Mz H	It 5									il vivienda	. 17
	TÉCNICA Y CONSTRUCCIÓN												
REA DE TEI	RRENO:		1º=50.08 m2		ÁREA TOTA	L CONSTRUIDA:	50.08 m2			ANTIGÜED	AD: 14 años		
ÚMERO DE	E PISOS CONSTRUIDOS		1 piso		TOPOGRAFÍ	A Y GEOLOGÍA:	El terreno tiene u	na pendiente p	oronunciada y	el suelo es	arena gravoso		
TADO DE	CONSERVACIÓN DE LA VIVI	ENDA:			£								
AÑOS EN I	A VIVIENDA POR DESASTR	ES NATURALE	S: NO										
•••••													
. ASPEC	TOS TÉCNICOS												
	ENTOS Y CARACTERÍS	STICAS DE	LA VIVIE	NDA AUI	OCONSTI	RUIDA							
	nentos ientos ASENTADO	OS SOBRE S	SUELOS DI	ESIGUALI	ES PROPEN	SOS A ASEN	TAMIENTOS D	erísticas E ELEMENTO	S ESTRUCT	JRALES			
Mı	uros LADRILLO	PANDERE	TA EN TAE	IQUERÍA			EN MUROS PO						
		OO DE 0.2 m ON: 0.25x0.2		ISO									
		N: 0.2x 0.4											
DEELC	ENGLEDE LA EGEN	LOTTID A											
DEFIC	IENCIAS DE LA ESTRU		EMAS DE	UBICACI	ÓN					PROBLE	AS CONST	RUCTIVOS	
	POR LA ZON					VIENDA		E			REJERAS, JUN		AS DE 3 CM
	TOREITZON		MAS ESTE					15.					DES CM
DDECE	NTA HUMEDAD EN LO					DEGICITALES	DDODENSOS			M	ANO DE OB	RA	
r nesel							1 MOLENSOS		MAI	A DISTRIE	BUCIÓN DE L	OS AMBIEN	TES
	ASENTA	AMIENTOS	DE ELEME	N I OS ES	IKUUTURA	LES		1			OTROS		
	ISIS POR SISMO												
CTORE = 0.45	U=1 C=2.5	MICOS R=3	C_1 2	1									
	característica a corte (kPa)		S=1.2	J									
R= Resist	encia al corte (Kn)= Ae (0.	5V`M +0.23	pg)										
Área	Con	rtante basa	al			Área de m	uros	Dens	sidad	Res	istencia		
techada												Vrn	Resultado
Piso 1 m2	Peso acum. (Ki	√/m)	VEI = ZU	JSCP/R	existen	te (Ae)	Requerida (Ar)	Ae/ Ar	Ae/Area		∑VR	KN	
1112	ANÁLISIS EN EL SENT	IDO "x"			l-								
50.08	8 ANÁLISIS EN EL SENT	IDO "V"	180.	29	1.3	84	0.72	2.55	0.04		-	-	ADECUADO
	8	IDO I	180.	29	2.:	38	0.72	3.30	0.05			I - I	ADECUADO
	•												
								•					
	-				ESTAD	ILIDAD I	DE MUROS	AL VOLT	EO				
				FACT		ILIDAD I	DE MUROS	AL VOLT	MOM.	ACT	МОМ.	REST.	Resultado
MURO	C1	n	n			a a	E MUROS	AL VOLT			MOM. 25		Resultado Ma:Mr
MURO	C1 ADIMENSIONAL	ADIMEN			ORES	T	DE MUROS		МОМ.	mPa2		t2	
MURO M1		ADIMEN		K	ORES P	a	DE MUROS	t	MOM. 0.45C1	mPa2	25	t2 m/M	
	ADIMENSIONAL	ADIMEN 0.1	ISIONAL	KN 1	P P N/M2	a m	DE MUROS	t m	MOM. 0.45C1 Kn-r	mPa2 n/m	25 KN-	t2 m/M	Ma:Mr
M1	ADIMENSIONAL 2	0.1 0.1	ISIONAL 125	Kr 1	P N/M2	a m 2.6	DE MUROS	t m	MOM. 0.45C1 Kn-r	mPa2 n/m 8	25 KN- 0.4	t2 m/M 12 12	Ma:Mr
M1 M2	ADIMENSIONAL 2 2	0.1 0.1	ISIONAL 125 125	Kr 1	P N/M2 .82 .82	a m 2.6 1.53	DE MUROS	t m 0.13 0.13	MOM. 0.45C1 Kn-r 1.3	mPa2 n/m 8	25 KN- 0.4	t2 m/M 12 12	Ma:Mr INESTABLE INESTABLE
M1 M2	ADIMENSIONAL 2 2	0.1 0.1	ISIONAL 125 125	Kr 1	P N/M2 .82 .82	a m 2.6 1.53	DE MUROS	t m 0.13 0.13	MOM. 0.45C1 Kn-r 1.3	mPa2 n/m 8	25 KN- 0.4	t2 m/M 12 12	Ma:Mr INESTABLE INESTABLE
M1 M2	ADIMENSIONAL 2 2	0.1 0.1 0.1	125 125 125	KI 1 1 1	P P N/M2	a m 2.6 1.53 1.43	DE MUROS LTADO; Rie	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3 0.4 0.4	mPa2 n/m 8 8 8 2	25 KN- 0 0	t2 m/M 12 12	Ma:Mr INESTABLE INESTABLE
M1 M2	ADIMENSIONAL 2 2	0.1 0.1 0.1	ISIONAL 125 125 125 125 125	KN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DRES P N/M2 .82 .82 .82 .82	a m 2.6 1.53 1.43		t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3 0.4 0.4	mPa2 n/m 8 8 8 2	25 KN- 0.2 0.3 0.4	12 m/M 12 12 12	Ma:Mr INESTABLE INESTABLE
M1 M2	ADIMENSIONAL 2 2 2 2	0.1 0.1 0.1 FACT	ISIONAL 125 125 125 125 125 TORES IN	KI 1 1 1	DRES P N/M2 .82 .82 .82 .82	a m 2.6 1.53 1.43	LTADO; Rie ERABILIDA	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3 0.4 0.4	mPa2 mPa2 8 8 2 abilidad;	25 KN- 0.2 0.3 0.4 Peligro)	12 mM 42 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONAL 2 2 2 2 2 Densidad of	ADIMEN 0.1 0.1 0.1 FACT	ISIONAL 125 125 125 125 125 TORES IN	K?	DRES P N/M2 .82 .82 .82 .82 .81	a m	LTADO; Ric	t m 0.13 0.13 0.13	MOM. 0.45CI Kn-1 1.3 0.4 0.4 ón (vulner	mPa2 n/m 8 8 8 2 abilidad;	25 KN- 0.2 0.3 0.4	12 mM 42 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada	ADIMEN 0.1 0.1 0.1 FACT	ISIONAL 125 125 125 125 125 TORES IN	KN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DRES P WM2 .82 .82 .82 NTES E	a m 2.6 1.53 1.43 VEL REST VULN ESTAD	LTADO; Rie ERABILIDA	t m 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3 0.4 0.4 Online Todos esi	mPa2 n/m 8 8 2 abilidad; Tables	25 KN- 0.2 0.3 0.4 Peligro)	12 mM 42 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONAL 2 2 2 2 2 Densidad of	ADIMEN 0.1 0.1 0.1 0.1	ISIONAL 125 125 125 125 125 TORES IN	K?	DRES P N/M2 .82 .82 .82 .82 .81	a m 2.6 1.53 1.43 VEL RESU VULN ESTAD alidad calidad	LTADO; Rie ERABILIDA	t m 0.13 0.13 0.13	MOM. 0.45CI Kn-1 1.3 0.4 0.4 ón (vulner	mPa2 n/m 8 8 2 abilidad; abilesestables	25 KN- 0.2 0.3 0.4 Peligro)	12 mM 42 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada Aceptable	ADIMEN 0.1 0.1 0.1 0.1	ISIONAL 125 125 125 125 125 TORES IN	K?	NTES EN	a m 2.6 1.53 1.43 VEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA	t m 0.13 0.13 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3. 0.4 0.4 Ontion Todos est Algunos of	mPa2 n/m 8 8 2 abilidad; abilesestables	25 KN- 0.2 0.3 0.4 Peligro)	12 mM 42 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE
M1 M2	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada Aceptable	ADIMEN 0.1 0.1 0.1 FACT	ISIONAL 125 125 125 125 125 TORES IN	K?	NTES EN	a m 2.6 1.53 1.43 VEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3. 0.4 0.4 Ontion Todos est Algunos of	mPa2 n/m 8 8 2 abilidad; abilesestables	25 KN- 0.4 0.5 0.5 Peligro) No estr	12 mM 42 42 42 42 42	Ma:Mr INESTABLE INESTABLE ESTABLE SS X
M1 M2	ADIMENSIONAL 2 2 2 2 Pensidad of Adecuada Aceptable Inadecuada	ADIMEN O.1 O.1 FACT	ISIONAL 125 125 125 125 CORES IN	K?	NTES EN	a m 2.6 1.53 1.43 VEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3. 0.4 0.4 Ontion Todos est Algunos of	mPa2 n/m 8 8 2 abilidad; abilesestables	25 KN- 0.4 0.5 0.5 Peligro) No estr	12 mr/M 12 12 12 12 12 12 12 12 12 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X
M1 M2 M3	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada Aceptable Inadecuada	ADIMEN O.1 O.1 FACT	ISIONAL 125 125 125 125 CORES IN	K?	NTES EN	a m 2.6 1.53 1.43 VEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13 0.13	MOM. 0.45C1 Kn-r 1.3. 0.4 0.4 Ontion Todos est Algunos of	mPa2 n/m 8 8 2 abilidad; abilesestables	25 KN- 0.4 0.5 0.5 Peligro) No estr	12 mr/M 12 12 12 12 12 12 12 12 12 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X
M1 M2 M3	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada Aceptable Inadecuada	ADIMEN O.1 O.1 FACT	ISIONAL 125 125 125 125 CORES IN	K?	DRES P NM2 .82 .82 .82 .81 .82 .82 .82 .83 .84 .85 .85 .86 .86 .87 .88 .88 .88 .88 .88 .88 .88 .88 .88	a m 2.6 1.53 1.43 NEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13 VX	MOM. 0.45C1 Kn-r 1.3. 0.4 0.4 Ontion Todos est Algunos of	mPa2 n/m 8 8 8 2 abilidad; ables estables estables	25 KN- 0.4 0.5 0.5 Peligro) No estr	12 mr/M 12 12 12 12 12 12 12 12 12 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X
M1 M2 M3	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada Aceptable Inadecuada	ADIMEN O.1 O.1 FACT	ISIONAL 125 125 125 125 CORES IN	FLUYE	NTES EN NTES EN Regular Regular Refgido	a m 2.6 1.53 1.43 NEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13 VX	MOM. 0.45CI Kn-r 1.3 0.4. 0.4 O.4 O.4 Todos est Algunos of Todos inc	mPa2 mPa2 mVm 8 8 8 2 abilidad; abilidad; plana	25 KN- 0.4 0.5 0.6 Peligro No estr abiquería	12 mr/M 12 12 12 12 12 12 12 12 12 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X
M1 M2 M3	ADIMENSIONAL 2 2 2 2 Densidad of Adecuada Aceptable Inadecuada	ADIMEN O.1 O.1 FACT	ISIONAL 125 125 125 125 ORES IN Est	FLUYE	NTES E	a m 2.6 1.53 1.43 NEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13 VX	MOM. 0.45CI Kn-r 1.3 0.4. 0.4 O.4 O.4 Todos est Algunos of Todos inc	mPa2 m/m 8 8 8 2 abilidad; abiles estables estables Plana Media	25 KN- 0.4 0.5 0.6 Peligro No estr abiquería	12 mr/M 12 12 12 12 12 12 12 12 12 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X Idiente
M2	Densidad of Adecuada Aceptable Inadecuada Sismic Z=4, COSTA DEL	ADIMEN O.1 O.1 FACT	ISIONAL 125 125 125 125 125 IZE	FLUYE	NTES E	a m 2.6 1.53 1.43 NEL RESU VULN ESTAD alidad calidad idad	LTADO; Rie ERABILIDA O ACTUAL	t m 0.13 0.13 0.13 0.13	MOM. 0.45CI Kn-r 1.3 0.4. 0.4 O.4 O.4 Todos est Algunos of Todos inc	mPa2 m/m 8 8 8 2 abilidad; abiles estables estables Plana Media	25 KN- 0.4 0.5 0.6 Peligro No estr abiquería	12 mr/M 12 12 12 12 12 12 12 12 12 12 12 12 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X Indiente
M1 M2 M3	Densidad of Adecuada Aceptable Inadecuada Sismic Z=4, COSTA DEL	FACT FACT Galactic Action of the control of the c	ISIONAL 125 125 125 125 125 IZE	FLUYE Tuctura X	NTES E	a m m 2.6 1.53 1.43 1.43 VLLN ESTAD alidad calidad idad idad idad idad s s	LTADO; Rie ERABILIDA O ACTUAL PELIGRO Suelo	t m 0.13 0.13 0.13 0.13 sgo = Funci D X	MOM. 0.45CI Kn-r 1.3 0.4. 0.4 O.4 O.4 Todos est Algunos of Todos inc	mPa2 m/m 8 8 8 2 abilidad; abiles estables estables Plana Media	25 KN- 0.4 0.5 0.6 Peligro No estr abiquería	mmM 122 122 122 122 122 122 122 122 122 12	Ma:Mr INESTABLE INESTABLE ESTABLE SS X Indiente


Fuente: Laucata,2013.

Plano de distribución de la vivienda H-5

Plano de aligerado de la vivienda H-5

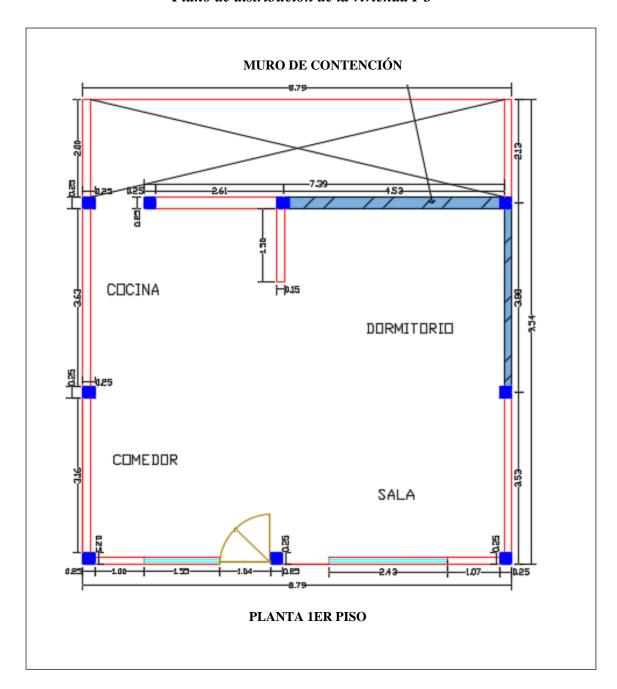
Fotos de la vivienda H-5



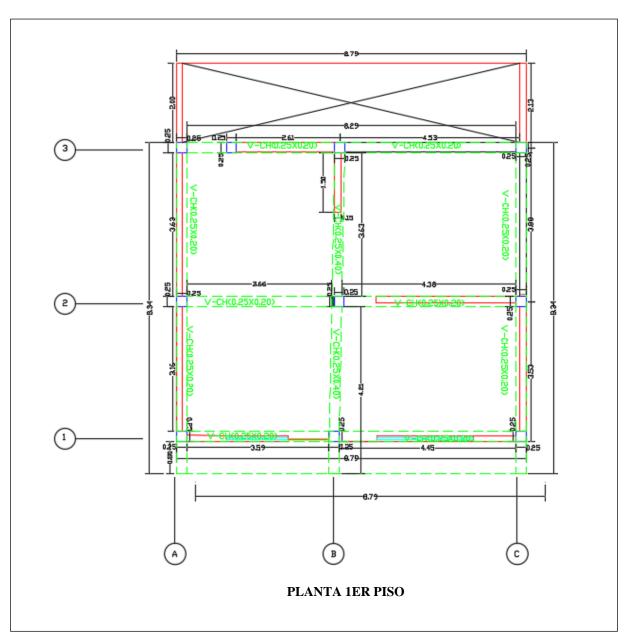
Humedad en los muros.

Fachada de la vivienda.

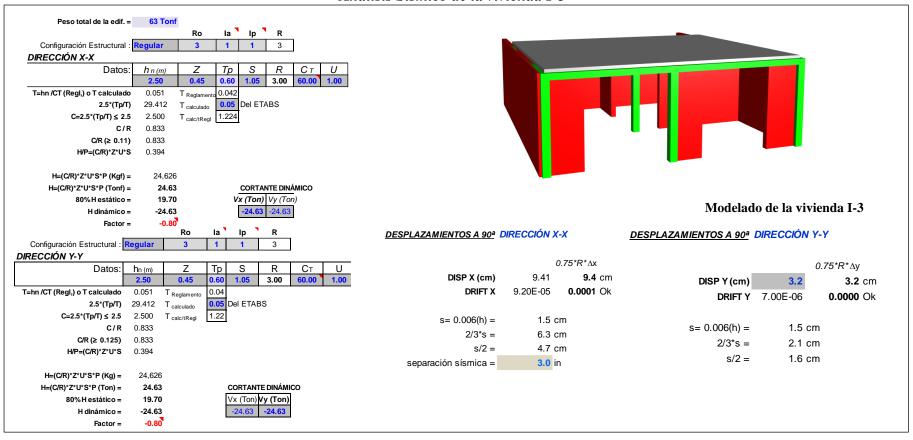
Reforzamiento de la vivienda H-5



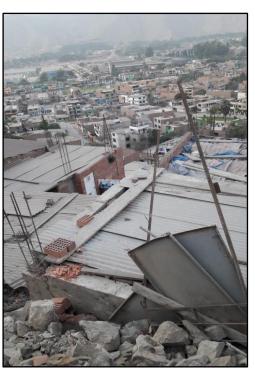
Anexo 20:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda I-3


						FICH	IA DE RI	EPOR	Œ						
I. IDENTIF	ICACIÓN														
PROPIETARIO) : Luz Gabriela	luanca Davila											FECHA:	19/1:	1/2018
DNI	: 80583586												N° VIVIENDA	A:	18
DIRECCIÓN	: AA. HH. Villa	Mercedes Mz.	I, Lt. 3												
DIRECCIÓN T	ÉCNICA Y CONSTRUCO	ÓN:	N	0											
ÁREA DE TER	RENO POR PISO:		1º= 66.28 m2		ÁREA TOTA	L CONSTRUI	DA: 66.28 m2	!			ANTIGÜED	AD: 13 años	***************************************		***************************************
NIÚMEDO DE	PISOS CONSTRUIDOS		1.0	ico.	TOPOGRAFÍ	A Y GEOLOG	SÍA: El terreno	tiene un	a pendiente	pronunciada y	el suelo es	arena gravoso			
			1р	150	l										
ESTADO DEC	ONSERVACIÓN DE LA	IVIENDA:					~~~~~								
DAÑOS EN LI		TOTAL	LEC NO												
DANOS EN D	A VIVIENDA POR DESA	STRES NATURA	LES: NO												
	OS TÉCNICOS	- farma . a -													
a ELEME Elem	NTOS Y CARACTI	KISTICAS D	E LA VIVIE	NDA AUI	OCONSTR	KUIDA		Caracte	rísticas						
Cimi		ADOS SOBRI	E SUELOS D	ESIGUALI	ES PROPEN	SOS A AS	ENTAMIEN			OS ESTRUCT	URALES				
Mu		LO PANDER			Y LADRIL	LO MACIZ	ZO EN MUR	OS POR	TANTES						
Tec		ADO DE 0.2													
Colu Viș		SIÓN : 0.25x0 SIÓN : 0.2x 0.													
V 12	gas Divilla	31011 . 0.2x 0.	-												
b DEFICI	ENCIAS DE LA ES														
		PROB	LEMAS DE	UBICACI	ON						PROBLE	MAS CONSTI	RUCTIVOS		
	POR LA	ONA, SE EN	CUENTRA E	N PENDII	ENTE LA VI	VIENDA			Е	EXISTENCIA	DE CANG	REJERAS, JUN	NTAS SÍSMIC	CAS DE 3 C	M
		PROBL	EMAS EST	RUCTURA	ALES										
PRESEN	TA HUMEDAD EN	LOS MUROS	. ASENTAD	OS SOBRI	E SUELOS I	DESIGUAL	ES PROPEN	ISOS				IANO DE OB			
THEOLE							LOTROTE	1000		DISTR	BUCIÓN I	ERRONEA DE	LOS AMBIE	ENTES	
	ASE	TAMIENTO:	S DE ELEME	N I OS ES	IRUCTURA	LES						OTROS			
III. ANÁLI	SIS POR SISMO														
	S Y PARÁMETROS			-											
Z= 0.45	U=1 C=2.		S=1.2	J											
	aracterística a corte (l ncia al corte (Kn)= A		23 ng)												
	near an corte (ren)— 11	(0.5 7 147 10.2	-5 PB)												
Área techada		Cortante ba	sal			Área de	muros		Den	sidad	Res	istencia	Vrn		
	Peso acum.	(VN/m)	VEI = Z	ISCD/D	existen	to (Ao)	Requerid	o (Ar)	A a / A m	Ae/Área		ΣVR		Resu	ultado
Piso 1 m2	reso acum.	(KIVIII)	VEI = Z	JSCP/K	existen	ie (Ae)	Requend	a (AI)	Ae/ Ar	Ae/Area		ZVK	KN		
1112	ANÁLISIS EN EL SI	NTIDO "x"													
66.28	. 8		238	.61	1.0	68	0.95	5	1.76	0.03		-	-	ADEC	CUADO
	ANÁLISIS EN EL SI 8	NTIDO "Y"	238	61	2.	26	0.95	:	2.37	0.03	1			ADEC	CUADO
	0		230	.01	24.	20	0.7.	,	2.31	0.03			 	ADLC	CADO
														1	
					ESTAB	ILIDAI	DE MU	ROS A	L VOLT	EO					
				FACT						MOM.	АСТ	MOM.	DEST	Pacu	ıltado
MIDO	C)			TACI	- ''										
MURO	CI		m		p		a		t	0.45C1	mPa2	25	t2	Ma	a:Mr
	ADIMENSIONA	ADIME	ENSIONAL	K	I/M2	F	n		m	Kn-r	n/m	KN-	m/M		
M1	2	0	0.125	1	.82	3.	53	().13	2.5	5	0.4	12	INES	TABLE
M2	2	0	0.125	1	.82	1	.5	().13	0.4	6	0.4	12	INES	TABLE
		FAC"	TORES I	IFLUVE	NTES EI	JEL RE	SIII.TADO	O· Ries	go – Func	ión (vulner	ahilidad:	Peligro)			
		1110	TORED II	T. D. II.	141100101		LNERABI		9	ion (vanier	uoman,	r Cligit)			
			Es	tructura	1							No estr	ructural		
	Densida	d de muro				ESTA	DO ACT	TUAL			Э	l'abiquería	v parapet	os	
	Adecu	da	X Buena calidad Todos estables												
	Acepta	ole	Regular calidad Algunos estables												
	Inadecu	ada			Mala cal	idad			X	Todos ine	estables				X
							PELIGR	RO							
	Sisı	nicidad					Su	elo				Topogr	rafía y per	ndiente	
	Z = 4, COSTA	EL PERÚ ES	ALTA												
Baja					Rígido						Plana				
Media					Intermed	lio				X	Media				
Alta			3	[Flexible						Pronun	ciada			X
		CALIFICACI	ÓN]		CA	LIFICA	CIÓN		1		RESULT	rado	
					1						1				
	VULNERAB	LIDAD	ME	DIA		1	PELIGRO		AI	LTA		RIESGO S	SISMICO	AL	LTA
			1		1						1				

Fuente: Laucata,2013.

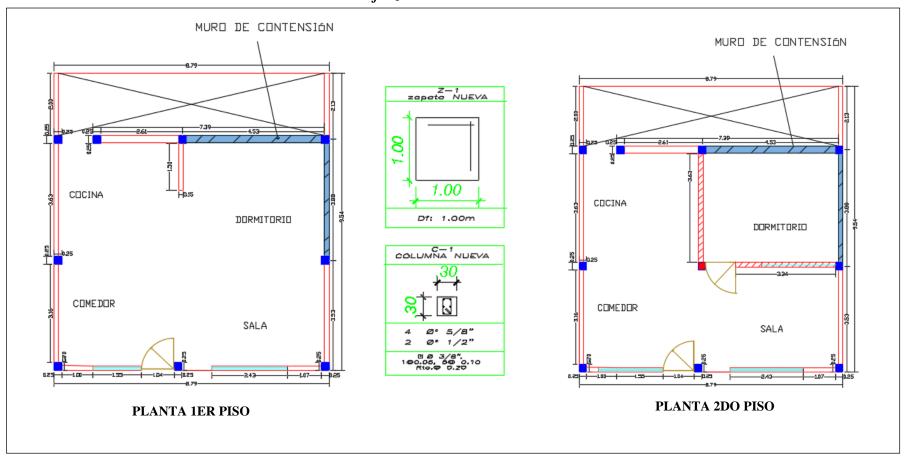

Plano de distribución de la vivienda I-3

Plano de aligerado de la vivienda I-3


Análisis Sísmico de la vivienda I-3

Fotos de la vivienda I-3

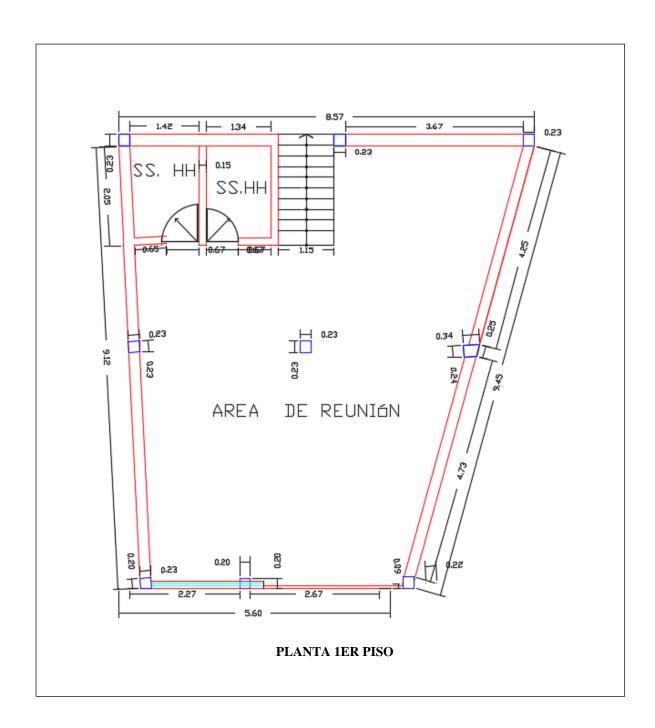
Juntas mayores a 3 CM.



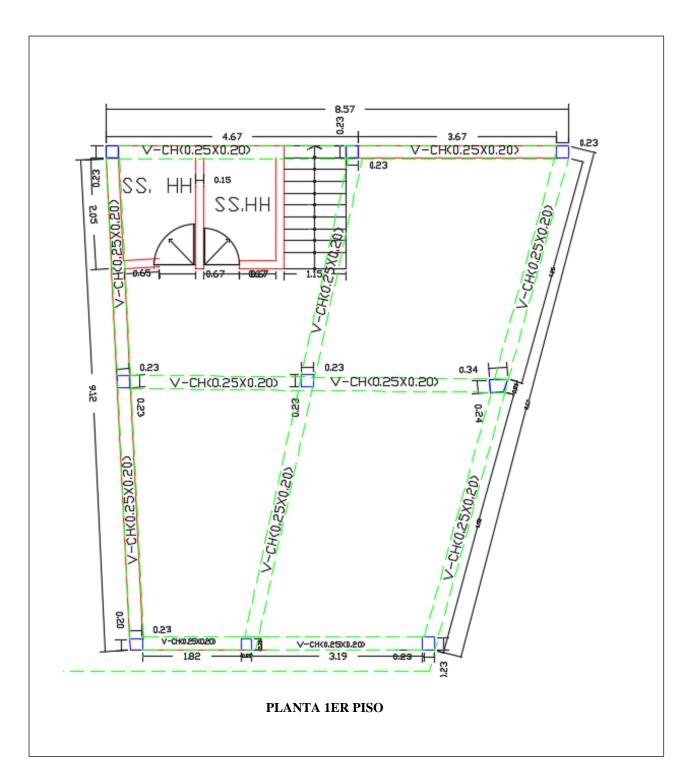
Falta de Confinamiento en la parte superior

Riesgo de caída de roca.

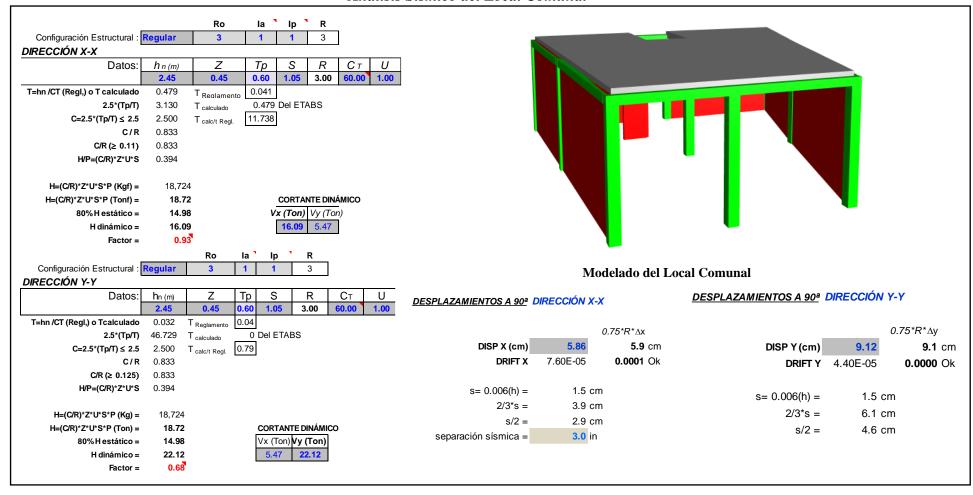
Reforzamiento de la vivienda I-3



Anexo 21:Evaluación del riesgo sísmico y propuesta de reforzamiento de la vivienda Local-comunal


						FICH	IA DE R	REPOR	ТE						
I. IDENTII	TICACIÓN														
PROPIETARI	O : Asociación de	AA.HH Villa M	ercedes										FECHA:	26/11/2	2018
DNI	: -								~~~~	~~~~			N° VIVIENDA	\ :	19
DIRECCIÓN	: AA. HH. Villa I	Mercedes Mz.A	A. Lt. 8												
DIRECCIÓN	TÉCNICA Y CONSTRUCCI	5N-	N	n											
					Γ						I	~			
AREA DE TER	RENO POR PISO:		1º= 54.95 m2			L CONSTRUI					<u></u>	AD: 13 años			
NÚMERO DE	PISOS CONSTRUIDOS		1 pi	iso	TOPOGRAF	ÍA Y GEOLOG	iA: El terre	no tiene ur	na pendiente	pronunciada y	el suelo es	arena gravoso			
ESTADO DEC	ONSERVACIÓN DE LA V	VIENDA:													
DAÑOS EN L	A VIVIENDA POR DESAS	TDES NIATLIDA	I FS: NO												
DANOSENE	A VIVIENDA I ON DESAS	INCONATORA	LL3. 140												
	TOS TÉCNICOS														
	NTOS Y CARACTE	RÍSTICAS D	E LA VIVIE	NDA AUI	OCONSTI	RUIDA									
	entos	DOG GODDI	CATELOG D	EGYGY 1 4 Y	o ppoct		777 4 3 47773 Y	Caracte		FORDI IOTE II	11 50				
			ETA EN TAE							ESTRUCTUE	KALES				
			mEN EL 1° F		, I LADKIL	LO MACIZ	EO EN MC	KO3 I OK	IANIES						
			.20, 0.15x0.2												
		IÓN : 0.2x 0.	4												
b DEFICI	ENCIAS DE LA EST			*****	4.,				1						
		PROB	LEMAS DE	UBICACI	UN						PROBLE	MAS CONSTI	KUCTIVOS		
	POR LA Z	ONA, SE EN	CUENTRA E	N PENDII	ENTE LA V	IVIENDA			E	XISTENCIA	DE CANG	REJERAS, JUN	TAS SÍSMIC	CAS DE 3 CM	
		PROBL	EMAS ESTI	RUCTUR	ALES										
DDEGER						FORCELLE	a proper	1000 1			N	IANO DE OB	RA		
PRESEN	FA HUMEDAD EN L						a PROPE	NSUS A	USO DE M	1ATERIALES		UNDANTE SA		ARA LOS ACA	ABADOS
	ASEN	TAMIENTOS	S DE ELEME	NTOS ES	TRUCTURA	LES						OTROS			
TTT ANTÁTT	SIS POR SISMO														
	S Y PARÁMETROS S	íca a coc													
Z= 0.45	U=1 C=2.5		S=1.2	1											
	característica a corte (kl		5-1.2	J											
	encia al corte (Kn)= Ae		23 pg)												
Área															
te chada	C	ortante ba	sal			Área de	muros		Den	sidad	Res	istencia	Vrn		
	D	(Z) I/	VEL 21	IC CD /D		. (1)	В	11 (4.)				ET ID	· · · · ·	Result	ado
Piso 1	Peso acum. (KN/m)	VEI = ZU	JSCP/R	existen	te (Ae)	Requer	ida (Ar)	Ae/ Ar	Ae/Área		∑VR	I/NI		
m2	ANÁLISIS EN EL SE	NTIDO "x"			<u> </u>						l		KN		
	8		197.	.82	2.	02	0.	79	2.55	0.04	1		-	ADECU.	ADO
54.95	ANÁLISIS EN EL SE	NTIDO "Y"													
	8		197.	.82	3.	88	0.	79	4.91	0.07		-	-	ADECU.	ADO
					•				•	•	•				
					ESTAB	ILIDAD	DE MI	UROS A	L VOLT	EO					
				FACT	ORES					MOM.	ACT	MOM.	REST	Result	tado
1 mm o						1		1							
MURO	Cl		m		p		a		t	0.45C1	mPa2	25	12	Ma:N	Лr
	ADIMENSIONAL	ADIME	NSIONAL	KN	N/M2	I	n		m	Kn-r	n/m	KN-	m/M		
M1	2	0	.125	1	.82	3	65	(0.13	2.7	3	0.4	12.	INESTA	BLE
M2	2		.125	 	.82		1		0.13	0.2		0.4		ESTAE	
M3	2		.125		.82		1		0.13	0.2		0.4		ESTAE	
1,125		_		-				-							
		FAC'	TORES IN	FLUYE	NTES E	N EL RE	SULTAI	O; Ries	go = Funci	ión (vulner	abilidad:	Peligro)			
							LNERAL					9 - 7			
			Est	tructura	1							No estr	uctural		
	Densida	l de muro		- tuc turt		Es	tado ac	tual			7	l'abiguería		os	
	Adecua			X	Buena c		tudo uc	·		Todos est		rubiqueriu	, paraper	0.5	
	Aceptal				Regular				X	Algunos					X
	Inadecua				Mala cal					Todos inc					
	пасси	····			i	uu	PELIG	PO		10003 1110					
	- C1											TT.		31	
		icidad					S	uelo				Topog	<mark>rafía y per</mark>	laiente	
	Z = 4, COSTA D	EL PERÚ ES	ALTA												
Baja			<u> </u>		Rígido						Plana			<u> </u>	
Media	<u> </u>				Intermed	lio				X	Media				
Alta			X		Flexible	s					Pronun	ciada		X	
									l .						
I		ALIFICACI	ÓN		Ī			CALIFICA	CIÓN		1		RESULT	TADO	
		ALIFICACI	V.1					HIIICA	01011		ļ		RESUL	I I I I	
	VULNERABI	LIDAD	ALT	ГА			PELIGRO)	BA	AJA		RIESGO S	SÍSMICO	MED	IA
				AD ALTA PELIGRO BAJA											

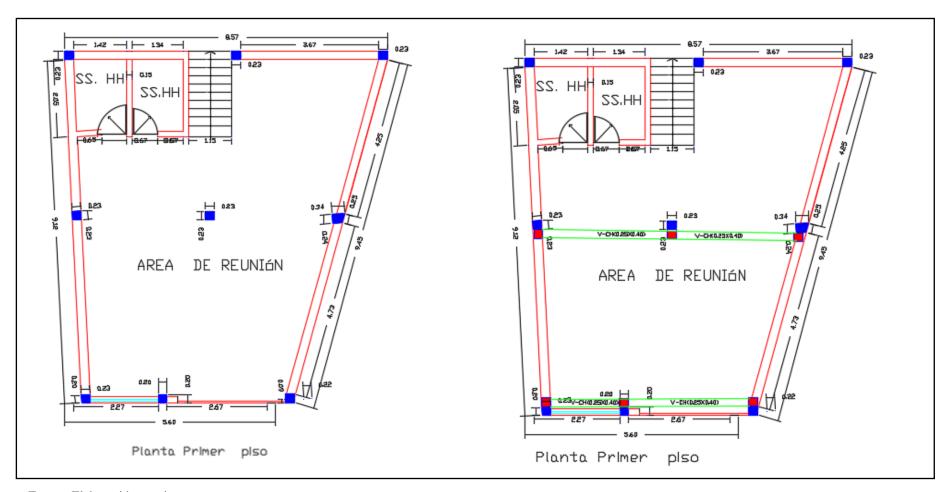
Fuente: Laucata,2013


Plano de Ubicación del Local Comunal.

Plano de aligerado del Local Comunal.

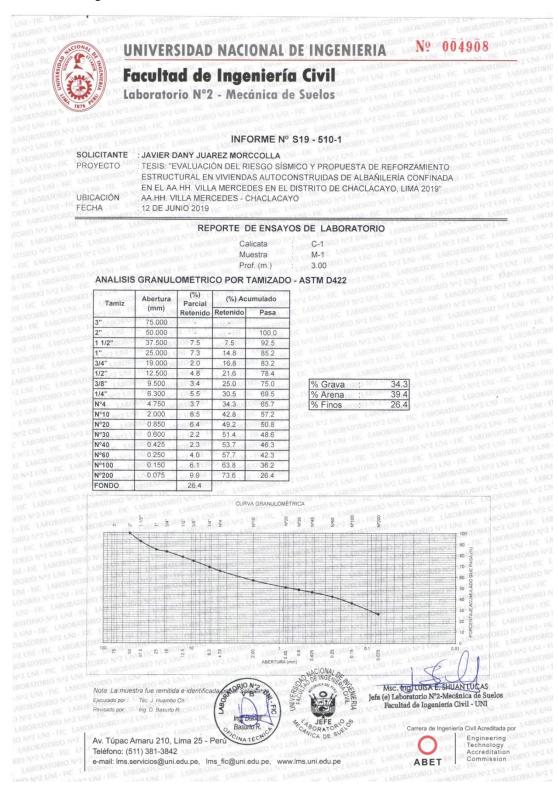
Análisis Sísmico del Local Comunal

Fotos del Local Comunal.



Existencia de Salitre.

** forzan · Fa


Fachada del local comunal "AA-HH Villa Mercedes"

Debilitamiento de una columna principal

Anexo 22: ensayos para la determinación del tipo de suelo

Resultado de la granulometría calicata C-1

Fuente: Laboratorio N° 2 de mecánica de suelos de la UNI

Resultado de la granulometría de la calicata C-2

SOLICITANTE : JAVIER DANY JUAREZ MORCCOLLA

TESIS: "EVALUACIÓN DEL RIESGO SÍSMICO Y PROPUESTA DE REFORZAMIENTO

ESTRUCTURAL EN VIVIENDAS AUTOCONSTRUIDAS DE ALBAÑILERÍA CONFINADA EN EL AA.HH. VILLA MERCEDES EN EL DISTRITO DE CHACLACAYO, LIMA 2019"

UBICACIÓN AA.HH. VILLA MERCEDES - CHACLACAYO

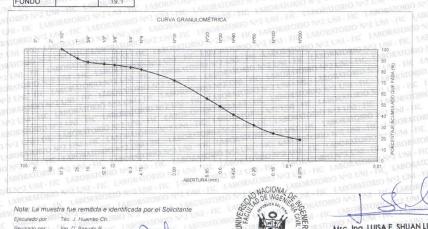
12 DE JUNIO 2019 FECHA

REPORTE DE ENSAYOS DE LABORATORIO

Calicata : C-2 Muestra : M-2 Prof. (m.) : 3.00

ANALISIS GRANULOMETRICO POR TAMIZADO - ASTM D422

Tamiz	Abertura	(%) Parcial	(%) Acumulado			
	(mm)		Retenido	Pasa		
3"	75.000	31- 15	1- BE DO	100		
2"ORATUR	50.000	U N.	PATORIC	4.47		
1 1/2"	37.500	FIL . LIN	a . mc /	100.0		
1"nORATO	25.000	8.3	8.3	91.7		
3/4"	19.000	3.4	11.7	88.3		
1/2"	12.500	1.6	13.3	86.7		
3/8"	9.500	0.9	14.2	85.8		
1/4"	6.300	2.1	16.3	83.7		
N°4	4.750	2.0	18.2	81.8		
N°10	2.000	9.8	28.0	72.0		
N°20	0.850	16.3	44.3	55.7		
N°30	0.600	7.0	51.3	48.7		
N°40	0.425	7.3	58.6	41.4		
N°60	0.250	9.4	68.0	32.0		
N°100	0.150	7.3	75.4	24.6		
N°200	0.075	5.6	80.9	19.1		
FONDO	RAIURIO	19.1	IN P	TORIO		


% Grava	O NºZ	18.2
% Arena	LABOR	62.7
% Finos	NO NOT	19.1
0.021-1007-02		20 N N N N 100 5 TO 1

LIMITES	DE CONSIS	TENCIA
LABORATORS LABOA	STM D4318	
Limite Liquido	JAI - I'm	INP LAND
Límite Plástico	AIGRIC	ROBANPIDIO
Índice Plástico	UNI - FIL	NP LABOR

Clasificación SUCS ASTM D2487

SM

Nº 004907

MSC. Ing. LUISA E. SHUAN LUCAS Jefa (e) Laboratorio N°2-Mecánica de Suelos Facultad de Ingeniería Civil - UNI

Carrera de Ingeniería Civil Acreditada por

Engineering Technology Accreditation Commission

Av. Túpac Amaru 210, Lima 25 - Per Teléfono: (511) 381-3842

Fuente: Fuente: Laboratorio Nº 2 de mecánica de suelos de la UNI

UNIVERSIDAD NACIONAL DE INGENIERIA

Nº 00490

Facultad de Ingeniería Civil

Laboratorio Nº2 - Mecánica de Suelos

INFORME N° S19 - 510-2-2

SOLICITANTE : JAVIER DANY JUAREZ MORCCOLLA

PROYECTO : TESIS: "EVALUACIÓN DEL RIESGO SÍSMICO Y PROPUESTA DE REFORZAMIENTO

ESTRUCTURAL EN VIVIENDAS AUTOCONSTRUIDAS DE ALBAÑILERÍA CONFINADA EN EL AA.HH. VILLA MERCEDES EN EL DISTRITO DE CHACLACAYO, LIMA 2019"

UBICACIÓN : AA.HH. VILLA MERCEDES - CHACLACAYO

FECHA : 12 DE JUNIO 2019

RESULTADOS DE ENSAYOS DE LABORATORIO

Calicata : C-2 ANDIA Muestra : M-2 Prof. (m.) : 3.00

MATERIAL QUE PASA LA MALLA Nº 4

DENSIDAD MAXIMA NLT-205

Densidad máxima (gr/cm³) : 1.993

DENSIDAD MINIMA NLT-204

Densidad mínima (gr/cm³) : 1.339

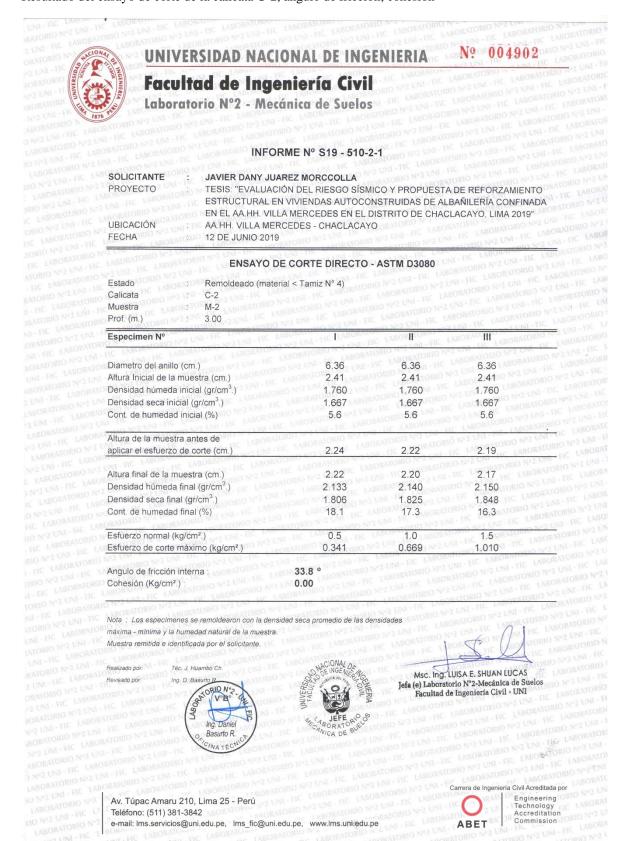
Nota - La muestra fue remitida e identificada por el Solicitante.

Ejecutado por Revisado por

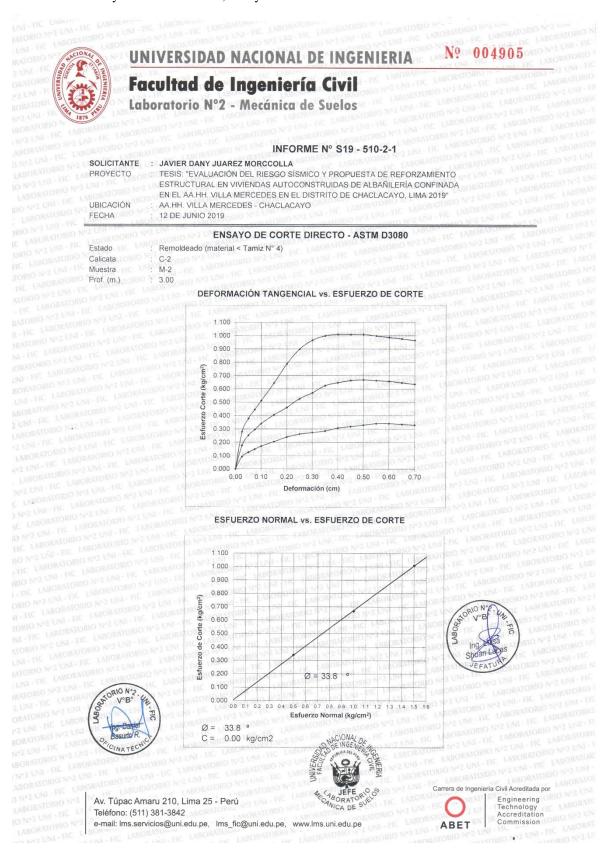
réc. J. Huambo Ch.

MSC. Ing. LUISA E. SHUAN LUCAS Jefa (e) Laboratorio N°2-Mecánica de Suelos Facultad de Ingeniería Civil - UNI

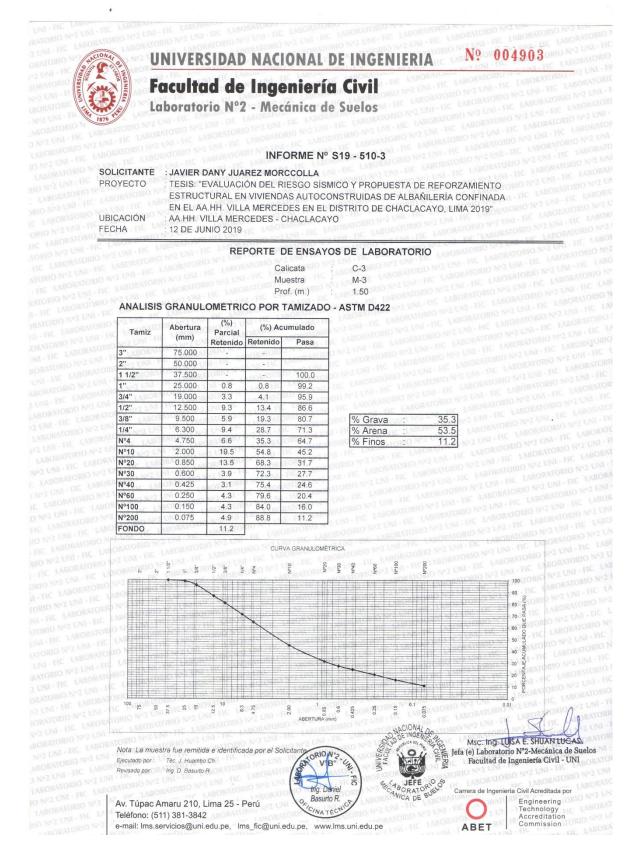
Av. Túpac Amaru 210, Lima 25 - Perú Teléfono: (511) 381-3842


e-mail: lms.servicios@uni.edu.pe, lms_fic@uni.edu.pe, www.lms.uni.edu.pe

Carrera de Ingeniería Civil Acreditada por



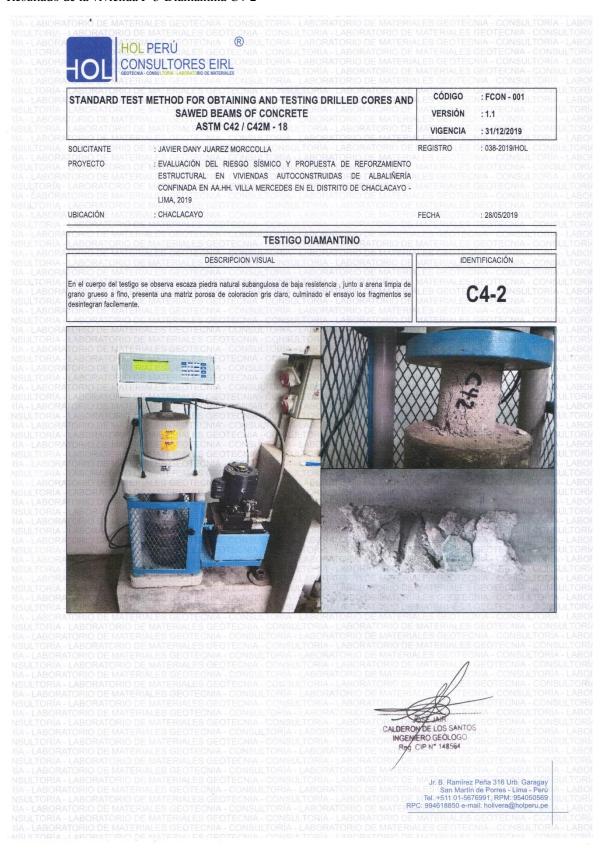
Engineering Technology Accreditation Commission

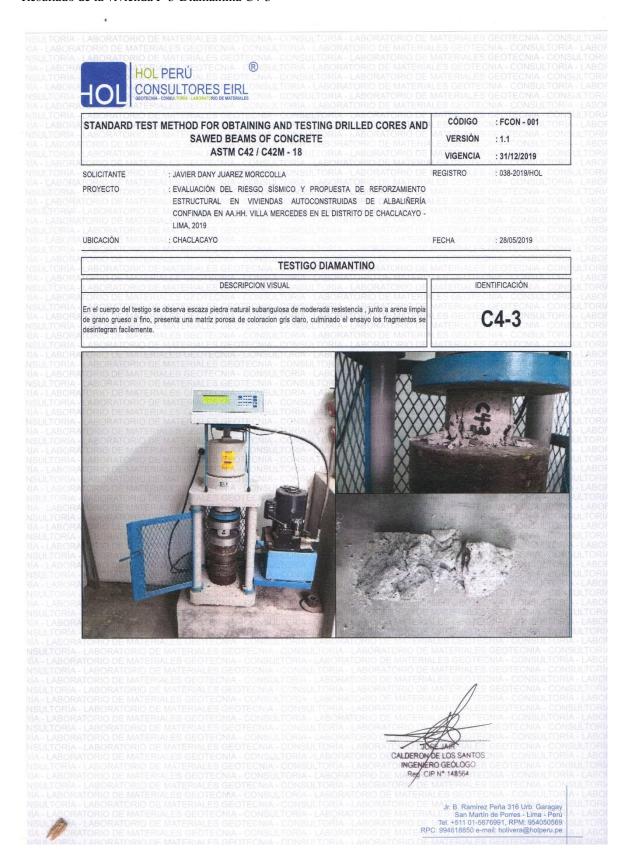

Fuente: Fuente: Laboratorio N° 2 de mecánica de suelos de la UNI

Fuente: Fuente: Laboratorio Nº 2 de mecánica de suelos de la UNI

Fuente: Fuente: Laboratorio N° 2 de mecánica de suelos de la UNI

Fuente: Fuente: Laboratorio Nº 2 de mecánica de suelos de la UNI

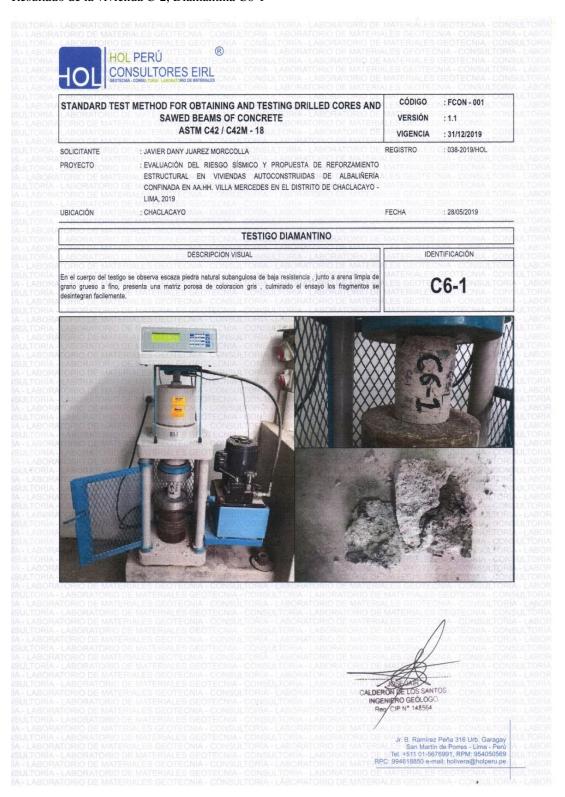

Anexo 23: Ensayo de diamantina para la determinación del f'c en las viviendas

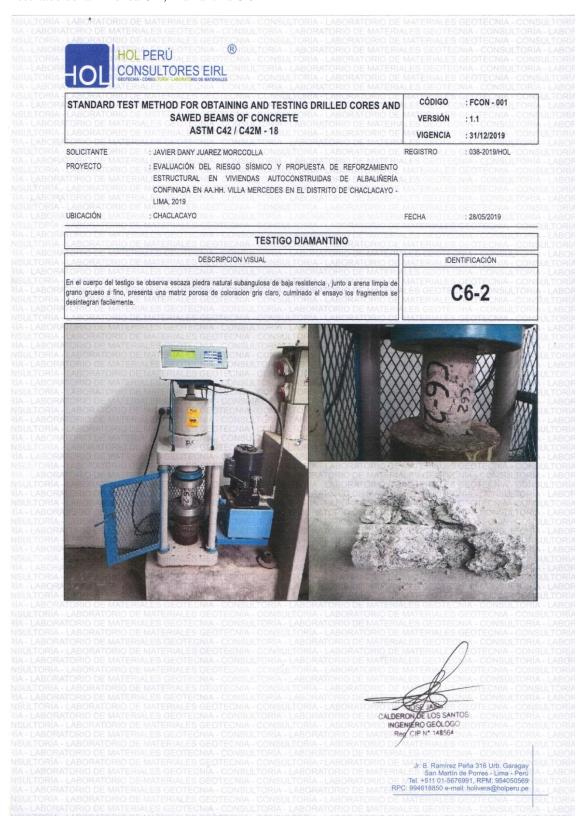

Resultado de la vivienda F-3-Diamantina C4-1

Fuente: HOL PERÚ CONSULTORES EIRL

Resultado de la vivienda F-3-Diamantina C4-2

Resultado de la vivienda F-5-Diamantina C5-1


Resultado de la vivienda F-5-Diamantina C5-2



Resultado de la vivienda F-5-Diamantina C5-3

Resultado de la vivienda C-2, Diamantina C6-1

Resultado de la vivienda C-2, Diamantina C 6-3

Anexo 24:Resultado de las resistencias a la compresión de todas las diamantinas extraídas de las viviendas F-3, F-5, C-2

STANDARD TEST METHOD FOR OBTAINING AND TESTING DRILLED CORES AND SAWED BEAMS OF CONCRETE ASTM C42 / C42M - 18					CÓDIGO VERSIÓN VIGENCIA		: FCON - 002 : 1.1 : 31/12/2019	
TORRODE MATE	IE MA) ERIALES L'EUTEUNIA - CUNSULTORIA - D'ATORIA DE MATERIALES GEOTECNIA. NOMO DE MATERIALES GEOTECHIA - CONSULTORIA - L'ABORRATION DE MATERIALES GEOTECNIA.							
PROYECTO : EV.	VIER DANY JUAREZ MORCOLLA ALUACIÓN DEL RIESGO SÍSMICO Y ITOCONSTRUIDAS DE ALBALIÑERÍA (IACLACAYO - LIMA, 2019 IACLACAYO		STREET, N. A. P. STREET, S. S.	JRAL EN VIVIENDAS N EL DISTRITO DE	REGISTRO		: 038-2019/HOL	
REFERENCIAS DE LA N	ECTECHIA COMBULTORI	A-LABORATORIU	DE MATERIAL	O GEOTEONIA	CONSULTO	NSULTURIA NA LABOUR	DECORE MATERIA	MATERIAL ISCH
ESTRUCTURA : Co	ulumna stigos cilíndricos de concreto				MARCA Y MODEL NUMERO DE SER CAPACIDAD INDICADOR DIGIT	RIE LABORA	CONCRETO ELE INTERNATIONAL, 1105000043 100000 kgf ELE INTERNATIONAL,	
DENOMINACIÓ	ÓN FECHA DE EXTRACCIÓN	FECHA DE ROTURA	ALTURA (cm)	DIÁMETRO (cm)	CARGA DE ROTURA (kg)	FACTOR DE ESBELTEZ	RESISTENCIA A LA COMPRESIÓN (kg/cm²)	RESISTENCIA A LA COMPRESIÓN CORREGIDA (kg/cm²)
C4-1	11/05/2019	27/05/2019	7.0	7.1	2,190	0.870	56.1	48.8
C4-2	11/05/2019	27/05/2019	10.0	7.0	2,570	0.950	66.0	62.7
C4-3	11/05/2019	27/05/2019	6.9	7.0	3,710	0.870	95.3	82.9
C5-1	11/05/2019	27/05/2019	11.0	7.1	2,110	0.965	54.1	52.1
C5-2	11/05/2019	27/05/2019	10.1	7.0	1,610	0.951	41.4	39.4
C5-3	11/05/2019	27/05/2019	13.1	7.0	3,450	0.989	88.6	87.7
C6-1	11/05/2019	27/05/2019	12.5	7.0	1,930	0.982	49.7	48.8
C6-2	11/05/2019	27/05/2019	13.7	7.0	1,630	0.996	41.9	41.7
C6-3	11/05/2019	27/05/2019	9.1	7.0	760	0.936	19.9	18.6

Anexo 25: Validación de la matriz de consistencia del instrumento

Matriz de validación de instrumento					
Título de la Investigación	Evaluación del riesgo sísmico y propuesta de reforzamiento estructural en viviendas autoconstruidas de albañilería confinada del AA. HH. Villa Mercedes en el distrito de Chaclacayo, Lima–2019				
Apellidos y Nombres del Investigador	Juarez morccolla, Javier Dany				
Apellidos y Nombres del Experto	MONTANEZ HUANCAYA, Edgar Neston				

ASPECTO POR EVALUAR					OPINIÓN DEL EXPERTO			
VARIABLES	DIMENSIONES	INDICADORES	ITE M	MEDICIÓN	SI CUMPLE	NO CUMPLE	OBSERVACIONES / SUGERENCIAS	
Riesgo sísmico	Vulnerabilidad sísmica	Densidad de muros Estado actual de la vivienda Estabilidad de muros	I	Bajo Medio Alto	811	_	ANUDAIN.	
	Peligro sísmico	Sismicidad Tipo de suelo Topografia	II	Bajo Medio Alto	ຣ໌ເ	_	. NINGUNA	
Reforzamiento estructural	Modelamiento de las viviendas	Desplazamientos	IV	Maximos	Si	-	· Ninguna	
		Irregularidades en altura y en planta	V	Irregular Regular	ຮຳ	_	· MINGUNA.	
Firma del Exper							Fecha: 08 / 07 / 2019	

EDGAR NESTOR MONTANEZ HUANCAYA INGENIERO CIVIL Reg. Colegio de Ingenieros N° 51906

Calicata C-1

Excavación de la calicata C-1

Calicata C-2

Excavación de la calicata C-2

Calicata C-3

Excavación de la calicata C-3

Extracción de diamantinas en la vivienda F-3

Se extrajo 3 muestras en la vivienda F-3

Extracción de diamantinas en la vivienda F-5

Se extrajo 3 muestras en la vivienda F-5

Extracción de diamantinas en la vivienda C-2

Se extrajo 3 muestras en la vivienda C-2

Anexo 26: ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código: F06-PP-PR-02.02

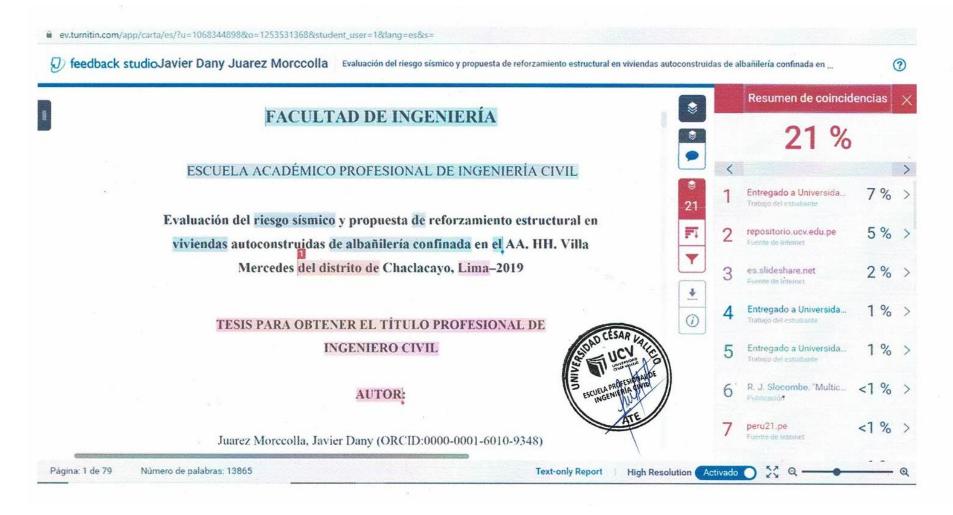
Versión: 09

Fecha : 23-03-2018 Página : 1 de 1

Yo, Mg. CHOQUE FLORES LEOPOLDO, docente de la Facultad y Escuela Profesional de Ingeniería civil de la Universidad César Vallejo Sede Lima Ate, (precisar filial o sede), revisor(a) de la tesis titulada, "Evaluación del Riesgo sísmico y propuesta de reforzamiento estructural en viviendas autoconstruidas de albañilería confinada en el AA. HH. Villa Mercedes del distrito de Chaclacayo, Lima-2019", del estudiante Juarez Morccolla Javier Dany, constato que la investigación tiene un índice de similitud de 21% verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Lima Ate, 06 de julio del 2019


Firm

Mg. CHOQUE FLORES LEOPOLDO

DNI: 42289035

Elaboró	Dirección de Investigación	Revisó	Responsable del SGC	Aprobó	Vicerrectorado de Investigación
---------	-------------------------------	--------	---------------------	--------	------------------------------------

Anexo 27:PANTALLAZO DEL SOFTWARE TURTININ

Anexo 28: AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

UCV UNIVERSIDAD CÉSAR VALLEJO	The second secon	ACIÓN DE PUBLICACIÓN DE REPOSITORIO INSTITUCIONAL UCV	Versión Fecha	: F08-PP-PR-02.02 : 09 : 23-03-2018 : 1 de 2
de la Escuela Pro (X) , No autorizo investigación tito REFORZAMIENTO CONFINADA EN E 2019"; en el Rep	fesional de Ingo o () la divul ulado "EVALI ESTRUCTURAL EL AA. HH. VILI positorio Institu	COLLA, identificado con DNI l geniería Civil de la Universidad gación y comunicación púb JACIÓN DEL RIESGO SÍSMIC EN VIVIENDAS AUTOCONSTRI LA MERCEDES DEL DISTRITO DE Ucional de la UCV (http://rep eto Legislativo 822, Ley sobre l	César Vo lica de 1 CO Y PI UIDAS DE CHACLA positorio.	allejo, autorizo mi trabajo de ROPUESTA DE E ALBAÑILERÍA ACAYO, LIMA- ucv.edu.pe/),
Fundamentación	n en caso de r	no autorización:		
***************************************		• • • • • • • • • • • • • • • • • • • •		***************************************
***************************************		••••••		•
		••••••	**********	
Javier June				
DNI: 41702667				
FECHA:	06 de jul	io del 2019		
Dirección o	do			Vicerrectorado d

Anexo 29: AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE INVESTIGACIÓN DE:
LA ESCUELA DE INGENIERÍA CIVIL
A LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA:
JAVIER DANY JUAREZ MORCCOLLA
TÍTULO DE LA TESIS:
EVALUACIÓN DEL RIESGO SÍSMICO Y PROPUESTA DE REFORZAMIENTO ESTRUCTURAL EN VIVIENDA AUTOCONSTRUIDAS DE ALBAÑILERÍA CONFINADA EN EL AA. HH. VILLA MERCEDES DEL DISTRITO DI CHACLACAYO, LIMA-2019
PARA OBTENER EL TÍTULO O GRADO DE:
INGENIERO CIVIL
SUSTENTADO EN FECHA:06 De Julio del 2019
NOTA O MENCIÓN:12
ESCUELA PROFESIONAL OR INGENIERIA CIVIL. Mg. Leopoldo Choque Flores
NOMBRE Y FIRMA DEL ENCARGADO DE INVESTIGACIÓN (SELLO DE LA ESCUELA)