

# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Evaluar la influencia de la adición de ceniza de cascara de arroz en las propiedades físicas y mecánicas del concreto 210 kg/cm2, 2023

## TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

**Ingeniero Civil** 

#### **AUTORES:**

Azang Luna, Dylan Steven (orcid.org/0000-0002-1540-1857)
Gonzalez Arevalo, Brand Elkan (orcid.org/0000-0002-0186-8042)

## ASESOR:

Mg. Ascoy Flores, Kevin Arturo (orcid.org/0000-0003-2452-4805)

## LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

## LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento.

TARAPOTO - PERU

2023

## **DEDICATORIA**

Dedico este logro a mi familia, profesores y amigos, quienes han sido mis pilares de apoyo durante este emocionante viaje. Gracias por creer en mí y por ser parte fundamental en esta trayectoria académica. Este logro es también suyo

**Azang Luna Dylan Steven** 

Con esfuerzo, pasión y dedicación, este trabajo representa el camino recorrido hacia el conocimiento. A mis seres queridos, mentores y a todos aquellos que creyeron en mí, ¡gracias por ser parte de este logro!

**Brand Elkan Gonzalez Arévalo** 

## **AGRADECIMIENTO**

Quiero extender mi más profundo agradecimiento a aquellos que hicieron posible la culminación de esta tesis. A mi director/a, cuya guía y sabiduría fueron fundamentales en este proceso; a mi familia y amigos por su amor incondicional y estímulo constante; a mis compañeros y profesores por sus valiosas sugerencias apoyo académico. Cada uno de ustedes ha dejado una huella imborrable en este trabajo, y su contribución ha sido esencial en este viaje hacia conocimiento.

## **Azang Luna Dylan Steven**

Quiero expresar mi sincero agradecimiento a todas las personas contribuyeron de que manera significativa en la realización de esta A mi supervisor/a por orientación experta y apoyo constante, a mis queridos seres por inquebrantable respaldo emocional, y a cada individuo que brindó su tiempo, conocimiento У experiencia para enriquecer este trabajo. Sus aportes han sido invaluables y han sido la piedra angular de este logro académico

#### Brand Elkan Gonzalez Arévalo



## FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

#### Declaratoria de Autenticidad del Asesor

Yo, ASCOY FLORES KEVIN ARTURO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TARAPOTO, asesor de Tesis titulada: "Evaluar la influencia de la adición de ceniza de cascara de arroz en las propiedades físicas y mecánicas del concreto 210 kg/cm2, 2023", cuyos autores son GONZALEZ AREVALO BRAND ELKAN, AZANG LUNA DYLAN STEVEN, constato que la investigación tiene un índice de similitud de 16.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TARAPOTO, 21 de Diciembre del 2023

| Apellidos y Nombres del Asesor: | Firma                    |
|---------------------------------|--------------------------|
| ASCOY FLORES KEVIN ARTURO       | Firmado electrónicamente |
| DNI: 46781063                   | por: KASCOY el 21-12-    |
| ORCID: 0000-0003-2452-4805      | 2023 20:04:15            |

Código documento Trilce: TRI - 0705042



## FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

## Declaratoria de Originalidad de los Autores

Nosotros, GONZALEZ AREVALO BRAND ELKAN, AZANG LUNA DYLAN STEVEN estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TARAPOTO, declaramos bajo juramento que todos los datos e información que acompa ñan la Tesis titulada: "Evaluar la influencia de la adición de ceniza de cascara de arroz en las propiedades físicas y mecánicas del concreto 210 kg/cm2, 2023", es de nuestra autorí a, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

| Nombres y Apellidos          | Firma                                       |  |
|------------------------------|---------------------------------------------|--|
| BRAND ELKAN GONZALEZ AREVALO | Firmado electrónicamente                    |  |
| DNI: 71730512                | por: BEGONZALEZG el 21-<br>12-2023 15:43:20 |  |
| ORCID: 0000-0002-0186-8042   |                                             |  |
| DYLAN STEVEN AZANG LUNA      | Firmado electrónicamente                    |  |
| DNI: 71336383                | por: DAZANG el 21-12-2023                   |  |
| ORCID: 0000-0002-1540-1857   | 15:59:51                                    |  |

Código documento Trilce: TRI - 0705044

## **ÍNDICE DE CONTENIDOS**

| CA   | RÁCTULA                                            |
|------|----------------------------------------------------|
| DE   | DICATORIAi                                         |
| AG   | RADECIMIENTOii                                     |
| DE   | CLARATORIA DE AUTENTICIDAD DEL ASESORiv            |
| DE   | CLARATORIA DE ORIGINALIDAD DE LOS AUTORES          |
| ÍND  | DICE DE CONTENIDOSv                                |
| ÍND  | DICE DE TABLASvi                                   |
| ÍND  | DICE DE FIGURASvii                                 |
| RE   | SUMENi>                                            |
| ΑВ   | STRACT                                             |
| I.   | INTRODUCCIÓN 1                                     |
| II.  | MARCO TEÓRICO                                      |
| III. | METODOLOGÍA                                        |
| 3.1  | Tipo y diseño de investigación10                   |
| 3.2  | . Variables y operacionalización10                 |
| 3.3  | . Población, muestra, muestreo, unidad de análisis |
| 3.4  | . Técnicas e instrumentos de recolección de datos  |
| 3.5  | . Procedimiento                                    |
| 3.6  | . Método de análisis de datos13                    |
| 3.7  | . Aspectos éticos 14                               |
| IV.  | RESULTADOS                                         |
| V.   | DISCUSIÓN                                          |
| VI.  | CONCLUSIONES                                       |
| VII. | RECOMENDACIONES 23                                 |
| RE   | FERENCIAS24                                        |
| ΑN   | <b>EXOS</b>                                        |

## **ÍNDICE DE TABLAS**

| Tabla N° 01 | 11 |
|-------------|----|
| Tabla N° 02 | 11 |
| Tabla N° 03 | 12 |
| Tabla N° 04 | 15 |
| Tabla N° 05 | 16 |
| Tabla N° 06 | 17 |
| Tabla N° 07 | 18 |
| Tabla N° 08 | 18 |
| Tabla N° 09 | 19 |
| Tabla N° 10 | 20 |

## **ÍNDICE DE FIGURAS**

| FIGURA 1  | 13  |
|-----------|-----|
| FIGURA A  | 150 |
| FIGURA B  | 150 |
| FIGURA C  | 151 |
| FIGURA D  | 151 |
| FIGURA E  | 152 |
| FIGURA F  | 152 |
| FIGURA G  | 153 |
| FIEGURA H | 153 |
| FIGURA I  | 154 |

## RESUMEN

La investigación se centró en evaluar los efectos de aumentar CCA en las propiedades físicas y mecánicas de un concreto de resistencia nominal de 210 kg/cm², llevada a cabo en el "2023". La investigación fue en laboratorio, con un enfoque cuasi experimental y una metodología de naturaleza cuantitativa. El método empleado combinó enfoques deductivos e inductivos en un entorno experimental.

La población total para el estudio consistió en 48 ensayos, donde se empleó la técnica de observación de laboratorio utilizando una ficha de observación como instrumento. Los resultados revelaron el porcentaje óptimo de sustitución de CCA fue del 11%. Este porcentaje se asoció con una absorción del concreto del 1.88%. Se destaca que un concreto con menor absorción generalmente ofrece ventajas significativas en varios aspectos.

En cuanto al peso unitario del concreto, se identificó que el mejor porcentaje de sustitución fue del 10%, logrando un peso unitario de 2,860 kg/m³. Además, se encontró que, para un concreto con 28 días de edad, el mejor porcentaje de sustitución también fue del 10%, demostrando una resistencia a la compresión de 227.00 kg/cm².

Estos resultados sugieren que el uso de CCA en porcentajes específicos puede mejorar ciertas características del concreto: resistencia a la absorción y la resistencia a la compresión. Sin embargo, se resalta la importancia de realizar más investigaciones para comprender mejor las implicaciones y aplicaciones prácticas de estos hallazgos en la industria de la construcción.

Palabras clave: CCA, propiedades físicas, propiedades mecánicas, cemento

## **ABSTRACT**

The research focused on evaluating the effects of increasing CCA on the physical and mechanical properties of a concrete with a nominal resistance of 210 kg/cm², carried out in "2023". The research was in the laboratory, with a quasi-experimental approach and a quantitative methodology. The method used combined deductive and inductive approaches in an experimental setting. The total population for the study consisted of 48 trials, where the laboratory observation technique was used using an observation sheet as an instrument. The results revealed the optimal CCA substitution percentage was 11%. This percentage was associated with a concrete absorption of 1.88%. It is highlighted that a concrete with lower absorption generally offers significant advantages in several aspects. Regarding the unit weight of the concrete, it was identified that the best replacement percentage was 10%, achieving a unit weight of 2,860 kg/m³. In addition, it was found that, for a concrete that was 28 days old, the best replacement percentage was also 10%, demonstrating a compressive strength of 227.00 kg/cm².

These results suggest that the use of CCA in specific percentages can improve certain characteristics of concrete: absorption resistance and compressive strength. However, the importance of conducting more research is highlighted to better understand the implications and practical applications of these findings in the construction industry.

keywords: CCA, physical properties, mechanical properties, cement

## I. INTRODUCCIÓN

Las fallas estructurales se refieren a problemas o debilidades en la integridad de una estructura, ya sea un edificio, puente, presa, o cualquier otro tipo de construcción. Estas fallas pueden tener diversas causas y manifestarse de diferentes maneras.

Según American Society of Civil Engineers (ASCE) define las fallas estructurales como "la incapacidad de una estructura para cumplir con su función prevista o mantener la integridad y la seguridad bajo las condiciones de servicio previstas debido a una deficiencia en su diseño, construcción o comportamiento".

Las fallas estructurales pueden deberse a una variedad de factores y causas, y a menudo son el resultado de una combinación de varios de estos factores. Un diseño estructural inadecuado o errores en los cálculos de diseño pueden llevar a una estructura que no puede soportar las cargas previstas; El uso de materiales de construcción de calidad baja o la falta de cumplimiento con los estándares de calidad puede debilitar la estructura con el tiempo; La falta de mantenimiento regular y adecuado puede permitir que los problemas menores se conviertan en fallas estructurales importantes con el tiempo.

Para solucionar esto se han plateado diferentes insumos que ayuden reducir los efectos negativos que se están dando en el concreto actualmente, entre estos esta la CCA.

## 1.1. Problema general

¿De qué manera influye la sustitución del agregado fino por fibras de caucho en las propiedades físicas y mecánicas del concreto 210 kg/cm2, 2023?

## 1.2. Problemas específicos

¿De qué manera influye la adición de CCA en la absorción del concreto  $210 \frac{kg}{cm^2}$  2023?

¿De qué manera influye la adición de CCA en el peso unitario del

concreto 210  $\frac{kg}{cm^2}$  2023?

¿De qué manera influye la adición de CCA en la resistencia a la compresión del concreto  $210\frac{kg}{cm^2}$  2023?

## 1.3. Objetivo general

Evaluar de qué manera afecta la adición de Ceniza de cascara de arroz en las propiedades físicas y mecánicas del concreto  $210 \frac{kg}{cm^2}$  2023.

## 1.4. Objetivos específicos

Evaluar de qué manera influye la adición de CCA en la absorción del concreto  $210 \frac{kg}{cm^2}$  2023.

Evaluar de qué manera influye la adición de CCA en el peso unitario del concreto  $210 \frac{kg}{cm^2}$  2023.

Evaluar de qué manera influye la adición de CCA en la resistencia a la compresión del concreto  $210 \frac{kg}{cm^2}$  2023.

## 1.5. Hipótesis general

La adición de CCA influye en las propiedades físicas y mecánicas del concreto  $210 \frac{kg}{cm^2}$  2023.

## 1.6. Hipótesis Específicas:

La adición de CCA mejora la absorción del concreto  $210\frac{kg}{cm^2}$  2023.

La adición de CCA mejora el peso unitario del concreto  $210 \frac{kg}{cm^2}$  2023.

La adición de CCA mejora la resistencia a la compresión del concreto  $210 \frac{kg}{cm^2}$  2023.

#### 1.7. Justificación

Justifica Teórica: La base teórica de este proyecto es basada en la necesidad de analizar las características mecánicas y físicas del cemento con el aumento de CCA mediante ensayos de caracterización y durabilidad del material. El objetivo fue analizar la relación entre la dosis de CCA y su importancia en términos de resistencia mecánica. de la superficie.

Justificación legal: Para realizar la mezcla de concreto se utilizará el

siguiente método ACI, también se utilizará la NTP 339.046 y NTP 339.187 para determinar el peso unitario y el % de absorción, y finalmente se utilizará la NTP 339.034 para decretar la resistencia a la compresión del concreto.

Justificación tecnológica: La tecnología moderna permite realizar análisis precisos de las mezclas de concreto a nivel molecular y microestructural. Esta tesis se alinea con los avances tecnológicos al evaluar cómo la CCA afecta en la estructura y las propiedades del concreto.

## II. MARCO TEÓRICO

El autor Montero (2019) desarrollo una Evaluación del desempeño del concreto utilizando CCA como sustituto del cemento (calculado en porcentaje) para edificaciones. Se expone los resultados del autor; Propiedades físicas; Peso unitario: Con 10% de adición se obtuvo un peso unitario de 2448.7  $\frac{kg}{cm^3}$  con 15% se obtuvo 2431.39  $\frac{kg}{cm^3}$  y con 20% se tubo 2413.00  $\frac{kg}{cm^3}$ . Cualidades mecánicas; f´c = 210  $\frac{kg}{cm^2}$ : Al 0%, en 7(d) se obtuvo una dureza de 150.99  $\frac{kg}{cm^2}$ , 14(d) de 183.33  $\frac{kg}{cm^2}$  y en 28(d) de 213.01  $\frac{kg}{cm^2}$ ; Al 10%, en 7(d) se obtuvo una dureza de 125.99  $\frac{kg}{cm^2}$ , 14(d) de 163.78  $\frac{kg}{cm^2}$  y en 28(d) de 215.21  $\frac{kg}{cm^2}$ , Al 15%, en 7(d) se obtuvo una dureza de 133.53  $\frac{kg}{cm^2}$ , 14(d) de 150.94  $\frac{kg}{cm^2}$  y en 28(d) de 190.98  $\frac{kg}{cm^2}$ ; Al 20%, en 7(d) se obtuvo una dureza de 104.11  $\frac{kg}{cm^2}$ , 14(d) de 124.94  $\frac{kg}{cm^2}$  y en 28(d) de 142.57  $\frac{kg}{cm^2}$ .

Aliaga y Badajos (2018) hicieron un análisis de aumento de CCA para el diseño de concreto f'c  $210\frac{kg}{cm^2}$ . Se expone los resultados de los autores: Cualidades mecánicas; f'c =  $210\frac{kg}{cm^2}$ : Al 0%, en 7(d) se obtuvo una dureza de  $185.89\frac{kg}{cm^2}$ , 14(d) de  $258.21\frac{kg}{cm^2}$ y en 28(d) de  $284.73\frac{kg}{cm^2}$ ; Al 10%, en 7(d) se obtuvo una dureza de  $180.70\frac{kg}{cm^2}$ , 14(d) de  $253.73\frac{kg}{cm^2}$ y en 28(d) de  $290.33\frac{kg}{cm^2}$ ; Al 15%, en 7(d) se obtuvo una dureza de  $138.88\frac{kg}{cm^2}$ , 14(d) de  $209.66\frac{kg}{cm^2}$ y en 28(d) de  $254.59\frac{kg}{cm^2}$ ; Al 20%, en 7(d) se obtuvo una dureza de  $123.75\frac{kg}{cm^2}$ , 14(d) de  $186.69\frac{kg}{cm^2}$ y en 28(d) de  $209.68\frac{kg}{cm^2}$ .

De acuerdo con Boanerges (2011) Se desarrollaron mezclas de concreto CCA para uso en proyectos de viviendas de bajo costo. Las conclusiones del autor son las siguientes: Cualidades mecánicas; f´c =  $210 \frac{kg}{cm^2}$ : Al 0%, en 3(d) se obtuvo una dureza de 130,00  $\frac{kg}{cm^2}$ , 7(d) de 178,72  $\frac{kg}{cm^2}$  y en 28(d) de 343,22

 $\frac{kg}{cm^2}$ ; Al 5%, en 3(d) se obtuvo una dureza de 108,31  $\frac{kg}{cm^2}$ , 7(d) de 128,06  $\frac{kg}{cm^2}$  y en 28(d) de 262,81  $\frac{kg}{cm^2}$ ; Al 15%, en 3(d) se obtuvo una dureza de 82,43  $\frac{kg}{cm^2}$ , 7(d) de 107,60  $\frac{kg}{cm^2}$  y en 28(d) de 203,89  $\frac{kg}{cm^2}$ ; Al 25%, en 3(d) se obtuvo una dureza de 48,25  $\frac{kg}{cm^2}$ , 7(d) de 68,12  $\frac{kg}{cm^2}$  y en 28(d) de 146,04  $\frac{kg}{cm^2}$ .

De acuerdo con Rodríguez y Sánchez (2019) hicieron un análisis de la utilización de CCA como aumento al cemento en la composición de mezclas de concreto hidráulico. Se expone la resolución de los autores, Cualidades mecánicas; f´c =  $210 \frac{kg}{cm^2}$ : Al 0%, en 7(d) se obtuvo una dureza de  $131 \frac{kg}{cm^2}$ , 14(d) de  $175 \frac{kg}{cm^2}$ , y en 28 (d) de  $216 \frac{kg}{cm^2}$ , Al 3%, en 7(d) se obtuvo una dureza de  $89 \frac{kg}{cm^2}$ , 14(d) de  $130 \frac{kg}{cm^2}$ , y en 28 (d) de  $206 \frac{kg}{cm^2}$ ; Al 5%, en 7(d) se obtuvo una dureza de  $75 \frac{kg}{cm^2}$ , 14(d) de  $136 \frac{kg}{cm^2}$ , y en 28 (d) de  $208 \frac{kg}{cm^2}$ ; Al 10%, en 7(d) se obtuvo una dureza de  $140 \frac{kg}{cm^2}$ , 14(d) de  $178 \frac{kg}{cm^2}$ , y en 28 (d) de  $230 \frac{kg}{cm^2}$ ; Al 15%, a los 7 (d) se obtuvo una resistencia de  $54 \frac{kg}{cm^2}$ , a los 14(d) de  $120 \frac{kg}{cm^2}$ , a los 28(d) de  $138 \frac{kg}{cm^2}$ .

De acuerdo con Arévalo y López (2019) hicieron una investigación acerca de la adición de CCA para mejorar las cualidades de resistencia del concreto. Se expone los resultados de los autores, cualidades mecánicas, f´c = 210  $\frac{kg}{cm^2}$ : Al 0%, en 7(d) se obtuvo una dureza de 158.86  $\frac{kg}{cm^2}$ , 14(d) de 190.23  $\frac{kg}{cm^2}$ , y en 28 (d) de 210.43  $\frac{kg}{cm^2}$ ; Al 2%, en 7(d) se obtuvo una dureza de 159.44  $\frac{kg}{cm^2}$ , 14(d) de 191.49  $\frac{kg}{cm^2}$ , y en 28(d) de 212.48  $\frac{kg}{cm^2}$ ; Al 4%, en 7(d) se obtuvo una resistencia de 149.74  $\frac{kg}{cm^2}$ , 14(d) de 182.14  $\frac{kg}{cm^2}$ y en 28 (d) de 201.33  $\frac{kg}{cm^2}$ ; Al 6%, en 7(d) se obtuvo una dureza de 139.83  $\frac{kg}{cm^2}$ , 14(d) de 172.83  $\frac{kg}{cm^2}$ , y en 28(d) de 191.00  $\frac{kg}{cm^2}$ .

De acuerdo con Camargo (2017) hizo una evaluación acerca de la CCA

como aporte a la resistencia del concreto hidráulico. se expone los resultados de los autores, cualidades mecánicas, f´c =  $210 \frac{kg}{cm^2}$ : Al 0%, en 7(d) se obtuvo una dureza de 223.01  $\frac{kg}{cm^2}$ , 14(d) de 255.23  $\frac{kg}{cm^2}$  y en 28(d) de 281.95  $\frac{kg}{cm^2}$ ; Al 5%, 7(d) se obtuvo una dureza de 156.12  $\frac{kg}{cm^2}$ , 14(d) de 186.20  $\frac{kg}{cm^2}$  y en 28(d) de 225.26  $\frac{kg}{cm^2}$ ; Al 15%, en 7(d) se obtuvo una dureza de 87.29  $\frac{kg}{cm^2}$ , 14(d) de 117.27  $\frac{kg}{cm^2}$  y en 28(d) de 141.64  $\frac{kg}{cm^2}$ ; Al 30%, en 7(d) se obtuvo una dureza de 32.73  $\frac{kg}{cm^2}$ , a los 14(d) de 71.58  $\frac{kg}{cm^2}$  y en 28(d) de 101.05  $\frac{kg}{cm^2}$ .

## **BASES TEORICAS**

Para la variable independiente Adición de Ceniza de cáscara de arroz (CCA), se tiene estas definiciones:

De acuerdo con De la Pared y Boanerges (2011) La CCA Se trata de un residuo de origen agrícola que se destaca por sus propiedades químicas, las cuales, al combinarse con el cemento en la creación de concreto, potencian su resistencia y, en consecuencia, mejoran sus demás cualidades.

Según Camargo (2017) La CCA tiene un muy elevado contenido de sílice, que también está presente en el cemento, por lo que en este estudio se analizaron las propiedades físicas, químicas y mecánicas de mezclas de concreto hidráulico modificado con CCA.

Lo que nos dicen Aliga y Quispe (2018) CCA constituye el principal subproducto resultante de la producción de arroz. Correspondiente a su lenta descomposición natural, este residuo tiene la capacidad de acumularse en el entorno, lo que puede dar lugar a preocupantes cuestiones medioambientales

Por último, Montero (2019) nos menciona que es la primera puzolana producida a partir de la quema de residuos agrícolas fue descrita en la literatura como CCA.

Para la dimensión diseño de mezcla, se tiene las siguientes definiciones:

De acuerdo con Romero y Hernández (2014) Método A.C.I Este es un método de preparación de mezclas de concreto; basada en calcular

materiales (cemento, agua, grava y arena) en términos de masa y volumen y sirve tanto para mezclas frescas como duras.

Según Lermo y Ochoa (2016) El método del factor ACI es una técnica que permite a los ingenieros estructurales diseñar, de manera simplificada, vigas y losas horizontales que forman parte de un sistema estructural continuo con soportes simples y/o interacciones con muros o columnas que soportan cargas gravitacionales.

Lo que nos dice Rojas (2018) el ACI es un enfoque para diseñar mezclas de concreto que implica el uso de nomogramas y representaciones gráficas, seguido por la aplicación de ensayos de resistencia en el concreto.

Por último, Sánchez y Chong (2019) nos mencionan que el diseño de mezcla es el procedimiento mediante el cual se planifica el diseño de una mezcla específica con el objetivo de lograr una resistencia particular.

Para la dimensión **porcentaje de adicción**, se tiene las siguientes definiciones:

El American Concrete Institute (ACI) nos menciona que se define como la cantidad relativa de un material suplementario que se mezcla con el concreto en correspondencia al peso del cemento Portland utilizado en la mezcla

Portland Cement Association (PCA) lo describe como la proporción de un material adicional o aditivo, expresada en relación con la cantidad de cemento Portland presente en la mezcla de concreto

Reinforced Concrete: A Fundamental Approach lo considera como la cantidad de un material suplementario expresada como un porcentaje del peso total de los materiales cementantes en la mezcla de concreto.

Design and Control of Concrete Mixtures lo describe como la relación entre el peso del material adicional y el peso del cemento en la mezcla de concreto.

Para la variable dependiente las **Propiedades mecánicas y físicas**, se tiene las siguientes definiciones:

Lo que nos cuentan Arrieta y Medina (2019) las propiedades físicas son Atributos visibles y medibles del concreto, mientras que las mecánicas miden el comportamiento ante cargas y esfuerzos

De acuerdo con Sánchez y Chong (2019) las propiedades físicas del concreto tienen sus características y atributos que describen la estructura, el aspecto y la respuesta del concreto a las influencias físicas.

Por otro lado, Guevara (2020) dice que las propiedades mecánicas son las características que describen cómo el concreto responde a las fuerzas aplicadas.

Para terminar, Aliga y Quispe (2018) comentan que las propiedades mecánicas que son atributos relacionados con la capacidad del concreto para soportar esfuerzos y deformaciones.

Para la dimensión **peso unitario**, se tiene las siguientes definiciones:

Según la NTP 400.017/ASTM C-29 Se conoce como el cociente entre la masa del agregado y el volumen que ocupa, expresado como masa por metro cúbico de volumen.

De acuerdo con Aybar de la Torre (2017), establece que el peso unitario del concreto es el peso por unidad de volumen de una muestra de concreto representativa.

Por otro lado, Guevara (2020) nos comenta que se trata de la cantidad de peso de una unidad de volumen de concreto, generalmente expresada en libras por pie cúbico

Finalmente, Criollo y Gallo (2021) dicen que es la medida de cuánto pesa un volumen específico de concreto, lo que indica su densidad.

Para la dimensión **absorción**, se tiene las siguientes definiciones:

Según la NTP 400.022/ASTM C-128 La absorción es el % de agua que el agregado debe absorber para alcanzar la saciedad en una superficie seca.

De acuerdo con Sánchez y Chong (2019) Es la capacidad de los agregados de ocupar con agua los espacios dentro de las partículas.

Criollo y Gallo (2021) comentan que se trata de una unidad de agua que un espécimen de concreto puede absorber por unidad de volumen o superficie Por último, Guevara (2020) menciona que es la facultad del concreto para retener agua dentro de su estructura

Para la dimensión resistencia a la compresión, se tiene las siguientes definiciones:

Marta C. Mora (2022) La resistencia a la compresión Es la habilidad que tiene un objeto o cosa de soportar fuerzas externas sin fracturarse o romperse.

De acuerdo con Sánchez y Chong (2019) es la capacidad del concreto para resistir fuerzas de compresión o aplastamiento.

Para Guevara (2020) es la propiedad del concreto que indica cuánta carga o fuerza puede soportar antes de que falle debido a la compresión

Par finalizar para Criollo y Gallo (2021) se trata de la medida de la capacidad del concreto para soportar fuerzas que tienden a reducir su volumen, lo que ocurre cuando se somete a cargas de compresión.

## III. METODOLOGÍA

## 3.1 Tipo y diseño de investigación

## 3.1.1. Tipo de investigación

Murillo (2008). La investigación aplicada también se puede denominar como "investigación práctica y experimental" y se caracteriza por aquellos estudios encaminados a aplicar y utilizar los conocimientos adquiridos, así como los que pueden obtenerse mediante la forma de aplicar la investigación a la práctica y sistematizarla. El enfoque cuantitativo de Tamayo (2017) une la teoría existente con un grupo de hipótesis importantes para obtener una muestra aleatoria o discriminativa que sea representativa de la población o fenómeno que se va a muestrear.

## 3.1.2. Diseño de investigación

MC Sais Manzanares (2018). El diseño cuasi experimental es cuando se aplican métodos y enfoques de investigación que no siguen un diseño experimental clásico o estrictamente controlado, pero aun así incorporan elementos de experimentación y observación.

## 3.2. Variables y operacionalización

Variable independiente: Adición de ceniza de cascara de arroz (CCA) el CCA es un residuo agrícola la cual su inicial característica son sus propiedades químicas, que al combinarse con cemento para moldear el cemento elevando su resistencia y con ello aumenta todas sus otras propiedades. (De la Parlade-Conté, Daniel Bonnegues (2011). Se aplicará el método ACI, reemplazando las proporciones en porcentajes de agregado fino con CCA.

## Variable dependiente: Propiedades físicas y mecánicas

Marta C. Mora (2022) La resistencia mecánica es la capacidad de un objeto para resistir fuerzas externas sin colapsar. La resistencia mecánica

de un objeto depende de su material y forma. Un parámetro comúnmente utilizado para evaluar la resistencia mecánica de la carrocería de un automóvil es el factor de seguridad. Se utilizará NTP 339.034 Método de ensayo estándar para hallar la resistencia a la compresión del concreto en probetas cilíndricas.

## 3.3. Población, muestra, muestreo, unidad de análisis

## 3.3.1. Población y muestra

Son 48 muestras de las cuales se usarán 12 para el ensayo de peso unitario y luego volverán a ser usadas en el ensayo que se utilizó para resistencia a la compresión.

**Tabla N° 01**Número de ensayos de peso unitario

| %  | # de ensayos |
|----|--------------|
| 0  | 3            |
| 10 | 3            |
| 11 | 3            |
| 12 | 3            |

Fuente: elaboración de los autores

Compuesta por 4 ensayos de peso unitario donde se utilizará un molde para peso unitario de diámetro = 8", alto = 11.5", peso= 4,571 g. y volumen= 0.0095m3 de acuerdo con la NTP 339.046 Peso Unitario y Rendimiento.

**Tabla N° 02** *Número de ensayos de absorción* 

| %  | # de ensayos |  |  |
|----|--------------|--|--|
| 0  | 3            |  |  |
| 10 | 3            |  |  |
| 11 | 3            |  |  |
| 12 | 3            |  |  |

Fuente: elaboración de los autores

La población para la dimensión de propiedades físicas, absorción está compuesta por 12 cilindros de 6 x 12 pulgadas de absorción donde se utilizará la NTP 339.187 Densidad Absorción.

**Tabla N° 03** *Número de ensayos de resistencia a la compresión* 

| %  | 7 días | 14 días | 28 días | Total |
|----|--------|---------|---------|-------|
| 0  | 3      | 3       | 3       | 9     |
| 10 | 3      | 3       | 3       | 9     |
| 11 | 3      | 3       | 3       | 9     |
| 12 | 3      | 3       | 3       | 9     |

Fuente: elaboración de los autores

La población para la dimensión de propiedades mecánicas, resistencia a la compresión está compuesta por 36 cilindros de 6 x 12 pulgadas de absorción donde se utilizará la NTP 339.034; **Muestra**: Dicho estudio, no se pretende desarrollar la técnica del muestreo para obtención de muestra, ya que se trabaja con toda la población; **Muestreo**: no es requerido.

#### 3.4. Técnicas e instrumentos de recolección de datos

### 3.4.1. Técnicas:

Observación de laboratorio: Según Aldana, González y Rendon (2021) se refiere a la práctica de realizar observaciones detalladas y sistemáticas en un entorno de laboratorio con el propósito de recopilar datos, registrar eventos o fenómenos, y obtener información relevante para la investigación científica o experimentación.

## 3.4.2. Instrumentos

Ficha de observación: De acuerdo con Minaya (2019) es el oceso de compilar información mediante la observación de fenómenos, eventos o experimentos que ocurren en un entorno de laboratorio

controlado.

#### 3.5. Procedimiento

## 3.5.1. Trabajo de gabinete

Compra de cemento, material grueso y fino en el grupo mejía, después compra de la CCA en la Industria Molinera Amazonas SAC y por último el laboratorio Sakiaro EIRL, Jr. Tarapoto n 413, en el distrito de morales.

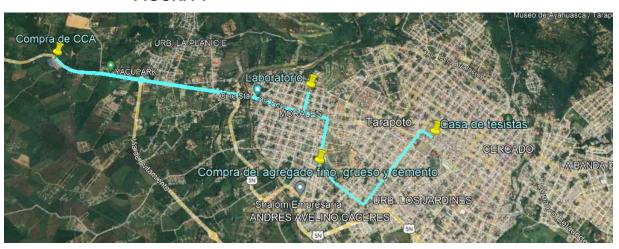



FIGURA 1

Fuente: Google maps

## 3.5.2. Trabajo de laboratorio

En esta etapa se realizaron los siguientes ensayos: El Diseño de mezcla se realizó por el Método ACI, regulado según ACI 211.1/ASTM C33, luego se desarrolló el ensayo Peso unitario según la NTP 339.046. posteriormente se ejecutó el ensayo de Absorción según la NTP 339.187, finalmente se realizó la prueba de F'c según la NTP 339.034/ASTM C39.

## 3.6. Método de análisis de datos

Al desarrollarse las comprobaciones de peso unitario, absorción y resistencia a la compresión se ira recolectando la información en la ficha de observación que coincidirá con el reporte final del laboratorio, que será validado por el ingeniero y laboratorista.

## 3.7. Aspectos éticos

El trabajo que se realizo es un ejercicio responsable y ético que respeta los derechos fundamentales a nivel internacional. En ningún momento se contraviene la Constitución Política del Perú, y se mantiene un firme compromiso de resguardar la fauna y la flora, así como con la salvaguardia de los derechos de autor. Además, se cumple rigurosamente con las normativas y directrices de la Universidad Cesar Vallejo. Esta investigación se ha gestado en concordancia con los principios legales y éticos más elevados, asegurando que se desarrolle de manera justa y dentro de los marcos normativos establecidos.

## IV. RESULTADOS

Los resultados que se cumplen a raíz del objetivo general, el cual es Evaluar la manera de cómo influye la adición de CCA en las propiedades físicas y mecánicas del concreto 210  $\frac{kg}{cm^2}$ .

**Tabla N° 04**Recopilación de los resultados generales y promedios

| Muestras (28                      |        | co     | A      |        |
|-----------------------------------|--------|--------|--------|--------|
| días) —                           | 0%     | 10%    | 11%    | 12%    |
| Absorción (%)                     | 1.39   | 2.11   | 1.88   | 2.14   |
| PESO UNITARIO $(\frac{kg}{cm^3})$ | 2 345  | 2 281  | 2 277  | 2 313  |
| $F'C(\frac{kg}{cm^2})$            | 220.70 | 227.00 | 225.70 | 224.80 |

Fuente: elaboración de los autores

De acuerdo al objetivo general y los resultados del laboratorio, se concluye que en el concreto patrón se obtuvo una absorción de 1.39%, un peso unitario de 2 345  $\frac{kg}{cm^3}$  y un F'C de 220.70  $\frac{kg}{cm^2}$ ; para el concreto + 10% CCA se obtuvo una absorción de 2.11%, un peso unitario de 2 281  $\frac{kg}{cm^3}$  y un F'C de 227.00  $\frac{kg}{cm^2}$ ; concreto + 11% CCA se obtuvo una absorción de 1.88%, un peso unitario de 2 277  $\frac{kg}{cm^3}$  y un F'C de 225.70  $\frac{kg}{cm^2}$ ; por ultimo para el concreto + 12% CCA se obtuvo una absorción de 2.14%, un peso unitario de 2 313  $\frac{kg}{cm^3}$  y un F'C de 224.80  $\frac{kg}{cm^2}$ .

Los resultados que se cumplen a raíz del objetivo específico 01, el cual es Evaluar la manera de cómo influye la adición de CCA en la absorción del concreto 210  $\frac{kg}{cm^2}$ , son los siguientes:

**Tabla N° 05**Resultados de absorción para el concreto 15 x 30 cm

|          | 28 días | 28 días | 28 días | 28 días |
|----------|---------|---------|---------|---------|
| Muestras | (0%)    | (10%)   | (11%)   | (12%)   |
| 1        | 1.40    | 2.09    | 1.88    | 2.14    |
| 2        | 1.41    | 2.12    | 1.87    | 2.17    |
| 3        | 1.36    | 2.13    | 1.89    | 2.10    |
| Promedio | 1.39    | 2.11    | 1.88    | 2.14    |

Fuente: elaboración de los autores

De la tabla N° 5, la cual muestra los resultados obtenidos aplicando la NTP 339.187, se observa el porcentaje de absorción de las diferentes muestras; la 1° muestra en 0% es de 1.40%, en 10% es 2.09%, en 11% sale 1.88% y en 12% nos da 2.14%; la 2° en 0% es de 1.41%, en 10% es 2.12%, en 11% sale 1.87% y en 12% nos da 2.17%; y la 3° en 0% es de 1.36%, en 10% es 2.13%, en 11% sale 1.89% y en 12% nos da 2.10%; con un promedio de 1.39% cuando está en 0%, 2.11% cuando es 10%, 1.88% en 11% y 2.14% en 12%.

Los resultados que se cumplen a raíz del objetivo específico 02, el cual es Evaluar la manera de cómo influye la adición de CCA en el peso unitario del concreto  $210 \frac{kg}{cm^2}$ , son los siguientes:

**Tabla N° 06**Resultados de peso unitario para el concreto 15 x 30 cm

|              | 28 días                  | 28 días                  | 28 días                                | 28 días                                |
|--------------|--------------------------|--------------------------|----------------------------------------|----------------------------------------|
| Muestras     | 0%                       | 10%                      | 11%                                    | 12%                                    |
| Masa de      |                          |                          |                                        |                                        |
| molde +      | 26954149                 | 26 242 kg                | 26 202 kg                              | 26 E4E ka                              |
| concreto     | 26851kg.                 | 26,243 kg                | 26,202 kg                              | 26,545 kg                              |
| fresco       |                          |                          |                                        |                                        |
| Masa de      | 4571 ka                  | 4,571 kg                 | 4 57 kg                                | 4 57 kg                                |
| molde        | 4571 kg                  |                          | 4,57 kg                                | 4,57 kg                                |
| Masa de      | 22,280 kg                | 21 672 kg                | 21 62 kg                               | 21 074 kg                              |
| concreto     | 22,280 kg                | 21,672 kg                | 21,63 kg                               | 21,974 kg                              |
| Volumen de   | 0.00950 kg               | 0.00950 kg               | 0.00950 kg                             | 0 00050 kg                             |
| molde        | 0.00950 kg               | 0.00950 kg               | 0.00950 kg                             | 0.00950 kg                             |
| Peso         |                          |                          |                                        |                                        |
| unitario del | $2,345(\frac{kg}{cm^3})$ | $2,281(\frac{kg}{cm^3})$ | $2,277 \left( \frac{kg}{cm^3} \right)$ | $2,313 \left( \frac{kg}{cm^3} \right)$ |
| concreto     | $(\frac{2}{cm^3})$       | $(\frac{2}{cm^3})$       | $(\frac{2}{cm^3})$                     | $(\frac{1}{cm^3})$                     |
| fresco       |                          |                          |                                        |                                        |

De la tabla N°6 donde observamos los resultados obtenidos aplicando la NTP 339.046 Peso Unitario y Rendimiento, observamos el peso unitario del concreto fresco para la muestra patrón fue de 2345 kg/m³, en 10% es 2281 kg/m³, en 11% sale 2277 kg/m³ y en 12% nos da 2313 kg/m³. Donde el porcentaje optimo es el de 12%, siguiendo por el de 10% y finalmente el de 11%.

Los resultados que se cumplen a raíz del objetivo específico 03, el cual es evaluar la manera de cómo influye la adición de CCA en la RC del concreto 210 kg/cm2, son los siguientes:

**Tabla N° 07**Resultados de f'c para el concreto patrón (0%) 15 x 30 cm

|          | 7 días                         | 14 días             | 28 días             |
|----------|--------------------------------|---------------------|---------------------|
| Muestras | $\left(\frac{kg}{cm^2}\right)$ | $(\frac{kg}{cm^2})$ | $(\frac{kg}{cm^2})$ |
| 1        | 146,70                         | 186,80              | 223.1               |
| 2        | 143,70                         | 188,10              | 217.3               |
| 3        | 144,90                         | 180,00              | 221.7               |
| Promedio | 145,10                         | 184,90              | 220.70              |

De la tabla N°7, la cual muestra los resultados obtenidos aplicando la NTP 339.034, se observa el aumento de la resistencia del concreto conforme va aumentado los días, tenemos a 7 días (145,10  $\frac{kg}{cm^2}$ ), a 14 días (184,90  $\frac{kg}{cm^2}$ ) y a 28 días (220.70  $\frac{kg}{cm^2}$ ).

Tabla N° 08

Resultados de f'c para el concreto + 10% CCA, 15 x 30 cm

| Muestras | 7 días                         | 14 días                        | 28 días                        |
|----------|--------------------------------|--------------------------------|--------------------------------|
|          | $\left(\frac{kg}{cm^2}\right)$ | $\left(\frac{kg}{cm^2}\right)$ | $\left(\frac{kg}{cm^2}\right)$ |
| 1        | 146.70                         | 188.90                         | 225.2                          |
| 2        | 145.80                         | 190.10                         | 227.7                          |
| 3        | 145.50                         | 190.40                         | 228.2                          |

| <b>Promedio</b> 146.00 189.80 | 227.00 |
|-------------------------------|--------|
|-------------------------------|--------|

De la tabla N° 8 la cual muestra los resultados obtenidos aplicando la NTP 339.034, se observa el aumento de la resistencia del concreto conforme va aumentado los días, tenemos a 7 días (146.00  $\frac{kg}{cm^2}$ ), a 14 días (189.80  $\frac{kg}{cm^2}$ ) y a 28 días (227.00  $\frac{kg}{cm^2}$ ).

Tabla N° 09
Resultados de f'c para el concreto + 11% CCA, 15 x 30 cm

| Muestras | 7 días              | 14 días                        | 28 días                        |
|----------|---------------------|--------------------------------|--------------------------------|
|          | $(\frac{kg}{cm^2})$ | $\left(\frac{kg}{cm^2}\right)$ | $\left(\frac{kg}{cm^2}\right)$ |
| 1        | 148,10              | 193,70                         | 228.6                          |
| 2        | 149,60              | 194,50                         | 224.6                          |
| 3        | 149,10              | 197,70                         | 224.0                          |
| Promedio | 148,70              | 195,30                         | 225.70                         |

Fuente: elaboración de los autores

De la tabla N°9 la cual muestra los resultados obtenidos aplicando la NTP 339.034, se observa el aumento de la resistencia del concreto conforme va aumentado los días, tenemos a 7 días (148,70  $\frac{kg}{cm^2}$ ), a 14 días (195,30  $\frac{kg}{cm^2}$ ) y a 28 días (225.70  $\frac{kg}{cm^2}$ ).

Tabla N° 10
Resultados de f'c para el concreto + 12% CCA, 15 x 30 cm

| Muestras | 7 días              | 14 días             | 28 días             |
|----------|---------------------|---------------------|---------------------|
|          | $(\frac{kg}{cm^2})$ | $(\frac{kg}{cm^2})$ | $(\frac{kg}{cm^2})$ |
| 1        | 154.20              | 198,20              | 224.0               |
| 2        | 154.60              | 200,00              | 228.0               |
| 3        | 158,70              | 199,20              | 222.0               |
| Promedio | 155,90              | 199,10              | 224.80              |

De la tabla N°10 la cual muestra los resultados obtenidos aplicando la NTP 339.034, se observa el cuadro de barras del porcentaje 12% de CCA donde se interprete el aumento de la resistencia del concreto conforme va aumentado los días, tenemos a 7 días (155,90  $\frac{kg}{cm^2}$ ), a 14 días (199,10  $\frac{kg}{cm^2}$ ) y a 28 días (224.80  $\frac{kg}{cm^2}$ ).

## V. DISCUSIÓN

Con respecto al objetivo específico 01 absorción no se tienen antecedentes que se hayan desarrollado esta propiedad, por esta razón no se puede desarrollar la discusión pertinente.

En relación con el objetivo específico 02 sobre el peso unitario, según los datos obtenidos por Montero en 2019, se observa que a los 28 días de pruebas se alcanzó un valor del 10% que dio como resultado un peso unitario de 2448.72  $\frac{kg}{cm^3}$  En contraste, nuestros resultados muestran que, a los 28 días, el peso unitario es de 2,770  $\frac{kg}{cm^3}$ .

Con respecto al objetivo específico 03 F'c los resultados de Rodríguez y Sánchez (2019) en 28 días calendario el concreto patrón tiene 216  $\frac{kg}{cm^2}$ , y al 10% es 226  $\frac{kg}{cm^2}$ ; por otro lado, Montero (2019) a los 28 días el concreto patrón tiene 213.01  $\frac{kg}{cm^2}$ , y al 10% es 215.21  $\frac{kg}{cm^2}$ ; nuestros resultados fueron a los 28 días el concreto patrón tiene 220.70  $\frac{kg}{cm^2}$ , y al 10% es 227.00  $\frac{kg}{cm^2}$ .

## VI. CONCLUSIONES

- 6.1. Con respecto a los resultados que obtuvimos del objetivo general, para un concreto de 28 días el porcentaje más optimo es el de el de 10%, ya que este es el que tiene mayor resistencia y segunda en peso unitario.
- 6.2. Con respecto con los resultados que obtuvimos del objetivo específico 01, para un concreto de 28 días, el mejor porcentaje de sustitución es del 11%, con un porcentaje de absorción de 1.88%, ya que un concreto con menor absorción es recomendable en la gran mayoría de los casos, ya que puede ofrecer varias ventajas.
- 6.3. De acuerdo con los resultados del objetivo específico 02, para un concreto de 28 días, el mejor porcentaje de sustitución es del 12%, con un peso unitario de 2  $313\frac{kg}{cm^3}$ .
- 6.4. De acuerdo con los resultados del objetivo específico 03, para un concreto de 28 días, el mejor porcentaje de sustitución es del 10%, con su resistencia a la compresión de 227.00  $\frac{kg}{cm^2}$ .

## VII. RECOMENDACIONES

- 7.1. Basándonos en los resultados obtenidos del objetivo general, se recomienda utilizar un concreto con un porcentaje del 10%, ya que este ha demostrado poseer la mayor resistencia y el 2º lugar en peso unitario. Esta elección proporcionará una base sólida y confiable para aplicaciones que requieran alta resistencia y rendimiento en estructuras o proyectos similares.
- 7.2. De acuerdo a el porcentaje de absorción una investigación más profunda ya que se tomó en cuenta el 11% pero pensamos que se puede investigar y analizar los factores que afectan en la absorción del concreto, como la porosidad, la relación agua-cemento, el tipo y tamaño de agregados, el curado, la calidad de los materiales y las condiciones ambientales y tener resultados diferentes.
- 7.3. Respecto al peso unitario se recomienda considera porcentajes de adicción menores al 10% ya que no se encontró el punto de inflexión.
- 7.4. Respecto al f'c se recomienda porcentajes menores al 10% ya que pensamos que podríamos tener mejores resultados entre estos porcentajes.

## **REFERENCIAS**

ALIAGA MENDOZA, J.C. y BADAJOS QUISPE, B.E.D., 2018. Adición de cenizas de cascarilla de arroz para el diseño de concreto f¨c 210kg/cm2, Atalaya, Ucayali – 2018. S.I.: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/34374

AMRAN, M., FEDIUK, R., MURALI, G., VATIN, N., KARELINA, M., OZBAKKALOGLU, T., KRISHNA, R.S., SAHOO, A.K., DAS, S.K. y MISHRA, J., 2021. Rice husk ash-based concrete composites: A critical review of their properties and applications. Crystals [en línea], vol. 11, no. 2, [consulta: 2 diciembre 2023]. ISSN 2073-4352. DOI 10.3390/cryst11020168. Disponible en: <a href="https://www.mdpi.com/2073-4352/11/2/168">https://www.mdpi.com/2073-4352/11/2/168</a>.

ANWAR, M., MIYAGAWA, T. y GAWEESH, M., 2000. Using rice husk ash as a cement replacement material in concrete. En: G.R. WOOLLEY, J.J.M. GOUMANS y P.J. WAINWRIGHT (eds.), Waste Materials in Construction Wascon 2000 - Proceedings of the International Conference on the Science and Engineering of Recycling for Environmental Protection, Harrogate, England 31 May, 1–2 June 2000. S.I.: Elsevier, pp. 671–684. vol. 1. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S071327430080077X

ARBOLEDA JARAMILLO, K. y SALAZAR GIL, D.O., 2020. Diseño de concreto liviano mediante adición de poliestireno para observar su resistencia y funcionalidad a diferentes porcentajes. S.I.: s.n. Disponible en: <a href="https://repository.unilibre.edu.co/handle/10901/22473">https://repository.unilibre.edu.co/handle/10901/22473</a>

CAJÁN, Z. y ANTOINI, G., 2021. Diseño de mezcla de concreto con adición de ceniza de bagazo de caña de azúcar (CBCA) para mejorar la resistencia a compresión, Chongoyape, Lambayeque. S.I.: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/89671

CHAO-LUNG, H., ANH-TUAN, B.L. y CHUN-TSUN, C., 2011. Effect of rice husk

ash on the strength and durability characteristics of concrete. Construction and building materials [en línea], vol. 25, no. 9, ISSN 0950-0618. DOI 10.1016/j.conbuildmat.2011.04.009. Disponible en: https://www.sciencedirect.com/science/article/pii/S0950061811001498.

ENDALE, S.A., TAFFESE, W.Z., VO, D.-H. y YEHUALAW, M.D., 2022. Rice husk ash in concrete. Sustainability [en línea], vol. 15, no. 1, [consulta: 2 diciembre 2023]. ISSN 2071-1050. DOI 10.3390/su15010137. Disponible en: https://www.mdpi.com/2071-1050/15/1/137.

EPHRAIM, M. y AKEKE, G., 2016. Structural Properties of Rice Husk Ash Concrete. International Journal of Advances in Engineering Sciences and Applied Mathematics [en línea], [consulta: 2 diciembre 2023]. Disponible en: <a href="https://www.academia.edu/23438259/Structural Properties of Rice Husk Ash C">https://www.academia.edu/23438259/Structural Properties of Rice Husk Ash C</a> oncrete.

FLORES, M. y YOEL, S., 2019. Evaluación de las propiedades del concreto empleando ceniza de cáscara de arroz como sustituto del cemento en porcentajes para las edificaciones en la ciudad de Chiclayo. S.I.: Universidad Señor de Sipán. Disponible en: <a href="https://repositorio.uss.edu.pe/handle/20.500.12802/8066">https://repositorio.uss.edu.pe/handle/20.500.12802/8066</a>

GIVI, A.N., RASHID, S.A., NORA, F., AZIZ, A., AMRAN, M. y SALLEH, M., [sin fecha]. Contribution of rice husk ash to the properties of mortar and concrete: A review. Psu.edu [en línea]. [consulta: 2 diciembre 2023]. Disponible en: <a href="https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=70fbd768d301c">https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=70fbd768d301c</a> d9869b210b052215d785ecd2121.

GONZALES VASQUEZ, A.H. y YUI HUACHUA, M.S., 2023. Diseño de concreto ecológico f'c = 280 kg/cm2 con adición de caparazón de concha de abanico molido para mejorar la durabilidad disminuyendo la porosidad en los elementos

estructurales de las viviendas costeras en la región de Cañete-Lima. S.I.: Universidad Peruana de Ciencias Aplicadas (UPC). Disponible en: <a href="https://repositorioacademico.upc.edu.pe/handle/10757/667856">https://repositorioacademico.upc.edu.pe/handle/10757/667856</a>

JULON ZAMBRANO, N.A. y MARCAÑAUPA QUISPE, E.S., 2022. Diseño y evaluación de concreto con adición de cenizas de cáscara de arroz y cenizas de bagazo de caña de azúcar (f'c=210 kg/ cm2 cm2) para aumentar la resistencia a compresión y flexión por exposición al fuego directo en las edificaciones industriales en Lima Metropolitana. S.I.: Universidad Peruana de Ciencias Aplicadas (UPC). Disponible en: <a href="https://repositorioacademico.upc.edu.pe/handle/10757/663463">https://repositorioacademico.upc.edu.pe/handle/10757/663463</a>

KHAN, R., JABBAR, A., AHMAD, I., KHAN, W., KHAN, A.N. y MIRZA, J., 2012. Reduction in environmental problems using rice-husk ash in concrete. Construction and building materials [en línea], vol. 30, ISSN 0950-0618. DOI 10.1016/j.conbuildmat.2011.11.028. Disponible en: <a href="https://www.sciencedirect.com/science/article/pii/S0950061811006581">https://www.sciencedirect.com/science/article/pii/S0950061811006581</a>.

KISHORE, R., BHIKSHMA, V. y PRAKASH, P.J., 2011. Study on strength characteristics of high strength rice husk ash concrete. Procedia engineering [en línea], vol. 14, ISSN 1877-7058. DOI 10.1016/j.proeng.2011.07.335. Disponible en: <a href="https://www.sciencedirect.com/science/article/pii/S1877705811014123">https://www.sciencedirect.com/science/article/pii/S1877705811014123</a>.

LÓPEZ BARBARAN, E. y MONTALVÁN GONZALES, P.O., 2022. Influencia de la ceniza de cascarilla de arroz en la resistencia a la compresión de ladrillos de arcilla, Habana – Moyobamba 2022. S.I.: Universidad César Vallejo. Disponible en: <a href="https://repositorio.ucv.edu.pe/handle/20.500.12692/105851">https://repositorio.ucv.edu.pe/handle/20.500.12692/105851</a>

MATTEY, P.E., ROBAYO, R.A., DÍAZ, J.E., DELVASTO, S. y MONZÓ, J., 2015. Aplicación de ceniza de cascarilla de arroz obtenida de un proceso agro-industrial para la fabricación de bloques en concreto no estructurales. Revista Latinoamericana de Metalurgia y Materiales [en línea], vol. 35, no. 2, [consulta: 2 diciembre 2023]. ISSN 0255-6952. Disponible en:

MERA, T. y ISELA, C.S., 2021. Evaluación del efecto de la ceniza de la cascarilla de arroz en una unidad de albañilería de concreto. S.I.: Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Disponible en: <a href="https://repositorio.untrm.edu.pe/handle/20.500.14077/2485">https://repositorio.untrm.edu.pe/handle/20.500.14077/2485</a>

MORE MORE, M.A. y YARLEQUE SILVA, V.J., 2022. Diseño de concreto f'c=210 kg/cm2 sustituyendo parcialmente el agregado fino por la ceniza de pajilla de arroz – Piura. S.I.: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/88704

NUAKLONG, P., JONGVIVATSAKUL, P., POTHISIRI, T., SATA, V. y CHINDAPRASIRT, P., 2020. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of cleaner production [en línea], vol. 252, no. 119797, ISSN 0959-6526. DOI 10.1016/j.jclepro.2019.119797. Disponible en: https://www.sciencedirect.com/science/article/pii/S0959652619346670.

PANDE, A.M. y MAKARANDE, S.G., [sin fecha]. Effect of rice husk ash on concrete. Psu.edu [en línea]. [consulta: 2 diciembre 2023]. Disponible en: <a href="https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=50d634e5b6d0a">https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=50d634e5b6d0a</a> 39f5b0c96d1437eeb350c5e4b31.

PUMA VERA, R. y PINEDA SAMANEZ, T.K., 2014. Evaluación de la ceniza de cascarilla de arroz, en la fabricación de cemento portland puzolánico tipo IP. S.I.: Universidad Nacional de San Antonio Abad del Cusco. Disponible en: https://repositorio.unsaac.edu.pe/handle/20.500.12918/1580

RAMASAMY, V., 2012. Compressive strength and durability properties of Rice Husk Ash concrete. KSCE Journal of civil engineering [en línea], vol. 16, no. 1, ISSN 1226-7988. DOI 10.1007/s12205-012-0779-2. Disponible en: <a href="http://dx.doi.org/10.1007/s12205-012-0779-2">http://dx.doi.org/10.1007/s12205-012-0779-2</a>.

RATTANACHU. P., TOOLKASIKORN, P., TANGCHIRAPAT, W., CHINDAPRASIRT, P. y JATURAPITAKKUL, C., 2020. Performance of recycled aggregate concrete with rice husk ash as cement binder. Cement & concrete composites [en línea], vol. 108, no. 103533, ISSN 0958-9465. DOL 10.1016/j.cemconcomp.2020.103533. Disponible en: https://www.sciencedirect.com/science/article/pii/S095894652030024X.

RODRÍGUEZ DE SENSALE, G., 2006. Strength development of concrete with rice-husk ash. Cement & concrete composites [en línea], vol. 28, no. 2, ISSN 0958-9465. DOI 10.1016/j.cemconcomp.2005.09.005. Disponible en: https://www.sciencedirect.com/science/article/pii/S0958946505001022.

RODRÍGUEZ SÁNCHEZ, A.M. y TIBABUZO JIMÉNEZ, M.P., 2019. Evaluación de la ceniza de cascarilla de arroz como suplemento al cemento en mezclas de concreto hidráulico. S.I.: Universidad Santo Tomás. Disponible en: https://repository.usta.edu.co/handle/11634/15589

SATHAWANE, S.H., VAIRAGADE, V.S. y KENE, K.S., 2013. Combine effect of rice husk ash and fly ash on concrete by 30% cement replacement. Procedia engineering [en línea], vol. 51, ISSN 1877-7058. DOI 10.1016/j.proeng.2013.01.009. Disponible en: <a href="https://www.sciencedirect.com/science/article/pii/S1877705813000106">https://www.sciencedirect.com/science/article/pii/S1877705813000106</a>.

SIDDIKA, A., MAMUN, M.A.A., ALYOUSEF, R. y MOHAMMADHOSSEINI, H., 2021. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. Journal of King Saud University - Engineering Sciences [en línea], vol. 33, no. 5, ISSN 1018-3639. DOI 10.1016/j.jksues.2020.10.006. Disponible

https://www.sciencedirect.com/science/article/pii/S1018363920303275.

SONI, S., DEPARTMENT OF CIVIL ENGINEERING, AMITY SCHOOL OF ENGINEERING AND TECHNOLOGY, AMITY UNIVERSITY UTTAR PRADESH, LUCKNOW CAMPUS, INDIA, OJHA, D. y DEPARTMENT OF CIVIL ENGINEERING, AMITY SCHOOL OF ENGINEERING AND TECHNOLOGY, AMITY UNIVERSITY UTTAR PRADESH, LUCKNOW CAMPUS, INDIA, 2021. A study on use of Rice Husk Ash in concrete. Journal of Mechanical and Construction Engineering (JMCE) [en línea], vol. 1, no. 1, [consulta: 2 diciembre 2023]. ISSN 2583-0619. DOI 10.54060/jmce/001.01.002. Disponible en: https://jmce.a2zjournals.com/index.php/mce/article/view/2.

VILCHEZ VELA, G.O. y VILCHEZ VELA, R.C., 2019. Diseño de concreto con adición de fibras secas de maíz para habilitaciones en el distrito de Villa María del Triunfo año 2019. S.I.: Universidad Ricardo Palma. Disponible en: https://repositorio.urp.edu.pe/handle/20.500.14138/2602

# **ANEXOS**

## Matriz de consistencia

| PROYECTO DE INVESTIGACIÓN: EVALUAR LA INFLUENCIA DE LA ADICIÓN DE CENIZA DE CASCARA DE ARROZ EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO 210 KG/CM2, 2023 |                                                                                                                                                            |                                                                                                                                   |                                                      |                                          |                                                         |                                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------------------------|--------------------------------------------|--|--|
| PROBLEMA GENERAL                                                                                                                                                  | OBJETIVO GENERAL                                                                                                                                           | HIPOTESIS GENERAL                                                                                                                 | VARIABLES                                            | DIMENSIONES                              | INDICADORES(numéricos)                                  | METODOLOGIA                                |  |  |
| ¿De qué manera influye la<br>sustitución del agregado<br>fino por fibras de caucho en<br>las propiedades físicas y<br>mecánicas del concreto 210<br>kg/cm2, 2023? | Evaluar de qué manera influye<br>la adición de Ceniza de<br>cascara de arroz en las<br>propiedades físicas y<br>mecánicas del concreto 210<br>kg/cm2, 2023 | La adición de Ceniza de<br>cascara de arroz influye en<br>las propiedades físicas y<br>mecánicas del concreto<br>210 kg/cm2, 2023 | INDEPENDIENTE                                        |                                          |                                                         | TIPO: De laboratorio  NIVEL:               |  |  |
| PROBLEMAS ESPECIFICOS                                                                                                                                             | <b>OBJETIVOS ESPECIFICOS</b>                                                                                                                               | HIPOTESIS ESPECIFICAS                                                                                                             | ADIOION DE                                           |                                          | Concreto (kg)                                           | Predictivo o experimental                  |  |  |
| ¿De qué manera influye la<br>adición de Ceniza de<br>cascara de arroz en la                                                                                       | Evaluar de qué manera influye<br>la adición de Ceniza de<br>cascara de arroz en la                                                                         | La sustitución del agregado<br>fino por CCA mejora la<br>absorción del concreto 210                                               | ADICION DE<br>CENIZA DE<br>CASCARA DE<br>ARROZ (CCA) | Diseño de<br>mezcla por el<br>método ACI | Agregado Fino (kg)<br>Agregado Grueso( kg)<br>Agua (lt) | DISEÑO: Cuasi experimental                 |  |  |
| absorción del concreto 210<br>kg/cm2, 2023?                                                                                                                       | absorción del concreto 210 kg/cm2, 2023.                                                                                                                   | kg/cm2,                                                                                                                           |                                                      | - Daraantaia da                          |                                                         | ENFOQUE:                                   |  |  |
| ¿De qué manera influye la<br>adición de Ceniza de                                                                                                                 | Evaluar de qué manera influye<br>la adición de Ceniza de                                                                                                   | La sustitución del agregado fino por CCA mejora el                                                                                | DEPENDIENTE                                          | Porcentaje de sustitución                | 0%,10%, 11%, 12%                                        | Cuantitativo                               |  |  |
| cascara de arroz en el peso<br>unitario del concreto 210<br>kg/cm2, 2023?                                                                                         | cascara de arroz en el peso<br>unitario del concreto 210<br>kg/cm2, 2023                                                                                   | peso unitario del concreto<br>210 kg/cm2, 2023                                                                                    |                                                      |                                          | - Peso unitario (kg/cm3)<br>NTP 339.046                 | METODO: Deductivo, Inductivo Experimental. |  |  |
| ¿De qué manera influye la                                                                                                                                         | Evaluar de qué manera influye                                                                                                                              | La sustitución del agregado                                                                                                       |                                                      | Propiedades<br>físicas                   | - Absorción (%) NTP<br>339.187                          | POBLACIÓN:<br>48 ensayos.                  |  |  |
| adición de Ceniza de<br>cascara de arroz en la                                                                                                                    | la adición de Ceniza de                                                                                                                                    | fino por CCA mejora la resistencia a la compresión                                                                                |                                                      |                                          |                                                         | MUESTRA: Se va a trabajar con toda la      |  |  |
| resistencia a la compresión<br>del concreto 210 kg/cm2,<br>2023?                                                                                                  | cascara de arroz en la resistencia a la compresión del concreto 210 kg/cm2, 2023                                                                           | del concreto 210 kg/cm2,<br>2023                                                                                                  | PROPIEDADES<br>FISICAS Y<br>MECANICAS                | Propiedades<br>mecanicas                 | Resistencia a la compresión<br>(kg/cm2) NTP 339.034     | poblacion de estudio.                      |  |  |

# Instrumento sin llenar

Ficha de observación de absorción para el concreto 15 x 30 cm

| %  | Promedio |
|----|----------|
| 0  |          |
| 10 |          |
| 11 |          |
| 12 |          |

Ficha de observación de peso unitario para el concreto 15 x 30 cm

| 10 |  |
|----|--|
| 10 |  |
|    |  |
| 11 |  |
| 12 |  |

Ficha de observación de F'c promedio para el concreto 15 x 30 cm

| %  | 7 (d) prom. | 14 (d) prom. | 28 (d) prom. |  |
|----|-------------|--------------|--------------|--|
| 0  |             |              |              |  |
| 10 |             |              |              |  |
| 11 |             |              |              |  |
| 12 |             |              |              |  |
|    |             |              |              |  |

## Fichas de observación llenadas a mano

# Ficha de observación de laboratorio

Fiche de observación de absorción para el concreto 15 x 30 cm

| *  | Promedio |
|----|----------|
| 0  | 1,39%    |
| 10 | 2,11%    |
| 11 | 1,88%    |
| 12 | 2,14%    |

# Ficha de observación de peso unitario para el concreto 15 x 30 cm

| Promedio   |
|------------|
| 2770 Kg/m3 |
| 2860 Kg/ms |
| 2840 16/1  |
| 2840 Kg/m3 |
|            |

Ficha de observación de F'c promedio para el concreto 15 x 30 cm

| %  | 7 (d) prom.   | 14 (d) prom.  | 28 (d) prom.    |
|----|---------------|---------------|-----------------|
| 0  | 145,10 kg/cm2 | 184,90 kg/cm2 | 220, 70 Kg/an 2 |
| 10 | 146,00 kg/cm2 | 189,90 kg/cm² | 227,00 Kg/an-   |
| 11 | 148,70 Ks/cm2 | 195,30/g/an2  | 225, 70 kg/am2  |
| 12 | 155,90 Kg/cm² | 199,10 /g/cm2 | 224,80 kg/an2   |

# Certificado de calibración de los equipos de laboratorio Calib Rot. Prob 2023

#### LABORATORIO DE METROLOGÍA PINZUAR S.A.S.

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 - Cel: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



## Certificado de Calibración - Laboratorio de Fuerza

Calibration Certificate - Laboratory of Force

#### F-27957-001 RO

PRENSA DE ENSAYO DE RESISTENCIA Equipo YU FENG // ZHEJIANG TUGONG INSTRUMENTS CO. Fabricante Modelo STYF-2000 Número de Serie 110901 Identificación Interna No presenta Capacidad Máxima 2000 kN Solicitante SAKIARO EMPRESA INDIVIDUAL DE RESPONSABILIDAD LIMITADA

JR. TARAPOTO NRO. 413 (A 4 CUADRAS DE LA MUNICIPALIDAD) SAN MARTIN - SAN MARTIN -Dirección MORALES San Martin - Perù

Cludad

Fecha de Calibración 2022 - 12 - 13 Fecha de Emisión 2022 - 12 - 21

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este Certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al item que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este Certificado de Calibración documenta y asegura la trazabilidad de los resultados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la Calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this Certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This Calibration Certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for Calibration the measuring instruments at appropriate time

obser al Certificado, excepto cuando se reproduce en su totalidad, ya que proporciona la segunidad que las partes del Certificado no se

06

Without the approval of the Presse Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the Centificate are not taken out of context. Unapped calibration certificates are not valid.

Firmas que Autorizan el Certificado

Ing. Sergio Ivan Martinez

Tecg. William Andrés Molina

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



F-27957-001 RO

#### DATOS TÉCNICOS

Máquina de Ensayo Bajo Calibración

Clase 1,0

Dirección de Carga Compresión Tipo de Indicación Digital División de Escala 1 kN

1 kN Resolución

Intervalo de Medición Calibrado Del 10 % al 50 % de la carga máxima.

Limite Inferior de la Escala 200 kN

RESULTADOS DE LA CALIBRACIÓN

La calibración se efectuó siguiendo los lineamientos establecidos en el documento de referencia ISO 7500-1:2018 Metallic materials - Calibration and verification of static uniaxial testing machines - Part 1: Tension/compression testing machines -Calibration and verification of the force-measuring system, en donde se específica un intervalo de temperatura comprendido entre 10°C a 35°C, con una variación máxima de 2°C durante cada serie de medición. Se utilizó el método de comparación directa aplicando Fuerza Indicada Constante.

Se realizó una inspección general de la máquina y se determina que: El equipo requiere ajuste de la indicación

Tabla 1. Indicaciones como se recibe la máquina antes de ajuste

|         |             | Indicaciones                 | Registradas del I            | Equipo Patrón                |                       | Errores         | Relativos     |
|---------|-------------|------------------------------|------------------------------|------------------------------|-----------------------|-----------------|---------------|
| Indicad | ión del IBC | S <sub>i</sub><br>Ascendente | S <sub>2</sub><br>Ascendente | S <sub>3</sub><br>Ascendente | Promedio<br>S1, 2 y 3 | Indicación<br>q | Repetibilidad |
| 76      | .KN         | kN                           | kN                           | kN                           | kN                    | %               | %             |
| 10      | 200         | 212,85                       | 213,80                       | 212,20                       | 212,95                | -6,08           | 0.71          |
| 20      | 400         | 420,61                       | 421,52                       | 420,88                       | 421,00                | -4,99           | 0,21          |
| 30      | 600         | 618,52                       | 619,65                       | 619,26                       | 619,14                | -3.09           | 0,18          |
| 40      | 800         | 822,43                       | 825,86                       | 820,35                       | 822,88                | -2,78           | 0,65          |
| 50      | 1 000       | 1 025,7                      | 1 026,6                      | 1 025,4                      | 1 025,9               | -2.52           | 0,11          |

Tabla 2. Indicaciones como se entrega la máquina

|         |             |                              | Indicaciones                | Registradas del               | Equipo Patrón pa             | ra Cada Serie               |                                  |
|---------|-------------|------------------------------|-----------------------------|-------------------------------|------------------------------|-----------------------------|----------------------------------|
| Indicac | ión del IBC | S <sub>t</sub><br>Ascendente | S <sub>2</sub><br>Ascedente | S <sub>2</sub> '<br>No Aplica | S <sub>3</sub><br>Ascendente | S <sub>4</sub><br>No Aplica | Promedio<br>S <sub>1,2 y 3</sub> |
| %       | kN          | kN                           | kN                          |                               | kN                           |                             | kN                               |
| 10      | 200         | 201,10                       | 201,44                      |                               | 201,09                       |                             | 201,21                           |
| 15      | 300         | 302,20                       | 302,30                      |                               | 302,25                       |                             | 302,25                           |
| 20      | 400         | 402,77                       | 402,88                      |                               | 403,75                       |                             | 403,13                           |
| 25      | 500         | 503,28                       | 503,30                      |                               | 503,29                       |                             | 503,29                           |
| 30      | 600         | 604,38                       | 604,28                      |                               | 604,39                       |                             | 604,35                           |
| 35      | 700         | 705,49                       | 705,51                      |                               | 704,40                       |                             | 705,13                           |
| 40      | 800         | 804,39                       | 805,40                      |                               | 805,55                       | ****                        | 805,11                           |
| 45      | 900         | 907,22                       | 907,48                      |                               | 907,45                       | ****                        | 907,38                           |
| 50      | 1 000       | 1 006,3                      | 1 005,6                     |                               | 1 005,3                      |                             | 1 005,7                          |

LM-PC-05-F-01 R12.6

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 - Cel:: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



F-27957-001 RO

#### RESULTADOS DE LA CALIBRACIÓN Continuación...

Tabla 3. Error realitivo de cero,  $f_{\scriptscriptstyle 0}$ , calculado para cada serie de medición a partir de su cero residual

|    | fast<br>% | f <sub>0.52</sub> % | fo.sz* | f <sub>0,53</sub> % | f <sub>0,54</sub> % |   |
|----|-----------|---------------------|--------|---------------------|---------------------|---|
| 10 | 0,050     | 0,100               | ****   | 0.100               |                     | _ |

Tabla 4. Resultados de la Calibración de la máquina de ensayo.

|         |             |            | Errores Relativo | 5              | Resolución | Incertic | dumbre |           |
|---------|-------------|------------|------------------|----------------|------------|----------|--------|-----------|
| Indicac | ión del IBC | Indicación | Repetibilidad    | Reversibilidad | Relativa   | Expa     | ndida  | K p= 95 % |
|         |             | q          | b                | V              | a          |          | ,      |           |
| 96      | kN          | %          | %                | %              | %          | kN       | %      | *****     |
| 10      | 200         | -0,60      | 0,17             |                | 0,500      | 0,88     | 0.44   | 2,01      |
| 15      | 300         | -0.74      | 0,03             | Table 1        | 0,333      | 0.87     | 0,29   | 2,01      |
| 20      | 400         | -0,78      | 0,24             |                | 0,250      | 1,1      | 0,28   | 2,10      |
| 25      | 500         | -0,65      | 0,00             | 100            | 0,200      | 0,93     | 0,19   | 2,01      |
| 30      | 600         | -0.72      | 0,02             |                | 0,167      | 0.94     | 0,16   | 2,01      |
| 35      | 700         | -0,73      | 0,16             |                | 0,143      | 1,2      | 0,18   | 2,13      |
| 40      | 800         | -0,64      | 0,14             | ****           | 0,125      | 1,3      | 0,16   | 2,12      |
| 45      | 900         | -0,81      | 0,03             |                | 0,111      | 0,99     | 0,11   | 2,01      |
| 50      | 1 000       | -0,57      | 0,10             |                | 0,100      | 1,2      | 0,12   | 2,06      |



#### CONDICIONES AMBIENTALES

El lugar de la Calibración fue Área de Rotura de Concreto de la empresa SAKIARO EMPRESA INDIVIDUAL DE RESPONSABILIDAD LIMITADA ubicada en San Martín. Durante la Calibración se presentaron las siguientes condiciones ambientales.

| Temperatura Ambiente Máxima: | 28,5 °C | Temperatura Ambiente Minima: | 28,2 °C |
|------------------------------|---------|------------------------------|---------|
| Humedad Relativa Máxima:     | 73 % HR | Humedad Relativa Minima:     | 71 % HR |

LM-PC-05-F-01 R12.6

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 - Cel: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



F-27957-001 RO

#### RESULTADOS DE LA CALIBRACIÓN Continuación...

Tabla 5. Coeficientes para el cálculo de la fuerza en función de su defomación y su R2, el cual refleja la bondad del ajuste del modelo a la variable,

> A<sub>0</sub> A<sub>1</sub> A<sub>2</sub> A<sub>3</sub> --- R<sup>2</sup> 9,99127 E-01 9,98800 E-01 1,91519 E-05 -1,27256 E-08 1,0000 E00

Ecuación 1: donde F (kN) es la fuerza calculada y X (kN) es el valor de deformación evaluado

 $F = A_0 + (A_1 * X) + (A_2 * X^2) + (A_3 * X^3)$ 

Tabla 6. Valores calculados en función de la fuerza aplicada ( kN )

| Indicación<br>kN | 0       | 10     | 20     | 30     | 40     |
|------------------|---------|--------|--------|--------|--------|
| 200              | 201,42  | 211,47 | 221,53 | 231,58 | 241,64 |
| 250              | 251,70  | 261,76 | 271,82 | 281,89 | 291,95 |
| 300              | 302,02  | 312,09 | 322,16 | 332,23 | 342,30 |
| 350              | 352,38  | 362,46 | 372,53 | 382,61 | 392.69 |
| 400              | 402,77  | 412,85 | 422,93 | 433,01 | 443,09 |
| 450              | 453,18  | 463,26 | 473,34 | 483,43 | 493,51 |
| 500              | 503,60  | 513,68 | 523,76 | 533,85 | 543,93 |
| 550              | 554,02  | 564,10 | 574,18 | 584,26 | 594,34 |
| 600              | 604,43  | 614,51 | 624,58 | 634,66 | 644,74 |
| 650              | 654,82  | 664,89 | 674,97 | 685,04 | 695,11 |
| 700              | 705,18  | 715,25 | 725,31 | 735,38 | 745.44 |
| 750              | 755,50  | 765,56 | 775,62 | 785,68 | 795,73 |
| 800              | 805,78  | 815,83 | 825,88 | 835,92 | 845,96 |
| 850              | 856,00  | 866,04 | 876,07 | 886,10 | 896,13 |
| 900              | 906,16  | 916,18 | 926,20 | 936,21 | 946,22 |
| 950              | 956,23  | 966,24 | 976,24 | 986,24 | 996,23 |
| 1 000            | 1 006.2 |        |        |        |        |

Tabla 7. Valores Residuales

| Indicación del<br>IBC | Promedio<br>S1, 2 v 3 | Por Interpolación | Residuales |
|-----------------------|-----------------------|-------------------|------------|
| kN                    | kN                    | kN                | kN         |
| 200                   | 201,21                | 201,42            | 0          |
| 300                   | 302,25                | 302,02            | 0          |
| 400                   | 403,13                | 402,77            | 0          |
| 500                   | 503,29                | 503,60            | 0          |
| 600                   | 604,35                | 604,43            | 0          |
| 700                   | 705,13                | 705,18            | 0          |
| 800                   | 805,11                | 805,78            | 1          |
| 900                   | 907,38                | 906,16            | -1         |
| 1 000                 | 1 005,7               | 1 006.2           | 1          |

LM-PC-05-F-01 R12-6

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



F-27957-001 RO

#### RESULTADOS DE LA CALIBRACIÓN Continuación.

La Tabla 8 y Tabla 9 de este Certificado de Calibración se generan debido a que las unidades de la indicación del equipo bajo Calibración no coinciden con los Newton que son las unidades definidas en el Sistema Internacional de Unidades para la magnitud derivada fuerza. Los valores aquí presentados corresponden a la multiplicación de los resultados plasmados en la Tabla 2 y Tabla 4 de este Certificado de Calibración por el factor de conversión correspondiente. Cabe aclarar que los resultados mostrados como valores relativos no se modifican al realizar la conversión de unidades.

El factor de conversión utilizado para los calculos fue: (kgf) a (N) = 9,80665 , tomado del documento NIST SPECIAL PUBLICATION 811: Guie for the use of the International System of Units (SI) - Anexo B8.

Tabla 8. Indicaciones obtenidas durante la Calibración para cada valor de carga aplicado en kgf

|                    |           |                   | Indicaciones     | Registradas del | Equipo Patrón pa  | ra Cada Serie  |                           |
|--------------------|-----------|-------------------|------------------|-----------------|-------------------|----------------|---------------------------|
| Indicación del IBC |           | S,                | S <sub>2</sub>   | S,              | S <sub>3</sub>    | S <sub>4</sub> | Promedio                  |
| %                  | kgf       | Ascendente<br>kgf | Ascedente<br>kgf | No Aplica       | Ascendente<br>kgf | No Aplica      | S <sub>1,2y3</sub><br>kgf |
| 10                 | 20 394,3  | 20 506,5          | 20 541,4         | ***             | 20 505,4          |                | 20 517,8                  |
| 15                 | 30 591,5  | 30 815,8          | 30 826,1         |                 | 30 820,9          |                | 30 820,9                  |
| 20                 | 40 788,6  | 41 071,1          | 41 082,3         |                 | 41 171,1          |                | 41 108,2                  |
| 25                 | 50 985,8  | 51 320,3          | 51 322,4         |                 | 51 321,3          | ****           | 51 321,3                  |
| 30                 | 61 183,0  | 61 629,6          | 61 619.5         |                 | 61 630,7          |                | 61 626,6                  |
| 35                 | 71 380,1  | 71 940,0          | 71 942.1         |                 | 71 828,8          |                | 71 903,6                  |
| 40                 | 81 577,3  | 82 025,0          | 82 128,0         |                 | 82 143,3          |                | 82 098,7                  |
| 45                 | 91 774.5  | 92 510.7          | 92 537.3         |                 | 92 534.2          | ****           | 92 527.4                  |
| 50                 | 101 971,6 | 102 614,1         | 102 540,7        |                 | 102 510,1         | 200            | 102 555,0                 |

Resultados de la Calibración de la máquina de ensayo.

|      |            |            | Errores Relativos                     |      | Resolución | Incertic | dumbre    |       |
|------|------------|------------|---------------------------------------|------|------------|----------|-----------|-------|
| Carg | a Aplicada | Indicación | Indicación Repetibilidad Reversibilid |      | Relativa   | Expa     | K p= 25 % |       |
|      |            | q          | b                                     | V    | a          |          | J         |       |
| %    | kgf        | %          | %                                     | %    | %          | kgf      | %         | ***** |
| 10   | 20 394,3   | -0,60      | 0,17                                  |      | 0,500      | 89       | 0,44      | 2,01  |
| 15   | 30 591,5   | -0.74      | 0,03                                  |      | 0,333      | 89       | 0,29      | 2,01  |
| 20   | 40 788,6   | -0.78      | 0,24                                  |      | 0,250      | 114      | 0,28      | 2,10  |
| 25   | 50 985,8   | -0,65      | 0,00                                  |      | 0,200      | 95       | 0,19      | 2,01  |
| 30   | 61 183.0   | -0,72      | 0,02                                  | **** | 0,167      | 95       | 0,16      | 2,01  |
| 35   | 71 380,1   | -0.73      | 0,16                                  |      | 0,143      | 127      | 0,18      | 2,13  |
| 40   | 81 577,3   | -0,64      | 0,14                                  |      | 0,125      | 129      | 0,16      | 2,12  |
| 45   | 91 774,5   | -0,81      | 0,03                                  |      | 0,111      | 101      | 0,11      | 2,01  |
| 50   | 101 971,6  | -0,57      | 0,10                                  |      | 0.100      | 123      | 0,12      | 2,06  |

LM-PC-05-F-01 R12.6

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



F-27957-001 RO

#### INCERTIDUMBRE DE MEDICIÓN

La incertidumbre expandida de la medición reportada se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura k=2,133 y la probabilidad de cobertura, la cual debe ser aproximada al 95% y no menor a este valor. La incertidumbre expandida fue estimada bajo los lineamientos del documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

#### TRAZABILIDAD

Lo resultados reportados en este certificado de calibración se obtuvieron utilizando patrones trazables al SI a través de institutos nacionales de metrología y/o laboratorios acreditados y son parte de un programa de aseguramiento metrológico que garantiza la exactitud e incertidumbres requeridas. El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan en la página dos se pueden descargar accediendo al enlace en el código QR.



#### Instrumento Patrón

Instrumento Transductor de Fuerza de 1 MN.

KAL-1MN. Clase 1.0. Código Interno 017401. Certificado de Calibración 5516 del INM. Próxima Calibración 2023-12-09.

#### CRITERIOS PARA LA CLASIFICACIÓN DE LA MÁQUINA DE ENSAYO

La siguiente Tabla proporciona los valores máximos permitidos, para los diferentes errores relativos del sistema de medición de fuerza y para la resolución relativa del indicador de fuerza que caracteriza una escala de la máquina de ensayo de acuerdo con la clase apropiada para sus ensayos según la sección 7 de la Norma ISO 7500-1:2018 Metallic materials - Calibration and verification of static uniaxial testing machines - Part 1: Tension/compression testing machines - Calibration and verification of the force-measuring system

| Clase de la escala<br>de la máquina | Indicación | Repetibilidad | Reversibilidad* | Cero | Resolución relativa |
|-------------------------------------|------------|---------------|-----------------|------|---------------------|
| 0,5                                 | 0,5        | 0,5           | 0,75            | 0,05 | 0,25                |
| 1                                   | 1          | 1             | 1,5             | 0,1  | 0,5                 |
| 2                                   | 2          | 2             | 3               | 0,2  | 10                  |
| 3                                   | 3          | 3             | 4.5             | 0,3  | 1,5                 |

\*El error realtivo de reversibilidad se determina solamente cuando es previamente solicitado por el cliente.

#### **OBSERVACIONES**

- Se emplea la coma (,) como separador decimal.
- 2. En cualquier caso, la máquina debe calibrarse si se realiza un cambio de ubicación que requiera desmontaje, o si se somete a ajustes o reparaciones importantes. Numeral 9, ISO 7500-1:2018
- 3. Con el presente Certificado de Calibración se adjunta la etiqueta de Calibración No. F-27957-001

LM-PC-05-F-01 R12-8

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO Fuerza I Longitud I Masa I Par Torsional I Presión I Temperatura

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 - Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



#### Certificado de Calibración - Laboratorio de Temperatura

T-27958-001 RO

Calibration Certificate - Temperature Laboratory

Equipo Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados PYS EQUIPOS E.I.R.L. Fabricante solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se Modelo STHX-2A responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada Número de Serie 200803 por el solicitante. Identificación Interna No presenta Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de Intervalo de Medición 50 °C a 300 °C medida de acuerdo con el Sistema Internacional de Unidades (SI). SAKIARO EMPRESA INDIVIDUAL DE Solicitante RESPONSABILIDAD LIMITADA El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo. JR. TARAPOTO NRO. 413 (A 4 CUADRAS DE Dirección LA MUNICIPALIDAD) SAN MARTIN - SAN The results issued in this certificate relates to MARTIN - MORALES the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use SAN MARTIN Ciudad of the instruments and/or the information provided by the customer. This calibration certificate documents and ensures the traceability of the reported results to Fecha de Calibración 2022 - 12 - 13 national and internationals standards, which realize the units of measurement according to the International System of Units (SI). Fecha de Emisión 2022 - 12 - 22 The user is responsable for recalibrating the measuring instruments at appropriate time Número de páginas del certificado, incluyendo anexos 03 intervals. ducir el informe, excepto cuando se reproduce en su totaldad, ya que proporciona la seguridad que les partes del certific

Without the approval of the Procur Microbay Laboratory, the report own not be reproduced, except when it is reproduced in its entirely, alone if provides the accept, that the parts of the certificate are not labor out of context. Unagonal calibration certificates are not valid.

Firmas que Autorizan el Certificado Sanatures Autoropo the Certificate

Ing. Sergio Iván Martinez
Director Laboratorio de Materiologia
Metriliogo Laboratorio de Materiologia

TWACSTER SIN

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



T-27958-001 RO Page / Pag 2 de 3

#### DATOS TÉCNICOS

Método Empleado Comparación Directa Resolución 0,1 °C Volumen Útil 72,0 L

Documento de Referencia DAKKS DKD-R 5 - 7 Kalibrierung von Klimaschränken Ausgabe 09/2018

#### RESULTADOS DE LA CALIBRACIÓN

Al medio isotermo en referencia se la efectuó una inspección Visual y se determinó que estaba en buen estado. Se establece que el medio presentaba una buena condición para la calibración, tuego se procedió a la calibración y caracterización respectiva en los puntos acordados con el cliente ejecutando las pruebas definidas del Metodo A) Calibración realizada en el volumen útil abarcado por la ubicación de los sensores en un medio isotermo aire sin carga

Promedio del Patron Promedio del IBC \*C 111.4 110,0 1.4 110.0 3.1 2.01



#### Table 2.

cterización del volumen del IBC para 110°C

| Set Point | Uniformidad <sup>3</sup> | Estabilidad <sup>3</sup> | Efecto de<br>Radiación <sup>4</sup> | Efecto de<br>Carya <sup>5</sup> |
|-----------|--------------------------|--------------------------|-------------------------------------|---------------------------------|
| *C        | °C                       | *C                       | °C                                  | °C                              |
| 110,0     | 2,032                    | 0,260                    | 1,391                               | No Aplica                       |

#### Table 3.

| Posición de<br>Referencia<br>10 | Pesición 1 | Posición 2 | Posición 3 | Posición 4<br>°C | Posición 5 | Posición 6 | Posición 7 | Posición 8 |
|---------------------------------|------------|------------|------------|------------------|------------|------------|------------|------------|
| 111,36                          | 113,09     | 109,33     | 110,20     | 111,95           | 109,96     | 109,96     | 110,57     | 110,89     |

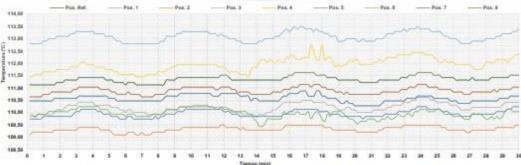



Figura 2. Comportamiento de la temperatura en cada posición durante al registro de datos en estado considerado estable.

LM-PC-21-F-81 RB-6

Carrera 104 B No. 18 - 26 Bogotá D.C. - Colombia (+57 60 1) 745 4555 · Cel.: 316 538 5810 - 317 423 3640 www.pinzuar.com.co



T-27958-001 RO Page / Pag 3 de 3

RESULTADOS DE LA CALIBRACIÓN (Continuación)

#### Definiciones

- 1 Valor de temperatura programado en el controlador de equipo.
- Fluctuación de la temperatura determinada por un registro de datos durante un periodo mayor o igual a 30 minutos, después de alcanzado el estado estable en la posición de referencia (centro del volumen útil).
- ncia máxima de temperatura en un lugar de medición determinado por los extremos del volumen útil desde la posición de referencia.
- \* Aplica para medios isotermos con aire como fluido y corresponde al intercambio de calor por radiación dedo por la temperatura ambiente y la pared interna de la cámara que se diferencian a la temperatura del aire medida con un termómetro que está protegido contra la influencia con un escudo.
- <sup>3</sup> Aplica para medios isotermos con aire como fluido y corresponde a la máxima diferencia de temperatura encontrada por el sensor ubicado en la posición de referencia cuando el volumen del del equipo està parcialmenta ocupado y cuando se encuentra vacilo. Esta prueba se ejecuta según acuerdo previo con el cliente.

#### CONDICIONES AMBIENTALES

El lugar de calibración fue AREA DE ENSAYO GENERALES ; SAKIARO EMPRESA INDIVIDUAL DE RESPONSABILIDAD LIMITADA ; SAN MARTIN . Durante la calibración se registraren las siguientes condiciones ambientale

Temperatura Máxima

29.5 °C 28.2 °C Humedad Mäxima Humedad Minima 64 WHR 62 %HR

Temperatura Minima

#### INCERTIDUMBRE DE LA MEDICIÓN

La incertidumbre expandida de la medición reportada (página No. 2 Tablas de resultados), se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura "k" y la probabilidad de cobertura, la cual debe ser aproximada al 95 % y no menor a este valor. Basados en el documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

#### TRAZABILIDAD

El/Los resultado(s) reportado(s) en este certificado(s) de calibración se obtuvieron utilizando patrones trazables al SI a través de institutos nacionales de metrología y/o laboratorios acreditados y son parte de un programa de aseguramiento metrológico que garantiza la exactitud e incertidumbres requeridas. El/Los certificado (s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan posteriormente se pueden descargar accediendo al enlace en el código QR.")



Equipo Termometro Digital Multicanal Certificado de Calibración T-27491-001 R0 de Pinzuar

#### OBSERVACIONES

- 1. Se usa la coma como separador decimal.
- 2. El número de puntos de calibración, cantidad de sensores y ubicación son acordados y aceptados por el cliente
- 3. El volumen útil o zona de trabajo donde es válida la caracterización es acordada con el cliente.
- 4. Se adjunta la etiqueta de calibración

No. T-27958-001

Fin del Documento

UNIVERSITY 03 80:0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO Fuerza I Longitud I Masa I Par Torsional I Presión I Temperatura



#### LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



#### CERTIFICADO DE CALIBRACIÓN Nº LM-565-2022

Página: 1 de 3

Expediente T 526-2022 Fecha de Emisión 2022-09-12

SAKIARO E.I.R.L. 1. Solicitante

JR. TARAPOTO NRO. 413 - MORALES - SAN Dirección

ELECTRÓNICA

2. Instrumento de Medición BALANZA

: T-SCALE

Modelo PRW-30++

105505048009 Número de Serie

Alcance de Indicación : 30 000 g

División de Escala

de Verificación ( e )

Identificación

Tipo

División de Escala Real (d) 0.1 g

Procedencia : NO INDICA

: NO INDICA

Ubicación : LABORATORIO

Fecha de Calibración 2022-09-08 La incertidumbre reportada en el presente certificado incertidumbre expandida de medición que resulta de multiplicar incertidumbre estandar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas productos o como certificado del sistema de calidad de la entidad que to produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso. conservación mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

#### 3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

Lugar de Calibración LABORATORIO de SAKIARO E.I.R.L. JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN



PT-06 F06 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



CERTIFICADO DE CALIBRACIÓN № LM-565-2022

Pagina: 2 de 3

#### 5. Condiciones Ambientales

|                  | Minima | Máxima |
|------------------|--------|--------|
| Temperatura      | 26,8   | 26,9   |
| Humedad Relativa | 72.0   | 73.0   |

#### 6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

| Trazabilidad | Patrón utilizado              | Certificado de calibración |
|--------------|-------------------------------|----------------------------|
|              | Juego de pesas (exactitud F1) | PE22-C-1070-2022           |
| INACAL - DM  | Pesa (exactitud F1)           | LM-C-018-2022              |
| INACAL - DM  | Pesa (exactitud F1)           | 1AM-0055-2022              |
|              | Pesa (exactitud F1)           | 1AM-0056-2022              |

#### 7. Observaciones

Antes del ajuste, la indicación de la balanza fue de 29 992,6 g para una carga de 30 000,0 g El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C. Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009, Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

#### 8. Resultados de Medición

| INSPECCIÓN VISUAL |       |               |          |  |  |  |  |  |
|-------------------|-------|---------------|----------|--|--|--|--|--|
| AJUSTE DE CERO    | TIENE | ESCALA        | NO TIENE |  |  |  |  |  |
| OSCILACIÓN LIBRE  | TIENE | CURSOR        | NO TIENE |  |  |  |  |  |
| PLATAFORMA        | TIENE | SIST DE TRABA | NO TIENE |  |  |  |  |  |
| NIVELACIÓN:       | TIENE | Charles Carl  |          |  |  |  |  |  |

#### ENSAYO DE REPETIBILIDAD

|               |           | Temp. (*    | C) 26,8 | 26,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |              |
|---------------|-----------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| Madición      | Carga L1= | 15 000,02 g |         | Carga L2=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 000 00 | g            |
| Nº .          | 1(g)      | ΔL (g)      | E (g)   | 1 (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL (g)    | <b>≡</b> (g) |
| 1             | 14 999,1  | 0.04        | -0,B1   | 0,000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,05      | 0,00         |
| 2             | 14 999.1  | 0,03        | -0,90   | 30 000,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09      | 0.45         |
| 3             | 14 999.1  | 0.04        | -0.91   | 30 000,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,05      | 0,50         |
| 4             | 14 999.0  | 0,03        | -1,00   | 30 000,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.08      | 0,47         |
| 5             | 14 999,0  | 0.04        | -1,01   | 30 000,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05      | 0.50         |
| 6             | 14 999.0  | 0.03        | -1,00   | 30 000,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,07      | 0,38         |
| 7             | 14 999.0  | 0.04        | -1,01   | 30 000,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,09      | 0,35         |
| 8             | 14 999,0  | 0,02        | -0,99   | 30 000,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,06      | 0,29         |
| 9             | 14 999.0  | 0.04        | -1,01   | 30 000,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,08      | 0,17         |
| 10            | 14 999,0  | 0,03        | -1,00   | 30 000,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05      | 0,20         |
| rencia Máxima |           |             | 0,11    | The state of the s | 7         | 0.50         |

PUNTO DE SAC

PT-06-F06 / Diciembre 2016 / Rev 02

Error máximo permitido

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-565-2022

Página: 3 de 3

2 5 3 4

#### ENSAYO DE EXCENTRICIDAD

Inicial Final

| Pesición<br>de la<br>Cerps | 2.00             | Determinación de E <sub>e</sub> |        |         |                                         | Determinación | det Error co | regido | 191    |
|----------------------------|------------------|---------------------------------|--------|---------|-----------------------------------------|---------------|--------------|--------|--------|
|                            | Cargo minima (g) | 17(a)                           | AL (s) | fin (g) | Cerps L (g)                             | 110           | At. (g)      | E (g)  | Ec (g) |
| 1                          |                  | 2,1                             | 0,08   | 0,07    |                                         | 8 999.1       | 0.04         | -0,91  | 0,98   |
| 2                          | a Barrier P      | 2,0                             | 0.07   | -0,02   | The second second                       | 9.999.6       | 0,03         | -0.40  | -0,38  |
| 2                          | 2,00             | 1,8                             | 0,04   | -0,19   | 10 000,02                               | 9 999,3       | 0,04         | -0.71  | -0.52  |
| 4                          |                  | 1,9                             | 0.03   | -0,08   | 100000000000000000000000000000000000000 | 10 000,3      | 0,07         | 0.26   | 0.34   |
| 8                          |                  | 1,9                             | 0.04   | -0.09   |                                         | 10 000.3      | 0.09         | 0.24   | 0.33   |

and the second second

#### ENSAYO DE PESAJE

Inicial First

| Carga L<br>(a) I (gr | CRECIENTES DECRECIENTES |        | DECRECIENTES |             |          | ± emp      |       |        |     |
|----------------------|-------------------------|--------|--------------|-------------|----------|------------|-------|--------|-----|
|                      | 1 (gr                   | AL (g) | E (g)        | Fc(g)       | 1-(9)    | ΔL (g)     | E (g) | Ex (g) | 480 |
| 2,00                 | 2,0                     | 0,05   | 0,00         | Walter Town | 10000000 | Daniel Co. | 1000  | 1000   | 1   |
| 5,00                 | 5,0                     | 0,09   | -0.04        | -0.04       | 5,0      | 0,06       | -0,01 | -0,01  | - 1 |
| 500.00               | 500,0                   | 0,06   | -0.01        | -0,01       | 500,0    | 80,0       | -0.03 | -0,03  | 1   |
| 2 000,00             | 2 000,0                 | 0,08   | -0.03        | -0.03       | 2 000,0  | 0,05       | 0,00  | 0,00   | - 1 |
| 5 000,01             | 5 000,0                 | 0,05   | -0.01        | -0.01       | 5 000.0  | 0.07       | -0.03 | -0,03  | 1   |
| 7 000,01             | 7 0000,0                | 0,07   | -0.03        | -0,03       | 7 000,0  | 0.09       | -0.05 | -0.05  | 2   |
| 10.000,02            | 9 999,7                 | 0,04   | -0.31        | -0.31       | 9,999,9  | 0,03       | -0,10 | -0.10  | 2   |
| 15 000,02            | 14 999.5                | 0,03   | -0.50        | -0,50       | 14 999,7 | 0,04       | 0.31  | -0,31  | 2   |
| 19 999,99            | 19,989,7                | 0,04   | -0.27        | -0,27       | 19 999,9 | 0,03       | -0.06 | -8,06  | 2   |
| 24 999,99            | 25 000,0                | 0,09   | -0.03        | -0,03       | 26 000,0 | 0.06       | 0,01  | 0,01   | 3   |
| 30 000,00            | 30.000,2                | 0,07   | 0,18         | 0,18        | 30 000.2 | 0,07       | 0.18  | 0.18   | 3   |
|                      |                         |        |              |             |          |            |       |        |     |

e m.p.: error máximo pormitió:

|  | R <sub>corregide</sub> | =    | R + 1,30x10 <sup>-6</sup> x R | 100 |  |
|--|------------------------|------|-------------------------------|-----|--|
|  |                        | Inco | ertidumbre                    |     |  |

R Loctura de la balanza

M: Name to consisten

Error encontrado

Error en or

Error corregio

R; en

FIN DEL DOCUMENTO



PT-05,F05 / Diciembre 2016 / Rev 02

Jefe de Vaboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Tell. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



#### LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



#### CERTIFICADO DE CALIBRACIÓN Nº LM-569-2022

Página: 1 de 3

Expediente T 526-2022 Fecha de Emisión 2022-09-12

SAKIARO E.I.R.L. 1. Solicitante

JR. TARAPOTO NRO. 413 - MORALES - SAN Dirección

2. Instrumento de Medición : BALANZA

OHAUS

Modelo SJX6201/E

Número de Serie C010087438

Alcance de Indicación 6 200 g

División de Escala de Verificación ( e )

División de Escala Real (d) : 0.1 g

Procedencia CHINA

NO INDICA Identificación

ELECTRÓNICA Tipo

Ubicación LABORATORIO

Fecha de Calibración 2022-09-08 La incertidumbre reportada en el presente certificado incertidumbre expandida de medición que resulta de multiplicar incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guia para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso. conservación. mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso Inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración agul declarados

#### 3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

Lugar de Calibración LABORATORIO de SAKIARO E.I.R.L.

JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

PUNTO DE PRECISIÓN SAC

PT-06.F06 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106.

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-569-2022

#### 5. Condiciones Ambientales

|                  | Mínima | Máxima |
|------------------|--------|--------|
| Temperatura      | 27,0   | 27,0   |
| Humedad Relativa | 72.0   | 73.0   |

#### 6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

| Trazabilidad | Patrón utilizado              | Certificado de calibración |  |
|--------------|-------------------------------|----------------------------|--|
| INACAL - DM  | Juego de pesas (exactitud F1) | PE22-C-1070-2022           |  |
| HANGAE - DW  | Pesa (exactitud F1)           | 1AM-0055-2022              |  |

#### 7. Observaciones

Antes del ajuste, la indicación de la balanza fue de 6 197,9 g para una carga de 6 200,0 g

El ajuste de la balanza se realizó con las pesas de Punto de Precisión S.A.C.
Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

#### 8. Resultados de Medición

| INSPECCIÓN VISUAL |       |                   |          |  |  |  |  |
|-------------------|-------|-------------------|----------|--|--|--|--|
| AJUSTE DE CERO    | TIENE | EBCALA.           | NO TIENS |  |  |  |  |
| OSCILACIÓN LIBRE  | TIENE | CURSOR            | NO TIENS |  |  |  |  |
| PLATAFORMA        | TIENE | SIST OF TRABA     | TENE     |  |  |  |  |
| NIVELACIÓN:       | TIENE | The second second |          |  |  |  |  |

#### ENSAYO DE REPETIBILIDAD

27,0 27.0

| Medición       | Carga L1= | 3,100,00 ( |       | Carga L2= | 6 200,01 | 9     |
|----------------|-----------|------------|-------|-----------|----------|-------|
| Nº.            | 1 (g)     | ΔL (g).    | E (g) | 1 (g)     | AL (g)   | E (g) |
| 1              | 3 100,2   | 0,08       | 0,17  | 6.200,0   | 0.06     | +0,02 |
| 2              | 3 100,2   | 0,05       | 0,20  | 6.200,0   | 0.08     | -0,04 |
| 3              | 3 100,2   | 0,07       | 0,18  | 6 200,0   | 0.05     | -0,01 |
| 4              | 3 100,2   | 0,09       | 0,16  | 8 200,0   | 0.07     | -0.03 |
| 5              | 3 100,2   | 0,06       | 0,19  | 6 200,0   | 0,09     | -0.06 |
| 6              | 3 100,2   | 0,08       | 0,17  | 6.200,0   | 0.06     | -0,02 |
| 7              | 3 100,2   | 0,05       | 0.20  | 8 200,0   | 0.08     | -0,04 |
| 8              | 3 100,2   | 0,07       | 0,18  | 6:200,0   | 0.05     | -0.01 |
| 9              | 3 100,2   | 0,09       | 0,16  | 6.200,0   | 0.00     | -0.04 |
| 10             | 3.100,2   | 0.08       | 0,17  | 8 200,0   | 0.08     | -0.02 |
| erencia Máxima |           |            | 0,34  |           |          | 0.04  |
| ror máximo pem | ilido ±   | 0,3 g      |       | 1         | 0,3      | g     |



PT-06 F08 / Diciembre 2016 / Rev 02

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

WWW.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-569-2022

Página: 3 de 3

2 5 3 1 4

#### ENSAYO DE EXCENTRICIDAD

77.0 Final 27.0

| Posición      | ucion             |       | Determinación de E <sub>4</sub> |         | Determinación del Error corregido |               |         |       |       |
|---------------|-------------------|-------|---------------------------------|---------|-----------------------------------|---------------|---------|-------|-------|
| Carga         | Carga minima (gi) | 1.000 | AL (g)                          | fin (g) | Carga L-(g)                       | F (g):        | AL (30) | E (g) | Er in |
| 1             |                   | 1.0   | 0,06                            | -0.01   |                                   | 2 000,2       | 0,08    | 0,17  | 0,18  |
| 2             |                   | 1,0   | 80.0                            | -0,03   |                                   | 2 000 1       | 0.05    | 0.10  | 0.13  |
| 3             | 1.00              | 1,0   | 0,05                            | 0.00    | 2 000,00                          | 2 000,2       | 0,07    | 0.18  | 0.18  |
| 4             |                   | 1,0   | 0,09                            | -0,04   |                                   | 2.000,1       | 0,06    | 0,00  | 0.13  |
| 5             |                   | 1.0   | 0.06                            | -0.01   |                                   | 2 000.1       | 0.09    | 0.06  | 0,07  |
| valor entre f | Dy iDe            |       |                                 |         | Error máxim                       | o permitido : | +       | 0.3 m |       |

#### ENSAYO DE PESAJE

Inicial Final

|          |         | -       | remore to   | 21.0   | 21,0    |             |       |        |       |
|----------|---------|---------|-------------|--------|---------|-------------|-------|--------|-------|
| Carga L  |         | CRECIEN | TE8         | 0      |         | DECRECI     | ENTES | 100    | 1 emp |
| (g)      | 1.193   | AL. (g) | <b></b> (g) | Ec (g) | (10)    | AL (9)      | E (g) | Ec (g) | (9)   |
| 1.00     | 1,0     | 0,05    | 0,00        |        |         | Charles and |       |        |       |
| 5,00     | 5,0     | 0,09    | -0.04       | -0.04  | 5,0     | 0,06        | 0,01  | -0,01  | 0,1   |
| 20,00    | 20,0    | 0,08    | -0.03       | -0,03  | 20.0    | 0.08        | -0.03 | -0,03  | 0,1   |
| 50,00    | 50,0    | 0,06    | -0.01       | -0.01  | 50,0    | 0.06        | 0.00  | 0.00   | 0,1   |
| 500,00   | 500,0   | 0,08    | -0.03       | -0.03  | 0,006   | 0.09        | -0.04 | -0.04  | 0,1   |
| 1 000,00 | 1 000,0 | 0,05    | 0,00        | 0.00   | 1 000,0 | 0,06        | -0.01 | -0,01  | 0,2   |
| 1.500,00 | 1 500,1 | 0,07    | 0.08        | 0.08   | 1 500,0 | 80,0        | -0.03 | -0.03  | 0,2   |
| 2 000,00 | 2 000,2 | 0.09    | 0,16        | 0.16   | 2 000.1 | 0.07        | 0,08  | 0,08   | 0,2   |
| 5.000,01 | 5 000,1 | 0,06    | 0,08        | 0.08   | 5 000,0 | 0.06        | -0.01 | -0.01  | 0,3   |
| 6 000,01 | 6,000,0 | 0,08    | -0.04       | -0.04  | 6 000.1 | 0.09        | 0,05  | 0.05   | 0.3   |
| 6 200,01 | 6 200,0 | 0,05    | -0.01       | -0,01  | 6 200.0 | 0.05        | -0.01 | -0.01  | 0.3   |

e.m.p.: error máximo permitido

| R <sub>corregide</sub> = R - 2,47x10 <sup>-8</sup> x F |  |
|--------------------------------------------------------|--|
| Incertidumbre                                          |  |

R Lecture de la balanca

Mr. Charleston

Error encontrado

E Emor on o

Empropriegati

R: en g

FIN DEL DOCUMENTO



PT-05.F06 / Diciembre 2016 / Rev.02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

WWW.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



#### LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



#### CERTIFICADO DE CALIBRACIÓN Nº LM-567-2022

Página: 1 de 3

 Expediente
 1 T 526-2022

 Fecha de Emisión
 2022-09-12

1. Solicitante : SAKIARO E.I.R.L.

Dirección JR. TARAPOTO NRO. 413 - MORALES - SAN

MARTIN

2. Instrumento de Medición : BALANZA

Marca : T-SCALE

Modelo : NHB-600

Número de Serie : 105716235011

Alcance de Indicación : 600 g

División de Escala : 0,01 g

de Verificación ( e )

División de Escala Real (d) : 0,01 g

Procedencia : NO INDICA

Identificación : NO INDICA

Tipo : ELECTRÓNICA

Ibicación : LABORATORIO

Fecha de Calibración : 2022-09-08

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guia para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

#### 3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-011 4ta Edición, 2010; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II del SNM-INDECOPI.

Lugar de Calibración LABORATORIO de SAKIARO E.I.R.L. JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN



PT-06 F06 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PRCHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



## LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-567-2022

Pagina: 2 de 3

#### 5. Condiciones Ambientales

|                  | Mínima | Máxima |
|------------------|--------|--------|
| Temperatura      | 26,9   | 26,9   |
| Humedad Relativa | 72.0   | 73.0   |

#### 6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

| Trazabilidad | Patrón utilizado              | Certificado de calibración |
|--------------|-------------------------------|----------------------------|
| INACAL - DM  | Juego de pesas (exactitud F1) | PE22-C-1070-2022           |

#### 7. Observaciones

No se realizó ajuste a la balanza antes de su calibración.

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO",

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

| INSPECCIÓN VISUAL |       |               |          |  |  |  |
|-------------------|-------|---------------|----------|--|--|--|
| AJUSTE DE CERTO   | TIENE | ESCALA        | NO TIENE |  |  |  |
| OSCILACIÓN LIBRE  | TIENE | CURSOIL       | NO TIENE |  |  |  |
| PLATAFORMA        | TIENE | SIST DE TRABA | NO TENS  |  |  |  |
| NIVELACIÓN        | THESE | -             |          |  |  |  |

#### ENSAYO DE REPETIBILIDAD

|   |           |         | inidal | First.    |         |       |
|---|-----------|---------|--------|-----------|---------|-------|
|   |           | Temp. ( | C 28,9 | 28,9      |         |       |
|   | Carga L1= | 300,000 | g      | Carga L2= | 600,000 | g     |
| ă | 1 (g)     | ΔL (g)  | E(g)   | 1 (g)     | ΔL (g)  | E (g) |
|   | 300,00    | 0,007   | -0,002 | 600,01    | 0.008   | 0,007 |
| J | 300,00    | 0,005   | 0,000  | 900,000   | 0,005   | 0.000 |
|   | 300,00    | 0,009   | -0,004 | 600,02    | 0,009   | 0.015 |
|   | 300,00    | 0,006   | -0,001 | 600.02    | 0,007   | 0.018 |
|   | 300,00    | 0,008   | -0,003 | 600,02    | 0,005   | 0.020 |
| 3 | 300,00    | 0,005   | 0,000  | 600,01    | 0.008   | 0.007 |
|   | 300,00    | 0,007   | -0,002 | 10,000    | 0,006   | 0,009 |
|   | 300.00    | 0.000   | 0.004  | 800 B4    | 0.007   | 0.006 |

300,00 0,006 600,01 0.009 0.005 0.003 600,01 0,008 0.009 0.004 Diferencie Méxima 0.020 0.03 0.03 g

PUNTO DE SAC

PT-06 F05 / Diciembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntadeprecision.com E-mail: info@puntadeprecision.com / puntadeprecision@hatmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



#### LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO N° LC - 033



CERTIFICADO DE CALIBRACIÓN Nº LM-567-2022 Página: 3 de 3



#### ENSAYO DE EXCENTRICIDAD

tricial Final

| Posición       |                  | leterminaci | det de E. |        | Determinación del Error corregido |               |        |        |        |  |  |
|----------------|------------------|-------------|-----------|--------|-----------------------------------|---------------|--------|--------|--------|--|--|
| de la<br>Cerga | Carga mínima (g) | 1 ((g)      | AL (g)    | En (g) | Garga I. (g)                      | 1 (g)         | AL (g) | Eigi   | Ec (g) |  |  |
| 1              |                  | 0.10        | 0,006     | -0,001 |                                   | 200.00        | 0,009  | -0,004 | -0,003 |  |  |
| 2              | 200000           | 0,10        | 0.008     | -0.003 | No.                               | 200.00        | 0,006  | -0.001 | 0.002  |  |  |
| 1              | 0,100            | 0.10        | 0.006     | 0.000  | 200,000                           | 200,00        | 0,008  | -0.003 | -0.003 |  |  |
| 4              |                  | 0,10        | 0.007     | -0.002 |                                   | 200,00        | 0,005  | 0,000  | 0.002  |  |  |
| 5              |                  | 0.09        | 0,003     | -0.008 |                                   | 200,00        | 0,007  | -0.002 | 0,006  |  |  |
| mire agen i    | 1 - +0.a         | -           |           |        | Econe mitules                     | a nassitida : |        | D 09 a |        |  |  |

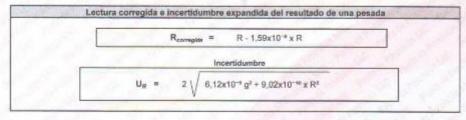
#### ENSAYO DE PESAJE

Carga L CRECIENTES (g) 1 im AL (m) E (g) Ec (g) 1(0) AL (g) E (9) 0.100 0,10 0,006 -0.004 0,008 0,000 0.004 0,006 0,20 0.001 0,003 0.01 5,000 0,008 0.001 5.00 0,008 -0,003 8,001 0,01 20,000 20,00 0,006 -0.001 0,003 0.005 0.000 50,000 50,00 0.009 -0.004 0.000 50,00 0,007 -0,002 0,002 0,01 100,000 100,00 0,005 0,000 0.004 100,00 0.009 -0.004 0,000 0,02 150,000 0.007 -0.002 150,00 0.002 150,00 0.006 -0.001 0.003 0,02 200,000 0.009 200,00 -0.0040.000 0.003 200,00 0.008 0.001 0.02 400,001 400,01 0,006 0,009 400,00 0.005 0.000 0,003 0,03

0.011

0.014

0.010


e.m.p.: error māximo permitido

500,01

600.01

500,000

600,000



R . Locture de la belance

AL Carps Incrementate

Error encontrado

500,01

0.007

0.008

Error on oc

Error corregi

R; en g

0,008

0.005

FIN DEL DOCUMENT



PT-06 F05 / Oidembre 2016 / Rev 02

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PRCHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



# PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN

#### CERTIFICADO DE CALIBRACIÓN Nº LL - 3276 - 2022

Página 11 de 2

: T 619-2022 Expediente Fecha de Emisión : 2022-10-28

1. Solicitante : SAKIARO E.I.R.L.

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

: EL112595

TAMIZ 2. Instrumento de Medición

Tamiz N° : 1/2 pulg Diametro de Tamiz : 8 pulg

: HUMBOLDT Marca

Material 1 BRONCE

DORADO Color

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

Lugar y fecha de Calibración
 JR YARAPOTO NRO, 413 - MORALES - SAN MARTIN
 21 - OCTUBRE - 2022

#### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

#### 5. Trazabilidad

Soria

| INSTRUMENTO | MARCA  | CERTIFICADO            | TRAZABILIDAD          |
|-------------|--------|------------------------|-----------------------|
| PIE DE REY  | INSIZE | DM22 - C - 0234 - 2022 | SISTEMA INTERNACIONAL |

#### 6. Condiciones Ambientales

|                | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 26,4    | 26,4  |
| Humedad %      | 76      | 745   |

#### 7. Observaciones

- Con fines de identificación se ha colocado una efiqueta aut
- certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

  (") La desviación estandar encontrada no excede a la desviación estandar máxim a de la tabla 1 según la norma ASTM E11-09

BORATOR PUNTO DE PRECISION S A C

Jefe de l ing. Lus-Loayza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3276 - 2022

|       |       |             |       |        |        |       |       |            |       |          |          |       | (")                              |                        |  |
|-------|-------|-------------|-------|--------|--------|-------|-------|------------|-------|----------|----------|-------|----------------------------------|------------------------|--|
| 3/    | 000   | September 1 | М     | EDIDAS | TOMADA | AS    |       | No. of Lot |       | PROMEDIO | ESTÁNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>ESTANDAR |  |
|       | mm    |             |       |        |        |       |       |            |       | mm       | mm       | mm    | mm                               | mm                     |  |
| 12,41 | 12,40 | 12,43       | 12,45 | 12.44  | 12,43  | 12.38 | 12,44 | 12,43      | 12.42 |          |          |       |                                  |                        |  |
| 12,38 | 12,44 | 12,43       | 12,40 | 12,43  | 12,44  | 12,40 | 12,43 | 12,38      | 12,44 |          | 1 12,50  |       | 0.302                            | 0.023                  |  |
| 12,40 | 12,43 | 12,43       | 12,44 | 12,38  | 12,38  | 12,43 | 12,40 | 12,44      | 12,40 |          |          | 0.00  |                                  |                        |  |
| 12,40 | 12.44 | 12,38       | 12,40 | 12,43  | 12,43  | 12.38 | 12,38 | 12,43      | 12,38 | 12,41    |          | -0.09 |                                  |                        |  |
| 12,43 | 12,40 | 12,44       | 12,43 | 12,44  | 12,40  | 12,43 | 12,40 | 12,44      | 12,40 |          |          | 100   |                                  |                        |  |
| 12,38 | 12,44 | 12,38       | 12,43 | 12.40  | 12,43  | 12,44 | 12,35 | 12,38      | 12.43 |          | A. Car   |       |                                  | A. of                  |  |
|       |       |             |       |        |        |       |       |            |       |          |          |       |                                  |                        |  |





Jelle de Laboratorio Ing Luis Loayza Capcha Reg. CIP N° 152631



# PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN

#### CERTIFICADO DE CALIBRACIÓN Nº LL - 3277 - 2022

Fecha de Emisión

: 2022-10-28

1. Solicitante

: SAKIARO E.I.R.L.

Dirección

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

2. Instrumento de Medición

Tamiz Nº

: TAMIZ : 1 pulg

Diametro de Tamiz

: 8 pulg

: HUMBOLDT

: EL112642

Material

: BRONCE

: DORADO

El Equipo de medición con el modelo y número de serie abajo Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del Instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aqui declarados.

Lugar y fecha de Calibración
 JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN
 21 - OCTUBRE - 2022

#### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, toma como referencia la norma ASTM E 11-09.

#### 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO            | TRAZABILIDAD          |
|-------------|--------|------------------------|-----------------------|
| PIE DE REY  | INSIZE | DM22 - C - 0234 - 2022 | SISTEMA INTERNACIONAL |

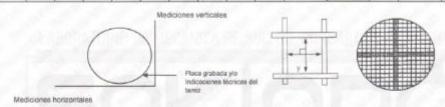
#### 5. Condiciones Ambientales

|                | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 26,4    | 26,4  |
| Hismodad %     | 76      | 76    |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el núme certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la de de la tabla 1 según la norma ASTM E11-09

BORATOR PUNTO DE


Jete de L Ing. Luis Loavza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN № LL - 3277 - 2022

|       | MEDIDAS TOMADAS |       |       |       |       |       |       | PROMEDIO | ESTÁNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESTANCIÓN |    |       |  |
|-------|-----------------|-------|-------|-------|-------|-------|-------|----------|----------|-------|----------------------------------|------------|----|-------|--|
| 200   |                 | 397   | 118   | m     | m     |       | 37    |          |          | mm    | mm                               | mm         | mm | mm    |  |
| 24,98 | 25,11           | 25,01 | 25,12 | 25,14 | 25,16 | 24,92 | 24,93 | 25,08    | 25,01    | T. S  | 18                               | -          |    |       |  |
| 25,08 | 24,98           | 25,14 | 25,11 | 25,08 | 25,11 | 25,14 | 24.98 | 25,11    | 25,14    |       |                                  |            |    |       |  |
| 25,11 | 25,08           | 25,14 | 24,98 | 24,98 | 25.08 | 25,11 | 25.08 | 25,14    | 24,98    | 25,07 | 25,00                            | 0.07       | 1  | 0.069 |  |
| 25,08 | 24,98           | 25,11 | 25.08 | 25,11 | 25,14 | 24.98 | 24,98 | 25,11    | 25,11    |       | 100                              |            |    |       |  |



PUNTO DE PRECISIÓN S A C

Reg. CIP N



# PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN

#### CERTIFICADO DE CALIBRACIÓN Nº LL - 3278 - 2022

Fecha de Emisión

: T 619-2022 : 2022-10-28

1. Solicitante

: SAKIARO E.I.R.L.

Dirección

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

Tamiz Nº

: TAMIZ : 3/4 pulg

Diametro de Tamiz

2. Instrumento de Medición

: 8 pulg

Marca

: HUMBOLDT

: EL112629

Material

: BRONCE

Color

: DORADO

El Equipo de medición con el modelo y número de serie abajo, Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o s reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración equi declarados.

Lugar y fecha de Galibración
 JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN 21 - OCTUBRE - 2022

#### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, toma como referencia la norma ASTM E 11-09.

#### 5. Trazabilidad

| INSTRUMENTO | MARGA  | CERTIFICADO            | TRAZABILIDAD          |
|-------------|--------|------------------------|-----------------------|
| PIE DE REY  | INSIZE | DM22 - C - 0234 - 2022 | SISTEMA INTERNACIONAL |

#### 6. Condiciones Ambientales

|                 | INSCIAL | FINAL |  |  |
|-----------------|---------|-------|--|--|
| Temperatura "C" | 26,4    | 26,4  |  |  |
| Humodad %       | 76      | 76.   |  |  |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la di de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE

Ing. Lills Łoayza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3278 - 2022

| 0     | MEDIDAS TOMADAS |       |       |       |       |       |       |       |       | PROMEDIO | ESTÁNDAR | ERROR | DESWACIÓN<br>ESTANDAR<br>MÁXIMA | DESMACIÓN<br>ESTANDAR |
|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|-------|---------------------------------|-----------------------|
|       |                 |       |       | m     | m     |       |       |       |       | mm       | mm       | mm    | mm                              | min                   |
| 19,09 | 19,09           | 18,97 | 18,97 | 19,06 | 19,11 | 19,24 | 19,10 | 18,92 | 19,05 | 1        |          |       |                                 |                       |
| 19,05 | 19.24           | 19,05 | 18.97 | 19,24 | 19.24 | 19,10 | 19,24 | 18,97 | 19,10 | 100      |          | 1     | 1                               |                       |
| 18,97 | 19,05           | 18,97 | 19.24 | 19,10 | 18,97 | 18,97 | 19,05 | 19,10 | 18,97 | 19,09    | 19,00    | 0.09  | 0,446                           | 0,105                 |
| 19,24 | 18,97           | 19,24 | 19.10 | 18.97 | 19.05 | 19,24 | 19,10 | 19,24 | 18,97 |          | 37.00    |       |                                 |                       |
| 19,06 | 19,24           | 19,10 | 19,05 | 19.24 | 19,24 | 19.10 | 18,97 | 18,97 | 19,06 | 1 8      |          |       |                                 |                       |





Ing. Lois Loayza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN

#### CERTIFICADO DE CALIBRACIÓN Nº LL - 3279 - 2022

Página 1 de 2

Expediente Fecha de Emisión : T 619-2022 : 2022-10-28

1. Solicitante

: SAKIARO E.I.R.L.

Dirección

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

2. Instrumento de Medición : TAMIZ

10000

Tamiz N°

: 3/8 pulg

Diametro de Tamiz.

: 8 pulg

Marca

: HUMBOLDT

Secie

: EL108399

parameter day

: BRONCE

color

El Equipo de medición con el modelo y número de sene abajo, indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

#### 3. Lugar y fecha de Calibración

JR. TARAPOTO NRO, 413 - MORALES - SAN MARTIN

21 - OCTUBRE - 2022

#### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, fornando como referencia la norma ASTM E 11-09.

#### 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO            | TRAZABILIDAD          |  |  |
|-------------|--------|------------------------|-----------------------|--|--|
| PIE DE REY  | INSIZE | DM22 - C - 0234 - 2022 | SISTEMA INTERNACIONAL |  |  |

#### 6. Condiciones Ambientales

|                | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura °C | 26,4    | 26,4  |
| Humeded %      | 76      | 76    |

#### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SA C

Jene de Laboratorio Ing. Luis Loayza Capcha Reg. CIP N° 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

|                                                   | MEDIDAS TOMADAS |         |        |        |      |      |       |      | PROMEDIO | ESTÁNDAR | ERROR        | DESMACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIÓN<br>I BYANDAR |       |
|---------------------------------------------------|-----------------|---------|--------|--------|------|------|-------|------|----------|----------|--------------|---------------------------------|-------------------------|-------|
| 9.61 9.59 9.59 9.61 9.58 9.61 9.58 9.62 9.59 9.68 |                 |         |        |        |      |      |       |      | mm       | mm       | mm           | mm                              | min                     |       |
| 2,01                                              | ajuo.           | - 52,00 | 10,001 | . 0,00 | 1000 | 0,00 | .0,01 | 0,00 | 0,00     | 00       | 100          |                                 | 17                      |       |
| 9,66                                              | 9,59            | 9,62    | 9.61   | 9,62   | 9,61 | 9,62 | 9,66  | 9,61 | 9.62     |          |              | 1                               | 1000                    |       |
| 9,62                                              | 9,61            | 9,61    | 9,82   | 9,61   | 9,68 | 9,66 | 9,61  | 9,62 | 9,61     | 1        | 97           |                                 |                         | 73    |
| 9,61                                              | 9,62            | 9,66    | 9.51   | 9,62   | 9.62 | 9,61 | 9,62  | 9,61 | 9,62     | 9,62     | 9,50         | 0,12                            | 0,237                   | 0,023 |
| 9,62                                              | 9,61            | 9,82    | 9.01   | 9,66   | 9,66 | 9,62 | 9,66  | 9,66 | 9,61     |          |              | 1                               |                         | 250   |
| 9,59                                              | 9,66            | 9,86    | 9.62   | 9,61   | 9.62 | 9,50 | 9,61  | 9,62 | 9,66     |          | The state of |                                 | mil                     | 10    |
| 9,61                                              | 9,62            | 9,61    | 9,61   | 9,62   | 9,59 | 9,68 | 9,62  | 9,61 | 9,59     |          | THE STATE OF |                                 |                         |       |



SORATOR PRECIBIO

Jefe de Uaboratorio Ing. Lois-toayza Capcha Reg. CIP Nº 152631



## PUNTO DE PRECISIÓN S.A.C.

LABORATORIO DE CALIBRACIÓN

#### CERTIFICADO DE CALIBRACIÓN Nº LL - 3280 - 2022

Expediente T 619-2022 Fecha de Emisión ± 2022-10-28

SAKIARO ELR.L. 1. Solicitante

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN Dirección

2. Instrumento de Medición

: HUMBOLDT

: EL112828

: BRONCE Material

: DORADO

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadequado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Lugar y fecha de Galibración
 JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN
 21 - OCTUBRE - 2022

#### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tom como referencia la noma ASTM E 11-09.

#### 5. Trazabilidad

| INSTRUMENTO | MARCA  | CERTIFICADO            | TRAZABILIDAD          |
|-------------|--------|------------------------|-----------------------|
| PIE DE REY  | INSIZE | DM22 - C - 0234 - 2022 | SISTEMA INTERNACIONAL |

#### 5. Condiciones Ambientales

|               | INICIAL | FINAL |
|---------------|---------|-------|
| Temperatum "C | 26,4    | 26,4  |
| Humedad %     | 78      | 76    |

- Con fines de identificación se ha colocado una efiquets autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la desviación estandar máxin de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE

Jefe de Vaboratorio Ing. Lula Loayza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C.

## LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3280 - 2022

Página 2 de 2

#### 8. Resultado

| MEDIDAS TOMADAS |      |      |      |      |      |      |      | PROMEDIO | ESTÁNDAR<br>mm | ERROR | DESYNACIÓN<br>ESTANDAR<br>MÁXIMA | DEBYACION<br>ESTANCAR<br>MM |      |      |
|-----------------|------|------|------|------|------|------|------|----------|----------------|-------|----------------------------------|-----------------------------|------|------|
| mm              |      |      |      |      |      |      |      |          |                |       |                                  |                             |      |      |
| 4,81            | 4,81 | 4,86 | 4.85 | 4,85 | 4,87 | 4,90 | 4,84 | 4,82     | 4,87           | 4,87  | 100                              |                             | 0,13 | 0.02 |
| 4,87            | 4,90 | 4,90 | 4.85 | 4,86 | 4,90 | 4,85 | 4,85 | 4,86     | 4,85           |       | 4.75                             | 0                           |      |      |
| 4,90            | 4,88 | 4,88 | 4.87 | 4.85 | 4,87 | 4.90 | 4.86 | 4,90     | 4,88           |       |                                  |                             |      |      |
| 4,86            | 4,85 | 4,90 | 4,90 | 4,86 | 4,88 | 4,87 | 4,90 | 4,86     | 4,90           |       |                                  |                             |      |      |
| 4,87            | 4,88 | 4,88 | 4.85 | 4,85 | 4,90 | 4,90 | 4,85 | 4,82     | 4,88           |       |                                  |                             |      |      |
| 4,98            | 4,87 | 4,90 | 4.86 | 4.87 | 4,87 | 4,86 | 4,87 | 4,90     | 4,85           |       |                                  | 0.12                        |      |      |
| 4,85            | 4,86 | 4,85 | 4,85 | 4,88 | 4,90 | 4,82 | 4,85 | 4,86     | 4,90           |       |                                  |                             |      |      |
| 4,86            | 4,87 | 4,90 | 4.87 | 4,87 | 4,82 | 4,86 | 4,90 | 4,90     | 4,86           |       |                                  |                             |      |      |
| 4,85            | 4,86 | 4,85 | 4,85 | 4,88 | 4,90 | 4,90 | 4,85 | 4,87     | 4,87           |       |                                  |                             |      |      |
| 4,86            | 4,85 | 4,90 | 4,87 | 4,85 | 4,85 | 4,88 | 4,88 | 4,90     | 4,82           |       | A                                |                             | 1    |      |



PHYSEL DOCUMENTS



sefe de Laboratorio ing. Curs Loayza Capoha Rég. CIP N° 152531



LABORATORIO DE CALIBRACIÓN

## CERTIFICADO DE CALIBRACIÓN Nº LL - 3281 - 2022

Página : 1 de 2

: T 619-2022 Fecha de Emisión : 2022-10-28

1. Solicitante : SAKIARO E.I.R.L.

Dirección : JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

2. Instrumento de Medición TAMIZ

Tamiz N° : 8

Diametro de Tamiz : 8 pulg

: HUMBOLDT

: EL114682

Material BRONCE

Color DORADO

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión B.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inedecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

# Lugar y fecha de Calibración JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN 21 - OCTUBRE - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tom como referencia la norma ASTM E 11-09.

### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO      | TRAZABILIDAD          |
|----------------------|--------|------------------|-----------------------|
| RETICULA DE MEDICIÓN | INSIZE | LLA - 088 - 2022 | SISTEMA INTERNACIONAL |

### 6. Condiciones Ambientales

|                | INICIAL | FINAL |  |  |
|----------------|---------|-------|--|--|
| Temperature "C | 26,5    | 26.5  |  |  |
| Humeded %      | 76      | 76    |  |  |

### 7. Observaciones

- Con tines de identificación se ha colocado una etiqueta autoadhesiva de cr
- certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C

  (1) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE

atorio ing Lois Loayza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3281 - 2022

|       | MEDIDAS TOMADAS |       |       |       |       |       |       |       |       |        | ESTÁNDAR           | ERROR | DESVIACION<br>ESTANDAR<br>MÁXIMA | DESVIACION   |
|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------------------|-------|----------------------------------|--------------|
|       | -               |       | -     | m     | m     | 100   |       |       |       | mm     | mm                 | mm    | mm                               | mm           |
| 2,315 | 2,406           | 2,431 | 2,444 | 2,435 | 2,411 | 2.338 | 2,379 | 2,411 | 2,393 |        |                    |       |                                  |              |
| 2,408 | 2,379           | 2,444 | 2,379 | 2,406 | 2.444 | 2,379 | 2,444 | 2,379 | 2,411 |        | 17.00              |       |                                  |              |
| 2,379 | 2,406           | 2,379 | 2,444 | 2,444 | 2,379 | 2,406 | 2,435 | 2,408 | 2,379 |        | 18                 |       |                                  |              |
| 2,444 | 2,444           | 2,435 | 2,379 | 2,411 | 2.406 | 2,411 | 2,408 | 2,444 | 2,444 |        | J. W. W.           |       |                                  | 1            |
| 2,406 | 2,379           | 2,406 | 2,411 | 2,444 | 2.411 | 2,435 | 2,444 | 2,406 | 2,379 | 1      | 100                |       |                                  |              |
| 2,444 | 2.435           | 2,411 | 2,444 | 2,411 | 2,408 | 2,411 | 2,406 | 2,379 | 2,406 | 2,410  | 2,360              | 0,050 | 0,077                            | 0,026        |
| 2,406 | 2.379           | 2.444 | 2,435 | 2.406 | 2.379 | 2,444 | 2,379 | 2,408 | 2,379 |        | 100                |       |                                  |              |
| 2,444 | 2,435           | 2,411 | 2,379 | 2,444 | 2.435 | 2,405 | 2,411 | 2.411 | 2,444 | L. ITT | STOR               | 10    |                                  | The state of |
| 2,379 | 2,444           | 2,406 | 2,408 | 2,411 | 2,379 | 2,411 | 2,406 | 2,379 | 2,379 |        | THE REAL PROPERTY. |       |                                  | 100          |
| 2,406 | 2,379           | 2,444 | 2,435 | 2,379 | 2.406 | 2,444 | 2,411 | 2,444 | 2,411 |        | 10                 |       | ME                               |              |
| 2,379 | 2,406           | 2,406 | 2,379 | 2,444 | 2,379 | 2.406 | 2,379 | 2,411 | 2,435 |        | 1076               |       | 100                              |              |
|       |                 |       |       |       |       |       |       |       |       |        |                    |       |                                  |              |



BORATOR PUNTO DE PRECISION S A C

Reg. CIP Nº 152631



LABORATORIO DE CALIBRACIÓN

### CERTIFICADO DE CALIBRACIÓN Nº LL - 3284 - 2022

Fecha de Emisión

T 619-2022 : 2022-10-28

1. Solicitante

: SAKIARO E.I.R.L.

Dirección

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

2. Instrumento de Medición

: 8 pulg

: HUMBOLDT

: EL112856

: BRONCE

: DORADO

El Equipo de medición con el modelo y número de serie abajo, indicados ha sido celibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del Instrumento de medición o a reglamentaciones vigentes

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aquí declarados.

### 3. Lugar y fecha de Calibración

JR TARAPOTO NRO. 413 - MORALES - SAN MARTIN 21 - OCTUBRE - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tom como referencia la norma ASTM E 11-09.

### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO      | TRAZABILIDAD          |
|----------------------|--------|------------------|-----------------------|
| RETICULA DE MEDICIÓN | INSIZE | LLA - 068 - 2022 | SISTEMA INTERNACIONAL |

### 5. Condiciones Ambientales

|                 | INICIAL | FINAL |  |  |  |
|-----------------|---------|-------|--|--|--|
| Temperatura "C. | 26,7    | 26.7  |  |  |  |
| Humedad %       | 74      | 74    |  |  |  |

- Con fines de identificación se ha coloçado una efiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar enconfrada no excede a la desviación estandar máxim e de la tabla 1 según la norma ASTM E11-09

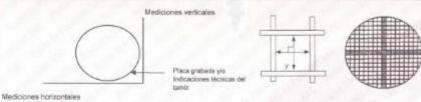
BORATOR PUNTO DE

Jefe de Laboratorio Ing. Lbis Loayza Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Teil. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.




LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3284 - 2022

Página 2 de 2

### 8. Resultados

| (September 1997) | extends a       |       |       |       |       |       |       |       |       |          |              |       | (*)                             |            |
|------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|--------------|-------|---------------------------------|------------|
|                  | MEDIDAS TOMADAS |       |       |       |       |       |       |       |       | PROMEDIO | ESTÁNDAR     | ERROR | DEDVACION<br>ESTANDAR<br>MÁXIMA | DEBVIACIÓN |
| 10/              |                 |       | 0.00  | 100   | inn . | 135   |       |       |       | TINTO    | mm           | mm    | mm                              | mm         |
| 1,181            | 1,141           | 1,221 | 1,202 | 1,141 | 1,121 | 1,161 | 1,220 | 1,181 | 1,202 |          |              |       | 6                               |            |
| 1,202            | 1,202           | 1,161 | 1,220 | 1,202 | 1,220 | 1,202 | 1,220 | 1,221 | 1,181 |          | AT           |       |                                 | 1          |
| 1,221            | 1,221           | 1,220 | 1,181 | 1,221 | 1,181 | 1,221 | 1,181 | 1,202 | 1,220 |          | 1800         |       |                                 | 1.0        |
| 1,202            | 1,202           | 1,221 | 1,202 | 1,220 | 1,202 | 1,161 | 1,161 | 1,220 | 1,221 |          | 1000         |       |                                 |            |
| 1,181            | 1,221           | 1,220 | 1,202 | 1,161 | 1,221 | 1,181 | 1,181 | 1,221 | 1,161 |          |              |       |                                 | 9/3        |
| 1,202            | 1,181           | 1,181 | 1,181 | 1,181 | 1,220 | 1,221 | 1,202 | 1,202 | 1,220 |          |              |       |                                 |            |
| 1,221            | 1,161           | 1,220 | 1,202 | 1,202 | 1,161 | 1,220 | 1,221 | 1,181 | 1,181 |          |              |       |                                 | 1          |
| 1,202            | 1,221           | 1,181 | 1,161 | 1,220 | 1,181 | 1,181 | 1,161 | 1.220 | 1,221 | 1,198    | 1,180        | 0.018 | 0.051                           | 0.022      |
| 1,221            | 1,161           | 1,202 | 1,181 | 1,221 | 1,221 | 1,202 | 1,221 | 1,181 | 1,202 |          |              |       |                                 |            |
| 1,181            | 1,221           | 1,181 | 1,221 | 1,202 | 1,181 | 1,181 | 1,220 | 1,202 | 1,221 |          | 1000         |       |                                 |            |
| 1,202            | 1.221           | 1,202 | 1,161 | 1,161 | 1.202 | 1,221 | 1,181 | 1,181 | 1,181 |          |              |       |                                 | 16.        |
| 1,221            | 1,161           | 1,221 | 1,181 | 1,202 | 1,181 | 1,221 | 1,181 | 1,202 | 1,221 |          | The state of |       |                                 |            |
| 1,202            | 1,202           | 1,181 | 1,221 | 1,181 | 1,161 | 1,220 | 1,221 | 1,220 | 1,202 |          | PL X         |       |                                 | 11         |
| 1,221            | 1,221           | 1,202 | 1,181 | 1,202 | 1,202 | 1,181 | 1,202 | 1,202 | 1,221 |          | P. S.        |       |                                 |            |
| 1,181            | 1,202           | 1,221 | 1,221 | 1,220 | 1,221 | 1,202 | 1,221 | 1,181 | 1,181 |          |              |       |                                 | -          |



FIN DEL DOCUMENT



Jelie de Laboratório Ing. Luis Loeyza Capcha Reg. CIP Nº 152631



LABORATORIO DE CALIBRACIÓN

### CERTIFICADO DE CALIBRACIÓN Nº LL - 3286 - 2022

Página : 1 de 2

Expediente Fecha de Emisión : T 619-2022 : 2022-10-28

SAKIARO ELR.L.

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

2. Instrumento de Medición

Diametro de Tamiz

Marca

HUMBOLDT : EL113306

1 5 pulg

Sene.

: BRONCE

El Equipo de medición con el modelo y número de secie abajo, Indicados ha sido calibrado probado y verificació usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está un función del uso, conservación y mantenimiento del instrumento de medición o a del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aqui declarados.

3. Lugar y fecha de Calibración "R. TARAPOTO NRO. 413 - MORALES - SAN MARTIN 21 - OCTUBRE - 2022

Culibración efectuada por comparación directa con patrones de longitud calibrados, tomo como referencia la norma ABTM E 11-09.

### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO  | TRAZABILIDAD          |
|----------------------|--------|--------------|-----------------------|
| RETICULA DE MEDICIÓN | INSIZE | LLA+068+2022 | BISTEMA INTERNACIONAL |

### 6. Condiciones Ambientales

|                | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura *C | 26,7    | 26,7  |
| Humedad %      | 74      | 74    |

### 7. Observaziones

- Con fines de identificación se ha colocado una etiqueta autoachesiva de color vi certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la des risción estandar máxima de la tabla 1 según la norma ASTM E11-09.

BORATOR PUNTO DE SAC

Ing. Luis Loayza Capcha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3286 - 2022

Página : 2 de 2

|     |     |     |     |        |       |     |     |     |     |          |          |       | (*)                              |           |
|-----|-----|-----|-----|--------|-------|-----|-----|-----|-----|----------|----------|-------|----------------------------------|-----------|
|     |     |     | м   | EDIDAS | TOMAD | AS  |     |     |     | PROMEDIO | ESTÁNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MAJONA | DESVINCIÓ |
|     | -   |     | 100 | - pr   | TT.   | 1   |     |     |     | pm.      | pre      | sam   | μm                               | μm        |
| 621 | 581 | 601 | 601 | 601    | 641   | 621 | 582 | 641 | 601 | -        | 1000     |       | 100                              | 7 3       |
| 621 | 582 | 621 | 581 | 621    | 821   | 581 | 621 | 621 | 581 | 1        |          |       | 19 6                             |           |
| 582 | 581 | 582 | 621 | 581    | 582   | 621 | 582 | 581 | 621 |          | T of the | 6     |                                  |           |
| 581 | 821 | 562 | 621 | 581    | 621   | 582 | 581 | 601 | 581 |          |          |       |                                  | 1         |
| 582 | 621 | 601 | 582 | 582    | 821   | 581 | 821 | 581 | 621 |          | 100      |       |                                  | 1         |
| 581 | 821 | 582 | 621 | 581    | 601   | 582 | 621 | 582 | 581 |          | 300      |       | Page 1                           |           |
| 621 | 581 | 621 | 601 | 582    | 821   | 581 | 582 | 621 | 581 | 100      |          |       | 1.1                              | 1         |
| 582 | 821 | 562 | 621 | 621    | 582   | 581 | 821 | 581 | 582 |          |          |       |                                  | 1.00      |
| 581 | 621 | 581 | 581 | 582    | 581   | 801 | 582 | 582 | 621 | 598      | 600      | -2    | 31,32                            | 18,50     |
| 621 | 801 | 601 | 621 | 582    | 621   | 582 | 581 | 581 | 582 |          | 4        |       | 1                                |           |
| 581 | 621 | 581 | 582 | 801    | 581   | 582 | 821 | 601 | 581 |          | - MINE   |       | 1                                |           |
| 621 | 501 | 562 | 621 | 582    | 621   | 621 | 601 | 582 | 581 | 100      |          |       | 100                              |           |
| 581 | 601 | 581 | 582 | 581    | 582   | 582 | 621 | 601 | 621 |          |          | 40    | 100                              |           |
| 582 | 821 | 581 | 621 | 621    | 581   | 581 | 821 | 581 | 582 |          | 3        | 40    |                                  | -00       |
| 621 | 582 | 621 | 582 | 581    | 601   | 621 | 581 | 582 | 581 |          | 2014     |       |                                  |           |
| 581 | 601 | 801 | 581 | 601    | 621   | 582 | 601 | 581 | 621 |          | 500      |       | 1                                | X         |
| 582 | 521 | 621 | 601 | 621    | 581   | 581 | 621 | 621 | 582 |          |          |       |                                  |           |







### LABORATORIO DE CALIBRACIÓN

### CERTIFICADO DE CALIBRACIÓN Nº LL - 3288 - 2022

Página : 1 de 2

Fecha de Emisión

: 2022-10-28

1. Solicitante

: SAKIARO E.I.R.L.

Dirección

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN

: TAMIZ 2. Instrumento de Medición

Tamiz N°

: 50

Diametro de Tamiz.

: 8 pulg

Marca

: HUMBOLDT

: EL113688

Material Color

: BRONCE

: DORADO

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros

Los resultados son vátidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aqui declarados.

Lugar y fecha de Calibración
 JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN
 21 - OCTUBRE - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tocomo referencia la norma ASTM E 11-09.

### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO      | TRAZABILIDAD          |
|----------------------|--------|------------------|-----------------------|
| RETICULA DE MEDICIÓN | INSIZE | LLA - 068 - 2022 | SISTEMA INTERNACIONAL |

### 6. Condiciones Ambientales

|                 | INICIAL | FINAL |
|-----------------|---------|-------|
| Temperatura "C. | 26,7    | 26,8  |
| Humedad %       | 73      | 73    |

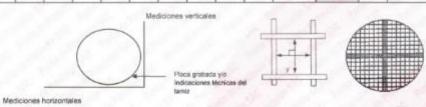
### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la de de la tabla 1 según la norma ASTM E11-09

BORATOR PUNTO DE

Laboratorio ng. Luis Loayka Capcha Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106


www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3288 - 2022

|     | 2001200 |     |     |        |        |     |     |      |       | 0.0      |          | W-mark | (*)                              |            |     |  |
|-----|---------|-----|-----|--------|--------|-----|-----|------|-------|----------|----------|--------|----------------------------------|------------|-----|--|
|     | N. C.   |     | М   | EDIDAS | TOMADA | AS  | K   | P. S | die . | PROMEDIO | ESTÁNDAR | ERROR  | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACION |     |  |
|     |         | 1   |     | - pr   | n      |     |     |      | 600   | um       | um       | μm     | μm                               | μm         |     |  |
| 300 | 305     | 306 | 300 | 300    | 290    | 305 | 300 | 300  | 305   | -        |          |        |                                  |            |     |  |
| 305 | 300     | 290 | 305 | 300    | 305    | 305 | 300 | 305  | 305   | 1        |          |        | 200                              |            |     |  |
| 290 | 305     | 305 | 300 | 305    | 300    | 290 | 305 | 290  | 300   |          |          |        |                                  |            | 9.0 |  |
| 305 | 300     | 306 | 290 | 300    | 290    | 305 | 300 | 300  | 305   |          |          |        |                                  |            |     |  |
| 300 | 305     | 300 | 300 | 305    | 305    | 300 | 305 | 305  | 300   | 1        | 1975     |        | 10                               |            |     |  |
| 290 | 305     | 290 | 290 | 305    | 290    | 305 | 300 | 290  | 305   |          | 200      |        | Cont.                            | 5,95       |     |  |
| 305 | 306     | 300 | 306 | 305    | 300    | 305 | 305 | 300  | 290   | 100      | F. JA    |        |                                  |            |     |  |
| 290 | 306     | 290 | 305 | 305    | 290    | 290 | 305 | 300  | 305   | 15,410   | BY CON   |        |                                  |            |     |  |
| 305 | 290     | 300 | 290 | 305    | 300    | 305 | 290 | 290  | 305   |          | 200      |        |                                  |            |     |  |
| 305 | 300     | 305 | 305 | 290    | 290    | 305 | 305 | 300  | 290   |          | 200      |        | 20.29                            |            |     |  |
| 300 | 305     | 290 | 305 | 300    | 300    | 306 | 300 | 306  | 305   | 300      | 300      | 0      | 20,28                            |            |     |  |
| 305 | 300     | 300 | 305 | 290    | 305    | 300 | 305 | 305  | 300   |          | Page 1   |        |                                  |            |     |  |
| 290 | 305     | 305 | 300 | 300    | 290    | 305 | 305 | 290  | 305   |          | 1        |        |                                  |            |     |  |
| 300 | 305     | 290 | 305 | 290    | 305    | 290 | 290 | 300  | 290   |          | 100      |        |                                  |            |     |  |
| 305 | 305     | 300 | 290 | 300    | 305    | 300 | 305 | 300  | 305   |          | W. X     |        |                                  | 1          |     |  |
| 305 | 290     | 300 | 305 | 290    | 290    | 300 | 290 | 306  | 300   |          | 100      |        |                                  |            |     |  |
| 300 | 305     | 290 | 305 | 300    | 305    | 290 | 305 | 300  | 290   |          | NO.      |        |                                  | 197        |     |  |
| 305 | 300     | 305 | 290 | 305    | 305    | 300 | 305 | 290  | 300   |          |          | 0      | N 5                              |            |     |  |
| 290 | 305     | 300 | 305 | 305    | 305    | 300 | 290 | 300  | 305   | 100      | 57 10    | -      | 100                              | 199        |     |  |
| 300 | 290     | 300 | 305 | 300    | 300    | 305 | 305 | 290  | 300   | ST.      | 170.7    | 1      | 100                              | 100        |     |  |





Av. Los Ángeles 653 - LIMA 42 Tell. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com

PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



LABORATORIO DE CALIBRACIÓN

### CERTIFICADO DE CALIBRACIÓN Nº LL - 3290 - 2022

Página : 1 de 2

: T 619-2022 Fecha de Emisión : 2022-10-28

: SAKIARO E.I.R.L. 1. Solicitante

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN Dirección

2. Instrumento de Medición : TAMIZ

Tamiz Nº

Diametro de Tamiz : 8 pulg

: HUMBOLDT

: EL114555

: BRONCE Material

Color : DORADO

El Equipo de medición con el modelo y número de serie abajo, indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia dal INACAL y otros

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes

Punto de Precisión S.A.C no se responsabiliza de los perjuidos que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la

calibración aqui declarados.

Lugar y fecha de Calibración
 JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN 21 - OCTUBRE - 2022

### 4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrado como referencia la norma ASTM E 11-09.

### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO      | TRAZABILIDAD          |
|----------------------|--------|------------------|-----------------------|
| RETICULA DE MEDICIÓN | INSIZE | LLA - 068 - 2022 | SISTEMA INTERNACIONAL |

### 6. Condiciones Ambientales

|                | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura *C | 26.8    | 26.9  |
| Humodad %      | 73      | 73    |

### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la de de la tabla 1 según la norma ASTM £11-09

BORATOR PUNTO DE

lefe de Laboratorio Ing. Lois Coayza Caocha Reg. CIP Nº 152631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3290 - 2022

|     | Law House |     |     |        |       |     |     |       |     | 11       |          |       | (7)                              | VIII -     |  |   |  |  |    |
|-----|-----------|-----|-----|--------|-------|-----|-----|-------|-----|----------|----------|-------|----------------------------------|------------|--|---|--|--|----|
|     |           |     | M   | EDIDAS | TOMAD | AS  |     | N. S. |     | PROMEDIO | ESTÂNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACION |  |   |  |  |    |
|     |           |     |     | p      | -     | -   |     |       |     | µm ·     | μm       | μm    | μm                               | μm         |  |   |  |  |    |
| 147 | 150       | 142 | 157 | 137    | 152   | 142 | 163 | 152   | 163 | -        |          |       |                                  |            |  |   |  |  |    |
| 137 | 142       | 163 | 150 | 142    | 150   | 137 | 142 | 137   | 137 |          | 3000     | 1     |                                  | 17 10      |  |   |  |  |    |
| 142 | 150       | 137 | 142 | 150    | 142   | 142 | 150 | 142   | 150 |          | 100      |       |                                  |            |  |   |  |  |    |
| 137 | 142       | 137 | 142 | 137    | 137   | 150 | 137 | 150   | 137 |          |          | 175   | 100                              |            |  |   |  |  |    |
| 142 | 150       | 142 | 137 | 150    | 142   | 142 | 150 | 142   | 142 | 100      | 35       |       |                                  |            |  |   |  |  |    |
| 150 | 137       | 163 | 150 | 142    | 163   | 163 | 150 | 137   | 137 |          | No.      |       |                                  |            |  |   |  |  |    |
| 142 | 137       | 142 | 137 | 150    | 137   | 150 | 142 | 150   | 142 |          | 183773   | 1     |                                  |            |  |   |  |  |    |
| 137 | 150       | 163 | 142 | 163    | 137   | 142 | 137 | 137   | 150 |          | T at l   |       |                                  |            |  |   |  |  |    |
| 142 | 137       | 150 | 137 | 137    | 150   | 142 | 150 | 163   | 137 |          | 100      |       |                                  |            |  |   |  |  |    |
| 163 | 150       | 142 | 163 | 150    | 137   | 150 | 137 | 150   | 142 |          |          |       |                                  |            |  |   |  |  | 35 |
| 150 | 137       | 142 | 150 | 142    | 137   | 183 | 150 | 142   | 137 |          |          | 11    |                                  | 10         |  |   |  |  |    |
| 142 | 137       | 142 | 137 | 150    | 142   | 137 | 137 | 163   | 142 |          |          |       | 100                              |            |  | 1 |  |  |    |
| 137 | 150       | 137 | 142 | 137    | 150   | 163 | 142 | 137   | 137 | 100000   | 1000     | 1     | 1000                             | W 777      |  |   |  |  |    |
| 142 | 163       | 142 | 163 | 142    | 137   | 150 | 142 | 150   | 142 | 145 150  | 150      | -6    | 13,30                            | 8,23       |  |   |  |  |    |
| 150 | 150       | 137 | 137 | 150    | 137   | 142 | 137 | 163   | 150 |          | 9        |       |                                  |            |  |   |  |  |    |
| 137 | 137       | 142 | 163 | 142    | 150   | 137 | 150 | 137   | 137 |          | The same |       |                                  |            |  |   |  |  |    |
| 142 | 150       | 137 | 150 | 137    | 137   | 142 | 142 | 150   | 142 |          |          |       | 11/11                            |            |  |   |  |  |    |
| 150 | 142       | 150 | 142 | 142    | 150   | 163 | 150 | 137   | 150 |          | 1200     |       |                                  | 9          |  |   |  |  |    |
| 163 | 142       | 137 | 163 | 150    | 163   | 137 | 137 | 150   | 137 |          | E        |       |                                  |            |  |   |  |  |    |
| 142 | 137       | 150 | 150 | 137    | 142   | 183 | 142 | 163   | 142 |          |          |       |                                  | -          |  |   |  |  |    |
| 142 | 150       | 137 | 142 | 137    | 150   | 137 | 163 | 137   | 150 |          |          |       |                                  |            |  |   |  |  |    |
| 163 | 142       | 137 | 150 | 137    | 142   | 150 | 142 | 137   | 142 |          | 100      |       |                                  |            |  |   |  |  |    |
| 142 | 150       | 150 | 142 | 180    | 142   | 137 | 150 | 137   | 142 |          | 100      |       |                                  | 0          |  |   |  |  |    |
| 137 | 137       | 142 | 163 | 137    | 150   | 150 | 183 | 150   | 137 |          |          | 2     |                                  | 1          |  |   |  |  |    |
| 163 | 150       | 137 | 137 | 142    | 142   | 137 | 142 | 142   | 150 |          | 10000    |       |                                  |            |  |   |  |  |    |
| 142 | 142       | 150 | 142 | 137    | 137   | 142 | 137 | 137   | 163 |          | To the   |       |                                  |            |  |   |  |  |    |





Reg. CIP Nº 152631

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106

www.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com ряонивида La REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



LABORATORIO DE CALIBRACIÓN

### CERTIFICADO DE CALIBRACIÓN Nº LL - 3291 - 2022

Página : 1 de 2

Fecha de Emisión : 2022-10-28

1. Solicitante : SAKIARO ELR.L.

: JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN Dirección

2. Instrumento de Medición TAMIZ

Tamiz N° 200

Diametro de Tamiz : 8 pulg

HUMBOLDT

: EL105834

# BRONCE Material

: DORADO Color

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrologia del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recafibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadequado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

## 3. Lugar y fecha de Calibración

JR. TARAPOTO NRO. 413 - MORALES - SAN MARTIN 21 - OCTUBRE - 2022

### 4. Método de Calibración

Calibración efectuada por comperación directa con patrones de longitud calibrados, to como referencia la norma ASTM E 11-09.

### 5. Trazabilidad

| INSTRUMENTO          | MARCA  | CERTIFICADO      | TRAZABILIDAD          |
|----------------------|--------|------------------|-----------------------|
| RETICULA DE MEDICIÓN | INSIZE | LLA - 068 - 2022 | SISTEMA INTERNACIONAL |

### 5. Condiciones Ambientales

|                | INICIAL | FINAL |
|----------------|---------|-------|
| Temperatura *C | 26.9    | 27,0  |
| Humedad %      | 73      | 73    |

### 7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (\*) La desviación estandar encontrada no excede a la de la 1 según la norma ASTM E11-09

BORATOR PUNTO DE

atorio ing. Luis Loayza Capcha Reg. CIP Nº 162631



# PUNTO DE PRECISIÓN S.A.C. LABORATORIO DE CALIBRACIÓN

CERTIFICADO DE CALIBRACIÓN Nº LL - 3291 - 2022.

| 0.55 | 2012079 |     |       | _      |       | _   | -  |     |    | -        |          |       | (*)                              | No. of the last of |     |   |  |  |
|------|---------|-----|-------|--------|-------|-----|----|-----|----|----------|----------|-------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|--|
|      |         |     | м     | EDIDAS | TOMAD | AS  |    |     |    | PROMEDIO | ESTÁNDAR | ERROR | DESVIACIÓN<br>ESTANDAR<br>MÁXIMA | DESVIACIO<br>ESTANDAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |  |  |
|      | 1       |     | and a | pi     | m     | 100 |    |     |    | jum      | µm.      | μm    | μm                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 72   | 83      | 79  | 79    | 75     | 79    | 75  | 75 | 79  | 72 |          |          |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | 75      | 75  | 72    | 83     | 75    | 79  | 79 | 75  | 72 |          | -        | 1     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 83      | 79  | 83    | 75     | 79    | 72  | 75 | 79  | 79 |          | E TON    |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 83   | 79      | 63  | 79    | 72     | 83    | 83  | 79 | 83  | 75 |          | 77.79    |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | 83      | 79  | 83    | 79     | 79    | 75  | 72 | 75  | 72 |          | 100      |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 83   | 75      | 75  | 79    | 83     | 75    | 72  | 83 | 79. | 79 |          | 1000     |       | 300                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 79      | 83  | 72    | 75     | 83    | 79  | 75 | 72  | 72 |          | 100      | 1     | 100                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | 72      | 75  | 83    | 79     | 79    | .75 | 79 | 75  | 79 |          |          |       | 90.3                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 79      | 72  | 79    | 75     | 83    | 79  | 72 | 79  | 75 | 100      |          |       | 17.00                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | B3      | 83  | 79    | 83     | 79    | 83  | 83 | 79  | 75 |          | 46,14    |       |                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |  |  |
| 79   | 72      | 75  | 83    | 75     | 83    | 75  | 75 | 79  | 83 | 100      |          | 100   | COLDER IS                        | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |  |  |
| 75   | 79      | 72  | 79    | 75     | 79    | 83  | 79 | 75  | 79 |          |          |       | 10000                            | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |  |  |
| 79   | 83      | 75  | 83    | 83     | 72    | 79  | 75 | 79  | 75 |          |          | 10000 | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 79      | 83  | 79    | 75     | 79    | 75  | 79 | 83. | 79 |          |          | 100   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 63   | 83      | 75  | . 79  | 75     | 79    | 83  | 75 | 75  | 83 | 78       | 76       | -3    | 0.00                             | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |  |  |
| 75   | 79      | 83  | 83    | 79     | 83    | 79  | 83 | 72  | 79 | 10       | 75       | -3    | 9.02                             | 3,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |  |  |
| 79   | 83      | 79  | 79    | 72     | 79    | 72  | 75 | 79  | 79 |          | 191 20   |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 78      | 75  | 83    | 79     | 75    | .83 | 75 | 72  | 75 |          |          | T.X   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1 |  |  |
| 79   | 83      | 75  | 79    | 83     | 83    | 79  | 83 | 75  | 72 |          |          |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 |   |  |  |
| 79   | 72      | 83  | 75    | 75     | 79    | 72  | 79 | 83  | 79 |          |          | E.S.  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 79      | 75  | 72    | 83     | 83    | 79  | 83 | 79  | 83 |          | 1        |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | 79      | 83  | 79    | 79     | 75    | 83  | 79 | 75  | 75 |          | Jan 18   |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | 83      | -75 | 83    | 83     | 79    | 75  | 75 | 83  | 79 |          | 1 38     |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 83   | 79      | 75  | 79    | 75     | 72    | 83  | 79 | 63  | 79 |          | 100      |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | 83      | 83  | 72    | 79     | 83    | 79  | 75 | 75  | 79 |          | 130      |       |                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |  |  |
| 75   | 79      | 75  | 83    | 83     | 79    | 75  | 79 | 79  | 83 |          | 1        |       |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 79   | 72      | 83  | 79    | 75     | 79    | 75  | 83 | 75  | 75 |          | 100      |       | 43/4                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |
| 75   | - 83    | 75  | 72    | 75     | 83    | 79  | 75 | 83  | 79 |          | The same |       | 1                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |  |  |
| 83   | 75      | 79  | 76    | 83     | 76    | 83  | 79 | 75  | 75 |          | 55.00    |       | - 57                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |  |  |
| 79   | 79      | 83  | 79    | 75     | 79    | 79  | 83 | 79  | 79 |          | 135      | 1     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |   |  |  |





Av. Los Ángeles 653 - LIMA 42 Tell. 292-5106

WWW.puntodeprecision.com E-mail: info@puntodeprecision.com / puntodeprecision@hotmail.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL DE ESTE DOCUMENTO SIN AUTORIZACIÓN DE PUNTO DE PRECISIÓN S.A.C.



# DISEÑO DE MEZCLA DE CONCRETO

**ESTUDIO DE MATERIALES DE CANTERA Y** DISEÑO DE MEZCLA EN AGREGADO **POR SEPARADO** 

TESIS:

"EVALUAR LA INFLUENCIA DE LA ADICIÓN DE CENIZA DE CASCARA DE ARROZ EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO 210 KG/CM2, 2023"

Setiembre del 2,023





### "Año de la Unidad, la Paz y el Desarrollo"

Tarapoto de setiembre del 2023

### Carta Nº 005 - 2023 - Ing. J.S.R. / G

Asunto

: Remite diseño de mezcla de concreto f'c= 210 kg/cm2

Referencia : Tesis: Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

### De mi consideración:

Es grato dirigirme a Usted, para saludarle cordialmente y al mismo tiempo aprovecho para remitirle el diseño de mezcla de concreto l'c= 210 kg/cm2 para su producción en la ejecución de la tesis de la referencia, el cual se detalla a continuación:

### 1. Consideraciones Generales:

El presente pretende desarrollar el diseño de mezcla de concreto para su producción en laboratorio, el mismo que ha sido definido de acuerdo con las especificaciones técnicas, en lo que respecta a la resistencia a la compresión, relación agua/cemento, consistencia, contenido de aire, factor de seguridad y tipo de exposición a los sulfatos.

### 2. Requisitos Técnicos:

### 2.1. Características de los Agregados:

Los agregados constituyentes de la mezcla de concreto deben cumplir los parámetros indicados en la norma ASTM C33 y Norma E060 Concreto Armado del Reglamento Nacional de Edificaciones.

### 2.2. Características del Concreto:

El presente es para desarrollar el diseño de mezcla de concreto f'c= 210 kg/cm2. Las características del presente se detallan en la presente tabla:

| Resistencia a la Compresión   | f'c= 210<br>kg/cm2 |
|-------------------------------|--------------------|
| Contenido de Cemento Máximo   | No Aplica          |
| Contenido de Cemento Mínimo   | No Aplica          |
| Clase de Slump (Asentamiento) | 4" -5"             |
| Aire incorporado              | No Aplica          |





### 3. Características de los Componentes de la Mezcla:

## 3.1. Características de los Agregados:

Se presenta los tipos y procedencia de los agregados utilizados en el estudio:

| Descripción     | Procedencia                                                              |
|-----------------|--------------------------------------------------------------------------|
| Agregado Fino   | Arena Zarandeada Canto Rodado - Cantera Río Cumbaza                      |
| Agregado Grueso | Grava chancada Zarandeada de tamaño Máximo 1 1/2" - Cantera Río Huallaga |

Para la caracterización de los agregados, se procedió con la ejecución de los siguientes ensayos:

- Humedad Natural: ASTM D2216
- Peso Específico y Absorción: ASTM C127-15
- Peso Unitario Suelto y Varillado: ASTM C29
- Análisis Granulométrico por Tamizado: ASTM D422

Los resultados de los ensayos se detallan en la presente tabla:

| F                                   | Marma        | Parámetro                       | Tipo de Agregado |                 |  |
|-------------------------------------|--------------|---------------------------------|------------------|-----------------|--|
| Ensayo                              | Norma        | Parametro                       | Agregado Fino    | Agregado Grueso |  |
| Humedad Natural                     | ASTM D2216   | Humedad<br>Natural<br>(%)       | 0.47             | 1.37            |  |
| 2                                   |              | Pe Base Seca<br>(gr/cm3)        | 2.56             | 2.64            |  |
| Peso Específico y<br>Absorción      | ASTM - C127- | Pe Base<br>Saturada<br>(gr/cm3) | 2.58             | 2.66            |  |
|                                     | 15           | Pe Base Seca<br>(gr/cm3)        | 2.60             | 2.69            |  |
|                                     |              | Absorción<br>(%)                | 0.54             | 0.82            |  |
| Peso Unitario<br>Suelto y Varillado | ACTIA COO    | Suelto<br>(kg/cm3)              | 1,509            | 1,393           |  |
|                                     | ASTM C29     | Varillado<br>(kg/cm3)           | 1,630            | 1,548           |  |
|                                     |              | 1"                              | +                | 96.98           |  |
|                                     |              | 3/4*                            | -                | 34.74           |  |
|                                     |              | 1/2"                            | -                | 0.88            |  |
| 1                                   |              | 3/8*                            | 100.00           | 0.82            |  |
| 2000000                             |              | N° 4                            | 99.40            |                 |  |
| Análisis                            | ASTM C29     | Nº 8                            | 98.17            |                 |  |
| Granulométrico<br>por Tamizado      | ASTM 029     | N° 16                           | 95.13            |                 |  |
| por ramizado                        |              | N° 30                           | 71.38            |                 |  |
|                                     |              | N° 50                           | 16.22            |                 |  |
|                                     |              | N° 100                          | 5.84             |                 |  |
| Sec.                                |              | N° 200                          | 3.56             |                 |  |
|                                     |              | Módulo de Finura                | 2.14             | 5.64            |  |

SAKIARO E.I.R.L.

RUC. N° 20602778259



Ar. Tarapoto # 413 Morales- San Martin 942661604 / 942628737 Sakioro\_ang\_ing\_geo@outlook.es



La granulometría del agregado grueso, es concordante con lo indicado en la norma ASTM C33, pues se verifica el cumplimiento del huso granulométrico, siendo la posibilidad más cercana de cumplimiento la gradación del huso Nº 5. Además, se verifica también el cumplimiento de los demás requisitos individuales de los agregados tanto para el agregado fino como para el agregado grueso.

Para la mezcla de agregados se ha definido la siguiente proporción para cada tipo de agregado:

- Agregado fino: 35%
- Agregado grueso: 65%

Los agregados constituyentes de la mezcla de concreto deben cumplir los parámetros indicados en la norma ASTM C33 y Norma E060 Concreto Armado del Reglamento Nacional de Edificaciones.

### 3.2. Características de los Insumos:

Las características de los insumos utilizados en el diseño es el siguiente:

- Cemento:

Cemento Portland Pacasmayo Extraforte Tipo Ico.

Procedente de la red pública.

### 4. Diseño Característico del Concreto:

El diseño de mezcla de concreto se ha realizado con el procedimiento de la norma ACI 211.1, para el cual se ha considerado los siguientes pasos:

- Selección del asentamiento
- Selección del tamaño máximo nominal del agregado
- Cantidad de agua de mezclado y contenido de aire
- Selección de la relación agua/cemento
- Contenido de cemento
- Estimación del contenido de agregado grueso
- Estimación del contenido de agregado fino
- Ajustes por humedad de los agregados
- Ajustes de las mezclas de prueba

Se presenta las características del diseño de concreto realizado:

SAKIARO E.I.R.L.

RUC. Nº 20602778259





| Diseño | Resistencia a      | Clase de     | Cemento                   |
|--------|--------------------|--------------|---------------------------|
| f'c    | la Compresión      | Asentamiento |                           |
| 210    | f'c= 210<br>kg/cm2 | 4* a 5*      | Cemento Portland Tipo Ico |

### 4.1. Método de Cálculo Teórico del Diseño de Concreto:

El diseño fue definido experimentalmente de acuerdo a lo indicado en la norma ACI 211.1, con el objetivo de cumplir con las especificaciones del concreto definidas en el expediente técnico. Se presenta las cantidades necesarias de todos los componentes utilizados por m3 de concreto:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua   | Relación     |
|--------|---------|---------------|-----------------|--------|--------------|
| f'c    | (kg)    | (kg)          | (kg)            | (Its)  | Agua/Cemento |
| 210    | 425.11  | 617.71        | 1147.18         | 187.16 | 0.45         |

El diseño puede ser reajustado dentro de las tolerancias previstas, teniendo como objetivo mantener las características y propiedades específicas, de acuerdo con los requisitos de control según la norma ACI 211.1.

Proporción en peso en kg por bolsa de cemento:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua  | Relación     |
|--------|---------|---------------|-----------------|-------|--------------|
| f'c    | (kg)    | (kg)          | (kg)            | (Its) | Agua/Cemento |
| 210    | 42.5    | 61.76         | 114.69          | 18.71 | 0.45         |

Proporción en volumen en pie3 por bolsa de cemento:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua  | Relación     |
|--------|---------|---------------|-----------------|-------|--------------|
| f'c    | (pie3)  | (pie3)        | (pie3)          | (Its) | Agua/Cemento |
| 210    | 1.00    | 1.76          | 3.16            | 18.71 | 0.45         |

Un pie3 es equivalente a una bolsa de cemento de 42.50 kg.

### 5. Conclusiones:

- El diseño de mezcla de concreto establecida para la fabricación de la mezcla de concreto f'c= 210 kg/cm2, demuestra cumplir todos los parámetros y resultados técnicos. Se debe considerar las siguientes cantidades por m3 de concreto:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua   | Relación     |
|--------|---------|---------------|-----------------|--------|--------------|
| f'c    | (kg)    | (kg)          | (kg)            | (Its)  | Agua/Cemento |
| 210    | 425.11  | 617.71        | 1147.18         | 187.16 | 0.45         |

El diseño puede ser reajustado dentro de las tolerancias previstas, teniendo como objetivo mantener las características y propiedades específicas, de acuerdo con los requisitos de control según la norma ACI 211.1.



Proporción en peso en kg por bolsa de cemento:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua  | Relación     |
|--------|---------|---------------|-----------------|-------|--------------|
| f'c    | (kg)    | (kg)          | (kg)            | (Its) | Agua/Cemento |
| 210    | 42.5    | 61.76         | 114.69          | 18.71 | 0.45         |

Proporción en volumen en pie3 por bolsa de cemento:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua  | Relación     |
|--------|---------|---------------|-----------------|-------|--------------|
| t'c    | (pie3)  | (pie3)        | (pie3)          | (Its) | Agua/Cemento |
| 210    | 1.00    | 1.76          | 3.16            | 18.71 |              |

Un pie3 es equivalente a una bolsa de cemento de 42.50 kg.

### 6. Recomendaciones:

- El agregado grueso debe ser lavado hasta tener como máximo el 1% de finos.
- El agregado fino debe ser lavado hasta tener como máximo el 3% de finos.
- Se debe eliminar los elementos extraños como: Grumos de arcilla, trozos de madera, hojas, etc.
- La humedad superficial del agregado fino mantiene separadas las partículas, produciendo un momento de volumen que se denomina "Abundamiento". Esto se produce cuando su contenido de humedad varía entre 5% y 8%, originando un incremento de volumen del orden del 15% y 12% respectivamente en arenas gruesas por lo que se recomienda considerar este incremento en la proporción en volumen de la mezcla de concreto en obra.
- Ajustar periódicamente la proporción de la mezcla de concreto en obra, por variaciones de granulometría de los agregados que suele darse en la cantera o lugar de procedencia, a fin de mantener la homogeneidad de la mezcla de concreto.
- Realizar la prueba del asentamiento antes de realizar el vaciado de la mezcla de concreto, colocando la muestra en el slump bien sujeto para luego introducir 3 capas con 25 golpes cada uno y con la ayuda de una varilla de fierro liso de Ø 5/8" x 60 cm. de longitud boleadas en los extremos, luego con una regla chequear el asentamiento del concreto.
- La elaboración de testigos de la mezcla de concreto, hacerlas en 3 capas con 25 golpes cada uno y con la ayuda de una varilla de fierro liso de Ø 5/8" x 60 cm. de longitud boleadas en los extremos; golpear en total de 12 a 17 veces los costados de la probeta con martillo de goma de 0.34 a 0.80 kg.
- Confeccionar cajones de madera con las medidas interiores de 30.48 x 30.48 x 30.48 m. = 1 pie3, que equivale a una bolsa de cemento. Los cajones deben tener 2 listones de madera en forma horizontal en ambas caras para manipularlo con dos personas, de lo contrario vaciar el concreto con la utilización de baldes.
- Verificar el peso de las bolsas de cemento antes de hacer la compra.

SAKIARO F.I.R.L. RUC. N° 20602778259

Jr. Tarapoto # 413 Morales- San Martin 3942681604 / 942628737 Sakkero\_arq\_ing\_goo@cutook.es

NIERO CIVII



Proporción en peso en kg por bolsa de cemento:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua  | Relación     |
|--------|---------|---------------|-----------------|-------|--------------|
| f'c    | (kg)    | (kg)          | (kg)            | (Its) | Agua/Cemento |
| 210    | 42.5    | 61.76         | 114.69          | 18.71 | 0.45         |

Proporción en volumen en pie3 por bolsa de cemento:

| Diseño | Cemento | Agregado Fino | Agregado Grueso | Agua  | Relación     |
|--------|---------|---------------|-----------------|-------|--------------|
| t'c    | (pie3)  | (pie3)        | (pie3)          | (Its) | Agua/Cemento |
| 210    | 1.00    | 1.76          | 3.16            | 18.71 |              |

Un pie3 es equivalente a una bolsa de cemento de 42.50 kg.

### 6. Recomendaciones:

- El agregado grueso debe ser lavado hasta tener como máximo el 1% de finos.
- El agregado fino debe ser lavado hasta tener como máximo el 3% de finos.
- Se debe eliminar los elementos extraños como: Grumos de arcilla, trozos de madera, hojas, etc.
- La humedad superficial del agregado fino mantiene separadas las partículas, produciendo un momento de volumen que se denomina "Abundamiento". Esto se produce cuando su contenido de humedad varía entre 5% y 8%, originando un incremento de volumen del orden del 15% y 12% respectivamente en arenas gruesas por lo que se recomienda considerar este incremento en la proporción en volumen de la mezcla de concreto en obra.
- Ajustar periódicamente la proporción de la mezcla de concreto en obra, por variaciones de granulometría de los agregados que suele darse en la cantera o lugar de procedencia, a fin de mantener la homogeneidad de la mezcla de concreto.
- Realizar la prueba del asentamiento antes de realizar el vaciado de la mezcla de concreto, colocando la muestra en el slump bien sujeto para luego introducir 3 capas con 25 golpes cada uno y con la ayuda de una varilla de fierro liso de Ø 5/8" x 60 cm. de longitud boleadas en los extremos, luego con una regla chequear el asentamiento del concreto.
- La elaboración de testigos de la mezcla de concreto, hacerlas en 3 capas con 25 golpes cada uno y con la ayuda de una varilla de fierro liso de Ø 5/8" x 60 cm. de longitud boleadas en los extremos; golpear en total de 12 a 17 veces los costados de la probeta con martillo de goma de 0.34 a 0.80 kg.
- Confeccionar cajones de madera con las medidas interiores de 30.48 x 30.48 x 30.48 m. = 1 pie3, que equivale a una bolsa de cemento. Los cajones deben tener 2 listones de madera en forma horizontal en ambas caras para manipularlo con dos personas, de lo contrario vaciar el concreto con la utilización de baldes.
- Verificar el peso de las bolsas de cemento antes de hacer la compra.

SAKIARO F.I.R.L. RUC. N° 20602778259

Jr. Tarapoto # 413 Morales- San Martin 3942681604 / 942628737 Sakkero\_arq\_ing\_goo@cutook.es

NIERO CIVII



- Curar los testigos de concreto de la misma manera que las estructuras.
- Realizar el ensayo de resistencia a la compresión de testigos a los 07 días y con los resultados obtenidos se realizará la proyección a los 14 y 28 días con la siguiente ecuación:

$$Rj = \left[ \frac{(1.285 \times j) + 8}{j + 16} \right] \times f''$$

Donde:

Rj = Resistencia a la compresión del concreto a los j días en kg/cm2

j = Edad del concreto en días

f'c = Resistencia a la compresión del concreto a los 28 días en kg/cm2

- Curar los testigos de concreto de la misma manera que las estructuras.

Sin otro en particular, me suscribo de Usted.

Atentamente,

C.C. Archivo



### INDICE

- I. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1 1/2" DE LA CANTERA RIO HUALLAGA
- II. RESULTADOS DEL ANALISIS DE LABORATORIO DE LOS AGREGADOS DE LA CANTERA RIO CUMBAZA (ARENA) Y CANTERA RIO HUALLAGA (GRAVA CHANCADA T.M. 1 1/2")
- III. CERTIFICADOS DE CALIBRACIÓN DE LOS EQUIPOS DE LABORATORIO



I. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) - MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1 1/2" DE LA CANTERA **RIO HUALLAGA** 



## DISEND DE MEZOLA DE CONCRETO FILIZIMPA - 210 KG/CM<sup>3</sup> "METODO A.C.) 20.1

TEDS UDCACIÓN CIMITERAS TESSTAS

PEDM | Seturitive de 17,008
MARRIAGO
CONSTITUTO
PROTEURO PRODUIVO SCELLIGER PO) Inc.
PROSIDERIORES
PROSIDERIORES
SOSI INC.
PRO

| AGAIA.         |            |
|----------------|------------|
| ARTIC PRINTERS | C. STREET, |

| e BISEND    | 259Pa        |
|-------------|--------------|
| Ft          | l'c Reparite |
| 41          | FE+7         |
| 71 e 35     | 1'z+85       |
| -35         | Otel'sl-EB   |
| wat Francis | 22.86%       |

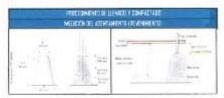
| a ORSERO       | 20kg/cm2                        |
|----------------|---------------------------------|
| l't            | Fis Receptido                   |
| 48             | Fc+78                           |
| 510 a 350      | Fc+35                           |
| <250           | diefel-St                       |
| Lorist Francis | <ul> <li>296 karming</li> </ul> |

| The second           | CANCILLES CA                                | IC OF FISICIES BE LIES ARRESPORTE. |                    |  |
|----------------------|---------------------------------------------|------------------------------------|--------------------|--|
| ALBERTANCE IN        | NO LASENS GRAP SA CANTO HODINO ZAFARTE NINA | REPERT STASS SHARTHACKS DRIVERS    |                    |  |
| MICHEROA             | CHERARDIZATA                                | PROCEEDA                           | CWEEKS SO RIVERACE |  |
| CHRUNTEDAN           | 3/F £1575 nm)                               | WHITE HARRE                        | 1/2" (28.88 mm)    |  |
| DANGE AND COMMI      | V4" (EXErva)                                | TANNED HAD, BERNIELL               | r (25,611mm)       |  |
| EDIEDAD NATURAL      | E47%                                        | RMESU BURN                         | 137%               |  |
| PESS ESPECIALS       | 2.60 g./cm3                                 | PESDESPECTO                        | 2.68 g /cm3        |  |
| REGION               | - 0.54 %                                    | ARESECON                           | 0.02 N             |  |
| PESS EMPLAYS SHELTS  | 581 ig/m3                                   | PEST DRIVER SLEETS                 | 120 bg/s2          |  |
| PEZE ENGLESE MOLLANI | Silipol                                     | PEST BRIVE WARRANT                 | 548 ty/e2          |  |
| MANUEL BELLEVIEW     | 5.84                                        | MED BUT DIE THIE JA                | 5.84               |  |

| ODEST OF HINEW 2 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NEW STUTE 1986.04                                                                                                                      | 1.04                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The state of the last of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESINO DE MILITO A DE CONCRETA METODO ACEJO D                                                                                          | THE RESERVE TO                                                                                                                                                                 |
| L CALCING DE LA RESESTIMON PREMICION  1 OPT 285 kg/cm²  Chinata de canadada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 - DRESSENCY (DE ADERSO A LA ZIAVA)<br>3" a 4" (76.20 mm s 10.5 mm) - Parties                                                         | TANK I I' C'S 400 mm                                                                                                                                                           |
| 4. CALDED DEL AREA (Table 2)<br>Agus 103 00 fo/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. CONTEND OF ARE CLASS 39 Are 150 %                                                                                                   | E. CRIDAD DE LA PELACIEN A/C (Table 4)<br>Rei A/C ; 0.43                                                                                                                       |
| T - CALCALO DE LA REL A/E POR CARABLENZA<br>No colo le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E- FACTOR COMENTO 475.71g/m2 EUT 60/m2                                                                                                 | S.— DANTENAD DE AGREGIADO GRUESO (Tubio 5)<br>A Grueso (100.33 kg/m )                                                                                                          |
| 6 CALINE DE ASPESADO PRO  April 385 x 2  Arr 805 x 2  Arr 805 x 3  A Greeco 805 x 3  A Greeco 8074 x 3  Volumen Rec 923 x 3  Peso April Ina 8171 ligited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. PREFERENCE MCAL  Community 475.8 kg/m2  /g.m                                                                                        | C CURRECCION POR HUMBAD  Ag Bracos ISH 34 kg/m3  Ag Brac ISH 35 kg/m3  Agus Curregola ISH 55 kg/m3  Peso Combinado IDSL 55 kg/m3  PARPIREZINI CAUDA ADA  Gracos ISTA Pres SSM  |
| PROPERCIÓN ESTIMADA DE LES ARREBARIS  (ANALISS GRANALIMITACIO)  PROPERCIÓN ESTIMADA COL  RESPONDEN ESTIMADA COL  REFERICIÓN ESTIMADA COL  REFERICI | C. PROPERTY FINE  Connects 455.8 kg/m3  Age 1975 19763  Ag Trees 196.5 kg/m3  Ag Tree 1972 kg/m3  Age 1973 1977 1977 1977 1977         | MATERIALES EN VOLLMEN POR MO<br>Commons 0115 m3<br>Agus 0147 m3<br>Ag, Grantos 01476 m3<br>Ag, Grantos 0228 m3<br>Ars 1105 m3<br>10 m3                                         |
| U. PROPRIEDO POR BESO (SE PESO) Propuede en PS Comento USB hel Ague 8.71 lc Ag Snaese 3.55 hel Ag Fore 100 bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15. PESD POR TAMER. Contribut de Motornina per Tando (I britan) Comunio. 42.50 kg Agen: 12.71 k kg Ervann: 12.70 kg Ag. Fino: 61.76 kg | PESS UNITARIO HAMPO DE USE ASPESADOS<br>Pessa par P3 de Marin silva<br>Cemerte 42.50 kg/y3<br>April 57.00 kg/y3<br>April 42.50 kg/y3<br>April 42.50 kg/y3<br>April 33.33 kg/y5 |

SAKIARO E.I.R.L.

Tau . na Slavejo ENIERO CIVIL IP Nº 118505




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | RESUMEN DE DOSFICACION PARA DORA F°C ≈ 210 kG/CM2                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| OLSEE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | Evoluar la leficiencia de la Adricio de Carrico da Cascaro da Jores en las Propindadas Físicas y Macásicas del Conurso 200 kg/cm2, 2023 |  |
| UNICACIÓN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 | Dicorto: Tamporo / Provincia: Ziao Martin / Experiumante San Martin                                                                     |  |
| CWIENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 | Grans charcada Zurandinada da tamato Hásimo 11/2" - Cantoro Ris Hadlago                                                                 |  |
| COVER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Arens Grussa Jarandoscia Canta Reducia turnato Masino 3/8" - Cantora Ris Carolisco                                                      |  |
| DESCRIPTION OF THE PERSON OF T | 1 | Earling, Call, Assey Lunu Dylan Stown for old proy/8100-8002-540-4557k)                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Eat log. Cod. Sentation Armode Strand Clean (cycoloury/0080-0082-0082-0092)                                                             |  |
| FICHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 | Saturative 4:17.003                                                                                                                     |  |

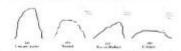
|               | 押   | CPORCOON EN PESC: PARA UN M             |  |
|---------------|-----|-----------------------------------------|--|
| Cements       | -   | 125.8 lq/m3                             |  |
| Agreda Graces | - 1 | M7H lg/m3                               |  |
| Agregata fire | 1   | 97.7/1g/#3                              |  |
| Agan          | 1   | 878 a/v2                                |  |
| \$188P        | - 1 | 2" a Nº (GE 20 mm n (DLE mm) - Plantice |  |

| PESDITOS TIMOS (Coracid de Materiales par Taylo (Hosiso) |     |                                        |  |  |
|----------------------------------------------------------|-----|----------------------------------------|--|--|
| Devianto                                                 | 4   | (2.50 kg                               |  |  |
| Agrado Grueco                                            | - 1 | PASS 19                                |  |  |
| Agregado fino                                            | -   | R/Tilg                                 |  |  |
| lgar                                                     | 1   | E71k                                   |  |  |
| BLMP                                                     | 1   | 3" a 4" (1620 pan e 1815 mm) - Pleates |  |  |

| PHOTOGODA ENCOS DE 20 No PARA DAR ROUSA DE COMINTO |      |                                       |  |  |  |
|----------------------------------------------------|------|---------------------------------------|--|--|--|
| Convents                                           | -    | 110 but                               |  |  |  |
| Agresia Graina                                     | - 60 | 4.47 bat                              |  |  |  |
| Vigregado Pine                                     | - 1  | 7.40 kml                              |  |  |  |
| Agom                                               |      | [38 tol                               |  |  |  |
| 2.00                                               | - 1  | I' a V (75.20 mm a 12.5 mm) - Planton |  |  |  |



| PROPERCODE EN VELLMEN - PARA LIM M |   |                                        |  |  |  |
|------------------------------------|---|----------------------------------------|--|--|--|
| Comercia                           | 1 | \$125 m2                               |  |  |  |
| Agredo Gruese                      | 1 | 0.0En3                                 |  |  |  |
| Agregida Ree                       |   | 0238=3                                 |  |  |  |
| Agus                               | - | 0.67 m3                                |  |  |  |
| OTTAKE                             |   | 9" - 4" (78.26 mm + 10.3 mm) - Plantes |  |  |  |


| PROPORCIONEN PER PASSEUM ED SA DE COMENTE |     |      |                   |  |
|-------------------------------------------|-----|------|-------------------|--|
| Currento                                  | 1   | 130  | P <sup>2</sup>    |  |
| Agree's Brusss                            | - 1 | 3.6  | p <sup>±</sup>    |  |
| Agregade Fires                            | 1   | 176  | p <sup>2</sup>    |  |
| Agus                                      | - 1 | 187  | h/93              |  |
| 200                                       | 1   | T :4 | '0628 mm a 19:8 m |  |

| 103          | OFICACION PARA SISPA ( | - 20 HOPBEON IN PION IN |
|--------------|------------------------|-------------------------|
| Davier       | : 15.74 cm             | 6.00 pulg               |
| Nare         | ; 30.48 on             | 5                       |
| less         | 1 82.4 an2             | Errange .               |
| lichmen (m2) | 100556 cm3             | C. Ellipsia             |
| Despardets   | 190%                   |                         |

|               |     | REPORTING                              |
|---------------|-----|----------------------------------------|
| Cerente       | 1   | 2191lq                                 |
| Agrada Granso | 1   | 93.0 kg                                |
| Agregado Pino | +   | 3.844                                  |
| Agea          | ii. | 1.65 k.                                |
| SUMP.         | +   | 3" a 4" (EE20 mm a (BLB mm) - Pleatice |

### RECOMPONENTS

1- La tracito 4 formes que adapte la marcle en la prodes de revenimiento.



- Se dabe confeccioner colosa de madera con espacidad de la piúS para el major control de la desfección en obre, supeción ente de los agregados.
   Sederales el Stary Las standardos de la recorda para que ase el adenación (2° 4°), para debida a los combaso direction la laurendad de los agregados parades parades sector control de la recorda recolado de la supeción para que parades se confección de la control de recorda debida de la control d

SAKIARO E.I.R.L.



RUC. N° 2002778250 . Jr. Tarapoto # 413 Moraios- San Martin . 9 942661004 / 942626737 . sakiaro\_arq\_ing\_enc@outdook.es

nu án Reigifo Niero civil CIP Nº 118505



II. RESULTADOS DEL ANALISIS DE LABORATORIO DE LOS AGREGADOS DE LA CANTERA RIO CUMBAZA (ARENA), CANTERA RIO HUALLAGA Y (GRAVA CHANCADA T.M. 1 1/2")



# ARENA CANTERA RÍO CUMBAZA





Tesis

Evaluar la influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023 : Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin

Ubicación Muestra

Material

Cantera Rio Cumbaza Camera reo cumbaza
 Arena gruesa canto redado de tamaño Máximo 3/8\*
 Diseño de Mezcla por Separado
 Setiembre del 2,023

Para Uso

Fecha

| TARRO                        | 1      | 2      | 3      | UNIDAD |
|------------------------------|--------|--------|--------|--------|
| MASA DE LA TARA              | 110.00 | 99.30  | 115.10 | 9-     |
| MASA DEL SUELO HUMEDO + TARA | 672.20 | 606.30 | 614.50 | 9.     |
| MASA DEL SUELO SECO + TARA   | 669.00 | 604.12 | 612.55 | 9-     |
| MASA DEL AGUA                | 3.20   | 2.18   | 1.95   | 9      |
| MASA DEL SUELO SECO          | 559.00 | 504.82 | 497.45 | 9      |
| % DE HUMEDAD                 | 0.57   | 0.43   | 0.39   | %      |
| PROMEDIO                     |        | 0.47   |        | %      |

| Observaciones: |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |

Tuis Julyo Liques Chaquisulas Tec. Esp. en Mecánica de Suelos Concreto y Pavimentos DNI Nº 45886225

SAKIARO E.I.R.L.





Tesis

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Ubicación Muestra

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin Cantera Rio Cumbaza

Material

Arena gruesa canto rodado de tamaño Módimo 3/8\* Diseño de Mezcla por Separado

Para Uso

Fecha

: Setiembre del 2,023

### PESO ESPECIFICO Y ABSORCION DEL AGREGADO FINO - ASTM - C128-15

| TARRO                                                    | 1       | 2       | 3       | UNIDAD |
|----------------------------------------------------------|---------|---------|---------|--------|
| A Masa Material Saturado Superficialmente Seco (En Aire) | 416.30  | 425.23  | 420.41  | 9.     |
| B Masa Frasco + Agua                                     | 656.90  | 656.90  | 656.90  | 9.     |
| C Masa Frasco + Agua + A.                                | 1073.20 | 1082.13 | 1077.31 | g.     |
| D Masa del Material + Agua en el Frasco                  | 911.52  | 917.36  | 913.69  | g.     |
| E Volumen de Masa + Volumen de Vacio ( C - D )           | 161.68  | 164.77  | 163.62  | g.     |
| F Masa de Material Seco en Estufa (105° C)               | 414.00  | 423.20  | 418.00  | 9.     |
| G Volumen de Masa ( E + ( A - F ) )                      | 159.38  | 162.74  | 161.21  | CC     |
| Pe Bulk (Base Secs) ( F / E )                            | 2.56    | 2.57    | 2.55    | g./cc  |
| Pe Bulk (Base Saturada) ( A / E )                        | 2.57    | 2.58    | 2.57    | g./cc  |
| Pe Aparente (Base Seca) ( F / G )                        | 2.60    | 2.60    | 2.59    | g./cc  |
| % de Absorción ( ( A - F ) / F ) * 100 )                 | 0.56    | 0.48    | 0.58    | %      |
| PROMEDIO MASA ESPECIFICA BULK (BASE SECA)                |         | 2.56    |         | g/cc   |
| PROMEDIO MASA ESPECIFICA BULK (BASE SATURADA)            |         | 2.58    |         | g/cc   |
| PROMEDIO MASA ESPECIFICA APARENTE                        |         | 2.60    |         | g/cc   |
| PROMEDIO % DE ABSORCION                                  |         | 0.54    |         | %      |

Luis Jeline Lorg Chuquisula Tec. Esp. em Macánica de Suelos Concreto y Pavimentos DNI Nº 45886225

SAKIARO E.I.R.L.

Observaciones:

RUC. N° 20602778259



2 Jr. Tarapoto # 413 Morales- San Martin 942601604 / 942628737 Sakkaro\_arq\_ing\_geo@curtook.as





Tesis

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del

Concrete 210 kg/cm2, 2023

Localización Muestra Material

: Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin

: Cantera Rio Cumbaza

Para Uso

Arena gruesa carrio rodado de tamaño Máximo 3/8\*
 Diseño de Mezcia por Separado

Fecha

: Setiembre del 2,023

| PESO UNITARIO SUELTO ASTM C - 29 |         |         |         |        |  |  |
|----------------------------------|---------|---------|---------|--------|--|--|
| ENSAYO.                          | 1       | 2       | 3       |        |  |  |
| MASA DE MOLDE + MATERIAL         | 5,870   | 5,862   | 5,900   | kg.    |  |  |
| MASA DE MOLDE                    | 1,653   | 1,653   | 1,653   | kg.    |  |  |
| MASA DE MATERIAL                 | 4,217   | 4,209   | 4,247   | kg.    |  |  |
| VOLUMEN DE MOLDE                 | 0.00280 | 0.00280 | 0.00280 | m3     |  |  |
| MASA UNITARIA                    | 1,506   | 1,503   | 1,517   | kg./m3 |  |  |
| PROMEDIO                         |         | 1,509   |         | kg./m3 |  |  |

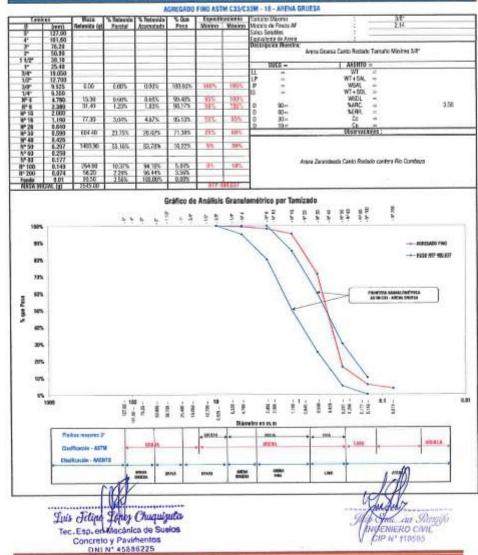
| PESO UNITARIO VARILLADO ASTM C - 29 |         |         |         |        |  |  |  |  |
|-------------------------------------|---------|---------|---------|--------|--|--|--|--|
| ENSAYO.                             | 1       | 2       | 3       |        |  |  |  |  |
| MASA DE MOLDE + MATERIAL            | 6,200   | 6,215   | 6,233   | kg.    |  |  |  |  |
| MASA DE MOLDE                       | 1,653   | 1,653   | 1,653   | kg.    |  |  |  |  |
| MASA DE MATERIAL                    | 4,547   | 4,562   | 4,580   | kg.    |  |  |  |  |
| VOLUMEN DE MOLDE                    | 0.00280 | 0.00280 | 0.00280 | kg.    |  |  |  |  |
| MASA UNITARIA                       | 1,624   | 1,629   | 1,636   | kg./m3 |  |  |  |  |
| PROMEDIO                            |         | 1,630   |         |        |  |  |  |  |

Lus Tiline Lines Chuquisula Tec. Esp. en Mecànica de Suelos Concreto y Pavimentos DNI N° 45886225

SAKIARO E.I.R.L.

Observaciones:

RUC. N° 20602778259








Evoluir la influencia de la Adlatin de Cestas de Cascara de Amos en las Propintarios Flaicas y Mecánicas del Conceda 210 legicano, 5003. Désidas: Tampada / Provincia: Sea Bateln / Caparisamento: San Martin Cantes (lito Cantessa. Areste games a cidan tedido de lamaño Máleimo 3/6º Désida de Meccle por Sepando.

## ANALISIS GRANULOMETRICO POR TAMIZADO - ASTM C136 C136M-19



SAKIARO E.I.R.L.





# GRAVA CHANCADA T.M. 1 1/2" CANTERA RÍO HUALLAGA





Evaluar la influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023 Tesis

 Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin
 Cantera Rio Huallaga Ubicación

Muestra

 Grava Chancada Zarandeada Tamaño Máximo 1 1/2\*
 Disaño de Mezola por Separado Material Para Uso

: Setiembre del 2,023 Fecha

| TARRO                        | 1      | 2      | 3      | UNIDAD |
|------------------------------|--------|--------|--------|--------|
| MASA DE LA TARA              | 108.90 | 113.60 | 108.80 | 9-     |
| MASA DEL SUELO HUMEDO + TARA | 613.40 | 664.40 | 501.90 | 0.     |
| MASA DEL SUELO SECO + TARA   | 606.85 | 656.85 | 595.00 | 0.     |
| MASA DEL AGUA                | 6.55   | 7.55   | 6.90   | 0-     |
| MASA DEL SUELO SECO          | 497.95 | 543.25 | 486.20 | 0.     |
| % DE HUMEDAD                 | 1.32   | 1.39   | 1.42   | %      |
| PROMEDIO                     |        | 1.37   |        | %      |

| Observaciones: | Observaciones: |  |  |  |  |  |
|----------------|----------------|--|--|--|--|--|
|                |                |  |  |  |  |  |
|                |                |  |  |  |  |  |

Luis Jelipa Long Chuquiguta Tec. Esp. en Mecánica de Suelos Concreto y Pavirhentos DNI N° 45886225

SAKIARO E.I.R.L.





Evaluar la influencia de la Adición de Centza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm/2, 2023

 Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin
 Centera Rio Huallaga Ubicación

Muestra

Grava Chancada Zarandeada Tamaño Máximo 1 1/2\* Material

Diseño de Mezcia por Separado Para Uso : Setiembre del 2,023 Fecha

## PESO ESPECIFICO Y ABSORCION DEL AGREGADO GRUESO - ASTM - C127-15

| TARRO                                                    | 1      | 2      | 3      | UNIDAD |
|----------------------------------------------------------|--------|--------|--------|--------|
| A Masa Material Saturado Superficialmente Seco (En Aire) | 561.45 | 578.23 | 569.96 | 9-     |
| B Masa Material Saturado Superficialmente Seco (En Agua) | 350.00 | 360.85 | 355.45 | 9      |
| C Volumen de Masa + Volumen de Vacio ( A - B )           | 211.45 | 217.38 | 214.51 | cc     |
| D Masa de Material Seco en Estufa (105° C)               | 556.85 | 573.85 | 565.00 | g.     |
| E Volumen de Masa ( C - ( A - D ) )                      | 206.85 | 213.00 | 209.55 | cc     |
| Pe Bulk (Base Seca) ( D / C )                            | 2.63   | 2.64   | 2.63   | g./cc  |
| Pe Bulk (Base Saturada) ( A / C )                        | 2.66   | 2.66   | 2.66   | g/cc   |
| Pe Aparente (Base Seca) ( D / E )                        | 2.69   | 2.69   | 2.70   | g/cc   |
| % de Absorción ( ( A - D ) / D ) * 100 )                 | 0.83   | 0.76   | 0.88   | %      |
| PROMEDIO MASA ESPECIFICA BULK (BASE SECA)                |        | g./cc  |        |        |
| PROMEDIO MASA ESPECIFICA BULK (BASE SATURADA)            |        | g./cc  |        |        |
| PROMEDIO MASA ESPECIFICO APARENTE                        | 2.69   |        | g./cc  |        |
| PROMEDIO % DE ABSORCION                                  | 0.82   |        |        | %      |

| Observaciones: |  |
|----------------|--|
|                |  |
|                |  |
|                |  |

Luis (Teline **Sólics Chaquipula** Tec. Esp. en Mecànica de Suelos Concreto y Pavimentos DNI N° 45886225



Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Fisicas y Mecánicas del Concreto 210 kg/cm2, 2023
 Distrito: Tarapoto / Provincia: San Martín / Departamento: San Martín
 Cantera Río Huallaga
 Graya Chaneada Zarandeada Tarandeada Tarandeada Adelina 4 4 (2):

Localización

Muestra

: Grava Chancada Zarandeada Tamaño Máximo 1 1/2" Material

Para Uso Diseño de Mezcla por Separado : Setiembre del 2,023 Fecha

| PESO UNITARIO SUELTO ASTM C - 29 |         |         |         |        |  |  |  |  |
|----------------------------------|---------|---------|---------|--------|--|--|--|--|
| ENSAYO.                          | 1       | 2       | 3       |        |  |  |  |  |
| MASA DE MOLDE + MATERIAL         | 17,780  | 17,825  | 17,812  | kg.    |  |  |  |  |
| MASA DE MOLDE                    | 4,571   | 4,571   | 4,571   | kg.    |  |  |  |  |
| MASA DE MATERIAL                 | 13,209  | 13,254  | 13,241  | kg.    |  |  |  |  |
| VOLUMEN DE MOLDE                 | 0.00950 | 0.00950 | 0.00950 | m3     |  |  |  |  |
| MASA UNITARIA                    | 1,390   | 1,395   | 1,394   | kg./m3 |  |  |  |  |
| PROMEDIO                         |         | 1,393   |         |        |  |  |  |  |

| PESO UNIT                | PESO UNITARIO VARILLADO ASTM C - 29 |         |         |        |  |  |  |  |
|--------------------------|-------------------------------------|---------|---------|--------|--|--|--|--|
| ENSAYO.                  | 1                                   | 2       | 3       |        |  |  |  |  |
| MASA DE MOLDE + MATERIAL | 19,230                              | 19,302  | 19,285  | kg.    |  |  |  |  |
| MASA DE MOLDE            | 4,571                               | 4,571   | 4,571   | kg.    |  |  |  |  |
| MASA DE MATERIAL         | 14,659                              | 14,731  | 14,714  | kg.    |  |  |  |  |
| VOLUMEN DE MOLDE         | 0.00950                             | 0.00950 | 0.00950 | kg.    |  |  |  |  |
| MASA UNITARIA            | 1,543                               | 1,551   | 1,549   | kg./m3 |  |  |  |  |
| PROMEDIO                 |                                     | 1,548   |         |        |  |  |  |  |

Observaciones:

Chuquizula n. en Macchica de Suelos rreto y Pavahentos rins nº 45686225

SAKIARO E.I.R.L.









Tecle: Unicación: Moestra: Material: Pera Uso:

Exitive la Influencia de la Adolini de Cessa de Cassan de Amer en las Presidables Resus y Michileas del Casardo y 10 legional, 2020. Béblia: Tarpoto / Provincia: Illus Martin / Deputamento: Sie Martin Cantos (Rossisha) Casardo (Rossisha) Cincia de Marcin por Septembo.

### ANALISIS GRANULOMETRICO POR TAMIZADO - ASTM C138-C136M-19

| Turk<br>V         | 127.66                   | Water<br>Referrito (pl | V. Personia<br>Parsial | 'h Fortenido<br>Asurraslado | % Ove<br>Pass     | Especific<br>Minimo | Phinima      | Factorio Bibblino<br>Garario Malerro Nomeral<br>Meduto da Fineza AG<br>Deogoste ata Absosian |                      |                 | 1 /2<br>1 /2<br>1 /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|-------------------|--------------------------|------------------------|------------------------|-----------------------------|-------------------|---------------------|--------------|----------------------------------------------------------------------------------------------|----------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 8                 | 101,60<br>76,20<br>50,80 |                        |                        | -                           |                   |                     |              | Beautipoen Maestra:                                                                          | Grava Chancel        | Tarraño Mório   | n 1 1/2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 11/2              | 28.10<br>25.40           | 0.90                   | 200%                   | 0.00%<br>3.00%              | 100.00%<br>06.08% | 107                 | 100%         | 5025 =                                                                                       | TA                   | 3470            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   |
| 3/4"              | 19,050                   | 1686 No.<br>841.59     | 82.23%<br>33.85%       | 93.9%<br>93.9%              | 38.76%<br>0.88%   | 20%                 | 58%          | IL =                                                                                         | wt                   | +54             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 3/8"              | 9.525<br>6.258           | 1.00                   | 0.07%                  | 99,18%                      | 0.62%             | 6.7                 | 15           | P -                                                                                          | W                    | SAL -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 1F4               | 6.766<br>2.360           |                        |                        |                             |                   |                     |              | D 90-                                                                                        | W                    | SDL -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| #* 8<br>N* 10     | 2,000                    |                        |                        |                             |                   |                     |              | 0 60-<br>0 30-                                                                               | 167                  | DRAR. III       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| IF 20<br>₩ 28     | 0.540                    |                        |                        |                             | -                 |                     |              | D 10v                                                                                        |                      | ervertores:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   |
| H* 40<br>H* 50    | 0.426                    |                        |                        |                             |                   |                     |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   |
| H+ 83             | 0.850                    |                        |                        |                             |                   |                     |              | Annual Dr                                                                                    | use Cheerento Tree   | uto Minimo 1 1  | 2" - Cantera Mai Madhiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| IP 106<br>IP 200  | 0.149                    |                        |                        |                             |                   |                     |              | Диранов                                                                                      | MESS CAMP CORD 1-241 | and advance . I | · Carrotte in the carrotte in |     |
| Fondo<br>MASA 160 | 8 01<br>281 (g)          | 2001.50                | -                      |                             |                   | Hes                 | 005          |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| AC-00             | ATC T                    | 7-17-17                | V,                     | Gráfico                     | de Anális         | da Grami            | lamétric     | por Tamizado                                                                                 |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                   |                          |                        | 272                    | !                           | . 1               | 2 4                 | 1.7          | 27 2 S                                                                                       | 7 7 7 7              | 8 8             | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 190%              |                          |                        | * *                    | 2 2 3                       | d                 | 4.4                 | 55           | 22 2 2                                                                                       | 7. 1. 11             | 5.7             | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 1 |
| NS.               | 1                        |                        |                        |                             | 1                 |                     |              |                                                                                              |                      |                 | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| -                 |                          |                        |                        |                             | V                 |                     |              |                                                                                              |                      |                 | MERSHAGE SPECIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 10%               | 1                        |                        |                        |                             | - 1               |                     |              |                                                                                              |                      |                 | - 8,80 # 6 NTP 17 - 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 79%               | 1                        |                        |                        |                             | M                 |                     |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| = 105             | 4                        |                        |                        |                             | W                 |                     |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 10 30             |                          |                        |                        |                             | 17                | -                   | 1            | HORDE SUBSTINENCE                                                                            | 1                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| ž an              |                          |                        |                        |                             | 1                 | 1                   | /            | Mach                                                                                         | _1                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                   |                          |                        |                        |                             | k                 | 1/                  |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 30%               |                          |                        |                        |                             | 1                 | X                   |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 20%               |                          |                        |                        |                             | *                 | M                   |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 10%               | 4                        |                        |                        |                             |                   | Il                  |              |                                                                                              |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 91                |                          |                        |                        |                             |                   | 1                   |              |                                                                                              |                      | _               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   |
|                   | 1600                     |                        | W .                    | 9 1                         | 8 8               | 9 N                 | 8 5          | 88 8 8                                                                                       | 5 5 88               | 53 41           | <u>c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.  |
|                   |                          |                        | - M                    | - F 1 (06)                  | n . s             | A #                 | 7.176        | netro en mum                                                                                 | - 88                 | 0.00            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                   | Pic                      | in number 2            | _                      |                             |                   |                     |              | Man .                                                                                        | 4 170                | com P           | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|                   | Dec                      | PERSONS - ARTH         |                        | THUM                        | -                 |                     |              | erana                                                                                        | -                    | 1/807           | ARCHIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                   | - Day                    | Novice - AAER          | 10                     |                             |                   |                     |              |                                                                                              |                      | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|                   |                          |                        |                        | MAKES NO                    | ave.              | Septem.             | AND SERVICES | PROS.                                                                                        | 1,460                |                 | PACETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                   |                          |                        | 1.4                    |                             |                   |                     | -            | -                                                                                            |                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |

Luis Jelipe Jéney Chuquiguta
Tec. Esp. en Mecánica de Suelos
Concreto y Pavirhentos
DNI Nº 45886725

SAKIARO E.I.R.L.

RUC. N° 2002778258 . J. Tarupoto il 413 Morales-Sen Martin . 942661604 / 942626137 . saldaro\_am\_ing\_geo@cullook.es

m. iza Razyjlo NIERO CIVIL





# III. CERTIFICADOS DE CALIBRACIÓN DE LOS EQUIPOS DE **LABORATORIO**





# DISEÑO DE MEZCLA DE CONCRETO ADICIÓN DE CENIZA DE CASCARA DE ARROZ **ESTUDIO DE MATERIALES DE CANTERA Y** DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO

### TESIS:

"EVALUAR LA INFLUENCIA DE LA ADICIÓN DE CENIZA DE CASCARA DE ARROZ EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO 210 KG/CM2, 2023"

Setiembre del 2,023











#### "Año de la Unidad, la Paz y el Desarrollo"

Tarapoto, setiembre del 2023

#### Carta N° 006 - 2023 - Ing. J.S.R. / G

Asunto

: Remite diseño de mezcla de concreto f'c= 210 kg/cm2 mas adición del 10%, 11% y

12% de Ceniza de Cascara de Arroz

Referencia

Tesis: Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

#### De mi consideración:

Es grato dirigirme a Usted, para saludarle cordialmente y al mismo tiempo aprovecho para remitirle el diseño de mezcla de concreto f'c= 210 kg/cm2 con adición de Ceniza de Cascara de Arroz para su producción en la ejecución de la tesis de la referencia, el cual se detalla a continuación:

#### 1. Consideraciones Generales:

El presente pretende desarrollar el diseño de mezcla de concreto para su producción en laboratorio, el mismo que ha sido definido de acuerdo con las especificaciones técnicas, en lo que respecta a la resistencia a la compresión, relación agua/cemento, consistencia, contenido de aire, factor de seguridad y tipo de exposición a los sulfatos.

#### 2. Requisitos Técnicos:

#### 2.1. Características de los Agregados:

Los agregados constituyentes de la mezcla de concreto deben cumplir los parámetros indicados en la norma ASTM C33 y Norma E060 Concreto Armado del Reglagifento Nacional de Edificaciones.

#### 2.2. Características del Concreto:

El presente es para desarrollar el diseño de mezcla de concreto f'c= 210 kg/cm2. Las características del presente se detallan en la presente tabla:

| Resistencia a la Compresión      | t'c= 210 kg/cm2<br>+ 10% de Ceniza<br>de Cascara de<br>Arroz | f'c= 210 kg/cm2<br>+ 11% de Ceniza<br>de Cascara de<br>Arroz | f'c= 210 kg/cm2<br>12% de Ceniza<br>de Cascara de<br>Arroz |
|----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| Contenido de Cemento Máximo      | No Aplica                                                    | No Aplica                                                    | No Aplica                                                  |
| Contenido de Cemento Mínimo      | No Aplica                                                    | No Aplica                                                    | No Aplica                                                  |
| Clase de Slump<br>(Asentamiento) | 4" - 5"                                                      | 4" - 5"                                                      | 4" – 5"                                                    |
| Aire incorporado                 | No Aplica                                                    | No Aplica                                                    | No Aplica                                                  |



### 3. Características de los Componentes de la Mezcla:

#### 3.1. Características de los Agregados:

Se presenta los tipos y procedencia de los agregados utilizados en el estudio:

| Descripción     | Procedencia                                                              |
|-----------------|--------------------------------------------------------------------------|
| Agregado Fino   | Arena Zarandeada Canto Rodado - Cantera Rio Cumbaza                      |
| Agregado Grueso | Grava chancada Zarandeada de tamaño Máximo 1 1/2" - Cantera Río Huallaga |
| Adición Fino    | Ceniza de Cascara de Arroz                                               |

Para la caracterización de los agregados, se procedió con la ejecución de los siguientes ensayos:

- Humedad Natural: ASTM D2216
- Peso Especifico y Absorción: ASTM C127-15
- Peso Unitario Suelto y Varillado: ASTM C29
- Análisis Granulométrico por Tamizado: ASTM D422

Los resultados de los ensayos se detallan en la presente tabla:



| 200                | 1 197 1      |                              | las a secon      | Tipo de Agre       | egado                         |
|--------------------|--------------|------------------------------|------------------|--------------------|-------------------------------|
| Ensayo             | Norma        | Parámetro                    | Agregado<br>Fino | Agregado<br>Grueso | Ceniza de Cascara<br>de Arroz |
| Humedad Natural    | ASTM D2216   | Humedad<br>Natural<br>(%)    | 0.47             | 1.37               | 0.17                          |
|                    |              | Pe Base Seca<br>(gr/cm3)     | 2.56             | 2.64               | 1.16                          |
| Peso Específico y  | ASTM - C127- | Pe Base Saturada<br>(gr/cm3) | 2.58             | 2.66               | 1.17                          |
| Absorción          | 15           | Pe Base Seca<br>(gr/cm3)     | 2.60             | 2.69               | 1.18                          |
|                    |              | Absorción<br>(%)             | 0.54             | 0.82               | 1.34                          |
| Peso Unitario      | ASTM C29     | Suelto<br>(kg/cm3)           | 1,509            | 1,393              | 254                           |
| Suelto y Varillado |              | Varillado<br>(kg/cm3)        | 1,630            | 1,548              | 333                           |
|                    |              | 1 1/2"                       | . 2              | 100.00             | -                             |
|                    |              | 1*                           | -                | 96.98              | -                             |
|                    |              | 3/4*                         |                  | 34.74              |                               |
|                    |              | 1/2*                         |                  | 0.88               | -                             |
|                    |              | 3/8*                         | 100.00           | 0.82               |                               |
| Análisis           |              | N° 4                         | 99.40            |                    |                               |
| Granulométrico     | ASTM C29     | N° 8                         | 98.17            |                    | *                             |
| por Tamizado       |              | . Nº 16                      | 95.13            |                    |                               |
|                    |              | N° 30                        | 71.38            | S#.                | 100.00                        |
|                    |              | N° 50                        | 16.22            | 3.5                | 99.99                         |
|                    |              | N° 100                       | 5.84             |                    | 99.88                         |
|                    |              | N° 200                       | 3.56             |                    | 99.25                         |
|                    |              | Módulo de Finura             | 2.14             | 5.64               |                               |

La granulometría del agregado grueso, es concordante con lo indicado en la norma ASTM C33, pues se verifica el cumplimiento del huso granulométrico, siendo la posibilidad más cercana de cumplimiento la gradación del huso Nº 5. Además, se verifica también el cumplimiento de los demás requisitos individuales de los agregados tanto para el agregado fino como para el agregado grueso.

Para la mezcla de agregados se ha definido la siguiente proporción paga dada tipo de agregado:

- Agregado fino: 35% - Agregado grueso: 65%



- Adición fina (Ceniza de Cascara de Arroz): 10%
- Adición fina (Ceniza de Cascara de Arroz): 11%
- Adición fina (Ceniza de Cascara de Arroz): 12%

Los agregados constituyentes de la mezcla de concreto deben cumplir los parámetros indicados en la norma ASTM C33 y Norma E060 Concreto Armado del Reglamento Nacional de Edificaciones.

#### 3.2. Características de los Insumos:

Las características de los insumos utilizados en el diseño es el siguiente:

- Cemento:

Cemento Portland Pacasmayo Extraforte Tipo Ico.

- Agua:

Procedente de la red pública.

#### 4. Diseño Característico del Concreto:

El diseño de mezcla de concreto se ha realizado con el procedimiento de la norma ACI 211.1, para el cual se ha considerado los siguientes pasos:

- Selección del asentamiento
- Selección del tamaño máximo nominal del agregado
- Cantidad de agua de mezclado y contenido de aire
- Selección de la relación agua/cemento
- Contenido de cemento
- Estimación del contenido de agregado grueso
- Estimación del contenido de agregado fino
- Estimación del contenido de Ceniza de Cascara de Arroz
- Ajustes por humedad de los agregados
- Ajustes de las mezclas de prueba

Se presenta las características del diseño de concreto realizado:

| Diseño<br>f'c | Resistencia a<br>la Compresión                            | Clase de<br>Asentamiento | Cemento                      |
|---------------|-----------------------------------------------------------|--------------------------|------------------------------|
| 210           | f'c= 210 kg/cm2 + 10%<br>de Ceniza de Cascara de<br>Arroz | 4" a 5"                  | Cemento Portland<br>Tipo Ico |
| 210           | f'c= 210 kg/cm2 + 11%<br>de Ceniza de Cascara de<br>Arroz | 4" a 5"                  | Cemento Portland<br>Tipo Ico |
| 210           | f'c= 210 kg/cm2 + 12%<br>de Ceniza de Cascara de<br>Arroz | 4" a 5"                  | Cemento Portland<br>Tipo Ico |



#### 4.1. Método de Cálculo Teórico del Diseño de Concreto:

El diseño fue definido experimentalmente de acuerdo a lo indicado en la norma ACI 211.1, con el objetivo de cumplir con las especificaciones del concreto definidas en el expediente técnico. Se presenta las cantidades necesarias de todos los componentes utilizados por m3 de concreto:

#### CON EL 10% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(kg) | Agregado<br>Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara de<br>Arroz (kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|--------------------------|----------------------------|---------------------------------------|---------------|--------------------------|
| 210           | 425.11          | 590.13                   | 1147.13                    | 27.55                                 | 187.46        | 0.45                     |

#### CON EL 11% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>t'c | Cemento<br>(kg) | Agregado<br>Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara de<br>Arroz (kg) | Agua<br>(its) | Relación<br>Agua/Cemento |
|---------------|-----------------|--------------------------|----------------------------|---------------------------------------|---------------|--------------------------|
| 210           | 425.11          | 587.37                   | 1147.12                    | 30.31                                 | 187.49        | 0.45                     |

#### CON EL 12% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>Fc | Cemento<br>(kg) | Agregado<br>Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara de<br>Arroz (kg) | Agua<br>(Rs) | Relación<br>Agua/Cemento |
|--------------|-----------------|--------------------------|----------------------------|---------------------------------------|--------------|--------------------------|
| 210          | 425.11          | 584.62                   | 1147.12                    | 33.06                                 | 187.52       | 0.45                     |

El diseño puede ser reajustado dentro de las tolerancias previstas, teniendo como objetivo mantener las características y propiedades específicas, de acuerdo con los requisitos de control según la norma ACI 211.1.

Proporción en peso en kg por bolsa de cemento:

#### CON EL 10% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f's | Cemento<br>(kg) | Agregado Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara<br>de Arroz<br>(kg) | Agua<br>(Its) | Retación<br>Agua/Cemento |
|---------------|-----------------|-----------------------|----------------------------|------------------------------------------|---------------|--------------------------|
| 210           | 42.5            | 59.00                 | 114.68                     | 2.75                                     | 18.74         | 0.45                     |

SAKIARO E.I.R.L.

② Jr. Tarapoto # 413 Morales- San Martin ③ 942661604 / 942628737 ☐ saklaro\_ang\_ing\_geo@cuffook.es



# CON EL 11% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(kg) | Agregado Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara<br>de Arroz<br>(kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|-----------------------|----------------------------|------------------------------------------|---------------|--------------------------|
| 210           | 42.5            | 58.72                 | 114.68                     | 3.03                                     | 18.74         | 0.45                     |

#### CON EL 12% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(kg) | Agregado Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara<br>de Arroz<br>(kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|-----------------------|----------------------------|------------------------------------------|---------------|--------------------------|
| 210           | 42.5            | 58.45                 | 114.68                     | 3.31                                     | 18.75         | 0.45                     |

Proporción en volumen en pie3 por bolsa de cemento:

#### CON EL 10% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>l'c | Cemento<br>(pie3) | Agregado<br>Fino<br>(pie3) | Agregado<br>Grueso<br>(pie3) | Ceniza de<br>Cascara<br>de Arrez<br>(pie3) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-------------------|----------------------------|------------------------------|--------------------------------------------|---------------|--------------------------|
| 210           | 1.00              | 0.80                       | 3.16                         | 0.80                                       | 18.74         | 0.45                     |

#### CON EL 11% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>(°c | Cemento<br>(pie3) | Agregado<br>Fino<br>(pie3) | Agregado<br>Grueso<br>(pie3) | Ceniza de<br>Cascara<br>de Arroz<br>(pie3) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-------------------|----------------------------|------------------------------|--------------------------------------------|---------------|--------------------------|
| 210           | 1.00              | 0.79                       | 3.16                         | 0.88                                       | 18.74         | 0.45                     |

#### CON EL 12% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(pie3) | Agregado Fino<br>(pie3) | Agregado<br>Grueso<br>(pie3) | Ceniza de<br>Cascara<br>de Arroz<br>(pie3) | Agua<br>(its) | Relación<br>Agua/Cemento |
|---------------|-------------------|-------------------------|------------------------------|--------------------------------------------|---------------|--------------------------|
| 210           | 1.00              | 0.70                    | 3.16                         | 0.96                                       | 18.75         | 0.45                     |

Un pie3 es equivalente a una bolsa de cemento de 42.50 kg.

SAKIARO E.I.R.L.



RUC. N° 20602778259 S. Jr. Tarapolo # 413 Morales- San Martin 942661604 / 942628737 Sakkaro\_arq\_ing\_geo@outlook.es



#### 5. Conclusiones:

- El diseño de mezcla de concreto establecida para la fabricación de la mezcla de concreto f'c= 210 kg/cm2, demuestra cumplir todos los parámetros y resultados técnicos. Se debe considerar las siguientes cantidades por m3 de concreto:

#### CON EL 10% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>l'c | Cemento<br>(kg) | Agregado<br>Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara de<br>Arroz (kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|--------------------------|----------------------------|---------------------------------------|---------------|--------------------------|
| 210           | 425.11          | 590.13                   | 1147.13                    | 27.55                                 | 187.46        | 0.45                     |

# CON EL 11% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>1°c | Cemento<br>(kg) | Agregado<br>Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara de<br>Arroz (kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|--------------------------|----------------------------|---------------------------------------|---------------|--------------------------|
| 210           | 425.11          | 587.37                   | 1147.12                    | 30.31                                 | 187.49        | 0.45                     |

#### CON EL 12% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>l'c | Cemento<br>(kg) | Agregado<br>Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara de<br>Arroz (kg) | Agua<br>(its) | Relación<br>Agua/Cemento |
|---------------|-----------------|--------------------------|----------------------------|---------------------------------------|---------------|--------------------------|
| 210           | 425.11          | 584.62                   | 1147.12                    | 33.06                                 | 187.52        | 0.45                     |

El diseño puede ser reajustado dentro de las tolerancias previstas, teniendo como objetivo mantener las características y propiedades específicas, de acuerdo con los requisitos de control según la norma ACI 211.1.

Proporción en peso en kg por bolsa de cemento:

#### CON EL 10% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(kg) | Agregado Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara<br>de Arroz<br>(kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|-----------------------|----------------------------|------------------------------------------|---------------|--------------------------|
| 210           | 42.5            | 59.00                 | 114.68                     | 2.75                                     | 18.74         | 0.45                     |

SAKIARO E.I.R.L.

3. A. Tarapolo # 413 Moreles- Sen Mertin 942681604 / 942628737 Sekiero\_arq\_ing\_geo@cutook.es



#### CON EL 11% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>l'c | Cemento<br>(kg) | Agregado Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara<br>de Arroz<br>(kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|-----------------------|----------------------------|------------------------------------------|---------------|--------------------------|
| 210           | 42.5            | 58.72                 | 114.68                     | 3.03                                     | 18.74         | 0.45                     |

#### CON EL 12% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(kg) | Agregado Fino<br>(kg) | Agregado<br>Grueso<br>(kg) | Ceniza de<br>Cascara<br>de Arroz<br>(kg) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-----------------|-----------------------|----------------------------|------------------------------------------|---------------|--------------------------|
| 210           | 42.5            | 58.45                 | 114.68                     | 3.31                                     | 18.75         | 0.45                     |

Proporción en volumen en pie3 por bolsa de cemento:

### CON EL 10% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(pie3) | Agregado<br>Fino<br>(pie3) | Agregado<br>Grueso<br>(pie3) | Ceniza de<br>Cascara<br>de Arroz<br>(pie3) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-------------------|----------------------------|------------------------------|--------------------------------------------|---------------|--------------------------|
| 210           | 1.00              | 08.0                       | 3.16                         | 0.80                                       | 18.74         | 0.45                     |

#### CON EL 11% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>1°c | Cemento<br>(pie3) | Agregado<br>Fino<br>(pie3) | Agregado<br>Grueso<br>(pie3) | Ceniza de<br>Cascara<br>de Arroz<br>(pie3) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-------------------|----------------------------|------------------------------|--------------------------------------------|---------------|--------------------------|
| 210           | 1.00              | 0.79                       | 3.16                         | 0.88                                       |               | 0.45                     |

# CON EL 12% DE ADICIÓN DE CENIZA DE CASCARA DE ARROZ

| Diseño<br>f'c | Cemento<br>(pie3) | Agregado Fino<br>(pie3) | Agregado<br>Grueso<br>(pie3) | Ceniza de<br>Cascara<br>de Arroz<br>(pie3) | Agua<br>(Its) | Relación<br>Agua/Cemento |
|---------------|-------------------|-------------------------|------------------------------|--------------------------------------------|---------------|--------------------------|
| 210           | 1.00              | 0.70                    | 3.16                         | 0.96                                       | 18.75         | A.45                     |

Un pie3 es equivalente a una bolsa de cemento de 42.50 kg.

SAKIARO E.I.R.L.

RUC. N° 20602778259 S Jr. Tarapoto # 413 Monales- San Martin 9942661694 / 942628737 Sakilaro\_aru\_ing\_geo@outlook.as



#### 6. Recomendaciones:

- El agregado grueso debe ser lavado hasta tener como máximo el 1% de finos.
- El agregado fino debe ser lavado hasta tener como máximo el 3% de finos.
- Se debe eliminar los elementos extraños como: Grumos de arcilla, trozos de madera, hojas, etc.
- La humedad superficial del agregado fino mantiene separadas las partículas, produciendo un momento de volumen que se denomina "Abundamiento". Esto se produce cuando su contenido de humedad varía entre 5% y 8%, originando un incremento de volumen del orden del 15% y 12% respectivamente en arenas gruesas por lo que se recomienda considerar este incremento en la proporción en volumen de la mezcla de concreto en obra.
- Ajustar periódicamente la proporción de la mezcla de concreto en obra, por variaciones de granulometria de los agregados que suele darse en la cantera o lugar de procedencia, a fin de mantener la homogeneidad de la mezcla de concreto.
- Realizar la prueba del asentamiento antes de realizar el vaceo de la mezcla de concreto, colocando la muestra en el slump bien sujeto para luego introducir 3 capas con 25 golpes cada uno y con la ayuda de una varilla de fierro liso de Ø 5/8" x 60 cm. de longitud boleadas en los extremos, luego con una regla chequear el asentamiento del concreto.
- La elaboración de testigos de la mezcla de concreto, hacerlas en 3 capas con 25 golpes cada uno y con la ayuda de una varilla de fierro liso de Ø 5/8" x 60 cm. de longitud boleadas en los extremos; golpear en total de 12 a 17 veces los costados de la probeta con martillo de goma de 0.34 a 0.80 kg.
- Confeccionar cajones de madera con las medidas interiores de 30.48 x 30.48 x 30.48 m. = 1 pie3, que equivale a una bolsa de cemento. Los cajones deben tener 2 listones de madera en forma horizontal en ambas caras para manipularlo con dos personas, de lo contrario vaciar el concreto con la utilización de baldes.
- Verificar el peso de las bolsas de cemento antes de hacer la compra.
- Curar los testigos de concreto de la misma manera que las estructuras.
- Realizar el ensayo de resistencia a la compresión de testigos a los 07 días y con los resultados obtenidos se realizará la proyección a los 14 y 28 días con la siguiente ecuación:

$$Rj = \left[\frac{(1.285 \times j) + 8}{j + 16}\right] \times f'c$$

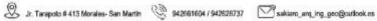


#### Donde:

Rj = Resistencia a la compresión del concreto a los j días en kg/cm2

j = Edad del concreto en días

f'c = Resistencia a la compresión del concreto a los 28 días en kg/cm2


- Curar los testigos de concreto de la misma manera que las estructuras.

Sin otro en particular, me suscribo de Usted.

Atentamente,

C.C. Archivo

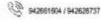








#### INDICE


- I. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) -- MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1 1/2" DE LA CANTERA RIO **HUALLAGA + 10% CENIZA DE CASCARA DE ARROZ**
- II. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1 1/2" DE LA CANTERA RIO **HUALLAGA + 11% CENIZA DE CASCARA DE ARROZ**
- III. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1" DE LA CANTERA RIO HUALLAGA + 12% CENIZA DE CASCARA DE ARROZ
- IV. RESULTADOS DEL ANALISIS DE LABORATORIO DE LOS AGREGADOS DE LA CANTERA RIO CUMBAZA (ARENA), CANTERA RIO HUALLAGA (GRAVA CHANCADA T.M. 1 1/2") Y CENIZA DE CASCARA DE ARROZ
- V. CERTIFICADOS DE CALIBRACIÓN DE LOS EQUIPOS DE LABORATORIO





I. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) - MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1 1/2" DE LA CANTERA RIO HUALLAGA + 10% CENIZA DE CASCARA DE ARROZ









#### DISEÑO DE MEZCLA DE CONCRETO F « 21 MP» - 210 KG/CM<sup>T</sup> "METODO A.C. ! 216 1" + 1016 DE EG Fesher in Historian de le Matte de Corea de Conse de Area en las Projekte le Festas y Mantivista del Corea de Talignesia. Biotetta limitata del Corea de Matte (Projekte Corea de Matte (Projekte Corea de Matte Corea de C TESS OBJECTOR CANTERNS TESETAS HEDIA NATERIALES Entertre del 2.073 200 kg/sm2 fis Requests Fis - 70 fis - 65 (0 list c) - 50 1's 06880 F = 015000 PORTUNO PICKOMANO EXTRAORITI IPE KON. PESSI (SPECIALE) : 3.5 g/cm2 PESSI (SPECIALE) : 583 (c/m2) Fe Reports Fe+7 Fe+83 Birfel+58 78MFe 70 -011 20 × 250 -350 ACUA ACUA PODIBLE - PED PUBLICA -25 Resist Freneda Resist Pransels ABCON IN CO.

| Andrew Williams         |                               | DAGACHIPESTERS OF     | FETTAS DE LES KEPESIONS |                      |                    |
|-------------------------|-------------------------------|-----------------------|-------------------------|----------------------|--------------------|
| ALBEGACO FINE CAPENA OF | DESK SAVIO RODAGE ZAKAKSENDA. | AGREGAÇO GALESSA (GAV | N DOMEASK INVASEASK)    | AUFERO               | HAVE (DGA)         |
| PROTOCNIA               | CANTEL RECOMBAN.              | PRECENTA              | CANTERS BUT HENLIGA     | PRECENENCIA          |                    |
| DALIAN DIAME            | 1/8" (B\$35 mm)               | THING HAZING          | 11/2" OR EE mi)         | WASFE MODES          | : M/18 (E.500 ere) |
| TARNÉO MAIL NOMINAL     | 1 1/4" (6.251 mm)             | TURNED NAZ, NOMBAL    | f (25.488 mm)           | TANKE MAL HONNAL     | 19'45 (0.425 nm)   |
| HUMBOAD NATURAL         | 8.47%                         | DEMECAD NUTLAN.       | 137%                    | PERSONAL REPORT      | 0.7%               |
| PERCEPTORIO             | 7.60 p/cm2                    | PESSESPECE CO         | 7.85 g./enG             | PEOD ESPECHICO       | HBg/te3            |
| ABRORDINA               | D54%                          | AUTORODA              | 0.02%                   | ARTORCES.            | 134%               |
| PERCHANGE SIELE         | 1509 lg/n3                    | PESS CONTRARO SUELTO  | (333 lg/nd              | PEDD UNIVARIE DIECTO | 2544p/e3           |
| PESC SMITARIS VARILLADO | 1636 lg/sd                    | PERCOUNTARIO WARLAND  | 1548 kg/m2              | PERSONAND TARILLASS  | 302 kg/m8          |
| HEDRILLE DE FINILIA     | 2.8                           | WINDLESS OF BREIN     | 5.04                    | MUDICAL DE PINEZA    | 0.00               |

| Q/III | LED DE RINGLA Z.PA                                                                                                                           | #00000 B | 1912 191                                                           | Tentra in the contract of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                              | 35       | DATE ALTER OF EDWARD A                                             | (1000 AC178)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F     | CACABOK LAPESSTENDA PREMIORO FOR- 755 lg/cm2 Colorlo de recommeno que lacor de capacidad                                                     | 2-       | D' a 4" (76,210 mm a 10,5 mm)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAKAND AKAMO NOMBAL ABREADO GRESO<br>TAN F (75.483 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C     | CALCARD DEL ARRA (Twisto Z)<br>Agris 63.00 to/m2                                                                                             | 1.       | CANTEND DE ANTE (Table 2)<br>Ara                                   | 139%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CALCULO DE LA RELACION A/C (Table 4)<br>Rel A/C (0.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2-    | CALCIACI DE LA REL. A/C POR CURADADAD<br>No avecto                                                                                           | 8-       | FACTOR COMENTO<br>405 H kg/m3                                      | 610 ha/a5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CANTEND SE ASKEDADO GRBESSI (Sublu S)<br>A. Gruenc 128.33 kg/ sci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | CALDRED DR. ASPERSON PARE  Age                                                                                                               | L        | Ages<br>Ag Greens<br>Ag Neo                                        | 2<br>455 kg/n3<br>53 Mb/n3<br>59 Mb/n3<br>57 Mb/n3<br>22 Mb/n3<br>238 54 kg/n3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CODECCION POR PENCENO As Brown ISA39 kg/m3 As From SE2 28 kg/m3 CSA 27600 kg/m3 Agus Sorregola III 60 k/m3 From Combinato ISA30 kg/m3  PROPRINCON CALCELON  Drawn : 100% Res : 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | PREPENCIÓN ESTAMAN DE LOS ASRICHICES  MANAGES GRAMALIMETRICO  PROPUENTO A CENTRA DEL 1829  RESPONSON ESTAMAN DEL 2016  ANTERNA DELESTA       | 6.       | Ague :<br>Ag Ersece :<br>Ag Tino :<br>Nec :                        | 475.8 kg/m3<br>80.465.0/m3<br>897.8 kg/m3<br>890.0 kg/m3<br>27.85 kg/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NATIONALES DA VOLIMEN POR MO  Corrora 0.05 m <sup>2</sup> Agua 0.87 m <sup>2</sup> Ag Graco 0.85 m <sup>2</sup> A |
| Ma-   | PROPORTION POR BOLEA (DN PRESS) Prospecies no PE Consent : 1,500 kel Agua : 8,34 k. Ag. Gruss : 2,65 kel Ag. Fron : 8,85 kel COL : 6,000 kel | 5.       | Total PESD POR TANBA Contribed de Harterieles por Ten Gements Agus | 2277.38 kg/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PESS (METABLE) HAMPING TO LESS ARRECTACES. Filling por P2 de Naturalea. Gamento. Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

SAKIARO E.I.R.L.

RUC. N° 20802778250 & Jr. Taragoto d 413 Morales- San Martin & 942661804 / 942628737 Paskiero\_are\_ing\_geo@outlook.os





Gur. na Stangijo GENIERO CIVIL



|          |     | RESUMEN DE OCSTFICACION PARA OBRA F°C = 210 KG/CM2                                                                                        |   |
|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|---|
| TESTS    | :   | Essituar la Influenza de la Adición da Canica de Cina ario de Arrec en los Frequelados Ranga y Macabalasa (de Concreto 210 lg/co/2, 2073) | _ |
| BEICIÓN  | 1   | Biotrita Teropota / Prosencia Sae Martin / Departmente San Mortin                                                                         |   |
| CANTERNS | 1   | Brown channath Zeronhado de tananta Wedens 11/2" - Contara Ris Hasilaga                                                                   |   |
|          |     | Arm on Environ Servantiants Conta Relatio terranta Mitigina SUR* - Caraciro Rio Eurobasa                                                  |   |
|          |     | Contra de Caspara de Armo torrado Madeso Sº 300                                                                                           |   |
| ESISTINS | - 1 | Est, bry, Dall Attraptions Bytes Seven Service and AURO - EACH RESTAL                                                                     |   |
|          |     | fat his Gal Secrete Secreta Street Street (Street Street Street Street (Sect)                                                             |   |
| 820      | - 1 | Setumbra del 2 673                                                                                                                        |   |

| ARRADOS DE POSC - PARV JA N |                                       |  |  |  |  |  |  |
|-----------------------------|---------------------------------------|--|--|--|--|--|--|
| Corrects                    | : 425 Hay/m2                          |  |  |  |  |  |  |
| Agredo Grassa               | : IH7.03 kg/kg2                       |  |  |  |  |  |  |
| Agregatis Fine              | 590 G lg/n3                           |  |  |  |  |  |  |
| DEA                         | 27.55 kg/m3                           |  |  |  |  |  |  |
| lgue                        | ; 187.45 b/m3                         |  |  |  |  |  |  |
| DUMP                        | 3" a 4" (16.20 mm a (8.5 mm) - Photos |  |  |  |  |  |  |

| PESS PER TANCE (Country) de Natoriales par Torch (Fedia) |     |                                        |  |  |  |  |  |
|----------------------------------------------------------|-----|----------------------------------------|--|--|--|--|--|
| Cornents                                                 | 1.5 | 47.58 kg                               |  |  |  |  |  |
| Agredo Sruesa                                            |     | Mility                                 |  |  |  |  |  |
| Agregatic Pine                                           | 1   | 59.00 kg                               |  |  |  |  |  |
| DEA .                                                    | 1   | 2751g                                  |  |  |  |  |  |
| lgue                                                     | 1.  | (824)                                  |  |  |  |  |  |
| SLUMP                                                    | - 1 | 3" a 4" (18,70 per v18.5 nm) - Flexton |  |  |  |  |  |

| PROPERTOR BACKS OF THE . PARK AND HOLSE OF COMMENT |     |                                            |  |  |  |  |  |
|----------------------------------------------------|-----|--------------------------------------------|--|--|--|--|--|
| Cornecto                                           | 1.  | 1.00 bal                                   |  |  |  |  |  |
| Ignato Brusso                                      | . 1 | 5.47 bal                                   |  |  |  |  |  |
| Agregade Pine                                      | -1  | 124 W                                      |  |  |  |  |  |
| DEA                                                |     | EA bet                                     |  |  |  |  |  |
| Ages                                               | 131 | 1.28 hal                                   |  |  |  |  |  |
| DUMP                                               | - 1 | 3" a 4" (TE20 ever a IDI 3 rand - Plattica |  |  |  |  |  |

| DE LITHACO Y COMPACT<br>HISTANIENTO CIENTANIE |               |
|-----------------------------------------------|---------------|
| Training.                                     | To the second |

| PROPORTION OF MILITIAN AND LINES |   |                                         |  |  |  |  |
|----------------------------------|---|-----------------------------------------|--|--|--|--|
| Dereceto                         | = | BEEING                                  |  |  |  |  |
| Agrada fireens                   | - | 8.426 o3                                |  |  |  |  |
| Agragado Pina                    | : | Diffed                                  |  |  |  |  |
| CES                              |   | 0.03 m3                                 |  |  |  |  |
| Agea                             | : | Em. 181.0                               |  |  |  |  |
| SUMP                             | - | S' a 4' OROTI men a 1016 mari - Pinetra |  |  |  |  |

|               | *IO DICE | HEN P | FERNISA BRUSA DE EL MENTO |
|---------------|----------|-------|---------------------------|
| Darwoode      | - 1      | 100   | p <sup>2</sup>            |
| Agrada Gressa | - 1      | 3/6   | p!                        |
| Agragado Pine | +        | 6.88  | p1                        |
| CEA           | 1.1      | 8.80  | p)                        |
| Ages          | 11       | 13.74 | MA                        |
| SHIMP         | - 1      | 2.15  | GGH rangette.             |

| 360         | rtact |               | C - FESTURAS IN FRANCIAS |
|-------------|-------|---------------|--------------------------|
|             |       | CONTROL OF AD | EDHOE DOL                |
| Demark      |       | 15.24 cm      | 0.00 polg                |
| Abra        | - 1   | 30.48 cm      | -                        |
| less        | - 1   | 182.44 cm2    | Sent                     |
| Nekmen (m3) | - 1   | 0.00556 cm0   | 2.00 polg                |
| Desperdata  | 1     | 300%          | G1153                    |

|               |    | READ OF PROBETUS POR DISCRES<br>OF PROBETUS |
|---------------|----|---------------------------------------------|
| Carreto       | 4  | 20.00 %                                     |
| Agrado Brusss | -1 | 58 C kg                                     |
| Agragado Rinz | -  | 30.42 kg                                    |
| CCA           |    | 142 iq                                      |
| Ague          | -  | 918 %                                       |
| SLIMP         | 1  | T' a C (R.16 nm a H.6 mm) - Photos          |



- Se delle confeccioner colors de maders cue capacital de l'antil para el resign control de le destitución un desc. espanalmente de les apreprios.
   Controlar mediante impacciono Varid y serviça por cue con el alternado (2° °C), para delede de las condicions destitates de la servición mediante impacciono Varid y serviça por tolloca le calciad de materiales efilicados, los caudes becon repositor le calciad del disorte.
   Reconstruitement delaterar calciatras en altre y encapar en el laboratorio para mediant los ejectos al lastes essenareles.

SAKIARO E.I.R.L.







RUC. N° 20802778259 . Jr. Tarapolo # 413 Morales- San Martin 🔌 942661604 / 942626737 . Sakiaro\_art\_ing\_geo@cutook.us

L. Aut Paragifo IERO CIVIL I<sup>e</sup> 11860s



II. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) - MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1 1/2" DE LA CANTERA RIO HUALLAGA + 11% CENIZA DE CASCARA DE ARROZ

SAKIARO E.I.R.L.







#### DISEÑO DE MEZOLA DE CONCRETO FILE 21 MPa - 210 KG/CM<sup>3</sup> "METODO A.C.1 211.1" + Fedore in Inflations de la Milatia de Centra de Concern de Arraz en las Propiedades Plaisas y Mentricas del Concreto 200 lag/curil. 2003 Batrito Berapeto / Provincia San Martin / Departmente San Martin Gran chanade la terredade de barral Martin 11/2" - Centre de Balainge Arras Caraza Carachesia Centra Batrini sunata Martina 10/2" - Centre de Balainge Gran Carachesia Carachesia Carachesia Carachesia sunata Martina 10/2" - Centre de Balainge Gran de Casacre de Arras Carachesia Carachesia PP 20 Esta de Casacre de Arras Carachesia Carachesia PP 20 Esta de Casacre de Arras Carachesia Carachesia PP 20 Esta de Casacre de Arras de Santa Propiedade 2002 - Sel-1833 | Est lag Carl Santita Arras de Santa Plaza | carachesia Casacre de Santa TESTS LENCACIÓN CANTESAS TESSTAS PEDA HATERNAS 21MPu F c Anguerdo F c = 7 F c + 8.5 (0.1 a F c)=6,0 28 MPu 281kg/cm2 F c Requerido F c + 13 F c + 15 El x F g) - 28 185 kg/cm2 f c 06840 Promise FORTAGO PACADAMO ODREGISTO FE No. PESE ESPECIES 35 g/md. PESE WICHED 5500 bg/md. 7: -20 20+20 21 e 25 dati Pastat Pranadle MEN POTABLE - 100 PUBLICA AND BY DEAL

|                          |                                | SMATHSHEAD                | RE FORDAS COLLUS AGREGADOS |                     |                                  |
|--------------------------|--------------------------------|---------------------------|----------------------------|---------------------|----------------------------------|
| MAGREEMSO FIND CAREAN DR | LESA CANTE REEKOO ZARAMDE AGAD | AGREEMAN OF LESSE OF      | SVA CHANCES TARRESEASA)    | ATTE                | EARD FIND (CCX)                  |
| PECCEDICIE.              | CHASA SECONOTI                 | PROCHEDICIA               | CHOLEGY MIG ABITITION      | PROCEDENCIA         | 1 +                              |
| IMMS WATER               | 3/8" (3.575 mm)                | TAMASC MAZINE             | 1 197" (38.00 m)           | DANARS HADRIS       | M*38 (0.593 mm)                  |
| DANNE WALL SOMELL        | : V4' (\$350 me)               | TUMAÑO HAS ROMANS         | r CSABmed                  | DANGE KID, HONGA.   | WAD GERTSmit                     |
| EMITAN OKTUBAL           | 14%                            | DESIGNATION OF THE PARTY. | 137%                       | REMEDIC BASEAU      | 17%                              |
| RESURS RESIDENCE         | 7.80 g/cm2                     | FESS ESSECTION 0.1        | 789s/cm2                   | PLS J ESPECIACIO    | 189/200                          |
| MEDICKN                  | 15/%                           | RESERVEN                  | 012 %                      | 1059528             | 124%                             |
| CT.CLUC DRAVAGE DEST     | 580 kg/m3                      | PESD WATHROUGH TO         | 1350 kg/n0                 | PERSONAND SOUTH     | Zistip/ml                        |
| TOLLISH SHATME SEP       | E00 kg/kg                      | PESE BY THREE VARIENCE    | 1548 kg/m2                 | PESSENGLAD VARILIES | : 333 lg/n3                      |
| MEDICAL CE TIMEZA        | 2.84                           | MERCIA DE ENEDA           | 5.84                       | MEDILID DE PINEZA   | : 10                             |
|                          |                                | DOERN OF HETELAN          | E CONCUTIO NETECOLA CADA   | State State         | 2 DESCRIPTION                    |
| L CHECKE OF IA RESET     | Dicar Plainaid                 | 2. CONSCIENCY             | (DE ACUESTOO A LA TUNK)    | 2. TAMAÑO           | I MAXIMU HUMINAL AGREGADO GRUESO |
| for-                     | 285 kg/ow2                     | 3" + F (FE2E)             | en o Ollinei - Plettea     | 144                 | F (25.400 ee                     |
| Colorie de constructo    | confutor is reported.          |                           |                            |                     |                                  |
| 4- CALCINO DEL ARIA (TA  | dis 2)                         | S. CUITOUR DE             | IDE (Takin 3):             | E. CADA             | DIDE LA RELUCION A/C (Table 4)   |
| Apri                     | BR 80 H/H2                     | lin                       | 150%                       | Re: 6/0             | 0.45                             |
|                          |                                |                           |                            |                     |                                  |
| THE CANDING DE LA RELLA  | C POR DURABLINAD               | E. FACTOR CENE            | NTO .                      | SUMB                | AD DE ABRIERARO ERRESD (Table 5) |

| d.  | CALICULO OF UN RESISTORION PROMICING          | 2-                  | CONSISTENCY (DE                           | CUEFE           | O A LA TINK)  | 2.                         | TANANT MAXIMU        | CHIM                    | AGREGADO GRUESO  |
|-----|-----------------------------------------------|---------------------|-------------------------------------------|-----------------|---------------|----------------------------|----------------------|-------------------------|------------------|
|     | f are 285 kg/cm2                              |                     | J'sf Chillians                            | Olan            | mò-Plestea    |                            | Tex                  |                         | f* (25.400 em)   |
|     | Colorie de constructe que fector de reported. |                     |                                           |                 |               |                            |                      |                         |                  |
| 40  | CALCUAD DEL ABBA (Toble 2)                    | 5.                  | CONTRACTOR MEET                           | Table 3         | 0             | 8.5                        | CALCULO DE LA R      | ELACION                 | A/G (Table 4)    |
|     | April 802.8019/n2                             |                     | lite                                      |                 | 150%          |                            | Rei I/C              |                         | 0.45             |
| t,  | CALCULA DE LA REL A/C POR DURARRIMAD          | В.                  | FACTOR CEMENTS                            |                 |               | 82                         | The second second    | EAIT                    | ERDESO (Table 5) |
|     | Nonecte                                       |                     | Gliffig/m3                                |                 | 10.00 lot/vid |                            | A. Gruene            |                         | 421 33 tp/e3     |
| n-  | CALCULO DEL AGREGADO FINO                     | n-                  | PROPERCED HICK                            |                 |               | 2                          | DEFRE DOOR FOR       | IUE                     | MO               |
|     | Apre : \$100 m3                               |                     | Connection:                               |                 | 425 ff kg/m2  |                            | Ag Grunn             | 1                       | IB4941g/m3       |
|     | Ary 105 e3                                    |                     | Agea                                      |                 | 102.80 k/m3   |                            | Ag Faro              |                         | 5785Hg/m2        |
|     | Commits USS eG                                |                     | Ag. Graece                                | 4               | #3932 kg/m2   |                            | EEA                  | 4.1                     | 33.35 ig/m3      |
|     | E Enage DKF4-03                               |                     | Ag Fire                                   | 10              | 578.80 kg/w0. |                            | Ap. a Carregide      | 8                       | IE7.4816/m3      |
|     | 0.XE+0                                        |                     | DEA                                       | =               | 39.21kg/m2    |                            | Food Combination     | 44                      | 0043Ekg/m3       |
|     | Volume fire : 0.234 = 2                       |                     | Tend                                      |                 | 2284.54 kg/m3 |                            |                      |                         |                  |
|     | Fess Ayr. Rina 807 8 kg/v0                    |                     |                                           |                 |               |                            | PROPORCIÓN           | CALCE                   | LACA             |
|     | CCA SOSING/ed                                 |                     |                                           |                 |               |                            | Brueso: ESN Fee: 35% |                         |                  |
|     | PROPORCIÓN ESTRAGA DE LOS AGRICANOS           | D. PROPORCION TANAL |                                           |                 |               |                            | NATERNALES EN V      | DELIMEN                 | PORKS            |
|     | (AMILISIS ERAPALLIMETRICO)                    |                     | Commen                                    | =               | 425Etg/#0     |                            | Comente              | 10                      | 0.95 ±0          |
|     | PROPERCON LETHAGA DEL                         |                     | Agun                                      |                 | 87.48 M/m3    |                            | Agen                 | 1                       | 8.87 + 6         |
|     | researched                                    |                     | Ag Enume                                  |                 | 34712 kg/m2   |                            | Ag Gruese            |                         | E426 m2          |
|     | PROPERTY ISTANCE ON                           |                     | lg fine                                   |                 | 587.27 lg/m3  |                            | Ag fine              | Ť                       | 8 87 e3          |
|     | PERSONNE LANS THE TOTAL                       |                     | Acre                                      | 40              | 0.00 kg/will  |                            | Are                  | 1                       | 815 v0           |
|     | -                                             |                     | DOM:                                      | à)              | 33.21kg/m2    |                            | EEA                  |                         | Litteral         |
|     |                                               |                     | Tetral                                    | ±               | 2377.4/kg/w3  |                            |                      |                         | Der DJ           |
| No. | PARIPHROON POR BOLSA (EN PESO)                | B,-                 | PEST POR TWEE                             | PESC) POR TANDA |               | PEST LINETARK              |                      | HAMETO SE LOS AGREGADOS |                  |
|     | Proposite of PS                               |                     | Centifod de Muteriales par Tendo (Flades) |                 |               | Peuco per P3 de Materiales |                      |                         |                  |
|     | Cornecto : USB bol                            |                     | Cornerto                                  | 1               | 41 50 kg      |                            | Cornecto             |                         | 42.58 kg/si2     |
|     | Agua ; 18.7% le                               |                     | Agen                                      | 1               | 8.74 k        | . 1                        | Agen                 | 1                       | <b>电路标准</b>      |
|     | Ap. Grosse : SHI but                          |                     | Ag. Ersens                                | 1               | BARBig .      | 11/1                       | Ag Fine              | 1                       | 47.93 kg/p3      |
|     | Ag Nac 0.75 bil                               |                     | Ag. Brea                                  | 1               | 58.72 kg      | 1111                       | Ap Grisson           | 1                       | 28.88 10/53      |
|     | CCA : 0.88 ball                               |                     | CES                                       | Ŷ.              | 183 kg        | WH                         | CCS                  | 4                       | 7.28kg/y3        |

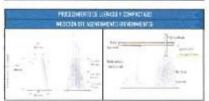
SAKIARO E.I.R.L.







Meniero civil




|          | RESUMEN DE DOSIFICACION PAÑA DERA F E = 210 KG/CM2 |                                                                                                                                     |  |  |  |  |
|----------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TESTS    | -1                                                 | Endoor le billancie de la Alichin de Cintes de Concers de Arres se les Propiededes Rabas y Macteriaus del Concerso 240 kg/cm2, 2023 |  |  |  |  |
| ECASIÓN  |                                                    | Biotrita Tempoty / Provincia: San North / Organisments: San North:                                                                  |  |  |  |  |
| CANTERAS |                                                    | Entre classeds Brandests & terrets Reine 177° Carters Ro Nadings                                                                    |  |  |  |  |
|          |                                                    | Bronz Grussu Darondonio Conte Rodode tamusto Minimo 2/8" - Cantara Rie Guellana                                                     |  |  |  |  |
|          |                                                    | Cariou de Cascaro de Arres tansate Móximo Nº 20                                                                                     |  |  |  |  |
| RSISTAS  | 1.                                                 | Est. No., Cod. Army Lone Bylon Davier forció any/1000-1000-648-6574)                                                                |  |  |  |  |
|          |                                                    | Est by Del Smalle Jeweit Brand Stan ( mold my/1680 0882 088: 8042)                                                                  |  |  |  |  |
| EDIA     | 1                                                  | Setembry del 7 073                                                                                                                  |  |  |  |  |

| PATPARTON IN PETE - POINTIN M |     |                                      |  |  |  |
|-------------------------------|-----|--------------------------------------|--|--|--|
| Coverts                       | 1   | 425.8 kg/n/3                         |  |  |  |
| Agrado Grassa                 |     | 1907 IZ lig/lm3                      |  |  |  |
| Agregada Pina                 | 1   | 587.37 kg/s/3                        |  |  |  |
| ITS .                         | - 1 | 2828g/n3                             |  |  |  |
| Ages                          | : 1 | 87.63 t/e3                           |  |  |  |
| SUMP .                        | - 1 | 2" a 4" (78.28 mm a GE mm) - Pleates |  |  |  |

| WEEPER IANGA Exercise to Many later per Tuedo disolval |     |                                       |  |  |
|--------------------------------------------------------|-----|---------------------------------------|--|--|
| Correcto                                               | 1   | 42.53 kg                              |  |  |
| Agrada Srussa                                          | 1   | 14.931g                               |  |  |
| Agragada Rea                                           |     | 58.72 kg                              |  |  |
| TIA                                                    | - 1 | 3.00 kg                               |  |  |
| Agus                                                   | 1   | 18743                                 |  |  |
| SUMP PAGE                                              | - 1 | 2" a 4" CHSE mm a BHE work - Pleasing |  |  |

| POOPERCON DIAGREES OF 20 IN FINALISM BELSA DE SONDROS |   |                                         |  |  |
|-------------------------------------------------------|---|-----------------------------------------|--|--|
| Gements                                               | 1 | 180 (se)                                |  |  |
| Agresia Greens                                        | 1 | ARTHU                                   |  |  |
| Agregada Fine                                         | 1 | 117 hol 112                             |  |  |
| 1004                                                  |   | 125 hal                                 |  |  |
| Agan                                                  | 1 | 129 lwl                                 |  |  |
| STIMP                                                 | 1 | 3" a 4" (70.70 mm a 50.0 and) - Plantca |  |  |



| PREPERCON IN VILINEN-PARK IN N |     |                                          |   |  |  |
|--------------------------------|-----|------------------------------------------|---|--|--|
| Coments                        | -   | 0.05 m2                                  | T |  |  |
| Agneto Snusss                  | - 1 | 0.426 / 3                                |   |  |  |
| Agregatic Fina                 | -   | Diffred                                  |   |  |  |
| DCA                            |     | 0.10 = 3                                 |   |  |  |
| Ague                           | - 1 | 0.87 eJ                                  |   |  |  |
| SUMP                           | - 1 | 3" o 4" (16.20 ove a 10.5 ove) - Pastice |   |  |  |

|                 | POPULID | CHP.  | PRINT OF RELEASE CONTROL |
|-----------------|---------|-------|--------------------------|
| Committee       | 1       | 100   | pt.                      |
| Agretic Strones |         | 3.6   | p2                       |
| Agregade Fine   | - 1     | 0.75  | p2                       |
| CCA             | - 1     | 0.88  | p <sup>b</sup>           |
| Appe            | - 1     | 18.74 | k/yū                     |
| TUNP            | 1       | 3'14  | CERO con a little to     |

| 123            | EXCI | DA EL DE AS | C - PROPURCIÓN EN PROPUESTAS<br>Cúmico CCA |
|----------------|------|-------------|--------------------------------------------|
| Danetro        |      | 5.24cm      | E00 prig                                   |
| Stare          | 4    | 33.4E pm    |                                            |
| Area           | - 4  | \$2.4 m2    | 15,535                                     |
| lichoman (m/3) | i.   | 1.00558 cm2 | 0.00 palg                                  |
| Desperdos      | - 1  | 100%        | 27.53                                      |

| CHALENS OF NATIONAL VOICE STORY. |      |                                      |  |  |
|----------------------------------|------|--------------------------------------|--|--|
| Cormento                         | 1    | 2151 kg                              |  |  |
| Agreit Grunn                     | 1    | 58 E in                              |  |  |
| Agregade Fine                    | 1    | 39.2744                              |  |  |
| CEA                              | Si . | 158 kg                               |  |  |
| Ague                             | 1    | 9.56 k                               |  |  |
| SHAP                             | - 3  | If a # (TL20 mm a IELE ms.) Pleation |  |  |

#### SECONE NO ACROSES



- Se dete conhections rates de moders con expected de la juid para el major control de la desficación en chen, expecialmente de las agregadas.
  Controles d'Elana franctionischa fin de mestri para que sen el referendo GT 4°C, para debite el las combine cineticas la branchia de las agrega.
  Controles mediante imprecisase decel y excepa periodicas la colded de meteriales efficadas. La coales bacete figurador la colden del disente.
  Recontrolement elaborar effendras en altro y sersion en el luberaturia para mellacor las apartes el bace escuento.

SAKIARO E.I.R.L.





Gun. im Rengijo PENIERO CIVIL SP Nº 118508



III. DISEÑO DE MEZCLA EN AGREGADO POR SEPARADO (F'C= 210 KG/CM2) - MEZCLA DE ARENA DE LA CANTERA RIO CUMBAZA + GRAVA CHANCADA T.M. 1" DE LA CANTERA RIO

HUALLAGA + 12% CENIZA DE CASCARA DE ARROZ







#### DISEND DE NEZCLA DE CONCRETO 1 o 21 MPa - 210 KG/CM2 "METODO A.C.1 211.1" + 11 Exitar in Influencia de la Adulto de Casico de Casarro de Arror en las Frapalades Fásicas y Maciacias del Casorro 2016/2/202. 2023 Batrios Terrono d'Arrondos Este Merito d'Appartamente Esse Austro Erron chancela Barradinado de terrator Matino 1/12" - Contaro Re Buellago Arron Escosa Alementado de terrator Matino 1/12" - Contaro Re Buellago Arron Escosa Alementado Sante Falado Barrado Matino 2/19" - Cantaro Esc Casilasos Contra de Casorro de Arron brento Matino 19" 38 Este Esp Col Long Lana (Mais Desse Terrid my 10000-10001-1000-1007) Este Esp Col Long Lana (Mais Desse Terrid my 10000-1007-1000-1007) Esterator del 7 2023 TESE IBELICIN CWITERAS PERSONAL : HOM : INTERNAL SECTION OF THE PROPERTY OF THE SPECIAL SECTION OF THE 27 MPs Fig. Properties Fig. + 7 Fig. + 15 GT of Fig. 50 20 MPs of Fig. 1 Fir DISENE f e DESEÑO 28 kg/zm2 T cRependo fe-W Fe-W (lafe)SD -218 210 + 253 -253 AGIA PERMIL - PED PURICA Pesist Prawedo Bestet Promotio ACRESTRA DE 1226. 1276

|                         |                                | ENVERHISTERS!       | GL III | HEAT OF HIS AGREEMENT  |                      |                   |
|-------------------------|--------------------------------|---------------------|--------|------------------------|----------------------|-------------------|
| ACRESAND THE LARGE CO.  | ESACANTO FICTA DE ZARANGE ADAL | ADVESAGE CRUE DE CE | HIVE   | CHANCACH SALMERADA.    | 466                  | KOO FINO (EEA)    |
| PRODUCE                 | CANTERN PER COMPINAL           | PROTEDENCIA         | 3      | CANTERA E EL HIBALIACA | PRODUCT              | 4 4               |
| THURS KILLING           | 1/8" (0.525 mm)                | THINKS WAXING       |        | 11/2" (38.66 mm)       | TANAN BARRE          | : W 20 (0.590 mm) |
| DUNNE WAY, NEW YOR      | UV E3STool                     | TURKAG NAT REWRILL  |        | l' (25.408 mm)         | CHANGE MADE NOTHING  | 19-46 (E-625 mm)  |
| HEREDO WOLSKY.          | 0.0%                           | HIMEDAD NATURAL     | : 1    | 127 N                  | REMEDIO NUTURAL      | 0.7%              |
| PLSO ISPLOYED           | 2.80g/sm2                      | PESDESPECE          | 1      | 2.60 g /cm3            | PERRENDED -          | : IBg/ord         |
| MODELEN                 | 0.54%                          | ASSURCION .         | I      | 0.87 %                 | VICIRION             | 154%              |
| PESD EWRARD THELTT      | 689 kg/m2                      | PESD BYTMID SUE:TO  |        | 1333 ig/m3             | PLES ENGAND STELLE   | 254 kg/m2         |
| PERO UNITARIO NARILLAND | 833 kg/e3                      | PEST BATURE WOLLAND | -      | 548 lg/m2              | PESSONITARIO WOLLAND | 333 kg/e2         |
| MODELS DE ENGLA         | 216                            | MODRIE DE RINEJA.   | Т      | 5.04                   | MODBLO SE FINEZA     | 1.00              |

| double. | THE A          | - 1        | 216                   | MODEL | EINEAL :             | 5.94    | MXXIII          | D SE FINEZA |                  | 1.00    |                     |
|---------|----------------|------------|-----------------------|-------|----------------------|---------|-----------------|-------------|------------------|---------|---------------------|
|         | - 3            | nin.       |                       | 15    | END DE MELLO A DE CO | K P.    | S MELEDO WELLON |             |                  |         |                     |
| I- CAU  | DAU SE DAR     | SEUN       | CIA PROMERO           | 20    | CONSISTINGA (DE      | 1.000   |                 | 3-          | TANKARD HAZINO   | NOME    | AL ABREBADO GRUESTO |
| f or    |                | 1          | 285 kg/cw2            |       | 1'+4'(%21 mm)        | 10.1    | sed - Flattica  |             | 366              | *       | F (25.400 mm)       |
|         |                |            | in featur de operated |       |                      |         |                 |             |                  |         |                     |
| - DAG   | COLO DEL AGL   | <b>新打練</b> |                       | 87    | CARTENI DE AIRE      | (Teble: |                 | E-          | CALCUAD DE LA P  | ELACIB  |                     |
| Agus    | *              |            | 62 H Mag              |       | Bre                  | E       | 133%            |             | Ref. A/C.        | 1.      | 0.45                |
| - two   | DADSELAR       | EL A/E     | FOR DURABLIDAD        | E-    | FACTOR CENENTS       |         |                 | 87          | CANTIDAD DE AB   | EEADO   | GRUETO (TANK S)     |
| Box     | ncita          |            |                       |       | Cillig/nS            |         | 6.00 lm/m2      |             | A. Brasse        |         | 109.33 fg/n3        |
| I. DAL  | CIRD DELAG     | etan.      | RME!                  | 1     | PROPERTIES NO.       |         |                 | E-          | CORRECCION PO    | HIME    | 340                 |
| km      |                |            | 1100 ml               | 50    | Consti               | S.,     | 425.Hlo/w1      | 75          | As Sents         |         | (5454 kg/m)         |
| lee     |                |            | 116 e3                |       | Jan.                 |         | H3.60 to/w3     |             | Ag Fino          | ±       | 538.54 kg/m3        |
| Eur     | rente          |            | 0135 m3               |       | Ja Grann             |         | 109.33 kg/m3    |             | DDA .            | 1       | 33.02 kg/w3         |
| 4.0     | THEFT          |            | 8494 × G              |       | As. Fire             |         | STADNIg/nd      |             | Agua Corregido   | 1       | 187.52 b/w3         |
|         |                |            | 9.78E =3              |       | EEA                  | -       | 33.06 kg/m3     |             | Pose Certificado | 4       | (764.90 lg/m3       |
| Mile    | enen Pina      |            | 8524 m5               |       | Total                |         | 2384.54 kg/m3   |             |                  |         |                     |
| Per     | 1 Apr. Fire    | 1          | 807 F kg/s/3          |       |                      |         |                 |             | PROPORCEO        | HEALD   | ULABA.              |
| 000     |                |            | MINE No. (mill)       |       |                      |         |                 |             | Scene: 27        | fles    | 1: 35%              |
| PRE     |                |            | E LUS AGRICANUS       | d-    | PROPORCION FINAL     |         |                 |             | WATERWAYS DE     | ошн     |                     |
|         | WWESTS         | GPANIE     | IMETRICIO             |       | Consets              |         | 425 If lig/m3   |             | Consets          | 1       | 0.05 n/2            |
|         | POWDÓN (D)     | MATA       | MI DEN                |       | Agus                 |         | 187.52 M/mT     |             | Agus             | T       | 3.98 m3             |
| ADR     | ERROR DIVERSI  |            | of Contract Party     |       | Ag Green             |         | 56712 kg/n2     |             | Ag Drasss        | +       | 0.426 m3            |
| 190     | P9800H 121     | MICA       | 90 395                |       | Ag Free              |         | \$64.02 kg/m8   |             | Ag Fire          | +       | 0.995 m3            |
| VOID    | DATE PAR - 129 | EGE DOA    | 123                   |       | Are                  |         | \$.00 kg/m2     |             | Ace              | 4       | 185 eS              |
|         |                |            |                       |       | A203                 | 1       | 33.00 kg/m3     |             | CER              | 1       | 0.00 ed             |
|         |                |            |                       |       | load                 | 1       | 2377.43 kg/m3   |             |                  |         | LD m3               |
| A- PRO  | PERCEN PO      | HILDS:     | (EN PESS)             | 6     | PESS FEB TANKA       |         |                 |             | PESS UNITARIO    | OFX     | DE LOS ASPECADOS    |
| Fire    | Planting.      |            |                       |       | Control de Haranta   | is por  |                 |             | Pasos per P3 de  | Makeral |                     |
| Can     | rents          |            | 1305si.               |       | Cerette              | T       | 40.50 kg        | Λ.          | Correcto         | 1       | 47.18 kg/s3         |
| Age     |                | 8.         | 第75年                  |       | Agun                 | 1       | <b>展型社</b>      | 10          | Agus             | Y       | IE25 b/y2           |
|         | Science        |            | 338 tel               |       | Ag Siness            | 1.11    | HSS II          | 11/1        | Ag. Free         | 1       | 42.80 kg/y2         |
|         | fine:          |            | 9.76 hel              |       | Ag Free              | 1       | 58.45 kg        | 101         | Ag Grassa        | 10      | 39.88 lg/y/I        |
| DOM     | 1              | 4          | 0.06 bel              |       | EEA.                 | 13      | 231kg //V       | H/          | DGA              | 4.      | 7.79kg/p8           |

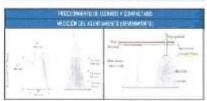
SAKIARO E.I.R.L.

RUC. N° 2002775259 . Jr. Tampoto # 413 Monaina- San Mentin 🔌 942601604 / 942026737 . Sakkaro, ang, ing, geo-geutlook as





Ban. da Stanjijo Geniero civil




|           |      | RESUMEN DE DOSIFICACION PARA DERA F. C 210 KG/CM2                                                                                             |  |
|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| TESTS     | 1    | Estituer la lefturencia de la Adictiro de Contra de Cascarre de Arrez en las Prepiedados Finicas y Mactalesas del Concreto 200 lg/lore2, 2003 |  |
| HOCKCHOOL | 1    | Biomitic Surrigions / Provincia: San Warria / Departmental: San Worte                                                                         |  |
| CHATERAS  | 1    | Gross chemoske Zerandoselo de terrodo Masimo I IV2" - Cantore Rio Hasilega                                                                    |  |
|           |      | Armen Brunen Tarmerhanks Contro Padrolo tornetto Naturus SVE - Carebro Pio Carebasa                                                           |  |
|           |      | Centra de Cancara de Arres terrado Misidos (f.º 31)                                                                                           |  |
| ESSTAS.   | F: - | fat by Call keep land byte Emer Levillary/1900-0002-540-65741                                                                                 |  |
|           |      | Est by Cvil Spesier Article Brood (Nat Coold pay 0000-0002-000-0042)                                                                          |  |
| TEDM      | :    | Lettershire and 7 3073                                                                                                                        |  |

| PROPERTY EXPERIENCE |                                           |   |  |  |  |
|---------------------|-------------------------------------------|---|--|--|--|
| Comercia            | : 425.8 kg/o3                             | _ |  |  |  |
| Agredo Sinueso      | 10712 ig/sd                               |   |  |  |  |
| Apregado Fine       | ± 564.67 kg/m2                            |   |  |  |  |
| tra                 | 31.06 kg/w3                               |   |  |  |  |
| Ague .              | 107.52 k/ed                               |   |  |  |  |
| SLUMP .             | 3" n 4" (76,20 eve a 10,5 eve) - Plastice |   |  |  |  |

| PLEOFER MEET (Carreline for Money was per Tonda Chaina) |     |                                        |  |  |  |
|---------------------------------------------------------|-----|----------------------------------------|--|--|--|
| Comercia                                                |     | 42.51%                                 |  |  |  |
| Agrede Sruess                                           | - 1 | HIII                                   |  |  |  |
| Agregado Pies                                           |     | 58.45 kg                               |  |  |  |
| ECA                                                     | - 1 | 2.2kg                                  |  |  |  |
| Agow                                                    |     | 4.5b                                   |  |  |  |
| CLUMP                                                   |     | T a 4" (18.26 em a 10.5 em) - Pication |  |  |  |

| PIO           | THE UNITED BY | DES DE 200 in PANY (AND RE) SA DE CEMENTE |
|---------------|---------------|-------------------------------------------|
| Coverto       | - 1           | 100 F9                                    |
| Agredo Grusso | 1             | 847hd                                     |
| Agregada Peo  | 7             | 8.93 bel                                  |
| DOM:          | 18            | 12Y tel                                   |
| Ague          | - 1           | L20 hal                                   |
| OUMF          | - 4           | T's 4' GR 20 are a DUS rank - Peoples     |



| PROPERCIA EN YOLDNEK PANA UN W |     |                                         |   |  |  |  |
|--------------------------------|-----|-----------------------------------------|---|--|--|--|
| Comento                        | 1   | 8.125 + 2                               | T |  |  |  |
| Agrado Sresse                  | 1   | 8.425 m3                                |   |  |  |  |
| Agregeds Res                   | - 3 | 0.085 e3                                |   |  |  |  |
| ETA ATT                        | 1   | 0.00 =3                                 |   |  |  |  |
| Agus                           |     | 6.48 m2                                 |   |  |  |  |
| to read                        | -   | 2" a 5" (78.75 mm a 1815 mm) - Flantice |   |  |  |  |

|               | HEADED | HEN P | PARALIMATUSA DE CEMENTO |
|---------------|--------|-------|-------------------------|
| Cemawa        | - 1    | 160   | *1                      |
| Agrado Grassa | - 1    | 3,18  | II.                     |
| Agragada Bra  | 1      | 0.70  | p).                     |
| ECA           |        | 0.50  | F <sup>3</sup>          |
| Ages          | - 1    | 1875  | 1/43                    |
| CLIMP         | - 1    | 216   | OS28 em a BIE m         |

| ATS           | HEACH | MINAL DEEK 1 E - 71<br>CON EPN DE AD | E PROFESCON EN PROMENS<br>CONTE CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|-------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Departre      | -     | 624cm                                | 8.55 prig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Altere        | t     | 30.48 cm                             | THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM |
| Area          | t     | 82.4 cm2                             | 772.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Valueses (m2) | -     | £ 88550 cm2                          | Q.00 palg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Oraperdicki   | -1    | 200%                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| CANDAC BLIPROR LAS POR DISERB<br>SI PROBLIAS |      |                                 |  |  |  |  |
|----------------------------------------------|------|---------------------------------|--|--|--|--|
| Conerts                                      | i l  | 21.9 kg                         |  |  |  |  |
| Agrada Grassa                                | 194  | 5812 kg                         |  |  |  |  |
| Agregade fins                                |      | 30.12 kg                        |  |  |  |  |
| CEA                                          |      | 120 kg                          |  |  |  |  |
| Ages                                         | 1    | 5.67 h                          |  |  |  |  |
| OUNF                                         | - 60 | T of (R25 no alR5 no) - Platter |  |  |  |  |

IL Sustración à Furnas que adopte la anestía en la prode de rever



- So faite confectioner subsit de maiores can capacidad de li più para el exiger cantrel de la destitucation en aira, espocalmente de liss apprepria
   Entrelor el Gierro (constantaine) de la massis para que cana el admissable (2º -4º), para debido e les produce silvaticas al humadol de los agra de la cantraler mediante impresonar si sual y consepa partidista la calded de materiales afficiales, las caudes hacter depender la celebed del dante.
   Se Esconendemos substant ciliarion en obre y emayor en al elebentarion pero residant las ajuntes al fassa messante).

SAKIARO ELR.L.





nin., du Ślingjo ENIERO CIVIL P N° 118505



IV. RESULTADOS DEL ANALISIS DE LABORATORIO DE LOS

AGREGADOS DE LA CANTERA RIO CUMBAZA (ARENA), CANTERA RIO HUALLAGA (GRAVA CHANCADA T.M. 1 1/2") Y CENIZA DE CASCARA DE ARROZ



# **ARENA** CANTERA RÍO CUMBAZA





Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023 Tesis

: Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin Ubicación

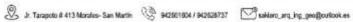
Muestra : Cantera Rio Cumbaza : Arena gruesa canto rodado de tamaño Máximo 3/8\* Material

: Diseño de Mezcla por Separado : Setiembre del 2,023 Para Uso

Fecha

| TARRO 1 2 3 L                |        |        |        |    |  |  |  |  |  |  |
|------------------------------|--------|--------|--------|----|--|--|--|--|--|--|
| MASA DE LA TARA              | 110.00 | 99.30  | 115.10 | 9  |  |  |  |  |  |  |
| MASA DEL SUELO HUMEDO + TARA | 672.20 | 606.30 | 614.50 | 9- |  |  |  |  |  |  |
| MASA DEL SUELO SECO + TARA   | 669.00 | 604.12 | 612.55 | 9. |  |  |  |  |  |  |
| MASA DEL AGUA                | 3.20   | 2.18   | 1.95   | 9. |  |  |  |  |  |  |
| MASA DEL SUELD SECO          | 559.00 | 504.82 | 497.45 | 9  |  |  |  |  |  |  |
| % DE HUMEDAD                 | 0.57   | 0.43   | 0.39   | *  |  |  |  |  |  |  |
| PROMEDIO                     |        | 0.47   |        | %  |  |  |  |  |  |  |

| Observaciones: |  |  |  |  |
|----------------|--|--|--|--|
|                |  |  |  |  |
|                |  |  |  |  |


Luis Jelipe Loney Chuquiyula Tec. Esp. en Mechica de Suelos Concreto y Pavirhentos DNI N° 45886225

SAKIARO E.I.R.L.

RUC. Nº 20002778259







San. da Sergijo GENIERO CIVIE SP Nº 118595



Evaluar la Influencia de la Adición de Centra de Cascara de Arroz en las Propiedades Físicas y Mecánicas Tesis

del Concreto 210 kg/cm2, 2023

Ubicación Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin

: Cantera Río Cumbaza Muestra

 Arena gruesa canto rodado de tamaño Máximo 3/8\*
 Diseño de Mezcla por Separado Material

Para Uso : Setiembre del 2,023 Fecha

#### PESO ESPECIFICO Y ABSORCION DEL AGREGADO FINO - ASTM - C128-15

| TARRO                                                    | 1       | 2       | 3       | UNIDAD |
|----------------------------------------------------------|---------|---------|---------|--------|
| A Masa Material Saturado Superficialmente Seco (En Aire) | 416.30  | 425.23  | 420.41  | g.     |
| B Masa Frasco + Agua                                     | 656.90  | 656.90  | 656.90  | 9.     |
| C Masa Frasco + Agua + A                                 | 1073.20 | 1082.13 | 1077.31 | 9      |
| D Masa del Material + Agua en el Frasco                  | 911.52  | 917.36  | 913.69  | 0      |
| E Volumen de Masa + Volumen de Vacio ( C - D )           | 161.68  | 164.77  | 163.62  | 9.     |
| F Masa de Material Seco en Estufa (105° C)               | 414.00  | 423.20  | 418.00  | 9      |
| G Volumen de Masa ( E - ( A - F ) )                      | 159.38  | 162.74  | 161.21  | cc     |
| Pe Bulk (Base Seca) ( F / E )                            | 2.56    | 2.57    | 2.55    | g/cc   |
| Pe Bulk (Base Saturada) ( A / E )                        | 2.57    | 2.58    | 2.57    | 9,66   |
| Pe Aparente (Base Seca) ( F / G )                        | 2.50    | 2.60    | 2.59    | g./cc  |
| % de Absordión ( (A - F ) / F ) * 100 )                  | 0.56    | 0.48    | 0.58    | %      |
| PROMEDIO MASA ESPECIFICA BULK (BASE SECA)                |         | g./cc   |         |        |
| PROMEDIO MASA ESPECIFICA BULK (BASE SATURADA)            |         | g/cc    |         |        |
| PROMEDIO MASA ESPECIFICA APARENTE                        |         | g./cc   |         |        |
| PROMEDIO % DE ABSORCION                                  |         | %       |         |        |

Observaciones:

Luis Jelipa Jeney Chuquiguta
Tec. Esp. em Macánica de Suelos
Concreto y Pavinhentos
ONI Nº 45886225







Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Tesis

Concreto 210 kg/cm2, 2023

: Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin Localización

Muestra Cantera Rio Cumbaza

Arena gruesa canto rodado de tamaño Máximo 3/8º Material

Diseño de Mezcla por Separado Para Uso Fecha : Setiembre del 2,023

PROMEDIO

PESO UNITARIO SUELTO ASTM C - 29 ENSAYO. 3 IMASA DE MOLDE + MATERIAL 5,870 5,862 5,900 kg. MASA DE MOLDE 1,653 1,653 1,653 kg. MASA DE MATERIAL 4,217 4,209 4,247 kg. VOLUMEN DE MOLDE 0.00280 0.00280 0.00280 m3 MASA UNITARIA 1,506 1,503 1,517 kg./m3

1,509

kg./m3

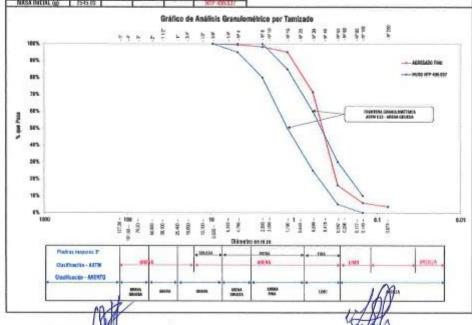
| PESO UNITARIO VARILLADO ASTM C - 29 |         |         |         |       |  |  |  |  |
|-------------------------------------|---------|---------|---------|-------|--|--|--|--|
| ENSAYO.                             | 1       | 2       | 3       |       |  |  |  |  |
| MASA DE MOLDE + MATERIAL            | 6,200   | 6,215   | 6,233   | kg.   |  |  |  |  |
| MASA DE MOLDE                       | 1,653   | 1,653   | 1,653   | kg.   |  |  |  |  |
| MASA DE MATERIAL                    | 4,547   | 4,562   | 4,580   | kg.   |  |  |  |  |
| VOLUMEN DE MOLDE                    | 0.00280 | 0.00280 | 0.00280 | kg.   |  |  |  |  |
| MASA UNITARIA                       | 1,624   | 1,629   | 1,636   | kg/m3 |  |  |  |  |
| PROMEDIO                            |         | 1,630   |         |       |  |  |  |  |

Observaciones:

Juis Jelips Liptes Chaquigata Tec. Esp. ele Mecánica de Suelos Concreto y Pavirhentos










Esobar la Inducencia de la Adeleia de Cardia de Cascara de Arest en las Propinsiados Flaisse y Mecanicas del Concreto 210 kg/cm2, 2023 Distrito: Traspeto / Provincio: San Martin / Departamento: San Martin Cardias No Cardiados Aresta gúesta cada redado de tameiro Missimo 310° Diseña de Moschi por Separado

#### ANALISIS GRANULOMETRICO POR TAMIZADO - ASTM C136/C136M-19

| Tare         |                 | Miss         | % Referred | S Pelarido     | % Gas   |                 |        | Taruto Midro : 36                                          |
|--------------|-----------------|--------------|------------|----------------|---------|-----------------|--------|------------------------------------------------------------|
| D            | 0100<br>127.00  | Retorida (g) | Parcist    | Acumulado      | Pass    | Minimo          | Madre  | Modulo de Finesa AF 2.14                                   |
| 40           | 181.80          |              |            |                |         |                 |        | Sirks Seadles                                              |
| 3"           | 76,20           | 1            |            |                |         |                 |        | Ecuvale to de Arma:<br>Delatige de Nazistra                |
| 7            | 50.35           | 1            |            |                |         |                 |        | Arena Gruesa Canto Fiodado Tamaho Máximo 3/8*              |
| 1/2"         | 36.19           |              |            |                |         |                 |        |                                                            |
| 7"           | 25.48           |              |            |                |         |                 |        | SUCS = AASHTO =                                            |
| 1/4"         | 19.050          |              |            | _              |         |                 |        | LL # Wf II                                                 |
| 1/2"         | 12,700<br>9,523 | 0.00         | 0.00%      | 0.07%          | 106.00% | 1075            | 4000   | LP = WT+3AL =                                              |
| 1/4"         | 8.325<br>8.350  | 0.00         | mark.      | 10.00%         | 100.00% | 143.7           | 1825   | P = WEAL = WT+SDL =                                        |
| 17.6         | 4.790           | 15.30        | 0.00%      | 0.00%          | 99.48%  | 95%             | 1995   | WSDL =                                                     |
| Nº B         | 2,380           | 31.40        | 1,23%      | 0.63%<br>1.83% | 93,17%  | tes.            | 1995   | 0 90= NASC = 3.56                                          |
| 67.18        | 2,900           | 1 11/25      |            |                |         |                 |        | 0 10= 5,000 =                                              |
| P. 18        | 1,190           | 77.30        | 3,04%      | 4.17%          | 95.11%  | - 50%           | 16%    | 0 30= (c =                                                 |
| P 28         | 0.840           |              |            |                | 100     |                 | 7777   | 0 10- Ot                                                   |
| 6.38         | 0.550           | 501.40       | 23.75%     | 28.62%         | 71.38%  | 25%             | SHIP   | Stativities:                                               |
| * 46<br>* 50 | B.426<br>B.297  | 1403.90      | 55.16%     | 63.76%         | 16.22%  | 50.             | -      |                                                            |
| 2 50         | 0.297           | 1100.00      | 22.19%     | 63:18%         | 10.22%  | 3.0             | 31%    |                                                            |
| 100          | B.236<br>B.177  |              | 110000000  | A SHIPPING     |         | 100             | -      | 1991/1924 (1990) ACM (1990) (1997) (1990) (1990) (1991) (1 |
| 987          | 0.149           | 29139        | 18.37%     | 54.16%         | 5.84%   | 0%              | 10%    | Arena Zarandisuda Canto Rodado contera Rio Cumbazo         |
| 299          | 5,074           | 58.20        | 2.79%      | 56,645         | 3.56%   | -               |        |                                                            |
| cente        | 0.01            | 90.50        | 3.56%      | 100.00%        | 6,00%   |                 |        |                                                            |
| MASATM       | COST (00)       | 2545.E0      | -          |                |         | HIPA            | 30.037 |                                                            |
| 100%         | T               |              | * *        |                |         | Análisis<br>5 3 | 3 5    | métrico por Tamizado                                       |



Tuis Jelipe Tipes Chaquigula Tec. Esp. er Mecànica de Suelos Concreto y Pavimentos

San ... im Rayifo ENIERO CIVIL









# GRAVA CHANCADA T.M. 1 1/2" CANTERA RÍO HUALLAGA



Evaluar la Influencia de la Adición de Centza de Cascara de Arroz en las Propiedades Físicas y Mecánicas Tesis

del Concreto 210 kg/cm2, 2023

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin Cantera Rio Huallaga Ubicación

Muestra

Grava Chancado Zarandeada Tamaño Máximo 1 1/2\*
Diseño de Mezcla por Separado
Setiembre del 2,023 Material

Para Uso

Fecha

| HUMEDAD NATURAL - ASTM D - 2216 |        |        |        |        |  |  |  |  |  |
|---------------------------------|--------|--------|--------|--------|--|--|--|--|--|
| TARRO                           | 1      | 2      | 3      | UNIDAD |  |  |  |  |  |
| MASA DE LA TARA                 | 108.90 | 113.60 | 108.80 | 9      |  |  |  |  |  |
| MASA DEL SUELO HUMEDO + TARA    | 613.40 | 664.40 | 601.90 | 9-     |  |  |  |  |  |
| MASA DEL SUELO SECO + TARA      | 606.85 | 656.85 | 595.00 | 9-     |  |  |  |  |  |
| MASA DEL AGUA                   | 6.55   | 7.55   | 6.90   | 9      |  |  |  |  |  |
| MASA DEL SUELO SECO             | 497.95 | 543.25 | 486.20 | 9      |  |  |  |  |  |
| % DE HUMEDAD                    | 1.32   | 1.39   | 1.42   | %      |  |  |  |  |  |
| PROMEDIO                        |        | 1.37   |        | %      |  |  |  |  |  |

| Observaciones: |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |

Luis Felipe Lines Chuquiyula Tec. Esp. en Mecánica de Suelos Concreto y Pavirhentos DNI N° 45886225









Tests

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Cascara 240 km/ser 2 2009

del Concreto 210 kg/cm2, 2023

Ubicación Muestra

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin

Cantera Rio Huallaga

Material

: Grava Chancada Zarandeada Tamaño Máximo 1 1/2\* : Diseño de Mezcla por Separado

Para Uso Fetha

: Setiembre del 2,023

#### PESO ESPECIFICO Y ABSORCION DEL AGREGADO GRUESO - ASTM - C127-15

| TARRO                                                    | 1      | 2      | 3      | UNIDAD |
|----------------------------------------------------------|--------|--------|--------|--------|
| A Masa Material Saturado Superficialmente Seco (En Aire) | 561.45 | 578.23 | 569.96 | g.     |
| B Masa Material Saturado Superficialmente Seco (En Agua) | 350.00 | 360.85 | 355.45 | g.     |
| C Volumen de Masa + Volumen de Vacio ( A - B )           | 211.45 | 217.38 | 214.51 | cc     |
| D Masa de Material Seco en Estufa (105° C)               | 556.85 | 573.85 | 565.00 | 0-     |
| E Volumen de Masa ( C - ( A - D ) )                      | 206.85 | 213.00 | 209.55 | cc     |
| Pe Bulk (Base Seca) ( D / C )                            | 2.63   | 2.64   | 2,63   | 9./cc  |
| Pe Bulk (Base Saturada) ( A / C )                        | 2.66   | 2.66   | 2.66   | g/cc   |
| Pe Aparente (Base Seca) ( D / E )                        | 2.69   | 2.69   | 2.70   | g/cc   |
| % de Absorción ( ( A - D ) / D ) * 100 )                 | 0.83   | 0.76   | 0.88   | %      |
| PROMEDIO MASA ESPECIFICA BULK (BASE SECA)                |        | 2.84   |        | g./cc  |
| PROMEDIO MASA ESPECIFICA BULK (BASE SATURADA)            |        | 2.66   |        | g./cc  |
| PROMEDIO MASA ESPECIFICO APARENTE                        |        | 2.69   |        | g./cc  |
| PROMEDIO % DE ABSORCION                                  |        | 0.82   |        | %      |

| Observaciones: |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |

Luis Célige Monoy Chaquiguta Tec. Esp. en Mecánica de Suelos Concreto y Pavirhentos DNI N° 45886225

SAKIARO E.I.R.L.





GENIERO CIVIL CIP Nº 110505



Evaluar la influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Cencreto 210 kg/cm²z, 2023

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin

Cantera Rio Huallaga Tesis

Localización

Muestra

Material : Grava Chancada Zarandeada Tamaño Máximo 1 1/2"

: Diseño de Mezcia por Separado Para Uso

Fecha : Setiembre del 2,023

| PESO UM                  | PESO UNITARIO SUELTO ASTM C - 29 |         |         |        |  |  |  |
|--------------------------|----------------------------------|---------|---------|--------|--|--|--|
| ENSAYO.                  | 1                                | 2       | 3       |        |  |  |  |
| MASA DE MOLDE + MATERIAL | 17,780                           | 17,825  | 17,812  | kg.    |  |  |  |
| MASA DE MOLDE            | 4,571                            | 4,571   | 4,571   | kg.    |  |  |  |
| MASA DE MATERIAL         | 13,209                           | 13,254  | 13,241  | kg.    |  |  |  |
| VOLUMEN DE MOLDE         | 0.00950                          | 0.00950 | 0.00950 | m3     |  |  |  |
| MASA UNITARIA            | 1,390                            | 1,395   | 1,394   | kg./m3 |  |  |  |
| PROMEDIO                 |                                  | 1,393   |         | kg./m3 |  |  |  |

| PESO UNIT                | TARIO VARILLADO | ASTM C - 29 |         |        |
|--------------------------|-----------------|-------------|---------|--------|
| ENSAYO.                  | 1               | 2           | 3       |        |
| MASA DE MOLDE + MATERIAL | 19,230          | 19,302      | 19,285  | kg.    |
| MASA DE MOLDE            | 4,571           | 4,571       | 4,571   | kg.    |
| MASA DE MATERIAL         | 14,659          | 14,731      | 14,714  | kg.    |
| VOLUMEN DE MOLDE         | 0.00950         | 0.00950     | 0.00950 | kg.    |
| MASA UNITARIA            | 1,543           | 1,551       | 1,549   | kg./m3 |
| PROMEDIO                 |                 | 1,548       | 10      | kg./m3 |

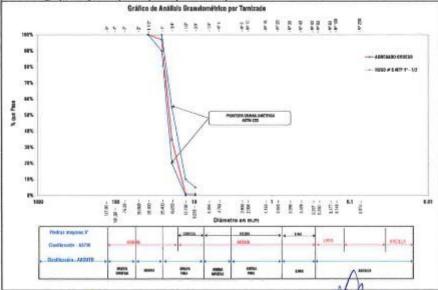
Observaciones;

Luis Jeling Lines Chuquigula Tec. Espt en Mecánica de Suelos Concreto y Pavirhentos DNI N° 45886225

SAKIARO ELR.L.








Evidor la influencia de la Adolan de Carlos de Cascara de Amec en las Propiedades Fisicas y Micelaficas del Cancardo 210 lagrant2, 2023 Distric Taracitos i Poxincia: Esa Martín: Departamente: San Martín Carlos Ros Macela

#### ANALISIS GRANULOMETRICO POR TAMIZADO - ASTM 0136/0136M-19

#### ADREDADO GRUESO ASTM COLYCSOM - 18 - HUSD # 5

| Tier           |                | Mata         | % Referrido | 'S Petersia                             | 5 611    |        |         | Tamale Mustro : 1.1/2"                                                |
|----------------|----------------|--------------|-------------|-----------------------------------------|----------|--------|---------|-----------------------------------------------------------------------|
| 0              | (mm)<br>(37.80 | Hotenick (g) | Parcial     | Acumillado.                             | Para     | Minimo | Mitrimo | Tarrolle Mustree Nominut 1" Vedario de Fineza AU 5.64                 |
| 4"             | 101.68         |              |             |                                         |          |        |         | Desparie ala Abrasión                                                 |
| 27             | 76.29          | 1            |             |                                         |          |        |         | Despute du Atraskin<br>Destitione Wester                              |
| 24             | 59.00          | 10000        | 10000000    |                                         | Downer's |        |         | Grave Chancada Tarraha Wivimo 1 1/2*                                  |
| 110            | 38,15          | 0.00         | 6.58%       | 0.00%                                   | 100,00%  | 150%   | 1000    |                                                                       |
| 10             | 25.40          | 80.30        | 3.32%       | 3.02%                                   | 26.53%   | 93%    | 189%    | 20C2 = N2HID =                                                        |
| 10"            | 79,000         | 1650.70      | 62.25%      | 65.36%                                  | 31,74%   | 285    | 30%     | U w Wi *                                                              |
| 1/2"           | 12,700         | 961.89       | 33 85%      | 69.12%                                  | 0.80%    | - 0%   | TiPle   | LP = WT+SAL =                                                         |
| 3/5"           | 9,575          | 1.80         | 9.07%       | 99.18%                                  | 0.82%    | 45     | 6%      | IP - MSAL +                                                           |
| 100            | 0.330          |              | 1000        | 100000000000000000000000000000000000000 |          |        |         | IG = WT+SEL =                                                         |
| W4             | 4.780          |              |             |                                         | 1.5      |        |         | 600), h                                                               |
| Nº 8           | 2,360          |              |             |                                         |          |        |         | D 30- VAFC -<br>D 60- VERR -<br>D 30- Cc -<br>D 10- G4 -              |
| R* 10          | 2.000          |              |             |                                         |          |        |         | D 60= %EHR =                                                          |
| 16-10          | 1.196          | 1            |             |                                         |          |        |         | D 30- Ct »                                                            |
| Nº 20          | 0.840          | 50 1         |             |                                         |          |        |         | D 10= 04 +                                                            |
| 8° 36          | 0.580          |              | _           |                                         | 1        |        |         | Warwiteres:                                                           |
| Fr 40          | 0.426          |              |             |                                         |          |        |         |                                                                       |
| 5° 50<br>5° 60 | 0.297          |              |             |                                         |          |        |         |                                                                       |
| 8° 60          | 0.290          |              |             |                                         |          |        |         | PROPERTY COMMISSION WITH CODE COMMISSION COLUMN                       |
| No 30          | 0.177          |              |             |                                         |          |        |         | Acresado Guesto Charcado Tarsado Miseno 1 (12º - Cantera Rio Hisafaga |
| W 190          | 0.149          |              |             |                                         |          |        |         |                                                                       |
| P 280          | 0.074          |              |             |                                         |          |        |         |                                                                       |
| Felica         | 0.01           |              |             |                                         |          |        | -       | 1                                                                     |
| DIASA DE       | LIVE (B)       | 2661.50      |             |                                         | G.,      | 1985   | 0.00    |                                                                       |



Luis Gilipo Jopey Chaquisulas Toc. Esp. en Mecànica de Suelos Concreto y Pavimentos DNI N° 45888225

SAKIARO ELR.L.







Sain. Jan Stangijo Seniero civil.



# CENIZA DE CASCARA DE ARROZ





Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023
Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin
Ceniza de Cascara de Arroz Reciclado Tesis

Ubicación

Muestra

Material Ceniza de Cascara de Arroz Diseño de Mezcla Para Uso : Setiembre del 2,023 Fecha

| HUMEDAD NATURAL - ASTM D - 2216 |        |        |        |        |  |  |
|---------------------------------|--------|--------|--------|--------|--|--|
| TARRO                           | 1      | 2      | 3      | UNIDAD |  |  |
| MASA DE LA TARA                 | 30.23  | 33.52  | 31.52  | g.     |  |  |
| MASA DEL SUELO HUMEDO + TARA    | 100.52 | 105.41 | 106.85 | 9-     |  |  |
| MASA DEL SUELO SECO + TARA      | 100.41 | 105.29 | 106.71 | 0.     |  |  |
| MASA DEL AGUA                   | 0.11   | 0.12   | 0.14   | 9-     |  |  |
| MASA DEL SUELO SECO             | 70.18  | 71.77  | 75.19  | 9.     |  |  |
| % DE HUMEDAD                    | 0.16   | 0.17   | 0.19   | - %    |  |  |
| PROMEDIO                        |        | 0.17   |        | - %    |  |  |

| Observaciones: |  |  |   |
|----------------|--|--|---|
|                |  |  |   |
|                |  |  | = |

Luis Octipe Links Chuquisula Tec. Esp. en Mecánica de Suelos Concreto y Pavirhentos ONI Nº 45886225



Tesis

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

**Ubicación** Muestra

: Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin

; Geniza de Cascara de Arroz Reciclado

Material Para Uso Fecha

: Ceniza de Cascara de Arroz : Diseño de Mezola : Setiembre del 2,023

# PESO ESPECIFICO Y ABSORCION DEL AGREGADO CCA - ASTM - C128-15

| TARRO                                                    | 1      | 2      | 3      | UNIDAD |
|----------------------------------------------------------|--------|--------|--------|--------|
| A Masa Material Saturado Superficialmente Seco (En Aire) | 200.50 | 201.41 | 203.96 | 9      |
| B Masa Frasco + Agua                                     | 656.90 | 656.90 | 656.90 | 2      |
| C Masa Frasco + Agua + A                                 | 857.40 | 858.31 | 860.86 | 9.     |
| D Masa del Material + Agua en el Frasco                  | 686.00 | 686.85 | 687.25 | 0      |
| E Volumen de Masa + Volumen de Vacio ( C - D )           | 171.40 | 171.46 | 173.61 | g.     |
| F Masa de Material Seco en Estuta (105° C)               | 197.85 | 199.00 | 201.00 | 9-     |
| G Volumen de Masa ( E - ( A - F ) )                      | 168.75 | 169.05 | 170.65 | OC.    |
| Pe Bulk (Base Secs) ( F / E )                            | 1.15   | 1.16   | 1.16   | g./cc  |
| Pe Bulk (Base Saturada) ( A / E )                        | 1.17   | 1.17   | 1.17   | g./cc  |
| Pe Aparente (Base Seca) ( F / G )                        | 1.17   | 1.18   | 1.18   | g./ec  |
| % de Absorción ( ( A - F ) / F ) * 100 )                 | 1.34   | 1.21   | 1.47   | %      |
| PROMEDIO MASA ESPECIFICA BULK (BASE SECA)                |        | 1.16   |        | 9,400  |
| PROMEDIO MASA ESPECIFICA BULK (BASE SATURADA)            |        |        | g./cc  |        |
| PROMEDIO MASA ESPECIFICA APARENTE                        |        | 1.18   |        | 0,/00  |
| PROMEDIO % DE ABSORCION                                  |        | 1.34   |        | %      |

| gusti recipius.              |                                                |
|------------------------------|------------------------------------------------|
|                              |                                                |
|                              |                                                |
| 10H                          | 3335                                           |
| Luis Telino Loney Chaquiyata | Man Sun Renglo<br>MGENERO GIVI<br>CEN Nº 11855 |

Luis Othno Hopey Chaquigata
Tec. Esp. en Mechae de Suelos
Concreto y Pavidentos
ONI Nº 45886225









Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Propledades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023 Tesis

: Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin Localización

Muestra Ceniza de Cascara de Arroz Reciclado Material : Ceniza de Cascara de Arroz Para Uso

: Diseño de Mezcia : Setiembre del 2,023 Fecha

| PESO UN                  | IITARIO SUELTO A | STM C - 29 |         |        |
|--------------------------|------------------|------------|---------|--------|
| ENSAYO.                  | 1                | 2          | 3       |        |
| MASA DE MOLDE + MATERIAL | 4,500            | 4,525      | 4,530   | kg.    |
| MASA DE MOLDE            | 4,285            | 4,285      | 4,285   | kg.    |
| MASA DE MATERIAL         | 216              | 240        | 245     | kg.    |
| VOLUMEN DE MOLDE         | 0.00092          | 0.00092    | 0.00092 | m3     |
| MASA UNITARIA            | 235              | 262        | 267     | kg/m3  |
| PROMEDIO                 |                  | 254        |         | kg./m3 |

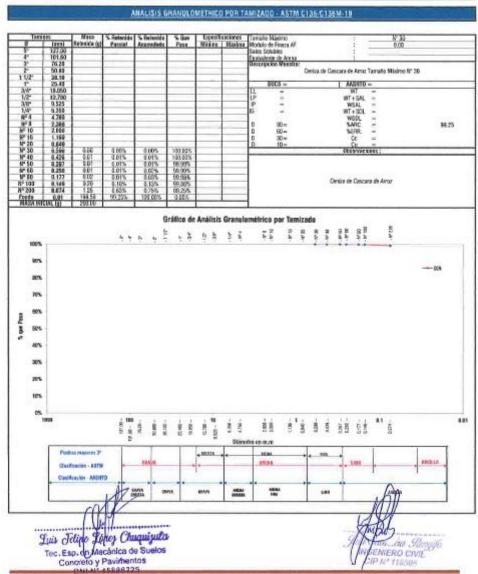
| PESO UNI                 | TARIO VARILLADO | ASTM C - 29 |         |        |
|--------------------------|-----------------|-------------|---------|--------|
| ensayo.                  | 1               | 2           | 3       |        |
| MASA DE MOLDE + MATERIAL | 4,559           | 4,601       | 4,612   | kg.    |
| MASA DE MOLDE            | 4,285           | 4,285       | 4,285   | kg.    |
| MASA DE MATERIAL         | 275             | 316         | 327     | kg.    |
| VOLUMEN DE MOLDE         | 0.00092         | 0.00092     | 0.00092 | kg.    |
| MASA UNITARIA            | 299             | 344         | 356     | kg./m3 |
| PROMEDIO                 |                 | 333         |         | kg./m3 |

Luis Jelino Loury Chuquigula Tec. Esp. La Mecánica de Suelos Concreto y Pavimentos ONI Nº 45886725

SAKIARO E.I.R.L.

Observaciones:








Evalar la Influençia de la Adoldin de Contra de Conspira de Anna en las Prophediales Fisicas y Mecdinicas del Concreta 216 legicimi2, 2023. Distribu: Tosapola / Producio: Sen Martin / Departemente: Sen Martin Centra de Conspira de Anna Contra de Conspira de Anna Disento de Ninocia

UMcación: Muestra: Material: Fara Usa:

#### AMALISIS GRANULOMETRICO POR TAMIZADO - ASTM C136/C136M-19



SAKIARO E.I.R.L.

RUC. N° 20602778259 🚇 Jr. Tarapoto # 413 Monales- San Martin 🔌 942681694 / 942626737 🖸 sakiano jarq\_ing\_geo@outlook.es



IV. CERTIFICADOS DE CALIBRACIÓN DE LOS EQUIPOS DE **LABORATORIO** 

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

: Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin Localización

Muestra

Concreto Fresco Patrón fc= 210 kg/cm2
Concreto Fresco
Masa Unitaria Material Para Uso Fecha Octubre del 2,023

Tesis

| MASA UNITARIA DEL CONCRETO FRESCO - ASTM C138 |         |        |  |  |
|-----------------------------------------------|---------|--------|--|--|
| ENSAYO.                                       | 1       |        |  |  |
| MASA DE MOLDE + CONCRETO FRESCO               | 26,851  | kg.    |  |  |
| MASA DE MOLDE                                 | 4,571   | kg.    |  |  |
| MASA DE CONCRETO FRESCO                       | 22,280  | kg.    |  |  |
| VOLUMEN DE MOLDE                              | 0.00950 | m3     |  |  |
| MASA UNITARIA DEL CONCRETO FRESCO             | 2,345   | kg./m3 |  |  |

| Observaciones: |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Tesis

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin : Concreto Fresco Patrón f'c= 210 kg/cm2 + 10% de C.C.A. Localización

Muestra

Material : Concreto Fresco + 10% de C.C.A.

Masa Unitaria Para Uso : Octubre del 2,023 Fecha

| MASA UNITARIA DEL CONCRETO FRESCO - ASTM C138 |         |        |  |  |  |
|-----------------------------------------------|---------|--------|--|--|--|
| ENSAYO.                                       | 1       |        |  |  |  |
| MASA DE MOLDE + CONCRETO FRESCO               | 26,243  | kg.    |  |  |  |
| MASA DE MOLDE                                 | 4,571   | kg.    |  |  |  |
| MASA DE CONCRETO FRESCO                       | 21,672  | kg.    |  |  |  |
| VOLUMEN DE MOLDE                              | 0.00950 | m3     |  |  |  |
| MASA UNITARIA DEL CONCRETO FRESCO             | 2,281   | kg./m3 |  |  |  |

| Observaciones: |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Tesis

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin : Concreto Fresco Patrón f'c= 210 kg/cm2 + 11% de C.C.A. Localización

Muestra

Material : Concreto Fresco + 11% de C.C.A.

: Masa Unitaria Para Uso : Octubre del 2,023 Fecha

| MASA UNITARIA DEL CONCRETO FRESCO - ASTM C138 |         |        |  |  |  |
|-----------------------------------------------|---------|--------|--|--|--|
| ENSAYO.                                       | 1       |        |  |  |  |
| MASA DE MOLDE + CONCRETO FRESCO               | 26,202  | kg.    |  |  |  |
| MASA DE MOLDE                                 | 4,571   | kg.    |  |  |  |
| MASA DE CONCRETO FRESCO                       | 21,631  | kg.    |  |  |  |
| VOLUMEN DE MOLDE                              | 0.00950 | m3     |  |  |  |
| MASA UNITARIA DEL CONCRETO FRESCO             | 2,277   | kg./m3 |  |  |  |

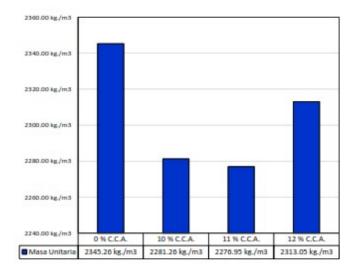
| Observaciones: |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |

Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las Tesis

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Distrito: Tarapoto / Provincia: San Martin / Departamento: San Martin : Concreto Fresco Patrón f'c= 210 kg/cm2 + 12% de C.C.A. Localización

Muestra


Material : Concreto Fresco + 12% de C.C.A.

Masa Unitaria Para Uso : Octubre del 2,023 Fecha

| MASA UNITARIA DEL CONCRETO FRESCO - ASTM C138 |         |        |  |  |
|-----------------------------------------------|---------|--------|--|--|
| ENSAYO.                                       | 1       |        |  |  |
| MASA DE MOLDE + CONCRETO FRESCO               | 26,545  | kg.    |  |  |
| MASA DE MOLDE                                 | 4,571   | kg.    |  |  |
| MASA DE CONCRETO FRESCO                       | 21,974  | kg.    |  |  |
| VOLUMEN DE MOLDE                              | 0.00950 | m3     |  |  |
| MASA UNITARIA DEL CONCRETO FRESCO             | 2,313   | kg./m3 |  |  |

| Observaciones: |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
| •              |  |  |

| 0 % C.C.A.  | 2345.26 kg/m3  |
|-------------|----------------|
| 10 % C.C.A. | 2281.26 kg./m3 |
| 11 % C.C.A. | 2276.95 kg./m3 |
| 12 % C.C.A. | 2313.05 kg/m3  |





Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Localización

: Distrito: Tarapoto / Provincia: San Martín / Departamento: San Martín

Muestra

Concreto Fresco Patrón fc= 210 kg/cm2

Material

Concreto Fresco

Para Uso

Masa Unitaria

Fecha

: Octubre del 2,023

| MASA UNITARIA DEL CONCRETO FRESCO - ASTM C138 |         |        |  |  |
|-----------------------------------------------|---------|--------|--|--|
| ENSAYO.                                       | 1       |        |  |  |
| MASA DE MOLDE + CONCRETO FRESCO               | 26,851  | kg.    |  |  |
| MASA DE MOLDE                                 | 4,571   | kg.    |  |  |
| MASA DE CONCRETO FRESCO                       | 22,280  | kg.    |  |  |
| VOLUMEN DE MOLDE                              | 0.00950 | m3     |  |  |
| MASA UNITARIA DEL CONCRETO FRESCO             | 2,345   | kg./m3 |  |  |

| Observaciones: |  |  |  |  |
|----------------|--|--|--|--|
|                |  |  |  |  |
|                |  |  |  |  |
|                |  |  |  |  |

Suis Jeling Senes Chaqui jula Tec. Esp. en Mecánica de Suelos Concreto y Pavimentos ONI Nº 45880225

Batustaa Rengijo IGUNIERO CIVIL GPN° 118505





Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Localización

: Distrito: Tarapoto / Provincia: San Martín / Departamento: San Martín

Muestra

: Concreto Fresco Patrón fc= 210 kg/cm2 + 10% de C.C.A.

Material

: Concreto Fresco + 10% de C.C.A.

Para Uso

: Masa Unitaria

|       | 14-WOW COLLECTION |
|-------|-------------------|
| Fecha | Octubre del 2     |

| MASA UNITARIA DEL CONCRET         | O FRESCO - ASTM C | 138    |
|-----------------------------------|-------------------|--------|
| ENSAYO.                           | 1                 |        |
| MASA DE MOLDE + CONCRETO FRESCO   | 26,243            | kg.    |
| MASA DE MOLDE                     | 4,571             | kg_    |
| MASA DE CONCRETO FRESCO           | 21,672            | kg.    |
| VOLUMEN DE MOLDE                  | 0.00950           | m3     |
| MASA UNITARIA DEL CONCRETO FRESCO | 2,281             | kg./m3 |

| Observaciones: |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |

Suit John Soles Ouquignta Tec. Espain Mecanica de Suelos Concreto y Pavimentos ONI Nº 45886225

Aurdia Rengifo MERO CIVIL Nº 118505

SAKIARO ELR.L.









Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Localización

: Distrito: Tarapoto / Provincia: San Martín / Departamento: San Martín

Muestra

: Concreto Fresco Patrón fc = 210 kg/cm2 + 11% de C.C.A.

Material

: Concreto Fresco + 11% de C.C.A.

Para Uso

: Masa Unitaria

Fecha

: Octubre del 2,023

| MASA UNITARIA DEL CONCRET         | O FRESCO - ASTM C | <u>138</u> |
|-----------------------------------|-------------------|------------|
| ENSAYO.                           | 1                 |            |
| MASA DE MOLDE + CONCRETO FRESCO   | 26,202            | kg.        |
| MASA DE MOLDE                     | 4,571             | kg.        |
| MASA DE CONCRETO FRESCO           | 21,631            | kg.        |
| VOLUMEN DE MOLDE                  | 0.00950           | m3         |
| MASA UNITARIA DEL CONCRETO FRESCO | 2,277             | kg./m3     |

| Observaciones: |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |

They Chuquiyuta Luis Felipe Tuc. Esp. en Mecánica de Suelos Centerio y Pavimentos ONI N. 45886225

Caux.ha Rengifo NGENIEKO CIVIL CIP Nº 118505

SAKIARO ELR.L.

RUC. N° 20802778259 . Jr. Turapoto # 413 Morales-San Martin 🔌 942681604 / 942626737 . Sakiaro\_arq\_ing\_geo@outlook.es





Evaluar la Influencia de la Adición de Ceniza de Cascara de Arroz en las

Propiedades Físicas y Mecánicas del Concreto 210 kg/cm2, 2023

Localización

: Distrito: Tarapoto / Provincia: San Martín / Departamento: San Martín

Muestra

: Concreto Fresco Patrón fc = 210 kg/cm2 + 12% de C.C.A.

Material

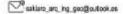
: Concreto Fresco + 12% de C.C.A.

Para Uso

: Masa Unitaria

Fecha

: Octubre del 2,023


| ENSAYO.                           | 1       |        |
|-----------------------------------|---------|--------|
| MASA DE MOLDE + CONCRETO FRESCO   | 26,545  | kg.    |
| MASA DE MOLDE                     | 4,571   | kg.    |
| MASA DE CONCRETO FRESCO           | 21,974  | kg.    |
| VOLUMEN DE MOLDE                  | 0.00950 | m3     |
| MASA UNITARIA DEL CONCRETO FRESCO | 2,313   | kg./m3 |

| Observaciones: |  |  |  |
|----------------|--|--|--|
|                |  |  |  |
|                |  |  |  |
|                |  |  |  |

Luis Jelipa Tayof Chuquigula Toc.Esp. er Metánica de Suelos Concreto y Pavimentos ONI Nº 45886225

SAKIARO E.I.R.L.





NIERO CIVIL Nº 118505

| AND TREE PE     | dias a min, programme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                 |            | LABOR          | ATORSO         | DE MEC                    | LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS                                                      | E SUEL    | 0S, CON     | CRETO     | Y PAVIIN     | ENTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                       |            |                               |                      |      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|------------|----------------|----------------|---------------------------|---------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|------------|-------------------------------|----------------------|------|
| S               | N HRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | ENSAYO          | DE RESIST  | ENCIA A        | LA COMPR       | ESSON DE E                | ENSAYO DE RESISTENCIA A LA COMPRESIÓN DE ESPECIMENES DE CONCRETO - ROTURA DE PRONCTAS CILINDRICAS DE CONCRETO | ES DE CO! | ICRETO - R  | OTURA DE  | PROBETA      | CILINDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AS DE CO | CRETO                 |            |                               |                      |      |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 |            |                |                | NOFIMA A                  | NORMA ASTRI C-29 - C-29M-18 / NTP 328.034.2808                                                                | - C-39M-1 | V NTP 338   | 034:2008  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      | - 1  |
| oyer li         | Essings is enforces de la Adáción de Carica de Caricana de Ames en las Prochedados Raticas y Wectarismo del Concevas 219 agroruit. 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n de Amer en les Pro    | spiedades Palca | a y Mecan  | SIR 661 Co     | nows 210 k     | yor£ 3629                 |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
| New York        | Bestte, Targoto / Province: San Matth / Departments: San Matth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | do: San Martin          |                 |            |                |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
| deb             | Ett. bg. CAll. Azang Lana Dylan Sleven (oroid.org/0006-0000-1540-1857b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-1000-1540-1857       | 20              |            |                |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
|                 | Est. Ing. Chil. Garzález Arthelo Brand Elkan ( aneki org/0000-0002-0186-6047)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0000-0002-9186-       | 6042)           |            |                |                |                           |                                                                                                               | 1         |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      | ı    |
| prator          | : Tec. Const. Lets Felbe López Chuquitata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                 |            |                |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
| of the last     | : Ing CAR Jhin Sawelin Rengits - CIP, 118925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                 |            |                |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      | 1    |
| uestra          | : Concrets orderecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                 |            |                |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
| anauthories .   | Experiments offsethorn 0"x 10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                 |            |                |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
| 100             | SAVERDED DO CARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                 |            |                |                |                           |                                                                                                               |           |             | ı         | ۱            | ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۱        |                       |            |                               | ۱                    | Ш    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                 |            | m              | CARACTER       | CARACTERISTICAS GENERALES | EMERALES                                                                                                      |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      | - 1  |
| 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fedra                   | p               | Edad       |                | Distraction    | Aha                       | Arta                                                                                                          | -         | Man Probets | Densitled | Harry .      | The Colombia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Porcertaje<br>Ostando | Promedio   | Especificación<br>Tácnica por | Britis               | Ded. |
| k               | CHACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Moldes                  | Rotes           | g g        | Polg           | (imi)          | <u>E</u>                  |                                                                                                               | (cmg)     |             | (dunaud)  |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Kalenc) | 8                     | 8          | Edul (3)                      |                      |      |
| -               | Disahi Patrol few 210 Kgsm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12:00:23                | 19-04-29        |            | S <sub>0</sub> | 15.00          | 30,00                     | 17871                                                                                                         | 1966      | 12855.0     | 2,425     | 25821.00     | 1467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 012      | 800                   |            | 8                             | 15                   | 99   |
| esi             | Chee's Perts ft - 210 Agund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12-00-23                | 19-00-23        | 10         | in             | 15.00          | 90.00                     | 1387                                                                                                          | 1025      | 10605.0     | 2.419     | 25402.00     | 148.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 5.86                  |            | 8                             | 25                   | -    |
| 100             | Oueho Pass fr = 210 fightnd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12:00:21                | 19-00-23        | 1          | Dn .           | 19.00          | 30'00                     | 178.7                                                                                                         | 1005      | 12301.0     | 2.415     | 25802.00     | 144.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 69.0                  | 69.1       | 8                             | 108                  | 149  |
| -               | Cleade Partin Te = 219 Kg km2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12:00:21                | 28-00-23        | =          | lo             | 18,00          | 30.00                     | 1767                                                                                                          | 1000      | 12718.1     | 2300      | 33013.00     | 186.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 68.0                  |            | 18                            | 89                   | -    |
| 10              | Dauble Partin ft - 219 Ngient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12-00-23                | 26-05-23        | 2          | in             | 15.00          | 20.00                     | 178.7                                                                                                         | 1000      | 12999.0     | 2382      | 33236.00     | 188.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 80.5                  |            | £                             | čis                  | m    |
|                 | Dwarp February 213 Kgion2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120d 23                 | 26-00-23        | z          |                | 15.00          | 90.08                     | 178.7                                                                                                         | 3337      | 12858.0     | 2,338     | 31300.00     | 180.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 812      | 27                    | =          | =                             | ×                    | -01  |
| 7               | Drusto Paron to- 210 Kplord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13-00-23                | 09-Nov-23       | 20         | ā.             | 45.00          | 30.00                     | 1787                                                                                                          | 1005      | 1,550,0     | 2,377     | 19422.00     | 1727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112      | 1982                  |            | 100                           | 25                   | 03   |
| -               | Dearle Patrin For 210 Agrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15:06:73                | 09-Nov-23       | n          | lo lo          | 15.00          | 33.00                     | 178.7                                                                                                         | MES       | 12812.0     | 2,379     | 90763968     | 217.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 310      | 1815                  |            | 901                           | m                    | m    |
| -               | State(9 Patho ft= 210 Agund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12-00-53                | 09-Nov-23       | 20         | õ,             | 9700           | 30.00                     | 176.7                                                                                                         | 1065      | 12668.0     | 2,367     | 39181.00     | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 912      | 105.6                 | 1003       | 100                           | 25                   |      |
| RESERVACIONES.  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                 |            |                |                |                           |                                                                                                               |           | Γ           |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | П        | TIPO DE FALLA         | FALLA      |                               | Ш                    | П    |
| - Lin especime. | LES EQUIDADES DE CONTOCTO DATOS ALBERTANDOS A PER SERVICIONAL A PER SERVICIONAL DE LES ASSESSOR DE LA SERVICIONES DE LAS ASSESSOR DE LA SERVICIONES DE LA SERVICIONE | onaples de la desfin    | ado, nambe, t   | apusto, mo | il i           | era de Los sup | ethers to t               | nesh.                                                                                                         |           |             |           | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
| Chemican        | <ul> <li>Lan related de las experiences de consento han acto médicatios et presio de valencial constante ("20 minimo».</li> <li>Clarence consentes a las postess can calesce momente éngle nortie. ASTA 1201</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ONE CONTRACT LOST TOTAL | JUL .           |            | 8              |                |                           |                                                                                                               |           |             |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       |            |                               |                      |      |
|                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                 |            |                |                |                           |                                                                                                               |           |             |           | Twee Control | Contract to the Contract of th | -        | the feet being        | Green will | 1                             | the name of the last | 11   |

Squit. Office Higher Chaquigation.

Toc. Esp. en Miller Profession 411, Dearm of Montes - Ben Merin (Ref. a 5 quarte on to past of Menico).

Doi 10. 415. Spirit Profession 1 percent of Montes - Ben Merin (Ref. a 5 quarte on to past of Menico).

SAKIARO EJ.R.L.

| ALIMIN D       | CONTRACTOR OF THE PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                 |            | LABOR       | <b>LTORIO</b> | DE MEC                    | LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS                                                      | E SUEL    | OS, CON    | CRETO    | Y PAVIN  | <b>ENTOS</b> |          |               |         |              |          |         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|------------|-------------|---------------|---------------------------|---------------------------------------------------------------------------------------------------------------|-----------|------------|----------|----------|--------------|----------|---------------|---------|--------------|----------|---------|
| E<br>In        | N HRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | ENSAYD          | DE RESIST  | THOM A L    | A COMPR       | SHOW DE                   | ENSAYO DE RESISTENCIA A LA COMPRESION DE ESPECIMENES DE CONCRETO - ROTUMA DE PROBETAS CILINDRICAS DE CONCRETO | ES DE CO  | CRETO - R  | OTUPA DE | PROBETA  | CAMBRI       | AS DE CO | MCRETO        |         |              |          |         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |            |             |               | MORRA                     | NORMA ASTM C-35 - C-35M-18 / MTP 338-03A-2008                                                                 | .C.3188-1 | HEE 4311/1 | 824.2008 |          |              |          |               |         |              |          |         |
| at and         | : Buduar la tribuenda de la addición de Caratos de Caraces de Amas en las Propisfadas Fásicas y Mecónicas de Concreto 210 lagrand. 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a de Amos en las Pr  | opiedados Faica | s y Meodin | bas del Cen | ands 210 kg   | ybrid, 3025               |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
| tacile         | : Distribs Tampoto / Provincia: San Martin / Departamento: San Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mcc San Wardin       |                 |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
| qu             | : Bit hig CMI Asseptians Dyke Seven (producy/0000-0002-1540-1657b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70-0002-1540-165     | P               |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
|                | Est hig CAL Gorzález Arballa Brand Elsan ( orest organico-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-costo-co | 9000-0000-0189-      | 8042)           |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
| adar.          | : Tec Const Link Felpe Löpiz Chupitata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                 |            |             |               |                           |                                                                                                               |           |            |          | V        | i            |          |               |         |              |          |         |
| rissin         | : kg Cuit Jhin Sawaran Rangto - CP: 116506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                 |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
| entra          | : Concreto indurecido + 16% de CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                 |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          | 1       |
| untación       | : Especimentes oblidations (C.» 12º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                 |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
|                | : Naviembre dei 2,923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                 |            |             |               |                           |                                                                                                               |           |            |          |          |              |          |               |         |              |          |         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                 |            |             | MANCTER       | CARACTERISTICAS SENERALES | ENERALES                                                                                                      |           |            |          |          |              |          |               |         |              |          |         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fecha                | 2               | Extend     | Shrie       | Daneto        | Altro                     |                                                                                                               | Volumen   | Man        | Denostad | -472     | 4            | 400      | Porcentale    | Promedo | Capacitación | Contract | Tipo de |
| Sk             | Extendina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Noideo               | Febres          | ğ          |             | ĩ             | E                         | (hui)                                                                                                         | (bud)     |            | (buck)   | g        | -            |          | 3             | 3       | Edad (%)     |          | Folk    |
| -              | Dearlo Papies to - 210 typer0 - 10% de COA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E2:00:23             | 84642           | p.         | 87          | 15.00         | 36.00                     | 1367                                                                                                          | Lacs      | 12732.0    | 2,402    | 15001-00 | 146.7        | 210      | 3.69          |         | 683          | 100      | 6       |
| ex             | Ossella Partin fan 210 Kgiond; + 10% de COA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.065.23            | 19-00-23        | 5-         | ģ           | 25.00         | 30.00                     | 1367                                                                                                          | ioss      | 12686.0    | 2,386.3  | 25773.08 | 145.8        | 210      | 549           |         | š            |          | **      |
|                | Deade Patrio to - 210 Mg/c ti2 + 10% 44 CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12-061-23            | 15-04-23        | ٠          | žn<br>W     | 15.00         | 10/01                     | 1267                                                                                                          | 1000      | 12705.0    | 2,367    | 25716.08 | 145.5        | 210      | 69.3          | 11.5    | 1.08         | 155      | m       |
| 4              | Dearly Payter Tow 21th Egyptic - 10%, do CGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-0el-23            | 22-100-32       | 2          | \$          | 18,000        | 30.00                     | 176.7                                                                                                         | 1001      | 0.0000     | 1802     | 31284.00 | 168.9        | 210      | 0.06          |         | 18           | 25       | 9       |
| 38             | Deale Patrio ft = 210 Kg/tre2 + 10% de CCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12-0et-23            | 25-00:23        | 2          | 5           | 19,00         | 20,92                     | 176.7                                                                                                         | 1005      | 12396.0    | 2,376    | 33582.00 | 1961         | 210      | 98.5          |         | 28           | 05       | m       |
| 40             | Dayne Patrior to= 212 Kg/cm2 + 10% dx DCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12-511-23            | 26-0:0:23       | 2          | 5           | 16.00         | 30,06                     | 178.7                                                                                                         | 1000      | 1,0514.0   | 2,379    | 33544.00 | 150.4        | 210      | 1.08          | 1111    | 98.1         | 65       | 193     |
| 100            | Diservo Patrion for \$10 Kg/cm2 + 10% de DCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.06523             | 03-vav-23       | 25         | 47          | 15.00         | 30.00                     | 787                                                                                                           | 1000      | 12921      | 2,370    | 33801.00 | 225.2        | 253      | 107.3         |         | 198.1        | ь        | **      |
| -              | Disable Paleth For 213 Kg/CHZ + 10% & 65 CEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12-000-23            | 09-Nov-23       | 18         | ÷           | 15.06         | 30.00                     | 178.7                                                                                                         | 1000      | 0.100001   | 200.00   | 40011.00 | 227.7        | 210      | 108.4         |         | 1981         | 65       | es      |
|                | Deceto Patrich 210 Kg/cm2 + 10% on G2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12:00:21             | 09-700V-23      | 25         | ģ           | 15.69         | 30.00                     | 1787                                                                                                          | 188       | 12545.0    | 2374     | 4035.00  | 228.2        | 213      | 108.7         | 1087    | 186.1        | 10       | 9       |
| SERVACIONES:   | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                 |            |             |               |                           |                                                                                                               |           | Г          | -        |          |              |          | TIPO DE FALLA | FALLA   |              |          | П       |
| Los superiores | noncommentation in the secondar or a lateralism, y for orde to represent the development in the contraction of the contraction  | medilio ie is mafter | othe mantha N   | quate, med | to y Tampel | 00 17 00      | Cinema St. 1              | ŧ                                                                                                             |           |            |          |          | 2            | _        |               | L       |              |          | Г       |

Las migras de los apparimento da carromito han piete methodate de pressa de sespondo constanto 1,33 hendran Contra septions a in poster on caben request septimental 60 N 1021

Bisourch fere an Fit de deafs de 210 Kgithn2

Guis Cituto Arto Chaquigato
Teo. Esp. en Mechnica de Suelos
Confoses y Espidente (1900)
Confoses y Espidente (1900

SAKIAND ELP.L

| ğ                                                               | Saklabo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       |                   |                   |                           | LABOR          | ATORIO                                   | DE MEC     | ANICA                     | DE SUEL                                        | 03°C0    | CRETO    | LABORATORIO DE MECANICA DE SUELDS, CONCRETO Y PAVIMENTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MENTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 36 90 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                               |                             |         |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------|----------------|------------------------------------------|------------|---------------------------|------------------------------------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|-----------------------------|---------|
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                   | DIVINE STATE      |                           | THOUSE IN      |                                          | NOTING     | STM C-35                  | WORMA ASTM C-39 - C-3186-13 / HTP 238-334 2008 | 1/10/23  | 334 1935 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
| Proyects                                                        | <ul> <li>Endlar is influence de la Adricio de Carlas de Cascara de Arra; es tas Prajonadas Fisicas y Mucieleus del Doromio 210 ligitori2, 2003</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Certan de Cascara de                                                                                                                  | Arrac en tas Ph   | spiedadas Faic    | as y Mecánia              | as del Don     | crebs 210 kg                             | pun2, 2002 |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                               |                             |         |
| Bicacile                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rtin / Departaments:                                                                                                                  | San Martin        |                   |                           | Н              |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
| Soleth                                                          | <ul> <li>Est ing CMI Azang Lara Dyan Shwer (ordioxy)0000-0002-1540-1857N</li> <li>Est ing CMI Gaszález Anholio Brand Ellen (orcid esp/0000-0002-0195-8042)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en (ortoi ary/19006-0<br>Floar (ortoi espO)                                                                                           | 00-0302-0185-     | 9042              |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             | 1       |
| Sprinder                                                        | : Tec. Coret. Luis Hillips Lépaz Chagainda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                    |                   |                   |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
| Serizado                                                        | 1 hg CML Jih Sawdiu Regio - CP: 110505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110000                                                                                                                                |                   |                   |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
| Meetra                                                          | : Casewto endumodas + 11% de CCA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |                   |                   |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1                             |                             | 1       |
| Protestación                                                    | : Especiments cilirototis 6'x 12"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |                   |                   |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
| Fichs                                                           | : Neverters del 2,023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |                   |                   |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1                             |                             | 1       |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                   |                   |                           | -              | MACTER                                   | STICAS 0   | CANACTERISTICAS DEMENALES |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
| 1                                                               | Especialis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       | Fecha             | 9                 | Se Se                     |                | Darrette                                 | Albers     | a d                       | Volumen                                        | Mass     | Densided | Carps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Other de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | To de P  | Postarbje<br>Obsarbje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8     | Especificación<br>Técnica per | Cumble                      | Tipo de |
|                                                                 | SATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       | Moideo            | Retur             | dus                       | 3              | (m)                                      | (out)      | (bud)                     | (cus)                                          |          | (bicond) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (goots)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Kuchi)  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3     | Egad (N)                      |                             | File    |
| -                                                               | Charle Patrante - 210 Agond + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11% 68 CCA                                                                                                                            | 12-00-23          | 19-0es-23         | 1                         | 459            | 10.00                                    | 33.00      | 178.7                     | 1000                                           | 12700.0  | 2330     | 28178.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210      | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 1.89                          | 73                          | 60      |
| 12                                                              | Chery Pacients - 210 Agond + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11% de CCA                                                                                                                            | (3-00-2)          | 12-120-51         | ٠                         | ÷              | 15.00                                    | 33.00      | 187                       | 1000                                           | 1,2708.0 | 2,337    | 25441.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 149.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$112    | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1.89                          | æ                           | 09      |
| +                                                               | Ottobe Fatelon for \$10 Kg/brid + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ITS de COA                                                                                                                            | 12-04-23          | 18-001-23         | 1                         | Đ              | 15.00                                    | 3100       | 187                       | 1065                                           | 0730/21  | 2,407    | 25344.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210      | 71.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.9  | 6.1                           | 75                          | m       |
| -                                                               | Oracle Parter 11 - 210 Syrut - 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11% de CEA                                                                                                                            | 12.00.23          | 28-00133          | 2                         | pi<br>pi       | 15.00                                    | 3100       | 1903                      | 1005                                           | 1,552.0  | 2,358    | 90353100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 183.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 179                           | 28                          | 172     |
| 8                                                               | Charte Partie for 210 Kgions + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HW de CGA                                                                                                                             | 12:00:23          | 22-00-92          | Z,                        | 45             | 15.00                                    | 33.00      | 1787                      | 5301                                           | 1252.0   | 2,384    | 14264.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 310      | 82.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 178                           | 25                          |         |
| 4                                                               | Deote Paste 1: - 210 Kgred + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE SECON                                                                                                                             | 12.005.23         | 28-00-33          | 2                         | Đ              | 15.00                                    | 30.00      | 187                       | 5301                                           | 1254.0   | 2,166    | 34858,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 135.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 912      | PK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 010   | 178                           | a                           | -       |
| 1                                                               | Deetle Patrin fr = 210 Kg/m2 + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11% de CDA                                                                                                                            | 19-04-29          | 09-New-23         | R                         | 59             | 15.00                                    | 3000       | 1782                      | 5301                                           | 12512.0  | 2,350    | 40304.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 238.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1001                          | 25                          | п       |
| 49                                                              | Deale Partnits - 210 Kg/tm2 + 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175 de CCA                                                                                                                            | 12.081-23         | Op-Nys-23         | 8                         | 4.5            | 15,00                                    | 10:00      | 1787                      | 5301                                           | 12501.0  | 2,384    | 1008900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 196.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1001                          | 20                          | ю       |
| 231                                                             | Deate Pathofts - 218 Kgtm2 + 11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIN MESSE                                                                                                                             | 12-00-22          | 28-101-23         | n                         | Đ              | 15.00                                    | 36,03      | 178.7                     | 1055                                           | 12500.0  | 2,574    | 28900.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 224.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 210      | 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.5 | 105.1                         | 25                          |         |
| OBSERVACIONES.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                   |                   |                           |                |                                          |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | TIPO DE FALLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MILA  |                               |                             | П       |
| 1. Lin especiment<br>2. Las milans de los<br>3. Calegnos comeda | 1. Longoniment de autoria hara alabramia en a labolare, y per milh de moderabilia de desfereiro, ramano, trajado, mente y tocaçoni de las esperieros de comenta de autoria de mente de | roomen, y par with accompanyables on a destination to the formation of participated constraints 125 m3/1707.<br>Inger women ASTV 1237 | Manageria i 23 mm | CON, Francisto, 9 | all with the second       | n y toping y a | er in the                                | 8          | #                         |                                                |          |          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     | in the second                 | 18.                         |         |
| L-Burnstafer<br>E-Lemetre of                                    | 4 El usmanda fanos an F. C. de Goode de 210 Fganto?<br>Se Las masernos campian com la relación playa, depuglo per la que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | conducted absorption is observed at the output                                                                                        | ecols in extens   | 100               |                           |                | 1                                        |            |                           |                                                |          |          | The state of the s | into anomaliament has been to a series of the series of th |          | Control of the contro |       |                               | Committee and County or St. | 1,      |
|                                                                 | J.K.K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       |                   | Hattanan          |                           | B              | A                                        |            |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                               |                             |         |
|                                                                 | And Sumider Stange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ofilia                                                                                                                                |                   | 35                | Sus Stips They Chaquiguth | 書              | Arch/Onuquiputa                          | purfer     |                           |                                                |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annual Control of Cont |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     | - 11                          | 1                           |         |
|                                                                 | In Georgia 188505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       | 400               | 0                 | Concrete                  | N.B.avir       | Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti- |            |                           |                                                |          |          | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Services Messes and a service of the |       | -                             |                             | _       |

SACIAND ELIN.L.

| S                                                                                | SHKIARO                                                                                                                                                                                                                                                                                                                                                                                               |                         | ENSAYD                    | DE RESIST                                          | LABOR     | ATORIO<br>LA COMPH | DE MEC      | CANICA                                        | DE SUEI                   | .0\$, ¢0                | ACRETO<br>NOTURA B | LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS<br>ENSAYO DE RESISTENCIA A LA COMPRESION DE ESPECIMENES DE CONCRETO - HOTURA DE PROSETAS CILIDRICAS DE CONCRETO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MENTOS<br>S CILINDR | CAS DE CO | DWCRETO      |          |         |     |      |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|----------------------------------------------------|-----------|--------------------|-------------|-----------------------------------------------|---------------------------|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------|----------|---------|-----|------|
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                           |                                                    |           |                    | NORMA       | HORMA ASTM C-18 - C-38M-18 / HTP 328.234.2358 | -C-38M-1                  | 8/80733                 | 120,200            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
| nyecto                                                                           | : Exclusion to Virtuanista de la Addición de Castica de Casticas de Auraz en las Propiedades Falesas y Meximinas del Centeroto 210 logican2, 2023                                                                                                                                                                                                                                                     | es de Autor en las Pt   | nçisedados Fisio          | as y Mecin                                         | us del Co | noveto: 210 N      | glom2, 3023 |                                               |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
| Hoods<br>And                                                                     | District Temporal / Provincia: Ser Martin / Disputamento; San Martin<br>Cer Inn Coll. Brown I am Pulan Seam band me/VDD 0000 (140), 1877)                                                                                                                                                                                                                                                             | entic San Martin        | 8                         |                                                    |           |                    |             |                                               |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
|                                                                                  | Est ing Civil Garwiller Arthritis Brand Eltan   orticog/0009-0002-0186-0040)                                                                                                                                                                                                                                                                                                                          | -9E10-2005-0186-        | 8042)                     |                                                    |           |                    |             |                                               |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
| roter                                                                            | : Tee. Const. Lule Poligo Lápot Chuquitura.                                                                                                                                                                                                                                                                                                                                                           |                         |                           |                                                    |           |                    |             |                                               | ı                         |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
| missis                                                                           | : by Club Jhin Savortra Nengho - CP 118565                                                                                                                                                                                                                                                                                                                                                            |                         |                           |                                                    |           |                    |             | 1                                             |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
| leafra<br>manthoda                                                               | : Concrete endersolds + 12% de CCA - Baselmenes cilheticos Pr v 12**                                                                                                                                                                                                                                                                                                                                  |                         |                           |                                                    |           |                    |             |                                               | 1                         |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
|                                                                                  | Novembro del 2,023                                                                                                                                                                                                                                                                                                                                                                                    |                         |                           |                                                    |           |                    |             |                                               |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     | ш    |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                           |                                                    | 142       | CARACTER           | ISTICAS 6   | CARACTERISTICAS GENERALES                     |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           |              |          |         |     |      |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                       | Ficha                   | 2                         | Edad                                               | Stree     | Chametra           | Man         |                                               | Volumen                   | Mass                    | Dermited           | Cargo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                   | 200       | Porcestajo   | Promedia | -       | 1   | Thos |
| S <sub>e</sub>                                                                   | Company                                                                                                                                                                                                                                                                                                                                                                                               | Modes                   | han                       | 4                                                  |           | (cut)              | (au)        | (m)                                           | (m)                       | 183                     | (Duckerd)          | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Voterc)            | (Kgten2)  | 8            | 8        | Educin) | _   | 윤    |
| +                                                                                | Daysy Parion To- 210 Agrons + 12% de CICA                                                                                                                                                                                                                                                                                                                                                             | 13-00-33                | 23-06:23                  | 3-1                                                | 2         | 00'54              | 30,00       | 178.7                                         | 1000                      | 1266.0                  | 2385               | 27257.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 154.2               | 818       | 73.4         |          | 176     | a   | 69.  |
| 100                                                                              | Doese Perón fc= 110 Sgran0 + 12% dc CCA                                                                                                                                                                                                                                                                                                                                                               | 13-00-23                | 29-04-23                  | -                                                  | ÷         | 15.00              | 30'00       | 178.7                                         | 100                       | 12008.0                 | 2,363              | 27,254.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154.6               | 210       | 317          |          | 15      | 25  |      |
| 19                                                                               | Desks Parce to- 210 Agains + 12% de CCA                                                                                                                                                                                                                                                                                                                                                               | 13-08-23                | 23-00-33                  | *                                                  | 37        | 18,00              | 30.00       | 176.7                                         | 1003                      | 12058.0                 | 1,388              | 28048.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 158.7               | 210       | 75.6         | 74.2     | 25      | 133 | m    |
| 7                                                                                | A35 ab X17 + Sroky VIII = 210 Kpcn2 + 12% de 35A                                                                                                                                                                                                                                                                                                                                                      | 13-0 0-23               | \$2-00-22                 | 2                                                  | ģ         | 15.00              | 30.00       | 178.7                                         | 1005                      | 0.61591                 | 3,059              | 35017,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 158.2               | 210       | 277          |          | 8       | es  | *    |
| ın                                                                               | Dissile Partie ft = 210 Ng/m2 + 12N de CCA                                                                                                                                                                                                                                                                                                                                                            | 15.00.23                | 27:00:23                  | z                                                  | 45        | 15.00              | 30.00       | 178.7                                         | 1005                      | 0.00001                 | 2,383              | 35547.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2002                | 210       | 256          |          | 128     | in. | -    |
| 10                                                                               | Duello Painto fue. 210 Agrond + 125 de 125.4                                                                                                                                                                                                                                                                                                                                                          | 13-00-23                | 27-00-23                  | 7                                                  | 9         | 15.01              | 30.00       | 178.7                                         | 1000                      | 12514.0                 | 1381               | 32,3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199.2               | 210       | 676          | 943      | 28      | a   | *    |
| 1                                                                                | Displic Particities 219 Ngions + 12% as 00A                                                                                                                                                                                                                                                                                                                                                           | 13-00-23                | 10 Allaw 23               | 82                                                 | 9         | 15,00              | 30'05       | 178.7                                         | 1005                      | 124850                  | 5322               | 00111000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9762                | 210       | 0701         |          | 1981    | 18  | 19   |
|                                                                                  | Death Paintin few 210 Ng Cm2 + 12% de CCA                                                                                                                                                                                                                                                                                                                                                             | 13-96-23                | 10-Wow23                  | 8                                                  | 9         | 18.00              | 30.00       | 178.7                                         | 1965                      | 12533.0                 | 2,364              | 4237,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 N/22              | 210       | 100.0        |          | 165.1   | 0   | 195  |
| 97                                                                               | Stanto Panto fc - 218 Ng Cm2 + 12% on CCA                                                                                                                                                                                                                                                                                                                                                             | 13-00-23                | 10.469-22                 | 23                                                 | \$        | 15.00              | 30,00       | 1387                                          | 8                         | 12500.0                 | 2377               | 38222.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 222.0               | 017       | 108.7        | 187.1    | 105.1   | æ   | 01   |
| SSERVACIONES Les espectreros - Les espectreros - Citertos actus - Citertos sommo | SSENTACHES.  Les hapeliness de commit dems anderstau en si laborable le por unco an inquincibilità Nin destination, malera, Proporti, malera, Prempatrice de Las counciment de colonization de la counciment de colonization de mana de mana de malera de 130 mm/mile.  El commercia de prodes de commercia de commercia de mana de malera de 130 mm/mile.  El commercia de la prodes de 2019/givery. | preschitz de la desfin  | actit, medite, 1<br>uhes. | Agusett, mid                                       | The A     | 94                 | of many for | ED S                                          |                           |                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           | TP6 DE FALLA | FREEA    | 3111    | 1   | 11.  |
| schen s.i.                                                                       | Salah Character Brough                                                                                                                                                                                                                                                                                                                                                                                | in constation in unless | 3                         | Sus Jettre Spes Chaquigato<br>Tec. Esp. Chaquigato | <b>新黎</b> | しる課                | m/put/a     |                                               |                           | 7                       | 10                 | The state of the s |                     |           |              |          | 1111    |     |      |
| 1478                                                                             | SAKINGO ELFL.                                                                                                                                                                                                                                                                                                                                                                                         |                         | 125                       | No                                                 | No.65     | 946356<br>merring  | # 413, De   | THIS de MO                                    | miss - San<br>17 - 920/24 | Martin (Re<br>236/ smit | Callen an          | DNI_NS_26.5696500 + 413, Dento de Montes - San Martin (Hel. » 3 cuadras de la piaza de Meneles)<br>SEC 2002/7009/7009/ Tentence E424007 - 62040476 (mmi sallas a no leo pedificións las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aza de Mon          | (5)       |              |          |         |     |      |

CONCRETO Y Francescope A 413, Dente de Montés - San Martin (Ref. a 3 cuadras de la paza de Montes) DNI, MES, AFS, PROSTACOS V TORINO DE MONTES A SANCES (FINE SANCE), TORINO DE PROSTACION (FINE SANCE), FINE SANCES (FINE SANCE), FINE SANCES (FINE SANCE), FINE SANCES (FINE SANCE), FINE SANCES (FINE SANCES

# Panel fotográfico FIGURA A





• RECOLECCION DE MATERIALES COMO: PIEDRA CHANCADA DE ¾, ARENA GRUESA, CEMENTO PACASMAYO EXTRA FORTE DE 42.5 KG

### **FIGURA B**





• ENSAYO DE HUMEDAD NATURAL ASTMD- 22116

## FIGURA C





 ENSAYO DE PESO UNITARIO -339046, DISEÑO DE CONCRETO +10 % DE CCA

## FIGURA D





ENSAYO DE PESO UNITARIO -339046, DISEÑO DE CONCRETO +11 %
 DE CCA

### **FIGURA E**







 ENSAYO DE PESO UNITARIO -339046, DISEÑO DE CONCRETO +12 % DE CCA

## **FIGURA F**





 ENSAYO DE PESO UNITARIO -339046, DISEÑO DE CONCRETO DE PATRON

### FIGURA G





• ENSAYO DE ASENTAMIENTO -SLUMP CON DISEÑO DE CONCRETO PATRON Y +12 % DE CCA

### **FIEGURA H**









 ENSAYO DE RESISTENCIA A LA COMPRESION CON LAS MUSTRES DEL CONCRETO PATRON, Y DE LOS PORCENTAJES DE 10% 11% Y 12% CON CCA

## FIGURA I







• ENSAYO DE P. ESPESIFICO- ABSORCIO CON EL CONCRETO PATRON, +10, +11, +12 DE CCA