

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Influencia del porcentaje de microfibra de polipropileno sobre la resistencia a la compresión de concreto f´c=350 kg/cm² a altas temperaturas, Trujillo – 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES:

Aguirre Cabrera, Alfred Edison (orcid.org/0000-0002-2355-1724)

Saavedra Toribio, Karol Katherine (orcid.org/0000-0001-8506-2638)

ASESOR:

Msc. Marin Cubas, Percy Lethelier (orcid.org/0000-0001-5232-2499)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Enfoque de género, inclusión social y diversidad cultural

TRUJILLO- PERÚ 2022

Dedicatoria

Dedico esta investigación primeramente a Dios por darme la vida, a mis padres por su apoyo incondicional y ser los ejemplos a seguir, por ser mi motor y motivo para salir adelante, a mí por este camino que está lleno de retos para alcanzar las metas de ser un gran ingeniero civil.

AGUIRRE CABRERA, ALFRED EDISON

Dedico esta investigación primeramente a Dios por guiarme por el buen camino, por darme la fuerza, sabiduría y por sus bendiciones que derraman cada día sobre mí, también a mis padres por el apoyo incondicional que me brindan en cada paso que doy.

SAAVEDRA TORIBIO, KAROL KATHERINE

Agradecimiento

Agradezco Dios por darme а oportunidad de hoy estar con vida y tener una buena salud a pesar de todas las enfermedades que se propiciaron durante la pandemia Covid-19, también agradezco a Dios por darme unos padres maravillosos, A si mismo agradezco a mis padres que sin ellos no estaría en esta etapa de mi vida, su carisma y su postura para poder formarme con valores y principios, a mis hermanos que siempre me brindan su apoyo incondicional.

AGUIRRE CABRERA ALFRED EDISON

Agradecida con Dios por darme salud y permitirme seguir adelante, también agradecida con mis padres por ser mi motivo de no rendirme y agradecida por su apoyo incondicional a la universidad privada cesar vallejo por formarme integralmente a lo largo del desarrollo académico de mi carrera de ingeniería civil.

SAAVEDRA TORIBIO, KAROL KATHERINE

Índice de Contenidos

Carátula	i
Dedicatoria	ii
Agradecimiento	iii
Índice de Contenidos	iv
Índice de tablas	V
Índice de gráficos y figuras	vii
Resumen	ix
Abstract	x
I. INTRODUCCIÓN	1
II. MARCO TEÓRICO	4
III. METODOLOGÍA	8
3.1. Tipo Y Diseño De Investigación	8
3.2. Variables y Operacionalización	9
3.3. Población, muestra, muestreo, unidad de análisis	10
3.4. Técnicas e instrumentos de recolección de datos	
3.5. Procedimientos	13
3.6. Método de análisis de datos	16
3.7. Aspectos Éticos	16
IV. RESULTADOS	
V. DISCUSIÓN	59
VI. CONCLUSIONES	
VII. RECOMENDACIONES	
REFERENCIAS	
ANEVOS	77

Índice de tablas

Tabla 1 : Muestra11
Tabla 2: Muestra 11
Tabla 3. Análisis granulométrico del agregado grueso 18
Tabla 4. Análisis granulométrico del agregado fino. 20
Tabla 5. Ensayo de peso unitario suelto y compactado agregado grueso. 24
Tabla 6. Ensayo de peso unitario suelto y compactado agregado fino. 25
Tabla 7. Contenido de humedad agregado, gravedad especifica y absorción en el
agregado grueso27
Tabla 8.Contenido de humedad agregado, gravedad especifica y absorción en el
agregado fino
Tabla 9. Diseño de mezclas para un concreto 350kg/Cm2
Tabla 10. Rotura de especímenes de concreto a los 28 días muestra patrón 41
Tabla 11. Rotura de especímenes de concreto a los 28 días muestra con microfibra
de polipropileno en remplazo al cemento 0.5%
Tabla 12. Rotura de especímenes de concreto a los 28 días muestra con microfibra
de polipropileno en remplazo al cemento 1.00%
Tabla 13. Rotura de especímenes de concreto a los 28 días muestra patrón 45
Tabla 14. Rotura de especímenes de concreto a los 28 días muestra con microfibra
de polipropileno en remplazo al cemento 0.5%
Tabla 15. Rotura de especímenes de concreto a los 28 días de edad, muestra con
microfibra de polipropileno en remplazo al cemento 1.0%
Tabla 16. Resistencia a la compresión a 28 días (0% 0.5% 1.)
Tabla 17. Datos estadísticos de la muestra patrón de un concreto 350kg/cm2 de 28
días de edad a temperatura de ambiente y a altas temperaturas 52
Tabla 18. Datos de las muestras consideradas de la muestra patrón de un concreto
350kg/cm2 a 28 días de edad a temperatura de ambiente y a una temperatura
mayor de 500°C52
Tabla 19. Prueba de normalidad de la muestra patrón de un concreto 350kg/cm2 a
temperatura de ambiente y a temperaturas mayores de 500°C

Tabla 20. Datos estadísticos de la muestra con 0.5% de microfibra de polipropil	eno
en remplazo al cemento para un concreto 350kg/cm2 a temperatura de	
ambiente y a temperaturas mayores de 500°C	53
Tabla 21. Datos de las muestras consideradas de la muestra con 0.5% de	
microfibra de polipropileno de un concreto 350kg/cm2 a 28 días de edad a	
temperatura de ambiente y a una temperatura mayor de 500°C	54
Tabla 22. Prueba de normalidad de la muestra con 0.5% de microfibra de	
polipropileno en remplazo al cemento de un concreto 350kg/cm2 a tempera	atura
de ambiente y a temperaturas mayores de 500°C	54
Tabla 23. Datos estadísticos de la muestra con 1.0% de microfibra de polipropile	eno
en remplazo al cemento para un concreto 350kg/cm2 a temperatura de	
ambiente y a temperaturas mayores de 500°C	55
Tabla 24. Datos de las muestras consideradas de la muestra con 1% de microfi	bra
de polipropileno de un concreto 350kg/cm2 a 28 días de edad a temperatu	ra de
ambiente y a una temperatura mayor de 500°C	55
Tabla 25. Prueba de normalidad de la muestra con 0.5% de microfibra de	
polipropileno en remplazo al cemento de un concreto 350kg/cm2 a tempera	atura
de ambiente y a temperaturas mayores de 500°C	56
Tabla 26. Prueba anova de los datos de las muestras a 28 días de edad a	
temperatura de ambiente	56
Tabla 27. Prueba comparaciones múltiples de los datos de las muestras a 28 d	ías
de edad a temperatura de ambiente	57
Tabla 28. Prueba anova de los datos de las muestras a 28 días de edad a una	
temperatura mayor a 500°C	57
Tabla 29. Prueba comparaciones múltiples de los datos de las muestras a 28 d	ías
de edad a una temperatura mayor a 500°C.	58

Índice de gráficos y figuras

Figura	1. Gráfico de peso retenido de agregado grueso	19
Figura	2. Gráfico de retenido parcial de agregado grueso	19
Figura	3. Gráfico de curva granulométrica de agregado grueso	20
Figura	4. Gráfico de peso retenido de agregado fino	21
Figura	5. Gráfico de retenido parcial de agregado fino	22
Figura	6. Gráfico de curva granulométrica de agregado fino	22
Figura	7. Gráfico peso unitario compactado en el agregado grueso	24
Figura	8. Gráfico pesos unitarios suelto en el agregado grueso	25
Figura	9. Gráfico pesos unitarios compactado en el agregado fino	26
Figura	10.Gráfico peso unitario suelto en el agregado fino	26
Figura	11.Gráfico de contenido de humedad en el agregado grueso	28
Figura	12. Gráfico de absorción en el agregado grueso	29
Figura	13. Gráfico de contenido de humedad en el agregado fino	31
Figura	14. Gráfico de absorción en el agregado fino	31
Figura	15.Concreto 350kg/cm2 en un m3 sin microfibra	35
Figura	16. Diseño de mezcla para un concreto 350kg/cm² en porcentaje	36
Figura	17. Concreto 350kg/cm2 por bolsa de cemento	36
Figura	18. Concreto 350kg/cm2 en volumen en m3 de cemento	37
Figura	19. Diseño de mezcla para concreto 350kg/cm2 muestra patrón en gramos	S.
		37
Figura	20. Diseño de mezcla para concreto 350kg/cm2, muestra patrón en	
por	centaje	38
Figura	21. Diseño de mezcla para concreto 350kg/cm2 con el 0.5% de microfibra	de
pol	ipropileno en remplazo al cemento en gramos	38
Figura	22. Diseño de mezcla para concreto 350kg/cm2 con microfibra de	
pol	ipropileno en 0.5% en remplazo al cemento en porcentaje	39
Figura	23. Diseño de mezcla para concreto 350kg/cm2 con microfibra de	
pol	ipropileno en 1% en remplazo al cemento en gramos	39
Figura	24. Diseño de mezcla para concreto 350kg/cm2 con microfibra de	
pol	ipropileno en 1% en remplazo al cemento en porcentaje	40

Figura 25. Gráfico de ruptura a los 28 días con 0.0% de microfibras de polipropileno
a temperatura de ambiente41
Figura 26. Gráfico de ruptura a los 28 días con 0.5% de microfibras de polipropileno
a temperatura de ambiente42
Figura 27. Gráfico de ruptura a los 28 días de edad con 1.00% de microfibras de
polipropileno a temperatura de ambiente43
Figura 28. Gráfico de ruptura a los 28 días con los 3 porcentajes promedios a
temperatura de ambiente con microfibras de polipropileno44
Figura 29. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1%
a temperatura de ambiente44
Figura 30. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1%
a temperatura de ambiente45
Figura 31. Gráfico de ruptura de probetas a los 28 días de edad con 0.0% de
microfibras de polipropileno sometido a temperaturas mayores de 500°c 46
Figura 32. gráfico de ruptura de probetas a los 28 días de edad con 0.5% de
microfibras de polipropileno sometido a temperaturas mayores de 500°c 47
Figura 33. Gráfico De Ruptura De Probetas A Los 28 Días De Edad Con 1.0% De
Microfibras De Polipropileno Sometido A Temperaturas Mayores De 500°C 48
Figura 34. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1%
sometido a temperaturas mayores de 500°C 48
Figura 35. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1%
sometido a temperaturas mayores de 500°c49
Figura 36. Gráfico de diferencias entre promedios en kg/cm2 a temperatura de
ambiente y a temperatura mayor de 500°c 50
Figura 37. gráfico que baja su resistencia a la compresión en porcentaje las
muestras expuestas a temperaturas mayores de 500°c 50

Resumen

La presente tesis titulada Influencia del porcentaje de microfibra de polipropileno sobre la resistencia a la compresión de Concreto f´c=350 kg/cm² a altas temperaturas, Trujillo – 2022. Tuvo como objetivo general evaluar la Influencia del porcentaje de microfibra de polipropileno sobre la resistencia a la compresión de Concreto f´c=350 kg/cm² a altas temperaturas, Trujillo – 2022, Para la metodología de investigación utilizada fue de enfoque cuantitativo con el diseño experimental.

En los resultados se realizó estudios básicos para un concreto 350kg/cm², como la granulometría, peso unitario suelto y compactado en agregado grueso y fino, entre otros. también se realizó ensayos para determinar la resistencia a la compresión de un concreto 350kg/cm² a temperatura de ambiente y a altas temperaturas mayor a 500°C, asimismo se realizó ensayos en un concreto 350kg/cm² adicionando porcentajes de 0.0% y 0.5 % y 1% de microfibras sintéticas de polipropileno, estos ensayos son los de resistencia a la compresión y a altas temperaturas y por último evaluaremos la influencia de las microfibras sintéticas de polipropileno en el concreto 350kg/cm².

Finalmente se concluye que cuando se encuentra a temperatura de ambiente la microfibra de polipropileno influye en el concreto 350kg/cm² de manera positiva en la resistencia a la compresión cuando se agrega 0.5% y disminuye cuando se agrega 1% en remplazo al cemento, cuando esta se somete a altas temperaturas la resistencia del concreto baja pero la influencia de microfibra a 0.5% aumenta y a 1% baja.

Palabras clave: concreto, microfibra de polipropileno, resistencia, compresión y altas temperaturas.

Abstract

The present thesis entitled Influence of the percentage of polypropylene microfiber on the compressive strength of concrete f'c=350 kg/cm² at high temperatures, Trujillo - 2022. The general objective was to evaluate the influence of the percentage of polypropylene microfiber on the compressive strength of concrete f'c=350 kg/cm² at high temperatures, Trujillo - 2022. The research methodology used was quantitative approach with experimental design.

In the results, basic studies were carried out for a 350kg/cm² concrete, such as granulometry, loose and compacted unit weight in coarse and fine aggregate, among others. Tests were also carried out to determine the compressive strength of a 350kg/cm² concrete at room temperature and at high temperatures higher than 500°C, also tests were carried out on a 350kg/cm² concrete adding percentages of 0. 5 % and 1% of synthetic polypropylene microfibers, these tests are those of resistance to compression and high temperatures and finally we will evaluate the behavior of the synthetic polypropylene microfibers in the 350kg/cm² concrete.

Finally, it was concluded that a 350kg/cm² concrete decreases its resistance, as well as the 350kg/cm² concrete with synthetic polypropylene microfibers with percentages of 0.5 % and 1% due to being subjected to high temperatures.

Finally, it is concluded that when at room temperature the polypropylene microfiber influences the 350kg/cm² concrete in a positive way in the compressive strength when 0.5% is added and decreases when 1% is added in substitution of cement, when subjected to high temperatures the concrete strength decreases but the influence of the microfiber at 0.5% increases and at 1% decreases.

Keywords: concrete, polypropylene microfiber, strength, compression and high temperatures.

I. INTRODUCCIÓN

Desde la antigüedad se busca siempre mejorar los materiales para la construcción de viviendas, esto nos lleva a una gran variedad de investigaciones. con el único fin de mejorar su capacidad de resistencia, debido a estas investigaciones que se dieron al pasar de los años, se ha verificado que actualmente en el sector de construcción para que una edificación tenga mejor durabilidad y resistencia. Para (SANES ,2013) el concreto es un material muy útil para todo tipo de obra, las características de durabilidad, resistencia, economía y vertibilidad, el concreto también puede adaptarse rápidamente a diferentes formas, reaccionando de una manera más eficiente al momento de trabajarlo e incluso puede ser más resistente. Para (CARHUAPOMA,2018) El concreto reforzado con fibras es una mezcla de cemento, agua, agregados finos y gruesos y fibras sintéticas, con el objetivo de dar resistencia y rigidez repartiendo los esfuerzos y dándole protección a las fibras. Por ello es recomendable utilizar la adición de microfibras sintéticas de polipropileno con el propósito de mejorar la resistencia del concreto, al momento de sostener o soportar cargas La microfibra evita que el concreto tenga fisuras por asentamiento, fisuras por contracción plástica y grietas en la estructura del concreto. Sin embargo, teniendo en cuenta como amenaza los eventos de siniestros, como las altas temperaturas que al concreto de estructuras de diferentes perjudican construcciones (COBEÑAS, 2019) las propiedades del concreto que han sido investigadas para demostrar la resistencia frente la exposición a altas temperaturas hacen que el concreto sufra transformaciones físicas y químicas. En nuestro proyecto se dio a conocer la influencia del porcentaje de microfibras de polipropileno sobre la resistencia a la compresión de un concreto f´c=350 kg/cm² a altas temperaturas se realizó los estudios básicos, ensayos como: la resistencia a la compresión y someterlo a altas temperaturas en diferentes diseños de mezclas, considerando agregar 0.0%, 0.5% y 1% de microfibras sintéticas de polipropileno, después se vio la comparación entre ellas, a diferencia de las demás investigaciones se ha profundizado en estudiar el comportamiento a altas temperaturas, se considera una temperatura mayor a 500° grados, debido a que la mayoría de concretos

suelen colapsar cuando llegan a un punto donde la temperatura es muy alta, muchas veces lo vemos reflejado en los casos de accidentes de incendios, es por eso que nos implicamos a responder la siguiente formulación del problema ¿Qué resultados se obtendrá de la influencia del porcentaje de microfibras de polipropileno sobre la resistencia a la compresión de un concreto f´c=350 kg/cm² a altas temperaturas, Trujillo -2022?, con esto buscamos ver la resistencia de compresión en un concreto f´c=350 kg/cm² con y sin microfibras de polipropileno con porcentajes de 0.0%, 0.5% y 1% y cómo reacciona el concreto al estar expuestas a altas temperaturas. Justificación del estudio debido a que entre más pasan los años, el concreto se vuelve un material de primera necesidad para la construcción, el ser humano por sus curiosidades ha llegado a construir grandes edificios, tan altos que algunos de estos llegaron a colapsar por falta de resistencia en el concreto, los sismos o los incendios son los factores que permiten poner a prueba su resistencia en el pasar del tiempo, justificación Teórica debido a que se dio a conocer cómo es que influyen las microfibras de polipropileno sobre el concreto se sometió la muestra a una temperatura mayor de 500°C, se empleó el ensayo a la compresión reglamentario bajo la norma en un laboratorio. También como la justificación metodológica se especificó el tipo de material que se utilizó por medio de los estudios básicos como el análisis granulométrico, contenido de humedad, peso específico absorción y peso unitario variado de los materiales, el diseño de mezcla. el ensayo que se realizo fue el de la resistencia a la compresión, También se expuso la muestra a una temperatura mayor de 500°C, luego se realizó una evaluación de la influencia de las microfibras de polipropileno en porcentajes de 0.0% 0.5% y 1% en remplazo al cemento sobre un concreto 350 kg/cm² a temperaturas mayores de 500°C y otro en donde se muestre que la muestra este a temperatura de ambiente, así mismo en la justificación social dado por los accidentes de incendios y los fenómenos naturales, la investigación se denotará porque la mayoría de incendios sobrepasan los 500°C de temperatura y causan mucho daño a las estructuras de las edificaciones llegando al punto de colapsar, este tema de investigación da a conocer lo beneficioso que es el uso de este material para el concreto 350 kg/cm², por último en la justificación práctico tiene como fin brindar información sobre la influencia de las microfibras de polipropileno en

un concreto 350 kg/cm² a altas temperaturas, de manera que se mejore y alcance las expectativas que se requiere ante los ensayos correspondientes en su uso. Para brindar una respuesta a la formulación del problema, se planteó como Objetivo general, Evaluar la influencia de las microfibras de polipropileno sobre la resistencia a la compresión de un concreto f'c=350 kg/cm² a altas temperaturas Trujillo - 2022. Así mismos Objetivos específicos fueron: a) Determinar el análisis de los estudios básicos de laboratorio para un concreto 350kg/cm², **b)** Determinar el diseño de mezcla para un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento en porcentajes de 0.0%, 0.5% y 1%, c) Determinar la resistencia a la compresión, un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento de 0.0%, 0.5% y 1% a una temperatura de ambiente y a altas temperaturas mayor a 500° C. Debido a la información obtenida se da la siguiente Hipótesis General, la influencia de las microfibras de polipropileno en el concreto 350kg/cm² da de manera positiva porque aumenta su resistencia a la compresión. hipótesis Especifica: la influencia de las microfibras de polipropileno en el concreto 350kg/cm² aumenta en el ensayo a la compresión a temperatura de ambiente en los porcentajes 0.0, 0.5 y 1%. La influencia de la microfibra de polipropileno en el concreto 350kg/cm² disminuye al exponerlo a una temperatura mayor de 500°C.

II. MARCO TEÓRICO

Para entender mejor la importancia de este tema de investigación, se presentarán las diferentes investigaciones que se tomará como antecedentes considerando los años de su publicación a nivel mundial según su metodología, resultados y conclusiones. Como antecedentes internacionales tenemos a (CAÑON ,2016) con su tesis "Estudio Comparativo de la Resistencia a la Compresión de Concreto con Fibras de Polipropileno". En esta investigación tiene como objetivo Determinar las características mecánicas del concreto adicionando la fibra y observar el comportamiento ante esta mescla de manera independiente. De acuerdo a Los resultados de sus ensayos están sometido por 28 días para luego meterlas a una máquina de comprensión, para esta investigación concluyeron que la adicción de fibra de polipropileno ayuda a mejorar la manejabilidad y durabilidad de concreto fresco. además tenemos a (ALBA ,2015) con su tesis denominada: "Influencia del tiempo de exposición a altas temperaturas sobre el comportamiento en fractura de H.A.C. de alta resistencia reforzados con fibras", en esta investigación utilizaron el método experimental, con el objetivo de ver el comportamiento de un concreto con y sin microfibra en temperaturas de 100°C a 700°C, aplicando sus muestras al fuego del horno por 48h, por lo que concluyeron que a mayor tiempo de exposición a altas temperaturas las muestras pierde ductilidad de material. Mediante en el microfibra comportamiento de en un concreto. también tenemos (MANZANO,2014) que en su investigación sobre "Evaluación del efecto en la contracción del concreto con fibras estructurales de polipropileno", tiene como objetivo evaluar el efecto de las microfibras de polipropileno en la contracción plástica en una mezcla de concreto, en su metodología nos hace conocer cómo es que se elabora una mezcla de concreto convencional, bajo ensayos que cumplan los requisitos de las normas para ver las contracciones que puede presentar la mezcla al momento de adicionar las microfibras de polipropileno, concluyendo que las microfibras de polipropileno llegan a controlar los fenómenos de contracción plástica y entre más adicionen microfibras de polipropileno a la mezcla menores son las fisuras que en el concreto. Asimismo, nos da a conocer como es el efecto de la contracción del concreto con fibras de polipropileno, indicando el diseño de mezcla adecuado para su máximo efecto en el concreto. Asimismo tenemos a (ABAD ,2016) que en su investigación sobre "Evaluación de las propiedades físicas

y mecánicas de concretos autocompactantes de altas prestaciones con la inclusión de fibras plásticas normalizadas y recicladas" para esta investigación su metodología está basada en experimental, donde intervienen 2 factores y 3 niveles generando un diseño factorial, la dosificación CAC para generar un concreto de alta resistencia, en lo concluyeron que las propiedades mecánicas de cada tratamiento de CAC varían tanto en su estado endurecido como en fresco por lo que en estado fresco contiene mayor cantidad de microfibras lo que quiere decir que su fluidez disminuye generando aglomeraciones para llenar espacios vacíos es decir pierde ciertas características esenciales de un CAC, en esta tesis nos da a conocer que entre más microfibras de polipropileno adicionan al concreto este va ser mejor su resistencia debido a que llena espacios vacíos y a su vez hace que pierdan algunas características de un tratamiento de CAC. En el ámbito nacional tenemos a (DÍAS, 2017). que en su tesis "Diseño de Mezcla de concreto permeable elaborado con aditivo y adición de fibra de polipropileno para uso de pavimentos". En esta investigación nos explica que para que el concreto de 210 kg/cm2 tenga una mejor resistencia utilizan fibra de polipropileno y adictivos, su investigación estuvo divididos por 3 etapas, por lo que concluyen que la adicción de fibra de polipropileno ayuda a dar una mejor durabilidad óptima para el pavimento. Además, tenemos a (CCASANI Y EDUARDO, 2021) quienes en su investigación titulada "Evaluación comparativa de las propiedades plásticas y mecánicas del concreto f´c = 210kg/cm² reforzado con microfibras de polipropileno de 20 y 30 mm en losas de viviendas expuestas a altas temperaturas en Ucayali". Ellos realizaron mezclas dosificadas de 600, 900 y 1200 g/cm³ exponiéndolo a una temperatura de 27°C de concreto, procedieron a la evaluación de los ensayos de contracción plástica, resistencia a la compresión y flexión residual ,como resultados tienen que la microfibra de 30 mm tuvo mejor resultados, debido a que llego a tener una relación directa con el aumento de sus propiedades plásticas y mecánicas que la otra microfibra de 20mm para los 3 ensayos realizados en su investigación .también tenemos a (PERCA ,2017) quien desarrollo su investigación sobre "influencia de las fibras de polipropileno en las propiedades del concreto f'c 350 kg/cm2 en el Distrito de Puno", en esta investigación se enfocó en el comportamiento de las fibras de polipropileno en el diseño de concreto 350 kg/cm², estudiando sus propiedades plásticas, mecánicas y costos unitarios de los materiales con la finalidad de lograr un diseño de mezcla del concreto bajo las fibras de tamaño 19 mm, como también el 1.2, 1.8 y 2.4kg/m³, para la recolección de datos de esta investigación se escogieron los agregados de la cantera Cutimbo, considerando un tamaño estándar N°57(ASTM C 33) con un TM de 1/2", se determinó en el lapso de 28 días del concreto que la resistencia a la compresión disminuye de 5.47% hasta 12.27%, pero aumenta la flexión desde 5.12% a 16.75% dependiendo de la cantidad que se agregue las fibras de polipropileno. Esto nos permite saber cómo es la influencia del material de polipropileno en el concreto, reforzando las propiedades plásticas y mecánicas. Asimismo, tenemos a (LIMA,2017) que en su investigación sobre "La Influencia de microfibras de polipropileno y micro sílice en la resistencia de concretos de 4000 y 3000 psi en el distrito de lima", En esta investigación se basa en la aplicación de microfibras de polipropileno en el concreto f'c= 280kg/cm², para mejorar las propiedades mecánicas. Donde determinan que la incorporación de fibras de polipropileno sirve para mejorar sus propiedades del concreto, por que concluyeron que la adición de fibras de polipropileno mejora las propiedades, según sus resultados obtenidos mediante los ensayos de laboratorio. Esto nos explica cómo es que el material de microfibras de polipropileno influye en el concreto. Aumentando su capacidad de resistencia a la comprensión entre otras propiedades del concreto. Por otro lado, de acuerdo a resistencia de compresión a concreto tenemos a (COBEÑAS Y JANAMPA, 2019) que en su Tesis "Influencia del proceso de rehidratación de la resistencia del concreto reforzado con fibra de polipropileno por exposición a altas temperaturas". Para esta investigación utilizaron la metodología en diseño experimental, analizaron la influencia de resistencia de concreta con fibra de polipropileno por exposición a altas temperaturas, en esta investigación se concluyó que las propiedades de concreto disminuyen en la resistencia de compresión por exposición a altas temperaturas. Así mismo tenemos a (MEZA, 2019) en su tesis denominada: "Evaluación de las propiedades mecánicas del concreto armado expuesto a altas temperaturas en intervalos de tiempos, Lambayeque.2018", estas tesis tiene como objetivo evaluar y analizar las propiedades del concreto sometidos a altas temperatura en un tiempo determinado ,para esta investigación utilizaron la metodología experimental y preexperimental, como muestra de su investigación tuvieron 36 probetas cilíndricas de 6"x12" y 24 probetas de vigas de concreto 12 cm x 16cm x 50 cm con un diseño

de resistencia de 210kg/cm², 245kg/cm² y 280kg/cm², así mismo fueron expuestas en tiempos de 15,30 y 60 minutos con una temperatura de 550°C a 850°C, por Lo que sus resultados obtenidos mostraron un comportamiento ideal a la compresión en las probetas cilíndricos y un comportamiento menor a la flexión y se concluyó que el comportamiento del concreto expuesto al fuego es muy baja su resistencia. por otro lado, en nuestros conceptos. En bases teóricas tenemos a (CARHUAPOMA ,2018) El Concreto es un material muy importante y primordialmente para todo tipo de obras y construcciones debido a su resistencia, durabilidad y gran disponibilidad de componentes que tiene. (CCASANIY Y EDUARDO ,2021) El Cemento es un material más activo y aglomerante que contiene propiedades de adherencia y cohesión, así mismo propicia hacer un conjunto de fragmentos minerales entre ellos, con la finalidad de obtener una buena durabilidad y mejor resistencia a la hora de realizar un compacto de resistencia. (CCASANIY Y EDUARDO ,2021) Los Agregados son muy importantes para la mezcla del concreto ya que 75% comprende el volumen de dicha mezcla, los agregados minimizan la contracción total obtenida, proporcionando una restricción elástica a la contracción de la pasta. (CCASANIY Y EDUARDO ,2021) La Microfibra De Polipropileno se usa para el reforzamiento del concreto, siendo un agregado útil para la mezcla del concreto, cumple con la norma ASTMC-116.esta fibra es 100% virgen y evitan que se agrieten por contracción y temperatura del concreto. La microfibra es un refuerzo tridimensional, logrando obtener una superficie limpia y pulida. (COBEÑAS, 2019) La Temperatura es una propiedad física que nos da sensación de calor, para poder sacar la medida de temperatura se utiliza el pirómetro, (COBEÑAS ,2019) el incendio es una reacción química de cualquier objecto que este expuesto por el fuego (COBEÑAS ,2019). El concreto cuando está expuesto a una temperatura mayor a 500°C sufre daños y pierde resistencia.

III.METODOLOGÍA

3.1. Tipo Y Diseño De Investigación

El proyecto de investigación es de tipo aplicada, porque se basa en antecedentes de tesis ya hechas. (ARIAS,2020). El diseño de investigación según (BAPTISTA, HERNÁNDEZ Y FERNÁNDEZ ,2014) es experimental puro donde se separa a 2 grupos, post – prueba donde se evaluará los porcentajes.

Dónde:

RG1: es el grupo de probetas con concreto sin microfibras de polipropileno a temperatura de ambiente y a una temperatura mayor de 500 °C.

RG2: es el grupo de probetas con concreto con microfibras de polipropileno en remplazo al cemento con un 0.5%. a temperatura de ambiente y a una temperatura mayor de 500°C.

RG3: es el grupo de probetas con concreto con microfibras de polipropileno en remplazo al cemento con un 1%, a temperatura de ambiente y a una temperatura mayor de 500°C.

3.2. Variables y Operacionalización

Variables:

Como variable dependiente tenemos al concreto f'c=350 kg/cm².

Como variable independiente tenemos a las microfibras sintéticas de polipropileno y la temperatura mayor a 500°C.

- DEFINICIÓN COCEPTUAL: El concreto es un material producto de la mezcla de agregado grueso, agregado fino y agua, esto produce que se endurezca en base a su reacción química del cemento. (YAÑES, 2014)
- DEFINICIÓN OPERACIONAL: Para la poder medir el concreto se determinará por la prueba del SLUM, Resistencia a la compresión y la temperatura
- INDICADORES: Como indicadores en los Estudios básicos de laboratorio tenemos el análisis granulométrico, Para el agregado fino se ara: el ensayo de contenido de humedad, gravedad especifica, peso unitario suelo y compactado. Para el agregado grueso, peso unitario suelto, compactado, contenido de humedad y gravedad especifica, procederemos a determinar nuestro diseño de mezcla para ver la dosificación que emplearemos para nuestra variable.

3.2.1. Dimensiones:

Las dimensiones de esta investigación que consideramos son: a evaluación de la influencia de microfibras sintéticas de polipropileno en el concreto 350 kg/cm² en remplazo al cemento, los estudios básicos de laboratorio, diseño de mezcla de concreto, ensayos del concreto de la resistencia a la compresión a temperatura de ambiente y resistencia a la compresión altas temperaturas mayor a 500°C.

3.3. Población, muestra, muestreo, unidad de análisis

Población:

En nuestra investigación la población es el concreto 350 kg/cm² adicionando microfibras de polipropileno en remplazo al cemento.

- Criterios de inclusión: materiales que estén en un buen estado y se apruebe por los estudios básicos de laboratorio para un concreto 350kg/cm².
- Criterios de exclusión: materiales que no cumplan con los estudios básicos de laboratorio y que no contaminen el diseño de mezcla para la elaboración de un concreto 350 kg/cm².

Muestra:

En nuestra investigación se realizaron en total 60 probetas para el ensayo de resistencia a la compresión en temperatura ambiente y a altas temperaturas por 24 horas. Las probetas que se realizaron como muestra se dejaron secar por 28 días, las probetas son bajo un diseño de mezcla considerando los porcentajes de 0.0% ,0.5% y de 1% que remplazará al cemento por la microfibra sintética de polipropileno.

Tabla 1: Muestra.

CONCRETO 350 KG/CM ² CON MICROFIBRAS DE POLIPROPILENO A TEMPERATURA							
	DE A	MBIENTE					
ENSAYO DE	ENSAYO DE	ENSAYO DE	N° DE	TOTAL			
RESISTENCIA A LA	RESISTENCIA A LA	RESISTENCIA A	PROBETAS				
COMPRESIÓN	COMPRESIÓN	LA COMPRESIÓN	POR ENSAYO				
CON 0.0%	CON 0.5%	CON 1 %					
28 DÍAS	28 DÍAS	28 DÍAS	10	30			

Fuente: Elaboración propia Aguirre Cabrera, Alfred edison – Saavedra Toribio, Karol

Tabla 2: Muestra.

CONCRETO 350 KG/CM ² CON MICROFIBRAS DE POLIPROPILENO A ALTAS							
	TEM	PERATURAS					
ENSAYO DE	ENSAYO DE	ENSAYO DE	N° DE				
RESISTENCIA A LA	RESISTENCIA A	RESISTENCIA A	PROBETAS	TOTAL			
COMPRESIÓN	LA COMPRESIÓN	LA COMPRESIÓN	POR ENSAYO				
CON 0.0%	CON 0.5%	CON 1 %					
28 DÍS	28 DÍAS	28 DÍAS	10	30			

Fuente: Elaboración propia Aguirre Cabrera, Alfred edison – Saavedra Toribio, Karol

Muestreo:

Según (FERNÁNDEZ, 2015) considera muestreo a toda aquella muestra que es considerada bajo parámetros propios de investigación, esto quiere decir que solo se consideran aquellos que cumplan con los requisitos, en nuestro caso optamos por el diseño de mezcla que seleccionemos como es el tamaño de la microfibra sintética de polipropileno y el porcentaje a utilizar para cada ensayo como la norma E.060 de concreto armado nos indica.

3.4. Técnicas e instrumentos de recolección de datos

Técnicas:

Se empleo la técnica de observación estructurada y participante, estructurada debido a que se realizó mediante procesos y fue guiada para obtener nuestros resultados.

Participante, porque nosotros mismos interactuamos en la elaboración de nuestra muestra.

Instrumentos de recolección de datos:

Debido a la observación estructurada y participante se tomaron como instrumentos de recolección de datos como guías de observación para ir almacenando los datos obtenidos según los ensayos realizados:

Primera guía de observación estructurada para el estudio de básicos de los materiales como la Granulometría de agregados, Peso específico de agregados, Peso unitario de agregados, Ensayo de Compresión, Prueba de Slump y Peso unitario del concreto. (Anexo 3).

Segunda guía de observación estructurada para el diseño de mezcla (Anexo 4).

Tercera guía de observación estructurada para el ensayo de la resistencia a la compresión. (Anexo 5).

Quinta guía de observación estructurada para el ensayo de la resistencia a altas temperaturas. (Anexo 6).

3.5. Procedimientos

Para la presente investigación, se realizó procedimientos de ensayos para recolección de datos. A continuación, se detalla el paso a paso:

- a. La extracción se realizó de manera manual de la cantera LEKERSA, se encuentra en el distrito huanchaco.
- b. Cemento Pacasmayo verde Portland Tipo I, genera una mejor resistencia a la compresión del concreto, este material se obtuvo de Sodimac. (Anexo 12).
- c. Microfibra de polipropileno es un refuerzo para el concreto, este material se obtuvo de Maestro.
- d. En los estudios básicos para realizar el Ensayo Granulométrico NTP-400.012-2001, ASTM-C136. primero de se debe seleccionar los tamaños de tamices y la muestra para los agregados grueso y finos, para ambos la muestra de uno se pone en el horno por 24 horas, para agregado grueso ordenamos los tamices de mayor a menor (1 ½", 1", ¾", ½", 3/8", N°4) luego pasamos el material seleccionado en los tamices y agitamos ,finalmente pesamos el contenido de cada uno de los tamices y para agregado fino se ordenan los tamice de mayor a menor de (3/8", N° 4, N°8, N°16, N° 30, N°50, N°100, N° 200), luego pasamos el material seleccionado en los tamices y agitamos ,finalmente pesamos el contenido de cada uno de los tamices. (Anexo 13 y Anexo 14).
- e. En los estudios básicos para realizar el Peso unitario suelto y compactado (NTP-400.017-2011). en el peso unitario suelto se tiene que tener el peso del recipiente vacío, luego se llena hasta el borde, se nivela y se obtiene el peso. Este ensayo se hace 3 veces tanto para agregado grueso y fino y se saca promedios. Y en el peso unitario compactado se llena la tercera parte del recipiente de medida y la superficie se nivela a mano. La formación rocosa se sumerge con una varilla de consolidación con 25 golpes distribuidos uniformemente en toda el área. Llene dos

tercios y vuelva a compactar con 25 golpes como antes. Finalmente se llena la medida hasta rebosar golpeándola 25 veces con la varilla compactadora. El exceso de rocas generalmente se elimina con una barra apisonadora. Determine solo el peso y el contenido del recipiente de medición y el peso del recipiente, y registre el peso en unidades de 0,05 kg (0,1 lb). (Anexo 15 y Anexo 16).

- f. En los estudios básicos para realizar Contenido de humedad. (NTP-339.185-2002, ASTM-C566-97). Se debe determinar la masa de la muestra en una balanza con precisión del 0.1% luego que Seque la muestra en el recipiente durante 24 horas utilizando la fuente de calor de su elección, teniendo cuidado de no perder partículas. Determinar la masa de la muestra seca dentro del 0,1%. Luego use la siguiente fórmula para determinar el contenido de humedad. (Anexo 18).
- **g.** En los estudios básicos para Peso específico y absorción del agregado. (NTP-400.021-2013), para el agregado grueso en un recipiente se debe dejar el material en agua por 24 horas y secar el agregado con un paño luego llevarlo a una canastilla metálica y obtenemos el peso sumergido en el agua y por último ponemos las muestras en el horno y dejamos que se seque por 24 horas y obtenemos el peso. Para el agregado fino el material lo pasamos por el tamiz Nº4, vemos que tenga 1kg de peso y lo agregamos agua al agregado por 24 horas, después quitamos el agua cuidadosamente para no perder material para después expandimos en una bandeja y secamos el agregado luego procedemos a la prueba del cono llenándolo en 3 capas con 25 golpes por capa, Esto se llama superficie seca hasta que se ve que la superficie del agregado se desmorona. Seleccione 500 g de material (S), pesamos la fiola con 1000 cm3 de agua (B), luego colocamos el material a la fiola con agua, y así agitamos hasta por 20 pesamos la fiola con agua y agregado (C). Sacamos el material cuidadosamente de la fiola, la colocamos en el horno por 24 horas y luego pesamos el material (A). (Anexo 17 y Anexo 18).

- h. Para el ensayo del slump se utilizó el Cono de Abrams. (NTP-339.036-1999). El molde se coloca en una superficie plana, luego se le llena con la mezcla del concreto, para primer, segunda y tercera capa se compactan cada uno con 25 golpes, después se enrasa con la barra compactadora y en el borde del cono de abrams, así mismo el molde se retira rápidamente de forma vertical y medidos el asentamiento la diferencia de la altura con el cono, se debe tener en cuenta que el tiempo transcurrido entre la obtención de la porción inicial y final de una muestra compuesta deberá ser el más corto posible, pero no debe superar los 15 minutos. Luego, utilizando los datos obtenidos de agregados, cemento, agua, aditivos y fibras de polipropileno, se utiliza el método ACI para realizar un diseño de mezclas para un concreto de 350 kg/cm2. Basado en varias tablas, el Comité 211 de ACI ha desarrollado un procedimiento de diseño de mezclas muy simple que puede obtener 44 valores para los diversos materiales que componen una unidad cúbica del concreto. (Anexo 19 y Anexo 20).
- i. Para el ensayo de Resistencia a la compresión (NTP-339.036-1999). una vez obtenidas las muestras después de haber dejado secar por 28 días estas son sometidas por la carga axial de la maquina compactadora con esto nos ayuda a ver la resistencia del concreto. (Anexo 22).
- j. Para el ensayo de resistencia del concreto de 350 kg/cm2 en porcentaje de 0%,0.5% y 1% a altas temperaturas mayor a 500°C se procedió llevar las 30 probetas a un horno de ladrillera por 24 horas, Las probetas son de forma cilíndricas y aproximadamente 10cm de diámetro por 20 cm de altura. Para medir la temperatura se utilizó un perímetro infrarrojo. (Anexo 23).

3.6. Método de análisis de datos

En la presente investigación se emplearán métodos para el análisis de datos, como nuestra investigación es experimental, la herramienta que utilizaremos es el estudio experimental, esta nos indica que debemos utilizar programas donde se puedan realizar tablas y fórmulas matemáticas para lograr llegar a nuestros resultados, por conveniencia se elegirá el software Microsoft Excel que es un programa que ayuda a ordenar y calcular de manera más rápida y eficaz según los comandos que nosotros asignemos.

3.7. Aspectos Éticos

La ética es una disciplina que nos permite a todos mejorar nuestra énfasis de trabajo y da la fiabilidad de un brindar un trabajo seguro y de calidad, es por esto que en nuestro trabajo se tenía como compromiso nuestra ética como estudiantes, está guiado por diferentes trabajos de investigación de fuentes confiables en donde fueron revisadas por expertos, de manera que cada opinión de ellos se encuentra citada dentro de nuestra investigación para el desarrollo de nuestro trabajo teniendo como referencia las Normas ISO 690 Y 690-2.

IV. RESULTADOS

OBJETIVO GENERAL

 Evaluar la influencia del porcentaje de microfibras de polipropileno sobre la resistencia a la compresión de un concreto f´c=350 kg/cm² a altas temperaturas.

Se determinó que la influencia de la microfibra de polipropileno sobre la resistencia a la compresión de un concreto f´c=350kg/cm³ a altas temperaturas aumenta cuando se agrega 0.5% de microfibras de polipropileno en remplazo al cemento y disminuye como se puede apreciar la **Figura 35 y Figura 36**

OBJETIVO ESPECÍFICOS

a) Determinar el análisis de los estudios básicos de laboratorio para un concreto 350kg/cm².

Para lograr determinar los estudios básicos de laboratorio, se utilizó el laboratorio "JVC CONSULTORIA Y GEOTECNIA", donde se realizaron los ensayos como:

o Ensayo de Granulometría NTP 400.012/MTC E 204.

Para realizar este ensayo se compró el agregado grueso y agregado fino de la cantera LEKERSA que fue recomendada por el mismo laboratorio, una vez con el material comprado se pasó a extraer una parte de ella tanto para el agregado grueso y agregado fino:

• Agregado grueso

En el agregado grueso se encontró que tenía muchos finos y se procedió a lavar toda la cantidad extraída y posteriormente se procedió a meter a un horno por 24 horas, al día siguiente se sacó la muestra y se esperó a que llegue a la temperatura de ambiente, obteniendo como resultado una muestra seca de 2650 g.

Esta muestra se pasó por los tamices desde la de 2" hasta la N°4 teniendo como resultados la **tabla3** y la curva granulométrica que podemos apreciar en la **Figura2.**

Tabla 3. Análisis granulométrico del agregado grueso.

Tamices ASTM	Abertura en mm	Peso Retenido	% Retenido Parcial	% Retenido Acumulado	% que Pasa	Especit	ficación
2"	50.00	0.00	0.00	0.00	100.00	100.00	100.00
1 1/2"	37.50	0.00	0.00	0.00	100.00	100.00	100.00
1"	25.00	0.00	0.00	0.00	100.00	95.00	100.00
3/4"	19.00	394.00	14.87	14.87	85.13	0.00	0.00
1/2"	12.50	1297.20	48.95	63.82	36.18	25.00	60.00
3/8"	9.50	545.70	20.59	84.41	15.59	0.00	0.00
N4	4.75	412.50	15.57	99.98	0.02	0.00	10.00
FONDO		0.60	0.02	100.00	0.00	0.00	0.00
TOTAL		2650.00	100.00	,			

DESCRIPCIÓN DE LA MUESTRA

2650.00

Peso de inicial seco : gr

TAMAÑO MÁXIMO : 1"

TAMAÑO MÁXIMO NOMINAL

3/4"

HUSO 57 ASTM 33

Figura 1. Gráfico de Peso retenido de agregado grueso.

Interpretación: En esta figura se puede apreciar todos los pesos del agregado grueso que se ha retenido por cada malla y el mayor peso que se ha retenido paso por la malla de ½" con 1297.20g.

Figura 2. Gráfico de Retenido parcial de agregado grueso.

Interpretación: En esta figura se puede apreciar todos los porcentajes del agregado grueso que se ha retenido al pasar por las diferentes mallas y el mayor porcentaje que se retenido está en la malla de ½" con el 48.95%.

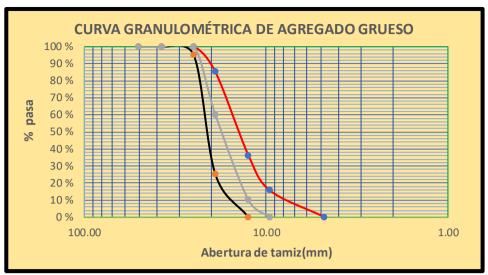


Figura 3. Gráfico de Curva granulométrica de agregado grueso

Interpretación: Se interpreta que todo el agregado grueso que paso por las diferentes mayas con aberturas de 19.00 mm hasta 4.75mm se ha logrado pasar el 100%, encontrándonos con gran variedad de tamaños.

Agregado fino

En el agregado fino se procedió a lavar una cantidad apropiada y posteriormente se procedió a meter al horno por 24 horas, al día siguiente se sacó la muestra y se esperó a que llegue a temperatura de ambiente, obteniendo como resultado una muestra seca de 2650 g.

Esta muestra se pasó por los tamices desde la de N°4 hasta la N°200 teniendo como resultados la **tabla4** y la curva granulométrica que podemos apreciar en la **Figura3**.

Tabla 4. Análisis granulométrico del agregado fino.

Tamices ASTM	Abertura en mm	Peso Retenido	% Retenido Parcial	% Retenido Acumulado	% que Pasa	Espec	ificación
1/2"	12.5	0	0	0	100	100	100
3/8"	9.50	0.00	0.00	0.00	100.00	100.00	100.00
N°4	4.75	32.15	2.66	2.66	97.34	95.00	100.00
8	2.36	151.37	12.53	15.19	84.81	80.00	100.00
16	1.18	235.78	19.51	34.70	65.30	50.00	85.00
30	0.60	276.14	22.85	57.55	42.45	25.00	60.00

50	0.30	264.38	21.88	79.43	20.57	10.00	30.00
100	0.15	204.66	16.94	96.36	3.64	2.00	10.00
200	0.08	42.31	3.50	99.86	0.14		
FONDO		1.64	0.14	100.00	0.00		
TOTAL		1208.43	100				

DESCRIPCIÓN DE	LA MUI	ESTRA
		1208.43
Peso de inicial seco Peso lavado seco Peso Material que	:	gr
pasa #200	:	1.64gr
TAMAÑO MÁXIMO	:	3/8"
MÓDULO DE FINEZA	:	2.86

Figura 4. Gráfico de Peso retenido de agregado fino.

Interpretación: En esta figura se puede interpretar los diferentes pesos que se ha retenido del agregado fino que ha pasado por las diferentes mayas y se aprecia que el mayor peso retenido se encuentra en la malla N°30 con 276.14g.

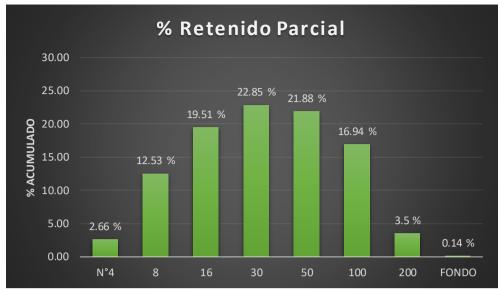


Figura 5. Gráfico de Retenido parcial de agregado fino.

Interpretación: En esta figura se puede interpretar los porcentajes acumulados del agregado fino que ha pasado por las diferentes mayas y se aprecia que el mayor porcentaje se retenido se encuentra en la malla N°30 con un 22.85%

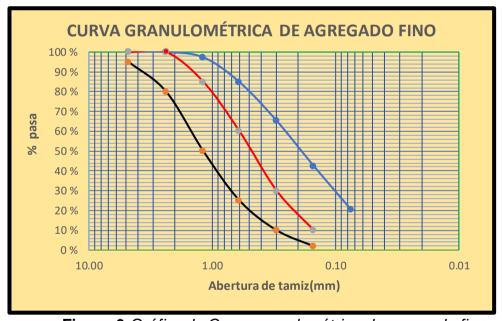


Figura 6. Gráfico de Curva granulométrica de agregado fino.

Interpretación: Se interpreta que todo el agregado fino que paso por las diferentes mayas con aberturas de 4.75 mm hasta 0.075mm se ha logrado pasar el 100%, encontrándonos con gran variedad de tamaños.

Ensayo de peso unitario suelto y peso unitario compactado.

Para realizar este ensayo se compró el agregado grueso y agregado fino de la cantera LEKERSA. Una vez con el material comprado se pasó a extraer una parte de ella tanto para el agregado grueso y agregado fino:

Peso unitario suelto en el agregado grueso.

Se extrajo una parte del material que se trajo de cantera, se pesó el molde y se midió sus dimensiones para hallar su volumen y por último se pesó la muestra; luego se realizaron los cálculos que están en la **Tabla 5** y en la **Figura 8.**

Peso unitario compactado en el agregado grueso.

Se extrajo una parte del material que se trajo de cantera, se pesó el molde y se midió sus dimensiones para hallar su volumen, luego se pasó a colocar el material extraído dentro del molde en 3 capas y cada capa fue chuseada 25 veces y en la tercera capa se enrazo, luego se realizaron los cálculos que están en la **Tabla 5** y en el **Grafico 7.**

PESO UNITARIO SUELTO AGREGADO GRUESO (ASTM D 2216,MTC E 203, NTP 400.017)							
Peso Molde: Vol. Molde:	5392.40 gr 9500.645 cm³						
Muestra	1	2	3				
Peso de Molde + Muestra	18267	18284	18273				
Peso de Molde	5392.4	5392.4	5392.4				
Peso de la muestra	12874.6	12891.6	12880.6				
Volumen	9500.65	9500.65	9500.65				
Peso Unitario							
Suelto(gr/cm³)	1.36	1.36	1.36				
PESO UNITARIO COMPACTADO AGREGADO GRUESO (ASTM D 2216,MTC E 203, NTP 400.017)							
(ASTM D 2216,N	ITC E 203, N	TP 400.017)					
(ASTM D 2216,N Peso Molde	ITC E 203, N	<mark>TP 400.017)</mark> 5392.40 gr					
,	·						
Peso Molde	·	5392.40 gr					
Peso Molde Vol. Molde		5392.40 gr 9500.645cm ³	3				
Peso Molde Vol. Molde Muestra	1	5392.40 gr 9500.645cm ³ 2 20702	3 20689				

Volumen	9500.65	9500.65	9500.65
Pe.Uni.Compactado(gr/cm³)	1.61	1.61	1.61

RESUMEN PESO UNITARIO AGREGADO FINO		
	1.36	
PESO SUELTO:	gr/cm³	
	1.61	
PESO COMPACTADO:	gr/cm³	

Tabla 5. Ensayo de peso unitario suelto y compactado agregado grueso.

Figura 7. Gráfico peso unitario compactado en el agregado grueso.

Interpretación: Se interpreta que para obtener el peso unitario compactado se hicieron 3 muestras y al obtener los resultados no se encuentran diferencias de peso unitario compactado en las 3 muestras, por lo tanto, el promedio del peso unitario compactado que se uso es de 1.61 gramos/cm3.

Figura 8. Gráfico pesos unitarios suelto en el agregado grueso.

Interpretación: Se aprecia que para el peso unitario suelto se realizaron 3 muestras y no se encontraron diferencias de peso unitario suelto en las 3 muestras, por lo tanto, el promedio que se uso es de 1.36gramos/cm3.

· Peso unitario suelto en el agregado fino

Se extrajo una parte del material que se trajo de cantera, se pesó el molde y se midió sus dimensiones para hallar su volumen y por último se pesó la muestra; luego se realizaron los cálculos que están en la **Tabla 6** y en la **Figura 10**.

• Peso unitario compactado en el agregado fino

Se extrae una parte del material que se trajo de cantera, se pesó el molde y se midió sus dimensiones para hallar su volumen, luego se pasó a colocar el material extraído dentro del molde por 3 capas y cada capa fue chuseada 25 veces y en la tercera capa se enrazo, luego se realizaron los cálculos que están en la **Tabla 6** y en la **Figura 9**.

Tabla 6. Ensayo de peso unitario suelto y compactado agregado fino.

PESO UNITARIO SUELTO AGREGADO FINO (ASTM D 2216,MTC E 203, NTP 400.017)				
Peso Molde	2568.60 gr			
Vol. Moldé	2849.990cm ³			
Muestra	1	2	3	
Peso de Molde + Muestra	7389	7403	7395	
Peso de Molde	2568.6	2568.6	2568.6	
Peso de la muestra	4820.4	4834.4	4826.4	
Volumen	2849.99	2849.99	2849.99	
Peso Unitario				
Suelto(gr/cm³)	1.69	1.7	1.69	
PESO UNITARIO COMPACTADO AGREGADO FINO (ASTM D 2216,MTC E 203, NTP 400.017)				
	MTC E 203, N	TP 400.017)	INO	
	MTC E 203, N		FINO	
(ASTM D 2216, Peso Molde	MTC E 203, N	TP 400.017) 2568.60 gr	FINO 3	
(ASTM D 2216, Peso Molde Vol. Molde	MTC E 203, N	2568.60 gr 849.990cm ³		

Peso de la muestra	5184.4	5213.4	5200.4
Volumen	2849.99	2849.99	2849.99
Pe.			
Uni.Compactado(gr/cm³)	1.82	1.83	1.82

RESUMEN PESO UNITARIO AGREGADO FINO		
PESO SUELTO:	1.69 gr/cm ³	
PESO COMPACTADO:	1.82 gr/cm ³	

Figura 9. Gráfico pesos unitarios compactado en el agregado fino.

Interpretación: Se aprecia que para el peso unitario compactado se tomaron 3 muestras y estas 3 muestras tienen diferente peso unitario compactado y el peso unitario compactado promedio es 1.82g/cm2

Figura 10. Gráfico peso unitario suelto en el agregado fino.

Interpretación: Se aprecia que para obtener el peso unitario suelto se tomaron 3 muestras, estas 3 muestras varían en su peso unitario suelto y el peso unitario suelto promedio es 1.69g/cm2.

o Ensayo de contenido de humedad y gravedad especifica

Para realizar este ensayo se compró el agregado grueso y agregado fino de la cantera LEKERSA que fue recomendada por el mismo laboratorio, una vez con el material comprado se pasó a extraer una parte de ella tanto para el agregado grueso y agregado fino:

• Contenido de humedad en el agregado grueso.

Se extrae una parte del material que se trajo de cantera y se pesa, luego se mete al horno por 24 horas, a continuación, se saca del horno y se deja que se enfrié a temperatura de ambiente, una vez que está a temperatura de ambiente se pesa y se obtienen los resultados que tenemos en la **Tabla 7** y en la **Figura 11**.

• Gravedad especifica y absorción en el agregado grueso.

Se extrae una parte del material que se trajo de cantera, se lava la muestra para eliminar todos los finos y se coloca al horno por 24 horas, después retiras del horno la muestra y esperas que este a temperatura de ambiente para colocarlo en un recipiente con agua por 24 horas, a continuación se elimina el agua del recipiente y se seca con un paño y se pesa la muestra, luego se coloca la muestra a un recipiente donde el nivel del agua sobre pase el recipiente y se pesa, después se coloca la muestra al horno por 24 horas, para finalizar esperas que este a temperatura de ambiente y se pesa la muestra para obtener los resultados que tenemos en la **Tabla 7** y en la **Figura 11**.

Tabla 7.Contenido de humedad agregado, gravedad especifica y absorción en el agregado grueso.

CONTENIDO DE HUMEDAD NTP 339.185.2013 EN EL AGREGADO GRUESO					
TARA	1	2			
Peso Tara (gr)	106.4	107.7			
Peso Tara + Material húmedo (gr)	1267.3	1324.5			
Peso Tara + Material seco (gr)	1264.5	1320.7			
Peso del Agua (gr)	2.8	3.8			

Peso de Material Seco (gr)	1158.1	1213
Humedad %	0.24%	0.31%
GRAVEDAD ESPECIFICA Y ABSORCIÓN	DE AGREGADOS GR	RUESO
(NORMA MTC E - 25, NTP 400.0)22:AASHTO T-84)	
Peso Mat. Sat, Sup. Seco (en Aire) (gr)	2500	2500
Peso Mat. Sat, Sup. Seco (en Agua) (gr)	1551.3	1553.2
Vol. de Masa + vol de vacío (gr)	948.7	946.8
Pe. De Mat. Seco en estufa(105°C) (gr)	2481.3	2480.9
Vol de Masa (gr)	930	927.7
Pe Bulk (Base Seca)	2.615	2.62
Pe Bulk (Base Saturada)	2.635	2.64
Pe Aparente (Base Seca)	2.668	2.674
Porcentaje de Absorción	0.75%	0.77%

RESUMEN DE CARACTERÍSTICAS DEL AGREGADO	GRUESO
CONTENIDO DE HUMEDAD %	0.28%
Pe Bulk (Base Seca)	2.618
Pe Bulk(Base Saturada)	2.638
Pe Aparente (Base Seca)	2.671
Porcentaje de absorción	0.76%

Figura 11. Gráfico de contenido de humedad en el agregado grueso

Interpretación: se interpreta que para el cálculo de contenido de humedad se utilizaron 2 muestras, estas 2 muestras varían su contenido de humedad y el contenido de humedad promedio es de 0.28%.

Figura 12. Gráfico de absorción en el agregado grueso.

Interpretación: se interpreta que para calcular el porcentaje de absorción se utilizaron 2 muestras, estas 2 muestras varían su porcentaje de absorción y el porcentaje de absorción promedio es de 0.76%.

Contenido de humedad en el agregado fino.

Se extrae una parte del material que se trajo de cantera y se pesa, luego se mete al horno por 24 horas, a continuación, se saca del horno y se deja que se enfrié a temperatura de ambiente, una vez que está a temperatura de ambiente se pesa y se obtienen los resultados que tenemos en la **Tabla 8** y en la **Figura 13**.

Gravedad especifica y absorción en el agregado fino.

Se extrae una parte del material que se trajo de cantera se lava para eliminar los finos no deseados y se coloca al horno por 24 horas, luego se extrae del horno y se deja que se enfrié a temperatura de ambiente la muestra, después tienes que hallar la condición a tu muestra y llegar a 500g, a continuación, se coloca la muestra en un picnómetro con agua hasta llegar a la marca de un litro y pesamos la muestra, luego la muestra se agita para eliminar espacios y se coloca a paño maría a reposar por 3 o 4 horas, después se seca con un trapo el contorno del picnómetro

y se pesa, a continuación se pasa la muestra que está en el picnómetro a un recipiente para que después se proceda a meter al horno por 24 horas y para finalizar lo retiramos después de las horas y esperamos que este a temperatura de ambiente para poder pesarlo.

Tabla 8.Contenido de humedad agregado, gravedad especifica y absorción en el agregado fino.

CONTENIDO DE HUMEDAD EN EL AGREGADO FINO NTP 339.185.2013						
TARA	1	2				
Peso Tara (gr)	107	106				
Peso Tara + Material húmedo (gr)	825.41	768.54				
Peso Tara + Material seco (gr)	814.78	758.38				
Peso del Agua (gr)	10.63	10.16				
Peso de Material Seco (gr)	706.98	651.78				
Humedad %	1.50%	1.56%				
GRAVEDAD ESPECIFICA Y ABSORCIÓN DE AGREGA	ADOS FINC	S				
(NORMA MTC E - 25, NTP 400.022:AASHTO 1	Г-84)					
Peso Mat. Sat, Sup. Seco (en Aire) (gr)	500	500				
Peso Frasco + Agua (gr)	684.12	684.27				
Peso Frasco+ Agua + A (gr)	1184.12	1184.27				
Peso del Mat. + agua en el frasco (gr)	995.34	995.19				
Vol. de Masa + vol de vacío (gr)	188.78	189.08				
Pe. De Mat. Seco en estufa(105°C) (gr)	489.31	489.53				
Vol de Masa (gr)	178.09	178.61				
Pe Bulk (Base Seca)	2.592	2.589				
Pe Bulk (Base Saturada)	2.649	2.644				
Pe Aparente (Base Seca)	2.748	2.741				
Porcentaje de Absorción	2.18%	2.14%				

RESUMEN DE CARACTERÍSTICAS DEL AGREGADO FINO					
CONTENIDO DE HUMEDAD %	1.53%				
Pe Bulk(Base Seca)	2.59				
Pe Bulk(Base Saturada)	2.65				
Pe Aparente (Base Seca)	2.74				
Porcentaje de absorción	2.16%				

Figura 13. Gráfico de contenido de humedad en el agregado fino.

Interpretación: se interpreta que para el cálculo de contenido de humedad se utilizaron 2 muestras, estas 2 muestras varían su contenido de humedad y el contenido de humedad promedio es de 1.53%.

Figura 14. Gráfico de absorción en el agregado fino.

Interpretación: Se interpreta que para calcular el porcentaje de absorción se utilizaron 2 muestras, estas 2 muestras varían su porcentaje de absorción y porcentaje de absorción es de 2.16%.

 b) Determinar el diseño de mezcla para un concreto 350kg/cm², adicionando en remplazo al cemento la microfibra de polipropileno en porcentajes de 0.0%, 0.5% y 1%.

Tabla 9. Diseño de mezclas para un concreto 350kg/cm2.

RESISTENCIA DESEADA F'C	350	kg/cm²		
RESISTENCIA CALCULADA F´C	437	kg/cm²	E060 TABLA 5.3.2.2	
I) INFORMACIÓN DE MATERIALE	S			
A. AGREGADO GRUESO			C. CEMENTO	
01 Peso Unitario Compactado Seco	1610	kg/cm³	13 Porlant Tipo	1
02 Peso Unitario Suelto Seco	1356	kg/cm³	14 Peso Específico	3.15 kg/m³
03 Peso Específico de Masa	2618	kg/cm³	15 Peso Volumétrico	1500 kg/m³
04 Peso Unitario compactado seco	0.28	%		
05 Contenido de Absorción	0.76	%		
06- Tamaño máximo nominal	3/4.	pulg.		
B. AGREGADO FINO			D. AGUA	
01 Peso Unitario Compactado Seco	1610	kg/m³	16 NORMA NTP 339.088	Potable
02 Peso Unitario Suelto Seco	1693.7	kg/m³		
03 Peso Específico de Masa	2618	kg/m³	17 Peso Especifico	1000 kg/m ³
04. – Contenido de humedad	1.53	%		
05 Contenido de Absorción	2.16	%		
06- Modulo de fineza	2.86.			

II.) DISEÑO 1- SLUMP Consistencia Plástica Asentamiento 3" Pulgadas 2. -CONTENIDO DE AIRE ATRAPADO Tamaño Máximo Nominal 3/4. Pulg. Aire 2 %

3.-CONTENIDO DE AGUA

Cantidad de agua 205 I/m³

4. -RELACION AGUA CEMENTO (Por

Resistencia)

Resistencia de cálculo 437 kg/cm² Cantidad Cemento 521.2kg Relación A/C 0.393 **Factor Cemento** 12.26bls

5. -CONTENIDO DE CEMENTO

6. - PESO DE AGREGADO GRUESO

Módulo de Fineza Agregado Fino 2.86 Volumen de Agregado Grueso $0.61 \, \text{m}^3$ Peso de Agregado Grueso 988.54kg

7.- VOLUMEN DE AGREGADO

FINO

Cemento 0.165m³ Agua $0.205m^{3}$ Aire $0.02m^{3}$ Agregado Grueso 0.378m³

Volumen de Agregado Fino 0.232m³ Peso de Agregado Fino 600.74 kg

8. -DISEÑO EN ESTADO SECO

9. -CORRECCIÓN POR HUMEDAD DE LOS 521.2kg Cemento

AGREGADOS

600.74kg Agregado Fino Agregado Fino 609.931 kg Agregado Grueso 988.54kg Agregado Grueso 991.308 kg

Agua 205L

10. -APORTE DE AGUA A LA 11. -AGUA EFECTIVA **MEZCLA**

Agregado Fino -3.785 L Cantidad de agua 213.53L

Agregado Grueso -4.745 L Agua en Agregados -8.53 L

III) DOSIFICACIÓN DE MEZCLA

12. -DOSIFICACIÓN EN PESO

EN 521.20kg Cemento Kg **PESO**

R Agregado Fino Kg CEMENTO ARENA PIEDRA AGUA 609.93kg a/c Agregado Grueso Kg 1 17.4 0.41 991.31kg 1.17 1.9

Litros/Bls Agua Lt 213.53kg

13. -DOSIFICACIÓN EN VOLUMEN POR PIE³

AGUA Cemento bls 12.36bls CEMENTO ARENA PIEDRA LT

Agregado Fino m3 $0.36m^{3}$ 1 1.04 2.11 17.4

Agregado Grueso m3	0.731m³	Litros/Bls
Agua m3	0.214m³	

_					
% de materiales para un m3 de mezcla					
Cemento	22.31%				
AF AG	26.11%				
AG	42.44%				
Δ	9 14%				

MUESTRA PATRÓN: PROBETAS 10 x 20cm					
		Mas el 20%	% de perdida		
Cemento	835.16 g	167.0314	1002.19		
Agregado fino	977.34 g	195.4671	1172.80		
Agregado	1588.45				
grueso	g	317.6897	1906.14		
Agua	342.15 g	68.43094	410.59		
MICROFIBRA.		10cm x 20cm SIN			
% DE MATERIA	LES PARA PROBETAS	10cm x 20cm SIN			
Cemento	22.31%				
Agregado	00.440/				
Fino	26.11%				
Agregado	40.440/				
Grueso	42.44%				
Agua	9.14%				
TOTAL	100%				
MUESTRA CON	I 0.5% DE MICROFIBRAS	PARA PROBETAS	DF 10cm v 2		

7 19 44	0,0				
TOTAL	100%				
MUESTRA CON	N 0.5% DE N	MICROFIE	RAS PARA PROBET	AS DE 10cm x 2	20cm.
				Mas el 20% de	perdida
					997.18
Cemento	830.98 g	0.5%	166.20 g	0.20%	g
Microfibra de	000.00 g	0.070	. 00.20 g	0.2070	9
Polipropileno	4.18 g	0.5%x	0.84 g	0.20%	5.01 g
Agregado	4.10 g	0.5/08	0.04 g	0.2070	3.01 g
Fino	077 24 ~				
_	977.34 g				
Agregado	4500.45				
Grueso	1588.45 g				
Agua	342.15 g				
 % DE MATERIA	ALES PARA	PROBET	AS 10cm x 20cm CO	N 0.5% DE	
MICROFIBRAS	EN REMPL	AZO AL (CEMENTO.		
Cemento	22.20%				
Microfibra de					
polipropileno	0.11%				
Agregado					
Fino	26.11%				
Agregado	20.1170				
Grueso	42.44%				
Agua	9.14%				
TOTAL	100%				

MUESTRA CO	N 1.0% D	E MICRO	OFIBRAS PARA	PROBETAS	DE 10cm x	20cm.
Cemento	826.81	g	1.0%	165.36	0.20 %	992.17
Microfibra de						
Polipropileno Agregado	8.35	g		1.67	0.20 %	10.02
fino	977.34	g				
Agregado		J				
grueso	1588.45	g				
Agua	342.15	ml				
Camanta	00.000/					
			BETAS 10cm x 2 AL CEMENTO.	ZUCIII CON	1.0 % DL	
Cemento	22.09%					
Microfibra de						
Polipropileno	0.22%					
Agregado 						
Fino	26.11%					
Agregado						
Grueso	42.44%					
Agua	9.14%					
TOTAL	100%					

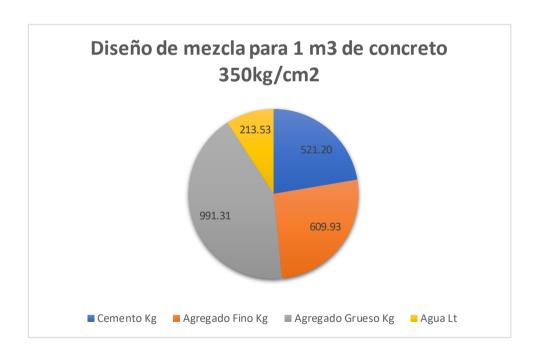


Figura 15. Concreto 350kg/cm2 en un m3 sin microfibra.

Interpretación: Se interpreta que para un metro cubico de mezcla de un concreto 350kg/cm² se necesita 521.20kg de cemento, 609.93 kg de agregado fino, 991.31kg de agregado grueso y 213.53lt de agua.

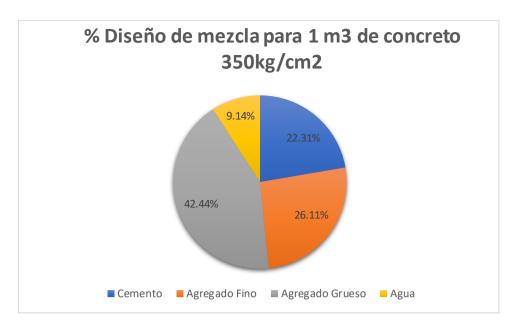


Figura 16. Diseño de mezcla para un concreto 350kg/cm² en porcentaje

Interpretación: Se determina que para un metro cubico de mezcla de un concreto 350kg/cm², se necesita que el 22.31% sea de cemento, el 26.11% de agregado fino, el 42.44% sea de agregado grueso y el 9.14% sea de agua.

Figura 17. Concreto 350kg/cm2 por bolsa de cemento

Interpretación: Se interpreta que para el diseño de mezcla de un concreto 350kg/cm² debe de llevar por una bolsa de cemento 1.17 bolsa de arena, 1.9 bolsas de piedra y 17.4 litros de agua.

Figura 18. Concreto 350kg/cm2 en volumen en m3 de cemento

Interpretación: Se determina que para el diseño de mezcla por volumen para 1 metro cubico de un concreto 350kg/cm² debe de llevar 12.36 bolsas de cemento 0.36 m3 de agregado fino, 0.731m3 de agregado grueso y 0.214m3 de agua.

Figura 19. Diseño de mezcla para Concreto 350kg/cm2 muestra patrón en gramos.

Interpretación: Se determina la dosificación de nuestra muestra patrón en probetas de 10.10 cm x 20cm en gramos, tiene 835.16g de cemento, 977.34g de agregado fino, 1588.45g de agregado grueso y 342.15ml de agua.

Figura 20. Diseño de mezcla para Concreto 350kg/cm2, muestra patrón en porcentaje.

Interpretación: Se determina la dosificación de nuestra muestra patrón en probetas de 10.10 cm x 20cm en porcentaje, lleva 22.31% de cemento, 26.11% de agregado fino, 42.44% de agregado grueso y 9.14% de agua.

Figura 21. Diseño de mezcla para Concreto 350kg/cm2 con el 0.5% de microfibra de polipropileno en remplazo al cemento en gramos.

Interpretación: Se determina la dosificación de nuestra muestra con el 0.5% de microfibra de polipropileno en remplazo al cemento en probetas de 10.10 cm x 20cm en gramos, tiene 830.98g de cemento, 4.18g de microfibras de polipropileno, 977.34g de agregado fino, 1588.45g de agregado grueso y 342.15ml de agua.

Figura 22. Diseño de mezcla para Concreto 350kg/cm2 con microfibra de polipropileno en 0.5% en remplazo al cemento en porcentaje.

Interpretación: Se determina la dosificación de nuestra muestra con el 0.5% de microfibra en remplazo al cemento de polipropileno en probetas de 10.10 cm x 20cm en porcentaje, lleva 22.20% de cemento,0.11% de microfibra de polipropileno 26.11% de agregado fino, 42.44% de agregado grueso y 9.14% de agua.

Figura 23. Diseño de mezcla para Concreto 350kg/cm2 con microfibra de polipropileno en 1% en remplazo al cemento en gramos.

Interpretación: Se determina la dosificación de nuestra muestra con el 1.0% de microfibra de polipropileno en remplazo al cemento en probetas de 10.10cm x 20cm en gramos, tiene 826.81g de cemento, 8.35g de microfibras de polipropileno, 977.34g de agregado fino, 1588.45g de agregado grueso y 342.15ml de agua.

Figura 24. Diseño de mezcla para Concreto 350kg/cm2 con microfibra de polipropileno en 1% en remplazo al cemento en porcentaje.

Interpretación: Se determina la dosificación de nuestra muestra con el 0.5% de microfibra en remplazo al cemento de polipropileno en probetas de 10.10 cm x 20cm en porcentaje, lleva 22.09% de cemento,0.22% de microfibra de polipropileno 26.11% de agregado fino, 42.44% de agregado grueso y 9.14% de agua.

c)Determinar la resistencia a la compresión, un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento de 0.0%, 0.5% y 1% a una temperatura de ambiente y a altas temperaturas mayor a 500° C.

con los datos adquiridos de los estudios básicos y el diseño de mezcla se procedió a crear nuestras probetas con 0.0%, 0.5% y 1.0% con microfibras para que luego se proceda romper y determinar su resistencia a la compresión tanto a temperatura de ambiente y otras sometidas a altas temperaturas como se puede apreciar en las siguientes tablas y gráficos.

 Ensayo de resistencia a la compresión con la muestra patrón a temperatura de ambiente.

Tabla 10. Rotura de especímenes de concreto a los 28 días muestra Patrón.

Probeta	a Cilíndrica	Fecha de rotura		
N° Elementos	Edad de probetas	Elaboración	Rotura	Resistencia f'c=kg/cm2
1	28	01/06/2022	29/06/2022	383.46
2	28	01/06/2022	29/06/2022	369.82
3	28	01/06/2022	29/06/2022	383.51
4	28	01/06/2022	29/06/2022	378.74
5	28	01/06/2022	29/06/2022	380.18
6	28	01/06/2022	29/06/2022	373.11
7	28	01/06/2022	29/06/2022	384.16
8	28	01/06/2022	29/06/2022	376.19
9	28	01/06/2022	29/06/2022	381.81
10	28	01/06/2022	29/06/2022	370.58

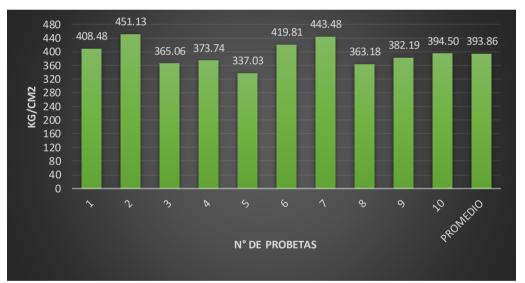


Figura 25. Gráfico de ruptura a los 28 días con 0.0% de microfibras de polipropileno a temperatura de ambiente.

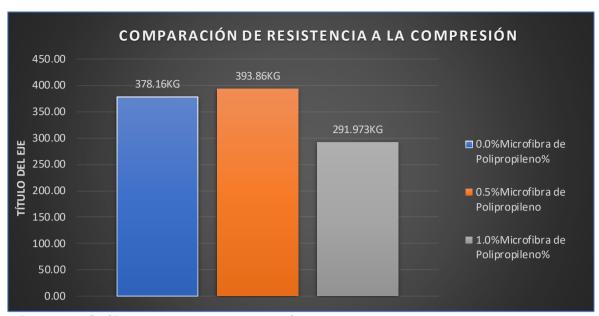
Interpretación: Se rompieron las 10 muestra de un concreto 350kg/cm2 con 0.0% de microfibras de polipropileno a temperatura de ambiente, que fueron sometidas al ensayo a la compresión llegando a alcanzar un promedio de resistencia a la compresión de 378.16kg/cm2.

Tabla 11.Rotura de especímenes de concreto a los 28 días Muestra con microfibra de polipropileno en remplazo al cemento 0.5%.

Probeta	a cilíndrica	Fecha d	e rotura	
N° Elementos	Edad de probetas	Elaboración	Rotura	Resistencia f'c=kg/cm2
1	28	01/06/2022	29/06/2022	408.48
2	28	01/06/2022	29/06/2022	451.13
3	28	01/06/2022	29/06/2022	365.06
4	28	01/06/2022	29/06/2022	373.74
5	28	01/06/2022	29/06/2022	337.03
6	28	01/06/2022	29/06/2022	419.81
7	28	01/06/2022	29/06/2022	443.48
8	28	01/06/2022	29/06/2022	363.18
9	28	01/06/2022	29/06/2022	382.19
10	28	01/06/2022	29/06/2022	394.50

Figura 26. Gráfico de ruptura a los 28 días con 0.5% de microfibras de polipropileno a temperatura de ambiente.

Interpretación: Se rompieron las 10 muestra de un concreto 350kg/cm2 con 0.5% de microfibras de polipropileno a temperatura de ambiente, que fueron sometidas al ensayo a la compresión llegando a alcanzar un promedio de resistencia a la compresión de 393.86kg/cm2.


Tabla 12. Rotura de especímenes de concreto a los 28 días Muestra con microfibra de polipropileno en remplazo al cemento 1.00%.

Probeta	a cilíndrica	Fecha d	e rotura	
N°	Edad de			Resistencia
Elementos	probetas	Elaboración	Rotura	f'c=kg/cm2
1	28	03/06/2022	01/07/2022	317.09
2	28	03/06/2022	01/07/2022	315.76
3	28	03/06/2022	01/07/2022	279.27
4	28	03/06/2022	01/07/2022	261.41
5	28	03/06/2022	01/07/2022	265.19
6	28	03/06/2022	01/07/2022	322.3
7	28	03/06/2022	01/07/2022	327.64
8	28	03/06/2022	01/07/2022	284.39
9	28	03/06/2022	01/07/2022	276.68
10	28	03/06/2022	01/07/2022	270.00

Figura 27. Gráfico de ruptura a los 28 días de edad con 1.00% de microfibras de polipropileno a temperatura de ambiente.

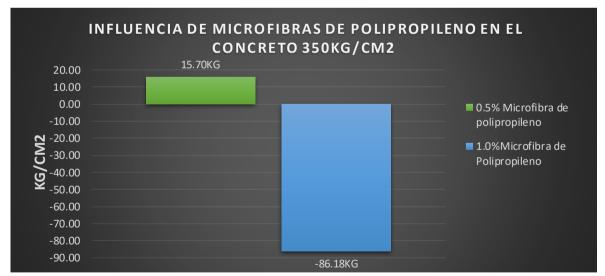

Interpretación: Se rompieron las 10 muestra de un concreto 350kg/cm2 con 1.0% de microfibras de polipropileno a temperatura de ambiente, que fueron sometidas al ensayo a la compresión llegando a alcanzar un promedio de resistencia a la compresión de 291.973kg/cm2

Figura 28. Gráfico de ruptura a los 28 días con los 3 porcentajes promedios a temperatura de ambiente con microfibras de polipropileno

.

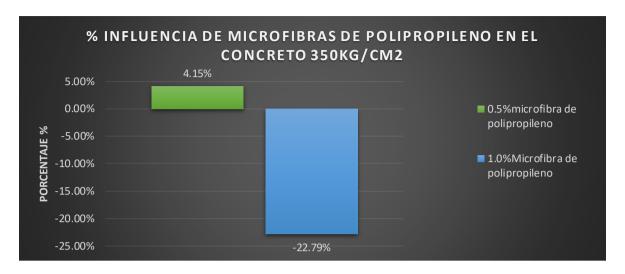

Interpretación: Se determina que el promedio de las probetas a temperatura de ambiente con 0.0%, 0.5% y 1% varia su resistencia notando que si agregamos 0.5% de microfibras de polipropileno la resistencia a la compresión aumentará y si se agrega 1.0% de microfibra de polipropileno su resistencia a la compresión disminuirá.

Figura 29. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1% a temperatura de ambiente.

Interpretación Se determina que la influencia de la microfibra de polipropileno sobre un concreto 350kg/cm2 a temperatura de ambiente, cuando va en remplazo

del cemento en un 0.5% aumenta su resistencia en un promedio de 15.70kg/cm2 y cuando remplazas el 1% de microfibra en el cemento disminuye en un promedio de 86.18kg/cm2.

Figura 30. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1% a temperatura de ambiente.

Interpretación: Se determina que la influencia de la microfibra de polipropileno sobre un concreto 350kg/cm2 a temperatura de ambiente, en porcentaje cuando va en remplazo del cemento en un 0.5% aumenta su resistencia en un promedio de 4.15% y cuando remplazas en un 1% de microfibra en el cemento disminuye en un promedio de 22.79%

 Ensayo de resistencia a la compresión con la muestra patrón a altas temperaturas mayores a 500°C.

Para realizar este ensayo se sometió las probetas cilíndricas de 10.10cm x 20cm a un horno artesanal de ladrillos por 24h, estos hornos están conformados por ladrillos de arcilla leña, y briquetas para que puedan mantener su temperatura elevada, se utilizó la maquinaria que tiene la marca PYS Equipos (N° SERIE: 2002021) con una capacidad de 100000 kgf. Cuenta con un certificado de calibración LF-1463-2021(23-11-2021).

Tabla 13. Rotura de especímenes de concreto a los 28 días Muestra patrón.

Probeta	a cilíndrica	Fecha de rotura		
N°	Edad de			Resistencia
Elementos	probetas	Elaboración	Rotura	f'c=kg/cm2
1	28	03/06/2022	01/07/2022	168.43

2	28	03/06/2022	01/07/2022	196.80
3	28	03/06/2022	01/07/2022	185.15
4	28	04/06/2022	01/07/2022	192.96
5	28	05/06/2022	01/07/2022	176.37
6	28	06/06/2022	01/07/2022	185.52
7	28	07/06/2022	01/07/2022	195.04
8	28	08/06/2022	01/07/2022	171.27
9	28	09/06/2022	01/07/2022	186.50
10	28	10/06/2022	01/07/2022	181.85

Figura 31.Gráfico de ruptura de probetas a los 28 días de edad con 0.0% de microfibras de polipropileno sometido a temperaturas mayores de 500°C.

Interpretación: Se interpreta que las 10 muestra de un concreto 350kg/cm2 con 0.0% de microfibras de polipropileno, se rompieron mediante el ensayo a la compresión después de haber sido expuestas a temperaturas mayores de 500°C, llegando a alcanzar un promedio de resistencia a la compresión de 183.99kg/cm2.

Tabla 14.Rotura de especímenes de concreto a los 28 días Muestra con microfibra de polipropileno en remplazo al cemento 0.5%.

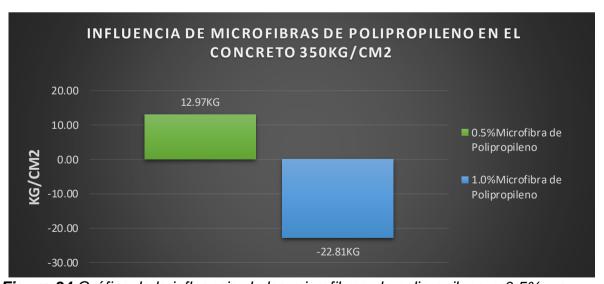
Probeta	a cilíndrica	Fecha d		
N°	Edad de			Resistencia
Elementos	probetas	Elaboración	Rotura	f'c=kg/cm2
1	28	01/06/2022	30/06/2022	201.35
2	28	01/06/2022	30/06/2022	185.35
3	28	01/06/2022	30/06/2022	208.93
4	28	01/06/2022	30/06/2022	196.17

5	28	01/06/2022	30/06/2022	183.41
6	28	01/06/2022	30/06/2022	177.40
7	28	01/06/2022	30/06/2022	194.37
8	28	01/06/2022	30/06/2022	204.18
9	28	01/06/2022	30/06/2022	200.66
10	28	01/06/2022	30/06/2022	217.74

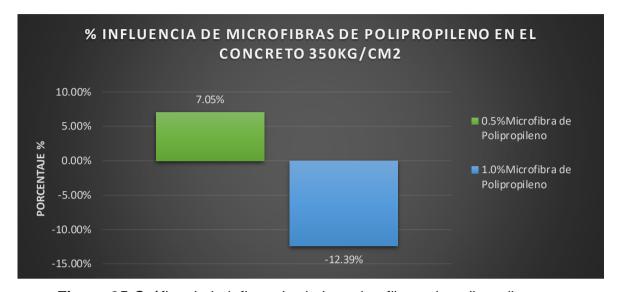
Figura 32.Gráfico de ruptura de probetas a los 28 días de edad con 0.5% de microfibras de polipropileno sometido a temperaturas mayores de 500°C.

Interpretación: Se interpreta que las 10 muestra de un concreto 350kg/cm2 con 0.5% de microfibras de polipropileno, se rompieron mediante el ensayo a la compresión después de haber sido expuestas a temperaturas mayores de 500°C, llegando a alcanzar un promedio de resistencia a la compresión de 196.96kg/cm2.

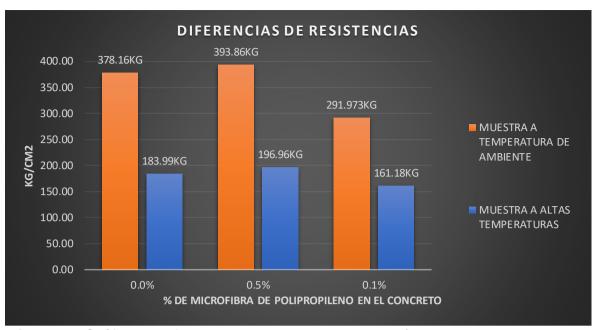
Tabla 15. Rotura de especímenes de concreto a los 28 días de edad, Muestra con microfibra de polipropileno en remplazo al cemento 1.0%.


Probeta	a cilíndrica	Fecha de rotura		
N° Elementos	Edad de probetas	Elaboración	Rotura	Resistencia f'c=kg/cm2
1	28	01/06/2022	30/06/2022	153.60
2	28	01/06/2022	30/06/2022	149.50
3	28	01/06/2022	30/06/2022	172.44
4	28	01/06/2022	30/06/2022	158.13
5	28	01/06/2022	30/06/2022	157.62
6	28	01/06/2022	30/06/2022	158.30

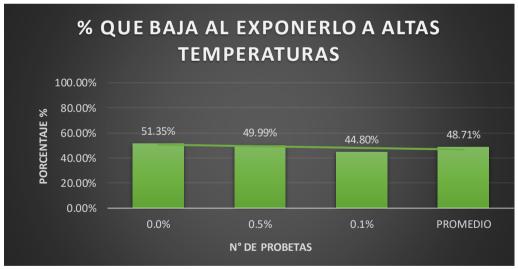
7	28	01/06/2022	30/06/2022	186.04
8	28	01/06/2022	30/06/2022	156.68
9	28	01/06/2022	30/06/2022	169.72
10	28	01/06/2022	30/06/2022	149.80


Figura 33.Gráfico de ruptura de probetas a los 28 días de edad con 1.0% de microfibras de polipropileno sometido a temperaturas mayores de 500°C.

Interpretación: Se interpreta que las 10 muestra de un concreto 350kg/cm2 con 1.0% de microfibras de polipropileno, se rompieron mediante el ensayo a la compresión después de haber sido expuestas a temperaturas mayores de 500°C, llegando a alcanzar un promedio de resistencia a la compresión de 161.18kg/cm2.


Figura 34.Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1% sometido a temperaturas mayores de 500°C.

Interpretación Se determina que la influencia de la microfibra de polipropileno sobre un concreto 350kg/cm2 a temperaturas mayores de 500°C cuando va en remplazo del cemento en un 0.5% aumenta su resistencia en un promedio de 12.97kg/cm2 y cuando remplazas el 1% de microfibra en el cemento disminuye en un promedio de 86.18kg/cm2


Figura 35. Gráfico de la influencia de las microfibras de polipropileno a 0.5% y a 1% sometido a temperaturas mayores de 500°C.

Interpretación Se determina que la influencia de la microfibra de polipropileno sobre un concreto 350kg/cm2 a temperaturas mayores de 500°C, en porcentaje cuando va en remplazo del cemento en un 0.5% aumenta su resistencia en un promedio de 7.05% y cuando remplazas en un 1% de microfibra en el cemento disminuye en un promedio de 12.39%

Figura 36. Gráfico de diferencias entre promedios en kg/cm2 a temperatura de ambiente y a temperatura mayor de 500°C

Interpretación: Se determina que las muestra que fueron sometidas al ensayo de la resistencia a la compresión de un concreto 350kg/cm2 varía según el porcentaje de microfibra de polipropileno que se añade en remplazo al cemento, también varia cuando se somete a temperaturas mayores de 500°C.

Figura 37. Gráfico que baja su resistencia a la compresión en porcentaje las muestras expuestas a temperaturas mayores de 500°C.

Interpretación: Se determina que el concreto 350kg/cm² cuando se somete altas temperaturas, mayores de 500°C su resistencia a la compresión baja cuando tiene 0.0% de microfibra de polipropileno disminuye en un porcentaje promedio de 51.35% cuando tiene 0.5% de microfibra de polipropileno en remplazo al cemento

su porcentaje baja en un promedio de 49.99% y cuando tiene 1% de microfibra de polipropileno en remplazo al cemento baja en un promedio de 44.80%.

Análisis Estadístico Inferencial

Tabla 16. Resistencia A La Compresión A 28 Días (0% 0.5% 1.)

Grupo	Resistencia f´c=kg/cm2 [TEMPERATURA DE AMBIENTE]	Resistencia f'c=kg/cm2 [TEMPERATURA MAYOR A 500°C]		
	383.46	168.43		
	369.82	196.80		
	383.51	185.15		
	378.74	192.96		
	380.18	176.37		
1	373.11	185.52		
	384.16	195.04		
	376.19	171.27		
	381.81	186.50	Leyenda de	0 1
	370.58	181.85	Grupo	Cod
	408.48	201.35		
	451.13	185.35	Muestra	
	365.06	208.93	patrón	1
	373.74	196.17	Muestra	_
2	337.03	183.41	0.5%	2
2	419.81	177.40	Muestra	2
	443.48	194.37	0.1%	3
	363.18	204.18		
	382.19	200.66		
	394.50	217.74		
	317.09	153.60		
	315.76	149.50		
	279.27	172.44		
	261.41	158.13		
	265.19	157.62		
3	322.3	158.30		
	327.64	186.04		
	284.39	156.68		
	276.68	169.72		
	270.00	149.80		

Se aprecia en la tabla (15) los grupos de las muestras sometidas a la resistencia a la compresión de la muestra patrón, 0.5% y 1% de microfibras de polipropileno en remplazo al cemento a temperatura de ambiente y a una temperatura mayor de 500°C.

Tabla 17. Datos estadísticos de la muestra patrón de un concreto 350kg/cm2 de 28 días de edad a temperatura de ambiente y a altas temperaturas.

	Estadísticos descriptivos						
MUESTRA PATRON	N	Mínimo	Máximo	Media	Desv. Estándar	Varianza	Coeficiente de variación
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	10	369.82	384.16	378.1560	5.44515	29.650	1.44%
Resistencia f´c=kg/cm2 [Altas temperatura]	10	168.43	196.80	183.9890	9.67931	93.689	5.26%

Se apreciar la mínima y máxima resistencia obtenida, la media, desviación estándar, la varianza y el coeficiente de variación.

Tabla 18. Datos de las muestras consideradas de la muestra patrón de un concreto 350kg/cm2 a 28 días de edad a temperatura de ambiente y a una temperatura mayor de 500°C.

Resumen de procesamiento de casos						
Muestra	Válido Perdidos			To	tal	
	N	Porcentaje	N	Porcentaje	N	Porcentaje
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	10	100.0%	0	0.0%	10	100.0%
Resistencia f´c=kg/cm2 [Altas temperatura]	10	100.0%	0	0.0%	10	100.0%

Se aprecia las muestras consideradas para obtener los resultados y las que se perdieron.

Tabla 19. Prueba de normalidad de la muestra patrón de un concreto 350kg/cm2 a temperatura de ambiente y a temperaturas mayores de 500°C.

Pruebas de normalidad					
MULCEDA		Shapiro-Wilk			
MUESTRA	Estadístico	gl	Sig.		
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	0.894	10	0.189		
Resistencia f´c=kg/cm2 [Altas temperatura]	0.946	10	0.617		

Por considerar 10 probetas para cada grupo se empleará la fórmula de Shapiro – Wilk por lo que se dice que si la significancia es mayor a 0.05, cumple con la prueba de normalidad se puede utilizar la técnica paramétrica de varianza ANOVA.

Tabla 20. Datos estadísticos de la muestra con 0.5% de microfibra de polipropileno en remplazo al cemento para un concreto 350kg/cm2 a temperatura de ambiente y a temperaturas mayores de 500°C.

	Estadísticos descriptivos								
MUESTRA	Z	Mínimo	Máximo	Media	Desv. Desviación	Varianza	Coeficiente de variación		
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	10	337.03	451.13	393.8600	36.77395	1352.323	9.34%		
Resistencia f´c=kg/cm2 [Altas temperatura]	10	177.40	217.74	196.9560	12.33108	152.056	6.26%		

Se apreciar la mínima y máxima resistencia obtenida, la media, desviación estándar, la varianza y el coeficiente de variación.

Tabla 21. Datos de las muestras consideradas de la muestra con 0.5% de microfibra de polipropileno de un concreto 350kg/cm2 a 28 días de edad a temperatura de ambiente y a una temperatura mayor de 500°C.

Resumen de procesamiento de casos							
Muestra	Válido		Perdidos		Total		
	N	Porcentaje	N	Porcentaje	N	Porcentaje	
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	10	100.0%	0	0.0%	10	100.0%	
Resistencia f´c=kg/cm2 [Altas temperatura]	10	100.0%	0	0.0%	10	100.0%	

Se aprecia las muestras consideradas para obtener los resultados y las que se perdieron.

Tabla 22. Prueba de normalidad de la muestra con 0.5% de microfibra de polipropileno en remplazo al cemento de un concreto 350kg/cm2 a temperatura de ambiente y a temperaturas mayores de 500°C.

Pruebas de normalidad							
MUESTRA		Shapiro-Wilk					
WOESTRA	Estadístico	GI	Sig.				
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	0.965	10	0.841				
Resistencia f'c=kg/cm2 [Altas temperatura]	0.980	10	0.962				

Por considerar 10 probetas para cada grupo se empleará la fórmula de Shapiro – Wilk por lo que se dice que si la significancia es mayor a 0.05, cumple con la prueba de normalidad se puede utilizar la técnica paramétrica de varianza ANOVA.

Tabla 23. Datos estadísticos de la muestra con 1.0% de microfibra de polipropileno en remplazo al cemento para un concreto 350kg/cm2 a temperatura de ambiente y a temperaturas mayores de 500°C.

	Estadísticos descriptivos								
MUESTRA	Ν	Mínimo	Máximo	Media	Desv. Desviación	Varianza	Varianza		
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	10	261.41	327.64	291.9730	25.76718	663.948	8.83%		
Resistencia f´c=kg/cm2 [Altas temperatura]	10	149.50	186.04	161.1830	11.50672	132.405	7.14%		

Tabla 24. Datos de las muestras consideradas de la muestra con 1% de microfibra de polipropileno de un concreto 350kg/cm2 a 28 días de edad a temperatura de ambiente y a una temperatura mayor de 500°C.

Resumen de procesamiento de casos							
Muestra	Válido		Perdidos		Total		
	N	Porcentaje	N	Porcentaje	N	Porcentaje	
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	10	100.0%	0	0.0%	10	100.0%	
Resistencia f´c=kg/cm2 [Altas temperatura]	10	100.0%	0	0.0%	10	100.0%	

Se aprecia las muestras consideradas para obtener los resultados y las que se perdieron.

Tabla 25. Prueba de normalidad de la muestra con 0.5% de microfibra de polipropileno en remplazo al cemento de un concreto 350kg/cm2 a temperatura de ambiente y a temperaturas mayores de 500°C.

Pruebas de normalidad							
MUESTRA		Shapiro-Wilk					
WUESTRA	Estadístico	GI	Sig.				
Resistencia f´c=kg/cm2 [Temperatura de ambiente]	0.865	10	0.087				
Resistencia f´c=kg/cm2 [Altas temperatura]	0.864	10	0.085				

Por considerar 10 probetas para cada grupo se empleará la fórmula de Shapiro – Wilk por lo que se dice que si la significancia es mayor a 0.05, cumple con la prueba de normalidad se puede utilizar la técnica paramétrica de varianza ANOVA.

 Comparación entre los grupos de temperatura de ambiente y altas temperaturas

TEMPERATURA DE AMBIENTE

Tabla 26. Prueba ANOVA de los datos de las muestras a 28 días de edad a temperatura de ambiente.

ANOVA							
Resistencia f'c=kg/cm2 [Temperatura de ambiente]	Suma de cuadrados	gl	Media cuadrática	F	Sig.		
Entre grupos	60183.620	2	30091.810	44.125	0.00000003		
Dentro de grupos	18413.285	27	681.974				
Total	78596.905	29					

Se aprecia que el nivel de significancia es menor que 0.05 esto nos dice que hay una diferencia significativa entre los promedios de todos los grupos ingresados

Tabla 27.Prueba comparaciones múltiples de los datos de las muestras a 28 días de edad a temperatura de ambiente.

	Comparaciones múltiples								
Variable dependiente:		Resistencia f´c=kg/cm2 [Temperatura de ambiente]							
Grupo 1		Diferencia de medias (I-J)		Sig.		confianza al % Límite superior			
Muestra	MP 0.5%	-15.70400	11.67881	0.384	-44.6607	13.2527			
patrón	MP 1%	86,18300*	11.67881	0.000	57.2263	115.1397			
MP 0.5%	Muestra patrón	15.70400	11.67881	0.384	-13.2527	44.6607			
	MP 1%	101,88700*	11.67881	0.000	72.9303	130.8437			
MP 1%	Muestra patrón	-86,18300*	11.67881	0.000	-115.1397	-57.2263			
	MP 0.5%	-101,88700*	11.67881	0.000	-130.8437	-72.9303			

Se aprecia que hay comparación significativa entre el grupo muestra patrón con los grupos que contienen 0.5% y 1% de microfibra de polipropileno en remplazo al cemento de un concreto 350kg/cm2 denotando que al utilizar el 0.5% ayuda aumenta la resistencia a la compresión y el 1% disminuye su resistencia a la compresión.

Tabla 28.Prueba ANOVA de los datos de las muestras a 28 días de edad a una temperatura mayor a 500°C.

	ANOVA							
Resistencia f´c=kg/cm2 [Altas temperatura]	g/cm2 Suma de cuadrados GI Media cuadrática F Sig.							
Entre grupos	6559.881	2	3279.940	26.021	0.0000005			
Dentro de grupos	3403.345	27	126.050					
Total	9963.225	29						

Se aprecia que el nivel de significancia es menor que 0.05 esto nos dice que hay una diferencia significativa entre los promedios de todos los grupos ingresados

Tabla 29. Prueba comparaciones múltiples de los datos de las muestras a 28 días de edad a una temperatura mayor a 500°C.

Comparaciones múltiples								
Variable dependiente:		Resistencia f´c=kg/cm2 [Altas temperatura]						
Grupo 2		Diferencia de		0:	Intervalo de confianza al 95%			
		medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior		
Muestra	MP 0.5%	-12,96700*	5.02095	0.040	-25.4160	-0.5180		
patrón	MP 1%	22,80600*	5.02095	0.000	10.3570	35.2550		
MP 0.5%	Muestra patrón	12,96700*	5.02095	0.040	0.5180	25.4160		
	MP 1%	35,77300*	5.02095	0.000	23.3240	48.2220		
MP 1%	Muestra patrón	-22,80600*	5.02095	0.000	-35.2550	-10.3570		
	MP 0.5%	-35,77300*	5.02095	0.000	-48.2220	-23.3240		

Se aprecia que hay comparación significativa entre el grupo muestra patrón con los grupos que contienen 0.5% y 1% de microfibra de polipropileno en remplazo al cemento de un concreto 350kg/cm2 a una temperatura mayor a 500°C denotando que al utilizar el 0.5% ayuda aumenta la resistencia a la compresión y el 1% disminuye su resistencia a la compresión.

Contratación de Hipótesis.

- Hipótesis General, la influencia de las microfibras de polipropileno en remplazo al cemento en un concreto 350kg/cm² influye de manera positiva porque aumenta su resistencia a la compresión.
 - La hipótesis general empleada es verdadera siempre y cuando se agregue 0.5% de microfibra de polipropileno en remplazo al cemento y no cuando se agrega 1% de microfibra de polipropileno en remplazo.
- Hipótesis Especifica: la influencia de las microfibras de polipropileno en el concreto 350kg/cm² aumenta en el ensayo a la compresión a temperatura de ambiente en los porcentajes 0.5 y 1%. La influencia de la microfibra de polipropileno en el concreto 350kg/cm² disminuye al exponerlo a una temperatura mayor de 500°C.
 - Se determina que la hipótesis especifica empleada no es verdadera.
- Hipótesis Nula: la microfibra de polipropileno en los porcentajes de 0.5% y
 1% en remplazo al cemento de un concreto 350kg/cm2 no influye a temperatura al tenerlo a un ambiente ni en altas temperaturas.

V.DISCUSIÓN:

Nuestro proyecto de investigación tiene como Objetivo General:

Evaluar la influencia de las microfibras de polipropileno sobre la resistencia a la compresión de un concreto f´c=350 kg/cm² a altas temperaturas Trujillo.

(PERCA ,2017) determino que, en el lapso de 28 días de edad del concreto, la resistencia a la compresión disminuye de 5.47% hasta 12.27 % según la cantidad de microfibras que agregues.

Estos resultados denotan que la influencia de las microfibras de polipropileno dependen del porcentaje que se elija, entre menor sea el porcentaje de microfibras de polipropileno a 0.5% en remplazo al cemento su resistencia subirá y se sube este porcentaje a 1% en remplazo al cemento la resistencia del concreto bajara asemeja a los antecedentes que se colocaron en el marco teórico, a diferencia del concreto con microfibras de polipropileno en remplazo al cemento sometidos a altas temperaturas no hay forma para que su resistencia del concreto suba debido a que las llamas del fuego hacen que pierda su resistencia ya que es un polímero y este hace que se caliente y se cocine con más facilidad, el concreto se vuelve más inservible entre más temperatura se exponga hasta puede colapsar al mínimo golpe y esto lo respalda con nuestros antecedentes que se muestran, dándole validez a las investigaciones ya dadas vistas en nuestro antecedente sobre el concreto a exponerlo al fuego baja su resistencia

donde los Objetivos Específicos son:

a) Determinar el análisis de los estudios básicos de laboratorio para un concreto 350kg/cm².

(CCASANI Y EDUARDO,2021) Determina que los estudios básicos de laboratorio son ensayos necesarios que nos permiten alcanzar la resistencia del concreto favorable y ver que los materiales sean los apropiados para nuestro diseño de mezcla guiándonos de las NTP, MTC y ASTM.

 Para los Estudios Básicos de Laboratorio se ha tenido que realizar diferentes ensayos en el laboratorio bajo las normativas correspondiente como la del análisis granulométrico que nos permite realizar el tamizado por las diferentes mayas tanto para el agregado grueso y agregado fino y determinar el tamaño máximo nominal del agregado grueso, para el agregado fino se obtiene su módulo de fineza NTP 400.12, la NTP 339.185.2013 de donde nos guiamos para obtener el contenido de humedad, la del MTC E-205, NTP400.22: ASHTO T-84 de gravedad especifica y absorción de agregados que nos permite siempre ver la capacidad de absorción de la relación entre los material al contacto del agua , la de ASTM D 2216.MTC E 203, NTP 400.0.17) de Peso unitario suelto y compactado.

b) Determinar el diseño de mezcla para un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento en porcentajes de 0.0%, 0.5% y 1%.

(DIAZ,2017) Nos explica que para que el concreto de 210 kg/cm2 tenga una mejor resistencia utilizan fibra de polipropileno y adictivos, su investigación estuvo divididos por 3 etapas, por lo que concluyen que la adicción de fibra de polipropileno ayuda a dar una mejor durabilidad óptima.

- los resultados de laboratorio nos brindó los datos necesarios para poder lograr tener nuestro diseño mezcla teniendo como referencia el comité 211 del ACI para un concreto f´c=350kg/cm2 con microfibras de polipropileno en remplazo al cemento para un metro cubico de mezcla, luego se calculó el diseño de mezcla para realizar nuestras probetas de 10.10cm x 20cm de tal manera que este concreto 350kg/cm2 con microfibra de polipropileno se someta al ensayo de la resistencia a la compresión, como nos indica la NTP 339.034, de este modo se pueda ver la influencia que tiene las microfibras de polipropileno en el concreto 350kg/cm y comparar los resultados a temperatura de ambiente y a altas temperaturas que sobrepasen los 500°C.
- Nuestra investigación afirma que se ha empleado de manera correcta el diseño experimental, se valida por el manejo de la variable independiente y de ese modo lograr que se vean los efectos en la variable dependiente, ante esto es que se responde al estudio de tipo experimental debido a que nos implicó a realizar ensayos en el laboratorio para obtener resultados mediante un control de datos aplicando técnicas de recolección de datos, como las guías de laboratorio para cada ensayo de manera que no se pierda ni un dato y guarde relación nuestro calculo al momento de darle una explicación al fenómeno estudiado en el

laboratorio de mecánica de suelos y materiales, llegando a cumplir con todos los requisitos que nos exige las normas y nuestros parámetros para el cumplimiento de un buen desarrollo de tesis, con esto nuestra tesis tiene un grado de confiabilidad debido a que lo elaboramos nosotros mismo empleando el método científico al ver como influyen las microfibras de polipropileno en el concreto 350kg/cm2 al someter las muestras a temperatura mayor a 500°C en un horno artesanal para cocer ladrillos de arcilla

- La tesis reafirma su validez interna conveniente al estudio, debido a que se aplicó técnicas e instrumentos de respaldos como la Norma técnica peruana (NTP) para todos los ensayos de los materiales empleados para el diseño de mezcla donde se utilizó el ACI, recalcando el peso por kg, volumen, por bolsas dándonos con facilidad las proporciones que entra en 1m3 de concreto, en la relación agua cemento esto define los litros de agua que se emplea por bolsa de cemento
- La investigación se basó en las especificaciones técnicas de las microfibras de polipropileno y en los resultados de los ensayos básicos de laboratorio de los materiales, para determinar el diseño de mezcla para un concreto 350kg/cm2, donde los materiales se consideraron que están dentro los limites permisibles requeridos para obtener una buena resistencia y con ellos por elaborar el concreto con una resistencia a 350kg/cm2.
- Para determinar la comparación entre la muestra que no contenía microfibras de polipropileno y las muestras que contenían microfibras de polipropileno a 0.5% y 1.00% se realizó un diseño de mezcla con un cemento tipo 1 color verde, el agregado grueso y el agregado fino fueron extraídos de la cantera LEKERSA, de manera que se obtuvo la proporción optima de cada material.
- Para la elaboración de 1 metro cubico de mezcla se utilizaron las cantidades por 1 bolsa de cemento, se utilizara 1.17 de agregado fino, 1.9 del agregado grueso y la relación agua cemento en oba es de 0.41, en volumen se aprecia que el agregado grueso será 0.731m3, del agregado fino es de 0.36m3 y en cemento 12.36bls en agua es 0.214m3 del diseño de mezcla para un concreto 350kg/cm2, se elaboró 20 probetas con las dimensiones de 10.10cm x 20cm con muestra patrón donde no se agregó microfibra de polipropileno, también se elaboró 20 pobretas con microfibras de polipropileno en remplazo al cemento con 0.5%, se elaboró 20 probetas con microfibras de polipropileno en remplazo al cemento 1.0%, se realiza el curado en el pasar de los días y luego de 28 días de edad del

concreto se someten 10 probetas de cada espécimen al ensayo de la resistencia a la compresión, debido que a esa edad el concreto ya tiende alcanzar su máxima resistencia, la resistencia promedio alcanzada de las probetas patrón a temperatura de ambiente fue de 378.16kg/cm2, las probetas con 0.5% de microfibras de polipropileno a temperatura de ambiente alcanzo en promedio a 396.86kg/cm2 y las probetas con 1.0% de microfibras de polipropileno a temperatura de ambiente alcanzo en promedio a 291.973kg/cm2 con estos resultados notamos que aumenta en un 4.15% su resistencia cuando el concreto tiene microfibras de polipropileno en un 0.5% en remplazo al cemento a temperatura de ambiente y baja en un 22.79% cuando tiene microfibras de polipropileno en 1.0% en remplazo al cemento a temperatura de ambiente, con estos resultados se denota la influencia positiva que tiene el concreto agregándole 0.5% de microfibra de polipropileno en remplazo del cemento y lo negativo que es al agregarle 1.0% de microfibra de polipropileno, las fallas obtenidas en estas probetas fueron de tipo 5.

- c) Determinar la resistencia a la compresión de un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento de 0.0%, 0.5% y 1% a una temperatura de ambiente y a altas temperaturas mayor a 500°C.
- (ALBA ,2015) con su investigación utilizaron el método experimental, con el objetivo de ver el comportamiento de un concreto con y sin microfibra en temperaturas de 100°C a 700°C, aplicando sus muestras al fuego del horno por 48h, por lo que concluyeron que a mayor tiempo de exposición a altas temperaturas las muestras pierden ductilidad de material.
- influencia de las microfibras de polipropileno ha altas temperaturas, las otras probetas restantes de cada espécimen fueron separadas para someterlas a un horno artesanal que supera los 500°C que se arma con ladrillos de arcilla cocinados para cubrir del viento y para mantener la temperatura por dentro se colocan briquetas en la parte medio del horno en forma piramidal, debe de tener un desfogue para que no se ahogue y evitar que la temperatura baje bruscamente según el paso de las horas, a la estructura de las paredes del horno se sella con barro para que pase los 500°C y se mantenga a más de 500°C por 24 horas, de ese modo poder obtener nuestros resultados a altas temperaturas, después debemos de retirarlo del horno y esperar que enfríen a temperatura de

- ambiente por 3 a 4 horas, después se rompan mediante el ensayo de la resistencia a la compresión posteriormente con la NTP(339.034).
- Los resultados que se obtuvieron después de haber sacado las probetas del horno artesanal por 24 horas para romperlas mediante el ensayo de la resistencia a la compresión, la resistencia promedio alcanzada de las probetas patrón a altas temperaturas fue de 183.99kg/cm2, las probetas con 0.5% de microfibras de polipropileno a altas temperaturas alcanzo en promedio a 196.96kg/cm2, las probetas con 1.0% de microfibras de polipropileno a altas temperaturas alcanzo en promedio a 161.18kg/cm2, con estos promedios denotamos que ha bajado su resistencia en un porcentaje de las probetas patrón a altas temperaturas a 51.35%, las probetas con 0.5% de microfibras de polipropileno a altas temperaturas ha bajado su resistencia a un 49.99% y las probetas con 1.0 % de microfibras de polipropileno a altas temperaturas ha bajado su resistencia a un 44.80% y esto llega a alcanzar a un promedio de 48.71%, la influencia de la microfibra de polipropileno a un 0.5% en remplazo al cemento expuesto a altas temperaturas aumenta en 12.97kg/cm2 y la influencia de la microfibra de polipropileno a un 0.5% en remplazo al cemento expuesto a altas temperaturas disminuye a un 22.81 kg/cm2, esto nos hace notar que la influencia de la microfibra de polipropileno a un 0.5% en remplazo al cemento expuesto a altas temperaturas aumenta en 7.05% y la influencia de la microfibra de polipropileno a un 0.5% en remplazo al cemento expuesto a altas temperaturas disminuye a un12.39%.
- Teniendo estos resultados como prueba de nuestro tema de investigación podemos denotar que las probetas de concreto 350kg/cm2 con microfibras de polipropileno con el porcentaje de 0.5% en remplazo al cemento a temperatura de ambiente aumenta su resistencia a la compresión y cuando se coloca al concreto 350kg/cm2 el 1% de microfibras de polipropileno en remplazo al cemento a temperatura de ambiente disminuye su resistencia a la compresión, en cuanto a la resistencia a la compresión del concreto 350kg/cm2 con microfibra de polipropileno al someterlo a altas temperaturas disminuye su resistencia a la compresión, pero la influencia del 0.5% de la microfibra de polipropileno en remplazo al cemento para un concreto 350kg/cm2 a altas temperaturas es positiva, pero la influencia de 1% de microfibra de polipropileno a altas temperaturas es negativa debido a que disminuye.

Estos resultados denotan que entre menor sea el porcentaje de microfibras de polipropileno a 0.5% en remplazo al cemento su resistencia subirá y si se sube este porcentaje a 1% en remplazo al cemento la resistencia del concreto bajara asemeja a los antecedentes que se colocaron en el marco teórico, a diferencia del concreto con microfibras de polipropileno en remplazo al cemento sometidos a altas temperaturas no hay forma para que su resistencia del concreto suba debido a que las llamas del fuego hacen que pierda su resistencia ya que es un polímero y este hace que se caliente y se cocine con más facilidad, el concreto se vuelve más inservible entre más temperatura se exponga hasta puede colapsar al mínimo golpe y esto lo respalda con nuestros antecedentes que se muestran, dándole validez a las investigaciones ya dadas vistas en nuestro antecedente sobre el concreto a exponerlo al fuego baja su resistencia

VI. CONCLUSIONES

Objetivo general: Evaluar la influencia de las microfibras de polipropileno sobre la resistencia a la compresión de un concreto f´c=350 kg/cm² a altas temperaturas Trujillo - 2022.

• Se concluye que la influencia de las microfibras de polipropileno sobre la resistencia a la compresión de un concreto f´c=350 kg/cm² a altas temperaturas tiene una influencia positiva con un 12.97kg/cm², cuando la proporción de microfibras de polipropileno va en remplazo al cemento de un 0.5% en el concreto de f´c=350kg/cm² y disminuye en 22.81kg/cm² cuando la proporción de microfibras de polipropileno en remplazo al cemento es de 1%.con estos resultados concluimos que tiene una influencia positiva con un 7.05% cuando la proporción de microfibras de polipropileno va en remplazo al cemento en 0.5% en el concreto de f´c=350kg/cm² y disminuye en 12.39% cuando la proporción de microfibras de polipropileno en remplazo al cemento es de 1%.

Así mismos los **Objetivos específicos** fueron:

- a) Determinar el análisis de los estudios básicos de laboratorio para un concreto 350kg/cm²
 - Se concluye que el análisis de los estudios básicos de laboratorio es muy importante, debido a que estos ensayos nos dieron datos de los agregados grueso y agregado fino que permitieron lograr obtener el diseño de mezcla para un concreto 350kg/cm2.
- b) Determinar el diseño de mezcla para un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento en porcentajes de 0.0%, 0.5% y 1%.
 - Se concluye que el diseño de mezcla es muy importante en nuestra investigación debido que en esta fase se determinó la proporcionalidad de los materiales con 0.0%, 0.5% y 1% de microfibras de polipropileno en remplazo al cemento para las probetas de 10.10 cm de diámetro x 20cm de altura.

- c)Determinar la resistencia a la compresión de un concreto 350kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento de 0.0%, 0.5% y 1% a una temperatura de ambiente y a altas temperaturas mayor a 500°C.
 - Se determina que la resistencia a la compresión en un concreto 350kg/cm³ adicionando la microfibra de polipropileno en remplazo al cemento 0.0%, 0.5% y 1.00% a temperatura de ambiente su resistencia aumenta cuando se agrega 0.5% de microfibra de polipropileno en remplazo al cemento y disminuye cuando agregas 1.0% de microfibra de polipropileno en remplazo al cemento, cuando estos se exponen a altas temperaturas mayores a 500°C su resistencia a la compresión disminuye en un rango mayor al 40%.

VII. RECOMENDACIONES

- Se recomienda utilizar 0.5 % de microfibra de polipropileno para el concreto f'c=350 kg/cm2, por ser esta la dosificación que brindo mayor resistencia a la compresión. Se recomienda no utilizar 1% de microfibra de polipropileno para el concreto f'c=350 kg/cm2, por ser esta la dosificación que brindo menor resistencia a la compresión.
- Se recomienda que el concreto no se utilize el concreto, cuando estos han sido afectados por temperaturas mayores a 500°C por más de 24 horas debido a que estas disminuyen su resistencia.
- Se recomienda utilizar la norma técnica peruana (NTP-339.036-1999) para realizar los ensayos de estudios básicos y la norma E.060.
- Se recomienda utilizar equipos de protección personal al momento de trabajar con temperaturas mayores a 500°C.

REFERENCIAS

 SANES, Daniel. Influencia De Microfibras De Polipropileno Y Microsilice En La Resistencia De Concretos De 4000 Y 3000 Psi. Tesis (ingeniero civil). bolívar: Universidad Tecnológica De Bolívar, 2013.

Disponible en:

https://biblioteca.utb.edu.co/notas/tesis/0070409.pdf

 ESPINOZA, Jhonatan. Resistencia A La Compresión De Un Concreto f´c=350 kg/cm2. Tesis (ingeniero civil). Perú: Universidad San Pedro,2019 Disponible en:

http://repositorio.usanpedro.edu.pe/bitstream/handle/USANPEDRO/14323/ Tesis_63691.pdf?sequence=1&isAllowed=y

 CAÑON., Lorena. Estudio Comparativo De La Resistencia A La Compresión De Concreto Con Fibras De Polipropileno. Tesis (ingeniero civil). Colombia: Universidad Distrital Francisco José De Caldas,2016 Disponible en:

https://repository.udistrital.edu.co/bitstream/handle/11349/4988/Ca%C3%B 1%C3%B3nSosaLorenaMarcela2016.pdf?sequence=1&isAllowed=y

- CARHUAPOMA, Wilmer. "Efecto De Las Fibras De Polipropileno Para Concretos De Resistencias A La Compresión De 210 Kg/Cm2 Y 280 Kg/Cm2, Elaborados Con Agregados De La Cantera De Cochamarca Pasco". Tesis (Ingeniero Civil). Perú: Repositorio Undac Pasco ,2018. Disponible en: http://repositorio.undac.edu.pe/bitstream/undac/329/1/T026_46108687_T.pdf
- LIMA Daniel. Aplicación De La Fibra De Polipropileno Para Mejorar Las Propiedades Mecánicas Del Concreto F´C = 280 Kg/Cm2 Distrito Caraballo, Lima. Tesis (Ingeniero Civil). Perú: Repositorio Ucv Lima ,2017. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/23114/Lima CDQ.pdf?sequence=1&isAllowed=y

 VILIANUEVA, Edison y YARANGA, Huber. "Estudio De La Influencia De Fibras De Polipropileno Provenientes De Plásticos Reciclados En Concretos De F'c=210 Kg/Cm2 En El Distrito De Lircay, Provincia De Angaraes, Región Huancavelica. Tesis (Ingeniero Civil). Perú: Repositorio Unh -Lircay ,2015 Disponible en:

https://repositorio.unh.edu.pe/bitstream/handle/UNH/260/TP%20-%20UNH%20CIVIL%200043.pdf?sequence=1&isAllowed=y

 SUKTI, Monge. Evaluación Del Comportamiento A La Fatiga De Una Mezcla De Concreto Mr-4.5 Spa Con Adición De Fibras De Polipropileno Tesis (Ingeniero Civil). Colombia: Repositorio Universidad Costa Rica, 2013.

Disponible en:

http://repositorio.sibdi.ucr.ac.cr:8080/jspui/bitstream/123456789/3108/1/34 921.pdf

 GUIMARAES, Diego. Pisos Industriais Em Concreto: Determinação De Teores Ótimos De Fibras De Aço E Polipropileno Em Ensaios Mecânicos.
 Tesis (Ingeniero Civil). Brasil: Repositorio Universidade Federal Do Rio Grande Do Sul ,2010.

Disponible en:

https://lume.ufrgs.br/bitstream/handle/10183/28560/000769513.pdf?sequence= 1&isAllowed=y

 CATTELAN, Rogerio. Investigacao Do Comportamento De Concretos En Temperaturas Elevadas. Tesis (Ingeniero Civil). Brasil: Repositorio Universidade Federal Do Rio Grande Do Sul,2005.

Disponible en:

https://lume.ufrgs.br/bitstream/handle/10183/5085/000509828.pdf?sequence=1 &isAllowed=y

 LIBARDO, José. Evaluación Del Efecto En La Contracción Del Concreto Con Fibras Estructurales De Polipropileno. Tesis (Ingeniero Civil). Colombia: Repositorio Javeriana, 2014.

Disponible En:

https://repository.javeriana.edu.co/handle/10554/15064

 BORTOLIN Marcelo. Efeito Das Variacoes Do Teor De Umidade E Condicoes De Aquecimiento No Comportamiento Do Spalling De Cocreto De Alta Compacidade. Tesis (Ingeniero Civil). Brasil: Repositorio Universidade Federal Do Rio Grande Do Sul. ,2011.

Disponible en:

https://lume.ufrgs.br/bitstream/handle/10183/34390/000789726.pdf?sequence= 1&isAllowed=y

 LIÉVANO, María y GUTIÉRREZ, Ángela. Caracterización de fisuras en vigas de concreto reforzado con adición de fibras de polipropileno sometidas a flexión dinámica. Tesis (Ingeniero Civil). Colombia: Repositorio Javeriana -,2011.
 Disponible en: https://repository.javeriana.edu.co/handle/10554/7294

 ROMERO, José. Evaluación de las propiedades físicas y mecánicas de concretos autocompactantes de altas prestaciones con la inclusión de fibras plásticas normalizadas y recicladas. Tesis (Ingeniero Civil). Ecuador: Repositorio Institucional Universidad Cuenca, 2016.

Disponible en: https://repository.javeriana.edu.co/handle/10554/7294

 VIEIRA, Daniel. Comportamento Estrutural Da Capa De Concreto Reforçado Com Fibras De Polipropileno De Um Sistema De Laje Mista Sob Ação De Cargas Concentradas. Tesis (Ingeniero Civil). Brasil: Repositorio Institucional Ufsc,2010.

Disponible en: https://repositorio.ufsc.br/xmlui/handle/123456789/93676

 DAVILA, María. Efecto De La Adición De Fibras Sintéticas Sobre Las Propiedades Plásticas Y Mecánica De Concreto. Tesis (Ingeniero Civil). México: Repositorio Institucional De La Unam,2010.

Disponible En:

Http://132.248.9.195/Ptd2010/Marzo/0655050/0655050_A1.Pdf

 CONEJO, Duwan y VARGAS ,Santiago. Análisis Comparativo Del Comportamiento Mecánico De Mezclas De Concreto Asfáltico Tipo 2 (Mdc-19) Con Adición De Polímeros. Tesis (Ingeniero Civil). Colombia: Repositorio U católica,2017.

Disponible En:

Https://Repository.Ucatolica.Edu.Co/Bitstream/10983/14549/1/An%C3%81lisis%20comparativo%20del%20comportamiento%20mec%C3%81nico%20de%20mezclas%20de%20concreto%20asf%C3%81ltico%20tipo%202%20%28mdc-19%29.Pdf

LÓPEZ, Juan. Modificación Química Y Física De Polipropileno Metalocénico.
 Propiedades Térmicas Y Viscoelástica. Tesis (Ingeniero Civil). España:
 Repositorio Dialnet, 2008.

Disponible En:

<u>Https://Www.Educacion.Gob.Es/Teseo/Imprimirficherotesis.Do?Idfichero=Nfjd0zjgehq%3d</u>

 ORTEGA, Lina y ARIZA, Anderson. Evaluación De La Resistencia De Un Concreto Reforzado Con Fibras Al Impacto De Una Detonación Tesis (Ingeniero Civil). Colombia: Universidad Católica De Colombia, 2018.

Disponible En:

https://repository.ucatolica.edu.co/bitstream/10983/22840/1/EVALUACI%C3
%93N%20DE%20LA%20RESISTENCIA%20DE%20UN%20CONCRETO%
20REFORZADO%20CON%20FIBRAS%20AL%20IMPACTO%20DE%20U
NA%20DETONACION%20%281%29.pdf

 COBEÑAS, Junior. Influencia Del Proceso De Rehidratación De La Resistencia Del Concreto Reforzado Con Fibra De Polipropileno Por Exposición Al Fuego Directo Tesis (Ingeniero Civil). Perú: Universidad san Martín de porres, 2019.

Disponible En:

https://repositorio.usmp.edu.pe/bitstream/handle/20.500.12727/5202/cobe%
C3%B1as-janampa.pdf?sequence=1&isAllowed=y

PINO, Rodrigo y VALENCIA, Jan. "análisis de la influencia de la incorporación de microfibra de polipropileno en las propiedades físico mecánicas de un concreto de calidad f'c=210 kg/cm2, elaborado con cemento tipo he y agregados de las canteras de cunyac y vicho". Tesis (Ingeniero Civil). Perú: Universidad Andina Del Cusco,2016.

Disponible En:

file:///C:/Users/ACER/Downloads/UNIVERSIDAD%20ANDINA%20DEL%20 CUSCO.pdf

 HUINCHO, Mark. Evaluación de la Resistencia Mecánica del concreto sometido a altas temperaturas por incidencia del fuego directo. Tesis (Ingeniero Civil). Perú: Universidad Nacional de Ingeniería, 2017.
 Disponible En:

https://alicia.concytec.gob.pe/vufind/Record/UUNI_c7803a813ceac3750b3f

 TERREROS, Luis. Análisis de las propiedades Mecánicas de un concreto convencional adicionando fibra de Cáñamo. Tesis (Ingeniero Civil).
 Colombia: Universidad Católica de Colombia Bogotá, 2016.

Disponible En:

101d8f2ac24b

https://www.studocu.com/pe/document/universidad-privada-del-norte/tecnologia/articulo-analisis-de-las-propiedades-mecanicas-de-unconcreto-convencional-adicionando-fibra-de/26699824.

 TOMÁS, José, Pérdida de la Resistencia Mecánica del Hormigón paraguayo debido a la acción del fuego. Tesis (Ingeniero Civil). Paraguay: congreso nacional de Ingeniería Civil,2015.

Disponible En:

http://www.ing.una.py/pdf/1er-congreso-nacional-ingcivil/26ho-ma-pa-26.pdf.

 BARAHONA, Ricardo. Estudio comparativo de resistencia en probetas compactadas por distinto método de apisonado. Tesis (Ingeniero Civil). Perú: Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, 2015.

Disponible En:

https://alicia.concytec.gob.pe/vufind/Record/UUNI_8875ee021fcc13a6fc3e4 6bd0712fb25.

 ANARA Leidy y QUIROGA, Andriuska. Análisis comparativo entre la resistencia a compresión del bloque de concreto (f'b) y del testigo cilíndrico (f'c) para las diferentes dosificaciones que se encuentren bajo las exigencias de la norma técnica e.070- Cusco. Tesis (Ingeniero Civil). cusco: Universidad Andina Del Cusco ,2017.

Disponible En:

https://repositorio.uandina.edu.pe/bitstream/handle/20.500.12557/1597/Leid y_Andriuska_Tesis_bachiller_2017.pdf?sequence=3&isAllowed=y.

 CASTRO, Diana. comportamiento del concreto a altas temperaturas con material reciclado: polvo de caucho y vidrio sódico cálcico. tesis (ingeniero civil). Perú: Universidad Señor De Sipan ,2019.

Disponible En:

https://repositorio.uss.edu.pe/bitstream/handle/20.500.12802/6091/Castro% 20Montoya%2C%20Diana%20Vanessa.pdf?sequence=1&isAllowed=yy.

 UREÑA, Maritza y ALVARADO, Giovanni. Estudio del comportamiento del concreto estructural expuesto al fuego. tesis (ingeniero civil). Ecuador: Universidad Técnica de Ambato, (2016).

Disponible En:

https://repositorio.uta.edu.ec/handle/123456789/23040.

 MOLINA, Fredy y CHARA, Helmust.Influencia de la adición de nanosílice en las propiedades de un concreto de alta resistencia para la ciudad de Arequipa. tesis (ingeniero civil). Perú: Universidad Nacional de San Agustín,2017.

Disponible En:

http://repositorio.unsa.edu.pe/handle/UNSA/2383.

 DIAS, Yovana. Diseño de mezcla de concreto permeable elaborado con aditivo y adición de fibra de polipropileno para uso en pavimentos, en la ciudad de Cajamarca. tesis (ingeniero civil). Perú: Universidad Nacional de Cajamarca, 2017.

Disponible En:

https://repositorio.unc.edu.pe/bitstream/handle/20.500.14074/1024/INFOR ME%20TESIS%20YOVANA%20DIAZ%20SILVA%20.pdf?sequence=1&isA llowed=y.

CCASANI, Jean y EDUARDO, Carlos. Evaluación comparativa de las propiedades plásticas y mecánicas del concreto F'C 210 kg/ cm2 reforzado con microfibras sintéticas de polipropileno de 20 y 30mm en losas de viviendas expuestas a altas temperaturas en Ucayali. tesis (ingeniero civil). Perú: Universidad Peruana de Ciencias Aplicadas,2021.

Disponible En:

https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/656759/Cc asani_CJ.pdf?sequence=3.

 MOYA, Linda. Exploración de la viabilidad para uso de la fibra de fique como material sostenible en el reforzamiento del concreto. Un enfoque ecoamigable como alternativa de la fibra de polipropileno. tesis (ingeniero civil).
 Colombia: Universidad Nacional de Colombia, 2021.

Disponible En:

https://repositorio.unal.edu.co/bitstream/handle/unal/80955/1045710019.20 21.pdf?sequence=3&isAllowed=y.

 NAVARRO, José y COLQUE, Luis. comportamiento del concreto reforzado sometido a altas temperaturas por incidencia del fuego directo en la región Tacna, 2020. tesis (ingeniero civil). Perú: Universidad Privada De Tacna, 2021.

Disponible En:

https://repositorio.upt.edu.pe/bitstream/handle/20.500.12969/2165/Navarro-Rojas-Colque-Quispe.pdf?sequence=1&isAllowed=y.

 QUINTANILLA, Celso. Análisis de contracción con adición de microfibra de polipropileno tramo Cusco-Chincheros km 0+000 al 1+400 del año 2021 tesis (ingeniero civil). Perú: Universidad Privada Cesar Vallejo ,2021.

Disponible En:

https://repositorio.ucv.edu.pe/handle/20.500.12692/85729.

 CABARCAS, Luis y COLPAS, José. Evaluación de la resistencia a la flexión y compresión de un concreto estructural ecológico con fibras pet propuesto conforme a la norma NSR-10. tesis (ingeniero civil). Colombia: Universidad De La Costa,2020.

Disponible En:

https://repositorio.cuc.edu.co/bitstream/handle/11323/7835/EVALUACI%c3 %93N%20DE%20LA%20RESISTENCIA%20A%20LA%20FLEXI%c3%93N %20Y%20COMPRESI%c3%93N.pdf?sequence=1&isAllowed=y

 CELIS, Xiomary y CALDERÓN, Elmer. Aplicación de macrofibras de polipropileno para mejorar la resistencia del concreto en la losa de la edificación multifamiliar Varela-Breña-2019. tesis (ingeniero civil). Perú: Universidad Privada Cesar Vallejo ,2021.

Disponible En:

file:///C:/Users/ACER/Downloads/Calder%C3%B3n_FE-Celis_TX-SD.pdf.

 QUENTA, Darwin, Elmer. Efecto del reciclado de las fibras de las botellas PET en las propiedades del concreto normal, Puno. tesis (ingeniero civil).
 Perú: Universidad Nacional Del Altiplano, 2019.

Disponible En:

file:///C:/Users/ACER/Downloads/Darwin Quenta Flores.pdf.

 VALENZUELA, Maruxia y HUAMAN, Gerald. Evaluación Comparativa De La Resistencia A Compresión Entre Un Concreto F'c= 210 Kg/Cm2 Adicionado Con Material Pead Y Un Concreto f'c= 210 Kg/Cm2 Adicionado Con Material Pet, Elaborados Con Material Procedente De Las Canteras De Cunyac Y Vicho". Tesis (Ingeniero Civil). Perú: Universidad Andina Del Cusco,2018. Disponible En:

https://repositorio.uandina.edu.pe/bitstream/handle/20.500.12557/1358/RE SUMEN.pdf?sequence=1&isAllowed=y. AQUINO, Javier. Influencia de la incorporación de fibras de polipropileno y su resistencia a la compresión del concreto f'c = 210 kg/cm2, Moyobamba – 2021". Tesis (Ingeniero Civil). Perú: Universidad Nacional De Cajamarca, 2021.

Disponible En:

https://repositorio.ucv.edu.pe/handle/20.500.12692/86749.

 ARMAS, César. Efectos de la adición de fibra de polipropileno en las propiedades plásticas y mecánicas del concreto hidráulico. Tesis (Ingeniero Civil). Perú: Universidad Señor De Sipán ,2016.
 Disponible En:

file:///C:/Users/ACER/Downloads/TESIS%20CESAR%20ARMAS%201.pdf.

 CAÑON, Lorena y ALDANA, Fabian. Estudio comparativo de la resistencia a la comprensión de concreto con fibras de polipropileno sikafiber® ad de sika y toc fibra 500 de toxement. Tesis (Ingeniero Civil). Colombia: Universidad Distrital Francisco José De Caldas, 2016.

Disponible En:

https://repository.udistrital.edu.co/bitstream/handle/11349/4988/Ca%c3%b1 %c3%b3nSosaLorenaMarcela2016.pdf?sequence=1&isAllowed=y.

ANEXOS

Anexo 1: Matriz de operacionalización de variable

			MATRIZ DE OPERACI	ONALIZACIÓN DE	VARIABLE	
	VARIABLE	DEF. CONCEPTUAL	DEF. OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
		minimizar los	SEGÚN SANES(2013) ,SE UTILIZA CIERTA CANTIDAD DE MICROFIBRAS PARA MEJORAR LA RESISTENCIA	ESTUDIOS BÁSICOS DE LABORATORIO	GRANULOMETRÍA, PESO COMPACTADO Y PESO SUELTO, ABSORCIÓN Y HUMEDAD	LA RAZÓN
	V.I.MICROFIBR AS DE CONCRETO DE POLIPROPILEN	contracción plástica en el estado fresco y por temperatura en estado endurecido del concreto.	DEL CONCRETO, POR QUE NO SE FISURA CON FACILIDAD DEBIDO A QUE PIERDE RÁPIDAMENTE SU HUMEDAD MEJORA LA RELACIÓN ENTRE LOS MATERIALES AGUA Y CEMENTO Y PERMITE QUE SEA MEJOR TRABAJADO MEJORANDO AS PROPIEDADES PLÁSTICAS Y MECÁNICAS DEL CONCRETO.	DISEÑO DE MEZCLA DE CONCRETO	CONOCER LAS PROPIEDADES DE LOS MATERIALES QUE ESTARÁN DENTRO DE LA MEZCLA, DEFINIR LA DOSIFICACIÓN DE CADA UNA DE LAS MICROFIBRAS Y EL METODO DE DISEÑO DE MODULO DE FINEZA SIGUIENDO LOS ESTÁNDARES DE LA NORMA ASTM C1116 ESPECIFICACIÓN ESTÁNDAR DE HORMIGÓN REFORZADO CON FIBRA. BAJO EL MÉTODO DEL MÓDULO DE FINEZA	LA RAZÓN
ESTUDIO EXPERIMEN TAL		concreto son de mucha importancia para lograr saber sus capacidades máximas que pueden	SEGÚN SANES(2013) ,SE UTILIZA COMO VARIABLE DEPENDIENTES DEBIDO A QUE LAS PROPIEDADES DEL CONCRETO 350KG/CM2 SE PUEDEN MEJORAR SI SE ADICIONA LAS MICROFIBRAS DE POLIPROPILENO.	ENSAYOS DE LA MEZCLA DE CONCRETO FRESCO	ENSAYOS DE LAS MUESTRAS DE CONCRETO, CON LA NORMATIVA ASTM C 143 ENSAYO PARA LA MEDICIÓN DEL ASENTAMIENTO DEL CONCRETO CEMENTO PROLAND. ENSAYOS DE CONTRACCIÓN PLÁSTICA SEGUIDO POR LA NORMA ASTM-C - 1579 -06 MÉTODO PARA EVALUAR EL AGRIETAMIENTO POR CONTRACCIÓN PLÁSTICA DEL HORMIGÓN REFORZADO CON FIBRA RESTRINGIDA	LA RAZÓN
	V.D CONCRETO F'C=350KG/CM2 A UNA TEMPERATUR A MAYOR DE			ENSAYOS DE MEZCLA DE CONCRETO EN ESTADO ENDURECIDO	ENSAYO DE COMPRESIÓN ASTM C 39 MÉTODO PARA DETERMINAR LA RESISTENCIA A LA COMPRESIÓN, PROMEDIO DEL CONCRETO REFORZADO POR FIBRA	LA RAZÓN
	500°C			ENSAYOS DEL CONCRETO EN ESTADO DURO A ALTAS TEMPERATURAS	CONCRETO EXPUESTO ALTAS TEMPERATURAS ENSAYO DE TEMPERATURA DEL CONCRETO	LA RAZÓN
				EVALUACIÓN COMPARATIVA DE MEZCLAS	SE EVALUARÁ POR LAS CONDICIONES DE CADA MÉTODO LA MEZCLA PATRÓN CON LA MEZCLA CON FIBRAS DE POLIPROPILENO A TEMPERATURA DE AMBIENTE Y A ALTAS TEMPERATURAS	LA RAZÓN

Fuente: Elaboración propia Aguirre Cabrera, Alfred edison – Saavedra Toribio, Karol Katherine.

Anexo 2: Matriz de consistencia

INFLUENCIA DEL POR	CENTAJE DE MICROFIBRA DE	POLIPROPILENO SOBRE LA ALTAS TEMPERATURAS,T		SION DE CONCRETO F'C=350KG/CM ² A
PROBLEMA	OBJETIVOS	HIPÓTE SIS	VARIABLE E INDICADORES	ME TOD OLOGÍA
	OB JETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLE DEPENDIENTE	TIPO DE ESTUDIO
	Evaluar la influencia de las microfibras de polipropileno sobre la resistencia a la	la influencia de las microfibras de polipropileno en el concreto 350kg/cm.	Concreto fc=350 kg/cm².a una temperatura mayor de 500°C	Basica
	compresión de un concreto f'c=350 kg/cm² a altas	en er condeto 33 okg/cm.	VARIABLE INDEPENDIENTE	DISEÑO DE INVESTIGACIÓN
	temperaturas Trujillo - 2022.		tenemos a las microfibras	Experimental puro
	OBJETIVOS E SPECIFICOS	HIPOTE SIS ESPECIFICA	sintéticas de polipropileno con 0.0%, 0.5% Y 1%	MÉTODO DE INVESTIGACIÓN
¿Cuál es la influencia	a) Realizar el análisis de los estudios básicos de laboratorio	la influencia de las microfibras de polipropileno		Estudio experimental
del porcentaje de microfibras de	para un concreto 350kg/cm², b) Determinar el diseño de	en el concreto 350kg/cm² aumenta en el ensayo a la compresión a temperatura		POBLACIÓN
polipropileno sobre la resistencia a la compresión de un concreto f'c=350 kg/cm² a altas temperaturas,	mezcla para un concreto 350 kg/cm², adicionando la microfibra de polipropileno en remplazo al cemento en	de ambiente en los porcentajes 0.0, 0.5 y 1%. La influencia de la microfibra de polipropileno en el		el concreto 350 kg/cm² adicionando micro fibras de polipropileno en remplazo al cemento
Trujillo -2022?	porcentajes de 0.0%, 0.5% y 1%	con creto 350kg/cm² disminuye al exponerlo a la		MUESTRA
	c)determinar la resistencia a la compresión, un concreto 350 kg/cm², adicionando la	temperatura mayor de 500°C		se realizarán 60 probetas para el ensayo de resistencia a la compresión y a altas
	microfibra de polipropileno en remplazo al cemento de 0.0%,	HIPOTESIS NULA		temperaturas por 24 horas. A 28 días el número de probetas a realizar son que se
	0.5 % y 1% a un a temperatura de am biente y altas tem peraturas	No se encuentra influencia cuando se agrega el 0.5% o 1% de microfibra de polipropileno en remplazo al cemento en un concreto 350kg/cm2 a temperatura de		realizará bajo un diseño de mezda donde consideraremos los porcentajes de 0.0% ,0.5% y de 1% que remplazará al cemento por la microfibra sintética de polipropileno.
		ambien o a altas temperaturas		

Fuente: Elaboración propia Aguirre Cabrera, Alfred edison – Saavedra Toribio, Karol Katherine

Anexo 3: Guía de observación de análisis granulométrico

Analisis Granulometrico de Agregados NTP 400.012/MTC E 204

PROYECTO: INFLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIPROPILENO SOBRE LA RESISTENCIA A

LA COMPRESION DE UN CONCRETO 350KG/CM2 A 1200°C, TRUJILLO 2022

SOLICITANTE: AGUIRRE CABRERA, ALFRED EDISON Y SAAVEDRA TORIBIO KAROL KATHERINE

UBICACIÓN: TRUJILLO - LA LIBERTAD

FECHA: MAYO DEL 2022

DATOS DEL ENSAYO

MUESTRA : CANTERA LEKERSA

MATERIAL ARENA

Tamices ASTM	Abertura en	Peso	% Retenido	% Retenido	% que	Especificacion	
Idilices Astivi	mm	Retenido	Parcial	Acumulado	Pasa	Especi	Incacion
1/2"	12.5	0	0	0	100	100	100
3/8"	9.50	0.00	0.00	0.00	100.00	100.00	100.00
N°4	4.75	32.15	2.66	2.66	97.34	95.00	100.00
8	2.36	151.37	12.53	15.19	84.81	80.00	100.00
16	1.18	235.78	19.51	34.70	65.30	50.00	85.00
30	0.60	276.14	22.85	57.55	42.45	25.00	60.00
50	0.30	264.38	21.88	79.43	20.57	10.00	30.00
100	0.15	204.66	16.94	96.36	3.64	2.00	10.00
200	0.08	42.31	3.50	99.86	0.14		
FONDO		1.64	0.14	100.00	0.00		
TOTAL		1208.43	100	100	0		

DESCRIPCION DE LA MUESTRA				
Peso de inicial seco	:	1208.43 gr		
Peso lavado seco				
Peso Material que pasa #200	:	1.64gr		
TAMAÑO MAXIMO MODULO DE FINEZA	:	3/8"		
Obeservacion:	•	2.00		

Agua en Agregados

-8.53 L

II.) DISEÑO							
1- SLUMP							
Consistencia PI	astica						
Asentamiento 3	Ba4 F	ulgadas					
2CONTENIDO DE A	NIRE ATRAF	PADO					
Tamaño Máximo No	minal 3	3/4. P	ulg.				
Aire	2	2 %	5				
3CONTENIDO DE A	GUA						
Cantidad de agua	2	205 1/	m³				
4RELACÓN A GUA	A CEMENTO	O(Por Resis	stencia)		5CONTENIDO	DE CEMENTO)
Resistencia de calcul	0 4	137 k	g/cm²		Cantidad Ceme	nto	521.2 kg
Relación A/C	().393			Factor Cemento	0	12.26 Bolsas
6 PESO DE AGREG	ADO GRUE	SO					
Modulo de Fineza Ag	gregado Fin	0	2.86				
Volumen de Agregad	lo Grueso		0.61	m³			
Peso de Agregado Gr	rueso		988.54	kg			
7 VOLUMEN DE AG	REGADO F	INO					
Cemento			0.165	m³			
Agua			0.205	m³			
Aire			0.02	ms			
Agregado Grueso			0.378	m ^s			
Volumen de Agregac	lo Fino		0.232	m³	-		
Peso de Agregado Fir	no		600.74	kg			
8DISEÑ	O EN ESTA	DO SECO		9C	ORRECCIÓN POR H	UMEDAD DE I	OS AGREGADOS
Cemento		521.2 k	g		Agregado Fino	609.93 kg	
Agregado Fino		600.74 k	g	A	gregado Grueso	991.31 kg	
Agregado Grueso		988.54 k	g				
Agua		205 L					
10APORTE DE AGU	JA A LA ME	ZCLA		11	AGUA EFECTIVA		
Agregado Fino		-3.785 L		Cant	idad de agua	213.53 L	
Agregado Grueso		-4.745 L					

Anexo 5: Guía de observación para la resistencia a la compresión

ENSAYO DE RESISTENCIA A LA COMPRESIÓN A TEMPERATURA DE AMBIENTE NTP.339.034(CONCRETO PATRON)

Probe	ta cilindrica	Fecha de	erotura	Resistencia
Nº Elementos	Ed ad de probetas	Elaboracion	Rotura	f c=kg/cm2
1	28 DIAS	01/06/2022	29/06/2022	383.46
2	28 DIAS	02/06/2022	29/06/2022	369.82
3	28 DIAS	03/06/2022	29/06/2022	383.51
4	28 DIAS	04/06/2022	29/06/2022	378.74
5	28 DIAS	05/06/2022	29/06/2022	380.18
6	28 DIAS	06/06/2022	29/06/2022	373.11
7	28 DIAS	07/06/2022	29/06/2022	384.16
8	28 DIAS	08/06/2022	29/06/2022	376.19
9	28 DIAS	09/06/2022	29/06/2022	381.81
10	28 DIAS	10/06/2022	29/06/2022	370.58
				378.16

ENSAYO DE RESISTENCIA A LA COMPRESIÓN A TEMPERATURA DE AMBIENTE NTP.339.034(CON MICROFIBRAS EN REMPLAZO AL CEMENTO EN 0.5%)

Probe	ta cilindrica	Fecha de	rotura	Resistencia
Nº Elementos	Ed ad de probetas	Elaboracion	Rotura	f c=kg/cm2
1	28 DIAS	01/06/2022	29/06/2022	408.48
2	28 DIAS	01/06/2022	29/06/2022	451.13
3	28 DIAS	01/06/2022	29/06/2022	365.06
4	28 DIAS	01/06/2022	29/06/2022	373.74
5	28 DIAS	01/06/2022	29/06/2022	337.03
6	28 DIAS	01/06/2022	29/06/2022	419.81
7	28 DIAS	01/06/2022	29/06/2022	443.48
8	28 DIAS	01/06/2022	29/06/2022	363.18
9	28 DIAS	01/06/2022	29/06/2022	382.19
10	28 DIAS	01/06/2022	29/06/2022	394.50
				393.86

ENSAYO DE RESISTENCIA A LA COMPRESIÓN A TEMPERATURA DE AMBIENTE NTP.339.034(CON MICROFIBRAS EN REMPLAZO AL CEMENTO EN 0.1%)

Probe	ta cilindrica	Fecha de	erotura	Resistencia
Nº Elementos	Ed ad de probetas	Elaboracion	Rotura	f c=kg/cm2
1	28 DIAS	03/06/2022	01/07/2022	317.09
2	28 DIAS	03/06/2022	01/07/2022	315.76
3	28 DIAS	03/06/2022	01/07/2022	279.27
4	28 DIAS	03/06/2022	01/07/2022	261.41
5	28 DIAS	03/06/2022	01/07/2022	265.19
6	28 DIAS	03/06/2022	01/07/2022	322.3
7	28 DIAS	03/06/2022	01/07/2022	327.64
8	28 DIAS	03/06/2022	01/07/2022	284.39
9	28 DIAS	03/06/2022	01/07/2022	276.68
10	28 DIAS	03/06/2022	01/07/2022	270.00
1				291.973

Anexo 6: Guía de observación para el ensayo a altas temperaturas

ENSAY	O DE RESISTENCIA ALA	COMPRESIÓN A A	LTAS TEMPERATI	JRAS NTP .339.03
Probe	ta cilindrica	Fecha de	rotura	Resistencia
Nº Elementos	Edad de probetas	Elaboracion	Rotura	f c=kg/cm2
1	28 DIAS	01/06/2022	30/06/2022	168.43
2	28 DIAS	01/06/2022	30/06/2022	196.80
3	28 DIAS	01/06/2022	30/06/2022	185.15
4	28 DIAS	01/06/2022	30/06/2022	192.96
5	28 DIAS	01/06/2022	30/06/2022	176.37
6	28 DIAS	01/06/2022	30/06/2022	185.52
7	28 DIAS	01/06/2022	30/06/2022	195.04
8	28 DIAS	01/06/2022	30/06/2022	171.27
9	28 DIAS	01/06/2022	30/06/2022	186.50
10	28 DIAS	01/06/2022	30/06/2022	181.85
PROMEDIO				183.99

ENSAYO DE RESISTENCIA A LA COMPRESIÓN A ALTAS TEMPERATURAS NTP.339.034(CON MICROFIBRAS EN REMPLAZO AL CEMENTO EN 0.5%)

Probe	eta cilindrica	Fecha de	rotura	Resistencia
Nº Elementos	Edad de probetas	Elaboracion	Rotura	f c=kg/cm2
1	28 DIAS	01/06/2022	30/06/2022	201.35
2	28 DIAS	01/06/2022	30/06/2022	185.35
3	28 DIAS	01/06/2022	30/06/2022	208.93
4	28 DIAS	01/06/2022	30/06/2022	196.17
5	28 DIAS	01/06/2022	30/06/2022	183.41
6	28 DIAS	01/06/2022	30/06/2022	177.40
7	28 DIAS	01/06/2022	30/06/2022	194.37
8	28 DIAS	01/06/2022	30/06/2022	204.18
9	28 DIAS	01/06/2022	30/06/2022	200.66
10	28 DIAS	01/06/2022	30/06/2022	217.74
PROMEDIO				196.96

ENSAYO DE RESISTENCIA A LA COMPRESIÓN A ALTAS TEMPERATURAS NTP.339.084(CON MICROFIBRAS EN REMPLAZO AL CEMENTO EN 1.00%)

Probe	ta cilindrica	Fecha de	rotura	Resistencia
Nº Elementos	Edad de probetas	Elaboracion	Rotura	f c=kg/cm2
1	28 DIAS	01/06/2022	30/06/2022	153.60
2	28 DIAS	01/06/2022	30/06/2022	149.50
3	28 DIAS	01/06/2022	30/06/2022	172.44
4	28 DIAS	01/06/2022	30/06/2022	158.13
5	28 DIAS	01/06/2022	30/06/2022	157.62
6	28 DIAS	01/06/2022	30/06/2022	158.30
7	28 DIAS	01/06/2022	30/06/2022	186.04
8	28 DIAS	01/06/2022	30/06/2022	156.68
9	28 DIAS	01/06/2022	30/06/2022	169.72
10	28 DIAS	01/06/2022	30/06/2022	149.80
PROMEDIO				161.18

LABORATORIO DE METROLOGIA

CERTIFICADO DE CALIBRACIÓN LP-386-2021

Solicitante : JVC CONSULTORIA GEOTECNIA S.A.C.

Dirección : JR. LOS DIAMANTES NRO. 365 URB. SANTA INES LA

LIBERTAD - TRUJILLO.

Instrumento de Medición : MEDIDOR DE HUMEDAD

Marca : PYS EQUIPOS

Modelo : PYS123

Serie : 204

Marca del Manómetro : FORNEY-USA

Alcance Máximo : 20% HR

Tipo de Indicación : Analógica

Lugar de Calibración : LAB. DE MECANICA, DE SUELOS, CONCRETO,

PAVIMENTOS, Y MATERIALES.

Fecha de Calibración : 2021-11-23

Fecha de emisión : 2021-11-23

Método de calibración empleado

La calibración se efectuó con patrones que tiene trarabilidad al SNM - INDECOPT

Agregado al método de comparación indirecta utilizando una maestra de humedad de referencia

Observaciones

Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.

El ensayo se realizó con 20 g de muestra.

El resultado de cada uno de las mediciones en el presente documento es de un promedio de dos valores en un mismo punto.

Los resultados indicados en el presente documento son válidos en el momento de la calibración y se refieren exclusivamente al instrumento calibrado, no debe usarse como certificado de conformidad de producto.

PyS EQUIPOS EIRL, no se hace responsable por los perjuicios que pueda ocasionar el uso incorrecto o inadecuado de este instrumento y tampoco de interpretaciones incorrectas o indebadas del presente documento. El usuario es responsable de la recalibración de sus instrumentos a intervalos apropiados de acuerdo al uso, conservación y mantenimiento del mismo y de acuerdo con las disposiciones legales vigentes. El presente documento carece de valor sin firmas y sellos.

Calle 4, Mr F1 Lt. 05 Urb. Virgen del Rosario - Lima 31 Telt.: 485 3873 Cel.: 545 183 033 / 945 181 317 / 970 055 989 E-mail: ventas@pys.pe / metrologia@gys.pe Web Page: www.pss.pe

LABORATORIO DE METROLOGIA

PATRONES DE REFERENCIA

Los resultados de la calibración realizada son trarables a la Unidad de Medida de los Patrones Nacionales de Masa del Servicio Nacional de Metrologia SNM-INDECOPI en concordancia con el sistema internacional de Unidades de Medida (SI) y el sistema Legal de Unidades del Perú (SLUMP)

Tracabilidad	Patrón Utilizado	Certificado de Calibración
Patrón de referencia de INACAL	Instrumento de medición de presión relativa	LFP-296-2020
Patrón de referencia de CORPORACION 2MAN SAC	Juego de Pesus	316, 306-CM-M - 2020

RESULTADO DE MEDICION

Lectura Patrón (% HR)	Lectura L1 Ascendente (PSI)	Descendente (PSI)	PROMEDIO (PSI)
0.00	0.00	0.00	0.00
4.00	4.45	4.42	4.44
8.00	8.90	8.86	8.88
12.00	13.28	13.25	13.27
16.00	17,71	17.69	17.70
20.00	22.13	22.11	22.12

Ensayo comparativo con muestra

Humedad de Ensayo / % de aire (% HR)	Indicación del Instrumento a calibrar	Humedad Error	Incertidumbre (%)
0.00	0.00	0.00	0.0
5.00	5.00	0.00	0.0
10.00	10.20	0.20	0.1
15.00	15.20	0.20	0.1

OBML g1-104-oc 2009 (XCGM 104:2009) "guis para la expossira da la incustillambre se las mediciones", la sual sugiros dosarcollar na reciclo metanitico que toma en cuenta (se factores de influencia durante la calibración. La incertificados palicada ne incluyo una orimunio de las variaciones a largo plata. La incorridandos de medición reportada se denomina huertidandos Espandida (a) y se obtana de la multiplicación de la incertalmebra estándar Combinada (se) por el factor de cobernas (k). Generalmente se expessa un factor k=2 para un nivel de confinence de aproximadamente 99%.

Revisado por: Eler Pozo S. Dpto. de Metrologia

Gia Calle 4, Mz F1 Lt. 85 Urb. Virgen del Rosano - Lima 31 (a) Telt.: 485 3873 Cel.: 545 183 033 / 945 181 317 / 970 055 589 E-mait: ventas@pys.pe / metrologia@pys.pe Web Page: www.pss.pe.

alibrado por:

Angel Perez B.

Anexo 8: ensayos básicos de laboratorio en agregado grueso y agregado fino.

RUC: 20606092297

ANALISIS GRANULOMETRICO DE AGREGADOS NTP 400,012 / MTC E 204

INFLUENCIA DEL PORCENTAJE DE MICROPERIA DE POLIPROPILENO SOSRE LA RESISTENCIA A LA COMPRESIÓN DE PROYECTO UN CONCRETO for GSOKyland A ALTAS TEMPERATURAS, TRUJULIO - 2022

AGUIRRIE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

SOLICITANTE TRUULO - LA LIBERTAD LIBICACIÓN

FECHA. MIXIFO DEL 2022

DATOS DEL ENSAYO

MUESTRA: :	CANTERA	LEKERSA					
MATERIAL :	PIEDRA	PROFUNDIGAD ±	6	COORDISHADA LITM:	£1	M.	3+++
pongerowy · T	limit.						

MUESTRA	DESCRIPCION DE LA MU	Sibra	fici	Espe	% gue	1vRatanido	%Retenide	Peso	Aberture	Tamicus
The State				13.00	Pata	Acumulado	Parcial	Raterido	en mm.	ASTR
2950	Pesa de inicial seco:		100	1000	100.00	0.00	0.80	0.00	58.00	2"
		100	+	100	100.00	0.00	0.00	0.00	37,50	1102
1 1	TAMARO MAXINO	100	+	55	100.00	0.00	0.00	1.00	25.00	100
			40		86.13	14.67	14.87	384.00	19.00	34"
34	TAMARO MAXINO NOMINAL	90.	+	25	35.18	65.82	48.95	1297.20	12.80	1/2"
	Livering Total				16.99	84,41	20.59	545.70	9.50	3/8"
ASTM 3	HUSO 67	10	+	0	6.02	99.98	15.57	412.50	4.76	Nº 4
	Ch. Talliana III	0.0	+	g.	8.00	100.00	0.02	0.80		PONDO
	THE RESERVE TO SERVE THE PARTY OF THE PARTY						100.0	2950-00		Total

THE CONSULTORIA GEOTECHIA S.A.C.

THE SECURITY OF THE SECURITY

Carlos Jake et Humanaz Muñoz

JVC CONSULTORIA GEOTECNIA S.A.C. Jr. Los Diemantes 365 Opto. 101 Urb. Santa Inés - Trujilo Telef.: 044 - 615690 - Cel.: 971492979 / 973994030 consultorisgeotecnia/vo@gmail.com

PESO UNITARIO SUELTO Y COMPACTADO AGREGADO GRUESO

PROYECTO

INFLUENCIA DEL PORCENTAJE DE MICROPIBRA DE POLIFROPILIBIO SOBRE LA RESISTENCIA À LA COMPRESIÓN DE

UN CONCRETO ForSSORgionO A ALTAS TEMPERATURAS, TRUVILLO - 2022

SOLICITANTE

AGUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORISKO KAROL KATHERINE

BRICACIÓN

TRUMUO-LA LIBERTAD

FECHA

MAYO DEL 2022

DATOS DEL ENSAYO

MUESTRA	CANTERS	LEKERSA				 	
MATERIAL :	PROPRI	PROFUNDIDAD:	 *	COORDENADA UTM	E;	 #:	
PROGRESNA:	1 1-11-			MADOLINI SOPRESI			

	P	(ASTM D 2216, MTC)		9	
		700 1000000		Peso Molde Votumen Molde :	5392.40 gr 9580.645 pm3
Musetra		1	2.	3	
Peec de molde + muestrs	(91)	18267.00	18384.00	18273,00	- A
Pasa de molde	(81)	6362.40	5802.40	5392.40	10.00
Peso de la revestra	(p1)	12874.60	12891.60	12880.60	1
Velumon	(ond)	9600,65	9000.05	9800.85	13 7
Peso unitario suelto	(gricm3)	1.36	1.36	1.36	
A STATE OF THE STA					

	PESC	(ASTM D 2216, MTC I		ESO	
				Feed Moldle :	5302.40 gr
Moretra			5	Toronton Moroe :	5000.045 CEU
Pesa de molde + muestra	(80)	29677.00	20702.00	20689.00	
Pese de molde	(\$0)	5390.40	5382.40	5392.40	
Peso de la muestra	(20)	15284.60	15309.60	15296.60	
Volumen	(cm3)	900.65	9900.95	9900.85	
Peso unitario compactado	general	1.81	1.65	1.61	
	100				

PESO UNITARIO AGRE	GADO GRUESO	
PESO UNITARIO SUELTO	1.36 griom3	1356 Kg/m3
PESO UNITARIO COMPACTADO	1.61 gricm3	1610 Kg/m3

ANG COMBULTONIA SECTECIMA SAC

lag Fatoris de las Aspelia Aspelia Disc Gr sente Generia.

Certos Jones Romenz Mulicz OP 1465W

ENSAYOS DE AGREGADOS: CONTENIDO DE HUMEDAD Y GAVEDAD ESPECIFICA

PROYECTO

INFLUENCIA DEL PORCENTIJJE DE IMOROFIBRA DE POLIFROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE

UN CONCRETO THI SKING/IND A ALTAS TEMPERATURAS, TRUMLO - 2022

SOLICITANTE

AGUIRRE CABRERA ALFRED BOISON - SAVVISORA TORIBIO KAROL KATVIERINE

UBICACIÓN

TRUJULO - LA LIBERTAD MAYO DEL 2022 FECHA.

DATOS DEL ENSAYO

MUHSTRO.	CANTERA	LONDRISA				1014		
MATERIAL I	PEOPA	PROFUNDIQAD:	Setter	- m	COORDENADA UTNI	E:	86	1711
PROGRESIVA.	1111	7						

		CONTENIDO D NTP 33			
TARA		.1	2	3	
Peso tara	(21)	106.40	187.20		
Peso tara + Meterial himsels	(91)	1397.30	1334.55		
Pego tara + Material seco	686	1364.50	1300.70		25 (20)
Peso del agua	(91)	2.80	3.80		
Peso de material seco	(80	1158.50	1213.00		
Humedad V	-	0.36%	131%	100	() S

And American Control of the Control		DAD ESPECIFICA Y ABBUI MORMA MTC E-286, NTP 4	CON DE AGREGADOS GRUESO 60.001: AASHTO T-85	
Pego Mat.Sat. Sup. Secu (En Aire)	(90	2606-30	2900.00	
Peso Mat.Set. Sup. Seca (fin Agua)	(90)	1051.30	1903.26	
Val. de masa + val de vacios	000	848.70	945.85	
Feso material seco en estufa (105 %		2481.30	2480.90	
Vol de messe	(gr)	\$30.00	927.70	
Fe bulk (Base seca)		2.816	2.629	
Pe bulk (Base saturada)		2.636	7.640	
Pa aparenta (Base Secs)		2,688	2.514	
Percentage de absonction		0.75%	0.77%	

RESUMEN DE CARACTERISTICA	G DEL MATERIAL
CONTENIDO DE HUMEDAD %	0.28%
Pe bulk (Base seco)	2.618
Ps holk (Base saturada)	2.638
Pe sparents (Base Secs)	2.671
Porcentaje de abeordión	0.76%

JVC CONSULTORIA GEOTECNIA S.A.C.

Ing. Parament is Angele Agusta Disc Graente Generale.

Cartos Jayeur Romano Murico Ingentions Civil CIP 149576

ANALISIS GRANULOMETRICO DE AGREGADOS NTP 400.012 / MTC E 204

PROVECTO : INFLUENCIA DEL PORCENTAJE DE INCROPIERA DE POLIFROPILENO SOBRE LA RESISTENCIA A LA

COMPRESIÓN DE UN CONCRETO fur SURGIONA A ALTAS TRIMPERATURAS, TRUULLO - 2022

OLIGITANTE : AGURRE CARRERA ALFRED EDISON - SAAVEDRA TORISIO KAROL KATHERINE.

SOLICITANTE : AGUIRRE CABRERA ALFRED EDISON-UBICACIÓN : TRUJULO - LA UBERTAD

PECHA MAYO DEL 2022

DATOS DEL ENSAYO

MUESTRA	DANTERS.	LEXERSA			4				
MATERIAL	AFENA	MIOTUNDIDAD	3441	- 11	COORDENADA UTM	£:	inc	H:	0.014
PROGRESIVA	1446								

Tamices	Abetura	Peso	1i.Retenido	NiReterido	% gate	Especificación	DESCRIPCION DE LA MUESTRA
ASTM	on mm.	Retenido	Parcial	Acsmulado	Pasa	NTP-480.037	
1/2":	12.500	5.00	0.00	8.00	100.00	100	Peso de inicial seco: 1208.43 g
3/6"	9,500	0.00	0.00	1.00	100.06	100	Pasc lavado seco
NoF	4.790	32.15	2.66	2.86	97.34	95 + 100	Pago Naterial que pasa #200 164 g
-1	2,380	- 155.37	12.53	15.19	34.81	80 + 100	
16	1,180	235.76	19.51	34.71	66.30	60 - 85	TAMAÑO MAXIMO : SE"
- 30	0.600	275.14	22.85	57.55	62.45	25 + 60	
50	0.300	264.30	21.85	79.43	20.57	10 - 30	MODULO DE FINEZA : 2.86
100	0.190	204.66	16.94	96.36	3.64	2 - 10	St. Commission of the Commissi
290	0.075	42.31	3.50	99.86	0.96		Otservación :
FONDO	1	1.64	0.14	100.00	0.00		Contraction of the Contraction o
Total		1208.45	100.0	7-7-7-1			

*** Muestres e identificación reolizada por el solicitante.

INC COMPLETONIA GEOTECNIA S.A.C.
TICH CLUTTUL CO.

TOTAL CONTRACTOR Apparts Disc
GI NENTE GENERAL

Carlos lavier Romanos Muricos Regentero Cavil Car 1 actición

ENSAYOS DE AGREGADOS HUMEDAD Y GAVEDAD ESPECÍFICA

INFLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIPROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UM PROYECTO

CONCRETO Fo-350Kg/cm2 A ALTAS TEMPERATURAS, TRUJULO - 2022

SOLICITANTE AGUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

TRUULLO - LA LIBERTAD UBICACIÓN

WAYO DEL 2022 **FECHA**

DATOS DEL ENSAYO

MURRITRA I	CANTERA	LEGIPSA					
MATERIAL I	ARDNA	PROPUNDIDAD:	 9.	COORDENADA UTIN:	E;	 . H:	
PROGRESIVA :	++++			2007/1000000		- NO41.	

		CONTEMBO (NTP 339.		
TARA	0.000		2	
Peso tara	igrt	107.80	198.80	
Peso tare + Haterial fromedo	1971	825.41	798.54	
Peso tars + Material seco	gert .	814.78	758.38	
Peso del agua	lor1	10.63	16.16	
Pese da material seco	lart .	706.96	661.78	
Hameded %		1,50%	1.98%	

GRAVEDAD ESPECIFICA Y ABSORCION DE AGREGADOS FINOS (NORMA INTC 8-205, NTP 40E-522: AASHTO T-54)								
Peso Mat. Sat. Sep. Seco (en Aire)	lart	500.00	580.00					
Peso Fresco + agus	fart.	884.12	684.27					
Peso Franco + agua + A	(gr)	1984.12	194.27					
Peso del Mat. + agua en el frasco	tort-	165.30	985.19					
Vol de masa + vol de vacio	ig/t	198.76	180.08					
Pe. De Mat. Seco en estufa (105°C)	igri	456.31	489.53					
Vol de mass	(91)	176.00	178.61					
Pe bulk (Base secs.)		2.592	2.580					
Pe bulk (Base satureda)		2.648	2.644					
Pe aparente (Sasa Soco)		2.748	2.741					
Porcentaja de absorcida		2.18%	2.14%					

RESUMEN DE CARACTERISTICAS DEL MATERIAL						
CONTEMBO DE HUMEDAD %	1.53%					
Pe bulk (Base saca)	2.590					
Pe bulk (Base saturada)	2.65					
Pe aparente (Basa Seca)	2.74					
Porcestaja de absorcios	2.16%					

JYC CONSULTORIA GEOTECHIA S.A.C. remain to

ing. Ketaru di ku Angelis Agustin Dise Ge HEMTE GEMERAL

Carlos John Rareesz Mulky CRP MORTA

PESO UNITARIO SUELTO Y COMPACTADO AGREGADO FINO

PROYECTO

MPLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIFROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE

UN COMORETO (14/380%) UNIZ A ALTAS TEMPERATURAS, TRUMLIO - 2022

SOLICITANTE UBICACIÓN

AGUIRRE CABRERA ALFRED EDISON - SAAVEORA TORIBIO KAROL KATHERINE.

TRUJULO - LA LIBERTAD IMYO DEL 2022 FECHA

DATOS DEL ENSAYO

BUESTRA	CANTERA	LÉRERSA						
MATERIAL :	APENA	PROPUNDIDAD:	 11.	COORDENADA UTIN	E:		N:	
PROGRESIVA :		7	 1112	The contract test the Art	7777	7.0-	-	

PESO UNITARIO SUELTO AGREGADO FINO (ASTIN D 2216, MTC E 260, MTP 490,917)								
				Pess Molde Volumen Molde	2568 60 gr 2549,980 cm2			
Wasstra			2	3				
Pess de moide + musetra	(30)	7385.00	7463.06	7995.00				
Peso de molde	(20)	2968.80	3568.60	3991-90				
Peso de la muestra	(20)	4820.40	4834.45	425.40				
Volumen	(cm3)	264.90	2949.09	7845.90				
Peso untario suoto	(gricing)	1.69	1.76	1.89				
Contract Con				100	1			

			E 200, HTP 400 817)	Peso Molde	2566.60 gr
	155		V OTE	Volumen Wolde :	9508.545 cm3
Museure	100000	N. King	2	3	
Peso de maide + muestra	(90)	7753.00	7762.00	7769.50	
Peso de molde	(80)	2508.80	2508.60	2668.80	
Peso de la muostra	(80)	5194.40	5213.40	5290.40	/
Volumen	timit	2840.00	2845.96	2646.90	
Peso unitario compactado	(Enting)	1.82	1.83	1.82	

PESO UNITARIO AGREGADO FINO					
PESO UNITARIO SUELTO	1.69 gricm3	1693.7 Kg/cm3			
PESO UNITARIO COMPACTADO	1.02 griom3	1824.4 Kg/cm3			

NC CONSULTORINGEOTECHIASAC

hig Hickord de he Angeles Agustin Disc Ge HEMTE GEHERAL

Certos Jaylor Rammer Mutica GP 14/874

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dpto. 101 Urb. Santa Inée - Trujiko Taréf.: 044 - 615690 - Cel.: 971492979 / 973994000 consultoriageotecnia/vo@gmail.com

Anexo 9: ensayos de diseño de mezcla en agregado grueso y agregado fino.

RUC: 20606092297

DISEÑO DE MEZCLAS PARA CONCRETO (REFERENCIA COMITÉ 211 DEL ACI)

MILLENCIA DEL PORCENTAJE DE MICROPIRRA DE POLIFROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO Nº 1889/64/2 A ALTAS TEMPERATURAS, TRUBULO - 2002 PROYECTO.

SOLICITANTE AGUIRRE CABRERA ALFRED EDISCNI- SAKVEDRA TORIBIO KAROL KYTHERINE

UBCACON TRUULD - LA LIBERTAD MAYORET SIDE

RESISTENCIA DE DISEÑO 350 KG/CM³ - CEMENTO TIPO I

DATES OF CANTERA (DODS) CANTERA AGREGASO PINO CHITERA AGREGADO GRUEDO

	RESISTENCIA DESEADA. RESISTENCIA DE GALCIALO	for a	380 437	Igited2 Agron2	ESRETABLA 5322	4 1111	
L) INFORMACIO	H DE MATERIALES					JV	Ĵ
A. AGREGADO O	PARSO						
	- Pess Unitario-compaciade same	161000	Name		C. CEMENTO	100 - 1	
00	2 - Tiess Unturo quelto seco	1896.00	Ramo		CL- Portand Tips	-K00 /00	
- 00	I. Paso aspectico de mais	3616:00	Hyrric		14 - Fest especifico	2.65 199	AB.
.00	Contenito de humedad	1138			15 Pers vituraliza	1001 1901	mb:
	L. Consente de absorbém	0.76	16				
9	L- Tamato misone nortral	34	316				
S. AGREGADO F	90				S. Artelli		
	- Peac Unitary-compartatir sent	1906.6	i igna		M. None	Folia	
	- Fest United suello seco	1000.7			NTP 230,000		
:00	1. Proc especifico de mass	2001			TT-pego segecifico	100 19	nJ.
- 40	1 - Contenido de frumedad	33	1 %				
t	- Consenido de alpeonidos	2.5	5 . 5				
- 10	2 - modulo de finaza	2.8					
K) DISENO							
	- EDM				4- RELACIÓN AGUA CEMENTO POR RE	eleterola)	
	Consistence Planting				Plantsterrola de coliculo	437 kg/ml	
	itieranieris 3 g d	pripide			Relation AIC	6365	
	- CONTEMBO DE AIRE ATRAPADO				5- CONTENIDO DE CEMENTO		
	Tamato Marine nominal	34	puts		Certifolioprents	521.30 kg	
	Am	20	N		Fierbr cements	II.25 toless	
	L. CONTENIDO DE AGRA				T VOLUMEN BE ADREGADO FINO		
	serbited de ague	.200	260		General	6.165 mg	
	00000-00000				Ague	\$305 mil.	
					Ame	E 020 H/d	
	- PERO DE ADREDADO GRUESO				Agregado grueso:	£275 ed	
	Metals de treza agregado fino	2.8				-	
	Volumen de agregade grusso		Ter P		Volumen de agregado fino	\$.352 ed:	
	Pesso de agregado gruess	268.5	4 kg		Pear to agregate this	800.74 kg.	

JVC.CONSULTORIA GEOTECHIA S.A.C. Palantentte

ing, Pictimo de los Angeles Agustin Diaz. GERENTE GENERAL

Carlos James Ramerez Murice

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamantes 365 Dptp. 101 Urb. Santa Inés - Trujillo Telef: 044 - 615690 - Cal.: 971492979 / 973994030 consultoriageotecnia)vo@gmail.com

DISEÑO DE MEZCLAS PARA CONCRETO (REFERENCIA COMITÉ 211 DEL ACI)

RELLENCIA DEL PORCENTALE DE MOPOPISRA DE POLIPROPLENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE LIN CONCRETO Nº OSRIGUEZ A ALTAS TEMPERATURAS, TRUJULO - 2020 PROYECTO

BOLICHANTE ASSIRVE CABRERA ALFRED EDISON - SAKUEDRA TORREC KARD, KATHERINE

LINCACIÓN TRUMUO-LA LINGRITAD FECHA MAYORE 200

6- DISENO EN ESTADO-SEDO

Cements 50.27 % Agregade free 600 T4 No 968.54 10 Agrigado grueso 208 L

5. CONFECCIÓN FON HUMEDIAD DE LOS NOVESADOS

Apropriate from 500,00% 4cc 991 308 kg Aprecado pruteo

IS- APORTE DE ASUA A LA MEZCLA

4198 L Apreçado fine 4766 Apresado pruseo

4400 L Aguaran sompation

H - MINA RESCTIVA

Constructed agran 310408 L

IL) GOSFICACIÓN DE MEZOLA

SE- DODRICADÓN EN PERO

525.25 (q) Cemento Agregade fire 900 10 No Agragado grusso 961.31 10 24353 L

15 - DOSEFICACIÓN EN VOLUMEN

12.25 % Ceremon Apropriet the 0.90 =0 DITT HO Agragado grusso 0.754 +0

14 - RELACION AIC DE ORRA

EN PESO

CEMENTO	WEW	ARDAN	EM
1	1.97	1.00	641

POR PO

CEMENTO	APENA	PEDMA	AGUA
1.	7 235	291	17.4

DESCRIPTION ST

- * Municipal provinting enderethousing por el solicitarios
- * Prefetata la reproducción trají o parcial da leda documento sin la autoropato de JNG-CONSULTORIA-SCOTECINA SAC
- * Los valores presentados en el presento-disorlo pueden variar ligeramente en obra por cambras en la granulamente del apequado, como cience por huma

0.01

y afazonosa, la limpiaza de los agregados, el carridio de tijur de cemento y la proporción de addinsi.

Piterina Tale 2

INC. CONSULTORIA GEOTECHIA S.A.C. Potastion

ing. Platinus de los Angeles Aguntin Disc on montra clamantas.

Carlos Javer Rienins: Wolfor CIP 140874

JVC CONSULTORIA GEOTECNIA S.A.C.

Jr. Los Diamentes 365 Opto. 101 Urb. Santa Inés - Trujillo Teléf.: 044 - 615690 - Cel.: 971492979 / 973994030 consultorisgentecrisjvo@gmail.com

Anexo 10: resistencia a la compresión a temperatura ambiente para concreto con porcentajes de 0.0%,0.5% y 1.0%

RUC: 20606092297

CERTIFICADO DE COMPRESIÓN NTP 339.034

DBRA

INFLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIFROPLENO 908RE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO

fo=350kg/cm2 A.ALTAS TEMPERATURAS, TRUVILLO - 2022

SOLICITANTE

: AGUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORISIO KAROL KATHERINE

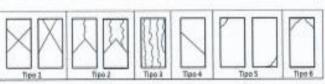
JBICACIÓN: EMISIÓN DE INFORME : TRUJULO - LA LIBERTAD : JUUG DB, 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PROBETA CILINORICA		Resist.	Fecha di	Rotura	Edad	Glianetro	Longitud	Refación	Factor de	Ò	rga .	Sección	Resistencia	Tipo de
W	Elemento	disello Kgionž	Elsberación	Rotura	(das)	CFR	ON	LID.	correción	KN	Kgs.	cm2	fc Kglcm2	falla
01	COMCRETO PATRON	350 Kgicmā	01/06/2022	29/06/2022	28	10.10	20.00	2	0,999	301.19	30753.13	80.12	383.45	
02	CONCRETO PATRON	360 Kyton2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	290.86	29658.99	80.12	369.62	5
83	CONCRETO PATRON	350 Kgiom2	01/05/2022	29/06/2022	28	10.10	20.00	2	0.999	301.63	30757.21	60.12	363.51	5
04	COMORETO PATRON	350 Kgiomž	01/06/2022	29/06/2022	29	10.10	20.00	2	0.566	297.88	30374.82	80.12	379.74	5
06	CONCRETO PATRON	350 Kglcnů	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	296.01	30490.05	80.12	380.18	5

Observaciones:

Las pruebas se resilizaran con alexahadillas de neupreno (Gureza Share A = 60) en la parte superior a inferior.


Las Probesis de consreto fueron elaborados par el saliatante, el Laboratorio adlo reolizó el ercoyo o la compresión.

DATOLDE MAQUINA DE ROTURA

MARCA, PISTOLIPOS, IN SERIE 2007021)

CANCIDAD: 100 000 Rd.
CENTRICADO DE CRUBRACIÓN - (F. 5485-2021 (fil-13-2021)

LABORATORIO METROLOGIA PIS BOSPOS

CERTIFICADO DE COMPRESIÓN NTP 339.034

DERA

INFLUENCIA DEL PORCENTAJE DE MICROFERIA DE POUPROPILEND SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO

fo-350kg/bm2 A ALTAS TEMPERATURAS, TRUULLO - 2022

BOLICITANTE

: AQUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

JEICACIÓN EMISIÓN DE INFORME : TRUJILLO-LA LIBERTAD : JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PROBETA CILINDRICA		Resist.	Fecha de Ratura		Edad	Diámetro	Longitud	Relación	Factor de	Carga		Sección	Resistencia	Tipo di
H*	Eurorts	diseño Kglom2	Elaboración	Rotura	(dies)	619	om	LID	correction	Ю	Kgs.	enž	Kglon2	faits
01	CONCRETO PATRON	355 Kg/on2	01/06/2022	29/06/2022	28	12.10	20.00	2	0.999	253.45	29923.10	80.12	3/3.11	5
02	CONCRETO PATRON	350 Kg/on2	01/05/2022	29/06/2022	25	10.10	20.00	2	0.999	302.14	30609-22	90.12	384.16	5
63	CONCRETO PATRON	380 Kglom2	01/06/2022	29/05/2022	28	10.10	20.00	2	0.999	295.87	30169.86	80.12	376.19	5
64	CONCRETO PATRON	380 Kg/cm2	01/06/2022	29/06/2022	28	90.10	20.00	2	0.960	300.29	30820.57	80.12	381.61	ě
06	CONCRETO PATRON	360 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	291.46	29720.18	80.12	370.58	5

Observaciones:

Las prostos se realizaran con almohadillos de meapreno (Durese Shere A = 60) en la parte superior e inferior.

Las Probetos de comento fuerce elaborados par el salicitante, el Laboratario adlo reolizó el encoyo o la compresión.

DATOS DE MAQUINA DE ROTURA

MARCA: MISTOLINOS (8º MIRE: 2002025) CARACINOS DE CAUMINDÓN: :U-5465-7825 (25-13-7071) LABONATORIO METROLOGIA PES DIQUIPOS MX

JVC CONSULTORIA GEOTECNIA S.A.C.

Ing, Pictoria de los Angeles Agustin Diaz G: RENTE GENERAL Carlos Javier Ramirez Muñoz Ingenioro Civil CIP 140574

DBRA

IMPLUENCIA DEL PORCENTAJE DE MICROFISRA DE POLIFROPLENO SOBRE LA REBISTENCIA A LA COMPRESIÓN DE UN COMORETO.

1 to-350kg/km2 à ALTAS TEMPERATURAS, TRUJULO - 2022.

BOLICITANTE

: AQUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

JBICACIÓN ENISIÓN DE INFORME T TRUJULIO - LA LIBERTAD + JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PR	OBETA CILÍNORICA	Resist.	Feche de Rotura		Edad	Diametro	Longitud	Relación	Factor de	Carga		Sección	Resistencia	Tipo de
Nº	Elemento	disello Kgicm2	Elaboración	Iteurs	(dias)	cm	on	LID	correction.	KN	Kgs.	ous	Kg/cm2	falls
01:	CONCRETO PATRON +0.5% MICROFIERA SINTÉTICA	350 Kglom2	01/08/2022	29/06/2022	28	10.10	20.00	2	0.999	321.27	32759.90	80.12	408.46	5
02	CONCRETO PATRON +0.5% MICROFERA SINTÉTICA	380 Kglord	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	354.61	30179.98	80.12	451.13	5
03	CONCRETO PATRON + 0.5% MICROFERA SINTÉTICA	368 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	267.12	29277 63	80.12	366.06	5
04	CONCRETO PATRON + 0.5% MICROFIBRA SINTETICA	350 Kglon2	01/05/2022	29/06/2022	26	10.10	20.00	2	0.999	293.94	25973.06	80.12	373.74	5
05	CONCRETO PATRON +0.5% MICROPIBRA SINTÉTICA	350 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.000	265.07	27029.19	60.12	337.03	5

Observaciones:

Las pruebas se realizaron con elimatratillas de necorrene (Durezo Shore A = 60) en la parte superior e inferior.

Las Probetas de concreta fiseron elaboradas por el solicitorite, el Laboratorio sólio realizal el exacya a la compresida.

DATES DE MACUISA DE ROTURA

MARCA-PYSTQUIPOS OF SEREL 2003(21) CAMCERD, 100 100 Mg.
CERTHORDO DE CALIBRACIÓN: U-1468-2011 (19-11-1671)
LABORATORIO METROLOGIA PER ROLLIPOS

JVC CONSULTORIA GEOTECNIA S.A.C.

Ing. Victoria de los Angeles Agustin Diaz GERENTE GENERAL

Carlos Jamer Rammez Muñoz Ingeniero Civil CIP 1405 14

AFIBO

INFLUENCIA DEL PORCENTAJE DE MICROFISRA DE POLIFRÓPILEMO BOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO FOI STRINGENZIA ALTAS TEMPERATURAS, TRUJULO - 2022

SOLICITANTE

: AGUIRRE CABRIDA ALFRED EDISON - BAVVEDRA TORREO KAROL KATHERINE

URICACIÓN

: TRUMLLO - LA LIBERTAD

: JULIO DEL 2022 EMISIÓN DE INFORME

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PROBETA CILÍNDRICA		The second secon		Rotura	Educ	Edad Diametro	Longitud	Relación	Factor de	C	ega	Sección	Resistencia	Tipo de
M°	Demento	diseño Kglonž	Elaboración	Roture	(dias)	gra.	cm	ΠD	correction	ки	Ngs.	cm2	Fo Kgloniz	fels
01	DONCRETO PATRON +0.5% MCROFERIA SINTÉTICA	360 Kg/on2	01/06/2022	29/06/2022	28	10.10	29.00	2	0.999	330.18	33968.45	80,12	419.81	5
02	CONCRETO PATRON +0.5% MICROFIBRA SINTÉTICA	350 Kglon2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	348.79	35586.12	80.12	443,48	5
Ø3	CONCRETO PATRON +0.5% MICROFERA SINTÉTICA	350 Kgicm2	01/06/2022	29/06/2022	28	10.10	20.00	ž	0.999	285.64	29126.71	80.12	363.18	5
64	CONCRETO PATRON +0.5% MICROFIERA SMITETICA	250 Kg/brid	01/06/2022	29/06/2022	28	10,10	20.00	2	0.969	300.59	30651.16	80.12	382.19	5
05	CONCRETO PATRON + 0.5% MCROFIERA SINTETICA	360 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	310.27	31538.23	80.12	394.50	8

Observaciones:

Las praeijas se realizaran con almohadillos de magneno (Durazo Shore A = 60) en la parte superior e inferior.

Las Probetos de concreto fiveron elaboradas par el solicitante, el Laboratorio sobo revisel el ensayo e la compresión.

DATOS DE MAQUINA DE ROTURA

MARCA, PYSICILIPOS (N° SIRRE (R03001)) CARRICCADO DE CAURAMOS N° UP SARE (R011 (DE-11-2021) UADORATORO RETRICUOS RYSI (DE-10-2021) UADORATORO RETRICUOS RYSI (DE-10-2021)

INC CONSULTORIA GEOTECNIA S.A.C.

Ing. Victoria de los Angeles Agustin Diaz
GERENTE GENERAL

Carlos Javies Ramirez Muñoz Ingeniero Civil CIP 180574

CERTIFICADO DE COMPRESIÓN NTP 339,034

DBRA

INFLUENCIA DEL PORCIOITAJE DE MICHOFIBRA DE POLIPROPILENO SCRIPE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO 10-200/g/on/2 A ALTAS TEMPERATURAS, TRUMLO - 2002

BOLICITANTE UBICACIÓN

: AGUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

EMISIÓN DE INFORME

: TRUJULO-LA LIBERTAD : JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PROBETA CILINORICA		Resist.	Fecha di	Rotura	Edat	Diametro	Longitud	Relación	Factor de	Carga		Section	Resistencia	Tigo de
Nº.	Elemento	diseho Kglon2	Elaboración	Rotura	(clas)	ce	on	L/D	correción	KN	Kgs.	045	Kglcm2	Talla.
01	CONCRETO PATRON +1.0% MICROFISRA SINTÉTICA	350 Kgrew2	03/05/2022	01/07/2022	28	10.10	20.00	2	0.999	249.39	25430.30	80.12	317,09	5
02	COMCRETO PATRON +1.0% MICROFIBRA SINTÉTICA	250 Kgloniž	03/06/2022	01/01/2022	29	10.10	20.00	2	0.966	248.34	25323.23	80,12	315.78	5
03	CONCRETO PATRON +1.0% MCROFERA SINTÉTICA	360 Kg/cm2	03/06/2022	01/07/2022	28	10.10	20.00	2	0.999	219.64	22396.69	80.12	279-27	5
04	CONCRETO PATRON + 1.0% MICROFIBRA SINTÉTICA	350 Kplani?	03/06/2022	01/07/2022	28	10.10	20.00	2	0.999	205.60	20965.03	80.12	261.41	5
05	CONCRETO PATRON +1.0% MICROPIBRA SINTÉTICA	350 Kglom2	03/06/2022	01/07/2022	28	10.10	20.00	2	0.999	208.57	21287.88	80.12	265.19	5

Observaciones:

Los pruebas se realizaron con almohadillos de resperena (Dureza Shore A = 60) en la parte superior e inferior.

Los Probetos de concreto fueron elaboradas per el selicitante, el Loboratorio sollo realizó el ensayo a la compresión.

DATOS DE MACURA DE SCTURA

MANCA, PERIODIPOS, (IN MIRRI 2005021) CIMPICORRIO DE CAURANCIÓN, LU-1MIR 2011 (23-01-2829) LIBERRATORIO METRICIONA PERIODIPOS.

JVC CONSULTORIA GEOTECNIA S.A.C.

Ing. Victoria de los Angeles Agustín Díaz GERENTE GENERAL

Carlos Javlet Ramrez Muñoz CIP 140574

CERTIFICADO DE COMPRESIÓN NTP 339.034

DORA

INFLUENCIA DEL PORCENTAJE DE MICROPISMA DE POLIPROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO

for 350kg/cm2 A ALTAS TEMPERATURAS, TRUJELO - 2022

SOLICITANTE

: AGUIRRE CABRERA ALFRED EDISON - SANVEDRA TORIBIO KAROL KATHERINE

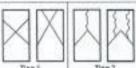
JIBICACIÓN

: TRUJULO - LA LIBERTAD

EMISIÓN DE INFORME ± JUU0 DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PROBETA CILINDRICA		Resist.	Fecha de Rotura		Edid	Diametro	Longitud	Relation	Factor de	Ca	rgs .	Sección	Resistencia fic	Tipo de
g-	Elemento	diseño Kgioni2	Elaboración	Rotura	(dias)	cm	cm	LID	correción	KN	Kgs.	cm2	Kglonit.	falia
01	CONCRETO PATRON + 1.0% MICROPIBRA SINTÉTICA	350 Kgiern2	03/06/2022	01/07/2022	28	10.10	20.00	2	0.999	253.49	25948.38	80.12	322.30	5
02	CONCRETO PATRON +10% MICROFERA SINTÉTICA	360 Kgltm2	08/06/2022	01/07/2022	28	10.10	20.00	2	0.999	257.69	26276.65	60.12	327.64	5
03	CONCRETO PATRON +1.0% MICROFIBRA BINTÉTICA	360 Kg/an2	03/05/2022	d1/0/12022	28	10.10	20.00	2	0.999	223.67	22907.63	80.12	284.39	0
04	CONCRETO PATRON +1.0% MICROFISRA SINTÉTICA	350 Kglon2	03/05/2022	01/07/2022	28	10.10	20.00	2	0.999	217.61	22189.69	80.12	276.68	5
05	COMCRETO PATRON - 1.0% MICROFISHA SMITÉTICA	350 Kglorů	03/06/0022	01/07/2022	28	10.10	20.00	2	0.999	212.35	21003.33	80.12	210.00	5


Observaciones:

Las pruebas se realizaron ose elevitualilles de neopreso (Duneza Share A = 60) en la parte superior e inferior.

Las Probetas de cancreto fueros elaboradas por el solicitante, el Laboratorio sólo reeliad el essayo o la compresión.

DATOR DE JAKQUINA DE ROTURA

MARCH: PYS COLUPOS. (N° SERIE: 2003021) CARACIONO: 180 808 Ngf. CERTIFICADO DE CALISBADIÓN: 17-1467-2071 (25-10-2071) LABORATORIO METROLÓGIA PES EQUIPOS

JVC CONSULTORIA GEOTECHIA S.A.C.

lng. Victoria de los Angeles Agustín Diaz GERENTE GENERAL

Carlos Jawler Rammez Muñoz CIP 140574

Anexo 11: resistencia a la compresión a altas temperaturas ambiente para concreto con porcentajes de 0.0%,0.5% y 1.0%

CERTIFICADO DE COMPRESIÓN NTP 339,034 INFLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIPROPLENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO DERA 1 for 350 Kg/oni2 A. ALTAS TEMPERATURAS, TRUJULO - 2022 : AGURRE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE. COLICITANTE JIBICACIÓN : TRUJELO-LA LIBERTAD EMISIÓN DE INFORME ± JUUO DEL 2022 ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO PROBETA CILÍNORICA Resist. Fecha de Rotura Carps Factor de fc LID 011/2 falls w Elemento Robert KN Kgs. Kglen2 Kalon2 CONCRETO PATRON 210 Kglom2 01/06/2022 29/06/2022 10.50 20.00 2 0.999 146.70 14959.00 80.12 186.52 5 01 ALTA TEMPERATURA CONCRETO PATRON 5 99942.00 R0.52 195/04 210 Kg/cmG 01/06/2022 29/06/2022 28 10.10 20:00 2 0.999 153.40 ALTA TEMPERATURA CONCRETO PATRON 134.70 13735.36 80.12 171.27 20.00 2 0.999 210 Kg/on2 01/06/3022 29/06/2022 29 10:10 03 ALTA TEMPERATURA CONCRETO PATRON 210 KgloniZ 2 0.999 148.60 15254.71 81.71 186.50 01/08/2002 29/06/2022 28 10.20 20.00 '04 ALTA TEMPERATURA CONCRETO PATRON 210 Kgton2 01/06/2022 20.00 2 0.999 145.87 181.85 6 29/05/2022 10.20 28 05 ALTA TEMPERATURA Las pruebas se realizaran con almohadillas de neoprena (Duneza Shore A = 60) en la parte superior e inferior. Observaciones: Las Probetas de concreta fueran elaboradas por el solicitante, el Laboratorio sólo realizó el enseyo a la compresión. DATICS DE MAQUINA DE ROTURA MARCA: PYS EQUIPOS, (N° SERIE: 2802021) CARACIDAD: 180 808 Ngf. CIRTIFICADO DE CALHIRACIÓN: 18-1463-3071. (23-11-3621) UNIDENTORIO METROLOGIA PYSEDLIPOS

INC CONSULTORIA GEOTECHIAS A.C.

Ing. Victoria de Vis America Agretin Disc.

Gerente General

Carlos Javar Ranwez Muñoz

DERA

INFLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIFICOPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO 10-350/gjon2 A ALTAS TEMPERATURAS, TRUJILLO - 2022

BOLICITANTE

AGUIRRE CABRERA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

UBICACIÓN

TRUULLO - LA LIBERTAD

IMISIÓN DE INFORME

: JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PR	ORETA CILÍNDRICA	Resist.	Fecha di	Roturs	Edad	Diámetro	Longitud	Relación	Factor de	Cargo		Section Regist		1100 0
Nº	Elemento	diseño Kglom2	Elaboración	Rotars	(dias)		cm	ΝĎ	correction	KN	Kgs.	cm2	Kglom2	falla
01	CONCRETO PATRON ALTA TEMPERATURA	210 Kg/cm2	01/06/2022	29/05/2022	28	10.10	20.00	2	0.999	132.47	13507.97	80.12	198.43	1
02	CONCRETO PATRON ALTA TEMPERATURA	210 Kg/cn/2	01/06/2022	29/06/2022	28	10.20	20.00	2	0.999	157.86	16095.98	81.71	196.80	5
03	CONCRETO PATRON ALTA TEMPERATURA	210 Kglonž	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	145.62	14848.87	80.12	185.15	0
04	CONCRETO PATRON ALTA TEMPERATURA	210 Kg/cm2	61.06/2022	29/06/2022	28	10.20	20.00	2	0.999	154.78	15782.92	81.71	192.96	5
05	CONCRETO PATRON ALTA TEMPERATURA	210 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	138.71	14144.28	80.12	175.37	5

Las pruebas se reolizaren oan almohasillas de seoprena (Duneza Shore A = 65) en la parte superior e inferior.

Las Probetas de concreta fueran elaboradas por el solicitores, el Laboratorio sólo realizó el erasyo a la compresión.

DATOS DE MACAUNA DE ROTURA

MARCA: PISTOLINOS OF SERIE 2000001]
CARACIDAD: 100-000 Kgf
CESTRICADO DE CALIBRACIÓN: 101-1043 SCS1. [29-13-10431]
MARCA: PISTOLINOS OF SERIE 2000001]

JVC CONSULTORIA GEOTECNIA S.A.C.

ing. Victoria de los Angeles Agustin Díaz GERENTE GENERAL

Carlos Javiet Remirez Muñoz

DERA

INFLUENCIA DEL PORCENTAJE DE MICROFIBRA DE POLIFROPLEIXÓ SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO

for 350Kg/cm2 A ALTAS TEMPERATURAS, TRUVILLO - 2022

BOLICITANTE

AGUIRRE CABRERA ALFRED EDISON - SAAVIDRA TORIBIO KAROL KATHERINE

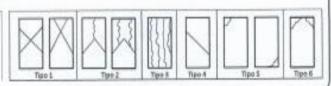
UBICACIÓN

TRUULLO-LA LIBERTAD

EMISIÓN DE INFORME : JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

P90	OBETA CILÍNDRICA	Resist.	Fecha de	Rotura .	Edad	Diámetro	Longitud	Relación	Factor de correción	Carga		Sección	Resistencia Fc	Tipo de
p	Elemento	diseño Kglonĝ Elaboración	Elaboración	Rotura	(flat)	on	cm	1/0		IOI	Kgs.	cmI	Kglom2	falla
01	CONCRETO PATRON +0.5% MICROFIBRA SIMTÉTICA ALTA TEMPERATURA	210 Kgion2	01/06/2022	29/06/2022	28	10.20	20.00	2	0.999	142.30	14510.33	81.71	177.40	5
02	CONCRETO PATRON +0.5% MICROPERA SINTÉTICA ALTA TEMPERATURA	210 Kglen2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	152.87	15588.15	80.12	194,37	5
03	CONCRETO PATRON +8.9% MICROFERA SINTETICA ALTA TEMPERATURA	210 Kg/tm2	01/06/2022	29/06/2022	28	10.20	20.00	2	0.969	163.78	16700.95	81.71	204.18	5
04	CONCRETO PATRON + 0.5% MICROFERA SINTÈTICA ALTA TEMPERATURA	210 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.909	157.82	18092.91	80.12	200.66	5
05	CONCRETO PATRON +0.5% MICROFERA SINTÉTICA ALTA TEMPERATURA	210 Kglonž	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	171.25	17462.36	80.12	217.74	5


Observaciones:

Los prvehes se resilisares can almahadilitz de neopresa (Durezo Shore A = 80) en la parte superior e inferior.

Las Probetas de concreto fueran elaboradas por el solicitorite, el Laboratorio solio realizó el enexyo a la compresión.

DATOS DE MAQUINA DE ROTURA

PRODUCORO MELECTOCIVA LAS SOTINCES (39-11-5651) CENTRICORD DE CATREMOÇUE: 19-1469-9031 (39-11-5651) CONCLOYO: 180 BOS DA;

INC CONSULTORIA GEOTECNIA S.A.C.

OLOT & JOLLA TALA

Ing. Victoria de los despeles Agustín Diaz

GERENTE GENERAL

Carlos Janes Ramirez Muñoz Ingeniero Civil Op 190674

DERA

INFLUENCIA DEL PORCIENTAJE DE MICHOFISRA DE POUPROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN COMORETO TO 2000/gionz A ALTAS TEMPERATURAS, TRUJALIO - 2022

SOLICITANTE

: AGURREI CABIERIA ALFRED EDISON - SAAVEDRA TORIBIO KAROL KATHERINE

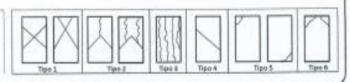
UBICACIÓN

: TRUJALO-LA LIBERTAD

EMISIÓN DE INFORME

: JULIO DEL 2022

ENBAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO


PRI	OBETA CILÍNDRICA	Resist	Fesha di	Rotura	Edad	Diametro	Longitud	Relación	Factor de correción	Carga		Section	Resistencia fe	Tipo de
H	Elemento	disello Kg/cm2	Baboración	Rotura	(dim)	on	094	TO.		KN	Kgs.	omž	Kglcm2	fulle
01	CONCRETO PATRON +6.9% MICROFERA SINTÉTICA ALTA TEMPERATURA	210 Kg/bm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	158.36	96147.97	80.12	201.35	5
02	CONCRETO PATRON +0.5% MICROFISRA BINTÉTICA ALTA TEMPERATURA	210 Kg/cm2	01/06/2022	29/06/2022	28	10.10	20.00	2	0.999	145.78	14865.19	80.12	185.35	5
03	CONCRETO PATRON +0.5% MICROFERIA BINTÉTICA ALTA TEMPERATURA	210 Kgtoniž	01/06/2022	29/06/2022	28	10.10	20.00	2	0.900	164.32	16755.71	80.12	208.93	15
04	CONCRETO PATRON + 0.5% MICROFIBRA SINTÉTICA ALTA YEMPERATURA	210 Kplcm2	01/06/2022	29/01/2022	28	10.10	20.00	2	0.999	154.29	15732.95	80.12	196.17	5
05	CONCRETO PATRON +0.5% MICROFIBRA SINTÉTICA ALTA TEMPERATURA	210 Kglan2	01/08/2022	29/06/2022	28	10.10	20.00	2	0.999	144.25	14709:17	80.12	183.41	5

Observaciones:

Les pruebas se realizaron can almahadillos de reopreno (Durezo Shore A = 60) en le parte superior e inferior.

Las Probetas de concreta fueron elaboradas por el solicitorite, el Laboratorio sólio reolicó el ensayo a la compresión.

DATOS DE, MACAJANA DE ROTURA

INC CONSULTORIA GEOTECNIA S.A.C.

Ing. Pictura de los Angeles Agustin Dioz GERENTE GENERAL

Carlos Javier Ramirez Muñoz Ingeniero Civil CIP 140574

DERA

INFLUENCIA DEL PORCENTAJE DE MICROPERA DE POLIPROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO

fo-350kgion2 A ALTAS TEMPERATURAS, TRUULLO - 2022

SOLICITANTE

: AGUIRRE CABRETIA ALFRED EDISON - SAWEDRA TORBIO KAROL KATHERINE

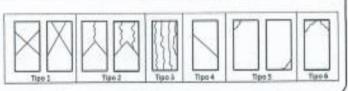
UBICACIÓN

: TRUMLIO - LA LIBERTAD

DMISIÓN DE INFORME : JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PRI	OBETA CILÍNDRICA	Resist.	Fecha di	Rotura	Edad	Diametro	Longitud	Relación	Factor de	C	Cargo		Resistencia fo	Tipo de
W	Elemento	disefic Kg/cm2	Elaboración	146	(dias)	on	679.	L/D	correction	XX	Kgs.	ow2	Kglcm2	falls
01	CONCRETO PATRON +1.0% MICROFERA SINTÉTICA ALTA TEMPERATURA	210 Kg/uni2	03/06/2022	01/07/2022	28	10.10	20.00	2	0.999	124.50	12095.27	80.12	158.30	5
02	CONCRETO PATRON +1.0% MICROFISRA GINTÉTICA ALTA TEMPERATURA	210 Kg/on/2	03/08/2022	01/07/2022	28	10.10	20.00	2	0.999	146.32	14920.25	80.12	186.04	5
03	CONCRETO PATRON + 1.0% MICROFIURA SINTETICA ALTA TEMPERATURA	210 Kg/cm2	03/06/2022	01/01/2022	20	10.20	20.00	2	0.966	125.68	12815.59	81,71	156.68	5
04	CONCRETO PATRON +1.0% MICROPIERA SINTÉTICA ALTA TEMPERATURA	210 Kg/tm2	03/06/2022	01/07/2022	28	10:20	20.00	2	0.999	136.14	13882.20	81.75	199.72	5
05	CONCRETO PATRON + 1.0% MICROFIBRA SINTÉTICA ALTA TEMPERATURA	210 Kglonž	03/06/2022	01/07/2022	28	10.10	20.00	2	0.999	117.82	12014.11	80.12	149.80	5


Observaciones:

Les pruebas se realizaran con almahadillas de neropreno (Dureos Shore A = 60) en la parte superior e inferior.

Las Probetas de concreto fueron elaburadas por el colicinante, el Laboratorio sólo realizó el ensayo a la compresión.

DATUS DE MAQUINA DE RUTURA

MARCH, PS (QUIPOS, IN* 358E 2003021). CANCONO: 100 00 Egt. CIRTHICADO DE CAUSENDÓN: UF-1461-2021 (23-13-2021). LAGORATORIO METROLOGIA PIS EQUIPOS

Tratal Latte

Ing. Picturarde les Angeles Agustin Dioz GERENTE GENERAL Carlos Jawier Rammez Muñoz Ingeniero Civil

DERA

NALUENCIA DEL PORCENTAJE DE MICROPISRA DE POLIPROPILENO SOBRE LA RESISTENCIA A LA COMPRESIÓN DE UN CONCRETO

fo-360kg/cm2 A ALTAS TEMPERATURAS, TRUULLO - 2022

POLICITANTE

: AQUIRRE CABRERA ALFRED IDISON - SAAVEDRA TORIBIO KAROL KATHERINE

BICACIÓN

: TRUJULO - LA UBERTAD

EMISIÓN DE INFORME

: JULIO DEL 2022

ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE PROBETAS DE CONCRETO

PRI	OBETA CILÍNDRICA	Resist.	Fechs de	Roturs	Edat	Diámetro	Longitud	Helación	Factor de	0	riga .	Sección	Resistencia	Tipo di
H.	Elemento	disella Kg/cm2	Elaboración	Roture	(dias)		on.	LID	correction	KN	Kgs.	out	fo Kgleniž	falls
DI	CONCRETO PATRON +13% MICROFERA SINTÉTICA ALTA TEMPERATURA	210 Kg/cm2	08/06/2022	01/07/2022	20	10.20	20.00	94	0.999	123.21	12963,72	81,71	153.60	5
02	CONCRETO PATRON +1,0% MICROFERA SINTÉTICA ALTA TEMPERATURA	218 Kg/tm2	03/06/2022	01/07/2022	28	10:10	20.00	2	0.999	117.5B	11989.63	80.12	149.50	5
03	CONCRETO PATRON + 1,0% MICROFERA SINTÉTICA ALTA TEMPERATURA	210 Kglom2	03/06/2022	01/07/2022	28	10.10	20.06	2	0.989	135.62	13829.17	80.12	172.44	5
04	CONCRETO PATRON + 10% MICROPIBRA SINTÉTICA ALTA TEMPERATURA	210 Kg/cm2	10/06/2022	01/07/2022	28	10.10	20.00	2	0.960	124.37	12682.01	86.12	158.13	5
05	CONCRETO PATRON +1.0% MICROFIBRA SINTÉTICA ALTA TEMPERATURA	210 Kglon2	03/09/2022	01/07/2022	28	10.20	20.00	2	0.999	126.43	12892.07	81.71	157.52	5

Observaciones:

Las praebas se resilauran con alocahadillos de neoprano (Durese Shore A = 60) en la parte superior e Jeferias.

Les Probetes de sonoreto fueron elaborados por el saliotante, el Letieraterio sólo reolisi el ereayo a la compresión.

DATOS DE MAQUINA DE ROTURA

MARCA: PYSTQUIPOS (N° SCRIT: 2002021) CANADDAD: 300 000 Kgf. CERTIMONIO DE CALIMANCÓN: 19-1409-2021 (10-11-2011) LABORATORIO METROLOGIA PYS BOLAPOR

JVC CONSULTORIA GEOTECNIA S.A.C. Ing. Victoria de MS Angeles Agustin Diaz. GERENTE GENERAL

Carlos Javier Ramnez Muñoz Ingeniero Civil CIP 140574

PANEL FOTOGRÁFICO

Anexo 12. Cemento Pacasmayo Verde Portland Tipo I

A- ESTUDIOS BÁSICOS

Anexo 13. Ensayo De Granulometría Por Tamizado En Agregado Grueso

Anexo 13.1. Añadimos el agua a los agregados grueso y fino.

Anexo 13.2. Dejamos reposar con agua a los agregados grueso y fino por 24 horas.

Anexo 13.3. Dejamos secar en el horno los agregados grueso y fino con agua por 24 horas.

Anexo 13.4. Pesamos el agregado grueso para obtener datos.

Anexo 13.5. Añadimos el agregado grueso en los tamices de (1 $\frac{1}{2}$ ", 1", $\frac{3}{4}$ ", $\frac{1}{2}$ ", 3/8", N°4).

Anexo 13.6. agitamos el agregado grueso en los tamices de (1 ½", 1", ¾", ½", 3/8", N°4).

Anexo 14. Ensayo De Granulometría Por Tamizado en Agregado Fino

Anexo 14.1. Añadimos el agregado fino en los tamices de (3/8", N° 4, N°8, N°16, N° 30, N°50, N°100, N° 200).

Anexo 14.2. agitamos el agregado fino en los tamices de $(3/8", N^{\circ} 4, N^{\circ} 8, N^{\circ} 16, N^{\circ} 30, N^{\circ} 50, N^{\circ} 100, N^{\circ} 200).$

Anexo 15. Peso Unitario Suelto Y Compactado en Agregado Grueso

Anexo 15.1. pesamos el recipiente vacío.

Anexo 15.2. agregamos al recipiente el agregado grueso recolectada de la cantera.

Anexo 15.3. golpeamos 25 veces en cada capa, total de capas 3.

Anexo 15.4. Enrasamos con la barra apisonadora en el recipiente con agregado grueso.

Anexo 16. Peso Unitario Suelto y Compactado en Agregado Fino

Anexo 16.1. pesamos el recipiente vacío en la balanza.

Anexo 16.2. agregamos al recipiente el agregado fino recolectada de la cantera.

Anexo 16.3. golpeamos 25 veces en cada capa, total de capas 3.

Anexo 16.4. Enrasamos con la barra apisonadora en el recipiente con agregado fino.

Anexo 17. Ensayo De Peso Específico Y Absorción En Agregado Grueso

Anexo 17.1. Retiramos el agua de los recipientes con los agregados.

Anexo 17.2. agregado grueso y fino.

Anexo 17.3. Pesamos el agregado grueso.

Anexo 17.4. secamos con un paño la muestra de agregado grueso.

Anexo 17.5. agregar el agregado grueso en la canastilla metálica.

Anexo 17.6. ponemos la canastilla metálica con el agregado grueso en la balanza.

Anexo 17.7. obtenemos el peso sumergido en agua.

Anexo 17.8. dejamos reposar en el horno por 24 horas en el horno.

Anexo 18. Ensayo De Contenido De Humedad, Peso Específico Y Absorción En Agregado Fino

Anexo 18.1. secamos el agregado grueso

Anexo 18.2. procedemos a la prueba del cono

Anexo 18.3. golpeamos 25 veces.

Anexo 18.4. procedemos a la prueba del cono

Anexo 18.5. retiramos el cono del agregado fino

Anexo 18.6. pesamos el agregado fino en la balanza.

Anexo 18.7. agregamos agua en la fiola.

Anexo 18.8. pesamos la fiola con el agua en la balanza.

Anexo 18.9. agregamos el agregado fino en la fiola con agua.

Anexo 18.10. ponemos en baño maría el agregado fino en la fiola con agua.

Anexo 18.11. pesamos el agregado fino en la fiola con agua.

Anexo 18.12. retiramos el agregado fino con agua y lo colocamos en un recipiente.

Anexo 18.13. ponemos el recipiente con el agregado fino con agua en el horno.

B-DISEÑO DE MESCLA

Anexo 19. El Ensayo Del Slump "Cono De Abrams"

Anexo 19.1. agregamos la mezcla de concreto en cono de abrams.

Anexo 19.2. golpeamos 25veces para cada capa.

Anexo 19.3. retiramos el cono de abrams de la mezcla de concreto.

Anexo 19.4. ensayo de asentamiento.

Anexo 20. Diseño De Mescla De Un Concreto 350 Kg/Cm2

Anexo 20.1. material para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 20.2. cemento para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 20.3. arena para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 20.4. gravilla para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 20.5. agua para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 20.6. preparación de diseño de mescla de un concreto 350 kg/cm2 en trompo.

Anexo 20.7. elaboración de probetas para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 20.8. elaboración de probetas para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 21. Diseño De Mescla De Un Concreto 350 Kg/Cm2 Adicionando Microfibra.

Anexo 21.1. microfibra para el diseño de mescla de un concreto 350 kg/cm2.

Anexo 21.2. materiales para el diseño de mescla de un concreto 350 kg/cm2 adicionado microfibra.

Anexo 21.3. elaboración de probetas para el diseño de mescla de un concreto 350 kg/cm2 adicionado microfibra.

Anexo 21.4. elaboración de probetas para el diseño de mescla de un concreto 350 kg/cm2 adicionado microfibra.

C- RESISTENCIA A LA COMPRESION

ANEXO 22.ENSAYO DE LA RESISTENCIA A LA COMPRESIÓN CON UN CONCRETO 350 KG/CM2 ADICIONANDO MICROFIBRA 0%,0.5% Y 1% COMPRESIÓN A TEMPERATURA DE AMBIENTE

Anexo 22.1. Curado de probetas.

Anexo 22.2. Probetas de concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1%

Anexo 22.3. ensayo de resistencia a la compresión para el concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1% a temperatura ambiente.

Anexo 22.4. Probeta con porcentajes de 0.0 %,0.5% y 1%. a temperatura ambiente, tipo de Falla Tipo 5.

Anexo 23. Ensayo De La Resistencia A La Compresión Con Concreto 350 Kg/Cm2 Adicionando Microfibra 0%,0.5% Y 1% A Altas Temperaturas.

Anexo 23.1. Probetas con porcentajes de 0.0 %,0.5% y 1%.

Anexo 23.2. briquetas para el horno de concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1% a altas temperaturas.

Anexo 23.3. Aceite para el horno de concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1% a altas temperaturas.

Anexo 23.4. realización del horno de concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1% a altas temperaturas.

Anexo 23.5. colocación de briquetas en el horno de concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1% a altas temperaturas.

Anexo 23.6. colocación de barro en el horno de concreto 350 kg/cm2 adicionando microfibra 0%,0.5% y 1% a altas temperaturas.

Anexo 23.7. medida del horno de ladrillera con ayuda de pirómetro

Anexo 23.8. pirómetro samwin sw550ª

Anexo 23.9. Probeta con porcentajes de 0.0 %,0.5% y 1%. A altas temperaturas, Falla tipo3.

Anexo 23.10. Probeta con porcentajes de 0.0 %,0.5% y 1%. A altas temperaturas, Falla tipo 3.

Anexo 23.11. máquina de resistencia a la compresión con Probeta con porcentajes de 0.0 %,0.5% y 1%. A altas temperaturas.

Anexo 23.12. ensayo de resistencia a la compresión con Probeta con porcentajes de 0.0 %,0.5% y 1%. A altas temperaturas.

Anexo 23.13. Probeta con porcentajes de 0.0 %,0.5% y 1%. a altas temperatura, Falla Tipo 3.

Anexo 23.14. Probeta con porcentajes de 0.0 %,0.5% y 1%. A altas temperatura, Falla Tipo 3.

Anexo 24. microfibra de polipropileno marca chema

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, MARIN CUBAS PERCY LETHELIER, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "Influencia del porcentaje de microfibra de polipropileno sobre la resistencia a la compresión de Concreto f´c=350 kg/cm² a altas temperaturas, Trujillo – 2022", cuyos autores son AGUIRRE CABRERA ALFRED EDISON, SAAVEDRA TORIBIO KAROL KATHERINE, constato que la investigación tiene un índice de similitud de 24.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 01 de Agosto del 2022

Apellidos y Nombres del Asesor:	Firma
MARIN CUBAS PERCY LETHELIER	Firmado electrónicamente
DNI: 26692689	por: PLMARINC el 01-08-
ORCID: 0000-0001-5232-2499	2022 21:52:52

Código documento Trilce: TRI - 0385793

