

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Davila Salazar, Jimmy (orcid.org/0000-0002-3764-4059)

ASESORA:

Dra. Arriola Moscoso, Cecilia (orcid.org/ 0000-0003-2497-294X)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

LIMA – PERÚ 2023

Dedicatoria

Dedico esta investigación primeramente a Dios, por permitirme llegar a esta instancia muy importante de formación profesional. A mi familia en especial a mi madre pues sin ella no lo habría logrado, gracias por tus bendiciones a diario y a lo largo de mi vida. A la Dra. Arriola Moscoso, Cecilia por sus enseñanzas.

Agradecimiento

Agradezco a Dios por esta vida, por guiar mis pasos a lo largo de mi existencia, por permitirme tener y disfrutar de mi familia, gracias a mi madre Enerlinda Salazar Espinosa por apoyarme incondicionalmente, a mi alma mater la Universidad Cesar Vallejo y a cada uno de los docentes que compartieron sus conocimientos con mi persona, en especial a la Dra. Arriola Moscoso, Cecilia por ser mi asesora y guiarme en este proceso.

Declaratoria de autenticidad del asesor

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, ARRIOLA MOSCOSO CECILIA, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, asesor de Tesis titulada: "Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023", cuyo autor es DAVILA SALAZAR JIMMY, constato que la investigación tiene un índice de similitud de 17.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 30 de Noviembre del 2023

Apellidos y Nombres del Asesor:	Firma
ARRIOLA MOSCOSO CECILIA	Firmado electrónicamente
DNI: 43851809	por: CARRIOLAM el 30-
ORCID: 0000-0003-2497-294X	11-2023 21:04:50

Código documento Trilce: TRI - 0675108

Declaratoria de originalidad del autor

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad del Autor

Yo, DAVILA SALAZAR JIMMY estudiante de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, declaro bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Análisis de las propiedades físicomecánicas del adoquin peatonal, adicionando caucho y PET reciclado Los Olivos, 2023", es de mi autoría, por lo tanto, declaro que la Tesis:

- No ha sido plagiada ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o titulo profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma	
JIMMY DAVILA SALAZAR	Firmado electrónicamente	
DNI: 46593536	por: JIMMYDS el 30-11-	
ORCID: 0000-0002-3764-4059	2023 21:08:25	

Código documento Trilce: TRI - 0675110

Índice de contenido

Dedicatoria	ii
Agradecimiento	iii
Declaratoria de autenticidad del asesor	iv
Declaratoria de originalidad del autor	V
Índice de tablas	vii
Índice de figuras	viii
Resumen	x
Abstract	x
i	
I. INTRODUCCIÓN	
II. MARCO TEÓRICO	4
III. METODOLOGÍA	17
3.1. Tipo y diseño de investigación	17
3.2. Variables y operacionalización:	
3.3. Población, muestra y muestreo	19
3.4. Técnicas e instrumentos de recolección de da	atos: 21
3.5. Procedimientos:	23
3.6. Método de análisis de datos:	24
3.7. Aspectos éticos:	25
IV. RESULTADOS	26
V. DISCUSIÓN	50
VI. CONCLUSIONES	54
VII. RECOMENDACIONES	55
REFERENCIAS	57
ANEXOS	

Índice de tablas

Tabla 1.	Clasificación internacional del adoquín	. 13
Tabla 2.	Espesor nominal y resistencia a la compresión	. 15
Tabla 3.	Absorción	. 16
Tabla 4.	Ensayo de absorción	. 19
Tabla 5.	Ensayo resistencia a compresión	. 20
Tabla 6.	Ensayo de resistencia a flexión	. 20
Tabla 7.	Técnicas e instrumentos de recolección de datos	. 22
Tabla 8.	Escala del coeficiente Kappa	. 22
Tabla 9.	Análisis granulométrico de la arena	. 29
Tabla 10.	Ensayos de la arena	. 30
Tabla 11.	Análisis granulométrico de la gravilla	. 31
	Contenido de humedad, equivalente de gravilla%, peso unitario sue do y gravedad especifica y absorción	
Tabla 13.	Densidad suelto y compactado del caucho y PET (promedios)	. 33
Tabla 14.	Trabajabilidad "SLUMP"	. 34
Tabla 15.	Porcentaje de absorción	. 36
	Resistencia a la compresión	
Tabla 17.	Resistencia a la flexión	. 39
	Porcentaje optimo trabajabilidad (pulg)	
Tabla 19.	Porcentaje óptimo de absorción	. 42
Tabla 20.	Porcentaje óptimo de resistencia a la compresión	. 43
Tabla 21.	Porcentaje optimo resistencia a la flexión	. 44
Tabla 22.	Significancia de trabajabilidad	. 45
	Escala de significancia	
Tabla 24.	Significancia de absorción	. 46
Tabla 25.	Escala de significancia	. 46

Índice de figuras

Figura 1.	Heveas brasilienses	12
Figura 2.	Proceso del PET	12
Figura 3.	Pavimento de adoquín peatonal	14
Figura 4.	Mapa político del Perú	26
Figura 5.	Departamento de Lima	26
Figura 6.	Mapa del Distrito Los Olivos	26
Figura 7.	Trituración del caucho	27
Figura 8.	Migas de caucho	27
Figura 9.	Trituración del PET	28
Figura 10.	PET (tereftalato)	28
Figura 11.	Ensayo de granulometría del agregado fino (Tamiz)	29
Figura 12.	Ensayo de granulometría del agregado fino cuarteo	29
Figura 13.	Margen granulométrico pasado por Tamiz de la arena	29
Figura 14.	Ensayo de granulometría de la gravilla (Tamiz)	31
Figura 15.	Ensayo de granulometría de la gravilla cuarteo	31
Figura 16.	Margen granulométrico pasado por Tamiz de la gravilla	31
Figura 17.	Densidad del caucho suelto y compactado más molde	33
Figura 18.	Densidad del PET suelto y compactado más molde	33
Figura 19.	Comparativo de densidad del caucho y PET	33
Figura 20.	Trabajabilidad M. patrón	34
Figura 21.	Trabajabilidad en 4%, 6% y 8%	34
Figura 22.	Comparativo de trabajabilidad	35
Figura 23.	Ensayo de absorción	36
Figura 24.	Margen de absorción	36
Figura 25.	Resultados de absorción según patrón y adición de caucho y PET	36
Figura 26.	Ensayo a compresión	37
Figura 27.	Ensayo a compresión	37
Figura 28.	Comparativo de resistencia a la compresión (días de curado)	38
Figura 29.	Ensayo a flexión	39
Figura 30.	Ensayo a flexión	39
Figura 31.	Comparativo de resistencia a flexión (días de curado)	40
Figura 32.	Trabajabilidad (slump)	41
Figura 33.	Absorción (%)	42

Figura 34. Resistencia a la compresión	43
Figura 35. Resistencia a la flexión (%)	44

Resumen

Actualmente una de las preocupaciones son las veredas y parques en mal estado, estos espacios se vuelven sensibles al estar a la intemperie; volviéndose en acciones que amenazan la seguridad e integridad del público. Este problema se debe a las malas gestiones de las autoridades, las cuales dejan de lado. El objetivo de esta investigación es analizar las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado, Los Olivos-Lima. Llevándose a cabo una metodología de tipo aplicada con diseño experimental cuasiexperimental, enfoque cuantitativo y nivel de investigación explicativo. Esta investigación está compuesta por todos los adoquines peatonales como población, las mismas cantidades de 108 adoquines de muestra que se llevaron al laboratorio donde se obtuvieron resultados óptimos para ensayos de trabajabilidad, absorción resistencia a la flexión y resistencia a la compresión. Para propiedades físicas, según los ensayos realizados el valor de adición mejora la trabajabilidad y absorción. Las propiedades mecánicas, mediante resultados obtenidos presenta a 4% como porcentaje optimo. Para adoquines tipo I el óptimo porcentaje de caucho y PET para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%. El caucho y PET reciclado influye en las propiedades físico-mecánicas del adoquín peatonal positivamente.

Palabras clave: Cucho, PET, adoquín, físico mecánicas.

Abstract

Currently one of the concerns is the sidewalks and parhis in poor condition, these spaces become sensitive when they are outdoors; turning into actions that threaten the safity and integrity of the public. This problem is due to the bad management of the authorities, which they leave aside. The objective of this research is to analyze the physical-mechanical properties of the pedestrian paving stone, adding rubber and recycled PET, Los Olivos-Lima. Carrying out an applied methodology with a quasi-experimental experimental design, quantitative approach and explanatory leve lof research. This research is made up of all pedestrian pavers as a population, the same quantities of 108 sample pavers that were taken to the laboratory where optimal results were obtained for workability, absorption, flexural strength and compressive strength tests. For physical properties, according to the tests carried out, the addition value improves workability and absorption. The machanical properties, through results obtained, show 4% as the optimal percentage. For type one pavers, the optimal percentage of rubber and PET to improve the properties of the pedestrian paver is between 4% and 8%. The recycled rubber and PET influences the physical-machanical properties of the pedestrian paver positively.

Keywords: Cucho, PET, cobblestone, physical mechanics.

I. INTRODUCCIÓN

El adoquín es un material muy usado hoy en día, se sabe también que fue empleado en épocas pasadas, su origen se remonta del siglo IV a. de C. empleado por cartagineses y romanos en vías para un transporte más agradable, no es sino que hasta finales del siglo XIX este material se usa de modo funcional teniendo como característica resistencia a la rotura, al desgaste y durabilidad, ahora es común la construcción de pavimentos de asfalto y de concreto como alternativa para la circulación vehicular y peatonal, con el pasar del tiempo estos pavimentos tienden a sufrir imperfecciones por el exceso de carga de los vehículos tanto livianos como pesados. Para contrarrestar estas circunstancias es viable fusionar materiales que sirvan para la producción del adoquín y que al mismo tiempo ayuden a cuidar nuestro ambiente, el PET y el caucho serían los adecuados ya que se obtienen de envases de plástico y caucho 100% reciclables. Es de conocimiento mundial, la búsqueda de poder mejorar los suelos con nuevos métodos que reflejen la innovación humana con el fin de aumentar las propiedades que esta requiere. En los países como Colombia y el Ecuador se reutilizan estos residuos contaminantes, respectivamente procesados conocidos como migas de caucho y PET, en busca de compresión y desgaste del adoquín. Tanto las migas de caucho como el PET se están añadiendo a las mezclas para el diseño de pavimentos respaldados por estudios que demuestran su plasticidad, elasticidad generando una disminución de agrietamiento las cuales traen consigo una considerable adherencia, resultando un elemento económico y fácil de conseguir. El diseño de los adoquines se realiza con propósitos de optimizar la capacidad de resistencia a compresión, absorción, para de esta manera mejorar sus características que presentan los adoquines convencionales (Meza et al., 2019, p. 3).

El Perú no es ajeno a este tipo de vías con adoquines convencionales para tránsito peatonal, es por falta de estudios verídicos que se siguen empleando los materiales de siempre sin opciones a una mejora la cual es el cuidado de nuestro ambiente, se sabe que en lo que concierne al material requerido como las migas de caucho y PET, el Perú posee un problema grave ya que produce 276 toneladas de PET al año de los cuales el 72% se convierten en residuos en menos de un año, realizándose solamente un 22%, sin ser ajenos a los 1.7 millones de llantas, unos

45 mil toneladas de neumáticos en desuso anualmente en el Perú. Los problemas ambientales que provoca el caucho en el Perú se generan por la falta de interés en los temas relacionados con el manejo de residuos debido a la indiferencia social y político en el instante en que se trata este tema, debido a que no existe un estímulo en el procedimiento de investigación sobre la disposición final de los mismos (Farfán y Leonardo, 2018, p. 1).

Si bien es cierto que, Los Olivos es un distrito que se esfuerza en mantener sus calles limpias y su infraestructura vial en buen estado, no es ajeno a que en las calles se puedan encontrar tirados plásticos PET, llantas como también vías en deteriora que afectan y contaminan gravemente a sus pobladores. En el distrito como tal se recaudan aproximadamente unas 320 toneladas de residuos sólidos diariamente de los cuales un 15 % representa estos materiales, son estas circunstancias en las que nos encontramos las que nos llevan a innovar con nuevos productos reciclables con el fin de incorporar al adoquín, económicamente hablando esto es factible por el hecho de tener como agregados a materiales reciclados siendo estos el caucho y PET, aportando también alternativas de mejora para el medio ambiente. El Perú no cuenta con un marco legal característico para gestionar residuos sólidos particulares siendo el caso NFU, llevando consigo que la ley que rige la gestión integral de residuos controle así el tratamiento (Magallanes y Guillen, 2014).

Es por ello que, en la actual investigación se ha planteado el siguiente problema general: ¿De qué manera el caucho y PET reciclado influye en las propiedades físico-mecánicas del adoquín peatonal Los Olivos, 2023? Así mismo, los Problemas específicos: ¿En cuánto varían las propiedades físicas del adoquín peatonal adicionando caucho y PET reciclado?, ¿En cuánto varían las propiedades mecánicas del adoquín peatonal adicionando caucho y PET reciclado?, ¿Qué porcentaje de caucho y PET reciclado es el óptimo para mejorar las propiedades del adoquín peatonal?

La investigación planteada se justifica teóricamente por que presenta una nueva solución para la mejora del adoquín convencional el cual va a contribuir al progreso social, reutilizando materiales reciclados de manera que, si nos planteamos desarrollar, innovar un adoquín viable, estaremos ayudando a disminuir el crecimiento de la contaminación que estamos causando al medio ambiente.

Económicamente hablando este proyecto logra generar menos inversión en lo que concierne a materia prima el cual será sustituido en un porcentaje por material reciclado tales como miga de caucho y PET, los cuales podemos apreciar en grandes proporciones hoy en día.

Como justificación práctica este proyecto tiene como prioridad incrementar el conocimiento sobre las características físico-mecánicas del adoquín convencional, teniendo como agregados la miga de caucho y PET reciclados en su respectivo diseño de mezcla. Estos materiales reciclados tienen características de gran valor el cual pueden aportar al adoquín según estudios como: resistencia a compresión, desgaste y absorción. Metodológicamente hablando, esta se evalúa mediante instrumento de evaluación la cual está aplicada a la matriz operacional de variables, según la NTP 399.611 y NTP 399.624.

Se formula el siguiente objetivo general: Analizar las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023. asimismo, los objetivos específicos: Determinar las propiedades físicas del adoquín peatonal adicionando caucho y PET reciclado. Determinar las propiedades mecánicas del adoquín peatonal adicionando caucho y PET reciclado. Conocer el porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal.

La hipótesis general planteada es: El porcentaje del caucho y PET reciclado influye en las propiedades físico-mecánicas del adoquín peatonal positivamente Los Olivos, 2023. Asimismo, las hipótesis específicas: El porcentaje de las propiedades físicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado. El porcentaje de las propiedades mecánicas del adoquín peatonal varían significativamente, añadiendo caucho y PET reciclado. El porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%.

II. MARCO TEÓRICO

Como antecedentes nacionales en esta investigación, Fernández (2019), su objetivo fue especificar las características físico-mecánicas del adoquín convencional frente al adoquín tipo I con agregado de PET reciclado. Es un estudio científico tipo aplicado y experimental. Su población es el adoquín tipo I, para su muestra se utilizó 9 adoquines de concreto convencional y 27 con agregado PET en porcentajes diferentes. El muestreo será determinado según la NTP 399,604. Donde menciona que para para el ensayo debe ser como mínimo 3 unidades los cuales ayuden a determinar la compresión y flexión. Usando como instrumentos la ficha de evaluación, ensayos y absorción, en el ensayo de absorción el adoquín convencional sostiene un 3.68% mientras que el adoquín con PET muestra de 0.25%, 0.50%, 0.75%, teniendo (4.27, 4.25, 4.92). siendo 0.75% con mayor absorción. Los resultados de ensayos a compresión, el adoquín convencional presenta como resistencia 365.2 kg/cm2, sin embargo, los adoquines de PET con un 0.25 0.50 y 0.75% teniendo (444.64 kg/cm2 464.08 kg/cm2, 404.75 kg/cm2), los ensayos a flexión el adoquín convencional muestra una resistencia promedio a 66.29 kg/cm2 y a compresión el adoquín de PET al 0.25, 0.50 y 0.75% mostrando (444.64 kg/cm2, 464.08 kg/cm2, 404.75 kg/cm2), donde van perdiendo resistencia según se incorpora el PET. Se concluyó que estas propiedades físico-mecánicas muestran aceptación, NTP 399.611, dando como demostración que al incorporar PET es convincente, en reemplazo de material convencional.

Chavarri y Rubio (2020), en su estudio muestra como objetivo, verificar la resistencia del adoquín tipo I con agregado de miga de caucho reciclado, según la norma RNE CE.010, de pavimentos. Considerado estudio tipo experimental. La población se compone de 36 adoquines, donde la muestra signada es repartida en 9 adoquines de control, 9 muestras sustituidos por agregado fino en un 3%, 9 adoquines con un 5% y como último 9 adoquines con un 7% de miga de caucho reciclado, para este ensayo. Las herramientas empleadas fueron: materiales de laboratorio, datos de resistencia a la compresión mostraron un patrón de 349.35 kg/cm2 en 28 días, a comparación con adoquines en porcentajes con migas de caucho reciclado de 3%, 5%, 7% donde se obtuvo variaciones menores respecto al agregado fino, con 8.74% para los de 3%, reduciendo para el de 5% y 7% con un

20.08%, 34.73% del agregado de caucho reciclado, obteniendo resultados que no cumplen con la hipótesis que fueron planteadas. Dando como conclusión que las resistencias propuestas en reemplazo del agregado fino de 3, 5 y 7% no se logró resultados convincentes que favorezcan el empleo de caucho.

Sánchez (2019), en su investigación el principal objetivo fue analizar el comportamiento físico-mecánicas del adoquín con migas de caucho frente al convencional y bloques para asfalto de tipo II (vehicular liviano). Se puede apreciar que se empleó un estudio científico tipo experimental. Su población estuvo conformada de adoquines de tipo II habituales con adoquines de porcentajes diferentes con migas de caucho, el muestreo se determinará según las especificaciones de la NTP 399.611 y 399.604 el cual determina que como mínimo se debe realizar 3 unidades para cada ensayo como control de calidad, determinar la mezcla por pesos unitarios y obtener una óptima relación de agregados. Los instrumentos a emplear, materiales de laboratorio, fichas para recolección de notas, dimensiones del molde, tamices, balanza. Mostrando como resultados para compresión: 471.7 kg/cm2 (0%), 431.8 kg/cm2 (5%), 290.9 kg/cm2 (10%) y 237.4 kg/cm2 (15%); asimismo para flexión se logró: 51.8 kg/cm2 (0%), 47.4 kg/cm2 (5%), 32.0 kg/cm2 (10%) y 25.3 kg/cm2 (15%) (p. 81-83). Se concluye que al adicionar caucho reciclado en un 5, 10 y 15% a los adoquines, la unión limitada entre el concreto y el caucho reduce significativamente las resistencias tanto de flexión como de compresión.

Seguidamente los antecedentes internacionales como Morales y Pérez (2018), determinan en su estudio de tesis de la conductividad térmica, resistencia de placas y ladrillos conformados por un porcentaje de PET y cemento. Teniendo como estudio empleado cuasi-experimental. La población que se ha empleado son ensayos que son la base para comparar ladrillos y placas que cuentan con un prototipo de adoquines artesanales cosidos de tierra, basada en la norma INEN 269 se analiza la absorción, que determina la conductividad térmica, método PCG (GHP). Teniendo como instrumentos los fundamentos en principio de simetría, donde el tamaño de molde o adoquín será 28*14*17cm donde se reemplazará los porcentajes de arena por PET, donde la arena es puesta a ensayos de

granulometría, densidad según la norma INEN 249. Mediante los ensayos tenemos que los resultados son: 15.55MPA flexión, 2.267MPA absorción, 10% conductividad térmica, 0.374 W/km las cuales se hicieron en 28 días, en conclusión, el porcentaje medio de adsorción del adoquín ecológico es inferior a los adoquines tradicionales, lo que indica que contiene menos humedad. Como resultado, se mejoró con el tiempo porque los adoquines tradicionales suelen tardar entre 25 y 35 días en cocción. Se aconseja preparar ladrillos que reduzcan costes de fabricación.

Aguilar y Mamarandi (2020), su objetivo principal fue elaborar el uso de cenizas volcánicas en lugar de cemento en porcentajes de 7, 10, 20 y 30% para luego comparar sus características con los adoquines tradicionales. Podemos ver que fue una tesis de estudio cuasi-experimental. Su población escogida estuvo conformada por cubos de mortero de 50mm de borde, donde se tomó una muestra de tres adoquines de 60mm * 100mm * 200mm. Los resultados muestran que la sustitución del 105 de la composición del adoquín muestra en los resultados incremento de 7 MPa en resistencia a compresión, lo que se puede apreciar como favorable. Concluyendo que debe desarrollar un análisis costo-beneficio de dos prototipos de adoquines para definir cuál es más rentable y cual ofrece cualidades de resistencia y durabilidad requeridas para la construcción.

Gámez (2020), en su investigación de grado tuvo como propósito desarrollar adoquines de concreto adicionando polietileno con una consistencia alta (PEAD), y emplearlos en pavimentos con volúmenes bajos en tránsito vehicular. Se pude identificar que se realizó un estudio tipo experimental. Su población lo componen los adoquines patrón y los que contenían un 4 y 6% de agregado de polietileno, realizándose ensayos en laboratorio, basándose en los parámetros de la NTC 2017 adoquines de hormigón para adoquinados. Los instrumentos que se emplearon fueron conformados por fichas para recolección de datos, tamices, balanza, horno, molde etc. Teniendo resultados de adoquines con mejor margen de módulo de rotura, con una resistencia promedio a 7.79 MPa, comprado con el grupo de control con un 5.72 MPa, reflejando de esta manera para los adoquines con adición de 4% de PEAD un margen de aumento significativo en la resistencia de 36.36%, y para los adoquines con un 6% su aumento es de 3.69%, en promedio, no cumpliendo al mismo tiempo con el porcentaje requerido de absorción requerida por la norma con

un máximo de 7%, evidenciando entre 14 y 17%. Este estudio concluye mencionando que al adicionar polietileno (PEAD), la resistencia a flexo tracción cumple con los valores mínimos exigidos por la NTC, aclarando al mismo tiempo que en lo que concierne a absorción no cumple ya que esta supera el máximo de 7% establecido en la sección 4.3 de la NTC.

Los artículos de esta investigación, según Jaimes y Torres (2019), esta investigación se inspiró en la idea de que los agregados, como la miga de caucho, podrían reemplazar al material fino en la mezcla para fabricación de los adoquines. Teniendo una metodología de estudio tipo experimental. Su población son varias dosis, cuyo contenido agregado fue reemplazado en mayor o menor grado por miga de caucho reciclado. Para esta investigación los instrumentos se emplearon ensayos, apuntes de datos y materiales del laboratorio, el molde, balanza, horno y el tamiz. Teniendo como resultados para absorción, flexo tracción y compresión donde se demuestra las propiedades mecánicas de dosificaciones el cual es objeto de estudio de las réplicas convencionales. Al usar 5%, 7% y 9% de migas de caucho reciclado en lugar de arena para crear adoquines ecológicos. Concluyendo que mostraron una absorción y flexión, sobre lo requerido por la NTC, donde se demuestra que pueden ofrecer una opción de reciclaje diferente.

Meza et al. (2021), nos menciona en su artículo el desempeño a flexión del concreto reforzado con tereftalato reciclado. Podemos apreciar un estudio tipo aplicada y cuasi-experimental. Para su población tiene a los adoquines a los cuales se le examinará el desempeño a flexión del concreto reforzado con tereftalato de polietileno reciclado. Para este artículo se emplearon instrumentos como: un molde, balanza, horno, tamices el cual identificará el tamaño de agregado y agenda de apuntes. En los resultados, señala la trabajabilidad del concreto con fibras recicladas, también el control de las fibras comerciales y concreto, que fueron evaluados de acuerdo con la norma ASTM C143, reveló que la incorporación de las fibras recicladas disminuyó su capacidad de poder manipularlo según va incrementando el volumen de fibra. Se puede apreciar que las muestras que tienen menos fibra muestran una resistencia de acuerdo con el concreto Society, el residuo Re, muestra que es mayor al 30%, considerado bajo para ser considerado

un refuerzo apropiado. Concluyendo que el tereftalato de PET de botellas recicladas es un excelente material para reforzar el hormigón.

Lara et al. (2020), realizaron un análisis de sustitución de la arena por migas (caucho) derivado del reciclaje, y determinar la influencia del caucho en resistencia a compresión en ladrillos de cemento. Se realizó un estudio de tipo aplicada experimental. Su población estuvo compuesta por estudiantes de la Universidad de Zulia y bloques de concreto prototipo donde se utilizó partículas de caucho, esta investigación se ha elaborado con finalidades de hacer un análisis y evaluación en la incidencia de migas de caucho reciclado. Teniendo como instrumento el análisis de propiedades físicas y mecánicas de las migas de caucho, laboratorio de ensayos de la UPS. Como resultado la metodología aclara que fue cuantitativa ya que se hicieron bloques de concreto de muestra con 3 diseños de mezclas, con el 10%, 15% y 20%. Obteniendo características del adherido grueso y fino como tamaño mínimo y máximo respectivamente, humedad, % de absorción, peso específico y unitario. Concluyendo que, las características de lo agregado formaron la base para la mejora de las propiedades de cada uno de los bloques, hallándose en excelentes condiciones en las que se aplicaron cómo % de adherencia en la elaboración de los bloques de ladrillo.

Los artículos científicos en otros idiomas, Xie et al. (2019), tuvieron como objetivo utilizar agregados de concreto, miga de caucho reciclado en el concreto, es una forma ambientalmente responsable de disminuir los desechos sólidos los cuales tienen efectos negativos en el ambiente esto con el propósito de restablecer los recursos naturales. Se puede apreciar un estudio tipo experimental. Mostrando como población los materiales que conforman el concreto tales como: la arena, piedra, agua y cemento. Como instrumentos fue importante tener una compresión profunda del comportamiento mecánico del humo de sílice. RSRAC modificado para diseñar hormigón de caucho con filamentos de acero (RSRAC) se observaron los efectos del humo de sílice y el caucho desmenuzado en el comportamiento de fractura del RSRAC, como resultados de prueba en columna con flexión y compresión y una viga con muescas, donde los RSRAC se integran con caucho granulado con reemplazo del volumen del agregado con 0%, 5%, 10%, 15% y 20%,

son mostrados y analizados. De acuerdo con los hallazgos, la mezcla del caucho y humo de sílice tuvo un efecto de acoplamiento muy bueno sobre qué tan bien se fracturó el RSRAC. Dando como conclusión que adicionando un 3% de humo de sílice no fue tan efectiva para reducir efectos nocivos del caucho como la sustitución de un 10% de cemento a cambio de humo de sílice. Para los elementos estructurales, el PSRAC en un 5% de caucho, 10% de humo de sílice aparenta ser un material más viable en cuanto al cuidado del ambiente, si se compara con el concreto normal si se tiene en cuenta una mejora mecánica.

Keerthana et al. (2021), en su artículo, estudio de las propiedades del PET, para elaborar adoquines ecológicos, los usos de pavimentos de adoquines son perfectas para vías, calles y parques porque son fáciles de elaborar e instalar. Podemos apreciar que es un estudio tipo aplicada y cuasi-experimental. Los adoquines de concreto son la población los cuales fueron objetivo de análisis, donde se utilizó el tamaño de la muestra de 15, 25 y 35 adoquines. Los instrumentos empleados en este artículo es la información obtenida de fuentes externas e instrumentos como: fichas de apuntes, el molde, balanza, horno de Shel Lad, tamices el cual identificará el tamaño de agregado. Para esta muestra se usaron 16 adoquines. El PET, siendo el material utilizado, tiene propiedades termoplásticas que le permiten calentarse repetidamente y moldearse a diferentes formas. La mezcla se vierte en cubos de tamaño 70*70*70 mm, los cuales se dejaron secar por 24 horas; después de esto, se retiran del molde y se transfieren para analizar la prueba de compresión, para eso se utiliza la máquina UTM, que se verifica uno a la vez. El autor concluye que los adoquines de hormigón con incorporaciones de PET son menos costosos que los convencionales, también que esta estrategia de reciclaje de residuos de PET favorece el decrecimiento de la contaminación ambiental.

Wiku y Denny (2019), en su artículo de investigación, su objetivo era demostrar que la resistencia a compresión del hormigón y de los adoquines se aumentaba utilizando residuos como los plásticos (tereftalatos) procesados como agregado. Teniendo un estudio de tipo cuasi-experimental. Como población tuvo a los adoquines que fueron objetivo de análisis donde se utilizó como tamaño de muestra 15 adoquines con dimensiones de 20 * 10 * 8 cm. Los instrumentos empleados en

este proyecto son: el molde, balanza, horno de Shel Lad, tamices el cual identificará el tamaño de agregado, apuntes. Los resultados de la prueba de compresión revelan que la adición de la composición del PET ha reducido la resistencia. Los adoquines que cumplen con estándares de calidad son los de tipo C que pueden ser utilizados en vías peatonales son muestras de PB2 (25%) con resistencia a la compresión promedio de 144.5 kg/cm². Para el PB3 (50%) y PB4 (75%), especímenes de ensayo de compresión de 121.93 kg/cm². y 90.47 kg/cm² respectivamente, cumpliendo con las condiciones de los adoquines tipo D, los cuales se pueden emplear en parques y otros fines. En conclusión, dado que 4 de cada 5 especímenes en resistencia a compresión se considera favorable en pavimentación, el PET se puede usar como sustituto de mezcla para adoquines.

La teoría con respecto al caucho y PET reciclado, según Rodríguez (2003), para el caucho se ha analizado la ascendencia del volumen de la muestra y la absorción acústica de los materiales porosos y confirmar la presencia de los espesores límite encima de que si se le aumenta no supone una mejora. Este estudio continuó la combinación de la teoría y experimentación. Apoyadas en sencillas fórmulas matemáticas, que faculta mejorar la absorción acústica mediante el uso de contornos geométricos que no permiten incrementar el volumen del material utilizado. Esto es de imprescindible importancia cuando se diseñan dispositivos porque afecta no solo el material empleado, sino también la cuantía de materia prima utilizada y cómo se optimiza la geometría del dispositivo. Así mismo Muñoz (2012), el polietileno es un polímero que se crea químicamente a través de la reacción de policondensación entre el ácido tereftalato y el etilenglicol. El tereftalato se distingue por ser muy utilizado y tener densidades distorsionadas de 1.370 g/cm³ y densidades de diamantina de 1.455 g/cm³. El tereftalato es un polietileno que se crea químicamente a través de la reacción de policondensación entre el ácido tereftálico y el etilenglicol. También tiene estabilidad dimensional, rigidez, buenas propiedades de barrera y resistencia a la absorción, alta resistencia química, buena resistencia al dióxido de carbono (CO2) y es aceptable al oxígeno y la humedad.

La teoría con respecto a las propiedades físico-mecánicas del adoquín, ICONTEC (2004), precisa que la resistencia a tracción del adoquín, está

relacionada con la formación de cementación en la superficie de las moléculas de agregado, que controla esencialmente el módulo de ruptura, de acuerdo a una muestra considerable donde se encontraron correlaciones entre absorción, densidad, módulo de ruptura por flexión, resistencia a compresión y tracción indirecta (módulo de ruptura por tracción) y resistencia a la absorción. Se utilizaron adoquines para crear la muestra la cual se eligió de modo que incluyera productos que cumplieran o no con los requisitos de la norma de producto vigente al momento de la investigación. Las variables que se deben controlar para la conformidad del producto por sus características y correlaciones son: absorción, módulo de ruptura por tracción indirecta y resistencia a la abrasión por longitud de rodadura. Para el diseño de estructuras o clasificación de los adoquines en función de los rangos de densidad, las características como la densidad deben informarse como variables accesorias en lugar de características normativas.

Los conceptos de la variable caucho y PET reciclado, según Martin (2015), el caucho en su forma natural se compone por material graso, hidrocarburos, azúcares y proteínas de origen vegetal. El caucho es esencialmente un polímero de isopreno, este circula entre 80 y 95% de efectividad, dependiendo de la especie de planta. El árbol de hevea brasilienses, originario de las cuencas del río amazonas, es el más representativo de los árboles de látex, que comprende 25 especies diferentes de Euphorbiaceae. Esto según las regiones que se encuentran, se pueden localizar en diferentes especies, como el caso de Funtumia África occidental, Urceola Asia y Castilla México. De la misma manera según Castro (2008), el caucho forma parte de una variedad de especies que son esporádicas, siendo Hevea brasilienses la más notable. Las redes de líquido aceitosa de las plantas de caucho se fracturan cuando se corta su corteza, liberando un fluido lechoso con una disolución gomosa, esta sustancia se recoge en recipientes aptos para el almacenamiento y para posteriormente ser tratada y solidificada mediante coagulación, ahumado, evaporación, etc. Según Castro (2008), el plástico PET (tereftalato), es un polímero creado mediante reacciones entre ácido tereftálico los artículos científicos en otros idiomas y el poli condensado de etilenglicol, cuya fórmula es similar a la de un poliéster. El nombre técnico de la sustancia es tereftalato de polietileno. Este comenzó a utilizarse como sustancia principal en la creación de envases de bebidas y fibras textiles.

Figura 1. Heveas brasilienses
Fuente: Global Rubber Corporation S.A.C.

Figura 2. Proceso del PET Fuente: Tecnología del plástico

Los conceptos de la dimensión de las propiedades físicas de las migas de caucho y PET reciclado, según Rodríguez (2005), el estudio de la microestructura físicas y formulación de conceptos del caucho, las condiciones de curado y microestructura del polímero sin curar juegan un papel importante en las características físicas de las composiciones vulcanizadas porque afectan el sistema de la red que se forma mediante el proceso de des vulcanización. Los estudios de consistencia de entrecruzamiento se usaron como complemento a estos factores. Utilizando experimentos RMN de una doble coherencia cuántica, que nos permite describir la distribución espacial de la densidad de cruce. Por otra parte, Zúñiga

(2014), menciona que las principales características del polietileno (tereftalato) que conocemos son transparentes y cristalinos, mostrando un buen comportamiento ante la presencia de esfuerzos cortantes, alta resistencia al desgaste, buena composición química, conductividad química, anti contaminación por agentes químicos, capacidad de ser reciclado, la dureza y rigidez de su composición, capacidad de mejorar aún más su resistencia cuando se adhiere a otro material.

Los conceptos de los indicadores de dosificación de caucho y PET reciclado, para Castro (2008), existen distintos prototipos de caucho en un rango de proporciones, todos estos comparten una característica: el proceso de vulcanización, que consiste en agregar elementos químicos como es el caso del azufre al caucho y de esta manera aumentar su elasticidad por más tiempo, su impermeabilidad, resistencia al deterioro que sería de mucho tiempo, porque la combinación está diseñada para que los cauchos sintéticos garanticen la estabilidad térmica mientras que los cauchos naturales mejoran sus propiedades mecánicas. Como resultado, esta combinación de elementos favorece la adaptación y sostenibilidad a nuevos requisitos de transitabilidad. Además, Alesmar et al. (2008), el PET (tereftalato) es uno de los elementos que se distingue por ser liviano, tener una buena resistencia, transparencia y buen brillo, por ser totalmente reciclable y tener la capacidad de retener líquidos en su interior. Está compuesto por ingredientes como el petróleo crudo en un 64% un 13% de aire y un 23% de derivados de gas.

Tabla 1. Clasificación internacional del adoquín

Tipo	Desempeño
Tipo A	Componentes que interactúan con unidades dentadas para producir una condición de enclavamiento para fuerzas que actúan vertical y horizontalmente.
Тіро В	Si bien funcionan mejor cuando se mueven perpendicularmente a uno de sus ejes, ofrecen un mayor desplazamiento.
Tipo C	Tienen formas regulares, no proporcionan un buen enclavamiento para resistir los movimientos rotacionales o longitudinales.

Fuente: Elaboración propia

Figura 3. Pavimentación Fuente: InfoNegocios

Los conceptos de la variable propiedades físico-mecánicas del adoquín, para ICONTEC (2004), la resistencia del adoquín a tracción directa, que está relacionado con la formación de cimientos en la superficie del agregado, rige esencialmente el módulo de rotura. La prueba de módulo de rotura, por otro lado, asume que se aplicará una carga relativamente alta en un plano con dimensiones que se determinan utilizando el método de rectángulo inscrito. Este método mide las cargas mostradas del adoquín más no encima del área efectiva. Asimismo, Poon y Chan (2006), la adición de materiales cementantes que se agregan en las mezclas para fabricar adoquines, aumenta sus propiedades físicas como mecánicas y su resistencia a compresión, mas no necesariamente su resistencia a la absorción. También, según la Norma CE.010 Pavimentos Urbanos (2010), menciona que un asfalto de concreto pavimentado es aquel que está conformado por una base de material granular, siendo un lecho de agregado para soporte de adoquines; arena para sellar las juntas, apoyos laterales y finalmente drenaje. Están construidos para soportar el peso de personas, vehículos, que luego se transfieren a los adoquines a través del sellado de arena en las juntas.

Tabla 2. Espesor nominal y resistencia a la compresión

·	_	Resistencia a la compresión, min,		
Tipo	Espesor nominal	MPa (kg/cm²)		
	(mm)	Promedio de	Unidad	
		3 unidades	Individual	
I	40	31 (320)	28 (290)	
(Peatonal)	60	31 (320)	28 (290)	
II	60	41 (420)	37 (380)	
(Vehicular ligero)	80	37 (380)	33 (340)	
	100	35 (360)	32 (325)	
III				
(Vehicular pesado, patios industriales o de contenedores)	≥ 80	55 (561)	50 (510)	

Fuente: Norma TH010 del RNE.

Los conceptos de la dimensión de las propiedades físicas, según el Instituto de Concreto y Hormigón (2013), menciona tres tipos de adoquines, I, II y III, son reconocidos internacionalmente con cuatro caras dentadas, estos adoquines se pueden en un diagrama de causa efecto, lo que mejora las condiciones de enclavamiento frente a desplazamientos verticales y horizontales. Cuando se enfrentan a desplazamientos que son paralelos a uno de sus ejes, los adoquines tipo II frecuentemente ofrecen menos enclavamiento y permiten una mejor operación. Aunque el desarrollo de enclavamiento depende de la ubicación, los adoquines revestidos no ofrecen un enclavamiento favorable para los movimientos longitudinales o de rotación. Así mismo, la Universidad de Oviedo (2015), menciona que la absorción, se acciona especialmente por fluido líquido, siendo los más importantes conductos participaciones de los elementos porosos. La absorción real se ve afectada por la sequedad de material y las imperfecciones de agua con o sin materia extraña. Para Neville (2013), la trabajabilidad es la propiedad del hormigón que determina la facilidad de colocación y la resistencia a la segregación. Sin

embargo, afirmar simplemente que la trabajabilidad determina la facilidad de compactación y resistencia a la segregación es una descripción inadecuada de este aspecto crucial del hormigón. Además, la trabajabilidad en cualquier situación dada depende del tipo de medio de compactación, de manera similar, una trabajabilidad adecuada puede no ser suficiente para secciones inaccesibles o altamente reforzadas. Debido a estos factores, la trabajabilidad solo debe considerarse una propiedad concreta en relación con las características específicas de un tipo específico de construcción.

Tabla 3. Absorción

	Absorción, máx. (%)		
Tipo de adoquín	Promedio de 3 unidades	Unidad individual	
l y ll	6	7,5	
III	5	7	

Fuente: Véase Norma TH010 del Reglamento Nacional de Edificaciones

Los conceptos de los indicadores de las propiedades mecánicas, según Rondón y Reyes (2015), argumenta que las mecánicas, reológicas y químicas de la mezcla asfáltica son alteradas por la adición de polímeros. Por lo tanto, el propósito de usarlo es mejorar la forma en que responde a diferentes cargas y factores ambientales. Así mismo, García (2012), menciona que cuando los adoquines se someten a cargas, que dan como resultado un efecto conocido como momento de flexión, se crea tracción o resistencia a la flexión.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

3.1.1. Tipo de investigación

La investigación experimental tipo aplicada con objetivo, crear conocimiento aplicándolo de inmediato o a largo plazo a problemas sociales. El tipo de investigación aplicada es crucial porque hace uso de la información de los estudios fundamentales (Hernández et al. 2014). La actual investigación es del tipo aplicada, teniendo en cuenta que sugiere un enfoque diferente para resolver un problema social identificado, el cual elevaría el nivel de vida de la sociedad.

Enfoque de investigación

Un estudio cuantitativo, se basa en investigaciones anteriores. Usando lo cuantitativo, los patrones de conducta de la población de puede determinar con precisión y consolidar creencias que han sido formuladas lógicamente en una teoría o marco teórico (Hernández et al., 2014). El enfoque de investigación que muestra este estudio es cuantitativo ya que se caracteriza por la necesidad de variables numéricas que puedan expresar el problema de investigación. Esto conlleva a que los datos utilizados deben ser cuantificables y de esa manera saber los valores numéricos de cuanto es que incrementa o disminuye los valores de ensayos ejecutados en el laboratorio.

3.1.2. Diseño de investigación

El diseño cuasiexperimental su objetivo es probar una hipótesis causal manipulando una o más variables independientes cuando las unidades de investigación no se asignan aleatoriamente a los grupos debido a consideraciones lógicas o éticas (Vallejo et al., 2010). Asimismo, este proyecto de investigación es considera de tipo experimental, dado al manejo de la variable independiente, en la cual como mínimo se tiene una dependiente y una independiente (cuasi experimental), como es el caso de esta investigación por que se manipulara a las muestras de adoquines con 4, 6 y 8% de caucho y PET reciclado en un 50% de cada uno, el cual es representativa para llegar a las conclusiones y recomendaciones.

El nivel de la investigación:

El nivel de investigación explicativo busca describir o abordar un problema al mismo tiempo que intenta identificar sus causas. Es aquel que tiene una relación causal, se trata de responder o dar cuentas de los porqués del objeto investigado a través del tipo de investigación, que demanda una combinación de métodos analíticos y sintéticos, como también deductivo e inductivo (Hernández, 2006). El presente estudio es de nivel explicativo considerando que se evaluaron las causas y posibles fenómenos que se presentaron, con el fin de identificar que estaba causando el problema.

3.2. Variables y operacionalización:

La variable es una agrupación lógica de atributos. Por lo tanto, en estadísticas e investigación, una variable es cualquier atributo o cualidad que intenta medir, controlar o manipular en estadísticas de investigación. Una variable que se estudia en todas las investigaciones puede cambiar con el tiempo o entre conjuntos (Kerling, 1975). Tal es el caso de esta investigación donde se ha identificado dos variables, una independiente como también una dependiente, siendo una característica donde se toma varios valores dentro de un conjunto determinado cuya variación es susceptible de medición mediante estadísticas de investigación.

Variable independiente : Caucho y PET reciclado

Variable dependiente : Propiedades Físico-Mecánicas del Adoquín Peatonal

La operacionalización de variables está basada en un grupo de técnicas y métodos que autorizan medir las variables de una investigación, es una fase de separación y análisis de la variable en sus componentes que permiten medirla (Morán y Alvarado, 2010). La presente investigación que tiene como complemento la operacionalización de variables el cual según las técnicas y métodos autorizan su medición, en este caso tenemos como variable independiente al caucho y PET reciclado y como variable dependiente lo conforman propiedades físico-mecánicas del adoquín peatonal, cada uno con sus respectivas dimensiones e indicadores. (ver anexo 1)

3.3. Población, muestra y muestreo

3.3.1. Población:

La población de una investigación es un compuesto de todos los elementos ya sean personas o cosas, sobre los que la investigación espera obtener más información. En la población puede haber personas, animales y organismos que contribuyen al fenómeno que se definió y acoto en el análisis del problema de investigación el cual puede ser analizada, medida y cuantificada (Pineda et al., 1994, p 108). La población de este estudio se compone por todos los adoquines peatonales adicionando caucho y PET reciclado en un 50% de cada uno para los porcentajes de 4, 6 y 8%.

3.3.2. Muestra:

La muestra es una representación limitada de los componentes que conforman el conjunto de la población accesible. Es una porción o subconjunto de la población o universo en el que se lleva a cabo la investigación el cual comparte algunas características con otros elementos de la población, lo que permite la generalización con un conocido margen de error (Mata y Macassi 1997, p. 18). El estudio presentado en esta investigación está constituido por muestras de adoquines peatonal adicionando caucho y PET reciclado, Esta estuvo conformada por cemento, agua y agregado fino y gravilla al cual se le adiciono caucho y PET reciclado de 4, 6 y 8%, teniendo cada uno un 50% del total, trabajado con edades de 7, 14 y 28 días, dando una cantidad de 108 adoquines de muestra que se llevaron al laboratorio donde se obtuvieron resultados óptimos (ver tablas 6, 5 y 6).

Tabla 4. Ensayo de absorción

Dosificación de migas de caucho reciclado	Edad del Concreto (adoquín peatonal)		
(50%) y PET reciclado (50%)	7	14	28
0	3	3	3
4	3	3	3
6	3	3	3
8	3	3	3
Sub total	12	12	12
Total		36	

Fuente: Elaboración propia (2023).

Tabla 5. Ensayo resistencia a compresión

Dosificación de migas de caucho reciclado	Edad del Concreto (adoquín peatonal)		
(50%) y PET reciclado (50%)	7	14	28
0	3	3	3
4	3	3	3
6	3	3	3
8	3	3	3
Sub total	12	12	12
Total		36	

Fuente: Elaboración propia.

Tabla 6. Ensayo de resistencia a flexión

Dosificación de migas de caucho reciclado	Edad del Concreto (adoquín peatonal)		
(50%) y PET reciclado (50%)	7	14	28
0	3	3	3
4	3	3	3
6	3	3	3
8	3	3	3
Sub total	12	12	12
Total		36	

Fuente: Elaboración propia.

3.3.3. Muestreo:

El muestreo no probabilístico, es donde el total de las unidades que componen su población no cuentan con las mismas posibilidades a ser seleccionadas, se conoce también como muestreo por conveniencia, no siendo aleatorio, razón por la que no se sabe la probabilidad de selección de cada unidad (Pineda et al., 1994, p. 119). Esta investigación es de carácter no probabilístico por conveniencia, dado que para la cantidad en porcentaje y edad se utilizó tres muestras por conveniencia y criterio, brindando una tendencia de resultado en el laboratorio, sabiendo que si se llegaba a realizar uno o dos muestras no sería representativo para el margen de resultado que se requiere.

3.3.4. Unidad de análisis:

Es el organismo principal que se examina en un estudio. Quien o que está estudiando depende de la situación. Los individuos son la unidad de análisis más predominante en la investigación, seguido de los grupos, las organizaciones y los

artefactos sociales (Yurdusev, 1993). En esta investigación la unidad de análisis son los adoquines peatonales con adición de caucho y PET reciclado con porcentajes de 4, 6 y 8% repartidos en un 50% de cada uno, los cuales fueron analizados, medidos ya que son una parte esencial de esta investigación.

3.4. Técnicas e instrumentos de recolección de datos:

Técnicas

Las técnicas de recolección de datos son técnicas, funciones que acceden a constatar el problema propuesto de la variable estudiada en la investigación, por tal razón, el tipo de investigación diagnosticara la técnica a emplear. Las técnicas que se utilizan para recopilar datos sobre la realidad objeto de estudio se denomina instrumentos, (Bavaresco, 2001). Técnicamente hablando para esta investigación existen dos tipos de técnicas, la observación directa, donde son todos aquellos que no tuvieron resultados de laboratorio como se puede observar en esta investigación que es la dosificación de 0%, 4%, 6% Y 8%, y la observación experimental estuvo conformada por todo aquel que requirió resultados de laboratorio como son: la trabajabilidad, absorción, resistencia a la compresión y la resistencia a la flexión (ver tabla 7).

Instrumentos de recolección de datos

Un instrumento de recolección de datos, en principio es un recurso del cual un investigador se vale y acercarse a los fenómenos y sacar información. Dentro de los instrumentos se distinguen dos apariencias diferentes: forma, contenido. La forma se refiere al tipo de aproximación que establecemos con lo empírico. En cuanto al contenido ésta expresa en la especificación de datos que se necesita conseguir, por lo tanto, es una serie de ítems, los mismos indicadores que permiten medir las variables, pero que asumen ahora la forma de preguntas y puntos a observar (Sabino, 1992). De acuerdo con la investigación planteada, el instrumento de recolección de datos consiste en las herramientas de las cuales uno como investigador puede valerse para obtener información que permita desarrollar nuestro proyecto de investigación. Como principal función está extraer o construir datos de primera, como es el caso de esta investigación (ver tabla 7).

Tabla 7. Técnicas e instrumentos de recolección de datos

Indicadores	Técnicas	Instrumentos
Dosificación de 0%, 4%, 6% Y 8%	Observación directa	Ficha de recolección de datos
Densidad	Observación experimental	Ficha de resultados de laboratorio
Trabajabilidad	Observación experimental	Ficha de resultados de laboratorio
Absorción	Observación experimental	Ficha de resultados de laboratorio
Resistencia a la compresión	Observación experimental	Ficha de resultados de laboratorio
Resistencia a la flexión	Observación experimental	Ficha de resultados de laboratorio

Fuente: Elaboración propia.

Validez

En determinaciones generales la validez hace referencia al grado en que un instrumento ciertamente mide la variable la cual se quiere medir (Landis y Koch, 2010). Luego de la evaluación de resultados del procedimiento de la validez por juicio de expertos (ver anexo 4) se obtuvo un valor de índice Kappa de 1, de acuerdo con Landis y Koch, la fuerza de acuerdo es casi perfecta (ver tabla 8 y anexo 4).

Tabla 8. Escala del coeficiente Kappa

Coeficiente de Kappa	Fuerza de acuerdo
<0.00	Pobre
0.00-0.20	Leve
0.21-0.40	Justa
0.41-0.60	Moderado
0.61-0.80	Sustancial
0.81-1.00	Casi perfecta

Fuente: Landis y Koch (2010)

Confiabilidad de los instrumentos

La confiabilidad de instrumentos es parte de cálculos que reflejan un valor que está entre 0 y 1, le corresponden las siguientes valoraciones: 0.81 a 1.00 muy alta, 0.61 a 0.80 alta, 0.41 a 0.60 moderada, 0.21 a 0.40 baja y 0.01 a 0.20 muy baja, para que el instrumento sea viable debe estar por encima del valor de 0.61; entretanto más cerca esté del 1 será más confiable en su utilización con relación a las variables estudiadas (Ruiz, 2002). Cuando hablamos de confiabilidad, nos referimos al grado en el que un mecanismo puede realizar resultados coherentes, esta investigación estuvo enfocada en la confiabilidad con el objetivo de brindar estudios de laboratorios confiables, los cuales brindaron resultados verídicos, del mismo modo respecto a las firmas y sellos que esta requirió.

3.5. Procedimientos:

Los procedimientos son métodos compuestos por pasos precisos y objetivos que se deben seguir para concluir con una tarea. El proceso utilizado para llevar a cabo una acción u obtener un resultado se conoce como procedimiento. Este está organizado de acuerdo con los pasos que deben tomarse para lograr el objetivo establecido (Lehrer, 2022). Todo tipo de documentación requiere de un exhaustivo procedimiento y esta investigación no es ajena a ello, de este modo se detallan cada uno a continuación.

- Búsqueda de información: fue posible indagar, analizar en su mayoría las investigaciones ya existentes con el fin de una preparación para la elaboración de la investigación actual. Para poder adquirir este conocimiento se debió tener referencias de las teorías que contienen los manuales, normas, reglamentos, así como también metodologías empleadas.
- Recopilación de datos de los aditivos: este punto de la investigación consiste en recopilar información obtenida en la construcción basada en la dimensión de los adoquines. Según el porcentaje de caucho y PET reciclado como agregado según la normativa peruana.
- Adquisición de materiales para elaboración de los adoquines: para el caso de los adoquines patrón y porcentajes requeridos para los que tendrán aditivos se identificó una distribuidora que contaba con materiales respaldados por estándares de calidad que se requiere.

- Adquisición de del caucho y PET: el consumo exhaustivo de estos materiales o productos que estos llevan consigo está catalogado en grandes proporciones, como es el caso del caucho que un solo neumático tiene una vida útil de 40 a 50 mil km de recorrido, y si hablamos de PET pues el Perú produce 1.4 millones de toneladas anuales. Los puntos identificados para la recolección de estos materiales fueron: los puntos de acumulación de desechos en los olivos.
- ➤ Fabricación de adoquines: para realizar la fabricación de los adoquines de tipo I (peatonal) se tebo el diseño de mezcla según rige la norma E.070 Albañilería, la norma CE.010 pavimentos urbanos y la NTP 399.611.
- ➤ Laboratorio y ensayos: el carácter requerido para esta investigación es confiabilidad, es por ello que se cuenta con un laboratorio que respalde cada uno de los ensayos que se tiene identificado en los indicadores.
- ➤ Resultados: para este punto que contiene a resultados, se analiza e interpreta los datos de ensayos que se obtuvieron en el laboratorio, cabe resaltar que estos adoquines están formados por muestra patrón y los que tienen incorporación de aditivos que se determinó en la investigación.
- ➤ Conclusiones: esta investigación se compromete a brindar conclusiones verídicas, según resultados de los ensayos hechos en el laboratorio.
- ➤ Recomendaciones: de igual manera, las recomendaciones de esta investigación son propuestas con mayor relevancia a partir de los resultados de laboratorio.

3.6. Método de análisis de datos:

La estadística descriptiva son datos, valores o puntajes que se obtuvieron para cada variable. A esto le sigue una descripción general de una amplia variedad de técnicas para organizar, extraer información y modelar datos, las cuales están especialmente dirigidas al uso en investigación (Fernández et al., 1986). En consecuencia, estadísticamente esta investigación mediante métodos de análisis y ya con los resultados obtenidos del laboratorio describe los porcentajes de los indicadores que se ha identificado de cada variable, esto con diferencias del adoquín convencional, basados en estadísticas descriptivas.

3.7. Aspectos éticos:

Un comité de ética universitaria o departamental evalúa y aprueba un conjunto claro de pautas y estándares para la ética de la investigación que suele regirse en el ámbito académico. Este proceso de análisis es un paso fundamental en los trámites previos a la aprobación de un proyecto de investigación, sin embargo, debido a que es uno de los pocos mecanismos disponibles para evaluar los estándares éticos de las investigaciones en este campo, una serie de métodos cuestionables logran eludir este análisis (Humphreys, 2015). Esta investigación se fundamenta de acuerdo con los valores éticos y morales, la originalidad y sinceridad. Además, se lleva a cabo de acuerdo con las recomendaciones de expertos, contando con resultados verídicos. En cuanto a la estructura organizada de la investigación. Esta se realizó de acuerdo con las limitaciones establecidas por la UCV. En cuanto a las citas extraídas y referencias estilo ISO 690 y690-2 Adaptación de international Organization for Standardization (ISO), evitando cualquier forma de falsificación o plagio. Esta investigación es un enfoque alternativo para lograr que la sociedad tenga una alta calidad de vida.

IV. RESULTADOS

4.1. Descripción de la zona de estudio

Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación política

La presente investigación fue realizada en el distrito los Olivos, provincia de Lima-Lima.

Figura 4. Mapa político del Perú Fuente: Google Maps

Figura 5. Lima

Ubicación del proyecto

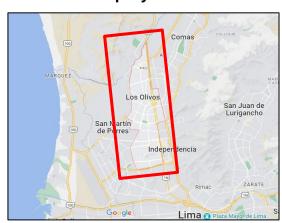


Figura 6. Distrito Los Olivos Fuente: Google Maps

Limites

Norte : Con el Distrito de Puente Piedra.

Sur : Con el Distrito de San Martín de Porres.

Este : Con los Distritos de Comas e Independencia.

Oeste : Con el Distrito de San Martín de Porres.

Ubicación geográfica

Los Olivos tiene como coordenadas geográficas: Latitud Sur 11°,58". 13" y Oeste 77°, 04, 26", un área próxima a los 18.25 km², con Altitud Media los 75 m.s.n.m. Según la INEI el 2023 cuenta con 366 751 habitantes, de los cuales 182 491 son hombres y 184 260 mujeres. Con una densidad de 17 856,66 hab/km² (Municipalidad Los Olivos, 2018).

Clima

El área del distrito de Los Olivos posee un clima, en tiempos lluviosos es nublado, la época seca es ventosa y nublada, siendo caliente y intransigente el año entero. Su temperatura regularmente varía de 23 °C a 34 °C bajando rara vez a menos de 21 °C, sube a más de 36 °C (Municipalidad Los Olivos, 2018).

4.2. trabajos preliminares

Obtención de las fibras de caucho y PET reciclado

Caucho reciclado

Figura 7. Trituración del caucho Fuente: Elaboración propia (2023)

Figura 8. Migas de caucho Fuente: Elaboración propia (2023)

Para la adquisición de las fibras de caucho fue necesario salir a las calles del distrito Los Olivos en busca de llantas para el reciclado, las cuales se pudo encontrar fácilmente, luego se procedió con su limpieza respectiva para después pasarlo por la máquina trituradora, teniendo como resultados las migas de caucho requerido para la investigación.

PET reciclado

Figura 9. Trituración del PET Fuente: elaboración propia (2023)

Figura 10. PET (tereftalato) Fuente: elaboración propia (2023)

Para la adquisición del PET (tereftalato-polietileno), en este caso su recolección fue compartida entre el reciclaje en casa y las calles del distrito Los Olivos, reciclando de esta manera lo necesario con facilidad, continuamente se procedió con su limpieza adecuada para pasarlo por la máquina trituradora y tener el PET reciclado necesario para la investigación.

Ensayos de laboratorio

En primera instancia, se realizar ensayos y acreditaciones a las clasificaciones de los agregados en el laboratorio, realizándose los ensayos requeridos los cuales son: granulometría de agregados (arena y gravilla), contenido de humedad, pesos unitarios, pesos específicos y absorción, equivalente de arena. Para a ver iniciado con la fabricación (elaboración) de los adoquines y realizar las pruebas físicas y mecánicas como resistencia a flexión y compresión, los ensayos realizados se rigieron a las normas ACI y la NTP.

Arena

Figura 11. Granulometría del agregado fino (Tamiz) Fuente: Elaboración propia (2023)

Figura 12. Granulometría del agregado fino cuarteo

Fuente: Elaboración propia (2023)

Tabla 9. Análisis granulométrico de la arena

TAMIZ	ABERTURA	PESO	PORCENTAJE				DESCRIPCION D	E I A MIJESTRA	
ASTM	mm	Retenid.	Retenido	Acumul.	Pasante			DESCRIPCION D	E LA MUESTRA
3"	76.200								
2 1/2"	63.000							Peso húmedo	g
2"	50.000							Peso seco	980.00 g
1 1/2"	37.500								<u></u>
1"	25.000								
3/4"	19.000							Contenido de humedad	1.2 %
1/2"	12.500							Módulo de fineza	2.55
3/8"	9.500				100.0	100	100		
1/4"	6.350								
# 4	4.750	35.34	3.61	3.61	96.39	95	100		
# 8	2.360	88.50	9.03	12.64	87.36	80	100		
# 10	2.000								
# 16	1.180	105.20	10.73	23.37	76.63	50	85		
# 20	0.840								
# 30	0.600	255.60	26.08	49.45	50.55	25	60		
# 40	0.420							Observaciones	
# 50	0.300	235.00	23.98	73.43	26.57	10	30		
# 100	0.150	185.30	18.91	92.34	7.66	2	10		
# 200	0.075	22.97	2.34	94.68	5.32				
>200		52.09	5.32	100.00	0.00				

Fuente: Elaboración propia

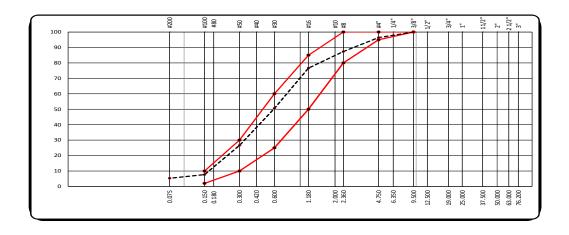


Figura 13. Margen granulométrico pasado por Tamiz de la arena Fuente: Elaboración propia

En la clasificación de la arena, se puede apreciar el análisis de granulometría máximo nominal de 3/8", asimismo se tuvo a la malla N°4 como máximo, un módulo de fineza de 2.55. Se argumenta que el material utilizado para fabricar los adoquines se ajusta a los términos que define la NTP400.012:2013. Análisis granulométrico del agregado fino, grueso y global (ver tabla 9).

Tabla 10. Ensayos de la arena

Ensayo	1	2	3	Prom	Min	Max
% de Humedad natural	1.3	1.3	1.5	1.4%		4.00%
Equivalente de arena %	64.7	66.7	64.7	66.0%	60.0%	75.0%
P.U suelto (kg/m3)	1418.9	1417.1	1417.5	1418		
P.U compactado (kg/m3)	1687.8	1684.2	1686.0	1686		
P.E bulk (base seca) (g/cc)	2.664	2.670		2.667		
P.E bulk (base saturada) (g./cc)	2.704	2.719		2712		
P.E aparente (base seca) (g./cc)	2.776	2.807		2.792		
% de absorción	1.5	1.8		1.7		

Fuente: Elaboración propia

Asimismo, se observar según la descripción de arena, una humedad natural de 1.4%, equivalente de arena de 66.0% y como peso suelto y compactado de 1418 kg/m3, 1686 kg/m3, también un peso bulk de 2667 g/cc y con una absorción de agua de 1.7%. Argumentando que el material empleado en la fabricación de adoquines cumple con los términos que define la NTP400.012:2013. Análisis granulométrico del agregado fino, grueso y global (ver tabla 10).

Gravilla

Figura 14. Granulometría de la gravilla (Tamiz)

Fuente: Elaboración propia (2023)

Figura 15. Granulometría de la gravilla cuarteo

Fuente: Elaboración propia (2023)

Tabla 11. Análisis granulométrico de la gravilla

TAMIZ	ABERTURA	PESO		PORCENTAJE		шиел	`"o"	DESCRIPCION	DE LA MUESTRA
ASTM	mm	Retenid.	Retenido	Acumul.	Pasante	HUSO "8"		DESCRIPCION DE LA MOESTRA	
3"	76.200								
2 1/2"	63.000							Peso húmedo	g
2"	50.000							Peso seco	1500.00 g
1 1/2"	37.500								
1"	25.000								
3/4"	19.000							Contenido de humedad	0.4 %
1/2"	12.500				100.0			Módulo de fineza	5.61
3/8"	9.500				100.0	85	100		
1/4"	6.350	400.0	26.7	26.7	73.3				
#4	4.750	659.0	43.9	70.6	29.4	10	30		
#8	2.360	303.0	20.2	90.8	9.2	0	10		
# 10	2.000								
# 16	1.180	72.0	4.8	95.6	4.4				
# 20	0.840								
# 30	0.600								
# 40	0.420							Observaciones	
# 50	0.300								
# 100	0.150								
# 200	0.075								
>200		66.0	4.4	100.0	0.0				

Fuente: Elaboración propia

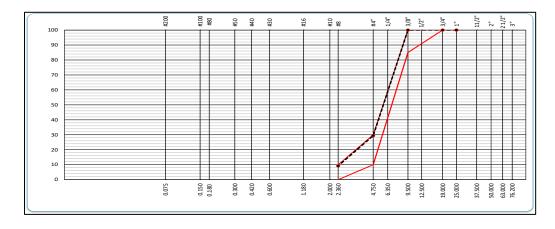


Figura 16. Margen granulométrico pasado por Tamiz de la gravilla Fuente: Elaboración propia

En la clasificación del material gravilla, se puede apreciar un análisis de granulometría máximo nominal de 1/2", asimismo se tuvo a la malla 3/8" como máximo, un módulo de fineza de 5.61. Se argumenta que el material utilizado para fabricar los adoquines se ajusta a los términos que define la NTP400.012:2013. Análisis granulométrico del agregado fino, grueso y global (ver tabla 11).

Tabla 12. Contenido de humedad, equivalente de gravilla%, peso unitario suelto, compactado y gravedad especifica y absorción

gravedad y gravedad eepeemed y absorbien						
Ensayo	1	2	3		Prom:	Men-Igu
% de Humedad natural	0.4	0.5	0.4	0.4	0.4%	≤ 1.00%
P.U suelto (kg/m3)	1447.0	1443.8	1446.0	1441.7	1445 kg/m3	
P.U compactado (kg/m3)	1520.6	1516.0	1520.1	1518.5	1519 kgm3	
P.E bulk (base seca) (g/cc)	2.612	2.609			2.611	
P.E bulk (base saturada) (g./cc)	2.637	2.633			2.635	
P.E aparente (base seca) (g./cc)	2.680	2.673			2.677	
% de absorción	1.0	0.9			0.9%	
% desgaste por abrasión	19.8	19.7			19.75%	

Fuente: Elaboración propia

Asimismo, se aprecia según la descripción de material de gravilla, una humedad natural de 0.4%, asimismo con peso suelto y compactado de 1445 kg/m3 y 1519 kg/m3, también el peso bulk de 2.611 g/cc, con absorción de agua de 0.9% y una abrasión por desgaste de 19.75%. Argumentando que el material empleado en la fabricación de adoquines cumple con los términos que define la NTP400.012:2013. Análisis granulométrico del agregado fino, grueso y global (ver tabla 12).

4.3. Propiedades físicas del caucho y PET reciclado

Densidad

3356

Figura 17. Densidad del caucho suelto y compactado más molde Fuente: Elaboración propia (2023)

Figura 18. Densidad del PET suelto y compactado más molde Fuente: Elaboración propia (2023)

Tabla 13. Densidad suelto y compactado del caucho y PET (promedios)

Ensayo	Caucho kg/m3	PET kg/m3
Densidad suelta (kg/m3)	145	188
Densidad Compactada (Kg/m3)	167	234

Fuente: Elaboración propia

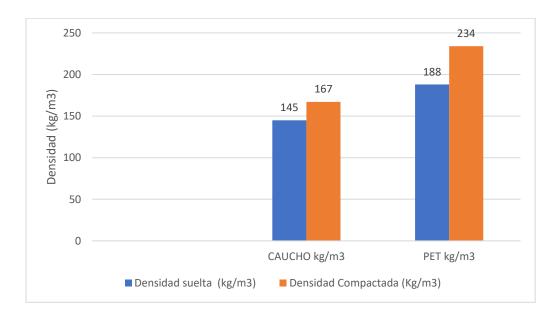


Figura 19. Comparativo de densidad del caucho y PET Fuente: Elaboración propia

Se aprecia en la tabla 13 la densidad del caucho y PET, donde se tiene como resultados para el caucho suelto y compactado de 145 kg/m3 y 167 kg/m3, del mismo modo resultados para el PET suelto y compactado de 188 kg/m3 y 234 kg/m3, también en la figura 19 se observa el comparativo de densidad. Por lo tanto, al apreciar los resultados se observa que las densidades tanto de caucho como del PET varía significativamente.

4.4. Desarrollo por objetivos

Objetivo específico 1: Determinar las propiedades físicas del adoquín peatonal adicionando caucho y PET reciclado.

Propiedades físicas

Trabajabilidad

MANUALI LA PREFINITA
PARTICIPATO PER
PARTICIPA

Figura 20. Trabajabilidad M. patrón Fuente: Elaboración propia (2023)

Figura 21. Trabajabilidad en 4%, 6% y 8% Fuente: Elaboración propia (2023)

Tabla 14. Trabajabilidad "SLUMP"

Trabajabilidad consistencia "slump" (pulgadas) (promedios)					
Ensayo	Patrón	4% caucho y	6% caucho y	8% caucho y PET	
Consistencia Seca	0.9	1.1	1.2	1.3	

Fuente: Elaboración propia

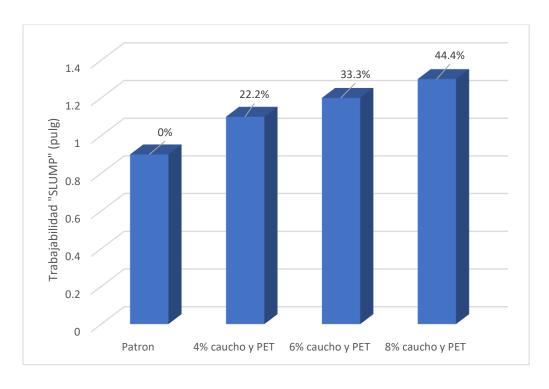


Figura 22. Comparativo de trabajabilidad

Fuente: Elaboración propia

Los resultados obtenidos después de una correcta ejecución de ensayos de prueba de "SLUMP", trabajabilidad se aprecia en el gráfico para el patrón 0.9 pulgadas de consistencia, no obstante, al adicionar 4% caucho y PET se alcanza 1.1 pulgadas de consistencia con un aumento del 22.2% respecto a la mezcla patrón, también al adicionar 6% de caucho y PET se tiene 1.2 pulgadas de consistencia con un aumento del 33.3% respecto a la mezcla patrón y finalmente al adicionar 8% de caucho y PET nos da 1.3 pulgadas de consistencia con un aumento del 44.4% respecto a la mezcla patrón. Se determina que al adicionar caucho y PET de 4,6 y 8% aumenta la trabajabilidad y además cumplen según el ASTM C143 que especifica que para una consistencia seca debe estar entre 0 y 2 pulgadas (ver tabla 14).

Absorción

Figura 23. Ensayo de absorción Fuente: Elaboración propia (2023)

Figura 24. Margen de absorción Fuente: Elaboración propia (2023)

Tabla 15. Porcentaje de absorción

Absorción (promedio %)					
Patrón 4% Adición 6% Adición 8% Adición					
7 días	2.07	3.08	3.81	4.34	
14 días	2.22	2.96	3.77	4.39	
28 días	2.23	3.08	3.72	4.32	
Promedio (%)	2.17%	3.04%	3.76%	4.35%	

Fuente: Elaboración propia

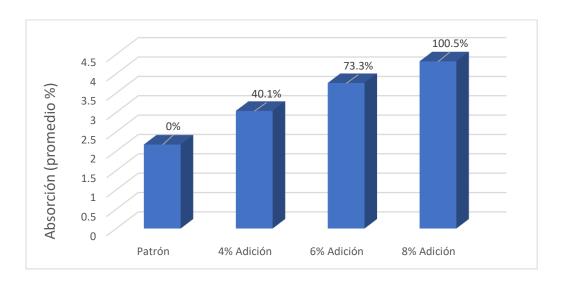


Figura 25. Resultados de absorción

Fuente: Elaboración propia

Los resultados obtenidos después de una correcta ejecución de ensayos de absorción se observar en el gráfico que la muestra patrón tiene una absorción de

2.17%, mientras que al adicionar un 4% de caucho y PET este incrementa a 3.04% de absorción con un aumento de 40.1% con respecto a la muestra realizada en primera instancia, asimismo al adicionar 6% caucho y PET tiene un aumento a 3.76% de absorción con un aumento de 73.3% con respecto a la muestra realizada en primera instancia, finalmente al adicionar 8% de caucho y PET se aprecia un incremento a 4.35% de absorción con un aumento de 100.5% respecto a la muestra natural. Analizando resultados de los adoquines patrón y al adicionar caucho y PET en porcentajes antes mencionados, estos están cumpliendo con lo requerido por la NTP 399.611 la cual menciona que la absorción máxima en porcentaje para adoquines tipo I debe ser de 6% para los de promedio de 3 unidades y hasta 7.5% para unidad individual el cual es el caso de esta investigación (ver tabla 15).

Objetivo específico 2: Determinar las propiedades mecánicas del adoquín peatonal adicionando caucho y PET reciclado.

Propiedades mecánicas

Resistencia a compresión

ANALISIS DE LAS PROPIEDADES FISÍCO-MECANICAS DEL RODAULA PERTONAL, ADICIDNANDO CAUCHO Y PET RECICLADA LOS OLIVOS, 2023 DISEÑO: 8% CRUCHO Y PET COMPRESIÓN IH DIAS OCADA ANALAZAR DIMMY

AUTOR: ONVOLA CALAZAR DIMMY

6 oct. 2023 4:22:37 p. m. 250 Jr. Los Alamos Provincia de Lima

Figura 26. Ensayo a compresión Fuente: elaboración propia (2023)

Figura 27. Ensayo a compresión Fuente: elaboración propia (2023)

Tabla 16. Resistencia a la compresión

Resistencia a compresión (promedio kg/cm2)				
7 días 14 días 28 días				
Patrón	205.0	283.8	317.5	
4% Adición	206.9	287.0	319.3	
6% Adición	204.0	282.6	317.7	
8% Adición	197.5	276.6	308.7	

Fuente: Elaboración propia

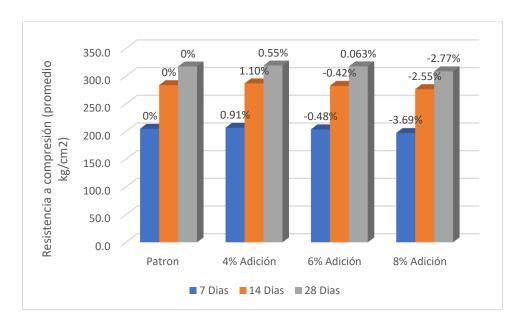


Figura 28. Comparativo de resistencia a la compresión (días de curado) Fuente: Elaboración propia

Los datos de los ensayos de los adoquines peatonales patrón con dimensiones de 6cm*10cm*20cm, y con caucho y PET de 4, 6 y 8% de adición, a las edades de 7, 14 y 28 días, se muestran en la tabla 28 los valores obtenidos tras el apropiado empleo de la prensa de sistema digital modelo MC-160, para concreto, como resultados para 7 días de curado el patrón obtuvo un resultado de resistencia de 205 kg/cm2, mientras que al adicionar 4% de caucho y PET respecto a la muestra patrón este incrementa un 0.91% (206.9 kg/cm2), asimismo que al adicionar 6% de caucho y PET respecto a la muestra patrón este disminuye un 0.48% (204.0 kg/cm2), por último al adicionar 8% de caucho y PET respecto a la muestra patrón este desciende en un 3.69% (197.5 kg/cm2), Se tiene también como resultados para 14 días donde el patrón obtuvo un resultado de resistencia compresión de 283.8 kg/cm2, mientras que al adicionar 4% de caucho y PET respecto a la muestra patrón este incrementa en un 1.10% (287.0 kg/cm2), asimismo al adicionar 6% de caucho y PET respecto a la muestra patrón este disminuye en un 0.42% (282.6 kg/cm2), del mismo modo al adicionar 8% de caucho y PET respecto a la muestra patrón este esté desciende en un 2.55% (276.6 kg/cm2), por último como resultados para 28 días de curado el patrón obtuvo un resultado de resistencia de 317.5 kg/cm2, mientras que al adicionar 4% de caucho y PET respecto a la muestra patrón este incrementa en un 0.55% (319.3 kg/cm2), asimismo al adicionar 6% de caucho

y PET respecto a la muestra patrón este incrementa en un 0.063% (317.7 kg/cm2), por último al adicionar 8% de caucho y PET respecto a la muestra patrón este disminuye en un 2.77% (308.7 kg/cm2). Se determina que los adoquines con adición de caucho y PET en 4 y 6% según la muestra patrón se incrementa su resistencia a la compresión sin embargo al adicionar 8% esta disminuye respecto al patrón, los adoquines con caucho y PET con curado de 28 días se encuentran dentro del promedio mínimo requerido por la NTP 399.611, para adoquines tipo I peatonal de 28 (MPa) (290 kg/cm2) (ver tabla 16).

Resistencia a flexión

ANALISIS DE LAS PROPIEDADES
FISÍCO-MECANICAS DEL ADOBUÍN
PEATONAL, ADICIONANDO CAUCHO
Y PET RECICLADO LOS OLIVOS, 2023
DISEND: 8% CAUCHO Y PET
FLEXION IM DIAS
OCAO23
AUTOR: DÁVILA SALAZAR DIMMY

6 oct. 2023 4:21:28 p. m.
250 Jr. Los Alamy
Carabayllo
Provincia de Lima

Figura 29. Ensayo a flexión Fuente: elaboración propia (2023)

Figura 30. Ensayo a flexión Fuente: elaboración propia (2023)

Tabla 17. Resistencia a la flexión

Resistencia a flexión (promedio kg/cm2)				
	7 días	14 días	28 días	
Patrón	42.4	47.6	50.5	
4% Adición	43.3	48.6	51.7	
6% Adición	42.0	47.4	49.9	
8% Adición	39.8	42.7	47.3	

Fuente: Elaboración propia

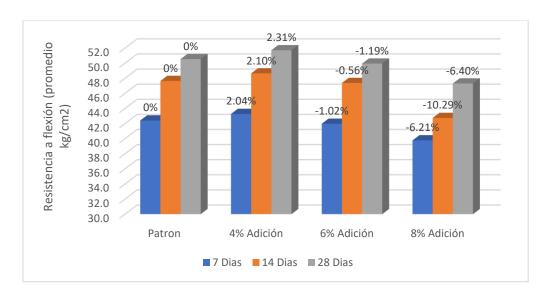


Figura 31. Comparativo de resistencia a flexión (días de curado) Fuente: Elaboración propia

Los datos de los ensayos de resistencia a flexión de adoquines peatonales patrón con dimensiones de 6cm*10cm*20cm, y adición de caucho y PET de 4,6 y 8% a las edades de 7, 14 y 28 días se muestran en la tabla 17 donde se presentan los valores tras un apropiado empleo de la prensa de sistema digital modelo MC-160, para concreto, como resultados para 7 días de curado la muestra inicial obtuvo un resultado de resistencia de 42.4 kg/cm2, mientras que al adicionar 4% de caucho y PET respecto a la muestra patrón este incremente en un 2.04% (43.3 kg/cm2), asimismo al adicionar 6% de caucho y PET respecto a la muestra patrón este disminuye un 1.02% (42.0 kg/cm2), por último al adicionar 8% de caucho y PET respecto a la muestra patrón este desciende en un 6.21% (39.8 kg/cm2), se tiene también como resultados para 14 días de curado, para el primer ensayo de (0%) 47.6 kg/cm2, mientras que al adicionar 4% de caucho y PET respecto a la muestra patrón este incrementa en 2.10% (48.6 kg/cm2), asimismo al adicionar 6% de caucho y PET respecto a la muestra patrón este disminuye un 0.56% (47.4 kg/cm2), por último al adicionar 8% de caucho y PET respecto a la muestra patrón este esté desciende en un 10.29% (42.7 kg/cm2), por último como resultados para 28 días de curado la muestra patrón obtuvo un resultado de resistencia de 50.5 kg/cm2, mientras que al adicionar 4% de caucho y PET respecto a la muestra patrón este incrementa un 2.31% (51.7 kg/cm²), asimismo al adicionar 6% de caucho y PET respecto a la muestra patrón este desciende un 1.19% (49.9 kg/cm2), por último al

adicionar 8% de caucho y PET respecto a la muestra patrón este disminuye en un 6,40% (47.3 kg/cm2) de resistencia, empleando la prensa de sistema digital modelo MC-160, para concreto. Se determina que los adoquines con caucho y PET de 4% según la muestra patrón esta incrementa su resistencia a la flexión sin embargo al adicionar 6 y 8% disminuyen, cumpliendo para 4% con la resistencia a flexión mínimo requerido por la NTP 339.078:2012 y la ASTM C78 de ensayos a flexión para adoquines de 5 (MPa) (50.99 kg/cm2) (ver tabla 17)

Objetivo específico 3: Conocer el porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal.

Propiedades físicas

Trabajabilidad

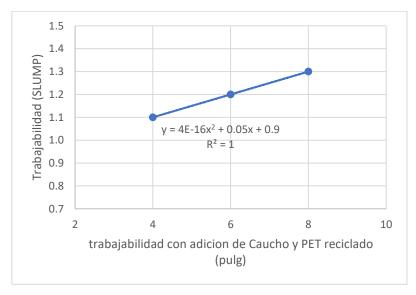


Figura 32. Trabajabilidad (slump)

Fuente: Elaboración propia

Tabla 18. Porcentaje optimo trabajabilidad (pulg)

х	у
4	1.10
6	1.20
8	1.30

Fuente: Elaboración propia

Respecto a las propiedades físicas del objetivo específico 3 para la trabajabilidad se aborda con los ensayos de 28 días de curado de los adoquines ya que cumplen con un mejor margen de estudio, de esta manera según resultados obtenidos de SLUMP se aprecia que al adicionar caucho y PET reciclado en un 8% tiene 1.3 pulg, mostrándose mejor que al adicionar un 4% con 1.1 pulg de trabajabilidad, según el ASTM C143 que especifica que para una consistencia seca debe estar entre 0 y 2 pulg (ver figura 32 y tabla 18).

Absorción

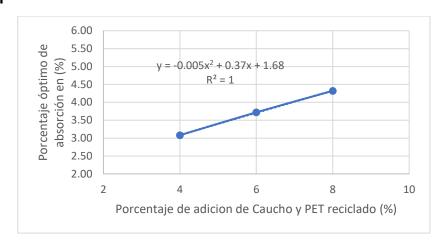


Figura 33. Absorción (%) Fuente: Elaboración propia

Tabla 19. Porcentaje óptimo de absorción

х	y
4	3.08
6	3.72
8	4.32

Fuente: Elaboración propia

Al abordar el porcentaje óptimo de absorción se observa que respecto a la muestra esta incrementa según se adiciona, teniendo para los adoquines con un 4%, 3.08% de absorción y para los que tienen un 8% de adición registra 4.32% de absorción, cumpliendo con NTP 399.611 que menciona que la absorción máxima en porcentaje para adoquines tipo I debe ser hasta 7.5% para unidad individual el cual es el caso de esta investigación (ver figura 33 y tabla 19).

Propiedades mecánicas

Resistencia a la compresión

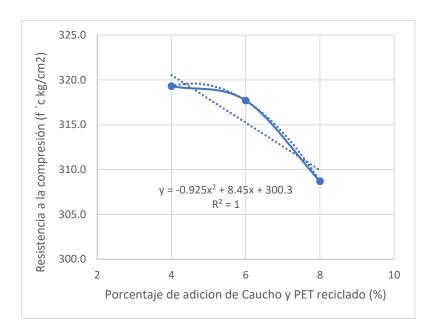


Figura 34. Resistencia a la compresión

Fuente: Elaboración propia

Tabla 20. Porcentaje óptimo de resistencia a la compresión

x	у
4	319.3
5	319.4
6	317.7
8	308.7

Fuente: Elaboración propia

En relación a las propiedades mecánicas del objetivo específico 3 para resistencia a la compresión se aborda del mismo modo con los ensayos de 28 días de curado de los adoquines ya que cumplen con un mejor margen de estudio, es por ello que al abordar este estudio los resultados adquiridos se evidencia en la curva de tendencia que adicionando caucho y PET en un 5% tiene el mejor porcentaje óptimo de compresión con 319.4 kg/cm2, según la NTP 399.611, el promedio mínimo requerido para adoquines tipo I peatonal de 28 (MPa) (290 kg/cm2).

Resistencia a la flexión

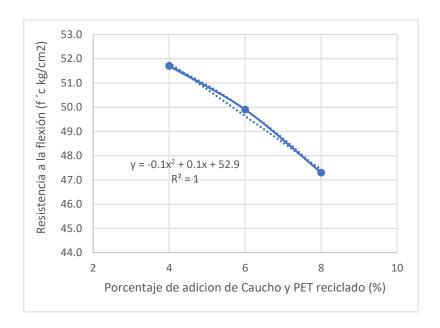


Figura 35. Resistencia a la flexión (%)

Fuente: elaboración propia (2023)

 Tabla 21.
 Porcentaje optimo resistencia a la flexión

, ,	
x	у
4	51.7
6	49.9
8	47.3

Fuente: elaboración propia (2023)

En relación a las propiedades mecánicas y abordando ensayos de 28 días de curado de adoquines que cumplen con un mejor margen de estudio, se evidencia en la curva de tendencia que al adicionar caucho y PET en un 4% tiene el mejor porcentaje óptimo de flexión con 51.7 kg/cm2, y luego para 6 y 8% muestra una disminución con 49.9 kg7cm2 y 47.2 kg/cm2. Cumpliendo 4% con la resistencia a flexión mínimo requerido de la NTP 339.078:2012 y ASTM C78 de ensayos a flexión para adoquines de 5 (MPa) (50.99 kg/cm2) el ensayo de 4% (ver figuras 35 y tabla 21).

4.5. Contrastación de hipótesis

Contraste de hipótesis: Caucho y PET reciclado, propiedades físicas del adoquín peatonal

Para la contrastación se plantearon las siguientes hipótesis:

H_o: Las propiedades físicas del adoquín peatonal no varían significativamente, adicionando caucho y PET reciclado

H_a: Las propiedades físicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado

Trabajabilidad

De acuerdo a la figura 22 y 32 se evidencia que la trabajabilidad de acuerdo a la muestra patrón y adición en 4, 6 y 8% esta incrementa, siendo la de 8% que representa al mejor contenido óptimo para este ensayo con 1.3 pulgadas, que según el ASTM C143 especifica que para una consistencia seca debe estar entre 0 y 2 pulg (ver tabla 15 y 18).

Presentación tabla de significancia:

Tabla 22. Significancia de trabajabilidad

Escala	Parámetros
0 - 0.2	Muy significativo
0.21 - 1.0	Significativo
1.1 - ≥	No significativo

Fuente: elaboración propia (2023)

Tabla 23. Escala de significancia

Adición	Margen	Escala	Parámetros
0	0.9		
4	1.1	0.2	Muy significativo
6	1.2	0.3	Significativo
8	1.3	0.4	Significativo

Fuente: elaboración propia (2023)

Absorción

Abordando la absorción podemos evidenciar en la figura 23 y 33 que, de acuerdo a la muestra estándar y adiciones de 4, 6 y 8%e esta asciende, teniendo el 8% una mayor absorción con un 4.32%. cumpliendo con NTP 399.611 quien menciona que la absorción máxima en porcentaje para adoquines tipo I debe ser de hasta 7.5% para unidad individual (ver tabla 16 y 19).

Presentación tabla de significancia:

Tabla 24. Significancia de absorción

Escala	Parámetros
0 - 2	Muy significativo
2 - 7.5	Significativo
7.5 - ≥	No significativo

Fuente: elaboración propia (2023)

Tabla 25. Escala de significancia

Adición	Margen	Escala	Parámetros
0	2.17		
4	3.04	0.87	Muy significativo
6	3.76	1.59	Muy significativo
8	4.35	2.18	Significativo

Fuente: elaboración propia (2023)

Por consiguiente, se rechaza la hipótesis nula (H_o) y se acepta la hipótesis alterna (H_a), demostrando que las propiedades físicas del adoquín peatonal varían significativamente aplicando caucho y PET reciclado.

Contraste de hipótesis: Caucho y PET reciclado, propiedades mecánicas del adoquín peatonal

Para la contrastación se plantearon las siguientes hipótesis:

H₀: Las propiedades mecánicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado

H_a: Las propiedades mecánicas del adoquín peatonal no varían significativamente, adicionando caucho y PET reciclado

Resistencia a la compresión

Se puede constatar en la figura 28 que de acuerdo a la muestra estandar con 317.5 kg/cm2, que al adicionar de caucho y PET de 4 y 6% esta incrementa a 319.3 kg/cm2 y 317.7 kg/cm2, mientras que 8% es menor a la muestra inicial con curado de 28 días, constatando también que en la figura 34 y tabla 27 que el mejor porcentaje óptimo tiene el 5% con un margen de 1.9% respecto a la muestra patrón, NTP 399.611.

Presentación tabla de significancia:

Tabla 1. significancia resistencia a la compresión

Escala	Parámetros
1 - ≥	Muy significativo
0 - 1	Significativo
0 - ≤	No significativo

Fuente:

elaboración propia (2023)

Tabla 2. Escala de significancia

Adición	Margen	Escala	parámetros
0	317.5		
4	319.3	1.8	Muy significativo
5	319.4	1.9	Muy significativo
6	317.7	0.2	Significativo
8	308.7	-8.8	No significativo

Fuente: elaboración propia (2023)

Resistencia a la flexión

Se puede verificar en la figura 29 que de acuerdo a la muestra patrón con 50.5 kg/cm2, que al adicionar de caucho y PET de 4% esta incrementa a 51.7 kg/cm2, mientras que para 6 y 8% es menor a la muestra inicial con curado de 28 días, constatando también que en la figura 35 el mejor porcentaje óptimo tiene el 4% sin embargo, al adicionar 6 y 8% disminuye respecto a la muestra patrón, NTP 339.078:2012 y la ASTM C78.

Presentación tabla de significancia:

Tabla 3. Significancia resistencia a la flexión

Escala	Parámetros		
1 - ≥	Muy significativo		
0 - 1	Significativo		
0 - ≤	No significativo		

Fuente: elaboración propia (2023)

Tabla 4. Escala de significancia

Adición	Margen	Escala	parámetros
0	50.5		
4	51.7	1.2	Muy significativo
6	49.9	-0.6	Significativo
8	47.3	-3.2	No significativo

Fuente: elaboración propia (2023)

Por consiguiente, se rechaza la hipótesis nula (H_o) y se acepta la hipótesis alterna (H_a), demostrando que las propiedades mecánicas del adoquín peatonal varían significativamente aplicando caucho y PET reciclado.

Contraste de hipótesis: Caucho y PET reciclado, propiedades, porcentaje óptimo

Para la contrastación se plantearon las siguientes hipótesis:

H_o: El porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal no se encuentra entre 4% y 8%

Ha: El porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%.

Porcentaje óptimo

Propiedades físicas

Trabajabilidad: Se constata según los resultados de laboratorio que el porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%. según el ASTM C143 especifica que para una consistencia seca debe estar entre 0 y 2 pulg (ver figura 32 tabla 18, 22 y 23)

Absorción: En relación a los ensayos realizados en el laboratorio para obtener el porcentaje de absorción, los resultados obtenidos reflejan que el porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%, cumpliendo con la NTP 399.611 la cual menciona que la absorción máxima en porcentaje para adoquines tipo I debe ser de hasta 7.5% para unidad individual (ver figura 33 tabla 19, 23 y 24).

Por consiguiente, se rechaza la hipótesis nula (H_o) y se acepta la hipótesis alterna (H_a), demostrando que el porcentaje óptimo está entre 4 y 8% con adición de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal.

Propiedades mecánicas

Resistencia a la compresión: Por consiguiente, en correlación a los ensayos realizados para resistencia a la compresión de los adoquines con adición de caucho y PET, según la NTP 399611, para adoquines tipo I peatonal el espesor nominal está entre 40 y 60 (mm) y resistencia a la compresión en 28 (290) MPa (kg/cm2), elaborándose estos adoquines con espesor nominal de 60mm, obteniendo resultados con un porcentaje óptimo que mejoran las propiedades del adoquín con adiciones de 4% y 8%, siendo 5% el que representa una mejor margen de resistencia (ver figura 34 y tabla 20).

Resistencia a la flexión: asimismo, en correlación a los ensayos que se realizaron, los adoquines con adición de caucho y PET, según la NTP 339.078:2012 y la ASTM C78 de ensayos a flexión para adoquines es de 5 (50.99) MPa (kg/cm2) como mínimo requerido, siendo estos adoquines con un espesor nominal de 60mm, donde se obtuvo con un porcentaje óptimo que mejoran las propiedades del adoquín con adiciones de 4% y 8%, siendo 4% el que representa una mejor margen de resistencia (ver figura 35 y tabla 21).

Por consiguiente, se rechaza la hipótesis nula (H_o) y se acepta la hipótesis alterna (H_a), demostrando que el porcentaje óptimo está entre 4 y 8% con adición de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal.

V. DISCUSIÓN

Fernández (2019) en su proyecto de investigación "análisis de las características físicas-mecánicas del adoquín con polietileno tereftalato reciclado y adoquín convencional tipo l" con el análisis de determinar las características físicomecánicas del adoquín tipo I con polietileno reciclado, cuanto incrementa en comparación con el adoquín común, resaltando que el PET como residuos por la ciudad son un problema que es difícil solucionar y persistiendo en el tiempo, siendo una alternativa para su solución reutilizarlos como aditivos. La investigación se realizó en Huancayo – Perú donde se consideró al adoquín con polietileno frente al adoquín estándar tipo I, con diseño de mezcla de la norma ACI 211, empleando 0.25, 0.50 y 0.75% polietileno tereftalato reciclado, para la trabajabilidad. En contraste a la investigación elaborada de adoquines con caucho y PET de 4% (1.1 pulg), 6% (1.2 pulg) y 8% (1.3 pulg), presenta una relación mayor de trabajabilidad respecto a la muestra patrón de (0.9 pulg). No obstante, al realizar una comparación se puede apreciar que hay una similitud, ya que, al agregar caucho y PET en 4, 6 y 8% y polietileno tereftalato reciclado en 0.25%, 0.50%, 0.75%, y patrón se encuentra en una consistencia de trabajabilidad (Slump), seca con asentamiento de (1 pulg). Cumpliendo con mezcla de la norma ACI 211 y según el ASTM C143 que especifica que para una consistencia seca debe estar entre 0 y 2 pulg, para fabricación de adoquines.

Jaimes y Torres (2019), en su proyecto de investigación "aprovechamiento del caucho para la producción de adoquines como alternativa a la industria constructiva" inspirada en la idea de cómo la miga de caucho, podrían reemplazar al material fino en la mezcla para fabricación de los adoquines, manifestando que se enfoca en determinar la viabilidad al incorporar los residuos de las llantas como material para la producción de adoquines y saber la viabilidad técnica. La investigación se realizó en la Universidad Popular del Cesar – Colombia, donde se consideró al adoquín con llantas recicladas, con diseño de mezcla de la NTC 3829, empleando 5, 7 y 9% de caucho, para pruebas de absorción. En contraste a la investigación elaborada de adoquines con caucho y PET con 4% (3.04%), 6% (3.67%) y 8% (4.35%), presenta una relación mayor de absorción respecto a la muestra patrón de (2.17%). No obstante, al realizar una comparación se puede

apreciar que hay una similitud, ya que, al agregar caucho y PET en 4, 6 y 8% y solo caucho reciclado y analizada en dosificaciones (1:2, 1:3, 1.4, y 1:5) cumpliendo para todos los porcentajes de agregado en 1:2 y 1:3. Y 1:4 y 1:5 que muestran una mayor absorción a excepción de 5% para 1:5. cumpliendo 1:2 y 1:3 con lo requerido por la NTP 399.611 la cual menciona que la absorción máxima en porcentaje para adoquines tipo I hasta un 7.5% para unidad individual.

Chavarri y Rubio (2020), en su investigación "Efecto del caucho en la resistencia a compresión de adoquines diseñados para pavimentos adoquinados" con la determinación de como el caucho disminuye la resistencia de adoquines tipo I, previamente consultado la norma de pavimentos urbanos RNE CE.010, y al mismo tiempo concientizar para reducir el impacto que causa los residuos de neumáticos al ambiente. La investigación fue elaborada en Trujillo - Perú considerando los adoquines de concreto tipo I, determinando la resistencia a compresión, con diseño de mezcla de la norma ACI, utilizando 3, 5 y 7% de caucho. En contraste al proyecto elaborado de adoquines con caucho y PET con 4, 6 y 8%, respecto a resistencia a la compresión, tenemos que al agregar 4 y 6% de adición muestra mayor resistencia que el patrón, teniendo como porcentaje optimo a un 5% para este ensayo. De tal manera, que realizando el comparativo de resistencia a compresión se observa que no hay una similitud. Teniendo que al adicionar caucho y PET en un 4 y 6% como adición tiene un mejor comportamiento de resistencia respecto a la muestra estándar con (317.5 kg/cm2), 4% (319.3 kg/cm2) y 6% con (317.7 kg/cm2) curado a 28 días, que al adicionar solo cacho con 3% (318.82 kg/cm2), 5%(279.20kg/cm2), y 7% (228.01) no siendo mayor que el patrón con 349.35 kg/cm2). Pero encontrándose dentro del promedio mínimo requerido por la NTP 399.611.

Sánchez (2019), en su investigación "Análisis de propiedades físico-mecánicas de adoquines de concreto y bloques de asfalto con neumático reciclado para adoquinado de tránsito liviano" con especificación de analizar la influencia de neumáticos reciclados en las propiedades tanto físicas como mecánicas de adoquines aplicados para vehículos livianos, con especificaciones de la NTP 399.604 y la 399.611, asimismo se aprovecha reutilizando estos residuos en

construcciones civiles, los adoquines fabricados de caucho ayudan al medio ambiente. El proyecto se realizó en Lima – Perú considerándose al adoquín de concreto con material de neumático reciclado y describir la resistencia a flexión, con material de neumático en 5, 10 y 15% para el diseño de mezcla. Presentando ambos ensayos con un margen de tres porcentajes como estudio, donde se tiene como resultados comparados el adicionar caucho y PET brinda mejor resistencia a la flexión. En contraste a la investigación realizada de con caucho y PET en 4, 6 y 8%. Respecto a resistencia a la flexión al adicionar caucho y PET en un 4% se tiene una mayor resistencia, siendo este el porcentaje optimo del ensayo y mayor respecto al patrón. Resulta que al hacer un comparativo de resistencia a flexión se percibe que no hay similitud en relación a los resultados ya que al adicionar caucho y PET en un 4% se tiene un mejor comportamiento de resistencia respecto a la muestra estándar con (50.5 kg/cm2) y 4% (51.7 kg/cm2), cumpliendo lo que especifica la NTP, y al adicionar neumático en 5, 10 y 15% este reduce su resistencia notablemente, encontrándose por debajo del mínimo requerido en la NTP 339.078:2012 y la ASTM C78 de ensayos a flexión para adoquines de 5 (MPa) (50.99 kg/cm2).

Fernández (2019) en su proyecto de investigación "análisis de las características físicas-mecánicas del adoquín con polietileno tereftalato reciclado y adoquín convencional tipo l" Al analizar las propiedades físico-mecánicas de los adoquines tipo I con polietileno reciclado y conocer el porcentaje óptimo. La investigación se realizó en Huancayo – Perú donde se consideró a los adoquines con polietileno frente al adoquín común tipo I, con diseño de mezcla de la norma ACI 211, empleando 0.25, 0.50 y 0.75% polietileno y de caucho y PET con 4, 6 y 8%. En contraste a la investigación elaborada de adoquines presenta una relación mayor de trabajabilidad. No obstante, al realizar una comparación se puede apreciar que hay una similitud, considerando que el porcentaje optimo se encuentra entre 4 y 8% para trabajabilidad, cumpliendo con mezcla de la norma ACI 211 y según el ASTM C143 que especifica que para una consistencia seca debe estar entre 0 y 2 pulg, para fabricación de adoquines. Jaimes y Torres (2019), en su proyecto de investigación "aprovechamiento del caucho para la elaboración de adoquines como alternativa a la industria", identificar el óptimo porcentaje para la mejora de las

propiedades del adoquín. La investigación se realizó en la Universidad Popular del Cesar – Colombia, considerando al adoquín con llantas recicladas, con diseño de mezcla de la NTC 3829, empleando 5, 7 y 9% de caucho y de caucho y PET en un 4, 6 y 8%. En contraste a la investigación elaborada de adoquines con caucho y PET presenta una relación mayor de absorción. No obstante, al realizar una comparación se puede apreciar que hay una similitud, ya que, al agregar caucho y PET y solo caucho reciclado, considerando que el porcentaje optimo se encuentra entre 4 y 8% para absorción según la NTP 399.611 la cual menciona que la absorción máxima en porcentaje para adoquines tipo I hasta un 7.5% para unidad individual.

Chavarri y Rubio (2020), en su investigación "Efecto del caucho en la resistencia a compresión de adoquines diseñados para pavimentos articulados" con la determinación de como el caucho disminuye la resistencia de adoquines tipo I, identificar el óptimo porcentaje para la mejora de las propiedades del adoquín. La investigación fue elaborada en Trujillo - Perú considerando los adoquines de concreto tipo I, determinando la resistencia a la compresión y diseño de mezcla de la norma ACI, utilizando 5, 7 y 9% de caucho y de caucho y PET con 4, 6 y 8%. En contraste al proyecto elaborado de adoquines con adición de caucho y PET tenemos que al agregar 4 y 6% de caucho y PET es aceptable para resistencia a compresión, conociendo que el porcentaje optimo es 5% para adoquines peatonales tipo I, encontrándose dentro del promedio mínimo requerido por la NTP 399.611, para adoquines tipo I peatonal de 28 (MPa). Sánchez (2019), en su investigación "Análisis de las propiedades físico-mecánicas de adoquines de concreto con material (neumático) para pavimento de tránsito liviano" identificar el óptimo porcentaje para la mejora de las propiedades del adoquín. El proyecto fue ejecutado en Lima – Perú considerándose al adoquín de concreto con material de neumático y describir la resistencia a flexión, con material de neumático en 5, 10 y 15% y de caucho y PET con 4, 6 y 8%, En contraste a la investigación realizada de caucho y PET con 4, 6 y 8% para resistencia a la flexión, se tiene una mayor resistencia al incorporar caucho y PET en un 4%, siendo este el porcentaje optimo del ensayo, cumpliendo lo que especifica la NTP 339.078:2012 y la ASTM C78 de ensayos a flexión para adoquines de 5 (MPa) (50.99 kg/cm2).

VI. CONCLUSIONES

- 1. A través de la investigación elaborada, de adoquines fabricados con caucho y PET reciclado, se concluye que las propiedades físicas varían positivamente respecto a la muestra patrón (0.9 pulg) para la trabajabilidad la cual muestra según ensayos realizados para 4% (1.1 pulg), 6% (1.2 pulg) y 8% (1.3 pulg), cumpliendo según el ASTM C143 que especifica que para una consistencia seca debe estar entre 0 y 2 pulgadas. Respecto a la absorción, mediante los ensayos realizados esta investigación concluye que en todas las adiciones de porcentajes de caucho y PET varían teniendo para 4% (3.04%), 6% (3.67%) y 8% (4.35%), respecto al patrón (2.17%), cumpliendo todos con lo requerido por la NTP 399.611 la cual menciona que la absorción máxima en porcentaje es de 7.5%. Las propiedades físicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado.
- 2. Tras la investigación elaborada, de adoquines fabricados con caucho y PET reciclado, se concluye que las propiedades mecánicas muestran una mayor resistencia de 4%y 6% para compresión y 4% para flexión. Respecto a la muestra patrón, para compresión se tiene una variación, 4% (319.3 kg/cm2), 6% (317.7 kg/cm2) y patrón con (317.5 kg/cm2), teniendo como porcentaje optimo a un 5% con adición de caucho y PET, encontrándose dentro del promedio mínimo requerido de la NTP 399.611, para adoquines tipo I peatonal de 28 (MPa). Respecto a la resistencia a la flexión, a través de los ensayos realizados esta investigación concluye que 4% de adición de caucho y PET aumenta su resistencia 4% (51.7 kg/cm2) respecto a la muestra patrón (50.5 kg/cm2), teniendo como porcentaje optimo 4% con adición de caucho y PET, cumpliendo con el mínimo requerido de la NTP 339.078:2012 y la ASTM C78 de ensayos a flexión para adoquines de 5 (MPa) (50.99 kg/cm2). Las propiedades mecánicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado.
- 3. Después de haber realizado la investigación sobre la producción de adoquines tipo I con 4, 6 y 8% de caucho y PET. Se concluye según los ensayos realizados de trabajabilidad, absorción, flexión y compresión que el porcentaje óptimo para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%.

VII. RECOMENDACIONES

- 1. Agregar las adiciones de caucho y PET en 4, 6 y 8% para la elaboración de adoquines tipo I permite una trabajabilidad y absorción aceptable. Esta investigación al ser desarrollada con adiciones de caucho y PET y sometida a ensayos de trabajabilidad se aprecia como resultados un aumento en todas las adiciones 4% (1.1 pulg), 6% (1.2 pulg) y 8% (1.3 pulg), respecto al patrón (0.9 pulg). Asimismo al realizar el ensayo de absorción se determina que esta va en contrate a la adición 4% (3.04%), 6% (3.67%) y 8% (4.35%),respecto al patrón (2.17%), mientras más aumentamos la adición aumenta la absorción, en próximas investigaciones se recomienda consideren ampliar el valor de adición y tener una mejor trabajabilidad y absorción, sin excederse según el ASTM C143 que menciona para una mezcla seca debe estar entre 0 y 2 pulgadas, y absorción dentro de lo requerido por la NTP 399.611 la cual menciona que la absorción máxima en porcentaje es de 7.5% para unidad individual.
- 2. Adicionar solo hasta un 4% de caucho y PET para no tener un índice de resistencia de ensayos inferiores al modelo estándar. Esta investigación al ser desarrollada con adiciones de caucho y PET para ensayos de compresión donde se aprecia como resultados un aumento al adicionar 4% (319.3 kg/cm2) y 6% (317.7 kg/cm2) respecto al patrón (317.5 kg/cm2), teniendo como porcentaje optimo a un 5% para adoquines peatonales tipo I según la NTP 399.611, asimismo al realizar el ensayo de resistencia a la flexión se determina que esta aumenta al adicionar 4% (51.7 kg/cm2) respecto al patrón con (50.5 kg/cm2), según la NTP 339.078:2012 y la ASTM C78 de ensayos a flexión para adoquines. Del 4% de adición en adelante la resistencia tiende a disminuir respecto a la muestra estándar, en próximas investigaciones se recomienda consideren adicionar caucho y PET hasta 4% para no tener un índice de resistencia inferior al modelo estándar.
- 3. Incrementar el porcentaje de adición de caucho y PET para adoquines tipo I hasta un 4%. El presente estudio se desarrolló para analizar las propiedades físicomecánicas de adoquín con compuestos de caucho y PET reciclado en un 4, 6 y 8%, obteniendo resultados para la trabajabilidad y absorción aceptables con un 8% de adición, sin embargo, al realizar ensayos para resistencia a la compresión se tiene

como porcentaje optimo a un 5% para adoquines con caucho y PET y para resistencia a la flexión porcentaje optimo a un 4%. Es por ello que se recomienda consideren adicionar caucho y PET hasta 4% para no tener un índice inferior al modelo estándar.

REFERENCIAS

AGUILAR, M. y MAMARANDI, J. Incidencia de la adición de la ceniza volcánicaen las propiedades físico-mecánicas del adoquín. Tesis (Titulación en Ingeniería Civil). Quito: Universidad Central del Ecuador. 2020. Disponible en: http://www.dspace.uce.edu.ec/handle/2500

ALESMAR, L., RENDÓN, N., & KORODY, M. Diseños de mezcla de tereftalato de polietileno (PET) – Cemento. Caracas Venezuela: Universidad Central de Venezuela, Departamento de Ingeniería Estructural, Escuela de Ingeniería Civil, Facultad de Ingeniería, 2008.

BAVARESCO, Aura. Proceso metodológico en la investigacion. [aut. libro] Bavaresco de Prieto Aura Marina & Prieto Bavaresco Aura Yarina. [ed.]. *Como hacer un diseño de investigación*: Imprenta internacional, CA Maracaibo, 2001.

CASTRO, G. Materiales y compuestos para la industria del neumático. departamento de ingeniería mecánica. 2008. 19 pp. Disponible en: https://campus.fi.uba.ar/file.php/295/Material_Complementario/Materiales y Compuestos para la Industria del Neumatico.pdf

CASTRO, G. Materiales y compuestos para la industria del neumático. departamento de ingeniería mecánica. 2008. 23 pp. Disponible en: https://campus.fi.uba.ar/file.php/295/Material_Complementario/Materiales y Compuestos para la Industria del Neumatico.pdf

CHAVARRI, C. y RUBIO, J. Efecto del caucho reciclado en la resistencia a compresión en adoquines de concreto diseñados para pavimentos articulados. 2020. Universidad Cesar Vallejo- Trujillo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/53492

FARFÁN, M y LEONARDO, E. Caucho reciclado en la resistencia a la compresión y flexión de concreto modificado con aditivo plastificante". Ing. constr. [online]. Vol. 33 64 Nº3. UCV, Perú, 2018. 29 de mayo del 2018. [fecha de consulta: 13 de octubre del 2021]. Disponible en: https://scielo.conicyt.cl/pdf/ric/v33n3/0718-5073-ric-33-03-241.pdf ISSN: 0718-5073

FERNÁNDEZ, Carlos., BAPTISTA, Pilar., y ELKES, D. La televisión yel niño. México, D.F.: Editorial Qasis,1986.

FERNANDEZ, M. Análisis de las características físicas-mecánicas del adoquín con polietileno reciclado y adoquín convencional Tipo I. Tesis (Título de ingeniero civil). Huancayo: Universidad Peruana Los Andes, Facultad de ingeniería, 2019, 91 pp. Disponible en: https://repositorio.upla.edu.pe/bitstream/handle/20.500.12848/923/misael%2 0fernandez%20garcia.pdf?sequence=1&isallowed=y

GÁMEZ, E. Desarrollo de prototipo de adoquín de concreto con adición de polietileno de alta densidad para pavimentos con bajos volúmenes de tránsito. [Trabajo de grado para obtención de maestría en ingeniería, Universidad de Magdalena], Colombia 2020. Archivo digital. Obtenido de http://repositorio.unimagdalena.edu.co/jspui/handle/123456789/6124

HERNÁNDEZ, R., FERNÁNDEZ C., BAPTISTA Pilar. Metodología de la investigación. 6.a ed. México: Mcgraw-hill/ interamericana editores, 2014. 69 pp. ISBM: 978-1-4562-2396-0. Disponible en: https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf

HERNANDEZ, S., FERNÁNDEZ, C. y BAPTISTA, P. Metodología de la Investigación. Validez. México: Mc Graw Hill Educatión, 6ta. Edición, 2014. 200 pp. https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf

HERNÁNDEZ, R., FERNÁNDEZ C., BAPTISTA L. Metodología de la investigación. 6.a ed. México: Mcgraw-hill/ interamericana editores, 2014. 69 pp. ISBM: 978-1-4562-2396-0

HERNÁNDEZ, R. Metodología de la investigación. México: McGraw Hill Interamericana S.A. 2006.

HUMPHREYS, M. Reflections on the Ethics of Social Experimentation. 2015. Journal of Globalization and Development 6(1): 87-112. https://doi.org/10.1515/jgd-2014-0016

ICONTEC. Adoquines de concreto para pavimentos. NTC2017. Bogotá. ISO,1980. Concrete-Determination of tensole spliting stength of test specimens. ISO 1408. Génova, 2004.

INSTITUTO DEL CEMENTO Y DEL HORMIGÓN [en línea]. Pavimentos de Adoquines. Santiago: ICH, 2013. Disponible en: https://issuu.com/ichmkt/docs/manual diseño de pavimentos de adoq

JAIMES, Luis y TORRES, Karina. Aprovechamiento del Grano de Caucho Reciclado para la Elaboración de Adoquines Ecológicos como Alternativa a la Industria Constructiva. Artículo Politécnica I [en línea]. Vol. 15 (29), 2019. [Fecha de consulta 19 de abril de 2022]. https://doi.org/10.33571/rpolitec.v15n29a3

KEERTHANA, [et al.]. Estudio de las características de las botellas de plástico PET para desarrollar adoquines de plástico ecológicos. Departamento de Ingeniería Civil, Instituto de Tecnología Bannari Amman, Sathyamangalam, 10, 2021. Disponible en: https://www.scopus.com/record/display.uri?eid=2- s2.0-85101533354&origin=resultslist&sort=plf

KERLING, N. Investigación del comportamiento: técnicas y metodología. México, D.F.: Nueva Editorial Interamericana. Actualmente se publica por McGraw—Hill Interamericana, 1975.

LANDIS y KOCH. Validez y sus criterios. 2010.

LARA, Edinson, GUERRERO, David y ALTAMIRANO, Byron. Influencia de las partículas de caucho en la resistencia a la compresión de bloques de concreto. Técnica de la Facultad de Ingeniería, Universidad del Zulia [en línea]. Vol. 43 (3), 2020. [Fecha de consulta 20 de abril de 2022]. Disponible en https://www.redalyc.org/journal/6057/605766264004/ ISSN 0254-0770

LEHRER, L. Definición de procedimiento. Ejemplos y ámbitos de aplicación. Definicion.com. 2022. Disponible en: https://definicion.com/procedimiento/

MUNICIPALIDAD Los Olivos

http://imp.gob.pe/images/IMP%20%20PLANES%20DE%20DESARROLLO%20M UNICIPAL/los_olivos_plan_de_desarrollo_concertado

MUÑOZ. Estudio del Uso del Polietileno Tereftalato (PET) como Material de Restitución en Suelos de Baja Capacidad de Carga. Tesis para obtener el grado de Ingeniero Civil. Facultad de Ingeniería, Universidad Nacional Autónoma de México. México DF., México. 2012. 54-98 pp.

MAGALLANES, Claudio y GUILLEN, Ivette. Experiencias en el tratamiento de neumáticos fuera de uso en Iberoamérica. Perú: Congreso de la República, 2014. Disponible en: 140 http://www2.congreso.gob.pe/sicr/cendocbib/con4_uibd.nsf/8825141B7F35F94F0 525810C 0070DA35/\$FILE/275_INFINVES61_2014_neumatico.pdf

MATA, María y MACASSI, Sandro. Cómo elaborar muestras para los sondeos de audiencias. Cuadernos de investigación No 5. ALER, Quito, 1997.

MARTIN, Á. Aplicación del caucho reciclado como solución constructiva ecológica. 2015. 11 pp. Disponible en: https://riunet.upv.es/bitstream/handle/10251/55735/mart%c3%8dn%20-%2 0

aplicaci%c3%b3n%20del%20 caucho%20 reciclado%20como%20soluci%c3%b3n%20constructiva%20ecol%c3%b3qica.pdf?sequence=1

MEZA, Alejandro, SIERRA, Rodolfo, RODRÍGUEZ, José, ROMO, Luis. Diseño y Dispositivo de tiras de Llantas, una Opción de Reciclado. Conciencia Tecnológica [en línea]. Núm. 58, 2019. [Fecha de consulta 19 de abril de 2022]. Disponible en https://www.redalyc.org/articulo.oa?id=94461547004

MEZA, Alejandro, KAUR, Gurbir, PRECIADO, Javier, GUTIÉRREZ, Iván. Desempeño a Flexión del Concreto Reforzado con Fibras Plásticas Recicladas Conciencia Tecnológica, núm. 61, 2021 Instituto Tecnológico de Aguascalientes, México Disponible en: https://www.redalyc.org/articulo.oa?id=94467989001

MORALES, C. y PEREZ, B. Determinación de la conductividad térmica y resistencia mecánica de ladrillos y placas conformadas de cemento y polietileno terraftalato (PET). Ecuador: Escuela Superior Politécnica de Chimborazo, 2018. Disponible: http://dspace.espoch.edu.ec/handle/123456789/9927

NEVILLE, Adam. "Tecnología del concreto". IMCYC, México DF, 2013, 622 pp.

NORMA C.E.010 Pavimentos Urbanos. Reglamento Nacional de Edificaciones. Lima: RNE, 2010. Disponible en: http://www3.vivienda.gob.pe/dnc/archivos/estudios

PINEDA, Beatriz; DE ALVARADO, Eva; DE CANALES, Francisca. Metodología de la investigación, manual para el desarrollo de person al de salud, Segunda edición. Organización Panamericana de la Salud. Washington, 1994. 108 pp.

PINEDA, Beatriz; DE ALVARADO, Eva; DE CANALES, Francisca. Metodología de la investigación, manual para el desarrollo de person al de salud, Segunda edición. Organización Panamericana de la Salud. Washington, 1994. 119 pp.

POON, Chin-Son, CHAN, Dixon. "Paving blocks made with reycled concrete aggregate and crushed clay brick". En: Construction and Building Materials. Elsevier 2006. 20 pp.

RODRÍGUEZ, Ana. Estudio de la microestructura y su influencia en propiedades físicas del caucho polibutadieno y caucho poliisopreno reticulado con peróxido. (Tesis Doctoral. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.)

2015. Recuperado de http://hdl.handle.net/20.500.12110/tesis_n5796_RodriguezGarraza

RODRÍGUEZ, Rosa. *Propiedades acústicas del caucho granular. Tesis,* (Doctoral), E.T.S.I. Industriales (UPM). 2003. https://doi.org/10.20868/UPM.thesis.6304.

RONDÓN, Hugo y REYES, Fredy. *Pavimentos: Materiales, construcción y diseño.* S.I.: Ecoe Ediciones, 2015. ISBN 9789587711769.

RUIZ, C. Instrumentos de Investigación Educativa. Venezuela: Fedupel, 2002.

SABINO, Carlos. El proceso de investigación. s.l.: Ed. Panapo, Caracas, Ed. Panamericana, Bogotá y Lumen-Humánitas, Buenos Aires, 1992. 216 pp.

SÁNCHEZ, Michael. Análisis de las propiedades físicas-mecánicas del adoquinado de concreto y bloques de asfalto con material reciclado de neumático para pavimento de tránsito liviano. Tesis (Título en Ingeniería Civil). Universidad César Vallejo, Lima 2019. Disponible en https://hdl.handle.net/20.500.12692/45576

UNIVERSIDAD DE OVIEDO. Densidad. Porosidad Compacidad. Principado de Asturias, España. 2015. Obtenido de http://www6.uniovi.es/usr/fblanco/Leccion2.Refractarios.Densidad.Porosidad.Perm eabili dad.pdf

VALLEJO, Guillermo., FERNÁNDEZ, Paula., TUERO, Ellián y LIVACIC, Pablo. Análisis de medidas repetidas usando métodos de remuestreo , Anales de Psicología / Annals of Psychology: Vol. 26 Núm. 2 (2010). https://doi.org/10.6018/analesps.30.2.166911

WIKU, N y DENNY, R. Utilización de residuos plásticos de tereftalato depolietileno (PET) como alternativa de agregado grueso en adoquines. [en línea], 2019 [Fecha de consulta: 25 de noviembre de 2021]. ISSN: 04007. Disponible en:https://repository.ucatolica.edu.co/bitstream/10983/22382/1/TESIS%20BLOQ UE%20PET.pdf

XIE, J., JIANGLIN L., ZHONGYU, L., ZHIJIAN, L., CHI, F. y LIANG, H. "Combined effects of rubber and silica smoke on the fracture behavior of aggregate concrete from recycled steel fiber". 2019 disponible en: https://doi.org/10.1016/j.conbuildmat.2019.01.094

YURDUSEV, Nuri. 1993. Nivel de análisis y unidad de análisis: un caso de distinción, Milenio: Revista de estudios internacionales (Vol.22, No.1), 77–88.

ZÚÑIGA, Andrés. Principales características del polietileno, 2014. 239 pp.

ANEXOS

Anexo 1. Matriz de operacionalización de variables

Título: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Autor: Jimmy Davila Salazar

VARIA	ABLES DE ESTUDIO DEFINICION CONCEPTUAL DEFINICION OPERACIONAL DIMENSION		DIMENSION	INDICADOR	ESCALA DE MEDICION			
andiente	Caucho y PFT	Caucho v PET (PE I) a nivel artesanal con el 50% de cada uno en docificaciones de 4%,		con el uso de caucho reciclado y tefetalto de polietileno peatonal de manera proporcional de un (PET) a nivel artesanal con el 30% de cada uno en docificaciones de 4%,		Propiedades fisícas de las migas de caucho	Dosificación de 0%, 4%, 6% Y 8%	Absoluta
V. Independiente	reciclado	procedimiento del prensado hidráulico y secado al ambiente, obteniendo valores dentro y superados a lo que describe la norma E.070 (Farfan, 2019, p. 49)	6% y 8% con relacion al agregado del adoquin peatonal, en el cual se empleara 4 composiciones de mescla: N+0%, N+4%, N+6% y N+8%, esto con la finalidad de aumentar las propiedades del adoquin.	reciclado (50%) y PET reciclado (50%)	Densidad	Razón		
		siendo un material comun el cual se sigue empleando en obras de tránsito peatonal, estos se elaboran según la NTP 399.611 y NTP 399.604, estoa son de mucho beneficio, dando una buena imagen a los parque, calles, playas de estacionamiento entre otros, hoy en dia los adoquines no cuentan con confisiondo de colidad, que confisiondo de colidad que confisionad de adoquin sigue para que momecánicas de estos casos ensayos de la resisti incremento a abrasión absorción impleme	La mezcla se combina con caucho y PET,		Trabajabilidad			
ente			para que mejore las propiedades físicas y mecánicas del adoquín peatonal, para todos estos casos se miden su calidad mediante ensayos de laboratorio para el aumento de la resistencia a la comprensión, al incremento a la resistencia al desgaste por abrasión y reducir el porcentaje de absorción del adoquín peatonal con la implementación del 4%, 6% y 8% en	Propiedades Físicas	Absorción	Absoluta		
V. Dedependiente	Propiedas Fisíco- Mecánicas del Adoquín Peatonal				Resistencia a la compresión			
		calidad y durabilidad exigidos segun las NTP 399.611 y NTP 399.604 (Fernandez, 2019, p. 91)	Caucho y PET reciclado, de las 3 muestras en el laboratorio, finalmente los resultados serán obtenidos mediante formatos y fichas técnicas cumpliendo con las NTP.	Propiedades Mecánicas	Resistencia a la flexión	Absoluta		

Anexo 2. Matriz de consistencia

Título: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Autor: Jimmy Davila Salazar

Autor: Jimmy Davila Salazar								
Problema	Objetivos	Hipótesis	Variables	Dimensiones	Indicadores	Instrumentos	Metodologia	
Problema General:	Objetivo general:	Hipótesis general:			Dosificación de 0%, 4%, 6% Y 8%	Ficha de recolección de datos		
¿De qué manera el caucho y PET reciclado influye en las propiedades físico-mecánicas del adoquín peatonal Los Olivos, 2023?	Analizar las propiedades físico- mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023	El caucho y PET reciclado influye en las propiedades físico- mecánicas del adoquín peatonal positivamente Los Olivos, 2023	Caucho y PET reciclado	Propiedades fisicas de las migas de caucho reciclado (50%) y PET reciclado (50%)	Densidad	Ficha de resultados de laboratorio	Tipo de investigación: experimental tipo aplicada	
Problemas Específicos:	Objetivos específicos:	Hipótesis específicas:			Trabajabilidad		Enfoque de investigación: cuantitativa El diseño de la	
¿En cuánto varían las propiedades físicas del adoquín peatonal adicionando caucho y PET reciclado?	Determinar las propiedades físicas del adoquín peatonal adicionando caucho y PET reciclado	Las propiedades físicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado	Propiedas Fisíco- Mecánicas del Adoquín Peatonal	Mecánicas del Adoquín	Propiedades Físicas	Absorción	Ficha de resultados de laboratorio	investigación: cuasi-experimental El nivel de la investigación: explicativo
¿En cuánto varían las propiedades mecánicas del adoquín peatonal adicionando caucho y PET reciclado?	Determinar las propiedades mecánicas del adoquín peatonal adicionando caucho y PET reciclado	Las propiedades mecánicas del adoquín peatonal varían significativamente, adicionando caucho y PET reciclado			Propiedades	Resistencia a la compresión	Ficha de resultados de laboratorio	Población: adoquines Muestra: 108 Adoquines Muestreo: probabilístico
¿Qué porcentaje de caucho y PET reciclado es el óptimo para mejorar las propiedades del adoquín peatonal?	Conocer el porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal	El porcentaje óptimo de caucho y PET reciclado para mejorar las propiedades del adoquín peatonal se encuentra entre 4% y 8%		Mecánicas	Resistencia a la flexión	Ficha de resultados de laboratorio		

Anexo 3. Instrumentos de recolección de datos

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Ficha de recolección de datos: Dosificación de caucho y PET reciciado 4%, 6% y 8%

"Análisis de las propiedados físico-mecánicas del adoquín peatonal, adicionando caucho y PET

"Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023"	*Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET
Fecha:	reciclado Los Olivos, 2023*
Numero de ficha:	Fecha:
Million do India.	Numero de ficha:
Parte A: Datos generales	Parte A: Datos generales
Ubicación geográfica	Ubicación geográfica
Provincia; Distrito; Localidad	Provincia: Distrito: Localidad Localidad
Parte B: Dosificación de caucho y PET reciclado	Parte B: Dosificación de caucho y PET reciclado
4%	4%
6%	6%
8%	8%
Opinión de aplicabilidad: Aplicable [xt] Aplicable después de corregir [] No aplicable []	Opinión de aplicabilidad: Aplicable [X] Aplicable después de corregir [] No aplicable []
Apellidos y nombre(s) del juez evaluador: Ouñons lens, Pacaseb	Apellidos y nombre(s) del Juez evaluador: JANAHAR CACTALLUREAY ROTH HELITSA
Especialista: Metodólogo [] Temático []	Especialista: Metodólogo [] Temático []
Grado: Maestro Doctor	Grado: Maestro [] Doctor []
Título profesional: In genero Civil	Titulo profesional: INGENIERO CIUL . R. O.
N° de registro CIP:	N° de registro CIP: 242869
RICARDO QUINONES LENES Incontror CAVI	RUTH MELISSA JANAMPA CACÑAHUARAY
——————————————————————————————————————	Ingeniera Civil
i mine J soulo	Firma y Sallo

UNIVERSIDAD CÉSAR VALLEJO

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Ficha de recolección de datos: Dosificación de caucho y PET reciclado 4%, 6% y 8%

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Ficha de recolección de datos: Dosificación de caucho y PET reciclado 4%, 6% y 8%

*Análisis de las propiedades físico-mecánicas del adoquin peatonal, adicionando caucho y Pl
reciclado Los Olivos, 2023*
Fecha:
Numero de ficha:
Parte A: Datos generales
Ubicación geográfica
Provincia: Distrito: Localidad Localidad
Parte B: Dosificación de caucho y PET reciclado
4%
6%
8%
Opinión de aplicabilidad: Aplicable Aplicable después de corregir No aplicable
Apellidos y nombre(s) del juez evaluador: <u>Hendoza Vara Alheli</u>
Especialista: Metodólogo [] Temático []
Grado: Maestro Doctor
Título profesional: Ingenie o Chuil
N° de registro CIP: 23 8 70G AUDITOR ALHELI MENDOZA VARA

Anexo 4. Validez

Parte C: Validación

			Punt	uación	Observaciones	
Validez		Pregunta	0	1		
	1	¿El instrumento persigue el fin del objetivo general?		X		
	2	¿El instrumento persigue los fines de los objetivos específicos?		x		
De contenido	3	¿EL número de dimensiones es adecuado?		×		
contenido	4	¿Hay claridad en la estructura de los instrumentos?		×		
	5	¿Las hipótesis planteadas se contrastarán con la información recolectada en los instrumentos?		χ		
	6	¿El número de indicadores es adecuado?		×		
	7	No existe ambigüedad en los indicadores		У		
De constructo	8	¿Los indicadores considerados son acorde al nivel de información necesitada?		×		
	9	¿Los indicadores miden lo que se busca investigar?		×		
	10	¿Las dimensiones consideradas bastan para evaluar la variable?		Х		
	11	¿Los indicadores son medibles?		X		
	12	¿Los instrumentos se comprenden con facilidad?		Х		
De	13	¿Las opciones del instrumento se presentan en orden lógico?		Х		
criterio	14	¿La secuencia planteada es adecuada?		Х		
	15	No es necesario considerar otros campos		Χ		
	100000000	Total /				

Observaciones (precisar si hay suficiencia): Iarka Suficiencia

Apellidos y nombre(s) del juez evalu	ıador:	(Viñono	Lenes,	Kicaedo	_
Especialista: Metodó	logo[] Te	mático []			
Grado: Maestro []	Doctor[]					
l'itulo profesional: _	Ingeniero	Guil				
V° de registro CIP: _	275132					

(1)

CAMOO QUINONES LENES

Firma y Sello

Parte C: Validación

Validez		Pregunta		uación	Observaciones	
Valluez		Freguna	0	1		
	1	¿El instrumento persigue el fin del objetivo general?		X		
	2	¿El instrumento persigue los fines de los objetivos específicos?		X		
De contenido	3	¿EL número de dimensiones es adecuado?		X		
contenido	4	¿Hay claridad en la estructura de los instrumentos?		×		
	5	¿Las hipótesis planteadas se contrastarán con la información recolectada en los instrumentos?		χ		
	6	¿El número de indicadores es adecuado?		X		
	7	No existe ambigüedad en los indicadores		X		
De constructo	8	¿Los indicadores considerados son acorde al nivel de información necesitada?		χ		
	9	¿Los indicadores miden lo que se busca investigar?		X		
	10	¿Las dimensiones consideradas bastan para evaluar la variable?		Х		
	11	¿Los indicadores son medibles?	less.	X		
	12	¿Los instrumentos se comprenden con facilidad?		Х		
De	13	¿Las opciones del instrumento se presentan en orden lógico?		X		
criterio	14	¿La secuencia planteada es adecuada?		X		
	15	No es necesario considerar otros campos		ĸ		
		Total		15		

Opinión de aplicabilidad: Aplicable [X]	Aplicable después de corregir []	No aplicable []
Apellidos y nombre(s) del juez evaluado	r: Hendoza Vara Alheli	

Especialista: Metodólogo [] Temático []

Grado: Maestro [] Doctor []

Titulo profesional: Ugeniem Civil

N° de registro CIP: ____23泊oG

Nota: Suficiencia, se dice suficiencia cuando los items planteados sen suficie

ALHE! I NENDOZA VARA Ingeniera Civil

CIP N° 23870 Firma y Sello

Parte C: Validación

202454787	· · · · · · · · · · · · · · · · · · ·		Punt	uación	Observaciones	
Validez		Pregunta		1		
	1	¿El instrumento persigue el fin del objetivo general?		X		
	2	¿El instrumento persigue los fines de los objetivos específicos?		χ		
De contenido	3	¿EL número de dimensiones es adecuado?		χ		
contenido	4	¿Hay claridad en la estructura de los instrumentos?		Х		
	5	¿Las hipótesis planteadas se contrastarán con la información recolectada en los instrumentos?		X		
	6	¿El número de indicadores es adecuado?		X		
	7	No existe ambigüedad en los indicadores		Ŋ		
De constructo	8	¿Los indicadores considerados son acorde al nivel de información necesitada?		X		
	9	¿Los indicadores miden lo que se busca investigar?		X		
	10	¿Las dimensiones consideradas bastan para evaluar la variable?		X		
	11	¿Los indicadores son medibles?		X		
	12	¿Los instrumentos se comprenden con facilidad?		X		
De	13	¿Las opciones del instrumento se presentan en orden lógico?		X		
criterio	14	¿La secuencia planteada es adecuada?		X		
	15	No es necesario considerar otros campos		X		
		Total		15		

Observaciones (precisar si hay suficiencia): Laisla Suficiencia

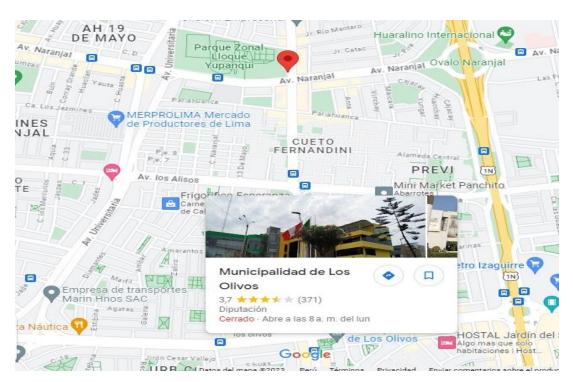
Especialista: Metodólogo [] Temático []

Grado: Maestro [] Doctor []

Titulo profesional: INGENIERO CIVIL

N° de registro CIP: 24 2869

Nota: Suficiencia, se dice suficiencia cuando los llems planteados son suficientes para medir la dimensión


JANAMPA CACNAHUA Ingeniera Civil CIP N° 242869

Firma y Sello

Anexo 6. Mapas y Planos

Mapa del distrito de los olivos

Los Olivos

Fuente: Google Maps

Anexo 6. Panel fotográfico

Materiales para los ensayos

Recolección migas de caucho

Recolección (tereftalato) PET

Arena

Gravilla

Cuarteo del caucho

Cuarteo de la gravilla

Elaboración de los adoquines

Proporciones del material

Preparando la Mezcla

Trabajabilidad

Elaboración de Adoquines

Curado de Adoquines

Medidas del adoquín 20*10*6cm

Ensayo de adoquines

Ensayo a compresión

Ensayo a flexión

Muestra del adoquín compactado

Muestra del adoquín a flexión

Peso seco del adoquín

Peso del adoquín saturado 24h

Anexo 7. Hoja de cálculos / Informe técnico

HISGEOLAB S.A.C.

VF: 02

FEF: 03/01/2023

CF: IF - TC - PN

COMUNICACIONES EXTERNAS

Informe IF - TC -JDS - 2023 / GG-HISGEOLAB S.A.C.

Para

Jimmy Dávila Salazar

De

Tesista de Ing. Civil - Universidad César Vallejo

Leo Apolinario Surcaray

Asunto

Gerente General HISGEOLAB S.A.C. Informe de resultados de ensayos de laboratorio para tesis

Fecha

23 de octubre de 2023

Tengo a bien dirigirme a ustedes para saludarlos y en atención al asunto indicarles que el alcance del presente documento corresponde a la emisión de los resultados de ensayos de laboratorio, realizados para la tesis de investigación cuyo título es "Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023". A continuación, la lista de los resultados de ensayos de laboratorio para el presente:

N.°	Código de los ensayos	Número de páginas
01	IF - TC - JDS - 2023 (GRANUL, ARENA)	(Página 01 - 16)
02	IF – TC - JDS – 2023 (HUMEDAD NATURAL ARENA)	(Página 02 -16)
03	IF – TC - JDS – 2023 (EQUIVALENTE ARENA)	(Página 03 - 16)
04	IF – TC - JDS – 2023 (PESOS UNITARIOS)	(Página 04 - 16)
05	IF - TC - JDS - 2023 (P.E. ARENA)	(Página 05 - 16)
06	IF - TC - JDS - 2023 (AZUL DE METILENO ARENA)	(Página 06 - 16)
07	IF - TC - JDS - 2023 (SALES, SULFATOS Y CLORUROS ARENA)	(Página 07 - 16)
08	IF - TC - JDS - 2023 (GRANUL. GRAVA)	(Página 08 - 16)
09	IF – TC - JDS – 2023 (HUMEDAD NATURAL GRAVA)	(Página 09 -16)
10	IF – TC – JDS – 2023 (PESOS UNITARIOS GRAVA)	(Página 10 - 16)
11	IF - TC - JDS - 2023 (P.E. GRAVA)	(Página 11 - 16)
12	IF - TC - JDS - 2023 (ABRASIÓN GRAVA)	(Página 12 - 16)
13	IF - TC - JDS - 2023 (PESOS UNITARIOS PET)	(Página 13 - 16)
14	IF - TC - JDS - 2023 (PESOS UNITARIOS CAUCHO)	(Página 14 - 16)
15	IF - TC - JDS - 2023 (P.E. PET)	(Página 15 - 16)
16	IF - TC - JDS — 2023 (P.E. CAUCHO)	(Página 16 - 16)
17	IF - TC - JDS 2023 (DISEÑO CONCRETO PATRON)	(Página 01)
18	IF - TC - JDS- 2023 (DISEÑO CONCRETO ADICIONANDO 4.0% CAUCHO / PET)	(Página 01)

HISGEOLAB S.A.C.

CF IF-TC-PN

VF: 02

FEF: 03/01/2023

COMUNICACIONES EXTERNAS

	IF - TC - JDS- 2023	
19	(DISEÑO CONCRETO ADICIONANDO 6.0% CAUCHO / PET)	(Página 01)
20	IF - TC -IDS- 2023 (DISEÑO CONCRETO ADICIONANDO 8.0% CAUCHO /PET)	(Página 01)
21	IF - TC - JDS— 2023 (COMPRESIÓN PATRON)	(Página 01)
22	IF - TC - HMPA— 2023 (COMPRESIÓN ADICIONANDO 4.0% CAUCHO / PET)	(Página 01)
23	IF - TC - JDS- 2023 (COMPRESIÓN ADICIONANDO 6.0% CAUCHO / PET)	(Página 01)
24	IF - TC - JDS- 2023 (COMPRESIÓN ADICIONANDO 8.0% CAUCHO / PET)	(Página 01)
25	IF - TC - JDS- 2023 (FLEXIÓN PATRON)	(Página 01)
26	IF - TC - JDS- 2023 (FLEXIÓN ADICIONANDO 4.0% CAUCHO / PET)	(Página 01)
27	IF - TC - JDS- 2023 (FLEXIÓN ADICIONANDO 6.0% CAUCHO / PET)	(Página 01)
28	IF - TC - JDS- 2023 (FLEXIÓN ADICIONANDO 8.0% CAUCHO /PET)	(Página 01)
29	IF - TC - JDS- 2023 (ASENTAMIENTO)	(Página 01)
30	IF - TC - JDS- 2023 (ABSORCIÓN PATRON)	(Página 01)
31	IF - TC - JDS- 2023 (ABSORCIÓN ADICIONANDO 4.0% CAUCHO /PET)	(Página 01)
32	IF - TC - JDS- 2023 (ABSORCIÓN ADICIONANDO 6.0% CAUCHO /PET)	(Página 01)
33	IF - TC - JDS- 2023 (ABSORCIÓN ADICIONANDO 8.0% CAUCHO /PET)	(Página 01)

El presente se emite para efectos del control interno de documentos de HISGEOLAB S.A.C. Sin otro particular, quedo de usted.

Atentamente

Leon volinario Surcaray
GENERAL
HISQEOLAB S.A.C.
Leo Apolinario Surcaray

Carabayllo - Lima – Perú 930693152 hisgeolabsac@gmail.com 942 358 457

Anexo 9. Certificados de laboratorio de los ensayos Ensayo granulométrico (Arena)

ANÁLISIS GRANULOMÉTRICO (NTP 400.012)

INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

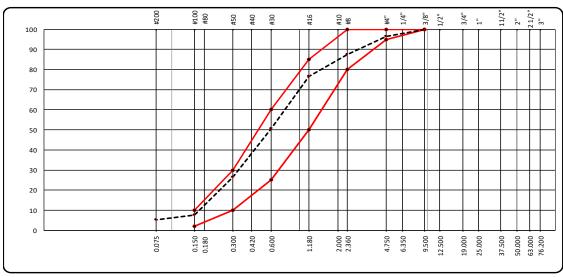
DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

 Ubicación
 : Los Olivos, 2023


 Fecha de emisión
 : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Arena Gruesa

TAMIZ	ABERTURA	PESO		PORCENTAJE				DESCRIPCION DE	LA MUESTRA
ASTM	mm	Retenid.	Retenido	Acumul.	Pasante	Ĩ		DESCRIPCION DE	LA MUESIKA
3"	76.200								
2 1/2"	63.000							Peso húmedo	g
2"	50.000							Peso seco	980.00 g
1 1/2"	37.500								
1"	25.000								
3/4"	19.000							Contenido de humedad	1.2 %
1/2"	12.500							Módulo de fineza	2.55
3/8"	9.500				100.0	100	100		
1/4"	6.350								
# 4	4.750	35.34	3.61	3.61	96.39	95	100		
# 8	2.360	88.50	9.03	12.64	87.36	80	100		
# 10	2.000								
# 16	1.180	105.20	10.73	23.37	76.63	50	85		
# 20	0.840								
# 30	0.600	255.60	26.08	49.45	50.55	25	60		
# 40	0.420							Observaciones	
# 50	0.300	235.00	23.98	73.43	26.57	10	30		
# 100	0.150	185.30	18.91	92.34	7.66	2	10		
# 200	0.075	22.97	2.34	94.68	5.32				
>200		52.09	5.32	100.00	0.00				

CURVA GRANULOMETRICA

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

the f

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C. Firma:

J. CHI

Humedad natural de la muestra

HUMEDAD NATURAL DE LA MUESTRA (NTP 339.185)

INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Arena Gruesa

MUESTRA Nº	1	2	3	4	5	6
Peso muestra natural	502.0	505.2	507.0			
Peso muestra seca	495.4	498.5	499.3			
Agua Contenida (g)	6.6	6.7	7.7			
% de Humedad natural	1.3	1.3	1.5			

Observaciones:

Determinada en el laboratorio despues de la entrega de la muestra.

Elaborado por:

Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Firma:

Revisado por:

Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

Equivalente de arena

EQUIVALENTE DE ARENA (ASTM D 2419)

INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante : Jimmy Dávila Salazar Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

: Los Olivos, 2023 : 15/09/2023 Fecha de emisión

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación Descripción : Arena Gruesa

Descripci	Muestras				
Descripci	1	2	3		
Tamaño máximo (pasa malla Nº 4)	mm	4.76	4.76	4.76	
Hora de entrada a saturación		09:10	09:18	09:31	
Hora de salida de saturación	(10')	09:20	09:28	09:41	
Hora de entrada a decantación		09:22	09:30	09:43	60.0 mín.
Hora de salida de decantación	(20')	09:42	09:50	10:03	00.0 11111.
Lectura Inicial	pulg	5.1	5.1	5.10	
Lectura Final	pulg	3.3	3.4	3.30	
Equivalente de Arena	%	64.7	66.7	64.7	

Promedio	66.0 %

Observaciones:

Elaborado por:

Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Firma:

Revisado por:

Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

Pesos unitarios

PESOS UNITARIOS (NTP 400.017)

INFORME

	Código	IF-TC-DZ-PN
	Versión	01
Fecha		03-01-2023
	Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

 Ubicación
 : Los Olivos, 2023

 Fecha de emisión
 : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Arena Gruesa

	PESO UNITARIO SUELTO								
	MUESTRA	1		2	3	4	5		
Α	Peso Mat.+ Molde (g	5814.)	5809.0	5810.0				
В	Peso Molde (g	1824.)	1824.0	1824.0				
О	Peso de Material (g	3990.)	3985.0	3986.0				
D	Volumen del Molde (cc) 2812.)	2812.0	2812.0				
Е	Peso Unitario (km/m3	1/18	,	1/17 1	1/17 5				

PROMEDIO	1418 kg/m3

	PESO UNITARIO COMPACTADO							
	MUESTRA 1 2 3 4 5							
Α	Peso Mat.+ Molde (g)	6570.0	6560.0	6565.0				
В	Peso Molde (g)	1824.0	1824.0	1824.0				
С	Peso de Material (g)	4746.0	4736.0	4741.0				
D	Volumen del Molde (cc)	2812.0	2812.0	2812.0				
Е	Peso Unitario (Km/m3)	1687.8	1684.2	1686.0				

PROMEDIO	1686 kg/m3

Observaciones:

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Firma

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

J. Chi

Gravedad especifica y absorción

GRAVEDAD ESPECÍFICA Y ABSORCIÓN (NTP 400.022)

INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Arena Gruesa

	AGREGADO FINO					
	MUESTRA	1	2	3	4	PROMEDIO
Α	Peso del mat sat superf. Seco (en el aire) (g)	500.00	500.00			
В	Peso fiola calibrada con agua (g)	655.49	655.40			
С	Peso fiola con agua + peso del mat. s.s.s. (g)	1155.49	1155.40			
D	Peso del mat. + peso fiola + H2O (g)	970.60	971.50			
Е	Vol . de masa +vol. de vacios (cc)	184.89	183.90			
F	Peso mat. seco en el horno (105°C) (g)	492.50	491.00			
G	Vol. de masa (g)	177.39	174.90			
Н	Peso específico bulk (base seca) (g./cc)	2.664	2.670			2.667
Ī	Peso específico bulk (base saturada) (g./cc)	2.704	2.719			2.712
J	Peso específico aparente (base seca) (g./cc)	2.776	2.807			2.792
K	% de absorción	1.5	1.8			1.7

Observaciones:

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Firma

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma

Ensayo granulométrico (Gravilla)

ANÁLISIS GRANULOMÉTRICO (NTP 400.012)

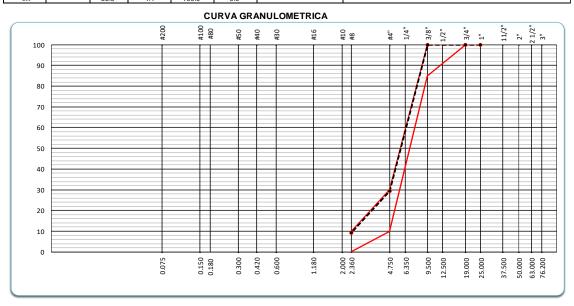
INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil


Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

: Concreto Adoquines Tipo de muestra : Cantera San Jose Descripción : Gravilla

TAMIZ	ABERTURA	PESO		PORCENTAJE		шце	O "8"	DESCRIPCION DE LA MUESTRA	
ASTM	mm	Retenid.	Retenido	Acumul.	Pasante	поэ	0 0	DESCRIPCION DE LA MUESTRA	
3"	76.200								
2 1/2"	63.000							Peso húmedo g	
2"	50.000							Peso seco 1500.00 g	
1 1/2"	37.500								
1"	25.000								
3/4"	19.000							Contenido de humedad 0.4 %	
1/2"	12.500				100.0			Módulo de fineza 5.61	
3/8"	9.500				100.0	85	100		
1/4"	6.350	400.0	26.7	26.7	73.3				
# 4	4.750	659.0	43.9	70.6	29.4	10	30		
#8	2.360	303.0	20.2	90.8	9.2	0	10		
# 10	2.000								
# 16	1.180	72.0	4.8	95.6	4.4				
# 20	0.840								
# 30	0.600								
# 40	0.420							Observaciones	
# 50	0.300								
# 100	0.150								
# 200	0.075								
>200		66.0	4.4	100.0	0.0				

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

Humedad natural de la muestra

HUMEDAD NATURAL DE LA MUESTRA (NTP 339.185)

INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose
Descripción : Gravilla

MUESTRA №	1	2	3	4	5	6
Peso muestra natural	1210.0	1130.0	1120.0			
Peso muestra seca	1205.0	1124.0	1116.0			
Agua Contenida (g)	5.0	6.0	4.0			
% de Humedad natural	0.4	0.5	0.4			

PROMEDIO	0.4 %
FRONILDIO	U. + /0

Observaciones:

Determinada en el laboratorio despues de la entrega de la muestra.

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

Pesos unitarios

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Gravilla

	PESO UNITARIO SUELTO					
	MUESTRA 1 2 3 4 5					
Α	Peso Mat.+ Molde (g)	17610.0	17580.0	17600.0	17560.0	
В	Peso Molde (g)	4141.0	4141.0	4141.0	4141.0	
С	Peso de Material (g)	13469.0	13439.0	13459.0	13419.0	
D	Volumen del Molde (cc)	9308.0	9308.0	9308.0	9308.0	
Е	Peso Unitario (kg/m3)	1447.0	1//3 8	1446.0	1441 7	

PROMEDIO	1445 kg/m3
----------	------------

	PESO UNITARIO COMPACTADO					
	MUESTRA 1 2 3 4 5					
Α	Peso Mat.+ Molde (g)	18295.0	18252.0	18290.0	18275.0	
В	Peso Molde (g)	4141.0	4141.0	4141.0	4141.0	
С	Peso de Material (g)	14154.0	14111.0	14149.0	14134.0	
D	Volumen del Molde (cc)	9308.0	9308.0	9308.0	9308.0	
Е	Peso Unitario (Kg/m3)	1520.6	1516.0	1520.1	1518.5	

PROMEDIO	1519 kg/m3

Observaciones:

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma

Gravedad especifica y absorción

GRAVEDAD ESPECÍFICA Y ABSORCIÓN (NTP 400.021)

INFORME

Código	IF-TC-DZ-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 : 15/09/2023 Fecha de emisión

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Gravilla

	AGREGADO GRUESO						
	MUESTRA		1	2	3	4	PROMEDIO
Α	Peso del mat sat superf. seco (en el aire)	(g)	1200.0	1210.0			
В	Peso del mat sat superf. seco (en el agua)	(g)	745	750.5			
С	Vol. de masa + Vol. de vacios	(cc)	455.00	459.50			
D	Peso del material seco en el horno (105°C)	(g)	1188.50	1199.0			
Е	Vol. de masa	(g)	443.50	448.5			
F	Peso específico bulk (base seca)	(g/cc)	2.612	2.609			2.611
G	Peso específico bulk (base saturada)	(g/cc)	2.637	2.633			2.635
Н	Peso específico aparente (base seca)	(g/cc)	2.680	2.673			2.677
I	% de absorción		1.0	0.9			0.9

Observaciones:

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Desgaste por abrasión

INFORME Código IF-TC-DZ-PN Versión 01 DESGASTE POR ABRASIÓN (MÁQUINA DE LOS ANGELES) (ASTM C 131) Fecha 03-01-2023 Página 1 de 1

DATOS GENERALES

Solicitante : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : Gravilla

Muestra	1	2	3	4	5	
Gradación	"C"	"C"				
Peso de la muestra	5000	5014				
1.1/2" - 1"						
1" - 3/4"						
3/4" - 1/2"						
1/2" - 3/8"						
3/8" - 1/4"	2500	2505				
1/4" - Nº 4	2500	2509				
Nº 4 - Nº 8	=	-				
Retenido Nº12	4010.4	4028				
Pasa Nº 12	989.6	986				
% Desgaste	19.8	19.7				

Promedio 19.75 %

Observaciones:

Elaborado por:

Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

Densidad (Caucho)

INFORME	Código	IF-TC-DZ-PN
	Versión	01
DENSIDAD (NTP 400.017)	Fecha	03-01-2023
,	Página	1 de 1

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : CAUCHO

DENSIDAD SUELTO						
	MUESTRA	1	2	3	4	5
Α	Peso Mat.+ Molde (g)	3232.0	3233.0	3230.0	3230.0	
В	Peso Molde (g)	2824.0	2824.0	2824.0	2824.0	
С	Peso de Material (g)	408.0	409.0	406.0	406.0	
D	Volumen del Molde (cc)	2812.6	2812.6	2812.6	2812.6	
Е	Densidad (kg/m3)	145.1	145.4	144.4	144.4	

PROMEDIO	145 kg/m3

	DENSIDAD COMPACTADO						
	MUESTRA 1 2 3 4 5						
Α	Peso Mat.+ Molde (g)	3292.0	3295.0	3293.0	3290.0		
В	Peso Molde (g)	2824.0	2824.0	2824.0	2824.0		
С	Peso de Material (g)	468.0	471.0	469.0	466.0		
D	Volumen del Molde (cc)	2812.6	2812.6	2812.6	2812.6		
Е	Densidad (Kg/m3)	166.4	167.5	166.7	165.7		

PROMEDIO	167 kg/m3
----------	-----------


Observaciones:

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

4

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C. Firma:

Propiedades físicas de las migas de caucho y PET reciclado Densidad (PET)

DATOS GENERALES

Solicitante(s) : Jimmy Dávila Salazar
Universidad : Universidad Cesar Vallejo

Especialidad : Ingeniria Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

 Ubicación
 : Los Olivos, 2023

 Fecha de emisión
 : 15/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Concreto Adoquines Identificación : Cantera San Jose Descripción : PET

DENSIDAD SUELTO						
	MUESTRA	1	2	3	4	5
Α	Peso Mat.+ Molde (g)	3356.0	3350.0	3352.0	3350.0	
В	Peso Molde (g)	2824.0	2824.0	2824.0	2824.0	
С	Peso de Material (g)	532.0	526.0	528.0	526.0	
D	Volumen del Molde (cc)	2812.6	2812.6	2812.6	2812.6	
Е	Densidad (kg/m3)	189.1	187.0	187.7	187.0	

PROMEDIO 188 kg/m3

	DENSIDAD COMPACTADO						
	MUESTRA	1	2	3	4	5	
Α	Peso Mat.+ Molde (g)	3482.0	3485.0	3478.0	3481.0		
В	Peso Molde (g)	2824.0	2824.0	2824.0	2824.0		
С	Peso de Material (g)	658.0	661.0	654.0	657.0		
D	Volumen del Molde (cc)	2812.6	2812.6	2812.6	2812.6		
E	Densidad (Kg/m3)	233.9	235.0	232.5	233.6		

PROMEDIO	234 kg/m3

Observaciones:

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma

Diseño de mezcla de concreto f'c 320 kg/cm² (método aci 211)

Diseño de mezcla patrón

DISEÑO DE MEZCLA DE CONCRETO f'c 320 kg/cm² (MÉTODO ACI 211)

INFORME

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES : Jimmy Dávila Salazar : Universidad César Vallejo Especialidad Tema de tesis : Ingenirería Civil : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023 : Los Olivos, 2023 : 16/09/23 Ubicación Fecha de emisión

MATERIAL	PESO ESPECIFICO g/cc	MODULO FINEZA	HUM. NATURAL %	ABSORCION %	P. UNITARIO S. Kg/m ³	P. UNITARIO C. Kg/m ³
Cemento Sol Tipo I	3.110					
Agregado fino (Cantera "San Jose")	2.667	2.55	1.4	1.7	1418.0	1686.0
Agregado grueso (Cantera "San Jose")	2.611	5.61	0.4	0.9	1445.0	1519.0
MATERIALES: AGREGADO FINO Y AGREGADO GRUESO						

,	,	,		+		!			_
	grueso (Cantera '		2.611	5.61	0.4	0.9	1445.0	1519.0	
ATERIAL	ES: AGREGAD	O FINO Y AGREGA	ADO GRUESO						
A)	VALORES D	E DISEÑO							
	1 Asenta	amiento				0 -2	pulg		
	2 Tamai	no máximo nominal				1/4 "			
	3 Relaci	ón agua cemento				0.45			
	4 Agua					180			
	5 Total of	le aire atrapado %				3.5			
	6 Volum	en de agregado gru	eso			0.13			
B)	ANÁLISIS DE	DISEÑO							
	FACTOR	CEMENTO			400.0	Kg/m³	9.4	Bls/m ³	
	Volumen a	bsoluto del cemento				0.1286	m³/m³		
	Volumen a	bsoluto del Agua				0.1800	m³/m³		
	Volumen a	bsoluto del Aire				0.0350	m³/m³	0.344	
	VOLUMEI	N ABSOLUTOS DE	AGREGADOS						
	Volumen a	bsoluto del Agregac	lo fino			0.5251	m^3/m^3	0.656	
		bsoluto del Agregac				0.1313	m ³ /m ³		
		RIA DE VOLUMENI						1.000	
C)	CANTIDAD	E MATERIALES P	OR m ³ EN PESO SE	co					
-,	Cemento					400.0	Kg/m ³		
	Agua					180.0	Lt/m ³		
	Agregado	fino				1400.5	Kg/m ³		
	Agregado					342.8	Kg/m ³		
	PESO DE	-				2323.2	Kg/m³		
D)	CANTIDAD	F MATERIALES P	OR m³ EN PESO HÚ	IMEDO					
٥,	Agua	LIMATERIALEOT	OK III	MEDO		206.9	Lt/m ³		
	J	fino húmedo				1420.1	Kg/m ³		
		grueso húmedo				344.1	Kg/m ³		
E)		-	LOS AGREGADOS			%	Lt/m³		
⊏)			LUS AGREGADUS			0.30	4.2		
	Agregado Agregado					0.50	1.7		
	Agregado	grueso				0.50	5.9		
	AGUA DE	MEZCLA CORREC	SIDA				185.9	Lt/m ³	
F)	CORRECCIÓ	N POR HUMEDAD							
	Cemento					400.0	Kg/m ³		
	Agua					185.9	Lts/m ³		
	Agregado	fino				1420.1	Kg/m ³		
	Agregado	grueso				344.1	Kg/m ³		
	PESO DE	MEZCLA				2350.1	Kg/m ³		
G)	CANTIDAD D	E MATERIALES (3	0 lt.)					0.030	
	Cemento					12.0	Kg		
	Agua					5.6	Lts		
	Agregado	fino				42.6	Kg		
	Agregado	grueso				10.3	Kg		
	PORPORCIÓ	N DEL DISEÑO			CÁLCULO DE I	LA PROPORC	IÓN PARA 15 k	g DE C.P.	
	С	1.00				С	15.0	Kg	
	A.F	3.55				A.F	53.3	kg	
	A.G	0.86				A.G	12.9	Kg	
	H2o	0.46				H2o	7.0	lt	

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto.

HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C. Firma:

Diseño de mezcla con adición de caucho y PET 4%

DISEÑO DE MEZCLA DE CONCRETO f'c 320 kg/cm² (MÉTODO ACI 211)

DATOS GENERALES

INFORME

IF-TC-JDS-PN Código Versión 01 03-01-2023 Fecha Página 1 de 1

Solicitante Universidad Especialidad Tema de tesis

: Jimmy Dávila Salazar
: Universidad César Vallejo
: Ingenirería Civil
: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023
: Los Olivos, 2023

Ubicación Fecha de emisión

: 19/09/23

MATERIAL	PESO ESPECÍFICO g/cc	MÓDULO FINEZA	HUM. NATURAL %	ABSORCIÓN %	P. UNITARIO S. Kg/m ³	P. UNITARIO C. Kg/m ³
Cemento Sol Tipo I	3.110					
Caucho	0.145					
PET	0.188					
Agregado fino (Cantera "San Jose")	2.667	2.55	1.4	1.7	1418.0	1686.0
Agregado grueso (Cantera "San Jose")	2.611	5.61	0.4	0.9	1445.0	1519.0
MATERIALES: AGREGADO FINO Y AGREGADO GRUESO						

, ,	` ' '						
	rueso (Cantera "San Jose")	2.611	5.61	0.4	0.9	1445.0	1519.0
	ES: AGREGADO FINO Y AGREGADO GRUI VALORES DE DISEÑO	E3U					
A)					0.0		
	1 Asentamiento 2 Tamaño máximo nominal				0 -2 1/4 "	pulg	
					0.45		
	g .				180		
	3				3.5		
	5 Total de aire atrapado %6 Volumen de agregado grues	•			0.13		
		U			0.13		
B)	ANÁLISIS DE DISEÑO FACTOR CEMENTO			400.0	Kg/m ³	9.4	Bls/m³
	ADICIÓN DE CAUCHO Y PET			4.0	%	3.4	Dis/iii
				4.0		2 2	
	Volumen absoluto del cemento				0.1286	m ³ /m ³	
	Volumen absoluto del Agua				0.1800	m ³ /m ³	_
	Volumen absoluto del Aire				0.0350	m ³ /m ³	0.344
	VOLUMEN ABSOLUTOS DE AGREGA	DOS					
	Volumen absoluto del Agregado fino				0.5251	m ³ /m ³	0.656
	Volumen absoluto del Agregado grueso				0.1313	m ³ /m ³	
	SUMATORIA DE VOLUMENES ABSOL						1.000
C)	CANTIDAD DE MATERIALES POR m ³ EN	PESO SECO					
	Cemento				400.0	Kg/m ³	
	Agua				180.0	Lt/m ³	
	Agregado fino				1400.5	Kg/m ³	
	Agregado grueso				342.8	Kg/m ³	
	Caucho y PET (dosis 4.0 % del peso del	cemento)			16.00	Kg/m ³	
	PESO DE MEZCLA				2323.2	Kg/m ³	
D)	CANTIDAD DE MATERIALES POR m ³ EN	PESO HÚMEDO					
	Agua				206.9	Lt/m3	
	Agregado fino húmedo				1420.1	Kg/m ³	
	Agregado grueso húmedo				344.1	Kg/m ³	
	Caucho y PET (dosis 4.0 % del peso del	cemento)			16.0	Kg/m ³	
E)	CONTRIBUCIÓN DE AGUA DE LOS AGRI	EGADOS			%	Lt/m ³	
	Agregado fino				0.30	4.2	
	Agregado grueso				0.50	1.7	
						5.9	
	AGUA DE MEZCLA CORREGIDA					185.9	Lt/m³
F)	CORRECCIÓN POR HUMEDAD						
,	Cemento				400.0	Kg/m ³	
	Agua				185.9	Lts/m ³	
	Agregado fino				1420.1	Kg/m ³	
	Agregado grueso				344.1	Kg/m ³	
	Caucho y PET (dosis 4.0 % del peso del	cemento)			16.0	Kg/m ³	
		,					
	PESO DE MEZCLA				2366.1	Kg/m ³	
G)	CANTIDAD DE MATERIALES (30 lt.)						0.030
	Cemento				12.0	Kg	
	Agua				5.6	Lts	
	Agregado fino				42.6	Kg	
	Agregado grueso				10.3	Kg	
	Caucho y PET (dosis 4.0 % del peso del	cemento)			480.0	g	

PROPORCIÓN DEL DISEÑO

С 1.00 3.55 0.86 0.46 4.0% A.F A.G H2o Caucho y PE1

CÁLCULO DE LAS PROPORCIÓN PARA 15 kg DE C.P.

С 15.0 Kg A.F A.G H2o Caucho y PET 53.3 12.9 7.0 600.0 kg Kg It g

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C. Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C. Firma:

Diseño de mezcla con adición de caucho y PET 6%

DISEÑO DE MEZCLA DE CONCRETO f'c 320 kg/cm² (MÉTODO ACI 211)

INFORME

IF-TC-JDS-PN Código 01 Versión Fecha 03-01-2023 1 de 1 Página

DATOS GENERALES

Solicitante Universidad Especialidad Tema de tesis

: Jimmy Dávila Salazar
: Universidad César Vallejo
: Ingenirería Civil
: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación Fecha de emisión : Los Olivos, 2023 : 21/09/23

MATERIAL	PESO ESPECÍFICO	MÓDULO	HUM. NATURAL	ABSORCIÓN	P. UNITARIO S.	P. UNITARIO C.
	g/cc	FINEZA	%	%	Kg/m ³	Kg/m ³
Cemento Sol Tipo I	3.110					
Caucho	0.145					
PET	0.188					
Agregado fino (Cantera "San Jose")	2.667	2.55	1.4	1.7	1418.0	1686.0
Agregado grueso (Cantera "San Jose")	2.611	5.61	0.4	0.9	1445.0	1519.0
MATERIALES: AGREGADO FINO Y AGREGADO GRUESO						
A) VALORES DE DISEÑO	·					

		entamiento	0 -2	pulg	
	2 Tar	naño máximo nominal	1/4 "		
	3 Rel	ación agua cemento	0.45		
	4 Agu	ua .	180		
	5 Tota	al de aire atrapado %	3.5		
	6 Vol	umen de agregado grueso	0.13		
)	ANÁLISIS DE DIS	FÑO			
,	FACTOR CEM		400.0 Kg/m ³	9.4	Bls/m ³
	ADICIÓN DE C	AUCHO Y PET	6.0 %		
				2 2	
	Volumen absolu		0.1286	m ³ /m ³	
	Volumen absolu	ito del Agua	0.1800	m ³ /m ³	
	Volumen absolu	to del Aire	0.0350	m ³ /m ³	0.344
	VOLUMEN AB	SOLUTOS DE AGREGADOS			
	Volumen absolu	ito del Agregado fino	0.5251	m ³ /m ³	0.656
		ito del Agregado grueso	0.1313	m ³ /m ³	
		E VOLUMENES ABSOLUTOS			1.000
	CANTIDAD DE MA	ATERIALES POR m ³ EN PESO SECO			
	Cemento		400.0	Kg/m ³	
				Lt/m ³	
	Agua		180.0		
	Agregado fino		1400.5	Kg/m ³	
	Agregado grues		342.8 24.00	Kg/m ³ Kg/m ³	
	Caucho y PET (dosis 6.0 % del peso del cemento)	24.00	Kg/m	
	PESO DE MEZ	CLA	2323.2	Kg/m ³	
)	CANTIDAD DE MA	ATERIALES POR m ³ EN PESO HÚMEDO			
	Agua	TENNELOT ON III ENT EGO HOMEDO	206.9	Lt/m3	
	Agregado fino h	vímada	1420.1	Kg/m ³	
	Agregado into r		344.1	Kg/m ³	
		dosis 6.0 % del peso del cemento)	24.0	Kg/m ³	
	Caucho y PET (dosis 6.0 % dei peso dei cemento)	24.0	Kg/III	
	CONTRIBUCIÓN	DE AGUA DE LOS AGREGADOS	%	Lt/m³	
	Agregado fino		0.30	4.2	
			0.50	1.7	
	Agregado grues	SU	0.50	5.9	
	AGUA DE MEZ	CLA CORREGIDA		185.9	Lt/m ³
	CORRECCIÓN PO	OR HUMEDAD			
	Cemento		400.0	Kg/m ³	
	Agua		185.9	Lts/m ³	
	Agregado fino		1420.1	Kg/m ³	
	Agregado grues	50	344.1	Kg/m ³	
		dosis 6.0 % del peso del cemento)	24.0	Kg/m ³	
	Oddono y i E i (dosis o.o /o del peso del cellicito)	24.0	rtg/iii	
	PESO DE MEZ	CLA	2374.1	Kg/m ³	
		ATERIALES (30 lt.)			0.030
)		AI ENIALES (30 IL.)	10.0	K-	0.030
	Cemento		12.0	Kg	
	Agua		5.6	Lts	
	Agregado fino		42.6	Kg	
	Agregado grues		10.3	Kg	
	Caucho y PET (dosis 6.0 % del peso del cemento)	720.0	g	
	PROPORCIÓN DE	I DISEÑO	CÁLCULO DE LAS PROPORO	IÓN DADA 45	ka DE C P
	C	1.00	C	15.0	Kg
	A.F	3.55	A.F	53.3	kg
	A.G	0.86	A.G	12.9	Kg
	H2o Caucho y PET	0.46 6.0%	H2o Caucho y PET	7.0 900.0	lt g

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Diseño de mezcla con adición de caucho y PET 8%

DISEÑO DE MEZCLA DE CONCRETO f'c 320 kg/cm² (MÉTODO ACI 211)

DATOS GENERALES

INFORME

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

Solicitante Universidad Especialidad Tema de tesis Ubicación Fecha de emisión

: Jimmy Dávila Salazar
: Universidad César Vallejo
: Ingenirería Civil
: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023
: Los Olivos, 2023
: 23/09/23

MATERIAL	PESO ESPECÍFICO g/cc	MÓDULO FINEZA	HUM. NATURAL %	ABSORCIÓN %	P. UNITARIO S. Kg/m ³	P. UNITARIO C. Kg/m ³
Cemento Sol Tipo I	3.110					
Caucho	0.145					
PET	0.188					
Agregado fino (Cantera "San Jose")	2.667	2.55	1.4	1.7	1418.0	1686.0
Agregado grueso (Cantera "San Jose")	2.611	5.61	0.4	0.9	1445.0	1519.0
MATERIALES: AGREGADO FINO Y AGREGADO GRUESO						

DE DISENO Asentamiento Tamaño máximo nomina Relación agua cemento Agua Total de aire atrapado % Volumen de agregado gr DE DISEÑO R CEMENTO N DE CAUCHO Y PET n absoluto del Agua n absoluto del Agua n absoluto del Agregado fino o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi o Consulta DE VOLUMENES AB DE MATERIALES POR mi	EGADOS PESO PESO SECO O del cemento)	400.0 8.0	0 -2 1/4 " 0.45 180 3.5 0.13 Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313	9.4	Bls/m³ 0.344 0.656 1.000
Tamaño máximo nomina Relación agua cemento Agua Total de aire atrapado % Volumen de agregado gi DE DISEÑO R CEMENTO N DE CAUCHO Y PET na absoluto del Agua na absoluto del Agregado fino na absoluto del Agregado fino na absoluto del Agregado fino na absoluto del Agregado grue DE NATERIALES POR mito del Grueso y PET (dosis 8.0 % del peso DE MEZCLA	EGADOS PESO PESO SECO O del cemento)		1/4 " 0.45 180 3.5 0.13 Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	9.4 m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
Relación agua cemento Agua Total de aire atrapado % Volumen de agregado ge DE DISEÑO R CEMENTO N DE CAUCHO Y PET In absoluto del cemento in absoluto del Agua in absoluto del Aire IEN ABSOLUTOS DE AGRE IN ABSOLUTOS DE AG	EGADOS PESO PESO SECO O del cemento)		0.45 180 3.5 0.13 Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
Agua Total de aire atrapado % Volumen de agregado gr DE DISEÑO R CEMENTO N DE CAUCHO Y PET n absoluto del cemento n absoluto del Ajua n absoluto del Ajre lEN ABSOLUTOS DE AGR n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR mi o OS do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	EGADOS eso ISOLUTOS TEN PESO SECO del cemento)		180 3.5 0.13 Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
Total de aire atrapado % Volumen de agregado gi DE DISEÑO R CEMENTO N DE CAUCHO Y PET In absoluto del cemento In absoluto del Agua In absoluto del Aire IEN ABSOLUTOS DE AGRI In absoluto del Agregado fino In absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR mi IO	EGADOS eso ISOLUTOS TEN PESO SECO del cemento)		3.5 0.13 Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
Volumen de agregado gi DE DISEÑO R CEMENTO N DE CAUCHO Y PET n absoluto del Agua n absoluto del Ajua n absoluto del Ajre IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado fino ORIA DE VOLUMENES AB D DE MATERIALES POR mi do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	EGADOS eso ISOLUTOS TEN PESO SECO del cemento)		0.13 Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
DE DISEÑO R CEMENTO N DE CAUCHO Y PET n absoluto del cemento n absoluto del Agua n absoluto del Aire lEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ODE MATERIALES POR mi do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	EGADOS SSOLUTOS SEN PESO SECO del cemento)		Kg/m³ % 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
R CEMENTO N DE CAUCHO Y PET n absoluto del cemento n absoluto del Agua n absoluto del Aire IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR mi o do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	eso ISOLUTOS ³ EN PESO SECO		% 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
N DE CAUCHO Y PET n absoluto del cemento n absoluto del Agua n absoluto del Ajire liEN ABSOLUTOS DE AGRI n absoluto del Ajregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR m do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m d	eso ISOLUTOS ³ EN PESO SECO		% 0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³	0.344
n absoluto del cemento n absoluto del Agua n absoluto del Ajua n absoluto del Aire IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR mi do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	eso ISOLUTOS ³ EN PESO SECO	8.0	0.1286 0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³ Kg/m³	0.656
n absoluto del Agua n absoluto del Aire IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB DE MATERIALES POR mi o do fino do grueso y PET (dosis 8.0 % del peso DE MATERIALES POR mi	eso ISOLUTOS ³ EN PESO SECO		0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³ Kg/m³	0.656
n absoluto del Agua n absoluto del Aire IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB DE MATERIALES POR mi o do fino do grueso y PET (dosis 8.0 % del peso DE MATERIALES POR mi	eso ISOLUTOS ³ EN PESO SECO		0.1800 0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m³/m³ m³/m³ m³/m³ m³/m³ Kg/m³ Lt/m³ Kg/m³ Kg/m³	0.656
n absoluto del Aire IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR mi do fino do grueso y PET (dosis 8.0 % del peso DE MATERIALES POR mi	eso ISOLUTOS ³ EN PESO SECO		0.0350 0.5251 0.1313 400.0 180.0 1400.5 342.8	m ³ /m ³ m ³ /m ³ Kg/m ³ Lt/m ³ Kg/m ³	0.656
IEN ABSOLUTOS DE AGRI n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR mi do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	eso ISOLUTOS ³ EN PESO SECO		0.5251 0.1313 400.0 180.0 1400.5 342.8	m ³ /m ³ m ³ /m ³ Kg/m ³ Lt/m ³ Kg/m ³ Kg/m ³	0.656
n absoluto del Agregado fino n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR m do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m	eso ISOLUTOS ³ EN PESO SECO		0.1313 400.0 180.0 1400.5 342.8	m ³ /m ³ Kg/m ³ Lt/m ³ Kg/m ³ Kg/m ³	
n absoluto del Agregado grue ORIA DE VOLUMENES AB D DE MATERIALES POR m o do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m	eso ISOLUTOS 3 EN PESO SECO o del cemento)		0.1313 400.0 180.0 1400.5 342.8	m ³ /m ³ Kg/m ³ Lt/m ³ Kg/m ³ Kg/m ³	
ORIA DE VOLUMENES AB D DE MATERIALES POR mi o do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	3 SOLUTOS 3 EN PESO SECO o del cemento)		400.0 180.0 1400.5 342.8	Kg/m ³ Lt/m ³ Kg/m ³ Kg/m ³	1.000
D DE MATERIALES POR mi o do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR mi	³ EN PESO SECO o del cemento)		180.0 1400.5 342.8	Lt/m ³ Kg/m ³ Kg/m ³	1.000
o do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m	o del cemento)		180.0 1400.5 342.8	Lt/m ³ Kg/m ³ Kg/m ³	
do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m			180.0 1400.5 342.8	Lt/m ³ Kg/m ³ Kg/m ³	
do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m			1400.5 342.8	Kg/m ³ Kg/m ³	
do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES POR m			342.8	Kg/m ³	
y PET (dosis 8.0 % del peso DE MEZCLA DE MATERIALES POR m					
DE MEZCLA DE MATERIALES POR m			32.00		
DE MATERIALES POR m	³ EN PESO HÚMEDO			Kg/m ³	
DE MATERIALES POR m	³ EN PESO HÚMEDO		2323.2	Kg/m ³	
	EN PESO HUMEDO				
do fino húmedo			000.0	1.1/0	
do fino húmedo			206.9	Lt/m3	
			1420.1	Kg/m ³	
do grueso húmedo			344.1	Kg/m ³	
y PET (dosis 8.0 % del peso	del cemento)		32.0	Kg/m ³	
JCIÓN DE AGUA DE LOS A	AGREGADOS		%	Lt/m ³	
do fino			0.30	4.2	
ao graeso			0.50		
DE MEZCLA CORREGIDA				185.9	Lt/m ³
TÓN DOD HIIMEDAD					
			400.0	K = /==3	
O					
da fina					
=					
y PET (dosis 8.0 % del peso	del cemento)		32.0	Kg/m ³	
DE MEZCLA			2382.1	Ka/m³	
				-9	0.022
			40.0		0.030
0					
				_	
y PET (dosis 8.0 % del peso	del cemento)		960.0	g	
IÓN DEL DISEÑO		CÁLCULO DE LA	AS PROPORC	CIÓN PARA 15	ka DE C.P.
		3 -			
					Kg
					kg
					Kg
					lt g
	do grueso DE MEZCLA CORREGIDA CIÓN POR HUMEDAD to do fino do grueso y PET (dosis 8.0 % del peso DE MEZCLA D DE MATERIALES (30 lt.) to do fino do grueso	do grueso DE MEZCLA CORREGIDA CIÓN POR HUMEDAD to do fino do grueso y PET (dosis 8.0 % del peso del cemento) DE MEZCLA D DE MATERIALES (30 lt.) to do fino do grueso y PET (dosis 8.0 % del peso del cemento) CIÓN DEL DISEÑO 1.00 3.55 0.86 0.46	do grueso DE MEZCLA CORREGIDA CIÓN POR HUMEDAD to do fino do grueso y PET (dosis 8.0 % del peso del cemento) DE MEZCLA D DE MATERIALES (30 lt.) to do fino do grueso y PET (dosis 8.0 % del peso del cemento) CIÓN DEL DISEÑO CÁLCULO DE LA 1.00 3.55 0.86 0.46	DE MEZCLA CORREGIDA CIÓN POR HUMEDAD to 400.0 185.9	DE MEZCLA CORREGIDA 1.7 5.9 18

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Propiedades físicas del adoquín

Trabajabilidad

INFORME Código IF-TA-ANPM-PN Versión **ENSAYO TRABAJABILIDAD DEL CONCRETO** Fecha 03-01-2023 (ASTM C 143) Página 1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Solicitante(s) : Ingeniria Civil Especialidad

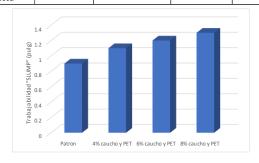
Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

: Los Olivos, 2023 Ubicación Fecha de emisión : 23/09/2023

DATOS DE LA MUESTRA

Identificación

Descripción



PROCESO DE ENSAYO				
Capas	N° de Golpes			
1	25			
2	25			
3	25			

CONSISTENCIA EN CONO				
Consistencia	Asentamiento (Pulg)			
Seca	0-2			
Blanda	3-4			
Fluida	≥5			

ASENTAMIENTO DEL CONCRETO

	TRABAJABILIDAD	CONSISTENCIA "SLUM	P" (Pulg) (promedio	s)
Ensayo	Patron	4% caucho y PET	6% caucho y PET	4% caucho y PET
Consistencia Seca	0.9	1.1	1.2	1.3

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Absorción

: Jimmy Dávila Salazar Universidad : César Vallejo : Ingeniería Civil

: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023 Tema de tesis

: Los Olivos, 2023 Fecha de emisión : 13/10/23

DATOS DE LA MUESTRA

Tipo de muestra : Ladrillo

: Diseño de mezcla de concreto f'c 320

		DÍAS				
N°.	IDENTIFICACIÓN	DIAS DE CURADO	PESO HÚMEDO DEPUES DE DESMOLDE (24h) (gr)	PESO SECO (gr)	PESO SATURADO (24h) (gr)	ABSORCIÓN (%)
1	Adoquín patron	7.0	2918.00	2888.00	2948.00	2.08
2	Adoquín patron	7.0	2917.00	2887.00	2942.00	1.91
3	Adoquín patron	7.0	2911.00 2881.00		2945.00	2.22
1	Adoquín patron	14.0	2910.00	2880.00	2944.00	2.22
2	Adoquín patron	14.0	2912.00	2882.00	2947.00	2.26
3	Adoquín patron	14.0	2909.00	2879.00	2942.00	2.19
1	Adoquín patron	28.0	2907.00	2877.00	2940.00	2.19
2	Adoquín patron	28.0	2906.00	2876.00	2941.00	2.26
3	Adoquín patron	28.0	2905.00	2875.00	2939.00	2.23

PROMEDIO ABSORCION 2.17	PROMEDIO ABSORCIÓN	2.17
-------------------------	--------------------	------

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto.

HISGEOLAB S.A.C.

Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Revisado por:

Código INFORME IF-TC-JDS-PN Versión **ABSORCIÓN** Fecha 03-01-2023 NTP 339.613 Página

1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Universidad : César Vallejo Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 : 16/10/23 Fecha de emisión

DATOS DE LA MUESTRA

Tipo de muestra

: Ladrillo : Diseño de mezcla de concreto f'c 320 con adición de 4.0% de Caucho y PET Identificación

		DÍAS		PESO				
N°.	IDENTIFICACIÓN	DE CURADO	PESO HÚMEDO DEPUES DE DESMOLDE (24h) (gr)	PESO SECO (gr)	PESO SATURADO 24h (gr)	ABSORCIÓN (%)		
1	Adoquín-4% Caucho y PET	7.0	2854.00	2824.00	2911.00	3.08		
2	Adoquín-4% Caucho y PET	7.0	2852.00	2822.00	2908.00	3.05		
3	Adoquín-4% Caucho y PET	7.0	2851.00	2821.00	2909.00	3.12		
1	Adoquín-4% Caucho y PET	14.0	2847.00	2817.00	2900.00	2.95		
2	Adoquín-4% Caucho y PET	14.0	2845.00	2815.00	2899.00	2.98		
3	Adoquín-4% Caucho y PET	14.0	2847.00	2817.00	2900.00	2.95		
1	Adoquín-4% Caucho y PET	28.0	2843.00	2813.00	2896.00	2.95		
2	Adoquín-4% Caucho y PET	28.0	2841.00	2811.00	2900.00	3.17		
3	Adoquín-4% Caucho y PET	28.0	2840.00	2810.00	2898.00	3.13		

,	
PROMEDIO ABSORCION	3.04

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma:

INFORME Código IF-TC-JDS-PN Versión 01 ABSORCIÓN Fecha 03-01-2023 NTP 339.613 Página 1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Universidad : César Vallejo Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

: Los Olivos, 2023 : 18/10/23 Fecha de emisión

DATOS DE LA MUESTRA

: Ladrillo Tipo de muestra

Identificación : Diseño de mezcla de concreto f'c 320 con adición de 6.0% de Caucho y PET

		DÍAS		PESO		
N°.	IDENTIFICACIÓN	DE CURADO	PESO HÚMEDO DEPUES DE DESMOLDE (24h) (gr)	PESO SECO (gr)	PESO SATURADO 24h (gr)	ABSORCIÓN (%)
1	Adoquín-6% Caucho y PET	7.0	2823.00	2793.00	2898.00	3.76
2	Adoquín-6% Caucho y PET	7.0	2822.00	2792.00	2900.00	3.87
3	Adoquín-6% Caucho y PET	7.0	2823.00	2823.00 2793.00		3.80
1	Adoquín-6% Caucho y PET	14.0	2818.00	2788.00	2892.00	3.73
2	Adoquín-6% Caucho y PET	14.0	2816.00	2786.00	2893.00	3.84
3	Adoquín-6% Caucho y PET	14.0	2817.00	2787.00	2891.00	3.73
1	Adoquín-6% Caucho y PET	28.0	2801.00	2771.00	2874.00	3.72
2	Adoquín-6% Caucho y PET	28.0	2803.00	2773.00	2875.00	3.68
3	Adoquín-6% Caucho y PET	28.0	2801.00	2771.00	2875.00	3.75

PROMEDIO ABSORCIÓN	3.76
--------------------	------

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto.

HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

INFORME Código IF-TC-JDS-PN Versión 01 ABSORCIÓN Fecha 03-01-2023 NTP 339.613 Página 1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Universidad : César Vallejo Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

: Los Olivos, 2023 : 20/10/23 Fecha de emisión

DATOS DE LA MUESTRA

Tipo de muestra Identificación

: Ladrillo : Diseño de mezcla de concreto f'c 320 con adición de 8.0% de Caucho y PET

		DÍAS		PESO		
N°.	IDENTIFICACIÓN	DE CURADO	PESO HÚMEDO DEPUES DE DESMOLDE (24h) (gr)	PESO SECO (gr)	PESO SATURADO 24h (gr)	ABSORCIÓN (%)
1	Adoquín-8% Caucho y PET	7.0	2799.00	2769.00	2890.00	4.37
2	Adoquín-8% Caucho y PET	7.0	2801.00	2771.00	2891.00	4.33
3	Adoquín-8% Caucho y PET	7.0	2799.00	2799.00 2769.00		4.33
1	Adoquín-8% Caucho y PET	14.0	2792.00	2762.00	2883.00	4.38
2	Adoquín-8% Caucho y PET	14.0	2790.00	2760.00	2881.00	4.38
3	Adoquín-8% Caucho y PET	14.0	2791.00	2761.00	2883.00	4.42
1	Adoquín-8% Caucho y PET	28.0	2785.00	2755.00	2873.00	4.28
2	Adoquín-8% Caucho y PET	28.0	2783.00	2753.00	2872.00	4.32
3	Adoquín-8% Caucho y PET	28.0	2785.00	2755.00	2875.00	4.36

PROMEDIO ABSORCIÓN	4.35
--------------------	------

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Propiedades mecánicas del adoquín

Resistencia a compresión

RESISTENCIA A LA COMPRESIÓN DE UNIDADES DE ALBAÑILERÍA NTP 339.613

Código IF-TC-JDS-PN Versión 01 Fecha 03-01-2023 Página 1 de 1

DATOS GENERALES

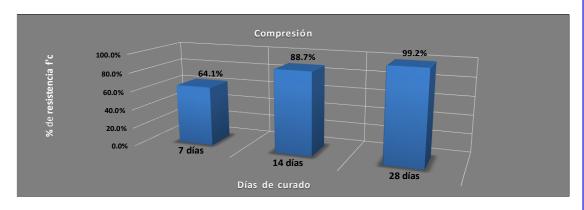
INFORME

Solicitante : Jimmy Dávila Salazar
Universidad : Universidad César Vallejo

Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 16/09/2023


DATOS DE LA MUESTRA

Tipo de muestra : Adoquín

Identificación : Diseño de mezcla de concreto f'c 320

ROTURA DE ESPECIMENES

	FECHA	FECHA DE				ANG	NO.	1.4	RGO	CARGA	AREA	RESIST.		%	%
Nº	FECHA	FECHA DE	EDAD	DESCRIPCIÓN	REG.	AIV	JHO	LA	NGO T	CARGA	AREA		DISEÑO	70	76
	MOLDEO	ROTURA	LDALD	52551ttl 51511	N°	cm	cm	cm	cm	Kg		Kg/cm ²	DIOLIO	RESIST.	PROMEDIO
01	16/09/2023	23/09/2023	7 días	Diseño de mezcla de concreto f'c 320	01-A	10.00	10.00	20.00	20.00	40,978	200.0	204.9	320	64.03%	
02	16/09/2023	23/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-B	10.00	10.00	20.00	20.00	40,982	200.0	204.9	320	64.03%	64.1%
03	16/09/2023	23/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-C	10.00	10.00	20.00	20.00	41,062	200.0	205.3	320	64.16%	
01	16/09/2023	30/09/2023	14 días	Diseño de mezcla de concreto fc 320	02-A	10.00	10.00	20.00	20.00	56,890	200.0	284.5	320	88.89%	
02	16/09/2023	30/09/2023	14 días	Diseño de mezcla de concreto fc 320	02-B	10.00	10.00	20.00	20.00	56,480	200.0	282.4	320	88.25%	88.7%
03	16/09/2023	30/09/2023	14 días	Diseño de mezcla de concreto fc 320	02-C	10.00	10.00	20.00	20.00	56,920	200.0	284.6	320	88.94%	
01	16/09/2023	14/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-A	10.00	10.00	20.00	20.00	63,560	200.0	317.8	320	99.31%	
02	16/09/2023	14/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-B	10.00	10.00	20.00	20.00	63,318	200.0	316.6	320	98.93%	99.2%
03	16/09/2023	14/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-C	10.00	10.00	20.00	20.00	63,640	200.0	318.2	320	99.44%	
				·											

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Firma

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma

RESISTENCIA A LA COMPRESIÓN DE UNIDADES DE ALBAÑILERÍA NTP 339.613

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

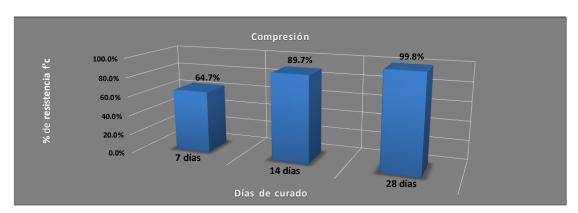
INFORME

Solicitante : Jimmy Dávila Salazar
Universidad : Universidad César Vallejo

Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 19/09/2023


DATOS DE LA MUESTRA

Tipo de muestra : Adoquín

Identificación : Diseño de mezcla de concreto f'c 320 con adición de 4.0% de Caucho y PET

ROTURA DE ESPECIMENES

	FECHA	FECHA DE		250 2010 21511	REG.	ANG	СНО	LAI	RGO	CARGA	AREA	RESIST.		%	%
Nº	MOLDEO	ROTURA	EDAD	DESCRIPCIÓN	N°	cm	cm	cm	cm	Kg		Kg/cm ²	DISEÑO	RESIST.	PROMEDIO
01	19/09/2023	26/09/2023	7 días	Diseño de mezcla de concreto f'c 320	01-A	10.00	10.00	20.00	20.00	41,207	200.0	206.0	320	64.39%	
02	19/09/2023	26/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-B	10.00	10.00	20.00	20.00	41,321	200.0	206.6	320	64.56%	64.7%
03	19/09/2023	26/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-C	10.00	10.00	20.00	20.00	41,613	200.0	208.1	320	65.02%	
01	19/09/2023	03/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-A	10.00	10.00	20.00	20.00	57,415	200.0	287.1	320	89.71%	
02	19/09/2023	03/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-B	10.00	10.00	20.00	20.00	57,330	200.0	286.7	320	89.58%	89.7%
03	19/09/2023	03/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-C	10.00	10.00	20.00	20.00	57,423	200.0	287.1	320	89.72%	
01	19/09/2023	17/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-A	10.00	10.00	20.00	20.00	64,020	200.0	320.1	320	100.03%	
02	19/09/2023	17/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-B	10.00	10.00	20.00	20.00	63,810	200.0	319.1	320	99.70%	99.8%
03	19/09/2023	17/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-C	10.00	10.00	20.00	20.00	63,719	200.0	318.6	320	99.56%	

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Firma

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Firma

RESISTENCIA A LA COMPRESIÓN DE UNIDADES DE ALBAÑILERÍA NTP 339.613

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

INFORME

Solicitante : Jimmy Dávila Salazar
Universidad : Universidad César Vallejo

Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 21/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Adoquín

lentificación : Diseño de mezcla de concreto f'c 320 con adición de 6.0% de Caucho y PET

ROTURA DE ESPECIMENES

	FECHA	FECHA DE		neo en maré u	REG.	ANCHO		LARGO		CARGA	AREA	RESIST.	DISEÑO	%	%
N⁰	MOLDEO ROTURA EDAD	DESCRIPCIÓN	N°	cm	cm	cm	cm	Kg	Kg/cm ²	RESIST.		PROMEDIO			
01	21/09/2023	28/09/2023	7 días	Diseño de mezcla de concreto f'c 320	01-A	10.00	10.00	20.00	20.00	40,398	200.0	202.0	320	63.12%	
02	21/09/2023	28/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-B	10.00	10.00	20.00	20.00	40,512	200.0	202.6	320	63.30%	63.8%
03	21/09/2023	28/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-C	10.00	10.00	20.00	20.00	41,499	200.0	207.5	320	64.84%	
01	21/09/2023	05/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-A	10.00	10.00	20.00	20.00	56,337	200.0	281.7	320	88.03%	
02	21/09/2023	05/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-B	10.00	10.00	20.00	20.00	56,752	200.0	283.8	320	88.68%	88.3%
03	21/09/2023	05/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-C	10.00	10.00	20.00	20.00	56,479	200.0	282.4	320	88.25%	
01	21/09/2023	19/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-A	10.00	10.00	20.00	20.00	63,701	200.0	318.5	320	99.53%	
02	21/09/2023	19/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-B	10.00	10.00	20.00	20.00	63,544	200.0	317.7	320	99.29%	99.3%
03	21/09/2023	19/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-C	10.00	10.00	20.00	20.00	63,399	200.0	317.0	320	99.06%	

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

HISGEOLAB S.A.C.
Firma:

Revisado por:

Juan Carlos Zapata Silva Ing. Civil CIP 56346

RESISTENCIA A LA COMPRESIÓN DE UNIDADES DE ALBAÑILERÍA NTP 339.613

INFORME

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

Solicitante : Jimmy Dávila Salazar
Universidad : Universidad César Vallejo

Especialidad : Ingeniería Civil

Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

Ubicación : Los Olivos, 2023 Fecha de emisión : 23/09/2023

DATOS DE LA MUESTRA

Tipo de muestra : Adoquín

dentificación : Diseño de mezcla de concreto f'c 320 con adición de 8.0% de Caucho y PET

ROTURA DE ESPECIMENES

Π.	FECHA	FECHA DE				ANCHO		LARGO		CARGA	AREA	RESIST.		%	%
N⁰	MOLDEO	ROTURA	EDAD	DESCRIPCIÓN	N°	cm	cm	cm	cm	Kg	K	Kg/cm ²	DISEÑO	RESIST.	PROMEDIO
01	23/09/2023	30/09/2023	7 días	Diseño de mezcla de concreto f'c 320	01-A	10.00	10.00	20.00	20.00	39,523	200.0	197.6	320	61.75%	
02	23/09/2023	30/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-B	10.00	10.00	20.00	20.00	39,609	200.0	198.0	320	61.89%	61.7%
03	23/09/2023	30/09/2023	7 días	Diseño de mezcla de concreto fc 320	01-C	10.00	10.00	20.00	20.00	39,357	200.0	196.8	320	61.50%	
01	23/09/2023	07/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-A	10.00	10.00	20.00	20.00	55,202	200.0	276.0	320	86.25%	
02	23/09/2023	07/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-B	10.00	10.00	20.00	20.00	55,142	200.0	275.7	320	86.16%	86.4%
03	23/09/2023	07/10/2023	14 días	Diseño de mezcla de concreto fc 320	02-C	10.00	10.00	20.00	20.00	55,615	200.0	278.1	320	86.90%	
01	23/09/2023	21/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-A	10.00	10.00	20.00	20.00	62,050	200.0	310.3	320	96.95%	
02	23/09/2023	21/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-B	10.00	10.00	20.00	20.00	61,350	200.0	306.8	320	95.86%	96.5%
03	23/09/2023	21/10/2023	28 días	Diseño de mezcla de concreto fc 320	03-C	10.00	10.00	20.00	20.00	61,820	200.0	309.1	320	96.59%	

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

HISGEOLAB S.A.C.
Firma:

Revisado por:

Juan Carlos Zapata Silva Ing. Civil CIP 56346

Resistencia a flexión

RESISTENCIA A LA FLEXIÓN (MÓDULO DE ROTURA) ASTM C293/C293M-16

INFORME

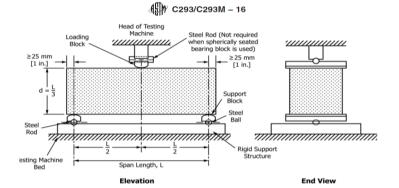
Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Universidad : Universidad César Vallejo Especialidad

: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023 Tema de tesis

Ubicación : Los Olivos, 2023


: 16/09/2023 Fecha de emis

DATOS DE LA MUESTRA

: Adoquín Tipo de muestra Identificación

: Diseño de mezcla de concreto fc 320

IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	PESO (g)	FUERZA MÁXIMA (kg)	MR (kg/cm2)	PROMEDIO MR (kg/cm2)
ADOQUÍN PATRON	16/09/2023	23/09/2023	7	10.00	20.00	6.00	2777	505.3	42.1	
ADOQUÍN PATRON	16/09/2023	23/09/2023	7	10.00	20.00	6.00	2738	509.6	42.5	42.4
ADOQUÍN PATRON	16/09/2023	23/09/2023	7	10.00	20.00	6.00	2762	511.3	42.6	
					•					
ADOQUÍN PATRON	16/09/2023	30/09/2023	14	10.00	20.00	6.00	2780	581.2	48.4	
ADOQUÍN PATRON	16/09/2023	30/09/2023	14	10.00	20.00	6.00	2759	562.3	46.9	47.6
ADOQUÍN PATRON	16/09/2023	30/09/2023	14	10.00	20.00	6.00	2740	571.2	47.6	
	•	•	•	•	•					•
ADOQUÍN PATRON	16/09/2023	14/10/2023	28	10.00	20.00	6.00	2718	605.2	50.4	
ADOQUÍN PATRON	16/09/2023	14/10/2023	28	10.00	20.00	6.00	2736	603.2	50.3	50.5
ADOQUÍN PATRON	16/09/2023	14/10/2023	28	10.00	20.00	6.00	2759	611.1	50.9	1

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto.

HISGEOLAB S.A.C. Firma:

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C. Firma:

INFORME

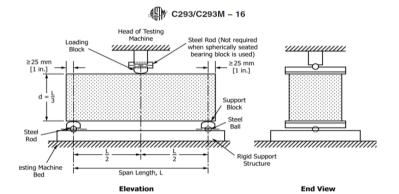
RESISTENCIA A LA FLEXIÓN (MÓDULO DE ROTURA) ASTM C293/C293M-16

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Solicitante Universidad : Universidad César Vallejo Especialidad : Ingeniería Civil

: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023 Tema de tesis


Ubicación : Los Olivos, 2023 Fecha de en 19/09/2023

DATOS DE LA MUESTRA

: Adoquín Tipo de muestra Identificación

: Diseño de mezcla de concreto f'c 320 con adición de 4.0% de Caucho y PET

IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	PESO (g)	FUERZA MÁXIMA (kg)	MR (kg/cm2)	PROMEDIO MR (kg/cm2)
4.0% CAUCHO Y PET	19/09/2023	26/09/2023	7	10.00	20.00	6.00	2908	518.0	43.2	
4.0% CAUCHO Y PET	19/09/2023	26/09/2023	7	10.00	20.00	6.00	2897	529.0	44.1	43.3
4.0% CAUCHO Y PET	19/09/2023	26/09/2023	7	10.00	20.00	6.00	2798	510.0	42.5	
										•
4.0% CAUCHO Y PET	19/09/2023	03/10/2023	14	10.00	20.00	6.00	2867	581.0	48.4	
4.0% CAUCHO Y PET	19/09/2023	03/10/2023	14	10.00	20.00	6.00	2900	598.0	49.8	48.6
4.0% CAUCHO Y PET	19/09/2023	03/10/2023	14	10.00	20.00	6.00	2840	572.0	47.7	
										•
4.0% CAUCHO Y PET	19/09/2023	17/10/2023	28	10.00	20.00	6.00	2834	642.2	53.5	
4.0% CAUCHO Y PET	19/09/2023	17/10/2023	28	10.00	20.00	6.00	2856	608.0	50.7	51.7
4.0% CAUCHO Y PET	19/09/2023	17/10/2023	28	10.00	20.00	6.00	2789	611.0	50.9	

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto. HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

INFORME

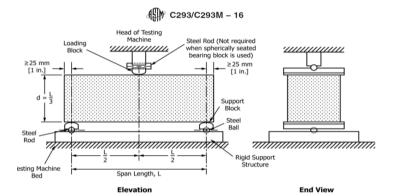
RESISTENCIA A LA FLEXIÓN (MÓDULO DE ROTURA) ASTM C293/C293M-16

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar : Universidad César Vallejo Universidad Especialidad : Ingeniería Civil

: Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023 Tema de tesis


: Los Olivos, 2023 : 21/09/2023 Fecha de emisión

DATOS DE LA MUESTRA

: Adoquín

: Diseño de mezcla de concreto f'c 320 con adición de 6.0% de Caucho y PET dentificación

IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	PESO (g)	FUERZA MÁXIMA (kg)	MR (kg/cm2)	PROMEDIO MR (kg/cm2)
6.0% CAUCHO Y PET	21/09/2023	28/09/2023	7	10.00	20.00	6.00	2896	498.0	41.5	
6.0% CAUCHO Y PET	21/09/2023	28/09/2023	7	10.00	20.00	6.00	2769	511.0	42.6	41.9
6.0% CAUCHO Y PET	21/09/2023	28/09/2023	7	10.00	20.00	6.00	2867	501.0	41.8	
6.0% CAUCHO Y PET	21/09/2023	05/10/2023	14	10.00	20.00	6.00	2834	588.0	49.0	
6.0% CAUCHO Y PET	21/09/2023	05/10/2023	14	10.00	20.00	6.00	2812	567.0	47.3	47.3
6.0% CAUCHO Y PET	21/09/2023	05/10/2023	14	10.00	20.00	6.00	2866	549.0	45.8	
6.0% CAUCHO Y PET	21/09/2023	19/10/2023	28	10.00	20.00	6.00	2785	596.0	49.7	
6.0% CAUCHO Y PET	21/09/2023	19/10/2023	28	10.00	20.00	6.00	2819	608.0	50.7	49.9
ADOQUIN 3.5% DE ALAMBRE N°16	21/09/2023	19/10/2023	28	10.00	20.00	6.00	2841	593.0	49.4	

Elaborado por:
Miguel Angel Alfaro Huayanay
Técnico de laboratorio de suelos, concreto y asfalto.
HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

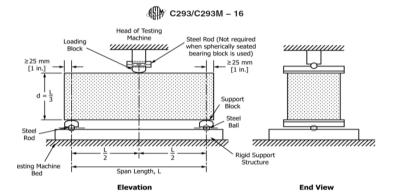
INFORME

RESISTENCIA A LA FLEXIÓN (MÓDULO DE ROTURA) ASTM C293/C293M-16

Código	IF-TC-JDS-PN
Versión	01
Fecha	03-01-2023
Página	1 de 1

DATOS GENERALES

: Jimmy Dávila Salazar Universidad : Universidad César Vallejo Especialidad : Ingeniería Civil


Tema de tesis : Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023

: Los Olivos, 2023 : 23/09/2023 Fecha de emisión

DATOS DE LA MUESTRA

: Adoquín : Diseño de mezcla de concreto f'c 3200 con adición de 8.0% de Caucho y PET Identificación

IDENTIFICACIÓN	FECHA DE ELABORACIÓN	FECHA DE ROTURA	EDAD (días)	ANCHO (cm)	LONGITUD (cm)	ALTURA (cm)	PESO (g)	FUERZA MÁXIMA (kg)	MR (kg/cm2)	PROMEDIO MR (kg/cm2)
8.0% CAUCHO Y PET	23/09/2023	30/09/2023	7	10.00	20.00	6.00	2798	475.0	39.6	
8.0% CAUCHO Y PET	23/09/2023	30/09/2023	7	10.00	20.00	6.00	2863	479.0	39.9	39.8
8.0% CAUCHO Y PET	23/09/2023	30/09/2023	7	10.00	20.00	6.00	2799	478.0	39.8	
		•			•			•		
8.0% CAUCHO Y PET	23/09/2023	07/10/2023	14	10.00	20.00	6.00	2846	521.0	43.4	
8.0% CAUCHO Y PET	23/09/2023	07/10/2023	14	10.00	20.00	6.00	2821	513.0	42.8	42.7
8.0% CAUCHO Y PET	23/09/2023	07/10/2023	14	10.00	20.00	6.00	2769	504.0	42.0	
										•
8.0% CAUCHO Y PET	23/09/2023	21/10/2023	28	10.00	20.00	6.00	2854	568.0	47.3	
8.0% CAUCHO Y PET	23/09/2023	21/10/2023	28	10.00	20.00	6.00	2837	564.0	47.0	47.3
8.0% CAUCHO Y PET	23/09/2023	21/10/2023	28	10.00	20.00	6.00	2893	571.0	47.6	

Elaborado por: Miguel Angel Alfaro Huayanay Técnico de laboratorio de suelos, concreto y asfalto.

HISGEOLAB S.A.C.

Revisado por: Juan Carlos Zapata Silva Ing. Civil CIP 56346 HISGEOLAB S.A.C.

Certificado de Calibración TC - 22688 - 2022

Proforma : 13936A Fecha de emisión: 2023-01-03 Página : 1 de 2

Solicitante : GEONAYLAMP S.A.C

Dirección : Jr. La Veronica Nro. 436 Lima-Lima-Carabayllo

Intrumento de medición : PRENSA DE CONCRETO

: METROTEST Marca Modelo : MC-160 N° de Serie : 228 Alcance de indicación : 1500 kN · 0.1 kN Resolución Procedencia : No Indica : No Indica Identificación Ubicación Fecha de Calibración : 2022-12-30

Lugar de calibración

Instalaciones de GEONAYLAMP S.A.C

Método de calibración

La calibración se efectuó por comparación indirecta tomando como referencia la norma UNE-EN ISO 7500-1:2018 (Maquinas de ensayo de tracción/Compresión). Calibración y Verificación del sistema de medida de fuerza.

Condiciones de calibración

Magnitud	Inicial	Final		
Temperatura	29,1 °C	29 °C		
Humedad Relativa	54,1 %HR	55,2 %HR		

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

Certificado : TC - 22688 - 2022

Página : 2 de 2

Trazabilidad

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración		
Balanza de Presión Clase de Exactitud 0,005 DM-INACAL	Manómetro de 0 bar a 700 bar Clase de Exactitud 0,05	LFP-C-064-2022		

Resultados de calibración

RESULTADOS						
INDICACIÓN DEL EQUIPO BAJO CALIBRACIÓN	INDICACIÓN DEL PATRÓN	ERROR	INCERTIDUMBRE			
kN	kN	kN	kN			
100,0	100,93	-0,93	0,06			
200,0	200,27	-0,27	0,06			
300,0	299,04	0,96	0,06			
400,0	399,64	0,36	0,06			
500,0	499,73	0,27	0,06			
600,0	599,70	0,30	0,06			
700,0	699,92	0,08	0,06			
800,0	800,19	-0,19	0,06			
900,0	900,51	-0,51	0,06			
1 000,0	1 001,13	-1,13	0,06			

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

Incertidumbre expandida U

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el

FIN DEL DOCUMENTO

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016

Certificado de Calibración

TC - 22687 - 2022

Proforma : 13936A Fecha de emisión : 2023-01-04

Solicitante : GEONAYLAMP S.A.C

Dirección : Jr. La Veronica Nro. 436 Lima-Lima-Carabayllo

: Balanza Instrumento de medición Tipo : Electrónica : OHAUS Marca : R31P30 Modelo N° de Serie : 8335460393 Capacidad Máxima : 30000 q Resolución : 1g División de Verificación : 10 g Clase de Exactitud : 111 Capacidad Mínima : 200 g : CHINA Procedencia Identificación : No indica

Ubicación : GRANULOMETRÍA-LABORATORIO

Variación de ΔT Local : 5 °C Fecha de Calibración : 2022-12-30

Lugar de calibración

Instalaciones de GEONAYLAMP S.A.C

Método de calibración

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-001 "Procedimiento para la Calibración de Instrumentos de Pesaje de Funcionamiento No Automático Clase III y IIII". Primera Edición - Mayo 2019. DM - INACAL.

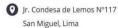
TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes:

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

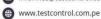
Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.


TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico


PGC-16-r09/Diciembre 2019/Rev.05



Página: 1 de 3

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016

Certificado de Calibración TC - 22687 - 2022

Trazabilidad

Trazabilidad	Patrón de trabajo	Certificado de calibración
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 100 mg a 1 kg Clase de Exactitud M2	TC-00555-2022 Abril 2022
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 2 kg Clase de Exactitud M2	TC-06242-2022 Abril 2022
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 5 kg Clase de Exactitud M2	TC-06243-2022 Abril 2022
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 10 kg Clase de Exactitud M2	TC-06244-2022 Abril 2022
Patrones de Referencia de TEST & CONTROL Juego de Pesas 20 kg Clase de Exactitud M2		TC-06247-2022 Julio 2022

RESULTADOS DE MEDICIÓN

Inspección visual

Ajuste de Cero	Tiene
Oscilación Libre	Tiene
Plataforma	Tiene
Sistema de Traba	No Tiene

Escala	No Tiene
Cursor	No Tiene
Nivelación	Tiene

Ensayo de repetibilidad

Magnitud	Inicial	Final
Temperatura	28,0 °C	28,3 °C
Humedad Relativa	60 %	59 %

Medición	Carga	ı	ΔL	E
N°	(g)	(g)	(g)	(g)
1		15 002	0,5	2,0
2	15000	15 002	0,9	1,6
3		15 002	0,9	1,6
4		15 002	0,9	1,6
5		15 002	0,9	1,6
6		15 001	0,6	0,9
7		15 001	0,5	1,0
8		15 002	0,6	1,9
9		15 002	0,9	1,6
10		15 002	0,9	1,6
Ema	ax - Emin	(g)	1	,1
е	.m.p. ± (g)	2	0

Medición	Carga	1	ΔL	E
N°	(g)	(g)	(g)	(g)
1		30 001	0,2	1,3
2		30 001	0,7	0,8
3	30000	30 001	0,7	0,8
4		30 001	0,8	0,7
5		30 001	0,8	0,7
6		30 001	0,7	0,8
7		30 001	0,7	8,0
8		30 000	0,7	-0,2
9		30 000	0,7	-0,2
10		30 001	0,7	0,8
Emax - Emin (g)			1,	,5
6	e.m.p. ± (g)			0

PGC-16-r09/Diciembre 2019/Rev.05

O Jr. Condesa de Lemos Nº117 San Miguel, Lima

informes@testcontrol.com.pe

Página : 2 de 3

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016

Certificado de Calibración TC - 22687 - 2022

2 5 1 3 4

Ensayo de excentricidad

Magnitud	Inicial	Final
Temperatura	28,3 °C	28,1 °C
Humedad Relativa	59 %	60 %

		Determinación de Eo				Determinación del Error Corregido Ec			Ec	
N°	Carga (g)	(g)	ΔL (g)	Eo (g)	Carga (g)	(g)	ΔL (g)	(g)	Ec (g)	e.m.p. ±(g)
1		10	0,4	0,1		10 001	0,6	0,9	0,8	
2		10	0,4	0,1	1	10 001	0,6	0,9	0,8	1
3	10	10	0,4	0,1	10000	10 001	0,6	0,9	0,8	20
4		10	0,4	0,1	1	10 001	0,6	0,9	0,8	1000
5		10	0,4	0,1	1	10 001	0.6	0.9	0.8	1

Ensayo de pesaje

Magnitud	Inicial	Final
Temperatura	28,0 °C	27,7 °C
Humedad Relativa	60 %	60 %

C		Carga C	reciente	Carga Decreciente					
Carga (g)	(g)	ΔL (g)	E (g)	Ec (g)	(g)	ΔL (g)	E (g)	Ec (g)	e.m.p. ±(g)
10,0	10	0,4	0,1						
50,0	50	0,4	0,1	0,0	50	0,4	0,1	0,0	10
100,0	100	0,6	-0,1	-0,2	100	0,5	0,0	-0,1	10
5 000,0	5 000	0,5	0,0	-0,1	5 000	0,6	-0,1	-0,2	10
6 000,0	6 000	0,5	0,0	-0,1	6 000	0,6	-0,1	-0,2	20
10 000,3	10 001	0,6	0,6	0,5	10 001	0,6	0,6	0,5	20
15 000,3	15 002	0,6	1,6	1,5	15 002	0,7	1,5	1,4	20
20 000,4	20 002	0,6	1,5	1,4	20 001	8,0	0,3	0,2	20
25 000,4	25 002	0,7	1,4	1,3	25 002	0,8	1,3	1,2	30
28 000,4	28 001	0,7	0,4	0,3	28 001	0,8	0,3	0,2	30
30 000.7	30 001	0.8	0,0	-0,1	30 001	0.9	-0,1	-0.2	30

Donde:

I : Indicación de la balanza ΔL : Carga incrementada Eo : Error en cero e.m.p. : Error máximo permitido E : Error encontrado Ec : Error corregido

Lectura corregida e incertidumbre de la balanza

Lectura Corregida = R - 4,08 x 10 ⁻⁵ x R

Incertidumbre Expandida = $2 \times \sqrt{7,63 \times 10^{-6} \text{ g}^2 + 3,55 \times 10^{-9} \times \text{R}^2}$

R : Lectura, cualquier indicación obtenida después de la calibración (g)

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. La indicación de la balanza fue de 30 004 g para una carga de valor nominal 30000 g.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Fin del documento

PGC-16-r09/Diciembre 2019/Rev.05

Jr. Condesa de Lemos Nº117 San Miguel, Lima

informes@testcontrol.com.pe

www.testcontrol.com.pe

Página: 3 de 3

Certificado de Calibración

TC - 22640 - 2022

Proforma: 13936A Fecha de Emisión : 2023-01-03

Solicitante : GEONAYLAMP S.A.C

: JR. LA VERONICA NRO. 436 LIMA-LIMA-CARABAYLLO Dirección

Equipo : Horno Marca : METROTEST : MS-H1 Modelo Número de Serie : 474 : ING-EQ-006 Identificación Procedencia NO INDICA : Ventilación natural Circulación del aire Ubicación : LABORATORIO Fecha de Calibración : 2022-12-30

Instrumento de Medición del Equipo

	Tipo	Alcance	Resolución
Termómetro	DIGITAL	0 °C a 400 °C	1 °C
Selector	DIGITAL	0 °C a 400 °C	1 °C

Lugar de calibración

Instalaciones de GEONAYLAMP S.A.C

Método de calibración

La calibración se realizó mediante el método de comparación según el PC-018 2da edición, Junio 2009: "Procedimiento para la calibración o caracterización de medios isotermos con aire como medio termostático" publicada por el SNM/ INDECOPI.

Condiciones de calibración

	Temperatura	Humedad	Tensión
Inicial	27,8 °C	57 %hr	220 V
Final	27,6 °C	58 %hr	220 V

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad. garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

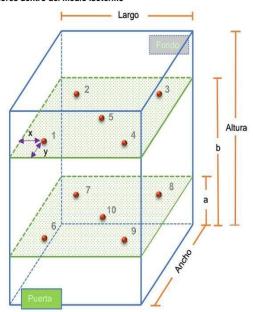
TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

PGC-16-r11/Octubre 2021/Rev.01

Página: 1 de 6



Certificado : TC - 22640 - 2022

Trazabilidad

Trazabilidad	Patrones de Trabajo	Certificado de Calibración
Patrones de Referencia del SAT	Indicador digital con termopares tipo T con incertidumbres del orden desde 0,14 °C hasta 0,16 °C.	LT-1017-2022 Octubre 2022

Ubicación de los sensores dentro del medio isotermo

40,0 cm Plano inferior (a) : Largo: 5.0 cm x : 5.0 cm 40,0 cm 45,0 cm Ancho: Plano superior (b): 6,0 cm

Altura : 50,0 cm

Los termopares 5 y 10 se ubicaron en el centro de su respectivos niveles. El medio isotermo tenia 3 parrillas al momento de iniciar la calibración.

Nomenclatura de abreviaturas

: Instante de tiempo en minutos. T.PROM : Promedio de la temperatura en una posición de : Indicación del termómetro del equipo. medición durante el tiempo de calibración. T. MÁX : Temperatura máxima por sensor : Promedio de las temperaturas en las diez Tprom posiciones de medición para un instante dado. T. MÍN : Temperatura mínima por sensor T. max : Temperatura máxima para un instante dado. DTT : Desviación de temperatura en el tiempo. T. min : Temperatura mínima para un instante dado.

PGC-16-r11/Octubre 2021/Rev.01

Certificado : TC - 22640 - 2022

Resultados de medición (1er punto de calibración)

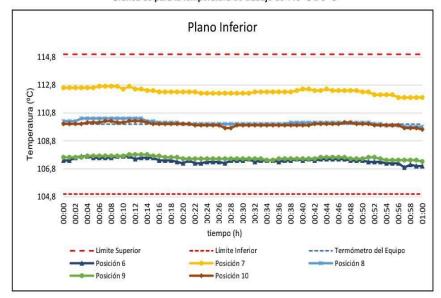
Temperatura de Trabajo	Posición del Controlador/ Selector	Tiempo de Calentamiento Estabilización	Porcentaje de carga	Descripción de la carga
110 °C ± 5 °C	110 °C	60 min	50%	ENVASES DE VIDRIO

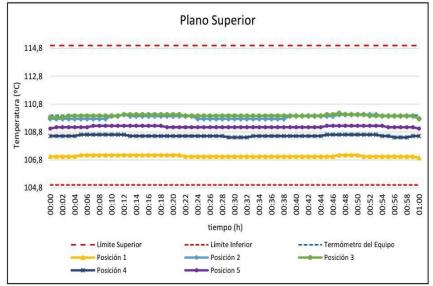
	- 1	Temperaturas en las Posiciones de Medición (C)		Tprom	Tmáx -	
τ	-1		Niv	el Supe	rior			Ni	vel Infer	ior		(°C)	Tmín
(h)	(°C)	1	2	3	4	5	6	7	8	9	10	(%)	(°C)
00:00	110	107,1	109,7	109,9	108,5	109,0	107,4	112,6	110,2	107,6	110,0	109,2	5,6
00:01	110	107,1	109,7	109,9	108,5	109,1	107,4	112,6	110,2	107,6	110,0	109,2	5,6
00:02	110	107,1	109,7	109,9	108,5	109,1	107,6	112,6	110,2	107,6	110,0	109,2	5,6
00:03	110	107,1	109,7	110,0	108,5	109,1	107,7	112,6	110,4	107,6	110,0	109,3	5,6
00:04	110	107,1	109,7	110,0	108,5	109,1	107,7	112,6	110,4	107,7	110,1	109,3	5,6
00:05	110	107,2	109,7	110,0	108,6	109,1	107,6	112,6	110,4	107,7	110,1	109,3	5,5
00:06	110	107,2	109,7	110,0	108,6	109,1	107,6	112,7	110,4	107,7	110,1	109,3	5,6
00:07	110	107,2	109,7	110,0	108,6	109,2	107,6	112,7	110,4	107,7	110,2	109,3	5,6
00:08	110	107,2	109,7	110,0	108,6	109,2	107,6	112,7	110,4	107,7	110,2	109,3	5,6
00:09	110	107,2	109,7	110,0	108,6	109,2	107,7	112,7	110,4	107,7	110,1	109,3	5,6
00:10	110	107,2	109,9	110,0	108,6	109,2	107,7	112,5	110,4	107,7	110,1	109,3	5,4
00:11	110	107,2	109,9	110,0	108,6	109,2	107,7	112,7	110,4	107,8	110,2	109,4	5,6
00:12	110	107,2	110,0	110,1	108,6	109,2	107,5	112,5	110,4	107,8	110,2	109,4	5,4
00:13	110	107,2	109,9	110,1	108,5	109,2	107,6	112,5	110,4	107,8	110,2	109,3	5,4
00:14	110	107,2	109,9	110,1	108,5	109,2	107,6	112,4	110,2	107,8	110,1	109,3	5,3
00:15	110	107,2	109,9	110,1	108,5	109,2	107,6	112,4	110,2	107,7	110,0	109,3	5,3
00:16	110	107,2	109,9	110,1	108,5	109,2	107,4	112,3	110,1	107,7	110,0	109,2	5,2
00:17	110	107,2	109,9	110,1	108,5	109,2	107,4	112,3	110,1	107,6	110,0	109,2	5,2
00:18	110	107,2	109,9	110,1	108,5	109,2	107,4	112,3	110,1	107,6	110,0	109,2	5,2
00:19	110	107,2	109,9	110,1	108,5	109,1	107,3	112,3	110,1	107,6	110,0	109,2	5,2
00:20	110	107,2	109,9	110,1	108,5	109,1	107,2	112,3	110,0	107,5	110,0	109,2	5,2
00:21	110	107,2	109,9	110,1	108,5	109,1	107,4	112,3	110,0	107,5	110,0	109,2	5,2
00:22	110	107,1	109,9	110,0	108,5	109,1	107,2	112,3	110,0	107,5	109,9	109,2	5,3
00:23	110	107,1	109,9	110,0	108,5	109,1	107,2	112,2	110,0	107,5	109,9	109,1	5,2
00:24	110	107,1	109,7	110,0	108,5	109,1	107,3	112,2	110,0	107,5	109,9	109,1	5,2
00:25	110	107,1	109,7	110,0	108,5	109,1	107,3	112,2	110,0	107,5	109,9	109,1	5,2
00:26	110	107,1	109,7	110,0	108,5	109,1	107,3	112,2	110,0	107,5	109,9	109,1	5,2
00:27	110	107,1	109,7	110,0	108,5	109,1	107,2	112,2	110,0	107,5	109,7	109,1	5,2
00:28	110	107,1	109,7	110,0	108,5	109,1	107,4	112,2	110,0	107,5	109,7	109,1	5,2
00:29	110	107,1	109,7	110,0	108,4	109,1	107,4	112,2	110,0	107,5	109,9	109,1	5,2
00:30	110	107,1	109,7	110,0	108,4	109,1	107,4	112,2	110,0	107,5	109,9	109,1	5,2

Página: 4 de 6

Certificado : TC - 22640 - 2022

		Temperaturas en las Posiciones de Medición (°C)									9.9 109,1 5,2 9.9 109,1 5,3 9.9 109,2 5,3 9.9 109,1 5,3 9.9 109,1 5,3 9.9 109,1 5,3 9.9 109,1 5,3 9.9 109,2 5,3 9.9 109,2 5,3 9.9 109,2 5,5 9.9 109,2 5,5 9.9 109,2 5,5 9.9 109,2 5,5 9.9 109,2 5,5 9.0 109,2 5,4 0,0 109,2 5,5		
t		Ü	Niv	el Supe	rior			Ni	vel Infer	ior			Tmín
(h)	(°C)	1	2	3	4	5	6	7	8	9	10	(-0)	(°C)
00:31	110	107,1	109,7	110,0	108,4	109,1	107,5	112,2	110,0	107,5	109,9	109,1	5,2
00:32	110	107,1	109,7	110,0	108,4	109,1	107,3	112,3	110,0	107,5	109,9	109,1	5,3
00:33	110	107,1	109,7	110,0	108,5	109,1	107,4	112,3	110,0	107,5	109,9	109,2	5,3
00:34	110	107,1	109,7	110,0	108,5	109,1	107,4	112,3	110,0	107,4	109,9	109,1	5,3
00:35	110	107,1	109,7	110,0	108,5	109,1	107,4	112,3	110,0	107,4	109,9	109,1	5,3
00:36	110	107,1	109,7	110,0	108,5	109,1	107,3	112,3	110,0	107,5	109,9	109,1	5,3
00:37	110	107,1	109,7	110,0	108,5	109,1	107,4	112,3	110,0	107,5	109,9	109,2	5,3
00:38	110	107,1	109,7	110,0	108,5	109,1	107,4	112,3	110,1	107,5	109,9	109,2	5,3
00:39	110	107,1	109,9	110,0	108,5	109,1	107,5	112,4	110,1	107,5	109,9	109,2	5,4
00:40	110	107,1	109,9	110,0	108,5	109,1	107,4	112,5	110,1	107,5	109,9	109,2	5,5
00:41	110	107,1	109,9	110,0	108,5	109,1	107,5	112,5	110,1	107,5	109,9	109,2	5,5
00:42	110	107,1	109,9	110,0	108,5	109,1	107,4	112,4	110,1	107,5	110,0	109,2	5,4
00:43	110	107,1	109,9	110,0	108,5	109,1	107,5	112,4	110,1	107,6	110,0	109,2	5,4
00:44	110	107,1	109,9	110,0	108,5	109,1	107,5	112,5	110,1	107,6	110,0	109,2	5,5
00:45	110	107,1	109,9	110,1	108,6	109,2	107,5	112,4	110,1	107,6	110,0	109,3	5,4
00:46	110	107,1	109,9	110,1	108,6	109,2	107,5	112,4	110,1	107,6	110,0	109,3	5,4
00:47	110	107,2	110,0	110,2	108,6	109,2	107,5	112,4	110,1	107,6	110,1	109,3	5,3
00:48	110	107,2	110,0	110,1	108,6	109,2	107,4	112,4	110,1	107,5	110,1	109,3	5,3
00:49	110	107,2	110,0	110,1	108,6	109,2	107,4	112,4	110,1	107,5	110,0	109,3	5,3
00:50	110	107,2	110,0	110,1	108,6	109,2	107,4	112,3	110,1	107,5	110,0	109,2	5,2
00:51	110	107,1	110,0	110,1	108,6	109,2	107,3	112,3	110,1	107,6	110,0	109,2	5,3
00:52	110	107,1	110,0	110,0	108,6	109,2	107,3	112,1	110,0	107,6	109,9	109,2	5,1
00:53	110	107,1	110,0	110,0	108,6	109,2	107,3	112,1	110,0	107,5	109,9	109,2	5,1
00:54	110	107,1	109,9	110,0	108,5	109,2	107,2	112,1	109,9	107,4	109,9	109,1	5,1
00:55	110	107,1	109,9	110,0	108,5	109,1	107,2	112,1	109,9	107,4	109,9	109,1	5,1
00:56	110	107,1	109,9	110,0	108,4	109,1	107,2	111,9	109,9	107,4	109,9	109,1	4,9
00:57	110	107,1	109,9	110,0	108,4	109,1	106,9	111,9	109,8	107,4	109,7	109,0	5,0
00:58	110	107,1	109,9	110,0	108,4	109,1	107,1	111,9	109,8	107,4	109,7	109,0	4,9
00:59	110	107,1	109,9	110,0	108,5	109,1	107,0	111,9	109,8	107,4	109,7	109,0	4,9
01:00	110	107,0	109,7	109,8	108,5	109,0	107,0	111,9	109,8	107,3	109,6	109,0	5,0
T.PRON	110	107,1	109,9	110,0	108,5	109,2	107,4	112,3	110,1	107,6	110,0	109,2	
T.MAX	110	107,2	110,0	110,2	108,6	109,2	107,7	112,7	110,4	107,8	110,2		1
T.MIN	110	107,0	109,7	109,8	108,4	109,0	106,9	111,9	109,8	107,3	109,6	Į.	
DTT	0	0,2	0,3	0,4	0,2	0,2	0,8	0,8	0,6	0,5	0,6	Į	


Resumen de resultados


Parámetro	Valor (°C)	Incertidumbre Expandida (°C)		
Temperatura Máxima Medida	112,7	0,2		
Temperatura Minima Medida	106,9	0,2		
Desviación de Temperatura en el Espacio	5,3	0,2		
Desviación de Temperatura en el Tiempo	0,8	0,1		
Estabilidad Medida (±)	0,4	0,05		
Uniformidad Medida	5,6	0,1		

PGC-16-r11/Octubre 2021/Rev.01

Certificado : TC - 22640 - 2022

Gráfica de para la temperatura de trabajo de 110 °C ± 5 °C

[*] Declaración de los limites especificados de temperatura.

Durante la calibración y bajo las condiciones en que esta ha sido hecha, el medio isotermo:

- Cumple con los límites especificados de temperatura.

PGC-16-r11/Octubre 2021/Rev.01

• Jr. Condesa de Lemos N° 117 San Miguel - Lima (01) 2629545 (19) 990089889 (20) informes@testcontrol.com.
Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Página: 5 de 6

Certificado : TC - 22640 - 2022

Página: 6 de 6

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperaturas registradas en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La incertidumbre expandida de las indicaciones del termómetro propio del equipo es 0,29 °C. La estabilidad es considerada igual a la mitad de la máxima DTT.

Fotografia del medio isotermo:

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

Fin del Documento

PGC-16-r11/Octubre 2021/Rev.01

O Jr. Condesa de Lemos N° 117 San Miguel - Lima (01) 2629545 (19) 990089889 (20) informes@testcontrol.com.

Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Anexo 11. Boleta de ensayos de laboratorio (doc. que sustente)

N° 00003

RECIBO DEL PAGO REALIZADO POR LOS SERVICIOS DE ENSAYOS DE LABORATORIO

HISGEOLAB S.A.C.

RECIBO	<i>S/</i> .4620.00
Recibí de <u>Jimmy Dávila Salazar</u>	
La cantidad de Cuatro Mil seiscientos veinte Nuc	evos Soles
Por concepto de: Elaboración de ensayos para la	a tesis de investigación cuyo

Por concepto de: Elaboración de ensayos para la tesis de investigación cuyo título es "Análisis de las propiedades físico-mecánicas del adoquín peatonal, adicionando caucho y PET reciclado Los Olivos, 2023".

Ítem	Descripción del servicio	Norma	Cantidad	Costo unitario S/	Costo sub total S/
1	DISEÑO DE MEZCLAS DE CONCRETO DE ALBAÑILERÍA (Incluye ensayos físicos: A. Granulométrico, P. Específico, P. Unitario, C. de Humedad)	Varias	04	300.00	1200.00
2	COMPRESIÓN DE BLOQUES DE CONCRETO, ADOQUINES (Incluye moldeo)	NTP 399.604	36	30.00	1080.00
3	ABSORCIÓN (Incluye moldeo)	NTP 331.018	04	30.00	120.00
4	DENSIDAD (Incluye moldeo)	NTP 331.018	04	30.00	120.00
5	FLEXIÓN (Incluye moldeo)	ASTM C78/C293	36	50.00	1800.00
6	Materiales (Incluye agregados y cemento)		01	300.00	300.00

23 de octubre de 2023

Recibí conforme Jimmy Dávila Salazar Leo Apolinario Surcaray
GERENTE GENERAL
HISCEOLAB S.A.C.
Entregi e conforme.
Leo Apolinario Surcaray

942 358 457 930693152

hisgeolabsac@gmail.com