

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de la infraestructura vial de la pavimentación para mejorar la transitabilidad del Centro Poblado Ampliación Villa El Sol – Distrito De Reque

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniera Civil

AUTORA:

Incio Chunga, Kimberly Sarita (orcid.org/0000-0003-2071-5532)

ASESOR:

Dr. Coronado Zuloeta, Omar (orcid.org/0000-0002-7757-4649)

LÍNEA DE INVESTIGACIÓN:

Diseño de infraestructura vial

CHICLAYO - PERÚ

2021

Dedicatoria

El presente trabajo lo dedico principalmente a Dios, por ser el inspirador y darme la fuerza para continuar en este proceso de obtener uno de los anhelos más deseados.

A mi madre, por su amor, trabajo y sacrificio en todos estos años, gracias a ella he logrado llegar hasta aquí y convertirme en lo que soy.

A mi hermano, por su cariño y apoyo incondicional, durante todo este proceso, por estar conmigo en todo momento. A toda mi familia, porque con sus oraciones, consejos y palabras de aliento hicieron de mí una mejor persona y de una u otra forma me acompañan en todos mis sueños y metas.

Incio Chunga, Kimberly Sarita

Agradecimiento

Agradecer primero a Dios por bendecirnos en la vida, por guiarnos a lo largo de nuestra existencia, ser el apoyo y fortaleza en aquellos momentos de dificultad y de debilidad.

A mis padres y hermano por ser mi pilar fundamental. Pero principalmente, agradezco a mi madre por haberme apoyado incondicionalmente, pese a las adversidades e inconvenientes que se presentaron, por su esfuerzo, dedicación, paciencia, por su confianza y por todo lo que me ha dado a lo largo de mi carrera y de mi vida.

Agradezco a nuestros docentes de la Escuela de Ingeniería Civil de la Universidad César Vallejo, por haber compartido sus conocimientos a lo largo de la preparación de nuestra profesión, de manera especial, al ingeniero Omar Coronado Zuloeta, tutor de nuestro proyecto de investigación quien ha guiado con su paciencia, y su rectitud como docente.

Incio Chunga, Kimberly Sarita

Índice de contenidos

Carát	ula	i
Dedic	atoria	ii
Agrac	decimiento	iii
Índice	e de contenidos	iv
Índice	e de tablas	V
Índice	e de figuras	vi
Resu	men	. vii
Abstra	act	viii
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	4
III.	METODOLOGÍA	11
3.1.	Tipo y diseño de investigación	11
3.2.	Variables y operacionalización	11
3.3.	Población, muestra y muestreo	12
3.4.	Técnicas e instrumentos de recolección de datos	13
3.5.	Procedimientos	13
3.6.	Métodos de análisis de datos	14
3.7.	Aspectos éticos	14
IV.	RESULTADOS	15
V.	DISCUSIÓN	28
VI.	CONCLUSIONES	32
VII.	RECOMENDACIONES	33
REFE	RENCIAS	34
ANFX	(OS	41

Índice de tablas

Tabla 1. Periodos de diseño en función del tipo de carretera	8
Tabla 2. Coeficiente estadístico de desviación estándar	9
Tabla 3. Ensayos estándar	12
Tabla 4. Resultado de estudios básicos	16
Tabla 5. Promedio de Número de vehículos por año	17
Tabla 6. ESAL's	18
Tabla 7. Diseño del pavimento flexible	21
Tabla 8. Costo del proyecto	22
Tabla 9. Balance económico de la inversión	24
Tabla 10. Datos de entrada para el cálculo de VAN y TIR	26
Tabla 11 Determinación del VAN / TIR	26

Índice de figuras

Figura 1. Carpeta estructural	7
Figura 2. Estado del pavimento	. 15
Figura 3. Planimetría	19
Figura 4. Diseño geométrico del pavimento	20
Figura 5. Sección transversal del gráfico	21

Resumen

La investigación contó con la búsqueda de la mejora de las condiciones de transitabilidad de una población determinada, en donde la pavimentación fue ajena hacia las garantías de calidad de vida. En base a ello, se contó con el siguiente objetivo general: Diseñar la infraestructura vial de la pavimentación para mejorar la transitabilidad del Centro Poblado Ampliación Villa El Sol. La metodología fue de tipo aplicado, con un diseño no experimental, con una muestra de 20 calicatas. Los resultados señalaron que, las condiciones de campo actuales han evidenciado únicamente la conformación de una trocha carrozable, en donde esta solo ha contado con la delimitación por el tránsito existente en la zona de estudio, la cual ha tenido que conformarse con el pasar del tiempo, en donde el nivel de transitabilidad fue inadecuó, generando afectaciones a la calidad de vida de la población. Mientras que, se concluyó que, el suelo sobre el que se ha conformado el diseño de la pavimentación fue plana y regular, en donde el valor de máxima densidad seca fue 2.02 gr/cm3, con un contenido de humedad óptimo del 13.89%, en donde el valor de CBR fue de 6.00%, con un valor de ESAL de 1927.587 tn.

Palabras clave: Transitabilidad, infraestructura vial, pavimentación, trocha, pavimento

Abstract

The research included the search for the improvement of the walkability conditions of a determined population, where the paving was alien to the guarantees of quality of life. Based on this, it had the following general objective: Design the road infrastructure of the paving to improve the walkability of the Villa EI Sol Expansion Village Center. The methodology was applied, with a non-experimental design, with a sample of 20 pits. The results indicated that the current field conditions have only evidenced the formation of a carriage trail, where it has only been delimited by the existing traffic in the study area, which has had to settle with the passing of time, where the level of walkability was inadequate, generating effects on the quality of life of the population. While, it was concluded that the soil on which the paving design has been formed was flat and regular, where the maximum dry density value was 2.02 gr / cm3, with an optimal moisture content of 13.89%, in where the CBR value was 6.00%, with an ESAL value of 1927,587 tn.

Keywords: Passability, road infrastructure, paving, trail, pavement

I. INTRODUCCIÓN

Cuando se habla acerca del pavimento, se puede hacer referencia a las características estructurales con las que cuenta, en donde el tiempo de vida útil del mismo, corresponde a ser mayor a los 50 años; siempre y cuando, se le ofrezca el mantenimiento suficiente y de esta forma, se le pueda dotar a la población, de vías no solo de alta calidad, sino que estas puedan ver mejoradas, las condiciones de conectividad y comunicación, con el resto de las localidades. Por este motivo, es que, a nivel internacional, se ha alcanzado un nivel de importancia de este, más que relevante, comprendido que este es un mecanismo de desarrollo, tanto social, como económico, propia del desarrollo y evolución de los pueblos (Montealegre y Betancourt, 2019).

Así mismo, es que las ciudades desarrolladas en el mundo han crecido, así como con su parque automotor y las vías que las representan, en donde la gran mayoría de estas mismas corresponde a estar pavimentada, debido a que los gobernantes, desean ofrecerle a su población, los medios adecuados para poder aumentar su estilo de vida y la disposición de intercomunicación para estos. Por este hecho, es que las redes viales en el mundo han ido en aumento considerable, en donde el crecimiento y transformación de las técnicas de diseño; juntamente con, de la tecnología de materiales del elemento en mención, han buscado una mayor perdurabilidad y de forma consecuente, una mejora en el estado final del mismo (Suárez, 2017).

A nivel nacional, el uso del pavimento flexible ha sido considerado como un medio de preocupación, debido a que no se cuenta con la calidad de estos, a partir de la fase diseño, hasta la fase de construcción, pudiendo observarse este tipo de ocurrencias, en la condición final de la unidad, en las diferentes vías de las regiones del Perú. Por este motivo, es que resulta urgente el hecho de poder mejorar no solo los medios de diseño, mediante consideraciones técnicas de mayor nivel de precisión, sino que se tiene que invertir, por parte del estado peruano, hacia el asfaltado de la totalidad de vías que unen a las regiones nacionales, en donde el beneficiario final, será la misma población, aumentando la capacidad de comunicación, desarrollo social y desarrollo económico de las mismas (Sánchez, 2019).

Ahondando en la red vial nacional, es que se puede señalar el hecho de haber estado conformada por un total de 14 612 kilómetros de carretas asfaltadas, en donde un total de 5 070 km, han sido caminos con solución básica de trocha carrozable; mientras que, más de 7 001 km, no han sido pavimentadas o no han podido ser compensadas, con algún medio de mejora de la capacidad de tránsito. Ante la consecución de valores cuantitativos, es que se pueda alcanzar a contar con una red vial conformada por 26 683 km de longitud, las cuales se han caracterizado por haber demostrado ciertas deficiencias, en su estado de conservación, ante el desinterés de las autoridades, para poder mejorar los niveles de transitabilidad consecuentes, que puedan compensar las fallas y el desgaste alcanzado, tanto por el tiempo vigente; así como, por el uso de estas (Escobart y Huncho, 2017).

Dentro del ámbito local, la calidad de las vías y la progresión acerca de las calles asfaltadas ha sido considerado un tema pendiente en toda la región Lambayeque, en donde más del 70% de la ciudad de Chiclayo, se ha caracterizado por no contar con pavimentación, principalmente por la carente inversión que se ha alcanzado, dentro de los gobiernos locales y regionales. Esta triste realidad, ha generado un enorme malestar en los trasportistas, debido a que los vehículos automotores, se han visto afectados, en cuanto a su conservación, ante la realidad de las vías alcanzadas, en donde estas cuenta con gran cantidad de baches; así como, un sin número de metros lineales recapeados, los cuales se han desgastado con el pasar del tiempo, y en conjunción con las lluvias constantes, han contado con la presencia de agregado disgregado, socavaciones de gran envergadura, entre otras ocurrencias (Castillo, 2018).

La zona de estudio se ha encontrado conformada por las vías conformadas por el Centro Poblado, Ampliación Villa El Sol, la cual se ha caracterizado por contar con una infraestructura vial, que ha demostrado no haber sido de alta calidad, en donde la incomodidad de las personas que habitan y transitan la zona de forma constante, ha dejado en exposición, la tendencia de las vías de toda la región y provincia en sí misma. Ante la problemática expuesta, se ha establecido la consideración del siguiente problema de investigación ¿Cómo mejorar el diseño de

la infraestructura vial de la pavimentación, para la transitabilidad del Centro Poblado Ampliación Villa El Sol – Distrito De Reque?

Así mismo, desde la perspectiva social, la investigación se vio justificada por el hecho de ofrecer una solución de tipo técnica, hacia la creciente demanda de mejoras en la calidad de las vías, por parte de la población, comprendiendo que este es un deber y obligación de las autoridades locales, como parte de la evolución y acrecentamiento de un territorio, donde se entiende que el beneficiario final, espera no solo alta calidad de tránsito, sino la reducción de los índices de accidentes, los cuales suelen ser más intensificados, cuando se tiene en frente, una vía con presencia de deficiencias, en su estado final.

Además, desde la perspectiva técnica y económica, es que se pudo intentar exhibir la factibilidad técnica y económica de la pavimentación para las vías que conforman al Centro Poblado Ampliación Villa del Sol, en donde se pudo evidenciar la posibilidad de valer con el diseño final de la estructura del pavimento; del mismo modo que, el costo final de inversión, el cual pudo ser empleado por el organismo público pertinente, como una medida de anteproyecto. Mientras que, desde una perspectiva metodológica, es que se alcanzará a recurrir hacia información normativa y técnica, expuesta por el manual de diseño de pavimento AASHTO y a las consideraciones tope de diseño, ofrecidos por el Ministerio de Transporte, al efecto de cumplir con las propiedades del diseño de mezcla y espesores mínimos de carpeta asfáltica; así como, de suelo conformado.

En base a lo expuesto, se ha determinado como objetivo general: Diseñar la infraestructura vial de la pavimentación para mejorar la transitabilidad del Centro Poblado Ampliación Villa El Sol. Así como, los objetivos específicos establecidos, han sido: 1) Determinar y efectuar un reconocimiento de campo sobre el estado en que se encuentre el proyecto a realizar; 2) Realizar los estudios básicos de topografía y mecánica de suelos del flujo vehicular; 3) Elaborar el diseño geométrico y estructural del Centro Poblado Ampliación Villa El Sol; 4) Realizar el Análisis Económico – financiero del Proyecto de Investigación; 5) Elaborar el cálculo de la brecha. Además, la hipótesis establecida, fue: El diseño de la infraestructura vial de la pavimentación, mejorará la transitabilidad del Centro Poblado Ampliación Villa El Sol – Distrito De Reque.

II. MARCO TEÓRICO

Ante la problemática expuesta, es que se procedió ahondar en diferentes investigaciones relacionadas con el tema tratado, siendo contextualizadas desde el ámbito internacional, nacional y local:

Montealegre y Betancourt (2019), se han establecido como objetivo general, el haber establecido un diseño del pavimento flexible que se haya centrado en la mejora del estado de transitabilidad de la carpeta de rodadura de una vía determinada, una vez efectuada la comprobación por el método tradicional de forma complementaria. El tipo de investigación fue el aplicado, donde se ha estimado a modo de enfoque de estudio, al cuantitativo, llegando a recolectar los datos por medio del cuestionario y considerando como objeto de estudio, a la vía Llano de Combeina. Los resultados han dado a conocer que, las condiciones en las que se ha encontrado la vía han correspondido a solo haber tenido el 6% de las vías pavimentadas y más del 70% de estas mismas, afirmadas, en donde las condiciones no solo han expuesto la necesidad de incorporar el diseño eficiente de la carpeta del pavimento asfáltico, sino el de poder mejorar las condiciones de transitabilidad del objeto de estudio. Además, se ha concluido que, la importancia de la estructura del pavimento lo cual fue logrado, a través del diseño por la metodología AASHTO, fue de 4.07, valor que ha satisfecho la cantidad de tráfico y el estado de conservación esperado.

Suárez (2017), se ha propuesto como objetivo general, desarrollar el diseño para una estructura de pavimento determinada, recurriendo al pavimento flexible y mediante la implementación del método AASHTO, con la finalidad de poder aumentar el índice de vías asfaltadas. La metodología de la investigación se ha caracterizado por haber considerado como objeto de estudio, las vías de la calle 25, en donde se ha alcanzado un diseño no experimental, por la aplicabilidad de normativa técnica y legal. Los datos de entrada que han sido consignados fueron la solicitación de una carga de 43 769 350 repeticiones, que han resultado equivalente a 8.20 toneladas, cuyo valor de CBR promedio que ha sido alcanzado, fue de 1.46%. Mientras que, se ha concluido que, el espesor del mejoramiento de la vía ha alcanzado un valor cuantitativo de 60 centímetros, en donde la capacidad de carga fue de 8534 psi.

Sánchez (2019), se ha trazado como objetivo general, efectuar el diseño del pavimento, con el argumento de poder mejorar las condiciones en las que se ha encontrado la carretera de Ayacucho, recurriendo a la metodología de diseño AASHTO. La metodología ha expuesto un diseño no experimental, donde se ha considerado un tipo de indagación, aplicada, considerando como objeto de estudio, a la carpeta del pavimento de la vía seleccionada, llegando a recopilar los datos a través de la ficha de observación. Los resultados han indicado que, el dimensionamiento alcanzado, en cuanto al objeto de estudio, ha correspondido a poder satisfacer los datos de entrada de CBR del 25%; así como, una cantidad de tráfico de 0.43 * 10^6 EE. Además, se ha concluido que, el diseño que ha sido implementado ha podido salvaguardar las condiciones de tráfico y se ha alcanzado un número estructural de 4.07, el cual ha sido adecuado para las condiciones de durabilidad y estado de conservación esperado, para la vía.

Escobar y Huncho (2017), se han planteado como objetivo general, el realizar el diseño del pavimento flexible de una vía determinada de Santa Rosa, Huancavelica, con la finalidad de poder compensar el grado de exposición que ha sido alcanzado, en cuanto a las condiciones de entorno. La metodología con la que se ha contado ha señalado un tipo de investigación aplicada, en el que se ha considerado con un diseño no experimental y de corte transversal, en donde el objeto de estudio se ha encontrado conformado por las vías de Sachapite; mientras que, los datos han sido recolectados por medio de la ficha de observación y el análisis documental. Como datos de entrada, se ha llegado a mantener un IMD de 467 vehículos al día, en donde el valor de ESAL, fue de 2 289 418 ejes equivalentes, llegando a ser complementado por un valor de CBR de 7.20%. Además, se ha concluido que, el diseño planteado, ha sido de un espesor de carpeta asfáltica de 4 pulgadas, en donde el valor de la subrasante fue de 17 centímetros y la posibilidad de falla, ha sido prevista, como ahuellamiento.

Castillo (2018), se fijó como objetivo general, el realizar el diseño del pavimento flexible de las vías que conforman al pueblo joven Villa Hermosa, a fin de lograr mejorar el escenario en las que se encuentra y optimar la viabilidad. Así mismo, se ha considerado un diseño transversal, con un tipo de investigación aplicada, en donde se ha considerado a diferentes normativas técnicas, para haber

procedido con el diseño total de las vías, llegando a tomar como objeto de estudio, al pueblo joven Villa Hermosa. El estudio topográfico ha expuesto el alcance de una pendiente de 0.20% a 0.40% en la zona urbana, que ha alcanzado una altura superior al nivel del mar, de 42.28 m y habiendo sido representada por un área de 16.80 has. Así mismo, se ha concluido que, la calidad de los suelos ha correspondido a una arena limosa, en donde el valor de CBR esperado, fue del 95%, habiendo alcanzado una cantidad de vehículos diarios de 821 y considerando espesores de carpeta asfáltica de 2 pulgadas, en donde el espesor de la subbase granular, fue de 20 cm.

Zúñiga (2018), se ha trazado como objetivo general, ejecutar el diseño del pavimento flexible, con la finalidad de poder aumentar la calidad de tránsito vehicular y peatonal, en la vía La Paz, localizada en el distrito de La Victoria. El diseño del estudio fue descriptivo, donde se ha conservado un tipo de investigación aplicada, recabando los datos mediante la ficha de observación y la evaluación de normativa técnica, habiendo considerado como objeto de estudio a la vía mencionada anteriormente. Los resultados han señalado que, el valor de IMDA alcanzado, fue de 400 vehículos al día, habiendo considerado un área de estudio, de más de 278 336.040 m². Así mismo, se ha concluido que, la estructura que ha sido planteada ha sido el pavimento flexible, en donde se ha llegado a considerar un espesor de este elemento, de 4 pulgadas, ante la exposición a cantidades de lluvias considerables y el escaso mantenimiento que suele ser recibido.

Además de lo señalado, se puede exponer la siguiente información, acerca de las bases teóricas, quedando expuesto lo siguiente:

Los pavimentos flexibles, son aquellos que cuentan con una estructura total, que tiende a flexionarse, de acuerdo con las cargas que son aplicadas sobre este mismo, en donde la conformación de estos conlleva a que se pueda establecer una serie de composición de capas granulares, verbigracia, la subbase o la base, en la que la carpeta de rodadura está compuesta por materiales bituminosos y aglomerantes (Amaya y Rojas, 2017).

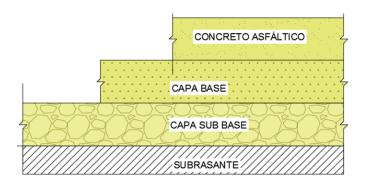


Figura 1. Carpeta estructural

Fuente: Bullón, 2018.

El método de diseño en el que se encuentra basada la conformación del pavimento asfáltico, está representada por el método AASHTO – 93, en donde todo proceso se encuentra basado en diferentes modelos de función de calidad, cargas vehiculares y la resistencia de la subrasante, en cuanto a la búsqueda del cálculo de los espesores (Cárdenas, 2016).

La intención que se tiene, en relación a la aplicación de la metodología, radica en el hecho de que se pueda determinar el número estructural requerido (SN), el cual servirá para poder contar con diferentes posibilidades de diseño, que se basen en alcanzar la alta confiabilidad y mediante el conocimiento de información recolectada de campo; así como, datos de entrada, tales como: desviación estándar, el tráfico, el índice de servicialidad y el mantenimiento o bien conocido como la búsqueda del vida útil (Chicchón, 2018).

Así mismo, al hablar acerca del módulo de resiliencia (Mr), es que este llega a ser conocido como aquella envergadura de rigidez del suelo de subrasante, en el que el cálculo es necesario que estar dispuesto, gracias al indicador que ofrece la normativa misma, la cual puntualiza la aplicación de la siguiente fórmula: MR (lb/in^2) = 2555*CBR^0.64 (Coy, 2018).

Además, el CBR, se define como estudio el cual se usa a fin de lograr valuar la propiedad que tiene un material determinado, que está componiendo el suelo y que transige saber la resistencia de este mismo, obteniendo la medición, por medio de una prueba de placa a escala. Con relación a la subrasante, es que un mínimo va a ser utilizado de CBR permisible de 6%. En cambio, para la subrasante, se

permitirá un valor de CBR del 40% y para el caso de la base, es que se permitirá una valoración del 80% (Ghouse et al., 2017).

Estos valores son los que por lo regular suelen hallarse en los pavimentos, denominados como valores promedio e influyen abiertamente en el diseño de la estructura del pavimento, principalmente en los espesores de la capa, debido a que, entre mayor valor sea alcanzado en el mismo, es que se podrá poseer un menor espesor de capas o en su conjunto, de paquete estructural, con la finalidad de que se pueda establecer el alcance o superación, de los espesores mínimos permisibles (Guaranda, 2017).

El periodo de diseño es considerado como aquel tiempo promedio, que caracteriza al tiempo de vida de un pavimento, dentro de lo que su comportamiento permite el alcance de diferentes alternativas a largo plazo, con la finalidad de que se pueda llegar a satisfacer las diferentes exigencias de servicio, dentro del periodo de diseño mismo y el alcance de un costo razonable. Por lo general, la vida útil de un pavimento flexible es de 20 años, a condición de que se mantenga un nivel adecuado de conservación, quedando expuesto lo siguiente (Loayza y Benitez, 2019):

Tabla 1. Periodos de diseño en función del tipo de carretera

Periodo de Diseño			
(Años)			
30-50			
20- 50			
15 – 25			
10 -20			

Fuente. Morales, 2019.

El número de ejes acumulados llega a ser equivalente a 18000 lb o 80 kn, en que la etapa de diseño corresponda a un conjunto reincidente de los ejes equivalentes de 8.20 tn, soportando la representación de la carga de afluencia más allá del estudio de tráfico (Murga y Zerpa, 2019).

Para el caso de los coeficientes estadísticos de confiabilidad, es que se tiene que tomar en cuenta, los siguientes valores de desviación estándar:

Tabla 2. Coeficiente estadístico de desviación estándar

Tipo de camino	Zonas urbanas	Zonas rurales
Autopistas	85 – 99.9	80 – 99.9
Carreteras de primer orden	80-99	75 – 95
Carreteras secundarias	80 - 95	75 – 95
Caminos vecinales	50 – 80	50 - 80

Fuente. Peraza, 2016.

El valor recomendado de uso de este, para pavimentos flexibles, deberá de estar entre los valores de 0.40 < So < 0.50, siendo usado de forma práctica, un valor de 0.45. Además, en cuanto al diseño, no se puede dejar de lado la variación de la servicialidad, la cual es comprendida como una condición característica del pavimento final, con la finalidad de que este pueda ser seguro y confortable, con relación al usuario final de diseño. Este es conocido como ΔPSI y llega a ser determinado, en función de la disparidad entre el índice de servicio final y el índice de servicio de origen (Porta, 2016).

En relación con el índice medio diario (IMD), esto se define de la forma de cuantía de vehículos promedio que circulan en un punto dado, o periodo de tiempo, que está sujeto al número de vehículos que pasan a través de un área de evaluación determinada, durante un periodo de tiempo específico. Para este caso, llega a ser importante, el hecho de considerar el tipo de vehículo que transita en una determinada zona de evaluación. Mientras que, llega a ser complementado con la estimación del ESAL (equivalent single axle load), el cual es un dato de entrada que llega a provenir del conteo vehicular, el cual deberá de ser dividido para cada carril de diseño (Sierra y Rivas, 2016).

Cuando se habla acerca del trabajo de campo, es que es posible mantener el análisis de levantamiento topográfico y estudio de mecánica de suelos, en el que la primera explana información relativa de la zona de estudio, y detenta como propósito, efectuar el detalle de las eventualidades del terreno, en base a un espacio específico y permaneciendo explicado en un plano, en base a una escala establecida por el investigador o el ingeniero de campo (Tacza y Rodríguez, 2018).

Además de ello, es que las operaciones topográficas, requieren de diferentes datos numéricos de posicionamiento, con la finalidad de poder contar con la ubicación, tanto horizontal, como vertical de un punto determinado, el cual comprende no solo un trabajo de campo, sino un trabajo de gabinete. El primer paso para poder realizar el levantamiento topográfico es la toma directa de los datos, tanto del levantamiento planimétrico; así como, el levantamiento altimétrico (Amaya y Rojas, 2017). Como segundo paso, es que se procederá el cálculo matemático de los datos, en el trabajo de gabinete, con la finalidad de que estos puedan ser expuestos, de forma adecuada, bajo una representación gráfica en planos. Así mismo, es que se deberá de disponer de un recorrido de verificación, con la finalidad de poder realizar la planificación del trabajo de campo, en donde las marcas pueden ser establecidas, para disponer de una poligonal de apoyo y disponer de un concepto explícito sobre la estructura consustancial del terreno (Cárdenas, 2016).

Además, ahondando en información, respecto a los ensayos del estudio de suelos, la cual consigue valer con la especificación del contenido de humedad, entendiéndose como la capacidad que, del suelo, de poder almacenar humedad, en base a la caracterización e incorporación de peso y puede verse relacionado con los límites de consistencia, basándose en el NTP 339.129, en donde el límite líquido (LL) es considerado como aquella variación del estado líquido, con el estado plástico. En tanto que, el límite plástico (LP), pone de relieve la variación del contenido de humedad con la que el suelo cambia a consistencia semisólida. La granulometría, permite la caracterización cuantitativa de los tamaños de suelo, con el que se cuenta en un determinado objeto de estudio. Mientras que, el Proctor modificado, permite hacer una comparación entre el contenido de humedad y la densidad alcanzada, viéndose complementado con el cálculo de CBR (California Berning ratio), en el que el estudio busca la especificación de la resistencia del suelo (Chicchón, 2018).

Por transitabilidad se entiende como aquel nivel de servicio, propio de la condición de servicio final, en donde se buscará que este sea seguro, para el tránsito de personas; así como, para la movilidad vehicular (Del Castillo, 2018).

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

El tipo de investigación fue el aplicado, porque pretendía llevar a cabo el diseño de la estructura del pavimento, de un determinado objeto de estudio, para poder establecer, en definitiva, la posibilidad de mejorar el estado de transitabilidad. Cohen y Gómez (2019), puntualizan a la investigación aplicada, de manera que está enfocada en llegar a la solución, en torno a un problema en particular, al que el manejo empírico del mismo hace posible corroborar su alcance.

De igual forma, el diseño de la investigación fue el transversal, no experimental y descriptivo, convirtiéndose en transversal, por el manejo de la recopilación de datos de campo, en una ocasión singular, en donde los datos globales de entrada ayudaron para el diseño de la estructura del pavimento. Fue considerado como no experimental, debido a que no se pretendió realizar manipulación alguna, acerca de los criterios de diseño, sino que, por el contrario, se recurrió a metodologías comprobadas, para poder proceder con el diseño y conformación final, de la propuesta de pavimentación. Mientras que, se consideró como descriptiva, debido a que, al momento de realizar el diseño del objeto de estudio, es que se buscó conocer las características de esta misma, con la finalidad de poder ofrecer una solución oportuna, a los requerimientos de resistencia y durabilidad (Cohen y Gómez, 2019).

3.2. Variables y operacionalización

Variable Independiente: Diseño de la infraestructura vial de la pavimentación

Definición conceptual: Es considerado de esta forma, al procedimiento basado en la propuesta de una determinada cantidad de espesores a cada una de las capas que componen a la estructura del pavimento, de acuerdo con la normativa AASHTO y demás normativa técnica vigente (Del Castillo, 2018).

Definición operacional: La variable de investigación se centra en la capacidad de recopilar información de campo, a fin de proceder con el diseño de la

estructura del pavimento, en donde se recurrirá a la normativa AASHTO, para ofrecer una propuesta final y viable técnicamente.

Variable Dependiente: Transitabilidad

Definición conceptual: La transitabilidad es definida como aquel nivel de servicio, propio de la condición de servicio final, en donde se buscará que este sea seguro, para el tránsito de personas; así como, para la movilidad vehicular (Del Castillo, 2018).

Definición operacional: La variable en estudio, comprende el grado de influencia que puede llegar a tener, la mejora de la condición final del pavimento, respecto al flujo vehicular.

3.3. Población, muestra y muestreo

Población: La población del presente estudio, está compuesta por las vías que representan al Centro Poblado Ampliación Villa El Sol, el cual se encuentra conformado por un total de 5 kilómetros de vía.

Muestra: El tipo de muestra de la presente investigación, estuvo representado por la caracterización expuesta por el MTC (2018), el cual señala que las calicatas tendrán un espaciamiento máximo de 250 metros lineales; así como, haber contado con una cantidad mínima de 5 unidades. En base a los datos expuestos, es que se pudo establecer el siguiente tamaño muestral:

Longitud: 5 000 ml

Espaciamiento: 250 ml

Cantidad: 20 unidades

Los ensayos que se realizó por cada calicata fueron los siguientes:

Tabla 3. Ensayos estándar

Ensayo	Datos obtenidos	NTP		
Contenido de humedad	Porcentaje de humedad	N.T.P.339.127		
Limite líquido y plástico	L.L y L. P	N.T.P.339.129		
Granulometría	Curva granulométrica	N.T.P.339.128		

Corte directo	Capacidad portante	N.T.P.339.171				
Proctor modificado	Máxima densidad seca y	NTP.339.142				
optimo contenido de						
	humedad					
California Bearning Ratio	CBR	NTP.339.145				
Sales Solubles totales	Porcentajes de sales	NTP.339.152				

Fuente: Elaboración propia, 2021.

Muestreo: El tipo de muestreo fue el intencional o bien conocido como, por conveniencia, debido a que el investigador contó con criterios técnicos, expuestos por la normativa del Ministerio de Transportes y Comunicaciones, en donde se consideró un espaciamiento máximo por cada calicata.

Unidad de análisis: La unidad de análisis, quedó conformada por las vías del Centro Poblado Ampliación Villa El Sol – Distrito de Reque

3.4. Técnicas e instrumentos de recolección de datos

Técnica: La técnica de recolección de datos, se componía de la observación, para lo cual fue necesario utilizar los siguientes medios de recopilación de datos: ficha de estudio topográfico, ficha de estudio de suelos y ficha de estudio de tráfico.

Instrumento: Se recurrió del uso de la ficha de estudio topográfico, con la finalidad de poder caracterizar la superficie del suelo, en donde este sirvió para recolectar información de cotas y coordenadas; así como, la incorporación de fotos representativas del área de estudio. Mientras que, se consideró la ficha de estudio de suelos, en donde quedaron expuestos los datos de caracterización del suelo. Conjuntamente, ejecutándose el uso de la ficha de estudio de tráfico, con el fin de adquirir información sobre el número de vehículos que llega a transitar una determinada vía, en un periodo de tiempo determinado.

3.5. Procedimientos

Como técnica de recogida de datos, es que se planteó el hecho de efectuar una revisión bibliográfica, con la finalidad de poder orientar la investigación hacia los objetivos establecidos y esperados a resolver. Ante ello, es que se tuvo que contar con la recopilación de datos de campo, tales como: la recolección de suelos,

la realización del estudio topográfico y el estudio de tráfico, en donde esta información sirvió para que se realice el diseño oportuno de la estructura del pavimento flexible. Como medida final, es que se calculó la brecha compensada y el análisis económico financiero, en donde se controvirtieron las conclusiones logradas y, por último, es que se esperó preservar de forma clara y concisa, la exposición de conclusiones de la investigación.

3.6. Métodos de análisis de datos

Por lo que respecta al método de análisis de datos, se aplicó método analítico, en donde se recurrió al análisis de la información de campo recolectada; así como, el requerimiento de normativa técnica vigente, con la finalidad de poder cumplir con los espesores mínimos establecidos por el MTC, en cuanto a la carpeta de pavimento asfáltico. Sin embargo, esta investigación contó con el diseño, evaluación y viabilidad de la solución ofrecida, hacia la carente transitabilidad del objeto de estudio.

3.7. Aspectos éticos

En cuanto a los aspectos éticos, fue posible contar con la utilización de información científica, como artículos de investigación y tesis de pregrado y posgrado, donde la contribución teórica de la investigación podría ser mayor. Cabe destacar que el nivel de plagio del texto fue verificado, en la cual se disponía de la cita y paráfrasis correcto de los textos recuperados. Al mismo tiempo, se mantuvo la concordancia de la toma de decisiones técnica asumida, con la normativa técnica vigente.

IV. RESULTADOS

Determinar y efectuar un reconocimiento de campo sobre el estado en que se encuentre el proyecto a realizar

En cuanto al reconocimiento de campo que se ha realizado, se ha determinado la inexistencia de carpeta asfáltica en el ámbito de estudio, lo que ha generado el motivo por el que se ha decidido realizar el proyecto de pavimentación, contando con las siguientes imágenes de evidencia:

Figura 2. Estado del pavimento **Fuente:** Elaboración propia, 2021.

El área de estudio únicamente ha contado con la evidencia de haber estado conformada por vías que han surgido producto del tránsito existente en este, para lo cual se ha generado de igual forma una afectación significativa a la calidad de vida y accesibilidad para las personas.

Realizar los estudios básicos de topografía y mecánica de suelos del flujo vehicular

Tabla 4. Resultado de estudios básicos

	Contenido				Máxima		Calaa	l luma a da d
Гиолио	de	LL	LP	Granulometría	densidad	CBR	Sales	Humedad
Ensayo	humedad	LL	LP	(SUCS)	seca	95%	solubles	óptima
	(%)				(gr/cm3)		%	(%)
C1	3.94	20.70	20.67	SC	1.87	9.8	0.17	12.71
C2	3.89	NP	NP	GP	2.10	22	0.16	9.16
C3	3.11	NP	NP	SP	1.90	6.6	0.19	10.19
C4	2.70	NP	NP	GP	2.14	21.6	0.16	8.15
C5	2.54	21.71	18.57	SM	1.84	6.8	0.18	13.55
C6	4.43	NP	NP	GP	2.12	23.8	0.19	8.92
C7	2.76	NP	NP	GP	2.11	22.2	0.18	9.03
C8	2.86	NP	NP	GP	2.09	22.5	0.19	9.63
C9	4.41	22.22	18.99	SM	1.85	7.3	0.18	13.20
C10	3.99	NP	NP	SP	1.92	6.1	0.19	10.08
C11	2.98	NP	NP	GP	2.13	25.3	0.16	8.68
C12	1.78	NP	NP	GP	2.15	26	0.14	8.12
C13	1.40	NP	NP	GP	2.08	20.3	0.17	9.89
C14	2.29	NP	NP	GP	2.11	22.4	0.19	9.04
C15	3.81	NP	NP	GP	2.13	23.2	0.16	8.26
C16	3.04	NP	NP	SP	1.91	6	0.17	10.19
C17	5.24	NP	NP	GP	2.09	20.2	0.19	9.29
C18	2.98	18.95	17.44	SM	1.83	6.8	0.20	13.89
C19	6.80	NP	NP	GP	2.14	24.4	0.15	8.12
C20	3.06	NP	NP	SP	1.93	6.3	0.14	9.86

Fuente: Elaboración propia, 2021.

Fue posible puntualizar que el contenido de humedad promedio que se alcanzó en el área de estudio ha sido del 3.40%; así mismo, se contó con un límite líquido conformado por un total del 20.895% mínimo, en donde los tipos de suelos más comunes que se encontraron se encontraron en las siguientes clasificaciones

SUCS: SC / GP / SP / SM, llegando a alcanzar un contenido de humedad óptimo del 13.89% y una máxima densidad seca de 2.02 gr/cm3. Mientras que, el valor de CBR fue de 6.00%, en donde la concentración de sales fue de 0.173%.

A continuación, se exponen evidencias de la realización del conteo vehicular:

Tabla 5. Promedio de Número de vehículos por año

Tipo de vehículo	L - V	S	D	Promedio	N° Veh*Año
AUTO	276	131	131	235	85775
STATION WAGON	110	110	110	110	40150
PICK UP	3	3	3	3	1095
PANEL	3	3	3	3	1095
RURAL Combi	1	1	1	1	365
MICRO	0	0	0	0	0
2 E	5	5	5	5	1825
>=3 E	0	5	5	2	730
2 E	5	0	0	4	1460
3 E	0	0	0	0	0
4 E	10	0	0	8	2920
2S1/2S2	0	0	0	0	0
2\$3	10	0	0	8	2920
3S1/3S2	0	0	0	0	0
>= 3\$3	0	0	0	0	0
2T2	5	0	0	4	1460
2T3	5	0	0	4	1460
3T2	5	0	0	4	1460
>=3T3	0	0	0	0	0
Total	438	258	258	391	142715

Fuente: Elaboración propia, 2021.

Fue posible disponer como, para la mayor parte de vehículos, estos han correspondido a estar representados por autos, los cuales han representado un total de 276 vehículos de entre lunes a viernes y un total de 131 para los fines de

semana, siendo continuado por las station wagon, las cuales han contado con una representación de 110 para todos los días en promedio.

Tabla 6. ESAL's

			Factor	Factor			
Tipo de vehículo	TPDA	Año carril		crecimiento	FC	ESAL's	
				tráfico			
AUTO	235	85775	0.5	28.14	0.0001	120.679	
STATION WAGON	110	40150	0.5	28.14	0.0001	56.488	
PICK UP	3	1095	0.5	28.14	0.0559	861.184	
PANEL	3	1095	0.5	28.14	0.0559	861.184	
RURAL	1	365	0.5	28.14	0.0001	0.514	
Combi	'	303	0.5	20.14	0.0001	0.514	
MICRO	0	0	0.5	38.69	0.0001	0.000	
2 E	5	1825	0.5	38.69	0.0001	3.531	
>=3 E	2	730	0.5	38.69	0.0001	1.412	
2 E	4	1460	0.5	38.69	0.0001	2.825	
3 E	0	0	0.5	38.69	0.0001	0.000	
4 E	8	2920	0.5	38.69	0.0001	5.649	
2S1/2S2	0	0	0.5	38.69	0.0001	0.000	
2S3	8	2920	0.5	38.69	0.0001	5.649	
3S1/3S2	0	0	0.5	38.69	0.0001	0.000	
>= 3S3	0	0	0.5	38.69	0.0001	0.000	
2T2	4	1460	0.5	38.69	0.0001	2.825	
2T3	4	1460	0.5	38.69	0.0001	2.825	
3T2	4	1460	0.5	38.69	0.0001	2.825	
>=3T3	0	0	0.5	38.69	0.0001	0.000	
						1927.587	

Fuente: Elaboración propia, 2021.

La solución alcanzada tienen demostrado que el valor de ESAL fue de 1927.587 tn, en donde este ha correspondido a contar con un valor de W82 el cual se ha considerado como 8.20 ton métricas a lo largo del largo de diseño.

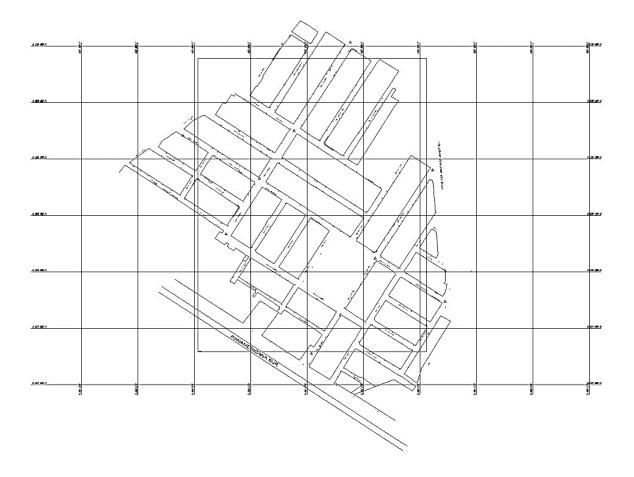


Figura 3. Planimetría

Fuente: Elaboración propia, 2021.

Elaborar el diseño geométrico y estructural del Centro Poblado Ampliación Villa El Sol

En relación con el diseño geométrico de la infraestructura del pavimento, se ha contado con vías previamente conformadas, a consecuencia que las viviendas ya han estado distribuidas adecuadamente dentro del área de estudio, contando con el siguiente planteamiento y yendo acorde con lo planteado en la realidad:

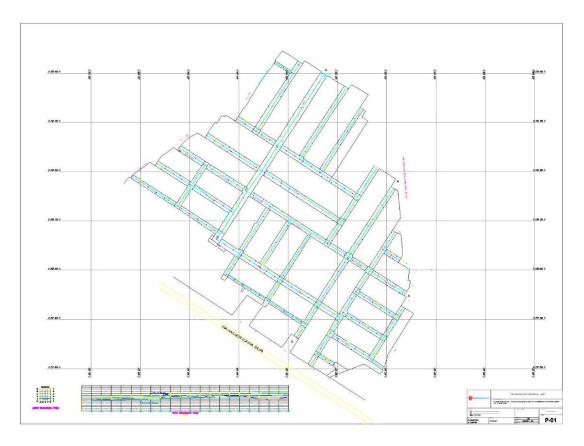


Figura 4. Diseño geométrico del pavimento

Fuente: Elaboración propia, 2021.

En cuanto al diseño de la infraestructura vial, se ha tomado en consideración lo siguiente respecto a caracterización del pavimento, siendo expuesto todo el proceso de cálculo en el Anexo 7 Diseño del pavimento.

Tabla 7. Diseño del pavimento flexible

Pavimento	Flexible		
Suelo de fundación	CBR: 6.00%		
Características subbase	Espesor: 16 cm		
Caracteristicas subbase	CBR: 40%		
Características de la base granular	Espesor: 16 cm		
Características de la base granular	CBR: 80%		
Cornete	Espesor: 8 cm		
Carpeta	Pavimento flexible		

Fuente: Elaboración propia, 2021.

Para el caso del pavimento flexible, se han estimado los subsecuentes criterios de diseño: se ha evidenciado haber contado con una desviación estándar normal de Zr de -0.524 a consecuencia de haber alcanzado una confiabilidad recomendada del 70%, a consecuencia de que, a pesar de haber contado con una cantidad mínima de tránsito, se ha podido generar posibilidad de incrementar esta transitabilidad a consecuencia de la mejora planteada. Así mismo, se ha contado con un valor de So de 0.45 al haber contado con una recomendación promedio de entre 0.40-0.50.

Además, en relación con la diferencia de índice de serviciabilidad, se ha contado con un valor de 1.80, de acuerdo con las recomendaciones establecidas por la normativa y contando con un valor de Po de 3.80 y un valor de Pt de 2.00, en donde se ha mantenido una pendiente de diseño de 0.30%.

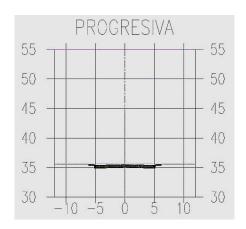


Figura 5. Sección transversal del gráfico

Fuente: Elaboración propia

Realizar el Análisis Económico – financiero del Proyecto de Investigación

Tabla 8. Costo del proyecto

Tipo	ÍTEM	PARTIDA	UNIDAD	METRADO	C.U.	соѕто
	1	OBRAS PRELIMINARES Y				
		PROVISIONALES				
	1.1	OBRAS PRELIMINARES				
1	1.1.1	NIVELACIÓN Y DESBROCE	glb	1.00	3.17	3.17
2	1.1.2	LIMPIEZA PERMANENTE EN OBRA	mes	6.00	3779.69	22678.14
3	1.1.3	TOPOGRAFÍA DURANTE LA EJECUCIÓN	mes	6.00	20890.26	125341.56
	1.1.0	DE LA OBRA	mes	0.00	20000.20	1200+1.00
	1.2	MOVIMIENTO DE TIERRAS				
4	1.2.1	MOVILIZACIÓN Y DESMOVILIZACIÓN DE	glb	1.00	21518.72	21518.72
7	1.2.1	EQUIPOS Y HERRAMIENTAS	gib	1.00	21310.72	21310.72
5	1.2.2	CAMPAMENTO PROVISIONAL DE OBRA	mes	6.00	6100.00	36600.00
5	1.2.2	(OFICINA, ALMACÉN, CASETA VIG., SSHH)	11163	0.00	0100.00	36600.00
6	1.2.3	SEGURIDAD EN EL TRABAJO,	moc	6.00	9500 00	51000.00
0	1.2.3	GUARDIANÍA EN OBRA Y SEÑALIZACIÓN	mes	6.00	8500.00	31000.00
	4	PAVIMENTACIÓN				
	4.1	CALLES Y BERMAS				
63	4.1.1	CORTE DE TERRENO HASTA NIVEL DE	m3	5000.00	4.20	20976.62
03	4.1.1	SUB RASANTE	1113			2037 0.02
64	4.1.2	RELLENO A NIVEL DE SUB RASANTE CON m3		1433.48	14.35	20566.65
0-1	7.1.2	MATERIAL PROPIO	1110	1433.40	14.33	20300.03
66	4.1.3	CONFORMACIÓN DE SUBRASANTE	m2	14395.02	4.48	64473.57
65	4.1.4	MEJORAMIENTO DE SUBRASANTE DE 10	m2	14395.02	9.12	131338.44
03		CMS.	1112	14393.02	3.12	131330.44
67	4.1.5	SUB BASE GRANULAR DE 15 CMS.	m2	14395.02	13.23	190458.85
68	4.1.6	BASE GRANULAR DE 15 CMS	m2	14395.02	19.73	202042 71
00	4.1.0	COMPACTADO EN 2 CAPAS	1112	14395.02	19.73	283943.71
		IMPRIMACIÓN ASFÁLTICA, SUMINISTRO Y				
69	4.1.7	COLOCACIÓN DE CARPETA ASFÁLTICA	m2	14395.02	38.34 55	551905.07
		EN CALIENTE				
70	4.1.8	SUMINISTRO Y COLOCACIÓN DE SLURRY	m2	3938.52	3.50	13784.80
10	4.1.0	SEAL EN BERMAS	1112	J930.32	3.50	13704.00
93	4.1.9	ELIMINACIÓN DE MATERIAL EXCEDENTE	m3	11365.74	56.96	647403.74
	4.2	VEREDAS				
71	4.2.1	CONFORMACIÓN DE SUBRASANTE	m2	17909.17	6.72	120283.80

72	4.2.2	COLOCACIÓN DE AFIRMADO E=10 CM	m2	17909.17	12.86	230385.39
73	4.2.3	EXCAVACIÓN MANUAL PARA UÑA DE VEREDAS	ml	16281.07	2.73	44495.50
74	4.2.4	ENCOFRADO Y DESENCOFRADO PARA VEREDAS	m2	10684.45	21.62	231033.82
75	4.2.5	COLOCACIÓN DE CONCRETO PARA VEREDAS F'C=140 KG/CM2 INC CURADO	m2	17909.17	10.27	183908.78
76	4.2.6	BRUÑAS DE VEREDAS	ml	6576.11	7.24	47579.18
77	4.2.7	JUNTAS DE DILATACIÓN C/MORTERO ASFÁLTICO	ml	3291.16	4.85	15972.92
	4.3	RAMPAS				
78	4.3.1	CONFORMACIÓN DE SUBRASANTE PARA RAMPAS	m2	145.54	6.77	985.81
79	4.3.2	COLOCACIÓN DE AFIRMADO PARA RAMPAS	m2	145.54	12.96	1885.94
80	4.3.3	ENCOFRADO Y DESENCOFRADO PARA RAMPAS	m2	89.27	15.84	1413.88
81	4.3.4	COLOCACIÓN DE CONCRETO PARA RAMPAS DE H=15 CM F'C=140KG/CM2 INC CURADO	m2	145.54	16.12	2345.97
76	4.3.5	BRUÑA EN RAMPAS	ml	1322.00	7.24	9564.88
82	4.3.6	JUNTAS DE DILATACIÓN C/MORTERO ASFÁLTICO	ml	423.08	4.85	2053.33
	6	OTROS				
	6.1	ETAPA DE CONSTRUCCIÓN				
104	6.1.1	HUMEDECIMIENTO DE ZONAS DE MOVIMIENTO DE TIERRAS	GLB	1.00	9122.28	9122.28
105	6.1.2	IMPLEMENTACIÓN DE PROTECTORES ACÚSTICOS	GLB	1.00	3729.56	3729.56
106	6.1.3	MONITOREO DE DECIBELES	GLB	1.00	845.42	845.42
107	6.1.4	IMPLEMENTACIÓN DE DEPÓSITOS PARA RESIDUOS SÓLIDOS (CLASIFICADOS)	GLB	1.00	6922.28	6922.28
109	6.1.5	ELIMINACIÓN DE RCD	GLB	1.00	6000.00	6000.00
110	6.1.6	DISPOSICIÓN FINAL DE RESIDUOS SOLIDOS	GLB	1.00	500.00	500.00
111	6.1.7	EXTINTORES	UND	15.00	126.67	1900.09
	6.2	PROGRAMA DE CAPACITACIÓN AMBIENTAL				

112	6.2.1	PROGRAMA DE CAPACITACIÓN PARA LOS CIUDADANOS		1.00	3000.00	3000.00
113	6.2.2	PROGRAMA DE SALUD OCUPACIONAL	MES	6.00	1200.00	7200.00
114	6.2.3	PROGRAMA DE PREVENCIÓN Y CONTROL DE RIESGOS LABORALES		6.00	1800.00	10800.00
115	6.2.4	4 PROGRAMA DE CONTINGENCIAS		6.00	1100.00	6600.00
	6.3	CIERRE DE OBRA				
108	6.3.1	REVEGETACIÓN	GLB	1.00	1839.49	1839.49
116	6.3.2	PLAN DE COMPENSACIÓN AMBIENTAL	GLB	1.00	2500.00	2500.00
					Costo Parcial	S/3,134,861.37
					U	S/313,486.14
					GG	S/783,715.34
					Sub total	S/4,232,062.85

Costo Total S/4,9

IGV

S/4,993,834.17

S/761,771.31

Fuente: Elaboración propia, 2021.

El costo total del proyecto se ha fijado en S/4 993 834.17 nuevos soles, dentro de los cuales se ha estipulado el costo de las obras preliminares y provisionales, el costo de la pavimentación en sí mismo y otro tipo de gastos, relacionados directamente con el programa de compensación ambiental.

Así mismo, el análisis costo beneficio será el siguiente:

Tabla 9. Balance económico de la inversión

PERIODO	0	1	2	3	4	5
		1747841	1765320	1782973	1800803	1818811
INGRESOS	0	.959	.379	.582	.318	.351
		1747841	1765320	1782973	1800803	1818811
VENTA (AHORRO POST)		.959	.379	.582	.318	.351
VALOR RESIDUAL ACTIVOS						
FIJOS		0	0	0	0	0
VALOR RESIDUAL CAPITAL						
DE TRABAJO	0					
	4993834.	209741.	209741.	209741.	209741.	209741.
EGRESOS	169	0351	0351	0351	0351	0351

	4993834.					
INVERSION:	169					
	4993834.					
TANGIBLES	17					
INTANGIBLES	0					
CAPITAL DE TRABAJO	0					
		9987.66	9987.66	9987.66	9987.66	9987.66
DEPRECIACION TANGIBLES		8338	8338	8338	8338	8338
AMORTIZACION INTANGIBLE		0	0	0	0	0
COSTOS DIRECTOS (GASTO		199753.	199753.	199753.	199753.	199753.
PRE)		3668	3668	3668	3668	3668
COSTOS INDIRECTOS		0	0	0	0	0
		199753.	199753.	199753.	199753.	199753.
GASTOS OPERATIVOS	0	367	367	367	367	367
	-					
FLUJO NETO ANTES DE	4993834.	1538100	1555579	1573232	1591062	1609070
ІМРТО.	17	.92	.34	.55	.28	.32
		430668.	435562.	440505.	445497.	450539.
IMPTO. (28%)		259	216	113	439	689
	-					
	4993834.	1107432	1120017	1132727	1145564	1158530
FLUJO ECONÓMICO	17	.67	.13	.43	.84	.63
		9987.66	9987.66	9987.66	9987.66	9987.66
DEPRECIACIÓN	0	834	834	834	834	834
AMORTIZACIÓN	0	0	0	0	0	0
ELLIO DE CATA	4002024	4407420	4420047	4420707	4445564	1150500
FLUJO DE CAJA ECONÓMICO	4993834.	1107432	1120017	1132727	1145564	1158530
ECONOMICO	17	.67	.13	.43	.84	.63
	4993834.	1107/32	1120017	1130707	11/5564	1158530
					1 1 7	1100000
ACUMULADO	169	.665	.127	.434	.844	.628

Fuente: Elaboración propia, 2021.

Se puede señalar que, desde el primer año de la construcción del pavimiento, se puede prever mejoras en el ámbito económico y calidad de vida de la población del 35% del costo invertido, alcanzando beneficios para la población de más de S/1 107 432.65 en toda el área de influencia.

Tabla 10. Datos de entrada para el cálculo de VAN y TIR

COK	1.12%	0.0112	Costo de oportunidad
ra	2.99%	0.0299	Tasa de interés anual activa
R	2.41%	0.0241	Tasa de riesgo
Ka	0.5		Proporción de la inversión financiada por terceros
Кр	0.5		Proporción de la inversión financiada con aporte propio
t	28.00%	0.2800	Impuesto a la renta
dF	0.028414	Tasa de des	cuento económico
dF	2.84%		
dE	0.0326	Tasa de des	cuento financiero
dE	3.26%		

Fuente: Elaboración propia, 2021.

Tabla 11. Determinación del VAN / TIR

VANE	S/ 208665.12	nuevos soles
TIRE	4.32%	
B/CE	8.67	

AÑO	UNIDAD	PROYECTO	RECUPERACIÓN	PRC	AÑOS	MESES	DÍAS
	Nuevo sol	-S/ 4993834.17	-S/ 4993834.17				
1	Nuevo sol	S/ 1107432.67	-S/ 3886401.50				
2	Nuevo sol	S/ 1120017.13	-S/ 2766384.38				
3	Nuevo sol	S/ 1132727.43	-S/ 1633656.94				
4	Nuevo sol	S/ 1145564.84	-S/ 488092.10	4.42	4.00	5.00	2.00
5	Nuevo sol	S/ 1158530.63	S/ 670438.53				

Fuente: Elaboración propia, 2021.

El valor actual neto (VAN) nos permitirá a poner al día los cobros y pagos del proyecto de inversión privada para el diseño, con el fin de saber la existencia de ganancias o pérdidas respecto a la inversión. A tal efecto, se tuvo en cuenta la tasa de actualización económica establecido en el punto anterior, dando lugar a un proyecto positivo al mostrar un VAN de S/ 208 665.12 que representa las ganancias

descontadas de los egresos y la inversión total de ingresos. Por consiguiente, cabe afirmar que el proyecto es económicamente viable.

La Tasa Interna de Retorno es la encargada de hacer que el VAN sea igual cero, en búsqueda que el TIR resulte ser mayor a la tasa mínima de retorno a fin de confirmar que el proyecto sea factible. En este caso, la TIR es mayor que la tasa de descuento económica, teniendo un 4.32% y sustentando la viabilidad del proyecto.

La Tasa Interna de Retorno es la encargada de hacer que el VAN sea igual cero, en búsqueda que el TIR resulte ser mayor a la tasa mínima de retorno a fin de confirmar que el proyecto sea factible. En este caso, la TIR es mayor que la tasa de descuento económica, teniendo un 2.84% y sustentando la viabilidad del proyecto

Para la relación beneficios costo financiero se tomó en cuenta el valor presente de los ingresos y egresos, lo cual da como resultado 8.67 y como es mayor a uno, el proyecto es rentable financieramente, significa que por cada dólar que se invierta se gana 7.67 dólares.

El tiempo requerido para recuperar el capital es de 4 años 5 mes con 2 días.

Elaborar el cálculo de la brecha

En cuanto al cálculo de la brecha, se ha podido establecer que, con el diseño de una nueva infraestructura vial, se ha podido mejorar la transitabilidad de más de 5000 metros lineales de vía pavimentada, favoreciendo de esta forma el libre tránsito de vehículos pesados, combis y una mayor cantidad de vehículos, debido a que estos contarán con mayores facilidades para ingresar al centro poblado.

V. DISCUSIÓN

Los resultados en cuanto al reconocimiento de campo han demostrado que las condiciones de vía no solo han sido deplorables, sino que no se ha contado con la conformación de una vía como tal, sino que esta ha estado conformada únicamente con tramos que han correspondido a ser la consecuencia del paso prolongado de vehículos, a consecuencia de la carencia de carpeta asfáltica, siendo únicamente trocha carrozable. Así mismo, Montealegre y Betancourt (2019), ha evidenciado que más del 70% de las vías que han estado afirmadas en la investigación de los autores, no solo afectan la calidad del tráfico experimentado por las familias que viven en la zona de estudio, sino que ello ha generado la incomodidad de la población y ha generado un efecto negativo significativo hacia la conformación de negocios locales, debido a que la carencia de demás servicios básicos ha conllevado a esta consecuencia.

Mientras que, Amaya y Rojas (2017), han definido a las trochas carrozables como aquellas vías que cuentan con la mínima clasificación, en donde el IMDA que las ha caracterizado ha sido inferior a los 200 vehículos por día; mientras que, la superficie que la conforma suele ser afirmada o no afirmada, solo bastando con el trazo de una vía por la confluencia de vehículos. Además de ello, ha sido requerido por Cárdenas (2016), la conformación de una vía de pavimento flexible con la intención de mejorar el nivel de transitabilidad de la población que habita sobre este mismo, en donde el empleo de la metodología AASHTO – 93 ha permitido que se pueda generar un proceso de gestión de calidad que conlleve a poder establecer la conformidad en cuanto a distribución de cagas y establecer una resistencia adecuada hacia la vía conformada, en cuanto a la búsqueda de determinar el valor de espesor.

En relación con los estudios básicos, los realizados fueron la evaluación de la topografía del terreno, el conocimiento de la cantidad de tráfico que atraviesa una determinada vía y la realización del estudio de mecánica de suelos, en donde se ha podido exponer que, dentro de las características más comunes, se ha podido determinar que el contenido de humedad promedio que se alcanzó en el área de estudio ha sido del 3.40%; así mismo, se contó con un límite líquido conformado por un total del 20.895% mínimo, en donde los tipos de suelos más comunes que

se encontraron se encontraron en las siguientes clasificaciones SUCS: SC / GP / SP / SM, llegando a alcanzar un contenido de humedad óptimo del 13.89% y una máxima densidad seca de 2.02 gr/cm3. Mientras que, el valor de CBR fue de 6.00%, en donde la concentración de sales fue de 0.173%. Además de ello, Suárez (2017), ha evidenciado que la solicitación de carga de las vías analizadas fue de 43 769 350 repeticiones con equivalencia de 8.20 toneladas, en donde el valor de CBR promedio con el que se diseñó fue del 1.46%, habiendo tenido que compensar ello con el reemplazo de nuevo material con mayor capacidad resistente. Mientras que, Chicchón (2018), ha expuesto que en relación con la metodología de diseño, esta se ha centrado en el el hecho de que se pueda determinar el número estructural requerido (SN), el cual servirá para poder contar con diferentes posibilidades de diseño, que se basen en alcanzar la alta confiabilidad y mediante el conocimiento de información recolectada de campo; así como, datos de entrada, tales como: la desviación estándar, el tránsito, el índice de servicialidad y el mantenimiento o bien conocido como la búsqueda del tiempo de vida.

Así mismo, los resultados que se obtuvieron en cuanto al valor de ESAL fue de 1927.587 tn, en donde este ha correspondido a contar con un valor de W82 el cual se ha considerado como 8.20 ton métricas a lo largo del largo de diseño, contando con cotas de entre 35 a 45 metros sobre el nivel del mar, siendo esta de preferencia una superficie plana. Sánchez (2019), dentro del cálculo que ha realizado, se ha podido encontrar una cantidad de tráfico de 0.43 * 10^6 EE, en donde el diseño implementado contó con un número estructural de 4.07, contando con adecuadas condiciones de durabilidad y estando relacionado con el estado de conservación; mientras que, Coy (2018) al hablar acerca del módulo de resiliencia (Mr), es que este llega a ser conocido como aquella medida de rigidez del suelo de sub rasante, en donde el cálculo deberá de estar establecido, mediante la recomendación que ofrece la normativa misma, la cual señala la aplicación de la siguiente fórmula: MR (lb/in^2) = 2555*CBR^0.64.

En relación con el diseño geométrico y estructural del Centro Poblado Ampliación Villa El Sol, se ha determinado que para el caso del pavimiento flexible se ha contado con un valor de CBR del 6% para el suelo de fundación, en donde el espesor fue de 16 cm con un valor de CBR del 40%, una base granular de 16 cm

con un CBR del 80%, en donde el espesor de la carpeta se ha contado con un espesor de 8 cm, para lo cual Escobar y Huncho (2017), han señalado que el espesor con el que ese contó para el caso de la carpeta asfáltica fue de 4 pulgadas, en donde el valor de subrasante fue de 17 cm y en relación con la posibilidad de falla, se ha contado con la incidencia del ahuellamiento, en donde Ghouse et al. (2017) ha expuesto que el CBR, es un ensayo que sirve para poder evaluar la calidad que tiene un material determinado, el cual se encuentra conformando el suelo y que permite conocer la resistencia de este mismo, obteniendo la medida, a través de un ensayo de placa a escala. Con relación a la subrasante, es que se usará un mínimo de CBR permitido de 6%. Mientras que, para la subrasante, es que se permitirá un valor de CBR del 40% y para el caso de la base, es que se permitirá una valoración del 80%.

Además, dentro de los parámetros de diseño que se consignaron, se contó con una desviación estándar normal de Zr de -0.524 a consecuencia de haber alcanzado una confiabilidad recomendada del 70%, a consecuencia de que, a pesar de haber contado con una cantidad mínima de tránsito, se ha podido generar posibilidad de incrementar esta transitabilidad a consecuencia de la mejora planteada. Así mismo, se ha contado con un valor de So de 0.45 al haber contado con una recomendación promedio de entre 0.40 – 0.50, en donde Castillo (2018), ha contado con un estudio topográfico que ha puesto en evidencia una pendiente promedio de entre 0.20% a 0.40% en la zona urbana, contando con una altura promedio de 42.28 metros y con un CBR alcanzado del 95%. Además, Guaranda (2017) ha señalado que los valores de diseño son los que normalmente se encuentran en los pavimentos, conocidos como valores promedio y llegan a influir directamente en el diseño de la estructura del pavimento, principalmente en los espesores de la capa, debido a que, entre mayor valor sea alcanzado en el mismo, es que se podrá poseer un menor espesor de capas o en su conjunto, de paquete estructural, con la finalidad de que se pueda establecer el alcance o superación, de los espesores mínimos permisibles.

Así mismo, el costo total del proyecto será de S/ 4 993 834.17 nuevos soles, en donde el análisis costo beneficio ha evidenciado contar con retribuciones económicas desde el primer año de construcción, en donde se ha contado con un

periodo de diseño de 25 años y se ha contado con un VAN de S/208 665.12 nuevos soles, en donde el valor de TIR fue del 4.32%, alcanzando a recuperar 7.67 dólares por cada dólar invertido, en donde Zúñiga (2018), ha señalado que todo proyecto de inversión cuenta con una retribución a largo plazo, mediante la cual se pueda generar no solo una consecución de este periodo de vida en relación con el mantenimiento, sino que se genera un efecto rebote relacionado con la venta económica y desarrollo social de la sociedad en sí misma.

Además, se ha podido compensar la brecha de transitabilidad, habiendo diseñado el pavimento para soportar un total de 150 001 a 300 000 ejes equivalentes, llegando a haber compensado ello con la pavimentación de más de 5000 metros lineales. Ante ello, es preponderante exponer el mantenimiento que se puede generar para evitar la afectación significativa del objeto de estudio, en donde Guaranda (2017) ha señalado que el periodo de diseño, es considerado como aquel tiempo promedio, que caracteriza al tiempo de vida de un pavimento, dentro de lo que su comportamiento permite el alcance de diferentes alternativas a largo plazo, con la finalidad de que se pueda llegar a satisfacer las diferentes exigencias de servicio, dentro del periodo de diseño mismo y el alcance de un costo razonable.

VI. CONCLUSIONES

Se ha concluido que, las condiciones de campo actuales han evidenciado únicamente la conformación de una trocha carrozable, en donde esta solo ha contado con la delimitación por el tránsito existente en la zona de estudio, la cual ha tenido que conformarse con el pasar del tiempo, en donde el nivel de transitabilidad fue inadecuó, generando afectaciones a la calidad de vida de la población.

Así mismo, se ha expuesto que el suelo sobre el que se ha conformado el diseño de la pavimentación fue plana y regular, en donde el valor de máxima densidad seca fue de 2.02 gr/cm3, con un contenido de humedad óptimo del 13.89%, en donde el valor de CBR fue de 6.00% y contando con una concentración de sales de 0.173, habiendo expuesto un valor de ESAL de 1927.587 tn.

Además, el diseño de la pavimentación se ha caracterizado por haber contado con un valor de CBR del 6% en el suelo de fundación, con un espesor de 16 cm para la subbase con un CBR del 40%, en donde el espesor de la base granular fue de 16 cm con un CBR del 80% y un espesor de pavimento de 8 cm.

Mientras que, se ha concluido que el análisis costo beneficio ha expuesto un costo integral de S/4 993 834.17 nuevos soles, con un valor de VAN de S/208 665.12 nuevos soles, con un valor de TIR de 4.32%, un B/C de 8.67 y un periodo de retorno de 4 años, 5 meses y 2 días.

En cuanto al cálculo de la brecha, se ha establecido que se ha mejorado el nivel de transitabilidad con el diseño de la carpeta del pavimento en 5000 metros lineales de vía.

VII. RECOMENDACIONES

Se recomienda a la Municipalidad del Distrito de Reque, el evaluar la propuesta diseñada en la presente investigación, con la finalidad de presentar un proyecto de inversión con dicha sustentabilidad técnica, en donde se pueda promover la mejora de la transitabilidad del área de estudio.

Mientras que, se recomienda a la Municipalidad del Distrito de Reque, el poder plantear una verificación de los datos de campo recolectados, al menos del 30% de las calicatas, con la finalidad de poder contar con la validación técnica de la caracterización del suelo.

Además, se recomienda a demás investigadores, el desarrollar una comparativa entre el diseño del pavimento rígido y del pavimento flexible, con la intención de poder establecer una comparativa técnica y económica, en pleno entendimiento de la carencia de mantenimiento que se realiza a este tipo de vías.

Así mismo, se recomienda realizar una actualización de los costos, a consecuencia de la variabilidad que se ha encontrado en el último año, en cuanto al costo de materiales de construcción.

Mientras que, se recomienda realizar un nuevo conteo vehicular, después de haber construido o implementado la pavimentación, con la finalidad de poder contar con la evaluación de la mejora de transitabilidad alcanzada.

REFERENCIAS

- Ahmed, I. (2013). Road infrastructure and road safety. Transport and Communications Bulletin for Asia and the Pacific, 83, 19 25. Recuperado de https://www.unescap.org/sites/default/files/bulletin83_Article-3.pdf.
- Amaya, A. y Rojas, E. (2017). Análisis Comparativo Entre Metodologías Vizir Y Pci Para La Auscultación Visual De Pavimentos Flexibles En La Ciudad De Bogotá (Tesis de pregrado). Universidad Santo Tomás: Bogotá.
- Blaauw, S., Maina, J., Mturi, G., & Visser, A. (2022). Flexible pavement performance and life cycle assessment incorporating climate change impacts.

 Transportation Research Part D: Transport and Environment, 104.

 Recuperado de https://doi.org/10.1016/j.trd.2022.103203
- Bueno, P.; Vasallo, J. y Cheung, K. (2014). Road infrastructure design for optimizing sustainability. Cuadernos Tecnológicos de la Plataforma Tecnológica Española de la Carretera (PTC) Madrid. Recuperado de https://www.upm.es/recursosidi/wp-content/uploads_kairos/ficha_297/ficha_297_doc_10.pdf
- Bullón, K. (2018). Análisis comparativo de las metodologías PCI y VIZIR en la evaluación superficial del pavimento flexible, Lima 2018 (Tesis de pregrado). Universidad César Vallejo: Lima. Recuperado de http://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/45984/Bullon_L KM-SD.pdf?sequence=1&isAllowed=v
- Cárdenas, J. (2016). Determinación Y Evaluación De Las Patologías Del Pavimento Flexible, Para Obtener El Índice De Integridad Estructural Del Pavimento Flexible Y Condición Operacional De La Superficie De Rodadura De La Avenida Carlos La Torre Cortéz, Distrito De Huanta, Provincia De Huanta, Región Ayacucho Agosto 2016 (Tesis de pregrado). Universidad Católica Los Ángeles Chimbote: Chimbote. Recuperado de https://repositorio.uladech.edu.pe/handle/20.500.13032/1294.
- Carrillo, L.y Zambrano, N. (2019). Evaluación Superficial del Pavimento Flexible de la CA. Pascual Saco y la CA. Los Naranjos, por el método del PCI, distrito

- de Chiclayo, provincia de Chiclayo, región Lambayeque. (tesis de pregrado). Universidad Nacional Pedro Ruíz Gallo. Recuperado de https://repositorio.unprg.edu.pe/handle/20.500.12893/8805?show=full.
- Castillo, M. (2018). Diseño del pavimento flexible y veredas en el pueblo Joven Villa Hermosa 5to sector, Distrito José Leonardo Ortiz Lambayeque 2018 (Informe de pregrado). Universidad César Vallejo: Chiclayo.
- Chicchón, E. (2018). Aplicación De Las Metodologías Pci Y Vizir En La Evaluación Del Estado Del Pavimento Flexible De La Vía De Evitamiento Sur De La Ciudad De Cajamarca (Tesis de pregrado). Universidad Privada del Norte: Truiillo.
- Conza, D. (2016). Evaluación de las fallas de la carpeta asfáltica mediante el método PCI en la Av. Circunvalación Oeste de Juliaca. (Tesis de pregrado). Universidad Peruana Unión: Lima.
- Correa, M. y Del Carpio, L. (2019). Evaluación PCI y propuesta de intervención para el pavimento flexible del Jirón Los Incas de Piura. (Tesis de pregrado). Universidad de Piura.
- Coy, O. (2018). Evaluación superficial de un pavimento flexible de la calle 134 entre carreras 52ª a 53c comparando los métodos VIZIR y PCI (Tesis de pregrado). Universidad Militar Nueva Granada: Colombia. Recuperado de https://repository.unimilitar.edu.co/bitstream/handle/10654/16508/CoyPined aOscarMauricio2017.pdf.pdf?sequence=1
- Doria, Z. y De La Cruz, J. (2016). Cálculo del Índice de Condición aplicado al pavimento flexible, en el Jr. Jorge Chávez en la ciudad de Tarapoto Barrio Huayco, provincia de San Martín, departamento de San Martín y propuesta de solución. (Tesis de pregrado). Universidad Nacional de San Martín: Tarapoto.
- Escobar, L. y Huncho, J. (2017). Diseño de pavimento flexible, bajo influencia de parámetros de diseño debido al deterioro del pavimento en Santa Rosa Sachapite, Huancavelica 2017 (Informe de pregrado). Universidad Nacional de Huancavelica: Huancavelica.

- Gonzales, C. (2015). Fallas en el Pavimento Flexible de La Avenida Vía de Evitamiento Sur, Cajamarca 2015. (Tesis de pregrado). Universidad Privada del Norte: Cajamarca.
- Ghouse, M.; Mirza, A.; Malik, M.; Jawed, A. y Mohammed, A. (2017). Failures in Flexible Pavements and Remedial Measures. Revista de International Journal of Research, 4 (1), 945 952. Recuperado de https://www.semanticscholar.org/paper/Failures-in-Flexible-Pavements-and-Remedial-GhouseAliKhanH-Javeed/361177a48e9957334c35676aa70cd2fe8cd65efd
- Guaranda, B. (2017). Análisis Comparativo De Los Métodos Vizir Pci Aplicada En Pavimento Flexible Vía Jipijapa La Mona, Cantón Jipijapa (Tesis de pregrado). Universidad Estatal del Sur de Manabí: Ecuador.
- Hafizyar, R. Y Mosaberpanah, M. (2018). Evaluation of flexible road pavement condition index and life cycle cost analysis of pavement maintenance: A case study in Kabul Afghanistan. International Journal of Scientific & Engineering Research, 2018, vol. 9, no 8, p. 1909-1919.
- Kim, R. y Sha, A. (2017). Main flexible pavement and mix design methods in Europe and challenges for the development of an European method. Journal of Traffic and Transportation Engineering. Revista de Journal of Traffic and Transportation Engineering, 4 (4), 316 – 346. Recuperado de https://www.sciencedirect.com/science/article/pii/S2095756416303002
- Kan, W. (2015). Development of PCI-based Pavement Performance Model for Management of Road Infrastructure System. (undergraduate thesis). Arizona State University: USA. Recuperado de https://www.proquest.com/openview/c800d53ee32e763a56fd8c3c0ed6f0f3/ 1?pq-origsite=gscholar&cbl=18750
- Karballaeezadeh, N., Ghasemzadeh, H., Mohammadzadeh, D., & Shamshirband, S. (2020). Estimation of flexible pavement structural capacity using machine learning techniques. Frontiers of Structural and Civil Engineering, 14, 1083-1096. Recuperado de https://link.springer.com/article/10.1007/s11709-020-0654-z.

- Leguía, P. y Pacheco, H. (2016). Evaluación superficial del pavimento flexible por el método Pavement Condition Index (PCI) en las vías arteriales: Cincuentenario, Colón y Miguel Grau (Huacho Huaura Lima). (Tesis de pregrado). Universidad San Martin de Porres: Lima.
- Loayza, C. y Benites, J. (2019). Evaluación del Pavimento Flexible Mediante Métodos Del Pci y Vizir en el Tramo de La Carretera de Monsefu Puerto Etén (Tesis de pregrado). Universidad César Vallejo: Chiclayo. Recuperado de http://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/37808/Guevara _CRE.pdf?sequence=1&isAllowed=y
- Ministerio de Transportes y Comunicaciones (2018). Manual de Carreteras (Informe Técnico). MTC: Lima. Recuperado de https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales. html
- Ministerio de Obras Públicas y Comunicaciones. (2016). Identificación de fallas en pavimentos y técnicas de reparación (Catálogo de fallas). Departamento de Administración y evaluación de pavimentos: Republica Dominicana.
- Montealegre, W. y Betancourt, C. (2019). Diseño de un pavimento flexible por el método AASHTO utilizando como capa de rodadura un asfalto natural y chequearlo por el método racional (Informe de pregrado). Universidad Cooperativa de Colombia: Colombia. Recuperado de https://repository.ucc.edu.co/bitstream/20.500.12494/13528/1/2019_%20Di se%c3%b1o Pavimento %20Racional.pdf
- Morales, M. (2019). Comparación de los métodos PCI y VIZIR en la evaluación de fallas del pavimento flexible de la avenida Aviación de la ciudad de Juliaca (Tesis de pregrado). Universidad Peruana Unión: Juliaca. Recuperado de https://repositorio.upeu.edu.pe/bitstream/handle/UPEU/1956/Mayuj_Tesis_Licenciatura_2019.pdf?sequence=1&isAllowed=y
- MTC (2013). Manual de carreteras: Suelos, geología, geotécnica y pavimentos (Informe técnico). MTC: Lima. Recuperado de http://transparencia.mtc.gob.pe/idm_docs/P_recientes/4515.pdf

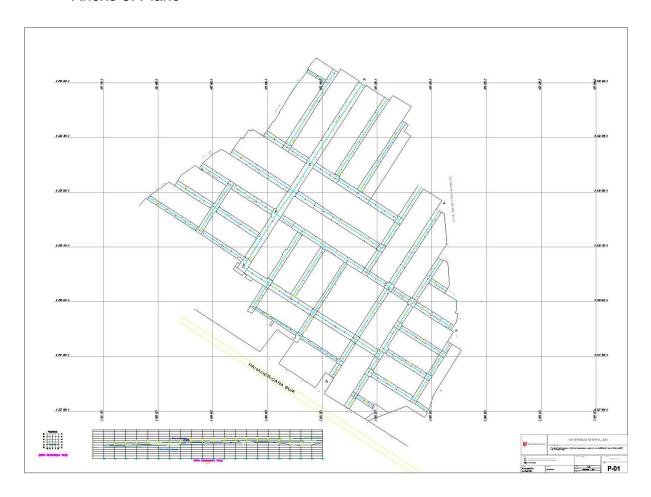
- Muñoz L. (2018). Evaluación superficial del pavimento flexible del tramo 3 de la carretera interoceánica norte Perú Brasil aplicando el método PCI. (Informe de Pregrado). Universidad Privada del Norte: Lima. Recuperado de https://repositorio.upn.edu.pe/bitstream/handle/11537/14407/MU%c3%91O Z%20SALAZAR%20LUIS%20ANGEL.pdf?sequence=4&isAllowed=y
- Murga, C y Zerpa, R (2019). Determinación del estado de conservación superficial del pavimento flexible aplicando los métodos del PCI y VIZIR en la Avenida Costa Rica y Prolongación César Vallejo, Trujillo. (Tesis de pregrado) Universidad Privada Antenor Orrego.
- Nguyen, T. (2020). Road infrastructure design towards passenger ride comfort for autonomous public transport. (Tesis de pregrado). Universidad Tecnológica de Nanyang: Singapur. Recuperado de https://dr.ntu.edu.sg/handle/10356/137426
- Peraza, A. (2016). Evaluación de un tramo de la carretera rural Santa Clara entronque Vuelta aplicando el método "Pavement Condition Index" y los métodos cubanos (Tesis de pregrado). Universidad Central Marta Abreu de Las Villas: Santa Clara. Recuperado de https://dspace.uclv.edu.cu/bitstream/handle/123456789/6892/Tesis%20Ara say%20Peraza.pdf?sequence=1&isAllowed=y
- Porta, S. (2016). Evaluación y comparación de metodologías índice de condición de pavimentos (PCI) y visión e inspección de zonas e itinerarios en riesgo (VIZIR) en la avenida mariscal castilla, tramo: fundo el porvenir -La Victoria (Tesis de pregrado). Universidad Nacional del Centro del Perú: Huancayo.
- Psalmen, R. y Sejahtera M. (2019). Study of Pavement Condition Index (PCI) relationship with International Roughness Index (IRI) on Flexible Pavement. International Conference on Sustainable Civil Engineering Structures and Construction Materials: Indonesia. Recuperado de: https://www.matecconferences.org/articles/matecconf/pdf/2019/07/matecconf_scescm2019_0 3019.pdf
- Qiao, Y., Dawson, A., Parry, T., Flintsch, G., & Wang, W. (2020). Flexible Pavements and Climate Change: A Comprehensive Review and

- Implications. Sustainability, 12(3). Recuperado de: https://doi.org/10.3390/su12031057.
- Salazar, A. (2019). Evaluación de las patologías del pavimento flexible aplicando el método PCI, para mejorar la transitabilidad de la carretera Pomalca-Tumán. (Tesis de Pregrado). Universidad Cesar Vallejo: Chiclayo. Recuperado de https://repositorio.ucv.edu.pe/handle/20.500.12692/40648.
- Sánchez, O. (2019). Diseño de pavimento empleando el método AASHTO 93 para el mejoramiento de la carretera Ayacucho Abancay. Tramo: Ayacucho km. 0+000 km. 50+000 (Informe de pregrado). Universidad Nacional Federico Villarreal: Lima. Recuperado de http://repositorio.unfv.edu.pe/bitstream/handle/UNFV/3306/UNFV_SANCHE Z_VASQUEZ_OSCAR_ALEJANDRO_TITULO_PROFESIONAL_2019.pdf? sequence=1&isAllowed=y
- Shao, Z.; Jenkins, G. y Oh, E. (2017). Assessing the impacts of climate change on road infrastructure. Revista de International Journal of GEOMATE, 13 (38), 120 128. Recuperado de file:///C:/Users/Manuel/Downloads/120-128-72099-Erwin-Oct-2017-g1.pdf
- Sierra, C. y Rivas, A. (2016). Aplicación Y Comparación De Las Diferentes Metodologías De Diagnostico Para La Conservación Y Mantenimiento Del Tramo Pr 00+000 Pr 01+020 De La Vía Al Llano (Dg 78 Bis Sur Calle 84 Sur) En La Upz Yomasa (Tesis de pregrado). Universidad Católica de Colombia: Colombia. Recuperado de https://repository.ucatolica.edu.co/bitstream/10983/13987/4/TRABAJO%20 DE%20GRADO%20VIZIR%20Y%20PCI%202016%20.pdf
- Suárez, J. (2017). Diseño de la estructura de un pavimento flexible por medio de la implementación del método AASTHO-93, para la ampliación del costado occidental de la autopista norte desde la calle 245 (el buda) hasta la caro (Informe de pregrado). Universidad Militar Nueva Granada UMNG: Bogotá. Recuperado de https://repository.unimilitar.edu.co/bitstream/handle/10654/16554/SuarezLo pezJavierSteven2017.pdf?sequence=1&isAllowed=y

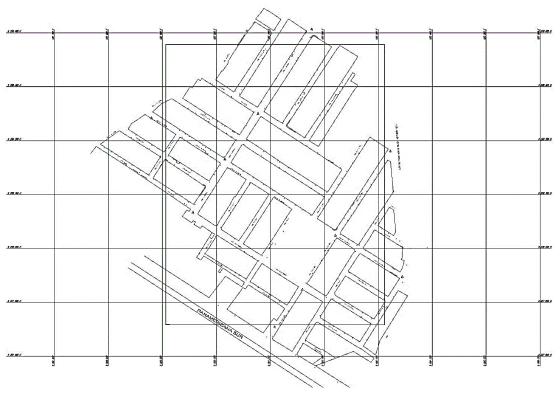
- Tacza, E. y Rodríguez, B. (2018). Evaluación de fallas mediante el método PCI y planteamiento de alternativas de intervención para mejorar la condición operacional del pavimento flexible en el carril segregado del corredor Javier Prado (Tesis de pregrado). Universidad Peruana de Ciencias Aplicadas: Lima.
- Zúñiga, O. (2018). Diseño de la estructura de pavimento flexible de las calles comprendidas dentro del perímetro de la ca. VRHT, ca. La paz, ca. Pachacútec y av. Gran Chimú del Distrito de la Victoria Chiclayo Lambayeque (Informe de pregrado). Universidad Señor de Sipán: Pimentel. Recuperado de https://repositorio.uss.edu.pe/bitstream/handle/20.500.12802/5015/Zu%c3 %b1iga%20Chepe%2c%20Oscar%20Eduardo.pdf?sequence=1&isAllowed =y

ANEXOS

Anexo 1. Cuadro de operacionalización de variables


Variable	Definición operacional	Definición conceptual	Dimensiones	Indicadores	Escala de medición
	Es considerado de esta forma, al	La variable de investigación es	Reconocimiento de campo	Inspección topográfica Inspección del suelo	
Variable independiente:	procedimiento que se basa en proponer cierta cantidad de espesores a cada una de las	centra en poder recolectar información de campo, para	de diseño	Estudio topográfico Estudio de suelos Estudio de tráfico	-
Diseño de la infraestructura	capas que conforman a la estructura del pavimento, llegando a basarse en lo	poder proceder con el diseño de la estructura del pavimento, en donde se recurrirá a la normativa		Diseño geométrico Diseño estructural	Nominal
vial de la pavimentación	expuesto por la normativa AASHTO y demás normativa técnica vigente (Del Castillo,	AASHTO, para ofrecer una propuesta final y viable técnicamente.	Análisis económico - financiero	Costos unitarios Metrado Presupuesto Financiamiento	
	2018).		Cálculo de la brecha	Brecha actual Brecha proyectada	-
Variable dependiente: Transitabilidad	La transitabilidad es definida como aquel nivel de servicio, propio de la condición de servicio final, en donde se buscará que este sea seguro, para el tránsito de personas; así como, para la movilidad vehicular (Del Castillo, 2018).	La variable en estudio comprende el grado de influencia que puede llegar a tener, la mejora de la condición final del pavimento, respecto al flujo vehicular.	Flujo Vehicular	Índice Medio Diario Anual (IMDA)	Razón

Anexo 2. Matriz de consistencia


"DISEÑO DE LA INFRA	ESTRUCTURA VIAL DE LA PA AMPLIACIÓ	AVIMENTACIÓN PARA MEJOI N VILLA EL SOL – DISTRITO		EL CENTRO POBLADO
PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	METODOLOGÍA
	General Diseñar la infraestructura		Independiente	Método general Cuantitativo
	vial de la pavimentación para mejorar la transitabilidad del Centro Poblado Ampliación Villa El		Diseño de la infraestructura vial de la pavimentación	Tipo de investigación Tipo aplicado
	Sol. Específico 1. Determinar y efectuar un reconocimiento de campo sobre el estado en que se encuentre el proyecto a realizar 2. Realizar los estudios		Dependiente	Nivel de investigación:
¿Cómo mejora el diseño de la infraestructura vial de la pavimentación, a la transitabilidad del Centro Poblado Ampliación Villa El Sol – Distrito De Reque?		El diseño de la infraestructura vial de la pavimentación mejorará la transitabilidad del Centro Poblado Ampliación Villa El Sol – Distrito De Reque	Transitabilidad	Diseño de la investigación: Diseño no experimental, transversal y descriptivo
	 Realizar los estudios básicos de topografía y mecánica de suelos del flujo vehicular Elaborar el diseño geométrico y estructural del Centro Poblado Ampliación Villa El Sol 			Población y muestra: Población: La población del presente estudio se encontrará conformada por las vías que representan al Centro Poblado Ampliación Villa El

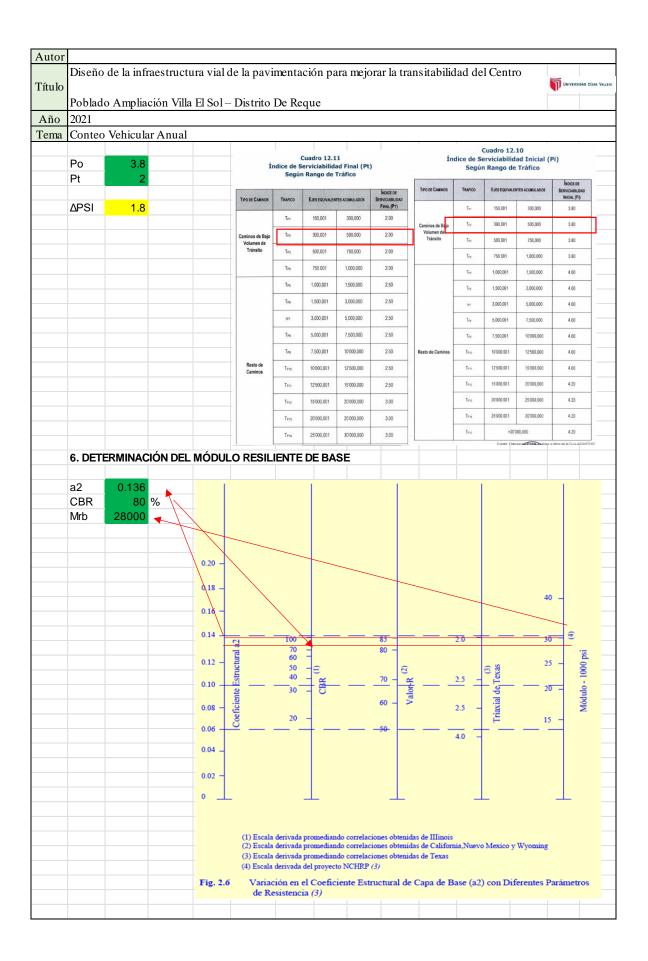
1	Declizer of Artisis	, r	Col ol quol co	noucent
4.	. Realizar el Análisis		Sol, el cual se e	
	Económico – financiero		conformado por un	total de 5
	del Proyecto de		kilómetros de vía.	
1	Investigación		Muestra:	
			20 calicatas en las	vías del
			Centro Poblado A	mpliación
			Villa El So	
			Tipo De Mues	stra:
			No probabilís	tica
5.	. Elaborar el cálculo de la		Muestreo intencion	al
3.	brecha			
1	brooma		Técnica de recole	cción de
			datos	
1			Observació	n
			Instrument	:o
			Ficha de	estudio
			topográfico, ficha d	e estudio
			topográfico, ficha d de suelos y ficha d	

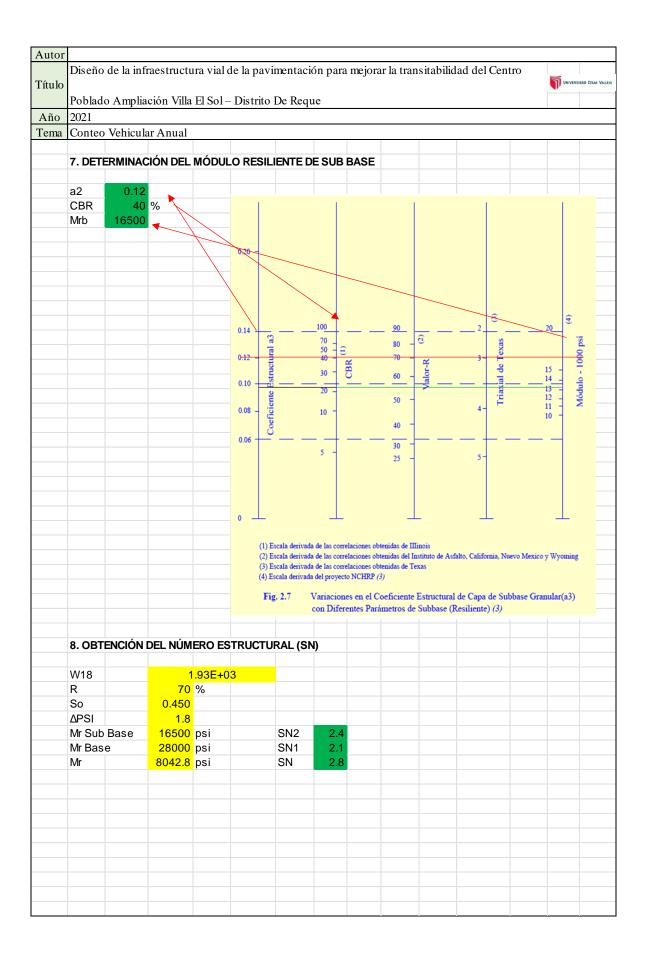
Anexo 3. Plano

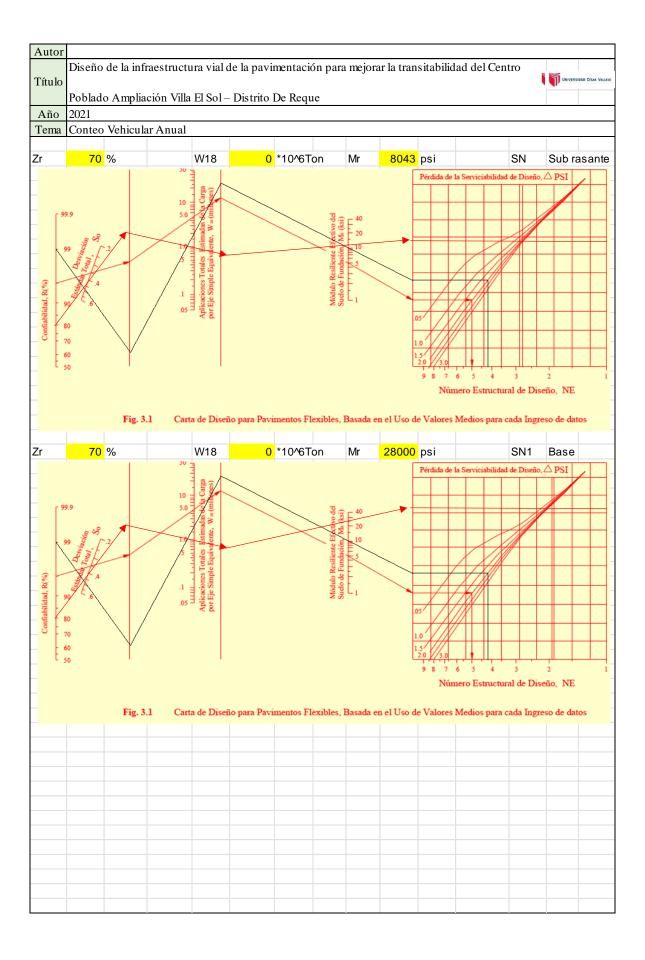
Anexo 4. Estudio topográfico

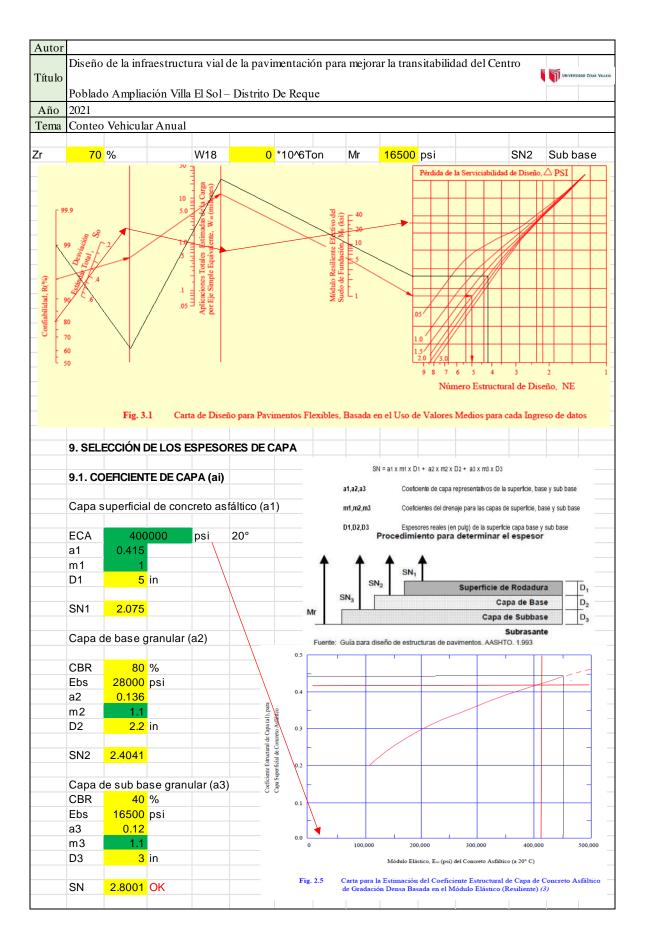
Anexo 5. Ficha de estudio topográfico

C	CUADRO DE BMS - WGS84										
Descripción	Norte	Este	Elevación								
BM-01	9238067.017	632956.461	38.655								
BM-02	9238241.817	632879.789	38.792								
BM-03	9238165.662	633015.705	41.093								
BM-04	9238250.269	633076.852	44.447								
BM-05	9238406.489	633176.541	46.551								
BM-06	9238180.256	633322.591	44.035								
BM-07	9237947.604	633344.495	45.98								
BM-08	9238024.103	633220.565	42.822								
BM-09	9237854.859	633107.88	41.861								


Anexo 6. Estudio de tráfico


Auton										
Autor	Dicañ	o de la infraestri	ictura v	ial de la ne	wimant	ación nara r	majorar	la trancit	abilidad dal	
Título	Discin	o de la lilitaestit	ictura v	iai ue ia pa	aviineiii	acion para i	nejorar .	ia transit	UNIVERSIDAD	CESAR VALLEIO
Titulo	Centre	Poblado Ampl	iación V	illa El Sal	Dietri	to De Regue			<u> </u>	
Año	Centro Poblado Ampliación Villa El Sol – Distrito De Reque									
Tema		o Vehicular Anu	191							
TOTAL	Conte	Vernediai 7 me								
	Vía	Vía urbana								
	Tipe	o de vehículo	L-V	S	D	Promedio	N° Ve	h*Año		
		AUTO	276	131	131	235	85	775		
	STA	TION WAGON	110	110	110	110	40	150		
		PICK UP	3	3	3	3	10)95		
		PANEL	3	3	3	3)95		
	RU	RALCombi	1	1	1	1		65		
		MICRO	0	0	0	0		0		
		2 E	5	5	5	5		325		
		>=3 E	5	5	5	2 4		30		
		2 E		0	0	0		160 0		
		3 E 4 E	10	0	0	8		920		
		2S1/2S2	0	0	0	0		0		
		2S3 2S3	10	0	0	8		920		
		3S1/3S2	0	0	0	0		0		
		>= 3 S 3	0	0	0	0		0		
		2T2	5	0	0	4	14	160		
		2T3	5	0	0	4	14	160		
		3T2	5	0	0	4	14	160		
		>=3T3	0	0	0	0		0		
		Total	438	258	258	391	142	2715		
	Vía	Vía urbana								
					ъ.					
	Tipo	de vehículo	TPDA	Año	Factor	Facto		FC	ESAL's	
		ALITO	235	05775	carril	crecimie 28.14		0.0001	120.679	
	STAT	AUTO TION WAGON	110	85775 40150	0.5	28.14		0.0001	56.488	
		PICK UP	3	1095	0.5	28.14		0.0001	861.184	
		PANEL	3	1095	0.5	28.14		0.0559	861.184	
	RU	RALCombi	1	365	0.5	28.14		0.0001	0.514	
		MICRO	0	0	0.5	38.69		0.0001	0.000	
		2 E	5	1825	0.5	38.69)	0.0001	3.531	
		>=3 E	2	730	0.5	38.69)	0.0001	1.412	
		2 E	4	1460	0.5	38.69		0.0001	2.825	
		3 E	0	0	0.5	38.69		0.0001	0.000	
		4 E	8	2920	0.5	38.69		0.0001	5.649	
		2S1/2S2	0	0	0.5	38.69		0.0001	0.000	
		2S3	8	2920	0.5	38.69		0.0001	5.649	
		3S1/3S2	0	0	0.5	38.69		0.0001	0.000	
		>= 3S3	0	1460	0.5	38.69 38.69		0.0001	0.000 2.825	
		2T2 2T3	4	1460 1460	0.5	38.69		0.0001	2.825	
		3T2	4	1460	0.5	38.69		0.0001	2.825	
-	-		0	0	0.5	38.69		0.0001	0.000	
Ì	>=3T3			9	?	50.0		0.0001		
		>=313							1927.587	
		>=313							1927.587	
		>=313							1927.587	
		>=313							1927.587	


Anexo 7. Diseño del pavimento


Autor													
Título	Diseño de la infraestructura vial de la pavimentación para mejorar la transitabilidad del Centro Poblado Ampliación Villa El Sol – Distrito De Reque									tro	Universi	DAD CESAR VALLEIO	
Año	2021	эттри	acion vina	LIBOI	District 1	or rada							
		Vehicu	lar Anual										
	1. TRÁI												
	Periodo	ae Dis	eño (n)										
	n =	25	años										
	Tasa d	e crecin	niento anu	ıal (g)									
	~	0.03	7 0/	Vahíaul	na liaara	•							
	g = g =	0.97 3.45			os ligero os pesad								
	9 –	0.10	70	Vernour	oo pood	100							
	Factor	de creci	miento de	l tráfico ((FCT)								
	FC	T =	$\left[\frac{(1+g)}{g}\right]$	$(n-1)^n$	1 =								
			L 4	9]								
	FCT =	28.138	<u> </u>	Vehículo	os ligero	s							
	FCT =	38.692			os ngero								
					·								
	Factor	Carril											
	FC	A 45											
	FC =	0.45											
	Tráfico	ESAL's											
		_0, _0											
	ESAL's	=		<mark>1927.59</mark>									
			0.00										

ulo	Diseño				la pavime	ntación para r	nejorar la	a transitabili	idad del Cer		Universidad Cesa
~		io Ampiia	icion villa	El S01 – 1	Jistrito De	Reque					
ño	2021	****									
ma	Contec	Vehicul	ar Anuai								
	2 CON	IFIABILID	AD (R)								
	2.001		AD (II)		C	onfiabilidad F	2 (%)	Desv. Est	ánd (7r)		
	R	70	%			50	(70)	0.00			
		, 0	70			60		-0.2			
	Zr	-0.524				70		-0.5			
						75		-0.6	74		
						80		-0.8	41		
		OR EST				85		-1.0			
	СОМВ	INADO (S	So)			90		-1.2			
						91		-1.3			
	Pav. R		0.30 - 0.			92	-+	-1.4			
	Pavl Fl	exible	0.40 - 0.	50		93		-1.4			
	90	0.450				94 95		-1.5 -1.6			
	So	0.450				95 96		-1.7			
						97		-1.8			
						98		-2.0			
						99		-2.3			
						99.9		-3.0	90		
						99.99		-3.7	50		
					Valor	es recomenda de diseño		0 años) segú	abilidad Par	Tráfico Nivel DE	tapa
					Valor	de diseño	TRAFICO	ivel de Confi 0 años) segú	abilidad Par in rango de '	Tráfico	tapa
					Valor	TIPO DE CAMINOS Caminos de Bajo Volumen de	TRAFICO Tree Tree Tree	EJES EQUIVALEN 75,000 150,001 300,001	abilidad Par in rango de T tes acumulados 150 000 300,000 500,000	Nivel de Conflasilidad (R) 55% 70% 75%	tapa
					Valor	de diseño TIPO DE CAMINOS Caminos de Bajo	TRAFICO Teo Try Try Try Try Try Try	EJES EQUIVALEN 75,000 150,001 300,001 500,001 750,001	abilidad Par in rango de 1 res acueutapos 150,000 300,000 500,000 750,000 1,000,000	Tráfico Nivel de Contrast DAD (R) 55% 70% 75% 80% 80%	tapa
					Valor	TIPO DE CAMINOS Caminos de Bajo Volumen de	TRAFICO Toe Try Try Try Try Try Try Try Tr	EJES EQUIVALEN 75.000 150.001 300.001 500.001 750.001 1,000,001 1,500,001	abilidad Parin rango de 1 res acumulados 150 000 300,000 500,000 750,000 1,000,000 1,500,000 3,000,000	Tráfico NIVEL DE CONFIABIL DAD (R) 55% 70% 80% 80% 80% 85%	tapa
					Valor	TIPO DE CAMINOS Caminos de Bajo Volumen de	TRAFICO Tree Tree Tree Tree Tree Tree Tree Tre	EJES EGUNALEN 75.000 150,001 500,001 750.001 750.001 750.001 750.001 1,500.001 1,500.001 3,000.001 5,000.001 5,000.001	abilidad Parin rango de 1 TES ACUMULADOS 150,000 500,000 750,000 1,000,000 1,000,000 1,000,000 5,000,000 7,500,000	Fráfico Nivel de Contractico (N) 578 70% 75% 80% 85% 85% 85%	tapa
					Valor	TIPO DE CAMINOS Caminos de Bajo Volumen de	TRAFICO Toc. Toc. Toc. Try Try Try Tro. Tre Tro. Tro. Tro. Tro. Tro. Tro. Tro. Tro.	EJES EGUNALEN 75.000 150,001 300,001 750.001 1,000,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001	abilidad Parin rango de 1 TES ACUMULADOS 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 00	Tráfico Nivel De Contrabil Dab (R) 55% 70% 80% 80% 85% 85% 90% 90%	tapa
					Valor	de diseño TIPO DE CAMMOS Caminos de Bajo Volumen de Trânsito	TRAFICO Tec. Tec. Tec. Tec. Tec. Tec. Tec. Tec.	EJES EGUNALEN 75.000 150.001 300.001 75.000 150.001 750.001 1,000,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001 1,500,001	abilidad Par n rango de Tres Acumu, Apos 100,000 100,000 100,000 1,000,000 1,000,000	Tráfico NVEL DE CONTABEL DAD (R) 65% 70% 95% 80% 80% 85% 85% 90% 90% 90% 90%	tapa
					Valor	de diseño TIPO DE CAMMOS Caminos de Bajo Volumen de Trânsito	TRAFICO Tes Tes Tes Tes Tes Tes Tes Tes Tes Te	EISE BOUNLEN 75.000 150.001 300.001 750.001 150.001 750.001 1,000,001 1,500,001 1,500,001 1,500,001 10000.001 12500.001 15000.001 20000.001 20000.001	abilidad Par n rango de 1 res Acuwu, Apos 150, 000 300, 000 500, 000 1, 000, 000 1, 000, 000 1, 000, 000	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
					Valor	de diseño TIPO DE CAMINOS Caminos de Bajo Volumen de Trânsito Resto de Caminos	TRAFICO Tree Tree Tree Tree Tree Tree Tree Tre	EISE BOUNLEN 75.000 150.001 300.001 750.001 150.001 750.001 1,000,001 1,500,001 1,500,001 1,500,001 10000.001 12500.001 15000.001 20000.001 20000.001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONFIABLIDAD (R) 55% 70% 80% 80% 85% 85% 85% 85% 90% 90% 90% 90%	tapa
					Valor	de diseño TIPO DE CAMINOS Caminos de Bajo Volumen de Trânsito Resto de Caminos	TRAFICO Tree Tree Tree Tree Tree Tree Tree Tre	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
					Valor	de diseño TIPO DE CAMINOS Caminos de Bajo Volumen de Trânsito Resto de Caminos	TRAFICO Tree Tree Tree Tree Tree Tree Tree Tre	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
					Valor	de diseño TIPO DE CAMINOS Caminos de Bajo Volumen de Trânsito Resto de Caminos	TRAFICO Tree Tree Tree Tree Tree Tree Tree Tre	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
					Valor	de diseño TIPO DE CAMINOS Caminos de Bajo Volumen de Trânsito Resto de Caminos	TRAFICO Tree Tree Tree Tree Tree Tree Tree Tre	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
						de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
				EFECTIVO		de diseño TIPO DE CAMINOS Caminos de Bajo Volumen de Trânsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi	i) = 1500	* CBR			de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi	i) = 1500				de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi	i) = 1500 i) = 2555	* CBR * CBR ^(de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi	i) = 1500 i) = 2555 6	* CBR * CBR ^ (de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi	i) = 1500 i) = 2555	* CBR * CBR ^ (de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi CBR Mr	i) = 1500 i) = 2555 6 8042.8	* CBR * CBR ^ (0.64		de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALENT 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi CBR Mr	i) = 1500 i) = 2555 6 8042.8	* CBR * CBR ^(% psi	0.64		de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALEN 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi CBR Mr 5. SER	i) = 1500 i) = 2555 6 8042.8 EVICIALID	* CBR * CBR ^ (% psi PAD (ΔPS	0.64		de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALEN 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi Mr (psi CBR Mr 5. SER ΔPSI = Po = S	i) = 1500 i) = 2555 6 8042.8 EVICIALID Po - Pt erviciabil	* CBR * CBR ^ (* CBR ^ (psi pad (\Delta PS lidad inici	0.64		de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALEN 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi Mr (psi CBR Mr 5. SER ΔPSI = Po = S	i) = 1500 i) = 2555 6 8042.8 EVICIALID Po - Pt erviciabil	* CBR * CBR ^ (% psi PAD (ΔPS	0.64		de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALEN 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa
	Mr (psi Mr (psi Mr (psi CBR Mr 5. SER ΔPSI = Po = S	i) = 1500 i) = 2555 6 8042.8 EVICIALID Po - Pt erviciabil	* CBR * CBR ^ (* CBR ^ (psi pad (\Delta PS lidad inici	0.64		de diseño TIPO DE CAMNOS Caminos de Bajo Volumen de Tránsito Resto de Caminos	TRAYLOO Tray	EJES EQUIVALEN 75,000 190,001 190,001 190,001 1,000,001 1,000,001 1,000,001 1,000,001 1,000,001 12500,001 12500,001 12500,001 12500,001 12500,001 25000,001 25000,001 25000,001	abilidad Par n rango de 1 150,000 300,000 500,000 750,000 1,500,00	Tráfico NIVEL DE CONTABEL DAD (R) 65% 70% 75% 80% 80% 85% 85% 90% 90% 90% 95% 95%	tapa -

tulo	Diseño de la in	fraestructura vi	al de la pav	/imentació	on para me	jorar la	transitabi	lidad del (Centro	UNIVERSIDAD C
10	Poblado Ampl	iación Villa El So	ol – Distrito	De Requ	e					
Año	2021									
ema	Conteo Vehicu	lar Anual								
										_ +
		CALIDAD DE	%	DEL TIEM	PO QUE LA	ESTRU	CTURA DE	L PAVIME	NTO ESTÁ	
		DRENAJE	EXPU	ESTA A NI	VELES DE I	HUMED/	AD CERCA	NOS A LA	SATURACIÓ	N -
		DICENTAL		<1	1-	5	5-2	25	>25	
		Excelenete	1	.4-1.35	1.35-	1.30	1.30-	1.20	1.20	
		Bueno		35-1.25	1.25-	1.15	1.15-	1.00	1.00	
		Regular		25-1.15	1.15-	_	1.05-		0.80	\perp
		Pobre	_	15-1.05	1.05		0.80-		0.60	_ _
		Muy pobre	1.	05-0.95	0.95-	0.75	0.75-	0.40	0.40	
			in	cm						
	CONCRETO A	SFÁLTICO	5	13						
	BASE		2.2	6						
	SUB BASE		3	8						
	0.2 ESBESOR	ES MÍNIMOS (D	n.							
	J.Z ESPESUR	ra initialinios (D	'/							
	ESAL's	1.93E+03				ADE	N TICO	DAGE	E ACRECAN	00
				TDASIC	O ECAL O		ALTICO	BASEL	E AGREGAD	US
	CONCRETO A	SFÁLTICO		IKAFIC	O ESALS	_	ratamiento		(PUL)	
	3 in			MENOSI	DE 50.000	,	erficial)		4	
	D 405 DE 405	504500		$\overline{}$	-150,000	Sup	2		4	
	BASE DE AGR	EGADOS		_	-500,000		2.5		4	
	6 in			_	2'000,000		3		6	_
					-7'000,000	- :	3.5		6	
					R QUE					
				7'00	0,000		4		6	
		de equivalencia					le 1993			
		asfáltico = 3.14" asfáltico = 4" su								
	1 in BGNT = 1		b base gra	mulai no	ıralada (Si	DGIVI)				
	23(1) = 1	L. 4 OBOINT								
	CADA	e E	SPESOR (CALCULA	DO	ESPE	SOR PLA	NTEADO		
	CAPA		in	cn		in		cm		
	Carpeta as		5	13		3		8		
	Base gra		2.2	6		6		16		
	Sub base g	ranular	3	8		6		16		
						15		40		

Anexo 8. Estudio de Suelos

LABORATORIO LINUS E.I.R.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

C.P. : VILLA EL SOL
DISTRITO : REQUE
PROVINCIA : CHICLAYO
REGION : LAMBAYEQUE

SOLICITANTE

BACHILLER - KIMBERLY SARITA INCIO CHUNGA

LAMBAYEQUE, NOVIEMBRE DEL 2021

CALLE MANUEL SECANE Nº 71

Mario Ramirez Dejo centure centual Lasosatorio i mini EJRL E-Mail - mario 198 of otmail.com

YEQUE - CEL 954853683 -

OSCAR LUCTURNOS RODROCU PROCENIERO CINIL Reg. CIP. N° 31,338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

INDICE

1.0 GENERALIDADES

- 1.1 Objeto Del Estudio
- 1.2 Ubicación Del Estudio
- 2.0 INVESTIGACION DE CAMPO
- 3.0 ENSAYOS DE LABORATORIO
- 4.0 INTERPRETACION DE RESULTADOS
- 5.0 ASPECTOS GEOLOGICOS
 - 5.1 Geología
 - 5.2 Geotecnia
 - 5.3 Geodinámica Externa
- 6.0 ESTUDIO DE CANTERAS

7.0 PAVIMENTOS

- 7.1 Diseño Del Pavimento
 - 7.1.1 Determinación De CBR De Diseño
- 7.2 Distribución en altura (cm) de las capas

8.0 CONCLUSIONES Y RECOMENDACIONES

9.0 BIBLIOGRAFIA

10.0 ANEXOS

CALLE MANUEL SECANE Nº 7

Mario Ramirez Dejo CARDRATORIO I MARIELEL

AYEQUE - CEL. 954853683 -E-Mail - mario rg8 66tmail.com

OSCAR LUZQUIÁOS RODR

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION № 031616-2019/DSD – INDECOPI

RUC. 20605369139

1.0 GENERALIDADES

1.1 OBJETO DEL ESTUDIO

A solicitud de la srita. bachiller KIMBERLY SARITA INCIO CHUNGA, se efectúa el presente estudio de suelos en el área destinada para la obra: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE, con la finalidad de conocer las características geomecánicas y comportamiento como base de sustentación de los suelos con el propósito de poder diseñar la estructura del pavimento.

1.2 UBICACIÓN DEL ESTUDIO

El Proyecto denominado "DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE" se encuentra ubicada en el CENTRO POBLADO VILLA EL SOL, DISTRITO REQUE - PROVINCIA DE CHICLAYO - DEPARTAMENTO DE LAMBAYEQUE.

Mario Ramirez Dejo genenre general LASORATORIO I MARI ELEL

CALLE MANUEL SEOANE N° 7 15 14 15 16 AYEQUE - CEL. 954853683 =

ario Ramirer Dejo E-Mail - mario 193 20 totmail.com 0548 1470 0558

OSCAR LETYRINGS RODROL INGENICRO CNN. Reg. CIP. N° 31338 3

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

FIGURA Nº 01: Perú: Localización Geográfica de la Región Lambayeque

FIGURA Nº 02: Lambayeque: Localización Geográfica de la Provincia de Chiclayo

CALLE MANUEL SECANE Nº 7 STANDAYEQUE - CEL. 954853683 -

Mario Ramères Dejo DENENTE DENENAL LASORATORIO I MAN ELRIL

E-Mail - markerg8 botmail.com

OSCAR LIETORNOS ROD Reg. CIP. N° 31,338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

FIGURA Nº 03: Chiclayo: Localización Geográfica del Distrito de REQUE

2.0 INVESTIGACION DE CAMPO

Los trabajos de campo han sido dirigidos a la obtención de la información necesaria para la determinación de las propiedades físicas y mecánicas del suelo, mediante un programa de exploración directa, habiéndose ejecutado (20) calicatas a cielo abierto; distribuidas de tal manera que cubran toda el área de estudio y que nos permita obtener con bastante aproximación la conformación litológica de los suelos. A continuación, se detalla en el siguiente gráfico.

CALLE MANUEL SEOANE Nº 75 THE MANUEL - CEL 954853683 -

Mario Ramires Dejo DERENTE GENERAL E-Mail - mario rg8 ofotmail.com

OSCUR LIETORNIOS ROD Reg. CIP. Nº 31338 5

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA	COORDENADAS
C1.	632873.00 m E - 9238246.00 m S
CZ	653010.00 m č - 9238157.00 m 5
C3	632550.00 m E - 9238062.00 m S
C4	633101.00 m E - 9238103.00 m S
CS	633084.00 m E - 9237977.00 m S
C6	633672.00 m E - 9238254.00 m S
C7	633096.00 m E - 9237840.00 m S
C8	633155.00 m E - 9237930.00 m S
C9	633173.00 m E - 9237853.00 m S
CIO	632567.00 m E - 5236321.00 m 5
C11	633119.00 m E - 9238433.00 m S
C12	633214.00 m E - 9238384.00 m S
C13	633158.00 m E - 9238349.00 m S
C14	633115.00 m E - 9238179.00 m 5
C15	633161.00 m E - 9238200.00 m 5
C16	633204.00 m E - 9238101.00 m S
C17	633263.00 m E - 9237999.00 m S
CIE	632346.00 m E - 9227952.00 m S
C19	633180.00 m E - 9237839.00 m S
C20	632868.00 m E - 9238125.00 m S

CALLE MANUEL SECANE Nº 7

Mario Ramirez Dejo GENERIE GENERAL LASORATORIO LIMINELEL EOANE N° 713 MAN AYEQUE - CEL. 954853683 = E-Mail - mario 1988 protmail.com

PAGE CIP. N° 31338

6

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

En esta fase se han efectuado de cada calicata toma de muestras de cada calicata, para sus ensayos pertinentes en el laboratorio, y muestras para las pruebas de C.B.R. (Razón Soporte California), con la finalidad de realizar el diseño de la estructura del pavimento. La profundidad alcanzada en las 20 calicatas es de 1.50 m. El registro de exploración, se presenta en Anexo.

3.0 ENSAYOS DE LABORATORIO

Las pruebas efectuadas son las siguientes:

 Análisis granulométrico por tamizado AASHTO T 88 Límites de Atterberg ASTM D 4318

 Clasificación de Suelos AASHTO M 145, ASTM D 2487

Humedad Natural ASTM - D2216 Proctor Modificado AASHTO T 180 AASHTO T 193 California Bearing Ratio (CBR)

4.0 INTERPRETACION DE RESULTADOS

CALICATA: C-1

Entre los niveles de 0.20 - 1.50 m de profundidad, El estrato se encuentra representado por Arenas arcillosas de baja plasticidad, de color marrón claro, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SC.

Identificado en el Sistema AASHTO, como A - 4 (3)

Su C.B.R. al 100% es de 16% y al 95% es de 9.8%, de su Máxima densidad seca es de 1.87 gr/cm3 y su óptimo de humedad es de 12.71%.

CALLE MANUEL SEOANE Nº 7 Mario Ramirez Dejo

CARDRATORIO I MARIE ELRIL

AYEQUE - CEL. 954853683 -E-Mail - mario rg8 66tmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-2

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 38% y al 95% es de 22%, de su Máxima densidad seca es de 2.10 gr/cm3 y su óptimo de humedad es de 9.16%.

CALICATA: C-3

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Arenas de nula plasticidad, de color marrón claro, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SP.

Identificado en el Sistema AASHTO, como A - 3 (0)

Su C.B.R. al 100% es de 10.7% y al 95% es de 6.6%, de su Máxima densidad seca es de 1.90 gr/cm3 y su óptimo de humedad es de 10.19%.

CALICATA: C-4

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 40% y al 95% es de 21.6%, de su Máxima densidad seca es de 2.14 gr/cm3 y su óptimo de humedad es de 8.15%.

CALLE MANUEL SECANE Nº 7 Mario Ramirez Dejo

E-Mail - mario rg8 66tmail.com

AYEQUE - CEL. 954853683

eg. CIP. N° 31338

8

GENERITE GENERAL

LABORATORIO I MINISTARI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-5

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Arenas limosas, de color amarillento, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SM.

Identificado en el Sistema AASHTO, como A - 2 - 4 (0)

Su C.B.R. al 100% es de 11% y al 95% es de 6.8%, de su Máxima densidad seca es de 1.84 gr/cm3 y su óptimo de humedad es de 13.55%.

CALICATA: C-6

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 44% y al 95% es de 23.8%, de su Máxima densidad seca es de 2.12 gr/cm3 y su óptimo de humedad es de 8.92%.

CALICATA: C-7

Entre los niveles de 0.20 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 41% y al 95% es de 22.2%, de su Máxima densidad seca es de 2.11 gr/cm3 y su óptimo de humedad es de 9.03%.

CALLE MANUEL SECANE Nº 7 Mario Ramirez Dejo

AYEQUE - CEL. 954853683 -

OSCAR LUZOUMOS RODR

GENERITE GENERAL

E-Mail - mario rg8 66tmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-8

Entre los niveles de 0.10 - 1.50 m de profundidad. El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 39% y al 95% es de 22.5%, de su Máxima densidad seca es de 2.09 gr/cm3 y su óptimo de humedad es de 9.63%.

CALICATA: C-9

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por arenas limosas de consistencia media, de color amarillento, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SM.

Identificado en el Sistema AASHTO, como A - 2 - 4 (0)

Su C.B.R. al 100% es de 12% y al 95% es de 7.3%, de su Máxima densidad seca es de 1.85 gr/cm3 y su óptimo de humedad es de 13.20%.

CALICATA: C-10

Entre los niveles de 0.20 - 1.50 m de profundidad, El estrato se encuentra representado por Arenas de nula plasticidad, de color amarillento, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SP.

Identificado en el Sistema AASHTO, como A - 3 (0)

Su C.B.R. al 100% es de 10.5% y al 95% es de 6.1%, de su Máxima densidad seca es de 1.92 gr/cm3 y su óptimo de humedad es de 10.08%.

CALLE MANUEL SECANE Nº 7

Mario Ramirez Dejo GENENTE GENERAL

LABORATORIO I MARIE LELEL

E-Mall - marro rg8 of otmail.com

AYEQUE - CEL. 954853683

Reg. CIP. Nº 31338

10

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-11

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 47% y al 95% es de 25.3%, de su Máxima densidad seca es de 2.13 gr/cm3 y su óptimo de humedad es de 8.68%.

CALICATA: C-12

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 48% y al 95% es de 26%, de su Máxima densidad seca es de 2.15 gr/cm3 y su óptimo de humedad es de 8.12%.

CALICATA: C-13

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 35% y al 95% es de 20.3%, de su Máxima densidad seca es de 2.08 gr/cm3 y su óptimo de humedad es de 9.89%.

CALLE MANUEL SECANE Nº 7 E-Mall - mark Mario Ramirez Dejo

rd8@6otmall.com

Reg. CIP. N° 31338

11

GENERITE GENERAL LARDRATORIO UMINI ELRIL

AYEQUE - CEL. 954853683 -

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-14

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 41% y al 95% es de 22.4%, de su Máxima densidad seca es de 2.11 gr/cm3 y su óptimo de humedad es de 9.04%.

CALICATA: C-15

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A – 1 – a (0)

Su C.B.R. al 100% es de 43% y al 95% es de 23.2%, de su Máxima densidad seca es de 2.13 gr/cm3 y su óptimo de humedad es de 8.26%.

CALICATA: C-16

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SP.

Identificado en el Sistema AASHTO, como A - 3 (0)

Su C.B.R. al 100% es de 10.5% y al 95% es de 6%, de su Máxima densidad seca es de 1.91 gr/cm3 y su óptimo de humedad es de 10.19%.

CALLE MANUEL SECANE Nº 7

Mario Ramirez Dejo CERENTE GENERAL LABORATORIO (MINISTELEL E-Mail - mario rg8 of otmail.com

AYEQUE - CEL. 954853683 -

OSCAR LUZQUINOS ROOM Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-17

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 35% y al 95% es de 20.2%, de su Máxima densidad seca es de 2.09 gr/cm3 y su óptimo de humedad es de 9.29%.

CALICATA: C-18

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por arenas limosas de baja plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SM.

Identificado en el Sistema AASHTO, como A - 2 - 4 (0)

Su C.B.R. al 100% es de 11% y al 95% es de 6.8%, de su Máxima densidad seca es de 1.83 gr/cm3 y su óptimo de humedad es de 13.89%.

CALICATA: C-19

Entre los niveles de 0.10 - 1.50 m de profundidad, El estrato se encuentra representado por Gravas con arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo GP.

Identificado en el Sistema AASHTO, como A - 1 - a (0)

Su C.B.R. al 100% es de 45% y al 95% es de 24.4%, de su Máxima densidad seca es de 2.14 gr/cm3 y su óptimo de humedad es de 8.12%.

CALLE MANUEL SECANE Nº Mario Ramirez Dejo

E-Mall - mario rg8 of otmall.com

LABORATORIO I MARIELA.

AYEQUE - CEL. 954853683 -

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA: C-20

Entre los niveles de 0.20 - 1.50 m de profundidad, El estrato se encuentra representado por arenas de nula plasticidad, de color blanquecino, identificado en el Sistema SUCS (Sistema Unificado de Clasificación de Suelos) como un suelo SP.

Identificado en el Sistema AASHTO, como A - 3 (0)

Su C.B.R. al 100% es de 10.9% y al 95% es de 6.3%, de su Máxima densidad seca es de 1.93 gr/cm3 y su óptimo de humedad es de 9.86%.

RESULTADOS DE LABORATORIO

CALICATA	PROFUNDIDAD	GRANULO		LIMITES ATTTERBERG		CLAS	IFICACION	
CALCATA	(m)	Pasa 40	Pasa 200	LL	Ľ	10	SUCS	AASHTO
C-1	0.20 - 1.50	80.87	48.03	29.70	20.67	9.03	sc	A-4(3)
C-2	0.10 - 1.50	10.50	0.45	N.P	N.P	N.P	GP	A-1-a(0)
C-3	0.10 - 1.50	66.54	3.28	N.P	N.P	N.P	8P	A-3(0)
C-4	0.10 - 1.50	12.45	3.04	N.P	N.P	N.P	GP	A-1-a(0)
C-5	0.10 - 1.50	93.95	26.31	21.71	18.57	3.14	SM	A-2-4(0)
C-6	0.10 - 1.50	13.67	4.13	N.P	N.P	N.P	GP	A-1-a(0)
C-7	0.20 - 1.50	7.54	2.06	N.P	N.P	N.P	GP	A-1-a(0)
C-8	0.10 - 1.50	11.64	3.94	N.P	N.P.	N.P	g.	A-1-a(0)
C-9	0.10 - 1.50	94.30	26.56	22.22	18.99	3.23	SM	A-2-4(0)
C-10	0.20 - 1.50	82.64	2.05	N.P	N.P	N.P	8P	A-3(D)

CALLE MANUEL SECANE Nº 7

E-Mail - mark rg8 botmail.com

YEQUE - CEL. 954853683 =

Mario Ramirez Dejo penente general LASORATORIO I MINISTRAL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA	PROFUNDIDAD	ANA GRANULO	LISIS	LIMITES ATTTERBERG		CLASIFICACION		
CALICATA	(m)	Pasa 40	Pasa 200	ш	LP		SUCS	AASHTO
C-11	0.10 - 1.50	11.18	2.58	N.P	N.P	N.P	GP	A-1-a(0)
C-12	0.10 - 1.50	14.35	2.72	N.P	N.P	N.P	GP	A-1-a(0)
C-13	0.10 - 1.50	4.86	0.01	N.P	N.P	N.P	GP	A-1-a(0)
C-14	0.20 - 1.50	7.31	2.11	N.P	N.P	N.P	GP	A-1-a(0)
C-15	0.10 - 1.50	8.64	2.05	N.P	N.P	N.P	GP	A-1-a(0)
C-16	0.10 - 1.50	85.36	3.46	N.P	N.P	N.P	8P	A-3(D)
C-17	0.10 - 1.50	10.81	3.86	N.P	N.P	N.P	GP	A-1-a(0)
C-18	0.10 - 1.50	92.17	32.35	18.95	17.44	1.51	SM	A-2-4(0)
C-19	0.10 - 1.50	7.94	3.91	N.P	N.P	N.P	GP	A-1-a(0)
C-20	0.20 - 1.50	91.58	3.08	N.P	N.P	N.P	8P	A-3(0)

5.0 ASPECTOS GEOLOGICOS

5.1 GEOLOGÍA

El distrito de REQUE, y en general todo el valle del Chancay, están apoyados sobre un depósito de suelos finos con gravas, sedimentarios, heterogéneos, de unidades estratigráficas recientes en estado no saturado. Un análisis cualitativo de la estratigrafía que conforma los depósitos sedimentarios de suelos granulares ubica un estrato de potencia definida sobre depósitos fluviales, eólicos, aluviales del cuatemario reciente.

CALLE MANUEL SECANE Nº 7

Mario Ramires Dejo CARDRATORIO I MIN EJRL E-Mall - marro rg8 potmall.com

AYEQUE - CEL. 954853683

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

5.2 GEOTECNIA

Son diversos los problemas de capacidad de carga, asentamientos, expansión, etc., que plantean lo depósitos de suelos granulares sedimentarios; más aun si se tiene en cuenta el fenómeno que se presenta por la variación de la napa freática, que en determinadas épocas del año ubican a estos suelos en condiciones de sumergido y saturado. Este fenómeno de variación de la napa freática se debe fundamentalmente a que la provincia de chiclayo se ubica topográficamente mas bajo respecto a las zonas agrícolas que la rodean y estos depósitos presentan en su estratigrafía estratos permeables por donde discurre el agua, elevando el nivel de la napa freática en tiempo de máximas avenidas.

5.3 GEODINAMICA EXTERNA

El sub suelo de actividad no está sujeto a socavaciones ni deslizamientos, así como no se ha encontrado evidencias de hundimientos ni levantamientos en el terreno; asimismo la geodinámica externa en el área de estudio no presenta en la actualidad riesgo alguno de deslizamiento de masas de tierra, etc.

Tampoco se han observado fallas geológicas o problemas estructurales cuya existencia afectaría la seguridad de la obra en sí.

CALLE MANUEL SECANE Nº Mario Ramirez Dejo

LASORATORIO I MAN EJRL

E-Mail - mark rg8 of otmail.com

16

YEQUE - CEL. 954853683 -

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

6.0 ESTUDIO DE CANTERAS

En el presente ítem se acompañan las investigaciones de mecánica de suelos ejecutados como parte de la Evaluación de Materiales de Construcción; el estudio realizado se orientó a determinar las características físicas y mecánicas de los materiales que se pueden utilizar para sub base y base granular, que permita cubrir los requerimientos del Proyecto en cuanto a cantidad y calidad.

CANTERA - 3 TOMAS FERREÑAFE

En la ciudad de REQUE existen varios proveedores de agregados de materiales para la construcción, los que al ser consultados nos informan que la fuente de dichos agregados es la Cantera CHACUPE ubicada en el distrito de LA VICTORIA de la provincia de CHICLAYO.

Con muestra de esta cantera, que fueron proporcionadas por proveedores locales, tanto material para sub base y base granular, se han realizado los respectivos ensayos de laboratorio, habiéndose obtenido las siguientes características físico mecánicas orientadas al diseño de pavimentos:

Suelos identificados en el sistema AASHTO, como A - 1- a (0), gravas limosas, mezcla de gravas, arena y limo de baja plasticidad.

CALLE MANUEL SECANE Nº 7 Mario Ramirez Dejo CARCHITE GENERAL LABORATORIO I MARIE ELRIL

E-Mail - mario rg8 potmail.com

AYEQUE - CEL. 954853683

OSCAR LUZQUINOS ROD leg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

MATERIAL PARA SUB BASE Y BASE GRANULAR

Uso : Base y Sub Base

Ubicación : CANTERA CHACUPE - LA VICTORIA

: 85% Rendimiento Acceso : Tiene : GW - GM Clasificación SUCS Límite Líquido : 18.75 Límite Plástico 15.09 Índice Plástico : 3.66

: 2.227 gr/cm³ Máxima Densidad : 6.95% Humedad Optima C.B.R. al 100% : 92.40% Abrasión 19.08% Equivalente de Arena : 71.60%

8.0 PAVIMENTOS

8.1 DISEÑO DEL PAVIMENTO

El cálculo de la estructura del pavimento se ha realizado por el método AASHTO, el cual consiste en determinar el espesor de la Sub - Base y el espesor del pavimento a fin de soportar el volumen de tránsito en forma satisfactoria durante el periodo de diseño.

Para determinar los espesores se ha tenido en cuenta los siguientes factores: El Tráfico, el Índice de Serviciabilidad y el tipo de Suelo de fundación.

CALLE MANUEL SECANE Nº 7 E-Mail - mario rg8 ofotmali.com Mario Ramirez Dejo CARDRATORIO I MIN EJRL

AYEQUE - CEL. 954853683

OSCAR LUZQUIÁOS RODR Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

8.1.1. DETERMINACION DEL C.B.R. DE DISEÑO AL 95%

CALICATA	C.B.R. (95%)
C-1	9.8
C-2	22
C-3	6.6
C-4	21.6
C-5	6.8
C-6	23.8
C-7	22.2
C-8	22.5
C-9	7.3
C – 10	6.1
C – 11	25.3
C - 12	26
C – 13	20.3
C – 14	22.4
C – 15	23.2
C – 16	6
C – 17	20.2
C – 18	6.8
C – 19	24.4
C – 20	6.3

CALLE MANUEL SECANE Nº 75 THE MENT AYEQUE - CEL. 954853683 -Mario Ramirez Dejo DEMENTE GENERAL LABORATORIO I NUR EL R.L.

E-Mail - marker 1880 otmail.com

OSCUR LUZQUINOS ROD

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

8.2 DISTRIBUCION EN ALTURAS (cm.) DE LAS CAPAS- PARA PAVIMENTACION RIGIDA Y TAMBIEN PAVIMENTACION FLEXIBLE

Para la construcción de la pavimentación rígida se recomienda cortar 45cm. de material existente y reemplazarlo por 45cm. de material granular, quedando distribuido de la siguiente manera:

CALLE MANUEL SECANE N° 76

Mario Ramirer Dejo

DERENTE GENERAL

LIBORATORIO I MANUEL R.L.

EOANE Nº 7 THE MEAYEQUE - CEL. 954853683 -E-Mail - man 1988 of thrail.com

OSCAR LUQUIOS RODROUE MECHAPIO ONA Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Para la construcción de la pavimentación flexible se recomienda cortar 30cm. de material existente y reemplazarlo por 30cm. de material granular, quedando distribuido de la siguiente manera:

CARPETA ASFALTICA 5cm AFIRMADO 15cm 10cm ARENILLA

> CALLE MANUEL SEOANE Nº 7 Mario Ramirez Dejo GENERIE GENERAL LASORATORIO I MINISTRE.

YEQUE - CEL. 954853683 -E-Mail - marke rg8 obtmall.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

8.0 CONCLUSIONES Y RECOMENDACIONES

De acuerdo a la información de campo y laboratorio realizados, se pueden obtener las siguientes conclusiones y recomendaciones.

- NOTA: LAS EXCAVACIONES, LOS ENSAYOS DE LABORATORIO, LA CLASIFICACION DE SUELOS Y LOS RESULTADOS DE LOS ENSAYOS FUERON REALIZADOS Y CLASIFICADOS POR LA SRITA. BACHILLER KIMBERLY SARITA INCIO CHUNGA.
- 1. El área del proyecto, denominado "DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO -LAMBAYEQUE", se encuentra ubicada en el CENTRO POBLADO VILLA EL SOL. DISTRITO DE REQUE - PROVINCIA DE CHICLAYO -DEPARTAMENTO DE LAMBAYEQUE.
- 2. La exploración de la sub rasante, nos muestra que está formada por suelos donde predominan las Gravas con Arenas de nula plasticidad, cuya consistencia es media.

Estos suelos están clasificados en el sistema AASHTO como:

C1	A – 4 (3)
C2	A – 1 – a (0)
C3	A – 3 (0)
C4	A – 1 – a (0)
C5	A - 2 - 4 (0)
C6	A – 1 – a (0)
C7	A – 1 – a (0)
C8	A – 1 – a (0)
C9	A - 2 - 4 (0)
C10	A - 3 (0)

CALLE MANUEL SECANE Nº 7 Mario Ramirez Dejo

AYEQUE - CEL. 954853683 OSCAR LUZQUIÁOS ROCK

Reg. CIP. Nº 31338

22

CARDNATORIO I MIN EJRL

E-Mall - marke rg 8 6 tmall.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

211	4 4 40)
C11	A – 1 – a (0)
C12	A – 1 – a (0)
C13	A – 1 – a (0)
C14	A – 1 – a (0)
C15	A – 1 – a (0)
C16	A – 3 (0)
C17	A – 1 – a (0)
C18	A - 2 - 4 (0)
C19	A – 1 – a (0)
C20	A – 3 (0)

- 3. Al momento de la realización de la exploración de campo, NO se detectó el nivel freático.
- 4. Los resultados del análisis químico de sales solubles totales, de acuerdo a las recomendaciones de la NTP 339.152 (BS 1377), se indica que el suelo en estudio se encuentra dentro del rango "MODERADA" concentración, por lo que se recomienda tomar las medidas necesarias recomendadas por la NTP 339.152 (BS 1377).
- 5. Durante la inspección realizada al área de estudio no se ha evidenciado fenómenos geodinámicos importantes.
- 6. Al momento de la conformación de la Base, esta deberá ser compactada enérgicamente, hasta obtener el 100% de compactación, comparada de su curva densidad - húmeda, obtenida en el laboratorio de acuerdo a las Normas AASHTO T - 180 D.

CALLE MANUEL SECANE Nº 7

Mario Ramirez Dejo CARDRATORIO I MAN ELRIL

E-Mail - mario rg8 of otmail.com

AYEQUE - CEL. 954853683 -

OSCAR LUZQUIÁOS RODR

23

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

7. En la construcción de veredas, el suelo de la superficie se deberá cortar hasta una altura de -0.30 m para reemplazarlo por 0.30 m de suelo de material granular. Los primeros 10 cm. de abajo, con arena fina y limpia, los siguientes 20 cm con material granular A-2-4-(0) clasificación AASTHO, y compactar al 95 % de la máxima densidad seca del ensayo proctor modificado.

El concreto no estará en contacto con material natural, si no con material granular.

OBRAS DE DRENAJE: Se recomienda colocar o diseñar un sistema de drenaje eficiente con la finalidad de discurrir las aguas provenientes del factor climático y otros eventos extraordinarios, su filtración originaría el incremento de sus contenidos naturales de humedad, causando variaciones volumétricas en los suelos, lo que daría lugar a la aparición de asentamientos.

- 8. Preferentemente los materiales a utilizarse como capa de base deberán ser provenientes de la cantera CHACUPE, siempre y cuando estos sean extraídos de áreas que cumplan los requisitos establecidos por el Ministerio de Transportes y Comunicaciones, MTC.
- 9. Los requisitos de materiales a emplearse para Base granular y Sub Base, es la siguiente:

Para la construcción de afirmados y sub bases granulares, los materiales serán agregados naturales procedentes de excedentes de excavaciones o canteras clasificados y aprobados por el Supervisor o podrán provenir de la trituración de rocas y gravas, o podrán estar constituídos por una mezcla de productos de ambas procedencias.

CALLE MANUEL SECANE Nº 7 E-Mall - mark Mario Ramires Dejo

rg8@6otmall.com

AYEQUE - CEL. 954853683 -

GENERITE GENERAL LABORATORIO LIMINI ELRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Los materiales para base granular solo provendrán de canteras autorizadas y será obligatorio el empleo de un agregado que contenga una fracción producto de trituración mecánica.

En ambos casos, las partículas de los agregados serán duras, resistentes y durables, sin exceso de partículas planas, blandas o desintegrables y sin materia orgánica, terrones de arcilla u otras sustancias perjudiciales. Sus condiciones de limpieza dependerán del uso que se vaya a dar al material.

Los requisitos de calidad que deben cumplir los diferentes materiales y los requisitos granulométricos se presentan en la especificación respectiva (Norma Técnica C.E. 010 Pavimentos Urbanos).

CALLE MANUEL SECANE Nº 7 Mario Ramirez Dejo CARDRATORIO I MINISTALLA

AYEQUE - CEL. 954853683 -

Reg. CIP. N° 31338

E-Mail - mark rg8 60tmall.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Tabla 4 Requerimientos Granulométricos para Sub-Base Granular

Tamiz	Porcentale que Pasa en Peso					
Tannz	Gradación A (1)	Gradación B	Gradación C	Gradación D		
50 mm (2*)	100	100	ı			
25 mm (1*)	_	75 – 95	100	100		
9.5 mm (3/8°)	30 - 65	40 – 75	50 - 85	60 - 100		
4.75 mm (N° 4)	25 – 55	30 – 60	35 – 65	50 - 85		
2.0 mm (N° 10)	15 – 40	20 – 45	25 – 50	40 - 70		
4.25 um (N° 40)	8 – 20	15 – 30	15 – 30	25 – 45		
75 um (N° 200)	2-8	5 – 15	5 – 15	8 – 15		

Fuente: Sección 304 de las EG-2013 del MTC.

(1) La curva de gradación "A" deberá emplearse en zonas cuya altitud sea igual o superior a 3000 m.s.n.m.

Además, el material también deberá cumplir con los siguientes requisitos de calidad:

Tabla 5 Sub-Base Granular

Requerimientos de Ensayos Especiales

Energy	Norma MTC	Requerimiento		
Ensayo	Norma MTC	< 3000 msnm	> 3000 msnm	
Abrasión	NTP 400.019:2002	50 % máximo		
CBR (1)	NTP 339.145:1999	30 - 40 % minimo*		
Limite Liquido	NTP 339.129:1999	25% máximo		
Índice de Plasticidad	NTP 339.129:1999	6% máximo	4% máximo	
Equivalente de Arena	NTP 339.146:2000	25% mínimo 35% mínimo		
Sales Solubles	NTP 339.152:2002	1% máximo		

CALLE MANUEL SECANE Nº

YEQUE - CEL. 954853683 -

Mario Ramires Dejo penente general LASORATORIO (MIN ELEL

E-Mail - mario rg8 of otmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

(*) 30% para pavimentos rígidos y de adoquines. 40% para pavimentos flexibles.

Tabla 6 Requerimientos Granulométricos para Base Granular

			•			
	Porcentaje que Pasa en Peso					
Tamiz	Gradación A	Gradación B	Gradación C	Gradación D		
50 mm (2*)	100	100	-	ı		
25 mm (1°)	-	75 – 95	100	100		
9.5 mm (3/8°)	30 - 65	40 - 75	50 - 85	60 – 100		
4.75 mm (N° 4)	25 - 55	30 - 60	35 – 65	50 - 85		
2.0 mm (N° 10)	15 – 40	20 - 45	25 - 50	40 – 70		
4.25 um (N° 40)	8 - 20	15 – 30	15 – 30	25 - 45		
75 um (N° 200)	2-8	5 – 15	5 -15	8 – 15		

Fuente: Sección 304 de las EG-2013 del MTC.

(1) La curva de gradación "A" deberá emplearse en zonas cuya altitud sea igual o superior a 3000 m.s.n.m.

El material de Base Granular deberá cumplir además con las siguientes características físico-mecánicas y químicas que a continuación se indican:

Valor Relativo de Soporte,	Vías Locales y Colectoras	Mín 80%
(NTP 339.145:1999)	Vías Arteriales y Expresas	Mín 100%

El material de Base Granular deberá cumplir además con las siguientes características físico-mecánicas y químicas que a continuación se

indican:

CALLE MANUEL SECANE Nº 7

E-Mail - mark rg8 66tmall.com

AYEQUE - CEL. 954853683

27

Mario Ramirez Dejo CARDRATORIO I MAR EJRL

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Tabla 8 Requerimientos Agregado Grueso de Base Granular

Ensayo	Norma MTC	Requerimientos Altitud < Menor de 3000 msnm	
Particulas con una cara fracturada	MTC E 210	80% minimo	
Particulas con dos caras fracturadas	MTC E 210	40% min. 50% min.	
Abrasión Los Ángeles	N.T.P. 400.019:2002	40% máximo	
Sales Solubles Totales	N.T.P. 339.152:2002	0.5% máximo	
Pérdida con Sulfato de Sodio	N.T.P. 400.016:1999	12% mäx.	
Pérdida con Sulfato de Magnesio	N.T.P. 400.016:1999	18% máx.	

CALLE MANUEL SEOANE Nº 7 CALLE MANUEL SEOANE Nº 7

Mario Ramires Dejo DEMENTE GENERAL LABORATORIO I MINI ELRI.

E-Mail - marro rd8 ootmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Tabla 9 Requerimientos Agregado Fino de Base Granular

		Requerimientos		
Ensayo	Norma	< 3 000 m.s.n.m.	> 3 000 m.s.n.m	
Índice Plástico	N.T.P. 339.129	4% máx 2% máx		
Sales solubles totales	N.T.P. 339.152	0.5% māximo		
Índice de durabilidad	MTC E 214	35% minimo		

10. Las conclusiones y recomendaciones establecidas en el presente informe técnico son solo aplicables para el área estudiada, de ninguna manera se puede aplicar a otros sectores u otros fines.

9.0 BIBLIOGRAFIA

- Diseño y Construcción de Pavimentos, German Vivar Romero.
- Reglamento Nacional de Edificaciones.
- Norma Técnica C.E. 010 Pavimentos Urbanos.
- Propiedades Geofísicas de los suelos, Joseph Bowles

CALLE MANUEL SECANE Nº 7 Mario Ramirez Dejo GENERIE GENERAL LABORATORIO I MINISTELLE

E-Mail - mark rd8 60tmall.com

AYEQUE - CEL. 954853683

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

DOCUMENTOS

Mario Ramirez Dejo GERENTE GENERAL LASORATORIO I MAN EJRL EOANE Nº 7 (1) MARINE AYEQUE - CEL. 954853683 E-Mail - mario rg8 (2) totmail.com

OSCUR LUZQUIÑOS RODINGA PRECIMENO COMA.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Distrigue

Registro de la Propiedad Industrial

Dirección de Signos Distintivos

CERTIFICADO Nº 00120308

La Dirección de Signes Distritivos del Instituto Nacional de Defensa de la Competencia y de la Protección de la Propectad Institutad — RIDECCPI, confilias que per mandate de la Recolución N° 03/1015.00/03/050 — RIDECCPI de feche 13 de decembro de 2019, ha quedade instituta en el Reputato de Marcala de Sancicio, el siguiente agino.

La sonominación LABORATORIO LINUS y legistros (se resendice concreta conforme el trodero

Servicios de lestados do mecimos de suelte y antifeiro de melenales de canato,cción, parimentos y seletios

42 de la Cardinantin microsimal

08221803019 Sollehut

Thole LARCHATORIO LINUS E I RIL

15 de dissentino de 2020 Vigencie

10801 122

CALLE MANUEL SEOANE N° 775 MAN Mario Ramires Dejo penente general. Lasgrandoso (men EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

RUC Nº 20605369139

REGISTRO NACIONAL DE PROVEEDORES

CONSTANCIA DE INSCRIPCIÓN PARA SER PARTICIPANTE, POSTOR Y CONTRATISTA

LABORATORIO LINUS E.I.R.L.

Domiciliado en: CAL. MANUEL SEOANE NRO. 717 P.J. EL ROSARJO LAMBAYEQUE LAMBAYEQUE (Según información declarada en la SUNAT)

Se encuentra con inscripción vigente en los siguientes registros:

PROVEEDOR DE BIENES

Vigencia | Desde 16/10/2020

PROVEEDOR DE SERVICIOS

Vigencia Desde 16/10/2020

FECHA IMPRESION: 27/10/2020

Nota:

fere mayor información la filtidad deberá verificar el estado actual de la vigencia de inscripcion del privisedor en la pagina web del RNP: www.mp.geb.pe - opción <u>Verifique su Instrucción.</u>

CALLE MANUEL SECANE Nº 7

Mario Ramirez Dejo penente general LASORATORIO I MARIE EL R.L. E-Mail - marke rg8 60tmall.com

AYEQUE - CEL. 954853683 - otmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYOS DE LABORATORIO

Mario Ramires Dejo GENERIE GENERAL LABORATORIO I MINI ELEL EOANE Nº 7 19 19 19 19 AYEQUE - CEL. 954853683 -E-Mail - mario 188 protmail.com (SCAI LEDNIS)

SCAR LIZOMIOS RODRICA MICEMERO CHIA.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 01

Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MAR BLIRL EOANE N° 7 3 4 4 4 4 AVEQUE - CEL. 954853683 = E-Mail - marro 1880 ottmail.com 0548 1270458

OSCAR LUZQUIROS RODROCA MIGENIERO CAVA.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE PROYECTO

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE CALICATA

16.11.2021

REGISTRO DE PERFORACIONES

CONA	N.S.	30000	SIZESUS.	RATUROL EDADEL TERRENO	CENTRACORE
	(min)	BURSTAA		MITRATO	
	0.00				
ne .		RELLENO	0950250	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	200000 200000 200000 200000 200000 200000	CLASFICACION - AASHTO: A - 4 (0) AMBRAS CON PICADA ARCILLAS DE COLOR MARRON CLARO, DE CONSISTENCIA MEDIA LL + 28/3 LL + 28/3 LL + 28/3 LF + 28/5 S + COMPENDO DE HAMBDAD + 35H % % COMPENDO DE SALSE + 0.17 % MAUMA CERRISTAD DE CAN + 1,87 grand OPPIRO DE MARBDAD + 12,71 % C.S.R. + 100% + 16 % C.S.R. + 100% + 38 %	DURANTE R. TISMPO DE EXCAUACION NO SÉ DETECTO NVR. PREATICO

Mario Ramirez Dejo genente genenal LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 787 MAN

OSCAR LISTORIOS RODRO INSCRIBTO CIVIL

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA CI PECNA : 16.11.2021

HUMEDAD NATURAL				
CALICATA-MUESTRA	C1 - M1			
PROFUNDIDAD (m)	0.20 - 1.50			
Nº RECIPIENTE	5			
1 PESO SUELO HUMEDO + RECIPIENTE	84.85			
2 PESO SUELO SECO + RECIPIENTE	82.45			
3 PESO DEL AGUA	2.40			
4 PESO RECIPIENTE	21.56			
5 PESO SUELO SECO	60.89			
8 PORCENTAJE DE HUMEDAD	3.94%			

DETERMINACION DE LA SAL				
CALICATA-MUESTRA	C1 - M1			
PROFUNDIDAD (m)	0.20 - 1.50			
Nº RECIPIENTE	19			
(1) PESO DEL TARRO	55.51			
(2) PESO TARRO + AGUA + SAL	61.51			
(3) PESO TARRO SECO + SAL	55.52			
(4) PESO SAL (3 - 1)	0.01			
(5) PESO AGUA (2-3)	5.99			
(6) PORCENTAJE DE SAL	0.17%			

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MIRI EL R.L.

E-Mail - marker 18 00 thmail.com

OSCAR LUZQUIÁOS ROOR

36

Reg. CIP. N° 31338

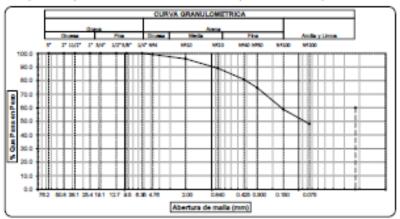
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTII: KIMBERLY SARITA INCIO CHUNGA


E: KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

ориморар : 0.20 mts. - 1.50 mts.

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	15 QUE	DESCRIPCION DE LA MUESTRA	
(Pul)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPTION OF STREET	DE DI RESILIO
3"	76.200					PESO TOTAL :	200.0 g.
2 1/2"	63.500					PESO LAVADO :	96.1 g.
2"	50.800						
11/2"	38.100					LIMITE LIQUIDO :	29.70 %
1"	25.400					LIMITE PLASTICO :	20.67 %
34"	19.050					INDICE PLASTICIDAD:	9.00 %
1/2"	12.700					CLASF, AASHTO :	A-6 (3)
30"	9.525					CLASF, SUCS :	50
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: REGULAR-MALO
Nº4	4.760	1.74	0.87	0.67	99.13	Arena arcillosa	
NHO	2.000	6.41	3.21	4.08	95.93	Ensayo Malla N*200	P.S.Seo P.S.Lav (%) 200
N*20	0.840	13.86	6.93	11.01	09.00		200.0 96 52.0
N40	0.425	16.26	0.13	19.14	60.67		
N*50	0.300	12.41	6.21	25.34	74.00		
Nº100	0.150	31.70	15.85	41.19	58.81	MODULO DE FINEZA	1.016
Nº200	0.075	21.58	10.76	51.97	48.03	Coef. Uniformidad	3.4
< Nº 200	FONDO	90.06	40.03	100.00	0.00	Coef. Curvature	0.0

Mario Ramires Dejo DEMENTE GENERAL LASORATORIO I MARI EL R.L.

OSCAR LUZQUIÁOS RODA PRECIMERO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

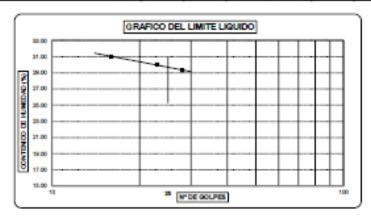
RUC. 20605369139

LIMITE® DE ATTERBER®

(ASTM - D423 / N.T.P. 339.129)

SOLICITANTE

RIMBERLY SARITA INCIO CHUNGA DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO


MEJORAR LA TRANSITABLIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE 0.20 mbs. - 1.50 mbs.

UBICACIÓN

PROFUNDIDAD GALICATA

C1M1 16.11.2021 FECHA

DATOS DE ENSAYO		L	MITE LIQUE	ю .	LIMITE PLASTICO			
N° de golpes		16	20	23	ı			
1. Recipiente N*		322	324	317	346			
2. Peso suelo húmedo + tars	(pr)	32:05	30.05	33.00	33.66	_		
3. Peso suelo seco + Tars	(pr)	28.77	27.45	29.55	30.9	_		
4. Peso de la Tars	(pr)	18.15	18.57	18.17	17.58			
5. Peso del agua	(pr)	3.28	2.59	3.45	2.76			
5. Peso del suelo seco	(pr)	10.62	8.89	11.38	13.35			
7. Contenido de humedad	(%)	30.89	29.13	30.32	20.67			

LIMITE DE CONSISTENCIA DE	LA MUESTRA
Limite Liquido	29.70
Limite Plástico	20.67
buller de Blandelded	0.00

MUESTRA:	C1M1
Clasificación SUCS	90
Clasificación AASHTO	A-4 (2)

CALLE MANUEL SEOANE N° 7 STATE OF THE SECOND SEASON OF THE SECOND OF THE Mario Ramirez Dejo GENERIE GENERAL LABORATORIO I MINI EL R.L.

OSCAR LISTORIAUS ROOM PROCEMBERO CHINA.

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNCACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C1M1 FICKA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº	:				
VOLUMEN	:	2050	cm ^a	-	ple*
METODO DE COMPACTACION	:	AASHTO	T - 180 D		
 Peso Suelo Humedo + Molde 	(20)	6563	6850	7076	6973
 Peso de Moide 	(8)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3813	4100	4328	4223
 Peso Volumétrico Húmedo 	(g)	1.880	2.000	2.110	2.060
Recipiente №		415	440	438	449
Peso de Suelo Húmedo + Tara	(g)	51.31	51.55	58.19	51.48
Peso de Suelo Seco + Tara	(g)	49.07	48.77	54.35	48.75
∠ Tara	(g)	19.85	21.43	24.00	15.55
 Peso de Agua 	(8)	2.24	2.78	3.84	4.73
 Peso de Suelo Seco 	(2)	29.22	27.34	30.35	31.20
 Contenido de agua 	(%)	7.67	10.17	12.65	15.16
 Peso Volumétrico Seco 	(glam)	1.73	1.82	1.87	1.79

Mázima Densidad Seca Optimo Contenido de Humedad

CALLE MANUEL SECANE Nº 7 THE WIND AVEQUE - CEL. 954853683 -

OSCAR LUZQUIÁOS RODR ROENERO ONL ROE CIP. N° 31338

E-Mail - markerg8@botmail.com

Mario Ramirez Dejo CARDRATORIO I MAR EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

LICITANTE

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAYMENTACION PARA

PROTECTO		DISCHOOL DE		-	INCOME				THE LABOR.					
		MEJORAR									CION			
UNICACION		VILLA EL 8									RAVEO	HE		
REACON : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE														
PECHA : 16.11.2021														
the ran						C.B.F	-							
MOLDE Nº				_	12	0.0.1	-		7			3		
P DE GOLPES	DOD-ON	D4			56		_		5					
CONDICION D			SIN M		MON	ADA.	33V M		MOU	ADA	2 N M	IOJAR .	MOJ	ADA
WIND MOUDE + 2			10.7		10.0		10.0			950		607	10.0	
SID DEL MOLD		(0)	6.2		6.2		0.4		0.4			CS CS	0.4	
WHO DEL BLIELS		-	451		45		-40		44			101	43	
CLUMEN DR. R		(0)	2.5	_	2.1		2.1		2.1			140	2.1	
SHORE HAM		(pitn*)	2.1		21		2.0		2.5			95	2.0	
CAPBILAN			10		20	ė.	21	σ	26		2	79	30	9
MINICAPRILIA	+SUBLOH	UMBOO (g)	50.1	10	66.	28	65.	10	62	-6	47	.90	74	67
MINI CAPILLA	+818108	HCD (g)	52.	246	61.0	00:	60.	30	50.	69	44	100	00.41	
PERO DE AGUA O	CONTRNICA	. (2)	3.6	H	5.2	idi .	4.1	10	5.5	50	2:	10	7.6	90
480 DE CAPIL	LA.	(2)	21.3	200	23.	40	23.	65	20.	21	20	59	22.88	
ERO DE RURLO	2000	(2)	20.5	20	30.5	50	36.	65	36.	66	24	127	40.53	
UMEDAD		(%)	12.7	12.73% 1		0%	13.10%		15.10%		12.77%		17.60%	
SENSIONO SECA			1.0	1.87 1.88		10	1.81 1.83		12	1.73		1.74		
					EX	PANS	HON							
					KXPANBO	*	DML	DIAL EXPANSION		DIAL REPARESON			м	
FECHA	HORA	TEMPO	DAL	-		1	1	-		1				*
														г
									_				\neg	Г
					NU	RECEIST	HUA						\neg	Г
													\neg	Г
													\neg	г
					PEN	FTR/	CION							
PRINTRA	COON	CARSA		MOLDR		12	1	MOLDR	N°	27		MOLDE	Nº	38
palg.		BRITANDAR	CARGA			N.	CARGA			*	CARGA		OR FRONT	4
		(Basinata)	Leolure	lie.	Delputy	•	Lecture	lie	lan pulsi	,	Leolure	lie	Balanta	,
0.020			8.20	96	22.00	_	5.90	69	23.00	_	3.60	42	14.00	L
0.040			17.20	201	67.00		12.30	144	48.00		7.40	67	29.00	L
0.060			25.10	294	98.00		18.20	213	71.00		10.80	126	42:00	
0.000			22.80	284	128.00		23.80	279	90.00		14.10	185	55.00	
0.100		1000	41.00	480	180.00	16.00	29.70	348	116.00	11.60	17.70	207	69.00	0.5
0.200		1500	66.90	793	261.00		48.50	567	189.00		28.70	236	112.00	Г
0,300			84.90	993	201.00	_	61.50	720	240.00		36.70	409	143.00	Г
0.400			98.50	1150	284.00		71.00	834	278.00		42.60	490	100.00	Г
0.400		_	80.00	1102	201.00	-	71.00	824	278.00	-	10.00	1000	100.00	-

CALLE MANUEL SEOANE Nº 7 STANDAN AYEQUE - CEL. 954853683 -

E-Mail - marker 18 00 thmail.com

400.00

74.40

OSCAR LUZQUIÁOS ROOR

Mario Ramirez Dejo SEMENTE GENERAL LABORATORIO I MINISTRAL

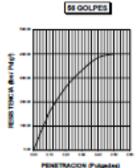
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

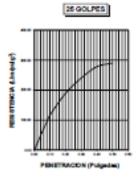
RUC. 20605369139

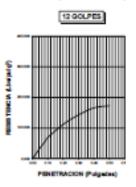
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

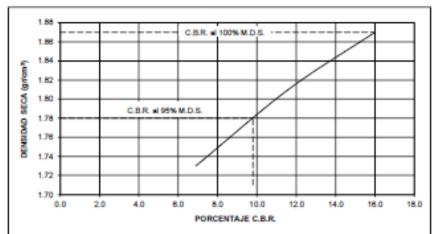
: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE : C1M1 CALICATA


FECHA : 16.11.2021


DATOS DEL PRO	DATOS DEL PROCTOR							
Densidad Mikrima (gricm ³)	1.87							
Humedad Optima (%)	12.71							

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%) 16.00						
C.B.R. al 95% de M.D.S. (%)	9.80					

CALLE MANUEL SEOANE Nº 7 THE MANUEL SEOANE N° 7 THE MANUEL SEOANE N°

E-Mail - mario rd8 ootmail.com

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338

41

Mario Ramirez Dejo LABORATORIO I MIN E.I.R.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 02

CALLE MANUEL SECANE Nº

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO (MINISTRE) E-Mail - marking8@botmail.com

AVERTINE AYEQUE - CEL. 954853683

RECEMENO CAVE.
Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION PROYECTO

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C-2 16.11.2021 CALICATA

REGISTRO DE PERFORACIONES

2000	1000	ACMONDA.	11.1.000	ANTONIA DIA DEL TERRITO	OBSERVANIONS
-	(min.)			MITRATO	
	0.00				
	0.10	RELLEND	0750036	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1		CLASFICACION - AABHRO: A - 1 - a (5) SRIVASI CON ARBINA DE COLOR RLANQUECINO, DE COMBISTENCIA MEDIA LL = N.P LP+N.P LP+N.P LP+N.P N= COMBINIDO DE HUMRDAD + 3.86 % % COMBINIDO DE SALISI = 0.16 % MAUMA DENBOAD SECA + 2.10 grand DPTIBLO DE HAMEDAD + 2.16 % C.S.R 100% + 26 % C.S.R 100% + 26 %	DURANTE R. TIEMPO DE BILDRIACION NO SE DETECTO NIVEL FREATICO

CALLE MANUEL SEOANE Nº 7 STANTON AYEQUE - CEL. 954853683 -Mario Ramirez Dejo CARDRATORIO I MARIE ELRI.

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338 43

E-Mail - marker 18 0 otmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOUCHARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACIÓN PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACIÓN PROYECTO

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA CZ 16.11.2021 FECHA

HUMEDAD NATURAL					
CALICATA-MUESTRA	C2 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
Nº RECIPIENTE	18				
1 PESO SUELO HUMEDO + RECIPIENTE	45.22				
2 PESO SUELO SECO + RECIPIENTE	44.27				
3 PESO DEL AGUA	0.95				
4 PESO RECIPIENTE	19.85				
5 PESO SUELO SECO	24.42				
8 PORCENTAJE DE HUMEDAD	3.89%				

DETERMINACION DE LA SAL					
CALICATA-MUESTRA	C2 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
Nº RECIPIENTE	84				
(1) PESO DEL TARRO	62.68				
(2) PESO TARRO + AGUA + SAL	68.85				
(3) PESO TARRO SECO + SAL	62.69				
(4) PESO SAL (3-1)	0.01				
(5) PESO AGUA (2 - 3)	6.16				
(6) PORCENTAJE DE SAL	0.16%				

Mario Ramirez Dejo

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -E-Mail - mario rg8 potmali.com

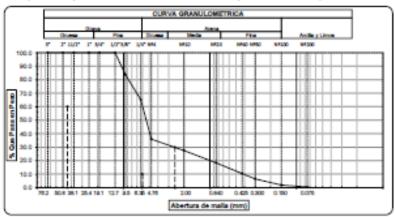
OSCAR LUZQUIÑOS PROPRICUEZ PRECINICIPO COMA Reg. CIP. N° 31338

44

LABORATORIO I MIN EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

ROYBETO : DISERO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABLIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE MICACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE DIVUNDIDAD : 0.10 m/s. - 1.50 m/s.

CALICATA : C2M1 PRICHA : 16.11.2021

ABERTURA MALLA		PESO	% RETENDO % RET	N. RETENIDO	TENDO 1. QUE	DESCRIPCION DE LA MUESTRA		
(249)	(0000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION	THE SA PERSONAL	
3"	76.200					PESO TOTAL :	600.0 g.	
2 1/2"	63.500					PESO LAVADO :	2.7 g.	
2"	50.800							
11/2"	38.100					LIMITE LIQUIDO :	N.P	
1"	25.400					LIMITE PLASTICO :	N.P	
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P	
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)	
30"	9.525	90.14	16.36	16.36	63.64	CLASF, SUCS :	QP	
1/4"	6.350	110.63	10.44	34.00	65.21	DESCRIPCIÓN DEL SUE	LO: BUENO	
Nº4	4.760	175.75	29.29	64.09	35.91	Grava pobremente grad	luada con arena	
N40	2.000	50.59	0.43	72.52	27.40	Ensayo Malla N*200	P.S.Seo P.S.Lev (%) 2	
N*20	0.840	54.60	9.10	81.62	18.30		800.0 3 99.0	
N40	0.425	67.27	7.66	89.50	10.50			
N*50	0.300	24.62	4.10	93.60	6.40			
Nº100	0.150	26.65	4.44	96.04	1.96	MODULO DE FINEZA	5.505	
Nº200	0.075	9.05	1.51	99.55	0.45	Coef. Uniformidad	7.3	
< N* 200	FONDO	2.70	0.45	100.00	0.00	Coef. Curveture	0.0	

CALLE MANUEL SEOANE N° 787 STATE OF THE SECOND SEASON OF THE SECOND SECOND SEASON OF THE SECOND SECO Mario Ramirez Dejo

OSCAR LEZQUIÑOS RODR MISERIERO CIVIL

Reg. CIP. Nº 31338

CABORATORIO I MIN ELRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

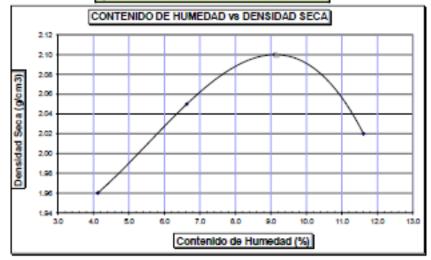
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C2M1 FICKA. 16.11.2021

PROCTOR MODIFICADO AASHTO

:	2050	cm*	-	ple*
:	AASHTO	T - 180 D		
(8)	6932	7240	7445	7383
(g)	2750	2750	2750	2750
(g)	4182	4490	4895	4813
(g)	2.040	2.190	2.290	2.250
	328	353	351	362
(g)	53.58	53.93	60.50	53.80
(g)	52.31	52.01	57.59	49.99
(2)	21.47	23.05	25.62	17.17
8	1.27	1.92	2.91	3.81
(g)	30.84	28.98	31.97	32.82
(%)	4.12	6.63	9.10	11.61
(plant)	1.98	2.05	2.10	2.02
	3 3 3 3 3 3 3 3 3	: AASHTO (g) 6932 (g) 2750 (g) 4182 (g) 2.040 328 (g) 53.58 (g) 52.31 (g) 52.31 (g) 1.27 (g) 1.27 (g) 30.84 (%) 4.12	: AASHTO T - 180 D (g) 8932 7240 (g) 2750 2750 (g) 4182 4490 (g) 2.040 2.190 328 353 (g) 53.58 53.93 (g) 52.31 52.01 (g) 21.47 23.05 (g) 1.27 1.92 (g) 30.84 28.98 (%) 4.12 6.63	: AASHTO T - 180 D (g) 6932 7240 7445 (g) 2750 2750 2750 (g) 4182 4490 4895 (g) 2.040 2.190 2.290 328 353 351 (g) 53.58 53.93 60.50 (g) 52.31 52.01 57.59 (g) 21.47 23.05 25.82 (g) 1.27 1.92 2.91 (g) 30.84 28.98 31.97 (%) 4.12 6.83 9.10

Optimo Contenido de Humedad 9.16 %

Mario Ramirez Dejo penente general LASORATORIO I MINISTERLE

CALLE MANUEL SEOANE Nº 7 CHANGE AYEQUE - CEL. 954853683 -E-Mail - marro rd8 potmail.com

OSCAR LUZQUIÁOS ROOM

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA
DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C2M1 18.11.2021 CALICATA

PECHA		16.11.2021												
					(C.B.F	₹.							
MOLDE Nº					1			2	1			3	12	
Nº DE GOLPES	POR CA	PA		5	ě.			2	5		12			
CONDICIONID	E MUEST	RA	30H M	CLIAR	MOU	DA.	33K M	DJAR	MOJ	ADA	33K M	DJAR	MOU	ADA
PERO MOLDE +1	RUBLO HUN	(g) 000	11,7	190	11,8	dia	11,0	164	113	err	11,	630	11,0	67
PERO DEL MOLD	8	(2)	0,0	74	0,83	14	7,0	74	7,0	74	7,0	M2	7,0	42
PERO DEL BUEL	COMMUNIC	(2)	497	12	400	6	4790 4903		4500		40	15		
VOLUMEN DEL S	URLO	(0)	2.5	0	2.14	ú	2.5	40	2.5	10 2140			2.143	
DENSIDAD HUM	CA.	(pitm ^b)	2.5	19	2.23		2.24		2.29		2.14		2.25	
CAPBULANT	CAPBLLANT		10	0	20	ì	21	H	259		273		30	13
PERO CAPRULA	+ SUBLO H	JMECO (g)	47.	65	57.4	M.	50.	36	53.64		39.67		64	83
PERO CAPRULA	+ 81810 8	(g) 038	45.	14 53.92		2	53.20		49.79		27.76		59.31	
PERO DE AGUA	CONTRNICA	. (3)	2.5	M	3.56		3.16		3.85		1.91		5.62	
PERO DE CAPIS.	LA	(2)	17.	73	193	И	20.	10	16.	00	17	.04	18	23
PERO DE BURLO	8600	(2)	27.	41	34.0	M	33	1	23.	13	20	72	39	90
HUMBOAD		(%)	9.10	1%	10.4	7%	9.5	5%	11.0	2%	9.2	2%	14.0	10%
DENSIDAD ISCA	1		2.1	10	2.1	1	2.0	M	2.0	6	1.	90	1.5	io.
					EXI	PANS	ION							
FRCHA	HORA	TEMPO	DIAL		REPARTED		DIAL	EXPANSION		4	DIAL		REPAREICH	
						,								•
				_		-		_		-		_		

NO DECUCTOR						
NO REGISTRON						

	MOVED BY			MOUNT NO. NO.	21	_					
PENETRACION											
						Γ					
						L					

PENETRACION	CARBA		MOLDR	Nº	*		MOLDR	Nº	21		MOLDE	Nº	32
puly.	BRITANDAR	CARGA		CONTINUE		CARGA		****	R	CARGA	0	OR FRANCE	N.
	(Stationary)	Lecture	lie.	Delputy*	*	Lecture	lie.	Designation of	•	Lesture	lie.	Bally March	*
0.020		19.50	228	76.00		14.10	165	55.00		8.50	99	23.00	
0.040		40.50	474	158.00		29.50	345	115.00		17.70	207	69.00	
0.000		58.50	696	222.00		43.10	504	168.00		25.90	303	101.00	
0.080		77.90	912	304.00		50.40	660	220.00		23.80	296	132:00	
0.100	1000	97.40	1140	380.00	28.00	70.50	825	275.00	27.50	42:30	495	165.00	18.
0.200	1500	158.70	1857	619.00		114.90	1344	448.00		69.00	807	269.00	
0.300		201.80	2361	787.00		145.90	1707	569.00		87.70	1026	342:00	
0.400		233.80	2736	912.00		109:20	1980	660.00		101.50	1100	396.00	
0.500		243.60	2850	950.00		179.40	2064	688.00		105.90	1239	413.00	
													г

CALLE MANUEL SEOANE N° 7 THE ME AYEQUE - CEL. 954853683 —

Tarso Ramirer Dejo E-Mall - mario 1980 botmall.com

SCAL LETORO 6

OSCAR LUZQUIÁOS RO

Mario Ramires Dejo DERENTE GENERAL LASORATORIO I MARIE EL R.L.

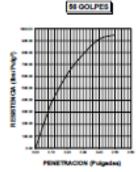
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

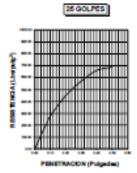
RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

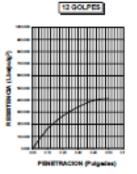
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

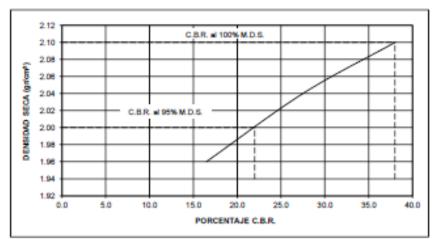
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


: DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION


CALICATA : C2M1 FECHA : 16.11.2021


DATOS DEL PROCTOR									
Densided Máxima (gricm ³)	2.10								
Humedad Optima (%)	9.16								

DATOS DEL C.B.R.										
C.B.R. al 100% de M.D.S. (%)	38.00									
C.B.R. al 95% de M.D.S. (%)	22.00									

CALLE MANUEL SEOANE Nº 7 THE MANUEL SECTION OF THE PROPERTY OF Mario Ramires Dejo

CARDRATORIO I MAN ELRI.

E-Mail - mario rg8 6 otmail.com

OSCAR LUZQUIÁOS ROOR Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 03

Mario Raminer Dejo
Senente central
Laboratorio Immiesaria

EOANE N° 7 3 TANK AYEQUE - CEL. 954853683 = E-Mail = mark 198 botmail.com oscal unioniss

OSCUR LISTORIOS RODROS PROCENCIRO CONS.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C-3 16.11.2021 **FECHA**

REGISTRO DE PERFORACIONES

COSTA	10.00	ACHORDO	11.000	ALTURAL ECA DEL TERRENO	CERENTACIONES
	(min.)	MURRITRA		ENTRATO	
RJ	0.00				
	0.10	RELLEND	innense.	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	SF	CLASFICACION - AASHEO I A - 3 (5) ARSHASI CON NILLA PLASTICIDAD LLI CLUCRI MARRONI CLARO, DE CONSESTENCIA MEDIA LLI CNP LP N NP LP N NP IN COMENDO DE HUMEDAD = 3.11 % IN COMENDO DE HUMEDAD = 1.51 % IN COMENDO DE HUMED	DURANTE R. TIBARYO DE EXIDINACION NO SE DETECTO NIVEL FREATICO

Mario Ramirez Dejo DEMENTE GENERAL LASORATORIO (MINISTRE)

E-Mail - mario rd8

CALLE MANUEL SEOANE Nº 7 12 MANUEL YEQUE - CEL. 954853683 -

OSCAR LIZQUIÁOS RODR INGENIERO CIVIL Reg. CIP. N. 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARITE

: DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE URICACION

CALICATA C3 FECHA : 16.11.2021

HUMEDAD NATURAL									
CALICATA-MUESTRA	C3 - M1								
PROFUNDIDAD (m)	0.10 - 1.50								
Nº RECIPIENTE	77								
1 PESO SUELO HUMEDO + RECIPIENTE	61.22								
2 PESO SUELO SECO + RECIPIENTE	59.99								
3 PESO DEL AGUA	1.23								
4 PESO RECIPIENTE	20.48								
5 PESO SUELO SECO	39.53								
8 PORCENTAJE DE HUMEDAD	3.11%								

DETERMINACION DE LA SAL									
CALICATA-MUESTRA	C3 - M1								
PROFUNDIDAD (m)	0.10 - 1.50								
Nº RECIPIENTE	207								
(1) PESO DEL TARRO	80.51								
(2) PESO TARRO + AGUA + SAL	85.84								
(3) PESO TARRO SECO + SAL	80.52								
(4) PESO SAL (3-1)	0.01								
(5) PESO AGUA (2-3)	5.32								
(6) PORCENTAJE DE SAL	0.19%								

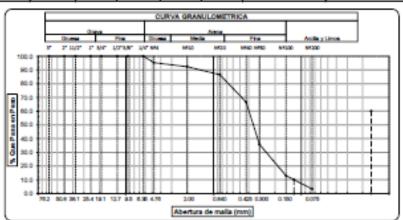
Mario Ramirez Dejo DEMENTE GENERAL LASORATORIO (MARIELEL

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -E-Mall - marrord8 ootmall.com

51

OSCUR LUZQUIOS RODROJEZ RECENERO CIVIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI


RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE BICACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE ROPUNDEAD : 0.10 mts. - 1.50 mts.

ABERTUR	N MALLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPTION	DE LA MUESTRA
(Pv4)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPTION 1	DE LA RESITO
3"	76.200					PESO TOTAL :	200.0 g.
2 1/2"	63.500					PESO LAVADO :	6.0 g.
2"	50.800						
11/2"	38.100					LIMITE LIQUIDO :	N.P
1"	25.400					LIMITE PLASTICO :	N.P
34"	19:050					INDICE PLASTICIDAD:	N.P
1/2"	12.700					CLASF, AASHTO :	A-3 (0)
3/0"	9.525					CLASF, SUCS :	SP
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEL	O: BUENO
Nº4	4.760	9.51	4.76	4.76	95.25	Arena pobremente gradu	ada
NHO	2.000	5.64	2.92	7.68	92.33	Ensayo Malla Nº200	P.S.Seo P.S.Lav (%) 200
N*20	0.840	11.02	5.81	13.49	66.52		200.0 7 96.7
N40	0.405	39.95	19.90	33.46	66.54		
N*50	0.300	61.51	30.76	64.22	35.79		
Nº100	0.150	45.51	22.76	86.97	13.03	MODULO DE FINEZA	2.106
N°200	0.075	19.51	9.76	96.73	3.26	Coef. Uniformidad	0.1
< N* 200	FONDO	6.55	3.28	100.00	0.00	Coef. Curveture	0.0

CALLE MANUEL SEOANE Nº 7 THE MEN AYEQUE - CEL 954853683 -Mario Ramires Dejo SEMENTE GENERAL LASORATORIO I NAME ELIRA

OSCAR LIETORIOS RODR INSCRIENO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

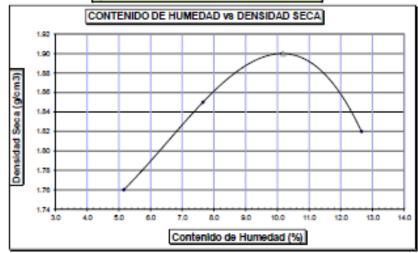
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C3M1 FICHA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

HITCHE	Onn	71110	TOUL	
:				
:	2050	cm*	_	ple*
:	AASHTO 1	r - 180 D		
(g)	8543	6830	7035	6953
(g)	2750	2750	2750	2750
(g)	3793	4080	4285	4203
(g)	1.850	1.990	2.090	2.050
	148	171	169	180
(g)	50.80	51.09	57.68	50.93
(g)	49.29	48.99	54.57	48.97
(g)	19.98	21.54	24.11	15.68
(g)	1.51	2.10	3.09	3.98
(g)	29.33	27.45	30.48	31.31
(%)	5.15	7.65	10.14	12.65
(plcm ²)	1.76	1.85	1.90	1.82
		: 2080 : AASHTO 1 (g) 6543 (g) 2750 (g) 3793 (g) 1.850 148 (g) 50.80 (g) 49.29 (g) 1.51 (g) 29.33 (%) 5.15	: 2060 cm² : AASHTO T - 180 D (g) 8543 8830 (g) 2750 2750 (g) 3793 4080 (g) 1.850 1.990 148 171 (g) 50.80 51.09 (g) 49.29 48.99 (g) 1.98 21.54 (g) 1.51 2.10 (g) 29.33 27.45 (%) 5.15 7.85	: 2080 cm² : AASHTO T - 180 D (g) 8543 8830 7035 (g) 2750 2750 2750 (g) 3793 4080 4285 (g) 1.850 1.990 2.090 148 171 189 (g) 50.80 51.09 57.88 (g) 49.29 48.99 54.57 (g) 1.98 21.54 24.11 (g) 1.51 2.10 3.09 (g) 29.33 27.45 30.48 (%) 5.15 7.85 10.14

Mázima Densidad Seca Optimo Contenido de Humedad: 10.19 %

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -Mario Ramirez Dejo

CARDRATORIO I MAN ELRI.

OSCAR LUZQUIÁOS RODRO Reg. CIP. N° 31338 53

E-Mail - mario rg8 potmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISERO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

URICACION		DISTRITO									BAYEQ	JΕ		
CALICATA	=	C3M1												
PECHA		16.11.2021												
l					(C.B.F	₹.							
MOLDE Nº				1	11			- 1	16			3	17	
Nº DE GOLPES	S POR CA	PA.			56			5	15			1	12	
CONDICIOND	E MUESTI	PA.	304 M	CLIAR	MOJA	ADA.	SNM	DJAR	MOJ	ADA	SIN MOJAR		MOJADA	
PERO MOLDE + BLELD HUMBDO (g)			11,2	220	11,2	98	11,294		11,399		11,	058	11,3	200
PERO DEL MOLD	*	(2)	6,73	33	6,73	13	6,933		6,9	00	6,5	61	6,9	01
PERO DEL RUEL	PERCOEL BURLO HUMBOO (g)			17	400	15	43	81	4400		41	57	4365	
VOLUMEN DELIS	VOLUMEN DR. RURLO (d)			43	2.14	0	210		210		21	43	2,143	
DENSIDAD HUMS	HCA.	(pkm²)	2.0	9	2.1	9	2.03		2.08		1.94		2.04	
CAPBLLANT			18	6	20	207		236		264		278		20
PERO CAPRILLA	MEDO (g)	50.1	10	60.0	01	58.	67	50.17		42.05		67.	55	
PERO CAPRILLA	+ SUBLO 89	(g) CO	47.	20	55.9	10	55.	26	51.	85	29	82	61.	27
PERO DE AGUA	CONTRNICA	(2)	2.9	i0	40	a a	3.6	61	4.	12	2	23	6.1	10
PERO DE CAPIS.	I.A.	(2)	18.7	76	20.0	H	21.	13	17.	69	18.07		20.	36
PERO DE BURLO	2000	(2)	28.4	44	35.04		34.13		34.16		21.75		41.01	
CACIEMUH		(%)	10.2	2%	11.5	0%	10.58%		12.65%		10.25%		15.07%	
DENSIDAD BECA	١		1.9	ю.	1.8	1	1.1	14	1.85		1.76		1.77	
					EX	PANS	SION							
FRCHA	HORA	THMPO	DIAL		KOPANSIO	4	DIAL		KIPANIN	N	DIAL		KEPANBO	H
				_	-	1	\vdash	_		*	_	_		*
	-			<u> </u>					_	_				Ь
	_		_		NO	RECEIVE	RA.		1	_				_
<u> </u>	_		_					_		<u> </u>				⊢
	_	\vdash		_		<u> </u>		<u> </u>		<u> </u>				Ь
														Щ
I					PEN	ETR/	CION							

DEL	_	-	-	C-10.0
PEN	-1	HL C		CHN
_	_			-

PENETRACION	CARBA		MOLDS	Nº.	11		MOLDS	M ²	26		MOLDE	No.	37
palg.	BRITANDAR	CARGA		CONTROL OF	N	CARGA	•	000000	N	CARGA	0	CORPORA	4
	(Stationary)	Lesture	lin.	Delpuly	*	Lecture	lie.	Section 1	•	Leolure	lie.	Balanty	*
0.020		5.40	83	21.00		4.10	48	16.00		2.30	27	9.00	
0.040		11.50	135	45.00		8.50	99	33.00		4.90	57	18.00	
0.000		16.70	195	65.00		12.30	144	48.00		7.20	84	28.00	
0.000		22.10	250	86.00		15.90	100	62:00		9.50	111	27.00	
0.100	1000	27.40	321	107.00	10.70	20.00	234	78.00	7.60	11.80	138	46.00	4.0
0.200	1500	44.60	533	174.00		22.60	381	127.00		19:20	225	75.00	
0.300		58.70	663	221.00		41.30	463	161.00		24.40	285	95.00	
0.400		65.90	771	257.00		47.90	561	187.00		28.20	200	110.00	
0.500		68.70	804	298.00		50.00	585	195.00		29.50	345	115.00	Г
													$\overline{}$

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

E-Mail - marro 108 abotmall.com

CALLE MANUEL SEOANE Nº 7 STANDEN AYEQUE - CEL. 954853683 -

OSCUR LUZQUIÑOS ROD

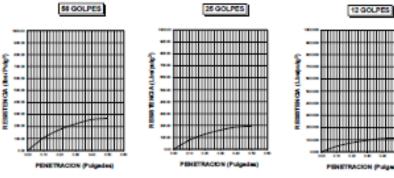
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

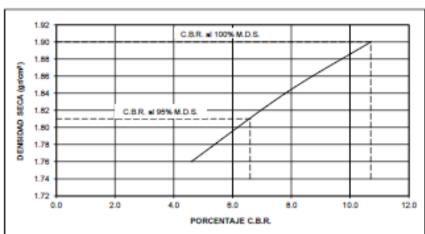
RUC. 20605369139

SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C3M1 FECHA

: 16.11.2021

DATOS DEL PROC	TOR	DATOS DEL C	.B.R.
Denelded Mikrima (gricm ³)	1.90	C.B.R. al 100% de M.D.S. (%)	10.70
Humedad Optima (%)	10.19	C.B.R. al 95% de M.D.S. (%)	6.60

CALLE MANUEL SEOANE Nº 7 THE ME AYEQUE - CEL. 954853683 -

E-Mall - mario rg8 potmall.com

OSCUR LUZQUINOS ROOM Reg. CIP. N° 31338 55

Mario Ramires Dejo SERENTE GENERAL LASORATORIO I MAR ELEL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 04

Mario Ramirez Dejo SEMENTE GENERAL LASORATORIO I MAR ELEL

OSCAR LECYDROS RODRICUE RECENERO CIVIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CAUCATA C-4 18.11.2021 **FECHA**

REGISTRO DE PERFORACIONES

COTA	F-100	ACHORN	1121000	RATURAL ECA DEL TEXABRO	CHILDRESCO
	(min.)	BURNINA		ENTRATO	
	0.00				
П	0.10	RELLEND	05000	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(b)	CLASFICACION - AASHTO: A - 1 - a (5) GROWNS CON ARSINA DE COLOR RLANGUECINO, DE CONSISTENCIA MEDIA LL + N.P LP + N.P LP + N.P N + COMPENSO DE HUMBOAD + 2.70 % % COMPENSO DE SALES + 0.16 % MUCHA DENSON SECA + 2.16 grand OPTISO DE HAMEGAD + 2.16 % C.S.R 100% + 40 % C.S.R 100% + 21.6 %	DURANTE R. TISMPO DE EXCRUACION NO SÉ DETECTO NVIR. PREATICO

Mario Ramirez Dejo GENENTE GENERAL LASORATORIO I MINISTREL

CALLE MANUEL SECANE Nº 7 MAN AYEQUE - CEL. 954853683 -E-Mall - marro rd8 ootmall.com

OSCAR LUZQUIÑOS RODRICU PREZNACIRO COMA. Reg. CIP. N.º 31,338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOUCHARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACIÓN PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACIÓN PROYECTO

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEGUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEGUE UBICACION

CALICATA C4 16.11.2021 FECHA

HUMEDAD NATURAL								
CALICATA-MUESTRA	C4 - M1							
PROFUNDIDAD (m)	0.10 - 1.50							
N° RECIPIENTE	7							
1 PESO SUELO HUMEDO + RECIPIENTE	52.84							
2 PESO SUELO SECO + RECIPIENTE	51.99							
3 PESO DEL AGUA	0.85							
4 PESO RECIPIENTE	20.51							
5 PESO SUELO SECO	31.48							
8 PORCENTAJE DE HUMEDAD	2.70%							

DETERMINACION DE LA SAL							
CALICATA-MUESTRA	C4 - M1						
PROFUNDIDAD (m)	0.10 - 1.50						
Nº RECIPIENTE	7						
(1) PESO DEL TARRO	38.87						
(2) PESO TARRO + AGUA + SAL	45.15						
(3) PESO TARRO SECO + SAL	38.88						
(4) PESO SAL (3-1)	0.01						
(5) PESO AGUA (2-3)	6.27						
(6) PORCENTAJE DE SAL	0.16%						

Mario Ramirez Dejo LABORATORIO I MIN EJRL

CALLE MANUEL SEOANE N° 7 STATEMEN AYEQUE - CEL. 954853683 —

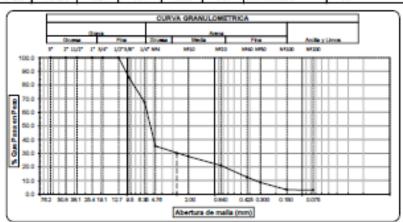
Tario Ramires Dejo E-Mail = mario 198 20 botmail.com 0504 uniquios i

OSCAR LUZQUINOS PROPRICUEZ PROCENIERO COM. PROG. CEP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

: KIMBERLY SARITA INCIO CHUNGA : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDEAD: 0.10 mts. - 1.50 mts. CALIDATA : C4M1 PRICHA : 16.11.2021

ABURTU	RA MALLA	PESO	% RETENDO	% RETENDO	% QUE	DESCRIPCION DE LA MUESTRA	
(24)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE DA RESSINA	
3"	76.200					PESO TOTAL : 600.0 g.	_
2 1/2"	63.500					PESO LAVADO : 18.2 g.	
2"	50.800						_
11/2"	38.100					LIMITE LIQUIDO : N.P	
1"	25.400					LIMITE PLASTICO : N.P.	Ξ
34"	19:050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD: N.P.	_
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO : A-1-a (0)	_
20"	9.525	67.64	14.04	14.64	05.30	CLASF, SUCS : GP	_
1/4"	6.350	108.85	18.14	32.76	67.22	DESCRIPCIÓN DEL SUELO : BUENO	Ξ
Nº4	4.760	191.62	31.94	64.72	35.26	Grava pobremente graduada con arena	_
NHO	2.000	45.51	7.59	72.30	27.70	Ensayo Malla N*200 P.S.Seo P.S.Lav (%) 3	200
N*20	0.840	39.95	6.66	78.96	21.04	800.0 18 97	٥
N40	0.425	51.52	8.50	67.52	12.45		_
N*50	0.300	22.94	3.82	91.37	0.63		_
Nº100	0.150	31.01	5.27	96.64	3.36	MODULO DE FINEZA 5.390	_
Nº200	0.075	1.95	0.33	96.97	3.04	Coef. Uniformidad 0.0	Т
< N* 200	PONDO	10.21	3.04	100.00	0.00	Coef. Curveture 0.0	_

OSCAR LUZQUIÑOS ROC

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTRE

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

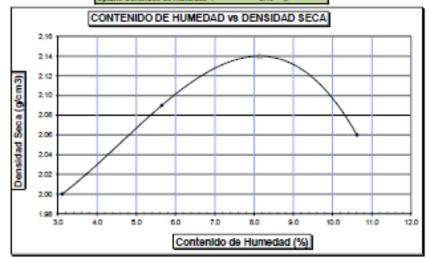
KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL CALICATA : C4M1

FICKA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº					
VOLUMEN	:	2050	cm*	_	ple*
METODO DE COMPACTACION	:	AASHTO	T - 180 D		
Peso Suelo Humedo + Molde	(g)	6973	7281	7488	7424
Peso de Moide	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	4223	4531	4738	4874
 Peso Volumétrico Húmedo 	(g)	2.060	2.210	2.310	2.280
∠ Recipiente №		268	293	291	302
Peso de Suelo Húmedo + Tara	(g)	52.01	52.37	58.90	52.17
Peso de Suelo Seco + Tara	(g)	51.07	50.77	58.35	48.75
. Tara	(g)	20.85	22.43	25.00	16.55
 Peso de Agua 	(g)	0.94	1.60	2.55	3.42
Peso de Suelo Seco	(g)	30.22	28.34	31.35	32.20
 Contenido de agua 	(%)	3.11	5.65	8.13	10.62
 Peso Volumétrico Seco 	(glam)	2.00	2.09	2.14	2.08

Mázima Densidad Seca Optimo Contenido de Humedad: 0.15 %

Mario Ramirez Dejo GERENTE GENERAL LABORATORIO I MINI ELR.L.

CALLE MANUEL SEGANE Nº 7 15 MANUEL SEGANE Nº 25 MANUEL SEGANE Nº 7 15 MANUEL SEGANE Nº 7 E-Mail - mario rd8 potmail.com

OSCAR LUZQUIÁOS ROCK PRECIMENO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHCLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C4M1

PECHA		16.11.2021											
					(C.B.F	₹.						
MOLDE Nº				- :	iró				61		5	2	
Nº DE GOLPES P	Nº DE GOLPES POR CAPA				56			1	25		1	2	
CONDICION DE MUESTRA			SIN MC	MAK	MCJA	DA.	33K M	DJAR	MOJADA	33K M	SALO	MOU	ADA
PERO MOLDE + RUELD HUMBDO (g)		(8) 008	11,8	84	11,9	67	11,5	964	12,077	11,730		11,6	H2
PERO DEL MOLDE (g)			6,80	20	6,90	15	7,5	25	7,125	7,0	393	7,0	93
PERO DEL RUELO HAMEDO (g)			495	9	504	12	4	29	4952	- 46	127	40	69
VOLUMEN DR. RURLO (d)			2.14	e e	2.14	e e	2140 21		210	2140		2.143	
DENSIOAD HUMBOA (QADIA)		(pibn ^a)	23	1	23	5	2.26		231	2.10		2.27	
CAPBULANT			20	0	22	2	25	91	279	293		323	
PERO CAPRULA + 8	EURLO HU	MECO (g)	45.3	σ	55.0	102	53.92		51.17	37.36		62:37	
PERO CAPRILLA + 8	EURLO RE	8	43.1	50	51.8	ю.	51.18		47.77	35.74		57.29	
PERO DE ASUA CO	NEWNOA	8	2.1		3.1	2	274 3.40		3.40	1.	63	5.08	
PERO DE CAPILLA	ı.	(g)	16.7	2	18.9	ю.	19.09 15.65		15.65	16	103	18.32	
PERO DE RUBLO RE	100	(2)	26.4	60	33.0	10	32	09	32.12	19	21	383	97
HUMBOAD		(6)	8.14	1%	9.45	7%	8.5	4%	10.59%	8.2	2%	13.0	4%
DENSIDAD ISCA	DENSIDAD ISICA		2.1	4	2.5	5	2.0	08	2.09	2.	00	2.0	Ħ
					EX	PANS	ION						
FRCHA	HORA	TEMPO	DWL		KXPANBO	4	DIAL BX		EXPANSION	DWL		EPANSON	
						1		_	nn. 5				*

FRCHA	HORA	TEMPO	DIAL	EXPANSION		DML	EXPANSION		DWL	REPARTION			
-					,						,		
				80	RECEIST	04							
			J	mu.	Principal of	_							
	PENETRACION												

PENETRACION	CARBA		MOLDE	Nº.	26		MOLDR	Nº.	41		MOLDE	M ^a	
puly.	BRITANDAR	CARGA		CONSCIO		CARGA		ORECCO.	N.	CARGA	0	DERCCIO	1
	(Stationary)	Leolura	lie.	Delputy*	•	Lecture	lie.	Section 1	,	Lecture	lie.	Bally style	-
0.020		20.50	240	80.00		14.90	174	58.00		9.00	105	35.00	
0.040		42.80	501	167.00		21.00	363	121.00		18.50	210	72:00	
0.000		62:60	732	244.00		45.40	531	177.00		26.90	315	105.00	
0.080		82:10	960	220.00		59.50	696	232.00		35.40	414	138.00	
0.100	1000	102.60	1200	400.00	40.00	74.40	670	290.00	29.00	44.40	519	173.00	ř
0.200	1500	167.20	1950	652.00		121.30	1419	473.00		72:30	846	282:00	
0.300		212.30	2484	828.00		153.80	1800	600.00		91.80	1074	358.00	
0.400		240.20	2000	960.00		178.50	2088	696.00		106.40	1245	415.00	
0.500		250.40	3000	1000.00		185.90	2175	725.00		111.00	1299	433.00	Г

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

OSCAR LUZQUIÁOS ROOM PRECIMERO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

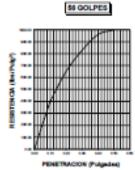
RESOLUCION Nº 031616-2019/DSD - INDECOPI

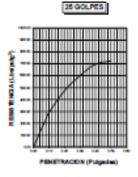
RUC. 20605369139

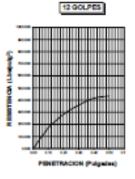
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

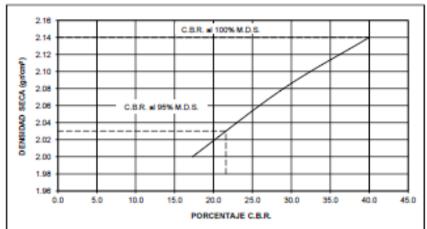
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C4M1 FECHA : 16.11.2021


DATOS DEL PROCTOR								
Deneidad Máxima (gricm ^b)	2.14							
Humedad Optima (%)	8.15							

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%)	40.00					
C.B.R. al 95% de M.D.S. (%)	21.60					

CALLE MANUEL SEOANE Nº 7 THE MENT AYEQUE - CEL. 954853683

Mario Ramirez Dejo CABORATORIO I MIN ELRI. E-Mail - marker 18 botmail.com

OSCAR LIZYUMOS ROD Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

DATO: 2006-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 05

Mario Ramires Dejo GENERIE GENERAL LABORATORIO I MIN BARL EOANE Nº 7 12 14 15 MB AYEQUE - CEL. 954853683 -E-Mail - mario 1788 6 totmail.com

OSCAR LUZQURIOS RODRO MICEMERO CINAL PINAL CIP. N° 3133

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILIA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C-5 18.11.2021 **FECHA**

REGISTRO DE PERFORACIONES

COTA			11.1100.00	RATUROL ECA DEL TERRENO	CERENTANICALI
COTA		WESTER	SMBOLD	MITWICO MITWICO	CESERSACIONES
	-				
	0.00				l .
		RELLEND	(QMC10ME)	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	3M	CLASFICACION - AASHRO: A - 2 - 4 (5) ARSINAS LIMOSAS DE COLOR MARKILLENTO, DE CONSISTENCIA MEDIA LL + 23.71 LP - 18.57 LP - 18.57 LP - 18.69 A COMESSINDO DE HUMBDAD + 2.54 % % COMESSINDO DE HUMBDAD + 2.54 % % COMESSINDO DE SIA RIS + 0.18 % MARIAN DESIRRADAD + 2.55 % DETIRRO DE HUMBDAD + 12.55 % C.S.R 100% + 0.8 %	DURANCE RL TIEMPO DE RICHIACION NO SE DETECTO NVIL PREATICO

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -

E-Mail - marro rd8

OSCAR LUZQUINOS ROOM Reg. CIP. N° 31338

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MIRI EL R.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARITE

: DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE URICACION

CALICATA C5 FECHA : 16.11.2021

HUMEDAD NATURAL					
CALICATA-MUESTRA	C8 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
Nº RECIPIENTE	70				
1 PESO SUELO HUMEDO + RECIPIENTE	66.45				
2 PESO SUELO SECO + RECIPIENTE	65.27				
3 PESO DEL AGUA	1.18				
4 PESO RECIPIENTE	18.75				
5 PESO SUELO SECO	46.52				
8 PORCENTAJE DE HUMEDAD	2.54%				

DETERMINACION DE LA SAL						
CALICATA-MUESTRA	C5 - M1					
PROFUNDIDAD (m)	0.10 - 1.50					
Nº RECIPIENTE	28					
(1) PESO DEL TARRO	51.51					
(2) PESO TARRO + AGUA + SAL	56.62					
(3) PESO TARRO SECO + SAL	51.52					
(4) PESO SAL (3-1)	0.01					
(5) PESO AGUA (2-3)	5.10					
(6) PORCENTAJE DE SAL	0.18%					

Mario Ramirez Dejo GENENTE GENERAL LASORATORIO I MINISTREL

E-Mall - marrord8 ootmall.com

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -

OSCUR LUZQUIOS RODROJEZ RECENERO CIVIL Reg. CIP. N.º 31338

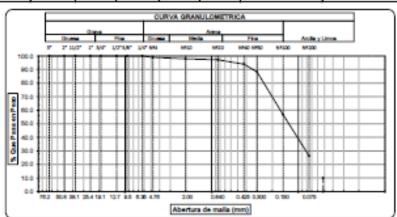
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)


SOUCHANTS: KIMBERLY SARITA INCIO CHUNGA

ROUGHAMTE I RIMERILT SARTIA INCIO CHUNGA

ROYECTO : DISERO DE LA INFRAISTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
RECACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
ROPUNDBAD : 0.10 mbs. - 1.50 mbs.

: C5M1 : 16.11.2021

ABERTU	RA MALLA	PESO	% RETENDO	% RETENIDO	15 QUE	DESCRIPCION DE LA MUESTRA		
(200)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	CHIEF COM SE OF RESIDEN		
3"	76.200					PESO TOTAL : 200.0 g.		
2 1/2"	63.500					PESO LAVADO : 52.6 g.		
2"	50.800							
11/2"	38.100					LIMITE LIQUIDO : 21.71 %		
1"	25.400					LIMITE PLASTICO : 18.57 %		
3/4"	19.050					INDICE PLASTICIDAD: 3.14 %		
1/2"	12.700					CLASF, AASHTO : A-2-4 (0)		
3/0"	9.525					CLASF, SUCS : SM		
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUELO: BUENO		
Nº4	4.760	2.00	1.00	1.00	99.00	Arena Emosa		
NHO	2.000	2.28	1.14	2.14	97.00	Ensayo Maila N°200 P.S.Seo P.S.Lav (%)	200	
N*20	0.840	1.34	0.67	2.01	97.19	200.0 53 73	17	
N40	0.425	6.40	324	6.05	80.85			
N*50	0.300	11.45	5.73	11.78	66.23			
Nº100	0.150	63.04	31.52	43.30	56.71	MODULO DE FINEZA 0.671		
Nº200	0.075	60.80	30.40	73.70	26.51	Coef. Uniformidad 0.0		
< N* 200	FONDO	52.01	26.51	100.00	0.00	Coef. Curveture 0.0		

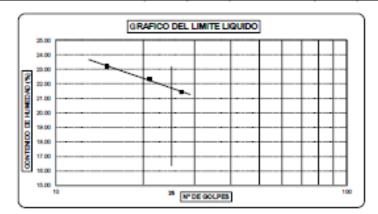
CALLE MANUEL SEOANE N° 7 SALES AVEQUE - CEL. 954853683 -

Mario Ramirez Dejo CABORATORIO I MIN ELRI.

OSCAR LUZQUIÁOS RODA PRECIMERO CIVIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI


RUC. 20605369139

LIMITES DE ATTERBERG

KIMBERLY BARITA INCIO CHUNGA
 DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABLIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
 DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
 O.10 mb. - 1.50 mb.

PROFUNDIDAD GALICATA FECHA CSM1 16.11.2021

DATOS DE ENSAYO		MITE LIQUID	0	LIMITE PLASTICO				
N° de golpes		16	21	27	-			
1. Recipients N*		343	331	312	326	_		
2. Peso suelo húmedo + tars	(pr)	29.17	32.21	30.30	35.56	_		
3. Peso suelo seco + Tars	(pr)	27.13	29.65	28.11	32.91	_		
4. Peso de la Tara	(pr)	18.32	18.22	17.87	18.10			
5. Peso del agua	(pr)	2.04	2.58	2.19	2.75			
5. Peso del suelo seco	(gr)	8.81	11.43	10.24	1481			
7. Contenido de humeded	(%)	23.16	22.40	21.39	18.57			

LIMITE DE CONSISTENCIA DE LA MUESTRA							
Limite Liquido	21.71						
Limite Plástico	18.57						
Indica de Displicidad	3.14						

MUESTRA: 0	SMH
Clasificación 5UCS	SM
Clasificación AASHTO	A-3-4 (0)

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTELEL

CALLE MANUEL SEOANE Nº 7 CHANGE AYEQUE - CEL. 954853683 -E-Mall - marro rd8 potmall.com

OSCAR LUZQUIÑOS ROO Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

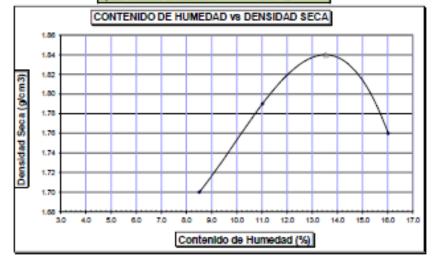
KIMBERLY SARITA INCIO CHUNGA SOUCHARTE

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNCACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATTERIAL TERRENO NATURAL CALICATA

: C8M1 16.11.2021 FICEA

PROCTOR MODIFICADO AASHTO T

VOLUMEN : 2050 cm² ple² METODO DE COMPACTACION : AASHTO T - 180 D Peso Suelo Humedo + Moide (g) 8522 8830 7035 8932 Peso de Moide (g) 2750 2750 2750 2750 Peso Suelo Húmedo Compactado (g) 3772 4080 4285 4182 Peso Volumétrico Húmedo (g) 1.840 1.990 2.090 2.040 Recipiente N° 79 104 102 113 Peso de Suelo Húmedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.69 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	MOLDE Nº	:				
Peso Suelo Humedo + Molde (g) 6522 6830 7035 6932 Peso de Molde (g) 2750 2750 2750 2750 2750 Peso Suelo Húmedo Compactado (g) 3772 4080 4285 4182 Peso Volumétrico Húmedo (g) 1.840 1.990 2.090 2.040 Recipiente № 79 104 102 113 Peso de Suelo Húmedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.89 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	VOLUMEN	:	2050	cm*	-	ple*
Peso de Molde (g) 2750 2750 2750 2750 Peso Sueio Hümedo Compactado (g) 3772 4080 4285 4182 Peso Volumétrico Hümedo (g) 1.840 1.990 2.090 2.040 Recipiente № 79 104 102 113 Peso de Sueio Hümedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Sueio Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.89 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Sueio Seco (g) 30.91 29.03 32.04 32.89	METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Húmedo Compactado (g) 3772 4080 4285 4182 Peso Volumětrico Húmedo (g) 1.840 1.990 2.090 2.040 Recipiente № 79 104 102 113 Peso de Suelo Húmedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.89 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	Peso Suelo Humedo + Molde	(2)	6522	6830	7035	6932
Peso Volumétrico Húmedo (g) 1.840 1.990 2.090 2.040 Recipiente № 79 104 102 113 Peso de Suelo Húmedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 A Tara (g) 21.54 23.12 25.89 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	 Peso de Moide 	(8)	2750	2750	2750	2750
Recipiente № 79 104 102 113 Peso de Suelo Húmedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.69 17.24 Peso de Agua (g) 2.63 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	 Peso Suelo Húmedo Compactado 	(g)	3772	4080	4285	4182
Peso de Suelo Húmedo + Tara (g) 55.08 55.35 62.08 55.40 Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.69 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	 Peso Volumétrico Húmedo 	(g)	1.840	1.990	2.090	2.040
Peso de Suelo Seco + Tara (g) 52.45 52.15 57.73 50.13 Tara (g) 21.54 23.12 25.89 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	Recipiente №		79	104	102	113
Tara (g) 21.54 23.12 25.89 17.24 Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	Peso de Suelo Húmedo + Tara	(2)	55.08	55.35	62.08	55.40
Peso de Agua (g) 2.83 3.20 4.33 5.27 Peso de Suelo Seco (g) 30.91 29.03 32.04 32.89	 Peso de Suelo Seco + Tara 	(g)	52.45	52.15	57.73	50.13
. Peso de Sueio Seco (g) 30.91 29.03 32.04 32.89	Tara	(2)	21.54	23.12	25.69	17.24
	 Peso de Agua 	(2)	2.83	3.20	4.33	5.27
	 Peso de Suelo Seco 	(2)	30.91	29.03	32.04	32.89
	 Contenido de agua 	(%)	8.51	11.02	13.51	18.02
. Peso Volumétrico Seco (g/cm²) 1.70 1.79 1.84 1.76	 Peso Volumétrico Seco 	(glam)	1.70	1.79	1.84	1.76

Máxima Densidad Seca 13.55 % Optimo Contenido de Humedad:

Mario Ramirez Dejo CARDRATORIO I MAR EJRL

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -E-Mail - markerg8@ootmail.com

OSCAR LUZQUIÁOS RODR Red, CIP, N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA
DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
CSM1

яска : 18.11.2 -	2021							
			C.B.	R.				
MOLDE Nº	\Box		18	3	13	4	4	
Nº DE GOLPES POR CAPA	\rightarrow		50	5	5	1		
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PERO MOLDE + SURLO HUMBDO	(2)	11,024	11,101	11,093	11,198	10,855	11,055	
PERO DEL MOLDRI	(2)	6,547	6,547	6,747	6,747	6,715	6,715	
PERO DEL RUELO HUMBOO	(2)	4477	4554	4340	4449	4140	4340	
VOLUMEN DR. BLIRLD	(2)	2,143	2,143	2,143	2,143	2,143	2,143	
DENSIDAD HUMEDA ((tinn)	2.09	2.13	2.03	2.03 2.08		2.03	
CAPBULANT	\rightarrow	192 214		243	271	265	315	
PERO CAPRILIA + SURLO HUMBOO (g)		58.23	66.40	67.21	64.57	49.90	76:27	
PERO CAPRILIA + SURLO SECO (g)		53.92	62.70	61.98	58.57	40.54	68.09	
PERO DE AGUA CONFIRMIDA	(2)	4.31	5.70	5.23	6.00	3.42	0.10	
PERO DE CAPRILIA	(0)	22.12	24.30	24.49	21.05	21.43	29.72	
PERCOR BURLO RECO	(2)	21.80	38.40	37.49	37.52	25.11	44.37	
HUMBIOAD	(%)	13.55%	14.84%	13.95%	15.99%	13.62%	18.44%	
DENIEDAD INICA	\rightarrow	1.84	1.85	1.78	1.79	1.70	1.71	
	_		EXPAN	SION				
FECHA HORA TEM	PO .	DIAL	KUPANDON	DML ,	COPARED IN	DML	EPANSION	
10000	_		mn. 1		in. 1	_	м. х	
- -	\dashv		NO REGIS		- 		-	
	\neg		NO REGE	IIIA			-	
	\neg							

PENETRACION

PERSTRACION	CARBA		MOLDS:	N°	18		MOLDS	N°	20		MOLDS	¥*	44
palg.	RETANDAR	CARGA		CORROCO	N	CARGA		ORBODO	N	CARGA	0	ORRCCIO	
	(Balyuly)	Leolure	lin.	Delpuly*	*	Lecture	lin.	lim/pulsi	*	Leolura	lin.	Ballyun?	
0.020		5.60	90	22.00		4.10	48	16.00		2.60	30	10.00	
0.040		11.80	138	46.00		8.50	99	23.00		5.10	60	20.00	
0.060		17.20	201	67.00		12.60	147	49.00		7.40	87	29.00	
0.000		22:60	264	88.00		16.40	192	64.00		9.70	114	38.00	
0.100	1000	28.20	330	110.00	11.00	20.50	240	80.00	8.00	12:30	144	48.00	4.00
0.200	1500	45.90	537	179.00		23.30	390	130.00		20.00	234	78.00	
0.300		58.50	684	228.00		42.60	460	166.00		25.40	297	99.00	
0.400		67.70	792	264.00		49.20	576	192.00		29.50	345	115.00	
0.500		70.50	825	275.00		51.30	600	200.00		20.80	360	120.00	

CALLE MANUEL SEOANE Nº 7 THE MANUE AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

E-Mall - marro rd8 ootmall.com

OSCAR LECTURIOS PROPRIO PIGENACINO CIVIL Reg. CIP. N.º 31338

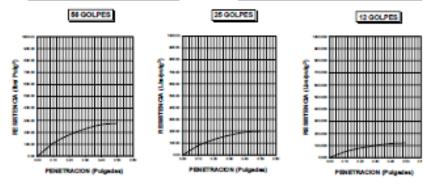
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

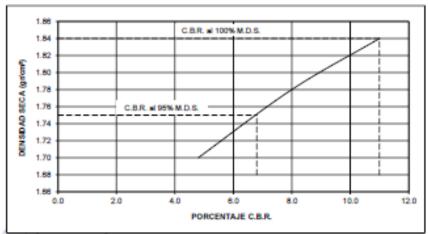
RUC. 20605369139

SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C5M1 : 16.11.2021 FECHA

DATOS DEL PROCTOR							
Denelded Mikrima (gricm ³)	1.84						
Humedad Optima (%)	13.55						

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)	11.00				
C.B.R. al 95% de M.D.S. (%)	6.80				

CALLE MANUEL SECANE Nº 7 MAN AYEQUE - CEL. 954853683 -Mario Ramires Dejo

E-Mall - marker 18 6 otmail.com

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338 70

CABORATORIO I MIN EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 06

CALLE MANUEL SECANE Nº 76 Mario Ramirer Dejo DERENTE GENERAL LASORATORIO I MINISTRAL

ANTENBAYEQUE - CEL. 954853683 -E-Mail - mark rg8 6 tmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C-8 16.11.2021 PECHA.

REGISTRO DE PERFORACIONES

2000	10.00	ADMINIST	HALESCO.	ANTONIA DEL TERRITO	CERENTANIONE
-				MITMATO	CESERVINOSCES
	0.00				
	0.10	RELLEND	000000	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(1)	CLASFICACION - AASHTO: A - 1 - a (5) GRIGARII CON ARSHIO. DE COMBISTENCIA MEDIA LL = N.P LP + N.P LP + N.P E COMBINIDO DE HUMBOAD + 4.61 % NI COMBINIDO DE SALESI + 0.19 % MUUMA DENBOAD SECA + 2.12 giund DPTIMO DE HAMBOAD + 8.82 % C.S.R 100% + 44 % C.S.R 100% + 42 %	DURANTE R. TISMPO DE SICINIACION NO SÉ DETECTO NIVEL PREATICO

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -Mario Ramirer Dejo DEMENTE GENERAL LABORATORIO I MIRI EL R.L.

E-Mail - mario 108 potmali.com

OSCAR LUZQUINOS ROD

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITARITE

: KIMBERLY SARITA INCIO CHUNGA

PROYECTO

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UBICACION

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C6 FEICHA : 16.11.2021

HUMEDAD NATURAL				
CALICATA-MUESTRA	C6 - M1			
PROFUNDIDAD (m)	0.10 - 1.50			
Nº RECIPIENTE	277			
1 PESO SUELO HUMEDO + RECIPIENTE	45.81			
2 PESO SUELO SECO + RECIPIENTE	44.74			
3 PESO DEL AGUA	1.07			
4 PESO RECIPIENTE	20.58			
5 PESO SUELO SECO	24.16			
8 PORCENTAJE DE HUMEDAD	4.43%			

DETERMINACION DE LA SAL				
CALICATA-MUESTRA	C6 - M1			
PROFUNDIDAD (m)	0.10 - 1.50			
Nº RECIPIENTE	355			
(1) PESO DEL TARRO	25.85			
(2) PESO TARRO + AGUA + SAL	31.21			
(3) PESO TARRO SECO + SAL	25.86			
(4) PESO SAL (3-1)	0.01			
(5) PESO AGUA (2-3)	5.35			
(6) PORCENTAJE DE SAL	0.19%			

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

E-Mail - mario rd8 potmail.com

OSCAR LEZQUEIOS RODRIGO PIGENERIO CIVIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

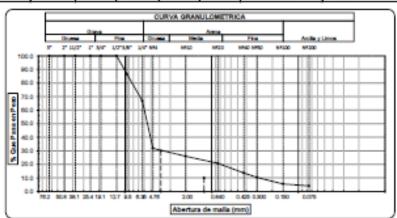
(ASTM - D422 / N.T.P. 339.128)

SOLICITANTS: KIMBERLY SARITA INCIO CHUNGA

ROUGHAMTE: KIMBURLY SARTIA INCIO CHUNGA

ROYBOTO: DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPUACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

RECACIÓN: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

ROFUNDDAD: 0.10 mbs. - 1.50 mbs.

: C8M1 : 16.11.2021

ABERTU	M MALLA	PESO	% RETENDO	% RETENDO	% QUE	DESCRIPTION	DE LA MUESTRA
3	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION	DE DI RESILION
3"	76.200					PESO TOTAL :	600.0 g.
2 1/2"	63.500					PESO LAVADO :	24.0 g.
2"	50.800						
11/2"	38.100					LIMITE LIQUIDO :	N.P
1"	25.400					LIMITE PLASTICO :	N.P
34"	19:050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)
3/0"	9.525	80.57	13.43	13.43	66.57	CLASF, SUCS :	QP .
114"	6.350	110.84	19.01	33.24	66.77	DESCRIPCIÓN DEL SUE	LO: BUENO
NP4	4.760	209.95	34.99	66.23	31.77	Grava pobremente grad:	uada con arena
NHO	2.000	34.51	5.75	73.98	26.02	Ensayo Malla N*200	P.S.Seo P.S.Lav (%) 200
N*20	0.840	31.62	5.27	79.25	20.75		000.0 25 95.9
N40	0.425	42.51	7.09	86.33	13.67		
N*50	0.300	19.64	3.27	89.01	10.39		
Nº100	0.150	20.05	4.81	94.42	5.59	MODULO DE FINEZA	5.365
Nº200	0.075	8.75	1.46	95.67	4.13	Coef. Uniformidad	409.2
< N* 200	FONDO	24.76	4.13	100.00	0.00	Coef. Curveture	0.0

Mario Ramirez Dejo

OSCAR LUZQUIÁOS RODRO Reg. CIP. N° 31338

CALLE MANUEL SEOANE N° 7 STANDAM AYEQUE - CEL. 954853683 —
Iario Ramères Dejo E-Mail = mario 198 a botmail.com oscal uniquino CARDRATORIO I MARIE ELRI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

: C6M1 CALICATA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº	:				
VOLUMEN	:	2050	CITI ²	-	ple*
METODO DE COMPACTACION	:	AASHTO 1	「- 180 D		
Peso Suelo Humedo + Moide	(20)	6973	7280	7488	7404
Peso de Moide	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4223	4510	4738	4854
 Peso Volumétrico Húmedo 	(g)	2.080	2.200	2.310	2.270
Recipiente №		187	212	210	221
Peso de Suelo Húmedo + Tara	(g)	55.73	58.11	62.70	58.03
Peso de Sueio Seco + Tara	(g)	54.49	54.19	59.77	52.17
Tara	(g)	22.58	24.14	26.71	18.26
 Peso de Agua 	(8)	1.24	1.92	2.93	3.86
Peso de Sueio Seco	(2)	31.93	30.05	33.08	33.91
 Contenido de agua 	(%)	3.88	6.39	8.88	11.38
 Peso Volumétrico Seco 	(gicm)	1.98	2.07	2.12	2.04

Mázima Densidad Seca 2.12 gr/cm Optimo Contenido de Humedad: 0.92 %

Mario Ramirez Dejo GENENTE GENERAL LASORATORIO I MINISTRAL

OSCUR LUZQUIÓUS RODRIGUEZ PROCENICIPO CIVIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILIA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

ALICATA 18.11.2021

C.B.R.								
MOLDE Nº	27 42					5	53	
Nº DE GOLPES POR CAPA		5	6	2	5	12		
CONDICION DE MUESTRA		SIN MOJAK	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
РЕВО МОЦЛЕ + ВЫВЦО НЫМЕГО	(2)	11,559	11,643	11,637	11,751	11,404	11,633	
PERO DEL MOLDE	(2)	6,611	6,611	6,811	6,811	6,779	6,779	
PERO DEL RUELO HUMBDO	(2)	4948	5032	4626	4940	4625	4054	
VOLUMEN DR. RURLO	(0)	210	2.140	2143	2143	2143	2.143	
DENKIDAC HUMBDA	(pibni ^b)	2.31	2.35	2.25	2.31	2.18	2.27	
CAPBULANT		201	223	252	290	294	334	
PERC CAPRULA + RUBLO HUMBOO	(2)	47.08	50.89	55.78	53.05	39.12	64.32	
PERC CAPRULA + RUBLO SECO	(2)	44.00	53.44	52.72	49.31	37.28	58.83	
PERO DE ASUA CONTRNICA.	(2)	2.42	3.45	3.06	3.74	1.84	5.49	
PERO DE CAPRILIA	(2)	17.49	19.67	19.00	10.42	16.80	19.09	
PERO DE BURLO RECO	(2)	27.17	23.77	22.00	22.89	20.48	29.74	
HUMBOAD	3	0.91%	10.22%	9.31%	11.37%	8.90%	13.81%	
DRAWDAD IRICA		2.12	2.13	2.06	2.07	1.98	1.99	
	$\neg \neg$							

EXPANSION DW

	_		_		_	_	_				_		_	
PENETRACION														
PENETRACION	CARBA		MOLDS	M ²	27		MOLDS	M.	e e		MOLDE	Nº	83	
puly.	BRITANDAR	CARGA		0000000		CARGA	•	000000	*	CARGA	0	0.000	COLUMN TO SERVICE STATE OF THE	
	(Stationary)	Leolura	lie	Delputy*	*	Lecture	lie	Designation of	,	Leolura	lie	Ballyuly*	*	
0.020		22:60	264	88.00		16.40	192	64.00		9.70	114	28.00		
0.040		46.90	549	183.00		34.10	399	133.00		20.30	237	79.00		
0.000		68.70	804	298.00		50.00	585	195.00		29.70	348	116.00		
0.000		90:30	1050	352.00		65.40	765	255.00		29.00	450	152:00		
0.100	1000	112.80	1320	440.00	44.00	81.80	957	319.00	31.90	48.70	570	190.00	18.0	
0.200	1500	183.80	2151	717.00		133.30	1500	520.00		79.50	900	310.00		
0.300		233.60	2733	911.00		169.20	1980	660.00		100.80	1179	393.00		
0.400		270.80	3166	1056.00		196.40	2298	766.00		116.90	1300	458.00		
0.500		282.10	3300	1100.00		204.60	2394	798.00		121.80	1405	475.00		
					$\overline{}$				$\overline{}$					

CALLE MANUEL SEOANE N° 7 5 10 10 10 AVEQUE - CEL. 954853683 = Mario Ramirez Dejo

CARDRATORIO I MARIE ELRI.

OSCAR LECOMICS RECORDS PROCESSED COVAL PING. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

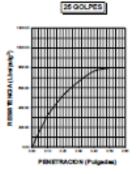
RESOLUCION Nº 031616-2019/DSD - INDECOPI

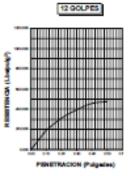
RUC. 20605369139

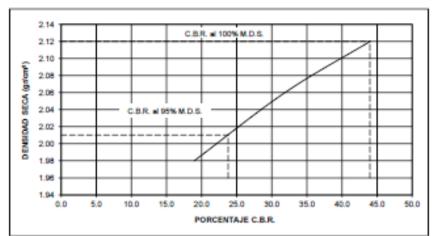
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

> MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C6M1 FECHA : 16.11.2021


DATOS DEL PROC	DATOS DEL PROCTOR					
Deneided Mikrima (gricm ^b)	2.12					
Humedad Optima (%)	8.92					

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%)	44.00					
C.B.R. al 95% de M.D.S. (%)	23.80					

56 GOLPES

CALLE MANUEL SEOANE Nº 7 Mario Ramirez Dejo

CABORATORIO (MIN EJRL

E-Mall - marker 1880 otmail.com

AYEQUE - CEL. 954853683 -

OSCAR LIETOMIOS ROOM Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 07

Mario Ramirez Dejo GENENTE GENENAL LABORATORIO I MAR ELEL E-Mail - marker 18 6 totmail.com

OSCAR LECTURIOS RODRICUE. INCERNERO CIVIL. Real CIP. N° 31338

AYEQUE - CEL. 954853683 -

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

UBICACION

CALICATA FECHA C-7 16.11.2021

REGISTRO DE PERFORACIONES

COTA		00000	RESERVE	RATUROL ELA DEL TERRENO	CENTRALICATE
	(mis.)	WEBSIG		ENTRATO	
	0.00				
N .		RELLENO	(950/40)	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1		CLASFICACION - AABHTO: A - 1 - a (5) DRIGHAS CON ARBNA DE COLOR BLANGUECINO, DE CONSISTENCIA MEDIA LL = N.P LP + N.P LP + N.P LP + N.P R - COMERNEO DE HUMBOAD + 2.76 % % COMERNEO DE SAL 88 + 0.18 % MAZINA DESARRA SECA + 2.11 gássis DPTIBO DE HUMBOAD + 8.03 % C.S.R 100% + 21.2 %	DURANTE RI. TIEMPO DE SICONACION NO SE DETECTO NIVEL PREATICO

CALLE MANUEL SECANE Nº 7 15 THE MENT AVEQUE - CEL. 954853683 -

Mario Ramirez Dejo DERENTE GENERAL LABORATORIO I NAME EL R.L.

E-Mail - marker 18 botmail.com

OSCAR LUZQUIÁOS ROCK INGENIERO CIVIL

79

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARIE

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA **C7** 16.11.2021 PECHA

HUMEDAD NATURAL				
CALICATA-MUESTRA	C7 - M1			
PROFUNDIDAD (m)	0.20 - 1.50			
Nº RECIPIENTE	40			
1 PESO SUELO HUMEDO + RECIPIENTE	51.52			
2 - PESO SUELO SECO + RECIPIENTE	50.75			
3 PESO DEL AGUA	0.77			
4 PESO RECIPIENTE	22.85			
5 PESO SUELO SECO	27.90			
8 PORCENTAJE DE HUMEDAD	2.76%			

DETERMINACION DE LA SAL					
CALICATA-MUESTRA	C7 - M1				
PROFUNDIDAD (m)	0.20 - 1.50				
Nº RECIPIENTE	274				
(1) PESO DEL TARRO	58.84				
(2) PESO TARRO + AGUA + SAL	64.51				
(3) PESO TARRO SECO + SAL	58.85				
(4) PESO SAL (3-1)	0.01				
(5) PESO AGUA (2 - 3)	5.66				
(8) PORCENTAJE DE SAL	0.18%				

Mario Ramirez Dejo DENENTE GENERAL LASORATORIO I MINISTRE.

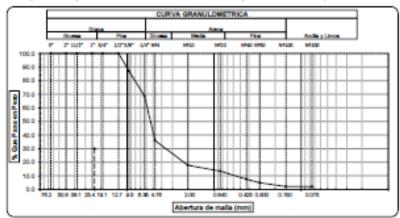
CALLE MANUEL SEOANE N° 7 PARTIE DE PROPERTIE DE LA SEA LE PROPERTIE

OSCUR LUCYORIOS RODROJEZ REGENERIO CHIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOUGHANTE: KIMBERLY SARITA NOID CHUNGA PROYECTO: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROPUNDEAD: 0.20 mts. - 1.50 mts. CALICATA : C7M1 FBIGNA : 16.11.2021

-	- 15-11-esse1								
ABERTURA MALLA		PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA			
(Pul)	(000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE DA REESTAN			
3"	76.200					PESO TOTAL : 600.0 g.			
2 1/2"	63.500					PESO LAVADO : 12.3 g.			
2"	50.800								
11/2"	38.100					LIMITE LIQUIDO : N.P			
1"	25.400					LIMITE PLASTICO : N.P			
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD: N.P.			
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO : A-1-a (0)			
3/0"	9.525	77.40	12.91	12.91	67.09	CLASF, SUCS : GP			
1/4"	6.350	109.85	18.31	31.22	66.76	DESCRIPCIÓN DEL SUELO : BUENO			
NP4	4.760	197.00	32.63	64.05	36.95	Grava pobremente graduada con arena			
NHO	2.000	108.85	18.14	82.20	17.00	Ensayo Malla N*200 P.S.Seo P.S.Lav (%) 2			
N*20	0.840	25.75	4.29	86.49	13.51	600.0 12 97			
N40	0.425	35.85	5.96	92.46	7.54				
N*50	0.300	15.52	2.59	95.05	4.95				
Nº100	0.150	16.62	2.77	97.62	2.18	MODULO DE FINEZA 5.022			
M*200	0.075	0.75	0.13	97.95	2.06	Coef. Uniformided 0.0			
< N* 200	FONDO	12.33	2.06	100.00	0.00	Coef. Curveture 0.0			

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -

OSCAR LUZQUINOS ROOM Reg. CIP. N° 31338

E-Mail - mario 1980 botmail.com

Mario Ramirer Dejo SERENTE GENERAL LABORATORIO I MARI EL R.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

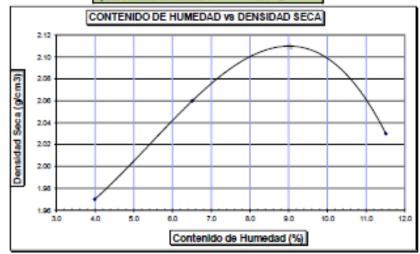
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNICACION DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C7M1 FICKA. 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

TROCTOR MOD		· · · · · · · ·	· · · · ·	TOUL	_
MOLDE Nº					
VOLUMEN	:	2050	cm*	_	pie*
METODO DE COMPACTACION	:	AASHTO	T - 180 D		
Peso Suelo Humedo + Molde	(g)	6953	7240	7485	7383
 Peso de Moide 	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4203	4490	4715	4633
 Peso Volumétrico Húmedo 	(g)	2.050	2.190	2.300	2.260
Recipiente №		257	282	280	291
 Peso de Suelo Húmedo + Tara 	(g)	51.48	51.81	58.38	51.63
Peso de Suelo Seco + Tara	(g)	50.29	49.99	55.57	47.97
. Tara	(g)	20.48	22.04	24.61	16.16
Peso de Agua	(g)	1.19	1.82	2.79	3.66
 Peso de Suelo Seco 	(g)	29.83	27.95	30.98	31.81
 Contenido de agua 	(%)	3.99	6.51	9.01	11.51
 Peso Volumétrico Seco 	(glam)	1.97	2.08	2.11	2.03

Mázima Densidad Seca 2.11 gr/cm² Optimo Contenido de Humedad: 9.03 %

Mario Ramires Dejo

OSCAR LUZQUIÁOS ROOM ROGENIERO CIVIL.

CALLE MANUEL SECANE Nº 7 THE MANUEL SECANE Nº 18 THE NEW YORK OF THE PROPERTY E-Mail - manorg8

LABORATORIO (MIN ELR.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

OLICITANTE ROVECTO

KIMBERLY SARITA INCIO CHUNGA
DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABLIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C7M1

					C.B.F	R.								
MOLDE Nº						55		96						
P DE GOLPES	POR CAP		56				25				12			
CONDICION DE	E MUESTRY		SIN WOJA	R MG	IA DA	SIN MOJAR		MOJADA		SIN M	SALON HIS		ADA	
PERO MOLDE + 8	LIELD HUMB	DO (g)	11,713	11	796	11,7	91	11,904		11,	557	11,3	167	
PERO DEL MOLDI	8	(2)	6,784	d,	764	6,9	M	6,984		6,9	62:	6,8	62	
PERO DEL RUELO	HUMBOO	(2)	4929	5	012	400	4907 4920		0	-40	85	4835		
VOLUMEN DR. R.	IR.O	(0)	210	2:	140	210 3		2.14	2140 21		40 2140			
DENSIDAD HUMB	DA	(gibn ^b)	2.30	30 234		2.24		2.3	2.30		2.15		2.26	
CAPBLLANT			214	2	36	26	5	29	h	3	107	237		
PERO CAPRILLA +	- SUBLO HUN	600 (g)	47.34	57	.10	50.0	35	53.3	2	39.37		64.60		
PERO CAPRILLA +	8UBLO 8BC	D (g)	44.00	53	.00	52.1	м	49.5	S21	37.50		59.05		
PERO DE AGUA O	CONTRIBUTA	(2)	2.48	2	3:50		3.11		3.79		1.87		5.55	
PERO DE CAPRU	LA.	(2)	17.60 19.78		.78	19.97		16.53		10.91		18:20		
PERO DE BURLO	8600	(2)	27.28	32	.00	22.97		23		20	59	29.85		
HUMBICAD		(%)	9.02%	10.	33%	9.43	1%	11.4	1%	80	0%	13.9	0%	
DENSIDAD ISCA			2.11	2	12	2.0	ő.	2.0	á	1.1	97	1.5	in the	
	·			FX	PANS	NON								
				EXPANSE				EXPANSION		DWL .		REPAINSON		
FECHA	HORA	TRMPO	DWL	88.	1 1	1	_	nn. X		_		· ·		

FRCHA	HORA	TRMPO	DIAL	RXPANSIO	REPARTION		BXP/	EXPANSION		KEPANSON	
-							-				,
	NO REGISTRA										
			J	no.	riana.	-					
	PENETRACION										

				PEN	ETR/	CION							
PENETRACION	CARBA		MOLDS	N°	40		MOLDS	Nº	50		MOLDE	M*	68
palg.	RETANDAR	CARGA		0000000	N.	CARGA		ORRODO	×	CARGA		CONTRACTOR OF THE PERSON	4
	(Stationity)	Lesture	lie.	Delputy*		Lecture	lie	Service.	,	Leolura	lin.	Balanty	*
0.020		21.00	240	82.00		15.10	177	59.00		9.00	105	35.00	
0.040		43.80	513	171.00		21.00	372	124.00		19.00	222	74.00	
0.060		64.10	750	250.00		40.40	543	181.00		27.70	334	108.00	
0.080		84.10	984	228.00		61.00	714	238.00		36.40	426	142:00	
0.100	1000	105.10	1230	410.00	41.00	76.20	891	297.00	29.70	45.40	531	177.00	17.7
0.200	1500	171.30	2004	668.00		124.10	1450	484.00		74.10	867	289.00	
0.300		217.70	2547	849.00		157.70	1945	615.00		93.80	1090	366.00	
0.400		252.30	2952	984.00		182.80	2139	713.00		109.00	1275	425.00	
0.500		262.80	3075	1005.00		190.50	2229	743.00		113.60	1329	443.00	
					_				_				

CALLE MANUEL SECANE Nº 7 THE WIND AVEQUE - CEL. 954853683 -Mario Ramirez Dejo

CARDRATORIO I MAR EJRL

E-Mail - marker 1880 otmail.com

OSCAR LUZQUINOS ROOR Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

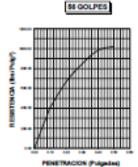
RESOLUCION Nº 031616-2019/DSD - INDECOPI

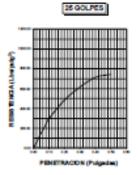
RUC. 20605369139

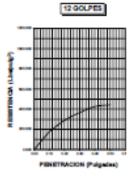
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

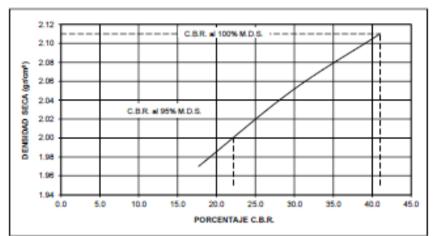
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
UBIGACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


9.03


CALICATA : C7M1 FECHA : 15.11.2021


> Nenelded Mikrima (gricm¹) Numeded Optima (%)

DATOS DEL C.B.R.								
C.B.R. al 100% de M.D.S. (%)	41.00							
C.B.R. al 95% de M.D.S. (%)	22.20							

CALLE MANUEL SEOANE Nº 7 THE MET AYEQUE - CEL. 954853683

Mario Ramirez Dejo GERENTE GENERAL LASORATORIO I MARIELEL E-Mail - marker 18 botmail.com

OSCAR LUZQUIÁOS RODRO INGENIERO CIVIL 84

Reg. CIP. N. 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 08

Mario Ramirez Dejo penente general LASORATORIO I MARIELEL

MANUEL - CEL. 954853683 E-Mail - mario rd8 60tmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

NIMBERLY SARITA INCIO CHUNDA
DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE PROYECTO

C-8 16.11.2021 CAUCATA PECHA

REGISTRO DE PERFORACIONES

COTA	MAG	A00000	Mark Street	NATURAL BUX DEL TERRENO	CONTRACTOR
	(40)	BURSTAN		BITRATO	
	0.00				
	0.10	RELLEND	02500250	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(1)	CLASFICACION - AMBRIO: A - 1 - a (5) DERDAS CON ARBINA DE COLOR RLANGUECINO, DE COMBISTENCIA MEDIA LL + N.P. LP + N.P. LP + N.P. S COMBINIDO DE HUMBOACH + 2.56 % N COMBINIDO DE SALES + 0.19 % MUUMA DENBOAC SECA + 2.05 giund OPTIBLO DE HAMBOACH + 2.05 giund OPTIBLO DE HAMBOACH + 2.05 giund C.S.R. + 100% + 22.5 %	DURANTE R. TISMPO DE EXCAUACION NO SÉ DETECTO NIVEL PREATICO

Mario Ramires Dejo

CALLE MANUEL SEOANE N° 77 AND AYEQUE - CEL. 954853683 -

OSCAR LUZQUIÁOS ROCKE Reg. CIP. N° 31338 86

LABORATORIO I MIN EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C8 CALICATA 16.11.2021 PECHA

HUMEDAD NATURAL								
CALICATA-MUESTRA	C8 - M1							
PROFUNDIDAD (m)	0.10 - 1.50							
Nº RECIPIENTE	247							
1 PESO SUELO HUMEDO + RECIPIENTE	44.51							
2 PESO SUELO SECO + RECIPIENTE	43.85							
3 PESO DEL AGUA	0.66							
4 PESO RECIPIENTE	20.76							
5 PESO SUELO SECO	23.09							
6 PORCENTAJE DE HUMEDAD	2.86%							

DETERMINACION DE LA SAL							
CALICATA-MUESTRA	C8 - M1						
PROFUNDIDAD (m)	0.10 - 1.50						
Nº RECIPIENTE	57						
(1) PESO DEL TARRO	55.25						
(2) PESO TARRO + AGUA + SAL	60.51						
3) PESO TARRO SECO + SAL	55.26						
(4) PESO SAL (3-1)	0.01						
5) PESO AGUA (2-3)	5.25						
(6) PORCENTAJE DE SAL	0.19%						

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRE

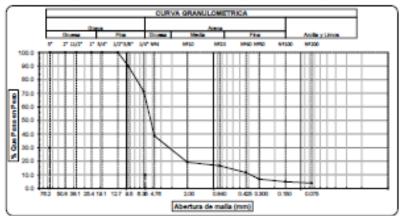
CALLE MANUEL SEOANE N° 7 PAR ME AYEQUE - CEL. 954853683 =

OSCUI LECOMIOS RODREJEZ REGENERO CANE Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO


(ASTM - D422 / N.T.P. 339.128)

SOUGHANTE: KIMBERLY SARITA INCIO CHUNGA PROVIECTO: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

когиновар : 0.10 mts. - 1.50 mts.

ALKATA : C8M1 BCHA : 16.11.2021

ABERTU	M WILLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA			
(Pul)	(mm)	RETENDO	PARCIAL	ACUMULADO	PASA				
3"	76.200					PESO TOTAL :	600.0 g.		
2 1/2"	63.500					PESO LAVADO :	23.6 g.		
70	50.800								
11/2"	38.100					LIMITE LIQUIDO :	N.P		
1"	25.400					LIMITE PLASTICO :	N.P		
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P		
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)		
36"	9.525	60.28	10.05	10.05	09.95	CLASF, SUCS :	QP		
114"	6.350	111.74	18.62	26.67	71.33	DESCRIPCIÓN DEL SUE	ILO: BUENO		
Nº4	4.760	195.95	32.00	61.33	38.67	Grava pobremente grad	tuada con arena		
NHO	2.000	116.62	19.44	80.77	19.24	Ensayo Malla N*200	P.S.Seo P.S.Lav (%) 20		
N+20	0.840	15.42	2.57	83.34	16.67		600.0 24 96.1		
N40	0.425	30.15	5.03	86.36	11.04				
N450	0.300	20.05	4.81	93.17	6.63				
Nº100	0.150	11.02	1.94	95.11	4.90	MODULO DE FINEZA	5.408		
Nº200	0.075	5.74	0.96	96.06	3.94	Coef. Uniformidad	******		
< N* 200	FONDO	23.63	3.94	100.00	0.00	Coef. Curveture	0.0		

CALLE MANUEL SEOANE Nº 7 CHANGE AYEQUE - CEL. 954853683 -

E-Mall - marro rd8 ootmall.com

OSCAR LUZQUINOS ROOM Reg. CIP. N° 31338

Mario Ramirez Dejo GENENTE GENERAL LABORATORIO I MINISTELLE.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

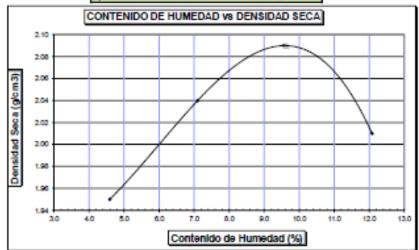
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOUCHANTE

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UNICACION


MATERIAL : TERRENO NATURAL

CALICATA : C8M1 **HCKA**

PROCTOR MODIFICADO AASHTO T - 180 D

I KOOLOK MODI				100 0	
MOLDE Nº	:				
VOLUMEN	:	2050	cm ⁴	-	ple*
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6932	7219	7445	7383
 Peso de Moide 	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4182	4489	4895	4813
 Peso Volumétrico Húmedo 	(g)	2.040	2.180	2.290	2.250
Recipiente №	-	255	280	278	289
Peso de Suelo Húmedo + Tara	(g)	50.41	50.71	57.25	50.52
Peso de Suelo Seco + Tara	(g)	49.07	48.77	54.35	48.75
∠ Tara	(g)	19.85	21.43	24.00	15.55
 Peso de Agua 	(g)	1.34	1.94	2.90	3.77
 Peso de Suelo Seco 	(g)	29.22	27.34	30.35	31.20
 Contenido de agua 	(%)	4.59	7.10	9.58	12.08
 Peso Volumétrico Seco 	(glam)	1.95	2.04	2.09	2.01

Mázima Densidad Seca Optimo Contenido de Humedad:

CALLE MANUEL SEOANE Nº 7 STANDAYEQUE - CEL. 954853683 -

E-Mail - marro rd8 ootmail.com

OSCAR LUZQUINOS ROOM Reg. CIP. N° 31338

Mario Ramirez Dejo penente general LASORATORIO I MINISTRAL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISERO DE LA INFRAESTRUCTURA VIAL DE LA PAYMENTACION PARA

		MEJORAR VILLA EL 8	OL-DIS	STRITO	REQUE	E-CH	CLAYO	- LAM	BAYEQ	UE				
UNICACION		DISTRITO	REQUE,	PROV	/INCIA C	HICLA	YO, DE	PARTA	MENTO	DLAM	BAYEQ	UE		
CALICATA		C8M1												
PECHA		16.11.2021												
					-	C.B.F	₹.							
MOLDE Nº					36				à				И	
Nº DE GOLPES	POR CA	PA.			56			- 1	5			1	2	
CONDICION D	E MUESTI	RA	3N M	CLIAR	MOU	NDA.	33K M	DJAR	MOJ	ADA	33N M	OJAR	MOJ	ADA
PERO MOLDE + 3	ILIELD HLN	(g) 00H	12,0	21	12,1	104	123	390	12,5	210	11,	865	12,0	200
PERO DEL MOLD	8	(2)	7,5	11	7,1	11	7,3	11	7,3	11	7,3	279	7,2	79
PERO DEL RUELO	HUMBOO	(2)	49	10	490	93	40	17	40	99	*	800	400	09
VOLUMEN DR. 8	URLO	(2)	2.5	43	2.5	43	2.1	40	2.5	40	21	43	2.1	43
DENSIDAD HUMS	CA	(gibm ^b)	2.5	9	2.3	t)	2.	23	2.5	9	2	14	2.5	24
CAPBULANT			21	2	23	4	20	ii)	29	н	3	05	33	15
PERO CAPRILIA	+SUBLOH	JMEDO (g)	48.	76	58.0	63	57.	7.51 54		79	40	76	66.	12
PERO CAPRILLA	+ SUBLO 8	RCD (g)	40.	OIB .	54.0	00	54	14	50.	73	38	70	60:	25
PERO DE AGUA O	CONTRNICA	(g)	2.6		3.7	7	_	37 4			2.06		5.87	
PERO DE CAPRO	LA	(2)	18.	20	20.38		20.	_		13	17.51		19.80	
PERO DE RUBUO	2000	(2)	27.	bit .	34.	48	23.	57	33		21.19		40.45	
HUMBOAD		(%)	9.0	1%	10.8	2%	10.04%		12.0	25%	9.7	2%	14.5	11%
DENSIDAD ISCA			2.0	9	2.1	10	2.0	10	2.0	M	1.95		1.90	
					FXI	PANS	ION							
FRCHA	HORA	TEMPO	DWL		EXPANSIO		DIAL				DIAL EXPANSION			N
-		-				*	_	_				m. X		
														Ь
			-		NO	REGIST	TLA.		-	_	_	 		⊢
	-		_	_		_	_		_	\vdash	-	-		⊢
	_		_	-		—	_			_				⊢
							CION							
PENETRA	CICN	CARBA		MOLDS		38		MOLDE		53		MOLDE	_	66
puly		(Belling)	CARGA	la.	Enjuiy'		CARGA		Selection of the last of the l		CARGA		Balady'	
0.020		(marginal)	20.00	234	78.00	_	14.60	171	57.00	-	8.70	100	24.00	_
0.040			41.80	489	183.00	_	20.20	354	118.00		17.90	210	70.00	\vdash
0.060			61.00	714	238.00	_	44.40	519	173.00		26.40	200	103.00	\vdash
						_								⊢
0.080		4000	80.00	936	312.00	_	57.90	678	226.00	08.90	34.60	405	135.00	48.0
0.100		1000	100.00	1170	290.00	39.00	72.60	849	283.00	28.30	43.30	507	-	18.90
0.200		1500	163.10	1900	636.00	_	118.20	1383	401.00	_	70.50	825	275.00	⊢
0300			206.90	2421	807.00	_	150:30	1758	586.00		89.70	1050	350.00	⊢
0.400			240.00	2000	936.00		174.10	2037	679.00		104.10	1218	406.00	_
0.500			950.00	9996	925.00		181 50	9494	700.00		100.50	4060	400.00	

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 77 AND AYEQUE - CEL. 954853683 -

OSCUR LUCYONIOS RODROJEZ RECENTRO CON. Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

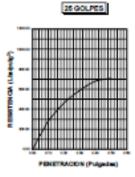
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

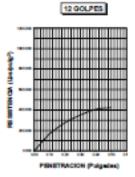
DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

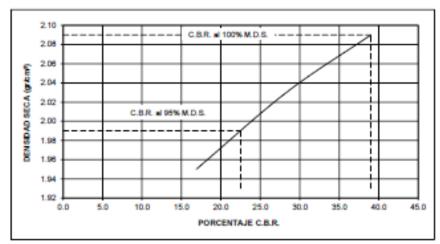
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION


CALICATA : C8M1 : 16.11.2021


DATOS DEL PROCTOR									
Denelded Mikima (gricm ³)	2.09								
Humeded Optima (%)	9.63								


56 GOLPES

DATOS DEL C.B.R.								
C.B.R. al 100% de M.D.S. (%)	39.00							
C.B.R. al 95% de M.D.S. (%)	22.50							

PENETRACION (Pulgadad)

CALLE MANUEL SECANE Nº 7

AYEQUE - CEL. 954853683 -

OSCAR LUZQUIÁOS ROOM Reg. CIP. N° 31338

Mario Ramirez Dejo CERENTE GENERAL LABORATORIO I MINIS ELRIL E-Mall - marking8@botmall.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION № 031616-2019/DSD – INDECOPI

RUC. 20605369139

CALICATA 09

Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MARI ELRI EOANE N° 7 15 14 14 16 MBAYEQUE - CEL. 954853683 = E-Mail = markey g8 6 botmail.com oscus unyonos

OSCAR LEZQUEOS RODROJE INGENIERO CIVIL Reg. CIP. N° 31.338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE :

KIMBERLY SARITA INCIO CHUNGA

PROYECTO

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

UBICACION CALICATA

C-9 18.11.2021 **FECHA**

REGISTRO DE PERFORACIONES

CONA	1000	ADMINISTRA	1111000	RATURAL ESA DEL TERRENO	CHILDRANDSH
	(min.)	MURRITAN		MITRATO	
	0.00				
	0.10	RELLEND		MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	•	CLASFICACION - AASHTO: A - 2 - 4 (0) ANSINAS LINCINSI DE COLOR MARRILLENTO, DE COMERTENCIA MEDIA LI + 2223 LP + 1836 LP + 123 N + COMERINDO DE HUMEDAD + 4.41 % N + COMERINDO DE HUMEDAD + 12.20 % CS.R + 100% + 17.3 %	DURANTE R. TIEMPO DE EXIDIVACION NO SE DETECTO NIVE, FREATICO

CALLE MANUEL SEOANE N° 77 AND AYEQUE - CEL. 954853683 -Mario Ramirez Dejo GENERIE GENERAL LABORATORIO I MINI EL R.L.

OSCAR LEZQUEIOS RODROS INGENAÇÃO CIVIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOUCHWITE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA CS : 16.11.2021

HUMEDAD NATURAL	
CALICATA-MUESTRA	C9 - M1
PROFUNDIDAD (m)	0.10 - 1.50
Nº RECIPIENTE	277
1 PESO SUELO HUMEDO + RECIPIENTE	50.15
2 PESO SUELO SECO + RECIPIENTE	48.94
3 PESO DEL AGUA	1.21
4 PESO RECIPIENTE	21.53
5 PESO SUELO SECO	27.41
6 PORCENTAJE DE HUMEDAD	4.41%

DETERMINACION DE	LA SAL
CALICATA-MUESTRA	C9 - M1
PROFUNDIDAD (m)	0.10 - 1.50
Nº RECIPIENTE	9
(1) PESO DEL TARRO	35.85
(2) PESO TARRO + AGUA + SAL	41.57
(3) PESO TARRO SECO + SAL	35.88
(4) PESO SAL (3-1)	0.01
(5) PESO AGUA (2 - 3)	5.71
(8) PORCENTAJE DE SAL	0.18%

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

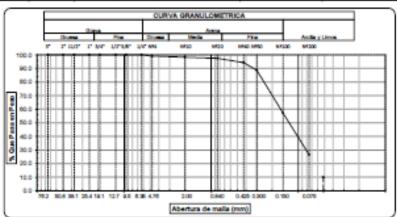
E-Mail - mario rg8 ootmail.com

OSCAR LUZQUIÁOS RODRIGUEZ Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO


(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: RIMEERLY SAIRTA INCIO CHUNGA PROVIECTO : DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE BECACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PUNDEAD: 0.10 mts. - 1.50 mts.

CALIDATA : C9M1 1809A : 16.11.2021

ABERTU	M MILLA	PESO	% RETENIDO	% RETENIDO	% QUIE	DESCRIPCION DE LA MUESTRA				
(P49)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA					
3"	76.200					PESO TOTAL :	200.0 g.			
2 1/2"	63.500					PESO LAVADO :	53.1 g.			
2"	50.800									
11/2"	38.100					LIMITE LIQUIDO :	22.22 %			
1"	25.400					LIMITE PLASTICO :	18.99 %			
34"	19:050					INDICE PLASTICIDAD:	3.23 %			
1/2"	12.700					CLASF, AASHTO :	A-2-4 (0)			
30"	9.525					CLASF, SUCS :	SM			
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: BUENO			
Nº4	4.760	1.96	0.96	0.98	99.02	Arena Emosa				
NHO	2.000	1.77	0.89	1.07	98.14	Ensayo Maila N*200	P.S.Sec P.S.Lev (%) 200			
N*20	0.840	1.55	0.78	2.64	97.30		200.0 53 73.4			
N40	0.425	6.13	3.07	5.71	94.30					
N*50	0.300	11.36	5.66	11.39	66.62					
Nº100	0.150	62.88	31.44	42.03	57.10	MODULO DE FINEZA	0.054			
Nº200	0.075	01.23	30.62	73.44	26.56	Coef. Uniformidad	0.0			
< Nº 200	FONDO	53.12	20.50	100.00	0.00	Coef. Curveture	0.0			

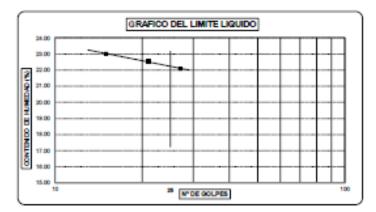
Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTERL

CALLE MANUEL SEOANE N° 7 STATE OF THE SECOND AVEQUE - CEL. 954853683 -

OSCAR LECTORIOS PROPRIO PIGENACINO CIVIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE PROYECTO

KIMBERLY SARITA INCIO CHUNGA
DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
0,10 mbs. - 1,50 mbs.

PROFUNDIDAD : GALICATA : FECHA : C9M1 16.11.2021

DATOS DE ENSAYO	L	IMITE LIQUID	0	LIMITE PLASTICO				
N° de golpes		16	21	27	-			
1. Recipiente N*		345	355	305	332	-		
2. Peso suelo húmedo + tars	(pr)	34.59	33.23	31.19	35.28	-		
3. Peso suelo seco + Tars	(pr)	31.51	30.50	28.83	32.68			
4. Peso de la Tara	(pr)	18.21	18.23	18.22	18.80	-		
5. Peso del agua	(pr)	3.08	2.73	2.36	2.63			
5. Peso del suelo seco	(pr)	13.3	12.27	10.61	13.85	-		
7. Contenido de humeded	(%)	23.16	22.25	22.24	18.99			

LIMITE DE CONSISTENCIA D	E LA MUESTRA
Limite Liquido	22.22
Limite Plástico	10.99
ndice de Plasticidad	3.23

MUESTRA: CI	MH1
Clasificación SUCS	SM
Clasificación AASHTO	A-3-4 (0)

Mario Ramires Dejo LABORATORIO I MIN EJRL

OSCAR LICTORIOS RODRICO RECENERO CIVIL Reg. CIP. N° 31,338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

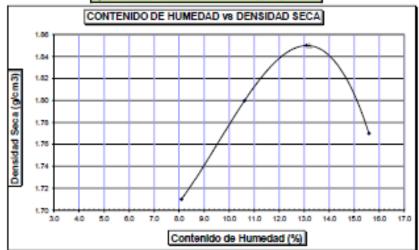
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVMENTACION PARA PROFECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


UNICACION MATERIAL : TERRENO NATURAL

CALICATA

DROCTOR MODIFICADO AASHTO T 120 D

PROCTOR MOD	IFICAL	JU AA3	<u>ипто т</u>	- 100 L	<u>, </u>
MOLDE Nº	:				
VOLUMEN	:	2050	cm*	-	ple*
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(2)	8543	6830	7035	6953
 Peso de Moide 	(8)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3793	4080	4285	4203
 Peso Volumétrico Húmedo 	(2)	1.850	1.990	2.090	2.050
Recipiente №		62	87	85	96
Peso de Suelo Húmedo + Tara	8	53.12	53.38	60.05	53.38
Peso de Suelo Seco + Tara	(2)	50.69	50.39	55.97	48.37
. Tara	(g)	20.68	22.24	24.81	16.38
 Peso de Agua 	(8)	2.43	2.99	4.08	4.99
 Peso de Suelo Seco 	(8)	30.03	28.15	31.16	32.01
 Contenido de agua 	(%)	8.09	10.82	13.09	15.59
 Peso Volumétrico Seco 	(plani)	1.71	1.80	1.85	1.77

Optimo Contenido de Humedad

OSCAR LUZQUIÁOS ROOM PRECIMERO CIVIL

CALLE MANUEL SEOANE N° 7 STATE OF THE PARTY OF THE PARTY

Mario Ramiree Dejo DERENTE GENERAL LABORATORIO I NAME EL R.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILIA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C9M1 18.11.2021 ALICATA

			C.B.F	₹.					
MOLDE Nº		1	6	3	11	42			
Nº DE GOLPES POR CAPA		5	86	2	5	12			
CONDICION DE MUESTRA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA			
PERO MOLDE + BUELD HUMBDO	(2)	11,541	11,819	11,011	11,710	11,373	11,574		
PERO DEL MOLDE	(2)	7,054	7,054	7,254	7,254	7,222	7,222		
PERO DEL RUELO HUMBDO	(2)	4487	4565	4357	4462	4151	4352		
VOLUMEN DR. RURLO	(0)	2.143	2.143	210	210	2:143	2.143		
ACHMUN CACHMON	(pibni ^b)	2.09	2.13	2.03	2.08	1.94	2.03		
CAPBULANT		190	212	241	209	283	313		
PERO CAPRILIA + RURLO HUMBOO	(2)	57.37	67.52	66.33	63.69	49.13	75.35		
PERO CAPRILIA + RUBLO SECO	(2)	53.22	62.00	61.28	57.07	45.84	67.39		
PERO DE ASUA CONTRNICA	(2)	4.15	5.52	5.05	5.82	3.29	7.96		
PERO DE CAPRILIA	(2)	21.77	23.95	24.14	20.70	21.08	23.37		
PERO DE RURLO SECO	(2)	31.45	38.05	27.14	27.17	2479	44.02		
HUMBOAD	3	13.20%	14.51%	13.60%	15.00%	13.29%	18.08%		
DENSIONO SECA		1.85	1.86	1.79	1.80	1.71	1.72		

EXPANSION

FECHA HORA		TEMPO	TRMPO	DIAL	EXPANSION	4	DIAL	8.19	MARIO	N	DWL	REPANDO	н
	-	-					-					,	
				100	RECEIST	24							
				- NO	REMAKAT	~							

PENETRACION

PENETRACION	CARBA		MOLDS	Nº.	16		MOLDS	Nº	31		MOLDE	R.	42
puly.	BRITANDAR	CARGA	Ī		N.	CARGA	•	000000	Ri .	CARGA	0	OR ROOM	4
	(Stationary)	Leotura	lie	Delpois!	*	Lecture	lie.	Designation of		Leolura	lie	Regular	*
0.020		6.20	72	24.00		4.40	51	17.00		2.60	20	10.00	ᆫ
0.040		12.80	150	50.00		9.20	100	36.00		5.60	66	22.00	
0.000		18.70	219	73.00		13.60	159	53.00		8.20	96	32:00	
0.080		24.60	288	96.00		17.90	210	70.00		10.80	126	42:00	
0.100	1000	20.80	360	120.00	12.00	22.30	261	87.00	8.70	13.30	150	52:00	52
0.200	1500	50:30	588	196.00		26.40	426	142.00		21.80	255	85.00	
0.300		63.60	744	248.00		46.20	540	180.00		27.70	324	108.00	
0.400		73.80	064	288.00		53.60	627	209.00		22:10	375	125.00	
0.500		78.90	900	300.00		55.90	654	218.00		23.20	290	130.00	Г
													_

OSCAR LIZTORIOS RODR Reg. CIP. N° 31338

Mario Ramirez Dejo CARDRATORIO I MAN ELRL

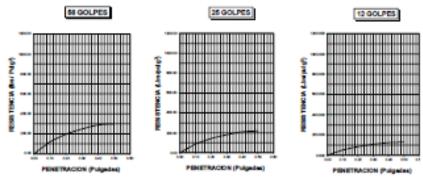
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

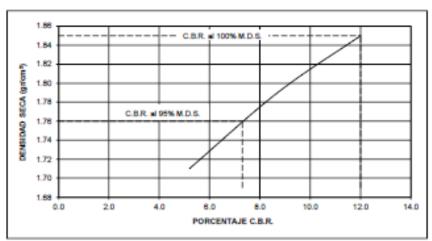
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE : KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO


> MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C9M1

FECHA : 16.11.2021

Sensited Marine (order) 1.85 C.B.R. at 100% de M.D.S. (%)	
Densidad Milsima (gricm ¹) 1.85 C.B.R. al 100% de M.D.S. (%) 1	2.00
(umedad Optima (%) 13.20 C.B.R. al 95% de M.D.S. (%)	.30

Mario Ramirez Dejo penente general LASORATORIO I MINISTRAL

E-Mail - marro 1880 otmail.com

CALLE MANUEL SEOANE Nº 7 THE ME AYEQUE - CEL. 954853683 -

OSCUR LUZQUINOS ROD Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 10

Mario Ramires Dejo GENERIE GENERAL LASORATORIO I MIN ELEL

OSCAR LIZQUIROS RODRICUE MICENAÇÃO CAVA. Por CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UBICACION CALICATA DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C-10 16.11.2021 **FECHA**

REGISTRO DE PERFORACIONES

COLA	N. M.	MONOWA	11 11 SUB	RATUROL ECA DEL TEXABRO	CHIERWANNE
	(min.)	MURRITRA		ENTRATO	
	0.00				
	0.20	RELLEND	Samo	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	SF	CLASFICACION - AASHTOLA - 3 (5) MENAS CON NALA PLASTICICAD DE COLOR AMARILIENTO, DE CONSISTENCIA MEDIA LL + N.P LP + N.P N COMENDO DE HUMBOAD + 3.56 % N COMENDO DE SALES + 0.19 % MARIMA DENEDAD SECA + 1.50 galust DPTINO DE HUMBOAD + 10.01 % C.S.R 100 % + 10.5 % C.S.R 100 % + 10.5 %	DURANTE RI. TIEMPO DE RICHIACION NO SE DETECTO NVIR. PREATICO

Mario Ramirez Dejo

E-Mail - marking8@botmail.com

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338 101

LABORATORIO I MARIE ELRI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C10 PECNA 16,11,2021

HUMEDAD NATURAL						
CALICATA-MUESTRA	C10 - M1					
PROFUNDIDAD (m)	0.10 - 1.50					
Nº RECIPIENTE	362					
1 PESO SUELO HUMEDO + RECIPIENTE	25.95					
2 PESO SUELO SECO + RECIPIENTE	25.70					
3 PESO DEL AGUA	0.25					
4 PESO RECIPIENTE	19.15					
5 PESO SUELO SECO	6.55					
8 PORCENTAJE DE HUMEDAD	3.99%					

DETERMINACION DE LA SAL						
CALICATA-MUESTRA	C10 - M1					
PROFUNDIDAD (m)	0.10 - 1.50					
Nº RECIPIENTE	42					
(1) PESO DEL TARRO	36.36					
(2) PESO TARRO + AGUA + SAL	41.60					
(3) PESO TARRO SECO + SAL	36.37					
(4) PESO SAL (3-1)	0.01					
(5) PESO AGUA (2 - 3)	5.23					
(6) PORCENTAJE DE SAL	0.19%					

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -E-Mall - marror 188 botmall.com

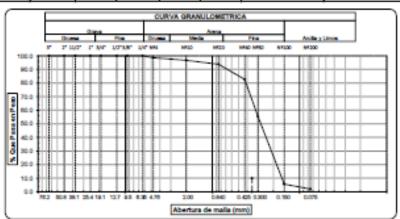
OSCAR LIEDORIOS ROOM Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)


SOLICITANTE : KIMBERLY SARITA NOID CHUNGA PROVIECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE BICACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PUNDEAD: 0.20 mts. - 1.50 mts.

GALICATA : C10M1 PRICHA : 16.11.2021

ABERTU	RA MALLA	PESO 1. RETENDO 1. RETENDO 1		% QUE	DESCRIPCION DE LA MUESTRA	
(24)	(mm)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA MUESTRO.
3"	76.200					PESO TOTAL : 200.0 g.
2 1/2"	63.500					PESO LAVADO : 4.1 g.
2"	50.800					
11/2"	38.100					LIMITE LIQUIDO : N.P
1"	25.400					LIMITE PLASTICO : N.P
34"	19.050					INDICE PLASTICIDAD: N.P.
1/2"	12.700					CLASF, AASHTO : A-3 (0)
3/0"	9.525					CLASF, SUCS : SP
114"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUELO : BUENO
Nº4	4.760	2.09	1.45	1.45	98.56	Arena pobremente graduada
NHO	2.000	3.74	1.87	3.32	96.69	Ensayo Maila N*200 P.S.Seo P.S.Lav (%) 200
N*20	0.840	5.77	2.89	6.20	93.60	200.0 4 98.0
N40	0.425	22.32	11.16	17.30	62.64	
N*50	0.300	54.52	27.26	44.62	55.30	
Nº100	0.150	99.51	49.76	94.30	5.63	MODULO DE FINEZA 1.673
Nº200	0.075	7.15	3.58	97.95	2.05	Coef. Uniformidad 0.0
< Nº 200	FONDO	4.10	2.05	100.00	0.00	Coef. Curveture 0.0

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTELEL

CALLE MANUEL SEOANE N° 7 STATE OF THE SECOND SEASON OF THE SECOND OF THE

OSCUR LUZQUIÓUS RODRIGUEZ RECENIÇÃO CANA. Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOUCHANTE

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROFECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UNICACION

: TERRENO NATURAL MATERIAL


CALICATA : C10M1

16.11.2021 FECKA.

PROCTOR MODIFICADO AASHTO T - 180 D

T INO OTOT MOL	711 107 11	J - 7 11 10	/· · · · ·	100 0	
MOLDE Nº					
VOLUMEN	:	2050	cm*	-	ple*
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6584	6871	7078	6994
Peso de Moide	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3834	4121	4326	4244
 Peso Volumétrico Húmedo 	(g)	1.870	2.010	2.110	2.070
Recipiente №		213	238	238	247
Peso de Suelo Húmedo + Tara	(g)	52.02	52.33	58.91	52.20
Peso de Suelo Seco + Tara	(g)	50.51	50.21	55.79	48.19
. Tara	(2)	20.57	22.15	24.72	16.27
 Peso de Agua 	(g)	1.51	2.12	3.12	4.01
 Peso de Suelo Seco 	(g)	29.94	28.08	31.07	31.92
 Contenido de agua 	(%)	5.04	7.58	10.04	12.58
 Peso Volumétrico Seco 	(glam²)	1.78	1.87	1.92	1.84

Mázima Densidad Seca Optimo Contenido de Humedad: 10.00 %

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTELEL

CALLE MANUEL SEOANE Nº 75 MAN AYEQUE - CEL. 954853683 -E-Mall - marks rg8 botmall.com

OSCAR LUZQUIÑOS ROOM PREZNACIPO CIVIL

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA ROVECTO

MEJORAR LA TRANSITABLIDAD DEL CENTRO POBLADO AMPLIACION VILIA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

RICACION

C10M1 16.11.2021 ALICATA

			C.B.	R.			
MOLDE Nº		14	di .	2	9	4	ĝ.
VP DE GOLPES POR CAPA		50	6	2	5	1	2
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SALON KIS	MOJADA	SIN MOJAR	MOJADA
PERO MOLDE + BLIELD HUMBDO	(2)	11,473	11,550	11,547	11,652	11,313	11,521
PERO DEL MOLDE	(2)	6,943	6,943	7,143	7,143	7,111	7,111
PERO DEL SUBLO HUMBDO	(2)	4530	4607	4404	4509	4202	4410
CURRINDS SUB-D	(2)	2143	2.140	2143	210	2143	2.143
DENIEDAC HUMBOA	(plon*)	2.11	2.15	2.08	2.10	1.90	2.06
CAPBULANT		100	210	239	267	281	311
PERO CAPRILIA + RURLO HUMBOO	(2)	49.04	59.74	58.61	55.90	41.80	67.27
PERO CAPRULA + RUBLO SECO	(2)	40.98	55.76	55.04	51.63	29.00	61.15
PERO DE AGUA CONTRNICA	(2)	2.00	3.90	3.57	427	2.20	6.12
NESC DE CAPILLA	(2)	18.65	20.83	21.02	17.50	17.90	20.25
FIRST DE BURLO RECO	(2)	28.33	34.93	34.02	34.05	21.64	40.9
HUMBOAD	3	10.10%	11.39%	10.49%	12.54%	10.17%	14.90%
SEASON SECA	\neg	1.92	183	1.00	1.87	1.78	1.79

EXPANSION

FECHA	HORA	TEMPO	DWL	EXPANSIO	EXPANSION		B.OP	EXPANSION		DWL	KEPANSION	
-	-						-					ě
				NO.	REGRET	24						
					PERMIT	-						

				PEN	ETR/	CION							
PENETRACION	CARBA		MOLDE	Nº	14		MOLDS	N°	29		MOLDE	No.	40
palg.	RETANDAR	CARGA			N	CARGA			N	CARGA		OR PERSON	4
	(Balgruly)	Lecture	lin.	Delputy*		Lecture	lie.	lim pulsi		Leolura	lie	Ballyuly*	*
0.020		5.40	63	21.00		3.80	45	15.00		2.30	27	9.00	
0.040		11.30	132	44.00		8.20	96	22.00		4.90	57	19.00	
0.000		19.40	192	64.00		11.80	138	46.00		6.90	=	27.00	
0.080		21.50	252	84.00		15.60	183	61.00		9.20	100	36.00	
0.100	1000	26.90	315	105.00	10.50	19.50	228	78.00	7.60	11.50	135	45.00	4.50
0.200	1500	43.80	513	171.00		21.80	372	124.00		18.70	219	73.00	
0.300		55.60	651	217.00		40.30	45	157.00		23.80	279	93.00	
0.400		64.60	750	252.00		40.70	540	182.00		27.70	224	108.00	
0.500		67.40	789	263.00		48.70	570	190.00		29.00	239	113.00	

CALLE MANUEL SEOANE N° 7 STANDAYEQUE - CEL. 954853683 Iario Ramires Dejo E-Mail - mario 198 abotmail.com Mario Ramirez Dejo LABORATORIO I MIN EJRL

OSCAR LECTURIOS PROPRED PIGENERIO CIVIL PING. CIP. N.º 31338

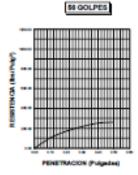
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

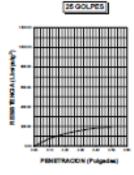
RUC. 20605369139

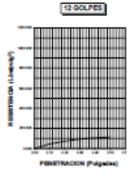
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

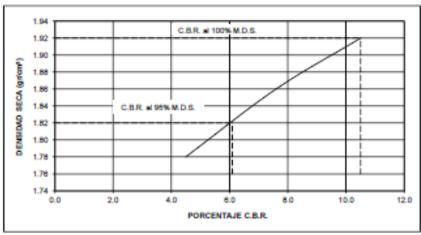
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C10M1 FECHA : 16.11.2021


DATOS DEL PROCTOR					
Densided Máxima (gricm ³)	1.92				
Humeded Optima (%)	10.08				

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%)	10.50					
C.B.R. al 95% de M.D.S. (%)	6.10					

Mario Ramirez Dejo CABORATORIO I MIN ELRL

E-Mall - marker 1880 otmail.com

CALLE MANUEL SEOANE Nº 7 THE MENT AVEQUE - CEL. 954853683 -

OSCAR LUZQUIROS ROOM PREZNACINO CONS. Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 11

Mario Ramirer Dejo SERENTE GENERAL LABORATORIO I MARIE EL R.L.

CALLE MANUEL SEOANE N° 7 AND AYEQUE - CEL. 954853683 —
ario Ramirer Dejo E-Mail - manuerga potential.com (6504 Letonics)

INGENERO CIVIL.

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CAUCATA C-11 16.11.2021 **FECHA**

REGISTRO DE PERFORACIONES

COTA	1 5000	ADMINIST	\$1.000.00	RATURAL ECA DEL TERRENO	CHARLESTAN
	(min.)	MURRITRA		ENTRATO	
	0.00				
M		RELLENO	(350,036)	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(b)	CLASFICACION - AABHTO: A - 1 - a (5) GROWNS CON ARBINA DE COLOR BLANGUECINO, DE COMBISTENCIA MEDIA LL + N.P LP + N.P LP + N.P N + COMBINIDO DE HUMBOAD + 238 % N COMBINIDO DE SALES + 0.16 % MUUMA CENSIDAD SECA + 2.13 giund OPTIBO DE HAMBOAD + 8.86 % C.R.R - 100% + 47 % C.R.R - 100% + 25.3 %	DURANTE R. TISMPO DE RICKUACION NO SÉ DETECTO NIVEL PREATICO

Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MINISTELLE.

E-Mail - mario 1980 otmail.com

CALLE MANUEL SECANE Nº 7 MAN AYEQUE - CEL. 954853683 -

108

OSCAR LISTORIOS ROOM PRECIMERO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C11 16.11.2021

HUMEDAD NATURAL					
CALICATA-MUESTRA	C11 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
Nº RECIPIENTE	258				
1 PESO SUELO HUMEDO + RECIPIENTE	36.62				
2 PESO SUELO SECO + RECIPIENTE	36.22				
3 PESO DEL AGUA	0.40				
4 PESO RECIPIENTE	22.81				
5 PESO SUELO SECO	13.41				
8 PORCENTAJE DE HUMEDAD	2.98%				

DETERMINACION DE LA SAL							
CALICATA-MUESTRA	C11 - M1						
PROFUNDIDAD (m)	0.10 - 1.50						
Nº RECIPIENTE	174						
(1) PESO DEL TARRO	55.42						
(2) PESO TARRO + AGUA + SAL	61.51						
(3) PESO TARRO SECO + SAL	55.43						
(4) PESO SAL (3-1)	0.01						
(5) PESO AGUA (2-3)	6.08						
(8) PORCENTAJE DE SAL	0.16%						

CALLE MANUEL SEOANE Nº 7 STANDAYEQUE - CEL. 954853683 -

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

E-Mail - mario 108 potmali.com

OSCAR LEZQUEOS RODROS PIGENACIO CIVIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

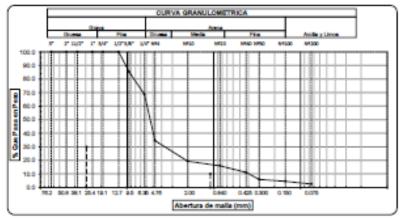
(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

ROUGHARTE: KINDERLY SARTA INCIO CHUNGA

**ROYBETO: DISERIO DE LA INFRAISTRUCTURA VAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - L'AMBAYEQUE

RECACIÓN: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO L'AMBAYEQUE

**ROYUGGAO: O. 10 mfts. - 1.50 mfts.

CALICATA : C11M1 PRICHA : 16.11.2021

ABERTU	NA MALLA	PESO	% RETENDO	% RETENDO	% QUE	DESCRIPCION DE LA MUESTRA			
(200)	(mm)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA RESITION			
3,	76.200					PESO TOTAL :	600.0 g.		
2 1/2"	63.500					PESO LAVADO :	15.5 g.		
10	50.800								
11/2"	38.100					LIMITE LIQUIDO :	N.P		
1"	25.400					LIMITE PLASTICO :	N.P		
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P		
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)		
36"	9.525	00.25	14.71	14.71	05.29	CLASF, SUCS :	QP.		
114*	6.350	99.62	16.60	31.31	60.00	DESCRIPCIÓN DEL SUE	LO: BUENO		
Nº4	4.760	205.26	34.21	65.52	34.40	Grava pobremente grad	uada con arena		
NHO	2.000	90.45	15.00	80.00	19.40	Ensayo Malla N*200	P.S.Seo P.S.Lav (%) 200		
N*20	0.840	20.57	3.43	84.00	15.97		800.0 16 97.4		
N40	0.425	20.75	4.79	88.82	11.10				
N450	0.300	31.32	5.22	94.04	5.96				
Nº100	0.150	8.75	1.46	95.50	4.50	MODULO DE FINEZA	5.545		
M*200	0.075	11.51	1.92	97.42	2.58	Coef. Uniformidad	******		
< N* 200	FONDO	15.50	2.58	100.00	0.00	Coef. Curveture	0.0		

Mario Ramires Dejo CARDRATORIO I MARIE ELRI.

CALLE MANUEL SEOANE N° 7 STATE OF THE PAYEOUE - CEL. 954853683 —

Tario Ramires Dejo E-Mail - mario 1982 botmail.com (SCA) unionis security (SCA)

OSCUR LUZQUIÁOS ROCK Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

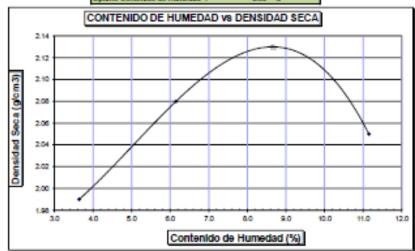
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNCACION DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C11M1 FECKA. 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº					
VOLUMEN	:	2050	cm*	-	pie*
METODO DE COMPACTACION	:	AASHTO '	T - 180 D		
Peso Suelo Humedo + Moide	(g)	6973	7281	7488	7424
 Peso de Moide 	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	4223	4531	4738	4874
 Peso Volumétrico Húmedo 	(g)	2.060	2.210	2.310	2.280
Recipiente №		338	383	381	372
Peso de Suelo Húmedo + Tara	(g)	51.05	51.38	57.91	51.18
Peso de Suelo Seco + Tara	(g)	49.97	49.87	55.25	47.85
Tara	(g)	20.30	21.88	24.45	16.00
 Peso de Agua 	(g)	1.08	1.71	2.88	3.53
 Peso de Suelo Seco 	(g)	29.67	27.79	30.80	31.85
 Contenido de agua 	(%)	3.84	6.15	8.64	11.15
 Peso Volumétrico Seco 	(plam)	1.99	2.08	2.13	2.05

Mázima Densidad Seca 2.13 gr/cm² Optimo Contenido de Humedad

CALLE MANUEL SEOANE Nº 7 THE WARM AYEQUE - CEL. 954853683 -

Mario Ramires Dejo CABORATORIO I MINIS ELRI. E-Mall - marker 1880 otmail.com

OSCAR LUZQUIÓS ROOM MACEMENO COMA

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CAUCATA C11M1

18.11.2021

P BOLL PAIN	_	DOMESTIC CONTRACT							
					C.B.F	₹.			
MOLDE Nº				33			48		59
Nº DE GOLPES	POR CA	PA	56			25		12	
CONDICION D	E MUESTI	PA	SH MOJAR	MCL	ADA.	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PERO MOLDE + 8	UELD HUN	BDO (g)	9,570	9,7	60	9,754	9,867	9,520	9,750
PERO DEL MOLD	8	(2)	4,715	4,7	15	4,915	4,915	4,003	4,883
PERO DEL RUELO	HUMBOO	(2)	4901	50	45	4039	4952	4637	4007
VOLUMEN DR. R	JRL0	(2)	2.143	2.5	40	2.143	210	2:143	2.143
DENSIDAD HUMB	DA	(pitni ⁴)	2.31	23	15	2.26	231	2.16	2.27
CAPBULAN			207	22	9	258	200	200	230
PERO CAPRILLA	HOLBUS H	MECO (g)	46.52	56.	31	55.20	52.46	20.57	63.71
PERO CAPRILLA	BUBLO 8	(g) 038	44.18	52.	96	52.24	48.83	36.60	58.35
PERO DE AGUA O	COMPRIOR		2.34	3.3	15	2.96	3.63	1.77	5.36
PERO DE CAPRU	LA.	(g)	17.25	19.	43	19.62	10.18	16.56	18.85
PERO DE RURLO	2000	(2)	26.93	33.	53	32.62	32.65	20.24	39.5
CACHALH		(%)	0.09%	9.90	iris.	907%	11.12%	8.75%	13.57%
DENSIDAD ISCA			2.13	2.1	14	2.07	2.08	1.99	2.00
				EX	PANS	ION			
FRCHA	HORA	TRMPO	DWL	KXPANSIO	N	DIAL	EXPANSION	DWL	REPARTION
-	1			88.	1		nn. 3		nn. 3
			_					_	

	EXPANSION .											
FRCHA	HORA	TRMPO	DIAL	EXPANSION	¥	DIAL	8.1P	ANSION		DML	REPARED	H
					•		-					
				80	acea	24						
			٦		Printer at 1	_						
								\Box				
				DENI		-						

PENETRACION CARSA Legislan **Periodic** De Derjody Leolura De Debuty 24.10 94.00 17.40 68.00 10.50 41.0 50:30 36.40 196.00 142.00 21.80 85.0 73.60 287.00 31.80 96.40 376.0 70.00 41.50 0.080 019 273.00 162.0 120.50 87.40 341.00 50:10 190.40 796.00 142:60 556.00 84.90 331.0 0.200 990 973.00 181.00 2118 706.00 107.70 4000 209.20 1128.00 209.70 2454 818.00 124.90 467.0 0.400 3384 201.30 1175.00 218.70 853.00 130.30

CALLE MANUEL SEOANE N° 7 STANDAY EQUE - CEL. 954853683 —
ario Ramirer Dejo E-Mall - mario rg8 60tmall.com (604 utypiss) Mario Ramires Dejo DERENTE GENERAL LASORATORIO I MARI ELEL

OSCAR LUZQUIÁOS RO

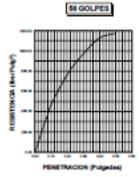
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

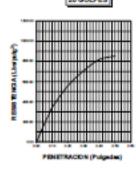
RUC. 20605369139

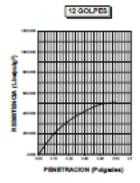
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

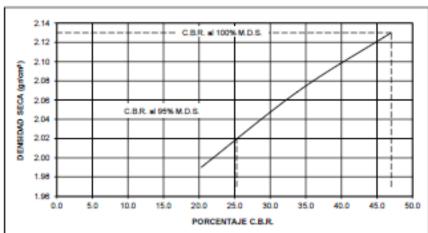
PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C11M1 FECHA : 16.11.2021


DATOS DEL PROCTOR							
Densidad Milkima (gricm ^b)	2.13						
Humeded Optima (%)	8.68						

DATOS DEL C.B.	R.
C.B.R. al 100% de M.D.S. (%)	47.00
C.B.R. al 95% de M.D.S. (%)	25.30

CALLE MANUEL SEOANE Nº 7

E-Mail - marro 1880 otmail.com

OSCAR LUZQUIÁOS RODRIGUEZ Reg. CIP. Nº 31338

113

Mario Ramirez Dejo GENERITE GENERAL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 12

CALLE MANUEL SECANE Nº 7 Mario Ramirer Dejo SERENTE GENERAL LABORATORIO I NAMELEL

WHINE YEQUE - CEL. 954853683 -

E-Mail - markerg8 botmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION PROYECTO

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C-12 16.11.2021

REGISTRO DE PERFORACIONES

COTA	FIRM	BOX 000	MICH SOLD	EXTURAL EXCIDENT TEXABLE	CHARLESTANDON
	(min)			MITMATO	
	0.00				
П	0.10	RELLEND	0750000	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1		CLASFICACION - AMBRITO: A - 1 - a (5) DRIRAMS CON AMBRIA DE COLOR BLANQUECINO, DE COMBISTENCIA MEDIA LL = N.P LP + N.P LP + N.P B + COMBINIDO DE HUMBOAD + 1.76 % NI COMBINIDO DE SALES = 0.16 % MAUMA DENBOAD SECA + 2.15 grand DPTIBLO DE HAMBOAD + 8.12 % C.S.R 100% + 46 % C.S.R 100% + 26 %	DURANTE R. TIEMPO DE EXCAUACION NO SE DETECTO NVR. PREATICO

Mario Ramirez Dejo CARDRATORIO I MAN ELRIL

CALLE MANUEL SECANE Nº 7 STANTING AYEQUE - CEL. 954853683 -E-Mail - marker 1880 otmail.com

OSCAR LUZQUIÁOS RODR ROGENIERO CIVIL.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC, 20605369139

SOLICITARITE KIMBERLY SARITA INCIO CHUNGA

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C12 : 16.11.2021

HUMEDAD NATURAL							
CALICATA-MUESTRA	C12 - M1						
PROFUNDIDAD (m)	0.10 - 1.50						
Nº RECIPIENTE	87						
1 PESO SUELO HUMEDO + RECIPIENTE	25.95						
2 - PESO SUELO SECO + RECIPIENTE	25.75						
3 PESO DEL AGUA	0.20						
4 PESO RECIPIENTE	14.51						
5 PESO SUELO SECO	11.24						
8 PORCENTAJE DE HUMEDAD	1.78%						

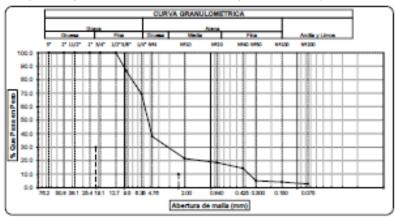
DETERMINACION DE LA SAL						
CALICATA-MUESTRA	C12 - M1					
PROFUNDIDAD (m)	0.10 - 1.50					
Nº RECIPIENTE	73					
(1) PESO DEL TARRO	28.45					
(2) PESO TARRO + AGUA + SAL	35.62					
(3) PESO TARRO SECO + SAL	28.46					
(4) PESO SAL (3 - 1)	0.01					
(5) PESO AGUA (2-3)	7.16					
(6) PORCENTAJE DE SAL	0.14%					

Mario Ramirer Dejo SERENTE GENERAL LABORATORIO I NAMELEL

OSCAR LUZQUIÑOS ROOM PRECIMERO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

ROYBETO : DISERO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABLIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE BEACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE EXPUNDADO : 0.10 m/s. - 1.50 m/s.

CALICATA : C12M1 PROMA : 16.11.2021

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPCION DE LA MUESTRA		
(240)	(1000)	RETENIDO	PARCIAL	ACUMULADO	PASA	Second State on Manager		
2"	76.200					PESO TOTAL :	600.0 g.	
2 1/2"	63.500					PESO LAVADO :	16.3 g.	
2"	50.800							
11/2"	38.100					LIMITE LIQUIDO : 1	N.P	
1"	25.400					LIMITE PLASTICO : I	N.P	
3/4"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P	
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)	
3/0"	9.525	01.26	13.54	13.54	06.46	CLASF, SUCS :	QP	
1/4"	6.350	102.77	17.13	30.67	09.33	DESCRIPCIÓN DEL SUELI	O: BUENO	
Nº4	4.760	100.45	31.41	62.06	37.92	Grava pobremente gradua	ida con arena	
NHO	2.000	97.84	16.31	78.39	21.01	Ensayo Malla Nº200	P.S.Seo P.S.Lav (%) 200	
N*20	0.840	10.45	3.06	81.46	18.54		800.0 16 97.3	
N40	0.425	25.15	4.19	85.65	14.35			
N*50	0.300	55.51	9.25	94.91	5.10			
Nº100	0.150	5.40	0.91	95.02	4.19	MODULO DE FINEZA	5.425	
Nº200	0.075	6.77	1.46	97.26	2.72	Coef. Uniformidad	*****	
< N* 200	FONDO	10.34	2.72	100.00	0.00	Coef. Curvatura	0.0	

CALLE MANUEL SEOANE N° 7 STATE OF THE SECOND SECTION OF THE SECOND SECTION OF THE SECOND SECO

OSCAR LUZQUIÑOS ROOMAL INGENIERO ONNA

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTELEL

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

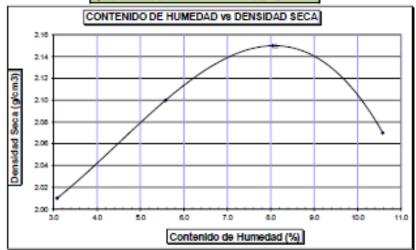
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICEANER

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROFICTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UNICACION


: TERRENO NATURAL MATTERIAL

CALICATA : C12M1 16.11.2021 FICKA.

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº	:				
VOLUMEN	- :	2050	cm²	_	ple*
METODO DE COMPACTACION	:	AASHTO 1	T - 180 D		
Peso Suelo Humedo + Molde	(g)	6994	7301	7508	7445
 Peso de Moide 	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4244	4551	4758	4895
 Peso Volumétrico Húmedo 	(g)	2.070	2.220	2.320	2.290
→ Recipiente №		55	80	78	89
Peso de Suelo Húmedo + Tara	(g)	49.40	49.72	58.21	49.48
Peso de Suelo Seco + Tara	(g)	48.51	48.21	53.79	48.19
∠ Tara	(g)	19.57	21.15	23.72	15.27
 Peso de Agua 	(g)	0.89	1.51	2.42	3.27
 Peso de Suelo Seco 	(g)	28.94	27.08	30.07	30.92
 Contenido de agua 	(%)	3.08	5.58	8.05	10.58
 Peso Volumétrico Seco 	(glam)	2.01	2.10	2.15	2.07

Mázima Densidad Seca

CALLE MANUEL SEOANE N° 77 MANUEL SEOANE N° 77 MANUEL SEOANE N° 78 MANUEL SEOANE N° 78

OSCAR LUZQUIÁOS RODRO PRECIMERO COVA. Reg. CIP. Nº 31338

Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MINI ELRI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA		C12M1							
PECHA		16.11.2021		C.B					
MOLDE Nº					J.K.	**		_	77
		24		51	+-	66		_	77
Nº DE GOLPE: CONDICION D			SIN WOJAK	50 WQIADA	2 N M	25	NADA	SIN MOU	12 AR MOJADA
						_			
PERO MOLDE +			10,366	10,450	10,		0,580	10,21	
PERO DEL MOLI		(0)	5,384	5,384	5,5	_	584	5,550	
PERO DEL RUEL			4982	5096	40	_	6976	4059	
VOLUMEN DEL S		(a) (nboth	2.143	2,143	21		232	2.140	
DENSIDAD HUM	NC.	(pitm*)	232	247	23		204	210	2.20
CAPBLLAN		MEDO (II)	45.20	54.95	53		11.10	27.29	
PERO CAPRULA			43.06		_		47.71		
PERO CAPRILLA				51.84	51.		3.39		57.23
PERO DE ASUA. PERO DE CAPIR.		(2)	2.14	10.07	19.		5.62	1.61	
PERC DE BURLO		(0)	26.37	32.97	32		2.09	19.00	
HUMBOAD	Bened	(%)	8.12%	9.43%	8.5		10.56%		13,02%
DENSIDAD RECA		177	2.15	210	_	_	210		
Committee and		+	2.10	2.15 2.16		2.09 2.10		2.01	2.04
				EXPA	NSION				
FRCHA	HORA	TEMPO	DWL	ROPANDION	DIAL	EXPANS	ION .	DWL	REPAREION
PELINA	HUMA	18670	DWL	nn. 1		88.	- 1	<u> </u>	nn. 3
				NO REG	ecros.		T		
			\neg	HO NEG	ISTRON.				
				PENETE	RACION				
				DEC 100 B1	$\overline{}$	-	-		

PENETRACION	CARSA		MOLDS	M*	01		MOLDR	Nº	est.		MOLDE	Nº	77
puly.	RETANDAR	CARGA		CONTROL OF		CARGA	•	000000	N.	CARGA	0	CONTRACTOR OF THE PERSON	4
	(Stationary)	Leotura	lie	Delpoly	*	Lecture	lie.	Section 2	,	Leolura	lie	Balauty	*
0.020		24.60	288	96.00		17.90	210	70.00		10.80	126	42.00	
0.040		51.30	600	200.00		37.20	435	145.00		22:30	261	87.00	
0.000		75.10	679	293.00		54.40	636	212:00		22.60	381	127.00	
0.080		98.50	1152	384.00		71.30	834	278.00		42.60	490	186.00	
0.100	1000	123.10	1440	480.00	48.00	89.20	1044	348.00	34.80	53.30	634	208.00	20
0.200	1500	200.50	2346	782.00		145.40	1701	567.00		86.90	1017	229 00	
0.300		254.90	2982	994.00		184.60	2100	720.00		110.50	1293	431.00	
0.400		295.40	3450	1152.00		214.10	2505	835.00		127.90	1497	499.00	
0.500		207.70	3600	1200.00		223.10	2010	879.00		133.30	1580	520.00	Г

Mario Ramirez Dejo LABORATORIO I MIN ELRL

OSCAR LIEDONÍOS RODRIGUEZ

Reg. CIP. N° 31338

119

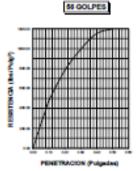
CALLE MANUEL SEOANE Nº 7 STANDAYEQUE - CEL. 954853683 = E-Mail - marker 18 0 otmail.com

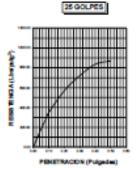
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

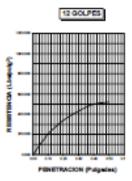
RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

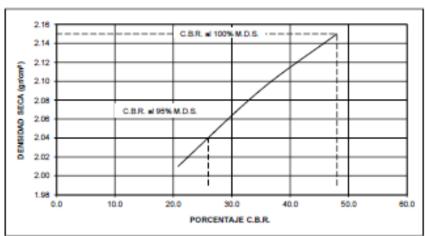
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA


MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C12M1


FECHA : 16.11.2021

DATOS DEL PROC	TOR	DATOS DEL C.B.	R.
ensided Máxima (gricm ³)	2.15	C.B.R. al 100% de M.D.S. (%)	48
medad Optima (%)	8.12	C.B.R. al 95% de M.D.S. (%)	26.

Mario Ramirez Dejo CABORATORIO I MIN EJRL E-Mall - markerg8 of otmail.com

OSCAR LUZQUIÁOS ROOM PREZMERO CHIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 13

Mario Raminer Dejo E-Mail = mark

EOANE N° 715 MAN AYEQUE - CEL. 954853683 = E-Mail - man o 198 a botmail.com

OSCAR LIZQUINOS RODRICO INGENIERO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C-13 16.11.2021 CALICATA PECHA

REGISTRO DE PERFORACIONES

2000	10.00	ACHORDO	11.000	RATUROL ESA DEL TERRENO	CEREMINATIONS
-	(min.)			BITRATO	CESERVINOSCES
	0.00				
M		RELLENO	(1/50.040)	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(1)	CLASFICACION - AMBRITO: A - 1 - a (5) DERDASI CON ARBINA DE COLOR BLANQUECINO, DE COMBISTENCIA MEDIA LL = N.P LP = N.P LP = N.P LP = N.P N = COMBISTIOD DE HUMBOACH = 1.40 % % COMBISTIOD DE SALES = 0.37 % MUURIA DERBOACH SECA = 2.06 grand OPTIBLO DE HAMBOACH = 8.89 % C.S.R. = 100% = 20.3 %	DURANTE R. TISMPO DE RICKUACION NO SÉ DETECTO NIVEL PREATICO

Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MINI EL R.L.

CALLE MANUEL SEOANE Nº 7 THE MANUE AVEQUE - CEL. 954853683 -E-Mall - marker 18 6 totmall.com

OSCUR LUCYONIOS RODROJEZ REG. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C13

HUMEDAD NATURAL								
CALICATA-MUESTRA	C13 - M1							
PROFUNDIDAD (m)	0.10 - 1.50							
Nº RECIPIENTE	277							
1 PESO SUELO HUMEDO + RECIPIENTE	20.51							
2 - PESO SUELO SECO + RECIPIENTE	20.44							
3 PESO DEL AGUA	0.07							
4 PESO RECIPIENTE	15.45							
5 PESO SUELO SECO	4.99							
8 PORCENTAJE DE HUMEDAD	1.40%							

DETERMINACION DE LA SAL									
CALICATA-MUESTRA	C13 - MI								
PROFUNDIDAD (m)	0.10 - 1.50								
Nº RECIPIENTE	122								
(1) PESO DEL TARRO	36.62								
(2) PESO TARRO + AGUA + SAL	42.61								
(3) PESO TARRO SECO + SAL	36.63								
(4) PESO SAL (3-1)	0.01								
(5) PESO AGUA (2-3)	5.98								
(6) PORCENTAJE DE SAL	0.17%								

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 7 STATE MANUEL SEOANE N

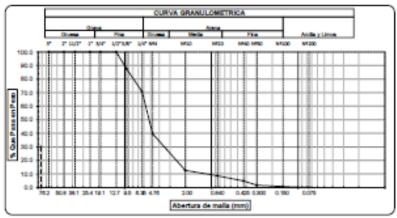
OSCUR LUCYONIOS RODROUEZ REGENERIO CHIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO


(ASTM - D422 / N.T.P. 339.128)

SOUCHANTS: KIMBERLY SARTA INCIO CHUNGA

DISERO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILIA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE BEACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE ROPUNDEAD : 0.10 mts. - 1.50 mts.

: C13M1 : 16.11.2021

ABERTU	M MILLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCIO	N DE LA MUESTRA
(Pul)	(1999)	RETENDO	PARCIAL	ACUMULADO	PASA	Section Section	
4	76.200					PESO TOTAL :	600.0 g.
2 1/2"	63.500					PESO LAVADO :	0.1 g.
2	50.800						
11/2"	38.100					LIMITE LIQUIDO :	N.P
1"	25.400					LIMITE PLASTICO :	N.P
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)
20"	9.525	75.45	12.50	12.58	67.43	CLASF, SUCS :	QP
114"	6.350	99.54	10.04	29.22	70.79	DESCRIPCIÓN DEL SUE	LO: BUENO
Nº4	4.760	187.00	31.17	60.36	39.02	Grava pobremente grad	uada con arena
NHO	2.000	182.00	27.00	87.36	12.62	Ensayo Maila N*200	P.S.Seo P.S.Lav (%) 20
N*20	0.840	23.62	3.94	91.32	0.66		800.0 0 100.0
N40	0.425	22.95	3.83	95.14	4.56		
N*50	0.300	10.75	3.13	98.27	1.73		
Nº100	0.150	6.15	1.03	99.29	0.71	MODULO DE FINEZA	5.736
Nº200	0.075	4.18	0.70	99.99	0.01	Coef. Uniformidad	44.1
< N* 200	FONDO	0.06	0.01	100.00	0.00	Coef. Curveture	0.0

Mario Ramirez Dejo CARDRATORIO I MAN EJRL

CALLE MANUEL SEOANE N° 715 AND AYEQUE - CEL. 954853683 ario Ramirer Dejo E-Mail - mario 138 botmail.com

OSCUR LUZQUIÁOS ROCK INGENIERO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

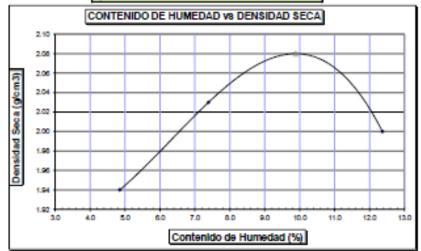
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOUCHANTE

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


UNICACION MATERIAL : TERRENO NATURAL

CALICATA : C13M1 FICKA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

					*
MOLDE Nº	:				
VOLUMEN	:	2050	cm*	-	pie*
METODO DE COMPACTACION	:	AASHTO 1	T - 180 D		
Peso Suelo Humedo + Molde	(g)	6912	7219	7445	7383
Peso de Moide	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	4182	4489	4895	4613
 Peso Volumétrico Húmedo 	(g)	2.030	2.180	2.290	2.250
∠ Recipiente №		287	312	310	321
Peso de Suelo Húmedo + Tara	(g)	52.68	52.99	59.57	52.88
Peso de Sueio Seco + Tara	(g)	51.19	50.89	58.47	48.87
Tara	(g)	20.91	22.49	25.08	16.61
 Peso de Agua 	(g)	1.47	2.10	3.10	3.99
Peso de Suelo Seco	(g)	30.28	28.40	31.41	32.28
 Contenido de agua 	(%)	4.85	7.39	9.87	12.37
 Peso Volumétrico Seco 	(plant)	1.94	2.03	2.08	2.00

Mázima Densidad Seca 9.09

CALLE MANUEL SEGANE Nº 7 15 THE ME AYEQUE - CEL. 954853683 -Mario Ramirez Dejo

OSCUR LUZQUIÁOS RODR INGENIERO CIVIL Reg. CIP. Nº 31338 125

E-Mail - marker 1880 otmail.com

LABORATORIO (MIN ELR.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA
DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
CISMI

CALICATA

					C.B.I	R.						
MOLDE Nº				70			85			- 20	i	
Nº DE GOLPES POR	CAPA			56			25			12	2	
CONDICION DE MUE	STRA		SIN MOJA	*	CLIADA	SIN MO.	IAR:	MOUNDA	33K M	DJAR	MOU	W)A
PERO MOLDE + RUELO	CMHOO	(2)	11,250	- 1	1,337	11,33	2	11,445	11,	90	11,3	91
PERO DEL MOLDRI		(2)	6,357		1,357	6,557	ř	6,557	6,5	25	6,5	25
PERO DEL RUBLO HUMA	00	(2)	4099		4900	4075		4000	45	73	471	id.
CURR ROYAMULO		(0)	210		2.143	216	h	2.143	21	43	2.1	eù.
DENEDAD HUMBDA		(pibn*)	2.29		2.32	2.23		2.28	2.5	13	2.2	М
CAPBULANT			244		266	295		323	21	ø	36	r
PERO CAPRULA + SUBJ	HUMBO	(g)	49.30		59.27	50.14	ti .	55.43	41.	30	66.7	79
PERO CAPRULA + SUBJ	8900	(2)	46.60		55.38	54.00	Ď.	51.25	29.	22	60.7	m
PERO DE AGUA CONTR	ECA.	(2)	2.78		3.89	3.48		4.18	2.5	14	6.0	ů.
PERO DE CAPRILIA		(2)	10.40	- 1	20.64	20.83	ı	17.39	17.	77	201	20
PERO DE BURLO RECO		(2)	28.14		14.74	23.60	h	23.00	21.	45	40.7	71
HUMBICAD		(%)	9.00%	1	1.20%	10.29	4	12.34%	9.9	1%	14.7	9%
DRAWDAD IRCA		$\overline{}$	2.08	-	2.09	2.00		2.03	11	M	1.9	6
				E	XPAN:	SION						
FRCHA HOR		EMPO	DWL	EXPAND	NON	DML	8.13	PANEICH	DWL	80	PANSO	•
Table 1	- "			88.			-		1			•

FRCHA	HORA	TRMPO	DIAL	EXPANSION		DML	EXPANSION		DMF	REPARTION				
					,				,			,		
				80	REGEST	24								
				, mu	PER COLUMN	-								

	PENETRACION													
PENETRACION	CARBA		MOLDS	Nº	70		MOLDS Nº 85				MOLDE Nº H			
palg.	RETANDAR	CARGA			N	CARGA		1000000	N.	CARGA		CONTRACTOR OF THE PERSON		
	(Bashvay)	Lesture	lie	Delpuly*	*	Lecture	lie	Designation of	,	Leolura	lie	Ballouty*		
0.020		17.90	210	70.00		13.10	153	51.00		7.70	90	30.00		
0.040		37.40	438	146.00		27.20	318	106.00		16:20	189	63.00		
0.000		54.60	639	213.00		29.70	405	155.00		23.80	279	90.00		
0.080		71.80	840	280.00		52.10	609	203.00		31.30	366	122.00		
0.100	1000	89.70	1050	350.00	35.00	65.10	762	254.00	25.40	29.00	450	152:00	15.20	
0.200	1500	140.40	1713	571.00		106:20	1242	414.00		63.60	744	248.00		
0.300		105.90	2175	725.00		134.90	1578	526.00		80.80	945	315.00		
0.400		215.40	2520	840.00		156.40	1830	610.00		93.60	1095	365.00		
0.500		224.40	2625	875.00		162:80	1905	635.00		97.40	1140	380.00		

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTELEL

OSCUR LIEDORÍOS RODRICUEZ PRECINERIO CIVIL Reg. CIP. N° 31338

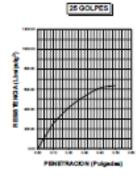
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

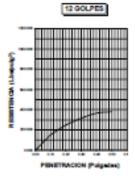
RUC. 20605369139

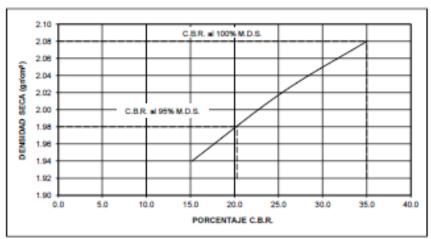
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

> MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C13M1 FECHA : 16.11.2021


DATOS DEL PROC	DATOS DEL PROCTOR									
Densided Milkima (gricm ^b)	2.08									
Humeded Optime (%)	9.89									

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)	35.00				
C.B.R. al 95% de M.D.S. (%)	20.30				

56 GOLPES **HOMELENCE**

CALLE MANUEL SEOANE Nº 7 THE MENT YEQUE - CEL. 954853683 E-Mail - marker 18 botmail.com Mario Ramirez Dejo

OSCAR LUZQUINOS ROOM

Reg. CIP. Nº 31338

127

CABORATORIO (MIN EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 14

Mario Ramirez Dejo SEMENTE GENERAL LABORATORIO I MAR ELRA EOANE N° 7 13 MAN MEAYEQUE - CEL. 954853683 -E-Mail - marky 1988 botmail.com

OSCAR LUZQUIÑOS RODRIGUE INGERNERIO CIVIL. Bras. CIP. N° 31338.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE :

KIMBERLY SARITA INCIO CHUNGA

PROYECTO

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UBICACION

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA

PECHA

C-14 16.11.2021

REGISTRO DE PERFORACIONES

				REGISTRO DE FERI GIOAGIGNES	
COLA		UNDEAD	SMBOLD	MATCHOL EXACEL TEXASIO	SCHOOL SC
	(100)	BURNING.	-	ETMITO	
	0.00				l I
Mar.		RELLEND	512942 S. SLEED	MATERIAL DE RELLENO NO CALIFICADO	
	0.20	recount	111111	and the second second	
	1.50	M.1		CLAMPICACION - AMBRITO: A - 1 - a (5) SRIVARI CON ARBNA DIS COLOR (BLANQUECINO), DE CONSISTENCIA MISDIA LL + N.P LP+ N.P % CONTENIDO DE HUMEDAD + 2.25 % % CONTENIDO DE SILA (8) + 0.19 % MUSIAN DERISACION SISCA + 2.11 galeid DPTIBO DE HUMEDAD + 9.04 % C.R.R 160% + 41 % C.R.R 160% + 22.4 %	DURANTE RL TIEMPO DE EXCRUACION NO SE DETECTO NIVEL PREATICO

CALLE MANUEL SEOANE Nº 7 12 MANUEL YEQUE - CEL. 954853683 -Mario Ramires Dejo DENENTE GENERAL LASORATORIO I MINISTRAL

OSCAR LECYDRIOS ROOMS. INGENACIO CIVIL. Reg. CIP. N.º 31338

129

E-Mall - marro rd8 ootmall.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C14 16.11.2021

HUMEDAD NATURAL					
CALICATA-MUESTRA	C14 - M1				
PROFUNDIDAD (m)	0.20 - 1.50				
Nº RECIPIENTE	337				
1 PESO SUELO HUMEDO + RECIPIENTE	55.58				
2 PESO SUELO SECO + RECIPIENTE	54.84				
3 PESO DEL AGUA	0.74				
4 PESO RECIPIENTE	22.51				
5 PESO SUELO SECO	32.33				
8 - PORCENTAJE DE HUMEDAD	2.29%				

DETERMINACION DE LA SAL					
CALICATA-MUESTRA	C14 - M1				
PROFUNDIDAD (m)	0.20 - 1.50				
Nº RECIPIENTE	100				
(1) PESO DEL TARRO	55.25				
(2) PESO TARRO + AGUA + SAL	60.51				
(3) PESO TARRO SECO + SAL	55.26				
(4) PESO SAL (3-1)	0.01				
(5) PESO AGUA (2-3)	5.25				
(8) PORCENTAJE DE SAL	0.19%				

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

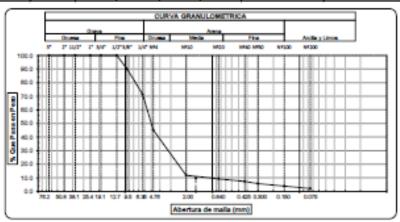
CALLE MANUEL SEOANE N° 787 MAN

OSCAR LECYDRIOS RODROS PIGENACIO CIVIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOUGHANTE: KIMBERLY SARITA INCIO CHUNGA PROVIECTO: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

югивремо: 0.20 mts. - 1.50 mts.

	* The LT-sense I						
ABERTU	RA MALLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPTION	DE LA MUESTRA
(249)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION	DE DI RESIDEN
3"	76.200					PESO TOTAL :	600.0 g.
2.1/2"	63.500					PESO LAVADO :	12.0 g.
2"	50.800						
11/2"	38.100					LIMITE LIQUIDO :	N.P
1"	25.400					LIMITE PLASTICO :	N.P
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)
3/6"	9.525	60.15	10.03	10.03	09.90	CLASF, SUCS :	QP
114"	6.350	111.15	18.53	28.55	71.45	DESCRIPCIÓN DEL SUE	LO: BUENO
Nº4	4.700	157.84	26.31	54.00	45.14	Grava pobremente gradu	ada con arena
NHO	2.000	199.95	33.33	88.18	11.02	Ensayo Malla N*200	P.S.Seo P.S.Lav (%) 200
N*20	0.840	15.42	2.57	90.75	9.25		600.0 13 97.9
N40	0.425	11.02	1.94	92.09	7.31		
N*50	0.300	9.15	1.53	94.21	5.79		
Nº100	0.150	11.24	1.87	96.09	3.91	MODULO DE FINEZA	5.554
Nº200	0.075	10.84	1.81	97.09	2.11	Coef. Uniformidad	******
< N* 200	FONDO	12.64	2.11	100.00	0.00	Coef. Curveture	0.0

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTELEL

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -E-Mail - marro 1982 botmail.com

OSCUR LUZQUINOS ROOM Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

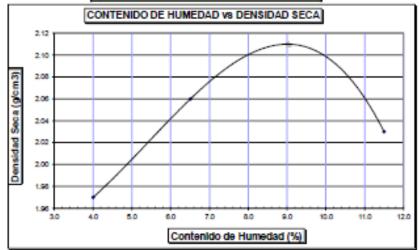
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOUCHART

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UNCACION


MATERIAL : TERRENO NATURAL CALICATA : C14M1

FICKA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº	:				
VOLUMEN	:	2050	cm ^a	-	ple*
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Moide	(g)	6953	7240	7485	7383
Peso de Moide	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4203	4490	4715	4633
 Peso Volumétrico Húmedo 	(g)	2.050	2.190	2.300	2.260
∠ Recipiente №		287	312	310	321
Peso de Suelo Húmedo + Tara	(g)	52.40	52.74	59.30	52.58
Peso de Suelo Seco + Tara	(g)	51.19	50.89	58.47	48.87
∠ Tara	(g)	20.91	22.49	25.08	16.61
 Peso de Agua 	(g)	1.21	1.85	2.83	3.71
 Peso de Suelo Seco 	(g)	30.28	28.40	31.41	32.26
 Contenido de agua 	(%)	4.00	6.51	9.01	11.50
 Peso Volumétrico Seco 	(glam)	1.97	2.08	2.11	2.03

Mázima Densidad Seca 2.11 9.04

CALLE MANUEL SEOANE Nº 7 THE MANUEL SECTION OF THE PROPERTY OF

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTELEL

E-Mail - marker 18 botmail.com

OSCAR LISTORIOS RODR MGENERO CHIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA ROVECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

REACEN

27.29

9.05%

(%)

AUCATA 18.11.2021 RCHA.

EBD DE BURLO BECO

CACHMUH

C.B.R. MOLDE Nº Nº DE GOLPES POR CAPA CONDICION DE MUESTRA SIN WOJAK SIN MOJAR SIN MOJAR 11,487 11,583 11,670 PERO MOLDE + BLELD HUMBDO 11,500 6,550 6,556 6,734 6,750 6,750 6,734 **MOTOR THE CREA** (g) PERO DEL RUBLO HUMBOS (3) 234 2.24 2.15 2.30 230 2.26 CAPBULANT 230 252 201 209 223 57.18 56.07 53.34 PERO CAPRULA + SUBLO SECO 44.90 53.66 52.96 49.55 37.50 59.07 PERO DE AGUA CONTRNIDA (2) 2.47 3.50 3.11 2.79 1.00 5.55

EXPANSION

22.98

9.43%

23.01

11.40%

20.6

9.13%

39.00

13.92%

23.89

10.33%

FECHA	HORA	THMPO	DWL	EXPANSIO	N	DIAL	EXPAND	HON:	DIAL	KEPANDO	N
-	-		-	-	1	1	-	- 1	1		
				NO.	RECEIST			\top			
					PERMIT	-					
								\top	\Box		Γ^{-}

				PEN	ETR/	CION							
PENETRACION	CARBA		MOLDE	Nº	56		MOLDS	N°	71		MOLDE	Nº	10
party.	RETANDAR	CARGA			N.	CARGA		000000		CARGA		OF REAL PROPERTY.	4
	(Respector)	Leolure	lin.	Delpuly*	*	Lecture	line.	Designation of	•	Leolure	lie.	Balanty.	
0.020		21.00	246	82.00		15.10	177	59.00		9.00	105	35.00	
0.040		43.80	513	171.00		21.80	372	124.00		19.00	222	74.00	
0.000		64.10	750	250.00		40.40	50	181.00		27.70	334	108.00	
0.000		84.10	984	228.00		61.00	714	238.00		36.40	426	142:00	
0.100	1000	105.10	1230	410.00	41.00	76.20	891	297.00	29.70	45.40	531	177.00	17.70
0.200	1500	171.30	2004	668.00		124.10	1450	484.00		74.10	867	289.00	
0.300		217.70	2547	849.00		157.70	1945	615.00		93.80	1098	366.00	
0.400		252.30	2952	984.00		182:80	2139	713.00		109.00	1275	425.00	
0.500		262.80	3075	1025.00		190.50	2229	743.00		113.60	1329	443.00	
					Γ								Γ^{-}

Mario Ramires Dejo

LABORATORIO (MIN ELR.L.

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -E-Mail - manord8

OSCAR LUZQUIÁOS ROORS Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

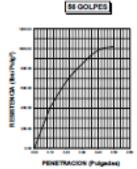
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

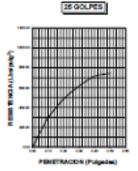
RUC. 20605369139

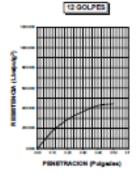
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

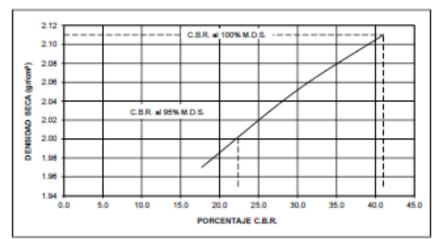
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C14M1 FECHA : 16.11.2021


DATOS DEL PROCTOR					
Denelded Mikrima (gricm ³)	2.11				
Humeded Optima (%)	9.04				

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)	41.00				
C.B.R. al 95% de M.D.S. (%)	22.40				

CALLE MANUEL SECANE Nº 7 12 MENT AYEQUE - CEL. 954853683

Mario Ramirez Dejo CABORATORIO I MIN ELRI. E-Mail - marker 18 0 otmail.com

OSCAR LUZQUINOS ROOM

134

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 15

CALLE MANUEL SEOANE N° 7
Mario Ramirer Dejo
DERENTE GENERAL
LASDRATORIO I MANUEL RIL

EOANE N° 7 MAN YEQUE - CEL. 954853683 — E-Mail - mark rgs obtmall.com

OSCAR LEZQUIROS RODRICUE INCENIERO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C-15 18.11.2021 CAUCATA PECHA

REGISTRO DE PERFORACIONES

COSA	1000	A000000	110000	RATUROL ECO DEL TERRENO	CESERVACIONES
COLLEGE	(min.)	MUNITED.		BITRATO	CENTRALOGES
	0.00				
	0.10	RELLEND	3350 255	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(1)	CLASPICACION - AASHTO: A - 1 - a (0) SRIVANI CON ARSINA DE COLOR R. ANQUECINO, DE CONSISTENCIA MEDIA LL + N.P L.P + N.P L.P + N.P R + COMENIDO DE HUMBOAD + 3.81 % % COMENIDO DE HUMBOAD + 3.81 % % COMENIDO DE HUMBOAD + 3.81 % % COMENIDO DE HUMBOAD + 3.81 % C.P. + 100% + 21 %	DURANTE RI. TIEMPO DE RIIDANACION NO SE DETECTO NIVEL FREATICO

Mario Ramires Dejo genente general LASORATORIO I MARIE LEL

CALLE MANUEL SEOANE N° 713 AND AYEQUE - CEL. 954853683 -

136

OSCAR LUZQUINOS RODR PROCEMBRO COVIL Reg. CIP. N. 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C15 CALICATA : 16.11.2021

HUMEDAD NATURAL					
CALICATA-MUESTRA	C15 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
Nº RECIPIENTE	29				
1 PESO SUELO HUMEDO + RECIPIENTE	61.58				
2 PESO SUELO SECO + RECIPIENTE	60.22				
3 PESO DEL AGUA	1.36				
4 PESO RECIPIENTE	24.51				
5 PESO SUELO SECO	35.71				
8 PORCENTAJE DE HUMEDAD	3.81%				

DETERMINACION DE LA SAL								
CALICATA-MUESTRA	C15 - M1							
PROFUNDIDAD (m)	0.10 - 1.50							
Nº RECIPIENTE	144							
(1) PESO DEL TARRO	37.84							
(2) PESO TARRO + AGUA + SAL	44.15							
(3) PESO TARRO SECO + SAL	37.85							
(4) PESO SAL (3-1)	0.01							
(5) PESO AGUA (2-3)	6.30							
(6) PORCENTAJE DE SAL	0.16%							

CALLE MANUEL SEOANE Nº 7 15 4 15 AYEQUE - CEL. 954853683 -

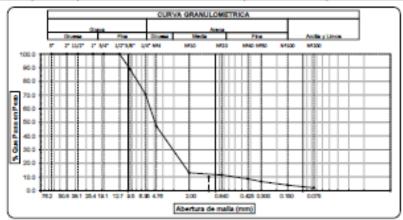
Mario Ramirez Dejo DENENTE GENERAL LABORATORIO I NAMELEL

E-Mail - marker 1880 otmail.com

OSCUR LUZQUINOS ROOM Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: KIMBERLY SARITA, INCIO CHUNGA PROVIECTO: DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
BECACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
REPURCIDAD : 0.10 mbs. - 1.50 mbs.

GALICATA : C15M1 FRICHA : 16.11.2021

ABERTUR	M MALLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPTION	N DE LA MUESTRA				
(P4)	(mm)	RETENDO	PARCIAL	ACUMULADO	PASA						
3"	76.200					PESO TOTAL :	600.0 g.				
2.1/2"	63.500					PESO LAVADO :	12.3 g.				
20	50.800										
11/2"	38.100					LIMITE LIQUIDO :	N.P				
1"	25.400					LIMITE PLASTICO :	N.P				
34"	19:050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD:	N.P				
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)				
36"	9.525	66.62	11.10	11.10	66.90	CLASF, SUCS :	QP				
114"	6.350	110.48	15.41	29.52	70.40	DESCRIPCIÓN DEL SUI	ELO: BUENO				
Nº4	4.760	158.75	23.13	52.64	47.30	Grava pobremente grad	duada con arena				
NHO	2.000	205.95	34.33	86.97	13.03	Ensayo Maila Nº200	P.9.Seo P.9.Lav (%) 20				
N*20	0.840	9.52	1.59	88.55	11.45		800.0 12 97.9				
N40	0.425	16.54	2.81	91.30	0.64						
N*50	0.300	11.75	1.96	93.32	6.66						
Nº100	0.150	15.84	2.64	95.96	4.04	MODULO DE FINEZA	5.494				
Nº200	0.075	11.94	1.99	97.95	2.05	Coef. Uniformidad	******				
< N* 200	FONDO	12.31	2.05	100.00	0.00	Coef. Curvature	0.0				

Mario Ramirez Dejo

OSCAR LUZQUIÁOS ROOR Reg. CIP. N° 31338

138

CALLE MANUEL SEOANE Nº 7 STANTON AYEQUE - CEL. 954853683 = E-Mail - marker 18 0 totmail.com

GENERITE GENERAL LABORATORIO I MINI ELEL

Set ORATORIO

LABORATORIO LINUS E.I.R.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICIANIE : KIMBERLY SARITA INCIO CHUNGA

PROTECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAYMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

BIBCACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATIBIAL : TERRENO NATURAL

CALICATA : 015M1 FECHA : 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

FROCTOR MOD	III ICAL	JU HA	7111 O 1	- 100 L	,
MOLDE Nº	:				
VOLUMEN	:	2050	cm ⁴	-	ple*
METODO DE COMPACTACION	:	AASHTO '	T - 180 D		
Peso Sueio Humedo + Moide	(g)	6973	7260	7488	7404
 Peso de Moide 	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4223	4510	4738	4854
 Peso Volumétrico Húmedo 	(g)	2.080	2.200	2.310	2.270
Recipiente №		63	88	88	97
Peso de Suelo Húmedo + Tara	(g)	47.80	48.09	54.57	47.80
Peso de Suelo Seco + Tara	(g)	48.87	48.57	52.15	44.55
Tara	(g)	18.75	20.33	22.90	14.45
 Peso de Agua 	(g)	0.93	1.52	2.42	3.25
 Peso de Suelo Seco 	(g)	28.12	28.24	29.25	30.10
 Contenido de agua 	(%)	3.31	5.79	8.27	10.80
 Peso Volumétrico Seco 	(plam)	1.99	2.08	2.13	2.05

Mázima Densidad Seca : 2.13 gr/cm²
Optimo Contenido de Humedad : 8.26 %

Mario Ramirez Dejo GENERIE GENERAL LABORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 7 PARTIE MEAYEQUE - CEL. 954853683 =

OSCAR LIZQUIROS RODRICA INCENAÇÃO CAVA. Reg. CIP. N.º 31,338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA
DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C15M1 16.11.2021

				C.B.	R.					
MOLDE Nº				66		81	92			
Nº DE GOLPES	POR CA	PA.		56		25		12		
CONDICIONID	E MUESTI	RA.	SH MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA		
PERO MOLDE + 1	PERO MOLDE + RUELD HUMBDO (g)			12,154	12,149	12,264	11,917	12,147		
PERO DEL MOLD	8	(2)	7,129	7,129	7,329	7,329	7,297	7,297		
PERO DEL RUBLO	OCHUMBOO	(2)	6942	5025	4820	4935	4620	4850		
VOLUMEN DEL 8	URLO	(2)	210	2.143	2.143	2143	2.143	2.143		
DENSIDAD HUM	CA.	(pitm²)	2.31	234	2.25	2.30	2.18	2.26		
CAPBULANT			240	240 262		291 219		363		
PERO CAPRILLA	+ SUBLO H	JMECO (g)	45.53	45.53 55.29		\$1.44	37.61	62:65		
PERO CAPRILLA	+ SUBLO 86	(g) CO	43.34	52.12	51.40	47.99	25.90	57.51		
PERO DE AGUA	COMPRISO	(2)	2.19	3.17	2.79	3.45	1.65	5.14		
PERO DE CAPIS.	LA	(2)	16.83	19.01	19.20	15.76	10.14	18.43		
PERO DE RURLO	8900	(2)	26.51	33.11	32.2	32.23	19.82	29.00		
CACIEMUH		(%)	0.20%	9.57%	8.90%	10.70%	8.22%	13.15%		
DENSIDAD SECA			2.13	2.14	2.07	2.08	1.99	2.00		
				EXPAN	SION					
FROMA HORA TEMPO		TEMPO	DWL	ROPARBION	DML	EXPANSION	DWL	REPAINSON		
	-				\vdash	nn. 1	_	nm. X		
		\vdash	_			$\overline{}$	\vdash	-		
	-	\vdash	NO REGISTRA							
	_	\rightarrow	$\overline{}$	_			-	-		

PENETRACION

PENETRACION	CARBA		MOLDS	Nº	**		MOLDS	Nº	*1		MOLDE	M*	R
paris.	RETANDAR	CARGA		****	¥	CARGA		ORRODO	N	CARGA		CRECCIO	4
	(Stationary)	Leolura	lie.	Delpois!	,	Lecture	lin.	Security.	,	Leolura	lie.	Ballydy	*
0.020		22:10	258	86.00		15.90	188	62:00		9.50	111	37.00	
0.040		45.90	537	179.00		23.30	390	130.00		20.00	234	78.00	
0.000		67.20	796	282.00		48.70	570	190.00		29.00	339	113.00	
0.080		88.20	1002	344.00		64.10	750	250.00		38.20	447	149.00	
0.100	1000	110.30	1290	430.00	43.00	80.00	936	312:00	31.20	47.70	558	186.00	18.6
0.200	1500	179.70	2100	701.00		130.50	1527	509.00		77.70	909	303.00	
0.300		228.20	2670	890.00		165.60	1938	646.00		98.70	1155	385.00	
0.400		264.60	3090	1002.00		192:10	2247	749.00		114.40	1338	446.00	
0.500		275.60	3225	1075.00		200.00	2340	780.00		119.20	1395	465.00	

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 77 AND AYEQUE - CEL. 954853683 —
Iario Ramirer Dejo E-Mall - mario 1982 botmall.com

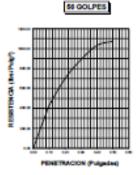
OSCAR LUZQUIÁOS RO

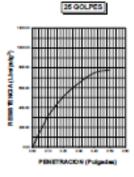
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

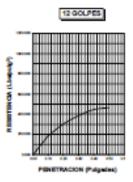
RUC. 20605369139

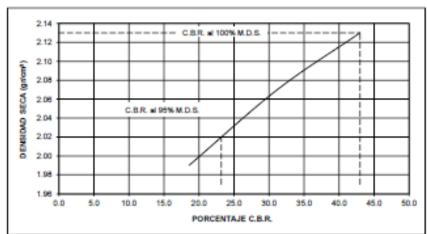
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA


MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C15M1


FECHA : 16.11.2021

DATOS DEL PROC	TOR	DATOS DEL C.B.	R
nelded Mikrima (gricm ³)	2.13	C.B.R. al 100% de M.D.S. (%)	43.00
meded Optima (%)	8.26	C.B.R. al 95% de M.D.S. (%)	23.20

E-Mail - marker 18 botmail.com

OSCAR LUZQUINOS RODA INSCRIEDO CIVIL

Mario Ramirez Dejo CABORATORIO I MIN ELRL

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALICATA 16

CALLE MANUEL SECANE Nº 7

Mario Ramirer Dejo SEMENTE GENERAL LABORATORIO I MARI EL R.L.

NUT. DE LE SERVICION DE LE SER E-Mail - marity rg8 potmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPUACIÓN VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

C-18 16.11.2021 CALICATA PECHA

REGISTRO DE PERFORACIONES

COMM	10.00	ADMINIST	SMECLO	RATURAL ECA DEL TEXABRO	CERTALICATION
	(min.)	MURITRA		BITRATO	
	0.00				
	0.10	RELLEND	03500000	MATERIAL DE RELLEND NO CALIFICADO	
	1.50	M.1	y	CLASFICACION - AASHTO: A - 3 (5) AMBINASI CON NILLA PLASTICICAD DE COLOR MARRION CLARO, DE CONSISTENCIA MEDIA LL = N.P LP + N.P LP + N.P R + COMERNEDO DE HLAMEDAD + 3.04 % % COMERNEDO DE SALSE + 0.17 % MAURIA DESARRO SECA + 1.91 galus DPTIMO DE HLAMEDAD + 10.19 % C.S.R 100% + 10.5 % C.S.R 100% + 6 %	DURANTE R. TISMPO DE RICHIACION NO SE DETECTO NVEL PREATICO

Mario Ramirez Dejo

CARDRATORIO I MAN ELRL

CALLE MANUEL SECANE Nº 7 THE MANUEL SECANE N° 7 THE MANUEL N° 7 THE MANUEL SECANE N° 7 THE E-Mail - marker 18 botmail.com

OSCAR LUZQUIÁOS RODR

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C16 : 16.11.2021

HUMEDAD NATURAL									
CALICATA-MUESTRA	C16 - M1								
PROFUNDIDAD (m)	0.10 - 1.50								
Nº RECIPIENTE	277								
1 PESO SUELO HUMEDO + RECIPIENTE	54.51								
2 PESO SUELO SECO + RECIPIENTE	53.57								
3 PESO DEL AGUA	0.94								
4 PESO RECIPIENTE	22.61								
5 PESO SUELO SECO	30.96								
6 PORCENTAJE DE HUMEDAD	3.04%								

DETERMINACION DE LA SAL									
CALICATA-MUESTRA	C16 - MI								
PROFUNDIDAD (m)	0.10 - 1.50								
Nº RECIPIENTE	71								
(1) PESO DEL TARRO	58.45								
(2) PESO TARRO + AGUA + SAL	64.51								
(3) PESO TARRO SECO + SAL	58.48								
(4) PESO SAL (3-1)	0.01								
(5) PESO AGUA (2-3)	6.05								
(6) PORCENTAJE DE SAL	0.17%								

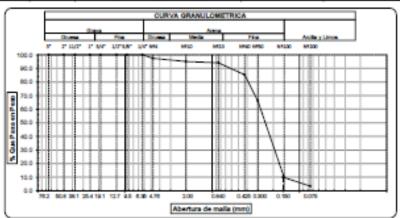
Mario Ramires Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 7 STATE OF THE PROPERTY OF THE PROPERTY

OSCAR LIZQUIÁOS RODRIGUEZ INGENIERO CIVIL Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: KIMBERLY SAIRTA INCIO CHUNGA PROVIECTO : DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROPUNDEAD : 0.10 mts. - 1.50 mts. CALICATA : C16M1 PRONA : 16.11.2021

ABERTUR	M MALLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPCION DE LA MUESTRA					
3	(mm)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA RESSINA					
4	76.200					PESO TOTAL : 200.0 g	1				
2 1/2"	63.500					PESO LAVADO : 6.9 (1				
70	50.800										
11/2"	38.100					LIMITE LIQUIDO : N.P					
1	25.400					LIMITE PLASTICO : N.P					
34"	19.050					INDICE PLASTICIDAD: N.P.					
1/2"	12.700					CLASF, AASHTO : A-3 (0)					
30"	9.525					CLASF, SUCS : SP					
114"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUELO : BUENO					
Nº4	4.760	5.27	2.64	2.64	87.57	Arena pobremente graduada					
NHO	2.000	4.01	2.31	4.94	95.00	Ensayo Maila N*200 P.S.Seo P.S.Lav (%) 20				
N*20	0.840	1.95	0.96	5.92	94.09	200.0 7	96.5				
N40	0.425	17.45	0.73	14.64	05.30						
N*50	0.300	30.54	19.27	33.91	90.00						
Nº100	0.150	112.62	58.31	90.22	9.78	MODULO DE FINEZA 1.523					
Nº200	0.075	12.64	6.32	96.54	3.46	Coef. Uniformided 0.0					
< N+ 200	FONDO	6.90	3.46	100.00	0.00	Coef. Curveture 0.0					

CALLE MANUEL SEOANE N° 7 STATE OF THE SECOND AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo DEMENTE GENERAL LABORATORIO I MARIE ELRIL

OSCUR LIZODRÍOS RODRICUEZ INCERNERO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

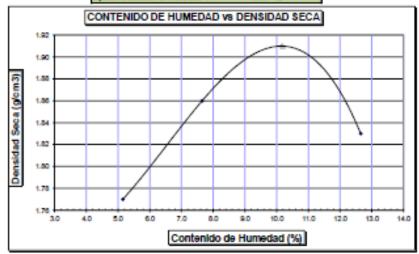
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C16M1 16.11.2021

PROCTOR MODIFICADO AASHTO T., 180 D.

FINOCION MOD	II IUAL	JU HA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 100 L	,
MOLDE Nº	:				
VOLUMEN	:	2050	CITI ⁴	-	pie*
METODO DE COMPACTACION	:	AASHTO 1	- 180 D		
Peso Suelo Humedo + Moide	(g)	6563	6850	7055	6973
 Peso de Moide 	(g)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	3813	4100	4305	4223
 Peso Volumétrico Húmedo 	(g)	1.880	2.000	2.100	2.080
Recipiente №		55	80	78	89
Peso de Suelo Húmedo + Tara	(g)	48.38	48.82	55.16	48.40
Peso de Suelo Seco + Tara	(g)	48.91	48.81	52.19	44.59
Tara	(g)	18.77	20.35	22.92	14.47
 Peso de Agua 	(8)	1.45	2.01	2.97	3.81
 Peso de Suelo Seco 	(g)	28.14	28.28	29.27	30.12
 Contenido de agua 	(%)	5.15	7.85	10.15	12.65
 Peso Volumétrico Seco 	(giom ³)	1.77	1.88	1.91	1.83

Mázima Densidad Seca Optimo Contenido de Humedad: 10.19 %

CALLE MANUEL SECANE Nº 78 MANTE AYEQUE - CEL. 954853683 -Mario Ramirez Dejo

OSCAR LUZQUIÁOS RODRO Reg. CIP. N° 31338

E-Mail - manorg8

CABORATORIO I MINI ELRI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

STRATICILIC

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAYMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

### C.B.R. 121 136 1467 **P DE GOLPES POR CAPA 56 28 28 12 **CONDICION DE MUESTRA **SIN MOLAR **MOLOR **SIN MOLAR **SIN MOLAR **SIN MOLAR **SIN MOLAR **SIN MOLAR **MOLOR **SIN MOLAR **SI	FECHA		C16M1 16.11.2021													
### DE GOLPES POR CAPA ***SONDICION DE MUESTRA ***SIN MOLAR ***SIN MO						(C.B.F	₹.								
DONDROCK DE MUESTRA SIN MICHAE SIN MOLAR MOLADA SIN	MOLDE Nº				,	21			1	136			14	er .		
PRIC MOLDE + REALD HAMBOO (2) 10,982 11,059 11,056 11,161 10,020 11,000 (6,029 6,029	Nº DE GOLPE	S POR CA	PA.	56				25		25			12			
### DEL MOLDH (2) 0,471 0,471 0,671 0,671 0,629 0,639 ### DEL MOLDH MARCO (2) 4511 4588 4385 4460 4181 4389 ### DEL MOLDH MARCO (3) 4511 4588 4385 4460 4181 4389 ### DEL MOLDH MARCO (3) 2,140	CONDICIONE	E MUESTI	RA	SH M	MAR	MOJA	DA.	33K M	OJAR	MOL	ADA	33K M	DJAR	MOJ	ADA	
### DEL RURLO HAMEDO (g) 4511 4588 4385 4490 4181 4389 #### DEL RURLO (g) 2.149 2.149 2.149 2.149 2.149 2.149 ####################################	#80 MOLDE+	SUBLO HUN	(g) 000	10,9	62	11,0	59	11)	056	11,	101	10,	820	11)	028	
CLIMBINDE, BURLO 01 2.140 2.14	ESC DEL MOLI	DE	(2)	0,4	74	0,40	H	0,6	171	0,0	171	0,0	129	6,6	29	
### STANSION PROCESTRA 190 214 2.05 2.10 1.65 2.05	ERO DEL RUE.	O HUMBOO	(2)	- 61	11	450	10	40	85	44	90	41	81	43	89	
PRICIANT 296 217 346 274 208 418 PRICIANTELIA RUBLO HARROO (g) 50.10 60.01 58.67 56.17 42.05 67.55 PRICIANTELIA RUBLO RICCO (g) 47.30 55.98 55.96 51.65 28.82 61.37 PRICIDIR RUBLO RICCO (g) 29.0 40.0 3.61 432 2.20 6.18 PRICIDIR RUBLO RUBLO (g) 18.76 20.94 21.13 17.69 18.07 20.36 PRICIDIR RUBLO RUBLO (g) 20.44 26.54 34.13 34.16 21.15 41.01 PRICIA 10.20% 11.50% 10.56% 12.65% 10.25% 15.07% EXPANSION EXPANSION FICHA HORA TEMPO DIAL RUPLANDON DIAL RUPLANDON DIAL RUPLANDON	OLUMEN DR. 1	RRO														
### CAPRILA + RURLO HARROO (g) 50.10 60.01 58.87 56.17 42.05 67.55 #### CAPRILA + RURLO MRCO (g) 47.20 55.98 55.26 51.85 39.82 61.37 #### CAPRILA + RURLO ROMANICA (g) 2.90 4.00 3.61 4.32 2.23 6.16 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 20.94 21.13 17.69 16.67 20.36 #### CAPRILA (g) 16.76 #### CAPRILA (g) 16.76 #### CAPRILA (g) 16.76 ### CAPRILA	DENSIDAD H.M.	HOA	(pibm*)			_		_		-		_		2.05		
### CAPABLA + MURLO #### A 120	CAPBLLAN			295		317		346		274		200		418		
# # PROPERTY 19 19 19 19 19 19 19 1	MESO CAPSULA	EBO CAPBULA + SUBLO HUMBOO (g)					60.01		58.87		50.17		42.05		55	
###DDR CAPRILA (g) 18.76 20.94 21.13 17.69 18.07 20.36 ###DDR RIPLD ##DD (g) 28.44 25.54 34.13 34.16 21.15 41.01 ###DDR RIPLD ##DD (%) 10.20% 11.50% 10.56% 10.56% 10.25% 15.07% ###BDRD ##DA 1.81 1.82 1.85 1.86 1.77 1.76 EXPANSION FECHA HORA TEMPO DIAL REPARKEDY DIAL REPARKEDY NO REGISTRA	MERO CAPRILLA + RUBLO RECO (g)		RCD (g)	47.3			id	55.26		51.85		39.82				
### 25.04 34.13 34.16 21.75 41.01 4.860AD (N) 10.20% 11.50% 10.56% 12.60% 10.25% 15.07% 15.07% 10.56% 12.60% 10.25% 15.07% 15.07% 10.56% 10.60% 10.25% 15.07% 10.56% 10.60% 10.25% 15.07% 10.56% 10.60% 10.25% 15.07% 10.56% 10.60% 10.25% 15.07% 10.56% 10.56% 10.25% 15.07% 10.56% 10.25% 10.25% 15.07% 10.25	PERO DE ASUA CONTENIDA (g)															
### 10.20% 10.20% 10.50% 10.50% 10.50% 10.50% 10.50% 15.07										_						
181 182 1.85 1.86 1.77 1.78		9800	_					_		_						
EXPANSION FICHA HORA TEMPO DIAL EXPANSION DIAL EXPANSION DIAL EXPANSION NO ROGESTRA	LIMBOAD		(%)					_								
PECHA HORA TEMPO DIAL BEPANSION DIAL	SHAREAC RIC	A		1.9	4	18	2	1.	85	1.	.00	1.	77	1.3	7th	
PECHA HORA TEMPO DIAL BEPANSION DIAL						EXI	PANS	ION								
NO REGISTRA	PROVA	HORA	TEMPO	DIAL				_		KIPANIK	28	DWL		EPANBO	н	
							•	_			•	_		-	•	
		-								_	-	_			┺	
PENETRACION		_		-		NO	REGIST	TRA -		_	\vdash		_		⊢	
PENETRACION																
PENETRACION									\bot						$ldsymbol{ldsymbol{L}}$	
DESCRIPTION ASSAULT HAVE UP 121 MAY PE UP 122 MAY PE UP 127							TR/	CION								

PENETRACION	CARBA		MOLDR	Nº	121		MOLDR	N°	136		MOLDE	Nº	147
puly.	BRITANDAR	CARGA	-	-	4	CARGA		000000	*	CARGA	0	CORRECTO	1
	(Stationary)	Leolura	-	Delpoly	,	Lecture	lie.	Section 1	,	Leolura	lie	Ballyulg	•
0.020		5.40	63	21.00		3.80	Ş	15.00		2.30	27	9.00	
0.040		11.30	132	44.00		8.20	90	22.00		4.90	57	18:00	
0.060		16.40	182	64.00		11.80	138	46.00		6.90	81	27.00	
0.080		21.50	252	84.00		15.60	183	61.00		9.20	100	36.00	
0.100	1000	26.90	315	105.00	10.50	19.50	228	76.00	7.60	11.50	135	45.00	¥
0.200	1500	43.80	513	171.00		21.00	372	124.00		18.70	219	73.00	
0.300		55.60	651	217.00		40.30	401	157.00		23.80	279	93.00	
0.400		64.60	750	252.00		40.70	540	182:00		27.70	224	108.00	
0.500		67.40	789	263.00		48.70	570	190.00		29.00	339	113.00	

CALLE MANUEL SEOANE Nº 7 PARMENTE AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo SEMENTE GENERAL LABORATORIO I MINISTRAL

E-Mail - marro rd8

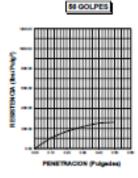
OSCUR LUZQUIÁOS RODR

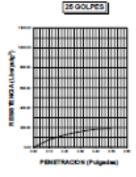
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

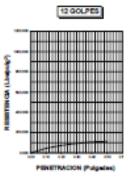
RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

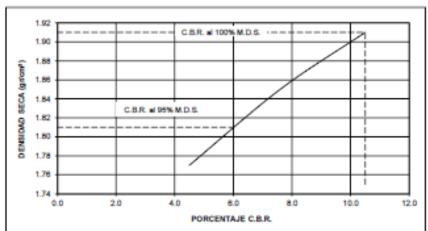
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA


MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C16M1 FECHA : 16.11.2021


DATOS DEL PROCTOR						
Deneidad Máxima (gricm ³)	1.91					
Humeded Optima (%)	10.19					

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%)	10.50						
C.B.R. al 95% de M.D.S. (%)	6.00						

CALLE MANUEL SEOANE Nº 7 THE MANUEL - CEL. 954853683 -

OSCAR LUZQUIÁOS ROOM

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTELEL

E-Mail - marity rg8 of otmail.com

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD – INDECOPI

RUC. 20605369139

CALICATA 17

Mario Raminer Dejo
Senente central
Laboratorio Immiesaria

E-Mail - marker 18 months of Education

THE STATE OF THE S

Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE : KIMBERLY SARITA INCIO CHUNGA

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION PROYECTO

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE C-17

CALICATA 18.11.2021

REGISTRO DE PERFORACIONES

-			81 A SOLE	RAYUROL ECK DRI, TERRENO	CERTAINANCE
COURT	(min.)	MURITAL MURITAL		MITMITO	CESENTICIONES
		-			
	0.00				
		RELLENO	CONCLUME.	MATERIAL DE RELLENO NO CALIFICADO	
			IIIIII		
	1.50	M.1		CLASFICACION - AASHRIO: A - 1 - a (D) GRANAS CON ARENA DE COLOR RLANGLEONIO, DE CONSISTENCIA MEDIA LL + N.P LP + N.P LP + N.P % COMISINDO DE HUMEDAD + 5.34 % % COMISINDO DE HUMEDAD + 5.34 % % COMISINDO DE HUMEDAD + 2.06 gland OPTIMO DE HUMEDAD + 2.06 gland OPTIMO DE HUMEDAD + 3.06 % C.R.R 100% + 30.5 % C.R.R 100% + 30.2 %	DURANCE R. TIEMPO DE EXCRUACION NO SE DETECTO NIVEL FREATICO

Mario Ramirez Dejo CARDRATORIO I MIN EJRL

CALLE MANUEL SECANE Nº 7 MANTENDAYEQUE - CEL. 954853683 -E-Mall - marker 18 botmall.com

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C17 CALICATA : 16.11.2021

HUMEDAD NATURAL							
CALICATA-MUESTRA	C17 - M1						
PROFUNDIDAD (m)	0.10 - 1.50						
Nº RECIPIENTE	119						
1 PESO SUELO HUMEDO + RECIPIENTE	62.32						
2 PESO SUELO SECO + RECIPIENTE	60.29						
3 PESO DEL AGUA	2.03						
4 PESO RECIPIENTE	21.53						
5 PESO SUELO SECO	38.76						
8 PORCENTAJE DE HUMEDAD	5.24%						

DETERMINACION DE LA SAL							
CALICATA-MUESTRA	C17 - M1						
PROFUNDIDAD (m)	0.10 - 1.50						
Nº RECIPIENTE	25						
(1) PESO DEL TARRO	14.95						
(2) PESO TARRO + AGUA + SAL	20.15						
(3) PESO TARRO SECO + SAL	14.96						
(4) PESO SAL (3-1)	0.01						
5) PESO AGUA (2 - 3)	5.19						
(6) PORCENTAJE DE SAL	0.19%						

CALLE MANUEL SEOANE Nº 7 15 4 16 16 16 AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

E-Mall - marro rd8 potmall.com

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338

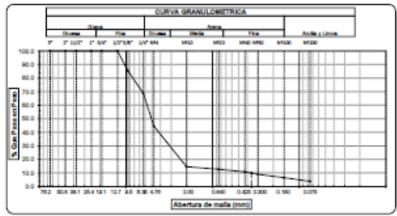
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)


SOLICITAMES: KIMBERLY SAJRITA INCIO CHUNGA

DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE INCACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE INCACIÓN : 0.10 mfs. - 1.50 mfs.

: C17M1 - 16.11.2021

ABERTUR	M MALLA	PESO	% RETENDO % RETENDO		% QUE	DESCRIPCION DE LA MUESTRA			
(PM)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPTION OF STREET			
3"	76.200					PESO TOTAL :	600.0 g.		
2 1/2"	63.500					PESO LAVADO :	23.2 g.		
2"	50.800								
11/2"	38.100					LIMITE LIQUIDO :	N.P		
1"	25.400					LIMITE PLASTICO :	N.P		
34"	19.050	0.00	0.00	0.00	100.00	NOICE PLASTICIDAD:	N.P		
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)		
240.	9.525	67.85	14.04	14.64	05.30	CLASF, SUCS :	QP.		
1/4"	6.350	99.59	16.60	31.24	66.76	DESCRIPCIÓN DEL SUE	LO: BUENO		
Nº4	4.760	145.52	24.25	55.49	44.51	Grava pobremente grad	uada con arena		
NHO	2.000	178.84	29.01	85.30	14.70	Ensayo Maila N*200	P.S.Seo P.S.Lav (%) 200		
N*20	0.840	11.01	1.94	87.24	12.77		800.0 23 96.1		
N40	0.405	11.74	1.96	89.19	10.01				
N*50	0.300	10.45	1.74	90.93	9.07				
Nº100	0.150	14.05	2.48	93.41	6.59	MODULO DE FINEZA	5.474		
M*200	0.075	10.38	2.73	96.14	3.86	Coef. Uniformidad	******		
< N* 200	PONDO	23.17	3.56	100.00	0.00	Coef. Curvature	0.0		

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MARIELEL

CALLE MANUEL SEOANE Nº 7 15 ANTON AYEQUE - CEL. 954853683 -E-Mall - marro rd8 ootmall.com

152

OSCAR LISTORIOS RODR PRESIDERO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

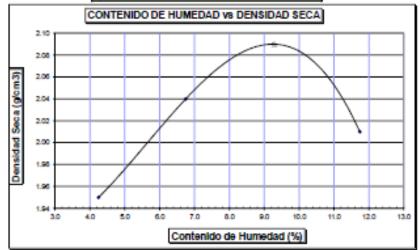
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOUCHART

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROFECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C17M1 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

FROCTOR MOD	II IUAL	JU HA	<u> </u>	- 100 L	,
MOLDE Nº	:				
VOLUMEN	:	2050	CHI ⁴	-	pie*
METODO DE COMPACTACION	:	AASHTO '	T - 180 D		
Peso Suelo Humedo + Molde	(8)	6912	7219	7424	7383
 Peso de Moide 	(8)	2750	2750	2750	2750
 Peso Suelo Húmedo Compactado 	(g)	4162	4489	4874	4813
 Peso Volumétrico Húmedo 	(g)	2.030	2.180	2.280	2.250
Recipiente №		288	313	311	322
Peso de Suelo Húmedo + Tara	(g)	51.68	51.98	58.54	51.81
Peso de Sueio Seco + Tara	(g)	50.39	50.09	55.67	48.07
∠ Tara	(8)	20.51	22.09	24.68	16.21
 Peso de Agua 	(g)	1.27	1.89	2.87	3.74
 Peso de Sueio Seco 	(g)	29.88	28.00	31.01	31.88
 Contenido de agua 	(%)	4.25	6.75	9.26	11.74
 Peso Volumétrico Seco 	(glom ³)	1.95	2.04	2.09	2.01

Mázima Densidad Seca 9.29

CALLE MANUEL SECANE Nº 7 MAN AYEQUE - CEL. 954853683 -

E-Mail - marker 18 botmail.com

OSCAR LUZQUIÁOS ROOM MIGENACINO CIVIL

153

Mario Ramirez Dejo CARDRATORIO I MAN ELRI.

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

LICITANTE

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CAUCATA :	C17M1							
PRCHA :	16.11.2021							
			C.B.	R.				
MOLDE Nº			84	1	10	11	10	
Nº DE GOLPES POR CAL	PA.		56		25	12		
CONDICION DE MUESTI	N.	8N MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PERO MOLDE + BUELD HUN	800 (g)	11,180	11,263	11,257	11,369	11,022	11,249	
PERO DEL MOLDE	(2)	6,265	6,265	6,485	6,405	6,453	6,453	
PERO DEL RUELO HUMBDO	(2)	495	4978	4772	4004	4509	4798	
VOLUMEN DR. RURLO	(2)	2.143	2.140	2.143	2.143	2143	2.143	
ACHINA CACISANO	(gibn ^a)	2.28	232	2.23	2.28	2.13	2.24	
CAPBULANT		258	200	309	237	351	381	
PERO CAPRULA + SUBLO HI	MECO (g)	47.90	57.80	50.08	53.95	29.97	65.26	
PERO CAPRULA + SUBLO RE	(g) (co	45.40	54.18	53.40	50.05	38.02	59.57	
PERO DE AGUA CONFINIDA	(2)	2.56	3.62	3.22	3.90	1.95	5.69	
PERO DE CAPRILIA	(2)	17.00	20.04	20.23	16.79	17.17	19.40	
PERO DE RUELO RECO	(2)	27.54	34.14	23.23 23.26		20.85	40.11	
CACHAUH	(%)	9.30%	10.00%	9.09%	11.73%	9.35%	14.19%	
DBNBDAD BBDA		2.09	210	2.03	2.04	1.95	1.90	
			EXPAN	SION				
FROMA HORA	TEMPO	DWL	EXPANSION	DML.	EXPANSION	DIAL	REPAINSON.	
Patrick Politics			BB 1		nn. 1			
			NO DECIS	704				

PENETRACION 17.90 70.0 13.10 51.00 7.70 30.0 37.40 146.00 27.20 318 106.00 16:20 63.0 54.60 213.00 29.70 405 155.00 23.80 93.0 0.080 71.80 280.00 52.10 203.00 31.30 122.0 89.70 350.00 65.10 254.00 39.00 450 150:00 0.200 1500 140.40 171 571.00 106:20 1242 414.00 63.60 74 248.0 0.300 185.90 2170 725.00 134.90 1578 526.00 80.80 945 315.00 0.400 215.40 2500 840.00 156.40 1030 610.00 90.60 1095 365.0 0.500 224.40 875.00 162.80 635.00 97.40 1140

Mario Ramires Dejo CARDRATORIO I MAR EJRL

CALLE MANUEL SEOANE N° 713 MAN

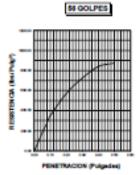
OSCAR LEZYDRÍOS RODRIGUEZ RIGERADRO CRIVA RIGE, CIP. N.º 31338

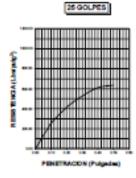
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION № 031616-2019/DSD – INDECOPI

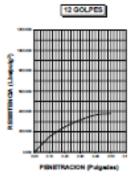
RUC. 20605369139

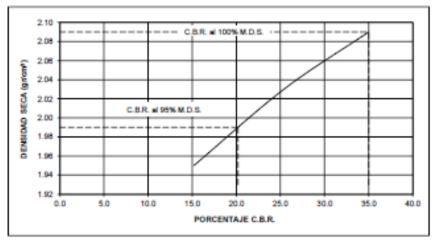
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA


MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


UBICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C17M1 PECHA : 16.11.2021


DATOS DEL PROC	TOR
Denelded Mikrima (gricm ³)	2.09
Humeded Optima (%)	9.29

DATOS DEL C.B	P.
C.B.R. al 100% de M.D.S. (%)	35.00
C.B.R. al 95% de M.D.S. (%)	20.20

Mario Ramirez Dejo GENENTE GENENAL LABORATORIO I MINI ELRI.

CALLE MANUEL SEOANE N° 715 MAN

OSCAR LUZQUIROS RODROS. INGENIERO CIVIL. Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD – INDECOPI

RUC. 20605369139

CALICATA 18

CALLE MANUEL SECANE N° 70

Mario Ramirer Dejo
DERENTE GENERAL
LABORATORIO (MANUEL R.L.

OSCAR LIZQUINOS RODRIS INGERNERIO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

C-18 18.11.2021 CALICATA **FECHA**

REGISTRO DE PERFORACIONES

CONA	MAG	ALC: NO.	1125000	RATURAL ECA DEL TEXRENO	CERTAINS
	(min.)	BURNTON.		MITRATO	
	0.00				
	0.10	RELLEND	325025E	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	•	CLASFICACION - AASHTO: A - 2 - 4 (5) AMBINISI LIMOSIGI DE COLOR R. ANGUECINO, DE COMBISTENCIA MEDIA LL + 1825 LP + 17.41	DURANTE RI. TIEMPO DE SILDIVIACION NO SE DETECTO NVEL FREATICO

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE Nº 7 CHANGE AYEQUE - CEL. 954853683 -E-Mall - marro rd8 potmall.com

OSCAR LUZQUINOS ROOR

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C18 16.11.2021

HUMEDAD NATURAL	
CALICATA-MUESTRA	C18 - M1
PROFUNDIDAD (m)	0.10 - 1.50
Nº RECIPIENTE	62
1 PESO SUELO HUMEDO + RECIPIENTE	88.51
2 PESO SUELO SECO + RECIPIENTE	86.57
3 PESO DEL AGUA	1.94
4 PESO RECIPIENTE	21.50
5 PESO SUELO SECO	65.07
8 PORCENTAJE DE HUMEDAD	2.98%

DETERMINACION DE	LA SAL
CALICATA-MUESTRA	C18 - M1
PROFUNDIDAD (m)	0.10 - 1.50
Nº RECIPIENTE	78
(1) PESO DEL TARRO	55.51
(2) PESO TARRO + AGUA + SAL	60.66
(3) PESO TARRO SECO + SAL	55.52
(4) PESO SAL (3-1)	0.01
5) PESO AGUA (2 - 3)	5.14
(6) PORCENTAJE DE SAL	0.20%

Mario Ramirez Dejo penente general LASORATORIO I MARIELEL

CALLE MANUEL SEOANE N° 7 STATE OF THE PAYEOUE - CEL. 954853683 —

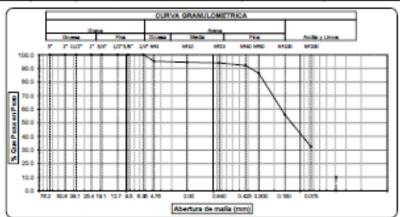
Tario Ramirer Dejo E-Mail - mario ras potential.com (SCA) LICYGROS (SCA) LI

OSCUR LECYDRIOS RODRECUEZ REGE CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO


(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: RIMEERLY SAIRTA INCIO CHUNGA PROVIECTO : DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
IBICACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PUNDEAD: 0.10 mts. - 1.50 mts.

CALIDATA : C18M1 FECHA : 16.11.2021

ABERTU	M MILLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPCIO	N DE LA MUESTRA
3	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION	THE SA RESIDEN
3"	76.200					PESO TOTAL :	200.0 g.
2.1/2"	63.500					PESO LAVADO :	64.7 g.
2	50.800						
11/2"	38.100					LIMITE LIQUIDO :	18.95 %
1"	25.400					LIMITE PLASTICO :	17.44 %
34"	19:050					INDICE PLASTICIDAD:	1.51 %
1/2"	12.700					CLASF, AASHTO :	A-2-6 (0)
30"	9.525					CLASF, SUCS :	SM
114"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: BUENO
Nº4	4.760	9.50	4.75	4.75	95.25	Arena Emosa	
NHO	2.000	1.49	0.75	5.50	94.51	Ensayo Maila Nº200	P.S.Seo P.S.Lav (%) 20
N*20	0.840	1.20	0.80	6.10	93.91		200.0 65 67.7
N40	0.425	3.46	1.74	7.04	92.17		
N420	0.300	11.46	5.73	13.57	06.44		
Nº100	0.150	61.26	30.63	44.20	55.01	MODULO DE FINEZA	0.019
MP200	0.075	46.92	23.46	67.06	32.35	Coef. Uniformidad	0.0
< N* 200	FONDO	64.09	30.36	100.00	0.00	Coef. Curvature	0.0

CALLE MANUEL SEOANE N° 713 AND AYEQUE - CEL. 954853683 -Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTERL

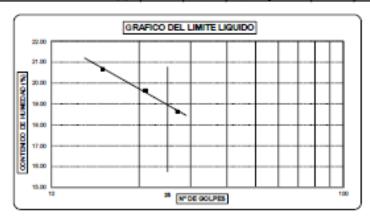
OSCAR LECTORIOS PROPRIO PIGENACINO CIVIL Reg. CIP. N.º 31338

ROYECTO

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

LIMITES DE ATTERBERG


(ASTM - D423 / N.T.P. 339.129)

EMBERLY SARITA INCIO CHUNGA
DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA
MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION
VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE
0.10 mbx. - 1.50 mbx.

UBICACIÓN PROFUNDIDAD

CALICATA C18M1 16.11.2021

DATOS DE ENSAYO)	L	IMPLE FIGURE	0	LIN	ITTE PLASTI	00
N° de golpes		21	27	15	i		
1. Recipiente N*		356	388	324	301		
2. Peso suelo húmedo + tars	(gr)	32.05	30.97	31.54	39.85	-	
3. Peso suelo seco + Tars	(pr)	29.83	28.98	29.31	36.54	-	
4. Peso de la Tara	(pr)	18.42	18.23	18.57	17.56	-	
5. Peso del agua	(pr)	2.22	2.01	2.23	3.31		
5. Peso del suelo seco	(pr)	11.41	10.73	10.74	18.98		
7. Contenido de humeded	(%)	19.46	18.73	20.76	17.44		

LIMITE DE CONSISTENCIA DE	LA MUESTRA
Limite Liquido	18.95
Limite Plástico	17.44
Índice de Plasticidad	1.51

MUESTRA: 01	M
Clasificación SUCS	SM
Clasificación AASHTO	A-3-4 (0)

Mario Ramirez Dejo

CALLE MANUEL SEOANE Nº 7 THE MANUEL SEOANE N° E-Mail - marker 1880 otmail.com

OSCAR LUZQUIÁOS RODR Reg. CIP. N° 31338

160

CARDRATORIO I MAR ELRI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

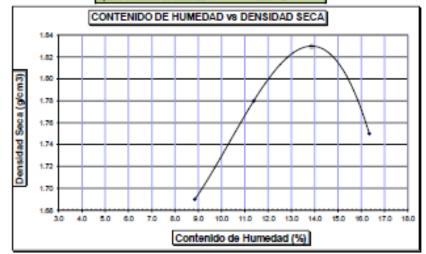
RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C18M1 16.11.2021

PROCTOR MODIFICADO AASHTO T., 180 D.

FINOCION MOD	III ICAL	JU AA	<u> </u>	- 100 L	
MOLDE Nº	:				
VOLUMEN	:	2050	cm ⁴	-	ple*
METODO DE COMPACTACION	:	AASHTO	T - 180 D		
Peso Suelo Humedo + Moide	(20)	6522	6809	7014	6932
 Peso de Moide 	(g)	2750	2750	2750	2750
Peso Sueio Húmedo Compactado	(g)	3772	4059	4284	4182
 Peso Volumétrico Húmedo 	(g)	1.840	1.980	2.080	2.040
Recipiente №		41	66	84	75
Peso de Suelo Húmedo + Tara	(g)	51.28	51.50	58.17	51.48
Peso de Suelo Seco + Tara	(g)	48.71	48.41	53.99	48.39
∠ Tara	(g)	19.67	21.25	23.82	15.37
 Peso de Agua 	(g)	2.57	3.09	4.18	5.07
 Peso de Suelo Seco 	(g)	29.04	27.16	30.17	31.02
 Contenido de agua 	(%)	8.85	11.38	13.85	16.34
 Peso Volumétrico Seco 	(plant)	1.69	1.78	1.83	1.75

Mázima Densidad Seca Optimo Contenido de Humedad: 13.09 %

CALLE MANUEL SECANE Nº 7 THE MANUEL SECANE N° 7 THE MANUEL N° 7 THE MANUEL SECANE N° 7 THE

Mario Ramirez Dejo CARDRATORIO I MAN ELRI.

OSCAR LUZQUIÁOS RODRO Reg. CIP. N° 31338 161

E-Mail - manorg8@ootmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

PROTECTO		DISCHARGE DE		100	11100010		-			-				
		MEJORAR									CION			
URICACION		VILLA EL S DISTRITO									RAVEO	HE.		
CALICATA		C18M1	REGUE,	FINAN	INCOA C		TO, DE	PARTIA	ORE PET) LAGE	SATE U	JE.		
PRCHA		18.11.2021												
BC PA		19.11.2021			_	C.B.F	_							
MOLDE Nº				_	56	G.D.F							0	
Nº DE GOLPES			_		96		_		5		_		9	
CONDICIOND			SH M	_	MON	ana.	2019	_	MOJ	ADA.	2014	RALO	MOJ	ADA
PERO MOLDE + I			11.0		11.0		11,		11.1		-	802	11.0	
PERO DEL MOLD		(0)	6.5		0.5		6.7		6.7			105	6.7	
PERO DEL RUELO			440	_	454		40	_	44			27	43	
VOLUMEN DEL 8		(0)	2.14		2.1		2.1		2.5		_	40	2.1	
DRINKENO HUMI		(pkn²)	2.0		21		2.0		21		_	93	2.0	
CAPBLLANT			24		26		26		31		_	33	36	
PERO CAPILLA	+SUBLOH	UMEDO (g)	59.0		69.3		98.		65.		-	37	77.	
PERO CAPILLA			54.0	50	63.3	30	62	66	59.	25	47	22	68.	77
PERO DE AGUA O			4.4	0	5.0	10	5.4	eri	6.1	19	2.	55		4
PERO DE CAPILI	LA.	(2)	22.4	46	241	64	24	(t)	21.	39	21	37	24	06
PERO DE BURLO	8600	(2)	32.1	14	363	74	27.	63	27.	00	25	45	44	71
HUMBOAD		(%)	13.8	0%	15.1	1%	14.3	0%	10.3	44	13.1	95%	10.7	9%
DENSIDAD INCA	1		1.8	á	1.0	м	1.3	77	13	78	1.	69	1.3	70
					EXI	PANS	SION							
FRCHA	HORA	THMPO	DIAL		REPARED	N	DIAL		TPANELO	4	DWL		EPA NEO	н
-					-	*	\vdash	_		*		_	-	*
														_
			_		NO	REGIST	RA		\mathbf{L}		_	<u> </u>		_
	_		_	_		_	_		_			<u> </u>		_
				_										_
					PEN	ETR/	CION							
PENETRA	CON	CARBA		MOLDE		44		MOLDE		*1		MOLDE		82
paly		(Belling)	CARGA Leitura	De.	Enjug-		CARGA	_	Designation of		Leibra	_	Selector's	
0.020		(marging)	5.60	90	22.00	_	4.10	48	16.00	_	2.60	30	10.00	_
0.040			11.80	130	40.00		0.50	99	23.00		5.10	60	20.00	\vdash
0.060			17.20	201	67.00		12.60	147	49.00		7.40	87	29.00	\vdash
														\vdash
0.080		4000	22:60	264	88.00	11.00	16.40	190	64.00	8.00	9.70	114	38.00	4.00
0.100		1000	28.20	200	110.00	11.00	20.50	240	80.00	8.00	12:30	144	48.00	4.00
0.200		1500	45.90	537	179.00	—	23.30	390	130.00	_	20.00	234	78.00	\vdash
0.300			58.50	684	228.00		42.60	490	166.00		25.40	297	99.00	⊢
0.400			67.70	792	264.00	_	49.20	576	192:00		29.50	345	115.00	\vdash
0.500			20.60	0.04	500K (NO		404 040	4000	2000-00	ı	90.00	9400	400.00	

CALLE MANUEL SEOANE N° 78 AND AYEQUE - CEL. 954853683 -

162

OSCUR LUZQUIOS RODROJEZ RECENERO COM. Reg. CIP. N.º 31338

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRE

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

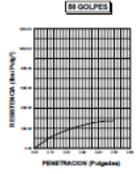
RESOLUCION Nº 031616-2019/DSD - INDECOPI

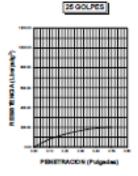
RUC. 20605369139

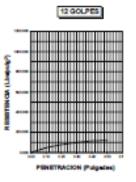
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

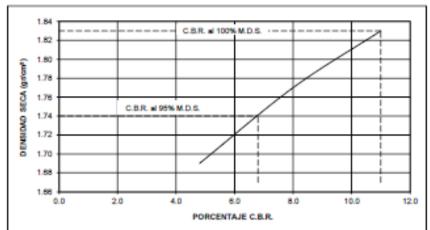
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


: DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION


CALICATA : C18M1 FECHA : 16.11.2021


m ⁵) 1.83
13.89

DATOS DEL C.B.R.				
C.B.R. al 100% de M.D.S. (%)	11.00			
C.B.R. al 95% de M.D.S. (%)	6.80			

CALLE MANUEL SEOANE Nº 7

E-Mall - marker 1880 otmail.com

AYEQUE - CEL. 954853683 -

OSCUR LIETORNIOS ROO Reg. CIP. Nº 31338

Mario Ramirez Dejo CABORATORIO (MIN EJRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION № 031616-2019/DSD – INDECOPI

RUC. 20605369139

CALICATA 19

CALLE MANUEL SEOANE Nº 7

Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MINI ELRI. E-Mail - mario rd8 ootmail.com

TORREST OF THE PROPERTY OF THE

RECEIVERO CAVE.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOLICITANTE :

DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE PROYECTO

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C-19 FECHA. 16.11.2021

REGISTRO DE PERFORACIONES

COTA		BEREAD	SERECTO	RATUROL ECA DEL TEXABIO	CESSIONACIONES
	(m/m.)	NO. SECTION.	-	EITMITO	
	0.00				I I
ne .	0.10	RELLEND	05000	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	(1)	CLASFICACION - AASHTO: A - 1 - a (5) DEGUASI CON ASENA DE COLOR BLANQUECINO, DE CONSISTENCIA MEDIA LL + N.P LP + N.P LP + N.P N + COMPENDO DE HUMBOAD + 8.8 % N COMPENDO DE SALSE + 0.15 % MUSINA DEPENDO DE SALSE + 0.15 % MUSINA DEPENDO DE SALSE + 0.15 % C.S.R 100% + 45 % C.S.R 100% + 45 %	DURANTS R. TISMPO DE SILDRANCION NO SE DETECTO NIVEL PREATCO

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 787 MAN

OSCAR LUZQUIÁOS ROCK INGENIERO CIVIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA

PROYECTO DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C19 FEICHA 16.11.2021

HUMEDAD NATURAL					
CALICATA-MUESTRA	C19 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
N° RECIPIENTE	277				
1 PESO SUELO HUMEDO + RECIPIENTE	45.95				
2 PESO SUELO SECO + RECIPIENTE	44.27				
3 PESO DEL AGUA	1.68				
4 PESO RECIPIENTE	19.58				
5 PESO SUELO SECO	24.69				
8 PORCENTAJE DE HUMEDAD	6.80%				

DETERMINACION DE LA SAL					
CALICATA-MUESTRA	C19 - M1				
PROFUNDIDAD (m)	0.10 - 1.50				
Nº RECIPIENTE	233				
(1) PESO DEL TARRO	25.85				
(2) PESO TARRO + AGUA + SAL	32.62				
(3) PESO TARRO SECO + SAL	25.86				
(4) PESO SAL (3-1)	0.01				
(5) PESO AGUA (2 - 3)	6.76				
(8) PORCENTAJE DE SAL	0.15%				

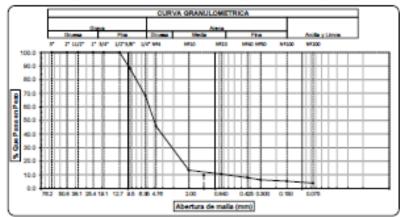
Mario Ramirez Dejo DEMENTE GENERAL LABORATORIO (MARIE ELR.L.

CALLE MANUEL SECANE Nº 7 MANTEN AYEQUE - CEL. 954853683 -E-Mail - mario rg8 of otmail.com

OSCUR LECYDRIOS RODROUEZ REGENERIO CHIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139


ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOUGHANTE: KIMBERLY SARITA NOID CHUNGA PROYECTO: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDEAD: 0.10 mts. - 1.50 mts. CALICATA : C19M1 PRICHA : 16.11.2021

ABERTU	RA MALLA	PESO	% RETENDO	% RETENDO	% QUE	DESCRIPCION DE LA	
(Pul)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA	MURRITION
3"	76.200					PESO TOTAL :	600.0 g.
2 1/2"	63.500					PESO LAVADO :	23.4 g.
2"	50.800						
11/2"	38.100					LIMITE LIQUIDO : N.P.	
1"	25.400					LIMITE PLASTICO : N.P.	
34"	19.050	0.00	0.00	0.00	100.00	INDICE PLASTICIDAD: N.P.	
1/2"	12.700	0.00	0.00	0.00	100.00	CLASF, AASHTO :	A-1-a (0)
30"	9.525	70.48	11.75	11.75	66.25	CLASF, SUCS :	QP .
1/4"	6.350	121.16	20.19	31.94	66.06	DESCRIPCIÓN DEL SUELO:	BUENO
N*4	4.760	133.85	22.51	54.25	45.75	Grava pobremente graduada o	on arena
NHO	2.000	194.52	32.42	86.67	13.33	Ensayo Malla N*200 P.S.S	ea P.S.Lav (%) 200
N*20	0.640	16.62	2.77	89.44	10.50	800.0	23 96.1
N40	0.425	15.74	2.62	92.06	7.84		
N*50	0.300	9.66	1.61	93.67	6.33		
Nº100	0.150	5.75	0.96	94.63	5.37	MODULO DE FINEZA 5.54	14
Nº200	0.075	6.77	1.46	96.09	3.91	Coef. Uniformided #FFFFF	#
< N° 200	FONDO	23.43	3.91	100.00	0.00	Coef. Curveture 0	0

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -Mario Ramirez Dejo SERENTE GENERAL LABORATORIO I MARI EL R.L.

E-Mail - mario 1980 botmail.com

OSCAR LUZQUIÁOS ROOR Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

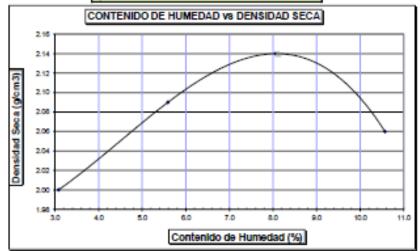
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOUCHART

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA PROTECTO

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

: DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


MATERIAL : TERRENO NATURAL

CALICATA : C19M1 FECHA 16.11.2021

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº	:				
VOLUMEN	:	2050	cm*	-	pie*
METODO DE COMPACTACION	:	AASHTO	T - 180 D		
Peso Suelo Humedo + Moide	(g)	6973	7281	7488	7424
Peso de Moide	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	4223	4531	4738	4874
 Peso Volumétrico Húmedo 	(g)	2.060	2.210	2.310	2.280
∠ Recipiente №		202	227	225	238
Peso de Suelo Húmedo + Tara	(g)	50.03	50.38	58.88	50.11
Peso de Sueio Seco + Tara	(g)	49.13	48.83	54.41	48.81
Tara	(g)	19.88	21.48	24.03	15.58
 Peso de Agua 	(g)	0.90	1.53	2.45	3.30
 Peso de Suelo Seco 	(g)	29.25	27.37	30.38	31.23
 Contenido de agua 	(%)	3.08	5.59	8.06	10.57
 Peso Volumétrico Seco 	(glam)	2.00	2.09	2.14	2.08

Mázima Densidad Seca 2.16 Optimo Contenido de Hum 0.12 %

CALLE MANUEL SECANE Nº 7 15 THE WAY BAYEQUE - CEL. 954853683 -Mario Ramirez Dejo

168

OSCAR LUZQUIÁOS ROOM MIGENACINO CIVIL Reg. CIP. Nº 31338

E-Mail - marker 18 botmail.com

CARDRATORIO I MAN ELRI.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

PROVECTO	DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAY													
		MEJORAR									CION			
UNICACION	VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE													
CAUCATA														
PRCHA		18.11.2021												
						C.B.F	2							
MOLDE Nº				-	52		_		7			7		
Nº DE GOLPES	s pop ca	DA			56		-		5		-	-		
CONDICIONID			SIN M		MOU	NDA.	33K M		MOU	ADA	33K M	DJAR	MOJ	ADA
PERO MOLDE + 1			11,6	43	113	26	113	721	111	136	11.	489	11,3	721
PERO DEL MOLD	×	(2)	0,0	M	0,0	14	9,0	104	6.0	М	_	eta:	0.0	62
PERO DEL RUELO	DHAMEDO	(2)	460	99	50	62	46	97	49	52	- 40	97	40	69
VOLUMEN DEL S	CRO	(2)	2.5	a	2.1	0	2.1	-0	2.1	0	2.1	40	2.1	43
DENSIONO HUM	HDA .	(pkn ^k)	2.3	Ħ	23	15	2.2	26	2.	H	2	10	2.5	iT.
CAPBLLANT			22	ti	24	à	27	7	20	5	2	8	34	19
PERO CAPRILLA	+ SUBLO H	UMBOO (g)	45.	20	54.	95	53.	65	51.	10	27	29	62:	30
PERO CAPRILIA	+80808	RCD (g)	43.0	06	51.	14	51.	12	47.	71	35	.00	57.	23
PERO DE AGUA	CONTRNICA	k (g)	2.1	4	3.1	1	2.7	73	3.3	19	1.	61	5.0	37
PERO DE CAPIS.	LA	(2)	10.0		18.		19.		15.			.00	18:	
PERO DE BURLO	19600	(2)	26.3		321			22.06 22.09			19.00		38.94	
HUMBOAD		(%)	_			7%	8.52%		10.58%		0.10%		13.02%	
DENIEDAD INCA	1		2.1	2.14		5	2.0	08	2.09		2.00		2.01	
					EX	PANS								
FRCHA	HORA	THMPO	DWL	-	REPARED	_	DIAL	-	EXPANSION		DWL REPANSION		N	
	_		_							•	_		-	•
	—		_						_		_			⊢
	_		\vdash		NO	80085	RA		-		-			⊢
	-		_	_			_	_		\vdash	-	-		⊢
	-		_	\vdash		-	-	-		\vdash	-	-		⊢
								<u> </u>						_
							CION							
PENETRA	COM	CARDA BETANDAR	CARDA	MOLDE	CORROGO	62	MOLDE Nº 67 CARGA CORROCCON			CARGA C		Nº 78		
		(Delputy)	Lesiure	lie.	Injust	_	Lecture	lin.	Section 1	•	Lesibre		Balaute	
0.020)		23.10	270	90.00	_	10.70	195	65.00		10.00	117	29.00	
0.040			48.20	584	188.00		34.90	408	136.00		20.00	243	81.00	
	0.000		70.30	822	274.00		51.00	597	199.00		30.50	357	119.00	
0.000			92:30	1080	260.00		66.90	760	261.00		40.00	400	150.00	
0.100		1000	115.40	1350	450.00	45.00	83.60	978	201.00	32:60	50.00	585	195.00	19.50
0.200		1500	188.20	2202	734.00		136.20	1593	531.00		81.50	954	218.00	
0.300		1000	239.00	2796	902.00		173.10	2025	675.00		103.60	1212	404.00	\vdash
														\vdash
0.400			276.90	3240	1080.00	_	200.50	2346	782:00	_	120.00	1404	468.00	—

288.50 3375 1125.00

CALLE MANUEL SEOANE N° 78 AND AYEQUE - CEL. 954853683 -Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I MINISTRE

209.00 2445 815.00

169

OSCUR LUZQUIOS RODROJEZ RECENERO COM. Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

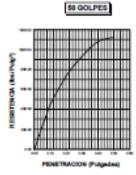
RUC. 20605369139

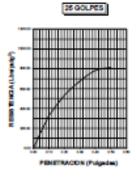
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

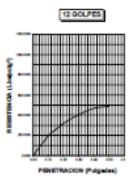
8.12

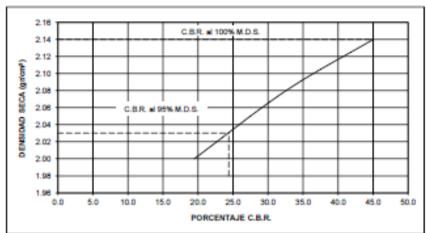
PROYECTO : DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE


: DIŜTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION


CALICATA : C19M1 : 16 11 2021 FECHA


Humeded Optima (%)


 . 10.11.2021	
DATOS DEL PROC	TOR
Densided Máxima (gricm ³)	2.14

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)	45.00				
C.B.R. al 95% de M.D.S. (%)	24.40				

OSCAR LUZQUINOS RODA INSCRIEDO CINAL Reg. CIP. Nº 31338 170

E-Mail - marker 18 botmail.com

Mario Ramirez Dejo CABORATORIO I MIN ELRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

CALICATA 20

CALLE MANUEL SEOANE Nº 7 Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

E-Mail - marker 18 botmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE :

KIMBERLY SARITA INCIO CHUNGA DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION PROYECTO

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION CALICATA

C-20 16.11.2021 PECHA

REGISTRO DE PERFORACIONES

		300000	SECTIONS	RATUROL EDA DEL TERRENO	CONTRACTOR AND ADDRESS OF THE PERSON NAMED IN CONTRACTOR AND ADDRESS
-	(a)	BURNTAN		BITMATO	
1 1 6	0.00				l
		RELLENO	STORY STATE	MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1	9	CLASFICACION - AASHIO: A - 3 (5) AMBINISI CON NALA PLASTICIDAD DE COLOR MARRON CLARO, DE CONSISTENCIA MEDIA LL = N.P LP = N.P N= COMERNEO DE HUMEDAD + 3.05 N N= COMERNEO DE SALES = 0.14 N MAJMA CENSOA DECA + 1.56 giund DPTISO DE HUMEDAD + 9.85 N C.S.R 100% = 10.9 N C.S.R 100% = 6.3 N	DURANTE BL TIEMPO DE EXCAVACIO NO SE DETECTO NIVEL FREATICO

CALLE MANUEL SEOANE Nº 7 THE MANUEL SEOANE N° 7 THE MANUEL SEOANE N°

OSCAR LUZQUIÁOS ROC

E-Mail - mario rd8 potmail.com

Mario Ramirer Dejo SERENTE GENERAL LASORATORIO I MINISTRE

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

: KIMBERLY SARITA INCIO CHUNGA SOLICITARTE

DISEÑO DE LA INFRAESTRUCTURA VAL DE LA PAVIMENTACION PARA PROYECTO MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION

VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C28 FEICHA : 16.11.2021

HUMEDAD NATURAL				
CALICATA-MUESTRA	C20 - M1			
PROFUNDIDAD (m)	0.20 - 1.50			
N° RECIPIENTE	284			
1 PESO SUELO HUMEDO + RECIPIENTE	61.25			
2 PESO SUELO SECO + RECIPIENTE	60.11			
3 PESO DEL AGUA	1.14			
4 PESO RECIPIENTE	22.85			
5 PESO SUELO SECO	37.26			
8 PORCENTAJE DE HUMEDAD	3.06%			

DETERMINACION DE LA SAL				
CALICATA-MUESTRA	C20 - MI			
PROFUNDIDAD (m)	0.20 - 1.50			
Nº RECIPIENTE	38			
(1) PESO DEL TARRO	61.62			
(2) PESO TARRO + AGUA + SAL	68.95			
(3) PESO TARRO SECO + SAL	61.63			
(4) PESO SAL (3-1)	0.01			
(5) PESO AGUA (2 - 3)	7.32			
(6) PORCENTAJE DE SAL	0.14%			

Mario Ramirez Dejo SERENTE GENERAL LASORATORIO I NEW ELRIL

E-Mail - marker 18 00 thmail.com

CALLE MANUEL SEOANE Nº 7 STANDANE AYEQUE - CEL. 954853683 -

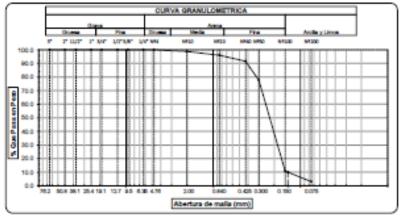
OSCUR LUZQUIÁOS RODR Reg. CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)


SOLICITANTE: KIMBERLY SAIRTA INCIO CHUNGA PROVIECTO : DISERIO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE
INICACIÓN : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

оримовар : 0.20 mts. - 1.50 mts.

CALICATA : C20M1 PROHA : 16.11.2021

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENDO	% QUE	DESCRIPCION DE LA MUESTRA
(Pul)	(1000)	RETENDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE DA RESSINA
3"	76.200					PESO TOTAL : 200.0 g.
21/2"	63.500					PESO LAVADO : 6.2 g.
2"	50.800					
11/2"	38.100					LIMITE LIQUIDO : N.P
1"	25.400					LIMITE PLASTICO : N.P.
34"	19.050					INDICE PLASTICIDAD: N.P.
1/2"	12.700					CLASF, AASHTO : A-3 (0)
2/0"	9.525					CLASF, SUCS : SP
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUELO : BUENO
Nº4	4.760	0.00	0.00	0.00	100.00	Arena pobremente graduada
N40	2.000	2.54	1.27	1.27	98.73	Ensayo Maila N*200 P.S.Seo P.S.Lav (%) 20
N*20	0.840	5.55	2.78	4.05	95.90	200.0 6 96.6
N40	0.425	6.75	4.38	0.42	81.50	
N*50	0.300	27.85	13.93	22.35	77.00	
Nº100	0.150	133.62	06.01	89.16	10.85	MODULO DE FINEZA 1.252
M*200	0.075	15.52	7.76	96.92	3.06	Coef. Uniformidad 0.0
< N° 200	FONDO	6.17	3.09	100.00	0.00	Coef. Curvature 0.0

CALLE MANUEL SEOANE N° 713 AND AYEQUE - CEL. 954853683 -Mario Ramirez Dejo

OSCUR LUZQUINOS RODRICUEZ INCERNERIO CIVIL Reg. CIP. Nº 31338

DEMENTE GENERAL LABORATORIO I MARIE ELRIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

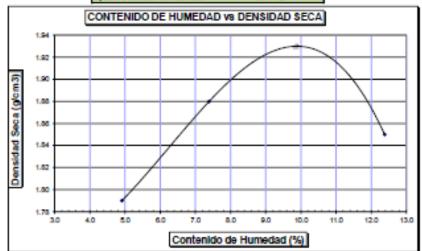
RUC. 20605369139

KIMBERLY SARITA INCIO CHUNGA SOUCHAND

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA

MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE

UNICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


: TERRENO NATURAL MATTERIAL

CALICATA : C20M1 16.11.2021 FECRA

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº	:				
VOLUMEN	:	2050	cm ^a	_	ple*
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Moide	(g)	8804	6891	7098	7014
Peso de Moide	(g)	2750	2750	2750	2750
 Peso Sueio Húmedo Compactado 	(g)	3854	4141	4348	4284
 Peso Volumétrico Húmedo 	(g)	1.880	2.020	2.120	2.080
∠ Recipiente №		257	282	280	291
Peso de Suelo Húmedo + Tara	(g)	52.45	52.78	59.35	52.63
Peso de Sueio Seco + Tara	(g)	50.97	50.87	58.25	48.65
∠ Tara	(g)	20.80	22.38	24.95	16.50
Peso de Agua	(g)	1.48	2.09	3.10	3.98
Peso de Suelo Seco	(g)	30.17	28.29	31.30	32.15
 Contenido de agua 	(%)	4.91	7.39	9.90	12.38
 Peso Volumétrico Seco 	(glam²)	1.79	1.88	1.93	1.85

Máxima Densidad Seca 9.06 %

CALLE MANUEL SEOANE Nº 7 THE MANUEL SEOANE N° Mario Ramirez Dejo

E-Mail - mario rg8 60tmail.com

OSCAR LUZQUIÑOS RODRIGUEZ Reg. CIP. N° 31338

GENERITE GENERAL LABORATORIO I MINIS ELR.L.

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

KIMBERLY SARITA INCIO CHUNGA DISENO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE ROYNCTO

RICACION

C20M1 18.11.2021 AUCATA

C.B.R.							
MOLDE Nº	6	Ø	É	2	93		
Nº DE GOLPES POR CAPA	5	6	2	5	1	2	
CONDICION DE MUESTRA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PERO MOLDE + RUELO HUMEDO (g)	11,342	11,419	11,418	11,523	11,184	11,394	
PERO DEL MOLDE (g)	6,799	0,799	5,999	6,999	6,967	6,967	
PERO DEL RUBLO HUMBDO (g)	4543	4620	4419	4534	4217	4427	
VOLUMEN DR. RURLO (d)	2143	2.143	210	2143	2143	2.143	
ndg ASHMUH CACINARD	2.12	2.16	2.00	211	1.97	2.07	
CAPBULANT	241	263	292	320	234	364	
PERO CAPRULA + SUBLO HUMBOO (g)	49.31	59.19	58.07	55.35	41.29	66.71	
PERO CAPRILIA + SUBLO SECO (g)	40.54	55.32	54.60	51.19	39.16	60.71	
PERO DE AGUA CONTRINCA (g)	2.77	3.87	2.47	4.16	2.13	6	
PERO DE CAPRILIA (g)	10.43	20.61	20.80	17.30	17.74	20.03	
PERO DE BURLO 8600 (g)	28.11	34.71	22.8	23.63	21.42	40.66	
HUMBOAD (N)	9.85%	11.15%	10.27%	12.30%	9.94%	14.75%	
DRAWDAD RECA	1.93	1.94	1.87	1.00	1.79	1.80	
		EVE					

EXPANSION

						CION							
PENETRACION	CARBA		MOLDR	Nº	67		MOLDS	Nº	E		MOLDE	M.	X3
paly	RETANDAR	CARGA				CARGA		000000	×	CARGA		OR PERSON	4
	(Balgruly)	Leiture	lin.	Delputy*		Lecture	lin.	Designation of		Lesiture	lie	Balauty*	1
0.020		5.60	66	22.00		4.10	48	16.00		2.30	27	9.00	Ш
0.040		11.50	135	45.00		8.50	99	23.00		5.10	60	20.00	
0.000		16.90	190	99.00		12.30	144	48.00		7.40	87	29.00	
0.000		22:30	201	87.00		16.20	109	63.00		9.70	114	38.00	
0.100	1000	27.90	227	109.00	10.90	20.30	237	79:00	7.90	12:10	141	47.00	¥
0.200	1500	45.60	534	178.00		23.10	367	129.00		18.70	231	77.00	
0.300		57.90	678	226.00		42.10	492	164.00		24.90	291	97.00	
0.400		67.20	786	282.00		48.70	579	190.00		29.00	239	113.00	
0.500		70.00	819	273.00		50.80	594	198.00		20.20	354	118.00	

Mario Ramires Dejo

LABORATORIO I MINIS ELEL

CALLE MANUEL SEOANE N° 7 STANDAYEQUE - CEL. 954853683 —
Iario Ramires Dejo E-Mail = mario rg8 200tmall.com

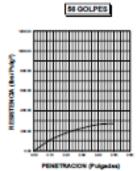
OSCUR LICTORIOS RODRICO RECENERO CIVIL Reg. CIP. N° 31338

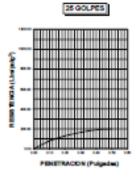
SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

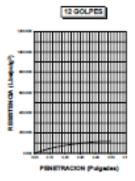
RUC. 20605369139

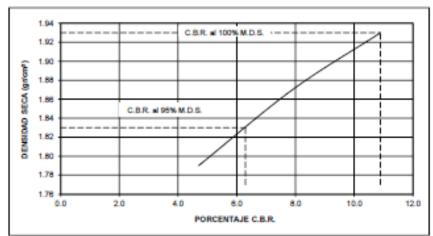
SOLICITANTE: KIMBERLY SARITA INCIO CHUNGA

: DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACION PARA


MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACION


VILLA EL SOL - DISTRITO REQUE - CHICLAYO - LAMBAYEQUE UBICACION : DISTRITO REQUE, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C20M1 FECHA : 16.11.2021


DATOS DEL PROCTOR				
Deneidad Máxima (gricm ³)	1.93			
Humeded Optima (%)	9.86			

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)	10.90				
C.B.R. al 95% de M.D.S. (%)	6.30				

CALLE MANUEL SEOANE Nº 7

Mario Ramirez Dejo

AYEQUE - CEL. 954853683 -E-Mall - marker 18 botmall.com

OSCAR LUZQUIÑOS ROOM

Reg. CIP. Nº 31338

CARDRATORIO I MAN ELRL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CERTIFICADOS DE CALIBRACION

CALLE MANUEL SECANE N

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MAS ELEL E-Mail - mark rd8 botmail.com

AYEQUE - CEL. 954853683 -

OSCAR LIEDORÍOS RODROS MICENERO CIVIL PIER, CIP. N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrología

Certificado de Calibración Nº 011-001-2021

7 - RESERVADOS.

- * En caudro del punto X, se indican las modidas normadas del ageigo y lo deses actuales del oguipo.

 * Se colocó una etiqueta autosalhesi na pura na identificación.

8.- RESULTADO DE MEDICIÓN

CARACTER	STICAS DEL EQUIP	10
Marca	INDUSTRIA COLO	DMESerie: N/S
Tarrier Nº 4	Eur 4.75 mm	Joseph at D.15 care

7.1. MEDICION DE LOS PUNTOS

Pile	Medición (mm)
Nº 1	4.74
Nº 2	4.79
14" 2	4.81
Nº4	4.78
N° S	4.09

Promedio.:

ORSERVACIÓN
 HI Tarriz no primerta reques observació

4.74

ARSOU GROUP'S A.C. Mrst. E Lote 2 Urb. La virreyna, San Martin de Ponnes, Lima; Perù Cel +51 3549635n5 повы@игасиругоць.com.pie www.arsoupgroup.com

CALLE MANUEL SECANE Nº 7 STANDAYEQUE - CEL. 954853683 -

Mario Ramirer Dejo DEMENTE DEMENAL LABORATORIO I MINISTRAL

E-Mail - marker 188 hotmail.com

OSCAR LIZTORNOS ROCKE Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrología

Certificado de Calibración Nº 012-001-2021

7.- RESULTADOS.

- * En candro del punto 8, se indican las modidas normadas del ognipo y lo datos actuales del
- * Ne colocé um etiqueta autoadhesiva para su identificación.

8- RESULTADO DE MEDICIÓN

CARACTERISTICAS DEL EQUIPO

Marea	INDUSTRIA COL	.CMESerte: 852557
Torric Nº 10	Laz 2 rem	simp.: 4/- 6.07 mm

Procedencia: COLONBIA Estructura: Apero

7.1. MEDICIÓN DE LOS PUNTOS

Pie	Medición (rem)
391.1	1.96
Nº 2	1.99
Nº 3	2.05
101.4	2.00
Nº 5	5.04

9.- OBSERVACION

ARBOU GROUP & A.C. Mta: E Lote 2 Urb. La vineyna. San Martin de Porres, Lima. Peril Cet: +61 864932915 ventas@erecupgroup.com.pe www.www.mbd.cofd.cou.

CALLE MANUEL SEGANE Nº 7 THE WAR AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo DERENTE GENERAL LASONATORIO I MINISTRAL

E-Mail - mark rg8 abotmali.com

OSCAR LECTORIOS PROPERTO PIGENACINO CIVIL Ring, CIP, N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrologia

Certificado de Calibración Nº 013-001-2021

7.- RESULTADOS.

- * En cuadro del pueto 8, se indican las medidas normadas del equipo y lo slatos actuales del
- Se coloné una etiqueta autondhesiva para su identificación.

E- RESULTADO DE MEDICIÓN

CARACTERIS	STICAS DEL EQUIPO	9
Marca	INDUSTRIA COLO	MtSterie: N/5
	Lur. 850 pm	

7.5. MEDICION DE LOS PUNTOS:

Plu	Medición (pres
16+ 4	549.00
Nº 2	545.00
N* 3	853.00
N*4	890.00
Nº 6	851:00

URICACION DE PUNTOS

9. OBBERVACIÓN

ARSOU GROUP S.A.C. Miss E Lote 2 Urb. La virreyras, San Martin de Porves, Lima, Parú Cot. +61 954963915 www.susorbduorb.com.be

CALLE MANUEL SEOANE Nº 7 19 MANUEL AVEQUE - CEL. 954853683 -

Mario Ramirez Dejo penente general. LASORATORIO I MINISTRAL

E-Mail - marro rd8 obotmail.com

OSCUR LUZQUINOS RODR Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrologia

Certificado de Calibración Nº 01+-001-2021

7.- RESULTADOS.

- * En cuadro del punto 8, se indican las medidas normadas del expripe y lo datos naturales del equipe.

 * Se colocó una etiqueta autoudhesino para sa identificación.

E- RESULTADO DE MEDICIÓN

CARACTERS	RTICAS DEL EQUE	PO
Marca	INDUSTRIA COL	OMESINE NIS
		some : st. 15 cm

7.1. MEDICION DE LOS PUNTOS

Plo	Medición (µm)
Nº 1	421.00
N*2	425.00
W. a	432.00
N*4	429.00
N55	422.00

425.00

9. OBSERVACIÓN
- El Tamiz no presenta ninguna observación

ARSOU GROUP S.A.C. ARSOU GROUP S.A.C.

Mts. If Late 2 uts. Larwingers, San Martin de Portes, Lima, Perù
Ger + 41 84465595

rentan@anoupgroup.com pe
www.www.arsoupgroup.com

CALLE MANUEL SEGANE Nº 7 MANUEL

Mario Ramirez Dejo DERENTE GENERAL LASONATORIO I MINISTRAL

E-Mail - marker 18 abotmail.com

OSCAR LECTORIOS PROPERTO PIGENACINO CIVIL Ring, CIP, N° 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrologia

Certificado de Calibración Nº 015-001-2021

7.- RESULTADOS.

- * fin audro del panto 8, se indican las medidas normadas del equipo y lo datos actualas del equipo.
- * Se colocó una etiqueta natoudheuiva para na identificación.

B- RESULTADO DE MEDICIÓN

CARACTER	SETICAS DEL EQUIPO		
Merca	INDUSTRIA COLDMI	Serio; 172479	Procedencia: COLOMBIA
Tamiz Nº 54	Julia: 300 pare	erep.: +/- 14 pm	Estructura: Agore-

MEDIC			

Pto	Medición (µm)
- Nº 1	310.00
W-5	309.00
Nº3	299.00
Nº 4	305.00
NP 5	301.00

Promedio.:

304,80

El Tarriz no presente ninguna observación.

ARSOU GROUP S.A.C.

Minx E Late 2 Urb. La virreyna, Son Martin de Parres, Lima, Perú
Cel. +01 05-965015

ventraligenscupgroup com pe
www.arsoupgroup.com

CALLE MANUEL SECANE Nº 7 STANDAYEQUE - CEL. 954853683 -

Mario Ramirep Dejo DERENTE GENERAL LABORATORIO I MARIE LIRL

E-Mail - mario rg8 of otmail.com

OSCAR LUZQUINOS ROOM

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

Laboratorio de Metrologia

Certificado de Calibración Nº 916-931-2521

7.- RESULTADOS.

- * Un cuadro del punto 8, se indican las medidas asensalas del egripo y lo datos actuales del
- * Se colocó una etiqueta autonôbesis a para su identificación.

8. RESULTADO DE MEDICIÓN

CARACTE	RISTICAS DEL EQUIP	0	
Marca:	INDUSTRIA COLO	MESerie, N/S	Procedencia: COLOMBIA
Tamie Nº 1	100 Laz 150 pm	emp.: +1- 8 pm	Estructura Acieto

7 4 9451	DISCOURSE	PRE LIZ	ME DEL	METERNA

Pto	Medición (prv)
Nº 1	150.00
Nº 2	148.00
Nº3	152.00
Nº 4	149.00
Nº S	150.00

149.80

I - DESERVACIÓN

- El Tarric no presente ninguos atsuervación.

ARBOU GROUP 8.A.C. Mbs. E Lote 2 Lift). La virreyna, San Martin de Pones, Lima, Perù Cel: +51 954963915 ventei@enoupgroup.com.pe www.arsoupgroup.com

Mario Ramires Dejo DEMENTE GENERAL LABORATORIO I MINI E.I.R.L.

CALLE MANUEL SECANE Nº 78 MEMBAYEQUE - CEL. 954853683 -

OSCAR LUZQUIÑOS RODRE Reg. CIP. N° 31338 184

E-Mail - manorg8 of otmail.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrologia

Certificado de Calibración Nº 017-001-2021

7.- RESULTADOS,

- * En cuadro del ponto 8, se indican las nuclidas normadas del equipo y lo datos actuales del ogaipo. * Se colocó una etiqueta antondisesiva para sa identificación.

8. RESULTADO DE MEDICIÓN

CARACT	TERRET	SCAR	DOM:	DOM:	#2C

CHRONILIE	IND TILAS DUL DUUR	U	
Marca	INDUSTRIA COLO	MIS Serie: NOS:	Procedencia: COLOMBIA
Torsia Nº 3	200 List 75 pm	emp : n/- 5 ure	Extractural Acord

7.1. MEDICION DE LOS PUNTOS

Pto.	Medición (pm)
Nº 5	78.00
Nº Z	79.00
Nº 1	82.00
50".4	80.00
- N1 5	79.00

9. ORSERVACION

ARSOU GROUP 8 A.C. Vica. E Lote 2 Urb. La virreyns, San Martin de Porree, Llina, Perù Cet. +51 954963915 vertise@anloupgroup.com.pe www.arsoupgroup.com

CALLE MANUEL SECANE Nº 75 MAN AYEQUE - CEL. 954853683 -

Mario Ramirez Dejo GENERIE GENERAL LABORATORIO I MINI EJ R.L.

E-Mail - marker 18 botmail.com

OSCAR LUZQUIROS RODR PREZNERIO CHIL Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrologia

CERTIFICADO DE CALIBRACIÓN N° 007-001-2021

CELDA DE CARGA PARA PRENSA CBR

CLIENTE

: LABORATORIO LINUS EIRL

DIRECCIÓN

CAL MANUFE SEGANE NRO, 717 CERCADO - LAMBAYEQUE

DATOS DEL EQUIPO

Pressa Marca: SIN MARCA, MOD. S/M, SERIE S/N

Crida Marca : ZEMBCN

Modelo i NO INDICA

± 5-0(M2D023576 Serie

Capacidad : 5 TN

Procedercia : 0

Indicador : Digital Identificación) 007-001-2021

Obicación : Laboratorio

Fecha de emisión:

Lima, 50 de Julio del 2021

ARSOU GROUP S.A.C.

Max E Lote 2 Urb. La vivreyna, San Martin de Pones, Lima, Pers
Cal: 451 094405365

ventasigliannougena, open jee
vent ansossgroup parn

CALLE MANUEL SEGANE Nº 7 THE MENT AVEQUE - CEL. 954853683 -

OSCAR LUZQUINOS ROOM Reg. CIP. N° 31338 186

Mario Ramirez Dejo DEMENTE GENERAL LABORATORIO I MINIS EJRL E-Mail - mark rg8 of thall.com

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrologia

CERTIFICADO DE CALIBRACIÓN Nº 009-001-2021

APARATO DE LÍMITE LÍQUIDO (COPA CASAGRANDE)

CLIENTE

: LABORATORIO LINUS EIRL

DIRECCIÓN

1 CAL MANUEL SEOANE NRO. 717 CERCADO - LAMBAYEQUE

DATOS DEL EQUIPO

Marca

ELE INTERNATIONAL

Modele

: Sin Modelo

: Sin Sonia

Serie

Mecanismo ± Manual

Ranandor : Metalico

Procedencia j LISA

Identificación: (009-001-2021

Ubicación ; Loberatorio

Fecho de emisión:

Lima, 30 de Julio del 2021

ARSOLI OROUP S.A.G Mrs. E Lote 2 Urb. La sirreyra, San Martin de Porses, Lista, Perú Gat. +51 954963915 немая@апокругор сот ре ини агохругор сот

CALLE MANUEL SECANE Nº 76

Mario Ramirez Dejo LABORATORIO (MIR EJRL E-Mail - mario rd8 ootmail.com

AYEQUE - CEL. 954853683 =

OSCAR LUZQUIÑOS ROOM MICEMERO CONA. Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CERTIFICADO DE CALIBRACIÓN Nº 006-001-2021

MARTILLO PROCTOR MODIFICADO DE 10 LBS

CLIENTE

: LABORATORIO LINUS EIRL

DIRECCIÓN

: CAL MANUEL SEOANE NRO. 717 CERCADO - LAMBAYEQUE

DATOS DEL EQUIPO

Marca

: SIN MARCA

Modelo

S/M

Estructura : Metalica

Acabado

t Zincado

Procedencia : 0

Identificación: 006-001-2021

Ubicación : Laboratorio

Fecha de emisión:

Linu, 30 de Julio del 2021

ARSOU GROUP 8.A.C.
Mza. E Lote 2 Urb. La virreyra. San Martin de Porrea, Llina, Però
Cet. +51 854953815 www.eukonbitonb.com.be

CALLE MANUEL SECANE Nº 7/6

Mario Ramires Dejo DERENTE GENERAL LABORATORIO (MARIE EL R.L.

E-Mail - mario rg8 66tmail.com

AYEQUE - CEL. 954853683 -

OSCUR LIZZORIOS RODR INGENIERO CIVIL

Reg. CIP. Nº 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

Laboratorio de Metrología

CERTIFICADO DE CALIBRACIÓN Nº 005-001-2021

MOLDE PROCTOR MODIFICADO DE 6"

CLIENTE

1. LABORATORIO LINUS EIRL.

DIRECCIÓN

: CAL MANUEL SEDANE NRO, 717 CERCADO - LAMBAYEQUE

DATOS DEL EQUIPO

SIN MARCA

: SIN MODELO

1 5/N

Estructura : Metallica

Identificación: 005-001-2021

Ubicación i Laboratoria

Fecha de emisión:

Linux, 10 de Julio del 2021

ARSOLI GROUP S.A.C. Miss E Lole 2 Urb. La vinoyna, San Martin de Pomes, Lima, Penù Get +51 954963915 четтен@итоцергаць сот ре www.areaupgrosp.com

CALLE MANUEL SEOANE Nº 7 THE ME AVEQUE - CEL 954853683 -

Mario Ramires Dejo DEMENTE GENERAL LASCRATORIO I MINIS EJRL E-Mail - mario rd8 ootmail.com

OSCUR LUZQUINOS ROOM Reg. CIP. Nº 31336

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI RUC. 20605369139

COORDENADAS

CALLE MANUEL SECANE Nº 7/6 Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MINISTRAL

MANASAYEQUE - CEL. 954853683 -E-Mall - marker 1880 otmail.com

OSCAR LECTURIOS RODROS PIGENERIO CIVIL Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

DIIC ONE	05369139
KUL. ZUD	แลงเขาเงข

CALICATA	COORDENADAS
C1	632873.00 m E - 9238246.00 m S
C2	633010.00 m E - 9238157.00 m S
C3	632950.00 m E - 9238062.00 m S
C4	633101.00 m E - 9238103.00 m S
C5	633084.00 m E - 9237977.00 m S
C6	633072.00 m E - 9238254.00 m S
C7	633096.00 m E - 9237840.00 m S
C8	633155.00 m E - 9237930.00 m S
C9	633173.00 m E - 9237853.00 m S
C10	632967.00 m E - 9238321.00 m S
C11	633119.00 m E - 9238433.00 m S
C12	633214.00 m E - 9238384.00 m S
C13	633258.00 m E - 9238349.00 m S
C14	633315.00 m E - 9238179.00 m S
C15	633161.00 m E - 9238200.00 m S
C16	633204.00 m E - 9238101.00 m S
C17	633263.00 m E - 9237999.00 m S
C18	633346.00 m E - 9237952.00 m S
C19	633280.00 m E - 9237839.00 m S
C20	632868.00 m E - 9238125.00 m S

Mario Ramirez Dejo DERENTE GENERAL LASORATORIO I MINISTRAL

CALLE MANUEL SEOANE N° 7 - MAN

OSCUR LUZQUIOS RODROJEZ RECENTRO CON. Reg. CIP. N.º 31338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

UBICACIÓN Y ZONA DE ESTUDIO

CALLE MANUEL SEOANE N° 7

Mario Ramirer Dejo E-Mall = mar

DERENTE GENERAL

LIBORATORIO INVINITALIA

EOANE Nº 7 19 19 19 19 AYEQUE - CEL. 954853683 -E-Mail - marity g8 6 thmail.com (SEM LETINIS)

OSCUR LIZOPIOS RODRICUE MICENIERO CIVIL

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALLE MANUEL SECANE Nº 75 MANUEL Nº 75 MANUEL SECANE Nº 75 MANUEL

Mario Ramirez Dejo GENENTE GENENAL LASORATORIO I MAR EJ R.L.

E-Mail - mario rg8 ofotmall.com

OSCAR LECYDRIOS RODROGA RIGERADIO CIVIL Ring, CIP, N° 31,338

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS
PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION
RESOLUCION Nº 031616-2019/DSD - INDECOPI

RUC. 20605369139

CALLE MANUEL SECANE Nº 715 MAN

Mario Ramirez Dejo SERENTE GENERAL LASCANTORIO I MIRIE EL R.L. E-Mail - marke rg8 abotmali.com

OSCUI LETYRINGS ROOMGUI MICENATIO CHIL Reg. CIP. N° 31338

Declaratoria de Autenticidad del Asesor

Yo, **OMAR CORONADO ZULOETA**, docente de la Facultad de Ingeniería y Arquitectura y Escuela Profesional de **Ingeniería Civil** de la **UNIVERSIDAD CÉSAR VALLEJO SAC** - **CHICLAYO**, asesor de Tesis titulada:

"DISEÑO DE LA INFRAESTRUCTURA VIAL DE LA PAVIMENTACIÓN PARA MEJORAR LA TRANSITABILIDAD DEL CENTRO POBLADO AMPLIACIÓN VILLA EL SOL - DISTRITO DE REQUE"

De la autora **INCIO CHUNGA KIMBERLY SARITA**, constato que la investigación cumple con el índice de similitud de **21**% verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Chiclayo, 25 de agosto del 2023

Apellidos y Nombres del Asesor:				
CORONADO ZULOETA OMAR				
DNI	Firma	1		
72608804		1/		
ORCID		X		
0000-0002-7757-4649				

