

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Implementación de herramientas de Lean Manufacturing para la reducción de merma en el área de prensa de una empresa gráfica, Lima 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Industrial

AUTORES:

Chipana Paitan, Robinson (orcid.org/0000-0002-8669-9443) Martinez Porras, Fran Alvaro (orcid.org/0000-0002-5617-9420)

ASESOR:

Mg. Añazco Escobar, Dixon Groky (orcid.org/0000-0002-2729-1202)

LÍNEA DE INVESTIGACIÓN:

Gestión Empresarial y Productiva

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo Económico, Empleo Y Emprendimiento

LIMA – PERÚ 2023

DEDICATORIA

El proyecto de investigación dedicamos principalmente a Dios por ser nuestro guía quien nos da la fortaleza en nuestras vidas para cumplir uno de nuestros anhelos más deseados, a nuestra querida familia porque son nuestros motivos quien nos inspiran a salir adelante.

AGRADECIMIENTO

Agradecemos a la universidad César Vallejo, a toda la facultad de ingeniería, en especial a nuestro asesor Ing. Añazco Escobar Dixon Groky por brindarnos su asesoramiento y transmitirnos sus conocimientos que es de gran ayuda en nuestras vidas profesionales.

Índice de contenidos

DEDICAL	I ORIA	II
AGRADE	CIMIENTO	iii
Índice de	e contenido	iv
Índice de	e Figura	vi
RESUME	N	vii
ABSTRAG	CT	viii
I. INT	RODUCCIÓN	1
II. MA	RCO TEÓRICO	8
III. N	METODOLOGÍA	18
3.1 Tip	po y diseño de investigación	18
3.2 Va	ariables y operacionalización	18
3.3 Pc	oblación, Muestra y Muestreo	21
3.3	3.1 Población	21
3.3	3.2 Muestra	22
3.3	3.3 Muestreo	22
3.3	.4 Unidad de análisis	22
3.4	Técnicas e Instrumentos de Recolección de datos	24
3.5	Procedimiento:	27
3.6	Método de análisis de datos	45
3.7	Aspectos éticos	51
IV. R	RESULTADO	52
V. DIS	CUSIÓN	63
VI. C	CONCLUSIONES	67
VII. R	RECOMENDACIONES	69
VIII. R	REFERENCIAS	70
IX. A	ANEXO	72

Índice de tablas

Tabla 01. Demanda de productos con mayor rotación	2
Tabla 02. Principales causas de merma en el área de prensa	4
Tabla 03. Funciones del POKA YOKE	10
Tabla 04. Organización Tradicional versus Lean	17
Tabla 05. Matriz de operacionalizacion de variables	20
Tabla 06. Identificación de máquina offset	21
Tabla 07. <i>Número de observaciones</i>	22
Tabla 08. Cuadro de composición porcentual de la muestra	24
Tabla 09. Escala de medición	26
Tabla 10. Respuestas de cuestionario según la V de Aiken	26
Tabla 11. Matriz de impacto de la causa raíz	31
Tabla 12. Nuevo metodo de trabajo en el área de prensa	36
Tabla 13. Clasificación de actividades internos y externos	40
Tabla 14. Conversión de actividades internos en externos	41
Tabla 15. Cuadro de cantidades de órdenes a analizar	46
Tabla 16. Descripción estadística fallas humanas	47
Tabla 17. Descripción estadístico tiempo de espera	48
Tabla 18. Descripción estadística de horas por paradas imprevistas	51
Tabla 19. Análisis descriptivo del costo total de mermas (antes y después)	52
Tabla 20. Análisis descriptivo de los errores por factor humano	54
Tabla 21. Análisis descriptivo % de horas paradas por espera	55
Tabla 22. Análisis descriptivo de sobreproducción en el área de prensa	56
Tabla 23. Análisis descriptivo del total de horas por paradas imprevistas	57
Tahla 24 Pruehas de normalidad	58

Índice de Figura

Figura 1.1. Porcentaje de mejora al implantar Lean Manufacturing	1
Figura 1.2. Recolección de datos de merma	3
Figura 1.4. Diagrama de Pareto	4
Figura 1.5. Diagrama de Ishikawa	5
Figura 2.1. Implementación y diseño de Poka Yoke:	11
Figura 3.1. Diagrama de proceso de todas las áreas de producción	28
Figura 3.2. Diagrama de proceso de producción del área de prensa	29
Figura 3.3. Diagrama de Ishikawa	30
Figura 3.4. Diagrama de flujo de implementación de herramientas de lean manufacturing	32
Figura 3.5. % costos de error por factor humano	33
Figura 3.6. Implementación de POKE YOKE antes y después.	35
Figura 3.7. Propuesta de mejora con POKA YOKE	35
Figura 3.8. Cronograma de implementación de la metodología Poka Yoke	37
Figura 3.9. Histograma de costo de errores por tiempo muertos	38
Figura 3.10. Diagrama de análisis de procesos antes de implementar lean manufacturing	39
Figura 3.11. Diagrama de análisis de procesos después de implementar lean manufacturing	43
Figura 3.12. Implementación del SMED	44
Figura 3.13. Cronograma de implementación de la metodología SMED	45
Figura 3.14. Dispersión de datos de errores humanos	47
Figura 3.15. Frecuencias de tiempo de espera en el área de prensa.	49
Figura 3.16. Histograma de sobreproducción	50
Figura 4.1. Histograma de comparación de resultados antes y después	53
Figura 4.2. Prueba de normalidad de las variables	59
Figura 4.3. Hipótesis estadística de la prueba de normalidad	59
Figura 4.4. Hipótesis general de la investigación	59
Figura 4.5. Prueba de Wilcoxon de la hipótesis principal	60
Figura 4.6. Hipótesis especifica 1	60
Figura 4.7. Prueba de Wilcoxon Hipótesis específica 1. % de fallas por factor humano	61
Figura 4.8. Prueba de Wilcoxon Hipótesis específica 1. cantidad fallado por una sobreproducció	ón.
	61
Figura 4.9. hipótesis especifica 2.	
Figura 4.10. Prueba de Wilcoxon hipótesis especifica 2 –tiempo de espera	62
Figura 4.11. Prueba de Wilcoxon hipótesis especifica 2. Paradas imprevistas e maquinas	62

RESUMEN

Esta investigación de "Implementación de herramientas de Lean Manufacturing" para la reducción de Merma en el área de prensa de la empresa Gráfica, Lima 2023", Tiene como objetivo general demostrar que al Implementar las principales herramientas necesarias del Lean contribuye en la reducción de merma. La investigación está basada con el enfoque cuantitativo y tipo de investigación es aplicada, utilizando el diseño no experimental. Se iniciará con la recolección de datos y se realiza su aplicación en la empresa enfocado solo al área de prensa, identificando las causas potenciales que están generando merma, se realiza un diagnóstico del estado actual al área, destacando los indicadores de producción, materias primas y porcentaje de mermas generados, los cuales se organizan con el fin de presentar adecuadamente. Una vez obtenido los indicadores se implementa la metodología Lean, con el uso de las herramientas de Poka Yoke el cual nos ayudará a reducir o eliminar mermas y el Smed nos ayudará a manejar el análisis de los tiempos y actividades realizando un muestreo del proceso de impresión para eliminar problemas recurrentes y llevar a cabo un mejor proceso de producción. Finalmente, se realizará una demostración con un antes y después.

Palabras clave: Lean Manufacturing, Poka Yoke, Smed, Prensa Offset, producción

ABSTRACT

This research "Implementation of Lean Manufacturing tools for the reduction of waste in the press area of the company Gráfica, Lima 2023", has as general objective to demonstrate that the implementation of the main necessary tools of Lean contributes to the reduction of waste. The research is based on the quantitative approach and the type of research is applied, using the non-experimental design. It will begin with data collection and its application in the company focused only on the press area, identifying the potential causes that are generating waste, a diagnosis of the current state of the area is made, highlighting the indicators of production, raw materials and percentage of waste generated, which are organized in order to present them properly. Once the indicators are obtained, the Lean methodology is implemented, with the use of the Poka Yoke tools, which will help us to reduce or eliminate waste, and the Smed will help us to manage the analysis of times and activities by sampling the printing process to eliminate recurring problems and carry out a better production process. Finally, there will be a demonstration with a before and after.

Keywords: Lean Manufacturing, Poka Yoke, Smed, Offset Press, production.

I. INTRODUCCIÓN

Lean Manufacturing es un enfoque de trabajo que describe cómo mejorar y optimizar en una organización con el énfasis de en encontrar y eliminar desperdicios o mermas en todas sus formas (Hernández et al, 2017).

El propósito de Lean manufacturing es mejorar la producción en todo nivel de trabajo y la línea de producción. Para ello, los directivos, mandos intermedios y operadores deben trabajar juntos en estrecha colaboración y comunicación. (Sánchez,2020, p.124).

La eficiencia y competitividad son fundamentales para tener éxito en cualquier empresa. junto con una serie de técnicas y herramientas, se convierte en nuevos métodos que nos permite afrontar con éxito las dificultades relacionadas con los costos, calidad y plazos de entrega. El objetivo principal es reducir el desperdicio, para que el cliente reciba el mejor producto y servicio, al menor costo posible, cumpliendo los tiempos de entrega y con la mejor calidad. Actualmente Lean manufacturing se utiliza en una variedad de empresas, incluidas las industriales, farmacéuticas y automotrices. Esto se debe a que la metodología se puede utilizar en cualquier industria y proporcionar buenos resultados.

En la figura 1. Según una evaluación del Grupo Aberdeen de 300 empresas norteamericanas, se ha producido una mejora del 20 % al 50 % en varias áreas, incluidos las fechas de entrega, el inventario, los costos de producción, los gastos de compra y el área utilizada.

Figura 1.1. Porcentaje de mejora al implantar Lean Manufacturing.

Fuente: Estudio 300 empresas Aberdeen Group 2018

Por otro lado, en la revista de Autracen, menciona que corporaciones, incluidas John Deere, Nike, Intel y Caterpillar. Al lograr la incorporación de la metodología Lean Manufacturing, actualmente encabezan una lista de varias fábricas más excepcionales del mundo. Por ello Se considera que las empresas deben ser más eficientes en el uso de los recursos, basándose en la metodología lean manufacturing, elaborando soluciones a los causantes de los problemas identificados por la empresa, Para reducir las pérdidas y aumentar las ganancias a través de sus operaciones de producción y/o procesamiento de sus productos, actualmente las empresas se ven obligadas a implementar lean manufacturing para la mejor preparación, corrección y optimización de procesos en los ciclos de producción. Es fundamental que todas las áreas tengan un mismo compromiso con los objetivos de la empresa.

Cimagraf, es una empresa peruana constituida hace 35 años dedicada a la impresión comercial en máquinas rotativas y planas, sus productos de línea son catálogos de belleza, empaques, etiquetas y libros editoriales de primaria y secundaria, cuenta con una planta en la zona industrial de Santa Anita de 15,000 m2. La empresa cuenta con tres principales divisiones de negocios: Cimapack, Cimanews y Cimaflex. Sin embargo, existen cinco principales productos que generan mayores ingresos y participación, como se identifica en la tabla 01.

Tabla 01. Demanda de productos con mayor rotación.

N°	PRINCIPALES PRODUCTOS	DEMANDA 2022 (EN UNIDADES)	TOTAL DE VENTAS ANUALES EN S/	PORCENTAJE DE REPRESENTACIÓN
1	EMPAQUES(CAJAS)	4,152,442	35,614,535.50	38.92%
2	IMPRESIÓN DE CATÁLOGOS	7,556,571	27,672,198.40	30.24%
3	IMPRESIÓN DE ETIQUETAS	4,005,000	18,022,500.00	19.69%
4	IMPRESIÓN DE LIBROS	29,850,320	7,462,580.00	8.15%
5	IMPRESIÓN DE AFICHES	2,010,200	1,608,160.00	1.76%
6	LOS DEMÁS PRODUCTOS	1,890,280	1,134,168.00	1.24%
TOTAL		49,464,813	S/91,514,141.90	100.00%

Fuente: elaboración propia

La empresa, como muchas otras, sufre actualmente de una serie de deficiencias, uno de los problemas más relevantes son las pérdidas por merma, generados en la empresa Cimagraf del área de prensa. En la figura se observa la cantidad de pérdida en dinero en estos 5 últimos años.

Mermas 2018 al 2022 (En miles S/) 32,400.00 35,000.00 30,000.00 27,100.00 25,100.00 25,000.00 22,100.00 21,677.00 20,000.00 15,000.00 10,000.00 5,000.00 2018 2019 2020 2021 2022

Figura 1.2. Recolección de datos de merma

Fuente: elaboración propia

En la figura 1.2. Identifica la cantidad de materiales excedente (mermas) generados en los últimos 5 años por diferentes causas, demostrando que la empresa mantiene altas cantidades de pérdidas generados por exceso de merma y como resultado, daños financieros para el negocio.

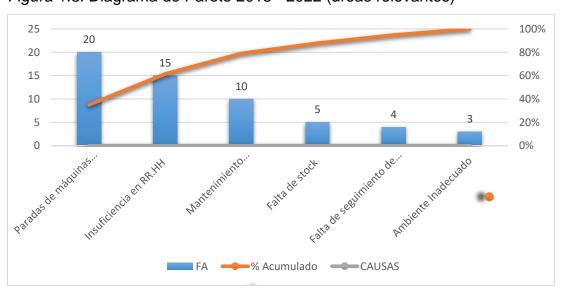


Figura 1.3. Diagrama de Pareto 2018 - 2022 (áreas relevantes)

Fuente: Elaboración propia

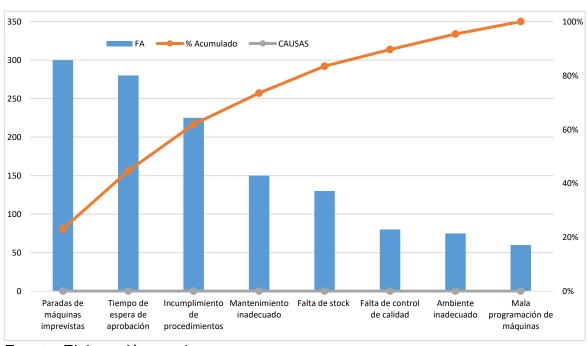

Una vez recopilados datos de los problemas generados durante 5 años, realizamos esta investigación enfocándonos en el año 2022, iniciamos analizando los principales problemas que se presentan, seguidamente se demuestra mediante un diagrama de Pareto las causas más relevantes que provocan desperdicio para luego dar una mejora al área de prensa offset.

Tabla 02. Principales causas de merma en el área de prensa

Ítem	Causas que generan merma	N°- de incidentes	F. acumulada	% Relativo	% Relativo acumulado
1	Paradas de máquinas imprevistas	300	300	23.08	23.08
2	Tiempo de espera de aprobación de color	280	580	21.54	44.62
3	Incumplimiento de procedimientos	225	805	17.31	61.92
4	Mantenimiento inadecuado	150	955	11.54	73.46
5	Falta de stock	130	1085	10	83.46
6	Falta de control de calidad	80	1165	6.15	89.62
7	Ambiente inadecuado	75	1240	5.77	95.38
8	Mala programación de máquinas	60	1300	4.62	100

Fuente: Elaboración propio

Figura 1.4. Diagrama de Pareto

Fuente: Elaboración propio

Para generar valor dentro de la empresa, Lean Manufacturing ayudará a optimizar sus recursos, capacidades competitivas de las operaciones al tener equipos que funcionan sin fallas ni averías, y al emplear menos recursos para generar valor dentro de la organización. Mejorando el área de prensa que está asociada a ejecutar un eficiente control de procesos y capacitaciones de personal ligada al área de prensa.

Se identifica procesos que generan mermas de distintas formas que disminuye la rentabilidad del área de prensa, incrementando costos a cada orden de producción solicitado por el cliente.

Para identificar los causantes principales que ocasionan mermas, Se utilizó los reportes de complementos adicionales, que ayudaron a entender y analizar la solicitud de complementos, para ello se realizó un diagrama de Ishikawa o Pareto donde podemos describir cuál es el problema principal que más afecta la rentabilidad de la organización.

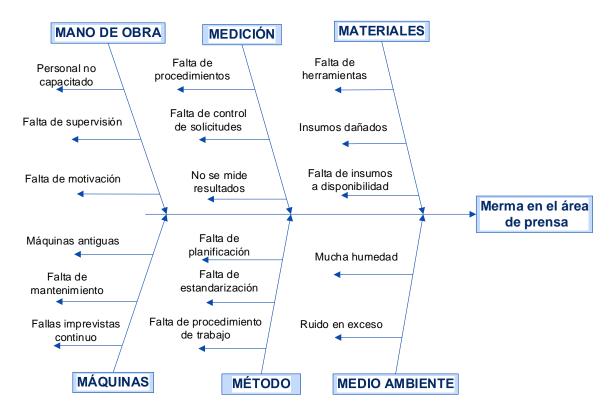


Figura 1.5. Diagrama de Ishikawa

Fuente: Elaboración propio

En la figura 1.5. mediante el diagrama de Ishikawa, se recolecta las causas que frecuentan generando merma en el área de prensa.

Siguiendo el escenario planteado, esta tesis pretende analizar las órdenes de producción de impresiones, señalando los factores que producen las mayores mermas. A continuación, a partir de los datos recogidos, se formulan recomendaciones para reducir las mermas y los costos de producción. Una vez obtenidos los porcentajes de mermas por factores reconocidos, se debe determinar el factor o factores más importantes con el fin de crear diagramas de control y realizar mejoras en el área, lo que disminuirá el coste del producto.

Esta investigación está enfocada en todo el departamento de prensa de la imprenta Cimagraf, identificando la problemática y cuáles son las causas que generan mermas, finalmente analizamos los datos recolectados del año 2022, con el fin de demostrar mejoras al implementar lean manufacturing, aplicadas mediante las herramientas Poka Yoke y Smed.

Por lo tanto, se presenta la formulación del problema general de investigación: ¿Cómo la implementación de Lean Manufacturing contribuye a la reducción de merma en el área de prensa de la empresa gráfica, Lima 2023?, a continuación de forma específica: ¿De qué manera la implementación de la metodología POKA YOKE ayuda reducir el porcentaje de mermas generados por factor humano en el área de prensa de la empresa Gráfica, Lima 2023? El segundo problema específico. ¿De qué manera la implementación de la metodología SMED reduce los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de la empresa Gráfica, Lima 2023?

Conforme a lo establecido, en el objetivo general de esta investigación es demostrar que al Implementar las principales herramientas necesarias del lean manufacturing contribuye a reducir merma en el área de prensa de la empresa Gráfica Cimagraf.

El objetivo específico de la metodología POKA YOKE es evidenciar un antes y después del porcentaje de mermas generados por factor humano en el área de prensa de una empresa Gráfica, Lima 2023. El segundo objetivo específico de la metodología SMED es evidenciar la reducción de los tiempos de esperas y paradas

imprevistos de maquinarias en el área de prensa de una empresa Gráfica, Lima 2023.

La hipótesis general planteada en este proyecto es la siguiente: La implementación Lean Manufacturing influye en la mejora de la reducción de las mermas en el área de prensa de una empresa Gráfica, Lima 2023. Como hipótesis específica número uno, la metodología POKA YOKE mejora la reducción del porcentaje de productos fallados por factor humano en el área de prensa de una empresa Gráfica, Lima 2023. La segunda hipótesis específica es, la metodología SMED mejora la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de la empresa Gráfica, Lima 2023.

Por otro lado, la justificación de la investigación está enfocado en darle importancia a los errores que cometen los colaboradores durante el periodo de impresión en el área de prensa, por falta de capacitación, falta de concentración, por no seguir los procedimientos, obviar estándares y seguir la costumbre. Son considerados productos fallados por tanto se tiene que solicitar insumos y materiales adicionales para completar la orden de producción, acción que suma costo de producción. por otro lado, tenemos deficiencia de las máquinas que generan paradas imprevistos de tal forma desprogramando los tiempos planificados y con ello tiempo mermado. así mismo los tiempos de espera de aprobación del producto hace que las máquinas se enfríen y generen defectos en los productos en proceso.

Este trabajo busca reducir las mermas que se genera en el área de prensa, reduciendo los costos de productos defectuosos y tiempo mermado de máquinas por espera. Esta mejora busca beneficiar a la empresa gráfica y otras empresas, aplicando Lean Manufacturing pueden aumentar su productividad utilizando el control de procesos, reconociendo problemas comunes que no se miden en el lugar de trabajo; como el desperdicio de materias primas, el derroche de energía y los periodos de inactividad, Tiempo improductivo, una formación inadecuada y la falta de capacidad técnica del personal. como consecuencia retraso en la entrega, lo que da lugar a quejas y reclamaciones de los clientes.

II. MARCO TEÓRICO

Con relación a este capítulo se tienen en cuenta las investigaciones nacionales e internacionales previas sobre el tema, así como los trabajos teóricos nacionales sobre el tema y el marco teórico de las variables independiente y dependiente.

Lean Manufacturing es una metodología basada en eliminar desperdicios identificados en la etapa de producción, haciendo que no agrega costo al producto terminado que recibe el consumidor. El objetivo principal de la Lean es realizar más tareas en menos tiempo, espacio, mano de obra, equipos y materiales. satisfaciendo al mismo tiempo las necesidades del cliente. Así mismo, Lean Manufacturing ayuda a las empresas a ser más innovadoras, competitivas y eficientes, con su aplicación se consiguen productos de mayor calidad y procedimientos más ágiles y eficientes. (Villaseñor y Galindo, 2021, p. 19).

Dr. Cecilia Hinojosa (2022). Muestra el Impacto de Lean basado en Productividad en las empresas de Guayaquil, menciona la gran importancia que tiene la herramienta de Lean Manufacturing que aplica y desarrolla de manera minuciosa en su área, puede ofrecerle a todas las microempresas y empresas en general, con la posibilidad de crear o desarrollar un producto de forma más eficaz, reduciendo los residuos que se producen en el proceso y así mismo posicionando el producto o servicio en mercados globales con mucha demanda, Sin embargo, El uso de este enfoque requiere un sólido compromiso por parte de los proveedores, los empleados y la dirección de la corporación.

Para lograr una implementación de Lean Manufacturing exitosa, Se debe utilizar el enfoque de tres fases que se enumera a continuación: revisión del estado actual de la empresa, se examina cada procedimiento para encontrar donde se genera la merma, mediante los datos recolectados. La siguiente fase revisar la mejor forma de implementación Lean usando las herramientas necesarias, Ya analizado los procesos y detectado las fallas y desperdicios que deberían eliminarse, se implementarán Lean Manufacturing utilizando las 2 herramientas (Poka Yoke y SMED) y finalmente en la fase 3 de situación futura: Erradicar los desperdicios que consumen tiempo y recursos para corregir fallas en el proceso, Posteriormente Se harán sugerencias de mejora (Rajadell y Sánchez, 2011).

La metodología tiene varias series de herramientas que son. (SMED, Kaizen, PHVA Kanban, 5S, TPM, Poka Yoke, Jidoka, entre otros.), Estas herramientas se utilizan para optimizar procesos, eliminar desperdicios y lograr una mejora constante. No es necesario usar todas las herramientas porque cada una tiene una función y un objetivo distinto, que le permiten mejorar un aspecto en particular. Se deben elegir aquellos que mejor se adapten a los procesos de una empresa. El mejor aspecto de esta filosofía es cómo cada componente se introduce progresivamente y por separado. (Rajadell y Sánchez, 2020).

En cuanto a la variable independiente Para realizar esta investigación se utilizó la herramienta de Poka Yoke y Smed.

En un artículo recientemente elaborado por Juan Pushug Guacho (2023) en su artículo denominado, Reducir los costes de producción empleando la metodología DMAIC en un proceso de envasado de detergente en polvo. Según él, el objetivo de utilizar esta herramienta Poka Yoke era reducir el tiempo que tardan los operarios en cambiar de línea y poner en marcha la máquina. En este lugar se utilizó un poka yoke para centrar la guía de mordazas, el centrado de bobinas, la entrada en ángulo de la lámina, la reubicación de la codificación y el centrado de la máquina de corte de bolsas, entre otras cosas.

Poka Yoke es una herramienta que ayuda a la búsqueda y corrección de errores en las operaciones de fabricación, está reforzado por una cultura corporativa que valora la excelencia y prima la calidad. La herramienta es una magnífica ayuda para identificar de forma rápida y sencilla el desperdicio, que se define como cualquier acción que no añade valor al producto o servicio. Sin embargo, Guarjardo (citado por Mio, 2017, p. 22) describe la herramienta Poka Yoke como cero defectos, porque es a prueba de errores. Su objetivo es tanto definir la causa como detener la actividad en caso de mal funcionamiento o error de ellos y prevenir los posteriores.

Tipos de Poka-Yoke: Según Chase y Stewart (citados por Guevara y Zegarra, 2015), sugieren que el Poka Yoke se divida en las siguientes categorías en función de la función que desempeña:

Físico: busca errores o inconsistencias físicas y asegura y previene errores en el producto y/o proceso. Errores o irregularidades físicas. Da fe de las características únicas del producto o método.

Secuencial: mantener el orden es importante, y cualquier alteración puede dar lugar a errores. Las alteraciones en el mismo pueden dar lugar a imprecisiones, por lo que identificamos métodos precisos para restringir la serie a fin de restringir la serie, permitiendo que sólo vaya en un orden predeterminado.

Agrupado: se aplican la técnica del excedente. Estos contienen materias primas, fragmentos y otros componentes que se preparan para que estén todos listos para su uso y no falte ninguno cuando se lleve a cabo el procedimiento.

Informativo: Dar al trabajador instrucciones completas, inequívocas y fáciles de entender sobre lo que hay que hacer para evitar errores. Detalle básico sobre lo que hay que hacer para evitar errores.

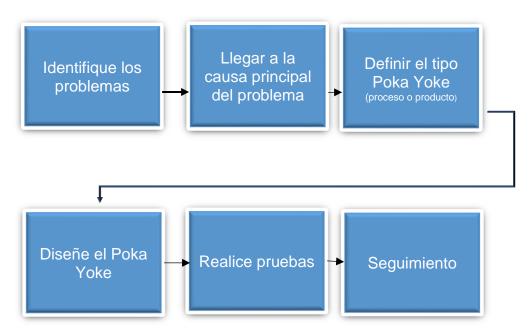

El objetivo del Poka Yoke es ayudar en la prevención de errores para que los resultados ideales se puedan lograr rápida y fácilmente. Lo que mejorará enormemente la organización y la calidad. La herramienta aumenta la eficacia y eficiencia del trabajador ayudándolo a mantenerse enfocado en tareas innovadoras y valiosas. Esto conducirá a un aumento exponencial en el desempeño de la organización y en consecuencia a un aumento significativo en la rentabilidad.

Tabla 03. Funciones del POKA YOKE

	Prevención	Detección	
Parada	El proceso o la función se para	Se para el proceso cuando el	
	cuándo predice el defecto	error ocurre	
Control	La ocurrencia del error es imposible	El defecto no puede pasar a la	
		siguiente operación	
Alerta	Señales/alarmas de que el defecto va	Señales/alarma de que el	
	a ocurrir	defecto ha ocurrido	

Fuente: Elaboración propia

Figura 2.1. Implementación y diseño de Poka Yoke:

Fuente: elaboración propia

En cuanto a la herramienta SMED, se emplea para acortar los tiempos de configuración del proceso al cambiar entre productos o actividades. Con el fin de acortar los tiempos de proceso de cada producto así evitar las pérdidas en material en tiempo, esta herramienta debe ser capaz de monitorear los tiempos de preparación y las actividades de los procesos. (Lindsay, 2018, p. 521).

SMED considera operación interna se realiza las actividades mientras la máquina está apagada, así como operación externa es aquella actividad que se realiza cuando la máquina está funcionando. (Rajadell y Sanchez, 2011). El objetivo es examinar y clasificar las operaciones, buscando cómo pasar de operaciones internas a externas y cómo acortar procesos internos con la menor cantidad de inversión. La implementación de esta herramienta se divide en cinco etapas:

Estudio de actividades de cambio: en esta etapa se realiza la observación del proceso para comprender cómo se realiza y conocer el tiempo invertido, también busca saber que la preparación interna incluyendo las tareas que solo puedan realizar con las máquinas detenidas, porque se realizan algunos cambios. La preparación externa abarca cualquier actividad que se pueda realizar mientras la máquina esté funcionando.

Dividir las operaciones internas y externas: En esta etapa el objetivo es diferenciar la preparación interna de la preparación externa, porque las operaciones primero se entremezclan y ejecutan como si fueran internas, Esto justifica la importancia de la etapa de identificación y separación. Una vez dividida se debe elaborar un DAP del proceso de impresión y mantener todo en óptimas condiciones de funcionamiento.

Convertir operaciones internas en externas: En esta etapa es fundamental mantener un registro cronológico completo de las operaciones realizadas durante el tiempo de inactividad de la máquina. Luego, las operaciones deben analizarse exhaustivamente para identificar cuáles pueden modificarse y/o simplificarse.

Direccionar las tareas internas y externas y estandarizar: En esta etapa los tiempos de la operación externa se reducen mejorando al localizar, identificar y organizar mejor los equipos, herramientas y otras piezas necesarias para la modificación. Por último, se utilizan instrucciones escritas, esquemas o vídeos para documentar un nuevo enfoque de trabajo.

Las ventajas de utilizar SMED son las siguientes: convirtiendo el tiempo no productivo a productivo, lo que resulta en una mayor capacidad de producción de las instalaciones, respuesta a cambios en la demanda, tiempos de entrega más cortos, menor stock en el proceso creando así espacio en la producción. Los métodos estandarizados de cambio de lotes mejoran la satisfacción y la seguridad de los empleados, reducen el rechazo de productos durante las operaciones de ajuste, simplifican los procesos de aprendizaje y mantienen la competitividad de la empresa. (Hernández y Visan, 2013).

En cuanto a la variable independiente que es la merma o desperdicio, se encontró algunos aportes: Merma, Rodríguez A. (2019) indica que: La merma es la pérdida de valor de los inventarios que consiste en la diferencia entre el stock de inventarios indicado en los registros y el stock real en el almacén. El principal problema de las mermas es que no siempre se detectan a tiempo, lo que genera pérdidas considerables que pueden comprometer la gestión responsable de una empresa.

Existen 7 tipos de desperdicios:

Desperdicios por sobreproducción: es producir más de lo necesario. Se considera la causa fundamental de todas las demás formas de desperdicio, ya que puede provocar una acumulación de inventario, plazos de entrega más prolongados y una mayor probabilidad de defectos. Muchos de estos otros problemas surgen como resultado de la sobreproducción. Desperdicio por espera: son los retrasos en conseguir los materiales, insumos, órdenes de producción e inspecciones hacen que los trabajadores y/o los equipos permanezcan inactivos. Desperdicios por Transporte: Movilidad excesiva en la transferencia de materiales entre áreas de fabricación, almacenes, etc.

Mermas por excedente de inventario: Sólo debes poseer lo que necesitas, ya que poseer demasiado genera gastos de compra y almacenamiento. Mermas por sobre procesamiento: Dado que varios procesos se consideran insatisfactorios, se gasta más trabajo y tiempo en revisiones. Merma por corrección: Para dar una solución se necesita una cantidad sustancial de recursos, ya sea en forma de reparación o modificación del producto debido a problemas de calidad. Desperdicio por rotación: cuando se requiere que el personal haga movimientos excesivos o adicionales para completar sus tareas (Rajadell y Sánchez, 2011)

Los tipos de merma incluyen: La merma normal se aplica a los costos del producto, por lo que cualquier pérdida que resulte de esta forma de merma será cubierta por el costo de producción Y la merma anormal, estas pérdidas deben considerarse gastos del período porque no cuentan para el costo de los bienes manufacturados. (Horngren 2022: 646).

La merma suele ser un problema que ocurre con frecuencia y a causa de varios factores, uso de insumos y materiales de mala calidad, un procedimiento realizado incorrectamente, equipos rotos o incluso la falta de datos para llevar a cabo el proceso. Finalmente, la merma a consecuencia de falla de máquina, se produce cuando se detiene la producción para cambiar un artículo. Esto hace que la máquina se detenga, provocando pérdidas de producción y malos rendimientos. Como resultado, el principal objetivo es reducir estas pérdidas.

Luego de conocer Principios, prácticas y enfoque de Lean Manufacturing, es necesario conocer las teorías fundamentales de la productividad, Definido como relación entre recursos y producción; esta definición se puede aplicar a una organización y diferentes sectores, para medir el grado de extracción del producto a partir de un determinado insumo, porque estos son intangibles, es más complicado con los bienes intangibles; por ello Cabe mencionar que una variedad de factores afectan la productividad de una organización. (Cruelles, 2020).

Así mismo, (Carro y Gonzáles, 2018) señala, Generalmente para medir el incremento de productividad se realiza la utilización del índice como estándar para medir los aumentos de la productividad. Donde La productividad observada se evalúa dentro de un tiempo esperado (día, semana, mes o año) en una organización, Es importante entender cómo evaluar la productividad y tener en cuenta los elementos que tienen un impacto directo en ello. Con la siguiente fórmula se puede conocer la Productividad = Productos o Servicios Producidos / Recursos Utilizados.

Estudio de Tiempos: Es el cálculo de la duración necesaria para completar una tarea. Para esta medición de trabajo se requiere registrar la duración de cada tarea, la velocidad y frecuencia con la que el trabajador completa dentro de un ciclo de trabajo.

El método es muy importante ya que permite al operador determinar la cantidad de tiempo dedicado a una tarea basándose en varias observaciones. Esto hace que el análisis del tiempo Sirve como fuente de información crucial para la toma de decisiones. sobre prácticas laborales, precios de productos y capacidad del análisis del tiempo de producción.

Después de conocer las variables también es muy importante conocer las terminologías de imprenta.

Imprenta es una industria que se dedica a prestar servicios gráficos, como textos escolares, etiquetas, afiches, impresiones en general en cartón, cuché, bond, plástico y laminados boopet con diferentes tipos de acabados. Para realizar estas operaciones existe 3 tipos de sistema de impresión. Impresión digital, impresión offset e impresión flexográfica.

Impresión digital, son impresiones en máquinas digitales de tirajes cortos, es decir lotes pequeños. Sin necesidad del uso de placas y referencia de color, ya que la maquina están calibrados según normas de fábrica, su capacidad de impresión máximo es 1500 pliegos por hora.

Impresión offset, son impresiones en máquinas offset y están diseñado para la impresión en grandes lotes, en tiraje continuo a corto tiempo. En este proceso los costos son menos que en impresión digital, cuentan con la capacidad de imprimir es 16,000 pliegos por hora.

Impresión flexográfica, son impresiones de manera continuo donde las impresiones se realizan a base de polímeros en cada estación de color y los tirajes continuos a grandes lotes, los costos son mayores porque tienen acabados especiales. Las entregas de esta impresión son más rápidas ya que la producción es en alta velocidad a diferencia de la impresión offset, su capacidad máxima de la impresión flexográfica es 45,000 pliegos por hora.

En cuanto a los aportes respecto a este tema de implementación de Lean Manufacturing, se descubrieron los siguientes antecedentes:

Natividad y Ferreyra. En su tesis menciona lo siguiente: Considera que su producción es la población, en su investigación consideró los datos de los años 2018 hasta 2020, como meta incrementar la productividad mientras se implementa la metodología Lean. Se tomaron dos tipos diferentes de muestras: las pre muestras, se realizaron en el transcurso de 20 días del mes de octubre y noviembre de 2018, y las post muestras, que se realizó en el transcurso de 20 días en el año 2019. La observación y verificación de las fases de producción, sirvieron como instrumentos de recolección de datos, documentación del producto terminado, datos del tiempo del proceso de producción. El beneficio de esta tesis es que al utilizar herramientas de SMED, Poka Yoke y 5s, fue factible impulsar la producción en la región al reducir las horas perdidas por áreas desordenadas, preparación por cambios de bobina y el tiempo de cambio. Esta tesis hace una contribución valiosa ya que el empleo de estas herramientas aumenta la productividad y la satisfacción tanto para la empresa, así como para el cliente, dando como resultado un mayor valor para el cliente final.

Entre los aportes de nivel internacional, Pertuz, A. (2018) en su tesis El objetivo es disminuir el tiempo de inactividad del equipo durante los cambios de herramienta en la máquina de encapsulación, para una mejor accesibilidad a los equipos y permitir obtener resultados de mayor calidad. Utilizando la herramienta de diagrama Analítico de proceso, para detectar todos los retrasos realizados por el operador durante el procedimiento, Las técnicas de recolección se realizaron mediante las observaciones directas en el proceso de configuración de la máquina. El hallazgo de esta tesis fue relevante, porque logró estandarizar el procedimiento de aislamiento de máquina mediante el uso de la herramienta SMED, Donde logró minimizar el tiempo de configuración de la máquina y puso en práctica un diagrama de proceso. Después de adoptar la herramienta, el nuevo tiempo de configuración es de 150 minutos (2,5 horas), menos que el tiempo de configuración anterior de 240 minutos (4 horas). Esta investigación se suma a la investigación actual al demostrar las ventajas de acortar tiempo de SETUP para cambiar las herramientas en las máquinas y evitar pérdidas causadas por fallas en la maquinaria ocasionando mermas.

Cuervo, V, & Bolaños, J. (2019) considera como objetivo, Implementar manufactura esbelta y evaluar los efectos de herramientas de producción lean Manufacturing en el área de producción. Se usan esta técnica de recopilación de dato, observación directa y dato de la entrevista con el personal. El período de la muestra del proyecto comprendió seis meses en el año 2019. La conclusión de la tesis arrojó una utilidad neta de 85 millones de pesos y con una probabilidad de incrementar su producción del 52%, para satisfacción de todos los involucrados. Esta tesis brinda un aporte significativo reduciendo el inventario de la empresa y al mismo tiempo reducir horas innecesariamente en el proceso.

Tabla 04. Organización Tradicional versus Lean

CONCEPTOS	TRADICIONAL	CON LEAN	
Inventario	Activo	Desperdicio	
Grupo de trabajo	Áreas funcionales	Equipos multi-funcionales	
Utilización de procesos	Ejecutar el proceso todo el tiempo y a alta velocidad.	El proceso debe ser diseñado para satisfacer la demanda del cliente.	
Programa de producción	Producir según ventas proyectados.	Producción de acuerdo a la solicitud del cliente.	
Costo de producción	Variables dependientes	Fijos	
Calidad	Verificación finalizando el proceso.	Verifica Proceso, materiales y servicios. Diseñados para eliminar mermas y defectos.	

Fuente: Elaboración propia

Por lo tanto, la contribución de esta investigación es demostrar que implementando la metodología Lean puede brindar una mejoría en la productividad sin generar pérdidas de manera constante, relacionado con el cumplimiento de los cronogramas de producción y concentrándose en elevar el factor de calidad al disminuir los defectos del producto (merma) en el área de prensa.

III. METODOLOGÍA

3.1 Tipo y diseño de investigación

Para esta investigación se consideró que es tipo aplicada, con un enfoque cuantitativo, de análisis estadístico que se tomaron en un periodo de tiempo y se emplea para evaluar las hipótesis planteadas y mostrar el vínculo causal entre los indicadores, donde se genera a través de los datos recopilados de errores o paradas de máquinas. La investigación ayuda a avanzar en el acercamiento a la realidad al involucrarse con la empresa, específicamente con su línea de producción, a fin de recopilar datos pertinentes para el avance de esta investigación, manteniendo contacto con los elementos claves: movimientos de materiales, máquinas, etc.

El diseño de la investigación es no experimental porque observamos y estudiamos, monitoreamos e investigamos a procesos, procedimientos y costos. La propuesta se construye en esta etapa en base a los datos recopilados y los objetivos a cumplir. Esta etapa se ocupa de todo lo relacionado con la detección y análisis de focos de mejora, así como el seguimiento del impacto que tiene en la empresa.

3.2 Variables y operacionalización

La variable independiente es la Implementación de herramientas de Lean Manufacturing, donde está enfocado en el uso del POKA YOKE y el SMED.

Poka Yoke, nos ayuda a minimizar los errores en el área de producción y los tipos a aplicar son secuencial, informativo y agrupado. Para hallar el indicador "Cantidad de errores por factor humano" se obtendrá aplicando la fórmula:

% de error =
$$\frac{Costos de material dañado}{costo total} x 100$$

El Smed nos permitirá reducir los tiempos en paradas de máquinas, la finalidad es reducir el porcentaje de costo de merma para mejorar la rentabilidad de la empresa. Para hallar el indicador "Horas paradas de máquinas (por espera)" se obtendrá aplicando la fórmula:

% Horas paradas =
$$\frac{Tiempo\ de\ espera}{tiempo\ pro\ gramado} x 100$$

Variable dependiente (VD) merma

Cuando hablamos de merma también está involucrado el costo de producción, considerado la materia prima para luego obtener el producto requerido y finalmente se realiza entrega al cliente, se tomará en cuenta los tipos de merma como sobreproducción y el tiempo de espera, la finalidad es verificar en cuál de los dos indicadores hay mayor porcentaje de merma y lograr minimizar los errores para obtener el producto ideal a menos costo.

Para hallar el indicador "Total de sobreproducción" se obtendrá aplicando la fórmula:

Sobreproducción = Cantidad total de impresiones - Cantidad requerida

Para hallar el indicador "Total de horas por paradas imprevistas" se obtendrá aplicando la fórmula:

Tiempo de espera = Tiempo programado de orden de producción - Cantidad de horas imprevistas

Tabla 05. Matriz de operacionalizacion de variables

	3.2 MATRIZ DE OPERACIONALIZACIÓN DE VARIABLES						
Variable Independiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Unidad de medida	Escala de medición	
Implementación	Lean Manufacturing tiene un enfoque que se centra en eliminar el exceso o desperdicio en el proceso de fabricación, También busca continuamente formas de mejorar las operaciones de la	Lean Manufacturing tiene como herramientas al Poka Yoke, herramienta que se aplicará para minimizar los errores de los operarios, los tipos de POKA YOKE a aplicar son (secuencial, informativo y agrupado). SMED nos	Poka Yoke	Cantidad de errores por factor humano	% de error = Costos de material dañado costo total	Razón	
de herramientas de Lean Manufacturing	organización utilizando las herramientas Lean. El objetivo principal de Lean Manufacturing es realizar más tareas en menos tiempo, espacio, mano de obra, equipos, recursos. Para cumplir con las solicitudes de los clientes favorablemente (Galindo, 2021, p. 19).		Smed	Horas paradas de máquinas (por espera)	% de horas paradas = $\frac{Tiempo de espera}{tiempo programado} x100$	Razón	
Variable Dependiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Unidad de medida	Escala de medición	
	que se pierde durante todo el se dan cuando se produce moroceso productivo de una empresa lo que se solicita. Por otro lac	Las mermas de sobreproducción, se dan cuando se produce más de lo que se solicita. Por otro lado, tenemos el tiempo de espera, que	sobreproduc ción	Total de sobreproduc ción	Cantidad total de impresiones - cantidad requerida	Razón	
Merma	desperdicio y es un problema que se encuentra con frecuencia. Utilizar materias primas de mala calidad, realizar mal una técnica, tener un equipo que no funciona correctamente o incluso no tener datos suficientes para completar la operación pueden provocar merma o desperdicio. (Rajadell y Sánchez,2020, p.124).	en un proceso productivo se convierte en tiempo mermado, ya que una máquina ocasiona pérdida de la producción así mismo generan retrasos en los procesos programados. El objetivo de Lean es evitar sobreproducciones y tiempos de espera por imprevistos, con el fin de mejorar la productividad.	Tiempo de espera	Total de horas por paradas imprevisto	Tiempo programado de orden de producción - cantidad de horas imprevistas	Razón	

3.3 Población, Muestra y Muestreo

3.3.1 Población

En esta investigación se consideró el número total de las máquinas impresoras offset del área de prensa de la empresa gráfica Cimagraf S.A.C. En la actualidad tenemos 13 máquinas a disponibilidad y operativas en donde se analizará en cada una de ellas los reportes de materiales adicionales (merma).

Criterio de inclusión: se incluye toda la línea de producción del área de prensa y actualmente consta de 13 máquinas impresoras offset, es donde se genera mayor porcentaje de merma por distintos factores que posteriormente se detalla.

Tabla 06. Identificación de máquina offset

ITEM	Máquinas
1	KBA
2	R-710
3	R-506
4	R-705
5	R-704
6	R-707
7	UNISET 75
8	UNISET 70
9	SM-52
10	R-702
11	R-905
12	KOMORI
13	HP 5500

Fuente: elaboración propia

Criterio de inclusión: se excluyeron las demás máquinas la cual si intervienen en el proceso se identifica, pero no se considera que genera merma que pueda afectar la producción ya que el uso es mínimo.

3.3.2 Muestra

La muestra consideramos a todos los reportes de orden de producción observados. El análisis se realiza con los datos recolectados solo del área de prensa del año 2022, debido a que es el proceso más crítico y donde se presentan mayor porcentaje de merma.

3.3.3 Muestreo

Se ha tenido en cuenta el muestreo probabilístico, porque la investigación se ha enfocado en el método de muestreo aleatorio simple, esto permite a cualquiera de la población tenga las mismas posibilidades de ser elegida y se usó el análisis de datos de las pérdidas del año 2022 para caracterizar para el muestreo. En este caso, las órdenes de operación que generan pérdidas debidas a diversos factores en la zona de prensa.

3.3.4 Unidad de análisis

En marco muestral se obtendrá del sistema de datos de la empresa gráfica y los indicadores de orden de producción observados en el área de prensa está contemplada del año 2022, sirven como unidad de análisis

Tabla 07. Número de observaciones

ITEM	Máquinas	Orden de producción observados
1	KBA	11
2	R-710	12
3	R-506	10
4	R-705	13
5	R-704	10
6	R-707	8
7	UNISET 75	2
8	UNISET 70	6
9	SM-52	6
10	R-702	7
11	R-905	10
12	KOMORI	9
13	HP 5500	3
Total		107

Fuente: Elaboración propia.

3.3.5 Plan de muestreo

Se consideró la población finita, porque se conoce la cantidad de elementos que se va utilizar, por lo tanto, se determina el tamaño de muestra, para ello se emplea la siguiente fórmula:

$$n = \frac{NxZ^2 x p x q}{(N-1) x E^2 + (Z^2 x p x q)}$$

Dónde:

N: Población conocida, en esta investigación es igual al total de órdenes de producción observadas que generan merma en el área de prensa.

Z: Nivel de confianza deseada = 95%

E: Error de estimación deseada = 5%

p: Proporción de éxito =50%

q: 1 - p

n: tamaño de muestra

Aplicando los valores en la fórmula:

$$n = \frac{107x1.96^2 \times 0.5 \times 0.5}{(107 - 1) \times 0.05^2 + (1.96^2 \times 0.5 \times 0.5)}$$
$$n = 84.$$

Se consideró un muestreo aleatorio simple, aplicando la técnica de composición porcentual, utilizando los datos del incidente que se recopilaron, en la empresa Gráfica en el área de prensa.

En la tabla 6. se elabora el cálculo identificando como muestra las operaciones por máquina a partir esto se puede calcular con los datos adquiridos el porcentual de la muestra y el tamaño de muestreo por máquina. donde se puede observar que la máquina con mayor ordenes de producción observados en generar merma es la impresora Roland R-705.

Tabla 08. Cuadro de composición porcentual de la muestra

ítem	Maquina	Muestra(OP)	Plan de muestreo
1	KBA	11	9
2	R-710	12	9
3	R-506	10	8
4	R-705	13	10
5	R-704	10	8
6	R-707	8	6
7	UNISET 75	2	2
8	UNISET 70	6	5
9	SM-52	6	5
10	R-702	7	5
11	R-905	10	8
12	KOMORI	9	7
13	HP5500	3	2
	TOTAL	107	84

Fuente: elaboración propia

3.4 Técnicas e Instrumentos de Recolección de datos

El método empleado para esta investigación es una técnica empírica y análisis documental que recoge datos específicos de los registros de órdenes de producción.

La técnica de análisis documental consiste en recopilar información y probarla a partir del punto de referencia pertinente. Esta información se deriva de los reportes de las solicitudes de más material para corregir errores del proceso de impresión, así como de la recopilación de los tiempos de espera para suministros, complementos, aprobación y paradas imprevistas de la máquina.

Observación de datos: Esta técnica nos permitió registrar los procedimientos de cada producción en el área de impresión. También la recolección de información, se obtienen del sistema metrics, Qlik View y Jobtrack. la cual permite recolectar información pasados y actuales del área de prensa. Los datos estudiados solo son de la producción del año 2022, para poder evidenciar las mermas que afectan a la empresa.

Instrumentos:

V de Aiken: Es un instrumento que permite validar el contenido del informe mediante los criterios de decisión por parte de los jueces.

Así mismo se realizó una matriz de operacionalización de variables, la cual Fueron validadas por 5 ingenieros colegiados, donde evaluaron con puntuaciones del 1 al 5, la cual se encuentra en Anexo 12.

El objetivo de validar los datos es determinar con precisión valor de las variables, demostrando así su utilidad y el calibre de las encuestas administradas a los ingenieros expertos que participan en el proceso.

Esta validación formal garantiza que los datos están validados y son verificados por los ingenieros expertos en el área. A continuación, los datos son sometidos a un análisis de fiabilidad por la V de AIKEN.

Según Penfield & Giocobbi (2004), el coeficiente V de Aiken se computa como una herramienta para medir cuantitativamente la evidencia de validez de los contenidos del test, en función de las valoraciones adquiridas mediante la técnica de juicio de expertos (jueces), así mismo los valores de este coeficiente están entre 0 y 1, con valores hacia la unidad que significan mayores niveles de acuerdo de los jueces y, por tanto, evidencias más sólidas de validez de contenido. Las ecuaciones (L), es el límite inferior de intervalo de confianza, (U), es el límite superior de intervalo de confianza, y V global contienen las fórmulas utilizadas por este cálculo para la V de Aiken y los intervalos de confianza. La calificación será polinómica por las mismas categorías de evaluación.

Formula:

$$V = \frac{\bar{X} - l}{k}$$

Donde:

X= promedio de calificación mediante los especialistas

L= es el valor mínimo de la escala de calificación en la ficha de evaluación de los instrumentos

K= rango, diferencia entre el valor máximo y mínimo de la escala utilizada en la ficha d evaluación de los especialistas)

Datos:

Número de jueces = 5

Rango (k) 5-1 = 4

Cuestionario = 10

Escala de calificación: tipo polinómica

Tabla 09. Escala de medición

Escala de calificación			
Malo	1		
Regular	2		
Bueno	3		
Muy bueno 4			
Excelente	5		

Fuente: Elaboración propio

El especialista califica de acuerdo a su criterio según la matriz de operacionalización que se le presento.

Cálculo de la validez de instrumentos por medio de la V de Aiken

Tabla 10. Respuestas de cuestionario según la V de Aiken

ESPECIALISTAS	NÚMERO DE CUESTIONARIO									
	1	2	3	4	5	6	7	8	9	10
1	4	5	4	5	5	5	4	4	5	4
2	4	5	5	4	4	4	5	5	4	5
3	5	5	5	4	4	4	4	4	5	4
4	4	5	4	5	5	5	5	5	4	4
5	5	5	5	4	4	4	4	4	4	5

Promedio	4.4	5	5	4.4	4.4	4.4	4.4	4.4	4.4	4.4
V de Aiken c/p	0.9	1	1	0.9	0.9	0.9	0.9	0.9	0.9	0.9
V de Aiken Global	0.9									

Fuente: elaboración propio

Una vez obtenido la ponderación de la evaluación de los especialistas por preguntas, se procedió a validar la confiabilidad según la V de Aiken. como resultado final el instrumento es válido y existe coincidencia de validez entre los especialistas de 0.9, que significa 90% de confiabilidad y validez. Así mismo se utilizó los siguientes formatos:

Formato diagrama de operaciones: Es un instrumento que muestra la secuencia de todas las operaciones, inspecciones continuas en el área de prensa para saber la cantidad de merma que se genera.

Formato orden de producción: es un documento donde se encuentra detallado todas las especificaciones y requerimientos por parte del cliente.

Fichas técnicas de control de procesos: Es un instrumento que se utilizara como guía para poder desarrollar los trabajos con éxito que ya fueron impresos, para lograr reducir mermas.

3.5 Procedimiento:

Para iniciar con los procedimientos, se realizó las coordinaciones para tener la autorización con la empresa Cimagraf la cual se encuentra en anexo 01, para obtener el estado de datos del área de prensa para el análisis esta investigación que se ha desarrollado en relación a la implementación de herramientas lean manufacturing para reducir mermas. también se requirió la validación de este informe mediante ingenieros colegiados y especialistas en el tema, la validación se ajunta en el anexo 12, finalmente este trabajo es validado por el asesor y la universidad.

Una vez adquiridos los permisos procedemos con el desarrollo de esta investigación. Para visualizar y analizar el proceso de producción general, a continuación, se presenta como está conformado en áreas de producción.

Figura 3.1. Diagrama de proceso de todas las áreas de producción

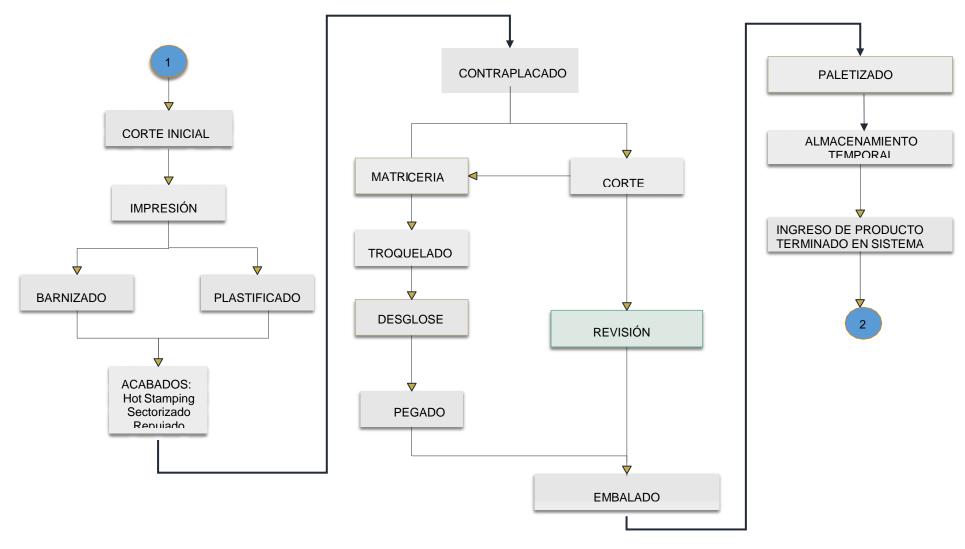
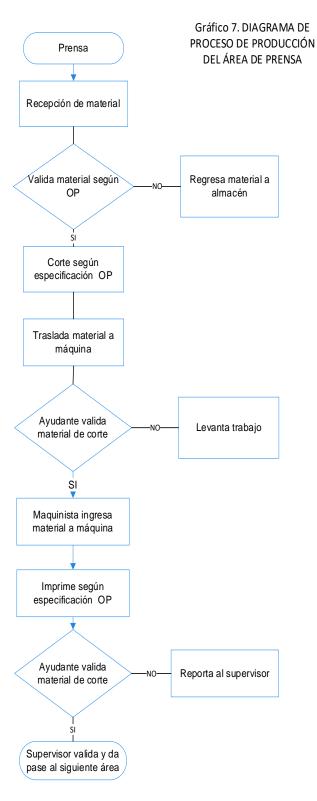



Figura 3.2. Diagrama de proceso de producción del área de prensa

Para la incorporación de la metodología lean manufacturing utilizaremos los análisis realizados inicialmente a nuestra variable independiente, plasmaremos utilizando las herramientas para diagnosticar los problemas mediante un diagrama de

Ishikawa de esta manera identificar los causantes principales que ocasionan mermas, Se utilizó los reportes de complementos adicionales, que ayudaron a entender y analizar la solicitud de complementos. Mediante este diagrama podemos describir cuál es el problema principal que más afecta la rentabilidad de la organización.

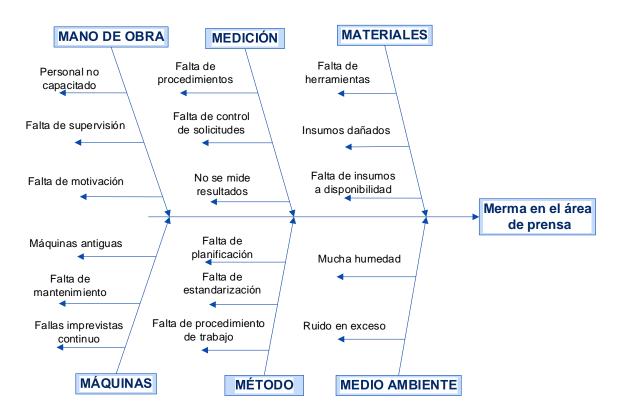
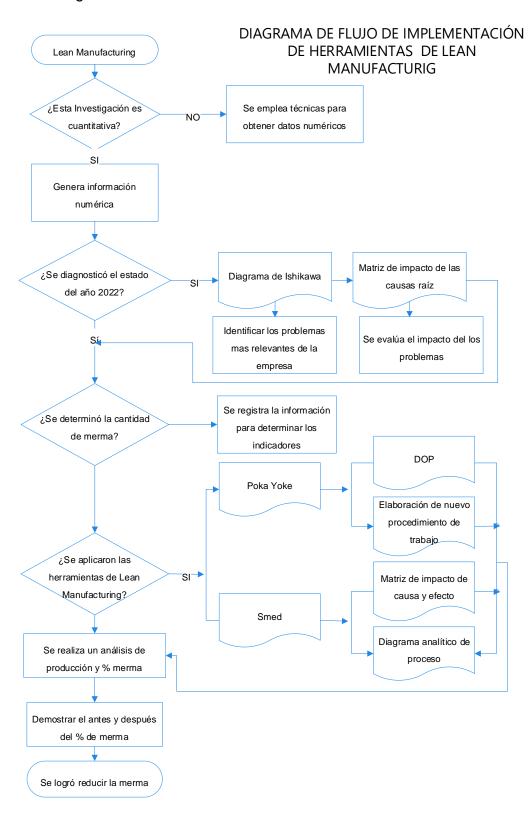


Figura 3.3. Diagrama de Ishikawa

Fuente: Elaboración propio

Se realiza un análisis de la situación del año 2022 del área de prensa, utilizando los diagramas de Pareto e Ishikawa, logramos identificar estas causas profundas de los problemas que generan mermas en el área prensa. Una vez identificado los causantes realizamos una matriz para analizar el impacto de estos problemas.

Tabla 11. Matriz de impacto de la causa raíz


Categorización de las herramientas Lean	de las erramientas Factores que generan merma en el área de producción			de in	npa	cto	valor total	valor porcentual (%)			
Manufacturing		1	2	3	4	5		(73)			
	Personal no capacitado				4						
	Insumos en mal estado					5					
Poka Yoke	Falta de supervisión en el proceso				4		23	43.4%			
T OKA TOKE	Falta de procedimientos en las máquinas					5		. 3. 1,70			
	Falta planificación hacia las máquinas impresoras					5					
	Falta de herramientas en las máquinas					5					
	Máquinas antiguas			3							
Smed	Falta de mantenimiento adecuado					5	26	49.1%			
Silieu	Falta de insumos a disponibilidad				4		20	49.176			
	Falla recurrentes de las máquinas					5					
	Exceso de ruido en el área				4						
	Falta motivación al personal	1									
Otras causas	Falta control de solicitud	1					4	7.54%			
Olias Causas	Mucha humedad 1 4				4	7.54%					
	No se mide resultado	1									
				inc	iden	tes	53				

Fuente: Elaboración propio

Después de haber identificado las causas que generan mermas en el área de prensa como personal no capacitado, insumo en mal estado, falta de supervisión en el proceso, falta de procedimientos en las máquinas, falta de planificación, todas estas causas constituyen un 43.4% y por otro lado la falta de herramientas en las máquinas, máquinas antiguas, falta de mantenimiento adecuado, falta de insumos, fallas ocurrentes de las máquinas y el exceso de ruido con un total de 49% son factores que mayor afectan y generan mermas en el área de prensa. se propone la implementación de las herramientas de lean manufacturing, como el POKA YOKE y el SMED, ya que la mayoría de mermas se generaban por factor humano, tiempo de esperas en máquina y paradas imprevistos. Conociendo los problemas

que están afectando en la producción aplicaremos las herramientas de Lean manufacturing con el fin de lograr reducir y dar una mejora en el área de producción.

Figura 3.4. Diagrama de flujo de implementación de herramientas de lean manufacturing

Implementación de Poka Yoke

El objetivo del Poka Yoke es ayudar en la prevención de errores para que los resultados ideales se puedan lograr rápida y fácilmente. Lo que mejorará enormemente la organización es la calidad de producción, mejorando el proceso y eliminando el cuello de botella generado por factor humano.

Identificación previa de la situación : se evaluó mediante una matriz de causa raíz que en factor humano afecta como personal no capacitado, insumo en mal estado, carece de supervisión en el proceso, falta de procedimientos en las máquinas, falta de planificación, todas estas causas constituyen un 43.4% afectando en la producción y generando merma, por tal motivo se realiza una evaluación de los procesos mediante un diagrama de operación para luego optimizar procesos y generar un nuevo método de trabajo aplicando el método poka yoke. Finalmente brinda auditoria al personal de planta para cumplir con el nuevo método de trabajo, generando mejoras en el proceso de producción. A continuación, realizamos un diagrama estadístico utilizando las fórmulas matemáticas logramos ver el porcentaje de merma que genera por el problema de factor humano.

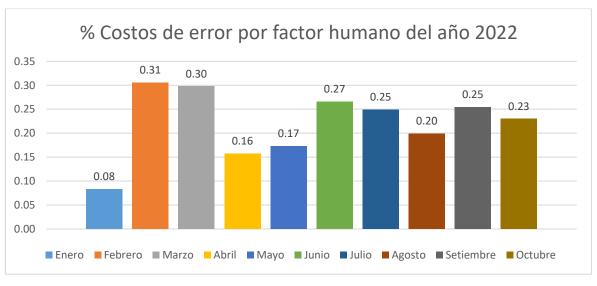


Figura 3.5. % costos de error por factor humano

Fuente: elaboración propia

Donde el porcentaje de mermas generados en el 2022 es 2.21% con una pérdida de S/10,990.64 en merma por factor humano.

Poka Yoke, nos ayuda a minimizar los errores en el área de producción y los tipos a aplicar son secuencial, informativo y agrupado.

- Secuencial: mantener el orden de producción es muy importante, y cualquier alteración puede dar lugar a errores. Los operadores tienen que seguir la secuencia en la producción sin alterar algún proceso indicado por los jefes de planta.
- Informativo: Dar al trabajador instrucciones completas, concretos y fáciles de entender sobre la actividad que va desarrollar para evitar errores.
- Agrupado: se aplican la técnica del excedente, Estos contienen materias primas y otros componentes que se preparan para que estén todos listos para su uso y no falte ninguno cuando se lleve a cabo el procedimiento.

Considerando cada error que se presenta en planta se debe hacer posibles análisis para buscar soluciones. Estas propuestas son muy beneficiosas, para reducir y optimizar los procesos.

- Eliminar; los procesos que ocasionan constantemente errores
- Reemplazar; una actividad usando técnicas de resolución de problemas.
- Facilitar: hacer que una acción sea clara y correcta y fácil de aplicar, para que la adaptación se mas rápido.

Por otra parte, se estableció un equipo de trabajo donde participó el jefe de planta, los operadores de máquina y los ayudantes. Donde se realizó las capacitaciones enfocándose en reducir la problemática que se genera merma por factor humano. Se adjunta fotos evidenciando los trabajos utilizando la herramienta poka yoke.

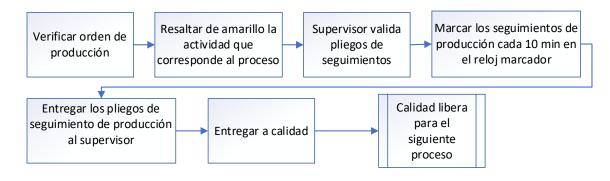

Y se realiza una comparación del trabajo y del trabajo después. Donde se demuestra que si se puede mejorar.

Figura 3.6. Implementación de POKE YOKE antes y después.

Fuente: Elaboración propia

Figura 3.7. Propuesta de mejora con POKA YOKE

Fuente: Elaboración propia, propuesta de mejora Poka Yoke.

Estas propuestas son importantes a seguir para reducir los errores ocasionado por factor humano.

Mejora aplicando la herramienta pokayoke

Tabla 12. Nuevo metodo de trabajo en el área de prensa

ESCALA DE IMPORTANCIA	ESCALA DE FRECUENCIA						
No realizado	0 No realizado						
1 No es importante	1 Cada pocos meses a anual						
2 Algo importante	2 Cada pocas semanas a mensual						
3 Importante	3 Cada pocos días a semanalmente						
4 Muy importante	4 Cada pocas horas a diario (cada OP)						
5 Extremadamente importante	5 Por 10 min a muchas veces cada hora						

DESCRIPCIÓN DE LA TAREA	IMPORTANCIA	FRECUENCIA
Recepción de orden de producción	4	4
Verificar especificaciones que contemplan la OP	5	4
Resaltar orden de producción de color amarillo	5	5
Ingresar al sistema Metrics	5	4
Recepción de material	4	4
Ingresar a máquina	4	2
Realizar ajuste de color a máquina	5	4
Inicia el proceso de impresión	5	4
Realizar controles de seguimiento cada 10 min	5	5
Entregar los pliegos impresos de seguimiento al supervisor	5	4
Validar pliegos de seguimiento	5	5
Verificar cantidad de impresión	5	4
Registrar cantidad producido y mermas en el proceso en el sistema	5	4
Rotular material	5	4
Liberar la producción para el siguiente proceso	4	4

Fuente: elaboración propio

El objetivo del Poka Yoke es ayudar en la prevención de errores para que los resultados ideales se puedan lograr rápida y fácilmente. Para evidenciar tenemos el Anexo 11 y el Anexo 13.

Figura 3.8. Cronograma de implementación de la metodología Poka Yoke

B10	NO ALCA ADDE DE LACA CTIVIDA DECLA DEALIZAD		SEPTIEMBRE			OCTUBRE			E	NOVIEMBRE			RE	DICIEMBRE			₹E
N°	NOMBRE DE LAS ACTIVIDADES A REALIZAR	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4
1	Anuncio sobre investigaciones a realizar																
2	Definición sobre los beneficios de POKA YOKE																
3	Analisis de procesos de las etapas																
4	Indicaciones sobre los cambios a realizar																
5	Identificación de ocurrencias durante el procesos																
6	Aplicación de POKA YOKE mediante los procesos																
7	Aplicación de ideas de mejora																
8	Evaluación de los resultados																
9	Seguimiento de los resultados																

fuente: Elaboración propia

Implementación de Smed

Esta implementación se realiza con el objetivo de mejorar la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa Para proceder con la eliminación de desperdicios a través de la metodología Lean, se inició con la técnica de la observación directa y análisis documental para la implementación se tiene que seguir 4 etapas muy importante.

Etapa 1. Análisis previo de la situación

Para dar solución a la problemática de los tiempos de esperas y paradas imprevistos de maquinarias generados en el proceso de producción, se emplea SMED como herramienta. Se evalúa mediante una matriz de impacto de causa raíz los tiempos de esperas y paradas imprevistos de maquinarias se generan por la falta de herramientas en las máquinas, máquinas antiguas, falta de mantenimiento adecuado, falta de insumos, fallas ocurrentes de las máquinas y el exceso de ruido con un total de 49% son factores que mayor afectan y generan el exceso de mermas en el área de prensa.

Figura 3.9. Histograma de costo de errores por tiempo muertos

Fuente: elaboración propia

También de forma estadístico mediante los indicadores se evalúa el porcentaje de costos que está afectando a la empresa, donde el 3.6% son considerados solo por factor tiempos muertos. Los tiempos de esperas y paradas imprevistos de maquinarias, nos referimos a los tiempos de espera por aprobación de color en máquina, espera de complementos, espera de material por no ubicar en el área de prensa, etc. Esto indica que en costo hace un s/7,631.8 soles

Finalmente, en esta etapa se demuestra el tiempo del proceso en máquina

Figura 3.10. Diagrama de análisis de procesos antes de implementar lean manufacturing

	RESUMEN	#	Тро
	Operaciones	18	9540
\Rightarrow	Transporte	1	60
	Controles	2	240
	Esperas	2	10800
∇	Almacenamiento		
	TOTAL		20640

Elaborado por: Robinson Chipana Lugar: Industria Gráfica Cimagraf

Fecha: nov-2022

Ítem	Descripciòn Actividades	Ор.	Trp.	Ctr.	Esp.	Alm.	Tiempo (s)
1	Verificacion de programación de orden de producción	\bigcirc	$\hat{\parallel}$	Q		∇	120
2	Espera de material	\bigcirc	Î		Q	∇	7200
3	Maquinista ingresa formato de impresión y color a maquina	\bigcirc	Î			∇	120
4	Mquinista 2 identifica materia asignado	\bigcirc	Î			∇	300
5	Apila material para iniciar el proceso	\bigcirc				∇	600
6	Colocar placa en unidad de impresión	\bigcirc	Î			∇	300
7	Llenar tinta en los tinteros	0	Î			∇	300
8	Olocar mantilas en la unidad de impresión	(î			∇	1200
9	Controlar la solucion de fuente	0	$\widehat{\mathbb{1}}$			∇	120
10	Realizar arreglo para pase de papel	igg(Î			∇	300
11	Realizar ajuste de la entrada de material	\bigcirc	$\hat{\parallel}$			∇	300
12	Realizar prueba de pase de papel	\Diamond	Î			∇	300
13	Ajuste de registro por colores	\bigcirc	Î			∇	120
14	Ajustar para medir color pilot	\bigcirc	Î			∇	120
15	Ajuste de color	\bigcirc	Î			∇	900
16	Limpieza de planchas	0	$\hat{\parallel}$			∇	120
17	Limpieza de mantilla	\bigcirc	\Rightarrow			∇	480
18	Espera de aprobacion de color de máquina (cliente o supervisor)		\Rightarrow			∇	3600
19	Inicio de impresión	\bigcirc	\Rightarrow			∇	60
20	Impresión x millar		$\widehat{\Box}$		\Box	∇	300
21	Espera de complemento	\bigcirc	\Rightarrow			∇	3600
22	Rotulado de paleta impreso x palet		\Longrightarrow			∇	120
23	Trasladar paleta al siguiente proceso		\Rightarrow			∇	60
	TOTAL						20640

Se realiza un diagrama analítico de proceso dando a conocer cada procedimiento en máquina y el tiempo de demoras de cada operación, donde nos da a conocer que el tiempo de producción en maquina considerando mil pliegos de impresión es 20,640 segundos.

• Etapa 2. Clasificación de actividades internos y externos.

Preparación interna incluyendo las tareas que solo puedan realizar con las máquinas detenidas, porque se realizan algunos cambios.

Preparación externa abarca cualquier actividad que se pueda realizar mientras la máquina esté funcionando.

Tabla 13. Clasificación de actividades internos y externos

	CLASIFICACIÓN DE ACTIVIDADES										
ÍTEM	INTERNO	EXTERNO									
1		Verificación de programación de									
'	Espera de material	orden de producción									
2	Maquinista ingresa formato de	Maquinista 2 identifica materia									
	impresión y color a maquina	asignado									
3	Colocar mantillas en la unidad de	Apila material para iniciar el									
	impresión	proceso									
4		Colocar placa en unidad de									
	Realizar arreglo para pase de papel	impresión									
5	Realizar ajuste de la entrada de										
	material	Llenar tinta en los tinteros									
6	Realizar prueba de pase de papel	Controlar la solución de fuente									
7	Ajuste de registro por colores	Inicio de impresión									
8	Ajustar para medir color pilot	Impresión x millar									
9	Ajuste de color										
10	Limpieza de planchas										
11	Limpieza de mantilla										
12	Espera de aprobación de color de										
	máquina (cliente o supervisor)										
13	Espera de complemento										
14	Rotulado de paleta impreso x palet										
15	Trasladar paleta al siguiente proceso										

Fuente: elaboración propio

Mediante la clasificación podemos observar que quince actividades se realizan cuando la maquina esta parada, el objetivo de esta etapa es diferenciar los tipos de actividades para tener claro y analizar qué actividades se pueden eliminar o convertirlos en externo, así lograr mejoras en el proceso de producción.

• Etapa 3. Convertir las actividades de internas a externas

En esta etapa es fundamental mantener un registro completo de las operaciones realizadas durante el tiempo de inactividad de la máquina. Luego, las operaciones deben analizarse exhaustivamente para identificar cuáles pueden modificarse y/o simplificarse

Tabla 14. Conversión de actividades internos en externos

	CLASIFICA	CION DE ACTIVIDADES
ÍTEM	INTERNO	EXTERNO
1		Verificación de programación de orden de
'	Espera de material	producción
2	Maquinista ingresa formato de	
	impresión y color a maquina	Maquinista 2 identifica materia asignado
3	Colocar mantillas en la unidad	
	de impresión	Apila material para iniciar el proceso
4	Realizar arreglo para pase de	
7	papel	Colocar placa en unidad de impresión
5	Realizar ajuste de la entrada	
	de material	Llenar tinta en los tinteros
6	Realizar prueba de pase de	
	papel	Controlar la solución de fuente
7	Limpieza de planchas	Inicio de impresión
8	Espera de complemento	Impresión x millar
9		Ajustar para medir color pilot
10		Ajuste de color
11		Limpieza de mantilla
12		Ajuste de registro por colores
13		Rotulado de paleta impreso x palet
14		Trasladar paleta al siguiente proceso
15		Espera de aprobación de color de
10		máquina (cliente o supervisor)

- ✓ Maquinista identifica material asignado: muchas veces la máquina queda detenida para que el maquinista identifique el material que va usar, esta actividad el maquinista puede identificar el material mientras la máquina este en producción o trabajar en paralelo para no afectar con el tiempo de parada de máquina.
- ✓ Apila material para iniciar el proceso: durante el proceso de producción puede apilar del siguiente trabajo sin necesidad de parar la máquina.
- ✓ Colocar placa en unidad de impresión: mientras la maquina se encuentra en producción el operador puede ir colocando la placa en las unidades correspondientes sin necesidad de parar máquina, solo se necesita organización.
- ✓ Llenar tinta en los tinteros: mientras la maquina está imprimiendo el ayudante puede alimentar los tinteros, sin necesidad que la producción se detenga ya que es accesible para realizar esa actividad.
- ✓ Controlar la solución de fuente: se puede realizar las mediciones correspondientes según los valores establecidos por la empresa sin necesidad que la maquina se detenga.
- ✓ Ajuste de registro por colores: esta actividad se puede convertir en externo ya que no afecta de ninguna manera el proceso, ya que la máquina es de tecnología digital.
- ✓ Ajuste de color: esta actividad se puede convertir en externo porque se puede realizar el ajuste de color sin necesidad de parar la máquina, cuenta con una tecnología lo permite.

Al realizar esta implementación demuestra que si se realiza la conversión de interno a externo beneficia a la empresa, para la adaptación Se requiere capacitar al operario para aprovechar los beneficios que brinda implementación.

Por lo tanto, se ha convertido la situación actual de las actividades ocho actividades internas y quince actividades externos, de esta forma se reduce el tiempo en lo que es parada máquina.

Etapa 4. Direccionar las tareas internas y externas y estandarizar

En esta etapa los tiempos de la operación externa se reducen mejorando al localizar, identificar y organizar mejor los equipos, herramientas y otras piezas necesarias para la modificación. Por último, se utilizan instrucciones escritas, esquemas nuevo enfoque de trabajo.

Figura 3.11. Diagrama de análisis de procesos después de implementar lean manufacturing

	RESUMEN	#	tiempo(S)
0	Operaciones	19	7500
Ţ	Transporte	1	60
	Controles	3	1200
	Esperas	2	1800
∇	Almacenamiento		
	TOTAL		10560

Elaborado por: Robinson Chipana Lugar: Industria Gráfica Cimagraf

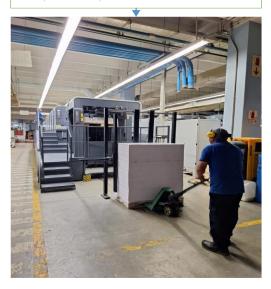
Fecha: nov-2023

ítem	Descripciòn Actividades	Op.	Trp.	Ctr.	Esp.	Alm.	Tiempo (s)
1	Verificación de programación de orden de producción Pre setup	0	\Rightarrow			∇	900
2	Espera de material max 15minprocede a la siguiente programación	0	\Rightarrow		\bigcirc	∇	900
3	Maquinista ingresa formato de impresión y color a máquina	Q	$\qquad \qquad \Longrightarrow$			∇	120
4	Maquinista identifica material asignado	\bigcirc	\Rightarrow			∇	0
5	Apila material para iniciar el proceso	\bigcirc	\Rightarrow			∇	0
6	Colocar placa en unidad de impresión	9	\Rightarrow			∇	0
7	Llenar tinta en los tinteros	9	\Rightarrow			∇	0
8	Colocar mantillas en la unidad de impresión	O	\Rightarrow			∇	1200
9	Controlar la solución de fuente	\bigcirc	\Rightarrow			∇	0
10	Realizar arreglo para pase de papel	\bigcirc	\Rightarrow			∇	300
11	Realizar ajuste de la entrada de material	9	\Rightarrow			∇	300
12	Realizar prueba de pase de papel	\Diamond	\Rightarrow			∇	300
13	Ajuste de registro por colores	\bigcirc	\Rightarrow			\triangleright	60
14	Ajustar para medir color pilot	\bigcirc	\Rightarrow			∇	120
15	Ajuste de color	\bigcirc	\Rightarrow			∇	300
16	Limpieza de planchas	\Diamond	\Longrightarrow			∇	120
17	Limpieza de mantilla	\Diamond	\Rightarrow			∇	480
18	Espera de aprobacion de color de máquina (cliente o supervisor)	\bigcirc	\Rightarrow			∇	3600
19	Inicio de impresión	\bigcirc	\Rightarrow			∇	60
20	Impresión x millar	Q	$\stackrel{\textstyle \bigcirc}{\square}$			∇	300
21	Conteo de merma en producción	\bigcirc				∇	300
22	Solicitar complemento en producción	\bigcirc	Ŵ			∇	120
23	Espera de complemento	\bigcirc	\Rightarrow	Д	Q	\triangleright	900
24	Rotulado de paleta impreso x palet	O	\Rightarrow		\Box	∇	120
25	Trasladar paleta al siguiente proceso	\bigcirc	\Rightarrow			∇	60
	TOTAL						10560

Empleando la metodología Lean, con el uso de la herramienta SMED logramos modificar las actividades del DAP proponiendo los trabajos en paralelo. Se logró

eliminar las actividades innecesarias, convirtiendo las actividades internas en externos con el fin de reducir el tiempo de cambios y tiempos de espera sin ser interrumpidos en la producción. Por lo tanto, con el nuevo DAP se reduce el tiempo de producción en máquina considerando mil pliegos de impresión es de 10,560 segundos. Podemos confirmar que se puede reducir los tiempos de espera y paradas imprevistos en máquina aplicando la herramienta SMED. Anexo 14.

Figura 3.12. Implementación del SMED


Conteo de merma con la maquina operativa

Apilado de material con maquina en producción

Habilitación de material con maquina en proceso

Aprobación de color en máquina

Figura 3.13. Cronograma de implementación de la metodología SMED

810	NOWING DE LAS ACTIVIDADES A		SEPTIEMBRE		C)CTU	JBR	E	NC)VIE	MB	RE	DICIEMBRE			RE	
N°			S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4
1	Anuncio sobre investigaciones a realizar																
2	Definición sobre los beneficios del SMED																
3	Analisis de procesos de las etapas																
4	Indicaciones sobre los cambios a realizar																
5	Identificación de tiempos de los procesos																
6	Aplicación de SMED mediante los procesos																
7	Aplicación de ideas de mejora																
8	Evaluación de los resultados																
9	Seguimiento de los resultados																

fuente: Elaboración propia

3.6 Método de análisis de datos

Método estadístico: Este enfoque ayudó con el análisis y la interpretación de los resultados previos y posteriores a la prueba del proyecto de investigación actual.

La evaluación de data de nuestras variables son tipos cuantitativa, se ha desarrollado con programas que ayudaron a analizar las estadísticas descriptivas de cada una de ellas, como el Excel y el SSPPS.

La recolección de datos está considerada del año 2022, son datos extraídos de los reportes de cada orden de producción del área de prensa. Mediante el sistema Metrics se tiene acceso a la base de datos donde se encuentra los registros de cada orden de producción (Anexo 4-5), se realiza un análisis de todo las ordenes de producción que generaron solicitud de materiales adicionales de todo el año 2022 (Anexo 6).

A continuación, se presenta un cuadro donde indica la cantidad total orden de producción y cantidad a analizar de orden de producción a cada máquina.

Tabla 15. Cuadro de cantidades de órdenes a analizar.

ÍTEM	MAQUINA	Cantidad total de orden de producción (observado)	Cantidad de orden de producción a analizar
1	KBA	11	9
2	R-710	12	9
3	R-506	10	8
4	R-705	13	10
5	R-704	10	8
6	R-707	8	6
7	UNISET 75	2	2
8	UNISET 70	6	5
9	SM-52	6	5
10	R-702	7	5
11	R-905	10	8
12	KOMORI	9	7
13	HP5500	3	2
	TOTAL	107	84

Fuente: elaboración propio

en base a la cantidad de órdenes de producción determinada como muestreo se realiza la descripción estadística a cada indicador.

3.6.1 Cantidad de errores por factor humano

Para poder determinar la cantidad de errores por factor humano por cada orden de producción se presenta la siguiente formula.

% de error =
$$\frac{Costos\ de\ material\ dañado}{costo\ total} x 100$$


Cuya respuesta de las 84 órdenes de producción (Anexo 05) se realiza una descripción estadística para poder analizar sus comportamientos.

Tabla 16. Descripción estadística fallas humanas.

Estadística Descriptiva				
				Error Estándar
	Media		0.0263	0.00218
	95% De Intervalo De	Límite Inferior	0.0220	
	Confianza Para La Media	Límite Superior	0.0307	
	Media Recortada Al 5%		0.0246	
	Mediana		0.0234	
Fallas	Varianza Desv. Estándar Mínimo		0.000	
Humanas			0.01996	
			0.00	
	Máximo		0.10	
	Rango		0.10	
Rango Intercuartil			0.03	
	Asimetría	•	1.305	0.263
	Curtosis		1.839	0.520

Fuente: Elaboración propio SSPS.

Figura 3.14. Dispersión de datos de errores humanos.

Fuente: Elaboración propio (Excel).

La descripción estadística nos ayuda ver los límites entre datos, los rangos la media y la desviación estándar. Así mismo el gráfico nos permite ver la dispersión de los datos y tienen un comportamiento anormal.

3.6.2. Horas paradas de máquinas (por espera).

La hora parada de máquina por espera de complemento, aprobación y material de almacén se determina del total de horas o tiempo programado, con la siguiente formula y se obtendrá el % de horas paradas del total de tiempo o horas programadas para desarrollar el orden de producción.

% Horas paradas =
$$\frac{Tiempo\ de\ espera}{tiempo\ programado} x 100$$

Dicho indicador se analiza a los 84 órdenes de producción en el área de prensa (Anexo 05), para poder analizar los datos se realiza una descripción estadística como se muestra en la siguiente tabla.

Tabla 17. Descripción estadístico tiempo de espera.

Descripción estadística				
				Error
			Estadístico	estándar
TIEMPO	Media		0.0095	0.00071
DE	95% de intervalo de confianza	Límite	0.0081	
ESPERA	para la media	inferior		
		Límite	0.0109	
		superio		
		r		
	Media recortada al 5%		0.0090	
	Mediana		0.0079	
	Varianza		0.000	
	Desv. Estándar		0.00648	
	Mínimo		0.00	
	Máximo		0.03	
	Rango		0.03	
	Rango intercuartil		0.01	
	Asimetría		1.072	0.263
	Curtosis		1.121	0.520

Fuente: descripción estadística SSPS.

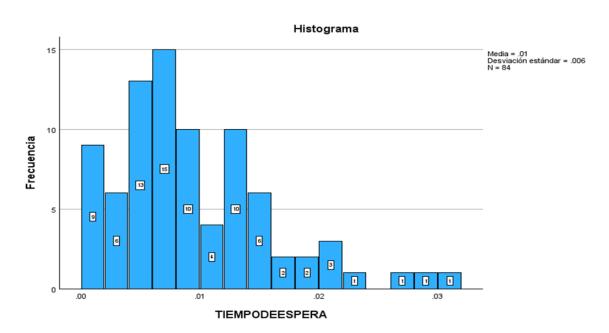


Figura 3.15. Frecuencias de tiempo de espera en el área de prensa.

La descripción estadística nos permite analizar la data ingresado, así mismo el grafico nos muestras la frecuencia de la data ingresado.

3.6.4 Total de sobreproducción

De las ordenes de producción observadas de igual forma se analizar las fallas generados por una sobreproducción, para poder medir se aplica la siguiente formula el cual nos ayudara a determinar los resultados.

Sobre producción = Cantidad total de impresiones - cantidad requerida

Cuyo resultado obtenido se analizará con ayuda de una descripción estadística el cual nos permitirá a ver entender los comportamientos de los datos (Anexo 04)

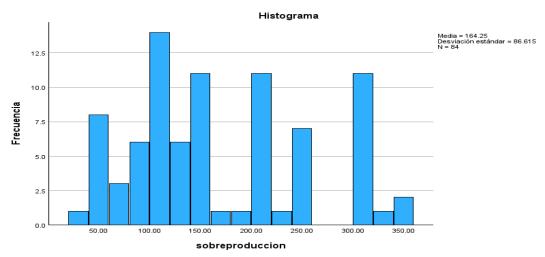


Figura 3.16. Histograma de sobreproducción.

Fuente: elaborado en SSPS.

Mediante la figura 3.16. podemos visualizar las cantidades de fallas por sobreproducción más recurrentes en el año 2022.

3.6.5 Total de horas por paradas imprevisto

El total de horas paradas por imprevistos de igual manera se obtuvo de la base de data de los reportes diarios, de los cuales para su mayor análisis se tomará 84 órdenes de producción para poder analizar los datos.

Así mismo para determinar el total de horas paradas por imprevistos se aplicará la siguiente formula.

Total, de horas por paradas imprevisto =

Tiempo programado de orden de producción - cantidad de horas imprevistas

Los resultados obtenidos mediante la fórmula (Anexo 04) se le aplicara un análisis de descripción estadística para poder entender su comportamiento frente a sus rangos, limites, media y más.

Tabla 18. Descripción estadística de horas por paradas imprevistas.

Estadística descriptiva					
			Estadístico	Error estándar	
	Media		164.2500	9.45045	
Fallas por	95% de intervalo de confianza para la	Límite inferior	145.4534		
(sobreproducción)	sobreproducción) media		183.0466		
	Media recortada al 5%	6	161.9974		
	Mediana		150.0000		
	Varianza		7502.117		
	Desv. estándar		86.61476		
	Mínimo		20.00		
	Máximo		350.00		
	Rango		330.00		
	Rango intercuartil		145.00		
	Asimetría		0.472	0.263	
	Curtosis		-0.889	0.520	

Fuente: elaborado en SSPS.

Podemos observar que existe rangos elevados en la data, así mismo nos permite analizar y trabajar con los rangos mayores.

3.7 Aspectos éticos

El proyecto de investigación actual se adhiere a los principios y practicas aceptados, siguiendo las pautas del ISO.

Para los artículos y trabajo tomados de otras investigaciones, se defendió los derechos de los autores a lo largo de las diversas etapas de la investigación a través de citas y referencias bibliográficas.

Asimismo, los datos e información facilitados por la empresa Cimagraf son vigentes y sólo se han hecho públicos para la elaboración de este proyecto, al mismo tiempo que cumple con la política actual de la Universidad de Cesar Vallejo.

IV. RESULTADO

Análisis descriptivo

En seguida, se presenta los resultados del análisis de la estadística descriptiva obtenidas de nuestra variable, tablas de descripciones estadísticos antes de aplicar las herramientas de lean manufacturing y después de aplicar las herramientas como el POKA YOKE y el SMED.

4.1 Resumen del costo total de mermas en el área de prensa.

Las mediciones obtenidas se presentan a continuación con un análisis estadístico descriptivo del costo total de mermas en el área de prensa del 2022 y 2023, demostrando el antes y después de aplicar las herramientas de Lean.

Tabla 19. Análisis descriptivo del costo total de mermas (antes y después).

Estadística Descriptiva				
Costo Total De Mermas				
	Antes	Después		
Media	258.059524	129.487976		
Error típico	18.4879593	8.32827908		
Mediana	210.65	113.6		
Moda	97.5	66		
Desviación estándar	169.444946	76.3299386		
Varianza de la muestra	28711.5896	5826.25952		
Curtosis	1.26119367	1.06687523		
Coeficiente de asimetría	1.12537415	1.10883808		
Rango	809.3	358.7		
Mínimo	26.2	33.1		
Máximo	835.5	391.8		
Suma	21677	10876.99		
Cuenta	84	84		
Mayor (1)	835.5	391.8		
Menor(1)	26.2	33.1		
Nivel de confianza(95.0%)	36.7718074	16.5646121		

Fuente: Elaboración propio

En la tabla 19, Análisis descriptivo de costo total de mermas en el área de prensa, podemos observas que antes de aplica la LM, tenía un promedio de 258.05 soles de costo de merma por cada orden de producción y luego de la implementación redujo a 129.48 soles por cada orden de producción. Así mismo podemos ver que el costo máximo que se generaba en cada orden era la suma de 835.5 soles el cual se redujo a 391.8 soles en el 2023.

Figura 4.1. Histograma de comparación de resultados antes y después

Fuente: Elaboración propio

Después de que se implementaron técnicas de manufactura esbelta, se redujeron los excedentes mermados en el área de prensa. Como se puede observar en el gráfico, hubo una reducción de 21,677.00 soles a 10,876.99. Una mejora significativa para la empresa.

4.2 Resultados de reducción de cantidad de errores por factor humano.

En seguida, se presenta la data de los análisis estadísticos descriptiva de cantidad de errores por factor humano antes y después de implementar la herramienta Lean.

Tabla 20. Análisis descriptivo de los errores por factor humano.

Estadística Descriptiva				
Errores Humanos				
	Antes	Después		
Media	0.0263463924	0.0196228318		
Error típico	0.0021776164	0.0014509505		
Mediana	0.0233588715	0.0168439716		
Moda	0.06740	0.0347826		
Desviación estándar	0.01995818	0.01329818		
Varianza de la muestra	0.00039833	0.00017684		
Curtosis	1.83664706	-0.60073278		
Coeficiente de asimetría	1.30380418	0.54480367		
Rango	0.100544382	0.057247586		
Mínimo	0.001352637	0.001027473		
Máximo	0.101897	0.058275		
Suma	2.21309696	1.64831787		

Fuente: Elaboración propio

En la tabla 20, Análisis descriptivo de la variable independiente son los errores por factor humano en el área de prensa relacionado al costo total de la orden de producción como se puede observar en la tabla antes se tenía un promedio de 2.63% del costo de errores respecto al costo total, cada orden de producción después de aplicar las herramientas de LM, se redujo a 1.96% el costo de errores humanos respecto a cada orden de producción. Entonces podemos determinar que hubo una reducción de 0.66% de costo de errores por factor humano en el área de prensa.

4.3. Resultados de reducción de tiempos de espera.

Se presenta la data de los análisis de la estadística descriptiva del % de horas paradas (por espera) respecto a la programación de tiempo de orden de producción, antes y después de implementar la herramienta Lean.

Tabla 21. Análisis descriptivo % de horas paradas por espera.

Estadística Descriptiva				
Tiempo De Espera				
	Antes	Después		
Media	0.04227503	0.01467286		
Error típico	0.01136198	0.00112248		
Mediana	0.01626454	0.01170707		
Moda	0.0113	0.00540541		
Desviación estándar	0.10413426	0.01028773		
Varianza de la muestra	0.01084394	0.00010584		
Curtosis	47.1825405	0.5479189		
Coeficiente de asimetría	6.44777105	1.18461726		
Rango	0.85479798	0.0425036		
Mínimo	0.00126263	0.00183044		
Máximo	0.85606061	0.04433404		
Suma	3.5511027	1.23252027		
Cuenta	84	84		
Mayor (1)	0.85606061	0.04433404		
Menor(1)	0.00126263	0.00183044		
Nivel de				
confianza(95.0%)	0.02259852	0.00223258		

Fuente: Elaboración propio

En la tabla 21, El análisis descriptivo de la variable independiente de porcentaje de horas parradas por espera, se puede observar en la tabla que antes de la implementación las horas paradas de máquina por espera de complemento, aprobación o material de almacén como máximo era de 8.6 horas. Después de la implementación de las herramientas LM se observa que se redujo a 4.3 horas como máximo la parada de máquina por espera. Así mismo vemos la reducción del promedio de las horas paradas por espera de 4.2 horas a 1.4 horas.

4.4 Resultados de cantidad de fallas por una sobreproducción.

A continuación, se presenta la data de análisis descriptivo de variable dependiente sobreproducción en el área de prensa, antes y después de implementar la herramienta Lean, (Anexo 07).

Tabla 22. Análisis descriptivo de sobreproducción en el área de prensa.

Estadística Descriptiva				
Cantidad De Fallas Por Una Sobreproducción				
	Antes	Después		
Media	164.25	52.86904762		
Error típico	9.450445612	2.067061279		
Mediana	150	50		
Moda	100	50		
Desviación estándar	86.61476473	18.94492955		
Varianza de la muestra	7502.11747	358.9103557		
Curtosis	-0.888691503	-0.452117225		
Coeficiente de asimetría	0.472420805	0.090880476		
Rango	330	80		
Mínimo	20	20		
Máximo	350	100		
Suma	13797	4441		
Cuenta	84	84		
Mayor (1)	350	100		
Menor(1)	20	20		
Nivel de confianza(95.0%)	18.79655623	4.111301746		

Fuente: Elaboración propio

En la tabla 22, Análisis descriptivo de la variable dependiente cantidad de fallas por una sobreproducción, podemos apreciar que antes de la implementación de las herramientas de LM, la cantidad máxima de fallas por una sobreproducción era la suma de 350 unidades fallados, después de la implementación podemos ver que se reduce como máximo a 100 unidades, Asi mismo vemos el promedio de cantidad

de productos fallados en el 2022 fue de 164.25 unidades el cual se redujo a 52.86 unidades. El cual se considera muy significativo para la empresa.

4.5 Resultados de total de horas por paradas imprevistas.

A continuación, se presenta los datos de análisis descriptivo de variable dependiente del total de horas por paradas imprevistas en el área de prensa, antes y después de implementar la herramienta Lean, (Anexo 08).

Tabla 23. Análisis descriptivo del total de horas por paradas imprevistas.

Estadística Descriptiva				
Total De Horas Por Paradas Imprevistas				
	Antes	Después		
Media	10.05885718	3.330349365		
Error típico	0.296302384	0.195423211		
Mediana	9.680545	2.722186667		
Moda	6.666666667	1.805555		
Desviación estándar	2.715656203	1.791083313		
Varianza de la muestra	7.374788611	3.207979436		
Curtosis	-0.761117397	5.337924724		
Coeficiente de asimetría	0.302866516	1.895102853		
Rango	11.41665333	11.08332833		
Mínimo	4.833331667	0.527776667		
Máximo	16.249985	11.611105		
Suma	844.9440033	279.7493467		
Cuenta	84	84		
Mayor (1)	16.249985	11.611105		
Menor(1)	4.833331667	0.527776667		
Nivel de confianza(95.0%)	0.589333524	0.388688907		

Fuente: Elaboración propio

En la tabla 23, Análisis descriptivo de la variable dependiente total de horas por paradas imprevista podemos observar que antes de implementar las herramientas lean manufacturing las horas paradas máximo por eventos imprevistos era 16.2 horas y un promedio general de 10 horas, después de la implementar podemos

apreciar en la tabla que la cantidad máxima de hora parada por eventos imprevisto es de 11.6 horas paradas así mismo un promedio general de horas paradas por eventos imprevistos de 3.3 horas.

Estadística inferencial.

Para determinar si un modelo es paramétrico o no paramétrico, el primer paso es un análisis de normalidad en el desarrollo de estadísticas inferenciales. A partir de ahí seleccionamos el modelo que tiene más sentido para la contracción de las hipótesis, para ello se analiza la cantidad de data procesada el cual es mayor de 50 observaciones, por ende, se sigue el criterio de la prueba de normalidad con el test de Kolmogorov – Smirnov.

Pruebas de hipótesis general

La presente investigación plantea la hipótesis general que es la siguiente: La implementación Lean Manufacturing influye significativamente en la mejora de la reducción de las mermas en el área de prensa de una empresa Gráfica, Lima 2023.

Es necesario determinar si los datos son paramétricos o no paramétricos según el siguiente comportamiento es necesario para realizar la hipótesis general. La cantidad de datos son 84 que corresponden a la cantidad de orden de producción, se procede con el análisis estadígrafo de Kolmogorov - Smirnov.

Tabla 24. Pruebas de normalidad

Pruebas De Normalidad						
	Kolmogorov-Smirnov		Shapiro-Wil	lk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Cantidad Fallado	,118	84	,005	,965	84	,021
Paradas Imprevistas	,164	84	,000	,833	84	,000
Fallas Humanos	,118	84	,004	,936	84	,000
Tiempo Espera	,160	84	,000	,857	84	,000
Total De Merma	,125	84	,003	,910	84	,000
a. Corrección de significación de Lilliefors						

Fuente: Elaboración propio

Figura 4.2. Prueba de normalidad de las variables.

HIPOTESIS

Hipótesis nula (Ho) : los datos siguen una distribución normal

Hipótesis Alterna (H1): los datos no siguen una distribución normal

Valor P > 0.05 Acepta la hipótesis nula

Valor P < 0.05 Rechaza la hipótesis nula

Figura 4.3. Hipótesis estadística de la prueba de normalidad.

Se observa que la significancia P-valor es menos que el 5% de la significancia que se analizó, la data no sigue una distribución normal, por tanto, se rechaza la hipótesis nula y se acepta la hipótesis alterna, así mismo se utilizara la prueba no paramétrica de rangos de Wilcoxon para poder realizar las evaluaciones a las siguientes hipótesis principal y específicos, (Anexo 10).

Contraste de la hipótesis principal:

Figura 4.4. Hipótesis general de la investigación

Hipótesis General

Hipótesis nula (Ho):

La implementación Lean Manufacturing no influye significativamente para la mejora de reducción de las mermas en prensa

Hipótesis Alterna (H1):

La implementación Lean Manufacturing influye significativamente para la mejora de la reducción de las mermas en prensa

Valor P > 0.05 Acepta la hipótesis nula

Valor P < 0.05 Rechaza la hipótesis nula

Figura 4.5. Prueba de Wilcoxon de la hipótesis principal

Estadísticos De Prueba

Después costo total de merma – Antes costo total de merma

Z -5.577

Sig. asin. (bilateral) ,000

- a. Prueba de rangos con signo de Wilcoxon
- b. Basado en rangos positivos.

P-valor es menor a 0.05 de la significancia evaluada por tanto se rechaza esta hipótesis nula y se acepta la hipótesis alterna, La implementación Lean Manufacturing influye significativamente en la mejora de la reducción de las mermas en el área de prensa

Prueba De Hipótesis Especificas:

Se realizó prueba de normalidad de todas las hipótesis especificas siguiendo el mismo criterio de evaluación.

Se plantea la siguiente hipótesis específicas:

Como hipótesis especifica número uno: tenemos lo siguiente, la metodología POKA YOKE mejora significativamente la reducción de productos fallados por sobreproducción y productos fallados por factor humano en el área de prensa de una empresa Gráfica, Lima 2023

Para la evaluación se usa la prueba no paramétrica de rangos de Wilcoxon.

Figura 4.6. Hipótesis especifica 1.

Hipótesis Específica 1

Hipótesis nula (Ho):

La metodología POKA YOKE no mejora significativamente la reducción de productos fallados por sobreproducción y productos fallados por factor humano en el área de prensa

Hipótesis Alterna (H1):

La metodología POKA YOKE mejora significativamente la reducción de productos fallados por sobreproducción y productos fallados por factor humano en el área de prensa

Valor P > 0.05 Acepta la hipótesis nula

Valor P < 0.05 Rechaza la hipótesis nula

Figura 4.7. Prueba de Wilcoxon Hipótesis específica 1. % de fallas por factor humano.

 Estadísticos De Prueba		
Después Fallados por factor humanas – Antes		
Fallados por factor humanas		
Z	-2.059 ^b	
Sig. asin. (bilateral)	,039	
a. Prueba de rangos con signo de Wilcoxon		
 b. Basado en rangos positivos.		

Figura 4.8. Prueba de Wilcoxon Hipótesis específica 1. cantidad fallado por una sobreproducción.

Estadísticos de prueba		
Después Cantidad fallado - Antes Cantidad fallado		
Z	-7.699 ^b	
Sig. asin. (bilateral)	,001	
a. Prueba de rango con signo de Wilcoxon		
b. Basado en rango positivo.		

Observamos donde el P-valor es menor al 0.05 de la significancia en todo las ordenes de producción evaluada. Por ende, se rechaza la hipótesis nula y se acepta la hipótesis alterna; la metodología POKA YOKE mejora significativamente la reducción de productos fallados por sobreproducción y productos fallados por factor humano en el área de prensa.

Como segunda hipótesis especifica tenemos: la metodología SMED mejora significativamente la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de la empresa Gráfica, Lima 2023.

Para la siguiente evaluación de hipótesis se aplicará la prueba no paramétrica de rangos de Wilcoxon.

Figura 4.9. hipótesis especifica 2.

Hipótesis Específica 2

Hipótesis nula (Ho):

La metodología SMED no mejora la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa.

Hipótesis Alterna (H1):

La metodología SMED mejora la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa.

Valor P > 0.05 Acepta la hipótesis nula

Valor P < 0.05 Rechaza la hipótesis nula

Figura 4.10. Prueba de Wilcoxon hipótesis especifica 2 –tiempo de espera.

Estadísticos De Prueba	Estadísticos De Prueba		
Después Tiempo De Espe	Después Tiempo De Espera - Antes Tiempo De Espera		
Z	-		
	3.190 ^b		
Sig. asin. (bilateral)	,001		
a. Prueba de rangos con s	a. Prueba de rangos con signo de Wilcoxon		
b. Basado en rangos posit	b. Basado en rangos positivos.		

Figura 4.11. Prueba de Wilcoxon hipótesis especifica 2. Paradas imprevistas e maquinas.

Estadísticos De Prueba	
Después Parradas imprevistas – Antes Parradas imprev	istas
Z	-7.930b
Sig. asin. (bilateral)	,001

- a. Prueba de rangos con signo de Wilcoxon
- b. Basado en rangos positivos.

Se contempla que P-valor es menor a 0.05 de la significancia evaluada por este motivo se rechaza la hipótesis nula, y se acepta la hipótesis alterna; la metodología SMED mejora significativamente la reducción de los tiempos de espera y paradas imprevistos de maquinarias en el área de prensa.

V. DISCUSIÓN

En esta investigación el objetivo principal es demostrar que al Implementar las principales herramientas necesarias del Lean Manufacturing contribuye a reducir merma en el área de prensa de la empresa Gráfica Cimagraf. Para iniciar con el diagnostico se utilizó los datos recopilados de la empresa del año 2022. Con el propósito de buscar mejoras a los problemas que afectan y generan merma en el área de producción. Con los problemas identificados se elaboró un diagrama de Pareto, la cual el 80% son paradas de máquinas por espera de aprobación, materia y de complemento, por otro lado, el 61.92% fallas por factor humano. Son fallas triviales que generan efecto negativo en el área de prensa y esto afecta financieramente a la empresa. Así mismo Natividad.L, y Ferreyra.J, (2019) utilizó el diagrama de Ishikawa y Pareto para identificar los problemas que afectan a la empresa estudiado, las causas fueron el 82% fueron afectados la desorganización en la zona piloto, por lo cual se origina el cuello de botella y tiene una baja nivel de productividad durante el proceso de sellado. Por tal motivo se valida lo expuesto, según Escamilla y Álvarez (2019), Afirman que para emplear el diagrama de Pareto la información debe estar ordenada de forma descendente, así utilizar esto datos para priorizar y asignar de forma ordenada. Según los autores ciertos problemas se representan gráficamente en cualquier grupo o conjunto de circunstancias que causen cierta cantidad de problemas frente a otros que son menos graves, el 20% de las causas son originados por el 80% de los problemas.

También se identificó mediante los indicadores las mermas que se generan en el año 2022 con un total de S/21, 677.00 soles, afectando notoriamente a la empresa, para reducir o eliminar estas mermas se implementó la metodología de Lean Manufacturing utilizando la herramienta de Poka Yoke y Smed. A fin de conocer y evaluar las mermas que se generan en planta. Para empezar con la exclusión de desperdicios mediante la metodología Lean, se empezó con la técnica de la observación directa.

Por lo cual se logró cumplir con el objetivo específico de la metodología POKA YOKE en evidenciar el antes y después la cantidad de mermas generados por factor humano en el área de prensa de una empresa Gráfica, Lima.

Esta herramienta se utiliza para eliminar las mermas generados en el proceso de producción, Para disminuir las fallas, defectos o mermas provocadas relacionado con el equipo que forma parte con el proceso, se empleó Poka Yoke como herramienta. Por lo tanto se evaluó mediante una matriz de causa raíz que en factor humano afecta como personal no capacitado, insumo en mal estado, carece de supervisión en el proceso, falta de procedimientos en las máquinas, falta de planificación, todas estas causas constituyen un 43.4% afectando en la producción y generando merma, por tal motivo se realiza una evaluación de los procesos mediante un diagrama de operación para luego optimizar procesos y generar un nuevo método de trabajo aplicando el método poka yoke. Finalmente brinda auditoria al personal de planta para cumplir con el nuevo método de trabajo, generando mejoras en el proceso de producción. Todo lo mencionado está relacionado con a Jerez (2017). Su estudio se centró en el uso de métodos Lean Manufacturing para reducir el desperdicio con el fin de optimizar las operaciones dentro de una corporación. Debido de esto, lo reemplazo una pieza mecánica por otra más potente usando la misma herramienta Poka Yoke, lo que aumenta la eficiencia en un 5,4%. Todo lo dicho anteriormente se relaciona con la teoría. (Rajadell y Sánchez, 2020). Menciona que la implementación Poka Yoke ayuda a identificar errores que se generan durante del proceso de producción, para cumplir con los deseos y especificaciones del consumidor. La herramienta es compatible con la investigación por tal motivo se concuerda con el autor.

Así mismo, se logró cumplir el objetivo específico de la metodología POKA YOKE la cual era evidenciar el antes y después de la cantidad de mermas generados por factor humano en el área de prensa de una empresa Gráfica, donde el porcentaje de mermas generados en el 2022 es 2.2% y al implementar lean mediante la herramienta poka yoke se redujo al 1.64% en soles es notablemente.

Finalmente, se logró cumplir con el objetivo específico de la metodología SMED logrando evidenciar la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de una empresa Gráfica.

Para proceder con la eliminación de desperdicios a través de la metodología Lean, se inició con la técnica de la observación directa y análisis documental. Para dar solución a la problemática de los tiempos de esperas y paradas imprevistos de

maquinarias generados en el proceso de producción, se empleó SMED como herramienta. Por lo tanto, se evaluó mediante una matriz de causa raíz los tiempos de esperas y paradas imprevistos de maquinarias se generan por la falta de herramientas en las máquinas, máquinas antiguas, falta de mantenimiento adecuado, falta de insumos, fallas ocurrentes de las máquinas y el exceso de ruido con un total de 49% son factores que mayor afectan y generan el exceso de mermas en el área de prensa. Por tal motivo se realiza un diagrama analítico de proceso dando a conocer cada procedimiento en máquina y el tiempo de demoras de cada operación, donde nos da a conocer que el tiempo de producción en maquina considerando mil pliegos de impresión es 20,640 segundos. También propone un nuevo DAP enfocadas en la herramienta SMED, donde se modifica las actividades proponiendo trabajos en paralelo, eliminando las actividades innecesarias, convirtiendo las actividades internas en externos con el fin de reducir el tiempo de cambios y tiempos de espera sin ser interrumpidos en la producción. Por lo tanto, con el nuevo DAP el tiempo de producción en máquina considerando mil pliegos de impresión es de 10,560 segundos. Podemos confirmar que se puede reducir los tiempos de espera y paradas imprevistos en máquina aplicando la herramienta SMED.

De igual forma Pertuz, A. (2018) en su tesis El objetivo fue disminuir los tiempos de inactividad del equipo durante los cambios de herramienta en la máquina de encapsulación, para una mejor accesibilidad a los equipos y permitir obtener resultados de mayor calidad para reducir mermas. La muestra para este estudio descriptivo es la cantidad de veces que se cambiaron las herramientas del equipo encapsulador desde noviembre de 2017 hasta octubre de 2018. Utilizando la herramienta de diagrama Analítico de proceso, para detectar todos los retrasos realizados por el operador durante el procedimiento, Las técnicas de recolección se realizaron mediante las observaciones directas en el proceso de configuración de la máquina. El hallazgo de esta tesis fue relevante, porque logró estandarizar el procedimiento de aislamiento de máquina mediante el uso de la herramienta SMED, Donde logró minimizar el tiempo de configuración de la máquina y puso en práctica un diagrama de proceso. Después de adoptar la herramienta, el nuevo tiempo de configuración es de 150 minutos (2,5 horas), menos que el tiempo de configuración anterior de 240 minutos (4 horas).

Esta investigación se suma a la investigación actual al demostrar con el cumplimiento de los objetivos logrando evidenciar el acortamiento de los tiempos de esperas y paradas imprevistos de maquinarias. buscando cómo pasar de operaciones internas a externas y cómo acortar procesos.

VI. CONCLUSIONES

- 1. En relación al objetivo general se concluye que al implementar las principales herramientas de Lean manufacturing contribuye a la reducción de merma en el área de prensa de la empresa gráfica Cimagraf, los resultados indican que antes de implementar Lean el costo de merma fue 21,677.00 soles y después de implementar es 10,876.99 soles. Esta implementación influye en la reducción de merma en el área de prensa de la empresa gráfica Cimagraf, aportando un cambio significativo para la empresa.
- 2. En relación al primer objetivo específico se concluye que con la metodología POKA YOKE se logra evidenciar un antes y después del porcentaje de mermas generados por factor humano en el área de prensa de una empresa Gráfica, donde podemos reafirmar la hipótesis de esta investigación que la implementación de la metodología POKA YOKE mejora la reducción del porcentaje de productos fallados por factor humano en el área de prensa de la empresa, donde podemos demostrar que el porcentaje de mermas generados en el 2022 es 2.2% y al implementar Lean mediante la herramienta poka yoke se redujo al 1.64% con estos datos podemos demostrar que es una herramienta muy favorable.
- 3. Así mismo para el segundo objetivo específico se concluye que mediante la implementación de la metodología SMED se puede evidenciar la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de la empresa Gráfica. Donde obtenemos mediante los resultados de los indicares que el tiempo anterior de producción en máquina considerando mil pliegos de impresión es 20,640 segundos y con la implementación es de 10,560 segundos. Mediante estos datos podemos reafirmar la segunda hipótesis especifica de esta investigación que se logra mejorar la reducción de los tiempos.
- Concluimos en que, la implementación de Lean Manufacturing pueden optimizar la producción en el área de prensa de la empresa Cimagraf, generando ahorro en costos, mermas, tiempos y mejorando el ambiente laboral.

- También podemos concluir que La implementación de las herramientas de Lean manufacturing en esta investigación tuvieron un efecto favorable en la producción de la empresa gráfica.
- 6. finalmente concluimos que la metodología Lean es importante en todas las empresas ya que ayuda mejorar los procesos que aportan un valor a la empresa. Esta metodología cuenta con diferentes herramientas que son de aporte ya que se puede optar para diferentes procesos y áreas.

VII. RECOMENDACIONES

- Para proyectar con base en un nuevo análisis y la tasa de merma a
 partir de esta implementación de las principales herramientas de Lean
 manufacturing y poder tomar las decisiones apropiadas a través de una
 nueva evaluación, se recomienda actualizar continuamente los datos de
 merma para fines de seguimiento.
- 2. En relación a la metodología poka yoke se recomienda mantener el monitoreo constante de los indicadores de producción para verificar el porcentaje de merma de esta manera ver la posibilidad de seguir mejorando el porcentaje de reducción de merma con esta implementación realizada en la empresa.
- 3. En relación a la metodología SMED se recomienda al área de prensa considerar una capacitación continua basada en la metodología a los personales involucrados en el proceso de producción del área de prensa, así crear un hábito a la vez concientizar la importancia de esta implementación y permitirles realizar la producción en menor tiempo sin paradas imprevistos, así mantener y mejorar los tiempos de producción para que los resultados obtenidos sean satisfactorios.
- 4. Se recomienda que se debe aplicar y desarrollar correctamente la metodología Lean Manufacturing, ya que nos ofrece un futuro prometedor en la producción en el área de prensa Cimagraf.
- 5. Se recomienda tener en cuenta que la utilización de este enfoque requiere un compromiso por parte de los proveedores, los colaboradores del área y la directiva de la empresa. Así tener un logro como empresa innovadora, competitiva y eficiente, para que puedan conseguir productos de mayor calidad con procedimientos más ágiles y eficientes, dando satisfacción y seguridad a los clientes.
- 6. Se recomienda continuar implementando otras herramientas de la metodología Lean Manufacturing mencionados en la investigación, analizando los problemas de la empresa donde se requiere mejorar, de manera que se puedan desarrollar todas las actividades bajo esta filosofía.

VIII. REFERENCIAS

- Natividad.L, y Ferreyra.J, (2019) en su tesis "Propuesta de mejora de la productividad del área de flexibles de una empresa manufacturera de productos plásticos descartables mediante la metodología Lean Manufacturing"
- Pertuz, A. (2018) en su tesis "Implementación de la metodología (SMED) para la reducción de tiempos de alistamiento (Set up) en máquinas encapsuladoras de una empresa farmacéutica en la ciudad de Barranquilla"
- Cuervo, V., & Bolaños, J. (2019) en su tesis "implementación de herramientas Lean Manufacturing para el aumento de la eficiencia en la producción de Eka corporación."
- Jeawon kim, Sharyn Rundle, Kathy Knox. (2019). Revisión sistemática de la literatura de mejores prácticas en el desperdicio de alimentos programas de reducción. Revista de Marketing Social. DOI: 10.1108/JSOCM-05-2019-0074.
- Héctor S. M., López, Rocío, M. U., Marín, Juan F. C., Rodríguez (2021). Uso de las tecnologías de la información y la comunicación como estrategia para reducir el desperdicio de frutas y verduras. México, C. P. 87149.
- Edwin s. s., Gustavo, m. c., José, c. n. y Jorge D. D. (2020). Propuesta de mejora de procesos para la cadena de suministro de una imprenta. SSN: 2617-9156; 96 – 111.
- Gazí I. T., Taosif A., Elías H., Rezaul, K. k., Omar F., Rony, M. y Syed R.
 (2023). Single Minute Exchange Die (SMED): un enfoque sostenible y oportuno para la industria de la confección de Bangladesh.
- María A., Ana, T. y Radu G. (2022). Propuesta de un modelo SMED ergonómico innovador en una unidad industrial de resortes de acero automotriz.
- A. Silva, JC Sa. G, Santos, FJG Silva, LP, Ferreira y MT, Pereira (2021).
 Implementación de SMED en una línea de corte. 30ª Conferencia Internacional sobre Automatización Flexible y Fabricación Inteligente (FAIM2021).
- Singh, S., Verma, R. y Koul, S. (2021). un colaborativo método para operaciones simultáneas: caso de una clínica oftalmológica.
- Carlos monteiro, Luis P. Ferreira, Nuno O. Fernández, JC Sá, MT Ribeiro, FJG
 Silva. (2019). Mejorando el Proceso de Mecanizado de la Metalmecánica

- Industria utilizando la herramienta Lean SMED. 8VAConferencia Internacional de la Sociedad de Ingeniería de Manufactura
- O Jorge Ortiz Porras, Julio Salas Bacalla, Lisseth Huayanay Palma, Rosiand Manrique Alva, Eddie Sobrado Malpartida. (2022). Modelo de gestión para la aplicación de herramientas Lean Manufacturing para la mejora de la productividad en una empresa de confección de ropa antiflama de Lima Perú. / ISSN: 1810-9993 (Electrónico) Facultad de Ingeniería Industrial UNMSM.
- Cristian Patricio Bazán, Santiago Saturnino Patricio Aparicio, Jonatán Rojas Polo (2021). Six Sigma en la reducción de merma del proceso de envasado de Gas Licuado de Petróleo. ISBN: 978-958-52071-8-9 ISSN: 2414-6390.
- Caterina Rufo y Gustavo Giménez (2021). Estrategias para reducir la pérdida y el desperdicio de frutas y hortalizas en las últimas etapas de la cadena agroalimentaria. ISSN 2730-5066.
- Romani, S., Grappi, S., Bagozzi, RP y Barone, AM (2018), "Prácticas alimentarias nacionales: un estudio de los comportamientos de gestión de alimentos y el papel de la planificación de la preparación de alimentos en la reducción de residuos"
- Cervantes Zubirías, G., Morales-Rodríguez, M., Alva-Rocha, L., Hernández-Rodríguez, P., & Reyna-Guerrero, I., (2022). Reducción de desperdicios a través de la implementación de herramientas de manufactura esbelta (Mejora continua). 593 Digital Publisher CEIT, 7(3-2), 247-264.
- Hinojosa Donoso, C. M., & Cabrera Armijos, R. A., (2022). Impacto del Lean Manufacturing en la Productividad de las Microempresas de Guayaquil. E-IDEA Journal of Engineering Science, 4 (9), 1-13.
- Rosa Clancy (2021). Enfoque de mejora de la calidad basado en datos para reducir el desperdicio en la fabricación. :
 https://www.emerald.com/insight/1754-2731.htm
- Conrad, Z., Niles, MT, Neher, DA, Roy, ED, Tichenor, NE y Jahns, L. (2018),
 "Relación entre el desperdicio de alimentos, la calidad de la dieta y la sustentabilidad ambiental".
- Aljinović, A., Gjeldum, N., Bilić, B., Mladineo, M., 2021. Optimización de la industria 4.0, proceso de selección de implementación para la mejora de una línea de montaje manual Energías.

IX. ANEXO

Anexo 1: Autorización por parte de la empresa.

Lima, 13 de junio 2023

Señor: Fernández Paltan Porras

CARGO: Gerente general de la empresa industria gráfica Cimagraf

Presente

Es grato dirigime à usted para saludarlo, y a la vez manifestante que dentro de mi formación académica en la experiencia curricular de investigación del ciclo, se contempla la realización de una investigación con fines, netamente académicos / de obtención de mi titulo profesional al finalizar mi camera

En tal sentido, considerando la relevancia de su organización, solicito su colaboración, para que pueda realizar mi investigación en su representada y obtener la información necesaria.

Para poder desarrollar la investigación titulada.

Implementación de herramientas de Lean Manufacturing para la Reducción de Merma en el área de prensa de una empresa Gráfica, Lima 2023

En dicha investigación me comprometo a mantener en reserva el nombre o cualquier distintivo de la empresa, salvo que se crea a bien su socialización.

Se adjunta la carta de autorización de uso de información y publicación, en caso que se considere la aceptación de esta solicitud para ser llenada por el representante de la empresa.

Agradeciéndole anticipadamente por vuestro apoyo en favor de mi formación profesional, hago propicia la oportunidad para expresar las muestras de mi especial consideración.

Atentamente:

Scenos

PACASTRIA GRAPICA CIMAGRAF S.A.C.

Robinson Chipene Palten

Robinson Chipana Paltan DNI 43516540

Anexo 2: Matriz de consistencia.

PROBLEMA PRINCIPAL	OBJETIVO GENERAL	HIPOTESIS GENERAL	ENFOQUE DE LA INVESTIGACION	NIVEL DE INVESTIGACION
¿Cómo la implementación de Lean Manufacturing contribuye a la reducción de merma en el área de prensa de la empresa gráfica, Lima 2023?	e Lean Manufacturing Implementar las principales herramientas necesarias del lean manufacturing herma en el área de prensa de la empresa le la reducción de merma en el área de contribuye a reducir merma en el área de prensa de la empresa Gráfica, Lima		Tiene un enfoque Cuantitativo	Tipo de la investigación Aplicado
PROBLEMA ESPECIFICO	OBJETIVO ESPECIFICO	HIPOTESIS ESPECIFICO	DISEÑO DE INVESTIGACION	VARIABLES
¿De qué manera la implementación de la metodología POKA YOKE ayuda reducir mermas por factor humano en el área de prensa de la empresa Gráfica, Lima 2023?	El objetivo específico de la metodología POKA YOKE es evidenciar el antes y después la cantidad de mermas generados por factor humano en el área de prensa de una empresa Gráfica, Lima 2023	la metodología POKA YOKE mejora significativamente la reducción de productos fallados por sobreproducción y productos fallados por factor humano en el área de prensa de una empresa Gráfica, Lima 2023	La investigación implica determinar cómo influencian la variable independiente sobre las variables dependientes. El diseño de la investigación es no experimental porque observamos y estudiamos, monitoreamos e investigamos a procesos, procedimientos y costos. La propuesta se construye	VARIABLES DEPENDIENTE MERMA
¿De qué manera la implementación de la metodología SMED reduce los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de la empresa Gráfica, Lima 2023?	El segundo objetivo específico de la metodología SMED es evidenciar la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de una empresa Gráfica, Lima 2023.	la metodología SMED mejora significativamente la reducción de los tiempos de esperas y paradas imprevistos de maquinarias en el área de prensa de la empresa Gráfica, Lima 2023.	en esta etapa en base a los datos recopilados y los objetivos a cumplir. Esta etapa se ocupa de todo lo relacionado con la detección y análisis de focos de mejora, así como el seguimiento del impacto que tiene en la empresa	VARIABLE INDEPENDIENTE LEAN MANUFACTURING

Anexo 3: Matriz de operalizacion

Variable Independiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Unidad de medida	Escala de medició n
Implementació	Lean Manufacturing o Manufactura esbelta es una metodología basada en eliminar los desperdicios o excesos que se encuentran en los procesos de producción, haciendo que no agreguen costo al producto terminado que recibe	netodología basada en perdicios o excesos que in los procesos de iendo que no agreguen o terminado que recibe setá en constante.		Cantidad de errores por factor humano	% de error = $\frac{Costos\ de\ material\ dañado}{costo\ total}$ $x100$	Razón
n de herramientas de Lean Manufacturing	el cliente y que está en constante búsqueda de la mejora continua en los procesos de la organización. Los enfoques principales de la herramienta lean manufacturing es, hacer más con menos; menos tiempo, menos espacio, menos esfuerzo humano, menos maquinaria, menos materiales, para satisfacer las necesidades solicitadas del cliente". (Galindo, 2021, p. 19).	SMED nos permitirá reducir los tiempos de paradas de máquinas por espera de complementos, aprobación y espera de material de almacén, la finalidad es reducir el porcentaje de producto rechazados por fallas y el tiempo de espera de máquinas, con el fin de mejorar la rentabilidad de la empresa.	Smed	Horas paradas de máquinas (por espera)	% Horas paradas = $\frac{Tiempo de espera}{tiempo programado} x10$	() Razón
Variable Dependiente	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Unidad de medida	Escala de medició n
	Se considera merma la pérdida de una o más de las propiedades físicas de los productos obtenidos o de uno o más de los componentes utilizados en procesos, La merma suele ser un problema que La merma son parte del proceso de producción de una empresa y se refiere a la cantidad material o producto que se pierde debido a errores generados por diferentes causas, las mermas de sobreproducción, se da cuando se		sobreproducció n	Total de sobreproducció n	Cantidad total de impresiones - cantidad requerida	Razón
Merma	ocurre con frecuencia y puede ser causado por una variedad de factores, incluido el uso de materias primas de mala calidad, un procedimiento realizado incorrectamente, equipos rotos o incluso la falta de datos para llevar a cabo el proceso. Para que pueda evidenciar la eliminación o reducción del desperdicio. (Rajadell y Sánchez,2020, p.124).	produce más de lo que se solicita. Por otro lado, tenemos el tiempo de espera, que en un proceso productivo se convierte en tiempo mermado, ya que una maquina ocasiona perdida de la producción así mismo generan retrasos en los procesos programados. El objetivo de Lean es evitar sobreproducciones y tiempos de esperas por imprevistos, con el fin de mejorar la productividad.	Tiempo de espera	Total de horas por paradas imprevisto	Tiempo programado de orden de producción - cantidad de horas imprevistas	Razón

Anexo 4: Resultado de la operación del indicador dependiente.

Ohaa	vaoia va a		Variable Dependiente (Mermas de Producción) 2022							
Observ	<i>r</i> aciones	S	Sobreproducci	ón	Tiempo de maquina parada por fallas.					
Obs	N° de Orden de trabajo	Total de producción	Total programado de producción	Cant. fallado	Tiempo total de producción	Tiempo programado para producción	Horas de maquina parada por imprevistos			
1	64715	12750	12730	20	183.83	179	4.83			
2	64575	14060	14010	50	166.69	156	10.69			
3	64680	12900	12850	50	167.22	157	10.22			
4	64188	14500	14450	50	160.67	154	6.67			
5	64217	12950	12870	80	188.86	181	7.86			
6	64251	13500	13270	230	186.56	177	9.56			
7	64069	15500	15350	150	201.58	190	11.58			
8	62830	12700	12622	78	174.00	165	9.00			
9	64255	12700	12575	125	193.11	183	10.11			
10	64263	13100	12900	200	159.36	151	8.36			
11	64289	12900	12650	250	209.67	202	7.67			
12	64388	12900	12700	200	196.42	185	11.42			
13	64394	14500	14360	140	210.69	197	13.69			
14	62812	12620	12320	300	170.81	158	12.81			
15	62853	17300	17200	100	170.25	160	10.25			
16	65913	13100	12800	300	180.33	173	7.33			
17	68368	13100	12800	300	172.17	162	10.17			
18	62778	13680	13630	50	219.67	205	14.67			
19	64348	13500	13450	50	194.33	185	9.33			
20	63783	13300	13100	200	164.61	151	13.61			
21	64719	14300	14200	100	180.92	173	7.92			
22	63789	12900	12800	100	197.06	183	14.06			
23	63996	12600	12470	130	216.19	202	14.19			
24	64324	13470	13316	154	191.67	186	5.67			
25	62846	12850	12725	125	192.94	185	7.94			
26	63466	13100	12900	200	193.28	182	11.28			
27	63265	13200	12900	300	207.58	196	11.58			
28	63469	12900	12750	150	200.03	192	8.03			
29	63404	12750	12450	300	188.28	174	14.28			
30	63363	12650	12400	250	192.58	185	7.58			
31	63946	12700	12570	130	173.28	160	13.28			
32	64176	12750	12665	85	167.69	160	7.69			

33	63570	13500	13400	100	169.53	160	9.53
34	64345	12700	12600	100	219.03	205	14.03
35	64524	12800	12720	80	184.42	174	10.42
36	63873	13900	13850	50	178.97	167	11.97
37	63932	12900	12748	152	171.67	165	6.67
38	64989	12660	12620	40	174.14	167	7.14
39	63905	16500	16400	100	185.61	175	10.61
40	64283	16500	16200	300	189.86	181	8.86
41	63958	14500	14200	300	166.67	160	6.67
42	64423	14500	14400	100	195.31	183	12.31
43	67286	13700	13400	300	176.56	166	10.56
44	65520	15100	15000	100	165.53	157	8.53
45	65200	13400	13250	150	207.81	198	9.81
46	65394	13000	12800	200	186.75	179	7.75
47	65035	12600	12460	140	203.83	189	14.83
48	65526	13100	12900	200	179.58	168	11.58
49	65388	12600	12450	150	207.28	200	7.28
50	65392	12800	12675	125	182.36	174	8.36
51	65318	12800	12550	250	211.83	201	10.83
52	65321	12700	12450	250	194.56	185	9.56
53	65691	12730	12530	200	192.94	185	7.94
54	65567	12600	12500	100	174.36	161	13.36
55	65597	14460	14345	115	172.25	156	16.25
56	65830	12700	12350	350	180.42	171	9.42
57	65739	12660	12510	150	193.28	186	7.28
58	65936	16100	15950	150	206.58	196	10.58
59	65764	16500	16400	100	175.11	163	12.11
60	66061	15500	15340	160	163.03	155	8.03
61	66140	12740	12670	70	184.83	176	8.83
62	74243	12800	12500	300	191.31	184	7.31
63	66244	12900	12600	300	168.19	157	11.19
64	66050	13800	13550	250	217.67	202	15.67
65	66874	14400	14300	100	165.81	152	13.81
66	66228	13900	13750	150	180.11	169	11.11
67	66677	13500	13250	250	179.56	169	10.56
68	66333	13200	13100	100	171.14	162	9.14
69	66288	12960	12780	180	194.67	182	12.67
70	66289	12800	12550	250	191.03	183	8.03
71	66060	13900	13800	100	171.44	164	7.44
72	66254	12600	12400	200	180.31	168	12.31
73	66255	12820	12730	90	219.33	205	14.33
74	66126	12900	12850	50	169.92	163	6.92
75	68069	13200	13080	120	162.28	153	9.28

76	66607	15500	15300	200	160.78	153	7.78
77	66636	13500	13300	200	169.89	155	14.89
78	67331	13100	12800	300	201.86	196	5.86
79	66242	13700	13500	200	195.78	187	8.78
80	67172	12620	12270	350	193.19	188	5.19
81	66358	12680	12610	70	172.97	167	5.97
82	67253	12840	12750	90	180.36	168	12.36
83	66572	12760	12440	320	180.67	169	11.67
84	67093	12800	12702	98	205.28	197	8.28

Anexo 5: Resultado de la operación del indicador Independiente.

		Variable Indepe	endiente (Her	ramientas Le	an) 2022	
Porce	ntaje de cos	tos por errores huma YOKE)	Tiempo d	le maquina parada (SMED)	a por espera	
	de material añado	Costo total de materiales	% de costos de errores	Tiempo total de espera (horas)	Tiempo programado para producción	% de tiempos muertos
S/	7.60	S/ 809.00	0.94%	0.50	179	0.279%
S/	19.00	S/ 2,345.00	0.81%	3.17	156	2.030%
S/	21.00	S/ 2,683.00	0.78%	0.11	157	0.071%
S/	78.50	S/ 7,354.00	1.07%	0.75	154	0.487%
S/	12.80	S/ 9,463.00	0.14%	2.14	181	1.182%
S/	62.10	S/ 12,765.00	0.49%	5.00	177	2.825%
S/	43.50	S/ 1,870.00	2.33%	3.22	190	1.696%
S/	64.74	S/ 3,684.00	1.76%	0.78	165	0.471%
S/	167.50	S/ 6,783.00	2.47%	1.47	183	0.804%
S/	84.00	S/ 2,783.00	3.02%	1.03	151	0.681%
S/	120.00	S/ 3,784.00	3.17%	0.92	202	0.454%
S/	87.50	S/ 2,500.00	3.50%	0.14	185	0.075%
S/	192.00	S/ 3,980.00	4.82%	2.14	197	1.086%
S/	63.00	S/ 2,650.00	2.38%	1.08	158	0.686%
S/	360.00	S/ 4,783.00	7.53%	0.42	160	0.260%
S/	160.00	S/ 6,364.00	2.51%	1.25	173	0.723%
S/	108.00	S/ 9,384.00	1.15%	4.86	162	3.001%
S/	129.00	S/ 8,643.00	1.49%	0.19	205	0.095%
S/	151.70	S/ 7,480.00	2.03%	0.33	185	0.180%
S/	342.00	S/ 7,839.00	4.36%	0.36	151	0.239%
S/	65.00	S/ 6,843.00	0.95%	1.00	173	0.578%
S/	13.50	S/ 2,300.00	0.59%	0.31	183	0.167%
S/	70.00	S/ 2,904.00	2.41%	3.14	202	1.554%

S/ 187.00	S/ 3,278.00	5.70%	0.42	186	0.224%
S/ 187.00	S/ 3,673.00	5.09%	0.31	185	0.165%
S/ 623.00	S/ 8,743.00	7.13%	0.17	182	0.092%
S/ 40.00	S/ 8,634.00	0.46%	0.61	196	0.312%
S/ 188.50	S/ 6,500.00	2.90%	2.92	192	1.519%
S/ 47.74	S/ 4,035.00	1.18%	0.39	174	0.223%
S/ 63.75	S/ 8,943.00	0.71%	0.36	185	0.195%
S/ 86.00	S/ 3,450.00	2.49%	0.72	160	0.451%
S/ 182.75	S/ 3,480.00	5.25%	0.92	160	0.573%
S/ 81.00	S/ 5,430.00	1.49%	1.50	160	0.937%
S/ 43.50	S/ 3,600.00	1.21%	0.31	205	0.149%
S/ 87.00	S/ 2,890.00	3.01%	1.13	174	0.649%
S/ 65.00	S/ 3,400.00	1.91%	2.26	167	1.353%
S/ 139.10	S/ 4,663.00	2.98%	1.13	165	0.685%
S/ 164.90	S/ 6,483.00	2.54%	1.52	167	0.910%
S/ 35.00	S/ 6,548.00	0.53%	1.13	175	0.646%
S/ 20.00	S/ 2,000.00	1.00%	1.52	181	0.840%
S/ 16.00	S/ 3,200.00	0.50%	2.26	160	1.413%
S/ 80.50	S/ 3,432.00	2.35%	2.52	183	1.377%
S/ 65.36	S/ 2,670.00	2.45%	3.39	166	2.042%
S/ 9.60	S/ 1,800.00	0.53%	1.52	157	0.968%
S/ 12.50	S/ 1,500.00	0.83%	1.13	198	0.571%
S/ 116.00	S/ 6,430.00	1.80%	3.39	179	1.894%
S/ 258.00	S/ 4,840.00	5.33%	1.13	189	0.598%
S/ 213.00	S/ 4,320.00	4.93%	2.26	168	1.345%
S/ 156.00	S/ 4,670.00	3.34%	2.52	200	1.260%
S/ 54.00	S/ 2,800.00	1.93%	2.26	174	1.299%
S/ 343.00	S/ 4,350.00	7.89%	1.13	201	0.562%
S/ 220.50	S/ 6,543.00	3.37%	1.13	185	0.611%
S/ 44.00	S/ 4,853.00	0.91%	1.13	185	0.611%
S/ 140.00	S/ 6,743.00	2.08%	1.39	161	0.863%
S/ 130.20	S/ 8,904.00	1.46%	1.25	156	0.801%
S/ 234.00	S/ 6,700.00	3.49%	1.52	171	0.889%
S/ 253.50	S/ 8,593.00	2.95%	2.26	186	1.215%
S/ 66.25	S/ 7,054.00	0.94%	1.13	196	0.577%
S/ 335.00	S/ 5,890.00	5.69%	1.13	163	0.693%
S/ 347.50	S/ 8,600.00	4.04%	3.39	155	2.187%
S/ 202.00	S/ 3,500.00	5.77%	1.52	176	0.864%
S/ 86.00	S/ 5,400.00	1.59%	1.36	184	0.739%
S/ 31.05	S/ 3,400.00	0.91%	2.26	157	1.439%
S/ 63.00	S/ 6,743.00	0.93%	2.26	202	1.119%
S/ 154.50	S/ 8,640.00	1.79%	3.39	152	2.230%
S/ 204.00	S/ 3,804.00	5.36%	1.33	169	0.787%
S/ 108.00	S/ 3,640.00	2.97%	1.13	169	0.669%

S/ 27.00	S/ 5,300.00	0.51%	2.26	162	1.395%
S/ 208.00	S/ 3,420.00	6.08%	3.50	182	1.923%
S/ 228.20	S/ 4,890.00	4.67%	2.26	183	1.235%
S/ 111.00	S/ 4,700.00	2.36%	4.52	164	2.756%
S/ 111.00	S/ 3,780.00	2.94%	2.26	168	1.345%
S/ 265.00	S/ 6,784.00	3.91%	3.39	205	1.654%
S/ 29.00	S/ 4,785.00	0.61%	2.20	163	1.350%
S/ 277.50	S/ 6,543.00	4.24%	2.21	153	1.444%
S/ 55.00	S/ 9,043.00	0.61%	1.78	153	1.163%
S/ 137.00	S/ 6,893.00	1.99%	1.22	155	0.787%
S/ 68.40	S/ 6,878.00	0.99%	1.13	196	0.577%
S/ 57.50	S/ 4,783.00	1.20%	0.89	187	0.476%
S/ 174.00	S/ 5,890.00	2.95%	1.13	188	0.601%
S/ 376.00	S/ 3,690.00	10.19%	1.48	167	0.886%
S/ 166.50	S/ 5,700.00	2.92%	2.36	168	1.405%
S/ 60.00	S/ 3,400.00	1.76%	1.26	169	0.746%
S/ 32.40	S/ 3,420.00	0.95%	1.13	197	0.574%

Anexo 6: Comportamiento de los datos analizados del 2022.

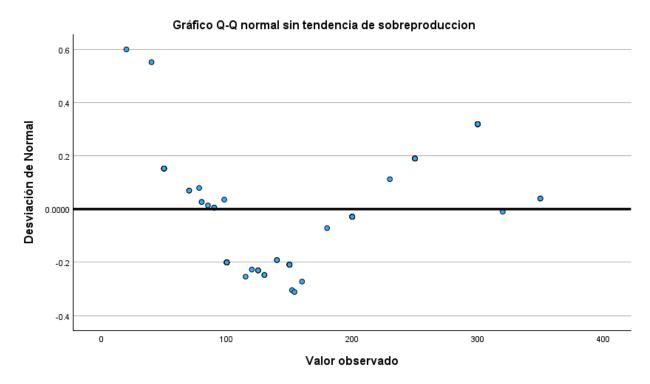


Grafico obtenido del SSPS, ayudo analizar el comportamiento de los datos analizados de la cantidad de fallas por una sobreproducción.

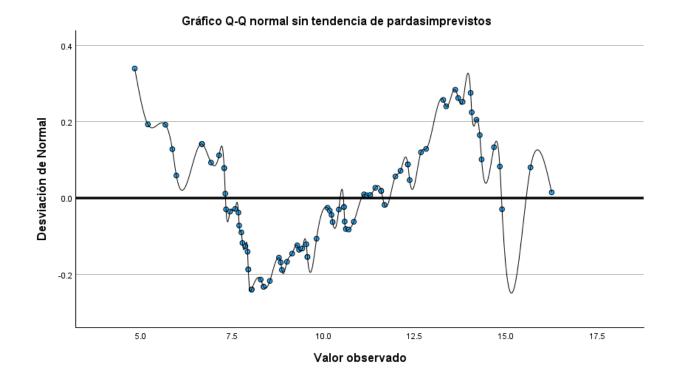


Grafico obtenido del SSPS, de igual manera ayudo a analizar el comportamiento de los datos de las cantidades de horas paradas de manera imprevistas.

Anexo 7. Operación del indicador DEPENDIENTE antes y después.

		Sobreprod	ucción 2022		sobre producción 2023				
Obs	N° de Orden de trabajo	Total de producción	Total programado de producción	Cant. fallado	Obs	N° de Orden de trabajo	Total de producción	Total programado de producción	Cant. fallado
1	64715	12750	12730	20	1	79942	12660	12580	80
2	64575	14060	14010	50	2	79623	12620	12560	60
3	64680	12900	12850	50	3	79484	12600	12550	50
4	64188	14500	14450	50	4	79495	12540	12520	20
5	64217	12950	12870	80	5	79677	12608	12554	54
6	64251	13500	13270	230	6	79665	12620	12560	60
7	64069	15500	15350	150	7	80146	12628	12564	64
8	62830	12700	12622	78	8	81964	12670	12585	85
9	64255	12700	12575	125	9	79431	12550	12525	25
10	64263	13100	12900	200	10	80147	12580	12540	40
11	64289	12900	12650	250	11	82108	12600	12550	50
12	64388	12900	12700	200	12	79656	12600	12550	50
13	64394	14500	14360	140	13	80366	12620	12560	60
14	62812	12620	12320	300	14	80363	12640	12570	70
15	62853	17300	17200	100	15	79671	12580	12540	40
16	65913	13100	12800	300	16	79706	12600	12550	50
17	68368	13100	12800	300	17	79301	12576	12538	38
18	62778	13680	13630	50	18	79465	12580	12540	40
19	64348	13500	13450	50	19	79464	12560	12530	30
20	63783	13300	13100	200	20	80695	12540	12520	20
21	64719	14300	14200	100	21	79543	12600	12550	50
22	63789	12900	12800	100	22	79427	12540	12520	20
23	63996	12600	12470	130	23	79426	12640	12570	70
24	64324	13470	13316	154	24	80308	12660	12580	80
25	62846	12850	12725	125	25	79589	12540	12520	20
26	63466	13100	12900	200	26	82960	12540	12520	20
27	63265	13200	12900	300	27	79652	12590	12545	45
28	63469	12900	12750	150	28	79653	12580	12540	40
29	63404	12750	12450	300	29	79835	12540	12520	20
30	63363	12650	12400	250	30	80158	12560	12530	30
31	63946	12700	12570	130	31	80086	12700	12600	100
32	64176	12750	12665	85	32	80171	12660	12580	80
33	63570	13500	13400	100	33	80180	12560	12530	30
34	64345	12700	12600	100	34	79933	12660	12580	80
35	64524	12800	12720	80	35	80365	12620	12560	60
36	63873	13900	13850	50	36	81899	12560	12530	30
37	63932	12900	12748	152	37	80929	12600	12550	50

38	64989	12660	12620	40	38	82588	12600	12550	50
39	63905	16500	16400	100	39	82587	12620	12560	60
40	64283	16500	16200	300	40	80230	12640	12570	70
41	63958	14500	14200	300	41	80179	12660	12570	80
41	64423				41	82510			
		14500	14400	100			12620	12560	60
43	67286	13700	13400	300	43	80524	12600	12550	50
44	65520	15100	15000	100	44	79934	12620	12560	60
45	65200	13400	13250	150	45	79877	12640	12570	70
46	65394	13000	12800	200	46	79969	12680	12590	90
47	65035	12600	12460	140	47	82808	12580	12540	40
48	65526	13100	12900	200	48	80084	12620	12560	60
49	65388	12600	12450	150	49	80160	12620	12560	60
50	65392	12800	12675	125	50	80751	12600	12550	50
51	65318	12800	12550	250	51	80635	12590	12545	45
52	65321	12700	12450	250	52	80225	12600	12550	50
53	65691	12730	12530	200	53	81567	12560	12530	30
54	65567	12600	12500	100	54	81806	12620	12560	60
55	65597	14460	14345	115	55	82883	12600	12550	50
56	65830	12700	12350	350	56	80463	12660	12580	80
57	65739	12660	12510	150	57	80401	12600	12550	50
58	65936	16100	15950	150	58	80964	12540	12520	20
59	65764	16500	16400	100	59	80617	12600	12550	50
60	66061	15500	15340	160	60	82836	12600	12550	50
61	66140	12740	12670	70	61	80349	12560	12530	30
62	74243	12800	12500	300	62	80526	12580	12540	40
63	66244	12900	12600	300	63	80842	12620	12560	60
64	66050	13800	13550	250	64	81056	12580	12540	40
65	66874	14400	14300	100	65	81058	12640	12570	70
66	66228	13900	13750	150	66	81203	12600	12550	50
67	66677	13500	13250	250	67	80614	12620	12560	60
68	66333	13200	13100	100	68	82914	12600	12550	50
69	66288	12960	12780	180	69	81509	12620	12560	60
70	66289	12800	12550	250	70	81079	12640	12570	70
71	66060	13900	13800	100	71	81254	12680	12590	90
72	66254	12600	12400	200	72	80754	12660	12580	80
73	66255	12820	12730	90	73	81313	12600	12550	50
74	66126	12900	12850	50	74	81041	12620	12560	60
75	68069	13200	13080	120	75	83268	12640	12570	70
76	66607	15500	15300	200	76	80923	12660	12580	80
77	66636	13500	13300	200	77	81407	12600	12550	50
78	67331	13100	12800	300	78	80954	12560	12530	30
79	66242	13700	13500	200	79	81026	12640	12570	
 						81415			70 50
80	67172	12620	12270	350	80		12600	12550	50
81	66358	12680	12610	70	81	81408	12620	12560	60

82	67253	12840	12750	90	82	81405	12620	12560	60
83	66572	12760	12440	320	83	81406	12580	12540	40
84	67093	12800	12702	98	84	81407	12550	12525	25

Anexo 8. Operación del indicador DEPENDIENTE antes y después.

			Variab	le Dependien	ite (pa	aradas im	nprevistas)		
	Tiempo d	de maquina p	arada por falla	as. 2022	Tiempo de maquina parada por fallas imprevistas 2023				
Obs	N° de Orden de trabajo	Tiempo total de producción	Tiempo programado para producción	do maquina parada por		N° de Orden de trabajo	Tiempo total de producción	Tiempo programado para producción	Horas de maquina parada por imprevistos
1	64715	183.83	179	4.83	1	79942	180.1	178.4	1.7
2	64575	166.69	156	10.69	2	79623	179.6	177.4	2.2
3	64680	167.22	157	10.22	3	79484	171.1	167.1	4.0
4	64188	160.67	154	6.67	4	79495	194.7	192.8	1.8
5	64217	188.86	181	7.86	5	79677	191.0	187.3	3.7
6	64251	186.56	177	9.56	6	79665	171.4	162.4	9.1
7	64069	201.58	190	11.58	7	80146	180.3	174.6	5.7
8	62830	174.00	165	9.00	8	81964	219.3	207.7	11.6
9	64255	193.11	183	10.11	9	79431	169.9	162.8	7.1
10	64263	159.36	151	8.36	10	80147	162.3	161.8	0.5
11	64289	209.67	202	7.67	11	82108	160.8	157.8	3.0
12	64388	196.42	185	11.42	12	79656	169.9	166.6	3.3
13	64394	210.69	197	13.69	13	80366	201.9	199.8	2.0
14	62812	170.81	158	12.81	14	80363	195.8	193.7	2.1
15	62853	170.25	160	10.25	15	79671	193.2	190.6	2.6
16	65913	180.33	173	7.33	16	79706	173.0	170.7	2.3
17	68368	172.17	162	10.17	17	79301	180.4	176.0	4.3
18	62778	219.67	205	14.67	18	79465	183.8	182.6	1.2
19	64348	194.33	185	9.33	19	79464	166.7	161.5	5.2
20	63783	164.61	151	13.61	20	80695	167.2	165.4	1.8
21	64719	180.92	173	7.92	21	79543	160.7	158.3	2.4
22	63789	197.06	183	14.06	22	79427	188.9	186.5	2.4
23	63996	216.19	202	14.19	23	79426	186.6	180.1	6.5
24	64324	191.67	186	5.67	24	80308	201.6	197.3	4.3
25	62846	192.94	185	7.94	25	79589	174.0	171.9	2.1
26	63466	193.28	182	11.28	26	82960	193.1	190.3	2.8
27	63265	207.58	196	11.58	27	79652	159.4	156.8	2.5
28	63469	200.03	192	8.03	28	79653	209.7	207.5	2.2
29	63404	188.28	174	14.28	29	79835	196.4	192.5	3.9

30	63363	192.58	185	7.58	30	80158	210.7	208.9	1.8
31	63946	173.28	160	13.28	31	80086	170.8	166.8	4.0
32	64176	167.69	160	7.69	32	80171	170.3	168.5	1.8
33	63570	169.53	160	9.53	33	80180	180.3	177.9	2.4
34	64345	219.03	205	14.03	34	79933	172.2	167.9	4.2
35	64524	184.42	174	10.42	35	80365	219.7	216.0	3.7
36	63873	178.97	167	11.97	36	81899	194.3	192.3	2.0
37	63932	171.67	165	6.67	37	80929	164.6	158.6	6.0
38	64989	174.14	167	7.14	38	82588	180.9	176.9	4.0
39	63905	185.61	175	10.61	39	82587	197.1	195.0	2.1
40	64283	189.86	181	8.86	40	80230	216.2	214.9	1.3
41	63958	166.67	160	6.67	41	80179	191.7	188.0	3.7
42	64423	195.31	183	12.31	42	82510	192.9	188.7	4.2
43	67286	176.56	166	10.56	43	80524	193.3	189.3	4.0
44	65520	165.53	157	8.53	44	79934	207.6	204.2	3.4
45	65200	207.81	198	9.81	45	79877	200.0	198.2	1.8
46	65394	186.75	179	7.75	46	79969	188.3	182.1	6.2
47	65035	203.83	189	14.83	47	82808	192.6	189.8	2.8
48	65526	179.58	168	11.58	48	80084	173.3	170.6	2.6
49	65388	207.28	200	7.28	49	80160	167.7	164.0	3.7
50	65392	182.36	174	8.36	50	80751	169.5	164.9	4.6
51	65318	211.83	201	10.83	51	80635	219.0	216.9	2.1
52	65321	194.56	185	9.56	52	80225	184.4	180.6	3.8
53	65691	192.94	185	7.94	53	81567	179.0	175.8	3.2
54	65567	174.36	161	13.36	54	81806	171.7	167.5	4.1
55	65597	172.25	156	16.25	55	82883	174.1	171.9	2.3
56	65830	180.42	171	9.42	56	80463	185.6	183.8	1.8
57	65739	193.28	186	7.28	57	80401	189.9	187.5	2.4
58	65936	206.58	196	10.58	58	80964	166.7	164.3	2.4
59	65764	175.11	163	12.11	59	80617	195.3	188.8	6.5
60	66061	163.03	155	8.03	60	82836	176.6	172.2	4.3
61	66140	184.83	176	8.83	61	80349	165.5	163.4	2.1
62	74243	191.31	184	7.31	62	80526	207.8	205.0	2.8
63	66244	168.19	157	11.19	63	80842	186.8	184.2	2.5
64	66050	217.67	202	15.67	64	81056	203.8	201.7	2.2
65	66874	165.81	152	13.81	65	81058	179.6	175.7	3.9
66	66228	180.11	169	11.11	66	81203	207.3	205.5	1.8
67	66677	179.56	169	10.56	67	80614	182.4	178.4	4.0
68	66333	171.14	162	9.14	68	82914	211.8	210.1	1.8
69	66288	194.67	182	12.67	69	81509	194.6	192.1	2.4
70	66289	191.03	183	8.03	70	81079	192.9	188.7	4.2
71	66060	171.44	164	7.44	71	81254	174.4	170.7	3.7
72	66254	180.31	168	12.31	72	80754	172.2	170.2	2.0
73	66255	219.33	205	14.33	73	81313	180.4	174.4	6.0

74	66126	169.92	163	6.92	74	81041	193.3	191.5	1.8
75	68069	162.28	153	9.28	75	83268	206.6	204.2	2.4
76	66607	160.78	153	7.78	76	80923	175.1	172.7	2.4
77	66636	169.89	155	14.89	77	81407	163.0	156.5	6.5
78	67331	201.86	196	5.86	78	80954	184.8	180.5	4.3
79	66242	195.78	187	8.78	79	81026	191.3	189.2	2.1
80	67172	193.19	188	5.19	80	81415	168.2	165.4	2.8
81	66358	172.97	167	5.97	81	81408	217.7	215.1	2.5
82	67253	180.36	168	12.36	82	81405	165.8	163.6	2.2
83	66572	180.67	169	11.67	83	81406	193.3	189.4	3.9
84	67093	205.28	197	8.28	84	81407	206.6	204.8	1.8

Anexo 9. Prueba de normalidad de las diferencias de resultados de indicadores. En la siguiente tabla se observa la prueba de normalidad de diferencia de los resultados obtenidos de los indicadores antes y después de la implementación. Datos que fueron extraídos del SSPS.

Pruebas de normalidad										
	Kolmogorov-Smirnov ^a			Shapiro-Wilk						
	Estadístico gl Sig. Estadístico gl									
DIF_CANTIDAD_FALLAS	0.102	84	0.030	0.946	84	0.002				
DIF_PARRAIMPREV	0.045	84	.200*	0.994	84	0.959				
DIF_FALLHUMANA	0.074	84	.200*	0.970	84	0.050				
DIF_TIEMESPERA	0.331	84	0.000	0.355	84	0.000				
*. Esto es un límite inferior de la s	ignificación verd	lader	a.		Į.					

a. Corrección de significación de Lilliefors

Anexo 10. Prueba de normalidad de los resultados obtenidos de los indicadores después de la implementación.

Р	ruebas de nor	malio	dad			
	Kolmogorov	irnov ^a	Shapiro-Wilk			
	Estadístico	gl	Estadístico	gl	Sig.	
CANT_FALLADO	0.118	84	0.005	0.965	84	0.021
PARADAS_IMPREVISTAS	0.164	84	0.000	0.833	84	0.000
FALLAS_HUMANOS	0.118	84	0.006	0.936	84	0.000
TIEMPO_ESPERA	0.160	84	0.000	0.857	84	0.000
TOTAL DE MERMA	0.125	84	0.003	0.910	84	0.000

a. Corrección de significación de Lilliefors

Anexo 11: Imágenes antes y después de implementar la metodología POKA YOKE.

Imagen antes de implementar el POKA YOKE INFORMATIVO, en la imagen podemos ver como alamacen entregaba los materiales al area de prensa, esto conllebava al operario a tener dudas al no tener claro el el tipo de material que esta asignado para su proceso.

Imagen luego de implementar la metodología POKA YOKE informativo, ahora los materiales entregados a prensa son rotulados con una descripción más específico para que el operario pueda trasladar el material asignado más rápido y con mayor seguridad.

RTI	PAPER MA	I MI N
Size	720X1020	mm/inch
Reams	5	
551	kg LBS	M Weight
	kg LBS	The second secon
90013		roing Marks
	Cimagraf INT	ERIORES
	Cimagraf INT	23694
		23694
	OP	23694
	MAQUINA	23694 R 705 EVOL.
	OP MAQUINA CANTIDAD	23694 R 705 EVOL. 2500 COUCHE MATE 300 72 X 102 SNOW EAGLE IMP.
	OP MAQUINA CANTIDAD MATERIAL	23694 R 705 EVOL. 2500 COUCHE MATE 300 72 X 102 SNOW EAGLE IMP.
	OP MAQUINA CANTIDAD MATERIAL DESPACHADO POR	23694 R 705 EVOL. 2500 COUCHE MAYE 300 72 X 102 5NOW EAGLE IMP. JOHN CC. 23-11-2023

Imagen como se entregaba los materiales impresos al área de post prensa antes de implementar el POKA YOKE, solo existía un solo rotulo para todos los procesos

io: Innesion	PROCESO:
AD Q. 150	CANTIDAD
GADO POR FECHA: 22-11-23. HORA: 19:30 P:H.	ENTREGADO POR FECHA: HORA:
P# 1	OBSERVACIONES
OCESO:	PROCESO:
NTREGADO POR FECHA:	ENTREGADO POR FECHA:
OBSERVACIONES	OBSERVACIONES
PROCESO:	PROCESO:
CANTIDAD ENTREGADO POR FECHA:	CANTIDAD
HORA:	ENTREGADO POR FECHA: HORA:
OBSERVACIONES	OBSERVAC ONES
CORRETO .	OP N° PALETA
PRODUCTO CARO.	023602-01 02

Imagen luego de implementar el POKA YOKE, para los trabajos similares se coloca rótulos de colores para su correcto traslado al siguiente proceso y evitar mezclas por desconcentración del operario

Imagen antes de implementar el método POKA YOKE, como interpretaban las ordenes de producción en el área de prensa los operarios.

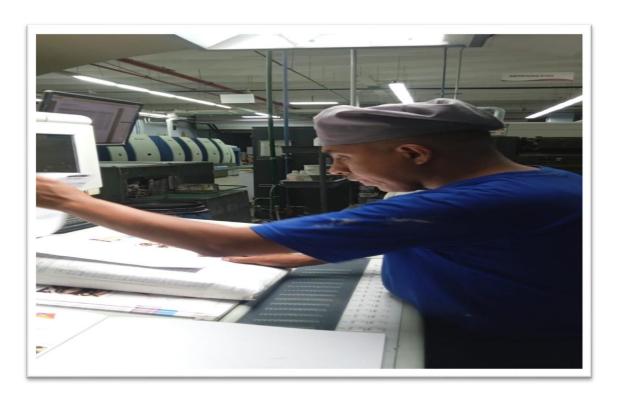


Imagen luego de implementar el POKA YOKE, para evitar que los operarios cometan errores durante la producción como conformidad que el operario hay realizado la lectura de la orden de producción tiene que resaltar la actividad que le corresponde con un resaltador amarillo, de esta manera estará garantizando que las cantidades a producir sean correctas.

Anexo 12: validación por expertos

Implementación de herramientas de Lean Manufacturing para la Reducción de Merma en el área de prensa de una empresa Gráfica, Lima 2023

Cuestionario para validar los instrumentos de medición

El motivo de la siguiente encuesta es conocer tu opinión acerca de los instrumentos de medición que se usara en este proyecto de investigación, la información se usara con fines académicos.

Datos:

ombre: JOSE Was ANCE Comisso

ENDINIZON

INSTRUCCIONES: Marque con una (X) la respuesta de su preferencia.

1: mato

3; bueno

5: excelente

2: regular

4: muy bueno

	cuestionario de vali	UCZ					
ITEMS	cuestionario	malo	regular	bueno	muy bueno	excelent	
	20.00 e	1	2	3	4	5	
1	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las mermas por sobre produccion en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.				X		
2	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las paradas imprevistas de maquinas en el area de prensa de acuerdo a la matriz de opera izaciones planteadas.					X	
3	La escala de medición de cantidad de errores por factor humano, presenta un diseño adecuado?				X		
4	E3 indicador para hallar cantidad de errores por factor humano, es lo correcto?					X	
5	La escala de medición de % horas de máquinas paradas por espera, presenta un diseño adecuado?					X	
6	El indicador para hallar % de horas de paradas de máquina por espera, es lo correcto?					X	
7	El indicador para hallar la sobre produccion de una orden de produccion es lo correcto?				X		
В	Existe relación coherente entre los adicadores y sus dimensiones?				X		
9	La reducción de errorei nor factor humano en la producción, neducirá la mermas por sobre producción?					X	
10	la aplicación de la metodología SMED reducira las paradas imprevistas de maquinas en el area de prensa.				X		

Ingenierd Mecalifortico
CIP N 313106

Implementación de herramientas de Lean Manufacturing para la Reducción de Merma en el área de prensa de una empresa Gráfica, Lima 2023

Cuestionario para validar los instrumentos de medición

El motivo de la siguiente encuesta es conocer tu opinión acerca de los instrumentos de medición que se usara en este proyecto de investigación, la información se usara con fines académicos.

Datos:

Nombre: Jane Simeon Ferrari

Cargo: Ingeniera Industrial

INSTRUCCIONES: Marque con una (X) la respuesta de su preferencia.

1: malo 3: bueno 5: excelente

2: regular 4: muy bueno

ITEM	Cuestionario	malo	regular	bueno	muy bueno	excelente	
	Cucstionario	1	2	3	4	5	
1	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las mermas por sobre produccion en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.					×	
2	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las paradas imprevistas de maquinas en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.					х	
3	La escala de medición de cantidad de errores por factor humano, presenta un diseño adecuado?					x	
4	El indicador para hallar cantidad de errores por factor humano, es lo correcto?				x		
5	La escala de medición de % horas de máquinas paradas por espera, presenta un diseño adecuado?				x		
6	El indicador para hallar % de horas de paradas de máquina por espera, es lo correcto?				x		
7	El indicador para hallar la sobre produccion de una orden de produccion es lo correcto?				x		
8	Existe relación coherente entre los indicadores y sus dimensiones?				×		
9	La reduccion de errores por factor humano en la producción, reducirá las mermas por sobre producción?				x		
10	la aplicación de la metodologia SMED reducira las paradas imprevistas de maquinas en el area de prensa.					x	

LIZ JANE SIMEON FERRARI Ingeniera Industrial CIP N° 279594

firma y sello

Cuestionario para validar los instrumentos de medición

El motivo de la siguiente encuesta es conocer tu opinión acerca de los instrumentos de medición que se usara en este proyecto de investigación, la información se usara con fines académicos.

Datos:

Nombre: Nely Rosario Juica Paucar

Cargo: Gerente de producción

INSTRUCCIONES: Marque con una (X) la respuesta de su preferencia.

1: malo

3: bueno

5: excelente

2: regular

4: muy bueno

ITEM	Cuestionario	malo	regular	bueno	muy bueno	excelente 5
IILIM	Cuestionano	1	2	3	4	
1	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las mermas por sobre produccion en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.	,				X
2	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las paradas imprevistas de maquinas en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.					Χ
3	La escala de medición de cantidad de errores por factor humano, presenta un diseño adecuado?					X
4	El indicador para hallar cantidad de errores por factor humano, es lo correcto?				X	
5	La escala de medición de % horas de máquinas paradas por espera, presenta un diseño adecuado?				X	
6	El indicador para hallar % de horas de paradas de máquina por espera, es lo correcto?				X	
7	El indicador para hallar la sobre produccion de una orden de produccion es lo correcto?				X	
8	Existe relación coherente entre los indicadores y sus dimensiones?				X	
9	La reduccion de errores por factor humano en la producción, reducirá las mermas por sobre producción?					X
10	la aplicación de la metodología SMED reducira las paradas imprevistas de maquinas en el area de prensa;				X	

NELY ROSARIO JUICA PAUCAR INGENIERA INDUSTRIAL Reg. CIP N° 213495

firma y sello

Implementación de herramientas de Lean Manufacturing para la Reducción de Merma en el área de prensa de una empresa Gráfica, Lima 2023

Cuestionario para validar los instrumentos de medición

El motivo de la siguiente encuesta es conocer tu opinión acerca de los instrumentos de medición que se usara en este proyecto de investigación, la información se usara con fines académicos.

Datos:

Nombre: Omar Morales Becerra

Cargo: Ingeniero Industrial

INSTRUCCIONES: Marque con una (X) la respuesta de su preferencia.

1: malo 3: bueno 5: excelente

2: regular 4: muy bueno

ITEM	Cuestionario	malo	regular	bueno	muy bueno	excelente
		1	2	3	4	5
1	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las mermas por sobre produccion en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.				x	
2	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las paradas imprevistas de maquinas en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.					х
3	La escala de medición de cantidad de errores por factor humano, presenta un diseño adecuado?				x	
4	El indicador para hallar cantidad de errores por factor humano, es lo correcto?					х
5	La escala de medición de % horas de máquinas paradas por espera, presenta un diseño adecuado?					x
6	El indicador para hallar % de horas de paradas de máquina por espera, es lo correcto?					х
7	El indicador para hallar la sobre produccion de una orden de produccion es lo correcto?					х
8	Existe relación coherente entre los indicadores y sus dimensiones?					x
9	La reducción de errores por factor humano en la producción, reducirá las mermas por sobre producción?				х	
10	la aplicación de la metodologia SMED reducira las paradas imprevistas de maquinas en el area de prensa.				x	

firma y sello

OMAR ROLANDO MORALES BECERRA INGENIERO INDUSTRIAL Reg. CIP Nº 204998

Implementación de herramientas de Lean Manufacturing para la Reducción de Merma en el área de prensa de una empresa Gráfica, Lima 2023

Cuestionario para validar los instrumentos de medición

El motivo de la siguiente encuesta es conocer tu opinión acerca de los instrumentos de medición que se usara en este proyecto de investigación, la información se usara con fines académicos.

Datos:

Nombre: Carlos Vilches Gimenes

Cargo: Jefe de Post - Prensa

INSTRUCCIONES: Marque con una (X) la respuesta de su preferencia.

1: malo

3: bueno

5: excelente

2: regular

4: muy bueno

ITEM	Cuestionario	malo	regular	bueno	muy bueno	excelente	
		1	2	3	4	5	
1	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las mermas por sobre produccion en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.				X		
2	Considera que al aplicar las herramientas de lean manufacturing, ayudara a reducir las paradas imprevistas de maquinas en el area de prensa de acuerdo a la matriz de operalizaciones planteadas.					X	
3	La escala de medición de cantidad de errores por factor humano, presenta un diseño adecuado?					X	
4	El indicador para hallar cantidad de errores por factor humano, es lo correcto?		1		×		
5	La escala de medición de % horas de máquinas paradas por espera, presenta un diseño adecuado?				X		
6	El indicador para hallar % de horas de paradas de máquina por espera, es lo correcto?				X		
7	El indicador para hallar la sobre produccion de una orden de produccion es lo correcto?					\times	
8	Existe relación coherente entre los indicadores y sus dimensiones?					X	
9	La reduccion de errores por factor humano en la producción, reducirá las mermas por sobre producción?				X		
	la aplicación de la metodologia SMED reducira las paradas imprevistas de maquinas en el area de prensa.					X	

SANTOS CARLOS VILCHEZ JIMENEZ ingeniero Industrial CIP Nº 295586

firma y sello

Anexo 13: lista de asistentes a capacitación (Poka Yoke).

	Cimagraf		REGISTRO		CIÓN, CAPACITACIÓ JLACROS DE EMERGI		MIENTO Y	Nº RECRET	NO: RE-075-04 V.3
BATOS DEL ERPLEADO		20.27	12-11-2						
1 BAZON 900	MLO DENOMINACIÓN SECIAL	1900	3	оомено д	ineccias, distribo, depertumento pr	WASHE EACTIVERS EGGE		NOMES	S P. LEVEN'NDCASE EN E
MOURT	OM SPAFICA CHIMCHAF	201/08/402977		13	ALE SANTA HOSE 148 ATE		CRWYCA		
	8 Houses	w.			1 CAPACITACION		# ENTREMAN	evito	9 SMULACRO
10 TENN	When con the the been		DoloGEA	Po	KB YOKE	EN EL	basa	DE	PRENSA
11 FECHAL	04/09/23								Carlo Security
ENTREMISE DEL CAPACITACION DE PONTA PONTA								INTERNAL CONTROL	IXTERNO
3 N°HONAS							1	*	· ·
14 APELLIDOS Y NOMBRES DE LOS CAPACITADOS			16 N° DM		HE ARISA	17.5	james	160	BSERVACIONES
1 20220	JM , SJUDSAV	330	101218	74	PRENTA	(10)	1		
2 OSCAN	OSUM Jamos Chaeceri		60405985		Prensu	7	100		
2 EPIA	EPIAVION Flores Jose luis		458520	53	PRENTO	2	No		
		PECHE	44947020		FRENSA	List	/		
	MAS Sal	MANUEL W	176140		Parc	d	7.		
· Paso	val Quispe	(1	0931318	0	prensa	Shu	Q		
· Juan	CVENTURO		4016656	16	PRENGO I		-6		
· Sixte	Goneflez	Conidalo	4025832	4.	PRENIA GO.		2000		
9 GUZ	MAN PORRAS	ALEX	42702	155	PRENSA	1			
" LOPE	2 FURNERS F	an-usa	45/9/71	61	prevso	26	1		
" Gutie	iree Roque E	leazov	4575814	14	Prensa	(Gest	2		
" TERRE	NUES HUBYAS PEL	NO RSQ	438533	12	PLENSS	19			
" VENERO	VENERO DEMBROÑ CRESTOPHER		47932496	9	PRENSA	ASO	3		
" Offer	Ofeco Loper Lvis		4091261	В	Prensa	1/2	7		
" Horge	Adaling de	Valla doll	107398	84	Dresu	28	8		
" VICIO	A		0950002		PREWERS	fe	2		
17					- 1				
18									

Anexo 14: lista de asistentes a capacitación (Smed).

Cimagraf			REGISTRO DE INDUCCIÓN, CAPACITACIÓN, ENTRENAMIENTO Y SIMULACROS DE EMERGENCIA					erina meatre
DIATOR DEL BIRPLEADON				15977				
1 RAZON SOCIAL O DEMONINACIÓN SOCIAL. ZINATE			3-8040CLID (Direction, distrille, departaments province		ovlecing 4.RETINGAL	A METHICAD SCORDMICA		
INDUSTRIA GRAFICA CHIACIPALE		201206482277	26-00-662277		P.E. SANTA ROSA NOATE	129	GRANCA	
6 NOUCOON			Y CAPACITACION		# UNTRE	6 ENTRESAMENTO		
10 TENA.	0.011/05-50. 1	DE LA MOTOR	notor/o	<11	ED EN E/	AREA DE	PRENS	0
II FEGIA.	05/10/23		LENC 6 (14	OPU	CO BIN ES	Mires Tre	Sarces F	
12 NOMBRE DEL CAPACITACION O ENTRENACION	The state of the s	CHIPANA A					INTE	EMO EXTERNA
to N° HORNA			,					
14 APELLIDOS YNCHIBRES DE LOS CAPACITADOS			15 SP CSI		16 AREA	ST FERMA	,	ORSERVACIONES
· Jadas Vaures Hours			4/99	1462	Vreys	May		
2 MENDOZIA COMPUS NESTOR			76157311		PEGNSA	2		-
" HENRY FALCON ROMERS			41446728		PRENSA	MALL		
· MARGO FLORES MERLYN			1016	405	PREMIN	40	9	
: Wilder CAMPORANTS D.			41861282		300 m/s	Entelle		
· VORD HUANCA PETER.			46124634		PREUSA -	august		
· Duigo Cost 20 Cos Gronv 800			08122540		Pransa	Off	- 51	
· Fasan Aldazobal			41797	630	Pensa	A true,		
· PERCY HUENTO OBOTOS			416124	118	F7715N3173-	4		
" David Villa Braini Va			411390	92	Prinson	Jan 1		
" Conder Thies Joye Luis			41873	0.84	Freesa	600		
2 FOMA SARMIGATO JANIER			42977	SK	DRAWSA	Sel		
BERNADLA VILLALOBOS RENZO			461172	52	REDISA	age		
" INGLARDY DIAZ UTCZON			4 084		PORENSO	10		
			0992816	of "	Producin	Allen y		
" Robinson Chipana P.			43516	540	Prensa	1 July		
37			1124		-22	1		

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA INDUSTRIAL

Declaratoria de Autenticidad del Asesor

Yo, AÑAZCO ESCOBAR DIXON GROKY, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA INDUSTRIAL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA ATE, asesor de Tesis titulada: "Implementación de herramientas de Lean Manufacturing para la Reducción de Merma en el área de prensa de una empresa Gráfica, Lima 2023", cuyos autores son MARTINEZ PORRAS FRAN ALVARO, CHIPANA PAITAN ROBINSON, constato que la investigación tiene un índice de similitud de 11.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 30 de Noviembre del 2023

Apellidos y Nombres del Asesor:	Firma		
DIXON GROKY AÑAZCO ESCOBAR	Firmado electrónicamente		
DNI: 08124462	por: DGAESCOBAR el 20-		
ORCID: 0000-0002-2729-1202	12-2023 11:45:44		

Código documento Trilce: TRI - 0674113

