

# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Generación de hidrógeno verde mediante energía térmica en campo geotérmico Chivay Pinchollo

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Mecánico Electricista

# AUTORES:

Magallan Herrera, Jesus Nazareno (orcid.org/0009-0002-2740-2475) Rubio Vasquez, Oscar (<u>orcid.org/0000-0003-4503-0011</u>)

# ASESORA:

Mg. Serrepe Ranno, Miriam Marcela (orcid.org/0000-0001-9342-1717)

# LÍNEA DE INVESTIGACIÓN: Generación, Transmisión y Distribución

Generation, Transmision y Distribution

# LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

TRUJILLO – PERÚ

2023

### Dedicatoria

A mis padres, por el incansable esfuerzo que han hecho para mi desarrollo personal y académico y a mis hermanos por el cariño y apoyo que siempre me ha brindado.

A mi novia, por su gran amor, comprensión y apoyo, a mi hijo, porque es todo en mi vida.

#### Agradecimiento

Agradezco a Dios como ser supremo y creador nuestro y de todo lo que nos rodea y por habernos dado la inteligencia, paciencia y su enorme guía en nuestras vidas.

Un especial agradecimiento a mi asesora quien me apoyó constantemente en la elaboración de este trabajo, el que servirá para el beneficio del desarrollo de la sociedad desde los aportes de esta investigación en ingeniería eléctrica

Además, a nuestra institución UCV y nuestros docentes por su apoyo incondicional durante el desarrollo de nuestra formación profesional, en donde con sus enseñanzas, consejos y aliento nos supo encaminar al cumplimiento de nuestro objetivo final concluir nuestra carrera.



# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

# Declaratoria de Autenticidad del Asesor

Yo, SERREPE RANNO MIRIAM MARCELA, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "Generación de Hidrógeno Verde Mediante Energía Térmica en el Campo Geotérmico Chivay Pinchollo", cuyos autores son MAGALLAN HERRERA JESUS NAZARENO, RUBIO VASQUEZ OSCAR, constato que la investigación tiene un índice de similitud de 10.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 12 de Diciembre del 2023

| Apellidos y Nombres del Asesor: | Firma                                            |  |
|---------------------------------|--------------------------------------------------|--|
| SERREPE RANNO MIRIAM MARCELA    | Firmado electrónicamente<br>por: SRANNOMM el 14- |  |
| <b>DNI</b> : 06437594           |                                                  |  |
| ORCID: 0000-0001-9342-1717      | 12-2023 09:44:21                                 |  |

Código documento Trilce: TRI - 0694145





# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

# Declaratoria de Originalidad de los Autores

Nosotros, MAGALLAN HERRERA JESUS NAZARENO, RUBIO VASQUEZ OSCAR estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, declaramos bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Generación de Hidrógeno Verde Mediante Energía Térmica en el Campo Geotérmico Chivay Pinchollo", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- 2. Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

| Nombres y Apellidos             | Firma                                             |  |
|---------------------------------|---------------------------------------------------|--|
| JESUS NAZARENO MAGALLAN HERRERA | Firmado electrónicamente                          |  |
| <b>DNI:</b> 72197937            | por: JMAGALLANH el 12-                            |  |
| ORCID: 0009-0002-2740-2475      | 12-2023 17:03:30                                  |  |
| OSCAR RUBIO VASQUEZ             | Firmado electrónicamente por: ORUBIOVAS el 12-12- |  |
| <b>DNI:</b> 46370018            |                                                   |  |
| ORCID: 0000-0003-4503-0011      | 2023 17:03:37                                     |  |

Código documento Trilce: TRI - 0694149



| Ca<br>De | rátula<br>dicatoria | a                                                    | i<br>ii |
|----------|---------------------|------------------------------------------------------|---------|
| Agı      | adecim              | iento                                                | iii     |
| De       | claratori           | a de autenticidad de la asesora                      | iv      |
| De       | claratori           | a de originalidad de los autores                     | V       |
| Índ      | ice de c            | ontenidos                                            | vi      |
| Índ      | ice de ta           | ablas                                                | vii     |
| Índ      | ice de fi           | guras                                                | viii    |
| Re       | sumen               |                                                      | ix      |
| Abs      | stract              |                                                      | Х       |
| I.       | INTRO               | DUCCIÓN                                              | 1       |
| II.      | MARC                | O TEÓRICO                                            |         |
| III.     | METO                | DOLOGÍA                                              | 17      |
|          | 3.1.                | Tipo y diseño de investigación                       | 17      |
|          | 3.2.                | Variables y operacionalización                       | 17      |
|          | 3.3.                | Población, muestra, muestreo                         |         |
|          | 3.4.                | Técnicas e instrumentos de recolección de datos      |         |
|          | 3.5.                | Procedimientos                                       |         |
|          | 3.6.                | Método de análisis de datos                          | 22      |
|          | 3.7.                | Aspectos éticos                                      | 22      |
| IV.      | RESUL               | _TADOS                                               | 23      |
|          | 4.1.                | Características de los ciclos termodinámicos         | 23      |
|          | 4.2.                | Análisis comparativo entre los ciclos termodinámicos | 31      |
|          | 4.3.                | Generación de hidrógeno                              | 52      |
|          | 4.4.                | Selección de equipamiento                            | 52      |
|          | 4.5.                | Indicadores de rentabilidad                          | 55      |
| V.       | DISCU               | SIÓN                                                 | 65      |
| VI.      | CONC                | LUSIONES                                             | 69      |
| VII.     | RECO                | MENDACIONES                                          | 70      |
| RE       | FEREN               | CIAS                                                 | 71      |
| AN       | EXOS                |                                                      |         |

# Índice de contenidos

# Índice de tablas

| Tabla 1. Potencial y capacidad posible de desarrollo en campos geotérmicos | . 31 |
|----------------------------------------------------------------------------|------|
| Tabla 2. Interpolación para calcular T1                                    | . 32 |
| Tabla 3. Interpolación para calcular s1                                    | . 32 |
| Tabla 4. Interpolación para calcular h1                                    | . 32 |
| Tabla 5. Datos para calcular $v1$                                          | . 32 |
| Tabla 6. Interpolación para calcular T2                                    | . 33 |
| Tabla 7. Interpolación para calcular T2r                                   | . 35 |
| Tabla 8. Resumen del Ciclo Orgánico Rankine – Cálculo manual               | . 37 |
| Tabla 9. Resumen comparativo de resultados.                                | . 37 |
| Tabla 10. Resumen de eficiencias térmicas reales.                          | . 50 |
| Tabla 11. Presupuesto de central geotérmica para generar hidrógeno verde   | . 55 |
| Tabla 12. Horizonte de evaluación para inversiones                         | . 56 |
| Tabla 13. Ahorro en energía generada y potencia.                           | . 56 |
| Tabla 14. Venta de hidrógeno período 2024 – 2043.                          | . 57 |
| Tabla 15. Venta de oxígeno período 2024 – 2043.                            | . 58 |
| Tabla 16. Perspectiva de inflación para el 2022 al 2023                    | . 58 |
| Tabla 17. Análisis de indicadores de rentabilidad.                         | . 60 |
| Tabla 18. Indicadores para análisis de rentabilidad.                       | . 60 |
| Tabla 19. Indicadores de rentabilidad.                                     | . 61 |
| Tabla 20. Tasas de descuento para diferentes países                        | . 63 |
| Tabla 21. Resumen de información para calcular LCOE                        | . 64 |

# Índice de figuras

| Figura 1. Energías renovables y no renovables a nivel mundial 10                            |
|---------------------------------------------------------------------------------------------|
| Figura 2. Ejemplo de un campo geotérmico11                                                  |
| Figura 3. Símbolo del hidrógeno 12                                                          |
| Figura 4. Formas viables de generación de hidrógeno verde y su aplicación 13                |
| Figura 5. Rutas convencionales para generar hidrógeno verde 13                              |
| Figura 6. Proceso de electrólisis del peróxido de hidrógeno 14                              |
| Figura 7. Esquema ideal y diagrama termodinámico del ciclo Rankine                          |
| Figura 8. a) Diagrama del ciclo real. b) Irreversibilidades en la turbina y bomba . 15      |
| Figura 9. Ejemplo de Ciclo binario de potencia 16                                           |
| Figura 10. Esquema de los procedimientos a seguir para desarrollar los objetivos planteados |
| Figura 11. Esquema termodinámico del Ciclo Binario Rankine 25                               |
| Figura 12. Esquema del Ciclo Binario modificado con evaporación flash                       |
| Figura 13. Esquema termodinámico del Ciclo Binario Doble Flash                              |
| Figura 14. Esquema del intercambiador de calor                                              |
| Figura 15. Ciclo binario modificado con separación flash y flujos de masa 44                |
| Figura 16. Esquema del ciclo binario doble flash y flujos de masa                           |

#### Resumen

El estudio tuvo como objetivo evaluar la generación de hidrógeno verde y oxigeno mediante energía térmica en el campo geotérmico Chivay Pinchollo. Los ciclos para el análisis fueron el Ciclo Orgánico Rankine, Ciclo Binario Modificado con separación Flash y Ciclo Binario Doble Flash. El campo geotérmico Chivay-Pinchollo posee una altitud de 3 551 msnm, equivalente a una presión atmosférica de 65.311 kPa y una potencia de 150 MWe. Del análisis comparativo, el ciclo Orgánico Rankine obtuvo la mayor eficiencia de 27.38%, siendo seleccionado para continuar con el análisis. La central geotermoeléctrica puede generar 1 231 200 MWh al año, con una producción de 20 520 toneladas de hidrógeno verde y de 164 160 toneladas de oxígeno. El equipamiento para la central geotermoeléctrica fue una turbina de 150 MW, tres bombas de 1 748 kW c/u, un intercambiador de calor, seis electrolizadores de 25 MW c/u, un condensador, un generador de 200 MVA y tuberías de 14 pulgadas de diámetro. Del análisis de rentabilidad se obtuvo un ingreso total neto de S/. 2 601 665 936.06, con un VAN de S/. 816 915 936.06, una TIR de 16.12% y un tiempo de retorno de la inversión de 8 años.

Palabras clave: Energía geotérmica, rentabilidad, electrolizador, hidrógeno verde.

#### Abstract

The objective of the study was to evaluate the generation of green hydrogen and oxygen by thermal energy in the Chivay Pinchollo geothermal field. The cycles for the analysis were the Organic Rankine Cycle, Modified Binary Cycle with Flash separation and Double Flash Binary Cycle. The Chivay-Pinchollo geothermal field has an altitude of 3,551 masl, equivalent to an atmospheric pressure of 65,311 kPa and a power of 150 MWe. From the comparative analysis, the Organic Rankine cycle obtained the highest efficiency of 27.38%, being selected to continue with the analysis. The geothermal power plant can generate 1 231 200 MWh per year, with a production of 20 520 tons of green hydrogen and 164 160 tons of oxygen. The equipment for the geothermal power plant was a 150 MW turbine, three pumps of 1 748 kW each, a heat exchanger, six electrolyzers of 25 MW each, a condenser, a 200 MVA generator, and 14-inch diameter pipes. From the profitability analysis, a total net income of S/. 2,601,665,936.06 was obtained, with an NPV of S/. 816,915,936.06, an IRR of 16.12% and a payback time of 8 years.

Keywords: Geothermal energy, profitability, electrolyzer, green hydrogen.

#### I. INTRODUCCIÓN

A nivel mundial se puede verificar un aumento en el consumo de energía de tipo renovable, debido al agotamiento de las fuentes primarias no renovables o combustibles tipo fósil, además de la contaminación que generan como consecuencia de su ignición (Hossein *et al.*, 2019; Turhal *et al.*, 2019; Mishra *et al.*, 2019; Mehta *et al.*, 2019). Esto se debe al crecimiento poblacional y al desarrollo de la economía en el suministro energético adicional a la restricción sobre las emisiones de gases contaminantes (Sharma *et al.*, 2020; Alirahmi *et al.*, 2021).

Por ello, el uso de energías renovables para generar hidrógeno se considera una alternativa factible para solucionar dicho problema (Sheikhbahaei *et al.*, 2018; Sharma y Melkania, 2018). Además, se han llevado a cabo avances alentadores y sustanciales en los equipos que usan energía geotérmica para generar electricidad, en el ámbito técnico y sostenible, usando configuraciones independientes o híbridas (Olabi *et al.*, 2021; Michopoulos, 2020; Uchida *et al.*, 2019).

El hidrógeno es considerado una excelente opción favorable como futuro combustible. Sin embargo, ciertos obstáculos inhiben la utilización generalizada del combustible de hidrógeno, como el costo de producción y los requisitos especiales de manejo para el almacenamiento y el transporte (Al Enazi *et al.*, 2021).

En la actualidad, los altos costos de la tecnología siguen siendo una barrera para la adopción generalizada del hidrógeno, pero se prevé que a medida que aumente la escala de producción, es probable que los costos disminuyan (Tashie y Godfrey, 2021). Además de las numerosas materias primas, las tecnologías actuales de producción de hidrógeno están asociadas con procesos complicados y un alto consumo de energía (Zhang *et al.*, 2021).

A nivel mundial, comienza a existir un aumento en el consumo de energía no renovable que conduce a un retraso en la disminución de los gases contaminantes (Tetteh *et al.*, 2021). Además, su ritmo de consumo es muy acelerado, en un año, el mundo consume lo que la naturaleza genera en un millón de años, entonces el agotamiento de las reservas existentes es una realidad que no se puede tomar a la ligera. En realidad, ya es oficial el agotamiento del petróleo y del gas natural en un plazo de entre 2 generaciones. Las reservas de carbón son cada vez limitadas, siendo una energía primaria contaminante, de manera que su empleo se condiciona al desarrollo de tecnologías renovables ecoamigables (Michea et al., 2019).

Dichos sistemas geotérmicos son ampliamente más ecoamigables que los sistemas energéticos tradicionales, y ninguna tecnología está exenta de efectos dañinos en el medio ambiente y lo acreditan las investigaciones desarrolladas por Manzella *et al.* (2019) y Bosnjakovic *et al.* (2019). Debido a su forma de cómo se genera, sin quemar combustibles fósiles, siendo la energía geotérmica el calor o energía térmica que se almacena en el interior de la tierra y es una fuente inagotable de energía renovable. Existen alrededor de 1.1 millones de instalaciones a nivel mundial, como lo demuestra Akhtari *et al.* (2019) en su investigación.

Muchos países emplean la energía geotérmica y sigue en crecimiento, lo que demuestra una tendencia altamente positiva al largo plazo. Estados Unidos posee un potencial de 30 GW y emplea el 11.97%, es decir, de 3.591 GW; Filipinas posee un potencial de 4 GW, pero solo utiliza un 47.90%, es decir, 1.916 GW y México con un potencial de 4.6 GW con un porcentaje de utilización de 25.20%, que es 951 MW (Wahyudi *et al.*, 2019; Matuszewska *et al.*, 2019; Colucci *et al.*, 2021). En Sudamérica, Colombia posee una potencia geotérmica promedio aprovechable de 1 170 MWe (Alfaro *et al.*, 2021). En Ischia, Ceglia *et al.* (2021) propusieron un sistema que permitió reducir en 29 900 kg anuales de dióxido de carbono y un ahorro energético de 119 900 kWh anuales de energía primaria (Tranamil *et al.*, 2022).

Ball (2021); Paulillo *et al.* (2019) y Moya *et al.* (2018) manifestaron que para lograr la transición energética se debe hacer uso de fuentes de energía renovables dejando a un lado las fuentes primarias no renovables, para lograr un ambiente más ecológico. Aunque, como toda fuente renovable, la energía geotérmica también enfrenta desafíos, pero debido a su potencial energético, se está considerando su uso para generar electricidad, y así reducir los efectos de la contaminación.

Analizar la importancia del uso de la energía geotérmica para generar hidrógeno verde, con el fin de contribuir a reducir la contaminación originada por los gases de efecto invernadero y a mejorar la eficiencia térmica por medio del análisis de diferentes ciclos termodinámicos, de manera que se contribuye a generar nuevo conocimiento respecto a dicha problemática.

Por lo tanto, se plantea la pregunta general: ¿De qué manera se puede

generar hidrógeno verde y oxígeno al usar energía geotérmica en el campo geotérmico Chivay Pinchollo al emplear un electrolizador? Y como preguntas específicas: ¿Qué características posee el ciclo termodinámico empleado para producir energía eléctrica en el campo geotérmico Chivay Pinchollo, como temperatura, presión, entalpía y potencia?, ¿Qué ciclo termodinámico es mejor utilizar en el campo geotérmico Chivay Pinchollo?, ¿Qué cantidad de hidrógeno y oxígeno se genera anualmente dependiendo de la potencia del ciclo termodinámico utilizado al emplear un electrolizador?, ¿Qué equipos son necesarios que permitan optimizar la producción de energía eléctrica en el ciclo de potencia empleado? Y ¿Cuáles son los indicadores de rentabilidad de utilizar la energía geotérmica para generar hidrógeno verde y oxígeno en el campo Chivay Pinchollo mediante un electrolizador?

El objetivo general es: evaluar la generación de hidrógeno verde y oxigeno mediante energía térmica en el campo geotérmico Chivay Pinchollo. Planteándose como objetivos específicos: Determinar las características que debe poseer el ciclo termodinámico empleado para producir electricidad en el campo geotérmico Chivay Pinchollo, realizar un análisis comparativo entre el ciclo Orgánico Rankine, Ciclo Kalina y Ciclo Binario Flash, calcular la generación de hidrógeno anual dependiendo de la potencia generada en el ciclo termodinámico seleccionado, seleccionar el equipamiento necesario para optimizar la producción de potencia eléctrica y estimar los indicadores de rentabilidad de utilizar energía geotérmica para la generación de hidrógeno verde en el campo geotérmico Chivay Pinchollo. La hipótesis que se plantea en el presente proyecto es: Es posible producir hidrógeno verde y oxígeno de forma rentable generando energía térmica en el campo geotérmico Chivay Pinchollo mediante un electrolizador.

#### II. MARCO TEÓRICO

En el ámbito internacional, Ali Haider *et al.* (2023) efectuaron un estudio sobre el análisis de energético y exergético de un sistema multigenerador que emplea energía geotérmica para la sostenibilidad de una ciudad. Propusieron como objetivo proponer un sistema multigenerador que utilice energía geotérmica. En nuestra tesis se propone realizar el análisis de tres modelos de propuestas y la que posea mayor producción de energía eléctrica sería la más conveniente. Su muestra fue un sistema de multigenerador que empleó energía geotérmica. Los instrumentos que se utilizaron fue el análisis de información, análisis documental y registro de datos. Del análisis, se hizo uso de un ciclo de vapor regenerativo, de absorción de doble efecto y de desalación double flash. De los resultados, se logró demostrar que se puede producir una potencia considerable de energía eléctrica, agua potable e hidrógeno verde, los cuales pueden ser empleados en el sector doméstico e industrial. Se logró generar una potencia de 103 MW. Se calculó una eficiencia térmica de 24.42%, exergética de 38.96% y energética de 54.22%.

En África, específicamente en Yibuti, Awaleh *et al.* (2022) realizaron un estudio comparativo sobre la viabilidad económica en la producción de hidrógeno verde empleando electrólisis del agua con energía geotérmica y eólica en Asal-Ghoubbet Rift. Plantearon el objetivo de examinar la viabilidad económica de generar hidrógeno verde al emplear electrólisis del agua con energía renovable. La muestra de estudio fue la energía geotérmica y eólica de Yibuti. Emplearon como instrumentos al análisis de información y registro de datos. Del análisis, se tuvo un costo unitario de electricidad producida por el aerogenerador de \$ 0.042 por kWh, costo más bajo en relación a la producida por energía geotérmica, que tuvo un coste por unidad de energía producida de \$ 0.086 por kWh. En relación a la generación de hidrógeno, el coste al emplear energía geotérmica, el coste estaba entre \$ 3.31 y \$ 4.78/kg.

En China, Mukhtar *et al.* (2022) realizaron una investigación referente a la generación mundial de hidrógeno y energía sustentable, un análisis sobre la aplicación de la integralidad de los ciclos orgánicos Rankine para sistemas de

producción múltiple. Plantearon como objetivo revisar la aplicación de ciclos orgánicos Rankine en los sistemas para multigeneración. La muestra empleada fue de 19 artículos destacados en relación a la integralidad de los ciclos orgánicos Rankine usados en sistemas de multigeneración. El instrumento de recolección de datos empleado fue el registro de datos. De los resultados se determinó que el sistema logra mayores eficiencias exergéticas y energéticas al generar energía eléctrica y térmica, siendo de 37.88% y 47.9%, respectivamente, para una configuración multigeneración de ciclo orgánico Rankine y Concentrado fotovoltaico/térmico. Se obtuvo un aumento del 16% en la producción de electricidad en dicha configuración. Además, el agua caliente, el efecto de refrigeración y el hidrógeno generado por el sistema multigeneración son 0,4363 L/s, 161 kW y 1,515 L/s, respectivamente.

En Sudáfrica, Barasa y Akanni (2022) realizaron una revisión sobre las centrales eléctricas que emplean energía geotérmica en cabeza de pozo para la producción de energía eléctrica en red. Propusieron como objetivo general determinar el potencial, características y aplicación de las plantas eléctricas cabeza de pozo para la producción de energía eléctrica con el fin de complementar y sustituir las plantas eléctricas convencionales. La muestra de estudio fue las centrales eléctricas que usan tecnología geotérmica en cabeza de pozo. Se utilizaron como instrumentos el análisis documental y registro de datos. Del análisis se obtuvo que las plantas de energía de boca de pozo son ideales para países con regulaciones ambientales estrictas que hacen que el desarrollo de plantas de energía central sea restrictivo. En Japón, donde casi todos los recursos geotérmicos se encuentran en parques nacionales restringidos, mientras que las regulaciones ambientales son más flexibles para las plantas de energía de capacidad inferior a 7.5 MW. Por lo tanto, son las centrales eléctricas de boca de pozo las que brindan la opción de generación para estas áreas. Técnicamente, las centrales eléctricas disfrutan de economías de escala en comparación con las centrales eléctricas de boca de pozo y, por lo tanto, son superiores a las centrales eléctricas de boca de pozo en muchos indicadores de rendimiento de las centrales eléctricas que incluyen factor de capacidad, disponibilidad, factor de carga, costo unitario de generación de energía, entre otros. Por otro lado, las plantas de energía de boca de pozo poseen características únicas y deseables como entrega rápida

del proyecto y plazos de entrega cortos, uso óptimo de condiciones termodinámicas geotérmicas específicas de cabeza de pozo como temperatura, presión y características de salmuera para la máxima generación de energía mediante la optimización de la presión y la temperatura del flash.

En Islandia, Kjeld et al. (2022) desarrollaron una investigación referente al análisis del ciclo de vida de una central geotérmica Theistareykir, en Islandia. Propusieron como objetivo evaluar el ciclo de vida para la planta geotérmica Theistareykir. La muestra de estudio empleada fue la planta de energía geotérmica Theistareykir. Los instrumentos utilizados fueron el análisis documental y el registro de datos con un análisis termodinámico. Del análisis se puede decir que, muchos factores clave son similares entre los estudios de ciclo de vida publicados anteriormente, los límites del sistema no se han armonizado y muchos estudios tienen lagunas en su inventario para diferentes etapas del ciclo de vida. Se establece un conjunto estricto de requisitos para las declaraciones ambientales de productos, declaraciones verificadas por terceros de impactos ambientales basadas en ciclos de vida. Estos deben cumplir con las Reglas de Categoría de Producto, un conjunto de requisitos establecidos por todas las principales partes interesadas en el sector energético. Esto permite al menos una comparación justa entre diferentes estaciones de la misma o diferente fuente de energía, con un mayor nivel de confianza. Actualmente también se está trabajando dentro de la Unión Europea para armonizar las pautas de los ciclos de vida para sistemas geotérmicos.

En Irán, específicamente en Bandar Abbas, Assareh *et al.* (2022) realizaron un estudio donde plantearon como objetivo realizar un análisis comparativo de sistemas de generación múltiple impulsados por energía solar y geotérmica para la producción de limpia de electricidad e hidrógeno a través de evaluaciones de energía y exergía. Utilizaron un enfoque de investigación cuantitativo y diseño de investigación aplicada. La muestra empleada fue sistemas de generación múltiple impulsados por energía solar y geotérmica. Entre los instrumentos utilizados se tuvo al registro de datos y análisis documental. Emplearon el análisis termodinámico para poder dar contestación a los objetivos propuestos. De los resultados se determinó que el sistema geotérmico fue más eficiente que el sistema solar, en un 11.21 % más de generación de hidrógeno y en 0.17 % más de eficiencia exergética.

Según el análisis de sensibilidad, la eficiencia de la turbina, la temperatura de entrada del evaporador, el criterio de idoneidad del generado termoeléctrico, la eficiencia de la bomba y el caudal másico de entrada del evaporador fueron los parámetros más influyentes. Además, el análisis de exergía mostró que la mayor destrucción de exergía del sistema es pertinente al evaporador y la menor a la bomba. El sistema produce 352.816 kWh y 174.913 kg de hidrógeno al año.

En Indonesia, Qurrahman *et al.* (2021) realizaron una investigación referente al análisis de energía y exergía de la central geotérmica de Dieng. El objetivo propuesto fue realizar un análisis de energía y exergía para la central geotérmica Dieng. La muestra de estudio empleada fue la central geotérmica de Dieng. Entre los instrumentos utilizados se tuvieron al análisis de información y registro de datos. De los resultados se obtuvo que la mayor pérdida de exergía fue de 50 MW, ocurrida en la turbina, indicando que era el componente con mayor necesidad de reparación. En resumen, los resultados del estudio aclararon que el componente que necesitaba ser tratado y reparado en la planta de energía geotérmica de Dieng era la turbina. Los análisis de energía y exergía comienzan calculando la entalpía y la entropía de tanto la entrada como la salida de los datos del estudio muestran que la eficiencia más baja fue del 67 % en la turbina, y la tasa de cambio de energía más alta observada fue de 58 MW, en el intercondensador.

En Irán, Ghazvini *et al.* (2019) en su investigación sobre un análisis de revisión del empleo de la energía geotérmica para la generación de hidrógeno, desarrollada en Irán. Propusieron como objetivo proporcionar un resumen conciso de las actuales tecnologías y avanzadas en generación de hidrógeno. La muestra de estudio fue la energía geotérmica. Entre los instrumentos empleados se tuvo al análisis de información y registro de datos. Del análisis se pudo observar que el impacto ambiental fue menor al emplear el método de producción mediante electrólisis en función del viento. Entre tanto los métodos electroquímicos de generación de hidrógeno, métodos geotérmicos y tecnología solar poseen impacto ambiental mayor. Aunque, es destacable mencionar que la generación de hidrógeno en función de las fuentes renovables energéticas es mucho más amigable con el medio ambiente que aquellas que emplean combustibles fósiles.

De acuerdo con los resultados, el costo de producción de hidrógeno asistido por geotermia basado en electrólisis es competitivamente más bajo que otras fuentes como la eólica, la solar térmica junto con el gas natural, la solar fotovoltaica y la red. Además, se puede observar el mismo comportamiento para el costo de producción de hidrógeno asistido por geotermia basado en procesos termoquímicos. se abordan las descripciones del proceso de producción de hidrógeno asistida por geotermia junto con sus aspectos técnicos, económicos y ambientales.

Entre las definiciones de las variables se tuvo lo siguiente:

Se define a la energía geotérmica como la energía que se encuentra en el interior de la tierra (Awaleh *et al.*, 2022).

Se define a la energía geotérmica como aquella que se puede extraer de la corteza terrestre mediante la perforación de pozos para la extracción de agua caliente y vapor, es decir, una mezcla bifásica (Barasa y Akanni, 2022).

En comparación con otras fuentes de energía renovable, la geotermia tiene el potencial de generar una producción de electricidad más estable y consistente, además de una generación de bajo desperdicio (Li *et al.*, 2023).

Se define a la producción de hidrógeno verde como la generación de hidrógeno al emplear un electrolizador y separar las moléculas del agua en hidrógeno y oxígeno (Awaleh *et al.*, 2022).

Se define a la producción de hidrógeno y energía como la producción de hidrógeno al utilizar la electrólisis por medio de un electrolizador y separar las moléculas del agua en hidrógeno y oxígeno (Mukhtar *et al.*, 2022).

El hidrógeno ha sido identificado como un combustible limpio "verde" de interés. En comparación con el uso de combustibles fósiles, la quema de hidrógeno da como resultado cero emisiones y puede obtenerse de fuentes de energía renovables. Además de cero emisiones de dióxido de carbono, el hidrógeno tiene varias otras propiedades atractivas, como un mayor contenido de energía gravimétrica y límites de inflamabilidad más amplios que la mayoría de los combustibles fósiles (Tashie y Godfrey, 2021).

Con respecto a las teorías relacionadas, se tiene lo siguiente:

La integración de la producción de hidrógeno es una parte integral de la mayoría de los sistemas de generación múltiple basados en ciclo Orgánico Rankine, ya que la producción de hidrógeno ayuda a maximizar la entrada de energía renovable en aplicaciones prácticas (Mukhtar *et al.*, 2022).

La energía geotérmica, junto con otras energías renovables (solar, eólica, undimotriz, termosolar) y bajas en carbono, desempeñarán un papel clave en la descarbonización de la industria de generación de energía para cumplir con el objetivo del acuerdo de París, realizado por las Naciones Unidas en 2015, sobre el cambio climático (Paulillo *et al.*, 2019).

Los resultados generales muestran que el área de Asal-Ghoubbet Rift (África) puede producir energía e hidrógeno verde a un costo menor utilizando energía eólica en comparación con la energía geotérmica (Awaleh *et al.*, 2022).

Entre las definiciones operacionales de cada variable se tuvo que:

De acuerdo con Wahyudi et al. (2019), la energía geotérmica se mide a partir de la presión y temperatura de extracción, con esos datos se puede determinar su entalpía y demás parámetros de operación, costos de explotación y costos de operación y mantenimiento.

En relación a lo mencionado por Assareh *et al.* (2022), la producción de hidrógeno se mide a partir de la energía eléctrica generada en el ciclo termodinámico Rankine de potencia, que por medio de un electrolizador se puede descomponer en oxigeno e hidrógeno, entre sus dimensiones se tiene a su poder energético y costos de funcionamiento.

Entre los indicadores de cada dimensión se tuvo:

Con respecto a la variable energía geotérmica, la dimensión parámetros de funcionamiento tiene como indicadores a la temperatura, flujo de masa y entalpía; la dimensión costos de explotación tiene como indicadores al costo de extracción y costo de reinyección y la dimensión costos de operación y mantenimiento tiene como indicadores costo de operación y costo de mantenimiento (Trujillo y Pérez, 2022).

En relación a la variable producción de hidrógeno, la dimensión poder energético tiene como indicadores aporte de energía, capacidad calorífica y

capacidad térmica; y la dimensión costos de funcionamiento tiene como indicadores costos de producción, costos de operación y costos de mantenimiento (Trujillo y Pérez, 2022).

La energía se define de acuerdo con Cengel *et al.* (2019), como aquella energía que puede ser percibida o no, no obstante, es sumamente importante para el desarrollo de la humanidad. Ya es conocido que la energía no es creada ni destruida, sino que es transformada, es decir, pasa de una energía específica a otra que sea requerida para un proceso específico. En un volumen de control o sistema abierto se puede transmitir hacia o desde dicho sistema mediante una entrada y salida de flujo de masa, en tanto, que, para sistemas de masa constante, es decir, cerrados, se puede transferir de dos formas, pudiendo ser calor o trabajo.

Existen dos tipos de energía y son:

Energía primaria, se encuentra en la naturaleza y puede ser aprovechada mediante un proceso específico para generar energía eléctrica (Gobierno de Navarra, 2020).

Energía secundaria, se dice de aquella energía que se ha producido después de procesar la energía primaria, al utilizar un proceso de transformación y se llama energía útil o final (Gobierno de Navarra, 2020).

En la Figura 1 se muestra un gráfico sobre todas las energías renovables y no renovables empleadas a nivel mundial, donde cada color indica un tipo de energía.



Figura 1. Energías renovables y no renovables a nivel mundial. Fuente: (Michea *et al.*, 2019).

La energía geotérmica es definida como aquella que se puede aprovechar del calor que se encuentra disponible en el interior del planeta Tierra. Proviene del término griego "geo" que significa "Tierra" y del término "thermos" que significa "calor", esto es "calor de la Tierra". Se sabe que adentro de la Tierra la temperatura es mayor que la temperatura ambiente y esta aumenta a medida que la profundidad también aumenta (Saunders, 2018). La energía geotérmica es una fuente muy atractiva de energía renovable ecoamigable. La explotación de este recurso natural es sencilla y casi no causa efectos nocivos para el medio ambiente. Pero si bien la geotermia no sufre la intermitencia de otras fuentes renovables, su eficiencia de extracción es bastante modesta en comparación con otras fuentes. Como resultado recientemente ha habido un gran interés en los sistemas híbridos que integran geotérmica y otras formas de energía para aumentar la eficiencia de producción (Ghani et al., 2020).

La Figura 2 muestra un ejemplo de un campo geotérmico, como se ve en la realidad, donde se expulsa vapor debido a la alta temperatura que poseen.



Figura 2. Ejemplo de un campo geotérmico. Fuente: (Saunders, 2018).

El Hidrógeno, llamado vector energético, porque no se encuentra disponible de forma directa en la naturaleza, y para generarlo es necesario emplear un proceso específico. Se considera una energía ecoamigable, siempre que la energía usada para generarlo sea renovable, llamado hidrógeno verde y sirve para producir energía eléctrica o algún otro tipo de energía. Posee características muy llamativas, como elevada de almacenaje, mejor transformación de energía, amigable con la naturaleza, producción energética renovable y elevada energía específica (Wu *et al.*, 2021).

La Figura 3 muestra el símbolo y sus propiedades químicas del elemento hidrógeno.



Figura 3. Símbolo del hidrógeno. Fuente: (Andreu *et al.*, 2020).

Sobre la producción de hidrógeno, al no encontrarse de forma directa disponible en la naturaleza, se hace uso de distintas materias primas que están compuestas de hidrógeno y otros elementos, pudiendo usarse el agua, biomasa, gas natural, entre otras. Se puede decir, que el 96% o más de la producción de hidrógeno mundial se logra empleando energías primarias o fuentes no renovables como son los combustibles del tipo fósil (Wu *et al.*, 2021).

En la Figura 4 se puede apreciar las formas viables para producir hidrógeno verde de forma sostenible y amigable, al utilizar fuentes de energía renovables entre las cuales se tiene a la energía solar, eólica, geotérmica, biomasa, hidroeléctrica, nuclear y también por energías primarias no renovables como carbón, petróleo y gas (Wu *et al.*, 2021).



Figura 4. Formas viables de generación de hidrógeno verde y su aplicación Fuente: (Boongaling *et al*., 2022).

La Figura 5 muestra cómo se puede producir hidrógeno a partir de distintas tecnologías y energías renovables y no renovables.



Figura 5. Rutas convencionales para generar hidrógeno verde Fuente: (Ghazvini *et al.*, 2019)

El proceso de electrólisis del agua, es aquel proceso que hace uso de la energía eléctrica para separar las moléculas del agua en oxígeno e hidrógeno (Park *et al.*, 2020), dicho proceso de puede apreciar en la Figura 6. Dicho proceso ha sido utilizado desde hace mucho tiempo, aproximadamente hace 120 años en la industria, esto es, desde 1900.



Figura 6. Proceso de electrólisis del peróxido de hidrógeno Fuente: (Park *et al.*, 2020)

Respecto a los ciclos termodinámicos de potencia, entre los ciclos de potencia más empleados para centrales geotérmicas se encuentra al Ciclo Rankine (ver Figura 7), el cual se detalla a continuación:

Ciclo Rankine ideal: Es un ciclo ideal empleado en muchas plantas eléctricas de vapor o centrales térmicas (Cengel *et al.*, 2019). Se compone de 4 procesos:

- a. Bomba: proceso de compresión a entropía constante.
- b. Caldera: proceso de adherencia de calor de manera isobárica.
- c. Turbina: proceso de expansión a entropía constante.
- d. Condensador: proceso de expulsión de calor de manera isobárica.



Figura 7. Esquema ideal y diagrama termodinámico del ciclo Rankine Fuente: (Cengel *et al.*, 2019)

Ciclo Rankine real: Este ciclo tiene una diferencia notable con respecto al ideal, ya que se consideran las irreversibilidades en sus equipos y componentes. Por ejemplo, el fluido posee fricción y existen pérdidas de calor dirigidas al entorno que vienen a ser las fuentes generalmente que ocasionan las mayores irreversibilidades, como se puede apreciar en la Figura 8 (Cengel *et al.*, 2019).



Figura 8. a) Diagrama del ciclo real. b) Irreversibilidades en la turbina y bomba Fuente: (Cengel *et al.*, 2019).

Ciclo binario de vapor: En los ciclos de potencia Rankine, el fluido de trabajo empleado por lo general es el agua. Se puede mencionar que es el mejor fluido disponible actualmente, pero se aleja bastante de ser el ideal. El ciclo binario viene a ser el intento para lograr superar algunas deficiencias del agua y lograr una aproximación considerable al fluido de trabajo ideal, al utilizarse dos fluidos de trabajo, tal como se puede visualizar en la Figura 9 (Cengel *et al.*, 2019).





### III. METODOLOGÍA

## 3.1. Tipo y diseño de investigación

## Tipo de investigación

El tipo de investigación que se empleó en el actual estudio fue aplicada, de acuerdo con Hidalgo *et al.* (2021), se hizo uso de las teorías, fórmulas y definiciones en función al tema que se está investigando para responder a los objetivos propuestos y que a la vez se crea nuevo conocimiento. En la presente investigación se hizo uso de la termodinámica para poder dar respuesta a los objetivos planteados, además de realizar un análisis económico para determinar los indicadores de rentabilidad como el Valor Actual Neto (VAN), Tasa Interna de Retorno (TIR), tiempo de retorno de la inversión o Payback.

### Diseño de investigación

El diseño de investigación fue no experimental, porque de acuerdo con Hernández y Mendoza (2018), no se alteraron o manipularon las variables de forma arbitraria, sino que conforme se han encontrado en la realidad, se realizó el análisis y del mismo modo, brindar respuesta a cada objetivo específico propuesto en el estudio actual. Es decir, de acuerdo con información brindada por el informe de JICA (2012), se extrajeron los datos para luego seleccionar los más adecuado para el desarrollo de la presente investigación.

### 3.2. Variables y operacionalización

### Variable independiente: Energía geotérmica

Energía del subsuelo que se puede extraer como calor desde el interior de la Tierra, para poder ser aprovechada de forma factible y rentable. Es necesario tener conocimiento de sus parámetros de operación, costos de explotación y costos de O y M, que son indicadores de la dimensión características de funcionamiento (Tim *et al.*, 2019).

### Variable dependiente: Hidrógeno verde

El hidrógeno es uno de los elementos que más abunda en el mundo y también el más simple. Pero no se encuentra libre en la Tierra, esto es, en estado gaseoso, pero se encuentra combinado con múltiples elementos, por ejemplo, con el Oxígeno

formando agua, con el Carbono formando Hidrocarburos y así con diferentes elementos (Fernández, 2022).

En el Anexo 1 se detalla la tabla de operacionalización de variables.

## 3.3. Población, muestra, muestreo

**Población:** Todos los campos geotérmicos del departamento de Arequipa, que vienen a ser 9.

Muestra: Campo geotérmico Chivay Pinchollo.

Muestreo: No probabilístico.

Unidad de análisis: Campo geotérmico Chivay Pinchollo.

# 3.4. Técnicas e instrumentos de recolección de datos

# Técnicas de recolección de datos

# Análisis documental

Esta técnica llamada análisis documental permitió recolectar datos e información respecto a las características y propiedades de los yacimientos de energía geotérmica, plantas geotérmicas, además de la metodología a utilizar al momento de realizar el análisis termodinámico, técnico y económico, para lo cual se realizó un análisis y revisión de revistas indexadas, con prestigio académico, además de informes académicos realizados por el estado peruano respecto a la energía geotérmica.

### Instrumentos de recolección de datos

# Ficha de registro de datos

Este instrumento sirvió para recolectar información sobre el yacimiento geotérmico en estudio, datos como temperatura, presión, posible entalpía de extracción, potencia a generar, los cuales sirvieron para realizar el análisis termodinámico y posteriormente, hacer el análisis sobre la generación de hidrógeno verde y oxígeno, y al final, realizar el análisis de rentabilidad, calculando los indicadores como el VAN, TIR, Payback y relación beneficio costo. La información extraída no fue necesario que se valide, ya que ha sido analizada por otro investigador y esto le da validez. Para lograr todo esto, se empleó el informe realizado por JICA (2012).

#### 3.5. Procedimientos

Los pasos o procedimientos empleados se detallan seguidamente:

- Primero se seleccionó el mejor fluido orgánico de trabajo y su tabla de propiedades termodinámicas con el propósito de realizar el análisis termodinámico, esto se consiguió por medio de un análisis comparativo para múltiples fluidos de entre lo más comerciales y usados en el sector, permitiendo optimizar el ciclo termodinámico de potencia propuesto.
- Seguidamente, se determinó las características o parámetros operacionales para los ciclos que son sometidos a un análisis comparativo, como el ciclo Orgánico Rankine, ciclo Binario Modificado con separación Flash y ciclo Binario Doble Flash, entre los cuales se tuvo a la temperatura de entrada y salida en la turbina, la presión máxima y mínima empleados en los dispositivos seleccionados, la producción de potencia, el flujo de masa geotérmico y fluido orgánico de trabajo, la temperatura de entrada y salida en el intercambiador de calor.
- Luego, con el uso de las tablas de propiedades termodinámicas, se calcularon los parámetros restantes, empleando la interpolación en los casos requeridos.
- Con el propósito de comprobar que los parámetros calculados son correctos se empleó el software Computer Aided Thermodynamic Tabla 3, el cual permitió efectuar un análisis de comparación.
- Se calculó las eficiencias térmicas reales del ciclo Orgánico Rankine, ciclo Binario Modificado con separación Flash y ciclo Binario Doble Flash, para determinar cuál es mejor para utilizar en el campo geotérmico Chivay Pinchollo, todo esto, de forma teórica con los parámetros obtenidos de las tablas termodinámicas.
- Posteriormente, se determinó la cantidad de energía eléctrica que se genera para luego ser empleada por medio de un electrolizador para producir hidrógeno y oxígeno.
- Para determinar los indicadores de rentabilidad, se utilizó el costo nivelado del hidrógeno verde, además del costo del oxígeno, el ahorro en energía eléctrica, el costo de inversión, los costos de operación y mantenimiento, entre otros,

todo ello se ingresó al programa Microsoft Excel 2021 para el análisis de rentabilidad y determinar los parámetros como el VAN (Valor Actual Neto), TIR (Tasa interna de retorno) y tiempo de recuperación de la inversión, con la finalidad de analizar si es factible y rentable generar hidrógeno verde además de oxígeno empleando energía geotérmica. Para realizar el esquema de la central geotérmica se empleó el software AutoCAD 2022.

En la Figura 10 se muestra el esquema de los procedimientos a seguir:



Figura 10. Esquema de los procedimientos a seguir para desarrollar los objetivos planteados. Fuente: Elaboración propia.

#### 3.6. Método de análisis de datos

La información que se obtuvo de la presente investigación fue procesada de forma manual empleando el gestor de ecuaciones de Microsoft Word, además de la calculadora Casio fx-570 al momento de realizar los cálculos y se comprobaron empleando el software "Computer Aided Thermodynamic Tables 3", además del software Microsoft Excel 2021.

#### 3.7. Aspectos éticos

Toda la información, artículos e investigaciones utilizadas para lograr desarrollar la actual investigación, no fueron alteradas ni manipuladas, esto es, siempre se consideró y tomó en cuenta la normativa vigente para citar y referenciar al material bibliográfico y autores consultados, es decir, se utilizó la norma ISO 690, tal cual lo solicita la Universidad César Vallejo (UCV). Adicionalmente, se tuvo en consideración la guía y orientación de un asesor, con el propósito de poder elaborar de forma correcta y adecuada la actual investigación, y todo el análisis sea lo más real posible y evitando siempre todo tipo de copia o plagio, esto para siempre mantener la originalidad de la investigación.

## **IV. RESULTADOS**

### 4.1. Características de los ciclos termodinámicos

De acuerdo con Cengel *et al.* (2019), entre las características importantes del ciclo termodinámico, se tienen las siguientes:

# 1. Ciclo Rankine Orgánico

## a. Bomba

Se encarga de aumentar la presión del fluido de trabajo para poder romper y vencer la fricción en las tuberías y así poder continuar con la siguiente etapa o proceso, ya que se requiere una presión elevada. Funciona a temperatura y volumen constante debido a que el fluido empleado es incompresible y la diferencia de temperatura en la entrada y la salida es prácticamente cero, es decir, muy bajo.

### b. Intercambiador de calor

Es el encargado de calentar el fluido de trabajo, es decir, de realizar la transferencia de calor para obtener vapor saturado o sobrecalentado a una presión alta para un mejor aprovechamiento. Funciona isobáricamente, es decir, a presión constante.

#### c. Turbina

Equipo encargado de convertir o transformar la energía térmica del vapor en trabajo de flecha, puede ser de una o varias etapas, de baja, media y alta presión. El vapor generado hace mover los álabes que son unas asas que giran a altas velocidades o revoluciones y con un torque elevado originado por la presión del fluido en forma de vapor. Funciona isoentrópicamente, esto es, con una entropía constante.

### d. Condensador

Se encarga de reducir la temperatura del vapor a la salida de la turbina y que se vuelva a transformar en fluido en líquido saturado, funciona a baja presión debido a que a la salida de la turbina el fluido pierde gran parte de su presión. A la salida del condensador se tiene a la bomba para que se repita el ciclo. Funciona isobáricamente.

#### e. Generador

Equipo que se encarga de convertir la energía eléctrica generada en la turbina para ser aprovechable. Se tienen en distintas configuraciones de voltaje, eficiencia y factor de potencia.

#### f. Electrolizador

Es el equipo encargado de separar las moléculas de agua en hidrógeno y oxígeno por medio del proceso llamado "Electrólisis del agua", que luego pueden ser almacenados para su posterior uso en lo que sea requerido.

En la Figura 11 se puede apreciar el esquema de configuración para el posterior análisis del Ciclo Rankine Orgánico.

#### Selección del fluido orgánico de trabajo

En el mercado existen muchos fluidos de trabajo, entre los cuales se tiene al Diclorofluorometano (R12), Tetrafluorometano (R134a), Tetrafluorometano + Pentafluorometano (R410a), Isobutano (R600a) y el Isopentano (R601a). De los cuales el que más sobresale por sus propiedades y características es el R410a, con un grado de contaminación nulo, un poder calorífico elevado, un precio bastante accesible en el mercado, no es tóxico para el ser humano y tampoco es inflamable, lo que hace que sea la mejor opción a usarse para el ciclo termodinámico seleccionado en la presente investigación. Esto en consideración con lo investigado por Trujillo y Pérez (2022), quienes de su análisis efectuado a los distintos fluidos orgánicos de trabajo, concluyeron que el R410a es el mejor para ser empleado en un Ciclo Orgánico Rankine.

La tablas termodinámicas se pueden apreciar en el Anexo 3, que fueron tomadas del libro Fundamentos de Termodinámica de los autores Borgnakke y Sonntag (2019).



Figura 11. Esquema termodinámico del Ciclo Orgánico Rankine.

Fuente: Elaboración propia.

# 2. Ciclo Binario modificado con evaporación flash

De acuerdo con Salazar *et al.* (2017), este ciclo emplea en su configuración al fluido de trabajo llamado R410a, con los siguientes equipos:

#### a. Intercambiador de calor

Encargado de proporcionar el calor al amoniaco por medio de la mezcla bifásica obtenida del pozo geotérmico para que el amoniaco se convierta en una mezcla de líquido saturado y vapor saturado.

#### b. Separador

Se encarga de separar el líquido saturado del vapor saturado para que el vapor saturado se convierta en vapor sobrecalentado y pueda ser empleado en la turbina.

#### c. Sobrecalentador

Encargado de proporcionar el calor al vapor saturado de amoniaco, para convertirlo en vapor sobrecalentado para ser empleado en la turbina.

#### d. Turbina

Encargado de producir la energía eléctrica por medio de la expansión del vapor sobrecalentado en el interior del eje de la turbina, que, acoplado a un generador, se pueda utilizar en el electrolizador.

### e. Absorbedor

Encargado de mezclar el fluido a la salida de la turbina y a la salida del difusor, para que posteriormente se convierta en líquido saturado o subenfriado para pasar luego por la bomba y se comprima.

### f. Difusor

Encargado de bajar la presión del fluido a la salida del regenerador, pero mantiene la entalpía.

#### g. Regenerador

Encargado de aumentar la temperatura del fluido de trabajo, trabaja como un intercambiador de calor, ya que utiliza el calor del fluido a la salida del separador para calentar el fluido a la salida de la bomba.
# h. Condensador

Encargado de disminuir la temperatura del fluido de trabajo a la salida del absorbedor, para que pueda ser comprimido en la bomba, funciona como un intercambiador de calor y se usará para precalentar el agua de alimentación para el electrolizador.

# i. Bomba de agua de enfriamiento

Encargado de aumentar la presión del suministro de agua al electrolizador.

# j. Bomba de fluido de trabajo

Proporciona la presión adecuada para utilizar el fluido de trabajo comprimido que es el amoniaco para aprovechar al máximo su potencial energético.



Figura 12. Esquema del Ciclo Binario modificado con evaporación flash.

Fuente: Elaboración propia.

# 3. Ciclo Binario Flash

De acuerdo con Salazar *et al.* (2017), realizando un análisis respecto de varios ciclos de potencia para centrales geotermoeléctricas, como de vapor seco, cámara flash y ciclos híbridos, concluyeron que el ciclo flash con dos cámaras flash es el más adecuado, porque se tiene el mejor rendimiento y eficiencia térmica, además de mejorar los costos, y reducir las pérdidas de energía. Por lo que, para la presente investigación, se realizó un análisis de un Ciclo Binario Flash con dos cámaras. Los componentes empleados en un Ciclo Binario Flash, se tienen los siguientes:

### a. Cámaras Flash

Llamada también cámara de evaporación instantánea, donde se origina una pérdida de presión convirtiendo el líquido o fluido en vapor.

### b. Separador

Dispositivo empleado para separar el líquido saturado del vapor saturado, donde el líquido saturado se queda por debajo del vapor saturado.

# c. Turbina de alta presión

Equipo que sirve para convertir la energía entálpica del vapor a alta presión en una primera etapa.

# d. Turbina de baja presión

Equipo que sirve para convertir la energía entálpica del vapor a baja presión en una segunda etapa.

### e. Condensador

Encargado de disminuir la temperatura del fluido de trabajo a la salida del absorbedor, para que pueda ser comprimido en la bomba, funciona como un intercambiador de calor y se usará para precalentar el agua de alimentación para el electrolizador.

### f. Generador

Equipo que se encarga de convertir la energía eléctrica generada en la turbina para ser aprovechable. Se tienen en distintas configuraciones de voltaje, eficiencia y factor de potencia.



Figura 13. Esquema termodinámico del Ciclo Binario Doble Flash.

Fuente: Elaboración propia.

### Campo geotérmico Chivay – Pinchollo

Ubicado en el departamento de Arequipa, posee un potencial de recursos para generación de energía eléctrica de 169,2 MWe, pero la capacidad posible o potencia de desarrollo es de 150 MWe, de acuerdo con la Tabla 1.

| Nombre del campo   | Potencial de<br>Recursos P80 (MWe) | Capacidad posible de<br>desarrollo (MWe) |  |
|--------------------|------------------------------------|------------------------------------------|--|
| Chungara-Kallapuma | 840                                | 75                                       |  |
| Ancocollo          | 982                                | 90                                       |  |
| Tutupaca           | 113,8                              | 105                                      |  |
| Crucero            | 794                                | 70                                       |  |
| Pinaya             | 368                                | 35                                       |  |
| Calacoa-Putina     | 108,2                              | 100                                      |  |
| Ulucan             | 274                                | 25                                       |  |
| Jesús María        | 173                                | 10                                       |  |
| Ccollo/Titire      | 397                                | 35                                       |  |
| Cailloma           | 91                                 | 5                                        |  |
| Chivay - Pinchollo | 162,9                              | 150                                      |  |
| Puquio             | 343                                | 30                                       |  |
| Chancos            | 153                                | 5                                        |  |
| Total              | 826,4                              | 735                                      |  |

Tabla 1. Potencial y capacidad posible de desarrollo en campos geotérmicos

Fuente: (Agencia de Cooperación Internacional del Japón (JICA), 2012)

### Presión atmosférica

La localidad de Chivay se encuentra a una altitud de 3 551 m.s.n.m., por lo que empleando la fórmula siguiente, se calcula la presión en kPa (Cengel y Cimbala, 2015).

$$P_{local} = P_{atm.estándar} \left(1 - \frac{\alpha * Z}{T_0}\right)^{g/\alpha R}$$
$$P_{local} = 101\ 325\ Pa\ x\ \left(1 - \frac{0.0065\ x\ 3\ 551}{288.15}\right)^{5.26} = 65\ 311\ Pa = 65.311\ kPa$$

### 4.2. Análisis comparativo entre los ciclos termodinámicos

### Análisis termodinámico Ciclo Orgánico Rankine

El análisis parte de la Figura 11, por lo tanto, se tuvo lo siguiente:

**Estado 1:** En este estado, el fluido de trabajo se encuentra como líquido saturado, y sus propiedades termodinámicas se calculan de acuerdo a la presión y fase

encontrada, por lo que se obtuvo lo siguiente:

# $P_1 = 65.311 \, kPa$

Tabla 2. Interpolación para calcular  $T_1$ 

| 64.1    |
|---------|
| • · · · |
| 65.311  |
| 84      |
|         |

Fuente: Elaboración propia.

$$T_1 = -60 + (-55 - -60) \left(\frac{65.311 - 64.1}{84 - 64.1}\right) = -59.70 \,^{\circ}C$$

Tabla 3. Interpolación para calcular  $s_1$ 

| Entropía (kJ/kg. K)   | Presión (kPa) |  |
|-----------------------|---------------|--|
| -0.1227               | 64.1          |  |
| <i>S</i> <sub>1</sub> | 65.311        |  |
| -0.0912               | 84            |  |
|                       |               |  |

Fuente: Elaboración propia.

$$s_1 = -0.1227 + (-0.0912 - -0.1227) \left(\frac{65.311 - 64.1}{84 - 64.1}\right) = -0.1208 \frac{kJ}{kg.K}$$

Tabla 4. Interpolación para calcular  $h_1$ 

| Entalpía (kJ/kg) | Presión (kPa) |  |
|------------------|---------------|--|
| -27.45           | 64.1          |  |
| $h_1$            | 65.311        |  |
| -20.64           | 84            |  |
|                  |               |  |

Fuente: Elaboración propia.

$$h_1 = -27.45 + (-20.64 - -27.45) \left(\frac{65.311 - 64.1}{84 - 64.1}\right) = -27.0356 \frac{kJ}{kg}$$

Tabla 5. Datos para calcular  $v_1$ 

| Volumen específico (m³/kg) | Presión (kPa) |  |
|----------------------------|---------------|--|
| 0.000727                   | 64.1          |  |
| $v_1$                      | 65.311        |  |
| 0.000735                   | 84            |  |

Fuente: Elaboración propia.

$$v_1 = 0.000727 + (0.000735 - 0.000727) \left(\frac{65.311 - 64.1}{84 - 64.1}\right) = 0.0007275 \ \frac{m^3}{kg}$$

**Estado 2:** En este estado se ubica la entrada de la bomba, la cual se encarga de comprimir al fluido de trabajo, por lo que se calcula el trabajo específico de la bomba, empleando el volumen específico del fluido en líquido saturado por la diferencia de presiones y así calcular la entalpía a la salida de la bomba de la siguiente manera:

 $P_2 = 4 MPa$ 

$$w_{b,e} = v_1 \cdot (P_2 - P_1) = 0.0007275 \frac{m^3}{kg} (4\ 000 - 65.311) \ kPa = 2.8624 \frac{kJ}{kg}$$
$$h_2 = h_1 + w_{b,e} = -27.04 \frac{kJ}{kg} + 2.8625 \frac{kJ}{kg} = -24.173 \frac{kJ}{kg}$$

Para calcular la temperatura en este estado, se utilizaron los datos de temperatura y entalpía en el rango determinado, y con la suposición que se encuentra en saturación, es decir, como líquido saturado a la temperatura:

Tabla 6. Interpolación para calcular  $T_2$ 

| Entalpía (kJ/kg) | Temperatura (°C)      |
|------------------|-----------------------|
| -27.45           | -60                   |
| -24.173          | <i>T</i> <sub>2</sub> |
| -20.64           | -55                   |

Fuente: Elaboración propia.

$$T_2 = -60 + (-55 - -60) \left(\frac{-24.173 - -27.45}{-20.64 - -27.45}\right) = -57.59 \,^{\circ}C$$

**Estado 3:** En la entrada del intercambiador de calor se tiene líquido saturado con una presión de 4 MPa, y a su salida dicho líquido saturado se convierte en vapor sobrecalentado, obteniéndose lo siguiente:

$$P_{3} = P_{2} = 4 MPa \qquad T_{3} = 120 \,^{\circ}C$$

$$h_{3} = 367.29 \frac{kJ}{kg} \qquad v_{3} = 0.00897 \frac{m^{3}}{kg}$$

$$s_{3} = 1.1529 \frac{kJ}{kg.K}$$

**Estado 4:** La turbina considerada es isoentrópica, es decir, la entropía en la entrada es la misma que en la salida, entonces se obtiene que:

$$P_4 = 65.311 \, kPa$$

$$s_4 = s_3 = 1.1529 \frac{kJ}{kg.K}$$

Interpolando con los datos obtenidos, se calculó y obtuvo los siguientes datos:

La calidad en la salida de la turbina es:

$$x_4 = \frac{s_4 - s_{4f}}{s_{4g} - s_{4f}} = \frac{(1.1529 - -0.1227)\frac{kJ}{kg}}{(1.1907 - -0.1227)\frac{kJ}{kg}} = 0.9712$$

La entalpía en la salida es:

$$h_{4f} = -27.45 \frac{kJ}{kg} \qquad h_{4g} = 252.51 \frac{kJ}{kg}$$

$$h_4 = h_{4f} + x_4 (h_{4g} - h_{4f}) = -27.45 \frac{kJ}{kg} + 0.9712 (252.51 - 27.45) \frac{kJ}{kg}$$

$$h_4 = 244.447 \frac{kJ}{kg}$$

El volumen específico es:

$$v_{4f} = 0.000727 \frac{m^3}{kg} \qquad v_{4g} = 0.36845 \frac{m^3}{kg}$$
$$v_4 = v_{4f} + x_4 (v_{4g} - v_{4f}) = 0.000727 \frac{m^3}{kg} + 0.9712 (0.36845 - 0.000727) \frac{m^3}{kg} = 0.35786 \frac{m^3}{kg}$$

Ahora, empleando las eficiencias isentrópicas de la turbina y la bomba para que el ciclo sea lo más real posible, se obtuvo lo siguiente:

$$\eta_b = 80\% = 0.80$$

$$w_{b,r} = \frac{w_{b,e}}{\eta_b} = \frac{2.8624 \frac{kJ}{kg}}{0.80} = 3.578 \frac{kJ}{kg}$$

$$h_{2r} = h_1 + w_{b,r} = -27.0356 \frac{kJ}{kg} + 3.578 \frac{kJ}{kg} = -23.4576 \frac{kJ}{kg}$$

Tabla 7. Interpolación para calcular  $T_{2r}$ 

| Entalpía (kJ/kg) | Temperatura (°C) |  |  |  |
|------------------|------------------|--|--|--|
| -27.45           | -60              |  |  |  |
| -23.4576         | $T_{2r}$         |  |  |  |
| -20.64           | -55              |  |  |  |
|                  |                  |  |  |  |

Fuente: Elaboración propia.

$$T_{2r} = -60 + (-55 - -60) \left(\frac{-23.4576 - -27.45}{-20.64 - -27.45}\right) = -57.07 \,^{\circ}C$$

 $\eta_t = 90\% = 0.9$ 

$$w_{t,i} = h_3 - h_4 = 367.29 \frac{kJ}{kg} - 244.447 \frac{kJ}{kg} = 122.843 \frac{kJ}{kg}$$
$$w_{t,r} = \eta_t x w_{t,i} = 0.9 x 122.843 \frac{kJ}{kg} = 110.559 \frac{kJ}{kg}$$

$$h_{4r} = h_3 - w_{t.r} = 367.29 \frac{kJ}{kg} - 110.559 \frac{kJ}{kg} = 256.731 \frac{kJ}{kg}$$

En el intercambiador de calor, el calor que entra es:

$$q_e = h_3 - h_{2r} = 367.29 \frac{kJ}{kg} - -23.4576 \frac{kJ}{kg} = 390.7476 \frac{kJ}{kg}$$

Luego, se calculó el trabajo de bomba y turbina de forma ideal, obteniendo lo siguiente:

$$w_{b,e} = 2.8624 \frac{kJ}{kg}$$
  $w_{t.i} = 122.843 \frac{kJ}{kg}$ 

Por lo tanto, el trabajo neto ideal calculado fue:

$$w_{neto,i} = w_{t,i} - w_{b,e} = 122.843 \frac{kJ}{kg} - 2.8624 \frac{kJ}{kg} = 119.9806 \frac{kJ}{kg}$$

Seguidamente, se calcularon los trabajos reales de la bomba y turbina, obteniendo lo siguiente:

$$w_{b,r} = 3.578 \, \frac{kJ}{kg}$$
  $w_{t,r} = 110.559 \frac{kJ}{kg}$ 

Por lo que el trabajo neto real calculado fue:

$$w_{neto,r} = w_{t,r} - w_{b,r} = 110.559 \frac{kJ}{kg} - 3.578 \frac{kJ}{kg} = 106.981 \frac{kJ}{kg}$$

. .

De los datos obtenidos del campo geotérmico, en relación a la potencia que se puede explotar que es de 150 MW (Tabla 1), se procedió a calcular el flujo de masa del fluido orgánico de trabajo, entonces se obtuvo que:

 $\dot{W}_{neta} = 150 MW$ 

$$\dot{m}_{R410a} = \frac{\dot{W}_{neta}}{w_{neto,r}} = \frac{150 \times 10^3 \frac{kJ}{s}}{106.981 \frac{kJ}{kg}} = 1.402.12 \frac{kg}{s}$$



Figura 14. Esquema del intercambiador de calor Fuente: Elaboración propia.

Ahora, se emplearon los datos de la temperatura en la entrada y salida del intercambiador de calor, para calcular lo siguiente:

 $T_{3} = 120 \circ C$   $T_{5} = 120 \circ C$   $T_{2r} = -57.07 \circ C$   $T_{6} = 60 \circ C$   $C_{p R410a} = 1.335 \frac{kJ}{kg.K}$   $C_{p agua} = 4.2355 \frac{kJ}{kg.K} (Anexo 8)$   $\dot{m}_{R410a} = 1.402.12 \frac{kg}{s}$ 

Determinando el calor en el intercambiador de calor:

$$\dot{Q}_{ic} = \dot{m}_{R410a} \cdot C_{p R410a} \cdot (T_3 - T_{2r}) = 1\ 402.12 \frac{kg}{s} \ x\ 1.335 \frac{kJ}{kg \cdot K} \ x\ (140 - -57.07)\ K$$
$$\dot{Q}_{ic} = 368\ 881.58\ kW$$

Se calculó el flujo de masa que se debe extraer en el pozo de extracción, obteniendo que:

$$\dot{m}_g = \frac{\dot{Q}_{ic}}{C_{p \ agua} \cdot (T_5 - T_6)} = \frac{368\ 881.58\ \frac{kJ}{s}}{4.2355\ \frac{kJ}{kg.\ K}\ x\ (120 - 60)\ K} = 1\ 451.55\ \frac{kg}{s}$$

$$\dot{m}_g = 5\ 225\ 568.33 rac{kg}{h}$$
 $ho_{agua} = 952.50 rac{kg}{m^3} \ (Anexo\ 7)$ 

 $\dot{V}_{fluido.geot\acute{e}rmico} = 5486.16 \frac{m^3}{h}$ 

Tabla 8. Resumen del Ciclo Orgánico Rankine – Cálculo manual

| -0.1205 | -                                           |                                                                                                                                |
|---------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|         | 0                                           | Líquido saturado                                                                                                               |
| -0.1074 | -                                           | Líquido saturado                                                                                                               |
| -0.1042 | -                                           | Líquido saturado                                                                                                               |
| 1.1529  | -                                           | Vapor sobrecalentado                                                                                                           |
| 1.1529  | 0.9712                                      | Mezcla bifásica                                                                                                                |
| -       | -                                           | Vapor sobrecalentado                                                                                                           |
| -       | -0.1074<br>-0.1042<br>1.1529<br>1.1529<br>- | -0.1074         -           -0.1042         -           1.1529         -           1.1529         0.9712           -         - |

Fuente: Elaboración propia.

Tabla 9. Resumen comparativo de resultados.

| Estado | Presión<br>(MPa) | Temperatura<br>(°C) | Entalpía<br>(kJ/kg) | Entropía<br>(kJ/kg. K) | Calidad (x) | Fase                 |
|--------|------------------|---------------------|---------------------|------------------------|-------------|----------------------|
| 1      | 0.065311         | -59.70              | -27.0356            | -0.1208                | 0           | Líquido saturado     |
| 2      | 4.00             | -57.59              | -24.173             | -0.1080                | -           | Líquido saturado     |
| 2r     | 4.00             | -57.07              | -23.4576            | -                      | -           | Líquido saturado     |
| 3      | 4.00             | 120                 | 367.30              | 1.1530                 | -           | Vapor sobrecalentado |
| 4      | 0.065311         | -59.65              | 244.90              | 1.1530                 | 0.9721      | Mezcla bifásica      |
| 4r     | 0.065311         | -54.39              | 256.731             | 1.2080                 | -           | Vapor sobrecalentado |

Fuente: Elaboración propia.

Del análisis comparativo entre el cálculo manual y el cálculo con el software *"Computer Aided Thermodynamic Tables 3"* se puede verificar que la diferencia es mínima, concluyendo que las tablas empleadas con la metodología de cálculo utilizado permiten obtener los parámetros faltantes sin ningún problema.

Calculando la eficiencia térmica real del Ciclo Orgánico Rankine, de acuerdo con las fórmulas de Cengel *et al.* (2019):

$$\eta_{t\acute{e}rmica,r} = \frac{w_{neto,r}}{q_e}$$
$$\eta_{t\acute{e}rmica,r} = \frac{106.981 \frac{kJ}{kg}}{390.7476 \frac{kJ}{kg}}$$

 $\eta_{t\acute{e}rmica,r} = 0.2738 \: x \: 100\% = 27.38\%$ 

Análisis termodinámico Ciclo Binario Modificado con separación flash

El análisis parte de la Figura 12, por lo tanto, se tuvo lo siguiente:

**Estado 1:** En este estado, el fluido de trabajo se encuentra como vapor saturado, y sus propiedades termodinámicas se calculan de acuerdo a la presión y fase encontrada, por lo que se obtuvo lo siguiente:

$$P_1 = 3 MPa$$

$$T_1 = 49.07 \ ^{\circ}C$$

$$h_1 = 280.002 \frac{kJ}{kg}$$
$$s_1 = 0.9303 \frac{kJ}{kg.K}$$

**Estado 2:** En este estado, el fluido de trabajo pasa por la turbina mediante un proceso isoentrópico, por lo que se obtuvo lo siguiente:

$$P_2 = 65.311 \ kPa$$
  
 $s_2 = s_1 = 0.9303 \frac{kJ}{kg.K}$ 

Interpolando se obtienen los demás parámetros:

$$T_{2} = -59.70 \ ^{\circ}C$$

$$s_{2f} = -0.120783 \frac{kJ}{kg.K}$$

$$s_{2g} = 1.189635 \frac{kJ}{kg.K}$$

$$x_{2} = \frac{s_{2} - s_{2f}}{s_{2g} - s_{2f}} = \frac{0.9303 - -0.120783}{1.189635 - -0.120783} = 0.8021$$

$$h_{2f} = -27.036 \frac{kJ}{kg}$$

$$h_{2g} = 252.673 \frac{kJ}{kg}$$

$$h_{2} = h_{2f} + x_{2} \left(h_{2g} - h_{2f}\right) = -27.036 \frac{kJ}{kg} + 0.8021 \left(252.673 - -27.036\right) \frac{kJ}{kg}$$

$$h_2 = 197.3186 \frac{kJ}{kg}$$

**Estado 3:** En este estado, el fluido de trabajo sale del condensador como líquido saturado, obteniendo lo siguiente:

$$P_3 = 65.311 \ kPa$$
$$T_3 = -59.70 \ ^{\circ}C$$
$$x_3 = 0$$
$$h_3 = -27.036 \frac{kJ}{kg}$$
$$v_3 = 0.00072749 \frac{m^3}{kg}$$

**Estado 4:** En este estado, el fluido de trabajo sale de la bomba como líquido subenfriado, obteniendo lo siguiente:

$$P_{4} = 3 MPa$$

$$w_{b1} = v_{3} (P_{4} - P_{3}) = 0.00072749 \frac{m^{3}}{kg} (3 \ 000 - 65.311) \ kPa = 2.135 \frac{kJ}{kg}$$

$$h_{4} = h_{3} + w_{b1} = -27.036 \frac{kJ}{kg} + 2.135 \frac{kJ}{kg} = -24.901 \frac{kJ}{kg}$$

**Estado 5:** En este estado, el fluido de trabajo sale del mezclador como líquido saturado, obteniendo lo siguiente:

$$P_5 = 3 MPa$$
  
 $T_5 = 49.07 \,^{\circ}C$   
 $h_5 = 141.707 \frac{kJ}{kg}$   
 $v_5 = 0.00109468 \frac{m^3}{kg}$ 

**Estado 6:** En este estado, el fluido de trabajo sale de la bomba 2 como líquido subenfriado, obteniendo lo siguiente:

$$P_6 = 4 MPa$$

$$w_{b2} = v_5 (P_6 - P_5) = 0.00109468 \frac{m^3}{kg} (4\ 000 - 3\ 000) \ kPa = 1.09468 \frac{kJ}{kg}$$
$$h_6 = h_5 + w_{b2} = 141.707 \frac{kJ}{kg} + 1.0947 \frac{kJ}{kg} = 142.8017 \frac{kJ}{kg}$$

**Estado 7:** En este estado, el fluido de trabajo sale del intercambiador de calor luego de transferirle calor del fluido geotérmico, convirtiéndose en líquido saturado a 4 MPa, obteniendo lo siguiente:

$$P_7 = 4 MPa$$

$$T_7 = 61.85 \ ^{\circ}C$$

$$h_7 = 171.468 \frac{kJ}{kg}$$

**Estado 8:** En este estado, el fluido de trabajo sale del difusor siendo estrangulado, reduciéndose la presión de 4 MPa a 3 MPa, obteniendo lo siguiente:

$$P_{8} = 3 MPa$$

$$h_{8} = h_{7} = 171.468 \frac{kJ}{kg}$$

$$h_{8f} = 141.707 \frac{kJ}{kg}$$

$$h_{8g} = 280.002 \frac{kJ}{kg}$$

$$x_{8} = \frac{h_{8} - h_{8f}}{h_{8g} - h_{8f}} = \frac{171.468 - 141.707}{280.002 - 141.707} = 0.2152$$

Del balance de masa y energía:

$$y' = 1 - \frac{h_5 - h_8}{h_4 - h_1} = 1 - \frac{141.707 - 171.468}{-24.901 - 280.002}$$

$$y' = 0.9024$$

Entonces, reemplazando los datos para calcular la entalpía del estado 9:

$$h_9 = \frac{h_8 - (1 - y')h_1}{y'} = \frac{171.468 - (1 - 0.9024)(280.002)}{0.9024} = 159.7294 \frac{kJ}{kg}$$

Ahora, empleando las eficiencias isoentrópicas para las bombas y turbinas:

 $\eta_b = 80\% = 0.80$  $\eta_t = 90\% = 0.90$  $2.125 \ kJ$ 

$$w_{r,b1} = \frac{w_{b1}}{\eta_b} = \frac{2.135 \frac{kJ}{kg}}{0.80} = 2.66875 \frac{kJ}{kg}$$
$$h_{4r} = h_3 + w_{r,b1} = -27.036 \frac{kJ}{kg} + 2.66875 \frac{kJ}{kg} = -24.36725 \frac{kJ}{kg}$$

$$w_{r,b2} = \frac{w_{b2}}{\eta_b} = \frac{1.09468 \frac{kJ}{kg}}{0.80} = 1.36835 \frac{kJ}{kg}$$

$$h_{6r} = h_5 + w_{r,b2} = 141.707 \frac{kJ}{kg} + 1.36835 \frac{kJ}{kg} = 143.07535 \frac{kJ}{kg}$$

El trabajo de la turbina es:

$$w_t = h_1 - h_2 = 280.002 \frac{kJ}{kg} - 197.3186 \frac{kJ}{kg} = 82.6834 \frac{kJ}{kg}$$

El trabajo real de la turbina es:

$$w_{r,t} = \eta_t \ x \ w_t = 0.90 \ x \ 82.6834 \frac{kJ}{kg} = 74.41506 \frac{kJ}{kg}$$
$$h_{2r} = h_1 - w_{r,t} = 280.002 \frac{kJ}{kg} - 74.41506 \frac{kJ}{kg} = 205.58694 \frac{kJ}{kg}$$

Del balance de masa y energía:

$$y' = 1 - \frac{h_5 - h_8}{h_{4r} - h_1} = 1 - \frac{141.707 - 171.468}{-24.36725 - 280.002}$$

$$y' = 0.9022$$

Entonces, reemplazando los datos para calcular la entalpía del estado 9r:

$$h_{9r} = \frac{h_8 - (1 - y') h_1}{y'} = \frac{171.468 - (1 - 0.9022)(280.002)}{0.9022}$$
$$h_{9r} = 159.7027 \frac{kJ}{kg}$$

De acuerdo con Cengel *et al.* (2019), el trabajo neto real se calcula con la siguiente fórmula:

$$\begin{split} w_{r,neto} &= (1-y') \, w_{r,t} - (1-y') \, w_{r,b1} - w_{r,b2} \\ w_{r,neto} &= (1-0.9022) \, x \, 74.41506 - (1-0.9022) \, x \, 2.66875 - 1.36835 = 5.64844 \frac{kJ}{kg} \end{split}$$

El calor de entrada es:

$$q_e = h_7 - h_{6r} = 171.468 \frac{kJ}{kg} - 143.07535 \frac{kJ}{kg} = 28.39265 \frac{kJ}{kg}$$

La eficiencia térmica es:

$$\eta_{t\acute{e}rmica,r} = \frac{w_{r,neto}}{q_e} = \frac{5.64844 \frac{kJ}{kg}}{28.39265 \frac{kJ}{kg}} = 0.19894 \ x \ 100\% = 19.894\%$$



Figura 15. Ciclo binario modificado con separación flash y flujos de masa.

Fuente: Elaboración propia.

#### Ciclo Binario doble Flash

El análisis parte de la Figura 13, por lo tanto, se tuvo lo siguiente:

**Estado 1:** En este estado, se tiene la cámara flash 1, y el fluido geotérmico extraído se encuentra como líquido saturado, y sus propiedades termodinámicas se calculan de acuerdo a la presión y fase encontrada, por lo que se obtuvo lo siguiente:

$$P_1 = 4 MPa$$
$$T_1 = 250.35 \circ C$$

$$h_1 = 1\ 087.40 \frac{kJ}{kg}$$

$$s_1 = 2.7966 \frac{kJ}{kg.K}$$

2 1/10-

ъ

**Estado 2:** En este estado, se encuentra la salida de la cámara flash 1, donde la presión se reduce, es decir, se expande el fluido de trabajo, y se mantiene la entalpía constante, esto es, la entalpía del estado 1 es igual a la del estado 2, y la fase del fluido cambia a una mezcla bifásica, por lo que se obtuvo:

$$P_{2} = 2 MPd$$

$$T_{2} = 212.38 °C$$

$$h_{2} = h_{1} = 1 087.40 \frac{kJ}{kg}$$

$$h_{2f} = 908.47 \frac{kJ}{kg}$$

$$h_{2g} = 2 798.30 \frac{kJ}{kg}$$

$$x_{2} = \frac{h_{2} - h_{2f}}{h_{2g} - h_{2f}} = \frac{(1 087.40 - 908.47) \frac{kJ}{kg}}{(2 798.30 - 908.47) \frac{kJ}{kg}} = 0.09468$$

**Estado 3:** En este estado se encuentra la salida del absorbedor donde se extrae el vapor saturado para luego ser utilizado en la turbina de vapor, empleando las tablas de propiedades termodinámicas se obtuvieron los demás parámetros:

$$P_2 = P_3 = 2 MPa$$

$$T_3 = T_2 = 212.38 \circ C$$
$$x_3 = 1$$
$$h_3 = 2 \ 798.30 \frac{kJ}{kg}$$
$$s_3 = 6.3390 \frac{kJ}{kg.K}$$

Estado 9: En este estado se encuentra la salida del absorbedor donde se extrae el líquido saturado para luego ser utilizado en la turbina de vapor, empleando las tablas de propiedades termodinámicas se obtuvieron los demás parámetros:

$$P_{9} = P_{2} = 2 MPa$$

$$T_{9} = T_{2} = 212.38 °C$$

$$x_{9} = 0$$

$$h_{9} = 908.47 \frac{kJ}{kg}$$

$$s_{9} = 2.4467 \frac{kJ}{kg.K}$$
Calculando el valor de y':  

$$\dot{E}_{entrada} = \dot{E}_{salida}$$

$$1 x h_{2} = y' x h_{3} + (1 - y') x h_{9}$$

$$y' = \frac{h_{2} - h_{9}}{h_{3} - h_{9}} = \frac{1087.40 - 908.47}{2798.30 - 908.47} = 0.09468$$

л

Estado 10: En este estado se tiene la salida de la cámara flash 2, con una reducción de presión de 2 MPa a 1 MPa, donde la entalpía del estado 9 es igual a la del estado 10, obteniendo lo siguiente:

$$P_{10} = 1 MPa$$
  
 $T_{10} = 179.88 \,^{\circ}C$   
 $h_{10} = h_9 = 908.47 \frac{kJ}{kg}$ 

$$h_{10f} = 762.51 \frac{kJ}{kg}$$

$$h_{10g} = 2\ 777.10 \frac{kJ}{kg}$$

$$x_{10} = \frac{h_{10} - h_{10f}}{h_{10g} - h_{10f}} = \frac{(908.47 - 762.51) \frac{kJ}{kg}}{(2\ 777.10 - 762.51) \frac{kJ}{kg}} = 0.07245$$

**Estado 5:** En este estado se tiene la salida del absorbedor 2, donde se extrae el vapor saturado a la presión de 1 MPa, obteniendo lo siguiente:

$$P_{5} = P_{10} = 1 MPa$$
  

$$T_{5} = T_{10} = 179.88 °C$$
  

$$x_{5} = 1$$
  

$$h_{5} = 2 777.10 \frac{kJ}{kg}$$
  

$$s_{5} = 6.585 \frac{kJ}{kg.K}$$

**Estado 11:** En este estado se tiene la salida del absorbedor 2, donde se extrae el líquido saturado a la presión de 1 MPa, obteniendo lo siguiente:

$$P_{11} = P_{10} = 1 MPa$$

$$T_{11} = T_{10} = 179.88 °C$$

$$x_{11} = 1$$

$$h_{11} = 762.51 \frac{kJ}{kg}$$

$$s_{11} = 2.1381 \frac{kJ}{kg.K}$$
Calculando el valor de y'':
$$(1 - y') x h_{10} = y'' x h_5 + (1 - y' - y'') x h_{11}$$

$$h_{10} = y' x h_{10} = h_{11} + y' x h_{10} = 90847 = 0.0946$$

$$y'' = \frac{h_{10} - y' x h_{10} - h_{11} + y' x h_{11}}{h_5 - h_{11}} = \frac{908.47 - 0.09468 x 908.47 - 762.51 + 0.09468 x 762.51}{2 \ 777.10 - 762.51}$$

y'' = 0.0656

**Estado 4:** En este estado se tiene la salida de la turbina de alta presión, donde el proceso es isoentrópico con una presión de 1 MPa, obteniendo lo siguiente:

$$P_4 = P_{10} = 1 MPa$$
  
 $s_4 = s_3 = 6.3390 \frac{kJ}{kg.K}$ 

Se tiene una mezcla bifásica, por lo tanto:

$$s_{4f} = 2.1381 \frac{kJ}{kg.K}$$

$$s_{4g} = 6.585 \frac{kJ}{kg.K}$$

$$x_4 = \frac{s_4 - s_{4f}}{s_{4g} - s_{4f}} = \frac{(6.3390 - 2.1381) \frac{kJ}{kg.K}}{(6.585 - 2.1381) \frac{kJ}{kg.K}} = 0.94468$$

$$h_{4f} = 762.51 \frac{kJ}{kg}$$

$$h_{4g} = 2.777.10 \frac{kJ}{kg}$$

$$h_4 = h_{4f} + x_4 (h_{4g} - h_{4f}) = 762.51 + 0.94468 (2.777.10 - 762.51) = 2.665.65 \frac{kJ}{kg}$$
Estado 6: Calculando la entalpía y entropía en el estado 6:

$$P_{6} = 1 MPa$$

$$h_{6} = \frac{y'' x h_{5} + y' x h_{4}}{y' + y''} = \frac{0.0656 x 2777.10 + 0.09468 x 2665.65}{0.0656 + 0.09468} = 2711.26 \frac{kJ}{kg}$$

$$s_{6} = \frac{y'' x s_{5} + y' x s_{4}}{y' + y''} = \frac{0.0656 x 6.585 + 0.09468 x 6.3390}{0.0656 + 0.09468} = 6.43968 \frac{kJ}{kg.K}$$

**Estado 7:** Se tiene la salida de la turbina de baja presión, con una presión de salida de 100 kPa, trabajando isoentrópicamente, empleando las tablas termodinámicas y realizando interpolaciones se obtuvo lo siguiente:

 $P_7 = 100 \, kPa$ 

$$s_{7} = s_{6} = 6.43968 \frac{kJ}{kg.K}$$

$$s_{7f} = 1.3028 \frac{kJ}{kg.K}$$

$$s_{7g} = 7.3589 \frac{kJ}{kg.K}$$

$$x_{7} = \frac{s_{7} - s_{7f}}{s_{7g} - s_{7f}} = \frac{(6.43968 - 1.3028) \frac{kJ}{kg.K}}{(7.3589 - 1.3028) \frac{kJ}{kg.K}} = 0.8482$$

$$h_{7f} = 417.51 \frac{kJ}{kg}$$

$$h_{7g} = 2.675.00 \frac{kJ}{kg}$$

$$h_{7} = h_{7f} + x_{7} (h_{7g} - h_{7f}) = 417.51 + 0.8482 (2.675.00 - 417.51) = 2.332.31 \frac{kJ}{kg}$$

**Estado 8:** Se tiene la salida del condensador, con una presión de salida de 100 kPa, donde se tiene líquido saturado, empleando las tablas termodinámicas se obtuvo lo siguiente:

$$P_8 = P_7 = 100 \ kPa$$

 $x_8 = 0$ 

$$h_8 = 417.51 \frac{kJ}{kg}$$

Los trabajos específicos de las turbinas son:

$$w_{tap} = y' (h_3 - h_4) = 0.09468 (2\ 798.30 - 2\ 665.65) \frac{kJ}{kg} = 12.559 \frac{kJ}{kg}$$
$$w_{tbp} = (y' + y'')(h_6 - h_7) = (0.09468 + 0.0656)(2\ 711.26 - 2\ 332.31) = 60.738 \frac{kJ}{kg}$$

El trabajo neto es:

$$w_{neto} = w_{tap} + w_{tbp} = (12.559 + 60.738) \frac{kJ}{kg} = 73.297 \frac{kJ}{kg}$$

Ahora, se empleó las eficiencias isoentrópicas para las turbinas, por lo tanto, se

tuvo que:

$$\eta_t = 90\% = 0.9$$
$$w_{r,tap} = \eta_t \ x \ w_{tap} = 0.9 \ x \ 12.559 \frac{kJ}{kg} = 11.303 \frac{kJ}{kg}$$
kJ

$$w_{r,tbp} = \eta_t \ x \ w_{tbp} = 0.9 \ x \ 60.738 = 54.664 \frac{\kappa_f}{kg}$$

El trabajo neto real:

$$w_{r,neto} = w_{r,tap} + w_{r,tbp} = (11.303 + 54.664) \frac{kJ}{kg} = 65.967 \frac{kJ}{kg}$$

La eficiencia térmica real es:

$$\eta_{t\acute{e}rmica\ cbdf} = \frac{w_{r,neto}}{h_1 - h_0} = \frac{65.967 \frac{kJ}{kg}}{(1\ 087.40 - 62.982)\frac{kJ}{kg}} = 0.0644\ x\ 100\% = 6.44\%$$

### Selección del ciclo termodinámico

Las eficiencias térmicas reales de los ciclos son:

| Descripción                                   | Eficiencia térmica real |  |
|-----------------------------------------------|-------------------------|--|
| Ciclo Orgánico Rankine                        | 27.38%                  |  |
| Ciclo Binario Modificado con separación flash | 19.894%                 |  |
| Ciclo Binario doble Flash                     | 6.44%                   |  |

Fuente: Elaboración propia.

De la Tabla 10 se puede concluir que el mejor ciclo termodinámico es el Ciclo Orgánico Rankine porque se obtuvo una eficiencia térmica real de 27.38%. Con ello, se procedió con el desarrollo del siguiente objetivo.



Figura 16. Esquema del ciclo binario doble flash y flujos de masa.

Fuente: Elaboración propia.

#### 4.3. Generación de hidrógeno

La producción de energía para la central geotérmica en el campo geotérmico Chivay-Pinchollo se calcula empleando la potencia que posee la central, además del tiempo de operación menos los días de mantenimiento anuales considerados.

Entonces se calcula de la siguiente manera:

 $Potencia = 150 \ MW \approx 150 \ 000 \ kW$ 

tiempo de operación =  $(365 - 5) días x \frac{24 h}{1 día} = 8 640 h$ 

Considerando un factor de planta de 95% (Trujillo y Pérez, 2022), se obtiene una generación de energía total por año de:

 $E_{generada} = f_p x$  Potencia x tiempo de operación

$$E_{aenerada} = 0.95 x 150 000 kW x 8 640 h = 1 231 200 000 kWh$$

Ahora, de acuerdo con AlZohbi *et al.* (2023), se necesitan aproximadamente 60 kWh para generar 1 kg de hidrógeno verde, por lo tanto, se obtuvo lo siguiente:

$$H_{gen} = \frac{1 \ kg \ H_2}{60 \ kWh} \ x \ 1 \ 231 \ 200 \ 000 \ kWh = 20 \ 520 \ 000 \ kg \ H_2$$

Por lo tanto, se puede generar 20 520 toneladas de hidrógeno verde.

Ahora, la cantidad de oxígeno generado se calcula mediante la siguiente ecuación:

$$O_{gen} = 20\ 520\ 000\ kg\ H_2\ x \frac{0.032\ kg\ O_2}{0.004\ kg\ H_2} = 164\ 160\ 000\ kg\ O_2$$

Se generan 164 160 000 kg de oxígeno.

Dichos datos sirvieron para realizar el análisis de rentabilidad para determinar los indicadores económicos.

### 4.4. Selección de equipamiento

El ciclo termodinámico seleccionado es el Ciclo Orgánico Rankine por tener la máxima eficiencia térmica, donde para seleccionar el equipamiento se procedió de la siguiente manera:

#### Turbina de vapor

La turbina debe generar 150 MW de potencia, por lo que, se seleccionó una turbina

Siemens SST-600 con una capacidad de 150 MW, su ficha técnica se puede apreciar en el Anexo 6.

### Bomba de extracción

La bomba debe tener la potencia necesaria para extraer el fluido geotérmico de los pozos de extracción, la cual debe ser:

$$P_{bomba} = \dot{m}_{fg} \ x \ w_{b,n}$$

$$P_{bomba} = 1\ 451.55 \frac{kg}{s} \ x\ 3.578 \frac{kJ}{kg} = 5\ 193.65\ kW = 6\ 962\ hp$$

La bomba debe tener una potencia de 5 193.65 kW o equivalente a 6 962 hp. La bomba seleccionada es una sumergible SULZER PUMPS modelo SJT 20DLC, con una potencia de 1 748 kW por bomba, por lo que son necesarias 3 bombas, en el Anexo 7 se tiene su ficha técnica.

### Intercambiador de calor

El intercambiador de calor debe tener una capacidad de 5 486 m<sup>3</sup>/h, de acuerdo con el análisis se seleccionó un Alfa Laval CP120. En el Anexo 8 se puede apreciar la ficha técnica.

### Electrolizador

Dicho equipo debe tener una capacidad de 150 MW, por lo que, se seleccionaron 6 electrolizadores HyLYZER - 5.000 - 30 de 25 MW cada uno, en el Anexo 9 se puede verificar los datos técnicos del mismo.

### Condensador

El condensador es un intercambiador de calor y debe tener una capacidad de 5 486 m<sup>3</sup>/h, de acuerdo con el análisis se seleccionó un Alfa Laval CP120. En el Anexo 8 se puede apreciar la ficha técnica.

### Generador

El generador se selecciona en consideración con la potencia a generar por la turbina, y el factor de potencia que es de 0.85 para calcular la potencia aparente:

$$P_{generador} = \frac{\dot{W}_{neta}}{\cos\varphi}$$

$$P_{generador} = \frac{150 \ MW}{0.85} = 176.47 \ MVA$$

La potencia aparente del generador debe ser de 176.47 MVA como mínimo, pero cabe precisar que no se debe sobrecargar, por lo que se sobredimensiona para que trabaje al 90% con el fin de que cumpla con la vida útil estipulada por el fabricante. Entonces:

$$P_{generador real} = \frac{P_{generador}}{0.90}$$
$$S_{generador real} = \frac{176.47 \text{ MVA}}{0.90} = 196.08 \text{ MVA}$$

Se debe seleccionar un generador con una potencia aparente de 200 MVA, por lo que se seleccionó un generador Siemens SGen6-100A-2P de 200 MVA, en el Anexo 10 se puede observar su ficha técnica.

### Tuberías

Ahora, se calcula el diámetro para las tuberías del pozo de extracción:

$$\dot{m}_{unitario\ pozo\ extracción} = 200 rac{kg}{s}$$

 $N_{pozos\,extracción} = \frac{\dot{m}_g}{\dot{m}_{unitario\,pozo\,extracción}}$ 

$$N_{pozos\ extracción} = \frac{1\ 451.55\frac{kg}{s}}{200\frac{kg}{s}} = 7.26$$

 $N_{pozos\ extracción}=8$ 

Por lo tanto, para poder extraer la potencia requerida son necesarios ocho pozos de extracción de fluido geotérmico.

$$\dot{m}_{unitario\ pozo\ extracción} = rac{\dot{m}_g}{N_{pozos\ extracción}} = rac{1\ 451.55 rac{kg}{s}}{8}$$

 $\dot{m}_{unitario\ pozo\ extracción} = 181.44 \frac{kg}{s}$ 

$$h = 1\ 250\frac{kJ}{kg} \qquad \qquad P_c = 40\ bar$$

k = 183900

Utilizando la siguiente ecuación:

$$D = \sqrt{\frac{4.\,\dot{m}_{geot\acute{e}rmico\,unitario.\,h^{1.102}}}{k.\,\pi.\,P_{c}^{0.96}}} = 0.307\,m \cong 12.081\,pulgadas$$

Del cálculo, se selecciona una tubería con un diámetro estándar de 14 pulgadas. La ficha técnica de la tubería seleccionada se puede encontrar en el Anexo 11.

### 4.5. Indicadores de rentabilidad

El presupuesto necesario para llevar a cabo la implementación de la central geotermoeléctrica de 150 MW para la producción de hidrógeno se detalla en la Tabla 11.

| Descripción                                         | Cantidad             | Costo Unitario       | Costo Total          |
|-----------------------------------------------------|----------------------|----------------------|----------------------|
| Turbina de vapor de 150 MW                          | 1 und                | S/. 300 000 000.00   | S/. 300 000 000.00   |
| Generador de 200 MVA                                | 1 und                | S/. 300 000 000.00   | S/. 300 000 000.00   |
| Bomba para pozo de 1.748 MW                         | 3 und                | S/. 7 000 000.00     | S/. 21 000 000.00    |
| Intercambiador de calor                             | 1 und                | S/. 12 000 000.00    | S/. 12 000 000.00    |
| Condensador                                         | 1 und                | S/. 12 000 000.00    | S/. 12 000 000.00    |
| Electrolizador de 25 MW                             | 6 und                | S/. 85 000 000.00    | S/. 510 000 000.00   |
| Tanque para almacenar hidrógeno                     | 1 und                | S/. 30 000 000.00    | S/. 30 000 000.00    |
| Tanque para almacenar oxígeno                       | 1 und                | S/. 30 000 000.00    | S/. 30 000 000.00    |
| Accesorios red de tuberías                          | 1 glb                | S/. 20 000 000.00    | S/. 20 000 000.00    |
| Red de tuberías                                     | 1 glb                | S/. 70 000 000.00    | S/. 70 000 000.00    |
| Infraestructura                                     | 1 glb                | S/. 50 000 000.00    | S/. 50 000 000.00    |
| Accesorios para equipamiento                        | 1 glb                | S/. 20 000 000.00    | S/. 20 000 000.00    |
| Total (si                                           |                      | S/. 1 375 000 000.00 |                      |
| IGV (1                                              | S/. 247 500 000.00   |                      |                      |
| Total (co                                           | S/. 1 622 500 000.00 |                      |                      |
| Imprevistos (10%)                                   |                      |                      | S/. 162 250 000.00   |
| Presupuesto total para la central geotermoeléctrica |                      |                      | S/. 1 784 750 000.00 |

Tabla 11. Presupuesto de central geotérmica para generar hidrógeno verde.

Fuente: Elaboración propia.

El presupuesto de implementación de la central geotermoeléctrica asciende a la suma de S/. 1 784 750 000.00, incluyendo equipamiento, materiales, insumos e infraestructura, además del IGV e imprevistos.

### Selección de vida útil de la central geotérmica

Se ha considerado una vida útil de 20 años para la central geotermoeléctrica, en

consideración con la Tabla 12, el tiempo u horizonte para evaluar el proyecto es de 20 años, siendo un futuro medio, ya que los equipos más importantes poseen una vida útil mayor a 20 años, además de que la Ley de Concesiones Eléctricas del Perú, en el art. 21 menciona que la vida útil para proyectos de concesión eléctrica es ilimitado, por lo tanto, la vida del proyecto es de 20 años.

| Intervalo (años) | Horizonte de evaluación |
|------------------|-------------------------|
| 0-5              | Futuro inmediato        |
| 6-20             | Futuro mediano          |
| 21-50            | Futuro lejano           |
| 51-100           | Futuro muy lejano       |
|                  |                         |

Tabla 12. Horizonte de evaluación para inversiones.

Fuente: (Castillo y Zhangallimbay, 2021).

### Ahorro por concepto de energía

Para determinar el ahorro de energía, se debe conocer el costo de la energía en la ubicación de la central geotérmica, entonces, considerando la subestación Callalli y que opera 360 días y 5 días al año se dan los mantenimientos. La potencia que genera la central es de 150 MW, empleando un factor de planta de 0.95, y teniendo en consideración que trabaja 19 horas fuera de punta y 5 horas en punta, se tiene una producción de energía de 974 700 000 kWh en horas fuera de punta y de 256 500 000 kWh en horas punta, con un costo de S/. 0.2312 por kWh para fuera de punta y de S/. 0.2381 por kWh para hora punta, y de S/. 22.14 por kW-mes. Entonces, resumiendo dicha información en la Tabla 13:

| Descripción    | Cantidad           | Costo unitario     | Costo total (S/.)  |
|----------------|--------------------|--------------------|--------------------|
| Energía en HP  | 256 500 000 kWh    | S/. 0.2381 / kWh   | S/. 61 072 650.00  |
| Energía en HFP | 974 700 000 kWh    | S/. 0.2312 / kWh   | S/. 225 350 640.00 |
| Potencia anual | 1 710 000 kW       | S/. 22.14 / kW-mes | S/. 37 859 400.00  |
|                | S/. 324 282 690.00 |                    |                    |

Tabla 13. Ahorro en energía generada y potencia.

Fuente: Elaboración propia.

Entonces, se tiene un ahorro por concepto de energía generada y potencia al año de S/. 324 282 690.00, tanto para horas punta y fuera de punta.

### Venta de hidrógeno generado

El hidrógeno generado anualmente es de 20 520 000 kg, donde su costo nivelado de acuerdo con H2 Perú (2021) es de S/. 8.11 por kg hasta el 2040 y de S/. 5.93

por kg desde el 2041 hasta el 2050. Con dichos datos se elaboró la Tabla 14:

| Año  | Precio (S/. / kg) | Producción (kg) | Costo total (S/.)  |
|------|-------------------|-----------------|--------------------|
| 2024 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2025 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2026 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2027 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2028 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2029 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2030 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2031 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2032 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2033 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2034 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2035 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2036 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2037 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2038 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2039 | S/. 8.11          | 20 520 000.00   | S/. 166 417 200.00 |
| 2040 | S/. 5.93          | 20 520 000.00   | S/. 121 683 600.00 |
| 2041 | S/. 5.93          | 20 520 000.00   | S/. 121 683 600.00 |
| 2042 | S/. 5.93          | 20 520 000.00   | S/. 121 683 600.00 |
| 2043 | S/. 5.93          | 20 520 000.00   | S/. 121 683 600.00 |

Tabla 14. Venta de hidrógeno período 2024 – 2043.

Fuente: Elaboración propia.

# Venta de oxígeno generado

El oxígeno generado es de 164 160 000.00 kg al año, y se ha considerado un precio de venta de S/. 2.50 por kg, entonces se procedió a elaborar la Tabla 15:

| Año  | Producción (kg) | Precio (S/. / kg) | Costo total (S/.)  |
|------|-----------------|-------------------|--------------------|
| 2024 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2025 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2026 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2027 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2028 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2029 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2030 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2031 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2032 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2033 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2034 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2035 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2036 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2037 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2038 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2039 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2040 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2041 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2042 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |
| 2043 | 164 160 000.00  | S/. 2.50          | S/. 410 400 000.00 |

Tabla 15. Venta de oxígeno período 2024 – 2043.

Fuente: Elaboración propia.

### Criterios para análisis de rentabilidad

Para el análisis de rentabilidad se consideró los datos que muestra la Tabla 16:

| ENCUENTA DE EXPECTATIVA DE INFLACIÓN<br>(En porcentajes) |           |           |           |            |  |  |
|----------------------------------------------------------|-----------|-----------|-----------|------------|--|--|
|                                                          | Ri Jun.21 | RI Set.21 | RI Dic.21 | RI Mar.22* |  |  |
| Sistema Financiero                                       |           |           |           |            |  |  |
| 2022                                                     | 2,20      | 3,00      | 3,50      | 3,80       |  |  |
| 2023                                                     |           |           | 3,00      | 3,00       |  |  |
| Analistas Económicos                                     |           |           |           |            |  |  |
| 2022                                                     | 2,45      | 2,55      | 3,55      | 4,00       |  |  |
| 2023                                                     |           |           | 2,80      | 3,00       |  |  |
| Empresas No Financieras                                  |           |           |           |            |  |  |
| 2022                                                     | 2,30      | 3,00      | 3,21      | 4,00       |  |  |
| 2023                                                     |           |           | 3,00      | 3,20       |  |  |
| * Encuesta realizada al 28 de febrero.<br>Fuente: BCRP.  |           |           |           |            |  |  |

Tabla 16. Perspectiva de inflación para el 2022 al 2023.

Fuente: (BCRP, 2022).

La inflación que se ha tomado en el presente trabajo es del 4% para las sociedades no financieras y se mantiene en el tiempo a partir de 2024.

### Análisis de rentabilidad

Una vez determinado todos los ingresos y egresos de la central geotérmica para generar hidrógeno, se procedió a elaborar la Tabla 17, donde se detalla el tiempo de análisis, que va desde el 2024 hasta el 2043, considerando la inversión inicial de S/. 1 784 750 000.00, un costo de operación y mantenimiento (O y M) de aproximadamente el 20% de la inversión (incluye pagos a trabajadores, seguros, indemnizaciones, operación, mantenimientos, entre otros), un costo de permisos de S/. 1 000 000.00, un ahorro de energía de S/. 324 282 690.00 anualmente, venta de hidrógeno generado de S/. 166 417 200.00 para los años 2024 al 2039 y de S/. 121 683 600.00 para los años 2040 al 2043, venta de oxígeno de S/. 410 400 000.00 anualmente.

| Año  | Inversión             | ОуМ                | Permisos         | Ahorro de energía  | Venta de hidrógeno | Venta de oxígeno   | Ingreso Bruto      | Impuesto a la Renta | Ingreso Neto          | Ingreso Neto<br>Actualizado |
|------|-----------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|---------------------|-----------------------|-----------------------------|
| 2023 | -S/. 1,784,750,000.00 |                    |                  |                    |                    |                    |                    |                     | -S/. 1,784,750,000.00 | -S/. 1,784,750,000.00       |
| 2024 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 365,581,656.73    | S/. 335,396,015.35          |
| 2025 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 351,520,823.78    | S/. 295,868,044.59          |
| 2026 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 338,000,792.10    | S/. 260,998,627.90          |
| 2027 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 325,000,761.63    | S/. 230,238,733.15          |
| 2028 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 312,500,732.34    | S/. 203,104,034.19          |
| 2029 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 300,481,473.40    | S/. 179,167,284.92          |
| 2030 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 288,924,493.65    | S/. 158,051,592.20          |
| 2031 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 277,812,013.13    | S/. 139,424,481.48          |
| 2032 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 267,126,935.70    | S/. 122,992,661.85          |
| 2033 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 256,852,822.79    | S/. 108,497,408.13          |
| 2034 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 246,973,868.07    | S/. 95,710,487.06           |
| 2035 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 237,474,873.14    | S/. 84,430,563.74           |
| 2036 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 228,341,224.17    | S/. 74,480,031.53           |
| 2037 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 219,558,869.40    | S/. 65,702,215.53           |
| 2038 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 211,114,297.50    | S/. 57,958,905.73           |
| 2039 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 166,417,200.00 | S/. 410,400,000.00 | S/. 543,149,890.00 | S/. 162,944,967.00  | S/. 202,994,516.83    | S/. 51,128,180.78           |
| 2040 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 121,683,600.00 | S/. 410,400,000.00 | S/. 498,416,290.00 | S/. 149,524,887.00  | S/. 179,111,512.01    | S/. 41,387,866.07           |
| 2041 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 121,683,600.00 | S/. 410,400,000.00 | S/. 498,416,290.00 | S/. 149,524,887.00  | S/. 172,222,607.70    | S/. 36,510,114.74           |
| 2042 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 121,683,600.00 | S/. 410,400,000.00 | S/. 498,416,290.00 | S/. 149,524,887.00  | S/. 165,598,661.25    | S/. 32,207,228.96           |
| 2043 |                       | S/. 356,950,000.00 | S/. 1,000,000.00 | S/. 324,282,690.00 | S/. 121,683,600.00 | S/. 410,400,000.00 | S/. 498,416,290.00 | S/. 149,524,887.00  | S/. 159,229,481.97    | S/. 28,411,458.15           |

Tabla 17. Análisis de indicadores de rentabilidad.

Nota: Considerando una inflación anual del 4% y una tasa de interés de 9% anual. Fuente: Elaboración propia.

| Ingreso total neto     | S/. 2,601,665,936.06 |  |  |  |  |
|------------------------|----------------------|--|--|--|--|
| VAN                    | S/. 816,915,936.06   |  |  |  |  |
| Inflación anual        | 4%                   |  |  |  |  |
| Tasa de interés anual  | 9%                   |  |  |  |  |
| Vida útil del proyecto | 20 años              |  |  |  |  |

Tabla 18. Indicadores para análisis de rentabilidad.

Fuente: Elaboración propia.

Luego de haber realizado el análisis de rentabilidad, que se detalla en la Tabla 17, se procedió a determinar los indicadores como son el VAN (Valor Actual Neto), TIR (Tasa Interna de Retorno), tiempo de recuperación de la inversión inicial, considerando una inflación del 4% anual y una tasa de interés de 9% anual, obteniéndose la Tabla 19:

| Inversión                           | - S/. 1 784 750 000.00 |
|-------------------------------------|------------------------|
| Ingreso total neto actualizado      | S/. 2 601 665 936.06   |
| VAN                                 | S/. 816 915 936.06     |
| TIR                                 | 16.12%                 |
| Tiempo de recuperación de inversión | 8 años                 |

Fuente: Elaboración propia.

Del análisis se puede decir que el ingreso total neto actualizado luego del análisis de rentabilidad fue de S/. 2 601 665 936.06, con un Valor Actual Neto de S/. 816 915 936.06, una Tasa Interna de Retorno de 16.12% y un tiempo de retorno de la inversión inicial de 8 años.

### Costo nivelado del hidrógeno verde (LCOH)

Considerando la fórmula para calcular el costo nivelado del hidrógeno verde generado (LCOH), se obtuvo lo siguiente:

$$LCOH = \frac{I_t + \sum_{t=1}^{n} \frac{O \ y \ M + F}{(1+r)^t}}{\sum_{t=1}^{n} \frac{H_t}{(1+r)^t}}$$

Dónde:

- $I_t$ : Inversión inicial o año "0".
- O y M: Gastos en operación y mantenimiento.
- F: Ahorro de energía eléctrica (se resta).
- r: Tasa de descuento.
- t: Vida útil del proyecto.
- $H_t$ : Hidrógeno verde generado.

Entonces, de acuerdo con la información obtenida, se obtuvo lo siguiente:

$$I_t = S/.1784750000.00$$

Los gastos de operación y mantenimiento representan alrededor del 20% de la inversión total, entonces:

$$O y M = S/.356 950 000.00$$

La tasa de descuento para proyectos de inversión se considera en 9%, de acuerdo con la Tabla 20, la cual se consideró para el análisis económico del proyecto, entonces se tuvo:

$$r = 9\%$$

La vida útil del proyecto se consideró en 20 años, de acuerdo con la Ley de Concesiones Eléctricas del Perú, donde indica en el Artículo 21°, que el tiempo para una concesión eléctrica es indefinido, es por ello que se ha considerado una vida útil de 20 años.

$$t = 20 a nos$$

El hidrógeno verde generado se mantiene constante durante la vida útil del proyecto, siendo de:

$$H_t = 20\ 520\ 000 \frac{kg}{a\tilde{n}o}$$

El ahorro generado por la utilización de la energía eléctrica producida por la central geotérmica se mantiene constante durante la vida útil del proyecto, siendo de:

$$F = S/.324282690.00$$

Por lo tanto, resumiendo la información en la Tabla 21.

Entonces, reemplazando los datos en la fórmula del LCOE, se obtuvo lo siguiente:

$$LCOH = \frac{S/.17847500000.00 + S/.3258434376.58 - S/.2960229345.36}{187317757.10 kg}$$
$$LCOE = \frac{S/.11.12}{kg H_2}$$

Esto quiere decir que se gastan S/. 11.12 por cada kg de hidrógeno verde generado en la central geotérmica. Siendo alto, y esto se debe al costo en sí de los componentes y la tecnología, que aún es algo prematura y para que sus costos bajen, se debe seguir mejorando cada día. Y para que el proyecto sea rentable, se
debe vender por encima de dicho costo de producción. Cabe precisar que la venta de oxígeno ayuda a mejorar notablemente los indicadores de rentabilidad de la central geotérmica, ya que, si solo se vende hidrógeno verde al costo nivelado estimado, no se tendrían ganancias.

| Institución o país                                                                          | Tasa                                                                                         | Base conceptual o teórica                                                                                                                                    |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Organismos multilaterales                                                                   |                                                                                              |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Banco Mundial                                                                               | 10%-12%                                                                                      | Tasa administrativa convencional                                                                                                                             |  |  |  |  |  |  |  |  |
| Banco Interamericano de Desarrollo                                                          | 10%-12%                                                                                      | Tasa administrativa convencional/<br>costo de oportunidad del capital                                                                                        |  |  |  |  |  |  |  |  |
| Banco Asiático de Desarrollo                                                                | 10%-12%                                                                                      | Tasa administrativa convencional                                                                                                                             |  |  |  |  |  |  |  |  |
| Países desarrollados                                                                        |                                                                                              |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Alemania                                                                                    | 3%                                                                                           | Basada en la tasa federal de refinanciamiento                                                                                                                |  |  |  |  |  |  |  |  |
| Canadá                                                                                      | 10%                                                                                          | Costo de oportunidad social del capital                                                                                                                      |  |  |  |  |  |  |  |  |
| España                                                                                      | 6% para transporte<br>4% para agua                                                           | Tasa social de preferencia intertemporal                                                                                                                     |  |  |  |  |  |  |  |  |
| Estados Unidos, Oficina de<br>Administración y Presupuesto                                  | 7%                                                                                           | Costo de oportunidad social del capital                                                                                                                      |  |  |  |  |  |  |  |  |
| Estados Unidos, Oficina de<br>Presupuesto del Congreso y<br>Oficina General de Contabilidad | Tasa de mercado de deuda del Tesoro                                                          | Tasa social de preferencia intertemporal                                                                                                                     |  |  |  |  |  |  |  |  |
| Estados Unidos, Agencia de<br>Protección Ambiental                                          | Tasa intergeneracional de descuento:<br>2%-3%, sujeta a análisis de sensibilidad             | Tasa social de preferencia intertemporal                                                                                                                     |  |  |  |  |  |  |  |  |
| Francia                                                                                     | 4%                                                                                           | Tasa social de preferencia intertemporal                                                                                                                     |  |  |  |  |  |  |  |  |
| Noruega                                                                                     | 3,5%                                                                                         | Tasa de crédito gubernamental en términos reales                                                                                                             |  |  |  |  |  |  |  |  |
| Reino Unido                                                                                 | 3,5%<br>Para proyectos superiores a 30 años<br>tasas diferenciadas menores                   | Tasa social de preferencia intertemporal                                                                                                                     |  |  |  |  |  |  |  |  |
|                                                                                             | Países en desarrollo                                                                         |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| China                                                                                       | 8% para proyectos de corto y<br>mediano plazo; menor que 8%<br>para proyectos de largo plazo | Promedio ponderado de la tasa social de preferencia<br>intertemporal y la tasa basada en el costo de<br>oportunidad social del capital (método de Harberger) |  |  |  |  |  |  |  |  |
| India                                                                                       | 12%                                                                                          | Costo de oportunidad social del capital                                                                                                                      |  |  |  |  |  |  |  |  |
| Pakistán                                                                                    | 12%                                                                                          | Costo de oportunidad social del capital                                                                                                                      |  |  |  |  |  |  |  |  |
| Países de América Latina                                                                    |                                                                                              |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Chile                                                                                       | 6%                                                                                           | Promedio ponderado de la tasa social de preferencia<br>intertemporal y la tasa basada en el costo de<br>oportunidad social del capital (método de Harberger) |  |  |  |  |  |  |  |  |
| Colombia                                                                                    | 12%                                                                                          | Equivale a la rentabilidad mínima<br>esperada por el inversionista                                                                                           |  |  |  |  |  |  |  |  |
| México                                                                                      | 10%<br>antes de 2014: 12%                                                                    | Promedio ponderado de la tasa social de preferencia<br>intertemporal y la tasa basada en el costo de<br>oportunidad social del capital (método de Harberger) |  |  |  |  |  |  |  |  |
| Perú                                                                                        | 9%<br>antes de 2012: 10%                                                                     | Promedio ponderado de la tasa social de preferencia<br>intertemporal y la tasa basada en el costo de<br>oportunidad social del capital (método de Harberger) |  |  |  |  |  |  |  |  |

Tabla 20. Tasas de descuento para diferentes países.

Fuente: J. Campos, T. Serebrisky y A. Suárez-Alemán, Tasa de descuento social y evaluación de proyectos: algunas reflexiones prácticas para América Latina y el Caribe, Banco Interamericano de Desarrollo (BID), 2016; J. Zhuang y otros, "Theory and practice in the choice of social discount rate for cost-benefit analysis: a survey", ERD Working Paper, N° 94, Banco Asiático de Desarrollo, 2007; E. Aldunate y R. Martner, "Política fiscal y protección social", Revista de la CEPAL, N° 90 (LC/G.2323-P), Santiago, Comisión Económica para América Latina y el Caribe (CEPAL), 2006; Chile: Sistema Nacional de Inversiones (SNI) del Ministerio de Desarrollo Social; Colombia: Sistema Nacional de Inversión Pública del Departamento Nacional de Planeación; México: Sistema de Inversión Pública (SNIP) de la Secretaría de Hacienda y Crédito Público; Perú: Sistema Nacional de Inversión Pública (SNIP) de la Dirección General de Inversión Pública del Ministerio de Economía y Finanzas.

Fuente: (Castillo y Zhangallimbay, 2021)

| Año | Inversión           | ОуМ               | O y M corregido     | H₂ generado<br>(kg/año) | H₂ generado<br>corregido (kg/año) | Ahorro de energía | Ahorro de energía<br>corregido |
|-----|---------------------|-------------------|---------------------|-------------------------|-----------------------------------|-------------------|--------------------------------|
| 0   | S/ 1 784 750 000.00 |                   |                     |                         |                                   |                   |                                |
| 1   |                     | S/ 356 950 000.00 | S/ 327,477,064.22   | 20 520 000              | 18 825 688.07                     | S/ 324,282,690.00 | S/ 297,507,055.05              |
| 2   |                     | S/ 356 950 000.00 | S/ 300,437,673.60   | 20 520 000              | 17 271 273.46                     | S/ 324,282,690.00 | S/ 272,942,252.34              |
| 3   |                     | S/ 356 950 000.00 | S/ 275,630,893.21   | 20 520 000              | 15 845 205.01                     | S/ 324,282,690.00 | S/ 250,405,736.09              |
| 4   |                     | S/ 356 950 000.00 | S/ 252,872,379.09   | 20 520 000              | 14 536 885.33                     | S/ 324,282,690.00 | S/ 229,730,033.11              |
| 5   |                     | S/ 356 950 000.00 | S/ 231,993,008.34   | 20 520 000              | 13 336 592.05                     | S/ 324,282,690.00 | S/ 210,761,498.26              |
| 6   |                     | S/ 356 950 000.00 | S/ 212,837,622.33   | 20 520 000              | 12 235 405.55                     | S/ 324,282,690.00 | S/ 193,359,172.72              |
| 7   |                     | S/ 356 950 000.00 | S/ 195,263,873.70   | 20 520 000              | 11 225 142.7                      | S/ 324,282,690.00 | S/ 177,393,736.44              |
| 8   |                     | S/ 356 950 000.00 | S/ 179,141,168.53   | 20 520 000              | 102 982 96.06                     | S/ 324,282,690.00 | S/ 162,746,547.19              |
| 9   |                     | S/ 356 950 000.00 | S/ 164,349,695.90   | 20 520 000              | 9 447 978.036                     | S/ 324,282,690.00 | S/ 149,308,758.89              |
| 10  |                     | S/ 356 950 000.00 | S/ 150,779,537.52   | 20 520 000              | 8 667 869.757                     | S/ 324,282,690.00 | S/ 136,980,512.75              |
| 11  |                     | S/ 356 950 000.00 | S/ 138,329,850.94   | 20 520 000              | 7 952 174.089                     | S/ 324,282,690.00 | S/ 125,670,195.18              |
| 12  |                     | S/ 356 950 000.00 | S/ 126,908,120.13   | 20 520 000              | 7 295 572.559                     | S/ 324,282,690.00 | S/ 115,293,757.05              |
| 13  |                     | S/ 356 950 000.00 | S/ 116,429,468.01   | 20 520 000              | 6 693 185.834                     | S/ 324,282,690.00 | S/ 105,774,089.03              |
| 14  |                     | S/ 356 950 000.00 | S/ 106,816,025.69   | 20 520 000              | 6 140 537.462                     | S/ 324,282,690.00 | S/ 97,040,448.65               |
| 15  |                     | S/ 356 950 000.00 | S/ 97,996,353.85    | 20 520 000              | 5 633 520.608                     | S/ 324,282,690.00 | S/ 89,027,934.54               |
| 16  |                     | S/ 356 950 000.00 | S/ 89,904,911.79    | 20 520 000              | 5 168 367.53                      | S/ 324,282,690.00 | S/ 81,677,004.17               |
| 17  |                     | S/ 356 950 000.00 | S/ 82,481,570.45    | 20 520 000              | 4 741 621.587                     | S/ 324,282,690.00 | S/ 74,933,031.35               |
| 18  |                     | S/ 356 950 000.00 | S/ 75,671,165.55    | 20 520 000              | 4 350 111.548                     | S/ 324,282,690.00 | S/ 68,745,900.32               |
| 19  |                     | S/ 356 950 000.00 | S/ 69,423,087.66    | 20 520 000              | 3 990 928.026                     | S/ 324,282,690.00 | S/ 63,069,633.32               |
| 20  |                     | S/ 356 950 000.00 | S/ 63,690,906.11    | 20 520 000              | 3 661 401.858                     | S/ 324,282,690.00 | S/ 57,862,048.92               |
|     |                     |                   | S/ 3,258,434,376.58 |                         | 187 317 757.1                     |                   | S/ 2,960,229,345.36            |

Tabla 21. Resumen de información para calcular LCOE

Fuente: Elaboración propia.

### V. DISCUSIÓN

De acuerdo con los resultados obtenidos en la investigación, se obtuvo que el ciclo Orgánico Rankine fue el mejor ciclo termodinámico a emplear para generar hidrógeno verde, con una eficiencia térmica de 27.38%, siendo la más alta eficiencia obtenida entre los 3 ciclos analizados.

La potencia a generar fue de 150 MW, con una producción de energía de 1 231 200 MWh anual, empleándose un factor de planta de 0.95, operando durante todo el año, con 5 días de mantenimiento al año, y que por cada 60 kWh generado se logra producir 1 kg de hidrógeno verde mediante el uso de un electrolizador, obteniendo un total de 20 520 toneladas al año, con una producción de oxígeno de 164 160 toneladas anuales.

Ahora, el equipamiento necesario para poder optimizar el ciclo termodinámico seleccionado, se empleó una turbina Siemens SST-600 de 150 MW, 3 bombas SULZER PUMPS SJT 20DLC de 1 748 kW cada una, un intercambiador de calor Alfa Laval CP120, con 6 electrolizadores HyLYZER de 25 MW cada uno, un condensador Alfa Laval CP120, un generador Siemens SGen6-100A-2P de 200 MVA, con sus tuberías SCH-80 de 14 pulgadas de diámetro.

Luego, del análisis de rentabilidad, se obtuvo un presupuesto de S/. 1 784 750 000.00, con un LCOH de S/. 11.12 por kg de hidrógeno verde, pero que al venderse a S/. 8.11 por kg desde 2024 a 2039 y S/. 5.93 por kg en adelante, con un costo del oxígeno de S/. 2.50 por kg, se logró obtener un VAN de S/. 816 915 936.06, TIR de 16.12% y un tiempo de retorno de inversión de 8 años.

Donde los resultados concuerdan con Ali *et al.* (2023), ya que emplearon un ciclo termodinámico de vapor, es decir, Rankine regenerativo, además de un ciclo de absorción de doble efecto con desalación double flash, siendo un sistema multigeneración. La eficiencia que encontraron es similar a la eficiencia encontrada en el ciclo Orgánico Rankine empleado en la presente investigación, y esto se debe a que se emplearon ciclos similares, aunque es algo más baja y puede deberse a los parámetros empleados además de la potencia que generaron, que fue de 103 MW. Ello demostró la importancia de emplear un ciclo orgánico Rankine, debido a

que posee la más alta eficiencia frente a los demás ciclos termodinámicos.

Con respecto a los resultados obtenidos por Awaleh *et al.* (2022), que realizaron un estudio comparativo sobre la factibilidad económica para la producción de hidrógeno verde mediante el uso de electrólisis del agua con energía geotérmica y eólica, pero el enfoque es en la energía geotérmica, donde lograron obtener que el costo de generar electricidad con energía geotérmica fue de \$ 0.042 por kWh, y el LCOH del hidrógeno verde fue de entre \$ 3.31 y \$4.78 por kg, un valor algo cercado al obtenido en la presente investigación que fue de \$2.78 por kg, y esto puede deberse a la inflación, tipo de moneda, políticas, entre otros factores, ya que cada país maneja de forma independiente su economía de otros países, donde un producto puede costar menos en uno pero más en otro.

Por lo tanto, los costos de generar hidrógeno verde son similares, aunque aún son elevados lo que origina que todavía no sea rentable su producción excepto que se obtenga otro producto derivado que permita incrementar las ganancias.

Ahora, con relación a Mukhtar *et al.* (2022), los resultados difieren bastante, esto significa que lograron generar 1.515 L/s de hidrógeno verde frente a los 0.66 L/s generados en la presente investigación, y puede deberse a la cantidad de energía empleada para generar cada kg de hidrógeno, y ello tiene relación con el electrolizador empleado, siendo un electrolizador más eficiente en relación al seleccionado.

De igual modo, emplearon un ciclo Orgánico Rankine para generar energía eléctrica que posteriormente fue utilizada para generador hidrógeno verde al emplear la energía generada en un electrolizador para separar las moléculas del agua en hidrógeno y oxígeno.

Con respecto a Assareh *et al.* (2022), quienes emplearon de igual modo energía geotérmica para generar hidrógeno verde, obteniendo una producción de 352 816 kWh y 174.913 kg de hidrógeno verde al año.

Dichos datos son menores a los obtenidos en la presente investigación, y esto se debe a que la producción de energía es mucho menor y por ende la generación de

hidrógeno verde, y ello demuestra la importancia de emplear energías renovables como la geotérmica para generar hidrógeno verde y así mitigar el impacto ambiental, además de aumentar la matriz energética de la nación donde se emplea.

De los resultados determinaron que con el sistema geotérmico obtenían una mejor eficiencia que empleando energía solar, aumentando en 11.21% la producción de hidrógeno y en un 0.17% la eficiencia exergética.

Ello demostró la importancia de emplear la energía geotérmica para la generación de hidrógeno verde mediante el uso de un ciclo termodinámico Orgánico Rankine, el cual brinda una de las mejores eficiencias térmicas, energéticas y exergéticas.

En consideración con Barasa y Akanni (2022), quienes también analizaron el uso de la energía geotérmica en cabeza de pozo para producir energía eléctrica para ser inyectada a la red. Lograron demostrar que las centrales geotérmicas permiten complementar y sustituir a las plantas eléctricas convencionales, con una excelente eficiencia, y grandes beneficios medioambientales. Además, agregaron que las centrales geotérmicas en boca de pozo ofrecen mejores indicadores respecto a la eficiencia y rendimiento, como un excelente factor de capacidad, factor de carga, disponibilidad, costo unitario de producción de energía, entre otros. Con ello, lograron darle la importancia deseada al uso de dicha energía renovable, debido a sus excelentes prestaciones y características.

Tomando en cuenta a Kjeld *et al.* (2022), quienes realizaron su investigación para analizar el ciclo de vida de una central geotérmica en Islandia. Donde determinaron que las centrales geotérmicas brindan excelentes ciclos de vida, no solo técnica y ambiental, también económicamente, ya que, al largo plazo, es una energía renovable que no contamina, evitando la generación de millones de toneladas de dióxido de carbono al año, y en el ámbito económico, aunque es algo elevado su costo inicial, la recuperación de la inversión se da en el corto y mediano plazo en el ciclo de vida.

En contraste con Ghazvini *et al.* (2019), donde realizaron en su investigación un análisis sobre emplear energía geotérmica para generar hidrógeno verde, elaborada en Irán. Lograron determinar que usar energía geotérmica para producir

hidrógeno verde es mucho más amigable con el medio ambiente, ya que es una fuente energética renovable en comparación con emplear combustibles fósiles. Adicionalmente, lograron calcular que el costo de producir hidrógeno verde con energía geotérmica mediante electrólisis era mucho más competitivo y bajo con relación a otro tipo de fuentes energéticas renovables como eólica, solar, solar térmica, gas natural, fotovoltaica, y de la misma red.

Finalmente, considerando a Qurrahman *et al.* (2021), quienes efectuaron un análisis termodinámico de una central geotérmica en Dieng, realizando un análisis de energía y exergía. Para dicho análisis emplearon tablas termodinámicas, donde comienzan calculando la entalpía y entropía tanto en la entrada como salida de los datos de temperatura compilados, tal cual se ha realizado en el actual estudio, aunque también se empleó software termodinámico para comparar si los resultados obtenidos fueron correctos, donde se logró demostrar que el cálculo efectuado era correcto y la diferencia de los parámetros obtenidos era insignificante.

#### **VI. CONCLUSIONES**

- Los ciclos empleados para el análisis fueron el Ciclo Rankine Orgánico, Ciclo Binario Modificado con separación Flash y Ciclo Binario Doble Flash. El campo geotérmico Chivay-Pinchollo posee una altitud de 3 551 msnm, equivalente a una presión atmosférica de 65.311 kPa, con una potencia posible de desarrollo de 150 MWe.
- Del análisis de los ciclos de potencia estudiados, se obtuvo una eficiencia térmica real del ciclo Orgánico Rankine de 27.38%, para el Ciclo Binario Modificado con separación Flash fue de 19.894% y para el ciclo Binario Doble Flash fue de 6.44%. De acuerdo a dichos resultados el que ofrece la mejor eficiencia térmica real es el Ciclo Orgánico Rankine, siendo el seleccionado para continuar con el análisis respectivo.
- La energía generada es de 1 231 200 MWh, considerando un factor de planta de 0.95, trabajando todo el año menos 5 días de mantenimiento, y que es necesario usar 60 kWh por cada kg de hidrógeno verde generado, se obtuvo 20 520 toneladas de hidrógeno verde al año y de oxígeno se generaron 164 160 toneladas al año.
- El equipamiento necesario para la central geotermoeléctrica fue una turbina de vapor Siemens SST-600 de 150 MW, tres bombas SULZER PUMPS modelo SJT 20DLC de 1 748 kW cada una, un intercambiador de calor Alfa Laval CP120, seis electrolizadores HyLYZER – 5.000 – 30 de 25 MW cada uno, un condensador Alfa Laval CP120, un generador Siemens SGen6-100A-2P de 200 MVA y tuberías SCH-80 de 14 pulgadas de diámetro
- Del análisis de rentabilidad se obtuvo un ingreso total neto actualizado de S/. 2
   601 665 936.06, con un Valor Actual Neto de S/. 816 915 936.06, una Tasa Interna de Retorno de 16.12% y un tiempo de retorno de la inversión inicial de 8 años. Determinando que es factible técnica y económicamente el diseño de una central geotermoeléctrica en el campo geotérmico Chivay-Pinchollo para generar hidrógeno verde.

#### **VII. RECOMENDACIONES**

- Entre los parámetros para el ciclo termodinámico empleado, se pueden variar, aunque cabe precisar, que para optimizar el ciclo se pueden emplear otras metodologías o técnicas existentes en la literatura, como Cengel et al. (2019), Borgnakke y Sonntag (2019), ya que son bibliografías actuales de última edición, que contienen los temas detalladas sobre el análisis termodinámico de los distintos ciclos empleados en centrales térmicas, sirviendo de gran ayuda porque además contienen las tablas de propiedades termodinámicas actualizadas
- La eficiencia térmica puede mejorar dependiendo de la configuración seleccionada, esto significa que se puede variar dicha configuración para el ciclo termodinámico. Precisando, que mientras más extensa la configuración es más tedioso el análisis y la eficiencia térmica mejora de forma notable, pero hasta cierto nivel de configuración, es decir, si se aumenta recalentamiento con regeneración donde se emplean calentadores abiertos o cerrados, solo se pueden emplear hasta un cierto límite, ya que luego la eficiencia no aumenta notablemente y es impráctico además de costoso.

#### REFERENCIAS

Agencia de Cooperación Internacional del Japón (JICA). (2012). Plan Maestro para el desarrollo de la Energía Geotérmica en el Perú. Ministerio de Energía y Minas -República del Perú.

Disponible en: https://openjicareport.jica.go.jp/pdf/12048567.pdf.

AKHTARI, M., SHAYEGH, I., and KARIMI, N. (2019). Tecno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations. Renewable Energy, 10(169), 1-54.

Disponible en: https://doi.org/10.1016/j.renene.2019.10.169.

AL ENAZI, A., et al. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7, 1962-1985.

Disponible en: https://doi.org/10.1016/j.egyr.2021.03.036.

ALFARO, C., et al. (2021). Approach to the geothermal potential of Colombia. Geothermics, 96, 1-13.

Disponible en: https://doi.org/10.1016/j.geothermics.2021.102169.

ALI HAIDER, S. M., et al. (2023). Energy and Exergy Analysis of a Geothermal Sourced Multigeneration System for Sustainable City. Energies, 16(1616), 1-19.

Disponible en: https://doi.org/10.3390/en16041616.

ALIRAHMI, S. M., et al. (2021). Green hydrogen and electricity production via geothermal-driven multi-generation system: Thermodynamic modeling and optimization. Fuel, 308(122049).

Disponible en: https://doi.org/10.1016/j.fuel.2021.122049.

ALVAREZ, A. (2020). Clasificación de las investigaciones. Repositorio de la Universidad de Lima, 1-5.

Disponible en: https://repositorio.ulima.edu.pe/handle/20.500.12724/10818.

ALZOHBI, G., ALSHUHAIL, L., and ALMOAIKEL, A. (2023). An estimation of green

hydrogen generation from wind energy: A case study from KSA. Energy Reports, 9, 262-267.

Disponible en: https://doi.org/10.1016/j.egyr.2023.09.010.

ASSAREH, E., et al. (2022). Optimization of geothermal and solar driven clean electricity and hydrogen production multi-generation systems to address the energy nexus. Energy Nexus, 5, 1-16.

Disponible en: https://doi.org/10.1016/j.nexus.2022.100043.

AWALEH, M. O., et al. (2022). Economic Feasibility of Green Hydrogen Production by Water Electrolysis Using Wind and Geothermal Energy Resources in Asal-Ghoubbet Rift (Republic of Djibouti): A Comparative Evaluation. Energies, 15(138), 1-23.

Disponible en: https://doi.org/10.3390/en15010138.

BALL, P. (2021). A Review of Geothermal Technologies and Their Role in Reducing Greenhouse Gas Emissions in the USA . Journal of Energy Resources Technology, 143(1), 1-15.

Disponible en: https://doi.org/10.1115/1.4048187.

BARASA, M., and AKANNI, O. (2022). Geothermal wellhead technology power plants in grid electricity generation: A review. Energy Strategy Reviews, 39, 1-27.

Disponible en: https://doi.org/10.1016/j.esr.2021.100735.

BCRP. (2022). Reporte de inflación: Panorama actual y proyecciones macroeconómicas 2022-2023. Banco Central de Reserva del Perú (BCRP).

Disponible en: https://www.bcrp.gob.pe/docs/Publicaciones/Reporte-Inflacion/2023/junio/reporte-de-inflacion-junio-2023.pdf.

BOONGALING, C., TALOSIG, K., & MEDRANO, E. (2022). Prospects and challenges for green hydrogen production and utilization in the Philippines. International Journal of Hydrogen Energy, 47, 17859-17870.

Disponible en: https://doi.org/10.1016/j.ijhydene.2022.04.101

Borgnakke, C., & Sonntag, R. E. (2019). Fundamentals of Thermodynamics (10ma ed.). Estados Unidos: Wiley.

BOSNJAKOVIC, M., STOJKOV, M., and JURJEVIC, M. (2019). Environmental Impact of Geothermal Power Plants. Tehnicki vjesnik, 26(5), 1515-1522.

Disponible en: https://doi.org/10.17559/TV-20180829122640.

CASTILLO, J., a ZHANGALLIMBAY, D. (2021). La tasa social de descuento en la evaluación de proyectos de inversión: Una aplicación para el Ecuador. Revista de la CEPAL, 134, 77-98.

Disponible en: https://www.cepal.org/es/publicaciones/47285-la-tasa-socialdescuento-la-evaluacion-proyectos-inversion-aplicacion-ecuador.

CEGLIA, A., et al. (2021). A Micro-trigeneration Geothermal Plant for a Smart Energy Community: The Case Study of a Residential District in Ischia . Earth and Environmental Science, 690, 1-10.

Disponible en: https://doi.org/10.1088/1755-1315/690/1/012051.

CENGEL, Y., and BOLES, M. (2019). Termodinámica. Mc Graw Hill Educación.

CENGEL, Y., and CIMBALA, J. (2015). Fluid Mechanis Fundamentals and Applications. Mc Graw Hill.

CENGEL, Y., and GHAJAR, A. (2020). Heat and Mass Transfer (6ta ed.). United States of America: Mc Graw Hill.

COLUCCI, V., et al. (2021). LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant. Sustainability, 13(4), 1-22.

Disponible en: https://doi.org/10.3390/su13041935.

FERNÁNDEZ, D. (2022). El hidrógeno como combustible del futuro. Repositorio de la Universidad Pontificia Comillas.

Disponible en: https://repositorio.comillas.edu/rest/bitstreams/508850/retrieve.

FIASCHI, D., et al. (2021). A Comparison of Different Approaches for Assessing Energy Outputs of Combined Heat and Power Geothermal Plants. Sustainability, 13(4527), 1-13.

Disponible en: https://doi.org/10.3390/su13084527.

GASCO. (2023). EL MUNDO DE LA ENERGÍA. La energía se transforma:

Disponible en: http://www.gascoeduca.cl/Contenido/Contenido.aspx?Cod=11.

GHANI, A., et al. (2020). Geothermal based hybrid energy systems, toward ecofriendly energy approaches. Renewable Energy, 147, 2003-2012.

Disponible en: https://doi.org/10.1016/j.renene.2019.09.140.

GHAZVINI, M., et al. (2019). Geothermal energy use in hydrogen production: A review. International Journal of Energy Research, 1-29.

Disponible en: https://doi.org/10.1002/er.4778.

Gobierno de Navarra. (2020). Balance energético de Navarra. Gobierno de Navarra.

H2 Perú. (2021). Potencial del Hidrógeno Verde en el Perú. Asociación Peruana de Hidrógeno - ENGIE Impact.

Disponible en: https://h2.pe/uploads/20210908\_H2-Peru\_Estudio-final.pdf.

HERNÁNDEZ, R., y MENDOZA, C. (2018). Metodología de la Investigación: Las rutas cuantitativamente, cualitativa y mixta. Mc Graw Hill Education.

Disponible en: https://virtual.cuautitlan.unam.mx/rudics/?p=2612.

HIDALGO, L., et al. (2021). Aula invertida en una plataforma virtual para el desarrollo de competencias. Caso de estudio: curso de investigación aplicada. Campus Virtuales, 10(2), 185-193.

Disponible en: http://www.uajournals.com/campusvirtuales/journal/19/13.pdf.

HOSSEIN, M., et al. (2018). Solar power technology for electricity generation: A critical review. Energy Science and Engineering, 6, 340-361.

Disponible en: https://doi.org/10.1002/ese3.239.

LI, J., et al. (2023). Life cycle sustainability assessment and circularity of geothermal power plants. Sustainable Production and Consumption, 35, 141-156.

Disponible en: https://doi.org/10.1016/j.spc.2022.10.027.

MANZELLA, A., et al. (2018). Environmental and social aspects of geothermal energy in Italy. Geothermics, 72, 232-248.

Disponible en: https://doi.org/10.1016/j.geothermics.2017.11.015.

MARTY, F., et al. (2019). Exergy analysis and optimization of a combined heat and

power geothermal plant. Energies, 12(1175), 1-22.

Disponible en: https://doi.org/10.3390/en12061175.

MATUSZEWSKA, D., KUTA, M., and GÓRSKI, J. (2019). The environmental impact of renewable energy technologies shown in case of ORC-Based Geothermal Power Plant. IOP Conference Series: Earth and Environmental Science, 214, 1-11.

Disponible en: https://doi.org/10.1088/1755-1315/214/1/012142.

MEHTA, A., et al. (2019). Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production – A review. Journal of Environmental Management, 250(109486), 1-15.

Disponible en: https://doi.org/10.1016/j.jenvman.2019.109486.

MICHEA, S., et al. (2019). ENERGÍAS que mueven al mundo. Línea Editorial Aprende, 1(1), 1-122.

Disponible en: https://doi.org/10.32457/ISBN9789568454470472019-ED1.

MICHOPOULOS, A. (2020). Geothermal Developments in Cyprus - Country Update 2019. Proceedings World Geothermal Congress, 1-5.

Disponible en: https://docplayer.net/175389458-Geothermal-developments-incyprus-country-update-2019.html.

Ministerio de Energía y Minas. (2018). Balance Nacional de Energía 2018. Lima: MINEM.

Disponible en: https://www.gob.pe/institucion/minem/informespublicaciones/1905190-balance-nacional-de-energia-2018.

MISHRA, A., et al. (2019). Graphitic carbon nitride (g-C3N4)-based metal free photocatalysts for water splitting: A review. Carbon, 4(104), 1-100.

Disponible en: https://doi.org/10.1016/j.carbon.2019.04.104.

MOYA, D., ALDÁS, C., and KAPARAJU, P. (2018). Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews, 94, 889-901.

Disponible en: https://doi.org/10.1016/j.rser.2018.06.047.

MUKHTAR, M., et al. (2022). Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems. Sustainability, 14(5415), 1-25.

Disponible en: https://doi.org/10.3390/su14095415.

OLABI, A., et al. (2021). Application of graphene in energy storage device - A review. Renewable and Sustainable Energy Reviews, 135(110026), 1-20.

Disponible en: https://doi.org/10.1016/j.rser.2020.110026.

OYEKALE, J., and EMAGBETERE, E. (2022). A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources. Heliyon, 8, 1-12.

Disponible en: https://doi.org/10.1016/j.heliyon.2022.e09833.

PARK, H., et al. (2020). N3-butyl imidazolium-based anion exchange membranes blended with Poly (vinyl alcohol) for alkaline water electrolysis . Journal of Membrane Science, 611(118355), 1-11.

Disponible en: https://doi.org/10.1016/j.memsci.2020.118355.

PAULILLO, A., STRIOLO, A., and LETTIERI, P. (2019). The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Environment International, 133, 1-12.

Disponible en: https://doi.org/10.1016/j.envint.2019.105226.

QURRAHMAN, A., et al. (2021). Energy and Exergy Analysis of Dieng Geothermal Power Plant. International Journal of Technology, 12(1), 175-185.

Disponible en: https://doi.org/10.14716/ijtech.v12i1.4218.

SALAZAR, M., et al. (2017). Parametric analysis of the geothermal power: Dry-Steam, flash steam and hybrid cycle. Revista DYNA, 84(203), 273-282.

Disponible en: https://doi.org/10.15446/dyna.v84n203.66126.

SAUNDERS, A. (2018). Energía Geotérmica. Cubaenergía - Centro de Gestión de la Información y Desarrollo de la Energía.

Disponible

en:

https://www.researchgate.net/publication/337744582\_La\_Energia\_Geotermica.

SHARMA, P., and MELKANIA, U. (2018). Effect of bioaugmentation on hydrogen production from organic fraction of municipal solid waste. International Journal of Hydrogen Energy, 43, 7290-7298.

Disponible en: https://doi.org/10.1016/j.ijhydene.2018.03.031.

SHARMA, S., et al. (2020). Waste to energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Science of The Total Environment, 713(136633).

Disponible en: https://doi.org/10.1016/j.scitotenv.2020.136633.

SHEIKHBAHAEI, V., BANIASADI, E., and NATERER, G. (2018). Experimental investigation of solar assisted hydrogen production from water and aluminum. International Journal of Hydrogen Energy, 43, 9181-9191.

Disponible en: https://doi.org/10.1016/j.ijhydene.2018.03.196.

TASHIE, B., and GODFREY, S. (2021). Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy - A Technology Review. Chemical Engineering Journal Advances, 8, 1-19.

Disponible en: https://doi.org/10.1016/j.ceja.2021.100172.

TETTEH, E., AMANKWA, M., and YEBOAH, C. (2021). Emerging carbon abatement technologies to mitigate energy-carbon footprint- a review. Cleaner Materials, 2, 1-15.

Disponible en: https://doi.org/10.1016/j.clema.2021.100020.

TIM, E., FLORIAN, H., and DIETER, B. (2019). Transient simulation of geothermal combined heat and power generation for a resilient energetic and economic evaluation. Energies, 12(894), 1-16.

Disponible en: https://doi.org/10.3390/en12050894.

TRANAMIL, Y., et al. (2022). Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation. Energies, 15(1961), 1-28.

Disponible en: https://doi.org/10.3390/en15061961.

TRUJILLO, P., y PÉREZ, J. (2022). Determinar las Características de una Central

Geotermoeléctrica en el campo geotérmico Calacoa-Putina en Moquegua. Chiclayo: Repositorio de la Universidad César Vallejo.

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/98974.

TURHAL, S., TURANBAEV, M., and ARGUN, H. (2018). Hydrogen production from melon and watermelon mixture by dark fermentation. International Journal of Hydrogen Energy, 10(11), 1-7.

Disponible en: https://doi.org/10.1016/j.ijhydene.2018.10.011.

UCHIDA, T., et al. (2018). Barriers to geothermal energy use in east and southeast Asia. Research Gate, 1, 1-5.

Disponible

en:

https://www.researchgate.net/publication/325966638\_BARRIERS\_TO\_GEOTHER MAL\_ENERGY\_USE\_IN\_EAST\_AND\_SOUTHEAST\_ASIA.

WAHYUDI, W., et al. (2019). How vocational high-school students understand geothermal energy. Journal of Physics: Conference Series , 1402(044059), 1-5.

Disponible en: https://doi.org/10.1088/1742-6596/1402/4/044059.

WU, Y., et al. (2021). Progress and prospects of hydrogen production: Opportunities and challenges. Journal of Electronic Science and Technology, 19, 1-15.

Disponible en: https://doi.org/10.1016/j.jnlest.2021.100080.

ZHANG, B., et al. (2021). Progress and prospects of hydrogen production: Opportunities and challenges. Journal of Electronic Science and Technology, 19, 1-15.

Disponible en: https://doi.org/10.1016/j.jnlest.2021.100080.

## ANEXOS

| Variable              | Definición conceptual                                                                                                                                                                               | Definición operacional                                                                                                           | Dimensiones                 | Indicadores                                                                                           | Escala   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------|----------|
|                       | Es aquella zona del subsuelo donde se<br>puede extraer calor del interior de la<br>Tierra, con el fin de aprovecharlo de                                                                            | Los parámetros del funcionamien campo geotérmico se                                                                              |                             | - Temperatura<br>- Flujo de masa<br>- Entalpía                                                        | De razón |
| Energía<br>geotérmica | forma rentable. Para determinar las<br>características de funcionamiento es<br>necesario conocer sus parámetros de                                                                                  | experimental empleando<br>la técnica de revisión<br>documental, ya que se                                                        | Costos de explotación       | <ul> <li>Costo de extracción</li> <li>Costo de Reinyección</li> </ul>                                 | De razón |
|                       | funcionamiento, costos de explotación y costos de O y M (Tim <i>et a</i> l., 2019).                                                                                                                 | tiene un estudio previo de sus características.                                                                                  | Costos de O y M             | <ul> <li>Costo de operación</li> <li>Costo de mantenimiento</li> </ul>                                | De razón |
|                       | El hidrógeno es uno de los elementos que<br>más abunda en el mundo y también el<br>más simple. Pero no se encuentra libre en                                                                        | Se determina de acuerdo<br>a diferentes artículos,<br>investigaciones, informes,                                                 | Poder energético            | <ul> <li>Aporte de energía</li> <li>Capacidad calorífica</li> <li>Capacidad térmica</li> </ul>        | De razón |
| Hidrógeno<br>verde    | pero se encuentra combinado con<br>múltiples elementos, por ejemplo, con el<br>Oxígeno formando agua, con el Carbono<br>formando Hidrocarburos y así con<br>diferentes elementos (Fernández, 2022). | documentos necesarios<br>para determinar el<br>potencial que posee para<br>lograr obtener su potencial<br>disponible en el Perú. | Costos de<br>funcionamiento | <ul> <li>Costo de producción</li> <li>Costos de Operación</li> <li>Costos de mantenimiento</li> </ul> | De razón |

## Anexo 1. Tabla de operacionalización de variable

# TABLE B.4 Thermodynamic Properties of R-410a

TABLE B.4.1 Saturated R-410a

|       |        | Specific Volume, m <sup>3</sup> /kg |          |            | Inter          | Internal Energy, kJ/kg |            |  |  |
|-------|--------|-------------------------------------|----------|------------|----------------|------------------------|------------|--|--|
| Temp. | Press. | Sat. Liquid                         | Evap.    | Sat. Vapor | Sat. Liquid    | Evap.                  | Sat. Vapor |  |  |
| (°C)  | (kPa)  | $v_f$                               | $v_{fg}$ | vg         | u <sub>f</sub> | u <sub>fg</sub>        | ug         |  |  |
| -60   | 64.1   | 0.000727                            | 0.36772  | 0.36845    | -27.50         | 256.41                 | 228.91     |  |  |
| -55   | 84.0   | 0.000735                            | 0.28484  | 0.28558    | -20.70         | 251.89                 | 231.19     |  |  |
| -51.4 | 101.3  | 0.000741                            | 0.23875  | 0.23949    | -15.78         | 248.59                 | 232.81     |  |  |
| -50   | 108.7  | 0.000743                            | 0.22344  | 0.22418    | -13.88         | 247.31                 | 233.43     |  |  |
| -45   | 138.8  | 0.000752                            | 0.17729  | 0.17804    | -7.02          | 242.67                 | 235.64     |  |  |
| -40   | 175.0  | 0.000762                            | 0.14215  | 0.14291    | -0.13          | 237.95                 | 237.81     |  |  |
| -35   | 218.4  | 0.000771                            | 0.11505  | 0.11582    | 6.80           | 233.14                 | 239.94     |  |  |
| -30   | 269.6  | 0.000781                            | 0.09392  | 0.09470    | 13.78          | 228.23                 | 242.01     |  |  |
| -25   | 329.7  | 0.000792                            | 0.07726  | 0.07805    | 20.82          | 223.21                 | 244.03     |  |  |
| -20   | 399.6  | 0.000803                            | 0.06400  | 0.06480    | 27.92          | 218.07                 | 245.99     |  |  |
| -15   | 480.4  | 0.000815                            | 0.05334  | 0.05416    | 35.08          | 212.79                 | 247.88     |  |  |
| -10   | 573.1  | 0.000827                            | 0.04470  | 0.04553    | 42.32          | 207.36                 | 249.69     |  |  |
| -5    | 678.9  | 0.000841                            | 0.03764  | 0.03848    | 49.65          | 201.75                 | 251.41     |  |  |
| 0     | 798.7  | 0.000855                            | 0.03182  | 0.03267    | 57.07          | 195.95                 | 253.02     |  |  |
| 5     | 933.9  | 0.000870                            | 0.02699  | 0.02786    | 64.60          | 189.93                 | 254.53     |  |  |
| 10    | 1085.7 | 0.000886                            | 0.02295  | 0.02383    | 72.24          | 183.66                 | 255.90     |  |  |
| 15    | 1255.4 | 0.000904                            | 0.01955  | 0.02045    | 80.02          | 177.10                 | 257.12     |  |  |
| 20    | 1444.2 | 0.000923                            | 0.01666  | 0.01758    | 87.94          | 170.21                 | 258.16     |  |  |
| 25    | 1653.6 | 0.000944                            | 0.01420  | 0.01514    | 96.03          | 162.95                 | 258.98     |  |  |
| 30    | 1885.1 | 0.000968                            | 0.01208  | 0.01305    | 104.32         | 155.24                 | 259.56     |  |  |
| 35    | 2140.2 | 0.000995                            | 0.01025  | 0.01124    | 112.83         | 147.00                 | 259.83     |  |  |
| 40    | 2420.7 | 0.001025                            | 0.00865  | 0.00967    | 121.61         | 138.11                 | 259.72     |  |  |
| 45    | 2728.3 | 0.001060                            | 0.00723  | 0.00829    | 130.72         | 128.41                 | 259.13     |  |  |
| 50    | 3065.2 | 0.001103                            | 0.00597  | 0.00707    | 140.27         | 117.63                 | 257.90     |  |  |
| 55    | 3433.7 | 0.001156                            | 0.00482  | 0.00598    | 150.44         | 105.34                 | 255.78     |  |  |
| 60    | 3836.9 | 0.001227                            | 0.00374  | 0.00497    | 161.57         | 90.70                  | 252.27     |  |  |
| 65    | 4278.3 | 0.001338                            | 0.00265  | 0.00399    | 174.59         | 71.59                  | 246.19     |  |  |
| 70    | 4763.1 | 0.001619                            | 0.00124  | 0.00286    | 194.53         | 37.47                  | 232.01     |  |  |
| 71.3  | 4901.2 | 0.00218                             | 0        | 0.00218    | 215.78         | 0                      | 215.78     |  |  |

|       |        | E           | Enthalpy, kJ/k  | g          | Entropy, kJ/kg-K |        |            |  |  |
|-------|--------|-------------|-----------------|------------|------------------|--------|------------|--|--|
| Temp. | Press. | Sat. Liquid | Evap.           | Sat. Vapor | Sat. Liquid      | Evap.  | Sat. Vapor |  |  |
| (°C)  | (kPa)  | hf          | h <sub>fg</sub> | hg         | Sf               | Sfg    | Sg         |  |  |
| -60   | 64.1   | -27.45      | 279.96          | 252.51     | -0.1227          | 1.3135 | 1.1907     |  |  |
| -55   | 84.0   | -20.64      | 275.83          | 255.19     | -0.0912          | 1.2644 | 1.1732     |  |  |
| -51.4 | 101.3  | -15.70      | 272.78          | 257.08     | -0.0688          | 1.2301 | 1.1613     |  |  |
| -50   | 108.7  | -13.80      | 271.60          | 257.80     | -0.0603          | 1.2171 | 1.1568     |  |  |
| -45   | 138.8  | -6.92       | 267.27          | 260.35     | -0.0299          | 1.1715 | 1.1416     |  |  |
| -40   | 175.0  | 0           | 262.83          | 262.83     | 0                | 1.1273 | 1.1273     |  |  |
| -35   | 218.4  | 6.97        | 258.26          | 265.23     | 0.0294           | 1.0844 | 1.1139     |  |  |
| -30   | 269.6  | 13.99       | 253.55          | 267.54     | 0.0585           | 1.0428 | 1.1012     |  |  |
| -25   | 329.7  | 21.08       | 248.69          | 269.77     | 0.0871           | 1.0022 | 1.0893     |  |  |
| -20   | 399.6  | 28.24       | 243.65          | 271.89     | 0.1154           | 0.9625 | 1.0779     |  |  |
| -15   | 480.4  | 35.47       | 238.42          | 273.90     | 0.1435           | 0.9236 | 1.0671     |  |  |
| -10   | 573.1  | 42.80       | 232.98          | 275.78     | 0.1713           | 0.8854 | 1.0567     |  |  |
| -5    | 678.9  | 50.22       | 227.31          | 277.53     | 0.1989           | 0.8477 | 1.0466     |  |  |
| 0     | 798.7  | 57.76       | 221.37          | 279.12     | 0.2264           | 0.8104 | 1.0368     |  |  |
| 5     | 933.9  | 65.41       | 215.13          | 280.55     | 0.2537           | 0.7734 | 1.0272     |  |  |
| 10    | 1085.7 | 73.21       | 208.57          | 281.78     | 0.2810           | 0.7366 | 1.0176     |  |  |
| 15    | 1255.4 | 81.15       | 201.64          | 282.79     | 0.3083           | 0.6998 | 1.0081     |  |  |
| 20    | 1444.2 | 89.27       | 194.28          | 283.55     | 0.3357           | 0.6627 | 0.9984     |  |  |
| 25    | 1653.6 | 97.59       | 186.43          | 284.02     | 0.3631           | 0.6253 | 0.9884     |  |  |
| 30    | 1885.1 | 106.14      | 178.02          | 284.16     | 0.3908           | 0.5872 | 0.9781     |  |  |
| 35    | 2140.2 | 114.95      | 168.94          | 283.89     | 0.4189           | 0.5482 | 0.9671     |  |  |
| 40    | 2420.7 | 124.09      | 159.04          | 283.13     | 0.4473           | 0.5079 | 0.9552     |  |  |
| 45    | 2728.3 | 133.61      | 148.14          | 281.76     | 0.4765           | 0.4656 | 0.9421     |  |  |
| 50    | 3065.2 | 143.65      | 135.93          | 279.58     | 0.5067           | 0.4206 | 0.9273     |  |  |
| 55    | 3433.7 | 154.41      | 121.89          | 276.30     | 0.5384           | 0.3715 | 0.9099     |  |  |
| 60    | 3836.9 | 166.28      | 105.04          | 271.33     | 0.5729           | 0.3153 | 0.8882     |  |  |
| 65    | 4278.3 | 180.32      | 82.95           | 263.26     | 0.6130           | 0.2453 | 0.8583     |  |  |
| 70    | 4763.1 | 202.24      | 43.40           | 245.64     | 0.6752           | 0.1265 | 0.8017     |  |  |
| 71.3  | 4901.2 | 226.46      | 0               | 226.46     | 0.7449           | 0      | 0.7449     |  |  |

# TABLE B.4.1 (continued) Saturated R-410a

| TABLE B.4.2        |
|--------------------|
| Superheated R-410a |

| Тетр.<br>(°С) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) |  |
|---------------|---------------------------|--------------|--------------|----------------|---------------------------|--------------|--------------|----------------|--|
|               |                           | 50 kPa (     | −64.34°C)    |                |                           | 100 kPa      | (-51.65°C)   |                |  |
| Sat.          | 0.46484                   | 226.90       | 250.15       | 1.2070         | 0.24247                   | 232.70       | 256.94       | 1.1621         |  |
| -60           | 0.47585                   | 229.60       | 253.40       | 1.2225         |                           | _            | _            |                |  |
| -40           | 0.52508                   | 241.94       | 268.20       | 1.2888         | 0.25778                   | 240.40       | 266.18       | 1.2027         |  |
| -20           | 0.57295                   | 254.51       | 283.16       | 1.3504         | 0.28289                   | 253.44       | 281.73       | 1.2667         |  |
| 0             | 0.62016                   | 267.52       | 298.53       | 1.4088         | 0.30723                   | 266.72       | 297.44       | 1.3265         |  |
| 20            | 0.66698                   | 281.05       | 314.40       | 1.4649         | 0.33116                   | 280.42       | 313.54       | 1.3833         |  |
| 40            | 0.71355                   | 295.15       | 330.83       | 1.5191         | 0.35483                   | 294.64       | 330.12       | 1.4380         |  |
| 60            | 0.75995                   | 309.84       | 347.83       | 1.5717         | 0.37833                   | 309.40       | 347.24       | 1.4910         |  |
| 80            | 0.80623                   | 325.11       | 365.43       | 1.6230         | 0.40171                   | 324.75       | 364.92       | 1.5425         |  |
| 100           | 0.85243                   | 340.99       | 383.61       | 1.6731         | 0.42500                   | 340.67       | 383.17       | 1.5928         |  |
| 120           | 0.89857                   | 357.46       | 402.38       | 1.7221         | 0.44822                   | 357.17       | 401.99       | 1.6419         |  |
| 140           | 0.94465                   | 374.50       | 421.74       | 1.7701         | 0.47140                   | 374.25       | 421.39       | 1.6901         |  |
| 160           | 0.99070                   | 392.12       | 441.65       | 1.8171         | 0.49453                   | 391.89       | 441.34       | 1.7372         |  |
| 180           | 1.03671                   | 410.28       | 462.12       | 1.8633         | 0.51764                   | 410.07       | 461.84       | 1.7835         |  |
| 200           | 1.08270                   | 428.98       | 483.11       | 1.9087         | 0.54072                   | 428.79       | 482.86       | 1.8289         |  |
| 220           | 1.12867                   | 448.19       | 504.63       | 1.9532         | 0.56378                   | 448.02       | 504.40       | 1.8734         |  |
| 240           | 1.17462                   | 467.90       | 526.63       | 1.9969         | 0.58682                   | 467.74       | 526.42       | 1.9172         |  |
|               |                           |              |              |                |                           |              | (            |                |  |
|               |                           | 150 kPa      | (-43.35°C)   |                | 200 kPa (-37.01°C)        |              |              |                |  |
| Sat.          | 0.16540                   | 236.36       | 261.17       | 1.1368         | 0.12591                   | 239.09       | 264.27       | 1.1192         |  |
| -40           | 0.16851                   | 238.72       | 263.99       | 1.1489         | —                         | —            | —            | —              |  |
| -20           | 0.18613                   | 252.34       | 280.26       | 1.2159         | 0.13771                   | 251.18       | 278.72       | 1.1783         |  |
| 0             | 0.20289                   | 265.90       | 296.33       | 1.2770         | 0.15070                   | 265.06       | 295.20       | 1.2410         |  |
| 20            | 0.21921                   | 279.78       | 312.66       | 1.3347         | 0.16322                   | 279.13       | 311.78       | 1.2995         |  |
| 40            | 0.23525                   | 294.12       | 329.40       | 1.3899         | 0.17545                   | 293.59       | 328.68       | 1.3553         |  |
| 60            | 0.25112                   | 308.97       | 346.64       | 1.4433         | 0.18750                   | 308.53       | 346.03       | 1.4090         |  |
| 80            | 0.26686                   | 324.37       | 364.40       | 1.4950         | 0.19943                   | 324.00       | 363.89       | 1.4610         |  |
| 100           | 0.28251                   | 340.35       | 382.72       | 1.5455         | 0.21127                   | 340.02       | 382.28       | 1.5117         |  |
| 120           | 0.29810                   | 356.89       | 401.60       | 1.5948         | 0.22305                   | 356.60       | 401.21       | 1.5611         |  |
| 140           | 0.31364                   | 374.00       | 421.04       | 1.6430         | 0.23477                   | 373.74       | 420.70       | 1.6094         |  |
| 160           | 0.32915                   | 391.66       | 441.03       | 1.6902         | 0.24645                   | 391.43       | 440.72       | 1.6568         |  |
| 180           | 0.34462                   | 409.87       | 461.56       | 1.7366         | 0.25810                   | 409.66       | 461.28       | 1.7032         |  |
| 200           | 0.36006                   | 428.60       | 482.61       | 1.7820         | 0.26973                   | 428.41       | 482.35       | 1.7487         |  |
| 220           | 0.37548                   | 447.84       | 504.16       | 1.8266         | 0.28134                   | 447.67       | 503.93       | 1.7933         |  |
| 240           | 0.39089                   | 467.58       | 526.21       | 1.8705         | 0.29293                   | 467.41       | 526.00       | 1.8372         |  |
| 260           | 0.40628                   | 487.78       | 548.73       | 1.9135         | 0.30450                   | 487.63       | 548.53       | 1.8803         |  |

| TABLE B.4.2 | (continued) |
|-------------|-------------|
| Superheated | R-410a      |

| Temp.<br>(°C) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) |
|---------------|---------------------------|--------------|--------------|----------------|---------------------------|--------------|--------------|----------------|
|               |                           | 300 kPa      | (-27.37°C)   |                |                           | 400 kPa      | (-19.98°C)   |                |
| Sat.          | 0.08548                   | 243.08       | 268.72       | 1.0949         | 0.06475                   | 246.00       | 271.90       | 1.0779         |
| -20           | 0.08916                   | 248.71       | 275.46       | 1.1219         |                           |              | _            |                |
| 0             | 0.09845                   | 263.33       | 292.87       | 1.1881         | 0.07227                   | 261.51       | 290.42       | 1.1483         |
| 20            | 0.10720                   | 277.81       | 309.96       | 1.2485         | 0.07916                   | 276.44       | 308.10       | 1.2108         |
| 40            | 0.11564                   | 292.53       | 327.22       | 1.3054         | 0.08571                   | 291.44       | 325.72       | 1.2689         |
| 60            | 0.12388                   | 307.65       | 344.81       | 1.3599         | 0.09207                   | 306.75       | 343.58       | 1.3242         |
| 80            | 0.13200                   | 323.25       | 362.85       | 1.4125         | 0.09828                   | 322.49       | 361.80       | 1.3773         |
| 100           | 0.14003                   | 339.37       | 381.38       | 1.4635         | 0.10440                   | 338.72       | 380.48       | 1.4288         |
| 120           | 0.14798                   | 356.03       | 400.43       | 1.5132         | 0.11045                   | 355.45       | 399.64       | 1.4788         |
| 140           | 0.15589                   | 373.23       | 420.00       | 1.5617         | 0.11645                   | 372.72       | 419.30       | 1.5276         |
| 160           | 0.16376                   | 390.97       | 440.10       | 1.6093         | 0.12241                   | 390.51       | 439.47       | 1.5752         |
| 180           | 0.17159                   | 409.24       | 460.72       | 1.6558         | 0.12834                   | 408.82       | 460.16       | 1.6219         |
| 200           | 0.17940                   | 428.03       | 481.85       | 1.7014         | 0.13424                   | 427.64       | 481.34       | 1.6676         |
| 220           | 0.18719                   | 447.31       | 503.47       | 1.7462         | 0.14012                   | 446.96       | 503.01       | 1.7125         |
| 240           | 0.19496                   | 467.09       | 525.58       | 1.7901         | 0.14598                   | 466.76       | 525.15       | 1.7565         |
| 260           | 0.20272                   | 487.33       | 548.15       | 1.8332         | 0.15182                   | 487.03       | 547.76       | 1.7997         |
| 280           | 0.21046                   | 508.02       | 571.16       | 1.8756         | 0.15766                   | 507.74       | 570.81       | 1.8422         |
|               |                           |              |              |                |                           |              |              |                |
|               |                           | 500 kPa (    | (−13.89°C)   |                | 600 kPa (−8.67°C)         |              |              |                |
| Sat.          | 0.05208                   | 248.29       | 274.33       | 1.0647         | 0.04351                   | 250.15       | 276.26       | 1.0540         |
| 0             | 0.05651                   | 259.59       | 287.84       | 1.1155         | 0.04595                   | 257.54       | 285.12       | 1.0869         |
| 20            | 0.06231                   | 275.02       | 306.18       | 1.1803         | 0.05106                   | 273.56       | 304.20       | 1.1543         |
| 40            | 0.06775                   | 290.32       | 324.20       | 1.2398         | 0.05576                   | 289.19       | 322.64       | 1.2152         |
| 60            | 0.07297                   | 305.84       | 342.32       | 1.2959         | 0.06023                   | 304.91       | 341.05       | 1.2722         |
| 80            | 0.07804                   | 321.72       | 360.74       | 1.3496         | 0.06455                   | 320.94       | 359.67       | 1.3265         |
| 100           | 0.08302                   | 338.05       | 379.56       | 1.4014         | 0.06877                   | 337.38       | 378.65       | 1.3787         |
| 120           | 0.08793                   | 354.87       | 398.84       | 1.4517         | 0.07292                   | 354.29       | 398.04       | 1.4294         |
| 140           | 0.09279                   | 372.20       | 418.60       | 1.5007         | 0.07701                   | 371.68       | 417.89       | 1.4786         |
| 160           | 0.09760                   | 390.05       | 438.85       | 1.5486         | 0.08106                   | 389.58       | 438.22       | 1.5266         |
| 180           | 0.10238                   | 408.40       | 459.59       | 1.5954         | 0.08508                   | 407.98       | 459.03       | 1.5736         |
| 200           | 0.10714                   | 427.26       | 480.83       | 1.6413         | 0.08907                   | 426.88       | 480.32       | 1.6196         |
| 220           | 0.11187                   | 446.61       | 502.55       | 1.6862         | 0.09304                   | 446.26       | 502.08       | 1.6646         |
| 240           | 0.11659                   | 466.44       | 524.73       | 1.7303         | 0.09700                   | 466.11       | 524.31       | 1.7088         |
| 260           | 0.12129                   | 486.73       | 547.37       | 1.7736         | 0.10093                   | 486.42       | 546.98       | 1.7521         |
| 280           | 0.12598                   | 507.46       | 570.45       | 1.8161         | 0.10486                   | 507.18       | 570.09       | 1.7947         |
| 300           | 0.13066                   | 528.62       | 593.95       | 1.8578         | 0.10877                   | 528.36       | 593.62       | 1.8365         |

| TABLE B.4.2 | (continued) |
|-------------|-------------|
| Superheated | R-410a      |

| Temp.<br>(°C) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) |  |
|---------------|---------------------------|--------------|--------------|----------------|---------------------------|--------------|--------------|----------------|--|
|               |                           | 800 kPa      | a (0.05°C)   |                |                           | 1000 kP      | a (7.25°C)   |                |  |
| Sat.          | 0.03262                   | 253.04       | 279.14       | 1.0367         | 0.02596                   | 255.16       | 281.12       | 1.0229         |  |
| 20            | 0.03693                   | 270.47       | 300.02       | 1.1105         | 0.02838                   | 267.11       | 295.49       | 1.0730         |  |
| 40            | 0.04074                   | 286.83       | 319.42       | 1.1746         | 0.03170                   | 284.35       | 316.05       | 1.1409         |  |
| 60            | 0.04429                   | 303.01       | 338.44       | 1.2334         | 0.03470                   | 301.04       | 335.75       | 1.2019         |  |
| 80            | 0.04767                   | 319.36       | 357.49       | 1.2890         | 0.03753                   | 317.73       | 355.27       | 1.2588         |  |
| 100           | 0.05095                   | 336.03       | 376.79       | 1.3421         | 0.04025                   | 334.65       | 374.89       | 1.3128         |  |
| 120           | 0.05415                   | 353.11       | 396.42       | 1.3934         | 0.04288                   | 351.91       | 394.79       | 1.3648         |  |
| 140           | 0.05729                   | 370.64       | 416.47       | 1.4431         | 0.04545                   | 369.58       | 415.04       | 1.4150         |  |
| 160           | 0.06039                   | 388.65       | 436.96       | 1.4915         | 0.04798                   | 387.70       | 435.68       | 1.4638         |  |
| 180           | 0.06345                   | 407.13       | 457.90       | 1.5388         | 0.05048                   | 406.28       | 456.76       | 1.5113         |  |
| 200           | 0.06649                   | 426.10       | 479.30       | 1.5850         | 0.05294                   | 425.33       | 478.27       | 1.5578         |  |
| 220           | 0.06951                   | 445.55       | 501.15       | 1.6302         | 0.05539                   | 444.84       | 500.23       | 1.6032         |  |
| 240           | 0.07251                   | 465.46       | 523.46       | 1.6746         | 0.05781                   | 464.80       | 522.62       | 1.6477         |  |
| 260           | 0.07549                   | 485.82       | 546.21       | 1.7181         | 0.06023                   | 485.21       | 545.43       | 1.6914         |  |
| 280           | 0.07846                   | 506.61       | 569.38       | 1.7607         | 0.06262                   | 506.05       | 568.67       | 1.7341         |  |
| 300           | 0.08142                   | 527.83       | 592.97       | 1.8026         | 0.06501                   | 527.30       | 592.31       | 1.7761         |  |
|               |                           |              |              |                |                           |              |              |                |  |
|               |                           | 1200 kPa     | a (13.43°C)  |                | 1400 kPa (18.88°C)        |              |              |                |  |
| Sat.          | 0.02145                   | 256.75       | 282.50       | 1.0111         | 0.01819                   | 257.94       | 283.40       | 1.0006         |  |
| 20            | 0.02260                   | 263.39       | 290.51       | 1.0388         | 0.01838                   | 259.18       | 284.90       | 1.0057         |  |
| 40            | 0.02563                   | 281.72       | 312.48       | 1.1113         | 0.02127                   | 278.93       | 308.71       | 1.0843         |  |
| 60            | 0.02830                   | 299.00       | 332.96       | 1.1747         | 0.02371                   | 296.88       | 330.07       | 1.1505         |  |
| 80            | 0.03077                   | 316.06       | 352.98       | 1.2331         | 0.02593                   | 314.35       | 350.64       | 1.2105         |  |
| 100           | 0.03311                   | 333.24       | 372.97       | 1.2881         | 0.02801                   | 331.80       | 371.01       | 1.2666         |  |
| 120           | 0.03537                   | 350.69       | 393.13       | 1.3408         | 0.03000                   | 349.46       | 391.46       | 1.3199         |  |
| 140           | 0.03756                   | 368.51       | 413.59       | 1.3915         | 0.03192                   | 367.43       | 412.13       | 1.3712         |  |
| 160           | 0.03971                   | 386.75       | 434.40       | 1.4407         | 0.03380                   | 385.79       | 433.12       | 1.4208         |  |
| 180           | 0.04183                   | 405.43       | 455.62       | 1.4886         | 0.03565                   | 404.56       | 454.47       | 1.4690         |  |
| 200           | 0.04391                   | 424.55       | 477.24       | 1.5353         | 0.03746                   | 423.77       | 476.21       | 1.5160         |  |
| 220           | 0.04597                   | 444.12       | 499.29       | 1.5809         | 0.03925                   | 443.41       | 498.36       | 1.5618         |  |
| 240           | 0.04802                   | 464.14       | 521.77       | 1.6256         | 0.04102                   | 463.49       | 520.92       | 1.6066         |  |
| 260           | 0.05005                   | 484.60       | 544.66       | 1.6693         | 0.04278                   | 483.99       | 543.88       | 1.6505         |  |
| 280           | 0.05207                   | 505.48       | 567.96       | 1.7122         | 0.04452                   | 504.91       | 567.25       | 1.6936         |  |
| 300           | 0.05407                   | 526.77       | 591.66       | 1.7543         | 0.04626                   | 526.25       | 591.01       | 1.7358         |  |
| 320           | 0.05607                   | 548.47       | 615.75       | 1.7956         | 0.04798                   | 547.97       | 615.14       | 1.7772         |  |

| Temp.<br>(°C) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) | v<br>(m <sup>3</sup> /kg) | u<br>(kJ/kg) | h<br>(kJ/kg) | s<br>(kJ/kg-K) |
|---------------|---------------------------|--------------|--------------|----------------|---------------------------|--------------|--------------|----------------|
|               |                           | 1800 kP      | a (28.22°C)  |                |                           | 2000 kP      | a (32.31°C)  |                |
| Sat.          | 0.01376                   | 259.38       | 284.15       | 0.9818         | 0.01218                   | 259.72       | 284.09       | 0.9731         |
| 40            | 0.01534                   | 272.67       | 300.29       | 1.0344         | 0.01321                   | 269.07       | 295.49       | 1.0099         |
| 60            | 0.01754                   | 292.34       | 323.92       | 1.1076         | 0.01536                   | 289.90       | 320.62       | 1.0878         |
| 80            | 0.01945                   | 310.76       | 345.77       | 1.1713         | 0.01717                   | 308.88       | 343.22       | 1.1537         |
| 100           | 0.02119                   | 328.84       | 366.98       | 1.2297         | 0.01880                   | 327.30       | 364.91       | 1.2134         |
| 120           | 0.02283                   | 346.93       | 388.03       | 1.2847         | 0.02032                   | 345.64       | 386.29       | 1.2693         |
| 140           | 0.02441                   | 365.24       | 409.17       | 1.3371         | 0.02177                   | 364.12       | 407.66       | 1.3223         |
| 160           | 0.02593                   | 383.85       | 430.51       | 1.3875         | 0.02317                   | 382.86       | 429.20       | 1.3732         |
| 180           | 0.02741                   | 402.82       | 452.16       | 1.4364         | 0.02452                   | 401.94       | 450.99       | 1.4224         |
| 200           | 0.02886                   | 422.19       | 474.14       | 1.4839         | 0.02585                   | 421.40       | 473.10       | 1.4701         |
| 220           | 0.03029                   | 441.97       | 496.49       | 1.5301         | 0.02715                   | 441.25       | 495.55       | 1.5166         |
| 240           | 0.03170                   | 462.16       | 519.22       | 1.5753         | 0.02844                   | 461.50       | 518.37       | 1.5619         |
| 260           | 0.03309                   | 482.77       | 542.34       | 1.6195         | 0.02970                   | 482.16       | 541.56       | 1.6063         |
| 280           | 0.03447                   | 503.78       | 565.83       | 1.6627         | 0.03095                   | 503.21       | 565.12       | 1.6497         |
| 300           | 0.03584                   | 525.19       | 589.70       | 1.7051         | 0.03220                   | 524.66       | 589.05       | 1.6922         |
| 320           | 0.03720                   | 546.98       | 613.94       | 1.7467         | 0.03343                   | 546.49       | 613.35       | 1.7338         |
| 340           | 0.03855                   | 569.15       | 638.54       | 1.7875         | 0.03465                   | 568.69       | 637.99       | 1.7747         |
|               |                           |              |              |                |                           |              |              |                |
|               |                           | 3000 kP      | a (49.07°C)  |                | 4000 kPa (61.90°C)        |              |              |                |
| Sat.          | 0.00729                   | 258.19       | 280.06       | 0.9303         | 0.00460                   | 250.37       | 268.76       | 0.8782         |
| 60            | 0.00858                   | 274.96       | 300.70       | 0.9933         |                           | _            | _            |                |
| 80            | 0.01025                   | 298.38       | 329.12       | 1.0762         | 0.00661                   | 285.02       | 311.48       | 1.0028         |
| 100           | 0.01159                   | 319.07       | 353.84       | 1.1443         | 0.00792                   | 309.62       | 341.29       | 1.0850         |
| 120           | 0.01277                   | 338.84       | 377.16       | 1.2052         | 0.00897                   | 331.39       | 367.29       | 1.1529         |
| 140           | 0.01387                   | 358.32       | 399.92       | 1.2617         | 0.00990                   | 352.14       | 391.75       | 1.2136         |
| 160           | 0.01489                   | 377.80       | 422.49       | 1.3150         | 0.01076                   | 372.51       | 415.53       | 1.2698         |
| 180           | 0.01588                   | 397.46       | 445.09       | 1.3661         | 0.01156                   | 392.82       | 439.05       | 1.3229         |
| 200           | 0.01683                   | 417.37       | 467.85       | 1.4152         | 0.01232                   | 413.25       | 462.52       | 1.3736         |
| 220           | 0.01775                   | 437.60       | 490.84       | 1.4628         | 0.01305                   | 433.88       | 486.10       | 1.4224         |
| 240           | 0.01865                   | 458.16       | 514.11       | 1.5091         | 0.01377                   | 454.79       | 509.85       | 1.4696         |
| 260           | 0.01954                   | 479.08       | 537.69       | 1.5541         | 0.01446                   | 475.99       | 533.83       | 1.5155         |
| 280           | 0.02041                   | 500.37       | 561.59       | 1.5981         | 0.01514                   | 497.51       | 558.08       | 1.5601         |
| 300           | 0.02127                   | 522.01       | 585.81       | 1.6411         | 0.01581                   | 519.37       | 582.60       | 1.6037         |
| 320           | 0.02212                   | 544.02       | 610.37       | 1.6833         | 0.01647                   | 541.55       | 607.42       | 1.6462         |
| 340           | 0.02296                   | 566.37       | 635.25       | 1.7245         | 0.01712                   | 564.06       | 632.54       | 1.6879         |
| 360           | 0.02379                   | 589.07       | 660.45       | 1.7650         | 0.01776                   | 586.90       | 657.95       | 1.7286         |

TABLE B.4.2 (continued)Superheated R-410a

## Anexo 4. Tablas de propiedades termodinámicas del agua

#### TABLA A-4

| Pres.<br>Temp., sat., |                                               | Volume                          | n específico,<br>m³/kg           | E                                     | Energía in<br>kJ/kg             | terna,<br>3                      |                                       | Entalpí<br>kJ/kg          | а,                                     |                                 | Entropía<br>kJ/kg · k     | ,<br>(                       |
|-----------------------|-----------------------------------------------|---------------------------------|----------------------------------|---------------------------------------|---------------------------------|----------------------------------|---------------------------------------|---------------------------|----------------------------------------|---------------------------------|---------------------------|------------------------------|
| Temp.,<br><i>T</i> °C | Pres.<br>sat.,<br><i>P</i> <sub>sat</sub> kPa | Líq.<br>sat.,<br>v <sub>f</sub> | Vapor<br>sat.,<br>v <sub>g</sub> | Líq.<br>sat.,<br><i>u<sub>f</sub></i> | Evap.,<br><i>u<sub>fg</sub></i> | Vapor<br>sat.,<br>u <sub>g</sub> | Líq.<br>sat.,<br><i>h<sub>f</sub></i> | Evap.,<br>h <sub>fg</sub> | Vapor<br>sat.,<br><i>h<sub>g</sub></i> | Líq.<br>sat.,<br>s <sub>f</sub> | Evap.,<br>s <sub>fg</sub> | Vapor<br>sat.,<br><i>s</i> g |
| 0.01                  | 0.6117                                        | 0.001000                        | 206.00                           | 0.000                                 | 2374.9                          | 2374.9                           | 0.001                                 | 2500.9                    | 2500.9                                 | 0.0000                          | 9.1556                    | 9.1556                       |
| 5                     | 0.8725                                        | 0.001000                        | 147.03                           | 21.019                                | 2360.8                          | 2381.8                           | 21.020                                | 2489.1                    | 2510.1                                 | 0.0763                          | 8.9487                    | 9.0249                       |
| 10                    | 1.2281                                        | 0.001000                        | 106.32                           | 42.020                                | 2346.6                          | 2388.7                           | 42.022                                | 2477.2                    | 2519.2                                 | 0.1511                          | 8.7488                    | 8.8999                       |
| 15                    | 1.7057                                        | 0.001001                        | 77.885                           | 62.980                                | 2332.5                          | 2395.5                           | 62.982                                | 2465.4                    | 2528.3                                 | 0.2245                          | 8.5559                    | 8.7803                       |
| 20                    | 2.3392                                        | 0.001002                        | 57.762                           | 83.913                                | 2318.4                          | 2402.3                           | 83.915                                | 2453.5                    | 2537.4                                 | 0.2965                          | 8.3696                    | 8.6661                       |
| 25                    | 3.1698                                        | 0.001003                        | 43.340                           | 104.83                                | 2304.3                          | 2409.1                           | 104.83                                | 2441.7                    | 2546.5                                 | 0.3672                          | 8.1895                    | 8.5567                       |
| 30                    | 4.2469                                        | 0.001004                        | 32.879                           | 125.73                                | 2290.2                          | 2415.9                           | 125.74                                | 2429.8                    | 2555.6                                 | 0.4368                          | 8.0152                    | 8.4520                       |
| 35                    | 5.6291                                        | 0.001006                        | 25.205                           | 146.63                                | 2276.0                          | 2422.7                           | 146.64                                | 2417.9                    | 2564.6                                 | 0.5051                          | 7.8466                    | 8.3517                       |
| 40                    | 7.3851                                        | 0.001008                        | 19.515                           | 167.53                                | 2261.9                          | 2429.4                           | 167.53                                | 2406.0                    | 2573.5                                 | 0.5724                          | 7.6832                    | 8.2556                       |
| 45                    | 9.5953                                        | 0.001010                        | 15.251                           | 188.43                                | 2247.7                          | 2436.1                           | 188.44                                | 2394.0                    | 2582.4                                 | 0.6386                          | 7.5247                    | 8.1633                       |
| 50                    | 12.352                                        | 0.001012                        | 12.026                           | 209.33                                | 2233.4                          | 2442.7                           | 209.34                                | 2382.0                    | 2591.3                                 | 0.7038                          | 7.3710                    | 8.0748                       |
| 55                    | 15.763                                        | 0.001015                        | 9.5639                           | 230.24                                | 2219.1                          | 2449.3                           | 230.26                                | 2369.8                    | 2600.1                                 | 0.7680                          | 7.2218                    | 7.9898                       |
| 60                    | 19.947                                        | 0.001017                        | 7.6670                           | 251.16                                | 2204.7                          | 2455.9                           | 251.18                                | 2357.7                    | 2608.8                                 | 0.8313                          | 7.0769                    | 7.9082                       |
| 65                    | 25.043                                        | 0.001020                        | 6.1935                           | 272.09                                | 2190.3                          | 2462.4                           | 272.12                                | 2345.4                    | 2617.5                                 | 0.8937                          | 6.9360                    | 7.8296                       |
| 70                    | 31.202                                        | 0.001023                        | 5.0396                           | 293.04                                | 2175.8                          | 2468.9                           | 293.07                                | 2333.0                    | 2626.1                                 | 0.9551                          | 6.7989                    | 7.7540                       |
| 75                    | 38.597                                        | 0.001026                        | 4.1291                           | 313.99                                | 2161.3                          | 2475.3                           | 314.03                                | 2320.6                    | 2634.6                                 | 1.0158                          | 6.6655                    | 7.6812                       |
| 80                    | 47.416                                        | 0.001029                        | 3.4053                           | 334.97                                | 2146.6                          | 2481.6                           | 335.02                                | 2308.0                    | 2643.0                                 | 1.0756                          | 6.5355                    | 7.6111                       |
| 85                    | 57.868                                        | 0.001032                        | 2.8261                           | 355.96                                | 2131.9                          | 2487.8                           | 356.02                                | 2295.3                    | 2651.4                                 | 1.1346                          | 6.4089                    | 7.5435                       |
| 90                    | 70.183                                        | 0.001036                        | 2.3593                           | 376.97                                | 2117.0                          | 2494.0                           | 377.04                                | 2282.5                    | 2659.6                                 | 1.1929                          | 6.2853                    | 7.4782                       |
| 95                    | 84.609                                        | 0.001040                        | 1.9808                           | 398.00                                | 2102.0                          | 2500.1                           | 398.09                                | 2269.6                    | 2667.6                                 | 1.2504                          | 6.1647                    | 7.4151                       |
| 100                   | 101.42                                        | 0.001043                        | 1.6720                           | 419.06                                | 2087.0                          | 2506.0                           | 419.17                                | 2256.4                    | 2675.6                                 | 1.3072                          | 6.0470                    | 7.3542                       |
| 105                   | 120.90                                        | 0.001047                        | 1.4186                           | 440.15                                | 2071.8                          | 2511.9                           | 440.28                                | 2243.1                    | 2683.4                                 | 1.3634                          | 5.9319                    | 7.2952                       |
| 110                   | 143.38                                        | 0.001052                        | 1.2094                           | 461.27                                | 2056.4                          | 2517.7                           | 461.42                                | 2229.7                    | 2691.1                                 | 1.4188                          | 5.8193                    | 7.2382                       |
| 115                   | 169.18                                        | 0.001056                        | 1.0360                           | 482.42                                | 2040.9                          | 2523.3                           | 482.59                                | 2216.0                    | 2698.6                                 | 1.4737                          | 5.7092                    | 7.1829                       |
| 120                   | 198.67                                        | 0.001060                        | 0.89133                          | 503.60                                | 2025.3                          | 2528.9                           | 503.81                                | 2202.1                    | 2706.0                                 | 1.5279                          | 5.6013                    | 7.1292                       |
| 125                   | 232.23                                        | 0.001065                        | 0.77012                          | 524.83                                | 2009.5                          | 2534.3                           | 525.07                                | 2188.1                    | 2713.1                                 | 1.5816                          | 5.4956                    | 7.0771                       |
| 130                   | 270.28                                        | 0.001070                        | 0.66808                          | 546.10                                | 1993.4                          | 2539.5                           | 546.38                                | 2173.7                    | 2720.1                                 | 1.6346                          | 5.3919                    | 7.0265                       |
| 135                   | 313.22                                        | 0.001075                        | 0.58179                          | 567.41                                | 1977.3                          | 2544.7                           | 567.75                                | 2159.1                    | 2726.9                                 | 1.6872                          | 5.2901                    | 6.9773                       |
| 140                   | 361.53                                        | 0.001080                        | 0.50850                          | 588.77                                | 1960.9                          | 2549.6                           | 589.16                                | 2144.3                    | 2733.5                                 | 1.7392                          | 5.1901                    | 6.9294                       |
| 145                   | 415.68                                        | 0.001085                        | 0.44600                          | 610.19                                | 1944.2                          | 2554.4                           | 610.64                                | 2129.2                    | 2739.8                                 | 1.7908                          | 5.0919                    | 6.8827                       |
| 150                   | 476.16                                        | 0.001091                        | 0.39248                          | 631.66                                | 1927.4                          | 2559.1                           | 632.18                                | 2113.8                    | 2745.9                                 | 1.8418                          | 4.9953                    | 6.8371                       |
| 155                   | 543.49                                        | 0.001096                        | 0.34648                          | 653.19                                | 1910.3                          | 2563.5                           | 653.79                                | 2098.0                    | 2751.8                                 | 1.8924                          | 4.9002                    | 6.7927                       |
| 160                   | 618.23                                        | 0.001102                        | 0.30680                          | 674.79                                | 1893.0                          | 2567.8                           | 675.47                                | 2082.0                    | 2757.5                                 | 1.9426                          | 4.8066                    | 6.7492                       |
| 165                   | 700.93                                        | 0.001108                        | 0.27244                          | 696.46                                | 1875.4                          | 2571.9                           | 697.24                                | 2065.6                    | 2762.8                                 | 1.9923                          | 4.7143                    | 6.7067                       |
| 170                   | 792.18                                        | 0.001114                        | 0.24260                          | 718.20                                | 1857.5                          | 2575.7                           | 719.08                                | 2048.8                    | 2767.9                                 | 2.0417                          | 4.6233                    | 6.6650                       |
| 175                   | 892.60                                        | 0.001121                        | 0.21659                          | 740.02                                | 1839.4                          | 2579.4                           | 741.02                                | 2031.7                    | 2772.7                                 | 2.0906                          | 4.5335                    | 6.6242                       |
| 180                   | 1002.8                                        | 0.001127                        | 0.19384                          | 761.92                                | 1820.9                          | 2582.8                           | 763.05                                | 2014.2                    | 2777.2                                 | 2.1392                          | 4.4448                    | 6.5841                       |
| 185                   | 1123.5                                        | 0.001134                        | 0.17390                          | 783.91                                | 1802.1                          | 2586.0                           | 785.19                                | 1996.2                    | 2781.4                                 | 2.1875                          | 4.3572                    | 6.5447                       |
| 190                   | 1255.2                                        | 0.001141                        | 0.15636                          | 806.00                                | 1783.0                          | 2589.0                           | 807.43                                | 1977.9                    | 2785.3                                 | 2.2355                          | 4.2705                    | 6.5059                       |
| 195                   | 1398.8                                        | 0.001149                        | 0.14089                          | 828.18                                | 1763.6                          | 2591.7                           | 829.78                                | 1959.0                    | 2788.8                                 | 2.2831                          | 4.1847                    | 6.4678                       |
| 200                   | 1554.9                                        | 0.001157                        | 0.12721                          | 850.46                                | 1743.7                          | 2594.2                           | 852.26                                | 1939.8                    | 2792.0                                 | 2.3305                          | 4.0997                    | 6.4302                       |

| Agua s | aturada. | Tabla | de | temperaturas | conclusión) |  |
|--------|----------|-------|----|--------------|-------------|--|
|--------|----------|-------|----|--------------|-------------|--|

| Pres.                 |                                               | Volumei                        | Volumen específico,<br>m³/kg     |                                       | Energía interna,<br>kJ/kg       |                                        | Entalpía,<br>kJ/kg                    |                           | а,                                     |                                       | Entropía,<br>kJ/kg · K    | {                            |
|-----------------------|-----------------------------------------------|--------------------------------|----------------------------------|---------------------------------------|---------------------------------|----------------------------------------|---------------------------------------|---------------------------|----------------------------------------|---------------------------------------|---------------------------|------------------------------|
| Тетр.,<br><i>Т</i> °С | Pres.<br>sat.,<br><i>P</i> <sub>sat</sub> kPa | Líq.<br>sat,<br>v <sub>f</sub> | Vapor<br>sat.,<br>v <sub>g</sub> | Líq.<br>sat.,<br><i>u<sub>f</sub></i> | Evap.,<br><i>u<sub>fg</sub></i> | Vapor<br>sat.,<br><i>u<sub>g</sub></i> | Líq.<br>sat.,<br><i>h<sub>f</sub></i> | Evap.,<br>h <sub>fg</sub> | Vapor<br>sat.,<br><i>h<sub>g</sub></i> | Líq.<br>sat.,<br><i>s<sub>f</sub></i> | Evap.,<br>s <sub>fg</sub> | Vapor<br>sat.,<br><i>s</i> g |
| 205                   | 1724.3                                        | 0.001164                       | 0.11508                          | 872.86                                | 1723.5                          | 2596.4                                 | 874.87                                | 1920.0                    | 2794.8                                 | 2.3776                                | 4.0154                    | 6.3930                       |
| 210                   | 1907.7                                        | 0.001173                       | 0.10429                          | 895.38                                | 1702.9                          | 2598.3                                 | 897.61                                | 1899.7                    | 2797.3                                 | 2.4245                                | 3.9318                    | 6.3563                       |
| 215                   | 2105.9                                        | 0.001181                       | 0.094680                         | 918.02                                | 1681.9                          | 2599.9                                 | 920.50                                | 1878.8                    | 2799.3                                 | 2.4712                                | 3.8489                    | 6.3200                       |
| 220                   | 2319.6                                        | 0.001190                       | 0.086094                         | 940.79                                | 1660.5                          | 2601.3                                 | 943.55                                | 1857.4                    | 2801.0                                 | 2.5176                                | 3.7664                    | 6.2840                       |
| 225                   | 2549.7                                        | 0.001199                       | 0.078405                         | 963.70                                | 1638.6                          | 2602.3                                 | 966.76                                | 1835.4                    | 2802.2                                 | 2.5639                                | 3.6844                    | 6.2483                       |
| 230                   | 2797.1                                        | 0.001209                       | 0.071505                         | 986.76                                | 1616.1                          | 2602.9                                 | 990.14                                | 1812.8                    | 2802.9                                 | 2.6100                                | 3.6028                    | 6.2128                       |
| 235                   | 3062.6                                        | 0.001219                       | 0.065300                         | 1010.0                                | 1593.2                          | 2603.2                                 | 1013.7                                | 1789.5                    | 2803.2                                 | 2.6560                                | 3.5216                    | 6.1775                       |
| 240                   | 3347.0                                        | 0.001229                       | 0.059707                         | 1033.4                                | 1569.8                          | 2603.1                                 | 1037.5                                | 1765.5                    | 2803.0                                 | 2.7018                                | 3.4405                    | 6.1424                       |
| 245                   | 3651.2                                        | 0.001240                       | 0.054656                         | 1056.9                                | 1545.7                          | 2602.7                                 | 1061.5                                | 1740.8                    | 2802.2                                 | 2.7476                                | 3.3596                    | 6.1072                       |
| 250                   | 3976.2                                        | 0.001252                       | 0.050085                         | 1080.7                                | 1521.1                          | 2601.8                                 | 1085.7                                | 1715.3                    | 2801.0                                 | 2.7933                                | 3.2788                    | 6.0721                       |
| 255                   | 4322.9                                        | 0.001263                       | 0.045941                         | 1104.7                                | 1495.8                          | 2600.5                                 | 1110.1                                | 1689.0                    | 2799.1                                 | 2.8390                                | 3.1979                    | 6.0369                       |
| 260                   | 4692.3                                        | 0.001276                       | 0.042175                         | 1128.8                                | 1469.9                          | 2598.7                                 | 1134.8                                | 1661.8                    | 2796.6                                 | 2.8847                                | 3.1169                    | 6.0017                       |
| 265                   | 5085.3                                        | 0.001289                       | 0.038748                         | 1153.3                                | 1443.2                          | 2596.5                                 | 1159.8                                | 1633.7                    | 2793.5                                 | 2.9304                                | 3.0358                    | 5.9662                       |
| 270                   | 5503.0                                        | 0.001303                       | 0.035622                         | 1177.9                                | 1415.7                          | 2593.7                                 | 1185.1                                | 1604.6                    | 2789.7                                 | 2.9762                                | 2.9542                    | 5.9305                       |
| 275                   | 5946.4                                        | 0.001317                       | 0.032767                         | 1202.9                                | 1387.4                          | 2590.3                                 | 1210.7                                | 1574.5                    | 2785.2                                 | 3.0221                                | 2.8723                    | 5.8944                       |
| 280                   | 6416.6                                        | 0.001333                       | 0.030153                         | 1228.2                                | 1358.2                          | 2586.4                                 | 1236.7                                | 1543.2                    | 2779.9                                 | 3.0681                                | 2.7898                    | 5.8579                       |
| 285                   | 6914.6                                        | 0.001349                       | 0.027756                         | 1253.7                                | 1328.1                          | 2581.8                                 | 1263.1                                | 1510.7                    | 2773.7                                 | 3.1144                                | 2.7066                    | 5.8210                       |
| 290                   | 7441.8                                        | 0.001366                       | 0.025554                         | 1279.7                                | 1296.9                          | 2576.5                                 | 1289.8                                | 1476.9                    | 2766.7                                 | 3.1608                                | 2.6225                    | 5.7834                       |
| 295                   | 7999.0                                        | 0.001384                       | 0.023528                         | 1306.0                                | 1264.5                          | 2570.5                                 | 1317.1                                | 1441.6                    | 2758.7                                 | 3.2076                                | 2.5374                    | 5.7450                       |
| 300                   | 8587.9                                        | 0.001404                       | 0.021659                         | 1332.7                                | 1230.9                          | 2563.6                                 | 1344.8                                | 1404.8                    | 2749.6                                 | 3.2548                                | 2.4511                    | 5.7059                       |
| 305                   | 9209.4                                        | 0.001425                       | 0.019932                         | 1360.0                                | 1195.9                          | 2555.8                                 | 1373.1                                | 1366.3                    | 2739.4                                 | 3.3024                                | 2.3633                    | 5.6657                       |
| 310                   | 9865.0                                        | 0.001447                       | 0.018333                         | 1387.7                                | 1159.3                          | 2547.1                                 | 1402.0                                | 1325.9                    | 2727.9                                 | 3.3506                                | 2.2737                    | 5.6243                       |
| 315                   | 10,556                                        | 0.001472                       | 0.016849                         | 1416.1                                | 1121.1                          | 2537.2                                 | 1431.6                                | 1283.4                    | 2715.0                                 | 3.3994                                | 2.1821                    | 5.5816                       |
| 320                   | 11,284                                        | 0.001499                       | 0.015470                         | 1445.1                                | 1080.9                          | 2526.0                                 | 1462.0                                | 1238.5                    | 2700.6                                 | 3.4491                                | 2.0881                    | 5.5372                       |
| 325                   | 12,051                                        | 0.001528                       | 0.014183                         | 1475.0                                | 1038.5                          | 2513.4                                 | 1493.4                                | 1191.0                    | 2684.3                                 | 3.4998                                | 1.9911                    | 5.4908                       |
| 330                   | 12,858                                        | 0.001560                       | 0.012979                         | 1505.7                                | 993.5                           | 2499.2                                 | 1525.8                                | 1140.3                    | 2666.0                                 | 3.5516                                | 1.8906                    | 5.4422                       |
| 335                   | 13,707                                        | 0.001597                       | 0.011848                         | 1537.5                                | 945.5                           | 2483.0                                 | 1559.4                                | 1086.0                    | 2645.4                                 | 3.6050                                | 1.7857                    | 5.3907                       |
| 340                   | 14,601                                        | 0.001638                       | 0.010783                         | 1570.7                                | 893.8                           | 2464.5                                 | 1594.6                                | 1027.4                    | 2622.0                                 | 3.6602                                | 1.6756                    | 5.3358                       |
| 345                   | 15,541                                        | 0.001685                       | 0.009772                         | 1605.5                                | 837.7                           | 2443.2                                 | 1631.7                                | 963.4                     | 2595.1                                 | 3.7179                                | 1.5585                    | 5.2765                       |
| 350                   | 16,529                                        | 0.001741                       | 0.008806                         | 1642.4                                | 775.9                           | 2418.3                                 | 1671.2                                | 892.7                     | 2563.9                                 | 3.7788                                | 1.4326                    | 5.2114                       |
| 355                   | 17,570                                        | 0.001808                       | 0.007872                         | 1682.2                                | 706.4                           | 2388.6                                 | 1714.0                                | 812.9                     | 2526.9                                 | 3.8442                                | 1.2942                    | 5.1384                       |
| 360                   | 18,666                                        | 0.001895                       | 0.006950                         | 1726.2                                | 625.7                           | 2351.9                                 | 1761.5                                | 720.1                     | 2481.6                                 | 3.9165                                | 1.1373                    | 5.0537                       |
| 365                   | 19,822                                        | 0.002015                       | 0.006009                         | 1777.2                                | 526.4                           | 2303.6                                 | 1817.2                                | 605.5                     | 2422.7                                 | 4.0004                                | 0.9489                    | 4.9493                       |
| 370                   | 21,044                                        | 0.002217                       | 0.004953                         | 1844.5                                | 385.6                           | 2230.1                                 | 1891.2                                | 443.1                     | 2334.3                                 | 4.1119                                | 0.6890                    | 4.8009                       |
| 373.95                | 22,064                                        | 0.003106                       | 0.003106                         | 2015.7                                | 0                               | 2015.7                                 | 2084.3                                | 0                         | 2084.3                                 | 4.4070                                | 0                         | 4.4070                       |

Fuente: Las tablas A-4 a A-8 fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la altamente precisa Steam\_IAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Agua Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación reemplaza a la formulación de 1984 de Haar, Gallagher y Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se basa en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Prus (J. Phys. Chem. Ref. Data, 22, 783, 1993). Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H<sub>2</sub>0 from 173.15 K a 473.15 K", *ASHRAE Trans.*, Part 2A, Paper 2793, 1983.

Agua saturada. Tabla de presiones

|                        |                                       | Volume                          | n específico,<br>m³/kg           |                                       | Energía in<br>kJ/kg       | terna,<br>Ç                  |                                | Entalpía,<br>kJ/kg        | ,                                      |                                 | Entropía,<br>kJ/kg · K    | ,                            |
|------------------------|---------------------------------------|---------------------------------|----------------------------------|---------------------------------------|---------------------------|------------------------------|--------------------------------|---------------------------|----------------------------------------|---------------------------------|---------------------------|------------------------------|
| Pres.,<br><i>P</i> kPa | Temp.<br>sat.,<br>T <sub>sat</sub> °C | Líq.<br>sat.,<br>v <sub>f</sub> | Vapor<br>sat.,<br>v <sub>g</sub> | Líq.<br>sat.,<br><i>u<sub>f</sub></i> | Evap.,<br>u <sub>fg</sub> | Vapor<br>sat.,<br><i>u</i> g | Líq.<br>sat,<br>h <sub>f</sub> | Evap.,<br>h <sub>fg</sub> | Vapor<br>sat.,<br><i>h<sub>g</sub></i> | Líq.<br>sat.,<br>s <sub>f</sub> | Evap.,<br>s <sub>fg</sub> | Vapor<br>sat.,<br><i>s</i> g |
| 1.0                    | 6.97                                  | 0.001000                        | 129.19                           | 29.302                                | 2355.2                    | 2384.5                       | 29.303                         | 2484.4                    | 2513.7                                 | 0.1059                          | 8.8690                    | 8.9749                       |
| 1.5                    | 13.02                                 | 0.001001                        | 87.964                           | 54.686                                | 2338.1                    | 2392.8                       | 54.688                         | 2470.1                    | 2524.7                                 | 0.1956                          | 8.6314                    | 8.8270                       |
| 2.0                    | 17.50                                 | 0.001001                        | 66.990                           | 73.431                                | 2325.5                    | 2398.9                       | 73.433                         | 2459.5                    | 2532.9                                 | 0.2606                          | 8.4621                    | 8.7227                       |
| 2.5                    | 21.08                                 | 0.001002                        | 54.242                           | 88.422                                | 2315.4                    | 2403.8                       | 88.424                         | 2451.0                    | 2539.4                                 | 0.3118                          | 8.3302                    | 8.6421                       |
| 3.0                    | 24.08                                 | 0.001003                        | 45.654                           | 100.98                                | 2306.9                    | 2407.9                       | 100.98                         | 2443.9                    | 2544.8                                 | 0.3543                          | 8.2222                    | 8.5765                       |
| 4.0                    | 28.96                                 | 0.001004                        | 34.791                           | 121.39                                | 2293.1                    | 2414.5                       | 121.39                         | 2432.3                    | 2553.7                                 | 0.4224                          | 8.0510                    | 8.4734                       |
| 5.0                    | 32.87                                 | 0.001005                        | 28.185                           | 137.75                                | 2282.1                    | 2419.8                       | 137.75                         | 2423.0                    | 2560.7                                 | 0.4762                          | 7.9176                    | 8.3938                       |
| 7.5                    | 40.29                                 | 0.001008                        | 19.233                           | 168.74                                | 2261.1                    | 2429.8                       | 168.75                         | 2405.3                    | 2574.0                                 | 0.5763                          | 7.6738                    | 8.2501                       |
| 10                     | 45.81                                 | 0.001010                        | 14.670                           | 191.79                                | 2245.4                    | 2437.2                       | 191.81                         | 2392.1                    | 2583.9                                 | 0.6492                          | 7.4996                    | 8.1488                       |
| 15                     | 53.97                                 | 0.001014                        | 10.020                           | 225.93                                | 2222.1                    | 2448.0                       | 225.94                         | 2372.3                    | 2598.3                                 | 0.7549                          | 7.2522                    | 8.0071                       |
| 20                     | 60.06                                 | 0.001017                        | 7.6481                           | 251.40                                | 2204.6                    | 2456.0                       | 251.42                         | 2357.5                    | 2608.9                                 | 0.8320                          | 7.0752                    | 7.9073                       |
| 25                     | 64.96                                 | 0.001020                        | 6.2034                           | 271.93                                | 2190.4                    | 2462.4                       | 271.96                         | 2345.5                    | 2617.5                                 | 0.8932                          | 6.9370                    | 7.8302                       |
| 30                     | 69.09                                 | 0.001022                        | 5.2287                           | 289.24                                | 2178.5                    | 2467.7                       | 289.27                         | 2335.3                    | 2624.6                                 | 0.9441                          | 6.8234                    | 7.7675                       |
| 40                     | 75.86                                 | 0.001026                        | 3.9933                           | 317.58                                | 2158.8                    | 2476.3                       | 317.62                         | 2318.4                    | 2636.1                                 | 1.0261                          | 6.6430                    | 7.6691                       |
| 50                     | 81.32                                 | 0.001030                        | 3.2403                           | 340.49                                | 2142.7                    | 2483.2                       | 340.54                         | 2304.7                    | 2645.2                                 | 1.0912                          | 6.5019                    | 7.5931                       |
| 75                     | 91.76                                 | 0.001037                        | 2.2172                           | 384.36                                | 2111.8                    | 2496.1                       | 384.44                         | 2278.0                    | 2662.4                                 | 1.2132                          | 6.2426                    | 7.4558                       |
| 100                    | 99.61                                 | 0.001043                        | 1.6941                           | 417.40                                | 2088.2                    | 2505.6                       | 417.51                         | 2257.5                    | 2675.0                                 | 1.3028                          | 6.0562                    | 7.3589                       |
| 101.325                | 99.97                                 | 0.001043                        | 1.6734                           | 418.95                                | 2087.0                    | 2506.0                       | 419.06                         | 2256.5                    | 2675.6                                 | 1.3069                          | 6.0476                    | 7.3545                       |
| 125                    | 105.97                                | 0.001048                        | 1.3750                           | 444.23                                | 2068.8                    | 2513.0                       | 444.36                         | 2240.6                    | 2684.9                                 | 1.3741                          | 5.9100                    | 7.2841                       |
| 150                    | 111.35                                | 0.001053                        | 1.1594                           | 466.97                                | 2052.3                    | 2519.2                       | 467.13                         | 2226.0                    | 2693.1                                 | 1.4337                          | 5.7894                    | 7.2231                       |
| 175                    | 116.04                                | 0.001057                        | 1.0037                           | 486.82                                | 2037.7                    | 2524.5                       | 487.01                         | 2213.1                    | 2700.2                                 | 1.4850                          | 5.6865                    | 7.1716                       |
| 200                    | 120.21                                | 0.001061                        | 0.88578                          | 504.50                                | 2024.6                    | 2529.1                       | 504.71                         | 2201.6                    | 2706.3                                 | 1.5302                          | 5.5968                    | 7.1270                       |
| 225                    | 123.97                                | 0.001064                        | 0.79329                          | 520.47                                | 2012.7                    | 2533.2                       | 520.71                         | 2191.0                    | 2711.7                                 | 1.5706                          | 5.5171                    | 7.0877                       |
| 250                    | 127.41                                | 0.001067                        | 0.71873                          | 535.08                                | 2001.8                    | 2536.8                       | 535.35                         | 2181.2                    | 2716.5                                 | 1.6072                          | 5.4453                    | 7.0525                       |
| 275                    | 130.58                                | 0.001070                        | 0.65732                          | 548.57                                | 1991.6                    | 2540.1                       | 548.86                         | 2172.0                    | 2720.9                                 | 1.6408                          | 5.3800                    | 7.0207                       |
| 300                    | 133.52                                | 0.001073                        | 0.60582                          | 561.11                                | 1982.1                    | 2543.2                       | 561.43                         | 2163.5                    | 2724.9                                 | 1.6717                          | 5.3200                    | 6.9917                       |
| 325                    | 136.27                                | 0.001076                        | 0.56199                          | 572.84                                | 1973.1                    | 2545.9                       | 573.19                         | 2155.4                    | 2728.6                                 | 1.7005                          | 5.2645                    | 6.9650                       |
| 350                    | 138.86                                | 0.001079                        | 0.52422                          | 583.89                                | 1964.6                    | 2548.5                       | 584.26                         | 2147.7                    | 2732.0                                 | 1.7274                          | 5.2128                    | 6.9402                       |
| 375                    | 141.30                                | 0.001081                        | 0.49133                          | 594.32                                | 1956.6                    | 2550.9                       | 594.73                         | 2140.4                    | 2735.1                                 | 1.7526                          | 5.1645                    | 6.9171                       |
| 400                    | 143.61                                | 0.001084                        | 0.46242                          | 604.22                                | 1948.9                    | 2553.1                       | 604.66                         | 2133.4                    | 2738.1                                 | 1.7765                          | 5.1191                    | 6.8955                       |
| 450                    | 147.90                                | 0.001088                        | 0.41392                          | 622.65                                | 1934.5                    | 2557.1                       | 623.14                         | 2120.3                    | 2743.4                                 | 1.8205                          | 5.0356                    | 6.8561                       |
| 500                    | 151.83                                | 0.001093                        | 0.37483                          | 639.54                                | 1921.2                    | 2560.7                       | 640.09                         | 2108.0                    | 2748.1                                 | 1.8604                          | 4.9603                    | 6.8207                       |
| 550                    | 155.46                                | 0.001097                        | 0.34261                          | 655.16                                | 1908.8                    | 2563.9                       | 655.77                         | 2096.6                    | 2752.4                                 | 1.8970                          | 4.8916                    | 6.7886                       |
| 600                    | 158.83                                | 0.001101                        | 0.31560                          | 669.72                                | 1897.1                    | 2566.8                       | 670.38                         | 2085.8                    | 2756.2                                 | 1.9308                          | 4.8285                    | 6.7593                       |
| 650                    | 161.98                                | 0.001104                        | 0.29260                          | 683.37                                | 1886.1                    | 2569.4                       | 684.08                         | 2075.5                    | 2759.6                                 | 1.9623                          | 4.7699                    | 6.7322                       |
| 700                    | 164.95                                | 0.001108                        | 0.27278                          | 696.23                                | 1875.6                    | 2571.8                       | 697.00                         | 2065.8                    | 2762.8                                 | 1.9918                          | 4.7153                    | 6.7071                       |
| 750                    | 167.75                                | 0.001111                        | 0.25552                          | 708.40                                | 1865.6                    | 2574.0                       | 709.24                         | 2056.4                    | 2765.7                                 | 2.0195                          | 4.6642                    | 6.6837                       |

| - |     |     |    | -   |
|---|-----|-----|----|-----|
|   | ы   | 1 / | Λ. | . • |
|   | 1 D | LM  | -  |     |
| _ | _   |     | _  | _   |

| Agua sa                | aturada. T                            | abla de pre                     | siones (con                         | clusión)                              |                           |                                        |                            |                           |                                  |                                 |                           |                                         |
|------------------------|---------------------------------------|---------------------------------|-------------------------------------|---------------------------------------|---------------------------|----------------------------------------|----------------------------|---------------------------|----------------------------------|---------------------------------|---------------------------|-----------------------------------------|
|                        |                                       | Volumer<br>ri                   | n específico,<br>n <sup>3</sup> /kg | E                                     | nergía in<br>kJ/kg        | terna,<br>Ç                            |                            | Entalpía<br>kJ/kg         | ,                                |                                 | Entropía,<br>kJ/kg · K    |                                         |
| Pres.,<br><i>P</i> kPa | Temp.<br>sat.,<br>T <sub>sat</sub> °C | Líq.<br>sat.,<br>v <sub>f</sub> | Vapor<br>sat.,<br>v <sub>e</sub>    | Líq.<br>sat.,<br><i>u<sub>f</sub></i> | Evap.,<br>u <sub>fo</sub> | Vapor<br>sat.,<br><i>u<sub>e</sub></i> | Líq.<br>sat,<br><i>h</i> f | Evap.,<br>h <sub>fe</sub> | Vapor<br>sat.,<br>h <sub>e</sub> | Líq.<br>sat.,<br>s <sub>f</sub> | Evap.,<br>s <sub>fo</sub> | Vapor<br>sat.,<br><i>s</i> <sub>o</sub> |
| 800                    | 170.41                                | 0.001115                        | 0.24035                             | 719.97                                | 1856.1                    | 2576.0                                 | 720.87                     | 2047.5                    | 2768.3                           | 2.0457                          | 4.6160                    | 6.6616                                  |
| 850                    | 172.94                                | 0.001118                        | 0.22690                             | 731.00                                | 1846.9                    | 2577.9                                 | 731.95                     | 2038.8                    | 2770.8                           | 2.0705                          | 4.5705                    | 6.6409                                  |
| 900                    | 175.35                                | 0.001121                        | 0.21489                             | 741.55                                | 1838.1                    | 2579.6                                 | 742.56                     | 2030.5                    | 2773.0                           | 2.0941                          | 4.5273                    | 6.6213                                  |
| 950                    | 177.66                                | 0.001124                        | 0.20411                             | 751.67                                | 1829.6                    | 2581.3                                 | 752.74                     | 2022.4                    | 2775.2                           | 2.1166                          | 4.4862                    | 6.6027                                  |
| 1000                   | 179.88                                | 0.001127                        | 0.19436                             | 761.39                                | 1821.4                    | 2582.8                                 | 762.51                     | 2014.6                    | 2777.1                           | 2.1381                          | 4.4470                    | 6.5850                                  |
| 1100                   | 184.06                                | 0.001133                        | 0.17745                             | 779.78                                | 1805.7                    | 2585.5                                 | 781.03                     | 1999.6                    | 2780.7                           | 2.1785                          | 4.3735                    | 6.5520                                  |
| 1200                   | 187.96                                | 0.001138                        | 0.16326                             | 796.96                                | 1790.9                    | 2587.8                                 | 798.33                     | 1985.4                    | 2783.8                           | 2.2159                          | 4.3058                    | 6.5217                                  |
| 1300                   | 191.60                                | 0.001144                        | 0.15119                             | 813.10                                | 1776.8                    | 2589.9                                 | 814.59                     | 1971.9                    | 2786.5                           | 2.2508                          | 4.2428                    | 6.4936                                  |
| 1400                   | 195.04                                | 0.001149                        | 0.14078                             | 828.35                                | 1763.4                    | 2591.8                                 | 829.96                     | 1958.9                    | 2788.9                           | 2.2835                          | 4.1840                    | 6.4675                                  |
| 1500                   | 198.29                                | 0.001154                        | 0.13171                             | 842.82                                | 1750.6                    | 2593.4                                 | 844.55                     | 1946.4                    | 2791.0                           | 2.3143                          | 4.1287                    | 6.4430                                  |
| 1750                   | 205.72                                | 0.001166                        | 0.11344                             | 876.12                                | 1720.6                    | 2596.7                                 | 878.16                     | 1917.1                    | 2795.2                           | 2.3844                          | 4.0033                    | 6.3877                                  |
| 2000                   | 212.38                                | 0.001177                        | 0.099587                            | 906.12                                | 1693.0                    | 2599.1                                 | 908.47                     | 1889.8                    | 2798.3                           | 2.4467                          | 3.8923                    | 6.3390                                  |
| 2250                   | 218.41                                | 0.001187                        | 0.088717                            | 933.54                                | 1667.3                    | 2600.9                                 | 936.21                     | 1864.3                    | 2800.5                           | 2.5029                          | 3.7926                    | 6.2954                                  |
| 2500                   | 223.95                                | 0.001197                        | 0.079952                            | 958.87                                | 1643.2                    | 2602.1                                 | 961.87                     | 1840.1                    | 2801.9                           | 2.5542                          | 3.7016                    | 6.2558                                  |
| 3000                   | 233.85                                | 0.001217                        | 0.066667                            | 1004.6                                | 1598.5                    | 2603.2                                 | 1008.3                     | 1794.9                    | 2803.2                           | 2.6454                          | 3.5402                    | 6.1856                                  |
| 3500                   | 242.56                                | 0.001235                        | 0.057061                            | 1045.4                                | 1557.6                    | 2603.0                                 | 1049.7                     | 1753.0                    | 2802.7                           | 2.7253                          | 3.3991                    | 6.1244                                  |
| 4000                   | 250.35                                | 0.001252                        | 0.049779                            | 1082.4                                | 1519.3                    | 2601.7                                 | 1087.4                     | 1713.5                    | 2800.8                           | 2.7966                          | 3.2731                    | 6.0696                                  |
| 5000                   | 263.94                                | 0.001286                        | 0.039448                            | 1148.1                                | 1448.9                    | 2597.0                                 | 1154.5                     | 1639.7                    | 2794.2                           | 2.9207                          | 3.0530                    | 5.9737                                  |
| 6000                   | 275.59                                | 0.001319                        | 0.032449                            | 1205.8                                | 1384.1                    | 2589.9                                 | 1213.8                     | 1570.9                    | 2784.6                           | 3.0275                          | 2.8627                    | 5.8902                                  |
| 7000                   | 285.83                                | 0.001352                        | 0.027378                            | 1258.0                                | 1323.0                    | 2581.0                                 | 1267.5                     | 1505.2                    | 2772.6                           | 3.1220                          | 2.6927                    | 5.8148                                  |
| 8000                   | 295.01                                | 0.001384                        | 0.023525                            | 1306.0                                | 1264.5                    | 2570.5                                 | 1317.1                     | 1441.6                    | 2758.7                           | 3.2077                          | 2.5373                    | 5.7450                                  |
| 9000                   | 303.35                                | 0.001418                        | 0.020489                            | 1350.9                                | 1207.6                    | 2558.5                                 | 1363.7                     | 1379.3                    | 2742.9                           | 3.2866                          | 2.3925                    | 5.6791                                  |
| 10,000                 | 311.00                                | 0.001452                        | 0.018028                            | 1393.3                                | 1151.8                    | 2545.2                                 | 1407.8                     | 1317.6                    | 2725.5                           | 3.3603                          | 2.2556                    | 5.6159                                  |
| 11,000                 | 318.08                                | 0.001488                        | 0.015988                            | 1433.9                                | 1096.6                    | 2530.4                                 | 1450.2                     | 1256.1                    | 2706.3                           | 3.4299                          | 2.1245                    | 5.5544                                  |
| 12,000                 | 324.68                                | 0.001526                        | 0.014264                            | 1473.0                                | 1041.3                    | 2514.3                                 | 1491.3                     | 1194.1                    | 2685.4                           | 3.4964                          | 1.9975                    | 5.4939                                  |
| 13,000                 | 330.85                                | 0.001566                        | 0.012781                            | 1511.0                                | 985.5                     | 2496.6                                 | 1531.4                     | 1131.3                    | 2662.7                           | 3.5606                          | 1.8730                    | 5.4336                                  |
| 14,000                 | 336.67                                | 0.001610                        | 0.011487                            | 1548.4                                | 928.7                     | 2477.1                                 | 1571.0                     | 1067.0                    | 2637.9                           | 3.6232                          | 1.7497                    | 5.3728                                  |
| 15,000                 | 342.16                                | 0.001657                        | 0.010341                            | 1585.5                                | 870.3                     | 2455.7                                 | 1610.3                     | 1000.5                    | 2610.8                           | 3.6848                          | 1.6261                    | 5.3108                                  |
| 16,000                 | 347.36                                | 0.001710                        | 0.009312                            | 1622.6                                | 809.4                     | 2432.0                                 | 1649.9                     | 931.1                     | 2581.0                           | 3.7461                          | 1.5005                    | 5.2466                                  |
| 17,000                 | 352.29                                | 0.001770                        | 0.008374                            | 1660.2                                | 745.1                     | 2405.4                                 | 1690.3                     | 857.4                     | 2547.7                           | 3.8082                          | 1.3709                    | 5.1791                                  |
| 18,000                 | 356.99                                | 0.001840                        | 0.007504                            | 1699.1                                | 675.9                     | 2375.0                                 | 1732.2                     | 777.8                     | 2510.0                           | 3.8720                          | 1.2343                    | 5.1064                                  |
| 19,000                 | 361.47                                | 0.001926                        | 0.006677                            | 1740.3                                | 598.9                     | 2339.2                                 | 1776.8                     | 689.2                     | 2466.0                           | 3.9396                          | 1.0860                    | 5.0256                                  |
| 20,000                 | 365.75                                | 0.002038                        | 0.005862                            | 1785.8                                | 509.0                     | 2294.8                                 | 1826.6                     | 585.5                     | 2412.1                           | 4.0146                          | 0.9164                    | 4.9310                                  |
| 21,000                 | 369.83                                | 0.002207                        | 0.004994                            | 1841.6                                | 391.9                     | 2233.5                                 | 1888.0                     | 450.4                     | 2338.4                           | 4.1071                          | 0.7005                    | 4.8076                                  |
| 22,000                 | 373.71                                | 0.002703                        | 0.003644                            | 1951.7                                | 140.8                     | 2092.4                                 | 2011.1                     | 161.5                     | 2172.6                           | 4.2942                          | 0.2496                    | 4.5439                                  |
| 22,064                 | 373.95                                | 0.003106                        | 0.003106                            | 2015.7                                | 0                         | 2015.7                                 | 2084.3                     | 0                         | 2084.3                           | 4.4070                          | 0                         | 4.4070                                  |

Fuente: (Cengel y Boles, 2019)

| Vapor o | de agua sob        | precalent | ado        |           |                    |          |           |           |                    |          |           |           |
|---------|--------------------|-----------|------------|-----------|--------------------|----------|-----------|-----------|--------------------|----------|-----------|-----------|
| Т       | v                  | u         | h          | s         | v                  | и        | h         | s         | v                  | u        | h         | s         |
| °C      | m <sup>3</sup> /kg | kJ/kg     | kJ/kg      | kJ/kg ∙ K | m <sup>3</sup> /kg | kJ/kg    | kJ/kg     | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg    | kJ/kg     | kJ/kg · K |
|         | P =                | 0.01 MF   | Pa (45.81) | °C)*      | P =                | 0.05 MP  | a (81.32° | C)        | P =                | 0.10 MP  | a (99.61  | °C)       |
| Sat.†   | 14.670             | 2437.2    | 2583.9     | 8.1488    | 3.2403             | 2483.2   | 2645.2    | 7.5931    | 1.6941             | 2505.6   | 2675.0    | 7.3589    |
| 50      | 14.867             | 2443.3    | 2592.0     | 8.1741    |                    |          |           |           |                    |          |           |           |
| 100     | 17.196             | 2515.5    | 2687.5     | 8.4489    | 3.4187             | 2511.5   | 2682.4    | 7.6953    | 1.6959             | 2506.2   | 2675.8    | 7.3611    |
| 150     | 19.513             | 2587.9    | 2783.0     | 8.6893    | 3.8897             | 2585.7   | 2780.2    | 7.9413    | 1.9367             | 2582.9   | 2776.6    | 7.6148    |
| 200     | 21.826             | 2661.4    | 2879.6     | 8.9049    | 4.3562             | 2660.0   | 2877.8    | 8.1592    | 2.1724             | 2658.2   | 2875.5    | 7.8356    |
| 250     | 24.136             | 2736.1    | 2977.5     | 9.1015    | 4.8206             | 2735.1   | 2976.2    | 8.3568    | 2.4062             | 2733.9   | 2974.5    | 8.0346    |
| 300     | 26.446             | 2812.3    | 3076.7     | 9.2827    | 5.2841             | 2811.6   | 3075.8    | 8.5387    | 2.6389             | 2810.7   | 3074.5    | 8.2172    |
| 400     | 31.063             | 2969.3    | 3280.0     | 9.6094    | 6.2094             | 2968.9   | 3279.3    | 8.8659    | 3.1027             | 2968.3   | 3278.6    | 8.5452    |
| 500     | 35.680             | 3132.9    | 3489.7     | 9.8998    | 7.1338             | 3132.6   | 3489.3    | 9.1566    | 3.5655             | 3132.2   | 3488.7    | 8.8362    |
| 600     | 40.296             | 3303.3    | 3706.3     | 10.1631   | 8.0577             | 3303.1   | 3706.0    | 9.4201    | 4.0279             | 3302.8   | 3705.6    | 9.0999    |
| 700     | 44.911             | 3480.8    | 3929.9     | 10.4056   | 8.9813             | 3480.6   | 3929.7    | 9.6626    | 4.4900             | 3480.4   | 3929.4    | 9.3424    |
| 800     | 49.527             | 3665.4    | 4160.6     | 10.6312   | 9.9047             | 3665.2   | 4160.4    | 9.8883    | 4.9519             | 3665.0   | 4160.2    | 9.5682    |
| 900     | 54.143             | 3856.9    | 4398.3     | 10.8429   | 10.8280            | 3856.8   | 4398.2    | 10.1000   | 5.4137             | 3856.7   | 4398.0    | 9.7800    |
| 1000    | 58.758             | 4055.3    | 4642.8     | 11.0429   | 11.7513            | 4055.2   | 4642.7    | 10.3000   | 5.8755             | 4055.0   | 4642.6    | 9.9800    |
| 1100    | 63.373             | 4260.0    | 4893.8     | 11.2326   | 12.6745            | 4259.9   | 4893.7    | 10.4897   | 6.3372             | 4259.8   | 4893.6    | 10.1698   |
| 1200    | 67.989             | 4470.9    | 5150.8     | 11.4132   | 13.5977            | 4470.8   | 5150.7    | 10.6704   | 6.7988             | 4470.7   | 5150.6    | 10.3504   |
| 1300    | 72.604             | 4687.4    | 5413.4     | 11.5857   | 14.5209            | 4687.3   | 5413.3    | 10.8429   | 7.2605             | 4687.2   | 5413.3    | 10.5229   |
|         | P =                | 0.20 MP   | a (120.2   | 1°C)      | P =                | 0.30 MPa | (133.52   | °C)       | P =                | 0.40 MPa | a (143.6) | l°C)      |
| Sat.    | 0.88578            | 2529.1    | 2706.3     | 7.1270    | 0.60582            | 2543.2   | 2724.9    | 6.9917    | 0.46242            | 2553.1   | 2738.1    | 6.8955    |
| 150     | 0.95986            | 2577.1    | 2769.1     | 7.2810    | 0.63402            | 2571.0   | 2761.2    | 7.0792    | 0.47088            | 3 2564.4 | 2752.8    | 6.9306    |
| 200     | 1.08049            | 2654.6    | 2870.7     | 7.5081    | 0.71643            | 2651.0   | 2865.9    | 7.3132    | 0.53434            | 1 2647.2 | 2860.9    | 7.1723    |
| 250     | 1.19890            | 2731.4    | 2971.2     | 7.7100    | 0.79645            | 2728.9   | 2967.9    | 7.5180    | 0.59520            | 2726.4   | 2964.5    | 7.3804    |
| 300     | 1.31623            | 2808.8    | 3072.1     | 7.8941    | 0.87535            | 2807.0   | 3069.6    | 7.7037    | 0.65489            | 2805.1   | 3067.1    | 7.5677    |
| 400     | 1.54934            | 2967.2    | 3277.0     | 8.2236    | 1.03155            | 2966.0   | 3275.5    | 8.0347    | 0.77265            | 2964.9   | 3273.9    | 7.9003    |
| 500     | 1.78142            | 3131.4    | 3487.7     | 8.5153    | 1.18672            | 3130.6   | 3486.6    | 8.3271    | 0.88936            | 5 3129.8 | 3485.5    | 8.1933    |
| 600     | 2.01302            | 3302.2    | 3704.8     | 8.7793    | 1.34139            | 3301.6   | 3704.0    | 8.5915    | 1.00558            | 3 3301.0 | 3703.3    | 8.4580    |
| /00     | 2.24434            | 3479.9    | 3928.8     | 9.0221    | 1.49580            | 3479.5   | 3928.2    | 8.8345    | 1.12152            | 2 3479.0 | 3927.6    | 8.7012    |
| 800     | 2.47550            | 3664.7    | 4159.8     | 9.2479    | 1.65004            | 3664.3   | 4159.3    | 9.0605    | 1.23/30            | 3663.9   | 4158.9    | 8.9274    |
| 900     | 2.70656            | 3856.3    | 4397.7     | 9.4598    | 1.80417            | 3856.0   | 4397.3    | 9.2725    | 1.35298            | 3855.7   | 4396.9    | 9.1394    |
| 1000    | 2.93755            | 4054.8    | 4642.3     | 9.6599    | 1.95824            | 4054.5   | 4642.0    | 9.4726    | 1.46855            | 4054.3   | 4641.7    | 9.3396    |
| 1100    | 3.16848            | 4259.6    | 4893.3     | 9.8497    | 2.11226            | 4259.4   | 4893.1    | 9.6624    | 1.58414            | 4259.2   | 4892.9    | 9.5295    |
| 1200    | 3.39938            | 4470.5    | 5150.4     | 10.0304   | 2.26624            | 4470.3   | 5150.2    | 9.8431    | 1.69966            | 44/0.2   | 5150.0    | 9.7102    |
| 1300    | 3.63026            | 4687.1    | 5413.1     | 10.2029   | 2.42019            | 4686.9   | 5413.0    | 10.0157   | 1.81516            | 4686.7   | 5412.8    | 9.8828    |
|         | P =                | 0.50 MP   | Pa (151.8  | 3°C)      | P =                | 0.60 MPa | (158.83   | °C)       | P =                | 0.80 MPa | a (170.4) | l°C)      |
| Sat.    | 0.37483            | 2560.7    | 2748.1     | 6.8207    | 0.31560            | 2566.8   | 2756.2    | 6.7593    | 0.24035            | 5 2576.0 | 2768.3    | 6.6616    |
| 200     | 0.42503            | 2643.3    | 2855.8     | 7.0610    | 0.35212            | 2639.4   | 2850.6    | 6.9683    | 0.26088            | 3 2631.1 | 2839.8    | 6.8177    |
| 250     | 0.47443            | 2723.8    | 2961.0     | 7.2725    | 0.39390            | 2721.2   | 2957.6    | 7.1833    | 0.29321            | 2715.9   | 2950.4    | 7.0402    |
| 300     | 0.52261            | 2803.3    | 3064.6     | 7.4614    | 0.43442            | 2801.4   | 3062.0    | 7.3740    | 0.32416            | 5 2797.5 | 3056.9    | 7.2345    |
| 350     | 0.57015            | 2883.0    | 3168.1     | 7.6346    | 0.47428            | 2881.6   | 3166.1    | 7.5481    | 0.35442            | 2 2878.6 | 3162.2    | 7.4107    |
| 400     | 0.61731            | 2963.7    | 3272.4     | 7.7956    | 0.51374            | 2962.5   | 3270.8    | 7.7097    | 0.38429            | 9 2960.2 | 3267.7    | 7.5735    |
| 500     | 0.71095            | 3129.0    | 3484.5     | 8.0893    | 0.59200            | 3128.2   | 3483.4    | 8.0041    | 0.44332            | 2 3126.6 | 3481.3    | 7.8692    |
| 600     | 0.80409            | 3300.4    | 3702.5     | 8.3544    | 0.66976            | 3299.8   | 3701.7    | 8.2695    | 0.50186            | 5 3298.7 | 3700.1    | 8.1354    |
| 700     | 0.89696            | 3478.6    | 3927.0     | 8.5978    | 0.74725            | 3478.1   | 3926.4    | 8.5132    | 0.56011            | 3477.2   | 3925.3    | 8.3794    |
| 800     | 0.98966            | 3663.6    | 4158.4     | 8.8240    | 0.82457            | 3663.2   | 4157.9    | 8.7395    | 0.61820            | 3662.5   | 4157.0    | 8.6061    |
| 900     | 1.08227            | 3855.4    | 4396.6     | 9.0362    | 0.90179            | 3855.1   | 4396.2    | 8.9518    | 0.67619            | 3854.5   | 4395.5    | 8.8185    |
| 1000    | 1.17480            | 4054.0    | 4641.4     | 9.2364    | 0.97893            | 4053.8   | 4641.1    | 9.1521    | 0.73411            | 4053.3   | 4640.5    | 9.0189    |
| 1100    | 1.26728            | 4259.0    | 4892.6     | 9.4263    | 1.05603            | 4258.8   | 4892.4    | 9.3420    | 0.79197            | 4258.3   | 4891.9    | 9.2090    |
| 1200    | 1.35972            | 4470.0    | 5149.8     | 9.6071    | 1.13309            | 4469.8   | 5149.6    | 9.5229    | 0.84980            | ) 4469.4 | 5149.3    | 9.3898    |
| 1300    | 1.45214            | 4686.6    | 5412.6     | 9.7797    | 1.21012            | 4686.4   | 5412.5    | 9.6955    | 0.90761            | 4686.1   | 5412.2    | 9.5625    |

\*La temperatura entre paréntesis es la temperatura de saturación a la presión especificada.

† Propiedades del vapor saturado a la presión especificada.

Fuente: (Cengel y Boles, 2019)

| Vapor | de agua so | brecalen  | tado ( <i>con</i> | tinuación) | _                  |          |            |           |                    |         |           |           |
|-------|------------|-----------|-------------------|------------|--------------------|----------|------------|-----------|--------------------|---------|-----------|-----------|
| Т     | v          | u         | h                 | s          | v                  | u        | h          | s         | v                  | u       | h         | s         |
| °C    | m³/kg      | kJ/kg     | kJ/kg             | kJ/kg · K  | m <sup>3</sup> /kg | kJ/kg    | kJ/kg      | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg   | kJ/kg     | kJ/kg · K |
|       | P          | = 1.00 MF | Pa (179.88        | 3 °C)      | P                  | = 1.20 N | /Pa (187.  | 96 °C)    | P =                | 1.40 MP | a (195.04 | 4 °C)     |
| Sat.  | 0.19437    | 2582.8    | 2777.1            | 6.5850     | 0.16326            | 2587.8   | 2783.8     | 6.5217    | 0.14078            | 2591.8  | 2788.9    | 6.4675    |
| 200   | 0.20602    | 2622.3    | 2828.3            | 6.6956     | 0.16934            | 2612.9   | 2816.1     | 6.5909    | 0.14303            | 2602.7  | 2803.0    | 6.4975    |
| 250   | 0.23275    | 2710.4    | 2943.1            | 6.9265     | 0.19241            | 2704.7   | 2935.6     | 6.8313    | 0.16356            | 2698.9  | 2927.9    | 6.7488    |
| 300   | 0.25799    | 2793.7    | 3051.6            | 7.1246     | 0.21386            | 2789.7   | 3046.3     | 7.0335    | 0.18233            | 2785.7  | 3040.9    | 6.9553    |
| 350   | 0.28250    | 2875.7    | 3158.2            | 7.3029     | 0.23455            | 2872.7   | 3154.2     | 7.2139    | 0.20029            | 2869.7  | 3150.1    | 7.1379    |
| 400   | 0.30661    | 2957.9    | 3264.5            | 7.4670     | 0.25482            | 2955.5   | 3261.3     | 7.3793    | 0.21782            | 2953.1  | 3258.1    | 7.3046    |
| 500   | 0.35411    | 3125.0    | 3479.1            | 7.7642     | 0.29464            | 3123.4   | 3477.0     | 7.6779    | 0.25216            | 3121.8  | 3474.8    | 7.6047    |
| 600   | 0.40111    | 3297.5    | 3698.6            | 8.0311     | 0.33395            | 3296.3   | 3697.0     | 7.9456    | 0.28597            | 3295.1  | 3695.5    | 7.8730    |
| 700   | 0.44783    | 3476.3    | 3924.1            | 8.2755     | 0.37297            | 3475.3   | 3922.9     | 8.1904    | 0.31951            | 3474.4  | 3921.7    | 8.1183    |
| 800   | 0.49438    | 3661.7    | 4156.1            | 8.5024     | 0.41184            | 3661.0   | 4155.2     | 8.4176    | 0.35288            | 3660.3  | 4154.3    | 8.3458    |
| 900   | 0.54083    | 3853.9    | 4394.8            | 8.7150     | 0.45059            | 3853.3   | 4394.0     | 8.6303    | 0.38614            | 3852.7  | 4393.3    | 8.5587    |
| 1000  | 0.58721    | 4052.7    | 4640.0            | 8.9155     | 0.48928            | 4052.2   | 4639.4     | 8.8310    | 0.41933            | 4051.7  | 4638.8    | 8.7595    |
| 1100  | 0.63354    | 4257.9    | 4891.4            | 9.1057     | 0.52792            | 4257.5   | 4891.0     | 9.0212    | 0.45247            | 4257.0  | 4890.5    | 8.9497    |
| 1200  | 0.67983    | 4469.0    | 5148.9            | 9.2866     | 0.56652            | 4468.7   | 5148.5     | 9.2022    | 0.48558            | 4468.3  | 5148.1    | 9.1308    |
| 1300  | 0.72610    | 4685.8    | 5411.9            | 9.4593     | 0.60509            | 4685.5   | 5411.6     | 9.3750    | 0.51866            | 4685.1  | 5411.3    | 9.3036    |
|       | P =        | = 1.60 MF | Pa (201.37        | 7 °C)      | Р                  | = 1.80 N | /IPa (207. | 11 °C)    | P =                | 2.00 MP | a (212.38 | 3 °C)     |
| Sat.  | 0.12374    | 2594.8    | 2792.8            | 6.4200     | 0.11037            | 2597.3   | 2795       | 9 6.3775  | 0.09959            | 2599.1  | 2798.3    | 6.3390    |
| 225   | 0.13293    | 2645.1    | 2857.8            | 6.5537     | 0.11678            | 2637.0   | 2847.      | 2 6.4825  | 0.10381            | 2628.5  | 2836.1    | 6.4160    |
| 250   | 0.14190    | 2692.9    | 2919.9            | 6.6753     | 0.12502            | 2686.7   | 2911.      | 7 6.6088  | 0.11150            | 2680.3  | 2903.3    | 6.5475    |
| 300   | 0.15866    | 2781.6    | 3035.4            | 6.8864     | 0.14025            | 2777.4   | 3029.      | 9 6.8246  | 0.12551            | 2773.2  | 3024.2    | 6.7684    |
| 350   | 0.17459    | 2866.6    | 3146.0            | 7.0713     | 0.15460            | 2863.6   | 3141.      | 9 7.0120  | 0.13860            | 2860.5  | 3137.7    | 6.9583    |
| 400   | 0.19007    | 2950.8    | 3254.9            | 7.2394     | 0.16849            | 2948.3   | 3251.      | 6 7.1814  | 0.15122            | 2945.9  | 3248.4    | 7.1292    |
| 500   | 0.22029    | 3120.1    | 3472.6            | 7.5410     | 0.19551            | 3118.5   | 5 3470.    | 4 7.4845  | 0.17568            | 3116.9  | 3468.3    | 7.4337    |
| 600   | 0.24999    | 3293.9    | 3693.9            | 7.8101     | 0.22200            | 3292.7   | 3692.      | 3 7.7543  | 0.19962            | 3291.5  | 3690.7    | 7.7043    |
| 700   | 0.27941    | 3473.5    | 3920.5            | 8.0558     | 0.24822            | 3472.6   | 5 3919.    | 4 8.0005  | 0.22326            | 3471.7  | 3918.2    | 7.9509    |
| 800   | 0.30865    | 3659.5    | 4153.4            | 8.2834     | 0.27426            | 3658.8   | 4152.      | 4 8.2284  | 0.24674            | 3658.0  | 4151.5    | 8.1791    |
| 900   | 0.33780    | 3852.1    | 4392.6            | 8.4965     | 0.30020            | 3851.5   | i 4391.    | 9 8.4417  | 0.27012            | 3850.9  | 4391.1    | 8.3925    |
| 1000  | 0.36687    | 4051.2    | 4638.2            | 8.6974     | 0.32606            | 4050.7   | 4637.      | 6 8.6427  | 0.29342            | 4050.2  | 4637.1    | 8.5936    |
| 1100  | 0.39589    | 4256.6    | 4890.0            | 8.8878     | 0.35188            | 4256.2   | 4889.      | 6 8.8331  | 0.31667            | 4255.7  | 4889.1    | 8.7842    |
| 1200  | 0.42488    | 4467.9    | 5147.7            | 9.0689     | 0.37766            | 4467.6   | 5147.      | 3 9.0143  | 0.33989            | 4467.2  | 5147.0    | 8.9654    |
| 1300  | 0.45383    | 4684.8    | 5410.9            | 9.2418     | 0.40341            | 4684.5   | 5 5410     | .6 9.1872 | 0.36308            | 4684.2  | 5410.3    | 9.1384    |
|       | P =        | = 2.50 M  | Pa (223.95        | 5 °C)      | Р                  | = 3.00 N | /IPa (233. | 85 °C)    | P =                | 3.50 MP | a (242.56 | 5 °C)     |
| Sat.  | 0.07995    | 2602.1    | 2801.9            | 6.2558     | 0.06667            | 2603.2   | 2803.      | 2 6.1856  | 0.05706            | 2603.0  | 2802.7    | 6.1244    |
| 225   | 0.08026    | 2604.8    | 2805.5            | 6.2629     |                    |          |            |           |                    |         |           |           |
| 250   | 0.08705    | 2663.3    | 2880.9            | 6.4107     | 0.07063            | 2644.7   | 2856.      | 5 6.2893  | 0.05876            | 2624.0  | 2829.7    | 6.1764    |
| 300   | 0.09894    | 2762.2    | 3009.6            | 6.6459     | 0.08118            | 2750.8   | 3 2994.    | 3 6.5412  | 0.06845            | 2738.8  | 2978.4    | 6.4484    |
| 350   | 0.10979    | 2852.5    | 3127.0            | 6.8424     | 0.09056            | 2844.4   | 3116.      | 1 6.7450  | 0.07680            | 2836.0  | 3104.9    | 6.6601    |
| 400   | 0.12012    | 2939.8    | 3240.1            | 7.0170     | 0.09938            | 2933.6   | 3231.      | 7 6.9235  | 0.08456            | 2927.2  | 3223.2    | 6.8428    |
| 450   | 0.13015    | 3026.2    | 3351.6            | 7.1768     | 0.10789            | 3021.2   | 3344.      | 9 7.0856  | 0.09198            | 3016.1  | 3338.1    | 7.0074    |
| 500   | 0.13999    | 3112.8    | 3462.8            | 7.3254     | 0.11620            | 3108.6   | 3457.      | 2 7.2359  | 0.09919            | 3104.5  | 3451.7    | 7.1593    |
| 600   | 0.15931    | 3288.5    | 3686.8            | 7.5979     | 0.13245            | 3285.5   | 3682.      | 8 7.5103  | 0.11325            | 3282.5  | 3678.9    | 7.4357    |
| 700   | 0.17835    | 3469.3    | 3915.2            | 7.8455     | 0.14841            | 3467.0   | 3912.      | 2 7.7590  | 0.12702            | 3464.7  | 3909.3    | 7.6855    |
| 800   | 0.19722    | 3656.2    | 4149.2            | 8.0744     | 0.16420            | 3654.3   | 4146.      | 9 7.9885  | 0.14061            | 3652.5  | 4144.6    | 7.9156    |
| 900   | 0.21597    | 3849.4    | 4389.3            | 8.2882     | 0.17988            | 3847.9   | 4387.      | 5 8.2028  | 0.15410            | 3846.4  | 4385.7    | 8.1304    |
| 1000  | 0.23466    | 4049.0    | 4635.6            | 8.4897     | 0.19549            | 4047.7   | 4634.      | 2 8.4045  | 0.16751            | 4046.4  | 4632.7    | 8.3324    |
| 1100  | 0.25330    | 4254.7    | 4887.9            | 8.6804     | 0.21105            | 4253.6   | 4886.      | 7 8.5955  | 0.18087            | 4252.5  | 4885.6    | 8.5236    |
| 1200  | 0.27190    | 4466.3    | 5146.0            | 8.8618     | 0.22658            | 4465.3   | 5145.      | 1 8.7771  | 0.19420            | 4464.4  | 5144.1    | 8.7053    |
| 1300  | 0.29048    | 4683.4    | 5409.5            | 9.0349     | 0.24207            | 4682.6   | 5408.      | 8 8.9502  | 0.20750            | 4681.8  | 5408.0    | 8.8786    |

| Vapor | de agua so         | brecalen | tado ( <i>con</i> | tinuación) |                    |           |                  |           |                    |          |                  |           |
|-------|--------------------|----------|-------------------|------------|--------------------|-----------|------------------|-----------|--------------------|----------|------------------|-----------|
| Т     | v                  | u        | h                 | s          | v                  | u         | h                | s         | v                  | u        | h                | s         |
| °C    | m <sup>3</sup> /kg | kJ/kg    | kJ/kg             | kJ/kg · K  | m <sup>3</sup> /kg | kJ/kg     | kJ/kg            | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg    | kJ/kg            | kJ/kg · K |
|       | Р                  | = 4.0 MP | a (250.35         | °C)        | P                  | = 4.5 MPa | (257.44          | °C)       | <b>P</b> =         | 5.0 MPa  | (263.94          | °C)       |
| Sat.  | 0.04978            | 2601.7   | 2800.8            | 6.0696     | 0.04406            | 2599.7    | 2798.0           | 6.0198    | 0.03945            | 2597.0   | 2794.2           | 5.9737    |
| 275   | 0.05461            | 2668.9   | 2887.3            | 6.2312     | 0.04733            | 2651.4    | 2864.4           | 6.1429    | 0.04144            | 2632.3   | 2839.5           | 6.0571    |
| 300   | 0.05887            | 2726.2   | 2961.7            | 6.3639     | 0.05138            | 2713.0    | 2944.2           | 6.2854    | 0.04535            | 2699.0   | 2925.7           | 6.2111    |
| 350   | 0.06647            | 2827.4   | 3093.3            | 6.5843     | 0.05842            | 2818.6    | 3081.5           | 6.5153    | 0.05197            | 2809.5   | 3069.3           | 6.4516    |
| 400   | 0.07343            | 2920.8   | 3214.5            | 6.7714     | 0.06477            | 2914.2    | 3205.7           | 6.7071    | 0.05784            | 2907.5   | 3196.7           | 6.6483    |
| 450   | 0.08004            | 3011.0   | 3331.2            | 6.9386     | 0.07076            | 3005.8    | 3324.2           | 6.8770    | 0.06332            | 3000.6   | 3317.2           | 6.8210    |
| 500   | 0.08644            | 3100.3   | 3446.0            | 7.0922     | 0.07652            | 3096.0    | 3440.4           | 7.0323    | 0.06858            | 3091.8   | 3434.7           | 6.9/81    |
| 500   | 0.09886            | 32/9.4   | 36/4.9            | 7.3706     | 0.08/66            | 3276.4    | 3670.9           | 7.3127    | 0.07870            | 32/3.3   | 3000.3           | 7.2605    |
| 800   | 0.11098            | 3402.4   | 3906.3<br>4142.3  | 7.8523     | 0.09850            | 3648.8    | 3903.3           | 7 7962    | 0.08816            | 3437.7   | A137.7           | 7.5130    |
| 900   | 0.12252            | 3844.8   | 4383.9            | 8.0675     | 0.11972            | 3843.3    | 4382.1           | 8 0118    | 0.10769            | 3841.8   | 4380.2           | 7 9619    |
| 1000  | 0.14653            | 4045 1   | 4631.2            | 8 2698     | 0.13020            | 4043.9    | 4629.8           | 8 2144    | 0.11715            | 4042.6   | 4628.3           | 8 1648    |
| 1100  | 0.15824            | 4251.4   | 4884.4            | 8.4612     | 0.14064            | 4250.4    | 4883.2           | 8.4060    | 0.12655            | 4249.3   | 4882.1           | 8.3566    |
| 1200  | 0.16992            | 4463.5   | 5143.2            | 8.6430     | 0.15103            | 4462.6    | 5142.2           | 8.5880    | 0.13592            | 4461.6   | 5141.3           | 8.5388    |
| 1300  | 0.18157            | 4680.9   | 5407.2            | 8.8164     | 0.16140            | 4680.1    | 5406.5           | 8.7616    | 0.14527            | 4679.3   | 5405.7           | 8.7124    |
|       | Р                  | = 6.0 MP | a (275.59         | °C)        | <b>P</b> :         | = 7.0 MPa | (285.83          | °C)       | <b>P</b> =         | 8.0 MPa  | (295.01          | °C)       |
| Sat.  | 0.03245            | 2589.9   | 2784.6            | 5.8902     | 0.027378           | 2581.0    | 2772.6           | 5.8148    | 0.023525           | 2570.5   | 2758.7           | 5.7450    |
| 300   | 0.03619            | 2668.4   | 2885.6            | 6.0703     | 0.029492           | 2633.5    | 2839.9           | 5.9337    | 0.024279           | 2592.3   | 2786.5           | 5.7937    |
| 350   | 0.04225            | 2790.4   | 3043.9            | 6.3357     | 0.035262           | 2770.1    | 3016.9           | 6.2305    | 0.029975           | 2748.3   | 2988.1           | 6.1321    |
| 400   | 0.04742            | 2893.7   | 3178.3            | 6.5432     | 0.039958           | 2879.5    | 3159.2           | 6.4502    | 0.034344           | 2864.6   | 3139.4           | 6.3658    |
| 450   | 0.05217            | 2989.9   | 3302.9            | 6.7219     | 0.044187           | 2979.0    | 3288.3           | 6.6353    | 0.038194           | 2967.8   | 3273.3           | 6.5579    |
| 500   | 0.05667            | 3083.1   | 3423.1            | 6.8826     | 0.048157           | 3074.3    | 3411.4           | 6.8000    | 0.041767           | 3065.4   | 3399.5           | 6.7266    |
| 550   | 0.06102            | 31/5.2   | 3541.3            | 7.0308     | 0.051966           | 3167.9    | 3531.6           | 6.9507    | 0.045172           | 3160.5   | 3521.8           | 6.8800    |
| 500   | 0.06527            | 3267.2   | 3008.8            | 7.1693     | 0.055665           | 3261.0    | 3050.0           | 7.0910    | 0.048463           | 3254.7   | 3642.4           | 7.0221    |
| 800   | 0.07355            | 3643.2   | 3694.3<br>4133 1  | 7.6582     | 0.062850           | 3639.5    | 3000.3<br>4128.5 | 7.5836    | 0.054629           | 3635.7   | J002.2           | 7.5185    |
| 900   | 0.08964            | 3838.8   | 4376.6            | 7.8751     | 0.076750           | 3835.7    | 4373.0           | 7.8014    | 0.067082           | 3832.7   | 4369.3           | 7.7372    |
| 1000  | 0.09756            | 4040.1   | 4625.4            | 8.0786     | 0.083571           | 4037.5    | 4622.5           | 8.0055    | 0.073079           | 4035.0   | 4619.6           | 7.9419    |
| 1100  | 0.10543            | 4247.1   | 4879.7            | 8.2709     | 0.090341           | 4245.0    | 4877.4           | 8.1982    | 0.079025           | 4242.8   | 4875.0           | 8.1350    |
| 1200  | 0.11326            | 4459.8   | 5139.4            | 8.4534     | 0.097075           | 4457.9    | 5137.4           | 8.3810    | 0.084934           | 4456.1   | 5135.5           | 8.3181    |
| 1300  | 0.12107            | 4677.7   | 5404.1            | 8.6273     | 0.103781           | 4676.1    | 5402.6           | 8.5551    | 0.090817           | 4674.5   | 5401.0           | 8.4925    |
|       | Р                  | = 9.0 MP | a (303.35         | °C)        | P =                | = 10.0 MP | a (311.00        | °C)       | <b>P</b> =         | 12.5 MPa | (327.81          | °C)       |
| Sat.  | 0.020489           | 2558.5   | 2742.9            | 5.6791     | 0.018028           | 2545.2    | 2725.5           | 5.6159    | 0.013496           | 2505.6   | 2674.3           | 5.4638    |
| 325   | 0.023284           | 2647.6   | 2857.1            | 5.8738     | 0.019877           | 2611.6    | 2810.3           | 5.7596    |                    |          |                  |           |
| 350   | 0.025816           | 5 2725.0 | 2957.3            | 6.0380     | 0.022440           | 2699.6    | 2924.0           | 5.9460    | 0.016138           | 2624.9   | 2826.6           | 5.7130    |
| 400   | 0.029960           | 2849.2   | 3118.8            | 6.2876     | 0.026436           | 2833.1    | 3097.5           | 6.2141    | 0.020030           | 2789.6   | 3040.0           | 6.0433    |
| 450   | 0.033524           | 2956.3   | 3258.0            | 6.4872     | 0.029782           | 2944.5    | 3242.4           | 6.4219    | 0.023019           | 2913.7   | 3201.5           | 6.2749    |
| 500   | 0.036793           | 3056.3   | 3387.4            | 6.6603     | 0.032811           | 3047.0    | 3375.1           | 6.5995    | 0.025630           | 3023.2   | 3343.6           | 6.4651    |
| 550   | 0.039885           | 5 3153.0 | 3512.0            | 6.8164     | 0.035655           | 3145.4    | 3502.0           | 6.7585    | 0.028033           | 3126.1   | 3476.5           | 6.6317    |
| 600   | 0.042861           | 3248.4   | 3634.1            | 6.9605     | 0.038378           | 3242.0    | 3625.8           | 6.9045    | 0.030306           | 3225.8   | 3604.6           | 6.7828    |
| 650   | 0.045755           | 3343.4   | 3755.2            | 7.0954     | 0.041018           | 3338.0    | 3/48.1           | 7.0408    | 0.032491           | 3324.1   | 3/30.2           | 6.9227    |
| 700   | 0.048589           | 3438.8   | 38/6.1            | 7.2229     | 0.043597           | 3434.0    | 3870.0           | 7.1693    | 0.034612           | 3422.0   | 3854.6           | 7.0540    |
| 800   | 0.054132           | 2 3032.0 | 4119.2            | 7.6800     | 0.048629           | 3628.2    | 4114.5           | 7.4085    | 0.038724           | 3018.8   | 4102.8           | 7.2967    |
| 1000  | 0.059362           | 0 4032 4 | 4305.7            | 7.8855     | 0.053547           | 4020.0    | 4502.0           | 7.0290    | 0.042720           | 2010.9   | 4502.9<br>4606 F | 7.0190    |
| 1100  | 0.070224           | 4240.7   | 4872.7            | 8.0791     | 0.063183           | 4238.5    | 4870.3           | 8.0289    | 0.050510           | 4233.1   | 4864.5           | 7.9220    |
| 1200  | 0.075492           | 4454.2   | 5133.6            | 8.2625     | 0.067938           | 4452.4    | 5131.7           | 8.2126    | 0.054342           | 4447.7   | 5127.0           | 8.1065    |
| 1300  | 0.080733           | 3 4672.9 | 5399.5            | 8.4371     | 0.072667           | 4671.3    | 5398.0           | 8.3874    | 0.058147           | 4667.3   | 5394.1           | 8.2819    |
|       |                    |          |                   |            |                    |           |                  |           |                    |          |                  |           |

| Vapor | de agua sot        | precalent | ado ( <i>conc</i> | clusión)  |                    |          |                  |           |                    |               |                  |           |
|-------|--------------------|-----------|-------------------|-----------|--------------------|----------|------------------|-----------|--------------------|---------------|------------------|-----------|
| Т     | v                  | u         | h                 | s         | v                  | u        | h                | s         | v                  | u             | h                | s         |
| °C    | m <sup>3</sup> /kg | kJ/kg     | kJ/kg             | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg    | kJ/kg            | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg         | kJ/kg            | kJ/kg · K |
|       | P =                | 15.0 MPa  | a (342.16         | °C)       | P = 1              | 7.5 MPa  | (354.67          | °C)       | <b>P</b> =         | 20.0 MPa      | a (365.75        | °C)       |
| Sat.  | 0.010341           | 2455.7    | 2610.8            | 5.3108    | 0.007932           | 2390.7   | 2529.5           | 5.1435    | 0.005862           | 2294.8        | 2412.1           | 4.9310    |
| 350   | 0.011481           | 2520.9    | 2693.1            | 5.4438    |                    |          |                  |           |                    |               |                  |           |
| 400   | 0.015671           | 2740.6    | 2975.7            | 5.8819    | 0.012463           | 2684.3   | 2902.4           | 5.7211    | 0.009950           | 2617.9        | 2816.9           | 5.5526    |
| 450   | 0.018477           | 2880.8    | 3157.9            | 6.1434    | 0.015204           | 2845.4   | 3111.4           | 6.0212    | 0.012721           | 2807.3        | 3061.7           | 5.9043    |
| 500   | 0.020828           | 2998.4    | 3310.8            | 6.3480    | 0.017385           | 2972.4   | 3276.7           | 6.2424    | 0.014793           | 2945.3        | 3241.2           | 6.1446    |
| 550   | 0.022945           | 3106.2    | 3450.4            | 6.5230    | 0.019305           | 3085.8   | 3423.6           | 6.4266    | 0.016571           | 3064.7        | 3396.2           | 6.3390    |
| 600   | 0.024921           | 3209.3    | 3583.1            | 6.6796    | 0.021073           | 3192.5   | 3561.3           | 6.5890    | 0.018185           | 3175.3        | 3539.0           | 6.5075    |
| 650   | 0.026804           | 3310.1    | 3712.1            | 6.8233    | 0.022742           | 3295.8   | 3693.8           | 6.7366    | 0.019695           | 3281.4        | 3675.3           | 6.6593    |
| 700   | 0.028621           | 3409.8    | 3839.1            | 6.9573    | 0.024342           | 3397.5   | 3823.5           | 6.8735    | 0.021134           | 3385.1        | 3807.8           | 6.7991    |
| 800   | 0.032121           | 3609.3    | 4091.1            | 7.2037    | 0.027405           | 3599.7   | 4079.3           | 7.1237    | 0.023870           | 3590.1        | 4067.5           | 7.0531    |
| 900   | 0.035503           | 3811.2    | 4343.7            | 7.4288    | 0.030348           | 3803.5   | 4334.6           | 7.3511    | 0.026484           | 3795.7        | 4325.4           | 7.2829    |
| 1000  | 0.038808           | 4017.1    | 4599.2            | 7.6378    | 0.033215           | 4010.7   | 4592.0           | 7.5616    | 0.029020           | 4004.3        | 4584.7           | 7.4950    |
| 1100  | 0.042062           | 4227.7    | 4858.6            | 7.8339    | 0.036029           | 4222.3   | 4852.8           | 7.7588    | 0.031504           | 4216.9        | 4847.0           | 7.6933    |
| 1200  | 0.045279           | 4443.1    | 5122.3            | 8.0192    | 0.038806           | 4438.5   | 5117.6           | 7.9449    | 0.033952           | 4433.8        | 5112.9           | 7.8802    |
| 1300  | 0.048469           | 4663.3    | 5390.3            | 8.1952    | 0.041556           | 4659.2   | 5386.5           | 8.1215    | 0.036371           | 4655.2        | 5382.7           | 8.0574    |
|       |                    | P = 25    | .0 MPa            |           |                    | P = 30.0 | ) MPa            |           |                    | <i>P</i> = 35 | .0 MPa           |           |
| 375   | 0.001978           | 1799.9    | 1849.4            | 4.0345    | 0.001792           | 1738.1   | 1791.9           | 3.9313    | 0.001701           | 1702.8        | 1762.4           | 3.8724    |
| 400   | 0.006005           | 2428.5    | 2578.7            | 5.1400    | 0.002798           | 2068.9   | 2152.8           | 4.4758    | 0.002105           | 1914.9        | 1988.6           | 4.2144    |
| 425   | 0.007886           | 2607.8    | 2805.0            | 5.4708    | 0.005299           | 2452.9   | 2611.8           | 5.1473    | 0.003434           | 2253.3        | 2373.5           | 4.7751    |
| 450   | 0.009176           | 2721.2    | 2950.6            | 5.6759    | 0.006737           | 2618.9   | 2821.0           | 5.4422    | 0.004957           | 2497.5        | 2671.0           | 5.1946    |
| 500   | 0.011143           | 2887.3    | 3165.9            | 5.9643    | 0.008691           | 2824.0   | 3084.8           | 5.7956    | 0.006933           | 2755.3        | 2997.9           | 5.6331    |
| 550   | 0.012736           | 3020.8    | 3339.2            | 6.1816    | 0.010175           | 2974.5   | 3279.7           | 6.0403    | 0.008348           | 2925.8        | 3218.0           | 5.9093    |
| 600   | 0.014140           | 3140.0    | 3493.5            | 6.3637    | 0.011445           | 3103.4   | 3446.8           | 6.2373    | 0.009523           | 3065.6        | 3399.0           | 6.1229    |
| 650   | 0.015430           | 3251.9    | 3637.7            | 6.5243    | 0.012590           | 3221.7   | 3599.4           | 6.4074    | 0.010565           | 3190.9        | 3560.7           | 6.3030    |
| 700   | 0.016643           | 3359.9    | 3776.0            | 6.6702    | 0.013654           | 3334.3   | 3743.9           | 6.5599    | 0.011523           | 3308.3        | 3711.6           | 6.4623    |
| 800   | 0.018922           | 3570.7    | 4043.8            | 6.9322    | 0.015628           | 3551.2   | 4020.0           | 6.8301    | 0.013278           | 3531.6        | 3996.3           | 6.7409    |
| 900   | 0.021075           | 3780.2    | 4307.1            | 7.1668    | 0.017473           | 3764.6   | 4288.8           | 7.0695    | 0.014904           | 3749.0        | 4270.6           | 6.9853    |
| 1000  | 0.023150           | 3991.5    | 45/0.2            | 7.3821    | 0.019240           | 39/8.6   | 4555.8           | 7.2880    | 0.016450           | 3965.8        | 4541.5           | 7.2069    |
| 1100  | 0.025172           | 4206.1    | 4835.4            | 7.5825    | 0.020954           | 4195.2   | 4823.9           | 7.4906    | 0.017942           | 4184.4        | 4812.4           | 7.4118    |
| 1200  | 0.02/15/           | 4424.6    | 5103.5            | 7.7710    | 0.022630           | 4415.3   | 5094.2           | 7.6807    | 0.019398           | 4406.1        | 5085.0           | 7.6034    |
| 1300  | 0.029115           | 4647.2    | 53/5.1            | 7.9494    | 0.024279           | 4639.2   | 5367.6           | 7.8602    | 0.020827           | 4631.2        | 5360.2           | 7.7841    |
|       |                    | P = 40    | .0 MPa            |           |                    | P = 50.0 | ) MPa            |           |                    | <i>P</i> = 60 | .0 MPa           |           |
| 375   | 0.001641           | 1677.0    | 1742.6            | 3.8290    | 0.001560           | 1638.6   | 1716.6           | 3.7642    | 0.001503           | 1609.7        | 1699.9           | 3.7149    |
| 400   | 0.001911           | 1855.0    | 1931.4            | 4.1145    | 0.001731           | 1787.8   | 1874.4           | 4.0029    | 0.001633           | 1745.2        | 1843.2           | 3.9317    |
| 425   | 0.002538           | 2097.5    | 2199.0            | 4.5044    | 0.002009           | 1960.3   | 2060.7           | 4.2746    | 0.001816           | 1892.9        | 2001.8           | 4.1630    |
| 450   | 0.003692           | 2364.2    | 2511.8            | 4.9449    | 0.002487           | 2160.3   | 2284.7           | 4.5896    | 0.002086           | 2055.1        | 2180.2           | 4.4140    |
| 500   | 0.005623           | 2681.6    | 2906.5            | 5.4744    | 0.003890           | 2528.1   | 2722.6           | 5.1762    | 0.002952           | 2393.2        | 2570.3           | 4.9356    |
| 550   | 0.006985           | 2875.1    | 3154.4            | 5.7857    | 0.005118           | 2769.5   | 3025.4           | 5.5563    | 0.003955           | 2664.6        | 2901.9           | 5.3517    |
| 600   | 0.008089           | 3026.8    | 3350.4            | 6.0170    | 0.006108           | 2947.1   | 3252.6           | 5.8245    | 0.004833           | 2866.8        | 3156.8           | 5.6527    |
| 650   | 0.009053           | 3159.5    | 3521.6            | 6.2078    | 0.006957           | 3095.6   | 3443.5           | 6.0373    | 0.005591           | 3031.3        | 3366.8           | 5.8867    |
| /00   | 0.009930           | 3282.0    | 36/9.2            | 6.3/40    | 0.00//17           | 3228.7   | 3614.6           | 6.2179    | 0.006265           | 31/5.4        | 3551.3           | 6.0814    |
| 800   | 0.011521           | 3511.8    | 39/2.6            | 6.6613    | 0.009073           | 34/2.2   | 3925.8           | 6.5225    | 0.00/456           | 3432.6        | 3880.0           | 6.4033    |
| 900   | 0.012980           | 3733.3    | 4252.5            | 6.9107    | 0.010296           | 3702.0   | 4216.8           | 6.7819    | 0.008519           | 3670.9        | 4182.1           | 6.6725    |
| 1000  | 0.014360           | 3952.9    | 4527.3            | 7.1355    | 0.011441           | 3927.4   | 4499.4           | 7.0131    | 0.009504           | 3902.0        | 44/2.2           | 0.9099    |
| 1200  | 0.015686           | 41/3./    | 4801.1            | 7.5425    | 0.012534           | 4152.2   | 4778.9           | 7.2244    | 0.010439           | 4130.9        | 4/5/.3           | 7.1255    |
| 1200  | 0.0109/6           | 4390.9    | 50/5.9            | 7.0307    | 0.013590           | 43/0.0   | 5056.1<br>5220 F | 7.4207    | 0.011339           | 4300.5        | 5040.8<br>5224 F | 7.5240    |
| 1300  | 0.018239           | 4023.3    | 0002.8            | 1./1/5    | 0.014620           | 4007.5   | 0008.0           | 7.0048    | 0.012213           | 4091.8        | 0324.0           | 7.5111    |

| Agua | líquida com        | primida   |           |           |                    |        |            |           |                    |        |         |           |
|------|--------------------|-----------|-----------|-----------|--------------------|--------|------------|-----------|--------------------|--------|---------|-----------|
| Т    | v                  | u         | h         | s         | v                  | u      | h          | s         | v                  | u      | h       | s         |
| °C   | m <sup>3</sup> /kg | kJ/kg     | kJ/kg     | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg  | kJ/kg      | kJ/kg · K | m <sup>3</sup> /kg | kJ/kg  | kJ/kg   | kJ/kg · K |
|      | P =                | = 5 MPa ( | 263.94 °C | C)        | P =                | 10 MPa | (311.00 °( | C)        | P =                | 15 MPa | (342.16 | °C)       |
| Sat. | 0.0012862          | 1148.1    | 1154.5    | 2.9207    | 0.0014522          | 1393.3 | 1407.9     | 3.3603    | 0.0016572          | 1585.5 | 1610.3  | 3.6848    |
| 0    | 0.0009977          | 0.04      | 5.03      | 0.0001    | 0.0009952          | 0.12   | 10.07      | 0.0003    | 0.0009928          | 0.18   | 15.07   | 0.0004    |
| 20   | 0.0009996          | 83.61     | 88.61     | 0.2954    | 0.0009973          | 83.31  | 93.28      | 0.2943    | 0.0009951          | 83.01  | 97.93   | 0.2932    |
| 40   | 0.0010057          | 166.92    | 171.95    | 0.5705    | 0.0010035          | 166.33 | 176.37     | 0.5685    | 0.0010013          | 165.75 | 180.77  | 0.5666    |
| 60   | 0.0010149          | 250.29    | 255.36    | 0.8287    | 0.0010127          | 249.43 | 259.55     | 0.8260    | 0.0010105          | 248.58 | 263.74  | 0.8234    |
| 80   | 0.0010267          | 333.82    | 338.96    | 1.0723    | 0.0010244          | 332.69 | 342.94     | 1.0691    | 0.0010221          | 331.59 | 346.92  | 1.0659    |
| 100  | 0.0010410          | 417.65    | 422.85    | 1.3034    | 0.0010385          | 416.23 | 426.62     | 1.2996    | 0.0010361          | 414.85 | 430.39  | 1.2958    |
| 120  | 0.0010576          | 501.91    | 507.19    | 1.5236    | 0.0010549          | 500.18 | 510.73     | 1.5191    | 0.0010522          | 498.50 | 514.28  | 1.5148    |
| 140  | 0.0010769          | 586.80    | 592.18    | 1.7344    | 0.0010738          | 584.72 | 595.45     | 1.7293    | 0.0010708          | 582.69 | 598.75  | 1.7243    |
| 160  | 0.0010988          | 672.55    | 678.04    | 1.9374    | 0.0010954          | 670.06 | 681.01     | 1.9316    | 0.0010920          | 667.63 | 684.01  | 1.9259    |
| 180  | 0.0011240          | 759.47    | 765.09    | 2.1338    | 0.0011200          | 756.48 | 767.68     | 2.1271    | 0.0011160          | 753.58 | 770.32  | 2.1206    |
| 200  | 0.0011531          | 847.92    | 853.68    | 2.3251    | 0.0011482          | 844.32 | 855.80     | 2.3174    | 0.0011435          | 840.84 | 858.00  | 2.3100    |
| 220  | 0.0011868          | 938.39    | 944.32    | 2.5127    | 0.0011809          | 934.01 | 945.82     | 2.5037    | 0.0011752          | 929.81 | 947.43  | 2,4951    |
| 240  | 0.0012268          | 1031.6    | 1037.7    | 2.6983    | 0.0012192          | 1026.2 | 1038.3     | 2.6876    | 0.0012121          | 1021.0 | 1039.2  | 2.6774    |
| 260  | 0.0012755          | 1128.5    | 1134.9    | 2.8841    | 0.0012653          | 1121.6 | 1134.3     | 2.8710    | 0.0012560          | 1115.1 | 1134.0  | 2.8586    |
| 280  |                    |           |           |           | 0.0013226          | 1221.8 | 1235.0     | 3.0565    | 0.0013096          | 1213.4 | 1233.0  | 3.0410    |
| 300  |                    |           |           |           | 0.0013980          | 1329.4 | 1343.3     | 3.2488    | 0.0013783          | 1317.6 | 1338.3  | 3.2279    |
| 320  |                    |           |           |           |                    |        |            |           | 0.0014733          | 1431.9 | 1454.0  | 3,4263    |
| 340  |                    |           |           |           |                    |        |            |           | 0.0016311          | 1567.9 | 1592.4  | 3.6555    |
|      | P =                | 20 MPa    | (365.75 ° | C)        |                    | P = 30 | MPa        |           |                    | P = 50 | MPa     |           |
| Sat. | 0.0020378          | 1785.8    | 1826.6    | 4.0146    |                    |        |            |           |                    |        |         |           |
| 0    | 0.0009904          | 0.23      | 20.03     | 0.0005    | 0.0009857          | 0.29   | 29.86      | 0.0003    | 0.0009767          | 0.29   | 49.13   | -0.0010   |
| 20   | 0.0009929          | 82.71     | 102.57    | 0.2921    | 0.0009886          | 82.11  | 111.77     | 0.2897    | 0.0009805          | 80.93  | 129.95  | 0.2845    |
| 40   | 0.0009992          | 165.17    | 185.16    | 0.5646    | 0.0009951          | 164.05 | 193.90     | 0.5607    | 0.0009872          | 161.90 | 211.25  | 0.5528    |
| 60   | 0.0010084          | 247.75    | 267.92    | 0.8208    | 0.0010042          | 246.14 | 276.26     | 0.8156    | 0.0009962          | 243.08 | 292.88  | 0.8055    |
| 80   | 0.0010199          | 330.50    | 350.90    | 1.0627    | 0.0010155          | 328.40 | 358.86     | 1.0564    | 0.0010072          | 324.42 | 374.78  | 1.0442    |
| 100  | 0.0010337          | 413.50    | 434.17    | 1.2920    | 0.0010290          | 410.87 | 441.74     | 1.2847    | 0.0010201          | 405.94 | 456.94  | 1.2705    |
| 120  | 0.0010496          | 496.85    | 517.84    | 1.5105    | 0.0010445          | 493.66 | 525.00     | 1.5020    | 0.0010349          | 487.69 | 539.43  | 1.4859    |
| 140  | 0.0010679          | 580.71    | 602.07    | 1.7194    | 0.0010623          | 576.90 | 608.76     | 1.7098    | 0.0010517          | 569.77 | 622.36  | 1.6916    |
| 160  | 0.0010886          | 665.28    | 687.05    | 1.9203    | 0.0010823          | 660.74 | 693.21     | 1.9094    | 0.0010704          | 652.33 | 705.85  | 1.8889    |
| 180  | 0.0011122          | 750.78    | 773.02    | 2.1143    | 0.0011049          | 745.40 | 778.55     | 2.1020    | 0.0010914          | 735.49 | 790.06  | 2.0790    |
| 200  | 0.0011390          | 837.49    | 860.27    | 2.3027    | 0.0011304          | 831.11 | 865.02     | 2.2888    | 0.0011149          | 819.45 | 875.19  | 2.2628    |
| 220  | 0.0011697          | 925.77    | 949.16    | 2.4867    | 0.0011595          | 918.15 | 952.93     | 2.4707    | 0.0011412          | 904.39 | 961.45  | 2.4414    |
| 240  | 0.0012053          | 1016.1    | 1040.2    | 2.6676    | 0.0011927          | 1006.9 | 1042.7     | 2.6491    | 0.0011708          | 990.55 | 1049.1  | 2.6156    |
| 260  | 0.0012472          | 1109.0    | 1134.0    | 2.8469    | 0.0012314          | 1097.8 | 1134.7     | 2.8250    | 0.0012044          | 1078.2 | 1138.4  | 2.7864    |
| 280  | 0.0012978          | 1205.6    | 1231.5    | 3.0265    | 0.0012770          | 1191.5 | 1229.8     | 3.0001    | 0.0012430          | 1167.7 | 1229.9  | 2.9547    |
| 300  | 0.0013611          | 1307.2    | 1334.4    | 3.2091    | 0.0013322          | 1288.9 | 1328.9     | 3.1761    | 0.0012879          | 1259.6 | 1324.0  | 3.1218    |
| 320  | 0.0014450          | 1416.6    | 1445.5    | 3.3996    | 0.0014014          | 1391.7 | 1433.7     | 3.3558    | 0.0013409          | 1354.3 | 1421.4  | 3.2888    |
| 340  | 0.0015693          | 1540.2    | 1571.6    | 3.6086    | 0.0014932          | 1502.4 | 1547.1     | 3.5438    | 0.0014049          | 1452.9 | 1523.1  | 3.4575    |
| 360  | 0.0018248          | 1703.6    | 1740.1    | 3.8787    | 0.0016276          | 1626.8 | 1675.6     | 3.7499    | 0.0014848          | 1556.5 | 1630.7  | 3.6301    |
| 380  |                    |           |           |           | 0.0018729          | 1782.0 | 1838.2     | 4.0026    | 0.0015884          | 1667.1 | 1746.5  | 3.8102    |

Fuente: (Cengel y Boles, 2019)

| Anexo 5. Propiedades | s termodinámicas | del agua | a saturada |
|----------------------|------------------|----------|------------|
|----------------------|------------------|----------|------------|

| TABLA A-9                     |                        |                              |        |                         |              |         |               |        |                        |                          |                |       |                         |
|-------------------------------|------------------------|------------------------------|--------|-------------------------|--------------|---------|---------------|--------|------------------------|--------------------------|----------------|-------|-------------------------|
| Propiedades del agua saturada |                        |                              |        |                         |              |         |               |        |                        |                          |                |       |                         |
|                               |                        | -                            |        | Entalpía                |              |         |               |        |                        |                          |                |       | Coeficiente             |
|                               |                        |                              |        | de                      | Calor        |         | Conductividad |        |                        |                          |                |       | de expansión            |
|                               | Presión de             | Presión de Densidad,         |        | vapori-                 | específico,  |         | térmica,      |        | Viscosidad dinámica,   |                          | Número         |       | volumétrica,            |
| Temp.,                        | saturación,            | uración, p kg/m <sup>3</sup> |        | zación,                 | c,, J/kg · K |         | k W/m · K     |        | $\mu$ kg/m $\cdot$ s   |                          | de Prandtl, Pr |       | β 1/K                   |
| T °C                          | P <sub>sat</sub> , kPa | Líquido                      | Vapor  | h <sub>te</sub> , kJ/kg | Líquido      | Vapor   | Líquido       | Vapor  | Líquido                | Vapor                    | Líquido        | Vapor | Líquido                 |
| 0.01                          | 0.6113                 | 999.8                        | 0.0048 | 2 501                   | 4 217        | 1 854   | 0.561         | 0.0171 | $1.792 \times 10^{-3}$ | 0.922 × 10 <sup>-5</sup> | 13.5           | 1.00  | $-0.068 \times 10^{-3}$ |
| 5                             | 0.8721                 | 999.9                        | 0.0068 | 2 4 9 0                 | 4 205        | 1 857   | 0.571         | 0.0173 | $1.519 \times 10^{-3}$ | $0.934 \times 10^{-5}$   | 11.2           | 1.00  | $0.015 \times 10^{-3}$  |
| 10                            | 1.2276                 | 999.7                        | 0.0094 | 2 478                   | 4 1 9 4      | 1 862   | 0.580         | 0.0176 | $1.307 \times 10^{-3}$ | $0.946 \times 10^{-5}$   | 9.45           | 1.00  | $0.733 \times 10^{-3}$  |
| 15                            | 1.7051                 | 999.1                        | 0.0128 | 2 466                   | 4 185        | 1 863   | 0.589         | 0.0179 | $1.138 \times 10^{-3}$ | $0.959 \times 10^{-5}$   | 8.09           | 1.00  | $0.138 \times 10^{-3}$  |
| 20                            | 2.339                  | 998.0                        | 0.0173 | 2 4 5 4                 | 4 182        | 1 867   | 0.598         | 0.0182 | $1.002 \times 10^{-3}$ | $0.973 \times 10^{-5}$   | 7.01           | 1.00  | $0.195 \times 10^{-3}$  |
| 25                            | 3.169                  | 997.0                        | 0.0231 | 2 4 4 2                 | 4 180        | 1 870   | 0.607         | 0.0186 | $0.891 \times 10^{-3}$ | $0.987 \times 10^{-5}$   | 6.14           | 1.00  | $0.247 \times 10^{-3}$  |
| 30                            | 4.246                  | 996.0                        | 0.0304 | 2 4 3 1                 | 4 178        | 1 875   | 0.615         | 0.0189 | $0.798 \times 10^{-3}$ | $1.001 \times 10^{-5}$   | 5.42           | 1.00  | $0.294 \times 10^{-3}$  |
| 35                            | 5.628                  | 994.0                        | 0.0397 | 2 4 1 9                 | 4 178        | 1 880   | 0.623         | 0.0192 | $0.720 \times 10^{-3}$ | $1.016 \times 10^{-5}$   | 4.83           | 1.00  | $0.337 \times 10^{-3}$  |
| 40                            | 7.384                  | 992.1                        | 0.0512 | 2 407                   | 4 179        | 1 885   | 0.631         | 0.0196 | $0.653 \times 10^{-3}$ | $1.031 \times 10^{-5}$   | 4.32           | 1.00  | $0.377 \times 10^{-3}$  |
| 45                            | 9.593                  | 990.1                        | 0.0655 | 2 395                   | 4 180        | 1 892   | 0.637         | 0.0200 | $0.596 \times 10^{-3}$ | $1.046 \times 10^{-5}$   | 3.91           | 1.00  | $0.415 \times 10^{-3}$  |
| 50                            | 12.35                  | 988.1                        | 0.0831 | 2 383                   | 4 181        | 1 900   | 0.644         | 0.0204 | $0.547 \times 10^{-3}$ | $1.062 \times 10^{-5}$   | 3.55           | 1.00  | $0.451 \times 10^{-3}$  |
| 55                            | 15.76                  | 985.2                        | 0.1045 | 2 371                   | 4 183        | 1 908   | 0.649         | 0.0208 | $0.504 \times 10^{-3}$ | $1.077 \times 10^{-5}$   | 3.25           | 1.00  | $0.484 \times 10^{-3}$  |
| 60                            | 19.94                  | 983.3                        | 0.1304 | 2 359                   | 4 185        | 1 916   | 0.654         | 0.0212 | $0.467 \times 10^{-3}$ | $1.093 \times 10^{-5}$   | 2.99           | 1.00  | $0.517 \times 10^{-3}$  |
| 65                            | 25.03                  | 980.4                        | 0.1614 | 2 346                   | 4 187        | 1 926   | 0.659         | 0.0216 | $0.433 \times 10^{-3}$ | $1.110 \times 10^{-5}$   | 2.75           | 1.00  | $0.548 \times 10^{-3}$  |
| 70                            | 31.19                  | 977.5                        | 0.1983 | 2 3 3 4                 | 4 1 9 0      | 1 936   | 0.663         | 0.0221 | $0.404 \times 10^{-3}$ | $1.126 \times 10^{-5}$   | 2.55           | 1.00  | $0.578 \times 10^{-3}$  |
| 75                            | 38.58                  | 974.7                        | 0.2421 | 2 321                   | 4 193        | 1 948   | 0.667         | 0.0225 | $0.378 \times 10^{-3}$ | $1.142 \times 10^{-5}$   | 2.38           | 1.00  | $0.607 \times 10^{-3}$  |
| 80                            | 47.39                  | 971.8                        | 0.2935 | 2 309                   | 4 197        | 1 962   | 0.670         | 0.0230 | $0.355 \times 10^{-3}$ | $1.159 \times 10^{-5}$   | 2.22           | 1.00  | $0.653 \times 10^{-3}$  |
| 85                            | 57.83                  | 968.1                        | 0.3536 | 2 296                   | 4 201        | 1 977   | 0.673         | 0.0235 | $0.333 \times 10^{-3}$ | $1.176 \times 10^{-5}$   | 2.08           | 1.00  | $0.670 \times 10^{-3}$  |
| 90                            | 70.14                  | 965.3                        | 0.4235 | 2 283                   | 4 206        | 1 993   | 0.675         | 0.0240 | $0.315 \times 10^{-3}$ | $1.193 \times 10^{-5}$   | 1.96           | 1.00  | $0.702 \times 10^{-3}$  |
| 95                            | 84.55                  | 961.5                        | 0.5045 | 2 270                   | 4 212        | 2 010   | 0.677         | 0.0246 | $0.297 \times 10^{-3}$ | $1.210 \times 10^{-5}$   | 1.85           | 1.00  | $0.716 \times 10^{-3}$  |
| 100                           | 101.33                 | 957.9                        | 0.5978 | 2 257                   | 4 217        | 2 0 2 9 | 0.679         | 0.0251 | $0.282 \times 10^{-3}$ | $1.227 \times 10^{-5}$   | 1.75           | 1.00  | $0.750 \times 10^{-3}$  |
| 110                           | 143.27                 | 950.6                        | 0.8263 | 2 230                   | 4 2 2 9      | 2 071   | 0.682         | 0.0262 | $0.255 \times 10^{-3}$ | $1.261 \times 10^{-5}$   | 1.58           | 1.00  | $0.798 \times 10^{-3}$  |
| 120                           | 198.53                 | 943.4                        | 1.121  | 2 203                   | 4 2 4 4      | 2 1 2 0 | 0.683         | 0.0275 | $0.232 \times 10^{-3}$ | $1.296 \times 10^{-5}$   | 1.44           | 1.00  | $0.858 \times 10^{-3}$  |
| 130                           | 270.1                  | 934.6                        | 1.496  | 2 174                   | 4 263        | 2 1 7 7 | 0.684         | 0.0288 | $0.213 \times 10^{-3}$ | $1.330 \times 10^{-5}$   | 1.33           | 1.01  | $0.913 \times 10^{-3}$  |
| 140                           | 361.3                  | 921.7                        | 1.965  | 2 1 4 5                 | 4 286        | 2 2 4 4 | 0.683         | 0.0301 | $0.197 \times 10^{-3}$ | $1.365 \times 10^{-5}$   | 1.24           | 1.02  | $0.970 \times 10^{-3}$  |
| 150                           | 475.8                  | 916.6                        | 2.546  | 2 1 1 4                 | 4 311        | 2 314   | 0.682         | 0.0316 | $0.183 \times 10^{-3}$ | $1.399 \times 10^{-5}$   | 1.16           | 1.02  | $1.025 \times 10^{-3}$  |
| 160                           | 617.8                  | 907.4                        | 3.256  | 2 083                   | 4 340        | 2 4 2 0 | 0.680         | 0.0331 | $0.170 \times 10^{-3}$ | $1.434 \times 10^{-5}$   | 1.09           | 1.05  | $1.145 \times 10^{-3}$  |
| 170                           | 791.7                  | 897.7                        | 4.119  | 2 050                   | 4 370        | 2 490   | 0.677         | 0.0347 | $0.160 \times 10^{-3}$ | $1.468 \times 10^{-5}$   | 1.03           | 1.05  | $1.178 \times 10^{-3}$  |
| 180                           | 1 002.1                | 887.3                        | 5.153  | 2 015                   | 4 4 1 0      | 2 590   | 0.673         | 0.0364 | $0.150 \times 10^{-3}$ | $1.502 \times 10^{-5}$   | 0.983          | 1.07  | $1.210 \times 10^{-3}$  |
| 190                           | 1 254.4                | 876.4                        | 6.388  | 1 979                   | 4 460        | 2 7 1 0 | 0.669         | 0.0382 | $0.142 \times 10^{-3}$ | $1.537 \times 10^{-5}$   | 0.947          | 1.09  | $1.280 \times 10^{-3}$  |
| 200                           | 1 553.8                | 864.3                        | 7.852  | 1 941                   | 4 500        | 2 840   | 0.663         | 0.0401 | $0.134 	imes 10^{-3}$  | $1.571 \times 10^{-5}$   | 0.910          | 1.11  | $1.350 \times 10^{-3}$  |
| 220                           | 2 318                  | 840.3                        | 11.60  | 1 859                   | 4 610        | 3 1 1 0 | 0.650         | 0.0442 | $0.122 \times 10^{-3}$ | $1.641 \times 10^{-5}$   | 0.865          | 1.15  | $1.520 \times 10^{-3}$  |
| 240                           | 3 344                  | 813.7                        | 16.73  | 1 767                   | 4 760        | 3 520   | 0.632         | 0.0487 | $0.111 \times 10^{-3}$ | $1.712 \times 10^{-5}$   | 0.836          | 1.24  | $1.720 \times 10^{-3}$  |
| 260                           | 4 688                  | 783.7                        | 23.69  | 1 663                   | 4 970        | 4 070   | 0.609         | 0.0540 | $0.102 \times 10^{-3}$ | $1.788 \times 10^{-5}$   | 0.832          | 1.35  | $2.000 \times 10^{-3}$  |
| 280                           | 6 412                  | 750.8                        | 33.15  | 1 544                   | 5 280        | 4 835   | 0.581         | 0.0605 | $0.094 \times 10^{-3}$ | $1.870 \times 10^{-5}$   | 0.854          | 1.49  | $2.380 \times 10^{-3}$  |
| 300                           | 8 581                  | 713.8                        | 46.15  | 1 405                   | 5 7 5 0      | 5 980   | 0.548         | 0.0695 | $0.086 \times 10^{-3}$ | $1.965 \times 10^{-5}$   | 0.902          | 1.69  | $2.950 \times 10^{-3}$  |
| 320                           | 11 274                 | 667.1                        | 64.57  | 1 239                   | 6 540        | 7 900   | 0.509         | 0.0836 | $0.078 	imes 10^{-3}$  | $2.084 \times 10^{-5}$   | 1.00           | 1.97  | _                       |
| 340                           | 14 586                 | 610.5                        | 92.62  | 1 028                   | 8 240        | 11 870  | 0.469         | 0.110  | $0.070 	imes 10^{-3}$  | $2.255 \times 10^{-5}$   | 1.23           | 2.43  | _                       |
| 360                           | 18 651                 | 528.3                        | 144.0  | 720                     | 14 690       | 25 800  | 0.427         | 0.178  | $0.060 \times 10^{-3}$ | $2.571\times10^{-5}$     | 2.06           | 3.73  | _                       |
| 374.14                        | 22 090                 | 317.0                        | 317.0  | 0                       |              | _       | _             |        | $0.043 	imes 10^{-3}$  | $4.313\times10^{-5}$     |                | _     | _                       |

Nota 1: La viscosidad cinemática  $\nu$  y la difusividad térmica  $\alpha$  se pueden calcular a partir de sus definiciones,  $\nu = \mu/\rho y \alpha = k/\rho c_p = \nu/Pr$ . Las temperaturas de 0.01°C, 100°C y 374.14°C son las temperaturas de los puntos triple, de ebulición y crítico del agua, respectivamente. Las propiedades cuya lista se da arriba (excepto la densidad del vapor) se pueden usar a cualquier presión con error despreciable, excepto a temperaturas cercanas al valor del punto crítico.

Nota 2: La unidad kJ/kg · °C, para el calor específico, es equivalente a kJ/kg · K y la unidad W/m · °C, para la conductividad térmica es equivalente a W/m · K.

Fuente: Los datos de la viscosidad y la conductividad térmica se tomaron de J. V. Sengers y J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291-1322. Los otros datos se obtuvieron de diversas fuentes o se calcularon.

Fuente: (Cengel & Ghajar, 2020)

#### Anexo 6. Ficha técnica de turbina Siemens SST-600



# Siemens Steam Turbine SST-600

This PDF offers an advanced interactive experience. This symbol indicates interactive content. > For the best viewing experience, please use Acrobat Reader X or higher.

www.siemens.com/steamturbines

# Siemens SST-600: Highly-versatile

Generator or mechanical drive – the Siemens SST-600 is configured for many possible applications.

The flexible SST-600 packaging fits a broad range of customer needs. It can be designed for optimum back-fitting to an existing process, e.g. when a municipal utility is modernized.

Or, when space is limited, it can be adapted as a compact steam turbine package age with a small oil

piping system, e.g. as a boiler feedwater pump drive.

Or it is also well suited where high-efficiency steam turbines are demanded with best-in-class blading and minimized losses.

Siemens SST-600 is the right answer to meet all of these different needs.

#### Generator drive in various packages

We deliver a standard steam turbine generator set including the SST-600 (with or without gearbox), a generator, oil system, piping and instrumentation and control system.

The standard package can be extended to include a condenser, condensing plant or pre-heating system.

Multi-casing solutions are also possible, enabling for example combined heat and power plants to easily respond to seasonal changes. In summer, when less district heating is needed, one turbine can be taken off the multi-casing steam turbine train.



Standard steam turbine generator set



SST-600 in Riskulla

#### Mechanical drive

The SST-600 is also an efficient and economic mechanical drive.

Since the 1970s, hundreds of projects have been successfully implemented all over the world using the SST-600 to directly drive everything from the smallest boiler feed water pump as as reliably as the biggest compressor even in the most complex processes. The SST-600 complies with regulations including the API standard.

# Siemens SST-600

The SST-600 is a single-casing steam turbine designed for operation within a speed range of 3,000 to 18,000 rpm for generators or mechanical drives up to 150 MW.

The turbine is used for both condensing and backpressure applications, either geared or directly coupled. The customized steam path is arranged according to the customer's needs.

The SST-600 with its reliable and flexible design is available with axial or radial exhaust.



#### Overview

The SST-600 can be used as:

- Generator drive
- Compressor drive
- Boiler feed water pump drive
- Blower drive



Design enhancements provide:

- Increased efficiency due to lower flow losses
- Reduced start-up times due to faster turbine heat-up
- Fast load changes
- Compact design for simplified transportation
- Simplified maintenance thanks to improved availability, horizontal casing split and independently accessible bearings
# Siemens SST-600: Technical overview

Power output: up to 150 MW

Speed: 3,000 to 18,000 rpm

#### Controlled extractions (up to 2):

- Pressure, ext. valve<br/>Pressure, int. valve $\leq$  72 bar / 1,044 psi<br/> $\leq$  55 bar / 798 psi
- Temperature ≤ 480°C / 895° F
- Uncontrolled extractions (up to 6): ≤ 85 bar / 1,233 psi
- Pressure

>



Live steam inlet temperature :  $\le 565^{\circ}C / \le 1,050^{\circ} F$ 

#### Exhaust conditions:

- Back pressure ≤ 80 bar / 1,160 psi
- Condensing ≤ 1.0 bar / 15 psi
- District heating ≤ 3.0 bar / 43 psi
- [6] Blades

[7] Sealing [8] Casing and bearings

#### Chemical and petrochemical industry



### Typical applications for the SST-600

- Chemical and petrochemical industry
- Pulp and paper mills
- Steel works
- Mines
- Power plants
- Seawater desalination plants
- Energy-from-waste plants (waste incinerators)



Anexo 7. Ficha técnica bomba sumergible SULZER PUMPS SJT 20DLC

### 2.1.1. CAPACIDAD DE DISEÑO Y DIMENSIONES DEL EQUIPO

| DATOS TÉCNICOS           |                     |  |  |  |  |  |  |
|--------------------------|---------------------|--|--|--|--|--|--|
| Тад                      | 1120-PU-001@005     |  |  |  |  |  |  |
| Fabricante               | SULZER              |  |  |  |  |  |  |
| Modelo                   | SJT 20DLC           |  |  |  |  |  |  |
| Tipo                     | Centrífuga vertical |  |  |  |  |  |  |
| N° de etapas             | 10                  |  |  |  |  |  |  |
| Ø de succión (mm/ pulg)  | 508/20              |  |  |  |  |  |  |
| Ø de descarga (mm/ pulg) | 304.8/ 12           |  |  |  |  |  |  |

| DATOS TÉCNICOS                              |                         |  |  |  |  |  |  |
|---------------------------------------------|-------------------------|--|--|--|--|--|--|
| Presión de succión (kPa)                    | 18.8                    |  |  |  |  |  |  |
| Presión de descarga (kPa)                   | 7,281                   |  |  |  |  |  |  |
| Presión diferencial (kPa)                   | 7,262                   |  |  |  |  |  |  |
| Tiempo de operación (h)                     | 24                      |  |  |  |  |  |  |
| SISTEMA DE ACCIO                            | ONAMIENTO               |  |  |  |  |  |  |
| Motor eléctrico                             |                         |  |  |  |  |  |  |
| Fabricante                                  | WEG                     |  |  |  |  |  |  |
| Modelo                                      | MGR                     |  |  |  |  |  |  |
| Frame                                       | 80                      |  |  |  |  |  |  |
| Potencia (kW/ HP)                           | 1,960/ 2,628            |  |  |  |  |  |  |
| Factor de servicio                          | 1.00                    |  |  |  |  |  |  |
| Voltaje/ Amperaje/ Frecuencia<br>(V/ A/ Hz) | 4,000/ 200/ 60          |  |  |  |  |  |  |
| Velocidad (rpm)                             | 1,790                   |  |  |  |  |  |  |
| N° de polos                                 | 4                       |  |  |  |  |  |  |
| Torque nominal (kN.m)                       | 10.45                   |  |  |  |  |  |  |
| Acople                                      |                         |  |  |  |  |  |  |
| Sistema de transmisión                      | Directo por acople      |  |  |  |  |  |  |
| Tipo de acople                              | Flexible con espaciador |  |  |  |  |  |  |
| Fabricante                                  | Crane                   |  |  |  |  |  |  |

| DATOS TÉCNICOS              |              |  |  |  |  |  |  |  |  |
|-----------------------------|--------------|--|--|--|--|--|--|--|--|
| Capacidad de diseño (m3/h)  | 693          |  |  |  |  |  |  |  |  |
| NPSH disponible (mcf)       | 7            |  |  |  |  |  |  |  |  |
| NPSH requerido (m)          | 4.3          |  |  |  |  |  |  |  |  |
| Altitud de operación (m)    | 4,327.5      |  |  |  |  |  |  |  |  |
| Velocidad de la bomba (rpm) | 1,785        |  |  |  |  |  |  |  |  |
| Potencia nominal (kW/ HP)   | 1,748/ 2,344 |  |  |  |  |  |  |  |  |
| Eficiencia (%)              | 80           |  |  |  |  |  |  |  |  |

| DATOS TÉCNICOS                    |                                            |  |  |  |  |  |  |  |
|-----------------------------------|--------------------------------------------|--|--|--|--|--|--|--|
| Modelo                            | KTR                                        |  |  |  |  |  |  |  |
| CAJA DE RODAMIENTOS               |                                            |  |  |  |  |  |  |  |
| Material del eje                  | DUPLEX SS                                  |  |  |  |  |  |  |  |
| Rodamiento lado motor             | Rodamiento de bolas de<br>contacto radial  |  |  |  |  |  |  |  |
| Rodamiento lado impulsor          | Rodamiento de bolas de<br>contacto angular |  |  |  |  |  |  |  |
| IMPULSORES                        |                                            |  |  |  |  |  |  |  |
| Tipo de impulsor                  | Cerrado                                    |  |  |  |  |  |  |  |
| Ø mínimo del impulsor (mm/ pulg)  | 331/ 13                                    |  |  |  |  |  |  |  |
| Ø nominal del impulsor (mm/ pulg) | 331/ 13                                    |  |  |  |  |  |  |  |
| N° de Impulsores                  | 9                                          |  |  |  |  |  |  |  |
| Material del impulsor             | DUPLEX SS                                  |  |  |  |  |  |  |  |
| SISTEMA DE SI                     | ELLADO                                     |  |  |  |  |  |  |  |
| Tipo                              | Mecánico                                   |  |  |  |  |  |  |  |
| Fabricante                        | John crane                                 |  |  |  |  |  |  |  |
| Modelo                            | Burgmann                                   |  |  |  |  |  |  |  |
| CARCAS                            | A                                          |  |  |  |  |  |  |  |
| Material de la carcasa            | DUPLEX SS                                  |  |  |  |  |  |  |  |
| Posición de descarga              | Horizontal                                 |  |  |  |  |  |  |  |

### Anexo 8. Ficha técnica de intercambiador de calor Alfa Laval CP120

#### Design





Fast and efficient flushing of fouling material Free-flow channel at the plate boundaries secures efficient removal of fouling.

> Qualified support at your facility



dovanced design for ligher pressures Nigh-pressure, cleanable plate lattern that increases mechanical trength to improve thermal reformance.

SmartCle

True onsite service by skilled engineers, anywhere in the world

Learn more at www.alfalaval.com/compabloc

#### Technical data

XCore

Standard material for heat transfer plates are 316L, 254SMO, Titanium grade 1, 904L, Alloy C276 and Alloy C22. Other materials may be available on request.

Standard material for panels is carbon steel with lining in the same material as plates. Other materials (like massive stainless steel) may be available on request.

The Compabloc is available in accordance with all major international pressure vessel codes such as ASME, PED, etc...



The table below provides some inputs for our standard range.

Other conditions may be available on request.

| Model Standard design<br>pressures** |                        | Standard design<br>temperatures**   | Max. width (in vertical position) | Max height (in vertical<br>position) | Max. weight               | Max. Heat transfer area                     |  |
|--------------------------------------|------------------------|-------------------------------------|-----------------------------------|--------------------------------------|---------------------------|---------------------------------------------|--|
| CP15                                 | FV*/ 30 bar (435 psi)  | -46 °C (-51 °F) / 343°C<br>(649 °F) | 280 mm (11")                      | 540 mm (21*)                         | 250 kg (551 lbs)          | 2 m <sup>2</sup> (21 ft <sup>2</sup> )      |  |
| CP20                                 | FV* / 30 bar (435 psi) | -46 °C (-51 °F) / 343°(<br>(649 °F) |                                   | 730 mm (29*) 550 kg (1,212 lbs)      |                           | 5 m² (54 ft²)                               |  |
| CP30                                 | FV */ 30 bar (435 psi) | -46 °C (-51 °F) / 343°C<br>(649 °F) | 500 mm (20*)                      | 1070 mm (42")                        | 1160 kg (2,557 lbs)       | 17 m² (183 ft²)                             |  |
| CP40                                 | FV */ 30 bar (435 psi) | -46 °C (-51 °F) / 343°C<br>(649 °F) | 600 mm (24*)                      | 1400 mm (55")                        | 2330 kg (5,136 lbs)       | 33 m <sup>2</sup> (355 ft <sup>2</sup> )    |  |
| CP50                                 | FV* / 38 bar (551 psi) | -46 °C (-51 °F) / 343°C<br>(649 °F) | 840 mm (33*)                      | 2050 mm (81")                        | 5940 kg (13,095 lbs)      | 81 m² (872 ft²)                             |  |
| CP75                                 | FV* / 38 bar (551 psi) | -46 °C (-51 °F) / 343°C<br>(649 °F) | 1240 mm (49")                     | 3300 mm (130")                       | 17780 kg (39,198<br>lbs)  | 320 m <sup>2</sup> (3,444 ft <sup>2</sup> ) |  |
| CP120                                | FV* / 42 bar (609 psi) | -46 °C (-51 °F) / 343°C<br>(649 °F) | 2190 mm (86")                     | 3500 mm (138")                       | 60000 kg (132,277<br>lbs) | 840 m <sup>2</sup> (9,042 ft <sup>2</sup> ) |  |

#### \* FV = Full Vacuum

\*\* Standard maximum design conditions for ASME design

Compabloc

# A proven solution for improving sustainability

Businesses around the world have chosen Compabloc for one simple reason: it just works. Alfa Laval's proven manufacturing methods provide high reliability and a long working life in some of the toughest applications. A wide range of design benefits also enable new ways to improve your process sustainability:

- High thermal efficiency saves energy, boosts performance and reduces CO, emissions
- Improved heat recovery with lower costs means very short payback time
- Compact design reduces installation costs and resolves bottlenecks for increased production
- · Compabloc is fully mechanically cleanable, making maintenance simpler, quicker and more cost-effective
- Durable, laser-welded construction minimizes fouling and eliminates corrosion issues

| Design temperature                          | 400°C (752°F), down to -100°C<br>(-148°F)                                                                             |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Design pressure                             | From full vacuum to 42 barg<br>(600 psig)                                                                             |
| Maximum heat transfer area                  | 840 m² (8,885 ft <sup>2</sup> )                                                                                       |
| Maximum liquid flow rate per unit           | 6,000 m <sup>3</sup> /h (26,250 US gpm)                                                                               |
| Lowest achievable temperature<br>difference | 3°C (5.4°F)                                                                                                           |
| Dutles                                      | Heat recovery, cooling,<br>heating, condensation, partial<br>condensation, reboiling,<br>evaporation and gas cooling. |
| Performance                                 | Low to high thermal length or<br>NTU duty. Handles any conceive<br>medium.                                            |

Compabloc is an unrivalled champion that stands out among other heat exchangers - including other bloc-type designs. The difference comes from unique innovations that Alfa Laval have developed based on our decades of experience in heat transfer. These features enable more reliable and efficient performance, helping you to save energy and improve your sustainability.



#### C-Weld<sup>™</sup>

Superior cleaning and extended performance End-to-end laser weld of the plates guarantees accessibility and protects against corrosion.



#### SmartClean™

Fast and efficient flushing of fouling material Free-flow channel at all plate boundaries secures efficient removal of fouling.



#### XCore<sup>™</sup>

Advanced design for higher pressures A high-pressure, cleanable plate pattern that increases mechanical strength to improve thermal performance.



#### AL Onsite<sup>™</sup>

Qualified support at your facility True onsite service by skilled engineers, anywhere in the world.





Anexo 9. Ficha técnica de electrolizador HyLYZER – 5.000 – 30

# Alkaline & PEM electrolysis | Product's line

|                                                                   |               | Alkaline                                   |                | PEM (Proton Exchange Membrane)                                |                    |                    |  |  |
|-------------------------------------------------------------------|---------------|--------------------------------------------|----------------|---------------------------------------------------------------|--------------------|--------------------|--|--|
|                                                                   |               |                                            |                |                                                               |                    |                    |  |  |
|                                                                   | HySTAT®-15-10 | HySTAT®-60-10                              | HySTAT®-100-10 | HyLYZER® -300-30                                              | HyLYZER® -1.000-30 | HyLYZER® -5.000-30 |  |  |
| Output pressure                                                   |               | 10 barg (27 barg optional)                 |                | 30 barg                                                       |                    |                    |  |  |
| Number of cell stacks                                             | 1             | 4                                          | 6              | 1                                                             | 2                  | 10                 |  |  |
| Nominal Hydrogen Flow                                             | 15 Nm³/h      | 60 Nm³/h                                   | 100 Nm³/h      | 300 Nm³/h                                                     | 1.000 Nm³/h        | 5.000 Nm³/h        |  |  |
| Nominal input power                                               | 80 kW         | 300 kW                                     | 500 kW         | 1.5 MW                                                        | 5 MW               | 25 MW              |  |  |
| AC power consumption<br>(utilities included, at nominal capacity) |               | 5.0-5.4 kWh/Nm <sup>3</sup>                |                | 5.0-5.4 kWh/Nm³                                               |                    |                    |  |  |
| Hydrogen flow range                                               | 40-100%       | 10-100%                                    | 5-100%         | 1-100%                                                        |                    |                    |  |  |
| Hydrogen purity                                                   | O2 < 2 pp     | 99.998%<br>m, N2 < 12 ppm (higher purities | optional)      | 99.998%<br>O2 < 2 ppm, N2 < 12 ppm (higher purities optional) |                    |                    |  |  |
| Tap water consumption                                             |               | <1.4 liters / Nm <sup>3</sup> H2           |                | <1.4 liters / Nm³ H2                                          |                    |                    |  |  |
| Footprint (in containers)                                         | 1 x 20 ft     | 1 x 40 ft                                  | 1 x 40 ft      | 1 x 40 ft                                                     | 2 x 40 ft          | 10 x 40 ft         |  |  |
| Footprint utilities (optional)                                    | Incl.         | Incl.                                      | Incl.          | 1 x 20 ft                                                     | 1 x 20 ft          | 5 x 20 ft          |  |  |



### Anexo 10. Ficha técnica generador Siemens SGen6-100A-2P

### Anexo 11. Ficha técnica de tuberías FR SCH-40



# Tubos A53 /A106 API 5L/GR B SCH STD/40/XS/80/160

Tubo de acero negro sin costura, tri-norma A53 / ASTM A106 / API 5L grado B x 6 metros de largo.

Desde 1/4" a 11/2" en corte recto, y desde 2" a 24" con extremos biselados.

Esta tubería está destinada a aplicaciones mecánicas y de presión y también es aceptable para usos ordinarios en la conducción de vapor, agua, gas, y las líneas de aire.

Este tipo de tubería es apta para ser soldada y roscada. La vida útil corresponde al uso en condiciones normales para lo que fue fabricada.



## TUBERÍA DE ACERO

| Tolerancia Dimensional |                                                                              |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|
| Espesor<br>mínimo      | -12.5% del valor nominal                                                     |  |  |  |  |  |  |
| Peso                   | +/-10% del valor nominal                                                     |  |  |  |  |  |  |
| Diámetro               | 1/8" hasta 1 1/2":<br>+/- 1/64";<br>2" hasta 24": +/-1% del<br>valor nominal |  |  |  |  |  |  |

| Propiedades Mecánicas          |                     |  |  |  |  |  |  |  |
|--------------------------------|---------------------|--|--|--|--|--|--|--|
| Resistencia a la Tracción, min | 60000 PSI (415 MPa) |  |  |  |  |  |  |  |
| Fluencia, min                  | 35000 PSI (240 MPa) |  |  |  |  |  |  |  |

|         |          | STD                |        | SCH-40 XS          |        |                    | SCH-80 |                    | SCH-160 |                    |        |
|---------|----------|--------------------|--------|--------------------|--------|--------------------|--------|--------------------|---------|--------------------|--------|
| Nominal | Exterior | Espesor<br>Nominal | Peso   | Espesor<br>Nominal | Peso   | Espesor<br>Nominal | Peso   | Espesor<br>Nominal | Peso    | Espesor<br>Nominal | Peso   |
| Pulg.   | mm       | mm                 | kg/m   | mm                 | kg/m   | mm                 | kg/m   | mm                 | kg/m    | mm                 | kg/m   |
| 1/4     | 13.7     | 2.24               | 0.63   | 2.24               | 0.63   | 3.02               | 0.80   | 3.02               | 0.80    | -                  | -      |
| 3/8     | 17.1     | 2.31               | 0.84   | 2.31               | 0.84   | 3.20               | 1.10   | 3.20               | 1.10    | -                  | -      |
| 1/2     | 21.3     | 2.77               | 1.27   | 2.77               | 1.27   | 3.73               | 1.62   | 3.73               | 1.62    | 4.78               | 1.95   |
| 3/4     | 26.7     | 2.87               | 1.69   | 2.87               | 1.69   | 3.91               | 2.20   | 3.91               | 2.20    | 5.56               | 2.90   |
| 1       | 33.4     | 3.38               | 2.50   | 3.38               | 2.50   | 4.55               | 3.24   | 4.55               | 3.24    | 6.35               | 4.24   |
| 11/4    | 42.2     | 3.56               | 3.39   | 3.56               | 3.39   | 4.85               | 4.47   | 4.85               | 4.47    | 6.35               | 5.61   |
| 11/2    | 48.3     | 3.68               | 4.05   | 3.68               | 4.05   | 5.08               | 5.41   | 5.08               | 5.41    | 7.14               | 7.25   |
| 2       | 60.3     | 3.91               | 5.44   | 3.91               | 5.44   | 5.54               | 7.48   | 5.54               | 7.48    | 8.74               | 11.11  |
| 21/2    | 73.0     | 5.16               | 8.63   | 5.16               | 8.63   | 7.01               | 11.41  | 7.01               | 11.41   | 9.53               | 14.92  |
| 3       | 88.9     | 5.49               | 11.29  | 5.49               | 11.29  | 7.62               | 15.27  | 7.62               | 15.27   | 11.13              | 21.35  |
| 4       | 114.3    | 6.02               | 16.07  | 6.02               | 16.07  | 8.56               | 22.32  | 8.56               | 22.32   | 13.49              | 33.54  |
| 5       | 141.3    | 6.55               | 21.77  | 6.55               | 21.77  | 9.53               | 30.97  | 9.53               | 30.97   | 15.88              | 49.12  |
| 6       | 168.3    | 7.11               | 28.26  | 7.11               | 28.26  | 10.97              | 42.56  | 10.97              | 42.56   | 18.26              | 67.57  |
| 8       | 219.1    | 8.18               | 42.55  | 8.18               | 42.55  | 12.70              | 64.64  | 12.70              | 64.64   | 23.01              | 111.27 |
| 10      | 273.0    | 9.27               | 60.29  | 9.27               | 60.29  | 12.70              | 81.55  | 15.09              | 95.98   | 28.58              | 172.27 |
| 12      | 323.8    | 9.53               | 73.88  | 10.31              | 79.71  | 12.70              | 97.46  | 17.48              | 132.05  | 33.32              | 238.69 |
| 14      | 355.6    | 9.53               | 81.33  | 11.13              | 94.55  | 12.70              | 107.39 | 19.05              | 158.11  | 35.71              | 281.72 |
| 16      | 406.4    | 9.53               | 93.27  | 12.70              | 123.31 | 12.70              | 123.30 | 21.44              | 203.54  | 40.49              | 365.38 |
| 18      | 457      | 9.53               | 105.16 | 14.27              | 155.81 | 12.70              | 139.15 | 23.83              | 254.57  | 45.24              | 459.39 |
| 20      | 508      | 9.53               | 117.15 | 15.09              | 183.43 | 12.70              | 155.12 | 26.19              | 311.19  | 50.01              | 564.85 |
| 22      | 559      | 9.53               | 129.13 | -                  | -      | 12.70              | 171.09 | 28.58              | 373.85  | 53.98              | 672.30 |
| 24      | 610      | 9.53               | 141.12 | 17.48              | 255.43 | 12.70              | 187.06 | 30.96              | 442.11  | 59.54              | 808.27 |

\* Fotos y datos referenciales. No aceptamos responsabilidad por usos incorrectos o mal interpretaciones de estos datos.

# Tubos A53 /A106 API 5L/GR B Presión de Trabajo vs. Temperatura

| Máxima Presión PSI |           |      |                  |                                |       |       |       |       |      |      |      |  |
|--------------------|-----------|------|------------------|--------------------------------|-------|-------|-------|-------|------|------|------|--|
| Modida             |           |      |                  | Temperature (°C)               |       |       |       |       |      |      |      |  |
| Nominal            |           |      | Espesor          | -29 +38                        | 205   | 260   | 350   | 370   | 400  | 430  | 450  |  |
| inch               | Céc       | lula | de pared<br>(mm) | Maximum Allowable Stress (MPa) |       |       |       |       |      |      |      |  |
| (mm)               |           |      |                  | 137.8                          | 137.8 | 130.2 | 117.1 | 115.7 | 89.6 | 74.4 | 59.9 |  |
| 1/4"               | STD       | 40   | 2.24             | 7985                           | 7985  | -     | -     | -     | -    | -    |      |  |
| (6)                | XS        | 80   | 3.02             | 10798                          | 10798 | -     | -     | -     | -    | -    | -    |  |
| 7/8"               | STD       | 40   | 2.31             | 6606                           | 6606  | -     | -     | -     | -    | -    | -    |  |
| (9.6)              | XS        | 80   | 3.20             | 9147                           | 9147  | -     | -     | -     | -    | -    | -    |  |
|                    | STD       | 40   | 2.77             | 4992                           | 4992  | 4718  | 4243  | 4193  | 3245 | 2696 | 2172 |  |
| 1/2"               | XS        | 80   | 3.73             | 6975                           | 6975  | 6594  | 5929  | 5859  | 4534 | 3766 | 3034 |  |
| (15)               | _         | 160  | 4.78             | 9113                           | 9113  | 8612  | 7746  | 7655  | 5923 | 4921 | 3964 |  |
|                    | XXS       |      | 7.47             | 14249                          | 14249 | 13465 | 12112 | 11969 | 9262 | 7695 | 6199 |  |
|                    | STD       | 40   | 2.87             | 4071                           | 4071  | 3847  | 3461  | 3420  | 2646 | 2198 | 1771 |  |
| 3/4"               | XS        | 80   | 3.91             | 5717                           | 5717  | 5402  | 4860  | 4802  | 3715 | 3087 | 2486 |  |
| (20)               |           | 160  | 5.56             | 8434                           | 8434  | 7971  | 7169  | 7084  | 5482 | 4554 | 3668 |  |
|                    | XXS       |      | 7.82             | 12054                          | 12054 | 11391 | 10246 | 10125 | 7836 | 6509 | 5243 |  |
|                    | STD       | 40   | 3.38             | 3807                           | 3807  | 3598  | 3236  | 3198  | 2474 | 2056 | 1656 |  |
| 17                 | XS        | 80   | 4.55             | 5262                           | 5262  | 4973  | 4476  | 4420  | 3421 | 2842 | 2289 |  |
| (25)               |           | 160  | 6.35             | 7612                           | 7612  | 7193  | 6470  | 6394  | 4948 | 4110 | 3311 |  |
|                    | XXS       |      | 9.09             | 11172                          | 11172 | 10558 | 9496  | 9385  | 7262 | 6033 | 4860 |  |
|                    | STD       | 40   | 3.56             | 3135                           | 3135  | 2962  | 2664  | 2633  | 2038 | 1693 | 1364 |  |
| 11/4"              | XS        | 80   | 4.85             | 4377                           | 4377  | 4136  | 3720  | 3676  | 2845 | 2363 | 1904 |  |
| (32)               |           | 160  | 6.35             | 5888                           | 5888  | 5564  | 5005  | 4946  | 3827 | 3180 | 2561 |  |
|                    | XXS       |      | 9.7              | 9370                           | 9370  | 8854  | 7963  | 7871  | 6090 | 5059 | 4075 |  |
|                    | STD       | 40   | 3.68             | 2820                           | 2820  | 2665  | 2397  | 2368  | 1833 | 1530 | 1226 |  |
| 11/2"              | xs        | 80   | 5.08             | 3974                           | 3974  | 3756  | 35/9  | 3339  | 2583 | 2147 | 1729 |  |
| (40)               | NNC       | 160  | 7.14             | 5764                           | 5764  | 5453  | 4905  | 4847  | 3750 | 3116 | 2510 |  |
|                    | XX5       | (0   | 10.16            | 8525                           | 8528  | 8056  | 7247  | 7161  | 554  | 4604 | 3708 |  |
| 27                 | VC        | 40   | 3.91             | 23/5                           | 23/5  | 2243  | 2020  | 1996  | 2270 | 1283 | 1033 |  |
| (50)               | <u>^2</u> | 160  | 3.34             | 5677                           | 5677  | 5727  | 702   | 2002  | 7665 | 3044 | 2452 |  |
| (50)               | XXS       | 100  | 11.07            | 7367                           | 7367  | 6962  | 6262  | 6189  | 4789 | 3978 | 3205 |  |
|                    | STD       | 40   | 516              | 2598                           | 2598  | 2455  | 2208  | 2183  | 1689 | 1403 | 1130 |  |
| 21/2"              | XS        | 80   | 7.01             | 3600                           | 3600  | 3401  | 3060  | 3024  | 2339 | 1944 | 1566 |  |
| (65)               |           | 160  | 9.53             | 5020                           | 5020  | 4745  | 4267  | 4217  | 3264 | 2711 | 2184 |  |
|                    | XXS       |      | 14.02            | 7699                           | 7699  | 7275  | 6544  | 6467  | 5004 | 4157 | 3349 |  |
|                    | STD       | 40   | 5.49             | 2256                           | 2256  | 2171  | 1918  | 1895  | 1466 | 1218 | 981  |  |
| 3"                 | XS        | 80   | 7.62             | 3189                           | 3186  | 3014  | 2711  | 2679  | 2073 | 1722 | 1387 |  |
| (80)               |           | 160  | 11.13            | 4798                           | 4798  | 4533  | 4077  | 4029  | 3118 | 2590 | 2087 |  |
|                    | XXS       |      | 15.24            | 6813                           | 6813  | 6439  | 5791  | 5723  | 4429 | 3679 | 2964 |  |
|                    | STD       | 40   | 6.02             | 1913                           | 1913  | 1808  | 1626  | 1607  | 1243 | 1033 | 832  |  |
| <i>4</i> "         | XS        | 80   | 8.56             | 2764                           | 2764  | 2612  | 2349  | 2322  | 1797 | 1754 | 1202 |  |
| 000                | _         | 120  | 11.13            | 3654                           | 3654  | 3453  | 3105  | 3069  | 2374 | 1973 | 1595 |  |
| (                  |           | 160  | 13.49            | 4499                           | 4499  | 4251  | 3824  | 3779  | 2924 | 2429 | 1916 |  |
|                    | XXS       |      | 17.12            | 5852                           | 5852  | 5530  | 4975  | 4916  | 3804 | 3160 | 2545 |  |
|                    | STD       | 40   | 6.55             | 1677                           | 1677  | 1584  | 1425  | 1408  | 1089 | 905  | 731  |  |
| 5"                 | XS        | 80   | 9.53             | 2474                           | 2474  | 2338  | 2103  | 2079  | 1609 | 1336 | 1076 |  |
| (125)              |           | 120  | 12.7             | 3355                           | 3355  | 3170  | 2851  | 2818  | 2180 | 1812 | 1459 |  |
|                    | Marc      | 160  | 15.88            | 4265                           | 4265  | 4030  | 3626  | 3583  | 2//2 | 2303 | 1856 |  |
|                    | XXS       |      | 9.05             | 5206                           | 5206  | 4921  | 4426  | 4574  | 3385 | 2812 | 2265 |  |

Máximos de rangos de presión y temperatura de acuerdo a ASME B31.3

# Tubos A53 /A106 API 5L/GR B Presión de Trabajo vs. Temperatura

| Máxima Presión PSI |     |      |                  |                  |       |        |          |           |          |      |      |
|--------------------|-----|------|------------------|------------------|-------|--------|----------|-----------|----------|------|------|
| Madda              |     |      |                  | Temperature (°C) |       |        |          |           |          |      |      |
| Nominal            |     |      | Espesor          | -29 +38          | 205   | 260    | 350      | 370       | 400      | 430  | 450  |
| inch               | Céc | lula | de pared<br>(mm) |                  |       | Maximu | m Allowa | able Stre | ss (MPa) |      |      |
| (mm)               |     |      |                  | 137.8            | 137.8 | 130.2  | 117.1    | 115.7     | 89.6     | 74.4 | 59.9 |
|                    | STD | 40   | 7.11             | 1530             | 1530  | 1440   | 1294     | 1279      | 990      | 779  | 663  |
| 6"                 | XS  | 80   | 10.97            | 2389             | 2389  | 2258   | 2032     | 2008      | 1553     | 1290 | 1039 |
| (150)              |     | 120  | 14.27            | 3154             | 3154  | 2981   | 2676     | 2649      | 2051     | 1704 | 1372 |
|                    | XXS | 160  | 18.26            | 4108             | 4108  | 3882   | 3492     | 3450      | 2670     | 2218 | 1787 |
| 8"                 |     | 20   | 6.35             | 1035             | 1035  | 978    | 879      | 869       | 673      | 559  | 450  |
|                    |     | 30   | 7.04             | 1149             | 1149  | 1086   | 976      | 965       | 747      | 621  | 500  |
|                    | STD | 40   | 8.18             | 1341             | 1341  | 1267   | 1139     | 1126      | 871      | 724  | 584  |
|                    |     | 60   | 10.31            | 1703             | 1703  | 1609   | 1447     | 1430      | 1106     | 919  | 740  |
|                    | XS  | 80   | 12.7             | 2113             | 2113  | 1997   | 1797     | 1775      | 1374     | 1141 | 919  |
| (200)              |     | 100  | 15.09            | 2531             | 2531  | 2391   | 2151     | 2126      | 1645     | 1367 | 1101 |
|                    |     | 120  | 18.26            | 3096             | 3096  | 2926   | 2632     | 2601      | 2013     | 1672 | 1347 |
|                    |     | 140  | 20.62            | 3526             | 3526  | 3332   | 2996     | 2961      | 2291     | 1904 | 1533 |
|                    | XXS |      | 22.23            | 3819             | 3819  | 3608   | 3247     | 3209      | 2482     | 2063 | 1662 |
|                    |     | 160  | 23.01            | 3965             | 3965  | 3747   | 3371     | 3331      | 2577     | 2141 | 1725 |
|                    |     | 20   | 6.35             | 826              | 826   | 781    | 703      | 695       | 538      | 447  | 360  |
|                    |     | 30   | 7.8              | 1019             | 1019  | 963    | 866      | 856       | 663      | 551  | 444  |
|                    | STD | 40   | 9.27             | 1216             | 1216  | 1149   | 1034     | 1022      | 790      | 657  | 530  |
| 107                | XS  | 60   | 12.7             | 1682             | 1682  | 1589   | 1429     | 1412      | 1093     | 908  | 731  |
| (250)              |     | 80   | 15.09            | 2011             | 2011  | 1900   | 1709     | 1689      | 1307     | 1085 | 874  |
| (230)              |     | 100  | 18.26            | 2454             | 2454  | 2319   | 2087     | 2062      | 1595     | 1325 | 1067 |
|                    |     | 120  | 21.44            | 2906             | 2906  | 2746   | 2470     | 2440      | 1889     | 1569 | 1264 |
|                    | XXS | 140  | 25.4             | 3481             | 3481  | 2389   | 2958     | 2923      | 2262     | 1880 | 1514 |
|                    |     | 160  | 28.58            | 3949             | 3949  | 3732   | 3357     | 3318      | 2567     | 2132 | 1718 |
|                    |     | 20   | 6.35             | 695              | 695   | 658    | 591      | 584       | 452      | 376  | 303  |
|                    |     | 30   | 8.38             | 922              | 922   | 871    | 783      | 804       | 600      | 498  | 401  |
|                    | STD |      | 9.53             | 1050             | 1050  | 992    | 892      | 882       | 683      | 568  | 457  |
|                    |     | 40   | 10.31            | 1139             | 1139  | 1076   | 968      | 957       | 727      | 616  | 496  |
| 100                | XS  |      | 12.7             | 1410             | 1410  | 1333   | 1199     | 1184      | 916      | 761  | 614  |
| 12                 |     | 60   | 14.27            | 1591             | 1591  | 1503   | 1352     | 1336      | 1034     | 859  | 692  |
| (300)              |     | 80   | 17.48            | 1962             | 1962  | 1864   | 1667     | 1648      | 1275     | 1059 | 853  |
|                    |     | 100  | 21.44            | 2427             | 2427  | 2294   | 2063     | 2040      | 1578     | 1311 | 1056 |
|                    | XXS | 120  | 25.4             | 2903             | 2903  | 2743   | 2467     | 2438      | 1887     | 1567 | 1262 |
|                    |     | 140  | 28.58            | 3290             | 3290  | 3109   | 2796     | 2763      | 2138     | 1776 | 1431 |
|                    |     | 160  | 33.32            | 3878             | 3878  | 3666   | 3297     | 3258      | 2521     | 2094 | 1687 |
|                    |     | 10   | 6.35             | 633              | 633   | 598    | 538      | 532       | 411      | 342  | 275  |
|                    |     | 20   | 7.92             | 791              | 791   | 749    | 674      | 666       | 515      | 428  | 345  |
|                    | STD | 30   | 9.53             | 954              | 954   | 902    | 811      | 802       | 621      | 516  | 416  |
|                    |     | 40   | 11.13            | 1119             | 1119  | 1060   | 951      | 939       | 728      | 605  | 487  |
| 1/"                | XS  |      | 12.7             | 1281             | 1281  | 1211   | 1089     | 1076      | 832      | 692  | 558  |
| (350)              |     | 60   | 15.09            | 1529             | 1529  | 1445   | 1300     | 1285      | 994      | 825  | 666  |
| (330)              |     | 80   | 19.05            | 1947             | 1947  | 1840   | 1655     | 1635      | 1410     | 1051 | 846  |
|                    |     | 100  | 23.83            | 2458             | 2458  | 2323   | 2090     | 2066      | 1598     | 1328 | 1069 |
|                    |     | 120  | 27.79            | 2891             | 2891  | 2732   | 2457     | 2428      | 1880     | 1561 | 1258 |
|                    |     | 140  | 31.75            | 3331             | 3331  | 3148   | 2831     | 2798      | 2166     | 1799 | 1449 |
|                    |     | 160  | 35.71            | 3778             | 3778  | 3571   | 3212     | 3174      | 2456     | 2041 | 1644 |

Máximos de rangos de presión y temperatura de acuerdo a ASME B31.3