

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño a nivel de pavimento flexible del tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Cabanillas Tacanga, Jose Fernando (orcid.org/0000-0001-5715-3890)

ASESOR:

Dr. Herrera Viloche, Alex Arquimedes (orcid.org/0000-0001-9560-6846)

LÍNEA DE INVETIGACIÓN:

Diseño de infraestructura vial

LÍNEA DE RESPOSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

TRUJILLO – PERÚ 2022

DEDICATORIA

A mis padres por haberme brindado la oportunidad de poder estudiar y convertirme en la persona que soy ahora, siempre motivándome para poder alcanzar mis metas

AGRADECIMIENTO

A mis docentes por guiarme en el camino de esta etapa universitaria y a los amigos que encontré a lo largo de este tiempo y me brindaron su amistad y apoyo.

ÍNDICE DE CONTENIDOS

DED	DICATORIA	i
ÍNDI ÍNDI ÍNDI	RADECIMIENTO ICE DE CONTENIDOS ICE DE TABLAS ICE DE FIGURAS Sumen	Vi
Abs	stract	
I.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	3
III.	METODOLOGÍA	11
3.	.1 Diseño de investigación	11
3.	.2 Variable y operacionalización	11
3.	.3 Población y muestra	13
3.	.4 Técnicas e instrumentos de recolección de datos	13
3.	.5 Procedimientos	13
3.	.6 Método de análisis de datos	14
3.	.7 Aspectos éticos	15
IV.	Resultados	16
4.	.1 Levantamiento topográfico:	16
4.	.2 Estudio de mecánica de suelos:	17
4.	.3 Estudio Hidrológico	22
4.	.4 Diseño geométrico del pavimento flexible	33
٧.	Discusión	47
VI.	Conclusiones	49
VII.	Recomendaciones	50
REF	FERENCIAS	51
A NIF	-voe	Ε.(

ÍNDICE DE TABLAS

Tabla 1	Parámetros para excavación de calicatas	18
Tabla 2	Parámetros para ensayos de CBR	18
Tabla 3	Resultados del ensayo del CBR de la cantera	21
Tabla 4	Datos min. deseables para la serie	23
Tabla 5	Resultados de la prueba de bondad de ajuste	26
Tabla 6	Inclinación máx. para el talud de la cuneta	31
Tabla 7	Velocidades máx. admisibles	31
Tabla 8	Caudales máx. para alcantarillas de paso	33
Tabla 9	Volumen de trafico	34
Tabla 10	Longitud para tramos (tangente)	35
Tabla 11	Pendiente máx	38
Tabla 12	Valores para el ind. "K"	40
Tabla 13	Valor para el ind. "K" en curva concava	40
Tabla 14	Anchos mín. de calzadas	41
Tabla 15	Anchos mín. de bermas	41
Tabla 16	Anchos mín. de bombeo	42
Tabla 17	Valores de peralte máx.	42
Tabla 18	Valores para talud de corte	43
Tabla 19	Valores para talud de relleno	43
Tabla 20	Resumen de las consideraciones que se tomaron para el diseño	44
Tabla 21	CBR de calicatas	44
Tabla 22	Consideraciones para subrasante	45
Tabla 23	Espesores para la carretera	46
Tabla 24	Prueba de datos dudosos	64
Tabla 25	Precipitaciones máximas por años corregidas	64
Tabla 26	Caudales de periodo de retorno	65
Tabla 27	Lluvias máx. para diferentes duraciones y tiempo de regreso	65
Tabla 28	Resultado de análisis de regresión	66
Tabla 29	Intensidades máximas según tiempo de retorno y duración	66

Tabla 30	Coeficientes de escorrentía método racional	. 67
Tabla 31	Parámetros de cuenca	. 67
Tabla 32	Resumen diseño de cuentas	. 68
Tabla 33	Resultados del diseño de alcantarillas	. 70
Tabla 34	Radios min. y peraltes max. de diseño	. 72
Tabla 35	Radios min. interiores adoptados	. 72
pavimento	os flexibles	. 72

ÍNDICE DE FIGURAS

Figura	1	Precipitación máx. anual sin corregir	24
Figura	2	Precipitación máx. anual corregida	24
Figura	3	Curvas de Intensidad-Duración-Frecuencia	27
Figura	4	Sección para cuneta triangular	30
Figura	5	Sección para cuneta triangular	36
Figura	6	Curvas verticales convexas-concavas	39
Figura	7	Curvas verticales simétricas-asimétricas	39
Figura	8	Espesores de pavimento flexible	46
Figura	9	Paranday- El Cardon (zona de estudio	60
Figura	10	Inicio del tramo	60
Figura	11	Charco y hundimientos producto de las lluvias	61
Figura	12	Falta de obras de arte	61
Figura	13	Levantamiento topográfico	62
Figura	14	Excavación de calicatas	62
Figura	15	Fin del tramo	63
Figura	16	Análisis mecánico por tamizado para la calicata PC 1	73
Figura	17	Limites de consistencia para la calicata PC 1	74
Figura	18	Contenido de humedad para la calicata PC 1	75
Figura	19	Perfil estratigráfico para la calicata PC 1	76
Figura	20	Perfil estratigráfico para la calicata PC 2	77
Figura	21	Limites de consistencia para calicata PC 2	78
Figura	22	Contenido de humedad para calicata PC 2	79
Figura	23	Perfil estratigráfico para calicata PC 2	80
Figura	24	Análisis mecánico por tamizado para calicata PC 3	81
Figura	25	Limites de consistencia para calicata PC 3	82
Figura	26	Contenido de humedad para calicata PC 3	83
Figura	27	Perfil estratigráfico para calicata PC 3	84
Figura	28	Perfil estratigráfico para calicata PC 4	85
Figura	29	Límites de consistencia para calicata PC 4	86

Figura 30	Contenido de humedad para calicata PC 4	87
Figura 31	Perfil estratigráfico para calicata PC 4	88
Figura 32	Análisis mecánico por tamizado para calicata PC 5	89
Figura 33	Límites de consistencia para calicata PC 5	90
Figura 34	Contenido de humedad para calicata PC 5	91
Figura 35	Perfil estratigráfico para calicata PC 5	92
Figura 36	Análisis por tamizado para calicata PC 6	93
Figura 37	Límites de consistencia para calicata PC 6	94
Figura 38	Contenido de humedad para calicata PC 6	95
Figura 39	Perfil estratigráfico para calicata PC 6	96
Figura 40	Análisis mecánico por tamizado para calicata PC 7	97
Figura 41	Límites de consistencia para calicata PC 7	98
Figura 42	Contenido de humedad para calicata PC 7	99
Figura 43	Perfil estratigráfico para calicata PC 7 1	00
Figura 44	Ensayo de CBR PC 11	01
Figura 45	Resultados de CBR PC 1 1	02
Figura 46	Ensayo de CBR PC 31	03
Figura 47	Resultados de CBR PC 3 1	04
Figura 48	Ensayos de CBR PC 61	05
Figura 49	Resultados de PC 6	06
Figura 50	Ensayo de CBR PC 7 (Cantera) 1	07
Figura 51	Resultados de CBR PC 7 (Cantera)	08

Resumen

El siguiente desarrollo de proyecto tiene como título Diseño a nivel de pavimento

flexible del tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad 2022,

se llevó a cabo dado que hasta la fecha los sectores anteriormente mencionados se

encuentran conectados por una vía de 5.5 km en pésimas condiciones, por medio del

estudio topográfico se puedo definir que se trataba de una carretera del tipo 3

(accidentada) esto debido a las pendientes transversales y longitudinales que

presenta, el estudio de suelos revelo que el terreno se clasifica como suelo de grava

arcillosa, para el diseño se consideró una velocidad de 30 km/h y por tal razón se

definieron los parámetros de diseño: 6 metros de ancho para la calzada, 0.50 metros

de berma, por medio del estudio hidrológico se pudo obtener las precipitaciones máx.

y caudales de diseño para poder llevar cabo el diseño de obras de arte, finalmente se

pudo obtener los espesores para la estructura de pavimento flexible: 20 cm para la

base,5 cm para la carpeta asfáltica del km 0.000 - km 3.000 y 15 cm para la base, 5

cm para la carpeta asfáltica del km 3.000 hasta el km 5.5.

Palabras claves: Accidentado, Pavimento flexible, carretera

İΧ

Abstract

The following project development is entitled Flexible pavement level design of the El

Cardon - Hualsacap section, Paranday - Otuzco - La Libertad 2022 district, it was

carried out given that to date the aforementioned sectors are connected by a highway

5.5 km in terrible conditions, through the topographic study I can define that it was a

type 3 road (rough) this due to the transverse and longitudinal slopes that it presents,

the soil study revealed that the land is classified as soil of clayey gravel, for the design

a speed of 30 km/h was considered and for this reason the design parameters were

defined: 6 meters wide for the road, 0.50 meters of berm, through the hydrological study

it was possible to obtain the maximum rainfall. and design flows to be able to carry out

the design of works of art, finally it was possible to obtain the thicknesses for the flexible

pavement structure: 20 cm for the base, 5 cm for the asphalt layer of km 0,000 - km

3,000 and 15 cm for the base, 5 cm for the asphalt layer from km 3,000 to km 5.5.

Keywords: rugged, flexible pavement, road

Χ

I. INTRODUCCIÓN

Una carretera o red vial es de suma importancia para el desarrollo de un país ya que por medio de ella se generan beneficios económicos y sociales. Darle los mantenimientos adecuados a la estructura vial es de suma importancia para poder prolongar su vida útil y seguir aumentando los beneficios que trae consigo. Hay que reconocer lo indispensable que es su conservación, la falta de inversiones o la mala administración por partes de las personas responsables de una carretera a lo largo del tiempo presentará consecuencias significativas en el sector económico y el bien social. Hoy en día el crecimiento de una nación se mide por el óptimo desarrollo de sus redes viales. Ninguna nación menosprecia la presencia de un buen sistema de comunicación vial ya que estas vendrían a ser obras estratégicas e indispensables para el progreso de una nación. Ejecutar un proyecto vial de forma correcta reduce los costos operativos generando una mejor transitabilidad de personas y también optimizando los tiempos de los bienes y servicios y también reduce la contaminación del medio ambiente y por consecuencia genera crecimiento económico significativo por las zonas donde esta pasa. Por tal motivo nos planteamos el siguiente problema ¿Cuál es el diseño del pavimento flexible en el tramo El Cardon - Hualsacap distrito Paranday, Otuzco, La Libertad 2022? El presente proyecto se lleva a cabo dado que hasta el día hoy los centros poblados de El Cardon y Hualsacap se encuentran conectados por una trocha en malas condiciones y esta no cumple con las especificaciones técnicas de la norma de DG-2018 del MTC, por eso con el siguiente proyecto proponemos el diseño del pavimento flexible que pueda garantizar el tránsito y principalmente que le pueda brindar un impacto positivo para los habitantes de la zona de estudio. El proyecto podrá permitir que los habitantes puedan trasladar sus productos agrícolas de forma más rápida y además evitando que sus vehículos se dañen cuando transiten por la zona, también permitirá que se puedan trasladar a los centros de salud y de igual forma que los estudiantes puedan usar la vía para poder llegar a su casa de estudios. Como objetivo general se propone "Realizar el diseño del pavimento flexible en el tramo El Cardon -Hualsacap distrito Paranday, Otuzco, La Libertad 2022" y como objetivos específicos "Realizar el estudio topográfico del tramo El Cardon – Hualsacap. Realizar el estudio de suelos del tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad. Realizar el estudio hidrológico del tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad. Realizar el diseño geométrico del pavimento flexible en el tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad. Así mismo como hipótesis general se espera que al realizar el diseño de pavimento flexible teniendo en cuenta la normatividad vigente del MTC para el tramo El Cardon – Hualsacap se pueda dar solución al estado actual de la vía que une estos dos caseríos. De la misma manera nos planteamos las siguientes hipótesis específicas: Al hacer el levantamiento topográfico se obtendrá el relieve del terreno. Al tener el estudio de suelos se podrá determinar la composición del suelo. Al hacer el estudio hidrológico se obtendrán los caudales de diseño para las obras de arte, Al realizar el diseño geométrico de la vía se podrá determinar el tipo de carretera, la velocidad de diseño y las pendientes mínimas y máximas.

II. MARCO TEÓRICO

Como antecedentes internacionales tenemos a Parrado y García (2017) que manifiestan que su tesis tiene como objetivo principal llevar a cabo un diseño geométrico vial bajo la metodología basada en las respectivas normas del INVIAS Colombia en un sector periférico del occidente de Bogotá de esta manera se podrá garantizar una ejecución que pueda otorgar la funcionalidad y exigencias requeridas para llevar a cabo el diseño de un pavimento del tipo flexible. El estudio de tráfico muestra que la velocidad directriz será de 45 km/h y velocidad del flujo libre será 100 y 120 km/h.

Suárez y Vera (2015) En su tesis proponen el diseño de un pavimento flexible en la comunidad del centro poblado El salado y Santa Elena, esta comunidad se dedica a la agricultura y hoy en día no cuentan con transporte público, debido a esto se suelen trasladar en motos entre los sitios más cercanos como el Manantial de Guangala. Por esta razón se decidió realizar los estudios correspondientes y el diseño geométrico que va servir como base para poder ejecutar la obra y esto va permitir una mejor movilidad y mayor flujo de comunicación entre los habitantes de las zonas más cercanas. Con el tramo en buen estado se podrá obtener un flujo óptimo vehicular y las personas se podrán trasladar en un tiempo más corto a los diferentes puntos de acceso como centros de salud y centros educativos.

Dentro de los antecedentes nacionales tenemos Hallasi (2019) expresa que su proyecto de tesis tiene la finalidad de poner conectar los centros poblados de Retiro del Carmen en cada uno de sus anexos que se encuentran ubicados en la ciudad de Cuzco por medio de un diseño de pavimento flexible, ya que hoy en día se encuentran aislados debido a la topografía de la zona. Es de suma importancia que se pueda activar la producción agrícola ya que en realidad se encuentra muy deficiente con respecto a su capacidad real.

Para Rodríguez (2018) menciona que su tesis tiene como objetivo realizar el diseño de un pavimento del tipo flexible para conectar los centros poblados de Santiago y Guzmango en la ciudad de Cajamarca, esta vía tiene 7.44 km de longitud, y hasta la fecha se encuentran unidos por una vía que hoy en día se encuentra en un pésimo estado y en la temporada de lluvias se dificulta bastante el tránsito por ese lugar. La vía cuenta con cunetas, pero únicamente en algunas partes de los tramos, pero están en pésimas condiciones. A esto hay que sumarle que actualmente la vía posee radio mín. de 5.66 m y tiene pendientes long. máx. de 16.16% y presenta un ancho de 3 m en partes de los tramos, todos estos factores hacen que se dificulte el tránsito de vehículos. Por esta razón en el diseño de esta vía se tomaron los valores de velocidad de 30 km/h y con pendientes de 1% como mínima y 10% como máxima y ya que el CBR de la sub base es de 84.63% y el estudio de tráfico es Tp0 se estableció que la base será de 27 cm y con una capa superficial de Bicapa.

Para Veramendi (2018) expone que su va tener el objetivo principal de realizar el diseño de un pavimento del tipo flexible para poder conectar los caseríos de Paltay y Lucma, esta vía tiene una longitud de 2.114.35 km, para lograr el objetivo principal se realizaron los estudios principales como topografía, estudios de suelos, tráfico vehicular y mediante los resultados de dichos estudios se optó por la modalidad del AASHTO 93 para poder conseguir los espesores de del pavimento y su periodo de vida útil estará proyectado para 20 años, los espesores fueron de 8 cm para la carpeta asfáltica y 20 cm como base y sub-base.

Angeles y Carlos (2021) en su tesis tienen como objetivo principal diseñar un pavimento del tipo flexible por medio de la modalidad del AASHTO-93 en el tramo AN-88600 hasta la Instituciones educativa 14 Incas. El tramo de la vía que conecta ambos lugares es de 9.8 km y según el estudio de suelos el terreno es arena mal graduada y el CBR tuvo un valor al 95% de la sub rasante de 12 %, en el estudio de trafico los EE 8.35 E+0.5 y en la zona hay poca presencia

de lluvias, los espesores fueron de 5 cm de carpeta asfáltica y 20 cm para la base y sub base.

Cabrera y Vidarte (2019) en su expresan que su objetivo principal será diseñar el pavimento del tipo flexible para unir el tramo 5+272 con el centro poblado el Higo ubicado en la ciudad de Chiclayo, teniendo en cuenta los estudios de topografía, suelos y tránsito vehicular para poder mejorar la fluidez vehicular. Para los estudios de suelos se tomó como base la norma AASHTO M145 y para llevar a cabo el diseño estructural del pavimento se hará uso de la normativa AASHTO M93, los espesores fueron de 15 cm tanto para la sub-base y la base granular y para la carpeta asfáltica 6.5 cm.

Rodríguez (2018) Menciona que su tesis tiene como objetivo principal diseñar el pavimento de tipo flexible para unir los centros poblados de Carhuaz y Hualca, se trabajó con la metodología AASHTO 93, la distancia del tramo es de 3 km y cuenta con una tasa del 2% a 6% de crecimiento poblacional que está establecido por el MTC y su diseño está proyectado para un periodo de 20 años. Para los espesores que se tomaron en cuenta para el diseño de este pavimento se usó la normatividad vigente de diseño de carreteras y los espesores fueron de 26 centímetros tanto para la sub-base y base, para la carpeta asfáltica en caliente fueron 10 cm.

Flores e Idrogo (2021) En su tesis expresan que su objetivo principal es poder diseñar la infraestructura vial con pavimento flexible para poder conectar los centros poblados de Lajas con Quinapampa en la ciudad de Cajamarca ya que actualmente el tramo de la zona de estudio presenta problemas que dificultan el tránsito. Dicho tramo consta de una longitud de 11.849 km y para el diseño del pavimento se tomó en cuenta la metodología ASSHTO 93 que brinda diferentes parámetros para poder obtener valores que puedan facilitar el cálculo estructural. Los espesores fueron de 5 cm para la carpeta asfáltica, 15 cm para la base y 20 cm para la sub-base.

Quispe y Vargas (2020). Manifiestan que su tesis tiene como principal objetivo diseñar un pavimento del tipo flexible para unir el Puente Santo Toribio con el centro poblado de Miraflores con el fin de poder mejorar el tránsito vehicular. El estudio de flujo vehicular revelo que el IMDA es 218 veh. y los ejes equivalentes para el tramo es 227056.64 EE, por otro lado, el estudio de suelos arrojo como resultados que el terreno posee la capacidad portante deseada (CBR 19%).

Como antecedentes locales tenemos a Noriega (2018) En su tesis expone que el desarrollo de su investigación se basó en diseñar un pavimento del tipo flexible para la vía que une centros poblados de Miguel Grau y Chocoday en la provincia de Otuzco , esta vía tiene una distancia de 5.739 km y actualmente incumple las especificaciones establecidas en la norma del MTC, el ancho de la calzada es de 3 m a 4 m haciendo que el tránsito de vehículos, las curvas son muy continuas y los radios son de 5 m y en algunas partes de los tramos las pendientes son superiores al 10%. Por esta razón se llevaron a cabo los estudios de topografía donde se determinó al terreno como accidentado, la velocidad de directriz es de 30 Km/h y presenta 2 carriles de 3 metros de ancho y también presenta obras de arte que se llevaron a cabo como cunetas de sección triangular y alcantarillas.

Acosta (2018) En su tesis expresa que se llevó a cabo un diseño de pavimento del tipo flexible para un mejoramiento de la vía que une los caseríos de Monchacap y Miguel Grau ubicados en la provincia de Otuzco, estos caseríos actualmente se encuentran conectados por una trocha de 6.9 km a una altura de 3200 msnm y los estudios de suelos revelaron que el terreno posee grava limosa y limo arenoso, usualmente trasladarse tardaría aproximadamente 30 minutos, pero debido al estado actual de la vía demora alrededor de 1 hora, al tener pendientes en los rangos de 6% y 9% se va considerar una zona con velocidad directriz de 30 km/h y la vía se diseñará bajo los parámetros del manual de DG 2018 brindado por el MTC.

García (2018) En su tesis manifiesta que se llevó a cabo el diseño de un pavimento del tipo flexible para la vía que une los centros poblados de Paraíso y Cesar Vallejo en la provincia de Otuzco ,el tramo tiene una distancia de 6.413 Km, en los estudios de suelos se obtuvo que el terreno tiene la clasificación de SM Y SP que se refiere a la presencia de arenas mal graduadas y arenas limosas que están establecidas por el SUCS, además se diseñaran obras de arte: alcantarillas, badenes y cunetas, para realizar el diseño estructural del pavimento se trabajara bajo la normativa del AASHTO 93, los espesores para la estructura del pavimento del tipo flexible fueron de 16 centímetros en la base granular y 6 cm para la carpeta de asfalto en caliente.

Como parte de las bases teóricas tenemos a de la Cruz y Paredes (2021) Las carreteras están compuestas por diferentes capas, como la carpeta asfáltica, la base y la sub-base que reposan en la sub rasante, toda la estructura como tal transmite sus cargas y estas distribuyen sus esfuerzos al terreno natural producidos por los vehículos que transitan por encima de este. El pavimento del tipo flexible está conformado por una capa de rodadura de material aglomerante con presencia de agregados, y algunos aditivos así también de diferentes capas de material granular como la base y sub-base.

Para Berardo (2014) Las partes geométricas de una vía o camino se pueden obtener según las diferentes técnicas que resultan del cálculo de la estructura. En el diseño geométrico vial las cargas que soportará la estructura serán obtenidas a partir del número de vehículos que van a transitar por el tramo a evaluar durante un intervalo de tiempo establecido. Los estudios más frecuentes son por el año, día y hora.

Braja (2012) Los estudios de suelos son muy importantes debido a que a través de ellos podemos obtener las diferentes propiedades físicas, químicas y mecánicas del suelo en el cual se quiere construir, esto se refiere a las composiciones de estratos que presenta el terreno, los suelos se pueden clasificar en diferentes grupos, pero normalmente siempre tomando como referencia los trabajos que se van a requerir para llevar a cabo para la ejecución del proyecto como lo es la granulometría, lím. líquido y plástico.

Fattorlli y Fernández (2011) Mencionan que un estudio hidrológico es muy importante para poder llevar a cabo el diseño de las obras de arte para la ejecución proyecto vial, este estudio trata de la recolección de información de sucesos naturales que han aparecido, tal como las aguas pluviales que pasan a través las cuencas, una vez obtenidos estos datos podremos obtener el caudal máx. y min para llevar a cabo el diseño. Además, mencionan que el proceso hidrológico varía con el pasar del tiempo y en el espacio se pueden medir como muestras puntuales de medición que se han llevado a cabo a través del tiempo y sitios determinados (estación de medición).

Bravo (2020) El pavimento flexible debe poder soportar los esfuerzos a los que es sometido constantemente. Cabe recalcar que las fuerzas cortantes son la causa principal de las fallas estructurales y a esto hay que sumarle la frecuente fricción que hay en la parte superficial del pavimento por parte de los vehículos (aceleración, frenaje)

Silva (2018) La deflexión se conoce como el movimiento perpendicular del área del suelo en contestación a la ejecución de una carga exterior, y simboliza una contestación absoluta del sistema construido por la composición y la subrasante frente a la adaptación de este peso.

Guerra (2020) Posiblemente la variable de mayor relevancia para el diseño de una vía pavimentada es el tránsito, puesto que, si bien es cierto el volumen y magnitudes de los vehículos intervienen en el diseño geométrico de la vía, el número y el peso de los ejes de dichos componentes influyen directamente en el diseño de la composición de pavimento.

Huyan y Li (2018) El agrietamiento del pavimento, que puede considerarse un símbolo temprano de fracaso del pavimento, tiene una profunda tendencia a conducir a un deterioro más grave del manejo del pavimento. La valoración y evaluación del funcionamiento del pavimento a largo plazo fue bastante valorada en los últimos años y, por consiguiente, el mantenimiento de defensa en diferentes períodos de servicio del pavimento se ha vuelto cada vez más relevante.

Para Cerrón (2019) en su tesis manifiesta que una vía tiene la función de lograr una transitabilidad fluida de un país logrando que se conecte con diferentes lugares ciudades, departamentos y caseríos de tal manera que se pueda reducir el tiempo y los gastos de transportes de personas y productos. La función que tiene una vía es muy importante ya que genera un progreso en el ámbito económico para las comunidades que se encuentran aisladas y que a pesar de contar con un alto potencial de producción estos no pueden ser aprovechados.

Menga y Aihua (2018) La brecha del pavimento es un tipo común de deterioro del pavimento, que disminuye la rigidez e incrementa seriamente la amortiguación en la composición. La detección de grietas en el pavimento juega un papel fundamental en el mantenimiento del pavimento y de las herramientas, debido a que puede localizar y detectar las grietas que se repararán en el área vasta del objeto. No obstante, los procedimientos existentes de detección de grietas en el pavimento realizan poco uso de la composición de las grietas, lo cual conduce a una alta sensibilidad a los ruidos semejantes a los de las grietas.

Carvalho (2020) Manifiesta que su estudio tuvo como objetivo evaluar la composición de un suelo para una sub rasante en el desempeño de pavimentos flexibles cuando se somete a diferentes energías de compactación. Considerando que la respuesta elástica de los materiales granulares varía en resultado de la densificación, una arena arcillosa de la región de Recôncavo de Bahía fue caracterizada y sometida a pruebas de compactación, con energías crecientes, hasta alcanzar la máxima densificación posible para ese material. Entonces todas las muestras comprimidas fueron sometidos a la prueba California Support Index (ISC) y con los valores obtenidos se diseñaron estructuras de pavimento flexible, dependiendo de diferentes energías de compactación

Para Sanchez y Julca (2020) explican que, en la comunidad de la Libertad, las vías de acceso que hacen eficiente la comercialización de productos tienen una función muy importante dentro del avance económico de los pueblos rurales. Estás permiten el traslado de la población de manera adecuada, logrando así que los servidores básicos sean aprovechados por todos. Sin embargo, a día de hoy existe un gran deterioro de estas vías en la Libertad y las autoridades no se hacen responsables ni toman las medidas necesarias en cuanto a la inversión para la mejora de estas obras en estas zonas rurales. La más grande fuente de ingresos en estas localidades rurales se basa en la ganadería y agricultura la cual lastimosamente ha comercio efectivo de los productos cultivados evitando el progreso económico local y regional. sido afectada. Principalmente por no tener buenas vías de comunicación ya que sin estás no puede haber un comercio efectivo de los productos cultivados evitando el progreso económico local y regional.

III. METODOLOGÍA

3.1 Diseño de investigación

La siguiente investigación es del tipo no experimental, transversal y descriptivo simple

Del mismo modo Hernández (2014) manifiesta que una investigación resulta ser transversal cuando la información y los datos son tomados en un determinado intervalo de tiempo único:

Dónde:

Muestra (M): Tramo de la zona de estudio que une los caseríos de El Cardon - Hualsacap

Observación(O): Estudio topográfico, estudio de suelos, estudio hidrológico.

3.2 Variable y operacionalización

La variable de la presente investigación es el "Diseño del pavimento flexible" cuyas dimensiones presentan tanto una definición conceptual y definición operacional y su vez estas mismas tienen respectivamente sus indicadores y escalas de medición.

Levantamiento topográfico

- Estudio técnico cuyo proceso es el de especificar las coordenadas de ciertos puntos sobre la superficie del terreno. (D. conceptual)
- Procedimientos para poder medir distancias, ángulos y alturas que hay entre dos o más puntos. (D. operacional)
- Distancias, elevación (Indicadores)
- Cuantitativa de razón (Escala de medición)

Estudio de mecánica de suelos:

- Estudios que van a permitir identificar las características tanto físicas como mecánicas del terreno a estudiar. (D. conceptual)
- Conjunto de operaciones para la medición de distancias, ángulos y alturas entre dos o más puntos. (D. operacional)
- Humedad, CBR, densidades, granulometrías (Indicadores)
- Cuantitativa de razón (Escala de medición)
- Cuantitativa de intervalo (Escala nominal)

Estudio hidrológico:

- Se refiere a poder estudiar el comportamiento del agua (circulación y distribución) en la superficie del terreno. (D. conceptual)
- Cálculos de caudales máx., tomando como base las singularidades geomorfológicas de la cuenca y también datos hidrometeorológicos. (D. operacional)
- Área de la cuenca, precipitaciones, caudal de diseño (Indicadores)
- Cuantitativa de razón. (Escala de medición)

Diseño geométrico:

- Se trata de poder realizar el trazado en una vía o en un plano horizontal que va estar compuesto por tramos rectos o curvas. (D. conceptual)
- Definir de criterios técnicos de acuerdo a lo establecido en la DG-2018. (D. operacional)
- Radio, pendiente, velocidades (Indicadores)
- Cuantitativa de razón y cuantitativa de intervalo (Escala nominal)

3.3 Población y muestra

Población: Área de influencia de la carretera que une los caseríos de El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad.

Muestra: Tramo de la carretera (5.7km) que une los caseríos de El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad.

3.4 Técnicas e instrumentos de recolección de datos

- En la siguiente investigación se hará uso de la técnica conocida como la observación, ya que es idónea para poder obtener la información del estado actual en el que se encuentra la carretera.
- Instrumentos: Ficha de observación

3.5 Procedimientos

De acuerdo al procedimiento que se llevó a cabo para la presente investigación del "Diseño a nivel de pavimento flexible del tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad 2022", como primer punto está la visita a la zona de estudio, donde se podrá observar las características más resaltantes como el estado actual de tramo, la ausencia de obras de arte, la dificultad que tienen los pobladores para trasladarse por la zona y entre otras observaciones que serán útiles para realizar el diseño óptimo del tramo a estudiar.

También se requirió buscar información adicional de investigaciones previas que tengan similitud con el tema de estudio, se tomaron en cuenta: tesis, artículos, libros, manuales, etc.

3.6 Método de análisis de datos

Los datos que serán recopilados en la zona de estudio por medio del estudio topográfico serán procesados por el software Excel, de esta forma podremos organizar las bases de datos que tendrá incluido las coordenadas y elevaciones, por otro lado, también se utilizará el Civil 3D, con el fin de poder plasmar las nuevas curvas de nivel de la superficie de la zona de estudio y de esta manera podremos realizar los planos en planta, perfil y secciones transversales. Para el estudio de suelos las muestras se llevarán al laboratorio para poder ser estudiadas con el fin de poder obtener los datos de contenido de humedad, lim. líquido, lim. plástico, análisis de granulometría, proctor y CBR.

Para poder hacer la delimitación de las cuencas usaremos el programa ArcGis, mediante el cual se podrá obtener el área de las cuencas y por medio de estaciones meteorológicas podremos calcular el caudal requerido para realizar las futuras obras de arte, adicionalmente usaremos el programa H-canales.

Para poder llevar a cabo el cronograma se usará el Project. Además de los programas anteriormente mencionados para el desarrollo del proyecto de investigación también se hará uso de Word, PowerPoint para poder realizar el informe y las diapositivas para la presentación completa del trabajo.

3.7 Aspectos éticos

La recolección de información que ha sido obtenida en la presente investigación se tomará de manera responsable, sin alteraciones o manipulaciones tal y como lo estipula la resolución N 110.2022-VI-UCV, además de esto también se tendrá presente los lineamientos de la Ley Universitaria N 30220 del artículo 45, de esta manera se podrá desarrollar la investigación de manera óptima tal y como lo solicita la Universidad Cesar Vallejo.

También se contará con la autorización del asesor encargado una vez verificado el porcentaje de similitud obtenido mediante la herramienta Turnitin.

IV. Resultados

4.1 Levantamiento topográfico:

Se desarrolló el primer objetivo específico que involucra realizar el estudio topográfico haciendo uso de estación total y GPS navegador en la zona de estudio del proyecto que se encuentra ubicado en el tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad. Para llevar a cabo el levantamiento topográfico se tomaron puntos de control en el inicio del tramo con el GPS navegador para poder ubicarse, esos puntos se digitaron en la estación total para poder tomarlos como referencia y comenzar a armar la poligonal, se continuó tomando puntos de control a cada 80 m. Se levantó el eje de la trocha existente, el ancho de la vía y los taludes (pie de talud - hombro de talud) en total se tomaron 5 puntos por sección. Al finalizar con el estudio topográfico se pudo definir que el tipo de terreno era accidentado ya que poseía pendientes transversales entre 51-100% y las pendientes longitudinales están entre 6-8%.

Personal:

- Topógrafo
- Ayudante de topógrafo

Materiales:

- Libreta
- Lapicero
- Corrector
- Cámara

Equipos:

- Estación total
- Trípode
- Mira

- Prisma
- Gps
- Wincha

Trabajo de gabinete:

Una vez que se concluyó con el trabajo hecho en campo, se comenzó bajando los datos de la estación total a una computadora para ser procesados y finalmente ser adjuntados en una hoja en formato Excel. Estos puntos serán en formato (PENZD).

Luego por medio del software Civil 3D se pudo realizar las siguientes tareas:

- Crear la superficie del terreno por medio de las curvas de nivel con equidistancia de 2 metros para las curvas menores a 10 metros para las curvas mayores.
- Creación del eje de la subrasante para la vía.
- Crear curvas tanto horizontales como verticales, de acuerdo a lo requerido.
- Crear el perfil longitudinal y poder verificar que las pendientes cumplan de acuerdo a lo requerido.

4.2 Estudio de mecánica de suelos:

Se desarrolló el segundo objetivo específico referido a realizar el estudio de mecánica de suelos con el fin de poder saber las características tanto físicas como mecánicas del suelo que estará por debajo de la sub rasante con el propósito de llevar a cabo la propuesta del diseño de pavimento flexible.

Para tal efecto teniendo presente la normativa del Manual de Carreteras, se realizaron 6 calicatas a una profundidad de 1.50 metros a cada km y 1 más para la cantera haciendo un total de 7 calicatas en total.

Tabla 1 Parámetros para excavación de calicatas

Tipo de carretea	` ,	Número mínimo de calicatas
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.	1.50m respecto al nivel de subrasante del proyecto	1 calicata x km

Fuente: Manual de Carreteras

Los estudios tomados en cuenta para este proyecto fueron: contenido de humedad, granulometría, lim. líquido, lim. plástico, clasificación SUSC - ASSHTO, proctor y cbr. Para este último también se tomó en cuenta la normativa del Manual de Carreteras.

Tabla 2 Parámetros para ensayos de CBR

Tipo de carretea	Número mínimo de CBR		
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada.	Cada 3 km se realizará un CBR		

Fuente: Manual de Carreteras

4.2.1 Descripción de las calicatas:

PC 01:

- 0.00 0.20 m (Material tipo tierra de cultivo mezclado con plantas y raíces secas)
- 0.20 0.40 m (Arena Arcilloso Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto)
- 0.40 1.50 m Grava Arcillosa, color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 2.33%, un índice de plasticidad igual a 14.48 y una densidad de 2,16

g/cm3 CBR = 14.54%. Se clasifica según SUCS (GC) y por ASSTHO A-2-6 (0).

PC 02:

- 0.00 0.20 m (Material tipo tierra de cultivo mezclado con plantas y raíces secas)
- 0.20 0.50 m (Arena Arcilloso Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto)
- 0.50 1.50 (Grava Arcillosa, color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 3.59%, un índice de plasticidad igual a 13,68 y una densidad de 2,15 g/cm3). Se clasifica según SUCS (GC) y por ASSTHO A-2-6 (0).

PC 03:

- 0.00 0.20 m (Material tipo tierra de cultivo mezclado con plantas y raíces secas)
- 0.20 0.40 m (Arena Arcilloso Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto)
- 0.40 1.50 (Grava Arcillosa, color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 3.09%, un índice de plasticidad igual a 17,64 y una densidad de 2,15 g/cm3. CBR = 31.26%) Se clasifica según SUCS (GC) y por ASSTHO A-2-6 (0).

PC 04:

- 0.00 0.20 m (Material tipo tierra de cultivo mezclado con plantas y raíces secas)
- 0.20 0.50 m (Arena Arcilloso Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto)
- 0.50 1.50 m Grava Arcillosa, color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 2.71%, un índice de plasticidad igual a 18.32 y una densidad de 2,16 g/cm3). Se clasifica según SUCS (GC) y por ASSTHO A-2-6 (0).

PC 05:

- 0.00 0.20 m (Material tipo tierra de cultivo mezclado con plantas y raíces secas)
- 0.20 0.40 m (Arena Arcilloso Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto)
- 0.40 1.50 m (Grava Arcillosa, color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 3.30%, un índice de plasticidad igual a 13,68 y una densidad de 2,15 g/cm3). Se clasifica según SUCS (GC) y por ASSTHO A-2-6 (0).

PC 06:

- 0.00 0.20 m (Material tipo tierra de cultivo mezclado con plantas y raíces secas)
- 0.20 0.50 m (Arena Arcilloso Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto)
- 0.50 1.50 m (Grava Arcillosa, color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 2.09%, un índice de plasticidad igual a 14.15 y una densidad de 2,15

g/cm3. CBR = 33.08%). Se clasifica según SUCS (GC) y por ASSTHO A-2-6 (0).

4.2.2 Evaluación de las características de la cantera

PC 07:

- 0.00 0.20 (Material tipo tierra de cultivo mezclado con plantas y raíces secas).
- 0.20 1.50 (Grava Arcillosa (GC), color beige claro, con estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 5.06%, un índice de plasticidad igual a 7.44 y una densidad de 2,17 g/cm3.CBR=81.70%). Se clasifica según SUCS (GC) y por ASSTHO A-2-4 (0).

4.2.3 Resultados de ensayos de la cantera

Tabla 3 Resultados del ensayo del CBR de la cantera

Max densidad seca (gr/cm3)	2.2
Optimo contenido de humedad	8.60%
CBR al 100% de la max densidad seca	81.70%
CBR al 95% de la máx. densidad seca	68.93%

Fuente: Laboratorio de suelos INGMAT GALLARDO SAC

4.3 Estudio Hidrológico

Se desarrolló el tercer objetivo específico referido a realizar el estudio hidrológico, los datos que se obtuvieron para llevar cabo el desarrollo de esta investigación fueron extraídos de las cartas nacionales con formato shp, gracias a esto se pudo delimitar las cuencas hidrográficas existentes en la zona del proyecto de estudio.

Debido a que en la zona de estudio del proyecto no hay estaciones de aforo, se procedió a extraer la información de las lluvias que se registran en las estaciones climatológicas que se controlan mediante pluviómetros, esto con el fin de poder hallar los caudales de diseño.

Con el fin de llevar a cabo el estudio hidrológico para el sistema de drenaje se optó por extraer los datos de la estación Callancas, debido a que es la que se encuentra más cerca de la zona de estudio, todos estos obtenidos por el SENAMHI que es la entidad encargada de brindar información y datos sobre las lluvias en el territorio nacional.

4.3.1 Precipitación máxima en 24 h

Se analizaron los valores recopilados en la estación para obtener los valores máx. por año.

Se puede evidenciar las precipitaciones máx. entre el mes octubre hasta mayo, sin embargo, en los meses como junio y setiembre hay estiaje, debido a que en estos meses la estaciones muestran datos de 0.00mm.

4.3.2 Análisis de datos hidrológicos:

Los valores que se obtuvieron de la estación fueron analizados con el fin de poder establecer si el número de años que se registraron fueron los suficientes para llevar a cabo el diseño

4.3.3 Cálculo de la longitud adecuada de registro de la serie

Mediante el siguiente método podremos obtener el número de años requeridos para llevar acabo los estudios. Se tienen datos registrados de 44 años y según los estudios realizados 23 años bastan para poder seguir con el trabajo.

Tabla 4 Datos min. deseables para la serie

Descripción				
n:	n: Grados de libertad (datos -6).			
$r_{(0.05,n)}$:	T-student al 95%.	2.027		
Tr_2 :	Precipitación para un Tr de 2 años con Gumbel.	27.92		
Tr_{50} :	Precipitación para un Tr de 50 años con Gumbel.	82.92		
R:	Relación de caudales.	2.974		
Y_m :	Long. adecuada de registros.	23 años		

Fuente: elaboración propia

4.3.4 Análisis de consistencia de datos

Esta prueba puedo permitir que se corrijan los valores anuales de las lluvias máx. en 24 h. Además, se adjunta un esquema con valores actuales y también con los datos que han sido corregidos.

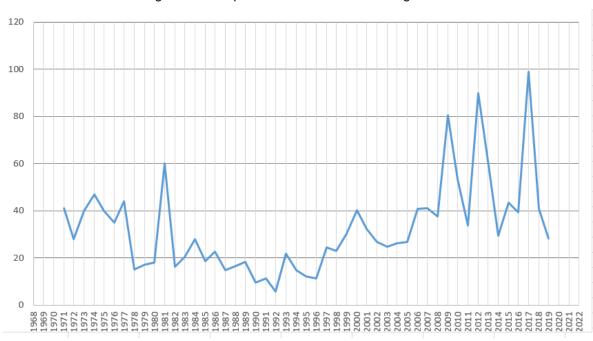


Figura 1 Precipitación máx. anual sin corregir

Fuente: elaboración propia

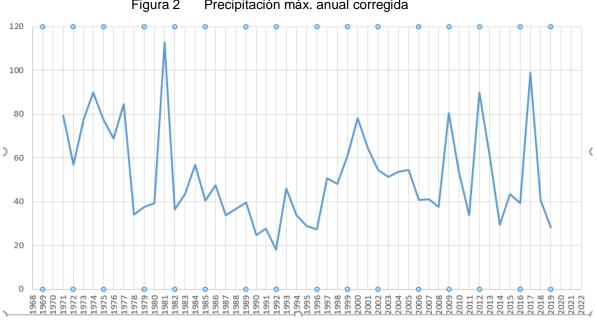


Figura 2 Precipitación máx. anual corregida

Fuente: elaboración propia

4.3.5 Análisis de tendencia

Por medio de este análisis se pudo hallar la tendencia de los datos, y debido a esto no hubo inconvenientes y se pudo comprobar que los valores eran los que se requerían.

4.3.6 Funciones de distribución de probabilidad

El estudio de la frecuencia de sucesos hidrológicos por medio de la distribución de probabilidad nos permitió saber las posibles probabilidades en la que cada evento podría suceder otra vez en un periodo de tiempo determinado. Se aplicaron funciones a nuestros valores para diversos tiempos de regreso con el propósito de poder establecer una función que se adecue mejor a nuestros datos, por medio de la prueba de bondad de ajuste.

Para el desarrollo de esta investigación se trabajó bajo la normativa establecida en el Manual de Hidrología del cual se trabajaron las siguientes funciones de distribución de probabilidades teóricas:

- Distrib.normal
- Distrib. Log. normal 2 parámetros
- Distrib. Log. normal 3 parámetros
- Distrib. Gamma 2 parámetros
- Distrib. Gamma 3 parámetros
- Distrib. Log. Pearson tipo III
- Distrib. Gumbel Distribución Log Gumbel

Por medio del software HIDROESTA se obtuvieron los caudales, para los periodos de regreso de 2,5,10,15,20,25,50,100,300 y 500 años.

4.3.7 Prueba de bondad de ajuste (Kolmogov- Smirnov)

Se trata de poder definir que la función que se utilizó anteriormente sea la más adecuada para poder usarla. Para esto se compara el valor absoluto del delta teórico y escogiendo el menor valor así también como la distribución de probabilidad más adecuada.

Tabla 5 Resultados de la prueba de bondad de ajuste

T (años)	Normal	Log. Normal 2	Log. Normal 3	Gamma 2P	Gamma 3P	Gumbel	Log Gumbel
ΔTeórico	0.1216	0.1069	0.1254	0.1290	0.1185	0.1198	0.1225
∆ Tabular	0.2149	0.2149	0.2149	0.2149	0.2149	0.2149	0.2149

Fuente: elaboración propia

Finalmente obtenemos como resultado que la función que se adecua mejor es la Log. Normal 2.

4.3.8 Curvas de intensidad, duración, frecuencia

- Curvas de intensidad de Iluvia

Para poder establecer la máx. Iluvia por cada tiempo de regreso, se utilizó el método conocido como Frederich Bell:

$$I = \alpha P_{24}^b$$

Dónde:

- "I" representa la intensidad máx.
- "a-b" representa los valores del modelo (0.460;0.876) respectivamente.
- "P24" representa la precipitación máx. en 24 h (8.38).

Curvas de IDF:

Se trata de un gráfico en donde se puede apreciar el tiempo de duración y frecuencia de las aguas pluviales. Para poder hacer los cálculos se tiene que tener presente las características de la zona, haciendo uso de la siguiente formula:

$$I = \frac{KT^m}{t^n}$$

Dónde:

- "I" representa la intensidad máx.
- "k,m,n" representa características de la zona
- "T" representa el periodo de regreso
- "t" representa la duración de la precipitación.

Para poder llegar a definir los valores de los factores k,m,n se hizo se empleó el análisis de regresión múltiple y su obtuvieron los siguientes resultados:

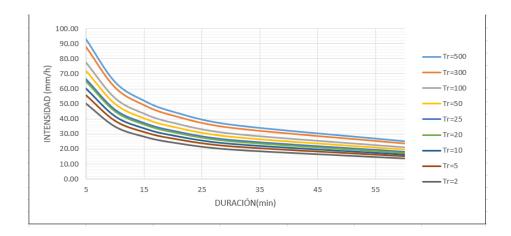


Figura 3 Curvas de Intensidad-Duración-Frecuencia

4.3.9 Cálculo de caudales:

Con la finalidad de poder establecer el caudal de diseño partiendo de las lluvias que se han registrado, hay que tener presente que existen 2 tipos de métodos que son el empírico y estadístico, en este caso para llevar a cabo el diseño de las obras de arte (cunetas-alcantarillas) se utilizó el método empírico por medio de la formula racional.

Método racional:

Se utiliza con bastante frecuencia para poder determinar el caudal máx. teniendo en cuenta las lluvias en las cuencas y comúnmente es utilizado para diseñar obras de arte como: cunetas- alcantarillas

$$Q \frac{CIA}{3.6}$$

En la que:

- "Q" representa la descarga máx. de diseño
- "C" representa el coeficiente para escorrentía
- "I" representa la intensidad de precipitación máx. horaria

4.3.10 Tiempo de concentración

Se refiere al intervalo de tiempo en el que el agua puede tardar en moverse del punto más elevado de la cuenca hasta el punto más bajo. La metodología utilizada para llevar cabo el cálculo de valor será por medio del método de Kirpich, que hace uso de la pendiente inclinada y el área de la cuenca.

$$t_C = 0.01947. L^{0.77}. S^{-0.385}$$

En la que:

- "L" representa la Long. de la cuenca
- "S" representa la pendiente prom. de la cuenca

4.3.11 Hidráulica y drenaje

- Drenaje superficial

Tiene como propósito evacuar el flujo superficial producido por el agua de las lluvias. Luego de que se procesaron los datos que se obtuvieron de la estación, se llevó a cabo un dimensionamiento de las estructuras de manera que se pueda crear un sistema de drenaje que sea practico y funcione según lo requerido.

- Criterios de funcionamiento

Fue muy importante el poder asegurar que la calidad de los cálculos y los resultados obtenidos garanticen que el drenaje funcione de forma óptima. Por esta razón es necesario tener los valores de las velocidades máx. admisibles que van a depender del material que se usara para las cunetas, también se requiere los datos de las velocidades bajas que van a producir sedimentos para que las aguas almacenadas puedan fluir por las alcantarillas.

Periodo de retorno:

Se refiere a los años en el que el caudal máx. puede llegar a tener una probabilidad de ser superior en 1/T. Esto va depender de la estructura que se va llevar a cabo.

$$p(Q > Q_T) = \frac{1}{T}$$

- Daños de escorrentía:

En el instante que una quebrada se activa, puede generar daños significativos a las diferentes partes de la estructura de la carretera. Hay que tener presente que la carretera también sufre daños por causa de la escorrentía que viene de los taludes Por esta razón es muy importante diseñar bien las obras de arte para evitar obstrucciones y desgastes en la carretera.

Diseño de cuentas

Las cunetas que se proponen para el desarrollo de este proyecto son de forma triangular y estarán al largo de la vía, estas serán capaces de poder transportar el caudal de diseño y en el caso de la inclinación del talud se trabajó según lo estipulado en la normativa de hidrología.

Figura 4 Sección para cuneta triangular

Fuente: Manual de hidrología-MTC

Tabla 6 : Inclinación máx. para el talud de la cuneta

V.D	IMD (Veh./Día)				
(Km/h)	<75	>750			
<70	1:02	*	1:03		
\ /0	1:03		1.03		
>70	1:03		1:04		

Fuente: Manual de hidrología-MTC

- Velocidades

Para lograr que la erosión no afecte a las cuentas hay que tener presente las velocidades de flujo, por tal motivo se tomó en cuenta la normativa establecida propuesta por el MTC.

Tabla 7 Velocidades máx. admisibles

Tabla T Volocidados maxi damielbies					
Velocidad máxima admisible					
Tipo de superficie	$V_{m\acute{a}x}(m/s)$				
Arena fina o limo (poca o ninguna arcilla)	0.20-0.60				
Arena arcillosa dura, margas duras	0.60-0.90				
Terreno parcialmente cubierta de vegetación	0.60-1.20				
Arcilla, grava, pizarras blandas con cubierta vegetal	1.20-1.50				
Hierba	1.20-1.80				
Conglomerado, pizarras duras, rocas blandas	1.40-2.40				
Mampostería, rocas duras	3.00-4.50*				
Concreto	4.50-6.00*				

Fuente: Manual carreteras pavimentadas de bajo volumen de transito

Coeficiente de escorrentía

Para poder tener los datos requeridos se hará uso de los valores proporcionados por la tabla de coef. de escorrentía método racional que se adjunta en anexos.

Se determinó 2 coeficientes de escorrentía:

 Taludes de corte: 0.50 (para vegetación ligera en un suelo semipermeable y tiene un talud con pendiente alta). Calzada: 0.65 (debido a que es una zona con poca vegetación, su pendiente es más suave y el suelo es impermeable).

- Cálculo hidráulico de la cuneta:

Se comenzó por definir el ancho tributario, en este caso fue de 100 m, de la misma manera se determinó el largo del tramo, de esta manera se pudo encontrar el área tributaria.

Para poder definir la intensidad de lluvia, se aplicó un intervalo de retención de 10 años con un tiempo de acumulación de 10 min.

Las cunetas de sección triangular fueron diseñadas haciendo uso de método de Manning.

$$Q = \frac{1}{n} \cdot A \cdot R^{2/3} \cdot S^{1/2}$$

En el que:

- "n" representa el coefic. de Manning
- "A" representa el área hidráulica
- "R" representa el perímetro hidráulico
- "S" representa la pendiente de la carretera

Diseño de alcantarilla

Para llevar a cabo el diseño de estas obras de arte se tomó en cuenta la sección de alcantarillas de TMC con 0.025 de coeficiente de rugosidad debido a que el material es el más usado dadas sus características como la resistencia a la compresión y a la corrosión.

- Criterios de microcuencas:

Por medio del uso de cartografía se pudo ubicar las quebradas existentes que atraviesan el eje de la vía y también influyen en la zona de estudio. Para llevar a cabo el cálculo de los caudales máx. se hizo uso del método racional el cual trabaja con datos de las aguas pluviales y el área de las cuencas.

El total de caudales para alcantarillas de paso, pertenece a la suma del caudal que proviene de las quebradas al que llamamos (Q1), también se tomó en cuenta el caudal de las cunetas (Q2).

Tabla 8 Caudales máx. para alcantarillas de paso

N°	Progresivas	Descrip.	Α	С	Тс	T	I	Q1	Q2	QT
1	Km 4 + 738	Alc. de paso	9.64	0.5	52.39	10	17.460	23.377	0.090	23.467
2	Km 4 + 910	Alc. de paso	2.25	0.5	16.68	10	31.912	9.973	0.099	10.072

Fuente: elaboración propia

- Aliviaderos:

Se usaron las mismas consideraciones que las alcantarillas de paso y también se usaron los mismos criterios de los canales de forma circular considerando los diámetros comerciales.

4.4 Diseño geométrico del pavimento flexible

Para el desarrollo del diseño geométrico en el tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad se trabajó bajo los parámetros que brinda el Manual de Carreteras - (DG-2018).

4.4.1 Clasificación por demanda

Dado que hay un IMDA de menos de 200 veh/día se clasifica como trocha carrozable, sin embargo, dado que la DG -2018 no muestra especificaciones en cuanto al diseño geométrico de trochas carrozables se optó por trabajar con los parámetros de diseño de una carretera de tercera clase.

4.4.2 Clasificación por orografía

Según el estudio topográfico se clasifica como terreno accidentado (tipo3)

4.4.3 Estudio de trafico:

Conocer el flujo de transito de los vehículos que pasan por la vía es muy importante ya que esto influirá en los parámetros que tendremos en cuenta para llevar a cabo el diseño geométrico.

Tabla 9 Volumen de trafico

Tramo	El Cardon	El Cardon - Hualsacap		Paranday	/	Región:	La Libertac	l
Sentido:	Ida - vuelta	9	Provincia:	Otuzco		Fecha:	na: Noviembre	
	Moto	Automovil	Combi	Omnibus	Camionetas	Camione	Trailers	
						S		
Dias	L	M1	M2	M3	N1	N2	N3	Total
	1	65			53.0	5000		
Lunes	0	0	2	0	2	2	0	6
Martes	0	1	0	0	2	0	0	3
Miercoles	1	1	0	0	1	0	0	3
Jueves	0	0	0	0	2	2	0	4
Viernes	1	2	1	0	0	1	0	5
Sabado	0	0	0	0	2	1	0	3
Domingo	2	1	1	0	0	0	0	4
Total	4	5	4	0	9	6	0	28
IMD	0.572	0.715	0.572	0.000	1.287	0.858	0.000	4.000

Fuente: Elaboración propia

- IMD:

Debido a la baja incidencia del IMD (4vh/d) se procedió a tomar los valores establecidos en el manual de carreteras en donde se determina el rango min. de repeticiones de los ejes equivalentes en el diseño de pavimento flexible, para este caso se optó por la categoría de min. de tráfico (TP0).

4.4.4 Velocidad de diseño:

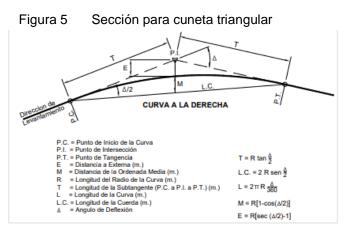
Para poder elegir la velocidad de diseño se tuvieron en cuenta factores como características de la topografía y además teniendo presente que se espera evitar un movimiento de tierra alto con el fin de poder salvar las condiciones de seguridad.

Debido a que la DG - 2018 nos proporciona velocidades de diseño según el tipo de carretera y topografía, para este proyecto se trabajó con una velocidad min. de V=30 Km/h y para tramos que tengan pendientes altas se consideró 20 Km/h.

4.4.5 Diseño geométrico en planta

- Tramos en tangente:

Estos tramos fueron trazados de manera que se puedan evitar que las tangentes sean largas, por esta razón se trabajó con tangentes cortas tal y como lo establece la DG-2018.


Tabla 10 Longitud para tramos (tangente)

ransa reengraa pana aanta (tanigarita)						
V(Km/h)	L.min.s	L.min.o	L. max.			
30	42	84	500			
40	56	111	668			
50	69	139	835			
60	83	167	1002			

Fuente: Manual de DG-2018

- Curvas circulares:

Para poder unir los alineamientos rectos se emplearon curvas circulares con sus respectivos radios calculados, además se hizo uso de curvas simples y compuestas según lo requiera el terreno.

Fuente: Manual de DG-2018

- Radios mínimos:

$$R_{max} = \frac{V^2}{127(0.01e_{max} + f_{max})}$$

Para poder obtener el factor de fricción máximo (25) se usó la tabla de la DG -2018 de radios min y peraltes max. de diseño que se encuentra en anexos.

Curvas de transición

Se ha empleado el uso de estas curvas para ciertos tramos que no necesiten curvas simples, ya que la zona se considera de peligro y estas curvas harán que los conductores no puedan realizar cambios bruscos.

Para esto se hizo uso de la normatividad brindada por el manual de carreteras en la tabla 302.11 b, con una velocidad de 30 km/h con radio de 55 m, de manera que se abstenga de una transición.

$$RL=A^2$$

- Curvas de vuelta:

Para este proyecto se empleó este tipo de curvas ya que el terreno es accidentado por lo que en algunos casos se tenía que llegar a las cotas mayores sin que estas sobrepasen las pendiente máx. además se consideró un radio interior de 8 metros y un vehículo C2 y se tomó el valor de 17.25 como radio exterior mínimo.

- Sobre ancho:

Se refiere al espacio adicional que hay en las curvas para poder brindar mas espacio para los vehículos. Esto se calculará teniendo presente: el tipo de vehículo, velocidad de diseño y el radio de curva, tal y como se muestra a continuación.

4.4.6 Diseño en el perfil:

- Pendientes:

Se consideró como pendiente mínima 0.5 con el fin de poder evacuar las aguas pluviales, además hay que tener presente que la zona de estudio se encuentra por encima de los 3000 msnm, la pendiente máx. disminuirá en 1% de los datos que se encuentran a continuación:

Tabla 11 Pendiente máx.

Demanda	Carretera				
Vehiculos/día	< 400				
Caracteristicas	Tercera clase				
Orografia 1 2			3	4	
Velocidad					
30 Km/h			10	10	
40 Km/h	8	9	10		
50 Km/h	8	8	8	8	

Fuente: Manual de DG-2018

- Curvas verticales

Se diseñan con el fin de poder unir las rasantes por medio de curvas verticales parabólicas cóncavas o convexas, obedeciendo las variaciones de pendiente en parte de los tramos, tal y como lo establece el manual en caso de que la diferencia algebraica sea ≥ 1 % debido a que por ser pavimentada se requiere el uso de curvas verticales

TIPO 1

TIPO 2

A = P₁ + P₂

CURVAS VERTICALES CONVEXAS

TIPO 3

A = P₁ - P₂

L

CURVAS VERTICALES CONCAVAS

P₁ = Pendiente de entrada

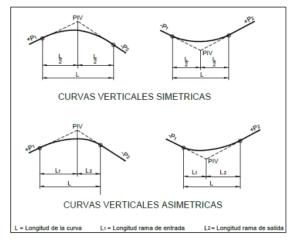
A = D₁ + P₂

L

CURVAS VERTICALES CONCAVAS

P₂ = Pendiente de entrada

A = Differencia de pendientes


E = Variación por unidad

de pendiente:

Figura 6 Curvas verticales convexas-concavas

Fuente: Manual de DG-2018

Figura 7 Curvas verticales simétricas-asimétricas

Fuente: Manual de DG-2018

- Longitud de curvas verticales

Se obtiene desde el inicio de la entrada hasta el punto de salida de la curva, esto se encuentra de conforme al índice de curvatura que se denomina como "K" de manera que las distancias de visibilidad sean controladas. Se expresa con la ecuación que se muestra a continuación:

Lc= K*A

Tabla 12 Valores para el ind. "K"

Vel.diseño	Long. controlada por visibilidad de parada		Long. controlada por visibilidad de paso		
(Km/h)	Distancia de visibilidad	Indice de curvatura	Distancia de visibilidad de	Indice de curvatura	
	de parada	K	paso	K	
20	20	0.6			
30	35	1.9	200	46	
40	50	3.8	270	84	

Fuente: Manual de DG-2018

Los coeficientes denominados como K se muestran a continuación y se usaran para de acuerdo a la velocidad de diseño.

Tabla 13 Valor para el ind. "K" en curva concava

Vel. diseño (km/h)	Distancia de visibilidad de parada (m)	Indc. de curvatura
20	20	3
30	35	6
40	50	9

Fuente: Manual de DG-2018

4.4.7 Diseño geométrico de la sección transversal

Se refiere a poder hacer el análisis de las secciones transversales que aparecen en la longitud de la carretera, para fines del proyecto estas secciones se hicieron de acuerdo al estacado en curvas y tangentes con el fin de poder conocer la cantidad de movimiento de tierras y la necesidad de diseñar obras de arte.

- Calzada

Se compone por 2 carriles y se utiliza para el tránsito de vehículos, en este caso no influye las bermas ni sobreanchos, para poder fijar el ancho de la calzada se utilizó la siguiente tabla:

Tabla 14 Anchos mín. de calzadas

Demanda	Carretera				
VehIculos/DIa	< 400				
CaracterIsticas	Tercera clase				
Orografia	1 2 3 4			4	
Vel.					
30 Km/h			6.00	6.00	
40 Km/h	6.60	6.60	6.00		
50 Km/h	6.60	6.60	6.00		
60 Km/h	6.60	6.60			

Fuente: Manual de DG-2018

- Bermas:

Comúnmente lo suelen usar los vehículos en circunstancias de emergencias para poder estacionarse de manera temporal, la inclinación que tiene es la misma que la de la calzada y el ancho mínimo se encuentra en el siguiente cuadro:

Tabla 15 Anchos mín, de bermas

Clasificación	Carretera					
Vehículos/día		< 400				
Características	Tercera clase					
Orografía	1 2 3 4					
Velocidad						
30 Km/h			0.50	0.50		
40 Km/h	1.20	0.90	0.50			
50 Km/h	1.20	0.90	0.90			

Fuente: Manual de DG-2018

- Bombeo:

Para poder desarrollar esta investigación se utilizó un 4% de inclinación de manera que se pueda evacuar de manera rápida el agua hacia las obras de arte y taludes de la vía.

Tabla 16 Anchos mín. de bombeo

	Bombeo	(%)
Tipo de superficie	Precipitacion < 500 mm/año	Precipitacion > 500 mm/año
Pavimento asfaltico o concreto portland	2.0	2.5
Tratamiento superficial	2.5	2.5 - 3.0
Afirmado	3.0 - 3.5	3.0 - 4.0

Fuente: Manual de DG-2018

- Peralte:

Se refiere a la inclinación que hay entre el borde exterior con el interior en los tramos con la intención de poder evitar que la fuerza centrífuga haga cambiar la dirección de los vehículos y se puedan evitar tragedias. Estas se utilizarán en todas las curvas horizontales y sus valores dependerán de la velocidad diseño y el radio de las curvas.

Tabla 17 Valores de peralte máx.

Pueblo o ciudad	Peralte Máximo (p)		
Pueblo o ciduad	Absoluto	Normal	
Atravesamiento de zonas urbanas.	6.0%	4.0%	
Zona rural (T. Plano, Ondulado o Accidentado).	8.0%	6.0%	
Zona rural (T. Accidentado o Escarpado).	12.0%	8.0%	
Zona rural con peligro de hielo	8.0%	6.0%	

Fuente: Manual de DG-2018

- Taludes:

Influyen varios parámetros, entre ellos está la naturaleza del terreno de la mano con la estabilidad del suelo. Para el desarrollo de esta investigacion se hizo uso de los datos expuestos por la siguiente tabla:

Tabla 18 Valores para talud de corte

Clasificacion de materiales de corte		Doss	Dose		Material	
		Roca fija	Roca suelta	Grava	Limo arcillosoo arcilla	Arenas
a te	< 5 m	1:10	1:6 - 1:4	1:1 - 1:3	1:1	2:1
tur	5-10 m 1:10		1:4 - 1:2	1:1	1:1	*
A de	> 10 m	1:8	01:02	*	*	*

Fuente: Manual de DG-2018

Con respecto al talud de relleno este se encuentra en función de la naturaleza de la zona de estudio, es decir el terreno. Para esto se hizo uso de la siguiente tabla.

Tabla 19 Valores para talud de relleno

	Talud (V:H)								
Materiales	Altura (m)								
	< 5	5-10	> 10						
Gravas, limo arenoso y arcilla	1:1.5	1:1.75	1:2						
Arena	1:2	1:2.25	1:2.5						
Enrocado	1:1	1:1.25	1:1.5						

Fuente: Manual de DG-2018

Tabla 20 Resumen de las consideraciones que se tomaron para el diseño

DATOS DE DISEÑO						
Clasificación según su demanda	Carretera tercera clase					
Clasificación según orografía	Accidentado – (Tipo 3)					
IMD	< 400 veh/día					
Tp. de vehículo - categoría	C2					
Vel. directriz	30 Km/h					
Long. min. S	42 m					
Long. min. O	84 m					
Long. máx.	500 m					
P.min	0.50%					
P. máx.	9.00%					
Radio min	25 m					
Ancho de calzada	6 m					
Ancho de berma	0.50 m					
Bombeo	2.50%					
Peralte máx.	12.00%					
Talud de corte	1:2, 1:1					
Talud de relleno	1:1.75					

4.4.8 Resistencia del terreno en base del CBR

Para poder diseñar la estructura del pavimento flexible se hizo uso de los datos que brindo el estudio de mecánica de suelos, se obtuvieron los siguientes valores del CBR:

Tabla 21 CBR de calicatas

CALICATA	CBR
PC1	14.54
PC3	31.26
PC6	33.08

4.4.9 Sub rasante

Para el diseño de la estructura los espesores se basaron en los valores que se muestran en la siguiente tabla:

Tabla 22 Consideraciones para subrasante

Categoría de la Sub Rasante	CBR
S ₀ : Sub R. Inadecuada	CBR < 3%
S ₁ : Sub R. Insuficiente	CBR ≥ 3% a CBR < 6%
S ₂ : Sub R.Regular	CBR ≥ 6% a CBR < 10%
S₃: Sub R. Buena	CBR ≥ 10% a CBR < 20%
S ₄ : Sub R.Muy Buena	CBR ≥ 20% a CBR < 30%
S₅: Sub R. Excelente	CBR > 30%

Fuente: Manual de carreteras: Suelos

 En la calicata PC 1 el valor del CBR fue de 14.54% lo que se califica como una sub rasante buena, mientras que en la calicata PC 3 y PC 6 el valor del CBR fue de 31.26% y 33.08% respectivamente, lo que se califica como una sub rasante buena.

4.4.10 Datos del estudio de trafico:

Mediante el estudio de tráfico se tiene el número de veh. que pasan por la zona de estudio, pero ya que hay una baja incidencia del IMDA se ha optado por trabajar según lo estipulado en el Manual de Carreteras en la tabla de nro de repeticiones acumuladas de 8.2t en pavimentos flexibles (Tp0 > 75000 EE ≤ 150000 EE) que se encuentra en anexos.

4.4.11 Espesor de pavimento, base y sub base

El pavimento será diseñado de manera que pueda aguantar las cargas proyectadas de tráfico, para esto se han considerado las propiedades de los materiales que serán utilizados para la estructura vial, teniendo en cuenta los espesores que propone y establece la normativa del manual de carreteras para la colocación de la carpeta asfáltica.

Tp2 Tp3 Tp4 Tp5 Tp6 Tp7 300,001-500,000 500,001-750,000 750,001-1'000,000 1'500,000 1'500,001-3'000,001-5'000,000 Tp1 **Figura** EE 75,001-150,000 CBR% 2555×CBR^{0.64} CBR < 8,040psl (55.4MPa) (4) > 8,040psi > 6% (55.4MPa) CBR √ 11,150psl < 10% (76.9MPa) > 11,150psl > 10% (76.9MPa) CBR √ 17,380psi < 50% (119.8MPa) > 17.380psi > 50% (119.8MPa) CBR < 22,530psl < 30% (155.3MPa) CBR > 22.530psl (155.3MPa) > 30%

Figura 8 Espesores de pavimento flexible

Fuente: Manual de pavimentos

Tabla 23 Espesores para la carretera

TRAMO	Km 0+000 - km 3+000	Km 3+000 - km 5+513					
Carpeta asfaltica 5 cm		5 cm					
Base Granular	25 cm	15 cm					

V. Discusión

Por medio del estudio topográfico se pudo determinar que el tipo de orografía para el terreno fue accidentado (tipo 3). Noriega (2018) y Acosta (2018) en sus respectivos proyectos que se encuentran cerca a esta zona también encontraron que el terreno fue del tipo accidentado. Del mismo modo Garcia (2018) manifiesta en su investigación que el hecho de que el terreno sea del tipo accidentado implica que habrá movimientos de tierras altos y requieren el diseño de curvas de radios mínimos o en otros casos de curvas de vuelta que van a requerir velocidad de disnea en algunos tramos sea baja.

Los estudios de suelos arrojaron los datos del CBR de las calicatas que se hicieron al largo del terreno a cada 3km tal y como lo establece el manual de carreteras. Los valores que se obtuvieron fueron de 14.54% 31.26% y 33.08%, del mismo modo Acosta (2018) en su proyecto de investigación se encontró con valores similares a los de esta investigación (10.58% 11.24% 12.21%). 26.29 – 11.34. Cabrera y Vidarte (2019) realizaron 14 calicatas de 1.50 m de profundidad a cada 500 metros en su mayoría según la clasificación SUCS se clasifica como "SC". Rodríguez (2018) también realizo los estudios de suelos correspondientes para llevar a cabo su proyecto de investigación y se encontró con CBR que varian entre 7 y 6 %Por otra parte, los investigadores Flores e Idrogo (2021) y Quispe y Vargas (2020) realizaron estudios de suelos para poder determinar las características y propiedades del terreno en su zona de estudio y los resultados clasificaron al suelo como una grava arcillosa igual que la presente investigación.

Por medio del estudio hidrológico se pudo identificar 6 quebradas que atraviesan el tramo de la zona de estudio, las mismas que serán evacuadas por las obras de arte que se diseñaron, con respecto a las aguas pluviales que se suelen acumular en la calzada y también en los taludes, estas serán trasladadas por cunetas de concreto y serán evacuadas por las alcantarillas de alivio de material TMC, para el diseño de estas estructuras se tomó en cuenta la normativa que se encuentra en el Manual de hidrología, hidráulica y drenaje, del mismo modo Garcia (2018) en su proyecto diseño cunetas con dimensiones de 0.50m x 0.90 m con alcantarillas de paso de 36 y 24 pulgadas y Rodríguez (2018) diseño alcantarillas de paso de 48", 60",72"de diámetro y cunetas de sección triangular de 0.75x0.30 metros.

Con respecto al diseño geométrico se llevó a cabo según lo establecido en la DG-2018, se usó un IMD de 400 veh. /día y ya que es una zona con poco tránsito de propuso una velocidad de 30km/h, sin embargo, para los tramos en donde existen curvas que son muy cerradas o en zonas de peligro se propuso una reducción hasta los 20 km/h y con pendientes máx. de 9, ancho de calzada=3m, berma=0.50m v radios min. =25m. Veramendi (2018) v Angeles v Carlos (2021) en sus investigaciones realizaron un diseño geometrico para sus respectivos tramos teniendo como parámetros lo valores establecidos en la DG 2018 proyectado en 20 años de vida útil su proyecto. Hallasi (2019) dado que su terreno es del tipo accidentado y con ondulaciones tomo el valor de 25km/h para la velocidad directriz de su proyecto. Suárez y Vera (2015) plantearon los espesores para el pavimento flexible en su proyecto y fueron de 20 pulg. para la sub base, 9 pulg. para la base granular y 3 pulg. para la carpeta asfáltica. Parrado y Garcia (2017) tuvieron parámetros de 120km/h, pendiente máx. 8%, ancho del carril de 3.6, 1.8 de berma y bombeo de 2% esto bajo los parámetros del INVIAS en Colombia.

VI. Conclusiones

Se hizo el levantamiento topográfico en el tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad, por el tipo de orografía se considera como accidentado (tipo 3) según lo establecido en el manual de la DG-2018, además de esto la pendiente máx. que se obtuvo fue de 9%.

Se realizaron los estudios de mecánica de suelos, se hicieron 6 calicatas a lo largo de la carretera y 1 más para la cantera, haciendo un total de 7 calicatas. En su mayor parte el material que se encontró fue grava arcillosa, por esta razón debido a que los CBR están entre los intervalos de 10%-33%se pueden calificar entre bueno y excelente.

Se realizó el estudio hidrológico y se obtuvieron los datos de las precipitaciones máx. que corresponden a la estación Callancas que se ubica en Otuzco, estos datos pudieron permitir que se calculen los caudales de diseño para diseñar las obras de arte, en total existen un total de 2 alcantarillas (tipo multiplate), 26 alcantarillas de alivio de material TMC De 36 pulgadas y cunetas con sección triangular de 75 cm de anchura y 50 cm de hondura.

Se realizó el diseño geométrico para el tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad según los parámetros que se encuentran en la DG-2018, se clasificó como un tipo carretera de tercera clase y sus velocidades están entre 30 y 20 km/h debido a que existen tramos que peligrosos o presentan curvas muy cerradas, la pendiente máx. es de 9% y como pendiente min.1.05% la calzada es de 6 metros y se divide en 2 carriles de 3 metros a cada uno de los lados y con un bombeo=2.50% y con bermas de 50 cm a cada limite, además se consideraron como radio min. 25 metros y 15 metros en caso de curvas de vuelta.

VII. Recomendaciones

Se recomienda que los habitantes de la zona de estudio no arrojen residuos sólidos en las obras de arte para que estas puedan cumplir y garantizar el evacuado rápido de las aguas pluviales.

Se recomienda llevar a cabo el proyecto en temporada de estiaje con el fin de que las tareas y los trabajos no se afecten debido a las condiciones climáticas de la zona de estudio.

Se recomienda hablar con las autoridades del sector para poder coordinar y darles a conocer el desarrollo del proyecto y también las posibles restricciones que pueda haber durante la ejecución de la misma a fin de contar con su apoyo y que el proyecto no se retrase.

Se recomienda inculcar a los pobladores de la zona de estudio una cultura de mantenimiento para que la estructura pueda perdurar en el tiempo y beneficie a las futuras generaciones del sector.

Se recomienda que se respete la normativa establecida en la DG-2018 y las especificaciones por el MTC para la ejecución de este proyecto.

Se recomienda antes de comenzar con el levantamiento topográfico que los instrumentos sean calibrados para garantizar la confiabilidad de los datos.

Se recomienda en caso de que los CBR sean menores a 6 la alternativa de llevar a cabo una estabilización de suelos.

Se recomienda realizar mantenimientos a las obras de arte cada cierto periodo de tiempo con el fin de que perduren en el tiempo y beneficien a la población de la zona de estudio.

REFERENCIAS

PARRADO Alberth, GARCIA Andres. Propuesta de un diseño geométrico vial para el mejoramiento de la movilidad en un sector periférico del occidente de Bogotá. Tesis (Titulo para el grado de Ing. Civil). Colombia: Universidad Católica de Colombia, 2017. 11 pp.

SUÁREZ Clara, VERA Ailtonjohn. Estudio y diseño de la vía El Salado - Manantial de Guangala del Cantón Santa Elena. Tesis (Titulo para el grado de Ing. Civil). La Libertad – Ecuador: Universidad Estatal Península de Santa Elena. 2015. 2 pp.

HALLASI, Ángel. Mejoramiento de las trochas carrozables en la Comunidad de Retiro del Carmen Distrito de Yanatile – Provincia de Calca – Cusco. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Nacional de San Antonio Abad del Cusco. 5 pp.

RODRÍGUEZ, Juan. Diseño para el mejoramiento de la trocha carrozable entre los pueblos de Santiago y Guzmango, distrito de Guzmango, Contumazá, Cajamarca. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo. 18 pp.

VERAMENDI, José: PROYECTO DE PAVIMENTO FLEXIBLE DE LA VÍA PALTAY – LUCMA, DEL DISTRITO DE TARICÁ, HUARAZ – ÁNCASH – 2018. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo.

ANGELES, Jesus, CARLOS, William: Diseño de pavimento flexible para el tramo AN-86800+00 Km hasta la I.E 88183 de 14 Incas con el Método AASHTO-93, Cascajal-2021. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo.

CABRERA, Peter, VIDARTE, José: Diseño de Pavimento Flexible Tramo KM 5+257 al km 3+560 Centro Poblado el Higo Distrito Pimentel - San José, Provincia de Chiclayo – Lambayeque 2019. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo.

RODRÍGUEZ, James: ANÁLISIS Y PROPUESTA DE DISEÑO DEL PAVIMENTO FLEXIBLE EN LA CARRETERA CARHUAZ – HUALCÁ. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo.

FLORES, Cesar, IDROGO, Bismarck: Diseño de la infraestructura vial con pavimento flexible en la vía Lajas - Quinuapampa, Distrito de Lajas, Provincia de Chota, Cajamarca. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo. 2021

QUISPE, Jhan, VARGAS, yerson: Diseño de Pavimento flexible Tramo Puente Santo Toribio - Centro Poblado Miraflores, Independencia -Huaraz-Ancash, 2019. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo.

NORIEGA, Sandra: Diseño para el mejoramiento de la carretera tramo Miguel Grau- Choconday – distrito de Usquil, provincia de Otuzco- La Libertad. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo.

ACOSTA, Kersy: Diseño para el mejoramiento de la carretera tramo: Monchacap – miguel grau, distrito de Usquil-provincia de Otuzco, departamento La Libertad. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo. 2018

GARCIA, Franklin: "Diseño para el mejoramiento del camino vecinal tramo Paraíso – César vallejo, Agallpampa, Otuzco, La Libertad. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo. 2018

DE LA CRUZ, Sleyther, PAREDES, Guirlo. Diseño de infraestructura vial con pavimento flexible para mejora de transitabilidad de la avenida Industrial, Lurín, Lima. [En línea] Memoria Investigaciones en Ingeniería, núm.21.Disponible en:http://revistas.um.edu.uy/index.php/ingenieria/article /view/858/1060

BERARDO, Maria. Manual de Diseño Geométrico Vial Tomo I. Capítulo 1: Caracterización de la Demanda. 2014

BRAJA, Das. Fundamentos de ingeniería de cimentaciones. 7 a ed. México, D.F. Cengage Learning, 2012. 17 pp.

FATTORLLI, Sergio y FERNÁNDEZ, Pedro. Diseño hidrológico. 2a ed. Madrid: Estudio Fernande-Dorca, 2011. 79 pp.

BRAVO, Miguel. Evaluación superficial de pavimentos asfálticos mediante las metodologías del MTC Perú y PCI. Tesis (Titulo para el grado de Ing. Civil). Universidad Ricardo Palma. Lima Perú

SILVA Andrés, DAZA Omar. Gestión de pavimentos basado en sistemas de información geográfica. Nro. 26. Colombia. 2018. 23 pp.

GUERRA. César. Diseño de un pavimento permeable como sistema urbano de drenaje Capítulo 1. Perú. 2020.

HUYAN Ju, LI Wei. Pavement Cracking Detection Based on Three-Dimensional Data Using Improved Active Contour Model. Capítulo 3. Canada. 2018.

CERRON, Gilson. Mantenimiento de trocha carrozable y transporte de productos agricolas a mercados locales tramo 0 + 000 – 2 + 544 km., distrito de Vegueta – Huaura, 2019. (Título para el grado de Ing. Civil). Perú: Universidad Nacional José Faustino Sánchez Carrión. 15 pp

MENGA Fan, AIHUA Lia. Pavement Crack Detection Using Sketch Token. Nro. 139. Estados Unidos. 2018.

CARVALHO André [et al.]. Influência da Densificação do Solo de Subleito no Desempenho de Pavimentos Flexíveis. Anuário do Instituto de Geociências – UFRJ, Vol. 43, 2020 p. 253-262. ISSN 0101-9759.

JULCA, Betsy, SÁNCHEZ, Jhonar. Mejoramiento del diseño de la trocha carrozable a nivel afirmado del tramo cruce carretera Llaray - caserío Las

Pajillas, distrito de Quiruvilca, provincia de Santiago de Chuco, La Libertad 2020. Tesis (Titulo para el grado de Ing. Civil). Perú: Universidad Cesar Vallejo. 2020. 17 pp.

RONDÓN Hugo, REYES Fredy. Pavimentos materiales, construcción y diseño. Capítulo 1. Colombia. 2015. 20 pp.

HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos y BAPTISTA, María del Pilar. Metodología de la investigación. 6ta ed. México, D.F. Mc Graw Hill Education, 2014. 154 pp. ISBN: 9781456223960.

MINISTERIO DE TRANSPORTES Y COMUNICACIONES. Manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos" Sección: Suelos y Pavimentos (Perú). Lima: 2013.

MINISTERIO DE TRANSPORTES Y COMUNICACIONES. Manual de hidrología, hidráulica y drenaje (Perú). Lima.

MINISTERIO DE TRANSPORTES Y COMUNICACIONES. Manual de carreteras: diseño geométrico DG – 2018 (Perú). Lima: 2018.

MINISTERIO de Transportes y Comunicaciones (Perú). Manual de Diseño de Carreteras no pavimentadas de bajo volumen de tránsito. Lima: MTC, 2008. 17pp.

MINISTERIO de Transportes y Comunicaciones (Perú). Manual de dispositivos de control del tránsito automotor para calles y carreteras. Lima: MTC, 2016. 09 pp

MINISTERIO de Transportes y Comunicaciones (Perú). Manual de Diseño de Carreteras no pavimentadas de bajo volumen de tránsito. Lima: MTC, 2008. 17pp.

ANEXOS

Tabla 42: Matriz de operacionalización

VARIABLE	DIMENSIONES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	INDICADORES	ESCALA DE MEDICIÓN	
	Levantamiento	Estudio técnico cuyo proceso es el de especificar las coordenadas de ciertos	Conjunto de operaciones para la medición de distancias,	Distancia	Cuantitativa de Razon	
	topografico	puntos sobre la superficie de la tierra	ángulos y alturas entre dos o más puntos.	Elevacion	Cadilitativa de Nazon	
			Conjunto de operaciones para	Humedad		
	Estudio de mecanica de	Estudio que va permitir conocer las carcaterísticas tanto físicas como	la medición de distancias,	Densidades	Cuantitativa de Razon	
	suelos	mecanicas del terreno a estudiar.	ángulos y alturas entre dos o	CBR	eddifficativa de Nazon	
			más puntos.	Granulimetria		
Diseño del pavimento flexible		TSe retiere a poder estudiar el l	Calculo de caudales maximos,	Area de la cuenca		
	Estudio hidrológico	comportamiento del agua (circulacion y distribucion) en la superficie del terreno.	basandose en las características geomorfológicas de la cuenca y la	Precipitaciones	Cuantitativa de Razon	
			informacion hidrometeorológica.	Caudal de diseño		
	Consiste en poder realizar el trazado de	Determinación de	Radios	Cuantitativa de Razon		
	Diseño geometrico	una via o carretera en un plano horizontal que va estar compuesto por tramos rectos	parámetros técnicos de	Pendietes	Cuantitativa de Intervalo	
	o curvas.	1	acuerdo al manual DG2018.	Velocidades	Cuantitativa de Razon	

Tabla 43: Matriz de consistencia

DISEÑO A NIVEL D	DISEÑO A NIVEL DE PAVIMENTO FLEXIBLE DEL TRAMO EL CARDON – HUALSACAP, DISTRITO PARANDAY- OTUZCO - LA LIBERTAD 2022									
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VA	RIABLES E INDICAC	OORES	METODOLOGÍA				
	Objetivo general: Realizar el diseño del pavimento flexible para el	Hipótesis general: La propuesta de diseño a nivel de pavimento flexible del tramo El Cardon –	VARIABLE	DIMENSIONES Levantamiento topográfico	INDICADORES Distancia Elevación	Tipo de estudio: Aplicada Diseño de investigación: No				
¿Cuál es el diseño del pavimento flexible para el tramo El Cardon -	•	fluidez vehicular y también la calidad de vida de los pobladores Hipótesis específicas: - Al hacer el levantamiento topográfico obtendré el relieve del terreno.	Diseño del pavimento	Estudio de mecánica de suelos	Humedad Densidades CBR Granulometría	experimental, transversal y descriptivo simple Población: Área de influencia de la				
Hualsacap distrito Paranday, Otuzco, La Libertad 2022?	específicos: Realizar el estudio topográfico del tramo El Cardon – Hualsacap.		flexible	Estudio hidrológico	Área de la cuenca Precipitaciones Caudal de	carretera que une los caseríos de El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad.				
	Realizar el estudio de suelos del	suelos me permitirá			diseño Radios	Tramo de la carretera de 5.7 km comprendido entre los caseríos de El				

tramo El Cardon –	determinar la composición	Diseño geométrico	Pendientes	Cardon – Hualsacap, distrito Paranday -				
Hualsacap.	del suelo.	geometrico	velocidades	Otuzco - La Libertad.				
Realizar el estudio	- Al hacer el estudio							
hidrológico del	hidrológico podre calcular							
tramo El Cardon –	los caudales de diseño para							
Hualsacap.	las obras de arte.							
Realizar el diseño	- Al realizar el diseño							
geométrico del	geométrico de la vía podré							
tramo El Cardon –	determinar el tipo de							
Hualsacap	carretera, la velocidad de							
	diseño y las pendientes							
	mínimas y máximas.							

Tabla 44: Cronograma de ejecución "DISEÑO A NIVEL DE PAVIMENTO FLEXIBLE DEL TRAMO EL CARDON – HUALSACAP, DISTRITO PARANDAY- OTUZCO - LA LIBERTAD 2022"

CRONOGRAMA DE DESARROLLO DE TESIS																
Actividad		eptie	mbre	e		Oct	ubre			Novi	embre		Diciembre			
		S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
Definir el título del proyecto de investigación																
Aprobación del título del proyecto de investigación por parte del asesor																
Asesoría por parte del asesor metodológico																
Visita a la zona de estudio para hacer el levantamiento topográfico del tramo, recoger las muestras para hacer los estudios de suelos y el estudio de trafico																
Trabajo de gabinete																
Primera jornada de sustentación																
Primera entrega preliminar del proyecto																
Revisión y observaciones por parte del asesor																
Segunda entrega preliminar del proyecto																
Entrega final del proyecto de investigación al jurado																
Segunda jornada de sustentación del proyecto de investigación.																

Figura 9 Paranday- El Cardon (zona de estudio

Figura 10 Inicio del tramo

Figura 11 Charco y hundimientos producto de las lluvias

Figura 12 Falta de obras de arte

Figura 13 Levantamiento topográfico

Figura 14 Excavación de calicatas

Figura 15 Fin del tramo

Tabla 24 Prueba de datos dudosos

	Descripción								
$PMA_{m\acute{a}x}$:	Máximo valor de las precipitaciones máximas anuales.	89.80 mm							
PMA_{min} :	Mínimo valor de las precipitaciones máximas anuales.	5.90 mm							
Kn:	Coeficiente para datos dudosos.	2.719							
Xlog PMA:	Media de los valores de los logaritmos de PMA.	1.42							
$\sigma_{\log PMA}$:	Desviación estándar de los logaritmos de PMA.	0.25							
Y_{sup} :	Umbral de dato dudoso alto.	2.097							
Y_{inf} :	Umbral de dato dudoso bajo.	0.743							
L_{sup} :	Límite máximo superior.	124.93 mm							
L_{inf} :	Límite mínimo inferior.	5.53 mm							

Tabla 25 Precipitaciones máximas por años corregidas

1986	22.80
1987	14.90
1988	16.60
1989	18.20
1990	9.70
1991	11.40
1992	5.90
1993	21.90
1994	14.80
1995	12.10
1996	11.20
1997	24.60
1998	23.10
1999	30.40
2000	40.30
2001	32.40
2002	26.70
2003	24.90
2004	26.30
2005	26.70
2006	40.80
2007	41.00
2008	37.70
2009	80.50
2010	53.30
2011	33.80
2012	89.80
2013	61.30
2014	29.30
2015	43.56
2016	39.41
2017	98.79
2018	40.69
2019	28.23

Tabla 26 Caudales de periodo de retorno

T (años)	Normal	Log. Normal 2	Log. Normal 3	Gamma 2P	Gamma 3P	Gumbel	Log Gumbel
500	112.50	153.74	143.5	130.21	134.63	145.50	281.69
300	110.02	143.98	134.52	124.58	128.9	137.05	240.67
100	101.7	123.58	117.15	111.65	114.14	118.10	170.55
50	96.22	110.14	106.3	102.96	104.41	107.25	137.04
25	89.79	97.05	95.25	93.28	95.10	95.36	110.34
20	87.34	94.07	91.96	90.65	91.76	92.04	102.16
10	79.95	81.69	80.57	80.68	81.52	80.28	82.85
5	70.57	68.35	68.28	68.45	69.54	68.10	65.20
2	52.54	49.10	49.78	50.85	50.67	49.36	45.68

Tabla 27 Lluvias máx. para diferentes duraciones y tiempo de regreso

T	Dn			Dur	ación		
(años)	Рр	5	10	15	20	30	60
500	152.45	7.178	10.721	13.133	14.985	17.825	23.410
300	142.74	6.841	10.257	12.565	14.335	17.060	22.100
100	122.54	6.225	9.259	11.359	12.957	15.420	20.250
50	109.47	5.790	8.667	10.596	12.081	14.380	18.890
25	97.09	5.377	8.042	9.834	11.219	13.345	17.520
20	93.07	5.230	7.831	9.588	10.937	13.010	17.097
10	80.14	4.827	7.219	8.825	10.069	11.974	15.735
5	67.56	4.408	6.592	8.052	9.194	10.936	14.362
2	48.05	3.858	5.764	7.044	8.040	9.567	12.567

Tabla 28 Resultado de análisis de regresión

Constante	2.036963423	Log K=	2.036963423
Err. Estándar de est. Y	0.017600012	K=	108.884
Lii. Estailuai de est. i	0.017000012	m=	0.111
R Cuadrado	0.992353685	n=	0.527
Núm. De observaciones	54		
Grado de libertad	53	Donde:	T=años
Conficientals	0.110826559		t=minutos
Coeficiente(s) X	0.526821568		
Error estándar de coef.	0.003194055 0.006992346		

Tabla 29 Intensidades máximas según tiempo de retorno y duración

т		Duración														
•	5	10	15	20	30	60										
500	92.870	64.425	52.060	44.740	36.196	25.085										
300	87.760	60.910	49.100	42.215	34.147	23.705										
100	77.695	53.985	43.569	37.436	30.240	20.999										
50	71.954	49.945	40.340	34.647	27.996	19.452										
25	66.636	46.258	37.385	32.100	25.9241	17.995										
20	65.010	45.120	36.469	31.315	25.300	17.553										
10	60.110	41.790	33.750	28.968	23.458	16.251										
5	55.796	38.694	31.274	26.885	21.690	15.017										
2	50.378	34.985	28.245	24.239	19.601	13.625										

Tabla 30 Coeficientes de escorrentía método racional

Calaantana			Pendie	nte del te	rreno	
Cobertura	Tipo de suelo	Pronunciada	Alta	Media	Suave	Despreciable
vegetal		> 50%	> 20%	> 5%	> 1%	< 1%
Sin	Impermeable	0.8	0.75	0.7	0.65	0.6
vegetación	Semipermeabl e	0.7	0.65	0.6	0.55	0.5
	Permeable	0.5	0.45	0.4	0.35	0.3
	Impermeable	0.7	0.65	0.6	0.55	0.5
Cultivos	Semipermeabl e	0.6	0.55	0.5	0.45	0.1
	Permeable	0.4	0.35	0.3	0.25	0.2
Pastos,	Impermeable	0.65	0.6	0.55	0.5	0.45
vegetación ligera	Semipermeabl e	0.55	0.5	0.45	0.4	0.35
	Permeable	0.35	0.3	0.25	0.2	0.15
Hierba,	Impermeable	0.6	0.55	0.5	0.45	0.4
grama	Semipermeabl e	0.5	0.45	0.4	0.35	0.3
	Permeable	0.3	0.25	0.2	0.15	0.1
Bosques,	Impermeable	0.55	0.5	0.45	0.4	0.35
densa vegetación	Semipermeabl e	0.45	0.4	0.35	0.3	0.25
J	Permeable	0.25	0.2	0.15	0.1	0.05

Tabla 31 Parámetros de cuenca

N°	Área (Km2)	Perímetro (Km)	СС	Cota máx.	Cota mín.	Long. (m)	S (m/m)	Tc (min)
1	9.70	15.25	1.40	4233	3844	6800.69	0.060	52.37
2	2.30	6.10	1.10	4127	3846	2264.03	0.128	16.68
3	1.20	5.80	1.30	4116	3870	1357.80	0.175	9.77
4	1.80	7.10	1.35	4148	3820	2266.35	0.130	15.94
5	2.320	8.05	1.44	4134	3832	2495.48	0.125	17.80
6	2.425	7.60	1.38	4204	3819	2997.40	0.129	20.46

Tabla 32 Resumen diseño de cuentas

	Progr	esivas			Dre	naje de	el talud de	corte				Drenaj	e de la ca	rpeta de	e rodadura								
N°	Desde	Hasta	L (km)	at (Km)	Área (Km2)	С	T (años)	tr (min)	I (mm/hr)	Q1 (m3/s)	A (Km2)	С	T (años)	tr (min)	l (mm/hr)	Q2 (m3/s)	QT (m3/s)	S (m/m)	Dimensiones (d x a)	Material	n	Qmáx	Vmáx (m/s)
1	Km 0 + 000	Km 0 + 105	0.105	0.100	0.0105	0.50	10	10.00	41.780	0.061	0.0003	0.65	10	10.00	41.780	0.002	0.063	0.012	0.50 x 0.75 m	Concreto	0.014	0.250	1.991
2	Km 0 + 105	Km 0 + 350	0.245	0.100	0.0245	0.50	10	10.00	41.780	0.142	0.0007	0.65	10	10.00	41.780	0.006	0.148	0.057	0.50 x 0.75 m	Concreto	0.014	0.250	4.325
3	Km 0 + 350	Km 0 + 552	0.202	0.100	0.0202	0.50	10	10.00	41.780	0.117	0.0006	0.65	10	10.00	41.780	0.005	0.122	0.057	0.50 x 0.75 m	Concreto	0.014	0.250	4.325
4	Km 0 + 552	Km 0 + 800	0.248	0.100	0.0248	0.50	10	10.00	41.780	0.144	0.0007	0.65	10	10.00	41.780	0.006	0.150	0.069	0.50 x 0.75 m	Concreto	0.014	0.250	4.775
5	Km 0 + 800	Km 0 + 900	0.100	0.100	0.0100	0.50	10	10.00	41.780	0.058	0.0003	0.65	10	10.00	41.780	0.002	0.060	0.069	0.50 x 0.75 m	Concreto	0.014	0.250	4.775
6	Km 0 + 900	Km 1 + 080	0.180	0.100	0.0180	0.50	10	10.00	41.780	0.104	0.0005	0.65	10	10.00	41.780	0.004	0.109	0.088	0.50 x 0.75 m	Concreto	0.014	0.250	5.402
7	Km 1 + 080	Km 1 + 290	0.210	0.100	0.0210	0.50	10	10.00	41.780	0.122	0.0006	0.65	10	10.00	41.780	0.005	0.127	0.065	0.50 x 0.75 m	Concreto	0.014	0.250	4.627
8	Km 1 + 290	Km 1 + 420	0.130	0.100	0.0130	0.50	10	10.00	41.780	0.075	0.0004	0.65	10	10.00	41.780	0.003	0.078	0.089	0.50 x 0.75 m	Concreto	0.014	0.250	5.432
9	Km 1 + 420	Km 1 + 645	0.225	0.100	0.0225	0.50	10	10.00	41.780	0.131	0.0007	0.65	10	10.00	41.780	0.005	0.136	0.089	0.50 x 0.75 m	Concreto	0.014	0.250	5.432
10	Km 1 + 645	Km 1 + 800	0.155	0.100	0.0155	0.50	10	10.00	41.780	0.090	0.0005	0.65	10	10.00	41.780	0.004	0.093	0.045	0.50 x 0.75 m	Concreto	0.014	0.250	3.865
11	Km 1 + 800	Km 2 + 020	0.220	0.100	0.0220	0.50	10	10.00	41.780	0.128	0.0007	0.65	10	10.00	41.780	0.005	0.133	0.045	0.50 x 0.75 m	Concreto	0.014	0.250	3.865
12	Km 2 + 020	Km 2 + 140	0.120	0.100	0.0120	0.50	10	10.00	41.780	0.070	0.0004	0.65	10	10.00	41.780	0.003	0.072	0.045	0.50 x 0.75 m	Concreto	0.014	0.250	3.865
13	Km 2 + 140	Km 2 + 260	0.120	0.100	0.0120	0.50	10	10.00	41.780	0.070	0.0004	0.65	10	10.00	41.780	0.003	0.072	0.032	0.50 x 0.75 m	Concreto	0.014	0.250	3.242
14	Km 2 + 260	Km 2 + 550	0.290	0.100	0.0290	0.50	10	10.00	41.780	0.168	0.0009	0.65	10	10.00	41.780	0.007	0.175	0.032	0.50 x 0.75 m	Concreto	0.014	0.250	3.242
15	Km 2 + 550	Km 2 + 820	0.270	0.100	0.0270	0.50	10	10.00	41.780	0.157	0.0008	0.65	10	10.00	41.780	0.006	0.163	0.039	0.50 x 0.75 m	Concreto	0.014	0.250	3.572
16	Km 2 + 820	Km 3 + 010	0.190	0.100	0.0190	0.50	10	10.00	41.780	0.110	0.0006	0.65	10	10.00	41.780	0.004	0.115	0.039	0.50 x 0.75 m	Concreto	0.014	0.250	3.572
17	Km 3 + 010	Km 3 + 250	0.240	0.100	0.0240	0.50	10	10.00	41.780	0.139	0.0007	0.65	10	10.00	41.780	0.005	0.145	0.072	0.50 x 0.75 m	Concreto	0.014	0.250	4.878
18	Km 3 + 250	Km 3 + 470	0.220	0.100	0.0220	0.50	10	10.00	41.780	0.128	0.0007	0.65	10	10.00	41.780	0.005	0.133	0.090	0.50 x 0.75 m	Concreto	0.014	0.250	5.451
19	Km 3 + 470	Km 3 + 611	0.141	0.100	0.0141	0.50	10	10.00	41.780	0.082	0.0004	0.65	10	10.00	41.780	0.003	0.085	0.090	0.50 x 0.75 m	Concreto	0.014	0.250	5.451
20	Km 3 + 611	Km 3 + 840	0.229	0.100	0.0229	0.50	10	10.00	41.780	0.133	0.0007	0.65	10	10.00	41.780	0.005	0.138	0.066	0.50 x 0.75 m	Concreto	0.014	0.250	4.663

21	Km 3 + 840	Km 3 + 920	0.080	0.100	0.0080	0.50	10	10.00	41.780	0.046	0.0002	0.65	10	10.00	41.780	0.002	0.048	0.066	0.50 x 0.75 m	Concreto	0.014	0.250	4.663
22	Km 3 + 920	Km 4 + 000	0.080	0.100	0.0080	0.50	10	10.00	41.780	0.046	0.0002	0.65	10	10.00	41.780	0.002	0.048	0.066	0.50 x 0.75 m	Concreto	0.014	0.250	4.663
23	Km 4 + 000	Km 4 + 138	0.138	0.100	0.0138	0.50	10	10.00	41.780	0.080	0.0004	0.65	10	10.00	41.780	0.003	0.083	0.087	0.50 x 0.75 m	Concreto	0.014	0.250	5.356
24	Km 4 + 138	Km 4 + 300	0.162	0.100	0.0162	0.50	10	10.00	41.780	0.094	0.0005	0.65	10	10.00	41.780	0.004	0.098	0.046	0.50 x 0.75 m	Concreto	0.014	0.250	3.916
25	Km 4 + 300	Km 4 + 460	0.160	0.100	0.0160	0.50	10	10.00	41.780	0.093	0.0005	0.65	10	10.00	41.780	0.004	0.096	0.069	0.50 x 0.75 m	Concreto	0.014	0.250	4.768
26	Km 4 + 460	Km 4 + 589	0.129	0.100	0.0129	0.50	10	10.00	41.780	0.075	0.0004	0.65	10	10.00	41.780	0.003	0.078	0.069	0.50 x 0.75 m	Concreto	0.014	0.250	4.768
27	Km 4 + 589	Km 4 + 738	0.149	0.100	0.0149	0.50	10	10.00	41.780	0.086	0.0004	0.65	10	10.00	41.780	0.003	0.090	0.017	0.50 x 0.75 m	Concreto	0.014	0.250	2.356
28	Km 4 + 738	Km 4 + 902	0.164	0.100	0.0164	0.50	10	10.00	41.780	0.095	0.0005	0.65	10	10.00	41.780	0.004	0.099	0.017	0.50 x 0.75 m	Concreto	0.014	0.250	2.356
29	Km 4 + 910	Km 4 + 953	0.051	0.100	0.0051	0.50	10	10.00	41.780	0.030	0.0002	0.65	10	10.00	41.780	0.001	0.031	0.017	0.50 x 0.75 m	Concreto	0.014	0.250	2.356
30	Km 4 + 953	Km 5 + 160	0.207	0.100	0.0207	0.50	10	10.00	41.780	0.120	0.0006	0.65	10	10.00	41.780	0.005	0.125	0.077	0.50 x 0.75 m	Concreto	0.014	0.250	5.051
31	Km 5 + 160	Km 5 + 260	0.100	0.100	0.0100	0.50	10	10.00	41.780	0.058	0.0003	0.65	10	10.00	41.780	0.002	0.060	0.077	0.50 x 0.75 m	Concreto	0.014	0.250	5.051
32	Km 5 + 260	Km 5 + 495	0.235	0.100	0.0235	0.50	10	10.00	41.780	0.136	0.0007	0.65	10	10.00	41.780	0.005	0.142	0.077	0.50 x 0.75 m	Concreto	0.014	0.250	5.051
33	Km 5 + 495	Km 5 + 750	0.255	0.100	0.0255	0.50	10	10.00	41.780	0.148	0.0008	0.65	10	10.00	41.780	0.006	0.154	0.016	0.50 x 0.75 m	Concreto	0.014	0.250	2.314

Tabla 33 Resultados del diseño de alcantarillas

	Diseño de alcantarillas de paso y alivio													
	D	escripción				Dimens	iones de alcar	tarilla		Pa	rámetros hi	draúlicos	según caudal i	máximo
N°	Progresivas	Obra	QT (m3/s)	(m)	(")	# de tub.	Material	n	Qmáx (m3/s)	Y (m)	S (m/m)	V (m/s)	N. Froude	Régimen
1	TZ 0 - 107	A1 1 1''	0.062	(/	` '	1	TNAC	0.025	0.050	` ′	0.010	(,	0.012	0.10%
1	Km 0 + 105	Alc. de alivio	0.063	0.90	36	1	TMC	0.025	0.858	0.159	0.010	0.845	0.812	SubCrítico
2	Km 0 + 350	Alc. de Alivio	0.148	0.90	36	1	TMC	0.025	0.858	0.248	0.010	1.095	0.831	SubCrítico
3	Km 0 + 552	Alc. de Alivio	0.122 0.150	0.90	36 36	1	TMC TMC	0.025	0.858	0.265	0.010	1.137	0.831 0.822	SubCrítico
4	Km 0 + 800	Alc. de Alivio		0.90		1			0.858	0.190	0.010	0.940		SubCrítico
5	Km 0 + 900	Alc. de Alivio	0.060	0.90	36	1	TMC	0.025	0.858	0.202	0.010	0.974	0.825	SubCrítico
6	Km 1 + 080	Alc. de Alivio	0.109	0.90	36	1	TMC	0.025	0.858	0.163	0.010	0.856	0.813	SubCrítico
	Km 1 + 290	Alc. de Alivio	0.127	0.90	36	1	TMC	0.025	0.858	0.225	0.010	1.037	0.829	SubCrítico
8	Km 1 + 420	Alc. de Alivio	0.078	0.90	36	1	TMC	0.025	0.858	0.177	0.010	0.902	0.818	SubCrítico
9	Km 1 + 645	Alc. de Alivio	0.136	0.90	36	1	TMC	0.025	0.858	0.233	0.010	1.057	0.830	SubCrítico
10	Km 2 + 020	Alc. de Alivio	0.133	0.90	36	1	TMC	0.025	0.858	0.230	0.010	1.051	0.829	SubCrítico
11	Km 2 + 260	Alc. de Alivio	0.072	0.90	36	1	TMC	0.025	0.858	0.171	0.010	0.882	0.816	SubCrítico
12	Km 2 + 820	Alc. de Alivio	0.163	0.90	36	1	TMC	0.025	0.858	0.255	0.010	1.113	0.831	SubCrítico
13	Km 3 + 010	Alc. de Alivio	0.115	0.90	36	1	TMC	0.025	0.858	0.213	0.010	1.005	0.827	SubCrítico
14	Km 3 + 250	Alc. de Alivio	0.145	0.90	36	1	TMC	0.025	0.858	0.240	0.010	1.077	0.830	SubCrítico
15	Km 3 + 470	Alc. de Alivio	0.133	0.90	36	1	TMC	0.025	0.858	0.230	0.010	1.051	0.829	SubCrítico
16	Km 3 + 611	Alc. de Alivio	0.085	0.90	36	1	TMC	0.025	0.858	0.177	0.010	0.902	0.818	SubCrítico
17	Km 3 + 840	Alc. de Alivio	0.138	0.90	36	1	TMC	0.025	0.858	0.240	0.010	1.077	0.830	SubCrítico
18	Km 4 + 000	Alc. de Alivio	0.186	0.90	36	1	TMC	0.025	0.858	0.279	0.010	1.169	0.831	SubCrítico
19	Km 4 + 138	Alc. de Alivio	0.083	0.90	36	1	TMC	0.025	0.858	0.193	0.010	0.949	0.823	SubCrítico
20	Km 4 + 460	Alc. de Alivio	0.096	0.90	36	1	TMC	0.025	0.858	0.196	0.010	0.957	0.824	SubCrítico
21	Km 4 + 605	Alc. de Alivio	0.078	0.90	36	1	TMC	0.025	0.858	0.187	0.010	0.931	0.821	SubCrítico
22	Km 4 + 738	Alc. de Paso	23.467	3.36	44C	1	Multiplate	0.03	23.994	2.402	0.010	3.337	0.713	SubCrítico
23	Km 4 + 910	Alc. de Paso	10.072	2.43	32C	1	Multiplate	0.03	10.111	1.678	0.010	2.669	0.691	SubCrítico
24	Km 4 + 953	Alc. de Alivio	0.151	0.90	36	1	TMC	0.025	0.858	0.249	0.010	1.099	0.831	SubCrítico
25	Km 5 + 160	Alc. de Alivio	0.060	0.90	36	1	TMC	0.025	0.858	0.155	0.010	0.833	0.810	SubCrítico
26	Km 5 + 260	Alc. de Alivio	0.142	0.90	36	1	TMC	0.025	0.858	0.238	0.010	1.070	0.830	SubCrítico
27	Km 5 + 495	Alc. de Alivio	0.011	0.90	36	1	TMC	0.025	0.858	0.248	0.010	1.095	0.831	SubCrítico
28	Km 5 + 513	Alc. de Alivio	0.139	0.90	36	1	TMC	0.025	0.858	0.235	0.010	1.064	0.830	SubCrítico

Tabla 34 Radios min. y peraltes max. de diseño

Ubicaciónde la vía	Velocidad de diseño (Km/h)	Þ _{máx} (%)	f máx	Radio calculado (m)	Radio redondeado (m)
	30	12.00	0.17	24.4	25
	40	12.00	0.17	43.4	45
Área rural	50	12.00	0.16	70.3	70
(accidentadao	60	12.00	0.15	105.0	105
escarpada)	70	12.00	0.14	148.4	150
	80	12.00	0.14	193.8	195
	90	12.00	0.13	255.1	255
	100	12.00	0.12	328.1	330

Fuente: Manual de DG-2018

Tabla 35 Radios min. interiores adoptados

Radio interiorR _i		Radio Exterior Mínimo R _e (m). Según maniobra prevista					
(m)	T2S2	C2	C2+C2				
6.0	14.00	15.75	17.50				
7.0	14.50	16.50	18.25				
8.0	15.25	17.25	19.00				
10.0	16.75	18.75	20.50				
12.0	18.25	20.50	22.25				
15.0	21.00	23.25	24.75				
20.0	26.00	28.00	29.25				

Fuente: Manual de DG-2018

Tabla 36 Nro de repeticiones acumuladas en ejes equivalentes de 8,2t en pavimentos flexibles

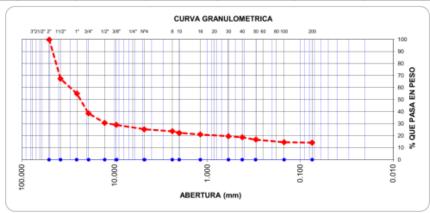
72

Tipos Tráfico Pesado expresado en EE	Rangos de Tráfico Pesado expresado en EE
T_{PO}	> 75000 EE ≤ 150000 EE
T _{P1}	> 150000 EE ≤ 300000 EE
T _{P2}	> 300000 EE ≤ 500000 EE
T _{P3}	> 500000 EE ≤ 750000 EE
T_{P4}	> 750000 EE ≤ 1000000 EE
T _{P5}	> 1000000 EE ≤ 1500000 EE

Fuente: Manual de DG-2018

Figura 16 Análisis mecánico por tamizado para la calicata PC 1

ANALISIS MECANICO POR TAMIZADO ASTM D-422


Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José Ubicación : Paranday - Otuzco - La Libertad Fecha : Trujillo, octubre del 2022

Tipo de suelo : Grava Arcillosa (GC) Calicata : PC 01

5220.0 743.4 Peso de muestra seca Peso de muestra lavada

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Límites e Indices de Consistencia
3"	76.200	215.00	4.1	4.1	95.88	
2 1/2"	63.500	410.00	7.9	12.0	88.03	L. Líquido : 29.96
2"	50.600	658.00	12.6	24.6	75.42	L. Plástico : 15.47
1.1/2"	38.100	422.00	8.1	32.7	67.34	Ind. Plástico : 14.48
1"	25.400	650.00	12.5	45.1	54.89	Clas. SUCS : GC
3/4**	19.050	856.00	16.4	61.5	38.49	Clas. AASHTO : A-2-6 (0)
1/2**	12.700	412.00	7.9	69.4	30.59	
3/8"	9.525	86.50	1.7	71.1	28.94	HUMEDAD NATUDAL
Nº4	4.760	185.62	3.6	74.6	25.38	HUMEDAD NATURAL
Nº8	2.380	93.24	1.8	76.4	23.59	Sh + Tara : 206.5
Nº10	2.000	66.48	1.3	77.7	22.32	Ss + Tara : 202.6
Nº16	1.190	72.30	1.4	79.1	20.94	Tara : 35.47
N°30	0.590	70.52	1.4	80.4	19.59	Peso Agua : 3.9
N°40	0.420	52.60	1.0	81.4	18.58	Peso Suelo Seco : 167.1
N°50	0.300	98.60	1.9	83.3	16.69	Humedad(%) : 2.33
Nº100	0.149	113.50	2.2	85.5	14.51	
N°200	0.074	14.20	0.3	85.8	14.24	
< N°200		743.44	14.2	100.0	0.00	
Total		5220.00				

Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José Ubicación : Paranday - Otuzco - La Libertad Fecha : Trujillo, octubre del 2022 Tipo de suelo : Grava Arcillosa (GC) Calicata : PC 01

Límites de Consistencia	Limite Liquido			Limite Plástico					
N° de golpes		15	24	35		-			-
Peso tara	(g)	16.80	17.60	19.05		21.30	21.50		
Peso tara + suelo húmedo	(g)	34.10	35.20	34.60		24.10	24.60		
Peso tara + suelo seco	(g)	29.03	31.00	31.79		23.72	24.19		
Humedad %		41.46	31.34	22.06		15.70	15.24		
Límites		29.96 15.47							
Indice Plástico		14.48							

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD (MTC E-108 / ASTM D-2216)

: Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022 Proyeto

: Diseas a invet de pavimento neste : Cabanillas Tacanga José : Paranday - Otuzco - La Libertad : Trujillo, octubre del 2022 : Grava Arcillosa (GC) : PC 01 Solicitante Ubicación Fecha Tipo de suelo

Calicata

Contenido de Humedad Muestra Integral :

Descripcion	1
Peso de tara (gr)	35.5
Peso de la tara + muestra húmeda (gr)	206.5
Peso de la tara + muestra seca (gr)	202.6
Peso del agua contenida (gr)	3.9
Peso de la muestra seca (gr)	167.1
Contenido de Humedad (%)	2.33
Contenido de Humedad Promedio (%)	2.33

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday -

Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)

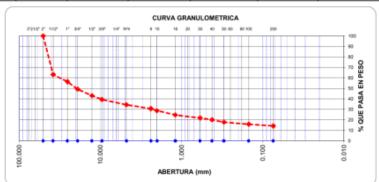
CALICATA PC 01

PF	PROFUNDIDAD N° DE ESTRATO				CLASIFICACION	DESCRIPCIÓN	CLASIFICACION GRAFFICA		
10 20	cm		ESTRATRO 01	STRATRO 01 - Material tipo tierra de cultivo mezcla plantas y raíces secas					
30	cm		ESTRATRO 02	SC-SM	Arena Arcilloso - Limosa (SC-SM) con presencia	1+1+1+1+1			
40	cm	_			de grava, color beige, en estado semi compacto	111111111			
50 60	cm	_							
70	cm	_							
	cm	_				33334			
80	cm	_			Grava Arcillosa (GC), color beige claro, con				
90	cm	_			estructura semi compacto cementada por arcillas,				
110	cm	_	ESTRATRO 03	GC	contiene un contenido de humedad de 2.33%, un				
120	cm				indice de plasticidad igual a 14,48 y una densidad de 2,16 g/cm3				
130	cm				Ge 2, 10 gicilio				
	cm	_							
140	cm	_							
160	cm	_				~~~~			
170	cm	_							
180	cm	_							
190	cm	_							
200	cm	_							
210	cm	_							
220	cm		•						
230	cm								
240	cm								
250	cm								
260	cm								
270	cm								
280	cm				CONTINÚA Grava Arcillosa (GC)				
290	cm				CONTINUA Grava Arciliosa (GC)				
300	cm								
310	cm								
320	cm								
330	cm								
340	cm								
350	cm								
360	cm								
370	cm					^ ^			
380	cm					0/1/1			
390	cm					(pondo)			
400	cm				ling ling	Luis D. Gallardo Murga			
						CIP. 268381			

® INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

ANALISIS MECANICO POR TAMIZADO ASTM D-422


Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José Ubicación : Paranday - Otuzco - La Libertad Fecha : Trujillo, octubre del 2022 Tipo de suelo : Grava Arcillosa (GC)

Calicata : PC 02

Peso de muestra seca : 5326.0 Peso de muestra lavada : 754.6

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Límites e Indices de Consistencia	
3*	76,200	521.00	9.8	9.8	90.22		
2 1/2"	63,500	654.00	12.3	22.1	77.94	L. Líquido : 29.59	
2*	50.600	422.00	7.9	30.0	70.02	L. Plástico : 15.91	
1.1/2"	38.100	365.00	6.9	36.8	63.16	Ind. Plástico : 13.68	
1"	25.400	356.00	6.7	43.5	56.48	Clas. SUCS : GC	
3/4"	19,050	384.00	7.2	50.7	49.27	Clas. AASHTO : A-2-6 (0)	
1/2"	12,700	325.60	6.1	56.8	43.15		
3/8"	9.525	199.20	3.7	60.6	39.41	HUMED OF NATURAL	
Nº4	4.760	266.10	5.0	65.6	34.42	HUMEDAD NATURAL	
N°8	2.380	197.70	3.7	69.3	30.71	Sh + Tara : 158.6	
Nº10	2.000	95.20	1.8	71.1	28.92	Ss + Tara : 154.5	
Nº16	1.190	223.50	4.2	75.3	24.72	Tara : 40.2	
N°30	0.590	155.80	2.9	78.2	21.80	Peso Agua : 4.1	
N°40	0.420	87.20	1.6	79.8	20.16	Peso Suelo Seco : 114.3	
N°50	0.300	126.10	2.4	82.2	17.79	Humedad(%) : 3.59	
N*100	0.149	100.65	1.9	84.1	15.90		
N°200	0.074	92.33	1.7	85.8	14.17		
< N°200		754.62	14.2	100.0	0.00		
Total		5326.00				7	

® INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA

Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022

: Cabanillas Tacanga José Solicitante Ubicación : Paranday - Otuzco - La Libertad Fecha : Trujillo, octubre del 2022 Tipo de suelo : Grava Arcillosa (GC)

Calicata : PC 02

Límites de Consistencia		Limite Liquido			Limite Plástico				
N° de golpes		16	23	36		-			-
Peso tara	(g)	23.54	22.15	22.90		23.52	23.66		
Peso tara + suelo húmedo	(g)	35.98	36.32	35.78		36.16	36.23		
Peso tara + suelo seco	(g)	32.44	32.90	33.54		34.41	34.52		
Humedad %		39.78	31.81	21.05		16.07	15.75		
Límites		29.59 15.91							
Indice Plástico		13.68							

® INDECOPI № 034506-2021 RUC 20607982971 TRUJILLO - PERU Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD (MTC E-108 / ASTM D-2216)

: Diseño a nivel de parimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otazzo - La Libertad 2022 : Cabustilio Tacanga Jusé : Paranday - Otazzo - La Libertad : Paranday - Otazzo - La Libertad : Tenjillo, octive del 2022 : Grava Arcillosa (GC) : Research |
PC 02

Contenido de Humedad Muestra Integral ;

Descripcion	1
Peso de tora (gr)	48.2
Peso de la tara + muestra húmeda (gr)	158.6
Peso de la tara + muestra seca (gr)	154.5
Pese del agua contonido (gr)	4.1
Peso de la muestra soca (gr)	114.3
Contenido de Humedad (%)	3.59
Contenido de Humedad Promedio (%)	3.69

TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday -

Otuzco - La Libertad 2022
Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)

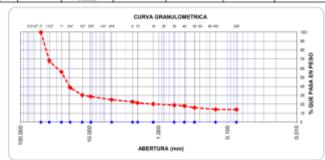
CALICATA PC 02

PR	OFUNDI	DAD	Nº DE ESTRATO	CLASIFICACION	DESCRIPCIÓN	CLASIFICACION GRAFFICA
10	om	-	ESTRATRO 01		Material tipo tierra de cultivo mezclado con	F2C 1 00 10
30	om	_			plantas y raices secas	
40	om	_	FOTOUTDO OO OO		Arena Arcilloso - Limosa (SC-SM) con presencia	
50	cm		ESTRATRO 02	SC-SM	de grava, color beige, en estado semi compacto	1+1+1+1+1
60	om					W-2-2-3
70	cm					
80	cm	_				
90	cm				Grava Arcillosa (GC), color beige claro, con	
100	cm				estructura semi compacto cementada por arcillas,	
110	om	_	ESTRATRO 03	GC	contiene un contenido de humedad de 3.59%, un	22.22
120	cm				índice de plasticidad igual a 13.68 y una densidad de 2.15 g/cm3	
130	cm				ue z. 15 genis	20.00
140	cm					
150	om					\sim
160	cm					
170	cm					
180	cm					
190	cm					
200	om				,	
210	cm					
220	cm					
230	am					
240	cm					
250	cm					
260	am					
270	cm	_				
280	om	_			CONTINÚA Grava Arcillosa (GC)	
290	cm	_	(
300	cm	_	•			
310	om	-	•			
320	cm	_	•			
340		_	•			
350	om	_				
360	om	_				
370	cm		•			Λ Λ
380	cm					0 []
390	om					Catareter
400	cm				l W	Lim D. Gattern Mark
+00	Certific					

® INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Figura 24 Análisis mecánico por tamizado para calicata PC 3

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería


ANALISIS MECANICO POR TAMIZADO ASTM D-422

to : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022

Proyeto : Diseño a nivel de pavimento flexib Solicitante : Cabanillas Tacanga José Ubicación : Faranday - Otuco - La Libertad Fecha : Trujillo, octubre del 2022 Tipo de suelo : Grava Arcillosa (GC) Calicata : PC 03

Peso de muestra seca : 5460.0 Peso de muestra lavada : 770.6

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Limites e Indices de Consistencia
3,,	76.200	210.00	3.8	3.8	96.15	
2.1/2"	63.500	378.00	6.9	10.8	89.23	L. Liquido : 34.76
2"	50,600	695.00	12.7	23.5	76.50	L. Plástico : 17.13
1.1/2"	38.100	456.00	8.4	31.8	68.15	Ind. Plástico : 17.64
1*	25.400	658.00	12.1	43.9	56.10	Clas. SUCS : GC
3/4"	19.050	952.00	17.4	61.3	38.66	Clas. AASHTO : A-2-6 (B)
1/2"	12,700	456.00	8.4	69.7	30.31	
3.8"	9.525	88.50	1,6	71.3	28.69	HUMEDAD NATURAL
Nº4	4.790	189.60	3.5	74.8	25.22	HUSTEDAD SATURAL
Nº8	2.390	121.00	2.2	77.0	23.00	Sh + Tara : 216.8
N°10	2.000	68.90	1.3	78.3	21.34	Ss + Tara ; 211,4
Nº16	1.190	70.85	1.3	79.6	20.44	Tara : 36.5
N°30	0.590	72.45	1.3	80.9	19.12	Peso Agua : 5.4
N*40	0.420	50.15	0.9	81.8	18.20	Peso Suelo Seco : 174.9
Nº50	0.300	100.26	1.8	83.6	16.36	Hurnedad(%) : 3.09
N*100	0.149	110.00	2.0	85.7	14.35	
N*200	0.074	12.74	0.2	85.9	14.11	
< N*200		770.55	14.1	100.0	0.00	
Total		5460.00				7

 ® INDECOPI N° 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo⊚gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA

Proyeto : Diseño a nivel de pavimento fletible del tramo El cardon - Huahacap, distrito Paranday - Otazco - La Libertad 2022

Proyeto : Discite a nivel de pavimento ficulis Solicitante : Cabanillas Tacanga José Ubicación : Faranday - Otozos - La Libertad Fecha : Trujilla, contro del 2022 Tipo de suelo : Grava Arcillosa (GC) Calicata : PC 63

Limites de Consistencia			Limite:	Liquido		Limite Plástico			
Nº de golpes		15	23	34	-	-		-	
Peso tara	(g)	14.92	22,67	21.30	20.78	19.45			
Peso tara + suelo húmedo	(g)	33.10	34.10	36.10	25.16	26.47			
Pese tara + suelo seco	(g)	28.00	31.10	32.50	24.56	25.38			
Humedad %		38.99	35.57	32.14	15.87	18.38			
Limites				34.76 17.13					
Indice Plástica	17.64								

 ® INDECOPI N° 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Figura 26 Contenido de humedad para calicata PC 3

INGEMAT GALLARDO SAC

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD (MTG E-108 / ASTM D-2216) Proyete : Diseño a nivel de partimento flexible del tramo El carden - Hualsacap, distrito Paranday - Otazro - La Libertad 2022 Subclitate : Cubasilho Tacanga Jané Ubicación : Faranday - Otazro - La Libertad Pecha : Transida - Otazro - La Libertad 2022 Tipo de suelo : Grava Arcillesa (GC) Calicate : PC 43

Contonido de Humedad Muestra Integral ;

Descripcion	1
Peso de tora (gr)	36.5
Peso de la tara + muestra húreoda (gr)	216.8
Peso de la tora + muestra seca (gr)	211.4
Pese del agua contenido (gr)	5.4
Peso de la muestra soca (gr)	174.9
Contenido de Humedad (%)	3.09
Contenido de Humedad Promedio (%)	3.09

® INDECOPI № 034506-2021 RUC 20607982971 TRUJILLO - PERU
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo⊚gmaiLcom

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

Proyeto : Diseño a nivel de pavimento flexible del trumo El cardon - Hualsacap, distrito Paranday -

Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)

CALICATA PC 03

PR	OFUND	DAD	N° DE ESTRATO	CLASIFICACION	DESCRIPCIÓN	CLASIFICACION GRAFFICA
10	om	-	ESTRATRO 01	-	Material tipo tierra de cultivo mezclado con	F25 F 60 - 10
20 30	cm	_			plantas y raices secas	F-0-1-01-11
40	om	-	ESTRATRO 02	SC-SM	Arena Arcilloso - Limosa (SC-SM) con presencia	TITITITITI
50	cm	_			de grava, color beige, en estado semi compacto	********
50	om	_	•			
70	cm	_	•			
80	om		•			5555
90	om				Grava Arcillosa (GC), color beige claro, con estructura semi compacto cementada por arcillas.	
100	cm		ESTRATRO 03	GC	contiene un contenido de humedad de 3.09%, un	
110	om		LO HOCHGO GO		Indice de plasticidad igual a 17.64 y una densidad	
120	cm				de 2.15 g/cm3	
130	cm					2272
140	om					
150	cm					
160	om					
170	cm					
180	cm	_				
190	am					
200	om					
210	cm					
220	cm	_				
230	om					
240	cm					
250	om					
260	om					
270	cm					
280	om				CONTINÚA Grava Arcillosa (GC)	
290	cm					
300	cm					
310	am					
320	cm		•			
330	cm		•			
340	cm		•			
350	cm	_	•			
360	om		•			
370	cm	_	•			r ()
380	cm	_	•			Commenter
400	om		•		==	Lon D. Callery, M.
400	cm				l n	COLUMN TO A STATE OF THE STATE

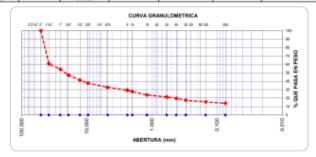
 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

ANALISIS MECANICO POR TAMIZADO

ASTM D-422


: Discôs a nivel de pavimento flexible del tramo El cardon - Huaisacap, distrito Paranday - Otuzco - La Libertad 2022 : Cabanillas Tacanga José : Faranday - Otucco - La Libertad : Trujillo, octubre del 2022 : Grava Arcillosa (GC) : FC 04

Proyeto Solicitante Ubicación Fecha Tipo de suelo

Peso de muestra seca Peso de muestra lavada

Calicata

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Limites e Indices de Comistencia
3,	76.200	\$45.00	14.9	14.9	85.13	
2.1/2"	63.500	651.00	11.5	26.3	73.66	L. Liquido : 35.45
2"	50,600	412.00	7.2	33.6	66.43	L. Plástico : 17.13
1.1/2"	38.100	325.00	5.7	39.3	60.71	Ind. Plástico : 18.32
1*	25,400	369.00	6.5	45.8	54.22	Clas. SUCS : GC
3/4"	19.050	401.00	7.1	92.8	47.17	Clm. AASHTO : A-2-6 (8)
1/2"	12,700	331.80	5.8	58.7	41.33	
3.8"	9.525	201.60	3.5	62.2	37.78	HUMEDAD NATURAL
N/14	4.760	274.90	4.8	67.0	32.95	HUMEDAD NATURAL
Nº8	2.390	198.50	3.5	70.5	29.46	Sh + Tara : 216.2
N°10	2.000	95.20	1.7	72.2	27.79	Ss + Tara : 211.5
Nº16	1.190	218.30	3.6	76.1	23.95	Tara : 36.2
N°30	0.590	150.40	2.6	78.7	21.30	Peso Agua : 4.8
N*40	0.420	85.20	1.5	80.2	19.90	Peso Suelo Seco : 175.3
Nº50	0.300	131.20	2.3	12.5	17.49	Humodad(%) : 2.71
N*100	0.149	105.20	1.9	84.4	15.64	
N'200	0.074	98.50	1.7	86.1	13.91	
< N*200		790.60	13.9	100.0	0.00	
Total		5684.00				7

® INDECOPI N° 034506-2021 RUC 20607982971

Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 TRUJILLO - PERU - Email: ingematga

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA							
Proyeto	: Diseño a nivel de pavimento flexible del tramo El cardon - Hunhacap, distrito Paranday - Otazeo - La Libertad 2022						
Solicitante	: Cabanillas Tacanga José						
Ubicación	: Paranday - Otugo - La Libertad						
Fecha	: Trujilla, octubre del 2022						
Tipo de suelo	: Grava Arcillosa (GC)						
e	PO 84						

Limites de Consistencia		Limite Liquido				Limite Plästico			
Nº de golpes		15	24	32	-	-		-	
Peso tara	(g)	14.90	22,67	21.38	20.78	19.45			
Peso tara + suelo húmedo (g)		33.12	34.14	36.00	25.16	26.47			
Peso tara + suelo seco (g)		27,80	31.10	32.41	24.56	25.38			
Humedad %		41.24	36.05	32.55	15.87	18.38			
Limites			35.45 17.13				.13		
Indice Plástico		18.32							

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PER

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD (MTC E-108 / ASTM D-2216)

: Diseño a nivel de partimento flexible del tramo El carden - Huabacap, distrito Paranday - Otazeo - La Libertad 2022 : Cabasillos Tacesga-José : Paranday - Otazeo - La Libertad : Trajilla, octobre del 2022 : Grava Arcillosa (GC) ; PC 44

Contenido de Humedad Muestra Integral :

Descripcion	1
Peso de tora (gr)	36.2
Peso de la tara + muestra húmeda (gr)	216.2
Peso de la tora + muestra seca (gr)	211.5
Pese del agua conterido (gr)	4.8
Peso de la muestra soca (gr)	175.3
Contenido de Humedad (%)	2.71
Contenido de Humedad Promedio (%)	2.71

TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

 Diseño a nivel de pavimento flexible del tramo El cardon - Huabacap, distrito Paranday -Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)

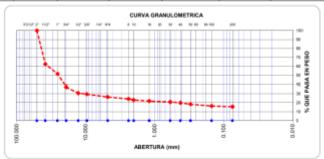
CALICATA PC 04

20 cm ESTRATRO 01 plantas y raices secas 30 cm ESTRATRO 02 SC-SM Arena Arcillose - Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto 50 cm 5	PROFUNDIDAD	NDIDAD N° DE ESTRATO	CLASIFICACION	DESCRIPCIÓN	CLASIFICACION GRAFFICA
30 cm 40 cm 50 cm 60 cm 60 cm 70 cm 80 cm 90 cm 100 cm 110 cm 120 cm 130 cm 140 cm 150 cm 15		ESTRATRO 01			
60 cm 70 cm 80 cm 90 cm 90 cm 100 cm 110 cm 120 cm 130 cm 140 cm 150 cm	40 cm	ESTRATRO 02	SC-SM		TUTUTUTUT
100	60 cm 70 cm	n e			
130 cm	90 cm 100 cm	ESTRATRO 03	GC	estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 2.71%, un	
170 cm 180 cm 190 cm 200 cm 210 cm 220 cm 230 cm 230 cm 230 cm 230 cm 230 cm 250 cm 250 cm 250 cm 250 cm 250 cm 270 cm 280 cm 280 cm 300 cm 310 cm 320 cm	130 cm			de 2.16 g/cm3	
330 cm 340 cm 350 cm 350 cm 370 cm 37	160 cm 170 cm 180 cm 180 cm 180 cm 200 cm 210 cm 220 cm 230 cm 240 cm 250 cm 270 cm 270 cm 310 cm 310 cm 330 cm 340 cm 350 cm 360 cm			CONTINÚA Grava Arollosa (GC)	-10.

 ® INDECOPI N° 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería


ANALISIS MECANICO POR TAMIZADO

ASTM D-422

: Diseño a nivel de pavimento flesible del tramo El carden - Hualsacap, distrito Paranday - Otazco - La Libertad 2022 : Cabanillas Tacanga José : Paranday - Otuco - La Libertad : Trujillo, estubre del 2022 : Grava Arcillosa (GC) Proyeto Solicitante Ubicación Fecha Tipo de suelo PC 05

6251.0 971.3 Peso de muestra seca Peso de muestra lavada

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	% Retenido Acumulado	% que Pasa	Limites e Indices de Consistencia
3.	76.200	415.00	6.6	6.6	93.36	
2.1/2"	63.500	658.00	10.5	17.2	82.83	L. Liquido : 30.81
2"	50.600	856.40	13.7	30.9	69.13	L. Plánico : 17.13
1.1/2"	38.100	421.50	6.7	37.6	62.39	Ind. Plástico : 13.68
1*	25.400	670.40	10.7	48.3	51.67	Clas. SUCS : GC
3/4"	19.050	895.60	14.3	62.7	37.34	Clm, AASHTO : A-2-6 (8)
1/2"	12,700	415.20	6.6	69.3	30.70	
3.8"	9.525	74.15	1.2	70.5	29.51	HUMEDAD NATURAL
Nº4	4.790	195.74	3.1	73.6	26.38	HUSTEDAD SATURAL
Nº8	2.390	132.47	2.1	75.7	24.26	Sh + Tara : 226.4
N°10	2.000	72.41	1.2	76.9	23.10	Ss + Tara : 220.4
Nº16	1.190	74.16	1.2	78.1	21.92	Tara : 38.5
Nº30	0.590	67.41	1.1	79.2	20.84	Peso Agua : 6.0
Nº40	0.420	52.84	0.8	80.0	19.99	Peso Suelo Seco : 181.9
Nº50	0.300	105.47	1.7	81.7	18.31	Hurnedad(%) : 3,30
N*100	0.149	120.65	1.9	83.6	16.37	
N°200	0.074	52.30	0.8	84.5	15.54	
< N*200		971.30	15.5	100.0	0.00	
Total		6251.00				7

 ® INDECOPI N° 034506-2021
 RUC 20607982971
 T

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgal
 TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA

: Diseño a nivel de pavimento flexible del tramo El cardon - Hunbacap, distrito Paranday - Otuzco - La Libertad 2022

Proyeto Solicitante Ubicación Fecha Proyeto : Diseñe a nivel de partimento ficulo.
Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otazoo - La Libertal
Fecha : Trujilla, ortubre del 2022
Tipo de suelo : Grava Areillosa (GC)
Calicata : PC 68

Limites de Consistencia		Limite Liquido				Limite Plástico			
Nº de golpes		15	24	33	-	-		-	
Peso tara (g)		14.92	22,67	21.37	20.78	19.45			
Peso tara + suelo húmedo (g)		33.12	33.75	35.20	25.16	26.47			
Pese tara + suelo seco (g		27,80	31.10	32.41	24.56	25.38			
Humedad %		41.30	31.42	25.26	15.87	18.38			
Limites		30.81 17.13							
Indice Phistics	-				13.68				

 ® INDECOPI N° 034506-2021
 RUC 20607982971
 TRU.

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallard
 TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD (MTC E-108 / ASTM D-2216) Proyete : Diseño a sivel de parimento flexible del tramo El carden - Husbacap, distrits Paranday - Otazeo - La Libertad 2022 Selicitaste : Paranday - Otazeo - La Libertad 1022 Urbacaldo : Paranday - Otazeo - La Libertad 1022 Tipo de suelo : Grava Arcillosa (GC) Calicata : PC 05

Contenido de Humedad Muestra Integral :

Descripcion	1
Peso de tora (gr)	38.5
Peso de la tara il muestra húmeda (gr)	226.4
Peso de la tara + muestra seca (gr)	220.4
Pese del agua contorido (gr)	6.0
Peso de la muestra soca (gr)	181.9
Contenido de Humedad (%)	3.30
Contonido de Humedad Promedio (%)	3.30

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsucap, distrito Paranday -

Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)

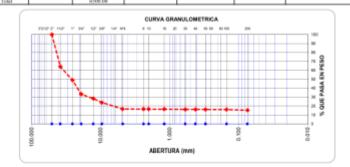
CALICATA PC 05

PROFUNDIDAD N° DE ESTRATRO OI 10 cm ESTRATRO 01 SC-SM Material tipo tierra de cultivo mezclado con plantas y raices secas SC cm ESTRATRO 02 SC-SM Arena Arcilloso - Limosa (SC-SM) con presencia de grava, color beige, en estado semi compacto con estructura semi compacto comentando por arcillas, contiene un conferiolo de humedad de 3.30%, un indice de plasficidad igual a 13.68 y una densidad de 2.15 g/cm3 CONTINÚA Grava Arcillosa (GC)					
20 cm ESTRATRO 01	PROFUNDIDAD	N° DE ESTRATO			
SC-SM de grava, color beige, en estado semi compacto CONTINÚA Grava Arollosa (GC) CON	20 cm	ESTRATRO 01	-		
Fig.	40 cm	ESTRATRO 02	SC-SM		1+1+1+1+1
170 cm 180 cm 190 cm 200 cm 200 cm 220 cm 220 cm 2230 cm 2230 cm 2250 cm 2250 cm 2250 cm 2550 cm 2550 cm 2650 cm 270	60 cm 70 cm 80 cm 90 cm 100 cm 110 cm 120 cm 130 cm 140 cm 150 cm	ESTRATRO 03	GC	estructura semi compacto cementada por arcillas, contiene un contenido de humedad de 3.30%, un índice de plasticidad igual a 13.68 y una densidad	
THE CONTRACTOR OF THE CONTRACT	170 cm 180 cm 190 cm 200 cm 210 cm 220 cm 230 cm 240 cm 250 cm 250 cm 260 cm 270 cm 250 cm 270 cm 280 cm 270 cm 380 cm 370 cm 380 cm 370 cm			CONTINÚA Grava Arolliosa (GC)	CAM

 ® INDECOPI N° 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería


ANALISIS MECANICO POR TAMIZADO

ASTM D-422

: Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022 : Cabanillas Tacanga José : Paranday - Otuzco - La Libertad : Trujillo, estubre del 2022 : Grava Arcillosa (GC) Proyeto Solicitante Ubicación Fecha Tipo de suelo Calicata

Peso de muestra lavada 993.5

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Limitos e Indices de Comistencia
3"	76.200	595.00	9.0	9.0	90.95	
2.10"	63.500	475.00	7.3	16.3	83.68	L. Liquido : 31.28
2"	50,600	695.00	10.7	27.0	72.95	L. Plástico : 17.13
1.12"	38.100	582.00	9.0	36.0	64.03	Ind. Plástico : 14.15
1*	25.400	984.20	15.1	51.1	48.99	Clus. SUCS : GC
3/4"	19,050	1012.00	15.6	66.7	33.32	Clas. AASHTO : A-2-6 (8)
1/2"	12,700	325.00	5.0	71.7	28.32	
3.8"	9.525	285.00	4.4	76.1	23.94	HUMEDAD NATURAL
Nº4	4.790	471.00	7.2	83.3	16.69	HUSTEDAD SATURAL
Nº8	2.390	8.52	0.1	83.4	16.56	Sh + Tara : 154.6
N°10	2.000	7.41	0.1	83.6	16.44	Ss + Tara : 152.2
Nº16	1.190	2.14	0.0	83.6	16.41	Tara : 38.5
N°30	0.590	11.40	0.2	83.8	16.24	Peso Agua : 2.4
N*40	0.420	0.52	0.0	83.8	16.23	Peso Suelo Seco : 113.7
A COLUMN	0.000		0.1	63.0	16.16	11

® INDECOPI N° 034506-2021 RUC 20607982971
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 TRUJILLO - PERU - Email: ingematga

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hunivacap, distrito Paranday - Otazeo - La Libertad 2022
Solicitante : Cabanillas Tacanga José
Ubicación : Faranday - Otazeo - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)
Calicata : PC 66

Limites de Consistencia			Limite i	Liquido		Limite Plástico			
Nº de golpes		15	24	34	-	-		-	
Peso tara	(g)	14.92	22,67	21.40	20.78	19.45			
Peso tara + suelo hámedo	(g)	33.10	33.82	35.25	25.16	26.47			
Pese tara + suelo seco	(g)	27.90	31.10	32.41	24.56	25.38			
Humedad %		40.06	32.26	25.79	15.87	18.38			
Limites		31.28 17.13							
Indice Plástico		14.15							

TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD (MTC E-108 / ASTM D-2216) Proyete : Diseño a sirel de parimento Brabite del tramo El cardon - Hudisacap, distrita Paranday - Onarea - La Libertad 2022 Solicitante : Cubanillos Tacanga Jusi Diseación : Farcanday - Citaco - La Libertad Pripo de suelo : Grava Arcillosa (GC) Calicita : PC 06

Contenido de Humedad Muestra Integral

Descripcion	1
Pleso de tora (gr)	78.5
Paso de la taca il ruscrira húmeda (gr)	154.0
Pess de la tiss - insestra esca (gr)	150.3
Pese del agua contonida (gr)	2.4
Peso de la muestra seca (gr)	113.7
Contenido de Humedad (%)	2.09
Contoredo de Humedad Premedio (%)	2.09

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PEI

 Av. Húsares de Junin Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.co

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

to : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday -

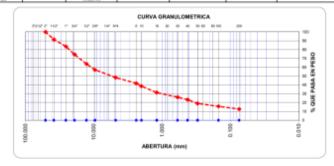
Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022
Tipo de suelo : Grava Arcillosa (GC)

CALICATA PC 06

PR	ROFUNDI	DAD	Nº DE ESTRATO	CLASIFICACION	DESCRIPCIÓN	CLASIFICACION GRAFFICA
10	cm		ESTRATRO 01		Material tipo tierra de cultivo mezclado con	£85.833 m
20	om	_			plantas y raices secas	200210
30 40	cm	_			Arena Arcilloso - Limosa (SC-SM) con presencia	
50	om	_	ESTRATRO 02	SC-SM	SC-SM de grava, color beige, en estado semi compacto	
60	cm	_				010101010
70	om	_				
80	cm					
90	om				Grava Arcillosa (GC), color beige claro, con	
100	om				estructura semi compacto cementada por arcillas,	
110	cm		ESTRATRO 03	GC	contiene un contenido de humedad de 2.09%, un	53.53
120	om				indice de plasticidad igual a 14.15 y una densidad de 2.15 g/cm3	
130	om				de 2.15 g/cm3	5555
140	cm					
150	om					
160	cm					
170	om					
180	am					
190	am					
200	cm					
210	om					
220	cm					
230	cm					
240	om					
250	cm					
260	om					
270	cm		•			
280	cm		•		CONTINÚA Grava Arcillosa (GC)	
290	om					
300	cm	_	()			
310	om		• 1			
	cm		(
330	cm		•			
350	om					
350	om					
370	om					Λ Λ
380	cm					-[]
390	om					Catardor
400	cm				160	Luis D. Gallardo Muros
400	Q.					EFE DE LABORATORIO

® INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com


Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

ANALISIS MECANICO POR TAMIZADO ASTM D-422

: Diseño a nivel de pavimento ficultie del tramo El cardon - Hualsacap, distrito Paranday - Otuzco - La Libertad 2022 : Cabanillas Tacanga José : Paranday - Otuceo - La Libertad : Trujillo, octubre del 2022 : Gerva Arcillosa (GC) Proyeto Solicitante Ubicación Fecha Tipo de suelo : PC 07 Cantera Calicata

Peso de muestra seca Peso de muestra lavada

Tamices ASTM	Abertura en mm.	Peso Retenido	%Retenido Parcial	%Retenido Acumulado	% que Pasa	Limites e Indices de Consistencia
3.	76,200	0.00	0.0	0.0	100.00	
2.1/2"	63.500	0.00	0.0	0.0	100.00	L. Liquido 29.59
2"	50.600	115.55	3.8	3.8	96.18	L. Plástico : 22.14
1.10*	38.100	146.60	4.9	8.7	91.33	Ind. Plánico : 7.44
1"	25.400	233.90	7.7	16.4	53.59	Clas. SUCS : GC
3.4"	19.050	273.90	9.1	25.5	74.53	Clas. AASHTO : A-2-4 (8)
1/2"	12.700	325.60	10.5	36.2	63.76	
3/8"	9.325	199.20	0.6	42.8	37.16	HUMEDAD NATURAL
Nº4	4.790	266.10	8.8	51.6	48.36	HUSTEDAD SATURAL
Nº8	2.390	197.70	6.5	58.2	41.82	Sh + Tara : 160.0
N°10	2.000	95.20	3.1	61.3	38.67	Ss + Tara : 154.2
Nº16	1.190	223.50	7.4	68.7	31.27	Tara : 39.5
N°30	0.590	155.80	5.2	73.9	26.12	Peso Agua : 5.8
N*40	0.420	87.20	2.9	78.8	23.23	Peso Suelo Seco : 114.7
Nº50	0.300	126.10	4.2	80.9	19.86	Humedad(%) : 5.06
N*100	0.149	100.65	3.3	84.3	15.73	
N*200	0.074	92.33	3.1	87.3	12.68	
< N*200		383.17	12.7	100.0	0.00	
Total		3022.40				7

® INDECOPI N° 034506-2021 RUC 20607982971
Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

LIMITES DE CONSISTENCIA

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday - Otazco - La Libertad 2022

Solicitante : Cabarillas Tacanga Jasé Ubicación : Paranday - Otuzco - La Libertad Fecha : Trujillo, octubre del 2022 Tipo de saelo : Grava Arreillova (GC) Calicata : PC 67 Cantera

Limites de Consistencia		Limite Liquido				Limite Plástico			
Nº de golpes		16	23	36					
Peso tara	(g)	23.54	22.15	22.90		23.52	23.66		
Peso tara + suelo hámedo	(g)	35.98	36.32	35.78		36.16	36.23		
Peso tara + suelo seco	(g)	32.44	32.90	33.54		33.85	33.97		
Humedad %		39,78	31.81	21.05		22,36	21.92		
Limites		29.59 22.14							
Indice Phistics		7.44							

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

CONTENIDO DE HUMEDAD

(MTC E-108 / ASTM D-2216)

: Discho a nivel de partimento Besible del tramo El cardon - Hasisacap, distrito Paranday - Otazeo - La Libertad 2022 : Cabanillos Tacanga José : Paranday - Otazeo - La Libertad : Paranday - Otazeo - La Libertad : Trafillo sciente del 2022 : Grava Arcillosa (GC) : PC #C Destree. Proyeto Solicitante Ubicación Focha Tipo de suelo Culicata : PC 07 Cantera

Contenido de Humedad Muestra Integral :

Descripcion	1
Peso de tora (gr)	39.5
Peso de la tara + muestra húmeda (gr)	160.0
Peso de la tora + muestra seca (gr)	154.2
Pese del agua contonido (gr)	5.8
Peso de la muestra soca (gr)	114.7
Contenido de Humedad (%)	5.06
Contenido de Humedad Promedio (%)	5.06

® INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERI Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo⊚gmail.com TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

PERFIL ESTRATIGRAFICO

Proyeto : Diseño a nivel de pavimento flexible del tramo El cardon - Hualsacap, distrito Paranday -

Otuzco - La Libertad 2022

Solicitante : Cabanillas Tacanga José
Ubicación : Paranday - Otuzco - La Libertad
Fecha : Trujillo, octubre del 2022

Fecha : Trujillo, octubre del : Tipo de suelo : Grava Arcillosa (GC)

CALICATA PC 07 - CANTERA

PR	OFUNDI	DAD	Nº DE ESTRATO	CLASIFICACION	DESCRIPCIÓN	CLASIFICACION GRAFFICA
10	cm		ESTRATRO 01		Material tipo tierra de cultivo mezclado con	£46.5 tr
20	om		LOTTORTHOUT		plantas y raíces secas	
30	cm					-1111
40	om					
50	am	_	•			11111
60 70	cm	_	•			1777
80	om	_	•		Grava Arcillosa (GC), color beige claro, con	
	cm	_			estructura semi compacto cementada por arcillas,	
90	cm	_	ESTRATRO 02	GC	contiene un contenido de humedad de 5.06%, un	
	om	_	•		indice de plasticidad igual a 7.44 y una densidad de 2.17 g/cm3	
110	cm				Ge 2.17 gents	
120	om		•			7777
130	cm		•			
150	cm		•			
160	om	_				
170	cm	_	•			
180	om	_	•			
190	om	_	•			
200	cm	_	•			
210	om		•			
220	cm		•			
230	om					
240	om					
250	cm					
260	om					
270	cm					
280	om				CONTINÚA Grava Arcillosa (GC)	
290	om				(00)	
300	cm					
310	om					
320	cm					
330	cm					
340	am					
350	cm					
360	om					
370	am					Λ Λ
380	cm					01 1/1
390	om					DOMONET !
400	cm				l line	Luis D. Gallardo Murga

● INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo⊚gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

ENSAYO DE CBR Y EXPANSION

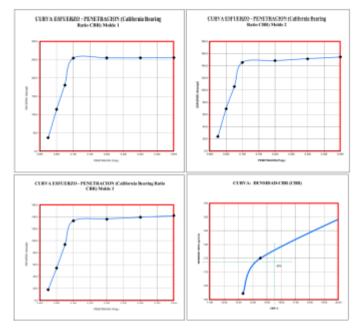
: Discis a nivel de previounts fireblé del trame El cardon - Haubarap, distrito Parandos - Otacoo - La Libertad 2022 : Cobaellio Taccaga José : Parandos - Otacoo - La Libertad 2022 : Transfer, editore - La Libertad : Transfer, editore del 2022 : Grave Arellina (GC) : PC 01

BY NOW A NO			

ESTADO	SEN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLE	MOLDE 1		MOLBE 2		DE-3
N° DE GOLPES POR CAPA	56		2	5	12	
SOBRECARGA (gr.)	4530	4530		50	4530	
Peso de Suela húmedo + Molde (gr.)	8700		8090		2800	
Peso de Molde (gr.)	4118		4125		4135	
Peso del suelo Himado (gr.)	4565		3995		3665	
Volumen de Molde (cm5)	3211		3211		3211	
Volumen del Disco Espaciador (cm/l)	1099		3095		1095	
Volumen Utili (cm3)	2116		2116		2136	
Densidad Hitmods (gricm3)	2.16		1,87		1.79	
CAPSULA N°	1		2		3	
Peso de suelo Húmedo + Clasula (gr.)	68.7		66.7		67.4	
Peso de suelo suco + Cápsula (gr.)	66.1		64.2		64.9	
Peso de Agua (gr)	2.60		2.5		2.50	
Peso de Cignela (gr.)	27.6		27.45		28.1	
Peso de Suela Seco (gr.)	38.5		36.1		36.80	
% de Humedad	6.35		6.58		6.79	
Densidad de Saclo Seco (gr/cm/)	2.42		1,79		1.62	

	ENSAYO DE EXPANSION										
DIA	LECT, DIAL	HINCH, (%)	LECT, DIAL	HINCH, (%)	LECT, DAL	HINCH, (%)					
1	0.10	0.00	0.11	0.00	0.13	0.00					
2	0.11	0.12	0.12	0.24	0.15	0.48					
3	0.12	0.36	0.15	0.60	0.18	0.60					
4	0.13	0.24	0.16	0.84	0.22	0.96					
SUELO NO EXPANSIVO											

Estructura	Limite May
TIPO	HINCH IN
Sauce	1
Sub Base	2
Sub Resente	3


ENSAYO DE CARGA PENETRACION

ENSAYO DE CARGA	LECTURA	MOLDE 1	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	Ds.	Bulpalg2	DIAL	Bs.	Berjuig2	DIAL	Ds.	Bejuig2
6.025	14	111.0	37.0	- 11	21.2	23.9		53.4	12.8
0.050	38	340.0	114.3	36	206.4	69.5	21	162.6	54.3
6.079	40	861.0	180.3	38	317.8	100.0		281.3	93.8
6,100	58	750.0	254.3	31	436.3	140.4	40	309:8	133.3
6,200	59	794.0	354.7	52	445.4	148.5	48	409.0	136.3
0.500	68	798.0	250.0	35	494.5	191.5	- 27	408.1	139.4
0.400	60	798.0	259.3	14	463.7	1946	160	421.2	142.4

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com
 TRUJILLO - PERU

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (Ibs/pulg2)	PRESION PATRÓN (Lb/puig2)	C.B,R %	SECA (griom3
1	0.1	254.3	1000	25.43	2.02
2	0.1	145.4	1000	14.54	1.75
3	0.1	133.3	1000	13.33	1.62
MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (bs/pulg2)	PRESION PATRÓN (Lb/puig2)	C.B,R %	DENSIDA SECA (griom3
		APLICADA	PATRÓN	C.B,R % 16.98 9.90	SECA

NOTA: Los material fueron muestreados por el solicitante, el laboratorio solo se limitó a resilpar el ensayo

® INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU
Av. Húsares de Junin Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Figura 46 Ensayo de CBR PC 3

INGEMAT GALLARDO SAC

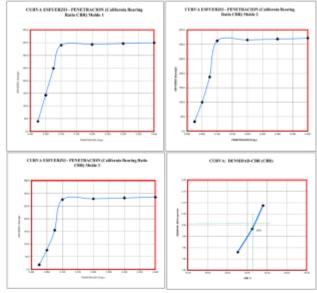
Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

Elisado a abril de perimento ficilide del tramo El carden - Haudescap, dietrito Faranday - Otucro - La Libertad 1801 - Colombia Taronga Jod.
- Paranday - Otucro - La Libertad 1801 - Paranday - Otucro - La Libertad 1801 - Trapple, octuro - La Libertad 1801 - Trapple, octuro - dal 2010 - Contra - Artibuse (EC)
- [198] - Contra - A

ENSAYO DE COMPACTACION CBR								
ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SINSATURAR	SATURADO		
MOLDE	5904.8	MOLDE I		NAME DE 2		DE 3		
Nº DE GOLPES POR CAPA	56		1	5	10			
SOBRECARGA (gr.)	453	0	- 40	190	45	10		
Pisso-de Nuele húmedo - Molde (gr.)	8836		8620		1387			
Pisso-de Melde (gr.)	435		4035		4139			
Pesc-del suelo Húmeda (gr.)	4731		4485		4252			
Volumen de Minkle-lemőli	3211		3211		3211			
Volumen del Diaco Espaciador (cm3)	1895		1895		3095			
Volumen Util (cm2)	2116		2116		2116			
Donidad Hümola (gr/cm/i	2.23		2.12		2.01			
CAPSULA Nº	1		1		. 3			
Pose-de sade Himado + Cipsulo (gs.)	68.8		66.7		47.5			
Piese de suele soco + Cáprala (gr.)	66.1		66.2		64.9			
Penc-de Agon (gr)	2.66		2.5		2.55			
Pesc-de Cignulo (gr.)	27.6		27.45		29.1			
Pesc-de Soele Seco. (gr.)	38.5		36.8		36.80			
N. A. Director de d	-0.00		4.84		2.00			

ENSAYO BE EXPANSION							
DIA	LECT. DIAL	HINCH (SO	LECT. DEAL.	HINCH (%)	LECT. DULL	HINCH, (%)	
	0.80	6.00	0.00	0.80	0.93	8.08	
2	0.00	0.30	9.02	0.22	8.04	9.29	
	0.81	0.34	0.03	0.36	0.87	0.67	
4	0.83	0.38	6.05	0.40	0.18	9.12	

Estructura	Limite Mas
TIPO	HINCH, (%)
Base	1
Sab Beac	- 2
Sub-Rasanti	3


	ENSAYO DE CARGA PENETRACION								
ENSAYO DE CARGA	LECTURA	383LDE I	54 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL.	Bri.	BripulgI	DIAL.	Dis.	Belgralp2	DMAL	De.	Bulguig2
6.025	16-	4,711	39.1	14	99.8	33-9	9	53.4	4.71
0.050	30	421.2	142.4	36	299.6	99.9	28	226.4	15.5
6,075	9.5	786.2	248.7	4.5	360.8	199.0	.14	003.7	116.6
0.100	118	1099.7	110.0	106	987.7	312.6	96	629.3	276.1
6.300	116	1006.6	342.9	107	948.5	386	46	637.4	276.1
6.300	117	2017:9	346.9	108	985.9	318.6	96	106.1	282.2
0.400	118	3047.1	349.9	100	965.0	321.7	97	605.4	345.2

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (lbs/pulg2)	PRESION PATRON (Lb/puig2)	C.B.R %	DENSIDA SECA (gr/cm3)		
1	0.1	339.9	1000	33.99	2.09		
2	0.1	312.6	1000	31.26	1.98		
3	0.1	276.1	1000	27.61	1.65		
Nº	(pulg)	(bs/skg2)	(Lb/pulg2)	%	SECA (gs/om3		
-1	0.2	342.9	1500	22.86	2.09		
2	0.2	315.6	1500	21.04	1.98		
3	0.2	279.1	1500	18.61	1.00		
TIMO Conti	dad Seca (gr./cm3) enido do Humedad		1500	18.61	2.09		
LR AI 100 7	i, de la Máxima Den	sidad Seca			33.995		
	R Al 95% de la Máxima Densidad Seca						

MOTA: Los material fueron muestreadas por el solicitante, el laboratorio solo se timita a resticar el ensayo

© INDECOPI N° 034506-2021 RUC 20607982971 TRUJILLO - PERU Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo - Celular: 964545765 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

ENSAYO DE CBR Y EXPANSION

| Discion a nivel de pariments fieddés del transe El cardon - Haubacap, distrito Parandos - Otsoco - La Libertad 2022 | Calmellio Taccega José | Francisco - Otsoco - La Libertad | Trajillo, acisdere del 2022 | Trajillo, acisdere del 2022 | Trajillo - Artillos (GC) | Trajillo - Artillos (GC)

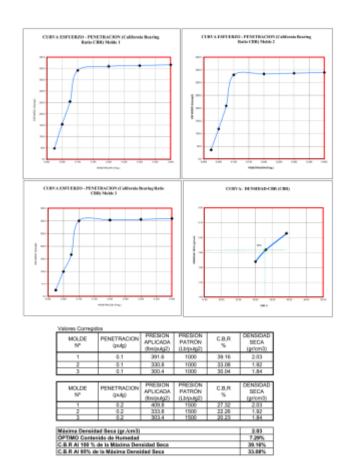
ENSAYO DE COMPACTACION CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO	SIN SATURAR	SATURADO
MOLDE	MOLE	DE I	MOLDE 2		MOLDE 3	
N° DE GOLPES POR CAPA	. 56			5	12	
SOBRECARGA (gr.)	483	0	4116		4530	
Poso de Suele bismodo + Molde (gr.)	9740		5490		\$310	
Peso de Molde (gr.)	4139		4135		4135	
Peso del suelo Himudo (gr.)	4605		4185		4125	
Volumen de Molde (em/l)	3211		3211		3211	
Volumen del Disco-Espaciador (em/l)	1895		1095		1095	
Volumen Util (cm3)	2116		2116		2116	
Deneidad Hilmeda (gricm?)	2.18		2.06		1.97	
CAPSULA Nº	1		2		3	
Peso de suelo Historio + Clipsula (gr.)	68.5		66.4		65.8	
Peso de suelo seco + Cápsula (gr.)	65.7		63.8		63.2	
Peso de Agua (gr)	2.78		2.6		2.57	
Peso de Classils (gr.)	27.6		27.48		28.1	
Peso de Saole Soco (gr.)	38.1		36.3		35.13	
% de Humedad	1.29		7.29		7.32	
Deneidad do Suele Socie (prioni7)	2.69		1.92		1.84	

DIA	LECT. DIAL	HINCH (%)	LECT. DUAL	HINCH (%)	LECT. DIAL	HINCH (%
1	0.00	0.00	0.01	0.00	0.03	0.00
2	0.00	8.03	0.01	0.10	0.05	0.36
3.	0.00	8.16	0.02	0.24	0.07	8.89
4	0.02	8.29	0.04	0.41	0.11	0.95

Estructura	Limite Max
TIPO	HINCH (%)
Base	1
Sub Base	2
Sub-Rasanty	- 3

	ENSAYO DE CARGA PENETRACION								
ENSAYO DE CARGA	LECTURA	MOLDET	56 GOLPES	LECTURA	MOLDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	Ds.	Bulpulg2	DIAL	bu.	Bylogig2	DIAL	Bu.	Bulgalg2
6.025	19	144.6	48.2	15	109.1	36.0	- 11	71.7	23.9
0.050	54	483.7	154.6	42	394.3	118.1	36	299.6	99.9
E-079	82	794.5	254.8	12	627.7	209.2	58	500.1	166.7
6,100	132	1174.7	390.6	112	992.4	356.6	102	981.2	386.4
0.200	138	1229.4	409.8	113	1801.9	353.8	100	910.3	393.4
6.300	119	1238.8	412.8	114	1810.6	336.9	104	909.6	386.5



 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Figura 49 Resultados de PC 6

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

NOTA: Los material fueron muestreados por el solicitante, el talcostorio solo se timita a realizar el ensay

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

ENSAYO DE CBR Y EXPANSION

- Marks a shall be perfected for the Ad South Elevation - Marks on Article Parameter - Chance - La Liberted W.

Unional a format personal from State of Colombia
ENSAYO DE COMPACTACION CBR

ESTADO	SIN SATURAR	SATURADO	SIN SATURAR	BATURADO	SINSATURAR	SATURADO
MOLDE	14004.0	6E 1	3606	DE 2	9904.DE 3	
N° DE GOLPES POR CAPA	. 56			5	12	
SOBRECARGA (gr.)	4530 4530		46	10		
Pose-de Suele hismolo - Molde (gr.)	9190		8990		8818	
Pese-de Melde (gr.)	4135		4135		4139	
Pesc-del suelo Hámeda (gr.)	5855.00		4835		4679	
Volumen de Minkle-temőli	3211		3211		3211	
Volumen del Disco Especiador (cm3)	1895		1895		3095	
Volumen Util 4cm/6	2116		2116		2116	
Donidad Húmala (gr/cm/i	2.59		3.29		2.21	
CAPSULA Nº	1		2			
Porc-de saule Hierards + Cirpselis (gr.)	62.2		66.7		65.5	
Pisso-de saele-soco + Cáprala (gr.)	38.9		65.1		61.90	
Pisso-de Aguin (gr)	3.50		3.6		3.60	
Pisc-de Ciipsolo (gr.)	30.5		30		20	
Pesc-de Suelo Sero (gr.)	38.4		45.1		41.90	
% de Humofiel	1.50		8.58		8.59	
Descripted to distribute floor description (i)	3.56		3.13		5.66	

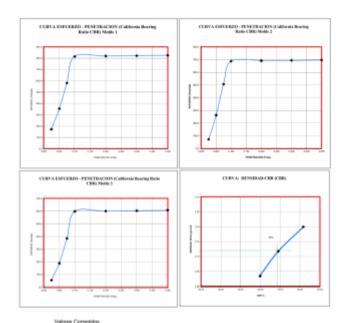
	ENSAYO DE EXPANSION								
DIA	LECT. DML	HINCH, (%)	LECT. DIAL	HINCH, (%)	LECT. DML	HINCH, (%)			
1	0.01	0.00	0.02	0.00	0.05	0.00			
2	0.01	0.02	0.03	0.24	0.07	0.34			
3	0.01	0.04	0.04	0.26	4.08	0.36			
4	0.02	0.29	0.05	0.34	0.10	0.41			

Estructura	Limite May
TIPO	HINCH, (%)
Europ	1
Sub Green	2
But Hassete	- 1

ENSAYO DE CARGA	PENETRACION

ENSAYO DE CARGA	LECTURA	MOLDE I	5% GOLPES	LECTURA	MOUDE 2	25 GOLPES	LECTURA	MOLDE 3	12 GOLPES
PENETRACION	DIAL	Bs.	Bripslg2	DIAL	bs.	By/polg2	DIAL	De.	Bylpolp2
6.005	60	516.3	172.6	37	317.8	12.8	21	162.8	34.3
0.050	130	3065.3	355.1	90	791.6	361.9	65	563.9	100.0
6.055	195	1149.0	243.9	170	1521.1	3010	130	1106.4	385.5
6.100	212	2450.9	811.8	230	2008.8	689.3	200	1294.5	296.2
6.200	213	2460.0	820-9	231	3077.1	690.6	304	1863.7	601.2
0.300	214	3409.1	925-9	230	3066.2	695.4	300	1912.9	604.5
0.400	218	3418.2	826.1	233	3005.4	698.5	306	1821.9	607.5

NOTA: Les material forres muestrasies per el solicitario, el laboratorio solo se limitó a realizar el emaga


 ® INDECOPI N° 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo⊚gmaiLcom

Figura 51 Resultados de CBR PC 7 (Cantera)

INGEMAT GALLARDO SAC

Laboratorio de Estudios Geotécnicos, Suelos, Concreto, Asfalto y Albañilería

Norde Norde	PENETRACION (pvlg)	PRESION APLICADA (ba/puig2)	PRESION PATRÓN (Lb/puig2)	C.B.R %	SECA (griom3)
1	0.1	817.0	1000	81.70	2.20
2	0.1	689.3	1000	68.93	2.12
3	0.1	586.2	1000	59.82	2.03

MOLDE N°	PENETRACION (pulg)	PRESION APLICADA (Ibs/puig2)	PRESION PATRÓN (Lb/paig2)	C.B.R %	SECA (grism3)
- 1	0.2	820.0	1500	54.67	2.20
2	0.2	682.4	1500	46.16	2.12
- 1	0.2	601.9	1500	40.08	2.03

Máxima Densidad Seca (gr./cm3)	2.20
OPTIMO Contenido de Humedad	8.60%
C.B.R Al 100 % de la Máxima Densidad Seca	81.70%
C.B.R Al 95% de la Máxima Densidad Seca	68,93%

NOTA: Las material fueron muestrados por el solicitante, el laboratorio solo se limitó a realizar el ensayo

 ® INDECOPI № 034506-2021
 RUC 20607982971
 TRUJILLO - PERU

 Av. Húsares de Junín Mz. D Lt. 13 Int. 2 - Trujillo
 - Celular: 964545765
 - Email: ingematgallardo@gmail.com

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, HERRERA VILOCHE ALEX ARQUIMEDES, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "Diseño a nivel de pavimento flexible del tramo El Cardon – Hualsacap, distrito Paranday - Otuzco - La Libertad 2022", cuyo autor es CABANILLAS TACANGA JOSE FERNANDO, constato que la investigación tiene un índice de similitud de 30.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 17 de Noviembre del 2022

Apellidos y Nombres del Asesor:	Firma	
HERRERA VILOCHE ALEX ARQUIMEDES	Firmado electrónicamente	
DNI: 18210638	por: AHERRERAV el 22-	
ORCID: 0000-0001-9560-6846	11-2022 18:50:47	

Código documento Trilce: TRI - 0443903

