

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Influencia por incorporación de partículas del rastrojo de trigo y quinua en propiedades de subrasante, carretera Chasqui-Pilcuyo, 2024

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTOR:

Atencio Fuentes, Guido Nidward (orcid.org/0009-0006-0260-0204)

ASESOR:

Dr. Ascoy Flores, Kevin Arturo (orcid.org/0000-0003-2452-4805)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

TRUJILLO – PERÚ

2024

DEDICATORIA

La presente investigación de tesis está dedicada a mi madre Elvira Fuentes por todo el apoyo que me brindó en el transcurso de mi vida de preparación profesional de igual manera dedicar la presente tesis a toda mi familia que jamás me abandonaron cuando más los necesitaba.

AGRADECIMIENTO

Agradecer a la universidad "César Vallejo" por darme la oportunidad de optar el título profesional de ingeniero civil y a todas aquellas personas que contribuyeron en la elaboración del presente proyecto de investigación, siempre apoyándome y aconsejándome para el éxito en mi vida profesional.

DECLARATORIA DE AUTENTICIDAD DEL ASESOR

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, ASCOY FLORES KEVIN ARTURO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "Influencia por incorporación de partículas del rastrojo de trigo y quinua en propiedades de subrasante, carretera Chasqui-Pilcuyo - 2024", cuyo autor es ATENCIO FUENTES GUIDO NIDWARD, constato que la investigación tiene un índice de similitud de 17%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 06 de Mayo del 2024

Apellidos y Nombres del Asesor:	Firma
KEVIN ARTURO ASCOY FLORES	Firmado electrónicamente
DNI: 46781063	por: KASCOY el 06-05-
ORCID: 0000-0003-2452-4805	2024 15:40:51

Código documento Trilce: TRI - 0745903

DECLARATORIA DE ORIGINALIDAD DEL AUTOR

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad del Autor

Yo, ATENCIO FUENTES GUIDO NIDWARD estudiante de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, declaro bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Influencia por incorporación de partículas del rastrojo de trigo y quinua en propiedades de subrasante, carretera Chasqui-Pilcuyo - 2024", es de mi autoría, por lo tanto, declaro que la Tesis:

- No ha sido plagiada ni total, ni parcialmente.
- He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma
GUIDO NIDWARD ATENCIO FUENTES	Firmado electrónicamente
DNI: 70190240	por: GUATENCIOFU el 06-
ORCID: 0009-0006-0260-0204	05-2024 16:32:17

Código documento Trilce: TRI - 0745904

ÍNDICE DE CONTENIDOS

	CARÁTULA	i
	DEDICATORIA	ii
	AGRADECIMIENTO	iii
	DECLARATORIA DE AUTENTICIDAD DEL ASESOR	iv
	DECLARATORIA DE ORIGINALIDAD DEL AUTOR	V
	ÍNDICE DE CONTENIDOS	vi
	ÍNDICE DE TABLAS	vii
	ÍNDICE DE GRÁFICOS Y FIGURAS	viii
	RESUMEN	ix
	ABSTRACT	x
l.	INTRODUCCIÓN	1
II.	MARCO TEÓRICO	4
Ш	METODOLOGÍA	13
	3.1. Tipo y diseño de investigación	13
	3.2. Variables y operacionalización:	14
	3.3. Población y muestra:	14
	3.4. Técnicas e instrumentos de recolección de datos:	16
	3.5. Procedimientos:	16
	3.6. Método de análisis de datos:	17
	3.7. Aspectos éticos:	18
IV		
٧.	DISCUSIÓN	23
VI	. CONCLUSIONES	26
V١	I. RECOMENDACIONES	27
	REFERENCIAS	28
	ANEXOS	29

ÍNDICE DE TABLAS

Tabla 1. Clasificación de suelos según el índice de plasticidad	11
Tabla 2. Propiedades de la piedra triturada	12
Tabla 3. Ensayo CBR	14
Tabla 4. Ensayo límite líquido	14
Tabla 5. Ensayo límite plástico	15
Tabla 6. Ensayo de contenido de Humedad Óptimo	15
Tabla 7. Resultados promedio de ensayos	19
Tabla 8. Resultados de Límite liquido	19
Tabla 9. Resultados de Límite plástico	20
Tabla 10. Resultados de promedio contenido de Humedad	21
Tabla 11. Resultados de ensayo CBR	21
Tabla 12. Resultados de ensayo Proctor	21
Tabla 13. Matriz de Consistencia	29
Tabla 14. Cuadro de operacionalización	31

ÍNDICE DE GRÁFICOS Y FIGURAS

Figura 1. Plano de ubicación para extracción de calicatas
Figura 2. Instrumento de recolección de datos
Figura 3. Compra de material para la adición de la investigación
Figura 4. Triturado de rastrojo de trigo y quinua
Figura 5. Carretera en estudio Chasqui – Pilcuyo
Figura 6. Colocando los conos de seguridad previniendo para posibles incidentes en zona de extracción de calicatas
Figura 7. Medidas del ancho y largo para la extracción de calicatas 106
Figura 8. Se mide la profundidad para la extracción de calicatas y/o muestras 106
Figura 9. Tamizado para el ensayo de granulometría
Figura 10. Pesado de material en estudio
Figura 11. Tamizaje de material adicionado (rastrojo de trigo y quinua) 107
Figura 12. Se realizó el tamizaje de material adicionado y se tomó el porcentaje al 5% y 10%
Figura 13. Se realiza cuarteo después de hacer el ensayo en la cuchara de Casagrande
Figura 14. Se realiza la preparación de filamentos para determinar el límite líquido y plástico
Figura 15. Pesaje de filamentos para el estudio de límite líquido y plástico. Elaboración propia
Figura 16. Se realiza la prueba de CBR con material patrón y adicionado al 5% y 10%
Figura 17. Se inicia con el ensayo de Proctor modificado
Figura 18. Se utiliza papel parafinado para realizar el ensayo de Proctor modificado.
Figura 19. Toma 01 de resultados con DIAL
Figura 20. Toma 02 de resultados con DIAL
Figura 21. Toma 03 de resultados con DIAL
Figura 22. Se realiza el ensayo de Proctor modificado con la adición de material adicionado con un 5% y 10%

RESUMEN

El presente estudio tiene como objetivo es evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en las propiedades de la subrasante en la carretera Chasqui-Pilcuyo, la investigación fue de tipo aplicada, con un nivel de investigación explicativa de diseño experimental; la muestra estuvo conformada por 3 grupos experimentales, ensayos de granulometría, ensayo de límites de Atterberg, ensayo de CBR, ensayo de Proctor modificado. Para la obtención de datos se aplicó la técnica de observación donde se obtuvo resultados que las partículas de rastrojo de trigo y quinua influyen de manera significativa en la estabilización de subrasante en carretera desvío carretera Chasqui-Pilcuyo, es decir las partículas de rastrojo de trigo y quinua cumple con las características físicas y químicas para ser aplicado en la estabilización de la Subrasante, el índice de plasticidad y CBR se encuentran dentro de los parámetros de la norma establecida, lo que llega a concluir que la capacidad portante se ha visto influenciado de manera significativa en la densidad máxima seca, contenido de humedad y CBR; lo que implica haber alcanzado la hipótesis de investigación.

Palabras clave: estabilización, subrasante, rastrojo de trigo y quinua, CBR.

ABSTRACT

The objective of this study is to evaluate how the incorporation of wheat and quinoa

stubble particles influences the properties of the subgrade on the Chasqui-Pilcuyo

highway. The research was of an applied type, with an explanatory research level of

experimental design; The sample was made up of 3 experimental groups, granulometry

tests, Atterberg limits test, CBR test, modified Proctor test. To obtain data, the

observation technique was applied where results were obtained that wheat and quinoa

stubble particles significantly influence the stabilization of subgrade on the Chasqui-

Pilcuyo highway detour, that is, wheat and quinoa stubble particles. Quinoa meets the

physical and chemical characteristics to be applied in the stabilization of the Subgrade,

the plasticity index and CBR are within the parameters of the established standard,

which concludes that the bearing capacity has been significantly influenced, significant

in maximum dry density, moisture content and CBR; which implies having achieved the

research hypothesis.

Keywords: stabilization, subgrade, wheat and quinoa stubble, CBR.

Х

I. INTRODUCCIÓN

Según (Elizondo y Navas, 2011) en los últimos años las vías se incrementaron en diferentes países el cual permite el desarrollo de todo el país, ciudad, sin embargo, el tipo de suelo cambian de acuerdo a la zona y no tienen la adecuada resistencia o estabilización de la subrasante, en la mayoría de los suelos con altos índices de plasticidad. (Maylle y Avila, 2023) la subrasante es utilizada como cimiento para la estructura en rutas no pavimentadas, en distintas zonas con diferentes tipos de suelo, el cual es preparada para su futuro pavimento, es por ello que se debe de realizar un estudio adecuado con parámetros indicados para la buena estabilidad y calidad del camino.

Según (Elizondo y Navas, 2011) se explora el uso de diferentes materiales para estabilizar la subrasante en suelos finos con niveles medios o altos de plasticidad. (Souza et al., 2023) debido al uso de partículas adicionales, se logran mejoras significativas como el incremento de resistencia mecánica, la disminución de plasticidad, y la mejora de la trabajabilidad, entre otros beneficios. Además, el autor propone un método para diseñar y evaluar el rendimiento de los laboratorios de materiales estabilizados con cal, el cual debe ser puesto en práctica y evaluado en su aplicabilidad en distintos países y ciudades.

Según (Massenlli y Paiva, 2019) En lugar de eso, se puede considerar añadir partículas de rastrojo de trigo y quinua al suelo como una alternativa para reducir los problemas relacionados con las características físicas y mecánicas. (Rivera y Aguirre, 2020) esto puede mejorar la granulometría y las propiedades mecánicas del material. (Ramirez, 2020), la capacidad portante del suelo y la resistencia a las grietas por fatiga se mejoran mediante la adición de partículas de residuos de distintos componentes. (Montejo y Raymundo, 2020) se propone con el siguiente articulo mejorar el CBR y capacidad portante del suelo el cual los resultados fueron favorables.

En el distrito de Pilcuyo, provincia de El Collao tiene una orografía de terreno

llano y poco accidentado, donde tenemos suelos múltiples, limo arenoso, arcilloso, arenoso, el cual requiere un tratamiento de la subrasante para que la infraestructura vial pueda ser estabilizada y sea óptimo para el tránsito de vehículos pesados como livianos. El proyecto de investigación en cuestión comprende la carretera desvío Chasqui – Pilcuyo que tiene un tramo de 780 metros aproximadamente con superficie pavimento flexible, la subrasante del tramo en estudio está constituido por suelo arcilloso y arenoso en donde apreciamos las deformaciones y socavaciones a causa de cargas verticales aplicadas por vehículos pesados, el cual dificulta el tránsito fluido de vehículos en general por la falta de atención en estas zonas olvidadas en donde se aprecia gran cantidad de vehículos en circulación, el cual conecta distritos, centros poblados y comunidades campesinas.

El **problema general** es ¿De qué manera influye la incorporación de las partículas de rastrojo del trigo y quinua en las propiedades de subrasante, carretera Chasqui-Pilcuyo, 2024? Así mismo se consideró como problemas específicos ¿En qué medida influye el uso de las partículas del rastrojo de trigo y quinua en el límite liquido de la subrasante en la carretera Chasqui-Pilcuyo, 2024?; ¿En qué medida influye el uso de las partículas de rastrojo del trigo y quinua en el límite plástico de la subrasante en la carretera Chasqui-Pilcuyo, 2024?; ¿De qué manera contribuye las partículas de rastrojo del trigo y quinua en el contenido de humedad y densidad máxima seca de la subrasante en la carretera Chasqui-Pilcuyo, 2024?.

Se propone una justificación teórica que busca estabilizar los suelos en subrasantes y seguir las recomendaciones del manual de la MTC. Los aditivos recomendados en dicho manual fueron sometidos a pruebas experimentales y posteriormente validados y recomendados. Este aporte nos permitirá analizar los costos y rendimiento de la calidad de las cenizas. La investigación actual se basa en una justificación tecnológica, ya que utiliza partículas de rastrojo de trigo y quinua para mejorar las propiedades físicas y mecánicas de la subrasante de diferentes tipos de suelos, como los arcillosos, arenosos y limosos, de una manera eficiente y sostenible. Con el objetivo de lograrlo, se llevarán a cabo ensayos en el laboratorio

que nos permitan obtener indicadores relacionados con aspectos técnicos tales como la plasticidad, el grado de compactación y el CBR. Además, se argumenta que esto tendrá un impacto favorable en los impactos ambientales, brindando beneficios tanto a nivel social como económico. **La justificación legal** para llevar a cabo la mayoría de los ensayos en laboratorio, que se centran en las características físicas y mecánicas de los suelos, es el cumplimiento de las normas establecidas por el Ministerio de Transportes y Comunicaciones (MTC) y la Sociedad Estadounidense para Pruebas y Materiales (ASTM).

El **objetivo general** es evaluar la influencia de la incorporación de partículas de rastrojo de trigo y quinua en las propiedades de subrasante en la carretera Chasqui-Pilcuyo, 2024. Así mismo los **objetivos específicos** son: Evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en el límite liquido de la sub rasante en la carretera Chasqui-Pilcuyo, 2024. Evaluar cómo influye la incorporación de las partículas de rastrojo de trigo y quinua en el límite plástico de la subrasante en la carretera Chasqui-Pilcuyo, 2024. Evaluar cómo influye la dosificación en la incorporación de las partículas de rastrojo de trigo y quinua en el contenido de humedad y densidad máxima seca de la subrasante en la carretera Chasqui-Pilcuyo, 2024.

La hipótesis general es la incorporación de las partículas de rastrojo de trigo y quinua influye de manera positiva las propiedades de la subrasante de la carretera Chasqui-Pilcuyo, 2024. Así mismo las hipótesis específicas son: La incorporación de las partículas de rastrojo de trigo y quinua mejora significativamente en el límite liquido de la subrasante de la carretera Chasqui-Pilcuyo, 2024. La incorporación de las partículas de rastrojo de trigo y quinua mejora significativamente en el límite plástico de la subrasante de la carretera Chasqui-Pilcuyo, 2024. La incorporación de las partículas de rastrojo de trigo y quinua mejora significativamente en el porcentaje de contenido de humedad y densidad máxima seca de la subrasante de la carretera Chasqui-Pilcuyo, 2024.

II. MARCO TEÓRICO

Según (Rincón y Alvarez, 2022) el **propósito** de este estudio es proponer y llevar a cabo la validación inicial de un nuevo protocolo para el ensayo de dCBR a través de la aplicación de deformaciones específicas. Se tiene como **resultados** típicos de CBR el ensayo para un esfuerzo bajo del pistón de 2Mpa tenemos 4 réplicas hallando Módulo resiliente equivalente (Eequi), promedio (Mpa) en MG1 398,5 y MG2 361,2; teniendo una desviación estándar (Mpa) MG1 61,3 y MG2 64,3; coeficiente de variación (%) MG1 15,4 y MG2 17,8; se logró evidenciar para el esfuerzo de pistón de 2 Mpa el IP = 8% obteniendo un módulo resiliente de 398 Mpa, IP = 12%.

Respecto a (Ojeda & Mendoza, 2018) el **objetivo** principal es evaluar la resistencia a compresión de suelo - cemento - ceniza, **resultados** del suelo patrón con un valor de CBR es 24,5%; con la adición del 3% ceniza de caña de azúcar (CPC) es 92,5%; adición del 5% es 110%, al adicionar el 7% de CPC es 208%.

Según, (Massenlli y Paiva, 2019) el presente tiene un **propósito** de analizar de qué manera una subbase débil afecta en los comportamientos de los pavimentos. **Resultados obtenidos**, teniendo como muestra patrón subrasante CBR = 10% el Módulo de la subrasante (EsI = 80Mpa); la subrasante con CBR = 5% será (50 Mpa) deformaciones horizontales y verticales de compresión tenemos en la Sub Base un material granular con coeficiente de Poisson 0,40 μ , Módulo de Elasticidad (Mpa) 200,00, espesor H (m) 0,20; subrasante un material subrasante existente con coeficiente de Poisson 0,45 μ , Módulo de Elasticidad (Mpa) 50, espesor H (m) variable. Se tiene una reducción acentuada en la deflexión, cuando la altura referencial (Href) de 0,20 m a 0,40 m, la deflexión alcanzó 1,85 mm y el esfuerzo de la subrasante 0,60m resulta igual a 2,01 x 10^{-4} .

De acuerdo a (Hernández y López, 2021) El propósito es analizar la reacción puzolánica de la zeolita natural. Como se puede observar en los resultados, la muestra (3C) alcanzó un pH de 12,10 %, LL de 71,80 %, LP de 60,81 %. Por otro lado, la muestra (5C) presenta valores de LL=65,49% y LP=51,92% a pH 12,18%, lo que

representa una disminución del 12% al 15% con respecto a la anterior. Las proporciones de zeolitas en las muestras (1Z - 7Z) se determinaron en función de sus proporciones y de otros componentes de la mezcla total. Las muestras mezcladas con cal y zeolita (4CZ, 5CZ, 7CZ y 8CZ) presentan valores de IP de (14.15, 21, 11.88 y 7.67), respectivamente. Esto representa una mejora en los valores (LL y LP) de aproximadamente (10-20) %.

Según (Bustamante y Marin, 2022) el **objetivo** es aplicar la vinaza Saccarum officinarum (VSO) en porcentajes del 10%, 20% y 25% el cual obtuvo **resultados** mejores y óptimos, al adicionar el 25% de VSO en la C1 CBR al 95% es 15,8; C2 es 14,1; C3 es 12,8%; el CBR al 100% en C1 es 20,5; C2 es 18.4; C3 es 18,0; C4 es 17,4.

Mediante (Kattiuska et al., 2024) tiene como **objetivo** evaluar la adición de escoria de acero, y obtuvo como **resultados** de con adición del 20 y 25 % de escoria de acero se ve una mejoras notables en el CBR y máxima densidad seca (M.D.S.), el contenido de humedad disminuye en 12,70% de la muestra patrón, adicionar el 15,00% el óptimo contenido de humedad disminuye un 12,30%; adición de 20,00% disminuye al 10,73%; adición 25,00% disminuye un 9,80%; como resultados óptimos se tiene al adicionar el 15,00% de escoria de acero se mejora el CBR al 100% de la M.D.S. alcanzando un valor del 30,63%.

Respecto (Ganes y Sivapriya, 2019) el **objetivo** es estudiar que la adición de distintos geo sintético ayuda al comportamiento del terreno y obteniendo **resultados** de un CBR al 58,18%; 78,44% y 79.31% al adicionar la geomalla se incrementa el CBR en 73,44% y 79,31% respectivamente; la geomembrana al remojarlo el valor del CBR aumenta a 39,51%; 84,11% y 76,81%.

De acuerdo a (Juarez y Mondelli, 2023) el **objetivo** de este artículo es verificar el comportamiento mecánico de los residuos sólidos y sus **resultados** expusieron un peso unitario seco máximo entre 6,6 y 10,0 kN/m3 y el CHO entre el 20% y 42% respectivamente.

Según (Bojacá y Campagnoli, 2022) Como **objetivo** es desarrollar para el diseño de pavimentos que se basan en los valores de (CBR). Y teniendo como **resultados** se tiene las diferentes penetraciones en ensayo CBR, en la primera muestra se referencian, % arena = 0% y R2 = 0,9198; % arena = 49% y R2 = 0,8855; IP = 6% y R2 = 0,9145; IP = 69% y R2 = 0,8238; IP = 6% y IP = 69%.

De acuerdo a (Serrano y Padilla, 2019) El **objetivo** de este trabajo es recoger las conclusiones más importantes sobre los cambios en las propiedades del sustrato cuando se añaden fibras poliméricas naturales o sintéticas, con **resultados** de fibras 0,5%, 0,75%, 1,0% y 1,25% aumentan la resistencia en un 8%, 15,7%, 18,5% y 21%, respectivamente. Variaciones de la resistencia máxima del suelo-cemento con respecto a la longitud de las fibras con 10%, 0,5% y 1% de cemento y fibras, variaciones de la resistencia máxima del suelo con respecto a la longitud de las fibras con 8% de adición de cemento. En su estudio, utilizaron bolsas de polietileno líquido para la estabilización y la proporción óptima fue el 6% del peso seco del suelo. El CBR del suelo arcilloso es del 4,15% de la sequía máxima del 95%. Agregar bolsas de polietileno disuelto al 6% del suelo seco aumenta el CBR en un 7,98%, que es el 95% del peso seco máximo.

Según (Abisa y Prakash, 2022) el **propósito** principal de este trabajo es aumentar la densidad del suelo al disminuir su porosidad. Estos **resultados** para suelo sin uso previo, el (LL) es de 44%, el (LP) es de 19,59% y el límite de contracción es de 23,5. Los valores de LL y LP continúan disminuyendo a medida que se aumenta la dosis óptima de adición de óxido de nano aluminio. Se obtuvieron los valores 38% y 16,99%. El límite de contracción alcanza un valor de 29,32; aumentando desde 23,5 en la dosis óptima. Cuando hay esta cantidad de agua presente, la tierra fina no experimentará cambios en su volumen al secarse. **Resistencia a la compresión ilimitada** se ve un incremento en la resistencia a la compresión del suelo al utilizar nano óxido de aluminio. La resistencia de la compresión del suelo virgen es de 31,5%. Después de añadir un 0,2% de nano óxido de aluminio, el valor aumenta ligeramente

con la adición del 0,6% (141,9) de agente estabilizante. **Contenido de humedad óptima,** después de agregar un aditivo estabilizante, el valor cambia según la cantidad de aditivos agregados. La adición de 0,6% de nano aluminio dio como resultado un valor OMC del 17%, mientras que la adición de 1,2% de nano aluminio dio como resultado el valor OMC más bajo del 6%.

Según (Ospina y Chaves, 2020) teniendo como objetivo realizar análisis técnico de una mezcla entre chatarra de acero y tierra. Los resultados para la muestra de caolinita, el contenido de agua es del 40,7%, LP es 25,1% y el IP es del 15,5%. La cantidad de desechos utilizados para ingresar a la arcilla caolinita se considera buena, cuyos resultados se muestran teniendo 3 resultados, densidad seca 1.46 gr/cm3, 1.56 gr/cm3, 1,37 gr/cm3 y humedad optima 11,9%; 16,5% y 31%. Resultados Matriz de dosificación con muestra caolinita humedad óptima para muestra patrón 20,20 %, para 25 % se tiene 20,50%; para 50% se tiene 14,30%; finalmente para 75 % se tiene 10,80%. Así mismo CBR de laboratorio para muestra patrón 7,97%; para 25% se tiene 9,13%; para 50% se tiene 18,57%; finalmente para 75% se tiene 30,20%. **Densidad Seca** (Kg/m3) para muestra patrón 0,159; para 25 % se tiene 0,164; para 50% se tiene 0,168 finalmente para 75% se tiene 0,155. Compresión Incofinada (Mpa) para muestra patrón 0,41 para 25% se tiene 0,33 para 50% se tiene 0,31 finalmente para 75% se tiene 0,21. **Resistencia al corte** (Mpa) para muestra patrón 0,20 para 25% se tiene 0,16; para 50% se tiene 0,15 finalmente para 75% se tiene 0,10. Índice de Plasticidad (IP) para muestra patrón 0,155%; para 25% se tiene 0,116%; para 50% se tiene 0,580% finalmente para 75% se tiene 0,00%. Los resultados de laboratorio de CBR muestran un aumento en los valores de CBR al aumentar la dosis de desechos.

De acuerdo a (Castillo y Mena, 2019) cómo **objetivo** es evaluar la calidad de subrasante, subbase y base de un pavimento, **resultado** de la Clasificación SUCS se aprecia un porcentaje alta y baja de la plasticidad de la arcilla, como se muestra valores de % de grava, % de arena, % de finos y CBR 0,1"; 0,2"; **C1** DCP 9,38; CBR (0,1) 4,10; CBR (0,2) 4,6; **C3** DCP 12,0; CBR (0,1) 10,8; CBR (0,2) 11,0; **C5** DCP 22,22; CBR

(0,1) 3,2; CBR (0,2) 3,2; **C7** DCP 12,5; CBR (0,1) 5,7; CBR (0,2) 5,1; **C9** DCP 25,0; CBR (0,1) 0,3; CBR (0,2) 0,2; **C11** DCP 15,0; CBR (0,1) 6,7; CBR (0,2) 6,5; **C13** DCP 87,5; CBR (0,1) 1,6; CBR (0,2) 1,3; **C15** DCP 8,89; CBR (0,1) 7,0; CBR (0,2) 6,3; **C17** DCP 11,54; CBR (0,1) 11,4; CBR (0,2) 11,6; **C19** DCP 125,0; CBR (0,1) 2,9; CBR (0,2) 2,5.

Respecto (Abanto y Salinas, 2021) el **propósito** es analizar la estabilización de un suelo laterítico (LA) arenoso utilizando cenizas de caña de azúcar, **resultados** relativos a ensayos granulométricos, consistencias y ensayos mecánicos, características de los materiales y de la mezcla de suelo estabilizado con 5% de ceniza y 2% de cal, la caracterización puzolánica de la ceniza de caña de azúcar tiene el LL 41,60%; LP 38,19%; IP 3,41; sus resultados arrojaron un índice de plasticidad de 3.41%, lo que indica que el suelo tiene poca plasticidad. Con los resultados es considerado como Bueno y excelente para el uso de subrasante. Los ensayos mecánicos en suelo estabilizado con CBR 40%, resistencia a la compresión simple 0.3 Mpa, contenido de humedad óptimo 23%, el suelo se estabilizó con la adición de 5% de ceniza de caña y 2% de cal hidratada obteniendo con resultados de CBR 83%, resistencia a la compresión simple 0,56 Mpa, contenido de humedad óptimo 20%.

Respecto a (Ibañez y Coaquira, 2022) con **objetivo** de determinar la capacidad resistente de un pavimento el cual obtuvo **resultados** como en calicata N°01 de la subrasante densidad máxima seca (DMS) 1,83 g/cm3; (CHO) 7,22%; CBR – 100% 31,70%; CBR – 95% 15,10%, calicata N°02 DMS 1,75 g/cm3; CHO 10,5%; CBR – 100% 15,2% y CBR – 95% 11,4%, calicata N°03 DMS 1,84 g/cm3; CHO 7,43% CBR – 100% 22,1% y CBR – 95% 17,0%.

De acuerdo a (Guevara y Villalobos, 2023) tiene como **propósito** comparar aditivos químicos, tiene como **resultados** de la muestra patrón IP = 17,25%; CHO 14,37% y CBR 5,49%; la adición de 0,050% Consolid 444 IP = 14,02%; CHO = 13,70% y CBR = 52,04% y 5 ml Con-Aid el IP = 14,88%; CHO = 13,14% y 53,60%.

Según (Holgado y Arias, 2022) tiene como **objetivo** analizar el módulo resiliente y el CBR de mezclas que contienen pizarra y como **resultados** de los ensayos y propiedades geotécnicas de las mezclas mezcla Gneis + Suelo arcilloso 50/50 LL 46,3%; IP 18,5%; DMS 2,0%; CHO 9,6%; expansión 0,10%; CBR 45,9%; mezcla Gneis + Suelo arcilloso 60/40 LL 44,5%; IP 16,4%; DMS 2,05%; CHO 7,9%; expansión 0,04%; CBR 70,5%; mezcla Gneis + Suelo arcilloso 70/30 LL 42,5%; IP 14,9%; DMS 2,10%; CHO 7,2%; expansión 0,04%; CBR 75,6%; mezcla Gneis + Suelo arcilloso 80/20 LL 41,6%; IP 14,6%; DMS 2,20%, CHO 5,5%, expansión 0,02%, CBR 82,3%; mezcla Gneis + Suelo arcilloso 90/10 LL 38,3%, IP 12,3%, DMS 2,25%, CHO 5,1%, expansión 0,01%, CBR 103,1%.

Respecto a (James, 2019) tiene como **propósito** evaluar el potencial de ceniza de aserrín (SDA) se utiliza en combinación con cemento y **resultados** los suelos generales se estabilizaron con 2% y 6% de cemento. Los tres (03) contenidos de la prueba SDA adoptados en el estudio fue seleccionado al azar, a saber 5%, 10% y 20%. Sin embargo, la incorporación de un 20% de SDA resultó en una pérdida de resistencia en comparación con el suelo estabilizado con un 2% de cemento. A los 14 días de curado, las tendencias son similares: un 5% de SDA gana la resistencia máxima y un 20% de SDA produce una pérdida de resistencia. A los 28 días de curado, el aumento de resistencia fue significativo para el SDA al 5 % y la resistencia saltó de 5423,25 kPa a 6489,23 kPa. Sin embargo, el SDA al 10%, que tuvo un aumento de resistencia hasta los 14 días de curado, no pudo mantener el aumento y perdió marginalmente resistencia, lo que resultó en una resistencia de 5256,39 kPa.

De acuerdo a (MTC, 2014) la subrasante es la superficie de la vía a nivel de movimientos de tierra (excavación y relleno) donde se refuerza la estructura de la vía. (MTC, 2016) En la fase de construcción se deben compactar los últimos 0.30 metros de suelo por debajo del nivel más alto de la cimentación al 95% de la densidad seca máxima obtenida de la prueba Proctor. El suelo debajo de la parte superior de la subrasante a una profundidad de 0,60 m debe ser bueno y resistente a la carga con un contenido de CBR no inferior al 6%. Si el CBR del suelo debajo de la superficie del

suelo es inferior al 6% (suelo débil o inestable), el suelo debe estabilizarse.

Según (Ibarguren y Bertona, 2019) los tocones son restos de tallos y hojas los cuales estan en el suelo después de la cosecha y desempeñan un papel importante en la cobertura del suelo en los programas de producción sin labranza. Los granos de trigo están compuestos por diferentes compuestos de diferentes partes, como el salvado, el endospermo y el germen.

De acuerdo a (Villanueva, 2014) no existen harinas alternativas que puedan formar masas con propiedades viscoelásticas similares. El gluten se compone de dos proteínas: gliadina (un tipo de prolamina) y glutenina (un tipo de glutelina). A pasar los años, hubo propuestas, modelos para poder explicar los componentes del gluten.

Según (Hernández y Rea, 2021) el **propósito** de este estudio es utilizar relaves mineros y cemento portland para la estabilización de subrasante y como **resultados** obtuvo el LL = 27,24 %; LP = s/d; humedad óptima 14,50%; CBR = 33,00 % los resultados son promedios de adición del 1 y 3 % de residuos y/o relaves mineros.

De acuerdo a (Pacori, Turpo y Lipa, 2022) tiene como **objetivo** utilizar residuos productos de combustión de carbón en arcillas de baja plasticidad (RPCC) con **resultados** de adición de RPCC de 10 y 20 % con resultados favorables y RPCC del 40% desfavorables; LL = 42 %, 41 %, 22,5 %; LP = 55 %, 57 %, 39 %; RPCC = 10 %, 20 % y 40 % respectivamente.

Teorías: **Variable independiente**: Adición de partículas de rastrojo de trigo y quinua. En relación a estos dos componentes de partículas del rastrojo de trigo y quinua para la estabilización de la subrasante, el cual reacciona como un aditivo, De igual manera se tiene la teoría de intercambio de iones, el cual estos componentes tienen la capacidad de reemplazar los iones existentes en el suelo, donde al agregar los componentes al suelo, los iones de calcio (Ca2 +) los iones presentes son reemplazados tales como los iones de sodio (Na+) o de magnesio (Mg2 +). Por lo que

se puede mencionar que la reacción es altamente térmica y genera calor, donde las moléculas del agua se incorporan en la estructura de las partículas de trigo y quinua formando compuestos.

Dosificación: la relación ideal es una relación de estabilización del suelo que maximiza las propiedades requeridas para un suelo estabilizado, como rigidez, flexibilidad y durabilidad. Asimismo, se realizan o analizan en laboratorio para evaluar la correcta relación entre otras sustancias y el suelo. Las partículas de paja de trigo y quinua juegan un papel importante en la estabilización del suelo y mejoran las propiedades químicas y mecánicas de la capa barrera.

Variable dependiente: propiedades de la subrasante. Límites de Atterberg, podemos señalar que el LL y LP puede reducir o aumentar respecto a la humedad existente (Suresh et al., 2023); estos parámetros se determinan a través ensayos de humedad según NORMA (ASTM D4318), (AASHTO T89), (ASTM D4318), (AASHTO T89), (MTC E 110) y (NTP 339.129) como referencias para la determinación del LL.

Limite plástico: (Suresh et al., 2023) esta se define como la relación de humedad que se denomina límite entre ambos estados. Si esto es mayor, el suelo estará rígido y si el contenido de humedad es bajo, el suelo parecerá sólido. Este límite se vincula con la humedad, para el ensayo de LP se emplean las normativas ASTM D4318, AASHTO T90, NTP 339.129 y MTC E 111, como referencias para la determinación la plasticidad.

$$LP = \frac{peso \ de \ agua}{(peso \ del \ suelo \ secado \ al \ horno)} x \ 100$$

Índice de plasticidad: El índice plástico es un indicador de la plasticidad del suelo y se define como la diferencia entre el LL y el LP.

Tabla 1. Clasificación de suelos según el índice de plasticidad

Índice de plasticidad (IP)	Plasticidad	Características

IP > 20	Alta	Suelo muy arcilloso
7 > IP ≤ 20	Media	Suelos arcillosos
IP < 7	Baja	Suelo poco arcillosos
IP = 0	No Plástico	Suelos exentos de arcilla

Nota: tomado de manual de carreteras sección suelos y pavimentos (MTC).

Proctor modificado: ensayos de laboratorio que determina la MDS y CHO. Esta es una prueba que sigue un método utilizado en el laboratorio para determinar la relación entre el contenido de humedad del suelo y su peso unitario seco, rige según norma ASTM D 1557, AASHTO T180, NTP 339.141, MTC E 115.

California Bearing Ratio (CBR): La prueba CBR incluye parámetros importantes para evaluar la resistencia al corte y la capacidad de carga del suelo. Los cálculos para las siguientes pruebas se realizan utilizando un factor de carga del 95% para el secado. Los requisitos estándar ASTM D 1883, AASHTO T193 y MTC E 132 se utilizan como referencias para determinar el CBR.

Tabla 2. Propiedades de la piedra triturada

Penetración				
Mn	Pulgadas	Mn/m2	Kg/cm2	Lb/plg2
2.54	0.10	6.90	70.31	1000
5.08	0.20	10.35	105.46	1500

Nota: Tomado de Manual de ensayo de materiales (MTC).

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

3.1.1. Tipo de investigación: tipo básico de laboratorio según (Vasquez y Arias, 2022) la investigación de laboratorio se caracteriza por ser una investigación altamente controlada, en la que el investigador experimenta con un factor específico para determinar si produce algún cambio en los sujetos. En un entorno de laboratorio, los participantes pueden ser seleccionados y ubicados en condiciones controladas de manera sistemática, lo que les permite tener conciencia de que están tomando parte en un estudio de investigación. Esto se debe al mayor control que los investigadores suelen tener en un laboratorio en comparación con un entorno naturalista;

Nivel de investigación explicativo: según (Carrasco, 2019) El investigador comprende y comparte las razones o influencias que dieron origen a la existencia y características del evento o fenómeno bajo investigación. Además, investiga la relación mutua y entrelazada de todos los hechos de la realidad, con el objetivo de ofrecer una explicación objetiva, real y científica a lo que se desconoce.

Enfoque de la investigación cuantitativa: según (Hernández, 2018) para comenzar, es importante definir los objetivos específicos de la investigación, de acuerdo con su propósito o finalidad. Los objetivos deben ser claros y específicos, medibles, adecuados y alcanzables. Las guías de estudio deben ser tenidas en cuenta en todo momento durante su desarrollo.

3.1.2. Diseño de investigación:

• Diseño de investigación cuasiexperimental: según (Manterola y Salazar, 2019) se podría definir como conjunto de estrategias de investigación que buscan evaluar el impacto de una intervención y estudiar los posibles cambios que puedan ocurrir en los sujetos sometidos a esta intervención a lo largo del tiempo, en situaciones donde no se realiza asignación aleatoria. (Benítez y Vite, 2023), Tiene más puntuaciones más elevadas en habilidades analíticas.

 Método experimental: (Holgado y Arias, 2022) la previsión se centra en predecir el futuro basándose en descripciones y explicaciones de la situación actual.

3.2. Variables y operacionalización:

Variables: Variable 1: Adición de partículas del rastrojo de trigo y tallo de quinua, el rastrojo de trigo y quinua son desechos después de segar el trigo y quinua, posteriormente quemados para agregar al suelo para la siembra de productos como papa, quinua, avena, cebada entre otros.

Variable 2: Propiedades de la subrasante (Guia y Mario, 2021)La subrasante se define como la capa topográfica natural que soporta los distintos elementos en el ancho de la vía y es la primera capa por la que los vehículos transportan cargas. (Ojeda y Mendoza, 2018), los límites de Atterberg son propiedades de la subrasante concluyendo que son materiales finos y se clasifican de acuerdo a la ASTM D 2487. (Antonio y Burgos, 2022) determinar el (LL), (IP) de suelos finos es posible localizar en la carta de plasticidad.

3.3. Población y muestra:

3.3.1. Población:

Tabla 3. Ensayo CBR

CBR			
MC1	MC2	MC3	PARCIAL
45,90	70,50	75,60	64,00
40,00	56,00	83,00	59,67
31,40	31,70	19,50	27,53

Nota: Tomado de (Reis dos Santos & de Sousa, 2021)

Tabla 4. Ensayo límite líquido

LÍMITE LÍQUIDO (LL)	

MC1	MC2	MC3	PARCIAL
46,30	44,50	42,50	44,43
43,50	42,20	41,30	42,33
45,00	43,20	41,50	43,23

Nota: Tomado de (Bojacá & Campagnoli, 2022)

Tabla 5. Ensayo límite plástico

LÍMITE PLÁSTICO (LP)			
MC1	MC2	MC3	PARCIAL
45,90	70,5	75,6	64,00
40,00	56,00	83,00	59,67
31,40	31,70	19,50	27,53

Nota: Tomado de (Bojacá & Campagnoli, 2022)

Tabla 6. Ensayo de contenido de Humedad Óptimo

CONTENIDO DE HUMEDAD ÓPTIMO			
MC1	MC2	MC3	PARCIAL
7,90	7,20	5,50	6,86
19,60	15,20	13,50	16,10
20,20	20,50	14,30	18,33

Nota: Tomado de (Reis dos Santos & de Sousa, 2021)

- Criterios de inclusión: La sub rasante con la adición de partículas de rastrojo de trigo y quinua según las Normas Técnicas peruanas.
- Criterios de exclusión: las propiedades que no cumplan con las Normas establecidas.
- **3.3.2. Muestra:** no se desarrollará, debido que se trabajará con toda la población.
- 3.3.3. Muestreo: Este estudio trabaja con toda la población sin desarrollar

técnicas de muestreo para obtener una muestra.

3.3.4. Unidad de análisis: Suelo arcilloso.

3.4. Técnicas e instrumentos de recolección de datos:

Utilizaremos una técnica de recolección de datos que consistirá en realizar una investigación directa. Esto nos permitirá estudiar y observar los problemas que afectan la subrasante. Posteriormente, llevaremos las muestras o estudios recolectados a los laboratorios para su análisis. En el presente estudio, se llevará a cabo una observación en un laboratorio con el fin de determinar las técnicas utilizadas.

Instrumentos de recolección de datos: En este estudio se utilizan fichas de observación para registrar los valores obtenidos de los ensayos realizados en el laboratorio.

3.5. Procedimientos:

Teniendo el trabajo de gabinete, el rastrojo de trigo y quinua se hicieron adquisiciones de distintos pobladores, los rastrojos de quinua y trigo son desechos que cada poblador queman o desechan en chacras para posteriormente utilizarlo con una mezcla de heces de vacunos y ovinos luego ser utilizado como abono y/o fertilizante. Procesamiento del trabajo en campo de la carretera Chasqui-Pilcuyo es un camino que une diversas comunidades, centros poblados y distritos a través de una vía interurbana. Es necesario llevar a cabo al menos una excavación cada 250 metros en la vía en estudio o área afectada, que mide 887 metros. Se llevará a cabo la preparación para excavar y extraer calicatas. Se realizarán un total de 3 calicatas, separadas por una distancia de 250 metros. Esto se debe a que se considera un tráfico de volumen bajo, con un IMDA ≤ 200 veh/día y una sola calzada. Cada calicata tendrá a profundidad de 1.50 metros con respecto al nivel de subrasante, siguiendo las normas de la MTC.

El material extraído será llevado al laboratorio para realizar diversos estudios, como CBR, Proctor modificado y Límite de Atterberg. Estos ensayos también se realizarán en las tres calicatas extraídas. Con los resultados obtenidos, se trabajará con el suelo patrón más crítico. Posteriormente, se agregarán partículas de rastrojos

de quinua y trigo en diferentes porcentajes con objetivo de priorizar a la mejora de las propiedades físicas y mecánicas del suelo en estudio.

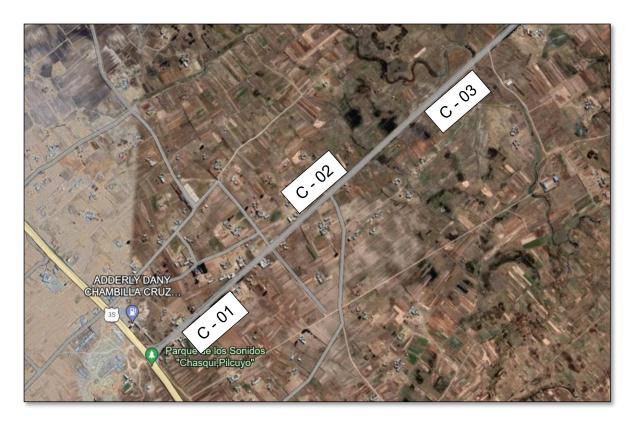


Figura 1. Plano de ubicación para extracción de calicatas. Tomado de Google Earth

Para los **trabajos en laboratorio** según la (NTP 339.127:1998, 2014) se realizará el ensayo de CHO, según (NTP 339.128.1999, 2000) se realizará el ensayo de análisis granulométrico, según (NTP 339.129:1999, 2000) se realizará el ensayo del LL, LP e IP, según (NTP 339.141:1999, 2014) se realiza el ensayo de relación "Humedad-Densidad" por método Proctor modificado, según (NTP 339.145:1999, 1999) se realiza ensayo para determinar el CBR muestras compactadas en laboratorio.

3.6. Método de análisis de datos:

El enfoque utilizado para validar estadísticamente los resultados obtenidos será de acuerdo a los resultados de las pruebas de laboratorio. Además de los sondeos obtenidos en la Carretera de estudio de libramiento Chasqui-Pilcuyo, también se utilizarán programas estadísticos que emplean hojas de cálculo en Excel y otro

software para llevar a cabo las pruebas de recolección de datos pertinentes.

3.7. Aspectos éticos: La investigación que se ha llevado a cabo no transgrede los fundamentales derechos Humanos reconocidos a nivel Internacional. Tampoco vulnera las disposiciones consagradas en la Constitución Política del Perú, respetando en su totalidad el marco legal que rige en este país. En cuanto a la integridad académica y la lucha contra el plagio, la investigación desarrollada se pega de manera rigurosa a las normas establecidas para la protección de la autoría y la originalidad en el trabajo científico. No se han transgredido las directrices de la Universidad, siendo este estudio un ejemplo de respeto y adhesión a los estándares académicos y éticos que rigen nuestra institución.

IV. RESULTADOS

Se tiene resultados que se cumplen a raíz del **objetivo general** el cual se tiene es "Evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en las propiedades de la subrasante en la carretera Chasqui-Pilcuyo, 2024"

Tabla 7. Resultados promedio de ensayos

Ensayos	0%	5%	10%
Limite plástico	27,70 %	25,28 %	27,83 %
Límite liquido	19,81 %	18,31 %	21,66 %
Contenido de	8,43 %	7,80 %	7,50 %
humedad			
CBR	14,77 %	18,00 %	20,43 %
Proctor	11,30 %	7,80 %	7,33 %

Nota: elaboración propia

De la tabla 7, se observa que los promedios para estabilizar la subrasante del terreno en estudio, son con una adición del 5% del rastrojo de trigo y quinua; en limite plástico con 25,28%, limite liquido con 18,31%, CBR con 18,00% y con adición del 10% del rastrojo de trigo y quinua se obtuvieron resultados del ensayo Proctor 7,33%, contenido de humedad 7,50%.

Los resultados que se cumplen a raíz del **objetivo específico 01** el cual se tiene es "Evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en el límite liquido de la sub rasante en la carretera Chasqui-Pilcuyo, 2024." respecto al ensayo de límites de Atterberg, son los siguientes:

Tabla 8. Resultados de Límite liquido

Muestras	0%	5%	10%
1 – 0 + 020	31,00 %	21,00 %	27,30 %

2 - 0 + 450	26,80 %	27,30 %	28,50 %	
3 – 0 + 700	25,30 %	27,54 %	27,70 %	
Promedio	27,70 %	25,28 %	27,83 %	

Nota: elaboración propia

De la tabla 8, se observa que el mejor valor obtenido del ensayo del límite liquido de la calicata al 0% de adición es 25.30%, al 5% de adición es 21.00% y al 10% de adición es 27.30%, teniendo los resultados más óptimos y son favorables para mejorar la estabilización de la subrasante.

Los resultados que se cumplen a raíz del **objetivo específico 02** el cual se tiene es "Evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en el límite plástico de la sub rasante en la carretera Chasqui-Pilcuyo, 2024." respecto al ensayo de límites de Atterberg, son los siguientes:

Tabla 9. Resultados de Límite plástico

Muestras	0%	5%	10%
1 – 0 + 020	20,16 %	11,91 %	19,19 %
2 - 0 + 450	21,57 %	22,12 %	23,75 %
3 – 0 + 700	17,70 %	20,89 %	22,03 %
Promedio	19,81 %	18,31 %	21,66 %

Nota: Elaboración propia

De la tabla 9, se observa que el mejor valor obtenido del ensayo del límite plástico de la calicata al 0% de adición es 17,70%, al 5% de adición es 11,91% y al 10% de adición es 19,19%.

Los resultados que se cumplen a raíz del **objetivo específico 03** el cual se tiene es "Evaluar cómo influye la dosificación en la incorporación de las partículas de rastrojo de trigo y quinua en el contenido de humedad y densidad máxima seca de la

subrasante en la carretera Chasqui-Pilcuyo, 2024" son los siguientes:

Tabla 10. Resultados de promedio contenido de Humedad

Muestras	0%	5%	10%
1 - 0 + 020	9,90 %	10,37 %	10,06 %
2 - 0 + 450	8,33 %	5,71 %	5,13 %
3 – 0 + 700	7,05 %	7,31 %	7,30 %
Promedio	8,43 %	7,80 %	7,50 %

Nota: Elaboración propia

De la tabla 10, se observa que el mejor valor obtenido del ensayo del contenido de humedad de la calicata al 0% de adición es 7,05%, al 5% de adición es 5,71% y al 10% de adición es 5,13%.

Tabla 11. Resultados de ensayo CBR

Muestras	0%	5%	10%
1 – 0 + 020	14,80 %	19,00 %	23,10 %
2 - 0 + 450	11,50 %	13,50 %	15,80 %
3 – 0 + 700	18,00 %	21,50 %	22,40 %
Promedio	14,77 %	18,00 %	20,43 %

Nota: Elaboración propia

De la tabla 11, se observa que el mejor valor obtenido del ensayo de CBR de la calicata al 0 % de adición es 11,50 %, al 5 % de adición es 13,50 % y al 10 % de adición es 15,80 %.

Tabla 12. Resultados de ensayo Proctor

Muestras	0%	5%	10%	
1 - 0 + 020	11,90 %	7,30 %	7,20 %	
2 - 0 + 450	11,20 %	7,70 %	7,40%	
3 – 0 + 700	10,80 %	8,40 %	7,40 %	

Nota: Elaboración propia

De la tabla 12, se observa que el mejor valor obtenido del ensayo Proctor de la calicata al 0 % de adición es 10,80 %, al 5 % de adición es 7,30 % y al 10 % de adición es 7,20%.

V. DISCUSIÓN

Mediante nuestro objetivo específico 01 es evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en el límite liquido de la subrasante en la carretera Chasqui-Pilcuyo, 2024, los resultados con el antecedente (Ospina & Chaves, 2020) se aprecia una similitud con la tabla 6 de resultados del ensayo de límite liquido lo cual el autor obtuvo 40,7 %, mis resultados alcanzaron un promedio de 27,83 % por lo tanto se aprecia que la diferencia entre ambos resultados es fuerte 31,62 % con respecto a la muestra patrón, mientras que adicionando el autor un porcentaje del 25%, 50%, 75%, de preferencia sería recomendable usar el insumo de mi investigación por que la variación es fuerte, también a fin de minorizar costos y factor contaminante.

Los resultados de (Bojacá & Campagnoli, 2022) se aprecia una similitud entre la tabla 2 y con la tabla 6 de resultados de límite líquido lo cual el autor obtuvo de su MC1 46,30 %, muestra MC2 es 44,50 % y de la muestra MC3 un resultado de 41,30 %; con la diferencia con mis resultados obtenidos en laboratorio de mi muestra patrón un 31,00 % de la primera progresiva de la calicata 01, de la segunda progresiva se obtuvo un resultado de 26,80 % y en la tercera progresiva se tuvo un resultado de 25,30 %; con la adición del 5% de partículas de rastrojo de trigo y quinua en la primera progresiva y calicata 01 se obtuvo 21,00 %, calicata 02 se tiene un resultado de 27,30 % y en la tercera calicata 03 te tiene un 27,54 %; al adicionar el 10 % de partículas de rastrojo de trigo y quinua se tiene como resultado de la calicata 01 un 27,30 %, en la segunda calicata se tiene un 28,50 % y finalmente en la tercera calicata se tiene un 27,83 %, de preferencia es recomendable el insumo de mi investigación porque tiene una variación leve con la adición del 5 %, también a fin de minorizar costos en el insumo adicionado y de igual manera disminuir el factor contaminante.

Mediante el objetivo específico 02 es evaluar cómo influye la incorporación de las partículas de rastrojo de trigo y quinua en el límite plástico de la subrasante en la carretera Chasqui-Pilcuyo, 2024, los resultados con el antecedente (Ospina & Chaves, 2020) se aprecia una similitud con la tabla 7 referente Límite plástico del autor se tiene

un promedio de 25,1% y de mis resultados del límite liquido 19,81 % el cual tiene una diferencia entre los resultados obtenidos y del autor es moderado con 21.07% con adición del autor con 25%, 50% y 75% en cambio mis resultados son con adición del 5%, 10%, lo cual se considera de preferencia el 5% de adición de rastrojo de trigo y quinua el cual también es recomendable a fin de minorizar efecto de costos y no afectar al medio ambiente disminuyendo el factor contaminante.

Los resultados de (Bojacá & Campagnoli, 2022) se aprecia y tiene una similitud con mis resultados del ensayo de límite plástico de la tabla 03 y tabla 07 el cual obtuvo como resultados el autor en su primer ensayo el 45,90 %, 40,00 % y 31,40 %; en su segundo ensayo tiene como resultados el 70,50 %, 56,00 % y 31,70 % y en su tercer ensayo obtuvo el 75,60 %, 83,00 % y 19,50 %; y en mis resultados se tiene como resultados de mi muestra patrón como mejor resultado un 19,81 %, con la adición del 5 % de material incorporado de partículas de rastrojo de trigo y quinua con un resultado obtenido de 11,91 % y de igual manera al incorporar el material de adición al 10 % se tiene un resultado de 19,19%, lo cual se considera que de preferencia el 10 % de adición de partículas de rastrojo de trigo y quinua el cual también es recomendable a fin de poder minorizar los costos y disminuir el factor contaminante.

El objetivo específico 03 es evaluar cómo influye la dosificación en la incorporación de las partículas de rastrojo de trigo y quinua en el contenido de humedad y densidad máxima seca de la subrasante en la carretera Chasqui-Pilcuyo, 2024, los resultados con el antecedente (Ospina & Chaves, 2020) se aprecia una similitud de con la tabla 9 referente al ensayo de Contenido de humedad para la muestra patrón del autor 20,20%, para adición del 25% se tiene 20,50%, para adición de 50% se tiene 14,30% y finalmente para 75% se tiene 10,80%, y mis resultados son de muestra patrón es 8,43%, con la adición del 5% es 7,80% y con adición de 10% es 7,50% el cual se tiene una diferencia fuerte de 58,26% el cual de preferencia se considera como el más óptimo de la adición del insumo de mis ensayos el 5% el cual también es recomendable a fin de minorizar costos y efectos contaminantes; los resultados del autor sobre el ensayo CBR de laboratorio la diferencia con la tabla 9 se

tiene de muestra patrón 7,97%, adición de 25% se tiene 9,13%, adición de 50% se tiene 18,57% y adición de 75% se tiene 30,20%, respecto a mis resultados de CBR de muestra patrón es 14,77%, adición de 5% es 18,00% y finalmente adición del 10% es 20,43% el cual se tiene una diferencia es fuerte respecto a la muestra patrón con un 46% de diferencia entre ambos ensayos, de preferencia se considera como el más adecuado el 10% del insumo adicionado, también sería recomendable a fin de minorizar costos y efectos contaminantes.

Los resultados de (Reis dos Santos & de Sousa, 2021) se aprecia en su primera muestra un resultado respecto al contenido de humedad óptimo igual a 7,90 %, 19,60 %, 20,20 %; en la segunda muestra obtuvo resultados como 7,20 %, 15,20 %, 20,50 % y en la tercera muestra tuvo resultados de 5,50 %, 13,50 %, 14,30 %; de la misma manera respecto a mis resultados en la tabla 8 se tiene resultados de mi muestra patrón 9,90 %, 8,33 %, 7,05 %; con la adición del 5 % del material adicionado partículas de rastrojo de trigo y quinua en la primera calicata se obtuvo 10,37 %, 5,71 %, 7,31 % y por ultimo al agregar el 10 % de partículas de rastrojo de trigo y quinua se tiene el 10,06 %, 5,13 %, 7,30 %, de preferencia se considera como el insumo agregado más optimo con la adición del 10 % de igual manera seria el más recomendable a fin de poder minorizar costos y efectos contaminantes.

VI. CONCLUSIONES

- De acuerdo a los resultados obtenidos de mi objetivo general para la adición del 5% es el mejor y recomendable a utilizar la sustitución de rastrojo de trigo y quinua.
- 2. De acuerdo a mi objetivo específico 01 evaluar de qué manera influye la incorporación de partículas de rastrojo de trigo y quinua en el límite liquido de la subrasante en la carretera Chasqui-Pilcuyo, 2024 se concluye que al adicionar el 5 % del material adicionado obtiene un porcentaje óptimo para la estabilizar la subrasante de la carretera en estudio.
- 3. De mi objetivo específico 02 evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en el límite plástico de la subrasante en la carretera Chasqui-Pilcuyo, 2024 se concluye que al adicionar el 5 % del material de partículas rastrojo de trigo y quinua se tiene valores más óptimos el cual se concluye el más indicado a utilizar.
- 4. De mi objetivo específico 03 evaluar cómo influye la incorporación de partículas de rastrojo de trigo y quinua en el contenido de humedad óptimo y densidad máxima seca de la subrasante en la carretera Chasqui-Pilcuyo, 2024 se concluye que al adicionar el 10 % de adición de partículas de rastrojo de trigo y quinua es el más adecuado para obtener nuestro contenido de humedad óptima.

VII. RECOMENDACIONES

Primero: se recomienda utilizar la adición del 5 % de partículas de rastrojo de trigo y quinua para la estabilización de la carretera en estudio.

Segundo: se recomienda utilizar para nuestro ensayo de limite liquido la incorporación del 5% de partículas del rastrojo de trigo y quinua para tener resultados óptimos para el ensayo que se requiera en la estabilización de una carretera en estudio.

Tercero: en el ensayo de limite plástico el adicionado del material de partículas de rastrojo de trigo y quinua se recomienda para tener los resultados esperados y de esta manera nuestro resultado en el índice plástico (IP) sea el más adecuado.

Cuarto: el CHO es muy importante en la estabilización de una carretera el cual se recomienda la adición del 10 % para dicho ensayo, para el cual se obtenga los resultados esperados.

Quinto: se recomienda utilizar los equipos de protección personal (EPP) al momento de realizar cualquier ensayo en campo, gabinete y/o laboratorio.

REFERENCIAS

- ABANTO, L. y SALINAS, E., 2021. Análisis de la Estabilización de Subrasantes con uso de Ceniza de Bagazo de Caña de Azúcar y Cal en el Perú. Perú: s.n.
- ABISA, M.R. y PRAKASH, A.J., 2022. Investigación experimental sobre la técnica de estabilización de suelos mediante la adición de aditivo de nanoóxido de aluminio en suelos arcillosos. *Revista Materia*, vol. 28, DOI 10.1590/1517-7076-RMAT-2022-0272.
- ANTONIO, D. y BURGOS, D., 2022. Automatic determination of the Atterberg limits with machine learning. *Revista DYNA*, vol. 89, no. 224, DOI 10.15446/dyna.v89n224.102619.
- BENÍTEZ, L.A. y VITE, C.X., 2023. The effect of Problem-Based Learning on Care Management skills: A quasi-experimental study *. *Rev. Latino-Am. Enfermagem*, DOI 10.1590/1518-8345.6272.3867.
- BOJACÁ, D.C. y CAMPAGNOLI, S.X., 2022. CBR cíclico como método alternativo para la determinación del módulo resiliente en suelos blandos de subrasante. *Ciencia E Ingeniería Neogranadina*, vol. 32, DOI 10.18359/rcin.5896.
- BUSTAMANTE, F. y MARIN, N., 2022. Uso de Vinaza de Saccharum officinarum para Estabilización de Suelos Cohesivos. *Revista Infraestructura Vial*, vol. 24, DOI 10.15517/iv.v24i43.47995.
- CARRASCO, S., 2019. Metodología de la investigación científica. Perú: s.n.
- CASTILLO, J. y MENA, L., 2019. Correlación Entre El Penetrómetro Dinámico De Cono (Dcp) Y La Relación De Soporte De California (Cbr) En Campo Para El Suelo De Subrasante De La Vía Portoviejo-Manta. Ecuador: s.n.
- ELIZONDO, F. y NAVAS, A., 2011. EFECTO DE LA CAL EN LA ESTABILIZACIÓN DE SUBRASANTES. *Revista Ingeniería*, ISSN 1409-2441. DOI 10.15517/ring.v20i1-2.7268.
- GANES, S. y SIVAPRIYA, V., 2019. Functional and cost-benefits of geosynthetics as subgrade reinforcement in the design of flexible pavement. *Revista Facultad de Ingeniería*, vol. 28, no. 51, DOI 10.19053/01211129.v28.n51.2019.9082.
- GUEVARA, J. y VILLALOBOS, J., 2023. Comparative study of the chemical additives Consolid 444 and Con-Aid for the improvement of the subgrade in clay soils.

- Gaceta Técnica, vol. 24, no. 2, DOI 10.51372/gacetatecnica242.7.
- GUIA, Y. y MARIO, J., 2021. *Mejoramiento de subrasante mediante la adición de Ceniza de Quinua en la carretera PE-38B, Provincia Chucuito, Puno, 2021*. Perú: s.n.
- HERNÁNDEZ, A. y LÓPEZ, T., 2021. Zeolita natural proveniente de Puebla como tratamiento de suelos de la región de Querétaro en vías terrestres: Efectos en su comportamiento plástico. *Ingeniería Investigación y Tecnología*, ISSN 14057743. DOI 10.22201/fi.25940732e.2021.22.3.024.
- HERNÁNDEZ, R., 2018. *Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta*. México: s.n. ISBN 9781456260965.
- HERNÁNDEZ, R. y REA, P., 2021. Machine Translated by Google Caracterización de relaves mineros en su estado natural y estabilizados enfocados a la construcción Caracterización de residuos mineros en estado natural y estabilizados enfocada a Machine Translated by Google Introducción.
- HOLGADO, J. y ARIAS, J., 2022. Metodología de la Investigación. Puno Perú: s.n.
- IBAÑEZ, C. y COAQUIRA, D., 2022. Determination of serviceability index and resistant capacity. Case study: pavements in Azángaro, Puno, Peru. *Revista Infraestructura Vial*, vol. 24, DOI 10.15517/iv.v24i43.48563.
- IBARGUREN, L. y BERTONA, A., 2019. Siembre directa: el rol de los rastrojos. Revista de Divulgación Científica, vol. 15,
- JAMES, J., 2019. Strength benefit of sawdust / wood ash amendment in cement stabilization of an expansive soil. *Revista Facultad de Ingeniería*, vol. 28, no. 50, DOI 10.19053/01211129.v28.n50.2019.8790.
- JUAREZ, M. y MONDELLI, G., 2023. Shear strength of municipal solid waste rejected from material recovery facilities in the city of São Paulo, Brazil. *An International Journal of Geotechnical and Geoenvironmental Engineering*, vol. 46, no. 2, DOI 10.28927/SR.2023.013022.
- KATTIUSKA, J., BECERRA, B., ALEXANDER, R. y DIAZ, C., 2024. Estado de la publicación: No informado por el autor que envía INFLUENCIA DE ESCORIA DE ACERO EN LA ESTABILIZACIÓN DE LA SUBRASANTE DE LA AVENIDA CAMINO REAL-ANCASH-2023 (versión 1) (AAAA-MM-DD). [en línea], vol. 03,

- no. versión 1, Disponible en: https://doi.org/10.1590/SciELOPreprints.7650.
- MANTEROLA, C. y SALAZAR, P., 2019. Metodologia de los tipos y diseños de estudio más fecuentes utilizados en investigación clínica. *Revista médica clínica las condes*, vol. 30, no. 1, DOI 10.1016/j.rmclc.2018.11.005.
- MASSENLLI, G. y PAIVA, C., 2019. Influencia de la deflexión superficial en pavimentos flexibles con subrasante de baja resistencia. *Ingeniare. Revista chilena de ingeniería*, DOI 10.4067/s0718-33052019000400613.
- MAYLLE, A. y AVILA, P.E., 2023. Elaboración de un diseño de mezcla para la estabilización de un suelo con emulsión asfáltica tipo CSS-1h y pavimento asfáltico reciclado (RAP) basado en el procedimiento de Marshall modificado. *Infraestructura Vial*, ISSN 1409-4045. DOI 10.15517/iv.v25i44.53441.
- MONTEJO, R. y RAYMUNDO, J., 2020. Materiales Alternativos Para Estabilizar Suelos: El Uso De Ceniza De Cáscara De Arroz En Vías De Bajo Tránsito De Piura. *Tzhoecoen*, vol. 12, no. 1, ISSN 1997-3985. DOI 10.26495/tzh.v12i1.1251.
- MTC, 2014. Manual de carreteras. Perú: s.n.
- MTC, 2016. Manual de ensayo de Materiales. Perú: s.n.
- NTP 339.127:1998, 2014. NTP 339.127:1998. *Método de ensayo para determinar el contenido de humedad de un suelo* [en línea]. LIMA: s.n., pp. 1-10. Disponible en: https://es.scribd.com/document/529038268/NTP-339-127-Contenido-de-Humedad.
- NTP 339.128.1999, 2000. NTP 339.128:1999. *Método de ensayo para el análisis granulométrico* [en línea]. 1ra. LIMA: s.n., pp. 1-23. Disponible en: https://es.scribd.com/document/381430002/NTP-339-128-Analisis-granulometrico-1999-pdf.
- NTP 339.129:1999, 2000. NTP 339.129:1999. Método de ensayo para determinar el límite líquido, límite plástico, e indice de plasticidad de suelos [en línea]. 1ra. LIMA: INDECOPI, pp. 1-27. Disponible en: https://es.scribd.com/document/429406524/NTP-339-129-1999-pdf.
- NTP 339.141:1999, 2014. SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada. *Método de ensayo para la compactación del suelo en laboratorio utilizando una energía modificada* [en

- línea]. 1ra. LIMA: s.n., pp. 1-30. Disponible en: https://es.scribd.com/document/412273037/21220-339-convertido.
- NTP 339.145:1999, 1999. ntp-339145-1999.pdf. *Método de ensayo de CBR*(Relación de Soporte de Califormia) de suelos compactados en el laboratorio.
 LIMA: s.n., pp. 1-18.
- OJEDA, O. y MENDOZA, J., 2018. Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. *Revista Alconpat*, vol. 8, no. 2, DOI 10.21041/ra.v8i2.282.
- OSPINA, M.A. y CHAVES, S., 2020. Improvement of clayey subgrades through the addition of steel waste. *ev.investig.desarro.innov.*, vol. 11, no. 1, DOI 10.19053/20278306.v11.n1.2020.11692.
- PACORI, J., TURPO, V. y LIPA, L., 2022. Evaluation of the physical and mechanical properties of a paving block with added ash from artisanal brick kilns. *Revista Ingenieria de Construccion*, vol. 37, no. 2, ISSN 07185073. DOI 10.7764/RIC.00032.21.
- RAMIREZ, E., 2020. Incorporación de la ceniza de Cabuya para mejorar las propiedades de Suelos Arcillosos, tramo de Yarumayo San pedro de Chaulán, Huánuco 2020. Perú: s.n. ISBN 000000344128.
- RINCÓN, J. y ALVAREZ, A., 2022. Estimación de la rigidez de materiales granulares marginales no ligados mediante ensayo CBR dinámico. *Ingeniería y Desarrollo*, ISSN 01223461. DOI 10.14482/inde.40.01.621.992.
- RIVERA, J. y AGUIRRE, A., 2020. Estabilización química de suelos Materiales convencionales y activados alcalinamente (revisión). *Informador Técnico*, ISSN 0122056X. DOI 10.23850/22565035.2530.
- SERRANO, E.J. y PADILLA, E.A., 2019. Analysis of the changes in the mechanical properties of subrasant materials by the addition of recycled polymeric materials. *Revista Ingeniería Solidaria*, vol. 25, DOI 10.16925/2357-6014.2019.01.
- SOUZA, G.M. de, AMORIM, E.F., ANJOS, M.A.S. dos y FRANÇA, F.A.N. de, 2023. Estudo de misturas compostas por resíduos de scheelita e solos destinados a pavimentação. *Ambiente Construído*, ISSN 1415-8876. DOI 10.1590/s1678-86212023000300679.

- SURESH, K., AFSAL, A., ARSHA FATHIMA, A.R., SEBASTIAN, C., ASHALATHA, R. y JOHNSON, A.S., 2023. Wood ash as a stabilizer for pavement subgrade. *Materials Today: Proceedings* [en línea], no. xxxx, ISSN 22147853. DOI 10.1016/j.matpr.2023.03.705. Disponible en: https://doi.org/10.1016/j.matpr.2023.03.705.
- VASQUEZ, M. y ARIAS, J., 2022. *Metodología de la investigación: El método ARIAS para desarrollar un proyecto de tesis*. Perú: s.n. ISBN 9786125069047.
- VILLANUEVA, R., 2014. El gluten del trigo y su rol en la industria de la panificación. *Ingeniería Industrial*, DOI https://core.ac.uk/download/pdf/327097874.pdf.

ANEXOS

Tabla 13. Matriz de Consistencia

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	METODOLOGÍA
Problema General ¿De qué manera influye la incorporación de partículas del	la incorporación de las partículas del rastrojo de trigo y	las partículas del rastrojo de trigo y quinua influye de	-	TIPO DE INVESTIGACIÓN: Laboratorio
rastrojo de trigo y quinua en las propiedades de subrasante en la carretera Chasqui-Pilcuyo, 2024?	quinua en las propiedades de la sub rasante en la carretera Chasqui- Pilcuyo, 2024.	manera positiva en las propiedades de la subrasante de la carretera Chasqui- Pilcuyo, 2024	VI: ADICIÓN DE PARTÍCULAS DEL RASTROJO DE	NIVEL DE INVESTIGACIÓN: Deductivo
Problemas específicos ¿De qué manera influye el uso de las partículas del rastrojo de trigo y	Objetivos Específicos Evaluar cómo influye la incorporación de las partículas del rastrojo de trigo y	Hipótesis Especificas La incorporación de las partículas de rastrojo del trigo y quinua mejora	TRIGO Y QUINUA	ENFOQUE DE INVESTIGACIÓN: Cuantitativa
quinua en el límite líquido de la subrasante en la carretera Chasqui- Pilcuyo, 2024?	quinua en el límite líquido de la sub rasante en la carretera Chasqui- Pilcuyo, 2024.	significativamente en el límite liquido de la subrasante de la carretera Chasqui- Pilcuyo, 2024		DISEÑO DE INVESTIGACION: Cuasiexperimental
¿De qué manera influye el uso de las partículas del rastrojo de trigo y quinua en el límite	la incorporación de las partículas del	quinua mejora en el		POBLACIÓN: Criterios de inclusión y exclusión

plástico seca de la subrasante en la carretera Chasqui- Pilcuyo, 2024?	plástico de la subrasante en la carretera Chasqui- Pilcuyo, 2024.	plástico de la subrasante de la carretera Chasqui- Pilcuyo, 2024	VD: PROPIEDADES DE LA SUB	TÉCNICA: Recolección de datos
¿De qué manera contribuye las partículas del	Evaluar cómo influye la dosificación en la incorporación de las	La incorporación de las partículas del rastrojo de trigo y	RASANTE	
rastrojo trigo y quinua en el	rastrojo de trigo y	quinua mejora en el porcentaje en el		
porcentaje del contenido de huemdad y densidad máxima seca de la subrasante en la	quinua en el contenido de humedad y densidad máxima seca de la subrasante en la	contenido de humedad y densidad máxima seca de la subrasante de la carretera Chasqui-		INSTRUMENTO: Observación
carretera Chasqui- Pilcuyo, 2024?	carretera Chasqui- Pilcuyo, 2024.	Pilcuyo, 2024		
DIMENSIÓN		DOSIFIC	CACIÓN	
	0% muestra pa	trón 5% ad	dición	10% adición

Límite Plástico

Contenido

de

densidad máxima seca

humedad y

Límite Líquido

Nota: Elaboración propia

INDICADORES

Tabla 14. Cuadro de operacionalización

VARIABLE	DEFINICIÓN VARIABLE	DE	OPERACIÓN DE LA VARIABLE	DIMENSIÓN	INDICADOR	
Adición de partículas de			Se aplican según método AASHTO-93, la sustitución de		0% muestra patrón	
rastrojo de trigo y quinua	pio de trigo y Definición citada partículas de acuerdo Quinua a porcentajes, de acuerdo al espécimen				5% de adición	
	de la muestra			10% de adición		
			NTP CE. 010, NTP	Límite de Atterberg	Límite liquido Límite plástico Índice de plasticidad	
Propiedades de la sub rasante			339.127:1998, NTP 339.128:1998, NTP 339.129:1998, NTP 339.131:1998.		Densidad Seca	
				CBR	Porcentaje de compactación	

Nota: Elaboración propia

UNIVERSIDAD CÉSAR VALLEJO INGENIERIA CIVIL FICHA DE OBSERVACION DE LABORATORIO

Objetivo:

Calicata 01	Variable independiente Partículas de rastrojo de trigo y quinua				
Variable Dependiente	0%	5%	10%		
CBR					
Proctor Modificado					
Límite líquido					
Límite plástico					

Calicata 02	Variable independiente Partículas de rastrojo de trigo y quinua				
Variable Dependiente	0%	5%	10%		
CBR					
Proctor Modificado					
Límite líquido					
Límite plástico					

Calicata 03	Variable independiente Partículas de rastrojo de trigo y quinua			
Variable Dependiente	0%	5%	10%	
CBR				
Proctor Modificado				
Límite líquido				
Límite plástico				

UNIVERSIDAD CÉSAR VALLEJO INGENIERIA CIVIL FICHA DE OBSERVACION DE LABORATORIO

Objetivo:

Calicata 01	Variable independiente Partículas de rastrojo de trigo y quinua				
Variable Dependiente	0%	5%	10%		
CBR	14,80%	19,00%	23,10%		
Proctor Modificado	11,90%	7,30%	7,20%		
Límite líquido			27.30%		
Límite plástico	31,00%	21,00%	19,19%		

Calicata 02	Variable independiente Partículas de rastrojo de trigo y quinua				
Variable Dependiente	0%	5%	10%		
CBR	11,50%	13,50%	15,80%		
Proctor Modificado	11,20%	7,70%	7,40%		
Límite líquido	26,80%	24,30%	28,50%		
Límite plástico	21,57%	22,12%	23,75%		

Calicata 03	Variable independiente Partículas de rastrojo de trigo y quinua			
Variable Dependiente	0%	5%	10%	
CBR	18,00%	21,50%	22,40%	
Proctor Modificado	10,80%	8,40%	7,40%	
Límite líquido	25,30%	27,54%	24,70%	
Límite plástico	17,40%	20,89%	22,000	

Figura 2. Instrumento de recolección de datos

Resultados e informe de laboratorio

GRUPO G&W CONTRATISTA GENERALES Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 1 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+020 L/I
 FECHA
 : 15/01/2024

NUMERO DE CAPSULA	N°	2	3	
PESO SUELO HUMEDO + CAPSULA	gr.	460.20	440.20	
PESO DEL SUELO SECO + CAPSULA	gr.	424.30	408.20	
PESO DEL AGUA	gr.	35.90	32.00	
PESO DE LA CAPSULA	gr.	74.00	73.00	
PESO NETO DEL SUELO SECO	gr.	350.30	335.20	
PORCENTAJE DE HUMEDAD	%	10.25%	9.55%	
PROMEDIO DE HUMEDAD	%		9.90%	

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE GUIDO NIDWARD ATENCIO FUENTES

UBICACION PILCUYO - EL COLLAO - PUNO

CALICATA N° 1 CON 0% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA Km. 0+020 L/I FECHA : 15/01/2024

ASUNTO EVALUACIÓN - APROBACIÓN

LIMITES DE CONSISTENCIA

DESCRIPCIÓN	I	LIMITE LIQUIDO				LIMITE PLASTICO		
ENSAYO	No	1	2	3		1	2	
NRO DE TARRO	No	10	22	31		10	12	
TARRO + SUELO HUMEDO	gr.	26.14	25.47	25.2		19.72	19.72	
TARRO + SUELO SECO	gr.	23.39	22.88	22.69		18.85	18.87	
PESO DEL TARRO	gr.	15.17	14.70	14.05		14.55	14.64	
AGUA	gr.	2.75	2.59	2.51		0.87	0.85	
PESO DEL SUELO SECO	gr.	8.22	8.18	8.64		4.30	4.23	
CONTENIDO DE HUMEDAD	%	33.45%	31.66%	29.05%		20.23%	20.09%	
NUMERO DE GOLPES	N	15	24	35				

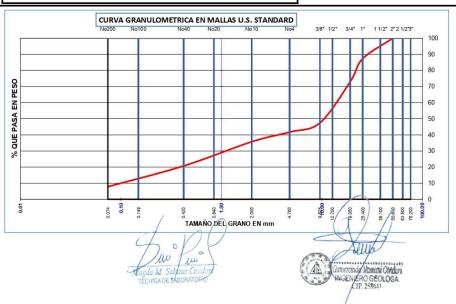
LIMITE LIQUIDO = 31.00 % LIMITE PLASTICO = 20.16 % INDICE PLASTICO = 10.84 %

mercinda Mamani Condori NGENJERO GEOLOGA (1P. 258641

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

SOLICITADO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE


SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE GUIDO NIDWARD ATENCIO FUENTES UBICACION

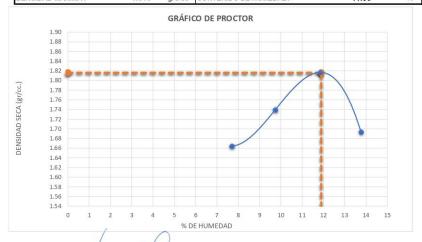
PILCUYO - EL COLLAO - PUNO

CALICATA N° 1 CON 0% RASTROJO DE TRIGO Y QUINUA **ESTRATO** : M-1 PROGRESIVA : Km. 0+020 L/I FECHA : 15/01/2024

AMICES	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE		RESULTADOS DE ENSAYOS			
ASTM	mm	TENIDO	PARCIAL	ACUMULADO	PASA	DATO	S DE LA I	MUESTRA		
3"	76.200				100.00	PESO INICIAL	- 8	425	53.00	
2 1/2"	63.500				100.00	PESO FRAC.		51	0.00	
2"	50.600		0.00	0.00	100.00	<u>_K</u>	- :	122	25.44	
1 1/2"	38.100	120.00	2.80	2.80	97.20	LIMITES DE CONSIST	ENCIA:			
1"	25.400	423.00	9.90	12.70	87.30	LIMITE LIQUIDO	:	31.00	%	
3/4"	19.050	612.00	14.40	27.10	72.90	LIMITE PLASTICO	:	20.16	%	
1/2"	12.700	762.00	17.90	45.00	55.00	INDICE PLASTICO		10.84%		
3/8"	9.525	323.00	7.60	52.60	47.40	COEF. CURVATURA y	/ UNIF.			
N° 4	4.760	243.00	5.70	58.30	41.70	D10= 0.101	С	u=	143.78277	
N° 10	2.000	73.00	5.97	64.27	35.73	D30= 1.146	C	c=	0.9008516	
N° 20	0.840	95.20	7.78	72.05	27.95	D60= 14.47				
N° 40	0.420	88.60	7.24	79.29	20.71	CLASIFICACION SUE	LOS:			
N° 100	0.149	82.40	6.74	86.03	13.97	AASTHO	: A	-2-4 (0)		
N° 200	0.074	75.30	6.16	92.19	7.81	S.U.C.S.	; S	P-SC		
-200		95.54	7.81	100.00	0.00	GRAVA	: 5	8.30		
						ARENA	: 2	0.99		
OBSER	VACIONES	3.				LIMO	1 1	2.90		
						ARCILLAS	: 7	.81		
						HUM. NATURAL	: 9	.90%		
						DENS. PROCTOR.	: 1	.816	grs/cc	
						C.B.R. AI 95%	200		3	

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES : PILCUYO - EL COLLAO - PUNO UBICACION

: 1 CON 0% RASTROJO DE TRIGO Y QUINUA CALICATA N° ESTRATO : M-1 : Km. 0+020 L/I FECHA : 15/01/2024

PROGRESIVA ASUNTO : EVALUACIÓN - APROBACIÓN

Maria de Mar		Trace is a		101		
Molde N° MODELO C	N-4: 01	Método de c	ompactacion	"B"		
Volumen Molde 2	144 cc	N° de capas		: 05		
Peso del Molde 6	672 grs.	456		: 56		
Determinación	N°	01	02	03	04	
Peso del molde y Muestra	gr.	10515	10765	11028	10887	
Peso del molde	gr.	6672	6672	6672	6756	
Peso de la muestra compactada	gr.	3843	4093	4356	4131	
Densidad húmeda	gr/cc	1.79	1.91	2.03	1.93	
Densidad seca	gr/cc	1.66	1.74	1.82	1.69	

	Contenido de Agua													
Tarro	N°	1	2	5	4									
Peso del Tarro	gr.	0.0	0.0	0.0	0.0									
Peso del Tarro + Suelo húmedo	gr.	291.2	303.1	264.5	296.0									
Peso del Tarro + Suelo seco	gr.	270.4	276.2	236.5	260.2									
Peso del agua	gr.	20.8	26.9	28.0	35.8									
Peso del suelo seco	gr.	270.4	276.2	236.5	260.2									
Contenido de humedad	%	7.7	9.7	11.8	13.8									
Promedio		7.7	9.7	11.8	13.8	•								
DENSIDAD MAXIMA:	1.81	6 grs/cc	CONTENIDO DE I	HUMEDAD:	11.90	9								

AA Gumeronid Managa Ondori NOENIERO GEOLOGA LIP. 258641

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024 SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 1 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+020 L/I
 FECHA
 : 15/01/2024

 ASUNTO
 : EVALUACIÓN - APROBACIÓN

 MOLDE
 Modelo CN 450
 1
 2
 3

 CAPAS
 N°
 05
 05
 06

 Golpes por capa
 N°
 12
 25
 56

coopes por cape	- ''	12			,	20		
	Condini	n de la muestra	Online Humerlan	Saturado	Ontina Hamer	ul Saburado	Saturado Ordena Human	
Peso suelo humedo + molde		11355		11767		12011		
Peso molde	gr.	7445		7684		7726		
Peso del Suelo humedo	gr.	3910		4083		4285		
Volumen del Suelo	gr.	2080		2094		2098		
Densidad humeda	gr/cc	1.88		1.95		2.04		
% de humedad	%	11.9		12.0		11.7		
Densidad seca	gr/cc	1.68		1.74		1.83		
Тапо	N°	1		2		3		
Tarro + suelo humedo	gr.	516.5		516.5		508.3		
Tarro + suelo seco	gr.	478.6		477.5		473.0		
Peso del agua	gr.	37.9		39.0		35.3		
Peso de tarro	gr.	160.0		151.3		170.4		
Peso del suelo seco	gr.	318.6		326.2		302.6		
% de humedad	%	11.9		12.0		11.7		
Promedio de humedad		11.9		12.0		11.7		

		% E	XPAI	VSIÓI	N =	1.05		%			
Frebr	Fecha Hora Tiempo Dial				EXPANSIÓN			EXPANSIÓN	Di-I		EXPANSIÓN
Fecha	Hora	Tiempo	Diai	mm. %		Dial	mm.	%	Dial	mm.	%
15/01/2024	07:35 a.m.	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16/01/2024	07:35 a.m.	24.00	0.23	0.23	0.20	0.18	0.18	0.16	0.15	0.15	0.13
17/01/2024	07:35 a.m.	48.00	0.56	0.56	0.49	0.41	0.41	0.36	0.31	0.31	0.27
18/01/2024	07:35 a.m.	72.00	0.80	0.80	0.70	0.77	0.77	0.67	0.72	0.72	0.63
1.25				1.25	1.09	1.20	1.20	1.05	1.15	1.15	1.01

	PENETRACIÓN														
PENETR	ACIÓN	Carga	MOLD Carra C	E Nro: orregida	Pre	1 sión	MOLD Carpa C			2 resión		E Nro:	3 Presión		
mm.	Tiempo	Slump.	Dial	Kg.	k/cm²	C.B.R.	Dial	Kg.	klem²	C.B.R.	Dial	Kg.	k/om²	C.B.R.	
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00		
0.63	30"		6	50	2.7		12	79	4.2		18	107	5.7		
1.27	1'		11	74	3.9		19	112	5.9		29	159	8.4		
1.91	1.30'		14	88	4.7		34	183	9.7		42	221	11.7		
2.54	2'	70	26	145	7.7		39	206	10.9		56	287	15.2		
3.81	3'		41	216	11.4		58	296	15.7		81	405	21.5		
5.08	4'	105	51	263	14.0		74	372	19.7		94	466	24.7		

OBSERVACIONES: C.B.R. Al 95% de su máxima densidad seca y a 2.54 mm. de penetración =

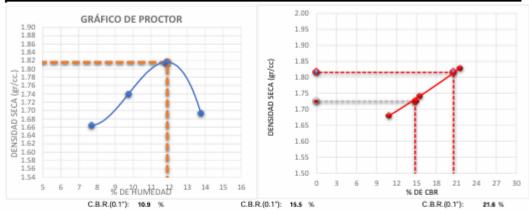
TECNICA DE SABORATOR

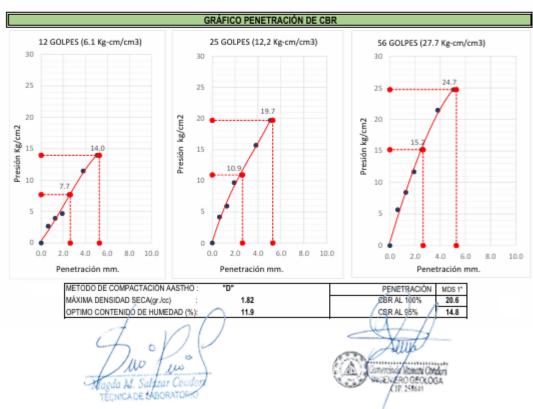
Comercinal Vitamini Otrdoni SIGENERO GEOLOGA LIP. 258641

14.8 %

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,


PROYECTO : CARRETERA CHASQUI - PILCUYO - 2024


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 1 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 :
 Km. 0+020 L/I
 FECHA
 : 15/01/2024

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

%

w

gda M. Saldzar Con TÉCNICA DE LABORATOR

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : M-1 : 2 CON 0% RASTROJO DE TRIGO Y QUINUA **ESTRATO** PROGRESIVA **FECHA** : 15/01/2024

: Km. 0+450 L/D ASUNTO : EVALUACIÓN - APROBACIÓN

PROMEDIO DE HUMEDAD

NUMERO DE CAPSULA PESO SUELO HUMEDO + CAPSULA gr. 360.60 388.20 PESO DEL SUELO SECO + CAPSULA 338.50 364.20 gr. PESO DEL AGUA 22.10 24.00 gr. PESO DE LA CAPSULA 75.00 74.36 gr. PESO NETO DEL SUELO SECO 263.50 289.84 gr. PORCENTAJE DE HUMEDAD 8.39% 8.28% %

8.33%

Gumeroinad Manazai Cordori HAGENJERO GEOLOGA CIP. 258641

40

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

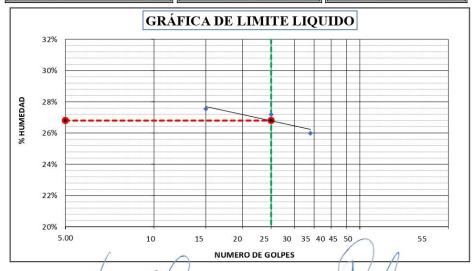
SOLICITANTE GUIDO NIDWARD ATENCIO FUENTES UBICACION

0

TÉCNICA DE LABORATOR

w

PILCUYO - EL COLLAO - PUNO


CALICATA N° 2 CON 0% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA Km. 0+450 L/D FECHA : 15/01/2024

ASUNTO EVALUACIÓN - APROBACIÓN

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUIDO	LIMITE PLASTICO			
ENSAYO	No	1	2	3	1	2		
NRO DE TARRO	No	4	10	17	2	7		
TARRO + SUELO HUMEDO	gr.	44.26	43.83	43.42	22.87	22.94		
TARRO + SUELO SECO	gr.	39.28	39.1	38.94	21.38	21.49		
PESO DEL TARRO	gr.	21.2	21.70	21.7	14.5	14.74		
AGUA	gr.	4.98	4.73	4.48	1.49	1.45		
PESO DEL SUELO SECO	gr.	18.08	17.4	17.24	6.88	6.75		
CONTENIDO DE HUMEDAD	%	27.54%	27.18%	25.99%	21.66%	21.48%		
NUMERO DE GOLPES	N	15	25	34				

26.80 % LIMITE LIQUIDO = LIMITE PLASTICO = 21.57 % INDICE PLASTICO = 5.23 %

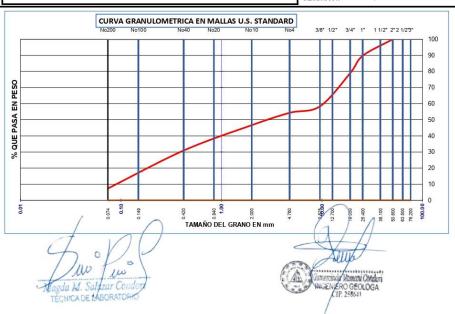
mercinda Munani Condori 4GENJERO GEOLOGA CIP. 258641

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

PROYECTO: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 2 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+450 L/D
 FECHA
 : 15/01/2024

TAMICES	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE	RESUL	TADOS	DE ENSAYO	S
ASTM	mm	TENIDO	PARCIAL	ACUMULADO	PASA	DATO	S DE LA	A MUESTRA	
3"	76.200				100.00	PESO INICIAL	- 8	72	01.70
2 1/2"	63.500				100.00	PESO FRAC.		50	07.00
2"	50.600		0.00	0.00	100.00	К		93	33.66
1 1/2"	38.100	0.00	0.00	0.00	100.00	LIMITES DE CONSIST	ENCIA:		
1"	25.400	740.00	10.30	10.30	89.70	LIMITE LIQUIDO	- :	26.80	1%
3/4"	19.050	781.00	10.80	21.10	78.90	LIMITE PLASTICO	:	21.57	%
1/2"	12.700	971.00	13.50	34.60	65.40	INDICE PLASTICO	:	5.23%	
3/8"	9.525	512.00	7.10	41.70	58.30	COEF. CURVATURA	UNIF.		
N° 4	4.760	287.00	4.00	45.70	54.30	D10= 0.134		Cu=	76.909966
N° 10	2.000	71.50	7.66	53.36	46.64	D30= 0.408		Cc=	0.1210644
N° 20	0.840	91.80	9.83	63.19	36.81	D60= 10.29			
N° 40	0.420	55.30	5.92	69.11	30.89	CLASIFICACION SUE	LOS:		
N° 100	0.149	188.70	20.21	89.32	10.68	AASTHO	31	A-2-4 (0)	
N° 200	0.074	31.20	3.34	92.66	7.34	s.u.c.s.		SP-SC	
-200		68.54	7.34	100.00	0.00	GRAVA		45.70	
						ARENA		23.41	
OBSER	VACIONES	3.				LIMO	1	23.55	
						ARCILLAS	2	7.34	
						HUM. NATURAL		8.33%	
						DENS. PROCTOR.		1.846	grs/cc
						C.B.R. Al 95%			3.200

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 2 CON 0% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA ASUNTO : Km. 0+450 L/D FECHA : 15/01/2024 : EVALUACIÓN - APROBACIÓN

Molde N° MODELO CI	V-4! 01	Método de	compactación	"B"					
Volumen Molde 2	2144 cc		as	: 05					
Peso del Molde 6	672 grs.	N° de golpes por capa : 56							
Determinación	N°	01	02	03	04				
Peso del molde y Muestra	gr.	10507	10916	11074	10836				
Peso del molde	gr.	6672	6672	6672	6756				
Peso de la muestra compactada	gr.	3835	4244	4402	4080				
Densidad húmeda	gr/cc	1.79	1.98	2.05	1.90				
Donoidad coca	aricc	1.66	1 01	1.04	4.07				

	Contenido de Agua													
Tarro	N°	1	2	5	4									
Peso del Tarro	gr.	0.0	0.0	0.0	0.0									
Peso del Tarro + Suelo húmedo	gr.	577.2	594.7	561.6	598.1									
Peso del Tarro + Suelo seco	gr.	536.5	542.3	502.6	526.3									
Peso del agua	gr.	40.7	52.4	59.0	71.8									
Peso del suelo seco	gr.	536.5	542.3	502.6	526.3									
Contenido de humedad	%	7.6	9.7	11.7	13.6									
Promedio		7.6	9.7	11.7	13.6									
DENSIDAD MAXIMA: 1		46 grs/cc	CONTENIDO DE I	HUMEDAD:	11.20	%								

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024 SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 2 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESINA
 : Km. 0+450 L/D
 FECHA
 : 15/01/2024

 ASUNTO
 : EVALUACIÓN - APROBACIÓN

MOLDE Modelo	CN 450		1	2	:	3	ı
CAPAS	N-		05	0:		0	
Golpes por capa	N°		12	2	5	5	6
Condicion de la muestra		Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado
Peso suelo humedo + moldo		12633		12896		13266	
Peso molde	gr.	8347		8373		7641	
Peso del Suelo humedo	gr.	4286		4523		5625	
Volumen del Suelo	gr.	2316		2334		2725	
Densidad humeda	gr/cc	1.85		1.94		2.06	
% de humedad	%	11.2		11.1		11.2	
Densidad seca	gr/cc	1.66		1.74		1.86	
Тапо	N°	1		2		3	
Tarro + suelo humedo	gr.	342.5		403.5		353.6	
Tarro + suelo seco	gr.	312.0		367.0		321.8	
Peso del agua	gr.	30.5		36.5		31.8	
Peso de tarro	gr.	38.5		39.6		38.4	
Peso del suelo seco	gr.	273.5		327.4		283.4	_
% de humedad	%	11.2		11.1		11.2	
Promedio de humedad		11.2		11.2		11.2	

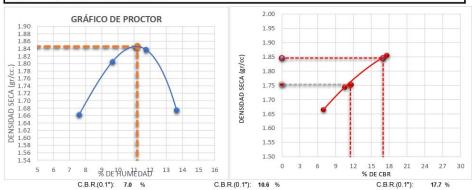
		% E	EXPAI	NSIÓI	V =	1.02		%				
Frebr	Here	T	Dist.	EXPANSION		Dist	Dial EXPANSION		Dist	EXPANSION		
Fecha	Hora	Tiempo	Dial	mm. %		Dial	mm.	%	Dial	mm.	%	
15/01/2024	10:30 a.m.	00.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
16/01/2024	10:30 a.m.	24.00	0.19	0.10	0.09	0.00	0.00	0.00	0.00	0.00	0.00	
17)01/2024	10:30 a.m.	48.00	0.20	0.11	0.10	0.01	0.01	0.01	0.02	0.02	0.02	
18/01/2024	10:30 a.m.	72.00	0.21	0.12	0.10	0.03	0.03	0.03	0.04	0.04	0.03	
1.25				1.16	1.01	1.20	1.20	1.05	1.15	1.15	1.01	

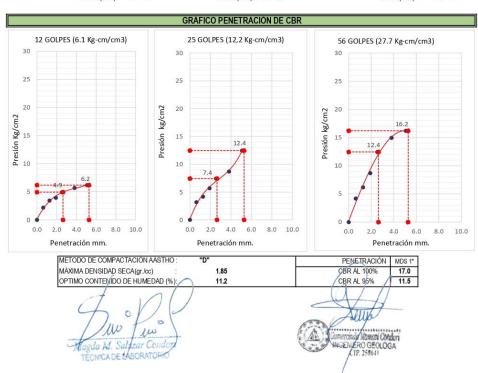
					PE	NETR	ACIÓN	V						
PENETR	ACIÓN	Carga	MOLD Carga C		Pro	1 sión	MOLD Carga C		P	2 resión	MOLDE Nro: Carga Corregida		3 Presión	
mm.	Tiempo	Slump.	Dial	Kg.	k/cm ²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/om²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30"		4	41	2.2		8	60	3.2		12	79	4.2	
1.27	1'		9	65	3.4		12	79	4.2		20	117	6.2	
1.91	1.30'		11	74	3.9		18	107	5.7		30	164	8.7	
2.54	2'	70	15	93	4.9		25	140	7.4		45	235	12.4	
3.81	3'		18	107	5.7		30	164	8.7		55	282	15.0	
5.08	4'	105	20	117	6.2		45	235	12.4		60	306	16.2	

OBSERVACIONES: C.B.R. Al 95% de su máxima densidad seca y a 2.54 mm. de penetración = 11.5 %

TÉCNICA DE LABORATOR

Omeronia Namati Ottobri NACENERO GEOLOGA CIP. 258611


ENSAYO DE C.B.R. (MTC E 132


PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N° :
 2 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO : M-1

 PROGRESIVA :
 Km. 0+450 L/D
 FECHA : 15/01/2024

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 $\, { m y} \,$ LIMITE PLASTICO)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

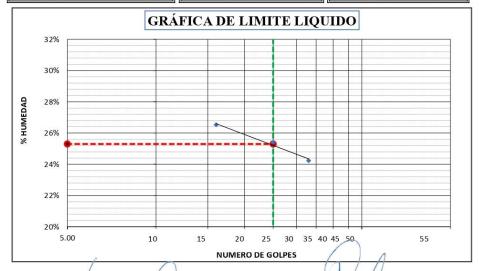
SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 :
 3 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 :
 Km. 0+700 L/I
 FECHA
 : 15/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN


w

TECNICA DE LABORATOR

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUIDO	LIM	ITE PLASTIC	CO
ENSAYO	No	1	2	3	1	2	
NRO DE TARRO	No	1	2	3	1	2	
TARRO + SUELO HUMEDO	gr.	48.85	48.46	48.31	24.02	24.97	
TARRO + SUELO SECO	gr.	43.01	42.94	43.08	22.76	23.15	
PESO DEL TARRO	gr.	21.0	21.20	21.50	13.98	14.50	
AGUA	gr.	5.84	5.52	5.23	1.26	1.82	
PESO DEL SUELO SECO	gr.	22.01	21.74	21.58	8.78	8.65	
CONTENIDO DE HUMEDAD	%	26.53%	25.39%	24.24%	14.35%	21.04%	
NUMERO DE GOLPES	N	16	25	33			

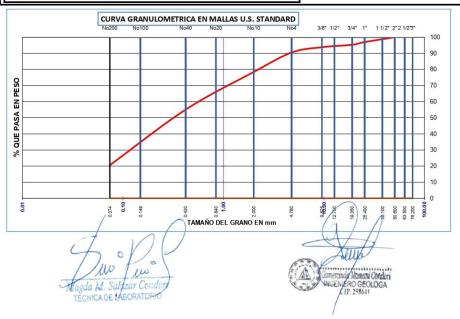
LIMITE LIQUIDO = 25.30 % LIMITE PLASTICO = 17.70 % INDICE PLASTICO = 7.60 %

Gumeronda Mamaril Cordon NAGENIERO GEOLOGA (1P. 25864)

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

SOLICITANTE INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE


SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE GUIDO NIDWARD ATENCIO FUENTES UBICACION PILCUYO - EL COLLAO - PUNO

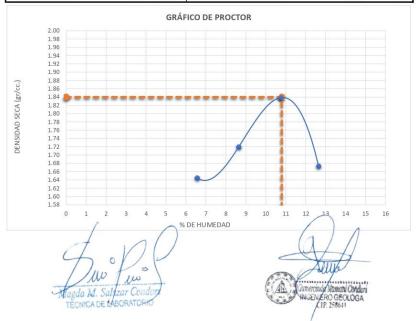
CALICATA N° 3 CON 0% RASTROJO DE TRIGO Y QUINUA

ESTRATO : M-1 PROGRESIVA : Km. 0+700 L/I FECHA : 15/01/2024

	ABERTURA	PESO	458	%RETENIDO	% QUE			DE ENSAYO	iS
ASTM	mm	TENI 428	436	ACUMULADO	PASA	DATO	S DE L	A MUESTRA	
3"	76.200				100.00	PESO INICIAL	- 8	64	52.00
2 1/2"	63.500				100.00	PESO FRAC.	:	5	12.30
2"	50.600		0.00	0.00	100.00	ĸ		56	66.47
1 1/2"	38.100	100.00	1.50	1.50	98.50	LIMITES DE CONSIST	ENCIA		
1"	25.400	98.00	1.50	3.00	97.00	LIMITE LIQUIDO	:	25.30)%
3/4"	19.050	112.00	1.70	4.70	95.30	LIMITE PLASTICO	:	17.70)%
1/2"	12.700	12.00	0.20	4.90	95.10	INDICE PLASTICO	:	7.60%	100000
3/8"	9.525	83.00	1.30	6.20	93.80	COEF. CURVATURA	UNIF.		
N° 4	4.760	212.00	3.30	9.50	90.50	D10= 0.036		Cu=	18.067628
N° 10	2.000	68.30	12.07	21.57	78.43	D30= 0.114		Cc=	0.5600669
N° 20	0.840	81.20	14.34	35.91	64.09	D60= 0.65			
N° 40	0.420	51.20	9.04	44.95	55.05	CLASIFICACION SUE	LOS:		
N° 100	0.149	96.20	16.99	61.94	38.06	AASTHO	00	A-2-4 (0)	
N° 200	0.074	99.00	17.49	79.43	20.57	S.U.C.S.		SC	
-200		116.44	20.57	100.00	0.00	GRAVA	2	9.50	
						ARENA		35.45	
OBSER	VACIONES	3:				LIMO	1	34.48	
						ARCILLAS	20	20.57	
						HUM. NATURAL		7.05%	
						DENS. PROCTOR.	- 1	1.84	grs/cc
						C.B.R. AI 95%	- 3		3

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO

: EVALUACIÓN - APROBACIÓN

: 3 CON 0% RASTROJO DE TRIGO Y QUINUA CALICATA N° ESTRATO : M-1 PROGRESIVA ASUNTO : Km. 0+700 L/I FECHA : 15/01/2024

Molde N° MODELO CN	l-4! 01	Método de	compactación	"B"						
Volumen Molde 21	44 cc	3	3 : 05							
Peso del Molde 66	72 grs.	458		: 56						
Determinación	N°	01	436	03	04					
Peso del molde y Muestra	gr.	10430	10677	11037	10798					
Peso del molde	gr.	6672	6672	6672	6756					
Peso de la muestra compactada	gr.	3758	4005	4365	4042					
Densidad húmeda	gr/cc	1.75	1.87	2.04	1.89					
Densidad seca	gr/cc	1.64	1.72	1.84	1.67					

		Co	intenido de Agua			
Tarro	N°	1	2	5	4	
Peso del Tarro		0.0	0.0	0.0	0.0	
Peso del Tarro + Suelo húmedo	gr.	383.5	397.3	361.0	393.9	
Peso del Tarro + Suelo seco	gr.	359.9	365.7	326.0	349.7	
Peso del agua	gr.	23.6	31.6	35.0	44.2	
Peso del suelo seco	gr.	359.9	365.7	326.0	349.7	
Contenido de humedad	%	6.6	8.6	10.7	12.6	
Promedio		6.6	8.6	10.7	12.6	
DENSIDAD MAXIMA: 1.840 gr		40 grs/cc	CONTENIDO DE I	HUMEDAD:	10.80	%

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 3 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESINA
 : Km. 0+700 L/I
 FECHA
 : 15/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

MOLDE Modelo C			1	2	?	3	ı
	LDE VERA		05	0:		O.	
Golpes per capa	N°		12	25		5	6
Condicion de la muesi	tra	Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado
Peso suelo humedo + molde		12425		12885		13255	
Peso molde	gr.	8347		8373		7641	
Peso del Suelo humedo	gr.	4078		4512		5614	
Volumen del Suelo	gr.	2316		2334		2725	
Densidad humeda	gr/cc	1.76		1.93		2.06	
% de humedad	%	10.9		10.9		10.8	
Densidad seca	gr/cc	1.59		1.74		1.86	
Тапо	N°	1		2		3	
Tarro + suelo humedo	gr.	425.0		425.0		350.3	
Tarro + suelo seco	gr.	387.0		387.0		320.0	
Peso del agua	gr.	38.0		38.0		30.3	
Peso de tarro	gr.	37.0		38.0	_	39.0	
Peso del suelo seco		350.0		349.0		281.0	
% de humedad	%	10.9		10.9		10.8	
Promedio de humedad		10.9		10.9		10.8	

		% E	EXPAI	NSIÓ	N =	1.03		%				
Fecha	Hora	T	Dial	EXPANSIÓN		Dist		EXPANSIÓN		EXPANSION		
Fecha	Hora	Tiempo	Dial	mm.	%	Dial	Dial mm. %		Dial	mm.	%	
15/01/2024	09:00 a.m.	00.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
16/01/2024	09:00 a.m.	24.00	0.22	0.17	0.15	0.01	0.01	0.01	0.02	0.02	0.02	
17/01/2024	09:00 a.m.	48.00	0.23	0.18	0.16	0.03	0.03	0.03	0.02	0.02	0.02	
18/01/2024	09:00 a.m.	72.00	0.24	0.19	0.17	0.04	0.04	0.03	0.03	0.03	0.03	
1.25				1.20	1.05	1.20	1.20	1.05	1.15	1.15	1.01	

					PE	NETR	ACIÓI	V						
PENETR	ACIÓN	Carga	MOLDE Nro: Carga Corregida		1 MOLDE Nro: Presión Carga Corregida		Pi	2 reside		MOLDE Nro: Carga Corregida		3 sión		
mm.	Tiempo	Slump.	Dial	Kg.	k/cm ²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/cm²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30"		5	46	2.4		10	69	3.7		15	93	4.9	
1.27	1'		10	69	3.7		20	117	6.2		30	164	8.7	
1.91	1.30'		20	117	6.2		30	164	8.7		45	235	12.4	
2.54	2'	70	25	140	7.4		45	235	12.4		55	282	15.0	
3.81	3'		30	164	8.7		55	282	15.0		65	329	17.5	
5.08	4'	105	45	235	12.4		60	306	16.2		80	400	21.2	
											1			

OBSERVACIONES:

TECNICADE SABORATORI

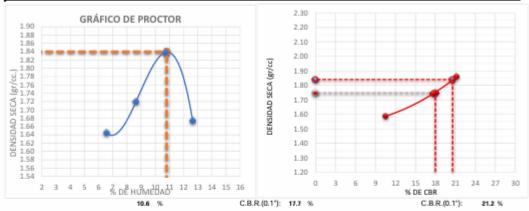
C.B.R. Al 95% de su grésima densidad seca y a 2.54 mm. de penetración -

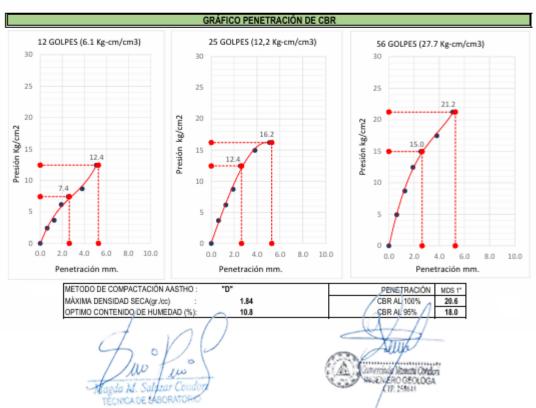
Contenting Material Orders SUCENERO GEOLOGA ALP: 158641

18.01%

49

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)


PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,


CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDIWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 3 CON 0% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+700 Lli
 FECHA
 : 15/01/2024

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

: 15/01/2024

Gumercinia Mamani Condori HASENJERO GEOLOGA (JP. 258641

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE PROYECTO

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

TÉCNICA DE LABORATOR

UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 1 CON 5% RASTROJO DE TRIGO Y QUINUA **ESTRATO** : M-1 FECHA

PROGRESIVA : Km. 0+020 L/I

NUMERO DE CAPSULA	N°	3	4	
PESO SUELO HUMEDO + CAPSULA	gr.	462.20	455.50	
PESO DEL SUELO SECO + CAPSULA	gr.	430.10	415.30	
PESO DEL AGUA	gr.	32.10	40.20	
PESO DE LA CAPSULA	gr.	74.30	72.50	
PESO NETO DEL SUELO SECO	gr.	355.80	342.80	
PORCENTAJE DE HUMEDAD	%	9.02%	11.73%	
PROMEDIO DE HUMEDAD	%		10.37%	

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 $\, { m y} \,$ LIMITE PLASTICO)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

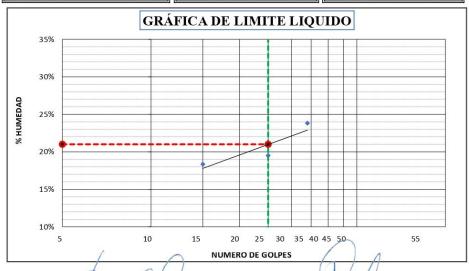
SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO
CALICATA N° : 1 CON 5% RASTROJO DE TRIGO Y QU

 CALICATA N°
 :
 1 CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 :
 Km. 0+020 L/I
 FECHA
 : 15/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN


w

TÉCNICA DE LABORATO

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUIDO	LIMITE PLASTICO		
ENSAYO	No	1	2	3	1	2	
NRO DE TARRO	No	11	12	28	5	10	
TARRO + SUELO HUMEDO	gr.	47.65	48.2	49.9	21.17	22.06	
TARRO + SUELO SECO	gr.	43.55	43.81	44.38	19.99	20.82	
PESO DEL TARRO	gr.	21.20	21.30	21.20	10.21	10.27	
AGUA	gr.	4.1	4.39	5.52	1.18	1.24	
PESO DEL SUELO SECO	gr.	22.35	22.51	23.18	9.78	10.55	
CONTENIDO DE HUMEDAD	%	18.34%	19.50%	23.81%	12.07%	11.75%	
NUMERO DE GOLPES	N	15	25	34			

LIMITE LIQUIDO = 21.00 % LIMITE PLASTICO = 11.91 % INDICE PLASTICO = 9.09 %

Gumercinag Mamani Condoni NAGENERO GEOLOGA LIP. 258641

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

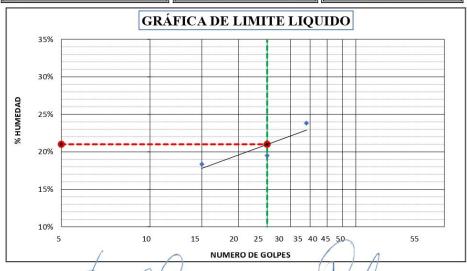
SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO
CALICATA N° : 1 CON 5% RASTROJO DE TRIGO Y

 CALICATA N°
 :
 1 CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 :
 Km. 0+020 L/I
 FECHA
 : 15/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN


w

TÉCNICA DE LABORATO

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUID	0	LIMITE PLASTICO		
ENSAYO	No	1	2	3		1	2	
NRO DE TARRO	No	11	12	28		5	10	
TARRO + SUELO HUMEDO	gr.	47.65	48.2	49.9		21.17	22.06	
TARRO + SUELO SECO	gr.	43.55	43.81	44.38		19.99	20.82	
PESO DEL TARRO	gr.	21.20	21.30	21.20		10.21	10.27	
AGUA	gr.	4.1	4.39	5.52	*	1.18	1.24	
PESO DEL SUELO SECO	gr.	22.35	22.51	23.18		9.78	10.55	
CONTENIDO DE HUMEDAD	%	18.34%	19.50%	23.81%		12.07%	11.75%	
NUMERO DE GOLPES	N	15	25	34				

LIMITE LIQUIDO = 21.00 % LIMITE PLASTICO = 11.91 % INDICE PLASTICO = 9.09 %

Gumercinag Mamani Condoni NAGENERO GEOLOGA LIP. 258641

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO

: 1 CON 5% RASTROJO DE TRIGO Y QUINUA CALICATA N°

ESTRATO : M-1 PROGRESIVA ASUNTO : Km. 0+020 L/I FECHA : 15/01/2024 : EVALUACIÓN - APROBACIÓN

Molde N° MODELO	CN-4! 01	Método de	compactación	"B"				
Volumen Molde	N° de capa	N° de capas : 05						
Peso del Molde	6672 grs.	456		: 56				
Determinación	N°	01	02	03	04			
Peso del molde y Muestra	gr.	10343	10586	10841	10709			
Peso del molde	gr.	6672	6672	6672	6756			
Peso de la muestra compactad	a gr.	3671	3914	4169	3953			
Densidad húmeda	gr/cc	1.71	1.83	1.94	1.84			
Donoidad coca	Or/cc	1.66	4.70	1.01	4.00			

		Co	intenido de Agua					
Tarro	N°	1	2	5	4			
Peso del Tarro	gr.	0.0	0.0	0.0	0.0			
Peso del Tarro + Suelo húmedo	gr.	474.8	490.5	457.6	491.6			
Peso del Tarro + Suelo seco	gr.	460.2	466.0	426.3	450.0	1		
Peso del agua	gr.	14.6	24.5	31.3	41.6			
Peso del suelo seco	gr.	460.2	466.0	426.3	450.0			
Contenido de humedad	%	3.2	5.3	7.3	9.2			
Promedio		3.2	5.3	7.3	9.2			
DENSIDAD MAXIMA :	DAD MAXIMA: 1.810 grs/c		1.810 grs/cc CONTENIDO DE HUMEDAD:				7.30	%

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 1 CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+020 L/I
 FECHA
 : 15/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

MOLDE Modelo CN 450			1	2		3		
CAPAS N°			05	0:	5	05		
Golpes per capa N°			12	25	5	56		
Condicion de la muestra		Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado	
Peso suelo humedo + moldo	2	11055		11767		12011		
Peso molde	gr.	7445		7684		7726		
Peso del Suelo humedo	gr.	3610		4083		4285		
Volumen del Suelo	gr.	2080		2094		2098		
Densidad humeda	gr/cc	1.74		1.95		2.04		
% de humedad	%	7.3		7.3		7.4		
Densidad seca	gr/cc	1.62		1.82		1.90		
Тапо	N°	1		2		3		
Tarro + suelo humedo	gr.	513.5		512.5		510.5		
Tarro + suelo seco	gr.	478.6		477.5		475.4		
Peso del agua	gr.	34.9		35.0		35.1		
Peso de tarro	gr.	0.0		0.0		0.0		
Peso del suelo seco	gr.	478.6		477.5		475.4		
% de humedad	%	7.3		7.3		7.4		
Promedio de humedad		7.3		7.3		7.4		

		% E	XPAI	NSIÓI	V =	1.05		%				
Fecha	Fecha Hora		Dial	EXPANSION		Dial	EXPANSION		Dial	EXPANSION		
recita	nora	Tiempo	Lital	mm.	%	Liter	mm.	%	Liter	mm.	%	
15/01/2024	07:35 a.m.	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
16/01/2024	07:35 a.m.	24.00	0.23	0.23	0.20	0.18	0.18	0.16	0.15	0.15	0.13	
17/01/2024	07:35 a.m.	48.00	0.56	0.56	0.49	0.41	0.41	0.36	0.31	0.31	0.27	
18/01/2024	07:35 a.m.	72.00	0.80	0.80	0.70	0.77	0.77	0.67	0.72	0.72	0.63	
1.25				1.25	1.09	1.20	1.20	1.05	1.15	1.15	1.01	

					PE	NETR.	ACIÓN	V						
PENETR	TRACIÓN Carga		MOLDE Nro: Carga Corregida		1 Presión		MOLDE Nro: Carga Corregida		2 Presión		MOLDE Nro: Carga Corregida		3 Presión	
mm.	Tiempo	Slump.	Dial	Kg.	k/cm ²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/cm ²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30"		9	65	3.4		14	88	4.7		18	107	5.7	
1.27	1'		22	126	6.7		29	159	8.4		41	216	11.4	
1.91	1.30'		29	159	8.4		45	235	12.4		58	296	15.7	
2.54	2'	70	39	206	10.9		61	310	16.5		73	367	19.5	
3.81	3'		58	296	15.7		88	438	23.2		100	495	26.2	
5.08	4'	105	65	329	17.5		95	471	25.0		115	566	30.0	
											_			

OBSERVACIONES:

C.B.R. Al 95% de su máxima densidad seca y a 2.54 mm. de penetración =

TÉCNICA DE LABORATOR

Cameronia libraria Orderi NASENIERO GEOLOGA ATP. 158611

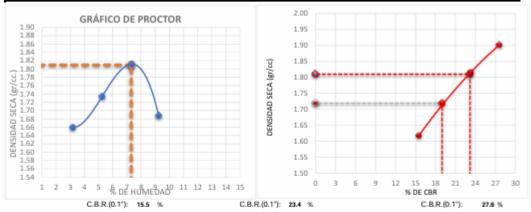
19.0 %

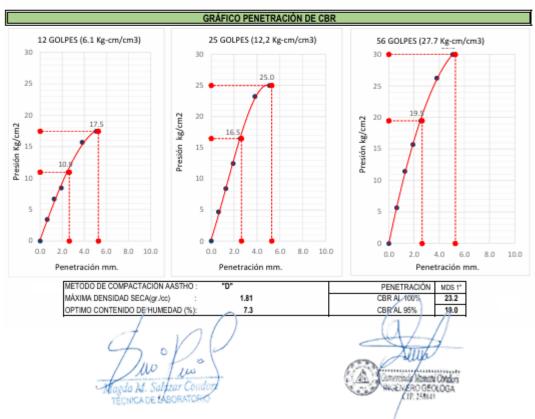
55

SOLICITANTE :

UBICACION

GRUPO G&W CONTRATISTAS GENERALES


ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)


PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024 GUIDO NIDWARD ATENCIO FUENTES PILCUYO - EL COLLAO - PUNO

 CALICATA № :
 1 CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO : M-1

 PROGRESIVA :
 Km. 0+020 LII
 FECHA : 15/01/2024

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

w

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 2, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+450 L/D
 FECHA
 : 16/01/2024

NUMERO DE CAPSULA	N°	1	2	
PESO SUELO HUMEDO + CAPSULA	gr.	356.20	365.20	
PESO DEL SUELO SECO + CAPSULA	gr.	339.60	351.00	
PESO DEL AGUA	gr.	16.60	14.20	
PESO DE LA CAPSULA	gr.	74.86	75.12	
PESO NETO DEL SUELO SECO	gr.	264.74	275.88	
PORCENTAJE DE HUMEDAD	%	6.27%	5.15%	
PROMEDIO DE HUMEDAD	%		5.71%	

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

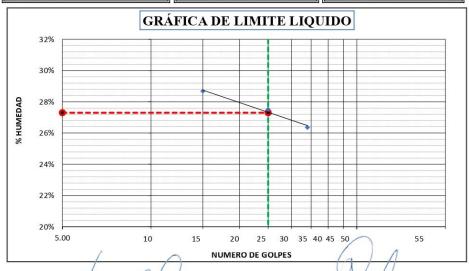
SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 2, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+450 L/D
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

0


w

w

LIMITES DE CONSISTENCIA

DESCRIPCIÓN	I	IMITE	LIQUIDO	LIM	ITE PLASTICO		
ENSAYO	No	1	2	3	1	2	
NRO DE TARRO	No	8	9	7	5	9	
TARRO + SUELO HUMEDO	gr.	67.3	66.54	65.63	24.58	23.37	
TARRO + SUELO SECO	gr.	57.07	56.8	56.34	22.69	21.52	
PESO DEL TARRO	gr.	21.4	21.40	21.1	14.21	13.09	
AGUA	gr.	10.23	9.74	9.29	1.89	1.85	
PESO DEL SUELO SECO	gr.	35.67	35.4	35.24	8.48	8.43	
CONTENIDO DE HUMEDAD	%	28.68%	27.51%	26.36%	22.29%	21.95%	
NUMERO DE GOLPES	N	15	25	34	 		

LIMITE LIQUIDO = 27.30 % LIMITE PLASTICO = 22.12 % INDICE PLASTICO = 5.18 %

Gumercinda Munumi Condori NACENJERO GEOLOGA CIP, 258641

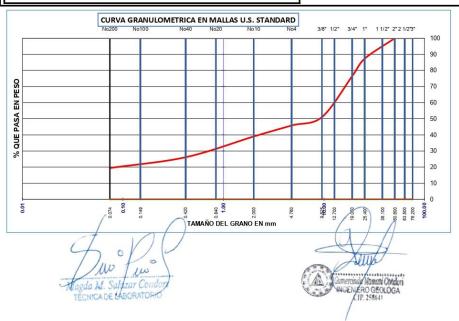
Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

PROYECTO: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES


UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 2, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

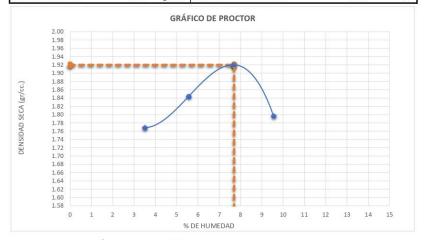
 PROGRESIVA
 : Km. 0+450 L/D
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

AMICES	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE			DE ENSAYO	s
ASTM	mm	TENIDO	PARCIAL	ACUMULADO	PASA	DATO	S DE LA	MUESTRA	
3"	76.200				100.00	PESO INICIAL	- 8	60	54.70
2 1/2"	63.500				100.00	PESO FRAC.	:	50	07.00
2"	50.600		0.00	0.00	100.00	_K		110	05.13
1 1/2"	38.100	224.00	3.70	3.70	96.30	LIMITES DE CONSIST	ENCIA:		
1"	25.400	547.00	9.00	12.70	87.30	LIMITE LIQUIDO	:	27.30	%
3/4"	19.050	658.00	10.90	23.60	76.40	LIMITE PLASTICO	1	22.12	.%
1/2"	12.700	984.00	16.30	39.90	60.10	INDICE PLASTICO		5.18%	1000.01
3/8"	9.525	550.00	9.10	49.00	51.00	COEF. CURVATURA	/ UNIF.		
N° 4	4.760	314.00	5.20	54.20	45.80	D10= 0.038	-	Cu=	332.2024
N° 10	2.000	75.30	6.80	61.00	39.00	D30= 0.764		Cc=	1.208714
N° 20	0.840	90.10	8.14	69.14	30.86	D60= 12.67			
N° 40	0.420	52.60	4.75	73.89	26.11	CLASIFICACION SUE	LOS:		
V° 100	0.149	45.60	4.12	78.01	21.99	AASTHO	31 /	A-2-4 (0)	
1° 200	0.074	28.60	2.58	80.59	19.41	S.U.C.S.	1 1	SP-SC	
-200		214.84	19.41	100.00	0.00	GRAVA	0.5	54.20	
						ARENA	1 1	19.69	
OBSER	VACIONES	3.				LIMO	10.0	6.70	
						ARCILLAS	21	19.41	
						HUM. NATURAL		5.71%	
						DENS. PROCTOR.	- 6	1.92	grs/cc
						C.B.R. AI 95%			3

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO

TÉCNICA DE LABORATORK

CALICATA N° : 2, CON 5% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA ASUNTO : Km. 0+450 L/D FECHA : 16/01/2024 : EVALUACIÓN - APROBACIÓN

Molde N° MODELO CN	-4! 01	Método de	compactación	"B"		
Volumen Molde 214	44 cc	N° de capa	as	: 05		
Peso del Molde 66	72 grs.	N° de golp	es por capa	: 56		
Determinación	N°	01	02	03	04	
Peso del molde y Muestra	gr.	10597	10845	11105	10977	
Peso del molde	gr.	6672	6672	6672	6756	
Peso de la muestra compactada	gr.	3925	4173	4433	4221	
Densidad húmeda	gr/cc	1.83	1.95	2.07	1.97	
Densidad seca	gr/cc	1.77	1.84	1.92	1.80	

		Co	intenido de Agua			
Tarro	N°	1	2	5	4	
Peso del Tarro	gr.	0.0	0.0	0.0	0.0	
Peso del Tarro + Suelo húmedo	gr.	300.9	313.0	276.5	307.3	
Peso del Tarro + Suelo seco	gr.	290.7	296.5	256.8	280.5	
Peso del agua	gr.	10.2	16.5	19.7	26.8	
Peso del suelo seco	gr.	290.7	296.5	256.8	280.5	
Contenido de humedad	%	3.5	5.6	7.7	9.6	
Promedio		3.5	5.6	7.7	9.6	
ENSIDAD MAXIMA: 1.920		20 grs/cc	CONTENIDO DE I	HUMEDAD:	7.70	%

A Gumeronia Manual Cordon NACENIERO GEOLOGA LIP. 258641

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024 SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 2, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : Mr-1

 PROGRESIVA
 : Km. 0+450 L/D
 FECHA
 : 18/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

MOLDE	Modelo CN 450	1	2	3
CAPAS	N.	05	05	05
Golpes por capa	N*	12	25	56

Condicion de la muest	ra	Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado
Peso suelo humedo + molde		12504		12745		13355	
Peso molde	gr.	8347		8373		7641	
Peso del Suelo humedo	gr.	4157		4372		5714	
Volumen del Suelo	gr.	2316		2334		2725	
Densidad humeda	gr/cc	1.79		1.87		2.10	
% de humedad	%	7.6		7.7		7.9	
Densidad seca	gr/cc	1.67		1.74		1.94	
Тапо	N°	1		2		3	
Tarro + suelo humedo	gr.	329.0		259.3		364.4	
Tarro + suelo seco	gr.	308.6		243.5		340.5	
Peso del agua	gr.	20.4		15.8		23.9	
Peso de tarro	gr.	38.5		39.6		38.4	
Peso del suelo seco	gr.	270.1		203.9		302.1	
% de humedad	%	7.6		7.7		7.9	
Promedio de humedad		7.6		7.8		7.9	

		% E	APA	NSIÓ	N =	1.02		%				
Fecha	Hora	Tiomas	Dial	EXPANSION		Dial	EXPANSIÓN		- Dial	EXPANSIÓN		
Petria	nora	Tiempo	Dial	mm. %		Lital	mm.	%	Lital	mm.	%	
16/01/2024	10:30 a.m.	00.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
17)01/2024	10:30 a.m.	24.00	0.19	0.10	0.09	0.00	0.00	0.00	0.00	0.00	0.00	
18/01/2024	10:30 a.m.	48.00	0.20	0.11	0.10	0.01	0.01	0.01	0.02	0.02	0.02	
19/01/2024	10:30 a.m.	72.00	0.21	0.12	0.10	0.03	0.03	0.03	0.04	0.04	0.03	
1.25				1.16	1.01	1.20	1.20	1.05	1.15	1.15	1.01	

					PE	NETR	ACIO	N .						
PENETR	ACIÓN	Carga		E Nro: orregida	Pro	1 Presión		E Nro: orregida	,	2 resión		E Nro: Corregida	Pre	3 sión
mm.	Tiempo	Slump.	Dial	Kg.	k/cm ²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	klon ²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30"		5	46	2.4		8	60	3.2		13	83	4.4	
1.27	1'		8	60	3.2		12	70	3.7		25	140	7.4	
1.91	1.30'		12	79	4.2		18	105	5.6		35	187	9.9	
2.54	2'	70	18	107	5.7		25	140	7.4		45	235	12.4	
3.81	3'		20	117	6.2		30	165	8.7		55	282	15.0	
5.08	4'	105	25	140	7.4		45	235	12.4		100	495	26.2	

OBSERVACIONES:

C.B.R. Al 95% de su máxima densidad seca y a 2.54 mm. de penetración =

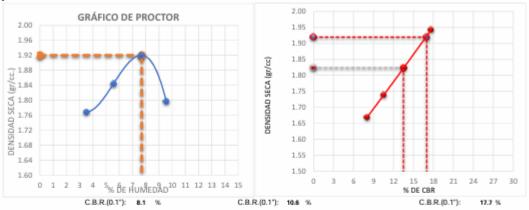
TÉCNICA DE MABORATOR

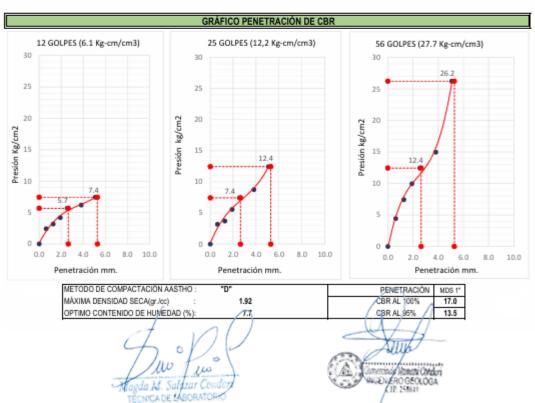
Cameronia Nameni Condon NICENERO GEOLOGA IP. 258641

13.5 %

ENSAYO DE C.B.R. (MTC E 132

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,


SOLICITANTE: GUIDO NIDWARD ATENCIO FUENTES


UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA № :
 2, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA :
 Km. 0+450 LID
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 3, CON 5% RASTROJO DE TRIGO Y QUINUA **ESTRATO** : M-1 FECHA : 16/01/2024

PROGRESIVA : Km. 0+700 L/I

ASUNTO : EVALUACIÓN - APROBACIÓN

NUMERO DE CAPSULA	N°	3	5	
PESO SUELO HUMEDO + CAPSULA	gr.	458.30	458.00	
PESO DEL SUELO SECO + CAPSULA	gr.	428.00	436.00	
PESO DEL AGUA	gr.	30.30	22.00	
PESO DE LA CAPSULA	gr.	73.20	74.20	
PESO NETO DEL SUELO SECO	gr.	354.80	361.80	
PORCENTAJE DE HUMEDAD	%	8.54%	6.08%	
PROMEDIO DE HUMEDAD	%		7.31%	1

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

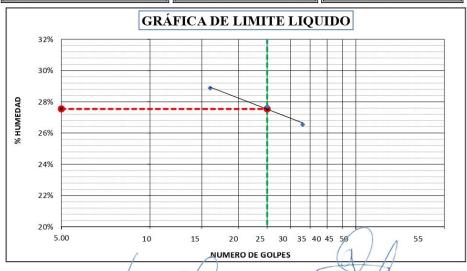
ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 :
 3, CON. 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1


 PROGRESIVA
 :
 Km. 0+700 L/I
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUIDO		LIMITE PLASTICO		
ENSAYO	No	1	2	3	ПI	1	2	
NRO DE TARRO	No	4	6	7	\Box	3	2	
TARRO + SUELO HUMEDO	gr.	67.06	65.9	66.29	71	24.79	24.88	
TARRO + SUELO SECO	gr.	56.83	56.16	57.00	11	23.13	23.04	
PESO DEL TARRO	gr.	21.4	21.00	22.00	71	14.56	14.83	
AGUA	gr.	10.23	9.74	9.29	71	1.66	1.84	
PESO DEL SUELO SECO	gr.	35.43	35.16	35	-1 1	8.57	8.21	
CONTENIDO DE HUMEDAD	%	28.87%	27.70%	26.54%	71	19.37%	22.41%	
NUMERO DE GOLPES	N	16	25	33	一1,			

LIMITE LIQUIDO = 27.54 % LIMITE PLASTICO = 20.89 % INDICE PLASTICO = 6.65 %

w

TÉCNICA DE LABORATOR

Gumerondy Manuari Condori NAGENJERO GEOLOGA (IP. 258641

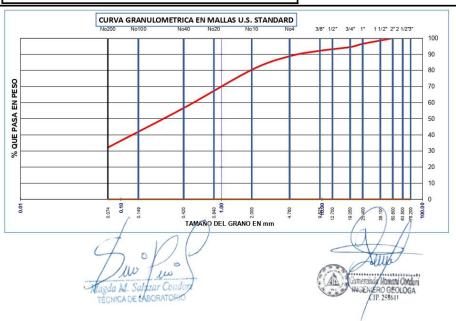
Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

SOLICITANTE : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES


UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 3, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+700 L/I
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

AMICES	ABERTURA	PESO	458	%RETENIDO	% QUE			E ENSAYOS	
ASTM	mm	TENI 428	436	ACUMULADO	PASA	DATO	SDELA	MUESTRA	
3"	76.200				100.00	PESO INICIAL	- 3	6245	.00
2 1/2"	63.500				100.00	PESO FRAC.	:	510	.00
2"	50.600		0.00	0.00	100.00	к	- :	574	38
1 1/2"	38.100	120.00	1.90	1.90	98.10	LIMITES DE CONSIST	ENCIA:		
1"	25.400	100.00	1.60	3.50	96.50	LIMITE LIQUIDO	:	27.54%	10
3/4"	19.050	125.00	2.00	5.50	94.50	LIMITE PLASTICO	:	20.89%	
1/2"	12.700	65.00	1.00	6.50	93.50	INDICE PLASTICO		6.65%	
3/8"	9.525	80.00	1.30	7.80	92.20	COEF. CURVATURA y	UNIF.		
N° 4	4.760	210.00	3.40	11.20	88.80	D10= 0.023	С	u=	
N° 10	2.000	48.30	8.41	19.61	80.39	D30=	C	c=	
N° 20	0.840	81.20	14.14	33.75	66.25	D60= 0.57			
N° 40	0.420	55.20	9.61	43.36	56.64	CLASIFICACION SUE	LOS:		
N° 100	0.149	90.00	15.67	59.03	40.97	AASTHO	: A	-2-4 (0)	
N° 200	0.074	50.60	8.81	67.84	32.16	s.u.c.s.	; S	С	
-200		184.74	32.17	100.01	-0.01	GRAVA	: 1	1.20	
						ARENA	: 3	2.16	
OBSER	VACIONES	3:				LIMO	: 2	4.48	
						ARCILLAS	: 3	2.16	
						HUM. NATURAL	: 7	.31%	
						DENS. PROCTOR.	: 1	.829	grs/cc
						C.B.R. AI 95%			

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION E PILCUYO - EL COLLAO - PUNO

CALICATA N° : 3, CON 5% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA ASUNTO : Km. 0+700 L/I FECHA : 16/01/2024 : EVALUACIÓN - APROBACIÓN

Molde N° MODELO CN	-4! 01	Método de	compactación	"B"		
Volumen Molde 21	44 cc	3		: 05		
Peso del Molde 66	72 grs.	458		: 56		
Determinación	N°	01	436	03	04	
Peso del molde y Muestra	gr.	10427	10673	10930	10797	
Peso del molde	gr.	6672	6672	6672	6756	
Peso de la muestra compactada	gr.	3755	4001	4258	4041	
Densidad húmeda	gr/cc	1.75	1.87	1.99	1.88	
Densidad seca	gr/cc	1.68	1.75	1.83	1.71	

		Co	ntenido de Agua			
Tarro	N°	1	2	5	4	
Peso del Tarro		0.0	0.0	0.0	0.0	
Peso del Tarro + Suelo húmedo	gr.	303.1	315.3	278.5	309.5	
Peso del Tarro + Suelo seco	gr.	290.7	296.5	256.8	280.5	
Peso del agua	gr.	12.4	18.8	21.7	29.0	
Peso del suelo seco	gr.	290.7	296.5	256.8	280.5	
Contenido de humedad	%	4.3	6.3	8.5	10.3	
Promedio		4.3	6.3	8.5	10.3	•
DENSIDAD MAXIMA :	1.82	grs/cc	CONTENIDO DE	HUMEDAD:	8.40	%

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 3, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+700 L/I
 FECHA
 : 18/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

MOLDE Modelo	CN 450		1		È	3	ı
CAPAS			05	0		0.	
Golpes por capa	N.		12	2	5	51	6
Condicion de la mues	stra	Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado
Peso suelo humedo + molde		10433		11984		12256	
Peso molde	gr.	6591		7331		7018	
Peso del Suelo humedo	gr.	3842		4653		5238	
Volumen del Suelo	gr.	2316		2334		2316	
Densidad humeda	gr/cc	1.66		1.99		2.26	
% de humedad	%	8.4		8.4		8.4	
Densidad seca	gr/cc	1.53		1.84		2.09	
Тапто	N-	1		2		3	
Tarro + suelo humedo	gr.	416.6		256.3		352.6	
Tarro + suelo seco	gr.	384.2		236.5		325.4	
Peso del agua	gr.	32.4		19.8		27.2	
Peso de tarro	gr.	0.0		0.0		0.0	
Peso del suelo seco		384.2		236.5		325.4	
% de humedad	%	8.4		8.4		8.4	
Promedio de humedad		8.4		8.4		8.4	

		% E	EXPAI	NSIÓ	V =	1.03		%			
Fecha	Hora	T	Dial		EXPANSIÓN	Dial		EXPANSIÓN	Dial		EXPANSION
Fecha	Hora	Tiempo	Dial	mm.	%	Dial	mm.	%	Diai	mm.	%
16/01/2024	09:00 a.m.	00.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17/01/2024	09:00 a.m.	24.00	0.22	0.17	0.15	0.01	0.01	0.01	0.02	0.02	0.02
18/01/2024	09:00 a.m.	48.00	0.23	0.18	0.16	0.03	0.03	0.03	0.02	0.02	0.02
19/01/2024	09:00 a.m.	72.00	0.24	0.19	0.17	0.04	0.04	0.03	0.03	0.03	0.03
1.25				1.20	1.05	1.20	1.20	1.05	1.15	1.15	1.01

PENETRACIÓN

PENETR	a CIÓN	Carpa	MOLD	E Nra:		1	MOLD	E Nro:		2	MOLD	E Nro:		3
PENEIR	ACION	Carga	Carga C	orregida	Pro	alón	Carga C	orregida	Pi	resión	Carga C	orregida	Pre	sión
mm.	Tiempo	Slump.	Dial	Kg.	k/cm ²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/om²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30"		9	65	3.4		14	88	4.7		18	107	5.7	
1.27	1'		22	126	6.7		29	159	8.4		41	216	11.4	
1.91	1.30'		29	159	8.4		45	235	12.4		58	296	15.7	
2.54	2'	70	39	206	10.9		61	310	16.5		73	367	19.5	
3.81	3'		58	296	15.7		88	438	23.2		106	523	27.7	
5.08	4'	105	76	381	20.2		104	514	27.2		118	580	30.7	
											-			

OBSERVACIONES:

C.S.R. Al 95% de su máxima de sidad seca y a 2.54 mm. de penetración -

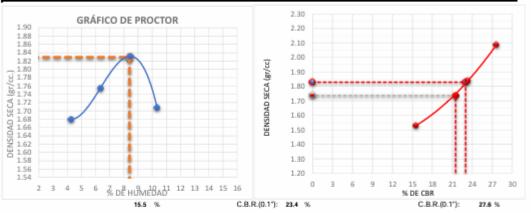
٥

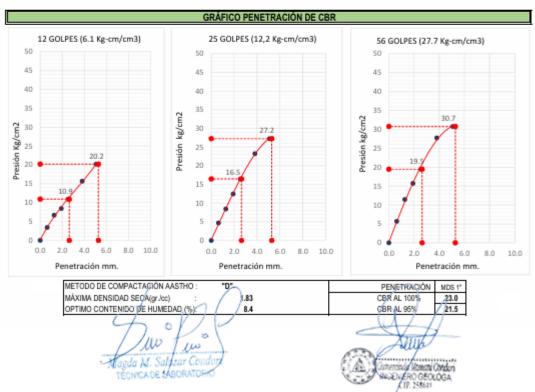
Magda M. Salazar Condi TECNICA DE SABORATORIO

67

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES


UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 :
 3, CON 5% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 :
 Km. 0+700 Lli
 FECHA
 : 18/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

: GUIDO NIDWARD ATENCIO FUENTES SOLICITANTE

w

UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 1, CON 10% RASTROJO DE TRIGO Y QUINUA **ESTRATO** : M-1 FECHA : 16/01/2024

PROGRESIVA : Km. 0+020 L/I

ASUNTO : EVALUACIÓN - APROBACIÓN

NUMERO DE CAPSULA	N°	6	7	
PESO SUELO HUMEDO + CAPSULA	gr.	465.30	469.60	
PESO DEL SUELO SECO + CAPSULA	gr.	430.60	432.20	
PESO DEL AGUA	gr.	34.70	37.40	
PESO DE LA CAPSULA	gr.	74.00	72.00	
PESO NETO DEL SUELO SECO	gr.	356.60	360.20	
PORCENTAJE DE HUMEDAD	%	9.73%	10.38%	
PROMEDIO DE HUMEDAD	1%		10.06%	1

Gumercinda Mamani Cordori HNGENJERO GEOLOGA LIP. 258641

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

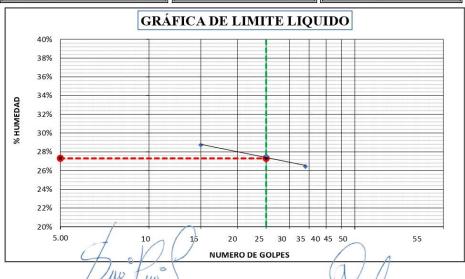
DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE GUIDO NIDWARD ATENCIO FUENTES UBICACION PILCUYO - EL COLLAO - PUNO

TÉCNICA DE LABORATOR

CALICATA N° 1, CON 10% RASTROJO DE TRIGO Y QUINUA ESTRATO

PROGRESIVA Km. 0+020 L/I FECHA : 16/01/2024 ASUNTO EVALUACIÓN - APROBACIÓN


LIMITES DE CONSISTENCIA

: M-1

Gumeroinda Munari Condori NGENJERO GEOLOGA CIP. 258641

DESCRIPCIÓN		I	IMITE	LIQUIDO		LIMITE PLASTICO			
ENSAYO	No	1	2	3	$\neg \vdash$	1	2		
NRO DE TARRO	No	1	2	3	$\neg \vdash$	4	5		
TARRO + SUELO HUMEDO	gr.	67.68	66.82	66.11		24.36	23.96		
TARRO + SUELO SECO	gr.	57.33	56.96	56.7		22.73	22.38		
PESO DEL TARRO	gr.	21.30	21.20	21.10	$\neg \sqcap$	14.3	14.08		
AGUA	gr.	10.35	9.86	9.41	$\neg \vdash$	1.63	1.58		
PESO DEL SUELO SECO	gr.	36.03	35.76	35.6	$\neg \vdash$	8.43	8.30		
CONTENIDO DE HUMEDAD	%	28.73%	27.57%	26.43%	19	9.34%	19.04%		
NUMERO DE GOLPES	N	15	25	34	_ _				

27.30 % LIMITE LIQUIDO = LIMITE PLASTICO = 19.19 % INDICE PLASTICO = 8.11 %

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

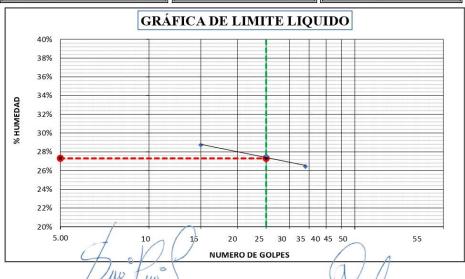
PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

TÉCNICA DE LABORATOR

 CALICATA N°
 :
 1, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1


 PROGRESIVA
 :
 Km. 0+020 L/I
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUIDO		LIMITE PLASTICO		
ENSAYO	No	1	2	3	-	1	2	
NRO DE TARRO	No	1	2	3		4	5	
TARRO + SUELO HUMEDO	gr.	67.68	66.82	66.11		24.36	23.96	
TARRO + SUELO SECO	gr.	57.33	56.96	56.7		22.73	22.38	
PESO DEL TARRO	gr.	21.30	21.20	21.10		14.3	14.08	
AGUA	gr.	10.35	9.86	9.41	\neg	1.63	1.58	
PESO DEL SUELO SECO	gr.	36.03	35.76	35.6		8.43	8.30	
CONTENIDO DE HUMEDAD	%	28.73%	27.57%	26.43%	\neg	19.34%	19.04%	
NUMERO DE GOLPES	N	15	25	34				

LIMITE LIQUIDO = 27.30 % LIMITE PLASTICO = 19.19 % INDICE PLASTICO = 8.11 %

Gumercinda Munari Condoni HAGENJERO GEOLOGA CIP. 258641

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

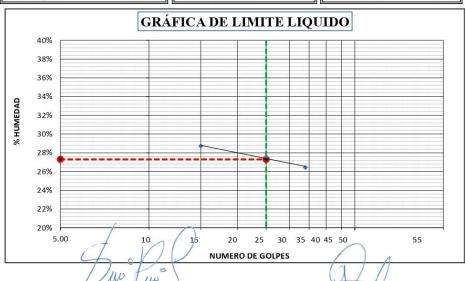
PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

TÉCNICA DE LABORATOR

 CALICATA N°
 1, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1


 PROGRESIVA
 :
 Km. 0+020 L/I
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUID	0	LIMITE PLASTICO			
ENSAYO	No	1	2	3		1	2		
NRO DE TARRO	No	1	2	3		4	5		
TARRO + SUELO HUMEDO	gr.	67.68	66.82	66.11		24.36	23.96		
TARRO + SUELO SECO	gr.	57.33	56.96	56.7		22.73	22.38		
PESO DEL TARRO	gr.	21.30	21.20	21.10		14.3	14.08		
AGUA	gr.	10.35	9.86	9.41	,:	1.63	1.58		
PESO DEL SUELO SECO	gr.	36.03	35.76	35.6		8.43	8.30		
CONTENIDO DE HUMEDAD	%	28.73%	27.57%	26.43%		19.34%	19.04%		
NUMERO DE GOLPES	N	15	25	34					

LIMITE LIQUIDO = 27.30 % LIMITE PLASTICO = 19.19 % INDICE PLASTICO = 8.11 %

Gumeroinda Munari Condori NGENJERO GEOLOGA CIP. 258641

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 1, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+020 Lil
 FECHA
 : 18/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

	CN 450		1		ž.	3	1
CAPAS	N.		05	0		0	
Golpes per capa	N.		12	2	5	5	6
Condicion de la mue	stra	Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado
Peso suelo humedo + molde		11200		11845		12080	
Peso molde	gr.	7445		7684		7726	
Peso del Suelo humedo	gr.	3755		4161		4354	
Volumen del Suelo	gr.	2080		2094		2098	
Densidad humeda	gr/cc	1.81		1.99		2.08	
% de humedad	%	7.3		7.2		7.3	
Densidad seca	gr/cc	1.68		1.85		1.93	
Тапо	N"	1		2		3	
Tarro + suelo humedo	gr.	426.3		485.2		356.2	
Tarro + suelo seco	gr.	397.3		452.5		332.1	
Peso del agua	gr.	29.0		32.7		24.1	
Peso de tarro	gr.	0.0		0.0		0.0	
Peso del suelo seco	gr.	397.3		452.5		332.1	
% de humedad	%	7.3		7.2		7.3	
Promedio de humedad		7.3		7.2		7.3	

		% E	XPAI	NSIÓI	N =	1.06		%			
Fecha	Hora	T	Dial		EXPANSIÓN	Dial		EXPANSIÓN	Dial		EXPANSION
Pecna	Hora	Tiempo	LNai	mm.	%	Diai	mm.	%	Diai	mm.	%
16/01/2024	10:35 a.m.	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17)01/2024	10:35 a.m.	24.00	0.24	0.24	0.21	0.18	0.18	0.16	0.10	0.10	0.09
18/01/2024	10:35 a.m.	48.00	0.57	0.57	0.50	0.45	0.45	0.39	0.30	0.30	0.26
19/01/2024	10:35 a.m.	72.00	0.85	0.85	0.74	0.80	0.80	0.70	0.70	0.70	0.61
1.30				1.30	1.14	1.25	1.25	1.09	1.10	1.10	0.96

					PE	NETR	ACIÓN	V						
PENETR	ACIÓN	Carga	MOLD Carga C		Pro	1 alón	MOLD Carga C		Pi	2 resión		E Nro: orregida	3 Presión	
mm.	Tiempo	Slump.	Dial	Kg.	k/cm²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/om²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30°		10	69	3.7		15	93	4.9		20	117	6.2	
1.27	1'		25	140	7.4		30	164	8.7		45	235	12.4	
1.91	1.30'		30	164	8.7		48	249	13.2		60	306	16.2	
2.54	2'	70	40	211	11.2		65	329	17.5		80	400	21.2	
3.81	3'		60	306	16.2		90	447	23.7		110	542	28.7	
5.08	4'	105	80	400	21.2		110	542	28.7		120	589	31.2	

OBSERVACIONES: C.B.R. Al 95% de su máxima densidad seca y a 2.54 mm. de penetración =

٥

TÉCNICA DE SABORATORI

Gameronia Nomani Ordon NIGENERO GEOLOGA LIP. 258641

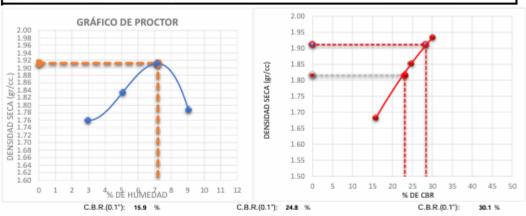
23.1 %

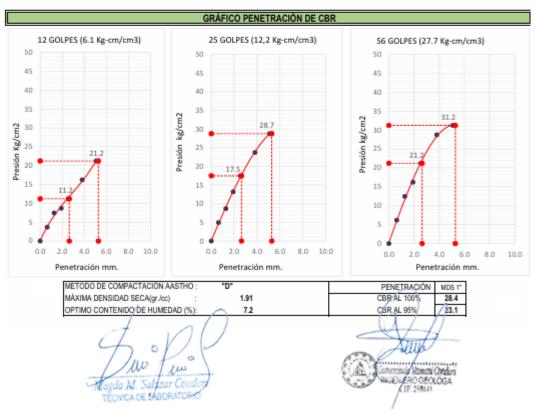
SOLICITANTE :

UBICACION

GRUPO G&W CONTRATISTAS GENERALES

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)


INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, PROYECTO


CARRETERA CHASQUI - PILCUYO - 2024 GUIDO NIDWARD ATENCIO FUENTES

PILCUYO - EL COLLAO - PUNO

CALICATA N° 1, CON 10% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA Km. 0+020 L/I **FECHA** : 16/01/2024

ASUNTO EVALUACIÓN - APROBACIÓN

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

%

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

: 2, CON 10% RASTROJO DE TRIGO Y QUINUA CALICATA N° : M-1 **ESTRATO** PROGRESIVA **FECHA** : 16/01/2024

: Km. 0+450 L/D ASUNTO : EVALUACIÓN - APROBACIÓN

PROMEDIO DE HUMEDAD

w

w

NUMERO DE CAPSULA PESO SUELO HUMEDO + CAPSULA gr. 351.50 348.20 PESO DEL SUELO SECO + CAPSULA 338.20 334.50 gr. PESO DEL AGUA 13.30 13.70 gr. PESO DE LA CAPSULA 72.00 74.00 gr. PESO NETO DEL SUELO SECO 266.20 260.50 gr. PORCENTAJE DE HUMEDAD 5.00% 5.26% %

5.13%

nercinda Mamani Condori

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES

UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 2, CON 10% RASTROJO DE TRIGO Y QUINUA : M-1 **ESTRATO** PROGRESIVA **FECHA** : 16/01/2024

: Km. 0+450 L/D ASUNTO : EVALUACIÓN - APROBACIÓN

w

w

NUMERO DE CAPSULA PESO SUELO HUMEDO + CAPSULA gr. 351.50 348.20 PESO DEL SUELO SECO + CAPSULA 338.20 334.50 gr. PESO DEL AGUA 13.30 13.70 gr. PESO DE LA CAPSULA 72.00 74.00 gr. PESO NETO DEL SUELO SECO 266.20 260.50 gr. PORCENTAJE DE HUMEDAD 5.00% 5.26% % PROMEDIO DE HUMEDAD 5.13% %

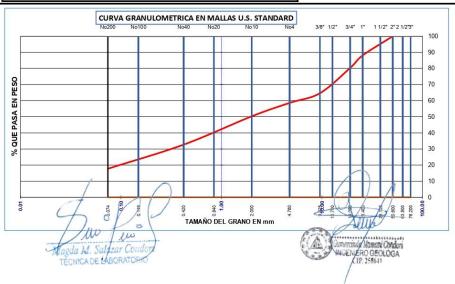
nercinda Mamani Condori

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

PROYECTO INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024


SOLICITANTE GUIDO NIDWARD ATENCIO FUENTES UBICACION

PILCUYO - EL COLLAO - PUNO

CALICATA N° 2, CON 10% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA Km. 0+450 L/D FECHA : 16/01/2024

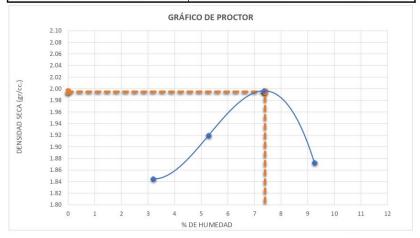
ASUNTO EVALUACIÓN - APROBACIÓN

AMICES	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE	RESUL	TADO:	DE ENSAYO	S
ASTM	mm	TENIDO	PARCIAL	ACUMULADO	PASA	DATO	S DE L	A MUESTRA	
3"	76.200				100.00	PESO INICIAL	- 9	60	38.00
2 1/2"	63.500				100.00	PESO FRAC.		5	12.00
2"	50.600		0.00	0.00	100.00	K	:	8	73.79
1 1/2"	38.100	205.00	3.40	3.40	96.60	LIMITES DE CONSIST	ENCIA	:	
1"	25.400	514.00	8.50	11.90	88.10	LIMITE LIQUIDO	- 1	28.50	1%
3/4"	19.050	469.00	7.80	19.70	80.30	LIMITE PLASTICO	10	23.75	5%
1/2"	12.700	512.00	8.50	28.20	71.80	INDICE PLASTICO		4.75%	
3/8"	9.525	435.00	7.20	35.40	64.60	COEF. CURVATURA y	UNIF.		
N° 4	4.760	365.00	6.00	41.40	58.60	D10= 0.042		Cu=	228.08514
N° 10	2.000	72.60	8.31	49.71	50.29	D30= 0.356		Cc=	0.3194104
N° 20	0.840	93.50	10.70	60.41	39.59	D60= 9.53			
N° 40	0.420	60.30	6.90	67.31	32.69	CLASIFICACION SUE	LOS:		
V° 100	0.149	100.20	11.47	78.78	21.22	AASTHO	31	A-2-4 (0)	
۷° 200	0.074	30.60	3.50	82.28	17.72	S.U.C.S.	- 33	SC	
-200		154.84	17.72	100.00	0.00	GRAVA	23	41.40	
						ARENA		25.91	
OBSER'	VACIONES	3.				LIMO	10	14.97	
ODOLIN						ARCILLAS	23	17.72	
						HUM. NATURAL		5.13%	
						DENS. PROCTOR.		1.995	grs/cc
						C.B.R. AI 95%			3.200

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO


TÉCNICA DE LABORATOR

CALICATA N° : 2, CON 10% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA : Km. 0+450 L/D FECHA : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

	1.11.01	1447. 1 1		101		
Molde N° MODELO CI	V-4: 01	Método de	compactación	"B"		
Volumen Molde 2:	144 cc	N° de capa	as	: 05		
Peso del Molde 66	672 grs.	N° de golp	es por capa	: 56		
Determinación	N°	01	02	03	04	
Peso del molde y Muestra	gr.	10753	11004	11267	11142	
Peso del molde	gr.	6672	6672	6672	6756	
Peso de la muestra compactada	gr.	4081	4332	4595	4386	
Densidad húmeda	gr/cc	1.90	2.02	2.14	2.05	
Densidad seca	gr/cc	1.84	1.92	2.00	1.87	

		Co	intenido de Agua			
Tarro	N°	1	2	5	4	$\neg \neg$
Peso del Tarro	gr.	0.0	0.0	0.0	0.0	
Peso del Tarro + Suelo húmedo	gr.	421.1	435.7	401.7	434.7	
Peso del Tarro + Suelo seco	gr.	408.1	413.9	374.2	397.9	
Peso del agua	gr.	13.0	21.8	27.5	36.8	
Peso del suelo seco	gr.	408.1	413.9	374.2	397.9	
Contenido de humedad	%	3.2	5.3	7.3	9.2	
Promedio		3.2	5.3	7.4	9.3	
DENSIDAD MAXIMA :	1.995	grs/cc	CONTENIDO DE H	UMEDAD:	7.40	%

Al Gumercinia Mamani Condoni INGENIERO GEOLOGA LIP. 258641

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

CARRETERA CHASQUI - PILCUYO - 2024 SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 2, CON 10% RASTROJO DE TRIGO Y QUINUA **ESTRATO** : M-1 PROGRESIVA : Km. 0+450 L/D FECHA : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

MOLDE Modelo	CN 450		1		2	3		
CAPAS	N°		05	0		0.		
Golpes per capa	N°		12	2	5	51	i i	
Condicion de la mues	rtra	Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado	
Peso suelo humedo + molde		12652		12996		13546		
Peso molde	gr.	8347		8373		7641		
Peso del Suelo humedo	gr.	4305		4623		5905		
Volumen del Suelo	gr.	2316		2334		2725		
Densidad humeda	gr/cc	1.86		1.98		2.17		
% de humedad	%	7.5		7.4		7.4		
Densidad seca	gr/cc	1.73		1.85		2.02		
Тапо	N°	1		2		3		
Tarro + suelo humedo	gr.	326.5		385.4		362.9		
Tarro + suelo seco	gr.	303.8		359.0		337.8		
Peso del agua	gr.	22.7		26.4		25.1		
Peso de tarro	gr.	0.0		0.0		0.0	•	
Peso del suelo seco	gr.	303.8		359.0		337.8		
% de humedad	%	7.5		7.4		7.4		
Promedio de humedad		7.5		7.4		7.4		

		% E	IAGX	NSIÓI	V =	1.05		%				
Frebr	Hora	T	Dial	EXPANSIÓN		Dial	EXPANSIÓN		Dial	EXPANSION		
Fecha	Hora	Tiempo	Diai	mm. %		Dial	mm.	%	Diai	mm.	%	
16/01/2024	09:30 a.m.	00.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
17)01/2024	09:30 a.m.	24.00	0.19	0.10	0.09	0.00	0.00	0.00	0.01	0.01	0.01	
18/01/2024	09:30 a.m.	48.00	0.23	0.14	0.12	0.02	0.02	0.02	0.03	0.03	0.03	
19/01/2024	09:30 a.m.	72.00	0.25	0.16	0.14	0.04	0.04	0.03	0.06	0.06	0.05	
1.29				1.20	1.05	1.22	1.22	1.07	1.18	1.18	1.03	

					PE	NETR	ACIÓI	V						
PENETR	ACIÓN	Carga		E Nro: orregida	Pro	1 sión	MOLDE Nro: Carga Corregida		2 Presión		MOLDE Nro: Carga Corregida		Pre	3 sión
mm.	Tiempo	Slump.	Dial	Kg.	k/cm²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/cm²	C.B.R.
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00	
0.63	30°		9	65	3.4		12	79	4.2		20	117	6.2	
1.27	1'		15	93	4.9		20	117	6.2		30	164	8.7	
1.91	1.30'		19	112	5.9		25	140	7.4		40	211	11.2	
2.54	2'	70	25	140	7.4		35	187	9.9		55	282	15.0	
3.81	3'		30	164	8.7		40	211	11.2		80	400	21.2	
5.08	4'	105	40	211	11.2		65	329	17.5		180	873	46.3	
		7												

OBSERVACIONES:

w

TECNICA DE SABORATORIO

w

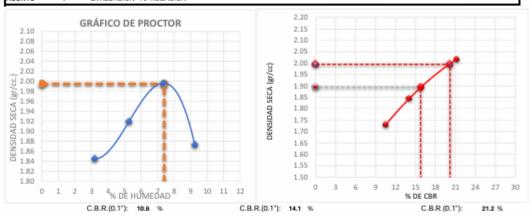
C.B.R. Al 95% de su gláxima densidad seca y a 2.54 mm. de penetración =

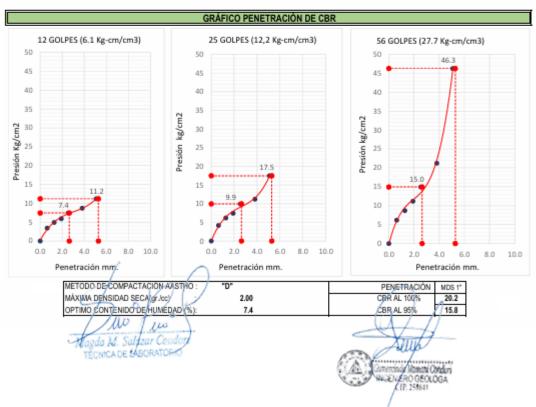
Gunerosad Hamati Condon HIGENERO GEOLOGA CIP. 258641

15.8 %

ENSAYO DE C.B.R. (MTC E 132

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,


SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES


UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N° :
 2, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO : M-1

 PROGRESIVA :
 Km. 0+450 L/D
 FECHA : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

DETERMINACIÓN DE HUMEDAD NATURAL (ASTM D2216, MTC E 108)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE PROYECTO

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

: GUIDO NIDWARD ATENCIO FUENTES SOLICITANTE

TÉCNICA DE LABORATOR

UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA N° : 3, CON 10% RASTROJO DE TRIGO Y QUINUA **ESTRATO** : M-1 FECHA : 16/01/2024

PROGRESIVA : Km. 0+700 L/I

ASUNTO : EVALUACIÓN - APROBACIÓN

NUMERO DE CAPSULA	И°	2	5	
PESO SUELO HUMEDO + CAPSULA	gr.	324.00	354.00	
PESO DEL SUELO SECO + CAPSULA	gr.	308.00	334.00	
PESO DEL AGUA	gr.	16.00	20.00	
PESO DE LA CAPSULA	gr.	75.00	75.30	
PESO NETO DEL SUELO SECO	gr.	233.00	258.70	
PORCENTAJE DE HUMEDAD	%	6.87%	7.73%	
PROMEDIO DE HUMEDAD	%		7.30%	

Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

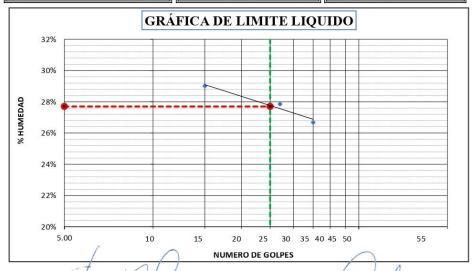
ANALISIS DE LIMITES DE CONSISTENCIA (LIMITE LIQUIDO MTC E 111, 210, ASTM D 4318 y LIMITE PLASTICO)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES

DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 :
 3, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1


 PROGRESIVA
 :
 Km. 0+700 L/I
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

LIMITES DE CONSISTENCIA

DESCRIPCIÓN		I	IMITE	LIQUIDO		LIMITE PLASTICO			
ENSAYO	No	1	2	3	\neg	1	2		
NRO DE TARRO	No	11	12	23		02	05		
TARRO + SUELO HUMEDO	gr.	67.35	66.89	66.17	\neg	24.33	23.96		
TARRO + SUELO SECO	gr.	56.95	56.98	56.72		22.55	22.14		
PESO DEL TARRO	gr.	21.1	21.40	21.30	\neg	14.26	14.08		
AGUA	gr.	10.4	9.91	9.45	\neg	1.78	1.82		
PESO DEL SUELO SECO	gr.	35.85	35.58	35.42		8.29	8.06		
CONTENIDO DE HUMEDAD	%	29.01%	27.85%	26.68%	\neg	21.47%	22.58%		
NUMERO DE GOLPES	N	15	27	35					

LIMITE LIQUIDO = 27.70 % LIMITE PLASTICO = 22.03 % INDICE PLASTICO = 5.67 %

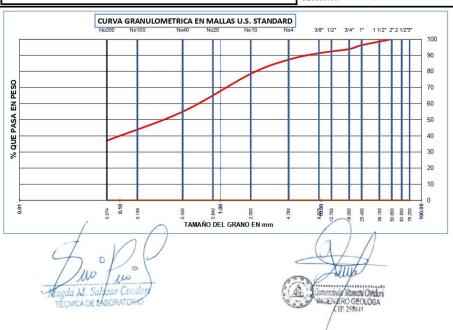
Laboratorio de Mecanica de Suelos, Concretos y Pavimentos

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D422) (ENSAYOS ESTANDAR DE CLASIFICACION (D2216 - D854 - D4318 - D427 - D2487)

SOLICITANTE : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE

SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES
UBICACION : PILCUYO - FL COLLAO - PUNO


UBICACION : PILCUYO - EL COLLAO - PUNO

 CALICATA N°
 : 3, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 : Km. 0+700 L/I
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

	ABERTURA	PESO	458	%RETENIDO	% QUE			DE ENSAY	
ASTM	mm	TENI 428	436	ACUMULADO	PASA	DATO	S DE LA	MUESTRA	
3"	76.200				100.00	PESO INICIAL	- 8	6	302.00
2 1/2"	63.500				100.00	PESO FRAC.	:		606.40
2"	50.600		0.00	0.00	100.00	_K	- 1	Ę	80.35
1 1/2"	38.100	129.00	2.00	2.00	98.00	LIMITES DE CONSIST	ENCIA:		
1"	25.400	110.00	1.70	3.70	96.30	LIMITE LIQUIDO	:	27.7	0%
3/4"	19.050	150.00	2.40	6.10	93.90	LIMITE PLASTICO	1	22.0	13%
1/2"	12.700	74.00	1.20	7.30	92.70	INDICE PLASTICO		5.67%	
3/8"	9.525	90.00	1.40	8.70	91.30	COEF. CURVATURA y	UNIF.		
N° 4	4.760	250.00	4.00	12.70	87.30	D10= 0.020		Cu=	
N° 10	2.000	50.90	8.77	21.47	78.53	D30=		Cc=	
N° 20	0.840	86.30	14.88	36.35	63.65	D60= 0.66			
N° 40	0.420	50.20	8.65	45.00	55.00	CLASIFICACION SUE	OS:		
N° 100	0.149	74.20	12.79	57.79	42.21	AASTHO	01	A-4 (0)	
N° 200	0.074	30.10	5.19	62.98	37.02	S.U.C.S.		SC	
-200		214.74	37.02	100.00	0.00	GRAVA	-	12.70	
						ARENA		32.30	
OBSER	VACIONES	3:				LIMO	20	17.98	
						ARCILLAS	2	37.02	
						HUM. NATURAL		7.30%	
						DENS. PROCTOR.	- 5	1.885	grs/cc
						C.B.R. AI 95%			3

ENSAYO DE COMPACTACIÓN PROCTOR (MTC - E 115, MÉTODO AST=M-D-2216-AASHTO T-180- D)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PILCUYO - 2024 PROYECTO

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION E PILCUYO - EL COLLAO - PUNO

CALICATA N° : 3, CON 10% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-1 PROGRESIVA : Km. 0+700 L/I FECHA : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

Molde N° MODELO CN	V-4! 01	Método de	Método de compactación "B"							
Volumen Molde 21	144 cc	3	3 : 05							
Peso del Molde 66	72 grs.	458	458 : 56							
Determinación	N°	01	436	03	04					
Peso del molde y Muestra	gr.	10509	10755	11013	10885					
Peso del molde	gr.	6672	6672	6672	6756					
Peso de la muestra compactada	gr.	3837	4083	4341	4129					
Densidad húmeda	gr/cc	1.79	1.90	2.02	1.93					
Densidad seca	gr/cc	1.73	1.81	1.89	1.76					

	Contenido de Agua												
Tarro	N°	1	2	5	4								
Peso del Tarro		0.0	0.0	0.0	0.0								
Peso del Tarro + Suelo húmedo	gr.	291.8	303.8	267.2	297.8								
Peso del Tarro + Suelo seco	gr.	282.8	288.6	248.9	272.6								
Peso del agua	gr.	9.0	15.2	18.3	25.2								
Peso del suelo seco	gr.	282.8	288.6	248.9	272.6								
Contenido de humedad	%	3.2	5.3	7.4	9.2								
Promedio		3.2	5.3	7.4	9.2	•							
DENSIDAD MAXIMA :		85 grs/cc	CONTENIDO DE	HUMEDAD:	7.40	%							

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

: INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRISO Y QUINJA EN PROPIEDADES DE SUBRASANTE, CARRETERA CHASQUI - PLCUYO - 2024 PROYECTO

SOLICITANTE : GUIDO NIDWARD ATENCIO FUENTES UBICACION : PILCUYO - EL COLLAO - PUNO

CALICATA Nº : 3, CON 10% RASTROJO DE TRIGO Y QUINUA ESTRATO : M-2 PROGRESIVA : Km. 0+700 L/I FECHA : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

MOLDE Mode	do CN 450		1		2	:	3	
CAPAS			05	0		0		
Golpes por capa	N.		12	2	5	56		
Condicion de la m	uestra	Optima Humedad	Saturado	Optima Humedad	Saturado	Optima Humedad	Saturado	
Peso suelo humedo + mo	lde	10653		12156		12345		
Peso molde	gr.	6591		7331		7018		
Peso del Suelo humedo	gr.	4062		4825		5327		
Volumen del Suelo	gr.	2316		2334		2316		
Densidad humeda	gr/cc	1.75		2.07		2.30		
% de humedad	%	7.4		7.4		7.5		
Densidad seca	gr/cc	1.63		1.92		2.14		
Тапто	N°	1		2		3		
Tarro + suelo humedo	gr.	451.2		425.3		436.0		
Tarro + suelo seco	gr.	420.1		396.0		405.5		
Peso del agua	gr.	31.1		29.3		30.5		
Peso de tarro	gr.	0.0		0.0		0.0		
Peso del suelo seco		420.1		396.0		405.5		
% de humedad	%	7.4		7.4		7.5		
Promedio de humedad		7.4		7.4		7.5		

		% E	EXPAI	NSIÓI	V =	0.98		%				
Frebr	Here	T	Dist.		EXPANSION		EXPANSIÓN		Dist	EXPANSIÓN		
Fecha	Hora	Tiempo	Dial	mm. %		Dial	mm.	%	Dial	mm.	%	
16/01/2024	01:00 p.m.	00.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
17/01/2024	01:00 p.m.	24.00	0.22	0.17	0.15	0.01	0.01	0.01	0.02	0.02	0.02	
18/01/2024	01:00 p.m.	48.00	0.24	0.19	0.17	0.03	0.03	0.03	0.02	0.02	0.02	
19/01/2024	01:00 р.т.	72.00	0.25	0.20	0.17	0.04	0.04	0.03	0.03	0.03	0.03	
1.24				1.19	1.04	1.10	1.10	0.96	1.07	1.07	0.94	

	PENETRACIÓN														
PENETR	PENETRACIÓN Carga		MOLDE Nro: Carga Corregida		Pro	1 alón	MOLDE Nro: Carga Corregida		2 Presión			E Nro: corregida	3 Presión		
mm.	Tiempo	Slump.	Dial	Kg.	k/cm ²	C.B.R.	Dial	Kg.	klem ²	C.B.R.	Dial	Kg.	k/cm²	C.B.R.	
0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00		0.00	0.00	0.00		
0.63	30"		15	93	4.9		20	117	6.2		25	140	7.4		
1.27	1'		30	164	8.7		35	187	9.9		55	282	15.0		
1.91	1.30'		35	187	9.9		55	282	15.0		65	329	17.5		
2.54	2'	70	45	235	12.4		70	353	18.7		90	447	23.7		
3.81	3'		65	329	17.5		80	400	21.2		130	637	33.8		
5.08	4'	105	85	424	22.5		130	637	33.8		180	873	46.3		

22.4 % OBSERVACIONES: C.B.R. Al 95% de su máxima densidad seca y a 2.54 mm. de penetración =

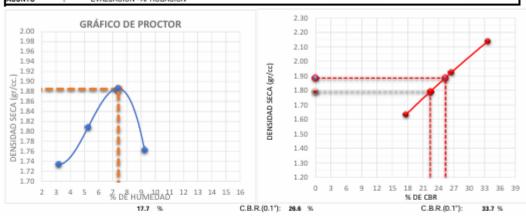
TÉCNICA DE LABORATOR

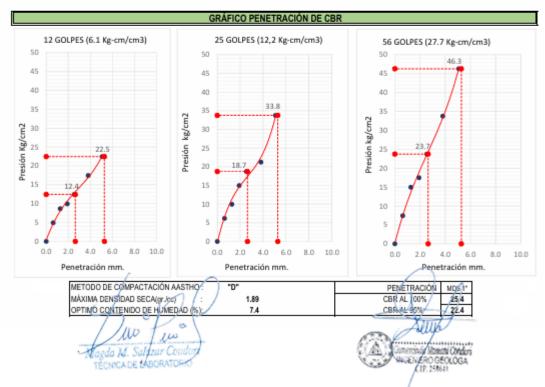
85

ENSAYO DE C.B.R. (MTC E 132, MÉTODO ASTM D - 1883)

PROYECTO : INFLUENCIA POR INCORPORACION DE PARTICULAS DEL RASTROJO DE TRIGO Y QUINUA EN PROPIEDADES DE SUBRASANTE,

SOLICITANTE: CARRETERA CHASQUI - PLCUYO - 2024


SOLICITANTE: GUIDO NIDWARD ATENCIO FUENTES


 UBICACION
 :
 PILCUYO - EL COLLAO - PUNO

 CALICATA №
 :
 3, CON 10% RASTROJO DE TRIGO Y QUINUA
 ESTRATO
 : M-1

 PROGRESIVA
 :
 Km. 0+700 LI
 FECHA
 : 16/01/2024

ASUNTO : EVALUACIÓN - APROBACIÓN

ramiz certificado para ensayo TEST SIEVE CERTIFICATED

Manufactured by PINZUAF

CONFORME CON LA NORMA IN ACCORDANCE WITH NORM

ASTM E11-17

ABERTURA PROMEDIO

63,42

mm

AVERAGE APERTURE

mm

ABERTURA MÁXIMA **MAXIMUM APERTURE** 64,14

DIÁMETRO PROMEDIO **AVERAGE DIAMETER** 5,04 mm

MALLA No. MESH No.

2 1/2"

SERIE No. SERIAL No. 70126

INCERTIDUMBRE DE MEDICIÓN UNCERTAINTY OF MEASUREMENT ± 10,56

μm

FECHA DATE 2023 - 08 - 31

FIRMA

SIGN

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

PINZUAR TEL: (571) 7454555 Calle 18 # 103 B 72

www.pinzuar.com.co BOGOTÁ - COLOMBIA ASTM E 11 - 2017 BUREAU VERITAS Cortification

No. C018.03420

4C-P-11-F-02 Rev 0

ureau Veritas Certification se encuentre acreditado por ONAC"

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

INFORME DE VERIFICACIÓN PT - IV - 083 - 2023

Área de Metrológía Laboratorio de Longitud

Página 1 de 3

Expediente 0750-2023

 Solicitante GUMERCINDA MAMANI CONDORI

 Dirección JR. SAMAN S/N - JULIACA - PUNO

 Instrumento de medición EQUIPO LÍMITE LÍQUIDO (CAZUELA CASAGRANDE)

055

Marca PERUTEST

Modelo PT-CC

Procedencia PERÚ

Código de Identificación NO INDICA

Tipo de contador ANALÓGICO

Ubicación NO INDICA

5. Fecha de Verificación 2023-08-31

Este informe de verificación documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la verificación. Al solicitante le corresponde disponer en su momento la ejecución de una reevaluación, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

Este informe de verificación no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El informe de verificación sin firma y sello carece de validez.

Fecha de Emisión

Número de Serie

Jefe del Laboratorio de Metrología

Sello

2023-08-31

MANUEL ALEJANDRO ALIAGA TORRES

DERUTEST S.A.C

LABORATORIO PERU

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

INFORME DE VERIFICACIÓN PT - IV - 083 - 2023

Área de Metrología Laboratorio de Longitud

Página 2 de 3

6. Método de Verificación

La Verificación se realizó tomando las medidas del instrumento, según las especificaciones de la norma internacional ASTM D4318 "Standard Test Methods for Liquid Limit, Plastic Limit and Plastic Index of Soils."

7. Lugar de Verificación

En el laboratorio de Longitud de PERUTEST S.A.C.

Jr. La Madrid Mz. D Lt. 25 Urb. Los Olivos - San Martin De Porres - Lima

8. Condiciones ambientales

	5 25 (2) 3	Inicial	Final
9	Temperatura	ું ે 21 °C ું	21 ℃
	Humédad Relativa	65%	65 %

9. Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
INACAL	BLOQUES DE PATRON DE LONGITUD	LLA 102-2023
METROIL	"PIE DE REY DIGITAL de 200 mm MARCA: INSIZE"	L-0433-2023
METROIL	TERMOHIGROMETRO DIGITAL	T-1131- 2023

10. Observaciones

Se colocó una etiqueta autoadhesiva con la indicación de VERIFICACIÓN.

(*) Serie grabado en el instrumento

LABORATORIO PERU

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPÓS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

INFORME DE VERIFICACIÓN PT - IV - 083 - 2023

Área de Metrología Laboratorio de Longitud

Página 3 de 3

11. Resultados

El equipo cumple con las especificaciones técnicas siguientes:

DIMENSIONES DE LA BASE DE GOMA DURA

Altura (*) (mm) (*)	Largo (mm)>>	Ancho (mm)
50.41	149.49	125.53

HERRAMIENTA DE RANURADO

	EXTREMO CURVADO O		
Š	Espesor (mm)	Borde Cortante (mm)	Ancho (mm)
1500	10.02	1.99	13.01

DIMENSIONES DE LA COPA

Radio de la copa (mm)	Espesor de la copa (mm)	Altura desdé la gula del elevador hasta la base (mm)
46.80	1.95	47.01

Fin del Documento

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION PLACA DE EXPANSION

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Diámetro	149.2 + 1.6 mm
Perforaciones	1,6 mm 0 0 5 N 0 5 5
serie	091 8 5 6 6 0 5 5 6 6

La placa de expansión CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139.145

I.N.V. E - 148 - 07

Lima, 31 de agosto del 2020

Aprobado:

PERUTEST S.A.C.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION PLACA DE EXPANSION

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Diámetro	149.2 + 1.6 mm
Perforaciones	1,6 mm
serie 5 5 5	092 20 10 8 10 10 10 10

La placa de expansión CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139,145

I.N.V. E - 148 - 07

Lima, 31 de agosto del 2020

Aprobado:

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION PLACA DE EXPANSION

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Diámetro	149.2 + 1.6 mm
Perforaciones	1,6 mm
serie	2093 20 10 00 10 10 10 10 10

La placa de expansión CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139.145

I.N.V. E - 148 - 07

Lima, 31 de agosto del 2020

Aprobado:

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

PERUTEST S.A.C.

I Y MANTENIMIENTO DE FOLIDOS
MATERIAL CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE FABRICACION MOLDE PARA COMPACTACIÓN CBR

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Molde & & & &	152,4 mm d.i x 177,8 mm a.(6"x7")
Collarin	50,8 mm (2")
Base	Perforada con agujeros de 1.58 mm de diam.
serie	085 15 10 0 15 10 20 5

El molde para compactación CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139.145

Lima, 31 de agosto del 2020

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION MOLDE PARA COMPACTACIÓN CBR

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Molde Comments	152,4 mm d.i x 177,8 mm a.(6"x7")
Collarin	50,8 mm (2")
Base	Perforada con agujeros de 1.58 mm de diam.
serie	086 12 2 0 15 15 20 5 15

El molde para compactación CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139.145

Lima, 31 de agosto del 2020

Aprobado

ERUTEST S.A.C.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION MOLDE PARA COMPACTACIÓN CBR

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Molde & & S & S	152,4 mm d.i x 177,8 mm a.(6"x7")
Collarin	50,8 mm (2")
Base	Perforada con agujeros de 1.58 mm de diam.
serie	087 6 6 6 5 5 6

El molde para compactación CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139.145

Lima, 31 de agosto del 2020

Aprobado:

PERUTEST S.A.C.

ALEMANDRO FLORES BINAYA

DEP. TECNICO Y METROLOGÍA

PERUTEST S.

PERUTEST S.

PERUTEST S.

PERUTEST S.

PERUTEST S.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

ST. C. DV ST. ST.

PERUTEST S.A.C.

VYMANTENIMIENTO DE FOLIDA-CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE FABRICACION TRIPODE DE EXPANSIÓN

MANUFACTURADO POR

PERUTEST S.A.

EQUIPOS DE LABORATORIO

Serie del Tripode	066	C 80 00
Dial N 8 5 15 AT C	1 "x 0.001"	V. 42, 60

El trípode de expansión para CBR ha sido Fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D- 1883

NTP 139.175

Aprobado:

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web; www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION DISCO METALICO ESPACIADOR

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

150.8 ± 0.8 mm
61.37 ± 0.25 mm
030 0 8 75 16 80 60 15 10 0

El Disco metálico espaciador ha sido fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones.

Norma de ensayo:

ASTM D - 1633 NTP 339.145

Lima, 31 de agosto del 2020

Aprobado

PERUTEST S.A.C.

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION JUEGO DE PESAS ABIERTA Y CERRADA

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Abierta y cerrada peso	2,27kg (5 libras) c/u
Diámetro interno	53,98 mm 5 6 5 5 5 5
Diámetro externo	149,23 a 150,81 mm
Serie	9 079 8 5 Kg 6 0 6 5 5 0

El Juego de pesas abierta y cerrada ha sido Fabricado examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D - 4318

NTP 339.175

Lima, 31 de agosto del 2020

2 old

probado

PERUTEST S.A.C.
LEJANDRO FLORES MINAYA
EP. TECNICO Y METWOLOGIA

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE FABRICACION JUEGO DE PESAS ABIERTA Y CERRADA

MANUFACTURADO POR

PERUTEST S.A.C.

EQUIPOS DE LABORATORIO

Abierta y cerrada peso	2,27kg (5 libras) c/u
Diámetro interno	53,98 mm
Diámetro externo	149,23 a 150,81 mm
Serie	19 1081 P 19 10 10 15 NO C.

El Juego de pesas abierta y cerrada ha sido Fabricado examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D - 4318

NTP 339.175

Lima, 09 de setiembre del 2020

Aprobado:

PERUTEST S.A.C

Selection of the select

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martín de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN

PT - LF - 056 - 2023 Área de Metrologia Laboratorio de Fuerza 0750-2023 1. Expediente Este certificado documenta la trazabilidad a los patrones nacionales o internacionales, **GUMERCINDA MAMANI CONDORI** 2. Solicitante realizan las unidades de la medición de acuerdo con el Sistema JR. SAMAN S/N - JULIACA - PUNO 3. Dirección Internacional de Unidades (SI). PRENSA DE ENSAYO CBR Los resultados son validos en 4. Equipo momento de la calibración. solicitante le corresponde disponer en 5000 kgf Capacidad su momento la ejecución de una recalibración, la cual está en función PERUTEST Marca del uso, conservación y mantenimiento del instrumento de medición o a PT-CBR Modelo reglamento vigente. 1118 Número de Serie PERUTEST S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar PERU el uso inadecuado de este instrumento. Procedencia ni de una incorrecta interpretación de los resultados de la calibración aquí NO INDICA Identificación declarados. Indicación DIGITAL Este certificado de calibración no podrá WEIGHING FLOOR SCALE Marca ser reproducido parcialmente sin la NLD-SS LCD Modelo aprobación por escrito del laboratorio HS201809217 que lo emite. Número de Serie Resolución El certificado de calibración sin sello carece de validez. Ubicación 5. Fecha de Calibración 2023-08-31 Fecha de Emisión Jefe del Laboratorio de Metrología Sello 2023-08-31

MANUEL ALEJANDRO ALTAGA TORRES

PERUTEST S.A.C

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

> CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

Área de Metrología Laboratorio de Fuerza

Página 2 de 3

6. Método de Calibración

La calibración se realizó por el método de comparación directa utilizando patrones trazables al SI calibrados en las instalaciones del LEDI-PUCP tomado como referencia el método descrito en la norma UNE-EN ISO 7500-1 "Verificación de Máquinas de Ensayo Unioxiales Estáticos, Parte 1: Máquinas de ensayo de tracción/compresión. Verificación y calibración del sistema de medida de fuerza." - Julio 2006.

7. Lugar de calibración

Laboratorio de Fuerza de PERUTEST S.A.C Jr. La Madrid Mz. D Lt. 25 Urb. Los Olivos - San Martin De Porres - Lima

8 Condicionae Ambientales

		_ Inicial ⊘	S Final
2	Temperatura	ି 21(8°C ୍	21.8°C
	Humedad Relativa	72 % HR	9 72 % HR 🦿

9. Patrones de referencia

Trazabilidad	Pátrón útilizado	Informe de calibración	A.
	Celda de Carga		1
CELDA	Código: PF-002	CMC-041-2020	(3)
	Capacidad: 10,000 kg.f	S S S S S S S S S S S S S S S S S S S	= V/

10. Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
- Durante la realización de cada secuencia de calibración la temperatura del equipo de medida de fuerza permanece estable dentro de un intervalo de ± 2,0 °C.
- El equipo no indica clase sin embargo cumple con el criterio para máquinas de ensayo unlaxiales de clase de 1.0 según la norma UNE-EN ISO 7500-1.

CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC Nº 20602182721

CERTIFICADO DE CALIBRACIÓN PT - LF - 056 - 2023

Área de Metrologia Laboratorio de Fuerza

Página 3 de 3

11 Pocultados do Medición

Indica del Eq			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fuerza (Ascenso) Referencia	WAS AND
A %	F _L (kgf)	F ₁ (kgf)	F2 (kgf)	. 9F ₃ (kgf) ⟨	Fpromedia (kgf
10	500	499.4	₹ 499.2	499.3	499.3
20	1000	1000,7	1000.6	1000.6	1000.6
30	1500	1500.3	1500.4	1500.7	1500.4
40	2000	2001,8	2002.3	े 2004.8	2003.1
50	2500	2500.0	2500,0	2500.4	2500.2
60	3000	2999.4	2999.5	2999.8	2999.6
70	3500	3499.5	3499.6	3499.7	3499.6
80	4000	3999.8	3999.9	3999.9	3999.9
90⊘″	4500	4499.9	4499.8	4500.1	4500.0
1.00	5000	4999.5	5000.0	5000,4	4999.9
Retorno	a Cero	0.0	0.0	0.0	

Indicación	Err	ores Encontrados en	el Sistema de Medi	ci ón 🏈 🦠	Incertidumbre
del Equipo F (kgf.)	Exactitud q (%)	Repetibilidad b (%)	Reversibilidad / v (%)	Resol. Relativa	ું (k=2) (%)
500	0.13	0.04	⊘-0.04	0.20	0.36
1000	-0.06	0.01	0.01	0.10	0.34
1500	-0.03	0.03	0.01	0.07	0.34
2000	-0.15	0.15	-0.05	0.05	0.35
2500	-0.01	0.02	-0.02	0.04	0.34
3000	0.01	0.01	0.00	ି 0.03୍	0.34
3500	0.01	0.01	0.00	< 0.03 €	0.34
4000	0.00	0.00	0.00	ં0.0ર્	0.34
4500	0.00		(-0.01 €	0.02	0.34
5000	0.00	0.02	0.01	`∂.02 °	0.34

MÁXIMO ERROR RELATIVO DE CERO (fa)

12. Incertidumbre

La incertidumbre expandida de medición se ha obtenido multiplicando la incertidumbre estándar de la medición por el factor de cobertura k=2, el cual corresponde a una probabilidad de cobertura de aproximadamente 95%. La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

0.00 %

Principale In La Madrid Mz F I t 14 lirh Los Olivos - San Martín de Porres - Lima

AC. PERN ST. AUTES OF

PERUTEST S.A.C.

VYMANTENIMIENTO DE EQUIDOS

WATERIA CALIBRACIÓN Y MANTENIMIENTO DE EQUIPOS E INSTRUMENTOS DE LABORATORIO SUELOS - MATERIALES - CONCRETOS - ASFALTOS - ROCAS - FÍSICA - QUÍMICA RUC N° 20602182721

CERTIFICADO DE FABRICACION MARTILLO PROCTOR MODIFICADO

MANUFACTURADO POR

ERUTEST S.A

EQUIPOS DE LABORATORIO

Peso S N S S	4540 ± 10 g
Caída de la la la como	457 ± 1.3 mm (18")
Diámetro de la masa	50.8 mm
Serie A A S (S)	046 5 5 5 6 6 6 6

El Martillo Proctor Modificado ha sido fabricado, examinado y ensayado en nuestros talleres de acuerdo con las especificaciones de las normas:

Norma de ensayo: ASTM D - 1557 NTP 339.141

Lima, 31 de agosto del 2020

Principal: Jr. La Madrid Mz. E Lt. 14 Urb. Los Olivos - San Martin de Porres - Lima Sucursal: Calle Sinchi Roca Nro. 1320 - La Victoria - Chiclayo - Lambayeque Teléfono: 913028621 - 913028623 - 913028624 Oficina: (511) 502 - 2226 / (511) 502 - 2224 E-mail: ventas@perutest.com.pe Web: www.perutest.com.pe

Figura 3. Compra de material para la adición de la investigación. Elaboración propia.

Figura 4. Triturado de rastrojo de trigo y quinua. Elaboración propia.

Figura 5. Carretera en estudio Chasqui – Pilcuyo. Elaboración propia.

Figura 6. Colocando los conos de seguridad previniendo para posibles incidentes en zona de extracción de calicatas. Elaboración propia.

Figura 7. Medidas del ancho y largo para la extracción de calicatas. Elaboración propia.

Figura 8. Se mide la profundidad para la extracción de calicatas y/o muestras. Elaboración propia.

Figura 9. Tamizado para el ensayo de granulometría. Elaboración propia.

10. Pesado de material Figura estudio. Elaboración propia.

Figura 11. Tamizaje de material adicionado (rastrojo de trigo y quinua). Elaboración propia.

Figura 12. Se realizó el tamizaje de material adicionado y se tomó el porcentaje al 5% y 10%. Elaboración propia.

Figura 13. Se realiza cuarteo después de Figura 14. Se realiza la preparación de hacer el ensayo en la cuchara de

filamentos para determinar el límite

Casagrande. Elaboración propia.

Figura 15. Pesaje de filamentos para el estudio de límite líquido y plástico. Elaboración propia.

Figura 16. Se realiza la prueba de CBR con material patrón y adicionado al 5% y 10%. Elaboración propia.

Figura 17. Se inicia con el ensayo de Proctor modificado. Elaboración propia.

Figura 18. Se utiliza papel parafinado para realizar el ensayo de Proctor modificado. Elaboración propia.

Figura 19. Toma 01 de resultados con Figura 20. Toma 02 de resultados con

DIAL. Elaboración propia.

Figura 21. Toma 03 de resultados con DIAL. Elaboración propia.

DIAL. Elaboración propia.

Figura 22. Se realiza el ensayo de Proctor modificado con la adición de material adicionado con un 5% y 10%. Elaboración propia.