

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Burgos Zavaleta, Mayer Alexis (orcid.org/0000-0001-6088-1733)

Paredes Castillo, Dennys Angel (orcid.org/0000-0002-0158-4365)

ASESOR:

Mgtr. Diaz García, Gonzalo Hugo (orcid.org/0000-0002-3441-8005)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Adaptación al cambio climático y fomento de ciudades sostenibles y resilientes

CHIMBOTE – PERÚ 2022

DEDICATORIA

Gracias a Dios por darnos salud, guiar nuestro paso y fortaleza para culminar con éxito este proyecto de tesis. Gracias a nuestros padres por su persistencia, sacrificio y apoyo incondicional que nos ha permitido alcanzar nuestras metas en nuestra formación personal y académica. Dedicado a la familia que ha estado brindando motivación y amor. Gracias a los maestros por su persistencia y dedicación durante nuestros años universitarios.

AGRADECIMENTO

Damos gracias a Dios por darnos vida y salud, y nuestros padres que son los pilares más importantes de nuestra vida. Gracias al Mgtr. Diaz García Gonzalo Hugo, por sus grandes enseñanzas. A nuestra alma mater, la Universidad Cesar Vallejo, donde recibimos nuestra formación personal y profesional.

ÍNDICE

CA	RÁTU	LA	i
ÍND	ICE		ii
ÍND	ICE D	DE TABLAS	ii51213141517
ÍND	ICE D	DE FIGURAS	iv
l.	INTR	ODUCCIÓN	5
II.	MAR	CO TEÓRICO	7
III.	METO	DDOLOGÍA	. 12
	3.1.	Tipo y diseño de investigación	. 12
	3.2.	Variables y operacionalización	. 13
	3.3.	Población, muestra y muestreo	14
	3.4.	Técnicas e instrumentos de recolección de datos	. 15
	3.5.	Procedimientos	. 16
	3.6.	Método de análisis de datos	. 17
	3.7.	Aspectos éticos	. 17
IV.	RESU	JLTADOS	. 18
	4.1.	Generalidades	
		18	
	4.2.	Evaluación del pavimento con el método PCI	. 19
	4.3.	Evaluación del pavimento con el método VIZIR	. 25
	4.4.	Evaluación del pavimento con el método MTC	. 30
	4.5.	Evaluación del pavimento con el método IRI	. 34
RF	FERF	NCIAS	

ANEXOS

ÍNDICE DE TABLAS

Tabla 1. Técnicas e Instrumentos
Tabla 2. Resumen general de resultados método PCI de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos
Tabla 3. Resumen de resultados método VIZIR del Sector 1, Avenida Fe y Alegría
Tabla 4. Resumen de resultados método VIZIR del Sector 2, Avenida Buenos Aires
Tabla 5. Resumen de resultados método VIZIR del Sector 3, Avenida Pelicanos
Tabla 6. Resumen general de resultados método VIZIR de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos
Tabla 7. Resumen general de resultados método MTC de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos
Tabla 8. Resumen general de resultados método IRI de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos
Tabla 9. Promedio de clasificación y estado de los métodos PCI, VIZIR, MTC y IRI

ÍNDICE DE FIGURAS

Figura 1. No experimental	. 15
Figura 2. Valores según ancho de calzada del pavimento	. 20
Figura 3. Fórmula de la unidad de muestra a evaluar. ASTM D6433-07	20
Figura 4. Índice de deterioro superficial	. 23
Figura 5. Índice de deterioro superficial	. 23
Figura 6. Calificación de Condición	. 25
Figura 7. Tipos de condición según calificación de condición	25
Figura 8. Tipos de conservación según su calificación de condición	25
Figura 9. Diagrama de flujo para el cálculo de IRI con el Rugosímetro de Merlín	. 26
Figura 10. Ubicación de las principales vías de acceso al sector álamos PPAO	. 28
Figura 11. Resumen de resultados método PCI del Sector 1, Avenida Fe y Alegría	29
Figura 12. Resumen de resultados método PCI del Sector 2, Avenida Buenos Aires	30
Figura 13. Resumen de resultados método PCI del Sector 3, Avenida Pelicanos	30
Figura 14. Diagrama del método PCI	32
Figura 15. Diagrama del método VIZIR	. 35
Figura 16. Diagrama del método MTC	. 37
Figura 17. Valores de las progresivas 0+2500 hasta la 0+2900	. 41
Figura 18. Diagrama del método IRI	. 43

RESUMEN

El objetivo general de la investigación es determinar el análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022. La metodología es de tipo aplicada, diseño no experimental y de nivel cuantitativo. La población esta conformada en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022, con una extensión de 3 kilómetros. La muestra para el método PCI es 14 unidades c/u 234m2, para el método VIZIR es 30 unidades c/u 650m2, para el método MTC es 15 unidades c/u 1300m2. Lo resultados mediante el método PCI, indica un índice de condición de pavimento de 62 y se ubica en un estado de carpeta asfáltica bueno, para el método VIZIR indica un promedio de 3 estableciendo una calificación Marginal del Pavimento; por último, la metodología MTC indica un promedio de 864.73 estableciendo una condición buena del pavimento. Para corroborar mencionados métodos, se realizó la metodología IRI estableciendo un IRI promedio de 5 indicando un estado de pavimento malo.

Se concluye que tienen resultados semejantes, sin embargo, para el método pci vendría a ser la más exacta y adecuada para la calificación del pavimento, ya que es más minuciosa y precisa a la hora de evaluar un pavimento asfáltico.

Palabras clave: Evaluación superficial, VIZIR, PCI, MTC y Pavimento flexible.

ABSTRACT

The general objective of the research is to determine the comparative analysis of

the PCI, VIZIR and MTC methods on flexible pavement in the main access roads to

the Los Álamos sector - PPAO, Nuevo Chimbote - 2022. The methodology is of an

applied type, design is not experimental and quantitative level. The population is

made up of the main access roads to the Los Álamos sector - PPAO, Nuevo

Chimbote - 2022, with an extension of 3 kilometers. The sample for the PCI method

is 14 units each 234m2, for the VIZIR method it is 30 units each 650m2, for the MTC

method it is 15 units each 1300m2. The resulte using the PCI method indicate a

pavement condition index of 62 and it is located in a good asphalt binder condition.

For the VIZIR method, it indicates an average of 3, establishing a Marginal

Pavement rating; Finally, the MTC methodology indicates an average of 864.73

establishing a good pavement condition. To corroborate these methods, the IRI

methodology was carried out, establishing an average IRI of 5, indicating a bad

pavement condition.

It is concluded that they have similar results, however, for the pci method it would

be the most accurate and adequate for the qualification of the pavement, since it is

more thorough and precise when evaluating an asphalt pavement.

Keywords: Superficial evaluation, VIZIR, PCI, MTC and flexible pavement

vi

I. INTRODUCCIÓN

La grave situación de las principales calles de entrada al distrito se debe a la negligencia del gobierno al no implementar los planes de conservación a tiempo. Esto incurre en costos, por lo que el monitoreo continuo de fallas y los trabajos de mantenimiento para perseverar las carreteras son un impacto directo a través de conductores y peatones. Hoy en día, existen diferentes formas de analizar la falla de los pavimentos flexibles; en este proyecto, se utilizará el método PCI, VIZIR Y MTC para identificar fallas y poder compararlas. Al hacer este análisis comparativo, se brindará la información necesaria para la rehabilitación o mejoramiento de la superficie de la carretera, lo que validará su estado y ayudará. Por las razones anteriores, existe un problema en el Sector Los Álamos PPAO en la ciudad de nuevo Chimbote, es necesaria una evaluación superficial para dichas rutas, es decir, requiere un análisis de la superficie de la carretera y sus fallas, lo cual el propósito de este estudio utilizando los métodos PCI, VIZIR y MTC, es la que permitirá el análisis del estado actual de las vías.

Mediante el análisis de la verdad problemática en diversos eventos, se propone la siguiente formulación del problema: ¿Cuál es el resultado del análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022?

La justificación de este proyecto, es muy importante ya que utiliza métodos diferentes de análisis en la Superficie del Pavimento del sector los Álamos PPAO. En nuestras suposiciones sobre el estudio anterior, sabemos qué es hora de desarrollar un plan de mantenimiento y restauración de las principales vías de acceso y así producir resultados en términos de economía y funcionalidad.

Este estudio es una investigación teórica porque aportará los conocimientos descritos en la guía sobre las fallas de las calles, así como el tipo, zona y seriedad del daño en la superficie del pavimento, para posteriormente evaluar objetivamente la calidad del pavimento. También es práctica, ya que propone una mejor participación para el mejoramiento de la superficie del pavimento flexible y así el estado invierta en las principales vías de acceso, que, por ende, beneficiará a los

peatones y conductores que viven en dicho sector. Por consiguiente, tiene una justificación técnica ya que aportará un reconocimiento de la vía detallada y así nos brindará conocer el estado actual del pavimento para el mejoramiento de cada falla según el valor de seguridad en el que se halle, tomando en cuenta las metodologías PCI, VIZIR y MTC.

El proyecto tiene como objetivo general: Determinar el análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022 y como objetivos específicos: Determinar la condición del pavimento por el método PCI en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022, determinar el estado de servicio por el método VIZIR en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022 y determinar la condición del pavimento por el método MTC en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

Ante mencionada problemática, se planteó como hipótesis que existe una correlación entre las metodologías PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022.

II. MARCO TEORICO

INTERNACIONAL

Amaya y Rojas (2017), se ha propuesto como meta un análisis comparativo de los métodos VIZIR y PCI por examinar, en el que se ha respetado el pavimento flexible como objeto de estudio. El tipo de estudio fue cualitativo, con un diseño descriptivo y no experimental, en el cual se determinó la valuación de la via aplicando los procedimientos PCI y VIZIR. Los resultados mostraron que algunas partes del pavimento eran de mala calidad, con las vías 1 y 2 existiendo la necesidad de poder desarrollar estrategias de mitigación para aumentar la capacidad portante del propio suelo. Esto lleva a concluir que, en términos de comodidad y seguridad, el segmento vial no goza de la prestación de un servicio de calidad, lo que afecta de igual manera al usuario.

Coy (2018), se ha propuesto como objetivo general el análisis de la calidad de la vía de la calle 134 y las carreteras 52a a 53c por las metodologías VIZIR Y PCI. El tipo de método fue un método con diseño descriptivo, con un total de 137 unidades muestrales. Los resultados mostraron que la falla principal fue el desprendimiento del árido, ya sea directamente relacionado con su capacidad para soportar las condiciones exteriores, o principalmente con la calidad del árido utilizado. En resumen, la conclusión es que la calidad del pavimento es defectuosa y se deben proponer medidas de reparación.

Según Opino y Tinoco (2019), este trabajo de investigación se enfoca en la influencia del pavimento flexible y en el deterioro de la carpeta asfáltica cuando se expone a una temperatura, ultravioleta, clima frío y otras peculiaridades del clima, también a la tecnología de construcción deficiente, el envejecimiento acelerado y el deterioro acelerado. Estos evaluaron varias unidades de tramos y fallas en los distritos de Barranquilla y Santa María, por lo cual se registró condiciones patológicas. Establecieron que para intervenir de una mejor manera el pavimento, es necesario proponer mezcla asfáltica de inyección aerodinámica. Además, concluyeron que existen diferentes tipos de clasificaciones de las causas de la degradación del pavimento, y que muchas veces estas causas están involucradas en el ambiente de uso, mucho antes de que se implementen.

Waranda Mero (2017) sostiene que la protección de la red vial nacional se ha transformado en una columna fundamental del desarrollo socioeconómico del Ecuador, ya que el buen estado de los pavimentos flexibles promueve la producción agrícola del país, lo que facilitará el transporte y la comercialización. Brindando seguridad y comodidad a los usuarios y/o residentes que se benefician de líneas fijas de comunicación, desde el sector productivo hasta el sector comercial. En este proyecto de investigación de grado se aplican los métodos VIZIR (Visual Inspection de Zones et Itinéraires Á Risque) y PCI (Pavement Condition Index) para comparar y analizar la evaluación funcional de los pavimentos flexibles en el estado de Gipijapa, obteniendo los resultados de ambos métodos.

NACIONAL

Según Chaiña, G., Chaiña, O. (2019), en su trabajo nos introdujo al estudio de dos procedimientos de evaluación de pavimentos, metodología MTC Y PCI. Describiendo el estado de la carpeta asfáltica de la Vía Roma para descubrir posibles patologías de falla del pavimento. En consecuencia, se propone el mantenimiento ordinario más adecuado a esta vía y sirve de base para futuros trabajos de mantenimiento o restauración, en su caso, por parte de la entidad respectiva.

Siguiendo a Choque (2019), este trabajo se enfoca en comparar los métodos PCI y MTC para describir las condiciones viales más adecuadas y precisas con el fin de sugerir las intervenciones de pavimento necesarias en base a ciertos parámetros establecidos para proteger adecuadamente la ruta sobre pavimentos EMP. PE-3S Atuncolla calificó sus pavimentos como MALOS y tendieron a ser muy malos cuando se evaluaron con el método PCI, mientras que sus resultados fueron mediocres y tendieron a ser buenos con el método MTC. Analizando los resultados de cada método, concluyeron que el método MTC no describe con mayor precisión la superficie de la carretera porque el nivel de apreciación que esta metodología considera, es más flexible para detallar y nivelar las fallas, además las unidades de muestras son cada 200 metros, por lo que es difícil, ya que solo analiza algunas partes de manera global. En cambio, la metodología PCI, que tiene un nivel de apreciación más detallado, su desempeño y evaluación son más extensos, brindándonos más descripciones de las partes analizadas. Es por estas razones la

metodología PCI es más utilizado a nivel nacional e internacional debido a su apreciación más detallada, lo que hace que el programa de intervención de pavimento flexible sea el más adecuado

Según Mori (2018), afirmó en su trabajo que, con base en las estadísticas del MTC y los datos de pronóstico, señaló que el aumento en la mayoría de carreteras de la nación es de pavimento flexible, por lo que es fundamental de verificar las fallas que conducen al daño del pavimento, considerando diferentes factores, esto puede deberse al clima en el que se encuentran y al flujo de tráfico que soportan. Por estas razones, estudiaron las fallas que provocan en la vía, utilizando los procedimientos PCI del Manual del MTC ya que, si no se reparan, las fallas existentes en el pavimento pueden acelerar el proceso de envejecimiento de las vías del pavimento, desde daños superficiales hasta daños estructurales. A través de un estudio validado, concluyeron que las dos metodologías tienen cierta similitud, sin embargo, la metodología PCI se acerca más a la realidad porque detalla y clasifica mucho mejor las fallas en la carpeta asfáltica. Por eso, se toma como referencia estas conclusiones en la Av. Pedro Beltrán en Ventanilla - Callao y se presenta el mantenimiento rutinario requerido para mantener la superficie vial. Como último aporte, sugirieron que, en nuestro país, se debe realizar estudios convenientes sobre la carpeta asfáltica, para así desarrollar planes de mantenimiento y protección vial que compensen las fallas que enfrentan.

Según los autores Chambilla y Ramos (2021), en su tesis su población está formada por la Avenida Simón Bolívar, incluyendo un carril izquierdo y otro derecho de 3,20 km de longitud. Muestras para el método del rugosímetro MERLIN, 32 unidades de muestra, 400 ml cada una. Para la aplicación IRI-Calc-free, los carriles izquierdo y derecho tienen 6,4 km. Los resultados obtenidos por el método Merlín Roughmeter tuvieron un IRI de 3.28 en la primera pasada, clasificada como convencional, y en la segunda pasada, un IRI promedio de 3.51, clasificada como convencional. Usando la aplicación IRI-Calc-Free, el primer carril 3.85 lo calificaría como regular y el segundo carril 4.21 lo calificaría como pobre. Las conclusiones entre los valores IRI entre el MERLIN Roughmeter y la app IRI-Calc-Free son muy parecidas.

En teoría relacionada con este tema, una de las variables se divide entre PCI, que según afirman García y Silva (2018), constituye el método más completo para evaluar y definir objetivamente pavimentos rígido y flexible, en los modelos de gerencia de tránsito disponibles actualmente (página 28). Según Valer (2019), define la situación del pavimento, que cambia de cero (pavimentos en defecto o mal estado) a cien (para pavimentos en buen estado), según el cual se determinará el nivel, la severidad y el número. (p.28).

Continuando con VIZIR, donde Vargas y Limaco (2019) lo definen y evalúan el estado del pavimento a través de un índice numérico de deterioro de la superficie, en el caso de valores adimensionales, se calcula a partir del porcentaje de vía en la zona afectada de acuerdo a la extensión de la calle. Se estudió la sección del pavimento (página 22). Asimismo, Ramos (2021) es un sistema que diferencia expresamente entre defectos funcionales y estructurales. Este método divide el deterioro de la carpeta asfáltica en categorías B y A. El método comienza con un inventario de defectos basado en su extensión y severidad. (p.18).

Culminando en el MTC, Campo y Trebejo (2021) nos dicen que proponen criterios adecuados que se deben aplicar para gestionar de manera efectiva un conjunto de actividades para mantener las condiciones viales con adecuada serviciabilidad, incluyendo puentes, túneles y los elementos que componen la vía (pág. 18). Asimismo, Chaiña y Chaiña (2021) mencionan que facilita el desarrollo de sistemas eficientes de transporte vial, ferroviario, aéreo y marítimo, así como esquemas de concesión dentro de sus capacidades, con defectos superficiales incluidos los defectos superficiales. La capa de asfalto en sí no tiene nada que ver con la estructura del pavimento (p.44).

En cuanto a la teoría relacionada con este tema, se revisa el concepto correspondiente a las variables de evaluación de la superficie del pavimento, el cual, según Granda (2019), se refiere a la inspección del pavimento, utilizando diferentes métodos y herramientas para evaluar el estado de la misma. pavimento Carretera. Porque, las imperfecciones de la superficie de la carretera deben ser consideradas para obtener una indicación de referencia de su estado. (p. 30). De igual forma, Berríos, Flores, Ramos y Reyes (2020) se refieren al propósito de evaluar la superficie o función de un pavimento, es decir, identificar defectos

relacionados con el estado general de calidad superficial y condición del pavimento (p. 25). Asimismo, Linares (2021) se define como la evaluación y clasificación de la superficie de la capa asfáltica con el fin de poder detectar la presencia de fallas y analizar la extensión del daño que se ha producido. (p. 45)

Esta variable a su vez está estructurada mediante sus dimensiones; como dimensión 1, factores de evaluación que según Guzmán (2017), los deflectómetros de impacto (FWD) se utilizan ampliamente para la evaluación in situ no destructiva del módulo de capas de pavimento flexible. Para evaluar el pátron de la capa de asfalto, es necesario ajustar la deflexión o volver a calcular el módulo a la temperatura de referencia. Asimismo, los módulos de cómputo inverso que componen las demás capas de la estructura deben ser ajustados para que sean comparables a los obtenidos en las pruebas de laboratorio.

Luego, considerando la dimensión 2, que es una apreciación de valores según Gonzales, Ruiz y Guerrero (2019), la desviación estándar estimada debe ser menor al valor asumido para asegurar una estimación confiable de PCI en el estudio 95% del tiempo. De lo contrario, la cantidad de muestras requeridas debe volver a calcularse en función del valor de desviación estándar alcanzado, y se volverán a examinar celdas adicionales, cuyos resultados se extraerán aleatoriamente junto con los resultados obtenidos previamente para la celda examinada inicialmente.

Continuando con la dimensión 3, falla superficial, según Saavedra y Sarmiento (2021), la degradación/falla del pavimento flexible se puede dividir en dos categorías: degradación/falla estructural y degradación/falla superficial. El primer tipo de daño suele estar asociado con costosos trabajos de reparación. El segundo tipo de deterioro suele estar asociado con el trabajo de mantenimiento regular (por ejemplo, capas delgadas de concreto asfáltico o preparación de la superficie).

De acuerdo con la dimensión 4 de Muñoz y Zeballos (2021), la seguridad de los pavimentos, los pavimentos flexibles en contacto directo con los vehículos requieren de una caracterización específica de la capa superficial para tener suficiente resistencia al deslizamiento para brindar seguridad a los usuarios de la vía. De acuerdo con las situaciones de funcionamiento del área de la carretera, el

entorno y las condiciones de funcionamiento del vehículo, el valor de la resistencia al derrape se obtiene en cada unidad de tramo de la superficie de la carretera.

Finalmente, para la 5 dimensión, el estado de la superficie vial, según Salomón (2017), se debe monitorear continuamente la evolución del estado físico de la vía, y para lograr la clasificación de la red vial, se debe monitorear el estado físico de la vía. El camino debe ser monitoreado. caminos, ya que cada camino se deteriora con el tiempo y el tráfico. Actualmente, el procedimiento para medir el Índice de Condición del Pavimento (PEI) se describe en la norma ASTM D 5340. PEI es una cuantificación numérica que refleja las condiciones de la carretera. Los pavimentos se clasifican según la extensión y severidad de los tipos de daños existentes. Los valores van de 0 a 100, donde 0 es el peor estado del camino y 100 es el mejor estado del camino.

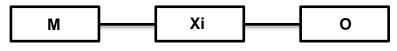
III. METODOLOGIA

3.1. Tipo y diseño de investigación

En base a este procedimiento, la investigación es cuantitativa, por lo que se determinan variables de investigación en el sentido de que es necesario medir y comprender la gravedad del problema en la investigación.

Tipo de investigación

Este es un estudio aplicado ya que consiste en anotar las características y objetivos de la capa asfáltica del pavimento. En otras palabras, tratamos de medir variables y recopilar información. Según Córdoba y Mechato (2020), la investigación aplicada tiene como objetivo la de utilizar los conocimientos adquiridos para guiarnos en la solución de dificultades diaria.


Diseño de investigación

Finalmente, el estudio utilizó un diseño no experimental porque no teníamos control directo sobre las variables independientes. Nuevamente, es lateral en cuanto su objetivo es especificar y examinar su incidencia e interrelaciones en un momento dado. Para Andrade (2018), este tipo de proyecto no busca manipular

variables de manera intencional para observar cómo se comportan los fenómenos en su entorno natural.

El diseño del estudio es no experimental porque puede reflejarse en Imagen siguiente:

Figura 1. No experimental - descriptivo

Fuente. Elaboración Propia

Dónde:

M: Prueba del pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022

Xi: Variable dependiente: Evaluación superficial del pavimento.

O: Fruto de la valoración de cada sección utilizando el método PCI, VIZIR y MTC.

3.2. Variables y operacionalización

En este proyecto de investigación se declaró dos variables: Método PCI, VIZIR, MTC y Evaluación Superficial. En las variables anteriores se descomponen algunos puntos específicos pertenecientes a la matriz de operaciones, a saber:

Se empezó con descripción conceptual; Según (Mora y Serrano,2020, p.32), el PCI es un procedimiento que implica la determinación de las condiciones de la superficie de la carretera a través de una inspección visual para determinar el tipo, la gravedad y la cantidad de fallas observadas. También (Morales, 2019, p.28), el VIZIR es un sistema visual que permite la excepción o diferenciación de las fallas estructurales de las funcionales, de una forma clara y estricta. Por lo tanto, según el (Mtc 2018, p.67), son indicadores que definen y cuantifican el estado servicio unidireccional, generalmente utilizado como límite la medida en que se permite que evolucionen las condiciones de su superficie, función, estructura y seguridad.

Según el (ASTM D6433-16, 2016, P.2), es una evaluación de la superficie del pavimento para identificar las fallas que lo afectan directamente y comprender su estado según el método utilizado

Continuando, la definición operacional de la primera variable; el pavimento flexible se evalúa utilizando los métodos PCI, VIZIR y MTC para comprender el estado de su superficie y analizar más a fondo sus métodos.

Seguido, la definición operacional de la segunda variable; para esta variable se utilizan tres métodos, uno el PCI, que trata de determinar el grado de deterioro del pavimento para entender el tipo de falla, y luego determina el cálculo del índice de condición de la vía, dos el VIZIR, que no requieren equipos costosos, se realizan examinando en detalle las fallas que ocurren en la superficie de la carretera, y tres el MTC, se utiliza un inventario detallado de la vía para establecer su clasificación y determinar su estado actual.

Por tanto, sus dimensiones se dividen en seis, a saber: factores de evaluación, apreciación de valores, mantenimiento, fallas superficiales, seguridad del pavimento y estado del pavimento.

Dentro de sus indicadores se propuso el tipo de fallas, tarea de campo, mantenimiento frecuente, desprendimiento, entre otras.

Finalmente, la escala de medida de las dimensiones es una escala de Ordinal (Anexo 1).

3.3. Población, muestra, muestreo, unidad de análisis

3.3.1. Población

La población se constituye por el pavimento flexible localizado en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022, con una extensión de 3 kilómetros.

• Criterios de inclusión:

Se observan patologías del pavimento.

Criterios de exclusión:

No se consideró el pavimento que se encontró en un estado óptimo.

3.3.2. Unidad de análisis

La unidad de análisis para el proyecto de investigación sería una sección de pavimento flexible con una dimensión de 36 metros tomados de las 14 muestras totales ubicados en las principales vías de acceso al sector los álamos PPAO de los siguientes tramos:

• Tramo 1:

La Av. Fe Alegría con la intersección de la Av. Buenos Aires.

• Tramo 2:

La Av. Pelicanos.

3.4. Técnicas e instrumentos de recolección de datos

3.4.1. Técnicas

Para Mendoza y Ávila (2020), se utilizan para realizar un proceso con diferentes métodos, también para recolectar datos como: entrevistas, observaciones y encuestas; en este trabajo se utilizarán observaciones visuales consistentes en caminar y conducir para realizar la investigación. y ser capaz de aplicar el método PCI, VIZIR o MTC.

3.4.2. Instrumentos

Según Carmejo (2018), estas son implementos utilizadas en las metodologías para permitir la recolección de datos y la medición de las variables e indicadores de la encuesta.

Siguiendo los instrumentos a utilizar:

- _ Fichas de observación.
- _ Ficha documental.

Tabla 1. Técnicas e instrumentos

OBJETIVOS	POBLACIÓN	TECNICA	INSTRUMENTO
Determinar el análisis comparativo			
de los métodos PCI, VIZIR y MTC			- Fichas de
sobre el pavimento flexible en las			observación.
principales vías de acceso al	Longitud de 3	Observación	- Ficha
sector Los Álamos – PPAO, Nuevo	kilómetros		documental.
Chimbote - 2022			
Determinar la condición del			- Fichas de
pavimento por el método PCI en			observación.
las principales vías de acceso al	Longitud de 3	Observación	- Ficha
sector Los Álamos – PPAO, Nuevo	kilómetros		documental.
Chimbote – 2022.			
Determinar el estado de servicio			
por el método VIZIR en las			- Fichas de
principales vías de acceso al	Longitud de 3	Observación	observación.
sector Los Álamos – PPAO, Nuevo	kilómetros		- Ficha
Chimbote – 2022.			documental.
Determinar la condición del			
pavimento por el método MTC en			- Fichas de
las principales vías de acceso al	Longitud de 3	Observación	observación.
sector Los Álamos – PPAO, Nuevo	kilómetros		- Ficha
Chimbote – 2022.			documental.

3.5. Procedimientos

El proceso se fracciona en etapas de campo y de gabinete. Primero, la superficie de la carretera se divide en segmentos, y estos segmentos se dividen en tramos. La carretera ha sido inspeccionada en el sitio con las medidas de seguridad necesarias, luego se mide el pavimento y se parte en secciones calculadas, cada sección comienza y termina en una perspectiva sucesiva. Posteriormente, se examina cada sección para registrar el tipo de falla, la severidad y su área en formatos PCI, VIZIR y MTC.

Utilizando los datos obtenidos en campo, se calcularon el método PCI, el método VIZIR y el manual de conservación vial MTC en cada sección, para determinar el estado general de la superficie de la carpeta asfáltica. Finalmente, se comparan las tres metodologías y así buscar la mejor opción de intervención en base al rango total de las calles.

3.6. Evaluación del pavimento con el método PCI

Con el fin de delinear el área de levantamiento de pavimento de las principales vías de acceso al sector los Álamos PPAO, se operó el área de UM y la evaluación de unidad, donde estos datos según el tipo de fallas, se apuntaron en un formulario de registro y se procedieron a calcular en el Software Evalpav para así saber cuándo es el Índice de Condición de Pavimento global y UM. Cálculo del área de UM: Según norma ASTM D6433-07, esto manifiesta que el área de UM no puede exceder de 315 metros cuadrados ni bajas de 135 metros cuadrados.

Figura 2. Valores según ancho de calzada del pavimento

Ancho de calzada (m)	Longitud de la unidad de muestreo (m)
5.00	46.0
5.50	41.8
6.00	38.3
6.50	35.4
7.30	31.5

Fuente: Manual PCI, Varela (2006)

Las principales vías de acceso al sector los álamos PPAO, tiene un recorrido de 3km de largo y 6.5m de ancho. De acuerdo con el rango definido, se establece que la longitud de unidad de muestra es de 36 m, por lo que el área de muestreo requerida es de 234 m2, y este parámetro es válido dentro del rango condicional. Al calcular el número total de muestras, el valor de la longitud del camino se divide por la longitud de la muestra, lo que da como resultado un valor de 84. El estándar establece una fórmula para establecer el número de UM como se muestra en la figura.

$$n = \frac{NxS^2}{\frac{e^2}{4}x(N-1) + S^2}$$

Figura 3. Fórmula de la unidad de muestra a evaluar. ASTM D6433-07 (2007)

Según fórmula indica:

N: N° total de muestras

e: error 5%

S: Desviación estándar con un valor de 10 ya que el pavimento es asfalto.

Al calcular esta fórmula, nos arroja un resultado de 14 UM a evaluar.

Posteriormente, se utilizan las UM siguientes:

U14) 0+2808 – 0+2844

Cálculo y esquema de las UM.

Según ASTM D6433, nos menciona que el área de muestreo es de: 230±93 metros cuadrados.

Máximo: 323.00 m²
 Mínimo: 137.00 m²

Se efectúa la siguiente fórmula de muestras:

$$N = \frac{L_T}{L_M} = \frac{3000}{36} = 83.3$$

Dónde:

L_T: Longitud total del tramo

- L_M: Longitud de la muestra

Por tanto, se obtiene 83.3 secciones Por comodidad tomamos el valor de total de muestras como 84.

UM para la evaluación

$$n = \frac{NxS^2}{\frac{e^2}{4}x(N-1) + S^2}$$

Donde:

N: Número total de muestra

- S: Desviación estándar ASTM D6433 (10)

- E: Error Aceptable (3%)

$$n = \frac{84 * 10^2}{\frac{5^2}{4} * (84 - 1) + 10^2}$$

$$n = 13.57$$

Se obtuvo 13.57 redondeamos este valor a 14 UM para evaluación de pavimento flexible. Según manual de PCI, este sugiere que estas unidades de muestreo se tomen después de intervalos, procedemos a encontrar dicho número de intervalos:

Intervalos de muestreo

$$i = \frac{N}{n} = \frac{83.3}{14} = 5.95$$

Esquema del muestreo del pavimento

Fuente: Elaboración Propia

Al registrar y recolectar las fallas encontradas de las vías de estudio en el instrumento (formato PCI), se procedió a llenar en el software EVALPAV, determinando el valor del PCI, por sector de vía y promedio general. Por lo cual, el software EVALAPAV nos arroja de manera automática los valores de m (Número máximo admisible), VRC (Valor deducido corregido) y el PCI de cada unidad de muestra. Para así, tener una idea resumida del estado del pavimento de las principales vías de acceso al sector los Álamos PPAO.

3.7. EVALUACIÓN DEL PAVIMENTO CON EL MÉTODO VIZIR


En la metodología VIZIR, se ha establecido la cantidad de 24 muestras cada 100 m, empleando la norma establecida para su elaboración, los gráficos de índice de figuración, índice de deformación y las tablas de índice de deterioro superficial (Is) que se muestran a continuación.

Figura 4. Índice de deterioro superficial

RANGO	CALIFICACIÓN
1 y 2	BUENO
3 y 4	REGULAR
5,6 y 7	DEFICIENTE

Fuente: Elaboración Propia

Figura 5. Índice de deterioro superficial

Fuente: Elaboración Propia

Procedimiento para el llenado de la hoja de cálculo método VIZIR

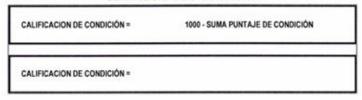
Primer paso: Para cada tipo de falla encontrada por 100 metros de camino, el valor derivado se calculó como un porcentaje, dividido por el área total de fallas encontradas en la unidad de muestra, y se muestra en la tabla a continuación.

Segundo paso: Si se ha encontrado un valor deducido, se utilizará la siguiente tabla de acuerdo con las reglas establecidas por el método VIZIR

En la tabla nos indican en base al tipo de daño que se puede encontrar, estos son para fallas de tipo B, donde:

- ↓ Las fallas consideradas para el índice de deformación(id) son: Desprendimientos, desintegración de bordes del pavimento, huecos y descascaramiento.
- ♣ Las fallas que se consideran para el índice de figuración(if) son piel de cocodrilo, ahuellamiento.
- Para la falla de bacheos y parcheos, se considera solo para corrección de reparación.
- Esto llega al resultado del índice del deterioro superficial (Is).

Al registrar las fallas encontradas según la metodología VIZIR, se procedió a llenar los datos de las fallas en Excel, determinando el (IS), por sector de vía y promedio general. Esto para tener una idea general del estado del pavimento de las principales vías de acceso al sector los Álamos PPAO.


Se ha elaborado una tabla donde se muestra a manera resumen, los resultados de cada unidad de muestra, determinando el Índice de Deterioro Superficial (IS).

3.8. EVALUACIÓN DEL PAVIMENTO CON EL MÉTODO MTC

En el método MTC, se estableció la cantidad de 15 muestras a cada 200m, utilizando las normas establecidas para su elaboración, las tablas de condición, tipo y calificación según el manual de carreteras de conservación vial.

Se elaboro el formato de calificación de acuerdo al MTC.

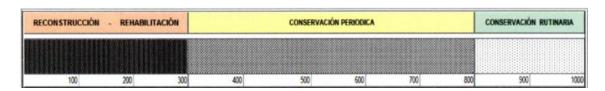
Figura 6. Calificación de Condición

Fuente: MTC

La calificación indica la condición del pavimento flexible y se simplifica en tres tipos de condiciones.

- Bueno
- Regular
- Malo

Jerarquía de calificación de condición para establecer la condición del pavimento flexible.


Figura 7. Tipos de condición según calificación de condición

CONDICIÓN BUENO	> 800
CONDICIÓN REGULAR	>300 y ≤ 800
CONDICIÓN MALO	≤ 300

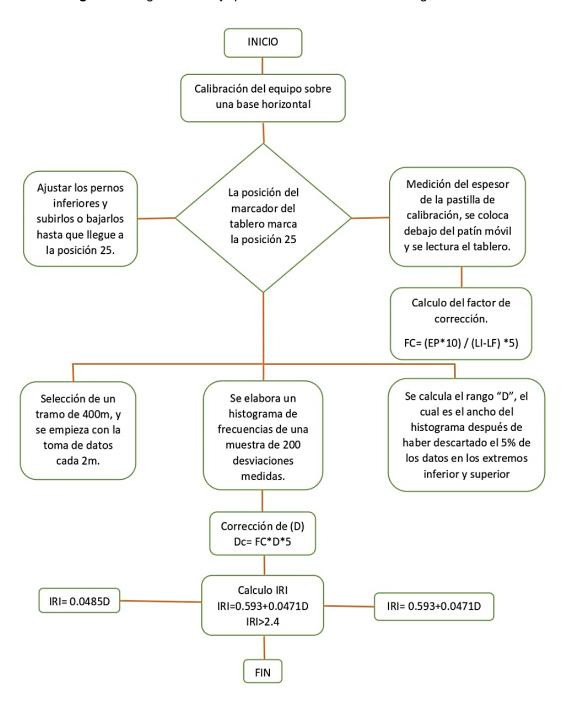
Fuente: MTC

En base a la calificación de condición superficial del pavimento, se resuelve que, el tipo de conservación a realizar en cada sección de 200m de longitud, por unidad de muestra.

Figura 8. Tipos de conservación según su calificación de condición

Fuente: MTC

Procedimiento para el llenado de la hoja de cálculo método MTC


Se identifico las fallas encontradas cada 200 metros de la vía, para resolver la condición de pavimento se emplea la ecuación simplificada ponderada, para después dar la puntuación de condición, según el porcentaje de extensión en base al tipo de daño y sus intervalos de puntuación.

Al registrar las fallas encontradas según la metodología MTC, se procedió a llenar los datos de las fallas en Excel, determinando su calificación de condición de

promedio general. Para así tener una idea general de cuál es el estado del pavimento de las principales vías del sector los Álamos PPAO.

3.9. EVALUACIÓN DEL PAVIMENTO CON EL MÉTODO IRI

Figura 9. Diagrama de flujo para el cálculo de IRI con el Rugosímetro de Merlín

3.1. Método de análisis de datos

Para el procesamiento de datos, en este proyecto se utilizará tablas y formatos de pavimento asfáltico dadas por métodos PCI, VIZIR y MTC.

El análisis de datos se llevará a cabo con herramientas de Microsoft Excel, el programa EVALPAV y se ejecutará mediante gráficos de registro, líneas y círculos (sectorizados).

3.2. Aspectos Éticos

Durante el desarrollo de la investigación se cumplen los principios de la Universidad Cesar Vallejo y su código de ética, en este sentido se garantiza el respeto a los derechos de propiedad intelectual de otros investigadores, ya que se cita correctamente el material presentado, con lo cual se evita el plagio. Por otro lado, dado que los resultados mostrados no han sido manipulados ni alterados, se sigue el principio de honestidad. Además, se cumplió con el principio de responsabilidad al asumir las consecuencias de la conducta durante la investigación. Una vez más, se hace justicia porque todos los miembros son tratados por igual. Finalmente, con la divulgación pública del proyecto, se realiza el principio de transparencia.

IV. RESULTADOS

4.1. Generalidades

Ubicación: Las principales vías de acceso al Sector los Álamos PPAO, se ubicó en el distrito de Nuevo Chimbote la cual está comprendida por 3 sectores, el primer sector que corresponde a la Av. Fe y Alegría, el segundo sector a la Av. Buenos Aires y el tercer sector a la Av. Pelicanos.

Longitud de la vía	3km
Ancho de calzada	6.50m
Unidad de muestra PCI	234m2
Unidad de muestra VIZIR	650m2
Unidad de muestra MTC	1300m2

SINDUSTRIAL SANTA ANGELA

GERBIN STREET STRE

Figura 10: Ubicación de las principales vías de acceso al sector álamos PPAO.

Objetivo 1: Determinar la condición del pavimento por el método PCI en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

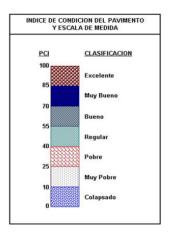

METODO PCI

Figura 11. Resumen de resultados método PCI del Sector 1, Avenida Fe y Alegría.

ANALISIS COMPARATIVO DE LOS METODOS PCI, VIZIR Y MTC SOBRE EL PAVIMENTO FLEXIBLE EN LAS PRINCIPALES VIAS DE ACCESO AL SECTOR LOS ALAMOS- PPAO, NV. CHIMBOTE-2022

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	TRAMO: SECTOR 1 / CARRIL CALZADA										
Nº	AREA (m²)	UNIDAD DE MUESTREO	PROGRESIVA			VDC	PCI	CLASIFICACION			
N-			INICIAL -	FINAL	m	VDC	FCI	CLASIFICACION			
01	234.0	1	00+000 -	00+036		77	23	Muy Pobre			
02	234.0	2	00+216 -	00+252		32	68	Bueno			
03	234.0	3	00+432 -	00+468	7.6	32	68	Bueno			
04	234.0	4	00+648 -	00+684	7.3	44	56	Bueno			
			54	Regular							

Fuente: Elaboración Propia

Figura 12. Resumen de resultados método PCI del Sector 2, Avenida Buenos Aires.

ANALISIS COMPARATIVO DE LOS METODOS PCI, VIZIR Y MTC SOBRE EL PAVIMENTO FLEXIBLE EN LAS PRINCIPALES VIAS DE ACCESO AL SECTOR LOS ALAMOS- PPAO, NV. CHIMBOTE-2022

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	TRAMO: SECTOR 2 / CARRIL CALZADA										
Nº	AREA (m²)	UNIDAD DE	PROGRE	SIVA		VDC		PCI			
N°		MUESTREO	INICIAL -	FINAL	m		FCI	CLASIFICACION			
01	234.0	5	00+864 -	00+900		16	84	Muy Bueno			
02	234.0	6	01+080 -	01+152		16	84	Muy Bueno			
03	234.0	7	01+296 -	01+332		16	84	Muy Bueno			
04	234.0	8	01+512 -	01+548		0	100	Excelente			
05	234.0	9	01+728 -	01+764		0	100	Excelente			
			90	Excelente							

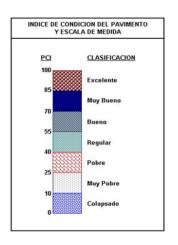
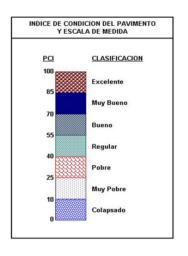



Figura 13. Resumen de resultados método PCI del Sector 3, Avenida Pelicanos.

ANALISIS COMPARATIVO DE LOS METODOS PCI, VIZIR Y MTC SOBRE EL PAVIMENTO FLEXIBLE EN LAS PRINCIPALES VIAS DE ACCESO AL SECTOR LOS ALAMOS- PPAO, NV. CHIMBOTE-2022

METODO ESTANDAR DE EVALUACION DEL INDICE DE LA CONDICION SUPERFICIAL DEL PAVIMENTO CARRETERAS CON SUPERFICIE ASFALTICA ASTM D 6433 (2003)

	TRAMO: SECTOR 3 / CARRIL CALZADA										
	AREA (m²)	UNIDAD	PROGRESIVA	PCI							
Nº		MUESTREO	INICIAL - FIN	AL m	VDC	PCI	CLASIFICACION				
01	234.0	10	01+944 - 01+	980	16	84	Muy Bueno				
02	234.0	11	02+160 - 02+	196	77	23	Muy Pobre				
03	234.0	12	02+376 - 02+	412	77	23	Muy Pobre				
04	234.0	13	02+592 - 02+	628 6.6	62	38	Pobre				
05	234.0	14	02+808 - 02+	844 6.1	67	33	Pobre				
			40	Regular							

Fuente: Elaboración Propia

Tabla 2. Resumen general de resultados método PCI de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos

N°	Área	Unidad de	Progresiva			VDC	DCI	Clasificación
N.	(m²)	Muestreo	1 -	· F	m.	VDC	PCI	Clasificación
01	234.0	001	00+000	00+036		77	23	Muy Pobre
02	234.0	002	00+216	00+252		32	68	Bueno
03	234.0	003	00+432	00+468	7.6	32	68	Bueno
04	234.0	004	00+648	00+684	7.3	44	56	Bueno
05	234.0	005	00+864	00+900		16	84	Muy Bueno
06	234.0	006	01+080	01+116		16	84	Muy Bueno
07	234.0	007	01+296	01+332		16	84	Muy Bueno
80	234.0	800	01+512	01+548		00	100	Excelente
09	234.0	009	01+728	01+764		00	100	Excelente
10	234.0	010	01+944	01+980		16	84	Muy Bueno
11	234.0	011	02+160	02+196		77	23	Muy Pobre
12	234.0	012	02+376	02+412		77	23	Muy Pobre
13	234.0	013	02+592	02+628	6.6	62	38	Pobre
14	234.0	014	02+808	02+808 02+844		67	33	Pobre
-		P	ROMEDIO				62	Bueno

INTERPRETACIÓN:

En la tabla 2, este es el resumen global de resultados de los 3 sectores por el método PCI, donde indica un promedio total de 62 estableciendo un pavimento de clasificación BUENO.

Figura 14. Diagrama del método PCI

Fuente: Elaboración Propia

INTERPRETACIÓN:

En el diagrama se presentan los resultados que se han recolectado en las principales vías de acceso, por lo cual muestra la mayor cantidad de puntos casi en la parte superior del gráfico, donde esto indica que están en estado de pavimento BUENO.

Objetivo 2: determinar el estado de servicio por el método VIZIR en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

METODO VIZIR

Tabla 3. Resumen de resultados método VIZIR del Sector 1, Avenida Fe y Alegria.

	PROGRESIVAS		VIZIR	_
UNIDADES -	INICIO	FIN	IS	CALIFICACIÓN
UM - 1	0+000	0+100	4	Marginal
UM - 2	0+100	0+200	3	Marginal
UM - 3	0+200	0+300	2	Bueno
UM - 4	0+300	0+400	2	Bueno
UM - 5	0+400	0+500	2	Bueno
UM - 6	0+500	0+600	3	Marginal
UM - 7	0+600	0+700	3	Marginal
UM - 8	0+700	0+800	3	Marginal
		PROMEDIO	3	Marginal

Fuente: Elaboración Propia

Tabla 4. Resumen de resultados método VIZIR del Sector 2, Avenida Buenos Aires.

UNIDADES -	PROGRESIVAS		VIZIR	
	INICIO	FIN	IS	CALIFICACIÓN
UM – 9	0+800	0+900	2	Bueno
UM – 10	0+900	0+1000	2	Bueno
UM – 11	0+1000	0+1100	1	Bueno
UM – 12	0+1100	0+1200	3	Marginal
UM – 13	0+1200	0+1300	1	Bueno
UM – 14	0+1300	0+1400	1	Bueno
UM – 15	0+1400	0+1500	1	Bueno
UM – 16	0+1500	0+1600	1	Bueno
UM – 17	0+1600	0+1700	3	Marginal
		PROMEDIO	2	Bueno

Tabla 5. Resumen de resultados método VIZIR del Sector 3, Avenida Pelicanos.

	PROGRESIVAS		VIZIR	_
UNIDADES -	INICIO	FIN	IS	CALIFICACIÓN
UM – 18	0+1700	0+1800	3	Marginal
UM – 19	0+1800	0+1900	4	Marginal
UM – 20	0+1900	0+2000	4	Marginal
UM – 21	0+2000	0+2100	4	Marginal
UM – 22	0+2100	0+2200	4	Marginal
UM – 23	0+2200	0+2300	4	Marginal
UM – 24	0+2300	0+2400	2	Bueno
UM – 25	0+2400	0+2500	2	Bueno
UM – 26	0+2500	0+2600	3	Marginal
UM – 27	0+2600	0+2700	3	Marginal
UM – 28	0+2700	0+2800	4	Marginal
UM – 29	0+2800	0+2900	4	Marginal
UM – 30	0+2900	0+3000	4	Marginal
		PROMEDIO	3	Marginal

Tabla 6. Resumen general de resultados método VIZIR de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos

UNIDADES	PROGRESIVAS		VIZIR	
	INICIO	FIN	IS	CALIFICACIÓN
UM - 1	0+000	0+100	4	Marginal
UM - 2	0+100	0+200	3	Marginal
UM - 3	0+200	0+300	2	Bueno
UM - 4	0+300	0+400	2	Bueno
UM - 5	0+400	0+500	2	Bueno
UM - 6	0+500	0+600	3	Marginal
UM - 7	0+600	0+700	3	Marginal
UM - 8	0+700	0+800	3	Marginal
UM - 9	0+800	0+900	2	Bueno
UM - 10	0+900	0+1000	2	Bueno
UM - 11	0+1000	0+1100	1	Bueno
UM - 12	0+1100	0+1200	3	Marginal
UM - 13	0+1200	0+1300	1	Bueno
UM - 14	0+1300	0+1400	1	Bueno
UM - 15	0+1400	0+1500	1	Bueno
UM - 16	0+1500	0+1600	1	Bueno
UM - 17	0+1600	0+1700	3	Marginal
UM - 18	0+1700	0+1800	3	Marginal
UM - 19	0+1800	0+1900	4	Marginal
UM - 20	0+1900	0+2000	4	Marginal
UM - 21	0+2000	0+2100	4	Marginal
UM - 22	0+2100	0+2200	4	Marginal
UM - 23	0+2200	0+2300	4	Marginal
UM - 24	0+2300	0+2400	2	Bueno
UM - 25	0+2400	0+2500	2	Bueno
UM - 26	0+2500	0+2600	3	Marginal
UM - 27	0+2600	0+2700	3	Marginal
UM - 28	0+2700	0+2800	4	Marginal
UM - 29	0+2800	0+2900	4	Marginal
UM - 30	0+2900	0+3000	4	Marginal
		PROMEDIO	3	Marginal

INTERPRETACIÓN:

En la tabla 6, esta muestra el resumen general de resultados de los 3 sectores por el método VIZIR, donde nos indica un promedio ponderado de 3 estableciendo una calificación Marginal del Pavimento.

Figura 15. Diagrama del método VIZIR

Fuente: Elaboración Propia

INTERPRETACIÓN:

En el diagrama VIZIR se aprecia los resultados obtenidos en las principales vías de acceso al sector los Álamos PPAO, por lo cual nos muestran casi todos los puntos en la parte superior del gráfico, concluyendo que el pavimento está en estado Marginal.

Objetivo 3: Determinar la condición del pavimento por el método MTC en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

METODO MTC

Tabla 7. Resumen general de resultados método MTC de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos

	amos y r.v.r. onearros								
	PROGRESIVAS		MTC		TIPO DE INTERVENCION				
N°	INICIAL	FINAL	CONDICIÓN	CLASIFICACIÓN	SEGÚN CLIF. DE COND.				
1	0+000	0+200	849.80	Bueno	Conservación Rutinaria				
2	0+200	0+400	949.85	Bueno	Conservación Rutinaria				
3	0+400	0+600	947.26	Bueno	Conservación Rutinaria				
4	0+600	0+800	915.34	Bueno	Conservación Rutinaria				
5	0+800	0+1000	949.91	Bueno	Conservación Rutinaria				
6	0+1000	0+1200	983.38	Bueno	Conservación Rutinaria				
7	0+1200	0+1400	1000.00	Bueno	Conservación Rutinaria				
8	0+1400	0+1600	1000.00	Bueno	Conservación Rutinaria				
9	0+1600	0+1800	986.48	Bueno	Conservación Rutinaria				
10	0+1800	0+2000	650.00	Regular	Conservación Periódica				
11	0+2000	0+2200	650.00	Regular	Conservación Periódica				
12	0+2200	0+2400	650.00	Regular	Conservación Periódica				
13	0+2400	0+2600	882.85	Bueno	Conservación Rutinaria				
14	0+2600	0+2800	906.16	Bueno	Conservación Rutinaria				
15	0+2800	0+3000	650.00	Regular	Conservación Periódica				
	PROME	DIO	864.73	Bueno	Conservación Rutinaria				

Fuente: Elaboración Propia

Interpretación:

Determinando un valor ponderado para hallar el estado del pavimento (MTC) para las 15 UM, se obtuvo como resultado un valor numérico de 864.73, lo que se concluye a un estado de clasificación BUENO, para las principales vías de acceso al sector los álamos PPAO.

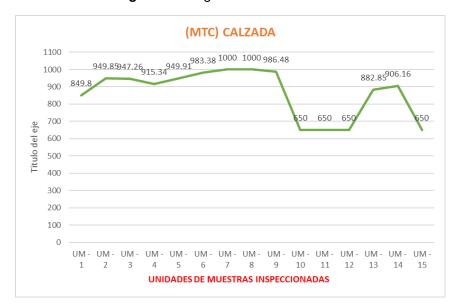


Figura 16. Diagrama del método MTC

Fuente: Elaboración Propia

INTERPRETACIÓN:

En el diagrama del método MTC se observó los resultados que se han elaborado en las principales vías de acceso, donde se aprecia casi la mayor cantidad de puntos en la parte superior, donde esto indicaría que el pavimento se encuentra en estado BUENO.

MÉTODO IRI

Con base en el histograma de frecuencias, se procede a calcular el rango "D", cuyo eje "x" representa el intervalo de la desviación y el eje "y" representa la frecuencia.

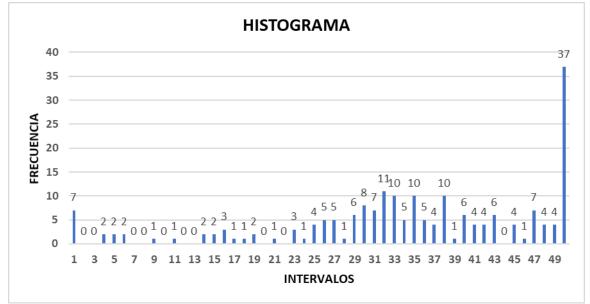


Figura 17. Valores de las progresivas 0+25000 hasta la 0+2900

Fuente: Elaboración Propia

INTERPRETACIÓN:

Para el rango de desviación, además del gráfico, también necesitamos eliminar 10 datos del extremo izquierdo, por ejemplo, eliminar 10 datos del extremo derecho y eliminar los datos de la izquierda del intervalo de 1 a 5, dejando una unidad decimal igual a 1/2 = 0.5, lo mismo ocurre con el extremo derecho, con 10 cifras quitadas del intervalo 50, quedando una unidad fraccionaria de 27/37 = 0.7297. Por tanto, existe un rango D= 0,5+36+0,7297= 37,2297 unidades. El rango D determinado debe expresarse en milímetros por unidad (0.9090 x 37.2297 x 5 = 169.209.

Tabla 8. Resumen general de resultados método IRI de los 3 sectores; Av. Fe y alegría, Av. Buenos aires y Av. Pelicanos

	PROGR	ESIVAS	RUGOSIDAD	ESTADO DEL
N°	INICIAL	FINAL	m/km	PAVIMENTO
1	0+000	0+400	3.681	Regular
2	0+400	0+800	5.160	Muy malo
3	0+800	0+1200	2.116	Bueno
4	0+1200	0+1600	2.958	Regular
5	0+1600	0+1700	1.663	Bueno
6	0+1700	0+2100	7.380	Muy malo
7	0+2100	0+2500	8.034	Muy malo
8	0+2500	0+2900	8.563	Muy malo
9	0+2900	0+3000	6.098	Muy malo
	PROMED	OIO	5	Malo

Fuente: Elaboración Propia

INTERPRETACIÓN:

S realizo la metodología IRI, para corroborar los anteriores métodos como PCI, VIZIR y MTC, que también sirven para evaluar el estado de un pavimento en los 3 sectores, concluyendo un IRI promedio de 5 y un estado de pavimento MALO en los tramos estudiados.

(IRI) CALZADA 8.563 8.034 7.38 .098 5.16 Frecuencia 2.958 116 000+400 400+800 800+1200 1200+1300 1300+1700 1700+2100 2100+2500 2500+2900 2900+3000 Regular Muy malo Regular Muy malo Muy malo Bueno Bueno Muy malo Muy malo **PROGRESIVAS**

Figura 18. Diagrama del método IRI

Fuente: Elaboración Propia

INTERPRETACIÓN:

En el diagrama del método IRI se observó los resultados que se han elaborado en las principales vías de acceso, donde se aprecia casi la mayor cantidad de puntos en la parte superior, donde esto indicaría que el pavimento se encuentra en estado Malo.

Objetivo general: Determinar el análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

Tabla 9. Promedio de clasificación y estado de los métodos PCI, VIZIR, MTC y IRI

CLASIFICACION	ESTADO
PROMEDIO	
62	Bueno
3	Marginal
864.73	Bueno
5	Malo
	PROMEDIO 62 3 864.73

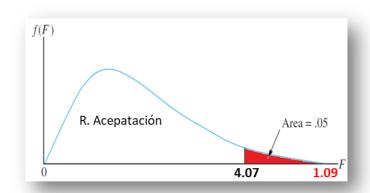
Fuente: Elaboración Propia

INTERPRETACIÓN:

Estas metodologías tienen diferentes parámetros de calificación y fallas, donde para PCI existen 19 tipos de fallas, para VIZIR 21 tipos de fallas, para MTC 11 tipos de fallas y para el IRI se califica mediante la rugosidad del pavimento. Al hacer el análisis comparativo de los 3 métodos y añadiendo un método para corroborar lo antes mencionado, se observa un promedio semejante en el estado del pavimento. Para el método PCI se obtuvo como resultado un promedio de clasificación BUENO, para el método VIZIR un promedio de clasificación MARGINAL, para el método MTC un promedio de clasificación BUENO y para el método IRI un promedio de clasificación MALO.

PRUEBA DE HIPÓTESIS GENERAL

1. Hipótesis


Hipótesis nula (Ho):

No existe una correlación entre las metodologías PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022.

Hipótesis alterna (H 1):

Existe una correlación entre las metodologías PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022.

2. Región critica

> 4.07 se rechaza la hipótesis nula

3. Cálculos

		Evaluacion del Pavimento					
	Nro	PCI	VIZIR	MTC	IRI		
	1	4	2	I	2		
	2	I	I	I	Ι		
	3	4	2	2	4		
	$Suma(x_{i.})=$	9	5	4	7		
	Media=	3.0	1.7	1.3	2.3		
Sun	na total(x)=	25					
	n _i =	3	3	3	3		
	N=	12		k=	4		
	$SC_{Trat} =$	4.916667					
	$SC_{Total} =$	16.9					
	$SC_{Error} =$	12.0					

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F
Entre las muestras	4.916666667	3	1.63888889	1.09259259
Dentro de las muestras	12.0	8	1.5	
Total	16.9	П		_

(Valor crítico)
$$F_{\alpha,k-1,N-k} = 4.066180551 = INV.F.CD(0.05;J18;J19)$$

p-valor= 0.406415586 = DISTR.F.CD(L18;J18;J19)

4. Decisión

Se debe rechazar la hipótesis nula. Ya que no existe correlación en las diferentes metodologías para la evaluación del pavimento.

V. DISCUSIÓN

En el presente proyecto de tesis se muestran los resultados que obtuvimos y los discutimos con los trabajos previos que se consideraron como antecedentes.

Primer y segundo objetivo específico: Determinar la condición del pavimento por el método PCI y VIZIR en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

En la investigación se obtuvo como resultados según el método PCI y VIZIR, donde haciendo un resumen global de las principales vías de acceso al Sector los Álamos PPAO, logrando evaluar 14 unidades muestrales indicando un promedio total de 62 PCI estableciendo un pavimento de clasificación Bueno y un total de 30 unidades muestrales, dando como resultado un valor de 3 en estado de conservación Marginal del Pavimento. Lo cual se asemeja con los resultados obtenidos por Waranda Mero (2017), quienes hallaron que el método VIZIR arrojó un Índice de Deterioro Superficial de 2.46, calificado como BUENO, mientras que el método PCI arrojó un Índice de Condición del Pavimento igual a 70.60, equivalente a una calificación MUY BUENO.

Asimismo, en la presente Tesis se analizó y comparó las metodologías PCI Y VIZIR, donde estos métodos tienen diferentes características al momento de evaluar el pavimento, para VIZIR existe dos tipos de daño que es daño estructural y daño funcional, en cambio para PCI toma en cuenta todos los tipos de fallas que pueda tener el pavimento, por ende, el método PCI es más preciso y usado. Lo cual se asemeja con los resultados del autor Amaya y Rojas (2017), donde para él los métodos PCI y VIZIR para evaluar el estado de deterioro del pavimento tienen diferentes criterios de evaluación y clasificación.

El método VIZIR identifica dos tipos de daño, el daño Tipo A es daño estructural y el daño Tipo B es daño funcional, este último no es tomado en cuenta al momento de calcular el índice de superficie "Is", mientras que la metodología PCI evalúa y toma en cuenta todos los tipos de daños o fallas que pueda tener el pavimento para calcular el Índice de Condición del Pavimento. Por este motivo, el método PCI, que estudia con mayor rigor algunas partes del tramo de carretera, muestra una tendencia a ser más variable en comparación con el método VIZIR, que tiende a ser más estable a través de diferentes unidades de muestreo analizadas en diferentes carriles del tramo de carretera investigad. Cabe señalar que el método PCI tiene un rango de calificación amplio, a diferencia de VIZIR, que tiene un rango de calificación estrecho.

Tercer objetivo específico: Determinar la condición del pavimento por el método MTC en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.

En la investigación se determinó según el método MTC, donde se estableció como resultado de las 15 unidades muestrales un valor numérico de 861.6, lo que concluye un estado de clasificación bueno y tipo de intervención de conservación rutinaria, lo cual contrasta como resultados por el autor Chaiña, G., Chaiña, O. (2019), donde propone el mantenimiento ordinario más adecuado a la vía y sirve de base para futuros trabajos de mantenimiento o restauración por parte de la entidad respectiva. De igual manera se encontró diferentes tipos de fallas en las mencionadas metodologías pero que tenían similitud en ellas, lo cual se asemeja con los resultados obtenidos por Opino y Tinoco (2019), quienes concluyeron que existen diferentes tipos de clasificaciones de las causas de la degradación del pavimento y que muchas veces estas causas están involucradas en el ambiente de uso, mucho antes de que se implementen.

En la presente Tesis, se analizó y comparó las metodologías PCI Y MTC, donde para el PCI se establece con mayor precisión, ya que cuenta con 19 tipos de fallas y rangos de calificación indicando cada uno de estos la intervención a realizar en el pavimento, en cambio el MTC cuenta con 11 tipos de fallas, además los tramos a

evaluar son cada 200 metros y cuenta solo con tres tipos de condición según calificación del pavimento.

Lo cual contrasta con el autor Choque (2019), quien concluye que el método MTC no describe con mayor precisión la superficie de la carretera porque el nivel de apreciación que esta metodología considera, es más flexible para detallar y nivelar las fallas, además las unidades de muestras son cada 200 metros, por lo que es difícil, ya que solo analiza algunas partes de manera global. En cambio, la metodología PCI, que tiene un nivel de apreciación más detallado, su desempeño y evaluación son más extensos, brindándonos más descripciones de las partes analizadas. Es por estas razones la metodología PCI es más utilizada a nivel nacional e internacional debido a su apreciación más detallada, lo que hace que el programa de intervención de pavimento flexible sea el más adecuado.

De acuerdo al análisis comparativo entre las metodologías, se optó por usar la metodología IRI mediante el Rugosímetro de Merlín para así hallar la rugosidad del pavimento asfaltico y así establecer un resultado más confiable a las anteriores metodologías que solo son de observación. Donde se estableció 9 unidades de Muestra donde cada uno fue de 400 metros lineales. El resultado obtenido mediante la herramienta Rugosímetro de Merlín dando un IRI 5 estableciendo un estado de pavimento asfaltico malo. Lo cual se asemeja al autor Chambilla y Ramos (2021), donde establecieron 32 UM de 400 metros para cada unidad muestral, dando como resultado un IRI de 3.40 estableciendo un estado de pavimento regular.

Al respecto, al hacer un análisis comparativo entre el método IRI y las metodologías PCI, VIZIR, MTC. Se pudo observar que el método VIZIR es la que más se asemeja al IRI, ya que tuvo un Índice Superficial de 3 estableciendo un resultado Marginal como también el IRI que dio como resultado 5 estableciendo un resultado de pavimento Malo.

Finalmente, para corroborar las mencionadas metodologías, se utilizó el ensayo de Rugosímetro de Merlín. Ya que estas solo son métodos de observación, en cambio con el Rugosímetro es más real y físico, para así tener un nivel de confiabilidad elevado a la hora de realizar nuestra tesis. Lo cual contrasta con el Banco Mundial, ya que es más preciso y menos costoso, por ende, la información recogida en campo y analizada, será de gran utilidad para las entidades a la hora de realizar un mejoramiento a nivel de servicio de la carpeta asfáltica.

VI. CONCLUSIONES

Se determinó el análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022, lo cual se hizo una comparación de acuerdo a cada metodología, donde al realizar un análisis comparativo entre las metodologías, se obtuvo que tienen resultados semejantes, sin embargo, para el método PCI vendría a ser la más exacta y adecuada para la calificación del pavimento, ya que es más minuciosa y precisa a la hora de evaluar un pavimento asfáltico.

Se determinó la condición del pavimento por el método PCI en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022, para lo cual el índice del PCI es de 62 estableciendo un pavimento de clasificación bueno.

Se determinó el estado de servicio por el método VIZIR en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022, con un IS promedio de 3 estableciendo una calificación Marginal del pavimento

Se determinó la condición del pavimento por el método MTC en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022, con un valor de 861.6 obteniendo una clasificación de pavimento bueno.

VII. RECOMENDACIONES

Se recomienda que, para realizar una evaluación visual al pavimento asfáltico, la metodología PCI sería la más optima.

Se recomienda que, para el mantenimiento según el Manual de conservación vial del MTC, se deberá realizar una conservación rutinaria.

Se recomienda que, para evaluar el pavimento en tramos más cortos, se utilice la metodología VIZIR y en tramos más largos, se utilice el método PCI.

Se recomienda elaborar una tabla de diferentes tipos de fallas que existe en el pavimento, para así realizar el mantenimiento correspondiente y si las fallas se siguen reiterando, buscar alternativas de solución, con el fin de que la vía no se dañe gravemente y así evitar accidentes de tránsito.

BIBLIOGRAFÍA

- _ Amaya, A. y Rojas, E. (2017). Análisis Comparativo Entre Metodologías Vizir Y Pci Para La Auscultación Visual De Pavimentos Flexibles En La Ciudad De Bogotá (Tesis de pregrado). Universidad Santo Tomás: Bogotá. Recuperado de: https://repository.usta.edu.co/handle/11634/4566?show=full
- _ Coy, O. (2018). Evaluación superficial de un pavimento flexible de la calle 134 entre carreras 52ª a 53c comparando los métodos VIZIR y PCI (Tesis de pregrado). Universidad Militar Nueva Granada: Colombia. Recuperado de: https://repository.unimilitar.edu.co/bitstream/handle/10654/16508/CoyPinedaOscarMauricio2017.pdf.pdf?sequence=1
- _ Ospino, R., Tinoco, C. (2019). Análisis de daño por causa del envejecimiento y auscultación en estructuras de pavimentos flexibles en las ciudades de Santa Marta y Barranquilla entre los años 2012 2017 (Tesis de Pregrado). Universidad Cooperativa de Colombia. Barranquilla Colombia. Recuperado de: https://repository.ucc.edu.co/handle/20.500.12494/15686
- _ Chaiña, G., Chaiña, O. (2019). Bases teóricas para evaluación con el método PCI y MTC para mejorar el mantenimiento de pavimentos flexibles en la avenida roma, distrito de Trujillo, 2019. (Tesis de Pregrado). Universidad Privada de Trujillo. Trujillo Perú. Recuperado de: http://repositorio.uprit.edu.pe/handle/UPRIT/252
- _ Choque, J. (2019). Estudio comparativo del método PCI y el manual de conservación vial MTC en la evaluación superficial de pavimento flexible, tramo EMP.PE-3S ATUNCOLLA, 2017 (Tesis de Pregrado). Universidad Nacional del Altiplano. Puno Perú. Recuperado de: http://repositorio.unap.edu.pe/handle/UNAP/9908
- _ Mori, D. (2018). Estudio comparativo de las fallas del pavimento asfáltico con los manuales del PCI y mantenimiento o conservación vial del MTC en la av. Pedro Beltrán Ventanilla. (Tesis de Pregrado). Universidad Ricardo Palma. Lima Perú. Recuperado de: http://repositorio.urp.edu.pe/handle/URP/1444

- _ PROYECTO DE TRABAJO DE GRADO ANÁLISIS COMPARTATIVO DE METODOLOGÍAS DE EVALUACION VIZIR Y PCI. Edu.co [en línea], [sin fecha]. [Consulta: 24 mayo 2022]. Disponible en: https://repository.unimilitar.edu.co/bitstream/handle/10654/17863/GarciaSalazarDanielRicardo2018.pdf?sequence=2&isAllowed=y
- _ VALER BRAVO, T.A., 2019. Aplicación de los métodos PCI y Vizir para la conservación del pavimento flexible, carretera PE-24A tramo Libertad Chicche, Junín. S.I.: Universidad Peruana Los Andes. Disponible en: https://repositorio.upla.edu.pe/handle/20.500.12848/1408
- _ VARGAS CALLE, Mario; LIMACO AGUILAR, Pierre Eduardo. Análisis Comparativo de Métodos Superficiales PCI y VIZIR Aplicados sobre el Pavimento en la Av. Collpa-Tramo Av. Costanera hasta Ovalo Cuzco de la Ciudad de Tacna–2018. 2019. Disponible en: https://repositorio.upt.edu.pe/bitstream/handle/20.500.12969/1168/Vargas-Calle%20Limaco-Aguilar.pdf?sequence=6&isAllowed=y
- _ RAMOS ORTIZ, Jorge. Determinación de la Confiabilidad de la Metodología MTC, Comparando las Metodologías Vizir y PCI en Pavimentos Flexibles. 2021. Disponible en:

https://repositorio.urp.edu.pe/bitstream/handle/URP/4967/T030 72779180 T%20RAMOS %20ORTIZ%20JORGE.pdf?sequence=1&isAllowed=

_ CAMPOS APARICIO, Jose Maria; TREBEJO RAMÍREZ, Luis Enrique. Comparación del método de índice de condición del pavimento (PCI) y del método del MTC para la evaluación óptima del pavimento asfáltico. 2021. Disponible en:

http://repositorio.urp.edu.pe/xmlui/bitstream/handle/URP/4695/T030 60430936 T%20%2 0%20CAMPOS%20APARICIO%20JOSE%20MARIA.pdf?sequence=1&isAllowed=y

- _ DE INGENIERÍA, F., [sin fecha]. UNIVERSIDAD PRIVADA DE TRUJILLO. Edu.pe [enlínea]. [Consulta: 24 mayo 2022]. Disponible en: http://repositorio.uprit.edu.pe/bitstream/handle/UPRIT/391/IC-TESIS%20Chai%c3%b1a%20SucasacaChai%c3%b1a%20Arapa.pdf?sequence=3&isAllowed=y
- _ GRANDA, Carol. Evaluación de la condición del pavimento rígido por el método PCI en el anillo vial tramo Chaupimarca Yanacancha Pasco. Tesis (Título en Ingeniería Civil). Pasco: Universidad Nacional Daniel A. Carrión, 2018. Disponible en: http://repositorio.undac.edu.pe/bitstream/undac/622/1/T026 70871624 T.pdf

- _ BERRÍOS, Adan, FLORES, Jose, RAMOS, Franco y REYES, Manuel. Comparación de la evaluación superficial del pavimento empleando un vehículo aéreo no tripulado (vant) y la forma tradicional de evaluación visual del método PCI. Tesis (Título en Ingeniería Civil). Buenos Aires: Universidad de El Salvador, 2020. Disponible en: https://ri.ues.edu.sv/id/eprint/22319/1/COMPARACI%C3%93N%20DE%20LA
 20EVALUACI%C3%93N%20SUPERFICIAL%20DEL%20PAVIMENTO%20EMPLEANDO %20UN%20VEHICULO%20AEREO%20NO%20TRIPULADO%20Y%20LA%20FORMA% 20TRADICIONAL.pdf
- _ LINARES, Linda. Evaluación y diagnóstico del estado del pavimento flexible utilizando la metodología PCI y la viga BENKELMAN en la Av. Confraternidad en el PP JJ Ricardo Palma en la Ciudad de Chiclayo. Tesis (Título en Ingeniería Civil). Lima: Universidad de San Martín de Porres, 2021. Disponible en https://repositorio.usmp.edu.pe/handle/20.500.12727/8534
- _ ESCUELA, P., CIVIL, I., CASTILLO, C., MEDARDO, D., MAURICIO, M., ELIZABETH, J. y CA, M.S., [sin fecha]. FACULTAD DE INGENIERÍA Y ARQUITECTURA. Edu.pe [en línea]. [Consulta: 24 mayo 2022]. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/56220/C%c3%b3rdova CD M-Mechato MJE-SD.pdf?sequence=1&isAllowed=y
- _ ANDRADE, D, CABEZAS, E y TORRES, Introducción a la metodología de la investigación científica. s.l.: Universidad de las Fuerzas Armadas, 2018. Disponible en: http://repositorio.espe.edu.ec/xmlui/handle/21000/15424
- _ SUÁREZ, Edwin Antonio Guzmán. Factores para el ajuste de los módulos de retro cálculo de pavimentos flexibles. Ciencia, Innovación y Tecnología, 2017, vol. 3, p. 73-89. Recuperado de: https://revista.jdc.edu.co/index.php/rciyt/article/view/76
- _ GONZÁLEZ-FERNANDEZ, Hilda; RUIZ-CABALLERO, Pilar; GUERRERO-VALVERDE, Denisse. Propuesta de metodología para la evaluación de pavimentos mediante el Índice de Condición del Pavimento (PCI). Ciencia en su PC, 2019, vol. 1, no 4, p. 58-71. Recuperado de: https://www.redalyc.org/journal/1813/181358738015/html/
- _ SAAVEDRA RUIZ, Félix Danko; SARMIENTO PALOMINO, Alonso Bryan. Mantenimiento de pavimento rígido y flexible para evitar un desgaste prematuro en vías urbanas. 2021.. Disponible en:

https://repositorio.urp.edu.pe/bitstream/handle/URP/4748/T030_41547977_T%20%20%20%20SAAVEDRA%20RUIZ%20F%C3%89LIX%20DANKO.pdf?sequence=1&isAllowed=y.

- _ Muñoz Pérez, S. P., & Zevallos Calle, F. de M. Y. (2021). Los Factores influyentes en la resistencia al deslizamiento en pavimentos flexibles: Una revisión literaria. Ciencia Nicolaita, (81), 83-99. Recuperado de: https://cic.umich.mx/ciencianicolaita/cn/article/view/535
- _ SALOMÓN, Delmar. Conservación de Pavimentos: Conservando la inversión del patrimonio vial. Informe LM-PI-GM-INF-09-17 Fecha de emisión, 2017. Recuperado de:

https://www.researchgate.net/profile/DelmarSalomon/publication/325464862_Conservacion_n_de_Pavimentos_Conservando_la_inversion_del_patrimonio_vial/links/5b0f83daa6fdcc8_0995bcc96/Conservacion-de-Pavimentos-Conservando-la-inversion-del-patrimonio-vial.pdf

_ Mendoza, S. H., & Avila, D. D. (2020). Técnicas e instrumentos de recolección de datos. Boletín Científico de las Ciencias Económico Administrativas del ICEA, 9(17), 51-53. Recuperado de:

https://repository.uaeh.edu.mx/revistas/index.php/icea/article/view/6019

_ Hernandez Sampieri, R., & Mendoza Torres, C. (2018). Metodología de la Investigación las rutas cuantitativa, cualitativa y mixta. Mexico: McGraw-Hill Interamericana Editores. Recuperado de:

http://virtual.cuautitlan.unam.mx/rudics/wpcontent/uploads/2019/02/RUDICSv9n18p92_95 .pdf

_ CAMEJO, Mercedes, ROJAS, Daniel y VILAÚ, Yaquelin. The instrumentation of the empirical methods in the potential researchers of the pedagogical studies. Cuba: Universidad Pinar del Río.MENDIVE, Vol. 16, (2), pp. 238-246, 2018. Disponible en:

http://mendive.upr.edu.cu/index.php/MendiveUPR/article/view/1330/pdf

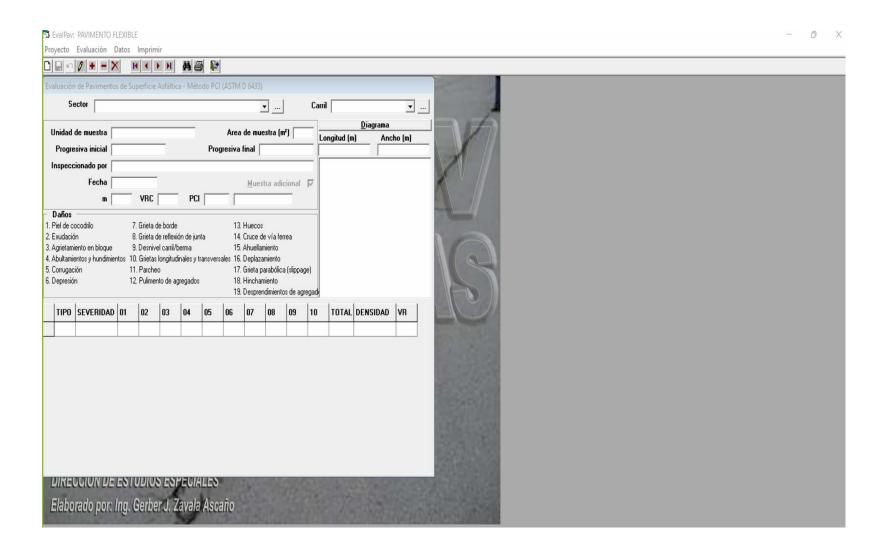
_MORA GUARNIZO, Jean Pierre; SERRANO PALMA, Juán Sebastián. Evaluación funcional de un pavimento flexible en la vía Espinal–Suárez mediante la aplicación del método PCI-2020, 2020. Tesis Doctoral.

Disponible en: http://repository.unipiloto.edu.co/handle/20.500.12277/9342

_ D6433–16 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. American Society of Testing and Materials (ASTM), USA, 2016. Recuperado de: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales.html

- _ DELGADO FERNANDEZ, Kewin Braysen; MORALES GUIVIN, Lilavati. Condición superficial del pavimento flexible con la metodología VIZIR y PCI de la carretera vecinal tramo km 00+ 00 al km 05+ 00 de los distritos de La Victoria y Monsefú, ubicado en la provincia de Chiclayo-departamento de Lambayeque. 2020. Disponible en: https://renati.sunedu.gob.pe/handle/sunedu/2854009
- _ GUARANDA MERO, Betty Geoconda. Analisis comparativo de los metodos Vizir-PCI aplicada en pavimento flexible via Jipijapa-la Mona, Canton Jipijapa. 2017. Tesis de Licenciatura. JIPIJAPA-UNESUM. Disponible en: http://repositorio.unesum.edu.ec/handle/53000/804
- _ CHAMBILLA VELÁSQUEZ, Edwin Dennys; RAMOS DEZA, Yssam Mazoel. Evaluación de pavimento flexible mediante método del rugosímetro de Merlín y el aplicativo Iri-Calc Free en la avenida Simón Bolívar, Puno. 2021. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/75230

ANEXOS


Anexo 1. Matriz de operacionalización de variables

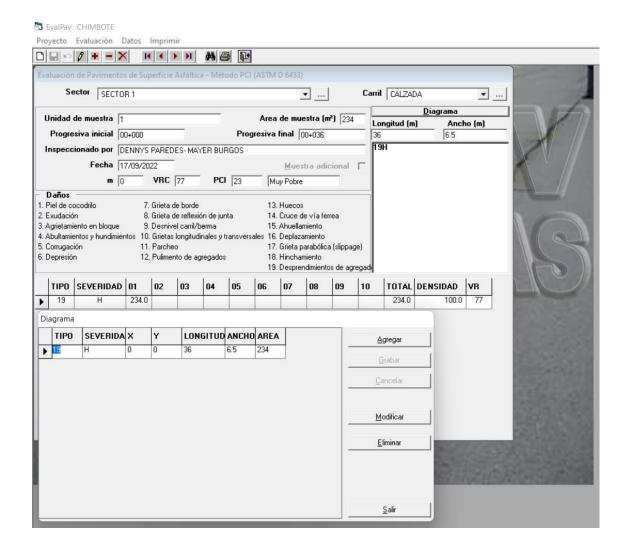
VARIABLE	DEF. CONCEPTUAL	DEF. OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA
VI: PCI	Según (Mora y Serrano,2020, p.32), el PCI es un procedimiento que implica la determinación de las condiciones de la superficie de la carretera a través de una inspección visual para determinar el tipo, la gravedad y la cantidad de fallas observadas.	El pavimento flexible se evalúa utilizando los métodos PCI para comprender el estado de superficie.	Método PCI	_Desprendimiento de agregados _Piel de cocodrilo	Ordinal
VIZIR	_ Según (Morales, 2019, p.28), el VIZIR es un sistema visual que permite la excepción o diferenciación de las fallas estructurales de las funcionales, de una forma clara y estricta.	El pavimento flexible se evalúa utilizando los métodos VIZIR para comprender el estado de superficie.	Método VIZIR	_Ahuellamiento _Fisura de borde	Ordinal
МТС	_Según el (Mtc 2018, p.67), son indicadores que definen y cuantifican el estado Servicio unidireccional, generalmente utilizado como límite la medida en que se permite que evolucionen las condiciones de su superficie.	El pavimento flexible se evalúa utilizando los métodos MTC para comprender el estado de superficie.	Método MTC	_Baches _Peladura y desprendimiento	Ordinal
VD: Evaluación superficial	Según el (ASTM D6433-16, 2016, P.2), es una evaluación de la superficie del pavimento para identificar las fallas que lo afectan	Para esta variable se utilizan tres métodos, uno el PCI, que trata de determinar el grado de deterioro del pavimento, y luego determina el cálculo del índice de	Fallas superficiales	_ Desprendimientos _ Deformaciones _ Agrietamientos	Ordinal
del pavimento	directamente y comprender su estado según el método utilizado.	condición de la vía, dos el VIZIR, se realizan examinando en detalle las fallas que ocurren en la superficie de la carretera, y tres el MTC, se utiliza un inventario detallado de la vía para establecer su clasificación y determinar su estado actual.	Estado del pavimento	_Bueno _Regular _ Malo	Ordinal

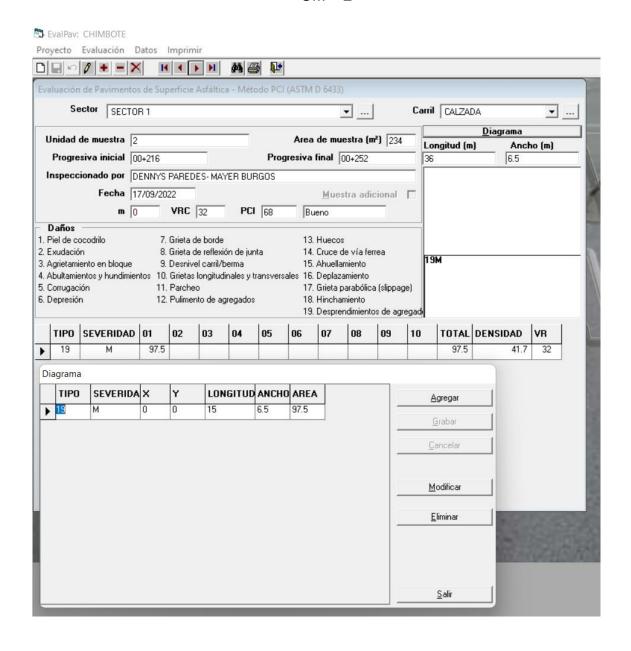
Anexo 2. Matriz de Consistencia

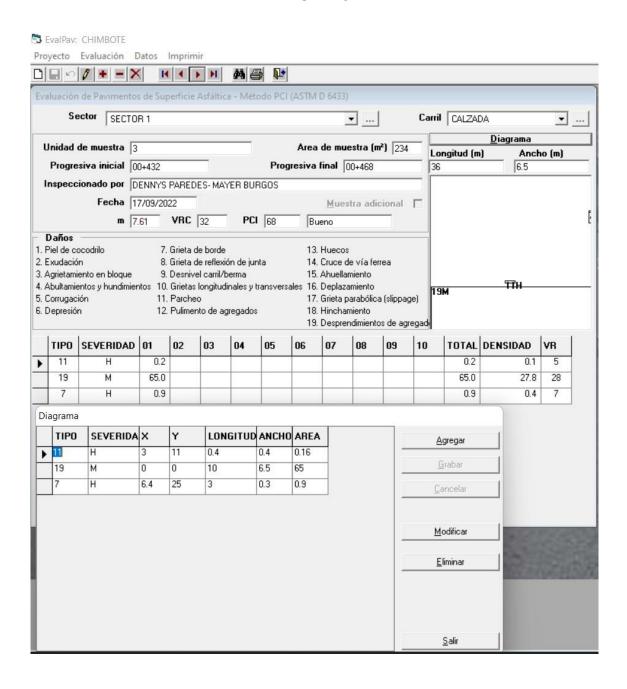
TÍTULO	FORMULACION DEL PROBLEMA	OBEJTIVO GENERAL	OBJETIVO ESPECIFICOS	HIPOTESIS	VARIABLES	DIMENSIONES	INDICADORES	POBLACIÓN Y MUESTRA	TIPO DE INVESTIGACIÓN	
"Análisis	_Mediante el análisis de la verdad problemática en	_Determinar el análisis comparativo	_ Determinar la condición del pavimento por el método PCI en las principales	_ Ante mencionada problemática,		Método PCI	_Desprendimiento de agregados _Piel de cocodrilo	3km	Básica Descriptiva	
comparativo de los métodos PCI, VIZIR y MTC sobre el	diversos eventos, se propone la siguiente formulación del problema: ¿Cuál es el resultado	de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en	vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.	se planteó como hipótesis que existe una correlación entre las	PCI, VIZIR Y MTC	Método VIZIR	_Ahuellamiento _Fisura de borde	<u>3km</u>	Básica Descriptiva	
pavimento flexible en las principales vías de	del análisis comparativo de los métodos PCI, VIZIR y MTC sobre el	las principales vías de acceso al sector Los	_Determinar el estado de servicio por el método VIZIR en las principales vías de acceso al	metodologías PCI, VIZIR y MTC sobre el pavimento flexible en las		Método MTC	_Baches _Peladura y desprendimiento	<u>3km</u>	Básica Descriptiva	
acceso al sector Los Álamos – PPAO, Nuevo Chimbote -	pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO,	flexible en las principales vías de acceso al sector Los PPAO, Nuevo Alamos – PPAO, Nuevo Chimbote - 2022 Alamos – PPAO, Nuevo Sector Los Alamos – PPAO, Nuevo Alamos – PPAO, Nuevo Alamos – PPAO, Nuevo	AO, Álamos – PPAO, vías de acc Juevo Nuevo Chimbote al sector Lo Jimbote - 2022 Álamos – Juevo Determinar la PPAO, Nue	principales - PPAO, chimbote al sector Los Álamos – PPAO, Nuevo	os – PPAO, o Chimbote 2 vías de acceso al sector Los Álamos – PPAO, Nuevo	Evaluación superficial del pavimento	Fallas superficiales	_Desprendimiento _ Deformaciones _ Agrietamientos	<u>3km</u>	Básica Descriptiva
2022"	Nuevo Chimbote - 2022?		pavimento por el método MTC en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote – 2022.	2022.		Estado del pavimento	_Bueno _Regular _ Malo	<u>3km</u>	Básica Descriptiva	

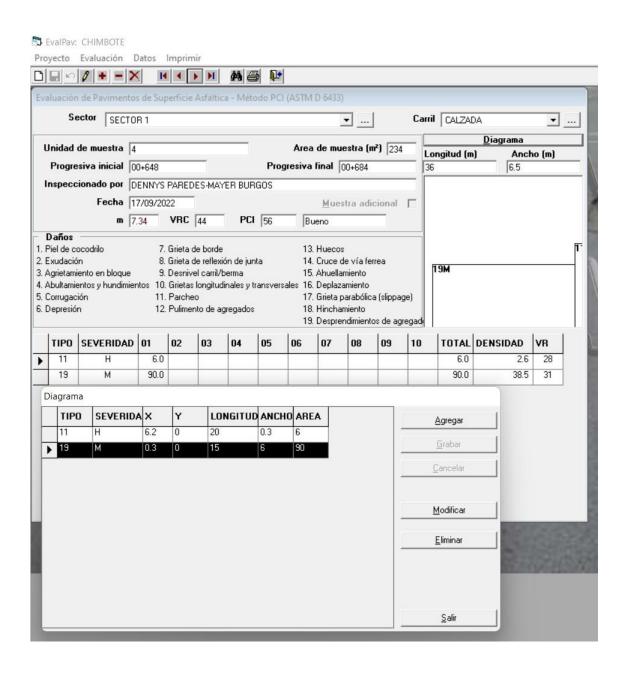
Anexo 3. Instrumentos de recolección de datos PCI.

INDICE DE CONDICION DEL PAVIMENTO

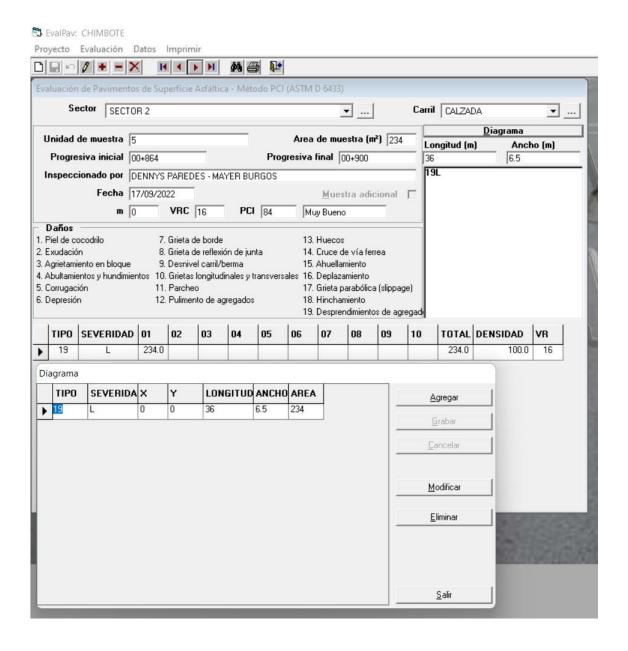

PCI-01. CARRETERAS CON SUPERFICIE ASFÁLTICA.

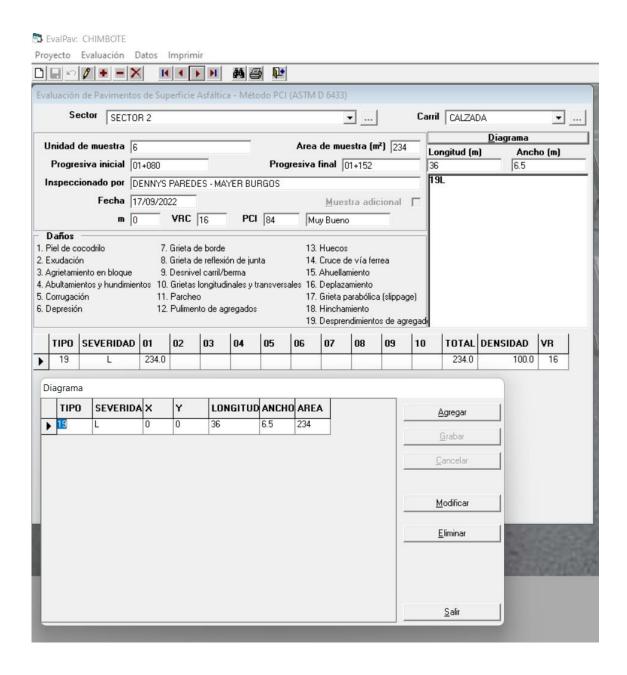

EX	PLORACIÓ			INIDAD DE MUESTREO	ESQUEMA	· ·	
ZONA ABSCISA INICIAL			UNIDAD DE MUESTREO				
CÓDIGO VÍA ABSCISA FINAL			ÁREA MUESTREO (m²)				
NSPECCIONADA POR			FECHA				
No.		Daño	No.	Daño			
1	Piel de co	codrilo.	11	Parcheo.			
2	Exudación	1.	12	Pulimento de agregados.			
3	Agrietamie	ento en bloque.	13	Huecos.			
4	Abultamie	ntos y hundimientos.	14	Cruce de vía férrea.			
5	Corrugaci	ón.	15	Ahuellamiento.			
6	Depresión	1.	16	Desplazamiento.			
7	Grieta de	borde.	17	Grieta parabólica (slippage)			
8	Grieta de	reflexión de junta.	18	Hinchamiento.			
9	Desnivel of	carril / berma.	19	Desprendimiento de agregados.			
10	Grietas lo	ng y transversal.			1.41	10	en.
Daño	Severida	d	Cantid	ades parciales	Total	Densidad (%)	Valor deducido
	2		5	7 7 7			k k
	3						ř

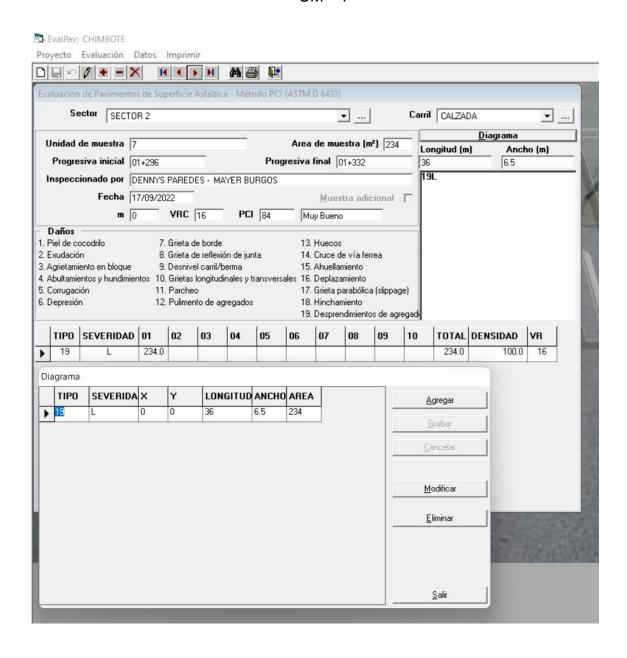

Anexo 3.1. METODOLOGIA PCI

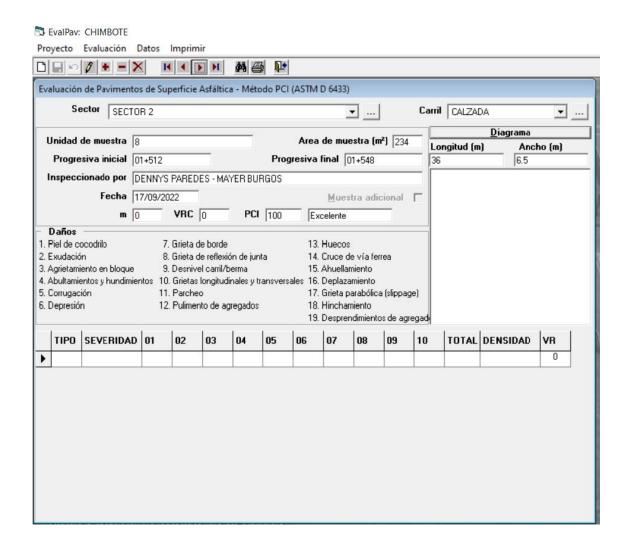

SECTOR 1

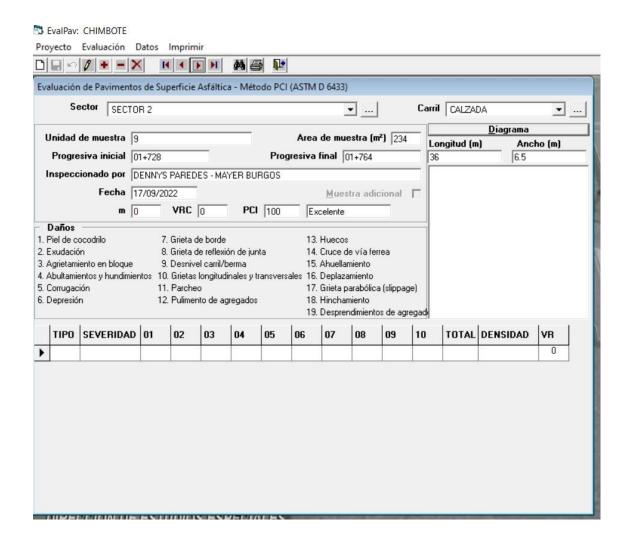
En el sector 1 Av. Fe y Alegría

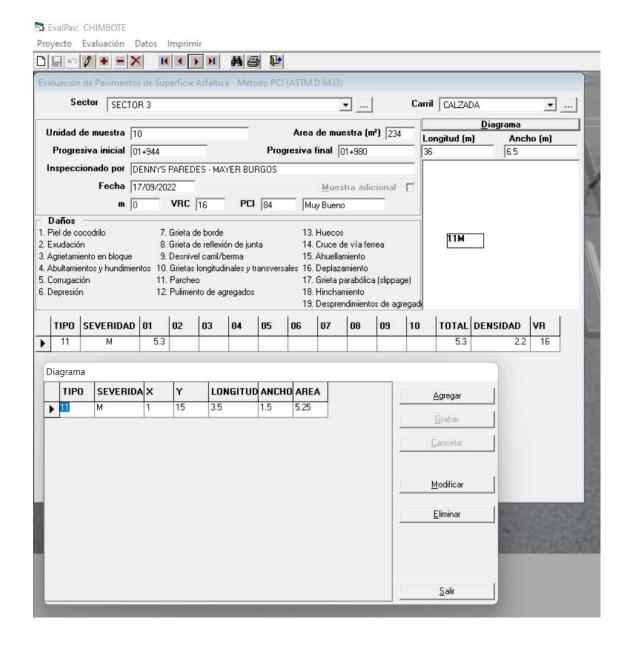


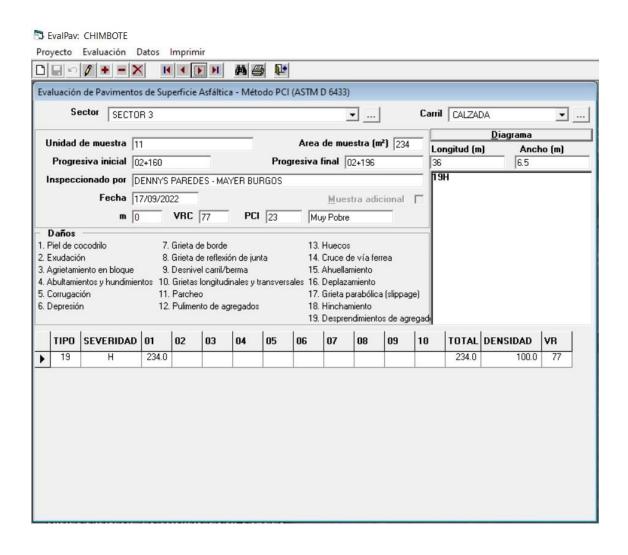


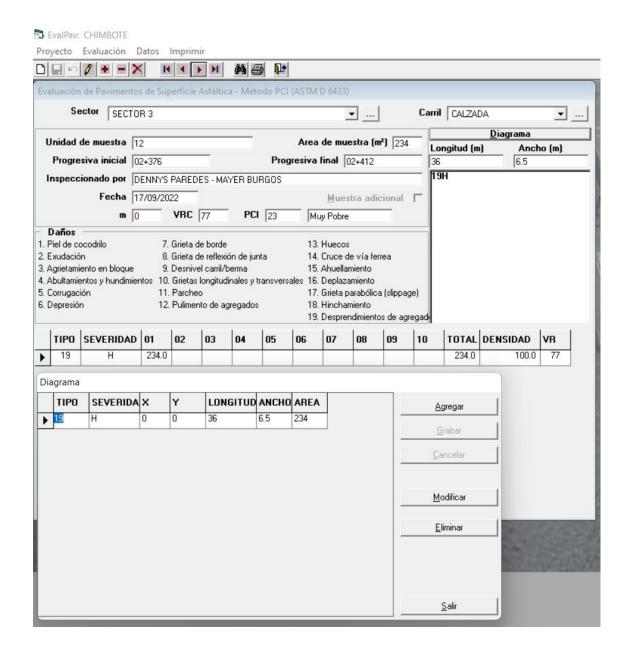


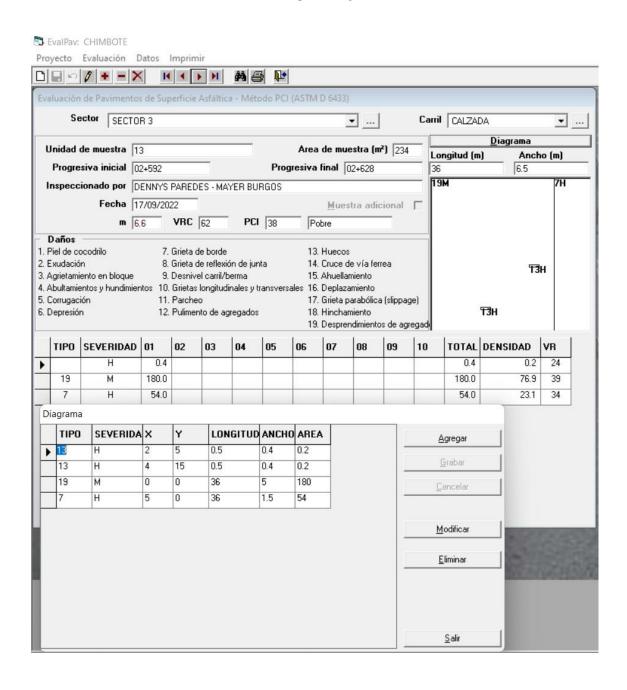

SECTOR 2


En el sector 2 Av. Buenos Aires

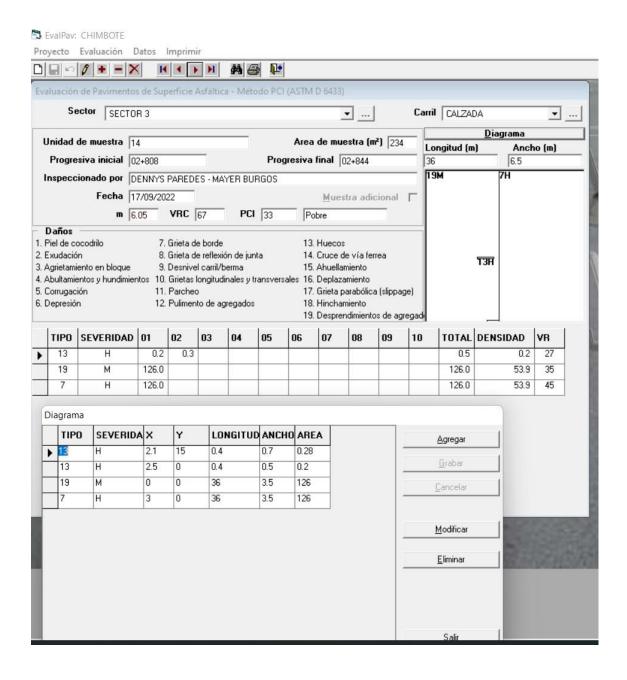





SECTOR 3


En el sector 3 Av. Pelicanos

UM - 10

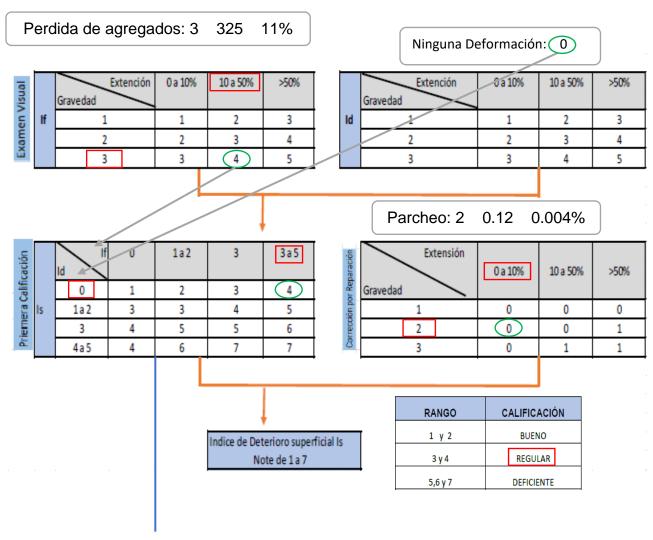


UM - 14

Anexo 4. Instrumentos de recolección de datos VIZIR.

UPAO		DETERM	IINACIÓN DEI	. ÍNDICE DE	DETERIOR	SUPERFIC	IAL DEL PAV	/IMENTO P	OR EL METO	DO VIZIR
Nombre de la V	ía	2227214		. II III II II	BETEIGGIG		le Via(m)			
Unidad De Mues	tra						muestra(m²)			
Progresiva Inicial(I					1					
Progresiva Final(K					1	Inspeccio	onado por:			
2 Togresiva 2 mar(2)					,	Fe	cha:			
Nº Tipo De Falla			Unidad	N° Tipo De	Falla			Unidad	N° Fallas	Tipo
1. Ahuellamiento			m	13. Desplaza	ımiento, abul	ltamiento o a	huellamiento	m	1 al 6	A
2. Depresiones o hundimi	entos longit	udinales	m	14. Pérdida	de la pelicula	ligante		m	7 al 24	В
3. Depresiones o hundimi	entos transv	ersales	m	15. Pérdida	de agregados	5		m		'
4. Fisuras longitudinales	por fatiga		m	16. Descasc	aramiento			m ²	CALIFIC	CACIÓN
5. Fisuras piel de cocodri	lo		m		to de agrega	dos		m	Rango	Calificación
6. Bacheos y Parcheos			m	18. Exudació				m	1 y 2	Bueno
7. Fisura longitudinal de			m		ento de mort			m	3 y 4	Regular
8. Fisura transversal de ju		rucción	m		ento de Agu:			m	5,6 y 7	Deficiente
9. Fisuras de contracción	térmica		m	21. Desinteg				m	ļ	
10. Fisuras parabólicas			m		miento entre		erma	m	Į	
11. Fisura de borde			m	23. Erosión		s		m		
12. Ojos de pescado			Unidad	24. Segrega	ción			m]	
FALLA	Gravedad	Longitud	Profundidad (mm)	It	If max.	Id	Id max.	Is Inicial	Corrección	IS
					1					
					1					
					-					
	CALIFIC	CACION								

Anexo 4.1. METODOLOGIA VIZIR


SECTOR 1

En el sector 1 Av. Fe y Alegria la progresiva es de la 0+000 hasta la progresiva 0+800

UM - 1

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA	DE MUES	TRA		IS	CALIFICACIÓN	
Evaluador:	Progresiva		Ancho de via:	6.50m							
Burgos Zavaleta Mayer	Inicial: 0 + 0	00	Unidad do Mu	estreo: UM -1	3kn	n = 3000ı	m		4	Marginal	
Paredes Castillo Dennys	Final: 0 + 10	0	Officaci de Ivic	iestieo. Oivi-1							
TIPOS DE FALLAS		GRAVEDAD		EXTES	SIÓN	If	Promedio	ld	Promedio	CORRECCION	
TIPOS DE PALLAS	1	2	3	Área	Porcentaje		If	ū	Id	COMMECCION	
Perdida de agregados			Х	195	7	3					
Huecos			Х	0.30	0.010	3	,		0	0	
Perdida de agregados			Х	325	11	4] 3] "	U	
Parcheo		Х		0.12	0.004						

Cálculo del Índice de figuración y deformación

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA	DE MUES	TRA	IS		CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	.00	Haidad da Mu	ootroo. LIM 2	3kn	n = 3000r	n		3	Marginal
Paredes Castillo Dennys	Final: 0 + 20	00	Officaci de iviu	estreo: UM - 2						
TIDOC DE FALLAC		GRAVEDAD		EXTES	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	l II	If Id		Id	CORRECCION
Perdida de agregados			Х	97.50	3.250	3				
Huecos	Х		0.23		0.008	1	2		0	0
Perdida de agregados		Х		195.00	6.500	2				

UM – 3

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	200	Unidad do Mu	ostroo. UM 2	3kn	n = 3000i	m		2	Bueno
Paredes Castillo Dennys	Final: 0 + 30	00	T Unidad de ivid	estreo: UM - 3						
TIPOS DE FALLAS		GRAVEDAD)	EXTE	SIÓN	Ιτ	Promedio	ld	Promedio	CODDECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	l II	If	10	Id	CORRECCION
Perdida de agregados	Х			650	21.667	2	2		٥	0
							2] "	U

→ El índice de deterioro superficial (ls) = 4 (Regular)

METODO VIZIR	PROGI	RESIVA	LUGAR: Av.	Fe y Alegria	AREA I	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 3	00	Unidad do Mu	estreo: UM - 4	3kn	n = 3000ı	n		2	Bueno
Paredes Castillo Dennys	Final: 0 + 40	0	Officaci de ivid	lestreo. Olvi - 4						
TIPOS DE FALLAS		GRAVEDAD		EXTES	SIÓN	Iŧ	Promedio	ld	Promedio	CORRECCION
TIPOS DE PALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de agregados	х			195	6.500	1				
Perdida de agregados		Х		65	2.167	2				
Parcheo	Х			0.05	0.002		2		0	0
Desintegracion de los bordes				2.00	0.067	_				
del pavimento		Х		2.00	0.067					

UM – 5

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA I	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 4	-00	Unidad da Mu	estreo: UM - 5	3kn	n = 3000i	m	2		Bueno
Paredes Castillo Dennys	Final: 0 + 50	10	Unidad de ivid	estreo: Oivi - 5						
TIPOS DE FALLAS		GRAVEDAD		EXTES	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	IT	If	iu	Id	CORRECCION
Perdida de agregados		х		65	2.167	2				
Parcheo	Х			0.18	0.006					
Desintegracion de los bordes del pavimento		х		1.2	0.040	2	2		0	0
Perdida de agregados	Х			260	8.667	1	7			

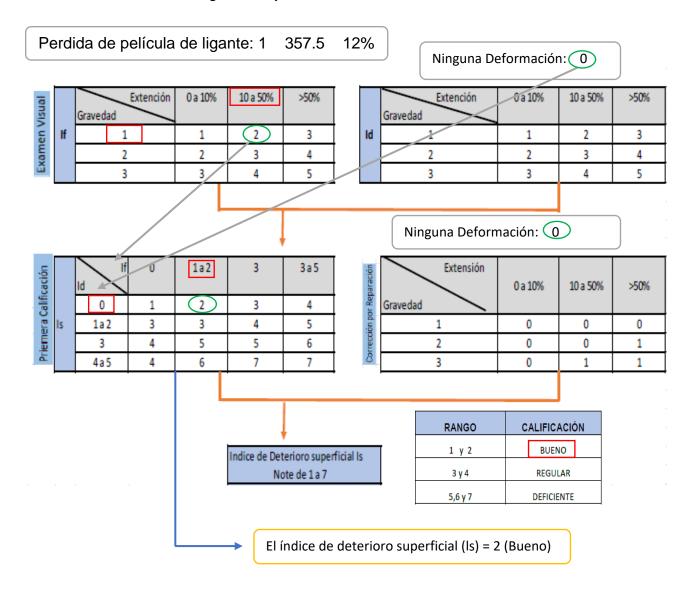
METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA	DE MUES	STRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 5	600	Unided de NA	estreo: UM - 6	3kn	n = 3000i	m	3		Marginal
Paredes Castillo Dennys	Final: 0 + 60	00	Unidad de ivid	estreo: UIVI - 6						
TIPOS DE FALLAS		GRAVEDAD		EXTES	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de agregados		х		520	17.333	3				
Parcheo		х		0.033	0.001				1	
Parcheo	Х			0.022	0.001		3		0	0
Desintegracion de los bordes				1.500	0.050	1]	
del pavimento		Х		1.500	0.050	2				

UM – 7

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 6	00	Unidad da Mu	estreo: UM - 7	3kn	n = 3000r	n	3		Marginal
Paredes Castillo Dennys	Final: 0 + 70	0	Officaci de ivid	estreo. Owi - 7						
TIPOS DE FALLAS		GRAVEDAD		EXTES	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE PALLAS	1	2	3	Área	Porcentaje	"	If	Iu	Id	CORRECCION
Perdida de agregados	х			325	11	2				
Desintegracion de los bordes			×	1.100	0.037	3				
del pavimento			^	1.100	0.037	3				
Desintegracion de los bordes			×	1.050	0.035	3	3		0	0
del pavimento			×	1.050	0.055	3				
Parcheo	х			0.054	0.002			-		
Parcheo	х	·		0.018	0.001					

UM - 8

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Fe y Alegria	AREA I	DE MUES	TRA		IS	CALIFICACIÓN	
Evaluador :	Progresiva		Ancho de via:	6.50m							
Burgos Zavaleta Mayer	Inicial: 0 + 7	700	Unidad da Mu	estreo: UM - 8	3km = 3000m			3	Marginal		
Paredes Castillo Dennys	Final: 0 + 80	00	Officaci de ivid	estreo. Owi - o							
TIPOS DE FALLAS		GRAVEDAD		EXTESI		lf	Promedio	ld	Promedio	CORRECCION	
TIFOS DE FALLAS	1	2	3	Área	Porcentaje	"	If Id		Id	COMMECCIÓN	
Perdida de agregados		х		292.5	10	2					
Desintegracion de los bordes				2	0.067						
del pavimento			х	2	0.007	3	3		0	0	
Parcheo		Х		0.098	0.003]				
Hueco			х	0.225	0.008	3					


SECTOR 2

En el sector 2 Av. Buenos Aires la progresiva es de la 0+800 hasta la progresiva 0+1700

UM - 9

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	TRA	IS		CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 8	00	Unidad do Mu	estreo: UM - 9	3kr	n = 3000r	n		2	Bueno
Paredes Castillo Dennys	Final: 0 + 90	0	Officaci de Ivid	lestieu. Uivi - 3						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	lf	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	IU	Id	CORRECCION
Perdida de la pelicula de ligante	Х			357.5	12	2	2		0	0
] "	U

Cálculo del Índice de figuración y deformación

UM - 10

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 9	900	Unidad do Mus	estreo: UM - 10	3km = 30		3km = 3000m			Bueno
Paredes Castillo Dennys	Final: 0 + 10	000	Unidad de ivide	estreo: OIVI - 10						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de la pelicula de ligante	Х			247	8.233	1				
Parcheo	Х			0.0312	0.001					
Desintegracion de los bordes del pavimento		х		1.2	0.040	2	2		0	0

METODO VIZIR	PROGR	RESIVA	LUGAR: Av. I	Buenos Aires	AREA	DE MUES	STRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:							
Burgos Zavaleta Mayer	Inicial: 0 + 1	000	Unidad da Mus	estreo: UM - 11	3kr	n = 3000i	m		1	Bueno
Paredes Castillo Dennys	Final: 0 + 11	00	Unidad de Mide	estreo: UM - 11						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	lf .	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de la pelicula de ligante	Х			200	6.667	1				
Parcheo	Х			5.00	0.167		1		0	0

UM – 12

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:							
Burgos Zavaleta Mayer	Inicial: 0 + 1	100	Unidad do Muc	estreo: UM - 12	3kn	n = 3000r	n		3	Marginal
Paredes Castillo Dennys	Final: 0 + 12	.00	Officaci de Mice	estieu. Uivi - 12						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	Iŧ	Promedio	14	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3 Área Porcentaje If If III III III III III III III III		CORRECCION					
Perdida de la pelicula de ligante			Х	45	2	3				
Desintegracion de los bordes del				3.00	0.100	2	2		0	0
pavimento		Х		3.00	0.100	2]		0	U

UM – 13

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	STRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	200	Unidad da Mua	estreo: UM - 13	3kr	n = 3000i	m		1	Bueno
Paredes Castillo Dennys	Final: 0 + 13	00	Uniudu de ivide	estieu. Uivi - 13						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	lf	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	11	If	IU	Id	CONNECCION
					0		0	·	0	0

UM – 14

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	300	Unidad da Mua	estreo: UM - 14	3kr	n = 3000r	m		1	Bueno
Paredes Castillo Dennys	Final: 0 + 14	00	Officaci de Mice	25t1e0. UIVI - 14						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	Iŧ	Promedio	ld	Promedio	CORRECCION
TIPUS DE FALLAS	1	2	3 Área		Porcentaje	ll II	If	10	Id	CORRECCION
					0		0		0	0

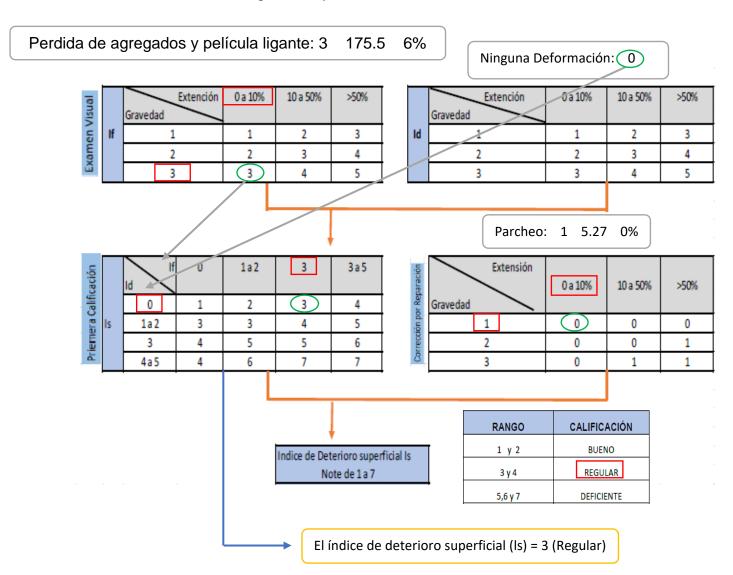
METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	STRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	400	Unidad da Mu	estreo: UM - 15	3kr	n = 3000i	m		1	Bueno
Paredes Castillo Dennys	Final: 0 + 15	00	Ulliudu de ivide	estieo. Uivi - 15						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	l If	Promedio	l4	Promedio	CORRECCION
TIPUS DE FALLAS	1	2	3	Área	Porcentaje]	If	10	Id	CORRECCION
					0		0		0	0

UM – 16

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	TRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	500	Unidad do Muc	estreo: UM - 16	3kr	m = 3000r	n		1	Bueno
Paredes Castillo Dennys	Final: 0 + 16	00	Official de Mice	STIED. DIVI- 10						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	It	Promedio	ld	Promedio	CORRECCION
TIPUS DE PALLAS	1	2	3	Área	Porcentaje]	If	ıü	Id	CONNECCION
					0		0		0	0

UM – 17

METODO VIZIR	PROG	RESIVA	LUGAR: Av.	Buenos Aires	AREA	DE MUES	STRA		IS	CALIFICACIÓN
Evaluador:	Progresiva	Ancho de via:		6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	600	Unidad do Muc	octron IIM 17	3kn	n = 3000	m		3	Marginal
Paredes Castillo Dennys	Final: 0 + 17	00	- Onidad de Mus	Unidad de Muestreo: UM - 17						
TIPOS DE FALLAS		GRAVEDAD)	EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPUS DE FALLAS	1	2	3	Área	Porcentaje	"	If	IU	Id	CORRECCION
Ahuellamiento	Х			0.65	0.022			1		
Perdida de la pelicula de ligante	Х			97.5	3.250	1	1		1	0
					0.000					


SECTOR 3

En el sector 3 Av. Pelicanos la progresiva es de la 0+1680 hasta la progresiva 0+3000

UM - 18

METODO VIZIR	PROGI	RESIVA	LUGAR: A	r. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	700	Unidad da Mu	estreo: UM - 18	3k	m = 3000m	ı		3	Marginal
Paredes Castillo Dennys	Final: 0 + 18	00	Officaci de Ivio	estieo. UW - 10						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	Iŧ	Promedio	ld	Promedio	CORRECCION
TIPUS DE FALLAS	1	2	3	Área	Porcentaje	"	If	Iu	Id	CORRECCION
Perdida de agregados y pelicula ligante			х	175.5	6	3	2		0	0
Parcheo	х			5.27	0.176					U

Cálculo del Índice de figuración y deformación

METODO VIZIR	PROG	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	.800	Unidad da Mu	estreo: UM - 19	3k	m = 3000m	١	4		Deficiente
Paredes Castillo Dennys	Final: 0 + 19	000	Officaci de ivio	estieu. Uivi - 19						
TIPOS DE FALLAS		GRAVEDAD	EXTENS		SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	lu	Id	CORRECCION
Perdida de agregados y			v	650	21.667	4				
pelicula ligante			x 650		21.007	4	4		0	0

UM - 20

METODO VIZIR	PROG	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 1	900	Unidad da Mu	estreo: UM - 20	3k	m = 3000m	1		4	Deficiente
Paredes Castillo Dennys	Final: 0 + 20	00	Officaci de ivio	estreo. Olvi - 20						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de agregados y			x	650	21.667	4				
pelicula ligante			X 050		22.007	·	4		0	0

UM – 21

METODO VIZIR	PROG	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	.000	Unidad da Mu	estreo: UM - 21	3k	m = 3000m	1		4	Deficiente
Paredes Castillo Dennys	Final: 0 + 21	.00	Officaci de ivio	estreo. OW - 21						
TIPOS DE FALLAS		GRAVEDAD	EXTENS		SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIFUS DE FALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de agregados y pelicula ligante			х	650	21.667	4	4		0	0

UM – 22

METODO VIZIR	PROG	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUES	ΓRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	100	Unidad da Mu	octron: LIM 22	3k	m = 3000m	1	4		Deficiente
Paredes Castillo Dennys	Final: 0 + 22	100	Unidad de Muestreo: UM - 22							
TIPOS DE FALLAS		GRAVEDAD	EXTENS		SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje		If	iu	Id	CORRECCION
Perdida de agregados y				CEO	21.667					
pelicula ligante			X	x 650		4	4		0	0

METODO VIZIR	PROG	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	200	Unidad do Mu	estreo: UM - 23	3k	m = 3000m	١		4	Deficiente
Paredes Castillo Dennys	Final: 0 + 23	00	Officaci de ividi	estieu. Ulvi - 25						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	Iu	Id	CORRECCION
Perdida de agregados y pelicula ligante			х	637	21.233	4	4		0	0
Descascaramiento			Х	4.068	0.136	3] 4] "	U

UM – 24

METODO VIZIR	PROGI	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN	
Evaluador:	Progresiva		Ancho de via:	6.50m							
Burgos Zavaleta Mayer	Inicial: 0 + 2	300	Unidad da Mu	estreo: UM - 24	3k	m = 3000m	1		0	Bueno	
Paredes Castillo Dennys	Final: 0 + 24	.00	Officaci de Mici	esti eo. 0 ivi - 24							
TIPOS DE FALLAS		GRAVEDAD		EXTEN			Promedio	ld	Promedio	CORRECCION	
TIPOS DE FALLAS	1 2		3	Área	Porcentaje	lt	If	Iu	Id	CORRECCION	
Perdida de agregados		Х		1.248	0.042	2					
Desintegracion de los				36	1.20	1	,		_	0	
bordes en pavimento	ordes en pavimento			30	1.20	2	2		U	U	

UM – 25

METODO VIZIR	PROG	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	TRA .	IS		CALIFICACIÓN	
Evaluador :	Progresiva		Ancho de via:	6.50m							
Burgos Zavaleta Mayer	Inicial: 0 + 2	400	Unidad da Mu	estreo: UM - 25	3k	m = 3000m	1		2	Bueno	
Paredes Castillo Dennys	Final: 0 + 25	00	Officaci de Iviu	estreo. UW - 25							
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION	
TIPOS DE FALLAS	1	2	3	Área	Porcentaje	"	If	Iu	Id	CORRECCION	
Perdida de agregados	Х			0.56	6 0.019						
Desintegracion de los				400	2 222	2					
bordes en pavimentos		X		100	3.333	2	2		0	0	
Bacheos	х			0.045	0.002						

UM - 26

PROGR	RESIVA	LUGAR: A	AREA	DE MUEST	ΓRA	IS		CALIFICACIÓN	
Progresiva		Ancho de via:	6.50m						
Inicial: 0 + 2	500	Unidad da Mu	ostron IIM 26	3k	m = 3000m	1		3	Marginal
Final: 0 + 26	00	Unidad de ivid	estreo: OW - 26						
	GRAVEDAD		EXTEN:	SIÓN	Iŧ	Promedio	Id	Promedio	CORRECCION
1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
x			96	3.200	2				
		х	554	18.467	4	3		0	0
	Inicial: 0 + 2	Inicial: 0 + 2500 Final: 0 + 2600 GRAVEDAD 1 2	Inicial: 0 + 2500	Nicial: 0 + 2500	Nicial: 0 + 2500				

METODO VIZIR	PROGI	RESIVA	LUGAR: A	v. Pelicanos	AREA	DE MUEST	TRA .		IS	CALIFICACIÓN
Evaluador :	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	600	Unidad do Mu	estreo: UM - 27	3k	m = 3000m	١		3	Marginal
Paredes Castillo Dennys	Final: 0 + 27	00	Official de Mic	estreo. OW - 27						
TIPOS DE FALLAS		GRAVEDAD		EXTEN:	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE FALLAS	1 2		3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Desintegracion de los	1 2 x			300	10	2				
bordes en pavimentos										
Perdida de la pelicula			×	350	12	4	3		0	0
ligante			^	330	12 4					

UM – 28

METODO VIZIR	PROGI	RESIVA	LUGAR: A	ı. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	700	Unidad do Mu	estreo: UM - 28	3k	m = 3000m	١		4	Marginal
Paredes Castillo Dennys	Final: 0 + 28	00	Officaci de Ividi	estieu. Uivi - 20						
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION
TIPOS DE PALLAS	1	2	3	Área	Porcentaje	"	If	ŭ	Id	CORRECCION
Perdida de agregados y pelicula ligante			х	650	22	4	4		0	0

UM - 29

METODO VIZIR	PROGI	RESIVA	LUGAR: A	ı. Pelicanos	AREA	DE MUEST	ΓRA		IS	CALIFICACIÓN
Evaluador:	Progresiva		Ancho de via:	6.50m						
Burgos Zavaleta Mayer	Inicial: 0 + 2	800	Unidad da Mu	estreo: UM - 29	3k	m = 3000m	1		4	Marginal
Paredes Castillo Dennys	Final: 0 + 29	00	Official de Mic	estreo. UIVI - 29						
TIPOS DE FALLAS		GRAVEDAD	•	EXTEN	SIÓN		Promedio	ld	Promedio	CORRECCION
TIPOS DE PALLAS	1	2	3	Área	Porcentaje	"	If	iu	Id	CORRECCION
Perdida de agregados y pelicula ligante			Х	650	22	4	4		0	0

UM - 30

METODO VIZIR	PROG	RESIVA	LUGAR: A	ı. Pelicanos	AREA	DE MUEST	ΓRA	IS		CALIFICACIÓN	
Evaluador:	Progresiva		Ancho de via:	6.50m							
Burgos Zavaleta Mayer	Inicial: 0 + 2	900	Unidad do Mu	estreo: UM - 30	3k	m = 3000m	١		0	Marginal	
Paredes Castillo Dennys	Final: 0 + 30	00	Officaci de Ivid	estieu. Uivi - 30							
TIPOS DE FALLAS		GRAVEDAD		EXTEN	SIÓN	If	Promedio	ld	Promedio	CORRECCION	
TIPOS DE PALLAS	1 2		3	Área	Porcentaje	=	If	ū	Id	CORRECCION	
Perdida de agregados y			v	650	21.667	4					
pelicula ligante			Х	030	21.007	4	4		0	0	

Anexo 5. Instrumentos de recolección de datos MTC.

										UNIVER	SIDAD CES	SAR VALLE	EJO				
$\overline{}$	UC	V								EVALUACIO:	N DE PAVIMEI	NTO METODO					
יוש	UNIVERSIE CÉSAR VALL	DAD EJO	Vía:		AV. Fe y Al	egria- A	v. Buenos Air	es- Av Peli	icanos		Tipo:	P	AVIMENTO FLE	EXIBLE. CARPE	TA ASFÁLTIC A	A	
			Evaluad	do por: Den	nys Parede	s-	Fecha: 15	le setiembr	e del 2022		Abscisa	inicial: 0 + 400)	Abscisa	final: 0 + 0600		CALZADA
								CLASIFI			OS O FALLAS						
		s Estructurales (E)					iciales (S)					vimentadas (B	9				
	le cocodri				ıra y desprer	dimient	0			Daños puntua							
		. y/o trans.		7 Baches					11	Desnivel Calsa	ada Berma						
		or deficiencia estructural		8 Fisuras T		;											
	llamiento			9 Exuda	cion												
5 Repa	raciones o	parchados															
Clasific			Grave	MEI	DIDA S			Ancho de	Ancho de la	A rea de la	Porcentaje de	Extension	Puntaje d	e Condicion Segú	in Extension de Ca	da tipo de	Puntaje de
acion			dad (G)					la seccion		seccion	Extension del			deterio	ro / Falla		Condicion
fallas	Codig o	Deterioro / falla		LARGO	A NCHO	PRO	Medidas	evaluad a		evaluada	deterioro/fall a	Ponderado	0: Sin deterioro		2: Moderado	3: Severo	Resultante
	falla	Deterior and		m	m	F. m	A rea	m	As(m)	As(m2)	(Efij)		o sin fallas	Efp=Menor	Efp=Entre 10% y		por cada tipo de
														a 10%	30%	30%	deterioro / Falla
																	Гана
				+	-												
					<u> </u>												
					-												
				-	-												
					+												
		•	•	•		•		•	•		•	•		•	•	TOTAL	
																DIDICE	

Anexo 5.1. METODOLOGIA MTC

Reparaciones o parcheo

0.30

0.40

0.12

6.5

200

Е

UM - 1

UNIVERSIDAD CESAR VALLEJO EVALUACION DE PAVIMENTO METODO MTC AV. Fe y Alegria- Av. Buenos Aires- Av Pelicanos PAVIMENTO FLEXIBLE. CARPETA ASFÁLTIC A Tipo: Evaluado por: Dennys Paredes-Fecha: 15 de setiembre del 2022 Abscisa inicial: 0 + 000 Abscisa final: 0 + 0200 CALZADA CLASIFICACION DE LOS DETERIOROS O FALLAS Deteriodos o fallas Estructurales (E) Deteriodos o fallas Superficiales (S) BERMAS Pavimentadas y no pavimentadas (B) Piel de cocodrilo 6 Peladura y desprendimiento 10 Daños puntuales 7 Baches (Huecos) 11 Desnivel Calsada Berma Fisuras Longit. y/o trans. Deformacion por deficiencia estructural 8 Fisuras Transversales Ahuellamiento 9 Exudacion Reparaciones o parchados Clasific MEDIDAS Grave Ancho de Ancho de la Area de la Porcentaje de Extension Puntaje de Condicion Según Extension de Cada tipo de Puntaje de acion dad (G) la seccion seccion Extension del Promedio deterioro / Falla Condicion seccion fallas evaluad a evaluada deterioro/fall a Ponderado Resultante Codig o LARGO ANCHO PRO Medidas evaluada 0: Sin deterioro 1: Leve 2: Moderado 3: Severo Deterioro / falla falla As(m) As(m2) (Efij) por cada tipo de Area o sin fallas Efp=Menor Efp=Entre 10% y F. m Efp=Mayor a m deterioro / a 10% 30% Falla Peladura y desprendimiento 30.0 6.5 195.0 S 6 S Peladura y desprendimiento 15.0 6.5 97.5 SUB TOTAL 22.50 292.5 6.5 200 1300 S Peladura y desprendimiento 50.0 6.5 325.0 33.70 50 50 S 6 Peladura y desprendimiento 30.0 6.5 195.0 SUB TOTAL 520.0 6.5 200 1300 40.00 S Baches (Huecos) SUB TOTAL 11 100 100 Baches (Huecos) S

1300

0.01

0.01

0.02

TOTAL	150.0
	1000
INDICE	849.98

0.02

CLASIFICACION DE LOS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- 4 Ahuellamiento
- 5 Reparaciones o parchados

Deteriodos o fallas Superficiales (S)

- 6 Peladura y desprendimiento
- 7 Baches (Huecos)
- 8 Fisuras Transversales
- 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific			Grave	MED	IDAS				Ancho de la	Area de la	Porcentaje de		Puntaje d	~	in Extension de Ca	da tipo de	Puntaje de
acion			dad (G)					la seccion	seccion	seccion	Extension del			deterio	ro / Falla		Condicion
fallas	Codig o	Deterioro / falla		LARGO	ANCHO	PRO	Medidas	evaluad a	evaluada	evaluada	deterioro/fall a	Ponderado	0: Sin deterioro	1: Leve	2: Moderado	3: Severo	Resultante
	falla	Beterioro / Tana		m	m	F. m	Area	m	As(m)	As(m2)	(Efij)		o sin fallas	Efp=Menor	Efp=Entre 10% y	Efp=Mayor a	por cada tipo de
														a 10%	30%	30%	deterioro /
																	Falla
S	6	Peladura y desprendimiento	1	40.0	6.5		260.0										
S	6	Peladura y desprendimiento	1	30.0	6.5		195.0										
		SUB TOTAL					455.0	6.5	200	1300	35.00						
S	6	Peladura y desprendimiento	2	50.0	6.5		325.0	6.5	200	1300	25.00	30.83				50	50
В	10	Daños Puntuales	2	2.0	0.1		2.0	6.5	200	1300	0.15	0.15		0.15			0.15
							•		•		•	•	•	•		TOTAL	50.2

INDICE

1000

949.85

			UNIVER	SIDAD CES	AR VALLEJO								
			EVALUACIO	N DE PAVIMEN	TO METODO MTC								
	Vía:	AV. Fe y Alegria- Av	7. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	EXIBLE. CARPETA ASFÁLTIC A	_						
Ī	Evaluado por: Dennys Paredes- Fecha: 15 de setiembre del 2022 Abscisa inicial: 0 + 0400 Abscisa final: 0 + 0600 CALZADA												

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- Deformacion por deficiencia estructural
- Ahuellamiento
- Reparaciones o parchados

Deteriodos o fallas Superficiales (S) 6 Peladura y desprendimiento

- 7 Baches (Huecos) 8 Fisuras Transversales
- 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific acion			Grave dad (G)	MED	IDAS			Ancho de la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del	Promedio	Puntaje d	_	ín Extension de Ca ro / Falla	da tipo de	Puntaje de Condicion
	Codig o falla	Deterioro / falla		LARGO m		-	Medidas Area	evaluad a m	evaluada As(m)	evaluada As (m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas	1: Leve Efp=Menor a 10%	2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	2	10.0	6.5		65.0										
S	6	Peladura y desprendimiento	2	80.0	6.5		520.0										
		SUB TOTAL					585.0	6.5	200	1300	45.00						
S	6	Peladura y desprendimiento	1	40.0	6.5		260.0	6.5	200	1300	20.00	32.50				50	50
E	5	Reparaciones o Parchados	1	12.0	1.0		12.0										
Е	5	Reparaciones o Parchados	1	10.0	2.0		20.00										
		SUB TOTAL					32.00	6.5	200	1300	2.46						
Е	5	Reparaciones o Parchados	2	2.00	1.00		2.00	6.5	200	1300	0.15	1.31		2.62			2.62
В	10	Daños Puntuales	2	1.20			1.20										
В	10	Daños Puntuales	2	1.5			1.5										
		SUB TOTAL					1.50	6.5	200	1300	0.12	0.12		0.12			0.12
																TOTAL	52.7
																	1000
																INDICE	947.26

	UNIVERSIDAD CESAR VALLEJO											
	EVALUACION DE PAVIMENTO METODO MTC											
Vía:	AV. Fe y Alegria- A	v. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A							
Evaluad	o por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa i	nicial: 0 + 0600	Abscisa final: 0 + 0800	CALZADA						

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- Ahuellamiento
- Reparaciones o parchados

- Deteriodos o fallas Superficiales (S)
- 6 Peladura y desprendimiento 7 Baches (Huecos)
- 8 Fisuras Transversales
- 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific acion			Grave dad (G)	MED	IDAS			Ancho de la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del		Puntaje d		ún Extension de Ca oro / Falla	da tipo de	Puntaje de Condicion
	Codig o falla	Deterioro / falla		LARGO m		PRO F. m	Medidas Area	evaluad a m	evaluada As(m)	evaluada As(m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas	1: Leve Efp=Menor a 10%	2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	2	50.0	6.5		325.0										
S	6	Peladura y desprendimiento	2	45.0	6.5		292.5										
		SUB TOTAL					617.5	6.5	200	1300	47.50	47.50				50	50
Е	5	Reparaciones o Parchados	2	0.1	0.2		0.0										
E	5	Reparaciones o Parchados	2	0.1	0.2		0.0										
Е	5	Reparaciones o Parchados	2	0.3	0.3		0.1										
		SUB TOTAL					0.13	6.5	200	1300	0.01	0.01		0.02			0.02
S	7	Baches o Huecos	3									5			34		34
В	10	Daños Puntuales	3				1.10										
В	10	Daños Puntuales	3				1.05										
В	10	Daños Puntuales	3				2.0										
		SUB TOTAL					4.15	6.5	200	1300	0.32	0.32		0.64			0.64
																TOTAL	84.7

915.34

	UNIVERSIDAD CESAR VALLEJO											
	EVALUACION DE PAVIMENTO METODO MTC											
Vía:	AV. Fe y Alegria- A	v. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A							
Evalu	do por: Dennys Paredes- Fecha: 15 de setiembre del 2022		Abscisa i	nicial: 0 + 0800	Abscisa final: 0 + 1000	CALZADA						

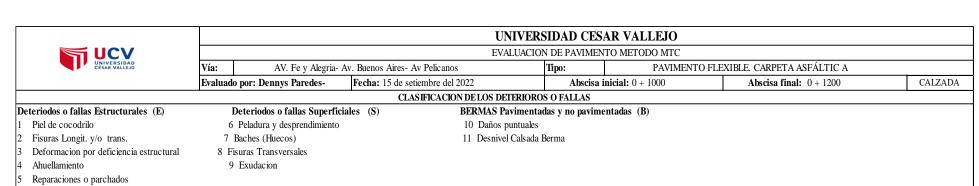
CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- 4 Ahuellamiento
- Reparaciones o parchados

Deteriodos o fallas Superficiales (S) 6 Peladura y desprendimiento

- 7 Baches (Huecos)
- 8 Fisuras Transversales
 - 9 Exudacion


BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific acion	cion		Grave dad (G)	MED	IDAS			Ancho de la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del		Puntaje d	v	n Extension de Ca ro / Falla	da tipo de	Puntaje de Condicion
fallas	Codig o falla	Deterioro / falla		LARGO m		-	Medidas Area	evaluad a m	evaluada As(m)	evaluada As(m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas	1 1 1 1	2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	2	55.0	6.5		357.5										
S	6	Peladura y desprendimiento	2	38.0	6.5		247.0										
		SUB TOTAL					604.5	6.5	200	1300	46.50	46.50				50	50
Е	5	Reparaciones o parchados	1	0.1	0.2		0.03	6.5	200	1300	0.00	0.00					
В	10	Daños puntuales	2				1.2	6.5	200	1300	0.09	0.09	0.09				0.09
																TOTAL	50.1

1000

949.91

Clasific			Grave	MEDI	IDAS			Ancho de	Ancho de la	Area de la	Porcentaje de	Extension	Puntaje d	e Condicion Segú	n Extension de Cad	la tipo de	Puntaje de
acion			dad (G)					la seccion	seccion	seccion	Extension del	Promedio		deterio	ro / Falla		Condicion
fallas	Codig o	Deterioro / falla		LARGO	ANCHO	PRO	Medidas	evaluad a	evaluada	evaluada	deterioro/fall a	Ponderado	0: Sin deterioro	1: Leve	2: Moderado	3: Severo	Resultante
	falla	Detenoro / rana		m	m	F. m	Area	m	As(m)	As(m2)	(Efij)		o sin fallas	Efp=Menor	Efp=Entre 10% y	Efp=Mayor a	por cada tipo de
														a 10%	30%	30%	deterioro /
																	Falla
S	6	Peladura y desprendimiento	1	50.0	4.0		200.0	6.5	200	1300	15.38						
S	6	Peladura y desprendimiento	3	30.0	1.5		45.0	6.5	200	1300	3.46	13.19			16.39		16.39
В	10	Daños puntuales	2				3.0	6.5	200	1300	0.23	0.23		0.23			0.23
									•			•		•	•	TOTAL	16.6

TOTAL 16.6 1000 INDICE **983.38**

										UNIVED	SIDAD CES	AD VALLE	TIO .				
		1101/									N DE PAVIMEN						
		UCV	Vía:		AV Fe v Ale	oria- Av	v. Buenos Air	es- Av Peli	canos	LVALOACIO	Tipo:			EXIBLE CARPI	ETA ASFÁLTIC A	<u> </u>	
		CÉSAR VALLEJO	Evaluad		11.10 / 110		Fecha: 15 d					inicial: 0 + 120		ı	final: 0 + 1400		CALZADA
				Paredes- M	L ayerBurgos												
							1			CLASIFICAC	ON DE LOS DET	ERIOROS O FA	LLAS				
Deteriod	os o falla	as Estructurales (E)	•	Deteriodos	o fallas Sup	erficia	les (S)		BERM	AS Pavimenta	das y no pavime	entadas (B)					
1 Piel d	le cocodr	ilo	6	6 Peladura y	desprendim	iento			10 Da	años puntuales							
2 Fisur	Fisuras Longit. y/o trans.			Baches (Hu	ecos)				11 De	esnivel Calsada	Berma						
3 Defo	rmacion p	oor deficiencia estructural	8 F	isuras Trans	sversales												
4 Ahue	Ahuellamiento			9 Exudacion	l												
5 Repai	raciones (parchados															
Clasific			Grave	MED	IDAS			Ancho de	Ancho de la	Area de la	Porcentaje de	Extension	Puntaje d	e Condicion Segi	ín Extension de Ca	da tipo de	Puntaje de
acion			dad (G)					la seccion	seccion	seccion	Extension del	Promedio	Ĭ	deterio	oro / Falla	·	Condicion
fallas	Codig o	Deterioro / falla		LARGO	ANCHO	PRO	Medidas	evaluad a	evaluada	evaluada	deterioro/fall a	Ponderado	0: Sin deterioro	1: Leve	2: Moderado	3: Severo	Resultante
	falla	Deterioro / Talia	m	m	F. m	Area	m	As(m)	As(m2)	(Efij)		o sin fallas	Efp=Menor	Efp=Entre 10% y	Efp=Mayor a	por cada tipo de	
a 10%							a 10%	30%	30%	deterioro /							
																Falla	
			•	•			•							•	•	TOTAL	

INDICE

1000

	UNIVERSIDAD CESAR VALLEJO											
	EVALUACION DE PAVIMENTO METODO MTC											
Vía:	AV. Fe y Alegria- Av. Buenos Aires- Av Pelicanos Tipo: PAVIMENTO FLEXIBLE. CARPETA ASFÁLTIC A											
Evaluad	o por:	Fecha: 15 de setiembre del 2022	Abscisa	inicial: 0 + 1400	Abscisa final: 0 + 1600	CALZADA						
Dennys	Paredes- MayerBurgos											

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- 4 Ahuellamiento
- 5 Reparaciones o parchados

Deteriodos o fallas Superficiales (S)

- 6 Peladura y desprendimiento
- 7 Baches (Huecos)
- 8 Fisuras Transversales
- 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific			Grave	MED:	MEDIDAS			Ancho de	Ancho de la	Area de la	Porcentaje de	Extension	Puntaje d	e Condicion Segú	n Extension de Cao	da tipo de	Puntaje de
acion			dad (G)					la seccion	seccion	seccion	Extension del	Promedio		deterio	ro / Falla		Condicion
fallas	Codig o	Deterioro / falla		LARGO	ANCHO	PRO	Medidas	evaluad a	evaluada	evaluada	deterioro/fall a	Ponderado	0: Sin deterioro	1: Leve	2: Moderado	3: Severo	Resultante
	falla	Deterioro / Tana		m	m	F. m	Area	m	As(m)	As(m2)	(Efij)		o sin fallas	Efp=Menor	Efp=Entre 10% y	Efp=Mayor a	por cada tipo de
														a 10%	30%	30%	deterioro /
																	Falla

TOTAL 1000
INDICE 1000.0

	UNIVERSIDAD CESAR VALLEJO										
	EVALUACION DE PAVIMENTO METODO MTC										
Vía:	AV. Fe y Alegria- Av	7. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	EXIBLE. CARPETA ASFÁLTIC A						
Evaluad	lo por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa	inicial: 0 + 1600	Abscisa final: 0 + 1800	CALZADA					

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- 1 Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- Ahuellamiento
- 5 Reparaciones o parchados

Deteriodos o fallas Superficiales (S)

- 6 Peladura y desprendimiento
- 7 Baches (Huecos)
- 8 Fisuras Transversales
 - 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific			Grave	MED:	MEDIDAS			Ancho de	Ancho de la	Area de la	Porcentaje de	Extension	Puntaje d	e Condicion Segú	n Extension de Cac	la tipo de	Puntaje de
acion			dad (G)					la seccion	seccion	seccion	Extension del	Promedio		deterior	ro / Falla		Condicion
fallas	Codig o	Deterioro / falla		LARGO	ANCHO	PRO	Medidas	evaluad a	evaluada	evaluada	deterioro/fall a	Ponderado	0: Sin deterioro	1: Leve	2: Moderado	3: Severo	Resultante
	falla	Deterioro / Italia		m	m	F. m	Area	m	As(m)	As(m2)	(Efij)		o sin fallas	Efp=Menor	Efp=Entre 10% y	Efp=Mayor a	por cada tipo de
														a 10%	30%	30%	deterioro /
																	Falla
S	6	Peladura y desprendimiento	1	15.0	6.5		97.5	6.5	200	1300	7.50						
S	6	Peladura y desprendimiento	3	27.0	6.5		175.5	6.5	200	1300	13.50	11.36			12.71		12.71
S	5	Reparaciones o Parcheo	1	1.3	4.1		5.3	6.5	200	1300	0.41	0.405	0.81				0.81
													•	•	•	TOTAL	12.5

TOTAL 13.5 1000 INDICE **986.48**

	UNIVERSIDAD CESAR VALLEJO											
	EVALUACION DE PAVIMENTO METODO MTC											
Vía:	AV. Fe y Alegria- Av	v. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A							
Evaluad	o por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa i	nicial: 0 + 1800	Abscisa final: 0 + 2000	CALZADA						

BERMAS Pavimentadas y no pavimentadas (B)

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- 1 Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- 4 Ahuellamiento

- Deteriodos o fallas Superficiales (S) 6 Peladura y desprendimiento
- 7 Baches (Huecos) 8 Fisuras Transversales
- 9 Exudacion

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

5	Danamasianas	_		hadaa
J	Reparaciones	O	parc	nauos

Clasific			Grave	MED	IDAS				Ancho de la	Area de la	Porcentaje de		Puntaje d		n Extension de Ca	da tipo de	Puntaje de
acion fallas	Codig o falla	Deterioro / falla	dad (G)	LARGO m	ANCHO m	PRO F. m		la seccion evaluad a m		seccion evaluada As(m2)	Extension del deterioro/fall a (Efij)			1: Leve	co / Falla 2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Condicion Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	3	100.0	6.5		650.0										
S	6	Peladura y desprendimiento	3	100.0	6.5		650.0										
		SUB TOTAL					1300.0	6.5	200	1300	100.00	100.00				50	50
S	7	Baches(Huecos)	3									11				100	100
Е	1	Piel de cocodrilo	3	100.0	4.0		400.0	6.5	200	1300	30.77					200	200
Е																	
																TOTAL	350.0
																	1000

650.0

			UNIVERS	SIDAD CES	AR VALLEJO		
			EVALUACION	N DE PAVIMEN	TO METODO MTC		
V	/ía:	AV. Fe y Alegria- Av	. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A	
E	evaluado	por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa i	nicial: 0 + 2000	Abscisa final: 0 + 2200	CALZADA

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- 4 Ahuellamiento
- Deteriodos o fallas Superficiales (S) 6 Peladura y desprendimiento
- 7 Baches (Huecos) 8 Fisuras Transversales
- 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B) 10 Daños puntuales

11 Desnivel Calsada Berma

5 Reparaciones o parchados

Clasific acion			Grave dad (G)	MED	IDAS		la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del	Promedio	Puntaje d	n Extension de Ca ro / Falla	da tipo de	Puntaje de Condicion
fallas	Codig o falla	Deterioro / falla		LARGO m		 Medidas Area	evaluad a m	evaluada As(m)	evaluada As(m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas	2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	3	100.0	6.5	650.0									
S	6	Peladura y desprendimiento	3	100.0	6.5	650.0									
		SUB TOTAL				1300.0	6.5	200	1300	100.00	100.00			50	50
S	7	Baches (Huecos)	3								11.00			100	100
Е	1	Piel de cocodrilo	3	80.0	5.0	400.0	6.5	200	1300	30.77	30.77			200	200
														TOTAL	350.0

TOTAL 350.0 1000 INDICE **650.0**

		UNIV	ERSIDAD CES	AR VALLEJO		
		EVALUA	CION DE PAVIMEN	NTO METODO MTC		
Vía:	AV. Fe y Alegria- Av	v. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A	
Evaluad	o por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa	inicial: 0 + 2200	Abscisa final: 0 + 2400	CALZADA
		CLASIFICACION DE LOS DETERI	OROS O FALLAS			

Deteriodos o fallas Estructurales (E)

Deteriodos o fallas Superficiales (S) 6 Peladura y desprendimiento

- 7 Baches (Huecos)
- 8 Fisuras Transversales
 - 9 Exudacion

- Piel de cocodrilo 2 Fisuras Longit. y/o trans.
 - Deformacion por deficiencia estructural Ahuellamiento
- Reparaciones o parchados

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific			Grave	MED:	IDAS			Ancho de	Ancho de la	Area de la	Porcentaje de	Extension	Puntaje d	e Condicion Segú	n Extension de Ca	da tipo de	Puntaje de
acion			dad (G)					la seccion	seccion	seccion	Extension del			deterio	ro / Falla		Condicion
fallas	Codig o falla	Deterioro / falla		LARGO m		_	Medidas Area	evaluad a m	evaluada As(m)	evaluada As(m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas		2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	3	100.0	6.5		650.0										
S	6	Peladura y desprendimiento	3	100.0	6.5		650.0										
		SUB TOTAL					1300.0	6.5	200	1300	100.00	100.00				50	50
S	7	Baches y Huecos	3									11.00				100	100
Е	1	Piel de cocodrilo	3	80.0	5.0		400.0	6.5	200	1300	30.77	30.77				200	
																TOTAL	350.0

1000

650.0

		UNIVER	SIDAD CES	AR VALLEJO		
		EVALUACIO	N DE PAVIMEN	TO METODO MTC		
Vía:	AV. Fe y Alegria- A	v. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A	
Evaluad	o por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa i	nicial: 0 + 2400	Abscisa final: 0 + 2600	CALZADA

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

Deteriodos o fallas Superficiales (S)

BERMAS Pavimentadas y no pavimentadas (B)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- Deformacion por deficiencia estructural
- Ahuellamiento
- 5 Reparaciones o parchados

- 6 Peladura y desprendimiento
- 7 Baches (Huecos)
- 8 Fisuras Transversales
- 9 Exudacion

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific acion			Grave dad (G)	MED	IDAS			Ancho de la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del		Puntaje d	ŭ	n Extension de Car ro / Falla	da tipo de	Puntaje de Condicion
fallas	Codig o falla	Deterioro / falla		LARGO m		_	Medidas Area	evaluad a m	evaluada As(m)	evaluada As(m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas		2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	1	1.4	0.4		0.6										
S	6	Peladura y desprendimiento	3	100.0	5.5		554.0										
		SUB TOTAL					554.6	6.5	200	1300	42.66	36.14				50	50
S	7	Baches (Huecos)	3									6			47.00		47
В	10	Daños puntuales	3	100.0	1.0		96.0										
В	10	Daños puntuales	3	100.0	1.0		100.0										
		SUB TOTAL					196.00	6.5	200	1300	15.08	15.08			20.15		20.15
																TOTAL	117.2

1000

882.85

		UNIV	ERSIDAD CES	AR VALLEJO		
		EVALUA	CION DE PAVIMEN	TO METODO MTC		
Vía:	AV. Fe y Alegria- A	v. Buenos Aires- Av Pelicanos	Tipo:	PAVIMENTO FLE	EXIBLE. CARPETA ASFÁLTIC A	
Evaluad	o por: Dennys Paredes-	Fecha: 15 de setiembre del 2022	Abscisa i	inicial: 0 + 2600	Abscisa final: 0 + 2800	CALZADA

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

Deteriodos o fallas Superficiales (S)

BERMAS Pavimentadas y no pavimentadas (B)

1 Piel de cocodrilo2 Fisuras Longit. y/o trans.

- 6 Peladura y desprendimiento
- 7 Baches (Huecos)
- 10 Daños puntuales11 Desnivel Calsada Berma

- 3 Deformación por deficiencia estructural
- 8 Fisuras Transversales

4 Ahuellamiento

9 Exudacion

Reparaciones o parchados

Clasific acion			Grave dad (G)	MED	IDAS			Ancho de la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del	Promedio	Puntaje d	· ·	n Extension de Ca ro / Falla	da tipo de	Puntaje de Condicion
fallas	Codig o falla	Deterioro / falla		LARGO m	ANCHO m		Medidas Area	evaluad a m	evaluada As(m)	evaluada As (m2)	deterioro/fall a (Efij)	Ponderado	0: Sin deterioro o sin fallas		2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	3	100.0	3.5		350.0										
S	6	Peladura y desprendimiento	3	100.0	6.5		650.0										
		SUB TOTAL					1000.0	6.5	200	1300	76.92	76.92				50	50
В	10	Daños puntuales	3	100.0	3.5		350.0	6.5	200	1300	26.92	26.92			43.84		43.84
			•	•	•	•		•	•		•	•	•	•	•	TOTAL	93.8
																	1000

906.16

		UNIVERSII	DAD CESA	AR VALLEJO		
		EVALUACION D	DE PAVIMENT	TO METODO MTC		
Vía:	AV. Fe y Alegria- Av. Buenos Aires- Av Pelicanos	Tip	ipo:	PAVIMENTO FLE	XIBLE. CARPETA ASFÁLTIC A	
Evaluad	o por: Dennys Paredes- Fecha: 15 de setiembre del 2022		Abscisa ir	nicial: 0 + 2800	Abscisa final: 0 + 3000	CALZADA

CLASIFICACION DE LOS DETERIOROS O FALLAS

Deteriodos o fallas Estructurales (E)

- Piel de cocodrilo
- 2 Fisuras Longit. y/o trans.
- 3 Deformacion por deficiencia estructural
- Ahuellamiento
- 5 Reparaciones o parchados

Deteriodos o fallas Superficiales (S)

- 6 Peladura y desprendimiento
- 7 Baches (Huecos)
- 8 Fisuras Transversales
- 9 Exudacion

BERMAS Pavimentadas y no pavimentadas (B)

- 10 Daños puntuales
- 11 Desnivel Calsada Berma

Clasific acion			Grave dad (G)	MED	IDAS		Ancho de la seccion	Ancho de la seccion	Area de la seccion	Porcentaje de Extension del		Puntaje d	-	n Extension de Ca	da tipo de	Puntaje de Condicion
	Codig o falla	Deterioro / falla	uau (O)	LARGO m			evaluad a	evaluada As(m)	evaluada As(m2)	deterioro/fall a (Efij)		0: Sin deterioro o sin fallas		2: Moderado Efp=Entre 10% y 30%	3: Severo Efp=Mayor a 30%	Resultante por cada tipo de deterioro / Falla
S	6	Peladura y desprendimiento	3	100.0	6.5	650.0										
S	6	Peladura y desprendimiento	3	100.0	6.5	650.0										
		SUB TOTAL				1300.0	6.5	200	1300	100.00	100.00				50	50
S	7	Baches (Huecos)	3								12.00				100	100
Е	1	Piel de cocodrilo	3	80.0	6.0	480.0	6.5	200	1300	36.92	36.92				200	200
							•			•	•	•	•		TOTAL	250.0

TOTAL 350.0 1000 INDICE **650.0**

Anexo 6. Instrumentos de recolección de datos RUGOSIMETRO DE BERLIN.

ROYECTO : ECTOR : RAMO : ARRIL :					OPERADOR :
E	NSAYO N°		км 📘	+	HORA :
1	1 2	3 4	5 6	7 8	9 10 TIPO DE PAVIMENTO
3					AFIRMADO
4 5					BASE GRANULAR
7 8					BASE IMPRIMADA
9					TRAT. BICAPA
11 12					CARPETA EN FRIO
13	10.00				CARP. EN CALIENTE
15 16					RECAPEO ASFALTICO
17 18		13.7			SELLO
19					OTROS
BSERVACIONE	-0				

		-			4.			(MPO)				Hoger Burges
PROYECTO :		TES:								3	OPERADOR	Dranys Popules
SECTOR :	-	O todo - O t 400 CAL ZADA							SUPERVISOR FECHA	Matr Gonzale Olas		
CARRIL										FECHA	14/10/22	
E	NSA	YO N		01	1	км	Oto	o0 → 0	+400	1	HORA 9 40	0
_	1	2	3	4	5	6	7	8	9	10		
	23	49	31	37	9	29	36	32	27		TIPO DE PAVIMEI	OTA
	38	3)	39	31	18	37	So	32	37	31		
	39	26	35	46	26	30	37	25	24	13	AFIRMADO	
	47	37	35	37	41	49	50	36	28	31	BASE GRANULAR	П
	27	41	39		29	39	30	28	30	29		_
7	30	40	30	34	38	28	37	30	32		BASE IMPRIMADA	П
8	25	31	33	37	29	30	21	33	27	33	these thomas	_
9	32	44	50	32	39	29	28	31	24	50	TRAT. BICAPA	
10	45	49	39	19	46	35	33	42	40	18		preside the same of the same o
	50	42	28	29	36	20	45	1	30	28	CARPETA EN FRIO	\times
12	35	30	29	35	28	31	35	33	34	29	CONTRACTOR OF THE CONTRACTOR O	
13	32	50	30	39	36	27	35	31	37	38	CARP EN CALIENTE	
16	35	29	28 32	33	34	33	29	32	27	20	RECAPEO ASFALTICO	П
16	33	31	35	29	30	33	38	25	34	31	NEUAPEU AGPAL HUU	
	39	34	33	30	41	24	31	35	31	39	SELLO	
18	36	34	25	33	33	33	33	31	28	31		_
19	32	37	30	38	31	26	30	39	50	31	OTROS	П
20	46	33	42	46	49	50	50	23	29	46	Section 1	_
OBSERVACION	ES:											

Anexo 6.1. METODOLOGIA IRI

Cálculo del IRI con el Merlín

SECTOR 1 AV. FE Y ALEGRIA

Parte 1:

Primero: Cálculo del Factor de Corrección.

$$F.C. = (EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 14

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

F.C. = 0.9090

Segundo: Recolección de datos en campo.

_	1	2	3	4	5	6	7	8	9	10
1	23	49	31	37	9	29	36	32	27	35
2	38	31	39	31	18	37	50	32	37	31
3	39	23	35	46	26	30	37	25	34	42
4	32	34	35	29	44	49	43	36	50	13
5	47	37	26	37	1	1	50	1	28	31
6	27	41	39	34	29	39	30	28	30	29
7	30	40	30	38	38	28	37	30	32	34
8	25	31	33	37	29	30	21	33	27	33
9	32	44	50	32	39	29	28	31	24	50
10	45	49	39	19	46	35	33	42	40	18
11	50	42	28	29	36	20	45	1	30	28
12	35	30	29	35	28	31	35	33	34	29
13	32	31	30	16	36	27	35	31	37	38
14	15	50	28	39	34	30	29	32	27	30
15	35	29	32	33	31	33	29	32	28	28
16	33	31	35	29	30	33	38	25	34	31
17	39	34	33	30	41	24	31	35	31	39
18	36	34	25	33	33	33	33	31	28	31
19	32	37	30	38	31	26	30	39	50	31
20	46	33	42	46	49	50	50	23	29	46

Datos de medición del IRI

Tercer: Graficar el histograma de frecuencias de los datos

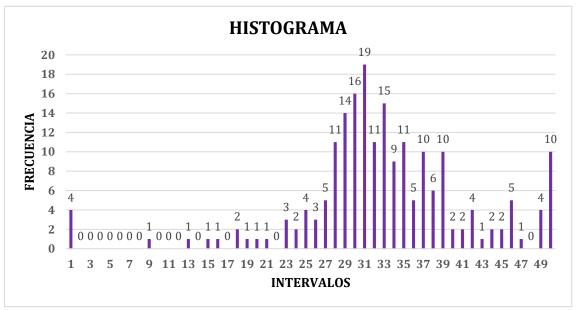


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Cuarto: Calcular el Rango "D".

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (18) quedara.

$$(2-2)/2=0$$

Lado Derecho: En la barra (50) quedara.

$$(10-10) / 10 = 0$$

Entonces el rango "D" = 0 + 29 + 0 = 29

Quinto: Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 29 x 5

$$D_{cor}$$
= 131.805

Sexto: Cálculo del IRI.

$$2. \ 4 < IRI < 15. \ 9$$
, entonces $IRI = 0. \ 593 + 0. \ 0471 \ x \ D$

IRI=0.593 + 0.0471 x 131.805

IRI= 3.681 m/km

IRI= **REGULAR**

PAVIME	NO PAVIMENTADAS		
Estado	Rugosidad	Rugosidad	
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6	
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>	
Malo	4.0 <iri<5,0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5,0<>	8 <iri<10< td=""></iri<10<>	
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>	

Parte 2:

Cálculo del Factor de Corrección.

$$F.C. = (EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

$$F.C. = (5 \times 10) / [(25 - 14) \times 5]$$

F.C. = 0.9090

Recolección de datos en campo.

_	1	2	3	4	5	6	7	8	9	10
1	50	1	23	43	22	43	50	36	27	36
2	30	22	38	35	37	13	36	33	25	10
3	26	48	37	30	35	36	38	35	34	50
4	32	28	26	38	35	36	34	37	29	34
5	30	47	23	31	35	29	28	28	30	37
6	30	30	30	39	31	35	33	32	35	31
7	30	50	50	29	32	33	35	33	36	37
8	39	32	32	32	37	34	37	33	34	36
9	34	30	33	34	23	36	35	37	35	32
10	32	34	32	30	33	26	37	38	37	36
11	30	35	35	39	26	30	34	35	33	36
12	28	37	37	34	33	36	33	40	31	36
13	31	32	33	32	37	37	30	36	38	35
14	30	42	29	35	35	33	35	36	24	39
15	35	35	38	34	32	32	32	36	39	31
16	39	30	37	36	37	31	33	27	32	26
17	27	33	37	43	48	1	48	27	41	40
18	39	33	36	36	45	40	36	39	35	43
19	29	40	35	37	35	36	31	32	31	39
20	34	37	44	35	33	33	40	36	7	1

Figura. Datos de medición del IRI

Graficar el histograma de frecuencias de los datos.

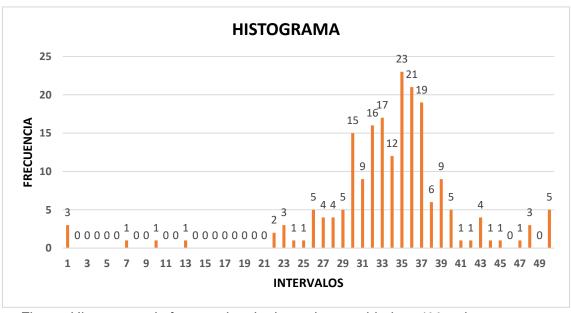


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Calcular el Rango "D"

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (23) quedara.

$$(3-2) / 3 = 0.333$$

Lado Derecho: En la barra (45) quedara.

$$(1-1)/1=0$$

Entonces el rango "D" = 0.333 + 21 + 0 = 21.333

Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 21.333 x 5

$$D_{cor}$$
= 96.958

Cálculo del IRI.

2.
$$4 < IRI < 15$$
. 9, entonces $IRI = 0.593 + 0.0471 \times D$

$$IRI=0.593 + 0.0471 \times 96.958$$

IRI= **5.160 m/km**

IRI= MUY MALO

PAVIME	NTADAS	NO PAVIMENTADAS Rugosidad		
Estado	Rugosidad			
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6		
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>		
Malo	4.0 <iri<5.0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5.0<>	8 <iri<10< td=""></iri<10<>		
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>		

SECTOR 2 AV. BUENOS AIRES

Parte 1:

Primero: Cálculo del Factor de Corrección.

F.C. =
$$(EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

F.C. = 0.9090

Segundo: Recolección de datos en campo.

_	1	2	3	4	5	6	7	8	9	10
1	39	36	35	40	33	41	33	45	20	41
2	35	40	44	30	29	46	34	31	31	44
3	39	50	36	43	35	45	46	41	39	30
4	35	31	45	35	34	35	33	37	40	36
5	32	32	31	40	44	33	37	42	23	43
6	41	35	30	42	41	34	33	28	39	38
7	24	47	43	33	3	45	37	47	28	43
8	41	35	37	35	38	41	39	37	35	35
9	33	35	34	36	39	50	38	39	38	39
10	42	37	43	41	38	36	37	33	36	43
11	37	45	20	39	41	34	40	41	32	30
12	33	39	1	36	44	35	36	39	33	34
13	33	35	39	31	34	36	37	32	39	40
14	34	40	42	33	38	35	36	36	34	38
15	36	31	35	20	35	39	31	38	42	34
16	38	32	41	34	36	29	38	42	27	37
17	34	45	35	40	40	36	29	40	36	37
18	31	27	35	34	37	43	31	44	38	32
19	38	35	32	32	34	40	36	40	34	34
20	39	40	39	33	37	31	34	40	40	43
-										

Figura. Datos de medición del IRI

Tercer: Graficar el histograma de frecuencias de los datos

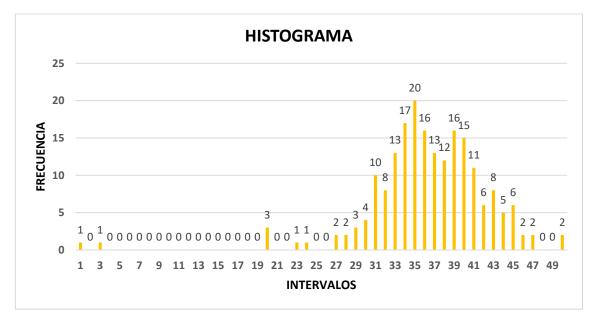


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Cuarto: Calcular el Rango "D".

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (28) quedara.

$$(2-1)/2 = 0.5$$

Lado Derecho: En la barra (45) quedara.

$$(6-5) / 6 = 0.1667$$

Entonces el rango "D" = 0.5 + 16 + 0.1667 = 16.6667

Quinto: Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 16.6667 x 5

$$D_{cor}$$
= 75.750

Sexto: Cálculo del IRI.

$$2. \ 4 < IRI < 15. \ 9$$
, entonces $IRI = 0. \ 593 + 0. \ 0471 \ x \ D$

IRI=0.593 + 0.0471 x 75.750

IRI= 2.116 m/km

IRI= BUENO

PAVIME	NTADAS	NO PAVIMENTADA		
Estado	Rugosidad	Rugosidad		
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6		
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>		
Malo	4.0 <iri<5,0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5,0<>	8 <iri<10< td=""></iri<10<>		
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>		

Parte 2:

Cálculo del Factor de Corrección.

$$F.C. = (EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

F.C. = 0.9090

Recolección de datos en campo.

	1	2	3	4	5	6	7	8	9	10
1	42	35	44	43	40	36	36	38	50	32
2	38	34	37	38	37	38	38	30	30	35
3	47	44	42	31	38	36	39	46	36	46
4	43	38	36	38	33	38	39	39	40	41
5	36	37	37	37	37	38	23	42	43	36
6	44	38	47	38	38	38	39	37	41	35
7	40	37	38	37	34	36	42	32	36	36
8	35	36	34	34	35	33	37	37	36	37
9	36	35	37	34	41	37	31	35	35	39
10	35	40	37	40	39	33	36	38	35	38
11	39	37	38	40	41	38	31	38	38	40
12	34	33	44	38	34	34	44	33	36	36
13	40	36	34	38	38	39	42	38	37	39
14	36	37	37	40	37	33	40	38	36	36
15	38	37	35	40	40	38	35	36	37	38
16	35	35	41	33	29	38	38	30	36	36
17	37	39	36	38	40	38	37	38	35	40
18	36	37	35	37	35	35	39	38	38	36
19	36	37	35	42	34	37	37	39	39	37
20	43	21	43	39	37	40	37	36	34	35

Figura. Datos de medición del IRI

Graficar el histograma de frecuencias de los datos.

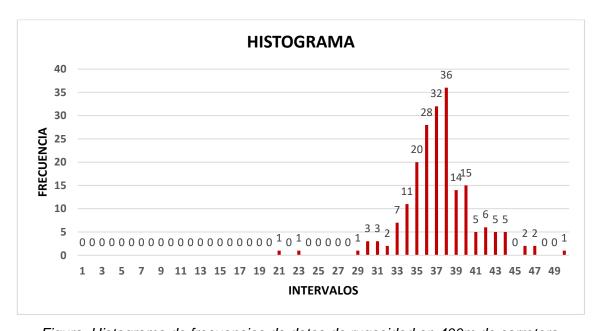


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Calcular el Rango "D"

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (32) quedara.

$$(2-1)/2 = 0.5$$

Lado Derecho: En la barra (44) quedara.

$$(5-5) / 5 = 0$$

Entonces el rango "D" = 0.5 + 11 + 0 = 11.05

Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 11.05 x 5

$$D_{cor}$$
= 50.222

Cálculo del IRI.

2.
$$4 < IRI < 15$$
. 9, entonces $IRI = 0.593 + 0.0471 \times D$

IRI= 2.958 m/km

IRI= **REGULAR**

PAVIME	NTADAS	NO PAVIMENTADAS		
Estado	Rugosidad	Rugosidad		
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6		
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>		
Malo	4.0 <iri<5.0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5.0<>	8 <iri<10< td=""></iri<10<>		
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>		

Parte 3:

Cálculo del Factor de Corrección.

$$F.C. = (EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

$$F.C. = 0.9090$$

Recolección de datos en campo.

_	1	2	3	4	5	6	7	8	9	10
1	38	39	39	34	32	46	35	29	38	37
2	43	39	37	38	38	30	42	36	40	44
3	39	41	37	40	35	28	39	44	31	34
4	39	39	39	38	42	36	39	45	39	36
5	38	36	35	33	32	38	39	37	31	37
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										

Figura. Datos de medición del IRI

Graficar el histograma de frecuencias de los datos.

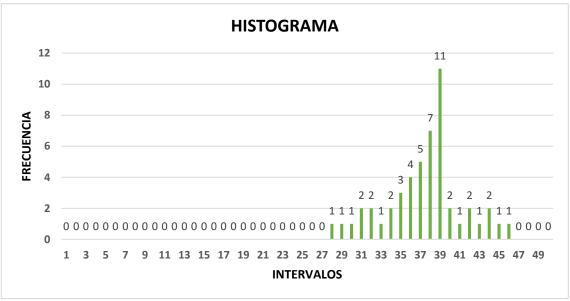


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Calcular el Rango "D"

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (34) quedara.

$$(2-2)/2=0$$

Lado Derecho: En la barra (40) quedara.

$$(2-2)/2=0$$

Entonces el rango "D" = 0 + 5 + 0 = 5

Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 5 x 5

$$D_{cor}$$
= 22.725

Cálculo del IRI.

2.
$$4 < IRI < 15$$
. 9, entonces $IRI = 0.593 + 0.0471 \times D$

IRI=0.593 + 0.0471 x 22.725

IRI= **1.663 m/km**

IRI= BUENO

PAVIME	NTADAS	NO PAVIMENTADAS		
Estado	Rugosidad	Rugosidad		
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6		
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>		
Malo	4.0 <iri<5.0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5.0<>	8 <iri<10< td=""></iri<10<>		
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>		

SECTOR 3 AV. PELICANOS

Parte 1:

Primero: Cálculo del Factor de Corrección.

F.C. = $(EP \times 10) / [(LI - LF) \times 5]$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

$$F.C. = (5 \times 10) / [(25 - 14) \times 5]$$

F.C. = 0.9090

Segundo: Recolección de datos en campo.

	1	2	3	4	5	6	7	8	9	10
1	45	36	33	42	40	35	35	36	39	50
2	40	35	24	27	38	26	27	37	40	41
3	29	26	32	29	48	25	35	41	24	43
4	29	45	29	29	24	43	37	25	39	50
5	20	41	50	48	33	27	40	33	46	50
6	29	48	20	29	31	50	49	47	40	50
7	42	42	47	44	40	49	44	33	50	32
8	44	34	29	40	36	50	22	46	47	44
9	50	35	49	42	21	34	35	34	40	43
10	32	37	37	48	26	23	40	40	47	32
11	42	35	37	34	42	40	8	37	43	46
12	20	50	1	50	50	48	20	38	1	50
13	32	38	45	50	2	38	50	43	41	10
14	37	1	50	50	50	39	50	41	33	25
15	50	26	34	46	39	50	23	50	4	50
16	48	38	36	47	50	27	50	22	37	39
17	20	17	39	50	41	30	50	30	37	43
18	40	30	44	50	34	15	50	38	50	50
19	33	50	50	44	29	13	47	16	31	50
20	26	33	19	19	47	34	30	36	37	29

Figura. Datos de medición del IRI

Tercer: Graficar el histograma de frecuencias de los datos

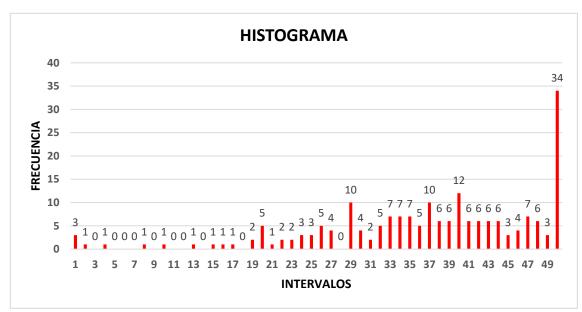


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Cuarto: Calcular el Rango "D".

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (16) quedara.

$$(1-1)/1=0$$

Lado Derecho: En la barra (50) quedara.

$$(34-10) / 34 = 0.7059$$

Entonces el rango "D" = 0 + 31 + 0.7059 = 31.7059

Quinto: Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 31.7059 x 5

$$D_{cor}$$
= 144.103

Sexto: Cálculo del IRI.

2.
$$4 < IRI < 15$$
. 9, entonces $IRI = 0.593 + 0.0471 \times D$

IRI= **7.380 m/km**

IRI= MUL MALO

PAVIME	NTADAS	NO PAVIMENTADAS		
Estado	Rugosidad	Rugosidad		
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6		
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>		
Malo	4.0 <iri<5.0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5.0<>	8 <iri<10< td=""></iri<10<>		
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>		

Parte 2:

Cálculo del Factor de Corrección.

$$F.C. = (EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

$$F.C. = 0.9090$$

Recolección de datos en campo.

	1	2	3	4	5	6	7	8	9	10
1	39	36	41	50	50	28	47	37	19	26
2	39	38	14	50	41	37	34	40	24	50
3	41	44	50	50	30	36	45	46	33	46
- 1							-			-
4	36	49	36	43	49	47	36	19	40	41
5	39	41	40	41	41	35	45	45	32	46
6	50	50	50	50	50	16	50	24	50	11
7	18	34	50	50	50	13	49	22	46	31
8	50	50	50	23	29	25	50	50	43	50
9	38	50	1	31	12	26	50	32	30	50
10	50	50	26	39	30	40	24	47	50	50
11	50	18	1	40	50	33	19	44	50	43
12	37	36	42	16	35	31	36	50	28	42
13	20	30	50	23	48	50	40	50	50	42
14	50	34	29	40	39	41	31	41	39	39
15	30	26	46	1	21	34	50	39	12	36
16	41	32	37	50	22	18	20	33	12	24
17	35	50	41	30	35	38	34	12	34	40
18	36	33	29	37	6	50	46	33	46	39
19	22	35	34	34	36	37	37	36	27	33
20	33	40	42	42	36	43	33	42	32	35

Figura. Datos de medición del IRI

Graficar el histograma de frecuencias de los datos.

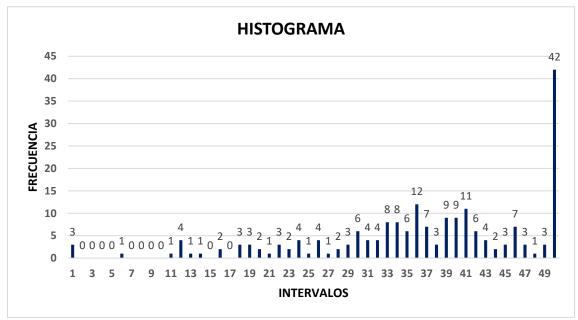


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Calcular el Rango "D"

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (13) quedara.

$$(1-1)/1=0$$

Lado Derecho: En la barra (50) quedara.

$$(42-10) / 42 = 0.7619$$

Entonces el rango "D" = 0 + 34 + 0.7619 = 34.7619

Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 34.7619 x 5

$$D_{cor}$$
= 157.993

Cálculo del IRI.

$$2.4 < IRI < 15.9$$
, entonces $IRI = 0.593 + 0.0471 \times D$

IRI=0.593 + 0.0471 x 157.993

IRI= 8.034 m/km

IRI= MUY MALO

PAVIME	NTADAS	NO PAVIMENTADAS		
Estado	Rugosidad	Rugosidad		
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6		
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>		
Malo	4.0 <iri<5,0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5,0<>	8 <iri<10< td=""></iri<10<>		
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>		

Parte 3:

Cálculo del Factor de Corrección.

 $F.C. = (EP \times 10) / [(LI - LF) \times 5]$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

F.C. = 0.9090

Recolección de datos en campo.

_	1	2	3	4	5	6	7	8	9	10
1	37	29	40	37	33	40	33	50	25	29
2	37	38	16	50	47	25	30	38	45	32
3	25	42	35	50	32	50	36	35	36	34
4	38	41	30	33	32	32	35	33	29	38
5	33	32	50	1	50	35	26	11	15	50
6	50	38	48	43	50	30	47	17	18	38
7	26	33	30	31	50	14	49	1	6	38
8	34	50	29	26	40	1	50	43	27	27
9	43	27	35	39	32	31	34	29	27	32
10	41	34	26	40	30	35	31	35	36	33
11	32	35	36	30	42	50	50	50	26	49
12	23	38	48	45	49	40	31	31	43	15
13	49	50	50	16	47	35	24	45	29	25
14	32	19	50	47	19	5	42	50	50	50
15	46	42	41	40	33	45	47	31	50	21
16	23	32	1	9	31	50	6	16	14	50
17	1	1	50	50	33	50	35	41	50	34
18	38	32	27	48	4	47	50	43	50	50
19	5	30	50	37	1	50	50	23	47	50
20	36	38	33	50	28	43	30	48	4	50

Figura. Datos de medición del IRI

Graficar el histograma de frecuencias de los datos.

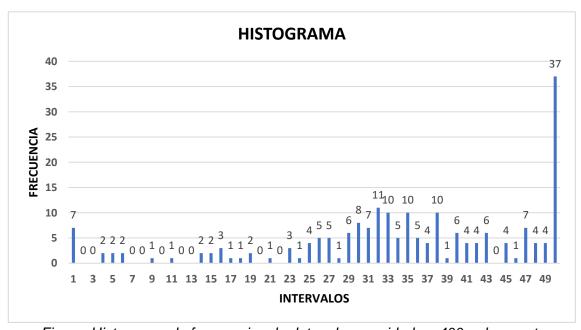


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Calcular el Rango "D"

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (5) quedara.

$$(2-1)/2 = 0.5$$

Lado Derecho: En la barra (50) quedara.

$$(37-10) / 37 = 0.7297$$

Entonces el rango "D" = 0.5 + 36 + 0.7297 = 37.2297

Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 37.2297 x 5

$$D_{cor}$$
= 169.209

Cálculo del IRI.

2.
$$4 < IRI < 15$$
. 9, entonces $IRI = 0.593 + 0.0471 \times D$

IRI= **8.563 m/km**

IRI= MUY MALO

PAVIMENTADAS		NO PAVIMENTADA	
Estado	Rugosidad	Rugosidad	
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6	
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>	
Malo	4.0 <iri<5.0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5.0<>	8 <iri<10< td=""></iri<10<>	
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>	

Parte 4:

Cálculo del Factor de Corrección.

$$F.C. = (EP \times 10) / [(LI - LF) \times 5]$$

EP: Espesor de la pastilla = 5

LI: Posición inicial del puntero = 25

LF: Posición final del puntero = 12

F.C. =
$$(5 \times 10) / [(25 - 14) \times 5]$$

$$F.C. = 0.9090$$

Recolección de datos en campo.

	1	2	3	4	5	6	7	8	9	10
1	50	50	30	21	25	40	31	46	46	33
2	26	38	34	32	41	42	50	50	1	17
3	32	50	36	32	15	2	48	25	36	42
4	27	50	1	50	18	50	50	42	50	42
5	50	50	50	41	50	50	50	40	50	40
6	38	35	50	26	21	11	32	1	50	50
7	34	23	49	50	46	45	50	50	50	46
8	50	36	50	47	7	49	50	29	44	50
9	16	28	50	48	32	38	50	50	30	41
10	50	50	46	39	45	50	50	48	49	34
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										

Figura. Datos de medición del IRI

Graficar el histograma de frecuencias de los datos.

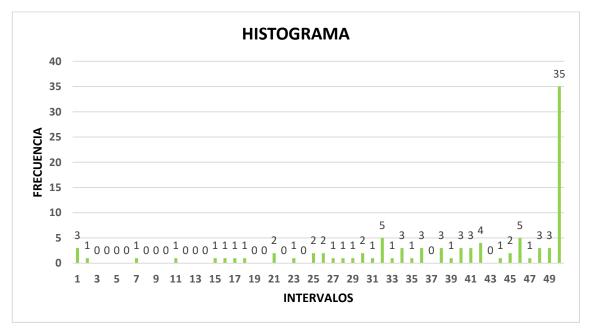


Figura. Histograma de frecuencias de datos de rugosidad en 400m de carretera.

Calcular el Rango "D"

Para el cálculo del rango "D" eliminamos 10 datos de cada lado del histograma de frecuencias y lo restante es el rango buscado:

Lado Izquierdo: En la barra (18) quedara.

$$(1-1)/1=0$$

Lado Derecho: En la barra (50) quedara.

$$(35-10) / 35 = 0.7143$$

Entonces el rango "D" = 0 + 25 + 0.7143 = 25.7143

Corrección del rango "D".

Para corregir el rango "D" multiplicamos por el factor de corrección (F.C.) y por 5 porque el tablero tiene 50 divisiones de 5mm cada una.

$$D_{cor}$$
= 0.9090 x 25.7143 x 5

$$D_{cor}$$
= 116.871

Cálculo del IRI.

$2. \ 4 < IRI < 15. \ 9$, entonces $IRI = 0. \ 593 + 0. \ 0471 \ x \ D$

IRI=0.593 + 0.0471 x 116.871

IRI= **6.098 m/km**

IRI= MUY MALO

PAVIMENTADAS		NO PAVIMENTADA	
Estado	Rugosidad	Rugosidad	
Bueno	0 <iri<2.8< td=""><td>IRI<6</td></iri<2.8<>	IRI<6	
Regular	2.8 <iri<4.0< td=""><td>6<iri<8< td=""></iri<8<></td></iri<4.0<>	6 <iri<8< td=""></iri<8<>	
Malo	4.0 <iri<5,0< td=""><td>8<iri<10< td=""></iri<10<></td></iri<5,0<>	8 <iri<10< td=""></iri<10<>	
Muy Malo	5 <iri< td=""><td>10<iri< td=""></iri<></td></iri<>	10 <iri< td=""></iri<>	

Anexo 7. Certificado de calibración del Rugosímetro de Merlín

LABORATORIO DE CALIBRACIÓN CON TRAZABILIDAD AL ORGANISMO PERUANO DE ACREDITACIÓN INACAL

CERTIFICADO DE CALIBRACIÓN N° V2522006

Expediente Fecha de Emisión

: N° 0189-2022 : 2022-09-29

: NICOL PAZ ALAVA

DIRECCIÓN

: URB. SAN RAFAEL MZ A 5 LT 1 NUEVO

CHIMBOTE - SANTA - ANCASH

: RUGOSIMETRO MERLIN

2. INSTRUMENTO DE MEDICIÓN

Marca Modelo : PALIO : PE2011.1 2522005

Número de Serie Estructura Acabado

Metálica Pintado PERÚ

Procedencia Identificación No indica Ubicación

Instalaciones de CALITEST S.A.C.

3. LUGAR Y FECHA DE CALIBRACIÓN

Fecha

: Laboratorio de CALITEST S.A.C.

4. PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa tomando como referencia el procedimiento PC-012 5ta Ed. 2012., "Procedimiento de Calibración de Pie de Rey", del Instituto Nacional de Calidad - INACAL.

5. CONDICIONES AMBIENTALES

Temperatura (°C) Humedad Relativa (%)

	Inicial	NC.
CAL	16.1	W.
L/All	84	1/1-

16.9

6. TRAZABILIDAD

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

TRAZABILIDAD	PATRÓN UTILIZADO	CERTIFICADO DE CALIBRACIÓN
METROSYSTEMS S.R.L.	Pie de Rey (Vernier)	MS-0075-2022
TOTAL WEIGHT	Flexómetro (Wincha)	JMR-1269-2021

Sello

Laboratorio de Metrología

CALITEST S.A.C.

TCO. ARMANDO JUNIOR PIZANGO MOZOMBITE JEFE DE LABORATORIO DE METROLOGIA

Página 1 de 2

El equipo de medición especificado en este documento ha sido calibrado, probado y verificado usando patrones certificados con trazabilidad a la dirección de Metrología del

Los resultados sólo están relacionados con

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

CALITEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una

incorrecta interpretación de los resultados de la calibración aquí declarados. Los resultados de este certificado de calibración

no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de

la entidad que lo produce.

INACAL y otros.

FEI-25

Rev00

Flaborado:PFSP

Revisado:GAMP

Aprovado:AJPM

DIRECCIÓN FISCAL: CAL. JANGAS Nº 628, BREÑA - LIMA - LIMA

Tel.: 562 8972 Cel.: 925076321 / E-mail: servicios@calitestsac.com , certificados@calitestsac.com / Web: calitestsac.com

PROHIBIDO LA REPRODUCIÓN PARCIAL DE ESTE DOCUMENTO

LABORATORIO DE CALIBRACIÓN CON TRAZABILIDAD AL ORGANISMO PERUANO DE ACREDITACIÓN INACAL

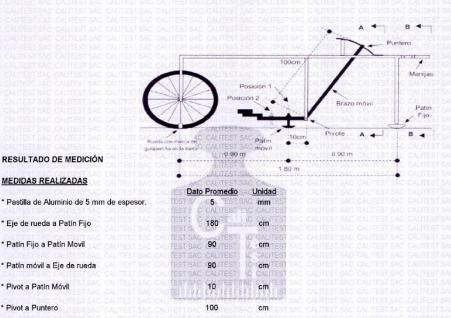
CERTIFICADO DE CALIBRACIÓN Nº V2522006

Página 2 de 2

7. OBSERVACIONES

No presenta ninguna observación.

8. RESULTADO DE MEDICIÓN MEDIDAS REALIZADAS


* Eje de rueda a Patín Fijo

* Patín Fijo a Patín Movil

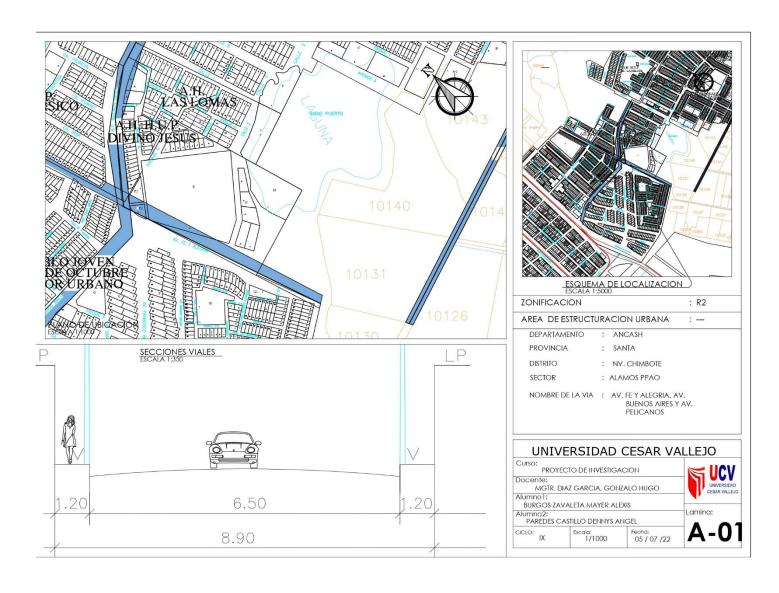
* Pivot a Patín Móvil

* Pivot a Puntero

* Patín móvil a Eje de rueda

APARATO MERLIN (Machine for Evaluating Rouhness using low-cost Instrumentation). Norma: Laboratorio Británico de Investigación de Transporte y Caminos - TRRL.

Es un equipo que consta de un marco formado de dos elementos verticales y uno horizontal. Uno de los elementos verticales es una rueda donde una vuelta de la rueda es 2.15 m aprox. En la parte central del elemento horizontal se proyecta una barra vertical cuyo extremo inferior pivotea un brazo movil en cuyo extremo inferior se ubica un patin empernado ajustable, mientras en el extremo superior se ubica el puntero siendo la relación de los brazos entre los segmentos pivote-extremo de 1:10.



DIRECCIÓN FISCAL: CAL. JANGAS Nº 628, BREÑA - LIMA - LIMA Tel.: 562 8972 Cel.: 925076321 / E-mail: servicios@calitestsac.com , certificados@calitestsac.com / Web: calitestsac.com PROHIBIDO LA REPRODUCIÓN PARCIAL DE ESTE DOCUMENTO

Anexo 8. Manual de carreteras mantenimiento o conservación vial.

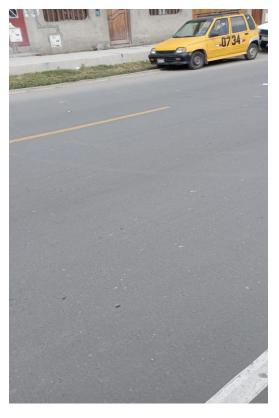
Anexo 9: Plano de ubicación

Panel fotográfico

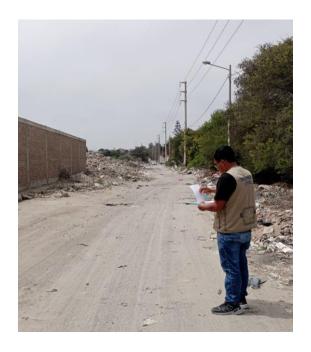
Inicio de Progresiva: 0+000

Progresiva 0+200 Medición del ancho de calzada.

Progresiva 0+450 Falla: Desprendimiento de Agregados


Progresiva 0+600 Falla: Grieta de Borde

Progresiva 0+700 Falla: Parcheo


Progresiva 0+800 Falla: Desprendimiento de Agregados

Progresiva 0+1500 Falla: Parcheo

Progresiva 0+1750 Falla: Parcheo

Progresiva 0+2000 Falla: Desprendimiento de agregados

Progresiva 0+2100 Falla: Desprendimiento de agregado

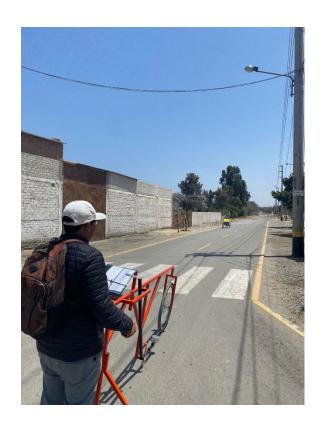
Progresiva 0+2350 Falla: Grieta de borde

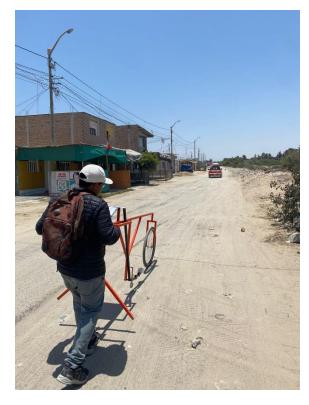
Progresiva 0+2500 Falla: Huecos

Calibración de Rugosímetro de Merlin, dándonos el dato de LI= 25, siendo calibrado el equipo

SECTOR 1, comenzamos estacionando el rugosímetro con la pastilla de 5mm, para poder obtener el LF (posición final del puntero) que nos dio 14.

SECTOR 2





SECTOR 3

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, DIAZ GARCIA GONZALO HUGO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHIMBOTE, asesor de Tesis titulada: "Análisis comparativo de los métodos PCI, VIZIR y MTC sobre el pavimento flexible en las principales vías de acceso al sector Los Álamos – PPAO, Nuevo Chimbote - 2022", cuyos autores son BURGOS ZAVALETA MAYER ALEXIS, PAREDES CASTILLO DENNYS ANGEL, constato que la investigación tiene un índice de similitud de 14.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

CHIMBOTE, 27 de Noviembre del 2022

Apellidos y Nombres del Asesor:	Firma	
DIAZ GARCIA GONZALO HUGO	Firmado electrónicamente	
DNI: 40539624	por: GHDIAZ el 05-12-	
ORCID: 0000-0002-3441-8005	2022 12:14:54	

Código documento Trilce: TRI - 0456836

