FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA MECÁNICA

AMALISIS DE GEOMETRÍA VEHICULAR Y PRESÍON ADECUADA PARA MINIMIZAR DESGASTES IRREGULARES Y PROLONGACÍON DE LA VIDA ÚTIL DE LOS NEUMÁTICOS DEL CAMIÓN FREIGHTLINER MODELO M 106 4X2 DE LA EMPRESA CERVECERÍA SAN JUAN S.A. TARAPOTO

TESIS PARA OPTAR EL TÍTULO DE INGENIERO MECÁNICO

AUTOR:

JORGE LUIS FLORES RISCO

ASESOR:

ING. MARCO PÉREZ SILVA

Linia de investigación: Aplicativa

> TRUJILLO: PERÚ 2013

DEDICATORIA

Esta tesis se la dedico en primer lugar a DIOS por la fuerza salud y espíritu para conseguir alcanzar mis metas.

A mis padres por la confianza depositada en mí, por no desfallecer en su labor como padres y guías que han hecho en mí una persona con valores morales y éticos capaz de tomar en mis manos mi propio destino y compartir con la sociedad lo mejor de mí.

AGRADECIMIENTO

A la universidad CESAR VALLEJO, por habernos acogido en sus aulas y dotarnos de todas las herramientas para hacer de nosotros unos profesionales competentes capaz de afrontar los desafíos y retos que se nos presenten.

CERVECERÍA SAN JUAN S.A. por haberme facilitado toda la información necesaria para la realización de esta tesis, con la cual estaría terminando una nueva etapa en mi vida, y por ser una empresa vanguardista y brindar las facilidades y/o oportunidades a los nuevos profesionales.

Y de igual manera a mis compañeros amigos y asesores que más que estar definidos con un término propio son y serán siempre una parte vital de fuente de sabiduría, por sus vivencias y experiencia que a veces solo los años nos pueden dar.

TABLA DE CONTENIDO

DEL	JICA I OKIA	11
AGI	RADECIMIENTO	iii
IND	ICE	iv
IND	ICE DE TABLAS	vii
IND	ICE DE FIGURAS	viii
RES	SUMEN	01
ABS	STRACT	02
1.	INTRODUCCIÓN	03
1.1.	PROBLEMA DE INVESTIGACIÓN	04
	1.1.1. Realidad problemática	04
	1.1.2. Formulación del problema	04
	1.1.3. Justificación	04
	1.1.4. Antecedentes	05
	1.1.5. Objetivos	07
	1.1.5.1. General	07
	1.1.5.2. Especifico	07
1.2.	MARCO REFERENCIAL	08
	1.2.1. Marco teórico.	08
	1.2.1.1. Definición de neumáticos	08
	1.2.1.2. Vulcanización	09
	1.2.1.3. Propiedades de los neumáticos	09
	1.2.1.3.1. Amortiguación	09
	1.2.1.3.2. Flexibilidad	09
	1.2.1.3.3. Flexibilidad vertical	09
	1.2.1.3.4. Flexibilidad transversal	09
	1.2.1.3.5. Flexibilidad longitudinal	10
	1.2.1.3.6. Capacidad de carga	10
	1.2.1.3.7. Adherencia	10
	1.2.1.4. Función de una llanta	10
	1.2.1.4.1. Guiar (mantener y cambiar la dirección del vehículo)	10
	1.2.1.4.2. Soporte de la carga	11
	1.2.1.4.3. Amortiguar (absorber impactos del camino)	11
	1.2.1.4.4. Rodar	12
	1.2.1.4.5. Transmitir esfuerzos (transferir potencia del motor)	12
	1.2.1.4.6. Durar	12

1.2.1.5. Tipos de cubiertas segun su estructura	13
1.2.1.5.1. Diagonal o Convencional	13
1.2.1.5.2. Radial	17
1.2.1.6. Banda de rodamiento y costados	19
1.2.1.6.1. Banda de rodamiento	19
1.2.1.6.2. Costados	21
1.2.1.7. Dimensiones, designación y nomenclatura básica delos neumáticos	22
1.2.1.7.1. Definiciones	22
1.2.1.7.2. Datos de los neumáticos	22
1.2.1.7.3. Designación de los neumáticos	24
1.2.1.7.4. Nomenclatura de los neumáticos.	29
1.2.1.7.5. AB.P.A! ÆL.AP.A	30
1.2.1.8. Modelo de unidad a trabajar	32
1.2.1.9. Geometría Vehicular	32
1.2.1.9.1. Alineación Geométrica	32
1.2.1.9.1.1. Camber (inclinación de la rueda)	33
1.2.1.9.1.2. Caster (inclinación del soporte del muñón)	35
1.2.1.9.1.3. Convergencia y divergencia	37
1.2.1.9.2. Equipos y repuestos usados para realizar el diagnostico	38
1.2.1.9.2.1. Equipos	38
1.2.1.9.2.2. Repuestos que intervienen en la	
Corrección de geometría vehicular	40
1.2.1.9.3. Diagnóstico de geometría vehicular	43
1.2.1.9.3.1. Balanceo de llanta	43
1.2.1.9.3.2. Proceso para realizar el diagnostico de	
Geometría vehicular en la unidad	45
1.2.1.9.4. Datos que demuestran las mejoras	47
1.2.1.9.5. Presión de aire en los neumáticos	48
1.2.1.9.5.1. Presión de aire normal	49
1.2.1.9.5.2. Calentamiento del neumático en su	
Funcionamiento normal	49
1.2.1.9.6. Problemas frecuentes en los neumáticos	50
2. MARCO METODOLÓGICO	51
2.1. Hipótesis.	51
2.2. Variables.	51
2.2.1. Definición conceptual y operacional	51
2.3. Metodología	52
2.3.1. Tipo de estudio	52

2.3.2. Diseño de investigación	52
2.4. Población y muestra	52
2.5. Método de investigación	52
2.6. Técnicas e instrumentos de recolección de datos	53
2.7. Métodos de análisis de datos	53
3. RESULTADOS	54
3.1. Evaluación de estado de neumáticos en la empresa	54
3.2. Diagnósticos de geometría vehicular	58
3.2.1. Diagnóstico de las unidades seleccionadas	59
3.2.1.1. Primera inspección realizada a las unidades D6O-779Y D7T-934	
el 18 de Junio	59
3.2.1.1.1. Corrección realizada a la unida en estudio D60-779	61
3.2.1.1.2. Comparativo de costos por desgaste y presiones inadecuadas	
entre las unidades D6O-779 Y D7T-934	62
3.2.1.2. Segunda inspección realizada a las unidades D6O-779 Y D7T-934	63
3.2.1.2.1. Comparativo en base a la segunda inspección realizada	
a las unidades en cuestión	65
3.3. Resultados obtenidos.	66
3.4. Pérdida valorizada de acuerdo al desgaste de neumáticos	69
3.5. Pesaje y presiones recomendadas	70
3.5.1 Pesaje y Diagnostico	72
4. PLANIFICACION Y PRESUPUESTO	75
4.1. Objetivo principal	75
4.2. Plan de acción en inspección	76
4.3. Diagnóstico y regulación	77
4.4. Inversión en corrección para evitar desgaste	79
5. CONCLUSIONES	80
5.1. Conclusiones.	80
6. RECOMENDACIONES	81
7. REFERENCIAS BIBLIOGRÁFICAS.	82
8. ; ANEXOS	83

ÍNDICE DE TABLAS

TABLA Nº 1: ÍNDICE DE CARGAS	26
TABLA Nº 2: ÍNDICE DE VELOCIDAD Y CLASIFICACION DE CAPAS	28
TABLA N°3: SELECCIÓN DE NEUMÁTICOS PARA CAMION	31
TABLA N° 4: VARIACION DE LA PRESION POR LA TEMPERATURA	50
TABLA N° 5: DAÑOS EN LLANTAS O NEUMÁTICOS	54
TABLA Nº 6: TOTAL DE NEUMÁTICOS INSPECCIONADOS PARA LA	
MUESTRA DE REALIDAD. 18/06/13	56
TABLA N° 7 : PERDIDA POR DESGASTE IRREGULAR	57
TABLA Nº 8: SEGUNDA INSPECCION REALIZADA A LA UNIDAD D60-779	63
TABLA Nº 9: SEGUNDA INSPECCION REALIZADA A LA UNIDAD D7t-934	64
TABLA N°10: SEGUNDA INSPECCIÓN DE CONTROL DE RENDIMIENTO	65
TABLA Nº11: SEGUNDA INSPECCIÓN DE CONTROL DE RENDIMIENTO	66
TABLA N° 12: INDICADORES DE RENDIMIENTO	67
TABLA Nº 13: PERDIDA POR PRESIONES INADECUADAS	70
TABLA Nº 14: PRESIONES Y MEDIDAS DEL FABRICANTE	73
TABLA Nº 15: CRONOGRAMA DE INSPECCIONES REALIZADAS	76
TABLA Nº 16: INVERSIÓN "REPUESTOS Y MANO DE OBRA	79
TABLA N° 17 :PERDIDAS VALORIZADAS	79
TABLA Nº 18: INVERSION Y AHORRO	79

ÍNDICE DE FIGURAS

FIGURA N° 1: FUNCIÓN GUIAR.	10
FIGURA N° 2: FUNCIÓN DE SOPORTAR CARGA	11
FIGURA N° 3: FUNCIÓN DE AMORTIGUAR	11
FIGURA N° 4: FUNCIÓN DE TRANSMITIR ESFUERZO	12
FIGURA N° 5: TIPOS DE CUBIERTAS	13
FIGURA N° 6: ANGULO DE CORDONES LLANTA DIAGONAL	14
FIGURA N° 7: PARTES DE UNA LLANTA DIAGONAL	14
FIGURA 8(A): LATERAL	15
FIGURA N° 8(B): HOMBRO	15
FIGURA N° 8(C): CANALES	15
FIGURA N° 8(D): BREAKERS	16
FIGURA N° 8(E): PESTAÑA	16
FIGURA N° 8(F): FLIPPER	16
FIGURA N° 8(G): CHAFER	17
FIGURA N° 9: ESTRUCTURA LLANTA RADIAL	17
FIGURA N° 10: ESTRUCTURA RADIAL	17
FIGURA Nº 10(A): PARTES DE UNA LLANTA RADIAL	18
FIGURA N° 10(B): PARTES DE UNA LLANTA RADIAL	19
FIGURA N° 11: BANDA ACANALADA SENTIDO CIRCUNFERENCIAL	20
FIGURA N° 12: BANDA ACANALADA SENTIDO TRANSVERSAL	21
FIGURA N° 13: BANDA DISEÑO ESPECIAL	21
FIGURA N° 14: DIMENSIONES DE LOS NEUMÁTICOS	22
FIGURA N° 15: DATOS DE LOS NEUMÁTICOS	23
FIGURA N° 16: GRABADO EN LOS NEUMÁTICOS	24
FIGURA N° 17: MEDIDA DE UN NEUMÁTICO RADIAL	25
FIGURA N° 18: MEDIDA DE UN NEUMÁTICO CONVENCIONAL.	26
FIGURA N° 19: ESPECIFICACION TECNICA DEL MODELO DE LA UNIDAD	32
FIGURA N° 20: CAMBER POSITIVO	33
FIGURA N° 21: CAMBER NEGATIVO	34
FIGURA N° 22: CASTER POSITIVO	35
FIGURA N° 23: CASTER NEGATIVO	35
FIGURA N° 24: CASTER NULO	36
FIGURA N° 25: CONVERGENCIA Y DIVERGENCIA	37
FIGURA N° 26: PRATICLASER	38
FIGURA N° 27 (A): PRACTILAZER UBICADO EN LA RUEDA IZQUIERDA	39
FIGURA N° 27 (B): PRACTILAZER UBICADO EN LA RUEDA DERECHA	40
FIGURA N° 28: TERMINAL IZQUIERDO Y DERECHO	40
FIGURA N° 29(A): LAINA 0.25 MM	41

FIGURA N° 29(B): LAINA 0.10 MM	41
FIGURA N° 29(C): LAINA 0.50 MM	41
FIGURA N° 30: BOCINA DE SUSPENSIÓN	42
FIGURA N° 31: PARTES DE EJE DIRECCIÓN	42
FIGURA N° 32: PROCESO DE DIAGNÓSTICO	43
FIGURA N° 33(A): BALANCEADORA	43
FIGURA N° 33(B): BALANCEADORA CON NEUMÁTICO COLOCADO	44
FIGURA N° 34: BALANCE ESTÁTICO	44
FIGURA N° 35: BALANCE DINAMICO	45
FIGURA N° 36: REALIDAD EN LA QUE SE ENCUENTRA LA FLOTA	55
FIGURA N° 37: MEDIDAS DE LLANTAS UTILIZADOS ENLA EMPRESA	56
FIGURA N° 38: TOTAL DE NEUMATICOS INSPECCIONADOS PARA LA	
MUESTRA DE REALIDAD	57
FIGURA N° 39: UNIDDES CON PROBLEMA DE PERDID POR GEOMETRIA VEHICULAR	58
FIGURA N° 40: PRIMERA INSPECCION D60-779 el 18 de Junio	59
FIGURA N° 41: PRIMERA INSPECCION D7T-934 el 18 de Junio	60
FIGURA N° 42: CORRECCION REALIZADA A LA UNIDAD D60-779	61
FIGURA N° 43: COMPARATIVA PERDIDA POR DESGASTE	62
FIGURA N° 44: COMPARATIVA PERDIDA POR PRESION	62
FIGURA N° 45: KILOMETRAJE PROYECTADO	68
FIGURA N° 46: PORCENTAJE DE DESGASTE	68
FIGURA N° 47: COSTO POR KILOMETRO PROYECTADO	68
FIGURA N° 48: PERDIDAS GENERALAS POR PRESIONES INADECUADAS	71
FIGURA N° 49: PESOS POR EJE DE LA UNIDAD D60-779	72
FIGURA N° 50: PRESIONES ENCONTRADAS ENLA UNIDAD D60-779	72
FIGURA N° 51: PRESIONES PARA EL TRANSPORTE ASEGURADO	73

RESUMEN

La presente tesis tiene como objetivo mitigar una problemática en el transporte terrestre, que es el desgaste prematuro de los neumáticos debido a variable tales como el alineamiento y la presión correcta de inflado que son muchas veces relegados de importancia por el desconocimiento de dicho tema; Es por ello que recurrimos a la empresa CERVECERÍA SAN JUAN S.A. una empresa dedicada al rubro de la fabricación y distribución de bebidas que cuenta con diecinueve vehículos en SAN MARTIN, y de las cuales se seleccionó una marca específica (FREIGHTLINER modelo M2 106 4X2) para el estudio a través de inspecciones periódicas trimestrales, cuyos datos obtenidos son muy prometedores en ahorro de costos por kilómetro recorrido, y que con la aplicación de un plan te trabajo globalizado se lograra la optimización de la vida de los neumáticos de toda la flota.

ABSTRACT

This thesis aims to mitigate a problem in road transport, it is premature tire wear due variable such as alignment and correct inflation pressure are often relegated important by the ignorance of the subject, is why resort to the company BREWERY SA SAN JUAN a company dedicated to the field of manufacturing and distribution of beverages has nineteen vehicles in SAN MARTIN, and of which a specific brand (model FREIGHTLINER M2 106 4X2) for the study through quarterly periodic inspections, whose data was selected are very promising in cost savings per kilometer, and the implementation of a plan they will work globalized optimizing tire life of the entire fleet was achieved.