

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTOR:

Colupu Abad, Joel Franklin (orcid.org/0000-0001-5844-9079)

ASESOR:

Dr. Tello Malpartida, Omart Demetrio (orcid.org/0000-0002-5043-6510)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

LIMA - PERÚ

2024

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, TELLO MALPARTIDA OMART DEMETRIO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, asesor de Tesis titulada: "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023.", cuyo autor es COLUPU ABAD JOEL FRANKLIN, constato que la investigación tiene un índice de similitud de 19%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 01 de Julio del 2024

Apellidos y Nombres del Asesor:	Firma
TELLO MALPARTIDA OMART DEMETRIO	Firmado electrónicamente
DNI: 08644876	por: OTELLOM el 20-07-
ORCID: 0000-0002-5043-6510	2024 20:14:29

Código documento Trilce: TRI - 0784430

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad del Autor

Yo, COLUPU ABAD JOEL FRANKLIN estudiante de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, declaro bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023.", es de mi autoría, por lo tanto, declaro que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- 2. He mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma
JOEL FRANKLIN COLUPU ABAD	Firmado electrónicamente
DNI: 75666374	por: JCOLUPU el 01-07- 2024 13:29:41
ORCID: 0000-0001-5844-9079	

Código documento Trilce: TRI - 0784428

DEDICATORIA

Dedico este trabajo a Dios, por brindarme salud y la fortaleza para concluir mi carrera. A mi madre, mi pilar inquebrantable, por su amor y apoyo constantes a lo largo de este proceso. Y a mis seres queridos, quienes me alentaron a seguir adelante cuando más lo necesitaba. Gracias por su presencia en este camino.

AGRADECIMIENTO

Agradezco a la universidad por brindarme la oportunidad de estudiar y crecer profesionalmente. Mi gratitud al docente que me acompañó en este proceso de investigación; su conocimiento y guía fueron fundamentales para la realización de este proyecto. Gracias por su dedicación y apoyo.

Índice de Contenidos

CARÁTULA	i
DECLARATORIA DE AUTENTICIDAD DEL ASESOR	ii
DECLARATORIA DE ORIGINALIDAD DEL AUTOR	iii
DEDICATORIA	iv
AGRADECIMIENTO	v
ÍNDICE DE CONTENIDOS	vi
ÍNDICE DE TABLAS	vii
ÍNDICE DE GRÁFICOS Y FIGURAS	viii
RESUMEN	x
ABSTRACT	xi
I. INTRODUCCIÓN	1
II. METODOLOGÍA	16
III. RESULTADOS	51
IV. DISCUSIÓN	56
V. CONCLUSIONES	58
VI. RECOMENDACIONES	60
REFERENCIAS	61
ANEXOS	68

ÍNDICE DE TABLAS

Tabla 1. Propiedades físicas de la fibra de coco	. 11
Tabla 2. Propiedades mecánicas de la fibra de coco	. 11
Tabla 3. Tamaño de muestra con adición de caucho en trozos reciclado y la fibra de coco	. 21
Tabla 4. Cantidad de briquetas con porcentaje de dosificación	. 21
Tabla 5. Rice de muestras patrón	. 39
Tabla 6. Rice de muestras con dosificaciones	. 40
Tabla 7. Densidad de muestra patrón 5.1	. 42
Tabla 8. Densidad de muestra patrón 5.6	. 43
Tabla 9. Densidad de muestra patrón 6.1	. 43
Tabla 10. Densidad de muestras patrón 6.6	. 44
Tabla 11. Densidad de D2	. 44
Tabla 12. Densidad de D3	. 44
Tabla 13. Densidad de D4	. 45
Tabla 14. Absorción de asfalto de muestras patrón	. 45
Tabla 15. Absorción de asfalto de dosificaciones	. 46
Tabla 16. Muestras patrón	. 48
Tabla 17. Porcentaje óptimo de muestra patrón	. 49
Tabla 18. Resultados de dosificaciones	. 49
Tabla 19. Resultados del flujo	. 51
Tabla 20. Resultado de la estabilidad	. 52
Tabla 21. Resultado de la densidad	. 53
Tabla 22 Resultado de la absorción de asfalto	55

ÍNDICE DE GRÁFICOS Y FIGURAS

Figura 1. Estructura del pavimento flexible	. 12
Figura 2. Avenida Manuel Francisco Rentería	. 20
Figura 3. Resumen de procedimiento	. 24
Figura 4. Lavado y cepillado de llantas	. 24
Figura 5. Extracción de acero del neumático	. 25
Figura 6. Trituración del neumático	. 25
Figura 7. Caucho reciclado	. 25
Figura 8. Caucho en gránulos pasante malla Nº 10	. 26
Figura 9. Recolección de coco	. 26
Figura 10. Dos días de secado el coco	. 27
Figura 11. Extracción manual de la fibra de coco	. 27
Figura 12. Tamaño inicial de la fibra de coco	. 28
Figura 13. Tamaño de la fibra de coco 2-2.5 cm	. 28
Figura 14. Agregado grueso de proveedores locales	. 29
Figura 15. Agregado fino de proveedores locales.	. 29
Figura 16. Cemento asfaltico PEN 60/70	. 30
Figura 17. Agregados para los ensayos	
Figura 18. Agregados en el horno	. 31
Figura 19. Mezcla de agregados para muestra patrón	. 32
Figura 20. Mezcla de agregados para muestra con dosificaciones	. 32
Figura 21. Mezcla de agregados para muestra con dosificaciones	. 33
Figura 22. Calentamiento de la mezcla patrón de 175 a 190 grados	. 33
Figura 23. Calentamiento de la mezcla con dosificaciones 175 a 190 grados .	. 34
Figura 24. Colocación aproximada de 1,200 gramos de mezcla en el molde	. 34
Figura 25. Compactación específica de golpes (típicamente 75 golpes)	. 35
Figura 26. Compactación específica de 75 golpes mas	. 35
Figura 27. La dosificación D5 no tiene conexión no compacta, el % de caucho es demasiado	
Figura 28. Enfriamiento del molde a temperatura ambiente	. 36
Figura 29. Material para el rice	. 37
Figura 30. Peso del material para el rice	. 37
Figura 31. Se agrega agua al material para el rice	. 38

Figura 32. Material en maquina por 30 minutos	38
Figura 33. Pesado del material sin burbujas de aire	39
Figura 34. Pesado de briquetas al aire (gr)	40
Figura 35. Briquetas en agua por 30 minutos	41
Figura 36. Peso de briquetas al agua por 30' (gr)	41
Figura 37. Pesado de briquetas desplazadas (gr)	42
Figura 38. Dimensión de las briquetas patrón, diámetro 101.6mm y espesor 63.5mm	46
Figura 39. Dimensión de las briquetas con dosificaciones, diámetro 101.6mm y espesor 63.5mm	•
Figura 40. Briquetas en el baño maría a 60 grados Celsius durante 30 minutos	
Figura 41. Aplicación del Método Marshall	48
Gráfico 1. Resultado del flujo5	51
Gráfico 2. Resultado de la estabilidad	52
Gráfico 3. Resultado de la densidad	54
Gráfico 4. Resultado de la absorción5	55

RESUMEN

El presente trabajo de investigación tuvo como objetivo general determinar de qué manera el Caucho en trozos reciclado y la fibra de coco influye en las propiedades del pavimento flexible de vías urbanas, Ayabaca, Piura- 2023, este trabajo fue de tipo aplicado o tecnológico, de nivel explicativo, de diseño experimental y de subdiseño cuasiexperimental, la población estuvo constituida por todas las vías urbanas con pavimentos flexibles de la ciudad de Ayabaca, 2023; y la muestra fue la Avenida Manuel Francisco Rentería, realizándose 12 briquetas grupo control (0% de CR + 0 % FC) y 12 briquetas experimentales. Los principales resultados respecto a las propiedades mecánicas son flujo 12.3 mm y estabilidad 12.7 kN, respecto a las propiedades físicas son densidad 2,387 g/cm³ y absorción de 0.1%. Finalmente, en la investigación se determinó que la adición de caucho en trozos reciclado y fibra de coco mejora las propiedades físicas y mecánicas del pavimento flexible. A través del método Marshall en mezclas en caliente, se determinó que la dosificación optima es la D2 (1% CR + 0.2% FC), mostraron mejoras notables en flujo, estabilidad, densidad y absorción del pavimento a comparación del patrón.

Palabras clave: Propiedades del pavimento flexible en caliente, caucho en trozos reciclado y fibra de coco

ABSTRACT

The general objective of this research work was to determine how recycled rubber chunks and coconut fiber influence the properties of the flexible pavement of urban roads, Ayabaca, Piura- 2023, this work was of an applied or technological type, explanatory level, experimental design and quasi-experimental sub-design, the population consisted of all urban roads with flexible pavements in the city of Ayabaca, 2023; and the sample was Manuel Francisco Rentería Avenue, making 12 control group briquettes (0% CR + 0% FC) and 12 experimental briquettes. The main results regarding the mechanical properties are flow 12.3 mm and stability 12.7 kN, with respect to the physical properties they are density 2,387 g/cm³ and absorption of 0.1%. Finally, in the research it was determined that the addition of recycled lump rubber and coconut fiber improves the physical and mechanical properties of the flexible pavement. Through the Marshall method in hot mixes, it was determined that the optimal dosage is D2 (1% CR + 0.2% FC), showing notable improvements in flow, stability, density and absorption of the pavement compared to the pattern.

Keywords: Properties of hot flexible pavement, recycled crumb rubber and coconut fiber

I.INTRODUCCIÓN

En la última década, tanto la comunidad científica como los especialistas en infraestructura vial han concentrado esfuerzos constantes en la exploración de soluciones innovadoras para mejorar las propiedades de la superficie de rodadura de los pavimentos flexibles. Desde el uso de estabilizadores industriales hasta la exploración de compuestos orgánicos, el objetivo ha sido claro: mejorar la resistencia y durabilidad de las carreteras, especialmente en aquellas zonas afectadas por condiciones climáticas adversas. Esta necesidad de hallar materiales eficientes y sostenibles se ha vuelto aún más apremiante en las provincias, donde las carreteras enfrentan desafíos significativos derivados de las intensas lluvias. La problemática de la infraestructura vial en estas regiones se traduce en baches, ahuellamientos y un constante deterioro de las vías, generando no solo inseguridad para los usuarios, sino también elevados costos de mantenimiento. Desde un punto general, Colombia ostenta una extensa red vial que se extiende por más de 10,918.58 kilómetros, de los cuales aproximadamente 8,826 kilómetros están pavimentados. Sin embargo, se ha observado que el 18% de esta extensa red presenta deficiencias en la capa superior del asfaltado, esta situación ha generado la necesidad de realizar investigaciones dedicadas a mejorar la calidad de la carpeta asfáltica en el país (Galeano, 2023). El Perú ha venido realizando obras viales empleando pavimentos asfálticos, pero actualmente presentan grietas prematuras, esto se presenta en unos meses de culminada la obra, lo que hace imposible la conexión positiva de pueblos (Campos y Irigoin, 2020). En el ámbito nacional, la ciudad de Piura ha experimentado un significativo aumento en el tráfico vehicular, lo que ha ocasionado un notable aumento en el deterioro de la infraestructura vial. Esta problemática se ha reflejado de manera particular en la Av. Guardia Civil, Av. Guillermo Irazola y Av. Luis Montero, donde las condiciones de la carpeta asfáltica han alcanzado niveles preocupantes. Según estudios realizados, se ha determinado que tienen las siguientes patologías: Hundimiento, elevación, disgregación, corrugación y depresión, lo que evidencia la urgencia de abordar estas cuestiones para garantizar la seguridad y la eficiencia del tráfico vehicular y peatonal en la región (Cardoza, Cordova, Rivera y Yovera, 2019). En

ese sentido en la Provincia de Ayabaca las vías urbanas se encuentran en pésimas condiciones, causando inclusive aislamiento social en temporada de invierno o de lluvias, este problema se ha reflejado de manera particular en las vías del AA. HH La Esperanza debido a que la capa asfáltica se encuentra deteriorada alcanzando niveles preocupantes. De acuerdo a estudios realizados a través del método de Índice de Condición del Pavimento (PCI) la falla más preocupante que se presenta son huecos con un 46% y con el procedimiento VIZIR se determinó la falla del ojo de pescado con un 18% (Reyes y Santos, 2021). En tal sentido, esta investigación se enmarca en la búsqueda de soluciones pertinentes y eficaces para mejorar las condiciones de las carreteras provincianas. La combinación de dos materiales, caucho reciclado y fibra de coco se presenta como una propuesta innovadora y prometedora para potenciar las propiedades físicas y mecánicas de la carpeta asfáltica, ofreciendo una alternativa sostenible y viable que mejorará las propiedades del pavimento flexible. Esta investigación no solo aspira a enriquecer el conocimiento científico en el ámbito de la ingeniería vial, sino también a proporcionar soluciones concretas y aplicables a las necesidades específicas de las provincias afectadas por las inclemencias climáticas. La problemática inherente a la vulnerabilidad de las vías ante condiciones climáticas adversas ha suscitado la necesidad de abordar esta cuestión de manera integral, considerando la utilización de materiales sostenibles y eficientes. Esta investigación se centra en la aplicación de caucho reciclado y fibra de coco como componentes clave en el pavimento flexible, buscando no solo mejorar sus propiedades mecánicas, sino también proporcionar una alternativa eco-amigable para contrarrestar los efectos de las precipitaciones extremas.

Ante ello se ha plasmado los siguientes problemas, como **problema general** ¿De qué manera el Caucho en trozos reciclado y la fibra de coco influye en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura-2023?, **como problemas específicos**, **PE1**: ¿Cómo el Caucho en trozos reciclado y fibra de coco influye en el flujo del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura-2023?, **PE2** ¿De qué modo el Caucho reciclado en trozos y la fibra de coco influyen en la estabilidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura-2023?, **PE3**: ¿En qué medida el Caucho en trozos reciclado y la fibra de coco influye en la densidad del pavimento flexible de vías urbanas, ciudad de

de Ayabaca, Piura- 2023?, **PE4:** ¿Qué tanto el Caucho en trozos reciclado y la fibra de coco influye en la absorción del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023?,

La investigación propuesta se fundamenta en la necesidad práctica de encontrar soluciones eficaces y sostenibles para mejorar la infraestructura vial en las provincias afectadas por las fuertes lluvias. La incorporación de caucho reciclado y fibra de coco en la carpeta asfáltica no solo tiene como objetivo mejorar las propiedades físicas y mecánicas del pavimento flexible, sino también abordar problemas ambientales y de gestión de residuos. La relevancia social de esta investigación es evidente al considerar la mejora directa en la calidad de vida de los habitantes de las provincias que sufren las consecuencias de carreteras deterioradas. Según Deshmukh (2017), el impacto visual y ambiental de los montículos de neumáticos desechados es considerable, afectando la estética del entorno y generando riesgos para la salud (p. 70). La propuesta de utilizar caucho reciclado en pavimentos flexibles busca no solo mitigar estos impactos, sino también ofrecer carreteras más seguras y duraderas para la población. La relevancia teórica, Ordóñez, Loor y Salvatierra (2017), indican que el caucho, proviene mayormente de neumáticos desechados y representa un desafío ambiental considerable. La falta de un modelo eficiente para su reciclaje, sumada a la emisión de gases tóxicos durante la incineración, destaca la urgencia de buscar alternativas que no solo mejoren las carreteras, sino que también contribuyan a la sostenibilidad ambiental (p. 15). Respecto a la fibra de coco, según Cardoza, Ángulo y Palomino (2019), presenta propiedades físicas que la hacen resistente al impacto, al agua y a bacterias. Sin embargo, su aprovechamiento en obras civiles, especialmente en pavimentos flexibles, es subestimado en muchas regiones, incluyendo las provincias afectadas (p. 24).

Los objetivos planteados fueron; **objetivo general:** Determinar de qué manera El Caucho en trozos reciclado y la fibra de coco influye en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, como objetivos específicos, **OE1:** Evaluar cómo el Caucho en trozos reciclado y la fibra de coco influye en el flujo del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, **OE2:** Verificar de qué modo el Caucho reciclado en trozos y

la fibra de coco influyen en la estabilidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, **OE3:** Constatar en qué medida el Caucho en trozos reciclado y la fibra de coco influye en la densidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, **OE4:** Examinar en que tanto el Caucho en trozos reciclado y la fibra de coco influye en la absorción del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023.

En los últimos años se han realizado indagaciones referentes a la mejora de propiedades físicas y químicas del pavimento flexible por ello se citarán algunos para dar relevancia a este estudio; en el **ámbito internacional**:

Rodríguez, Jiménez y Carvajal (2017) llevaron a cabo un estudio comparativo de mezclas asfálticas, donde exploraron el impacto de la adición de caucho derivado de neumáticos utilizando el método Marshall. Su objetivo principal fue contrastar las propiedades de las mezclas asfálticas empleando el método Marshall para mezclas densas en caliente, según el artículo 450 del INVIAS de 2013 en Colombia. Esta investigación, de tipo exploratoria y correlacional, se enfocó en las vías pavimentadas del país como población general. La muestra seleccionada consistió en mezclas en caliente de esa localidad. Para comparar las propiedades, se utilizó el Método Marshall, el cual implica la elaboración de mezclas en caliente. Al analizar estas muestras, se observó una variación en el flujo. Se pudo determinar que el diseño Marshall cumplía con el límite de flujo establecido entre 2 y 3.5 mm. Las combinaciones con caucho triturado en porcentajes del 5% y 10% también cumplían con esta variación de flujo: con un 5% se obtuvo un flujo de 3.2 mm, y con un 10% se logró 3.5 mm. Como resultado, se concluyó que el caucho reciclado mejoraba las propiedades mecánicas, siendo el flujo una de las propiedades beneficiadas, según se demostró en el ensayo. Sin embargo, se observó que al añadir más del 10% de caucho molido al asfalto, el flujo resultante ya no cumplía con los estándares establecidos por la normativa vigente.

Khasawneh y Alyaseen (2020) realizó un estudio referente al método analítico y su evolución al incorporar la fibra de coco en la pavimentación de carreteras, en el cual tuvo como principal objetivo evaluar el rendimiento de la fibra de coco en diversos porcentajes laboratorio de diferentes porcentajes de fibra de coco que se presenta en HMA para los materiales de carreteras más utilizados en las carreteras de

Jordania. Su investigación es de carácter por propósito fue aplicativa dado que se basa al basarse en avances sucesos tecnológicos, asimismo el diseño de su investigación fue experimental para evaluar el efecto de la fibra de coco sobre sus propiedades en las mezclas asfálticas, su población se situó en Jordania, obteniendo como muestra las mezclas en caliente de dicha localidad, para poder realizar la comparación de las propiedades empleó el Método Marshall. Los áridos fueron dosificados y mezclados. Se tomaron aproximadamente 1200 g de los agregados mezclados y se calentaron a una temperatura de 170 °C. Los autores emplearon 3 muestras de 6% de asfalto por cada porcentaje de fibra 0.2%, 0.4% y 0.6% y dicha longitud de fibra de coco para la combinación fue de 10 mm. En el proceso de su investigación obtuvo resultados importantes que le permitieron verificar las mejoras de las propiedades físicas del pavimento, la fibra de coco aumenta la **estabilidad Marshall** del HMA ordinario en un 41% siendo 21.1 KN y la convencional era de 14.87 KN. En consecuencia, la fibra de coco tiene un potencial prometedor para modificar mezclas asfálticas.

Vega (2016), llevó a cabo una investigación enfocada en la incorporación de caucho reciclado en la construcción de pavimentos utilizando el método Marshall. El objetivo principal de este estudio fue examinar la capacidad de resistencia a la compresión del asfalto modificado con partículas de caucho provenientes de neumáticos usados, utilizado como componente del pavimento asfáltico. Esta investigación, de carácter aplicado y experimental, incluyó pruebas de compresión tanto en briguetas convencionales como en briguetas que contenían caucho, reemplazando parcialmente el agregado fino en proporciones del 1%, 2% y 3%. Para la comparación de propiedades, se utilizó el Método Marshall, que implica la elaboración de mezclas en caliente. La población y muestra para este estudio consistieron en 60 briquetas de asfalto: 15 de asfalto convencional y 45 con caucho reciclado en las proporciones mencionadas, junto con diversas cantidades de cemento asfáltico (5%, 5.5%, 6%, 6.5% y 7%). Los resultados indicaron que, en términos de estabilidad, las muestras convencionales con diferentes porcentajes de cemento asfáltico superaron a las mezclas modificadas, aunque se observó una estabilidad mayor en la mezcla con 1% de caucho y 7% de cemento asfáltico. En cuanto al flujo, las mezclas modificadas exhibieron una tendencia ascendente con cada incremento de caucho, con resultados fuera del rango establecido. La mezcla

estándar y la mezcla con 1% de caucho cumplieron con los estándares normativos. En resumen, el autor concluyó que la inclusión de caucho reciclado en la mezcla asfáltica mejoró la **estabilidad**, aunque con algunas consideraciones en relación con el flujo.

En el ámbito nacional, Burgos y Rodríguez (2022) realizó un estudio referente a la influencia que tiene el caucho en sus propiedades del pavimento, en el cual tuvo como principal propósito establecer cómo el uso de caucho reciclado afecta las características físicas y mecánicas de una mezcla asfáltica. Su investigación por propósito fue aplicativa dado que se basa en sucesos tecnológicos, asimismo su diseño de investigación fue experimental dado a que se puede modificar la variable independiente para verificar y comparar los efectos que se generan, básicamente su población se situó en todas las vías urbanas pavimentadas en caliente de la ciudad de Trujillo, obteniendo como muestra las mezclas en caliente de dicha ciudad, para poder realizar la comparación de las propiedades empleó el Método Marshall que consiste en realizar mezclas en caliente, por lo que se empleó las siguientes dosificaciones 0.5%, 1% y 1.5% referente al caucho. En el proceso de su investigación obtuvo resultados importantes que le permitieron verificar las mejoras de las propiedades físicas del pavimento, agregando el 1% del caucho a la mezcla se logró un índice de espacios vacíos del 3.85%. un flujo de 9.72 y una estabilidad de 10.87 KN, concluyendo que el caucho reciclado si mejora las propiedades mecánicas una de ellas es el flujo obteniendo un 9.72 mm.

De igual manera, Tejada (2022) realizó un estudio diseñando una mezcla asfáltica incorporando el caucho, en el cual tuvo como principal objetivo Diseñar una mezcla incorporando PET y caucho, en la ciudad de Lambayeque. Su investigación por propósito fue tecnológica debido a que busca alternativas con la finalidad de mejorar y solucionar un problema, asimismo su diseño de investigación fue experimental dado a que manipula la variable independiente para verificar y comparar los efectos que se generen, básicamente su población fue mezclas en caliente con diferentes porcentajes de caucho y PET, en un tráfico mediano, obteniendo como muestra 12 probetas con distintos porcentajes que varían de 5% - 7%, para poder realizar su análisis empleó el Método Marshall que consiste en realizar mezclas en caliente, estos actores emplearon las siguientes dosificaciones

(1%-2.5%) referente al PET y (5%-7%) respecto al caucho. En el proceso de su investigación obtuvo resultados importantes que le permitieron verificar las mejoras de la mezcla asfáltica, agregando el 1% del caucho a la mezcla y 1% de PET se obtuvo un porcentaje de 1794 kg/cm en relación de estabilidad/flujo, concluyendo que el caucho reciclado y el PET si mejora las propiedades mecánicas una de ellas es el flujo dado que cumple.

Arqueros y Zavaleta (2023) realizó un estudio referente Al tiempo de vida de un pavimento flexible aplicando caucho reciclado, en el cual tuvo como principal objetivo establecer la facultad del caucho en el tiempo de vida del carpeta de rodadura, su investigación por propósito fue aplicativa dado que se basa en aplicar conocimientos para adquirir un trabajo original, teniendo un enfoque cuantitativo debido a que obtendrá datos numéricos que indican el porcentaje óptimo que genere la mejora, además, su diseño de estudio se configuró como experimental al manipular de forma intencionada la variable independiente. Específicamente, su enfoque se dirigió hacia los pavimentos flexibles presentes en la ciudad de Trujillo. Para contrastar las propiedades, utilizaron el Método Marshall, el cual implica la preparación de mezclas en caliente. Durante este proceso, probaron diferentes dosis de caucho: 5%, 10% y 15%. A lo largo de la investigación, obtuvieron resultados significativos que demostraron mejoras en la durabilidad de la capa asfáltica, agregando el 5.5% del caucho a la mezcla se logró una estabilidad de 9.06 KN, Concluyendo que el grano de caucho aumenta el tiempo de vida de la carpeta de rodadura, logrando un aumento en la estabilidad del pavimento.

Asimismo, Castillo y Chávarri (2020) realizó un estudio referente al diseño de un pavimento adicionando caucho reciclado, en el cual tuvo como principal propósito fue definir la atribución de adhesión del caucho reciclado en el diseño de la mezcla, su investigación por propósito fue aplicativa debido a que realizó ensayos con briquetas normalizadas, teniendo un enfoque cuantitativo debido a que obtendrá datos numéricos que indican el porcentaje óptimo de mejora del caucho, asimismo su diseño de investigación fue de tipo experimental empleando 24 briquetas para su análisis, básicamente su población estuvo enfocada en las 24 briquetas, obteniendo como muestra 12 briquetas sin adición de CR y 12 con adición de CR. para poder analizar los resultados empleó el Método Marshall que consiste en

realizar mezclas en caliente, el autor empleó las siguientes dosificaciones 0%- 6.5% para las 12 briquetas que tienen solo cemento asfáltico y las 12 piquetas modificadas con 0%-6.5% y 1.5% de caucho. La investigación indica que el porcentaje óptimo del cemento asfáltico es de 6.5% y para el caucho es de 1.5%. El principal resultado arroja una **estabilidad** de 13.37 KN y un flujo de 16.3 mm. Concluyendo que el grano de caucho influye considerablemente en las propiedades mecánicas.

Por otro lado, Macedo y Ureta (2020) realizó un estudio referente a la adición del caucho como medio estabilizante a los pavimentos flexibles, cabe mencionar que en su principal objetivo menciona que para determinar de qué manera el caucho mejora los parámetros de las mezclas asfálticas, su investigación por propósito fue aplicativa debido tuvo como propósito recolectar, exponer y comparar ensayos de varias investigaciones, teniendo un enfoque cuantitativo, asimismo el diseño de la investigación no fue experimental, ya que el caucho ya se emplea como agente de integración en las mezclas asfálticas. Por esta razón, el autor llevó a cabo una revisión bibliográfica y comparativa de estudios previos. Esencialmente, se centró en los resultados del Método Marshall aplicado en mezclas en caliente con diversos porcentajes o dosis, utilizando como muestra de estudio 7 investigaciones. En el transcurso de su análisis obtuvo resultados importantes, uno de ellos indica que en todas las investigaciones realizan a la muestra hay un análisis a la densidad, y se observa que con un porcentaje de 0.5% de caucho obtiene un mayor valor para la densidad en el rango de 5-6.5% de cemento asfáltico. Concluyendo que el grano de caucho influye considerablemente en las propiedades físicas

Boza (2020) realizó un estudio referente a los pavimentos asfálticos lo cual adiciona caucho como propuesta, en el cual tuvo como principal objetivo determinar cómo favorece el caucho reciclado en el pavimento flexible en la carpeta de rodadura del asfalto. Su investigación por propósito fue aplicativa dado que se basa en sucesos tecnológicos, asimismo su diseño de investigación fue experimental debido a que manipula la variable independiente para verificar y comparar los efectos que se generan, básicamente su población estuvo conformada por 33 probetas los cuales fueron sometidas a ensayos respetando las normativas del MTC, obteniendo como muestra 15 probetas con asfalto de 3%-7% y 15 probetas con mezcla de asfalto

con adición de 3%-7% de caucho, el autor empleó el Método Marshall que consiste en realizar mezclas en caliente. En el proceso de su investigación indica que a mayor proporcionalidad de caucho la densidad va de forma ascendente, concluyendo que el caucho reciclado si mejora las propiedades físicas una de ellas es la **densidad**.

Castro, Romero, Vásquez y Gustavo (2020) llevaron a cabo un estudio centrado en pavimentos flexibles que incorporan fibras de coco, con la finalidad de analizar su influencia sobre la fibra de coco en la capa de rodadura de pavimentos asfálticos. La investigación se enmarca en un propósito aplicativo, ya que busca mejorar las propiedades del pavimento mediante avances tecnológicos. El diseño de investigación adoptado fue de carácter experimental, al manipular la variable independiente para examinar y comparar los efectos generados. La población bajo estudio constó de 180 briquetas, sometidas a ensayos conforme a las normativas del MTC. La muestra, expresada en términos de briquetas porcentaje de adición y nivel de tránsito, contempló adiciones de 0.5% a 2.5% de fibra de coco y 0.5% a 2.5% de cáscara de coco, con tres niveles de tránsito: liviano, medio y alto.El procedimiento aplicado fue el Método Marshall, el cual comprende la preparación de mezclas en caliente. A lo largo del desarrollo de la investigación, se notó que la inclusión adecuada de fibra de coco condujo a una mayor absorción de asfalto del 0.34%, en comparación con la mezcla convencional que registró un 0.18% de absorción de asfalto. En consecuencia, se concluyó que la inclusión de este material contribuye al aumento del porcentaje de absorción del asfalto en la mezcla.

Para comprender plenamente la importancia de las variables en estudio, es crucial brindar una explicación fundamentada tanto en teoría como en normativas. En este contexto, la variable independiente de este estudio se refiere al caucho reciclado en trozos y la fibra de coco. Según Alfayez, Soliman y Nehdi (2020), el caucho reciclado en trozos proviene del proceso de reciclaje de neumáticos usados. En lugar de desechar los neumáticos utilizados en vehículos, se realiza un proceso de recuperación para otorgarles un nuevo propósito. Durante este procedimiento, los neumáticos se recopilan y se trituran para obtener trozos de caucho de diversos tamaños. Estos trozos se emplean en la fabricación de pavimentos para áreas

recreativas, pistas, veredas, entre otros, lo que contribuye significativamente a la reducción de neumáticos desechados en vertederos y promueve la sostenibilidad ambiental.

En relación con los **porcentajes óptimos** de caucho reciclado aplicables al pavimento flexible, Hoyos, Puicon y Muñoz (2021, p. 1) sugieren un rango entre el 1% y el 20% del peso total de la mezcla. Asimismo, Pouranian et al. (2019, p. 15) indican que el **tamaño óptimo** del caucho reciclado es de 0.425 mm, correspondiente al tamaño que pasa por la malla #40. En cuanto a las **características del caucho**, la empresa Erica Aislamiento y Estanqueidad (2019) destaca que los cauchos de silicona VMQ conservan su flexibilidad incluso a temperaturas tan bajas como -60°C, y pueden resistir temperaturas sostenidas superiores a 200°C en entornos de aire seco. Aunque muestran una resistencia moderada a los fluidos con base de aceite mineral, estas **propiedades térmicas** excepcionales los hacen ideales para aplicaciones que implican rangos de temperatura extremos.

Por otro lado, según Alfayez, Soliman y Nehdi (2020), **las Ilantas** de los automóviles suelen contener aproximadamente un 16% de caucho natural y un 31% de caucho sintético. La combinación de ambos tipos de caucho busca aprovechar la elasticidad proporcionada por el caucho natural y la estabilidad térmica ofrecida por el caucho sintético, lo que favorece la durabilidad y la adaptabilidad a las exigencias del tráfico moderno. Soto (2018) destaca las **propiedades físicas** significativas del caucho, como la capacidad de absorber cargas, el aislamiento térmico, la baja permeabilidad, la resistencia a la humedad y el envejecimiento, entre otras. Además del caucho, se estudia la fibra de coco, que es un subproducto derivado del procesamiento de la cáscara de coco. Esta fibra presenta notables beneficios debido a sus propiedades destacables, como su densidad, resistencia mecánica, capacidad para resistir el desgaste durante el procesamiento, estabilidad térmica, carácter biodegradable y su resistencia al impacto ambiental (Escudero y Sierra, 2017, p. 20).

Las características de resistencia de **la fibra de coco** son notables, ya que puede soportar de 4 a 6 veces más esfuerzos de tensión y compresión en comparación con otras fibras naturales (Chao-Lung et al., 2016, p. 985). En **términos químicos**,

el coco exhibe una composición que favorece su integración al asfalto y, por ende, a la mezcla asfáltica. Shelke, Ninghot, Kunjekar y Gaikwad (2014) señalan que la fibra de coco está compuesta por un 33,61% de celulosa, un 36,51% de lignina, un 29,27% de pentosanos y un 0,61% de cenizas, mientras que Martí (2019) indica que **está compuesta** por 32-43% de celulosa, 15-25% de hemicelulosa y 40-45% de lignina

Tabla 1. Propiedades físicas de la fibra de coco

Diametro	Densidad	Resistencia	Alargamiento de
equivalente (mm)	(Kg/cm³)	tracción (Mpa)	Rotura (%)
0.11-0.53	680-1020	108-250	14-41

Fuente: Marti (2019)

Tabla 2. Propiedades mecánicas de la fibra de coco

Resistencia	Módulo de Young	Deformación de	
(Mpa)	(Gpa)	falla (%)	
130-220	4-6	25-40	

Fuente: Trejos (2014)

La fibra de coco también actúa como un **aditivo estabilizador** al utilizar en el asfalto a una temperatura de 180°C, siendo óptima su incorporación en mezclas en caliente. Los **porcentajes óptimos** de la fibra de coco que se puede emplear al pavimento flexible según Khasawneh y Alyaseen (2020) están de un intervalo de 0.2% a 0.6% en términos de peso total de la mezcla, asimismo indica que **el tamaño** adecuado es de 10mm. De igual manera Hadiwardoyo (2013) en su investigación indica que **el tamaño óptimo** de la fibra de coco es de 5 mm y el porcentaje óptimo es de 0.75% en términos de peso total de la mezcla.

En lo que respecta a la **variable dependiente** de la investigación, se centra en las propiedades del pavimento flexible de vías urbanas. De acuerdo con el Manual de Carreteras (2014, p. 25), **el pavimento**, es una estructura clave puesta sobre la subrasante de una vía, tiene como función primordial resistir y distribuir las cargas generadas por el tráfico vehicular, mejorando así las condiciones de seguridad y comodidad del tránsito. Este componente se compone de varias capas, cada una

desempeñando un papel esencial en su funcionamiento, ver figura 1. La capa de rodadura, situada en la parte superior, puede ser de tipo flexible, de concreto o de adoquines. Su función fundamental es sostener directamente el tráfico y actúa como la superficie que soporta el contacto directo de los vehículos. Justo debajo, la capa base distribuye y transmite las cargas hacia la subrasante. La subbase, ubicada bajo la capa base, desempeña roles fundamentales al brindar soporte, facilitar el drenaje y controlar la absorción de agua. Según las especificaciones y el tipo de pavimentación, esta capa puede estar conformada por material granular o estar tratada con asfalto, cal o cemento. El manual identifica tres modalidades de pavimento: flexible, semirrígido y rígido. Enfocándonos específicamente en el pavimento flexible, compuesto por capas granulares (subbase, base) y una capa superior de rodadura compuesta por materiales bituminosos, tales como aglutinantes, agregados y, en ocasiones, aditivos. Las alternativas para esta capa superior incluye mortero asfáltico, tratamiento superficial de doble capa, micropavimentos, macadam asfáltico, mezclas asfálticas en frío y en caliente. Este diseño adaptable del pavimento flexible le permite ajustarse a diversas condiciones y requisitos, destacando así la versatilidad integral del pavimento.

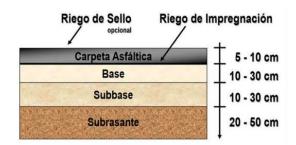


Figura 1. Estructura del pavimento flexible

La mezcla asfáltica, compuesta principalmente por asfalto o aglutinante, se conforma generalmente de hidrocarburos como su componente esencial. La proporción relativa de estos elementos es crucial para definir las características físicas de la mezcla y su rendimiento en aplicaciones específicas. Estas mezclas de asfalto tienen una amplia gama de usos, siendo fundamentales en la construcción de carreteras, ya sea en capas superiores o inferiores. Su función esencial radica en facilitar el tráfico vehicular y distribuir eficientemente las cargas hacia la base subyacente para proporcionar soporte. Además de su papel en la

construcción de carreteras, los asfaltos se emplean en diversas aplicaciones, desde la construcción de aeropuertos hasta superficies industriales. Específicamente, se utilizan en capas inferiores de pavimentos que están expuestos a un tráfico intenso, como lo señala Padilla (2004).

La mezcla asfáltica, también conocida como aglomerante, se compone principalmente de asfalto, un aglutinante de hidrocarburos. Las proporciones precisas de estos componentes son fundamentales para definir las características físicas de la mezcla y su rendimiento en aplicaciones específicas. Este material se utiliza ampliamente en la construcción de carreteras, tanto en capas superiores como inferiores, facilitando el flujo del tráfico vehicular y distribuyendo eficientemente las cargas hacia la base subyacente para brindarle soporte. Además de su uso en carreteras, se aplica en aeropuertos, superficies industriales y en las capas inferiores de pavimentos sujetos a tráfico pesado (Padilla, 2004).

Para evaluar las **características y el comportamiento de esta mezcla**, es posible analizar muestras de pavimento elaboradas en laboratorio. Este análisis se enfoca en cuatro propiedades principales: Flujo, estabilidad, densidad y absorción.

El flujo expresado en centésimas de pulgada sirve como una medida de la deformación en una muestra de pavimento. Esta deformación se manifiesta a través de la reducción en el diámetro vertical de la muestra. En el contexto de pavimentos en uso, las mezclas que muestran bajos valores de fluidez junto con valores muy elevados de estabilidad Marshall se consideran demasiado quebradizas y rígidas. Por otro lado, aquellas con valores elevados de fluidez tienden a ser demasiado maleables y propensas a deformarse bajo las cargas del tráfico (Anguas, et al. 2004).

La estabilidad de un pavimento de asfalto se refiere a su capacidad para resistir desplazamientos y deformaciones causados por las cargas del tráfico. Un pavimento que presenta estabilidad es capaz de mantener su forma y su superficie nivelada incluso después de estar sometido a cargas repetidas. Por otro lado, un pavimento inestable muestra signos de deterioro como ahuellamientos, ondulaciones y otros indicadores de cambios en la mezcla debido al tráfico. La determinación de los requisitos de estabilidad es un proceso que requiere un

análisis exhaustivo del tráfico previsto, ya que las especificaciones de estabilidad para un pavimento dependen directamente de las cargas que se esperan soportar. Es esencial que las especificaciones de estabilidad sean lo suficientemente altas para garantizar una adecuada resistencia al tráfico proyectado, pero no deben ser excesivamente altas, ya que esto podría resultar en un pavimento demasiado rígido y, en consecuencia, menos duradero de lo deseado. A menudo, se tiende a creer que cuanto mayor sea el valor de estabilidad, mejor será el pavimento ya que, en muchos casos, la resistencia de un material se asocia con su calidad. Sin embargo, en el caso de las mezclas asfálticas en caliente, lograr estabilidades extremadamente altas puede ser perjudicial para la durabilidad del pavimento, ya que esto puede llevar a una mayor rigidez y una menor capacidad para resistir deformaciones, lo que resulta en una disminución de la durabilidad en lugar de un aumento (Anguas, et al. 2004).

La densidad, medida en gramos por centímetro cúbico, juega un papel crucial en la durabilidad del pavimento. Se calcula multiplicando la gravedad específica total por la densidad del agua. La densidad obtenida en laboratorio sirve como referencia para evaluar la idoneidad del pavimento final. Es común que las especificaciones exijan un porcentaje específico de la densidad de laboratorio, ya que la compactación en el lugar rara vez alcanza las mismas densidades logradas en el laboratorio (Anguas, et al. 2004).

La absorción es una propiedad importante porque afecta directamente la cantidad de ligante asfáltico que se requiere para lograr la cohesión necesaria en la mezcla. Si los agregados tienen una alta absorción, retendrán más asfalto, lo que puede afectar la proporción de la mezcla y, por ende, su resistencia y durabilidad. Controlar la absorción es esencial en el diseño de pavimentos flexibles para garantizar la calidad y el rendimiento del pavimento final. La absorción adecuada contribuye a la cohesión y durabilidad de la mezcla asfáltica, lo que, a su vez, afecta positivamente la resistencia y el comportamiento del pavimento bajo condiciones de tráfico y carga (Anguas, et al. 2004).

El método Marshall es aplicable tanto en la fase de diseño y evaluación de mezclas en el laboratorio como en la supervisión y control de estas durante la ejecución de obras en el campo. El método implica la creación de briquetas a partir de la mezcla de agregados y asfalto en estado caliente. Estas briquetas se organizan en series, con cada serie conteniendo distintas proporciones de asfalto. La fabricación de estas briquetas se lleva a cabo una vez que los materiales individuales (agregados y asfalto) han cumplido con sus respectivas especificaciones de calidad y tamaño, entre otros requisitos. Dicho método es aplicable solo para mezclas asfálticas en caliente, aplicable a tamaños de agregados hasta 25 mm. Desarrollado para graduación densa, se utiliza en diseño de laboratorio y control de campo. La prueba evalúa la estabilidad y flujo de especímenes compactados, midiendo resistencia y deformación a 60 °C. Los especímenes se preparan según procedimientos específicos de calentamiento, mezcla y compactación.

Después de haber plasmado los problemas y los objetivos, se realiza **las hipótesis**, como hipótesis general El Caucho en trozos reciclado y la fibra de coco influye positivamente en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, **HE1:** El Caucho en trozos reciclado y la fibra de coco influye positivamente en el flujo del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023, **HE2:** El Caucho reciclado en trozos y la fibra de coco influyen positivamente en la estabilidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, **HE3:** El Caucho reciclado en trozos y la fibra de coco influyen positivamente en la densidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023, **HE4:** El Caucho en trozos reciclado y la fibra de coco influye positivamente en la absorción del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura-

II. METODOLOGÍA

El tipo de investigación por enfoque según Ninoska, Fusil y Roselva (2020, p. 16) indican que la investigación de enfoque cuantitativo implica la aplicación de métodos de medición objetiva y controlada. Este enfoque permite a los investigadores realizar inferencias basadas en datos sólidos. En este tipo de investigación, los resultados no son particulares a individuos específicos, ya que todos los participantes tienen la misma probabilidad de ser seleccionados. Además, se emplean sujetos de medición con origen y precisión, lo que contribuye a obtener resultados objetivos y fiables. Entonces la presente investigación por enfoque es cuantitativa debido a que se realizó combinaciones en porcentajes tanto de caucho reciclado y de fibra de coco, ello se realizó en briquetas para ensayos de pavimentos flexibles, y se obtuvo datos numéricos indicando la cantidad de mejora en las propiedades físicas y mecánicas.

El tipo de Investigación **por el propósito**, (Ñaupas, et al. 2018), infiere que la **investigación aplicada**, por su propósito, se centra en la generación de conocimiento con el objetivo específico de abordar problemas prácticos o aplicar los resultados de la investigación en situaciones del mundo real. A diferencia de la investigación puramente teórica o básica, que busca comprender fenómenos sin una aplicación inmediata, la investigación aplicada tiene una orientación más práctica. En la investigación aplicada, se busca directamente la resolución de problemas, la mejora de procesos o la toma de decisiones en contextos concretos. Los resultados de esta investigación suelen tener aplicaciones prácticas y contribuir al desarrollo de soluciones tangibles para desafíos específicos en campos como la industria, la medicina, la educación u otras áreas de la vida cotidiana (p. 1.37).

La investigación por propósito es de **tipo aplicada** debido a que se desarrolló mediante conocimientos que existen, uno de ellos es la aplicación del Método Marshal para mezclas en caliente, para indicar si los valores obtenidos son destacables se empleó los parámetros de las Normas peruanas, las cuales indican los porcentajes mínimos y con ello se respondió los objetivos plasmados en la investigación.

La investigación por el **nivel**, Batista, Fernandez, y Hernández (2014) indican que la investigación a nivel **explicativo** busca comprender las relaciones de causa y efecto entre variables, y su enfoque se centra en explicar por qué ocurren ciertos fenómenos. A diferencia de la investigación descriptiva, que se limita a describir situaciones o eventos, la investigación explicativa se adentra en la identificación de factores y las conexiones causales que subyacen a los fenómenos observados. Este tipo de investigación no solo se interesa en describir la realidad, sino en entender las razones y los mecanismos que explican los patrones y comportamientos observados.

Por el nivel la presente investigación es de **tipo explicativo** donde se busca saber qué efecto genera las variables independiente caucho reciclado y la fibra de coco a la variable dependiente propiedades del pavimento flexible, estas explicaciones se ven evidenciadas en los ensayos de laboratorio tanto de la densidad, la estabilidad, la absorción y el flujo, para posteriormente inferirlas en la investigación.

La investigación **por el diseño**, Mousalli (2015) manifiesta que la investigación mediante el **diseño experimental** es un método metodológico que implica la manipulación intencionada de una o más variables independientes con el propósito de observar cómo afectan a una o más variables dependientes, al mismo tiempo que se controlan de manera estricta otras variables. Este tipo de investigación se lleva a cabo en un entorno altamente controlado y se basa en la aplicación de principios científicos para establecer relaciones causales entre las variables. Este enfoque experimental se aplica en diversas disciplinas, desde las ciencias naturales y la psicología hasta la ingeniería y la medicina, para investigar y comprender las relaciones causales entre variables en condiciones controladas. La investigación por diseño experimental es fundamental para establecer inferencias causales sólidas en el ámbito científico.

El diseño experimental se subdivide en 3 tipos que son: pre experimental, cuasi experimental y experimental puro, de los cuales Manterola y Otzen (2015) infiere que el tipo cuasi experimental es la aproximación metodológica que comparte características tanto con los diseños experimentales puros como con los diseños no experimentales. En este tipo de diseño, los investigadores buscan establecer relaciones causales entre variables, pero no pueden asignar aleatoriamente a los

participantes a diferentes condiciones experimentales debido a limitaciones prácticas, éticas o logísticas.

La indagación es **Experimental** debido a que se manipularon las variables independientes como son el caucho en trozos reciclado y la fibra de coco, la manipulación fue en porcentajes de cada material y uniéndose para poder inferir si mejoran las propiedades físicas y mecánicas del pavimento. Asimismo, el tipo de diseño de investigación es **cuasi experimental** debido a que además de manipular las variables independientes la muestra es no aleatoria.

La presente investigación tiene variable independiente y dependiente, la **variable independiente** es el caucho en trozos reciclado y la fibra de coco. El caucho reciclado en trozos se refiere a la reutilización de neumáticos al final de su vida útil, los cuales son convertidos en aditivos reutilizables (Días y Castro, 2017). La fibra de coco destaca por su baja conductividad, capacidad para resistir humedad y resistencia a las bacterias (Escudero y Aristizaba, 2017).

La variable **dependiente** son las propiedades del pavimento flexible de vías urbanas. Estas propiedades pueden ser físicas y mecánicas. Las propiedades físicas incluyen características visibles como color y textura, mientras que las mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este estudio, se evaluaron la densidad y la absorción como propiedades físicas críticas, mientras que la estabilidad y el flujo fueron las propiedades mecánicas examinadas (Rondón y Reyes, 2011). Consulta la matriz de operacionalización en el anexo N°2.

Según Arias, et al (2016), el término **población** se refiere al conjunto completo de elementos o individuos que comparten características específicas y que constituyen el foco de estudio. Esta población puede clasificarse como finita o infinita, según la posibilidad de enumerar todos sus miembros.

La población del presente estudio fue todas las vías urbanas con pavimentos flexibles de la ciudad de Ayabaca, 2023

La muestra según (Arias, 2021) es un subconjunto representativo extraído de la población total. La selección de **una muestra** se realiza para obtener información relevante sobre la población sin la necesidad de estudiar a cada individuo. La

calidad de la muestra es esencial para garantizar la validez de las conclusiones que se extraen de la investigación

Para poder seleccionar adecuadamente la muestra se han considerado **criterios de inclusión**, según (Arias, 2021) indica que los criterios de inclusión son características específicas que deben poseer los elementos de la población para ser considerados en la muestra de un estudio. Estos criterios se establecen para asegurar que los participantes o elementos seleccionados sean representativos y relevantes para los objetivos de la investigación. Los criterios de inclusión ayudan a definir los límites y características específicas que deben cumplir los elementos seleccionados.

La selección de la **vía a estudiar** se realizó siguiendo criterios específicos de inclusión. Se optó por vías urbanas con pavimento flexible, priorizando aquellas con un mal estado de conservación. Se consideró el año de construcción, seleccionando la vía más antigua disponible. Además, se tomó en cuenta el ancho de la vía, prefiriendo aquella con mayor amplitud. La accesibilidad para los pobladores fue un factor determinante, eligiendo la vía más accesible. Se analizó el tipo de tráfico, dando prioridad a aquellas donde transitaban más vehículos pesados y livianos. Se examinó el historial de reparaciones, dando preferencia a las vías que habían sido objeto de más intervenciones. Se consideró el tipo de tráfico pesado, priorizando aquellas vías frecuentadas por camiones de carga. Asimismo, se evaluó la frecuencia de eventos públicos, dando relevancia a las vías por las que transitaban constantemente vehículos hacia lugares de eventos públicos. Por último, se tuvo en cuenta la vía más recurrente para los campesinos, seleccionando aquella por la que transitaba mayormente la población campesina.

La muestra del presente estudio fue la **Avenida Manuel Francisco Rentería**, ver figura 2.

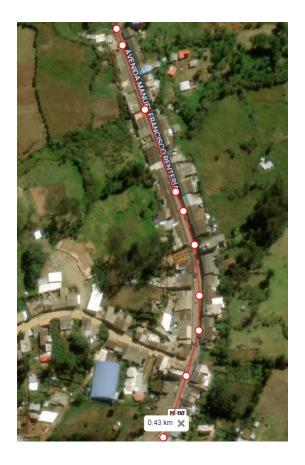


Figura 2. Avenida Manuel Francisco Rentería

Pavimentos con caucho en trozos y fibra de coco, **la muestra** estuvo respaldada por el reglamento normativo, en la investigación **se realizó 24 briquetas** de acuerdo a la norma de EG – MTC E 504 el cual indica que como mínimo se debe tener 3 briquetas por cada dimensión, en el estudio se realizó 24 briquetas, primero 12 briquetas grupo control (0% de CR + 0 % FB) y 12 briquetas experimentales ver tabla 3 y 4.

Tabla 3. Tamaño de muestra con adición de caucho en trozos reciclado y la fibra de coco

DESCRIPCIÓN	CAUCHO EN TROZOS RECICLADO	FIBRA DE COCO	DENOMINACIÓN
DOSIFICACIÒN Nº1	0%	0%	D1
DOSIFICACIÒN Nº2	1%	0.2%	D2
DOSIFICACIÒN Nº3	3%	0.4%	D3
DOSIFICACIÒN Nº4	6%	0.6%	D4
DOSIFICACIÒN Nº5	9%	0.8%	D5

Fuente: Elaboración propia

Tabla 4. Cantidad de briquetas con porcentaje de dosificación

DESCRIPCIÓN	Dosificación de caucho	Cantidad de briquetas
	en trozos reciclado y	para todos los
	fibra de coco	indicadores
D1	0% + 0%	12
D2	1% + 0.2%	3
D3	3% + 0.4%	3
D4	6% + 0.6%	3
D5	9% + 0.8%	3
Total		24

Fuente: Elaboración propia

Hernández y Mendoza (2018) El **muestreo** es el proceso de selección de la muestra, y existen diversas técnicas de muestreo, como el muestreo aleatorio, estratificado o por conglomerados. La elección de una técnica de muestreo

depende de diversos factores, como el objetivo de la investigación, la naturaleza de la población y los recursos disponibles.

Para la presente investigación se realizó el **muestreo no probabilístico** debido a que la selección se efectúa mediante parámetros ya establecidos por las normas peruanas para determinar la cantidad de especímenes a estudiar.

Gil (2011) **las técnicas** son métodos específicos utilizados para obtener información relevante y válida en el contexto de una investigación. Estas técnicas son fundamentales para recopilar datos de manera sistemática y objetiva. Existen 5 técnicas para recolectar datos, que son: **La observación**, las encuestas, la entrevista, la revisión documental y las sesiones en profundidad. La observación implica obtener datos directamente de fenómenos o comportamientos en su entorno natural, sin la intervención directa del investigador. Puede ser participativa, donde el observador forma parte de la situación, o no participativa, donde el observador simplemente observa sin involucrarse directamente. La observación puede ser estructurada, con un plan predefinido, o no estructurada, permitiendo que los patrones emerjan naturalmente.

Para la indagación presentada se empleó como **técnica de investigación la observación** porque permitió visualizar los resultados obtenidos de manera directa.

En la misma línea Gil (2011) indica que **los instrumentos** de recolección de datos son herramientas diseñadas con el propósito de obtener información de manera sistemática y objetiva en el marco de una investigación. Estos instrumentos pueden incluir encuestas, cuestionarios, entrevistas, observaciones y pruebas, entre otros. La selección del instrumento apropiado está condicionada por la naturaleza de la investigación y los datos que se busca adquirir.

La ficha técnica de observación es un documento detallado que proporciona información específica sobre los aspectos prácticos de la observación como técnica de recolección de datos. Esta ficha incluye detalles esenciales para garantizar la consistencia y la validez de la observación.

Para el presente estudio el instrumento que se utilizo fue la guía de observación o también llamada ficha técnica, siendo el instrumento más viable para registrar los datos obtenidos, a continuación, se presenta el listado de fichas técnicas:

Ficha técnica Nº 1 : Flujo (Anexo 3)

Ficha técnica Nº 2 : Estabilidad (Anexo 4)

Ficha técnica Nº 3 : densidad (Anexo 5)

Ficha técnica Nº 5 : absorción (Anexo 6)

Hernández y Mendoza (2018, p. 324) La **validación** de los instrumentos es un proceso crucial para garantizar que midan de manera precisa lo que se supone que deben medir. Este proceso implica evaluar la validez del contenido, la validez de criterio y la validez de constructo del instrumento. La validación asegura que los datos recopilados sean confiables y que las conclusiones extraídas sean válidas.

La validez fue por juicios de expertos, para el presente estudio los expertos fueron 3 ingenieros en infraestructura vial con su código CIP, cada instrumento tiene la firma y la puntuación que está entre el rango de 0-50

Experto 1: Raúl Valerio, Ventura Cahuana, CIP 132439, Nota 46

Experto 2: Cecilia Arriola, Moscoso, CIP 122210, Nota 48

Experto 3: Luis Reynaldo, Alarco Gutierrez, CIP 120290, Nota 50

La confiabilidad se refiere a la consistencia y estabilidad de un instrumento de medición. Un instrumento confiable debería proporcionar resultados consistentes cuando se aplica en situaciones similares. La confiabilidad se evalúa mediante pruebas de consistencia interna, test-retest o mediante la evaluación de la equivalencia entre diferentes formas del instrumento Cohen y Gomez (2019, p 38).

El mecanismo de confiabilidad para el estudio son los certificados de calibración de todos los instrumentos empleados.

Certificado de calibración del equipo Marshall (Anexo 7)

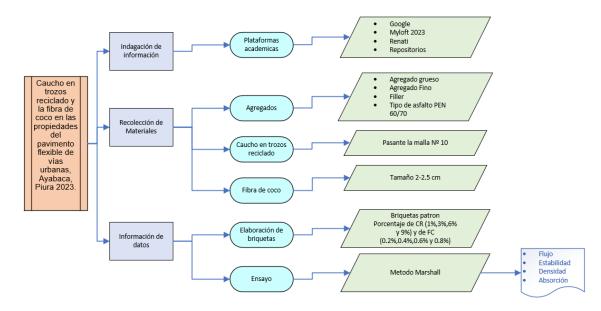


Figura 3. Resumen de procedimiento

Etapa 1: Recolección de Materiales

Caucho en Trozos Reciclado:

Figura 4. Lavado y cepillado de llantas

Figura 5. Extracción de acero del neumático

Figura 6. Trituración del neumático

Figura 7. Caucho reciclado

Figura 8. Caucho en gránulos pasante malla Nº 10

Fibra de Coco:

Figura 9. Recolección de coco

Figura 10. Dos días de secado el coco

Figura 11. Extracción manual de la fibra de coco

Figura 12. Tamaño inicial de la fibra de coco

Figura 13. Tamaño de la fibra de coco 2-2.5 cm

Asfalto y Agregados Convencionales:

Figura 14. Agregado grueso de proveedores locales.

Figura 15. Agregado fino de proveedores locales.

Figura 16. Cemento asfaltico PEN 60/70.

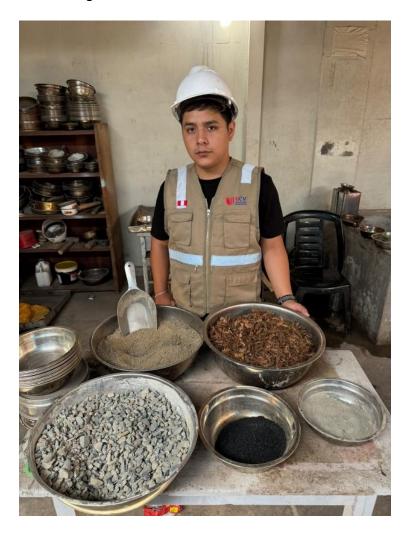


Figura 17. Agregados para los ensayos

Etapa 2 : Diseño de Mezcla

Determinación de Proporciones:

 Establecer las proporciones adecuadas de caucho reciclado y fibra de coco en la mezcla, para el presente estudio se realizó las dosificaciones especificadas en la tabla 4.

Mezcla Asfáltica Convencional de Control:

 Diseñar una mezcla de control sin caucho ni fibra de coco para comparación.

Etapa 3: Elaboración de Especímenes (NORMA ASTM D6926 y NTP 399.612)

La norma ASTM indica la preparación de los agregados, incluyendo el secado en el horno, la ASTM D6926 - "Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus". Detalla que los agregados deben ser secos para asegurar que no influya la humedad en el resultado del ensayo.

Mezcla de Agregados:

Figura 18. Agregados en el horno

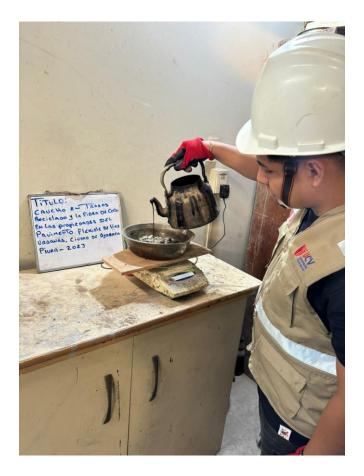


Figura 19. Mezcla de agregados para muestra patrón

Figura 20. Mezcla de agregados para muestra con dosificaciones

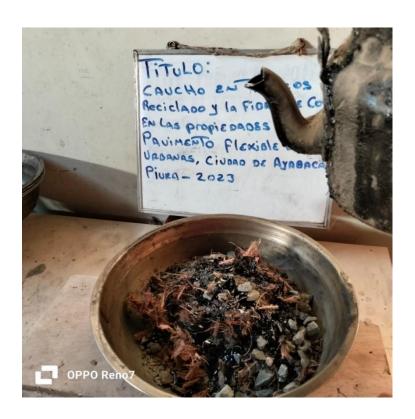


Figura 21. Mezcla de agregados para muestra con dosificaciones

Figura 22. Calentamiento de la mezcla patrón de 175 a 190 grados

Figura 23. Calentamiento de la mezcla con dosificaciones 175 a 190 grados

Colocación de la Mezcla en el Molde:

Figura 24. Colocación aproximada de 1,200 gramos de mezcla en el molde

Compactación:

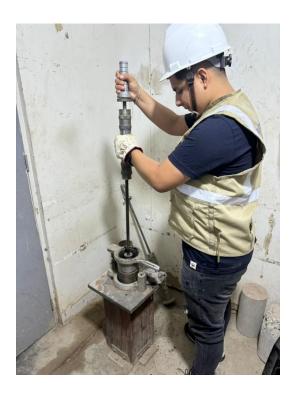


Figura 25. Compactación específica de golpes (típicamente 75 golpes).

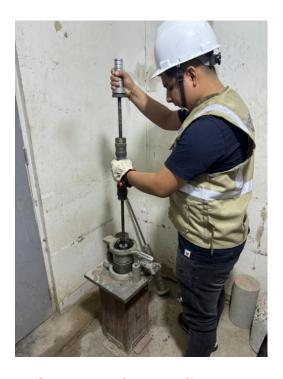


Figura 26. Compactación específica de 75 golpes mas

Figura 27. La dosificación D5 no tiene conexión no compacta, el % de caucho es demasiado

Enfriamiento y Extracción:

Figura 28. Enfriamiento del molde a temperatura ambiente

Peso Específico Máximo - Rice (ASTM D 2041)

La norma ASTM D2041 - "Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures" describe el procedimiento para determinar el peso específico máximo teórico (también conocido como el valor Rice) de mezclas asfálticas. Este valor es crucial para calcular el contenido de aire de las mezclas asfálticas compactadas.

Figura 29. Material para el rice

Figura 30. Peso del material para el rice

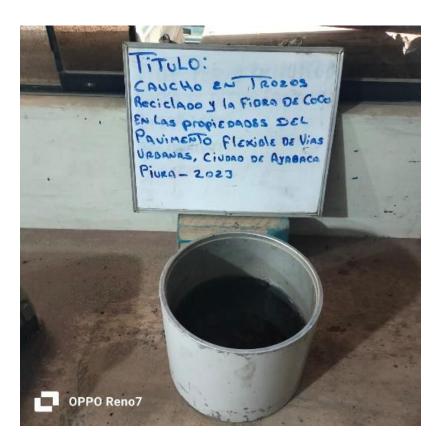


Figura 31. Se agrega agua al material para el rice

Figura 32. Material en maquina por 30 minutos

Figura 33. Pesado del material sin burbujas de aire

Tabla 5. Rice de muestras patrón

MUESTRA Nº	PATRON 01	PATRON 02	PATRON 03	PATRON 04
1 PESO DEL FRASCO	6047,0	6047,0	6047,0	6047,0
2 PESO DEL FRASCO + AGUA+ VIDRIO	8188,0	8188,0	8188,0	8188,0
3 DIFERENCIA DEL PESO (04) - (05)	7708,0	7703,0	7702,0	7710,0
4 PESO DEL FRASCO + MUESTRA + AGUA	8916,0	8912,0	8910,0	8892,0
5 PESO NETO DE LA MUESTRA	1208,0	1209,0	1208,0	1182,0
6 AGUA DESPLAZADA (2) - (3)	480,0	485,0	486,0	478,0
PESO ESPECIFICO MAXIMO DE LA MUESTRA (5)/(6)	2,517	2,493	2,486	2,473
CONTENIDO % C.A.	5,1	5,6	6,1	6,6

Tabla 6. Rice de muestras con dosificaciones

MUESTRA Nº	1.0 % de caucho 0.2% F. coco	3.0 % de caucho 0.4% F. coco	6.0 % de caucho 0.6% F. coco
1 PESO DEL FRASCO	6047,0	6047,0	6047,0
2 PESO DEL FRASCO + AGUA+ VIDRIO	8193,0	8193,0	8193,0
3 DIFERENCIA DEL PESO (04) - (05)	7704,0	7704,0	7695,0
4 PESO DEL FRASCO + MUESTRA + AGUA	8912,0	8910,0	8914,0
5 PESO NETO DE LA MUESTRA	1208,0	1206,0	1219,0
6 AGUA DESPLAZADA (2)-(3)	489,0	489,0	498,0
PESO ESPECÍFICO MÁXIMO DE LA MUESTRA (5)/(6)	2,470	2,466	2,448
CONTENIDO % C.A.	5,60	5,60	5,60

Densidad (g/cm³) ASTM D- 1188

La norma ASTM D1188 - "Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens" describe el procedimiento para determinar la densidad y la gravedad específica aparente (bulk specific gravity) de las mezclas bituminosas compactadas.

Figura 34. Pesado de briquetas al aire (gr)

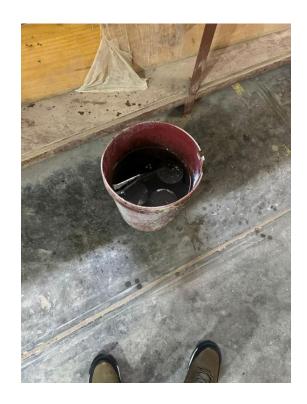


Figura 35. Briquetas en agua por 30 minutos

Figura 36. Peso de briquetas al agua por 30' (gr)

Figura 37. Pesado de briquetas desplazadas (gr)

Tabla 7. Densidad de muestra patrón 5.1

MUEOTDA DATRÓN		DDOMEDIO.		
MUESTRA PATRÓN	BRIQUETA 1	BRIQUETA 2	BRIQUETA 3	PROMEDIO
A- Peso de la briqueta al aire (gr)	1196,6	1194,4	1193,6	-
B- Peso de la briqueta al agua por 60´(gr)	1199,0	1196,4	1195,8	-
C- Peso de la briqueta desplazada (gr)	692,3	692,7	692,2	-
D- Volumen de la briqueta por desplazamiento (cc) = (B-C)	506,7	503,7	503,6	-
E- Peso específico Bulk de la Briqueta = (A/D)	2,362	2,371	2,370	2,368

Tabla 8. Densidad de muestra patrón 5.6

MUESTRA PATRÓN	BRIQUETA 1	5,6 BRIQUETA 2	BRIQUETA 3	PROMEDIO
A- Peso de la briqueta al aire (gr)	1191,9	1194,0	1199,2	-
B- Peso de la briqueta al agua por 60'(gr)	1193,9	1195,8	1201,2	-
C- Peso de la briqueta desplazada (gr)	695,3	694,9	698,3	-
D- Volumen de la briqueta por desplazamiento (cc) = (B-C)	498,6	500,9	502,9	-
E- Peso específico Bulk de la Briqueta = (A/D)	2,390	2,384	2,385	2,386

Tabla 9. Densidad de muestra patrón 6.1

MUESTRA PATRÓN		PROMEDIO		
MUESTRA PATRON	BRIQUETA 1	BRIQUETA 2	BRIQUETA 3	PROMEDIO
A- Peso de la briqueta al aire (gr)	1195,7	1193,4	1198,5	-
B- Peso de la briqueta al agua por 60'(gr)	1197,4	1195,3	1200,4	-
C- Peso de la briqueta desplazada (gr)	696,8	696,4	699,5	-
D- Volumen de la briqueta por desplazamiento (cc) = (B-C)	500,6	498,9	500,9	-
E- Peso específico Bulk de la Briqueta = (A/D)	2,389	2,392	2,393	2,391

Tabla 10. Densidad de muestras patrón 6.6

MUESTRA PATRÓN	BRIQUETA	BRIQUETA	BRIQUETA	PROMEDIO
	1	2	3	
A- Peso de la briqueta al aire (gr)	1199,6	1194,5	1190,0	-
B- Peso de la briqueta al agua por 60'(gr)	1200,2	1195,4	1191,0	-
C- Peso de la briqueta desplazada (gr)	700,1	698,0	695,0	-
D- Volumen de la briqueta por desplazamiento (cc) = (B-C)	500,1	497,4	496,0	-
E- Peso específico Bulk de la Briqueta = (A/D)	2,399	2,401	2,399	2,400

Tabla 11. Densidad de D2

	1 % de cai	de F. coco		
DOSIFICACIÓN D2	BRIQUETA	BRIQUETA	BRIQUETA	PROMEDIO
	1	2	3	
A- Peso de la briqueta al aire (gr)	1196,8	1197,2	1195,5	-
B- Peso de la briqueta al agua por 60'(gr)	1198,4	1199,1	1197,2	-
C- Peso de la briqueta desplazada (gr)	697,4	697,1	696,5	-
D- Volumen de la briqueta por desplazamiento (cc) = (B-C)	501,0	502,0	500,7	-
E- Peso específico Bulk de la Briqueta = (A/D)	2,389	2,385	2,388	2,387

Fuente: Elaborado por JC geotecnia laboratorio S.A.C.

Tabla 12. Densidad de D3

	3 % de ca	de F. coco		
DOSIFICACIÓN D3	BRIQUETA	BRIQUETA	BRIQUETA	PROMEDIO
	1	2	3	
A- Peso de la briqueta al aire (gr)	1199,9	1194,8	1193,0	-
B- Peso de la briqueta al agua por	1202,8	1200,5	1198,2	_
60´(gr)	1202,0	1200,3	1190,2	_
C- Peso de la briqueta desplazada (gr)	688,3	689,1	686,2	-
D- Volumen de la briqueta por	514,5	511,4	512,0	_
desplazamiento (cc) = (B-C)	014,0	011,4	012,0	
E- Peso específico Bulk de la Briqueta	2,332	2,336	2,330	2,333
= (A/D)	2,332	2,550	2,550	2,000

Tabla 13. Densidad de D4

	6 % de ca	de F. coco		
DOSIFICACIÓN D4	BRIQUETA	BRIQUETA	BRIQUETA	PROMEDIO
	1	2	3	
A- Peso de la briqueta al aire (gr)	1190,2	1193,4	1198,7	-
B- Peso de la briqueta al agua por 60´(gr)	1199,1	1202,2	1207,2	-
C- Peso de la briqueta desplazada (gr)	666,4	668,2	671,6	-
D- Volumen de la briqueta por desplazamiento (cc) = (B-C)	532,7	534,0	535,6	-
E- Peso específico Bulk de la Briqueta = (A/D)	2,234	2,235	2,238	2,236

Absorción de asfalto (%) ASTM D- 4469

$$P_{ba} = 100x \frac{G_{se} - G_{sb}}{G_{se} x G_{sb}} x G_b$$

Donde:

 P_{ba} = Asfalto absorbido por el agregado

 $G_{\rm b} = {\rm Densidad}$ aparente del concreto asfáltico (aparente) en g/cm 3

 G_{se} = Densidad efectiva del agregado total

 $G_{sb} = Densidad Bulk del agregado total$

Tabla 14. Absorción de asfalto de muestras patrón

MUESTRA PATRÓN	5,1	5,6	6,1	6,6
Densidad aparente del concreto asfáltico (aparente) en g/cm³	1,023	1,023	1,023	1,023
Densidad efectiva del agregado total	2,729	2,723	2,738	2,746
Densidad Bulk del agregado total	2,689	2,689	2,689	2,689
Asfalto Absorbido por el Agregado	0,55	0,47	0,67	0,78

Tabla 15. Absorción de asfalto de dosificaciones

DOSIFICACIONES	1% CR + 0,2 FC	3% CR + 0,4 FC	6% CR + 0,6 FC	9% CR + 0,8 FC
Densidad aparente del concreto asfáltico (aparente) en g/cm³	1,023	1,023	1,023	-
Densidad efectiva del agregado total	2,697	2,692	2,668	-
Densidad Bulk del agregado total	2,690	2,690	2,689	-
Asfalto Absorbido por el Agregado	0,10	0,03	-0,30	No aplica

Etapa 4: Pruebas Marshall (ASTM D-6927- MTC EG -2013)

Preparación de las briquetas:

Figura 38. Dimensión de las briquetas patrón, diámetro 101.6mm y espesor 63.5mm

Figura 39. Dimensión de las briquetas con dosificaciones, diámetro 101.6mm y espesor 63.5mm

Figura 40. Briquetas en el baño maría a 60 grados Celsius durante 30 minutos.

Colocación en la Máquina Marshall:

Figura 41. Aplicación del Método Marshall

Tabla 16. Muestras patrón

RESUMEN DE MUESTRAS PATRON						
% C.A.	5,1	5,6	6,1	6,6		
P.U. BRIQUETA	2,368	2,386	2,391	2,4		
VACIOS	5,9	4,3	3,8	3		
V.M.A.	16,4	16,2	16,5	16,6		
V.LL.A	63,9	73,6	76,9	82,2		
POLVO / ASF.	1,45	1,28	1,21	1,13		
FLUJO	11,7	13,3	14,7	15,3		
ESTABILIDAD	13,4	12,1	11,1	10,4		
ESTAB./ FLUJO	4606	3631	3043	2720		

Tabla 17. Porcentaje óptimo de muestra patrón

Parámetros de diseño		- 0.2 %	% Óptimo	+0.2 %	Especificación EG 2013
GOLPES	N°		75,0		75
CEMENTO	%				
ASFÁLTICO	/0	5,40	5,60	5,80	
PESO UNITARIO	kg/m³	2,380	2,385	2,389	
VACIOS	%	4,7	4,1	3,7	3 - 5
V.M.A.	%	16,23	16,19	16,19	14
V. LL.C.A.	%	69,5	71,8	74,2	
POLVO / ASFALTO	%	1,34	1,29	1,24	0.6 - 1.3
FLUJO	mm	12,8	13,3	13,7	8 - 14
ESTABILIDAD	kN	12,4	12,0	11,6	8,15
ESTABILIDAD/	kg/cm				
FLUJO	kg/CIII	3899,6	3616,3	3370,0	1700 - 4000
RESISTENCIA A LA	Мра				
COMPRESIÓN	ινιρα		3,6		2,1
RESISTENCIA					
RETENIDA	%		78,6		75

Tabla 18. Resultados de dosificaciones

Parámetros do	e diseño	% Óptimo diseño convencional	1.0 % de caucho 0.2% de F. coco	3.0 % de caucho 0.4% de F. coco	6.0 % de caucho 0.6% de F. coco	Especificación EG 2013
GOLPES	N°	75	75	75	75	75
CEMENTO ASFÁLTICO	%	5,60	5,60	5,60	5,60	
PESO UNITARIO	kg/m3	2,385	2,387	2,333	2,236	
VACIOS	%	4,1	3,4	5,4	8,7	3 - 5
V.M.A.	%	16,2	16,2	18,1	21,5	14
V. LL.C.A.	%	71,8	79,2	70,2	59,8	
POLVO / ASFALTO	%	1,29	1,07	1,03	0,94	0.6 - 1.3
	0.01",					
FLUJO	0.25 mm	13,3	12,3	14	18	8 - 14
ESTABILIDAD	kN	12	13	11	9	8,15
ESTABILIDAD/ FLUJO	kg/cm	3616,3	4124,8	3169,5	2013,7	1700 - 4000

Método de análisis de datos, para la investigación se emplearon los criterios que tiene establecido las Normas Peruanas, como el ASTM y MTC, de igual manera se incluyó herramientas tecnológicas y programas que permitió obtener información más específica para una mejor interpretación.

El análisis de datos del desarrollo de la investigación se efectuó en 2 etapas, en la primera etapa se utilizó la estadística descriptiva donde se elaboraron cuadros y gráficos que permitieron la interpretación de los resultados asimismo se efectuó la estadística inferencial con la finalidad de contrastar la hipótesis de los problemas de investigación aplicando los distintos procedimientos que sean referentes a estadística inferencial.

Acevedo (2002) En lo que respecta a los **aspectos éticos** de la investigación, se refieren a los principios fundamentales que orientan el comportamiento de los investigadores durante el desarrollo de sus investigaciones. Estos principios abarcan la salvaguarda de los derechos y el bienestar de los participantes, la sinceridad al presentar los resultados, la honestidad en la ejecución de la investigación y la claridad al divulgar tanto métodos como hallazgos. La ética de la investigación resulta crucial para asegurar la integridad y la credibilidad del proceso investigativo, así como para resguardar a los participantes y mantener la confianza en la comunidad científica.

La investigación es inédita, dado a que no hay ninguna investigación incorporando dichos agregados, siendo original en todo el contenido debido a que se garantiza porcentaje de similitud menor al 25%, y confiabilidad debido a la cantidad de citas y referencias bibliográficas que están conforme al formato ISO 690, asimismo tiene validez por expertos en la rama ingenieril.

Asimismo, en el trabajo de investigación se está respetando el derecho de autor empleando la cita y la referencia específica, toda información que sea recopilada de entidades públicas y privadas va contar con la autorización respectiva para su utilización, los resultados de la tesis no serán manipulados y serán representativos del desarrollo de la investigación, de igual manera se obtendrá el certificado que garantice la calibración de las herramientas.

III. RESULTADOS

Indicador 1: Flujo

Tabla 19. Resultados del flujo

DOSIFICACIÓN	FLUJO (mm)	% VARIACIÓN RESPECTO AL PATRON
D1 (PATRON)	13,3	
D2 (1% CR + 0,2FC)	12,3	-7,52
D3 (3% CR + 0,4FC)	14	5,26
D4 (6% CR + 0,6FC)	17,7	33,08
D5 (9% CR + 0,8FC)	-	No aplica

Fuente: Elaboración propia

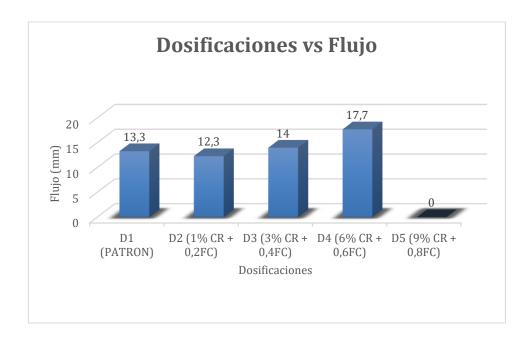


Gráfico 1. Resultado del flujo

Interpretación:

El ASTM D1559 establece que el flujo de una mezcla asfáltica debe situarse entre 8 y 14 mm para ser considerado adecuado. Según la tabla N.º 19 y la figura N.º 1, se observa que la dosificación óptima es la D2, que contiene (1% CR + 0.2% FC). Esta dosificación resulta mejor que la D1 (muestra patrón), ya que el flujo disminuye

con una variación de -7.52%. A partir de la dosificación D3, se comienza a observar un incremento en el flujo con una variación de 5.26%, aunque la D3 aún cumple con los requisitos de la norma. Sin embargo, la dosificación D4 ya no cumple con los requerimientos establecidos. Finalmente, la dosificación D5 no se pudo compactar debido a la falta de conexión causada por el alto porcentaje de caucho y fibra de coco.

Indicador 2: Estabilidad

Tabla 20. Resultado de la estabilidad

DOSIFICACIÓN	ESTABILIDAD (kN)	% VARIACIÓN RESPECTO AL PATRON
D1 (PATRON)	12	
D2 (1% CR + 0,2FC)	12,7	5,83
D3 (3% CR + 0,4FC)	11,09	-7,58
D4 (6% CR + 0,6FC)	8,88	-26,00
D5 (9% CR + 0,8FC)	-	No aplica

Fuente: Elaboración propia

Gráfico 2. Resultado de la estabilidad

Interpretación:

El ASTM D1559, establece que la estabilidad de una mezcla asfáltica debe ser al menos de 8 kN para ser considerada adecuada. Según la tabla N.º 20 y la figura N.º 2, se observa que la dosificación óptima es la D2, que contiene (1% CR + 0.2% FC). Esta dosificación resulta mejor que la D1 (muestra patrón), ya que la estabilidad aumenta con una variación de 5.83%. A partir de la dosificación D3, se comienza a observar una disminución en la estabilidad con una variación de - 7.58%, aunque la D3 aún cumple con los requisitos de la norma. Sin embargo, la dosificación D4 ya no cumple con los requerimientos establecidos. Finalmente, la dosificación D5 no se pudo compactar debido a la falta de conexión causada por el alto porcentaje de caucho y fibra de coco.

Indicador 3: Densidad

Tabla 21. Resultado de la densidad

DOSIFICACIÓN	DENSIDAD (g/cm³)	% VARIACIÓN RESPECTO AL PATRON
D1 (PATRON)	2,385	
D2 (1% CR + 0,2FC)	2,387	0,08
D3 (3% CR + 0,4FC)	2,333	-2,18
D4 (6% CR + 0,6FC)	2,236	-6,25
D5 (9% CR + 0,8FC)	-	No aplica

Fuente: Elaboración propia

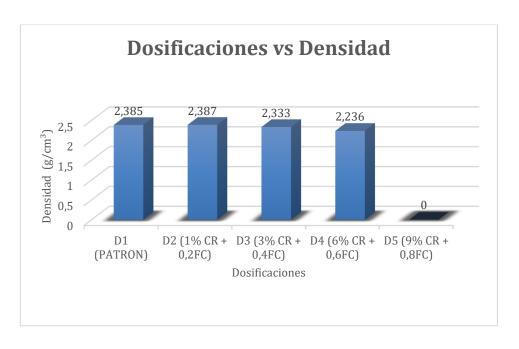


Gráfico 3. Resultado de la densidad

Interpretación: La Tabla N.º 21 y la Figura N.º 3 se observa que la dosificación óptima es la D2, que contiene (1% CR + 0.2% FC). Esta dosificación resulta mejor que la D1 (muestra patrón), ya que la densidad aumenta con una variación de 0.08%. A partir de la dosificación D3, se comienza a observar una disminución en la densidad. A pesar que la norma la norma ASTM D6927-15 detalla el método de ensayo estándar para la determinación de estabilidad y flujo de la mezcla bituminosa mediante el aparato Marshall no especifica un rango de densidad exacto para las briquetas pero se espera que la densidad final de las briquetas compactadas sea tal que las propiedades mecánicas de estabilidad y flujo cumplan con los criterios establecidos en la norma. Por lo tanto, una mayor densidad tiende a resultar en un menor flujo y una mayor estabilidad, lo que genera mejores resultados. Esto se debe a que una mayor densidad implica una mezcla más compactada con menos vacíos, lo que incrementa la rigidez y la capacidad de la mezcla para resistir deformaciones bajo carga. Estos principios se reflejan en los resultados observados en la tabla, donde la dosificación D2 muestra una densidad óptima que mejora la estabilidad sin comprometer el flujo de la mezcla.

Indicador 4: Absorción de asfalto

Tabla 22. Resultado de la absorción de asfalto

DOSIFICACIÓN	ABSORCIÓN (%)	% VARIACIÓN RESPECTO AL PATRON
D1 (PATRON)	0,47	
D2 (1% CR + 0,2FC)	0,1	-78,72
D3 (3% CR + 0,4FC)	0,03	-93,62
D4 (6% CR + 0,6FC)	-0,3	-163,83
D5 (9% CR + 0,8FC)	-	No aplica

Fuente: Elaboración propia

Gráfico 4. Resultado de la absorción

Interpretación: En la Tabla N.º 22 y la Figura N.º 4 se observa que las dosificaciones con la adición de caucho reciclado (CR) y fibra de coco (FC) tienden a disminuir la absorción de asfalto en comparación con la muestra patrón (D1). Una menor absorción es generalmente preferible porque deja más asfalto disponible para revestir los agregados, lo que mejora la cohesión, durabilidad y resistencia de la mezcla asfáltica. Además, los agregados con menor porosidad suelen ser más estables y menos susceptibles a la degradación por factores ambientales. Por lo tanto, las dosificaciones con la adición de CR y FC son superiores a la muestra patrón D1.

IV. DISCUSIÓN

Indicador 1: Flujo

En esta investigación aplicando el método Marshall, el que tiene mejor resultado de flujo es la dosificación D2 que contiene (1% CR + 0.2% FC), alcanzando un flujo de 12.3 mm, asimismo la dosificación D3 se encuentra dentro de los rangos establecidos por el ASTM D1559. Según Burgos y Rodríguez (2022) en su investigación aplicando el ensayo Marshall, el mejor resultado de flujo fue la dosificación que tiene (6% cemento asfaltico + 1% caucho reciclado), alcanzando un flujo de 9.72mm asimismo las otras dosificaciones se encuentran dentro del rango que establece la norma. Los resultados del flujo son diferentes porque el único material en común que se emplea es el caucho reciclado, pero cabe recalcar que ambos mejoran las propiedades del pavimento, cumpliendo con los requerimientos del ASTM D1559.

Indicador 2: Estabilidad

En esta investigación aplicando el método Marshall, el que tiene mejor resultado de estabilidad es la dosificación D2 que contiene (1% CR + 0.2% FC), alcanzando una estabilidad de 12.7 kN siendo mayor al patrón que tiene 12 kN, asimismo las otras dosificación también se encuentra dentro de los rangos establecidos por el ASTM D1559. Según Castillo y Chávarri (2020) en su investigación aplicando el ensayo Marshall, el mejor resultado de estabilidad fue la dosificación que tiene (6.5% cemento asfaltico + 1.5% caucho reciclado), alcanzando una estabilidad de 13.3kN siendo mayor a la mezcla convencional que tiene 9.83 kN asimismo las otras dosificaciones se encuentran dentro del rango que establece la norma. Los resultados de la estabilidad son diferentes porque el único material en común que se emplea es el caucho reciclado, pero cabe recalcar que ambos mejoran las propiedades del pavimento, cumpliendo con los requerimientos del ASTM D1559.

Indicador 3: Densidad

En esta investigación aplicando el método Marshall, el que tiene una mayor densidad es la dosificación D2 que contiene (1% CR + 0.2% FC), alcanzando una densidad de 2,387 g/cm³ siendo mayor al patrón que tiene 2,385 g/cm³, cabe mencionar que las otras dosificación tienen un sentido descendente respecto al patrón. Según Boza (2020) en su investigación aplicando el ensayo Marshall, el que tiene una mayor densidad fue la dosificación que tiene (7% cemento asfaltico + 7% caucho reciclado), alcanzando una densidad de 2,742 g/cm³ siendo mayor a la mezcla convencional que tiene de 2,710 g/cm³, cabe mencionar que las otras dosificaciones tienen un sentido ascendente respecto al patrón. Los resultados de la densidad son diferentes porque el único material en común que se emplea es el caucho reciclado, pero cabe recalcar que ambos mejoran las propiedades del pavimento.

Indicador 4: Absorción

En esta investigación aplicando el método Marshall, la dosificación optima que se encontró en el estudio es la D2 que contiene (1% CR + 0.2% FC) y tiene un resultado de 0.1% siendo menor al patrón que tiene 0.47%. Según Castro, Romero, Vásquez y Gustavo (2020) en su investigación aplicando el ensayo Marshall, la dosificación optima que presenta su estudio es la que contiene (2% de fibra de coco + 1% cascara de coco), en la cual obtuvo un resultado de 0.34% siendo menor a la convencional que tiene 0.18%. Los resultados de la absorción son diferentes porque el único material en común que se emplea es la fibra de coco, pero en ambas disminuye el porcentaje de absorción respecto al patrón.

V. CONCLUSIONES

- Luego del desarrollo del trabajo de investigación, se ha evaluado que el caucho en trozos reciclado y la fibra de coco influyen significativamente en el flujo del pavimento. Se determinó que la dosificación D2 (1% CR + 0.2% FC) presenta una mayor disminución del orden de -7.52% respecto al patrón, según se indica en la tabla Nº19. Cabe mencionar que este valor se encuentra dentro de los parámetros que indica el ASTM D1559.
- Asimismo, en la investigación se verificó que el caucho en trozos reciclado y la fibra de coco mejoran significativamente la estabilidad del pavimento flexible. En particular, la dosificación D2 (1% CR + 0.2% FC) presentó un aumento en la estabilidad del orden de 5.83% respecto al patrón, según se muestra en la tabla Nº20. Estos resultados indican que la combinación de estos materiales puede mejorar la resistencia del pavimento a las cargas aplicadas, lo cual es crucial para su durabilidad en vías urbanas. Cabe mencionar que este valor se encuentra dentro de los parámetros que indica el ASTM D1559.
- Durante el transcurso de la investigación, se constató que el caucho en trozos reciclado y la fibra de coco mejoran la densidad del pavimento flexible. La dosificación D2 (1% CR + 0.2% FC) mostró una densidad incrementada del orden de 0.08% comparado con el patrón, según se indica en la tabla Nº21. Este hallazgo sugiere que la adición de estos materiales resulta en un pavimento más compacto, lo cual podría tener implicaciones positivas en la resistencia y la durabilidad del pavimento.
- A lo largo de la investigación, se examinó el impacto del caucho en trozos reciclado y la fibra de coco en la absorción del pavimento flexible. Los resultados indicaron que la dosificación D2 (1% CR + 0.2% FC) presentó una reducción en la absorción del orden de -78.72% respecto al patrón, como se refleja en la tabla Nº22. Esto demuestra que estos materiales pueden contribuir a una menor absorción de agua, mejorando así la durabilidad del pavimento frente a condiciones climáticas adversas.

Finalmente, en la investigación se determinó que la adición de caucho en trozos reciclado y fibra de coco mejora las propiedades físicas y mecánicas del pavimento flexible. A través del método Marshall en mezclas en caliente, se determinó que la dosificación óptima es la D2 (1% CR + 0.2% FC), la cual mostró mejoras notables en flujo, estabilidad, densidad y absorción del pavimento en comparación con el patrón. En conjunto, estos resultados sugieren que la incorporación de estos materiales reciclados no solo es viable, sino que también mejora las características mecánicas y de durabilidad del pavimento, haciendo de esta una alternativa sostenible y eficiente para las vías urbanas de la ciudad de Ayabaca.

VI. RECOMENDACIONES

- Se sugiere como línea de investigación futura realizar estudios adicionales que exploren una mayor variedad de dosificaciones de caucho en trozos reciclado (CR) y fibra de coco (FC) para identificar la proporción óptima que maximice las mejoras en todas las propiedades del pavimento flexible como es el flujo, estabilidad, densidad y absorción. Esto permitirá determinar si existen combinaciones aún más eficientes que la dosificación D2 (1% CR + 0.2% FC).
- La aplicación de dosificaciones mayores a la óptima D2 (1% CR + 0.2% FC) no es recomendable debido a que el flujo comienza a tener un sentido ascendente y una estabilidad de sentido descendente y esto genera un deterioro en las propiedades del pavimento.
- Es necesario experimentar con el uso de fibras con características iguales o superiores a las de la fibra de coco, en combinación con caucho reciclado, para mejorar el flujo de la mezcla. Esta mejora en el flujo facilita la compactación y distribución uniforme de los materiales, lo que genera un pavimento más resistente y duradero.
- Para mejorar la estabilidad, se recomienda utilizar caucho reciclado en trozos en porcentajes inferiores al 6%. Un menor porcentaje permite una compactación más rápida de la mezcla, aumentando su resistencia a las cargas. Si se incrementa el porcentaje de caucho, la mezcla no se compacta adecuadamente debido a la pérdida de cohesión entre los componentes.
- Con la finalidad de mejorar la densidad, se recomienda aumentar el porcentaje de filler en la mezcla. Este incremento contribuye a una mayor compactación de la mezcla, lo que resulta en una reducción significativa de los vacíos y una mejora notable en la cohesión entre las partículas. Este enfoque no solo aumenta la resistencia del pavimento, sino que también promueve una mayor durabilidad y vida útil del mismo.
- En relación a la mejora de absorción de asfalto, se debe utilizar la fibra de coco de tamaño 2 a 2.5 cm, debido a que dicho tamaño disminuye la posibilidad de deformaciones y pérdida de cohesión del pavimento.

REFERENCIAS

American Society for Testing and Materials. *ASTM D1559: Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures Using Marshall Apparatus [en línea].* West Conshohocken, PA: ASTM International, 1989 [consulta: 15 de mayo de 2024]. Disponible en: https://www.astm.org/standards/d1559

ACEVEDO, Irene. Aspectos éticos en la investigación científica [en línea]. 05 de junio de 2022 [Fecha de consulta: 16 de setiembre de 2023]. Disponible en: http://revistas.unitecnar.edu.co/index.php/sth/article/view/16

ALFAYEZ, Saud, SOLIMÁN, Ahmed y NEHDI, Moncef. *Recycling tire rubber in asphalt pavements: State of the art* [en línea]. Vol. 12(9076), 27 de octubre 2020 [Fecha de consulta: 10 septiembre del 2023]. Disponible en: https://www.mdpi.com/2071-1050/12/21/9076

ANGUAS, G. et al. Aspectos del diseño volumétrico de mezclas asfálticas [en línea]. 2004 [Fecha de consulta: 16 de setiembre de 2023]. Disponible en: file:///C:/Users/hp/Downloads/pt246%20(2).pdf

ARIAS, Fidias. El proyecto de investigación, introducción a la metodología científica. 6ta ed. Caracas: Editorial episteme, 2006. 143 pp.

ISBN: 980-07-8529-9

ARIAS, Jesus [et al.]. El protocolo de investigación III: la población de estudio [en línea]. Vol. 63(2), 02 de abril del 2016 [Fecha de consulta: 30 de setiembre de 2023]. Disponible en: https://www.redalyc.org/articulo.oa?id=486755023011

ISBN: 0002-5151

ARQUEROS, Luis y ZAVALETA, Stephanie. Influencia del porcentaje de grano de caucho reciclado en el tiempo de vida útil de la mezcla asfáltica de pavimento flexible, Trujillo 2022. Tesis (Para optar el título profesional). Lima: Universidad Privada del Norte, 2023.

Disponible en

https://repositorio.upn.edu.pe/bitstream/handle/11537/33316/Arqueros%20Flores%20%20Luis%20Enrrique%20-

%20%20Zavaleta%20Benites%2c%20Stephanie%20Yubitza.pdf?sequence=1&is Allowed=y

BOZA, Jason. Adición de caucho reciclado en asfalto para el diseño de pavimento flexible en el Asentamiento Humano Villa Leticia Lurigancho 2020. Tesis (Para optar el título profesional). Lima: Universidad Cesar Vallejo, 2020.

Disponible

https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/65695/Boza_PJG-SD.pdf?sequence=1&isAllowed=y

BURGOS, Elmer y RODRIGUEZ, Juan. Influencia del caucho reciclado en las propiedades físicas – mecánicas en una mezcla asfáltica en caliente, Trujillo 2021. Tesis (Para optar el titulo profesional). Lima: Universidad Privada del Norte, 2022

Disponible en https://repositorio.upn.edu.pe/handle/11537/30437

CAMPOS, Alex y IRIGOIN, Isaías. *Deterioro prematuro de los pavimentos flexibles de la zona urbana de la ciudad de Chota* [en línea]. 28 de febrero de 2020 [Fecha de consulta: 14 de octubre del 2023]. Disponible en: file:///C:/Users/hp/Downloads/Art%C3%ADculo+Original%20(1).pdf

CARDOZA, Alexander [et al.]. Patologías existentes en el pavimento flexible en la av. Guardia Civil entre av. Guillermo Irazola y av. Luis Montero – Piura. 2019. Tesis (Para optar el título profesional). Lima: Universidad Cesar Vallejo, 2021.

Disponible en: B Cardoza CAM-Cordova CEJ-Rivera RDA-Yovera MJL-SD.pdf

CASTILLO, Alvaro y CHAVARRI, Alex. Diseño de mezcla asfáltica en caliente con la incorporación de caucho reciclado en Lima, 2020. Tesis (Para optar el título profesional). Lima: Universidad Cesar Vallejo, 2020.

Disponible en <u>file:///C:/Users/hp/Downloads/Castillo_RAE-Ch%C3%A1varri_VAJ-SD%20(1).pdf</u>

CASTRO, Harold, ROMERO, Bryan, VASQUEZ, Cesar y ARRIOLA, Guillermo. Influencia de la cáscara y fibra de coco en mezclas asfálticas en caliente [en línea]. Vol 7 (2), 5 de octubre del 2020, [Fecha de consulta 02 de octubre de 2023]

Disponible en file:///C:/Users/hp/Downloads/Artculo4%20(1).pdf

ISSN:2313-1926

CHAO-LUNG, Hwang [et al.]. Effects of short coconut fiber on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious [en línea]. Vol. 127, 984-992, Julio – Septiembre 2016 . [fecha de consulta: 22 de octubre del 2023] Disponible en: https://doi.org/10.1016/j.conbuildmat.2016.09.118

COHEN, Néstor y GOMEZ, Gabriela. Metodología de la investigación, ¿Para qué? La producción de los datos y los diseños. Buenos aires: Editorial Teseo, 2019. 274 pp.

ISBN: 9789877231908

DÍAZ, Cesar. Implementación del grano de caucho reciclado (GCR) Proveniente de llantas usadas para mejorar las mezclas Asfálticas y garantizar pavimentos sostenibles en Bogotá. Tesis (Para optar el título profesional). Bogota: Universidad Santos Tomas, 2017. Disponible en: https://repository.usta.edu.co/bitstream/handle/11634/2633/Diazcesar2017.pdf

Dosificación de mezclas asfálticas en caliente - Método Marshall [Resumen]. Lima: Prieto, G., (8 de marzo del 2006). [Fecha de consulta: 03 de octubre del 2023]. Recuperado de https://filadd.com/doc/apunte-marshall-1-pdf-construccion-decarreteras

Erica Aislamiento - Estanqueidad. Cauchos: Comportamiento frente a fluidos [en línea]. Barcelona: 2019. Disponible en https://www.erica.es/cauchos-comportamiento-frente-a-fluidos/

ESCUDERO, Alex y SIERRA, Mauricio. Caracterización mecánica de fibras de coco como refuerzo de materiales compuestos poliméricos. Tesis (Para optar el título profesional). Bogota: Universidad Libre de Colombia, 2017. [94] pp. Disponible en: https://repository.unilibre.edu.co/handle/10901/10374?show=full

GALEANO, Paula. El 25% de la red vial primaria esta en mal estado. *Portafolio*. Colombia. 24 de septiembre del 2023. [Fecha de consulta: 14 de octubre del 2023]. Disponible en: https://www.portafolio.co/economia/infraestructura/25-de-la-red-vial-primaria-en-el-pais-se-encuentra-en-mal-estado-589619

GARCÌA, Paula [et al.]. Validez Estructurada para una investigación cuasi experimental de calidad. Se cumplen 50 años de la presentación en sociedad de los diseños cuasi-experimentales [en línea]. Vol. 30(2), Mayo del 2014 [Fecha de consulta: 30 de setiembre de 2023]. Disponible en: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-97282014000200039

ISBN: 0212-9728

GIL, Juan. Técnicas e instrumentos para la recogida de información. Madrid: Universidad nacional de educación a distancia, 2011. 306pp

HERNÁNDEZ, Roberto, FERNÁNDEZ, Roberto Y BAPTISTA, Pilar. Metodología de la investigación. México D.F: McGraw-Hill, 2014. 600 pp.

HERNANDEZ, Roberto y MENDOZA, Christian. Metodología de la investigación, las rutas cuantitativa, cualitativa y mixta. Universidad de Celaya,2018. 714 pp.

ISBN: 978-1-4562-6096-5

HOYOS, Luz, PUICON, Katyuska y MUÑOZ, Socrates. *Uso del caucho granulado en mezclas asfálticas: Una revisión literaria* [en línea]. Vol 23 (41), 16 de febrero del 2021, [Fecha de consulta 02 de octubre de 2023]

Disponible en https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S2215-37052021000100011

ISSN: 2215-3705

KHASAWNEH, Mohammad y ALYASEN, Saeed. *Métodos analíticos para evaluar mezclas bituminosas mejoradas con fibra de coco/coco para materiales de carreteras.* Materiales hoy: Actas, 2020, vol. 33, pág. 1752-1757. Disponible en: https://www.sciencedirect.com/science/article/pii/S2214785320335240

MACEDO, Sergio y URETA, Cristian. Influencia del caucho reciclado utilizado como agente modificante en los parámetros de diseño de una mezcla asfáltica. Tesis (Para optar el título profesional). Lima: Universidad Ricardo Palma, 2020.

Disponible en

https://repositorio.urp.edu.pe/bitstream/handle/20.500.14138/3681/CIV-

T030_73033850_T%20%20%20MACEDO%20SEMINARIO%20SERGIO%20ALE

JANDRO.pdf?sequence=1&isAllowed=y%C2%B4

MARTIN, Aida. Estudio comparativo de fibras naturales para reforzar hormigón. Tesis (Para optar el título profesional). Valencia: Universidad Politécnica De Valencia, 2019-2020. 80pp.

Ministerio de Transportes y Comunicaciones. Manual de carreteras especificaciones técnicas generales para construcción EG-2013 [en línea]. Lima: 2013. 1285 pp. Disponible en: http://transparencia.mtc.gob.pe/idm_docs/P_recientes/4955.pd

MOUSALLI, Kayat. *Métodos y Diseños de Investigación Cuantitativa* [en línea]. 10 de junio de 2016 [Fecha de consulta: 14 de octubre del 2023]. Disponible en: https://www.studocu.com/co/document/fundacion-universitaria-san-martin/proyecto-de-investigacion-iii/diseno-de-investigacion-cuantitativa/36901926

ÑAUPAS, Humberto [et al.]. Metodologia de la investigación [en línea]. 5ta ed. Bogotá: Ediciones de la U., 2018 [Fecha de consulta: 14 de octubre del 2023]. Disponible en: https://www.libun.edu.pe/carrito/principal.php/articulo/00159426

ISBN: 978-958-762-876-0

OCHOA, Roselva, NAVA, Ninoska y FUSIL, Damaris. *Comprensión epistemológica del tesista sobre investigaciones cuantitativas, cualitativas y mixtas* [en línea]. 2020 [Fecha de consulta: 14 de octubre de 2022]. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7407375

ISSN: 1856 1594

PADILLA, Andres (2004). Análisis de la resistencia a las deformaciones plásticas de mezclas bituminosas densas de la normativa mexicana mediante el ensayo de pista. Barcelona: Universidad politécnica de Cataluña. Disponible en https://upcommons.upc.edu

PALOMINO, Karol y CARDOZA, Mariaalejandra. *Pavimento flexible utilizando una mezcla asfáltica con grano de caucho reciclado para su sostenibilidad en Colombia*. [en línea]. 05 de junio de 2019 [Fecha de consulta: 14 de octubre del 2023]. Disponible en: http://revistas.unitecnar.edu.co/index.php/sth/article/view/16

ISSN: 2216-1872

REZA, Mohammad y HADDOCK, John. *A New Framework for Understanding Aggregate Structure in Asphalt Mixtures* [en línea]. Agosto del 2019 [Fecha de consulta: 16 de setiembre de 2023]. Disponible en: file:///C:/Users/hp/Downloads/ANewFrameworkforUnderstandingAggregateStructureinAsphaltMixtures-Revision.pdf

REYES, Yerson y SANTOS, Nexar. Evaluación del Pavimento Flexible Empleando el Método del PCI y VIZIR en el Tramo 00+000 Hasta 5+000 de la Carretera Ayabaca-Socchabamba, Piura - 2021. Tesis (Para optar el título profesional). Piura: Universidad Cesar Vallejo, 2021.

Disponible en: Reyes MY-Santos GN-SD.pdf

SHELKE, Akshay [et al.]. Coconut Shell as Partial Replacement for Coarse Aggregate: Review [en línea]. Vol 5(3), 21 de enero del 2014, [Fecha de consulta 02 de octubre de 2023]. Disponible en https://www.ripublication.com/ijcer_spl/ijcerv5n3spl_02.pdf

RODRÍGUEZ, María, JIMÉNEZ, Johon y CARVAJAL, Kevin. *Estudios comparativos de mezclas asfálticas aplicando* el método Mashall con la adición de ceniza de cascarilla de arroz caucho triturado con los agregados de los ríos Magdalena Cucuana y Saldaña. 2017. Tesis (para optar el titulo Doctoral). Disponible en: http://repository.unipiloto.edu.co/handle/20.500.12277/5617

RONDÓN, Hugo y REYES, Fredy. (2011). Evaluación de las propiedades mecánicas de una mezcla densa en caliente modificada con un desecho de PVC [en línea]. (27), 20 de diciembre del 2011, [Fecha de consulta 02 de octubre de 2023].

Disponible en

https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2

ISSN: 0123-7799

SOTO, Edwin. Influencia de la incorporación de porcentajes de caucho de llanta reciclado sobre los parámetros Marshall en las mezclas asfálticas en caliente, Trujillo 2017. Tesis (para otra el título profesional). Trujillo, Perú. Universidad Privada del Norte. 2018. 231 pp.

Disponible en https://repositorio.upn.edu.pe/handle/11537/13751

TEJADA, Nicolai. diseño de una mezcla asfáltica ecológica usando polietileno de tereftalato (PET) reciclado y caucho molido. Tesis (Para optar el título profesional). Lima: Universidad Señor de Sipán,2022.

Disponible en: file:///C:/Users/hp/Downloads/Tejada%20Brioso%20Nicolai%20Alvin%20(1).pdf

TREJOS, Juan. Propiedades mecánicas de una matriz de poliéster reforzada con fibra de coco comparadas con la misma matriz reforzada con fibra de vidrio. Tesis (Para optar el título profesional). Colombia: Universidad Tecnológica De Pereira, 2014. 116pp.

VEGA, Danilo. Análisis del comportamiento a compresión de asfalto conformado por caucho reciclado de llantas como material constitutivo del pavimento asfáltico. Tesis (Para optar el título profesional). Ecuador: Universidad Técnica De Ambato, 2016.

Disponible en:

https://repositorio.uta.edu.ec/bitstream/123456789/25264/1/Tesis%201113%20-%20Vega%20Zurita%20Danilo%20Sebasti%c3%a1n.pdf

ANEXOS

Tabla. Matriz de consistencia

Problema General	Objetivo General	Hipótesis General	Variables	Dimensiones	Indicadores
·Da mué manana al	Data-mainan da	El Caucho en trozos		D1.	0% CR + 0% FC
¿De qué manera el Caucho en	Determinar de que	reciclado y la		D1: Dosificación	1% CR + 0,2 % FC
trozos reciclado y la fibra de coco influye	manera el Caucho en	fibra de coco influye positivamente en las		del caucho en trozos	3% CR + 0,4 % FC
en las propiedades del	trozos reciclado y	propiedades del pavimento flexible de		reciclado y porcentaje de fibra de coco	6% CR + 0,6% FC
pavimento flexible de vías	to fibra de coco vías urbanas, le vías influye en Ayabaca, Piura-	•	VI: Caucho en trozos reciclado y		9% CR + 0,8 % FC
urbanas, ciudad de Ayabaca, Piura-	las propiedades del		la fibra de coco	D2: características del caucho y la fibra de coco	Resistencia a la tracción de CR 26 MPa
2023?	· ·				Resistencia a la tensión FC 108- 252 MPa
	urbanas, Ayabaca, Piura- 2023				Resistencia a bajas temperaturas, CR conserva su flexibilidad hasta 60º C, aire seco 200º C
Problemas Específicos	Objetivos Específicos	Hipótesis Especificas	Variables	Dimensiones	Indicadores
Pe1: ¿Cómo el	Oe1: Evaluar	He1: El Caucho en			
Caucho en trozos	cómo el Caucho	trozos reciclado y la			
reciclado y la fibra	en trozos	fibra de coco influye			
de	reciclado y la	positivamente en el			Fluid (man)
coco influye en el	fibra de coco	flujo del pavimento			Flujo (mm)
flujo del pavimento flexible	influye en el flujo del pavimento	flexible de vías			

de vías urbanas, ciudad de Ayabaca, Piura- 2023?	flexible de vías urbanas, Ayabaca, Piura- 2023	urbanas, Ayabaca, Piura-2023		Propiedades Mecánicas	
Pe2: ¿De qué modo el Caucho reciclado en trozos y la fibra de coco influyen en la estabilidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023?	Oe2: Verificar de que modo el Caucho reciclado en trozos y la fibra de coco influyen en la estabilidad del pavimento flexible de vías urbanas, Ayabaca, Piura-2023	He2: El Caucho reciclado en trozos y la fibra de coco influyen positivamente en la estabilidad del pavimento flexible de vías urbanas, Ayabaca, Piura- 2023	VD: Propiedades del pavimento flexible de vías urbanas		Estabilidad (kN)
Pe3: ¿En qué medida el Caucho en trozos reciclado y la fibra de coco influye en la densidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023?	Oe3: Constatar en que medida el Caucho en trozos reciclado y la fibra de coco influye en la densidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023	He3: El Caucho en trozos reciclado y la fibra de coco influyen positivamente en la densidad del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023		Propiedades Físicas	Densidad (g/cm³)

Pe4: ¿Qué tanto el Caucho en trozos reciclado y la fibra de coco influye en la absorción del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura- 2023?	Oe4: Examinar en que tanto el Caucho en trozos reciclado y la fibra de coco influye en la absorción del pavimento flexible de vías urbanas, Avabaca. Piura-	He4: El Caucho en trozos reciclado y la fibra de coco influye positivamente en la absorción del pavimento flexible de vías urbanas, Ayabaca, Piura-2023		Absorción (%)
Piura- 2023?	Ayabaca, Piura- 2023			

ANEXO 2

Tabla. Matriz de operacionalización

VARIABLES	DEFINICIÓN CONCERTIAL	DEFINICIÓN	DIMENSIÓN	INDICADORES	Escala/ Nivel
	CONCEPTUAL	OPERACIONAL	D4:	00/ 00 + 00/ 50	de medición
	El caucho reciclado en	La a Parka a a a a Park	D1: Dosificación	0% CR + 0% FC 1% CR + 0,2 % FC	Intervalo
	trozos se refiere a la	La adición se realizará	del caucho en	'	Intervalo
	reutilización de neumáticos	combinando los siguientes porcentajes 0% CR + 0%	trozos	3% CR + 0,4 % FC	Intervalo
	al final de su vida útil, los	FC, 1%CR + 0,2% FC;	reciclado y porcentaje de	6% CR + 0,6% FC	Intervalo
VI: Caucho en	cuales son reutilizables y convertidos en aditivos	3%CR + 0,4%; 6%CR +	fibra de coco	9% CR + 0,8%	Intervalo
trozos reciclado y la	(Cabanillas, 2017). La fibra	0,6%FC y 9% CR + 0,8%, con ello se busca beneficiar		Resistencia a la tracción de CR 26 Mpa	Razón
fibra de coco	de coco se destaca por tener baja conductividad, capacidad para resistir	las propiedades físicas y mecánicas, prolongando la	D2: características del	Resistencia a la tensión FC 108-252 Mpa	Razón
	humedad y por su resistencia a las bacterias (Escudero y Sierra, 2017)	vida útil de las vías urbanas. Para verificar se realizará briquetas.	caucho y la fibra de coco	Resistencia a bajas temperaturas, CR conserva su flexibilidad hasta 60° C, aire seco 200° C	Razón
	Las propiedades de un		D1: Propiedades	Flujo (mm)	Razón
	pavimento flexible pueden		Mecánicas	Estabilidad (Lbs)	Razón
	ser físicas y mecánicas, las			Densidad (g/cm³)	Razón
VD: Propiedades del pavimento flexible de vías urbanas	físicas son las características visibles como color, textura, mientras que las mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este proceso, las propiedades físicas más críticas que se evalúan son la densidad y la absorción, las propiedades mecánicas son la estabilidad y el flujo (Reyes, 2011)	Para la evaluación de propiedades físicas y mecánicas del pavimento flexible se utilizará el método de Marshall el cual se destaca por analizar mezclas en caliente	D1: Propiedades Físicas	Absorción (%)	Razón

Ficha Nº 1: Para el Flujo

			FICHA DE RECOLECCIÓN DE DATOS							
PRO	YECTO						le coco en las propiedades del l de Ayabaca, Piura 2023.			
INDIC	CADOR	Flujo								
NO	RMA	ASTM E)-1559	-						
ALU	MNO	Colupu Abad Joel Franklin								
ENS	SAYO	Marsha	II (ASTIV	D-1559	- MTC E	504)				
	DOSIFICACIÓN		Flujo d	e cada B	riqueta					
DESCRIPCIÓN	CR+FC	B1	B2	В3	B4	B5	PROMEDIO DE FLUJO			
D1	0% + 0%									
D2	1% + 0.2%									
D3	3% + 0.4%									
D4	6% + 0.6%									
D5	9% + 0.8%									

	VALIDACIÓN DE INSTRUME	NTO POR JUICIO	D DE EXPERTOS	1
Νō	Nombres y Apellidos	CIP	SELLO Y FIRMA	NOTA
1	LAUL VONTAIO VONTURA GUERNO	132439	Æ.	46-50
2.	Cecita Avriota Moscoso	122210	Jay .	48.
3	LVIS REXNALDO ALARCO BUTIERREZ	170790	LUSREYNALOS	- 5ö

ALARCO GUTIERREZ INGENIERO CIVIL Reg. CIP. Nº 120290

Ficha Nº 2: Para la estabilidad

		C. C		FIC	HA DE RI	ECOLECCIÓ	ÓN DE DATOS	
		Caucho	en tro	zos reci	clado y	la fibra c	le coco en las propiedades de	
PRO	YECTO	pavime	nto flex	ible de v	ías urbai	nas, ciudad	d de Ayabaca, Piura 2023.	
INDIC	CADOR	Estabili	dad					
NO	RMA	ASTM [0-1559		-			
ALU	MNO	Colupu Abad Joel Franklin						
ENS	SAYO	Marsha	all (ASTN	1 D-1559	- MTC E	504)		
	DOSIFICACIÓN	Es	stabilida	d de cad	a Brique	ta		
DESCRIPCIÓN	CR+FC	B1	B2	В3	B4	B5	PROMEDIO DE FLUJO	
D1	0% + 0%							
D2	1% + 0.2%			,				
D3	3% + 0.4%						1000	
D4	6% + 0.6%							
D5	9% + 0.8%							

	VALIDACIÓN DE INSTRUME	NTO POR JUICIO	O DE EXPERTOS	
Иō	Nombres y Apellidos	CIP	SELLO Y FIRMA	NOTA
1	Low Verizio Vorguero Carriora	132439	No.	46-50
2	Palla Draiota Mossoso	122210	Acido.	48
3	LUIS REYNALDO ALARCO GUTIERREZ	170790	LVIS REXWALDO	-50
			ALARCO GUTJÉRREZ	,

INGENIERO CIVIL Reg. CIP. Nº 120290

Ficha Nº 3: Para la densidad

				FICI	HA DE RI	ECOLECCIÓ	ÓN DE DATOS			
PRO	уесто						le coco en las propiedades de l de Ayabaca, Piura 2023.			
INDIC	CADOR	Densida	ad							
NO	RMA	ASTM [ASTM D-1188							
ALU	MNO	Colupu Abad Joel Franklin								
ENS	SAYO	Marshall (ASTM D-1559- MTC E 504)								
	DOSIFICACIÓN		Flujo d	e cada B	riqueta					
DESCRIPCIÓN	CR+FC	B1	B2	В3	B4	B5	PROMEDIO DE FLUJO			
D1	0% + 0%									
D2	1% + 0.2%									
D3	3% + 0.4%			7						
D4	6% + 0.6%									
D5	9% + 0.8%									

	VALIDACIÓN DE INSTRUME	NTO POR JUICIO	DE EXPERTOS	1
Nō	Nombres y Apellidos	CIP	SELLO Y FIRMA	NOTA
1	Lour Versio Verrues Costerno	132439	1 de	46-50
2	Orcilia Amiora Mosioso	122210	Pay .	48
3	LUIS REXNALDO ALARCO GUTIERREZ	120790	160	50
			LUIS REYNALOO	

ALARCO GUTIÉRREZ INGENIERO CIVIL Reg. CIP. Nº 120290

Ficha Nº 4: Para la absorción

				=10				
							ÓN DE DATOS	
		Caucho	en tro	zos reci	clado y	la fibra d	de coco en las propiedades de	
PRO	YECTO	pavime	nto flex	ible de v	ías urbai	nas, ciudad	d de Ayabaca, Piura 2023.	
INDI	CADOR	Absorc			100000			
NO	RMA	ASTM [0-4469	CLASWING CO.				
ALU	MNO	Colupu Abad Joel Franklin						
ENS	SAYO	Marshall (ASTM D-1559- MTC E 504)						
	DOSIFICACIÓN		Flujo d	e cada B				
DESCRIPCIÓN	CR+FC	B1	B2	В3	B4	B5	PROMEDIO DE FLUJO	
D1	0% + 0%							
D2	1% + 0.2%							
D3	3% + 0.4%							
D4	6% + 0.6%							
D5	9% + 0.8%							

	VALIDACIÓN DE INSTRUME	NTO POR JUICIO	D DE EXPERTOS	
Νō	Nombres y Apellidos	CIP	SELLO Y FIRMA	NOTA
1	LOU VOLERIO VENTURO CAHURIA	132439	The state of the s	46-50
2	Cecilia Anriola Moscoso	122210	Hair .	48.
3	LUIS REYNALDO ALARCO GUTIERREZ	120290	IVIS REVOCATOR	50

ALARCO GUTIÉRREZ INGENIERO CIVIL Reg. CIP. Nº 120290

EVALUACIÓN POR JUICIO DE EXPERTOS

Respetado juez: Usted ha sido seleccionado para evaluar los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023". La evaluación de estos instrumentos es de gran relevancia para lograr que sean válidos y que los resultados obtenidos a partir de éstos sean utilizados eficientemente; aportando al quehacer ingenieril. Agradecemos su valiosa colaboración.

1. <u>Datos generales del juez</u>

Nombre del juez:	LOW VALERIO VENTURA CAHUANDA
Grado profesional:	Licenciatura () Maestría (χ) Doctorado ()
DNI:	10590566
CIP Nº:	132439
Áreas de experiencia profesional:	MECANION DE SUETEL - TOPOGRAFIA.
Institución donde labora (opcional):	UNIVERSIDAD CADOR VALLESO.
Tiempo de experiencia profesional en el área:	2 a 4 años () Más de 5 años (⋉ .)

2. Propósito de la evaluación:

Validar el contenido de los siguientes instrumentos, por juicio de expertos.

- FICHA DE REGISTRO DE DATOS PARA EL FLUJO EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 2. FICHA DE REGISTRO DE DATOS PARA LA ESTABILIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- FICHA DE REGISTRO DE DATOS PARA LA DENSIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 4. FICHA DE REGISTRO DE DATOS PARA LA ABSORCIÓN EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)

3. Datos de la escala

Nombre de la Prueba:	(F°1) Para el flujo
	(Fº2) Para la estabilidad
	(F°3) Para la densidad
	(F°4) Para la absorción
Autores:	Colupu Abad Joel Franklin
Procedencia:	Departamento de Ayabaca
Administración:	Colupu Abad Joel Franklin
Tiempo de aplicación:	2 meses
Ámbito de aplicación:	Mezclas bituminosas en caliente
Significación:	La presente escala está compuesta por las siguientes dimensiones: propiedades mecánicas (1) y propiedades físicas (2) del pavimento flexible. Estas a su vez se subdividen en indicadores, tales como Flujo y estabilidad (1); densidad y absorción (2). Respecto a la escala de medición, esta será de tipo "Razón". El objetivo de estas mediciones es poder determinar el beneficio de las mezclas bituminosas en el pavimento por medio de la interpretación de la variación de sus propiedades mecánicas y físicas.

4. Soporte teórico

Escala/ÁREA	Subescala (dimensiones)	Definición
Propiedades del pavimento flexible de vías	Propiedades mecánicas	Las propiedades mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este proceso, las propiedades físicas más críticas que se evalúan son la estabilidad y el flujo
flexible de vías urbanas	Propiedades Físicas	son las características visibles como color, textura, etc. En este proceso, las propiedades físicas más críticas que se evalúan son la densidad y la absorción

5. Presentación de instrucciones para el juez:

A continuación, se le presenta el cuestionario de evaluación de los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023" elaborado por Colupu Abad, Joel Franklin en el año 2023. De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda:

Categoría	Calificación	Indicador
	No cumple con el criterio	El ítem no es claro.
CLARIDAD El ítem se comprende fácilmente, es decir,	2. Bajo Nivel	El ítem requiere bastantes modificaciones o una modificación muy grande en el uso de las palabras de acuerdo con su significado o por la ordenación de estas.
su sintáctica y semántica son adecuadas.	3. Moderado nivel	Se requiere una modificación muy específica de algunos de los términos del ítem.
	4. Alto nivel	El ítem es claro, tiene semántica y sintaxis adecuada.
	totalmente en desacuerdo (no cumple con el criterio)	El ítem no tiene relación lógica con la dimensión.
COHERENCIA El ítem tiene relación lógica con la dimensión o indicador que está midiendo.	2. Desacuerdo (bajo nivel de acuerdo)	El ítem tiene una relación tangencial /lejana con la dimensión.
	3. Acuerdo (moderado nivel)	El ítem tiene una relación moderada con la dimensión que se está midiendo.
	4. Totalmente de Acuerdo (alto nivel)	El ítem se encuentra está relacionado con la dimensión que está midiendo.
BEI 51411014	No cumple con el criterio	El ítem puede ser eliminado sin que se vea afectada la medición de la dimensión.
RELEVANCIA El ítem es esencial o importante, es decir	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítem puede esta incluyendo lo que mide éste.
debe ser incluido.	3. Moderado nivel	El ítem es relativamente importante.
	4. Alto nivel	El ítem es muy relevante y debe ser incluido.

6. <u>Dimensiones del instrumento</u>

- Primera dimensión: Propiedades mecánicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	İtem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Flujo (mm)	Fº1	4	3	3	
Estabilidad (Lbs)	F°2	4	3	3	

- Segunda dimensión: Propiedades Físicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos

- Segunda dimensión: Propiedades Físicas,
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Densidad (g/cm³)	Fº3	4	3	3	
Absorción (%)	Fº4	H	3	3	

A continuación, califique la totalidad de los instrumentos evaluados:

1	2	3	4	5
Totalmente en desacuerdo	En desacuerdo	Indiferente	De acuerdo	Totalmente de acuerdo

INDICADORES	INDICADORES , CRITERIOS		VALORACIÓN				
INDIOADONEO			2	3	4	5	
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y específico.				1		
OBJETIVIDAD	Expresa el alcance del proyecto.					~	
ESTRUCTURA	Tiene un orden lógico el contenido.				1		
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos.				V		
INTENCIONALIDAD	Adecuado para valorar aspectos estratégicos planteados.				V		
CONSISTENCIA	Basado en aspectos teórico - científicos para identificar y determinar lo requerido por la investigación.				1		
COHERENCIA	El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias.				1		
METODOLOGIA	La estrategia a emplear responde a la evaluación in situ.					V	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.		2			v	
ACTUALIDAD	El instrumento refleja vigencia acorde con el conocimiento científico Tecnológico, innovación y legal de inherente a la variable estabilización de suelos.				/	1	

VALORACION TOTAL	

La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE VALORACION	0-20	21 – 35	36 - 45	46 - 50

La valoración obtenida fue de $\frac{43}{2}$ y está dentro del rango de valoración $\frac{46-50}{2}$ y su validación fue $\frac{16-50}{2}$ $\frac{16-50}{2}$

Firma del experto

CIP: 132439.

51

EVALUACIÓN POR JUÍCIO DE EXPERTOS

Respetado juez: Usted ha sido seleccionado para evaluar los instrumentos de la tesis títulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023". La evaluación de estos instrumentos es de gran relevancia para lograr que sean válidos y que los resultados obtenidos a partir de éstos sean utilizados eficientemente; aportando al quehacer ingenieril. Agradecemos su valiosa colaboración.

1. Datos generales del juez

Nombre del juez:	Cecilia Arriola Moscoso
Grado profesional:	Licenciatura () Maestría () Doctorado (X)
DNI:	43851809
CIP Nº:	122210
Áreas de experiencia profesional:	Ingenieña avil - Transportes
Institución donde labora (opcional):	ucv
Tiempo de experiencia profesional en el área:	2 a 4 años () Más de 5 años (💢)

2. Propósito de la evaluación:

Validar el contenido de los siguientes instrumentos, por juicio de expertos.

- FICHA DE REGISTRO DE DATOS PARA EL FLUJO EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 2. FICHA DE REGISTRO DE DATOS PARA LA ESTABILIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- FICHA DE REGISTRO DE DATOS PARA LA DENSIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- FICHA DE REGISTRO DE DATOS PARA LA ABSORCIÓN EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)

3. <u>Datos de la escala</u>

Nombre de la Prueba:	(F°1) Para el flujo
	(F°2) Para la estabilidad
	(F°3) Para la densidad
	(F°4) Para la absorción
Autores:	Colupu Abad Joel Franklin
Procedencia:	Departamento de Ayabaca
Administración:	Colupu Abad Joel Franklin
Tiempo de aplicación:	2 meses
Ámbito de aplicación:	Mezclas bituminosas en caliente
Significación:	La presente escala está compuesta por las siguientes dimensiones propiedades mecánicas (1) y propiedades físicas (2) del pavimento flexible. Estas a su vez se subdividen en indicadores, tales como Flujo y estabilidad (1); densidad y absorción (2). Respecto a la escala de medición, esta será de tipo "Razón". El objetivo de estas mediciones es poder determinar el beneficio de las mezclas bituminosas en e pavimento por medio de la interpretación de la variación de sus propiedades mecánicas y físicas.

4. Soporte teórico

Escala/ÁREA	Subescala (dimensiones)	Definición
Propiedades del pavimento flexible de vías	Propiedades mecánicas	Las propiedades mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este proceso, las propiedades físicas más críticas que se evalúan son la estabilidad y el flujo
urbanas	Propiedades Físicas	son las características visibles como color, textura, etc. En este proceso, las propiedades físicas más críticas que se evalúan son la densidad y la absorción

5. Presentación de instrucciones para el juez:

A continuación, se le presenta el cuestionario de evaluación de los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023" elaborado por Colupu Abad, Joel Franklin en el año 2023. De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda:

Categoría	Calificación	Indicador	
	No cumple con el criterio	El ítem no es claro.	
CLARIDAD El ítem se comprende fácilmente, es decir,	2. Bajo Nivel	El ítem requiere bastantes modificaciones o una modificación muy grande en el uso de las palabras de acuerdo con su significado o por la ordenación de estas.	
su sintáctica y semántica son adecuadas.	3. Moderado nivel	Se requiere una modificación muy específica de algunos de los términos del ítem.	
W. C.	4. Alto nivel	El ítem es claro, tiene semántica y sintaxis adecuada.	
COHERENCIA El ítem tiene relación lógica con la dimensión o indicador que está midiendo	totalmente en desacuerdo (no cumple con el criterio)	El ítem no tiene relación lógica con la dimensión.	
	Desacuerdo (bajo nivel de acuerdo)	El ítem tiene una relación tangencial /lejana con la dimensión.	
	3. Acuerdo (moderado nivel)	El ítem tiene una relación moderada con la dimensión que se está midiendo.	
maicrae.	4. Totalmente de Acuerdo (alto nivel)	El ítem se encuentra está relacionado con la dimensión que está midiendo.	
DEL (1) (4) (4)	No cumple con el criterio	El ítem puede ser eliminado sin que se vea afectada la medición de la dimensión.	
RELEVANCIA El ítem es esencial o importante, es decir	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítem puede esta incluyendo lo que mide éste.	
debe ser incluido.	3. Moderado nivel	El ítem es relativamente importante.	
	4. Alto nivel	El ítem es muy relevante y debe ser incluido.	

6. <u>Dimensiones del instrumento</u>

- Primera dimensión: Propiedades mecánicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Flujo (mm)	F°1	4	4	4	
Estabilidad (Lbs)	F°2	4	4	4	

- Segunda dimensión: Propiedades Físicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos

reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Densidad (g/cm³)	F°3	4	4 .	4	
Absorción (%)	F°4	4	4	4	

A continuación, califique la totalidad de los instrumentos evaluados:

1	2	3	4	5
Totalmente en desacuerdo	En desacuerdo	Indiferente	De acuerdo	Totalmente de acuerdo

INDICADORES	CRITERIOS		VALORACIÓN			
INDICADORES			2	3	4	5
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y especifico.					X
OBJETIVIDAD	Expresa el alcance del proyecto.					X
ESTRUCTURA	Tiene un orden lógico el contenido.					X
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos.					X
INTENCIONALIDAD	Adecuado para valorar aspectos estratégicos planteados.					X
CONSISTENCIA	Basado en aspectos teórico - científicos para identificar y determinar lo requerido por la investigación.					×
COHERENCIA El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias.					Ŋ	
METODOLOGIA	La estrategia a emplear responde a la evaluación in situ.				A	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.			2010000		X
ACTUALIDAD	El instrumento refleja vigencia acorde con el conocimiento científico Tecnológico, innovación y legal de inherente a la variable estabilización de suelos.					X

p		
	VALORACION TOTAL	1 48

La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE VALORACION	0-20	21 – 35	36 – 45	46 - 50

La valoración obtenida fue de $\underline{48}$ y está dentro del rango de valoración $\underline{46-50}$ su validación fue Excelente.

N° DNI: 43851809 N° CIP: 122210

EVALUACIÓN POR JÚICIO DE EXPERTOS

Respetado juez: Usted ha sido seleccionado para evaluar los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023". La evaluación de estos instrumentos es de gran relevancia para lograr que sean válidos y que los resultados obtenidos a partir de éstos sean utilizados eficientemente; aportando al quehacer ingenieril. Agradecemos su valiosa colaboración.

1. <u>Datos generales del juez</u>

Nombre del juez:	LUIS REXNALDO ALARCO GUTIERREZ
Grado profesional:	Licenciatura () Maestría (X) Doctorado ()
DNI:	43738493
CIP Nº:	120 290
Áreas de experiencia profesional:	SECTIN POLVADO (ESTRICTURAS)
Institución donde labora (opcional):	VCV
Tiempo de experiencia profesional en el área:	2 a 4 años () Más de 5 años ()

Propósito de la evaluación:

Validar el contenido de los siguientes instrumentos, por juicio de expertos.

- FICHA DE REGISTRO DE DATOS PARA EL FLUJO EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 2. FICHA DE REGISTRO DE DATOS PARA LA ESTABILIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 3. FICHA DE REGISTRO DE DATOS PARA LA DENSIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- FICHA DE REGISTRO DE DATOS PARA LA ABSORCIÓN EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)

3. <u>Datos de la escala</u>

	reconstruction of the second o
Nombre de la Prueba:	(F°1) Para el flujo
	(F°2) Para la estabilidad
	(F°3) Para la densidad
	(F°4) Para la absorción
Autores:	Colupu Abad Joel Franklin
Procedencia:	Departamento de Ayabaca
Administración:	Colupu Abad Joel Franklin
Tiempo de aplicación:	2 meses
Ámbito de aplicación:	Mezclas bituminosas en caliente
Significación:	La presente escala está compuesta por las siguientes dimensiones: propiedades mecánicas (1) y propiedades físicas (2) del pavimento flexible. Estas a su vez se subdividen en indicadores, tales como Flujo y estabilidad (1); densidad y absorción (2). Respecto a la escala de medición, esta será de tipo "Razón". El objetivo de estas mediciones es poder determinar el beneficio de las mezclas bituminosas en el pavimento por medio de la interpretación de la variación de sus propiedades mecánicas y físicas.

4. Soporte teórico

Escala/ÁREA	Subescala (dimensiones)	Definición
Propiedades del pavimento flexible de vías	Propiedades mecánicas	Las propiedades mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este proceso, las propiedades físicas más críticas que se evalúan son la estabilidad y el flujo
urbanas	Propiedades Físicas	son las características visibles como color, textura, etc. En este proceso, las propiedades físicas más críticas que se evalúan son la densidad y la absorción

5. Presentación de instrucciones para el juez:

A continuación, se le presenta el cuestionario de evaluación de los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023" elaborado por Colupu Abad, Joel Franklin en el año 2023. De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda:

Categoría	Calificación	Indicador	
	No cumple con el criterio	El ítem no es claro.	
CLARIDAD El ítem se comprende fácilmente, es decir,	2. Bajo Nivel	El ítem requiere bastantes modificaciones o una modificación muy grande en el uso de las palabras de acuerdo con su significado o por la ordenación de estas.	
su sintáctica y semántica son adecuadas.	3. Moderado nivel	Se requiere una modificación muy específica de algunos de los términos del ítem.	
	4. Alto nivel	El ítem es claro, tiene semántica y sintaxis adecuada.	
	totalmente en desacuerdo (no cumple con el criterio)	El ítem no tiene relación lógica con la dimensión.	
COHERENCIA El ítem tiene relación lógica con la dimensión o indicador que está midiendo.	2. Desacuerdo (bajo nivel de acuerdo)	El ítem tiene una relación tangencial /lejana con la dimensión.	
	3. Acuerdo (moderado nivel)	El ítem tiene una relación moderada con la dimensión que se está midiendo.	
	4. Totalmente de Acuerdo (alto nivel)	El ítem se encuentra está relacionado con la dimensión que está midiendo.	
RELEVANCIA	No cumple con el criterio	El ítem puede ser eliminado sin que se vea afectada la medición de la dimensión.	
El ítem es esencial o importante, es decir	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítem puede esta incluyendo lo que mide éste.	
debe ser incluido.	3. Moderado nivel	El ítem es relativamente importante.	
	4. Alto nivel	El ítem es muy relevante y debe ser incluido.	

6. <u>Dimensiones del instrumento</u>

- Primera dimensión: Propiedades mecánicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Flujo (mm)	F°1	4	4	4	
Estabilidad (Lbs)	F°2	4	4	4	

- Segunda dimensión: Propiedades Físicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos

reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

ndicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Densidad (g/cm³)	F°3	4	4	4	
Absorción (%)	F°4	4	4	4	

A continuación, califique la totalidad de los instrumentos evaluados:

1	2	3	4	5
Totalmente en desacuerdo	En desacuerdo	Indiferente	De acuerdo	Totalmente de

INDICADORES	CRITERIOS	1	/ALC	DRA	CIÓ	N
	CNILNOS	1	2	3	4	5
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y específico.					X
OBJETIVIDAD	Expresa el alcance del proyecto.					X
ESTRUCTURA	Tiene un orden lógico el contenido.					X
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos.					X
INTENCIONALIDAD	Adecuado para valorar aspectos estratégicos planteados.					¥
CONSISTENCIA	Basado en aspectos teórico - científicos para identificar y determinar lo requerido por la investigación.					X
COHERENCIA	El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias.					X
METODOLOGIA	La estrategia a emplear responde a la evaluación in situ.					V
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.			\Box		0
ACTUALIDAD	El instrumento refleja vigencia acorde con el conocimiento científico Tecnológico, innovación y legal de inherente a la variable estabilización de suelos.					X

	T
VALORACION TOTAL	

La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE VALORACION	0-20	21 – 35	36 - 45	46 - 50

La valoración obtenida fue de 50 y está dentro del rango de valoración 46-50 y su validación fue 6×600 10

LVIS REYNALSON ALARCO GUTIERREZ INGENIERO CIVIL Reg. CIP. N° 120290

Firma del experto

N° DNI: 43938793 N° CIP: 120298

EVALUACIÓN POR JUICIO DE EXPERTOS

Respetado juez: Usted ha sido seleccionado para evaluar los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023". La evaluación de estos instrumentos es de gran relevancia para lograr que sean válidos y que los resultados obtenidos a partir de éstos sean utilizados eficientemente; aportando al quehacer ingenieril. Agradecemos su valiosa colaboración.

1. Datos generales del juez

Nombre del juez:	Liñan Parejo Roman Segundo
Grado profesional:	Licenciatura (🔊) Maestría () Doctorado ()
DNI:	73801916
CIP Nº:	26 000 8
Áreas de experiencia profesional:	Educación
Institución donde labora (opcional):	UCV
Tiempo de experiencia profesional en el área:	2 a 4 años (×) Más de 5 años ()

2. Propósito de la evaluación:

Validar el contenido de los siguientes instrumentos, por juicio de expertos.

- FICHA DE REGISTRO DE DATOS PARA EL FLUJO EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 2. FICHA DE REGISTRO DE DATOS PARA LA ESTABILIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- FICHA DE REGISTRO DE DATOS PARA LA DENSIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 4. FICHA DE REGISTRO DE DATOS PARA LA ABSORCIÓN EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)

3. <u>Datos de la escala</u>

Nombre de la Prueba:	(F°1) Para el flujo
Nombre de la Flueba.	(F°2) Para la estabilidad
	(F°3) Para la densidad
***************************************	(F°4) Para la absorción
Autores:	Colupu Abad Joel Franklin
Procedencia:	Departamento de Ayabaca
Administración:	Colupu Abad Joel Franklin
Tiempo de aplicación:	2 meses
Ámbito de aplicación:	Mezclas bituminosas en caliente
Significación:	La presente escala está compuesta por las siguientes dimensiones propiedades mecánicas (1) y propiedades físicas (2) del paviment flexible. Estas a su vez se subdividen en indicadores, tales como Fluj y estabilidad (1); densidad y absorción (2). Respecto a la escala d medición, esta será de tipo "Razón". El objetivo de estas medicione es poder determinar el beneficio de las mezclas bituminosas en e pavimento por medio de la interpretación de la variación de su propiedades mecánicas y físicas.

4. Soporte teórico

Escala/ÁREA	Subescala (dimensiones)	Definición
Propiedades del pavimento flexible de vías	Propiedades mecánicas	Las propiedades mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este proceso, las propiedades físicas más críticas que se evalúan son la estabilidad y el flujo
urbanas	Propiedades Físicas	son las características visibles como color, textura, etc. En este proceso, las propiedades físicas más críticas que se evalúan son la densidad y la absorción

5. Presentación de instrucciones para el juez:

A continuación, se le presenta el cuestionario de evaluación de los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023" elaborado por Colupu Abad, Joel Franklin en el año 2023. De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda:

Categoría	Calificación	Indicador		
	No cumple con el criterio	El ítem no es claro.		
CLARIDAD El ítem se comprende fácilmente, es decir,	2. Bajo Nivel	El item requiere bastantes modificaciones o una modificación muy grande en el uso de las palabras de acuerdo con su significado o por la ordenación de estas.		
su sintáctica y semántica son adecuadas.	3. Moderado nivel	Se requiere una modificación muy específica de algun de los términos del ítem.		
2011, 96. 80097507.	4. Alto nivel	El ítem es claro, tiene semántica y sintaxis adecuada.		
COHERENCIA El item tiene relación lógica con la	totalmente en desacuerdo (no cumple con el criterio)	El ítem no tiene relación lógica con la dimensión.		
	Desacuerdo (bajo nivel de acuerdo)	El ítem tiene una relación tangencial /lejana con la dimensión.		
dimensión o indicador que está midiendo.	3. Acuerdo (moderado nivel)	El ítem tiene una relación moderada con la dimensión que se está midiendo.		
machab.	4. Totalmente de Acuerdo (alto nivel)	El ítem se encuentra está relacionado con la dimensión que está midiendo.		
	No cumple con el criterio	El ítem puede ser eliminado sin que se vea afectada la medición de la dimensión.		
RELEVANCIA El ítem es esencial o importante, es decir	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítem puede esta incluyendo lo que mide éste.		
debe ser incluido.	3. Moderado nivel	El item es relativamente importante.		
	4. Alto nivel	El ítem es muy relevante y debe ser incluido.		

6. <u>Dimensiones del instrumento</u>

- Primera dimensión: Propiedades mecánicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Flujo (mm)	F°1	4	4	4	
Estabilidad (Lbs)	F°2	4	4	4	

- Segunda dimensión: Propiedades Físicas
- Objetivos de la Dimensión: Evaluar el impacto de la incorporación de caucho en trozos

reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Densidad (g/cm³)	F°3	4	4	4	
Absorción (%)	F°4	4	4	4	

A continuación, califique la totalidad de los instrumentos evaluados:

1	2	3	4	5
Totalmente en desacuerdo	En desacuerdo	Indiferente	De acuerdo	Totalmente de

INDICADORES	CRITERIOS	VALORACIÓN					
INDIOADORES	CRITERIOS			3	4	5	
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y especifico.					X	
OBJETIVIDAD	Expresa el alcance del proyecto.					X'	
ESTRUCTURA	Tiene un orden lógico el contenido.					X	
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la torna o registro de datos.					X	
INTENCIONALIDAD	Adecuado para valorar aspectos estratégicos planteados.					V	
CONSISTENCIA	Basado en aspectos teórico - científicos para identificar y determinar lo requerido por la investigación.					X	
COHERENCIA	El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias.			-		X	
METODOLOGIA	La estrategia a emplear responde a la evaluación in situ.					Y	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					X	
ACTUALIDAD	El instrumento refleja vigencia acorde con el conocimiento científico Tecnológico, innovación y legal de inherente a la variable estabilización de suelos.					X	

	 _
VALORACION TOTAL	

La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE VALORACION	0-20	21 – 35	36 - 45	46 - 50

> ROMAN SEGUNDO LIÑAN PAREJA Ingeniero Civil CIP N° 260008 Firma del experto

N° DNI: 7380/916 N° CIP: 260008

EVALUACIÓN POR JUICIO DE EXPERTOS

Respetado juez: Usted ha sido seleccionado para evaluar los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023". La evaluación de estos instrumentos es de gran relevancia para lograr que sean válidos y que los resultados obtenidos a partir de éstos sean utilizados eficientemente; aportando al quehacer ingenieril. Agradecemos su valiosa colaboración.

1. <u>Datos generales del juez</u>

Nombre del juez:	GARCIA ALVAREZ MARIA YSABEL
Grado profesional:	Licenciatura () Maestría () Doctorado (X)
DNI:	21453567
CIP Nº:	45905
Áreas de experiencia profesional:	PROYECTISTA, DOCENCIA UNIVERSITARIA
Institución donde labora (opcional):	UNIVERSIDAD CÉSAR VALLEJO
Tiempo de experiencia profesional en el área:	2 a 4 años () Más de 5 años (X)

2. Propósito de la evaluación:

Validar el contenido de los siguientes instrumentos, por juicio de expertos.

- 1. FICHA DE REGISTRO DE DATOS PARA EL FLUJO EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 2. FICHA DE REGISTRO DE DATOS PARA LA ESTABILIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 3. FICHA DE REGISTRO DE DATOS PARA LA DENSIDAD EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)
- 4. FICHA DE REGISTRO DE DATOS PARA LA ABSORCIÓN EMPLEANDO EL ENSAYO MARSHALL (ASTM D-1559- MTC E 504)

3. <u>Datos de la escala</u>

Nombre de la Prueba:	(Fº1) Para el flujo
rionibro do la Fractia.	(Fº2) Para la estabilidad
	(Fº3) Para la densidad
	(Fº4) Para la absorción
Autores:	Colupu Abad Joel Franklin
Procedencia:	Departamento de Ayabaca
Administración:	Colupu Abad Joel Franklin
Tiempo de aplicación:	2 meses
Ámbito de aplicación:	Mezclas bituminosas en caliente
Significación:	La presente escala está compuesta por las siguientes dimensiones: propiedades mecánicas (1) y propiedades físicas (2) del pavimento flexible. Estas a su vez se subdividen en indicadores, tales como Flujo y estabilidad (1); densidad y absorción (2). Respecto a la escala de medición, esta será de tipo "Razón". El objetivo de estas mediciones es poder determinar el beneficio de las mezclas bituminosas en el pavimento por medio de la interpretación de la variación de sus propiedades mecánicas y físicas.

4. Soporte teórico

Escala/ÁREA	Subescala (dimensiones)	Definición
Propiedades del pavimento flexible de vías	Propiedades mecánicas	Las propiedades mecánicas se refieren al comportamiento y resistencia del pavimento bajo cargas y deformaciones. En este proceso, las propiedades físicas más críticas que se evalúan son la estabilidad y el flujo
urbanas	Propiedades Físicas	son las características visibles como color, textura, etc. En este proceso, las propiedades físicas más críticas que se evalúan son la densidad y la absorción

5. <u>Presentación de instrucciones para el juez:</u>

A continuación, se le presenta el cuestionario de evaluación de los instrumentos de la tesis titulada "Caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas, ciudad de Ayabaca, Piura 2023" elaborado por Colupu Abad, Joel Franklin en el año 2023. De acuerdo con los siguientes indicadores califique cada uno de los ítems según corresponda:

Categoría	Calificación	Indicador
	1. No cumple con el criterio	El ítem no es claro.
CLARIDAD El ítem se comprende fácilmente, es decir, su sintáctica y semántica son adecuadas.	2. Bajo Nivel	El ítem requiere bastantes modificaciones o una modificación muy grande en el uso de las palabras de acuerdo con su significado o por la ordenación de estas.
	3. Moderado nivel	Se requiere una modificación muy específica de algunos de los términos del ítem.
	4. Alto nivel	El ítem es claro, tiene semántica y sintaxis adecuada.
	totalmente en desacuerdo (no cumple con el criterio)	El ítem no tiene relación lógica con la dimensión.
COHERENCIA El ítem tiene relación lógica con la	2. Desacuerdo (bajo nivel de acuerdo)	El ítem tiene una relación tangencial /lejana con la dimensión.
dimensión o indicador que está midiendo.	3. Acuerdo (moderado nivel)	El ítem tiene una relación moderada con la dimensión que se está midiendo.
maiorido.	4. Totalmente de Acuerdo (alto nivel)	El ítem se encuentra está relacionado con la dimensión que está midiendo.
	1. No cumple con el criterio	El ítem puede ser eliminado sin que se vea afectada la medición de la dimensión.
RELEVANCIA El ítem es esencial o importante, es decir	2. Bajo Nivel	El ítem tiene alguna relevancia, pero otro ítem puede estar incluyendo lo que mide éste.
debe ser incluido.	3. Moderado nivel	El ítem es relativamente importante.
	4. Alto nivel	El ítem es muy relevante y debe ser incluido.

6. <u>Dimensiones del instrumento</u>

- Primera dimensión: Propiedades mecánicas
- **Objetivos de la Dimensión:** Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Flujo (mm)	Fº1	4	4	4	Sin observaciones
Estabilidad (Lbs)	Fº2	4	4	4	Sin observaciones

- Segunda dimensión: Propiedades Físicas
- **Objetivos de la Dimensión:** Evaluar el impacto de la incorporación de caucho en trozos reciclado y la fibra de coco en las propiedades del pavimento flexible de vías urbanas.

Indicadores	Ítem	Claridad	Coherencia	Relevancia	Observaciones/ Recomendaciones
Densidad (g/cm³)	Fº3	4	4	4	Sin observaciones
Absorción (%)	Fº4	4	4	4	Sin observaciones

A continuación, califique la totalidad de los instrumentos evaluados:

1	2	3	4	5
Totalmente en	En desacuerdo	Indiferente	De acuerdo	Totalmente de
desacuerdo				acuerdo

INDICADORES	CRITERIOS		VALORACIÓN				
INDICADORES	CRITERIOS	1	2	3	4	5	
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y especifico.					Х	
OBJETIVIDAD	Expresa el alcance del proyecto.					Х	
ESTRUCTURA	Tiene un orden lógico el contenido.					Х	
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos.					Х	
INTENCIONALIDAD	Adecuado para valorar aspectos estratégicos planteados.					Х	
CONSISTENCIA	Basado en aspectos teórico - científicos para identificar y determinar lo requerido por la investigación.					Х	
COHERENCIA	El instrumento en juicio relaciona la variable de estudio con sus respectivos indicadores, unidades e incidencias.					Х	
METODOLOGIA	La estrategia a emplear responde a la evaluación in situ.					Χ	
PERTINENCIA	La redacción de los ítems concuerda con la escala valorativa del instrumento.					Х	
ACTUALIDAD	El instrumento refleja vigencia acorde con el conocimiento científico Tecnológico, innovación y legal de inherente a la variable estabilización de suelos.					Х	

VALORACION TOTAL	50	
------------------	----	--

La validación se realiza en función a la valoración total obtenida:

VALIDACION	DEFICIENTE	REGULAR	BUENO	EXCELENTE
RANGO DE VALORACION	0 – 20	21 – 35	36 – 45	46 – 50

La valoración obtenida fue de 50 y está dentro del rango de valoración 46-50 y su validación

fue EXCELENTE

Firma del experto

N° DNI: 21453567

N° CIP: 45905

ANEXO 7

Validación de instrumentos

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016

Certificado de Calibración

TC - 24536 - 2023

Proforma : 25560A Fecha de emisión : 2023-12-21

Solicitante : HISGEOLAB S.A.C.

Dirección : Av. Chimpu Ocllo 155. Urb. Santa Isabel Carabayllo

Instrumento de medición : Balanza : Electrónica : OHAUS Marca : R31P30 Modelo : 8335460393 N° de Serie Capacidad Máxima : 30000 g Resolución 10 g División de Verificación 10 g Clase de Exactitud Ш Capacidad Mínima 200 g Procedencia Identificación No indica

Ubicación : LABORATORIO DE SUELOS Variación de ΔT Local : 7 °C

Fecha de Calibración : 2023-12-21

Lugar de calibración

Instalaciones de HISGEOLAB S.A.C.

Método de calibración

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-001 "Procedimiento para la Calibración de Instrumentos de Pesaje de Funcionamiento No Automático Clase III y IIII". Primera Edición - Mayo 2019. DM - INACAL. TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienta al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el item sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

PGC-16-r09/Diciembre 2019/Rev.05

Página : 1 de 3

Jr. Condesa de Lemos Nº117 San Miguel, Lima

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016

Certificado de Calibración TC - 24536 - 2023

Trazabilidad

Trazabilidad	Patrón de trabajo	Certificado de calibración
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 100 mg a 1 kg Clase de Exactitud M2	TC-03039-2023 Abril 2023
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 2 kg Clase de Exactitud M2	TC-08248-2023 Abril 2023
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 5 kg Clase de Exactitud M2	TC-08249-2023 Abril 2023
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 10 kg Clase de Exactitud M2	TC-08250-2023 Abril 2023
Patrones de Referencia de TEST & CONTROL	Juego de Pesas 20 kg Clase de Exactitud M2	TC-08151-2023 Abril 2023

RESULTADOS DE MEDICIÓN Inspección visual

Ajuste de Cero	Tiene
Oscilación Libre	Tiene
Plataforma	Tiene
Sistema de Traba	No Tiene

Escala	No Tiene
Cursor	No Tiene
Nivelación	Tiene

Ensayo de repetibilidad

Magnitud	Inicial	Final
Temperatura	22,0 °C	21,9 °C
Humedad Relativa	66 %	65 %

Medición	Carga	I	ΔL	E
N°	(g)	(g)	(g)	(g)
1		15 000,00	6,00	-1,00
2		15 000,00	6,00	-1,00
3	15000	15 000,00	7,00	-2,00
4		15 000,00	6,00	-1,00
5		15 000,00	7,00	-2,00
6		15 000,00	6,00	-1,00
7		15 000,00	7,00	-2,00
8		15 000,00	7,00	-2,00
9		15 000,00	6,00	-1,00
10		15 000,00	4,00	1,00
Emax - Emin (g)		3,00		
e.m.p. ± (g)		20		

Medición	Carga	I	ΔL	E
N°	(g)	(g)	(g)	(g)
1		30 000,00	4,00	1,00
2		30 000,00	3,00	2,00
3	30000	30 000,00	6,00	-1,00
4		30 000,00	4,00	1,00
5		30 000,00	3,00	2,00
6		30 000,00	6,00	-1,00
7		30 000,00	6,00	-1,00
8		30 000,00	4,00	1,00
9		30 000,00	6,00	-1,00
10		30 000,00	4,00	1,00
Emax - Emin (g)		3,	00	
e.m.p. ± (g)		30		

PGC-16-r09/Diciembre 2019/Rev.05

Jr. Condesa de Lemos Nº117
 San Miguel, Lima

(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe
www.testcontrol.com.pe

Página : 2 de 3

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO PERUANO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC - 016

Certificado de Calibración TC - 24536 - 2023

Ensayo de excentricidad

Magnitud	Inicial	Final
Temperatura	21,9 °C	21,9 °C
Humedad Relativa	65 %	65 %

		Determina	ción de Eo		D	Determinación del Error Corregido Ec				
Ν°	Carga	I	ΔL	Eo	Carga		ΔL	E	Ec	e.m.p.
	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	±(g)
1		10,00	8,00	-3,00		10 000,00	6,00	-1,00	2,00	
2		10,00	9,00	-4,00		10 000,00	7,00	-2,00	2,00	
3	10	10,00	8,00	-3,00	10000	10 000,00	7,00	-2,00	1,00	20
4		10,00	7,00	-2,00		10 000,00	6,00	-1,00	1,00	
5		10,00	8,00	-3,00		10 000,00	7,00	-2,00	1,00	

Ensayo de pesaje

Magnitud	Inicial	Final
Temperatura	21,9 °C	21,8 °C
Humedad Relativa	65 %	65 %

Carga	Carga Creciente			Carga Decreciente					
Carga	ı	ΔL	E	Ec	-	ΔL	E	Ec	e.m.p.
(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	±(g)
10,00	10,00	9,00	-4,00						
200,00	200,00	8,00	-3,00	1,00	200,00	9,00	-4,00	0,00	10
500,00	500,00	7,00	-2,00	2,00	500,00	8,00	-3,00	1,00	10
2 000,01	2 000,00	6,00	-1,01	2,99	2 000,00	7,00	-2,01	1,99	10
6 000,17	6 000,00	8,00	-3,17	0,83	6 000,00	8,00	-3,17	0,83	20
8 000,18	8 000,00	7,00	-2,18	1,82	8 000,00	7,00	-2,18	1,82	20
10 000,50	10 000,00	6,00	-1,50	2,50	10 000,00	7,00	-2,50	1,50	20
15 000,66	15 000,00	4,00	0,34	4,34	15 000,00	6,00	-1,66	2,34	20
20 000,80	20 000,00	3,00	1,20	5,20	20 000,00	9,00	-4,80	-0,80	20
25 000,96	25 000,00	4,00	0,04	4,04	25 000,00	6,00	-1,96	2,04	30
30 001,30	30 000,00	4,00	-0,30	3,70	30 000,00	9,00	-5,30	-1,30	30

Donde:

I : Indicación de la balanza ΔL : Carga incrementada Eo : Error en cero e.m.p. : Error máximo permitido E : Error encontrado Ec : Error corregido

Lectura corregida e incertidumbre de la balanza

Lectura Corregida = $R - 2.01 \times 10^{-4} \times R$ Incertidumbre Expandida = $2 \times \sqrt{2.13 \times 10^{+1} \text{ g}^2 + 2.45 \times 10^{-9} \times R^2}$

Observacione:

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. La indicación de la balanza fue de 29 995,00 g para una carga de valor nominal 30000 g.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Fin del documento

PGC-16-r09/Diciembre 2019/Rev.05

Página : 3 de 3

Jr. Condesa de Lemos Nº117
 San Miguel, Lima

(01) 262 9536 (51) 988 901 065 informes@testcontrol.com.pe
www.testcontrol.com.pe

Certificado de Calibración TC - 24539 - 2023

Proforma : 25560A Fecha de emisión: 2023-12-21

Solicitante : HISGEOLAB S.A.C.

: Av. Chimpu Ocllo 155. Urb. Santa Isabel Carabayllo

: Balanza Instrumento de medición : Electrónica Tipo Marca : OHAUS : PR4202 / E Modelo : C117636428 N° de Serie : 4200 g Capacidad Máxima Resolución : 0.01 a División de Verificación : 0,1 g Clase de Exactitud : 11 Capacidad Minima : 0,5 g : CHINA Procedencia Identificación : ING-EG-070

Ubicación : LABORATORIO DE SUELOS

Variación de AT Local : 4 °C Fecha de Calibración 2023-12-21

Lugar de calibración

Instalaciones de HISGEOLAB S.A.C.

Método de calibración

La calibración se realizó por comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones según procedimiento PC-011 "Procedimiento para la Calibración de Balanzas de Funcionamiento No Automático Clase I y II". Cuarta Edición - Abril 2010. SNM -INDECOPI.

TEST & CONTROL S.A.C. es un Laboratorio de Calibración Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lie. Nicolás Ramos Paucar Gerente Técnico

PGC-16-r08/ Diciembre 2019/Rev.04

Página : 1 de 3

Jr. Condesa de Lemos Nº 117 San Miguel - Lima 🚯 (01) 2629545 📵 990089889 📵 Informes@testcontrol.com.pe

Trazabilidad

Trazabilidad	Patrón de trabajo	Certificado de calibración
Patrones de Referencia de KOSSOMET	Juego de Pesas 1 mg a 1 kg Clase de Exactitud F1	PE23-C-0191 Marzo 2023
Patrones de Referencia de DM-INACAL	Juego de Pesas 1 kg a 5 kg Clase de Exactitud F1	LM-C-026-2023 Enero 2023

RESULTADOS DE MEDICIÓN

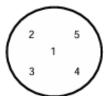
Inspección visual

Ajuste de Cero	Tiene
Oscilación Libre	Tiene
Plataforma	Tiene
Sistema de Traba	No Tiene

Escala	No Tiene
Cursor	No Tiene
Nivelación	Tiene

Ensayo de repetibilidad

Magnitud	Inicial	Final
Temperatura	22,0 °C	21,9 °C
Humedad Relativa	65 %	64 %


Medición	Carga	I	ΔL	E
N°	(g)	(g)	(mg)	(mg)
1		2 100,00	8	-3
2		2 100,00	7	-2
3		2 100,00	7	-2
4		2 100,00	8	-3
5	2 100,000	2 100,00	7	-2
6	2 100,000	2 100,00	6	-1
7		2 100,00	7	-2
8		2 100,00	8	-3
9		2 100,00	7	-2
10		2 100,00	6	-1
Em	áx - Emín		2	
error máx	cimo permit	ido (±mg)	30	00

Medición	Carga	I	ΔL	E	
N°	(g)	(g)	(mg)	(mg)	
1		4 200,01	6	9	
2		4 200,00	7	-2	
3		4 200,00	8	-3	
4	4 200,000	4 200,01	8	7	
5		4 200,01	7	8	
6		4 200,00	6	-1	
7		4 200,00	7	-2	
8		4 200,00	8	-3	
9		4 200,00	7	-2	
10		4 200,00	8	-3	
Em	áx - Emín (1	2		
error máx	cimo permiti	do (±mg)	30	00	

PGC-16-r08/ Diciembre 2019/Rev.04

Jr. Condesa de Lemos Nº 117 San Miguel - Lima (0) (01) 2629545 (1) 990089889 (2) informes@testcontrol.com.pu Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Página : 2 de 3

Ensayo de excentricidad

Magnitud	Inicial	Final
Temperatura	21,9 °C	22,1 °C
Humedad Relativa	64 %	65 %

_										
N.	Determinación de Error Eo				1	Determinación de Error Corregido Ec				e.m.p.
IN.	Carga (g)	I (g)	∆L (mg)	Eo (mg)	Carga (g)	I (g)	∆L (mg)	E (mg)	Ec (mg)	(±mg)
1		1,00	9	-4		1 400,00	8	-3	1	
2	I	1,00	8	-3]	1 399,99	7	-12	-9	
3	1,000	1,00	9	-4	1 400,000	1 400,00	6	-1	3	200
4	1	1,00	8	-3	1	1 400,00	7	-2	1	
5	1	1,00	9	-4	1	1 399,99	6	-11	-7	

Ensayo de pesaje

Magnitud	Inicial	Final
Temperatura	22,1 °C	22,0 °C
Humedad Relativa	65 %	65 %

Carga		Creci	entes			Decreo	cientes		e.m.p.
(g)	I (g)	ΔL (mg)	E (mg)	Ec (mg)	I (g)	∆L (mg)	E (mg)	Ec (mg)	(±mg)
0,100	0,10	9	-4						
0,500	0,50	8	-3	1	0,50	9	-4	0	100
100,000	100,00	7	-2	2	100,00	8	-3	1	100
500,001	500,00	8	-3	1	500,00	7	-2	2	100
840,001	840,00	7	-3	1	840,00	8	-4	0	200
1 000,001	1 000,00	6	-2	2	1 000,00	6	-2	2	200
1 500,002	1 500,00	7	-4	1	1 500,00	7	-4	1	200
2 000,004	2 000,00	7	-6	-2	2 000,00	6	-5	-1	200
2 500,004	2 500,00	6	-5	-1	2 500,00	7	-6	-2	300
3 000,005	3 000,00	4	-4	0	3 000,00	4	-4	0	300
4 200,001	4 200,01	4	10	14	4 200,01	4	10	14	300

Donde:

Lectura corregida e incertidumbre de la balanza

Lectura Corregida : $R_{corregida}$ = $R - 8.23 \times 10^{-7} \times R$ Incertidumbre Expandida : U_R = $2 \times \sqrt{2,62 \times 10^{-3} \text{ g}^2 + 1,21 \times 10^{-9} \times R^2}$

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado. La indicación de la balanza fue de 4 199,82 g para una carga de valor nominal 4200 g.

Incertidumbre

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

Fin del documento

PGC-16-r08/ Diciembre 2019/Rev.04

Jr. Condesa de Lemos Nº 117 San Miguel - Lima (§ (01) 2629545 (1) 990089889 (2) informes@testcontrol.com.pe
Empresa con responsabilidad social, acercando la ciencia a los que comparten nuestra pasión por la metrología.

Página : 3 de 3

Certificado de Calibración

TC - 24631 - 2023

PROFORMA : 25560A Fecha de emisión: 2023-12-21 Página : 1 de 2

SOLICITANTE : HISGEOLAB S.A.C.

DIRECCIÓN : Av. Chimpu Ocilo 155. Urb. Santa Isabel Carabayllo

INSTRUMENTO DE MEDICIÓN: COPA CASAGRANDE

 Marca
 : PINZUAR

 Modelo
 : PS11

 N° de Serie
 : 1983

 Procedencia
 : COLOMBIA

 N° de Parte
 : NO INDICA

 Identificación
 : NO INDICA

 Ubicación
 : Laboratorio de suelos

Fecha de Calibración : 2023-12-21

LUGAR DE CALIBRACIÓN

Instalaciones de HISGEOLAB S.A.C.

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa utilizando patrones calibrados y trazables al sistema internacional de medida, tomando como referencia la norma MTCE 110 - 2000 en base a ASTM-D4318.

CONDICIONES AMBIENTALES

Magnitud	Inicial	Final
Temperatura	24,1 °C	24,3 °C
Humedad Relativa	64,0 %	65,0 %

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de

nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades (SI).

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados.

Los resultados son válidos solamente para el Item sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolás Ramos Paucar Gerente Técnico CFP: 0316

O

Av. Simón Bolivar 1631 Pueblo Libre - Lima

informes@testcontrol.com.pe

Certificado : TC - 24631 - 2023 Página : 2 de 2

TRAZABILIDAD

Patrón de Referencia	Patrón de Trabajo	Certificado de Calibración
Bloque patrón de longitud Grado 0 DM - INACAL	Pie de Rey 0 mm a 300 mm	TC - 21586 - 2022
Läser estabilizado de He-Ne 633 nm Con incertidumbre del ordende 0,08 µm.	REGLA 0mm a 1000 mm	LLA-034-2023

RESULTADOS DE MEDICIÓN

					Dimensiones		
	Descripción		Valor Nominal (mm)	Valor Medido (mm)	Error (mm)	Tolerancia (mm)	Incertidumbre (mm)
	Radio de la copa	А	54	54,12	0,12	0,5	0,02
сора	Espesor de la copa	В	2	2,01	0,01	0,1	0,02
,	Profundidad de la copa	С	27	27,24	0,24	0,5	0,02
	Copa desde la guía del elevador hasta la base	U	47	47,19	0,19	1	0,02
BASE	Espesor de la copa	к	50	51,35	1,35	2	0,02
ВА	Largo	L	150	149,51	-0,49	2	0,02
	Ancho	М	125	125,31	0,31	2	0,02

Elemento / Característica	Especificación	Tolerancia	Promedio Obtenido	Estado	Conclusión
Base de Goma (rebote por resilencia)	Según norma ASTM-D4318 Min. 7,7 in y Máx. 9 in	N.A	8,4 in	conforme	Se acepta

OBSERVACIONES

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

INCERTIDUMBRE

La incertidumbre expandida que resulta de multiplicar la incertidumbre típica combinada por el factor de cobertura k-2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

FIN DEL DOCUMENTO

Av. Simón Bolivar 1631 Pueblo Libre - Lima

990089889 informes@testcontrol.com.pe

Certificado de calibración

TC - 24636 - 2023

Proforma : 25560A Fecha de emisión : 2023-12-21 Página : 1 de 2

Solicitante : HISGEOLAB S.A.C.

Dirección : Av. Chimpu Ocllo 155. Urb. Santa Isabel Carabayllo

Instrumento de medición : Máquina de abrasión Los Ángeles

 Marca
 : METROTEST

 Modelo
 : MC-152

 N° de Serie
 : 112

 Identificación
 : NO INDICA

 Procedencia
 : NO INDICA

Ubicación : LABORATORIO DE SUELOS

Fecha de Calibración : 2023-12-21

Lugar de calibración

Instalaciones de HISGEOLAB S.A.C.

Método de calibración

La calibración se realizó tomando como referencia la norma ASTM C 535-16: "Método de Ensayo Normalizado para la resistencia a la degradación de los áridos gruesos de tamaño pequeño por el método de abrasión e impacto en la Máquina de Los Ángeles".

Condiciones ambientales

Magnitud	Inicial	Final
Temperatura	24,7 °C	25 °C
Humedad relativa	66,2% HR	65,2% HR

TEST & CONTROL S.A.C. es un Laboratorio de Calibración y Certificación de equipos de medición basado a la Norma Técnica Peruana ISO/IEC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estándares de calidad, garantizando la satisfacción de nuestros clientes.

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, de acuerdo con el Sistema Internacional de Unidades Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados de acuerdo al uso.

Los resultados son válidos solamente para el item sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello.

Lic. Nicolas Ramos Paucar Gerente Técnico. CFP :0316

Av. Simón Bolivar 1631 Pueblo Libre - Lima

informes@testcontrol.com.pe

Certificado : TC - 24636 - 2023 Página : 2 de 2

Trazabilidad

Patrón de Referencia	Patrón de Trabajo	Certificado de calibración
Generador de Formas de Onda DM-INACAL	Tacómetro Exactitud 0,01 % Lectura	LTF-C-106-2023
Bloques Patrón Grado 0 TEST & CONTROL	Pie de Rey 0,01 mm	TC-21586-2022
Låser estabilizado de He-Ne 633 nm Con incertidumbre del orden de 0,08 µm.	REGLA 0mm a 1000 mm	LLA-034-2023
Pesas E2 TEST & CONTROL	Balanza Clase I 510 g	TC-06543-2023

RESULTADOS DE MEDICIÓN

Dimensiones de la máquina de abrasión Los Ángeles

	Valor Nominal (mm)	Patrón (mm)	Correción (mm)	Incertidumbre (mm)
Diámetro interno	711,00	710,67	-0,33	0,02
Profundidad	508,00	508,67	0,67	0,02

Velocidad angular de la máquina de abrasión Los Ángeles

	Rango Permitido (rpm)		Patrón (rpm)	Incertidumbre (rpm)	
	Minimo	Máximo			
Velocidad	31	33	32,88	0,10	

Dimensiones de las esferas

Identificación	Masa (q)	Incertidumbre (q)	Diámetro (mm)	Incertidumbre (mm)
1	410,08	0,15	46,42	0,01
2	409,44	0,15	46,42	0,01
3	409,38	0,15	46,43	0,01
4	409,37	0,15	46,42	0,01
5	409,85	0,15	46,44	0,01
6	409,64	0,15	46,44	0,01
7	409,38	0,15	46,44	0,01
8	406,90	0,15	46,32	0,01
9	406,36	0,15	46,32	0,01
10	410,61	0,15	46,47	0,01
11	406,46	0,15	46,31	0,01
12	409,81	0,15	46,45	0,01

Máxima incertidumbre (peso) = 1g, máxima incertidumbre (diámetro) = 0,02mm

Observaciones

Con fines de identificación de la calibración se colocó una etiqueta autoadhesiva con el número de certificado.

Incertidumbre

La incertidumbre expandida de medida se ha obtenido multiplicando la incertidumbre típica de medición por el factor de cobertura k=2 que, para una distribución normal, corresponde a una probabilidad de cobertura de aproximadamente el 95%.

O Av. Simón Bolivar 1631 Pueblo Libre - Lima

990089889

informes@testcontrol.com.pe

CERTIFICADO DE CALIBRACIÓN

TC - 24527 - 2023

PROFORMA : 25560B Fecha de emisión: 2023 - 12 - 23

SOLICITANTE: HIS GEOLAB S.A.C

Dirección Av. Chimpu Ocllo 155. Urb. Santa Isabel Carabayllo

INSTRUMENTO DE MEDICIÓN BAÑO TERMOSTÁTICO

METROTEST Marca Modelo No indica

N°de serie 43- 1L12NB11BR BAWAS

Líquido termostático Agua destilada

Muestra Briqueta de asfalto PERU.

Procedencia 146 Identificación

2023 - 12 - 23 Fecha de Calibración LABORATORIO Ubicación

TEST & CONTROL S.A.C. es un Laborator1o de Calibración y Certificación de equipo de medición basados a la Norma Técnica Peruana ISO/I EC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estandares de calidad garantizando la satisfación de

nuestros clientes.

Este certificado da calibración documenta la Trazabilidad a los Patrones Nacionales hternacionales de acuerdo con el Sistema Internacional de Unidades

(SI)

LUGAR DE CALIBRACIÓN Instálaciones de INGEPAV INGENIEROS S.A.C

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar instrumentos a intervalos apropiados

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa con nuestra termómetro patrón según Procedimiento PC - 019 "Procedimiento de calibración para baños termostáticos" Primera Edición Abril 2009 SNM - INDECOPI

CONDICIONES AMBIENTALES

Magnitud	Inicial	Final
Temperatura	25,1 °C	24,9 °C
Humedad Relativa	50,5 %	47,4 %

Los resultados son válidos solamente para el ítem sometido a calibración, no deben ser utilizados como una certficación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento

El presente documento carece de valor sin firma y sello

CERTIFICADO DE CALIBRACIÓN

TC - 24269 - 2023

PROFORMA : 25550A Fecha de emisión : 2023 - 12 - 23

SOLICITANTE: HIS GEOLAB S.A.C.

Dirección Av. Chimpu Ocllo 155. Urb. Santa Isabel Carabayllo

 EQUIPO
 HORNO

 Marca
 METROTEST

 Modelo
 No indica

 N' de serie
 No indica

 Tipo de Ventilación
 Natural

 Procedencia
 PERUANA

 Identificación
 325

INSTRUMENTO DE MEDICIÓN TERMÓMETRO DIGITAL

AUTCOMP Marca Alcance No indica 0.1 °C Resolución TIPO DE CONTROLADOR DIGITAL AUTCOMP Marca Alcance No Indica Resolución 0.1°C 2023 - 12 - 23 Fecha de Calibración LABORATORIO Ulficación.

LUGAR DE CALIBRACIÓN Instálaciones de INGEPAV INGENIEROS S.A.C

MÉTODO DE CALIBRACIÓN

La calibración s realizó por comparación directa con el sistema de medición de temperatura patrón según procedimiento PC- 010 "Procedimiento de calibración o caracterización de medios isotermos con aire como medio termostático". Segunda Edición Junio 2009. SNM • INDECOPL.

CONDICIONES AMBIENTALES

Magnitud	Inicial	Final	
Temperatura	25,1 °C	24,9 °C	
Humedad Relativa	50,5 %	47.4 %	

EST & CONTROL S.A.C. ho se responsabiliza de los perjulifos que puedan ocurrir después de su calibración debido a la mala manipulación de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello

TEST & CONTROL S.A.C. es un Laborator1o de Calibración y Certificación de equipo de medición basados a la Norma Técnica Peruana ISO/IEC17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estandares de calidad garantizando la satisfacción de nuestros clientes

Este certificado da calibración documenta la trazabilidad a los Patrones Nacionales o Internacionales. de acuerdo con el Sistema Internacional de Unidades (Si)

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados

Los resultados son válidos solamente para el item sometido a calibración, no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce

Lic. Nicolás Ramos Pauca Gerente Técnico CFP: 0316

SISTEMA DE GESTIÓN DE LA CALIDAD NTP ISO / I EC 17025:2017

CERTIFICADO DE CALIBRACIÓN

TC - 24459 - 2023

PROFORMA : 25555B Fecha de emisión : 2023 - 12 - 20

SOLICITANTE: HIS GEOLAB S.A.C.

Dirección Av. Chimpu Ocllo 155. Urb. Santa Isabel Carabayllo

INSTRUMENTO DE MEDICIÓN PRENSA MARSHALL

 Marca
 No indica

 Modelo
 MA – 75

 N'de serie
 156

 Intervalo de indicación
 0 – 5000 Kgf

 Procedencia
 METROTEST

 Identificación
 Noindica

 Fecha de Calibración
 2023 - 12 - 20

 Ubicación
 LABORATORIO

TEST & CONTROL S.A.C. es un Laborator1o de Calibración y Certificación de equipo de medición basados a la Norma

Técnica Peruana ISO/I EC 17025.

TEST & CONTROL S.A.C. brinda los servicios de calibración de instrumentos de medición con los más altos estandares de calidad garantizando la satisfacción de nuestros clientes

Este certificado da calibración documenta la trazabilidad a los Patrones Nacionales o Internacionales, de acuerdo con el Sistema Internacional de Unidades (SI)

LUGAR DE CALBRACIÓN Instálaciones de INGEPAV INGENIEROS S.A.C

Con el fin de asegurar la calidad de sus mediciones se le recomienda al usuario recalibrar sus instrumentos a intervalos apropiados

MÉTODO DE CALIBRACIÓN

La calibración se realizó por comparación directa utilizando el PIC 023 Procedimiento para la calibración de prensas, celdas y anillos de carga

CONDICIONES AMBIENTALES

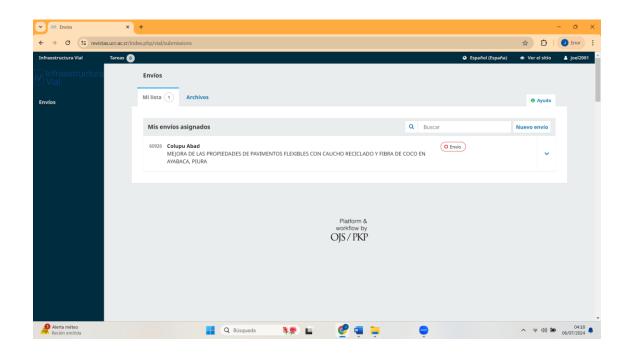
Magnitud	Inicial	Final
Temperatura	25,1 °C	24,9 NB
Humedad Relativa	50,5 %	47.4 %

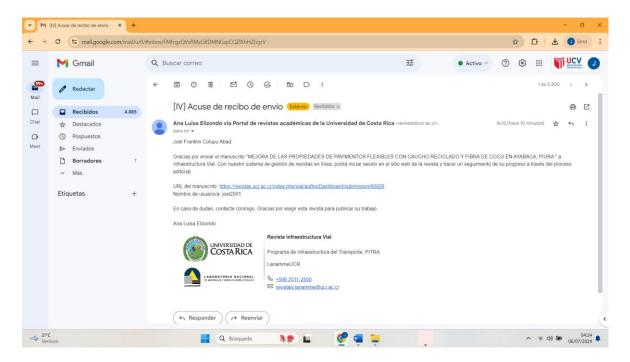
Los resultados son válidos solamente para el tiem sometido a calibración, no deben ser utilizados como una certicación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce

TEST & CONTROL S.A.C. no se responsabiliza de los perjuicios que puedan ocumir después de su calibración debido a la mala manipulación de este instrumento,ni de una incorrecta interpretación de la calibración declarados en el presente documento.

El presente documento carece de valor sin firma y sello

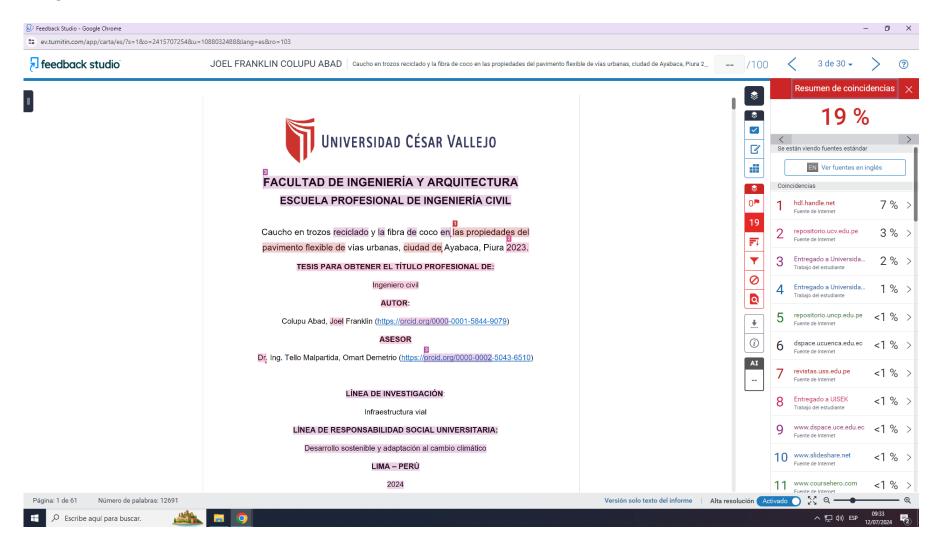
Lic. Nicolás Remos Peucer Gerente Técnico CFP: 0316


ANEXO 8


Tabla. Datos de la revista

Título	Uso del Caucho reciclado y Fibra de coco en mezclas asfálticas
tentativo del	
articulo	
Científico	
Nombre de la	Infraestructura Vial
revista a	
Postular	
URL de	https://revistas.ucr.ac.cr/index.php/vial/index
revista	
Base de datos	SCIELO
de	
indización	
Cuartil	4
Idioma	Español
ISSN	2215-3705
h-index	

ANEXO 9


CONSTANCIAS DE ARTICULO SUBIDA EN LA REVISTA INFRAESTRUCTURA VIAL

ANEXO 10

TURNITIN

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO


Solicitante Proyecto

COLUPU ABAD JOEL FRANKLIN
CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VIAS URBANAS, CIUDAD DE AYBACCA, PIURA 2023.
AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

Ubicación

Fecha de ensayo

recna de ensayo	13/04/2024						
TAMIZ		ANALISIS (GRANULOMÉT	TRICO			
ASTM	ABERT, mm	Peso, g	% Retenido	% Acum.	% Pasa		
1"	25.400		,		100.0		
3/4*	19.050		1		100.0	Calculos.	
1/2"	12.700	850.0	24.1	24.1	75.9	Tara	
3/8"	9.525	1,628.0	46.2	70.3	29.7	Peso de Tara	300,0 g
1/4"	6.350		-			Tara + muestra Humeda	3,850.0 g
N° 4	4.760	871.0	24.7	95.0	5.0	Tara + muestra Seca	3,825.0 g
N° 6	3.360					Contenido de Humedad (%)	
N° B	2.380	51.0	1.4	96.5	3.5		
N° 10	2.000		- 7			Muestra Seca	3,525.0 g
N°16	1.190						
N° 20	0.840		14				
N* 30	0.590	- 8	-				
N° 40	0.426					-	
N° 50	0.297					Proporciones Agregados.	
N° 80	0.177	- 8	(4)			Agregado Grueso.	95.0 %
N° 100	0.149					Agregado Fino.	5.0 %
N° 200	0.074	- 23				Fino Malla 200,	0.0 %
-200			(*)				

OBSERVACIONES:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
O O O	ABEL MARCELO PAS INGENIERO CIVIC CIP N° JC GEOTECNIALABORATOR	221456 CONTROL DE CALIDAD
Jeto de Alboratorio	Ingeniero de Suelos y Pavim	contro de Calidad JC GEOTECNIA LABORATORK

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES	CERTIFICADO DE ENSAYO AZUL DE METILENO
-------------------------------------	--

Solicitantes

CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Proyecto

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA) Ubicación

: 19/04/2024 F. de ensayo

: Diseño de mezcla asfáltica con asfalto convencional : Cantera Tondopa : Arena triturada Tipo de muestra Identificación Descripción

AZUL DE METILENO (AASHTO TP 57)

	Resultados	Especificación
	mg/g	mg/g
Contenido de reactividad	6.0	8.0 máx.

Elaborado por:	Revisado por:	Aprobado por:
STEPHIN UBORNIO CO. S.	ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP M* 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEORECNIA LABORATORIO S A C.
defe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Observaciones:

• Prohibida la reproducción parcial e total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO SALES SOLUBLES TOTALES LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : COLUPU ABAD JOEL FRANKLIN

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023. Proyecto

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA) Ubicación

F. de ensayo : 19/04/2024

: Diseño de mezcla asfáltica con asfalto convencional

Tipo de muestra Identificación Descripción : Cantera Tondopa : Arena triturada

SALES SOLUBLES TOTALES (MTC E219)

F	Result	tados	Especificación
Ensayo	ppm	%	%
ontenido de sales solubles	1018.0	0.10	0.5 máx.

Observaciones:

* Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
OF PISSON	ABEL MARCECO PASQUEL INGEMERO CIVIL - CIP N° 221458 JC GEOTECHILLABORATORIO S A C.	CONTROL DE CALIDAD JC GEOTECHIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO DURABILIDAD AL SULFATO DE SODIO Y MAGNESIO

Solicitantes : COLUPU ABAD JOEL FRANKLIN

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Ubicación : AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

F. de ensayo : 19/04/2024

: Diseño de mezcla asfáltica con asfalto convencional : Cantera Tondopa : Arena triturada

Tipo de muestra Identificación Descripción

DURABILIDAD AL SULFATO DE SODIO Y MAGNESIO (MTC 209)

ANÁLISIS CUANTITATIVO

TAMAÑO		TAMAÑO Gradación Peso min. Peso fracció	Peso fracción		Peso ret.	Pérdida		Pérdida	Nº de	
Pasa	Retiene	Original (%)	requerido (g)	ensayada (g)	particulas	después de ensayo (g)	Peso (gr)	%	corregida (%)	particulas
3/8"	N° 04	41	100	100	<u> </u>	94.6	5.4	0.0	0.00	
N° 04	N° 08	17.0	100	100		95.9	4.1	4.1	0.70	+
N- 08	N° 16	14.7	100	100	-	94.5	5.5	5.5	0.81	
N° 16	N° 30	8.0	100	100	-	93.5	6.5	6.5	0.62	
N° 30	N° 50	7.7	100	100	-	93.2	6.8	6.8	0.52	100
Nº 50	Nº 100	2.5	100	100		94.5	5.5	0.0	0.00	Ore -

TOTAL 2.55

Solución en Sulfato de Magnesio

Aprobado por: Elaborado por: Revisado por: ALLABOR. ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP N° 221456 JC GEOTECNIA LABORATORIO S A C. CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C. Control de Calidad JC GEOTECNIA LABORATORIO Jefe de Laboratorio Ingeniero de Suelos y Pavimentos

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES	CERTIFICADO DE ENSAYO GRAVEDAD ESPECÍFICA Y ABSORCIÓN
6-45 dec6439 Makes 2019 24 CP (2014) Common	

: COLUPU ABAD JOEL FRANKLIN

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023. Proyecto

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA) Ubicación

: 19/04/2024 F. de ensayo

 Diseño de mezcia asfáltica con asfalto convencional
 Cantera Tondopa
 Arena triturada Tipo de muestra Identificación Descripción

GRAVEDAD ESPECÍFICA Y ABSORCIÓN (MTC E205)

				AGREGADO FINO			
MUESTRA		MUESTRA 1 2		3	4	PROMEDIC	
A	Peso del mat. sat. superf. Seco (en el aire)	(g)	500.00	500.00			
В	Peso fiola calibrada con agua	(g)	654.30	654.30			
3	Peso fiola con agua + peso del mat. s.s.s.	(g)	1154.30	1154.30		-	_
5	Peso del mat. + peso fiola + H2O	(g)	967.00	966.80			
	Vol. de masa «vol. de vacios	(oc)	187.30	187.50			
F	Peso mat. seco en el homo (105°C)	(g)	497.00	497.80			
3	Vol. de masa	(g)	184.30	185.10			
1	Peso especifico bulk (base seca)	(g./cc)	2.653	2.654			2.654
ı	Peso especifico bulk (base saturada)	(g./cc)	2.670	2.667			2.668
J	Peso especifico aparente (base seca)	(g./cc)	2.697	2.688			2.692
к	% de absorción		0,6	0.5			0.5

Observaciones:

* Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
SECHM USBORATOR	ABEL MARCELO PÁSQUEL INGENERO CIVIL - CIP N° 221456 JC DEOTECNIA LABORATORIO S A C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

Cel.: 916 333 983 / 997 946 756 jcgeotecnialaboratorio@gmail.com informes@jc-geotecnia.com

www.jc-geotecnia.com

Asociación Villa Gloria Mz D Lt 2

Carabayllo - Lima

DNCRETO-ASFALTO

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO LIMITES DE CONSISTENCIA

Jbicsción : AYABACA (F. de ensayo : 10/04/2024	NVERIOUS III.	UEL FRANCISCO REN			
lipo de muestra dentificación Descripción	: Cantera Tondo		to convencional		
		LIMITES	DE CONSISTENCIA (MTC E 1	11}	
			LIMITE LIQUIDO		
e TARRO		1	2	3	
PESO TARRO + SUELO HUMEDO	(g)				
PESO TARRO + SUELO SECO	(g)				
PESO DE AQUA	CONTE	N.P			
PESO DEL TARRO	(g)		IV.P		
PESO DEL SUELO SEGO	(g)				_
CONTENIDO DE HUMEDAD	(%)				
NUMERO DE GOLPES					
	E CANDO		LIMITE PLÁSTICO		
Nº TARRO		4	5	6	
PESO TARRO + SUELO HUMEDO	(0)				
PESO TARRO + SUELO SECO					
PESO DE AGUA			N.P		
PESO DEL TARRO	(g)		IV.F		
PESO DEL SUELO SECO	(g)				
CONTENIDO DE SE HUMEDAD	(%)				
		CONT	TENIDO DE HUMEDAD A 25 G	OLPES	
30					
28					
20					
24					
22					
20					
. 18					
16 10		25			
10		428			

Elaborado por:	Revisado por:	Aprobado por:
SCHILL LEGATION CO.	ABEL MARCELO PASQUEL INGENIERO CIVIL - CIP N° 221456 JC GEOTECNIA LABORATORIO S A C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO EQUIVALENTE DE ARENA LABORATORIO DE ENSAYO DE MATERIALES

: COLUPU ABAD JOEL FRANKLIN
: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

: 19/04/2024 F. de ensayo

Proyecto

: Diseño de mezcla asfáltica con asfalto convencional : Cantera Tondopa : Arena triturada Tipo de muestra

Identificación Descripción

EQUIVALENTE DE ARENA (MTC E514)

	MUESTRAS				
DESCRIPCIÓN	1	2	3	4	
Tamaño máximo (pasa malla Nº 4) mm	4.76	4.76	4.76		
fora de entrada a saturación	11:10	11:18	11:31		
fora de salida de saturación (10')	11:20	11:28	11:41		
Hora de entrada a decantación	11:22	11:30	11:43		
fora de salida de decantación (20')	11:42	11:50	12:03		
Lectura Inicial pulg	5.0	5.0	5.10		
Lectura Final pulg	3.3	3.4	3,40		
Equivalente de Arena %	66.0	68.0	66.7		

PROMEDIO 67.0 %

Observaciones:

* Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
STAN USORATORIO STAN STAN STAN STAN STAN STAN STAN STAN	ABEL MARCELO PASQUEL INGENTERO CIVIL - CIP N° 221456 JIC GEOTECHIA LABORATORIO S A C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO PARTÍCULAS CHATAS Y ALARGADAS LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes

: COLUPU ABAD JOEL FRANKLIN
: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Proyecto

Ubicación : AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

: 19/04/2024 F, de ensayo

: Diseño de mezcia asfáltica con asfalto convencional : Cantera Tondopa : Grava triturada

Tipo de muestra Identificación Descripción

PARTÍCULAS CHATAS Y ALARGADAS (ASTM D4791)

Tamaño d	lel Agregado	A	В	С	D	E
Pasa Tamiz	Retenido Tamiz.	(g)	(g)	(B/A)*100)	74	(CxD)/100)
2"	1 1/2"					
1 1/2"	1"					
1*	3/4"					
3/4"	1/2"	400.3	20.1	5.0	40.59	2.04
1/2"	3/8"	335.5	22.3	6.6	34.02	2.26
3/8"	1/4"	250.3	21.8	8.7	25.38	2.21

TOTAL 6.51 %

Observaciones:

• Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PASQUEL INGENIERO CIVIL-CIP N° 221456 IC SEOTECNIA LASORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTEENIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO
PORCENTAJE DE CARAS FRACTURADAS EN LOS AGREGADOS

Solicitantes

: COLUPTA ABAU JUEL PRANKLIN
: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Proyecto

Ubicación

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

F. de ensayo

: 19/04/2024

: Diseño de mezcia asfáltica con asfalto convencional : Cantera Tondopa : Grava triturada

Tipo de muestra Identificación Descripción

PORCENTAJE DE CARAS FRACTURADAS EN LOS AGREGADOS (MTC E210)

Tamaño de	Agregado	A	A B	C	D	E
Pasa Tamiz	Retenido T.	(g)	(9)	(B/A)*100)	% Parcial	CxD
1 1/2"	1*					
1"	3/4"					77.77
3/4"	1/2"	400.3	304.0	75.9	40.59	30.83
1/2"	3/8"	335.5	280.0	83.5	34.02	28.39
3/8"	1/4"	250.3	215.0	85.9	25.38	21.80

TOTAL 81.03 %

Tamaño d	del Agregado	A	В	C	D	E
Pasa Tamiz	Retenido Tamiz	(9)	(g)	(B/A)*100)	% Parcial	CxD
1 1/2"	1"					
1"	3/4"					
3/4"	1/2"	400.3	300.4	75.0	40.59	30.46
1/2"	3/8"	335.5	288.1	85.9	34.02	29.22
3/8"	1/4"	250.3	179.5	71.7	25.38	18.20
Total:		All of the second				

Observaciones:

* Prohibida la reproducción parcial e total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
CNIA LABORATOR	ABEL MARCEL OF ASQUEL INGENIERO CIVIL - CIP N° 221456 JC GEOTECNIN LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GENTECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO GRAVEDAD ESPECÍFICA Y ABSORCIÓN

Solicitantes

: COLUPU ABAD JOEL FRANKLIN

Proyecto

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Ubicación

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

F. de ensayo

: 19/04/2024

Tipo de muestra Identificación Descripción

: Diseño de mezcla asfáltica con asfalto convencional : Cantera Tondopa : Grava triturada

GRAVEDAD ESPECÍFICA Y ABSORCIÓN (MTC E206)

_			AGREGADO GRUE	SO	16	
	MUESTRA	1	2	3	4	PROMEDIO
Α	Peso del mat. sat. superf. seco (en el aire) (g)	1595.0	1590.0			
В	Peso del mat. sat. superf. seco (en el agua) (g)	1017.0	1012.0			
C	Vol. de masa + Vol. de vacios (cc)	578.0	578.0			
D	Peso del material seco en el horno (105°C) (g)	1587.0	1582.0			
E	Vol. de masa (g)	570.0	570.0			
F	Peso especifico bulk (base seca) (g./oc)	2.746	2.737			2.741
G	Peso especifico bulk (base saturada) (g./cc)	2.760	2.751			2.755
н	Peso específico aparente (base seca) (g./cc)	2.784	2.775			2.780
1	% de absorción	0.50	0.51			0.5

Observaciones:

• Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
OF DURING STATES	ABEL MARCELO PASQUEL INGENIERO CIVIL- CIP N° 221456 JC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTEENIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES	CERTIFICADO DE ENSAYO DURABILIDAD AL SULFATO DE SODIO Y MAGNESIO
-------------------------------------	--

Solicitantes : COLUPU ABAD JOEL FRANKLIN

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023, Proyecto

Ubicación : AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

F. de ensayo : 19/04/2024

: Diseño de mezcla asfáltica con asfalto convencional : Cantera Tondopa : Grava triturada Tipo de muestra

Identificación Descripción

DURABILIDAD AL SULFATO DE SODIO Y MAGNESIO (MTC 209)

ANÁLISIS CUANTITATIVO AGREGADO GRUESO Peso ret. después de ensayo (g) Pérdida corregida (%) Nº de particulas Peso fracción ensayada (g) Peso requerido (g) Gradación Original (%) Peso (gr) 2 1/2" 2" 1 1/2" 1" 3/4" 3000±300 1 1/2" 2000±200 1000±50 1" 3/4" 1/2" 3/8" N° 4 500±30 670±10 5.3 7.1 35.5 1.27 23.5

309.2

15.6

TOTAL 5.81

1.28

OBSERVACIONES:

3/8"

Solución en Sulfato de Magnesio

330±5 300±5

332.7

Elaborado por:	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PASQUEL INGENIERO CIVIL PIP N° 221456 JC GROTECNIA LABORATORIO SACO	CONTROL DE CALIDAD JC GEOJECNIA LABORATORIO S A C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimento	os Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO SALES SOLUBLES TOTALES LABORATORIO DE ENSAYO DE MATERIALES

Solicitantes : COLUPU ABAD JOEL FRANKLIN

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA,

Proyecto PIURA 2023.

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA) Ubicación

F. de ensayo : 19/04/2024

: Diseño de mezcla asfáltica con asfalto convencional

Tipo de muestra Identificación Descripción : Cantera Tondop: : Grava triturada

SALES SOLUBLES TOTALES (MTC E219)

-	Resul	Especificación	
Ensayo	ppm	%	%
Contenido de sales solubles	908.0	0.09	0.5 máx.

Observaciones:

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
CONNABORATOR OF CONSTRUCTION OF BEST O	ABEL MARCELO PASQUEL INGENIERO CIVIL. CIP N° 221-156 JC GEOTECNIA KABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEDTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES	CERTIFICADO DE ENSAYO ABRASIÓN LOS ÁNGELES
LABORATORIO DE ENSAYO DE MATERIALES	ABRASION LOS ANGELES

Solicitantes : COLUPU ABAD JOEL FRANKUN

Proyecto : CAUCHO EN TROZOS RECICIADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYARACA, PIURA 2023.

Ublicación : AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

F. de ensayo : 19/04/2024

Tipo de muestra : Diseño de mezcla asfáltica con asfalto convencional tentificación : Cantera Tondopa Descripción : Grava triturada

ABRASIÓN LOS ÁNGELES (MTC E207)

MUESTRA	1	2	3	4	5	6
GRADACIÓN	*B*	-8-				
PESO MUESTRA	5000	5006				
1.1/2" - 1"						
1 - 3/4	7000	in the same of				
3/4 - 1/2	2500	2504		4		
1/2" - 3/8"	2500	2502		1		
3/8" - 1/4"						
1/4" - Nº 4						
Nº 4 - Nº 8		-31				
RETENIDO Nº12	4128	4139				
PASA Nº 12	872	867		4		
% DESGASTE	17.4	17.3				

PROMEDIO 17.4 %

Observaciones

Aprobado por:

Aprobado por:

Aprobado por:

ABEL MARCELO PASQUEL
INCEDIERO CATIL - CIP N° 221456
JC GEOTECHIA LABORATORIO S A C.

CONTROL DE CALIDAD
JC GEOTECHIA LABORATORIO S A C.

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO (COMBINACIÓN DE AGREGADOS) LABORATORIO DE ENSAYO DE MATERIALES

COLUPU ABAD JOEL FRANKLIN
CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Proyecto AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA) 19/04/2024

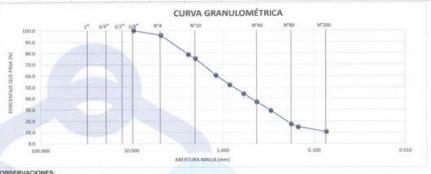
TAMIZ	ANU	ALIBIS GRANU	LOMETRICO		1	2	3		D 3515	
ASTM	ABERT. mm	Grava Chancada	Arena Chancada	Filler	% Pasa	% Pasa	% Pase	70	5"	
1"	25.400	1915			1		+ Booler -	1000	100.0	
3/4"	19.050	100.0	100.0	100.0	100.0	188.0	100.0	100.0	100000000000000000000000000000000000000	
1/2"	12.700	75.9	100.0	100.0	2000	MA	19.3	90.0	100.0	
3/8"	9.525				Section 1		11200			
1/4"	6.350									_
N* 4	4.760	5.0	95.9	100.0	E BAN	99.6	55,0	44.0	74.0	
N° 6	3.360				TO SOM					
Nº 8	2.380		78.9	100.0	523	460	45.0	28.0	58.0	
Nº 10	2.000									
N°16	1,190									
N° 20	0.840									
N° 30	0.590									
N* 40	0.426				The same of				Control of the Control	
N° 50	0.297		29.3	98.0	20.4	1395	17.6	5.0	21.0	
N. 80	0.177									
N° 100	0.149				Early					
N° 200	0.074		10.7	95.0	1.0	66	7.6	2.0	10.0	
-200										

Mezcia N° 01	35.0		2.0	
Mezcia N° 02	40.0	59.8	9.2	OK
Marcia Nº 03	45.0	54.8	0.2	

Elaborado por:	Revisado por:	Aprobado por:
O I O SE	ABEL MARCELO PASQUEL INGENIERO CIVIL: CIP N° 221456 JIC GEOTECNIA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Celidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO LABORATORIO DE ENSAYO DE MATERIALES


: COLUPU ABAD JOEL FRANKLIN Solicitante

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023. Proyecto

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA) Ubicación

Fecha de ensayo : 19/04/2024

TAMIZ		ANALISIS	GRANULOM	ETRICO			
ASTM	ABERT. mm	Peso, g	% Retenido	% Acum.	% Pasa		
1"	25.400	-			100.0		
3/4"	19.050				100.0	Calculos.	
1/2"	12.700	- 4		26	100.0	Tara	C.A
3/8"	9.525				100.0	Peso de Tara	150.00
1/4*	6.350	- 2			100.0	Tara + muestra Humeda	1,160.00
N° 4	4,760	41.1	4.1	4.1	95.9	Tara + muestra Seca	1,150.00
N° 6	3,360					Contenido de Humedad (%)	1.0 9
N° 8	2.380	170.4	17.0	21.1	78.9		
N° 10	2.000	36.3	3.6	24.8	75.2	Muestra Seca	1,000.0
N*16	1.190	147.5	14.7	39.5	60.5		
N* 20	0.840	83.8	8,4	47.9	52.1		
N° 30	0.590	80.0	8.0	55.9	44.1		
N° 40	0.426	70.9	7.1	63.0	37.0	Land the second	
N° 50	0.297	77.2	7.7	70.7	29.3	Proporciones Agregados.	
N° 80	0.177	119.6	12.0	82.7	17.3	Agregado Grueso.	4.1
N° 100	0.149	24.8	2.5	85.2	14.8	Agregado Fino.	95.9
N° 200	0.074	41.6	4.2	89.3	10.7	Fino Malta 200.	0.0
-200		106.8	10.7	100.0			

OBSERVACIONES:

* Prohibida la reproducción percial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PAS INGENIERO ENIL - CIP N' JC GEOTEONIA LABORATOR	221456 CONTROL DE CALIDAD
well and phrestone	Ingeniero de Suelos y Pavim	entos Control de Calidad JC GEOTECHIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES	CERTIFICADO DE ENSAYO AZUL DE METILENO	

Carabayllo - Lima

Solicitantes

: COLUPU ABAD JOEL FRANKLIN

Proyecto

: CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA, PIURA 2023.

Ubicación

: AYABACA (AVENIDAD MANUEL FRANCISCO RENTERÍA)

F. de ensayo

: 19/04/2024

Identificación Descripción

: Diseño de mezcla asfáltica con asfalto convencional

: Cantera Tondopa : Arena triturada

ANGULARIDAD DEL AGREGADO FINO (MTC E 222)

N° Ensayo	Peso muestra + cubo	Peso cubo	Vol. cilindro (Cm3)	Peso muestra (g)	Peso especifico Bulk Base Seca (g/cm3)	Vacios sin compactar (%)
	612.30			161.80	1,000	38.66
	611.87	450.5	99.4	161.37	2.654	38.82
- 2		400.0			100000	38.57
3	612.55			162.05		38.57

38.68 Resultado

Observaciones:

Ensayo realizado al material pasante la malla Nº8 y retenido en la malla Nº200.


Elaborado por:	Revisado por:	Aprobado por:
SECONALABORATORIES SECONA	ABEL MARCEZO PASQUEL INGENERO CWIL - CIP N° 221456 UC GEOTECMA LABORATORIO S.A.C.	CONTROL DE CALIDAD JC GEOXECNIA LABORATORIO S.A.C.
Jefe de Laboratorio	Ingeniero de Suelos y Pavimentos	Control de Calidad JC GEOTECNIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO INDICE DE COMPACTIBILIDAD LABORATORIO DE ENSAYO DE MATERIALES COLUPU ABAD JOEL FRANKLIN
CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COOO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD
AYABACA, PIURA 2023.
AYABACA (AVENIGA MANUEL FRANCISCO RENTERÍA)
22/04/2024 Ubicación Fecha de ensayo Mezcia asfáltica en caliente (MAC) Diseño MAC (Asfalto convencional) INFORME DE ENSAYO ÍNDICE DE COMPACTIBILIDAD Aprobado por: CNIALABORATO ABEL MARCELO PASQUEL CONTROL DE CALIDAD INGENIERO CIVIL - CIP Nº 221456 JC GEOTECNIA LABORATORIO S.A.C. JC GEOTECNIA LABORATORIO S A C.

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO GRAVEDAD ESPECÍFICA TEÓRICA MÁXIMA LABORATORIO DE ENSAYO DE MATERIALES

COLUPU ABAD JOEL FRANKLIN

CAGCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVAMENTO FLEXIBLE DE VIAS LIBBANAS, CIUDAD AYABACA, PIURA 2022 Proyecto

AYABACA JAVENIDA MANUEL FRANCISCO RENTERÍA) 22040024

Fecha de amayo

Mesola autatios en calierte (MAC) ; Diseño MAC (Asfalta convencional)

INFORME DE ENS	MAYO GRAVEDAD ESPECIF	TUR TEUROGA MAXIM	N (NO IN UZUNI)		
MURRITA IV		10	- 0	14.	- 16
1 - PESO DEL PRABCO	6647.0	9047.0	6047.0	9047.0	
Z - PESO DEL PRAGOS + ADUA + VIDRIO	F186.0	8186.0	9199.0	8186.0	
3-DFERDNOA DEL PESO (04) - (05)	7706.0	2705.0	1702.0	7710.E	
4 - PESO DEL FRASCO + MUESTRA + AGUA	8916.0	8812.0	8910.0	6892.0	
S. PESQ NETO DE LA MUESTRA	1208.0	1209.0	1258.0	1163.0	
R. AGUA DESPLAZADA (2)-(3)	480.0	465.0	400.0	479.0	
PERO ESPECIFICO MANIMO DE LA MUESTRA (\$)1(8)	280	2.401	2400	8.479	
CONTENDO S.C.A.	5.1	2.8	6.1	6.0	

Observaciones:

* Prohibida la reproducción percial o total de esia discursario sin la autorización escrita del área de Catidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
6,0	ABEL MARCELO PASQUEL NGENERO CVIL. CIP N° 221453 IO GEOTECNA LABORATORIO S A G.	CONTROL DE CALIBRA
Jefe de Laboratorio	Ingeniero de Suelos y Paviment	DB COSTOLS CARSES JC DECTECHA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO MARSHALL

COLUPU ABAD JOEL PRANKLIN
CALICHO EN 190306 PROCLACO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAYMENTO FLEXIBLE DE VIAS URBANAS. CILIDAD AYABACA, PURA 2023.
AYABACA (AVENIDA MARUEL, FRANCISCO RENTERÍA)
2304/2024

Proyecto Ubicación Pecha de emayo

Tipo de muestra - Megida actistica en calierte (MAC) Desotoción - Diserto MAC (Astato convencional)

		INFO	RME DE ENSAYO MA	RSHALL (ASTM D692	(7)			
		F 4400	1/2	No. 6	Ho B	No 50		No. 200
AMADDO HITTING	100.0	1000	90.4	39.5	48.8	12.2		6.5
SPECIFICACION		180 - 100	90 - 100	44-74	28 - 56	9 - 24		3 - 99
INDUSTRIAL				1		-	ROWDO	BACK.
1	To C.A. on Peso de la Places.				6.6			
2	To Grand in 1874 on pares die to Phopolis				37.01			
	No Assess in 1674, we present the fair Mission				55.46			
4	Ps Corsesto Portand on peac its in Mest				0.09			
	Peso Específico Apenente del C.A. (Apene	neo groo			1.623			
	Pess Especifico de la Grave > 8º4 (8x8)	9/400			2.341			
	Peed Expectition de la Andrea « RPM (Bulle)	gois			2494			
	Pess Expectitios del Correcto Portanti (A)	amen) g/m			3.100			
	Peau Capacifico de la Grave y 1974 (Apace	ritio grita						
10								
19	11 Mary promotio de la Indigenta (IPI							
12	Proce-de la broquette di eser. (QE)			1690.0	1194.5	1199.0		
13	13 Procedor is Entrantic of Apparlance (AC TOP)				1195.4	1180,0		
- 14	14 Procede is brougets desplaceds (pr)				0.860	105.0		
15	Volumen de la briguesi per desplazamen	m (c) = (13-14)		500.0	465.4	496.0		
16	Proc expection bulk do to thiqueta - [5]	3/16		2.399	2.401	2,369	2.400	
17	Peo Específico Pissens - Rice	DASIN B 364	(1)		2.40			
19	% de Vacos » (17-16/e188/17	(AGTH 0 XXI	19)	3.0	316	3.0	3.0	3-5
19	Peso Especifico bulk Apregado Yolari				3.699			
20	Peso Específico Efectivo Agringado tatal				2.790			
- 23	Autoro Associato per el Apregalo				9.74			
33	N. de Astriku Elsetiwo				5.62			
23	Reación Palvo/Natalto				1.13	1		88-13
24					26.6	16.0	16.6	34
25	To Nacional Remote Later Cult.			62.0	82.0	42.5	82.2	
26	Plue ((811)5.25 mm)			39.0	25.0	15.6	15.3	8-14
27	Established we correspt (Mg)			901	1010	1652	11.00	1.011
38	Factor de recabilidad			104	104	1.64		
29	Established Corregion 27 + 36.			100	1190	1677	3941	PION REC
56	estigated / High			2466	3906	3902	3728	1700 - 40

Elaborado por:	Revisado por:	Aprobado por:
0100 E	ABEL MARCELO PASOUEL INCEMERO ONIL - OP N° 221456 JC GEOTEONIA LABORATORIO S A C.	CONTROL DE CALIDAD JC GEOFEONALABORATORIO S.A.C.
John Mc Labor durio	Ingestero de Buelos y Pevenentos	STATE OF THE SECOND LABORATORS

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO MARSHALL LABORATORIO DE ENSAYO DE MATERIALES

Solicitante COLUPU ASAD JOEL FRANKLIN

CAUCHO EN TROZOG RECICLADO Y LA RIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VAIS LIRBANAS, CILIDAD AYABACA, PILIPA 2023. Proyecto

Ublcockin AYABACA (AYENDA MANUEL FRANCISCO RENTERIA)
Tucha de ensayo 12/04/2024

Tpo de muestre : Meccia avilática en calente (MAC) Descripción : Diseño MAC (Asfatic convencional)

		INFORM	E DE ENSAYO MAJ	RSHALL (ASTM D692	7)			
Total Control				No. 4	No 8	964.50		No 200
NAMES ASTW	100.0	314,	1/2"	19.1	46.4	17.7		6.6
NAMES AND TRACK		100 - 100	91 - 100	44-70	28-58	3 - 23		2-16
REGISTA AT	1	100-100		1.	2.0	- 1	- MICHELLE	DHOR
The second second	To C.A. are Press are to Phospire		6.1					
- 2	Z To Gobo > N°4 on paso de la Maprie				38.01			
- 1	No Arrana in 1874 on passo de la Mascia				55.75			
	No Caresonto profilerer en preso de la Mescile.				9.19			
1	Own Dometics Assessed 64 CA (Approved)	print			1.03			
4	Owne Course Ricc site Se Greek > 10*4° (Bulk)	print			2,941			
7	Penc Expectito de la Avera < 474 (Bulk) quio				3.664			
	Pena Casac Rep stal Carmento Portland (Aparen				3.110			
	The state of the s				700			
10	Pean Casactico de la Arene « 19 ⁴ 4 (Apowrité)	g/kc						
- 11	Aluxa provento de la bresimo di		The second					
12	Preso do la tempera el env. 000	1962	1301.6	11965				
13	Preso de la terqueta al ogue per 607 (pr)			1197.4	189.3	1200.4		
14	Press du la Triquella dissployado (pr)			690.6	690,4	400.5		
19	Voteres de la terparte per desplaces anno o	PH-613 + (12		100.6	490,9	9000	2007	
18	Press especifico trub de la finiqueta: - (12/16)			2.989	2,362	2.363	3.391	
17	Peso Especifico Maximo - Rice	(MEDICAL STATE)			2.496		100	
18	% de Varios = (17-16)x(00/07	(85794 0.3369)		3.0	3.6	3.7	3.8	3:5
18	Pese Especifico Italii. Aprepado Totali				2,689			
38	Pese Especifice Electric Aprogado satal				2,738			
- 21	Astimo Assorbeto per el Agregado				9.67			
22	No de Aufalta Efectivo				542			
33	Neticalis Poto/Netica				121			0.6 - 5.2
24	VAA	16.6	36.4	364	16.5	1.6		
25	To Viscon Review over E.A.	26.4	77.1	77.2	76.9			
28	Figs 6,01°/0,25 r845	14.6	13.0	15.0	14.7	8-36		
27	Contribut on covery (NO	1957	1890	1009				
28	Factor de established			194	534	1.04		
29	Enturitized Corregide 27 * 26			1899	2534	1112	1135	PON 815
36	Familias / Rus			3141	3623	290	3043	1798 - 400

Elaborado por:	Revisado por:	Aprobado por:
610	ABEL MARCELO PASOUE INCENERO DIVIL-OP N° 2214 IL GEOTERNAL/BIORATORIO SA	6 CONTROL DE CALIDAD
Jete de Emboraterio	Ingentiero de Sueleo y Pavimo	TOTAL CONTROL OF CASHANE J.C. GEOTECHIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENBAYO DE MATERIALES

CERTIFICADO DE ENSAYO MARSHALL

Solicitante Proyecto

COLUPU ABAD JOEL FRANKLIN CAUCHO EN TROZOS RECICLADO Y LA FIRRA DE COCO EN LAS PROPEDADES DEL PAYMENTO FLEXIBLE DE VIAS URBANAS. CIUDAD AYABACA, PAJRA 3525.

AYABACA JAVENDA MANUEL FRANCISCO RENTERÍA) 22/04/23/4 Ubiceción Fecha de entayo

Tipo de muceros : Mescas avisitica en caliente (MAC) : Desriro MAC (Autate convencional)

		INFOR	ME DE ENSAYO MAI	KSHALL (ASTM D632	77			
		314"	NT.	No 4	No G	No 94		No. 200
NASA MATERIA	100.0	190	98.4	19.5	40.3	17.7		8.6
SPECIFICACION		100 - 100	10 100	66 - 76 -	29:38	5-31	10000000	3-16
MODETA N					1		PROMESSO	ENTOF
1 % CA, on Prep de la Mappie					5.0			
- 1	"A Gueve > 16"4 as peop the la Pricella				30.21			
1	Wy dyerio < NA4 est peso de la Preschi				14.05			
4	% Cornesto portand en perio de la Monta				0.19			
9	Pessi Específica Aparento del C.A./Aparente	g/00			1.03			
	Preso Especifico de la Grana > Nº4º (Dolk)	900			2.94			
	Penn Expenditos de la Aresta < 10°4 (Statio q	Old .			2,664			
	Proc Especifics and Corners Portland (April	evici gr/e			3/10			
	Fresh Expenditus de la Claime > 30°4 (Appendi	e) gets						
10	Penn Expecition on to Arena + 70°4 (Appren	e) poor						
11	Altana promedio de la brisada	on						
12	The state of the s				139.1	12962		
13	Pero de la briquete al aque per 60 (g/)			1,000.00	DHA	1201.2		
14	Poso de la trepueta desplacada (gr)			105.7	\$66.0	490		
15	Volumen de la frequeta per despissamente	(12) = (12-14)		1964	500.0	500.0		
16	Post ospectico dulo de si briqueto = (12)	103		2,366	2.384	3.365	2.388	
17	Prov Especifico Plossino - Non	(ASTRO 264	11		3.463			
16	76 de Nicios + (C7-Mgestifics?	(AKIM D. SIE)	1	4.1	4.4	42	4.3	3.6
1.0	Penal Dissestino Sulli, Agregado Total				2,689			
36	Pene Européeo (Nectivo Agregado total				3.733			
21	Autobio Streetists per el Aprepato				0.47			
32	To de Adato Medico				5.11			
23	Respons Polyspholists				128			88-13
24				30.0	16.3	16.3	16.2	16
29	% reces intro con EA.			344	13.1	73.3	73.6	33.50
26	Hat 0.8150.25 (48)			13.0	63.8	14.0	13.5	0.11
237	Cristingal on corrego (Ng)			1175	9152	1182	10.500	
26	Factor de established			1.04	184	1.00	20000	
29	connect Covepts 27 * 26			1220	1177	1209	1209	109 609
90	nonning (Hele			3290	5622	2011	3631	1700 - 400

Elaborado por:	Revisado por:	Aprobado por:
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	ABEL MARCELO PASQUEL INGENERO GUIL - CIP N° 221455 JC GEOFEOYA LABORATORIO S A C	CONTROL DE CALIDAD JC GEOTEONALABORATORIO S à C
Jefe de Caboratorio	Ingeniero de Suelos y Favimentos	CONTROL CHRISTIC GEOTECHIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO MARSHALL

Solicitante

COLUPLIABAD JOEL FRANKLIN

CAUCHO EN TROSOS RECICIADO Y LA FIBRA DE COCO EN LAS PROPREDADES DEL PAYMENTO PLEXIBLE DE VIAS LIRIBANAS, CUIDAD AYABACA, PILIRA 2029.

Ublesción Facha de ensayo

AYABACA (AYENIOA MANUEL FRANCISCIO RENTERÍA) 22/04/0024

Tipo de muestre Mazcis seriética en calente (MAC)
Descripción Deseño MAC (Asfalio convencional)

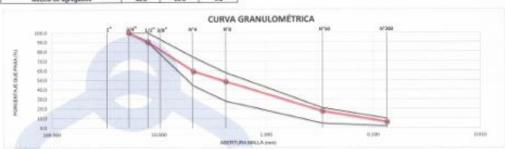
		INFORM	E DE ENBAYO MAI	ISHALL (ASTM DE	927)			
Section 1				Ho I	Ru E	564.90		Nv 366
MACES ASTR 1" 3/4" 4/2"				363	46.0	17.7		5.6
SPECIFICACIONS	POSA SECTIONS				28 - 55	5-31;		2-10
REQUETA H	1	1 100	A STATE OF THE PARTY OF THE PAR		3	3	HOHELIG	ESFECT.
200001000	Nu C.A. on Pose de la Mescla				5-1			
- 1	No Green - Mrit en pesa de la Placcia				38.40			
3	No Arway - MP4 as pass de la Pessia				36,34			
	No Committe porthand on page de la Monta				0.19			
	Poor Digestfee Appearer del C.A.(Approxim	O. gene			±.003			
	Prote Super/Ross de Grane - WYF (Bulk)				2.741			
1	Poor Signatificación in Arema + Nº4 (Rulk) p		3.654					
- 8	Peso Figer/Fox del Cerrento Portired (Ape		3.130					
	Peu Especifico de la Gona > Mª4 (Aparen							
10	Peso Específico de la Arma < Nº4 (Aparen							
11	Albura promedio de la bisqueta							
12	Please the to threshold wine (spr)	1106.6	12944	100.6				
12	Please ste las Enterpretas el especio per 40 (gr.)	1199.0	10964	1199.0				
14	From the in brigants desployers (pr)	996,0	892.7	100.7				
10.	Volumes de la fréquete por dissiplacamient	306.7	900.7	565.6				
100	Penn especifica fluis de la Desanta - (137			2.362	2.375	1,000	3.368	
17	Press Digescribes Massives - Rasio	(METHO)	2040		3,917			
18	%Lde taces = (17:160:10017	DISTRID IS	2020	62	5.8	5.8	5.9	3-5
19	Pero Especifico Outi Agregator Total				2.689			
20	Peso Rispectico Ofectivo Agregado total				1.729			
21	Adalo Atsortato per el Agregado				0.56			
22	to de Adulto Electido				4.50			
23	Polician Psycholiella				1.45			04:13
24	VIIIA			10.0	16.3	38.3	16.4	16
23	No Vaccina Revise City C.A.			60.0	64.5	64.3	63.9	
26	Plan Silt Statement	The state of the s				1107	11.7	E-16
27	Emobilished sits coverage (NgC)			1276	12.0	1200		
20	Factor de ostylideled			104	1.04	154		
29	Explained Corregio 27 * 26			1327	136	1350	1341	MW 815
30	Translator / Flore			804	9463	4800	4505	1706 - 400

Elaborado por:	Revisado por:	Aprobado por:
	ABEL MARCELO PASQUEL INGEMERO CMV. CIP N° 221456 JC GEOTECHACABORATORIO SA C.	CONTRÔL DE CALIDAD JC GEDYECNALABORATORIO S.A.C.
Jefe de L'aboratorio	Ingeniero de Suelos y Pavimentos	Control de Califond JC GEO TECRIA LABORATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO (COMBINACIÓN DE AGREGADOS)


COLUPIJ ABAD JOEL FRANKLIN.
CAJUĆHO EN TROZOS RECICLADO Y LA PIBRA DE COCO EN LAS PROPIEDADES DEL PAYMENTO PLEVIBLE DE VÍAS URBANAS. CIUDAD AYABACA.
PIURA 2023.
AYABACA (AVENIDA MANUEL FRANCISCO RENTERÍA).
2004/0014

Proyecto

Unicación Fecha de enseyo

TAMIZ	AN	ANALISIS ORANULOMÉTRICO				ASTN	D 3616		
AllTM	ABERT IN	Grave Hiturada	Arena titurada	Eller	N Pass	-0	8"		
40	25 400				10000		2222		
2007	19 050	100.0	100.0	100,0	100.0	100.0	100.0		_
10"	12 700	75.9	100.0	100.0	90.4	90,0	100.0		_
260	9.525								-
1941	6.390								
90" (6	4.760	5.0	95.9	100.0	\$9.5	44.0	74.0		
10' 0	3,360								_
Nº 8	2.360		79.0	100.0	48.8	20.0	58.0		
N° 10	2.000								
N*16	1:100								
NF 30	0.640								
Nº 50	0.580								
Nº 40	0.426						11.65		
Nº 50	0.297		29.3	96.0	17.7	5.0	21.0		
NF 80	0.177								
N° 100	0.149								
N° 200	0.074		10.7	90.0	6.6	2.0	10.0		
-300	- 2								

40.0 55.8 E.2

OBSERVACIONES

Elaborado por:	Revisado por:	Aprobado por:
610	ABEL MARCEZO PASOL. UNGENERO CIVIL- CP N° 221. UC GEOTEOMÁ LABORATORIO	CONTROL DE CALIDAD JC GEOZEDNA LABORATORIO S.A.C.
Servele Lationatorio	Ingeniero de Buelos y Parómento	CONTROL CARROLIC GEOTECHIA LABORATORIO

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO LABORATORIO DE ENSAYO DE MATERIALES

Carabayllo - Lima

COLUPU ABAD JOEL FRANKLIN Solicitante

CAUCHO EN TROZOS RECICLADO Y LA PIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAIS URBANAS, CIUDAD AYABACA, PIURA 2023

Proyecto

AYABACA (AVENDA MANUEL FRANCISCO RENTERIA) 22/04/2024 Ubicación Fecha de ensayo

		Andrews	******	Canada			
TAMIZ		ANALISIS	GRANGLOM				
ASYM	ABERT, mm	Penn, y	% Retendo	% Acum.	% Paul		
t*	25.400		-		100.0	# C 1-1	
3/4"	19.050	-			100.0	Calculos.	D-1
1/2"	12.700				100.6	Term	
38"	9.525		-		100.0	Peso de Tara	117.00 p
1/4"	6.360	14.1	- 8		100.0	Tara = muestra Humeda	1,088.00 g
N*4	4.780		1.0		100.0	Tara + muestra Seca	1,081.00 g
N° 6	3.360			7.	100.0	Contereto de Humedad (%)	0.7 %
N°B	2,360	200.0	29.7	28.7	70.3		
N° 10	2.000	55.0	5.7	35.4	54.6	Muestro Seco	064.0 c
N*16	1,190	178.8	18.5	54.0	46.0		
N° 20	0.840	89.0	9.2	63.2	36.8		
N° 30	0.590	87.5	7.0	70.2	29.8		
Nº 40	0.426	51.7	5.4	75.6	24.4		
N° 50	0.297	37.2	3.9	79.4	20:8	Proporciones Agregados.	
N° 80	0.177	41.7	4.3	83.8	10.2	Agregado Grueso.	0.09
N* 100	0.149	13.4	1.4	85.1	14.9	Agregada Fino.	100.0 9
N° 200	0.874	31.4	3.3	88.4	11.6	Fitto Make 200	0.0 1
-200		311.6	11.0	100.0			

* Prohibita la reproducción percial o lotal de cale documento sin la autorización escrita del éres de Calidad de JC GEOTECNIA LABORATORIO.

Etaborado por:	Revisado por:	Aprobado por:
CONTUROR TO SERVICE OF THE SERVICE O	ABEL MARCELO PASO NGEMERO CIMIL - CP N° 2 JC GEOTECNIALABORATORIO	CONTROL DE CALIDAD
My Jo Lang etally	Ingenera de Suetre y Pevimen	CONTROL OF CARREST OF CHECKA LARGEATORIO

Carabayllo - Lima

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO ANÁLISIS GRANULOMÉTRICO

Solicitante

COLUPU ABAD JOEL FRANKLIN
CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS
URBANAS, CIUDAD AYABACA, PURA 2013.
AYABACA (MENDA MANUEL FRANCISCO RENTERIA)

Ubicación

TAMZ		ANALISIS (SPANULOMET	HeCO				
ASTM	ABERT, mm	Pago, g	% Flaterado	% Acurs	% Pass			
r	25.400				100-0			
3/4"	19.050				100.0	Calcules.		
1/2"	12.700	439.0	23.6	23.6	78.4	Tare	A.	
3/6"	9.525	667.0	35.8	10.4	40.6	Presp de Taria	286.00	
1/4"	6.350	-	+			Tare + excestra Humeda	2,160.00	
N* 4	4.790	756.0	49.6	100.0	0.0	Tara + pruestre Secie	2,148.00	
N* 6	3.360	141	-			Contento de Humedad (%)	0.69	
Nº 8	2.380		-			The second second		
N* 10	2.000		+			Muestra Seca	1,662.0	
N*16	1.190	14.3	1					
N° 20	0.840	-	14					
N° 30	0.590		- 4					
M* 40	0.426	-	-					
Nº 50	0.297	-				Proporciones Ágregados.		
N' 80	0.177	- 1				Agregado Cirusso.		
N° 100	0.149					Agregado Fins:	0.01	
N° 200	0.074		-		0.0	Fine Malia 200.	0.01	
-200								
			CUR	IVA GRAI	NULOMI			
198.0	1. 11.	Mr. Mr.	101	M10	- 33	P46 A788 N/300		
29.0								
24.0								
- No. 1		4						
E 80								
E 800		1						
NO. 10.0		1	-	-				
E 88.0 70.0 80.0 10.0		1						
10.0 Ha 0 10.0 H		1						
70.0 10.0 10.0		1						
10.0 Hours 160.0 H		1						
70.0 40.0 40.0 40.0		1						

OBSERVACIONES:

Elaborado por:	Revieado por:	Aprobado por:
610	ABEL MARCELO PA INGENERIO CIVE CEP N IC GEOTFONA/ABORATO	CONTROL DE CALIDAD
Jeffe Spinnegalio	Esperiero de Suebre y Payte	CONTROL CURRENCUS GEOTECHIA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO LABORATORIO DE ENSAYO DE MATERIALES INMERSIÓN - COMPRESIÓN

COLUPU ABAD JOEL FRANKLIN Solicitante

COLUPU ABAD JOEL FRANKLIN
CAUCHO EN TROZOS RECICLADO Y LA FIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD
AYABACA (AVENIDA MANUEL FRANCISCO RENTERÍA) Proyecto

Ubicación

Fechs de ensayo 22/04/2024

: Mexcia asfática en caliente (MAC) : Diseño MAC (Asfato convencional) Tipo de muestra

		Grupo se	co (curado 4 horas a 25°C)	Grupo húme	edo (curado 24 horas a 60
	or DE PRODETAS	01	92	03	04
	Dieneto	10.11	10.11	10.11	10.12
-1	Espesie	8.60	8.60	8.55	8.60
-	Contemido de Cemento Astático	5.60	1.60	5.60	5.60
10	Peso Protete al Alm	9840.0	1641.8	1841.3	1839.9
-	Poso de la Proteta Salurada (00')	5845.0	1646.0	1845.1	1644.4
	Peso de la Proteta en el Agua	968.2	957.8	956.0	966.9
	Volumen de la Protete	687.7	666.2	689.1	687.5
	Peso Espacáco Bulk de la Proteta	2.385	2.360	2.382	2.385
	Fuerza (kg)	3230	3376	2620	2575
10	Area (on2)	80.28	80.28	80.28	80.44
11	Resistencia a la compresión (Mpx)	3.9	4.1	3.2	3.1
10	Promodio Resistencia a la comp. 4 h (kg)	2.4	.0		
15	Promedio Resistancia a la comp. 24 h (kg)				2
96	Resistencia a la compresión (Mpa)			.6	
15	Resistencia retenida (%)		78	.6	

Diseveriones:

- Pesos unitarios calculado a 25°C
- Ensayos realizados en prensa de concreto
- Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
S O O	ABEL MARCELO PASONIEL INGENERO CIVE. I CIP N° 221456 IC GEOTECNA LABORATORIO 5 4 C.	CONTROL DE CALIDAD JC GEOPECNIALAEORATORIO S A C.
Jule of Emboratoria	Ingeniero de Suelos y Predmentos	Control de Califeri AC GROTRONA LARGRATORIO

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO DISEÑO DE MEZCLA EN CALIENTE MÉTODO ILLINOIS - MARSHALL MODIFICADO

COLUMN ABAD JOEL FRANKLIN CAUCHO Y LA FIRRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIJIDAD AYABACA, PILIRA CAUCHO EN TROZOS RECICLADO Y LA FIRRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIJIDAD AYABACA, PILIRA

Proyecto 2022

AYABACA (AVENIDA MANUEL PRANCISCO RENTERÍA) Ubicación

22/04/2024 Fecha de ensayo

Tipo de muemos Descripción

Megota setática en cateros (MAC) Deseña MAC (Astallo convencional

DISEÑO DE MEZCLA EN CALIENTE

MÉTODO ILLINOIS - MARSHALL MODIFICADO

(RESUMEN)

1.- Mozola de agregados (Dosificación).

Agregado grava triturada: TM 3/4" (Cartiera Gloria)

Agregado arena triturada Fotor

(Cantera Giorio)

+ 69.6 % 1 82 %

± 40.0 %

Credation

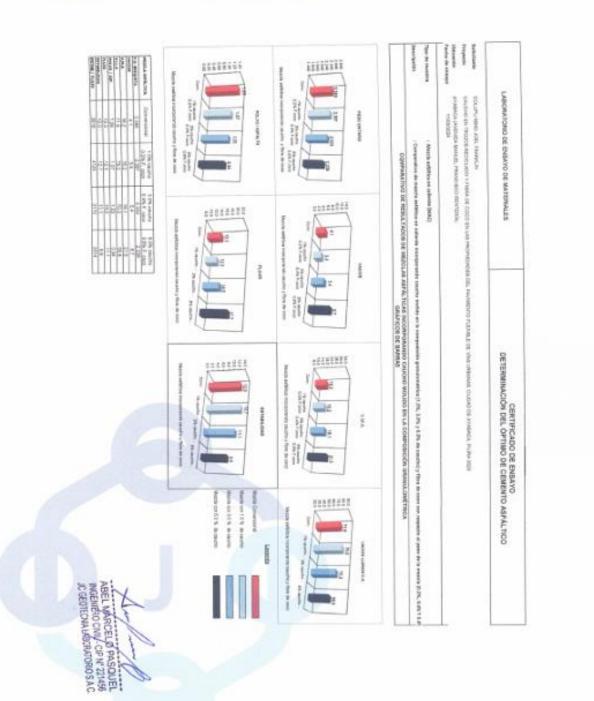
: ASTM D3615 - D6 "Expesificación hicroico MTC EG -2013 ercción (423)"

2.- Ligante autamos

PEN 60 170

% optimo de antalo maidual.

3.- Caracteristicas manshall modificado


Parameters in deserte		162%	Spane	413%	Especificación EG 2013
GOLPES	N'		75,0	1.1-1.	75
CEMENTO ASPALTIDO	%	5,40	5.60	5.88	
PESO LIWITARIO	kginti	2.380	2.386	2.389	1111/2
VACIOS	76	4.7	4.1	3.7	3.5
7.9.4	76	16.23	16.19	16,19	16
V. LL.C.A.	*	49.6	TLA	74.2	1,12-2
POLYO / ASPACTO	16	1.34	1.29	1.24	0.6 - 1.3
FLUID	.000	12.8	12.3	13.7	0:16
ESTABLICAD.	330	12.4	12.0	11.6	8.19
TREADUDIDERS OF	kgimi	2899.8	3616.3	3378.0	1700 - 4000
RESISTENCIA A LA DEMPHESIÓN	Man		3.9		2.1
REBISSENCIA RETENDA	*	3 No.	78.6		:75

Prohibide la reproducción parcial o total de este documento sin la subnimición secrita der área de Catidad de JC DEDTECNIA LABORATORIO.

Elaborado por: Revisado por: Aprobado por: WALL ASORD ABEL MARCEZO PASQUEL CONTROL DE CALIDAD INGENIERO CIVIL - CIP Nº 221456 AC GEODECNIA LABORATORIO S.A.C. JC GEOTECHIA LABORATORIO S.A.C. E AISMO OF Control do Califold JC GEOTECNIA LABORATORIO Jefe de Laboratorio Ingeniero de Suetos y Pevimentos

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO LABORATORIO DE ENSAYO DE MATERIALES GRAVEDAD ESPECÍFICA TEÓRICA MÁXIMA

Solicitante

COLUPU ABAD JOEL FRANKLIN
CAUCHO EN TROZOS RECICLADO Y PIBRA DE COCO EN LAS PROPIEDADES DEL PAVIMENTO FLEXIBLE DE VÍAS URBANAS, CIUDAD DE AYABACA,
PILIRA 2023
AYABACA (AVENIDA MANUEL FRANCISCO RENTERÍA)
11/08/2024

Proyecto

Ubicación Fecha de ensayo

Diseño de mercia asfática en calimite Tipo de muestra stantificación Descripción

Comparativo de mercia astática en callente incorporando caucho molido en la composición granulometrica (1.0%, 3.0% y 6.0% de caucho) y fibra de osoo con respecto al paso de la mercia (0.2%, 0.4% Y 0.6% fibra de osoo)

MUESTRA N°	1.0 % de caucho 0.2% F. coco	3.0 % de caucho 0.4% F. coco	6.0 % de caucho 0.6% F. coco	
- PESC DEL FRASCO	6047.0	8047.0	9047.0	
2 - PESO DEL PRASCO + AGUA+ VIDRIO	8193.0	8193.0	8193.0	
S-DIFERENCIA DEL PESO (04) - (05)	7704.0	7704.8	7695.0	
A - PESO DAL FRABCO + MUESTRA + AGUA	8912.0	8910.0	8914.0	
SPESO NETO DE LA MUESTRA	1206.0	1206.0	1219.0	
s - AGUA DESPLAZADA (2)-(3)	499.0	489.0	498.0	
PESO ESPECÍFICO MÁXIMO DE LA MUESTRÁ (5) / (6)	2.478	2.400	2.448	
CONTENDO % C.A.	5.00	8.60	8.60	

Elaborado por:	Revisado por:	Aprobado por:
CONTINUE DE LA CONTIN	ABEL MARCEL OF ASCULANCE INGENERÓ CIVA COP Nº 779-3	CONTROL DE CALIDAD JC GEOTECINALABORATORIO S A C
Jan Salvantior storio	Ingentero de Suelos y Pavimentos	Control de Calidad JC GROTECHIA LABORATORIO

Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Calidad de JC GEOTECNIA LABORATORIO.

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO MARSHALL LABORATORIO DE ENSAYO DE MATERIALES

SARREMANN
COLLIFU ABRO JOEL PRAINLIN
CAUCHO ENTROZOS RECICLADO Y FIBRA DE COCO EN LAS PROPREDASES DEL PRAVMENTO FLEXIBLE DE VIAS LIRBANAS, CUIDAD DE AYABACA,
Playedos
Disceridas
AYABACA (AVENDA MANUEL PRANCISCO RENTERIA)
Facina de entraye
11/08/24

Messa autatica en carerse (MAC) Tipo de muestra laseraficación Descripción

NUCLEOR modelectes (on el % óptimo del ciseño convenciónal incorporándo dautho molado en la composición granusmentos (b.5% de casume) y fora de coso can respecto al pesa de la muscula (b.6% film de nicos)

		INF	ORME DE ENSAYO	MARSHALL (AST)	M () 4027)			
		1.00	ME	30.5	No. 8	No. 50		No 200
I MACCO ANTH	195.0	109.0	90.4	18.4	46.4	58.9		1.2
PAGE MATERIAL 180.0 381.1 36.1 100.1 100.0 100.1			46 : 74	20 - 58	5 - 21		7 IE	
POSTA Y				1	1	1	ROHER.	SHEET.
	LCA, on Peac de la Marcia.		5.69					
7 Pullana > NY arrange de la Presida					36.25			
3 19	Asera - N°5 er jest de la Ple	ecta			55.87			
4 19	Concrete portland en peso-de la	r Monte			0.79			
	eso Especifica Aperenta del CA II				4,003			
4 4	suc Specifics in a cover + left	ONAL WOL			2.711			
	no Dyesillos de W.Arena - 10°C				2,694			
From Departition and Committee Portford (Appendix) (ECX)					-3.48			
 From Department de la Grava » Nº4 (Agenteria) grava. 								
10 Peso Napellico de la Anna + Nº4 (Apereiro) (p.N.)								
11 Musi promedo de la trespeta (II)								
12 Page de la brogada el sen (al)				1190.3	3790-9	1798.7		
13 6	13 Pesa de la tercante al agua par 16' (pr)				1366.2	1387.3		
14 Prop. de la l'expete desplaceix (pr)				964.4	166.2	NY.K		
15 Volume in a transporte per despitamentals (14)				130.7	591.0	55.6	2000	
16 9	riso reperifica that de la Despeta			3.29	2,05	2.236	2.336	
	teso Especifico Masimo - Sico		ATTHE DIRECT METERS		3,446	1000		
10 1	n de Vacos.	- 0	GREAT D MISS	8.7	4.7	8.6	8.7	3-1
	Has Specifics Dalli Agregada Tal	raf		100000	3.009		19-07-0	
	noo topecifico bleatano Agragada				2.008			
	ulido Rasarbido por el Agregado				4.30			
	o de Astato Pisativo				5.88			
	Interior Interitabile				2.94	22010	6.94	88-13
24	CHA			21.6	21.6	21.4	23.5	31
	N VACON TRANS COST C. A.			59.6	518	90.0	59.8	
	Name ASSESSMENT			17.0	36.6	18.6	19.9	8:31
27 8	nandadad sin oxenyir (Np)			947	901	199		
20 0	water die epistificant			0.00	1.90	5.00		
	Contributed Correspond			949	969	101	888	AUG BUS
The second second	Deadlided / Thigh			1136	1823	1969	3914	1708 - 469

Elaborado por:	Revisado por:	Aprobado por:
610	ABEL MARCELO AN INGENERO CIVIL COP N. C. CECTECNIX ABORATO	# 221455 CONTROL DE CALIDAD
State of the Storagerio	Ingeniero de Suelos y Paytes	HONOR CONSTRUÉS CARRAGAC GROTROMA LABORATORIO

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO MARSHALL LABORATORIO DE ENSAYO DE MATERIALES

SWINDOWN

COLUND ABAD JOEL FRANKLIN

CAUCHO EN TROZOG RECOLADO Y RIBRA DE COCO EN LAS PROPEDADES DEL PAVIMENTO FLEXIBLE DE VAS LIRBANAS, CUCHO DE AYABACA,

PERA 2023

LINGUESTA AYABACA, SUZUMIDA MANUEL FRANCISCO RENTERÍA)

Findia de entage

1108/04

Muzzia asfaltica en calierte (MAC)

nds saucho molido en la composición granularivatrica (3.0% de caucho) houses residuales son at % óptimo del diseño concencional incorpor y figos de coco con respecto al peso de la mazcia (0.4% filos de coco)

		INF	ORME DE ENSAYO	MARSHALL (AST	M D 69271			
		7 1100	2/2"	No.5	50:4	No. 100		No.200
1990, 52 (0.19)				19.7	- 4.1	19.7		6.7
N. PASSA MATERIAN. 1804 JOSE 100-0 CONTROL ACCUSAGE 100 MILES AND 100-008			94 : 39	20 - 58	5 - 21		2 - 100	
REQUESTA NO	1	-			1	1	PROPERTY	CHECK
1	% C.A. en Pese de la Marcia		5.00					
2 Ni Galago > N' Varrageo (R. la Ministra					36.48			
. 3	NAMES OF PERSONS ASSESSED.	ch.			10.75			
4	The Commission constant are person of the				0.19			
-	Then Date Ston Appear by 64 C.A.S.				1.00			
4	Press Especifica do la Grana - Nº4º				2.241			
7	Pleas Expecifico de la Avena - Nº4				2.694			
	Proc Type Nos del Carrento Porto		om		3,000			
					1000			
til. Heav Superfles de la Arena + 1914 (Aprelles) gallo.								
11 Mani premate de la tempeta co-					7.11			
	1) Place du la timpado el alte (pr)				1154.8	1005.0		
- 0	Please die in betauerte all agean per Alf	1200.6	1200.5	1198.2				
14					589.1	186.2		
16				5965	511.4	142.0		
- 15					23%	3,330	2,333	
17	Yeso (specifica Mastro - Res.		ASTR () 2041)		246			
18	To de Vacion		(000 ti 100)	1.6	9.9	9.8	5.4	2.5
19	Prote Especifico dulli Apergado Tot		20010111111		2,690			
26	Poss Especifics Ofertive Agregation				2.60			
21	Aufaito Alesceindo per el Agençario				0.00			
20	N de Adato Pache				5.37			
- 29	Selecte Providelitis				105		1.00	0.0-1.3
24	N.H.A.			16.0	38.0	16.7	18.1	14
28	The Value Brook and C.A.			70.0	16.7	40.7	79.2	
28	7540 0.007/0.25 east/			10.0	10.0	28.0	14.0	8-10
- 27	(national day corregio (Ng))			1000	1110	1100		
28	Pacer de establidad			1.00	100	1.80		
28	Southful Overgills			1000	1112	1120	1309	MINES
-	Incomplet / Hay			203	3177	2000	2170	1200 - 400

Elaborado por:	Revisado por:	Aprobado por:
O I O	ABEL MARCELO PAS INGENIERO CIAL CO PA DIC GEOTEOMIMA ADORATOR	221456 JC GEOTEGRIALABORATORIO S N.C.
No. of Bridge	Ingesteers de Suelta y Paverse	

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO MARSHALL

BHIORANN

COLUPTO ABNO JOEL PRANKLIN

CALKING EN TROZOG BEDGLADG Y FIRRA DE CODO EN LAS PROPIEDADES DEL PAVIMENTO PLEXIBLE DE VIAS URBANAS, DUDAD DE AYABACA,

Diferende y AVABACA (AYEMDA MANUEL PRANCISCO RENTERIA)

Fecha de errenys

1005/24

Meccle autotica en collente (MAC)

Subtres messades con el fa (géner del dawfe comencional incorporando caudes moleta en la composición granulamentos (1.0% de caudro) y fibro de com con vaspallo al peso de la maccia (0.2% fibro de como:

		INF	ORME DE ENSAYO	MARSHALL (AST	M D 6827)			
11 10F 11F				80-6	No. II	No. 50		No 300
TABRICS S AGTR	MIN 1910		19.4	48.1	21.7		1.1	
5-7-50-7-00-7-00-0-1 (00-2 (00			94 - 29	25 - 16	5-21		3-16	
HIGHER N.		1	2	- 3	79(340)00	697921		
EDMONIAL TO	Pe C.A. en Peso de la Nece		5.60	0.1				
- 2	% Greek in Mill on peer 8		38.12					
1	In Arman in 1874 on page 2				90.04			
-	No Companies positional on pr	ose de la Presde			1.0			
-	Pass Especifico Approvate o	MCA/America plo			1.825			
	Peso Especifico de la Gres				2.90			
7	Pana Espacifico-de la Arris				2304			
	Pesa Hiperilico del Cerrere		gett		3.100			
a Pero Especifica de la Cento > Mº1 (Apareste) gr/co								
10 Page Operation de la Asena « MP4 (Apassesia) (schic								
11	17 Album promote de la breparte 179							
- 0	C Free Se la Telepate el atre. (pr)				189.3	1195.5		
- 11	Treso de la braqueta al agu-	12000	3196.5	1097.2				
- 31	Preso der la briquette despis			987.0	ARTA	865		
15 Wiluman de la Intonta per despassamenta (cc)				SHI	500.0	560.7		
16					2.300	3346	3.367	
11	Fox Signafes Heaves		(ADTH G 30H);		2.6%			
- 16	To do Verine		AUTHOR DE 1/2019	1.5	1.9	1.1	3,4	2.5
- 11	Feen Dayworks that Ages	godo Triori			2.600			
29	Date Squarks the two A				2.697			
. 24	Aufatto Absorbide per el A				1139			
22	N de Autoto Dischilli				5.61			
- 29	Relacion Providendation				107		1.07	94-13
24	KMA.			362	16.7	16.2	94.2	166
25	the Vaccion Stemps copy C.A.			79.8	76.0	79.2	79.2	
100	Photo 6,60°(03,76 mm)			50.0	100	11.0	13.3	8 - 10
- 21	Dreambled up comply (N	w)		1000	100	1076		
26	Packet desemblished			1.00	104	7.84	The second	
- 26	Hessistated Coveyable			1399	1277	1364	1376	MINIST
30	Acceptor / Plan			4229	439	3666	4129	1700 - 400

The state of the s	logeniero de Suelos y Pertrantes	CONFIDE CARREST /C 600100NA LABORATURE)	
610	ABEL MARCELO PASQUEL. INGENERO CIVIL CEP N° 221456 JC CEOTECHINABORATORO 5 A.C.	CONTROL DE CALIDAD JC GEOFECNALABORATORIOS A.C.	
Elaborado por:	Revisado por:	Aprobado por:	

www.jc-geotecnia.com

CERTIFICADO DE ENSAYO ANÁLISIS GRANULORIÉTRICO (COMBINACIÓN DE AGREGADOR) LABORATORIO DE ENSAYO DE MATERIALES COLUPLI ABAD JOEL PRANKUN CALCINO EN TRUBOS RECICIDO Y FIRIRADE COCO EN LAS PROPEDIDES DEL HAVINENTO FIERRES DE VIAS UPBANAS, CUENDOS AVABACA, PURA 2023 AVABROA (AVENEON MINNAEL PRANCISCO REMISERA) 11/05/24 29, 420 19, 600 12, 799 6, 501 6, 349 4, 792 1, 349 2, 349 2, 349 1, 100 100.0 101.0 III.1 95.1 10.0 72.7 49.3 21.0 16.2 42 31,8 8.0 73 9.1 CURVA GRANULOMÉTRICA Aprobado por: Revisado por Elaborado per: CORA LABORAL ABEL MARCELO PASQUEL INGENERO CUAL - CIP N° 221456 IC GEOTECHA LABORATORIO S.A.C. CONTROL DE CALIDAD JC GEOTECNIA LABORATORIO S.A.C.

www.jc-geotecnia.com

LABORATORIO DE ENSAYO DE MATERIALES

CERTIFICADO DE ENSAYO DISEÑO DE MEZCLA EN CALIENTE MÉTODO ILLINOIS - MARSHALL MODIFICADO

Solicitante COLUPU ASAD JOEL FRANKLIN

Proyecto CAUCHO EN TROZOS RECICLADO Y FERRA DE COCO EN LAS PROPIEDADES DEL PANIENTO FLEXIBLE DE VIAS URBANAS, CUDAD DE AYABACA, PURA 2023

Ubicación AYABACA (AVENIDA MANJEL FRANCISCO RENTERÍA) Fesha de ensayo 11/05/2024

Tipo de muestra Descripción

: Mescle unféltios en calierte (MAC)

: Comparativo de mezole aefáltico en calierne incorporando caucho motido en la composición granutometrica (1.0%, 3.0% y 6.0% de caucho) y fibra de coco con respecto al peso de la mezola (5.2%, 6.4% y 6.6% fibra de coco)

COMPARATIVO DE MEZCLA EN CALIENTE MÉTODO ILLINOIS - MARSHALL MODIFICADO

(RESUMEN)

1.- Mezcis de agregados (Dosificación)

Agregado grava triturada TM 34" Agregado arena triturada Caucho molido

Fibre de com

40.0 50.0 40.0 59.5 3.0 6.0 0.2 0.2 9.2 0.4 0.6

ASTM D5 "Especificación técnica MTC EG -2013 sección (423)"

2.- Liganie asfattus

Tipo de sefeto % optimo de sefelto residual 1.58

3.- Caracteristicas marshall modificado

Parameters on disafer		% Optime diseño convencional	1.0 % de casolte 0.2% de F. coco	3.0 % de caucho 8.4% de F. coco	6.0 % de caucho 9.0% de F. coco	Especificación EG 2013
OCUPES	-W	75	75	15	76	75
CEMENTO ASPALTICO	16	5,60	5.60	5.60	5,60	
PEBO UNITARIO	kg/m3	2.385	2.387	2,333	2.236	
VADOS	76	4.1	3.4	5.4	8.7	3-5
V.M.A.	- %	16.2	16.2	38.1	21.5	14
LUCA	- %	71.8	79.2	70.2	09.0	
POLYGYASFALTD		1.29	1.07	1.03	0.94	0.6 - 1.3
PLUJO	3) \$17, 6.31 mm	13.3	12.3	14	18	8 - 14
ESTABLICAD	636	12	13.	. 11	. 0	0.15
DETABLIDADI FLUID	hplim	3816.3	4124.8	3160.5	2013.7	4700 +4000

Chaervaciones:

* Prohibida la reproducción parcial o total de este documento sin la autorización escrita del área de Celidad de JC GEOTECNIA LABORATORIO.

Elaborado por:	Revisado por:	Aprobado por:
610	ABEL MARCELO PASOLLI INGENERO PIVIL - CIP N° 221456 JC GEOTEDHALABORATORIO S AC	IC OFFITE MAY APPROPRIED A
Jele de Labbratorio	Ingeniero de Suelos y Paviment	OR CORDIN ON CHRISING JC GROTECHIA LABORATORIO