

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Análisis de las propiedades físico mecánicas del concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente Piedra 2022

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES:

Carranza Paredes, Luis Fernando (orcid.org/0000-0003-3419-5267)

Izquierdo Gregorio, Jhamill (orcid.org/0000-0001-6877-115X)

ASESOR:

Mg. Minaya Rosario, Carlos Danilo (orcid.org/0000-0002-0655-523X)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

LIMA - PERÚ 2022

DEDICATORIA

Con todo mi cariño y amor dedico este trabajo a Dios por permitirme llegar hasta donde estoy ahora y que sé que seguiré creciendo como persona y profesional; a mi padre madre por siempre estar conmigo en las buenas y malas, a la institución y todos los profesores que me apoyaron en mi larga etapa de estudiante.

DEDICATORIA

Dedico este trabajo a dios a mi padre, madre y hermanos que estuvieron a mi lado, a todos los maestros que siempre estuvieron brindándome su apoyo incondicional y a mi alma mater UNIVERSIDAD CESAR VALLEJO.

AGRADECIMIENTO

Agradecer primeramente a DIOS y a mi asesor de mi tesis el ingeniero Carlos Minaya que siempre estuvo pendiente del desarrollo de mi investigación para que pueda ir bien de la mano de mi laboratorista.

Agradezco también con todo el amor eterno que siempre llevare en la mente y corazón; mi querida casa, LA UNIVERSIDAD CESAR VALLEJO por siempre darme la facilidad de enseñanzas con sus docentes, aulas y herramientas necesarias a lo largo de mi etapa como estudiante.

AGRADECIMIENTO

Quiero expresar en primer lugar a dios por darme salud y fortaleza también a los maestros de mi educación superior quienes siempre nos guiaron para desarrollarnos profesionalmente y lograr titularme como ingeniero civil.

Índice de Contenidos

Carátula	i
Dedicatoria	ii
Agradecimiento	iii
Índice	iv
Índice de tablas	V
Índice de figuras	vii
Resumen	viii
Abstract	ix
,	
I. INTRODUCÇIÓN	
II. MARCOTEÓRICO	
III. METODOLOGÍA	
3.1. Tipo y Diseño de Investigación	
3.2. Variables y operacionalización	13
3.3. Población, Muestra y Muestreo	
3.4. Técnicas e Instrumentos de recolección de datos	16
3.5. Procedimientos	
3.6. Métodos de Análisis de datos	
3.7. Aspectos Éticos	
IV. RESULTADOS	
V. DISCUSIÓN	
VI. CONCLUSIÓN	
VII. RECOMENDACIONES	
REFERENCIAS	
ANEXOS	55

Índice de tablas

Tabla n°1. Muestra de la investigación	17
Tabla n°2. Ensayos de laboratorio	18
Tabla n°3: ensayo granulométrico de agregado fino	22
Tabla n°4: resultados de peso unitario de agregado fino	23
Tabla n°5: resultados de peso específico de agregado fino	24
Tabla n°6: ensayo granulométrico de agregado grueso	25
Tabla n°7: resultados de peso unitario de agregado grueso	25
Tabla n°8: resultados de peso específico de agregado grueso	26
Tabla n°9: diseño de mezcla	27
Tabla n°10: valores de diseño	27
Tabla n°11: análisis de diseño	28
Tabla n°12: peso de mezcla seco	28
Tabla n°13: corrección de humedad	28
Tabla n°14: contribución de agua de los agregados	29
Tabla n°15: peso de mezcla húmedo	29
Tabla n°16: cantidad de materiales	29
Tabla n°17: porción en peso p3 y m3	30
Tabla n°18: concreto patrón 7 días	30
Tabla n°19: concreto patrón + 2% ceniza de cangrejo	31
Tabla n°20: concreto patrón + 4% ceniza de cangrejo	31
Tabla n°21: concreto patrón + 7% ceniza de cangrejo	32
Tabla n°22: concreto patrón + 10% microsílice	32
Tabla n°23: concreto patrón + 15% microsílice	33
Tabla n°24: concreto patrón + 20% microsílice	33
Tabla n°25: resultado promedio compresión 7 días	33
Tabla n°26: concreto patrón 14 días compresión	34
Tabla n°27: concreto patrón + 2% ceniza de cangrejo (14 días compresión)	35
Tabla n°28: concreto patrón + 4% ceniza de cangrejo (14 días compresión)	35
Tabla n°29: concreto patrón + 7% ceniza de cangrejo (14 días compresión)	36
Tabla n°30: concreto patrón + 10% microsílice (14 días compresión)	36
Tabla n°31: concreto patrón + 15% microsílice (14 días compresión)	37

Tabla n°32: concreto patrón + 20% microsílice (14 días compresión)	.37
Tabla n°33: resultado promedio a compresión 14 días	.38
Tabla n°34: resultado promedio a compresión 28 días	.39
Tabla n°35: resultado promedio a flexión 28 días	.41
Tabla n°36: resultado slump	.42

Índice de figuras

Figura 1: Etapas del procedimiento	19
Figura 2: Mapa del Perú	21
Figura 3: Mapa de Lima	21
Figura 4: Localización	21
Figura N°5: Ensayo Granulométrico de Agregado Fino	22
Figura N°6: Ensayo Granulométrico de Agregado Grueso	25
Figura N°7: Compresión 7 Días	34
Figura N°8: Compresión 14 Días	38
Figura N°9: Rotura por Compresión 28 Días	39
Tabla N°10: grafico del ensayo de compresión (28 DIAS)	40
Figura N°11: Grafica de rotura	41
Tabla N°12: grafico del ensayo de Flexión (28 DIAS)	41
Tabla N°13: grafico de los Resultado de compactación (SLUMP)	42

Resumen

La presente investigación tuvo por objetivo general, analizar cómo influye la incorporación de microsílice y ceniza de cangrejo en las propiedades físicasmecánicas del concreto, f'c = 210Kg/cm2 Puente Piedra 2022. La metodología es del tipo aplicada, diseño cuasi experimental, enfoque cuantitativo, el concreto patrón 0%, con adición de 2%, 4%, 7% en ceniza de cangrejo y 10%, 15%, 20% de microsílice sobre el peso del cemento, nuestra población 84 especímenes entre cilíndricas y prismáticas, agregados de Cantera Trapiche - Carabayllo, Cemento Sol portland tipo I, Caparazón de cangrejo Terminal Pesquero Callao, microsílice Sika Center Fredol, diseño de mezcla método ACI 211. Resultados en asentamiento al 2% con sustitución de C.C.C fue 9.4 y con M.C. 10% su Slump fue de 9.7, ensayos a 28 días con ceniza de cangrejo sustituyendo 4%, en compresión incremento 7.3%, flexión con el 2%, el M.R aumento 1.0% todos en comparación al concreto patrón. Mientras con microsílice 20%, en compresión incremento 21.0%, flexión el M.R paso en un 5.5% al concreto patrón. En conclusión, con sustituciones de cenizas de cangrejo en 4%, la concreta mejora sus resistencias a compresión y flexión, a menor dosificaciones mejora la trabajabilidad dentro del concreto.

Palabras clave: Concreto, adición, cenizas.

Abstract

The general objective of this research was to analyze how the incorporation of microsílice and crab ash influences the physical-mechanical properties of concrete, f'c = 210Kg/cm² Puente Piedra 2022. The methodology is of the applied type, quasi-experimental design, quantitative approach, the standard concrete 0%, with the addition of 2%, 4%, 7% crab ash and 10%, 15%, 20% microsílice on the weight of cement, our population 84 specimens between cylindrical and prismatic, aggregates from Trapiche Quarry - Carabayllo, Sol Portland Type I Cement, Callao Fishing Terminal crab shell, Sika Center Fredol silica, mix design method ACI 211. Results in settlement at 2% with substitution of C.C.C was 9.4 and with M.C. 10% its Slump was 9.7, tests at 28 days with crab ash replacing 4%, in compression it increased 7.3%, flexion with 2%, the M.R increased 1.0% all compared to the standard concrete. While with 20% microsílice, in compression it increased 21.0%, while in bending the M.R. passed by 5.5% to the standard concrete. In conclusion, with 4% substitutions of crab ash, the concrete improves its resistance to compression and flexion, at lower dosages it improves the workability within the concrete.

Keywords: Concrete, addition, ashes.

I. INTRODUCCIÓN

Durante ya hace mucho tiempo en cuanto producción, y el uso, de materias, primarias se ha incrementado a gran escala, provocando muchos problemas ambientales, al crear subproductos que se convierten en contaminantes orgánicos e inorgánicos, los cuales han creado impactos negativos en el medio ambiente, algunos de ellos a tasas más altas, como el plástico, botellas, chatarra de cartón, cristales, fierros acerados, latas de aluminio, barriles de aceitunas, caparazones de cangrejos, microsílice, etc. A lo largo de los años de deterioro, ante este escenario, se han manejado una variedad de opciones para reducir el reciclaje de diversos desechos sólidos y Los naturales, ante los ojos de especialistas e indagadores de todo el mundo, indagan formas de utilizar reciclajes y alternativas rentables a las nuevas materias primas para su incorporación al hormigón. En la parte generalmente, internacional, los procesos de incorporación de aditivos en el concreto para mejorar sus características físicas y mecánicas en muchas naciones como: Chile, España, Argentina entre otros; eligieron por incorporar aditivos, por materias sociales y económicos, donde se busca subir su facultad de resistencia a las fuerzas que se someten como la compresión, tracción y flexión. Algo importante recalcar que los defectos causados por las estructuras de hormigón deben ser corregidos lo más rápido posible, ya que estos defectos pueden provocar debilidad severa, daño y deterioro en gran medida. Estos se reducen con la incorporación de vapores de microsílice.

En Perú es importante tener estructuras de concreto perfectas para que las estructuras sean seguras y eficientes. El desgaste en estos se debe a un pésimo terminado en la compactación y nivelación y la conexión agua-cemento como endurecimiento también es un agente que más influye en las propiedades de la parte exterior de concreto, entre otros factores, por lo que es importante evaluar su mejora en las propiedades. con la incorporación de materiales que contienen mayores cantidades de sílice. Recientemente, con el advenimiento de tecnologías innovadoras para ayudar que las propiedades del concreto con muchos aditivos, uno de ellos es una mezcla de microsílice y ceniza de cangrejo con características de mucha resistencia. En muchas partes del Perú como, por ejemplo: Huaraz, Cusco y Arequipa, encontramos diferentes composiciones de concreto, cúmulos de

ceniza de cangrejo, microsílice, donde muchas veces cuando se le agrega un aditivo no llega a ser efectivo, lo que lleva a la búsqueda de materiales que tienden a ser más eficaz que el hormigón.

Actualmente, podemos ver que existen varios estudios que quieren suplantar o reducir la utilización del cemento por medo del uso de nuevos componentes en la mezcla de hormigón para, alzar la peculiaridad, mecánicas de la calcina. Así como pruebas de resistencia. El microsílice tiene una resistencia mucho mayor que el acero y es más liviana que otros aditivos. En 2010, dos científicos descubrieron las propiedades de este material ganador del Premio Nobel, que pretende mostrar cómo un componente de la nanotecnología ofrece mejoras en las cualidades mecánicas del estudio del hormigón. Con la evidencia que se encuentre, se revelarán los beneficios que traerá la microsílice en la nueva fabricación y producción de concreto.

Dentro del ámbito local ha habido en el departamento limeño de Puente Piedra debido a que el concreto se desprendió, un número significativo de viviendas fueron impactadas. Propiedades de longevidad e impermeabilidad en el tiempo, por lo que los suelos en las áreas cercanas a los litorales son muy sísmicos, dejan de funcionar. Agresivos y están causando daños como resultado del ataque y degradación de los sulfatos. La humedad tiene un impacto en el problema de la corrosión en el interior.

Estructuras, el objetivo es llevar a cabo investigaciones utilizando una gama más amplia de productos. Utilícelos dentro de los diversos tipos de hormigón de alta calidad que son naturales. Resistencia, sustituyéndolo en este caso por microsílice y ceniza de concha. Parte del problema al incluir cangrejo en cantidades específicas de cemento portland Tipo I. Abstenerse de contaminar la naturaleza mediante la reutilización de estas piezas. Productos, ya que se sabe que estos componentes son tanto de origen animal como desperdicios del proceso industriales. Después de obtención de silicio metal y ferro silicio de los hornos de arco y por otro lado sacar la carne de cangrejo; estos se utilizarán en una mejor gestión de estos es el propósito de la investigación en esta materia, alternativas que son totalmente naturales y conformes a obtener buenos resultados.

Considere tanto los elementos mecánicos como los atributos físicos del objeto. Calcina de 210 Kg/cm2, según estudios de laboratorio

Asegúrate de que sea útil. Formulación del Problema: Las modernas tecnologías de ingeniería estimulan constantemente la evolución de los objetos para edificaciones con propiedades con alto rendimiento. consiguiendo adaptarse a emergente las aplicaciones estructurales aplicaciones estructurales en el futuro, estos materiales no sólo deben demostrar mayor resistencia mecánica y rendimiento, sino también poseer propiedades para múltiples usos. En el futuro, estos objetos no sólo tendrán que demostrar incremento firmeza mecánica y beneficio, sino también poseer propiedades en múltiples empleos. No se combinan con aditivos microsílice, el menester de hallar un nuevo elemento que mejore la eficiencia mecánica de la calcina y requiera menos densidad nos llevará a investigar la adición de ceniza de cangrejo y microsílice.

El diseño del concreto carecerá de menor fuerza, a la compresión, la resistencia, a la tracción tendrá mayor consistencia, así como la irregularidad del concreto, por lo tanto, para la actual indagación se han identificado los subsecuentes problemas: Problema, general: ¿De qué forma, la incorporación, de restos de cangrejo y microsílice en las cualidades mecánicas de la calcina 210 kg/cm2, puente piedra 2022? Las incógnitas peculiares de la presente indagación son: ¿Cuánto influyen la incorporación de ceniza de cangrejo y microsílice en la fuerza, a compresión de la calcina de 210kg/cm2, Puente Piedra 2022? ¿Cuán influyente es la integración de ceniza de cangrejo y microsílice en la fuerza, a tracción de la calcina de 210kg/cm2, Puente Piedra 2022? ¿Cuánto afecta la integración de restos de cangrejo y microsílice en cuanto a resistencia a flexión de la calcina de 210kg/cm2, Puente Piedra 2022?

Justificación del problema: El objetivo, primordial de la siguiente indagación es aumentar la eficiencia mecánica de la calcina de baja densidad para reducir el peso estático de las edificaciones, así como mejorar la fortaleza a flexión de la calcina. Mejorar las virtudes mecánicas de este elemento que es hormigón de baja densidad reducirá las cargas muertas en la edificación, ya que el peso del hormigón genera mayores tensiones en la construcción. Justificación técnica En el último estudio se sugirió utilizar ceniza de cangrejo en las proporciones de 2%, 4% y 7% con

referencia a la masa de la mezcla y conocer el efecto de la ceniza sobre microsílice en las proporciones de 10%, 15%. Y un 20% con ello mejora las virtudes mecánicas de la calcina en Lima. Justificación metodológica la utilización de microsílice ayudará a proporcionar una nueva metodología para incrementar las virtudes mecánicas de la calcina con menor densidad, al igual que la investigación actual servirá como guía para la fabricación de hormigón para mejorar sus propiedades mecánicas. Justificación social Este estudio debe servir como guía para cualquier persona que necesite mejorar las propiedades mecánicas del hormigón de baja densidad.

En la consecuente indagación, se plantea la meta común: Examinar la incorporación de microsílice y desperdicio, de cangrejo como aditivos en las virtudes, mecánicas del concreto de 210kg/cm2, Puente Piedra 2022. Así mismo los metas específicos son: Definir la inclusión de desperdicios de cangrejo y microsílice en la fortaleza, a compresión de la calcina de 210kg/cm2, Puente Piedra 2022. Definir la inclusión de desperdicio de cangrejo y microsílice en la fortaleza, a la tracción de la calcina de 210kg/cm2, Puente Piedra 2022. Definir la inclusión de desperdicio de cangrejo y microsílice en la resistencia, a la flexión de la calcina de 210kg/cm2, Puente Piedra 2022.

Asimismo, se propuso como hipótesis general: La inclusión del 2%, 4% y 7% de ceniza de cangrejo y microsílice en porcentajes de 10%,15%,20% como aditivo actúa provechosamente a las virtudes, mecánicas de calcina, de 210kg/cm2, Puente Piedra 2022. Seguidamente se planteó la suposición específica de esta investigación son: La, incorporación del 2%, 4% y 7% de ceniza de cangrejo y microsílice en porcentajes de 10%,15%,20% aumenta la fortaleza, a la compresión de la calcina de 210kg/cm2, Puente Piedra 2022. La inclusión del 2%, 4% y 7% de ceniza de cangrejo y microsílice en porcentajes de 10%,15%,20% aumenta la fortaleza, a la tracción de la calcina de 210kg/cm2, Puente Piedra 2022. La inclusión del 2%, 4% y 7% de desperdicio de cangrejo y microsílice en porcentajes de 10%,15%,20% aumenta, la fortaleza, a la flexión de la calcina de 210kg/cm2, Puente Piedra 2022.

II. MARCO TEÓRICO

A nivel internacional: Para, Bernal, D. (2017), la indagación se realizó en Cuba con la meta de incrementar la fuerza, a la compresión del hormigón, elaborado a partir de cemento de primera y superplastificante' en la tesis de grado, optaron por cursar la Maestría en Ciencias también muestra el incremento, de la virtud a la compresión, de la calcina, elaborado con concreto 1 y superplastificantes con método herramientas incluyendo detalles antiguos. Se concluyó que debido a la renuncia de las propiedades de la compresión se optó por utilizar el cemento Pacasmayo sin aditivos (p. 90).¹

Para Cervantes Abarca (2018), Realizó un estudio acerca del concreto liviano teniendo como objetivo de investigación al diseño de un concreto más espuma expansora de aire, tuvo como muestra a tres bloques de calcina para la evaluación de las virtudes mecánicas y químicas, el instrumento de investigación fue la recopilación de datos y comparación de los frutos con el concreto convencional, Los principales resultados fueron baja densidad del concreto en comparación al concreto convencional en un 35% llegando a la conclusión que le concreto celular tiene menor densidad en comparación al concreto convencional en un 35% (p. 63).² Según Pereira y Sánchez (2017), Mantuvo como objetivo de investigación realizar bloque de concreto liviano con polvo de aluminio, teniendo como muestra 27 probetas de concreto con polvo de aluminio, el instrumento de investigación es la revisión bibliográfica y la entrevista aplicada. Llegaron a las siguientes conclusiones. Según ensayos de diseño de mescla el bloque puede ser usado como elementos de mampostería. El tiempo de fraguado es de 72 horas. El costo del bloque en comparación con bloques convencionales es menor en 3% (p. 32).3 En otras lenguas tenemos Según, Hernández, Girón y Ojeda (2022), en el idioma portugués, cuya finalidad fue: Incorporación del Oxido del grafeno al hormigón para mejorar sus propiedades mecánicas tipo empírico, con un estudio descriptivo con una, muestra de ejemplares de concreto con niveles de óxido de grafeno en muestra de 3 ejemplares y su muestreo será hormigón,0.01% y 0,03% representativa los instrumentos determinado en aguante, a la compresión y fortaleza a la tracción, por aplastamiento diametral, como resultado se llegó a considerar un porcentaje adecuado de es la adicción de 0,01% oxido de grafeno el mayor aumenta de fuerza, y como conclusión El diseño llego a mejorar con un porcentaje de 42,4% en aguante a la compresión y 69,7% en la fortaleza a la tracción por compresión diametral (p. 69). ⁴

Según Bermúdez (2019), Estudio realizado en lengua portuguesa con el objetivo con el objetivo de examinar la fortaleza y alteración al aplastamiento simple de combinación de cascajo sin y con restitución de la arena fina seca den aluminio, en porcentajes de restitución del 5% y 10%. Examinando fortaleza y alteración a compresión clásico de combinación de cascajo sin y con restitución de la arena fina seca, en aluminio, en porcentajes de restitución del 5% y 10%. utilizando nueve sondas cilíndricas de hormigón con muestras de 5% y 10% de aluminio, y comparación de la deformación resistente obtenida al realizar una prueba de compresión básica. El error sin incluir aluminio fue visible en la columna (e), por otra parte, ya que las fallas relacionadas con la inclusión (6.9% y 12.9%) no se ajustan a la clasificación estándar como resultado, lo que lleva a números de aguante media. La compresión y alteración obtenidas en las pruebas de compresión básicos a continuación es: sin incluir 11,98 mpa; 3,4 mm; 3.5% en suplencia 6,35 MPa; 15,43 mm; 13% de suplencia 4,83 MPa; 1.5 milímetro por finalidad el cambio de aluminio ya como última adición disminuye la fuerza de la calcina, y las inclusiones de cambio enfatizan este extravio de fortaleza. (p. 53).5 Abdul, Ramesh (2017), Indagación hecha en la lengua inglés, cuya meta fue: examinar el rendimiento del hormigón de calcina de grafeno, y también comparar la compresión y división resistencias a la tracción del hormigón M25 mediante la sustitución del cemento con 1% y 2% de óxido de grafeno. Tipo experimental con un estudio aplicativo con muchos especímenes de serie forma cilíndricas de calcina contenido de cantidades de con 1% y 2% de óxido de grafeno muestra de Se utilizan al menos 3 cubos de tamaño 150*150*150 mm y se tiene en cuenta la resistencia media y los cilindros de se utilizan tamaños de 150 * 300 mm y su muestreo será estudiar la fortaleza a la compresión y virtud a la tracción dividida,

muestreo será estudiar la fortaleza a la compresión y virtud a la tracción dividida, los especímenes se probaron a los 28 d, 56 d y 90 d de curado, como resultado los especímenes se probaron a los 28 d, 56 d y 90 d de curado. Se realizó la prueba XRD para conocer el comportamiento cristalino de las probetas de hormigón con cantidad de energía en comparación con el hormigón nominal, como. conclusión las nanopartículas de óxido de grafeno mejoran las virtudes mecánicas de la calcina, tanto a compresión como fortaleza a la flexión, muestras de concreto fueron

ensayadas con Óxido de Grafeno (GO) en porcentaje de 1% a 2% por peso para obtener alta resistencia; se lleva a cabo para el grado de hormigón M25 (p. 89).6 A nivel Nacional tenemos: De acuerdo con GALICE Y VELÁSQUEZ (2017), Este El estudio se realizó en Huánuco con el objetivo de comparar las condiciones de compresión y flexión. La resistencia y determinando la densidad y determinar la densidad de las materias de calcina en varios otros lugares. De agregados de calcina en varios otros lugares. El porcentaje de ceniza de maíz obtenido de los agregados de las canteras de Cognac y Vicho en comparación con la resistencia a la compresión del estándar de calidad del concreto f'c = 210 kg / cm2 El método de investigación es un modelo de investigación cuantitativo, los puntajes de nivel son descriptivos, el método de investigación es un hipótesis - como concluso que resultó de una muestra Las 120.33, presiones son 158.73 y 197.28 kg, respectivamente. cm 2 a los 7, 14 y 28 días, agregar 2,5%, 5% ceniza de seda de maíz y finalmente 7,5% muestras de resistencia a la compresión (7 días) 181,68, 187,27 y 253,11 kg/cm2 (14 días) 212,92, 222,59, 288,03 kg/cm 2 y (28 días) 249,99, 257,88 y 285,63 kg/cm2, cada una. Mientras que en el experimento de fortaleza a la flexión en espécimen de (28D) 71,11 kg.cm2 y con suma (crm) 5%, el módulo de ruptura (28D) es de 62,55 kg.cm2 correspondientemente. Como (crm) 2.6%, puede aclarar que al adicionar demasiada finalizar se dosis 5.1% y 7.6% se mejora el desempeño a la compresión del concreto respecto al concreto estándar. El caso contrario es que su máximo desempeño a la flexión es del 8,66% del hormigón estándar en 28 días (p. 45).7

De acuerdo a López y Mamani, c. (2017) Se realizó una investigación en la ciudad de Cusco, con el objetivo: elegir lograr la denominación de ingeniero en el área civil de la UNA, diciéndonos que actualmente el hormigón se utiliza en la parte de la construcción a Sin gran escala. embargo, debido а su característica para obtener muchas formas en casi todos los ambientes influenciados por la naturaleza, no se han realizado muchos estudios sobre el concreto expuesto a regiones frías, donde la temperatura es desfavorable. Tenemos sitios en el cual el concreto no corresponde a su edad, debido a la congelación y descongelamiento. En conclusión, el valor más alto expuesto a congelación y descongelación a las 4 semanas es 469,84 kg/cm2 y a las 7.5 semanas 523.36 kg/cm2 para el hormigón (1,5 nm). Conclusión que este detalle del material estudiado, genera mucho menos espacio libre en 4 semanas: 1.73% en 8 semanas: 1.8% en concreto con 1.0% de nano sílice, además el concreto estándar no agrega ningún aditivo. Relacionando a/c 0,56, produce un cono de Abrams: asentamiento de 6" a 7" (p. 44).8

Véase también según Zanabria, M. y Condori, Y. (2019) Estudio realizado en la ciudad de Tacna con el objetivo: la adición de microsílico de la dureza a la compresión de la calcina a partir de compuestos de la pedrera Aronta en la ciudad de Tarma "para seleccionar el título de ingeniero civil en la UPT. Este anuncio tiene como objetivo obtener la cantidad de humo de sílice que se reemplaza como él % de materia hallan estos tipos de que se siempre del cemento, en comparación con el concreto habitual. Con ilusión hallar por comprobar si se plantea el hecho de mejorar las características aplicando muchas proporciones de este aditivo como sustituto del cemento. Deducción especificaciones del producto, las muestras se diseñarán con diferentes proporciones y resistencia (p. 74). 9

A nivel de Artículos tenemos: Kumiro, Chavezta, y Dalia (2018) tienen como meta averiguar la conveniencia, de la ceniza de coronta (CCA), como elemento puzolánico para cambiar eventualmente al cemento. Estudio de durabilidad de hormigones modificados a niveles óptimos de ceniza de copa y desperdicio de cascara de granizo, del arroz. La metódica es una perspectiva empírica. Los frutos, de presión de la, muestra fueron 98.66, 169.84, 218.33, 290.32 kg/cm2 a los 3.2, 7.2, 2 y, 4 semanas, y, al agregar (CCA) concentraciones de presión de 2.5%, 5% respectivamente 75%, 10% y 12.5% se obtuvieron (4 días), 159.96, 138.49, 120.31, 116.96 y 112.33 kg/cm2, (7 días) 177.44, 126.96, 118.99, 130.69 y, 157.69 kg/cm2, (2 semanas) 196.88, 190.5.6, 20, 191. 181,10 kg/cm2 respectivamente y (4 semanas), 286,99, 283,99, 288.77, 266,66 y 215,68 kg/cm2. Seguidamente, se agregó 5.3%, (CCA) 5.3% (CR) a los de 3, 7, 14 y 28 días, resultando en resistencias a la compresión de 166.66, 163.46, 217.71, respectivamente, 287.05 kg/cm2 Los resultados indican que 7.5 % (CCA) es la relación óptima de reemplazo en concreto M20 = 210 kg/cm2, que mejora el ejercicio de virtud a la compresión. Y también sumando 5% (CCA) 5% (CR) se obtiene el mismo resultado (p. 23). 10

Chandrashkar, Darshan, Shivaiganish, Vinayakumar, Vesni y Yogyesha (2019) Investigar la virtud del desperdicio de cascara de granizo de arrocillo y la ceniza volante a utilizar materiales puzolánicos para reemplazar el cemento en el concreto. La metódica es un enfoque empírico. Se obtuvo una presión de muestra de 302.33 y 342.32 kg.cm2 a los 7, 14 y 28 D, convenientemente, y al agregar 15%, 20% y 30% desperdicios se obtuvo la virtud al aplastamiento (7 días). 277,99, 255,33 y 213,04 kg/cm2, (2 semanas) 308,22, 299,01 y 249,99 kg.cm2 y (28D) 333,88 kg.cm2, y añadiendo desperdicio de cascarilla de arroz 15%, 20% y 30%, resistencia a la compresión (7 días), 75,58, 62,24 y 44,46 kg/cm² (14 días) 120,04, 143,16, 72,91 kg/cm² y (28 días) 205,37 kg/cm², añadiendo una mezcla de desperdicio de cascara de grano de arrocillo 15% y 20% y 30%, resistencia a la compresión (7 días) 102,18, 102, 89 y 93,37 kg, respectivamente. / cm2 (14 días) 164,48, 144,05, 154,69 kg.cm2 y (28D) 271,16 kg.cm2 Conclusión por todas las proporciones, cambiar la calcina por de cascara de arrocillo; Prueba en esfuerzo adicional de 7 a 14 días. Por lo tanto, hay un aumento gradual en la virtud a la compresión de 14 a 28 días. Reemplace el 15-20 % de las cenizas volantes con una muestra de calcina llegando a tener una aplastamiento. Reemplazar buena virtud al el 33% de las cenizas volantes con cemento redujo la virtud a la compresión a los 28 días en comparación con otras dosis (p. 66).¹¹

LATHAMAHESWARI, KALAIYARASAN, MOHANKUMAR (2017) Determinar las características, físicas y constitución químicamente, en la producción de la calcina m 20 con otros, grados de cambiando, de cemento para, SBBA, y determinar las virtudes de, trabajabilidad, aguante y durabilidad del concreto. El método tiene un enfoque empírico. El resultado de compactación de la muestra fue de 263,49 kg/cm2 durante 28 días, cuando se agregó 2,5% de ceniza de bagazo, 5%, 7,5%, 10% y 12%, respectivamente. , 50%, obtuvimos una resistencia al aplastamiento, de (7D - 11%), 244,11 kg.cm2, (14D - 11%), 311,22 kg.cm2 y (28D) , 244,11, 294,11, 300,99, 369,55 y 290,01 kg /cm2, ensayos adicionales de resistencia, a la flexión 0,00%, 2,5%, 5%, 7,5%, 10% y 12,5%, módulo de rotura (28 días) , es 39,46, 38,85, 40,48, 41,60, 42,93 y 47,21 kg/cm2. Por tanto, la prueba de tracción de la muestra estándar durante 28 días fue de 22,23 kg/cm2, adicionando 2,5%, 5%, 7,5%, 10% y 12,5% de ceniza de bagazo durante 28 días, se arrojó, 22,55, 30,

90, 33,73, 37,88, y 23,88 kg/cm2. Por último, la tasa óptima de reemplazo de cemento con ceniza de bagazo se redujo al 10%, lo que tuvo un buen efecto en la multi-resistencia (p. 39).¹²

La calcina, por otro lado, Jairo García (2020), la calcina es una combinación de piedra, grava, H2O y calcina ya que, una vez fraguado, se vuelve uno solo las materias de obra convencional más virtuoso para columnas, vigas y muros. La mezcla de agregado grueso, agua y cemento en algunos países sudamericanos se conoce como lechada, por otro lado, el concreto que ha sido prensado en la posición adecuada se denomina concreto. (p. 22). 13 Según Cherres, Flores, y Fernández (2020), Otro orden de ideas, "concreto" es un adjetivo calificativo que nos dice que aquello a lo que se aplica es lo suficientemente sólido, identificable y constante que nada de una magnitud o potencia menor o igual a él no lo sustrae, (p.76)¹⁴ En este caso lo concreto será la antítesis de lo abstracto, cuando la idea es concreta, porque todo el proceso de analizar y probar las posibilidades se ha hecho para hacer posible la prueba, mientras que la idea abstracta suficiente sustento., permite que otros la ataquen, y no tiene está sujeta a cambios y modificaciones hasta que se encarna y se encarna, Definición de microsílice, Según Luna (2019), Residuos generados en hornos de arco eléctrico utilizados en la confección de metales no ferrosos o aleaciones de silicio, durante la reducción del cuarzo a silicio a temperaturas de hasta 2000 °C, se produce vapor de sedo, al oxidarse y condensarse, (p. 68)¹⁵ formando pequeñas bolitas con un diámetro de 0,1 µm y una superficie específica de 2000 a 2500 metros cuadrados/kg. Debido a su proceso de formación, la microsílice también se conoce como "humo de sílice", y su tamaño es mucho más pequeño que el de los granos de cemento, lo que le confiere una fuerte reacción puzolánica. Estas pequeñas partículas sueltas se consideran muy peligrosas, por lo que actualmente se comercializan en dos formas, envasadas en bolsas que se desintegran al mezclarlas y en solución con agua y otros aditivos, generalmente un altamente reductor de agua, También tenemos a, Melgarejo, Ruiz y Mendoza (2018), La microsílice es un aditivo que reacciona en ambientes húmedos con la calcina procedente de la humedad del calicata, esta reacción produce nuevos productos a base de silicato de calcio que aportan mayor resistencia y durabilidad (p. 96)¹⁶ Las partículas de microsílice muy finas llenan fácilmente los espacios entre las

partículas de cemento, al mismo tiempo que crean una estructura más impermeable. Estas son algunas de las razones para usar microsílice en la producción del denominado hormigón de alto rendimiento, que tiene una alta resistencia y propiedades superiores en comparación con el hormigón ordinario. La cantidad de microsílice utilizada en el concreto depende del beneficio deseado, generalmente a partir de la dosis recomendada por el fabricante o distribuidor del aditivo, Por otra parte, tenemos a Bernardo (2019). Definición de ceniza de cangrejo, la parte de la pesca se especializa en atrapar crustáceos que producen muchas toneladas de caparazones de cangrejo mejillones y camarones como desechos y se sabe que algunas empresas tienden a moler y moler los restos (p. 98)¹⁷ De esta forma, las piscifactorías han podido revertir el desperdicio de la captura de cangrejo, debido a los altos costos asociados a tratarlo como si fuera un desecho. En sus propiedades se, encuentra la, quitina, que, agregando, es el componente, más numeroso del exoesqueleto de la parte mayoría de los, artrópodos es el, quitosano, que le brinda rigidez que necesita, y está tiene principalmente por carbonito, de calcina que es el responsable de la estabilidad del exoesqueleto.

Cemento: Según Jiménez, Sandoval y Ruedas, (2018) Es un agente de refuerzo que además cubre el hormigón de la actividad de los microbios y de los productos del desgaste microbiano, como el ácido sulfúrico. También se utiliza en alcantarillas, pozo de visita, alcantarillas y plantas de tratamiento. (p. 34). 18, Según Giordani, Leone (2017) Dado que es un tipo de producto que tiene virtudes adherentes y cohesivas, creando la capacidad de unir partes metálicas, el componente principal de este cemento son los compuestos de cal, estos tienden a endurecerse y endurecerse con el agua (p. 75). 19

Propiedades del concreto, Determinación de la materia que se trabajar de la calcina, Según Santana (2018), La virtud de flexibilidad es una característica que incluye frontalmente a la dureza, la cualidad, la ficción, se puede combinar, poner, fortalecer y finalizar el garujo recién combinado con una pequeñita deterioradas de uniformidad de este tipo de materiales para endurecer las construcciones. (p.75).²⁰ Hay diferentes expectativas y agendas en toda la gama de equipos de diseño/con strucción cuando se trata de diseño de concreto. Los ingenieros estructurales quie ren una mayor resistencia y una mejor unión con las barras de refuerzo. Los arquit

ectos claramente quieren un atractivo fisico. La resistencia es atractiva. Para los propietarios de viviendas porque permite secciones transversales más pequeñas de los miembros estructurales, lo que aumenta el espacio utilizable del piso, Definición de virtud a la flexión de la calcina, De acuerdo con Asociación Mexicana de Mezcladores - MHRT, (2018), La dureza a la flexión es una cantidad del aguante de la calcina es una cantidad única de la dureza máxima. Se mide aplicando peso a una calcina 150x150 x 600 mm (p. 154)²¹.

La dureza a la flexión se impone como módulo de rotura (mr) en peso por medida cuadrada (mpa) y se llega usando el orden de examen ASTM C78 (tercer punto de carga) o ASTM C293. El modo de fractura es aproximadamente del 10 al 20 % del aguante al aplastamiento, dependiendo del modelo, tamaño y masa del anexo grueso utilizado; De otro modo, la mayor unión para materias propia se obtiene en pruebas de la análisis de muestras de mezclas de sustratos y materiales, Definición del aguante al aplastamiento de la calcina, De acuerdo con Meza (2019), la adsorción del concreto endurecido permite ver cómo afecta el uso de un material poroso como los ladrillos al concreto y cómo afecta la capacidad de adsorción del concreto, cuando se usa como agregado grueso ordinario (p.139)²² La porosidad del hormigón es la cantidad de espacio libre que tiene la mezcla, y esto determinará su capacidad de absorción, ya que cuanto mayor sea el espacio libre del hormigón, más espacio podrá ocupar agua, y por tanto la absorción será directamente relacionada con la porosidad del hormigón. La absorción también ayuda a probar si el uso de un material como los ladrillos produce hormigón poroso, qué propiedades difieren cuando se trabaja con dichos materiales y si estas diferencias tienen un impacto significativo independientemente de las propiedades del hormigón.

III. METODOLOGÍA

3.1. Tipo de investigación

1.- Por otro lado, Borja, (2018) Este estudio, de acuerdo con el propósito que persigue, tiene el tipo de aplicación, porque quien buscaba, para resolver el proyecto estudiado, por lo que el estudio real tiene el tipo utilizado y el enfoque es cuantitativo, porque él se esforzaba por aplicar conocimiento previo en la práctica en el campo de la combinación de la utilización de aditivos, para tomar decisiones al elegir el diseño óptimo de la calcina utilizando un % determinante del aditivo, como el las cenizas del cangrejo y el microsílice , obteniendo resultados del laboratorio y los criterios para la resistencia, flexión y rendimiento de la compresión (p. 126). ²³

3.1.2 Diseño de exploración:

Para (KASENGER Y GULLIEN (2019): El método del estudio es experimental de modo que se pueda manipular una variable en el momento de nuestro estudio de factor independiente sin una variable que pueda justificarse qué efectos o resultados con variables (p.345).²⁴

3.2. Variable y Operacionalización.

V. Independiente: desperdicio de cangrejo. Demarcación conceptual: Para Sánchez (2018), Nos brinda que esta es aditivo más ya experimentado, que pasara por distintos procesos hasta llegar a la finalidad, no es toxico ya que pasa por varios procedimientos de alto calor (p. 34) ²⁵

Delimitación operaciones: Las cantidades a usar de desperdicio de cangrejo 2% 4%, y 7% en cuanto de la masa de la calcina se emplearán en los 03 métodos con el objeto de reducir la densidad de la calcina y sumar el aguante mecánica.

V. Independiente: microsílice

Definición conceptual: Según Pérez (2018) Define que es un aditivo muy conocido a nivel nacional e internacional que ayuda a tener mejores componentes mecánicos y resistentes frente a aparición de fisuras y rajaduras en la calcina (p. 36)²⁶

V. dependiente: Virtudes del concreto

Determinación conceptual: para Sánchez (2018) Determino que la calcina está formado por distintas materias en el proceso de cambio como decreciente gradual en la trabajabilidad y fluidez ya que existen 3 etapas básicas y básicas primero, un materia blando y baléale, el segundo es el tiempo de secar, y el tercero es el fraguado en mucho menos tiempo (p.50).²⁷

Definición operacional: La calcina fresco y acabado tiene virtudes que aumenta la jaez y en este estudio que se da a la fuerzas a la compresión se llevará a cabo preferentemente en 07 composiciones preformadas (N,2%, 4% y 7 %) ceniza de cangrejo y (N,10%,15%,20%) microsílice, De igual forma se realizarán ensayos de tracción, y finalmente se realizarán ensayos de flexión, se ensayarán a los 7, 14 y 28 días, para todo ello en este caso se medirá su característico mediante estudios de laboratorio.

Señalizadores: Compresión (kg.cm2), flexión (Kg/cm2), asentamiento (Kg.cm2)

3.3. Poblaciones, Muestras y muestreos

- 3.3.1 Poblaciones: Para KASENG Y GUILLEN. (2014) Puede considerarse como un conjunto de objetos con la medición de algunas características comunes observadas sobre el terreno y su identificación, es decir. en el proceso de selección de la población. Se deben tener en cuenta algunas características básicas propuestas por el investigador, por ejemplo: árboles, automóviles, objetos, sociedad, suelo y naturaleza. (p. 183)²⁸
- 3.3.2 Muestra: Según KASENG Y GUILLEN (2021) define qué es una parte del estudio que se llevara el examen de investigación, grupo de datos consideradas al albur que se tomara en cuenta para el estudio o determinar sus factores (p. 183).²⁹ En este estudio, la espécimen de la investigación estará conformada por especien tubulares con medida de

15cmx30 cm de distancia y altura correspondiente, dimensión establecida por la astm C39 de la calcina F'c=210 kg.cm2, que estará contenido por calcina, aqua, arena y piedra, al cual se le echara a desperdicios de cangrejo 2%, 4% y 7 % y al microsílice 10%, 15%, 20%. Las medidas utilizar para la distribución del desperdicio de cangrejo y microsílice con en base a estudios similares, donde se plantearon la dosificación en base de la ficha técnica de, Alvarado, Roque (2020), 2%, 2,5%,3% realizo con aditivo ceniza de cangrejo arrojándole resultados favorables donde recomienda la utilización de este tipo de aditivo orgánico (p. 64).30 también Velarde (2017), 1,5%,3%,6%) realizo con aditivo microsílice. En tal forma, la regla ASTM C39 nos da que son 3 especímenes por cada examen echo a la compresión; frente eso, quedando en general de 07 tipos de combinación (N,2%, 4% y 7 %) y (N,10%,15%,20%) que se realizaran en 03 medios diversos 7D, 14D y 28D da 63 tipos que serán examinados para tener un resultado bueno $(p. 55).^{31}$

También se desarrollara 02 vigas por el único tiempo de 28 días por las 8 muestras dando como resultado 14 vigas total para el ensayo de flexión. Po tal tema, el anteproyecto de las cantidades convenir con los especímenes de detalle. arrojando en general de 07 especímenes para las investigaciones de Asentamiento que se realizara mediante los conos Abrams, 63 especímenes para los exámenes a la compresión y 14 vigas prismáticas de 15cm x 15cmx 50 cm para los exámenes de flexión. Dejando un total de 07 muestras para los Ensayos de Asentamiento que se realizara mediante el cono de Abrams, 63 probetas para los Ensayos a la compresión y 14 vigas prismáticas de 15cm x 15cmx 50 cm para los Ensayos de flexión.

CUDRO DE PROBETAS							
	Días Pruebas a realizar				alizar		
Tipo de dosificación	7	14	28	Compresión	Flexión	Asentamiento	

Espécimen sin añadir aditivos = N	3	3	3	9	3	1
Espécimen con inclusión de cenizas de cangrejo 2%	3	3	3	9	3	1
Espécimen con inclusión de cenizas de cangrejo 5%	3	3	3	9	3	1
Espécimen con inclusión de cenizas de cangrejo 7%	3	3	3	9	3	1
Espécimen con inclusión de MICROSILICE 10%	3	3	3	9	3	1
Espécimen con inclusión de MICROSILICE 15%	3	3	3	9	3	1
Espécimen con inclusión de MICROSILICE 20%	3	3	3	9	3	1
Probetas según pruebas			63	21	7	
Total, de especímenes				84		

Tabla 1. Muestra de la investigación

Fuente: Elaboración propia

Numero pruebas contenido SLUMP (7)

Numero pruebas contenido dureza a la compresiónes (63)

Numero pruebas contenido dureza a la flexiónes (21)

Muestreo: Según, KASENG Y GUILLEN (2018) Es una pequeña fracción que se puede sacar y representar con mucha precisión, y su propósito es determinar la probabilidad de que un conjunto de elementos sea el objetivo establecido en el

gráfico, de modo que se pueda calcular algo muy perfecto (p.56) 32 También se probarán, hasta la centésima más cercana, diferentes tamaños y muestras de construcción de un gran número de encofrados de hormigón, que se reforzarán en un laboratorio y tendrán las siguientes características: Tamaño coordinado de encofrados cilíndricos de veinte centímetros de ancho y 10 centimetros de largo.

Presión ambiental f\'c = 210 kg/cm2

3.4 Técnicas e instrumentos de recolección de datos:

Estrategia, de juntes de datos: para Fernández (2018) Como parte de este proyecto se realizó una grabación de audio de manera De carácter cuantitativo, relacionado con los datos obtenidos en el marco cincuenta prácticas de laboratorio correspondiente. Recopilación de notas, contiene definición como son un comunes de todos que números actividades, tácticas y estrategias utilizadas con criterio coleccionable los datos tan necesarios del investigador (p.354)³³

Instrumento de recolección de datos

Para López (2019), son los métodos y modernos que le optan obtener información necesaria al explorador, proporcionan averiguación verídica, lógica y detallada (p.24)³¹, De esta manera que para la presente exploración se arán escaletas para la obtención de los metas, por lo cual se brindan la siguientes:

	F	I and a second as		
	Ensayos	Instrumentos		
	Aguante a la compresión	Prensa hidráulica		
Ensayo	Aguante a la flexión	Maquina universal		
	Ensayo de asentamiento	Cono de abrams		

Tabla 2. Ensayos de laboratorios.

Fuente: Elaboración propia.

Confiabilidad: Según HERNANDEZ, (2018), considera la confiabilidad, en ausencia de instrumento, de medición de error, utilizado por defecto recopilación de datos, por lo que estos datos deben ser muy confiables y precisos, mostrará el número de veces que se ha repetido la medición e indica que se debe repetir la medición mismo resultado esperado (p. 132)³⁴

Validez: Según CARRASCO (2019) La validez demostrada es la característica específica de los instrumentos utilizados que medirán y legitimarán con precisión el producto relevante como parte del estudio.

Todos los instrumentos utilizados en el laboratorio se consideran precisos (p.151), se registró el juicio de los tres Colegios de Ingenieros del Perú, que encontraron que los expertos en construcción civil corrigieron y actualizaron el KIP.

Procedimiento: La elección y número de especies se realiza en concuerdo a la norma brindadas E060, se utilizan 4 formas de muestreas, el número de superplastificantes y el tiempo de ensayo en el laboratorio de tecnología del hormigón donde se ensayan. Según ACI y NTP, esto se hará de acuerdo a los siguientes pasos:

Figura 1: Etapas del procedimiento

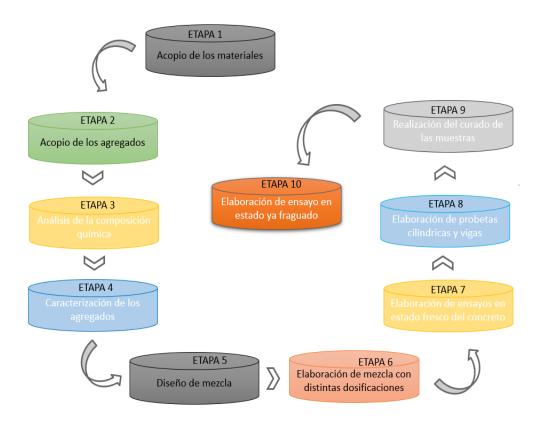


Figura 1: Etapas.

Fuente: elaboración pertinente propia.

- 3.5 Formas, de Análisis, de datos; Para Hernández (2014), nos dice necesitar para medir un instrumento debe ser confiable, por lo que se define como la repetibilidad de un ítem de manera que conduzca a resultados (p. 184)³⁶ De acuerdo con la procesión pasada, el tipo de examinar en esta la encuesta actual es los datos de modo descriptiva en la que todos los resultados se obtienen a través de cuadros, gráficos y recolección de antecedentes para examinar los resultados. El examinar de modos, como % de desperdicio de cangrejo y microsílico, aguante a la compresión, pruebas de flexión y trabajabilidad slump, se realizará de forma muy independiente.
- 3.6 Semblante ético: Como, estudioso profesionalmente de ingeniería civil, esta planificación, de exploración lo desarrollaré íntegramente con honestidades, seriedad, respeto mutuos y confianza, sin realizar alguna forma de copia parcialmente o gradualmente los trabajos tesis de otros. La indagación de esta planificación se realizará con esta vigencia de

muchas las informaciones adicional, de modelo con las normas estatuidas por la casa Universidad Cesar Vallejo, como el ISO 9001, en cuanto a la validez de los resultados. Esta sonda está sujeta a las reglas ACI, ASTM y NTP. Pero este estudio, las formas éticas fueron: tenemos que seguir con lo que se respetarán de autor. Adjunte un certificado de prueba de laboratorio. Verificar el plagio mediante turniting. Con constancia de la encuesta.

IV RESULTADOS

Nombre de la tesis:

Análisis de las propiedades física mecánicas del concreto f´c=210kg.cm2 incorporando cenizas de cangrejo y microsílice, Puente Piedra 2022.

Ubicación general.

Departamento, Lima. Provincia, Lima. Distrito, Puente Piedra. Ubicación, Zapallal.

Figura2: Mapa general del Perú

Fuente: -Google EARTH

Localización:

Figura-4: Localización zonal

Fuente-4: Google MAPS

Figura3: -Mapa distrital de Lima

Fuente: -Google MAPS

Absoluto de los ensayos siguientes ensayos se asieron hechos en el Laboratorio examinador llamado "JG GEOTECNISTAS Y LABORATORIO S.A.C. "; dicho laboratorio tiene todos los requisitos de calibración de maquinarias y también su respectiva certificación es, hasta poder llegar así a hallar los mejores metas posibles.

A) PRUEBAS FISICAS DE AGREGADOS:

Materias: ARENA GRUESA Yacimiento: TRAPICHE

Peso original Humedecido(g): 650.0

Peso original Seco(g): 639.0

%W: 1.7 MF: 2.82

MALLAS	ABERTURA	MATERIAL RETENIDO		% ACUMULADOS		ESPECIFICACIONES
MALLAG	(mm)		(%)	Retenido	Pasa	ASTM C 33
			•			
1/2"	12,50	0,00	0,00	0,00	100,00	
3/8"	9,50	0,00	0,00	0,00	100,00	100
Nº4	4,76	14,9	2,3	2,3	97,7	95 - 100
Nº8	2,38	84,6	13,2	15,5	84,5	80 - 100
Nº 16	1,19	121,0	18,9	34,4	65,6	50 - 85
Nº 30	0,60	150,0	23,5	57,9	42,1	25 - 60
Nº 50	0,30	134,0	21,0	78,9	21,1	05 - 30
Nº 100	0,15	90,0	14,1	93,0	7,0	0 - 10
FONDO		44.5	7.0	100.0	0.00	

TablaN°3: PRUEBA Granulométrico-ARENA GRUESA

Fuente: JC G. L. S.A.C.

Curva Granulometrica

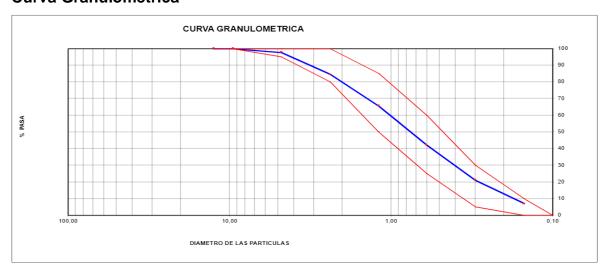


Figura N°5: PRUEBA Granulométrico de ARENA GRUESA

Fuente: JC G. L. S.A.C.

PESO UNITARIO DE ARENA GRUESA

MUE	ESTRA №	M - 1	M - 2	M - 3			
1	Peso de la Muestra + Molde	g	6910	6914	6906		
2	Peso del Molde	g	2446	2446	2446		
3	Peso de la Muestra (1 - 2)	g	4464	4468	4460		
4	Volumen del Molde	CC	2827	2827	2827		
5	Peso Unitario Suelto de la Muestra	g/cc	1,579	1,580	1,577		
PROMEDIO PESO UNITARIO SUELTO g/cc 1,579							
					_		
MUF	STRA Nº	MUESTRA Nº					

1	Peso de la Muestra + Molde	g	7622	7627	7617
2	Peso del Molde	g	2446	2446	2446
3	Peso de la Muestra (1 - 2)	g	5176	5181	5171
4	Volumen del Molde	CC	2827	2827	2827
5	Peso Unitario Compactado de la Muestra	g/cc	1,831	1,832	1,829

PROMEDIO PESO UNITARIO COMPACTADO	g/cc	1,831
-----------------------------------	------	-------

Tabla N°4: Fruto Peso Unit. -ARENA GRUESA

Fuente: JC G. L. S.A.C.

PESO ESPEC. DE ARENA GRUESA

MUESTRA Nº			M - 1	M - 2	PROMEDIO
_					
1	Peso de la Arena S.S.S. + Peso Balon + Peso de Agua	g	756	757	756,5
2	Peso de la Arena S.S.S. + Peso Balon	g	296,11	296,11	296,1
3	Peso del Agua (W = 1 - 2)	g	459,89	460,89	460,4
4	Peso de la Arena Seca al Horno + Peso del Balon	g/cc	294,77	294,45	294,61
5	Peso del Balon N° 2	g/cc	196,11	196,11	196,11
6	Peso de la Arena Seca al Horno (A = 4 - 5)	g/cc	98,661	98,34	98,50
7	Volumen del Balon (V = 500)	СС	504,0	504,0	504,0

RESULTADOS

PESO ESPECIFICO DE LA MASA (P.E.M. = A/(V-W))	g/cc	2,61	2,61	2,61
PESO ESPEC. DE MASA S.S.S. (P.E.M. S.S.S. = 500/(V-W))	g/cc	2,65	2,65	2,65
PESO ESPECIFICO APARENTE (P.E.A. = A/[(V-W)-(500-A)]	g/cc	2,71	2,71	2,71
PORCENTAJE DE ABSORCION (%) [(500-A)/A*100]	%	1,4	1,4	1,4

Tabla N°5: Fruto Peso-Específico-ARENA GRUESA

Fuente: JC G. L. S.A.

Materias: PIEDRA CHANCADA Yacimiento: Trapiche

Peso original Húmedo(g): 1464.00

Peso original Seco(g): 1425.00

%W: 0.6 MF-: 6.53

MALLAS	ABERTURA	MATE! RETE!		% ACUI	MULADOS	ESPECIFICACIONES
	(mm)	(g)	(%)	Retenido	Pasa	HUSO # 67
2"	50,00	0,0	0,0	0,0	100,0	
1 1/2"	37,50	0,0	0,0	0,0	100,0	
1"	24,50	0,0	0,0	0,0	100,0	100
3/4"	19,05	132,1	9,3	9,3	90,7	90-100
1/2"	12,50	423,0	29,7	39,0	61,0	-
3/8"	9,53	237,3	16,7	55,6	44,4	20-55
Nº 4	4,76	510,4	35,8	91,4	8,6	0-10
Nº 8	2,38	86,5	6,1	97,5	2,5	0-5
Nº 16	1,18	30,0	2,1	99,6	0,4	
FONDO		5,7	0,4	100,0	0,0	

Tabla-N°6: PRUEBA Granulométrico-PIEDRA CHANCADA

Fuente: JG G. L. S.A

Curva Granulometrica

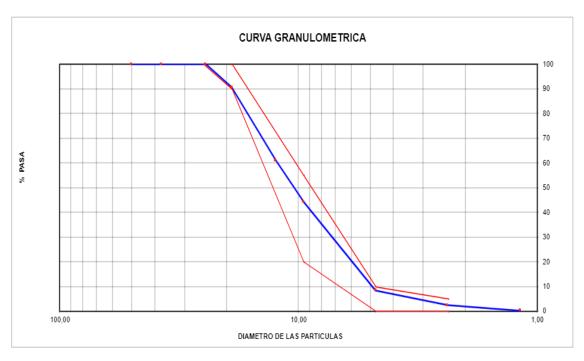


Figura-N°6: PRUEBA Granulométrico de PIEDRA CHANCADA

Fuente: JC G. L. S.A.

PESO UNITARIO DE PIEDRA CHANCADA

MUESTRA Nº	M - 1	M - 2	M - 3

1	Peso de la Muestra + Molde	g	20311	20304	20315
2	Peso del Molde	g	6181	6181	6181
3	Peso de la Muestra (1 - 2)	g	14130	14123	14134
4	Volumen del Molde	СС	9134	9134	9134
5	Peso Unitario Suelto de la Muestra	g/cc	1,547	1,546	1,547

PROMEDIO PESO UNITARIO SUELTO	g/cc	1,547	
-------------------------------	------	-------	--

MUESTRA Nº	M - 1	M - 2	M - 3

Peso de la Muestra + Molde	g	21264	21261	21268
----------------------------	---	-------	-------	-------

2	Peso del Molde	g	6181	6181	6181
3	Peso de la Muestra (1 - 2)	g	15083	15080	15087
4	Volumen del Molde	cc	9134	9134	9134
5	Peso Unitario Compactado de la Muestra	g/cc	1,651	1,651	1,652

PROMEDIO PESO UNITARIO	a/00
COMPACTADO	g/cc

Tabla-N°7: FRUTO Peso Unitario-PIEDRA CHANCADA

Fuente-: JC G. L. S.A.

PESO ESPECIFICO DE PIEDRA CHANCADA

MUESTRA	NA 4	M 2	PROMEDIO
N°	M - 1	M - 2	PROMEDIO

1	Peso de la Muestra Sumergida Canastilla A	g	1269,0	1269,0	1269,0
2	Peso muestra Sat. Sup. Seca B	g	2014	2014	2014,0
3	Peso muestra Seco C	g	1998	1998	1998,0
4	Peso específico Sat. Sup. Seca = B/B-A	g/cc	2,70	2,70	2,70
5	Peso específico de masa = C/B-A	g/cc	2,68	2,68	2,68
6	Peso específico aparente = C/C-A	g/cc	2,74	2,74	2,74
7	Absorción de agua = ((B - C)/C)*100	%	0,80	0,80	0,8

Tabla-N°8: FRUTO-Peso Específico-PIEDRA CHANCADA

Fuente.: J G. L. S.A.C.

El cemento utilizado es de clase 1 en este tipo de exámenes; ya que cuenta con las peculiaridades perfectas y acata con la regulativa para así efectuar nuestras prácticas.

Calcina: el sol.

Tipo: 1

Peso Específico: 3.12

Se hizo el vaciado de las mezclas con él % exactamente de C.C Y M. obteniendo los estos datos del diseño que se usó:

DISEÑO DE MEZCLA:

MATERIAL	PESO ESPECIFIC O	MODUL O FINEZA	HUM. NATURA L	ABSORCIÓ N	P. UNITARI O S.	P. UNITARI O C.
	g/cc		%	%	Kg/m ³	Kg/m ³
CEMENTO SOL TIPO I	3,12					
AGREGAD O FINO - CANTERA TRAPICHE	2,61	2,82	1,7	1,4	1579,0	1831,0
AGREGAD O GRUESO - CANTERA TRAPICHE	2,68		0,6	0,8	1547,0	1651,0

Tabla-N°9: DISEÑO-MEZCLA

Fuente: J G. L. S.A.C.

1) PRINCIPIOS DE DISEÑO:

	ASENTAMIENTO					pulg
2	TAMAÑO MAXIMO NOMINAL					pulg
3	RELACION AGUA CEMENTO			0,65		
4	205					
5	TOTAL, DE AIRE ATRAPADO % 2,0					
6	VOLUMEN DE AGREGADO GRUESO 0,37					

Tabla-N°10: PRINCIPIOS-Diseño

Fuente: J G. L. S.A.C.

2) ESTUDIO-DISEÑO:

FACTOR CEMENTO	315	Kg/m ³	7,4	Bls/m ³
Volumen absoluto del				
cemento		0,1011	m³/m³	
Volumen absoluto del Agua		0,2050	m³/m³	
Volumen absoluto del Aire		0,0200	m³/m³	

			0,326
VOLUMEN ABSOLUTOS DE AGREGADOS			
Volumen absoluto del		2, 2	
Agregado fino	0,3034	m³/m³	0,674
Volumen absoluto del			
Agregado grueso	0,3705	m³/m³	
SUMATORIA DE			
VOLUMENES ABSOLUTOS			1,000

Tabla-N°11: ESTUDIO-Diseño

Fuente: J G. L. S.A.C.

3) PORCION DE MATERIALES m3 POR EN P. S.:

PESO DE MEZCLA		2	2305	Kg/m ³
AGREGADO GRUESO	993	Kg/m ³		
AGREGADO FINO	792	Kg/m ³		
AGUA	205	Lt/m ³		
CEMENTO	315	Kg/m ³		

Tabla-N°12: Peso-Mezcla-Seco

Fuente: JC G. L. S.A.C.

4) CORRECION-HUMEDAD:

AGREGADO FINO HUMEDO	805,3	Kg/m ³
AGREGADO GRUESO HUMEDO	999,0	Kg/m ³

Tabla-N°13: Corrección-Humedad

fuente: J G. L. S.A.C.

5) CONTRIBUCION DE AGUA EN AGREGADOS:

AGREGADO FINO	-0,300	-2,4
AGREGADO GRUESO	0,200	2,0
		-0,4
AGREGADO FINO	0,000	205,4

Tabla-N°14: Contribución- Agua-Agregados

Fuente: J G. L. S.A.C.

6) PORCION-MATERIALES m3 POR EN P. H.:

CEMENTO	315	Kg/m ³
AGUA	205	Lts/m ³
AGREGADO FINO	805	Kg/m ³
AGREGADO GRUESO	999	Kg/m ³
PESO DE MEZCLA	2325	Kg/m ³

Tabla-N°15: Peso- Mezcla-Húmedo

Fuente; G. L. S.A.

7) PORCION DE MATERIALES 42.50 KG

CEMENTO	42,50	Kg
AGUA	27,67	Lts
AGREGADO FINO	108,49	Kg
AGREGADO GRUESO	134,59	Kg

Tabla-N°16: DOSIS-Materiales

Fuente; J G. L. S.A.C.

DOSIS-PESO p3 (húmedo)

CANTIDAD EN Metros3

PORPORCIÓN EN PESO p3 (húmedo)	
С	1,0
A.F	2,55
A.G	3,17
H2o	0,7

Tabla N°17: CUANTIA-Peso p3-m3

Fuente; J G. L. S.A.C.

PRUEBA AL SEPTIMO DIA:

Después de hacer el estudio granulométrico para cada tipo de agregado utilizado en los ensayos, así como la realización del correspondiente diseño de mezcla que empleamos en nuestra investigación.

Siete días después del fraguado, a partir del momento en que se vacían las probetas correspondientes, se hacen los estudios de aguante a la compresión.

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON	16/9/2022	23/9/2022	7	12360	78,5	157,4	210,0	74,9
PATRON	16/9/2022	23/9/2022	7	12290	78,5	156,5	210,0	74,5
PATRON	16/9/2022	23/9/2022	7	12400	78,5	157,9	210,0	75,2

Tabla N°18: Concreto Patrón séptimo día

Fuente: JC G. L. S.A.C.

SOLIDES A LA COMPRESION AL SEPTIMO DIA

AGREGANDO C. de C. en porcentajes de 2%, 4% y 7%; y se alcanzaron estos resultados:

<u>PATRON + 2% C. C.:</u>

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + CENIZAS DE CANGREJO 2.0%	16/9/2022	23/9/2022	7	12630,0	78,5	160,8	210,0	76,6
PATRON + CENIZAS DE CANGREJO 2.0%	16/9/2022	23/9/2022	7	12690,0	78,5	161,6	210,0	76,9
PATRON + CENIZAS DE CANGREJO 2.0%	16/9/2022	23/9/2022	7	12750,0	78,5	162,3	210,0	77,3

Tabla N°19: Concreto Patrón + 2% C. De C.

Fuente: JC G. L. S.A.C.

PATRON + 4% C. DE C.:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + CENIZAS DE CANGREJO 4.0%	16/9/2022	23/9/2022	7	13100,0	78,5	166,8	210,0	79,4
PATRON + CENIZAS DE CANGREJO 4.0%	16/9/2022	23/9/2022	7	13070,0	78,5	166,4	210,0	79,2
PATRON + CENIZAS DE CANGREJO 4.0%	16/9/2022	23/9/2022	7	13150,0	78,5	167,4	210,0	79,7

Tabla N°20: Concreto Patrón + 4% C. De Cangrejo

Fuente: JC G. L. S.A.C.

PATRON + 7% C. DE CANGREJO:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + CENIZAS DE CANGREJO 7.0%	16/9/2022	23/9/2022	7	12010,0	78,5	152,9	210,0	72,8
PATRON + CENIZAS DE CANGREJO 7.0%	16/9/2022	23/9/2022	7	11990,0	78,5	152,7	210,0	72,7

PATRON +								
CENIZAS DE	16/0/2022	23/0/2022	7	11010 0	70 E	151,6	210.0	70.0
CANGREJO	10/9/2022	23/9/2022	/	11910,0	10,5	151,0	210,0	12,2
7.0%								

Tabla N°21: Concreto Patrón + 7% C. De Cangrejo

Fuente: JC G. L. S.A.C.

FIRMESA A LA COMPRESION AL SEPTIMO DIA

ADICIONANDO MICROSILICE en % de 10%, 15% y 20%; y se obtuvieron los presentes resultados:

PATRON + 10% MICROSILICE:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + MICROSÍLICE 10%	16/9/2022	23/9/2022	7	12780	78,5	162,7	210,0	77,5
PATRON + MICROSÍLICE 10%	16/9/2022	23/9/2022	7	12690	78,5	161,6	210,0	76,9
PATRON + MICROSÍLICE 10%	16/9/2022	23/9/2022	7	12810	78,5	163,1	210,0	77,7

Tabla N°22: Concreto Patrón + 10% M.

Fuente: JC G. L. S.A.C.

PATRON + 15% MICROSILICE:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + MICROSÍLICE 15%	16/9/2022	23/9/2022	7	13220	78,5	168,3	210,0	80,2

PATRON + MICROSÍLICE 15%	16/9/2022	23/9/2022	7	13270	78,5	169,0	210,0	80,5
PATRON + MICROSÍLICE 15%	16/9/2022	23/9/2022	7	13360	78,5	170,1	210,0	81,0

Tabla N°23: Concreto Patrón + 15% M.

Fuente: JC G. L. S.A.C.

PATRON + 20% MICROSILICE:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUE RZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + MICROSÍLICE 20%	16/9/2022	23/9/2022	7	13860	78,5	176,5	210,0	84,0
PATRON + MICROSÍLICE 20%	16/9/2022	23/9/2022	7	13780	78,5	175,5	210,0	83,5
PATRON + MICROSÍLICE 20%	16/9/2022	23/9/2022	7	13800	78,5	175,7	210,0	83,7

Tabla N°24: Concreto Patrón + 20% M.

Fuente: JC G. L. S.A.C.

IDENTIFICACION DE ESPECIMEN	ESFUERZO kg/cm
COMPRESION 7 DIAS	
PATRON	157.2
PATRON + C. CANGREJO 2%	161.6
PATRON + C. CANGREJO 4%	166.9
PATRON + C. CANGREJO 7%	152.4
PATRON + MICROSILICE 10%	162.5
PATRON + MICROSILICE 15%	169.1
PATRON + MICROSILICE 20%	175.9

Tabla N°25: Fruto Promedio Compresión al séptimo día.

Fuente: ELABORACIÓN PROPIA

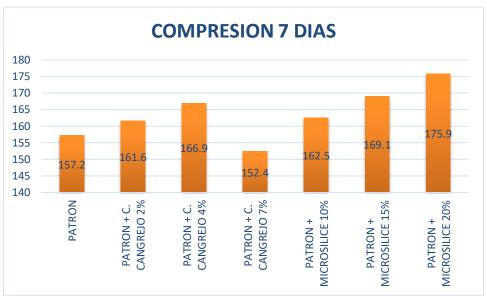


Figura-N°7: Compresión 7D.

Fuente: ELABORACIÓN unitario

Equipo para los Ensayos:

Aparato de compresión HIWEIGH, valorado el 16 de agosto del 2022 CERTI.TC-15702-2022. Competencia máxima de 30000 kgf, división de escala 1kgf.

PRUEBA AL DECIMOCUARTO DIA:

Después de echar la mezcla en los cilindros de ensayo, el ensayo de aguante a la compresión se realizará 14 días posterior.

Sin aumentar nada de aditivo a la mezcla, empezaremos realizando la prueba de compresión en la muestra estándar y, como resultado, las pruebas dan el fruto los prosiguientes competencias.

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON	16/9/2022	30/9/2022	14	13010	78,5	165,6	210,0	78,9
PATRON	16/9/2022	30/9/2022	14	13050	78,5	166,2	210,0	79,1
PATRON	16/9/2022	30/9/2022	14	13150	78,5	167,4	210,0	79,7

Tabla-N°26: Concreto P-14D (COMP)

Fuente: J G. L. S.A.

DUREZA-COMPRESION (14 DIAS) ADICIONANDO C. DE CANGREJO en % de

2, 4 Y 7%; Los frutos obtenidos fueron los consecuentes:

PATRON+ 2% C. CANGREJO:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + CENIZAS DE CANGREJO 2.0%	16/9/2022	30/9/2022	14	13350,0	78,5	170,0	210,0	80,9
PATRON + CENIZAS DE CANGREJO 2.0%	16/9/2022	30/9/2022	14	13500,0	78,5	171,9	210,0	81,9
PATRON + CENIZAS DE CANGREJO 2.0%	16/9/2022	30/9/2022	14	13410,0	78,5	170,7	210,0	81,3

Tabla-N°27: Concreto P + 2% c. cangrejo

Fuente: JC G. L. S.A.C

PATRON + 4% C. DE CANGREJO:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + CENIZAS DE CANGREJO 4.0%	16/9/2022	30/9/2022	14	13730,0	78,5	174,8	210,0	83,2
PATRON + CENIZAS DE CANGREJO 4.0%	16/9/2022	30/9/2022	14	13690,0	78,5	174,3	210,0	83,0

PATRON +								
CENIZAS DE CANGREJO	16/0/2022	20/0/2022	11	12670.0	70 E	17/1	210.0	92 N
CANGREJO	10/9/2022	30/9/2022	14	13070,0	10,5	174,1	210,0	02,9
4.0%								

Tabla N°28: Concreto Patrón + 4% c. de cangrejo

Fuente: JC G. L. S.A.C.

PATRON + 7% C. DE CANGREJO:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + CENIZAS DE CANGREJO 7.0%	16/9/2022	30/9/2022	14	12690,0	78,5	161,6	210,0	76,9
PATRON + CENIZAS DE CANGREJO 7.0%	16/9/2022	30/9/2022	14	12670,0	78,5	161,3	210,0	76,8
PATRON + CENIZAS DE CANGREJO 7.0%	16/9/2022	30/9/2022	14	12720,0	78,5	162,0	210,0	77,1

Tabla N°29: Concreto Patrón + 7% c. de cangrejo

Fuente: JC G. L. S.A.C.

DUREZA A LA COMPRESION (14 DIAS) AGREGANDO MICROSILICE en porcentajes de 10%, 15 y 20%; obteniendo los siguientes resultados:

PATRON + 10% MICROSILICE:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c	
--------------------------------	---------------------	--------------------	--------------------	-------------------------	-------------	--------------------	-------------------------	----------	--

PATRON + MICROSÍLICE 10%	16/9/2022	30/9/2022	14	13690	78,5	174,3	210,0	83,0
PATRON + MICROSÍLICE 10%	16/9/2022	30/9/2022	14	13710	78,5	174,6	210,0	83,1
PATRON + MICROSÍLICE 10%	16/9/2022	30/9/2022	14	13630	78,5	173,5	210,0	82,6

Tabla N°30: Concreto Patrón + 10% m.

Fuente: JC G. L. S.A.C.

PATRON + 15% MICROSILICE:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + MICROSÍLICE 15%	16/9/2022	30/9/2022	14	14210	78,5	180,9	210,0	86,2
PATRON + MICROSÍLICE 15%	16/9/2022	30/9/2022	14	14350	78,5	182,7	210,0	87,0
PATRON + MICROSÍLICE 15%	16/9/2022	30/9/2022	14	14110	78,5	179,7	210,0	85,5

Tabla N°31: Concreto Patrón + 15% m.

Fuente: JC G. L. S.A.C.

PATRON + 20% MICROSILICE:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c	
--------------------------------	---------------------	--------------------	--------------------	-------------------------	-------------	--------------------	-------------------------	----------	--

PATRON + MICROSÍLICE 20%	16/9/2022	30/9/2022	14	14800	78,5	188,4	210,0	89,7
PATRON + MICROSÍLICE 20%	16/9/2022	30/9/2022	14	14740	78,5	187,7	210,0	89,4
PATRON + MICROSÍLICE 20%	16/9/2022	30/9/2022	14	14700	78,5	187,2	210,0	89,1

Tabla N°32: Concreto Patrón + 20% m.

Fuente: JC G. L. S.A.C.

Después del fruto usando varias concentraciones de c. de cangrejo o microsílice, se desarrolló una tabla en la que se puede observar el promedio de los valores descubiertos en el laboratorio al incluir varias % de aditivos en la mezcla estándar:

IDENTIFICACION DE ESPECIMEN	ESFUERZO kg/cm
COMPRESION 14 DIAS	
PATRON	166.4
PATRON + C. CANGREJO 2%	170.9
PATRON + C. CANGREJO 4%	174.4
PATRON + C. CANGREJO 7%	161.6
PATRON + MICROSILICE 10%	174.1
PATRON + MICROSILICE 15%	181.1
PATRON + MICROSILICE 20%	187.8

Tabla N°33: FRUTO Promedio A Compresión.

Fuente: PROPIA

Figura N°8: Compresión 14 Días.

Fuente: PROPIA

Objetivo 1:

Precisar la incorporación de c. de cangrejo y microsílice en lo dureza a lo compresión de la calcina de 210kg/cm2, Puente Piedra 2022.

a) Dureza a la Compresión en 28D:

La fortaleza que brinda para tener el aguante de la fuerza aplicada por unidad en el área.

IDENTIFICACION DE ESPECIMEN	ESFUERZO kg/cm
COMPRESION 28 DIAS	
PATRON	210.5
PATRON + C. CANGREJO 2%	208.2
PATRON + C. CANGREJO 4%	217.3
PATRON + C. CANGREJO 7%	194.81
PATRON + MICROSILICE 10%	217.7
PATRON + MICROSILICE 15%	224.2
PATRON + MICROSILICE 20%	231.5

Tabla N°34: Fruto-Compresión 28D.

Fuente; PROPIA

Figura N°9: Ruptura-Compresión 28D.

Fuente: PROPIA

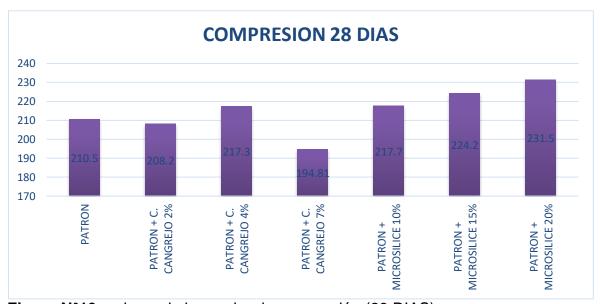


Figura N°10: valores de la prueba de compresión (28 DIAS).

Fuente: PROPIA

Interpretación: La evaluación de dureza a la compresión que se realizaron después de agregar c. de cangrejo y microsílice muestran un aumento proporcional del aditivo echado. Después de agregar un 4 por ciento de c. de cangrejo, se obtienen 217,3 kg/cm2, un alza de 7,3 comparado al resultado de la muestra estándar. Por otro lado, cuando se agrega microsílice en porcentajes de 10%, 15% y 20%, respectivamente, nos da 217,7, 224,2 y 231,5 kg/cm2, subiendo en 7,7, 14,2 y 21,5 kg/cm2 en similar dad con el fruto de la muestra estándar.

Objetivo 2:

Definir la incorporación de c. cangrejo y microsílice en dureza a la flexión del clcina de 210kg.cm2, Puente Piedra 2022.

a) Aguante-Flexión a los 28 días:

Es donde el concreto llego a su resistencia máxima ya sea en un techo, viga o columna de calcina sin refuerzo.

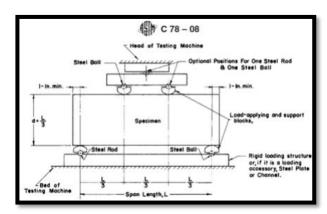


Figura-N°11: Grafica-rotura.

IDENTIFICACION DE ESPECIMEN	ESFUERZO kg/cm
FLEXION 28 DIAS	
PATRON	31.3
PATRON + C. CANGREJO 2%	32.3
PATRON + C. CANGREJO 4%	31.2
PATRON + C. CANGREJO 7%	28.7
PATRON + MICROSILICE 10%	33.7
PATRON + MICROSILICE 15%	35
PATRON + MICROSILICE 20%	36.8

Fuente: J G. L. S.A.C.

Tabla-N°35: Fruto-Flexión 28D.

Fuente: PROPIA

Figura N°12: imagen de la prueba de Flexión (28 DIAS).

Fuente: PROPIA

Interpretación: Las pruebas de dureza a la flexión con c. de cangrejo arrojan una mejora proporcional con adiciones de 2 y 4 por ciento, mientras que la adición de microsílice a la mezcla estándar en porcentajes de 10 y 15 y 20 por ciento no mostró ninguna mejora. Arrojo resultados de 33,07, 35,08 y 36,08 kg/cm2, mostrando una notable mejora en las virtudes mecánicas del hormigón.

Objetivo 3:

Hallar la adición de c. cangrejo y microsílice en la trabajabilidad del calcina de 210kg.cm2, Puente Piedra 2022.

Reseña: SLUMP.

IDENTIFICACION DE ESPECIMEN	ASENTAMIENTO (cm)
SLUMP	
PATRON	10.3
PATRON + C. CANGREJO 2%	9.4
PATRON + C. CANGREJO 4%	9
PATRON + C. CANGREJO 7%	8.5
PATRON + MICROSILICE 10%	9.7
PATRON + MICROSILICE 15%	9.4
PATRON + MICROSILICE 20%	9

Tabla-N°36: Fruto Slump.

Fuente: PROPIA

Figura N°13: Resultado-compactación (SLUMP).

Fuente: propia.

Interpretación: Las pruebas echas donde determinar el asentamiento de la mortero-slump aumentando c. cangrejo muestran una mejora proporcional en los porcentajes de 2 por ciento y 4 por ciento, obteniendo 9.4 y 9; sin embargo, las propiedades físicas del concreto mejoran al agregar microsílice en porcentajes de 10, 15 y 20 por ciento, dando como resultado 9.7, 9.4 y

V DISCUSIÓN

Objetivo 1: Determinación el predominio de la cantidad de restos de cangrejo (2%, 4%, 7%) y polvo de microsílico (10%, 15% y 20%) sobre la resistencia a la compresión, Ishibashi - Lima, 2022.

CENIZA DE CANGREJO

Antecedente: García y Quito (2021): En una indagación de estimación de la impresión de la ceniza de madera sobre su proceder en las fortalezas físicas del, se trataron diferentes dosificaciones en el diseño del calcina para buscar la función de dosificación más adecuada a sus propiedades (p. 97)³⁷

Resultados: Cuando comencé mi investigación, el aguante a la fuerza de aplaste de mi espécimen estándar fue de 210,5, que contenía 2 % (208,2), 4 % (217,3) y 7 % (194,81) de polvo de cangrejo, lo que reducía la resistencia a la compresión.

Comparación: Según investigaciones anteriores y mi propia investigación, cuantos más aditivos agregamos, menor es la resistencia a la compresión. Nuestros efectos arrojan que la solidez a la compresión de la calcina se reduce a medida que incrementa el porcentaje de productos, consistente con los datos presentados.

Hay un precedente y lo será esta vez también.

MICROSILICE

Antecedente: Sobolev Austin (2019) observó que al aumentar la cantidad de superplastificante del 8 % al 18 %, se obtuvo una relación de 1,21 a 3,31 w/cm y se obtuvo la mayor fortaleza a la compresión en su evaluación. Esto demuestra que en el área de indagación es extenso y aún queda demasiado intelecto por realizar (p. 125)³⁸

Resultados: Al comienzo de mi investigación, en forma a la fortaleza al aplastamiento obtenida de mi muestra estándar, que fue de 210,5, con la adición

de 10 % (217,7), 15 % (224,2) y 20 % (231,5) de microsílice. Aumenta la resistencia a los resultados de compresión.

Comparación: Antecedentes Dado que aumentar el porcentaje de dosificación de aditivos en la calcina aumenta la dureza a la compresión de manera similar al punto anterior, nuestros resultados demuestran que la microsílice aumenta la dureza a la compresión de la calcina.

Objetivo 2: Precisar del efecto de niveles de ceniza de cangrejo (2%, 4%, 7%) y microsílice (10%, 15% y 20%) en la dureza a la flexión de la calcina, Puente Piedra - Lima, 2022.

DESPERDICIO DE CANGREJO

Precedente: GALICIA Y VELSQUEZ (2018) compararon en varias ocasiones los resultados de probetas tanto cilíndricas como prismáticas, pero también con rastrojo de fresno (p.68).³⁹ Tuve los siguientes valores a 2,5 por ciento y 5 por ciento de dosis final: (7 d) 181,68, 187,27 y 253,11 kg/cm2, (14) 212,92, 222,59 y 288,03 kg/cm2, (28) 9, resistencia 26,57. 08. aumenta. Con el objetivo de realizar un estudio comparativo de las resistencias con la adición de una determinada cantidad volumétrica de ceniza de rastrojo de maíz.

Resultados: A partir de la dureza al aplastamiento de flexión medida a mi espécimen estándar que contenía 31,3 % y 2 % de ceniza de cangrejo (32,3), 4 (31,2) y 7 (28,7) %, pude disminuir la dureza a la flexión a medida que aumentaba la cantidad de aditivos por cantidad.

Comparación: Los efectos de nuestra indagación resultan que, en línea con los antecedentes, la ceniza de cangrejo provoca una resta de la fortaleza a la flexión de la calcina. Esto está sustentado por los antecedentes, ya que la fortaleza a flexión de la calcina también disminuye cuando se aumenta el porcentaje de dosificación de aditivos.

MICROSILICE

Antecedente: Siddique Rudier (2018) recopiló hallazgos de varios estudios sobre el uso de microsílice en la creación de calcina de mucha fortaleza. Las indagaciones vistas permiten concluir que las cualidades mecánicas se vieron remilgado y la resistencia a la compresión aumentó de 7 a 90 (p. 85).⁴⁰

Resultados: Comencé mi investigación basándome en la resistencia a la compresión de mi espécimen estándar, que contiene 31,3 microsílice en proporciones de 10 por ciento (33,73), 15 por ciento (35,03) y 20 por ciento (36,87). aumentando el fruto de la fortaleza a la flexión recibida una mejora en el fruto de la fortaleza a la flexión.

Equiparación: Como antecedente, algo de microsílice aumenta la fortaleza al alabeo de la calcina; nuestros frutos respaldan esto ya que al incrementa la cantidad de aditivo en el concreto suma la fortaleza al alabeo, similar al punto anterior.

Propósito 3:

Determinación del efecto de dosificación de polvo de cangrejo (2%, 4%, 7%) y microsílice (10%, 15% y 20%) sobre depósitos o depósitos de hormigón, Ponte Piedra - Lima, 2022.

CENIZA DE CANGREJO

Antecedente Pari Víctorino (2018), Ejecuto una indagación para delimitar cómo el cambio de desperdicio de de carrizal (CBCA) influyen en la peculiaridad mecánica de la calcina, utilizando posterior a ello porciones de siete por ciento, 9 por ciento, 11 por ciento, las cuales arrojaron los resultados a los 7, 14 y 28 días (p. 76)⁴¹ finalmente con el 11 por ciento obtuvo 17,22, 19,79 y 21,01, todos estos para 7, 14, 28 días. Ha sido el que, en una dosis del 9 por ciento, ha experimentado una menor mejora en cuanto a su patrón particular.

Resultados: Comenzando con mi tubo de ensayo estándar, que tiene 10.3, e incorporando ceniza de cangrejo al 2 por ciento (9 punto 4), 4 por ciento (9) y 7 por

ciento (8 punto 5), primero realicé mi investigación y en base a la resistencia al asentamiento que encontré, Encontré que era negativo.

Comparación: Nuestros frutos avalan la premisa de que el desperdicio de cangrejo reduce el asentamiento del concreto porque reduce la cantidad de mezcla que se asienta a una profundidad de cm a la cantidad que suma el % de suma de calcina. MICROSILICE

Antecedente: Rivva Javier (2020), nos menciona que la DT del Estado de Tennessee ha bajado la edad en las que los tiempos del puente Loudon estuvieran clausurados por mantenimiento, fue gracias a la utilización de 8 calcinas a los tales se pudo aumentar microsílico en el sector superior de 4" puesto a indemnización (p. 86)⁴²

Frutos: Al iniciar mi indagación y apoyarnos en la fortaleza del SLUMP recibida de mi espécimen Patrón el cual presenta 10.3 Microsílice 10% (9.7), 15% (9.4) y 20% (9).

Comparación: Según los antecedentes, el uso de microsílice reduce el SLUMP del hormigón. Esto lo muestran los hallazgos de nuestra investigación, que brindan que al tiempo que suma el % de dosis de aditivos agregados al concreto, la cantidad de espacio en el que la mezcla se asienta disminuye.

VI CONCLUSION

Analizar la incorporación de microsílice y c. de cangrejo en las virtudes físico mecánicas de la calcina de 210kg/cm2, Puente Piedra 2022.

Objetivo general, 1) evaluaron las propiedades del hormigón de Puente Piedras aumentando el porcentaje de c. de cangrejo de 2% a 4% y el contenido de microsílice de 10% a 20% y encontraron que mejoraban las virtudes físicas y mecánicas de la calcina y añadían fortaleza a la compresión. La fortaleza eléctrica del material, es decir F'c=210kg/cm2. 2) Aumentar el porcentaje de c. de cangrejo del 2 % al 4 % y de microsílice del 10 % al 20 % puede mejorar y aumentar la fortaleza al baleo de la calcina F'c=210kg/cm2. 3) Este aumento del porcentaje de microsílice del 10 % al 20 % y de c. de cangrejo del 2 % al 4 % redujo la trabajabilidad.

1) Ensayo de Compresión:

C. DE CANGREJO:

Espécimen E. Compresión 210 Kg/cm2, P+AditiveT: 2% (EC = 208.2 kg/cm2), 4% (EC = 217.3 kgcm2) y 7% (EC=194.81 kgcm2)

MICROSILICE

Espécimen E. Compresión 210Kgcm2, P+AditiveT: 10% (EC = 217.7 kgcm2), 15% (EC = 224.2 kgcm2) y 20% (EC=231.5 kgcm2)

Meta Específico 1: Se encontró que los porcentajes de 2 y 4 por ciento de c. de cangrejo y 10 y 15 y 20 por ciento de microsílice, respectivamente, aumentan favorablemente la virtud a la compresión de la calcina en 7.1 y 3.01 kilogramos por centímetro cuadrado, respectivamente.

2) Ensayo de Flexión:

C. DE CANGREJO:

Espécimen E. Flexión 210 Kgcm2, P+AditiveT: 2% (EC = 32.3 kgcm2), 4% (EC = 31.2 kg/cm2) y 7% (EC=28.7 kg/cm2)

MICROSILICE:

Espécimen E. Flexión 210 Kgcm2, P+AditiveT: 10% (EC = 9.7 kgcm2), 15% (EC = 9.4 kgcm2) y 20% (EC=9kgcm2)

Meta Especifico 2; Se encontró que los porcentajes de 2 y 4 por ciento de c. de cangrejo en % de 10, 15 y 20 de microsílice aumentan favorablemente la dureza del concreto a la compresión y flexión, respectivamente.

3) SLUMP:

C. DE CANGREJO:

Patrón SLUMP 210 Kg/cm2, P+AditivoT: 2% (EC = 9.4cm), 4% (EC = 9cm) y 7% (EC=8.5cm)

MICROSILICE:

Espécimen SLUMP 210 Kgcm2, P+AditivoT: 10% (EC = 10.22cm), 15% (EC =9.88 cm) y 20% (EC=36.87 cm)

Meta Especifico 3; Se descubrió que agregar c. de cangrejo en porcentajes de 2 y 4 por ciento y microsílice en porcentajes de 10 y 20 por ciento reducen el asentamiento.

VII RECOMENDACIONES

1) Ejercicio de Compresión:

C. DE CANGREJO:

Espécimen E. Compresión 210 Kgcm2, P+AditiveT: 2% (EC = 208.2 kgcm2), 4% (EC = 217.3 kgcm2) y 7% (EC=194.81 kgcm2)

MICROSILICE

Espécimen E. Compresión 210Kgcm2, P+AditiveT: 10% (EC = 217.7 kgcm2), 15% (EC = 224.2 kgcm2) y 20% (EC=231.5 kgcm2)

Meta Específico 1, En este estudio, al elegir el porcentaje de c. de cangrejo y microsílice, se determinó que la microsílice aumentó más la resistencia al aire en las pruebas de compresión, mientras que la ceniza de cangrejo disminuyó la resistencia. Para futuras investigaciones, recomendamos no más del 4% de ceniza de cangrejo.

2) Ensayos de Flexión:

C. DE CANGREJO:

Espécimen E. Flexión 210Kgcm2, P+AditiveT: 2% (EC = 32.3 kgcm2), 4% (EC = 31.2 kgcm2) y 7% (EC=28.7 kgcm2)

MICROSILICE:

Espécimen E. Flexión 210Kgcm2, P+AditiveT: 10% (EC = 9.7 kgcm2), 15% (EC = 9.4 kgcm2) y 20% (EC=9kgcm2)

Meta Específico 2, Este estudio se utilizó microsílice como la mucha oportunidad de victoria de flexión, eligiendo el porcentaje de c. de cangrejo entre 2% y 7% y microsílice entre 10% y 20%; por lo tanto, recomendamos usar no más del 2 % de ceniza de cangrejo para determinar el límite que indica la suma fortaleza a la flexión obtenida con el incremento de % de adición.

3) Ensayos de SLUMP:

C. DE CANGREJO:

Espécimen Slump 210Kgcm2, P+AditiveT: 2% (EC = 9.4cm), 4% (EC = 9cm) y 7% (EC=8.5cm)

MICROSILICE:

Espécimen Slump 210Kgcm2, P+AditiveT: 10% (EC = 10.11cm), 15%(EC =9.88 cm) y 20% (EC=36.87 cm)

Meta Específico 3: En este estudio, seleccionar el porcentaje de c. de cangrejo y microsílice entre 10% y 20% arrojó resultados superiores en igualdad con la calcina básica, y la microsílice fue la mejor en comparación con la prueba SLUMP; Por lo tanto, recomendamos usar no más del 2% de ceniza de cangrejo para encontrar el máximo de aditivo que podemos agregar a la mezcla.

REFERENCIA

- ACUÑA, Carlos y CABALLERO, Hugo. Resistencia a la compresión y flexión de un concreto estructural mediante la sustitución parcial del cemento por ceniza de bagazo de caña de azúcar (CBCA) - San Jacinto. [en línea] Tesis (Ingeniería Civil), Nuevo Chimbote: Universidad Nacional del Santa, 2018. [fecha de consulta 25 de octubre de 2022]. Disponible en: http://repositorio.uns.edu.pe/handle/UNS/3179
- 2. AGUDELO, Angie y ESPINOSA, Bryan. Análisis de la resistencia a la compresión de mezclas de concreto con adición de ceniza volante deTermopaipa Colombia, [en línea] Tesis (Ingeniería Civil), Bogotá: Universidad Católica de Colombia, 2017 [fecha de consulta 25 de octubre de 2022]. Disponible en:

https://repository.ucatolica.edu.co/bitstream/10983/14479/4/Documento%2 OC eniza%20volante%20TERMOPAIPA.pdf

- 3. ARANDA, Cristian. Resistencia a flexión en vigas de concreto al sustituir en 5%el cemento por cenizas de Ichu (Stipa Ichu), [en línea] Tesis (Ingeniería Civil), Huaraz: Universidad San Pedro, 2018 [fecha de consulta 25 de octubre de 2022]. Disponible en:
 - https://1library.co/document/qvlj4nry-resistencia-flexion-vigas-concretosustituircemento-cenizas-stipa.html
- 4. American Society for Testing and Materials (Estados Unidos). ASTM C496: Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete. American Society for Testing and Materials (Estados Unidos). ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
- ARCE, X. (1997). Hormigones Livianos (Tesis doctoral) Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador. [Enlaces]

- 6. CHANDRASHEKAR, DARSHAN M K, SHIVAJIGANESH, VINAYAKUMAR, VISHNUCS and YOGESHAK. Experimental investigation on partial replacement of cement with fly ash and ricehusk. Scientific article (Departmentof Civil Engineering), International Research Journal of Engineering and Tecnology(IRJET), 2019 Available in: https://library.net/document/q5movk7y- experimental-investigationpartial-replacement-cement-fly-ash-ricehusk.html
- Diseño de mezclas de concreto con agregado grueso. Norma ACI 211:
 Cemento + Agua + Grava + Arena + Aditivos. 2 15pp.
- 8. KEWIN, Mariano. Comparación de las resistencias a compresión y flexión del concreto adicionado con las cenizas de bagazo de caña de azúcar (CBCA) en el concreto normal F'c=210kg/cm2. Tesis (Ingeniería Civil) Huánuco: Universidad Nacional Hermilio Valdizan de Huánuco, 2019 Disponible en:

http://repositorio.unheval.edu.pe/handle/UNHEVAL/4338

- KULKARNI, Prathik y MUTHADHI, A. Seaweed as an Internal Curing Agent
 Strengthening in Concrete A Review. SSRG International Journal of Civil Engineering, 4(6): pp. 94-97, junio 2017.
- 10. FERNÁNDEZ-BOLAÑOS, J., RODRÍGUEZ, G., RODRÍGUEZ, R., GUILLÉN, R. Y JIMÉNEZ, A. (2006). Uso potencial de subproductos de la aceituna. Extracción de compuestos orgánicos de interés a partir de residuos de aceite de oliva. Grasasy aceites, 57 (1), 95-106. [Enlaces]
- 11. GALICIA, Mónica y VELASQUEZ, Marco. Análisis comparativo de la resistencia la compresión de un concreto adicionando con ceniza de rastrojo de maíz elaborado con agregados de las canteras de Cunyac y vucho con respecto a un concreto patrón de calidad f'c= 210 kg/cm2. Tesis (Ingeniería Civil). Cusco: Universidad Andina del Cusco, 2016 Disponible en:

http://repositorio.uandina.edu.pe/bitstream/UAC/348/3/M%C3%B3nica_Mar co _Tesis_bachiller_2016.pdf

12. HUAQUISTO, Samuel y BELISARIO, German. Use of the flying ash in the dosing of the concrete as a substitute for the cement. Scientific article (Department of Civil Engineering), High Andean Research Magazine (2018) Available in:

https://huajsapata.unap.edu.pe/index.php/ria/article/view/48

13. JIMENEZ, Geoffrey. Resistencia a la compresión del concreto f'c=210kg/cm2con la adición de diferentes porcentajes de ceniza de bagazo de caña deazúcar, UPNC 2016. Tesis (Ingeniería Civil). Cajamarca: Universidad Privadadel Norte, 2016. Disponible en:

https://repositorio.upn.edu.pe/bitstream/handle/11537/9982/Jim%c3%a9nez %

20Ch%c3%a1vez%2c%20Geoffrey%20Andre%c3%a9.pdf?sequence=5&is All owed=y

14.LATHAMAHESWARI, R., KALAIYARASAN, V and MOHANKUMAR, G. Study on Bagasse Ash As Partial Replacement of Cement in Concrete. Scientific article (Department of Civil Engineering), Semantic Scholar (2017) Available in:

https://www.semanticscholar.org/paper/Study-on-Bagasse-Ash-As-PartialReplacement-of-in

Lathamaheswari/c6aa7d85367c4d8ffa50b613ea6c7ba96afe6de7

15. MARILUZ, Milagros y ULLOA, Javier. Uso de las cenizas volantes de carbón excedentes de la central termoeléctrica ilo21 - Moquegua como adición para mejorar las propiedades del concreto: resistencia a la compresión, absorción, manejabilidad y temperatura. Tesis (Ingeniería Civil), Nuevo Chimbote: Universidad Nacional del Santa, 2018. Disponible en: http://repositorio.uns.edu.pe/bitstream/handle/UNS/3288/48966.pdf?sequen ce =1&isAllowed=y

- 16.MATIENZO, Jorge. Resistencia a la compresión de un concreto f'c= 210 kg/cm2 sustituyendo al cemento por la combinación de un 8% por el polvo de la conchade abanico y 12% por las cenizas de cascara de arroz 2017. Tesis (IngenieríaCivil), Chimbote: Universidad San Pedro, 2018. Disponible en:
 http://repositorio.usanpadro.odu.po/bitstroam/bandlo/USANPEDPO/5476/T.
 - http://repositorio.usanpedro.edu.pe/bitstream/handle/USANPEDRO/5476/T esi s_57380.pdf?sequence=1&isAllowed=y
- 17. Ministerio de Agricultura y Pesca, Alimentación y Medioambiente. (2015). Las 156 exportaciones del sector agroalimentario. España. Obtenido de: http://www.mapama.gob.es/es/prensa/150330%20Exportacion%20agroalimentaria%20Espana_tcm7-368934_noticia.pdf [Links]
- 18. Ministerio de vivienda, construcción y saneamiento del Perú. Norma Técnica de Edificación E. 060 concreto armado (Pg. 178 - 180). disponible en: http://www3.vivienda.gob.pe/dnc/archivos/Estudios_Normalizacion/Normalizacion/ normas/E060_CONCRETO_ARMADO.pdf
- 19. Reglamento Nacional de Edificaciones. Norma E. 060 concreto armado. Capítulo 3: Materiales (Pg. 30 - 35). disponible en: https://drive.google.com/file/d/19EYUVMgwvm6rDs47GV374avco2ylU5Kz/view
- 20. Reglamento Nacional de Edificaciones. Norma E. 060 concreto armado. Capítulo 4: Requisitos de Durabilidad (Pg. 37 38). disponible en: https://drive.google.com/file/d/19EYUVMgwvm6rDs47GV374avco2yIU5Kz/view
- 21. Reglamento Nacional de Edificaciones. Norma E. 060 concreto armado. Capítulo 5: Calidad del Concreto, Mezclado Y Colocación (Pg. 40 - 44). disponible en:

- https://drive.google.com/file/d/19EYUVMgwvm6rDs47GV374avco2yIU5Kz/view
- 22.MONTERO, Doménica. Uso de la ceniza de cascarilla de arroz como reemplazo parcial del cemento en la fabricación de hormigones convencionales en el Ecuador. Tesis (Ingeniería Civil). Quito: Universidad San Francisco de Quito, 2017. Disponible en: https://repositorio.usfq.edu.ec/handle/23000/6412
- 23. Norma Técnica Peruana. Norma NTP 339.036 (2018). Disponible en: https://servicios.inacal.gob.pe/cidalerta/biblioteca-detalle.aspx?id=25026
- 24. Norma Técnica Peruana. Norma NTP 339.037 (2018). Disponible en: https://www.udocz.com/pe/read/26388/ntp-339-037-2008-practica-normalizadapara-el-refrentado-de-testigos-cilindricos-d-concreto-1
- 25. Norma Técnica Peruana. Norma NTP 339.034. Disponible en: https://servicios.inacal.gob.pe/cidalerta/biblioteca-detalle.aspx?id=22254
- 26. PATIÑO, Cristian y VENEGAS, Edimar. Análisis de las propiedades físico mecánicas de un concreto elaborado con ceniza volante en porcentajes de 10%, 20%, y 30% en sustitución parcial del cemento. Tesis (Ingeniería Civil). Cusco: Universidad Andina del Cusco, 2017 Disponible en: http://repositorio.uandina.edu.pe/handle/UAC/985
- 27. PEREZ, Cristhian. Resistencia del concreto con cemento sustituido al 8% y 16 % por ceniza de retama " Spartium Junceum". Tesis (Ingeniería Civil), Chimbote: Universidad San Pedro de Chimbote, 2019. Disponible en: http://repositorio.usanpedro.edu.pe/bitstream/handle/USANPEDRO/14275/Tesis_6 4035.pdf?sequence=1&isAllowed=y
- 28. PUERTAS F, MARTINEZ-RAMIREZ S, ALONSO S, VAZQUEZ T, (2000), Alkaliactivated fly ash/slag cement Strength behaviour and hydration

products, Cement and Concrete Research 30, 1625-1632 QUEVEDO, Ronald. Efectos al incorporar residuos de maíz a un concreto de f'c=210kg/cm2 para columnas, Puente Piedra - Lima, 2019. Tesis (Ingeniería Civil), Lima: Universidad Cesar Vallejo, 2019. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/47424

- 29. QUEVEDO, Víctor. Resistencia a la compresión y Tracción del concreto F'c= 210kg/cm2, sustituyendo al cemento con 7%, 9% y 11 % de ceniza de bagazo de caña de azúcar 2018. Tesis (Ingeniería Civil), Chimbote: Universidad Cesar Vallejo, 2018. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/35891
- 30.RODRIGUEZ, Anyi y TIBABUZO María. Evaluación de la ceniza de cascarillade arroz como suplemento al cemento en mezclas de concreto hidráulico Colombia. Tesis (Ingeniería Civil), Villavicencio: Universidad Santo Tomas de Villavicencio, 2019. Disponible en: https://repository.usta.edu.co/bitstream/handle/11634/15589/2019anyirodr %C 3%ADguez?sequence=1&isAllowed=y
- 31. SAJJAD, Ali, JAMALUDDIN, N, WAN, Ibrahim M, ABD Abdullah, ABDUL Awal, SAMIULLAH Sohu y NIZAKAT Ali. Utilization of sugarcane bagasse ash in concrete as Partial replacement of cement, Scientific article (Department of CivilEngineering), IOP Conference Series: Materials Science and Engineering 2017, Malasya. Available in:

 https://iopscience.iop.org/article/10.1088/1757-899X/271/1/012001/meta
- 32. Sociedad Estadounidense para Pruebas y Materiales. ASTM C39.

 Disponible en:

 https://pdfcoffee.com/resumen-astm-c39pdf-pdf-free.html
- 33. Sociedad Estadounidense para Pruebas y Materiales. ASTM C78. Disponible en:

https://www.academia.edu/31702311/ASTM_Designaci%C3%B3n_C_78_M%C3
%A9todo_de_Ensayo_Est%C3%A1ndar_para_Resistencia_a_la_Flexi%C3
%B3n
_del_Concreto_Usando_Viga_Simple_con_Carga_a_los_Tercios_del_Clar

34. Sociedad Estadounidense para Pruebas y Materiales. ASTM C42. Disponible en:

0

https://www.academia.edu/34076265/Designation C 42 C 42M 04 Stand ard T

est Method for Obtaining and Testing Drilled Cores and Sawed Beam s of Concrete 1

35. SUNITA Kumari, DINESH Chander y RINKU Walia. Durability and Strength analysis of Concrete by Partial Replacement of Cement with Corn Cob Ash andRice Husk Ash. Scientific article (Department of Civil Engineering), Available in:

https://www.researchgate.net/publication/344161173_Durability_and_Strength_analysis_of_Concrete_by_Partial_Replacement_of_Cement_with_Corn_CobAsh _and_Rice_Husk_Ash

- 36. TEMUUJIN J, VAN RIESSEN A, WILLIAMS R, (2009 b), Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, Volume 167, Issues 1-3, 15 August, Pages 82-88.
- 37. VAN DEVENTER JS.J, PROVIS J.L., DUXSON P, (2012), Technical and commercial progress in the adoption of geopolymer cement, Minerals Engineering 29 89–104. VIJAYA Sekhar, K. ASHALATHA, M. MADHURI, P. SUMALATHA. Utilization Of Sugarcane Bagasse Ash (SCBA) In Concrete By Partial Replacement Of Cement. Scientific article (Department of Civil

Engineering), IORS Journal of Mechnical and Civil Engineering (IORS – JMCE), 2015 Available in:

https://d1wqtxts1xzle7.cloudfront.net/47232689/C012661216.pdf?14684696 42 =&resp

- 38. YAPUCHURA, Richard. Influencia de la ceniza volante en el incremento de la resistencia a la compresión y flexión para las losas de concreto de f'c=210 kg/cm2 utilizando agregado de la Cantera Arunta Tacna. Tesis (Ingeniería Civil) Tacna: Universidad Privada de Tacna, 2019. Disponible en:

 http://repositorio.upt.edu.pe/handle/UPT/812
- 39.ŽIVICA VLADIMÍR (2006), Effectiveness of new silica fume alkali activator, Cement & Concrete Composites 28, 21–25.

ANEXO

- Anexo 1: Matriz de operacionalización de variables.
- Anexo 2: Matriz de consistencia.
- Anexo 3: Instrumento de recolección de datos.
- Anexo 4: fichas de resultados de laboratorio.
- Anexo 5: certificados de calibración de equipos
- Anexo 6: Panel fotográfico.
- Anexo 7: Foto captura Turniting

Anexo 1: Matriz de operacionalización de variables.

VARIABLES	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA
INDEPENDIENTE					
				2%	
CENIZA DE CANGREJO	Según Cruz, A. (2015) Optimizar la cantidad de cemento portland tipo I en los diseños de mezcla de concreto de alto desempeño para una resistencia de 210 kg/cm2 con una relación a/c = 0.40, adicionando cenizas de carbón.	Se adicionara como aditivo la ceniza de cangrejo en forma proporcional la mezcla en las dosificaciones del 2%, 4% y 7% respecto al peso de la muestra, empleandose para ello 04 combinaciones de morteros siguientes: N, N+ 2%, N+ 4% y N+ 7%; con el objetivo de mejorar las propiedades fisico mecanicas del concreto	macona	4%	RAZON
	(p. 53)	F°C=210 kg/m2.		7%	
	Según Sika (2021). Estas fibras se obtienen mediante procedimientos industriales, al	Se adicionara el aditivo microsílice en		10%	
MICROSÍLICE	comenzar los procesos con la arena de sílice, que al exponerlo a agrandes temperaturas, la cual se forma una masa plástica, el cual al ser procesado con las maquinas se van formando filamentos alargados, las cuales serán	y N+ 20%; con el objetivo de mejorar las propiedades fisico mecanicas del concreto	DOSIFICACIÓN Por peso de la Muestra	15%	RAZON
	cortados a una dimensión solicitada. ASTM C- 1116, 2007 (p. 85)	F*C=210 kg/m2.		20%	
DEPENDIENTE					
	Según Garcia, L. (2018) La adición optima de micro sílice y superplastificantes para obtener un concreto de alto desempeño	El diseño del concretoseran combinados con polvo de ceniza de cangrejo y microsilice para que mejoren las		Resistenacia a la Compresión: (Kg/cm2)	RAZON
utilizando hormigón en Huancayo. Obteniendo los MECÁNICAS DEL CONCRETO F'C=210 kg/m2 Idóneo para la resistencia a compresión		propiedades físico mecanicas del concreto, para todos estos casos se medira	PHUPIEUAUES FISICO MECANICAS	Resistencia a la Flexión: (Kg/cm2)	RAZON
	del concreto, para lograr esto se realizaron 16 mezclas de prueba con diferentes porcentajes de aditivos. (p. 125)	procesados en formatos y fichas técnicas bajo la NTP y el ASTM .		Ensayo de la consistencia (SLUMP): (Kg/cm2)	RAZON

Anexo 2: Matriz de consistencia.

TITULO Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice como aditivos, Puente Piedra 2022													
PROBLEMA	OBJETIVO\$	HIPOTESIS	VARIABLES	DIMENSIONES	INDICADORE §	INSTRUMENTOS	METODOLOGIA						
P. General	O. General	H. General	INDEPENDIENTE				Método: Científico						
			DO DO		2%	Fichas de recoleccion de datos Anexo 4-A	Tipo de Investigación:						
¿De qué manera la incorporación	Analizar la incornaración de coniza	Analizar la incorporación del polyo	cangrejo	congreie	Ceniza de cangrejo	POR EL PESO DE LA MUESTRA	4%	Fichas de recoleccion de datos Anexo 4-A	Tipo Aplicada				
de la ceniza de cangrejo y aditivo microsílice influyen en las	Analizar la incorporacion de ceniza de cangrejo y microsilice para mejorar las propiedades fisico	del cangrejo en porcentajes de 2%, 4% y 7% y microsílice en 10%, 15% y 20% como aditivos nano-		DE EX MOESTICA	7%	Fichas de recoleccion de datos Anexo 4-A	Nivel de Investigación:						
propiedades fisico mecánicas del concreto 210kg/cm2, Puente	mecanicas del concreto de 210kg/cm2, Puente Piedra 2022.	tecnológicos en las propiedades fisico mecánicas del concreto de		DOSIFICACION	10%	Fichas de recoleccion de datos Anexo 4-B	EXPLICATIVA (Causa Efecto)						
Piedra 2022?		210kg/cm2, Puente Piedra 2022.	210kg/cm2, Puente Piedra 2022.	210kg/cm2, Puente Piedra 2022.	210kg/cm2, Puente Piedra 2022.	040l10 Durate Diades 0000		microsílice	microsílice	POR PESO DE LA MUESTRA	15%	Fichas de recoleccion de datos Anexo 4-B	Diseño de Investigación:
								LAMOESTRA	20%	Fichas de recoleccion de datos Anexo 4-B	Experimental (Cuasi) Enfoque:		
P. Especifico	O. Especifico	H. Especifico	DEPENDIENTE				Cuantitativo						
¿Cuánto influyen la incorporación de la ceniza de cangrejo y aditivo microsílice en la resistencia a la compresion del concreto de 210kg/cm2, Puente Piedra 2022?	Determinar la incorporación de la ceniza de cangrejo y aditivo microsílice en la resistencia a compresión del concreto de 210kg/cm2, Puente Piedra 2022	La incorporación del polvo de cangrejo y microsílice en porcentajes de 10%,15%,20% aumenta la resistencia a la comprensión del concreto de 210kg/cm2, Puente Piedra 2022.		Propiedades	Resistencia a la compresión (Kg/cm2)	Ficha de resultado de laboratorio según NTP 339.034 Anexo 4-B	Población: Todas las Muestras ensayados en el Laboratorio Muestra: 4 Muestras Contenido Humedad 4 Muestras Indice Plasticidad						
¿Cuánto influyen la incorporación de la ceniza de cangrejo y aditivo microsílice en la resistencia a la flexion del concreto de 210kg/cm2, Puente Piedra 2022?	Determinar la incorporación de la ceniza de cangrejo y aditivo microsílice en la resistencia a la flexion del concreto de 210kg/cm2, Puente Piedra 2022	La incorporación del polvo de cangrejo y microsílice en porcentajes de 10%,15%,20% aumenta la resistencia a la flexion del concreto de 210kg/cm2, Puente Piedra 2022	PROPIEDADES DEL CONCRETO	fisico mecanicas	Resistencia a la flexion (kg/cm2)	Ficha de resultado de laboratorio Según NTP 399.034 Anexo 4-C	4 Muestras Capacidad Portante Muestreo: No Probabilístico Técnica: Observación Directa Instrumentos de la investigación:						
¿Cuánto influyen la incorporación de la ceniza de cangrejo y aditivo microsílice en el ensayo de consistencia del concreto de 210kg/cm2, Puente Piedra 2022?	Determinar la incorporación de la ceniza de cangrejo y aditivo microsílice en el ensayo de consistencia del concreto de 210kg/cm2, Puente Piedra 2022	La incorporación del polvo de cangrejo y microsílice en porcentajes de 10%,15%,20% aumenta la consistencia del concreto de 210kg/cm2, Puente Piedra 2022			Ensayo de consistencia (SLUMP) (kg/cm2)	Ficha de resultado de laboratorio Según NTP 339.035 Anexo 4-D	Ficha Recolección de Datos Ficha Resultados de Laboratorio Según NTP - ASTM						

Anexo 3: Instrumento de recolección de datos.

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Ficha de recolección de datos: Dosificación ceniza de cangrejo y aditivo microsílice. "Análisis de las propiedades físico mecánicas del concreto F'C=210 kg/cm2 incorporando

ceniza de cangrejo y microsilice, Puente Piedra 2022"

Parte A: Datos generales

Tesista 01: Carranza Paredes Luis Fernando

Tesista 02: Izquierdo Gregorio Jhamill

Fecha: Lima, Mayo - 2022.

Parte B: Dosificación con cenizas de cangrejo

2%	Ok
4%	Ok
7%	Ok

Tesis: Ríos y Neyra (2020), Dosificación con cenizas de conchas de abanico: 2%, 4%, 7%

Tesis: Chilgon y León (2020), Dosificación Con cenizas de excesqueleto de cangrejo: 1.5%, 2.5%, 3.5%

Parte C: Dosificación de aditivo microsilice

109	%	Ok
15%	%	Ok
209	<u>م</u>	Ok

Tesis: Loyola y Rodríguez (2020), Dosificación con almidón de cascara de papa: 10%, 15%, 20%

VALIDACION DE INSTRUMENTO Apellidos: Olaechea Valenzuela Apellidos: Silva Cayatopa Apellidos: Chávez Chavarría Nombres: Walter A. Nombres: Christian E. Nombres: Luis Alfredo Título: Ingeniero Civil Titulo: Ingeniero Civil Titulo: Ingeniero Civil Grado: Bachiller Grado: Bachiller Grado: Bachiller Nº Reg. CIP: 130129 N Reg. CIP: 192981 Nº Reg. CIP: 254405 Firma: Firma: Firma: CHRISTIAN E. SILVA CAYATOPA INGENIERO CIVIL CIP: 192981

Anexo 4: fichas de resultados de laboratorio.

ANALISIS GRANULOMETRICO DE AGREGADO FINO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE
LABORATORIO DE
ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO AGREGADO FINO

FOR-LTC-AG-001
1
AM-JC

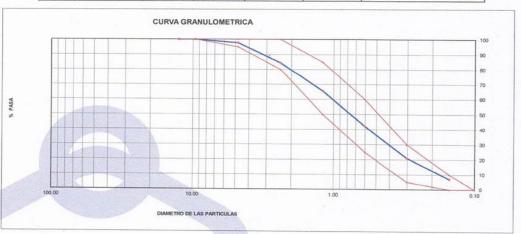
LABORATORIO DE TECNOLOGÍA DEL CONCRETO ASTM C136

REFERENCIA

SOLICITANTE TÉSIS UBICACIÓN

: Datos de referencia : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes : Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente Piedra 2022

: Puente Piedra - 2022


Fecha de ensayo:

PESO INICIAL HUMEDO (g)

650.0 PESO INICIAL SECO (g)

CANTERA: TRAPICHE % W= 1.7 MF = 2.82

MALLAS	ABERTURA	MATERIAL	RETENIDO	% ACUMULADOS		ESPECIFICACIONES
MALLAS	(mm)	(g)	(%)	Retenido	Pasa	ASTM C 33
1/2"	12.50	0.00	0.00	0,00	100.00	
3/8"	9.50	0.00	0.00	0.00	100.00	100
Nº4	4.76	14.9	2.3	2.3	97.7	95 - 100
Nº8	2.38	84.6	13.2	15.5	84.5	80 - 100
Nº 16	1.19	121.0	18.9	34.4	65.6	50 - 85
N° 30	0.60	150.0	23.5	57.9	42.1	25 - 60
Nº 50	0.30	134.0	21.0	78.9	21,1	05 - 30
Nº 100	0.15	90.0	14.1	93.0	7.0	0 - 10
FONDO		44.5	7.0	100.0	0.00	

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por USORATOR	Revisado por:	Aprobado por:
ENSANO TR. MINE	ABEL MARCELO PASOVEL INGENIERO CIVIC - CIP N° 221456 IC GEOTECNIA L'ABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECMA LABORATORIO S A C
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

ANALISIS GRANULOMETRICO DE AGREGADO GRUESO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO AGREGADO **GRUESO**

Código FOR-LTC-AG-002 Revisión Aprobado AM-IC

LABORATORIO DE TECNOLOGÍA DEL CONCRETO ASTM C136

REFERENCIA

SOLICITANTE TESIS

Nº 16

FONDO

Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes
Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente Piedra

0.4

0.0

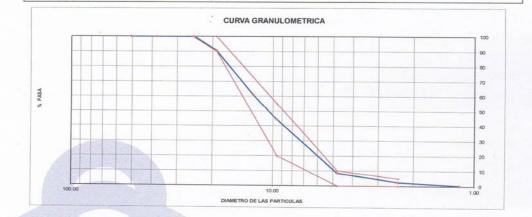
2022 · Puente Piedra - 2022

HBICACIÓN

1.18

30.0

5.7


2.1

0.4

Fecha de ensayo: MATERIAL AGREGADO GRUESO CANTERA: TRAPICHE PESO INICIAL HUMEDO (g) PESO INICIAL SECO (g) 1,434.00 % W = MF = 0.6 6.53 % ACUMULADOS
Pasa ABERTURA MATERIAL RETENIDO MALLAS (g) 50.00 0.0 0.0 0.0 100.0 1 1/2" 37.50 0.0 100.0 0.0 0.0 24.50 0.0 0.0 0.0 100.0 100 3/4" 19.05 132.1 9.3 9.3 90.7 90-100 12.50 423.0 29.7 39.0 61.0 3/8" 9.53 237.3 16.7 55.6 44.4 20-55 4.76 510.4 35.8 91.4 8.6 0-10 Nº 8 2.38 86.5 6.1 97.5 2.5

99.6

100.0

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C. Según la NORMA ASTM C33, en la tabla de requisitos granulométricos del agregado grueso con el porcentaje que pasa por los tamices normalizados se puede apreciar que la granulometria esta dentro del Huso #467

Elaborado pa Revisado por: Aprobado por: ABEL MARCELO PASQUE NGENIERO CIVIL - CIP Nº 221456 CONTROL DE CALIDAD C GEOTECNIA LABORATORIO S.A.C. JC GEOTECHIA LABORATORIO S A C. Ingeniero de Suelos y Pavimentos ol de Candad JC GEOTECNIA LABORATORIO

CERTIFICADO DE ENSAYO PESO UNITARIO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO PESO UNITARIO (F, G o Glb) Código Revisión FOR-LTC-AG-018 AM-JC Aprobado

LABORATORIO DE TECNOLOGÍA DEL CONCRETO ASTM C29

REFERENCIA SOLICITANTE TESIS UBICACIÓN

: Datos de referencia : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes : Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente Piedra 2022

9/2022

	TO UNIVERSAL CONTRACTOR CONTRACTOR			Fecha de	ensayo:	14/
MAT	ERIAL : AGREGADO GRUESO	CANTERA:	TRAPICHE			
MUE	STRA №			M - 1	M-2	M-3
1	Peso de la Muestra + Molde		g	20311	20304	20315
2	Peso del Molde		g	6181	6181	6181
3	Peso de la Muestra (1 - 2)		g	14130	14123	14134
4	Volumen del Molde	(8)	cc	9134	9134	9134
5	Peso Unitario Suelto de la Muestra		g/cc	1.547	1.546	1.547
	•					
PRO	MEDIO PESO UNITARIO SUELTO		g/cc		1.547	
MUE	STRA N°			M - 1	M - 2	M - 3
1	Peso de la Muestra + Molde	(1)	9	21264	21261	21268
2	Peso del Molde		g	6181	6181	6181
3	Peso de la Muestra (1 - 2)		g	15083	15080	15087
4	Volumen del Molde		cc	9134	9134	9134
5	Peso Unitario Compactado de la Muestra		g/cc	1.651	1.651	1.652
PRO	MEDIO PESO UNITARIO COMPACTADO		g/cc		1,651	

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por:	Revisado por:	Aprobado por:
O I O I O SE ENSANO THE ENSANO THE	ABEL MARCELO PASOUEL INGENIERO RIVIL CIP Nº 221456 JC GEOTECNIALABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad C GEOTECNIA LABORATORIO

LABORATORIO DE ENSAYOS EN AGREGADOS:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE **ENSAYO DE MATERIALES** **CERTIFICADO DE ENSAYO PESO UNITARIO**

Código Revisión FOR-LAB-AG-015 AM-JC Aprobado

LABORATORIO DE ENSAYOS EN AGREGADOS ASTM C29

REFERENCIA : Datos de referencia

SOLICITANTE : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS : Análisis de las propiedades físico mecànicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente Piedra 2022

UBICACION : Puente Piedra - 2022

				Fecha de	ensayo:	74
МАТ	TERIAL : AGREGADO FINO	CANTERA	: TRAPICHE			
MUE	ESTRA №			M - 1	M - 2	M - 3
	I					
1	Peso de la Muestra + Molde		9	6910	6914	6906
2	Peso del Molde		g	2446	2446	2446
3	Peso de la Muestra (1 - 2)		g	4464	4468	4460
4	Volumen del Molde		сс	2827	2827	2827
5	Peso Unitario Suelto de la Muestra		g/cc	1.579	1.580	1.577
ИUE	ESTRA №			M - 1	M - 2	M-3
				M - 1	M-2	M - 3
1	Peso de la Muestra + Molde		g	7622	7627	7617
2	Peso del Molde		9	2446	2446	2446
3	Peso de la Muestra (1 - 2)		g	5176	5181	5171
4	Volumen del Molde		cc	2827	2827	2827
5	Peso Unitario Compactado de la Muestra		g/cc	1.831	1.832	1.829
PRO	MEDIO PESO UNITARIO COMPACTADO		g/cc		1.831	

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PASOLIEL INGENIERO CIVIL - CIP Nº 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

LABORATORIO DE MECANICA DE SUELOS Y ROCAS:

Asociación Villa Gloria Mz D Lt 2 Carabayllo - Lima

Fecha de ensayo: 14/09/2022

LABORATORIO DE	CERTIFICADO DE ENSAYO	Código	FOR-LAB-MS-009
ENSAYO DE		Revisión	1
MATERIALES	GRAVEDAD ESPECIFICA DE SÓLIDOS	Aprobado	AM-JC

LABORATORIO DE MECANICA DE SUELOS Y ROCAS ASTM C127

REFERENCIA: Datos de referencia
SOLICITANTE: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Peredes
TESIS: Análisis de las propiedades físico mecánicas del, concreto Fc=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente Piedra 2022
UBICACION: Puente Piedra - 2022

MATERIAL : AGREGADO GRUESO CANTERA : TRAPICHE

IUESTRA №			M - 1	M - 2	PROMEDIO	
1	Peso de la Muestra Sumergida Canastilla	A	9	1269.0	1269.0	1269.0
2	Peso muestra Sat. Sup, Seca	В	g	2014	2014	2014.0
3	Peso muestra Seco	С	g	1998	1998	1998.0
4	Peso específico Sat. Sup. Seca = B/B-A		g/cc	2.70	2.70	2.70
5	Peso específico de masa = C/B-A		g/cc	2.68	2,68	2.68
6	Peso especifico aparente = C/C-A		g/cc	2.74	2.74	2.74
7	Absorción de agua = ((B - C)/C)*100		%	0.80	0.80	0.8

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por:	Revisado por:	Aprobado por:
	ABEL MAROELO PASQUEL INGENIERO CIVIL - CIP Nº 221456 JC GEOTECNIA LABORATORIO S A C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

CERTIFICADO DE ENSAYO PESO ESPECIFICO Y ABSORCION:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE **ENSAYO DE MATERIALES**

CERTIFICADO DE ENSAYO PESO ESPECÍFICO Y ABSORCIÓN

Código	FOR-LAB-AG-013	
Revisión	1	
Aprobado	AM-JC	

LABORATORIO DE ENSAYOS EN AGREGADOS

REFERENCIA : Datos de referencia

SOLICITANTE : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS UBICACIÓN : Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente Piedra 2022

: Puente Piedra - 2022

Fecha de ensayo: 14/09/2022

MATERIAL

: AGREGADO FINO

PORCENTAJE DE ABSORCION (%) [(500-A)/A*100]

M	JESTRA №		M - 1	M-2	PROMEDIO
1	Peso de la Arena S.S.S. + Peso Balon + Peso de Agua	g	756	757	756.5
2	Peso de la Arena S.S.S. + Peso Balon	g	296.11	296.11	296.1
3	Peso del Agua (W = 1 - 2)	g	459.89	460.89	460.4
4	Peso de la Arena Seca al Horno + Peso del Balon	g/cc	294.77	294.45	294.61
5	Peso del Balon N° 2	g/cc	196.11	196.11	196.11
6	Peso de la Arena Seca al Horno (A = 4 - 5)	g/cc	98.661	98.34	98.50
7	Volumen del Balon (V = 500)	cc	504.0	504.0	504.0
RE	SULTADOS				
PE	SO ESPECIFICO DE LA MASA (P.E.M. = A/(V-W))	g/cc	2.61	2.61	2.61
PE	SO ESPEC. DE MASA S.S.S. (P.E.M. S.S.S. = 500/(V-W))	g/cc	2.65	2.65	2.65
PE	SO ESPECIFICO APARENTE (P.E.A. = A/[(V-W)-(500-A)]	g/cc	2.71	2.71	2.71

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por	Revisado por:	Aprobado por:
Sell Control of the c	ABEL MARCELO PASOUTEL INGENIERO DIVIL/CIP N° 221456 IC GEOTECMA LABORATORIO S	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.
Jefe de Labo ratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

DISEÑO DE MEZCLA DE CONCRETO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO DISEÑO DE MEZCLA DE CONCRETO

Revisión Aprobado AM-JC 1/06/2020 Fecha

LABORATORIO DE ENSAYOS EN AGREGADOS Y CONCRETO ACI 211

REFERENCIA

: Datos del Laboratorio

SOLICITANTE : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS UBICACIÓN : Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente Piedra 2022

: Puente Piedra - 2022

			f'c 210 kg/cm2				
	ATERIAL	PESO ESPECIFICO		HUM. NATURALT	ABCORCIÓN	I D LIANTADIC C	I a more
M	ATERIAL	g/cc	MODULO FINEZA	"MATURAL	ABSORCIÓN %	P. UNITARIO S.	
CEMENTO SOL TIPO	1	3.12		70	70	Kg/m ³	Kg/m ³
GREGADO FINO - C	ANTERA TRAPICHE	2.61	2.82	1.7	4.4	7	1
GREGADO GRUESO	O - CANTERA TRAPICHE	2.68	2.02	0.6	1.4	1579.0	1831.0
A		2.00		0.6	0.8	1547.0	1651.0
	1 ASEN	TAMIENTO			4	nula	
	2 TAMAI	NO MAXIMO NOMINAL			3/4	pulg pulg	
	3 RELAC	CION AGUA CEMENTO			0.65	pulg	
	4 AGUA				205		
		DE AIRE ATRAPADO 9			2.0		
	6 VOLUI	MEN DE AGREGADO GI	RUESO		0.37		
B							
	FACTOR CEMENT	0		315	Kg/m ³	7.4	Bls/m ³
	Volumen absoluto d	el cemento			0.1011	m³/m³	Dis/ill
	Volumen absoluto d	el Agua			0.2050	m³/m³	
	Volumen absoluto di	el Aire					
					0.0200	m³/m³	- 4 5 55
	VOLUMEN ABSOLU	UTOS DE AGREGADOS					0.326
	Volumen absoluto de	el Agregado fino			0.3034	m ³ /m ³	
Volumen absoluto del Agregado grueso							0.674
	SUMATORIA DE VO	DLUMENES ABSOLUTO		0.3705	m ³ /m ³		
C)		LES m3 POR EN PESO	SECO				1.000
	CEMENTO		5200			72	
	AGUA				315	Kg/m ³	
	AGREGADO FINO				205	Lt/m ³	
	AGREGADO GRUES	20			792	Kg/m ³	
	PESO DE MEZCLA	30			993	Kg/m ³	
D)	CORRECCIÓN POR HUME	EDAD			2305	Kg/m ³	
	AGREGADO FINO H						
	AGREGADO GRUES				805.3	Kg/m ³	
E)	CONTRIBUIÇÃN DE A CAM	SO HUMEDO			999.0	Kg/m ³	
-1	CONTRIBUCIÓN DE AGUA AGREGADO FINO	A DE LOS AGREGADOS	3		%	Lts/m ³	
	AGREGADO FINO	20			-0.300	-2.4	
	AGNESADO GROES	50			0.200	2.0	
	AGUA DE MEZCLA	CODDECIDA				-0.4	
F)	CANTIDAD DE MATERIAL	CORREGIDA				205.4	Lts/m ³
-''	CEMENTO	ES IN PUR EN PESO H	UMEDO				
					315	Kg/m ³	
	AGUA				205	Lts/m ³	
	AGREGADO FINO				805	Kg/m ³	
	AGREGADO GRUES	0			999	Kg/m ³	
	the second secon						
-	PESO DE MEZCLA				2325	Kg/m ³	
G)	CANTIDAD DE MATERIALI	ES 42.50 kg			2020	,	
	CEMENTO AGUA				42.50	Kg	
	AGUA AGREGADO FINO					Lts	
	AGREGADO FINO					Ka	
	AGREGADO GRUESI					Kg	

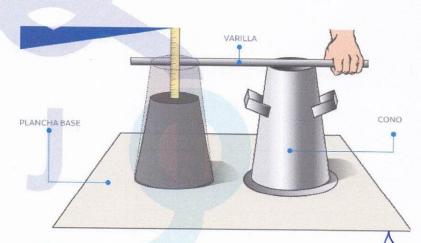
A.G

PORPORCIÓN EN PESO p3 (húmedo)

1.0

Fijo: 01 656 6232

informes@jcgeotecniasac.com
Asociación Villa Gloria Mz D Lt 2


Carabayllo - Lima

REPORTE DE MÉTODO DE ENSAYO PARA LA MEDICIÓN DEL ASENTAMIENTO DEL CONCRETO DE CEMENTO PORTLAND ASTM C143 / NTP 339.035

SOLICITADO POR: JHAMILL IZQUIERDO GREGORIO - LUIS FERNANDO CARRANZA PAREDES

ASUNTO: ANÁLISIS DE LAS PROPIEDADES FÍSICO MECÁNICAS DEL, CONCRETO F'C=210KG/CM2 INCORPORANDO CENIZAS DE CANGREJO Y MICROSÍLICE, PUENTE PIEDRA 2022

IDENTIFICACIÓN	ASENTAMIENTO CENTIMETROS
PATRON	10.3
PATRON + MICROSÍLICE 10%	9.7
PATRON + MICROSÍLICE 15%	9.4
PATRON + MICROSÍLICE 20%	9.0
PATRON + CENIZAS DE CANGREJO 2.0%	9.4
PATRON + CENIZAS DE CANGREJO 4.0%	9.0
PATRON + CENIZAS DE CANGREJO 7.0%	8.5

MÉTODO DEL SLUMP

ABEL MARCELO PASOUEL INGENIERO CIVIL/ CIP Nº221456 JC GEOTECNIA LABORATORIO S.A.C.

COMPRESION DE ESPECIMENES CILINDRICOS DE CONCRETO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 23/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON	16/09/2022	23/09/2022	7	12360	78.5	157.4	210.0	74.9
PATRON	16/09/2022	23/09/2022	7	12290	78.5	156.5	210.0	74.5
PATRON	16/09/2022	23/09/2022	7	12400	78.5 _	157.9	210.0	75.2

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por:	Revisado por:	Aprobado por:
	ABEL MARCELO PASQUEL INGENIERO CIVIL. CIP Nº 221456 C GEOTECNIA L'ABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

COMPRESION DE ESPECIMENES CILINDRICOS DE CONCRETO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

SOLICITANTE

: Datos de laboratorio : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

Análisis de las propiedades físico mecánicas del, concreto l'c=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 23/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F ⁻ c
PATRON + MICROSÍLICE 10%	16/09/2022	23/09/2022	7	12780	78.5	162.7	210.0	77.5
PATRON + MICROSÍLICE 10%	16/09/2022	23/09/2022	7	12690	78.5	161.6	210.0	76.9
PATRON + MICROSÍLICE 10%	16/09/2022	23/09/2022	7	12810	78.5	163.1	210.0	77.7

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

- No se observaron fallas atípicas en las roturas
- El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante

 Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por Revisado por: Aprobado por: ABEL MARCELO PASQUEL CONTROL DE CALIDAD INGENIERO CIVIL CIPNº 221456 JC GEOTECNIA LABORATORIO S.A.C. IC GEOTECNIA LABORATORIO S.A.C. Jefe de Laboratorio Control de Calidad JC GEOTECNIA LABORATORIO Ingeniero de Suelos y Pavimentos

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE **MATERIALES**

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009	
Revisión	2	
Aprobado	AM-JC	
Fecha	3/01/2022	

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F′c
PATRON + MICROSÍLICE 15%	16/09/2022	23/09/2022	7	13220	78.5	168.3	210.0	80.2
PATRON + MICROSÍLICE 15%	16/09/2022	23/09/2022	7	13270	78.5	169.0	210.0	80.5
PATRON + MICROSÍLICE 15%	16/09/2022	23/09/2022	7	13360	78.5	170.1	210.0	81.0

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

Elaborado por:	Revisado por:	Aprobado por:
	ABEL MARCELO PASQUEI INGENIERO CIVIL CIP Nº 221456 IC GEOTECNIA LABORATORIO S.A.C	CONTROL DE CALIDAD
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

SOLICITANTE

: Datos de laboratorio : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsilice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

23/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F′c
PATRON + MICROSÍLICE 20%	16/09/2022	23/09/2022	7	13860	78.5	176.5	210.0	84.0
PATRON + MICROSÍLICE 20%	16/09/2022	23/09/2022	7	13780	78.5	175.5	210.0	83.5
PATRON + MICROSÍLICE 20%	16/09/2022	23/09/2022	7	13800	78.5	175.7	210.0	83.7

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por:	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PASQUEL NGENIERO CIVIL CIPNº 221456 C GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE **MATERIALES**

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 23/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	%F'c
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	23/09/2022	7	12630.0	78.5	160.8	210.0	76.6
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	23/09/2022	7	12690.0	78.5	161.6	210.0	76.9
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	23/09/2022	7	12750.0	78.5	162.3	210.0	77.3

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

CIADOTAGO POT.	Revisado por:	Aprobado por:
010	ABEL MARCELO PASCILLEL INGENIERO CIVIL CIP N 221456 IC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

EDAD EN

DIAS

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

FECHA DE ROTURA

23/09/2022

23/09/2022

23/09/2022

TESIS

Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

FUERZA MÁXIMA

kgf

13100.0

13070.0

13150.0

AREA

cm2

78.5

78.5

78.5

167.4

210.0

79.7

ESFUERZO

Piedra 2022

UBICACIÓN

IDENTIFICACIÓN DE ESPECIMEN

PATRON + CENIZAS DE

CANGREJO 4.0%

PATRON + CENIZAS DE

CANGREJO 4.0%

: Puente Piedra - 2022

FECHA DE VACIADO

16/09/2022

16/09/2022

16/09/2022

Fecha de emisión: 23/09/2022

F'c Diseño

%Fc kg/cm2 kg/cm2 166.8 210.0 79.4 166.4 210.0 79.2

EQUIPO DE ENSAYO

PATRON + CENIZAS DE

CANGREJO 4.0%

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:
* No se observaron fallas atípicas en las roturas

Elaborado por MA LABORA	Revisado por:	Aprobado por:
010	ABEL MARCEL PASON INGENIERO CIVILI- CIP Nº 221 JC GEOTECNIA LABORATORIO S	
defe de Laboratorio	Ingeniero de Suelos y Paviment	tos Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

23/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DIAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	23/09/2022	7	12010.0	78.5	152.9	210.0	72.8
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	23/09/2022	7	11990.0	78.5	152.7	210.0	72.7
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	23/09/2022	7	11910.0	78.5	151.6	210.0	72.2

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

- No se observaron fallas atípicas en las roturas

El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por: Revisado por: Aprobado por: ABEL MARCELO PASQUEL CONTROL DE CALIDAD NGENIERO CIVIL - CIP Nº 221456 JC GEOTECMA LABORATORIO S A.C. C GEOTECNIA LABORATORIO S.A.C. ete de Laboratorio Control de Calidad JC GEOTECNIA LABORATORIO Ingeniero de Suelos y Pavimentos

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

: Datos de laboratorio

SOLICITANTE

Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 30/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON	16/09/2022	30/09/2022	14	13010	78.5	165.6	210.0	78.9
PATRON	16/09/2022	30/09/2022	14	13050	78.5	166.2	210.0	79.1
PATRON	16/09/2022	30/09/2022	14	13150	78.5	167.4	210.0	79.7

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

ALB		
ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP M° 221456 JC GEOTECNIA LABORATORIO S.A.C. CONTROL DE CALID. JC GEOTECNIA LABORATORIO JC GEOTECNIA LABORATORIO	AD S.A.C.	The second secon
Jefe de Laboratorio Ingeniero de Suelos y Pavimentos Control de Calidad JC GEOTECNIA LA	BORATORIO	

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

: Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 30/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + MICROSÍLICE 10%	16/09/2022	30/09/2022	14	13690	78.5	174.3	210.0	83.0
PATRON + MICROSÍLICE 10%	16/09/2022	30/09/2022	14	13710	78.5	174.6	210.0	83.1
PATRON + MICROSÍLICE 10%	16/09/2022	30/09/2022	14	13630	78.5	173.5	210.0	82.6

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por: ABORATO	Revisado por:	Aprobado por:
610	ABEL MARCELO PASOUEL INGENIERO CIVIL CUP N° 221456 JC GEOTECNIA L'ABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jese de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009	
Revisión	2	
Aprobado	AM-JC	
Fecha	3/01/2022	

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 30/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F ⁻ c
PATRON + MICROSÍLICE 15%	16/09/2022	30/09/2022	14	14210	78.5	180.9	210.0	86.2
PATRON + MICROSÍLICE 15%	16/09/2022	30/09/2022	14	14350	78.5	182.7	210.0	87.0
PATRON + MICROSÍLICE 15%	16/09/2022	30/09/2022	14	14110	78.5	179.7	210.0	85.5

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

No se observaron fallas atípicas en las roturas
El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante
Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por: Revisado por: Aprobado por: ABEL MARCELO PASQUEL CONTROL DE CALIDAD INGENIERO CIVIL- CIP Nº 221456 JC GEOTEONIA LABORATORIO S.A.C. JC GEOTECNIA LABORATORIO S.A.C. Jefe de Laboratorio Control de Calidad JC GEOTECNIA LABORATORIO Ingeniero de Suelos y Pavimentos

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009	
Revisión	2	- 8
Aprobado	AM-JC	
Fecha	3/01/2022	

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

UBICACIÓN

Piedra 2022

: Puente Piedra - 2022

Fecha de emisión:

30/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + MICROSÍLICE 20%	16/09/2022	30/09/2022	14	14800	78.5	188.4	210.0	89.7
PATRON + MICROSÍLICE 20%	16/09/2022	30/09/2022	14	14740	78.5	187.7	210.0	89.4
PATRON + MICROSÍLICE 20%	16/09/2022	30/09/2022	14	14700	78.5	187.2	210.0	89.1

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por:	Revisado por:	Aprobado por:
ABORATO LA SENTINE	ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP N° 221456 JC GEOTE CNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTEONIA LABORATORIO S A C.
Jefo de Laboratório	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO
E HISAI COM		/

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

SOLICITANTE

: Datos de laboratorio : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

30/09/2022 Fecha de emisión:

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÅREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	30/09/2022	14	13350.0	78.5	170.0	210.0	80.9
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	30/09/2022	14	13500.0	78.5	171.9	210.0	81.9
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	30/09/2022	14	13410.0	78.5	170.7	210.0	81.3

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

No se observaron fallas atípicas en las roturas
 El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante
 Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por Revisado por: Aprobado por: ABEL MARCELO PASQUEL CONTRØL DE CALIDAD INGENIERO CIVIL CIPNº 221456 JC GEOTECNIA LABORATORIO S.A.C. JC GEOTECNIA LABORATORIO S.A.C. Jefe de Laboratorio Ingeniero de Suelos y Pavimentos Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

: Análisis de las propiedades físico mecánicas del, concreto f c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 30/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F c
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	30/09/2022	14	13730.0	78.5	174.8	210.0	83.2
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	30/09/2022	14	13690.0	78.5	174.3	210.0	83.0
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	30/09/2022	14	13670.0	78.5	174.1	210.0	82.9

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

	LABORATORIO S.A.C.	JC GEOTECNIA LABORATORIO S.A.C.
	ABEL MARCELO PASOUEL INGENIERO CIVIL - CIP N° 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD
() () () () () () () () () ()	ABE	
Elaborado por:	Revisado por:	Aprobado por:

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE **MATERIALES**

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

: Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

30/09/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F ⁻ c
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	30/09/2022	14	12690.0	78.5	161.6	210.0	76.9
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	30/09/2022	14	12670.0	78.5	161.3	210.0	76.8
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	30/09/2022	14	12720.0	78.5	162.0	210.0	77.1

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por Cita Casona,	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PASOUEL INGENIERO CIVIL - CIPAT 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOJECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

SOLICITANTE

: Datos de laboratorio : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión: 14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DIAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON	16/09/2022	14/10/2022	28	16410	78.5	208.9	210.0	99.5
PATRON	16/09/2022	14/10/2022	28	16560	78.5	210.8	210.0	100.4
PATRON	16/09/2022	14/10/2022	28	16630	78.5	211.7	210.0	100.8

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

- No se observaron fallas atípicas en las roturas

 El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante

 Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por: ABORATO	Revisado por:	Aprobado por:
610 89	ABEL MARCELO PASOUEL INGENIERO CIVIL - CIP Nº 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

: Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F´c
PATRON + MICROSÍLICE 10%	16/09/2022	14/10/2022	28	17110	78.5	217.9	210.0	103.7
PATRON + MICROSÍLICE 10%	16/09/2022	14/10/2022	28	16950	78.5	215.8	210.0	102.8
PATRON + MICROSÍLICE 10%	16/09/2022	14/10/2022	28	17240	78.5	219.5	210.0	104.5

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por MAI ABORATO	Revisado por:	Aprobado por:
WIES - STATE OF THE STATE OF TH	ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP Nº 221456 JC GEOTÉCNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECHIA LABORATORIO S.A.C.
Jefe de Laboratório	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE **MATERIALES**

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009	
Revisión	2	
Aprobado	AM-JC	
Fecha	3/01/2022	

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

: Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022 UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÅXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + MICROSÍLICE 15%	16/09/2022	14/10/2022	28	17890	78.5	227.8	210.0	108.5
PATRON + MICROSÍLICE 15%	16/09/2022	14/10/2022	28	17570	78.5	223.7	210.0	106.5
PATRON + MICROSÍLICE 15%	16/09/2022	14/10/2022	28	17360	78.5	221.0	210.0	105.3

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

No se observaron fallas atipicas en las roturas

El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante
Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por: Revisado por: Aprobado por: ABEL MARCELO PASQUEL CONTROL DE CALIDAD INGENIERO CIVIL -CIP Nº 221456 JC GEOTECINA LABORATORIO S.A.C. JC GEOTECNIA LABORATORIO S.A.C de Laboratorio Control de Calidad JC GEOTECNIA LABORATORIO Ingeniero de Suelos y Pavimentos

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

FOR-LAB-CO-009	
2	
AM-JC	
3/01/2022	
	2 AM-JC

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

SOLICITANTE

: Datos de laboratorio : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + MICROSÍLICE 20%	16/09/2022	14/10/2022	28	18090	78.5	230.3	210.0	109.7
PATRON + MICROSÍLICE 20%	16/09/2022	14/10/2022	28	18180	78.5	231.5	210.0	110.2
PATRON + MICROSÍLICE 20%	16/09/2022	14/10/2022	28	18270	78.5	232.6	210.0	110.8

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

Elaborado por:	Revisado por:	Aprobado por:		
SECULIA LABORATORIO SEL CONTROL SEL CONTRO	ABEL MARCELO PASOUEL INGENIERO CIVIL- CIP M 221456 JC GEOTECNÍA L'ABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.		
Jefe de Caboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO		

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

UBICACIÓN

Piedra 2022

: Puente Piedra - 2022

Fecha de emisión: 14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F'c
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	14/10/2022	28	16250.0	78.5	206.9	210.0	98.5
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	14/10/2022	28	16410.0	78.5	208.9	210.0	99.5
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	14/10/2022	28	16390.0	78.5	208.7	210.0	99.4

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

OBSERVACIONES:

No se observaron fallas atípicas en las roturas

El ensayo fue realizado haciendo uso de almohadillas de neopreno como material refrentante

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO S.A.C.

Elaborado por: Revisado por: Aprobado por: ABEL MARCELO PASCUEL INGENIERO CIVIL CIPN 221456 CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C. JC GEOTECMA LABORATORIO S.A.C. Jefe de Laboratorio Control de Candad JC GEOTECNIA LABORATORIO Ingeniero de Suelos y Pavimentos

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009
Revisión	2
Aprobado	AM-JC
Fecha	3/01/2022

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

SOLICITANTE

: Datos de laboratorio : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

TESIS

: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022

UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DIAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F′c
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	14/10/2022	28	17050.0	78.5	217.1	210.0	103.4
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	14/10/2022	28	17190.0	78.5	218.9	210.0	104.2
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	14/10/2022	28	16970.0	78.5	216.1	210.0	102.9

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

Elaborado por:	Revisado por:	Aprobado por:		
610	ABEL MARCELO PASOUEL INGENIERO CIVIL CIP N° 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA ABORATORIO S.A.C.		
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO		

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO COMPRESIÓN DE ESPECÍMENES CILÍNDRICOS DE CONCRETO

Código	FOR-LAB-CO-009	
Revisión	2	
Aprobado	AM-JC	
Fecha	3/01/2022	

LABORATORIO DE CONCRETO Y AGREGADOS ASTM C39-07 / NTP 339.034-11

REFERENCIA

: Datos de laboratorio

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente

Piedra 2022 UBICACIÓN

: Puente Piedra - 2022

Fecha de emisión:

14/10/2022

IDENTIFICACIÓN DE ESPECIMEN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD EN DÍAS	FUERZA MÁXIMA kgf	ÁREA cm2	ESFUERZO kg/cm2	F'c Diseño kg/cm2	% F ⁻ c
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	14/10/2022	28	15390.0	78.5	196.0	210.0	93.3
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	14/10/2022	28	15410.0	78.5	196.2	210.0	93.4
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	14/10/2022	28	15100.0	78.5	192.3	210.0	91.6

EQUIPO DE ENSAYO

Capacidad máxima 250 000 Lb, división de escala 0.1 kN

Elaborado por:	Revisado por:	Aprobado por:
610	ABEL MARCELO PASI INGENIERO CIVIL CIP N° JC GEOTECNIA LABORATORI	
Jete de Laboratorio	Ingeniero de Suelos y Pavimen	tos Control de Calidad JC GEOTECNIA LABORATORIO

RESISTENCIA A LA FLEXCION DE CONCRETO ENDURECIDO:

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

14/10/2022

FECHA DE ENSAYO:

	FORMATO	Código	AE-FO-124
LABORATORIO DE ENSAYO DE		Versión	01
MÉTODO DE PRUEBA ES	MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO	Fecha	03-01-2022
		Página	1 de 1

SOLICITANTE

: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes

UBICACIÓN DE PROYECTO : Puente Piedra - 2022

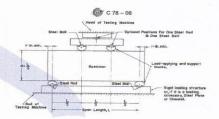
FECHA DE EMISIÓN:

: 14/10/2022

Tipo de muestra

: Concreto endurecido

Presentación


: Especímenes prismáticos

F'c de diseño

: 210 kg/cm2

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON	16/09/2022	14/10/2022	28 dias	2	45.0	31.1 kg/cm2
PATRON	16/09/2022	14/10/2022	28 días	2	45.0	31.3 kg/cm2
PATRON	16/09/2022	14/10/2022	28 dias	2	45.0	31.5 kg/cm2

OBSERVACIONES:

- * Muestras Proporcionadas por el solicitante
- * Las muestras cumplen con las dimensiones dadas en la norma de ensayo.
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
STECHNA LABORATORIO	ABEL MARCELO PASSIVEL INGENIERO QIVIL - CIP N° 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JO GEOTECNIA LABORATORIO S.A.C.
Jen Prangide	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

	FORMATO	Código	AE-FO-124
LABORATORIO DE ENSAYO DE		Versión	01
MATERIALES	MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO	Fecha	03-01-2022
		Página	1 de 1
TESIS	: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de car	igrejo y microsílice, F	uente Piedra 2022
SOLICITANTE	: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes		
UBICACIÓN DE PROYECTO	: Puente Piedra - 2022		
FECHA DE EMISIÓN:	: 14/10/2022 Fi	ECHA DE ENSAYO :	14/10/2022
Γipo de muestra	: Concreto endurecido		
Presentación	: Especímenes prismáticos		
F'c de diseño	: 210 kg/cm2		

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON + MICROSÍLICE 10%	16/09/2022	14/10/2022	28 días	2	45.0	33.5 kg/cm2
PATRON + MICROSÍLICE 10%	16/09/2022	14/10/2022	28 días	2	45.0	34.0 kg/cm2
PATRON + MICROSÍLICE 10%	16/09/2022	14/10/2022	28 dias	2	45.0	33.7 kg/cm2

OBSERVACIONES:

- * Muestras Proporcionadas por el solicitante
- Las muestras cumplen con las dimensiones dadas en la norma de ensayo.

 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:		
DI DI SELECTION DE LA CONTROL	ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP Nº 221456 JC GEOTECNIA LABORATORIO S.A.C.			
See of Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO		

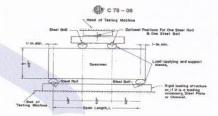
: 210 kg/cm2

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2


Carabayllo - Lima

www.jcgeotecniasac.com

	FORMATO	Código	AE-FO-124
LABORATORIO DE ENSAYO DE		Versión	01
MATERIALES	MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DE HORMIGÓN - CONCRETO	L Fecha	03-01-2022
		Página	1 de 1
TESIS SOLICITANTE	: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de ca : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes	angrejo y microsílice,	Puente Piedra 2022
UBICACIÓN DE PROYECTO	: Puente Piedra - 2022		
FECHA DE EMISIÓN:	: 14/10/2022	ECHA DE ENSAYO	14/10/2022
Tipo de muestra	: Concreto endurecido		
Presentación	: Especímenes prismáticos		

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON + MICROSÍLICE 15%	16/09/2022	14/10/2022	28 días	2	45.0	34.8 kg/cm2
PATRON + MICROSÍLICE 15%	16/09/2022	14/10/2022	28 días	2	45.0	35.1 kg/cm2
PATRON + MICROSÍLICE 15%	16/09/2022	14/10/2022	28 días	2	45.0	35.2 kg/cm2

OBSERVACIONES:

F'c de diseño

- * Muestras Proporcionadas por el solicitante
- * Las muestras cumplen con las dimensiones dadas en la norma de ensayo.
- Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
O I O SELVA	ABEL MARCELO PASQUE INGENIERO CIVIL- CIP Nº 22145 JC GEOTECNIA LABORATORIO S.A.I	6 CONTROL DE CALIDAD
The so Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO
ENSAYO		

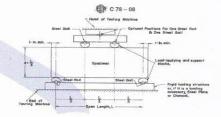
: 210 kg/cm2

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2


Carabayllo - Lima

www.jcgeotecniasac.com

	FORMATO	Código	AE-FO-124
LABORATORIO DE ENSAYO DE		Versión	01
MÁTERIALES MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO HORMIGÓN - CONCRETO		L Fecha	03-01-2022
		Página	1 de 1
TESIS SOLICITANTE	: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de ca : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes	ngrejo y microsilice,	Puente Piedra 2022
JBICACIÓN DE PROYECTO FECHA DE EMISIÓN:	: Puente Piedra - 2022 : 14/10/2022	ECHA DE ENSAYO	: 14/10/2022
Tipo de muestra	: Concreto endurecido		
Presentación	: Especimenes prismáticos		

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON + MICROSÍLICE 20%	16/09/2022	14/10/2022	28 días	2	45.0	36.8 kg/cm2
PATRON + MICROSÍLICE 20%	16/09/2022	14/10/2022	28 días	2	45.0	37.1 kg/cm2
PATRON + MICROSÍLICE 20%	16/09/2022	14/10/2022	28 dias	2	45.0	36.7 kg/cm2

OBSERVACIONES:

F'c de diseño

- Muestras Proporcionadas por el solicitante
- Las muestras cumplen con las dimensiones dadas en la norma de ensayo.

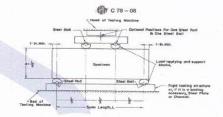
 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
LABORATOR OF SERVICE S	ABEL MARCEL O PASO INGENIERO CIVIL/- CIP,N° 22 JC GEOTECNIA LABORATORIO S	S.A.C. CONTROL DE CALIDAD
Jero de Laboratorio	Ingeniero de Suelos y Pavimento	TO THE PERSON OF

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2


Carabayllo - Lima

www.jcgeotecniasac.com

	FORMATO	Código	AE-FO-124
LABORATORIO DE ENSAYO DE MATERIALES	1	Versión	01
	MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO		03-01-2022
		Página	1 de 1
TESIS	: Análisis de las propiedades físico mecánicas del, concreto f'c=210kg/cm2 incorporando cenizas de ca	ngrejo y microsílice, F	Puente Piedra 2022
SOLICITANTE	: Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes		
UBICACIÓN DE PROYECTO	: Puente Piedra - 2022		
FECHA DE EMISIÓN:	: 14/10/2022 F	ECHA DE ENSAYO	14/10/2022
Tipo de muestra	: Concreto endurecido		
Presentación	: Especímenes prismáticos		
F'c de diseño	: 210 kg/cm2		

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	14/10/2022	28 días	2	45.0	32.4 kg/cm2
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	14/10/2022	28 días	2	45.0	32.1 kg/cm2
PATRON + CENIZAS DE CANGREJO 2.0%	16/09/2022	14/10/2022	28 días	2	45.0	32.3 kg/cm2

OBSERVACIONES:

- * Muestras Proporcionadas por el solicitante
- Las muestras cumplen con las dimensiones dadas en la norma de ensayo.

 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
SECONALABORATORIO	ABEL MARCELO PASC INGENIERO CIVIL - CIP Nº 22 JC GEOTECMIA LABORATORIO	21456 CONTROL DE CALIDAD
Jacob	Ingeniero de Suelos y Pavimento	Control de Calidad JC GEOTECNIA LABORATORIO

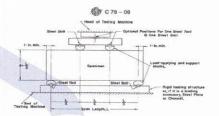
: 210 kg/cm2

Cel.: 916 333 983 / 986 575 242

Fijo: 01 656 6232

informes@jcgeotecniasac.com

Asociación Villa Gloria Mz D Lt 2


Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES	FORMATO	Código	AE-FO-124
		Versión	01
	MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DE HORMIGÓN - CONCRETO	Fecha	03-01-2022
		Página	1 de 1
ESIS SOLICITANTE	: Análisis de las propiedades físico mecánicas del, concreto fc=210kg/cm2 incorporando cenizas de ca : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes	angrejo y microsílice, Pue	nte Piedra 2022
BICACIÓN DE PROYECTO	: Puente Piedra - 2022		4.440/0000
FECHA DE EMISIÓN: Tipo de muestra	: 14/10/2022 : Concreto endurecido	FECHA DE ENSAYO :	14/10/2022
Presentación	· Especímenes prismáticos		

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	14/10/2022	28 días	2	45.0	31.5 kg/cm2
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	14/10/2022	28 días	2	45.0	31.1 kg/cm2
PATRON + CENIZAS DE CANGREJO 4.0%	16/09/2022	14/10/2022	28 días	2	45.0	31.2 kg/cm2

OBSERVACIONES:

F'c de diseño

- * Muestras Proporcionadas por el solicitante
- Las muestras cumplen con las dimensiones dadas en la norma de ensayo.

 Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PAS INGENIERO CIVIL - CIP MO JC GEOTECNIA LABORATOR	OUEL 221456 O S.A.C. CONTROL DE CALIDAD JC GEOTECNIALABORATORIO S.A.C.
See Paperatone	Ingeniero de Suelos y Pavime	ntos Control de Calidad JC GEOTECNIA LABORATORIO

Fijo: 01 656 6232

informes@jcgeotecniasac.com

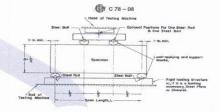
Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

www.jcgeotecniasac.com

LABORATORIO DE ENSAYO DE MATERIALES	FORMATO	Código	AE-FO-124
		Versión	01
	MÉTODO DE PRUEBA ESTÁNDAR PARA LA DETERMINACIÓN DEL MÓDULO DE ROTURA DEL HORMIGÓN - CONCRETO	Fecha	03-01-2022
		Página	1 de 1

: Análisis de las propiedades físico mecánicas del, concreto f c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente Piedra 2022 : Jhamill Izquierdo Gregorio - Luis Fernando Carranza Paredes TESIS SOLICITANTE


UBICACIÓN DE PROYECTO : Puente Piedra - 2022 14/10/2022 FECHA DE ENSAYO : FECHA DE EMISIÓN: 14/10/2022

: Concreto endurecido Tipo de muestra : Especimenes prismáticos Presentación

: 210 kg/cm2 F'c de diseño

RESISTENCIA A LA FLEXIÓN DEL CONCRETO ENDURECIDO ASTM C78

IDENTIFICACIÓN	FECHA DE VACIADO	FECHA DE ROTURA	EDAD	UBICACIÓN DE FALLA	LUZ LIBRE	MÓDULO DE ROTURA
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	14/10/2022	28 días	2	45.0	28.5 kg/cm2
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	14/10/2022	28 días	2	45.0	28.7 kg/cm2
PATRON + CENIZAS DE CANGREJO 7.0%	16/09/2022	14/10/2022	28 días	2	45.0	28.8 kg/cm2

OBSERVACIONES:

- * Muestras Proporcionadas por el solicitante
- Las muestras cumplen con las dimensiones dadas en la norma de ensayo.
- * Prohibida la reproducción total o parcial del presente documento sin la autorización escrita de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
SECONIA LABORATORIO DE LA CONTRA LABORATORIO DE LABORATORIO DEL LABORATORIO DE LABORATORIO DE LABORATORIO DE LA	ABEL MARCELO PASOUEL INGENIERO CIVIL CIPM 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Parte of the position	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Anexo 5: CERTIFICADOS DE CALIBRACION:

Certificado

La Dirección de Acreditación del Instituto Nacional de Calidad – INACAL, en el marco de la Ley N° 30224, **OTORGA** el presente certificado de Renovación de la Acreditación a:

TEST & CONTROL S.A.C.

Laboratorio de Calibración

En su sede ubicada en: Calle Condesa de Lemos Nº 117, Urb. San Miguelito, distrito de San Miguel, provincia de Lima y departamento de Lima

Con base en la norma

NTP-ISO/IEC 17025:2006 Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración

Facultándolo a emitir Certificados de Calibración con Símbolo de Acreditación. En el alcance de la acreditación otorgada que se detalla en el DA-acr-05P-21F que forma parte integral del presente certificado llevando el mismo número de registro indicado líneas abajo.

Fecha de Renovación: 24 de marzo de 2019 Fecha de Vencimiento: 23 de marzo de 2023

ESTELA CONTRERAS JUGO

Directora, Dirección de Acreditación - INACAL

Cedula Nº : 230-2019-INACAL/DA

Contrato N° : Adenda al Contrato de Acreditación N°004-16/INACAL-DA

Registro Nº :LC-016

Fecha de emisión: 05 de junio de 2019

El presente certificado tiene validez con su correspondiente Alcance de Acreditación y cédula de notificación dado que el alcance puede estar sujeto a ampliaciones, reducciones, actualizaciones y suspensiones temporales. El alcance y vigencia debe confirmarse en la página web www.inacal.gob.pe/acreditacion/categoria/acreditados al momento de hacer uso del presente certificado.

La Dirección de Acreditación del INACAL es firmante del Acuerdo de Reconocimiento Multilateral (MLA) del Inter American Accreditation Cooperation (IAAC) e International Accreditation Forum (IAF) y del Acuerdo de Reconocimiento Mutuo con la International Laboratory Accreditation Cooperation (ILAC).

DA-acr-O1P-02M Ver. 02

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION **EQUIPO DE ASENTAMIENTO SLUMP**

MANUFACTURADO POR

EOUIPOS DE LABORATORIO

Diámetro Superior	100 mm ± 1.5 mm			
Diametro Inferior 2 200 mm ± 1.5 mm				
Altura & S AS C AS	300 mm ±1.5 mm			
Serie State	0130 8 7 5 10 0 5 5			

El equipo de asentamiento Slump ha sido Fabricado minado y ensayado en nuestros talleres de sollas específicaciones examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normales.

Norma de ensayo:

ASTM C - 143 MTC E 705

Lima, 29 de mayo del 2021

PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION RECIPIENTE CALIBRADO DE PESO UNITARIO

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Volumen Nominal	0.1 ft ³ – 2.83 litros
Volumen Medido	0.1 ft ³ = 2.85 litros
Serie S S S S	014 5 N C ST JIT OF CA ST JE

El recipiente calibrado de peso unitario ha sido Fabricado examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas

Norma de ensayo: MTC E 203 – NTP 400.017

Lima, 29 de mayo del 2021

Aprobado:

PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO
SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA
RUC Nº 20602182721

CERTIFICADO DE FABRICACION RECIPIENTE CALIBRADO DE PESO UNITARIO

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Volumen Nominal	0.33 ft ³ – 9.34 litros
Volumen Medido	0.32 ft ³ - 9.30 litros
Serie S & S & S	012 D C S JU OF ST JE

El recipiente calibrado de peso unitario ha sido Fabricado examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas

Norma de ensayo: MTC E 203 – NTP 400.017

Lima, 29 de mayo del 2021

Anrohado:

PERUTEST S.A.C.

VENTA Y FABRICACIÓN DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION CONO DE ABSORCIÓN DE ARENAS CON PISÓN

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Cono	Material: Acero Inoxidable Diámetro Superior: 40mm ± 3,00 mm Diámetro Inferior: 90 mm ± 3,00 mm Altura: 75mm ± 3,00 mm
Pisón Pisón	Diámetro: 25,4 mm ± 3,00 mm
Stor Hez, "Egn Ec. " Se Hang, Se	Largo: 168 mm Peso: 340 g ± 15 g
Serie	082 6 5 5 6 6 6

El Cono de absorción de arena con pisón ha sido fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM C - 128

NTP 400.022

Lima, 29 de mayo del 2021

Aprobado

Certificado de Calibración

TC - 15481 - 2022

Proforma : 13360A Fecha de emisión : 2022-08-16

Solicitante : JC GEOTECNIA LABORATORIO S.A.C.

Dirección : Mza. D Lote. 02 A.V. Villa Gloria Lima - Lima - Carabayllo

Instrumento de medición : Balanza : Electrónica Tipo : OHAUS Marca · PR2200/F Modelo N° de Serie : B927896178 : 2200 g Capacidad Máxima Resolución : 0,01 g División de Verificación : 0,1 g Clase de Exactitud : 11 Capacidad Minima : 0,5 q Procedencia China Identificación · No indica : Laboratorio Ubicación Variación de AT Local : 5 °C Fecha de Calibración : 2022-08-12

Lugar de calibración

Método de calibración

PGC-16-r08/ Diciembre 2019/Rev.04

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades

(SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos

apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del

sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Instalaciones de JC GEOTECNIA LABORATORIO S.A.C.

La calibración se realizó por comparación directa entre las indicaciones de lectura de

la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-

011 "Procedimiento para la Calibración de Balanzas de Funcionamiento No

Automático Clase I y II". Cuarta Edición - Abril 2010. SNM - INDECOPI.

Lic. Nicolás Ramos Paucar Gerente Técnico

CFP: 0316 Página : 1 de 3

Jr. Condesa de Lemos N°117 San Miguel, Lima (01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe

www.testcontrol.com.pe

Certificado de Calibración TC - 15481 - 2022

Trazabilidad

Trazabilidad	Patrón de trabajo	Certificado de calibración		
Patrones de Referencia de DM-INACAL/ KOSSOMET	Juego de Pesas 1 mg a 1 kg Clase de Exactitud E2	LM-C-224-2022 PE22-C-1165 Julio 2022		
Patrones de Referencia de DM-INACAL	Juego de Pesas 1 kg a 5 kg Clase de Exactitud F1	LM-C-210-2022 Julio 2022		

RESULTADOS DE MEDICIÓN

Inspección visual

Ajuste de Cero	Tiene			
Oscilación Libre	Tiene			
Plataforma	Tiene			
Sistema de Traba	No Tiene			

Escala	No Tiene
Cursor	No Tiene
Nivelación	Tiene

Ensayo de repetibilidad

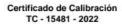
Magnitud	Inicial	Final		
Temperatura	19,8 °C	18,6 °C		
Humedad Relativa	78 %	76 %		

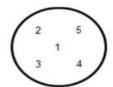
Medición N°	Carga (g)			E (mg)	
1		1 100,00	6	-1	
2		1 100,00	6	-1	
3		1 100,00	6	-1	
4	1 100,000	1 100,00	5	0	
5		1 100,00	5	0	
6		1 100,00	5	0	
7		1 100,00	6	-1	
8		1 100,00	6	-1	
9		1 100,00	5	0	
10		1 100,00	6	-1	
Em	áx - Emín	(mg)		1	
error máx	imo permiti	ido (±mg)	2	00	

Medición N°	Carga (g)			E (mg)	
1		2 199,99	7	-12	
2		2 199,98	7	-22	
3	1	2 199,99	6	-11	
4		2 199,99	6	-11	
5	2 200,000	2 199,98	7	-22	
6	2 200,000	2 199,99	5	-10	
7		2 199,99	7	-12	
8		2 199,99	6	-11	
9	1	2 199,99	7	-12	
10		2 199,98	7	-22	
Em	áx - Emín (mg)	1	2	
error máx	cimo permiti	do (±mg)	30	00	

PGC-16-r08/ Diciembre 2019/Rev.04

Jr. Condesa de Lemos Nº117
 San Miguel, Lima


(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe


www.testcontrol.com.pe

Página : 2 de 3

Ensayo de excentricidad

Magnitud	Inicial	Final
Temperatura	18,5 °C	18,4 °C
Humedad Relativa	76 %	76 %

N°	Determinación de Error Eo			Determinación de Error Corregido Ec				e.m.p.		
14	Carga (g)	I (g)	ΔL (mg)	Eo (mg)	Carga (g)	I (g)	ΔL (mg)	E (mg)	Ec (mg)	(±mg)
1		0,10	5	0		700,00	4	1	1	
2	1	0,10	5	0	1 1	700,01	6	9	9	
3	0,100	0,10	4	1	700,000	699,99	3	-8	-9	200
4	1	0,10 6 -1	700,00	5	0	1				
5		0,10	5	0	1 1	700,00	6	-1	-1	

Ensayo de pesaje

Magnitud	Inicial	Final
Temperatura	18,5 °C	18,3 °C
Humedad Relativa	76 %	75 %

Carga	rga Crecientes				Decrecientes					
(g)	I (g)	ΔL (mg)	E (mg)	Ec (mg)	I (g)	ΔL (mg)	E (mg)	Ec (mg)	(±mg)	
0,100	0,10	6	-1	at a second						
0,500	0,50	6	-1	0	0,50	5	0	1	100	
100,000	100,00	5	0	1	100,00	5	0	1	100	
200,000	200,00	5	0	1	199,99	3	-8	-7	100	
450,001	450,00	6	-2	-1	449,99	4	-10	-9	100	
600,001	600,00	6	-2	-1	599,99	3	-9	-8	200	
800,001	800,02	7	17	18	799,99	3	-9	-8	200	
1 000,001	1 000,02	8	16	17	999,99	4	-10	-9	200	
1 500,001	1 500,03	7	27	28	1 499,99	6	-12	-11	200	
1 800,002	1 800,03	8	25	26	1 800,00	6	-3	-2	200	
2 200,004	2 200,00	7	-6	-5	2 200,00	7	-6	-5	300	

Donde:

I : Indicación de la balanza ΔL : Carga adicional Eo : Error en cero R : Lectura de la balanza posterior a la calibración (g) E : Error del instrumento Ec : Error corregido

Lectura corregida e incertidumbre de la balanza egida = R - 1,31 x 10 -5 x R ectura Corregida ncertidumbre Expandida $2 \times \sqrt{5,26 \times 10^{-5}}$ $g^2 + 5,35 \times 10^{-10} \times R^2$ UR

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. La indicación de la balanza fue de 2 199,98 g para una carga de valor nominal 2200 g.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Fin del documento

PGC-16-r08/ Diciembre 2019/Rev.04

 Jr. Condesa de Lemos Nº117 San Miguel, Lima

(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe www.testcontrol.com.pe

Página : 3 de 3

Certificado de Calibración TC - 15482 - 2022

Ensayo de pesaje

Magnitud	Inicial	Final
Temperatura	18,7 °C	18,7 °C
Humedad Relativa	76 %	75 %

Carga	Crecientes				Decrecientes					
(g)	I (g)	ΔL (mg)	E (mg)	Ec (mg)	I (g)	ΔL (mg)	E (mg)	Ec (mg)	(±mg)	
0,0050	0,0050		0,0	•						
0,0100	0,0100		0,0	0,0	0,0100		0,0	0,0	1,0	
10,0000	9,9990	*	-1,0	-1,0	10,0006	-	0,6	0,6	1,0	
50,0000	49,9990	-	-1,0	-1,0	50,0004	- 2	0,4	0,4	1,0	
80,0001	80,0008		0,7	0,7	80,0006	5	0,5	0,5	2,0	
100,0001	100,0003		0,2	0,2	100,0009		0,8	0,8	2,0	
120,0001	120,0010	+	0,9	0,9	120,0012	-	1,1	1,1	2,0	
150,0001	150,0003	9	0,2	0,2	150,0009	¥	0,8	8,0	2,0	
180,0002	180,0011		0,9	0,9	180,0012	-	1,0	1,0	2,0	
200,0003	200,0010	- B	0,7	0,7	200,0011		0,8	0,8	2,0	
250,0003	250,0013	*	1,0	1,0	250,0012	+	0,9	0,9	3,0	

Donde:

I : Indicación de la balanza ΔL : Carga adicional Eo : Error en cero R : Lectura de la balanza posterior a la calibración (g) E : Error del instrumento Ec : Error corregido

Lectura corregida e incertidumbre de la balanza egida = R - 3,21 x 10 ⁻⁶ x R

Lectura Corregida

 $\sqrt{1,67 \times 10^{-7}}$ g 2 + 7,56 x 10 -11 x R2 ncertidumbre Expandida

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. La indicación de la balanza fue de 250,0009 g para una carga de valor nominal 250 g.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Fin del documento

PGC-16-r08/ Diciembre 2019/Rev.04

Jr. Condesa de Lemos Nº117 San Miguel, Lima

(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe www.testcontrol.com.pe

Página : 3 de 3

Certificado de Calibración TC - 15482 - 2022

Trazabilidad

Trazabilidad	Patrón de trabajo	Certificado de calibración
Patrones de Referencia de DM-INACAL/ KOSSOMET	Juego de Pesas 1 mg a 1 kg Clase de Exactitud E2	LM-C-224-2022/ PE22-C- 1165 Julio 2022

RESULTADOS DE MEDICIÓN

Inspección visual

Ajuste de Cero	Tiene		
Oscilación Libre	Tiene		
Plataforma	Tiene		
Sistema de Traba	No Tiene		

Escala	No Tiene
Cursor	No Tiene
Nivelación	Tiene

Ensayo de repetibilidad

Magnitud	Inicial	Final		
Temperatura	18,6 °C	18,6 °C		
Humedad Relativa	76 %	76 %		

Medición N°	Carga (g)	I (g)	ΔL (mg)	E (mg)	
1	N 111272	120,0010		1,0	
2		120,0011	5.50	1,1	
3		120,0011		1,1	
4		120,0011		1,1	
5	120,0000	120,0010		1,0	
6		120,0010	101	1,0	
7		120,0010	**	1,0	
8		120,0010		1,0	
9		120,0010	(*)	1,0	
10		120,0010	•	1,0	
Em	áx - Emín	(mg)	0	,1	
error máx	cimo permit	ido (±mg)	2	,0	

Medición N°	Carga I (g) (g)		ΔL (mg)	E (mg)	
1		250,0009		0,9	
2		250,0009	•	0,9	
3		250,0008		0,8	
4		250,0009		0,9	
5	250,0000	250,0010		1,0	
6		250,0009		0,9	
7		250,0008	*	0,8	
8		250,0008	3	0,8	
9		250,0009		0,9	
10		250,0010	- 3	1,0	
Em	áx - Emín (0	,2		
error máx	imo permiti	do (±mg)	3	,0	

PGC-16-r08/ Diciembre 2019/Rev.04

Jr. Condesa de Lemos Nº117
 San Miguel, Lima

(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe
www.testcontrol.com.pe

Página : 2 de 3

Certificado de Calibración

TC - 15482 - 2022

Proforma : 13360A Fecha de emisión : 2022-08-16

Solicitante : JC GEOTECNIA LABORATORIO S.A.C.

Dirección : Mza. D Lote. 02 A.V. Villa Gloria Lima - Lima - Carabayllo

 Instrumento de medición
 :
 Balanza

 Tipo
 :
 Electrónica

 Marca
 :
 ADAM

 Modelo
 :
 AAA 250L

 N° de Serie
 :
 AE048A114226

Capacidad Máxima 250 g 0.0001 g Resolución División de Verificación 0,001 g Clase de Exactitud Capacidad Minima 0,01 g Procedencia : No indica N° de Parte : No indica Identificación No indica Ubicación Laboratorio

Lugar de calibración

Variación de AT Local

Fecha de Calibración

Instalaciones de JC GEOTECNIA LABORATORIO S.A.C.

: 5°C

: 2022-08-12

Método de calibración

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-011 "Procedimiento para la Calibración de Balanzas de Funcionamiento No Automático Clase I y II". Cuarta Edición - Abril 2010. SNM - INDECOPI.

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316 Página : 1 de 3

PGC-16-r08/ Diciembre 2019/Rev.04

Jr. Condesa de Lemos N°117
 San Miguel, Lima

(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe
www.testcontrol.com.pe

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperaturas registradas en dicha posición.

Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

La uniformidad es la máxima diferencia medida de temperatura entre las diferentes posiciones espaciales para un mismo instante de tiempo.

La incertidumbre expandida de las indicaciones del termómetro propio del equipo es 0,29 °C. La estabilidad es considerada igual a la mitad de la máxima DTT.

Fotografia del medio isotermo:

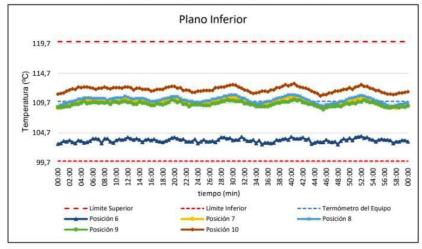
Observaciones

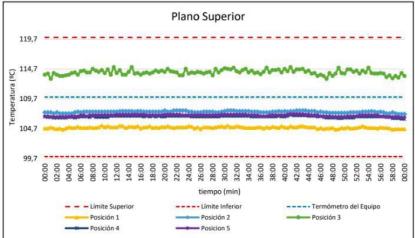
Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%

Fin del Documento


PGC-16-r11/Octubre 2021/Rev.01


Página : 8 de 8

Jr. Condesa de Lemos Nº 117 San Miguel - Lima (01) 2629545 (09) 990089889 (a) informes@testcontrol.com. Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Gráfica de para la temperatura de trabajo de 110 °C ± 10 °C

[*] Declaración de los limites especificados de temperatura.

Durante la calibración y bajo las condiciones en que esta ha sido hecha, el medio isotermo:

- Cumple con los límites especificados de temperatura.

PGC-16-r11/Octubre 2021/Rev.01

Página: 7 de 8

O Jr. Condesa de Lemos Nº 117 San Miguel - Lima (§ (01) 2629545 (1) 990089889 (2) Informes@testcontrol.com. Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

	1	Temperaturas en las Posiciones de Medición (°C)							Tprom	Tmáx -			
•	ं		Niv	el Supe	rior			Ni	vel Infer	ior		(°C)	Tmín
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(-0)	(°C)
45:30	110	104,6	107,4	113,5	106,7	107,0	103,2	109,1	109,2	108,6	111,1	108,0	10,4
46:00	110	104,8	107,5	113,7	106,8	106,8	103,6	109,1	109,4	108,9	111,1	108,2	10,2
46:30	110	104,6	107,4	113,5	106,6	106,8	103,3	109,1	109,4	109,1	111,4	108,1	10,3
47:00	110	104,7	107,4	113,0	106,5	106,8	103,2	109,2	109,6	109,1	111,4	108,1	9,9
47:30	110	104,7	107,3	114,0	106,5	106,8	103,3	109,2	109,6	109,1	111,7	108,2	10,8
48:00	110	104,8	107,3	113,5	106,5	106,7	102,8	109,4	109,7	109,2	111,7	108,2	10,8
48:30	110	104,5	107,3	113,9	106,5	106,7	103,4	109,6	110,0	109,1	111,8	108,3	10,6
49:00	110	104,6	107,3	114,9	106,4	106,7	103,8	109,6	110,0	109,4	112,0	108,5	11,2
49:30	110	104,8	107,3	114,0	106,4	106,7	103,5	109,9	110,3	109,6	112,0	108,4	10,6
50:00	110	104,7	107,3	113,9	106,5	106,7	103,9	109,9	110,5	109,5	112,3	108,5	10,1
50:30	110	104,9	107,3	114,6	106,5	106,8	103,5	110,1	110,6	109,7	112,0	108,6	11,2
51:00	110	104,7	107,4	114,6	106,5	106,8	104,0	110,2	110,7	109,6	112,4	108,7	10,7
51:30	110	104,7	107,4	114,2	106,5	106,8	104,0	110,5	110,9	109,9	112,5	108,7	10,2
52:00	110	104,8	107,4	114,4	106,7	106,8	104,1	110,7	111,0	109,9	112,8	108,9	10,3
52:30	110	104,9	107,4	113,9	106,7	107,0	103,9	110,3	110,9	110,2	112,5	108,8	10,1
53:00	110	105,1	107,5	114,4	106,7	107,0	104,0	110,4	110,7	110,0	112,5	108,8	10,5
53:30	110	104,9	107,5	114,1	106,7	107,0	103,7	110,2	110,6	109,8	112,2	108,7	10,5
54:00	110	104,8	107,5	114,9	106,7	107,0	103,6	110,1	110,4	109,8	112,1	108,7	11,4
54:30	110	104,8	107,6	114,0	106,7	107,0	103,3	109,9	110,1	109,6	111,8	108,5	10,8
55:00	110	104,8	107,5	113,9	106,7	107,0	103,6	109,4	110,0	109,5	111,8	108,4	10,4
55:30	110	104,7	107,4	113,9	106,7	107,0	103,7	109,4	109,7	109,2	111,5	108,3	10,3
56:00	110	104,9	107,5	114,0	106,7	106,8	103,6	109,3	109,6	109,0	111,4	108,3	10,5
56:30	110	104,8	107,4	113,9	106,7	106,8	103,6	109,1	109,3	108,9	111,2	108,2	10,4
57:00	110	104,8	107,2	113,3	106,6	106,7	103,5	108,9	109,2	108,9	111,2	108,0	9,9
57:30	110	104,7	107,2	113,6	106,6	106,7	103,0	109,1	109,2	109,0	111,1	108,0	10,7
58:00	110	104,5	107,4	113,1	106,4	106,7	103,3	108,9	109,3	109,1	111,2	108,0	9,9
58:30	110	104,6	107,2	113,5	106,4	106,7	103,3	109,2	109,5	108,9	111,4	108,1	10,3
59:00	110	104,6	107,1	113,2	106,4	106,7	103,5	109,1	109,5	109,1	111,4	108,1	9,8
59:30	110	104,6	107,1	114,0	106,3	106,6	103,5	109,3	109,7	109,0	111,5	108,2	10,6
00:00	110	104,6	107,1	113,5	106,3	106,6	103,3	109,3	109,7	109,2	111,6	108,1	10,3
.PRON	110	104,9	107,5	114,1	106,7	106,9	103,5	109,8	110,2	109,6	112,0	108,5	
T.MAX	110	105,2	107,7	115,0	107,0	107,2	104,1	110,7	111,1	110,3	113,0		
T.MIN	110	104,5	107,1	113,0	106,3	106,6	102,8	108,9	109,1	108,6	110,9]	
DTT	0	0,7	0,6	2,0	0,7	0,6	1,4	1,8	2,0	1,7	2,1	1	

Resumen de resultados

Parámetro	Valor (°C)	Incertidumbre Expandida (°C)		
Temperatura Máxima Medida	115,0	0,3		
Temperatura Minima Medida	102,8	0,3		
Desviación de Temperatura en el Espacio	10,7	0,3		
Desviación de Temperatura en el Tiempo	2,1	0,1		
Estabilidad Medida (±)	1,0	0,05		
Uniformidad Medida	11,9	0,3		

PGC-16-r11/Octubre 2021/Rev.01

Página : 6 de 8

t	- 1		Temperaturas en las Posiciones de Medición (°C)						T	Tmáx			
(min)	1	Nivel Superior			Nivel Inferior					Tprom	Tmín		
	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
30:30	110	105,2	107,7	114,7	106,8	107,1	103,6	110,6	111,1	110,0	112,7	108,9	11,2
31:00	110	104,9	107,7	114,6	106,8	107,1	103,6	110,6	110,8	110,0	112,4	108,8	11,1
31:30	110	104,9	107,7	114,9	106,8	107,1	104,0	110,2	110,6	110,0	112,2	108,8	10,9
32:00	110	105,1	107,6	114,3	106,8	107,1	103,7	110,3	110,5	109,6	111,9	108,7	10,7
32:30	110	105,0	107,6	114,1	106,8	107,1	103,4	109,9	110,2	109,6	111,8	108,5	10,8
33:00	110	104,9	107,6	114,5	106,8	107,1	103,4	109,7	109,9	109,4	111,5	108,5	11,2
33:30	110	104,8	107,6	114,7	106,8	107,1	103,6	109,5	109,7	109,4	111,3	108,4	11,2
34:00	110	104,8	107,6	114,1	106,8	107,0	103,0	109,5	109,6	109,1	111,4	108,3	11,2
34:30	110	104,8	107,5	114,4	106,7	107,0	103,5	109,3	109,6	109,1	111,5	108,3	11,0
35:00	110	104,8	107,5	114,0	106,7	107,0	102,8	109,4	109,7	109,1	111,7	108,3	11,3
35:30	110	104,9	107,5	114,1	106,7	107,0	103,1	109,6	109,9	109,1	111,7	108,4	11,1
36:00	110	104,9	107,4	113,8	106,7	106,8	103,1	109,6	110,0	109,1	111,6	108,3	10,8
36:30	110	104,7	107,4	114,2	106,7	106,8	103,0	109,6	110,0	109,3	111,9	108,4	11,3
37:00	110	104,9	107,4	114,9	106,7	106,8	103,1	109,9	110,3	109,5	111,9	108,5	11,9
37:30	110	104,8	107,4	114,1	106,7	107,0	103,6	110,1	110,5	109,7	112,3	108,6	10,6
38:00	110	105,0	107,5	114,5	106,7	107,0	103,5	110,0	110,6	109,7	112,3	108,7	11,1
38:30	110	104,9	107,5	114,5	106,7	107,0	103,7	110,2	110,7	109,9	112,5	108,8	10,9
39:00	110	104,8	107,6	114,6	106,8	107,0	103,8	110,6	110,9	109,9	112,8	108,9	10,9
39:30	110	105,1	107,5	114,1	106,7	107,0	103,6	110,7	111,1	109,9	112,6	108,8	10,6
40:00	110	104,9	107,6	114,7	106,7	107,0	104,0	110,5	111,1	110,1	112,8	108,9	10,7
40:30	110	104,8	107,5	114,3	106,8	107,1	103,8	110,7	111,1	110,3	113,0	108,9	10,6
41:00	110	105,1	107,6	115,0	107,0	107,2	103,8	110,7	111,0	110,1	112,6	109,0	11,3
41:30	110	104,9	107,6	114,2	106,9	107,2	103,8	110,3	110,9	110,2	112,4	108,8	10,5
42:00	110	104,9	107,7	114,6	106,9	107,2	104,0	110,2	110,6	109,8	112,3	108,8	10,7
42:30	110	105,1	107,7	114,6	106,9	107,2	103,6	110,1	110,4	109,7	112,2	108,7	11,1
43:00	110	105,1	107,7	114,7	106,9	107,2	103,8	110,1	110,2	109,5	112,0	108,7	11,0
43:30	110	105,0	107,7	114,2	106,9	107,1	102,9	109,8	109,9	109,5	111,7	108,5	11,4
44:00	110	104,9	107,6	114,4	106,8	107,1	103,1	109,3	109,8	109,3	111,5	108,4	11,4
44:30	110	104,9	107,6	113,9	106,8	107,0	103,3	109,3	109,5	109,1	111,3	108,3	10,7
45:00	110	104,9	107,6	114,0	106,8	107,0	103,2	109,2	109,3	108,9	110,9	108,2	10,9

PGC-16-r11/Octubre 2021/Rev.01

Página : 5 de 8

Jr. Condesa de Lemos № 117 San Miguel - Lima (01) 2629545 (990089889 (informes@testcontrol.com. Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

		Temperaturas en las Posiciones de Medición (°C)										Tprom	Tmáx -
ı	1	Nivel Superior						Nivel Inferior					Tmín
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
15:30	110	105,1	107,6	114,0	106,8	107,1	103,7	109,7	110,2	109,5	112,0	108,6	10,4
16:00	110	104,7	107,6	113,7	106,8	107,1	103,5	109,7	110,0	109,3	111,7	108,4	10,3
16:30	110	104,9	107,5	114,0	106,7	107,1	103,7	109,9	110,0	109,3	111,8	108,5	10,4
17:00	110	104,9	107,5	114,1	106,8	107,0	103,4	109,8	110,1	109,6	112,0	108,5	10,8
17:30	110	105,1	107,5	113,9	106,7	107,0	103,3	109,8	110,2	109,5	112,0	108,5	10,7
18:00	110	104,8	107,5	114,1	106,8	107,0	103,2	110,1	110,4	109,4	112,0	108,5	11,0
18:30	110	104,9	107,5	114,4	106,7	107,0	103,4	110,3	110,5	109,6	112,3	108,7	11,1
19:00	110	104,8	107,5	114,2	106,8	107,0	103,6	110,1	110,6	109,8	112,4	108,7	10,7
19:30	110	105,0	107,5	114,4	106,7	107,0	103,9	110,5	110,8	110,3	112,5	108,9	10,6
20:00	110	104,9	107,7	114,2	106,7	107,1	104,0	110,3	110,8	110,1	112,5	108,8	10,3
20:30	110	105,1	107,5	114,7	106,8	107,1	103,8	110,3	110,8	109,8	112,2	108,8	11,0
21:00	110	104,9	107,5	114,3	106,8	107,1	103,6	110,3	110,5	110,0	112,3	108,7	10,8
21:30	110	104,8	107,7	114,2	106,8	107,1	103,7	110,2	110,2	109,5	111,8	108,6	10,6
22:00	110	104,9	107,7	114,1	106,8	107,1	103,3	109,8	110,2	109,5	111,9	108,5	10,9
22:30	110	104,9	107,7	113,6	106,8	107,1	103,3	109,8	110,0	109,1	111,8	108,4	10,4
23:00	110	104,9	107,7	113,6	106,8	107,0	103,3	109,6	110,0	109,4	111,5	108,4	10,4
23:30	110	104,9	107,7	114,7	106,8	107,0	103,7	109,5	109,8	109,4	111,5	108,5	11,1
24:00	110	105,1	107,5	113,9	106,8	107,0	103,0	109,6	109,8	109,4	111,7	108,4	11,0
24:30	110	105,0	107,5	114,1	106,7	107,0	103,3	109,5	109,8	109,4	111,7	108,4	10,9
25:00	110	104,7	107,4	114,0	106,7	107,0	103,6	109,7	110,0	109,3	111,8	108,4	10,5
25:30	110	104,9	107,4	114,2	106,7	107,0	103,3	109,8	110,1	109,3	111,8	108,4	11,0
26:00	110	104,6	107,4	114,1	106,7	107,0	103,3	109,7	110,1	109,3	111,8	108,4	10,9
26:30	110	104,9	107,5	113,9	106,7	107,0	103,4	109,9	110,4	109,6	111,8	108,5	10,6
27:00	110	104,9	107,5	114,1	106,7	107,0	103,2	109,9	110,4	109,6	112,3	108,6	11,0
27:30	110	104,9	107,5	114,2	106,7	107,0	103,6	110,3	110,6	109,7	112,3	108,7	10,7
28:00	110	104,8	107,5	113,6	106,7	107,0	104,0	110,2	110,6	109,9	112,4	108,7	9,7
28:30	110	104,9	107,4	114,7	106,7	107,0	104,0	110,3	110,9	110,0	112,4	108,8	10,8
29:00	110	105,0	107,4	114,1	106,7	107,0	103,8	110,6	110,9	110,2	112,6	108,8	10,4
29:30	110	105,1	107,5	114,5	106,8	107,1	103,9	110,6	111,1	110,1	112,7	108,9	10,7
30:00	110	104,9	107,6	114,8	106,8	107,1	103,5	110,6	111,1	110,1	112,8	108,9	11,4

PGC-16-r11/Octubre 2021/Rev.01

Página : 4 de 8

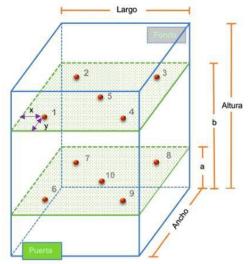
Resultados de medición (1er punto de calibración)

Temperatura de Trabajo	Posición del Controlador/ Selector	Tiempo de Calentamiento Estabilización	Porcentaje de carga	Descripción de la carga
110 °C ± 10 °C	110 °C	120 min		

		Temperaturas en las Posiciones de Medición (°C)							Tprom	Tmax -			
· ·	3	Nivel Superior Nivel Inferior					7	(°C)	Tmín				
(min)	(°C)	1	2	3	4	5	6	7	8	9	10	(00)	(°C)
00:00	110	104,7	107,4	113,7	106,7	106,8	102,9	108,9	109,1	109,0	111,2	108,0	10,9
00:30	110	104,7	107,4	113,9	106,6	106,8	103,0	109,3	109,3	108,9	111,3	108,1	11,0
01:00	110	104,9	107,4	113,0	106,6	106,7	103,4	109,2	109,6	109,0	111,4	108,1	9,7
01:30	110	104,7	107,2	114,0	106,5	106,7	103,3	109,4	109,7	109,1	111,7	108,2	10,8
02:00	110	104,6	107,4	113,7	106,5	106,7	103,5	109,4	109,9	109,1	111,9	108,3	10,3
02:30	110	104,7	107,2	113,5	106,5	106,7	103,2	109,7	110,0	109,4	112,1	108,3	10,4
03:00	110	104,5	107,2	113,5	106,5	106,7	103,0	109,9	110,1	109,5	112,0	108,3	10,6
03:30	110	104,7	107,2	113,6	106,5	106,7	103,5	110,1	110,4	109,5	112,4	108,5	10,2
04:00	110	104,9	107,2	113,7	106,6	106,7	103,4	110,0	110,4	109,7	112,3	108,5	10,4
04:30	110	104,8	107,2	114,0	106,6	106,8	103,1	110,1	110,6	110,0	112,4	108,6	11,0
05:00	110	104,8	107,4	114,1	106,5	106,8	103,2	110,2	110,6	109,6	112,4	108,6	11,0
05:30	110	105,0	107,5	113,7	106,6	106,8	103,4	110,2	110,6	109,7	112,3	108,6	10,4
06:00	110	104,8	107,4	114,3	106,7	107,0	103,8	110,1	110,5	109,8	112,2	108,7	10,6
06:30	110	104,8	107,5	114,4	106,7	107,0	103,8	110,1	110,5	109,8	112,0	108,7	10,7
07:00	110	104,8	107,5	114,1	106,7	106,8	103,7	110,1	110,5	109,7	112,2	108,6	10,5
07:30	110	104,9	107,5	114,1	106,6	107,0	103,0	109,9	110,5	109,8	112,2	108,5	11,2
08:00	110	104,8	107,5	114,7	106,8	107,0	103,8	109,9	110,5	109,7	112,4	108,7	11,0
08:30	110	104,8	107,5	114,4	106,6	107,0	103,8	109,9	110,2	109,8	112,2	108,6	10,7
09:00	110	104,9	107,5	114,2	106,6	107,0	103,3	109,9	110,4	109,5	112,1	108,5	11,0
09:30	110	105,2	107,5	114,5	106,6	107,0	103,1	110,2	110,5	109,9	112,3	108,7	11,5
10:00	110	104,9	107,5	114,0	106,6	107,0	103,5	109,9	110,6	109,9	112,3	108,6	10,6
10:30	110	105,1	107,5	114,6	106,6	107,0	103,7	110,0	110,6	109,7	112,3	108,7	11,0
11:00	110	104,9	107,5	113,7	106,8	107,0	103,6	110,3	110,6	109,9	112,2	108,6	10,2
11:30	110	104,9	107,5	115,0	106,8	107,0	103,7	110,4	110,9	110,0	112,4	108,9	11,4
12:00	110	104,9	107,5	114,0	106,8	107,1	104,0	110,3	110,7	109,8	112,4	108,7	10,1
12:30	110	105,2	107,6	114,5	106,8	107,1	103,8	110,2	110,5	109,8	112,3	108,8	10,8
13:00	110	105,1	107,6	113,7	106,8	107,1	103,6	110,2	110,4	109,5	111,9	108,6	10,2
13:30	110	104,8	107,6	113,7	106,8	107,1	103,8	109,9	110,5	109,5	112,2	108,6	10,0
14:00	110	105,0	107,6	114,2	106,8	107,1	103,6	110,0	110,5	109,9	112,2	108,7	10,7
14:30	110	105,0	107,6	115,0	106,8	107,1	103,2	110,0	110,5	109,7	112,0	108,7	11,9
15:00	110	104,9	107,5	113,9	106,8	107,1	103,6	110,0	110,4	109,7	112,0	108,6	10,4

PGC-16-r11/Octubre 2021/Rev.01

Página : 3 de 8



Trazabilidad

Trazabilidad	Patrones de Trabajo	Certificado de Calibración
Patrones de Referencia del SAT	Indicador digital con termopares tipo K con incertidumbres del orden desde 0,16 °C hasta 0,18 °C.	LT-0849-2021 Octubre 2021

Ubicación de los sensores dentro del medio isotermo

 Largo :
 45,0 cm
 Plano inferior (a) :
 10,0 cm
 x :
 5,0 cm

 Ancho :
 45,0 cm
 Plano superior (b) :
 54,0 cm
 y :
 5,0 cm

 Altura :
 64,0 cm
 Plano superior (b) :
 54,0 cm
 y :
 5,0 cm

Los termopares 5 y 10 se ubicaron en el centro de su respectivos niveles. El medio isotermo tenia 5 parrillas al momento de iniciar la calibración.

Nomenclatura de abreviaturas

: Instante de tiempo en minutos. T.PROM : Promedio de la temperatura en una posición de : Indicación del termómetro del equipo. medición durante el tiempo de calibración. T. MÁX : Promedio de las temperaturas en las diez : Temperatura máxima por sensor Tprom T. MÍN : Temperatura mínima por sensor posiciones de medición para un instante dado. T. max : Temperatura máxima para un instante dado. DTT : Desviación de temperatura en el tiempo. T. min : Temperatura mínima para un instante dado.

PGC-16-r11/Octubre 2021/Rev.01

Jr. Condesa de Lemos N° 117 San Miguel - Lima (§ (01) 2629545 (1) 990089889 (2) informes@testcontrol.com.
Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Página : 2 de 8

Equipo

SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / IEC 17025:2017

CERTIFICADO DE CALIBRACIÓN

TC - 14500 - 2022

Proforma : 13360A Fecha de Emisión : 2022-08-23

Solicitante : JC GEOTECNIA LABORATORIO S.A.C.

Dirección : MZA. D LOTE. 02 A.V. VILLA GLORIA LIMA - LIMA - CARABAYLLO

 Marca
 : FORMA SCIENTIFIC

 Modelo
 : No indica

 Número de Serie
 : 32855-158

 Identificación
 : No indica

 Procedencia
 : EE.UU.

 Circulación del aire
 : Turbulencia

Circulación del aire : Turbulencia
Ubicación : Laboratorio
Fecha de Calibración : 2022-08-12

Instrumento de Medición del Equipo

	Tipo	Alcance	Resolución
Termómetro	Digital	0 °C a 800 °C	1 °C
Selector	Digital	0 °C a 250 °C	1 °C

Lugar de calibración

Instalaciones de TEST & CONTROL S.A.C.

Método de calibración

La calibración se realizó mediante el método de comparación según el PC-018 2da edición, Junio 2009: "Procedimiento para la calibración o caracterización de medios isotermos con aire como medio termostático" publicada por el SNM/ INDECOPI.

Condiciones de calibración

	Temperatura	Humedad	Tensión
Inicial	18,9 °C	69 %hr	221 V
Final	19.4 °C	68 %hr	220 V

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

PGC-16-r11/Octubre 2021/Rev.01

Página : 1 de 8

CERTIFICADO DE CALIBRACIÓN TC - 15702 - 2022

PROFORMA : 13360A Fecha de emisión: 2022 - 08 - 17 Página : 1 de 2

SOLICITANTE: JC GEOTECNIA LABORATORIO S.A.C.

Dirección : Mza. D Lote. 02 A.V. Villa Gloria Lima - Lima - Carabayllo

INSTRUMENTO DE MEDICIÓN : PRENSA DE CONCRETO

: HIWEIGH Marca Modelo : X8 : 752 Nº de Serie Alcance de Indicación : 30000 kgf División de Escala : 1 kgf Procedencia : PERÚ Identificación : NO INDICA : 2022 - 08 - 16 Fecha de Calibración Gravedad Local : 9,7823 m/s² : NO INDICA Ubicación

LUGAR DE CALIBRACIÓN

Laboratorio de TEST & CONTROL S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se efectuó por comparación indirecta tomando como referencia la norma UNE-EN ISO 376. Calibración de los instrumentos de medida de fuerza utilizados para la verificación de las maquinas de ensayo uniaxial.

CONDICIONES AMBIENTALES

Magnitud	Inicial	Final
Temperatura	22,3 °C	20,4 °C
Humedad Relativa	58,3 % HR	57,4 % HR

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados en el presente documento no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

Jr. Condesa de Lemos Nº 117 San Miguel - Lima (0) (01) 2629545 (1) 990089889 (2) informes@testcontrol.com.pe Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Página : 2 de 2

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Balanza de Presión		NEW EL COME MENTO
LFP 01 007	Manómetro 700 Bar	LFP - C - 093 - 2022
Clase de exactitud: 0,005 %	Clase 0,05 %	Julio 2022
DM INACAL		10 May 2 May

RESULTADOS DE MEDICIÓN

RESULTADOS							
INDICACIÓN DEL EQUIPO BAJO CALIBRACIÓN	INDICACIÓN DEL PATRÓN	ERROR	INCERTIDUMBRE				
kgf	kgf	kgf	kgf				
0	0,00	0,00	0,69				
3 000	2980,00	20,00	0,70				
6 000	5970,00	30,00	0,72				
9 000	8930,00	70,00	0,74				
12 000	11922,00	78,00	0,78				
15 000	14906,00	94,00	0,83				
18 000	17880,00	120,00	0,91				
21 000	20880,00	120,00	1,08				
24 000	23820,00	180,00	0,91				
27 000	26830,00	170,00	0,83				
30 000	29825,00	175,00	0,78				

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con número de certificado.

DECLARACIÓN DE LA INCERTIDUMBRE EXPANDIDA U

La incertidumbre expandida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

Anexo 6: Panel fotográfico:

llenado de las probetas con aditivo C.C.

Ensayo a la compresión.

Granulometría de agregado grueso.

Llenado de probetas con aditivo M.C.

Granulometría del agregado fino.

Secado de los agregados.

Agregaados al horno.

Ensayos fisicos al agregado grueso.

Prueba de flexion de las vigas.

Agregado grueso al horno.

Ensayos fisicos al agregado fino.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, MINAYA ROSARIO CARLOS DANILO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, asesor de Tesis titulada: "Análisis de las propiedades físico mecánicas del concreto f'c=210kg/cm2 incorporando cenizas de cangrejo y microsílice, Puente Piedra 2022", cuyos autores son CARRANZA PAREDES LUIS FERNANDO, IZQUIERDO GREGORIO JHAMILL, constato que la investigación tiene un índice de similitud de 16.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 26 de Noviembre del 2022

Apellidos y Nombres del Asesor:	Firma
MINAYA ROSARIO CARLOS DANILO	Firmado electrónicamente
DNI : 06249794	por: CMINAYARO el 10-
ORCID: 0000-0002-0655-523X	12-2022 19:27:34

Código documento Trilce: TRI - 0455813

