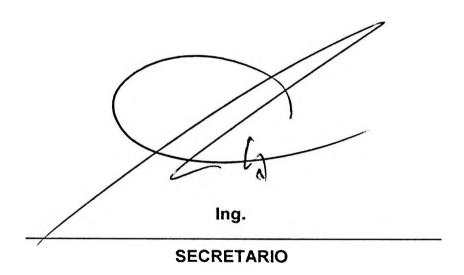
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

"PROPUESTA DE MANTENIMIENTO CENTRADO EN LA CONFIABILIDAD PARA OPERATIVIDAD DE LAS GRÚAS MANITOWOC M-2250 EN LA EMPRESA SAVIA PERÚ S.A. TALARA"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO INDUSTRIAL

AUTOR: RONDOY CAMPOS, JULIO CÉSAR

ASESOR:


ING. MSc. MADRID GUEVARA, FERNANDO

LINEA DE INVESTIGACIÓN
PLANEAMIENTO, ANÁLISIS Y CONTROL DE LA
PRODUCCIÓN.

PIURA – PERÚ 2014

JURADO CALIFICADOR

Ing.

VOCAL

DEDICATORIA

A mis padres Eligio Rondoy Peña y María Jovina Campos de Rondoy por su apoyo incondicional e invalorable.

A mi Esposa Ruby y a mis hijos César, Bruno y Eva María por ser mis motivos de superación.

A mis hermanos Martin, Wilmer, Esduardo y Samuel por apoyarme siempre en los momentos decisivos.

AGRADECIMIENTO

En primer lugar quiero agradecer a Dios, por haberme dado las fuerzas necesarias para enfrentar de la mejor manera los diferentes obstáculos, que se han presentado durante toda mi vida y guiarme a su lado.

A mi padre Eligio Rondoy Peña, mi madre María Jovina Campos, por todo el apoyo brindado moral, físico y económico, durante todos estos años de mi formación como profesional, ya que sin ellos no hubiera sido capaz de lograr terminar este ciclo de mi vida.

Igualmente quiero agradecer a Ruby y a mis hijos Cesar Snayder, Bruno Aldair, y Eva María por su soporte y por ser los motores de mi vida, que permitieron que este trabajo de investigación pueda culminarse.

También quiero darle gracias a mi hermano Samuel, por sus consejos valiosos y ayuda desinteresada durante la realización de esta tesis.

Agradezco especialmente a mi asesor de tesis Ing. Fernando Madrid Guevara, por su apoyo y guía, que hiciera que esta tesis se direccionara a los propósitos del presente trabajo.

Finalmente agradecimiento a todas las personas que me apoyaron para el desarrollo de ésta investigación, en especial al Sr. César Sandoval Gallo. Jefe del área de mantenimiento y reparaciones de grúas, lugar donde se realizó esta investigación por su apoyo, a los ingenieros a cargo del área de producción y calidad y otras áreas.

DECLARACION DE AUTENTICIDAD

Yo Julio César Rondoy Campos con DNI N° 03901263, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad Cesar Vallejos Facultad de Ingeniería Escuela Profesional de Ingeniería Industrial, declaro bajo juramento que toda la documentación que acompaño es veraz y autentica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad Cesar Vallejo

Piura, 25 de Julio de 2014

Julio Cesar Rondoy Campos

PRESENTACIÓN

Cumpliendo con los preceptos que establece las normas de la Universidad César Vallejo de Piura, presento a su consideración el trabajo de graduación intitulado:

Propuesta de Mantenimiento Centrado en la Confiabilidad para operatividad de las Grúas Manitowoc M-2250 en la empresa Savia Perú S.A. Talara.

El presente trabajo de investigación se realizó con la finalidad de mantener a la empresa Savia Perú como líder del mercado a través de la Propuesta de Implantación del mantenimiento Centrado en la Confiabilidad para mejorar la Disponibilidad de las Grúas Manitowoc M-2250.

Apelamos a la comprensión del jurado, y agradeceremos cada una de sus opiniones, conocimientos, esperando que la presente investigación se ajuste a las exigencias requeridas por la universidad y merezca su aprobación.

Julio César Rondoy Campos

ÍNDICE GENERAL

RESU	IMEN	xiii
ABST	RACT	xiv
t.	INTRODUCCIÓN	1
1.1.	PROBLEMA	39
1.2.	Objetivos	40
II.	MARCO METODOLÓGICO	40
2.1.	Variables	40
2.4.	Tipo de estudio	57
2.5.	Diseño de investigación	57
2.6.	Población y Muestra	58
2.7.	Método de investigación	58
2.8.	Técnicas e instrumentos de recolección de datos	58
III.	RESULTADOS	60
IV.	DISCUSIÓN	225
٧.	CONCLUSIONES	226
VI.	SUGERENCIAS	227
VII.	REFERENCIAS BIBLIOGRÁFICAS	228
VIII.	ANEXOS	229

ÍNDICE DE IMÁGENES

Imagen 1: Proceso de Implantación	18
Imagen 2: Grúa Manitowoc	38
Imagen 3: Grúa Manitowoc	

ÍNDICE DE GRÁFICOS

Gráfico 1: Árbol Lógico de decisión	29
Gráfico 2: Evaluación del Número de Prioridad de Riesgo	32
Gráfico 3: Número de Prioridad de Riesgo	32
Gráfico 4: Plan de Mantenimiento Basado en RCM¡Error! Marcador no defi	nido.
Gráfico 5: Vista frontal de componentes de grúa MANITOWOC M-2250 (1-17)	60
Gráfico 6: Vista trasera de grúa MANITOWOC M-2250 (18-22)	62
Gráfico 7: Vista de planta N° 01 de elementos grúa MANITOWOC M-2250 (1-27)	63
Gráfico 8: Detalle de Vista de planta N° 01 A, B y C de grúa MANITOWOC M-225	50
(28-34)	65
Gráfico 9: Detalle de Vista de planta Nº 02 de grúa MANITOWOC M-2250 (28-34	
Gráfico 10: Detalle de Vista de planta N° 02 D, E y F de grúa MANITOWOC M-22	250
(21-29)	68
Gráfico 11: Detalle de Vista de controles de mando de grúa MANITOWOC M-225	50 (1-
20)	69
Gráfico 12: Detalle de Vista de controles de mando de grúa MANITOWOC M-225	
(21-26)	71
Gráfico 13: Detalle de elementos del sistema neumático de grúa MANITOWOC N	Λ-
2250	72
Gráfico 14: Detalle de elementos del sistema eléctrico de grúa MANITOWOC M-	
(1-23)	75
Gráfico 15: Detalle de elementos del sistema eléctrico de grúa MANITOWOC M-	
(24-37)	77
Gráfico 16: Detalle de elementos del sistema hidráulicos de grúa MANITOWOC I	
2250	79
Gráfico 17: Detalle de motor principal de grúa MANITOWOC M-2250 (1-25)	
Gráfico 18: Detalle de motor principal (vista G, H, I) de grúa MANITOWOC M-22	
(26-42)	
Gráfico 19: Diagrama Electrohidráulico del Funcionamiento de la Grúa	
Gráfico 20: Funcionamiento Básico del Sistema Hidráulico	
Gráfico 21: Funcionamiento el Sistema Electrohidráulico	
Gráfico 22: Sistema Neumático de la Grúa	100
Gráfico 23: Sistema de Frenos Neumáticos de los Tambores de Carga	104
Gráfico 24: Sistema de Giro de Tornamesa (Giro a Derecha, Izquierda, Frenos y	
Bloqueo)Gráfico 25: Funcionamiento del Sistema de Propulsión (Marcha)	108
Gráfico 25: Funcionamiento del Sistema de Propulsión (Marcha)	113
Gráfico 26: Funcionamiento de Plumín Abatible (Malacate de Pluma)	
Gráfico 27: Circuito Hidráulico de Motores de Tambor de Cargas Dobles(A)	125
Gráfico 28: Circuito Hidráulico de Motores de Tambor de Cargas Dobles(A)	126
Gráfico 29: Cantidad de fallas por grúa año 2013	
Gráfico 30: Cantidad de Horas de Parada por Grúa Año 2013	180
Gráfico 31: Tiempo de Paradas por Grúa (Horas) Año 2013	181
Gráfico 32: Cantidad de Fallas por Tipo de Grúa MC-028 Año 2013	181
Gráfico 33: Tiempo Total de Paradas por Tipo (Horas) Año 2013	182
1 1 - f	

ÍNDICE DE CUADROS

Cuadro 1: Histórico de averías grúa MANITOWOC M-2250 MC-027 1	
Cuadro 2: Histórico de averías grúa MANITOWOC M-2250 MC-028 1	179
Cuadro 3: Modos de Fallo y Causas Primarias	
Cuadro 4: Efecto de Modo de Falla	188
Cuadro 5: Número de Prioridad de Riesgo (Modo de Falla 01)	
Cuadro 6: Número de Prioridad de Riesgo (Modo de Falla 02)	
Cuadro 7: Número de Prioridad de Riesgo (Modo de Falla 03)	
Cuadro 8: Número de Prioridad de Riesgo (Modo de Falla 04)	
Cuadro 9: Número de Prioridad de Riesgo (Modo de Falla 05)	193
Cuadro 10: Número de Prioridad de Riesgo (Modo de Falla 06)	193
Cuadro 11: Número de Prioridad de Riesgo (Modo de Falla 07)	
Cuadro 12: Número de Prioridad de Riesgo (Modo de Falla 08)	194
Cuadro 13: Número de Prioridad de Riesgo (Modo de Falla 09)	195
Cuadro 14: Número de Prioridad de Riesgo (Modo de Falla 10)	195
Cuadro 15: Número de Prioridad de Riesgo (Modo de Falla 11)	196
Cuadro 16: Número de Prioridad de Riesgo (Modo de Falla 12)	197
Cuadro 17: Número de Prioridad de Riesgo (Modo de Falla 13)	198
Cuadro 18: Número de Prioridad de Riesgo (Modo de Falla 14)	199
Cuadro 19: Número de Prioridad de Riesgo (Modo de Falla 15)	200
Cuadro 20: Número de Prioridad de Riesgo (Modo de Falla 16)	201
Cuadro 21: Número de Prioridad de Riesgo (Modo de Falla 17)	202
Cuadro 22: Número de Prioridad de Riesgo (Modo de Falla 18)	203
Cuadro 23: Número de Prioridad de Riesgo (Modo de Falla 19)	204
Cuadro 24: Número de Prioridad de Riesgo (Modo de Falla 20)	204
Cuadro 25: Medidas Preventivas (Modo de Falla 01)	
Cuadro 26: Medidas Preventivas (Modo de Falla 02)	
Cuadro 27: Medidas Preventivas (Modo de Falla 03)	
Cuadro 28: Medidas Preventivas (Modo de Falla 04)	
Cuadro 29: Medidas Preventivas (Modo de Falla 05)	
Cuadro 30: Medidas Preventivas (Modo de Falla 06)	208
Cuadro 31: Medidas Preventivas (Modo de Falla 07)	209
Cuadro 32: Medidas Preventivas (Modo de Falla 08)	209
Cuadro 33: Medidas Preventivas (Modo de Falla 09)	210
Cuadro 34: Medidas Preventivas (Modo de Falla 10)	211
Cuadro 35: Medidas Preventivas (Modo de Falla 11)	211
Cuadro 36: Medidas Preventivas (Modo de Falla 12)	212
Cuadro 37: Medidas Preventivas (Modo de Falla 13)	. 213
Cuadro 38: Medidas Preventivas (Modo de Falla 14)	
Cuadro 39: Medidas Preventivas (Modo de Falla 15)	
Cuadro 40: Medidas Preventivas (Modo de Falla 16)	
Cuadro 41: Medidas Preventivas (Modo de Falla 17)	
Cuadro 42: Medidas Preventivas (Modo de Falla 18)	
Cuadro 43: Medidas Preventivas (Modo de Falla 19)	
Cuadro 44: Medidas Preventivas (Modo de Falla 20)	221
Cuadro 45: Plan de Mantenimiento por Modo de Falla	
Cuadro 46: Tareas a Realizar por Grúa	225
Cuadro 47: Tareas a Realizar por Motor	. 223
Ouddio 47. Taleas a Mediizai poi ivioloi	. 224

ÍNDICE DE TABLAS

Tabla 1: Escala del Nivel de Sevendad	33
Tabla 2: Escala del Nivel de Ocurrencia	34
Tabla 3: Escala del Nivel de Detectabilidad	35
Tabla 4: Operacionalización de Variables	41
Tabla 5: Análisis de Criticidad¡Error! Marcador no defini	ido.
Tabla 6: Listado componentes (vista frontal) de grúa MANITOWOC M-2250 (1-17).	61
Tabla 7: Listado de componentes (vista trasera) de grúa MANITOWOC M-2250 (18	}-
22)	62
Tabla 8: Listado de elementos (vista de planta N° 01) de grúa MANITOWOC M-225	50
(1-27)	64
Tabla 9: Listado de elementos de Vista de planta N° 01 A, B y C de grúa	
	65
Tabla 10: Listado de elementos de Vista de planta Nº 02 de grúa MANITOWOC M-	
2250 (1-21)	67
Tabla 11: Listado de elementos de Vista de planta N° 02 D, E y F de grúa	
	68
Tabla 12: Listado de controles de mando de grúa MANITOWOC M-2250 (1-20)	70
Tabla 13: Listado de controles de mando de grúa MANITOWOC M-2250 (21-26)	
Tabla 14: Listado de elementos del sistema neumático de grúa MANITOWOC M-2	
	73
Tabla 15: Listado de elementos del sistema eléctrico de grúa MANITOWOC M-225	
(1-23)	76
Tabla 16: Listado de elementos del sistema eléctrico de grúa MANITOWOC M-225	
(23-27)	78
Tabla 17: Listado de elementos del sistema hidráulicos de grúa MANITOWOC M-2	
Tabla 18: Listado de motor principal de grúa MANITOWOC M-2250 (1-25)	
Tabla 19: Listado de motor principal (vista G, H, I) de grúa MANITOWOC M-2250	•
42)	84
Tabla 20: Válvula Hidráulica Solenoide Designada con las Letras Hs y Un Número	
Tabla 21: Límites de Presión de Válvulas Multifuncionales	91
Tabla 22: Válvula Neumática Solenoide Designada con las Letras AS y un Número	99

INDICE DE ANEXOS

Anexo 1: Formato Orden de Trabajo de Mantenimiento	229
Anexo 2: Formato Actividades de Mantenimiento	
Anexo 3: Formato Mecanismos de Falla	
Anexo 4: Formato Métodos de Detección	
Anexo 5: Formato Captura de Información de Paros y Eventos de Equipos	
Anexo 6: Lista de Chequeo	
Anexo 7: Simbología de Sistema Hidráulica	
Anexo 8: Simbología Sistema Neumático	
Anexo 9: Glosario de Términos	

RESUMEN

El presente trabajo de investigación pretende buscar soluciones a los problemas presentados en la empresa mediante una filosofía de mantenimiento centrado en la confiabilidad para mejorar la disponibilidad de las grúas en la empresa Savia Perú S.A. Talara. El objetivo básico de cualquier gestión de Mantenimiento, consiste en incrementar la disponibilidad de los activos, a bajos costos, permitiendo que dichos activos funcionen de forma eficiente y confiable dentro de un contexto operacional. El RCM sirve de guía para identificar las actividades de mantenimiento con sus respectivas frecuencias a los activos más importantes de un contexto operacional. Esta no es una fórmula matemática y su éxito se apoya principalmente en el análisis funcional de los activos de un determinado contexto operacional realizado por un equipo de trabajo multidisciplinario. El equipo desarrolla un sistema de gestión de mantenimiento flexible, que se adapta a las necesidades reales de mantenimiento de la organización, tomando en cuenta, la seguridad personal, el ambiente, las operaciones y la razón costo/beneficio. Esta metodología demanda una revisión sistemática de las funciones que conforman un proceso determinado, sus entradas y salidas, las formas en que pueden dejar de cumplirse tales funciones y sus causas, las consecuencias de los fallos funcionales y las tareas de mantenimiento óptimas para cada situación (predictivo, preventivo, proactivo, etc.) en función del impacto global (seguridad, ambiente, unidades de producción).

Palabras clave: Mantenimiento centrado en la confiabilidad y operatividad de las grúas Manitowoc M-2250.

ABSTRACT

This research work aims to find solutions to the problems presented in the company through a philosophy of reliability centered maintenance to improve the availability of cranes in the company Savia Peru SA Talara. The basic goal of any maintenance management is to increase the availability of assets at low costs, allowing these assets operate efficiently and reliably within an operational context. The RCM provides guidance for identifying maintenance activities with their respective frequencies to the most important assets of an operational context. This is not a mathematical formula and its success mainly relies on functional analysis of the assets of a given operational context by a multidisciplinary team. The team develops a flexible management system maintenance, which is adapted to the real needs of maintaining the organization, taking into account personal safety, environment, operations and cost / benefit ratio. This approach demands a systematic review of the functions that make up a given process, its inputs and outputs, the ways they can be breached those duties and their causes, the consequences of malfunctions and optimal maintenance tasks for each situation (predictive, preventive, proactive, etc.) depending on the overall impact (safety, environment, production units).

Keywords: reliability centered maintenance and operation of cranes Manitowoc M - 2250.