

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Comportamiento sismorresistente para edificaciones de concreto armado en la urbanización La Alborada Tumbes 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Ortiz Benavides, Brandon Oliver (orcid.org/0009-0005-0810-3615)

ASESOR:

Mg. Villar Villar Quiroz, Josualdo Carlos (orcid.org/0000-0003-3392-9580)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico Estructural

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

CALLAO - PERÚ

2024

Dedicatoria

A mis padres, hermanos y seres queridos,

Este logro simboliza el resultado de mi arduo trabajo y dedicación, pero también es un homenaje a la resistencia y el apoyo que he recibido de todos ustedes durante este viaje. Su presencia en mi vida es el motor que me impulsa a superar desafíos y a evolucionar como persona. A mis apreciados profesores y mentores, la sabiduría que han compartido y las lecciones que me han transmitido han dejado una marca imborrable en mi trayecto a convertirme en ingeniero civil. Universidad César Vallejo, quiero expresar mi gratitud por proporcionarme la base necesaria para aprender y desarrollarme. Este logro es un testimonio de la importancia de la familia, la educación de alta calidad y la perseverancia en la búsqueda de metas. Dedico esta tesis a cada uno de ustedes, quienes han sido mi fuente de inspiración y mi impulso constante.

Con aprecio y cariño,

Ortiz Benavides Brandon Oliver

Agradecimiento

A mis queridos padres, hermanos y seres queridos

Agradezco profundamente su apoyo inquebrantable y constante a lo largo de esta travesía académica. A mis respetados docentes y mentores, agradezco su sabiduría y orientación, que han sido fundamentales para mi desarrollo profesional. A la Universidad César Vallejo gracias por brindarme las herramientas necesarias para alcanzar este logro. Este logro es un testimonio del poder del apoyo familiar, la educación de calidad y la dedicación. Con gratitud eterna.

Ortiz Benavides Brandon Oliver

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, VILLAR VILLAR QUIROZ JOSUALDO CARLOS, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CALLAO, asesor de Tesis titulada: "Comportamiento sismorresistente para edificaciones de concreto armado en la urbanización La Alborada Tumbes", cuyo autor es ORTIZ BENAVIDES BRANDON OLIVER, constato que la investigación tiene un índice de similitud de 15.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 29 de Febrero del 2024

Apellidos y Nombres del Asesor:	Firma
VILLAR VILLAR QUIROZ JOSUALDO CARLOS	Firmado electrónicamente
DNI: 40132759	por: JVILLARQ el 09-03-
ORCID: 0000-0003-3392-9580	2024 09:30:52

Código documento Trilce: TRI - 0739071

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad del Autor

Yo, ORTIZ BENAVIDES BRANDON OLIVER estudiante de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CALLAO, declaro bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Comportamiento sismorresistente para edificaciones de concreto armado en la urbanización La Alborada Tumbes", es de mi autoría, por lo tanto, declaro que la Tesis:

- No ha sido plagiada ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma		
ORTIZ BENAVIDES BRANDON OLIVER	Firmado electrónicamente		
CARNET EXT.: 005464723	por: BORTIZB el 04-03-2024		
ORCID: 0009-0005-0810-3615	23:00:40		

Código documento Trilce: INV - 1524996

٧

Índice de Contenidos

Ca	rátula	l	i
De	dicato	oria	ii
Agı	radec	imiento	iii
De	clarat	oria de Autenticidad del Asesor	iv
De	clarat	oria de Originalidad del Autor	V
Índ	ice de	e Contenidos	vi
Índ	ice de	e Tablas	vii
Índ	ice de	e Figuras	viii
RE	SUM	EN	ix
AB		\СТ	
l.	INTF	RODUCCIÓN	1
II.	MAF	RCO TEÓRICO	5
III.	MET	ODOLOGÍA	11
	3.1	Tipo, enfoque y diseño de investigación	11
	3.2	Variables y operacionalización	12
	3.3	Población, muestra y muestreo	14
	3.4	Técnicas, instrumentos de recolección de datos	15
	3.5	Procedimientos	17
	3.6	Métodos de análisis de datos	18
	3.7	Aspectos Éticos	19
IV.	RES	SULTADOS	20
V.	DISC	CUSIÓN	29
VI.	CON	ICLUSIONES	33
VII.	REC	OMENDACIONES	34
RE	FERE	ENCIAS	35
ΑN	EXO	S	39

Índice de Tablas

Tabla 1. Esquema de diseño transversal	12
Tabla 2. Clasificación de Variables	13
Tabla 3. Operacionalización de Variables	13
Tabla 4. Instrumentos y validaciones	16
Tabla 5. Metrado de cargas (Losa Aligerada)	20
Tabla 6. Metrado de Cargas (Losa Maciza)	20
Tabla 7. Metrado de Carga (Viguetas)	21
Tabla 8. Metrado de carga (Vigas principales y secundarias)	21
Tabla 9. Desplazamiento en el Eje X (m)	23
Tabla 10. Desplazamiento en el Eje Y (m)	23
Tabla 11. <i>Derivas en los Ejes X e Y</i>	23
Tabla 12. <i>Desplazamiento en los ejes X e Y</i>	24
Tabla 13. <i>Desplazamiento Máximo X</i> e Y	24
Tabla 14. Cortante en la base	26
Tabla 15. Cortante V en Los ejes "X" e "Y"	.26
Tabla 16. Cortante en Muros en los ejes X e Y	26
Tabla 17. Fuerza Cortante	27
Tabla 18. <i>Periodos</i>	27
Tabla 19. <i>Masa participativa</i>	28
Tabla 20. Modos de la Masa Participativa	28

Índice de Figuras

Figura 1. Diagrama del diseño de la Investigación	. 12
Figura 2. Terreno ubicado en Alborada Tumbes (Vista Área)	<i>.</i> 15
Figura 3. Mapa conceptual del procedimiento	. 17
Figura 4. Patrones de Carga	. 21
Figura 5. Desplazamiento Sísmico Dinámico en el Eje X (m)	. 22
Figura 6. Desplazamiento Sísmico Dinámico en el Eje Y (m)	. 22
Figura 7. Centro de diafragma del desplazamiento de masas en X	. 24
Figura 8. Centro de diafragma del desplazamiento de masas en Y	. 24
Figura 9. Aceleración Espectral en X	. 25
Figura 10. Aceleración espectral en Y	. 25
Figura 11. Fuerzas E y D para los ejes "XY"	27

Resumen

La realización de esta investigación tuvo lugar en Tumbes, en la universidad Cesar Vallejo se determinó el Comportamiento sismorresistente para edificaciones de concreto armado en la urbanización La Alborada Tumbes, para la realización del mismo se usó un diseño no experimental - descriptivo, con muestreo de tipo no probabilístico basado en normativa técnica E-030, E-060, obteniendo datos a través de técnicas de observación, datos que fueron analizados por inferencia estadística y a través de ETABS, el problema radica en las estructuras de Tumbes, mismas que son realizadas de modo empírico y mayormente sin estudio previo a pesar de que este distrito está situado en una zona sísmica de nivel 4 ocasionando colapsos y riegos a las vidas humanas, En el análisis de respuesta sísmica, se determinó un desplazamiento lateral máximo entre pisos de 0.0049 en dirección de X y de 0.0016 en dirección de Y, estando por debajo del límite de desplazamiento de 0.007, conforme a lo estipulado en la normativa E.030, el sistema adoptado fue tipo Dual Tipo II para ambas direcciones X e Y, basado en una combinación de placas y pórticos que soportan las fuerzas sísmicas, En la etapa final, se procedió al diseño de los componentes estructurales.

Palabras clave: Comportamiento sismorresistente, desempeño sísmico, concreto armado.

Abstract

This research took place in Tumbes, at the Cesar Vallejo University, the seismic-resistant behavior of reinforced concrete buildings was determined in the urbanization La Alborada Tumbes, using a non-experimental - descriptive design, with non-probabilistic sampling based on technical standards E-030, E-060, obtaining data through observation techniques, The problem lies in the structures of Tumbes, which are built in an empirical way and mostly without previous study, despite the fact that this district is located in a level 4 seismic zone, causing collapses and risks to human lives. In the analysis of seismic response, a maximum lateral displacement between floors of 0.0049 in the X direction and 0.0016 in the Y direction, being below the displacement limit of 0.007, as stipulated in the E.030 standard, the system adopted was Dual Type II for both X and Y directions, based on a combination of plates and frames supporting the seismic forces, and the design of the structural components.

Keywords: Seismic resistance behavior, seismic performance, reinforced concrete.

I. INTRODUCCIÓN

A nivel global, hay un problema de gran relevancia relacionada con el comportamiento estructural de las edificaciones, mismo que tiene que ver con su diseño. Este problema surge de los un sin número de desafíos al igual que de distintas preocupaciones que deben considerarse con el fin de dar garantías en cuanto a seguridad de las edificaciones y las personas en áreas susceptibles a ser azotadas por sismos.

Entre los desafíos principales reside la vulnerabilidad de las construcciones e infraestructuras existentes, mismas que fueros realizados bajo métodos y técnicas anticuadas las cuales no cumplen con las actuales pautas básicas en el diseño básico de un comportamiento sismorresistente. Las edificaciones mencionadas podrían resultar seriamente afectas en medio de un evento sísmico, lo cual supone un riesgo latente en la vida de los ocupantes. Así pues, es de vital importancia poder de analizar y estudiar estas capacidades de resistencia sísmica con el único fin de mejoras las edificaciones existentes. (Sánchez, 2019).

Adicionalmente, el acelerado aumento de áreas pobladas en regiones altamente sísmicas plantea un reto mucho mayor. La preparación urbana mal proyectada y el escaso control de proyecciones sísmicas efectivas dan cabida a construir infraestructuras sin un solo cumplimiento de los estándares mínimos de lo que respecta a diseño sismorresistente dando lugar al aumento del riesgo de que puedan colapsar al ocurrir un sismo de medida promedio o incluso leve poniendo en riesgo grave a la integridad y salud de la sociedad en general. (Kumar, 2018).

En la agenda 2030 de la ONU incluye un componente sobre "ciudades y comunidades sostenibles" que aborda los desafíos globales para lograr un desarrollo sostenible y garantizar que las urbes y comunidades sean seguras y habitables. De este modo, un propósito de este proyecto es instaurar edificaciones que ofrezcan protección a los individuos que residen en ellas., especialmente en zonas de alto índice sísmico, por otro lado, también el ODS número 9, "Industria, innovación e infraestructuras", tratando de promover la edificación de estructuras resilientes y sostenibles.

En Ecuador, como un país situado en una zona sísmicamente activa, ha implementado diversas prácticas y medidas para abordar la sismoresistencia de

sus estructuras, basados en la "Norma Ecuatoriana de la Construcción Sismorresistente" (NEC/SE/DS) norma que establece los requisitos y estándares técnicos para la planificación y construcción de estructuras capaces de resistir terremotos o sismos, Los ingenieros estructurales en Ecuador emplean también software de modelación sísmica para evaluar la respuesta de las estructuras a las fuerzas sísmicas. Esto incluye análisis de desplazamientos, velocidades y aceleraciones máximas esperadas durante un terremoto. (Guzmán, 2015).

Japón utiliza un enfoque convencional conocido como el Método de Espectro de Capacidad. Este método se utiliza para evaluar el rendimiento sísmico de las estructuras, utilizando software avanzado que permite simular el comportamiento que tiene la estructura antes diversos terremotos de diferentes magnitudes. Nakamura, (2015), también se emplean simulaciones computarizadas para estimar la eficiencia sísmica de las estructuras. Suzuki, (2013) dice que, se utiliza un enfoque que se basa en estimar el nivel de desplazamientos máximos que se espera de la edificación mientras sucede un evento telúrico, este enfoque ya simplificado da la posibilidad de evaluar ágilmente el rendimiento sísmico que presentan las infraestructuras en concepto de desplazamientos máximos. Así, mediante el uso de dichos coeficientes, puede determinarse de forma rápida el rendimiento sismorresistente de las estructuras en el país.

Wang, (2021) indica que, en China, el diseño que tiene como base al comportamiento sísmico presenta ventajas significativas en comparación con los métodos tradicionales de diseño, que a menudo implican esfuerzos excesivos y sobredimensionamientos. Aunque el método de diseño tradicional también busca lograr un cierto nivel de desempeño, este método solo es aplicable a ciertas estructuras y tiene ciertos defectos, como la determinación inexacta de los desplazamientos horizontales y las fuerzas cortantes basales producidas por la carga sísmica.

En el contexto nacional, se emplean principalmente sistemas estructurales como los pórticos de concreto armado y la albañilería confinada para construcción de edificaciones. Es fundamental considerar que estamos ubicados en una zona altamente propensa a la actividad sísmica, como es el caso de Perú. Por lo tanto, el diseño y construcción de viviendas sismorresistentes no es una mera opción,

sino una responsabilidad ineludible. En este contexto, se busca constantemente la innovación y mejora de estos sistemas estructurales para garantizar un óptimo rendimiento en situaciones de sismo y, lo que es más importante, la seguridad de quienes habitan estas viviendas. (Vera, Guevara, 2013).

Chaiña, (2016), Mediante un enfoque de carácter explicativo, configuró una estructura, misma que fue sometida a diversos tipos de cargas sísmicas, esto con la finalidad de obtener una comparativa en los resultados finales. Después de realizar el correspondiente análisis, observó que la infraestructura presentaba comportamientos bastante parecidos en cada tipo de carga y según como lo establece la norma. Sin embargo, Las diferencias relacionadas con el desempeño sísmico estático se identificaron a través de lo estipulado por la normativa E-030 (2016), misma que excluye dichos análisis para áreas categorizadas como sísmicamente moderadamente activas, tal como el caso de los sitios mencionados. En resumen, el autor realizó un análisis y diseño sismorresistente a estructura de seis plantas en Juliaca, siguiendo la normativa peruana de diseño correspondiente (E-030), y observó diferencias en el comportamiento de la estructura según la normativa utilizada.

En la última década, la construcción de edificaciones de concreto armado en áreas urbanas propensas a terremotos ha aumentado rápidamente. Un ejemplo es la urbanización de La Alborada en Tumbes, ciudad interesante por su ubicación ante posibles eventos sísmicos. El aumento en el número de edificios requiere modos y procedimientos de diseño sismorresistentes apropiadas para salvaguardar la protección de las estructuras y preservar la integridad y seguridad de las personas ante sismos o terremotos.

Aun con todos los desarrollos en diseño y la construcción sísmica, resulta fundamental profundizar en la comprensión del comportamiento estructural de los edificios de concreto en áreas específicas, como la urbanización La Alborada en Tumbes. Motivo por el cual, en 2023, se requiere llevar a cabo un estudio cabal que compruebe las propiedades sísmicas de las edificaciones de hormigón armado en proceso de urbanización. Dicho estudio evaluará la capacidad de los edificios para resistir posibles terremotos y proporcionará información valiosa para futuros proyectos de diseño y construcción en la región.

Con base a la información recolectada, surgió la interrogante ¿Cuál es el Comportamiento sismorresistente para edificaciones de concreto armado en la urbanización La Alborada Tumbes?; El propósito del estudio es mejorar el conocimiento de la comunidad de ingenieros y ayudar a reducir los riesgos sísmicos generados a edificaciones similares en la región, proporcionar una base sólida para en proyectos venideros de construcción y garantizar la seguridad de individuos y propiedades contra posibles eventos telúricos.

Mediante el análisis de las características de diseño de la estructura, los parámetros sísmicos, y la simulación y modelación a través de un software estructural se espera obtener información valiosa para la correcta construcción de las edificaciones de la urbanización de La Alborada Tumbes pudiendo hacerles frente a futuros eventos sísmicos, al comprender mejor el desempeño sísmico de un edificio, se pueden tomar medidas más efectivas para la correcta construcción de edificaciones ante futuros eventos sísmicos. Este estudio proporciona pautas y recomendaciones que lo convierten en una herramienta invaluable para los profesionales de la ingeniería y contribuirá al desarrollo de un entorno urbano más seguro y resistente en La Alborada Tumbes.

El proyecto se ejecutó cumpliendo de forma estricta la normativa E-030, E-060, al que igual que hizo uso de normativas como la E-020 Y E-050 para verificar que el comportamiento de la edificación se encuentre dentro de los parámetros admisibles por ende sea sismorresistente, El proyecto lleva por objetivo general: Determinar el Comportamiento sismorresistente para edificaciones de concreto armado en la urbanización La Alborada Tumbes, 2023, y por objetivos específicos: Obtener el Predimensionamiento de cargas de una edificación de concreto armado de cuatro niveles en Alborada Tumbes, 2023; Obtener los desplazamientos de una edificación de concreto armado de cuatro niveles en la alborada Tumbes, 2023 Determinar la masa participativa de una edificación de concreto armado de cuatro niveles en la alborada, Tumbes, 2023. Por otro lado, también se presentó la siguiente hipótesis: Conocer el comportamiento sismorresistente que tiene una edificación tiene un impacto significativo y positivo en la capacidad de resistencia y durabilidad que tendrán estas edificaciones de concreto armado en la urbanización La Alborada Tumbes en el año 2023.

II. MARCO TEÓRICO

Antecedentes

Mata, (2015), En su investigación realizada para comparar y analizar Los resultados obtenidos con métodos tradicionales a través de metodologías simplificadas que incluyen efectos de interacción suelo-estructura sugieren que el método recomendado por el Código Venezolano puede ser más conservador que el método utilizado en el estudio porque no toma en cuenta el suelo. la base de unsistema rígido de forma flexible.

Esto se refleja en los resultados obtenidos, ya que la metodología explícita simplificada mostro los valores de desplazamiento de cimentación y momento de vuelco obtenidos son menores en comparación con el análisis convencional. Por lo tanto, se recomienda considerar la rigidez del sistema suelo-cimentación al incorporar los efectos de interacción suelo-estructura en el análisis estructural para obtener respuestas precisas y disminuir la vulnerabilidad en los edificios. (p.80)

La investigación es de gran importancia ya que muestra que el método convencional puede subestimar los desplazamientos y momentos de vuelco en comparación con la metodología simplificada, que tiene en cuenta la rigidez del sistema suelo-cimentación. Esto resalta la necesidad de incorporar los efectos de interacción en el análisis estructural para obtener respuestas más precisas y reducir la vulnerabilidad de las edificaciones.

En su tesis con la cual obtuvo el título de ingeniero civil de la Universidad Andina Néstor Cáceres Velázquez de Perú, Chaiña, (2016) analizó y diseñó un edificio de hormigón armado de seis pisos. El diseño se realizó de acuerdo con los parámetros de diseño sísmico especificados en las Normas Peruanas E.030 y E.020. Utilizando una metodología netamente explicativa, se estableció una estructura que fue sometida a diversos tipos de cargas sísmicas para luego comparar los resultados.

Según el análisis efectuado, se registró en el eje X un desplazamiento relativo máximo entre pisos de 1.7 cm, mientras que el límite de desplazamiento relativo entre pisos fue de 2.9 cm. En cuanto al eje Y, se observó un desplazamiento relativo máximo entre pisos de 1.3 cm, con un límite de desplazamiento relativo entre pisos de 2.9 cm. Los resultados obtenidos indican que, mediante el análisis del edificio de servicios utilizando el software ETABS, se ajusta a los límites establecidos para

el desplazamiento relativo y las distorsiones, incorporando los parámetros normativos actuales. (p.38)

El autor destaca la importancia del análisis y diseño sísmico de estructuras al seguir las normativas peruanas para edificar estructuras sismorresistentes, se evaluó el desenvolvimiento de una infraestructura de concreto de seis niveles frente a diferentes solicitaciones sísmicas. Los resultados evidenciaron la necesidad de considerar perspectivas actualizadas y adaptadas a las características sísmicas locales. Este estudio proporciona conocimientos valiosos para profesionales en el ámbito civil y destaca lo importante de aplicar normativas actualizadas garantizando así la seguridad y el rendimiento óptimo de las estructuras en áreas sísmicas.

Gonzales y Muñoz, (2021) llevaron a cabo su proyecto con suelo de 40 ton/m2 de capacidad portante. El sistema estructural se redimensionó haciendo uso de parámetros ya establecidos en el libro "Estructuración y Diseño de Edificaciones en Concreto Armado" de Antonio Blanco (1994).

En el proyecto, utilizaron un enfoque de modelado que incluyó el diseño de la estructura, donde se proyectó la placa considerando un 80% de fuerza cortante estática basal resistida placas revestidas de concreto. Asimismo, las zapatas fueron diseñadas haciendo uso de las cargas de servicio y se ubicaron a una profundidad de -1.20 m, respecto del sótano. Por otro lado, fueron analizados como elementos bidimensionales a partes como las losas macizas, Considerando la dirección de la carga perpendicular a ellos. (p.43)

Un modelo tridimensional se desarrolló utilizando el software ETABS, haciendo uso de vigas y columnas considerados elementos de una sola dimensión, al igual que muros en el ámbito de elementos de 2 dimensiones. Este modelo fue utilizado para analizar las cargas gravitatorias y, en consecuencia, para llevar a cabo un análisis sísmico-espectral.

El proyecto llevado a cabo por Gonzales y Muñoz con el fin de analizar y por consiguiente diseñar de un edificio multifamiliar en concreto. Se utilizaron metodologías y normativas específicas para lograr una estructura segura y resistente. Los resultados obtenidos contribuyen al conocimiento y avance en el campo del diseño estructural de edificaciones, asegurando la calidad y confiabilidad

de la construcción.

En la investigación con la cual obtuvieron el título de ingeniero civil en la universidad estatal con una tesis, Delgado y Ledesma (2016) mostraron que la acción sísmica actúa en la dirección del eje principal de la estructura del edificio de planta irregular, lo que enfatiza la importancia de realizar este tipo de análisis. Los métodos utilizados son explicativos.

La conclusión obtenida del estudio es que los factores geométricos y los distintos componentes de índole estructural proporcionan suficiente rigidez lateral para permitir que la energía sísmica se disipe dentro de parámetros seguros ya sea en términos de esfuerzos inducidos o de desplazamientos. (p.90)

Se diseñaron todos los elementos estructurales de acuerdo a los parámetros establecidos en la Norma Técnica Peruana NTP E.060. Se realizó una verificación para asegurar que el acero utilizado no presentara congestión en el área definida para cada elemento estructural.

Según el estudio realizado por Moscoso, (2019) evaluando el rendimiento de edificios hospitalarios en Perú, con el objetivo principal de evaluar el comportamiento de un hospital moderno prefabricado en conformidad con la normativa peruana vigente. Utilizando una metodología aplicativa, se obtuvo que para una aceleración de 0.675g (PGA), las deformaciones máximas oscilaron entre 0.0021 y 0.006. (p. 411) En conclusión, se determinó que para una aceleración de 0.45g (correspondiente a un sismo de diseño), el desempeño estructural fue calificado como de daño leve.

Por otro lado, en la tesis de posgrado realizada por Calcina. (2017), con el propósito de comparar la eficacia de los análisis estático y dinámico no lineal en la determinación de la capacidad estructural y el comportamiento sísmico de un edificio de 11 niveles. La metodología empleada se caracterizó como investigación pura, con un diseño causal explicativo. Los resultados indicaron un desplazamiento máximo de 2.019 cm, lo que permitió calificar el nivel de desempeño como apto para ocupación inmediata, con referencia a daños mínimos o nulos tanto en los componentes estructurales como no estructurales. (p.82)

Ambos estudios subrayan la importancia de evaluar y calificar el rendimiento

sísmico de edificaciones en el contexto peruano, considerando diversas condiciones y enfoques de análisis.

Quispe (2015) realizó un estudio en su trabajo de revisión profesional para evaluar los beneficios de diseño de edificios de apartamentos de cinco pisos en la zona de Surquillo comparando las normas E.030-2003 y E.030-2014; El enfoque utilizado en el estudio fue explicativo, lo que permitió analizar detalladamente las diferencias entre las dos normativas. Como resultado, Seencontró que el diseño del edificio estaba ligeramente reducido en los detalles de los cimientos. No se observaron variaciones significativas en los cálculos, ya sea un volumen de acero o una sección de hormigón, en relación a los requerimientos sísmicos según normativa. (p.75)

Estos hallazgos son relevantes, ya que proporcionan información pertinente para profesionales civiles y el diseño estructural. Al comparar las dos normativas, se pueden detectar las diferencias al igual que sus similitudes en términos de requerimientos y criterios de diseño sísmico. Esto permite tomar decisiones más informadas al diseñar estructuras en zonas sísmicas y garantizar su adecuada resistencia y seguridad.

Bases teóricas.

Comportamiento sismorresistente; se centra en la planificación y construcción de estructuras capaces de resistir y absorber las fuerzas generadas por un terremoto, minimizando así el riesgo de daños estructurales y protegiendo la seguridad de las personas y las propiedades, cabe señalar que las fuerzas horizontales generadas durante los terremotos son laprincipal causa de daño estructural. Por lo tanto, la estructura debe estar diseñada para soportar la aceleración horizontal máxima expresada como un porcentaje de la aceleración debida a la gravedad (Bozzo y Barbat, 2016), p. 89.

La Asociación Internacional de Sismología (AIS) dice que, La norma establece una teoría de diseño sismo-resistente que se centra en varios aspectos clave. En primer lugar, busca garantizar la seguridad de las personas al evitar perder la vida de las mismas durante un terremoto. Además, se enfoca en garantizar que continúen los servicios básicos para manteniendo el funcionamiento adecuado de la estructura. Otro objetivo importante es minimizar al máximo los daños estructurales causados por el movimiento telúrico. En tal sentido, se resalta la importancia de mantener la

integridad estructural durante un terremoto severo evitando arriesgar la vida de sus ocupantes. Además, busca que la estructura tenga la capacidad de absorber y amortiguar los desplazamientos generados por sismos pequeños y de índole moderada, reduciendo daños y llevándolos a rangos aceptados. (p.1-4).

Análisis de resistencia; Tiene como objetivo fundamental garantizar que en ningún punto de la estructura se produzca un esfuerzo que supere la máxima resistencia inherente del material utilizado. Esto implica evaluar cuidadosamente fuerzas y a su vez las cargas que actúan en la estructura, considerando tanto las cargas estáticas como las dinámicas, como las generadas por un movimiento sísmico. Es crucial que la resistencia del material de construcción sea suficiente para soportar estas cargas sin comprometer la integridad de la estructura.

Evaluación analítica de resistencia; Tiene como propósito evaluar de manera detallada y precisa los factores que puedeninfluir en la disminución de la resistencia de una estructura, así como los factores de carga que actúan sobre ella. Mediante un enfoque analítico, se analizan minuciosamente las características y propiedades del material estructural, considerando su resistencia inherente, su comportamiento frente a diferentescargas y solicitaciones, y los posibles mecanismos de deterioro o debilitamiento a lo largo del tiempo. Además, se evalúan los factores de carga que pueden afectar la estructura, como las cargas gravitacionales, las cargas sísmicas, las cargas de viento u otras cargas externas. Esta evaluación analítica permite identificar y cuantificar los posibles riesgos y vulnerabilidades de la estructura, brindandoinformación valiosa para la toma de decisiones en el diseño, mantenimiento y reforzamiento de la misma. En última instancia, busca asegurar que la resistencia de la estructura sea adecuada y confiable para resistir las cargas previstas y proporcionar un nivel de seguridad aceptable para los ocupantes y usuarios de la edificación.

Concreto estructural; Es un elemento esencial cuya planificación debe cumplir con las demandas necesarias para asegurar la estabilidad y resistencia de una estructura. Esto adquiere una importancia especial en áreas con alta actividad sísmica, donde se necesitan propiedades destacadas de densidad, elasticidad y compresión. La densidad del concreto estructural es crucial para garantizar su solidez y capacidadde carga, mientras que la elasticidad se refiere a su capacidad

de deformarse y recuperarse bajo cargas, lo cual resulta fundamental para absorber la energía generada por los movimientos sísmicos. Además, la resistencia a la compresión esun factor clave para evaluar la capacidad del concreto de soportar cargas compresivas.

Análisis estático; En referencia a Méndez y Díaz (2019), El propósito del análisis estático de una infraestructura trata de calcular las fuerzas que actúan sobre los cimientos del edificio debido a un terremoto, llamado desplazamiento de los cimientos. La fuerzaes transportada a través de la estructura y esta a su vez la distribuye en el centro de gravedad de cada capa. Por lo tanto, cada piso está sujeto a deformaciones queestán directamente relacionadas con su peso y el parámetro "k", que está relacionado con el período de vibración de esta infraestructura. (p. 37). Análisis dinámico; En referencia a Méndez y Díaz (2019), la expresión "análisis dinámico" es usada para expresar un enfoque en el que no solo se tienen en cuenta las fuerzas que actúan en cada piso de la infraestructura, igualmente las

Diseño estructural; Implica establecer la sección transversal mínima necesaria para asegurar la integridad de una estructura frente a eventos sísmicos. En este proceso, seconsidera tanto el aspecto económico como la seguridad de las personas. Esto implica determinar las magnitudes adecuadas de los factores estructurales para resistir las fuerzas generadas por los movimientos telúricos, garantizando asíla estabilidad y evitando daños catastróficos.

aceleraciones y velocidades resultantes de las deformaciones provocadas por los

eventos telúrico.(p. 39).

Sistemas Estructurales; Según Smith y Johnson (2018), lo definen en las siguientes palabras " Un arreglo organizado de elementos estructurales que trabajan juntos para soportar y transferir las cargas que actúan sobre la estructura" (p. 45), se refieren a las configuraciones y métodos específicos empleados para garantizar la estabilidad y resistencia de las edificaciones. Estos sistemas incluyen pórticos de concreto armado, sistemas de muros de carga, entre otros. Su elección está determinada por consideraciones técnicas y geográficas, así como por las cargas que la estructura debe soportar. La ingeniería estructural desempeña un papel fundamental en el diseño y análisis de estos sistemas, asegurando que las estructuras cumplan con los requisitos de seguridad y desempeño necesarios.

III. METODOLOGÍA

3.1 Tipo, enfoque y diseño de investigación

3.1.1 Enfoque de la investigación

La investigación a realizar utiliza una metodología de enfoque cuantitativo para examinar la hipótesis planteada que involucra la recopilación y análisis de datos numéricos utilizando técnicas estadísticas. Esto permite comprobar la hipótesis planteada de manera objetiva y precisa.

3.1.2 Tipos de investigación:

3.1.2.1 Según el propósito:

Se define esta tesis como aplicada (practica), puesto que se fundamenta en la recopilación de datos proveniente de documentos y artículos relacionados con distintas normativas. Estos recursos proporcionarán el conocimiento necesario para resolver problemas específicos de construcción y explorar posibles soluciones.

3.1.2.2 Según el diseño:

El diseño de investigación con el que se plantea esta tesis se fundamenta en realizar un análisis el desempeño sísmico de un edificio de cuatro plantas o niveles usando para ello cálculos virtuales que representan ejemplos reales sin manipular variables. De acuerdo con esta premisa, se adoptará un diseño de enfoque de índole No experimental para esta investigación.

3.1.2.3 Según el nivel:

En palabras de Hernández (2010), Los métodos de investigación de carácter descriptivo implican realizar una observación y por consiguiente describir el comportamiento de un individuo sin tener que influir en él. Su propósito es suministrar una descripción completa y bien detallada de la naturaleza que caracteriza distintos grupos de población específicos. (p. 30).

En este estudio, nuestro objetivo es comprender y describir el comportamiento sismorresistente de una infraestructura de 4 plantas, así como identificar qué efectos pueden ser observados. Por lo tanto, el enfoque de investigación adoptado se sitúa en un nivel netamente descriptivo.

3.1.3 Diseño de investigación:

El diseño utilizado en este análisis fue no experimental, lo que significa que no existió manipulación deliberada ni de otra índole de las variables de estudio. Por contraparte, se analizaron variables en el medio natural y análisis posteriores. Los datos utilizados en este estudio se recopilaron en un solo punto en el tiempo, lo que permitió un enfoque transversal. Todo esto permite explorar la relación entre las variables tomadas en cuenta en el estudio.

Figura 1. Diagrama del diseño de la Investigación

Tabla 1. Esquema de diseño transversal

Estudio	Transversal
M	0

3.2 Variables y operacionalización

3.2.1 Variables

3.2.1.1 Variable Dependiente

Comportamiento Sismorresistente; Corresponde al comportamiento que presenta una Edificación después de verse expuesta a los efectos de un terremoto significativo. Este nivel de afectación se evalúa previamente en función de la capacidad de la edificación para resistir desplazamientos laterales y fuerzas cortantes fundamentales sin experimentar deformaciones. Está basada en descubrir las mejores condiciones para el diseño más adecuado a la edificación, al igual que construcción de edificaciones en condiciones de una correcta respuesta sísmica de acuerdo a los criterios definidos en la normativa peruana (E.030). estableciendo el estado correcto e ideal del edificio para garantizar su seguridad y por consecuencia su resistencia ante eventos sísmicos, y tratar de asegurar su integridad estructural en estas condiciones

3.2.2 Clasificación de variables

Tabla 2. Clasificación de Variables

CLASIFICACIÓN DE VARIABLES									
Variable Relación Naturaleza Escala de medición Dimensión medici									
Comportamiento Sismorresistente	Independiente	Cualitativa continua	Razón	Bidimensional	indirecta				

3.2.3 Operacionalización de Variables:

Tabla 3. Operacionalización de Variables

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	- INDICADORES	ESCALA DE MEDICIÓN
Comportamiento Sismorresistente	Nivel de rendimiento donde la degradación en la rigidez del lateral y la capacidad de resistencia de una estructura implica también el equilibrio de esta composición llegando cerca del colapso de la estructura.	Grado de implicación que experimente una estructura luego de verse afectada por los impactos de un terremotosignificativo. Se evalúa previamente en función de su capacidad para resistir desplazamientos laterales y fuerzas cortantes fundamentales sin experimentar deformaciones.	Predimensionamiento de cargas Desplazamientos	Metrado de cargas Asignaciones de patrones de carga Derivas y desplazamiento máximo Aceleración espectral Fuerza cortante Masa participativa, periodos.	Razón

3.3 Población, muestra y muestreo

3.3.1 Población

Población en términos generales hace referencia a la agrupación de objetos que comparten posibles características "finita – infinita". Desde una perspectiva amplio podemos generalizar que, consideramos población al conjunto de magnitud infinita conformado por elementos con características compartidas. (Balestrini Acuñe, 2006).

En esta investigación, la población se conforma de todas las edificaciones en Tumbes 2023

3.3.2 Muestra

De acuerdo con Arias (2006), la componente más destacada en la población se refiere a una porción específica que resume las características de dicha población. Estas fracciones representan segmentos que componen un conjunto definido, delineados por sus singularidades y denominados como la población.

Se consideró como muestra de estudio en la presente investigación, Los terrenos baldíos En el sector La Alborada Tumbes.

3.3.3 Muestreo

El presente proyecto debe ser dirigida por un profesional que tenga los conocimientos necesarios sobre la temática abordada, en este sentido será necesario el juicio profesional para seleccionar los elementos pertinentes que serán abordados en esta investigación.

En cuanto al muestreo, está basado en un muestreo no probabilístico mismo que a su vez fue elegido por juicio de expertos haciendo uso de la decisión del autor de forma intencional debido a que el investigador eligió la muestra de acuerdo con los objetivos establecidos.

3.3.3.1 Tamaño de muestra

En este punto podemos apreciar que, la muestra tiene un tamaño conformado por una edificación en proyecto la cual contará con 4 niveles misma que se ubica en el sector la alborada y cuenta con un terreno de 506 metros cuadrados y un área de 21m por 23m.

Figura 2. Terreno ubicado en Alborada Tumbes (Vista Área)

3.4 Técnicas, instrumentos de recolección de datos, validez y confiabilidad.

3.4.1 Técnicas de recolección de datos

En la presente tesis se usó la observación directa como técnica principal para recolectar datos, por otro lado, también se aplicó la experimentación al igual que el uso de fichas de datos para registrar las propiedades en el sector en el cual se realizó la investigación, procediendo con el modulado en Etaps y otros softwares relacionados para una correcta estructuración antisísmica todo esto en base a un riguroso análisis de la normativa vigente(E-030).

3.4.2 Instrumentos de recolección de datos

En la realización de la tesis presente, se utilizaron herramientas tal como guías de observación, misma que recabara los distintos detalles que se puedas apreciar en el área de ejecución de la edificación, al igual fichas de datos para los valores recogidos de las simulaciones en Etaps y otros softwares de diseño estructural y sismorresistente.

Tabla 4. Instrumentos y validaciones

Etapas de la Investigación	Instrumento	Validación			
Estructuración y Predimensionamiento	Guía de Observación (Anexo 3)	Norma E0.20 NormaE060 Norma E0.50			
Modelamiento estructural	Guía de Observación (Anexo 3)	NormaE.030			
Análisis estructural	Guía de Observación (Anexo 3)	Norma E0.20 NormaE.030 Norma E050 NormaE060			
Diseño estructural	Guía de Observación (Anexo 3)	Norma E0.20 NormaE.030 Norma E050 NormaE060			

3.4.3 Validación de instrumentos de recolección de datos

Para asegurar la validez de los instrumentos utilizados en esta investigación, se tomó en cuenta la normativa E-030, misma que describe el comportamiento optimo en un diseño sismorresistente, además se utilizó como guía otras normas tal como la normativa E-020, E-050 Y E-060 respectivamente con el fin de garantizar la correcta evaluación de la presente tesis.

3.4.4 Confiabilidad de los instrumentos de recolección de datos

Para garantizar la confiabilidad de este estudio se cumplió con la normativa E-030, además se contará con la participación de expertos en el campo de diseño estructural sismorresistente, utilizando equipos correctamente calibrados y certificados y software estructurales potentes y especializados.

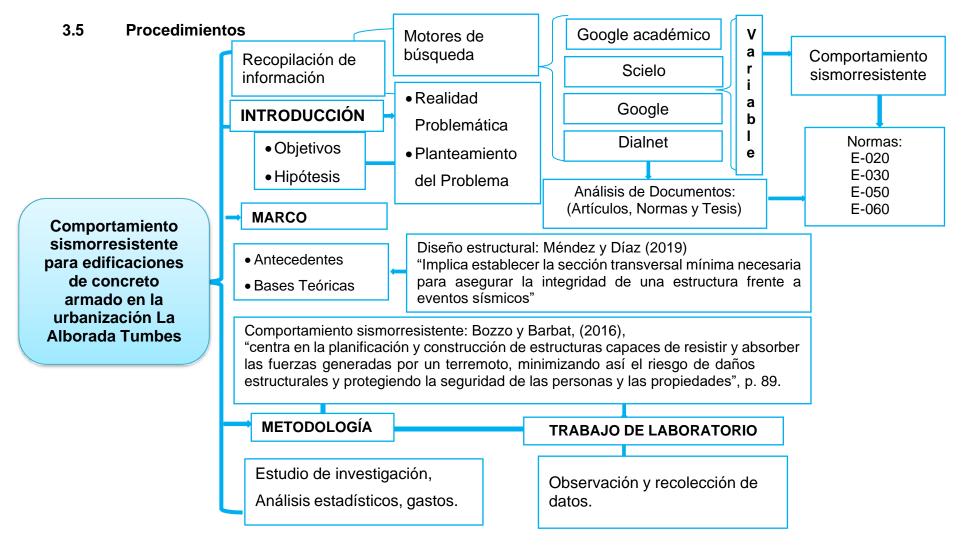


Figura 3. Mapa conceptual del procedimiento

3.5.2 Procedimiento

Durante el diseño arquitectónico y análisis sísmico del edificio de cuatro pisos ubicado en la colonia Alborada, Tumbes se utilizaron diversos métodos, y el análisis bibliográfico jugó un papel importante en la recopilación y verificación de la información requerida para la tesis a elaborar. Además, se utilizan diversas herramientas y recursos para realizar las tareas necesarias.

la presente indagación se enfoca en el interpretación y modelación sísmico de una casa de cuatro pisos y describe de forma precisa y detalla cada proceso realizado. En primera instancia, se llevará a cabo una amplia recopilación rigurosa de datos e información, incluida una revisión de textos científicos y articulo, informes estadísticos, al igual que las normas usadas nacional e internacionalmente y recopilación de datos antes de buscar publicaciones en Internet y visitas a las bibliotecas públicas y de las instituciones pertinentes, seguido de una fase preparatoria. , que incluye el análisis de los datos recopilados hasta el momento, para el desarrollo de la recopilación de datos y la creación de las herramientas necesarias y la implementación de estas herramientas en el edificio utilizando el programa de diseño estructural ETABS.

En tercer orden, se procesan e interpretan correctamente los efectos obtenidos con la ayuda del programa estructural ETABS. Todos los datos obtenidos serán analizados y se sacarán veredictos en base a los resultados que se obtengan. Cada uno de los pasos a seguir deben llevarse a cabo de forma rigurosa y sistemática para asegurar la veracidad y fiabilidad de los efectos del proyecto.

3.6 Métodos de análisis de datos

Según Ávila (2006), Los métodos para analizar los datos de la investigación se determinarán a través del examen de los mismos recopilados de forma rigurosa siguiendo esta línea también se dará uso a herramientas de estadística descriptiva apropiadas para desarrollar la tesis (p. 97), en este caso, se utilizarán softwares estructurales como Etaps, y programas de ofimática como Excel; En contraparte, Sánchez, Mejía y Reyes (2018) afirman que para esta fase investigativa incluye un análisis que sea totalmente detallado en cuanto a la información recolectada,

como una evaluación rigurosa. (p. 17). También se hizo uso de estadística inferencial para validar la efectividad de los modelos estructurales utilizados en ETABS, recopilé datos reales de pruebas sísmicas y empleé la estadística inferencial para comparar y evaluar la precisión del modelo. Este enfoque garantizó que las simulaciones estructurales se alinearan de manera confiable con el comportamiento sísmico observado en la realidad.

- El enfoque de diseño basado en la resistencia implica que la capacidad de resistencia de todos y cada uno de los elementos en cada sección de la estructura debe ser igual o superior a los requerimientos de resistencia necesarios. Para lograr esto, se toman en cuenta combinaciones de cargas que son amplificadas y especificadas de manera general.
- Es esencial alcanzar una distribución equitativa del centro de masa en todos los niveles y en la altura total de la estructura. Se aconseja que las discrepancias en las masas se correspondan con las disparidades en la rigidez de la estructura. También, se destaca la importancia de evitar alteraciones bruscas en la relación entre la masa y la rigidez entre los distintos niveles, con el fin de prevenir la concentración de esfuerzos.
- En el presente, la mayoría de las estructuras de edificios construidos con concreto armado se fundamentan en el método de análisis lineal elástico, como está especificado en los códigos de construcción. No obstante, dado que la actividad sísmica se manifiesta a través de cargas dinámicas.

3.7 Aspectos Éticos

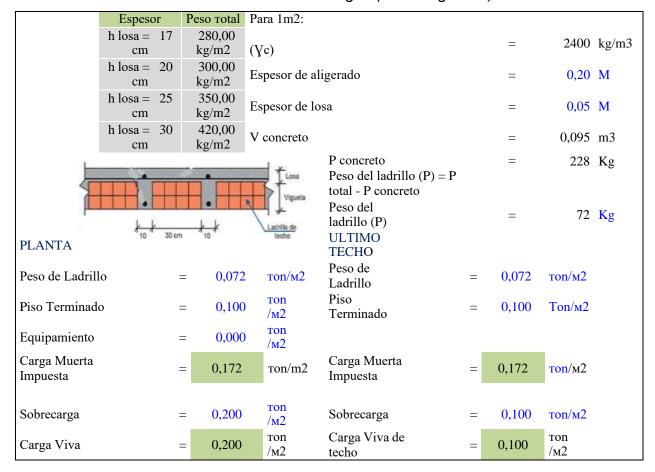
Los resultados obtenidos en este estudio son originales y creados totalmente por el autor; En esta investigación se ha seguido un enfoque ético que se basa en principios, tal como, el principio a la beneficencia, dado que la investigación contribuye a futuras obras desarrolladas en Tumbes, mismas que serán más seguras para sus habitantes, beneficiando así a su población, también se basa en el principio de no maleficencia y criterio de autonomía, ya que al realizarse la investigación no se comprometió la integridad de ningún sujeto, debido a que todas las aplicaciones realizadas fueron llevadas a cabo por el investigador de forma autónoma, centrándose exclusivamente en los objetivos de la investigación.

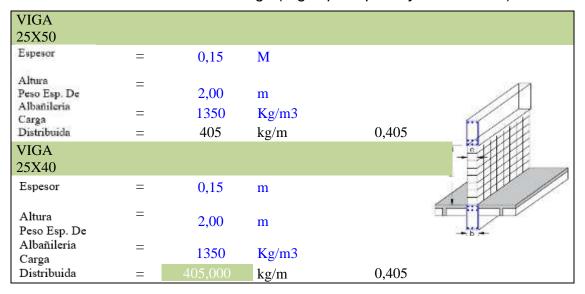
IV. RESULTADOS

4.1 Predimensionamiento

4.1.1 Metrado de cargas

Tabla 5. Metrado de cargas (Losa Aligerada)




Tabla 6. Metrado de Cargas (Losa Maciza)

PLANTA				ULTIMO TECHO			
Piso Terminado	=	0,100	топ/м2	Piso Terminado	=	0,100	топ/м2
Equipamiento	=	0,000	топ/м2				
Carga Muerta Impuesta	=	0,100	Ton/m2	Carga Muerta Impuesta	=	0,100	топ/м2
Sobrecarga	=	0,200	топ/м2	Sobrecarga	=	0,100	топ/м2
Carga Viva	=	0,200	топ/м2	Carga Viva de techo	=	0,100	топ/м2

Tabla 7. Metrado de Carga (Viguetas)

Espesor Altura	=	0,15	M		-
Peso Esp. De	=	1,50	M		
Albañilería Carga	=	1350	Kg/m3		
Distribuida	=	304	kg/m	0,30375	

Tabla 8. Metrado de carga (Vigas principales y secundarias)

4.1.2 Patrones de carga

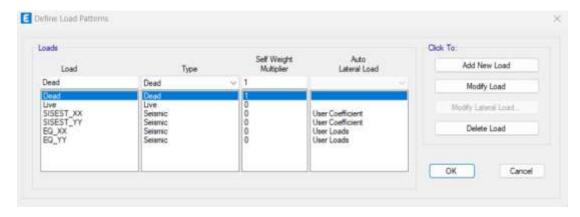


Figura 4. Patrones de Carga

4.2 Desplazamientos

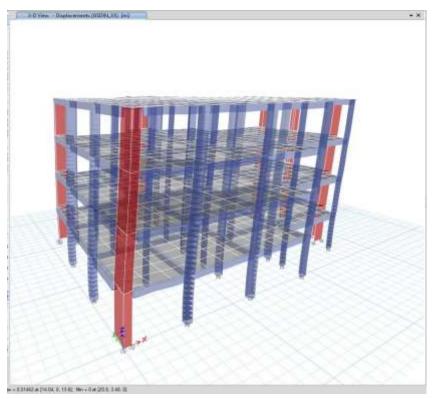


Figura 5. Desplazamiento Sísmico Dinámico en el Eje X (m)

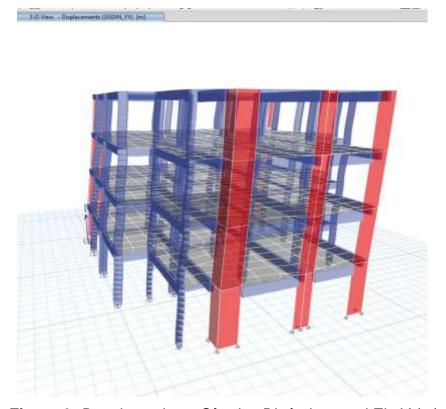


Figura 6. Desplazamiento Sísmico Dinámico en el Eje Y (m)

4.2.1 Derivas laterales y desplazamiento máximo

Tabla 9. Desplazamiento en el Eje X (m).

TABLE: Story Drifts										
Story	Output Case	Case Type	Step Type	Direction	Drift	Label	Х	Υ	z	
Story4	DERIVA_XX	Combination	Max	Х	0,005094	44	0,5	0	13,6	
Story3	DERIVA_XX	Combination	Max	Х	0,006506	44	0,5	0	10,2	
Story2	DERIVA_XX	Combination	Max	Х	0,006796	44	0,5	0	6,8	
Story1	DERIVA_XX	Combination	Max	Х	0,003630	44	0,5	0	3,4	

Tabla 10. Desplazamiento en el Eje Y (m).

TABLE:	TABLE: Story Drifts											
Story	Output Case	Case Type	Step Type	Direction	Drift	Label	Х	Υ	Z			
Story4	DERIVA_YY	Combination	Max	Υ	0,004456	20	0	0	13,6			
Story3	DERIVA_YY	Combination	Max	Υ	0,005684	20	0	0	10,2			
Story2	DERIVA_YY	Combination	Max	Υ	0,005988	20	0	0	6,8			
Story1	DERIVA_YY	Combination	Max	Υ	0,003204	20	0	0	3,4			

Tabla 11. Derivas en los Ejes X e Y

Chami	Output	Cose Tures	Step	Dir	Dift	Labal	X	Υ	Z	Namas	Varificación		
Story	Case	Case Type	Type	Dir	Drift	Label	М	М	m	Norma	Verificación		
Story4	DERIVA	Combination	Max	Х	0,005094	44	0,5	0	13,6	0,007	Dentro del		
3101 94	Х	Combination	IVIAX	^	0,003034	44	0,5	U	13,0	0,007	rango		
Story3	DERIVA	Combination	Max	Х	0,006506	44	0,5	0	10,2	0,007	Dentro del		
3101 y3	Х	Combination	IVIAX	^	0,000500	44	0,5	U	10,2	0,007	rango		
Story2	DERIVA	Combination	Max	Х	0,006796	44	0,5	0	6,8	0,007	Dentro del		
3101 y2	Х	Combination	iviax	^	0,000736	44	0,5	U	0,0	0,007	rango		
Story1	DERIVA	Combination	Max	Х	0,003630	44	0.5	0,5	0	2.4	3,4	0,007	Dentro del
Story1	Χ	Combination	IVIAX	^	0,003030	44	0,5	U	0 3,4 0,00		rango		
Story/	DERIVA	Combination	Max	Υ	0,004456	20	0	0	13,6	0,007	Dentro del		
Story4	Υ	Combination	IVIAX	ĭ	0,004436	20	U	U	15,0	0,007	rango		
Ctom/2	DERIVA	Combination	Max	Υ	0,005684	20	0	0	10,2	0,007	Dentro del		
Story3	Υ	Combination	IVIAX	ĭ	0,005084	20	U	U	10,2	0,007	rango		
Ctom/2	DERIVA	Combination	May	Υ	0.005000	20	0	0	6.0	0.007	Dentro del		
Story2	Υ	Combination	Max	Y	0,005988	20	0	0	6,8	0,007	rango		
Story1	DERIVA	Combination	Max	Υ	0,003204	20	0	0	2.4	0.007	Dentro del		
Story1	Υ	Combination	Max	T	0,005204	20	U	0	3,4	0,007	rango		

Figura 7. Centro de diafragma del desplazamiento de masas en X

Figura 8. Centro de diafragma del desplazamiento de masas en Y

Tabla 12. Desplazamiento en los ejes X e Y.

Story	Diaph	Output	Case Type	Step	UX	0.75R(7) X	UY	0.75R(7) Y	
,	ragm	Case		Туре	m	J. J. Q. 7	m		
Story4	D4	SISDIN_YY	LinRespSpec	Max	0,013555	0,07116375	0,011396	0,059829	
Story3	D3	SISDIN_YY	LinRespSpec	Max	0,010564	0,055461	0,009055	0,04753875	
Story2	D2	SISDIN_YY	LinRespSpec	Max	0,006575	0,03451875	0,005763	0,03025575	
Story1	D1	SISDIN_YY	LinRespSpec	Max	0,002293	0,01203825	0,002064	0,010836	

Tabla 13. Desplazamiento Máximo X e Y

Desplazamiento Ma	2/3 Dmax (x)				
0,07116375*100	0,07116375*100 7,116375				
		2/3			
Desplazamiento Ma	Desplazamiento Máximo Y:				
0,059829*100	5,9829	3,9886 Cm			

4.2.3 Aceleración espectral

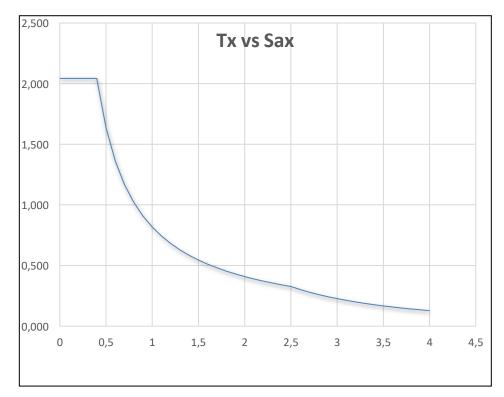


Figura 9. Aceleración Espectral en X

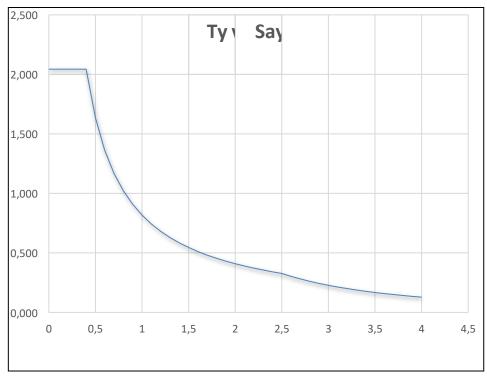


Figura 10. Aceleración espectral en Y

4.2.4 Fuerza Cortante

Tabla 14. Cortante en la base

BLOQUE 01										
TABLE:	Base React	tions								
Output Case	se FX FY		80% DE FACTOR DE		ESTADO					
SX	147,9985	0	"V"ESTATICA	ESCALA	LSTADO					
SY	0	153,2657								
SIS.EXT XX	142	0	113,6	0,76757535	NO SE NECESITA ESCALAR					
SIS.EXT YY	0	155	124	0,80905251	NO SE NECESITA ESCALAR					

Tabla 15. Cortante V en Los ejes "X" e "Y".

	TABLE: Pier Forces											
		Output		Step		_			_			
Story	Pier	Case	Case Type	Type	Location	P	V2	V3	T			
Story2	P1	SISDIN_YY	LinRespSpec	Max	Bottom	21,6818	22,2106	3,8923	3,6018			
Story2	P2	SISDIN_YY	LinRespSpec	Max	Bottom	27,4981	2,1914	7,2951	1,4209			
Story2	Р3	SISDIN_YY	LinRespSpec	Max	Bottom	23,1996	23,3527	2,5613	0,6535			
Story2	P4	SISDIN_YY	LinRespSpec	Max	Bottom	34,5939	14,6773	1,5301	1,6546			
Story2	P5	SISDIN_YY	LinRespSpec	Max	Bottom	5,9126	19,7574	0,837	0,4756			
Story2	P6	SISDIN_YY	LinRespSpec	Max	Bottom	24,172	7,497	15,6297	6,13			
Story2	C04	SISDIN_YY	LinRespSpec	Max	Bottom	1,6155	1,2803	3,6479	0,1067			
Story1	P1	SISDIN_YY	LinRespSpec	Max	Bottom	29,824	37,4797	5,1221	5,2385			
Story1	P2	SISDIN_YY	LinRespSpec	Max	Bottom	51,0663	7,1744	15,1158	1,4088			
Story1	Р3	SISDIN_YY	LinRespSpec	Max	Bottom	34,2582	25,602	1,8449	0,3115			
Story1	P4	SISDIN_YY	LinRespSpec	Max	Bottom	53,1138	21,9984	2,1965	2,4275			
Story1	P5	SISDIN_YY	LinRespSpec	Max	Bottom	11,0379	22,0853	0,9034	0,5382			
Story1	P6	SISDIN_YY	LinRespSpec	Max	Bottom	36,31	9,8782	22,9327	8,5042			
Story1	C04	SISDIN_YY	LinRespSpec	Max	Bottom	2,2879	0,7831	2,4445	0,0532			

Tabla 16. Cortante en Muros en los ejes X e Y

	TABLE: Pier Forces											
Story	Pier	Output Case	Case Type	Step Type	Location	Р	V2	V3	Т			
Story2	P1	SISDIN_XX	LinRespSpec	Max	Bottom	10,0088	14,3368	5,6457	3,6868			
Story2	P2	SISDIN_XX	LinRespSpec	Max	Bottom	26,2767	7,5255	5,7684	4,0992			
Story2	Р3	SISDIN_XX	LinRespSpec	Max	Bottom	7,1324	44,1408	0,8918	0,332			
Story2	P4	SISDIN_XX	LinRespSpec	Max	Bottom	16,9379	5,0664	2,9104	0,8645			
Story2	P5	SISDIN_XX	LinRespSpec	Max	Bottom	9,1138	7,818	2,998	0,3898			
Story2	P6	SISDIN_XX	LinRespSpec	Max	Bottom	11,0669	12,8716	11,8331	6,8435			

Story2	C04	SISDIN_XX	LinRespSpec	Max	Bottom	1,5082	4,8817	0,9307	0,1347
Story1	P1	SISDIN_XX	LinRespSpec	Max	Bottom	12,6584	23,7115	9,3871	7,0083
Story1	P2	SISDIN_XX	LinRespSpec	Max	Bottom	44,7364	15,7747	9,5374	4,2903
Story1	Р3	SISDIN_XX	LinRespSpec	Max	Bottom	10,6259	54,2278	0,6775	0,1743
Story1	P4	SISDIN_XX	LinRespSpec	Max	Bottom	25,3185	7,3148	4,2563	1,5996
Story1	P5	SISDIN_XX	LinRespSpec	Max	Bottom	11,3592	8,4381	3,3463	0,3138
Story1	P6	SISDIN_XX	LinRespSpec	Max	Bottom	14,495	25,272	14,3702	10,9349
Story1	C04	SISDIN_XX	LinRespSpec	Max	Bottom	2,1863	2,9873	0,6444	0,0771

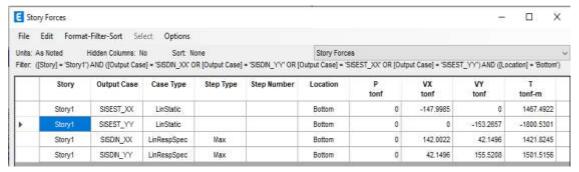


Figura 11. Fuerzas E y D para los ejes "XY"

Tabla 17. Fuerza Cortante

Fuerza cortante						
V muro Cort%(x)	0,47735739	47,7357394	Si cumple			
V muro Cort%(y)	0,30225565	30,2255645	Si cumple			

4.2.5 Periodos.

Tabla 18. Periodos

Cooo	Mode	Period	UX	UY	UZ
Case	iviode	Sec	UX	UY	UZ
Modd	01	0,428	0,6886	0,0395	0
Modd	02	0,378	0,0483	0,7207	0
Modd	03	0,278	0,0193	0,0338	0
Modd	04	0,117	0,1005	0,031	0
Modd	05	0,105	0,0408	0,0977	0
Modd	06	0,071	0,0214	0,001	0
Modd	07	0,055	0,0284	0,0205	0
Modd	08	0,049	0,0219	0,0316	0
Modd	09	0,032	0,0205	0,0071	0
Modd	10	0,031	0,002	0,0006	0
Modd	11	0,028	0,0063	0,0165	0
Modd	12	0,018	0,0019	0,0001	0

4.2.6 Masa participativa

Tabla 19. Masa participativa

Case	Mode	Period	Ux	UY	UZ	SumUx	SumUY	Rx	RY	RZ
		Sec								
Modd	01	0,428	0,6886	0,0395	0	0,6886	0,0395	0,0119	0,2589	0,0422
Modd	02	0,378	0,0483	0,7207	0	0,737	0,7602	0,2342	0,0217	0,0147
Modd	03	0,278	0,0193	0,0338	0	0,7563	0,794	0,0075	0,0161	0,7077
Modd	04	0,117	0,1005	0,031	0	0,8567	0,825	0,1325	0,3232	0,0094
Modd	05	0,105	0,0408	0,0977	0	0,8975	0,9227	0,4081	0,1141	0
Modd	06	0,071	0,0214	0,001	0	0,9189	0,9237	0,0059	0,0449	0,1435
Modd	07	0,055	0,0284	0,0205	0	0,9473	0,9442	0,0483	0,0717	0,0057
Modd	08	0,049	0,0219	0,0316	0	0,9693	0,9758	0,0736	0,0561	0,0012
Modd	09	0,032	0,0205	0,0071	0	0,9898	0,9829	0,0222	0,0629	0,0014
Modd	10	0,031	0,002	0,0006	0	0,9918	0,9834	0,0022	0,0046	0,053
Modd	11	0,028	0,0063	0,0165	0	0,9981	0,9999	0,0533	0,02	0,0007

Tabla 20. Modos de la Masa Participativa

Modos de la Masa Part	ticipativa
Σ M(x)= 0.998	99.8%
Σ M(x)= 0.999	99.9%

V. DISCUSIÓN

Conocer el comportamiento sismorresistente que tiene una edificación produce un impacto significativo y positivo en la capacidad de resistencia y durabilidad que tendrán estas edificaciones de concreto armado en la urbanización La Alborada Tumbes en el año 2023, debido a que conocer dicho comportamiento permitió usar dos espesores diferentes de vigas la viga 1 con sección (0.4x0.25) y por otro lado la viga uno con sección (0.5x0.25), del mismo modo, la máxima deriva vertical de entrepiso a través de lo calculado en la posición, X= 004992 y para la dirección Y= 0,005988 ,así mismo las fuerzas cortantes que actúan en los muros de corte, tanto para el eje x como para el eje y en el concepto de sistema estructural Dual están cumpliendo con los rangos admitidos por la normativa E-030 tal como lo estipula la RNE, mismas que garantizan mayor resistencia y durabilidad en las edificaciones, logrando contestar la interrogante de tesis y confirmando la hipótesis.

En la tabla 5 podemos apreciar el metrado de cargas de la edificación mismas que pose características de Para 1m2, Yc = 2400 kg/m3, con Espesor de aligerado = 0,20 m, espesor de losa= 0,05 m, la carga Muerta Impuesta = 0,172 ton/m2 y la carga viva de techo = 0,100 ton/m2 estableciendo que las disposiciones de los elementos estructurales son apropiadas para el diseño, respaldadas por los datos presentados y siguiendo las pautas definidas en la normativa E020 de nuestro Reglamento Nacional de Edificaciones, la tabla 6 al igual que la table 7 y tabla 8 proporcionan detalles sobre las cargas y pesos aplicados a diferentes niveles y elementos estructurales en un edificio, específicamente en la planta y el último techo. En cuanto al piso terminado, se considera una carga muerta impuesta de 0,100 Ton/m2, mientras que el equipamiento presenta una carga muerta no especificada. La carga muerta impuesta total combina la carga muerta del piso terminado con cualquier carga adicional, resultando en 0,100 Ton/m2. Además, se aplica una sobrecarga de 0,200 Ton/m2, y tanto la carga viva general como la carga viva específica del techo alcanzan 0,200 Ton/m2 y 0,100 Ton/m2, respectivamente.

En la tabla 9 se detalla los desplazamientos relativos entre niveles de un edificio, conocidos como derivas, específicamente en el eje X, bajo distintos casos de carga. En el caso de Story4, bajo la combinación máxima de carga en el eje X, se registra un desplazamiento máximo de 0,005094 unidades. Este valor indica la magnitud de

la deformación horizontal máxima experimentada por el nivel 4 en respuesta a las condiciones de carga específicas, del mismo modo, la tabla 10 proporciona información detallada sobre los desplazamientos relativos entre niveles de un edificio, específicamente en el eje Y, bajo distintos casos de carga, en Story4 bajo el caso de salida "DERIVA_YY" y el tipo de caso "Combination" con dirección máxima en el eje Y, se registra un desplazamiento máximo de 0,004456 unidades. representando la magnitud de la deformación vertical máxima experimentada por el nivel 4 en respuesta a condiciones de carga específicas. De manera similar, los niveles inferiores (Story3, Story2 y Story1) presentan sus propios desplazamientos máximos en el eje Y bajo condiciones de carga combinada.

La tabla 11 detalla los desplazamientos relativos entre niveles de la edificación en los ejes X e Y bajo diferentes casos de carga. Cada fila presenta información sobre el nivel del edificio, el caso de salida, el tipo de caso, el tipo de paso, la dirección del desplazamiento, la magnitud del desplazamiento en los ejes X e Y, las coordenadas del punto de interés, en Story2 se aprecia el punto más alto, registrando un desplazamiento máximo de 0,006796 unidades en el eje X, que cumple con la norma establecida ya que se encuentra dentro del rango permisible de 0,007. De manera análoga, se presentan los desplazamientos para los niveles inferiores ambos ejes, destacando que todos cumplen con las normas de diseño sísmico establecidas. Estos resultados son esenciales para verificar y asegurar que la estructura se comporte dentro de los límites aceptables durante eventos sísmicos, garantizando así su seguridad y conformidad con las normativas vigentes.

En la tabla 12 presenta información sobre el desplazamiento lateral de los diafragmas bajo diferentes casos de salida y condiciones de carga. Los resultados se obtuvieron mediante el análisis de respuesta lineal espectral y especifican los desplazamientos máximos en las direcciones UX y UY, la tabla 13 registra un desplazamiento máximo 7,116375 metros en el eje UX y 5,9829 metros en el eje UY. Estos valores indican la respuesta estructural del edificio a cargas sísmicas específicas y son esenciales para valorar desenvolvimiento y la resistencia de la estructura en situaciones de sismo.

La tabla 14 La tabla presenta las reacciones en la base del bloque 01 bajo diferentes

casos de salida, estas reacciones representan las fuerzas en las direcciones X y Y, así como las reacciones sísmicas en las direcciones XX y YY. Además, se incluye el factor de escala y el estado de la estructura. En este caso, los valores de las reacciones sísmicas no necesitan ser escalados, como indican los factores de escala de 0,76757535 y 0,80905251 para SIS.EXT XX y SIS.EXT YY, respectivamente.

Chaiña, (2016) analizó y diseñó un edificio de hormigón armado de seis pisos según el análisis efectuado registró en el eje X un desplazamiento relativo máximo entre pisos de 1.7 cm, en cuanto al eje Y, se observó un desplazamiento relativo máximo entre pisos de 1.3 cm, mientras que en la investigación llevada a cabo se obtuvieron valores para el eje X de 4,74425 cm y para el eje Y de 3,9886 cm, Los resultados obtenidos indican que, mediante el análisis de los edificio utilizando el software ETABS, se ajusta a los límites establecidos para el desplazamiento relativo y las distorsiones, incorporando los parámetros normativos actuales.

Según el estudio realizado por Moscoso, (2019) evaluando el rendimiento de edificios hospitalarios en Perú, con el objetivo principal de evaluar el comportamiento de un hospital moderno prefabricado, utilizando una metodología aplicativa, se obtuvo que para una aceleración de 0.675g (PGA), las deformaciones máximas oscilaron entre 0.0021 y 0.006, en concordancia con los datos obtenidos en esta investigación en donde las deformaciones oscilaron entre 004992 y 0,005988,aunque ambos valores varían debido a factores externos los dos cumples con la normativa vigente peruana.

Por otro lado, Calcina. (2017), con el propósito de comparar la eficacia de los análisis estático y dinámico no lineal en la determinación de la capacidad estructural y el comportamiento sísmico de un edificio de 11 niveles; Los resultados indicaron un desplazamiento máximo de 2.019 cm, lo que permitió calificar como apto para ocupación inmediata, en comparación la investigación llevada a cabo obtuvo como desplazamiento máximo de 4,74425 cm, si bien el valor es casi del doble del anterior, esto puede deberse a otros factores como tipo de suelo o materiales de construcción, pero ambos están dentro del rango permisible por normativa que es de 7cm,por tanto ambas edificaciones son completamente seguras y habitables.

Al respecto de limitaciones encontradas para llevar a cabo la investigación se dieron al recopilar información sobre ensayos sobre resistencia o comportamiento sísmico en Tumbes, mismas que deberían hacerse de forma obligatoria debido a la sismicidad de la región, más se observó que la mayoría de edificaciones eran llevadas a cabo sin estudio previo, optando así por realizar una investigación en base a la normativa vigente y indagando en artículos, revistas y otras fuentes de información actualizadas.

Los resultados obtenidos a partir de la investigación nos presentan un diseño sismorresistente de una edificación, misma que cumple estrictamente con la normativa peruana vigente y que se encuentra dentro de los parámetros establecidos por la misma en la región de Tumbes, teniendo en cuenta que puede ser usada como referente en futuros proyectos dentro de la construcción antisísmica, contribuyendo de tal forma en la innovación y en el desarrollo sostenible.

La investigación tuvo por implicancia para su ejecución, la entrega de los estudios de suelos por parte del laboratorio, mismo que no se dio en el plazo establecido y retraso algunas semanas el avance del presente proyecto, por otro lado, se tuvo la implicancia del traslado hasta el área de realización del proyecto, que sumado al retraso del laboratorio retrasaron algunas semanas la investigación.

VI. CONCLUSIONES

Se determinó el comportamiento sismorresistente de edificaciones de concreto armado para el diseño estructural en la urbanización La Alborada, obteniendo un diseño que cumple con los requisitos indicados en la normativa peruana vigente para un edificio sismorresistente ubicado en una zona nivel 4 de sismicidad con diseño de concreto f'c= 210 kg/cm2, teniendo un mod. elasticidad 15000√210 y por otro lado un mod. poissón P= 0.2, el diseño de acero en f'y=4200 kg/cm2.

Se obtuvo para la losa aligerada las características de Para 1m2, \(\gamma \) = 2400 kg/m3, con Espesor de aligerado = 0,20 m, espesor de losa= 0,05 m, la carga Muerta Impuesta = 0,172 ton/m2 y la carga viva de techo = 0,100 ton/m2; determinando que las disposiciones de los componentes estructurales son adecuadas para este diseño específico, respaldadas por la información proporcionada en conformidad con la normativa E020 de nuestro Reglamento Nacional de Edificaciones (RNE);

Los desplazamientos máximos registrados en la dirección x-x, tanto para los análisis sísmicos estáticos como dinámicos, son de 0.004992. En cuanto a la dirección y-y, los desplazamientos máximos alcanzan los 0.001615 en los análisis sísmicos estáticos y dinámicos. Este resultado lleva a la conclusión de que la configuración estructural que combina pórticos, muros de corte o placas de concreto armado se considera óptima. La razón de esto es que, gracias a su existencia y estructura, consiguen gestionar de manera efectiva los desplazamientos entre pisos, asegurándose de que se mantengan en niveles mínimos que cumplen con los límites permitidos según lo indicado en nuestra normativa E-030 para elementos estructurales de concreto armado en el diseño sismo-resistente de la RNE.

Al analizar los datos de la masa participativa se pudo observar que la masa modo 4 tomando a la dirección en **X** la misma obtiene un valor de MX = 0.998 o lo que sería igual a 98% y mismo modo, pero tomando la dirección **Y** se obtiene un valor de MY = 0.99 o lo que es igual a 99%, obteniendo así la masa participativa para ambas direcciones, concluyendo que según lo indicado dentro de la normativa E-030 esta se encuentra dentro del rango admisible del 90 % de la masa participativa, lo cual se está respetando y cumpliendo dentro de este diseño.

VII. RECOMENDACIONES

Se recomienda al gobierno regional de Tumbes priorizar y reforzar la supervisión del cumplimiento de diseños sismorresistentes en las construcciones, así como promover campañas de concientización sobre la importancia de la construcción sismorresistente. Es esencial actualizar las normativas de construcción, establecer controles efectivos. Además, el gobierno regional debe ser un ejemplo constructivo y mantener una comunicación continua con la comunidad, destacando los beneficios de las edificaciones sismorresistentes para garantizar la seguridad de la población ante posibles eventos sísmicos.

Se recomienda a los profesionales dentro del área investigada que realicen las pruebas y análisis necesarios de sismoresistencia antes de llevar a cabo cualquier proyecto de edificación. Es fundamental invertir en estudios de ingeniería sísmica que amplíen el conocimiento en diseño sismorresistente y garanticen la seguridad de las construcciones. La colaboración con expertos en sismoresistencia y la actualización constante en las mejores prácticas de diseño sísmico son esenciales para contribuir a la resiliencia de la región frente a eventos sísmicos.

Se recomienda a futuros investigadores en el campo de la ingeniería sísmica que dediquen esfuerzos a la realización de estudios y proyectos de investigación relacionados con el diseño sismorresistente. La generación de conocimiento en esta área es esencial para mejorar las prácticas de construcción en la región y fortalecer la resiliencia ante eventos sísmicos. Además, se insta a colaborar con instituciones educativas, colegios de ingenieros y organismos gubernamentales para compartir hallazgos y promover la implementación efectiva de diseños sismorresistentes en las edificaciones.

REFERENCIAS

Adrián Macías; Luis Quiroz; Daniel Carvajal; Denny Cobos; Betsy Fienco. (2018). Mecánica de suelo: Tomo II. Alicante: Editorial Área de innovación y desarrollo.

Blasco, M. (1994). Diseño sismorresistente de edificios de concreto armado. Instituto de Investigación en Estructuras y Construcción. Universidad Nacional de Tucumán

Carlos Pérez, Danny Miñano. (2015). Evaluación estructural de un edificio comercial de 04 pisos en Tarapoto. Tesis de Pregrado. Tarapoto: Tarapoto. Universidad Científica del Perú.

Chaiña, R. (2016). Análisis y Diseño Sísmico de una Edificación de Seis Niveles de Concreto armado en la Ciudad de Juliaca. Puno: Universidad Andina Néstor Cáceres Velásquez.

Choudhury, D., Ghosh, S., & Mandal, S. (s.f.). Seismic performance assessment of structures in Canada using capacity spectrum method. Canada: Canadian Journal of Civil Engineering.

FEMA 440. (2005). Improvement of nonlinear static seismic analysis procedures (No. FEMA-440). Federal Emergency Management Agency.

García, A.; Torres, B.; López, C. (2017). Diseño Sísmico de Edificaciones. McHill.

Gómez, J.; Martínez, A.; Rodríguez, M. (2020). Diseño y Construcción de Estructuras. McHill.

Guzmán, J. F. (2014). Análisis comparativo de los métodos de diseño sismorresistente basado en fuerzas y basado en desplazamientos para edificaciones en el Ecuador. Quiro: Universidad San Francisco de Quito.

Guzmán Gómez de la Torre, M. F. (2015). Diseño sismo resistente de edificios de hormigón armado (cálculo de periodos de vibración y niveles de agrietamiento). Quito: Pontificia Universidad Católica del Ecuador.

Kumar, R., Rana, R., & Kumar, P. (2018). Seismic vulnerability of urban buildings: challenges and opportunities. Structures.

Lee, L. L.; Huang, C. (2017). Study of seismic behavior of reinforced concrete buildings in Taiwan. Taiwan: IOP Conference Series: Earth and Environmental Science.

Li, B., Yu, W.; Zhang, W.; Yin, Z. . (2020). Review of recent researches on seismic behavior and design methods of high-performance concrete structures. Advances in Civil Engineering.

Marte, C. (2014). Calibración de umbrales de daño sísmico para el análisis de fragilidad sísmica de estructuras de hormigón armado mediante análisis estático no lineal, Tesis de Maestría. Barcelona: Universidad Politécnica de Cataluña.

Martínez, A.; López, J.; García, M.; González, R. (2023). Estudio comparativo entre el método del espectro de capacidad y el método de los coeficientes de desplazamiento en la evaluación sísmica de estructuras de concreto armado. Revista de Ingeniería Sísmica.

Medina, E. J. (2010). Evaluación de métodos de análisis inelástico en SAP para estructuras de hormigo armado, Tesis para optar el grado de Magíster en Ciencias de la Ingeniería. Santiago: Pontifica Universidad Católica de Chile.

Ministerio de Desarrollo Urbano y Vivienda de Colombia. (2014). Geotecnia y cimentaciones. Colombia: Obtenido de: https://online.portoviejo.gob.ec/docs/nec6.pdf.

Ministerio de Vivienda Construcción y Saneamiento. (2000). Reglamento Nacional de Edificaciones. Lima: Obtenido de: http://www.urbanistasperu.org/rne/pdf/RNE_parte%2001.pdf.

Ministerio de Vivienda, Construcción y Saneamiento. (2016). Norma técnica E.030 "Diseño sismorresistente". Lima: El Peruano.

Morejón Grisel, Leyva Kenia y Rachel Bárbara. (2017). Evaluación de la seguridad estructural de la seguridad estructural de edificaciones Posterremotos. Ciencia en su pc. Disponible en: http://www.redalyc.org/pdf/1813/181353794006.pdf. ISSN 1027-2887.

Nakamura, Y., Abe, Y., Matsuoka, H., & Iwanami, K. (2016). Seismic design method for multi-story buildings with two-dimensional frame structure. Journal of Structural Engineering.

Navarro, C. Y Fernández, J. A. (2006). Desempeño sísmico de un edificioporticado de seis pisos diseñado con las normas peruanas de edificaciones.Lima: PUCP.

Olivos Lara, J. E. (2018). Tesis Doctoral: Evaluación del riesgo sísmico y daño en edificaciones históricas de Caracas-Venezuela mediante sistemas expertosdifusos y aprendizaje automático. Universidad Politécnica de Cataluña.

Ortiz, L. (2007). Resistencia de Materiales. Mc Graw Hill/Interamericana de España.

Pérez, J., González, A, Rodríguez, M. (2020). Ingeniería de Estructuras. Editorial XYZ.

Pinzón, C. (2013). diseño estructural para el proyecto de viviendanueva del barrio bello vista del municipio de Soacha (Cundinamarca). Bogotá: Universidad Católica de Colombia.

Quinde, P (2014), "Estudio de peligro sísmico del Ecuador y espectros de diseño para la ciudad de Cuenca", Tesis de maestría, Universidad Nacional Autónoma de México, pp. 109.

Rodríguez Gómez, Hermenegildo. 2014. Comportamiento sísmico de pórticos de concreto armado bajo la influencia de la porción fuerte en un suelo blando. Gaceta Técnica, 2014, Vol. XI. ISSNN 1856-9560.

Salazar, J; Fernández, M. (2022). Comparación de metodologías de evaluación sísmica en edificaciones de concreto armado. Revista de Ingeniería Sísmica.

Sánchez, J. C.; Cladera, A.; Molina, J. (2019). Vulnerabilidad sísmica de edificaciones existentes en Chile. Revista Internacional de Desastres Naturales. Accidentes e Infraestructura Civil.

Smith, B.; Johnson, A. (2018). Wood Structures: Design and Construction. Editorial XYZ.

Suzuki, Y., Fujii, K., & Tsuji, M. (s.f.). A study on seismic performance of low-rise wooden structures in consideration of the interaction between the foundationand superstructure. Journal of Structural and Construction Engineering.

Viera, L. (2004). Tesis: "Diseño Sísmico Basado en Desempeño de Edificios de Hormigón Armado". Tungurahua, Ecuador: Universidad Técnica de Ambato.

Anexo 2. Estudio de suelos con fines de cimentación

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎ 522090 - CEL 972945321 - RPM #688277 - Tumbes

ESTUDIO DE SUELOS CON FINES DE CIMENTACION

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER UBICACIÓN:

REGION : TUMBES PROVINCIA: TUMBES DISTRITO : TUMBES

LUGAR : URB.ALBORADA MZ E LOTE

24-25

Tumbes, agosto 2023

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2529090 - CEL 972945321 - RPM #688277 - Tumbes

CONTENIDO

I. GENERALIDADES.

- 1. Objetivo
- 2. Ubicación
- 3. Metas
- 4. Características del Proyecto
- 5. Clima
- 6. Geología del Área en Estudio
- Geodinâmica externa del Área en Estudio

II. TRABAJOS EFECTUADOS

- 2.1. Trabajos de Campo
- 2.2. Descripción Del Perfil Y Clasificación De Suelo
- 2.3.Trabajos de Laboratorio
 - 2.3.1. Análisis Granulométrico por Tamizado ASTM-D-422
 - 2.3.2. Contenido de Humedad Natural ASTM-D-2216/NTP 339.127
 - 2.3.3. Limites de Consistencia ASTM-D-4318/NTP 339.129
 - 2.3.4. Ensavo de Peso Volumétrico Natural Seco ASTMD 2937
 - 2.3.5. Ensayo de Corte Directo ASTMD 3080

III. CIMENTACIÓN

- 3.1. Capacidad Portante de Carga del Terreno (QC)
- 3.2. Capacidad Admisible o Presión de Trabajo (PT)
- 3.3 Determinación de la Agresividad Química del Suelo
- 3.4 Calculo de Asentamiento Inmediato
- IV. NIVEL DE LA NAPA FREATICA
- V. PROBLEMAS ESPECIALES EN LOS SUELOS QUE SUBYACEN EN LA ZONA EN ESTUDIO.
- VI. CONSIDERACIONES SISMICAS
- VII. ESTUDIO DE CANTERAS Y FUENTE DE AGUA
- VIII. CONCLUSIONES
- IX. RECOMENDACIONES
- X. ILUSTRACIONES

REGISTRO: INDECOPI - RESOLUCION Nº 021280

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎522090 - CEL 972945321 - RPM #688277 - Tumbes

XI. ANEXOS

Ensayo de Laboratorio Perfil de las excavaciones Perfil Longitudinal del Suelo Plano de Ubicación de Calicatas

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL, 972945321 - RPM #688277 - Tumbes

I. GENERALIDADES

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

1. OBJETIVO

El presente estudio de Mecánica de Suelos ha sido realizado con la finalidad de estudiar el subsuelo del área de estudio con el propósito de clasificarlo y seleccionar la profundidad y tipo de cimentación que será utilizado en TESIS: "COMPORTAMIENTO

SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023"

2. UBICACIÓN

El área en estudio se encuentra ubicada en la urb.la Alborada MZ E Lote 24 -25 y tiene una Area de Terreno de 506m2 (frente 22x23 fondo) en el Distrito, Provincia de Tumbes, Región Tumbes.

3. ALCANCES Y METAS

Las conclusiones y recomendaciones contenidas en el presente estudio se basan en los datos obtenidos en la exploración de la calicata y de las pruebas de campo y de laboratorio realizados.

Los resultados de este estudio podrán ser utilizados única y exclusivamente para el diseño y verificación de las cimentaciones de la edificación en el proyecto descrito.

Que la edificación a construir, no sufra alteraciones (fallas) durante su vida útil.

SUELO MAS ELIFLI

Ing. Civil Perhapsis Renets Trayes Nor
Cirl, 138833

REGISTRO: INDECOPI - RESOLUCION Nº 021280

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

4. CARACTERISTICAS DEL PROYECTO

El Presente Estudio servirá para TESIS: "COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023". Que consistirá en la edificación de infraestructura de oficina y vivienda unifamiliar de tres niveles.

5. CLIMA.

El Distrito de Tumbes debido a su situación geográfica tropical y de sabana tropical, cerca de la línea ecuatorial tiene un clima cálido y semihúmedo durante todo el año, el departamento cuenta con el clima más cálido de la costa, manteniendo una temperatura media anual de 25 °C.

El verano es de diciembre a abril en donde la temperatura máxima alcanza los 40 °C y la minima invernal (de junio a septiembre) es de 18°C la mayor parte del año la temperatura oscila entre los 30 °C (día) y 22 °C (noche) respectivamente.

Las precipitaciones pluviales, con estaciones de diciembre a marzo se producen fuertes y frecuentes lluvias, aunque el calor mantiene. La precipitación pluvial tiene un promedio anual de 426.55 mm.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎522090 - CEL 972945321 - RPM #688277 - Tumbes

6. GEOLOGÍA DEL AREA EN ESTUDIO

El área en estudio se encuentra ubicada en la Urb. La alborada Parte Baja de la ciudad de Tumbes. Está constituida mayormente por material transportado tanto de la parte alta como del rio tumbes.

Los suelos están compuestos principalmente por materiales arcillosos y arenosos y son de tipo sedimentarios.

7. GEODINAMICA EXTERNA DEL AREA EN ESTUDIO

Es la evaluación de los efectos de las fuerzas naturales generadas por la transformación de la superficie terrestre a causa de la acción pluvial, acción marítima y acción eólica, dichas fuerzas naturales pueden causar desastres en la ciudad de Tumbes.

En la ciudad de Tumbes la actividad pluvial, en condiciones normales, no causa mayor daño o trastorno, sin embargo, en eventos extraordinarios como el fenómeno del niño, la periódica intensidad pluvial causa daños debido al volumen de precipitaciones, la velocidad de escorrentia, superficie de drenaje y caudal.

En las partes bajas de la ciudad causa inundaciones cuando ocurre el fenómeno del niño, la zona se estudió se encuentra en la parte baja de Tumbes.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

II. TRABAJOS EFECTUADOS

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

2.1 TRABAJOS DE CAMPO:

Los trabajos de campo consisten en lo siguiente:

- Calicata o Pozo de Exploración

Se realizó Dos (2) calicatas o pozo de exploración a cielo abierto designado como: C1, C2 ubicada dentro del limite del área proyectada.

El sistema de exploración nos permite evaluar directamente las características del subsuelo en su estado natural hasta la profundidad de 2.50mts.

2.2 DESCRIPCION DEL PERFIL Y CLASIFICACION DE SUELO

Con la información obtenida mediante los análisis granulométricos, límite de Atterberg y observando el perfile estratigráfico de la excavación se obtuvieron los siguientes resultados:

CALICATA Nº 01 (0.0 - 2.50mt.)

ESTRATO Nº 01 (0.0 - 0.20mt.)

Relleno inapropiado (arcilla con raíces) Estado compacto y poco húmedo

S.U.C.S = R

ESTRATO Nº 02 (0.20 - 1.45mt.)

Arcilla limo arenosa

Estado compacto y poco húmedo

S.U.C.S = CL-ML

ESTRATO Nº 03 (1.45 - 2.50mt.)

Arcilla limosa

Estado poco compacto , húmedo y saturado a medida que se profundiza S.U.C.S = CL

REGISTRO: INDECOPI - RESOLUCION Nº 021280

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

CALICATA Nº 02 (0.0 - 2.50mt.)

ESTRATO Nº 01 (0.0 - 0.15mt.)

Relleno inapropiado (arcilla con raíces) Estado compacto y poco húmedo

S.U.C.S = R

ESTRATO Nº 02 (0.15 - 1.40mt.)

Arcilla limo arenosa

Estado compacto y poco húmedo

S.U.C.S = CL-ML

ESTRATO Nº 03 (1.40 - 2.50mt.)

Arcilla limosa

Estado poco compacto, húmedo y saturado a medida que se profundiza S.U.C.S = CL

CUADROS DE CLASIFICACION DE SUELO:

CALICATA Nº 01					
Profundidad (mts.)	0.0 - 0.20	0.20 - 1.45	1.45 - 2.50		
Muestra	M1	M2	M3		
% Pasa malla Nº 200		57.0	81.0		
Limite Liquido	RELLENO	20.1	35.2		
Limite Plasticidad	INAPROPIADO	14.5	20.7		
Indicé de Plasticidad	1 1	5.6	14.5		
Contenido de Humedad	7 .	7.50	Saturado		
Clasificación S.U.C.S.	R	CL-ML	CL		

CALICATA N° 02				
Profundidad (mts.)	0.0 - 0.15	0.15 - 1.40	1.40 - 2.50	
Muestra	M1	M2	M3	
% Pasa malla N° 200		60.0	84.0	
Limite Liquido	RELLENO	22.4	36.5	
Limite Plasticidad	INAPROPIADO	17.2	20.3	
Indicé de Plasticidad	7 1	5.2	16.2	
Contenido de Humedad	7 [6.40	Saturado	
Clasificación S.U.C.S.	R	CL-ML	CL	

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

2.3 TRABAJOS DE LABORATORIO:

Las pruebas de Laboratorio se han realizado de acuerdo a la normatividad observada por el REGLAMENTO NACIONAL DE EDIFICACIÓN – NORMA TECNICA E. 050.

2.3.1 ANÁLISIS GRANULOMÉTRICO POR TAMIZADO:

ASTMD - 422

Este ensayo es realizado para determinar el tamaño de los granos, se efectúa utilizando mallas 2", 1 ½", 1", ¾", 3/8", N° 4, 10, 30, 40, 60, 200; de acuerdo a las normas ASTM, para la clasificación de los suelos.

2.3.2 CONTENIDO DE HUMEDAD

ASTMD - 2216

Se define como humedad natural de un suelo, como el peso del agua que contiene, dividido entre el peso seco, expresado en porcentaje.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎522090 - CEL 972945321 - RPM #688277 - Tumbes

2.3.3 LIMITES DE ATTERBERG

LIMITE LIQUIDO (ASTMD - 423)

Es la cantidad de agua máxima que puede almacenar un suelo expresado en porcentaje con el cual el suelo cambia de estado líquido a plástico, dicho ensayo se determina en la Copa Casa grande.

LIMITE PLASTICO (ASTMD - 424)

El limite plástico es la humedad mínima expresada como porcentaje del peso del material secado al homo, para el cual los suelos cohesivos pasan de un estado semisólido a un estado plástico.

INDICE DE PLASTICIDAD

Es la diferencia que existe entre el límite líquido y el plástico.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎522090 - CEL 972945321 - RPM #688277 - Tumbes

2.3.4 PESO VOLUMETRICO NATURAL SECO

ASTMD - 2937

Se define a la determinación del peso por unidad de volumen de un suelo en su estado natural, a la cual se aplica su corrección de su contenido de humedad.

2.3.5 ENSAYO DE CORTE DIRECTO

ASTM D - 3080

Este ensayo consiste en la aplicación de fuerzas cortantes y normales en una muestra circular o cuadrada para así encontrar los esfuerzos máximos de corte y con el esfuerzo normal aplicado determinar el ángulo de fricción () y la cohesión (c).

2.4 TRABAJOS DE GABINETE

Con la información obtenida en el campo y laboratorio se realizan los diferentes cálculos Matemáticos, cuadros y gráficos, para la obtención de los resultados finales.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

III. CIMENTACION

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

- Por el tipo de material aplicaremos las fórmulas de capacidad de cargas dadas por el Rr. Karl Terzaghi de su teoría de rotura por corte general, que está dada por la fórmula:
 - a) Para cimientos corridos Qc =2/3C*N'c + (Y*Df*N'q) /10 + (0.50* Y*B*N'Y)/10
 - b) Para zapata Qc = 1.3* (2/3 * C) * N'c + Y*Df*N'q/10 + 0.4* YBNY/10

Donde:

Υ :	PESO VOLUMETRICO				
Ø	ANGULO DE ROZAMIENTO INTERNO				
Qc :	CAPACIDAD PORTANTE				
Nc,Nq,Ny	COEFICIENTE DE CAPACIDAD DE CARGA ,	TENIENDO	EN CUEN	ITA FALL	A LOCAL
F	FACTOR DE SEGURIDAD (3)				
PT :	PRESIÓN DE TRABAJO Qc/F				
В :	ANCHO DE ZAPATA O CIMIENTO				
Dr :	PROFUNDIDAD DE CIMENTACIÓN				
C =	COHESIÓN DE FALLA GENERAL				
C' =	COHESIÓN DE FALLA LOCAL = 2/3C				

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL, 972945321 - RPM #688277 - Tumbes

3.1 CAPACIDAD PORTANTE DEL TERRENO (Qc).

Llamada también capacidad última de carga de cimentación del suelo, es la carga que puede soportar un suelo sin que su estabilidad sea amenazada.

Para la aplicación de la capacidad portante se emplea la teoría de Terzaghi para zapatas continuas y aisladas de la base rugosa, en el caso de un medio friccionado o medianamente denso (ver anexo de resultados de Laboratorio SUELO MÁS).

Es necesario mencionar que la muestra representativa se obtuvo de:

TESIS	LUGAR	CALICATA Y MUESTRA	TIPO DE SUELO	Of (m)	Ø (°)	COHESIÓN	Q¢ (kg/cm²)
COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023	Urb.LA ALBORADA	C1-M3	Arcilla Limosa	1.50	19°	0.05	0.38

3.2 CAPACIDAD ADMISIBLE DE CARGA O PRESIÓN DE TRABAJO (Pt).

La capacidad admisible o presión de trabajo, es la relación entre la capacidad portante un factor de seguridad (Fs = 3.0)

Es la capacidad del terreno que debe utilizar como parámetro de diseño de la estructura.

$$Pt = \begin{array}{c} Qc \\ \hline Fs \end{array}$$

TUMBES SUELO MAS EARL.

FOTTO WAS DOUBLE TO THE CONT. 134833

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL. 972945321 - RPM #688277 - Tumbes

3.3 DETERMINACION DE LA AGRESIVIDAD QUIMICA DEL SUELO.

La agresión de los suelos a la cimentación de las estructuras está en función de la presencia de elementos químicos (sulfatos y cloruros). Principalmente que actúan sobre el concreto y el acero de esfuerzo, causando efectos nocivos y hasta destructivos de las estructuras

El deterioro del concreto ocurre bajo el nivel freático por presencia de aguas subterráneas o roturas de tuberías, etc.

Según reconocimiento a la zona en estudio y en la calicata escavada dan características de niveles moderados de elementos químicos agresivos al concreto y acero.

3.4 CALCULO DE ASENTAMIENTO INMEDIATO

En los análisis de cimentación, se distinguen dos clases de asentamiento, totales y diferenciales, de los cuales, estos últimos son los que podrían comprometer la seguridad de la estructura. La presión admisible por asentamiento, es aquella que al ser aplicada por una cimentación de tamaño específico. Produce un asentamiento tolerable para la estructura, que en nuestro caso, no debe sobre pasar 1 (2.54cm)

El asentamiento elástico inicial según la teoria de la elasticidad (Lambe y Withman, 1969) puede determinarse por medio de la siguiente relación:

$$Si = \underline{qB(1 - \mu^2) \text{ If}}$$
Es

En el análisis de asentamiento se ha considerado los valores en base a la caracterización geotécnica y estado de compacidad del suelo más desfavorable recomendados por J. Bowles, y estos son:

CALICATA Nº02 MUESTRA03

TIPO DE SUELO	Arcilla limosa Saturada
Si = Asentamiento Probable (cm)	2.55
μ = Relación de poisson	0.40
Es = Módulo de Elasticidad (kg/m2)	20
If = Factor de Forma (m)	82
Q = Presión de Trabajo (kg/m2)	0.38
B = Ancho de la Cimentación (m)	2.0

Siendo el Asentamiento probable 2.55cm.

Comparando los valores obtenidos con 1" (una pulgada) que es el valor máximo Para el tipo de estructural, entonces concluimos que SI habrá problemas algunos por el asentamiento que se produciría en razón a que estariamos por ARRIBA del límite permisible POR TAL MOTIVO HAY QUE MEJORAR EL SUELO.

REGISTRO: INDECOPI - RESOLUCION Nº 021280

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎522090 - CEL 972945321 - RPM #688277 - Tumbes

IV. NIVEL DE LA NAPA FREATICA

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

La ubicación de la Napa Freática es función de la época del año en la que se realizado la investigación de campo, así de las variaciones naturales de los sistemas de lluvia.

La Zona comprendida en el Estudio se ha realizado las excavaciones en el mes de agosto del presente año y se detectó Napa Freática a una profundidad de -2.40mts. a la fecha.

NOTA: El Nivel Freático

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

V. PROBLEMAS ESPECIALES EN LOS SUELOS QUE SUBYACEN EN LA ZONA EN ESTUDIO

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

5.1 SUELOS COLAPSABLES

Los suelos de la zona en estudio no presentan condiciones de colapso en estado seco pero húmedos si pueden perder su estabilidad por ser suelos Arcilloso saturados.

5.2 SUELOS EXPANSIVOS

La zona en estudio no presenta características físicas de arcillas expansivas, que puedan crear cambios volumétricos y afectar las estructuras.

5.3 LICUEFACION DE SUELOS.

En suelos granulares, particularmente arenosos las vibraciones sísmicas pueden manifestarse mediante un fenómeno denominado licuación, el cual consiste en la pérdida momentánea de la resistencia al corte de los suelos granulares, como consecuencia de la presión de poros que se genera en el agua contenida en ellos originada por una vibración violenta.

Esta pérdida de resistencia del suelo se manifiesta en grandes asentamientos que ocurren durante el mismo o inmediatamente después de este. Sin embargo para que un suelo granular, en presencia de un mismo sea susceptible a licuación debe presentarse simultáneamente las características siguientes:

Debe estar constituido por arena fina o arena fina limosa. Debe encontrarse sumergido (Napa freática) Su densidad relativa debe ser baja Resistencia del suelo debe ser nula o muy pequeña.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

VI. CONSIDERACIONES SISMICAS

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

El terreno en Estudio se ubica en la Urb. La Alborada del Distrito de Tumbes, que pertenece a la provincia de Tumbes, Región de Tumbes, por lo que se encuentra Ubicado en la zona 4 del Mapa de zonificación sísmica del Perú, de acuerdo al Decreto Supremo N° 003-2016-VIVIENDA, que modifica la Norma Tecnica E.030 "Diseño Sismoresistente" del Reglamento Nacional de Edificaciones, aprobada por Decreto Supremo N° 011-2016-VIVIENDA, Modificada con Decreto Supremo N° 002-2014-VIVIENDA.

A cada zona se asigna un factor Z según se indica en la Tabla Nº 1. Este factor se interpreta como la aceleración máxima horizontal en suelo rígido con una probabilidad de 10% de ser excedida en 50 años. El factor Z se expresa como una fracción de la aceleración de la gravedad.

Tabla N° 1 FACTORES DE ZONA "Z"		
ZONA	Z	
4	0,45	
3	0,35	
2	0,25	
1	0,10	

REGISTRO: INDECOPI - RESOLUCION Nº 021280

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

Zonas Sismica en el Departamento de Tumbes.

Región (Dpto)	Provincia	Distrito	Zona Sísmica	Ámbito	
	Contralmirante	Casitas			
	Villar	Zorritos	4	Todos los Distritos	
	Villar	Canoas de Punta Sal			
		Corrales			
		La Cruz			
Tumbes	Tumbes	Pampas de Hospital	4	Todos los Distritos	
	Tumbes	San Jacinto			
		San Juan de La Virgen			
		Tumbes			
	Zarumilla	Aguas Verdes	4	Todos los Distritos	

JR. CAHUIDE N. 248 - EL MILAGRO -TUMBES \$22090 - CEL 972945321 - RPM #688277 - Tumbes

VII. ESTUDIO DE CANTERAS Y FUENTE DE AGUA

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

CANTERA SAN JACINTO (Cerro de Afirmado)

Las áreas prospectadas se localiza en el sector del distrito de San Jacinto se viene Explotando para proporcionar el material de afirmado al Departamento de Tumbes.

Ubicación : Distrito de San Jacinto Acceso : Al Lado derecho carretera

Tipo de Yacimiento : Aluvial Forma de Agregado : Sub anguloso

Rendimiento :95%

Uso : Sub Base, Base Periodo de Utilización : Periodo de Estiaje

Explotación : Chancado, Zarandeo, equivalente convencional Volumen de Explotación : Se estima un volumen en superior a 1000.000 m3

A continuación se procederá a la descripción, de las características físicas – mecánicas.

GEOLOGIA: Depósitos aluviales, mezclas de grava, arena y limos sus elementos se han derivado filológicamente de rocas intrusitas y sedimentarias.

CLASIFICACION S.U.C.S.: GP - GC grava y arena mal graduada con cementantes.

Arcilloso y grava arcillosa con inclusiones de arena, suelo con aceptable distribución

granulométrica.

Porcentaje de Gravas

Porcentaje de Arenas

Porcentaje de Finos

Limite Liquido

Limite Plástico

Indice de Plasticidad

C.B.R.

148.3 – 51.7 %

137.7 – 38.5 %

137.7 – 38.5 %

138.14%

124.1 – 24.9 %

16.1 – 19.2 %

16.1 – 19.2 %

16.1 – 19.2 %

16.1 – 19.2 %

16.1 – 19.4 %

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

CANTERA LA CRUZ

Corresponde a los depósitos aluviales de la quebrada Charan, se realizaron excavaciones, muestreo representativo y los respectivos ensayos de Laboratorio; Mecánica de Suelos, agregados y químicos.

CARACTERÍSTICAS FISICAS – MECANICAS

En base a los resultados parciales de Laboratorio y reconocimiento de campo, se procederá a la descripción de las principales características de los depósitos a aluviales del cauce de la quebrada Charan. En algunos casos se ha estimado los valores teniendo en cuenta el grado de conservación de los clastos, Origen Litológico, Grado de conservación de sus elementos y resistencia mecánica (Prueba de Campo).

GEOLOGIA: Depósitos fluvial – aluviales, mezcla de arenas y gravas, presentan tamaño máximo de 2.00 pulgadas. Clastos Sub redondeados a sub ángulos, que se han derivado litológicamente Sedimentaria.

CLASIFICACIÓN S.U.C.S : GP (gravas arenosas de mala gradación) aceptable distribución Granulométrica

PORCENTAJE DE GRAVAS : 51.00 A 48.00 %
PORCENTAJE DE ARENAS : 36.00 A 48.00 %
PORCENTAJE DE FINOS : inferior a 1.00 %
MODULO DE FINEZA : 2.55 A 2.90
PESO ESPECIFICO DE GRAVAS : inferior a 1.80 %
PESO ESPECIFICO DE ARENAS : 2.68 A 2.73

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL. 972945321 - RPM #688277 - Tumbes

CANTERA QUEBRADA CABUYAL

Se localiza a lo largo del cauce de la Quebrada Angustura — Cabuyal, corresponde a los depósitos aluviales del cauce que se localizan en el sector de Cabuyal, están constituidos por suelos de textura granular media a gruesa (grava arenosa y arena gravosa) se realizó un muestreo representativo y los respectivos ensayos de Laboratorio; Mecánica de Suelos, agregados y químicos.

-CARACTERISTICAS FISICAS - MECANICAS

A continuación, se procederá a la descripción de las principales características de los depósitos granulares.

GEOLOGIA: Depósitos fluvio – aluviales, mezcla de arenas y gravas, presentan tamaño máximo de 2.00 pulgadas. Clastos Sub redondeados a sub ángulos, que se han derivado litológicamente Sedimentaria.

Clasificación S.U.C.S : GP (gravas arenosas de mala gradación) aceptable

distribución Granulométrica

Porcentaje de Gravas : 51.00 a 48.00 % Porcentaje de Arenas : 36.00 a 48.00 % Porcentaje de Finos : Inferior a 1.00 %

Módulo de Fineza : 2.55 a 2.90
Peso específico de Gravas : 2.65 a 2.70
Absorción de Gravas : Inferior a 1.80 %
Peso Específico de Arenas : 2.68 a 2.73

Absorción de Arenas : Inferior a 1.50 %

Durabilidad : Agregados gruesos = 1.91 a 5.91 %

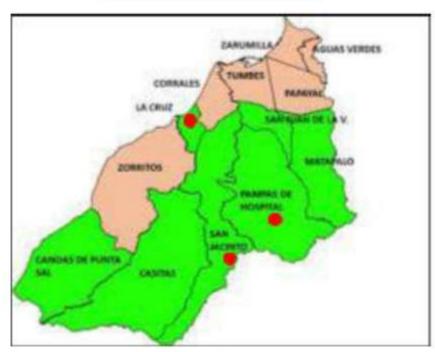
Agregado fino = 3.16 a 3.98 % Abrasión los Ángeles : Inferior al 25.00 % (Dato estimado)

: Se estima un porcentaje de utilización del 80.00 % considerando una potencia de explotación mínima de 1.75m se estima un volumen de explotación superior a 120,000m3

Volumen de Explotación

FUENTES DE AGUA

Las fuentes de abastecimiento para el TESIS: "COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023". Pueden ser Agua Potable o Agua del Rio Tumbes, previo análisis para su uso.



JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2529090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

MAPA DE CANTERAS DE TUMBES

CANTERA	DISTRITO	PROVINCIA	MATERIAL DE EXTRACCION
San Jacinto	San Jacinto	Tumbes	Agregado Fino y Grueso
La Cruz	La Cruz	Tumbes	Agregado Fino y Grueso
Cabuyal	Pampas de Hospital	Tumbes	Agregado Fino y Grueso

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

VIII. CONCLUSIONES

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

1.El área donde se ha realizado el Estudio de Mecánica de Suelos, pertenece al terreno donde se proyecta: "COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

- 2.El estrato de apoyo de cimentación recae en terreno natural como: Arcilla limosa (CL)
- 3. El terreno presenta una topografía Plana.
- Los resultados de la capacidad portante (QC) y capacidad admisible. Presión de trabajo (PT) de los suelos donde se proyecta la Obra. Se indica en el cuadro anexo.
- Hasta la profundidad de 2.40mt. se ha encontrado nivel freático. Desde el nivel del terreno natural
- 6. Es necesario mejorar el suelo de cimentación de las estructuras a colocar sobre él.
- 7.Se concluye, según los resultados obtenidos en la zona de estudio (vivienda unifamiliar), Según la Norma Peruana Sismo resistente E-030, ha permitido identificar la Existencia de Suelo Tipo S3. Suelos blandos.

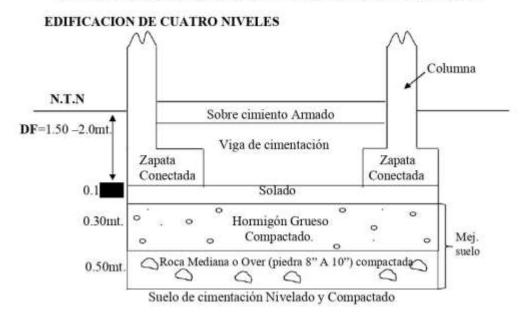
TUMBES A SPELO MAS ELECT.

TOTAL OF MAS ELECT.

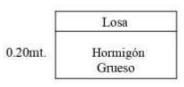
TOTAL OF MAS ELECT.

TOTAL OF MAS ELECT.

TOTAL OF MAS ELECT.


JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

IX. RECOMENDACIONES


COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

- Se recomienda limpieza y nivelación del área proyectada.
- Con la finalidad de disminuir el riesgo de un posible asentamiento se recomienda que previo al inicio de cimentación, las áreas a cimentar sea mejorado según detalle.

FALSO PISO Y VEREDAS

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

- El pre dimensionamiento de la Edificación no es definitiva, El Ingeniero proyectista la diseñara y la aprobara
- La capacidad admisible recomendada es 0.38kg/cm², a 1.50mt. de profundidad para la construcción de Vivienda que incluye un factor de seguridad igual a 3.0
- Se recomienda utilizar Cemento Portland Tipo MS en las estructuras de cimentación, que es resistente a la humedad y a los sulfatos.
- Es conveniente tener presente el cuidado necesario para que los empalmes de las tuberías de agua y desagüe estén bien instalados de tal forma evitar fugas que pueden generar la reacción de los sulfatos y cloruros.
- Los rellenos se harán con material hormigonado u otro material transportado, aprobado por el Ing. Responsable de la Obra
- 8. En el análisis sismo resistente se recomienda utilizar como parámetros:

Factor de Zona (Z) = 0.45Factor de Uso (U) = 1.0Factor de Suelo (S) = 1.20

	Perio	dos "Tr" Y	"TL"	
		Perfil d	le Suelo	
	So	Sı	S ₂	S ₃
Tp(S)	0,3	0,4	0,6	1,0
T _L (S)	3,0	2,5	2,0	1,6

- Los agregados (Piedra. Arena, Cemento, Agua) no deben ser expuestos al sol en el proceso de construcción de la obra.
- 10. Los rellenos artificiales encontrados en el área proyectada deben ser eliminados antes de iniciar la obra conforme lo indica las Normas Técnicas de Edificación E-050 indica que no debe cimentarse sobre turbas, suelos orgánicos, tierra vegetal, desmonte o rellenos sanitarios, estos materiales inadecuados deberán ser removidos en su totalidad antes de construir la edificación y ser reemplazados con material granular (hormigón y/o afirmado
- Se debe realizar el curado correspondiente lo cual permitirá aumentar la resistencia, impermeabilidad y durabilidad de la obra.

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

- 12. Para la construcción de la cimentación directa y mejoramiento de los suelos debe emplearse los materiales constructivos más apropiados para no poner en peligro las edificaciones vecinas, máximas si se tiene en cuenta el tipo de cimentación de ellas
- 13. Es importante que la cimentación se apoye en suelos que no estén sujetos a cambios fuertes en su volumen por variación de la humedad (Suelos colapsables, expansivos, cohesivos, etc.) de forma que no generen asentamientos no previstos, por tal motivo se está recomendado el mejoramiento del suelo.
- 15.Para esto tipo de suelo (Arcilla Limosa), se recomienda que el tipo de cimentación a utilizarse sea del tipo zapatas conectadas o combinadas o continuas de manera que la Estructura trabaje como una platea de cimentación, que minimice el asentamiento diferente que por efecto de movimientos sísmicos y/o por cargas. El ing. Proyectista tomara el mejor diseño de cimentacion estructural para la vivienda
- 16 Se está recomendado una estabilización Física que consiste en buscar una adecuada Granulometría mediante el aporte de materiales (Roca 8"-10") al primitivo suelo para garantizar una mejor estabilización al terreno a zona.
- 17. Los resultados del presente Estudio son válidos solo para la zona investigada.
- La calidad y permanencia de la obra obedece a un estricto control de los parámetros de calidad antes y durante el proceso constructivo

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

RESUMEN DE LAS CONDICIONES DE CIMENTACION

Tipo de cimentación para estructura: zapatas conectadas y viga de cimentación

Estrato de apoyo de la cimentación: Arcilla limosa (CL)
Parámetros de diseño de cimentación: C=0.05Kg/cm² Ø 19°

Factor de seguridad: 3

Agresividad del suelo en la cimentación: Moderado (Cemento tipo Ms)

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

ESTRATIGRAFIA

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

MUESTRA : CALICATA N° 01
PROFUNDIDAD: 0.0 – 2.50mts.
FECHA : Agosto, 2023

P	ROF.	(20)		0	CLASIF	ICACION
	(m)	M	SIMB,	DESCRIPCIÓN DEL ESTRATO	S.U.C.S	AASHTO
-	0.20	M1	7-1-5	Relleno inapropiado (arcilla con raíces). Estado compacto y húmedo.	R	-
	1.25	M2		Arcilla limo arenosa. Estado compacto y poco húmedo.	CL-ML	á
	1.05	МЗ		Arcilla limosa color marrón. Estado compacto y húmedo. NF2.45mt	α	
				NF2.45mt		
_						

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

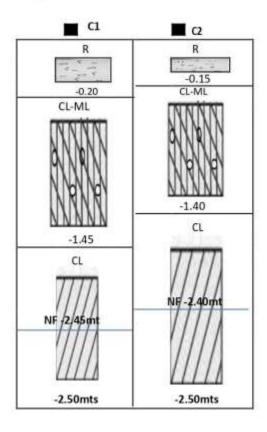
ESTRATIGRAFIA

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

MUESTRA : CALICATA N° 02 PROFUNDIDAD: 0.0 – 2.50mts. FECHA : Agosto, 2023

	PROF.	1,551		0	CLASIF	ICACION
	(m)	M	SIMB,	DESCRIPCIÓN DEL ESTRATO	S.U.C.S	AASHTO
-	0.15	M1	7-4-5	Relleno inapropiado (arcilla con raíces). Estado compacto y húmedo.	R	
	1.25	M2		Arcilla limo arenosa. Estado compacto y poco húmedo.	CL-ML	á
-	1.10	МЗ		Arcilla limosa color marrón. Estado compacto y húmedo. NF, -2.40mt	α	
_				NF2.40mt		



JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

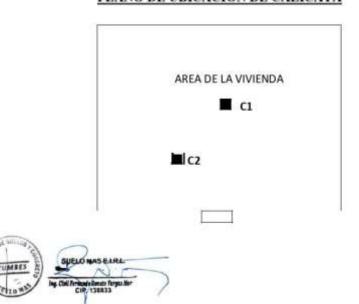
PERFIL LONGITUDINAL DEL SUELO

LEYENDA

- Relleno Arcilla limo arenosa

Arcilla limosa

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 252090 - CEL 972945321 - RPM #688277 - Tumbes


COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

PLANO DE UBICACIÓN DE LA ZONA DEL PROYECTO

PLANO DE UBICACIÓN DE CALICATA

JR. CAHUIDE № 248 - EL MILAGRO -TUMBES 2522090 - CEL. 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

VISTA PANORAMICA

CALICATA Nº 01

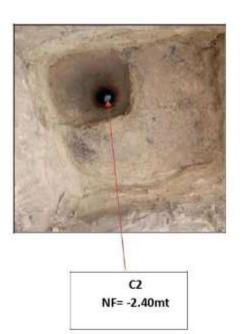
C1 NF= -2.45mt

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

VISTA PANORAMICA


CALICATA Nº 02

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

MUESTRA : ARCILLA LIMOSA SATURADA(CL)

PROCEDENCIA: C1-M3-PROF. 1.45-2.50mt.

ESTRUCTURA: ZAPATAS CONECTADAS CON VIGA DE CIMENTACION

CAPACIDAD PORTANTE

(FALLA LOCAL)

Q adm. = CNC + YDFNq + 0.4 Y B NY

TIPO	В	DF	PARAMET	ROS GEOM	ETRICOS	PARAMETROS		Quit		Qadm	
DE	m	m	*	ø	С	1	DE CARGA	65	Kg/cm2	FS.	Kg/cm2
SUELO			Gr/cc	1140	Kg/cm2	Nc	Nq	Ny			
CL	2.0	1.50	1.0	19	0.05	11.6	3.3	1.0	1.15	3	0.38

Donde:

Qad : Capacidad Portante Admisible

Ø : Angulo de fricción interna

Y : Densidad Natural (gr/cc)

C : Cohesión (kg/cm2)

Df : Profundidad de cimentación (m)

B : Ancho de zapata (m)

Nq, Nc, Ny : Factores de capacidad de carga (Función de Ø)

FS : Factor de seguridad

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

ENSAYO DE CORTE DIRECTO

A.S.T.M.D - 3080

PESO VOLUMETRICO NATURAL SECO (y)

Muestra	Tipo de Material	Peso Volumétrico sobre el Agua (gr/cm3)	Peso Volumétrico Bajo Agua
(gr/cm3)	(A. 1. 1940. Block)		
C1-M2	Arcilla limosa	1.7	1.00

DATOS OBTENIDOS DE LA MUESTRA EN MAQUINA DE CORTE DIRECTO

ESFUERZO

ESPECIMEN	01	02	03
ESFUERZO INICIAL	0.5	1.0	1.5
ESFUERZO DE CORTE MAX.	0.22	0.39	0.56
(Kg/cm ²)			

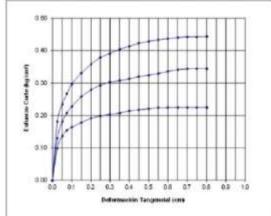
RESULTADOS DE GRAFICO

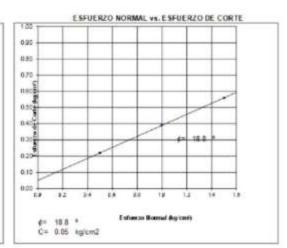
- Angulo de fricción interno 19º
- Cohesión = 0.05 Kg/cm²
- Tangente (tg⊕) = 0.34

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

ENSAYO DE CORTE DIRECTO ASTM 03080

MANTERADA.


Estado Muestra Calicata Prof. (m) FECHA 1.45-2.50mts. Agosto, 2023


COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA

URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE : ORTHE BEVAVIDES, BRANDON DUVER

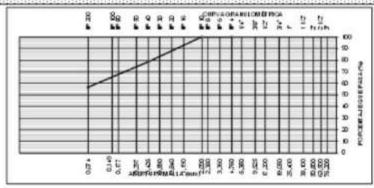
DEFORMACION TANGENCIAL vs. E SPUERZO DE CORTE

JR CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023 \$OLICITANTE: ORTIZ BENAVIDES, BRANDON DUIVER

FECHA :		
	Agosto.	

ava me	Valuable Sa	office the set	ANAL	ISIS MECAN	VICO PO	RTAMIZAL	00
MALLA	ABER TURA (MM)	PE NO METERIQUE	MRETEN Parcial	%RETEN. ACLINAJE	76 QUE Pje ja	S SPECIFI: CACIONES	DESCRIPCION DE LA MUESTRA
3"	76.200						Material: Refero
2 1/2"	63.500						
2"	50.800						Procedencia: C1 - M1
11/2"	38.100	1000				chen homen Wan	Profundidad: 0.0 - 0.20mi.
1"	25.400			Maria Maria		THE RESERVE	
3/4"	19.050						PESOTOTAL (Wo) = gr
1/2"	12.700						
3/8"	9.525						PORCENTAJE DE AGREGADO
1/4	6.350				1		
Nº 4	4.760	·			*		Grava: %
N* 6	2.360		RELLENO IN	APROPIADO			Azena : %
Nº B	2.380				T T		Finos: %
Nº 10	2.000				1		
Nº 16	1.190						
Nº 20	0.840				1		
NF 30	0.590				1		
Nº 40	0.426				1		
Nº 60	0.297	-					
NF 80	0.177						
Nº 100	0.149						
N* 200	0.074						
Total	11111111	CAF	RACTERISTIC	A FISICA Y	MECANIN	A DE LA I	WESTRA
	prido (%)						
	Bathco (%						Humedad (%)
marce at	Plasticis						
Clasifica	ción:	AASHTO			A		
2021242	151515151	121212121212121	Deleterate de la constitución de	-575752223555750	10110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110-1-1110	SERVICE STATE	Account to the second

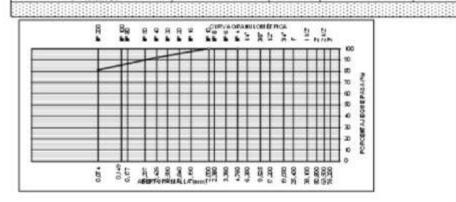

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 252090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORE SISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2020

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

FECHA: Agosto, 2023

			ANAL	ISIS MECAN	VICO PO	K IAMIZAL	00	
MALLAS	ABER Turka (mm)	PE SCI RETE N (g.)	MARTEN Barcial	WRETEN. ACLINITY	% QUE PK SA	S SPECIFI- CACIONES	DIE SCRUP GION DE 1,4 MUE	ETRIA
3"	76.200						Material: Arcita limo arenos	a
2 1/2"	63.500							
2"	50.800						Procedencia: C1 - M2	
11/2"	38.100						Profundidad: 0.20 - 1.	45mi.
1"	25.400							
3/4"	19.050						PESOTOTAL (Mb) = 300g	r
1/2"	12.700							
3/8"	9.525				<u> </u>		PORCENTAJE DE AGREGA	4D0
1/4	6.350					<u> </u>	***************************************	
Nº 4	4.760	0	0.0	0.0	100.0		Grava: %	
Nº 6	2.360						Arene : 42%	***************************************
Nº 8	2.380						Finos: 57%	
Nº 10	2.000	15	3.0	5.0	100.0	ļ	F	
Nº 16	1 190							
Nº 20	0.840							
Nº 30	0.590	27	9.0	14.0	86.0			
Nº 40	0.426	21	7.0	21.0	79.0		†	
Nº 60	0.297	24	8.0	29.0	71.0			
Nº 80	0.177				- Contractions	1		
Nº 100	0.149							
N ⁴ 200	0.074	42	14.0	43.0	57.0		 	
Total	-				-		1	
9153555		CA	RACTERISTIC	CA FISICA Y	MECANII	A DE LA I	MUESTRA	
	puido (%)		20.1					
	astico (%	P. C.	14.5				Humedad (%)	7.5
natice de	Plasticis	and the first of the second	5.6					
Clasifica	ción:	AASHTO	CL-ML		L			



JR. CAHUIDE Nº 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA ESFICACIONES DE CONCRETO ARMADO EN LA LIREANIZACIÓN LA ALBORADA TUMBES 2029 SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

FECHA : Agosto, 20	Z3	ì
--------------------	----	---

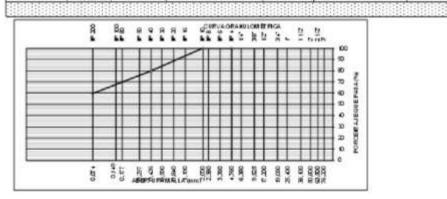
la rasse	Serve Certains	u ecut ecus	ANAL	ISIS ME CAN	NICO PO		
MALLA	ABER- TURA (Indi)	PE SO RETENIOS	%RÉTEN PARCIAL	% RÉTEN. A CLANGE	% GLIE PIC SA	E SPECIFI- CACIONES	DE SCRIPCION DE LA SELE-STRIA
3"	76.200			-	1		Material: Arcilla limosa
2 1/2"	63.500						
2 1	50.800						Procedencia: C1 - M3
11/2"	38.100				1		Profundidad: 1.45 - 2.50mL
1"	25.400						
3/4"	19 050						PESOTOTAL (VID) = 300gr
1/2"	12.700				1		The state of the s
3/8"	9.525			1			PORCENTAJE DE AGREGADO
1/4"	6.350						
N* 4	4.760	0	0.0	0.0	100.0		Grave: %
N*6	3.360						Atens : 15%
N*8	2.380						Finos: 81%
Nº 10	2.000	- 5	2.0	2.0	100.0		Transaction and Market State of the State of
Nº 16	1.190			English of			
Nº 20	0.840						
Nº 30	0.590	6	2.0	4.0	96.0	HERRICAN TO A STATE OF	
Nº 40	0.426	12	4.0	8.0	92.0	4	
Nº 60	0.297	18	6.0	14.0	86.0	L	
Nº 80	0.177			15 100000000000000000000000000000000000			In the last the second
Nº 100	0.149						
N° 200	0.074	15	5.0	19.0	81.0		
Total	514584	¢A)	RACTERISTI	CA FISICA Y	MECANI	A DE LA	westra
in its liq	peido (%)		35.2				
	astico (%		20.7	I STORY OF THE STORY			Humedad (%) Sature
marice de	Flatficid	SUCS	14.5 CL			-	
Charifica	ción:	AASHTO	UL.		1		

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES \$\mathbb{Z}\$522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORESISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023 SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

FECHA Amesto 2023

and the	country		ANAL	ISIS MECAN	IICO PO	R TAMIZAI	00
MALCAS	ABER- TURA (mm)	PESO RETENIAS	HARETEN. Barcial	%RETEK ACUMUL	%但用 外加	E SPECIFI-	DE SCRIPCION DE LA MUESTRA
3"	76,200						Material; Relieno
2 1/2"	63.500						
2"	50.800					I	Procedencia: C2 - M1
11/2"	38.100						Profundidad: 0.0 - 0.15ms.
1"	25,400						I DINION OF CONTRACTOR OF CONTRACTOR
3/4"	19.050						PESO TOTAL (Wb) = gr
1/2"	12.700			V. W. Steen Co.			- The Control of the
3/8"	9.525					Ī.	PORCENTAJE DE AGREGADO
1/4"	6.350						
N*4	4.760		mercen a		A		Grave: 1%
N+6	3.360		RELLENO IN	APHOPADO			Arena : %
N° B	2.380						Finge: %
Nº 10	2.000						
Nº 16	1.190						
Nº 20	0.840						
Nº 30	0.590						
Nº 40	0.426						
Nº 60	0.297						
Nº 80	0.177						
N° 100	0.149					-	
N* 200	0.074						
Total	10727272	:1:1:1:1:1#:A	PACTEMISTIC	na Provincia i vi	MET NO	a ne can	WESTRA
imits to	quido (%)		IN CONTRACTOR	ON TRACE	THE PARTY NAMED IN	- DE 40	N. W. P. C.
	readco (%						Humedad (%)
indice de	Plasticio						
Chaifica	ción:	SUCS AASHTO			l		


JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES ☎ 522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SISMORE SISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023

SOLICITANTE: ORTIZ BENAVIDES, BRANDON OLIVER

FECHA : Agosto, 2023

	- I CALLANTE		ANAL	ISIS MECAN	ICO PO	R TAMIZAL	00	- 2022
MALLA	ABER- TURA (mm)	PE NO.	MARETEN. Parcial	mreten Acumul	16-GAJE PJE SA		DE SCRIPCION DE LA SE	JE STRAL
3"	76.200						Material: Avoita limo aren	956
2 1/2	63.500						CONTRACTOR OF THE PARTY OF THE	
2"	50.800						Procedencia: C2 - M2	
11.2"	38.100				I		Profundided: 0.15	1.40ms.
+	25,400							
3/4"	19.050						PESOTOTAL (MO) = 30	lgr
1/2"	12.700			1		T		
3/8"	9.525						PORCENTAJE DE AGRE	GADO
1/4"	6.350							(Epistacon)
Nº 4	4,760	0	0.0	0.0	100.0		Grave: %	
N* 6	3.360					-	Arera : 40%	
N°B	2.380						Finos: 40%	
Nº 10	2.000	12	4.0	4.0	100.0		The state of the s	
Nº 16	1.190							
Nº 20	0.840							
Nº 30	0.590	27	9.0	13.0	87.0			
Nº 40	0.426	29	7.0	20.0	80.0			
Nº 60	0.297	21	7.0	27.0	73.0			
Nº 80	0.177		110111111111111111111111111111111111111				Carlo Malla Santo De Carlo	
N° 100	0.149		100				Maria Maria Maria	
N* 200	0.074	39	13.0	40.0	60.0		l	
Total		CA	RACTERISTI	CA FISICA Y	MECANI	A DE LA	MUESTRA	
	quido (%)		22.4	-	**********		A STATE OF THE STA	
	astico /%		17.2				Humeded (%)	1.
rnaice de	Patricis		3.3				1	-
Clasifica	ción:	AASHTO	CL-ML					1

JR. CAHUIDE N° 248 - EL MILAGRO -TUMBES 2522090 - CEL 972945321 - RPM #688277 - Tumbes

COMPORTAMIENTO SESMORE SISTENTE PARA EDIFICACIONES DE CONCRETO ARMADO EN LA URBANIZACION LA ALBORADA TUMBES 2023 BOLICITANTE: ORTIZ BENAVICES, SRANDON DUIVER

			ANAL	ISIS MECA!	VICO PO	R TAMIZAI	00	
MALLAY	A DES TURA PORT	PENO RETEN(E)	NAME THAN	NAME THAN A CLIMINA	N. GIJE PA SA	E SPECIFI CACIONES	DE SCRIPCION DE L	A MILIE STRUC
3	76.200						Material: Avuille Smoo	10
2.12"	69.500							
2"	50.800						Procedencia: CZ - M	3
110	38.100						Profundidad: 1	#0 - 2.50mi.
1	25.400							
3.4"	19.050						PESOTOTAL (WI)	100 bgr
1/2	12,700		in the second				Restaura Laurance	evenio Legal es
3/8	9.525						PORCENTAJE DE A	GREGADO
1/4"	6.350					Line in the		and the same of th
N°4	4.760	0 1	0.0	0.0	100.0		Grave: N	
N. 6	2.360				1		Amms : 16%	
N°8	2.380						Finos: 84%	
Nº 10	2.000	6	2.0	2.0	100.0			
Nº 16	1.190		And I was some					
Nº 20	0.840			1240000				
Nº 30	0.590	15	5.0	7.0	93.0			
Nº 40	0.426	6	2.0	9.0	91.0			
Nº 60	0.297	9	3.0	12.0	88.0			
Nº 80	0.177				1			
N* 100	0.149							
N° 200	0.074	12	4.0	te.o	84.0	VIII - III		
Total				income and the				Warning and a second
	COLUMN TO	CAP		CA FISICA Y	MECANIC	A DE LA	WJESTRA	1922/1920/1920
	enido (%)	V-	36.5	CONTRACTOR OF STREET	AVI - Li He		Marketon Mary	
	Plasticia		16.2				Permedat (%)	Setundo

g 2	98	2 2 2	8 2	CE I	onem E E	in it	in . 1	hoh.	
F									10 10 10 10 10 10 10 10 10 10 10 10 10 1
#	#				Ħ	Ħ	Ħ		S S S S S S S S S S S S S S S S S S S

Anexo 3. Guía de Observación

METRADO DE CARGAS (NTE E.O20)

LOSA ALIGERADA

Espesor	Peso Total
h Iosa = 17 cm	280,00 kg/m2
h losa = 20 cm	300,00 kg/m2
h losa = 25 cm	350,00 kg/m2
h losa = 30 cm	420,00 kg/m2
10 20 cm	Vigueta Lacritio de

-		Losa
		Vigue
k k	30 cm 10	Ladrillo de

ΡΙ Δ ΝΤΔ

PLANIA			
Peso de Ladrillo	=	0.072	Ton/m2
Piso Terminado	=	0.100	Ton/m2
Equipamiento	=	0.000	Ton/m2
Carga Muerta Impuesta	=	0,172	Ton/m2
Sobrecarga	=	0.200	Ton/m2
Carga Viva	=	0,200	Ton/m2

Para 1m2:
(Xc)
Esnesor de aline

=	2400 kg/n
=	0.20 m
= "	0.05 m
= ::	0,095 m3
=33	228 kg
	= 0 = 0 = 0

Peso del ladrillo (P) = P total - P concreto Peso del ladrillo (P)

LILTIMO TECHO

0,30375

Carga Muerta Impuesta	=	П 172	Ton/m2
Piso Terminado	=	0.100	Ton/m2
Peso de Ladrillo	=	0.072	Ton/m2
ornino reono			

Carga Muerta Impuesta 0.172 0.100 Sobrecarga Ton/m2 Carga Viva de techo Ton/m2

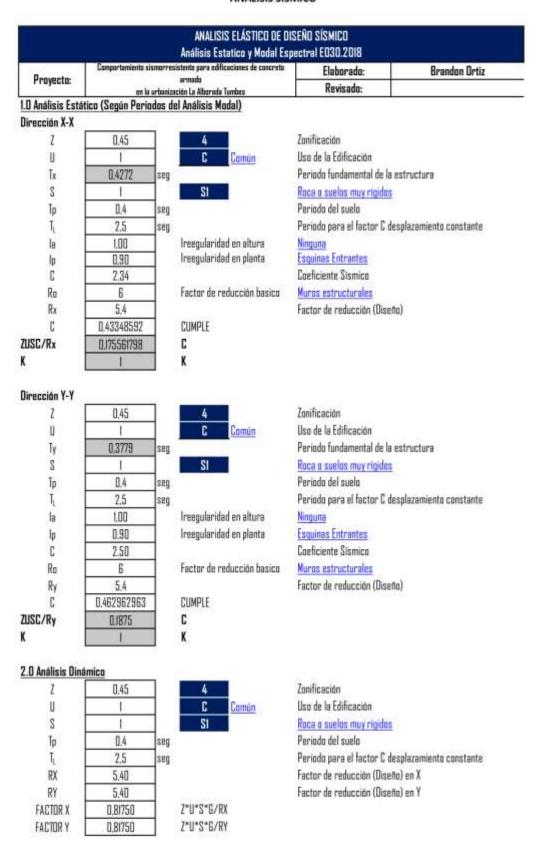
LOSA MACIZA

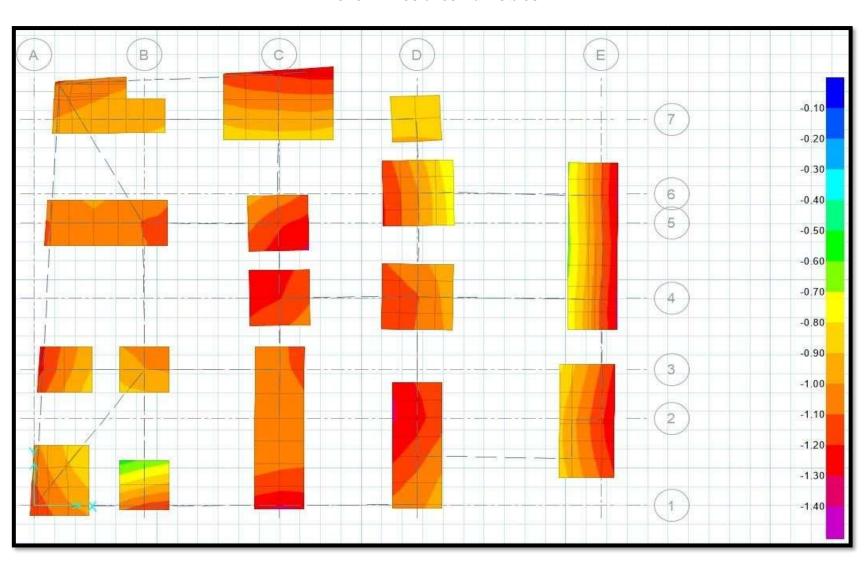
PLANTA			
Piso Terminado	=	0.100	Ton/m2
Equipamiento	=	0,000	Ton/m2
Carga Muerta Impuesta	=	0.100	Ton/m2
Sobrecarga	=	0,200	Ton/m2
Carga Viva	=	0,200	Ton/m2

ULTIMO TECHO	
D: T:	

Piso Terminado	=	0,100	Ton/m2
Carga Muerta Impuesta	=	0,100	Ton/m2
Sobrecarga	=	0,100	Ton/m2
Carga Viva de techo	=	0,100	Ton/m2

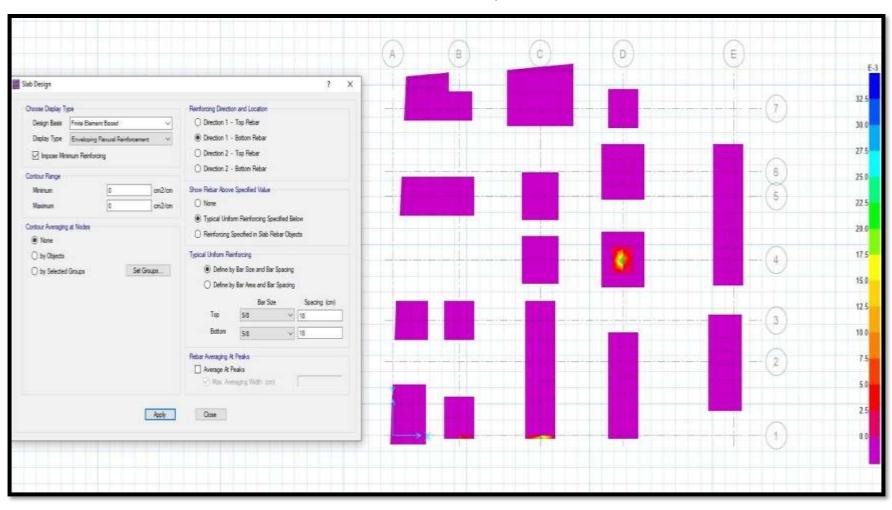
TABIQUERÍA SOBRE VIGUETAS O VIGAS CHATAS

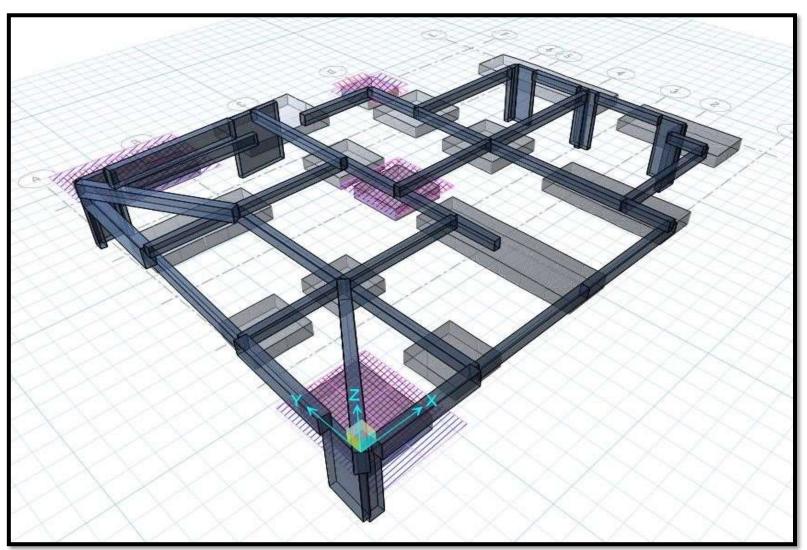

Espesor	=	0.15	m
Altura	=	1,50	m
Peso Esp. De Albañilería	=	1350	Kg/m3
Carga Distribuida	=	304	kg/m


2400 kg/m3 0,20 m 0.05 m

72 kg

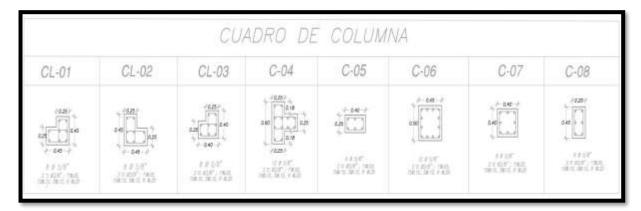
ANÁLISIS SÍSMICO

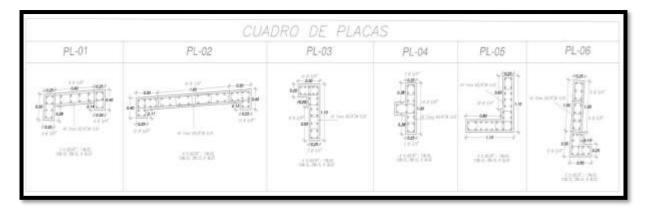

Anexo 4. Presiones Admisibles


1.6449 Beam Design Choose Display Type Display Type Longitudinal Rebar 70.431 ✓ Impose Minimum Reinforcing 5 Display Options Fill Diagram Show Values at Controlling Stations on Diagram 3 0824 0 3 0336 Pd Reinforcing Diagrams Show Reinforcing Envelope Diagram Scale Factor Show Reinforcing Extent 0.60204150 Apply Close 1350,3396 0.2608 2.452.0806 1.899292790719

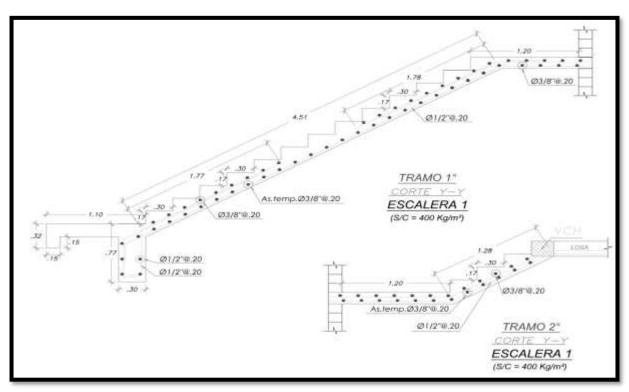
Anexo 5. Diagrama de momentos en vigas de cimentación

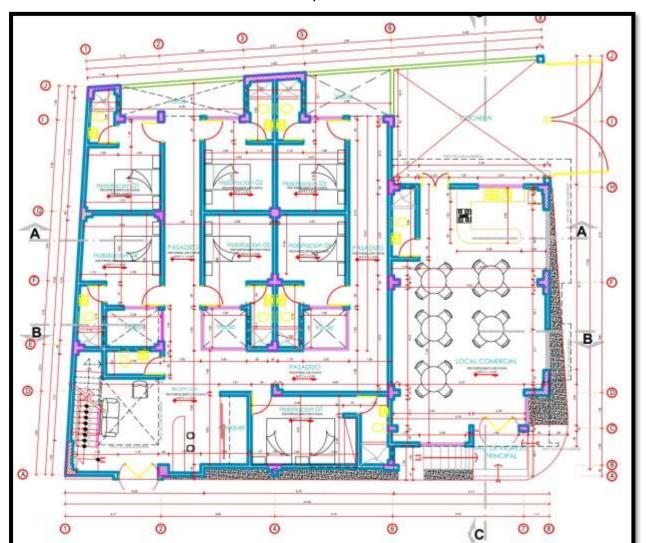
Anexo 6. Diseño de zapatas en safe


Anexo 7. Vista en 3d de cimentación, Safe

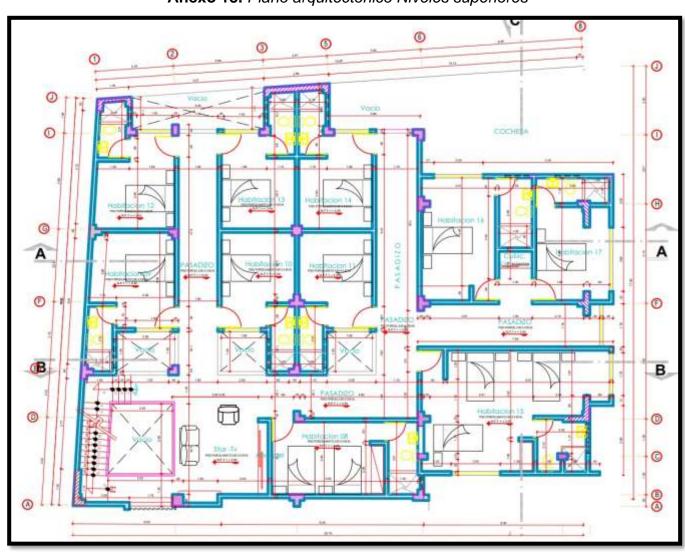

Planos estructurales de los elementos

Anexo 8. Planta aligerada 1,2,3 y 4 nivel


Anexo 9. Cuadro de Columnas



Anexo 10. Cuadro de Placas



Anexo 11. Diseño de escalera

Anexo 12. Plano arquitectónico Primer nivel

Anexo 13. Plano arquitectónico Niveles superiores

Anexo 14. Corte A-A

Anexo 15. Corte B-B

