

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Mejora de Proceso de Operación y mantenimiento de pozos tubulares para reducir los costos operativos de la Operación Minera Shahuindo SAC

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Mecánico Electricista

AUTOR:

Rubio Vaca, Willan Jarlin (orcid.org/0000-0002-5611-3448)

ASESOR:

Dr. Salazar Mendoza, Aníbal Jesus (orcid.org/0000-0002-6482-0505)

LÍNEA DE INVESTIGACIÓN:

Sistemas y Planes De Mantenimiento

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

CHICLAYO – PERÚ 2020

Dedicatoria

A: Dios y mis padres que me dieron la vida y guiaron mis pasos por el camino del bien.

A mi Padre Simón Rubio Chávez, que desde el cielo fue mi fortaleza ante las adversidades del proceso en mi formación profesional.

A mi amada esposa Rosita Huamán y mis Hijos que son mi motor y motivo, que siempre estuvieron apoyándome y fueron parte del gran esfuerzo para llegar a la meta.

Agradecimiento

Un especial e infinito agradecimiento a Stephanea Almireault y Gastón Araya Carbajal que fueron mi apoyo incondicional y mis mentores.

A la Universidad Cesar Vallejo y plana docente por bridarme la oportunidad de adquirir conocimiento y formarme profesionalmente y de esa manera contribuir al desarrollo personal y de mi País.

Índice de contenidos

Carátula	i
Dedicatoria	ii
Agradecimiento	ii
Índice de contenidos	iv
Índice de Tablas	V
Índice de Figuras	vi
Resumen	vii
Abstract	viii
I.INTRODUCCIÓN	1
II.MARCO TEÒRICO	
III.METODOLOGÍA	12
IV.RESULTADOS	29
V.DISCUSIÓN	40
VI.CONCLUSIONES	56
VII.RECOMENDACIONES	45
REFERENCIAS	46
ANEXOS	62

Índice de Tablas

Tabla 1. Principales componentes de una bomba sumergible	9
Tabla 2. Detalle de las técnicas de recolección de datos	12
Tabla 3. Características de los pozos tubulares	16
Tabla 4. Reservas de mineral – SHAHUINDO SAC	31
Tabla 6. Consumo de Agua Vs autorización, periodo 2019-2020 SAC	19
Tabla 7. Equipo táctico para la gestión de operación	20
Tabla 8. Plan de mantenimiento de pozos tubulares	25
Tabla 9. Actividades programadas y actividades no programadas	27
Tabla 10. Análisis de parada programadas e indicadores de mantenimiento	28
Tabla 11. Resumen de costos directos e indirectos GM-Pozos Tubulares	30

Índice de figuras

Figura 1. Esquema de pozo profundo	8
Figura 2. Principales partes de un grupo electrógeno	8
Figura 3. Principales componentes de una bomba sumergible	9
Figura 4. Distribución de pozo tubulares en operación minera SHAHUINDO	17
Figura 5. Análisis de gestión de operación y mantenimiento	23
Figura 6. Formato para evaluación y calibración de inyectores	57
Figura 7. Formato para control y calibración de holgura de válvulas	57
Figura 8. Formato checklist verificación PM1	58
Figura 9. Formato checklist verificación PM2	59
Figura 10. Formato checklist verificación PM3	60
Figura 11. Formato checklist verificación PM4	61
Figura 12. Proceso de ejecución de mantenimiento preventivos - GE	26
Figura 13. MTBS vs MTTR para los grupos electrógenos	29
Figura 14. Tendencia de consumo de energía (Kwh/Mes) del SEIN y GE	31
Figura 15. Consumo de energía Kwh/mes - Shahuindo	32
Figura 16. Seguimiento de Backlogs	37

Resumen

La presente tesis evalúa y analiza el estado actual de la operación y mantenimiento de los pozos tubulares que extraen agua, para la operación de la unidad minera shahuindo sac; para poder conocer el estado actual de la gestión de operación y mantenimiento se realizó mediante la elaboración del diagrama de causa efecto sobre 4 vértices de la gestión a) planes de mantenimiento b) la gestión de fallas, c) gestión de la información, como consecuencia del estudio, se determina mejora en el plan de operación y mantenimiento, se maximiza la confiablidad y disponibilidad de sistema de sumisntro de agua y así mismo se plantea cambiar de fuente de suministro eléctrico con la que se reduce los costos por energía.

Palabras clave: Proceso de operación y Mantenimiento, disponibilidad, costos operativos.

ABSTRACT

The mining company shahuindo sac, operates in the north of peru, located in the province of cajabamba, department of cajamarca, it is an open-pit mine that uses conventional drilling, blasting, shoveling and mining dump operations with a heap leaching process. Its construction phase began in 2015 until 2016, and in early 2017 it began operations. The objective of this thesis is to improve the operation and maintenance processes of the tubular wells to reduce the operating costs of the shahuindo sac mining unit, in order to know the current state of the operation and maintenance management was carried out by means of the elaboration of the diagram of cause effect on 4 vertices of management a) maintenance plans b) failure management, c) information management and d) human resources.

Keywords: Operation and Maintenance process, availability, operating costs.

I. INTRODUCCIÓN

La utilización del agua subterránea es una de las soluciones que se tiene en muchas regiones de América latina, en el cual no se tiene sistemas de regadíos, pero ello conlleva a que la extracción de agua se realice con energía eléctrica generada en el mismo lugar, lo cual eleva los costos operativos de las empresas. (Ríos, 2020).

Los altos costos en la operación de los pozos tubulares, es por los costos de generación eléctrica, en lugares en los cuales utilizan petróleo como combustible, sin embargo, muchas veces no se ha realizado un estudio en el cual la interconexión a la red de energía eléctrica convencional, sea la solución. (Salazar, 2019).

En Bolivia, existen empresas mineras que tienen su propia red eléctrica de abastecimiento a sus electrobombas, sin embargo la falta de tecnología, eleva los costos operativos, sumado a ello la falta de mantenimiento o una adecuada supervisión de las labores de mantenimiento, tanto a los mecanismos hidráulicos, como a los motores eléctricos. (Burgos, 2019).

La creciente demanda mundial de diferentes metales usados en el confort de la humanidad, propicia que inversiones de empresas nacionales y extranjeras desarrollen diferentes proyectos mineros al rededor del mundo; Una de las principales dificultades es la ausencia o escases del recurso hídrico, debido a que gran parte de los proyectos se ubican en zonas de difícil acceso con urografía compleja, asimismo estos proyectos no cuentan con recurso eléctrico de redes comerciales del estado o empresas privadas, por lo que se tiene que recurrir a alternativas que no necesariamente son ideales por lo que se tiene que estudiar y analizar opciones que contribuyan a cubrir estas necesidades básicas, para el tema en particular, sean estas de suministro eléctrico para la extracción de agua con bombas sumergibles a través de pozos tubulares a fin de satisfacer las necesidades del recurso hídrico en las diferentes etapas del proyecto. (Instituto Peruano de Economía, 2022).

En la Región de Cajamarca, ubicado en la sierra norte del Perú, se ubican grandes empresas mineras que extraen oro, plata, cobre, etc; ubicadas en lugares con altitudes superiores a los 2500 msnm, y sin conexión al sistema interconectado nacional, tienen un problema en común, que es la falta de agua para sus procesos, por lo cual se ven en la necesidad de utilizar agua subterránea, con equipos denominados motobombas, los cuales utilizan el Gasohol y el Biodiesel como combustibles. (OSINERGMIN, 2019)

En lo que respecta a la situación que actualmente afronta la Minera Shahuindo, utiliza agua subterránea. No hay minería sin agua, el rol del recurso hídrico en la operación minera Shahuindo es muy concluyente para el ejercicio de sus actividades, de tal modo que para satisfacer su demanda la actividad minera acude generalmente al agua superficial (Lagunas, ríos) como fuente principal de abastecimiento. La operación minera SHAHUINDO satisface su demanda de agua mediante la acumulación del recurso hídrico de precipitaciones y la extracción constante de agua del subsuelo mediante 04 pozos tubulares. La Mayor demanda de agua está destinada al área de metalurgia (Lixiviación por pilas), seguido por la demanda para la población residente en el proyecto (1570 usuarios). Por lo tanto, es muy relevante poder garantizar el suministro continuo del recurso hídrico para la sustentabilidad de unidad minera SHAHUINDO SAC.

La operación minera SHAHUINDO al no contar con una fuente de abastecimiento de aguas superficiales para el desarrollo de sus operaciones y el elevado costo por el servicio de abastecimiento de terceros, conlleva a la búsqueda de recursos hídricos subterráneos para el abastecimiento de recurso hídrico para garantizar el ejercicio de sus operaciones.

La formulación del problema: ¿Es posible reducir los costos operativos de la unidad minera de SHAHUINDO SAC mejorando los procesos de operación y mantenimiento de sus pozos tubulares que abastecen el recurso hídrico para el ejercicio de sus operaciones?

La justificación del proyecto se enmarca en tres aspectos: económico, social y ambiental. Económicamente se justificó porque permite determinar la optimización de los costos asociados al mantenimiento preventivo de los pozos tubulares, determina la optimización de los costos asociados a paradas no programadas; además de reducir las pérdidas de producción a causa del desabastecimiento continuo de recurso hídrico y Maximiza la producción mediante el aporte continuo del recurso hídrico. En lo Social se justificó el proyecto porque logra mejorar la calidad de vida a la población del proyecto mediante un flujo continuo de recurso hídrico, considerando que aproximadamente el 60% de la fuerza laboral pertenece o radica en las zonas de influencia directa del proyecto En lo Ambiental se justificó el proyecto porque determina la Reducción de las intervenciones del sistema de bombeo, lo que se verá reflejado mediante la reducción de materiales peligrosos generados por actividades de mantenimiento, por otro lado, reducir las emisiones contaminantes por la quema de combustible fósiles en grupos electrógenos para la activación de bombas sumergibles.

El objetivo general de la investigación fue: Mejora de Procesos de Operación y Mantenimiento de Pozos Tubulares para determinar la reducción de los Costos Operativos de la Operación Minera Shahuindo S.A.C; para lo cual se establecieron los objetivos específicos, los cuales son: analizar la situación actual de los procesos de operación y mantenimiento, estableciendo el porcentaje de paradas no programadas y su repercusión en los costos del generador eléctrico; Proponer la implementación del mantenimiento a los generadores eléctricos; realizar el estudio de factibilidad de la conexión al sistema eléctrico interconectado, hacer una evaluación económica de la propuesta.

La hipótesis para esta investigación: La mejora de Procesos de Operación y Mantenimiento de Pozos Tubulares determina la reducción de los Costos Operativos de la Operación Minera Shahuindo S.A.C

II. MARCO TEÓRICO

En Colombia, según el trabajo de investigación de la Universidad Pedagógica y Tecnología de Colombia, "OPTIMIZACIÓN DEL SISTEMA DE BOMBEO Y MANEJO DE LAS AGUAS RESIDUALES PRODUCTO DE LA EXPLOTACIÓN MINERA EN LA MINA DE CARBÓN SAN FERNANDO, OPERADA POR CARBONES SAN FERNANDO SAS, VEREDA PASO NIVEL, AMAGA-ANTIOQUIA" Concluye que las bajas eficiencias reportadas en el sistema de bombeo obedecen especialmente a tres razones fundamentales: en primer lugar a problemas de diseño dado que el diámetro de la tubería seleccionada no es el óptimo; en segundo lugar a la falta de planeación y la ausencia del mantenimiento preventivo, dado que revisiones periódicas permitirían anticipar fallos en el sistema y prever inversiones para la sustitución de piezas, equipos y tubería, desgastada o que hayan cumplido con su tiempo de servicio; por ultimo a condiciones operacionales como por ejemplo la instalación de los equipos de bombeo, entendiéndose por ello su disposición, alineamiento, acoplamiento, etc. Además del mal uso por parte del operario quien no cuenta con la instrucción clara y precisa del funcionamiento y uso adecuado de estos equipos. Teóricamente se logró la optimización del sistema de bombeo elevando su eficiencia promedio de 17 % a un 53 %, lo que se traduce en el ahorro anual de \$ 112.499.392,80 en costos de operación, esto, contemplando una mínima inversión de \$ 122.144.257,62. Conservando además dentro del sistema la mitad de los equipos de bombeo empleados actualmente." (Muñoz, A. 2016).

En Tacna, según el trabajo de investigación de la Universidad Nacional Jorge Basadre Grohmann "DISEÑO DE ESTACIÓN DE BOMBEO AUTOMATIZADA PARA LA EXPLOTACIÓN DE RECURSO HÍDRICO SUBTERRÁNEO EN LA REGIÓN DE TACNA, Concluye que, para la contratación del personal operario de la estación de bombeo, debe tener en su perfil, conocimientos básicos en mantenimiento mecánico y eléctrico, además se tiene que realizar inducciones en temas de operación, mantenimiento, seguridad y medio ambiente de la estación de bombeo; y bridarle los equipos de protección personal necesarios, establecer las

274 herramientas de gestión de seguridad y otros requisitos para dar cumplimiento a la Ley N° 29783 y a la Ley N° 28611.

En Cajamarca, según el trabajo de investigación de la Universidad Privada del Norte "MEJORA DEL PROCESO DE OPERACIÓN DE BOMBAS DE POZO PROFUNDO EN MINERÍA DE TAJO ABIERTO PARA REDUCIR LOS COSTOS OPERATIVOS" concluye que se "logro reducir los retrabajos en 1% para mantenimiento, almacenamiento y transporte con instalación cada uno. - Reducir los costos de retrabajos en casi 342 mil soles al año aprox. - Se plantea propuestas de mejora con un TIR de 94%, demostrando que el proyecto es factible económicamente"

Shahuindo es una operación minera a cielo abierto con lixiviación por pilas, ubicado en la ciudad de Cajamarca – Perú, cuenta con una reserva en oro de 1952 Koz (Probadas + probables), a finales del 2019 ha producido 145.4 koz a un coste efectivo por onza de USD 570, así mismo con propiedad al 100% de la operación minera al grupo minero internacional Pan American Silver Perú. Su producción equivale al movimiento de materia de 36000 TPD mediante operación convencional de perforación, voladura, excavadoras y volquetes. En relación a la geología y mineralización, los depósitos de mineral están alojados en sedimentos epitermal de sulfuración intermedia centrado alrededor de un pliegue de gran amplitud intruso por rocas félsicas. (Panamericansilver, 2014).

Los pozos tubulares son obras de ingeniería hidráulica, diseñados con la finalidad de cubrir la necesidad de ausencia del recurso hídrico, recuperándolo desde el subsuelo; mediante los pozos tubulares se puede extraer el agua del subsuelo sin sobreexplotarlo (Mi vivienda, 2020); Los pozos tubulares son perforaciones verticales que se realizan en una superficie, donde su diámetro es menor que su profundidad, una vez hecha la excavación se instala una tubería sesiona para que cubra la función de filtro, a su vez se instala una bomba sumergible con la que se extraerá el recurso hídrico del subsuelo (SENA, 2020)

La gestión de mantenimiento, se define como el conjunto de procedimientos realizados, con la finalidad de conservar en óptimas condiciones los equipos,

maquinas, instalaciones de una organización, para garantizar el correcto funcionamiento del proceso de producción. Actualmente las operaciones de mantenimiento se centran en realizar estudios sobre equipos, procesos y sistemas susceptibles a tener fallos, mediante la aplicación de técnicas estadísticas, metodologías, estudios económicos e integración multidepartamental. (IntegraMarkets, 2018, p4)

Mantenimiento Preventivo-Correctivo: Tiene por objetivo organizar tareas de prevención y control de fallas, realizar acciones correctivas inmediatas cuando se dé la ocurrencia de una falla, se enfocan en la planificación justificada de actividades basándose en la frecuencia de ocurrencia de fallas, se establece una lista de trabajos preventivos a fin controlar y evitar se repitan las mismas fallas, así mismo basándose en pruebas, inspecciones se analizan los equipos a fin de programar tareas que eviten la aparición de nuevas fallas.

Mantenimiento Productivo Total (TPM): Se basa en que ciertas tareas cotidianas de mantenimiento sean ejecutadas por los operadores de equipos, como parte principal de sus actividades rutinarias, ya que estos son quienes conocen e interactúan de forma constante con los equipos en el día a día y por tanto su intervención en las actividades de mantenimiento son muy importantes para la anticipación de posibles fallas.

Mantenimiento Basado en Fiabilidad (RCM): Se basa en el análisis de información de los equipos, sistemas y maquinarias, de modo de aplicar técnicas que permitan identificar las principales funciones de los activos, causas y modos de fallas, tareas para anticipar posibles fallas, y que actividades realizar en caso no se pueda controlar la falla de un equipo – sistema.

Confiabilidad es una probabilidad de que un equipo pueda operar sin fallas durante un periodo de tiempo. Los principios de Confiabilidad se basan en analizar los desperdicios ocasionados por las "fallas", estableciendo el control y prevención de las mismas, para mejorar la efectividad y rentabilidad del negocio. A menudo,

estamos muy cerca del problema y no podemos observar el escenario del costo vs el beneficio en su globalidad. Para mejorar, necesitamos desglosar las posibles áreas de costos y de los beneficios correspondientes para poder examinar de manera crítica "cuanto logramos" en relación con "cuanto gastamos". (Arias, 2003)

Disponibilidad. De acuerdo al planteamiento anterior el mantenimiento tiene objetivos fundamentales basados en la disponibilidad de los equipos, en tal sentido el mantenimiento consiste en maximizar la disponibilidad de máquinas y equipos para la producción.

La disponibilidad es la relación entre el MTBF y el MTTR. Se define como la probabilidad de que un dispositivo analizado no se encuentre en una situación de reparación ni avería, es decir, que se encuentre en plenas condiciones de uso.

Disponibilidad = MTBF / (MTBF + MTTR)

Para mejorar la ratio de disponibilidad será necesario:

Aumentar el valor del MTBF, disminuyendo el número de fallos a través de un buen diseño, de una buena política de mantenimiento preventivo.

Dada la importancia de los pozos tubulares como fuente de abastecimiento este debe mantenerse en óptimas condiciones para que garantice el suministro de agua en forma confiable y segura. Pero para que el pozo funcione bien, también necesita que su equipo de bombeo se mantenga en buenas condiciones de operación, luego su mantenimiento también es definitivo e importante.

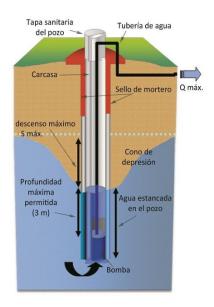


Figura 1. Esquema de pozo profundo

Fuente: https://ruralsupplies.eu/4-informacion /

Un grupo electrógeno en una máquina que se comprende en un motor de combustión interna que mueve un generador eléctrico, la utilidad más significativa de los grupos electrógenos es la de suministrar energía eléctrica donde no lo hay debido a la ausencia de redes nacionales (Wikipedia, 2020).

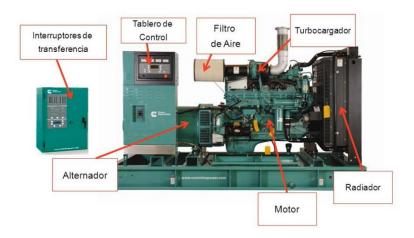


Figura 2. Principales partes de un grupo electrógeno

Fuente: https://slideplayer.es/slide/9124960/

Como los equipos de bombeo, en especial las bombas sumergibles, están instaladas dentro del pozo y son lubricadas por el agua que bombean, el mantenimiento preventivo que debe realizar el operador se reduce a:

- ✓ Revisar el mantenimiento del sistema eléctrico y las conexiones de las instalaciones hidráulicas.
- ✓ Para los que tienen bomba turbina, debe revisar los ejes, el engranaje de transmisión, si tiene, y el motor eléctrico. El programa de mantenimiento de los equipos se debe hacer con base en el reporte diario de operación donde están anotadas todas las anomalías que se han presentado durante esta labor.

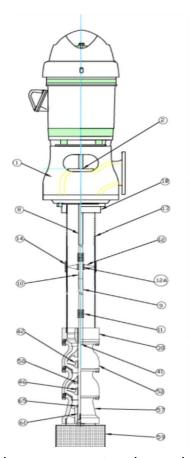


Figura 3. Principales componentes de una bomba sumergible.

Fuente: Hidrostal, 2018

Tabla 1. Principales componentes de una bomba sumergible.

⁰No.	Nombre del	Material STD	UNS	Código
Parte	Componente			
1	Cabezal de descarga	Fundición de hierro gris	F12101	051
1B	Brida de succión	Fundición de hierro gris	F12101	051
2	Caja de empaque	Varios materiales		010
8	Flecha Motriz Lub agua	Acero al carbón	G10450	082
9	Flecha superior Lub agua	Acero al carbón	G10450	082
	Metalizado en flecha	Superficie metalizada cromo		
10		duro		124A
11	Cople de flecha de línea	Acero al carbón	G12150	083
12	Mariposa	Bronce	C84400	038
12A	Buje de mariposa	Neopreno	Newby-	017
			B15	
13	Tubo de columna roscado	Acero	K03005	079
14	Cople de tubo de	Acero	K03005	079
	columna			
30	Tazón descarga lub. agua	Hierro gris C-30	F12101	051
	Flecha de ensamble de	Acero Inoxidable 416		
41	tazones	Maquinable	S41600	097
42	Impulsor cerrado	Bronce	C84400	038
46	Cono de impulsor	Acero al carbón	G41045 0	082
50	Buje de tazón intermedio	Bronce	C84400	038
52	Tazón superior	Hierro gris C-30	F12101	051
59	Colador Canasta			
57	Tazón de succión roscado	Hierro gris C-30	F12101	051
61	Buje del tazón de succión	Bronce	C84400	038
65	Arenero	Neopreno	Newby- B15	017

Fuente: Hidrostal, 2018.

Costos Operativos. Son aquellos costos principales relacionados con la operación o funcionamiento de un equipo, sistema o instalación, de igual manera son los costos que se relacionan directamente con el proceso productivo (numdea,2020)

Los costos operacionales se agrupan en 02 tipos de costes operativos, los costos fijos y costos variables, los primeros son aquellos que pese a que haya variación en los niveles de producción estos se mantienen fijos, sin variación y los segundos varían en fusión de los niveles de producción (Nuño, p. 2017)

La evaluación de proyectos es una fase fundamental para poder identificar, cuantificar y valorar el costo-beneficio que pueda generar un proyecto en un determinado periodo de tiempo. Una de las formas de realizar la evaluación de un proyecto es evaluando el Valor Actual Neto (VAN), siendo un criterio de inversión que consiste en evaluar el flujo de caja en un periodo determinado. Para ello se trae

todos los flujos de caja a valor presente descontando un tipo de interés determinado (Velayos, 2020)

$$VAN = -I_0 + \sum_{t=1}^{n} \frac{Ft}{(1+k)^t} = -I_0 + \frac{Ft}{(1+k)^1} + \frac{Ft}{(1+k)^2} + \dots + \frac{Ft}{(1+k)^n}$$

Donde:

F_t = son los flujos de dinero en cada periodo t

I 0 = es la inversión realiza en el momento inicial (t = 0)

N = es el número de periodos de tiempo

k = es el tipo de descuento o tipo de interés exigido a la inversión

La valides de un proyecto se determina según el resultado del VAN obtenido.

- ✓ Para un VAN > 0 : El valor actualizado de los cobro y pagos futuros de la inversión, a la tasa de descuento elegida generará beneficios.
- ✓ Cuando el VAN = 0 : El proyecto de inversión no generará ni beneficios ni pérdidas, siendo su realización, en principio, indiferente.
- ✓ Y cuando el VAN < 0 : El proyecto de inversión generará pérdidas, por lo que deberá ser rechazado.

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Tipo de investigación

El tipo de investigación es aplicada

Diseño de investigación

El diseño de investigación es **No Experimental**, porque no habrá manipulación en las variables. Los datos se obtendrán según se desarrollen en su contexto real.

3.2. Variables y operacionalización.

- ✓ Variable Independiente: Proceso de operación y mantenimiento de los pozos tubulares.
- ✓ Variable Dependiente: Costos operativos para la gestión de los pozos tubulares.

3.3. Población, muestra, muestreo, unidad de análisis

Población

Se consideró como población total 7 pozos tubulares de la minera Shahuindo

Muestra

Coincide con la población.

Muestreo Se consideró la totalidad de los pozos tubulares.

3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad.

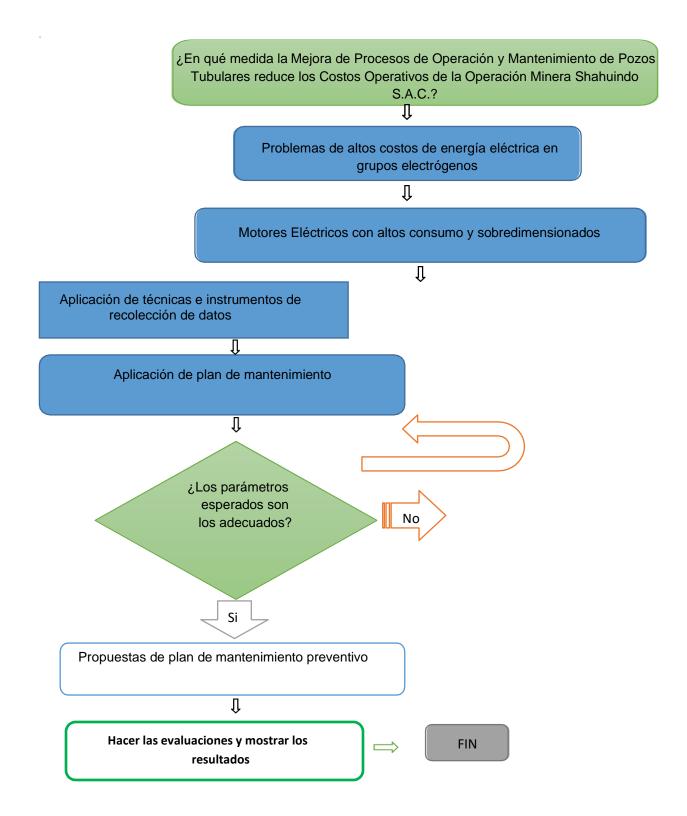
Técnicas de recolección de datos

Observación

Está técnica permitió verificar la funcionalidad de los pozos tubulares a diferentes condiciones de funcionamiento.

Revisión bibliográfica

Este tipo de técnica permitió investigar sobre las variables de funcionamiento de las cargas eléctricas, de acuerdo al tipo y duración de ellas.


Análisis documental

Para el desarrollo de este tipo de técnica, se buscará información en libros actualizados con alto contenido respecto al tema investigado, además de artículos de revistas, manuales, fichas técnicas, es decir, de fuentes secundarias de información.

Instrumentos de recolección de datos

Guías de observación de campo: Facturación eléctrica histórica, inventario de cargas eléctricas, reportes de extracción de agua.

3.5. Procedimiento

3.6. Método de análisis de datos

Los datos obtenidos para el presente proyecto fueron procesados utilizando el Microsoft Excel, así como también mediante las herramientas digitales de la estadística.

3.7. Aspectos éticos

La información real obtenida es la que se utilizó en el proyecto de diseño, no se alteró los datos, los cuales fueron contrastados en campo; el tesista realizó el diseño con datos que se recopilaron en los instrumentos de la presente investigación.

IV. RESULTADOS

4.1. Analizar la situación actual de los procesos de operación y mantenimiento

La presente tesis se realizó en las instalaciones de la empresa minera SHAHUINDO SAC, subsidiaria de la empresa PAN AMERICAN SILVER PERÚ, es una mina de oro a cielo abierto con lixiviación en pilas, la operación minera se encuentra a 2900 msnm en el corredor norte, está ubicado en la provincia de Cajabamba, departamento de Cajamarca, cuenta con 1952 Koz de reservas probadas más probables, la producción comercial inicio el 2016 con una vida útil estimada hasta el 2028, a la fecha ha producido 125.4 KOZ (ver tabla 4) mediante la operación convencional de perforación, voladura, pala y volquetes, con un costo efectivo por onza de USD 570.00 (Panamericansilver, 2020)

En proyecto minero Shahuindo cuenta con seis pozos tubulares de producción de agua más 01 poza de rebombeo que se encuentran distribuidos en las diversas partes de la operación (ver figura 1), de los cuales cinco suministran el recurso hídrico hacia la poza de rebombeo para los procesos de lixiviación en del PAD y procesos en planta ADR, y un pozo suministra el recurso hídrico a campamento para satisfacer la demanda de 1800 usuarios que laboran en las diversas áreas de la operación, incluyendo personal directo de mina como contratistas.

Tabla 2. Características de los pozos tubulares

Asignación	Нр	Log.(m.)Tubería, después de árbol descarga (NP)	Prof. Inst. de motor en pozo. (m.)	Usuario
SH-2031	125	1°) 1944 / 2°)2844	190.18	Planta ADR
SH-2018	107	427	280.68	Planta ADR
SH-2015	61	508	275.10	Planta ADR
SH-2006	10	72	199	Planta ADR
SH-2007	10	355	121	Planta ADR
PZ. R-2006	65	1°) 473 / 2°)1600	3.5	Planta ADR
SH-2003	30	3786	174	Campamentos

Fuente: Minera Shahuindo, 2019

Para que el proyecto minero de SHAHUINADO pueda operar tramito los permisos para poder explorar el consumo de 1 356 048 m³ ante el Autoridad Nacional del Agua (ANA), los mismos que fueron prorrateados en los diversos meses del año, según plan de minado

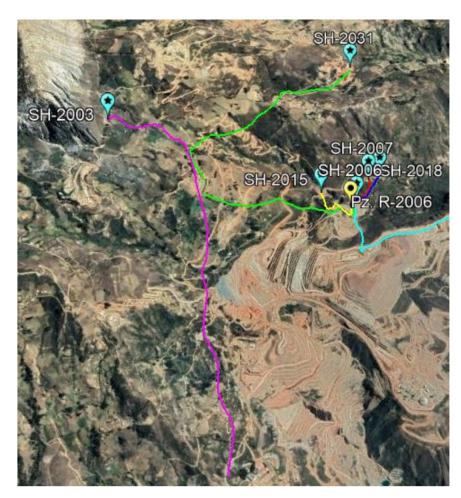


Figura 4. Distribución de pozo tubulares en operación minera SHAHUINDO

Fuente: minera SHAHUINDO, 2019

Tabla 3. Reservas de mineral – SHAHUINDO SAC

		Tabla Pan Ar	nerican S	ilver (Corporation	Mine	ral Reserve	s as	of June 30,	2020) (1,2)		
Property	Location	Classification	Tonnes (Mt)	Ag (g/t)	Contained Ag (Moz)	Au (g/t)	Contained Au (koz)		Contained Cu (kt)		Contained Pb (kt)	Zn (%)	Contained Zn (kt)
Gold Segm	ent												
Shahuindo	Peru	Proven	74.8	7	16.1	0.5	1,201.40	-	-	-	-	-	-
		Probable	49.6	7	10.4	0.47	750.6	-	-	-	-	-	-
Pan Americ	an Silver	Corporation Me	easured a	nd In	dicated Min	eral F	Resources a	s of c	June 30, 20	20			
Droporty	Location	Classification	Tonnes	Ag	Contained	Au	Contained	Cu	Db (0/)	Zn			
Property	Location	Classification	(Mt)	(g/t)	Ag (Moz)	(g/t)	Au (koz)	(%)	Pb (%)	(%)			
Shahuindo	Peru	Measured	<u> </u>	5	1.7	0.25	87.9	`-	-	`-			
		Indicated	17.4	4	2.2	0.25	142.3	-	-	-			

Tabla 4. Consumo de Agua V sautorización, periodo 2019-2020 - SHAHUINDO SAC.

	Código I Fuente	Licencia de uso	Volumen autoriz	zado m³	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Setiembre	Octubre	Noviembre	Diciembre
				Caudal (I/s)	4	4	4	4	4	4	4	4	4	4	4	4
Autorización	SH-2003	R.D. 838-2018/	126,144.00	Volumen												
	0	ANA-AAA.M	,	por mes (m³)	10713.6	9676.8	10713.6	10368.0	10713.6	10368.0	10713.6	10713.6	10368.0	10713.6	10368.0	10713.6
Consumo 2019 m3	3			, ,	5579.3	5145.6	4659.3	5179.2	5860.0	8781.9	11313.7	12538.2	7272.2	5630.7	4111.7	4711.5
Consumo 2020 m3	}				6509.9	6078.5	6670.9	5660.4	5970.9	10828.0	8716.6	8192.7	7323.1			
		R.D N° 456-		Caudal (I/s)	3	3	3	3	3	3	3	3	3	3	3	3
Autorización	SH-2006X	2018-ANA-	78,840.00	Volumen												
Autonzacion	011 2000X	AAA.M	70,040.00	por mes (m³)	6696.0	6048.0	6696.0	6480.0	6696.0	6480.0	6696.0	6696.0	6480.0	6696.0	6480.0	6696.0
onsumo 2019 m3	3				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
onsumo 2020 m3	}				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1132.3			
		R.D N° 456-		Caudal (I/s)	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
Autorización	SH-2007X	2018-ANA-	144,540.00	Volumen												
Autonzacion	011 2001 X	AAA.M	144,040.00	por mes (m³)	12276.0	11088.0	12276.0	11880.0	12276.0	11880.0	12276.0	12276.0	11850.0	12276.0	11880.0	12276.0
Consumo 2019 m3	3				0.0	0.0	0.0	0.0	0.0	0.0	0.0	277.4	4080.0	1104.4	883.5	26.0
onsumo 2020 m3	3				10.5	3.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
				Caudal (I/s)	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3
Autorización	SH-2018X	R.D. 934-2018-	270,684.00	Volumen												
Autonzaolon	011 20 10X	ANA-AAA.M	270,004.00	por mes (m³)	22989.6	20764.8	22989.6	22248.0	22989.6	22248.0	22989.6	22989.6	22248.0	22989.6	22248.0	22989.6
Consumo 2019 m3	}				16756.0		10675.0	17672.0	23475.0		23349.0			28164.0	25772.0	14660.0
Consumo 2020 m3	3				22134.0		20746.0	17152.0	17711.0	22036.0	21223.0		18649.0			
		R.D. N° 1487-		Caudal (I/s)	15	15	15	15	15	15	15	15	15	15	15	15
Autorización	SH-	2019-ANA-	394,200.00	Volumen												
71011200011	2031PW	AAA.M	004,200.00	por mes	33480.0	30240.0	33480.0	32400.0	33480.0	32400.0	33480.0	33480.0	32400.0	33480.0	32400.0	33480.0
2				(m³)												44404.0
Consumo 2019 m3					47070 0	40007.0	24745.0	100010	40000	0504.0	22744.0	22025.0	45504.0			11464.0
Consumo 2020 m3	•			Coudal (I/a)	17970.0		21715.0	16284.0	16069.0	8501.0	23744.0			10	10	10
		R.D. N° 1531-		Caudal (I/s) Volumen	13	13	13	13	13	13	13	13	13	13	13	13
Autorización	SH-2015X	2019- ANA.AAA.M	341,640.00	por mes (m³)	29016.0	26208.0	29016.0	28080.0	29016.0	28080.0	29016.0	29016.0	28080.0	29016.0	28080.0	29016.0
onsumo 2019 m3	3			(/												
Consumo 2020 m3					0.0	1050.0	0.0	0.0	0.0	1380.0	0.0	0.0	3171.0			

Tomado de reporte consumo de recuso hídrico SHAHUINDO SAC

Para la evaluación del proyecto de mejora de la gestión de operación y mantenimiento de la presente tesis se coordinó con los diversos integrantes del área de Power System para poder elaborar equipos tácticos como la asignación de responsabilidades.

Tabla 2. Equipo táctico para la gestión de operación y mantenimiento de pozo tubulares

Nombre y Apellidos	Cargo	Responsabilidad
Javier Oliart Alencastre	Jefe de mantenimiento Planta	Gestionar y Proveer los recursos necesarios para
		la ejecución de proyecto.
Pablo Portilla Torres	Planner de mantenimiento Eléctrico	Gestionar las estrategias y planes de mantenimiento
Willan Rubio Baca (Líder de Proyecto)	Supervisor de mantenimiento PS	Elaborar formatearía y capacitación para la ejecución de mantenimiento.

Fuente: Minera Shahuindo, 2019

Para el análisis de la gestión actual de mantenimiento se realizó mediante el diagrama de causa efecto agrupándolo en cuatro grupos importantes: Planes de Mantenimiento, Información, Gestión de fallas y Recursos Humanos

✓ Planes de Mantenimiento, La planificación de mantenimiento es importante para el mapeo de recursos, insumos y consumibles que serán usados para el soporte oportuno de los pozos tubulares, asegurando su confiabilidad, durante reunión de coordinación se evidenciaron las siguientes observaciones relevantes se pudieron detectar que no se cuenta con procedimiento de trabajo, estrategias, formatos, registros de mantenimiento, asimismo la planificación se realiza en formato Excel.

- ✓ Información, La información es ítem importante para la elaboración de planes de mantenimiento como para la capacitación oportuna en técnicas de operación y mantenimiento de los pozos tubulares, durante la evaluación del proyecto se determinó que no se cuenta con información de fabricante, el cambio continuo de site o responsables de la gestión no permitió generar registros de fallas, informes de cambio de componentes y elaboración de procedimiento de operación y mantenimiento.
- ✓ Gestión de fallas, La gestión estrategia de fallas nos permite identificar las cusas y modos de falla y asegurar la no ocurrencia de las misma a futuro, en tal sentido se evidenciaron las siguientes observaciones: No se cuenta con estrategias de monitoreo de condiciones, la gestión de mantenimiento es netamente reactiva, no se evalúan o se realizan planes derivados de monitoreo de condiciones según ciclo de vida de los activos, y la falta de registro – historial de fallas no permiten un buen análisis de criticidad para la toma de decisiones.
- ✓ Recursos Humanos, Es el factor determinante para la ejecución de las actividades de operación y mantenimiento, por la misma razón de determino un factor muy importante para la correcta gestión de los pozos tubulares en la operación minera SHAHUINDO, Actualmente los pozo tubulares se encuentran bajo la gestión del área Power System, donde el 80% es personal de zona de influencia directa , los cuales cuenta con instrucción técnica superior de tres años, pero con poca experiencia en componentes de una pozo tubular , por lo que requiere capacitación especializada para el ejercicio de las nuevas funciones asignadas.

Como consecuencia de las observaciones halladas en los cuatro grupos no se permite dar continuidad a los procesos, se pierden oportunidades en la gestión de mantenimiento, generando retrasos en la ejecución de actividades y malas prácticas de operación, ausencia de generación de Backlog y en consecuencia la no confiabilidad de los sistemas. Las observaciones identificadas generan altos costo de mantenimiento y fallas operacionales significativas que afectan al proceso productivo de la empresa SHAHUINDO.

Como plan de mejora inmediata se elaboraron checklist importantes para la gestión de mantenimiento de los grupos electrógenos, como por ejemplo el Formato para evaluación y calibración de inyectores, con el que se asegura que los inyectores cuenten con la holgura necesaria para la inyección y dosificación de combustible, el formato para control y calibración de holgura de válvulas que nos permite sincronizar los ciclos efectivos de motor de combustión interna, finalmente se elaboraron los formatos de checklist de verificación de PM1-PM4, siendo este una guía para la ejecución de actividades rutinarias de lubricación y remplazo de repuestos consumibles; así como también una guía para búsqueda y solución de problemas, y

Finalmente se estableció un plan proyectado para el mantenimiento preventivo y búsqueda de observaciones en bombas sumergibles de los pozos tubulares.

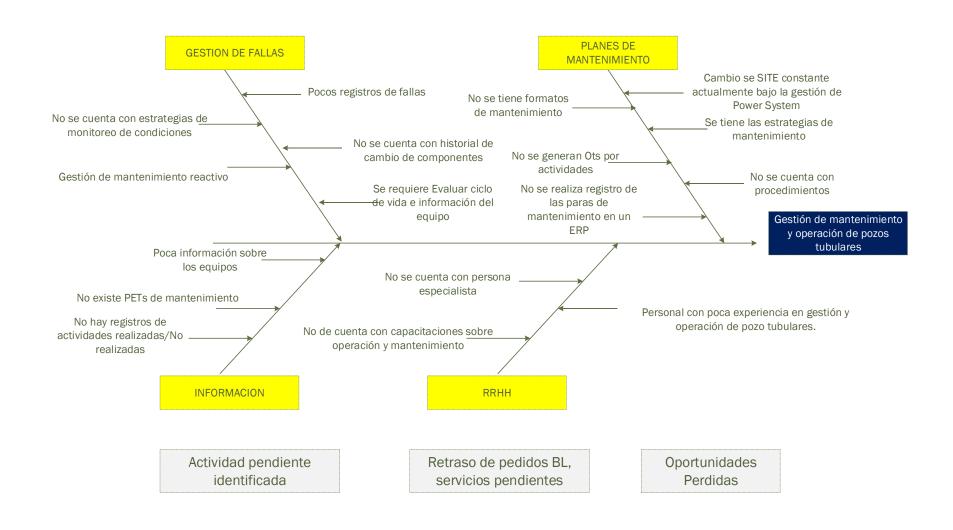


Figura 5. Análisis de gestión de operación y mantenimiento

4.2. Plan de Propuesta de Mantenimiento en la operación de pozos tubulares

Como plan de acción inmediata fue elaborar los formatos de ejecución de mantenimiento preventivo. En el anexo 1. Se presenta los formatos para la aplicación de mantenimiento preventivo a:

- a) Calibración de Inyector Unitario.
- b) Calibración de Válvulas.
- c) Formato checklist verificación PM1
- d) Formato checklist verificación PM2
- e) Formato checklist verificación PM3
- f) Formato checklist verificación PM4

En la tabla 6 se tiene los costos de mantenimiento de los pozos tubulares, durante los años 2019 y 2020.

таыа з. Plan de mantenimiento de pozos tubulares

				2019														20	20							
Equipo	Servicio	Costo x PM	Ene	Feb	Mar	Abr	Мау	Jun	Julio	Ago	Set	Oct	Nov	Dic	Ene	Feb	Mar	Abr	Мау	Jun	Julio	Ago	Set	Oct	Nov	Dic
011 0000	PM1	1,500						1												1						
SH-2006	PM2	6,500												1												1
011 0007	PM1	1,500					1												1							
SH-2007	PM2	6,500											1												1	
CLL 0000	PM1	2,500				1												1								
SH-2003	PM2	6,500										1												1		
0 2010	PM1	4,500			1												1									
SH-2018	PM2	6,500									1												1			
SH-R2006	PM1	4,500		1												1										
011112000	PM2	6,500								1												1				
SH-2003	PM1	4,500	1												1											
311 2000	PM2	6,500							1												1					
SH-2031	PM1	4,500											1												1	
	PM2	6,500					1												1							
SH-2013	PM1	4,500										1												1		
	PM2	6,500				1												1								

Fuente: Autoría Propia

.

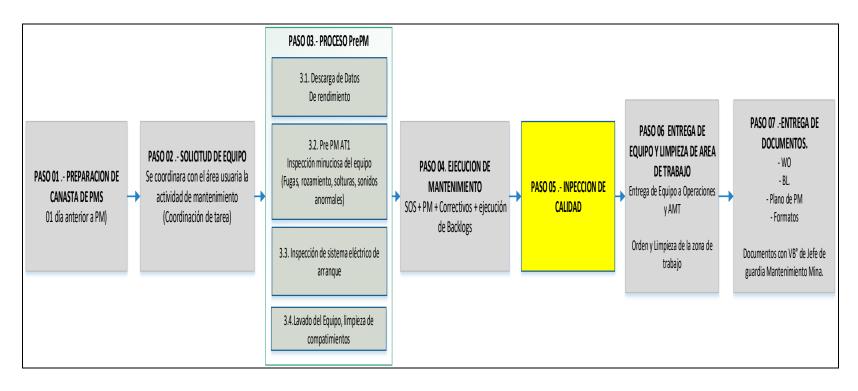


Figura 6. Proceso de ejecución de mantenimiento preventivos - GE.

Elaboración propia

Se realizó el análisis de relación entre las actividades de mantenimiento planificado y correctivo, donde se evidencio que en promedio el 53% de las actividades son programadas y 47% no programadas, estando a un 17% por debajo de lo esperado de 70% para actividades programadas y 17% por encima del 30% para actividades no programado, esto puede indicar una baja orientación a la programación de actividades de mantenimiento proactivo para la búsqueda de observaciones, considerándose una gestión enfocada solo en la programación de actividades de mantenimiento preventivo

Tabla 4. Actividades programadas y actividades no programadas.

	Número de Acti	vidades	% de actividades					
EQUIPO	No							
	Programados	Programado	Total	No Programados	Programado	Total		
GE-A0001	32	15	47	68%	32%	100%		
GE-A0002	31	17	48	65%	35%	100%		
GE-E0003	30	65	95	32%	68%	100%		
GE-E0004	9	24	33	27%	73%	100%		
GE-E0005	21	30	51	41%	59%	100%		
GE-E0006	27	47	74	36%	64%	100%		
GE-E0007	28	21	49	57%	43%	100%		
Promedio			·	47%	53%	100%		

Elaboración Propia

Se analizó los principales indicadores de mantenimiento como el tiempo medio entre fallas, El tiempo medio entre servicios y la disponibilidad.

- ✓ Tiempo medio entre fallas, analizando los indicadores obtenidos podemos determinar que se encuentra muy por encima de los estipulado 4 a 6 Horas, esto significa que la ejecución de los mantenimientos se está realizando de manera deficiente debido a la poca experiencia del personal, falta de información técnica y ausencia de procesos de mantenimiento
- ✓ Tiempo medio entre servicios, analizando los indicadores obtenidos podemos determinar que se encuentra por encima de los valores estipulados 40 a 60 horas, eso puede significar que la planificación de mantenimiento solo está destinada a las actividades de mantenimiento básicas (cambios de filtros y

- aceite) notándose la ausencia de programación de actividades de monitoreo de condiciones.
- ✓ **Disponibilidad Mecánica**, En relación al indicador de la disponibilidad mecánica solo el 28% de los equipos está dentro de lo especificado (>90%), esto debido a mala gestión de los procesos, operación y mantenimiento

Tabla 5. Análisis de parada programadas e indicadores de mantenimiento

POZA	Equipo	Horas de parada	# de paradas	Horas Trabajadas	MTTR	MTBS	DM
SH-2031	GE-A0001	3898.0	47	4742.0	82.94	100.89	55%
SH-2018	GE-A0002	408.2	48	8231.8	8.50	171.50	95%
SH-2003	GE-E0003	737.7	95	7902.3	7.77	83.18	91%
SH-2015	GE-E0004	1064.0	33	7576.0	32.24	229.58	88%
SH-2006	GE-E0005	2767.8	51	5872.2	54.27	115.14	68%
SH-2007	GE-E0006	3813.9	74	4826.2	51.54	65.22	56%
SH-R2006	GE-E0007	5111.7	49	3528.3	104.32	72.01	41%

Elaboración propia

Análisis de criticidad de equipo, mediante el análisis de criticidad de equipos (relación MTBS y MTTR) se determinó que el equipo más crítico para la gestión de mantenimiento.

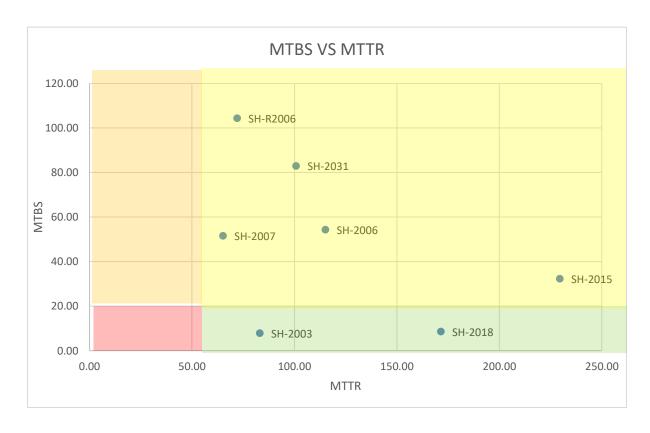


Figura 7. MTBS vs MTTR para los grupos electrógenos.

Fuente: Autoría Propia

Análisis de costos directos e indirectos del proceso actual con generadores eléctricos.

Al realizar el análisis de costo de mantenimiento del proceso actual para la gestión de mantenimiento de pozo tubulares, se pudo determinar que los costos totales son de USD 690,965.91anuales y USD 57,580.49 mensual, los que se podría cubrir el 25% de los costos por servicios de consumo eléctrico de interconectado para la operación minera SHAHUINDO SAC

Tabla 6. Resumen de costos directos e indirectos GM-Pozos Tubulares

Costos Anuales: Gestión de mantenimiento de pozos tubulares con Grupos Electrógenos											
Costos Directos	Costos Directos										
Alqu	uiler de grupos electrógenos	USD 102,000.00									
Cor	nbustible	USD 422,915.91									
Mar	ntenimiento de Pozos tubulares	USD 34,500.00									
Tota	al, costos directos	USD 559,415.91									
Costos indirectos											
Per	sonal (03 técnicos)	USD 129,600.00									
	Camioneta (01)	USD 1,950.00									
	Total, costos indirectos	USD 131,550.00									
	Total, Costos Anual	USD 690,965.91									
	Total, Costo Mensual	USD 57,580.49									

Detalle de consumo eléctrico Mensual - operación SHAHUINDO								
	Costo S/.	Costo USD						
Energía + potencia consumida			163,310.95					
Peaje		225,812.13	62551.83657					
FISE (Fondo de Inclusión Social Energético)		25,830.02	7155.130194					
LER (Ley de Electrificación Rural)		26,084.80	7225.706371					
	Total, Mensual		240,243.62					

4.3. Realizar estudios técnicos para tendido de líneas de alimentación de suministro eléctrico – interconectados SEIN.

Se evalúa costos de suministro eléctrico generador por G.E VS. El SEIN "Sistema Eléctrico Interconectado Nacional" para una determinada área de un proyecto minero.

Aspectos que se evaluaron:

- √ Vida útil del proyecto = 2 años
- ✓ Demanda de Potencia Eléctrica Instalada = 347 KW/H.
- ✓ Demanda de Potencia Eléctrica Instalada anual KW/H.= 2,998.080
- ✓ Costo promedio de KW/H con Grupos Electrógenos = USD 0.33
- ✓ Costo promedio de KW/H con el SEIN= USD 0.065

- ✓ Costo de inversión para ejecución de red eléctrica = USD 345.000.00
- ✓ Costo total por año con suministro eléctrico con G.E "grupos electrógenos" = USD 880,109.90
- ✓ Costo total por año con suministro eléctrico del SEIN = USD USD 229,375.20
- ✓ Ahorro económico por año puesta en servicio con red del SEIN

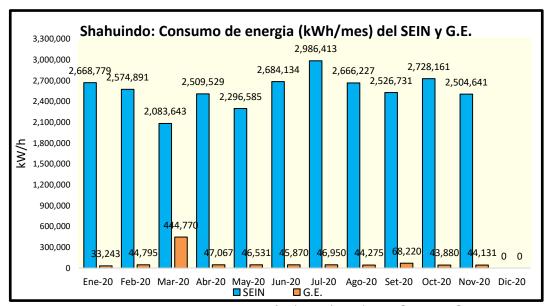


Figura 8. Tendencia de consumo de energía (Kwh/Mes) del SEIN y GE.

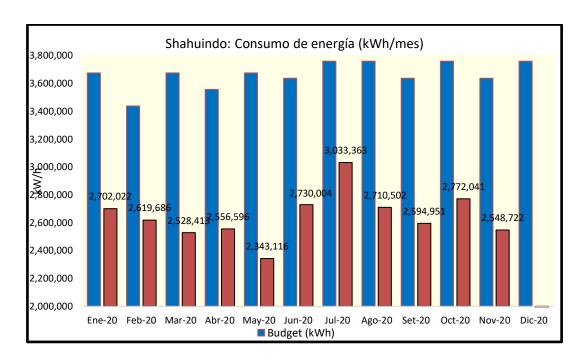


Figura 9. Consumo de energía Kwh/mes - Shahuindo

Tabla 7. Cuadro comparativo de costo de suministro eléctrico con grupos electrógenos y red SEIN.

	ISTRO EL ROGENO		O CON GR	RUPOS	SUMINISTRO ELECTRICO CON RED DEL INTERCONECTADO - SEIN					
Potenci a instalad a	Demand a KW/h	Trabajo horas/dí a	Trabajo días/Mes	Trabajo Horas/Año	Potencia instalada	Demand a KW/h	Trabajo horas/dí a	Trabajo días/Mes	Trabajo Horas/Año	
254	254	22	29	7656	254 kW/h	254	24	30	8640	
kW/h		kW/h. Dia	kW/h. Mes	kW/h. año			kW/h. Dia	kW/h. Mes	kW/h. año	
		5588	162052	1944624			6096	182880	2194560	
	KW/h	kW/h. Dia	kW/h. Mes	kW/h. año		KW/h	kW/h. Dia	kW/h. Mes	kW/h. año	
	USD 0.35	USD 1,978.1 5	USD 57,366.4 1	USD 688,396.90		USD 0.065	USD 396.24	USD 11,887.2 0	USD 142,646.40	
PZ. 2031										
93	93	22	29	7656	93 kW/h	93	24	30	8640	
kW/h		kW/h. Dia	kW/h. Mes	kW/h. año			kW/h. Dia	kW/h. Mes	kW/h. año	
		2046	59334	712008			2232	66960	803520	
	KW/h	kW/h. Dia	kW/h. Mes	kW/h. año		KW/h	kW/h. Dia	kW/h. Mes	kW/h. año	
	USD 0.126	USD 257.80	USD 7,476.08	USD 89,713.01		USD 0.065	USD 145.08	USD 4,352.40	USD 52,228.80	
Alquiler	de grupos	electróger	nos		Costo estimado para amp	oliación de	red Prima	ria		
Costo al	quiler de g	rupos elec	ctrógenos	USD 102,000.00					(USD 000)	
					Descripción	und	cantida d	Unidad	Sub Total	

		tendido de línea 22.9 kV	km	3.5	30000	105000	
		Sist. Protección/Seccionamie nto	und	4	15000	60000	
		Sub estación de transformación (02)	und	Glb	180000	180000	
					Total	USD 345,000.00	
Resumen de demanda anual kW/h y	costo anual	Resumen de demanda a	nual kW/	h y costo	anual		
Demanda promedio anual (kW/h)	Demanda promedio anua	l (kW/h)			2998080		
Costo promedio anual (USD)	USD 880,109.90	Costo promedio anual (U		USD 229,375.20			
Costo promedio USD - KW/h	USD 0.33	Costo promedio USD - K\	USD 0.0765				
Análisis para el primer año							
Demanda promedio anual (kW/h)	2656632	Demanda promedio anua	l (kW/h)		•	2998080	
Costo promedio anual (USD)	USD 880,109.90	Costo promedio anual (US	USD 229,375.200 0				
Costo promedio USD - KW/h	USD 0.33	Costo promedio USD - K\	N/h			USD 0.0765	
** Para el primer año considerando la il el tendido de línea de 22.9 Kv, se gene de						USD 650,734.70	
Análisis para los próximos 9 años							
	on 10 oão	Resumen de demanda ar	nual kW/h	en 10 año)S		
Resumen de demanda anual kW/h	en 10 anos	I Roballion ao aomanaa ai	Demanda promedio anual (kW/h)				
Resumen de demanda anual kW/h (Demanda promedio anual (kW/h)	23909688					26982720	
			l (kW/h)			26982720 2064376.8	

** Para los próximos 9 años generaría un ahorro de						USD 5,856,612.3 4	
Si la inversión se realiza en el presente año, al término de la vida útil del proyecto (10 años) se tendría un ahorro económico estimado en							
y un costo promedio de Kw/h considerando el monto de la inversión inicial						USD 0.08	

4.4. Analizar beneficio económico del proyecto posterior a la implementación de mejoras bajo las herramientas de VAN y TIR

Evaluación de indicadores técnico de mantenimiento antes y después de la implementación de proyecto.

Tabla 8. Indicadores de mantenimiento antes y posterior a implementación de proyecto.

		Ante	s de proyec	cto	Posterior a implementación de proyecto			
POZA	Equipo	MTTR	MTBS	DM	MTTR	MTBS	DM	
SH-2031	GE- A0001	82.94	100.89	55%	40.57	165.14	80%	
SH-2018	GE- A0002	8.50	171.50	95%	19.05	196.95	91%	
SH-2003	GE- E0003	7.77	83.18	91%	7.49	94.16	93%	
SH-2015	GE- E0004	32.24	229.58	88%	38.71	240.00	86%	
SH-2006	GE- E0005	54.27	115.14	68%	34.40	141.92	80%	
SH-2007	GE- E0006	51.54	65.22	56%	24.31	99.12	80%	
SH-R2006	GE- E0007	104.32	72.01	41%	26.70	184.03	87%	
Promedio		48.80	119.64	71%	27.32	160.19	85%	

Elaboración propia

En tabla 11 se puede evaluar el comportamiento de los indicadores antes de la implementación de mejoras en la gestión de mantenimiento y operación de pozos sumergibles, obteniendo un 14% de mejora en la disponibilidad mecánica de los mismos, si se contrasta con la producción obtenida en el periodo 2019 que se logró recuperar 145.4 koz, a un costo efectivo por onza de USD 570, esta mejora en la disponibilidad podría significar una recuperación adicional de 20.35 koz = USD 20'000,000.00 durante un año (Precio onza de oro USD 1700 referencial), o también este recurso hídrico pudo ser usado para el riego de vías Control de polución, entre otros. A su vez el MTTR promedio se redujo en 21.48 horas lo que muestra una mejor gestión al realizar las actividades de mantenimiento combinando lo táctico con lo

operativo y finalmente el MTBS se incrementó en 40.55 horas lo que garantiza la correcta ejecución de los mantenimientos programados.

Gestión de backlogs antes y después de la implementación de proyecto.

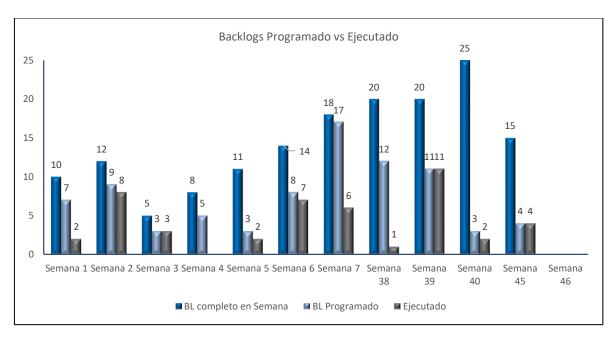


Figura 10. Seguimiento de Backlogs

Se puede referenciar la gestión de Backlogs para la gestión de los pozos tubulares, antes de inicio del proyecto no se contaba con seguimiento de backlogs ya que solo se programaban actividades de mantenimiento preventivo, actualmente el sistema de gestión en general está tomando actividades de mantenimiento proactivo para la búsqueda y solución de problemas.

En tabla 14, se realizó evaluación vertical de costos anuales de la gestión de mantenimiento de los pozos tubulares con grupos electrógenos, donde se puede evidenciar un incremento en los costos de mantenimiento relacionados a las actividades de mantenimiento correctivo y generación de backlogs, equivalente a USD 55,941.59. Lo que significa que en esta situación para haber podido mejorar la gestión de mantenimiento y operación de los pozos tubulares se tuvo que realizar dicha inversión la misma que se justifica por los indicadores antes descritos. (ver tabla 13)

Evaluación vertical de costos de mantenimiento de pozos tubulares con grupos electrógenos antes y después de la implementación de proyecto.

Tabla 9. Comparativo de costos de mantenimiento posterior a implementación de proyecto.

Costos Anuales: Gestión de l	mantenimiento de pozos tubulares con	Grupos E	Electrógenos	Costos posteriores a Proyecto	Diferencia
Costos Directo	os				
	Alquiler de grupos electrógenos		USD 102,000.00	USD 102,000.00	
	Combustible		USD 422,915.91	USD 422,915.91	
	Mantenimiento de Pozos tubulares	5	USD 34,500.00	USD 34,500.00	
	Costos por MC + BL			USD 55,941.59	
	Total, costos directos		USD 559,415.91	USD 615,357.50	
Costos indirecto	os				
	Personal (03 técnicos)		USD 129,600.00	USD 129,600.00	
	Camioneta (01)		USD 1,950.00	USD 1,950.00	
	Total, costos indirectos		USD 131,550.00	USD 131,550.00	
	Total, Costos Anual		USD 690,965.91	USD 746,907.50	USD 55,941.5
	Total, Costo Mensual		USD 57,580.49	USD 62,242.29	USD 4,661.8
Detalle de consu	ımo eléctrico Mensual - operación SHA	AHUINDO			
	Costo S/.		Costo USD		
Energía + potencia consumida			163,310.95		
Peaje FISE (Fondo de Inclusión Social	225,	,812.13	62551.83657		
Energetico)	25,	,830.02	7155.130194		
LER (Ley de Electrificación Rural)	26,	,084.80	7225.706371		
	Total, Mensual		240,243.62		

Fuente: Elaboración Propia.

Tabla 13. Resumen de Ingresos y egresos

Inversión Inicial (\$)	
Tendido de red eléctrica para interconexión	345,000.00
Implementación de Programa de mantenimiento	55,941.59
Total Inversión	400,941.59
Ingresos Mensuales de Proyecto (\$)	
Reducción por costos de energía eléctrica	54227.89
Incremento de disponibilidad de equipos	4,661.80
Total Ingresos Mensuales	58,889.69

Fuente: Elaboración Propia.

Tabla 14. Flujo de Caja e Indicadores Económicos

Mes	0	1	2	3	4	5	6	7	8	9	10	11	12
Inversión \$	400941												
Ingresos													
Mensuales \$		58890	58890	58890	58890	58890	58890	58890	58890	58890	58890	58890	58890

Mes	13	14	15	16	17	18	19	20	21	22	23	24
Inversión \$												
Ingresos												
Mensuales \$	58890	58890	58890	58890	58890	58890	58890	58890	58890	58890	58890	58890

Tasa mensual de	
Referencia	4%
VAN \$	496498
TIR %	16%
Relación Beneficio /costo	2.54

V. DISCUSIÓN

En el análisis de la propuesta de implementación de un plan de mantenimiento de los 7 pozos tubulares de la empresa Shahuindo, se pudo evidenciar que tendrá un impacto significativo, si se implementa y se supervisa los procesos de mantenimiento a los sistemas hidráulicos, mecánicos y eléctricos de sistema de bombeo de agua subterránea.

En relación al trabajo de investigación concluye que se "logro reducir los retrabajos en 1% para mantenimiento, almacenamiento y transporte con instalación cada uno". Reducir los costos de retrabajos en casi 342 mil soles al año aprox. - Se plantea propuestas de mejora con un TIR de 94%, demostrando que el proyecto es factible económicamente. Sin embargo, la tasa interna de retorno se aprecia que tiene una cantidad muy alta, debido a que se tiene tasas de referencias no para sectores privados, sino públicos.

El proyecto minero Shahuindo cuenta con síes pozos tubulares de producción de agua más 01 poza de rebombeo que se encuentran distribuidos en las diversas partes de la operación (ver figura 1), de los cuales cinco suministran el recurso hídrico hacia la poza de rebombeo para para los procesos de lixiviación del PAD y procesos en planta ADR, y un pozo suministra el recurso hídrico a campamento para satisfacer la demanda de 1800 usuarios que laboran en las diversas áreas de la operación, incluyendo personal directo de mina como contratistas.

Se logró mejorar los procesos de operación y mantenimiento de los pozos tubulares que abastecen el recurso hídrico para la operación de la unidad minera SHAHUINDO SAC, Se partió del cálculo de los indicadores técnicos actuales de mantenimiento donde se determinó que estaban por debajo de lo establecido

(DM 70.6% estando 19.4% por debajo de los propuesto 90%, MTBS 119.64 Hrs dentro del rango, MTTR 48.80 estando 20.80 horas por encima de los propuesto 20 hrs), para identificar las principales cusas que ocasionaban un bajo desempeño en los indicadores de mantenimiento se realizó el análisis de causas – efecto mediante el diagrama de pescado, en coordinación con el equipo táctico de mantenimiento planta donde se agruparon las principales observación en 4 ejes (Gestión de planes de mantenimiento, Gestión de la información, Gestión de fallas, RRHH).

Se realizó el análisis de relación entre las actividades de mantenimiento planificado y correctivo, donde se evidencio que en promedio el 53% de las actividades son programadas y 47% no programadas, estando a un 17% por debajo de lo esperados de 70% para actividades programadas y 17% por encima del 30% para actividades no programado, esto puede indicar una baja orientación a la programación de actividades de mantenimiento proactivo para la búsqueda de observaciones, considerándose una gestión enfocada solo en la programación de actividades de mantenimiento preventivo

Se realizó la propuesta de implementación de las mejoras como el diseño e implementación de check list de verificación de PMs para búsqueda y solución de posibles fallas según el tipo de PM, se logró implementar el proceso de ejecución de mantenimiento preventivo para los grupos electrógenos con la participación de todos los integrantes del área de mantenimiento planta logrando mejorar los resultados en los indicadores propuestos (DM 85.5% estando 5.5% por debajo de los propuesto 90%, MTBS 160.19 Hrs dentro del rango, MTTR 27.32 estando 7.32 horas por encima de los propuesto 20 hrs.

Al realizar el análisis de costo de mantenimiento del proceso actual para la gestión de mantenimiento de pozo tubulares, se pudo determinar que los costos totales son de USD 690,965.91anuales y USD 57,580.49 mensual, los que se podría cubrir el 25% de los costos por servicios de consumo eléctrico de interconectado para la operación minera SHAHUINDO SAC

En la evaluación del comportamiento de los indicadores antes de la implementación de mejoras en la gestión de mantenimiento y operación de pozos sumergibles, obteniendo un 14% de mejora en la disponibilidad mecánica de los mismos, si se contrasta con la producción obtenida en el periodo 2019 que se logró recuperar 145.4 koz, a un costo efectivo por onza de USD 570, esta mejora en la disponibilidad podría significar una recuperación adicional de 20.35 koz = USD 20'000,000.00 durante un año (Precio onza de oro USD 1700 referencial), o también este recurso hídrico pudo ser usado para el riego de vías Control de polución, entre otros.

A su vez el MTTR promedio se redujo en 21.48 horas lo que muestra una mejor gestión al realizar las actividades de mantenimiento combinando lo táctico con lo operativo y finalmente el MTBS se incrementó en 40.55 horas lo que garantiza la correcta ejecución de los mantenimientos programados.

Tiempo medio entre fallas, analizando los indicadores obtenidos podemos determinar que se encuentra muy por encima de los estipulado 4 a 6 Horas, esto significa que la ejecución de los mantenimientos se está realizando de manera deficiente debido a la poca experiencia de la persona, falta de información técnica y ausencia de procesos de mantenimiento

Tiempo medio entre servicios, analizando los indicadores obtenidos podemos determinar que se encuentra por encima de los valores estipulados 40 a 60 horas, eso puede significar que la planificación de mantenimiento solo está destinada a las actividades de mantenimiento básicas (cambios de filtros y aceite) notándose la ausencia de programación de actividades de monitoreo de condiciones.

En relación al indicador de la disponibilidad mecánica solo el 28% de los equipos está dentro de lo especificado (>90%), esto debido a mala gestión de los procesos operación y mantenimiento

VI. CONCLUSIONES

- ✓ En relación a los planes de mantenimiento se evidenció que no se contaba con procedimiento de trabajo, estrategias, formatos, registros de mantenimiento, asimismo la planificación se realiza en formato Excel; En la gestión de fallas se determinó que la gestión de mantenimiento era netamente reactiva; En la gestión de la información se pudo evidenciar como ítem relevante que a causa del cambio continuo de SITE a cargo de la gestión de mantenimiento no se contaba con información y estructura para la gestión de los pozos tubulares y en relación al RRHH el personal no contaba con las competencias necesaria para la gestión de mantenimiento de los pozos tubulares.
- ✓ Posterior a la implementación de mejoras en los procesos de operación y mantenimiento de determino un incrementó en USD 55,941.59 en los costos de mantenimiento de los 07 grupos electrógenos, inversión que se ve reflejada en la mejora de los indicadores técnicos de mantenimiento: a) La disponibilidad Mecánica DM mejoro en 14.91% de 70.6% a 85.5 %; b) El Tiempo Medio Entre Servicios MTBS de incremento en 40.54 horas de 119.64 Hrs a 160.19, y c) El Tiempo Medio Para Reparar MTTR se logró reducir de 48.80 Hrs a 27.32 Hrs: lo que garantiza un mejor flujo continuo en el suministro eléctrico para la extracción de agua subterránea debido a la mayor disponibilidad de los grupos electrógenos, mejor calidad de las actividades de mantenimiento y menor tiempo de respuesta en la ejecución de actividades de mantenimiento programado.
- ✓ Se hizo el análisis de la factibilidad económica de la interconexión al sistema eléctrico, lo cual influyó significativamente en los costos operativos, debido a la operación de los grupos electrógenos.
- ✓ Finalmente, el beneficio económico obtenido por la implementación del proyecto
 de mejora de los procesos de operación y mantenimiento arrojan un TIR y un
 VAN positivo si se logra migrar a un sistema de interconectado SEIN para el
 sistema eléctrico de las bombas sumergibles en los pozos tubulares.

VII. RECOMENDACIONES

- ✓ Es de vital importancia que todo el personal esté involucrado en los procesos de mejora desde gerencias hasta los puestos de menor rango, esto con la finalidad de crear una cultura de cambio, donde el liderazgo sea visible y en conjunto de puedan definir las mejores prácticas de mantenimiento, concientizando la ejecución del mismo con el personal técnico – operativo, gestionando eficazmente las diversas no conformidades que se presenten durante el proceso de implementación de mejoras.
- ✓ La mejora continua de los procesos de operación y mantenimiento pueden incrementar la disponibilidad y confiabilidad de los equipos, estos a su vez se reflejarán en la reducción de costos de mantenimiento o mejorar los procesos productivos
- ✓ Realizar un seguimiento continuo de las estrategias y mejoras propuestas, garantizaran la buena operatividad de procesos, equipos e incrementaran la seguridad de las persona, equipos y procesos en la operación minera SHAHUINDO S.AC.
- ✓ La propuesta de migrar a un sistema de interconectado SEIN, para el suministro eléctrico de los pozos tubulares, traerá muchos beneficios a la operación, eliminado actividades de mantenimiento de grupos electrógenos que a su vez eliminará el riesgo asociado con el personal que ejecuta la tarea. Siendo esta ultima la que mejor TIR y VAN propone debido al bajo costo por Kw/h consumido.

REFERENCIAS

- SALAZAR ZUÑE, Kenny Martin. Comparación técnica-económica para la energización de pozos tubulares con energía convencional y energía renovable para el predio agrícola lote norte arena verde SAC-Olmos. 2022.
- 2. LUQUE, Arquímedes L. Vargas, et al. Explotación de aguas subterráneas mediante sistema convencional y sistema eléctrico. *Ciencia Latina Revista Científica Multidisciplinar*, 2021, vol. 5, no 3, p. 3642-3658.
- MEDINA QUINTANA, Deyby Angels Romario. Gestión de mantenimiento basado en metodología TPM para incrementar la productividad de los pozos tubulares de la empresa Agroindustrial Pucalá. 2020.
- CORNEJO NINA, Belcher. Propuesta de plan de mantenimiento preventivo de equipos de infraestructura en la empresa FERREYROS SA sucursal Cusco a fin de incrementar su operatividad. 2021.
- TORRE DONGO, Abelardo Jonathan. Implementación de un plan de mantenimiento preventivo para aumentar la productividad de la empresa Corpomecator SRL Lima 2021. 2021.
- HUANES CARRANZA, Yoshi Jonathan. Metodología para la implementación del mantenimiento centrado en la confiabilidad en sistemas de bombeo de aguas subterraneas de agroindustrial Danper sac. 2019.
- 7. DE LA CRUZ GONZALES, Jason Nicholas. Propuesta de mejora de la gestión de mantenimiento en el área de pozos basado en el TPM para mejorar la productividad de los equipos de bombeo de la empresa Agroindustrias San Jacinto SAA. 2018.
- 8. FARIAS REY, Victoria Franceska. Informe de ejecución de cuatro pozos tubulares en la localidad de Santa Clara y anexos. 2020.
- ASMAT VALDEZ, Jhordy Jhiar; ZARATE ALARCON, Omar Eduardo. Diseño del sistema de agua potable utilizando pozo tubular en el caserío Pushura baja, distrito Bellavista, provincia de Jaén–región Cajamarca. 2022.

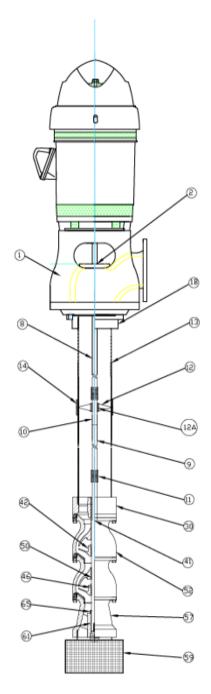
- 10. GARCÍA CANCINO, ISMAEL ADRIÁN. ANÁLISIS DE LA COMPETITIVIDAD DE LAS GRANDES EMPRESAS PROVEEDORAS DE SERVICIOS DE MANTENIMIENTO DE TUBERÍAS EN POZOS PETROLÍFEROS EN EL MUNICIPIO DE CENTRO, TABASCO, PARA LA GENERACIÓN DE UNA PROPUESTA DE DESARROLLO. 2021.
- 11. Integra Markets, Gestión y planificación del mantenimiento Industrial, 2da edición, 2018, ISBN: 9781370710768
- 12. Muños A. Optimización del sistema de bombeo y manejo de las aguas residuales producto de la explotación minera en la mina de carbón San Fernando, operada por carbones San Fernando SAS, vereda paso nivel, Amaga-Antioquia, tesis (Ingeniero de minas), Antioquia: Universidad Pedagogía y Tecnología de Colombia 2016.
- 13. Narva, L. Mejora del proceso de operación de bombas de pozo profundo en minería de tajo abierto para reducir los costos operativos, Tesis (Ingeniero Idustrial) Cajamarca: Universidad Privada del Norte, 2013
- 14. Manchego, Gianmario. Diseño de estación de bombeo automatizada para la explotación de recurso hídrico subterráneo en la región de Tacna Perú. Tesis (Ingeniero Mecánico), Tacna: Universidad Nacional Jorge Basadre Grohmann, 2019.
- 15. Disponible en: http://repositorio.unjbg.edu.pe/handle/UNJBG/3779
- 16. Goodfellow, Acero inoxidable -AISI 304 (fe/Cr18/N10) información sobre material. [en línea], 2020, [fecha de consulta: 12 de octubre del 2020]
- 17. Disponible en: http://www.goodfellow.com/S/Acero-Inoxidable-AISI-304.html
- 18. CRP, Ley de Seguridad y Salud en el Trabajo LEY N° 29783, [en línea], 2016, [fecha de consulta: 02 de noviembre del 2020.
- 19. Disponible en: http://www.munlima.gob.pe/images/descargas/Seguridad-Salud-en-el-trabajo/Ley%2029783%20_%20Ley%20de%20Seguridad%20y%20Salud%20 en%20el%20Trabajo.pdf
- 20. Servicio Nacional de Aprendizaje, Operación y mantenimiento de pozo profundos para acueductos, [en línea] 2020, [Fecha de consulta: 26 de octubre

del 2020] Disponible en:

TF-8

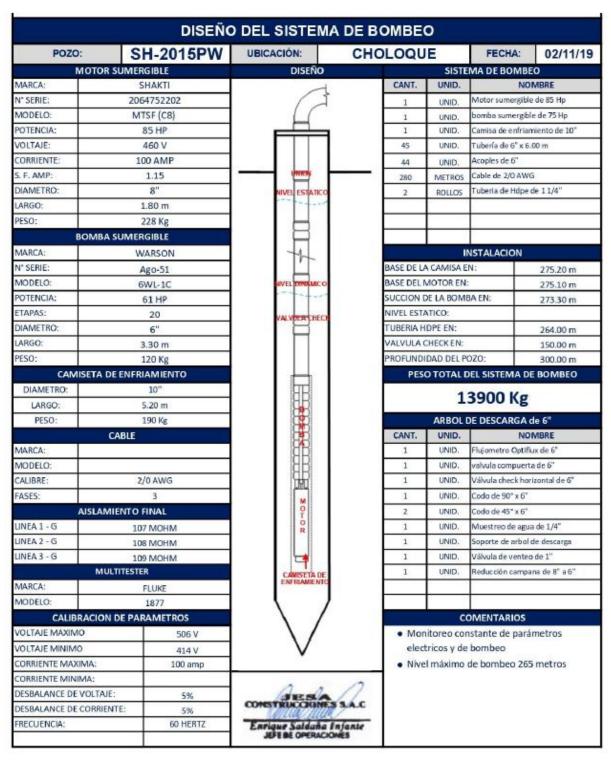
- https://repositorio.sena.edu.co/sitios/calidad_del_agua/operacion_pozos/index. html#
- 21. ENVERD, Parte de un generador eléctrico, [en línea] 2020, [fecha de consulta 28 de octubre del 2020]
- 22. AGRESA, Cuales son las partes de un equipo electrógeno, [en línea] 2020, [Fecha de consulta 14 de octubre del 2020]
- 23. Disponible en: https://www.agresa.es/blog/cuales-son-las-partes-de-un-equipo-electrogeno/
- 24. LIFE RURAL, Construcción y mantenimiento del pozo, [en línea] 2020, [fecha de consulta: 08 de octubre del 2020]
- 25. Disponible en: https://ruralsupplies.eu/4-informacion-al-usuario/abastecimiento-autonomo/11-construccion-y-mantenimiento-del-pozo/
- 26. Turbos, Que es un turbocargador, [en línea], 2020, [fecha de consulta: 28 de octubre del 2020].
- 27. Disponible en:

 https://www.google.com/search?q=turbocargador&rlz=1C1CHBF_esPE923PE
 923&oq=turbocargador&aqs=chrome...69i57.1932j0j4&sourceid=chrome&ie=U
- 28. Arias, L. Mantenimiento implementación y gestión, 2003, pp. 227.
- 29. Arzuaga, C. Modelo de mantenimiento centrado en confiabilidad (RCM) en la flota de equipos de oruga D11T de la Empresa Minera Drummond LTD. Tesis (especialista en gerencia de mantenimiento), Bogotá: Universidad Industrial de Santander, Ingeniería Mecánica,
- 30. Disponible en: http://tangara.uis.edu.co/biblioweb/tesis/2011/137854.pdf
- 31. Nuño, Patricia. Costes Operativos. emprendepyme [en línea], 04 de setiembre del 2020, [fecha de consulta: 24 de octubre del 2020]
- 32. Numdea, Costo Operacional, [en línea], 2020, [fecha de consulta:25 de octubre del 2020]
- 33. Panamericansilver, SHAHUINDO, [en línea] 2020 [fecha de consulta: 15 de noviembre del 2020]


- 34. Panamericansilver, Shahuindo reservas y recursos, [en línea] 2020, [fecha de consulta: 04 de diciembre del 2020].
- 35. Disponible en: https://www.panamericansilver.com/assets/Reserves-Resources/Pan-American-Silver-resources-and-reserves-end-June-2020.pdf
- 36. SHAHUINDO, Reporte de consumo de recurso hídrico, 2020
- 37. SARMIENTO MELENDEZ, Luis Angel. Gestión de mantenimiento centrado en la confiabilidad de estación de bombeo N° 1 de la planta de tratamiento de agua potable N° 1 de Chiclayo en la empresa Epsel SA para el aumento de la producción en el servicio de agua potable en la ciudad de Chiclayo. 2017.
- 38. MURO TABOADA, Valdem. Gestión De Mantenimiento De La Maquinaria De Construcción En Carretera, Para Incrementar La Disponibilidad Y Confiabilidad" En La Empresa Road Solutions Eirl. 2020.
- 39. CALDERÓN CASTILLO, Cristhian Andreé. Propuesta de mejora en la gestión logística del mantenimiento preventivo de equipos de bombeo vertical tipo turbina para reducir los costos operativos de la empresa Cartavio SA A. 2018.
- 40. INFANTE QUISPE, Jose Enrique; PLASENCIA RODRIGUEZ, Eduardo Rafael.

 Propuesta de un sistema de costos por ordenes para control de operaciones
 en la empresa Drillex International Peru SAC Olmos 2016..

ANEXO 01: Ficha técnica bomba sumergible Warson Size 6WL-1C


Bomba: Criterios de búsqueda: Size: 6WL-1C (1 etapa) Caudal: ---Tipo: LINE W_60 Hz Velocidad de sincr.: 1800 rpm Velocidad: 1760 rpm Fluido: Diámetro: 107 mm Temperatura: 20 °C Presión de vapor: 2,339 kPa a Presión atm: 101,4 kPa a Curve: ETWBAEB Impeller: 6WL-1C Velocidades específicas: Viscosidad : 0,9946 cP S: 117 NPSHd: ---Dimensiones: Aspiración: 4" Descarga: RI 3" - RI 4" Turbina vertical: Tamaño del tazón: 5.9" Estándar: IEC Potencia: 0,55 kW Parte lateral máxima: Caja: TEFC Velocidad: 1800 Tamaño motor: 80A Factor k de empuje: 3,12 kg/m Criterios de medición: Potencia máxima en la curva característica Límites de la bomba: Temperatura: 75 °C Potencia: 14.2 kW Presión: 420 PSI Area aspiración: 4.05" Tamaño de la esfera: 9,52 mm 107 mm ---- Datos del punto ----60 6 Caudal: 5,42 Vs 65 Altura: 4,65 m 70 103 mm 73 Rend: 78% 0,316 kW Potencia: 5 97 mm NPSHr: 1 01 m ---- Curva característica ----Ę altura v. cerrada: 7.07 m 92 mm 77 dP v. cerrada: 69.3 kPa 75 Caudal mínimo: 1,07 l/s 73 65 BEP: 78% @ 5,42 l/s 70 Potencia NOL: 70 0,341 kW @ 6,7 l/s -- Curva máxima --Potencia máxima: 0,341 kW @ 6,7 l/s -Datos Adicionales--Diam Flecha Std : 1' Diam Max de Flecha : C.F. Juego Axial Optimo: 0.13" 0,25 Juego Axial Std: 0.53" Potencia Peso Primer Paso Smg Lbs : 56.5 Peso Primer Paso Lub Ag Lbs: 47.9 Peso Primer Paso Lub Ac Lbs: 60.4 Peso Paso Adicional: 17.9 Peso Impulsor: 4.7 lb Minima sumergencia: 10" Ę NPSHr. I/s 15.7 20" Evaluación de rendimiento: Oil lub. Velocidad NPSH requerida Caudal Altura Potencia 5.9" 6.94 1780 3.59 71,6 0.34 1.25 5.78 1760 4.41 77.4 0.322 1.04 1760 5,09 76,5 0,301 0,924 4.62 Water lub. 5.1" --0,825 3,47 1760 5,68 67,4 0,286 2,31 1760 0,271 0,783 10" - 12.6"

ANEXO 02: Esquema de construcción de bomba sumergible WARSON

°No. Parte	Nombre del Componente	Material STD	UNS	Código
1	Cabezal de descarga	Fundición de hierro gris	F12101	051
1B	Brida de succión	Fundición de hierro gris	F12101	051
2	Caja de empaque	Varios materiales		010
8	Flecha Motriz Lub agua	Acero al carbón	G10450	082
9	Flecha superior Lub agua	Acero al carbón	G10450	082
10	Metalizado en flecha	Superficie metalizada cromo duro		124A
11	Cople de flecha de línea	Acero al carbón	G12150	083
12	Mariposa	Bronce	C84400	038
12A	Buje de mariposa	Neopreno	Newby- B15	017
13	Tubo de columna roscado	Acero	K03005	079
14	Cople de tubo de columna	Acero	K03005	079
30	Tazón descarga lub. agua	Hierro gris C-30	F12101	051
41	Flecha de ensamble de tazones	Acero Inoxidable 416 Maquinable	S41600	097
42	Impulsor cerrado	Bronce	C84400	038
46	Cono de impulsor	Acero al carbón	G41045 0	082
50	Buje de tazón intermedio	Bronce	C84400	038
52	Tazón superior	Hierro gris C-30	F12101	051
59	Colador Canasta			
57	Tazón de succión roscado	Hierro gris C-30	F12101	051
61	Buje del tazón de succión	Bronce	C84400	038
65	Arenero	Neopreno	Newby- B15	017

ANEXO 03: Diseño de sistemas de bombeo - SHAHUINDO

ANEXO 04. Daily Process Report Pozos Shahuindo

— SIL	VER —			Supervisor:		Mirko Vaca	
				Técnico:		Victor Aguilar	
Month:	October]			Year:	20:	20
Day:	24			'			
PRODUCTION Pozo 2031		Today	TREND	MTD	Permiso Mensual	YTD	Permiso Anua
Water Consumption	m3	428.0		10,582.0	33,480	169,022.0	394, 200. 0
Caudal Calculado	I/s	6.26					
Caudal Instrumento	I/s	6.00			15		1
Nivel Freático (Dinámico)	mts	168.50		Max. Nivel Oper. 178 mts			
Columna de agua en pozo		9.5					
Operation Time	hr	19.0	-\/V-	450.0			
Pozo 2018		Today	TREND	MTD	Permiso Mensual	YTD	Permiso Anua
Water Consumption	m3	582.0		14,739.0	22, 989. 6	9 197,048.0	270, 684. 0
Caudal Calculado	l/s	6.74					
Caudal Instrumento	l/s	7.00			10.3		10.
Nivel Freático (Dinámico)	mts	236.00	<u>, </u>	Max. Nivel Oper. 266 mts			
Columna de agua en pozo	mts	30.0					
Operation Time	hr	24.0	V	572.7			
Pozo 2015		Today	TREND	MTD	Permiso Mensual	YTD	Permiso Anua
Water Consumption	m3	127.0		3,057.0	29,016.0	8,659.0	341,64
Caudal Calculado	I/s	3.53					
Caudal Instrumento	I/s	2.50	$\overline{}$		13		1
Nivel Freático (Dinámico)	mts	253.55		Max. Nivel Oper. 275 mts			
Columna de agua en pozo		21.5					
Operation Time	hr	10.0	γ .	235.4			
Pozo 2007		Today	TREND	MTD	Permiso Mensual	YTD	Permiso Anua
Water Consumption	m3	0.0		0.0	12,276	13.0	144,540.0
Caudal Calculado	l/s	0.00					
Caudal Instrumento	l/s	0.00			5.5		5.
Nivel Freático (Dinámico)	mts	0.00					
Columna de agua en pozo	mts	0.00					
Operation Time	hr	0.0		0.0			
Pozo 2006		Today	TREND	MTD	Permiso Mensual	YTD	Permiso Anua
Water Consumption	m3	117.4		2,860.5	6,696	3,992.7	78, 840. 0
Caudal Calculado	I/s	1.36					
Caudal Instrumento	I/s	15.00			3		
Nivel Freático (Dinámico)	mts	183.80		Max. Nivel Oper. 236 mts			
Columna de agua en pozo		47.6					
Operation Time	hr	24.0	* V	557.0			
Pozo 2003		Today	TREND	MTD	Permiso Mensual	YTD	Permiso Anua
Water Consumption	m3	117.0		3,611.8	10, 713. 6	69,423.4	126, 144. 0
Caudal Calculado	I/s	1.91					
Caudal Instrumento	l/s	2.00			4		
Nivel Freático (Dinámico)	mts	171.93	~~~	Max. Nivel Oper. 176 mts			
Columna de agua en pozo	mts	4.1					
Operation Time	hr	17.0	√~~	416.4			
TOTAL AGUA MINA	Unit	TOTAL AGUA MINA CONSUMIDA HOY	TREND	ACUMULADO AGUA MINA MES	TOTAL AGUA PERMISO MES	ACUMULADO AGUA MINA AÑO	TOTAL AGUA PERMISO AÑO
Water to process, mine, pr	m3	1,254.36		31,238.49	104,457.60	378,734.69	1,229,904.0
Water to Service (PTAP)	m3	117.00		3,611.80	10,713.6	69,423.40	126, 144.0
Water other Uses	m3	0.00 1,371.4		0.00		0.00	
R.D- N*1487-2016 (2031) / R.D- Events or problems durin * Pozo 2018: Operación 24 * Pozo 2003: Operación 17	ng the shift: Ihr	18) / R.D-N°1531-2019 (2	2015) / R.D- N°	456-2018 (2006/2007) / R.E)- N°254-2016 (2003)	- ANA-AAA.M	

ANEXO 05: Reporte de facturación consumo eléctrico - Shahuindo

REPORTE DE FACTURACIÓN

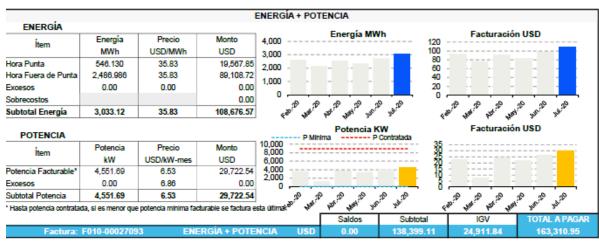
Mes de Facturación: Jul-20

Fecha de Vencimiento: 30/08/2020

Enel Generación Perú

Cliente: SHAHUINDO S.A.C.
Suministro: EE-SHAH-EPE-1

Dirección:


 Información contractual

 Potencia Contratada (MW):
 9
 Inicio Suministro:
 1/03/2019

 Potencia Mínima Facturable (MW
 0
 Fin Suministro:
 1/08/2027

 Traspaso de sobrecostos:
 NO
 Punto Suministro:
 Cajamarca 220kV

Resumen:		
Factura	Moneda	Monto
F010-00027093	USD	163,310.95
F010-00027094	S/	225,812.13
F010-00027095	S/	25,830.02
F010-00027096	S/	26,084.80

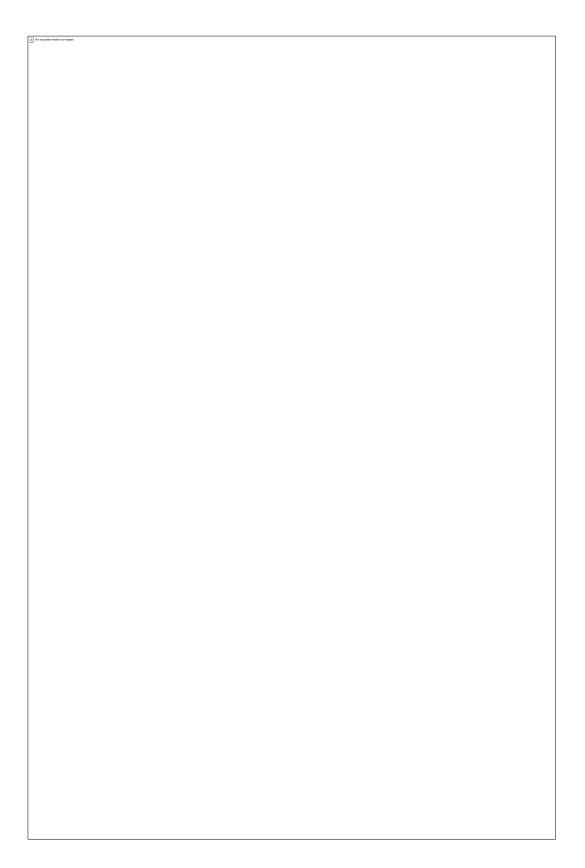
				PEAJE					
					250		Fac	turación S/	
Ítem	Unidad	Cantidad	Valor Unitario	Monto S/	250 200				
Peaje Principal	kW	4,551.69	40.10	182,527.32	150				-
Peaje Secundario	kWh	2,980,071.50	0.002966	8,838.89	100				-
VAD	NIU	1	0.00	0.00	50				
Exceso Reactiva	kVArh	1	0.00	0.00	0				
Otros**	NIU	1	0.00	0.00		Feb20	Mar20 Abr2	20 May20 Jun.	-20 Jul20
Subtotal Peaje				191,366.21		_	D Dringinal = D Cor	undario =VAD =E F	Popotiva = Otros
" Alumbrado Público, Ma	ntenimiento, Carg	o Fijo y Maniobras					r rilliopai iiir 36	didalo VAD E	veacuva = Outos
					Sa	aldos	Subtotal	IGV	TOTAL A PAGAR
Factura:	F010-000270	94	PEAJE	SI	0	.00	191,366,21	34,445.92	225,812.13

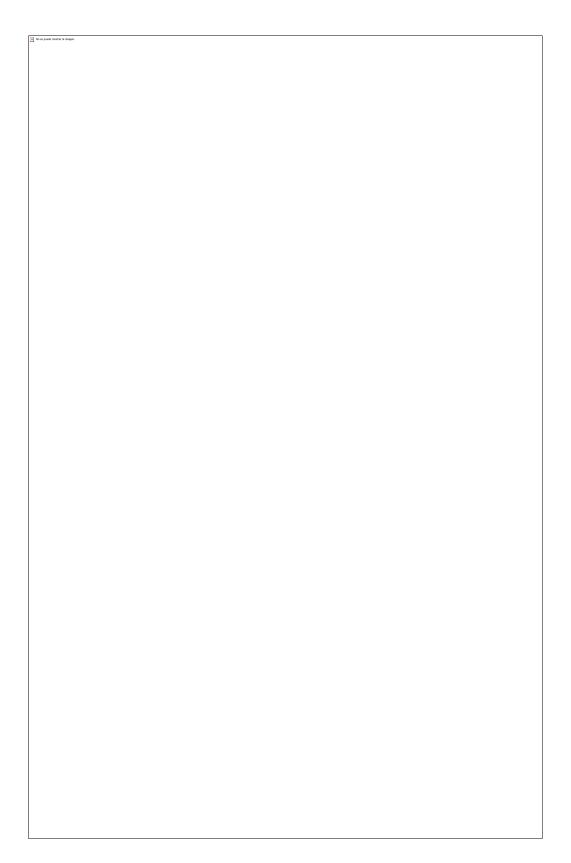
FISE (Fondo de Inclusión Social Energético)										
İtem	Ítem Energía Precio FISE*** Monto Precio FIS						n _{Potencia} +Facturac nergía	ón _{Peaje})×(FOSE-1)		
FISE	3,033,116.77	0.008516	25,830.02		FOSE =	1.038 Facturación	n de energia y potenci	a en S/		
"" Fórmula según Minen	"" Fórmula según Minem/Osinergmin. No afecto a IGV.				Saldos	Subtotal	IGV	TOTAL A PAGAR		
Factura:	F010-0002709	5	FISE	S/	0.00	25,830.02	0.00	25,830.02		

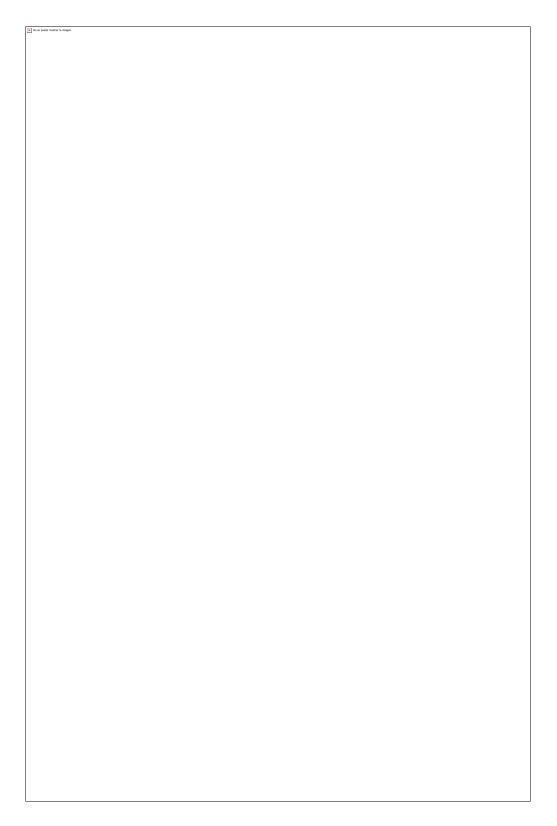
LER (Ley de Electrificación Rural)									
Ítem	Energía	Precio LER***	Monto		Precio	LER = 0.002 x UI	T / 1000		
102111	kWh	S//kWh	S/			UIT = S/ 4200			
LER	3,033,116.77	0.0086	26,084.80						
"" Fórmula según Minem	VOsinergmin. No afe	ecto a IGV.			Saldos	Subtotal	IGV	TOTAL A PAGAR	
Factura:	F010-0002709	6	LER	S/	0.00	26,084.80	0.00	26,084.80	

ANEXO 06. Reporte de monitoreo de condiciones – motor de Generador Eléctrico.

Anexo 7. Generación de formatos para plan de mantenimiento


PAN AMERICAN — SILVER —	C	CALIBRACIÓN DI	E INYECTOR	UNITARIO		Versión 0
Código :	Horometro :		Hora de l	Inicio de servicio : _		
Serie :	Fecha :		Hora de Te	ermino de servicio: _		
	OT (WO):					
		CALIBRACIÓN DE INY	ECTORES			
MDESCRIPCIÓN DE ACTIVIDAL Armar kit de calibración según i						
Nota: El indicador (4) tiene dos p mm (2,53 pulgadas). 2. Afloje el tornillo de nylon para indicador de cuadrante (5) en la cero. Apriete el tornillo de nylon Coloque el indicador de cuadran que la base magnética del acces debe estar sobre la superficie su Los punteros del indicador de es	asos. Asegúres e de que la designaci la cara del dial del indicador de cua extensión del manguito de la varilla para la cara del dial del indicador ci te (5) y el aparato (1) en posición en orio esté en la superficie superior de	adrante (5). Mueva la carra (3) hasta que todos los p de cuadrante (5). el inyector que se verific el seguidor del inyector (7) (0,000 ± 0,008 pulgada rio, gire el tornillo de ajus	o del dial del punteros indiquen ará. Asegúrese de). La varilla (2) s), si el medidor	ic Fixture licator		© © •©
			8) Shoulder			
		REGISTRO DE CALIB	RACIÓN.			
Pietón Nº	Rotación en sent en la carrera de :	ido contrario a las	agujas del re	eloj (estándar). Inyectores		
C	ompresión			3-4-5-6-9-10-15		
	Escape			1-2-7-8-11-12-1	3-14	
C	Rotacio en la carrera de : ompresión Escape	ón hacia la derech		f ás). Inyectores 3-4-5-9-10-12-1 1-2-6-7-8-11-1:	5-16	
Cilindro 0	1 Cilindro 03 Cilindro	05 Cilindro 07	Cilindro 09	Cilindro 11	Cilindro 13	Cilindro 15
Encontrado						
Regulado						
Cilindro 0	2 Cilindro 04 Cilindro	06 Cilindro 08	Cilindro 10	Cilindro 12	Cilindro 14	Cilindro 16
Encontrado						
Regulado						
		OBSERVACION	ES			


Formato para evaluación y calibración de inyectores.


	MERICAN LVER —			CALIBR	ACIÓN DE VÁ	ÁLVULAS			Versió
	Equipo:		Horometro :			Hora de I	nicio de servicio :		
	Serie:		Fecha :			Hora de Te	rmino de servicio	:	
			OT (WO):						
(1 COMF		JUEGO DE LAS V				
ÍTEM	- COMPO	NENTES CALIENTE	S DEL MOTOR PL		CRIPCIÓN DE AC R QUEMADURAS.	TIVIDAD			
		LOQUEO ES INDIV	RACIÓN REQUIERE /IDUAL Y SE HACE o un ajuste si la me	EN LA LA LLAVE	DE CORTE GENER		otablo do la tabla	. 1	
		NO es necesario		, ,	E DE JUEGO DE \		ptable de la tabla	11.	
ÍTEM					CRIPCIÓN DE AC				
3	Ajuste el juego a. Golpee lige b. Afloje la col c. Coloque el d d. Apriete la c contratuerca d Quite el perno	o de las válvulas o ramente el balano ntratuerca de ajus calibrador de lam ontratuerca de aju de ajuste. Vuelva a o de sincronizació	de acuerdo a las ta cín con un mazo bl cte. inillas apropiado o uste a un par de 7 a comprobar el jue n y gire el volante	ablas consideran ando. Esto asegu entre el balancín 0 ± 15 Nim (50 a ego de las válvula 360 grados en el	do el sentido de qua que el rodillo l y el puente de vál· t 11 lb ft). No de la después de apri l sentido de rotaci	giro del motor. levantador se asie vulas. Después, gii ije que el tornillo c etar la contratuero ión del motor. Esti	nte contra el círcu re el tornillo de aj le ajuste gire mie la de ajuste o coloca el pistón	, "Para encontrar la juste hacia la dere ntras esté apretan n número 16 en la los pasos del 1 al	ool de levas cha. Deslice do la posición de
				entido contrario	o a las agujas del	reloj (estándar).			
		arrera para el pist sición central supe		Válvula d	e Admisión		Válvula	de Escape	
	C	Carrera de Compre Carrera de Esca			I-12-13-14 0-11-15-16			1-5-6-8-9 -13-14-15-16	
		Carrera de Esca			lerecha (marcha	atrác)	7-10-11-12-	-13-14-13-10	<u> </u>
		arrera para el pist	tón N ° 1 en la		e Admisión	au as j.	Válvula	de Escape	
		sición central supe Carrera de Compre			7-8-13-14			-5-6-9-10	
		Carrera de Esca			1-12-15-16			13-14-15-16	
				Ajuste de ju	ego de válvulas				
		lvulas				/Tolerancia			
		misión scape			0.50 ± 0.08 mm (0 1.00 ± 0.08 mm (0				
4	Es	scape	n del volante desp		1.00 ± 0.08 mm (0	0.040 ± 0.003 inch)	Reinstale la tapa d	de la
4	Es	scape o de sincronizació	n del volante desp	ués de que se ha	1.00 ± 0.08 mm (0	0.040 ± 0.003 inch)	Reinstale la tapa o	de la
	Quite el perno sincronización	scape o de sincronizació ı.		ués de que se ha	1.00 ± 0.08 mm (0 gyan hecho todos DE CALIBRACIÓN	0.040 ± 0.003 inch los ajustes al jueg) o de las válvulas.		de la
Escape	Quite el perno	scape o de sincronizació	n del volante desp	ués de que se ha	1.00 ± 0.08 mm (0	0.040 ± 0.003 inch)	Reinstale la tapa o	de la
	Quite el perno sincronización	scape o de sincronizació ı.		ués de que se ha	1.00 ± 0.08 mm (0 gyan hecho todos DE CALIBRACIÓN	0.040 ± 0.003 inch los ajustes al jueg) o de las válvulas.		de la
Escape	Quite el perno sincronización	scape o de sincronizació ı.		ués de que se ha	1.00 ± 0.08 mm (0 gyan hecho todos DE CALIBRACIÓN	0.040 ± 0.003 inch los ajustes al jueg) o de las válvulas.		de la
Escape Encontrado Regulado	Es Quite el perno sincronización	scape o de sincronizació). Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07	1.00 ± 0.08 mm (toyan hecho todos DE CALIBRACIÓN Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11	o de las válvulas. Cilindro 13	Cilindro 15	de la
Escape Encontrado Regulado Admisión	Quite el perno sincronización	scape o de sincronizació ı.		ués de que se ha	1.00 ± 0.08 mm (0 gyan hecho todos DE CALIBRACIÓN	0.040 ± 0.003 inch los ajustes al jueg) o de las válvulas.		de la
Escape Encontrado Regulado	Es Quite el perno sincronización	scape o de sincronizació). Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07	1.00 ± 0.08 mm (toyan hecho todos DE CALIBRACIÓN Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11	o de las válvulas. Cilindro 13	Cilindro 15	de la
Escape Encontrado Regulado Admisión	Es Quite el perno sincronización	scape o de sincronizació). Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07	1.00 ± 0.08 mm (toyan hecho todos DE CALIBRACIÓN Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11	o de las válvulas. Cilindro 13	Cilindro 15	de la
Encontrado Regulado Admisión Encontrado	Es Quite el perno sincronización Cilindro 01	cape o de sincronizació . Cilindro 03 Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07	1.00 ± 0.08 mm (i yyan hecho todos DE CALIBRACIÓN Cilindro 09 Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11	o de las válvulas. Cilindro 13 Cilindro 13	Cilindro 15 Cilindro 15	de la
Encontrado Regulado Admisión Encontrado	Es Quite el perno sincronización	scape o de sincronizació). Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07	1.00 ± 0.08 mm (toyan hecho todos DE CALIBRACIÓN Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11	o de las válvulas. Cilindro 13	Cilindro 15	de la
Escape Encontrado Regulado Admisión Encontrado Regulado	Es Quite el perno sincronización Cilindro 01	cape o de sincronizació . Cilindro 03 Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07	1.00 ± 0.08 mm (i yyan hecho todos DE CALIBRACIÓN Cilindro 09 Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11	o de las válvulas. Cilindro 13 Cilindro 13	Cilindro 15 Cilindro 15	de la
Escape Encontrado Regulado Admisión Encontrado Regulado	Es Quite el perno sincronización Cilindro 01	cape o de sincronizació . Cilindro 03 Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07	1.00 ± 0.08 mm (i yyan hecho todos DE CALIBRACIÓN Cilindro 09 Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11	o de las válvulas. Cilindro 13 Cilindro 13	Cilindro 15 Cilindro 15	de la
Escape Encontrado Regulado Admisión Encontrado Regulado	Es Quite el perno sincronización Cilindro 01	cape o de sincronizació . Cilindro 03 Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07	1.00 ± 0.08 mm (i yyan hecho todos DE CALIBRACIÓN Cilindro 09 Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11	o de las válvulas. Cilindro 13 Cilindro 13	Cilindro 15 Cilindro 15	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado	Es Quite el perno sincronización Cilindro 01	cape o de sincronizació . Cilindro 03 Cilindro 03	Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07	1.00 ± 0.08 mm (i yyan hecho todos DE CALIBRACIÓN Cilindro 09 Cilindro 09	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11	o de las válvulas. Cilindro 13 Cilindro 13	Cilindro 15 Cilindro 15	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 09 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 09 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 09 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión Encontrado	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 10 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión Encontrado	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 09 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión Encontrado	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 10 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión Encontrado	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 10 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión Encontrado	Cilindro 01 Cilindro 01 Cilindro 01	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 05	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 10 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 11 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 13 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	de la
Escape Encontrado Regulado Admisión Encontrado Regulado Escape Encontrado Regulado Admisión Encontrado	Cilindro 01 Cilindro 02 Cilindro 02	cape o de sincronizació o Cilindro 03 Cilindro 03	Cilindro 05 Cilindro 05 Cilindro 06	ués de que se ha 3 REGISTRO D Cilindro 07 Cilindro 07 Cilindro 08	1.00 ± 0.08 mm (i yyan hecho todos E CALIBRACIÓN Cilindro 09 Cilindro 10 Cilindro 10	0.040 ± 0.003 inch los ajustes al jueg Cilindro 11 Cilindro 12 Cilindro 12	o de las válvulas. Cilindro 13 Cilindro 14 Cilindro 14	Cilindro 15 Cilindro 15 Cilindro 16	

Formato para control y calibración de holgura de válvulas

	AMERICAN SILVER —		CHECK L	IST VERIFICA	CIÓN	N DE PM1		Versión 0
Código	:	Horometro :		Hora de Inicio de	servici	o :		
Serie	:	Fecha:		Hora de Termino	de ser	vicio:		
		OT (WO):		Г				
		01 (W0).			1 Ba	SAS DE FALLA: ajos niveles de aceite		
INSTRUCCIONES: 1 Marque con un 2 Tenga presente	aspa (X) si presenta irre e la lista de CAUSAS DE	gularidades con (√) si FALLAS mas comune	el estado es Normal (s antes de indicar la ac) No realizado. ctividad.	3 To	rietas o fisuras. ornillos flojos. ugas de aceite	7 Rozamiento. 8 Abrazaderas defe	ectuosas
	√ Preparac	ión del equipos				Observa	ciones	
Consulte al	encargado del área si	tiene observaciones	del equipo					
Prepare la n	máquina para la inspec	ción.						
Descargue	códigos activos y verifi	que parámetros con	ET					
Observe el o	color de los gases de e	escape.						
Escuche pa	ra detectar ruidos inus	suales.						
Verificar est	ado de extintor y ultim	na inspección.						
	√ 1 Verif	icar Motor				Monitoreo de (Condiciones.	
Verificar nivel				SOS Motor				
	l de refrigerante el indicador de servicio	o del filtro de aire de	I motor	SOS refrige	rante			
	te filtro de aire del mot							
Drenar agua	y sedimentos del sepa	arador de agua.						
	, ajustar y de ser nece pjinete del mando del v		correas.	Probar corte	de si	Monitoreo de (Condiciones.	
Inspeccionar	y de ser necesario ree		y abrazaderas	i lobal colle	ou di			
Limpiar el rac	diador							
0:1: 1 04	0:1: 1 00	077 1 05	Temperatura de func		ndros	077	0": 1 40	077 1 45
Cilindro 01	Cilindro 03	Cilindro 05	Cilindro 07	Cilindro 09		Cilindro 11	Cilindro 13	Cilindro 15
Cilindro 02	Cilindro 04	Cilindro 06	Cilindro 08	Cilindro 10		Cilindro 12	Cilindro 14	Cilindro 16
			√ 2 Verifi	car Generador				
	strar la temperatura de	el cojinete del genera	ador			or de potencia		
	a carga del generador I calentador de agua d	e las camisas		Comprobar	el volta	ije y la frecuencia		
compressir er	r calcillador de agua d	c las carrisas	10 W :5	0: 4 - 51/ 4:				
Inspeccionar	el tablero monitor		√ 3 Verificar	Sistema Eléctric		de electrolito de la	batería	
Evaluar borne								
	Descri	pción		N° de Parte		Cantidad	Unidad	Ejecución
ambiar refrigerant				Según condici	ón	126.80	Gln	
ambiar aceite de ambiar filtro de ac				15W40 1R-0726		100.00 3.00	Gln Pza	
ambiar el filtro Ra				1346307 / LWP :	2020	2.00	Pza	
	imario del sistema de	combustible(separad	dor de agua)	1R-0756		5.00	Pza	
			-					
BSERVACIONES	8							
					_			
Té	ecnico	Je	efe /Supervisor de G	uardia		VB° Confiab	ilidad /Monitoreo de	Condiciones.
						P-4	o. Confiabilidad y Planeamie	AND CHAULUNDO CAC

Anexo 8. Operacionalización de Variables

Variable	Definición conceptual	Definición Operacional	Dimensiones	Indicadores	Escala de medición
Proceso de operación y mantenimiento	"Es un proceso utilizado para determinar la forma correcta de operar y mantener en óptimas condiciones de funcionamiento a los pozos tubulares	Es la mezcla de tareas, técnicas y acciones definidas a partir de los conceptos de mantenimiento, sumado a las acciones administrativas para asegurar su óptimo funcionamiento durante su ciclo de vida.	Operación Mantenimiento	Confiabilidad. Disponibilidad. Sustentabilidad Eficiencia	Horas máquina Horas hombre Número de fallas
Costos operativos para la gestión de los pozos tubulares.	"Son los costos relacionados con la operación o funcionamiento de un equipo, sistema o instalación, de igual manera son los costos que se relacionan directamente con el proceso productivo" (numdea,2020)	Los costos operacionales Se agrupan en 02 tipos de costes operativos, los costos fijos y costos variables, los primeros son aquellos que pese a que haya variación en los niveles de producción estos se mantienen fijos, sin variación y los segundos varían en fusión de los niveles de producción. (Nuño, p. 2017)	Costos Operativos	Costos fijos Costos variables	USD/Hr

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Declaratoria de Autenticidad del Asesor

Yo, SALAZAR MENDOZA ANIBAL JESUS, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHICLAYO, asesor de Tesis titulada: "MEJORA DE PROCESO DE OPERACIÓN Y MANTENIMIENTO DE POZOS TUBULARES PARA REDUCIR LOS COSTOS OPERATIVOS DE LA OPERACIÓN MINERA SHAHUINDO SAC", cuyo autor es RUBIO VACA WILLAN JARLIN, constato que la investigación tiene un índice de similitud de 22%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

CHICLAYO, 16 de Diciembre del 2020

Apellidos y Nombres del Asesor:	Firma
SALAZAR MENDOZA ANIBAL JESUS	Firmado electrónicamente
DNI: 16720249	por: AJSALAZARM el 19-
ORCID: 0000-0003-4412-8789	12-2020 13:53:31

Código documento Trilce: TRI - 0083626

