

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Propuesta de programa basado en métodos Pci, Vizzir para optimizar la evaluación de pavimentos flexibles Cajamarca-2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Ruiz Jimenez, Randy Alexander (orcid.org/0009-0006-4575-4959)

ASESOR:

Mg. Huaroto Casquillas, Enrique Eduardo (orcid.org/0000-0002-8757-6621)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

TRUJILLO - PERÚ

2024

Dedicatoria

A Dios por brindarme vida, salud, fuerza y sabiduría a fin de haber podido lograr una de las metas más importantes en mi vida. A mis abuelitos y padres quienes me impulsaron y apoyaron en todo momento, por el esfuerzo diario, por sus sacrificios en mi formación profesional. A mis tíos quienes confiaron en este objetivo, de manera general a toda mi familia que aportaron y destinaron tiempo a mi profesión.

Agradecimiento

A Dios por la valentía de poder cumplir con mis metas en este complicado camino de la vida, por refugio al poder desarrollar mi investigación con mucha fuerza. a mis padres por su infinito sacrificio, apoyo, compresión y ánimos dia tras dia. De manera especial al Doc. Víctor Chávez Rojas por la confianza y apoyo en el proceso de titulación.

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, HUAROTO CASQUILLAS ENRIQUE EDUARDO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "PROPUESTA DE PROGRAMA BASADO EN METODOS PCI, VIZZIR PARA OPTIMIZAR LA EVALUACIÓN DE PAVIMENTOS FLEXIBLES CAJAMARCA-2023", cuyo autor es RUIZ JIMENEZ RANDY ALEXANDER, constato que la investigación tiene un índice de similitud de 16.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 03 de Abril del 2024

Apellidos y Nombres del Asesor:	Firma	
ENRIQUE EDUARDO HUAROTO CASQUILLAS	Firmado electrónicamente	
DNI: 08120578	por: EHUAROTOC el 04-	
ORCID: 0000-0002-8757-6621	04-2024 17:38:53	

Código documento Trilce: TRI - 0741582

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad del Autor

Yo, RUIZ JIMENEZ RANDY ALEXANDER estudiante de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, declaro bajo juramento que todos los datos e información que acompañan la Tesis titulada: "PROPUESTA DE PROGRAMA BASADO EN METODOS PCI, VIZZIR PARA OPTIMIZAR LA EVALUACIÓN DE PAVIMENTOS FLEXIBLES CAJAMARCA-2023", es de mi autoría, por lo tanto, declaro que la Tesis:

- No ha sido plagiada ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma		
RANDY ALEXANDER RUIZ JIMENEZ	Firmado electrónicamente		
DNI: 76210359	por: RRUIZJI el 03-04-2024		
ORCID: 0009-0006-4575-4959	21:09:08		

Código documento Trilce: TRI - 0741583

Índice de contenidos

Cará	tula	i
Dedi	catoria	ii
Agra	decimiento	iii
Decla	aratoria de autenticidad del asesor	iv
Decla	aratoria de originalidad del autor	V
Índic	e de contenidos	vi
Índic	e de tablas	vii
Índic	e de gráficos y figuras	ix
Resu	ımen	x
Abstı	ract	xi
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	5
III.	METODOLOGÍA	13
3.1.	Tipo y diseño de investigación	13
3.2.	Variables y operacionalización	14
3.3.	Población, muestra y muestreo	14
3.4.	Técnicas e instrumentos de recolección de datos	15
3.5.	Procedimiento	15
3.6.	Método de análisis de datos	16
3.7.	Aspectos éticos	16
IV.	RESULTADOS	17
V.	DISCUSIÓN	75
VI.	CONCLUSIONES	79
VII.	RECOMENDACIONES	81
REF	ERENCIAS	82
ANE	XOS	

Índice de tablas

Tabla 1: Recursos del proyecto de investigación	91
Tabla 2: Presupuesto del proyecto de investigación	91
Tabla 3: Financiamiento del proyecto de investigación	92
Tabla 5: clasificación de la severidad método pci	18
Tabla 6: Clasificación de la severidad método vizzir	18
Tabla 7: Cálculo del pci muestra 01	28
Tabla 8: Cálculo del pci muestra 02	29
Tabla 9: Cálculo del pci muestra 03	30
Tabla 10: Cálculo del pci muestra 04	31
Tabla 11: Cálculo del pci muestra 05	32
Tabla 12: Cálculo del pci muestra 06	33
Tabla 13: Cálculo del pci muestra 07	34
Tabla 14: Cálculo del pci muestra 08	35
Tabla 15: Cálculo del pci muestra 09	36
Tabla 16: Cálculo del pci muestra 10	37
Tabla 17: Cálculo del pci muestra 11	38
Tabla 18: Cálculo del pci muestra 12	39
Tabla 19: Cálculo del pci muestra 13	40
Tabla 20: Cálculo del pci muestra 14	41
Tabla 21: Cálculo del pci muestra 15	42
Tabla 22: Cálculo del pci muestra 16	43
Tabla 23: Cálculo del pci muestra 17	44
Tabla 24: Cálculo del pci muestra 18	45
Tabla 25: Cálculo del pci muestra 19	46
Tabla 26: Cálculo del pci muestra 20	47
Tabla 27: Cálculo del pci muestra 21	48
Tabla 28: Cálculo del pci muestra 22	49
Tabla 29: Cálculo del pci muestra 23	50
Tabla 30: Cálculo del pci muestra 24	51
Tabla 31: Cálculo del pci muestra 25	52

Tabla	32:	Cálculo	del pci mu	estra 26				 	53
Tabla	33:	Cálculo	del pci mu	estra 27				 	54
Tabla	34:	Cálculo	del pci mu	estra 28				 	55
Tabla	35:	Cálculo	del pci mu	estra 29				 	56
Tabla	36:	Cálculo	del pci mu	estra 30				 	57
Tabla	37:	Cálculo	del IS con	método	vizzir n	nuestra	1	 	58
Tabla	38:	Cálculo	del IS con	método	vizzir n	nuestra	2	 	59
Tabla	39:	Cálculo	del IS con	método	vizzir n	nuestra	3	 	60
Tabla	40:	Cálculo	del IS con	método	vizzir n	nuestra	4	 	61
Tabla	41:	Cálculo	del IS con	método	vizzir n	nuestra	5	 	62
Tabla	42 :	Cálculo	del IS con	método	vizzir n	nuestra	6	 	63
Tabla	43:	Cálculo	del IS con	método	vizzir n	nuestra	7	 	64
Tabla	44:	Cálculo	del IS con	método	vizzir n	nuestra	8	 	65
Tabla	45:	Cálculo	del IS con	método	vizzir n	nuestra	9	 	66
Tabla	46:	Cálculo	del IS con	método	vizzir n	nuestra	10	 	67
Tabla	47:	Cálculo	del IS con	método	vizzir n	nuestra	11	 	68
Tabla	48:	Cálculo	del IS con	método	vizzir n	nuestra	12	 	69
Tabla	49:	Cálculo	del IS con	método	vizzir n	nuestra	13	 	70
Tabla	50:	Cálculo	del IS con	método	vizzir n	nuestra	14	 	71
Tabla	51:	Cálculo	del IS con	método	vizzir n	nuestra	15	 	72
Tabla	52:	Compar	ación de re	esultados	s méto	do pci y	vizzir	 	73

Índice de gráficos y figuras

Figura 1: Vista de inicio y registro	19
Figura 2: Vista de registro de proyecto	19
Figura 3: Vista de registro de muestras	20
Figura 4: Vista de evaluación método pci	20
Figura 5: Vista de evaluación método vizzir	21
Figura 6: Vista de reportes	21
Figura 7: Implementación de algoritmos para vistas	22
Figura 8: Código de configuración base de datos	23
Figura 9: Código para evaluación con metodología pci	24
Figura 10: Código para evaluación con metodología vizzir	25
Figura 11: Código para reportes	26
Figura 12: Diagrama de comparación de resultados metodologías p vizzir	•

Resumen

El estudio tuvo como principal propósito la propuesta un programa basado en los métodos pci y vizzir para la optimización de evaluación de pavimentos flexibles -Cajamarca 2023. Esta investigación tiene enfoque cuantitativo de tipo aplicativo un nivel explicativo con un diseño no experimental la muestra fue pavimento flexible de la Av. La paz, tramo entre el Jr. Sucre y Av. Cenepa. Las técnicas utilizadas fueron de análisis visual y documental utilizando instrumentos una guía de análisis documental. Los resultados se obtuvieron la creación de un programa para pavimentos flexibles que tiene por nombre Pavements, la aplicación de Kotlin y Python como los lenguajes de programación, usamos la herramienta figma en el diseño en las vistas del mismo, creamos algoritmos de programación y funciones de cálculo, para finalmente en la validación del programa Pavements evaluamos el pavimento flexible de Av. La paz, de dicha evolución encontramos similitud en los resultados obtenidos por ambas metodologías, teniendo una calificación por pci que el pavimento se encuentra para rehabilitación y/ reconstrucción de la misma manera vizzir lo clasifica en un estado superficial para rehabilitación. Finalmente, se concluye que el programa Pavements ayuda significativamente en la optimización de la evolución de pavimentos flexibles.

Palabras clave: Programa, evaluación, pavimento flexible, rehabilitación.

Abstract

The general objective of this research was to propose a program based on tha Pci and Vizzir methods for the optimization of evaluation of flexible pavements -Cajamarca 2023. This research has a quantitative approach o fan application type, an explanatory level with a non-experimental desing, the sample was felxible pavements from Av. La paz, section between Jr. Sucre and Av. Cenepa. The techniques used were visual and documentary análisis using a documentary análisis guide. The results were obtained by creating a program for flexible pavements callend pavements, the application of Kotlin and Python as the programming languages, we used the figma tool in the desing in its views, we created programming algorithms and functions calculation, to finally in the validation of the Pavements program we evaluate the flexible pavements of Av. La paz, from this evolution we find similarity in the results obtained by both methodologies, having a rating by pci that the paviments is for rehabilitation and/reconstruction of the likewise, vizzir classifies it in a superficial state for rehabilitation. Finally, it is concluded that the Pavements program helps significantly in optimizing the evolution of flexible pavements.

Keywords: Program, evaluation, flexible paviments, rehabilitation.

I. INTRODUCCIÓN

El proceso de rehabilitación y mantenimiento en los pavimentos en la actualidad se ha comenzado un avance significativo debido al control en la calidad de los pavimentos asfálticos. Uno de los métodos de evaluación de fallas más comunes es el método Índice de Condición del Pavimento (PCI) desarrollado en base a la norma ASTM D6433, que contiene un catálogo de 19 defectos con tres grados de severidad y opciones, que permite determinar el estado superficial de pavimentos flexibles o rígidos mediante inspección visual en obra (Cubas, 2021).

A nivel global, el pavimento este hecho de asfalto para lo cual se ha desarrollado técnicas que permitan obtener un resultado óptimo, pero sobre todo utilizar los materiales con una alta eficiencia, con una meta de sustentabilidad y emplear programas para un mejor control. Este hecho, se evidencia en Colombia donde la pavimentación se encuentra en mal estado debido a una fatiga de mezclas asfálticas producto de las distintas cargas constantes presentes en el lugar, logrando una deformación minimizando la vida útil de esta mezcla esto se debe a una ausencia de control del pavimento (Figueroa y Fronseca, 2020, p.21).

Las infraestructuras de transporte desempeñan un papel fundamental en la sociedad moderna. Las fallas de ingeniería de las infraestructuras de transporte pueden ocasionar daños significativos al público. Los métodos tradicionales son monitorear, almacenar y analizar la información durante la infraestructura y el diseño de materiales, pruebas, construcción, simulaciones numéricas, evaluación, operación, mantenimiento y preservación, utilizando enfoques basados en mecanismos, materiales y estadísticas. En las últimas décadas, la inteligencia artificial (IA) ha llamado la atención de muchos investigadores y se ha utilizado como una poderosa herramienta para comprender y analizar las fallas de ingeniería en la infraestructura de transporte (Hou et al., 2023, p.1471). Asimismo, la ausencia de un diagnóstico oportuno al estado de conservación de los pavimentos ya sean rígidos o flexibles esto se debe principalmente por el

tiempo que esto demanda, en aplicación de métodos, estudios y análisis en campo. Debido a que no se cuenta con herramientas y/o programas que permitan optimizar tiempo y dinero en la realización de los análisis antes mencionados fundamental para una intervención oportuna (Mera, 2017, p.1). En el proceso de asfaltado son muchos los factores que actúan en el proceso, de los cuales no existe un seguimiento para advertir y saber cómo afecta cada uno de estos factores al producto final (Díaz, 2019, p.1).

A nivel nacional, se evidencia problemas asociados al mal estado de las carreteras en ocasiones por falta de una adecuada planificación del mantenimiento o simplemente por no tener en cuenta la vida útil de la vía, en pocas palabras, no se estudia el comportamiento del pavimento en el tiempo y cuando se actúa la vía se encontraba en un estado grave (Lizana, 2021). En los últimos años, la ciudad de Piura presenta carencias en cuanto a infraestructura vial; mostró muchos defectos que afectan la comodidad y seguridad de viajar en la red de carreteras. Esto se debe principalmente a la falta de un plan de mantenimiento vial tanto en términos de infraestructura como de factores de seguridad vial (Corea y Del Carpio, 2019).

En Puno, se evidencia fallas o deterioros en las vías debido a que la vía es muy transitada lo que provoca que la estructura envejezca prematuramente ocasionando grietas; además, de la ausencia de control y mantenimiento de la vía (Humpiri, 2017, p.22). Así mismo, en Ventanilla, a 18 Km al norte del Callao y 34 Km al noroeste de Lima la cual ocupa un 51.2% del territorio de la región Callao, se evidencia una inadecuada rehabilitación del pavimiento asfaltico esto debido a que utilizan materiales en mal estado, a ello cabe agregar, la mala ejecución en el procedimiento utilizado para la construcción generando fallas en la carpeta asfáltica lo cual hace que exista una inadecuada rehabilitación del pavimento asfaltico (López, 2018, p. 21).

Por otro lado, en Cajamarca se evidencia una mala conservación de las vías debido al desgaste durante su ciclo de vida, por ello de acuerdo con la necesidad de mejorar los daños presentes en la vía es necesario tener un

control constante a través de programas y métodos que beneficien a las carreteras, sin generar altos costos debido a la carencia relativa de agregados (altos costos). Por esta razón, la investigación se basará en proponer programa basado en métodos pci y vizzir, permitiendo reducir los costos de reconstrucción, mano de obra y equipo a utilizar.

Kotlin es un lenguaje de programación vigorosamente tipado que fue realizado por JetBrains (los creadores de IntelliJ IDEA). Ha sido influenciado potentemente por lenguajes como Scala.

Python es un lenguaje dirigido a objetivos, fácil de comprender y con una sintaxis que facilita leerlo como se lee el español. Es un lenguaje analizado, esto significa que el código de programación se convierte en bytecode y seguido se efectúa por el intérprete, que, en esta oportunidad, es la máquina virtual de Python. Finalmente es un lenguaje de programación de código abierto, creado por Guido van Rossum en 1991.

Ante ello, el estudio plasmo como formulación general ¿Cómo influye la propuesta de un programa innovador basado en métodos pci y vizzir en la optimización de evaluación de pavimentos flexibles- Cajamarca 2023?

Asimismo, los problemas específicos son: ¿Cuál es el estado actual de la pavimentación flexible en Cajamarca-2023? ¿Qué características debe tener un programa basado en los métodos pci y vizzir? ¿Qué resultados generará la propuesta de programa basado en métodos pci, vizzir en la optimización de la evaluación de pavimentos flexibles?

El estudio se justifica de manera teórica ya que describirá las bases o conceptos teóricos de las variables de estudio, asimismo posee una justificación social porque será de mucha ayuda para la población conocer el estado actual de los pavimentos y aún más empleando programas sin alterar el medio ambiente y el entorno.

Finalmente se justifica metodológicamente ya que se emplea instrumentos de recolección de datos para así poder lograr plantear los resultados según los objetivos plasmados por otro lado gracias a la metodología se puede determinar el tipo y diseño de investigación estudiada.

En cuanto, el objetivo general del estudio proponer un programa basado en los métodos PCI Y VIZZIR para la optimización de evaluación de pavimentos flexibles - Cajamarca 2023. Asimismo, como objetivos específicos: OE1: Seleccionar el entorno de desarrollo integrado según el lenguaje de programación, OE2: Diseñar un programa de diagnóstico basado en, método PCI y VIZZIR haciendo uso de sus parámetros de evaluación, OE3: Implementar algoritmos de evaluación del estado de pavimentos flexibles, finalmente, OE4: validar el programa mediante evaluación de un pavimento flexible. La hipótesis es, al proponer un programa basado en los métodos PCI, VIZZIR permitirá optimizar la evaluación de pavimentos flexibles - Cajamarca 2023; cuyas hipótesis específicas son: H1: Es posible seleccionar el entorno de desarrollo integrado según el lenguaje de programación, H2: Es posible diseñar un programa de diagnóstico basado en, métodos PCI y VIZZIR haciendo uso de los parámetros de evaluación, H3: Es posible implementar algoritmos de evaluación del estado de pavimentos flexibles, finalmente, H4: Es posible validar el programa mediante evaluación de un pavimento flexible.

II. MARCO TEÓRICO

Así mismo, se ha elaborado una recopilación de investigaciones en el ámbito internacional, la cual en el artículo de Hammouch et al. (2022) tuvieron como fin lograr la detección y clasificación de grietas en pavimento marroquí mediante red de parámetros de evaluación. Este estudio es aplicado, cuya muestra fue de 3287 imágenes reales extraídas de cuadros de video de una base de datos de videos entregada por el Centro Nacional de Estudios e Investigación de Carreteras de Marruecos (CNER) y adquiridas por el sistema SMAC (p. 3). Los resultados mostraron que el resultado de la puntuación F1 de las grietas de cocodrilo, 93.45% para CNN y 89.34% para VGG-19, es mayor que los resultados de las grietas longitudinales: 88.53% y 86.24% para CNN y VGG-19, respectivamente (p. 6). Concluyendo que, las redes convolucionales propuestas (CNN) y el modelo de Visual Geometry Group 19 (VGG-19) pueden emplearse para detección y clasificación automática en pavimento flexible (p. 12).

Andrade et al. (2021) en su artículo quien evaluó los efectos de la variabilidad de la información tomada en campo para determinar del índice de condición del pavimento. La metodología fue de tipo aplicado y de diseño experimental asimismo la muestra estuvo formada por 20 metros de la vía la cual se empleó como instrumento una guía de observación (p.102). El resultado muestra que el efecto de la variación del pavimento y sobre el modelo predictivo, se halló que el factor que influyó en la persistencia de la variabilidad fue la cantidad de deterioro del pavimento (19 fallas) y por medio del procedimiento de análisis jerárquico (AHP), utilizando criterios como la frecuencia de daño, el nivel de impacto, y el porcentaje de daño hallado. Concluyendo que la ponderación se realiza en base a criterio de expertos lo que reduce el número de daños a 9, es más representativo y por ende reduce el impacto de variación de los datos tomados en campo (p.112).

Baque (2020) en su informe quien evalúa el estado de pavimentación flexible en la vía de Manta. El método empleado fue de tipo aplicado y no experimental la cual tuvo como muestra fue de 3600 m (p.204) se aplicó como instrumento una guía de observación. El resultado indica que la condición de la sección analizada tuvo

una calificación de 49, lo que la clasificó en la categoría Frecuente, según PCI se determinó que existían 12 tipos de falla donde según el grado de ocurrencia: Pérdida de agregado 78,28%, 4,51% de piel de cocodrilo, agregado brillante 4,11%, grieta en bloque 3,96%, grieta longitudinal y transversal 3,24%, irregular 2,27%, grieta de borde 1,35%; subida y bajada 0,84%; bache 0,65%; 0,40 % cóncavo, 0,36

% ondulado, 0,03 % hinchado. Concluye que las vías requieren mantenimiento para todo tipo de defectos ubicados en la línea de estudio solo un defecto siendo un porcentaje importante la separación de los agregados (p.224).

En su investigación Alvarado y Ayala (2019) cuyo objetivo es valuar propiedades mercancías y físicas de mezclas asfálticas con distintos rangos de (WEO), en base a las especificaciones y normas del Invías (p.18). Por lo cual, la metodología es experimental donde se emplea como instrumento ensayos Marshall y materiales como RAP, WEO, etc. Los resultados indican que el porcentaje óptimo de WEO está entre el 3.4% y 3.7% del peso de ligante en cuanto a la temperatura es de 157°C y el punto de inflamación es de 163°C (p.121). Concluyendo que las incidencias del WEO presentes en las mezclas, han sufrido de algunas alteraciones en cuanto a su porcentaje, es decir, la estabilidad, el flujo y la relación de estos han sufrido una disminución en su porcentaje, en cuanto al aumento y disminución fueron el vacío de aire, tracción indirecta seca y húmeda. Ante ello el ensayo presentó que el desgaste de los agregados tiene una resistencia alta debido a ella la mezcla será favorable (p.140).

González et al. (2019) en su artículo quien aplica el método de PCI para evaluar la efectividad en la vía Loma La Cruz (párr. 12). La metodología fue aplicada y experimental la cual tuvo como muestra estuvo formada por 1435 Km donde se empleó una guía de observación como instrumento. Los resultados indican que, se descubrieron diversos deterioros, determinados según su naturaleza, cantidad y severidad. Las más comunes fueron fisuras transversales y longitudinales, fisuras en bloque, taponamiento y separación de áridos, que representaron el 66% de los daños registrados. Concluyendo que el Centro Provincial de Vialidad debe evaluar la factibilidad de este enfoque, para garantizar que los alcaldes ejecuten evaluaciones de calidad y de manera constante, así como

intervenciones económicas y efectivas (p.50).

Además, a nivel nacional, Paredes y Torres (2022) en su informe cuyo objetivo fue evaluar el pavimento flexible por medio del método del PCI y VIZIR con dron en una vía del Amazonas (p.23). La metodología empleada fue cuantitativa, tiene como alcance descriptivo y de diseño transversal asimismo la muestra estuvo formada por 3 kilómetros en la carretera de Amazonas donde se usó como instrumento una guía de observación y análisis documental (p. 123). Los resultados indican que al aplicar métodos PCI y VIZIR para registrar fallas de pavimento blando, además se deduce el estado real de la vía, según PCI, el error de mayor incidencia es del tipo piel de cocodrilo y según el método VIZIR, es un tipo de piel afilada DE COCODRILO afectó el 47,67% del área total de las muestras. Concluyendo que al aplicar los métodos PCI y VIZIR se pudo registrar las fallas del pavimento flexible (p. 185).

Fabián (2021) en su estudio quien evaluó el estado actual del pavimento flexible empleando el método PCI (p.21). El método empleado fue de tipo aplicada con enfoque mixto, de nivel descriptivo con un diseño experimental asimismo la muestra estuvo formada por 34 metros de la vía en la avenida Perú la cual se aplicó como instrumento una guía de observación y documental (p.85). Los resultados indican que el análisis de las dos rutas, el valor de PCI fue de 46, que está en la categoría REAL con riesgo de caer en la categoría mala. La determinación del daño observado arrojó que el 23,08% de las muestras analizadas se encontraban en muy buen, regular, mal y muy mal estado y solo el 7,69% en buen estado. Concluyendo que los incidentes más típicos son: agrietamiento de agregados 78,19 %, agrietamiento en masa 7,63 %, agrietamiento en los bordes 5,48 %, grietas transversales y longitudinales 2,93 %, porosidad del aire 2,76 %, otros daños son taponamientos 2,00 %. Y el menos representativo es: surcos 0,50%, estrías de cocodrilo 0,48% y grietas parabólicas 0,03% (p.140).

Chaname (2021) en su estudio planteó evaluar los daños en la superficie del pavimento del distrito de Santa Rosa, Lambayeque manejando el método PCI y la deflectometría (p.23). La metodología es no experimental transeccional siendo de nivel descriptiva y de diseño cuantitativo. La muestra es de 26 puntos para el pavimento rígido y 182 puntos para el pavimento flexible (p.110). Sus resultados

evidenciaron que el 14.54% de vías fueron pavimento rígido y el 85.46% fue flexible, del total del pavimento rígido el 89.57% resultó estar un buen estado, se observaron cómo daños principales del pavimento rígido se tuvo el daño de sello de junta en un nivel bajo (83.22%), mapa de grietas similarmente con un porcentaje del 5.36% en severidad baja y descascaramiento de esquina con un 11.42% de baja severidad, se presenta un 31.46% de las vías evaluadas presenta un mal comportamiento de subrasante y el 18.27% en pavimentos. Concluyendo que es necesario la mejora del nivel de estructura del pavimento estudiado realizando ensayos y mantenimiento cada cierto periodo (p.225).

Tacza y Rodríguez (2019) en su informe quien tuvo como objetivo proponer intervenciones alternativas que mejorarían el desempeño o condición de la vía que actualmente es el camino privado del corredor Javier Prado (p.17). Los métodos utilizados son descriptivos, diseño experimental asimismo la muestra estuvo formada por 26 metros la cual se aplica una guía de observación (p. 75). Los resultados indican que a través del método PCI se determinó 8 tipos de falla, listados por grado de incidencia: Grietas de piel de cocodrilo (20 %), grietas longitudinales/horizontales (18 %), huecos (17 %), (14 %) de surcos de ruedas, desplazamiento (14 %), separación de agregados (9 %), asentamiento por asentamiento (7 %) y Bloque de craqueo (2%) (p.77). Concluyendo que por medio de la aplicación del método PCI se determinó el estado actual del pavimento flexible en la calzada partida del Corredor Javier Prado; A partir de ahí, es posible proponer las intervenciones apropiadas y necesarias logrando mejorar el estado de la vía (p.93).

A nivel local, Murrugarra y Ruiz (2021) en su informe cuyo objetivo fue aplicar la propuesta de la metodológica para optimizar la gestión del mantenimiento en la carretera Cajamarca. El método empleado fue cuantitativo y descriptivo asimismo la muestra estuvo formada por el tramo 120 Km de la carretera aplicando la guía documental. Los resultados indican que la evaluación funcional, la utilidad vial se divide en 2.78, 2.83, 2.97 y 2.83 según el sector. Estos valores cumplen con los requisitos de la sección de aplicabilidad general, el valor numérico de la valoración aproximada es de 90 o más, es decir, excelente. La condición estructural del pavimento en el índice de condición estructural varió de

78% a 102%, representando condiciones críticas y normales. El valor del índice diario promedio anual es 567, que es el camino secundario. Los parámetros de codificación para intervenciones óptimas durante la evaluación de la carretera Conococha Yanacancha se obtuvieron utilizando recomendaciones metodológicas. Concluyendo que la primera etapa (de 0000 a 47 000 km) requiere fresados y repetidas intervenciones. Los segmentos del segundo (47 000 a 94 000 km) y tercero (94 000 a 109 000 km) también requirieron fresado y repavimentación. Finalmente, para el último segmento de 109.000 a 117.500, es la intervención de recuperación de calor y repintado.

Leiva (2021) en su investigación cuyo objetivo fue comparar el índice de condición del pavimento con el uso de un dron determinando la influencia del dron en el factor tiempo y seguridad. El método empleado fue descriptivo, cualitativo y corte longitudinal asimismo la muestra estuvo formada por la pavimentación en Cajamarca. Los resultados indican que entre el mejor desempeño fue el índice de condición del pavimento con un 48%, seguido de GIS con un 14 %. Asimismo, el dispositivo más utilizado es un dron (31%), que además de su rol positivo, es capaz de cubrir un área mayor, almacenar información y utilizar software que ayuda a analizar datos donde el efecto es el tiempo y el factor de seguridad. Concluyendo que se ha establecido que el uso de drones tiene un efecto positivo en el análisis de datos, la distancia recorrida por calificación, la calidad de las fotos, la capacidad de almacenar información y la seguridad que brinda.

Vásquez (2019) en su informe cuyo objetivo fue establecer el estado de condición del pavimento flexible para el Jirón Gregorio Malca – Cajamarca. El método empleado fue explicativo, descriptivo donde la muestra estuvo compuesta por pavimentación en la calle Jirones Gregorio Malca, 27 de noviembre y Mariscal

Castilla. Los resultados indican que un pavimento flexible (Tipo 2) con terreno montañoso, con camiones C 2 como los vehículos más cargados registrados en la encuesta de tráfico, y el pavimento se estudia en tres partes, a saber: Parte 1, que incluye Jr. Gregorio Malca bloque 2, 3, 4, 5, 6, 7 y 8 con un IPC de 37,80 y mala calificación. La parte 2 incluye Jr. 27 de noviembre Bloques 1, 2, 3, 4 y 5,

clasificado como "Débil" con un IPC de 38,57. La sección 3 incluye Jr. Bloques 1, 2 y 3 de Mariscal Castilla con un IPC de 66,78 y buena calificación. Aunque las calificaciones (malas) de los apartados 1 y 2 no reflejan el estado de los ítems de registro calificados como Bueno y Muy bueno. Los defectos encontrados incluyeron baches (44,72%), pérdida total (27,33%), grietas en los bordes (21,74%), abolladuras (2,48%), baches (1,86%), irregularidades en la aproximación a la berma (1,24%) y compensación (0,62%), los datos indican que los factores de falla son la precipitación y los defectos en la colocación de la mezcla asfáltica. Se concluye que la pavimentación se evidencia baches y desprendimiento de agregados se debían a un drenaje insuficiente del agua de lluvia y una mala adherencia entre el aglutinante y el agregado en la mezcla. Las actividades de mantenimiento realizadas incluyeron tratamiento de superficies (32,79%), sellado asfáltico (29,51%), sellado de grietas (21,31%) y sustitución de registros y/o limpieza viaria (16,39%).

Cubas (2019) en su informe cuyo objetivo fue aplicar el pavimento condición índex en la vía Kuntur. El método empleado fue aplicada y descriptivo asimismo la muestra empleada fue las vías con capa de rodadura asfáltica y ancho inferior a 7.30m. Los resultados indican que el método pavement condition index se determinó el estado de la vía cuyo PCI fue 50.43 indicando un estado regular. Para obtener un mejor estado de la calzada, es necesario aumentar el PCI de la unidad de prueba en mal estado. Buscamos opciones que pudieran solucionar el estado de la vía, una de ellas fue utilizar riego conectado, evitando así un mayor deterioro del estado y logrando así una superficie duradera. Concluyendo que gracias al método empleado se ha podido confirmar el tipo de falla y registrar las fallas como escurrimiento, hundimiento, grietas en los bordes, muescas, desplazamiento, agrietamiento, etc.

En base a las teorías, el programa basado en métodos pci y vizzir se basa en tres planos: aplicaciones, control y datos, puesto que el beneficio que tienen los administradores de red al usar redes definidas por software es el controlar y programar desde un solo dispositivo toda la red (Quispe y Toapanta, 2022, p. 2). Este modelo está totalmente orientado al tratado y reconocimiento de datos y responde como una posible solución al tiempo que demoraría una evaluación normal (Ope, 2021, p.18).

En particular, al plantear un innovador programa, sería lo último en tecnología para la mayoría de los problemas de inspección en campo, incluida la clasificación de fallas. Los métodos permiten usar filtros aprendidos para un mejor rendimiento y eficiencia (Quiroga, 2020, párr. 3).

El enfoque más fundamental para el control de calidad durante la fase de construcción del ciclo de vida de los proyectos de carreteras se encuentra en el campo de la ingeniería de carreteras y se conoce como tecnología de detección de fallas en el pavimento, esta tecnología es una fuente clave de datos de referencia que se puede utilizar en los procesos de inspección de calidad de la construcción, supervisión de calidad y control de calidad de proyectos de ingeniería de carreteras. Además, sirve como base esencial para los parámetros de diseño de ingeniería, el control de calidad de la construcción, la aceptación de la finalización de la construcción, la gestión del mantenimiento y otras actividades relacionadas (Hammouch et al., 2022, p. 2). La detección de defectos en el pavimento no reduce los costos de ingeniería de carreteras, pero las pruebas pueden usarse para mejorar el mantenimiento, reducir las tasas de accidentes debido a la mala calidad, reducir los costos de diseño y preparar la gestión y el control preventivo para extender la vida útil del proyecto de carreteras (Jun y Jian, 2022, p. 2)

En cuanto a pavimentos flexibles, la cual presenta una capa portante de hormigón de cemento bituminoso, que suele apoyarse sobre dos capas no rígidas definidas como base y subbase (Baque, 2020, p. 207). Los pavimentos flexibles tienen una capa asfáltica sobre la superficie de rodadura, que permite pequeñas deformaciones de la capa base sin dañar su estructura. El pavimento consta de una capa asfáltica, una base granular y una base. Tiene un costo inicial bajo y una vida útil de 10 a 15 años. Requiere un mantenimiento regular para llegar al final de su vida (Medina y De La Cruz, 2017, p. 11).

Asimismo, el método PCI proporciona una evaluación del estado de la superficie del pavimento evaluado (independientemente de si es flexible o rígido) como un indicador numérico, es decir el estado actual del pavimento se mide a partir de los defectos observados en la superficie de la capa de desgaste a través de 19

tipos diferentes de defectos, también muestra la integridad estructural y la salud de la superficie (rugosidad local y seguridad) (Lizana, 2021, p. 21).

Los rangos de la calificación del PCI se mencionan como excelente de 85 a 100, muy bueno de 70 a 85, bueno de 55 a 70, regular de 40 a 55, malo de 25 a 40, muy malo de 10 a 25 y de fallado de 0 a 10 (Reyes, 2021, p.7). Asimismo, los tipos de fallas según PCI es piel cocodrilo, agrietamiento en bloque, exudación, abultamiento y hundimientos, corrugación, depresión, grieta de borde, desnivel carril, grieta longitudinal y transversal, pulimento de agregados, huecos, cruce de vía férrea, ahuellamiento, desplazamiento, grieta

parabólica, hinchamiento, desprendimientos agregados y parcheo (Reyes, 2021,

Mientras el método VIZZIR (Visión Inspection de Zones et Itinéraires Á Risque) para hormigón flexible permite clasificar el deterioro en deterioro tipo A (debido a capacidad estructural insuficiente) y deterioro tipo B (debido a defectos y condiciones estructurales locales) (Tello et al. 2021, párr. 3).

Glosario

p.9).

- Piel cocodrilo
- Agrietamiento en bloque
- Evaluación
- > Programa
- Exudación
- Depresión

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

De acuerdo al enfoque de investigación es cuantitativo, ya que consta en el procesamiento de recolección y análisis de datos para constatar las hipótesis establecidas en esta investigación. Según Sánchez (2019) refiere que este enfoque trata con fenómenos que se pueden medir a través del empleo de técnicas que se realizan al momento del análisis de datos recolectados; es decir, que consta en recoger datos para constatar las hipótesis, basándose en una medición numérica y análisis estadístico para que se determine patrones de comportamientos.

Por otro lado, es de tipo aplicada ya que se diseñará un programa basado en métodos pci y vizzir y asimismo se implementarán algoritmos de evaluación del estado de un pavimento flexible. Es decir, que este tipo de investigación permite solucionar problemas reales, aportando conocimientos teóricos necesarios para el mejoramiento o resolver problemas concretos y prácticos de las organizaciones y/o empresas (Rus, 2020).

En cuanto al nivel explicativo consta en la búsqueda de todos los hechos mediante un vínculo de causa y efecto. Asimismo, Ramos (2020) indica que este nivel de investigación se aplica para investigaciones de tipos predictivos, estableciendo una relación causal entre las diversas variables; es decir, que esta investigación explicativa es obligatoria determinar hipótesis para que busquen determinar los elementos de causa y efecto de fenómenos que sean de interés para los o el investigador.

Finalmente, esta investigación es de diseño no experimental ya que no se manipulará la variable independiente, siendo el programa basado en métodos pci y vizzir para evaluar la optimización en identificación de fallas de pavimentos flexibles. Por ello, un diseño experimental consta en la causa o variable independiente, siendo medida en una escala nominal (Ponce et al., 2021).

3.2. Variables y operacionalización Variable independiente:

Programa basado

Se basa en tres planos: aplicaciones, control y datos, puesto que el beneficio que tienen los administradores de red al usar redes definidas por software es el controlar y programar desde un solo dispositivo toda la red (Quispe y Toapanta, 2022, p. 2).

Variable dependiente: Evaluación de pavimentos flexibles

Tienen una capa asfáltica sobre la superficie de rodadura, que permite pequeñas deformaciones de la capa base sin dañar su estructura (Medina y De La Cruz, 2017, p. 11).

3.3. Población, muestra y muestreo Población

De acuerdo a Ventura (2017) indica que consta en un conjunto de elementos que intervienen en el fenómeno, siendo determinado en la formación del problema en cuanto a su investigación. De tal manera, que la población estará conformada por pavimentos flexibles en Cajamarca.

- Criterios de inclusión: Pavimentos flexibles, método PCI y método VIZZIR.
- Criterios de exclusión: Otros tipos de pavimentos y otros tipos de métodos.

Muestra

En esta investigación la muestra está compuesta por el pavimento flexible de la av. La paz, tramo comprendido entre jr. Sucre y av. Cenepa – Cajamarca. Arias et al. (2016) señala que es una parte de la población, lo cual, primero recoge todas las características importantes de la población.

Muestreo

Para esta investigación es un muestreo no probabilístico. Según Otzen y Manterola (2017) refiere que consta en una técnica donde este investigador va a seleccionar las muestras basándose en el juicio del investigador en lugar de que se realice una selección al azar.

Unidad de análisis

Con respecto a esta investigación su unidad de análisis son metros

cuadrados de pavimento flexible. Según Hernández et al. (2014) indica que esta unidad representa al objeto o persona a medir, es decir que se va a concretar donde se aplican las herramientas de medición.

3.4. Técnicas e instrumentos de recolección de datos Técnicas

La investigación tendrá como técnica análisis visual y documental, el método radica en obtener información mediante la inspección visual de pavimentos flexibles y al mismo tiempo documentar los datos recolectados mediante un conjunto de procesos para generar matrices de evaluación que se convierte en una herramienta de indagación (Cisneros et al., 2022, p. 1169).

Instrumento

La investigación tendrá como instrumento una guía de análisis documental, ya que permite un proceso de transformación y análisis sintético porque los datos son estudiada, interpretada y sintetizada cuidadosamente para dar lugar a un nuevo documento que lo representa de modo abreviado pero preciso (Peña, 2021, p. 1).

3.5. Procedimientos

Etapa 1: Se inicia con la recopilación de información mediante la búsqueda de documentos en diferentes fuentes confiables, esta recolección se da mediante la inclusión de documentos referidos al tema, años actuales e información en base a las variables. Esta etapa ayudará a recolectar información para consolidar la realidad problemática y construir las bases teóricas del estudio, que contemplaran los conceptos y teorías principales de las variables en estudio.

Etapa 2: En esta etapa se procede a emplear los instrumentos para extraer los datos importantes, analizarlos e interpretarlos para después plasmarlos a los resultados según los objetivos planteados. De modo que, se procesarán a fin de presentarlos en tablas y figuras representativas, exponiendo lo datos importantes de cada objetivo.

Etapa 3: Aquí, se ejecutan las comparaciones de los resultados mediante las discusiones, en onde se expone los hallazgos de otros autores; y, luego se realizan las conclusiones, expresando los datos sintetizados de lo hallado.

Etapa 4: Seguido, exponer las recomendaciones, como a investigadores que contemplen la misma temática de estudio, para mejoras y/o guía de este estudio en futuras investigaciones.

3.6. Método de análisis de datos

En cuanto al procesamiento de datos, se utilizará el programa para la interpretación de la evidencia recopilada a través de la recopilación sistemática de datos o cifras a partir de las cuales se pueden hacer recomendaciones analíticas sobre el formato de presentación de la información, ya sea tabular o numérica (Sucasaire, 2021).

3.7. Aspectos éticos.

Según la Universidad César Vallejo los principios establecidos en cuanto los aspectos éticos a considerar son: Manejo de fuentes, se emplea términos en base pavimentos flexibles mediante el método PCI y VIZZIR; claridad en los objetivos, el estudio ha seguido el cumplimiento de los objetivos plasmados; respeto por las personas en su integridad y autonomía, se respeta el principio y el estado de todos los involucrados en este estudio.

IV. RESULTADOS

En la presente investigación, se plantearon cuatro objetivos específicos donde como primero tenemos, seleccionar el entorno de desarrollo integrado según el lenguaje de programación, se puede mencionar lo siguiente:

Procedimiento:

Primeramente, para definir el entorno de trabajo se indagado posibles alternativas de distintos lenguajes de programación que se adapten a los parámetros y requerimientos del programa desarrollado, dentro de los cuales se tomó como más convenientes dos lenguajes, Kotlin y Python. Debido a que son lenguajes prácticos y funcionales y son los que más se ajustaron para poder lograr el desarrollo de los objetivos. amigables y compatibles en el desarrolló de funciones algorítmicas y gráficos.

Además, elegimos dichas opciones porque ambos lenguajes se complementan de manera fluida, esto permite que podamos intercambiar y enlazar funciones, algoritmos de programación que al final nos arrogue reportes confiables.

Seguimos con el desarrollo del segundo objetivo, diseñar un programa de diagnóstico basado en métodos PCI y VIZZIR haciendo uso de los parámetros de evaluación, este objetivo se orientó a diseñar las vistas del programa para su desarrollo se tuvo en cuenta lo siguiente:

Procedimiento:

Se realizó un estudio de evaluación y análisis de todo lo que comprende el desarrollo tanto de metodología pci como vizzir, con la finalidad de tener un conocimiento más completo y orientado a lo que se desea llegar.

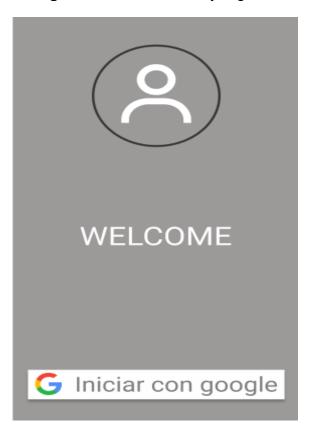
Por ende, primero tomamos en consideración los tipos de fallas que muestra cada método, donde vimos que metodología pci cuenta con 19 tipos de fallas para evaluación de pavimentos flexibles, cada una de ellas con su respectiva unidad de medida. Por su parte en la metodología vizzir cuenta con dos grupos de fallas, los de tipo A y tipo B; donde las de tipo A cuenta con 6 clasificaciones y los de tipo B 18 clasificaciones de fallas respectivamente.

Analizando los parámetros establecidos para la evaluación de la severidad de ambos métodos, pci clasifica la severidad como baja, media y alta. Por lo contrario, vizzir establece valores numéricos que van desde 1 a 3; siendo 1 la clasificación más leve y 3 el número de mayor gravedad respecto a la severidad de los tipos de fallas como se muestra en las siguientes tablas.

Tabla 5: Clasificación de la severidad método PCI

Fuente: Creación propia – 2023

Tabla 6: Clasificación de la severidad método vizzir


SEVERIDAD
1
2
3

Fuente: Creación propia – 2023

Además, para el cálculo del pci la metodología proporciona ábacos de densidad versus severidad para cada tipo de falla. Y para la clasificación de la muestra un ábaco de TOTAL versus factor (q) de este se obtiene el valor deducido corregido (CDV). El método vizzir por lo su lado calcula el IS (índice de deterioro superficial) con las tablas de evaluación que la metodología tiene establecidas las cuales están dadas por índice de fisuración (if) versus índice de deformación (id).

Una vez establecido todo lo mencionado empezamos a diseñar las vistas que tendrá el programa como tal, para ello se hizo uso de un programa en línea denominado figma, el cual nos permitió desarrollar el diseño y funcionalidades para las vistas que se trabajó, empezando por la vista de inicio y registro, vista para registro de datos de los proyectos, vista para el registro de muestras, vista de evaluación tanto de método pci y vizzir, finalmente, vista para revisión de reportes. Todas estas vistas mencionadas se muestran:

Figura 1: Vista de inicio y registro

Fuente: Creación propia – 2023

Figura 2: Vista registro de proyectos

Fuente: Creación propia – 2023

Figura 3: Vista registro de muestras

Fuente: Creación propia – 2023

Figura 4: Vista de evaluación método PCI

Fuente: Creación propia – 2023

Figura 5: Vista de evaluación método vizzir

Fuente: Creación propia - 2023

Figura 6: Vista de reportes

Fuente: Creación propia – 2023

Como se mencionó usamos lenguajes de programación Kotlin y Python, el primero para algoritmos que den la funcionalidad en ambos métodos, segundo para la elaboración de gráficos estadísticos y comparativos de los resultados obtenidos en los reportes.

Como tercer objetivo, implementar algoritmos de evaluación del estado de pavimentos flexible, apodemos añadir:

Procedimiento:

En la implementación de algoritmos de evaluación se consideró todos y cada uno de los parámetros de evaluación establecidos mencionados lineal atrás para ambas metodologías. Consiguiendo una funcionalidad más eficaz, describimos:

■ Code **■** Split <?xml version="1.0" encoding="utf-8"?> fragment_pci.xml v 📚 🚫 🗨 <ScrollView xmlns:android="http://schemas.android.com/apk/res/android"</pre> • xmlns:app="http://schemas.android.com/apk/res-auto" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" Item 1 android:layout_height="match_parent" 20.345 android:scrollbars="none' android:background="@color/background_color"> <androidx.constraintlayout.widget.ConstraintLayout</pre> android:layout_width="match_parent" Daño Severidad Cantidades android:layout_height="wrap_content" tools:context=".vi.pci.PciFragment" android:paddingBottom="?attr/actionBarSize"> <RelativeLayout android:layout_width="match_parent" android:layout_height="match_parent" app:layout_constraintBottom_toBottomOf="parent" app:layout_constraintEnd_toEndOf="parent" app:layout_constraintStart_toStartOf="parent" app:layout_constraintTop_toTopOf="parent" android:layout_marginBottom="20dp"> <LinearLayout

Figura 7: Implementación de algoritmos para vistas

Fuente: Elaboración propia - 2023

Descripción:

Una vez realizado el diseño de vistas en el objetivo número dos, ahora se complementó con programación de algoritmos para darle funcionalidad a estas mismas. En la imagen se aprecia algunos algoritmos desarrollados, para las

interfases de las 9 capas con las que se trabajó la primera muestra el logo del programa, segunda para registro de cuenta de usuario, tercera la principal el registro del proyecto con sus datos principales, cuarta se realizó para la creación de muestras, quinta para evaluación con metodología pci, sexta para la evaluación haciendo uso de metodología vizzir, séptima nos muestra los reportes de método pci, octava nos muestra los reportes de la evolución con método vizzir, novena y ultima nos brinda la comparación de la evolución entre ambos métodos. Todas y cada una de estas vistas cuenta con sus algoritmos desarrollados para su funcionamiento en la evaluación.

Figura 8: Codigo de configuracion de base de datos.

```
package com.zigital.pavements.database
import android.content.Context
 import androidx.room.Database
 import androidx.room.Room
 import androidx.room.RoomDatabase
 import com.zigital.pavements.database.entitys.Failure
 import com.zigital.pavements.database.entitys.FailureA
 import com.zigital.pavements.database.entitys.FailureB
 import com.zigital.pavements.database.entitys.Pci
 import com.zigital.pavements.database.entitys.PciCalculation
 import com.zigital.pavements.database.entitys.PciFaults
 import com.zigital.pavements.database.entitys.Project
 import com.zigital.pavements.database.entitys.Sample
 import com.zigital.pavements.database.entitys.Severity
 import com.zigital.pavements.database.entitys.Vizzir
 import com.zigital.pavements.database.entitys.VizzirDeterioro
import com.zigital.pavements.database.entitys.VizzirFaults
 @matabase(entities = [Project::class,Sample::class,Failure::class,FailureA::class,FailureB:
pabstract class AppDatabase: RoomDatabase() {
```

Fuente: Elaboración propia - 2023

Descripción:

Podemos apreciar el código que se trabajó para implementar una base de datos local, se optó por la misma con el objetivo que el programa sea más aprovechable en cualquier ubicación, sin la necesidad de estar conectado alguna red de internet. Los algoritmos y/o sentencias que se muestran desarrollan la función de almacenar información de manera orientada y intencional, por ejemplo, al momento de crear un nuevo proyecto en la capa número 3, al incrementar y/o agregar las muestras en la capa 4, también para guardar los datos recogidos en la evaluación trabajada tanto con método pci y vizzir en las capas 5 y 6

respectivamente.

Acotar que los algoritmos mostrados son solo un parte de todo lo trabajado para obtener una base de datos confiable que pueda interactuar y responda a la demanda de programación y calculo que presenta el programa.

Figura 9: Código para evaluación con metodología PCI

```
activity_pci_report.xml
                         // Registrar el canal con el sistema
                        val notificationManager: NotificationManager =
                                       getSystemService(Context.NOTIFICATION_SERVICE) as NotificationManager
                         notificationManager.createNotificationChannel(channel)
private fun getProject(idP: Int) {
            database.daoProject().getProjectId(idP).observe( owner: this, Observer { it: Project!
                        project = it
                        binding.root.findViewById<TextView>(R.id.projectNameTxtV).text = project.projectName
                        \underline{\texttt{binding.root.findViewById}} \\ \texttt{TextView} \\ \texttt{(R.id.viaNameTxtV).} \\ \underline{\texttt{text}} = \underline{\texttt{project.}} \\ \texttt{viaName} \\ \\ \texttt{viaNameTxtV} \\ \texttt{via
                        binding.root.findViewById<TextView>(R.id.inspectorNameTxtV).text = project.inspector
                        binding.root.findViewById<TextView>(R.id.dateTxtV).text = project.date
                        binding.root.findViewById<TextView>(R.id.samplingUnitTxtV).text = project.samplingUnit
                         binding.root.findViewById<TextView>(R.id.roadWidthTxtV).text = project.road.toString()
                         binding.root.findViewById<TextView>(R.id.initialProgresiveTxtV).text = project.initialProgressive
                         binding.root.findViewById<TextView>(R.id.areaTxtV).text = project.samplingAreaTotal.toString()
                        binding.root.findViewById<TextView>(R.id.longitudeTxtV).text = ""
                         binding.root.findViewById<TextView>(R.id.finalProgresiveTxtV).text = project.finalProgressive
                         binding.root.findViewById<TextView>(R.id.calzadaTxtV).text = ""
```

Fuente: Elaboración propia - 2023

Descripción:

Podemos aprecia el código trabajado para la vista de evaluación de pavimentos flexibles con metodología pci, este código este encargado de realizar todas las tareas que se describe a continuación; empezando con la elección del proyecto en que se está trabajando (el mismo que ya fue creado y guardado anteriormente), aquí también se trabajó código para la pestaña que nos permite elegir el tipo de falla que se desea analizar, la pestaña para la clasificación de la severidad en la que se encuentra la falla, ultimo la pestaña para el ingreso de cantidades parciales obtenidas en campo. Llenado todos estos datos pasamos a la interacción de la tabla número uno que tiene como finalidad calcular el valor deducido, el cual se calcula revisando la intercesión de densidad por severidad de la falla (es aquí donde entra a tallar los ábacos que tiene cada tipo de falla).

Una vez obtenido el llenado de todos los datos en la primera tabla, seguimos con el cálculo del valor deducido corregido CDV, para ello también se trabajó código de programación y calculo que nos permitan optimizar todo el trabajo.

Una vez se tenga los datos y resultados de ambas tablas el programa será capaz de dar una clasificación final de la muestra, para ello en el código de programación se trabajó funciones e intervalos de identificación y clasificación.

Figura 10: Código evaluación con metodología Vizzir

```
irReportActivity.kt ×
                 activity_vizzir_report.xml
                val channel = NotificationChannel(PciReportActivity.CHANNEL_ID, name, importance).apply { this: NotificationChannel
                    <u>description</u> = descriptionText
                // Registrar el canal con el sistema
                val notificationManager: NotificationManager =
                    {\tt getSystemService} \textbf{(Context.NOTIFICATION\_SERVICE)} \hspace{0.2cm} \textbf{as} \hspace{0.2cm} \textbf{NotificationManager}
                notificationManager.createNotificationChannel(channel)
           1
       private fun getProject(idP: Int) {...}
       private fun getSample(idP: Int) {
           sampleLiveData = database.daoSample().getSampleByIdProjectAndIncludeVizzir(idP, includeVizzir. true)
           sampleLiveData.observe( owner: this, Observer { it: List<Sample>!
                listSample = it
                if (listSample.isNotEmpty()){
                    loadRecyclerView()
                }else{
                    messageToast("Actualmente no cuenta con registros. Le recomendamos ag...")
           Ð
       private fun loadRecyclerView() {
           adapterSample = SampleReportVizzirAdp( context: this, listSample, owner: this)
```

Fuente: Elaboración propia – 2023

Descripción:

Ahora en la imagen notamos lo correspondiente al código de programación y calculo que se desarrolló para la metodología vizzir, donde de igual manera a la metodología pci, en la vista de metodología vizzir también encontraremos las pestañas de elección de proyecto, elección de muestra, elección del tipo de falla que puede ser de tipo A o tipo B, elección de la falla y la pestaña para el ingreso de valores parciales obtenidos en campo.

Teniendo estos datos empieza el trabajo en la primera tabla donde los algoritmos

y funciones de calculo que se desarrolló serán capaces de realizar cálculos de manera inmediata. Como por ejemplo calcular el total y la extensión de los valores parciales. Seguido podremos asignar una gravedad a cada falla (valores de 1 a 3), para esto se programó intervalos que limiten únicamente estos valores.

Llenado y obtenido estos datos iniciales el programa empieza los cálculos restantes como son: cálculo del IF índice de fisuración, ID índice de deformación y IS índice de deterioro superficial. Obtenido este último valor el programa clasifica el estado de la muestra, debido a los códigos de clasificación que se le dio al igual que en el método anterior (pci).

Figura 11: Código para los reportes

```
k?xml version="1.0" encoding="utf-8"?>
       ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
           android:layout_width="match_parent"
           android:layout_height="match_parent"
           android:background="@color/background_color">
           <androidx.constraintlayout.widget.ConstraintLayout</pre>
               android:layout_height="wrap_content
                   android:layout_width="match_parent"
                   android:layout_height="match_parent"
                   app:layout_constraintBottom_toBottomOf="parent"
                   app:layout_constraintEnd_toEndOf="parent"
                   app:layout_constraintStart_toStartOf="parent"
                   app:layout_constraintTop_toTopOf="parent"
                   android:layout_marginBottom="20dp">
                   <LinearLayout
```

Fuente: Elaboración propia – 2023

Descripción:

En esta última imagen podemos ver una parte del código trabajado para los reportes, en esta parte se creó algoritmos para agrupar de promedio del pci y is respectivamente según corresponda a cada metodología, este código además cuenta con vínculos del cogido de evaluación con metodología pci y vizzir jala todos los valores y tablas desarrollados y los ajusta a un formato pdf.

Como ultimo objetivo específico se planteó validar el programa mediante la evaluación de un pavimento flexible, el cual como se mencionó en la muestra fue de la Av. La paz en el tramo entre Jr. Sucre y Av. Cenepa en la ciudad de Cajamarca. Comprende 2500 m en la cual con metodología pci se trabajó 30 muestras y con metodología vizzir 15 muestras, el manual menciona que 3 muestras de pci equivale a una de vizzir, por ello se creyó conveniente desarrollarlo como un 2=1 respectivamente con las metodologías. Los resultados obtenidos según cada metodología se especifican a continuación:

Con la metodología pci se obtuvo un pci de 9.07 este valor se ubica en la categoría de intervención "rehabilitación y/o reconstrucción" del pavimento, teniendo como a las fallas más incidentes huecos, parcheo, piel de cocodrilo, grietas longitudinales y transversales y desprendimiento de agregados.

Con la metodología vizzir, arrojo como resultado un is de 4.93 ubicando al pavimento en una categoría de intervención para "rehabilitación", con mayor incidencia de las fallas baches y parches, perdida de agregados, fisuras tipo piel cocodrilo, abultamiento y hundimiento y fisuras longitudinales y transversales.

Ambas metodologías arrojan la misma categoría de intervención, por conveniente el programa nos dará un diagrama para tener una mayor referencia a los porcentajes hallados en el trabajo de campo. Se muestra las tablas que el programa genera en los reportes de los resultados de manera detallada de todas las muestras con cada metodología y al final una comparación de ambas.

DATOS DEL PROYECTO

Proyecto	Evaluación del	pavimento flexibl	e Av. La Paz, trar Cajamarca	no entre Jr. Suci	re y Av. Cenepa -									
Nombre de la via		Δ	v. La Paz											
Inspector		Randy Ruiz Jimenez												
Fecha	09/12/2023	Unidad de muestreo	Total, de Tramo	Ancho de la calzada(m)	8.0									
Progresiva indicial	0+000 m	Área	20000.0	Longitud (m)	2500									
Progresiva final	2+500 m	Calzada												

RESULTADOS PCI

Tabla 7: Cálculo del PCI muestra 01

M-01

				Inve	ntario	de f	allas	exist	en	ites					
Daño	Severida	ıd			Cantida	ides p	oarcia	les			To	otal	Dens d %		deducid
19	M	23.	7	24.67	7.96	5	3.37	62.61		12.39	19	34.7	27.1	62	o 28
													ļ		
7	M	4.2	5	3.86	1.84	,	1.4	2.5		3.13	16	5.98	2.49	1	8
10	М	4.7	5	2.87	4.72	3	4.23		7.14	26	5.99	3.96	9	9	
1	Α	53.2	24	61.85	53.37	1:	2.39	28.51		71.86	28	31.22	41.3	56	79
11	M	8.7	5	6.62	23.7	9	.46	0.0		0.0	48	3.53	7.13	7	26
3	В	23.	7	0.0	17	73.89	25.5	72	15						
1	lúmero m	áximo ad	dmis	sible de	VD (m))		2.93			•				
					Cá	Icul	del	PCI							
N°				Va	alores d	leduc	idos						Total	Q	CDV
1	79.0 28.0	24.18	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0)	0.0	131. 18	3	73
2	79.0 28.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0 0.0)	0.0	109. 0	2	? 75
3	79.0 2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.0)	0.0	83.0	1	82
,	•	PCI		•	•	•		•		18	3				•
	(CLASIFI	CAC	CIÓN						M	uy r	nalo			

Tabla 8: Cálculo del PCI muestra 02

M-02

					Inve	ntario	de 1	allas	s exist	ter	ntes					
Dañ	o Se	everid ad			C	Cantidad	des pa	arciale	es				Total	Dens d %		Valor deducid o
4		М	3.2		2.8	3.05	1	.93	4.92		3.1	3	19.03	2.79	9	20
11		Α	3.75	5	4.5	8.75	3	.45	7.29		6.6	32	34.36	5.05	3	38
1		М	33.2	6	78.4	65.16	5	3.22	87.7		0.	0	317.74	46.7	26	69
10		М	2.94	1 :	2.52	2.84	2	2.76	2.46		3.	9	17.42	2.56	2	7
3		Α	76.2	4 5	3.37	101.94	4 (0.0	0.0		0.	0	231.55	34.0	51	48
19		Α	86.7	7 2	3.32	12.92	20	6.31	0.0		0.	0	149.25	21.9	49	55
	Núme	ro máx	kimo a	dmisi	ble de	VD (m))		3.85							
						Cá	Icul	del	PCI							
N°					V	alores c	leduc	idos						Total	Q	CDV
1	69.0	55.0	48.0	32.3	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	<u>204.</u> 3	4	. 97
2	69.0	55.0	48.0	2.0	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	174. 0	3	94
3	69.0	55.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	128. 0	2	85
4	69.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	75.0	1	75
		-	PCI	_	_	-						•	3		•	
		C	LASIF	ICAC	IÓN							Fa	llado			

Tabla 9: Cálculo del PCI muestra 03

M-03

			Inve	ntario c	le falla	s existe	ntes			
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	deducid
				1.4				0		
10	M	8.8	2.6	4.25	24.11	3.546	9			
4	М	2.87	6.56	4.75	3.52	3.71	24.7	3.632	26	
7	М	2.94	4.65	2.86	1.52	2.67	3.28	17.92	2.635	8
11	Α	4.8	7.75	15.82	11.95	9.46	8.75	58.53	8.607	46
1	Α	42.8	16.54	22.3	61.26	24.67	37.35	204.92	30.135	76
19	М	49.68	7.96	29.21	13.62	8.42	0.0	108.89	16.013	19
Nú	mero máx	kimo adm	isible de	VD (m)		3.2		•	•	

						C	álculo	del	PCI						
N°					V	alores	deduc	idos					Total	Q	CDV
1	76.0	46.0	26.0	3.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	151. 8	4	82
2	76.0	46.0	26.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150. 0	3	88
3	76.0	46.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	126. 0	2	84
4	76.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82.0	1	82
			PCI				•		•	•	12				
		С	LASIF	ICAC	IÓN						Muy	Malo			

Tabla 10: Cálculo del PCI muestra 04

M-04

					Inve	ntario	de f	allas	exist	ente	S					
Daño		everid ad			С	antidad	les pa	rciale	es			Total	Dens d %		Valor deduc	
4	Α		1.28	3	4.56	4.24	3	.86	2.73	3.5	8	20.25	2.97	8	50	
7	М		2.91	1	2.47	5.26	1.	.84	3.27	2.5	7	18.32	2.69	4	8	
10	Α		3.64	1	6.38	2.82	3	.24	2.15	1.9	5	20.18	2.96	8	16	
11	Α		23.7	7	12.45	12.92	7	.96	10.7	19.	.64	87.37	12.8	49	56	
1	М		45.6	1	62.61	12.93	54	.73	34.56	0.0		210.44	30.9	47	76	
5	М		17.4	2	28.51	36.84	41	.52	0.0	0.0		124.29	18.2	78	46	
	Núme	ro máx	kimo a	dmi	sible de	VD (m))		3.2							
						Cá	lculo	del	PCI							
N°					Va	alores d	educi	dos					Total	Q	CD	V
1	76.0	56.0	50.0	9.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	191. 2	4	. 9	5
2	76.0	56.0	50.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	184. 0	3	99	9
3	76.0	56.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	136. 0	2	! 88	8
4	76.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82.0	1	8	3
			PCI			-						1	-		-	
		CI	LASIF	ICĀ	CIÓN						Fa	llado				

Tabla 11: Cálculo del PCI muestra 05

M-05

			Inve	ntario c	de fallas	existe	ntes			
Daño	Severid ad		C	antidade	s parciale	es		Total	Densida d %	Valor deducid
							0			
13	M	26.0	0.0	26.0	3.824	60				
3	М	39.52	41.52	0.0	163.81	24.09	26			
19	М	62.49	38.12	26.83	27.9	31.98	0.0	187.32	27.547	28
11	М	14.17	9.15	15.33	7.11	11.94	7.96	65.66	9.656	50
4	М	1.91	3.64	6.38	2.82	3.24	2.15	20.14	2.962	22
10	М	2.81	2.43	4.93	3.42	2.62	3.85	20.06	2.95	7
Nú	mero máx	kimo adm	isible de	VD (m)		4.67		•	•	

						Cá	ilculo	del	PCI						
N°					Va	lores	deduci	dos					Total	Q	CDV
1	60.0	50.0	28.0	26.0	14.7 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	178. 74	5	88
2	60.0	50.0	28.0	26.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	166. 0	4	87
3	60.0	50.0	28.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	142. 0	3	85
4	60.0	50.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	116. 0	2	80
5	60.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	68.0	1	68
			PCI								12				
		С	LASIF	ICACI	ÓN						Muy	malo			

Tabla 12: Cálculo del PCI muestra 06

M-06

			Inve	ntario c	le fallas	existe	ntes			
Daño	Severid ad		С	antidade	s parciale	es		Total	Densida d %	Valor deducid o
13	М	32.0	0.0	0.0	0.0	32.0	4.706	78		
4	М	2.85	2.94	1.52	1.84	2.76	14.36	2.112	17	
10	М	2.47	3.9	1.98	2.45	3.67	3.14	17.61	2.59	6
7	М	2.67	3.96	4.52	2.68	3.28	4.91	22.02	3.238	9
11	М	12.95	18.64	9.85	6.59	16.43	10.52	74.98	11.026	33
1	М	62.49	38.12	26.41	27.9	31.52	0.0	186.44	27.418	59
19	М	87.7	42.69	21.38	43.72	36.12	0.0	231.61	34.06	62
Nú	mero máx	kimo adm	isible de	VD (m)		3.02				

						Cá	Iculo	del F	PCI						
N°					Val	lores d	leducio	dos					Total	Q	CDV
1	78.0	62.0	59.0	0.66	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	199.66	4	97
2	78.0	62.0	59.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	201.0	3	99
3	78.0	62.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	144.0	2	94
4	78.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.0	1	85
			P	CI							•	1			
		CL	ASIFI	CACIÓ	N						Fall	ado			

Tabla 13: Cálculo del PCI muestra 07
M-07

			Inve	ntario c	le falla	s existe	ntes						
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	Valor deducid o			
13	13 M 54.0 0.0 0.0 0.0 0.0 54.0 7.941 76												
1	М	42.65											
19	М	32.96	26.47	23.14	49.72	76.34	0.0	208.63	30.681	31			
5	М	32.74	21.17	14.69	42.56	62.37	0.0	173.53	25.519	52			
11	М	16.1	14.52	9.2	8.32	30.16	10.61	88.91	13.075	18			
10	М	4.63	8.2	4.62	6.74	1.26	9.14	34.59	5.087	12			
Nú	mero máx	kimo adm	nisible de	VD (m)		3.2	•	•	•				

						Ca	álculo	del	PCI						
N°					Va	alores	deduc	idos					Total	Q	CDV
1	76.0	63.0	52.0	6.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	197.2	4	96
2	76.0 63.0 52.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0												193	3	96
3	76.0	63.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	143	2	93
4	76.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82	1	82
	•		PCI	•	•	•	•			•	•	4			
		CI	LASIF	ICAC	ΙÓΝ						Falla	ado			

Tabla 14: Cálculo del PCI muestra 08

M-08

			Inve	ntario c	le falla	s existe	ntes			
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	deducid
						0				
4	M	3.2	6.58	32.59	4.793	28				
5	М	14.63	28.43	17.45	12.98	21.46	32.24	127.19	18.704	47
19	М	32.6	24.65	14.56	18.96	13.43	0.0	104.2	15.324	20
13	М	56.0	0.0	0.0	0.0	0.0	0.0	56.0	8.235	77
11	М	10.61	4.48	6.56	10.42	9.82	6.12	48.01	7.06	26
Nú	mero máx	kimo adm	isible de	VD (m)		3.11				

						Cá	álculo	del	PCI						
N°					Va	alores	deduci	dos					Total	Q	CDV
1	77.0	47.0	28.0	2.86	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	154. 86	4	83
2	77.0												154	3	89
3	77.0	47.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	128	2	85
4	77.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83	1	83
			PCI								11				
		CI	LASIF	ICACI	ÓN						Muy	malo			

Tabla 15: Cálculo del PCI muestra 09
M-09

					Inve	ntario	de f	allas	exist	ente	S				
Daño	S	everid ad			С	antidad	es pa	arciale	es			Total	Dens d ⁹		Valor deducid o
11		М	4.56	3	11.62	8.41	10	0.48	19.41	9.7	' 3	64.21	9.44	3	29
13	M 4.69 9.84 17.65 14.23 6.41 0.0 52.82 7.768 33														76
4	M 4.69 9.84 17.65 14.23 6.41 0.0 52.82 7.768 33 19 M 23.45 48.71 64.28 52.31 42.67 0.0 231.42 34.032 32														33
														32	
10		М	12.6	3	3.47	6.35	4	.86	6.74	10	.43	44.45	6.53	7	13
	Núme	ero má	ximo a	dmi	sible de	VD (m)			3.2			•	· ·		
						Cá	culc	del	PCI						
N°					Va	alores d	educ	idos					Total	Q	CDV
1	76.0	33.0	32.0	5.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0		146. 8	4	79
2	76.0	33.0	32.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	143	3	85
3	76.0	33.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	113	2	78
4	76.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82	1	82
			PCI								15				
		С	LASIF	ICA	CIÓN						Mι	ıy malo			

Tabla 16: Cálculo del PCI muestra 10 M-10

			Inve	ntario c	le fallas	existe	ntes					
Daño	Severid ad		C	antidade	s parciale	es		Total	Densida d %	deducid		
				0								
13 M 62.0 0.0 0.0 0.0 0.0 0.0 62.0 9.118												
11	М	8.6	4.23	13.47	19.53	26.41	29.32	101.56	14.935	37		
4	М	2.67	4.23	3.56	2.41	2.36	7.34	22.57	3.319	23		
3	М	32.64	28.81	21.78	17.43	14.85	9.42	124.93	18.372	22		
10	М	6.41	3.54	6.32	9.14	8.27	6.45	40.13	5.901	13		
Nú	mero máx	kimo adm	isible de	VD (m)		2.93						

						Ca	álculo	del	PCI						
N°					Va	alores	deduc	idos					Total	Q	CDV
1	79.0	37.0	137. 39	3	82										
2	79.0	79.0 37.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0												2	81
3	79.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83	1	84
			PCI								16		•		
		С	LASIF	ICAC	IÓN						Muy	Malo			

Tabla 17: Cálculo del PCI muestra 11
M-11

			Inve	ntario c	le fallas	existe	ntes			
Daño	Severid ad		C	antidade	s parciale	es		Total	Densida d %	Valor deducid
							0			
13	M	57.0	0.0	57.0	8.382	76				
11	М	13.64	21.55	9.36	11.48	13.65	8.31	77.99	11.469	33
4	М	2.36	4.75	12.82	6.45	8.24	3.47	38.09	5.601	30
19	М	35.74	48.26	12.38	29.41	31.49	16.42	173.7	25.544	27
10	М	6.35	9.47	2.48	14.38	21.95	6.27	60.9	8.956	17
Nú	mero máx	kimo adm	isible de	VD (m)		3.2	•		•	

						Ca	álculo	del	PCI						
N°					Va	alores	deduc	idos					Total	Q	CDV
1	76.0	33.0	30.0	5.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	144. 4	4	78
2	76.0	33.0	30.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	141	3	84
3	76.0	33.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	113	2	78
4	76.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82	1	82
	•		PCI	•	•	•	•		•		16		•		
		C	LASIF	ICAC	ΙÓΝ						Muy	malo			

Tabla 18: Cálculo del PCI muestra 12 M-12

			Inve	ntario d	le fallas	s existe	ntes								
Daño	Severid ad		C	antidade	s parciale	es		Total	Densida d %	Valor deducid o					
13	13 M 49.0 0.0 0.0 0.0 0.0 49.0 7.206 74														
4	М	4.63													
11	М	23.46	18.23	36.84	15.4	9.47	6.37	109.77	16.143	38					
10	М	9.45	3.82	6.72	8.31	12.43	4.87	45.6	6.706	14					
1	М	32.47	46.23	16.42	28.76	9.43	21.46	154.77	22.76	58					
7	М	3.46	8.27	6.48	9.5	12.18	7.38	47.27	6.951	12					
Nú	mero máx	kimo adm	isible de	VD (m)		3.39	•	•	•						

						Cá	álculo	del	PCI						
N°					Va	alores	deduci	dos					Total	Q	CDV
1	74.0	58.0	38.0	14.8 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	184. 82	4	93
2	74.0	58.0	38.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	172	3	97
3	74.0	58.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	136	2	89
4	74.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80	1	80
			PCI					3							
		CI	_ASIF	ICACI	ÓN						Falla	ado			

Tabla 19: Cálculo del PCI muestra 13 M-13

			Inve	ntario c	le fallas	existe	ntes								
Daño	Severid ad		C	antidade	s parciale	es		Total	Densida d %	deducid					
										0					
13 M 61.0 0.0 0.0 0.0 0.0 0.0 61.0 8.971															
11	М	6.7													
4	М	6.4	4.58	7.2	9.1	5.47	6.32	39.07	5.746	29					
19	М	45.32	32.14	21.46	28.67	14.32	24.58	166.49	24.484	27					
1	М	64.21	34.82	28.1	19.54	22.66	42.58	211.91	31.163	62					
10	М	0.0	0.0	0.0	0.0	0.0	354.0	354.0	52.059	38					
Nú	mero máx	ximo adm	isible de	VD (m)		2.65			•						

						С	álcul	o del	PCI						
N°					V	/alores	deduc	idos					Total	Q	CDV
1	82.0	7													93
2	82.0	2.0 62.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											146	2	94
3	82.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	86	1	86
				PCI								6			
		(CLASIF	FICACI	ΙÓΝ						Fa	allado			

Tabla 20: Cálculo del PCI muestra 14
M-14

					Inve	ntario	de 1	fallas	exist	ter	ntes					
Daño	S	everid ad			C	Cantidad	des pa	arciale	es				Total	Dens d %		Valor deducid o
4		М	4.65		3.84	1.62	3	3.86	4.94		6.5	2	25.43	3.74		51
19		М	2.36		8.42	6.76	4	.95	13.48	3	9.1	6	45.13	6.63	7	16
13		М	74.0		0.0	0.0		0.0	0.0		0.0)	74.0	10.8	82	84
11		М	6.48		8.23	17.43	3 12	2.68	9.25		4.8	7	58.94	8.66	8	28
10		М	5.24		8.76	14.23	3 9	.85	6.15		8.0)	52.23	7.68	1	17
	Núme	ro má	ximo a	dmi	sible de	VD (m)		2.47							
						Cá	lcul	del	PCI							
N°					Va	alores o	deduc	idos						Total	Q	CDV
1	84.0	51.0	13.1 6	0.0	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	148. 16	3	87
2	84.0	51.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	137	2	89
3	84.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0	.0	0.0	0.0	88	1	89
	•	•	PCI	•	1	•	•		•			11	•	•	•	•
		С	LASIF	ICA	CIÓN							Mu	y malo			

Tabla 21: Cálculo del PCI muestra 15 M-15

			Inve	ntario c	le falla	s existe	ntes			
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	Valor deducid
						0				
13	M	28.0	0.0	0.0	28.0	4.118	66			
11	М	9.46	4.52	7.34	5.25	3.18	6.86	36.61	5.384	23
10	М	6.45	3.85	4.9	5.84	7.64	7.45	36.13	5.313	13
7	М	6.54	3.7	4.52	6.42	4.25	7.38	32.81	4.825	10
1	М	32.56	48.25	25.98	19.5	22.6	12.8	161.69	23.778	57
4	М	6.52	3.8	2.54	4.28	6.18	0.0	23.32	3.429	23
5	М	18.23	14.6	9.52	7.4	6.0	0.0	55.75	8.199	37
Nú	mero máx	kimo adm	isible de	VD (m)		4.12		•	•	

						Cá	ilculo	del	PCI						
N°					Va	lores	deduci	dos					Total	Q	CDV
1	66.0	57.0	37.0	23.0	2.76	0.0	0.0	0.0	0.0	0.0	0.0	0.0	185. 76	5	91
2	66.0	57.0	37.0	23.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	185	4	93
3	66.0	57.0	37.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	164	3	93
4	66.0	57.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	129	2	86
5	66.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	74	1	74
			PCI	•	•						•	7			•
		CI	LASIF	ICACI	ÓN						Falla	ado			

Tabla 22: Cálculo del PCI muestra 16 M-16

			Inve	ntario c	le fall	las	existe	ntes						
Daño	Severid ad		C	antidade	s parc	iale	es		Total	Densida d %	deducid			
13														
11	М	18.3	15.56	9.24	7.85	5	9.45	4.2	64.6	9.5	30			
1	М	18.63	32.45	28.74	39.4	4	24.52	16.94	160.68	23.629	57			
4	М	2.14	3.8	2.86	4.6	;	1.54	3.47	18.41	2.707	20			
10	М	4.5	6.46	3.75	5.85	5	2.8	7.6	30.96	4.553	10			
5	М	4.62	8.76	9.34	6.85	5	9.4	4.57	43.54	6.403	35			
Nú	mero máx	kimo adm	isible de	VD (m)			4.03	•	•	•				

						Ca	álculo	del	PCI						
N°					V	alores	deduc	idos					Total	Q	CDV
1	67.0	57.0	35.0	30.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	189. 6	5	92
2	67.0	57.0	35.0	30.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	191	4	95
3	67.0	57.0	35.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	163	3	93
4	67.0	57.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	130	2	87
5	67.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75	1	74
	•		PCI	•	•	•	•		•	•	•	5	•		•
		С	LASIF	ICACI	ÓN						Falla	ado			

Tabla 23: Cálculo del PCI muestra 17
M-17

					Inve	ntario	de f	fallas	s exist	ten	ites					
Dañ	o S	everid ad			C	antidad	les pa	arciale	es				Total	Dens d %		Valor deducid o
13		М	18.0		24.0	0.0	(0.0	0.0		0.	0	42.0	6.17	6	72
1		М	45.6	2	23.15	52.36	5 2	8.8	19.4		38	.2	207.51	30.5	16	61
11		М	8.43	-	6.85	4.6	4	.35	9.2		7.	9	41.33	6.07	8	24
4		М	3.75		6.2	4.85	7	'.36	5.48		2.5	54	30.18	4.43	8	26
10		М	9.45		3.8	5.6	4	.95	2.35		6.	7	32.85	4.83	1	10
	Núme	ero má	ximo a	dmisi	ble de	VD (m)			3.57	•				•		
						Cá	lculo	o del	PCI							
N°					Va	alores d	leduc	idos						Total	Q	CDV
1	72.0	61.0	26.0	13.6 8	0.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	172. 68	4	90
2	72.0	61.0	26.0	2.0	0.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	161	3	92
3	72.0	61.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	137	2	89
4	72.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	78	1	77
	ı	ı	PCI	ı	1	1	1			<u> </u>		1	8		1	L
		С	LASIF	ICAC	IÓN							Fal	lado			

Tabla 24: Cálculo del PCI muestra 18
M-18

			Inve	ntario d	le falla	s existe	ntes							
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	deducid				
11 M 8.36 7.54 9.2 6.8 3.94 9.48 45.32 6.665 25														
13														
1	М	42.5	52.24	20.15	36.74	18.32	12.6	182.55	26.846	59				
10	М	12.6	28.74	16.5	19.44	34.17	21.86	133.31	19.604	25				
4	М	4.56	3.85	6.7	8.2	5.45	5.62	34.38	5.056	29				
3	М	22.38	16.44	27.6	10.54	18.74	0.0	95.7	14.074	20				
Nú	mero máx	kimo adm	nisible de	VD (m)		2.74		•	•					

						Ca	álculo	del	PCI							
N°					Va	alores	deduc	idos					Total	Q	CDV	
1	81.0	59.0 21.4 0.0<														
2	81.0	59.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	142	2	92	
3	81.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	85	1	85	
			PCI									7				
		С	LASIF	ICAC	IÓN						Fall	ado				

Tabla 25: Cálculo del PCI muestra 19 M-19

			Inve	ntario c	le falla	s existe	ntes			
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	deducid
13	М	48.0	7.059	o 75						
11	M	48.0 8.46	0.0 7.36	0.0 14.25	0.0 9.54	0.0 16.2	0.0 6.38	62.19	9.146	38
4	М	6.45	8.36	4.25	3.88	9.2	2.9	35.04	5.153	29
10	М	18.25	14.36	9.45	6.28	4.85	16.4	69.59	10.234	19
1	М	38.42	26.8	17.5	9.62	41.56	24.65	158.55	23.316	58
5	М	18.54	11.42	9.3	4.8	6.42	9.56	60.04	8.829	37
Nú	mero máx	kimo adm	nisible de	VD (m)		3.3				

						Ca	álculo	del	PCI						
N°					Va	alores	deduc	idos					Total	Q	CDV
1	75.0	58.0	38.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	182. 1	4	93
2	75.0	58.0	38.0	0.0	173	3	94								
3	75.0	58.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	137	2	90
4	75.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	81	1	82
			PCI									6			
		CI	_ASIF	ICACI	ÓN						Falla	ado			

Tabla 26: Cálculo del PCI muestra 20 M-20

					Inve	ntario	de 1	allas	exist	ten	ites					
Daño	Se	everid ad			C	Cantidad	des pa	arciale	es				Total	Dens d %		Valor deducid
									ı							0
13		M	24.0	0	.0	0.0	(0.0	0.0		0.0		24.0	3.5	29	58
11		M	9.48	1	6.2	8.32	4	4.8	6.15		12.3	5	57.3	8.4	26	29
1		М	12.7	9	.12	16.74	- 6	.25	8.48		4.36	;	57.65	8.4	78	43
10		М	6.4	9	.53	16.82	2 1	1.8	8.15		7.32)	60.02	8.8	26	17
7		М	4.52	9	.86	5.26	3	.74	8.1		0.0		31.48	4.6	29	10
	Núme	ro má	ximo a	dmisi	ble de	VD (m))		4.86	1		L				
						Cá	Icul	del	PCI							
N°					V	alores d	leduc	idos						Total	Q	CDV
1	58.0	43.0	29.0	17.0	8.6	0.0	0.0	0.0	0.0	0.	0	0.0	0.0		5	79
2	58.0	43.0	29.0	17.0	2.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	149	4	81
3	58.0	43.0	29.0	2.0	2.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	134	3	81
4	58.0	43.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	107	2	74
5	58.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.	0	0.0	0.0	66	1	65
			PCI									19				
		С	LASIFI	CACIO	ЙČ						•	Muy	malo malo	-		

Tabla 27: Cálculo del PCI muestra 21 M-21

					Inver	ntario d	le falla	as ex	istente	S					
Daño	Se	everid ad			C	Cantidad	les pa	rciale	es			Total	Densi %	dad	Valor deducido
13		M	38.0)	0.0	0.0	C	0.0	0.0	(0.0	38.0	5.5	88	70
11		М	4.82	2 1	4.56	7.36	11	.28	6.3	9	.52	53.84	7.9	18	29
1		М	24.1	6 1	5.62	4.36	8	.14	19.27	2	9.5	101.05	14.	86	52
10		М	6.45	5 6	3.21	4.87	9	.52	3.24	9	.65	41.94	6.1	68	14
4		М	5.42	2 9	9.78	6.43	8	.62	7.86	4	.27	42.38	6.2	32	33
	Núme	ro má	kimo a	dmisik	ole de	VD (m))		3.76	•		•	•		
						Cál	culo	del P	CI						
N°					Va	alores d	leduci	dos					Total	Q	CDV
1	70.0	52.0	33.0	22.0 4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	177. 04	4	91
2	70.0	52.0	33.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	157	3	91
3	70.0	52.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	126	2	85
4	70.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76	1	75
		•	PCI	•	•	•	•		•	•		9		•	•
		С	LASIF	ICACI	ÓN						Fa	llado			

Tabla 28: Cálculo del PCI muestra 22 M-22

					Inve	ntario	de 1	allas	exist	ent	es				
Daño	Se	everid ad			С	antida	des pa	arciale	es			Total	Densi d %		Valor deducid o
13		М	32.0	0.0	0	0.0	(0.0	0.0		0.0	32.0	4.706	3	65
11		М	5.42	2 9.	16	8.5	4	4.8	6.95		3.45	38.28	5.629	9	24
1		М	25.6	6 19).4	7.58	14	4.32	9.62		4.15	80.73	11.87	72	48
10		М	6.8	9.	46	3.15		3.4	7.25		9.16	44.22	6.503	3	15
4		М	5.6	4.	52	8.74	6	.38	9.4		5.43	40.07	5.893	3	33
7		М	4.53	8.	0	6.7	3	.42	5.24		2.16	30.05	4.419	9	10
	Núme	ro máx	ximo a	dmisil	ole de	VD (m)		4.21						
						Cá	ilcul	del	PCI						
N°					Va	alores o	deduc	idos					Total	Q	CDV
1	65.0	48.0	33.0	24.0	3.15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	173. ; 15	5	87
2	65.0	48.0	33.0	24.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	172	4	90
3	65.0	48.0	33.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	150	3	88
4	65.0	48.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	119	2	81
5	65.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	73	1	74
		•	PCI	•					•	•	10	•			•
		C	LASIF	ICACI	ÓN	-	_		-	-	Fal	lado			

Tabla 29: Cálculo del PCI muestra 23 M-23

			Inve	ntario c	le falla	s existe	ntes							
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	Valor deducid o				
13	М	12.0	19.0	0.0	0.0	0.0	0.0	31.0	4.559	67				
11	М	8.47	6.25 3.68 9.4 7.21 12.1 47.11 6.928 26											
1	М	23.75	17.46	13.94	9.58	6.2	4.85	75.78	11.144	47				
10	М	6.4	9.52	8.23	4.7	9.28	6.35	44.48	6.541	14				
4	М	5.42	1.89	7.45	6.6	3.88	4.86	30.1	4.426	27				
7	М	3.4	8.62	7.15	6.81	36.86	5.421	11						
Nú	mero máx	kimo adm	isible de	VD (m)		4.03								

						C	álculo	del	PCI						
N°					Va	lores	deduc	idos					Total	Q	CDV
1	67.0	47.0	27.0	26.0	0.42	0.0	0.0	0.0	0.0	0.0	0.0	0.0	167. 42	5	84
2	67.0	67.0 47.0 27.0 26.0 2.0 0.0 0.0 0.0 0.0 0.0											169	4	89
3	67.0	47.0	27.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	145	3	86
4	67.0	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75	1	74
	•	P	ĊI		•				•	1	1	•	•	•	
		CI	_ASIF	ICACI	ÓN					N	luy ma	ılo			

Tabla 30: Cálculo del PCI muestra 24 M-24

					Inve	ntario	de f	allas	exist	ente	S				
Dañ	o Se	everid ad			C	antidad	les pa	arciale	es			Total	Dens d %		Valor deducid o
13		М	13.0) '	19.0	0.0	(0.0	0.0	0.0)	32.0	4.70	6	64
11		М	6.43	3 8	3.68	4.32	4	1.9	6.45	7.2	26	38.04	5.59	4	24
1		М	26.5	8 4	2.63	52.25	3	4.6	14.52	17.	.36	187.94	27.6	38	69
4		М	2.15	5 (3.45	8.36	9	.46	6.72	7.8	4	40.98	6.02	6	33
10		М	6.45	5	9.8	7.34	6	.85	9.5	7.2	:6	47.2	6.94	1	14
	Núme	ro máz	ximo a	dmisil	ole de	VD (m))		3.85	•					
						Cá	lculo	del	PCI						
N°					Va	alores d	leduc	idos					Total	Q	CDV
1	69.0	64.0	33.0	20.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	186. 4	4	94
2	69.0	64.0	33.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	168	3	94
3	69.0	64.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	137	2	90
4	69.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75	1	75
	I	II.	PCI	1	1		1		•	1		6	1	ı	'
		С	LASIF	ICACI	ÓN						Fa	llado			

Tabla 31: Cálculo del PCI muestra 25 M-25

			Inve	ntario c	le fallas	existe	ntes			
Daño	Severid ad		С	antidade	s parciale	es		Total	Densida d %	Valor deducid
							0			
13	М	16.0	21.0	0.0	37.0	5.441	69			
11	М	9.74	14.32	4.55	10.28	8.45	6.84	54.18	7.968	28
4	М	2.35	9.75	6.8	13.65	7.82	9.24	49.61	7.296	36
1	М	24.95	19.43	6.62	9.84	12.6	18.2	91.64	13.476	49
10	М	9.58	14.42	11.26	6.47	24.58	18.44	84.75	12.463	21
7	М	6.5	0.0	44.47	6.54	12				
Nú	mero máx	kimo adm	isible de	VD (m)		3.85				

						C	álculo	del	PCI						
N°					V	alores	deduc	idos					Total	Q	CDV
1	69.0	49.0	36.0	23.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	177. 8	4	91
2	69.0	49.0	36.0	0.0	156	3	90								
3	69.0	49.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	122	2	84
4	69.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75	1	75
		P(CI									9			
		Cl	_ASIF	ICACI	ÓΝ					F	allado				

Tabla 32: Cálculo del PCI muestra 26 M-26

			Inve	ntario c	le fallas	existe	ntes			
Daño	Severid ad		C	antidade	s parciale	es		Total	Densida d %	Valor deducid o
13	М	9.0	13.0	19.0	0.0	41.0	6.029	74		
11	М	14.6	9.42	11.86	6.3	7.54	8.2	57.92	8.518	29
4	М	9.42	12.74	6.35	8.2	4.28	5.86	46.85	6.89	33
10	М	13.25	9.47	0.95	6.45	8.26	10.84	49.22	7.238	15
1	М	34.68	16.45	17.3	111.14	16.344	52			
Nú	mero máx	kimo adm	isible de	VD (m)		3.39				

						Cá	álculo	del	PCI						
N°					Va	alores	deduc	dos					Total	Q	CDV
1	74.0	52.0	33.0	11.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	170. 31	4	89
2	74.0	4.0 52.0 33.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0											161	3	93
3	74.0	52.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	130	2	86
4	74.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80	1	80
			PCI	•	•	•	•		•	•	•	7	•		·
		CI	LASIF	ICACI	ÓN						Falla	ado			

Tabla 33: Cálculo del PCI muestra 27 M-27

			Inve	ntario c	le falla	s existe	ntes			
Daño	Severid ad		C	antidade	s parcial	es		Total	Densida d %	Valor deducid
							0			
13	М	7.0	23.0	0.0	54.0	7.941	76			
11	М	9.74	16.4	12.36	8.25	6.74	10.68	64.17	9.437	30
4	М	8.52	4.25	2.36	9.74	3.65	7.3	35.82	5.268	29
19	М	8.25	14.95	7.48	9.84	12.36	3.5	56.38	8.291	17
1	М	24.85	19.62	14.98	7.5	6.5	9.47	82.92	12.194	49
10	М	9.8	5.2	8.36	4.5	14.32	12.86	55.04	8.094	19
Nú	mero máx	kimo adm	isible de	VD (m)		3.2	•			

						C	álculo	del	PCI						
N°					Va	alores	deduc	idos					Total	Q	CDV
1	76.0	49.0	30.0	5.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	160. 8	4	86
2	76.0	49.0	30.0	0.0	0.0	157	3	91							
3	76.0	49.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	129	2	85
4	76.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	82	1	83
		P(CI									9			
	•	CI	_ASIF	ICAC	ΙÓΝ				•	F	allado				

Tabla 34: Cálculo del PCI muestra 28 M-28

			Inve	ntario c	le falla	s existe	ntes									
Daño	Severid ad		С	antidade	s parcial	es		Total	Densida d %	Valor deducid o						
			18.0 12.8 21.58 8.32 6.43 77.48 11.304													
11	M	9.45	18.9 12.8 21.58 8.32 6.43 77.48 11.394 33													
13	М	8.0	23.0 28.0 0.0 0.0 59.0 8.676 82													
4	М	8.5	6.34	5.9	4.62	9.45	7.25	42.06	6.185	32						
10	М	4.35	6.46	9.72	14.2	8.57	8.42	51.72	7.606	15						
1	М	36.4	28.62	14.74	20.98	17.35	9.58	127.67	18.775	53						
7	М															
Nú	mero máx	ximo adm	isible de	VD (m)		2.65										

						Cá	álculo	del	PCI						
N°					Va	alores	deduc	idos					Total	Q	CDV
1	82.0	53.0	21.4 5	0.0	156. 45	3	90								
2	82.0	2.0 53.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0											137	2	89
3	82.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	86	1	86
			PCI								10				
		С	LASIF	ICAC	IÓN						Falla	ado			

Tabla 35: Cálculo del PCI muestra 29 M-29

			Inve	ntario c	le fal	las	existe	ntes			
Daño	Severid ad		C	antidade	s parc	iale	S		Total	Densida d %	Valor deducid
							0				
13	М	9.0	13.0	27.0	0.0	0.0	49.0	7.206	79		
11	М	8.52	13.4	9.32	6.74	4	10.6	7.26	55.84	8.212	29
4	М	6.45	3.28	8.36	4.9	5	7.2	2.25	32.49	4.778	29
10	М	9.52	3.46	7.4	8.6	8	2.8	6.94	38.8	5.706	13
1	М	34.8	21.54	19.36	10.3	34	26.4	9.32	121.76	17.906	54
7	М	3.46	7.21	6.38	4.69	9	7.58	3.52	32.84	4.829	10
Nú	mero máx	ximo adm	isible de	VD (m)			2.93				

	Cálculo del PCI																			
N°		Valores deducidos													CDV					
1	79.0	54.0	26.9 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	159. 97	3	91					
2	79.0	54.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	135	2	89					
3	79.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83	1	84					
	PCI											9								
		С	LASIF	ICAC	IÓN						Fall	ado								

Tabla 36: Cálculo del PCI muestra 30 M-30

	Inventario de fallas existentes													
Daño	Severid ad		C	antidade	Total	Densida d %	Valor deducid o							
13	М	23.0	9.0	4.0	8.0	14.0	0.0	58.0	8.529	80				
11	М	9.74	2.36	6.4	3.54	7.32	8.25	37.61	5.531	23				
1	М	24.95	36.98	47.2	10.87	9.33	14.58	143.91	21.163	57				
4	М	5.68	3.74	2.8	3.58	4.73	2.95	23.48	3.453	23				
10	М	8.32	4.65	7.28	9.42	9.2	6.25	45.12	6.635	13				
Nú	mero máx	kimo adm	isible de	VD (m)		2.84								

	Cálculo del PCI																			
N°		Valores deducidos													CDV					
1	80.0	57.0	19.3 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	156. 32	3	90					
2	80.0	57.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	139	2	90					
3	80.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84	1	84					
	PCI								•		10	•								
	CLASIFICACIÓN									Fallado										

RESULTADOS VIZZIR

Tabla 37: Cálculo del IS con método vizzir muestra 1 M-01

Inventario de fallas existentes													
Tipo	Falla				Ca	antida	des	parciales		Total	Extensi ón %	Graved ad	
В	PA	23.7	24.6	67	7.96	53.	.37	62.61	12.39	184.7	27.162	2	
В	FB	4.25	3.8	86	1.84	1	1.4	2.5	3.13	16.98	2.497	3	
Α	DL	4.75	2.8	37	4.72	3.	28	4.23	7.14	26.99	3.969	2	
Α	В	8.75	6.6	62	23.7	9.	46	28.51	71.86	148.9	21.897	2	
Α	FPC	53.24	61.8	35	53.37	12.	.39	28.51	71.86	281.22	41.356	3	
Cálculo de índice de deterioro superficial													
	índice de	fisuración	(if)			Prin	ner v	/alor(is)		is 6			
Gra	vedad	3			if			4					
Exte	ensión	41.3	356	id				3		índice de deterioro			
if	;	4			Valor			6		superficial(is)			
íno	índice de deformación(id)					cción	por r	reparaciór	1	is		6	
Gravedad 3				Graved	ad		2	С	lasificación	De	ficiente		
Exte	Extensión 2.497		197	Extensión				3.969					
id 3			Valor			0							

Tabla 38: Cálculo del IS con método vizzir muestra 2

M-02

	Inventario de fallas existentes													
Tipo	Falla				Ca	antidad	des	parciales		Total	Extensi ón %	Graved ad		
В	DM	3.2	3.2 2.8		3.05		3	4.92	3.13	19.03	2.799	2		
Α	В	3.75	4.5		8.75	3.4	5	7.29	6.62	34.36	5.053	2		
Α	FPC	33.26	78.4	ļ.	65.16	53.2	22	87.7	6.62	324.36	47.7	3		
Α	DT	2.94	2.52	2	2.84	2.76	6	2.46	3.9	17.42	2.562	3		
В	PA	86.7	23.3	2	12.92	26.3	31	2.46	3.9	155.61	22.884	2		
Cálculo de índice de deterioro superficial														
	Índice de	fisuración((if)			Prim	ner v	/alor(is)		is		5		
Grave	edad	3		if			4							
Exten	sión	47.7		id			2			índice de deterioro				
if		4			Valor			5		superficial(is)				
ĺn	Índice de deformación(id)					cción p	oor r	reparación		is		5		
Grave	Gravedad 2				Gravedad	d		3	(Clasificación	De	eficiente		
Exten	Extensión		2.799		Extensión		2.562							
id	id				Valor		0							

Tabla 39: Cálculo del IS con método vizzir muestra 3

M-03

	Inventario de fallas existentes													
Tipo	Falla			C	antidades	parciales		Total	Extensi ón %	Graved ad				
Α	DL	8.8	2.6	1.4	4.23	2.83	4.25	24.11	3.546	3				
В	DM	2.87	6.56	4.75	3.52	3.29	3.71	24.7	3.632	2				
В	FB	2.94	4.65	2.86	1.52	2.67	3.28	17.92	2.635	2				
Α	В	4.8	7.75	15.82	11.95	9.46	8.75	58.53	8.607	2				
Α	FPC	42.8	16.54	22.3	61.26	24.67	37.35	204.92	30.135	3				
В	PA	49.68	7.96	29.21	13.62	8.42	37.35	146.24	21.506	2				
	Cálculo de índice de deterioro superficial													
	indicé de	fisuración(if)	Primer valor(is)				is		5				
Gra	vedad	3		if		4								
Exte	ensión	30.	135	id		2		índice de deterioro superficial(is)						
i1	F	4		Valor		5								
in	dicé de de	formación((id)	Corre	cción por i	reparación		is		5				
Gra	Gravedad 2			Graved	ad	3	Cla	asificación	De	eficiente				
Exte	Extensión 2.635		35	Extensi	ón	3.546								
ic	id 2			Valor		0								

Tabla 40: Cálculo del IS con método vizzir muestra 4

M-04

	Inventario de fallas existentes														
Tipo	Falla			C	antidades	parciales		Total	Extensi ón %	Graved ad					
В	DM	1.28	4.56	4.24	3.86	2.73	3.58	20.25	2.978	3					
В	FB	2.91	2.47	5.26	1.84	3.27	2.57	18.32	2.694	3					
Α	DL	3.64	6.38	2.82	3.24	2.15	1.95	20.18	2.968	2					
Α	В	23.7	12.45	12.92	7.96	10.7	19.64	87.37	12.849	2					
Α	FPC	45.61	62.61	12.93	54.73	34.56	19.64	230.08	33.835	2					
	Cálculo de índice de deterioro superficial														
	índice de	fisuración(i	f)		Primer	valor(is)		is 5							
Grave	dad	2		if		3									
Extens	sión	33.835	5	id		3		indicé de deterioro superficial(is							
if		3		Valor		5									
inc	dicé de de	eformación(i	d)	Corre	ección po	r reparación		is		5					
Graveo	Gravedad 3			Gravedad	d	2	С	Clasificación		eficiente					
Extens	sión	2.694		Extensión		2.968									
id	id 3			Valor		0									

Tabla 41: Cálculo del IS con método vizzir muestra 5 M-05

	Inventario de fallas existentes											
Tipe	Falls			1111				.03		Total	Evtensi	Crayed
Tipo	Falla				Ca	anudades	parciales			Total	Extensi ón %	Graved ad
Α	В	26.0	0.0	0	0.0	0.0	0.0		0.0	26.0	3.824	3
В	PA	39.52	41.5	2	36.84	17.42	28.51		0.0	163.81	24.09	3
Α	В	14.17	9.1	5	15.33	7.11	11.94	7	7.96	65.66	9.656	2
В	DM	1.91	3.6	4	6.38	2.82	3.24	2	2.15	20.14	2.962	3
Α	DL	2.81	2.4	2.43 4.93 3.42 2.62 3.85					3.85	20.06	2.95	3
			Cálcı	ulo	de índic	e de de	terioro su	perfi	cial			
	índice de	fisuración(i	f)			Primer	valor(is)			is		5
Gra	vedad	2			if		2					
Exte	ensión	9.6	356		id		3			índice de d	eterioro su	perficial(is)
if	:	2			Valor		5					
ír	ndice de de	eformación(i	mación(id) Corrección por reparación							is		5
Gra	vedad	3		Gravedad					Cla	asificación	De	eficiente
Exte	ensión	2.9	2.962 Extensión			ón	2.95					
ic	I	3 Valor					0					

Tabla 42: Cálculo del IS con método vizzir muestra 6

M-06

Inventario de fallas existentes											
Tipo	Falla					s parciales		Total	Extensi ón %	Graved ad	
Α	В	32.0	0.0	0.0	0.0	0.0	0.0	32.0	4.706	2	
В	DM	2.85						14.36	2.112	3	
Α	DT	2.47	2.47 3.9 1.98 2.45 3.67 3.14						2.59	3	
В	FB	2.67	2.67 3.96 4.52 2.68 3.28 4.91						3.238	3	
Α	В	12.95	18.64	9.85	6.59	16.43	10.52	74.98	11.026	2	
Α	FPC	62.49	38.12	2 26.41	27.9	31.52	10.52	196.96	28.965	2	
В	PA	87.7	42.69	21.38	43.72	36.12	10.52	242.13	35.607	3	
			Cálcu	lo de índic	e de de	eterioro su	perficial				
	índice de	fisuración(i	f)		Primer	valor(is)		is		5	
Grave	edad	2		if		3					
Exter	nsión	28.96	5	id		3		índi	ce de dete	rioro	
i1	F	3		Valor		5			superficial	(is)	
ír	índice de deformación(id) Corrección por repa							is		5	
Grave	Gravedad 3				d	3	CI	Clasificación		eficiente	
Exter	Extensión 2.112				n	2.59					
ic	t	3		Valor		0					

Tabla 43: Cálculo del IS con método vizzir muestra 7

M-07

				nventario	de fallas	existent	es						
Tipo	Falla			C	antidades p	parciales		Total	Extensi ón %	Graved ad			
Α	В	54.0	0.0	0.0	0.0	0.0	0.0	54.0	7.941	3			
Α	FPC	42.65	84.21					237.34	34.903	3			
В	PA	32.96	26.47	47 23.14 49.72 76.34 0.0				208.63	30.681	3			
В	D	21.17	32.74	14.96	42.56	62.37	0.0	173.8	25.559	3			
Α	В	16.1	14.52	9.2	8.32	30.16	10.61	88.91	13.075	3			
Α	DL	4.63	8.2	4.62	6.74	1.26	9.14	34.59	5.087	2			
			Cálcu	o de índic	e de dete	erioro su	perficial						
	índice de	fisuración(i	f)		Primer v	alor(is)		is		7			
Grav	vedad	3		if		4							
Exte	ensión	34.9	903	id		4		índice de deterioro sup					
if		4		Valor 7				Valor 7					
ín	ndice de de	eformación(i	d)	Corrección por reparación				is		7			
Gra	vedad	3		Gravedad 2 C			CI	asificación	De	eficiente			
Exte	ensión	25.5	559	Extensión 5.087									
id		4		Valor 0									

Tabla 44: Cálculo del IS con método vizzir muestra 8

M-08

		TW CC										
			Inventario	de falla	s existent	tes						
Falla			С	antidades	parciales		Total	Extensi ón %	Graved ad			
DM	3.2	2.46	8.23	6.58	32.59	4.793	2					
D	14.63	28.43	17.45	32.24	127.19	18.704	3					
PA	32.6	24.65 14.56 18.96 13.43 32.24					136.44	20.065	3			
В	56.0	56.0 24.65 14.56 18.96 13.43 32.24					159.84	23.506	2			
В	10.61	0.61 4.48 6.56 10.42				6.12	48.01	7.06	3			
		Cálcu	lo de índic	e de de	erioro su	perficial						
índice de	fisuración(i	f)		Primer	valor(is)		is		4			
dad	2		if		3							
ión	23.506	3	id		2		índice de deterio					
	3		Valor		4			superficial	(is)			
lice de de	formación(i	ormación(id) Corrección por reparación							4			
dad	2	2 Gravedad 3					asificación	F	Regular			
ión	4.793	4.793 Extensión 7.06										
id 2 Valor					0							
	DM D PA B B andice de lad ión ice de de lad	DM 3.2 D 14.63 PA 32.6 B 56.0 B 10.61 Indice de fisuración(i lad 2 ión 23.506 ice de deformación(i lad 2 ión 4.793	DM 3.2 2.46 D 14.63 28.43 PA 32.6 24.65 B 56.0 24.65 B 10.61 4.48 Cálcu ndice de fisuración(if) lad 2 ión 23.506 3 ice de deformación(id) lad 2 ión 4.793	DM 3.2 2.46 8.23 D 14.63 28.43 17.45 PA 32.6 24.65 14.56 B 56.0 24.65 14.56 B 10.61 4.48 6.56 Cálculo de índice indice de fisuración(if) Idad 2 if id ión 23.506 id Valor ice de deformación(id) Correlation Correlation Correlation Idad 2 Gravedad Extensión	DM 3.2 2.46 8.23 7.94 D 14.63 28.43 17.45 12.98 PA 32.6 24.65 14.56 18.96 B 56.0 24.65 14.56 18.96 B 10.61 4.48 6.56 10.42 Cálculo de índice de det Indice de fisuración(if) Primer Indice de det Idad 2 Idad Valor Ice de deformación(id) Corrección por Idad 2 Gravedad Ión 4.793 Extensión Extensión	DM 3.2 2.46 8.23 7.94 4.18 D 14.63 28.43 17.45 12.98 21.46 PA 32.6 24.65 14.56 18.96 13.43 B 56.0 24.65 14.56 18.96 13.43 B 10.61 4.48 6.56 10.42 9.82 Cálculo de índice de deterioro sum dice de fisuración(if) Primer valor(is) lad 2 if 3 ión 23.506 id 2 ice de deformación(id) Corrección por reparación lad 2 Gravedad 3 ión 4.793 Extensión 7.06	DM 3.2 2.46 8.23 7.94 4.18 6.58 D 14.63 28.43 17.45 12.98 21.46 32.24 PA 32.6 24.65 14.56 18.96 13.43 32.24 B 56.0 24.65 14.56 18.96 13.43 32.24 B 10.61 4.48 6.56 10.42 9.82 6.12 Cálculo de índice de deterioro superficial Indice de fisuración(if) Primer valor(is) Iad 2 id 3 Valor 4 ice de deformación(id) Corrección por reparación Iad 2 Gravedad 3 Ión 4.793 Extensión 7.06	DM 3.2 2.46 8.23 7.94 4.18 6.58 32.59 D 14.63 28.43 17.45 12.98 21.46 32.24 127.19 PA 32.6 24.65 14.56 18.96 13.43 32.24 136.44 B 56.0 24.65 14.56 18.96 13.43 32.24 159.84 B 10.61 4.48 6.56 10.42 9.82 6.12 48.01 Cálculo de índice de deterioro superficial Indice de fisuración(if) Primer valor(is) is Idd 2 if 3 Idd 2 indi 2 findi Idd 2 findi 3 Valor 4 Idd 2 Gravedad 3 Clasificación Idd 2 Gravedad 3 Clasificación	DM 3.2 2.46 8.23 7.94 4.18 6.58 32.59 4.793 D 14.63 28.43 17.45 12.98 21.46 32.24 127.19 18.704 PA 32.6 24.65 14.56 18.96 13.43 32.24 136.44 20.065 B 56.0 24.65 14.56 18.96 13.43 32.24 159.84 23.506 B 10.61 4.48 6.56 10.42 9.82 6.12 48.01 7.06 Cálculo de índice de deterioro superficial Indice de fisuración(if) Primer valor(is) is Indice de fisuración(if) Quantificación 13.43 2.24 159.84 23.506 Indice de fisuración(if) Primer valor(is) is Indice de fisuración(if) Corrección por reparación is Indice de deformación(id) Corrección por reparación Indice de deformación Indice de deformación			

 Tabla 45: Cálculo del IS con método vizzir muestra 9

	M-09										
				Inv	entario	de fallas	existent	es			
Tipo	Falla				Ca	antidades	parciales		Total	Extensi ón %	Graved ad
Α	В	4.56	11.62 8.41 10.48 19.41 9.4						63.91	9.399	3
Α	В	48.0	11.6	62	8.41	10.48	19.41	9.43	107.35	15.787	2
В	DM	4.69	9.8	84	17.65	14.23	6.41	9.43	62.25	9.154	2
В	PA	23.45	48.7	71	64.28	52.31	42.67	9.43	240.85	35.419	2
Α	DL	12.6	3.4	7	6.35	4.86	6.74	10.43	44.45	6.537	2
			Cálcu	ulo	de índic	e de det	erioro su	perficial			
	índice de	fisuración(i	f)			Primer	/alor(is)		is		4
Gra	vedad	2			if		3				
Exte	ensión	15.7	787		id		2		índi	ce de detei	
if	:	3	3 Valor				4			superficial	(IS)
ír	ndice de de	eformación(i	rmación(id) Corrección por reparación						is		4
Gra	vedad	2	? Gravedad					CI	asificación	F	Regular
Exte	ensión	9.1	9.154 Extensión								
ic	i	2	2 Valor 0								

Tabla 46: Cálculo del IS con método vizzir muestra 10

M-10

	Inventario de fallas existentes											
				nventario	de talla	s existen	tes					
Tipo	Falla			Ca	antidades	parciales		Total	Extensi ón %	Graved ad		
Α	В	62.0	0.0	0 0.0 0.0 0.0 0.0				62.0	9.118	3		
А	В	8.6	4.23	23 13.47 19.53 26.41 26.32				98.56	14.494	3		
В	DM	2.67	37 3.56 4.23 2.41 2.36 7.34					22.57	3.319	2		
Α	DL	32.64	28.81	21.78	17.43	14.85	9.42	124.93	18.372	2		
Α	DT	6.41	3.54	6.32	6.14	8.27	6.45	37.13	5.46	3		
			Cálcul	o de índic	e de de	terioro su	ıperficia	ĺ				
	índice de	fisuración(if)		Primer	valor(is)		is		4		
Grave	edad	2		if		3						
Exter	nsión	18.37	2	id		2		índice de deterioro				
if	F	3		Valor		4			superficial	(IS)		
ín	dice de de	eformación((id)	Corre	cción por	reparación		is	4			
Grave	edad	2		Gravedad	b	3	Cla	asificación	F	Regular		
Exter	Extensión 3.319			Extensió	n	5.46						
ic	id 2			Valor		0						

Tabla 47: Cálculo del IS con método vizzir muestra 17

M-11

			I	nv	entario (de falla	s exi	sten	tes			
Tipo	Falla				Ca	antidade	s parci	ales		Total	Extensi ón %	Graved ad
Α	В	57.0	0.	0.0 0.0 0.0 0.0						57.0	8.382	2
Α	В	13.64	21.5	21.55 9.36 11.48 13.35 8.31					8.31	77.69	11.425	2
В	DM	2.36	2.36 4.75 12.82 6.45 8.24 3.4						3.47	38.09	5.601	3
В	PA	35.74	48.2	26	12.38	29.41	31.	.49	16.42	173.7	25.544	2
А	DT	6.35	6.35 9.47 2.48 14.38 21.95 6.2						6.27	60.9	8.956	2
		(Cálcul	lo c	de índic	e de de	terio	ro si	uperficia	ıl		
	índice de	fisuración	(if)			Primer	valor(i	is)		is		5
Gra	vedad	2			if		3					
Exte	ensión	11.4	425		id	3				índi	ce de dete	
if		3			Valor		5				superficial	(IS)
íne	dice de de	eformación	(id)		Corre	cción po	repar	ación		is	5	
Gra	vedad	3			Graved	ad	2		Cla	asificación	De	ficiente
Exte	Extensión 5.601				Extensi	ón	8	3.382				
id	id 3				Valor		0					

Tabla 48: Cálculo del IS con método vizzir muestra 12

M-12

			In	ventario	de fallas	s exister	ites			
Tipo	Falla			C	antidades	parciales		Total	Extensi ón %	Graved ad
В	DM	4.63	9.43	14.25	7.32	6.82	12.43	54.88	8.071	2
Α	В	49.0	9.43	3 14.25 7.32 6.82 12.43				99.25	14.596	2
Α	В	23.46	18.23	3 36.84 15.4 9.47 6.37				109.77	16.143	3
Α	DT	9.45	3.82	8.82 6.72 8.31 12.43 4.87					6.706	2
Α	FPC	32.47	46.23	23 16.42 28.76 9.43 21.46					22.76	3
В	FB	3.46	8.27 6.48 9.5 12.18 7.38					47.27	6.951	3
		(Cálculo	de índic	e de det	erioro s	uperficia	al		
	índice de	fisuración	(if)		Primer	valor(is)		is		6
Grave	edad	3		if		4				
Exten	sión	22.76	3	id		3		índice de deterio		
if	:	4		Valor		6			superficia	l(is)
íne	dice de de	eformación	ormación(id) Corrección por reparación					is		6
Grave	edad	3		Graveda	d	2	CI	asificación	De	eficiente
Exten	sión	6.951	I	Extensión 6.706						
ic	I	3 Valor 0								

Tabla 4: Cálculo del IS con método vizzir muestra 13

M-13

	Inventario de fallas existentes											
Tipo	Falla			C	antidades	parciales		Total	Extensi ón %	Graved ad		
Α	В	61.0	0.0	0.0	0.0	0.0	0.0	61.0	8.971	3		
Α	В	6.7	9.4	5 18.56	24.63	14.65	9.25	83.24	12.241	2		
В	DM	6.4	4.58	3 7.2	9.1	5.47	6.32	39.07	5.746	2		
В	PA	45.32	32.1	4 21.46	28.67	14.32	24.58	166.49	24.484	2		
Α	FPC	64.21	34.8	2 28.1	19.54	22.66	42.58	211.91	31.163	3		
Α	DT	48.69	39.8	7 26.41	32.72	19.45	38.43	205.57	30.231	3		
		C	álculo	de índic	e de det	erioro s	uperficia	al				
	índice de	fisuración	(if)		Primer \	/alor(is)		is		5		
Gra	vedad	3		if		4						
Exte	ensión	31.	163	id		2		índi	ce de dete			
if	:	4		Valor		5			superficia	l(is)		
íno	dice de de	formación	(id)	Corre	cción por i	reparaciór	1	is		5		
Gra	vedad	2		Graved	lad	3	Cla	asificación	De	eficiente		
Exte	ensión	5.7	7 46	Extensión		8.971						
ic	I	2		Valor		0						

Tabla 50: Cálculo del IS con método vizzir muestra 14

M-14

	III T										
			In	ventario	de falla	s exister	ites				
Tipo	Falla			Ca	antidades	parciales		Total	Extensi ón %	Graved ad	
В	DM	4.65	3.84 1.62 3.86 4.94 6.52					25.43	3.74	2	
В	PA	2.36	8.42 6.76 4.95 13.48 9.16					45.13	6.637	2	
Α	В	74.0	74.0 8.42 6.76 4.95 13.48 9.16						17.172	2	
Α	В	6.48	8.23	17.43	12.68	9.25	4.87	58.94	8.668	2	
Α	DT	5.24	8.67	14.23	9.85	8.1	52.24	7.682	2		
		C	Cálculo	de índic	e de det	erioro s	uperfici	al			
	índice de	fisuración	(if)		Primer	valor(is)		is		4	
Grave	edad	2		if		3					
Exten	sión	17.17	2	id		2		índice de deterio			
if		3		Valor		4			superficia	l(IS)	
íno	dice de de	eformación	(id)	Corre	cción por	reparaciór	1	is	4		
Grave	edad	2		Graveda	d	2	CI	asificación	F	Regular	
Exten	sión	3.74		Extensión		7.682					
id	id 2					0					
							•		•		

Tabla 51: Cálculo del IS con método vizzir muestra 15

M-15

			In	ventario	de fall	as existe	ntes			
Tipo	Falla		С	antidades _l	parciales	3		Total	Extensi ón %	Graved ad
Α	В	76.0	0.0	0.0	0.0	0.0	0.0	76.0	11.176	3
Α	В	9.46	4.25						5.344	3
Α	DT	6.45							5.313	2
В	FB 3.7 6.54 4.52 6.42 4.25 7.3							32.81	4.825	2
Α	A FPC 32.56 48.25 25.98 19.5 22.6 12.8							161.69	23.778	2
В	B DM 6.52 3.8 2.54 4.28 6.18 12.8								5.312	3
			Cálculo	de índic	e de d	eterioro s	uperfic	ial		
	índice de	fisuración	(if)		Prime	er valor(is)		is		4
Gra	vedad	2		if		3				
Exte	ensión	23.	778	id		2		Índ	ice de dete	
if		3		Valor		4			superficia	l(IS)
íne	índice de deformación(id) Corrección por reparación							is		4
Gra	Gravedad 2					2	(Clasificaciór	ı F	Regular
Exte	Extensión 4.825 Ex					5.313	3			
id	id 2 Valor					0				

RESUMEN COMPARATIVO DE LAS CATEGORIAS DE INTERVENCIÓN

Tabla 52: Comparación de resultados metodología pci y vizzir

	P	CI	VIZ	ZIR
VIA	PCI PROMEDIO	CATEGORIA DE INTERVENCIÓN	'is' PROMEDIO	CATEGORIA DE INTERVENCIÓN
Av. La Paz	9.07	Rehabilitación - Reconstrucción	4.93	Rehabilitación

CRAFICA

Diagrama comparativo

64.79%

Leyendas5.21%

Rehabilitación - Reconstrucción

Rehabilitación

Figura 12: Diagrama de comparación de resultados metodología pcy y vizzir

Fuente: Programa Pavements

Descripción:

El grafico muestra la comparación en porcentajes de los resultados obtenidos en la evaluación del pavimento flexible de la av. La paz en la ciudad de Cajamarca. Donde el porcentaje mayor de color azul lo tiene el resultado que arrojo la metodología pci, con un total de 64.79 % de daño del total.

Mientras que de color naranja la metodología vizzir tiene un 35.21% de daño, esto por el motivo que se aplico la igualdad donde 2 muestras de pci equivale a una de vizzir. Por otro lado, ambas metodologías coinciden al clasificar el pavimento en la categoría de intervención para "rehabilitación y/o reconstrucción".

V. DISCUSIÓN:

Después de haber desarrollado de manera satisfactoria la investigación la cual tuvo como objetivos específicos; OE1: Seleccionar el entorno de desarrollo integrado según el lenguaje de programación, OE2: Diseñar un programa de diagnóstico basado en método PCI y VIZZIR haciendo uso de sus parámetros de evaluación, OE3: Implementar algoritmos de evaluación del estado de pavimentos flexibles, finalmente, OE4: validar el programa mediante evaluación de un pavimento flexible.

En esta forma resaltamos que se ha desarrollado todos los objetivos al cien por ciento, donde la presente investigación tuvo como objetivo general desarrollar un programa de evaluación de pavimentos flexibles que nos permita optimizar tiempo y dinero. Del programa también se a obtenido hallazgos significativos y de mucho aporte a la sociedad de la ingeniería en el ámbito internacional, nacional y local, orientado específicamente a la evaluación de pavimentos flexibles. Adicionalmente con el desarrollo del mismo, haciendo uso de la tecnología ayudamos a reducir la contaminación del medio ambiente, en comparación con la contaminación que genera las metodologías tradicionales.

Por ello haciendo énfasis en el primer objetivo de seleccionar los lenguajes de programación se optó por dos lenguajes, kotlin y Python ambos lenguajes vienen siendo los más usados en programas de cálculo y evaluación de proyectos dentro de la ingeniería. Los lenguajes elegidos ayudan de manera significativa en el procesamiento de algoritmos y dar funcionalidad al programa. Los resultados obtenidos en el este primer objetivo aportan tener claridad en los límites establecidos en los leguajes de programación que se usaron en el desarrollo de la investigación. Los hallazgos más relevantes que se encontró fueron la versatilidad que puede alcanzar el lenguaje kotlin correspondiente a la programación de algoritmos, creación de fórmulas polinómicas y cadenas de funciones donde los cálculos sean más exactos y confiables. Python por su parte su principal fortaleza para este caso fue correspondiente a los diagramas, gráficos y estadísticas que podemos trabajar; para la investigación solo se limitó a desarrollar gráficos comparativos entre los promedios de los cálculos de muestras tanto en la

metodología pci y vizzir.

La principal ventaja es que ambos lenguajes son compatibles entre sí, manejan una complicidad de intercambio de información mediante la programación, esto facilito enlazar datos y funciones que nos brindan un programa más relevante con una tecnología moderna acorde a la actualidad.

Por su parte Ortega-2021, en su investigación "software para la evaluación superficial de pavimentos flexibles basado en la metodología pci", desarrolló un software de escritorio utilizando inicialmente MathCad y Seudocódigo para el desarrollo de algoritmos y calibración de componentes, también utilizo la plataforma digital FFA PAVEAIR de los Estados Unidos, que sirve para el control y mantenimiento de vías, en esta se dio la validación del software.

Al tener delimitado todos estos parámetros, el software PAVDO emitió resultados con menos del 1% de variabilidad a comparación de proceso de evaluación tradicional. Haciendo una comparación con dicha investigación podemos establecer que ambas alternativas ya sea usar lenguajes de programación o plataformas digitales, nos proporcionan de manera óptima el desarrollo de programas de este tipo.

Toda la interfaz del programa se trabajó en la herramienta Figma que aporta a la investigación obtener buen diseño visual y simulación de vistas con las que se ha desarrollado el programa. Dentro de lo más significativo que se puede mencionar esta los enlaces y estilos entre vistas que nos permite trabajar la aplicación, que figma tiene desarrollado funciones y barra de aplicación de texto, colores, ítem, logos y viñetas más sofisticados haciendo de actualizaciones cada año con la tecnología de vanguardia. Una de las principales limitaciones encontradas es que no permite desarrollar cálculos de ningún tipo. Por otra parte, la ventaja más relevante que es una aplicación segura, tiene acceso con cuenta y contraseñas personales. En dicha herramienta se desarrolló 3 vistas principales que el programa muestra al ingresar, 1: Para el registro del proyecto, 2: Para la evaluación con mitología pci y 3: Para la evaluación con metodología vizzir, sumándolo a esto las demás capas como muestra y reportes.

Haciendo la comparación nuevamente con la investigación de Ortega-2021. No menciona de manera precisa la herramienta utilizada en la creación de vistas,

pero encontramos los principales elementos con los que cuenta el software: 1: Barra de título, 2: Logo, 3: Botón de cerrar, 4: Barra de menú, 5: Calendario y 6: Panel de información. Además, cuneta con capas o pestañas adicionales como son archivo, formatos, fallas, herramientas y ayuda.

En el desarrollo del tercer objetivo se trabajó todo lo concerniente a programación, desarrollando desde lo más básico a lo más complejo dentro de los algoritmos y funciones.

El principal hallazgo dentro de los resultados obtenidos del tercer objetivo mencionamos que el programa resulto ser más eficiente y confiable de lo esperado, se logró que maneje un orden significativo, que maneje procesos y sobre todo al cargarlo de funciones de cálculo tiene mayor responsabilidad en los resultados que ofrece.

También se encontró ventajas como: al tener una base de datos local el programa puede trabajar en cualquier punto del territorio nacional e internacional por el motivo que no necesita estar conectado a una red de internet, otra ventaja es que el programa queda sujeto a próximas actualizaciones y/o mejoras según avance los requerimientos de evaluación de pavimentos flexibles, también los reportes que genera son en formatos pdf estándar que permite sean editables según la presentación, no necesita de ningún otro programa o software para generar reportes de clasificación.

Las ventajas siempre vienen acompañadas de limitaciones en este caso del programa desarrollado es que, por haberse trabajado en una base de datos local, las futuras actualizaciones que se puedan dar, deberán ser instaladas desde el mismo equipo donde se desarrolló.

Los resultados de dicho objetivo aportan un programa eficaz, capaz de realizar cálculos exactos y confiables en la evaluación de pavimentos flexible, además este aporte es de suma importancia ya que está remplazando a las procedimientos tradicionales y obsoletos con las que se acostumbra evaluar los pavimentos flexibles por un programa moderno e implementado de la manera más entendible y trabajable posible. Por otro lado, estos resultados también aportan al optimizar en gran porcentaje (de un 40% - 50%) todo el tiempo y dinero que se

emplea en este tipo de trabajos de evaluación de pavimentos.

En esta parte se puede hacer la comparación con el estudio realizado por Araujo y Caspito-2021 quienes realizaron la evaluación de un pavimento flexible haciendo uso del software EvalPav en la ciudad de Trujillo, el cual esta desarrollado en base los parámetros de la metodología PCI. Dicho programa es de escritorio, maneja una base de datos local y cuenta con algoritmos de ingreso y cálculo de datos. El cual arroja resultados de optimización en un porcentaje de 40% respecto al tiempo de evaluación respecto a lo tradicional. Además, concerniente a la evaluación del pavimento muestra clasificaciones que van desde "regular" y "bueno" obtenidos en los diferentes tramos en estudio.

De los resultados del último objetivo debemos mencionar que la validación del programa mediante la evaluación de un pavimento flexible se dio de manera positiva, los resultados tienen un aporte confiable a futuras investigaciones que se realicen en torno al tema tratado. Aporta también evidencia concreta del estado de conservación actual que muestra el pavimento flexible de la Av. La paz, tramo entre Jr. Sucre y Av. Cenepa en la ciudad de Cajamarca. Los hallazgos respecto a la evaluación del pavimento hecha por medio de la metodología pci arroja un pci promedio de 9.07 este valor se ubica en la categoría de intervención "rehabilitación y/o reconstrucción" del pavimento. Esto se complementa con el resultado según evaluación con la metodología vizzir que muestra un is promedio de 4.93 ubicando al pavimento en una categoría de intervención para "rehabilitación".

Estos hallazgos son de una mayor gravedad a comparación de los resultados obtenidos por Baque (2020) en su informe quien evalúa el estado de pavimentación flexible en la avenida Manta. Aplico la metodología pci en una muestra de 3600 metros, encontrando 12 tipos de fallas y concluyendo que el pavimento requiere de "mantenimiento" para todos los tipos de defectos ubicados.

VI. CONCLUSIONES

- 1. Se logro de manera muy satisfactoria y positiva la propuesta de un programa para la evaluación de pavimentos flexibles haciendo uso de metodología pci y metodología vizzir. Se dio por nombre de Pavements al programa desarrollado. Dicho programa tiene una estructura completa de evaluación y calculo, de esta manera queda como constancia de una mejora en el estudio del estado de conservación de pavimentos flexibles a nivel global, nacional y sobre todo local. Siendo un aporte significativo para la ingeniería de pavimentos.
- 2. Acorde a lo establecido en el primer objetivo específico, se logró determinar los lenguajes de programación con los que se creó el programa Pavements, kotlin y Python son lenguajes de manejo amigable y de comprensión no muy compleja a comparación de la variedad de lenguajes que existe para realizar programas de cálculo. Por otro lado, con esta elección de dichos lenguajes logramos cumplir con los requerimientos de las metodologías empleados en la investigación.
- 3. Haciendo uso de la herramienta Figma, podimos realizar el diseño y contraste de vistas como también los enlaces de secuencias con los que cuenta el programa pavements. El cual cuenta con nueve capas de trabajo, ordenadas de la mejor manera posible esto permitió conseguir un diseño agradable a la vista y de fácil manejo para el usuario, de esta manera concluimos un objetivo más con muchos veneficios positivos.
- 4. Se trabajo de manera integrada la creación de algoritmos tanto para programación como para el cálculo que desarrolla el programa Pavements, obteniendo resultados positivos y aptos que nos permitieron tener un programa confiable para evaluación de pavimentos usando metodologías pci y vizzir. De esta manera podemos concluir satisfactoria el logro planteado en el tercer objetivo.

5. Se realizo la evaluación del estado de conservación del pavimento flexible, de la av. La paz tramo entre jr. Sucre y av. Cenepa en la ciudad de Cajamarca, haciendo uso del programa Pavements desarrollado en la presente investigación. Del cual obtenemos la clasificación de intervención que el pavimento presenta es "rehabilitación y/o reconstrucción" esta clasificación se obtuvo resultados iguales en ambas metodologías tanto pci como metodología vizzir. Con esto se concluye que se logró la validación del programa mediante la evaluación de un pavimento flexible.

VII. RECOMENDACIONES

- Se recomiendo a profesionales y estudiantes desarrollar con mayor frecuencia programas que aporten mejoras en la optimización de recursos en la ejecución de los proyectos y en los distintos ámbitos de la ingeniería.
 De manera que logremos ir progresando y actualizando distintas metodologías que con el paso del tiempo están quedando rezagadas y/o demasiado tradicionales.
- Recomendamos a estudiantes, profesionales y población en general que este realizando o pretende realizar cualquier tipo de programa de cálculo y/o afines, realizar y establecer un buen plan de ejecución y creación, esto con la finalidad que se logre cumplir con los objetivos planteados de la mejor manera sin ningún tipo de presura. Donde al culminar tenga un mayor impacto en sus respectivos campos de acción.
- Se recomienda realizar la evaluación de pavimentos flexibles con la metodología pci y vizzir haciendo uso de programas que nos permiten optimizar tiempo y dinero. Haciendo una evaluación directa, sin temor ha perder o extraviar información en el recorrido.
- Recomendamos realizar las evaluaciones de pavimentos en cortos periodos de tiempo, con la finalidad de poner hacer una intervención oportuna. Que no se repita los resultados obtenidos en el estudio.
- Finalmente se recomienda a la municipalidad provincial de Cajamarca realizar la reconstrucción de la av. La paz de manera urgente. Una de las principales vías de la ciudad no puede estar en dicho estado.

REFERENCIAS

ALVARADO Guzmán, Mario Alejandro, y AYALA Tamara, Andrés Felipe. Seminario de profundización reciclaje pavimentos flexibles: estudio de mezclas asfálticas recicladas modificadas con diferentes porcentajes de WEO (WA). Tesis (Titulación en Ingeniería civil). Colombia: Universidad Cooperativa de Colombia, Ingeniería civil, 2019. https://repository.ucc.edu.co/server/api/core/bitstreams/e5cf511e-880a-4229-9be7-e9b245fc0c02/content

ANDRADE, Alexis, CASTILLO, Gabirela y CHACATER, Cristian. Efectos de la variabilidad de los datos iniciales en el índice de condición del pavimento y predicción de su deterioro. Revista digital de ciencia, ingeniería y tecnología. [en línea]. 2020,n° 1. [Fecha de consulta: 4 de agosto de 2023]. Disponible en: http://scielo.senescyt.gob.ec/pdf/rns/v4n1/2631-2654-rns-4-01-00102.pdf

Araujo, O. A., & Caspito, B. M. (2023). Evaluación del pavimento flexible mediante el software EvalPav para propuesta de solución de la av. Mansiche, Trujillo, 2022 [Tesis de licenciatura, Universidad Privada del Norte]. Repositorio de la Universidad Privada del Norte.

https://hdl.handle.net/11537/34173

ARIAS Gómez, Jesús, VILLASÍS Keever, Miguel y MIRANDA Novales, María. El protocolo de investigación III: la población de estudio. Revista Alergia México [en línea]. 2016, vol. 63, n° 2. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: https://www.redalyc.org/pdf/4867/486755023011.pdf

BAQUE Solis, Byron Simón. Evaluación del estado del pavimento flexible mediante el método del PCI de la carretera puerto-aeropuerto (Tramo II), Manta. Provincia de Manabí. Revista científica dominio de las ciencias [en línea]. 2020,n° 2. [Fecha de consulta: 4 de agosto de 2023]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7398457

CHANAME Cerna, Leydi. Evaluación de daños superficiales y capacidad estructural del pavimento utilizando el índice de condición del pavimento y la deflectometría,

de las calles y avenidas del casco urbano del distrito de Santa Rosa, provincia de Chiclayo, departamento de Lambayeque-2019. Tesis (Titulación en Ingeniero Civil). Chiclayo: Universidad Católica Santo Toribio de Mogrovejo, Ingeniería, 2021. https://tesis.usat.edu.pe/bitstream/20.500.12423/3995/1/TL_ChanameCernaLeydi. pdf

CISNEROS Caicedo, Alicia Jacqueline, GUEVARA García, Axel Fabián, URDÁNIGO Cedeño, Johnny Jesús, GARCÉS Bravo, Julio Enmanuel. Técnicas e instrumentos para la recolección de datos que apoyan a la investigación científica en tiempo de pandemia. Ciencias económicas y empresariales. [en línea]. 2022, n° 1. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: https://dialnet.unirioja.es/descarga/articulo/8383508.pdf

CORREA Vásquez, María y DEL CARPIO Molero, Luis. Evaluación PCI y propuesta de intervención para el pavimento flexible del jirón Los Incas de Piura. Tesis (Titulación en Ingeniero Civil). Piura: Universidad de Piura, Ingeniería, 2019. https://pirhua.udep.edu.pe/bitstream/handle/11042/4162/ICI_287.pdf?sequence=1 &isAllowed=y

CUBAS Fernández, Jhanely Esther. Uso de un dron para optimizar la evaluación superficial del pavimento flexible por el método PCI en la Av. Los conquistadores distrito de San Isidro Lima 2021. Tesis (Titulación de Ingeniero Civil). Lima: Universidad Privada del Norte, Ingeniería, 2021. https://repositorio.upn.edu.pe/handle/11537/29126

CUBAS Tejada, Richard. Análisis del estado de conservación, aplicando el método del índice de condición del pavimento flexible en la carretera Kuntur Wasi – Jasi, San Pablo, región Cajamarca. Tesis (Titulación de Ingeniero Civil). Trujillo: Universidad Privada Antenor Orrego, Ingeniería, 2019.

https://repositorio.upao.edu.pe/bitstream/20.500.12759/5710/1/T_CIV_RICHARD. CUBAS ESTADO.CONSERVACION.PAVIMENTO.FLEXIBLE DATOS.pdf

DÍAZ Baeza, Esteban. Estudio preliminar sobre el uso de dron durante el proceso de pavimentación en caminos de asfalto. Tesis (Titulación de Ingeniero geomático). Los Ángeles, Universidad de Concepción, Ciencias geodésicas y geomática. http://repositorio.udec.cl/jspui/bitstream/11594/3359/4/D%c3%adaz%20Baeza%2c%20Esteban.pdf

FABIÁN Guerra, Josmell Kerlin. Evaluación del estado del pavimento flexible mediante la metodología del PCI de la avenida Perú, distrito de Amarilis – Huánuco 2020. Tesis (Titulación de Ingeniero civil). Huánuco: Universidad Nacional Hermilio Valdizan Ingeniero civil.

https://repositorio.unheval.edu.pe/handle/20.500.13080/6858

FIGUEROA Infante, Ana. y FROSECA Santilla, Elsa. Pavement performance with reclaimed asphalt pavement-RAP and recycled tire rubber-RTR. Revista Infraestructura Vial. [en línea]. 2020, n° 39. [Fecha de consulta: 4 de agosto de 2023]. Disponible en: https://www.scielo.sa.cr/scielo.php?pid=S2215-37052020000100020&script=sci_abstract

GONZÁLEZ et al. (2019). Propuesta de metodología para la evaluación de pavimentos mediante el índice de condición del pavimento (PCI). Revista centro nacional y gestión tecnológica de Santiago de Cuba. [en línea]. 2019,n° 4. [Fecha de consulta: 4 de agosto de 2023]. Disponible en: https://www.redalyc.org/journal/1813/181358738015/html/

HAMMOUCH, Wafae, CHOUIEKH, Chaymae, KHAISSIDI, Ghizlane, MRABTI Mostafa. Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network. Infrastructures [en línea]. 2022, vol. 7, n° 152. [Fecha de consulta: 4 de agosto de 2023]. Disponible en: https://doi.org/10.3390/infrastructures7110152

HERNÁNDEZ, R., FERNÁNDEZ, C. BAPTISTA, P. Metodología de la investigación [en línea] 6.ª ed. México: McGraw-Hill Interamericana de México, 2014 [fecha de consulta: 17 de agosto de 2023]. Disponible en:

https://www.esup.edu.pe/wp-content/uploads/2020/12/2.%20Hernandez, %20Fernandez%20y%20Baptista-

Metodolog%C3%ADa%20Investigacion%20Cientifica%206ta%20ed.pdf

HUMPIRI Pineda, Katia. Análisis superficial de pavimentos flexibles para el mantenimiento de vías en la región de Puno. Tesis (Maestría de Ingeniería civil). Juliaca, Ingeniería civil, 2017. https://core.ac.uk/download/pdf/249337494.pdf

JUN, Fu, JIAN, Shuang. Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection. Sensors [en línea]. 2022, vol. 22, n° 9. [Fecha de consulta: 4 de agosto de 2023]. Disponible en: https://doi.org/10.3390/s22093537

LIZANA Yarlaqué, Pedro Ceferino. Uso del método PCI para la evaluación del pavimento flexible en la A.V Grau distrito de Castilla. Tesis (Titulación de Ingeniería civil). Piura, Ingeniería civil, 2021. https://pirhua.udep.edu.pe/handle/11042/5224

MEDINA Palacios, Armando y DE LA CRUZ, Puma, Marcos. Evaluación superficial del pavimento flexible del Jr. José Gálvez del distrito de Linceaplicando el método del PCI. Tesis (Titulación de Ingeniería civil). Lima: Universidad Peruana de Ciencias Aplicadas, Ingeniería, 2017.

https://repositorioacademico.upc.edu.pe/bitstream/handle/10757/581505/Medina_ PA.pdf?sequence=1

MERA Campos, Cristina Stephanie. Inventario vial del valle de los Chillos. Tesis (Titulación de Ingeniería civil). Ecuador: Pontificia Universidad Catolica del Ecuador, Ingeniería, 2017.

http://repositorio.puce.edu.ec/bitstream/handle/22000/13453/TESIS%20-%20CRISTINA%20STEPHANIE%20MERA%20CAMPOS.pdf?sequence=1

MURRUGARRA Sánchez, Ana. Y RUIZ Olórtegui, Jenny. Caracterización del uso de modelos de deterioro para optimizar la gestión del mantenimiento de carreteras, Cajamarca 2020. (Titulación de Ingeniería civil). Cajamarca: Universidad Privada

del Norte, Ingeniería, 2020. https://repositorio.upn.edu.pe/handle/11537/29075

LEIVA Romero, Yeyson. Comparación de la metodología PCI para la evaluación de las condiciones del pavimento de forma convencional y con el uso de un dron, Cajamarca 2021. Tesis (Titulación de Ingeniería civil). Cajamarca: Universidad Privada del Norte, Ingeniería, 2021.

https://repositorio.upn.edu.pe/bitstream/handle/11537/29696/Leiva%20Romero%2 c %20Yeyson%20Yamir.pdf?sequence=1&isAllowed=y

LIZANA Yarlequé, Pedro Ceferino. Uso del método PCI para la evaluación del pavimento flexible en la AV Grau distrito de Castilla. Tesis (Titulación de Ingeniero Civil). Piura: Universidad de Piura, Ingeniero Civil, 2021. https://pirhua.udep.edu.pe/handle/11042/5224

LOPEZ Cabrejos, Yesabel Victoria. Influencia del reciclado de pavimento flexible para mejorar la conservación vial entre calle 6 y 7 de ventanilla Alta, 2018. Tesis (Titulación de Ingeniero Civil). Callao: Universidad César Vallejo, Ingeniería civil, 2018.https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/35277/Lopez_CYV.p df?sequence=1&isAllowed=y

OPE Roman, Luis Giordan. Redes convolucionales en la determinación de la personalidad del colaborador de biosalud por la aplicación del test de Karl Koch. Tesis (Titulación de Ingeniero Civil). Arequipa: Universidad Continental, Ingeniería civil, 2021. https://repositorio.continental.edu.pe/handle/20.500.12394/10462

Ortega Alarcon, Deyvi. Software para la evaluación superficial de pavimentos flexibles basado en la metodología Pavement Condition Index. [Tesis de pregrado, universidad católica san pablo]. Ingenieria civil-Arequipa, Perú 2021. https://hdl.handle.net/20.500.12590/17117

OTZEN, Tamara y MANTEROLA, Carlos. Técnicas de muestreo sobre una población a estudio. Int. J. Morphol [en línea]. 2017, vol. 35, n°1. [Fecha de consulta: 18 de agosto de 2023]. Disponible en:

https://scielo.conicyt.cl/pdf/ijmorphol/v35n1/art37.pdf

PAREDES Asalde, Carmen Rosa y TORRES Alcántra, Yudi Sadith. Evaluación del pavimento flexible mediante métodos del PCI y VIZZIR con dron en un tramo de la carretera Reposo – Saramiriza, Bagua, Amazonas, para una propuesta de mejora - 2022. Tesis (Titulación de Ingeniería civil). Chiclayo: Universidad Tecnológica del Perú Ingeniería civil, 2022.

https://repositorio.utp.edu.pe/handle/20.500.12867/7136

PEÑA, Tania. Etapas del análisis de la información documental. Revista interamericana de bibliotecología. [en línea]. 2022, vol 45, n° 3. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: http://www.scielo.org.co/pdf/rib/v45n3/2538-9866-rib-45-03-e4.pdf

PONCE Renova, Héctor, CERVANTES Arreola, Diana y ANGUIANO Escobar, Beatriz. Análisis de calidad de artículos educativos con diseños experimentales. RIDE. Revista Iberoamericana para la Investigación y el Desarrollo Educativo [en línea]. 2021, vol 12, n° 23. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-74672021000200103

QUIROGA, Facundo. Medidas de invarianza y equivarianza a transformaciones en redes neuronales convolucionales. Repositorio Institucional de la UNLP. [en línea]. 2022, vol 1, n° 23. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: http://sedici.unlp.edu.ar/handle/10915/90903

QUISPE Sánchez, Andrés Orlando y TOAPANTA Rodríguez, Bryan Daniel. Comparación de una red convencional con una red definida por software (SDN). Tesis (Titulación de Ingeniería civil). Ecuador: Universidad Politécnica Salesiana Ecuador. Ingeniería civil, 2022.

https://dspace.ups.edu.ec/bitstream/123456789/22968/1/UPS%20-%20TTS847.pdf RAMOS Galarza, Carlos. Los alcances de una investigación. CienciAmérica [en línea]. 2020, vol. 9, n° 3. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7746475.pdf

REYES Merino, Yerson y SANTOS Gil, Nexar. Evaluación del pavimento flexible empleando el método del PCI y VIZZIR en el tramo 00+000 hasta 5+000 de la carretera Ayabaca Socchabamba Piura 2021. Tesis (Titulación de Ingeniería civil). Piura: Universidad César Vallejo. Ingeniería civil, 2021.

https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/82097/Reyes_MY-Santos_GN-SD.pdf?sequence=1&isAllowed=y

RUS Arias, Enrique. Investigación aplicada. 01 de noviembre de 2020. Disponible en: https://economipedia.com/definiciones/investigacion-aplicada.html

SÁNCHEZ Flores, Fabio. Fundamentos epistémicos de la investigación cualitativa y cuantitativa: Consensos y disensos. Revista Digital de Investigación en Docencia Universitaria [en línea]. 2019, vol. 13, n° 1. [Fecha de consulta: 18 de agosto de 2023]. Disponible en:

http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2223-25162019000100008

TACZA Herrera, Erica Betsabe y Rodriguez Paez, Braulio Omar. Evaluación de fallas mediante el método PCI y planteamiento de alternativas de intervención para mejorar la condición operacional del pavimento flexible en el carril segregado del corredor Javier Prado. Tesis (Titulación de Ingeniería civil). Lima: Universidad Peruana de Ciencias Aplicadas, Ingeniería civil, 2019.

https://repositorioacademico.upc.edu.pe/handle/10757/624556

TELLO Cifuentes, Lizette, AGUIRRE Sánchez, Marcela, DÍAZ Paz, Jean, FRANCISCO Hernández, Vall. Damage evaluatin in flexible pavement using terrestrial photogrammetry and neural networks. [en línea]. 2021, n° 50. [Fecha de

consulta: 18 de agosto de 2023]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-77992021000100059

VÁSQUEZ Guevara, Jenner. Evaluación del estado de condición de los pavimentos flexibles, del JR. Gregorio Malca, Jr. 27 De noviembre y Jr. Mariscal Castilla de la Ciudad de Chota, mediante el método PCI, provincia de Chota, Departamento De Cajamarca. [Tesis de pregrado, Universidad Nacional de Cajamarca]. Repositorio UNC. https://repositorio.unc.edu.pe/handle/20. 500.14074/3208

VENTURA León, Luis. ¿Población o muestra?: Una diferencia necesaria. Revista Cubana de Salud Pública [en línea]. 2017, vol. 43, n°4. [Fecha de consulta: 18 de agosto de 2023]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662017000400014#:~:text=Sin%20embargo%2C%20una%20muestra%20es,ca racter%C3%ADsticas%20que%20se%20pretenden%20estudiar.

ZUÑIGA Guisado, Yenny. Deep Learming para la detección de fallas en pavimentos de una zona del distrito de Villa María del Triunfo 2022. Tesis (Titulación de Ingeniería civil). Lima: Universidad César Vallejo, Ingeniería civil, 2022. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/93124/Zu%C3%B1ig a_GY-SD.pdf?sequence=

ANEXOS

Anexo 01. Matriz de operacionalización

VARIABLES DE ESTUDIO	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADOR	ESCALA DE MEDICIÓN
Variable	Se basa en tres planos: aplicaciones, control y datos, puesto que el	La variable se enfocará en dos dimensiones la cuales se mencionan a	Lenguaje de programación Kotlin	Fallas Severidad clasificación	Nominal
Independiente (X) Programa basado en metodología pci y vizzir	beneficio que tienen los administradores de red al usar redes definidas por software es el controlar y programar desde un solo dispositivo toda la red (Quispe y Toapanta, continuac conti	 Lenguaje de programación Kotlin Lenguaje de programación Python 	Lenguaje de programación Python	Comparación de resultados Diagramas	Nominal
	Tienen una capa			Parámetros de evaluación	Nominal
Variable Dependiente (Y)	superficie de rodadura, La variable se basará		Método PCI	Índice de condición	Razón
Evaluación de	deformaciones de la cuales son:			Condición del pavimento	Ordinal
Pavimentos flexibles	Pavimentos estructura (Medina v - Método VIZZIR		Método VIZIR	Parámetros de evaluación	Nominal
	11).		MELOGO VIZIN	Índice de deterioro superficial	Razón

		PROYECTO
Ш		INVESTIGACIO
	UNIVERSIDAD	UBICACIÓN
	CÉSAR VALLEJO	FECHA
\ '	OLUMNI TALLLIO	ENCARGADO

	FORMATO N° 01 - RECOLECCION	
	DE DATOS	
	INFORMACION GENERAL	
PROYECTO		
NVESTIGACION		
JBICACIÓN		
ECHA		

						1				
	PAVIMENTO FLEXIE	BLE			PROGRAMA					
MUESTRA	METODO PCI		METODO VIZZIR		Lenguaje de programación Kotlin			Leguaje de programación Python		
	PARAMETROS DE EVALUACION	INDICE DE CONDICION	CONDICION DE PAVIMENTO	Parámetros de evaluación	Índice de deterioro superficial	Fallas	Severidad	Clasificación	Comparación de resultados	Diagrama
M-01										
M-02										
M-03										
M-04										
M-05										
M-06										
M-07										
M-08					_					
M-09										
M-10										

Evaluación por juicio de expertos

Respetado juez:

Usted ha sido seleccionado para evaluar el instrumento "FORMATO DE RECOLECCION DE DATOS".

La evaluación del instrumento es de gran relevancia para lograr que sea válido y que los resultados obtenidos a partir de éste sean utilizados eficientemente; aportando al quehacer psicológico. Agradecemos su valiosa colaboración.

Datos generales del juez

Nombre del juez:	LILIAN ROCIO V	ILLANUEVA BAZAN		
Grado profesional:	Maestría (X)	Doctor ()		
Área de formación académica:	Clínica ()	Social ()		
	Educativa(X)	Organizacional ()		
Áreas de experiencia profesional:	Supervisor of	e diversas obras civiles. de diversas obras civiles. encia universitaria		
Institución donde labora:	Independiente			
Tiempo de experiencia profesional en el área:	2 a 4 años () Más de 5 años (X)			
Experiencia en Investigación	Estudios en Mecánica de Suelos Estudios en Tecnología del Concreto			

Propósito de la evaluación:

Validar el contenido del instrumento, por juicio de expertos.

Datos de la escala

Nombre de la Prueba:	FORMATO DE RECOLECCION DE DATOS
Autor (a):	Randy Alexander Ruiz Jimenez
Procedencia:	Cajamarca
Administración:	HOJA DE REGISTRO
Tiempo de aplicación:	3 HORAS
Ámbito de aplicación:	Av. La paz, tramo comprendido entre Jr. Sucre y Av. Cenepa
Significación:	ESCALA NOMINAL, RECOLECION DE DATOS PARA PROPUESTA DE PROGRAMA APLICADO A LA EVALUACION DE PAVIMENTOS

Soporte teórico

	Subescala (dimensiones)	Definición
	programación Kotlin	Se basa en tres planos: aplicación, control y datos.
Evaluación de pavimentos flexibles	Método pci y vizzir	Tienen capa asfáltica sobre la superficie de rodadura.

Presentación de instrucciones para el juez:

A continuación, a usted le presento el cuestionario **FORMATO DE RECOLECCION DE DATOS**. Elaborado por **Randy Alexander Ruiz Jimenez** en el año <u>2023.</u> De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda.

Criterio	Calificación	Indicador	
	1. No cumple con el criterio	El ítem no es claro.	
CLARIDAD El ítem se comprende fácilmente, es	2. Bajo Nivel	El ítem requiere bastantes modificaciones o unamodificación muy grande en el uso de las palabras de acuerdo con su significado o por laordenación de estas.	
decir, su sintácticay semántica son	3. Moderado nivel	Se requiere una modificación muy específica dealgunos de los términos del ítem.	
adecuadas.	4. Alto nivel	El ítem es claro, tiene semántica y sintaxisadecuada.	
	No cumple con el criterio	El ítem no tiene relación lógica con la dimensión.	
COHERENCIA El ítem tiene relación lógica con	2. Bajo Nivel	El ítem tiene una relación tangencial /lejana conla dimensión.	
la dimensión o indicador que está		El ítem tiene una relación moderada con ladimensión que se está midiendo.	
midiendo.	4. Alto nivel	El ítem se encuentra está relacionado con ladimensión que está midiendo.	
	No cumple con el criterio	El ítem puede ser eliminado sin que se veaafectada la medición de la dimensión.	
RELEVANCIA El ítem es esencialo	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítempuede estar incluyendo lo que mide éste.	
importante, es decir debe ser	3. Moderado nivel	El ítem es relativamente importante.	
incluido.	4. Alto nivel	El ítem es muy relevante y debe ser incluido.	

Formato de validación

Estimado Juez: leer con detenimiento los ítems y calificar en una escala de 1 a 4 su valoración, así como solicitamos brinde sus observaciones que considere pertinente).

Variable o categoría: Lenguaje de programación Kotlin y Python Primera dimensión / subcategoría: Lenguaje de programación Kotlin y Python Objetivos de la dimensión: Crear algoritmos para funcionalidad del programa.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Fallas	Pregunta 1	3	4	4	-
Severidad	Pregunta 2	4	3	3	-
Clasificación	Pregunta 3	4	3	4	-
Comparación de resultados	Pregunta 4	4	4	3	-
Diagramas	Pregunta 5	3	3	4	-

Variable o categoría:

Segunda dimensión / subcategoría: Método Pci y Vizzir

Objetivos de la dimensión: Establecer los parámetros de evaluación

INDICADORES	Ítem	Claridad	Coherencia		Observaciones/ Recomendaciones
Parámetros de evaluación	Pregunta 1	4	3	4	-
Condición del pavimento	Pregunta 2	4	4	4	-
Índice de deterioro superficial	Pregunta 3	3	4	4	-

Nota: Si la valoración del juez se encuentra en el rango de 3 a 4, se considera aprobado el instrumento.

Firma del evaluador DNI: 42312689.

Pd: El presente formato debe tomar en cuenta:

Williams y Webb (1994) así como Powell (2003), mencionan que no existe un consenso respecto al número de expertos a emplear. Por otra parte, el número de jueces que se debe emplear en un juicio depende del nivel de experticia y de la diversidad del conocimiento. Así, mientras Gable y Wolf (1993), Grant y Davis (1997), y Lynn (1986) (citados en McGartland et al. 2003) sugieren un rango de 2 hasta 20 expertos, Hyrkäs et al. (2003) manifiestan que 10 expertos brindarán una estimación confiable de la validez de contenido de un instrumento (cantidad mínimamente recomendable para construcciones de nuevos instrumentos). Si un 80 % de los expertos han estado de acuerdo con la validez de un ítem éste puede ser incorporado al instrumento (Voutilainen & Liukkonen, 1995, citados en Hyrkäs et al. (2003). Ver : https://www.revistaespacios.com/cited2017/cited2017-23.pdf entre otra bibliografía.

Evaluación por juicio de expertos

Respetado juez:

Usted ha sido seleccionado para evaluar el instrumento "FORMATO DE RECOLECCION DE DATOS".

La evaluación del instrumento es de gran relevancia para lograr que sea válido y que los resultados obtenidos a partir de éste sean utilizados eficientemente; aportando al quehacer psicológico. Agradecemos su valiosa colaboración.

Datos generales del juez

Nombre del juez:	Ricardo Javier O	cas Boñon	
Grado profesional:	Maestría (X)	Doctor ()	
Área de formación académica:	Clínica ()	Social ()	
	Educativa(X)	Organizacional ()	
Áreas de experiencia profesional:	Supervis	te de obras civiles. sor de obras civiles. ncia universitaria	
Institución donde labora:	Independiente		
Tiempo de experiencia profesional en el área:	2 a 4 años () Más de 5 años (X)		
Experiencia en Investigación	Estudios en Pavime Estudios en Tecnol		

Propósito de la evaluación:

Validar el contenido del instrumento, por juicio de expertos.

Datos de la escala

Datos de la escala	
Nombre de la Prueba:	FORMATO DE RECOLECCION DE DATOS
Autor (a):	Randy Alexander Ruiz Jimenez
Procedencia:	Cajamarca
Administración:	HOJA DE REGISTRO
Tiempo de aplicación:	3 HORAS
Ámbito de aplicación:	Av. La paz, tramo comprendido entre Jr. Sucre y Av. Cenepa
Significación:	ESCALA NOMINAL, RECOLECION DE DATOS PARA PROPUESTA DE PROGRAMA APLICADO A LA EVALUACION DE PAVIMENTOS

Soporte teórico

	Subescala (dimensiones)	Definición
Programa basado en metodología pci y vizzir	programación Kotlin	Se basa en tres planos: aplicación, control y datos.
Evaluación de pavimentos flexibles	Método pci y vizzir	Tienen capa asfáltica sobre la superficie de rodadura.

Presentación de instrucciones para el juez:

A continuación, a usted le presento el cuestionario **FORMATO DE RECOLECCION DE DATOS**. Elaborado por **Randy Alexander Ruiz Jimenez** en el año <u>2023.</u> De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda.

Criterio	Calificación	Indicador		
	1. No cumple con el criterio	El ítem no es claro.		
CLARIDAD El ítem se comprende fácilmente, es	2. Bajo Nivel	El ítem requiere bastantes modificaciones o unamodificación muy grande en el uso de las palabras de acuerdo con su significado o por laordenación de estas.		
decir, su sintácticay semántica son	3. Moderado nivel	Se requiere una modificación muy específica dealgunos de los términos del ítem.		
adecuadas.	4. Alto nivel	El ítem es claro, tiene semántica y sintaxisadecuada.		
001150511014	No cumple con el criterio	El ítem no tiene relación lógica con la dimensión.		
relación lógica con la dimensión o indicador que está midiendo.	2. Bajo Nivel	El ítem tiene una relación tangencial /lejana conla dimensión.		
		El ítem tiene una relación moderada con ladimensión que se está midiendo.		
	4. Alto nivel	El ítem se encuentra está relacionado con ladimensión que está midiendo.		
	No cumple con el criterio	El ítem puede ser eliminado sin que se veaafectada la medición de la dimensión.		
esenciaio	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítempuede estar incluyendo lo que mide éste.		
importante, es decir debe ser	3. Moderado nivel	El ítem es relativamente importante.		
incluido.	4. Alto nivel	El ítem es muy relevante y debe ser incluido.		

Formato de validación

Estimado Juez: leer con detenimiento los ítems y calificar en una escala de 1 a 4 su valoración, así como solicitamos brinde sus observaciones que considere pertinente).

Variable o categoría: Lenguaje de programación Kotlin y Python Primera dimensión / subcategoría: Lenguaje de programación Kotlin y Python Objetivos de la dimensión: Crear algoritmos para funcionalidad del programa.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Fallas	Pregunta 1	4	4	4	-
Severidad	Pregunta 2	4	4	4	-
Clasificación	Pregunta 3	3	4	4	-
Comparación de resultados	Pregunta 4	4	4	3	-
Diagramas	Pregunta 5	3	4	4	-

Variable o categoría:

Segunda dimensión / subcategoría: Método Pci y Vizzir

Objetivos de la dimensión: Establecer los parámetros de evaluación

INDICADORES	Ítem	Claridad	Coherencia		Observaciones/ Recomendaciones
Parámetros de evaluación	Pregunta 1	4	4	4	-
Condición del pavimento	Pregunta 2	4	3	4	-
Índice de deterioro superficial	Pregunta 3	3	4	4	-

Nota: Si la valoración del juez se encuentra en el rango de 3 a 4, se considera aprobado el instrumento.

Firma del evaluador DNI: 41837947

Pd: El presente formato debe tomar en cuenta:

Williams y Webb (1994) así como Powell (2003), mencionan que no existe un consenso respecto al número de expertos a emplear. Por otra parte, el número de jueces que se debe emplear en un juicio depende del nivel de experticia y de la diversidad del conocimiento. Así, mientras Gable y Wolf (1993), Grant y Davis (1997), y Lynn (1986) (citados en McGartland et al. 2003) sugieren un rango de 2 hasta 20 expertos, Hyrkäs et al. (2003) manifiestan que 10 expertos brindarán una estimación confiable de la validez de contenido de un instrumento (cantidad mínimamente recomendable para construcciones de nuevos instrumentos). Si un 80 % de los expertos han estado de acuerdo con la validez de un ítem éste puede ser incorporado al instrumento (Voutilainen & Liukkonen, 1995, citados en Hyrkäs et al. (2003). Ver : https://www.revistaespacios.com/cited2017/cited2017-23.pdf entre otra bibliografía.

ASPECTOS ADMINISTRATIVOS

Recursos y presupuesto

Tabla 1. Recursos del proyecto de investigación

RUBRO	APORTE NO MONETARIO	
Equipos y bienes duraderos	Laptop, celular e impresora	
Recursos humanos	Investigadores, asesor externo	
Materiales e insumos, servicios y	Papel bond, USB, internet, útiles de	
gastos operativos	oficina, viáticos, refrigerio, entre otros	

Tabla 2. Presupuesto del proyecto de investigación

Descripción	Cantidad	Costo unitario (S/.)	Costo total (S/.)		
Bienes y Servicios					
Refrigerio	10 unidades	3.00	30.00		
Bebidas	10 unidades	3.50	35.00		
	Materiales y	Útiles			
Archivador	1 unidad	3.00	3.00		
Lapiceros	3 unidades	2.50	7.50		
Resaltador	2 unidades	2.50	5.00		
Plumón	2 unidades	3.00	6.00		
Libreta de campo	1 unidad	8.00	8.00		
Papel bond	1 millar	18.00	18.00		
USB	1 unidad	40.00	40.00		
Contratación de Servicios					
Pasajes	5 viajes	3.00	15.00		
Servicios Básicos, Comunicaciones, Publicidad y Diffusion					
Impresiones	50 unidades	0.30	15.00		

Fotocopias	50 unidades	0.10	5.00		
Servici	Servicios de Energía, Agua y Gas				
Energía eléctrica	8 meses	30.00	240.00		
Servicios de Telefonía e Internet					
Celular móvil	4 meses	40.00	160.00		
Internet	4 meses	60.00	240.00		
Servicios Técnicos y Profesionales Desarrollados por Personas Jurídicas					
Asesor externo	1 persona	2,000.00	2,000.00		
TOT	2,899.50				

Financiamiento

Tabla 3. Financiamiento del Proyecto de investigación

ENTIDAD FINANCIADORA	MONTO	PORCENTAJE
Autofinanciado	S/. 2,777.50	100%