

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Modificación de las propiedades del suelo de la subrasante de la Av. Santa Fortunata usando Cal y Zeolita, Moquegua, 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniera Civil

AUTORA:

Mamani Ramos, Jannet (orcid.org/0009-0000-2642-3392)

ASESOR:

Mg. Olarte Pinares, Jorge Richard (orcid.org/0000-0001-5699-1323)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

LIMA - PERÚ 2024

Dedicatoria

Primeramente, Agradecer a mi madre Francisca por ser la persona quien me dio la vida, quien estuvo en toda mi trayectoria desde niña y como estudiante universitaria, también para mi hermano Julio Cesar quien es mi apoyo incondicional, gracias a ellos por estar siempre presente en mi formación académica y por ser mi mayor aliento.

Agradecimiento

Agradecer a mi Madre Francisca, a mi hermano Julio Cesar, las personas más importantes los cuales me apoyaron a seguir adelante en este recorrido durante el proceso del trabajo de investigación.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, OLARTE PINARES JORGE RICHARD, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA ATE, asesor de Tesis titulada: "Modificación de las propiedades del suelo de la subrasante de la Av. Santa Fortunata usando Cal y Zeolita, Moquegua, 2023", cuyo autor es MAMANI RAMOS JANNET, constato que la investigación tiene un índice de similitud de 20.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 26 de Diciembre del 2023

Apellidos y Nombres del Asesor:	Firma
JORGE RICHARD OLARTE PINARES	Firmado electrónicamente
DNI: 40752422	por: JOLARTEP el 26-12-
ORCID: 0000-0001-5699-1323	2023 16:09:33

Código documento Trilce: TRI - 0709059

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad del Autor

Yo, MAMANI RAMOS JANNET estudiante de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA ATE, declaro bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Modificación de las propiedades del suelo de la subrasante de la Av. Santa Fortunata usando Cal y Zeolita, Moquegua, 2023", es de mi autoría, por lo tanto, declaro que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma
MAMANI RAMOS JANNET DNI: 71033900	Firmado electrónicamente por: JAMAMANIRA el 26-12-
ORCID: 0009-0000-2642-3392	2023 15:54:42

Código documento Trilce: INV - 1447146

ÍNDICE DE CONTENIDOS

Car	atula	a	i
Dec	dicat	toria	ii
Agr	ade	cimiento	iii
Dec	clara	toria de Autenticidad del Asesor	iv
Dec	clara	atoria de Originalidad del Autor	V
Índi	ice c	de Contenidos	vi
ĺndi	ice c	de Tablas	vii
Índi	ice c	de Figuras	viii
RE	SUN	/IEN	x
ABS	STR	ACT	xii
l	INT	RODUCCIÓN	1
II	MA	RCO TEÓRICO	4
Ш	ME	TODOLOGÍA	15
3	.1	Tipo y Diseño de Investigación	15
3	.2	Variables y operacionalización	15
3	.3	Población, muestra y muestreo Población	16
3	.4	Técnicas e Instrumentos de Recolección de Datos Técnica	17
3	.5	Procedimiento	18
3	.6	Método de análisis de datos	31
3	.7	Aspectos éticos	32
IV	RE	SULTADOS	33
V	DIS	CUSIÓN	49
VI	СО	NCLUSIONES	51
VII	R	RECOMENDACIONES	53
REI	FER	ENCIAS	54
ΔΝΙΙ	FXC)Ç·	55

ÍNDICE DE TABLAS

Tabla 1 Resumen de los resultados del terreno natural	34
Tabla 2: Resultados de CBR al 95% y 100%	35
Tabla 3 Resultados de Índice de Plasticidad	36
Tabla 4 Prueba para la mejora de Soporte del Suelo	43
Tabla 5 Prueba de Reducción del Índice de Plasticidad	45
Tabla 6 Prueba de Espesor a estabilizar	46

ÍNDICE DE FIGURAS

Figura 1. Proceso de la obtención de la cal	7
Figura 2. Estructura de la zeolita	8
Figura 3. La cal en forma natural y cal triturada	. 12
Figura 4. La zeolita en forma natural y la zeolita triturada	. 12
Figura 5. Instrumentos para los límites de Atterberg	. 13
Figura 6. Instrumentos para realizar el ensayo del CBR	. 14
Figura 7. Avenida Santa Fortunata	. 18
Figura 8. Calicata 01 en la Avenida Santa Fortunata progresiva. 0+170	. 19
Figura 9. Calicata 02 en la Avenida Santa Fortunata progresiva. 0+670	. 19
Figura 10. Muestras retenidas en cada tamiz	. 20
Figura 11. Tamizado de la muestra	. 21
Figura 12. Colocación de la muestra en la Copa de Casagrande	. 22
Figura 13. Colocación de la muestra en la Copa de Casagrande	. 22
Figura 14. Realización de los rollitos largos	. 23
Figura 15. Colocación de la muestra en el horno	. 24
Figura 16. Compactado con el pisón	. 25
Figura 17. Muestra con dosificación con cal y zeolita compactada	. 25
Figura 18. Equipos y materiales para realizar el CBR	. 26
Figura 19. Ensayo de CBR	. 27
Figura 20. Ensayo de CBR	. 27
Figura 21. Extracción de cal	. 28
Figura 22. Zeolitas	. 29
Figura 23. Horno para los secados de muestras	. 29
Figura 24. Dosificaciones de cal y zeolita al 2%, 4% y 6%	. 30
Figura 25. Ubicación del proyecto	. 33
Figura 26. Grafica en barras del CBR para el suelo con dosificación de cal y	
zeolita	. 35
Figura 27. Grafica del CBR para el suelo con dosificaciones de cal y zeolita	. 36
Figura 28. Grafica de barras de la relación índice de plasticidad del suelo con dosificación de cal y zeolita	. 37

Figura 29. Grafica de la relación del índice de plasticidad para el suelo con	
dosificaciones de cal y zeolita	37
Figura 30. Comparación de los resultados de CBR con 0.40m de estabilización	40
Figura 31. Comparación de los resultados de CBR con 0.40m de estabilización	41
Figura 32. Comparación de los resultados de CBR con 0.80m de estabilización	41
Figura 33. Comparación de los resultados de CBR con 0.80m de estabilización	42

RESUMEN

El presente trabajo de investigación tuvo como objetivo general modificar las propiedades de los suelos cohesivos de la subrasante de la Av. Santa Fortunata mediante la adición de Cal y Zeolita, se planteó dosificaciones con cal y zeolita en dosificaciones del 2%, 4% y 6% en peso, sobre tal muestra se hizo la evaluación de los límites de consistencia, la relación de soporte (CBR) y así mismo el espesor a estabilizar.

Los resultados nos muestran que con la adición del 2%, 4% y 6% de cal y zeolita en el terreno natural como agentes estabilizantes para mejorar las propiedades físicas y soporte es adecuadamente ya que esta mejora las propiedades físicas es decir que se tiene un CBR muy ponderado de 10.30%,18.30% y 28.10%; respecto al Índice de Plasticidad del terreno natural es de 19.50 y con la adición del 2%, 4% y 6% de cal y zeolita se reduce a un 15.30,12.20 y 9.10, para el diseño del espesor del suelo a estabilizar usando la cal y zeolita se considera los espesores de 40cm y 80cm..

Palabras clave: suelos arcillosos, resistencia de la subrasante, cal y zeolita, límites de consistencia, CBR.

ABSTRACT

The general objective of this research work was to modify the properties of the cohesive soils of the subgrade of Santa Fortunata Avenue by adding Lime and Zeolite, dosages with lime and zeolite were proposed in dosages of 2%, 4% and 6% by weight, on such sample the evaluation of the consistency limits, the support ratio (CBR) and also the thickness to be stabilized was made.

The results show us that with the addition of 2%, 4% and 6% of lime and zeolite in the natural soil as stabilizing agents to improve the physical properties and support it is adequately since this improves the physical properties, that is, it has a Heavily weighted CBR of 10.30%,18.30% and 28.10%; Regarding the Plasticity Index of the natural soil, it is 19.50 and with the addition of 2%, 4% and 6% of lime and zeolite, it is reduced to 15.30, 12.20 and 9.10, for the design of the thickness of the soil to be stabilized using lime. and zeolite thicknesses of 40cm and 80cm are considered.

Keywords: clay soils, subgrade resistance, lime and zeolite, consistency limits, CBR.

I INTRODUCCIÓN

En el ámbito internacional las carreteras juegan un papel muy importante, ya que estas ayudan a transportar mercancías, vehículos y otros, y estas han ido evolucionando tanto en la tipología de pavimentos rígidos y pavimentos flexibles, dado que la industria automotriz ha ido evolucionando desarrollando nuevos vehículos con mayor capacidad de carga y variación en los ejes de los camiones. Asimismo, además de esta problemática se tiene que lidiar con los problemas geotécnicos de la fundación, dado que muchas veces se presentan en algunos sectores de las carreteras tramos con suelos blandos los mismos que son insuficientes para la construcción de un pavimento. En Brasil se tiene una gran extensión de la red vial con problemas geotécnicos por la presencia de suelos finos de tipología arcillosos y limosos, los cuales dificultan el proceso constructivo de pavimentación y a causa de ello se generan deformaciones en la fundación, estos problemas son los que se deben solucionar buscando alternativas para estabilizar los suelos para que estas estructuras tengan durabilidad.

En el ámbito nacional las carreteras están clasificadas según su importancia, así como la red vial nacional, departamental y local, como principales carreteras están la carretera Panamericana dividida en la Panamericana Norte y en la Panamericana Sur, la Longitudinal de la Sierra y la Longitudinal de la Selva o conocida también como la marginal de la selva, así mismo tenemos los ejes transversales que son los Ejes IIRSA, IIRSA NORTE, IIRSA CENTRO, IIRSA SUR, a ello le siguen las carreteras departamentales que conectan las capitales de las provincias y por ultimo tenemos a las carreteras vecinales que son aquellas que conectan a las ciudades y pueblos. La costa tiene suelos arenosos, la selva suelos finos y nuestra sierra suelos granulares y finos, cada uno de ellos con sus propias características, el principal problema es el tipo de suelo ya que cambian de volumen y cambian su plasticidad lo que genera deformaciones en la fundación de la estructura del pavimento y otras se expanden debido al tipo de suelo.

A nivel local, dentro de la región de Moquegua, Distrito de San Antonio, la Av. Santa Fortunata cuenta con suelos finos en la subrasante lo que ha ocasionado que el tránsito vehicular genere deformaciones, con mayor énfasis en épocas de avenidas, lo cual genera cambios volumétricos en el suelo. A raíz de esta problemática el

Gobierno Regional de Moquegua conjuntamente con la Municipalidad Distrital de San Antonio han impulsado el mejoramiento de las diferentes calles y avenidas, específicamente en la Av. Santa Fortunata encontrando el principal problema en el suelo de la subrasante, en el cual se tiene la presencia de Arcillas y Limos inorgánicos con alta compresibilidad y deficiente capacidad de soporte por ser un suelo cohesivo de limitada resistencia que son característicos de esta zona de la ciudad, ante ello al incrementar la humedad en las épocas de lluvias estas provocan la falla en el pavimento existente.

En la presente investigación se plantea los siguientes problemas, como problema general: ¿Como el uso de Cal y Zeolita mejoraría en las propiedades de los suelos cohesivos de la Av. Santa Fortunata en la Región Moquegua?, como problemas específicos se tiene: PRIMERO, ¿Cómo influye el uso de Cal y Zeolita en evolución de la capacidad de soporte de los suelos cohesivos de subrasante de la Av. Santa Fortunata? SEGUNDO, ¿En qué proporción el uso de Cal y Zeolitas reduciría el límite liquido e índice de plasticidad de los suelos cohesivos de la subrasante de la Av. Santa Fortunata? TERCERO, ¿Empleando Cal y Zeolita cual sería el espesor adecuado por estabilizar, teniendo en cuenta el adecuado diseño de la capa lisa?.

En la presente investigación la Justificación teórica se basa en generar nuevas teorías, nuevos conceptos, es decir mediante la estrategia de estabilización de los suelos con cal y zeolita se generarán alternativas para la práctica de la estabilización de suelos, asimismo, los resultados servirán para el análisis en las futuras investigaciones. Como Justificación Práctica, en el presente trabajo de investigación los resultados generaran bases sólidas de una estrategia de estabilización enfocada en una solución técnico económica, aportando al ámbito de estudio.

En la presente investigación la Justificación social se enfoca en garantizar la durabilidad de una estructura de pavimento atendiendo los problemas geotécnicos de la fundación, el adecuado comportamiento y duración de la estructura del pavimento irá de manera directa en favor de la población. La Justificación Metodológica, se basa en brindar nuevas alternativas de estabilización usando cal y zeolita, sustentando la validez técnico económica de la estrategia.

En el presente trabajo de investigación se tiene como Objetivo General: Modificar las propiedades de los suelos cohesivos de la subrasante de la Av. Santa Fortunata usando Cal y Zeolita. Como objetivos específicos tenemos: PRIMERO, Mejorar el soporte de los suelos cohesivos de la subrasante de la Av. Santa Fortunata; SEGUNDO, Reducir el Índice de Plasticidad de los suelos de subrasante de la Avenida Santa Fortunata, TERCERO, Determinar el espesor de la capa estabilizada del pavimento adicionando cal y zeolita.

En el presente trabajo de investigación se plantea las siguientes hipótesis, como hipótesis general: El uso de cal y zeolita en dosificaciones adecuadas mejoraría las propiedades de los suelos cohesivos componentes de la subrasante de la Av. Santa Fortunata, la cual sería mediante una correcta dosificación de cal y zeolita. Asimismo, se tenemos las siguientes hipótesis específicas: PRIMERO, El uso de la Cal y Zeolita elevaría la capacidad de soporte de los suelos. SEGUNDO, Una dosificación adecuada de Cal y Zeolita reduciría el índice de plasticidad en los suelos de subrasante de la Avenida Santa Fortunata. TERCERO, Una metodología Una metodología adecuada para estimar el espesor adecuado de la capa estabilizada del pavimento seria considerando la rigidez equivalente.

II MARCO TEÓRICO

Antecedentes Nacionales

Moale y Rivera (2019), así como Rodríguez y colaboradores (2019), se propusieron mejorar la capacidad de soporte de la subrasante mediante el uso de cal. La investigación se enmarcó en un enfoque cuantitativo y experimental, centrándose en la carretera de Villa Rica con una muestra de 3000 metros. Los instrumentos empleados incluyeron la recolección de datos, el muestreo y los ensayos de laboratorio. Los resultados revelaron que al utilizar un 9% de cal, los valores obtenidos fueron un límite líquido de 30.18%, un límite plástico de 23.91%, un índice de plasticidad de 6.27%, un CBR al 95% de 3.8%, y un CBR al 100% de 5.1%. Con un 15% de cal, los resultados fueron un límite líquido de 27.86%, un límite plástico de 24.57%, un índice de plasticidad de 2.99%, un CBR al 95% de 5.9%, y un CBR al 100% de 6.4%. Finalmente, con un 21% de cal, se obtuvieron valores de límite líquido de 26.43%, límite plástico de 24.65%, índice de plasticidad de 1.78%, CBR al 95% MDS de 4.1%, y CBR al 100% de 5.1%. La conclusión de la investigación señaló que al emplear un 9% de cal se alcanzaron ciertos valores, mientras que con dosificaciones superiores al 15%, especialmente al 21%, se observó un aumento en el CBR al 95% MDS hasta un 5.9%, indicando que el valor del CBR disminuye al agregar dosis mayores al 15% de cal.

López y Ortiz (2018), tuvo como finalidad estabilizar el suelo en el jiron de Molino pata y el jiron de Santo Domingo en San Luis mediante la adición de cal. El tipo de investigación que uso fue la exploratoria. Su población es la calle pata y la calle santo domingo de la provincia de Abancay. La muestra, la sub rasante del jiron pata y santo domingo. Los instrumentos que se usó en el presente trabajo fueron mediante recolección de datos, el muestreo y ensayos en laboratorio. El resultado que se tuvo fue que al adicionar el 2%, 4%, 6% y el 8% de cal el límite liquido es de 42.51%, 31.31%, 28.82% y 30.56%, el límite plástico es de 28.71%, 23.77%, 24.04%, y 23.24%, el índice de plasticidad es de 13.80%, 7.54%, 4.78% y 7.32%, el CBR fue de 17.50%, 33.00%, 52.00% y 145%. Así mismo se concluye que al adicionar el 2% de cal el límite liquido es de 42.51% el límite plástico es de 28.71% el índice de plasticidad es de 13.80% y el CBR es de 17.50%, al adicionar el 4% de cal el límite liquido es de 31.31% el límite plástico es de 23.77% el índice de

plasticidad es de 7.54% y el CBR es de 33.00%, al adicionar el 6% de cal el límite liquido es de 28.82% el límite plástico es de 24.04% el índice de plasticidad es de 4.78% y el CBR es de 52.00%, y al adicionar el 8% de cal el límite liquido es de 30.56%, el límite plástico es de 23.24%, el índice de plasticidad es de 7.32%, el CBR fue de 145%. Es decir, al adicionar el 8% de cal como estabilizante este incrementa el CBR a 145% puede ser usado como base para un pavimento.

Rodríguez (2017), tuvo como objetivo analizar un suelo arcilloso como base para un pavimento de tipo flexible usando la nanotecnología mediante la adición de cemento y zeolitas sintéticas. Fue una investigación de tipo aplicativa. Los instrumentos que se usó en el presente trabajo fueron mediante recolección de datos, el muestreo y ensayos en laboratorio. Para ello se tuvo el resultado que al adicionar el cemento portland en una cantidad del 6%, 8% y 10% y la zeolita sintética en una cantidad del 1% la resistencia a la comprensión incrementa a los 7 días se tiene el a resistencia fue de 14.22 kg/cm2, a los 14 días alcanzó los 16.67 kg/cm2, y a los 28 días alcanzó 19.66 kg/cm2, asimismo para una adición del 10% de cemento y 1% de zeolita el CBR al 95% es de 64.14% y el CBR al 100% es de 74.15% el índice de plasticidad es de 3.92%. Se concluye que con la adición de un 10% cemento portland y 1% de zeolita su dosificación será de 1.65 kg/m3, cemento portland 165 kg/m3 y agua el 19% (+2%) teniendo así la optimización para la creación de estructuras capaces de soportar cargas resistentes.

Cortes y Fernández (2015), tuvo como objetivo principal usar un nuevo método para estabilizar un suelo para base de una estructura para un pavimento mediante la influencia de zeolitas y biopolímeros, la investigación es del tipo descriptiva y aplicativa, la investigación fue del tipo no experimental, así mismo el suelo estabilizado con zeolita fue de 35 cm esto debido al aumento en la resistencia a la compresión debido a la adición de la zeolita ya que al adicionar 4% de zeolita se obtuvo el espesor de 35cm. Por lo que se llega a la conclusión que al adicionar 4% de zeolita para estabilizar un suelo el espesor será de 35 cm.

Antecedentes Internacionales

Guamán (2016), tuvo como evaluar el desempeño de un suelo arcilloso estabilizado en laboratorio mediante la utilización de componentes químicos como la cal y el

cloruro de sodio. El tipo de investigación es descriptivo y experimental. Como población es el suelo arcilloso y la muestra será tomada en una proporción considerable. Los instrumentos que se usó en el presente trabajo fue la recolección de datos, el muestreo y los ensayos realizados en laboratorio. El resultado fue que al adicionar el 2.5 %, 7.5% y 12.5% de cal su índice de plasticidad es de 15.96%, 10.78% y 8.83% y el CBR es de 13.45%, 20.80% y 26% y 37.4%, mientras que al adicionar el 2.5 %, 7.5% y 12.5% de cloruro de sodio el índice de plasticidad es de 13.79%, 10.18% y 6.54% y el CBR es de 9.3%, 7.55% y 5.8%, asi mismo tuvo como resultado al estabilizar con cal el espesor es de 25" siendo 63.50 cm La investigación concluye que al usar el 2.5 %, 7.5% de cal no cumple mientras que con el 12.5% de cal si cumple y da una mejor resistencia al suelo y para estabilizar el suelo el espesor será de 63.50 cm.

Guzmán (2009), tuvo como objetivo determinar cómo influye la zeolita como estabilizante en la dispersividad de un suelo. Su tipo de investigación es del tipo aplicativo, la población es un suelo arcilloso y la muestra será tomada en proporciones considerables. El instrumento es la recolección de datos mediante ensayos de laboratorio. Los resultados obtenidos en el índice de plasticidad fueron de 20 esto con la adición del 10% de zeolita. Se llegó a la conclusión que con el 10% de zeolita la dispersividad no se neutraliza.

Teorías Relacionadas

Variable independiente: Cal y Zeolita

Cal

La cal en forma de óxido de calcio se combina con el suelo para innovar la estabilización química y mejorar la capacidad de soporte. Algunas teorías explican como la cal actúa para la estabilización de los suelos, una de ella puede ser la reacción álcali – suelo en donde la cal reacciona en componentes arcillosos y silíceos para que se estabilicen y mejoren las propiedades de los suelos (la cohesión y resistencia). Por otra parte, la combinación cal y el suelo, aquí la cal libera los iones calcio e hidróxido en el suelo lo que ocasiona el intercambio de iones presentes en el suelo tal como los iones de sodio, al intercambiar estos iones se reduce el índice de plasticidad de un suelo y así mejorar su estabilidad y carga.

Asimismo, en la deshidratación y la rehidratación la cal tiene una alta capacidad de absorber el agua, el cual cuando se combina con el suelo absorbe la humedad para deshidratarlo y así reducir la plasticidad del suelo para mejorar su estabilidad rehidratando el suelo y aumentando su cohesión y resistencia.

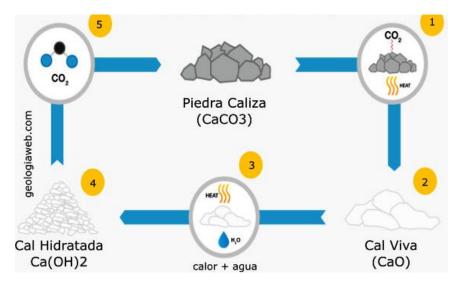


Figura 1. Proceso de la obtención de la cal

Fuente: Yandry Maldonado

Zeolita

Las zeolitas son minerales con una estructura cristalina única que confiere propiedades de intercambio iónico y absorción. Las zeolitas no son usadas comúnmente para realizar la estabilización de suelos, pero se a propuesto muchas teorías sobre como estas podrían contribuir en una estabilización. La zeolita al ser calentada produce grandes cantidades de vapor de agua es decir absorbía el agua de un material, a través del tiempo ha sido usada en la agricultura como un filtro molecular siendo esta capaz de eliminar nutrientes de agua. También fue usada como fertilizante ya que esta retiene el agua hasta un 30% de su volumen. La zeolita fue usada en México en vías terrestres, demostrando que su uso como estabilizante es buena ya que esta disminuye la plasticidad y mejora la resistencia del esfuerzo cortante de los suelos. En el intercambio iónico en zeolitas tienen una estructura porosa que puede retener y liberar iones en su entorno, Según esta teoría cuando las zeolitas se mezclan con un suelo, los iones intercambiables en las zeolitas (como calcio, sodio, potasio) pueden liberarse y reemplazar al ion en el suelo. Esto

puede tener un efecto en las propiedades de los suelos, mejorando su estabilidad. Las zeolitas tienen una capacidad de absorción de agua, lo que significa que pueden retener agua en sus poros. Esta teoría sugiere que cuando las zeolitas se mezclan con el suelo, pueden absorber el exceso de humedad del suelo, reduciendo su contenido de agua y mejorando su estabilidad. Además, cuando el suelo está seco, las zeolitas pueden liberar parte del agua absorbida, lo que podría ayudar a mantener una humedad óptima en el suelo. Las zeolitas también pueden contribuir a la estabilización del suelo mejorando sus propiedades mecánicas. Se ha observado que la inclusión de zeolitas en el suelo puede aumentar su capacidad de soporte, mejorar la resistencia al corte y reducir su plasticidad. Estos efectos se atribuyen a la combinación del suelo y las zeolitas; pueden modificar la distribución de las fuerzas y mejorar la cohesión del suelo. Es importante tener en cuenta que el uso de zeolitas para la estabilización de suelos todavía está en estudio. El efecto y aplicabilidad de las zeolitas pueden variar según las características específicas del suelo y las propiedades de las zeolitas utilizadas.

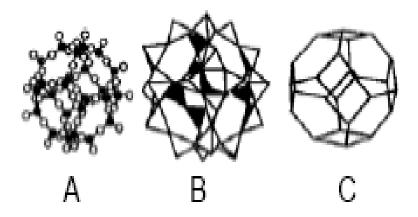


Figura 2. Estructura de la zeolita Fuente: Guzmán Domínguez

Variable Dependiente: Modificación de las propiedades de la subrasante

Modificación de las propiedades de la subrasante

Se trata de la capa del suelo o material compactado que se encuentra debajo de una carretera, pavimento u otra estructura para soportar las cargas impuestas sobre ella sin deformarse excesivamente. Es una propiedad importante que se evalúa a

través del diseño y construcción de vías y otros proyectos en ingeniería civil. Se mide generalmente utilizando ensayos de laboratorio tales como el ensayo de compactación, pruebas de resistencia al corte, el ensayo de CBR, para evaluar las propiedades del suelo ya que estas pueden variar según el pavimento, tráfico y las condiciones del suelo. En general, se busca una subrasante lo suficientemente resistente para evitar la deformación excesiva del pavimento y minimizar el riesgo de fallas estructurales. El soporte de la subrasante se basa en que la subrasante proporciona una parte muy importante en el soporte estructural de un pavimento y se analiza la capacidad de carga para establecer un criterio que asegure que la subrasante sea capaz de soportar las cargas aplicadas sin deformaciones excesivas. Se realizan pruebas de laboratorio y se utilizan ensayos in situ para determinar la resistencia y el soporte del suelo. El diseño se realiza considerando los valores de capacidad portante para asegurar que la subrasante sea capaz de soportar las cargas del pavimento sin sufrir asentamientos o deformaciones excesivas.

Propiedades físicas del suelo

Son características que describen su comportamiento y estructura física. Estas propiedades son fundamentales para comprender y analizar el comportamiento de los suelos en diversas aplicaciones, como la agricultura, la ingeniería civil y la ciencia del suelo en general. En el suelo su textura es una proporción relativa de las partículas de diferentes tamaños presentes en el suelo. La teoría de la textura de un suelo se basa en la clasificación triangular de texturas del suelo. Asimismo, la estructura del suelo se agrupa en partículas individuales en agregados o pedazos más grandes. La estructura del suelo está influenciada por factores de humedecimiento y secado. La porosidad describe cómo la porosidad influye en la retención y movimiento del agua, la aireación, el drenaje.

Propiedades mecánicas del suelo

Se refieren al comportamiento del suelo bajo cargas o fuerzas externas. Estas propiedades son fundamentales para realizar el análisis y a su vez el diseño de las estructuras geotécnicas, como cimentaciones, terraplenes y taludes. A continuación, se presentan algunas teorías de las propiedades mecánicas del

suelo; asimismo esfuerzo efectivo establece que el comportamiento del suelo está gobernado por el esfuerzo efectivo, que es la diferencia entre el esfuerzo total aplicado al suelo y el esfuerzo intersticial generado por la presión del agua en el suelo. La teoría del esfuerzo efectivo proporciona la base para el análisis, la consolidación y la resistencia al corte del suelo. Su Consolidación describe el proceso de consolidación del suelo bajo cargas aplicadas. Terzaghi, que indica que la consolidación del suelo es proporcional al coeficiente de consolidación y al gradiente de esfuerzos efectivos. La teoría de la consolidación se utiliza para predecir la consolidación vertical y la deformación del suelo, y es fundamental en el diseño de cimentaciones y estructuras de tierra. Asimismo, la resistencia al corte se basa en la resistencia intrínseca del suelo y su cohesión, así como en la presión intersticial generada por el agua en el suelo. Se tiene diversos criterios de resistencia al corte, como el enfoque de Mohr-Coulomb, son empleados para examinar la estabilidad de taludes. Del mismo modo, se determina la plasticidad a partir de los límites de Atterberg, los cuales definen las propiedades, el comportamiento y la expansión del suelo.

Límites de Atterberg

Albert Atterberg desarrolló esta teoría en la década de 1910, la cual establece tres parámetros: el límite líquido (LL), el límite plástico (LP) y el índice de plasticidad (IP). El límite líquido representa el contenido de agua en el suelo que experimenta un cambio de estado, determinado a través del ensayo de Casagrande. El límite plástico es el punto en el que el suelo pierde su plasticidad, identificado mediante el ensayo del hilo de corte. El índice de plasticidad es la diferencia entre el límite líquido y el límite plástico, y proporciona una medida de la plasticidad del suelo.

Relación de soporte de california (CBR)

El CBR (California Bearing Ratio) es una medida de la resistencia del suelo utilizado para el análisis de pavimentos. El soporte de California (CBR) es la relación de la presión aplicada a un suelo y la presión que se requiere. A continuación, se presentan dos teorías fundamentales relacionadas con el CBR en pavimentos: CBR estándar según esta teoría, se establece un CBR estándar para diferentes tipos de suelos, que se determina mediante ensayos de laboratorio. El valor del CBR

estándar es para medir la capacidad portante de un suelo para soportar cargas de tráfico. En el diseño del pavimento, se toma en cuenta el CBR (California Bearing Ratio) de un suelo subyacente y carga esperada del tráfico, de acuerdo con métodos y criterios específicos. CBR modificado se basa en que el CBR estándar no siempre refleja adecuadamente el comportamiento real del suelo en el campo. Por lo tanto, se propone un enfoque modificado que tiene en cuenta factores como la humedad in situ, la compactación del suelo y las condiciones de drenaje. Se realizan ensayos de CBR in situ, donde se aplican cargas al suelo considerando la condición especifica y comportamiento real del suelo.

Dosificación

En el mundo de la ingeniería geotécnica, la dosificación de suelos es el proceso en el cual se determina la adición de aditivos y materiales para realizar mejoramientos en las propiedades del suelo y que este cumpla con lo que se requiere. Dentro la dosificación tenemos la relación de vacíos del suelo. Así mismo la plasticidad se aplica en la dosificación de suelos cohesivos, como arcillas que se basa en las propiedades índice del suelo determinados mediante pruebas de laboratorio y se utilizan para establecer las proporciones adecuadas de aditivos que se agregarán al suelo para modificar su plasticidad y cumplir con los requisitos de ingeniería. La relación suelo-aditivo se basa en establecer una relación específica entre el suelo y el aditivo utilizado. Se busca determinar la cantidad de aditivo necesaria en función de las propiedades del suelo. Se pueden utilizar gráficos o curvas empíricas que relacionan las propiedades del suelo con las dosificaciones adecuadas de aditivo. Es importante tener en cuenta que la dosificación adecuada en la estabilización de suelos puede depender de varios factores, como las características del suelo original, el tipo y las propiedades del aditivo utilizado, los requisitos del proyecto y las condiciones ambientales.

Enfoques Conceptuales

Variable independiente: Cal y Zeolita

Cal

La cal es un material que puede estabilizar un suelo fino o cualquier otro tipo de suelo que no cumpla con las condiciones de las normas, esta se utiliza en la subrasante o subbase esto con el fin de mejorar el suelo en el cual se colocara la capa estructural en un pavimento. Aquellos suelos mejorados estabilizados pueden ser obtenidos de la misma subrasante o utilizar materiales de préstamo y estas combinaciones se dan en el mismo lugar.

Figura 3. La cal en forma natural y cal triturada

Fuente: https://mycal.com.pe/la-empresa/

Zeolita

Las zeolitas son catalizadores increíblemente útiles en la isomerización y la síntesis de hidrocarburos. El tamaño de sus poros y el movimiento de las moléculas dentro de ellos, como el de otros catalizadores, plantea problemas.

Figura 4. La zeolita en forma natural y la zeolita triturada

Fuente: https://recoplasj.mercadoshops.com.ar/MLA-850162304-zeolita-natural-pura-x-1kg-JM

Variable independiente: Cal y Zeolita

La Subrasante

Es la parte final de una vía que aguanta la carga de las capas de un pavimento es por ello que esta debe cumplir con los requisitos estructurales para aquellos materiales clasificados que se ponen sobre la misma se adecuen de manera uniforme para evitar que estos fallen. El espesor necesario para el pavimento, ya sea flexible o rígido, estará determinado por las características de la subrasante.

En el cual su capacidad de soporte del suelo dice la subrasante es la parte más importante ya que este optimiza realizar el diseño de una estructura. Para poder hallar la capacidad de soporte de un suelo que se realiza a través de una prueba o ensayo de CBR para saber su calidad de un suelo a base de su resistencia.

Límites de Atterberg

Se dice que el límite liquido es la relación del humedecimiento de un suelo, mientras que el suelo plástico no tiene soporte al corte es allí donde el suelo se transforma en sus diferentes estados, tenemos el Límite Liquido que es la medida o proporción de agua en un estado plástico.

Figura 5. Instrumentos para los límites de Atterberg

Fuente: https://www.cuevadelcivil.com/2017/05/limites-de-atterberg-limites-de.html

Relación de soporte de california (CBR)

Son necesarios para obtener la capacidad de soporte del suelo compactado, así mismo tenemos la clasificación de suelos que es aquella en la cual se compacta las muestras extraídas en un molde de acuerdo a las normas que luego son

sumergidos en agua y posteriormente se realiza el punzonamiento con un pistón de acuerdo a las normas. Para ello primero se determinara mediante el Proctor modificado la humedad optima y a la vez la densidad máxima, luego echaremos agua a la muestra del suelo que tenemos para así lograr alcanzar la humedad optima que se requiere, luego empezaremos a compactar una muestra del suelo para ello se debe realizar en tres capas a los 15 golpes, 30 golpes y 60 golpes, luego se enraza y se desmontara para luego volver a montarlo de forma invertida y dicha muestra se tendrá que sumergir en el agua, luego se saca la muestra compactada del agua para así hacerlo secar y luego colocarlo en la prensa del CBR para así hallar las lecturas.

Figura 6. Instrumentos para realizar el ensayo del CBR

Fuente: https://geotecniafacil.com/

III METODOLOGÍA

3.1 Tipo y Diseño de Investigación

Tipo de investigación

La investigación aplicada es aquella que resuelve un determinado problema para conseguir resultados que expliquen la realidad de una situación poniéndolo en práctica. El presente trabajo de investigación es aplicada ya que resuelve un problema geotécnico especifico mejorando los suelos con una óptima combinación de cal y zeolita poniendo en la practica una adecuada estrategia de estabilización.

Enfoque de investigación

Según la investigación cuantitativa es aquella que recolecta y analiza los datos numéricos asimismo es ideal para hallar tendencias y los promedios a fin de tener resultados de poblaciones mayores. Así mismo Sampieri R. et al (2044) nos dice que un enfoque cuantitativo es aquel que se fundamenta en ser lógico y a su vez plantea interrogantes de investigación y su respectiva hipótesis para luego ponerlas a practica y comprobarlas. El enfoque es cuantitativo ya que se analizan, recolectan datos numéricos, se plantean interrogantes, hipótesis para ponerlos en la práctica y ser comprobadas

Diseño de la investigación

El diseño experimental es aquella técnica estadística que identificar y a la vez cuantificar los hechos o de un estudio experimental. El diseño cuasiexperimental es aquella investigación en la que se puede manipular una variable independiente. La presente investigación es experimental porque nos ayuda y cuantificar la causa y efecto en un estudio experimental, el tipo será cuasi experimental porque se manipulan variables con el fin de corroborar la hipótesis planteada es decir dosificaciones de cal y zeolita en el suelo de fundación de la Av. Santa Fortunata.

3.2 Variables y operacionalización

Variable Independiente: Cal y Zeolita.

Definición conceptual:

La cal es un material que si tiene contacto con el agua esta se hidrata y se usa para la preparación de mezclas de albañilería u otros. La Zeolita son aluminosilicatos que es capaz de hidratarse y deshidratarse de una manera reversible, estas se usan como absorbentes.

Definición operacional:

Se dosificará adecuadamente en laboratorio diferentes porcentajes de cal y zeolita para fines de provocar la modificación de las propiedades de los suelos de fundación de la Av. Santa Fortunata.

Variable Dependiente: Modificación de las propiedades de la subrasante.

Definición conceptual:

Se refiere a la capa del suelo o material compactado ubicada debajo del pavimento u otra estructura, para soportar las cargas impuestas sobre ella sin deformarse excesivamente. Es una propiedad importante que se evalúa durante el diseño y durante la construcción de carreteras (vías) y otros proyectos de ingeniería civil, se mide generalmente utilizando ensayos de laboratorio. La resistencia de la subrasante requerida puede variar según el pavimento, el tráfico esperado y las condiciones del suelo. En general, se busca una subrasante lo suficientemente resistente para evitar la deformación excesiva del pavimento y minimizar el riesgo de fallas estructurales.

Definición operacional:

Para la dosificación de cal y zeolita del suelo de la subrasante, se evaluarán las condiciones óptimas del suelo teniendo en cuenta sus propiedades físicas y mecánicas, posteriormente se analizará la comparación del grupo experimental con el grupo de control con fines de encontrar la dosificación final.

3.3 Población, muestra y muestreo

Población

Es un conjunto de elementos de estudio donde se encuentra y realiza la investigación. Es necesario definir los límites de la población en función de sus atributos, contenido, ubicación y periodo temporal. En nuestro trabajo de

investigación la población es la Av. Santa Fortunata (1km de longitud), situada en el distrito de San Antonio, perteneciente a la Región de Moquegua.

Muestra

La muestra es una parte representativa de la población con el propósito de realizar un estudio. En esta investigación la muestra considerada corresponde a la progresiva 0+170hasta la 0+670 de la Av. Santa Fortunata, Distrito de San Antonio, Región de Moquegua.

Muestreo

El muestreo consiste en elegir una parte de un conjunto y analizar una de sus características. En este trabajo de investigación se emplea un muestreo no probabilístico, ya que la elección de la muestra se realiza según el criterio del investigador.

Unidad de análisis

Se trata de un caso o elemento que puede consistir en objetos o comunidades que serán objeto de estudio. En este caso la subrasante es la unidad de análisis de la Avenida Santa Fortunata, ubicada en el distrito de San Antonio, Departamento de Moquegua. El tramo seleccionado abarca desde la progresiva 0+170 hasta la progresiva 0+670.

3.4 Técnicas e Instrumentos de Recolección de Datos

Técnica

Es la conexión entre el evento y el problema se logra mediante la comunicación respaldada por instrumentos como guías o fichas de campo, facilitando así una interpretación adecuada de los datos. En el laboratorio, se emplearán técnicas con el fin de obtener información veraz y precisa sobre las características y propiedades del suelo, buscando obtener datos auténticos y precisos acerca de dichas propiedades.

Instrumentos

Es una ficha que recopila datos, según la descripción de Rojas (2020) consiste en una ficha de trabajo con la información necesaria para analizar todos los elementos y representar el problema de investigación. Los instrumentos a utilizar serán fichas de recolección de datos, equipos de laboratorio y ensayos de laboratorio.

Validez

Es aquella que valida los ensayos a realizar para la tesis los cuales se verificarán con los certificados debidamente calibrados de todos los equipos de laboratorio

3.5 Procedimiento

Reconocimiento del tramo de estudio:

Se realizó el reconocimiento de toda la Avenida Santa Fortunata esta avenida es de 3 km de longitud, para lo cual se ha seleccionado la muestra entre la progresivas 0+170 y 0+670 que es un sector representativo de la población de toda la Avenida Santa Fortunata.

Figura 7. Avenida Santa Fortunata

Fuente: Elaboración Propia

Recolección de muestras:

Para la recolección de muestras se ha procedido a realizar dos calicatas de 1 metro de ancho y una profundidad de 1.50 metros, las calicatas estuvieron ubicadas en los progresivos km 0+170 y la otra calicata en el progresivo km 0+670 de la Av.

Santa Fortunata, para la recolección de los suelos representativos se evaluaron los estratos existentes en cada calicata para finalmente realizar el cuarteo de los materiales muestreados según los lineamientos de la norma ASTM C702. Las muestras recopiladas fueron identificadas y enviadas al laboratorio, donde se lleva a cabo la evaluación física y mecánica de los materiales.

Figura 8. Calicata 01 en la Avenida Santa Fortunata progresiva. 0+170

Fuente: Elaboración Propia

Figura 9. Calicata 02 en la Avenida Santa Fortunata progresiva. 0+670

Fuente: Elaboración Propia

Caracterización de los materiales:

Análisis Granulométrico (ASTM D422)

Para fines de la realización de este ensayo se siguieron los lineamientos de la norma ASTM D422, previa a la realización del ensayo se cuartearon las muestras con fines de homogenización, luego se procedió a tomar dos muestras opuestas para llevarlo al horno para el secado respectivo para conocer el contenido de humedad, los materiales utilizados fueron los siguientes: tamices numero 3", 2 ½", 2", 1 ½", 1", 3¼", ½", 3/8", N°4, N°10, N°20, N°40°, N°50, N°100 y N°200, taras, balanza con la precisión de 0.01 gramos y horno, luego se procede a tamizar las muestras y posteriormente se pesan las muestras retenidas como las muestras pasantes para posteriormente conocer la curva granulométrica.

Figura 10. Muestras retenidas en cada tamiz

Fuente: Elaboración propia

Figura 11. Tamizado de la muestra

Fuente: Elaboración propia

Ensayo de los Límites de Atterberg

Se llevaron a cabo las pruebas de límites de consistencia conforme a las normativas ASTM D4318 y NTP 339.129 SUELOS. Se utilizaron los siguientes equipos y materiales: un recipiente de porcelana para almacenaje, copa de Casagrande, un acanalador, un calibrador, dos recipientes, y una balanza de precisión con sensibilidad de 0.01 g.

Limite Liquido (LL)

Para realizar el límite liquido se hizo bajo la norma ASTM D4318, mediante el método de Casagrande a lo cual primero se inicia con la preparación de la muestra seca, dicha muestra es la que pasa el tamiz N°40 la primera muestra es del terreno natural y la otra muestra es con cal y zeolita con las dosificaciones de 2%, 4% y 6% de cal y zeolita. posteriormente la muestra obtenida se mezcló con el agua para que este humedecida y tener una mezcla uniforme para luego colocarla en la copa de Casagrande, luego el acanalador se pasa por el centro y ver como la masa puesta en la copa se separó, luego se realizó el registro de los golpes que se

realizaron para luego tomar la parte del centro de la masa, asimismo, se colocaron en el horno.

Figura 12. Colocación de la muestra en la Copa de Casagrande

Fuente: Elaboración propia

Figura 13. Colocación de la muestra en la Copa de Casagrande

Fuente: Elaboración propia

Limite plástico (LP)

Para llevar a cabo la determinación del límite plástico, se siguieron las pautas establecidas por la norma ASTM D4318. Este límite se refiere al contenido mínimo de agua en el cual el suelo se encuentra justo en la fase plástica. También se reconoce como el contenido de agua en el cual un suelo empezaría a desmoronarse si se formara en hilos de 3 mm de diámetro. La resistencia al corte en esta etapa es aproximadamente 100 veces mayor que en el Límite Líquido. La medición de esta propiedad implica amasar el suelo seco con una pequeña cantidad de agua y, mediante la manipulación manual, formar cilindros de 3 mm de diámetro en la superficie. Si en ese momento se cuartean se considera como el límite plástico.

Figura 14. Realización de los rollitos largos

Fuente: Elaboración propia

Figura 15. Colocación de la muestra en el horno

Fuente: Elaboración propia

Proctor modificado (ASTM D 1557)

Para determinar realizar este ensayo se siguió los lineamientos de la norma ASTM D-1557, para llevar a cabo esta prueba, se procede a combinar la muestra de suelo con distintos niveles de contenido de agua. , luego una vez que hemos mezclado lo dividimos en cinco partes y procedemos a colocar la primera capa en el molde y con el pistón se da 25 golpes para apisonarlo y compactarlo, y así sucesivamente con las siguientes capas hasta llegar a la capa cinco, hasta que el molde este totalmente apisonado y compactado posteriormente hemos retirado el anillo del molde que está en la parte superior y procedimos a pesarlo en la balanza.

Los materiales que hemos usado para este ensayo es un molde, pisón, horno, espátula, cuchara, brocha, balanza, bandeja, taras y la muestra del suelo mezclado con cal y zeolita.

Figura 16. Compactado con el pisón

Fuente.: Elaboración propia

Figura 17. Muestra con dosificación con cal y zeolita compactada

Fuente: Elaboración propia

Relación de soporte de california (CBR)

Para determinar este ensayo se siguió con los lineamientos de la norma ASTM D 1883, para este ensayo se ha dosificado en diferentes proporciones de agua con fines de tener humedades y obtener la humedad optima, posteriormente hemos compactado la muestra en moldes de CBR, las muestras que se compactan son en cinco capas, luego se enraza y desmonta para volver a montarlo pero de manera invertida, posteriormente se coloca la placa así como también los pesos que sean necesarios para hallar la sobrecarga, asimismo se coloca el trípode de medida sobre el borde del molde el cual debe coincidir con el vástago del microcomparador, se toman medidas diarias del microcomparador, la muestra se sumerge en el agua y se saca para hacerlo secar para imponer la carga sobre el pistón de penetración se realizó a través del uso de la prensa CBR. En este experimento, se emplearon la prensa CBR, un molde de metal, un disco metálico, un pistón, pesas, agua y una balanza.

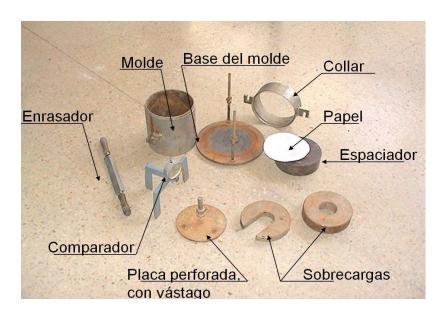


Figura 18. Equipos y materiales para realizar el CBR

Fuente: Elaboración propia

Figura 19. Ensayo de CBR

Fuente: Elaboración propia

Figura 20. Ensayo de CBR

Fuente: Elaboración propia

Recolección de muestras de cal y zeolita

La muestra de cal hidratada (hidróxido de calcio) se obtuvo de una cantera artesanal denominada "Mollesaja", la misma que está situada en el anexo de Yacango en el Distrito de Torata en la Provincia de Mariscal Nieto de la Región Moquegua.

Figura 21. Extracción de cal

Fuente: Elaboración propia

En el caso de las zeolitas, se dividen en dos categorías: naturales y sintéticas. Las zeolitas naturales, compuestas de silicatos, se forman de manera natural en depósitos sedimentarios, mientras que las sintéticas son el resultado de procesos tecnológicos que replican los eventos naturales a lo largo de las eras geológicas de la Tierra. Las zeolitas naturales presentan una estructura tetraédrica cristalina de aluminosilicatos con poros llenos de cationes y moléculas de agua. Se destacan por su movilidad y una red molecular abierta que facilita el intercambio catiónico, así como la deshidratación reversible.

Entre las propiedades más relevantes de las zeolitas se incluyen la porosidad (tamiz molecular), adsorción y el intercambio iónico. Este último fenómeno ocurre debido a su estructura molecular bien definida, donde los poros, a menudo mezclados con agua, forman canales y/o cavidades que permiten un crecimiento reversible, deshidratación e intercambio catiónico sin alterar su estructura. La capacidad de intercambio catiónico de la zeolita está influenciada por factores como la

concentración de cationes en la solución, el tipo de catión presente, la temperatura, la presencia de aniones asociados, el solvente orgánico, el solvente acuoso y la estructura específica de la zeolita.

Figura 22. Zeolitas

Fuente: Elaboración propia

Dosificación de muestras de suelo natural con cal y zeolita

Una vez que se tienen los resultados de las muestras del terreno natural se procedió a combinar el terreno natural con la cal y zeolita, pero antes se colocó la muestrapuso el suelo en el horno para su respectivo secado y las siguientes dosificaciones que fueron de 2 %, 4 % y 6 % del peso del terreno natural para luego mezclarlo respectivamente suelos con el suelo natural para realizar la correcta dosificación de la cal y zeolita.

Figura 23. Horno para los secados de muestras

Fuente: Elaboración propia

En el caso de las muestras de suelo con una proporción del 2% en peso de cal y zeolita, el procedimiento fue el siguiente: inicialmente, se pesó el 98% en peso del suelo natural y el 2% en peso correspondiente a la cal y zeolita, lo que significa que el peso total de la muestra fue de 5 kg y de dicha muestra el 98% es 4.90 kg es del suelo natural y el 2% de cal y zeolita es 0.10 kg es la cal y zeolita es decir 1% de cal y el 1% de zeolita respectivamente y así mismo se realizo para las dosificaciones de 4% y 6% de cal y zeolita para luego proceder a mezclar de manera uniforme.

Figura 24. Dosificaciones de cal y zeolita al 2%, 4% y 6%

Fuente: Elaboración propia

Diseño del espesor de capa estabilizada del pavimento adicionado cal y zeolita

Para poder hallar el espesor con la adición de cal y zeolita debemos tener en cuenta lo que nos dice el Manual de Carreteras del Ministerio de Transporte y Comunicaciones en el cual nos indica, que el CBR deberá ser ≥ 6%.

Para fines de conocer el espesor adecuado a estabilizar emplearemos el concepto de la rigidez equivalente y para la rigidez equivalente se usará el indicador del CBR aplicando la formula siguiente:

$$CBR_{P} = \frac{D_{S1}^{3} CBR_{1} + D_{S2}^{3} CBR_{2}}{(D_{S1})^{3} + (D_{S2})^{3}}$$

Donde:

CBR_P = CBR Ponderado

D_{S1} = espesor del suelo estabilizado

D_{S2} = espesor del suelo natural

CBR₁ = CBR del suelo estabilizado

CBR₂ = CBR del suelo natural

Para el análisis del espesor por estabilizar se consideran los espesores tentativos de estabilización y los CBR obtenidos con las diferentes dosificaciones experimentadas en la presente investigación, empleando la formula de la rigidez equivalente.

Diseño de pavimento por AASHTO 93

En el diseño de una estructura de pavimento, se plantea la siguiente fórmula o ecuación, mediante la cual se determinará el parámetro cuyo valor indicativo es el espesor necesario del pavimento, teniendo en cuenta el tráfico y la confiabilidad.

$$log(N\text{ 18}) \equiv 9.36 log(SN \equiv 1) - 0.20 \equiv \frac{G_t}{0.40 \text{ ...}} \frac{1094}{(SN \equiv 1)^5.19} \\ \equiv 2.32 * log M_R - 8.07 log F_R$$

3.6 Método de análisis de datos

Se llevará a cabo un análisis cuantitativo, ya que los datos recopilados consisten en valores numéricos que pueden ser representados gráficamente en programas como Microsoft Excel. Además, para validar las hipótesis, se empleará el software SPSS v26.

3.7 Aspectos éticos

En la investigación, se asumirá la responsabilidad y confiabilidad en el procedimiento, los datos recopilados y los resultados, los cuales serán reflejados en las conclusiones y para fines de evitar copias de investigaciones en la presente investigación se empleara el Turnitin siguiendo el procedimiento de la universidad para fines de publicación.

IV RESULTADOS

Descripción de la zona de estudio

Ubicación del proyecto

El presente trabajo de investigación se llevó a cabo en la Avenida Santa Fortunata, ubicada en el Distrito de San Antonio, Región de Moquegua.

Figura 25. Ubicación del proyecto

Fuente: Elaboración propia

Límites

Norte : con el Valle

Sur : con el CP Chen Chen

Este : con el distrito de Moquegua

Oeste : con la carretera Binacional

Ubicación geográfica

El Distrito de San Antonio sus coordenadas geograficas son: Latitud Sur 17°12'39" Longitud Oeste 70°56'51" y la poblacion es de 29,005 habitantes.

Clima

El clima que tiene el Distrito de San Antonio, es que en el tiempo de verano son de plazo corto, tambien calido, humedos y nublado y en la epoca de invierno es mojado y nublado tambien, la temperatura generalmente varía de 17 °C a 30 °C y rara vez baja a menos de 16 °C o sube a más de 33 °C.

Objetivo especifico 1, Mejorar la capacidad de soporte de los suelos cohesivos de la subrasante de la Avenida Santa Fortunata

Para evaluar la capacidad de soporte de los suelos de la subrasante, se llevó a cabo el ensayo de CBR. Inicialmente, se realizó el ensayo en la muestra natural, y posteriormente, se llevó a cabo el ensayo en muestras con adiciones del 2%, 4%, y 6% de cal y zeolita. Los resultados de estos ensayos se detallan en la Tabla 1 a continuación:

Tabla 1 Resumen de los resultados del terreno natural

CALI	CATA	C #1	C #2
Profundidad de calicata (m)		1.50	1.50
Humedad (%)		7.91	8.11
	% Grava		0.00
Granulometría	% Arena	22.60	21.86
	% Finos	77.40	78.14
Clasificación	SUCS	CL	CL
Clasificación	AASHTO	A-7-5 (16)	A-7-5 (16)
	LL	40.90	42.00
Límites de Atterbeng	LP	21.40	21.40
3	IP	19.50	20.60
Proctor modificado MDS g/cm3		1.73	1.77
OCH (%)		11.17	11.54
95 % MDS (%		7.68	7.90
CBK	100 % MDS (%)	10.55	10.44

Fuente: Autora

De la Tabla 1 el valor del CBR al 95% del terreno natural de la calicata 02 es de 7.90 % por lo que a raíz de ese resultado se procedió a adicionar la al suelo con adición de cal y zeolita en dosificaciones del 2%, 4% y 6%, es importante indicar que en las tres dosificaciones la cal y la zeolita entraron en igual proporción obteniendo los siguientes resultados:

Tabla 2: Resultados de CBR al 95% y 100%

	Muestra dosificada	CBR (95%)	CBR (100%)
1	Suelo natural	7.90	10.44
2	Suelo natural (98%) + Cal y Zeolita (2%)	10.30	13.00
3	Suelo natural (96%) + Cal y Zeolita (4%)	18.30	27.50
4	Suelo natural (94%) + Cal y Zeolita (6%)	28.10	43.00

Fuente: Autora

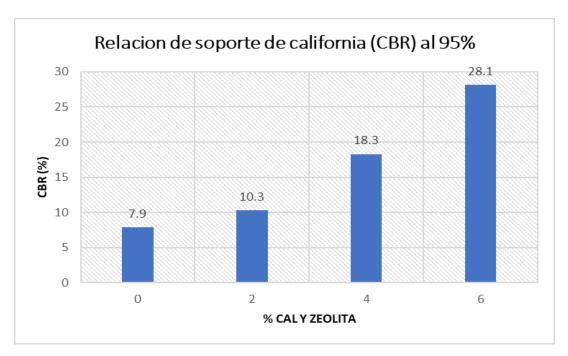


Figura 26. Grafica en barras del CBR para el suelo con dosificación de cal y zeolita

Fuente: Elaboración propia

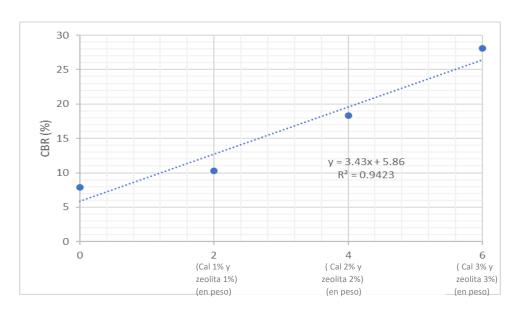


Figura 27. Grafica del CBR para el suelo con dosificaciones de cal y zeolita

Fuente: Elaboración propia

Según la Tabla 2 y la Figura 27 se puede apreciar que el CBR se incrementa de acuerdo a la dosificación de cal y zeolita es mayor, considerando una adición de 2%,4% y 6% de cal y zeolita se puede apreciar que el CBR alcanza un valor de 10.30%, 18.30% y 28.10%, respectivamente. La acción de las zeolitas y la cal participando de manera equitativa (50%-50%) tiene una acción efectiva sobre el suelo natural que tiene un CBR de 7.90%, el efecto del silicato de calcio otorga propiedades friccionantes al suelo mejoramiento el comportamiento mecánico del suelo natural.

Objetivo especifico 2, Reducir el Índice de Plasticidad de los suelos de la subrasante de la Avenida Santa Fortunata

Tabla 3 Resultados de Índice de Plasticidad

N°	Muestra dosificada	Índice de Plasticidad
1	Suelo del terreno natural	19.5
2	Suelo del terreno natural (98%) + Cal y Zeolita (2%)	15.30
3	Suelo del terreno natural (96%) + Cal y Zeolita (4%)	12.20
4	Suelo del terreno natural (94%) + Cal y Zeolita (6%)	9.10

Fuente: Autora

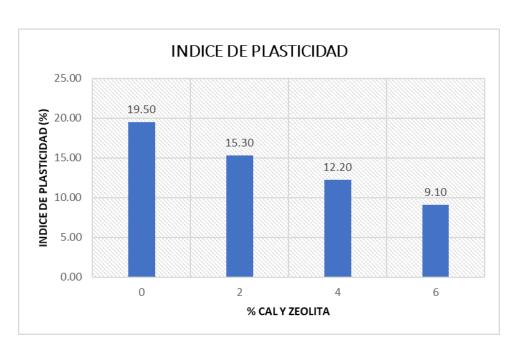


Figura 28. Grafica de barras de la relación índice de plasticidad del suelo con dosificación de cal y zeolita

Fuente: Elaboración propia

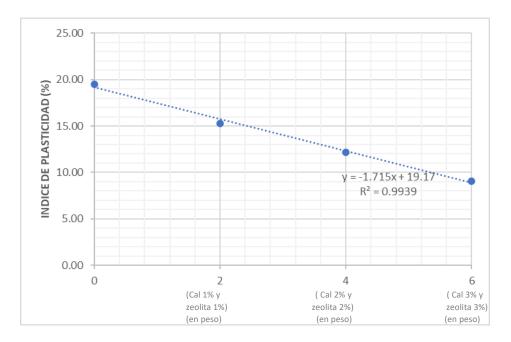


Figura 29. Grafica de la relación del índice de plasticidad para el suelo con dosificaciones de cal y zeolita

Fuente: Elaboración propia

Según la Tabla 3 y la Figura 29 se puede apreciar que el índice de plasticidad se reduce a medida que la dosificación de cal y zeolita es mayor, considerando una

adición de 2%, 4% y 6% de cal y zeolita se puede apreciar que el índice de plasticidad alcanza un valor de 15.30, 12.20, 9.10, respectivamente. La acción de las zeolitas y la cal participando de manera equitativa (50%-50%) tiene una acción efectiva sobre el suelo natural que tiene un Índice de plasticidad de 19.50, este efecto se debe a que las zeolitas aportar minerales de silicatos de calcio que en conjunto con las partículas del suelo forman cristales de hidróxido de sílice lo cual reduce la plasticidad, por su parte la cal reduce drásticamente la humedad del suelo por procesos de evaporación y e hidratación favoreciendo el comportamiento físico del suelo natural.

Objetivo especifico 3, Diseñar el espesor de la capa estabilizada del pavimento adicionado cal y zeolita en la Avenida Santa Fortunata, San Antonio, Moquegua.

En el proceso de determinar el espesor apropiado para la estabilización, se utilizó la información de los valores de CBR obtenidos en los ensayos realizados con las mezclas de suelo natural adicionando 2%, 4%, y 6% de cal y zeolita. Los resultados son los siguientes:

Terreno natural + cal y zeolita 2% CBR 10.30%

Terreno natural + cal y zeolita 4% CBR 18.30%

Terreno natural + cal y zeolita 6% CBR 28.10%

Terreno natural CBR 7.90%

Se aplico la siguiente fórmula para calcular el CBR ponderado:

$$CBR_{P} = \frac{D_{S1}^{3} CBR_{1} + D_{S2}^{3} CBR_{2}}{(D_{S1})^{3} + (D_{S2})^{3}}$$

Donde:

CBR_P = CBR Ponderado

D_{S1} = Espesor de Suelo Estabilizado

D_{S2} = Espesor de Terreno Natural

CBR₁ = CBR de Suelo Estabilizado

CBR₂ = CBR de Terreno Natural

Para estabilizar el espesor será de 0.40m con la combinación del terreno natural más la adición del 2% de cal y zeolita con un valor de CBR de 10.30%.

$$CBR_{P \, (cal \, y \, zeolita)} = \frac{0.40^3 \, (10.30\%) \, + 1.10^3 \, (7.90\%)}{0.40^3 + 1.10^3}$$

$$CBR_{P (cal \ v \ zeolita)} = 8.01\%$$

Para estabilizar el espesor será de 0.40m con la combinación del terreno natural más la adición del 4% de cal y zeolita con un valor de CBR de 18.30%.

$$CBR_{P (cal \ y \ seolita)} = \frac{0.40^3 \ (18.30\%) \ + 1.10^3 \ (7.90\%)}{0.40^3 \ + 1.10^3}$$

$$CBR_{P (cal \ y \ zeolita)} = 8.38\%$$

Para estabilizar el espesor será de 0.40m con la combinación del terreno natural más la adición del 6% de cal y zeolita con un valor de CBR de 28.10%.

$$CBR_{P \; (cal \; y \; seolita)} = \frac{0.40^3 \; (28.10\%) \; + 1.10^3 \; (7.90\%)}{0.40^3 \; + 1.10^3}$$

$$CBR_{P (cal \ y \ zeolita)} = 8.83\%$$

Para estabilizar el espesor será de 0.80m (80cm) reemplazaremos en la fórmula de la siguiente manera:

Para estabilizar el espesor será de 0.80m con la combinación del terreno natural más la adición del 2% de cal y zeolita con un valor de CBR de 10.30%.

$$CBR_{P (cal \ y \ zeolita)} = \frac{0.80^3 \ (10.30\%) \ + 0.70^3 \ (7.90\%)}{0.80^3 + 0.70^3}$$

$$CBR_{P (cal \ y \ zeolita)} = 9.34\%$$

Para estabilizar el espesor será de 0.80m con la combinación del terreno natural más la adición del 4% de cal y zeolita con un valor de CBR de 18.30%.

$$CBR_{P (cal \ y \ zeolita)} = \frac{0.80^3 \ (18.30\%) \ + 0.70^3 \ (7.90\%)}{0.80^3 + 0.70^3}$$

$$CBR_{P (cal \ y \ zeolita)} = 14.13\%$$

Para estabilizar el espesor será de 0.80m con la combinación del terreno natural más la adición del 6% de cal y zeolita con un valor de CBR de 28.10%.

$$CBR_{P (cal \ y \ zeolita)} = \frac{0.80^3 \ (28.10\%) + 0.70^3 \ (7.90\%)}{0.80^3 + 0.70^3}$$

$$CBR_{P (cal \ y \ zeolita)} = 19.99\%$$

Así mismo a continuación, se presenta la comparación de los resultados obtenidos del CBR_P de los espesores calculados. Para estabilizar el espesor será de 0.40 m y tenemos la siguiente figura:

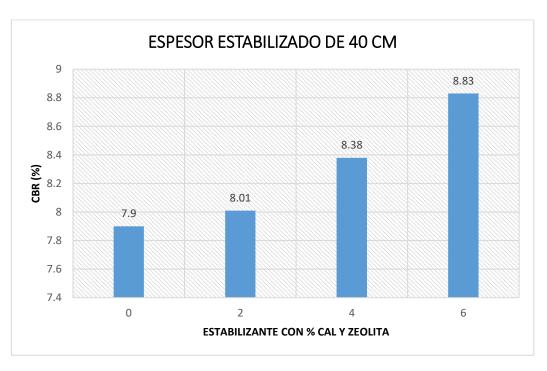


Figura 30. Comparación de los resultados de CBR con 0.40m de estabilización

Fuente: Elaboración propia

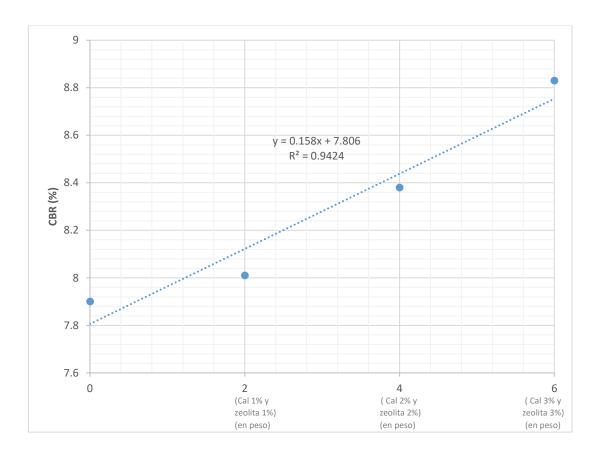


Figura 31. Comparación de los resultados de CBR con 0.40m de estabilización

Fuente: Elaboración propia

Para la estabilización el espesor es de 0.80 m y a continuación se observa la comparación:

Figura 32. Comparación de los resultados de CBR con 0.80m de estabilización

Fuente: Elaboración propia

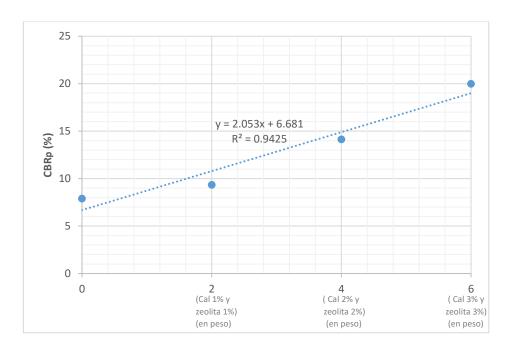


Figura 33. Comparación de los resultados de CBR con 0.80m de estabilización Fuente: Elaboración propia

En la Figura 31 y en la Figura 33 se puede apreciar que se ha calculado el CBR ponderado teniendo en cuenta un espesor de estabilización de 40 cm, como se puede apreciar en los resultados con las diferentes dosificaciones apenas se alcanza un CBR ponderado de 9%, lo cual cumple con las especificaciones del manual de Carreteras que exige un CBR ponderado mayor a 6%. Mientras tanto cuando se propone estabilizar 80 cm la máxima dosificación nos permite alcanzar un CBR ponderado de 19.99%, el cual cumple con las especificaciones del manual de Carreteras y nos permitirá diseñar menores capas del pavimento.

Diseño del pavimento por AASHTO 93

Tráfico (ESAL) = 250,000

Periodo de Diseño = 10 años

CBR de Sub rasante = 19 %

Confiabilidad = 60%

Modulo resiliente = 16 KSI

Resolviendo la ecuación logarítmica AASHTO 93:

$$log(N\text{ 18}) \equiv 9.36 log(SN \equiv 1) - 0.20 \equiv \frac{G_t}{0.40 \text{ ...}} \frac{1094}{(SN \equiv 1)^5.19} \\ \square \ 2.32 * log Mr - 8.07 log Fr$$

Espesor de carpeta asfáltica =7 .5 cm

Espesor de base= 15 cm

Espesor de subbase = 15 cm

Contrastación de las hipótesis

Tabla 4 Prueba para la mejora de Soporte del Suelo

OBJETIVO ESPECÌFICO: Modificar las propiedades de los suelos cohesivos de la subrasante de la Av. Santa Fortunata usando Cal y Zeolita

A. PRUEBA DE NORMALIDAD

PASO 1: Planteamiento de Hipótesis de la normalidad

H0: Elevar el CBR no está relacionado a la adición de cal y zeolita)

H1: Elevar el CBR si está relacionado a la adición de cal y zeolita

PASO 2: El nivel de significancia es:

 $\alpha = 5\% (0.05)$

PASO 3: La prueba estadística

Pruebas de normalidad

Truebus de normandad						
	Kolmogorov - Smirnova			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Dosificacion de cal y zeolita	,152	4		,994	4	,972
CBR_Suelo_ cal y zeolita	,270	4		,925	4	,570

a. Corrección de significación

PASO 4: Regla de decisión

p-valor = 0.570, por lo tanto 0.570 > 0.05, entonces se toma la H0; en el cual se evidencia que los datos obtenidos de la variable CBR producto de la dosificación del terreno natural con la cal y zeolita y la normalidad tiene un nivel de significancia de 5%.

PASO 5: Conclusión

Los resultados tienen normalidad con un nivel de significancia de 5% y p-valor= 0.560

B. Correlación de Pearson

PASO 1: Planteamiento de la Hipótesis

H0: Elevar el CBR no está relacionado a la adición de cal y zeolita)

H1: Elevar el CBR si está relacionado a la adición de cal y zeolita)

PASO 2: El nivel de significancia

 $\alpha = 5\% (0.05)$

PASO 3: Prueba estadística – Coeficiente de correlación de Pearson

Correlaciones

		Dosificaciones_ cal y zeolita	CBR_Suelo_ cal y zeolita
Dosificacion_de_cal y	Correlación de Pearson	1	,952 [*]
zeolita	Sig. (bilateral)		,048
	N	4	4
CBR_Suelo_ cal y zeolita	Correlación de Pearson	,952 [*]	1
	Sig. (bilateral)	,048	
	N	4	4

^{*.} La correlación es significativa en el nivel 0,05

PASO 4: Regla de decisión

Si p-valor \leq 0.05: se rechaza la H0.

p-valor=0.001

Comparación: 0.001 < 0.05

Entonces se toma la H1.

PASO 5: Conclusión

p-valor = 0.048, por lo tanto 0.048 < 0.05, entonces se toma la hipótesis alterna; por tanto, la estadística significativa para la variable CBR se encuentra relacionada de forma directa con la dosificación de cal y zeolita (r=0.952).

Tabla 5 Prueba de Reducción del Índice de Plasticidad

OBJETIVO ESPECÌFICO 2: Reducir el Índice de Plasticidad limite liquido e índice plástico de los suelos de subrasante de la Avenida Santa Fortunata

A. PRUEBA DE NORMALIDAD

PASO 1: Planteamiento de hipótesis de la Normalidad

H0: Índice de plasticidad no se encuentra relacionado a la adición de cal y zeolita

H1: Índice de plasticidad si se encuentra relacionado a la adición de cal y zeolita

PASO 2: El nivel de significancia

 $\alpha = 5\% (0.05)$

PASO 3: La prueba estadística

Pruebas de Normalidad

		Cal y Zeolita	indice_Plasticidad
Cal y Zeolita	Correlación de Pearson	1	,988**
	Sig. (bilateral)		,001
	N	5	1
Indice_Plasticidad	Correlación de Pearson	,988**	
	Sig. (bilateral)	,001	
	N	5	5

^{**}La correlación es significativa en el nivel 0,01 (bilateral)

PASO 4: La regla de decisión

Si p-valor ≤ 0.05: se rechaza la hipótesis nula.

p-valor=0.001

Comparación: 0.001 < 0.05

Entonces se toma la hipótesis alterna.

p-valor = 0.001, por consiguiente 0.001 < 0.05

Entonces se toma la H0; el índice de plasticidad si guarda relación con la adición de la cal y zeolita.

PASO 5: Conclusión

Se concluye que el índice de plasticidad y la cal y zeolita si están relacionados.

B. CORRELACIÓN DE PEARSON

PASO 1: Planteamiento de la Hipótesis

H0: Índice de plasticidad no se encuentra relacionado a la adición de cal y zeolita

H1: Índice de plasticidad si se encuentra relacionado a la adición de cal y zeolita

PASO 2: El nivel de significancia

 $\alpha = 5\% (0.05)$

PASO 3: Prueba estadística – Coeficiente de correlación de Pearson

Pruebas de Normalidad

		Cal y Zeolita	indice_Plasticidad
Cal y Zeolita	Correlación de Pearson	1	,982**
	Sig. (bilateral)		,003
	N	5	1
Indice_Plasticidad	Correlación de Pearson	,982**	
	Sig. (bilateral)	,003	
	N	5	5

^{**}La correlación es significativa en el nivel 0,01 (bilateral)

PASO 4: Regla de decisión

Si p-valor ≤ 0.05: se rechaza la H0

p-valor=0.003

Comparación: 0.003 < 0.05

Entonces se toma la H1

Entonces se toma la H1; el índice de plasticidad si se encuentra relacionada con la adición de la cal y zeolita.

PASO 5: Conclusión

Se concluye que el índice de plasticidad y la cal y zeolita si están relacionados.

Tabla 6 Prueba de Espesor a estabilizar

OBJETIVO ESPECÌFICO 3: Determinar el espesor de la capa estabilizada del pavimento adicionando cal y zeolita.

A. PRUEBA DE NORMALIDAD

PASO 1: Planteamiento de hipótesis de la normalidad

H0: espesor a estabilizar no está relacionada

H1: espesor a estabilizar si está relacionada

PASO 2: El nivel de significancia

 $\alpha = 5\% (0.05)$

PASO 3: Prueba estadística

Pruebas de Normalidad

		Cal y zeolita	Espesor_estabilizar
Cal y Zeolita	Correlación de Pearson	1	,976**
	Sig. (bilateral)		,001
	N	5	1
Espesor_estabilizar	Correlación de Pearson	,976**	
	Sig. (bilateral)	,001	
	N	5	5

^{**}La correlación es significativa en el nivel 0,01 (bilateral)

PASO 4: Regla de decisión

Si p-valor ≤ 0.05: se rechaza la H0

p-valor=0.001

Comparación: 0.001 < 0.05

Entonces se toma la H1

p-valor = 0.001, por consiguiente 0.001 < 0.05

Entonces se toma la H1; el espesor a estabilizar si está relacionada con la adición de la cal y zeolita.

PASO 5: Conclusión

Se concluye que el espesor a estabilizar con cal y zeolita si están relacionados.

B. CORRELACIÓN DE PEARSON

PASO 1: El planteamiento de hipótesis

H0: espesor a estabilizar no está relacionada

H1: espesor a estabilizar si está relacionada

PASO 2: El nivel de significancia

 $\alpha = 5\% (0.05)$

PASO 3: Prueba estadística – coeficiente de correlación de Pearson

Pruebas de Normalidad

		Cal y Zeolita	Espesor_estabilizar
Cal y Zeolita	Correlación de Pearson	1	,972**
	Sig. (bilateral)		,003
	N	5	1
Espesor_estabilizar	Correlación de Pearson	,972**	
	Sig. (bilateral)	,003	
	N	5	5

^{**}La correlación es significativa en el nivel 0,01 (bilateral)

PASO 4: Regla de decisión

Si p-valor ≤ 0.05: se rechaza la H0

p-valor=0.003

Comparación: 0.003 < 0.05

Entonces se toma la H1

Entonces se toma la H1 el espesor a estabilizar si está relacionada con la adición de la cal y zeolita.

PASO 5: Conclusión

Se concluye que el espesor a estabilizar con cal y zeolita si están relacionados.

V DISCUSIÓN

Discusion1

En la presente investigación se plantea estabilizar la sub rasante con cal y zeolita, se propone dosificaciones del 2%, 4% y 6%, se obtuvieron CBR de 10.30%, 18.30% y 28.10% respectivamente. Como se puede apreciar la línea de tendencia es positiva, la acción de la cal y zeolita genera un incremento en la capacidad de soporte de los suelos. Por otra parte, se tiene que, López y Ortiz (2018) en su trabajo de investigación con la dosificación del 2% de cal el resultado del CBR es de 17.50%, al adicionar el 4% de cal el resultado del CBR es de 33.00% y al adicionar el 6% de cal el resultado del CBR es de 52.00% incrementando la capacidad de soporte del suelo estabilizado y por otro lado Rodríguez (2017), en su trabajo de investigación con la adición del 10% cemento y 1% de zeolita el CBR al 95% es de 64.14%. Es muy importante tener en cuenta el contexto geológico en que se presentan las tres investigaciones, por un lado en la presente investigación se trabajan con suelos clasificados como arcillas de baja plasticidad (CL) donde se alcanzan CBR hasta un valor de 28.10% con una dosificación de 6% (cal y zeolita); por otra parte, López y Ortiz y la investigación de Rodríguez trabajan con suelos arenosos y granulares (SM - GM), lo que explica los altos valores de CBR encontrados, alcanzando un valor de soporte máximo de 62% y 54% respectivamente.

Discusión 2:

En la presente investigación se plantea estabilizar la sub rasante con cal y zeolita, se propone dosificaciones del 2%, 4% y 6%, se obtuvieron IP de 15.30%,12.20% y 9.10% respectivamente. Como se puede apreciar la línea de tendencia es negativa, la acción de la cal y zeolita genera una reducción en el Índice de plasticidad de los suelos. Por otra parte, se tiene que, **Guamán (2016)** en su trabajo de investigación con la incorporación del 2.5% de cal el IP es de 15.96%, al adicionar el 7.5% de cal el IP es de 10.78% y al adicionar el 12.5% de cal el IP es De 8.83% reduciendo el índice de plasticidad del suelo estabilizado y por otro lado **Rodríguez (2017)**, en su trabajo de investigación con la adición del 8% cemento y 1% de zeolita el IP es de 3.92%. Es importante tener en cuenta el contexto geológico en que se presentan

las tres investigaciones, por un lado, en la presente investigación se trabajan con suelos clasificados como arcillas de baja plasticidad (CL) donde se alcanza a reducir el IP hasta un valor de 9.10% con la máxima dosificación de cal y zeolita(6%); mientras tanto, Guamán obtiene un valor de 8.8% en suelos arcillosos de alta plasticidad (CH) pero trabajando exclusivamente con cal y con valores elevados hasta un 12.5%; así mismo, Rodríguez obtiene un IP de 3.9, el cual es inferior a las dos investigaciones previas, justificándose en la tipología de suelo de investigación (GM).

Discusión 3:

La tercera discusión enfoca el espesor de estabilización, en la presente tesis se consideró dos espesores de estabilización, el primero con 40 cm de espesor, donde se alcanzó un CBR ponderado de 9% con la máxima dosificación, por otra parte, el segundo espesor considerado fue de 80cm, alcanzando un CBR ponderado de 19.99%, así mismo se realizó el diseño de pavimento por AASTHO 93 teniendo como resultado el espesor de la carpeta asfáltica de 7.5 cm, el espesor de la base de 15cm y la subbase de 15cm. Por otra parte, en paralelo se analiza la tesis de Guamán que para estabilizar el suelo con cal consideró un espesor de 63cm, así mismo, Cortes y Fernández (2015) decidieron estabilizar un espesor de 35cm. El análisis comparativo de estas investigaciones resalta los principios considerados en la presente investigación dado que, se basa en un principio que es la rigidez equivalente, teoría fundamental para representar un sector de subrasante; por otra parte, la tesis de Guam y Fernández no sustentan el espesor de diseño, el mismo que se fundamentó en criterios empíricos sin fundamentación geotécnica.

VI CONCLUSIONES

- La presente investigación tiene por finalidad utilizar aditivos o insumos naturales con fines de mejorar las propiedades físicas y mecánicas de lo suelos de subrasante de la Avenida Santa Fortunata ubicada en el Departamento de Moquegua, el procedimiento planteado se fundamenta en la estabilización química del suelo donde se plantean diferentes dosificaciones de cal y zeolita en porcentajes iguales de ambos componentes.
- De los resultados analizados en esta investigación se concluye que, las dosificaciones planteadas (2%, 4% y 6% de cal y zeolita) elevan la capacidad de soporte de los suelos, alcanzando valores de CBR de 10.30%, 18.30% y 28.10%, este incremento se fundamenta en la acción cementante de la cal y zeolita, los que generan un enlace químico entre los aditivos y las partículas de suelo, generando fricción interna que rigidiza la capa estabilizada elevando así el CBR.
- Siguiendo los resultados expuestos en esta tesis, se puede concluir que, los suelos arcillosos de la subrasante de la Avenida Santa Fortunata, a medida que se eleva la dosificación de cal y zeolita, va perdiendo plasticidad, hasta el punto de ser inferior a un valor de 10 (valor limite superior exigido por las Especificaciones Técnicas del Manual de Carreteras), específicamente para dosificaciones de 2%,4% y 6% se obtuvieron valores de IP de 15.30,12.20 y 9.10. Este efecto se debe a que las zeolitas aportan minerales de silicatos de calcio que en conjunto con las partículas del suelo forman cristales de hidróxido de sílice, lo cual reduce la plasticidad, por su parte la cal reduce drásticamente la humedad del suelo por procesos de evaporación e hidratación favoreciendo el comportamiento físico del suelo natural.
- En relación al espesor necesario de estabilización, se concluye que, cuando se obtiene el CBR ponderado del suelo de subrasante considerando un espesor de 40cm el incremento del CBR ponderado solo alcanza un valor máximo de 9%, el cual, si bien supera el valor mínimo exigido (6%), resulta inferior a los CBR encontrados cuando se estabiliza 80 cm, con este último

espesor de estabilización, se alcanza valores de CBR ponderado de 9.10%, 14.13% y 19.99%, lo cual es apropiado para la estructura del pavimento ya que se halló el espesor de la carpeta asfáltica siendo 7.5 cm, el espesor de la base de 15 cm y el espesor de la sub base de 15 cm, dado que, ante una solución técnica económica, un mayor CBR ponderado en el suelo requerirá menores espesores de capas del pavimento es decir de acuerdo a lo calculado el espesor de la carpeta asfáltica es de 7.5 cm, el espesor de base de 15 cm y el espesor de la sub base de 15 cm.

 Como se puede apreciar en los anteriores párrafos los objetivos validados en la investigación fueron validados técnicamente mediante una tesis experimental desarrollada mediante trabajos de laboratorio y trabajos de campo gestionados y ejecutados por la autora de esta investigación.

VII RECOMENDACIONES

- Se recomienda plantear nuevas estrategias para estabilizar suelos para el mejoramiento de las vías con el uso cal y zeolita como estabilizantes de suelos arcillosos en la Av. Santa Fortunata en el Distrito de San Antonio en la Región Moquegua en una proporción del 6% del terreno natural al cual se quiere estabilizar.
- Se recomienda para futuras tesis de investigación evaluar la diferencia de zeolitas según la región de origen, así mismo realizar un análisis comparativo entre las zeolitas naturales y manufacturadas.
- Se recomienda extender el alcance de esta investigación a otras tipologías de suelos, con lo cual, se complementaría el análisis global del cambio de propiedades físicas y mecánicas antes una variabilidad de suelos.
- Se recomienda en futuras investigaciones realizar tramos de prueba, donde se posibilitaría la opción de realizar ensayos in situ para verificar la propiedades físicas y mecánicas reales de la subrasante estabilizada.
- Se recomienda en próximas investigaciones analizar la adecuada humedad de compactación, dado que, se evaluaría las propiedades físicas y mecánicas de suelos ante un rango de humedades óptimas para compactación.

.

REFERENCIAS

- AASHTO. (2002). Flexible Pavement Structural Design, Publicado por la American Association of State Highway and Transportation Highway Officials, USA.
- BRAJA, M. (1999). Fundamentos de Ingeniería Geotécnica (4ta Edición), México.
- PUENTE, M. (1986). Estudio de la estabilización de suelos arcillosos utilizando cal. Facultad de Ingeniería, Universidad Nacional Autónoma de México.
- VEGA, M. (1999). Estudio sistemático del proceso de estabilización de un suelo arcilloso. Facultad de Química, Universidad Nacional Autónoma de México, México.
- RODRIGUEZ. (2017). Utilización de nanotecnología: cemento zeolita sintética, en la estabilización de suelos arcillosos con fines de base para pavimento flexible
- CORTES Y FERNANDEZ. (2015). Influencia de las zeolitas y biopolímeros en el mejoramiento de la resistencia de suelos del sur, este y norte de lima para vías.
- RODRIGUEZ (2019). Estabilización de suelos adicionando cemento portland tipo I más cal hidratada en vías afirmadas, para el centro poblado alto Trujillo, el porvenir libertad
- GUAMAN (2016) Estudio del comportamiento de un suelo arcilloso estabilizado por dos métodos químicos (cal y cloruro de sodio)

https://dialnet.unirioja.es/servlet/articulo?codigo=2598799

https://www.agricolajerez.com/es/product/estabilizacion-fisicoquimica-de-arcillas-con-zeolita

ANEXOS

Anexo 01: Matriz de Consistencia

Modificació	n de las propiedades del suelo de la s	ubrasante de la Av. Santa Fortunata us	sando Cal y Zeolita, Mod	quegua, 2023			
PROBLEMA	OBJETIVOS	HIPOTESIS	VARIABLES		INDICADOR	INSTRUMENTO	
P. General	O. General	H. General	INDEPENDIENTE	DIMENSIONES	ES	S	METODOLOGIA
Los suelos de subrasante de la Av. Santa Fortunata estan compuestos por suelos cohesivos de limitada resistencia, los		El uso de cal y zeolita en dosificaciones			2%		
mismos que ante el incremento de humedad en epocas de avenidas termina por provocar el deterioro de la estructura del pavimento existente.	Modificar las propiedades de los suelos cohesivos de la subrasante de la Av.	adecuadas mejoraria las propiedades de los suelos cohesivos componentes		Dosificación de la adición de	4%	Laboratorio	
¿Como el uso de CAL y ZEOLITA mejoraria en las propiedades de los suelos cohesivos de la Av. Santa Fortunata en el departamento de Moquegua?	Santa Fortunata usando Cal y Zeolita	ta de la subrasante de la Av. Santa Fortunata		CAL y Zeolita	6%		
P. Específicos	O. Especifico	H. Especifico	DEPENDIENTE				
De acuerdo a los antecedentes y resultados de laboratorio se tiene que los suelos que componen la subrasante de la Av. Santa Fortunata, estan compuestos de suelos tipo CH y MH, los mismos que presentan una deficiente capacidad de soporte. ¿Cómo influye el uso de Cal y Zeolita en evolucion de la capacidad de soporte de los suelos cohesivos de subrasante de la Av. Santa Fortunata?		El uso de la Cal y Zeolita elevaria la capacidad de soporte de los suelos			CBR		Tipo de investigacion Tipo Aplicada, Enfoque de Investigacion Cuantitativa, Diseño de
De acuerdo a la caracterizacion de los suelos cohesivos de la subrasante de la Avenida Santa Fortunata se tiene que, tanto el limite liquido y el indice de plasticidad de los suelos tienen valores elevados incumpliendo las Especificaciones Tecnicas de carreteras (EG-2013) para subrasantes ¿En que proporcion el uso de Cal y Zeolitas reduciria el limite liquido e indice de plasticidad de los suelos cohesivos de la subrasante de la Av. Santa Fortunata?	Reducir el Indice de Plasticidad de los suelos de subrasante de la Avenida Santa Fortunata	Una dosificacion adecuada de Cal y Zeolita reduciria el indice de plasticidad en los suelos de subrasante de la Avenida Santa Fortunata	Modificación de las propiedades de la subrasante	Propiedades fisicas y mecanicas del suelo de subrasante	IP	Equipos de laboratorio	Investigacion Cuasi- experimental
Tradicionalmente en la estabilizacion de suelos no se dimensiona adecuadamente el espesor de la capa por estabilizar, ocurriendo fallas premtauras en el pavimento. ¿Empleando CAL y Zeolita cual seria el espesor adecuado por estabilizar, teniendo en cuenta el adecuado diseño del pavimento?	Determinar el espesor de la capa estabilizada del pavimento adicionando cal y zeolita	Una metodologia adecuada para estimar el espesor adecuado de la capa estabilizada del pavimento seria considerando la rigidez equivalente			ESPESOR		

Anexo 02: Matriz de Operacionalización

	Modificación de las propiedades del suelo	o de la subrasante de la Av. Santa Fo	ortunata usando Cal y	Zeolita, Moquegu	ıa, 2023		
VARIABLES	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSION	INDICADORES	ESCALA	METODOLOGIA	
	La cal es un material que puede estabilizar un suelo fino o cualquier otro tipo de suelo que no cumpla con las condiciones de las			2% cal y zeolita			
	normas, esta se utiliza en la subrasante o subbase esto con el fin de mejorar el suelo en el cual se colocara la capa estructural		mediante pruebas de laboratori	Dosificación de la adición de CAL y Zeolita	4% cal y zeolita		
cal y zeolita	en un pavimento. Las zeolitas son catalizadores increíblemente útiles en la isomerización y la síntesis de hidrocarburos. El tamaño de sus poros y el movimiento de las moléculas dentro de ellos, como el de otros catalizadores, plantea problemas.	basados en pruebas con diferents porcentajes hasta determinar la combinacion optima			,	6% cal y zeolita	RAZON
	Es la capa del suelo o material compactado que se encuentra debajo de una carretera, pavimento u otra estructura			CBR		de Investigacion Cuantitativa Diseño de	
	para soportar las cargas impuestas sobre ella sin deformarse excesivamente. Es una propiedad importante que se evalúa a	Cata variable as anarasianalizara		IP		Investigacion Cuasi- experimental	
Modificación de las propiedades de la subrasante	través del diseño y construcción de vías y otros proyectos en ingeniería civil. Se mide generalmente utilizando ensayos de laboratorio tales como el ensayo de compactación, pruebas de resistencia al corte, el ensayo de CBR, para evaluar las propiedades del suelo ya que estas pueden variar según el pavimento, tráfico y las condiciones del suelo	Esta variable se operacionalizara mediante ensayos de laboratorio especificamente el CBR y el CBR equivalente.	Propiedades fisicas y mecanicas del suelo de subrasante	ESPESOR	RAZON		

FICHA TECNICA

1.- DESCRIPCION DEL PRODUCTO

- 1.1 Nombre comercial: ZEOLITA NATURAL
- 1.2 Clase de producto: Mineral natural
- 1.3 Tipo de formulación: Granulado
- 1.4 Presentación: 15 kg

2.- COMPOSICION QUINICA DE LA ZEOLITA NATURAL

COMPOSICIÓN QUIMICA	PORCENTAJE	UNIDAD
SiO2	69.96	%
Al203	17.15	%
Fe2O3	6.47	%
K2O	2.02	%
Na2O	1.86	%
MgO	0.58	%
LOI	0.31	%
Mn2O3	0.26	%
Ca	0.20	%
Otros	1.19	96

3. OTRAS PROPIEDADES

PARAMETRO EVALUADO	CONCENTRACION	UNIDAD
PH	7.5	96
HUMEDAD	0.3 - 5.0	%
RETENCION DE HUMEDAD	30 - 45	%
CAPACIDAD DE INTERCAMBIO CATIONICO	50 - 89	me/100g
CLINOPTILOLITA	43-69	16

Anexo 04: Resultados de los Ensayos de Laboratorio

REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

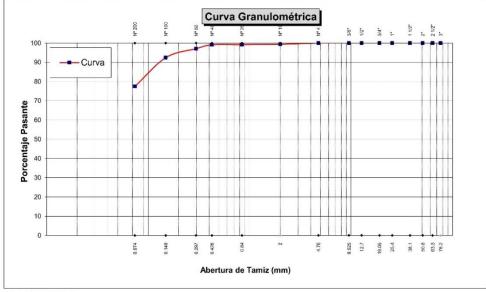
TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023 PROYECTO:

UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

FECHA: 15 DE JUNIO DEL 2023 MUESTRA: TERRENO NATURAL Cn 01

ENSAYOS ESTANDAR DE CLASIFICACIÓN


CONTENIDO HUMEDAD NTP 339.127 (ASTM D2216); ANALISIS GRANULOMETRICO NTP 339.128 (ASTM D422); LIMITE CONSISTENCIA NTP 339.129 (ASTM D4318); CLASIFICACION SUCS NTP 339.134 (ASTM D2487)

Y CLASIFICACION DE USO DE VIAS NTP 339.135 (ASTM D3282)

	%	%	%	IZ	TAM
	Pasante	Acumulado	Retenido	mm	Nombre
	100.00	0.00	0.00	76.20	3"
	100.00	0.00	0.00	63.50	2 1/2"
	100.00	0.00	0.00	50.80	2"
FRACCION	100.00	0.00	0.00	38.10	1 1/2"
GRUESA	100.00	0.00	0.00	25.40	1"
GROESA	100.00	0.00	0.00	19.05	3/4"
	100.00	0.00	0.00	12.70	1/2"
	100.00	0.00	0.00	9.53	3/8"
	100.00	0.00	0.00	4.76	N° 4
	99.36	0.64	0.64	2.00	N° 10
	99.17	0.83	0.20	0.84	N° 20
FRACCION	99.07	0.93	0.10	0.426	N °40
FINA	97.09	2.91	1.97	0.297	N° 50
	92.41	7.59	4.69	0.149	N° 100
	77.40	22.60	15.00	0.074	N° 200

C	ARAC	CTERISTICA	AS
HUMEDAD	:	8.10	%
SUCS :		CL	I.G
AASHTO:	1	A - 7 - 5	16
Lim. Liquido Lim. Plástico		-	40.90 21.43
			19.47
Ind. Plasticidad	:	0.	19.47
Ind. Plasticidad % Grava % Arena	:	0. 22.	19.47 00

OBSERVACIONES:

OBSERVACIONES:

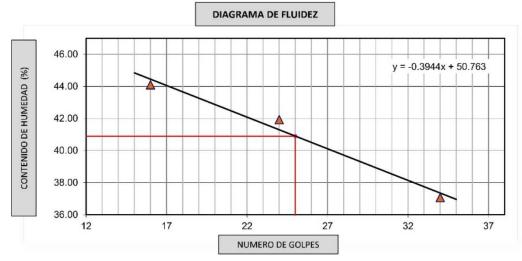
SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE

LA Av. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS


FECHA: 17 DE JUNIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 01

ENSAYO PARA DETERMINAR LIMITE LIQUIDO, LIMITE PLASTIDAD Y INDICE DE PLASTICIDAD NTP 339.129 (ASTM D4318)

ENSAYO DE LIMITE LIQUIDO					
7	CAPSULA	73	92	82	
	Peso de la cápsula (g)	37.63	37.17	37.61	
25	Peso del suelo húm + cáp (g)	59.03	58.06	56.52	
<u>≱</u> ≅	Peso del suelo seco + cáp (g)	53.24	51.89	50.73	
I≅⊒	Peso del suelo seco (g)	15.61	14.72	13.12	
一声巨	Peso de agua en la muestra (g)	5.79	6.17	5.79	
DETERMINACION LIMITE LIQUIDO	CONTENIDO DE HUMEDAD (%)	37.07	41.93	44.10	
	NUMERO DE COLPES	34	24	16	

ENSAYO DE LIMITE PLASTICO					
0	CAPSULA	48	63		
00 0	Peso de la cápsula (g)		11.38		
≱≝≌	Peso del suelo húm + cáp (g)	20.00	21.20		
ERMINAC N LIMITE 'LASTICO	Peso del suelo seco + cáp (g)	18.49	19.46		
	Peso del suelo seco (g)	7.08	8.08		
	Peso del agua en la muestra (g)	1.51	1.74		
.ao	CONTENIDO DE HUMEDAD (%)	21.33	21.53		

LIMITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO
40.9	21.4	19.5

OBSERVACIONES:

Ing Hidrio Juan de Dios Poma Amésquita CIP: 113457

SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS

FECHA : 15 DE JUNIO DEL 2023 MUESTRA : TERRENO NATURAL Cn 02

CANTIDAD DE MATERIAL FINO QUE PASA POR EL TAMIZ Nro 200

NORMA TECNICA PERUANA 400.018 ASTM C-117

Características

Peso muestra seca	1101.50 gr.
Peso muestra despues lavada	240.80 gr.
% Pasante de la Malla Nro. 200	78.14 %

OBSERVACIONES:

GO SAC CIPA

Poma Amésquita CIP: 113467

SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS

FECHA : 15 DE JUNIO DEL 2023 MUESTRA : TERRENO NATURAL Cn 02

CONTENIDO DE HUMEDAD

NORMA TECNICA PERUANA339.127 ASTM D226-19

Características

Peso muestra Humeda	422.98 gr.
Peso humedo	422.98 gr.
Peso seco	388.68 gr.
% de humedad	8.82 %

OBSERVACIONES:

CONSTRUCTION OF THE PARTY OF TH

Poma Amésquita CIP: 113467

ENSAYO DE PROCTOR MODIFICADO

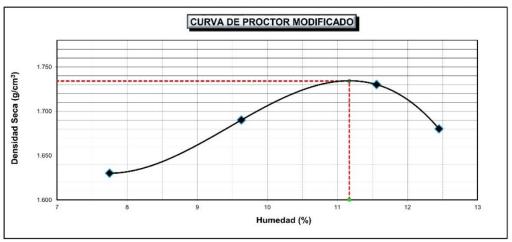
NORMA TECNICA PERUANA 339.141 - ASTM D1557

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO

CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS


FECHA : 15 DE JUNIO DEL 2023

MUESTRA : TERRENO NATURAL Cn 01

METODO "A", MOLDE 4 PULGADAS

Molde N°	1	Volumen de mol	949.10 cm3		
Nº de Capas	5	Golpes por capa			
Determinación	N°	1	2	3	4
Peso Suelo Humedo + Molde	gr.	6048	6139	6213	6174
Peso del Molde	gr.	4381.00	4381.00	4381.00	4381.00
Peso del Suelo Humedo	gr/cm3	1666.93	1758.44	1831.75	1793.00
Densidad del Suelo Humedo	gr/cm3	1.756	1.853	1.930	1.889
Capsula	N°	4	7	6	8
Suelo Humedo + Tara	gr.	632.35	645.45	602.57	698.96
Peso del Suelo Seco +Tara	gr.	586.87	588.76	540.13	621.57
Peso del Agua	gr.	45.48	56.70	62.44	77.39
Peso de la Tara	gr.	0.00	0.00	0.00	0.00
Peso del Suelo Seco	gr.	586.87	588.76	540.13	621.57
Humedad	%	7.75	9.63	11.56	12.45
Promedio de Humedad	%	7.75	9.63	11.56	12.45
Densidad del Suelo Seco	gr/cm3	1.630	1.690	1.730	1.680

 $\begin{tabular}{lll} \textbf{Densidad Seca:} & 1.734 \ g/cm3 & \textbf{Humedad Optima:} & 11.17 \ \% \\ \end{tabular}$

OBSERVACIONES:

ON CHESTE

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

UBICACIÓN: AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 21 DE JUNIO DEL 2023
MUESTRA: TERRENO NATURAL Cn 01

ENSAYO CBR

		LINOATI					
		METODO ASTM D -	1883, MTC E.132				
MOLDE Nro.	1			2	3		
Nro. GOLPES POR CAPA	12			25		56	
COND. DE LA MUESTRA	NO SATURADO	SATURADO	NO SATURA	DO SATURADO	NO SATURAD	00 SATURADO	
Peso molde + suelo humedo	11685.83	11819.7	11774.9	6 11897.1	12099.21	12109.3	
Peso del Molde	8098.00	8098.0	7864.00	7864.0	7953.00	7953.0	
Peso del Suelo humedo	3587.83	3721.7	3910.96	4033.1	4146.21	4156.3	
Volumen del molde	2123.90	2123.9	2112.76	2112.8	2129.27	2129.3	
Densidad humeda	1.69	1.8	1.85	1.9	1.95	2.0	
% de humedad	11.65	12.8	11.58	12.6	11.59	11.7	
Densidad seca	1.513	1.554	1.659	1.695	1.745	1.75	
Tara Nro.	1	2	2	4	3	6	
Tara + suelo humedo	564.66	659.9	702.15	566.0	615.45	588.0	
Tara + suelo seco	505.74	585.2	629.28	502.5	551.53	526.5	
Peso del agua	58.92	74.7	72.87	63.4	63.92	61.4	
Peso de tara	0.00	0.0	0.00	0.0	0.00	0.0	
Peso del suelo seco	505.74	585.2	629.28	502.5	551.53	526.5	
% de humedad	11.65	12.76	11.58	12.62	11.59	11.67	
Promedio de humedad	11.65	12.76	11.58	12.62	11.59	11.67	

ENSAYO EXPANSION

FECHA	HORA	TIEMPO	LECTURA	EXPA	NSION	LECTURA	EXPANS	SION	LECTURA	EXPAN	SION
		HRS.	DIAL	mm.	%	DIAL	mm.	%	DIAL	mm.	%
18/06/23	10:31 a. m.	24	0.00	0.10	0.08	0.00	0.07	0.06	0.00	0.06	0.05
19/06/23	10:31 a. m.	48	0.00	0.12	0.09	0.00	0.09	0.07	0.00	0.07	0.06
20/06/23	10:31 a. m.	72	0.01	0.16	0.13	0.01	0.14	0.11	0.00	0.09	0.07
21/06/23	10:31 a. m.	96	0.01	0.19	0.15	0.01	0.15	0.12	0.01	0.13	0.10

NO EXPANSIVO

ENSAYO DE PENETRACION

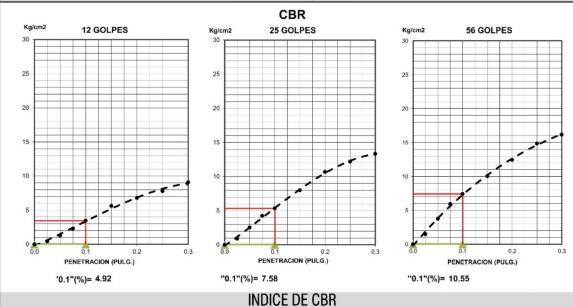
	ENOMIO DE L'ENETHMOION										
	ENETRACI	ON	MOLD	E Nro:	1	MOLD	E Nro:	2	MOLD	E Nro:	3
	ENETRACI	ON	LECTURA	VALO	ORES	LECTURA	VAL	ORES	LECTURA	VAL	ORES
Nro.	mm.	pulg.	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2
1.0	0.000	0.000	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00
2.0	0.635	0.025	19.3	8.8	0.43	39.6	18.0	0.89	66.2	30.0	1.48
3.0	1.270	0.050	57.9	26.3	1.30	112.9	51.2	2.53	168.1	76.3	3.77
4.0	1.905	0.075	102.3	46.4	2.29	188.7	85.6	4.23	265.1	120.2	5.94
5.0	2.540	0.100	154.3	70.0	3.46	237.8	107.8	5.33	330.7	150.0	7.42
6.0	3.810	0.150	250.8	113.8	5.62	356.6	161.8	8.00	448.0	203.2	10.05
7.0	5.080	0.200	302.9	137.4	6.79	475.5	215.7	10.66	585.2	252.0	12.46
8.0	6.350	0.250	347.3	157.5	7.79	543.7	246.6	12.19	662.2	300.4	14.85
9.0	7.620	0.300	405.2	183.8	9.09	594.4	269.6	13.33	720.7	326.9	16.16

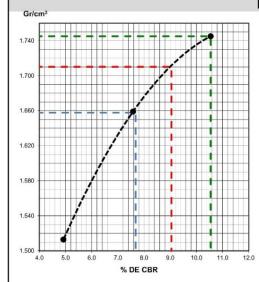
OBSERVACIONES:

EL ENSAYO DE PENETRACION SE EFECTUO SOBRE MUESTRA COMPACTADA A HUMEDAD OPTIMA Y SATURADA POR 96 HORAS.

TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA PROYECTO:

FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023


RESIDENTE: Bach. Ing. JANNET MAMANI RAMOS


Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA UBICACIÓN:

FECHA: 21 DE JUNIO DEL 2023 TERRENO NATURAL Cn 01 MUESTRA:

GRAFICO DE PENETRACION DEL SUELO - CBR

METODO ASTM D - 1883, MTC E.132

Densidad seca :	1.745	gr/cm3	
Optimo humedad:	11.6	%	

CBR AL 100%:

INDIC	→ CBR AL 98%:
INDIC	→ CBR AL 95%:

INDICE CBR %	DENSIDAD gr/cm3
10.55	1.745
INDICE CBR %	DENSIDAD gr/cm3
9.05	1.710
INDICE CBR %	DENSIDAD gr/cm3
7.68	1.658

OBSERVACIONES:

SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA Av. SANTA PROYECTO:

FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

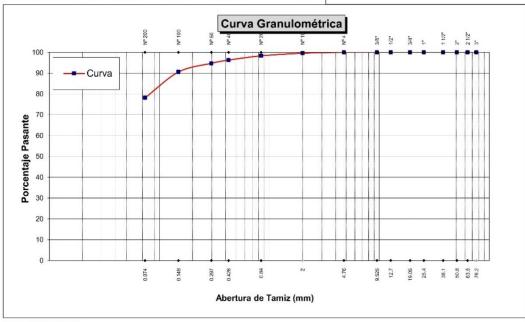
UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

FECHA: 15 DE JUNIO DEL 2023 MUESTRA: TERRENO NATURAL Cn 02

ENSAYOS ESTANDAR DE CLASIFICACIÓN

CONTENIDO HUMEDAD NTP 339.127 (ASTM D2216); ANALISIS GRANULOMETRICO NTP 339.128 (ASTM D422); LIMITE CONSISTENCIA NTP 339.129 (ASTM D4318); CLASIFICACION SUCS NTP 339.134 (ASTM D2487)


Y CLASIFICACION DE USO DE VIAS	NTP 339.135 (ASTM D3282)
--------------------------------	--------------------------

TAMIZ	7	%	%	%	
lombre	mm	Retenido	Acumulado	Pasante	
3"	76.20	0.00	0.00	100.00	
2 1/2"	63.50	0.00	0.00	100.00	
2"	50.80	0.00	0.00	100.00	
1 1/2"	38.10	0.00	0.00	100.00	FRACCION
1"	25.40	0.00	0.00	100.00	GRUESA
3/4"	19.05	0.00	0.00	100.00	ONOLOA
1/2"	12.70	0.00	0.00	100.00	
3/8"	9.53	0.00	0.00	100.00	
N° 4	4.76	0.00	0.00	100.00	
N° 10	2.00	0.44	0.44	99.56	
N° 20	0.84	1.27	1.71	98.29	
N °40	0.426	2.03	3.74	96.26	FRACCION
N° 50	0.297	1.54	5.29	94.71	FINA
√° 100	0.149	4.19	9.47	90.53	
√° 200	0.074	12.39	21.86	78.14	

C	ARA	CTERISTIC	AS
HUMEDAD	:	8.82	%
SUCS :		CL	I.G
AASHTO:	1	4-7-5	16
Lim. Liquido			42.04
			21.42
Lim. Plastico			21.42
			20.63
nd. Plasticidad	:	0	
Lim. Plástico Ind. Plasticidad % Grava % Arena	:		20.63

% Finos 78.14

OBSERVACIONES:

OBSERVACIONES:

UBICACIÓN:

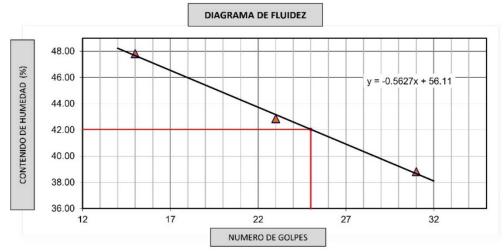
SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE

LA AV. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023 AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

FECHA: 17 DE JUNIO DEL 2023


MUESTRA: TERRENO NATURAL Cn 02

ENSAYO PARA DETERMINAR LIMITE LIQUIDO, LIMITE PLASTIDAD Y INDICE DE PLASTICIDAD NTP 339.129 (ASTM D4318)

ENSAYO DE LIMITE LIQUIDO

	LNOATO DE LIIVIT	L LIQUIDO	,		
7	CAPSULA	84	63	25	
DETERMINACION LIMITE LIQUIDO	Peso de la cápsula (g)	37.68	37.58	38.91	
5 	Peso del suelo húm + cáp (g)	62.77	58.12	57.08	
≱ ⊴	Peso del suelo seco + cáp (g)	55.75	51.96	51.20	
∑	Peso del suelo seco (g)	18.07	14.38	12.29	
	Peso de agua en la muestra (g)	7.02	6.16	5.88	
I⊟≅	CONTENIDO DE HUMEDAD (%)	38.82	42.86	47.83	
۵ -	NUMERO DE COLPES	31	23	15	

	ENSAYO DE LIMITE PLASTICO								
0	CAPSULA	20	22						
S 0	Peso de la cápsula (g)	11.49	11.53						
	Peso del suelo húm + cáp (g)	20.62	21.69						
₩₩	Peso del suelo seco + cáp (g)	19.03	19.87						
	Peso del suelo seco (g)	7.54	8.34						
DETERMINAC N LIMITE PLASTICO	Peso del agua en la muestra (g)	1.59	1.82						
ā	CONTENIDO DE HUMEDAD (%)	21.05	21.78						

LIMITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO
42.0	21.4	20.6

OBSERVACIONES:

Ing - Histrio Juan de Dios Poma Amésquita CP: 113467

SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS

FECHA : 15 DE JUNIO DEL 2023 MUESTRA : TERRENO NATURAL Cn 01

CANTIDAD DE MATERIAL FINO QUE PASA POR EL TAMIZ Nro 200

NORMA TECNICA PERUANA 400.018 ASTM C-117

Características

Peso muestra seca	1232.18 gr.
Peso muestra despues lavada	278.48 gr.
% Pasante de la Malla Nro. 200	77.40 %

OBSERVACIONES:

S P S A C REATE OF THE PARTY OF

SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS

FECHA : 15 DE JUNIO DEL 2023
MUESTRA : TERRENO NATURAL Cn 01

CONTENIDO DE HUMEDAD

NORMA TECNICA PERUANA339.127 ASTM D226-19

Características

A COMPANIAN AND AND AND AND AND AND AND AND AND A					
Peso muestra Humeda	461.70 gr.				
Peso humedo	461.70 gr.				
Peso seco	427.07 gr.				
% de humedad	8.11 %				

OBSERVACIONES:

O GOLDENTE O ANGEO

ENSAYO DE PROCTOR MODIFICADO

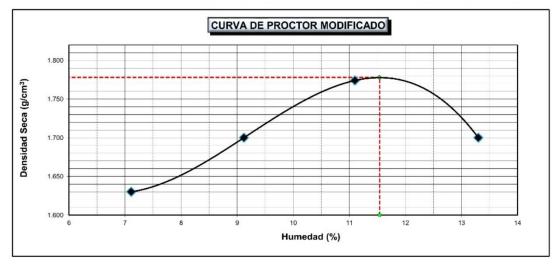
NORMA TECNICA PERUANA 339.141 - ASTM D1557

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO

CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS


FECHA : 15 DE JUNIO DEL 2023

MUESTRA : TERRENO NATURAL Cn 02

METODO "A", MOLDE 4 PULGADAS

Molde N°	1	Volumen de mol	949.10 cm3				
Nº de Capas	5	Golpes por capa	Golpes por capa				
Determinación	N°	1	2	3	4		
Peso Suelo Humedo + Molde	gr.	6038	6142	6252	6209		
Peso del Molde	gr.	4381.00	4381.00	4381.00	4381.00		
Peso del Suelo Humedo	gr/cm3	1657.03	1760.62	1870.59	1828.06		
Densidad del Suelo Humedo	gr/cm3	1.746	1.855	1.971	1.926		
Capsula	N°	4	7	6	8		
Suelo Humedo + Tara	gr.	632.36	601.42	598.96	647.88		
Peso del Suelo Seco +Tara	gr.	590.38	551.16	539.11	571.83		
Peso del Agua	gr.	41.98	50.27	59.84	76.05		
Peso de la Tara	gr.	0.00	0.00	0.00	0.00		
Peso del Suelo Seco	gr.	590.38	551.16	539.11	571.83		
Humedad	%	7.11	9.12	11.10	13.30		
Promedio de Humedad	%	7.11	9.12	11.10	13.30		
Densidad del Suelo Seco	gr/cm3	1.630	1.700	1.774	1.700		

Densidad Seca: 1.778 g/cm3 Humedad Optima: 11.54 %

OBSERVACIONES:

Ing. Hisrio Juan de Dios Poma Amésquita CIP: 113467

SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 21 DE JUNIO DEL 2023 MUESTRA: TERRENO NATURAL Cn 02

			FNICAV	A ADD					
			ENSAY						
		ME	TODO ASTM D -	1883, MTC E	.132				
MOLDE Nro.		24			25			26	
Nro. GOLPES POR CAPA		12			25			56	
COND. DE LA MUESTRA	NO SATUR	RADO	SATURADO	NO SAT	URADO	SATURADO	NO SAT	URADO	SATURADO
Peso molde + suelo humedo	11974.	.62	12156.0	1199	1.97	12126.1	1199	7.71	12180.5
Peso del Molde	8163.	00	8163.0	792	8.00	7928.0	7795	5.00	7795.0
Peso del Suelo humedo	3811.0	62	3993.0	406	3.97	4198.1	4202.71		4385.5
Volumen del molde	2127.	66	2127.7	212	6.02	2126.0	2125	5.95	2125.9
Densidad humeda	1.79	9	1.9	1.9	91	2.0	1.9	98	2.1
% de humedad	11.3	4	12.9	11.	.33	12.5	11.	31	12.1
Densidad seca	1.60	9	1.663	1.7	17	1.756	1.7	76	1.84
Tara Nro.	1		2	2		4	3		6
Tara + suelo humedo	645.12		702.7	598.66		652.6	633.66		548.8
Tara + suelo seco	579.42		622.6	537.73		580.3	569.27		489.5
Peso del agua	65.71		80.0	60.92		72.2	64.38		59.3
Peso de tara	0.00		0.0	0.00		0.0	0.00		0.0
Peso del suelo seco	579.42		622.6	537.73		580.3	569.27		489.5
% de humedad	11.34		12.85	11.33		12.45	11.31		12.11
Promedio de humedad	11.34		12.85	11.33		12.45	11.31		12.11

	ENSAYO EXPANSION											
FECHA	HORA	TIEMPO	LECTURA	EXPA	EXPANSION		XPANSION LECTURA EXPANSION		SION	LECTURA	EXPANSION	
		HRS.	DIAL	mm.	%	DIAL	mm.	%	DIAL	mm.	%	
18/06/23	1:56 p. m.	24	0.01	0.26	0.20	0.01	0.24	0.19	0.01	0.20	0.16	
19/06/23	1:56 p. m.	48	0.01	0.34	0.27	0.01	0.32	0.25	0.01	0.26	0.20	
20/06/23	1:56 p. m.	72	0.02	0.40	0.31	0.02	0.39	0.31	0.01	0.32	0.25	
21/06/23	1:56 p. m.	96	0.02	0.49	0.39	0.02	0.44	0.35	0.02	0.39	0.31	

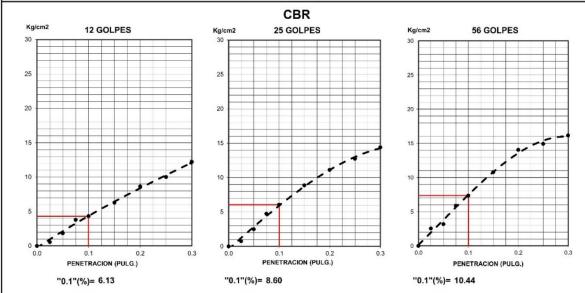
NO EXPANSIVO

	ENSAYO DE PENETRACION										
	ENETRACI	ON	MOLD	E Nro:	24	MOLD	E Nro:	25	MOLD	E Nro:	26
-	ENETRACI	ON	LECTURA	VAL	ORES	LECTURA	VAL	DRES	LECTURA	VAL	ORES
Nro.	mm.	pulg.	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2
1.0	0.000	0.000	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00
2.0	0.635	0.025	24.5	11.1	0.55	33.6	15.2	0.75	113.5	51.5	2.54
3.0	1.270	0.050	81.8	37.1	1.83	111.1	50.4	2.49	141.9	64.4	3.18
4.0	1.905	0.075	169.0	76.6	3.79	211.4	95.9	4.74	261.9	118.8	5.87
5.0	2.540	0.100	192.3	87.2	4.31	269.6	122.3	6.05	327.4	148.5	7.34
6.0	3.810	0.150	280.4	127.2	6.29	395.1	179.2	8.86	480.2	217.8	10.77
7.0	5.080	0.200	385.6	174.9	8.65	496.3	225.1	11.13	626.4	284.1	14.05
8.0	6.350	0.250	446.3	202.5	10.01	567.9	257.6	12.73	665.7	302.0	14.93
9.0	7.620	0.300	544.5	247.0	12.21	642.0	291.2	14.40	720.3	326.7	16.15

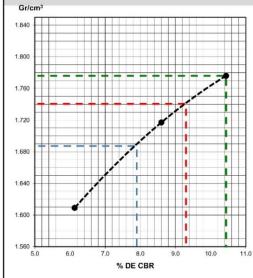
OBSERVACIONES:

EL ENSAYO DE PENETRACION SE EFECTUO SOBRE MUESTRA COMPACTADA A HUMEDAD OPTIMA Y SATURADA POR 96 HORAS.

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA Av. SANTA


FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

Bach. Ing. JANNET MAMANI RAMOS RESIDENTE:


UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

21 DE JUNIO DEL 2023 FECHA: MUESTRA: TERRENO NATURAL Cn 02

GRAFICO DE PENETRACION DEL SUELO - CBR METODO ASTM D - 1883, MTC E.132

INDICE DE CBR

INDICE CBR %	DENSIDAD gr/cm3			
10.44	1.776			
INDICE CBR %	DENSIDAD gr/cm3			
	10.44			

1.776

11.31

CBR AL 95%:

Densidad seca

Optimo humedad:

DENSIDAD gr/cm3			
1.776			
DENSIDAD gr/cm3			
1.740			
DENSIDAD gr/cm3			
1.687			

gr/cm3

OBSERVACIONES:

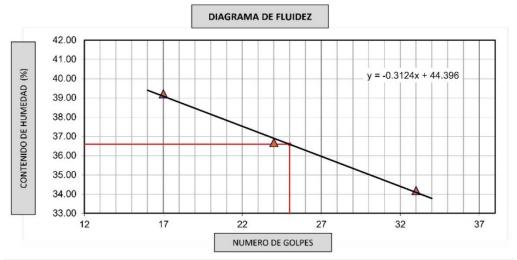
SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE

LA Av. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS


FECHA: 21 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 - MAS 2% DE CAL Y ZEOLITA

ENSAYO PARA DETERMINAR LIMITE LIQUIDO, LIMITE PLASTIDAD Y INDICE DE PLASTICIDAD NTP 339.129 (ASTM D4318)

ENSAYO DE LIMITE LIQUIDO								
7	CAPSULA	75	62	60				
	Peso de la cápsula (g)	38.89	37.22	37.59				
25	Peso del suelo húm + cáp (g)	54.35	57.45	56.24				
≧ ⊴	Peso del suelo seco + cáp (g)	50.38	52.02	50.99				
⊠	Peso del suelo seco (g)	11.62	14.80	13.40				
	Peso de agua en la muestra (g)	3.97	5.43	5.25				
DETERMINACION LIMITE LIQUIDO	CONTENIDO DE HUMEDAD (%)	34.18	36.68	39.21				
	NUMERO DE COLPES	33	24	17				

ENSAYO DE LIMITE PLASTICO								
0	CAPSULA	24	29					
9,0	Peso de la cápsula (g)	11.40	11.59					
≨ ≝ ŏ	Peso del suelo húm + cáp (g)	19.73	21.53					
TERMINAC N LIMITE PLASTICO	Peso del suelo seco + cáp (g)	18.25	19.80					
	Peso del suelo seco (g)	6.85	8.21					
	Peso del agua en la muestra (g)	1.48	1.73					
.ao	CONTENIDO DE HUMEDAD (%)	21.62	21.01					

LIMITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO
36.6	21.3	15.3

OBSERVACIONES:

O A STORY

Ing Histrio Juan de Dios Poma Amésquita CP: 113457

ENSAYO DE PROCTOR MODIFICADO

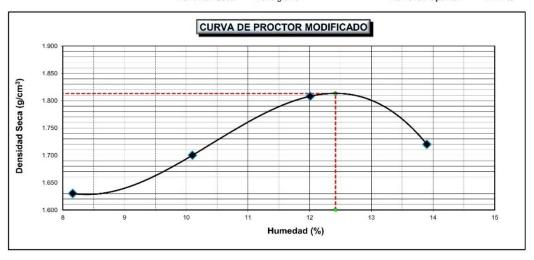
NORMA TECNICA PERUANA 339.141 - ASTM D1557

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO

CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS


FECHA : 17 DE JULIO DEL 2023

MUESTRA : TERRENO NATURAL Cn 02 MAS 2% DE CAL Y ZEOLITA

METODO "A", MOLDE 4 PULGADAS

Molde N°	1	Volumen de mo	de		949.10 cm3
Nº de Capas	5	Golpes por capa	ľ		25
Determinación	N°	1	2	3	4
Peso Suelo Humedo + Molde	gr.	6054	6157	6303	6240
Peso del Molde	gr.	4381.00	4381.00	4381.00	4381.00
Peso del Suelo Humedo	gr/cm3	1673.27	1776.43	1922.06	1859.36
Densidad del Suelo Humedo	gr/cm3	1.763	1.872	2.025	1.959
Capsula	N°	4	7	6	8
Suelo Humedo + Tara	gr.	625.65	658.57	598.99	647.85
Peso del Suelo Seco +Tara	gr.	578.44	598.15	534.76	568.79
Peso del Agua	gr.	47.20	60.41	64.22	79.06
Peso de la Tara	gr.	0.00	0.00	0.00	0.00
Peso del Suelo Seco	gr.	578.44	598.15	534.76	568.79
Humedad	%	8.16	10.10	12.01	13.90
Promedio de Humedad	%	8.16	10.10	12.01	13.90
Densidad del Suelo Seco	gr/cm3	1.630	1.700	1.808	1.720

Densidad Seca: 1.813 g/cm3 Humedad Optima: 12.42 %

OBSERVACIONES:

OF THE PERSON OF

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

UBICACIÓN: AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 17 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 MAS 2% DE CAL Y ZEOLITA

		ENSAY	O CBR					
		METODO ASTM D -	- 1883, MTC E	.132				
MOLDE Nro.	2	7		28			29	
Nro. GOLPES POR CAPA	1:	2		25			56	
COND. DE LA MUESTRA	NO SATURADO	SATURADO	NO SAT	URADO	SATURADO	NO SATI	JRAD0	SATURADO
Peso molde + suelo humedo	11741.25	12085.2	1087	5.29	11196.5	1134	0.40	11661.2
Peso del Molde	7894.00	7894.0	678	3.00	6783.0	7013	3.00	7013.0
Peso del Suelo humedo	3847.25	4191.2	409	2.29	4413.5	4327	.40	4648.2
Volumen del molde	2124.27	2124.3	212	6.15	2126.1	2124	.71	2124.7
Densidad humeda	1.81	2.0	1.5	92	2.1	2.04		2.2
% de humedad	12.63	17.4	12.	.69	16.6	12.	03	15.8
Densidad seca	1.608	1.680	1.7	'08	1.780	1.8	18	1.89
Tara Nro.	1	2	2		4	3		6
Tara + suelo humedo	706.56	657.0	602.46		634.6	666.96		675.1
Tara + suelo seco	627.33	559.4	534.61		544.1	595.34		583.3
Peso del agua	79.23	97.6	67.84		90.4	71.62		91.9
Peso de tara	0.00	0.0	0.00		0.0	0.00		0.0
Peso del suelo seco	627.33	559.4	534.61		544.1	595.34		583.3
% de humedad	12.63	17.44	12.69		16.62	12.03		15.75
Promedio de humedad	12.63	17.44	12.69		16.62	12.03		15.75

ENSAYO EXPANSION EXPANSION EXPANSION FECHA HORA TIEMPO LECTURA LECTURA **EXPANSION** LECTURA HRS. DIAL DIAL DIAL mm. mm. mm. 0.00 0.09 0.07 0.00 0.06 0.05 0.00 0.08 0.06 14/07/03 3:26 p. m. 24 15/07/23 3:26 p. m. 48 0.01 0.14 0.11 0.00 0.09 0.07 0.00 0.10 0.08 16/07/23 3:26 p. m. 72 0.01 0.16 0.13 0.00 0.12 0.09 0.01 0.13 0.10 17/07/23 3:26 p. m. 96 0.01 0.20 0.16 0.01 0.15 0.12 0.01 0.13 0.10

NO EXPANSIVO

				ENSA'	yo de p	PENETRA	ACION				
	PENETRACI	ON	MOLD	E Nro:	27	MOLD	E Nro:	28	MOLD	E Nro:	29
PENETRACION		LECTURA	VAL	ORES	LECTURA	VALO	DRES	LECTURA	VALO	ORES	
Nro.	mm.	pulg.	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2
1.0	0.000	0.000	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00
2.0	0.635	0.025	22.2	10.1	0.50	83.7	38.0	1.88	136.5	61.9	3.06
3.0	1.270	0.050	29.8	13.5	0.67	140.9	63.9	3.16	203.2	92.2	4.56
4.0	1.905	0.075	40.5	18.4	0.91	261.1	118.4	5.86	321.6	145.9	7.21
5.0	2.540	0.100	114.3	51.8	2.56	297.6	135.0	6.67	407.5	184.9	9.14
6.0	3.810	0.150	254.0	115.2	5.69	446.0	202.3	10.00	555.6	252.0	12.46
7.0	5.080	0.200	337.3	153.0	7.56	533.3	241.9	11.96	682.6	309.6	15.31
8.0	6.350	0.250	361.1	163.8	8.10	539.7	244.8	12.10	730.2	331.2	16.37
9.0	7.620	0.300	480.6	218.0	10.78	595.2	270.0	13.35	753.6	341.8	16.90

OBSERVACIONES:

EL ENSAYO DE PENETRACION SE EFECTUO SOBRE MUESTRA COMPACTADA A HUMEDAD OPTIMA Y SATURADA POR 96 HORAS.

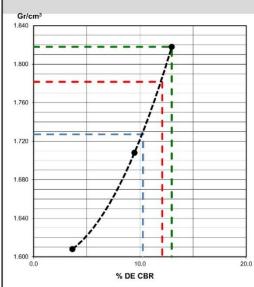
GEOKASA SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA Av. SANTA

FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

Bach. Ing. JANNET MAMANI RAMOS RESIDENTE:

Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA UBICACIÓN:


FECHA: 17 DE JULIO DEL 2023

TERRENO NATURAL Cn 02 MAS 2% DE CAL Y ZEOLITA MUESTRA:

GRAFICO DE PENETRACION DEL SUELO - CBR

METODO ASTM D - 1883, MTC E.132

Densidad seca :	1.818	gr/cm3	
Optimo humedad:	12.03	%	

→ CBR AL 100%:

→ CBR AL 98%:

CBR AL 95%:

INDICE CBR %	DENSIDAD gr/cm3
13.0	1.818
INDICE CBR %	DENSIDAD gr/cm3
12.1	1.782
INDICE CBR %	DENSIDAD gr/cm3
10.3	1.727

OBSERVACIONES:

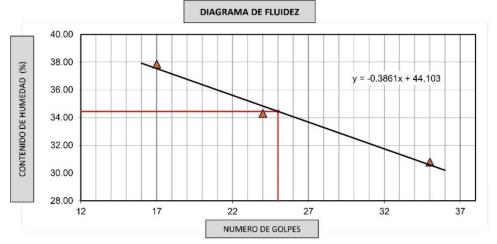
SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE

LA Av. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN: AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS


FECHA: 21 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 - MAS 4% DE CAL Y ZEOLITA

ENSAYO PARA DETERMINAR LIMITE LIQUIDO, LIMITE PLASTIDAD Y INDICE DE PLASTICIDAD NTP 339.129 (ASTM D4318)

	ENSAYO DE LIMITE LIQUIDO								
7 -	CAPSULA	41	49	53					
5 8	Peso de la cápsula (g)	37.52	37.58	37.50					
$\overline{9}$ $\overline{5}$	Peso del suelo húm + cáp (g)	52.37	54.20	53.59					
žα	Peso del suelo seco + cáp (g)	48.88	49.96	49.17					
DETERMINACION LIMITE LIQUIDO	Peso del suelo seco (g)	11.36	12.38	11.67					
# E	Peso de agua en la muestra (g)	3.50	4.25	4.42					
La ≧	CONTENIDO DE HUMEDAD (%)	30.80	34.31	37.86					
٥٦	NUMERO DE COLPES	35	24	17					

	ENSAYO DE LIMITE PLASTICO								
0	CAPSULA	17	19						
و الرق	Peso de la cápsula (g)	11.49	11.50	Û					
₹ Eŏ	Peso del suelo húm + cáp (g)	20.20	21.60						
TERMINAC N LIMITE PLASTICO	Peso del suelo seco + cáp (g)	18.62	19.75						
E L	Peso del suelo seco (g)	7.13	8.25						
드르드	Peso del agua en la muestra (g)	1.58	1.85						
I DE.	CONTENIDO DE HUMEDAD (%)	22.16	22.42						

LIMITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO
34.5	22.3	12.2

OBSERVACIONES:

TO STATE OF THE ST

Dina-Hillifo Juan de Dios Poma Amésquita CIP: 113467

ENSAYO DE PROCTOR MODIFICADO

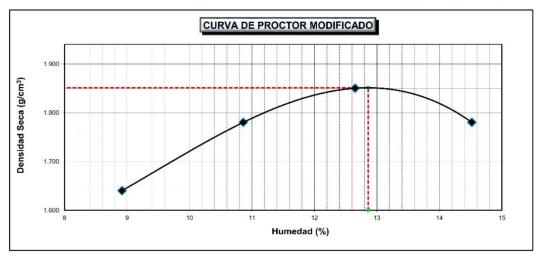
NORMA TECNICA PERUANA 339.141 - ASTM D1557

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO

CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS


FECHA : 17 DE JULIO DEL 2023

MUESTRA : TERRENO NATURAL Cn 02 MAS 4% DE CAL Y ZEOLITA

METODO "A", MOLDE 4 PULGADAS

Molde Nº	1	Volumen de mo	lde		949.10 cm3		
Nº de Capas	5	Golpes por capa	Golpes por capa				
Determinación	N°	1	2	3	4		
Peso Suelo Humedo + Molde	gr.	6076	6254	6359	6316		
Peso del Molde	gr.	4381.00	4381.00	4381.00	4381.00		
Peso del Suelo Humedo	gr/cm3	1695.37	1872.87	1977.95	1934.70		
Densidad del Suelo Humedo	gr/cm3	1.786	1.973	2.084	2.038		
Capsula	N°	4	7	6	8		
Suelo Humedo + Tara	gr.	526.23	512.44	687.79	625.96		
Peso del Suelo Seco +Tara	gr.	483.14	462.24	610.55	546.59		
Peso del Agua	gr.	43.10	50.20	77.23	79.37		
Peso de la Tara	gr.	0.00	0.00	0.00	0.00		
Peso del Suelo Seco	gr.	483.14	462.24	610.55	546.59		
Humedad	%	8.92	10.86	12.65	14.52		
Promedio de Humedad	%	8.92	10.86	12.65	14.52		
Densidad del Suelo Seco	gr/cm3	1.640	1.780	1.850	1.780		

 $\textbf{Densidad Seca:} \qquad 1.851 \text{ g/cm3} \qquad \qquad \textbf{Humedad Optima:} \qquad 12.86 \text{ }\%$

OBSERVACIONES:

O OBJECTE P

Ing. Hilaric Juan de Dios Poma Amésquita CIP: 113467

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

UBICACIÓN: AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 17 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 MAS 4% DE CAL Y ZEOLITA

590.38

12.75

12.75

ENSAYO CBR METODO ASTM D - 1883, MTC E.132 MOLDE Nro. 31 33 Nro. GOLPES POR CAPA 12 25 56 COND. DE LA MUESTRA NO SATURADO SATURADO NO SATURADO SATURADO NO SATURADO SATURADO Peso molde + suelo humedo 11917.80 12933.9 11001.00 11948.2 11442.12 12411.9 Peso del Molde 7894.00 7894.0 6783.00 6783.0 7013.00 7013.0 Peso del Suelo humedo 4023.80 5039.9 4218.00 5165.2 4429.12 5398.9 Volumen del molde 2124.27 2124.3 2126.15 2126.1 2124.71 2124.7 1.89 2.08 Densidad humeda 2.4 1.98 2.4 2.5 % de humedad 12.75 16.3 12.72 16.0 12.68 15.5 1.680 1.760 1.850 Densidad seca 2.040 2.095 2.20 Tara Nro. 4 6 Tara + suelo humedo 665.66 632.2 675.85 636.6 695.49 654.8 Tara + suelo seco 590.38 543.6 599.59 549.0 617.22 567.0 Peso del agua 75.27 88.6 76.27 87.6 78.26 87.9 Peso de tara 0.00 0.0 0.00 0.0 0.00 0.0

	ENSAYO EXPANSION										
FECHA	FECHA HORA TIEMPO LECTURA EXPANSION LECTURA EXPANSION LECTURA EXPANSION										
		HRS.	DIAL	mm.	%	DIAL	mm.	%	DIAL	mm.	%
14/07/03	3:53 p. m.	24	0.08	2.09	1.65	0.00	0.09	0.07	0.00	0.06	0.05
15/07/23	3:53 p. m.	48	0.01	0.16	0.13	0.01	0.13	0.10	0.00	0.09	0.07
16/07/23	3:53 p. m.	72	0.01	0.20	0.16	0.01	0.16	0.13	0.01	0.13	0.10
17/07/23	3:53 p. m.	96	0.01	0.26	0.20	0.01	0.21	0.17	0.01	0.14	0.11

599.59

12.72

12.72

549.0

15.96

15.96

617.22

12.68

12.68

567.0 15.50

15.50

543.6

16.30

16.30

NO EXPANSIVO

	ENSAYO DE PENETRACION											
	ENETRACI	ON	MOLD	E Nro:	31	MOLD	E Nro:	32	MOLD	E Nro:	33	
	ENETRACI	ON	LECTURA	VALO	ORES	LECTURA	VAL	ORES	LECTURA	VAL	DRES	
Nro.	mm.	pulg.	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	
1.0	0.000	0.000	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	
2.0	0.635	0.025	103.7	47.0	2.33	163.6	74.2	3.67	200.0	90.7	4.48	
3.0	1.270	0.050	279.0	126.6	6.26	261.7	118.7	5.87	350.6	159.0	7.86	
4.0	1.905	0.075	308.6	140.0	6.92	459.9	208.6	10.31	630.3	285.9	14.13	
5.0	2.540	0.100	438.3	198.8	9.83	579.0	262.6	12.98	862.5	391.2	19.34	
6.0	3.810	0.150	733.3	332.6	16.44	897.5	407.1	20.13	1077.2	488.6	24.15	
7.0	5.080	0.200	700.0	317.5	15.70	1002.5	454.7	22.48	1309.3	593.9	29.36	
8.0	6.350	0.250	746.9	338.8	16.75	1186.4	538.2	26.60	1361.1	617.4	30.52	
9.0	7.620	0.300	815.4	369.9	18.29	1309.9	594.2	29.37	1435.2	651.0	32.18	

OBSERVACIONES:

Peso del suelo seco

Promedio de humedad

% de humedad

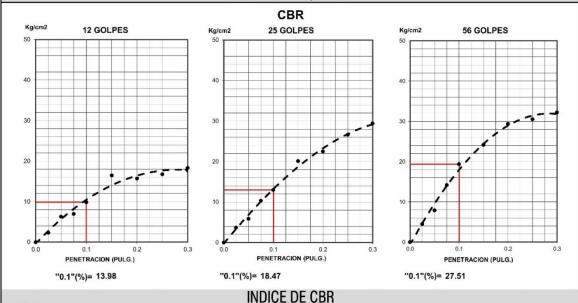
EL ENSAYO DE PENETRACION SE EFECTUO SOBRE MUESTRA COMPACTADA A HUMEDAD OPTIMA Y SATURADA POR 96 HORAS.

SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA

FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

RESIDENTE: Bach. Ing. JANNET MAMANI RAMOS


UBICACIÓN: Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 17 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 MAS 4% DE CAL Y ZEOLITA

GRAFICO DE PENETRACION DEL SUELO - CBR

METODO ASTM D - 1883, MTC E.132

1.840 1.840 1.720 1.640

Densidad seca :	1.850	gr/cm3	
Optimo humedad:	12.68	%	

→ CBR AL 100%: → CBR AL 98%:

→ CBR AL 95%:

INDICE CBR %	DENSIDAD gr/cm3
27.5	1.850
INDICE CBR %	DENSIDAD gr/cm3
22.6	1.813
INDICE CBR %	DENSIDAD gr/cm3
18.3	1.758

OBSERVACIONES:

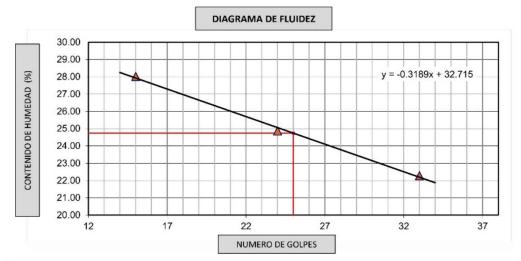
UBICACIÓN:

SAC E.I.R.L. RUC: 20607925161 REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE

LA Av. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023 Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS


FECHA: 21 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 - MAS 6% DE CAL Y ZEOLITA

ENSAYO PARA DETERMINAR LIMITE LIQUIDO, LIMITE PLASTIDAD Y INDICE DE PLASTICIDAD NTP 339.129 (ASTM D4318)

	ENSAYO DE LIMITE LIQUIDO								
7	CAPSULA	79	74	69					
5 5	Peso de la cápsula (g)	37.11	38.52	37.56					
5 <u>5</u>	Peso del suelo húm + cáp (g)	59.53	61.47	59.33					
≥o	Peso del suelo seco + cáp (g)	55.44	56.90	54.57					
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Peso del suelo seco (g)	18.33	18.38	17.01					
	Peso de agua en la muestra (g)	4.09	4.57	4.77					
DETERMINACION LIMITE LIQUIDO	CONTENIDO DE HUMEDAD (%)	22.29	24.87	28.03					
	NUMERO DE COLPES	33	24	15					

	ENSAYO DE LIMITE PLASTICO							
0	CAPSULA	11	25					
S 0	Peso de la cápsula (g)	11.35	11.40					
	Peso del suelo húm + cáp (g)	19.91	21.29					
TERMINAC N LIMITE PLASTICO	Peso del suelo seco + cáp (g)	18.76	19.94					
	Peso del suelo seco (g)	7.41	8.54					
	Peso del agua en la muestra (g)	1.15	1.35					
.ao	CONTENIDO DE HUMEDAD (%)	15.48	15.77					

LIMITE LIQUIDO	LIMITE PLASTICO	INDICE PLASTICO
24.7	15.6	9.1

OBSERVACIONES:

ENSAYO DE PROCTOR MODIFICADO

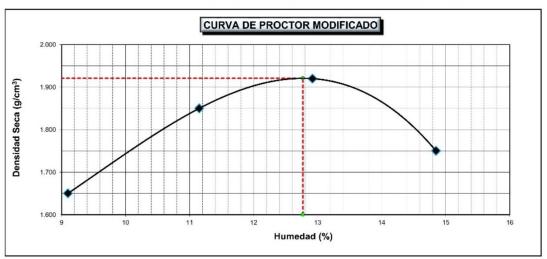
NORMA TECNICA PERUANA 339.141 - ASTM D1557

PROYECTO : TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO

CAL Y ZEOLITA, MOQUEGUA, 2023

UBICACIÓN : Av. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

SOLICITA: : Bach. Ing. JANNET MAMANI RAMOS


FECHA : 17 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 MAS 6% DE CAL Y ZEOLITA

METODO "A", MOLDE 4 PULGADAS

Molde N°	1	Volumen de mol	Volumen de molde				
Nº de Capas	5	Golpes por capa	Golpes por capa				
Determinación	N°	1	2	3	4		
Peso Suelo Humedo + Molde	gr.	6090	6333	6439	6289		
Peso del Molde	gr.	4381.00	4381.00	4381.00	4381.00		
Peso del Suelo Humedo	gr/cm3	1708.52	1951.61	2057.71	1907.57		
Densidad del Suelo Humedo	gr/cm3	1.800	2.056	2.168	2.010		
Capsula	N°	4	7	6	8		
Suelo Humedo + Tara	gr.	658.44	648.56	715.13	665.69		
Peso del Suelo Seco +Tara	gr.	603.52	583.50	633.30	579.62		
Peso del Agua	gr.	54.92	65.06	81.82	86.07		
Peso de la Tara	gr.	0.00	0.00	0.00	0.00		
Peso del Suelo Seco	gr.	603.52	583.50	633.30	579.62		
Humedad	%	9.10	11.15	12.92	14.85		
Promedio de Humedad	%	9.10	11.15	12.92	14.85		
Densidad del Suelo Seco	gr/cm3	1.650	1.850	1.920	1.750		

Densidad Seca: 1.921 g/cm3 Humedad Optima: 12.77 %

OBSERVACIONES:

ORDERTE S

Ing-Hillario Juan de Dios Poma Amésquita CIP: 113467

SAC E.I.R.L. RUC: 20607925161 LABORATORIO MECANICA DE SUELOS Y CONCRETO

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV.

SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

SOLICITA: Bach. Ing. JANNET MAMANI RAMOS

UBICACIÓN: AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 17 DE JULIO DEL 2023

MUESTRA: TERRENO NATURAL Cn 02 MAS 6% DE CAL Y ZEOLITA

		ENSAY	O CBR					
	320	METODO ASTM D	- 1883, MTC E	.132				
MOLDE Nro.	3	4		35			36	
Nro. GOLPES POR CAPA	1	2		25			56	
COND. DE LA MUESTRA	NO SATURADO	SATURADO	NO SAT	URADO	SATURADO	NO SAT	URADO	SATURADO
Peso molde + suelo humedo	11625.61	12596.8	1210	8.09	12733.1	1201	9.86	12262.7
Peso del Molde	7422.00	7422.0	769	4.00	7694.0	7422	2.00	7422.0
Peso del Suelo humedo	4203.61	5174.8	441	4.09	5039.1	4597	7.86	4840.7
Volumen del molde	2128.36	2128.4	212	5.23	2125.2	2121	1.10	2121.1
Densidad humeda	1.98	2.4	2.0	08	2.4	2.1	17	2.3
% de humedad	12.86	15.2	12.	.88	15.1	12.	90	15.3
Densidad seca	1.750	2.110	1.8	40	2.060	1.9	20	1.98
Tara Nro.	1	2	2		4	3		6
Tara + suelo humedo	665.65	726.6	595.66		706.6	666.57		511.5
Tara + suelo seco	589.80	630.5	527.69		613.9	590.40		443.8
Peso del agua	75.85	96.0	67.97		92.7	76.16		67.7
Peso de tara	0.00	0.0	0.00		0.0	0.00		0.0
Peso del suelo seco	589.80	630.5	527.69		613.9	590.40		443.8
% de humedad	12.86	15.23	12.88		15.10	12.90		15.26
Promedio de humedad	12.86	15.23	12.88		15.10	12.90		15.26

	ENSAYO EXPANSION										
FECHA	HORA	TIEMPO	LECTURA	EXPA	NSION	LECTURA	EXPAN	SION	LECTURA	EXPAN	SION
		HRS.	DIAL	mm.	%	DIAL	mm.	%	DIAL	mm.	%
14/07/03	3:33 p. m.	24	0.01	0.16	0.13	0.00	0.10	0.08	0.00	0.06	0.05
15/07/23	3:33 p. m.	48	0.01	0.19	0.15	0.01	0.15	0.12	0.00	0.09	0.07
16/07/23	3:33 p. m.	72	0.01	0.24	0.19	0.01	0.19	0.15	0.01	0.13	0.10
17/07/23	3:33 n m	96	0.01	0.27	0.21	0.01	0.23	0.18	0.01	0.20	0.16

NO EXPANSIVO

	ENSAYO DE PENETRACION											
	ENETRACI	ON	MOLD	E Nro:	34	MOLD	E Nro:	35	MOLD	E Nro:	36	
	ENETRACI	ON	LECTURA	VAL	ORES	LECTURA	VAL	ORES	LECTURA	VALO	DRES	
Nro.	mm.	pulg.	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	LB	Kg	Kg/cm2	
1.0	0.000	0.000	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.00	
2.0	0.635	0.025	143.5	65.1	3.22	231.5	105.0	5.19	442.7	200.8	9.93	
3.0	1.270	0.050	376.5	170.8	8.44	421.3	191.1	9.45	762.8	346.0	17.10	
4.0	1.905	0.075	540.9	245.4	12.13	659.0	298.9	14.78	987.7	448.0	22.15	
5.0	2.540	0.100	628.9	285.3	14.10	933.9	423.6	20.94	1349.2	612.0	30.25	
6.0	3.810	0.150	925.9	420.0	20.76	1175.9	533.4	26.37	1538.8	698.0	34.51	
7.0	5.080	0.200	1388.9	630.0	31.14	1688.3	765.8	37.86	2164.9	982.0	48.55	
8.0	6.350	0.250	1509.3	684.6	33.84	2029.4	920.5	45.51	2339.5	1061.2	52.46	
9.0	7.620	0.300	1662.8	754.3	37.29	2210.7	1002.8	49.57	2633.2	1194.4	59.05	

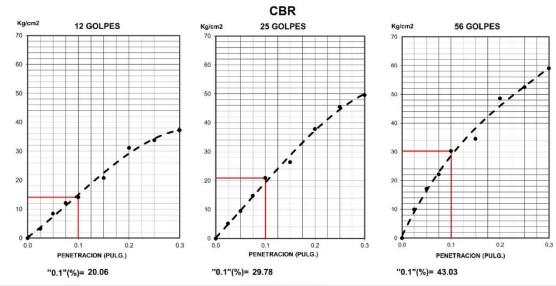
OBSERVACIONES:

EL ENSAYO DE PENETRACION SE EFECTUO SOBRE MUESTRA COMPACTADA A HUMEDAD OPTIMA Y SATURADA POR 96 HORAS.

PROYECTO: TESIS: MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA

FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA, 2023

RESIDENTE: Bach. Ing. JANNET MAMANI RAMOS


UBICACIÓN: AV. SANTA FORTUNATA - DISTRITO DE SAN ANTONIO - REGION MOQUEGUA

FECHA: 17 DE JULIO DEL 2023

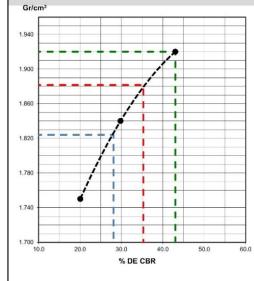

MUESTRA: TERRENO NATURAL Cn 02 MAS 6% DE CAL Y ZEOLITA

GRAFICO DE PENETRACION DEL SUELO - CBR

METODO ASTM D - 1883, MTC E.132

INDICE DE CBR

Densidad seca :	1.920	gr/cm3	
Optimo humedad:	12.90	%	

→ CBR AL 100%:

→ CBR AL 98%: → CBR AL 95%:

INDICE CBR %	DENSIDAD gr/cm3
43.0	1.920
INDICE CBR %	DENSIDAD gr/cm3
35.3	1.882
INDICE CBR %	DENSIDAD gr/cm3
28.1	1.824

OBSERVACIONES:

ANEXO 05: CERTIFICADOS DE CALIBRACION

LABORATORIO DE METROLOGIA

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMF-093-2022

Laboratorio de Fuerza

Expediente

2022

Solicitante

GEOKASA SAC E.I.R.L.

Dirección

MZA. E-3 LOTE. 13 A.V. VILLA SAN ANTONIO MOQUEGUA - MARISCAL NIETO - MOQUEGUA

Instrumento de Medición

Máquinas para Ensayos Uniaxiales Estáticos Máquinas de Ensayo de Tensión / Compresión

Equipo Calibrado Alcance de Indicación

Marca (o Fabricante) Modelo

Número de Serie Identificación ALIS Procedencia

Indicador de Lectura

Marca (o Fabricante) HIGH WEIGHT

Modelo Número de Serie Identificación

Procedencia Alcance de Indicación 0 KGF A

Resolución Transductor de Fuerza

Alcance de Indicación 5.0T

Marca (o Fabricante)

Modelo Número de Serie

PRENSA DE CBR (DIGITAL)

5000 KGF KAIZACORP NO INDICA

2019-04 NO INDICA NO INDICA DIGITAL

315-X2 291904 NO INDICA

NO INDICA

O.1 KGF CELDA " S"

ZEMIC

H3-C3-5.0t-6B UC073003

Fecha de Calibración 2022-11-21

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de

Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Los certificados de calibración sin firma y sello no son válidos.

2022-11-21

Jefe del laboratorio de calibración

BOBERTO QUINTO .C

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

Laboratorio de Fuerza

Método de Calibración

La calibración se realizó tomando como referencia el método descrito en la norma ISO 7500-1 / ISO 376 Verificación de Máquinas para Ensayos Uniaxiales Estáticos, Máquinas de Ensayo de Tensión / Compresión Verificación y Calibración del Sistema de Medición de Fuerza.

Trazabilidad

Se utilizó patrón calibrado con trazabilidad al SI, calibrado por la Pontificia Universidad Católica del Perú LIBRACIONES PERU Con Certificado N° INF - LE 238-19

Resultados de medición

Lec	tura de la	CALIBRACIONE	Lectura del patrón DRACIONES		Promedio	Cálculo c	le errores	RACIONES PE
nac má	quina (Fi)	Primera	Segunda	Tercera	S PERU SAL	Exactitud	Repetibilidad	Incertidumbre
·%	KGFSAC	KGFONE	KGF	CAL KGF MES	KGF	q(%)	b(%)	u(%)
10	S PE 500	500.0	500.0	500.0	500.0	0.0 CION	SPE 0.0 GP	0.38
20	1000	-1008.0	1008.0	1008.0	1008.0	0.80NES	0.0	0.28
30	1500	1508.0	1508.0	1508.0	1508.0	CA-0.5	DER 0.0	0.26
40	2000	2010.0	2010.0	2010.0	2010.0	CAL -0.5	ES P 0.0	0.25
50	2500.	2515.0	2515.0	2515.0	2515.0	-0.6	SPE 0.0	0.25
60	3000	3015.0 RA	3015.0	3015.0	3015.0	-0.5 RAG	0.0	0.24
70	3500	3516.0	3516.0	3516.0	3516.0	-0.5 (0)	0.0	0.24
80	4000	4015.0	4015.0	4015.0	4015.0	-0.4 BRAC	0.0 SAC	0.24
90	4500	4516.0	4516.0	4516.0	4516.0	-0.4	0.0 RU SI	0.24
100	5000	5004.0	5004.0	5004.0	5004.0	AC -0.1	0.0	0.24
Lectura	máquina en cero	U SAC O CALIBRA	CIONE O PERUS	Jeac o CALIBRA	DIONES PERÚ SA	SAG O ALIBRAS	IONES O'RUSA	Error máx. de cero(0)=0,00

Temperatura promedio durante los ensayos 18.0 °C; Varación de temperatura en cada ensayo < 2 °C. Evaluación de los resultados

Los errores encontrados entre el 20% y el 100% del rango nominal considerado no superan los valore máximos permitidos establecidos en la norma ISO 7500-1.

Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"
- La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LL-011-2023

Fecha de Emisión Expediente

2023/06/22 010

1. SOLICITANTE

GEOKASA SAC E.I.R.L

DIRECCIÓN

MZA. E-3 LOTE. 13 A.V. VILLA SAN ANTONIO MOQUEGUA - MARISCAL NIETO - MOQUEGUA

2. EQUIPO DE MEDICIÓN

: CAZUELA CASAGRANDE / DIGITAL

: KAIZACORP

Marca Modelo

: NO INDICA

Número de serie

: K22-O30

Procedencia

: NACIONAL

FECHA DE CALIBRACION

: 2023/06/22

3 PROCEDIMIENTO DE CALIBRACIÓN

La calibración se efectuó por comparación directa con termómetros patrones calibrados que tienen trazabilidad a la Escala Internacional de Temperatura de 1990 (ITS-90).

4. LUGAR DE CALIBRACIÓN

La calibración se realizó en el laboratorio del solicitante.

Trazabilidad	Patrón utilizado
INACAL DM/ LLA - 141 - 2020	BLOQUES PATRON DE LONGITUD

La incertidumbre reportada en el es in de certificado presente incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el corresponde dispessor momento y en las condiciones de la momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

TABLA DE RESULTADOS

10 mm

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN Nº LL-011-2023 Página 2 de 2

5. CONDICIONES AMBIENTALES

Control of the second second	Inicial	Final
Temperatura °C	20.3	20.3
Humedad Relativa %HR	60.0	60.0

6. TRAZABILIDAD

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Informe de calibración
Patrón de referencia	Termómetro Patrón de indicación Digital.	LT-1414-2018

7. OBSERVACIONES

(*) Código indicado en una etiqueta adherida al instrumento. Con fines de identificación se colocó una etiqueta autoadhesiva de con la indicación "CALIBRADO" La periodicidad de la calibración depende del uso, mantenimiento y conservación del instrumento de medición.

Fin del documento

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMT-068-2023

Pág. 1 de 3

aboratorio de Temperatura Expediente	10
TANKS CALLERAN	SECTION DATERANDED FOR THE COLUMN
Solicitante	GEOKASA SAC E.I.R.L.
Dirección sos carressos esta esta esta esta esta esta esta est	MZA. E-3 LOTE. 13 A.V. VILLA SAN ANTONIO N MARISCAL NIETO - MOQUEGUA
Equipo	ESTUFA (HORNO)
Marca (o Fabricante)	KAIZACOPR
1odelo	101-1
umero de Serie	L2021040138
rocedencia	CHINA 1 S ALL COLON OF THE SALES
entificacion	NO INDICA
strumento de Medición	Termometro con Indicación Digital.
larca/ Modelo	NO INDICA
cance de Indicacion	0 °C a 300 °C
iv. de escala (Resoluc)	1 CALLED CALLED CALLED CHARLES
lentificación	No indica
elector	Digital
/larca/ Modelo	NO INDICA
lcance de Indicación	0 °C a 300 °C
iv.de escala (Resoluc)	1 and the County of the

Este certificado de calibración documenta la trazabilidad a los nacionales patrones internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Los certificados de calibración sin firma y sello no son válidos.

Fecha de Calibración Metodo de Calibración

Lugar de Calibracion

La calibración se realizo por comparación según el PC - 18, 2da.Ed., "Procedimiento para la Calibración o Caracterización de Medios Isotermos con Aire como medio Termostatico".

Laboratorio de CALIBRACIONES PERU SAC

Los resultados de la calibracion realizada tienen trazabilidad a los patrones nacionales del INACAL-DM,en concordancia con el Sistema Internacional de Unidades de Medidas (SI)

Patrones utilizados : 0082-TPES-C-2022

Condiciones Ambientales

20.8 ° C 20.8 °C Final: Temperatura ambiental Inicial Humedad Relativa ambiental : Inicial 68 HR % Final 68

Fecha de emisión

2023-06-27

27/06/2023

rio de calibración Jefe del laborate

KOBERTO QUINTO

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

CERTIFICADO DE CALIBRACIÓN

LMT-068-2023

Laboratorio de Temperatura

Pág. 2 de 3

DADA	I A TEMPERATURA DE	
PARA	1 A LEIVIPERATURA DE	

0	°C	+	5°C	
U		_		

2280	T.ind(°C)	MES PER	TEMI	PERATU	JRAS EN	LAS P	OSICIO				SAM	T.prom	53.2441Y
Tiempo	(Termómetro del	COMER	NIVE	L SUPE	RIOR	UNIVERS.	4.6	NIVE	LINFE	RIOR	24(0.00)	°c	Tmax-Tmin (
(min)	equipo)	1	2	3	4	5	6	7	8	9	10	5 5 A	Maria de la companiona dela companiona della companiona de la companiona de la companiona d
0	110.0	110.0	109.0	110.0	109.0	110.0	109.9	108.9	110.0	110.0	109.0	109.6	3.0
2	110.0	109.0	110.0	110.4	110.2	110.8	110.6	109.0	110.0	110.9	110.8	110.2	4.5
4	110.0	110.0	109.2	110.0	110.3	110.0	110.1	110.6	109.0	109.5	109.8	109.9	2.0
6	110.0	110.6	109.0	109.8	110.0	110.0	110.0	109.9	109.9	109.9	110.0	109.9	3.4
8	110.0	110.0	109.5	110.2	109.0	110.1	110.2	109.0	110.2	110.2	109.1	109.8	3.4
10	110.0	110.6	109.5	110.6	110.6	109.9	109.5	110.3	109.8	109.9	110.0	109.8	2.3
12	110.0	110.5	109.0	110.4	109.9	110.0	110.2	111.6	110.9	110.8	110.5	110.4	3.2
14	110.0	109.5	110.6	110.5	109.0	110.0	110.2	110.2	110.2	109.9	110.0	110.0	3.4
16	110.0	110.0	109.9	109.0	109.0	109.9	109.8	109.2	110.0	110.5	110.0	109.7	3.7
18	110.0	110.0	109.0	110.0	109.0	110.0	109.9	108.9	110.0	110.0	109.0	109.6	4.3
20	110.0	109.0	110.0	110.4	110.2	110.8	110.6	109.0	110.0	110.9	110.8	110.2	3.6
22	110.0	109.9	110.9	110.0	109.7	109.8	109.9	110.6	110.0	109.9	110.0	110.1	3.4
24	110.0	110.6	109.9	110.5	109.9	110.6	109.5	109.6	109.7	109.8	110.0	110.0	2.2
26	110.0	110.4	109.9	109.9	109.9	110.1	110.1	109.9	109.9	110.7	110.7	110.0	3.4
28	110.0	110.0	110.0	111.2	110.2	110.2	110.4	109.9	109.9	109.8	109.8	110.1	3.0
30	110.0	110.0	110.5	110.1	110.6	110.5	113.9	113.1	109.9	110.0	109.8	110.8	3.8
32	110.0	110.2	110.6	110.3	109.9	109.9	110.7	109.9	110.1	109.7	109.8	110.1	3.7
34	110.0	109.9	109.8	111.0	110.1	109.9	109.9	110.0	110.0	110.0	110.2	110.1	3.7
36	110.0	109.9	109.9	110.0	109.9	109.8	109.8	109.9	110.2	109.9	110.0	110.0	3.7
38	110.0	110.4	109.9	109.9	109.9	110.1	110.1	109.9	109.9	110.7	110.7	110.2	3.5
40	110.0	110.0	110.0	111.2	110.2	110.2	110.4	109.9	109.9	109.8	109.8	110.1	3.8
42	110.0	110.0	110.5	110.1	110.6	110.5	113.9	113.1	109.9	110.0	109.8	110.0	3.6
44	110.0	109.9	110.9	110.0	109.7	109.8	109.9	110.6	110.0	109.9	110.0	109.9	3.6
46	110.0	110.6	109.9	110.5	109.9	110.6	109.5	109.6	109.7	109.8	110.0	110.0	3.7
48	110.0	110.4	109.9	109.9	109.9	110.1	110.1	109.9	109.9	110.7	110.7	110.0	3.0
50	110.0	105.3	110.2	109.3	109.7	108.5	110.2	110.1	109.7	107.2	109.0	109.5	3.4
52	110.0	110.0	110.6	110.5	109.0	110.0	110.2	110.2	110.2	109.9	110.0		3.6
54	111.0	110.0	111.6	109.0	109.0	112.9	114.8	111.2	110.0	110.5	110.0	109.0	3.6
56	110.0	109-5	109.0	110.0	109.0	110.0	109.9	108.9	110.0	110.0	109.0	110.0	2.9
58	110.0	109.5	110.0	111.2	110.2	110.2	110.4	109.9	109.9	109.8	109.8	109.9	2.6
60	110.0	109.5	110.5	110.1	110.6	110.5	113.9	113.1	109.9	110.0	109.8	110.0	3.7
T.PRON	110.0	109.5	110.1	101.1	109.2	110.2	109.5	105.3	109.7	110.1	110.2	110.3	pattle and
T.MAX	110.0	109.2	110.1	101.1	109.2	110.2	109.5	105.3	109.7	110.1	110.2		182 F /S
T.MIN	110.0	110.2	109.4	110.1	110.0	110.2	110.0	110.0	110.0	110.0	110.1	A BINTE	19
DTT	0.0	3.6	4.5	3.0	3.6	3.7	3.7	3.1	3.9	3.6	3.7	a charle	ares life

Parámetro	Valor (° C)	Incertidumbre expandida (° C)
Máxima temperatura Medida	111.0	CA-0.5
Mínima Temperatura Medida	109.9	0.5
Desviación de Temperatura en él Tiempo	4.5	0.2
Desviación de Temperatura en el Espacio	3.4	0.2
Estabilidad Medida (±)	0.2	25 45 10 LAG 25 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Uniformidad Medida	4.5	THE STATE OF THE PARTY OF THE P

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959

Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú

T.K. (01) 207 9754 Col. 240 295 216

Telf.: (01) 397 8754 Cel.: 949 985 016

Laboratorio@calibracionesperu.pe E-mail: ventas@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

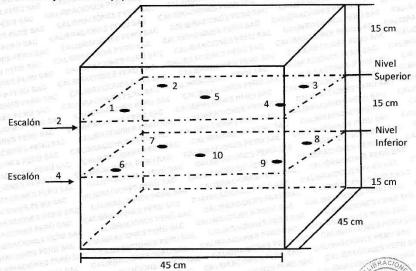
LMT-068-2023

Laboratorio de Temperatura

Pág. 3 de 3

T.PROM : Promedio de la temperatura una posición de medición durate el tiempo de calibración.

T.PROM : Promediode las temperaturas en las diez posiciones de medición para un instante dado.


T.MAX : Temperatura Máxima. T.MIN : Temperatura Minima.

DTT : desviación de Temperatura en el Tiempo.

Para cada posición de medición su "desviación de temperatura en el timepo" DTT esta dad por la diferencia entre maxima y la minima temperatura registradas en dicha posición.

Entre dos posiciones de medición su " desviación de temperatura en el espacio" esta dad por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.

Distribución de termopares en el equipo

Los termopares 5 y 10 están ubicados en el centro de sus respectivos parrillas. Los termopares 1 al 5 están ubicados a 2 cm por encima de la parrilla superior.

Los termopares 6 al 10 están ubicados a 2 cm por encima de la parrilla inferior.

Los termopares $\bf 1$ y $\bf 4$ y del $\bf 6$ al $\bf 9$ están ubicados a $\bf 4.5$ cm de las paredes laterales y a $\bf 5$ cm del frente y fondo de la estufa.

Los escalones indican las posiciones de las parrilas.

Observaciones:

^{*} Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"

^{*}La incertidumbre de medición se ha obtenido multiplicando la incertdumbre estandar de la medición por el factor de cobertura k = 2 para una distribución normal de aproximadamente 95%.

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMM-055-2023

Laboratorio de Fuerza	PERUSAG CALIBRACIONES PERUSAC CALIBRACIONES PERUSACIONES PERUSAC CALIBRACIONES PERUSACIONES PER	Pág. 1 de
Expediente	2006 AC CALIBRACIONES PERUSAC CALIBRACIONES	PERUSAG CALIBRACIONES PERUSAG CALIBRACIONES PERUSAG
Solicitante	GEOKASA SAC E.I.R.L.	
Dirección GAUBRACIONES OPER PERU SAC CALIBRACIONES PERU SAC CALIBRACIONES FUENTES PERU PERU PERU PERU PERU PERU PERU PERU	MZA. E-3 LOTE. 13 A.V. VILLA SAN ANTONIO MOQUEGUA - MARISCAL NIETO - MOQUEGUA	Este certificado de calibración documenta la trazabilidad a lo patrones nacionales o
Instrumento de Medición	BALANZA NO AUTOMATICA	internacionales, que realizan la unidades de la medición de acuerdo
Marca (o Fabricante)	OHAUS SAC CALIBRATION SAC CALIBRAT	con el Sistema Internacional de
Modelo	NV622ZH	Unidades (SI).
Numero de Serie	## PERU SAG CALIBRACIONES PERU SAG CALIBRACIO	Los resultados son validos en e
Procedencia	USA ERU SAC CALIBRACIONES PERU SAC	momento de la calibración. A solicitante le corresponde disponer
BETIPO SAC CALIBRA	Electronica CALIBRACIONES PERU SAC CALIBRA	en su momento la ejecución de una recalibración.
Identificacion	NO INDICA	
Alcance de Indicacion	0 gr a 620 gr	Este certificado de calibración no podrá ser reproducido parcialmente
Division de escala (d) o resolucion	RACIO 0.01 = PER gr CALIBRACIONES PERU SAC CALIBRACIONES PERU SACONES	sin la aprobación por escrito del laboratorio emisor.
Div.verifc. De escala (e)	0,1 see gr (*) secones perusa	Los certificados de calibración sin firma y sello no son válidos.
Capacidad Minima	2 (**)	LIBRACIONES PERÚ SAC CALIBRACIONES
Clase de exactitud	CALIBRACIONES PERU SAG	
Lugar de Calibracion	Laboratorio del solicitante.	
Fecha de Calibración	2023-06-22	

La calibracion se realizo según el metodo descrito en el PC-001,"Procedimiento de calibracion de Balanzas de Funcionamento no Automatico Clase III y Clase IIII" del SNM-INDECOPI. Edicion tercera Enero 2009.

Trazabilidad

Los resultados de la calibracion realizada tienen trazabilidad a los patrones nacionales de METROIL ,en concordancia con el Sistema Internacional de Unidades de Medidas (SI)

Patrones utilizados: 0045-MPES-C-2022, 0497-MPES-C-2022

lo Fecha de emisión

Jefe del laboratorio de calibración

2023-06-22

FOBERTO QUINTO

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMM-055-2023

Laboratorio de Masa

Pág. 2 de 3

Resultados de Medicion

INSPECCION VISUAL

AJUSTES DE ACERO	TIENE	ESCALA	NO TIENE
OSCILACION LIBRE	TIENE	CURSOS	NO TIENE
PLATAFORMA	TIENE	NIVELACION	NO TIENE
SISTEMA DE TRABA	NO TIENE	US PERUSAC TIME	NATIONES PERM

ENSAYO DE RETABILIDAD

Temperatura	Inicial 20.1 °C	Final 20.1 °C

Medicion	Carga L1= RAGION	300,00	CALIBRACE
ACIN°ES P	STREET (g) LIBRA	ΔL (g)	E(g)
1	300.00	0.003	0.000
2	300.00	0.002	0.010
3	300.00	0.001	0.010
4 00	300.00	0.001	0.000
18 S 18 1	300.00	0.003	0.010
6	300.00	0.002	0.010
7	300.00	0.001	0.000
8	300.00	0.001	0.010
9	300.00	0.001	0.010
10	300.00	0.001	0.000

Carga L2=	620,00	g
USAS I(g)	ΔL(g)	E(g)
620.00	0.060	0.009
600.00	0.060	0.009
600.01	0.060	0.010
600.00	0.070	0.001
600.00	0.060	0.000
600.00	0.060	0.000
600.00	0.060	0.000
600.00	0.070	0.001
600.01	0.060	0.011
600.01	0.060	0.010

THE PER PER	IN DALIDA _ DERUSAL	FALIER ACIONE
Carga (gr)	Emax-Emin (gr)	e.m.p (gr)
200,00 HONES PER	0.014	0.30 O.30
620,00	0.012	CALIBRACIO 0 30 PERUBRA

2	LISEACIONS P	Posicion	Ensayo de Exce	entricidad			
	C1UBRACIONE	de las	RACIONES PERO CO				
3	ALIBRAN	Cargas	Temperatura	Inicial	20.1 °C	Final	E PERO E

Pocision de la Carga	Carga min	S PERU SAC SAE J (g) SA ES PERU SAC	ΔL (g)	E0 (g)	Carga L(g)	aciones rec	ΔL(g)	E(g)	Ec (g)	e.m.;
146	CALIBRAC	0.10	0.004	0.000	AC SAN	200.00	0.004	0.010	0.000	0.20
2	AC MARKETO	0.10	0.004	0.004		200,00	0.004	0.010	0.009	0.20
3	0.1	0.10	0.004	0.005	200,00	200.00	0.004	0.010	0.009	0.20
4	CALIBRACI	0.10	0.003	0.006	WHITE CA	200,00	0.003	0.010	0.003	0.20
5	CALIBR	0.10	0.004	0.004	BUNATU CAL	200.00	0.004	0.010	0.001	0.20

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMM-055-2023

Laboratorio de Masa

Pág. 3 de 3

GALIPI EN	SAYO DE P	ESAJE		
Inicial	20.1	o sec	Final	20.1 °C
	s.C. Grown	AC . See segon of	Inicial 20.1 °C	AC L THE ANNUAL RESERVE OF THE PARTY OF THE

ONE	Carga	A CHRACIONES								SERU SA
AEIGN	L(g)	I (g)	ΔL(g)	E(g)	Ec (g)	SAC (g) RA	ΔL(g)	E(g)	Ec(g)	e.m.p
Eo	NES PERT SAG	1.00	0.04	0.46	NES PERU O	SAC CALL	SUPER PER	SAC	TALIBRAS A	±
ÇIQÎ	2.000	2.00	0.005	0.000	0.000	2.000	0.005	0.000	0.000	0.10
RAS	5.000	5.00	0.006	0.001	0.001	5.000	0.006	0.001	0.001	0.10
BR/C	100.000	100.00	0.006	0.000	0.000	100.000	0.006	0.000	0.000	0.20
AGION MODEL	200.000	100.00	0.006	0.000	0.000	150.000	0.006	0.000	0.000	0.20
RACK	250.000	250.00	0.005	0.002	0.002	250.000	0.005	0.002	0.002	0.30
1887	300.000	300.00	0.006	0.000	0.000	400.000	0.006	0.000	0.000	0.20
SRACI	350.000	350.00	0.005	0.001	0.001	450.000	0.005	0.001	0.001	0.30
BEAC	400.000	400.00	0.005	0.000	0.000	500.000	0.005	0.000	0.000	0.30
BUA	500.000	500.00	0.006	0.000	0.000	550.000	0.006	0.000	0.000	0.30
	620.000	620.00	0.006	0.002	0.002	600.000	0.006	0.002	0.002	0.30

Leyenda:

L: Carga aplicada a la balanza.

E: Error encontrado
E O : Error en cero

I: Indicaciones de la balanza.

E DERU SALIBI

△ L: Carga adicional.

E c : Error corregido

Incertidumbre expandida de medicion

= 2x V 0.

V 0.00169 + 0.000000013463

K

Lectura corregida

R CORREGIDA

= R

0.0004016071

R

Observaciones

Con fines de identificacion se coloco una etiqueta autoadhesiva color verde con indicaciones "CALIBRADO" La incertidumbre de medicion se ha obtenido multiplicandola incertidumbre estandar de la medicion por el factor de cobertura k=2 para una distribucion normal de aproximadamente 95%

- (*) Se determino utilizando la consideración 10.1 del PC-001.
- (**) Se determino utilizando la consideración 10.1 del PC-001.
- (***) Se determino utilizando la consideración 10.1 del PC-001.

Fin del documento

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMM-056-2023

Laboratorio de Masa	RU SAC	ALIBRA	ICAI	DO DE C	ALIBRACION	LMM-056-2023
PERU SAU	negli sac	100 act	DNE	ES PENLISA!	CALIDA AGIONES PERO	Pág. 1 de 3
Expediente CALIBRACIONES E	2005					
Solicitante	GEOKASA	SAC E.	I.R.L.			
Dirección ALIBRACIONES	MZA. E-3 LC MARISCAL N				NTONIO MOQUEGUA -	Este certificado de calibración documenta la trazabilidad a los
Instrumento de Medición	BALANZA	NO AU	TOM	ATICA		patrones nacionales c internacionales, que realizan las
Marca (o Fabricante)	WANT					unidades de la medición de acuerdo
Modelo	WT30000X	GAL!				con el Sistema Internacional de Unidades (SI).
Numero de Serie	210318099	CAL				Los resultados son validos en e
Procedencia	INDIA					momento de la calibración. A
Tipo ES PERU SAG	Electronica					solicitante le corresponde disponer en su momento la ejecución de una
Identificacion	No indica					recalibración.
Alcance de Indicacion	ACIO O MERU	gr	а	30	Kg	Este certificado de calibración no
Division de escala (d) o resolucion	RACIO 0.001	kg				podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.
Div.verifc. De escala (e)	0,01	kg		(*)		Los certificados de calibración sin
Capacidad Minima	0.02	kg		(**)		firma y sello no son válidos.
Clase de exactitud	BRACIONES			(***)		
Lugar de Calibracion	Laborat	orio de	l solic	itante.		

Fecha de Calibración 2023-06-22

La calibracion se realizo según el metodo descrito en el PC-001, "Procedimiento de calibracion de Balanzas de Funcionamento no Automatico Clase IIII" del SNM-INDECOPI. Edicion tercera Enero 2009.

Trazabilidad

Los resultados de la calibracion realizada tienen trazabilidad a los patrones nacionales del INACAL-DM, en concordancia con el Sistema Internacional de Unidades de Medidas (SI)

Patrones utilizados:

0047-MPES-C-2022, 0046-MPES-C-2022, 0045-MPES-C-2022

Sello

Fecha de emisión

Jefe del laboratorio de calibración

2023-06-22

ROBERTO QUINTO.

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMM-056-2023

Laboratorio de Masa

Pág. 2 de 3

Resultados de Medicion

INSPECCION VISUAL

AJUSTES DE ACERO	TIENE	ESCALA	NO TIENE
OSCILACION LIBRE	TIENE	CURSOS	NO TIENE
PLATAFORMA	TIENE	NIVELACION	TIENE
SISTEMA DE TRABA	NO TIENE	SPERO CALIBRA	LANES VER

ENSAYO DE RETABILIDAD

		A STATE OF THE PARTY OF THE PAR
Temperatura	Inicial 20.1 °C	Final 20.1 °C

Medicio	n
N°	
1.1	100
2	
3	
4	
5	
6	
7	
8	
9	
10	

SAL SALES		
Carga L1=	15	kg kg
I(kg)	ΔL (kg)	E(kg)
15.001	0.0004	0.0046
15.001	0.0004	0.0046
15.001	0.0004	0.0046
15.001	0.0004	0.0046
15.001	0.0004	0.0046
15.001	0.0004	0.0046
15.001	0.0004	0.0046
15.001 mg/	0.0004	0.0046
15.001	0.0004	0.0046
15.001	0.0004	0.0046

Carga L2=	30 549	kg
al(kg)	ΔL(kg)	E(kg)
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044
30.001	0.0006	0.0044

Carga (kg)	Emax-Emin (kg)	e.m.p (kg)
NAMES PERMISES OF 15 PRACTICAL	0.0010	0.02
PER PERO WILLIAM 30 THE PER	0.0010 peru SAC	0.03

2	LIBITACI	C S
A.C.	1	IONES PE
3		4

Ensayo de Excentricidad

Temperatura	Inicial	20.1 °C	Final	20.1
-------------	---------	---------	-------	------

la Carga	Carga min (kg)	I (kg)	AL (kg)	E0 (kg)	Carga L(kg)	1 (kg)	∆L (kg)	E(kg)	Ec (kg)	e.m.
1	GALIBRACH	0.010	0.0004	0.0046	OALIBHA	10.000	0.0045	0.0045	1.2	± k
2	CALIBRACION	0.010	0.0003	0.0047	MERGE CALL	10.000	0.0045		-1.2	0.0
3	0.01	0.010	0.0002	0.0048	10	10.000	111111111111111111111111111111111111111	0.0036	-1.1	0.0
4	CALIERACIO	0.010	0.0001	0.0049	CAL	D. P. Carrier	0.0005	0.0055	-1.2	0.0
5	A CALIBRA	0.010	0.0003		BUALIE	10.000	0.0005	0.0055	-0.1	0.0
0.00	CAN CONTRACT	0.010	0.0003	0.0050	LEAD	10.000	0.0005	0.0035	-0.2	0.0

Posicion

de las Cargas

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMM-056-2023

Laboratorio de Masa

Pág. 3 de 3

ENSAYO	DE	PESAJ	E

COUNTY OF STREET				The second second second	PER
Temperatura	Inicial	20.1	°C	Final	20.1 °C
			100000	10101	20.1

CHONES	Carga	A BRACIONES	LOAC CA	LIBRACIONE					LIBRALIONES I	e.m.p
E1015	L(kg)	1 (kg)	ΔL (kg)	E(kg)	Ec (kg)	I(kg)	△(kg)	E(kg)	Ec (kg)	e.m.p
Eo	0.01	0.010	0.0003	0.0047	ES PERUSA	C CALIB	RIGIONES	SAC GAL	THOMACION	± kg
CION 5	0.02	0.200	0.0004	0.0046	0.0	0.020	0.0004	0.0046	0.1	0.01
RACIO	DERUITAGE C	1.000	0.0005	0.0047	0.1	1.000	0.0005	0.0047	0.1	0.01
SEAST	NESPESUSAC	4.999	0.0006	0.0036	0.1	5.000	0.0006	0.0036	0.0	0.01
ACIONI	6	6.000	0.0005	0.0045	0.0	6.000	0.0005	0.0045	0.1	0.01
BER ACTOR	ES PE 8 SAC	8.000	0.0005	0.0045	0.0	8.000	0.0005	0.0045	0.0	0.01
LIBRAG	10	10.000	0.0004	0.0046	-0.1	10.001	0.0004	0.0046	0.0	0.01
RACIO	CIONE 15 ERU S	14.999	0.0005	0.0035	-0.1	15.001	0.0005	0.0035	-0.1	0.01
BELCE	ONE 20	19.999	0.0006	0.0034	-0.1	20.001	0.0006	0.0034	-1.1	0.01
ALIBR	25	25.000	0.0006	0.0044	-1.1	25.001	0.0006	0.0044	-1.2	0.01
CALID	30	29.999	0.0006	0.0034	-1.2	30.001	0.0006	0.0034	-1.2	0.01

Leyenda:

L: Carga aplicada a la balanza.

l: Indicaciones de la balanza.

Δ L: Carga adicional.

E: Error encontrado

E o : Error en cero E c : Error corregido

Incertidumbre expandida de medicion

 $U = 2 \times V = 0.16928 + 0.0000000100932$

Lectura corregida

R CORREGIDA

0.0000239780

Observaciones

Con fines de identificacion se coloco una etiqueta autoadhesiva color verde con indicaciones "CALIBRADO" La incertidumbre de medicion se ha obtenido multiplicandola incertidumbre estandar de la medición el factor de cobertura k=2 para una distribucion normal de aproximadamente 95%

- (*) Se determino utilizando la consideración 10.1 del PC-001.
- (**) Se determino utilizando la consideración 10.1 del PC-001.
- (***) Se determino utilizando la consideracion 10.1 del PC-001.

Fin del documento

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMF-094-2022

Expediente

Solicitante

GEOKASA SAC E.I.R.L.

Equipo Calibrado

MZA. E-3 LOTE, 13 A.V. VILLA SAN ANTONIO MOQUEGUA - MARISCAL NIETO - MOQUEGUA

Instrumento de Medición

Máquinas para Ensayos Uniaxiales Estáticos Máquinas de Ensayo de Tensión / Compresión

PRENSA DE CONCRETO (DIGITAL)

Alcance de Indicación Marca (o Fabricante) Modelo.

Número de Serie

Procedencia CAL Indicador de Lectura

Marca (o Fabricante) Modelo Número de Serie

Identificación Alcance de Indicación

Resolución Superior

Transductor de Fuerza Alcance de Indicación

Marca (o Fabricante) Modelo

Número de Serie

Fecha de Calibración

Ubic. Del Equipo

0 kgf a 100,000 kgf

PYS EQUIPOS PYS 5001

HIGH WEIGHT

100,000kgf

1 kgf RU SAC NO INDICA

70 Mpa NO INDICA NO INDICA XS12JK-5P/Y

2022-11-21

INSTALACIONES DEL SOLICITANTE

Este certificado de calibración documenta la trazabilidad a los patrones internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

Los certificados de calibración sin firma y sello no son válidos.

Fecha de emisión

2022-11-21

Jefe del laboratorio de calibración

ROBERTO QUINTO.

Servicios de Calibración y Mantenimiento de Equipos e Instrumentos de Medición Industriales y de Laboratorio

CERTIFICADO DE CALIBRACIÓN

LMF-094-2022

Laboratorio de Fuerza

Método de Calibración

La calibración se realizó tomando como referencia el método descrito en la norma ISO 7500-1 / ISO 376, Verificación de Máquinas para Ensayos Uniaxiales Estáticos, Máquinas de Ensayo de Tensión / Compresión Verificación y Calibración del Sistema de Medición de Fuerza. VES PERÚ SAC CALIF

Trazabilidad

Se utilizó patrón calibrado con trazabilidad al SI, calibrado por la Pontificia Universidad Católica del Perú BRACIONES PERÚ S Con Certificado N° INF - LE 238-19 DERU SAG CALIBRACIONES PERÚ SAG CALIBRACION

Resultados de medición

	ctura de la	CALIBRACIO Lectura del patrón (BRACIONES		Promedio	Cálculo de errores		RADIONES PER	
RACIM	áquina (Fi)	Primera	Segunda	Tercera	PERU SAU	Exactitud	Repetibilidad	Incertidumbre
0%	kgf SAC	kgfones	kgfsac	Kgf NES	kgf	q(%)	b(%)	ALIBE U(%)
10	10000	9985.0	9985.0	9985.0	9985.0	0.2000	0.0	0.24
20	20000 -	19985.0	19985.0	19985.0	19985.0	0.10NE	0.0	0.24
30	30000	30005.0	30005.0	30005.0	30005.0	QALO.0	0.0	0.24
40	40000	40015.0	40015.0	40015.0	40015.0	CAL 0.0	0.0	0.24
50	50000	50016.0	50016.0	50016.0	50016.0	CP0.0	S PERO.O	GAL 0.24
60	60000	60015.0	60015.0	60015.0	60015.0	CAL O.O.RACT	0.0	0.24 ONE
70	.ci:70000	70020.0	70020.0	70020.0	70020.0	0.0 ACION	0.0	0.24
80	0 80000 RU	80025.0	80025.0	80025.0	80025.0	0.0 BRAC	0.0 sAC	0.24 CION
90	90000	90030.0	90030.0	90030.0	90030.0	0.0	ONE O.O RUS	0.24
100	100000	100030.0	100030.0	100030.0	100030.0	0.0	0.0	0.24
Lectur	a máquina en cero	USAC CALIBRA	CIONES PERUS	SAG OCALIBI	NOMES PERUS!	SAG O'ALIBR	ONES O RUSA	Error máx. de cero(0)=0.00

Temperatura promedio durante los ensayos 18.0 °C; Varación de temperatura en cada ensayo < 2 °C. Evaluación de los resultados CALIBRACIONES PERÚ SAC CALIBRACIONES PE

Los errores encontrados entre el 20% y el 100% del rango nominal considerado no superan los valores máximos permitidos establecidos en la norma ISO 7500-1.

CALIBA

Observaciones

- · Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"
- · La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

CALIBRACIONES PERÚ S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín De Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016

E-mail: ventas@calibracionesperu.pe laboratorio@calibracionesperu.pe www.calibracionesperu.pe

Anexo 06: Constancia de Realización de Ensayos en Laboratorio

REGISTRO DE ENSAYOS LABORATORIO MECANICA DE SUELOS Y CONCRETO

CONSTANCIA 202301

EL QUE SUSCRIBE:

SANDRA DIANA AGUILAR CAHUAPAZA GERENTE GENERAL GEOKASA SAC EIRL

Que el Srta. JANNET MAMANI RAMOS, realizo trabajos de ensayos de laboratorio para la tesis denominada "MODIFICACION DE LAS PROPIEDADES DEL SUELO DE LA SUBRASANTE DE LA AV. SANTA FORTUNATA USANDO CAL Y ZEOLITA, MOQUEGUA 2023", en el laboratorio de mecánica de suelos y concreto de la empresa GEOKASA SAC E.I.R.L. con RUC: 20607925161 con domicilio: Villa San Antonio Mz. E3 – Lt. 03.

Se expido la siguiente constancia a solicitud del interesado, para los fines que crea conveniente.

GEOKASA SAC E.I.R.L. RUC 20607925161

Sandra Diana Aguilat Cahuapaza

Anexo 07: Panel Fotográfico

Foto 1: vista de la Avenida Santa Fortunata