

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm² adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Barrios Vasquez, Bruce Jack (orcid.org/0000-0002-3824-7362) Leon Raymundo, Elias Gabriel Imar (orcid.org/0000-0002-8142-1231)

ASESOR:

Mgtr. Muñoz Arana, Jose Pepe (orcid.org/0000-0002-9488-9650)

LÍNEA DE INVESTIGACIÓN:

Diseño Sísmico y Estructural

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

CHIMBOTE – PERÚ 2024

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, MUÑOZ ARANA JOSE PEPE, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHIMBOTE, asesor de Tesis titulada: "Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023", cuyos autores son LEON RAYMUNDO ELIAS GABRIEL IMAR, BARRIOS VASQUEZ BRUCE JACK, constato que la investigación tiene un índice de similitud de 19%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

CHIMBOTE, 02 de Julio del 2024

Apellidos y Nombres del Asesor:	Firma
MUÑOZ ARANA JOSE PEPE	Firmado electrónicamente
DNI: 32960000	por: JMUNOZA el 02-07-
ORCID: 0000-0002-9488-9650	2024 00:48:27

Código documento Trilce: TRI - 0787087

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad de los Autores

Nosotros, LEON RAYMUNDO ELIAS GABRIEL IMAR, BARRIOS VASQUEZ BRUCE JACK estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHIMBOTE, declaramos bajo juramento que todos los datos e información que acompa ñan la Tesis titulada: "Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- 3. No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- 4. Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma		
BRUCE JACK BARRIOS VASQUEZ DNI: 72539172 ORCID: 0000-0002-3824-7362	Firmado electrónicamente por: BBARRIOSVA8 el 02- 07-2024 16:27:55		
ELIAS GABRIEL IMAR LEON RAYMUNDO DNI: 77135629 ORCID: 0000-0002-8142-1231	Firmado electrónicamente por: ELEONRA el 02-07- 2024 15:25:41		

Código documento Trilce: TRI - 0787089

Dedicatoria

Dedicamos esta tesis a Dios, pues hemos podido experimentar la maravilla de la creación de él, su infinita sabiduría y su amoroso cuidado. Por permitirme adentrarme en el conocimiento y por brindarme la oportunidad de compartirlo con los demás a través de este trabajo.

Agradecimiento

A mis padres, Hugo Barrios Jara y Vilma Vasquez Huamanchumo por ser mis primeros maestros, por ser mi guía moral y por ser mi inspiración. Por formarme con normas y valores para luchar y alcanzar todos mis objetivos.

Barrios, B.

A Dios, a mis padres, Imar Leon Rosales y Zaira Raymundo Huamán; a mi pareja, Georgina Hilario Mota, por su inmenso amor y dedicación que me brindaron a lo largo de mi vida y carrera profesional.

Leon, E.

A mi paciente asesor, Mgtr. Muñoz Arana José Pepe, que con su orientación y apoyo han sido invaluables para poder culminar esta tesis.

Índice de contenidos

Cai	ratula	
Dec	claratoria de autenticidad del asesor	i
Dec	claratoria de originalidad de los autores	ii
Dec	dicatoria	i
Agr	adecimiento	٠١
Índ	ice de contenidos	v
ĺnd	ice de tablas	vi
Índ	ice de figuras	vii
Res	sumen	i
Abs	stract)
l.	INTRODUCCIÓN	1
II.	METODOLOGÍA	9
III.	RESULTADOS	16
IV.	DISCUSIÓN	33
٧.	CONCLUSIONES	37
VI.	RECOMENDACIONES	39
RE	FERENCIAS	40
AN	EXOS	46

Índice de tablas

Tabla 1: Cantidad de ladrillos a compresión - población
Tabla 2: Cantidad de ladrillos a compresión - muestra1
Tabla 3: Análisis granulométrico ASTM D 422 – Piedra Chancada1
Tabla 4: Análisis granulométrico ASTM D 422 – Arena Gruesa1
Tabla 5: Resumen de ensayo del peso unitario de la Piedra Chancada (Norma ASTN
C-29 / NTP 400.017)1
Tabla 6: Resumen de ensayo del peso unitario de la Arena Gruesa (Norma ASTM C
29 / NTP 400.017)1
Tabla 7: Análisis de Cáscara de Huevo por fluorescencia de rayos x ASTM C251
Tabla 8: Análisis de Ceniza de Concha de Abanico por fluorescencia de rayos x ASTI
C252
Tabla 9: Resultado de asentamiento del concreto MTC 3 7052
Tabla 10: Resultado de ensayo a compresión del ladrillo de concreto con 0%, 1%, 2%
y 3% a los 7 días – ASTM C-392
Tabla 11: Valores de análisis de varianza (ANOVA) de la resistencia a la compresió
a los 7 días2
Tabla 12: HSD de Tukey para la resistencia a la compresión a los 7 días2
Tabla 13: Resultado de ensayo a compresión del ladrillo de concreto con 0%, 1%, 2%
y 3% a los 14 días – ASTM C-392
Tabla 14: Valores de análisis de varianza (ANOVA) de la resistencia a la compresió
a los 14 días2
Tabla 15: HSD de Tukey para la resistencia a la compresión a los 14 días2
Tabla 16: Resultado de ensayo a compresión del ladrillo de concreto con 0%, 1%, 2%
y 3% a los 28 días – ASTM C-392
Tabla 17: Valores de análisis de varianza (ANOVA) de la resistencia a la compresió
a los 28 días2
Tabla 18: HSD de Tukey para la resistencia a la compresión a los 28 días3
Tabla 19: Ensayo de alabeo de unidades de ladrillos de concreto elaborados e
laboratorio – NTP 339.6133

Índice de figuras

Figura 1: Esquema de diseño de investigación	9
Figura 2: Curva granulométrica ASTM D22 – Piedra Chancada	16
Figura 3: Curva granulométrica ASTM D22 – Arena Gruesa	17
Figura 4: Análisis de Concha de Abanico por el análisis térmico diferencial	20
Figura 5: Distribución F para la resistencia a la compresión - 7 días	23
Figura 6: Distribución F para la resistencia a la compresión - 14 días	27
Figura 7: Distribución F para la resistencia a la compresión - 28 días	30

Resumen

El estudio de la presente tesis tuvo como objetivo la investigación de la resistencia a compresión del ladrillo de concreto f'c=175 kg/cm² al adicionar cáscara de huevo triturado y cenizas de concha de abanico. Donde se determinó la resistencia del ladrillo de concreto a la compresión a edades de 7, 14 y 28 días de curado, el tipo de investigación es aplicada, con un diseño experimental de tipo cuasiexperimental basado en experimentos de ensayos. Para el desarrollo de la investigación se fabricó 12 ladrillos patrón con diseño f'c=175 kg/cm² y 36 ladrillos a las cuales se adicionó al concreto cáscara de huevo y cenizas de concha de abanico en porcentajes del 1%, 2% y 3%. La cáscara de huevo encontró un 89.16% de calcio, mientras que las cenizas de concha de abanico obtuvieron un 45.12% de calcio determinados por análisis de fluorescencia de rayos X. Las conclusiones obtenidas dan como resultado que la adición de cáscara de huevo y cenizas de concha de abanico al concreto en 1%, 2% y 3%, influye significativamente en la resistencia del concreto f'c=175 kg/cm² a edades de 7,14 y 28 días; además al 2%, se encuentran mejores resultados prometedores.

Palabras clave: Resistencia a compresión, cáscara de huevo, cenizas de concha de abanico.

Abstract

The objective of the study of this thesis was to investigate the compressive strength of

concrete brick f'c=175 kg/cm2 when adding crushed eggshell and fan shell ash. Where

the resistance of the concrete brick to compression was determined at ages of 7, 14

and 28 days of curing, the type of research is applied, with a quasi-experimental

experimental design based on test experiments. For the development of the research,

12 pattern bricks were manufactured with a design f'c=175 kg/cm2 and 36 bricks to

which eggshell and fan shell ash were added to the concrete in percentages of 1%.

2% and 3 %. The eggshell found 89.16% calcium, while the fan shell ashes obtained

45.12% calcium determined by X-ray fluorescence analysis. The conclusions obtained

result in the addition of eggshell and fan shell ash fan shell to concrete at 1%, 2% and

3%, significantly influences the resistance of concrete f'c=175 kg/cm2 at ages of 7,14

and 28 days; Furthermore, at 2%, better promising results are found.

Keywords: Compressive strength, eggshell, fan shell ash.

Х

I. INTRODUCCIÓN

En la sociedad actual, donde el cambio es constante, la gestión eficaz sostenible de recursos y residuos se volvió una preocupación crucial. Uno de los desafíos menos explorados, pero igualmente significativos en la ecuación es la gestión de cáscaras de huevo y conchas de abanico, dos materiales orgánicos que, en su mayoría, son pasados por alto dentro del contexto de la sostenibilidad y la administración de desechos.

A medida que se avanza en este estudio, se hizo evidente que el ladrillo de concreto es más que una simple pieza de construcción; constituye un componente fundamental en el progreso de la ingeniería civil. Su versatilidad, resistencia y asequibilidad lo han convertido en un componente esencial en una diversidad de proyectos de construcción a lo largo de todo el mundo. Sin embargo, detrás de esta aparente simplicidad y omnipresencia se esconde un mundo complejo de desafíos y oportunidades.

Por otro lado, los cascarones de huevo y las conchas de abanico representan un recurso natural valioso, cargado de minerales esenciales como el calcio como lo menciona Berrú (2014 p. 16), que podría ser aprovechado en la agricultura y otras aplicaciones industriales. De modo que, su desecho inadecuado puede dar lugar a unos problemas ambientales, desde la acumulación de residuos en vertederos hasta la contaminación del suelo y el agua. Estos dos materiales, aunque tienen aplicaciones industriales y comerciales significativas, también generaron preocupaciones ambientales y de salud pública cuando no se gestionan adecuadamente. En Perú, una nación rica en recursos naturales y con una economía diversificada, la interacción entre la producción y el desecho del cascarón de huevo y concha de abanico presentó desafíos cruciales para balancear el crecimiento económico y la sostenibilidad ambiental.

Así mismo, la acuicultura de vieiras experimentó un aumento notorio en Perú, como lo indicó Fernandez (2021 p. 25) impulsando la economía costera y la seguridad alimentaria. Sin embargo, esta expansión no está libre de efectos secundarios, como la contaminación del agua y la propagación de enfermedades, lo que planteó interrogantes apremiantes sobre la gestión sostenible de este recurso vital.

De igual modo, las cáscaras de huevo se desecharon en la basura, lo que puede contribuir a la acumulación de residuos contaminantes. Sin embargo, algunas personas las utilizaron como abono o suplemento mineral para plantas. Además, existe la preocupación de que se hayan propagado enfermedades como la salmonela, lo que es un problema si no se manejan adecuadamente.

De lo anteriormente mencionado, se formuló la siguiente interrogante: ¿Cómo influye la adición de cáscaras de huevo triturado y cenizas de concha de abanico en la resistencia a compresión de los ladrillos de concreto f'c=175kg/cm²? Para ello, se realizó una serie de experimentos, ensayos y análisis, donde se buscó determinar cómo la variación en la proporción de estos materiales aumentará la suficiencia de los ladrillos para soportar las fuerzas a los 7, 14 y 28 días después del proceso de curado.

En relación con la justificación, desde el punto de vista técnico, el trabajo de investigación se basó en dar alternativas para mejorar la fabricación de los ladrillos de concreto, teniendo como objetivo adquirirlo a un bajo precio, ya que se observó que la cascara de huevo y conchas de abanico contamina a la ciudad de Chimbote y Nuevo Chimbote, ayudando así, al medio ambiente. En la justificación práctica, se dio a conocer la resistencia a compresión del ladrillo de concreto f'c=175 kg/cm² con la adición de cáscara de huevo triturado y cenizas de concha de abanico, lo que llevó a presentar un diseño innovador con sus respectivos resultados. Así mismo, la justificación metodológica, se fundamentó en poder lograr con metas propuestas en este trabajo de investigación, teniendo como propuesta realizar diferentes estudios físicos-mecánicos de los materiales que se utilizaron para que sirvan a futuros proyectos de investigación. Para finalizar, la justificación social, como crecimiento y modernización de las ciudades y mejorar la calidad de vida de las personas, debieron orientarse a buscar nuevas mejoras técnicas y a precios accesibles, con la finalidad, que se incluyan al proceso constructivo, ofreciendo mejores resultados y la adecuada seguridad.

Dentro de este marco, se planteó como objetivo general del trabajo de investigación: evaluar la resistencia a compresión de un ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico en proporciones del 1%, 2% y 3%. Para los objetivos propuestos se necesitó identificar las propiedades físico-mecánicas de los agregados finos y gruesos, mediante el análisis granulométrico. Determinar los componentes químicos de la cáscara de huevo triturado y cenizas de concha de abanico, mediante ensayos de análisis por fluorescencia de rayos x y análisis térmico. Determinar el asentamiento requerido del concreto mediante el procedimiento de medición de slump haciendo uso del cono de Abrams de acuerdo con la NTP 339.045. Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días. Identificar la deformación del ladrillo de concreto experimental mediante el ensayo de alabeo exigidos por la NTP E070, 2006.

Se plantearon las siguiente hipótesis Hi: La adición de cáscara de huevo triturado y cenizas de concha de abanico en proporción del 1%, 2% y 3% mejora y aumenta significativamente la resistencia a compresión de un ladrillo de concreto f'c=175kg/cm². Hipótesis nula: Ho: La adición de cáscara de huevo triturado y cenizas de concha de abanico en proporción del 1%, 2% y 3% no mejora y no aumenta la resistencia a compresión de un ladrillo de concreto f'c=175kg/cm².

Acerca de los antecedentes internacionales en este estudio Ayodele, Oketope y Olatunde (2019 p. 2), se propuso evaluar las características de los ladrillos de laterita que se reforzaron utilizando polvo de cascarón de huevo y polvo de serrín como una alternativa económica al cemento. Los ladrillos de laterita estabilizados con ceniza obtuvieron una resistencia de 1.2 N/mm², siendo especialmente efectivos con un contenido de ceniza del 2% y el 4%. Se concluyó que las materias primas empleadas pueden reemplazar al cemento de manera efectiva en la construcción de viviendas económicas.

Así mismo, Pradas (2019 p. 24), buscó reutilizar aprovechando las cáscaras de huevo triturado como adición en la fabricación de materiales que se mezclan con agua y se exponen al aire. Este proceso involucró la utilización de equipos y pruebas para llevar a cabo una simulación a escala piloto. Los resultados demostraron que los desechos de CDH se ajustaron a las regulaciones y tienen la capacidad de desempeñar el papel de aglutinante hidráulico en la construcción de carreteras, reemplazando hasta un 15% del cemento Portland. Se concluyó que los desechos de cáscaras de huevo de gallina constituyen recursos valiosos para la fabricación de materiales conglomerantes hidráulicos.

De modo que, Nabilah (2019 p. 5), tuvo como objetivo el trabajo de implementar tecnologías orientadas al cuidado del entorno en la industria de la construcción para que las conchas de mejillón sean procesadas y quemadas adecuadamente para conseguir polvo de conchas de vieiras con contenido del 1%, 2%, 3% y 4% en diseño de hormigón. Determinó de qué está hecha la ceniza de cáscara a nivel químico. Los mejillones obtuvieron una elevada proporción de carbonato cálcico. Se realizó un ensayo de durabilidad y se encontró que la muestra sea sustituida con ceniza CM. Se concluyó una mayor tolerancia a la presión cuando se compara con la muestra de referencia o control.

En otra parte, un estudio realizado por James (2017 p. 8), investigó la viabilidad de utilizar ceniza de cascarón de huevo como complemento del calcio en la estabilidad del suelo a gran escala, tras determinar que la concentración óptima de cal para mejorar el suelo era del 4%, incorporó la ceniza en proporciones del 0.5%, 1% y 2%. Después de un periodo de envejecimiento de siete y veintiocho días, realizó pruebas de resistencia, ductilidad y análisis mineralógicos. Los resultados revelaron que al

añadir CCH mejoró la resistencia tanto a corto como a largo plazo, con un aumento significativo del 24.43% en la resistencia después de 28 días al reemplazar el 2% de ceniza. Sin embargo, la ductilidad disminuyó del 21.46% al 13.93% al agregar un 2% de ceniza.

A nivel nacional, Hurtado (2019 p. 52) y Mori (2022 p. 25), analizó la incorporación de PCH y CA para mejorar las características físicas y mecánicas del hormigón. El procedimiento utilizado en este estudio fue hipotético-deductivo, el cual tuvo un diseño experimental aplicado, donde se ensayaron 36 muestras para resistencia a compresión y 36 muestras para resistencia a tracción y se agregaron 24 ensayos físicos a los cuales se les agregó SCH y SSA en las proporciones de 2% SCH y 1% RSO; 4% CCDH y 1,5% CCDA y 6% CCDH y 2,5% CCDA, los cuales fueron evaluados en 7 días, 14 días y 28 días. Así, se llegó que la adición de CCDH y CCDA al (4% y 1,5%) y (6% y 2,5%) varía las propiedades negativamente y a su vez el porcentaje de males menores (2% y 1%) cambiando positivamente las cualidades físicas y propiedades mecánicas del hormigón.

Así mismo, Mauricio (2021 p. 380), utilizó las cenizas de concha de abanico (CCA) debido a su alta concentración de dolomita en la vieira. Se fabricaron y curaron pilotos de concreto estándar junto con muestras con adiciones del 3%, 4% y 5% de CCA para ser evaluados después de 7, 14 y 28 días de proceso de curado. Los hallazgos indicaron que se registró una resistencia a la compresión de 242.63 kg/cm² después de 28 días al agregar un 3% de CCA, Esto implicó un incremento del 16% en relación con el control patrón. Al agregar un 4% de cenizas, la resistencia máxima alcanzada fue de 245.25 kg/cm², mientras que con un 5% se obtuvo una resistencia de 261.17 kg/cm², lo que supuso un ascenso del 24%. Como resultado, se determinó que la incorporación de CCA ejerce un efecto positivo en el aumento de la resistencia del concreto, siendo el porcentaje más óptimo el del 5%.

Por esta razón, Alfaro (2019 p. 157), su propósito fue examinar y contrastar las modificaciones en las características del concreto tradicional frente al concreto experimental de reemplazo de cemento de CH con resistencias de 210kg/cm², 280kg/cm² y 350kg/cm². La población y muestra del estudio consistieron en los concretos posteriores con resistencias de 210 kg/cm², 280 kg/cm² y 350kg/cm². La observación principal fue que el concreto logró su resistencia a los 7 días al

reemplazar el 15% y el 2% de CH. Como conclusión, se puede afirmar que la CDH es un sustituto eficaz del cemento.

De modo que, Reyes (2019 p. 44) y Farías (2018 p. 38), mejoró el desempeño sobre el hormigón con una resistencia nominal f´c de 210 kilogramos por centímetro cuadrado, sustituyendo el cemento al 4%, 6% y 8% por CCH. Se llevó a cabo una investigación de naturaleza correlacional y experimental. Así, se obtuvieron resultados positivos en el aumento de la durabilidad y trabajabilidad al sustituir el cemento por cáscara de huevo en un 8%. Así, se concluyó, el empleo de CH contribuye a mejorar las propiedades del hormigón, logrando así f'c = 214,96 kg/cm2, y del hormigón ordinario obtenido con f'c = 212,24 kg/cm2, lo que superó las características del hormigón ordinario en 2,72 %.

Así mismo, Chandrasekhar (2021 p. 48) y Natour (2019 p. 3), su objetivo fue investigar la combinación de PCH y cenizas volantes en la producción de hormigón. Utilizó estos dos residuos como aditivos en el cemento y estudió sus propiedades. Agregó cáscaras de huevo trituradas a una tasa constante del 15,0% (0%, 2,5%, 5%, 7,5%, 10%, 12,5%, 15%) y ceniza del 0% al 30% en el volante de cemento (0%. 5%, 10%, 15%, 20%, 25%, 30%). Como resultado, 2 de las mezclas experimentales mejoraron la manejabilidad del concreto, mientras que las otras muestras evidenciaron una disminución en la manejabilidad como resultado del aumento en el contenido de cenizas de cáscara de palma (PCH) y cenizas volantes. Llegando a concluir que, la resistencia máxima después de 7 días es 29,67 MPa, la resistencia máxima después de 28 días es 39,75MPa, la resistencia a la tracción dividida después de 7 días es 2,72 MPa y la resistencia a la tracción después de 28 días es 4,10 MPa, por lo que el intercambio óptimo es del 15%.

De tal manera que, Akarley (2019 p. 85), determinó la calidad de los mecanismos constructivos, bloques de hormigón, prismas y muros sustituyendo el material fino por CA, con un curado constante en los primeros 7 días para construir pilotes y paredes y así comprobar las pruebas requeridas por la norma E.070 (2006), gracias a las pruebas que realizó, mostró que sumar un 16% indica resistencia a la comprensión 26.475 kg/cm2, superando la tendencia en un 15%, alcanzando sólo 22.890 kg/cm2.

A nivel local, Córdova (2021 p. 27), su finalidad fue producir ladrillos para la industria ladrillera utilizando como materia prima la CCAB y el vidrio, ya que tienen propiedades

esenciales de reemplazo del cemento como CaO y altos niveles de sílice que ayudan a mejorar la resistencia a la compresión después de 28 días de los ladrillos convencionales es de 137,58 kg/cm2. Luego de cambiar la composición, su resistencia a la compresión alcanzó 172,88 kg/cm2, un crecimiento del 27%. Después de 14 días, la resistencia de los bloques tradicionales alcanzó 122,98 kg/cm2. Al cambiar la composición, la resistencia alcanzó 141,78 kg/cm2, lo que supone un aumento del 14%. Después del periodo de una semana se convierte en 115,16 kg/cm2. Cambiando el mecanismo la resistencia alcanzó los 122,02 kg/cm2, lo que supone un crecimiento del 5%. Se concluyó que los ladrillos con 5% de polvo soplado y 10% de vidrio esmerilado en lugar de cemento tenían mayor resistencia que el concreto convencional a los 7, 14 y 28 días de prueba.

Así mismo, Zavaleta (2019 p. 65), tuvo como objetivo observar cómo afectaría al cemento el reemplazo del 15% de la carcasa del huevo y del 8% del horno de maíz. En este trabajo se buscó aumentar la durabilidad de los ladrillos sustituyendo el 23% de las materias primas antes mencionadas por cemento, SSA activado a 900°C y maíz a 450°C. Se concluyó que, la proporción de materiales utilizados era similar a la del cemento. Aparte de que no cumplió con las expectativas debido a que su ladrillo prueba no tuvo un mejor desempeño que el ladrillo de referencia en ninguna prueba.

Por otro lado, Chumioque (2019 p. 31), tuvo como propósito especificar la resistencia a la compresión del concreto f`c=210 kg/cm2 y reemplazarla con 3 pequeños porcentajes diferentes como 3% de ceniza de carcasa de vieira y 6% de bagazo de caña de azúcar, el segundo es 5% CCA y 10% BCA, el tercero es 7% CCA y 14% BCA, que será enviado al laboratorio para 9 pruebas correspondientes. El óptimo resultado se obtuvo con un porcentaje de reemplazo de 5% BCA y 10% CCA dando como resultado una resistencia a la compresión de f'c=210kg/cm² dando como resultado la mejor resistencia.

Según lo estipulado en la Norma E070 Albañilería, es fundamental que la edificación de unidades de albañilería se realice de acuerdo con las regulaciones establecidas y los requisitos mínimos pertinentes. Esta normativa asegura la calidad y la seguridad de las estructuras edificadas, al establecer lineamientos precisos que deben seguirse durante todo el proceso de construcción.

En la investigación de Vásquez (2023 p. 35), las propiedades mecánicas de los morteros elaborados mostraron que, en el caso de las mezclas con cemento de Tipo I, la capacidad de resistencia a la compresión de la combinación experimental (M.E) fue de 189.59 kg/cm2 a los 28 días, mientras que la mezcla patrón (M.P) alcanzó 190.53 kg/cm2 en el mismo período. En un contexto similar, para las mezclas con cemento Tipo V, la resistencia a la compresión de la M.E fue de 189.6kg/cm2 a los 28 días, en comparación con los 193.46 kg/cm2 obtenidos por la M.P.

Así mismo, Ríos (2017 p. 28), investigó la capacidad a compresión del concreto al agregar una proporción de cáscara de huevo molida, reemplazando el cemento con porcentajes de 5% y 10% en la dosificación. Se concluyó que los resultados de la prueba de compresión indican que el concreto que contiene cascarón de huevo mostró una resistencia superior después de siete días de curado, lo que sugiere que la cáscara de huevo molida actúa como un acelerador natural del fraguado.

En el Perú, según ComexPerú (2022 p. 2), se mostró un crecimiento equilibrado durante los últimos años, la exportación de sus principales productos no tradicionales exportados, se encontró un crecimiento registrado en la industria pesquera, principalmente por el crecimiento de las exportaciones de conchas de abanico que pasaron de \$51.000.000.00 entre enero y octubre del 2020 a 97 millones de dólares en el año 2021.

II. METODOLOGÍA

La investigación se centró en un enfoque cuantitativo de tipo aplicado, se procuró obtener información directa, respaldándose en los ensayos realizados, con el objetivo de generar un mayor entendimiento. Para Castro (2022 p. 150), la investigación aplicada utilizó la información previamente obtenida a través de la investigación fundamental para dirigirlos hacia el logro de objetivos específicos. En este sentido, este tipo de estudio aprovechó todo el conocimiento disponible en un área particular y lo aplica con el propósito de abordar problemas concretos.

La estructura de la investigación siguió un diseño cuasiexperimental, se estableció una relación causa-efecto entre una variable dependiente e independiente, además no son puestas de manera aleatoria. La razón por la que se optó por un diseño de corte transversal es porque se llevó a cabo durante un intervalo específico de tiempo., por último, tiene un alcance explicativo, porque buscó responder los problemas planteados Abreu (2012 p. 7).

 M_{i} Xi **O**i Yi Var. Ind. Resultado Var. Dep. Grupo Control R.C Yii 0ii Mii Xii Var. Dep. Resultado Grupo Var. Ind. (1%, 2% Control y 3% de Cáscara Experimental de Huevo Triturado v Ceniza de Concha de Abanico

Figura 1: Esquema de diseño de investigación

Donde:

Mi: Los ladrillos fabricados por métodos convencionales representan el grupo de control.

Mii: GE, es la mezcla diseñada con el concreto modificado.

Xi: Variable independiente, formulación de la mezcla realizada de manera tradicional

Xii: Variable independiente, adicionando el 1%, 2% y 3% de cáscara de huevo y concha de abanico al concreto.

Oi: Observaciones del GC, se refiere al producto que adquirieron de la manera convencional.

Oii: GE, es el producto donde se obtuvo la forma cambiada.

Yi: VD, resistencia a compresión de los ladrillos fabricados de manera convencional.

Yii: VD, resistencia a compresión de los ladrillos fabricados de manera cambiada.

Se describe la variable dependiente de manera conceptual a la resistencia a compresión del hormigón como el indicador de rendimiento más utilizado por los profesionales de la construcción cuando se planifican construcciones y otras obras arquitectónicas, se evaluó la resistencia del hormigón a través de un proceso en el que se somete una muestra cilíndrica del material a una prueba de compresión en una máquina especializada. La resistencia a la compresión se determinó al separar la fuerza aplicada en la muestra por su área de la sección transversal que soporta la carga y se expresa en kg/cm² Cemex (2019 p. 2). Durante el proceso operacional, la evaluación se llevó a cabo realizando las pruebas de compresión que consistió en llevar el bloque a la falla y registrar la carga en el área de contacto dañada, Obregón (2018 p. 24). Se consideraron dimensiones como el diseño de la mezcla y la calidad del concreto, evaluando indicadores como la dosificación con variaciones del 1%, 2% y 3%, así como pruebas de resistencia a compresión. La escala de medición se centró en analizar la relación entre estos parámetros.

Se describe la variable independiente de manera conceptual, Según Rodríguez (2021 p. 3), que la cáscara de huevo es una fina capa mineral, con un grosor de aproximadamente 350 micras, que resguarda el interior del huevo de daños mecánicos, deshidratación y la posible contaminación por microorganismos. Esta capa presentó múltiples poros que facilitan el intercambio de gases esenciales para la respiración del embrión, además de proveer el calcio necesario para el desarrollo de su estructura ósea. Durante el proceso operacional, la proporción de nuestros productos básicos adicionadas a la dosificación de concreto aumentó la durabilidad y consiguió un alto nivel de rigidez. Se consideraron dimensiones como la granulometría y el análisis químico, evaluando indicadores como el tamizaje, el peso específico y la composición química. La escala de medición se enfocó en analizar la relación entre estos parámetros.

Se describe la variable independiente de manera conceptual, Según Biopat (2019 p. 5), que la concha de abanico como organismos bentónicos que se alimentaron de fitoplancton y viven en fondos arenosos y fangosos con algas y mariscos a profundidades de hasta 40 metros. Forman grupos conocidos como 'bancos', con una alta densidad en la zona central (aproximadamente 9-10 individuos por metro cuadrado) y una densidad media de 1-2 individuos por metro cuadrado en las zonas periféricas. Están en un estado planctónico durante los primeros 20 días de su ciclo de vida, luego cambian a un estado bentónico que dura unos 350 días para completar su ciclo de vida. Durante el proceso operacional, la proporción de nuestros productos básicos adicionadas a la dosificación de concreto aumentó la durabilidad y consiguió un alto nivel de rigidez. Se consideraron dimensiones como la granulometría y el análisis químico, evaluando indicadores como el tamizaje, peso específico y la composición química. La escala de medición se enfocó en analizar la relación entre estos parámetros.

Se define una población de investigación a un conjunto específico de casos delimitado y accesible que se emplea como punto de partida para la elección de la muestra y que cumple con ciertos criterios previamente establecidos. Al considerar las poblaciones de estudio, es crucial destacar que este concepto abarca no solamente a la raza humana, sino que también incluye animales, muestras biológicas, instalaciones

médicas, grupos familiares, entre otros. En este contexto, se empleó un término análogo como "el ámbito de la investigación", Arias (2016 p. 3).

Es la agrupación de ladrillos hecho de concreto tradicionalmente y experimental adicionando a la dosificación por el 1%, 2% y 3% de CHT y CCA para hacer ladrillos de concreto f'c=175 kg/cm², con un total de 15 bloques de concreto estándar y 45 bloques de concreto experimentales, siendo así un total de 60 ladrillos de concreto para luego pasar por el proceso de curado y sumergirlos usando agua potable, obteniendo los resultados de evaluación a los 7, 14 y 28 días, teniendo en consideración los estándares mínimos aceptables de la NTP, siendo esta la población.

Tabla 1: Cantidad de ladrillos a compresión - población

RESISTENCIA A LA COMPRESIÓN EDAD (días)					Total
DESCRIPCIÓN	VARIABLE INDEPENDIENTE	7 días	14 días	28 días	TOtal
M – 0%	-	5	5	5	15
M – 1%	Cássara da buoya triturada y	5	5	5	15
M – 2%	Cáscara de huevo triturado y ceniza de concha de abanico	5	5	5	15
M – 3%	Certiza de concha de abartico	5	5	5	15
TOTAL					

Como propósito fundamental del análisis de los factores de una población se identificó, recopiló y clasificó datos investigados para obtener una comprensión más clara. La elección de una muestra no probabilística puede ser accesible si el investigador lo considera apropiado Manterola (2017 p. 2). Se realizó un análisis de 48 de ladrillos de concretos fabricados al adicionar un 1%, 2% y 3% de CHT y CCA, debidamente elegidas de acuerdo al diseño de mezcla correspondiente para el ensayo de compresión. La muestra será organizada en tres grupos: cuatro ladrillos para cada uno de los períodos de curado, que son 7, 14 y 28 días.

Tabla 2: Cantidad de ladrillos a compresión - muestra

RESISTEN	ICIA A LA COMPRESIÓN	I	Total		
DESCRIPCIÓN	VARIABLE INDEPENDIENTE	7 días	14 días	28 días	TOTAL
M – 0%	-	4	4	4	12
M – 1%	Cássara da busya triturada y	4	4	4	12
M – 2%	Cáscara de huevo triturado y ceniza de concha de abanico	4	4	4	12
M – 3%	Certiza de concha de abartico	4	4	4	12
TOTAL					48

Los criterios de inclusión consisten en un conjunto de variables que presentan diversas características, como su clasificación como variable continua, nominal, ordinal o de razón. No obstante, en términos de la conformidad del sujeto de investigación con esas variables, puede tenerlas o no. Para el caso en estudio, los ladrillos fueron presentados de acuerdo con las normas establecidas. Por otro lado, los criterios de exclusión hacen referencia a las condiciones o características exhibidas por los participantes que influyeron y cambiaron los resultados, lo que los descalificaría para participar en el estudio. Para el caso en estudio, los ladrillos no fueron presentados al no cumplir con los reglamentos establecidos en las NTP 400.037, 339.088.

Los procedimientos y acciones que se utilizó para recopilar la información requerida para responder a las preguntas de investigación son considerados como métodos de recopilación de datos Arias (2020 p. 21).

Se usó la NORMA E.070 ALBAÑILERÍA realizando la recopilación de data, donde se orientó para realizar los ensayos y pruebas.

La técnica empleada se centró principalmente a través de la observación, siendo este método fundamental. Los datos se obtuvieron usando protocolos en conformidad con las normativas para cada ensayo. Además, se empleó la técnica de análisis documental, donde se describió las variables estudiadas utilizando datos e información recopilados de fuentes fidedignas como libros, revistas y tesis. Hernández (2014 p. 198). En cuanto a los instrumentos utilizados, se emplearon formularios del laboratorio para registrar los datos correspondientes a los ensayos de ladrillos de concreto. Estos documentos proporcionaron las instrucciones detalladas para llevar a cabo adecuadamente las pruebas, siguiendo las normativas E. 070 de albañilería y la NTP 339.604. Los datos se obtuvieron mediante pruebas de calidad, entre ellos el método ACI, ensayo del volumen unitario del material grueso según NTP 400.17, análisis granulométrico según ASTM 422, el ensayo del análisis de rayos X según ASTM C25, el ensayo de análisis térmico diferencial según normas ASTM ISO 11357, ensayo de asentamiento del concreto MTC E 705 según NTP 339.045, ensayo de compresión ASTM C-39 y el ensayo de alabeo de unidades de ladrillos según NTP 339.613. Además, también se utilizaron revistas, artículos, tesis, documentos y

muestras de dosificación y ensayos clínicos. Gracias a estos formularios, se logró recopilar los resultados de manera segura y precisa. Para asegurar la validez, se requirió la evaluación de dos expertos en el campo para validar los instrumentos de recolección donde se alcanzó los resultados del diseño de muestra patrón, análisis granulométricos de los agregados, resistencia a compresión del hormigón, los cuales están correctamente ajustados a las normativas NTP 339.604 y E.070 de albañilería. Y en cuanto a la confiabilidad de los instrumentos utilizados, se garantizó que los equipos de laboratorio estuvieran debidamente calibrados con certificados actualizados. El procedimiento de ejecución fue diseñado por especialistas en la materia, siguiendo las directrices establecidas por ACI, ASTM y NTP.

Se realizaron las siguientes fases para llevar a cabo este proyecto de investigación, en primer lugar, se extrajo las materias primas, incluyendo cáscaras de huevo recopiladas por amigos y familiares, así como conchas de abanico obtenidas en el muelle de Chimbote. Luego, se transportó una muestra de 100 g de cada material para realizar los ensayos correspondientes. Simultáneamente, se llevó una muestra de 1 kg de estos materiales al laboratorio para realizar ensayos adicionales. En paralelo, se llevó a cabo la preparación de la composición en el laboratorio según las pautas del ACI 211, así como la elaboración y verificación del concreto para el ladrillo tipo V (según la norma NTP E.070). Obtenida la dosificación, se elaboró un ladrillo de concreto como control y tres experimentales, en los cuales se sustituyó parte del cemento por cenizas de conchas de abanico y cáscaras de huevo trituradas. Posteriormente, para el análisis a detalle del comportamiento de los ladrillos modulares, se realizó un proceso de curado según la normativa vigente (NTE E.060) hasta el momento de la falla que se produjo a los 7, 14 y 28 días. La evaluación de la resistencia a la compresión se realizó según la norma ASTM C-39 y mediante el ensayo de alabeo según NTP 339.613 exigidos por la NTP E070, 2006.

Los resultados que se obtuvieron, fueron procesados utilizando los formatos disponibles en Excel como base para crear tablas y gráficos esenciales para la interpretación y comprensión de los resultados. La utilización de tablas fue beneficiosa para examinar la distinción de los agregados gruesos y finos que se obtuvieron en el laboratorio. Con estos datos y haciendo uso de protocolos estandarizados, se realizó

la mezcla para los bloques de concreto, tanto para los pilotos como para los experimentales.

Después de fracturar los ladrillos de concreto, los datos de resistencia a la compresión se registraron en tablas y se representaron en un gráfico continuo, el cual mostró las resistencias a la compresión a los 7, 14 y 28 días de curado.

Se utilizó el programa SPSS para aplicar un método estadístico adecuado, específicamente el análisis de varianza (ANOVA), con el fin de evaluar la hipótesis planteada.

Esta investigación respetó los siguientes puntos que se tuvieron en cuenta:

Con el propósito de contribuir al bienestar, los hallazgos del proyecto fueron proporcionados a la institución al finalizar la investigación, sin ningún beneficio económico asociado. El objetivo es enriquecer los conocimientos disponibles para futuros investigadores.

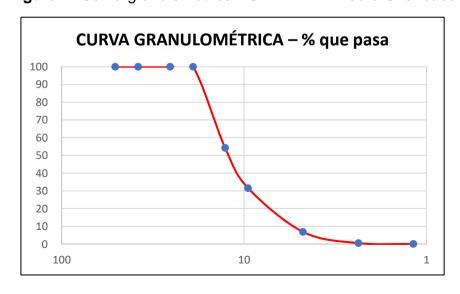
De no maleficencia, se garantizó la ausencia de cualquier perjuicio hacia la persona, y se optó por no abordar preguntas o preocupaciones que podrían generar incomodidad.

En relación con la autonomía, se brindó un trato respetuoso y se tomó en cuenta las inquietudes manifestadas tanto antes como durante la realización de la entrevista o encuesta, así como las preguntas formuladas durante el proceso de entrevista o encuesta.

De justicia: La información recopilada se mantuvo en estricta confidencialidad y se utilizó exclusivamente con fines de investigación.

III. RESULTADOS

Resultados referentes al primer objetivo: Identificar las propiedades físicomecánicas de los agregados finos y gruesos, mediante el análisis granulométrico.


Tabla 3: Análisis granulométrico ASTM D 422 - Piedra Chancada

Peso inicial seco (gr) 2997.0							
Mallas	Abertura (mm)	Peso retenido (gr)	Retenido Parcial (%)	Retenido Acumulado (%)	% que Pasa		PERMISIBLE C-33 (67)
2"	50.800	-	-	-	100.00	100	100
1 ½"	38.100	-	-	-	100.00	100	100
1"	25.400	-	-	-	100.00	100	100
3/4"	19.050	-	-	-	100.00	90	100
1/2"	12.700	1372.0	45.78	45.78	54.22		
3/8"	9.500	680.0	22.69	68.47	31.53	20	55
N°04	4.750	740.0	24.69	93.16	6.84	-	15
N°8	2.360	205.00	6.84	100.00	-	-	5
N°16	1.180	-	-	100.00	-		
N°30	0.590	-	-	100.00	-		
N°50	0.295	-	-	100.00	-		
N°100	0.148	-	-	100.00	-		
N°200	0.074	-	-	100.00	-		
Cazoleta		-	-	100.00	-		
TOTAL			2997.0	100.00			

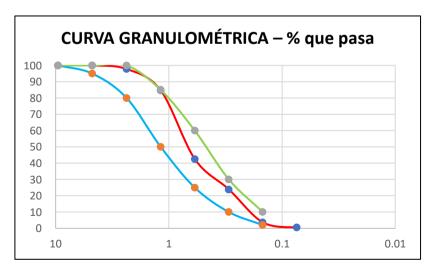
Fuente: Informe de laboratorio - Anexo 5

Descripción: Observando la tabla 3, se obtuvo como tamaño nominal ½" del agregado grueso.

Figura 2: Curva granulométrica ASTM D22 – Piedra Chancada

Fuente: Informe de laboratorio - Anexo 5

Descripción: Observando la figura 2, se obtuvo el % que pasa en las mallas 2", 1 ½", 1" y ¾" teniendo un porcentaje del 100% que pasa; en la malla ½" teniendo un porcentaje del 54.22% que pasa; en la malla 3/8" teniendo un porcentaje del 31.53% y en la malla N°04 teniendo un porcentaje del 6.84% que pasa, representada en una curva granulométrica.


Tabla 4: Análisis granulométrico ASTM D 422 – Arena Gruesa

	Peso inicial seco (gr) 2997.0						
Mallas	Abertura (mm)	Peso retenido (gr)	R. Parcial (%)	R. Acumulado (%)	% que pasa	LIM. PERMISIBLE ASTM C-33 (67)	
3/8"	9.500	0.0	0.00	0.00	100.00	100	100
N°04	4.750	0.0	0.00	0.00	100.00	95	100
N°8	2.360	21.00	2.20	2.20	97.80	80	100
N°16	1.180	125.00	13.10	15.30	84.70	50	85
N°30	0.590	402.00	42.14	57.44	42.56	25	60
N°50	0.295	178.00	18.66	76.10	23.90	10	30
N°100	0.148	193.00	20.23	96.33	3.67	2	10
N°200	0.074	30.00	3.14	99.48	0.52		
Cazoleta		5.00	0.52	100.00	0.00		
TOTAL		954.0	100.00				

Fuente: Informe de laboratorio – Anexo 5

Descripción: Observando la tabla 4, se obtuvo como tamaño nominal retenido en la malla N°30.

Figura 3: Curva granulométrica ASTM D22 – Arena Gruesa

Fuente: Informe de laboratorio – Anexo 5

Descripción: Observando la figura 3, se obtuvo el % que atraviesa las mallas 3/8" y N°04 teniendo un porcentaje de 100% que atraviesa; en la red N°8 teniendo un porcentaje de 97.80% que pasa; en la red N°16 teniendo un porcentaje de 84.70% que pasa; en la malla N°30 teniendo un % de 42.56% que pasa; en la red N°50 teniendo un porcentaje de 23.90% que pasa; en la malla N°100 teniendo un porcentaje de 3.67% que pasa; en la malla N°200 teniendo un % de 0.52 que pasa.

Tabla 5: Resumen de ensayo del peso unitario de la Piedra Chancada (Norma ASTM C-29 / NTP 400.017)

PESO UNITARIO SUELTO					
PROCEDIMIENTO		MUESTRA			
PROCEDIMIENTO		M-01	M-02	M-03	
Peso de la Muestra + Molde (KG)		7.823	7.802	7.832	
Peso del Molde (KG)		3.64	3.64	3.64	
Peso de la M. Compactada (KG)		4.183	4.162	4.192	
Vol. del Molde		0.28646	0.28646	0.28646	
Peso Aparente Suelto (KG)		1460.24	1452.91	1463.38	
Peso Aparente Suelto Promedio (KG/M3)				1459	
PESO UNITAR	RIO COMPA	CTADO		1	
PROCEDIMIENTO			MUESTRA		
PROCEDIMIENTO	M-C)1	M-02	M-03	
Peso de la Muestra + Molde (KG)		8.382	8.33	8.392	
Peso del Molde (KG)	eso del Molde (KG) 3.64		3.64	3.64	
eso de la M. Suelta (KG) 4.742 4.6		4.69	4.752		
Vol. del Molde	0.	28646	0.28646	0.28646	
Peso Aparente Suelto (KG) 1		655.38	1637.23	1658.87	
Peso Aparente Suelto Promedio (KG/M3)	1	I		1650	

Fuente: Informe de laboratorio – Anexo 5

Descripción: Como se visualiza en la tabla 5, Se recopiló una síntesis de las propiedades del agregado grueso, las cuales se derivaron del análisis granulométrico.

Tabla 6: Resumen de ensayo del peso unitario de la Arena Gruesa (Norma ASTM C-29 / NTP 400.017)

PESO UNITARIO SUELTO					
PROCEDIMIENTO	MUESTRA				
	M-01	M-02	M-03		
Peso de la Muestra + Molde (KG)	8.067	8.106	8.086		
Peso del Molde (KG)	3.64	3.64	3.64		
Peso de la M. Compactada (KG)	4.427	4.466	4.466		
Vol. del Molde	0.28646	0.28646	0.28646		
Peso Aparente Suelto (KG)	1545.42	1559.03	1552.05		
Peso Aparente Suelto Promedio (KG/M3)					

Fuente: Informe de laboratorio – Anexo 5

Descripción: Como se visualiza en la tabla 6, Se generó una síntesis de las propiedades del agregado grueso, las cuales se derivaron del análisis granulométrico.

Resultados referentes al segundo objetivo: Determinar los componentes químicos de la cáscara de huevo triturado y cenizas de concha de abanico, mediante ensayos de análisis por fluorescencia de rayos x y análisis térmico.

Tabla 7: Análisis de Cáscara de Huevo por fluorescencia de rayos x ASTM C25

COMPOSICIÓN QUÍMICA	RESULTADOS (%)	METODO
COMI COICION QUIMICA	RESOLIADOS (70)	UTILIZADO
DIOX. DE SI. (SI O2)	1.03	
CARB. DE CAL. (CaCO3)	89.16	
TRIOX. DE AL. (AI2 O3)	0.67	
TRIOX. DE HIE. (Fe2 O3)	2.14	
OX. DE POT. (K2 O)	0.24	Egnactromatría do
OX. DE MAG. (Mg O)	0.17	Espectrometría de fluorescencia de
PENTOX. DE FÓS. (P2O5)	1.18	rayos x
OX. DE COB. (Cu O)	<0.01	layos x
TRIOX. DE AZU. (SO 3)	0.012	
OX. DE ZINC (Zn O)	0.027	
OX. DE MANG. (Mn O)	<0.01	
DAÑO CAUSADO POR LA CALCINACIÓN	5.36	

Fuente: Informe de laboratorio – Anexo 5

Descripción: Como se visualiza en la tabla 7, se analizó la muestra bajo estudio y comparando las energías características de los elementos de la tabla periódica desde el sodio, se detectaron principalmente Calcio (Ca) en forma de Carbonato de Calcio (CaCO3) con una alta proporción.

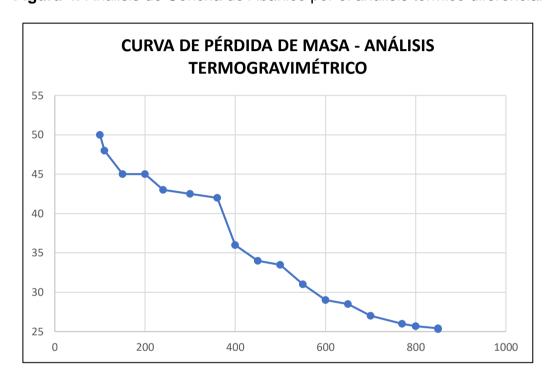


Figura 4: Análisis de Concha de Abanico por el análisis térmico diferencial

Fuente: Informe de laboratorio – Anexo 5

Descripción: Observando la figura 4, el análisis termogravimétrico reveló la disgregación térmica por medio de la pérdida de masa en relación con la temperatura, identificando dos intervalos donde esta pérdida es más pronunciada. El primero ocurre en un rango entre 260 y 450°C, mientras que el segundo, de menor intensidad, se sitúa entre 510 y 640°C. Después de estos intervalos, la pérdida de masa es gradual. En total, el material experimenta una pérdida aproximada del 74.67% de su masa inicial (de 6.0 kg a 1.52 kg) en la temperatura máxima de ensayo.

Tabla 8: Análisis de Ceniza de Concha de Abanico por fluorescencia de rayos x ASTM C25

COMPOSICIÓN QUÍMICA	RESULTADOS (%)	METODO UTILIZADO
DIOX. DE SI. (Si O2)	45.12	
OX. DE CAL. (Ca O)	34.04	
TRIOX. DE ALU. (AI2 O3)	7.19	
TRIOX. DE HIE. (Fe2 O3)	3.24	
OX. DE POT. (K2 O)	1.32	Espectrometría de
OX. DE MAG. (Mg O)	0.97	Espectrometría de fluorescencia de
PENTOX. DE FÓS. (P2O5)	1.43	rayos x
OX. DE COB. (Cu O)	0.16	layos x
TRIOX. DE AZU. (SO 3)	0.073	
OX. DE ZINC (Zn O)	0.014	
OX. DE MANG. (Mn O)	0.01	
DAÑO CAUSADO POR LA CALCINACIÓN	6.43	

Fuente: Informe de laboratorio - Anexo 5

Descripción: Como se visualiza en la tabla 8, se analizó el espectro de la muestra en comparación con las energías particulares de la tabla periódica, se identificaron principalmente Silicio, Calcio y Aluminio con una concentración notable.

Resultados referentes al tercer objetivo: Determinar el asentamiento requerido del concreto mediante el procedimiento de medición de slump haciendo uso del cono de Abrams de acuerdo con la NTP 339.045.

Tabla 9: Resultado de asentamiento del concreto MTC 3 705

N° ENSAYO	TESTIGO – ELEMENTO	FECHA DE MUESTRA	SLUMP DE DISEÑO	SLUMP (PULG.)	SLUMP (CM.)
1	MUESTRA PATRON – M01	21/04/2024	3" – 4"	4-9	12.4
2	MUESTRA DOSIFICACIÓN 1 – M01	21/04/2024	-	3.85	9.8
3	MUESTRA DOSIFICACIÓN 2 – M01	21/04/2024	-	2.5	6.4
4	MUESTRA DOSIFICACIÓN 3 – M01	21/04/2024	-	1.5	3.8

Fuente: Informe de laboratorio – Anexo 5

Descripción: Observando la tabla 9, se realizó la prueba de asentamiento del hormigón lo que disminuye su trabajabilidad a medida q se agrega la cáscara de huevo y el polvo de concha de abanico.

Resultados referentes al cuarto objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

Tabla 10: Resultado de ensayo a compresión del ladrillo de concreto con 0%, 1%, 2% y 3% a los 7 días – ASTM C-39

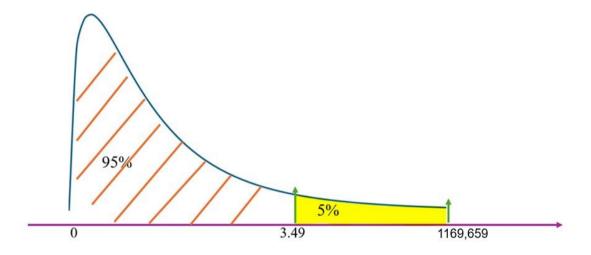
N° PROBETA	TESTIGO – ELEMENTO	FECHA DE MUESTR A	FECHA DE ENSAYO	EDAD DIAS	CARGA MAXIM A KG	SECCI ÓN CM2	RESISTENCI A ESPERADA KG/CM2	RESISTE NCIA FINAL	FAC T.	FC/F'
1	MUESTRA PATRON – M01	21/04/2024	28/04/2024	7	44180	304.26	175	145.21	0.94	78.00
2	MUESTRA PATRON – M02	21/04/2024	28/04/2024	7	43690	301.85	175	144.74	0.94	77.75
3	MUESTRA PATRON – M03	21/04/2024	28/04/2024	7	44510	306.94	175	145.01	0.94	77.89
4	MUESTRA PATRON – M04	21/04/2024	28/04/2024	7	44630	307.07	175	145.34	0.94	78.07
5	DOSIFICACION 1 – M01	21/04/2024	28/04/2024	7	54340	306.47	175	177.31	0.94	95.24
6	DOSIFICACION 1 – M02	21/04/2024	28/04/2024	7	54050	308.43	175	175.24	0.94	94.13
7	DOSIFICACION 1 – M03	21/04/2024	28/04/2024	7	54260	303.14	175	178.99	0.94	96.14
8	DOSIFICACION 1 – M04	21/04/2024	28/04/2024	7	54320	303.93	175	178.72	0.94	96.00
9	DOSIFICACION 2 – M01	21/04/2024	28/04/2024	7	61180	304.52	175	200.91	0.94	107.92
10	DOSIFICACION 2 – M02	21/04/2024	28/04/2024	7	60480	303.00	175	199.60	0.94	107.22
11	DOSIFICACION 2 – M03	21/04/2024	28/04/2024	7	60780	303.16	175	200.49	0.94	107.69
12	DOSIFICACION 2 – M04	21/04/2024	28/04/2024	7	60960	307.12	175	198.49	0.94	106.62
13	DOSIFICACION 3 – M01	21/04/2024	28/04/2024	7	54800	302.82	175	180.97	0.94	97.21

14	DOSIFICACION 3 – M02	21/04/2024	28/04/2024	7	55100	308.20	175	178.78	0.94	96.03
15	DOSIFICACION 3 – M03	21/04/2024	28/04/2024	7	55330	304.80	175	181.53	0.94	97.51
16	DOSIFICACION 3 – M04	21/04/2024	28/04/2024	7	55610	304.06	175	182.89	0.94	98.24

Fuente: Informe de laboratorio – Anexo 5

Descripción: Observando la tabla 10, se realizó la resistencia a compresión a 16 ladrillos de concreto a una edad de resistencia alcanzada a los 7 días, donde se adicionó a la dosificación el 0%, 1%, 2% y 3% de cáscara de huevo y cenizas de valva de abanico.

Prueba de hipótesis


En este estudio, se realizó un análisis estadístico para evaluar la resistencia a la compresión de ladrillos de concreto con una resistencia nominal de f'c=175 kg/cm² a los 7 días.

Para comprobar las hipótesis planteadas, se realizó el método (ANOVA) cuyos resultados se detallan en la Tabla 11. En este análisis, se trabajó con un total de 16 muestras, divididas en 4 muestras patrón sin adición de materiales (0%) y 12 muestras con las tres diferentes adiciones mencionadas.

Tabla 11: Valores de análisis de varianza (ANOVA) de la resistencia a la compresión a los 7 días

		+ de cuadrados	gl	Media cuadrática	F	Sig.
Resistencia	Inter grupos	6216,314	3	2072,105	1169,659	4.589E- 15
7dias	Intra grupos	21,259	12	1,772		
	Total	6237,572	15	_		

Figura 5: Distribución F para la resistencia a la compresión - 7 días.

Descripción: La tabla 11 indicó un valor del estadístico F de 1169.659, revelando un contraste significativo en la resistencia a la compresión entre los grupos. Además, de acuerdo con la Figura 05, el valor crítico de F (3.49) es menor que el valor del F estadístico (1169.659), situándose dentro del rango donde se rechaza la hipótesis nula. Este resultado se verificó con un valor de significancia (Sig.) de 4.589E-15, que es menor al 5%, lo cual sugiere que las diferencias observadas no fueron producto del azar. Además, el alto valor del F en comparación con el valor crítico ratificó la presencia de disparidades significativas entre los grupos. Estos hallazgos permitieron rechazar la hipótesis nula y aceptar la hipótesis alterna, demostrando que la adición de cáscara de huevo triturado y cenizas de concha de abanico en proporciones del 1%, 2% y 3% mejoró significativamente la resistencia a la compresión de los ladrillos de concreto a los 14 días, con una resistencia especificada de f'c=175 kg/cm².

Para completar la prueba de hipótesis, se llevó a cabo la prueba HSD de Tukey para identificar qué combinaciones específicas mostraban diferencias significativas en la resistencia a la compresión a los 7 días. Los resultados se mostraron en la Tabla 12.

Tabla 12: HSD de Tukey para la resistencia a la compresión a los 7 días

Combinación	NI	Subconjunto para alfa = 0.05							
Combination	N	1	2	3	4				
Patrón	4	145,0750							
Dosificación1	4		177,5650						
Dosificación3	4			181,0425					
Dosificación2	4				199,8725				

Sig.	1,000	1,000	1,000	1,000
Oig.	1,000	1,000	1,000	1,000

Descripción: En la Tabla 12 se reveló que los grupos de tratamiento se agruparon en subconjuntos distintos con base en la resistencia a la compresión observada. En primer lugar, los ladrillos patrón (sin adición) exhibieron una resistencia promedio de 145.0750 kg/cm², ubicándose en el primer subconjunto. En segundo lugar, la primera dosificación (1% de adición) evidenció una resistencia promedio de 177.5650 kg/cm², formando el segundo subconjunto. A continuación, la tercera dosificación (3% de adición) registró una resistencia promedio de 181.0425 kg/cm², situándose en el tercer subconjunto. Finalmente, la segunda dosificación (2% de adición) alcanzó la mayor resistencia promedio de 199.8725 kg/cm², conformando el cuarto subconjunto. Estos resultados de la prueba HSD de Tukey corroboran que la dosificación del 2% de cáscara de huevo triturado y cenizas de concha de abanico tuvo el mejor desempeño en términos de mejora de la resistencia a la compresión a los 7 días de los ladrillos de concreto. Este nivel de dosificación no solo superó significativamente al grupo control, sino también a las otras dosificaciones estudiadas, sugiriendo que el 2% es el más efectivo. la proporción óptima para maximizar la resistencia a la compresión a los 7 días.

Tabla 13: Resultado de ensayo a compresión del ladrillo de concreto con 0%, 1%, 2% y 3% a los 14 días – ASTM C-39

N° PROBETA	TESTIGO – ELEMENTO	FECHA DE MUESTR A	FECHA DE ENSAYO	EDAD DIAS	CARGA MAXIM A KG	SECCI ÓN CM2	RESISTENCI A ESPERADA KG/CM2	RESISTE NCIA FINAL	FAC T.	FC/F'
1	MUESTRA PATRON – M01	21/04/2024	05/05/2024	14	46400	308.42	175	150.44	0.94	80.81
2	MUESTRA PATRON – M02	21/04/2024	05/05/2024	14	45770	301.62	175	151.75	0.94	81.51
3	MUESTRA PATRON – M03	21/04/2024	05/05/2024	14	46820	306.77	175	152.62	0.94	81.98
4	MUESTRA PATRON – M04	21/04/2024	05/05/2024	14	46310	306.94	175	150.88	0.94	81.04
5	DOSIFICACION 1 – M01	21/04/2024	05/05/2024	14	72540	307.19	175	236.14	0.94	126.84
6	DOSIFICACION 1 – M02	21/04/2024	05/05/2024	14	73010	310.06	175	235.47	0.94	126.48
7	DOSIFICACION 1 – M03	21/04/2024	05/05/2024	14	72860	301.30	175	241.82	0.94	129.89

8	DOSIFICACION 1 – M04	21/04/2024	05/05/2024	14	73020	302.09	175	241.72	0.94	129.84
9	DOSIFICACION 2 – M01	21/04/2024	05/05/2024	14	77570	304.15	175	255.04	0.94	136.99
10	DOSIFICACION 2 - M02	21/04/2024	05/05/2024	14	79340	302.22	175	262.52	0.94	141.01
11	DOSIFICACION 2 – M03	21/04/2024	05/05/2024	14	78640	303.14	175	259.42	0.94	139.34
12	DOSIFICACION 2 – M04	21/04/2024	05/05/2024	14	78300	303.54	175	257.96	0.94	138.56
13	DOSIFICACION 3 – M01	21/04/2024	05/05/2024	14	68200	302.68	175	225.32	0.94	121.03
14	DOSIFICACION 3 – M02	21/04/2024	05/05/2024	14	67370	306.82	175	219.57	0.94	117.94
15	DOSIFICACION 3 – M03	21/04/2024	05/05/2024	14	67840	304.06	175	223.11	0.94	119.84
16	DOSIFICACION 3 – M04	21/04/2024	05/05/2024	14	68010	303.88	175	223.81	0.94	120.22

Fuente: Informe de laboratorio - Anexo 5

Descripción: Como se visualiza en la tabla 13, se realizó la resistencia a compresión a 16 ladrillos de concreto a una edad de resistencia alcanzada a los 14 días, donde se adicionó a la dosificación el 0%, 1%, 2% y 3% de cáscara de huevo y cenizas de concha de abanico.

Prueba de hipótesis

Para continuar con la prueba de hipótesis, se llevó a cabo una prueba estadística para evaluar la resistencia a la compresión de ladrillos de concreto f'c=175 kg/cm² a los 14 días.

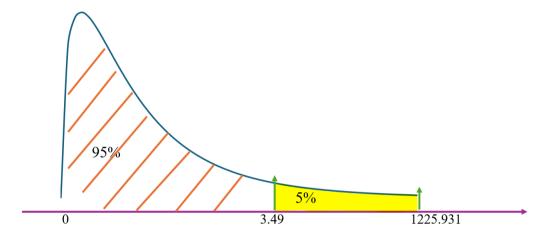

Para comprobar las hipótesis planteadas, se realizó el método (ANOVA) cuyos resultados se detallan en la Tabla 14.

Tabla 14: Valores de análisis de varianza (ANOVA) de la resistencia a la compresión a los 14 días

		Suma de cuadrados	gl	Media cuadrática	F	Sig.
Resistencia 14 días	Inter grupos	26194,194	3	8731,398	1225,931	3.465 E-15
	Intra grupos	85,467	12	7,122		

Total 26279,661 15		Total	26279.661	15			
--------------------	--	-------	-----------	----	--	--	--

Figura 6: Distribución F para la resistencia a la compresión - 14 días.

Descripción: Los resultados de la Tabla 14 exhibieron que el valor del estadístico F obtenido fue de 1225.931, lo cual sugiere una diferencia significativa en la resistencia a la compresión entre los distintos grupos. Además, de acuerdo con la Figura 06, el valor crítico de F (3.49) es menor que el valor del F estadístico (1225.931), situándose dentro del rango donde se rechaza la hipótesis nula. Este hallazgo fue corroborado por un valor de significancia (Sig.) de 3.465 E-15, que es menor al 5%. Este nivel de significancia indica que las diferencias observadas no fueron producto del azar, sino que son estadísticamente significativas. Por lo tanto, los resultados del análisis realizado permitieron rechazar la hipótesis nula y aceptar la hipótesis alterna. Para complementar los hallazgos presentados en la tabla anterior, se realizó la prueba HSD de Tukey para determinar qué combinaciones específicas de tratamientos presentaban diferencias significativas en la resistencia a la compresión a los 14 días. Los resultados se presentan en la Tabla 15.

Tabla 15: HSD de Tukey para la resistencia a la compresión a los 14 días

Cambinación	N	Subconjunto para alfa = 0.05						
Combinación		1	2	3	4			
Patrón	4	151,4225						
Dosificación1	4		222,9525					
Dosificación3	4			238,7875				

Dosificación2	4				258,7350
Sig.		1,000	1,000	1,000	1,000

Descripción: La tabla 15 reveló que los grupos de tratamiento se agruparon en subconjuntos distintos basados en la resistencia a la compresión observada. En primer lugar, los ladrillos patrón (sin adición) presentaron una resistencia promedio de 151.4225 kg/cm², ubicándose en el primer subconjunto. En segundo lugar, la primera dosificación (1% de adición) mostró una resistencia promedio de 222.9525 kg/cm², formando el segundo subconjunto. Luego, la tercera dosificación (3% de adición) tuvo una resistencia promedio de 238.7875 kg/cm², situándose en el tercer subconjunto. Finalmente, la segunda dosificación (2% de adición) presentó la mayor resistencia promedio de 258.7350 kg/cm², conformando el cuarto subconjunto. Estos resultados confirmaron que la dosificación del 2% de cáscara de huevo triturado y cenizas de concha de abanico tuvo el mejor desempeño en términos de mejora de la resistencia a la compresión a los 14 días de los ladrillos de concreto. Este nivel de dosificación no solo superó significativamente al grupo control, sino también a las otras dosificaciones estudiadas, sugiriendo que el 2% es la proporción óptima para maximizar la resistencia a la compresión.

Tabla 16: Resultado de ensayo a compresión del ladrillo de concreto con 0%, 1%, 2% y 3% a los 28 días – ASTM C-39

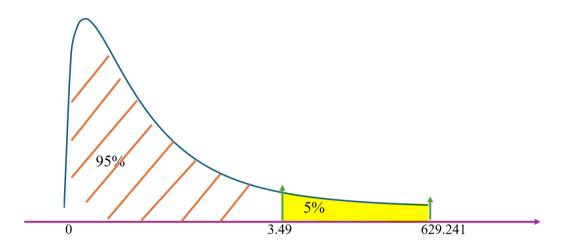
N° PROBETA	TESTIGO – ELEMENTO	FECHA DE MUESTR A	FECHA DE ENSAYO	EDAD DIAS	CARGA MAXIM A KG	SECCI ÓN CM2	RESISTENCI A ESPERADA KG/CM2	RESISTE NCIA FINAL	FAC T.	FC/F'
1	MUESTRA PATRON – M01	21/04/2024	19/05/2024	28	63120	299.00	175	211.10	0.94	113.39
2	MUESTRA PATRON – M02	21/04/2024	19/05/2024	28	62400	299.00	175	208.70	0.94	112.10
3	MUESTRA PATRON – M03	21/04/2024	19/05/2024	28	63580	299.00	175	212.64	0.94	114.22
4	MUESTRA PATRON – M04	21/04/2024	19/05/2024	28	63410	299.13	175	211.98	0.94	113.86
5	DOSIFICACION 1 – M01	21/04/2024	19/05/2024	28	77630	309.51	175	250.81	0.94	134.72
6	DOSIFICACION 1 – M02	21/04/2024	19/05/2024	28	77220	305.90	175	252.44	0.94	135.59
7	DOSIFICACION 1 – M03	21/04/2024	19/05/2024	28	77520	303.60	175	255.34	0.94	137.15

8	DOSIFICACION 1 – M04	21/04/2024	19/05/2024	28	77430	304.36	175	254.40	0.95	136.65
9	DOSIFICACION 2 – M01	21/04/2024	19/05/2024	28	87410	304.52	175	287.04	0.94	154.18
10	DOSIFICACION 2 – M02	21/04/2024	19/05/2024	28	86400	304.98	175	283.30	0.94	152.17
11	DOSIFICACION 2 – M03	21/04/2024	19/05/2024	28	86830	305.44	175	284.28	0.94	152.70
12	DOSIFICACION 2 – M04	21/04/2024	19/05/2024	28	86120	309.42	175	278.32	0.94	149.50
13	DOSIFICACION 3 – M01	21/04/2024	19/05/2024	28	78250	307.28	175	254.65	0.94	136.79
14	DOSIFICACION 3 – M02	21/04/2024	19/05/2024	28	78690	308.20	175	255.32	0.94	137.14
15	DOSIFICACION 3 – M03	21/04/2024	19/05/2024	28	79050	306.36	175	258.03	0.94	138.60
16	DOSIFICACION 3 – M04	21/04/2024	19/05/2024	28	79051	307.96	175	256.69	0.94	137.88

Fuente: Informe de laboratorio – Anexo 5

Descripción: Como se visualiza en la tabla 16, se realizó la resistencia a compresión a 16 ladrillos de concreto a una edad de resistencia alcanzada a los 28 días, donde se adicionó a la dosificación el 0%, 1%, 2% y 3% de cáscara de huevo y cenizas de concha de abanico.

Prueba de hipótesis


Continuando con la prueba de hipótesis, se llevó a cabo una prueba estadística para evaluar la resistencia a la compresión de ladrillos de concreto f'c=175 kg/cm² a los 28 días.

Para comprobar las hipótesis planteadas, se realizó el método (ANOVA) cuyos resultados se detallan en la Tabla 17.

Tabla 17: Valores de análisis de varianza (ANOVA) de la resistencia a la compresión a los 28 días

		Suma de cuadrados	gl	Media cuadrática	F	Sig.
Resistencia 28 días	Inter grupos	10649,991	3	3549,997	629,241	1.858E-13
	Intra grupos	67,701	12	5,642		
	Total	10717,692	15			

Descripción: La tabla 17 reveló que el valor del estadístico F fue de 629,241, lo cual se observa una disparidad importante en la resistencia a la compresión entre los distintos grupos. Además, de acuerdo con la Figura 07, el valor crítico de F (3.49) es menor que el valor del F estadístico (629.241), situándose dentro del rango donde se rechaza la hipótesis nula.

Este hallazgo fue corroborado por un valor de significancia (Sig.) de 1.858E-13 que es menor al 5%, lo que indica que las diferencias observadas no fueron producto del azar. Los resultados del análisis ANOVA permitieron rechazar la hipótesis nula y aceptar la hipótesis alterna. Esto demuestra que la adición de cáscara de huevo triturado y cenizas de concha de abanico en las proporciones estudiadas mejora significativamente la resistencia a la compresión de los ladrillos de concreto a los 28 días.

Para complementar los hallazgos exhibidos en la tabla anterior, se efectuó la prueba HSD de Tukey para establecer qué combinaciones específicas de tratamientos presentaban diferencias significativas en la resistencia a la compresión a los 28 días. Los resultados se presentan en la Tabla 18.

Tabla 18: HSD de Tukey para la resistencia a la compresión a los 28 días

Combinación	N	Subco	njunto para alfa	= 0.05
		1 2 3		3

Patrón	4	211,1050		
Dosificación1	4		253,2475	
Dosificación3	4		256,1725	
Dosificación2	4			283,2350
Sig.		1,000	,346	1,000

Descripción: Los resultados de la tabla 18 indicaron que la Dosificación 1 (1%) y la Dosificación 3 (3%) pertenecen al mismo subconjunto (subconjunto 2), lo que sugiere que no hubo una diferencia significativa entre ellas. Por otro lado, la Dosificación 1 (1%) y la Dosificación 2 (2%) pertenecen a subconjuntos diferentes, indicando una diferencia significativa entre ellas. De manera similar, la Dosificación 3 (3%) y la Dosificación 2 (2%) también pertenecen a subconjuntos diferentes, mostrando una diferencia significativa. El grupo Patrón, que se ubicó en el primer subconjunto, mostró una resistencia significativamente menor en comparación con las dosificaciones que contenían aditivos. Cada dosificación de CCT y CCA mejoró significativamente la resistencia a la compresión en comparación con el grupo Patrón. La dosificación del 2% demostró ser la más efectiva, presentando una resistencia a la compresión superior a la muestra patrón y otras combinaciones, lo que la posiciona como la mejor opción para mejorar la resistencia a la compresión de los ladrillos de concreto. La significancia estadística de los subconjuntos, con valores de p menores a 0,05, confirma que las diferencias observadas no fueron producto del azar, respaldando la efectividad de estos materiales como aditivos para mejorar resistencia a la compresión de los ladrillos de concreto.

Por lo consiguiente se acepta la hipótesis de la investigación: "La adición de cáscara de huevo triturado y cenizas de concha de abanico en proporción del 1%, 2% y 3% mejora y aumenta significativamente la resistencia a compresión de un ladrillo de concreto f'c=175kg/cm²".

Resultados referentes al quinto objetivo: Identificar la deformación del ladrillo de concreto experimental mediante el ensayo de alabeo exigidos por la NTP E070, 2006.

Tabla 19: Ensayo de alabeo de unidades de ladrillos de concreto elaborados en laboratorio – NTP 339.613

	Cara	1	Cara	2	Borde	e 1	Borde	2
Bloque No.	Tipo de superficie	Mm						
1	Convexo	2.31	Cóncavo	1.66	Convexo	2.76	Convexo	2.28
2	Cóncavo	1.74	Cóncavo	1.83	Cóncavo	1.74	Convexo	3.25
3	Convexo	1.83	Convexo	2.33	Cóncavo	2.63	Convexo	1.33
4	Cóncavo	2.65	Cóncavo	1.36	Convexo	3.16	Cóncavo	1.38
5	Convexo	3.77	Cóncavo	1.76	convexo	4.33	Convexo	1.25
6	Convexo	2.39	Convexo	2.14	Convexo	3.16	Cóncavo	3.30
7	Cóncavo	3.16	Convexo	2.11	Convexo	1.38	Cóncavo	1.36
8	Convexo	2.64	Convexo	3.41	Cóncavo	2.71	Cóncavo	1.41
9	Cóncavo	2.31	Cóncavo	1.36	Convexo	1.63	Cóncavo	4.22
10	Cóncavo	3.41	Convexo	3.91	Cóncavo	2.36	Cóncavo	1.64
11	Convexo	2.33	Cóncavo	2.11	Cóncavo	2.81	Cóncavo	1.22
12	Cóncavo	1.36	Convexo	3.41	Convexo	1.33	Cóncavo	1.74
Promedio	Cóncavo	2.44	Cóncavo	1.68	Cóncavo	2.45	Cóncavo	2.03
Fromedio	Convexo	2.55	Convexo	2.89	Convexo	2.54	Convexo	2.03

Fuente: Informe de laboratorio - Anexo 5

Descripción: Como se visualiza en la tabla 19, se obtuvieron las medidas cóncavas y convexas de todas las muestras, realizando un total de 12 muestras. Se ejecutó 3 muestras patrón con adición del 0% y 9 muestras con las 3 adiciones correspondientes al 1%, 2% y 3%.

IV. DISCUSIÓN

En el estudio de Córdova (2021 p. 27), su finalidad fue producir ladrillos para la industria ladrillera utilizando como materia prima la CCAB y el vidrio, ya que tienen propiedades esenciales de reemplazo del cemento como CaO y altos niveles de sílice que ayudan a mejorar la resistencia después de 28 días de los ladrillos convencionales. Luego de cambiar la composición, su resistencia alcanzó 172,88 kg/cm2, un crecimiento del 27%. Después de 14 días, la resistencia de los bloques tradicionales alcanzó 122,98 kg/cm2.

En relación a lo indicado anteriormente, se lleva a cabo una semejanza con los resultados obtenidos de los componentes químicos y concuerdan con lo dicho en el enunciado anteriormente, el 34.04% de la concha de abanico este compuesto por calcio (CaO), no obstante, en el porcentaje mayor de la concha de abanico es el Silicio (Si) con 45.12%, ambos elementos son muy útiles al compararlo con el cemento, y los dos elementos que tienen más porcentaje en sus componentes son el hierro con su 3.24% y el aluminio con 7.19%, dichos elementos ayudan a añadir una mayor resistencia dado su parecido al cemento

De una manera similar en el estudio de Nabilah (2019 p. 5), tuvo como objetivo el trabajo de implementar tecnologías orientadas al cuidado ambiental dentro del contexto construcción para que las conchas de mejillón sean procesadas y quemadas adecuadamente para conseguir polvo de conchas de vieiras con contenido del 1%, 2%, 3% y 4% en diseño de hormigón. Determinó de qué está hecha la ceniza de cáscara a nivel químico. Los mejillones obtuvieron una elevada proporción de carbonato cálcico. Se realizó un ensayo de durabilidad y se encontró que la muestra sea sustituida con ceniza CM. Se concluyó una mayor tolerancia a la presión cuando se compara con la muestra de referencia o control.

Del mismo modo al realizarse la comparación con la investigación anterior se observa que la concha de abanico tiene altos índice de calcio (CaO) y silicio (Si) además, lo cual lo hace una remplazo bueno del cemento convencional, y si comparamos con la cascara de huevo, este no se queda atrás dado que presenta aún más porcentaje de Calcio (CaO) y no tanto de silicio (Si), no obstante, también ayuda a incrementar las propiedades del concreto.

Además, según el estudio de Pradas (2019 p. 24), buscó reutilizar aprovechando las CHT como adición en la fabricación de materiales que se mezclan con agua y se exponen al aire. Este proceso involucró la utilización de equipos y pruebas para llevar a cabo una simulación a escala piloto. Los resultados demostraron que los desechos de CDH se ajustaron a las regulaciones y tienen la capacidad de desempeñar el papel de aglutinante hidráulico en la construcción de carreteras, reemplazando hasta un 15% del cemento Portland. Se concluyó que los desechos de cáscaras de huevo de gallina constituyen recursos valiosos para la fabricación de materiales conglomerantes hidráulicos.

Por tal motivo al realizar la comparación con los resultados obtenidos se observa que al agregar las adicciones de cascara de huevo triturado y polvo de concha de abanico la trabajabilidad de la combinación disminuye considerablemente conforme se aumente la dosificación a agregar

Chandrasekhar (2021 p. 48) y Natour (2019 p. 3), su objetivo fue investigar la combinación de PCH y CCA en la producción de hormigón. Utilizó estos dos residuos como aditivos en el cemento y estudió sus propiedades. Agregó cáscaras de huevo trituradas a una tasa constante del 15,0% (0%, 2,5%, 5%, 7,5%, 10%, 12,5%, 15%) y ceniza del 0% al 30% en el volante de cemento (0%. 5%, 10%, 15%, 20%, 25%, 30%). Como resultado, 2 combinaciones de prueba mejoraron la plasticidad del concreto, mientras que las otras pruebas mostraron una disminución en la plasticidad debido al aumento en el contenido de PCH y CCA. Llegando a concluir que, la resistencia máxima después de 7 días es 29,67 MPa, la resistencia máxima después de 28 días es 39,75MPa, la resistencia a la tracción dividida después de 7 días es 2,72 MPa y la resistencia a la tracción después de 28 días es 4,10 MPa, por lo que el intercambio óptimo es del 15%.

Del mismo modo al realizar la comparación con la investigación se observa que al adicionar los porcentajes de concha de abanico y cascara de huevo su trabajabilidad disminuye mucho y eso se ve reflejado en el ensayo de slump con un 4" en el diseño original y disminuye al añadir el 1% de la primera muestra el slump es de 3.85", si seguimos añadiendo con el segundo porcentaje 2% disminuye a 2.5" de slump, lo cual disminuye la trabajabilidad significativamente, finalmente al añadir el tercer y último

porcentaje disminuye a 1.5" de slump y esto comprueba lo que dice las investigaciones anteriores.

En la investigación de Ayodele, Oketope y Olatunde (2019 p. 2), se propusieron evaluar las características de los ladrillos de laterita que se reforzaron utilizando ceniza de cáscara de huevo y ceniza de serrín como una alternativa económica al cemento. Los ladrillos de laterita estabilizados con ceniza obtuvieron una resistencia de 1.2 N/mm², siendo especialmente efectivos con un contenido de ceniza del 2% y el 4%. Se concluyó que las materias primas empleadas pueden reemplazar al cemento de manera efectiva en la construcción de viviendas económicas.

Al realizar la comparativa con la investigación anterior se ve una similitud en el porcentaje de 2% de adición, el cual es el que mejor resulta al momento de las pruebas de compresión, la única diferencia seria que al aumentar la adición su resistencia es mayor que la mezcla original pero inferior a la de la segunda muestra (la segunda muestra es una adición de 2%)

Del mismo modo en la investigación de James (2017 p. 8), investigó la viabilidad de utilizar polvo de cascarón de huevo como complemento del calcio en la estabilidad del suelo a gran escala, tras determinar que la concentración óptima de cal para mejorar el suelo era del 4%, incorporó la ceniza en proporciones del 0.5%, 1% y 2%. Después de un periodo de envejecimiento de 7 y 28 días, realizó pruebas de resistencia, ductilidad y análisis mineralógicos. Los resultados revelaron que la adición de ceniza de cáscara de huevo mejoró la resistencia tanto a corto como a largo plazo, con un aumento significativo del 24.43% en la resistencia después de 28 días al reemplazar el 2% de ceniza. Sin embargo, la ductilidad disminuyó del 21.46% al 13.93% al agregar un 2% de ceniza.

Siguiendo con la comparativa de la investigación anterior, se observa una pequeña diferencia, dado que en nuestro caso nuestras muestras al compáralo el que mayor resultado dio fue el de 2% de adición en las fechas programadas de la prueba de resistencia, no obstante, la dosificación de 1% y del 3% obtuvieron buenos resultados superando a la mezcla patrón, pero son inferiores a la dosificación del 2%, el cual supero por un 34.168%.

Hurtado (2019 p. 52) y Mori (2022 p. 25), analizó la incorporación de PCH y CCDA para mejorar las características físicas y las propiedades mecánicas del hormigón. El

método utilizado en este estudio fue hipotético-deductivo, el cual tuvo un diseño experimental aplicado, donde se ensayaron 36 muestras para resistencia a compresión y 36 muestras para resistencia a tracción y se agregaron 24 ensayos físicos a los cuales se les agregó SCH y SSA en las proporciones de 2% SCH y 1% RSO; 4% CCDH y 1,5% CCDA y 6% CCDH y 2,5% CCDA, los cuales fueron evaluados en 7 días, 14 días y 28 días. Así, se llegó que la adición de CCDH y CCDA al (4% y 1,5%) y (6% y 2,5%) varía las propiedades negativamente y a su vez el porcentaje de males menores (2% y 1%) cambiando positivamente las cualidades físicas y propiedades mecánicas del hormigón

Iniciando la comparativa con la investigación anterior se observa una semejanza, dado que los resultados obtenidos en los periodos de 7, 14 y 28 días con la adición del 1%, 2% y 3%, en ese orden, de cenizas de concha de abanico y cascara de huevo triturado dieron un resultado positivo al ser su resistencia mayor al de la mezcla patrón, obteniendo mejores resultados en los 28 días de curado, la muestra patrón arrojo 211,105kg/cm2 y si lo comparamos con la primera dosificación que es del 1% el resultado es de 253.2475kg/cm2 el cual es 19.963% mayor resistencia a la compresión que la mezcla patrón, además con la segunda dosificación que es del 2% el resultado de la prueba a compresión es de 283.235kg/cm2 el cual es 34.168% mayor que la mezcla patrón, no obstante la tercera dosificación que es del 3% su resultado es de 256.1725kg/cm2 si bien que mayor que la mezcla patrón superándolo por 21.348%, es inferior al de la segunda dosificación.

En el ensayo realizado de alabeo se observó que con los promedio de los cóncavos y convexo obtenidos son de 2.89mm en convexo como máximo y un máximo de 2.45mm en cóncavo, lo cual según la Norma E070 entra como ladrillo tipo V.

V. CONCLUSIONES

- Los análisis granulométricos han confirmado que los materiales extraídos de la cantera cumplen con los parámetros físicos y mecánicos requeridos para la producción de concreto con una resistencia especificada f'c=175 kg/cm².
- 2. Mediante el uso del análisis de rayos X, se logró determinar la composición elemental predominante en la trituración del cascarón de huevo y las cenizas de valva de abanico. Se encontró que la trituración de cáscara de huevo contenía un bajo porcentaje de 1.03% de dióxido de silicio y alto contenido de calcio con un 89.16%, mientras que las cenizas de concha de abanico presentaron alto contenido de dióxido de silicio, con un porcentaje de 45.12% y un bajo contenido de calcio de 34.04% del total de la masa siendo estos unos componentes significativos en la resistencia del concreto, especialmente en la fabricación de ladrillos.
- 3. El diseño de la mezcla para el ladrillo de concreto, con una resistencia f'c=175 kg/cm², implicó la adición de cáscara de huevo (CHT) y cenizas de concha de abanico (CCA) en proporciones del 1%, 2% y 3%. Se determinó que para un ladrillo con un 1% de CHT y CCA, se necesitan 0.97 Kg de cemento, 2.29 Kg de agregado fino, 2.74 Kg de agregado grueso, 0.35 L de agua potable y 9.74 g de CHT y CCA. Para un ladrillo con la misma proporción, pero con un 2% de CHT y CCA, se requiere añadir 19.58 g de estos materiales. Y para un ladrillo con la misma dosificación, pero con un 3% de CHT y CCA, se añaden 29.22 g de estos componentes.
- 4. La fuerza de compresión del ladrillo de concreto, inicialmente diseñado para resistir una carga f'c=175 kg/cm² y posteriormente modificado con la incorporación de cáscara de huevo y cenizas de concha de abanico en porcentajes del 1%, 2% y 3%, experimentó incrementos significativos en sus valores de resistencia durante los primeros 7 días de curado, según lo demostraron los ensayos de rotura. No obstante, con el transcurso del tiempo, se observó un incremento constante en las resistencias correspondientes, alcanzando su punto máximo a los 28 días de curado con aqua.

5. Finalmente se concluye que al evaluar los resultados de la resistencia a compresión f'c=175 kg/cm² adicionando cáscara de huevo y cenizas de concha de abanico al 1%, 2% y 3%, se observó que el ladrillo de concreto experimental con una dosificación del 2% demostró ser la más efectiva, presentando una resistencia a compresión superior a la muestra patrón y otras combinaciones, lo que la posiciona como la mejor opción para mejorar la resistencia a la compresión de los ladrillos de concreto.

VI. RECOMENDACIONES

- Se sugiere a los indagadores venideros la recopilación de datos provenientes de una variedad de fuentes de agregados, con el fin de explorar la diversidad y analizar su influencia en las características del concreto.
- Se recomienda considerar investigaciones adicionales, como la aplicación de técnicas de microscopía electrónica de barrido, para obtener una caracterización más exhaustiva de la estructura y disposición de los componentes presentes en las cenizas.
- Se alienta a los indagadores considerar el uso de aditivos con potencial a mejorar las características particulares del hormigón, como aditivos químicos diseñados para reducir el uso de agua o para enfrentar condiciones ambientales desfavorables.
- 4. También se sugiere indagar el efecto con el tiempo de estas incorporaciones en la durabilidad del concreto a través de ensayos realizados en rangos prolongados, como a los 60 o 120 días.
- 5. Se sugiere a los investigadores venideros explorar otros valores de adición de CHT y CCA en el ladrillo de concreto f'c= 175 kg/cm², dentro del rango del 2% al 8%, con el objetivo de adquirir datos más exactos y acercarse al porcentaje óptimo.

REFERENCIAS

1. ABREU, Jose. International journal of good conscience. Hipótesis, Método &

Diseño de Investigación [en línea]. 2012, 7(2), 11 [consultado el 1 de noviembre

de 2023].

Disponible en: https://acortar.link/v5fyDy

ISSN 1870-557X.

2. AKARLEY POMA, Daniela y FLORIAN PLASENCIA, Claudia. caracterización de

las propiedades de unidades de albañilería y muretes conformados por bloques

de concreto en adición de conchas de abanico. En: repositorio digital de la

Universidad Privada Antenor Orrego [base de datos en línea] [consultado el 26 de

octubre de 2023].

Disponible en: https://acortar.link/cbSEc6

3. ALFARO PÉREZ, Jhon v CASTRO GALLARDO, David. Análisis comparativo de

las propiedades físicas-mecánicas del concreto de resistencias f´c= 210, 280, 350

kg/cm2 sustituyendo material cementicio por cáscara de huevo. En: Repositorio

Digital de la Universidad Privada Antenor Orrego [base de datos en línea]

[consultado el 28 de octubre de 2023].

Disponible en: https://acortar.link/Oa2aMU

4. ARIAS, Jesús, VILLASÍS, Miguel y MIRANDA, María. El protocolo de investigación

III: la población de estudio [en línea]. Mayo de 2016 [consultado el 24 de

noviembre de 2023].

Disponible en: https://www.redalyc.org/pdf/4867/486755023011.pdf

5. ARIAS GONZALES, Jose Luis. Técnicas e Instrumentos de Investigación [en

línea]. Areguipa: Biblioteca Nacional Del Perú, 2020 [consultado el 26 de octubre

de 2023].

Disponible en: https://acortar.link/tfLoX3

ISBN 978-612-48444-0-9.

40

6. AYODELE A. L, OKETOPE O. M Y OLATUNDE O. S. Effect of sawdust ash and eggshell ash on selected engineering properties of lateralized bricks for low cost housing. Abril 2019, vol. 38, n°2, págs. 278-282. 5p.

Disponible en: https://acortar.link/r4ZFSe

ISSN 0331-8443.

7. BERRÚ YARLEQUÉ, Mauricio y otros. Diseño de planta para la producción de carbonato de calcio a partir de la concha de abanico de la ciudad de Sechura [en línea]. Tesis para optar el título profesional de ingeniero civil, Universidad de Piura, 2014 [consultado el 2 de noviembre de 2023].

Disponible en: https://acortar.link/RRPCGt

8. BIOPAT. Concha de abanico. INDECOPI [en línea]. 8 de agosto de 2019 [consultado el 28 de octubre de 2023].

Disponible en: https://acortar.link/BPNUFJ

 CASTRO MALDONADO, John Jairo, Leidy Katherine GÓMEZ MACHO y Esperanza CAMARGO CASALLAS. La investigación aplicada y el desarrollo experimental en el fortalecimiento de las competencias de la sociedad del siglo XXI. Tecnura [en línea]. 2023, 27(75), 140–174 [consultado el 4 de noviembre de 2023].

Disponible en: https://acortar.link/uPEXv2

ISSN 2248-7638.

10. CHANDRASEKHAR, K., Reddy, M. Vijay Sekhar and Reddy, Strength Properties of Concrete by Partial Replacement of Cement with Egg Shell Powder and Fly Ash: An Experimental Study (October 25, 2020). The IUP Journal of Structural Engineering, Vol. XIV, No. 2, April 2021, pp. 48-55,

Available at SSRN: https://acortar.link/BWvdDt

11. CEMEX. Resistencia. cemexmexico [en línea]. 17 de octubre de 2019 [consultado el 1 de noviembre de 2023].

Disponible en: https://acortar.link/0BFuX2

12. CHUMIOQUE BEDON, Katherine y VILLEGAS CASTILLO, Linda. Resistencia a la Compresión del concreto f'c=210 kg/cm2 al sustituir el cemento por ceniza de concha de abanico y bagazo de caña de azúcar, Chimbote, 2019. En: Repositorio de la Universidad César Vallejo [base de datos en línea]. [consultado el 26 de octubre de 2023].

Disponible en: https://acortar.link/bbHGV7

13. COMEXPERÚ. Exportaciones acuícolas crecieron un 25,3% en el periodo enerooctubre de 2021. comexperu [en línea]. 14 de enero de 2022 [consultado el 2 de noviembre de 2023].

Disponible en: https://acortar.link/n06QW5

14. CÓRDOVA MORENO, Daniel y VELA CONTRERAS, Diana. Resistencia a la compresión del ladrillo sustituyendo cemento en 5%, polvo concha de abanico y 10% vidrio molido, Chimbote - 2021. Tesis para optar el título profesional de ingeniero civil, Universidad Cesar Vallejo, 2021 [consultado el 27 de octubre de 2023].

Disponible en: https://acortar.link/akae7d

15. Farías Taboada, M. A. (2018). Obtención de óxido de calcio (cao) a nivel de laboratorio por medio de la calcinación de valvas de concha de abanico (argopecten purpuratus) en la ciudad de Sechura [para optar el título profesional de ingeniero industrial, Universidad Nacional de Piura].

Disponible en: https://acortar.link/VuN44n

16. FERNANDEZ BACA, Americo Alexander. La maricultura de concha de abanico (argopecten purpuratus) en el Perú y su relación con el biocomercio. En: Repositorio de Tesis PUCP [base de datos en línea]. Tesis para obtener el grado académico de Magíster en Biocomercio y Desarrollo Sostenible, Universidad Católica del Perú, 2021 [consultado el 8 de noviembre de 2023].

Disponible en: https://acortar.link/UHUNDX

17. HERNÁNDEZ SAMPIERI, Roberto, Carlos FERNÁNDEZ COLLADO y BAPTISTA LUCIO, María Del Pilar. Metodología de la investigación [en línea]. 6a ed. México:

INTERAMERICANA EDITORES, S.A. DE C.V, 2014 [consultado el 2 de noviembre de 2023].

Disponible en: https://acortar.link/l03so

ISBN 978-1-4562-2396-0.

18. HURTADO CUEVA, Abigail Kenia y PARIONA AUCCATOMA. Mayli. Adición de cenizas de cascara de huevo y concha de abanico para mejorar las propiedades físicas y mecánicas del concreto. En: Repositorio de la Universidad César Vallejo [base de datos en línea]. Tesis para Obtener el Título, Universidad Cesar Vallejo, 2019 [consultado el 27 de octubre de 2023].

Disponible en: https://acortar.link/gPULIC

19. JAMES, Jijo, P. Kasinatha PANDIAN y A. Snowline SWITZER. Egg Shell Ash As Auxiliary Addendum to Lime Stabilization of an Expansive Soil. The Journal of Solid Waste Technology and Management [en línea]. 2017, 43(1), 15–25 [consultado el 3 de noviembre de 2023].

Disponible en: https://acortar.link/Zc9syG

ISSN 1088-1697.

- 20. MANTEROLA, Carlos. Técnicas de Muestreo sobre una Población a Estudio. SciELO - Scientific electronic library online [en línea]. 2017 [consultado el 24 de noviembre de 2023].
- 21. MAURICIO VILLARRIAL, R. A. (2021). Structural concrete modified with scallop shell lime. Revista Ingeniería de Construcción, 36(3). https://acortar.link/L7fW4T
- 22. MORI PIZZINO, R. W. (2022). Utilización de valvas de concha de abanico y residuos de construcción civil en la elaboración de adoquines de concreto [Tesis para optar título de ingeniero pesquero, Universidad Nacional Agraria La Molina]. Disponible en: https://acortar.link/sEMmDX
- 23. NABILAH ISMAIL, Nurul et al. Physical and Mechanical Properties of Concrete Containing Green Mussel (Perna viridis) Shell Ash as an Admixture. IOP

Conference Series: Materials Science and Engineering [en línea]. 2019, 601,

012034 [consultado el 3 de noviembre de 2023].

Available at SSRN: https://acortar.link/VwN5Pa

ISSN 1757-899X.

24. NATOUR. Materiales de construcción hechos con cáscara de huevo y otros

residuos - forumnatura. forumnatura [en línea]. 31 de enero de 2019 [consultado

el 10 de noviembre de 2023].

Disponible en: https://acortar.link/iwPx08

25. PRADAS CALVO, P. Desarrollo de conglomerantes hidráulicos de carretera

empleando cáscara de huevo como componente, influencia del tamaño de

partícula. Proyecto de fin de grado, Universidad De Sevilla, España 2019.

Disponible en: https://idus.us.es/handle/11441/94247

26. REYES CHAUPIS, Miguel Ángel. Resistencia a compresión de un concreto f'c

=210 kg/cm2 al sustituir al cemento en 4%, 6% y 8% por cascara de huevo [en

línea]. Tesis para obtener el título profesional de ingeniero civil, Universidad San

Pedro, 2019 [consultado el 27 de octubre de 2023].

Disponible en: https://acortar.link/hc3nRy

27. RÍOS ICHIPARRA, Michael Edinson. Evaluación de la resistencia del concreto

f'c=210kg/cm2 con adición de cascara de huevo [en línea]. Tesis para optar el

Título Profesional de Ingeniero Civil, San Pedro, 2017 [consultado el 1 de

noviembre de 2023].

Disponible en: https://acortar.link/P0diue

28. RODRÍGUEZ NAVARRO, Alejandro. La cáscara de huevo: estructura, formación

y calidad. aviNews, la revista global de avicultura [en línea]. 11 de marzo de 2021

[consultado el 10 de noviembre de 2023].

Disponible en: https://acortar.link/y4TCVN

29. VÁSQUEZ REQUEJO, Nadia y REYES CRUZ, Hugo. Evaluación de las

propiedades mecánicas del mortero a/c 1:5 con diferentes tipos de cemento

Portland adicionando dióxido de titanio (TIO2) [en línea]. Tesis para optar el título profesional de ingeniero civil, Universidad Tecnológica del Perú, 2023 [consultado el 26 de octubre de 2023].

Disponible en: https://acortar.link/X0iRjT

30.ZAVALETA GUERRA, Sheyla. Resistencia a la compresión de ladrillo de concreto, sustituyendo en 23% al cemento por una combinación de conchas de abanico al 15% y rastrojo de maíz al 8% [en línea]. Tesis para optar el título profesional de ingeniero civil, universidad san pedro, 2019 [consultado el 26 de octubre de 2023].

Disponible en: https://acortar.link/giLOgt

31. OBREGÓN, A. Resistencia a la compresión de ladrillo de concreto, sustituyendo un 15% al cemento, por arcilla en un 10% y cenizas de hoja de schinus (MOLLE) en un 5%. *DSpace Home* [en línea]. 2018 [consultado el 24 de noviembre de 2023]. Disponible en: https://acortar.link/ESPd8H

ANEXOS

Anexo 1. Tabla de operacionalización de variables

VARIABLE DE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIÓN	INDICADORES	ESCALA DE MEDICIÓN
ESTUDIO					
		VARIABLES INDEPENDIENTE	<u>:S</u>		
	Según Rodríguez (2021), la cascara de huevo				
	es una fina capa mineral, con un grosor de		Granulometría	Tamizaje	Razón
	aproximadamente 350 micras, que resguarda el	La proporción de nuestros			
	interior del huevo de daños mecánicos,	productos básicos adicionadas			
Cáscara de	deshidratación y la posible contaminación por	a la dosificación de concreto			
huevo triturado	microorganismos. Esta capa presentó múltiples	aumentó la durabilidad y	Análisis	Peso específico	
	poros que facilitan el intercambio de gases	consiguió un alto nivel de	químico		Razón
	esenciales para la respiración del embrión,	rigidez.	quillico		
	además de proveer el calcio necesario para el			Composición química	
	desarrollo de su estructura ósea.				
	Como Biopat (2019), son organismos				
	bentónicos que se alimentaron de fitoplancton y		Granulometría	Tamizaje	Razón
	viven en fondos arenosos y fangosos con algas	La proporción de nuestros			
Ceniza de	y mariscos a profundidades de hasta 40 metros.	productos básicos adicionadas		Peso específico	Razón
concha de	Forman grupos conocidos como 'bancos', con	a la dosificación de concreto			Razón
abanico	una alta densidad en la zona central	para aumentó la durabilidad y	Análisis		
abanico	(aproximadamente 9-10 individuos por metro	consiguió un alto nivel de	químico	Composición química	
	cuadrado) y una densidad media de 1-2	rigidez.	quimico	Composicion quimica	
	individuos por metro cuadrado en las zonas				
	periféricas. Están en un estado planctónico				

	durante los primeros 20 días de su ciclo de vida, luego cambian a un estado bentónico que dura unos 350 días para completar su ciclo de vida. La resistencia a compresión del hormigón es el	VARIABLES DEPENDIENTES	Diseño de	Dosificación con 1%,	
	indicador de rendimiento más utilizado por los		mezcla.	2% y 3%	
Resistencia a compresión	profesionales de la construcción cuando se planifican construcciones y otras obras arquitectónicas, se evaluó la resistencia del hormigón a través de un proceso en el que se somete una muestra cilíndrica del material a una prueba de compresión en una máquina especializada. La resistencia a la compresión se determinó al separar la fuerza aplicada en la muestra por su área de la sección transversal que soporta la carga y se expresa en kg/cm² Cemex (2019 p. 2).	Esta evaluación se llevó a cabo realizando las pruebas de compresión que consistió en llevar el bloque a la falla y registrar la carga en el área de contacto dañada, Obregón (2018 p. 24).	Calidad del concreto	Ensayo de resistencia a compresión	Razón

Anexo 2. Matriz de consistencia

TÍTULO: R	esistencia a compresión del ladrillo de concr	eto f'c=175 kg/cm² adicionando cá	scara de huevo y	cenizas de conch	a de abanico, (Chimbote, 2023
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIA	BLES E INDICADO	RES	METODOLOGÍA
	Objetivo General		Variable de estudio	Dimensiones	Indicadores	Tipo de estudio:
	Evaluar la resistencia a compresión de un		<u>Variable</u> independiente	Granulometría	Tamizaje	Aplicado
	ladrillo de concreto f'c=175kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico en proporciones del 1%, 2% y 3%.		Cáscara de huevo triturado	Análisis químico	Peso especifico Composición química	Diseño de investigación: Cuasiexperimental
	Objetivos específicos	Hipótesis alternativa	. <u>Variable</u>	Granulometría	Tamizaje	
Problema General ¿Cómo influye la adición de cáscaras de huevo triturado y cenizas de concha de abanico en la resistencia a compresión de los ladrillos de concreto f'c=175kg/ cm²?	 Identificar las propiedades físicomecánicas de los agregados finos y gruesos mediante el análisis granulométrico. Determinar los componentes 	La adición de cáscara de huevo triturado y cenizas de concha de abanico en proporción del 1%, 2% y 3% mejora y aumenta significativamente la resistencia a compresión de un ladrillo de concreto f'c=175kg/ cm² Hipótesis nula La adición de cáscara de huevo triturado y cenizas de concha de abanico en proporción del 1%,2% y 3% no mejora y no aumenta la resistencia a compresión de un ladrillo de concreto f'c=175kg/ cm²	Ceniza de concha de abanico	Análisis químico	especifico Composición química de	Método de investigación Cuantitativo Población:
				Diseño de mezcla	la ceniza Dosificación con 1%, 2% y 3%	Es la agrupación de ladrillos hecho de concreto
	triturado y cenizas de concha de abanico, mediante ensayos de análisis por fluorescencia de rayos x y análisis térmico. • Determinar el asentamiento requerido del concreto mediante el procedimiento de medición de slump haciendo uso del cono de abrams de acuerdo con la NTP 339.045. • Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm2 al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.		Variable dependiente Resistencia a compresión	Calidad del concreto	Ensayo de resistencia a compresión	tradicionalmente y experimental adicionando a la dosificación por el 1%, 2% y 3% de CHT y CCA para hacer ladrillos de concreto f'c=175 kg/cm², con un total de 15 bloques de concreto estándar y 45 bloques de concreto experimentales, siendo así un total de 60 ladrillos de concreto para luego pasar por el proceso de curado y sumergirlos usando agua potable, obteniendo los resultados de evaluación a los 7, 14 y 28 días

Identificar	la deformación del ladrillo	Muestra:	
	to experimental mediante	<u>Muestra.</u>	
		40 de le delle e de conce	_4
	de alabeo exigidos por la	48 de ladrillos de concr	
NTP E070	, 2000.	fabricados al adicionar	
		1%, 2% y 3% de CH	
		CCA, debidamente eleg	
		de acuerdo al diseño	
		mezcla correspondi	
			de
		compresión. La muestra	
		dividió en tres categoría	
		ladrillos para cada uno	
		los tiempos de curado (7	, 14
		y 28 días).	
		Musetree	
		Muestreo:	VITD.
		Con base en las	
		400.037 y 339.088,	
		realizaron muest	
			que
		requirieron sumergir	
		agua al menos 48 bloc	
		de concreto y se realiza pruebas en 7, 14 y 28 di	
		pruebas en 7, 14 y 20 di	as.

Anexo 3. Instrumento de recolección de datos

FECHA

I. ESPECIFICACIONES:

1.1. La Resistencia de Diseño a los 28 días es de _ Kg/cm².

1.2. Materiales:

1.2.1. Cemento

Peso Específico

gr/cm3

1.2.2. Agregado Fino

Arena Gruesa - Cantera Chero - Chimbote.

Peso Especifico Absorción

Contenido de Humedad Módulo de Fineza

Peso Unitario Suelto

gr/cm3

Kg/m3

1.2.3. Agregado Grueso

Agregado Grueso - Cantera Chero - Chimbote.

Tamaño Maximo Nominal Peso Seco Varillado

Peso Especifico Absorción. Contenido de Humedad

Peso Unitario Suelto

Kg/m3 gr/cm3

Kg/m⁵

1.2.4. Agua:

Agua Potable de la zona.

ICCSA INGENIEROS SAC energetty V.

PRVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. Nº 282536

II. SECUENCIA DE DISEÑO:

2.1. Selección de la Resistencia (f'cr):

Dado que no se conoce el valor de la desviación estándar, entonces se

tiene que: Entonces:

f'cr= f'cr=

f'c + Kg/cm2

Kg/cm²

Ing LIVIL CIP 277101

Urb. Bella Mar Mz E Lote 09 - Nuevo Chimbote Teléfonos 943619979 - correo electrónico: iccsaingenierossac@gmail.com - RUC 20445792439

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

-	A	4.4	See	***	
2.2.	Selección	crear.	Lamano	Maximo.	Nominal:

El tamaño máximo nominal es de

2.3. Selección del Asentamiento:

Por condiciones de colocación se requiere de una mezcla plástica con un asentamiento de

2.4. Volumen Unitario de Agua:

Para una mezcla de concreto de de asentamiento, sin aire incorporado y cuyo agregado tiene un tamaño máximo nominal de 0 , el volumen unitario de agua es de

2.5. Contenido de Aire:

Se considera % de aire atrapado por las características de los componentes de éste concreto.

2.6. Relación Agua - Cemento:

Para una resistencia de diseño f cr = Kg/cm² sin aire incorporado, la relación agua – cemento es de por resistencia.

2.7. Factor Cemento:

= Kg/m³ = Bls/m³.

2.8. Contenido de Agregado Grueso:

Para un módulo de fineza de y un tamaño máximo nominal de 0 le corresponde un volumen unitario de mº de agregado grueso varillado por unidad de volumen de concreto.

Peso del Agregado Grueso = x = Kg/mº

2.9. Cálculo de Volúmenes Absolutos:

Cemento / (x)= mº

 Cemento
 / (x)= m³

 Agua
 / (x)= m³

 Aire Atrapado
 % = m³

 Agregado Grueso
 / (x)= m³

 Total
 = m³

2.10 Contenido de Agregado Fino:

Volumen absoluto de agregado fino : - = m³

Peso de agregado fino seco : x x = m²

2.11 Valores de Diseño:

 Cemento
 Kg/m³

 Agua de Diseño
 Lt/m³

 Agregado Fino Seco
 Kg/m³

 Agregado Grueso Seco
 Kg/m³

PHYASPLATA VASQUEZ VICTOR OCTAVIO
INGENIERO CIVIL
CIP. N° 282536

WENEROS LA

ICCSA INCENIEROS SAC

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

	ad de los Agr	regados:			
Agregado Fino		×	-	Kg/m3	
Agregado Grueso		x	-	Kg/m3	
Humedad Superficial d	e:				
Agregado Fino			~	%	
Agregado Grueso			=	%	
Aporte de Humedad de	los Agregad	08:			
Agregado Fino		x []-	Lt/m ^a	
Agregado Grueso		x)-	Lt/m ^b	
	Total		-	Lt/m²	
Agua Efectiva		- [] -	Lt/m³	
Los pesos de los materi	iales ya correj	gidos serán	d.		
Cemento		Kg/	100		
Agua Efectiva		Lt/n			
Agregado Fino Húmed	lo	Kg/	m ²		
Agregado Grueso Hún		Kg/			
.13 Proporción en Peso Hú	medo:				
/ :	1	- 1	1		1 1
.14 Pesos por Tanda de un	Saco:				
Cemento		X	=	Kg/sac	0
Agua Efectiva		X	**	Lt/saco)
Agregado Fino Húmedo	D.	X	=	Kg/sac	0
Agregado Grueso Húm	edo	x	-	Kg/sac	0
.15 Peso por Pie Cúbico de	Ŀ				
Agregado Fino Hümedo	9	X	1	-	Kg/pie*
Agregado Grueso Húm	edo	х	1		Kg/pie ³
.16 Dosificación en Volum	em:				
Cemento		1	=	pie"	
Agregado Fino Húmedo	9	1	26	pie"	
	edo	1	- 4	pie"	
Agregado Grueso Húm		1	-	Lt/bols	a
Agregado Grueso Húm Agua de Mezcia					

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

AHON			

BOLICITADO MUESTRA

		Peso inicia	seco (gr)				
Males	Abertura (mm)	Peso Reterido (gr)	Retenido Parcial (%)	Reterrido Acumulado (%)	% que Pasa	LIMITES PI	OHMISHILLA :-33 (67)
7	50.800			-1000		100	100
1.1.0"	38,100					100	100
1*	25,400					100	100
3/4"	19,050					90	100
1/2"	12.700					15077	
3/6"	9.500					20	56
N° 04	4.750					0	.15
N*8	2.360					0	- 5
N* 16	1.180						
N* 30	0.590						
N° 50	0.295						
Nº 100	0.148						
N° 200	0.074		8 8				
Cazoleta			Z 2				
TOTAL		1	()				1

TAMAÑO MAXIMO NOMINAL

PESO SECO SUBLTO

Kg/m3

PESO ESPECIFICO AMSORCION CONTENIDO DE HUMEDAD PESO UNITARIO SUELTO

Kg/m3

ENSAYO DEL PESO UMITARIO DEL AGREGADO GRUESO (NORMA ASTMIC-29 / NTP 400.017)

	MUESTRA				
PROCEDIMIENTO	M-UL	M-02	M-03		
PESO DE LA MUESTRA + MOLDE (RG)					
PISO DEL MOLDE (EG)					
PESO DE LA MUESTRA COMPACTADA(KG)					
VOLUMEN DEL MOLDE					
PESO APARENTE SUELTO (KG)					
PISO APARENTE SUILTO PROMIDIO (KG/MI)					
PRIO UNITARIO COMPACTADO					

PROCEDIMIENTO	-+	M-01	16-00	M-03
PESO DE LA MUESTRA + MOLDE (KG)				
PESO DEL MOLDE (RC)				
PESO DE LA MUESTRA SUELTA (KC)			9.1	
VOLUMEN DEL MOLDE				
PESO APARENTE COMPACTO (RG)				
PESO COMPACTADO PROMEDIO (KG)				

ICCSA INGENIEROS SAC

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

	ENSAYO DE ASENTAMIENTO DEL CONCRETO MTC E 705							
HICHA HOLLOTA	1							
10	-1327	arioum				20003200		

PROBETA	TEXTISC - EURINATO	MEDIA DE MUESTRA	SILMP DE DISEÑO	вимерии)	ament (car)
+					
-					

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

REPORTE DEL ENSAYO DE RESISTENCIA A COMPRESIÓN

Objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

Fec	na de	control:	

RESISTENCIA A LA COMPRESIÓN - 7 DÍAS					
MUESTRA PATRÓN – M01					
MUESTRA PATRÓN – M02					
MUESTRA PATRÓN – M03					
MUESTRA PATRÓN – M04					
RESISTENCIA PROMEDIO					
DOSIFICACION 1% – M01					
DOSIFICACION 1% - M02					
DOSIFICACION 1% – M03					
DOSIFICACION 1% – M04					
RESISTENCIA PROMEDIO					
DOSIFICACION 2% – M01					
DOSIFICACION 2% – M02					
DOSIFICACION 2% – M03					
DOSIFICACION 2% – M04					
RESISTENCIA PROMEDIO					
DOSIFICACION 3% – M01					
DOSIFICACION 3% – M02					
DOSIFICACION 3% - M03					
DOSIFICACION 3% - M04					
RESISTENCIA PROMEDIO					
RESISTENCIA PROMIEDIO					

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

REPORTE DEL ENSAYO DE RESISTENCIA A COMPRESIÓN

Objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

RESISTENCIA A LA COMPRESIÓN - 14 DÍAS		
MUESTRA PATRÓN – M01		
MUESTRA PATRÓN – M02		
MUESTRA PATRÓN – M03		
MUESTRA PATRÓN – M04		
RESISTENCIA PROMEDIO		
DOSIFICACION 1% - M01		
DOSIFICACION 1% - M02		
DOSIFICACION 1% - M03		
DOSIFICACION 1% - M04		
RESISTENCIA PROMEDIO		
DOSIFICACION 2% – M01		
DOSIFICACION 2% – M02		
DOSIFICACION 2% - M03		
DOSIFICACION 2% - M04		
RESISTENCIA PROMEDIO		
DOSIFICACION 3% - M01		
DOSIFICACION 3% – M02		
DOSIFICACION 3% – M03		
DOSIFICACION 3% – M04		
RESISTENCIA PROMEDIO		

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

REPORTE DEL ENSAYO DE RESISTENCIA A COMPRESIÓN

Objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

-echa	de	control:

RESISTENCIA A LA COMPRESIÓN - 28 DÍAS		
MUESTRA PATRÓN – M01		
MUESTRA PATRÓN – M02		
MUESTRA PATRÓN – M03		
MUESTRA PATRÓN – M04		
RESISTENCIA PROMEDIO		
DOSIFICACION 1% - M01		
DOSIFICACION 1% - M02		
DOSIFICACION 1% - M03		
DOSIFICACION 1% - M04		
RESISTENCIA PROMEDIO		
DOSIFICACION 2% - M01		
DOSIFICACION 2% - M02		
DOSIFICACION 2% - M03		
DOSIFICACION 2% - M04		
RESISTENCIA PROMEDIO		
DOSIFICACION 3% - M01		
DOSIFICACION 3% - M02		
DOSIFICACION 3% - M03		
DOSIFICACION 3% - M04		
RESISTENCIA PROMEDIO		

Anexo 4. Fichas de validación de Instrumentos para la recolección de datos

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

REPORTE DEL ENSAYO DE RESISTENCIA A COMPRESIÓN

Objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

Fecha de control: 28/64/2024

RESISTENCIA A LA COMPR	RESIÓN – 7 DÍAS
MUESTRA PATRÓN – M01	145,21
MUESTRA PATRÓN – M02	144,74
MUESTRA PATRÓN – M03	145,61
MUESTRA PATRÓN – M04	145,34
RESISTENCIA PROMEDIO	145,03
DOSIFICACION 1% - M01	177,31
DOSIFICACION †% - M02	179,24
DOSIFICACION 1% - M03	778,89
DOSIFICACION 1% - M04	178,72
RESISTENCIA PROMEDIO	177,65
DOSIFICACION 2% – M01	700,91
DOSIFICACION 2% - M02	.199,6
DOSIFICACION 2% - M03	200,49
DOSIFICACION 2% - M04	198,49
RESISTENCIA PROMEDIO	199,53
DOSIFICACION 3% - M01	180,97
DOSIFICACION 3% – M02	178,78
DOSIFICACION 3% – M03	187,63
DOSIFICACION 3% – M04	182,39
RESISTENCIA PROMEDIO	187,07

ICCS A JUNE PROTECTION OF THE PROTECTION OF THE

CCSA INGENIEROS SAC Quinclata / RIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

REPORTE DEL ENSAYO DE RESISTENCIA A COMPRESIÓN

Objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

Fecha de control: 05/05/2024

RESISTENCIA A LA COMPR	RESIÓN – 14 DÍAS
MUESTRA PATRÓN – M01	150,44
MUESTRA PATRÓN – M02	151,75
MUESTRA PATRÓN – M03	157,67
MUESTRA PATRÓN – M04	150,38
RESISTENCIA PROMEDIO	151,42
DOSIFICACION 1% - M01	236,14
DOSIFICACION 1% - M02	235,47
DOSIFICACION 1% - M03	241,82
DOSIFICACION 1% - M04	241,72
RESISTENCIA PROMEDIO	238,79
DOSIFICACION 2% - M01	255,04
DOSIFICACION 2% - M02	. 262,52
DOSIFICACION 2% - M03	259,42
DOSIFICACION 2% – M04	257,96
RESISTENCIA PROMEDIO	258,74
DOSIFICACION 3% - M01	225,32
DOSIFICACION 3% – M02	279,57
DOSIFICACION 3% - M03	223,11
DOSIFICACION 3% - M04	223,81
RESISTENCIA PROMEDIO	727,95

RIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 282536

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

REPORTE DEL ENSAYO DE RESISTENCIA A COMPRESIÓN

Objetivo: Identificar la resistencia del ladrillo de concreto f'c=175 kg/cm² al agregar cáscara de huevo triturado y cenizas de concha de abanico mediante ensayos a compresión en periodos 7, 14 y 28 días.

Fecha de control: 15/65/7024

RESISTENCIA A LA COMPRESIÓ		
MUESTRA PATRÓN – M01	211,10	
MUESTRA PATRÓN – M02	268,70	
MUESTRA PATRÓN – M03	212,64	
MUESTRA PATRÓN – M04	711,98	
RESISTENCIA PROMEDIO	211,11	
DOSIFICACION 1% - M01	250,81	
DOSIFICACION 1% - M02	252,44	
DOSIFICACION 1% – M03	255,34	
DOSIFICACION 1% – M04	254,40	
RESISTENCIA PROMEDIO	253,25	
DOSIFICACION 2% – M01	287,64	
DOSIFICACION 2% – M02	. 283,30	
DOSIFICACION 2% – M03	284,28	
DOSIFICACION 2% – M04	278,32	
RESISTENCIA PROMEDIO	283,24	
DOSIFICACION 3% - M01	254,65	
DOSIFICACION 3% – M02	255,32	
DOSIFICACION 3% - M03	258,03	
DOSIFICACION 3% – M04	256,69	
RESISTENCIA PROMEDIO	256,17	

ICCSAINGENER

ICCSAINGENER

IN PROPERTY OF THE PROPERTY OF THE

OLLI DIATA

PLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL

FICHA DE VALIDACIÓN DE CONTENIDO PARA LA VARIABLE RESISTENCIA A COMPRESIÓN

INSTRUCCIÓN: A continuación, se le hace llegar el instrumento de recolección de datos (Ficha de registro) que permitirá recoger la información en la presente investigación: Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023. Por lo que se le solicita que tenga a bien evaluar el instrumento, haciendo, de ser caso, las sugerencias para realizar las correcciones pertinentes. Los criterios de validación de contenido son:

Criterios	Detalle	Calificación
Suficiencia	El/la ítem/pregunta pertenece a la dimensión/subcategoría y basta para obtener la medición de esta	1: de acuerdo 0: en desacuerdo
Claridad	El/la ítem/pregunta se comprende fácilmente, es decir, su sintáctica y semántica son adecuadas	1: de acuerdo 0: en desacuerdo
Coherencia	El/la ítem/pregunta tiene relación lógica con el indicador que está midiendo	1: de acuerdo 0: en desacuerdo
Relevancia	El/la ítem/pregunta es esencial o importante, es decir, debe ser incluido	1: de acuerdo 0: en desacuerdo

MATRIZ DE VALIDACIÓN DE FICHA DE REGISTRO DE LA VARIABLE RESISTENCIA A COMPRESIÓN

Definición de la variable: La resistencia a compresión del hormigón es el indicador de rendimiento más utilizado por los profesionales de la construcción cuando se planifican construcciones y otras obras arquitectónicas Cemex (2019 p. 2).

Dimensión	Indicador	Ítem	Suficiencia	C _ a r c a c	Coherencia	Re_evanc.a	Observación
Diseño de Mezcla	Dosificación con 1%, 2% y 3%	Reporte de ensayo de resistencia a	1	1	1	1	
Calidad del concreto	Ensayo de resistencia a compresión	compresión	'	'	'	ı	

FICHA DE VALIDACIÓN DE JUICIO DE EXPERTO

Nombre del instrumento	Reporte de ensayo de resistencia a compresión		
Objetivo del instrumento	Recolectar los datos según ensayos de laboratorio realizados a las muestras del ladrillo de concreto adicionando cáscara de huevo y cenizas de concha de abanico		
Nombres y apellidos del experto	Victor Octavio Rivasplata Vasquez		
Documento de identidad	72619761		
Años de experiencia en el área	02 años		
Máximo Grado Académico	Superior completo		
Nacionalidad	Peruano		
Institución	Independiente		
Cargo	Consultor		
Número telefónico	977764609		
Firma	ICCSA INGENIEROS SAC LULIPUTA V. BIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 282536		
Fecha	28/04/2024		

FICHA DE VALIDACIÓN DE CONTENIDO PARA LA VARIABLE RESISTENCIA A COMPRESIÓN

INSTRUCCIÓN: A continuación, se le hace llegar el instrumento de recolección de datos (Ficha de registro) que permitirá recoger la información en la presente investigación: Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023. Por lo que se le solicita que tenga a bien evaluar el instrumento, haciendo, de ser caso, las sugerencias para realizar las correcciones pertinentes. Los criterios de validación de contenido son:

Criterios	Detalle	Calificación
Suficiencia	El/la ítem/pregunta pertenece a la dimensión/subcategoría y basta para obtener la medición de esta	1: de acuerdo 0: en desacuerdo
Claridad	El/la ítem/pregunta se comprende fácilmente, es decir, su sintáctica y semántica son adecuadas	1: de acuerdo 0: en desacuerdo
Coherencia	El/la ítem/pregunta tiene relación lógica con el indicador que está midiendo	1: de acuerdo 0: en desacuerdo
Relevancia	El/la ítem/pregunta es esencial o importante, es decir, debe ser incluido	1: de acuerdo 0: en desacuerdo

MATRIZ DE VALIDACIÓN DE FICHA DE REGISTRO DE LA VARIABLE RESISTENCIA A COMPRESIÓN

Definición de la variable: La resistencia a compresión del hormigón es el indicador de rendimiento más utilizado por los profesionales de la construcción cuando se planifican construcciones y otras obras arquitectónicas Cemex (2019 p. 2).

Dimensión	Indicador	Ítem	Oufc.enca	C - a r i d a d	Coherencia	Relevanc: a	Observación
Diseño de Mezcla	Dosificación con 1%, 2% y 3%	Reporte de ensayo de resistencia a	1	1	1	1	
Calidad del concreto	Ensayo de resistencia a compresión	compresión	1	I			

FICHA DE VALIDACIÓN DE JUICIO DE EXPERTO

Nombre del instrumento	Reporte de ensayo de resistencia a compresión
Objetivo del instrumento	Recolectar los datos según ensayos de laboratorio realizados a las muestras del ladrillo de concreto adicionando cáscara de huevo y cenizas de concha de abanico
Nombres y apellidos del experto	Jhancarlos Dario Gamarra Abad
Documento de identidad	45359712
Años de experiencia en el área	03 años
Máximo Grado Académico	Superior completo
Nacionalidad	Peruano
Institución	Universidad Nacional del Santa
Cargo	Consultor
Número telefónico	938951235
Firma	ICCS A HIGH TEROS SAC
Fecha	28/04/2024

Anexo 5. Resultados del análisis de consistencia interna

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

DISEÑO DE MEZCLA f'c =

Método de Diseño del Comité 211 del ACI

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo

y cenizas de concha de abanico, Chimbote, 2023

: Barrios Vasquez, Bruce Jack

Leon Raymundo, Elias Gabriel Imar

FECHA

: 15 DE ABRIL DEL 2024

I. ESPECIFICACIONES:

1.1. La Resistencia de Diseño a los 28 días es de 175 Kg/cm², se desconoce el valor de la desviación estándar.

Mater	lates:		
1.2.1.	Cemento Mochica EXTRA FORTE Peso Específico	2.97	gr/cm³
1.2.2.	Agregado Fino	2,37	gi/ ciii
	Arena Gruesa - Cantera Chero - Chimbote.		
	Peso Especifico	2.73	gr/cm°
	Absorción	3.24	%
	Contenido de Humedad	0.38	%
	Módulo de Fineza	2.47	
	Peso Unitario Suelto	1552	Kg/m ³

1.2.3.

Agregado Grueso			59.
Agregado Grueso - Cantera Chero - Chi	mbote.		
Tamaño Maximo Nominal		1/2"	
Peso Seco Varillado		1650	Kg/m ³
Peso Específico		2.77	gr/cm ³
Absorción		1.95	%
Contenido de Humedad		0.25	%
Peso Unitario Suelto		1459	Kg/m ³

1.2.4. Agua:

Agua Potable de la zona.

II. SECUENCIA DE DISEÑO:

2.1. Selección de la Resistencia (f'cr):

Dado que no se conoce el valor de la desviación estándar, entonces se

tiene que:

 $f'cr = f'c + 84 \text{ Kg/cm}^2$

Entonces:

f'cr =175 +84 = Kg/cm²

ICCSA INGENIEROS SAC

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

2	2	Solocci	án do	Tamaño	Mávimo	Maminal.

El tamaño máximo nominal es de

2.3. Selección del Asentamiento:

Por condiciones de colocación se requiere de una mezcla plástica con un asentamiento de 3" a 4".

2.4. Volumen Unitario de Agua:

Para una mezcla de concreto de 3" a 4" de asentamiento, sin aire incorporado y cuyo agregado tiene un tamaño máximo nominal de

1/2", el volumen unitario de agua es de

215 Lt/m2

2.5. Contenido de Aire:

Se considera 2.00 % de aire atrapado por las características de los componentes de éste concreto.

2.6. Relación Agua - Cemento:

Para una resistencia de diseño f'cr =

Kg/cm2 sin aire incorporado, 245

la relación agua - cemento es de

0.62 por resistencia.

2.7. Factor Cemento:

215.00 / 0.62 = 346.77

Bls/m3.

2.8. Contenido de Agregado Grueso:

Para un módulo de fineza de

2.47 y un tamaño máximo nominal de

1/2" le corresponde un volumen unitario de

0.59 m° de agregado

grueso varillado por unidad de volumen de concreto. Peso del Agregado Grueso =

 $0.59 \times 1650 =$ 973.50 Kg/m3

2.9. Cálculo de Volúmenes Absolutos:

Cemento 346.77 / 215.00 /

 $[2.97_X 1000] =$ $[1.00_X 1000] =$

[2.77X 1000]=

0.117 m³ 0.215 m3

Aire Atrapado 2.00 %

 0.020 m^3

Agregado Grueso 973.50 /

0.351 m³

, Total

0.703 m³

2.10 Contenido de Agregado Fino:

Volumen absoluto de agregado fino :

1.00 - 0.703 =

0.297

Peso de agregado fino seco

0.297 X 2.73

1000

810.256 m3

2.11 Valores de Diseño:

Cemento

Agua

346.77 Kg/m3

Agua de Diseño

215.00 Lt/m3

Agregado Fino Seco Agregado Grueso Seco 810.26 Kg/m3 973.50 Kg/m3

ICCSA INGENIEROS SAC

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

2.12 Corrección por Humedad de los Agregados:

Agregado Fino 810.26 X 1.0038 = 813.33 Kg/m^3 Agregado Grueso 973.50 X 1.0025 = 975.93 Kg/m^3

Humedad Superficial de:

Agregado Fino 0.38 - 3.24 = -2.86 % Agregado Grueso 0.25 - 1.95 = -1.70 %

Aporte de Humedad de los Agregados:

Agregado Fino $810.26 x (-0.0286) = -23.17 Lt/m^3$ Agregado Grueso $973.50 x (-0.0170) = -16.55 Lt/m^3$ $Total = -39.72 Lt/m^3$

43 Aug 195

Agua Efectiva 215.00 - (-39.72) = 254.72 Lt/m³

Los pesos de los materiales ya corregidos serán:

Cemento 346.77 Kg/m³ Agua Efectiva 254.72 Lt/m³

Agregado Fino Húmedo 813.33 Kg/m³ Agregado Grueso Húmedo 975.93 Kg/m³

2.13 Proporción en Peso Húmedo:

346.77 / 346.77 : 813.33 / 346.77 : 975.93 / 346.77 1 : 2.35 : 2.81 / 0.62

2.14 Pesos por Tanda de un Saco:

Cemento 42.5 = 1.00 x Kg/saco Agua Efectiva 0.67 x 42.5 = 28.48 Lt/saco 2.35 x 99.68 Agregado Fino Húmedo 42.5 = Kg/saco Agregado Grueso Húmedo 2.81 x 42.5 = 119.61 Kg/saco

2.15 Peso por Pie Cúbico del:

Agregado Fino Húmedo 813.33 \times 35.31 / 1552 = 18.50 Kg/pie³ Agregado Grueso Húmedo 975.93 \times 35.31 / 1459 = 23.62 Kg/pie³

2.16 Dosificación en Volumen:

Cemento 8.16 / pie 8.16 = Agregado Fino Húmedo pie' 18.50 / 8.16 = 2.27 Agregado Grueso Húmedo pie 23.62 / 8.16 = 2.89 Agua de Mezcla 254.72 / 31.22 8.16 = Lt/bolsa

SE RECOMIENDA USAR:

1: 2.30 : 2.90 / 31.00 LT/BL

ASYEW.

AVASPLATA VABOUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. Nº 282536

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

FECHA

: 15 DE ABRIL DEL 2024

SOLICITADO

Barrios Vasquez, Bruce Jack

Leon Raymundo, Elias Gabriel Imar : PIEDRA CHANCADA

MUESTRA

ANALISIS GRANULOMETRICO ASTN	n O	422
------------------------------	-----	-----

		Peso inicia	al seco (gr)	2997.0			
Mallas	Abertura (mm)	Peso Retenido (gr)	Retenido Parcial (%)	Retenido Acumulado (%)	% que Pasa	LIMITES PI	ERMISIBLE C-33 (67)
2"	50.800	0.0	0.00	0.00	100.00	100	100
1 1/2"	38.100	0.0	0.00	0.00	100.00	100	100
1"	25.400	0.0	0.00	0.00	100.00	100	100
3/4"	19.050	0.0	0.00	0.00	100.00	90	100
1/2"	12.700	1372.0	45.78	45.78	54.22		
3/8"	9.500	680.0	22.69	68.47	31.53	20	55
N° 04	4.750	740.0	24.69	93.16	6.84	0	15
N° 8	2.360	205.00	6.84	100.00	0.00	0	5
N° 16	1.180	0.00	0.00	100.00	0.00		
N° 30	0.590	0.00	0.00	100.00	0.00		
N° 50	0.295	0.00	0.00	100.00	0.00		
N° 100	0.148	0.00	0.00	100.00	0.00		
N° 200	0.074	0.00	0.00	100.00	0.00		
Cazoleta		0.00	0.00	100.00	0.00		
TOTAL		2997.0	100.00		_		

TAMAÑO MAXIMO NOMINAL PESO SECO SUELTO 1459 2.77 gr/cm3 PESO ESPECIFICO 1.95% CONTENIDO DE HUMEDAD 0.25% PESO UNITARIO SUELTO 1650 Kg/m3

PESO UNITARIO SUELTO			T SO TENOUS LESS CON		
PROCEDIMIENTO	M-01	M-02	M-03		
PESO DE LA MUESTRA + MOLDE (KG)	7.823	7.802	7.832		
PESO DEL MOLDE (KG)	3.64	3.64	3.64		
PESO DE LA MUESTRA COMPACTADA(KG)	4.183	4.162	4.192		
VOLUMEN DEL MOLDE	0.28646	0.28646	0.28646		
PESO APARENTE SUELTO (KG)	1460.24	1452.91	1463.38		
PESO APARENTE SUELTO PROMEDIO (KG/M3)			1459		
PESO UNITARIO COMPACTADO					
		MUESTRA			
PROCEDIMIENTO	M-01	M-02	M-03		
PESO DE LA MUESTRA + MOLDÉ (KG)	8.382	8.33	8.392		

1/4	MUESTRA					
PROCEDIMIENTO	M-01	M-02	M-03			
PESO DE LA MUESTRA + MOLDÉ (KG)	8.382	8.33	8.392			
PESO DEL MOLDE (KG)	3.64	3.64	3.64			
PESO DE LA MUESTRA SUELTA (KG)	4.742	4.69	4.752			
VOLUMEN DEL MOLDE	0.28646	0.28646	0.28646			
PESO APARENTE COMPACTO (KG)	1655,38	1637.23	1658.87			
PESO COMPACTADO PROMEDIO (KG)	1650					

ICCSA INGENIEROS SAC

empetal. RIVASPLATA VABOUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 282536

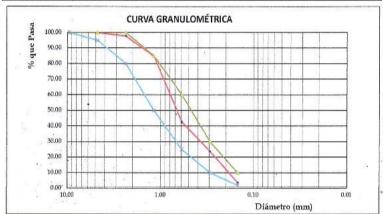
PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

FECHA

: 15 DE ABRIL DEL 2024

SOLICITADO


: Barrios Vasquez, Bruce Jack

Leon Raymundo, Elias Gabriel Imar

MUESTRA

:ARENA GRUESA

		Peso inici	al seco (gr)	954.0			
Mallas	Abertura (mm)	Peso Retenido (gr)	Retenido Parcial (%)	Retenido Acumulado (%)	% que Pasa	LIMITES P	ERMISIBLE
3/8"	9.500	0.0	0.00	0.00	100.00	100	100
N° 04	4.750	0,0	0.00	0.00	100.00	95	100
N° 8	. 2.360	21.00	2.20	2.20	97.80	80	100
N° 16	1.180	125.00	13.10	15.30	84.70	50	85
N° 30	0.590	402.00	42.14	57.44	42.56	25	60
N° 50	0.295	178.00	18.66	76.10	23.90	10	30
N° 100	0.148	193.00	20.23	96,33	3.67	2	10
N° 200	0.074	30.00	3.14	99.48	0.52		
Cazoleta		5.00	0.52	100.00	0.00		
TOTAL	Who the	954.0	100.00			Name and Address of the Owner, where the Owner, which is the Owner, which	-

 PESO ESPECIFICO
 2.78
 gr/cm3

 ABSORCION
 0.47%
 0.47%

 CONTENIDO DE HUMEDAD
 0.38%
 0.38%

 MODULO DE FINEZA
 2.47
 0.38%

 PESO UNITARIO SUELTO
 1552
 kg/m3

PESO APARENTE SUELTO PROMEDIO (KG/M3)

ENSAYO DEL PESO UNITARIO DEL AGREGADO GRUESO (NORMA ASTM C-29 / NTP 400.017)

MUESTRA PROCEDIMIENTO M-02 M-03 M-01 PESO DE LA MUESTRA + MOLDE (KG) 8.067 8.106 8.086 PESO DEL MOLDE (KG) 3.64 3.64 3.64 PESO DE LA MUESTRA SUELTA (KG) 4.427 4.466 4.446 VOLUMEN DEL MOLDE 0.28646 0.28646 0.28646 PESO APARENTE SUELTO (KG) 1545.42 1552.05 1559.03

ST NO STENE

ICCSA INGENIEROS SAC

RIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 282536

1552

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

MUESTRA

:ARENA GRUESA

SOLICITA

: Barrios Vasquez, Bruce Jack

Leon Raymundo, Elias Gabriel Imar

FECHA

: 15 DE ABRIL DEL 2024

GRAVEDAD ESPECÍFICA Y ABSORCIÓN AGREGADO FINO

	DATOS		1
1	Peso de la fiola	gr.	185.12
2	Peso de la fiola + agua	gr.	681.74
3	Peso de la fiola + agua + muestra	gr.	761.85
4	Peso seco de la muestra	gr.	126.40

	RESULTADOS		1
8	Peso Específico de masa		2.73
9	Absorción	%	3.24

ICCSA INGENIEROS SAC

BMASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 282536

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

MUESTRA

:PIEDRA CHANCADA

SOLICITA

: Barrios Vasquez, Bruce Jack

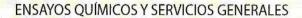
Leon Raymundo, Elias Gabriel Imar

FECHA

: 15 DE ABRIL DEL 2024

TAMAÑO MAXIMO NOMINAL = 1/2"

GRAVEDAD ESPECÍFICA Y ABSORCIÓN AGREGADO GRUESO -


MTC E-206

	DATOS		1	2
1 .	Peso de la muestra saturada con superficie seca (B) (aire)	gr.	3057.10	3060.05
2	Peso de la canastilla dentro del agua	gr.		
3	Peso de la muestra saturada+peso canastilla dentro del agua	gr.	1972.42	1976.33
4	Peso de la muestra saturada dentro del agua (C)	gr.	1972.42	1976.33
5	Peso de la tara	gr.		
6	Peso de la tara + muestra seca (horno)	gr.	3000.00	3000.00
7	Peso de la muestra seca (A)	gr.	3000.00	3000.00

	RESULTADOS				PROMEDIC
8	Peso Específico de masa		2.77	2.77	2.77
9	Peso Específico de masa saturada superficie seca		2.82	2.82	2.82
10	Peso específico aparente		2.92	2.93	2.93
11	Porcentaje de absorción	%	1.90	2.00	1.95

CCSA INGENIEROS SAC

RIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. Nº 282536

RUC: 20605355189

TRUJILLO, 18 DE ABRIL DEL 2024

A quien pueda interesar:

Reciba un cordial y respetuoso saludo. A través de estas líneas deseo hacer de su conocimiento que el Sr. BRUCE JACK BARRIOS VÁSQUEZ, con DNI: 72539172, realizó los análisis de FLUORESCENCIA DE RAYOS X y ANÁLISIS TÉRMICO DIFERENCIAL, en nuestra institución, el LABORATORIO FÍSICO QUÍMICO AMBIENTAL PERÚ S.A.C. con RUC: 20605355189.

Cabe resaltar, que dichos análisis tuvieron como fecha de inicio el día 13 de Abril del presente año y culminaron el día 18 de Abril del mismo; y que este formato emitido en la presente fecha, es a petición de la persona que realizó los análisis.

Sin más nada a que referirme y, esperando que esta misiva sea tomada en cuenta, dejo mi número de contacto para cualquier información de interés.

Atentamente.

CARLOS A. VALOUI MENDOZA

GERENTE GENERAL R. CIP. 122588

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

TRUJILLO, 18 DE ABRIL DEL 2024

Señor:

BRUCE JACK BARRIOS VASQUEZ

Presente.-

Estimado Señor

Por medio de la presente, es grato dirigirnos a usted enviándoles mis más cordiales saludos y a su vez presentar nuestra empresa **LABORATORIO FISICO QUIMICO AMBIENTAL PERU S.A.C.**

Los servicios que ofrece FQA PERU S.A.C son los siguientes:

- ✓ ANÁLISIS DE AGUA: para consumo humano, agropecuario, industrial, servidas, residuales, subterráneas.
- ✓ ANÁLISIS DE ALIMENTOS: productos lácteos, cárnicos, cereales, especias y condimentos, grasas y aceites comestibles, hortalizas y verduras, alimentos balanceados, colorantes y aditivos alimenticios, bebidas no alcohólicas, alcohólicas y espirituosas.
- ✓ ANÁLISIS DE MINERALES: minerales metálicos y no metálicos, rocas, caliza, arcilla.
- ✓ Análisis de suelos y rocas no metálicas: potasio, cloruro, salinidad, pH, cal útil, nitrógeno, sulfatos, carbonato de calcio, fosforo, carbonatos, conductividad, humedad, sales solubles.
- ✓ ANÁLISIS DE COMBUSTIBLES: aguas y sedimentos, agua por extracción con solventes, densidad, temperatura de destilación al 10%, 50%, 90%, punto de fluidez, punto de inflamación, índice del diésel, cifra cetánica.
- ✓ ANÁLISIS DE ACEITES.
- ✓ ANÁLISIS PARA LA INDUSTRIA QUÍMICA Y FARMACÉUTICA.
- ✓ ANÁLISIS MEDIOAMBIENTAL: mediante estudios de toxicidad, caracterización de residuos peligrosos, estudios de contaminación de suelos, lodos de aplicación directa en agricultura.

Contamos con personal altamente calificado para la realización de los análisis, según sus requerimientos y necesidades.

Sin otro particular, quedo a sus órdenes.

Atentamente:

FOAPERÚ A

Ing. Carlos A. Valqui Mendoza GERENTE GENERAL DE FQA PERU - LABORATORIO

RUC: 20605355189

BOLETA DE SERVICIO

MONTO: S/ 1,100,00

He recibido del Sr. BRUCE JACK BARRIOS VÁSQUEZ, con DNI: 72539172

La cantidad de: MIL CIEN NUEVOS SOLES Y 0/0 CÉNTIMOS

Por concepto de:

MATERIALES

Г	C	CASCAF	RA DE HUEVO T	TRITURADO	HATTA PAGE
	ITEM	MATERIA	CANTIDAD	PRECIO UNITARIO	PRECIO TOTAL
0	1480	ANALISIS DE FLUORECENCIA DE RAYOS X (FRX)	necau 1p	300	300
Г	PGRU 2	TAMANAÑO DE PARTICULA	-1	30	30
Ú	3 ERU	HUMEDAD CONTENT	of 1 supply	196120 KBU	20
ő	egnů r	PO FORPET DIRPERU GRACE DIRPER	SU SU	B -TOTAL	350 PS

DERI I D	CENIZ	A DE CONCHA D	E ABANICO	O TO THE PE
ITEM	MATERIA	CANTIDAD	PRECIO UNITARIO	PRECIO TOTAL
OCH D	ANALISIS TERMINCO DIFERENCIAL (ADT)	11	300	300
1	ANALISIS DE FLUORECENCIA DE RAYOS X (FRX)	1	300	300
⇒630	INCINERACION DE MATERIAL	1	100	100
2	TAMANAÑO DE PARTICULA	1	30	30
3	HUMEDAD :	1	20	20 *
Person Scott St.	COLUMN TO THE PARTY OF THE PART	SU	B - TOTAL	750

TRUJILLO, 13 DE ABRIL DEL 2024

Mike Pinco ANALISTA QUÍMICO


LABORATORIO | LABORATORIO FOA PERÚ

+51944077288

mikecabanillas93@hotmail.com

Albert Einstein 434, Urb. Daniel Hoyle

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

RUC: 20605355189

REPORTE DE MEDICION Y ANALISIS DE MUESTRA POR FLUORESCENCIA DE RAYOS X

SOLICITANTE	BRUCE JACK BARRIOS VASQUEZ	
DNI	72539172	
MUESTRA	CÁSCARA DE HUEVO	L ES
FECHA	13 DE ABRIL DEL 2024	7. 100

MUESTRA RECIBIDA EN LABORATORIO

1. CONSIDERACIONES EXPERIMENTALES

CONDICIONES DE LA MEDICION:

El análisis se realizó en un espectrómetro de fluorescencia total de rayos x marca

BRUKER, MODELO S2-PICOFOX.

Fuente de rayos x: tubo de Mo.

Tiempo de medida: 2000 segundos.

ESTANDAR INTERNACIONAL PARA

CUANTIFICACION: Elemento: Galio (Ga)

Concentración: e/l

O EQ COP FOR THE PER COPER CONTROL OF THE PER CONTROL OF THE PER COPER CONTROL OF THE PER COPER

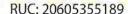
2. CARACTERISTICAS DE LA MUESTRA ANALIZADA

Se analizó 150 g. de la muestra de CÁSCARA DE HUEVO, la cual fue tamizada previamente a malla 200.

3. METODO

BASADO EN LA NORMA

: ASTM C25


VOLUMETRIA

· USAO-MEO

ING. WILSON FIRADO LIBIA CIP: 162371

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

4. RESULTADOS

COMPOSICION QUIMICA	RESULTADOS (%)	METODO UTILIZADO
DIOXIDO DE SILICIO (Si O2)	1.03	
CARBONATO DE CALCIO (CaCO ₃)	89.16	
TRIOXIDO DE ALUMINIO (AI2 O3)	0.67	C. MILES PROS. (III)
TRIOXIDO DE HIERRO (Fe2 O3)	2.14	Marie Onesa sunt
OXIDO DE POTASIO (K2 O)	0.24	The same of the sa
OXIDO DE MAGNESIO (Mg O)	0.17	Espectrometría de
PENTOXIDO DE FOSFORO (P2O5)	1.18	fluorescencia de rayos x
OXIDO DE COBRE (Cu O)	<0.01	layos
TRIOXIDO DE AZUFRE (SO 3)	0.012	
OXIDO DE ZINC (Zn O)	0.027	Office Incast Ches
OXIDO DE MANGANESO (Mn O)	<0.01	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND
PÉRDIDA POR QUEMADO	5.36	THE RESERVE OF THE PARTY OF THE

5. DATOS ADICIONALES

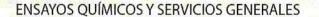
TEMPERATURA DE CALCINACIÓN (°C)		PERÚ 8	00.00 ± 2.5
TAMAÑO PROMEDIO	D <mark>E PARTÍCU</mark> LAS (um)	FOLIPERÚ	32,19
HUMEDAD (%)	COPE INPER IN	EB	4.26

MÉTODOS DE ENSAYO:

6. CONCLUSION

Al realizar la comparación del espectro de la muestra analizada con las energias características de los elementos de la tabla periódica a partir del sodio, se encontró principalmente Calcio (Ca) como Carbonato de Calcio (CaCO₃) con un alto porcentaje. Y en menores porcentajes se encontró; Sílice (Si), Aluminio (Al), Potasio (K), Hierro (Fc), fósforo (P), magnesio (Mg), manganeso (Mn), cobre (Cu), zinc (Zn).y azufre (S).

TRUJILLO, 18 DE ABRIL DEL 2024


NG. WILSON FIRADO LIBI CIP: 162371

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

^{*}Temperatura de calcinación: Determinación por ensayo al horno.

^{*}Tamaño de partícula: Determinación de tamaño de partícula por tamizado

^{*}Humedad: Balanza de Humedad

RUC: 20605355189

REPORTE DE MEDICION Y ANALISIS DE MUESTRA POR EL ANALISIS TERMICO DIFERENCIAL

BRUCE JACK BARRIOS VASQUEZ
72539172
CONCHA DE ABANICO
13 DE ABRIL DEL 2024

1. MUESTRA: CONCHA DE ABANICO

N° DE MUESTRAS	CANTIDAD DE MUESTRA ENSAYADA	PROCEDENCIA
001	6.30 Kg	W-MINISTER MEDICAL STREET

2. ENSAYOS A APLICAR

- ANALISIS TERMICO DIFERENCIAL ATD
- ANALISIS TERMOGRAVIMETRICO TGA

3. EQUIPO EMPLEADO Y CONDICIONES

- ANALIZADOR TERMICO SIMULTANEO TG_DTA_DSC CAP. MAX 1600°C SETSYS_EVOLUTION, CUMPLE CON NORMAS ASTM ISO 11357, ASTM E967, ASTM E968, ASTM E793, ASTM D3895, ASTM D3417, ASTM D3418, DIN 51004, DIN 51007, DIN 53765.
- TASA DE CALENTAMIENTO: 20 °C/MIN
- GAS DE TRABAJO FLUJO: NITROGENO, 10 ML/MIN
- RANGO DE TRABAJO 25 920°C
- MASA DE MUESTRA ANALIZADA: 35 mg

ING. WILSON TIRADO LIBIA CIP: 162371

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

ENSAYOS QUÍMICOS Y SERVICIOS GENERALES

RUC: 20605355189

4. RESULTADOS

e CURVA TGA V ATD

Según el análisis Termo gravimétrico se muestra la descomposición térmica a través de la pérdida de masa en función a la temperatura indicando dos regiones donde se hace más intensa la pérdida, la primera en un rango entre 260 y 450°C y la segunda menos intensa entre 510 y 640°C, posteriormente la pérdida es gradual. El material llega a perder un aproximado de 74.67% de masa (de 6.0 kg a 1.52 kg.), respecto a su masa inicial a la temperatura máxima de ensayo.

ING. WILSON TIRADO LIBIA CIP: 162371

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

RUC: 20605355189

REPORTE DE MEDICION Y ANALISIS DE MUESTRA POR FLUORESCENCIA DE RAYOS X

SOLICITANTE	BRUCE JACK BARRIOS VASQUEZ
DNI	72539172
MUESTRA	CENIZA DE CONCHA DE ABANICO
FECHA	13 DE ABRIL DEL 2024

MUESTRA RECIBIDA EN LABORATORIO

1. CONSIDERACIONES EXPERIMENTALES

CONDICIONES DE LA MEDICION:

El análisis se realizó en un espectrómetro de fluorescencia total de rayos x marca

BRUKER, MODELO S2-PICOFOX.

Fuente de rayos x: tubo de Mo.

Tiempo de medida: 2000 segundos.

ESTANDAR INTERNACIONAL PARA

CUANTIFICACION: Elemento: Galio (Ga)

Concentración: g/l.

2. CARACTERISTICAS DE LA MUESTRA ANALIZADA

Se analizó 300 g. de la muestra de CENIZA DE CONCHA DE ABANICO, la cual fue tamizada previamente a malla 200.

3. METODO

BASADO EN LA NORMA

: ASTM C25

VOLUMETRIA

: USAQ-ME06

ING. WILSON TIRADO LIBIA

FORPERÚ PAR

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

ENSAYOS QUÍMICOS Y SERVICIOS GENERALES

RUC: 20605355189

COMPOSICION QUIMICA	RESULTADOS (%)	METODO UTILIZADO
DIOXIDO DE SILICIO (Si O2)	45.12	THE RESERVE THE PERSON NAMED IN
OXIDO DE CALCIO (Ca O)	34.04	and the state of t
TRIOXIDO DE ALUMINIO (AI2 O3)	7.19	
TRIOXIDO DE HIERRO (Fe2 O3)	3.24	THE PARTY OF THE P
OXIDO DE POTASIO (K2 O)	1.32	
OXIDO DE MAGNESIO (Mg O)	0.97	Espectrometría de
PENTOXIDO DE FOSFORO (P2O5)	1.43	fluorescencia de rayos x
OXIDO DE COBRE (Cu O)	0.16	10100
TRIOXIDO DE AZUFRE (SO 3)	0.073	
OXIDO DE ZINC (Zn O)	0.014	
OXIDO DE MANGANESO (Mn O) /	0.01	
PÉRDIDA POR QUEMADO	6.43	No. of the last of

5. DATOS ADICIONALES

TEMPERATURA DE CALCINACIÓN (°C)	850.00 ± 2.6
DENSIDAD (g/cm³)	2.13
TAMAÑO PROMEDIO DE PARTÍCULAS (um)	34.77
HUMEDAD (%)	1.86

MÉTODOS DE ENSAYO:

6. CONCLUSION

> Al realizar la comparación del espectro de la muestra analizada con las energías características de los elementos de la tabla periódica a partir del sodio, se encontraron principalmente Sílice (Si), Calcio (Ca) y Aluminio (Al) con un alto porcentaje. Y en menores porcentajes se encontró; Potasio (K),

Hierro (Fe), fosforo (P), mag manganeso (Mn), cobre (Cu), zinc

(Zn).y azufre (S).

ING. WILSON TIRADO LIBIA

AGUAS - SUELOS - ALIMENTOS - MINERALES - ACEITES - CARBON - CAL

^{*}Temperatura de calcinación: Determinación por ensayo al horno.

^{*}Densidad: Método del picnómetro

^{*}Tamaño de partícula: Determinación de tamaño de partícula por tamizado *Humedad: Balanza de Humedad

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

ENSAYO DE ASENTAMIENTO DEL CONCRETO MTC E 705

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenízas de concha de abanico, Chimbote, 2023

FECHA SOLICITA

: 21 DE ABRIL DEL 2024 : BARRIOS VASQUEZ, BRUCE JACK LEON RAYMUNDO, ELIAS GABRIEL IMAR

№ ENSAYO	TESTIGO - ELEMENTO	FECHA DE MUESTRA	SLUMP DE DISEÑO	SLUMP (PULG.)	SLUMP (CM.)
1	MUESTRA PATRON - M01	21/04/2024	3" - 4"	4.9	12.4
2	MUESTRA DOSIFICACION 1 - M01	21/04/2024		3.85	9.8
3	MUESTRA DOSIFICACION 2 - M01	21/04/2024		2.5	6.4
4	MUESTRA DOSIFICACION 3 - M01	21/04/2024		1.5	3.8

NGENIERO

ICCSA INGENIEROS SAC Ourphital RÍVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 282536

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

ENSAYO DE RESISTENCIA A LA COMPRESIÓN ASTM C-39

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

FECHA

: 28 DE ABRIL DEL 2024

SOLICITA

: BARRIOS VASQUEZ, BRUCE JACK LEON RAYMUNDO, ELIAS GABRIEL IMAR

MAQUINA DE ENSAYO UNIAXIAL : MODELO PC-1000 - SERIE 1114 (PERUTEST) EXP: 0073

CERTIFICADO DE CALIBRACIÓN: CA - F - 016

Nº PROBETA	TESTIGO - ELEMENTO	FECHA DE	FECHA DE ENSAYO	EDAD DIAS	CARGA MAXIMA KG	SECCIÓN CM2	RESITENCIA ESPERADA KG/CM2	RESITEN CIA FINAL	FACT.	FC/F'C %
1	MUESTRA PATRON - MO1	21/04/2024	28/04/2024	7	44180	304.26	175	145.21	0.94	78.00
1	MUESTRA PATRON - M02	21/04/2024	28/04/2024	7	43690	301.85	175	144.74	0.94	77.75
3	MUESTRA PATRON - M03	21/04/2024	28/04/2024	7	44510	306.94	175	145.01	0.94	77.89
4	MUESTRA PATRON - MD4	21/04/2024	28/04/2024	7	44630	307.07	175	145.34	0.94	78.07
5	DOSIFICACION 1 - M01	21/04/2024	28/04/2024	7	54340	306,47	175	177.31	0.94	95.24
6	DOSIFICACION 1 - MOZ	21/04/2024	28/04/2024	7	54050	308.43	175	175.24	0.94	94.13
7	DOSIFICACION 1 - MO3	21/04/2024	28/04/2024	7	54260	303.14	175	178.99	0.94	96.14
8	DOSIFICACION 1 - MO4	21/04/2024	29/04/2024	7	54320	303.93	175	178.72	0.94	96.00
9	DOSIFICACION 2 - M01	21/04/2024	28/04/2024	7	61180	304,52	175	200.91	0.94	107.92
10	DOSIFICACION 2 - MO2	21/04/2024	28/04/2024	7	60480	303.00	175	199.60	0.94	107.22
11	DOSIFICACION 2 - M03	21/04/2024	28/04/2024	7	60780	303.16	175	200.49	0.94	107.69
12	DOSIFICACION 2 - M04	21/04/2024	28/04/2024	7	60960	- 307.12	175	198.49	0.94	106.62
13	DOSIFICACION 3 - MO1	21/04/2024	28/04/2024	7	54800	302.82	175	180.97	0.94	97.21
14	DOSIFICACION 3 - MO2	21/04/2024	28/04/2024	7	55100	308.20	175	178.78	0.94	96.03
15	DOS:FICACION 3 - MO3	21/04/2024	28/04/2024	7	55330	304.80	175	181.53	0.94	97.51
16	DOS/FICACION 3 - MO4	21/04/2024	28/04/2024	7	55610	304.06	175	182.89	0.94	98.24

ICCSA INGENIEROS SAC

RIVASPLATA VASQUEZ VICTOR OCTA

GEOTECNIA, CONCRETO Y ASFALTO.

ENSAYO DE RESISTENCIA A LA COMPRESIÓN ASTM C-39

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

FECHA

: 05 DE MAYO DEL 2024 : BARRIOS VASQUEZ, BRUCE JACK LEON RAYMUNDO, ELIAS GABRIEL IMAR

MAQUINA DE ENSAYO UNIAXIAL : MODELO PC-1000 - SERIE 1114 (PERUTEST) EXP: 0073

CERTIFICADO DE CALIBRACIÓN: CA - F - 016

№ PROBETA	TESTIGO - ELEMENTO	FECHA DE MUESTRA	FECHA DE ENSAYO	EDAD DIAS	CARGA MAXIMA KG	SECCIÓN CM2	RESITENCIA ESPERADA KG/CM2	RESITEN CIA FINAL	FACT.	FC/F'C %
1	MUESTRA PATRON - MO1	21/04/2024	05/05/2024	14	46400	308.42	175	150.44	0.94	80.81
2	MUESTRA PATRON - MOZ	21/04/2024	05/05/2024	14	45770	301.62	175	151.75	0.94	81.51
3	MUESTRA PATRON - MO3	21/04/2024	05/05/2024	14	46820	306.77	175	152.62	0.94	81.98
4	MUESTRA PATRON - M04	21/04/2024	05/05/2024	14	46310	306.94	175	150.88	0.94	81.04
5	DOSIFICACION 1 - M01	21/04/2024	05/05/2024	24	72540	307.29	175	236.14	0.94	226.84
6	DOSIFICACION 1 - M02	21/04/2024	05/05/2024	14	73010	310.06	175	235.47	0.94	126.48
7	DOSIFICACION 1 - M03	21/04/2024	05/05/2024	14	72850	301.30	175	241.82	0.94	129.89
8	DOSIFICACION 1 - M04	21/04/2024	05/05/2024	14	73020	302.09	175	241.72	0.94	129.84
9	DOSIFICACION 2 - MO1	21/04/2024	05/05/2024	14	77570	304.15	175	255.04	0.94	136.99
10	DOSIFICACION 2 - MO2	21/04/2024	05/05/2024	14	79340	302.22	175	262.52	0.94	141.01
11	DOSIFICACION 2 - M03	21/04/2024	05/05/2024	14	78640	303.14	175	259.42	0.94	139.34
12	DOSIFICACION 2 - MO4	21/04/2024	as/as/2024	14	78300	303.54	175	257.96	0.94	138.56
13	DOS/FICACION 3 - MO1	21/04/2024	05/05/2024	14	68200	302.68	175	225.32	0.94	121.03
14	DOSIFICACION 3 - MO2	21/04/2024	05/05/2024	14	67370	306.82	175	219.57	0.94	117.94
15	DOSIFICACION 3 - MO3	21/04/2024	05/05/2024	14	67840	304.06	175	223,11	0.94	119.84
16	DOSIFICACION 3 - MO4	21/04/2024	05/05/2024	14	68010	303.88	175	223.81	0.94	120.22

ICCSA INGENIEROS SAC

Cumplita V RIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. Nº 282535

PROYECTOS DE INGENIERÍA - ESTUDIOS DE GEOTECNIA, CONCRETO Y ASFALTO.

ENSAYO DE RESISTENCIA A LA COMPRESIÓN ASTM C-39

Resistencia a compresión del ladrillo de concreto f'c=175 kg/cm2 adicionando cáscara de huevo y cenizas de concha de abanico, Chimbote, 2023

FECHA SOLICITA : 19 DE MAYO DEL 2024

: BARRIOS VASQUEZ, BRUCE JACK LEON RAYMUNDO, ELIAS GABRIEL IMAR

MAQUINA DE ENSAYO UNIAXIAL : MODELO PC-1000 - SERIE 1114 (PERUTEST) EXP: 0073

CERTIFICADO DE CALIBRACIÓN: CA - F - 016

N® PROBETA	TESTIGO - ELEMENTO	FECHA DE MUESTRA	FECHA DE ENSAYO	EDAD	CARGA MAXIMA KG	SECCIÓN CM2	RESITENCIA ESPERADA KG/CM2	RESITEN CIA FINAL	FACT.	FC/F'C %
1	MUESTRA PATRON - MOI	21/04/2024	19/05/2024	28	63120	299.00	175	211.10	0.94	113.39
2	MUESTRA PATRON - MOZ	21/04/2024	19/05/2024	28	62400	299.00	175	208.70	0.94	112.10
3	MUESTRA PATRON - MO3	21/04/2024	19/05/2024	28	63580	299.00	175	212.64	0.94	114.22
4	MUESTRA PATRON - MO4	21/04/2024	19/05/2024	28	63410	299.13	175	211.98	0.94	113.86
5	DOSIFICACION 2 - M02	21/04/2024	29/05/2024	28	77630	309.52	175	250.81	0.94	134.72
6	DOSIFICACION 1 - MD2	21/04/2024	19/05/2024	28	77220	305.90	175	252.44	0.94	135.59
7	DOSIFICACION 1 - MO3	21/04/2024	19/05/2024	28	77520	303.60	175	255.34	0.94	137.15
8	DOSIFICACION 1 - MO4	21/04/2024	19/05/2024	28	77430	304.36	175	254.40	0.94	136.65
9	DOSIFICACION 2 - M01	21/04/2024	19/05/2024	Z8	87410	304.52	175	287.04	0.94	154.18
10	DOSIFICACION 2 - M02	21/04/2024	19/05/2024	28	86400	304.98	175	283.30	0.94	152.17
11	DOSIFICACION 2 - M03	21/04/2024	19/05/2024	28	8683C	305.44	175	284.28	0.94	152.70
12	DOSIFICACION 2 - M04	21/04/2024	19/05/2024	28	86120	309.42	175	278.32	0.94	149.50
13	DOSIFICACION 3 - MO1	21/04/2024	19/05/2024	28	78250	307.28	175	254.65	0.94	136.79
14	DOSIFICACION 3 - MO2	21/04/2024	19/05/2024	28	78690	308.20	175	255.32	0.94	137.14
15	DOSIFICACION 3 - M03	21/04/2024	19/05/2024	28	79050	306.36	175	258,03	0.94	138.50
16	DOSIFICACION 3 - M04	21/04/2024	19/05/2024	28	79051	307.96	175	256.69	0.94	137.88

ICCSA INGENIEROS SAC

Quaplate V RIVASPLATA VASQUEZ VICTOR OCTAVIO INGENIERO CIVIL CIP. N° 287536

INFORME DE ENSAYO

UNIDADES DE ALBAÑILERIA. ENSAYO DE ALABEO DE UNIDADES DE LADRILLOS

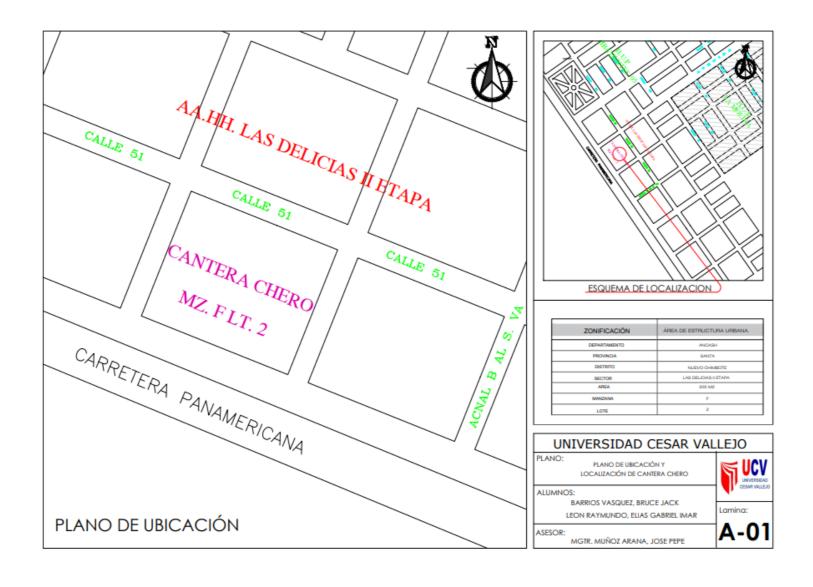
NTP 339.613

BARRIOS VASQUEZ BRUCE JACK NOMBRE CLIENTE: LEON RAYMUNDO ELIAS GABRIEL IMAR RESISTENCIA A LA COMPRESION DEL LADRILLO DE CONCRETO F'C =175 KG/CM2 ADICIONANDO CASCARA DE HUEVO Y CENIZAS DE CONCHA DE ABANICO, FECHA DE EMISIÓN : 28-Abr-2024 PROYECTO: CHIMBOTE, 2023

MÉTODO DE ENSAYO : ITEM 15 NORMA NTP 339.613

OBSERVACIONES:

DESCRIPCIÓN MUESTRA: LADRILLOS DE CONCRETO ELABORADOS EN LABORATORIO.


NAME AND ADDRESS OF THE OWNER, WHEN PERSON NAMED IN	Cara	1 100	Cara	2	Borde	1 400	Borde	2
Bloque No.	Tipo de superficie	mm	Tipo de superficie	mm	Tipo de superficie	mm	Tipo de superficie	mm
1	Convexo	2.31	Cóncavo	1.66	Convexo	2.76	Convexo	2.28
2	Cóncavo	1.74	Cóncavo	1.83	Cóncavo	1.74	Convexo	3.25
3	Convexo	1.83	Convexo	2.33	Cóncavo	2.63	Convexo	1.33
4	Cóncavo	2.65	Cóncavo	1.36	Convexo	3.16	Cóncavo	1.38
5	Convexo	3.77	Cóncavo	1.76	Convexo	4.33	Convexo	1.25
6	Convexo	2.39	Convexo	2.14	Convexo	3.16	Cóncavo	3.30
7	Cóncavo	3.16	Convexo	2.11	Convexo	1.38	Cóncavo	1.36
8	Convexo	2.64	Convexo	3.41	Cóncavo	2.71	Cóncavo	1.41
9	Cóncavo	2.31	Cóncavo	1.36	Convexo	1.63	Cóncavo	4.22
10	Cóncavo	3.41	Convexo	3.91	Cóncavo	2.36	Cóncavo	1.64
11	Convexo	2.33	Cóncavo	2.11	Cóncavo	2.81	Cóncavo	1.22
12	Cóncavo	1.36	Convexo	3.41	Convexo	1.33	Cóncavo	1.74
12	Cóncavo	2.44	Cóncavo	1.68	Cóncavo	2.45	Cóncavo	2.0
PROMEDIO	Convexo	2.55	Convexo	2.89	Convexo	2.54	Convexo	2.0

RIVASPLATA VASQUEZ VICTOR OCTAVIO

Anexo 5. Reporte de similitud en software Turnitin

Anexo 6. Análisis complementario

Frente a la cantera chero

Elección de los agregados (piedra y arena)

La adición de concha de abanico

La adición de cáscara de huevo

Horno de la UNT

Pulverizado de la concha de abanico

Pesando la ceniza de concha de abanico

Sacando peso para el diseño de mezcla

Preparando la mezcla patrón y con adicciones

Adicionando la cascara de huevo y la concha de abanico

Los ladrillos de la primera semana

Rompimiento de la primera semana y con la adición de 1%

Se observa las adicciones de los componentes

Rompimiento de la primera semana y con la adición de 1%

Se observa las adicciones de los componentes

Rompimiento de la primera semana y con la adición de 3%

Rompimiento de la primera semana y con la adición de 3%

Anexo 7. Otras evidencias

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC -071

CERTIFICADO DE CALIBRACIÓN CA-LM-037-2024

Área de Metrología Laboratorio de Masas

ágina 1 de 4

1. Expediente 0073

2. Solicitante ICCSA INGENIEROS S.A.C.

3. Dirección JR. JOSE MARIA ARGUEDAS MZA. E LOTE. 9

URB. BELLAMAR (FTE. AL COLEGIO ABELARDO QUIÑONES) ANCASH - SANTA -

NUEVO CHIMBOTE

4. Instrumento calibrado BALANZA ELECTRÓNICA

Marca OHAUS

Modelo V11P15

N° de serie 90910993

Identificación No indica

Procedencia

Capacidad máxima: 15 kg

División de escala (d) 0,002 kg

Div. de verificación (e) 0,002 kg

Capacidad mínima 0,04 kg

Clase de exactitud

5. Fecha de calibración 2024-01-18

Este certificado de calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Fecha de Emisión

2024-01-25

Firmado digitalmente por: ASTETE SORIANO LUCIO FIR 42817545 hard Motivo: Soy el autor del documento Fecha: 25/01/2024 19:58:09-0500

Jefe de Laboratorio

Revisión 00 RT03-F01

977 997 385 - 913 028 621

913 028 623 - 913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

ocomercial@calibratec.com.pe

CALIBRATEC SAC

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC -071

CERTIFICADO DE CALIBRACIÓN CA-LM-037-2024

Area de Metrología Laboratorio de Masas

Página 2 de 4

6. Método de calibración:

La calibración se realiza por comparación directa entre las indiciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones siguiendo el procedimiento PC-001 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL - DM

7. Lugar de calibración

Laboratorio de ICCSA INGENIEROS S.A.C. ubicado en Urb. Bella Mar Mz. E, Lote 9 Ancash - Santa - Nuevo Chimbote

8. Condiciones ambientales

- A. ORIC CAL S.A. ORIC	Inicial	Final
Temperatura	26,9 °C	27,1°C
Humedad relativa	64 %	65 %

Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
PESATEC	Juego de pesas de 1 mg a 2 kg de clase M1	1254-MPES-C-2023
PESATEC	Pesa de 10 kg de clase M1	0933-MPES-C-2023
TOTAL WEIGHT	Pesa de 5 kg de clase M2	CM-1456-2023

- Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO
- En el caso de ser necesario, ajustar la indicación en cero antes de cada medición.
- Se realizó el ajuste de las indicaciones de la balanza antes de la calibración. (Para la carga de 15 kg la balanza indicaba
- El valor de "e", capacidad mínima y la clase de exactitud se han determinado de acuerdo a la NMP-003 "Instrumentos de
- Los resultados declarados en el presente certificado, se relacionan solamente con el item calibrado indicado en la página 1.
- En coordinación con el cliente, la variación de temperatura es 5 °C
- Se ha considerado como coeficiente de deriva de temperatura a 0,00001 °C⁻¹ según el procedimiento PC-001 "Procedimiento para la calibración de instrumentos de pesaje de funcionamiento no automático clase III y IIII (Edición 01) del INACAL - DM.
- El cliente no cuenta con pesas patrones para realizar el ajuste de la balanza.
- El cliente no cuenta con la información de los certificados anteriores para la balanza a calibrar. Por lo tanto, la contribución de la incertidumbre de la deriva de la balanza no será considerada.

RT03-F01 Revisión 00

977 997 385 - 913 028 621 913 028 623 - 913 028 624 Av. Chillon Lote 50 B - Comas - Lima - Lima BRAT ...pe SA

comercial@calibratec.com.pe

CALIBRATEC SAC

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC -071

CERTIFICADO DE CALIBRACIÓN CA-LM-037-2024

Área de Metrología Laboratorio de Masas

11. Inspección Visual

Ajuste a cero	Tiene	Escala	No tiene
Oscilación libre	Tiene	Cursor	No tiene
Plataforma	Tiene	Nivelación	Tiene
Sistema de traba	No tiene	18 C. 10	B C: (

ATEC S.A.C. 12. Resultados de la medición

ENSAYO DE REPETIBILIDAD

C. CO 1812	Inicial	Final
Temperatura	26,9 °C	26,9 °C
1181 C. CC.	B, C. 70	7/10
Carga L1	7,5003	kg 5
, C I	ΔL	E
kg	kg	kg
7,500	0,0007	0,0000
7,500	0.0004	0,0003
7,500	0,0005	0,0002

Carga L1	7,5003	
l l	ΔL	E
kg	kg	kg
7,500	0,0007	0,0000
7,500	0,0004	0,0003
7,500	0,0005	0,0002
7,502	0,0008	0,0019
7,500	0,0003	0,0004
7,500	0,0007	0,0000
7,502	0,0006	0,0021
7,500	0,0003	0,0004
7,500	0,0007	0,0000
7,502	0,0005	0,0022
Dif Máx. Ence	ontrada	0,0022
EMP		0,006

	IIIICIAI	I IIIai	V . U . X V
Humedad	66,0 %	66,0 %	CS. P. BRA.
0. 460 0	1 O. YE	Will So. ?	EO WILL WO.
Carga L2	5 15,0004	kg S' &	65, 86
1	ΔL	E	O. YEO MILE
kg	kg	kg	age of S
15,002	0,0008	0,0018	7 50. YES
1 F 000	0,0000	0,0000	6: 28

160 M	Inicial	Final	71 . C. XA . D.
Humedad	66,0 %	66,0 %	5. 5. 8A. OF
0. 160	7/16 C. VE	TIP C.	TEO WILL CO. YES
Carga L2	2 5 15,0004	kg 5	C' SI SEL
1	ΔL	E	C. The My "C.
kg	kg	kg	ager of Si di
15,002	0,0008	0,0018	BUT WO. THE CHILL
15,000	0,0003	0,0003	(S. 182)
15,000	0,0007	-0,0001	See Will by Mer
15,002	0,0005	0,0021	CS. BRIC.
15,000	0,0002	0,0004	S. ELL CHILL
15,002	0,0006	0,0020	8P
15,000	0,0004	0,0002	BY BOOKING CALL
15,000	0,0003	0,0003	05. BR CO
15,002	0,0007	0,0019	CAL A. SETT
15,000	0,0005	0,0001	CO BY
Dif Máx. E	ncontrada	0,0022	SETT OR S.P.
EMP		0,006	Br C. 60 (B)

ENSAYO DE EXCENTRICIDAD

BRA	C.P.	CS.P.	EMP	onitiada .	0,006
S.A.	BRATT	Chr.	SALBERTE CALSA	BRAIL CHE	ENSAYO
51)_	3	4	THO WIELD OF THE	Inicial	Final
	2	5	Temperatura	26,9 °C	27,0 °C

EMP	TO CR	0,006	Will Bo. Tho
ENTRICIDAD	8P. C C.	S. JBRIC.	
P. RAIL CH	SARATU	CAL S.A. BRE	J. Ch. S.A.
ALIK A.O. A	Inicial	Final	ONIE CRIM
Humedad	66,0 %	66,0 %	181 C. 160
VA - N. F.	- 12	D	h. O. O.

	Pos.	Dete	rminación de	l Error en Co	ero E _o		Determinac	ión del Error	Corregido Ec	
	Carga	C. mínima kg	l kg	ΔL kg	E₀ kg	Carga L kg	l kg	∆L kg	E kg	Ec kg
- KIY	P1.P	West Ober	0,020	0,0003	0,0007	Ch Sir	5,000 9	0,0003	5 0,0004	-0,0003
3500	້,2	8 C. 20	0,020	0,0008	0,0002	0. 40 3	5,002	0,0007	0,0020	0,0018
- P.	6 3 CP	0,0200	0,022	0,0007	0,0023	5,0003	9 5,000	0,0009	-0,0002	-0,0025
S (4)	c4 &	C Br C.	0,020	0,0003	0,0007	716, O. Y	5,002	0,0006	0,0021	0,0014
CRY	F 5	CRY G.F.	0,020	0,0005	0,0005	S.P. R.P.	4,998	0,0004	-0,0017	-0,0022
. ,G	· 60° c	20 (B)	Cr. 10	(Cr. C	J 10 C.		Error máximo	permitido (-	<u> </u>	0.006

Revisión 00 RT03-F01

977 997 385 - 913 028 621

913 028 623 - 913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

comercial@calibratec.com.pe
CALIBRATEC SAC

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL - DA CON REGISTRO Nº LC -071

Área de Metrología Laboratorio de Masas

CERTIFICADO DE CALIBRACIÓN CA-LM-037-2024

Mr. 50. 765-1	Inicial	Final	I'V CAL' A CATO	Inicial	Final
Temperatura	27,0°C	27,1 °C	Humedad	66,0 %	67,0 %

Ser	Carral		Carga c	reciente			Carga d	ecreciente		EMP
V.	Carga L	ı	ΔL	E	Ec	I	ΔL	E	Ec	T EIVIP
5, 3	kg	kg	kg	kg	kg	kg	kg	kg	kg	kg
E ₀	0,0200	0,020	0,0003	0,0007						
- 0	0,0400	0,042	0,0008	0,0022	0,0015	0,040	0,0003	0,0007	0,0000	0,002
20	1,0000	1,000	0,0003	0,0007	0,0000	1,002	0,0007	0,0023	0,0016	0,002
32	2,0000	2,002	0,0005	0,0025	0,0018	2,000	0,0005	0,0005	-0,0002	0,004
P.	3,5000	3,500	0,0008	0,0002	-0,0005	3,502	0,0003	0,0027	0,0020	0,004
3. 4	5,0003	5,002	0,0003	0,0024	0,0017	5,000	0,0008	-0,0001	-0,0008	0,006
OP	6,0003	6,000	0,0007	0,0000	-0,0007	6,002	0,0003	0,0024	0,0017	0,006
25	8,0003	8,002	0,0005	0,0022	0,0015	8,000	0,0007	0,0000	-0,0007	0,006
28	10,0001	10,000	0,0003	0,0006	-0,0001	10,002	0,0004	0,0025	0,0018	0,006
C	12,0001	12,002	0,0006	0,0023	0,0016	12,000	0,0002	0,0007	0,0000	0,006
S.P.	15,0004	15,000	0,0002	0,0004	-0,0003	15,000	0,0002	0,0004	-0,0003	0,006

L: Carga puesta sobre la plataforma de la balanza

I. Lectura de indicación de la balanza

E: Error encontrado

EMP: Error máximo permitido

E_o: Error en cero Ec: Error corregido

ΔL: Carga incrementada

Incertidumbre expandida de medición

0,000058

Lectura corregida de la balanza

R: Indicación de la lectura de la balanza en kg

13. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente 95%.

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración.

FIN DEL DOCUMENTO

RT03-F01

977 997 385 - 913 028 621

913 028 623 - 913 028 624

O Av. Chillon Lote 50 B - Comas - Lima - Lima

comercial@calibratec.com.pe
CALIBRATEC SAC

LABORATORIO DE METROLOGIA

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Area de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN CA-F-016-2024

1. Expediente

2. Solicitante ICCSA INGENIEROS S.A.C

3. Dirección JR. JOSE MARIA ARGUEDAS MZA. E LOTE. 9 URB

BELLAMAR (FTE. AL COLEGIO ABELARDO

QUIÑONES) ANCASH - SANTA - NUEVO CHIMBOTE

4. Instrumento calibrado

MÁQUINA DE ENSAYO UNIAXIAL

(PRENSA DE CONCRETO)

Marca PERUTEST

Modelo PC-1000 N° de serie Identificación

Procedencia

0 kgf a 100000 kgf Resolución NO INDICA Clase de exactitud Modo de fuerza Compresión

Indicador Digital

Intervalo de indicación

No indica 10 kgf Modelo Resolución

Transductor de Presión

ZEMIC Marca Serie Modelo

Fecha de calibración 2024-01-18

calibración documenta la trazabilidad a los patrones nacionales o internacionales, que realizan las unidades de la medición de acuerdo con el Sistema Internacional de Unidades (SI).

Los resultados son validos en el momento de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamento vigente.

CALIBRATEC responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Este certificado de calibración no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio que lo emite.

El certificado de calibración sin firma y sello carece de validez.

Fecha de Emisión

ASTETE SORIANO LUCIO FIR 42817545 hard Motivo: Soy el autor del

Av. Chillon Lote 50 B - Comas - Lima - Lima

Jefe de Laboratorio

K2A3943

Revisión 00 RT03-F01

977 997 385 - 913 028 622

ventascalibratec@gmail.com 913 028 623 - 913 028 624

CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Area de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN CA-F-016-2024

6. Método de calibración

La calibración se realiza por comparación directa entre el valor de fuerza indicada en el dispositivo indicador de la máquina a ser calibrada y la indicación de fuerza real tomada del instrumento de medición de fuerza patrón siguiendo la PC-032 "Procedimiento para la calibración de máquinas de ensayos uniaxiales" Edición 01 del INACAL - DM

Lugar de calibración

Laboratorio de ICCSA INGENIEROS S.A.C. ubicado en Urb. Bella Mar Mz. E, Lote 9 Ancash - Santa - Nuevo Chimbote

8. Condiciones de calibración CALIBRI

V. C. Sir St. C.	Inicial	Final
Temperatura	28,8 °C	28,9 °C
Humedad relativa	57%	57 %

Patrones de referencia

Trazabilidad	Patrón utilizado	Certificado de calibración
PUCP	Celda de carga de 150 t con una incertidumbre de 271 kg	INF-LE N° 093-23 B

10. Observaciones

- CALIBRI - Se colocó una etiqueta autoadhesiva con la indicación CALIBRADO.
 - El instrumento a calibrar no indica la clase, sin embarra - El instrumento a calibrar no indica la clase, sin embargo cumple con el criterio para maquinas de ensayo uniaxiales de ALIBR clase 1 según la norma UNE-EN ISO 7500-1.

RT03-F01 Revisión 00

977 997 385 - 913 028 622

oventascalibratec@gmail.com
CALIBRATEC SAC

913 028 623 - 913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima

A.B. R. M. C. S. A.C.

LIBRATE KOSAC. CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

JANE BARECS AC Area de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN A.C. CHIBRA CA-F-016-2024

CALIBRATECS SAC CHIEF

RANECS AC. CALIBRATES

PARTIE SAC

KCS.A. 11. Resultados de medición CALIBR

Indicación de la máquina de		1ra Serie	2da Serie	3ra	Serie	4ta Serie Accesorios	Promedio	Error de medición
ens	kgf	Ascenso kgf	Ascenso kgf	Ascenso kgf	Descenso kgf	Ascenso kgf	kgf	kgf
10	10000	10026	10031	_ 10036 <	C	8 C- C	10031	31
20	20000	20019	20024	20019	P. A CR	C. E 20 C	20020	-20
30	30000	29995	30000	30010	10° /	0° 182 C:	30002	2° -2 ⊗
40	40000	39976	39981	39991	CRY P. A	CR - P. O	39983	of 17 c
50 8	50000	49996	49991	49981	. C - OF	, C= (8)°	49990	c. 10.0
60	60000	60001	59996	59981	20 P	- 210 - 10 - 1	59993	P. 7
70 9	70000	70015	70010	69995	-03	8° 0°	70007	0 -7€
80	80000	79993	80003	79998	N. 50 CB	P	79998	2
90	90000	90021	90016	90021	2° 08'	15. 6 <u>2.</u> -	90020	○-20⊗
100	99000	99031	99026	99036	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- P P. 6	99031	-31

ALBRATESAC

Indicad	ión de la		Errores	relativos de medi	ción						
		máquina de		máquina de		Indicación q	Repetibilidad b	Reversibilidad v	Resolución relativa a	Error con accesorios	Incertidumbre de medición relativa
%	kgf	%	%	%	%	%	%				
9 10 V	10000	-0,31	0,10	76, 70, -76, 77	0,10	N. 50-76	0,95				
20	20000	o-0,10	0 0,02	1 5 5 5 C	0,05	C. S. S. L.	S 0,53				
30.0	30000	< ²⁰ -0,01 ○	0,05	10 710 - C. Y.	0,03	10 VI V.	0,41				
40	40000	0,04	0,04	or all of	0,03	0, 50, 08	0,36				
♦ 50	50000	0,02	0,03	C. 160 - 110 C	0,02	D. XO. 7/2	0,34				
60	60000	0,01	0,030	Far of si	0,02 9	18 - OF 6	0,32				
○ 70⊗	70000	♥ -0,01	© 0,03 V	16. C60. 7	00,01	S 0= XS	0,31				
80	80000	0,00	0,01	" S. F. O.	0,01	5. P 2. P.	9 0.30				
900	90000	0 -0,02	O,01 G	C 18-0. K	0,01	0 75 0	0,30				
100	99000	-0,03	0,01	Or 2- 25	0,01	01 -5,1 20	0,30				
S.P. SP	TEC CALIBRA	C. RIEC SMIR	Valor n	náximo permitido (ISO 7500 - 1)	C. WEG CHIE	A. RATE CALIBSA				
O WILL	Clase de	(C. 1)			Desoluc	ción	P. Spir CP				
	escala de	la Indicac	ón Repetibilid	lad Reversibilio	dad relativ	l Cero) (b) ()				

- 17 I	Clase de la		valor maxir	no permitido (ISO		*	D. The Brit D.
THE S	escala de la maquina de ensayo	Indicación q	Repetibilidad b	Reversibilidad v	Resolución relativa a	Cero f0	THERE CALES THE
Co	ensayo	%	%	%	%	%	THE TIME OF YELL
P. 6	0,5	± 0,50	0,5	± 0,75	± 0,25	± 0,05	P. C. Sir St.
185	c. do	± 1,00	~ 1,0° .⊗`	£1,500	£ 0,50	± 0,10	C. The Will C.
CPL-	2 2	± 2,00	2,0	± 3,00	± 1,00 c	± 0,20	L 54, CL 24
000	6 3 C	£ 3,00	⊗ 3,0	± 4,50	± 1,50	± 0,30	The C. Le Mile
OFFIC C	A GR. OFTE	Pr Pr Pil	CB - B KI, C	Property Char	Ch. Ch. Ch.	STORF	Ch. S. L. S. C. C.
Ci.	CO BY C.	MAXIMO	ERROR RELATIVO	DE CERO (f ₀)	0,00 %		The Will So. The
G.P. 28	CR S.P. al	EL ON C'E.	of or sit at	CL S'L SEE,	Cr 5. 28		Jr 0, 62, 887
B	C. TEC TIBY	C. LEC TIE	C. YEO TIP.	C. The Will Co	TEC ALIB A	2. The Wife	DO. THE WILL BO.
	" OF CA G	b or ch	S. R. C. S.	28 O' 5!	By 0, 62,	of the Co	, 'BL . C. 'BL
CAU S.P					Y C. ()		O' COTON CO.
O LOS.P	JEHO C. LECT	TIP. C. LEO	Th. O. YO.	7, 6, 16, 9	10 VA - 15	D. 11	RT03-F0:

913 028 623 - 913 028 624 977 997 385 - 913 028 622

Av. Chillon Lote 50 B - Comas - Lima - Lima oventascalibratec@gmail.com
CALIBRATEC SAC

CALIBRACIÓN DE **EQUIPOS E INSTRUMENTOS**

RUC: 20606479680

Área de Metrología Laboratorio de Fuerza

CERTIFICADO DE CALIBRACIÓN CA-F-016-2024

12. Incertidumbre

La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2, el cual proporciona un nivel de confianza de aproximadamente

La incertidumbre expandida de medición fue calculada a partir de los componentes de incertidumbre de los factores de influencia en la calibración. La incertidumbre indicada no incluye una estimación de variaciones a largo plazo.

FIN DEL DOCUMENTO

RT03-F01

977 997 385 - 913 028 622

913 028 623 - 913 028 624

Av. Chillon Lote 50 B - Comas - Lima - Lima CALIBRATI White all

ventascalibratec@gmail.com

CALIBRATEC SAC

Anexo 8. Fórmula de Muestreo

Con base en las NTP 400.037 y 339.088, se realizaron muestreos probabilísticos que requerirán sumergir en agua al menos 48 bloques de concreto y se realizarán pruebas en 7, 14 y 28 días.

Fórmula de muestreo

$$n = \frac{N * z^{2} * \sigma^{2}}{e^{2} * (N-1) + Z^{2} * \sigma^{2}}$$

Donde:

n = tamaño de la muestra poblacional a obtener.

N = tamaño de la población total.

 σ = desviación estándar de la población.

Z = valor obtenido mediante niveles de confianza.

e = representa el límite aceptable de error muestral.

Se sustituyó en la fórmula los datos que tenemos, sería lo siguiente:

$$n = \frac{60 * 1.96^2 * 0.5^2}{0.5^2 * (60 - 1) + 1.96^2 * 0.5^2}$$

Teniendo como resultado de tamaño de muestra 3.67, al redondear al número más cercano es 4 por cada porcentaje, siendo un total de 48 a evaluar.