

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Propuesta de diseño de mezcla asfáltica con fibra de tallo de plátano en la Avenida Los Algarrobos, Piura – 2023

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Espinoza Correa, Jhoan Alexis (orcid.org/0000-0002-1294-7213)

Rivera Cunya, Ronaldo (orcid.org/0000-0002-3111-8680)

ASESOR:

Dr. Prieto Monzon, Pedro Pablo (orcid.org/0000-0002-1019-983X)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

PIURA – PERÚ 2024

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, PRIETO MONZON PEDRO PABLO, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - PIURA, asesor de Tesis titulada: "Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura – 2023", cuyos autores son RIVERA CUNYA RONALDO, ESPINOZA CORREA JHOAN ALEXIS, constato que la investigación tiene un índice de similitud de 13%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

PIURA, 22 de Julio del 2024

Apellidos y Nombres del Asesor:	Firma
PRIETO MONZON PEDRO PABLO DNI: 02891452 ORCID: 0000-0002-1019-983X	Firmado electrónicamente por: PPRIETOM el 22-07- 2024 16:18:57

Código documento Trilce: TRI - 0830121

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Originalidad de los Autores

Nosotros, ESPINOZA CORREA JHOAN ALEXIS, RIVERA CUNYA RONALDO estudiantes de la de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - PIURA, declaramos bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura – 2023", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- No ha sido plagiada ni total, ni parcialmente.
- Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma		
RIVERA CUNYA RONALDO	Firmado electrónicamente		
DNI: 75818282	por: RRRIVERAR el 22-07-		
ORCID: 0000-0002-3111-8680	2024 16:53:22		
ESPINOZA CORREA JHOAN ALEXIS	Firmado electrónicamente		
DNI: 76356589	por: JESPINOZACO17 el		
ORCID: 0000-0002-1294-7213	23-07-2024 00:41:00		

Código documento Trilce: INV - 1782126

DEDICATORIA

A mis nuestros padres, quienes han sido soporte y apoyo incondicional en nuestro camino académico y personal

A nuestros docentes por brindarnos sus conocimientos en el desarrollo profesional.

A los estudiantes de la Escuela Profesional de Ingeniería Civil, y a todas las personas comprometidas en la búsqueda de información, comprometidas en formar una sociedad más humana y justa.

AGRADECIMIENTO

A Dios, por darnos la sabiduría necesaria para culminar esta meta.

A nuestro asesor el Dr. Pedro Pablo, Prieto Monzón, por su apoyo en la elaboración de la presente. Usted formó parte importante de esta historia con sus aportes profesionales que lo caracterizan.

ÍNDICE DE CONTENIDOS

CARATULA	ļ
DECLARATORIA DE AUTENTICIDAD DEL ASESOR	i
DECLARATORIA DE ORIGINALIDAD DEL AUTOR/ AUTORES DEDICATORIA	iii
AGRADECIMIENTO	iv V
ÍNDICE DE CONTENIDOS	vi
ÍNDICE DE TABLAS	viii
ÍNDICE DE FIGURAS	ix
RESUMEN	X
ABSTRACT	x
I.INTRODUCCIÓN	1
II.METODOLOGÍA	10
III.RESULTADOS	15
IV.DISCUSIÓN	25
V.CONCLUSIONES	29
VI.RECOMENDACIONES	31
REFERENCIAS	32
ANEXOS	37
Anexo 01. Tabla de operacionalización de variables	37
Anexo 02. Instrumento de recolección de datos	38
Anexo 03. Evaluación por juicio de expertos	39
Anexo 04. Confiabilidad del instrumento	45
Anexo 05. Modelo de consentimiento o asentimiento informado UCV	47

Anexo 07. Panel fotográfico	50
Anexo 08. Resultados de laboratorio	61

ÍNDICE DE TABLAS

Tabla N°01: Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la avenida los Algarrobos, Piura-202315
Tabla N°02: Evaluación de la propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la avenida los Algarrobos, Piura-202317
Tabla N°03: Evaluación de la mezcla asfáltica al 0% de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura-2023
Tabla N°04: Evaluación de la mezcla asfáltica al 5%, 10% y 15 de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura-2023 19
Tabla N°05: Comparación de los resultados de la mezcla asfáltica al 0% en relación a las mezclas de incorporación de FTP en proporciones del 5%, 10% y 15% en la avenida los Algarrobos, Piura-2023

ÍNDICE DE FIGURAS

Figura N°01: Comparación del Peso unitario (0%, 5%, 10% y 15%)	22
Figura N°02: Comparación de Vacíos (0%, 5%, 10% y 15%)	23
Figura N°03: Comparación de Flujo (0%, 5%, 10% y 15%)	23
Figura N°04: Comparación de estabilidad (0%, 5%, 10% y 15%)	24

RESUMEN

Este estudio tiene como fin proponer un diseño de mezcla asfáltica con fibra de tallo de plátano (FTP), que determine su influencia en las propiedades físicas mecánicas del asfalto. Se trata de una investigación tipo aplicada, enfoque cuantitativo, nivel explicativo y diseño experimental; ya que busca la solución a un problema concreto, basado en mediciones numéricas. El proceso se compone de 4 diseños de mezcla asfáltica en caliente (tres diseños con integración de FTP y un diseño patrón) aplicando el método Marshall ASTM D-1559, presentando 18 briquetas por diseño, siendo 72 briguetas en total por unidad de análisis. Asimismo, la exploración presenta como población y muestra los 4 km de la avenida los Algarrobos por ser menor a 50 elementos. Agregando a lo anterior, como resultados presenta valores aceptables entre el 5% y el 10% de adición de FTP, porque al integrar un 15% decrece 2.58% en peso unitario, incrementa 41.46% en vacíos, disminuye 6.76% en vacíos llenos con C.A., aumenta 11.76% en flujo, reduce 12.02% en estabilidad y decrece 21.27% estabilidad y flujo. Por último, plantea a los investigadores que la propuesta de diseño se encuentra enmarcada en los rangos del 5% al 10% incorporando FTP.

Palabras clave: Asfalto, Diseño, Fibra.

ABSTRACT

The purpose of this study is to propose a design of an asphalt mixture with banana stem fiber (FTP) to determine its influence on the physical-mechanical properties of asphalt. It is an applied research, quantitative approach, explanatory level and experimental design; since it seeks the solution to a concrete problem, based on numerical measurements. The process is composed of 4 designs of hot mix asphalt (three designs with FTP integration and one standard design) applying the Marshall ASTM D-1559 method, presenting 18 briquettes per design, being 72 briquettes in total per analysis unit. Likewise, the exploration presents as population and sample the 4 km of los Algarrobos Avenue for being less than 50 elements. In addition to the above, the results show acceptable values between 5% and 10% of FTP addition, because when integrating 15%, it decreases 2.58% in unit weight, increases 41.46% in voids, decreases 6.76% in voids filled with A.C., increases 11.76% in flow, decreases 12.02% in stability and decreases 21.27% in stability and flow. Finally, he suggests to the researchers that the design proposal is framed in the 5% to 10% range incorporating FTP

Keywords: Asphalt, Design, Fiber.

I. INTRODUCCIÓN

Alrededor del mundo aumenta a gran índice el tráfico, al igual que la población y la red de carreteras. Es así, que los pavimentos están sometidos a diversos tipos de daños. Ahora, en el siglo XXI, los ligantes y las mezclas para pavimentos son un área constante de análisis y progreso para investigadores e ingenieros, siendo así que la adición de fibras a las mezclas bituminosas puede mejorar las propiedades por fatiga y resistencia del material, donde las fibras naturales pueden utilizarse para mejorar el rendimiento de las mezclas asfálticas debido a su compatibilidad inherente con el cemento asfáltico y a sus excelentes propiedades mecánicas (Alsaadi et al. 2023)

Los pavimentos flexibles arriban su uso en esta época moderna por las diversas ventajas que proporciona, entre ellas brindar una carpeta de rodadura cómoda, confiable y a bajo costo. Sin embargo, las mezclas asfálticas no tienen esa durabilidad en el tiempo porque pierden sus propiedades en un corto plazo o por la razón de que las condiciones climáticas no son favorables. Como consecuencias visibles tenemos las deformaciones constantes.

Se planteó una propuesta de diseño de mezcla asfáltica con fibra de tallo de plátano (FTP), donde se buscó la mejora en sus propiedades físicas – mecánicas del asfalto y que permita la indagación de tecnologías constructivas modernas. Todo esto en pro de una mejora de vida hacia la población, porque siempre ha sido de gran importancia el asfalto en el sector productivo según la historia. El mismo quién ha permitido el progreso de ciencias aplicadas y el aspecto económico, el cual determina la influencia e importancia del valor de la producción de la mezcla asfáltica. Es por esta causa que se llevó a la práctica la incorporación de (FTP), en diversos porcentajes a la mezcla asfáltica.

Existen diversos usos de fibras naturales en la mezcla asfáltica. También existen estudios donde se utilizaron fibras de bambú, las cuales demuestran fortalecer la conducta de formación de surcos y de agrietamientos a baja temperatura. Además, de forma similar se agregaron fibras de yute, donde se plantean resultados favorables al incorporar dichas fibras (Adrianzen Flores et al. 2022)

Agregando a lo anterior, en Colombia las mezclas asfálticas en caliente son un material compuesto por agregados, empleado en la construcción de estructuras de pavimentos, siendo así que, en los últimos años, se intentó mejorar este material con la incorporación de otros elementos para aumentar su resistencia a la tensión. Por otra parte, el empleo de fibras naturales es innovador y con fácil extracción, generando una reducción de costos de producción (Lopez Ricardo, Marin Pinilla 2020).

De la misma manera, en Perú, las fibras naturales son materia prima de plantas o animales y que su utilidad en mejorar las propiedades del suelo es ventajosa, ya que tiene un bajo costo, disponibilidad y que además son biodegradables. Esto significa que, no producen inconvenientes de supresión en el medio ambiente (Carrasco Reategui, Medina Julca 2021). Asimismo, al integrar el plástico como producto a las capas del pavimento, porque al añadir elementos al asfalto se mejoran algunas propiedades mecánicas de la mezcla, contribuyendo a un medio ambiente sostenible (Contreras Vizcarra, Zuñiga Pinillos 2020)

Actualmente en el distrito Veintiséis de Octubre de la Provincia y Departamento de Piura, puntualmente en la avenida los Algarrobos, presenta un pavimento de tipo flexible. En este tramo se pueden apreciar imperfecciones bajo una inspección ocular, las cuales se manifiestan en la base y carpeta de rodadura, cuyas consecuencias son las dificultades al acceso vehicular. Por otra parte, este estado de la avenida se considera como un factor desfavorable para el ornato de la ciudad, dificultando que los vehículos se trasladen con comodidad. El departamento de Piura cuenta con la presencia de empresas de producción de plátano o banano orgánico, el cual es comercializado a nivel local e internacional esta producción agroindustrial genera residuos entre los cuales se encuentra la (FTP), quienes no presentan ningún uso en nuestro país. Es por ello, que esta investigación planteo como alternativa de solución, incorporar la (FTP) a la mezcla asfáltica, con la intención de perfeccionar las propiedades físicas y mecánicas del asfalto. De esta manera, se pretendió disminuir el costo, además de buscar una mayor durabilidad de la mezcla asfáltica para el uso en carpetas de rodadura vehicular.

A raíz de esta realidad problemática, se generó la interrogante de investigación científica: ¿Cómo influye una propuesta de diseño de mezcla asfáltica con fibra de tallo de plátano en sus propiedades físicas – mecánicas del asfalto, en la avenida los Algarrobos, Piura -2023? Del mismo modo, se planteó las incógnitas específicas, siendo estas: a) ¿Cómo influye la mezcla asfáltica al 0% de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura - 2023?; b) ¿Cómo influye la mezcla asfáltica al 5%, 10% y 15% de integración de FTP en sus propiedades físicas y mecánicas en la en la avenida los Algarrobos, Piura - 2023?; c) ¿Cómo influyen los resultados de la mezcla asfáltica al 0% en comparación a las mezclas de incorporación de FTP en proporciones del 5%, 10% y 15%, en la avenida los Algarrobos, Piura -2023?

La presente investigación se justificó al evaluar la propuesta de diseño de mezcla asfáltica con (FTP), y compararlas con una mezcla asfáltica sin integración de (FTP), esto proporcionó la dosificación correspondiente. A la vez la (FTP) tendría un uso adecuado en lugar de desperdiciarse, lo que se ve a diario en la producción del banano. La justificación teórica para esta exploración, se reflejó al emplear procedimientos notables y conformados en el Reglamento Nacional de Edificaciones (RNE), así como también al tener en consideración las indicaciones planteadas y normadas, aplicando además procesos ya constituidos, siempre y cuando brinde la facilidad de determinar una propuesta al diseñar mezcla asfáltica con (FTP). En el caso de la justificación práctica, se llevó a cabo mediante la adquisición de una dosificación que cumpla con los requerimientos, la cual esté con base a lo plasmado en el RNE. Por último, para la justificación metodológica, se dio al tener presente el correcto uso y procedimiento con las muestras y los diferentes equipos de laboratorio, los cuales faciliten establecer el diseño de mezcla asfáltica con (FTP), esto permite utilizar a los resultados como un diseño estándar, que sea usado como base para el diseño de mezcla. Además, se señala que las (FTP) deben ser específicamente naturales, ya que, en la producción de banano, se incluyen fertilizantes, los cuales pueden alterar químicamente a las (FTP)

El objetivo general, para esta exploración fue: Proponer un diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades

mecánicas – físicas del asfalto, en la avenida los Algarrobos Piura -2023. Asimismo, se presentaron los objetivos específicos para este estudio, los cuales son: a) Evaluar la mezcla asfáltica al 0% de integración de FTP en sus propiedades físicas y mecánicas en la en la avenida los Algarrobos, Piura -2023; b) Evaluar la mezcla asfáltica al 5%, 10% y 15 de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura -2023; c) Comparar los resultados de la mezcla asfáltica al 0% en relación a las mezclas de incorporación de FTP en proporciones del 5%, 10% y 15% en la avenida los Algarrobos, Piura -2023

Como investigaciones previas a nivel internacional se contó entra una ellas a, Sharma et al. (2023) quien en su estudio denominado "Uso de fibra natural de plátano como aditivo estabilizador en una pista de fricción graduada abierta" afirmaron que, las fibras sintéticas y orgánicas se utilizaban generalmente como aditivos estabilizadores en las mezclas OGFC para aliviar la pérdida de aglutinante y la pérdida por abrasión. Los investigadores tuvieron como objetivo principal, investigar las características de pérdida por drenaje y abrasión de mezclas de OGFC fabricadas utilizando longitudes y dosis variables de fibra de plátano natural como aditivo estabilizante. Para ello utilizaron una gradación de agregado y un aglutinante modificado con polímero para fabricar las mezclas de OGFC. Asimismo, evaluaron un total de veintisiete combinaciones de mezclas de OGFC que se adaptan a tres dosis de betún, tres longitudes de fibra y tres contenidos de fibra de plátano, obteniendo como resultados que tanto la longitud como la dosis de fibra de plátano tuvieron un efecto significativo sobre las características de pérdida por drenaje y abrasión.

Asimismo, Mohammed et al. (2023) en su artículo titulado: "Aplicaciones de fibras sintéticas, naturales y de desecho en mezclas asfálticas: Una revisión basada en citas" señalaron que, la utilización de fibras sintéticas, naturales y de desecho en mezclas asfálticas aumenta constantemente debido a la capacidad de las fibras para mejorar el rendimiento mecánico de las mezclas asfálticas. Su objetivo fue presentar una revisión basada en citas sobre la incorporación de fibras sintéticas, naturales y de desecho en bitumen, mezclas asfálticas densas, masilla asfáltica de piedra y mezclas asfálticas porosas. De igual manera, como proceso tuvieron la exploración de la literatura en el ámbito de agregar fibras en mezclas asfálticas, se realizó

mediante análisis de citas, la cual les conllevó a demostrar que recientemente ha habido un interés creciente en el uso de fibras naturales y de desecho en mezclas asfálticas. Del mismo modo que, se necesitan más estudios futuros para investigar el rendimiento de la masilla asfáltica de piedra modificada con fibra y la mezcla asfáltica porosa en términos de resistencia al envejecimiento y al agrietamiento a baja temperatura. Y que, además, se debería investigar el período de biodegradabilidad de las fibras naturales en las mezclas asfálticas.

Del mismo modo, Yadav et al. (2023) su artículo titulado: "Un Estudio sobre el Impacto de la Fibra de Bambú en el Rendimiento del Asfalto de Matriz de Piedra con Escoria como Reemplazo de Agregado", hicieron mención que, la fibra de bambú es una fibra de celulosa extraída de los tallos de bambú que posee una alta resistencia en la dirección de la fibra, excelente resistencia a la tracción, flexión y al impacto, y una delgadez adecuada para fines de estabilización. De igual forma, el presente estudio lo han realizado para explorar la idoneidad de la fibra de bambú con el objetivo de mejorar la estabilidad y las características de flujo de las mezclas asfálticas Stone Matrix. A consecuencia de esto, concluyeron que las fibras naturales como las de bambú adicionadas a la mezcla brindan alta resistencia en la dirección de la fibra, presentando excelentes resultados a la tracción, flexión e impacto.

Por otra parte, Choudhary et al. (2022), en su estudio conocido como: "Investigación de laboratorio del comportamiento de drenaje de mezclas de capa de fricción de grado abierto que contienen fibras naturales de banano y bagazo de caña de azúcar" señalaron que, las capas de fricción de nivel abierto (OGFC, por sus siglas en inglés) son mezclas de pavimentación asfáltica con una mayor cantidad de huecos de aire interconectados para brindar ventajas con respecto a un mejor drenaje. Su objetivo principal fue explorar la fibra de banano obtenida del pseudotallo residual y la fibra de bagazo de caña obtenida del posresidual. De igual manera, el proceso lo desarrollaron mediante la evaluación de las características de drenaje con 168 combinaciones de mezclas de OGFC. Finalmente, realizaron un análisis estadístico para determinar la eficacia de diferentes factores influyentes, del cual el mejor comportamiento lo presentó la fibra de plátano, que tuvo una dosificación de 0,45% y

una longitud de 9 mm, seguida del bagazo de caña y la fibra de celulosa. Así mismo encontraron que todos los factores de entrada eran estadísticamente significativos.

De igual manera, Yaro et al. (2021), señalaron en su artículo: "Evaluación del rendimiento de mezclas asfálticas de matriz pétrea reforzadas con fibra de palma residual mediante procesos de mezcla tradicionales y secuenciales" que las propiedades relacionadas con el rendimiento del hormigón asfáltico están muy influidas por el proceso de mezclado, y la homogeneidad y la segregación de las mezclas asfálticas son cuestiones fundamentales que afectan a la producción de hormigón asfáltico. Los investigadores tomaron como fin, reforzar las muestras con diversos contenidos y evaluar sus propiedades volumétricas y mecánicas. De igual forma, utilizaron varios métodos de prueba de laboratorio estándar para examinar las mezclas: propiedades Marshall, prueba de drenaje, Cantabro, módulo de rigidez y prueba de daño por humedad. A consecuencia, sus métodos revelaron que la mezcla secuencial es una alternativa de mezcla más viable para SMAC, ya que mostró un menor drenaje, huecos de aire y un contenido óptimo de betún con mayor estabilidad Marshall.

A nivel nacional, existe la presencia de autores como Carrasco, Medina (2021) quien en su tesis denominada: "Influencia de la resina de plátano para aumentar el CBR de la Sub Rasante Moyobamba, 2021" manifestaron que, la unión del suelo con la resina de plátano les permitió aumentar las propiedades mecánicas del suelo. De igual forma, su investigación tuvo como objetivo, determinar cómo estabilizar la sub rasante en suelos empleando resina de plátano en el camino vecinal Potrerillo- Siete de Junio, Jepelacio, Moyobamba2021. Seguidamente, su estudio lo llevaron a cabo mediante evaluaciones al comportamiento de las distintas proporciones para la dosificación de resina de plátano. Estas evaluaciones fueron hechas mediante la incorporación del 2.3% de resina de plátano, lo que les permitió mejorar la subrasante en un 1.32%, debido a que su CBR analizado incrementó desde 7.24% hasta 8.56%. Asimismo, cuando ellos integraron un porcentaje del 4.6% de resina de plátano pudieron notar que el porcentaje de CBR aumentó desde 7.4% hasta 9.54%, lo que les permitió obtener una subrasante regular. Después de eso, concluyeron que, al agregar un 4.6% de resina de plátano el CBR llega a la resistencia óptima.

De igual forma López, Pinilla (2020) en su tesis titulada: "Uso de fibras naturales en materiales compuestos: Implementación de un plan de vigilancia tecnológica", afirmaron que, el uso de fibras naturales ha sido innovador, puesto que al tener una fácil extracción genera una reducción de costos respecto a las fibras artificiales y disminuye el impacto ambiental. Asimismo, su objetivo fue implementar una metodología que permita comparar la información obtenida de diferentes artículos, libros, ensayos, entre otros, acerca de las propiedades mecánicas y físicas de las fibras naturales, para utilizarlos como materiales compuestos. Finalmente, mediante un comparativo de resultados hicieron mención de que, las fibras naturales son de fácil extracción, permitiendo así, disminuir los costos de producción y también el repercutir favorablemente en la mitigación de impacto ambiental.

Del mismo modo, Contrera, Zuñiga (2020) en su artículo denominado: "Influencia de los desperdicios plásticos en las propiedades mecánicas asfálticas, vinculadas a los vacíos y flujo en base a la recopilación de datos de las mezclas asfálticas modificadas". Para su investigación tuvieron como fin evaluar los desempeños de las propiedades mecánicas del asfalto e implementar el plástico como aditivo a la estructura del pavimento. El desarrollo de su estudio consistió, en revisar 20 trabajos de investigación, de estos tomaron 10 internacionales y 10 nacionales. A consecuencia de esto, optaron por 24 ensayos en distintos porcentajes. De los ensayos que analizaron, el ensayo N.º 12 fue uno de los que cumplió con las propiedades mecánicas requeridas, ya que esto les permitía tener resultados más óptimos, tales como: 4600 lb. en estabilidad, un 3 % en relación de vacíos y un porcentaje óptimo de plástico que se enmarque desde el 1 % hasta el 6% de asfalto.

Pero a nivel local como es en el Departamento y Provincia de Piura no se cuenta con estudios relacionados con la investigación, siendo una investigación moderna; Por otra parte, se debe considerar que el uso de fibras naturales y sobre todo de (FTP), no se encuentran utilizados como temas de estudio en la Ingeniería Civil.

Este estudio contó con bases teóricas relacionadas con la mezcla asfáltica, la cual es la unión de agregados pétreos con un ligante hidrocarbonado, quedando estos

en cubiertos en su totalidad por una capa uniforme. Asimismo, esta mezcla se conforma mayormente de agregado grueso y fino, cuenta con un 5% de polvo mineral y necesariamente de un 5% de material ligante asfaltico. De igual modo, la mezcla se puede considerar como un material visco elástico, con recuperaciones instantáneas debido a que se encuentra con deformaciones permanentes. Además, la mezcla asfáltica debe tener suficiente tensión para resistir los daños que sufrirá cuando se les someta a cargas donde se prevengan los agrietamientos por fatiga (Rivera, 2021).

También, se considera a la planta de banano como una hierba perenne de gran tamaño. Se le considera así, porque la planta muere una vez que termina su estación de cultivo, y es de aquí de donde se extraen las fibras. Además, el tallo puede llegar a medir de 2 a 5 m, pero en ciertos casos alcanzar 8 m con las hojas, con frutos de bayas de forma cilíndrica sin semillas. Asimismo, las (FTP) son elementos estructurales de plantas superiores, constando primordialmente de pequeñas partes de las fibras (fibrillas) de celulosa enmarcadas en una matriz de lignina, alineándose a lo largo de las fibras, brindando máxima resistencia a la flexión, tracción y rigidez (Pedraza, 2019).

Se debe tener en cuenta que la resistencia de las mezclas asfálticas aumenta constantemente al usar fibras naturales, debido a la capacidad de las fibras en mejorar el rendimiento mecánico de las mezclas asfálticas. La combinación de fibras en las mezclas asfálticas contribuyó a la sostenibilidad ecológica y a la reducción de costos. Además, recientemente aumentó el interés por el uso de fibras naturales y de desechos en las mezclas asfálticas (Mohammed, Sawaran, Mohsen 2023).

Por otra parte, al emplearse varios tipos de fibras en las mezclas asfálticas ayuda a mejorar las propiedades de pavimentación y resistir las tensiones desarrolladas por los esfuerzos aplicados (Al-Bdairi, Al-Taweel, Noor 2020); pero para determinar las propiedades mecánicas es necesario llevar a cabo tres tipo de pruebas (estabilidad, resistencia a la tracción indirecta y pruebas de flujo) para investigar la influencia de uso de fibras en la mezcla asfáltica en caliente (Al-Bdairi, Al-Taweel, Noor 2020).

Considerando al asfalto como matriz pétrea, es una mezcla de granulometría variable que consta de dos partes: un esqueleto de árido grueso de alta concentración y un mortero de alto contenido en ligante. Asimismo, funcionan como un aditivo estabilizador, en este caso las fibras naturales, las fibras minerales o polímeros, se añaden a las mezclas de asfalto de matriz pétrea para evitar la escorrentía. Además, tiene el potencial de reforzar y mejorar la resistencia a la tracción y la cohesión de las mezclas de asfalto (Kumar, Shankar, Teja 2019)

Para minimizar los daños y aumentar la vida útil del pavimento, la modificación del ligante asfáltico es uno de los enfoques para mejorar el rendimiento y la vida útil del pavimento. La mezcla asfáltica en caliente puede modificarse con muchos tipos de fibra, incluida la fibra natural. (Masri et al. 2022)

Como las bases legales para este estudio se tiene en cuenta a lo afirmado por el Ministerio de vivienda, construcción y saneamiento (2010), en la norma CE.010 Pavimentos Urbanos, en donde enmarca los procedimientos requeridos para realizar los correctos diseños de mezclas de asfalto, permitiendo así identificar y delimitar la investigación.

Finalmente, como Hipótesis General se planteó: Es posible proponer el diseño de la mezcla asfáltica con (FTP), lo que influya en sus propiedades físicas - mecánicas en la avenida los Algarrobos, Piura -2023. Igualmente se generaron las Hipótesis Específicas, las cuales son: a) Es posible evaluar la mezcla asfáltica al 0% de integración de FTP en sus propiedades físicas y mecánicas en la en la avenida los Algarrobos, Piura -2023; b) Es posible evaluar la mezcla asfáltica al 5%, 10% y 15 de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura -2023; c) Es posible comparar los resultados de la mezcla asfáltica al 0% en relación a las mezclas de incorporación de FTP en proporciones del 5%, 10% y 15% en la avenida los Algarrobos, Piura -2023.

II. METODOLOGÍA

El presente estudio fue de tipo aplicada, ya que buscó dar solución al problema presente al llevar a cabo una incorporación de (FTP) a la mezcla asfáltica. Para, ello se tiene en consideración a (Alvarez Risco 2020) quien señaló que, la investigación se direcciona con base a los objetivos propuestos, dado que se encuentra determinada por la problemática y los recursos. Además se reafirma por lo expuesto por (Schwarz 2017), quien consideró que al tener que brindar una solución a un problema en específico hace referencia a la investigación aplicada.

Esta investigación presentó un diseño cuasi experimental, ya que existen estudios relacionados con integración de (FTP), pero que aún no han sido ejecutados en variedad actualmente. Esta teoría se respaldó por el autor, (Fernández García et al. 2014), porque señaló que, el diseño cuasi experimental es un estrategia de trabajo con el que se busca analizar el efecto de los tratamientos y/o procesos que cambien en situaciones donde las unidades de observación no han sido elegidas mediante un juicio aleatorio.

Para el desarrollo del presente estudio se consideraron dos variables, una variable independiente (FTP) y otra dependiente (mezcla asfáltica). La operacionalización de variables se basó en un grupo de herramientas y procesos que conllevan a medir una variable en un estudio, consistió en un método de análisis de una variable y sus elementos que permiten medirla (Coronel Carvajal 2022). Este proceso debió contemplar variable dependiente y variable independiente, donde una variable independiente, representa una cantidad que se ve modificada en un experimento, y la variable dependiente representa la cantidad cuyo valor depende de cómo se modifica la variable independiente, (Salman 2006).

Para definir conceptualmente la variable independiente, se consideró lo afirmado por (Pedraza Abril 2019), la planta del banano es una hierba perenne de gran tamaño, se le considera así porque la planta muere una vez que termina su estación de cultivo. De la misma manera manifestó que, el tallo puede llegar a medir de 2 a 5 m, pero que en ciertos casos puede alcanzar 8 m con las hojas, con frutos de bayas de forma cilíndrica sin semillas; las (FTP). Para su definición operacional

este estudio se enfocó en la cantidad del material incluido en los porcentajes de 0%, 5%, 10% y 15% de adición de (FTP), considerando como dimensión a la integración de (FTP), los indicadores fueron los porcentajes de inclusión de (FTP) al 0%, 5%, 10% y 15%, con una escala de razón.

Para definir conceptualmente la variable dependiente, se consideró a la mezcla asfáltica como la unión de agregados pétreos con un ligante hidrocarbonado, quedando estos cubiertos en su totalidad por una capa uniforme. Igualmente, esta mezcla se conforma mayormente de agregado grueso y fino, contando con un 5% de polvo mineral y necesariamente de un 5% de material ligante asfáltico (Rivera, Tocto 2021). En su definición operacional se consideró como dimensiones a las propiedades físicas y propiedades mecánicas al integrar (FTP), como indicadores se contó con los porcentajes de integración de (FTP) al 0%, 5%, 10% y 15% y de escala, la razón.

Este estudio tuvo como población los 4 kilómetros de distancia que presenta la avenida los Algarrobos, Piura-Perú. Se tomó en cuenta que población es el grupo de compontes accesibles o unidad de análisis y los mismos deben tener relación con el área de evaluación (Condori Ojeda 2020). Asimismo, se consideró criterios de inclusión, quienes vinieron hacer todos los elementos que conforman la vía los Algarrobos; asumiendo que, los criterios de inclusión tienen que ver con las características de los elementos, aquellos que integran la población de estudio (Tamara, Manterola 2017). Y como criterios de exclusión, todas las avenidas a excepción de la avenida los Algarrobos; teniendo claro que, los criterios de exclusión vendrían a ser los elementos que no conforman la recolección de información y el análisis de los resultados (Tamara, Manterola 2017).

La muestra de la presente investigación, es pequeña, no supera los 50 componentes, es por eso que se tomó como muestra según (López 2004) al subconjunto de la población, con la cual se llevará a cabo la investigación, existiendo métodos para determinar la cantidad de la muestra, mediante el uso de fórmulas, deducciones, entre otros. Sin embargo, cuando la población es demasiado pequeña se toma el mismo valor como población. Por otro lado, el muestreo del presente estudio, al ser una población pequeña, no se empleó, considerando que el muestreo

es el conjunto de técnicas estadísticas que permiten el análisis y la obtención de conclusiones acerca de un determinado tema de elementos a las cuales se las extrapola o infiere en todo un conjunto de elementos de interés; siendo considerados los resultados validos o aceptables para toda la población, es decir, se generaliza a todo el conjunto de elementos (UNIR 2023).

Para la unidad de análisis se consideró a la avenida los Algarrobos que comprende 4 kilómetros de distancia respectiva, siendo la unidad de análisis los elementos cuyas cualidades se van a medir. Ya que, es parte esencial del proyecto de investigación, siendo lo principal que un investigador analiza (Ortega 2023a).

Agregando a lo anterior, se entiende que las principales técnicas e instrumentos de recaudación de información se encuentra la observación, donde se toman datos en condiciones relativamente a criterio del investigador, quien puede alterar la o las variables (Tamayo, Siesquen 2018). Esta exploración utilizó la observación directa como técnica, por ser vital contemplar el fenómeno causado por la influencia de la (FTP) en las propiedades físicas-mecánicas del Asfalto. Asimismo, porque se realizó la toma de datos para su examinación respectiva. Esta teoría está justificada por el autor (Arias Gonzales, Covinos Gallardo 2021) quién hizo mención que, las técnicas son los instrumentos o herramientas que se emplean por lo común en los estudios. Por otro lado, como instrumento de recolección de datos se empleó las fichas de observación, las cuales son herramientas reconocidas para evaluar eventos, ya que permite constatar en un documento por escrito lo que sucede, pero presenta limitaciones a la hora de recoger datos (Díaz 2023).

En el caso de la confiabilidad, consiste en el grado que un instrumento produce resultados, es decir los resultados son iguales al aplicar de forma repetida al mismo sujeto u objeto. En cambio, la validez es el grado en que un instrumento mide la variable que busca medir (Marroquin Peña 2013). Es por esto que, de acuerdo al anexo 03, la validez del instrumento se realizó mediante una ficha de validación con escala del 40 al 100, donde el 40-65 es no aceptable, el 70-80 es mini aceptable y el 85-100 es aceptable. La ficha fue aplicada a tres expertos, cuyos resultados fueron de 96, 97 y 97 respectivamente, dando un promedio de 97.

Del mismo modo, en el anexo 4, la confiabilidad del instrumento se dio mediante el Coeficiente de validez V de Aiken, el cual indica que un instrumento es confiable cuando está en el intervalo de 0.8-1 para valores de V. Es por ello, que nuestro instrumento cumple con el coeficiente de validez, puesto que, tiene un resultado de 0.87.

En esta investigación se realizó como procedimiento 04 fases, siendo definido el procedimiento como el método donde se explore, observe y responda interrogantes, las que permitan construir y probar una hipótesis establecida con anterioridad, aplicando diversos métodos que permitan obtener resultados coherentes con los fenómenos observados (Ortega 2023b). La primera fase fue mediante la de recolección de datos de campo; para la segunda fase se consideró el procesamiento de datos en gabinete; en el caso de la tercera fase, fue de diseño en el laboratorio y la cuarta fase, la de resultados e interpretación de los datos.

Mientras que, en el método para análisis de datos, se realizó de manera descriptiva, ya que se recaudó datos mediante la ficha de observación en un ámbito natural del objeto de estudio, en este caso, del proceso de diseño de los 4 diseños de mezcla asfáltica en caliente (tres diseños con integración de FTP y un diseño patrón) por el método Marshall ASTM D-1559, siendo 6 núcleos por diseño y por cada núcleo 3 muestras (briquetas), dando un total de 18 muestras por diseño. De este modo, nos permitió obtener gráficos y tablas para lograr su interpretación y análisis. De igual manera presenta un análisis inferencial, dado que, se trató de la comparación de las hipótesis con los resultados, utilizando procesos estadísticos de métodos ya conocidos los que permitan validar la hipótesis. Siendo así, el análisis estadístico un proceso de resultados confiables para describir los valores de datos, ya que este sirve para predecir, relacionar y analizar datos, siendo así, un análisis exploratorio, el cual permitió conseguir un entendimiento básico de los datos, detectando características sobresalientes (Montes 2023). Estos procesos estadísticos, gráficos y tablas se llevaron a cabo mediante el programa Office, en su extensión Excel, que permitió el correcto procesamiento de los datos.

Para terminar, como aspectos éticos se tuvo en consideración las normas y principios técnicos ya establecidos por la Universidad Cesar Vallejo, donde se tuvieron en cuenta valores como la honestidad en el la ejecución de la investigación, honradez al recopilar datos, sin manipularlos, seguridad al explorar la información de fuentes y revistas de alto impacto. Asimismo, se realizó las correspondientes citas de acuerdo a ISO-690, lo que se contrastó con la "herramienta" web Turnitin.

III. RESULTADOS

Para llegar a los resultados del estudio, fue necesario realizar el procedimiento de los 4 diseños de mezcla (0%, 5%, 10% y 15 % de incorporación de FTP), en proceso de mezcla asfáltica en caliente aplicando el método de Marshall ASTM D-1559. Esta investigación consideró 6 núcleos por diseño, 3 muestras por cada núcleo (briquetas), teniendo así 18 muestras por diseño, siendo 4 diseños en total los presentes en este estudio (0%, 5%, 10% y 15% de incorporación de FTP). Dando un total de 72 briquetas para la evaluación.

En respuesta a una propuesta de diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades físicas – mecánicas del asfalto se llegó a resultados favorables menores del 10% de integración de FTP, estos se encuentran aceptables en comparación a la muestra patrón como se presenta la siguiente tabla:

Tabla N°01: Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la avenida los Algarrobos, Piura-2023.

N° de muestra:			
Diseño de mezcla asfáltica con fibra de tallo de plátano, para	5%	10%	15%
determinar su influencia en las propiedades mecánicas -			
físicas del asfalto, en la avenida los Algarrobos Piura -2023			

PROPIEDADES FÍSICAS			
Golpes por lado	0.00%	0.00%	0.00%
Cemento asfaltico	0.85%	0.85%	0.00%
Peso unitario	-0.30%	-0.86%	-2.58%
PROPIEDADES MECÁNICAS			
Vacíos	2.44%	7.32%	41.46%
Vacíos llenos con C.A.	0.00%	-1.35%	-6.76%
Flujo	0.00%	1.76%	11.76%
Estabilidad	-6.98%	-8.53%	-12.02%
Estabilidad y flujo	-6.98%	-10.12%	-21.27%

Fuente: elaboración de los Autores.

En la tabla N°01, se aprecian los valores obtenidos con base a los resultados en laboratorio. En la propuesta de diseño de mezcla asfáltica con fibras de tallo de plátano, no se aprecia el valor 0% de integración de FTP, debido a que es la muestra patrón de evaluación con la que se comparan los resultados obtenidos de la inclusión de (FTP).

Dentro de las propiedades físicas al 15% de incorporación de FTP, presentó una disminución de 2.58% en peso unitario y en las propiedades mecánicas: en vacíos presentó un aumento de 41.46%, vacíos llenos con C.A. manifestó un decrecimiento de 6.76%, en flujo se elevó un 11.76%, en estabilidad disminuyó 12.02% y finalmente en estabilidad y flujo presentó una disminución de 21.27%. Siendo estos valores más elevados a comparación de las muestras del 5% y 10% de incorporación de FTP, lo que planteó a los investigadores que la propuesta de diseño se encuentra enmarcada en los rangos del 5% al 10%, los cuales a comparación de la muestra patrón se encuentran en rangos próximos y aceptables.

Esta afirmación se respaldó por la evaluación de la desviación estándar, que estadísticamente demuestra que las variaciones más aceptables se encuentran en rangos del 5% al 10 %. En donde sus propiedades físicas no variaron para el caso del cemento asfaltico; en cambio, en peso unitario presenta 0.03 kg para el 5% y 10% de incorporación de FTP; en sus propiedades mecánicas, presenta valores de vacíos para 5% de 2.84% y de 2.90% en 10%, en vacíos llenos con C.A presenta 16.34% al 5% y 16.20 al 10%, en flujo presenta 0.59 mm para el 5% y 0.62 mm a 10%, en estabilidad 144.68 Kg al 5% y 121.17 Kg en estabilidad, en estabilidad y flujo presenta al 5% 533.71 Kg/mm y 10% 658.43 Kg/mm. Como se aprecia, estos resultados no se encontraron tan lejanos en comparación de la muestra al 0%. Del mismo modo, los resultados presentes con la propuesta de diseño de mezcla asfáltica al 15% presenta valores en sus propiedades físicas: en peso unitario 0.02 Kg. De igual manera, en sus propiedades mecánicas: en vacíos 1.79%, en vacíos llenos con C.A. 11.38%, en flujo 0.50 mm, en estabilidad 146.31 kg y en estabilidad/flujo 375.64kg/mm; siendo estos valores elevados en comparación de los resultados de las mezclas al 5% y 10% de incorporación de FTP. Esto se aprecia a continuación en la tabla N°02:

Tabla N°02: Evaluación de la propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la avenida los Algarrobos, Piura-2023.

	estándar		
0.00%	5.00%	10.00%	15.00%
0.00	0.00	0.00	0.00
0.94	0.94	0.94	0.94
0.02	0.03	0.03	0.02
2.41	2.84	2.90	1.79
16.11	16.34	16.20	11.38
0.67	0.59	0.62	0.50
219.93	144.68	121.17	146.31
562.34	533.71	658.43	375.64
	0.00 0.94 0.02 2.41 16.11 0.67 219.93	0.00% 5.00% 0.00 0.00 0.94 0.94 0.02 0.03 2.41 2.84 16.11 16.34 0.67 0.59 219.93 144.68	0.00 0.00 0.94 0.94 0.02 0.03 2.41 2.84 16.11 16.34 16.20 0.67 0.59 219.93 144.68 121.17

Fuente: elaboración de los Autores

En la tabla N°02, se consideró como valores de referencia a los presentes en el 0% de integración de FTP por tratarse de la muestra patrón a evaluar, como se muestra los más cercanos a estos se consideran aceptables; siendo así que en la mayoría los resultados respecto a la incorporación del 15% de FTP se alejan significativamente como es el caso de los vacíos, flujo y estabilidad. Sin embargo, es diferente para los resultados con el 5% y 10 % de adición. Esto demostró que se puede llegar a resultado aceptable hasta un 10% de incorporación de FTP.

Para dar cumplimiento al primer objetivo específico, el cual consiste en la evaluación de la mezcla asfáltica al 0% de integración de FTP en sus propiedades físicas y mecánicas en la en la avenida los Algarrobos; se evaluaron 18 briquetas, aplicando el método de Marshall ASTM D-1559, asfalto caliente, siendo esta mezcla considerada como base o patrón de evaluación, ya que se requiere de un modelo para comparar las alteraciones intencionales de mezcla al 5%, 10 % y 15%. Estos resultados se aprecian en la tabla N°03:

Tabla N°03: Evaluación de la mezcla asfáltica al 0% de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura-2023.

N° de muestra:	Incorporación de fibra de tallo de plátano
Diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades mecánicas – físicas del asfalto, en la avenida los Algarrobos Piura -2023	0%
PROPIEDADES FÍSICAS	
Golpes por lado	75
Cemento asfaltico	5.85
Peso unitario	2.33
PROPIEDADES MECÁNICAS	
Vacíos	4.1
Vacíos llenos con C.A.	74
Flujo	3.4
Estabilidad	1290
Estabilidad y flujo	3794

Fuente: elaboración de los Autores

En la Tabla N°03, se observa la evaluación de la mezcla asfáltica al 0% de incorporación de (FTP) la que se consideró muestra patrón, esto permitió comparar las muestras de incorporación de (FTP) en porcentajes del 5%, 10% y 15%. Todas las evaluaciones de las muestras se realizaron con 75 golpes por lado y como resultado en sus propiedades físicas se tuvo, cemento asfaltico 5.85% y un peso unitario 2.33 Kg. Asimismo, en sus propiedades mecánicas, para vacíos 4.1%, vacíos llenos con C.A. 74%, flujo 3.4 mm, estabilidad 1290 Kg y estabilidad/flujo 3794 Kg/mm.

Para una propuesta de diseño de mezcla asfáltica con la incorporación de fibra de tallo de plátano aceptable, se consideró a la que no exceda estos valores, siendo aceptable en valores cercanos o próximos a la mezcla asfáltica del 0% de incorporación de (FTP).

De igual modo, para dar cumplimiento al segundo objetivo específico, el cual pretende la evaluación de la mezcla asfáltica al 5%, 10% y 15% de integración de

FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura-2023 se evaluaron 54 briquetas, 18 para cada diseño de mezcla siendo estos 3 diseños de mezcla alterados en porcentajes del 5%, 10% y 15% de incorporación de FTP; resultados que se compararon con los obtenidos por las 18 briquetas con el 0% de incorporación de FTP (muestra patrón).

Con la evaluación de estos resultados se logró identificar la propuesta de diseño de la mezcla asfáltica adecuada de incorporación de FTP, esta propuesta se encuentra aceptable hasta valores del 10% de incorporación de FTP, la cual presenta en sus propiedades físicas; valores de cemento asfaltico en 5.9 %, peso unitario un valor de 2.31 Kg; y en sus propiedades mecánicas, en vacíos presenta 4.4%, vacíos llenos con C.A un valor de 73%, flujo presenta 3.46 mm, en estabilidad un valor de 1180 Kg y finalmente en estabilidad y flujo presenta como resultado 3410 Kg/mm. Estos resultados se aprecian en la tabla N°04.

Tabla N°04: Evaluación de la mezcla asfáltica al 5%, 10% y 15 de integración de FTP en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura-2023

N° de muestra:	Incorporación de fibra de tallo de plátano			
Diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades mecánicas – físicas del asfalto, en la avenida los Algarrobos Piura -2023	0%	5%	10%	15%
PROPIEDADES FÍSICAS				
Golpes por lado	75	75	75	75
Cemento asfaltico	5.85	5.9	5.9	5.85
Peso unitario	2.33	2.323	2.31	2.27
PROPIEDADES MECÁNICAS				
Vacíos	4.1	4.2	4.4	5.8
Vacíos llenos con C.A.	74	74	73	69
Flujo	3.4	3.4	3.46	3.8
Estabilidad	1290	1200	1180	1135
Estabilidad y flujo	3794	3529	3410	2987

Fuente: elaboración de los Autores

En tabla N°04, se aprecia claramente que todas las evaluaciones realizadas a las muestras se dieron a 75 golpes por lado. Además, se evidenció que las propiedades físicas al 5% de integración (FTP) fueron, cemento asfaltico con un valor de 5.9% y peso unitario presenta 2.323 Kg. En cambio, en sus propiedades mecánicas, para vacíos tuvo un valor de 4.2%, vacíos llenos con C.A presenta como resultado 74%, flujo tiene 3.4 mm, estabilidad presenta 1200 Kg finalmente presenta en estabilidad y flujo un valor de 3529 Kg/mm.

De igual forma, al 10% de integración (FTP) mostró valores, tales como: cemento asfaltico con un valor de 5.9% y peso unitario un resultado de 2.31 Kg. Por el contrario, en sus propiedades mecánicas tuvo valores de: vacíos 4.4%, vacíos llenos con C.A. un resultado de 73%, flujo un valor de 3.46 mm, estabilidad un resultado de 1180 Kg y finalmente en estabilidad y flujo presenta 3410Kg/mm. Asimismo, al 15% de integración (FTP) dio como resultados: cemento asfaltico presentó 5.85%, peso unitario tiene 2.27 Kg y en sus propiedades mecánicas evidenció datos como: vacíos 5.8%, vacíos llenos con C.A. 69%, flujo 3.8 mm, estabilidad 1135 Kg, y finalmente en estabilidad y flujo presentó 2987 Kg/mm. Cabe señalar que presentó pequeñas variaciones tanto en las propiedades físicas y mecánicas conforme se agrega la (FTP), sin embargo, a un 15% de adición de FTP mostró una variación muy notoria.

Añadiendo a lo anterior, y para dar cumplimiento al tercer objetivo específico, el que consiste en la comparación de los resultados de la mezcla asfáltica al 0% en relación a las mezclas de incorporación de FTP en proporciones del 5%, 10% y 15%. en la avenida los Algarrobos, Piura-2023. Se utilizó valores como: mínimos, promedios y valores máximos, siendo estos los valores que ayudan a identificar las alteraciones matemáticas presentes en las diferentes mezclas asfálticas alteradas voluntariamente en porcentajes del 5%, 10% y 15% de incorporación de FTP; cuyos resultados se aprecian en la tabla 05:

Tabla N°05: Comparación de los resultados de la mezcla asfáltica al 0% en relación a las mezclas de incorporación de FTP en proporciones del 5%, 10% y 15% en la avenida los Algarrobos, Piura-2023.

N° de muestra:				VALOR	PROMEDIO	VALOR
Diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades mecánicas – físicas del asfalto, en la avenida los Algarrobos Piura -2023 PROPIEDADES FÍSICAS	5%	10%	15%	MÍNIMO		MÁXIMO
Golpes por lado	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Cemento asfaltico	0.85%	0.85%	0.00%	0.00%	0.57%	0.85%
Peso unitario	0.30%	0.86%	2.58%	0.30%	1.24%	2.58%
PROPIEDADES MECÁNICAS						
Vacíos	2.44%	7.32%	41.46%	2.44%	17.07%	41.46%
Vacíos llenos con C.A.	0.00%	1.35%	6.76%	0.00%	2.70%	6.76%
Flujo	0.00%	1.76%	11.76%	0.00%	4.51%	11.76%
Estabilidad	6.98%	8.53%	12.02%	6.98%	9.17%	12.02%
Estabilidad y flujo	6.98%	10.12%	21.27%	6.98%	12.79%	21.27%

Fuente: elaboración de los Autores

En la tabla N°05 se observa la comparación de los resultados de las incorporaciones (FTP) con respecto a la muestra patrón. Esta mostró valores, tales como: en las propiedades físicas, presentó una disminución del 0.30% al 5% de incorporación de (FTP), pero un valor máximo de 2.58% cuando esta se encuentra con valores de 15% de incorporación de (FTP); para el caso de cemento asfaltico presenta una disminución de 0.85% tanto para el 5% y 10% de incorporación (FTP); pero no presenta alteración al 15% de incorporación de (FTP).

Sin embargo, en sus propiedades mecánicas presentó una disminución significativa del 41.46% con la incorporación de (FTP) al 15% de incorporación, esta variación se consideró de importancia para la determinación de la propuesta de diseño por ser un valor elevado. Por otro lado, en vacíos llenos con C.A. presenta una disminución de 6.67% al 15% de incorporación de (FTP); en flujo una disminución del 11.76% al 15% de incorporación de (FTP); en estabilidad 12.02% al 15% de

incorporación de (FTP) y en estabilidad y flujo 21.27% al 15% de incorporación de (FTP). Con estos valores se considera que una propuesta de diseño al 15% de incorporación de (FTP) no es aceptable, ya que afecta a las propiedades mecánicas significativamente. En cambio, para la incorporación de (FTP) en rangos del 5% al 10% sus valores no se encontraron afectados tan significativamente, es decir la propuesta de diseño se debe realizar en estos rangos.

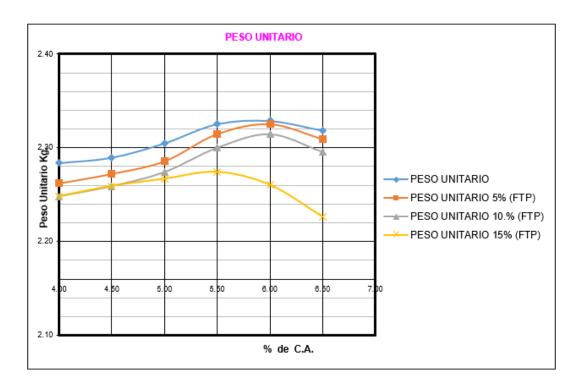
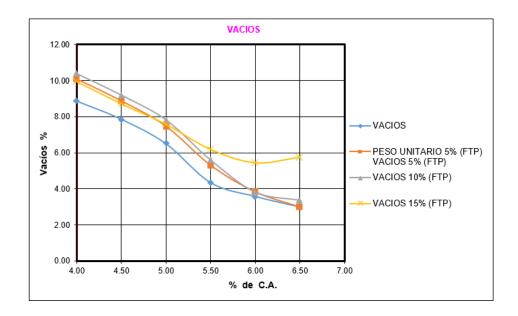



Figura N°01: Comparación del Peso unitario (0%, 5%, 10% y 15%).

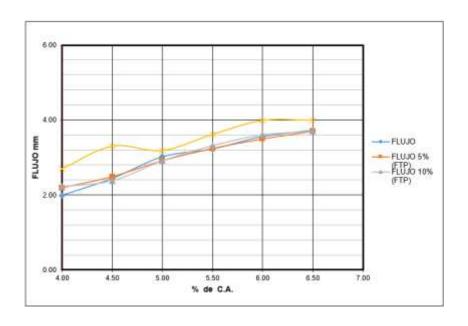

En la figura N°01 se puede apreciar que los pesos unitarios de las propiedades físicas no se afectan significativamente a valores de 5 %y 10%, pero se nota la gran diferencia cuando se trata de la mezcla con 15% de (FTP). Esta comparación se realizó con respecto a la muestra patrón (0% de integración de FTP) y con base a la incorporación de asfalto en porcentajes de 4, 4.5, 5, 5.5, 6 y 6.5.

Figura N°02: Comparación de Vacíos (0%, 5%, 10% y 15%)

En la figura N°02, se puede apreciar que los vacíos de las propiedades mecánicas no se afectaron significativamente a valores de 5 %y 10%, pero se nota la gran diferencia cuando se trata de la mezcla con 15% de (FTP). Esta comparación se realizó con respecto a la muestra patrón (0% de integración de FTP) y con base a la incorporación de asfalto en porcentajes de 4, 4.5, 5, 5.5, 6 y 6.5.

Figura N°03: Comparación de Flujo (0%, 5%, 10% y 15%)

En la figura N°03 se puede apreciar que el flujo de las propiedades mecánicas no fue afectado significativamente a valores de 5 %y 10%, pero se nota la gran diferencia cuando se trata de la mezcla con 15% de (FTP). Esta comparación se realizó con respecto a la muestra patrón (0% de integración de FTP) y con base a la incorporación de asfalto en porcentajes de 4, 4.5, 5, 5.5, 6 y 6.5.

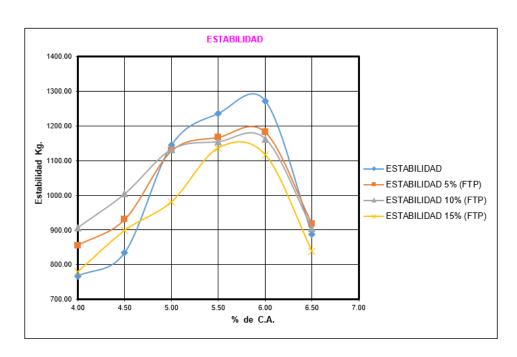


Figura N°04: Comparación de estabilidad (0%, 5%, 10% y 15%)

En la figura N°04 se puede apreciar que la estabilidad de las propiedades mecánicas, no se afecta significativamente a valores de 5 %y 10%, pero se nota la gran diferencia cuando se trata de la mezcla con 15% de (FTP). Esta comparación se realizó con respecto a la muestra patrón (0% de integración de FTP) y con base a la incorporación de asfalto en porcentajes de 4, 4.5, 5, 5.5, 6 y 6.5.

IV. DISCUSIÓN

Para realizar la propuesta de un diseño de mezcla asfáltica con fibra de tallo de plátano donde se determine la influencia en las propiedades físicas – mecánicas del asfalto en la avenida Los Algarrobos, Piura-2023 se encuentran valores aceptables en este estudio entre el 5% y 10% de incorporación de (FTP). De esta manera, se concuerda con lo afirmado en su estudio por Mohammed et al. (2023), siendo real el interés presente en incorporar materiales a la mezcla asfáltica.

Las fibras de tallo de plátano quienes son fibras naturales son incorporadas a la propuesta de diseño de mezcla asfáltica, estas son fibras compuestas de celulosa la cuales se utilizan generalmente como estabilizadores. Es por esto que, entre las muchas fibras naturales como el kenaf, el yute, la palma aceitera, el algodón, el lino y el cáñamo; el plátano es barato, ecológico y posee propiedades mecánicas notables y satisfactorias (Senthilkumar et al. 2018)

Las variaciones presentes en las propiedades físicas y mecánicas no son elevadas y se encuentran en rangos aceptables; concordando así con lo afirmado por Sharma et al. (2023) quien consideró que las fibras sintéticas y orgánicas se utilizan generalmente como aditivos estabilizadores en las mezcla. Asimismo, se concuerda con Mohammed et al. (2023), ya que el uso de fibras sintéticas, naturales y de desecho aumenta constantemente debido a la capacidad de las fibras para mejorar el rendimiento mecánico de las mezclas asfálticas; siendo así necesario mayores estudios que investiguen el rendimiento en términos de resistencia al envejecimiento y al agrietamiento a baja temperatura y que, además, se debería investigar el período de biodegradabilidad de las fibras naturales en las mezclas asfálticas.

En el proceso de determinar la propuesta de diseño de mezcla asfáltica fue necesario realizar una evaluación de la mezcla asfáltica al 0% de integración de FTP, en sus propiedades físicas – mecánicas del asfalto, en la avenida Los Algarrobos, Piura-2023, esto se realizó con la finalidad de tener una muestra patrón en las mismas condiciones de los materiales utilizados para la evaluación

de mezclas alteradas intencionalmente con porcentajes de incorporación de FTP, teniendo en cuenta lo afirmado por (Pirmohammad, Majd Shokorlou, Amani 2020), quien considera a las mezclas asfálticas como uno de los materiales más utilizados en la construcción de carreteras.

El asfalto como matriz pétrea es una mezcla de granulometría variable que consta de dos partes: un esqueleto de árido grueso de alta concentración y un mortero de alto contenido en ligante (Kumar, Shankar, Teja 2019); esta mezcla se conforma mayormente de agregado grueso y fino, cuenta con un 5% de polvo mineral y necesariamente de un 5% de material ligante asfaltico. De igual modo, la mezcla se considera como un material visco elástico, con recuperaciones instantáneas debido a que se encuentra con deformaciones permanentes, permitiendo reducir gastos y mantener un equilibrio con el medio ambiente. Es por esto que se tiene relación con la siguiente teoría: la combinación de fibras en las mezclas asfálticas contribuye a la sostenibilidad ecológica y a la reducción de costos, recientemente ha aumentado el interés por el uso de fibras naturales en las mezclas asfálticas (Mohammed, Sawaran, Mohsen 2023);

Como resultados de la mezcla asfáltica al 0% de integración de FTP muestra en sus propiedades físicas: golpes por lado 75, cemento asfaltico 5.85 y peso unitario 2.33. De igual forma, en sus propiedades mecánicas presenta: para vacíos 4.1, vacíos llenos con C.A. 74, flujo 3.4, estabilidad 1290 y estabilidad y flujo 3794. Siendo estos valores aceptables para un diseño con mezcla asfáltica según metodología Marshall ASTM D-1559.

Además, para determinar la propuesta de diseño de mezcla asfáltico se requiere una evaluación de integración de FTP al 5%, 10% y 15 en sus propiedades físicas y mecánicas en la avenida los Algarrobos, Piura-2023. Cuyos resultados se evaluaron con los obtenidos en la mezcla asfáltica al 0% de integración (muestra patrón), la cual cumple con la metodología Marshall ASTM D-1559.

En relación a los resultados obtenidos en las propiedades físicas, presenta una disminución del 2.58% cuando esta se encuentra con valores de

15% de incorporación de (FTP), para el caso de cemento asfaltico no presenta alteración al 15% de incorporación de (FTP). Por otro lado, en sus propiedades mecánicas presenta una disminución significativa del 41.46% con la incorporación de (FTP) al 15% de incorporación, esta variación se considera de importancia para la determinación de la propuesta de diseño por ser elevado. Asimismo, en vacíos llenos con C.A. presenta una disminución de 6.67% al 15% de incorporación de (FTP), en flujo una disminución del 11.76% al 15% de incorporación de (FTP), estabilidad 12.02% al 15% de incorporación de (FTP) y en estabilidad y flujo 21.27% al 15% de incorporación de (FTP). Con estos valores se considera que una propuesta de diseño al 15% de incorporación de (FTP) no es aceptable, ya que afecta a las propiedades mecánicas significativamente

Con los estos resultados mostrados con anterioridad, se concuerda con lo afirmado por Carrasco, Medina (2021), a consecuencia de que a valores mayores del 10% de incorporación no presenta buenos resultados. Además, esta afirmación se respalda por López, Pinilla (2020), quien considera que las fibras naturales son de fácil extracción, permitiendo así, disminuir los costos de producción y también el repercutir favorablemente en la mitigación de impacto ambiental, presentando así mejoras en su uso. Pero en este estudio no se pudo definir el impacto en las propiedades de flexión y comprensión, ya que no se contó con estos ensayos, siendo así que no se puede corroborar lo afirmado por Yadav et al. (2023) y Choudhary et al. (2022) quien investigo la tracción, flexión e impacto de la mezcla asfáltica con fibras de bambú.

Siendo así que, se requiere de mayores estudios lo que permitan determinar el porcentaje adecuado de incorporación de FTP, con el presente estudio se determina que estos valores deben encontrarse en rangos presentes del 0.1% al 10% de incorporación de FTP.

Finalmente, para realizar la comparación de los resultados de la mezcla asfáltica al 0% en relación de los resultados presentes en las mezclas del 5%, 10% y 15%. de incorporación de FTP, se realizó bajo las comparaciones en tablas y cuadros estadísticos, los que demuestran variaciones. Para ello se consideró

una mezcla de asfáltica de incorporación presentes en porcentajes del 4%, 4.5%, 5%, 5.5%, 6% y 6.5%, estos resultados están comprendidos en las tablas desde la N°01 a la N°04 y las figuras desde la N°01 a la N°04.

Bajo la evaluación de estas tablas se puede llegar a los resultados donde los valores aceptables para una propuesta de diseño de mezcla asfáltica se encuentran presentes en rangos desde el 5% al 10% ya que a valores del 15% de incorporación son valores no aceptables, por la afectación significativa a las propiedades mecánicas.

Sin embargo, esta investigación no concuerda con Contrera, Zuñiga (2020), ya que en su investigación evalúa la incorporación de fibras de plástico, las que son sintéticas, y este estudio evaluó fibras naturales. Pero se concuerda con su afirmación respecto a los porcentajes de inclusión ya que el encuentra mejoras en porcentajes de inclusión bajo el 10%, lo mismo que se presenta en los resultados de esta investigación mejoras aceptables hasta un 10% de incorporación de FTP.

V. CONCLUSIONES

La propuesta de diseño de mezcla asfáltica con fibra de tallo de plátano, que permita determinar su influencia en las propiedades físicas - mecánicas del asfalto, para la avenida Los Algarrobos Piura-2023 presentó valores aceptables entre valores del 5% al 10% de incorporación de (FTP), donde las variaciones en sus propiedades físicas y mecánicas no fueron elevadas y se encontraron en rangos aceptables.

El diseño de mezcla asfáltica con 0% de integración de fibra de tallo de plátano, se evaluó para determinar la muestra patrón con la que se comparó las muestras de incorporación de (FTP) en porcentajes del 5%, 10% y 15%. De este modo, se tuvo como resultados: en sus propiedades físicas; golpes por lado 75, cemento asfaltico 5.85% y peso unitario 2.33 Kg. Por el contrario, en sus propiedades mecánicas se evidenció valores como: vacíos 4.1%, vacíos llenos con C.A. 74%, flujo 3.4 mm, estabilidad 1290 Kg y estabilidad y flujo 3794 Kg/mm. Y se concluye que estos valores son aceptables para un diseño con mezcla asfáltica según metodología Marshall ASTM D-1559

El diseño de mezcla asfáltica con 5% de integración de fibra de tallo de plátano, mostró como resultados: para sus propiedades físicas; golpes por lado 75, cemento asfaltico 5.9% y peso unitario 2.323 Kg. En cambio, en sus propiedades mecánicas tuvo: vacíos de 4.2%, vacíos llenos con C.A. de 74%, flujo de 3.4 mm, estabilidad de 1200 Kg y estabilidad y flujo de 3529 Kg/mm. Asimismo, con 10% de integración de fibra de tallo de plátano dio como resultados: para sus propiedades físicas; golpes por lado 75, cemento asfaltico 5.9% y peso unitario 2.31 Kg. Por otro lado, en sus propiedades mecánicas evidenció: vacíos de 4.4%, vacíos llenos con C.A. de 73, flujo de 3.46 mm, estabilidad de 1180 Kg y estabilidad y flujo de 3410 Kg/mm. Finalmente, con 15% de integración de fibra de tallo de plátano dio como resultados: para sus propiedades físicas; golpes por lado 75, cemento asfaltico 5.85% y peso unitario 2.27 Kg. Por el contrario, en sus propiedades mecánicas mostró: para vacíos 5.8%, vacíos llenos con C.A. 69%, flujo 3.8 mm, estabilidad 1135 Kg y estabilidad

y flujo 2987 Kg/mm. Estos resultados permitieron determinar que los rangos aceptables para una propuesta de diseño de mezcla asfáltica deben estar entre el intervalo de 5%-10%.

El diseño de mezcla asfáltica con fibra de tallo de plátano, con respecto a la muestra patrón y la incorporación de fibras de tallo de plátano en sus propiedades físicas en la muestra de incorporación del 5% de (FTP); presentó un incremento de 0.85% en cemento asfaltico y una reducción del 0.30% en peso unitario. Por otra parte, en sus propiedades mecánicas: para los vacíos mostró un incremento de 2.44%, en vacíos llenos con C.A y flujo se mantuvo; estabilidad disminuye 6.98%, y finalmente en estabilidad y flujo decrece 6.98%. Con respecto a la incorporación del 10% de (FTP), presentó un incremento de 0.85% en cemento asfaltico y una reducción del 0.86% en peso unitario. En cambio, en sus propiedades mecánicas presentó: para los vacíos un incremento de 7.32%, en vacíos llenos con C.A, disminuyó 1.35%; en flujo incrementó 1.76%, estabilidad disminuyó 8.53%, y finalmente en estabilidad y flujo decreció 10.12%. Finalmente, respecto a la incorporación del 15% de (FTP), se mantuvo en cemento asfaltico, tuvo una reducción del 2.58% en peso unitario y en sus propiedades mecánicas; para los vacíos incrementó de 41.46%, en vacíos llenos con C.A, disminuyó 6.76%, en flujo creció 11.76%, estabilidad decreció 12.02%, y finalmente en estabilidad y flujo disminuyó 21.27%.

VI. RECOMENDACIONES

Se recomienda la inclusión de (FTP) en mezcla asfáltica hasta un 10%, ya que no presenta variaciones significativas en sus propiedades físicas y mecánicas.

Se recomienda tener en cuenta las temperaturas de la mezcla asfáltica para su estudio, y posterior puesto a prueba con diferentes métodos establecidos en base a las normativas vigentes.

Se recomienda realizar futuras investigaciones, que consideren diferentes propiedades que se omitieron, permitiendo así definir adecuadamente que proporción de incorporación es la adecuada, con lo que se permita reducir costos de producción de mezcla asfáltica y una mitigación ambiental.

REFERENCIAS

ADRIANZEN FLORES, Orlando Jefferson, AZULA VÁSQUEZ, Jhon Jeiner, PACHERRES SÁNCHEZ, Cristian Fabian, RODRIGUEZ LAFITTE, Ernesto Dante and MUÑOZ PEREZ, Socrates Pedro, 2022. Uso de distintos tipos de fibras para mejorar las propiedades mecánicas de la mezcla asfáltica: Una revisión literaria. *Infraestructura Vial.* 2022. Vol. 24, no. 43, pp. 1–16. DOI 10.15517/iv.v24i43.47931.

AL-BDAIRI, Ahmed, AL-TAWEEL, Hayder Mohammed and NOOR, Hussein Mohammed, 2020. Improving the properties of asphalt mixture using fiber materials. *IOP Publishing*. 2020. DOI 10.1088/1757-899X/870/1/012092.

ALSAADI, Israa, TAYH, Sady A, JASIM, Abbas F and YOUSIF, Rana, 2023. The use of natural fibers in stone mastic asphalt mixtures: a review of the literature. *Archives of Civil Engineering*. 2023. pp. 0–3. DOI 10.24425/ace.2023.146085.

ALVAREZ RISCO, Aldo, 2020. Clasificación de las Investigaciones. *Univesidad de Lima*. 2020. pp. 1–5.

ARIAS GONZALES, José and COVINOS GALLARDO, Mitsuo, 2021. *Diseño y metodología de la investigación*. ISBN 9786124844423.

CARRASCO REATEGUI, Kimi Vanessa and MEDINA JULCA, Asunción, 2021. Facultad De Ingeniería Y Arquitectura. Online. Universidad Cesar Vallejo. Retrieved from:

https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/50737/Cusma_GM-SD.pdf?sequence=1&isAllowed=y

CHOUDHARY, Rajan, KUMAR, Vishal, KUMAR, Ankush, PATHAK, Santanu and KUMAR, Abhinay, 2022. Use of Banana Natural Fiber as a Stabilizing Additive in Open Graded Friction Course. *Lecture Notes in Civil Engineering*. Online. 2022. Vol. 207, pp. 371–382. [Accessed 30 September 2023]. DOI 10.1007/978-981-16-7509-6_30/COVER.

CONDORI OJEDA, Porfirio, 2020. Universo, población y muestra. *Curso Taller*. 2020.

CONTRERAS VIZCARRA, Diego Fernando and ZUÑIGA PINILLOS, Javier Mauricio, 2020. *Influencia De Los Desperdicios Plásticos En Las Propiedades Mecánicas De Las Mezclas Asfálticas Modificadas*. Online. Universidad Ricardo Palma. Retrieved from: https://www.sbs.gob.pe/Portals/0/jer/opinion_proy_leg/Informe-N-053-2020-SAAJ.pdf

CORONEL CARVAJAL, Carlos, 2022. Las variables y su operacionalización. *Archivo Médico Camagüey*. Online. 23 December 2022. Vol. 27, no. 0, pp. e8775. [Accessed 27 October 2023]. Retrieved from: https://revistaamc.sld.cu/index.php/amc/article/view/8775

DÍAZ, Miguel, 2023. Fichas de observación de clase 2.0. *Codimg*. Online. 2023. [Accessed 27 October 2023]. Retrieved from: https://www.codimg.com/education/blog/es/fichas-observacion-clase

FERNÁNDEZ GARCÍA, Paula, VALLEJO SECO, Guillermo, LIVACIC ROJAS, Pablo E. and TUERO HERRERO, Ellián, 2014. Validez Estructurada para una investigación cuasi-experimental de calidad. *Anales de Psicologia*. Online. 2014. Vol. 30, no. 2, pp. 756–771. Retrieved from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-97282014000200039

KUMAR, G. Shiva, SHANKAR, A. U. Ravi and TEJA, B. V. S. Ravi, 2019. Laboratory Evaluation of SMA Mixtures Made with Polymer-Modified Bitumen and Stabilizing Additives. *Journal of Materials in Civil Engineering*. Online. 8 February 2019. Vol. 31, no. 4, pp. 04019026. [Accessed 27 October 2023]. DOI 10.1061/(ASCE)MT.1943-5533.0002652.

LÓPEZ, Pedro Luis, 2004. POBLACIÓN MUESTRA Y MUESTREO. *Punto Cero*. Online. 2004. Vol. 9, no. 8. [Accessed 20 October 2023]. Retrieved from: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1815-02762004000100012

LOPEZ RICARDO, Alejandra and MARIN PINILLA, Dayana Paola, 2020. Uso de fibras naturales en materiales compuestos: Implementación de un plan de vigilancia tecnológica. Universidad Catolica de Colombia.

MARROQUIN PEÑA, Roberto, 2013. Confiabilidad y Validez de Instrumentos de investigación. *Universidad Nacional de Educación Enrique Guzmán y Valle*. Online. 2013. pp. 39. Retrieved from: http://www.une.edu.pe/Titulacion/2013/exposicion/SESION-4-Confiabilidad y Validez de Instrumentos de investigacion.pdf

MASRI, Khairil Azman, KATINI, Nur Hamizah, ARSHAD, Ahmad Kamil, SHAHNEWAZ, Shoaib and FERDAUS, Rashida, 2022. Microstructure analysis of porous asphalt incorporating kenaf fiber in the pavement. *Materials Today: Proceedings.* 1 January 2022. Vol. 57, pp. 1191–1195. DOI 10.1016/J.MATPR.2021.10.194.

MOHAMMED ALNADISH, Adham, SAWARAN SINGH, Narinderjit Singh and MOHSEN ALAWAG, Aawag, 2023. Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review. *Polymers 2023, Vol. 15, Page 1004*. Online. 17 February 2023. Vol. 15, no. 4, pp. 1004. [Accessed 1 October 2023]. DOI 10.3390/POLYM15041004.

MONTES, Daniel, 2023. Métodos de Análisis Estadístico - Proyectos Gestión Conocimiento. *Proyectos Gestion Conocimiento*. Online. 2023. [Accessed 27 October 2023]. Retrieved from: https://www.pgconocimiento.com/metodos-de-analisis-estadistico/

MVCS, 2010. NORMA TECNICA DE EDIFICACION CE.010 PAVIMENTOS URBANOS HABILITACIONES URBANAS. *MINISTERIO DE VIVIENDA, CONSTRUCCION Y SANEAMIENTO*. Online. 2010. pp. 68. Retrieved from: http://www.vivienda.gob.pe/%5Cnhttp://app.knovel.com/

ORTEGA, Cristina, 2023a. Unidad de análisis: Definición, tipos y ejemplos. QuestionPro. Online. 2023. [Accessed 26 October 2023]. Retrieved from: https://www.questionpro.com/blog/es/unidad-de-analisis/

ORTEGA, Cristina, 2023b. Investigación científica. Qué es y pasos para realizarla. *QuestionPro*. Online. 2023. [Accessed 27 October 2023]. Retrieved from: https://www.questionpro.com/blog/es/investigacion-cientifica/

PEDRAZA ABRIL, Cristy Giselle, 2019. Caracterización de la fibra del pseudo tallo de plátano como refuerzo y desarrollo de un material compuesto para fabricación de tejas. Universidad Pedagogica y Tecnologica de Colombia.

PIRMOHAMMAD, S., MAJD SHOKORLOU, Y. and AMANI, B., 2020. Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. *Construction and Building Materials*. 10 April 2020. Vol. 239, pp. 117850. DOI 10.1016/J.CONBUILDMAT.2019.117850.

SALMAN, Khan, 2006. Repaso de variables independientes y dependientes (artículo) | Khan Academy. Khan Academy. Online. 2006. [Accessed 27 October 2023]. Retrieved from: https://es.khanacademy.org/math/cc-sixth-grade-math/cc-6th-equations-and-inequalities/cc-6th-dependent-independent/a/dependent-and-independent-variables-review

SCHWARZ, Max, 2017. Guía de referencia para la elaboración de una investigación aplicada. *Universidad de Lima*. 2017. pp. 30.

SENTHILKUMAR, K., SABA, N., RAJINI, N., CHANDRASEKAR, M., JAWAID, M., SIENGCHIN, Suchart and ALOTMAN, Othman Y., 2018. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. *Construction and Building Materials*. 20 June 2018. Vol. 174, pp. 713–729. DOI 10.1016/J.CONBUILDMAT.2018.04.143.

SHARMA, Ashish, CHOUDHARY, Rajan and KUMAR, Ankush, 2023. Laboratory Investigation of Draindown Behavior of Open-Graded Friction-Course Mixtures Containing Banana and Sugarcane Bagasse Natural Fibers. 17 https://doi.org/10.1177/03611981231170875. Online. May 2023. pp. 036119812311708. [Accessed 30 September 2023]. DOI 10.1177/03611981231170875.

TAMARA, Otzen and MANTEROLA, Carlos, 2017. Técnicas de Muestreo sobre una Población a Estudio. *International Journal of Morphology*. 2017. Vol. 35, no. 1, pp. 227–232. DOI 10.4067/S0717-95022017000100037.

TAMAYO, Carla and SIESQUEN, Irene Silva, 2018. Técnicas E InstrumentosDe RECOLECCION DE Datos. *Metodologia de la investigacion*. Online. 2018. No. 2, pp. 201–247. Retrieved from: http://iyanu.blogspot.es/i2008-07/

UNIR, 2023. Principales tipos de muestreo y sus características | UNIR. *UNIR Universidad en internet*. Online. 2023. [Accessed 26 October 2023]. Retrieved from: https://www.unir.net/ingenieria/revista/tipos-de-muestreo/

YADAV, Onkar, KUMAR, Pappu, KUMAR, Ajay and MISHRA, Ved Prakash, 2023. A Study on Impact of Bamboo Fiber on the Performance of Stone Matrix Asphalt with Slag as Aggregate Replacement. *American Journal of Engineering , Mechanics and Architecture (2993-2637).* Online. 18 September 2023. Vol. 1, no. 7, pp. 34–42. [Accessed 1 October 2023]. Retrieved from: http://grnjournal.us/index.php/AJEMA/article/view/745

YARO, Nura Shehu Aliyu, BIN NAPIAH, Madzlan, SUTANTO, Muslich Hartadi, USMAN, Aliyu and SAEED, Saeed Modibbo, 2021. Performance evaluation of waste palm oil fiber reinforced stone matrix asphalt mixtures using traditional and sequential mixing processes. *Case Studies in Construction Materials*. 1 December 2021. Vol. 15, pp. e00783. DOI 10.1016/J.CSCM.2021.E00783.

ANEXOS

Anexo 01. Tabla de operacionalización de variables

Variables	Def. Conceptual	Def. Operacional	Dimensiones	Indicadores	Escala
V 1 Independiente: Fibras de tallo de plátano	La definición de la (FTP), según (Pedraza Abril 2019) la planta del banano es una hierba perenne de gran tamaño, se le considera así porque la planta muere una vez que termina su estación de cultivo. De la misma manera manifiesta que, el tallo puede llegar a medir de 2 a 5 m, pero que en ciertos casos puede alcanzar 8 m con las hojas, con frutos de bayas de forma cilíndrica sin semillas; las (FTP).	variable incorporación de (FTP), se enfocará en la cantidad del material incluido en	Integración de (FTP)	0% 5% 10% 15%	Razón
V 2 Dependiente: mezcla asfáltica	Las mezclas asfálticas son la unión de agregados pétreos con un ligante hidrocarbonado, quedando estos en cubiertos en su totalidad por una capa uniforme. Igualmente indica que, esta mezcla se conforma mayormente de agregado grueso y fino, contando con un 5% de polvo mineral y necesariamente de un 5% de material ligante asfáltico (Rivera, Tocto 2021).	asfáltica se operacionaliza mediante las dimensiones de propiedades físicas y propiedades	 Propiedades físicas al integrar (FTP) Propiedades mecánicas al integrar (FTP) 	0% 5% 10% 15%	Razón

Anexo 02. Instrumento de recolección de datos

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

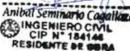
Ficha de observación

Objetivo: Proponer un diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades mecánicas – físicas del asfalto, en la avenida los Algarrobos Piura -2023

N° de muestra:	Incorporación de fibra de tallo o plátano		allo de	
		piat	ano	
Diseño de mezcla asfáltica con fibra de tallo de	0%	5%	10%	15%
plátano, para determinar su influencia en las				
propiedades mecánicas – físicas del asfalto, en la				
avenida los Algarrobos Piura -2023				
PROPIEDADES FÍSICAS				
Golpes por lado				
Cemento asfaltico				
Peso unitario				
PROPIEDADES MECÂNICAS				
Estabilidad				
Flujo				
Estabilidad/Flujo				
Vacios				
Vacíos llenos con C.A.				

Observaciones:			
	-		

Anexo 03. Evaluación por juicio de expertos


FICHA DE VALIDACIÓN

1. INFORMACIÓN GENERAL

- 1.1. Nombres y apellidos del evaluador: Anibal Seminario Cagallaza
- 1.2. Profesión: Ingeniero Civil
- 1.3. Título de la investigación: Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura-2023
- 1.4. Objetivo de la investigación: Proponer un diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades físicas mecánicas del asfalto, en la avenida los Diamantes, Piura -2023
- 1.5. Autor (es) del instrumento: Ronaldo Rivera Cunya y Johan Alexis Espinoza Correa

2. ASPECTOS DE VALIDACIÓN

CRITERIOS	CRITERIOS INDICADORES		A	ACEF	TAB	LE			IMAMI EPTA		,	ACEP	TABL	Е
	THE SECOND PROPERTY OF THE PRO	40	45	50	55	60	65	70	75	80	85	90	95	100
Claridad	Está formulado con lenguaje comprensible	[[-										Х	
Objetividad	Está adecuado a las leyes y principios científicos												Х	
Actualidad	Está adecuado a los objetivos y necesidades reales de la investigación												х	
Organización	Existe una organización lógica													X
Suficiencia	Toma en cuenta los aspectos metodológicos												X	0.30
Intencionalidad	Esta adecuado para valorar las variables												X	
Consistencia	Se respalda en fundamentos técnico y/o científicos													X
Coherencia	Existe coherencia entre los problemas, objetivos e hipótesis												х	
Metodología	La estrategia responde una metodología y diseño aplicados para lograr supuestos							1	1-				х	
Pertinencia	Muestra relación entre los componentes de la investigación y su adecuación al método científico						4	178	5/100	IL.			х	

3. OPINIÓN DE APLICABILIDAD

El instrumento cumple con los requisitos para la aplicación	X
El instrumento no cumple con los requisitos para la aplicación	

FIRMA Y SELLO DEL VALIDADOR

4. PROMEDIO DE VALORACIÓN

Formula=Suma total/10

Promedio de valoración	96.00	

Piura, 26 de octubre del 2023

FICHA DE VALIDACIÓN

1. INFORMACIÓN GENERAL

- 1.1. Nombres y apellidos del evaluador: Jhon Brayan Jaramillo Jiménez
- 1.2. Profesión: Ingeniero Civil
- 1.3. Título de la investigación: Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura-2023
- 1.4. Objetivo de la investigación: Proponer un diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades físicas mecánicas del asfalto, en la avenida los Diamantes, Piura -2023
- 1.5. Autor (es) del instrumento: Ronaldo Rivera Cunya y Johan Alexis Espinoza Correa

2. ASPECTOS DE VALIDACIÓN

CRITERIOS	RITERIOS INDICADORES		A	ACEF	TAB	LE			IMAMI EPTA			ACEP	TABL	E
		40	45	50	55	60	65	70	75	80	85	90	95	100
Claridad	Está formulado con lenguaje comprensible													X
Objetividad	Está adecuado a las leyes y principios científicos												х	
Actualidad	Está adecuado a los objetivos y necesidades reales de la investigación													х
Organización	Existe una organización lógica												х	
Suficiencia	Toma en cuenta los aspectos metodológicos												X	
Intencionalidad	Esta adecuado para valorar las variables													X
Consistencia	Se respalda en fundamentos técnico y/o científicos												х	
Coherencia	Existe coherencia entre los problemas, objetivos e hipótesis												x	
Metodología	La estrategia responde una metodología y diseño aplicados para lograr supuestos													x
Pertinencia	Muestra relación entre los componentes de la investigación y su adecuación al método científico						Y	1					x	

3. OPINIÓN DE APLICABILIDAD

El instrumento cumple con los requisitos para la aplicación	х
El instrumento no cumple con los requisitos para la aplicación	

4. PROMEDIO DE VALORACIÓN

Formula=Suma total/10

Ni.		
Promedio de valoración	97.00	

Piura, 26 de octubre del 2023

FIRMA Y SELLO DEL VALIDADOR

Than Brayan Jaramillo Jimenez
INGENERO REVISOR - SGEP MPA
Reg. CIP 192682

FICHA DE VALIDACIÓN

1. INFORMACIÓN GENERAL

- 1.1. Nombres y apellidos del evaluador: Roger Daniel Aldana Chero
- 1.2. Profesión: Ingeniero Civil
- 1.3. Título de la investigación: Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura-2023
- 1.4. Objetivo de la investigación: Proponer un diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades físicas mecánicas del asfalto, en la avenida los Diamantes, Piura -2023
- 1.5. Autor (es) del instrumento: Ronaldo Rivera Cunya y Johan Alexis Espinoza Correa

2. ASPECTOS DE VALIDACIÓN

CRITERIOS	CRITERIOS INDICADORES		A	CEP	TAB	LE		19500000000	MAME EPTA		,	ACEP	TABL	E
		40	45	50	55	60	65	70	75	80	85	90	95	100
Claridad	Está formulado con lenguaje comprensible			V 1		1			P 1			ê 1	Х	
Objetividad	Está adecuado a las leyes y principios científicos													Х
Actualidad	Está adecuado a los objetivos y necesidades reales de la investigación													х
Organización	Existe una organización lógica											8 1	Х	
Suficiencia	Toma en cuenta los aspectos metodológicos												Х	
Intencionalidad	Esta adecuado para valorar las variables												Х	
Consistencia	Se respalda en fundamentos técnico y/o científicos												Х	
Coherencia	Existe coherencia entre los problemas, objetivos e hipótesis													х
Metodología	La estrategia responde una metodología y diseño aplicados para lograr supuestos				1)						х	
Pertinencia	Muestra relación entre los componentes de la investigación y su adecuación al método científico					V	3						х	

ROGER DANIE CDANA CHERO

3. OPINIÓN DE APLICABILIDAD

El instrumento cumple con los requisitos para la aplicación	X
El instrumento no cumple con los requisitos para la aplicación	

4. PROMEDIO DE VALORACIÓN

Formula=Suma total/10

Promedio de valoración	96.50	
------------------------	-------	--

Piura, 26 de octubre del 2023

FIRMAY SELLO DEL VALIDADOR

ROGER DANI LDANA CHERO
LINGENIL RO CIVIL
Reg. CIP: 111539

Anexo 04. Confiabilidad del instrumento

Coeficiente de validez V de Aiken

Ν°	ITEMS	MS VALIDACI		OBSERVACIONES
		SI	NO	
	Variable: Fibra de tallo de plátano			
	Dimensión 1: Integración de (FTP)			
	Indicadores: 0%, 5%, 10% y 15%			
1	Integración de (FTP) al 0%	X		
2	Integración de (FTP) al 5%	X		
3	Integración de (FTP) al 10%	X		
4	Integración de (FTP) al 15%	X		
	Variable: Mezcla asfáltica			
	Dimensión 1: Propiedades físicas al			
	integrar (FTP)			
	Indicadores: 0%, 5%, 10% y 15%			
5	Graduación de agregados		X	Mencionar los agregados
6	Contenido de asfalto	X		
7	Contenido de agua	X		
8	Densidad de la mezcla	X		
9	Dosificación de emulsión-agregado		X	Mencionar los agregados
10	Relación polvo-asfalto	X		
	Dimensión 2: Propiedades mecánicas			
	al integrar (FTP)			
	Indicadores: 0%, 5%, 10% y 15%			
12	Resistencia retenida a la tensión	X		
	diametral			
13	Estabilidad y flujo	X		
14	Resistencia a la flexión	X		
15	Resistencia a la comprensión	X		

$$SI = 1$$
 $NO = 0$

$$V = \frac{S}{(n(c-1))}$$

V = Coeficiente V Aiken

S = Sumatoria de si

n = Número de expertos

 $oldsymbol{c} = ext{N\'umero}$ de valores de la escala de valoración

V = 0.8 - 1 Posee una adecuada confiabilidad

s	n	С	İtems	Exp 1	Exp 2	Exp 3
3	3	2	1	1	1	1
3	3	2	2	1	1	1
3	3	2	3	1	1	1
3	3	2	4	1	1	1
0	3	2	5	0	0	0
3	3	2	6	1	1	1
3	3	2	7	1	1	1
3	3	2	8	1	1	1
0	3	2	9	0	0	0
3	3	2	10	1	1	1
3	3	2	11	1	1	1
3	3	2	12	1	1	1
3	3	2	13	1	1	1
3	3	2	14	1	1	1
3	3	2	15	1	1	1
2.6						

$$v = \frac{2.6}{(3(2-1))}$$
 $v = 0.87$ OK

Anexo 05. Modelo de consentimiento o asentimiento informado UCV

CONSENTIMIENTO INFORMADO

Título de la investigación: Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura-2023

Investigador (a) (es): Ronaldo Rivera Cunya y Johan Alexis Espinoza Correa

Propósito del estudio

Le invitamos a participar en la investigación titulada "Propuesta de Diseño de Mezcla Asfáltica con Fibra de Tallo de Plátano en la Avenida los Algarrobos, Piura-2023", cuyo objetivo es: Proponer un diseño de mezcla asfáltica con fibra de tallo de plátano, para determinar su influencia en las propiedades físicas – mecánicas del asfalto, en la avenida Los Algarrobos Piura 2023. Esta investigación es desarrollada por estudiantes (pregrado) de la carrera profesional de Ingeniería Civil de la Universidad César Vallejo del campus Piura, aprobado por la autoridad correspondiente de la Universidad y con el permiso de la institución.

Procedimiento

Participación voluntaria (principio de autonomía):

Puede hacer todas las preguntas para aclarar sus dudas antes de decidir si desea participar o no, y su decisión será respetada. Posterior a la aceptación no desea continuar puede hacerlo sin ningún problema. Riesgo (principio de No maleficencia):

Indicar al participante la existencia que NO existe riesgo o daño al participar en la

investigación. Sin embargo, en el caso que existan preguntas que le puedan generar

incomodidad. Usted tiene la libertad de responderlas o no.

Beneficios (principio de beneficencia):

Se le informará que los resultados de la investigación se le alcanzará a la institución

al término de la investigación. No recibirá ningún beneficio económico ni de ninguna

otra índole. El estudio no va a aportar a la salud individual de la persona, sin embargo,

los resultados del estudio podrán convertirse en beneficio de la salud pública.

Confidencialidad (principio de justicia):

Los datos recolectados deben ser anónimos y no tener ninguna forma de identificar

al participante. Garantizamos que la información que usted nos brinde es totalmente

Confidencial y no será usada para ningún otro propósito fuera de la investigación. Los

datos permanecerán bajo custodia del investigador principal y pasado un tiempo

determinado serán eliminados convenientemente.

Problemas o preguntas:

Si tiene preguntas sobre la investigación puede contactar con el Investigador (a) (es)

Rivera Cunya Ronaldo y Espinoza Correa Johan Alexis y el docente asesor, Prieto

Monzón Pedro Pablo.

Consentimiento

Después de haber leído los propósitos de la investigación autorizo participar en la

investigación antes mencionada.

Nombre y apellidos:

Fecha y hora:

48

Anexo 07. Panel fotográfico

Panel fotográfico de la vía los Algarrobos-Piura

Panel fotográfico de la cantera SOJO (ANCOSA)

• Panel fotográfico en laboratorio-Diseño de mezcla asfáltica

Panel fotográfico - Fibra de Tallo de Plátano (FTP)

• Panel fotográfico -Laboratorio

Anexo 08. Resultados de laboratorio

LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAVIMENTOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88

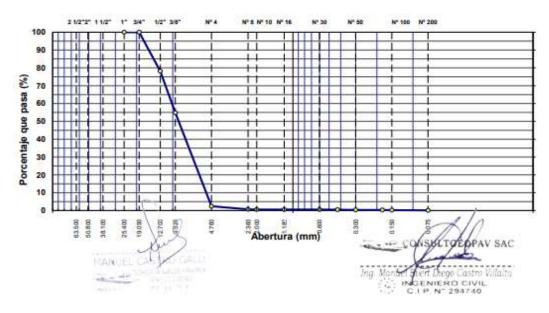
TESIS : PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA VERSIÓN 15-May-24

: AVENIDA LOS ALGARROBOS, PIURA - 2023

UBICACIÓI:

TOTAL

MUESTRA: M-1
MATERIAL: Piedra 1/2" Chancada para Asfalto en Callente
CANTERA: SOJIO (PLANTA INDUSTRIAL ANCOSA)


19,954.0

CANTERA: SOJO (PLANTA INDUSTRIAL ANCOSA) SOLICITAN: TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA REVISIÓN 01 Nº ENSAYO TÉCNICO M.O

TÉCNICO M.C.G ING° RESP. R.R.M FECHA 17/05/2024 CARRIL

TAMIZ	ABER T. mm. 76.200	m. RET.	%RET. PARC.	%RET. AC.	% Q' PASA	DESCRIPCIÓN	DE LA	MUES	TRA	
3"						PESO TOTAL	- 0		19,954.0	gr
2 1/2"	63.500									
2"	50.800				100	MÓDULO DE FINURA		- 10	6.41	%
1 1/2"	38.100		0 0			PESO ESPECÍFICO:			000000	
1"	25.400				100.0	P.E. Bulk (Base Seca)				gr/cm ³
3/4"	19.050		0.0	0.0	100.0	P.E. Bulk (Base Saturada)		- 11		gr/cm ³
1/2"	12.700	4355.0	21.8	21.8	78.2	P.E. Aparente (Base Seca)				gr/cm ³
3/8"	9.525	4,666.0	23.4	45.2	54.8	Absorción				%
#4	4.760	10455.0	52.4	97.6	2.4	CARAS FRACTURADAS:				
#8	2.360	345.0	1.7	99.3	0.7	1 cara o más		-		%
# 10	2.000	24.0	0.1	99.5	0.5	, , , , , , , , , , , , , , , , , , ,				
# 16	1.180	15.0	0.1	99.4	0.6	2 caras o más				56
#30	0.600	11.0	0.1	99.5	0.5	TO STATE TO SERVICE			3 3	20 0
# 40	0.425	8.5	0.0	99.5	0.5	PARTICULAS CHATAS Y ALARGADAS				
# 50	0.300	20.0	0.1	99.6	0.4					%
# 80	0.180	22.0	0.1	99.7	0.3					***
# 100	0.150	15.0	0.1	99.8	0.2	% HUMEDAD		P.S.H.	P.S.S	% Humedad
# 200	0.075	16.0	0.1	99.9	0.1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9 145	S. D. College	
< # 200	FONDO	1.5	0.0	99.9	0.1					
						OBSERVACIONES:				
						11 12				

CURVA GRANULOMÉTRICA

CONSULTGEOPAV SAC

RUC: 20602467021 Sistema Integral

de Geotecnia Suelos y Pavimentos

Telf: 037.501000 Cel. Claro: 986279811 Cel Movister: 979199772
Direction: Catle Arequipo # 308 Bellevista: Sullana: Piura
Email: geopay, meastro@hotmail.com junior castro@hotmail.com
LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAMMENTOS

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88

PROPUESTA DE DISEÑO DE MEZCIA ASFALTICA CON FIBRA DE TALLO DE PLATANO EN LA TESIS AVENIDA LOS ALGARROBOS, PIURA - 2023

UBICACIÓN)

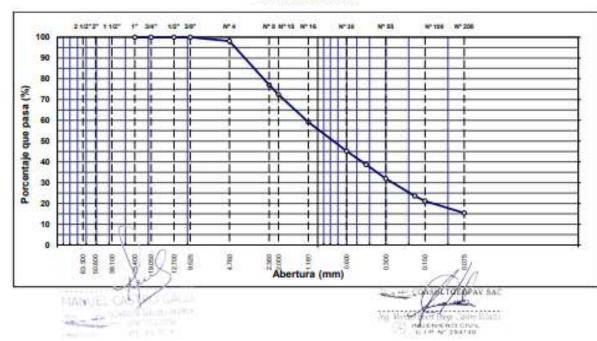
MATERIAL Avera Chancada para Asfalto

MUESTRA M-1

CANTERA SOJO (PLANTA INDUSTRIAL ANCOSA)

SOLICITANTESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

VERSIÓN : 15-May-24


REVISIÓN : 01

Nº ENSAYC CHP-LAS-MAC-01.0

TÉCNICO : MCG ING" RESE: R.R.M. FECHA : 17/25/2024

TAMIZ	ABERT, mm.		WRET.	AC.	% Q' PASA	DESCRIPCIÓN DE LA MUESTRA				
3"	76.200	1				PESO TOTAL	= =	986.6	gr.	
21/2"	63.500									
Z	50.800					MÓDULO DE FINURA		3.27	%	
1.1/2	38.100		0.00			PESO ESPECIFICO:		200	2.00	
1"	25.400		8 9	1 8		P.E. Bulk (Base Seca)	=		gr/cm ³	
34"	19.050					P.E. Bulk (Base Saturada)	=	- 6	gr/cm ³	
1/2"	12,700	- 4			100.0	P.E. Aparente (Base Seca)	=		gr/cm ³	
38*	9.525	10000	0.0	0.0	100.0	Absorción	=		%	
#4	4.760	18.7	1.9	1,9	98.1	CARAS FRACTURADAS:				
#8	2.360	287.7	21.1	23.0	77.1	1 cara o más	=	- 70	%	
#10	2.000	46.6	4.7	27.6	72.4					
#16	1.180	130.6	13.2	40.9	59.2	2 caras o más	=	- 10	%	
#30	0.600	138.0	14.0	54.8	45.2				777	
#40	0.425	63.9	6.5	61.3	38.7	PARTICULAS CHATAS Y ALARGADAS				
#50	0.300	66.1	6.7	68.0	12.0		=		%:	
#80	0.180	83.6	5.4	76.4	23.6					
#100	0.150	23.7	24	788	21.2	N HIMEDAD	P.S.H.	P.S.S	% Humedad	
#200	0.075	57.1	5.8	84.6	15.4			2		
< # 200	FONDO	151.8	15.4	100.0	0.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		21 10		
		1				OBSERVACIONES:				
FNO		986.6								
TOTAL		986.6				and the same and t				

CURVA GRANULOMETRICA

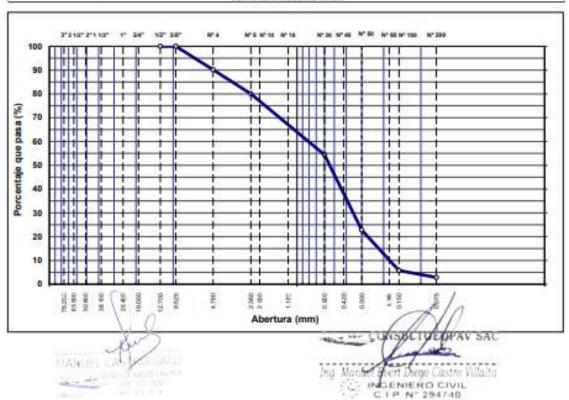
RUC: 20602467021 Sistema Integral

Geotecnia
Suelos y Payimentos
Teli: 037.501000 Cel. Clare: 986279811 Cel Movietar: 979199772
Direccion: Calle Arequipa # 308 Bellavieta Sullana Piura
Email: geopay meastra@belmail.com junior castra@belmail.com

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

MTC E 107, E 204 - ASTM D 422 - AASHTO T-11, T-27 Y T-88

TESIS : PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FBRA DE TALLO DE PLÁTANO EN LA VERSIÓN
AVENIDA LOS ALGARROBOS, PIURA – 2023
UBICACIÓN : 0 TESIS 15-May-24 01


MATERIAL : Arena Zarandeada pera Asfatto MUESTRA :M-1

CANTERA : PUENTE DE LOS SERRANOS
SOLICITANI: TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

REVISIÓN Nº ENSAYO TÉCNICO MCG

NO RESP. RRM FECHA. : 17/25/2024

TAMIZ	ABERT.	PESO RET.	%RET. PARC.	WRET.	% Q' PASA	ECIFICAC	DESCRIPCIÓN	DE LA	MUESTR	A	
5"	127,000				0		PESO TOTAL		F	994.8	ar.
4"	101.600						PESO LAVADO		F	994.8	Of .
3"	76.200						PESO FINO			896.7	-QF
2 1/2"	63.500						Ensayo Malia #200		P.S.Seco.	PSLavado	2009
2"	50.800						12		994.8	994.8	0.00
11/2	38,100						% Grava		9.9	%	_
4*	25,400		1 1				%Arena		87.3	26	
3/4"	19.050						% Fino	- 4	2.9	%	
1/2"	12,700						MODULO DE FINURA		- 4	2.74	5
3/8"	9.525		0.0	0.0	100.0	_	EQUIV. DE ARENA		- 2		-56
#4	4.780	98.1	9.0	9.9	90.1		GRAVEDAD ESPECÍFICA.				
#8	2.380	100.7	10.1	20.0	0.08		P.E. Bulk (Base Seca)		*		gricm
# 10	2,000	17.2	1.7	21.7	78.3		P.E. Bulk (Base Saturada)		2.		quicm
# 16	1,180	56.7	5.7	27.4	72.6		P.E. Aparente (Base Seca)		- 4		gr/cm
#30	0.600	180.4	18.1	45,6	54.5		Absorción		*.		96
# 40	0.420	165.7	16.7	62.2	37.8		SINGSON LIVES				
# 50.	0.300	149.2	15.0	77.2	22.8		OBSERVACIONES:				
# 80	0.180	149.1	15.0	92.2	7.8		Arena sin plasticidad (NP).				
# 100	0.150	20.2	2.0	94.2	5.8						
#200	0.075	28.7	2.9	97.1	2.9		Peso Hum. (g)	Pes	o Seco (g)	%-Humeda	đ
<#200	FONDO	28.8	2.9	100.0	0.0		THE CONTRACTOR OF THE CONTRACT	1		T	Ì
FINO		994.8			3		12			•	_
TOTAL	- 83	994.8					26				

RUC: 20002407021 Simperma Interceal

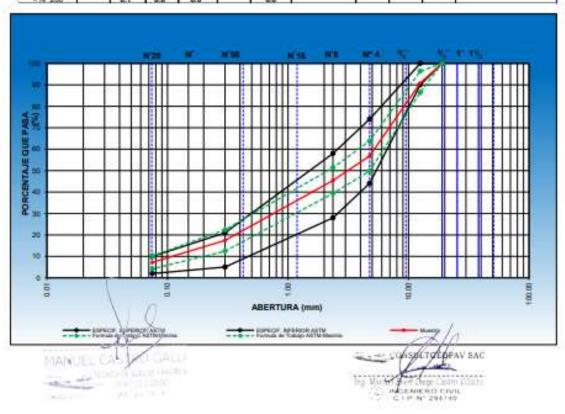
DE Gootecnia
Sticlos y Payimentos
Telf 037 501000 Cel. Claro; 986279811 Cel Movieter 979199772
Direction: Colle Arequipe # 388 Belleviste : Sultana - Phira
Email: geopay meastro@telmail.com - junior castro@telmail.com
LABORATORIO DE MECANICA DE SUELOS, CONCRETO Y PAUMENTOS
COMBINACION TEORICA DOSIFICACION
(ACTMICA 2515)

(ASTM D-3515)

PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA

AVENDA LOS ALGARROBOS, PIURA - 2023.

UBICACIÓN


TESIS

CANTERA SOJO (PLANTA INDUSTRIAL ANCOSA)

SOLICITANTE: TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

4			DATOS DE LA MUESTRA	
MATERIAL	DOSIFICAC	ION		OBSERVACIONES
1. Grava Chancada 3/4" sojo:	42.0	26	Grave triturade Sojo	
2 - Avene Chancada 1/4" Sojo	44.0	76	Arene Tratturada de Sejo	
3. Arena Pte Serrance 1/4"	14.0	76	Arena Zerand Pte Serrange	
4 Caucho reciclado	0.0	26		
Total	100.0	26	21	

	30 0	196	RETENIO	DO PARCU	AL .	Promedio				ULADE	
TAMZ	ABERT.	T. Grava: Charcost a 3/4"	200	3. Arens Zarandea da	Cement g	% Que Passe	ESPECIFIC	CACIÓN	SE	BAJO GÚN PICACIÓ	DESCRIPCION
1.7-	38.100	_					ASTM 351	5 (D-5)	AST	M 3515	Tamaño maximo: 3/4"
1-	25.400		Service Co.	Control of V		harden-	Mrima	Maxima	Molma	Михети	Tamaho Nominal: 1/2"
7.0	19,000	100.0	100,0	100.0		100.0	100	100	100.0	100.0	
16.2	12.500	78.2	100.0	100.0		90.8	90	100	85.4	96.4	Composicion de Agregados
21.0	9.500	54.8	100.0	100.0		81.0	- 20			(- (- D)	Grava: 43.2%
1/4	6.350										Acurus 40.6%
Nº 4	4:750	2.4	98.1	90.1		56.8	44	74	49.2	63.8	Finos 7.2.%
Nº 8	2.360	0.7	77.1	80.0		45.4	26	58	30.4	51.4	
Nº 10	2.000	0.5	72.4	76.3		43.0				7 (2)	
Nº 16	1.190	0.6	59.2	72.6		36.4		-			
Nº 30	0.600	0.5	45.2	54.5		27.7					
N=40	0.425	0.5	38,7	37.8		22.5	264	5	Server 1		
Nº 30	0.300	0.4	32.0	22.8		17.4	5	21	12.4	22.4	
N° 80	0.297	0.3	23.6	7.8		11.6	317	50	J.M.		
NF 100	0.150	0.2	21.2	5.6		10.2		91	1		
Nº 200	0.075	0.1	15.4	2.9		7.2	2	10	4.2	10.2	
< Nº 200	5	0.1	0.0	0.0		0.0					

RUC: 20602407021 Sistema Integral

de Geotecnia

Tell: 037.501000 Cel. Claro: 986279811 Cel Movistat: 979199772
Direction: Calle Arequipa # 308 Bellavista - Sulfana - Phira
Email: geopay - meastro@hotmail.com - panior - sastro@hotmail.com

LABORATORO DE MECANCA DE SULOS - CONCRETO Y PANMENTOS

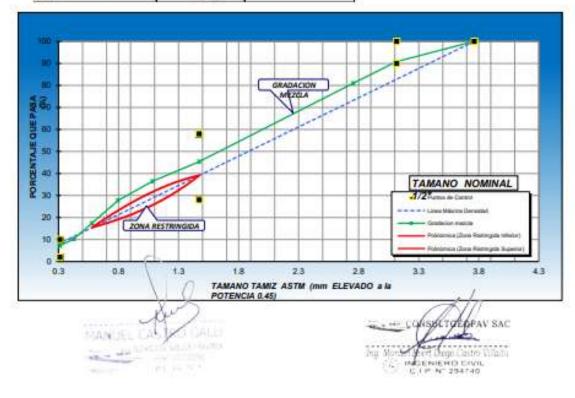
CURVA GRANULOMETRICA DE LA COMBINACIÓN DE AGREGADOS DE RIVASIÓN

ACURDO M. CRITTENO SUPERPARA ACUERDO AL CRITERIO SUPERPAVE (MALLAS EN ESCALA LOGARITMICA - POTENCIA 0.45) Aprobado

(MALLAS EN ESCALA LOGARITMICA - POTENCIA 0.45) Pagris
PROPUESTA DE DISEÑO DE MEZCIA ASPÁLTICA CON PERA DE TALLO DE PLATANO EN LA AVENIDA LOS
ALGARROBOS, PURA - 2023 TESIS:

SOLICITANTE:

TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA


COMPORTAMIENTO DE LA CURVA GRANULOMETRICA SEGÚN SUPERPAVE

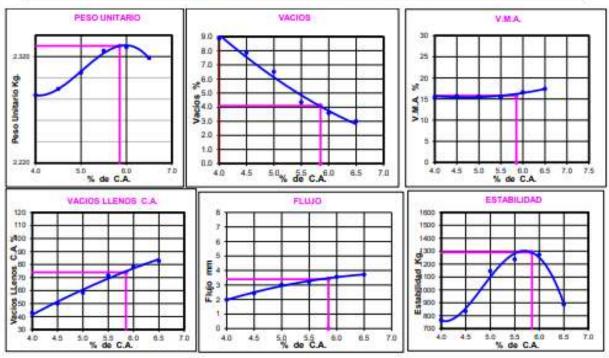
Ing. Responsable : D.C.V. Ing. Control Calidad : 17/05/2024 Jefe Laboratorio : M.C.G MUESTRA: limeno: UBICACIÓN. KM 12+800 Lugar Ensayo: Laboratorio Feche:

	Descripción	SIN E		- 7	Tamaño Nor	renal 1/2"	3.0	Curva	ESPECIFICACIÓN			
TAMIZ	ABERT. mm.	Tantz mm s Potencia 0.45		oz de strol	Zona Ra Minimo	natringida Máximo	Máxima Denaidad	Disoño Mezda % Que	Separate Company	TM D-3515 (D-5)		
15/2"	38.100	5.145					-	% Que	Mrama	Maxima		
1-	25.400	4.287						100000	TOTAL SECTION	PARTICULAR AND ADDRESS OF THE PARTIC		
1000	19.000	3.762	100	100		**	100.0	100.0	100	100		
1/2 *	12.500	3.116	90	100		2.5	82.8	90.8	90	100		
74.5	9.500	2.754		-		-	73.2	81.0		1		
74.	6.350	2.297					61.1	1000	2000	Lieuw.		
Nº 4	4.750	2.016		200	0.000	Same.	53.6	56.8	44	. 74		
Nº 8	2.300	1,472	28	58	39.1	39.1	39.1	45.4	28	58		
Nº 10	2,000	1.366	777		1981	227014	36.3		- 377	1,0214		
Nº 36	1.190	1,081			25.6	37.6	26.7	36.4		11		
N° 20	0.840	0.925		0.00	1000	S1 = 1878 x	24.6	100 No.		25		
N° 30	0.600	0.795			70.1	23.1	21.1	27.7				
N° 40	0.425	0.680		0.0	2002	10000	18.1	P. C. T. D.		Day of		
N° 50	0.297	0,579	-		15.5	15.5	15.4	17.A	- 5	21		
N° 80	0.177	0.459			100000	10,000	12.2	1397.553		100200		
Nº 100	0.150	0.426	14.7	Comin		27	11.3	10.2	2	10		
N° 200	0.075	0.312	2	10		-	8.3	7.2	1117	10.775		
= Nº 200	10000	7 -7 -11		Sen Con-			70000	1,500				

MATERIAL	DOSIFICACION	PROCEDENCIA
1. Grava Chancada 3/4"	4200%	Grava triturada Sojo
5 - Arena Chancada 1/4" Solo	4400%	Arena Traturada de Solo
2. Arens Zarandeada Natural 3/6"	1400%	Arena Zerand Pte Serrance
Total	100.0%	to the contract of the contrac

COMPOSICION	DE AGREGADOS
Grava	43.2%
Anena	49.6 %
Finas	7.2%

RUC: 2060Z407021 Siliterna Integral


Co Geotecnia
Suelos y Pavimentos
Telt 037 501900 Cel. Claro: 986279811 Cel Movistar: 979199772
Direction: Calle Arequipa # 308 Bellavista - Sallana - Piura
Email: geopay meastro@botmail.com - junior castro@botmail.com

CONTROL DE CALIDAD

DETERMINACION DEL OPTIMO CONTENIDO DE ASFALTO

TESIS:	PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENDA L	OS ALGARROBOS, PIURA - 3023	
		Fechu de Essayo:	17165/2834
Material	PATRON DE MEZICIA ASFALTICA EN CALIENTE	Realizado por	ELIAS AGUIRRE
Cantors :	CANTERA SOJO	Ravisado por :	JUNIOR CASTRO AGUIRRE
OLICITA:	TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORRIGA	Responsable :	MANUEL CASTRO GALLO

LABORATORIO DE MECANICA DE SUELOS, ASFALTO Y CONCRETO

	6.30%	CHINKS SEC.A.	6.30%	ESPECIFICACION	
GOLPES FOR LADO		Tit.		78	
CEMENTO ASFALTICO		8.80		CHC 9.2764	
PESO UNITARIO	10.	2,320			
YACIOS		6.1		2 . 5	
V.M.A.		18-8		Min 14	
VACIOS LLENOS CON C.A.	12	74.0			
FLUJO			A.1 3. 66: 74.0 2 - 1280 Min 3784 1756		
ESTABILIDAD	10			Min. 816	
ESTABILIDAD / FLUJO		3794		1700 - 4000	
				1	
	-			1	
	11				
DOBIFICACION					
Grava internale 1/2" Centara "ANCOSA"					
Arena triberada" Carriera "ANCOSA"	44.0				
Arona Zarandeada 2/16" Caninza" PTELOS II		14.			
		%:			
The state of the s	0.0	16.			

MARIE CALL

Jeg Narth for thego cann Males

RUC: 20002407021 Sistema Intequal

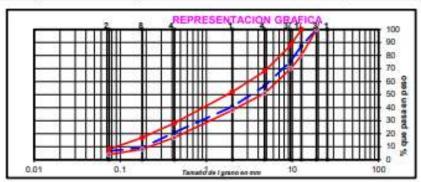
Os Geotecnia
Suelos y Pavimentos
Telf. 037 501900 Cel. Claro: 986279811 Cel Movistar: 979199772
Direccion: Calle Arequipa # 308 Sellavista Sullaca Piura
Finalt geopav incastro@hotmatl.com junior castro@hotmatl.com

TESIS PROPUESTA DE DISEÑO DE MEZICIA ASFÁLTICA CON PERADE TALLO DE PLÁTANO EN LA AVENDA LOS ALGARROBOS. PIURA - 2023 Realizado Par Revisado Par : P.C.A : MAC.

CANTERA ANCOSA (SOJO)

Responsable

: M.C.G. 17/05/2024


SOLICITA TESSTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXS ESPINOZA CORREA

FECHA

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO

DISEÑO CODIGO PATRON SULLANA MAC-02 C.A. 4.0 %

	Xii	E	SAYO (RANU	LOMET	RICO	0 0	Y 2	5 - 32		LAVAD	O ASFAL	TICO
TAMIZ ASTM		394"	10	38"	Nº4	M* 10	Nº 40	Nº 80	W 200	<n*200< th=""><th>Peso Mrt. S/Laior</th><th>gr.</th><th></th></n*200<>	Peso Mrt. S/Laior	gr.	
ABERTURA Blimm	15	19.060	12,700	9.700	4.760	2.000	6,425	0.18	0.074		Pesio Mat. Lavado	gr.	
PESO RETENDO	ign.	0	2530	2355	3795	141.2	174.4	105.3	22.3	58.8	Paso Mat. Lav.+Filtro	gr.	
RETENDO PARCIAL	5	-0	12.7	11.8	19.0	15.0	19.7	11.7	2.5	6.7	Peso de Asfallo	Dr.	
RETENDO ACUMULADO	%	. 0	12.7	24.4	43.4	59.4	79.1	90.8	93.3	100.0	Peso inicial de Filtro	gr.	
PASA	%	100.0	87.4	75.6	56.6	40.6	20.9	12	6.7		Paso final de Filtro	gr.	
ESPECIFICACION	%	199	80 - 100	TO - 58	51-68	38 - 52	17-28	8-17	4 - 8		Pase de Filer	gr.	18.30
ASFALTO LIQUIDO											FRACCION:	16	500
TRAMO ASFALTADO	\top			\neg	M etros L	ineates:					PESO TOTAL	gr.	29990

URQUETAS	br I	4	1 1	3	PROMIDIO	ESPECIFICACIO
+ C.A. EN PESO DE LA MEZOLA	26	4.0	4.0	4.0	4.0	2000000
II AGREGADO GRUESO EN PESO DE LA MIZICLA → Nº 4	5	41.66	41.66	41.66	41.7	
3 AGREGADO FINO EN PESO DE LA MEZCLA KINF 4	5	54.34	54.34	54.54	54.3	
4 FILLER EN PESO DE LA MEZOLA	5	0.93	0.00	0.00	0.0	-
S PESO ESPECIFICIO DEL CEMENTO ASPALTICIO APARENTE		1.016	1,016	1,016	1.0	
6 PESO ESPECIFICO DEL AGREGADO GRUESO - BLUX		2.565	2.585	2.595	2.6	
7 PESO ESPECIFICO DEL AGREGADO FINO - BILLIK		2.000	2.602	2.002	2.6	
II PESO ESPECIFICIO FILLER - APARENTE		0.000	0.000	0.000	0.0	
II PESO DE LA BRICLETA AL ARIE.	gr .	1194.5	5196.6	1192.8	1134.0	
10 PESO DE EREQUETA-PARAFINA AL AIRE	gi .	1190.2	1200.0	1194.6	1197.6	
11 PESO DE LA BRIGLETA + PARATRIA EN AGUA	gr .	675.2	675.5	672.9	674.5	
12 VOLUMEN DE LA BRIQUETA «PARAZINA" (10-11)	GE.	523.0	524.5	521.7	523.1	
13 PESO DE LA PARAZINA (10-III	at.					
14 VOLUMEN DE PARAFINA (13/Pa parafina)	G.E.					
15 VOLUMEN DE LA BRIQUETA POR DISPAZAMIDATO (12-14)	6.5.	\$23.0	524.5	821.7	11	
16 PESO ESPECIFICO BILLY DE LA BRIQUETÀ (IVIS)	avc.c	2.294	2.201	1.286	2.284	
17 PESO ESPECIPED MAXIMO ASTM D-2041		2.506	2.506	2.506		
18 VACIOS (17-16/100/17	2	1.1	0.0	5.0	6.3	3 - 5
19 PESO ESPECIPICO BLAX DEL AGREGADO TOTAL. (2+5+4)((2/6+(3/7)+(4/8))		1.505	2.596	2.595		
20 V.MA 100-(2+3+47716/18)	-	15.5	10.6	15.4	15.6	Min. 14
21 VACIOS LLINOS CON C.A. 100/(20-18/00)	2	42.0	62.5	45.0	42.0	
22 PESO ESPEDICO DEL AGREGADO TOTAL (2+3-4)/(10017)-(15))		2.069	2.669	1,600		
23 C.A. ABSORBIDO POR AGRIGIGADO TOTAL (100°5°(22-19)(1/22°19)	2	1.03	1.03	1.00		
24 CEMENTO ASPALTICO EFECTIVO 1-/23Y/2+3+4Y9001	15	2.95	2.95	2.99	2.90	
25 FLUID	mm	2.24	1.01	1.00	1.20	2 - 4
26 ESTABLEAD SIN CORREGIR	Kg:	779.0	796.1	700.1	767.72	-
27 FACTOR DE ESTABLIDAD	10.0	0.96	0.00	1:00	0.97	-
28 ESTABLEDAD CORREGIDA	190	- T48	764	THE	767	Min. 815
29 ESTABLEDAD-FLUIO		3346	4012	4309 p	2100	1700 - 4000
NO PREACON PREVIOUS PALTO	100	238	2.25	12007	2.36	0.6 - 1.6

OBSERVACIONES.

Grave triturade 1/2" Centore "ANCOSA" 43.0%.
Ances triturade" Centore "ANCOSA" 44.0%.
Ances Zarandeade 3/40" Centore "PTELOS SERR 14.0%.

**

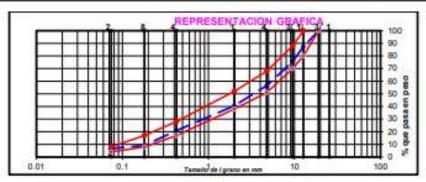
by Mood for Dept Control 2000s

On the North Control 2000s

Circ No 2007 at

TESIS

CONSULTGEOPAV SAC


RUC: 20602407021 Sistema integral

Cor George Cale
Succlos y Pavimentos
Tell: 037.501000 Cell. Claro: 886279811 Cell Movietas: 979199772
Direccion: Calle Arequips # 308 Bellevista Sullana Phus
Email: geopav_mousto@hotmail.com
propusta DE DESNO DE MEICLA AFAIRCA CON FERA DE TALIO DE PLATANO BILLA AVENDA Reciliado for

LOS ALGARROBOS, PIURA - 2023 Revisado Por

CANTERA CONTERA SOJO Responsable : M.C.G SOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA.

272.721.712.7	0.00.00	L	ABORA	TORIO	MECA	NICA D	E SUE	LOS, A	SFALT	OYCC	NCRETO		
			DIS	EÑO C	DIGO	PATRO	N SULL	ANA M	AC-02	C.A. 4.	5%		
		E	NSAYO (RANU	LOMET	RICO					LAVAD	O ASFA	TICO
TAMIZ ASTM		244"	12"	200	10.4	Nº 10	10" 40	Nº 30	Nº 200	4V'200	Peep Mot. S.Lavier	ip.	
ASSISTURA EN mim	1	18,000	12,780	9.525	4.700	2.000	0.425	0.12	0.074	de .	Perso litet, Lavado	IF.	
PESO RETENDO		<u> </u>	2530	2355	3796	341.2	174.4	103.3	22.3	1.60	Peso libit, Lav. 478to	(F	
RETENDO PARCIAL	%	9	12.7	11.8	19.0	16.0	19.7	31.7	2.5	6.7	Peso de Asfalto	or.	
RETENDO ACUMILLADO	95	inner (12.7	24.4	43.4	50.4	79.1	90.8	93.3	100.0	Peso inicial de Filtro	or.	
PASA	. %	100.0	B7.4	75.6	35.5	40.6	20.0	9.2	6.7	Total	Paso final de l'ilitro	10	15347
ESPECIFICACION	. %	100	80 - 500	75-88	51 - 68	36-52	17 - 28	8-17	4 - 8	4	Pezo de Milor	gr.	8.405
ASIFALTO LIQUIDO				- A							PRACCION	156	500
TRAM O ASPALTADO					Matros L	ineafer:					PESO TOTAL	ip.	20000

ENSAYO MARSHALL ASTM D-1559

- 1	BROUETAS	DP .	1	2	3	PROMIDIO	ESPECIFICACION
- 1	CA. ENPESO DE LA MEZCLA	%	4.5	4.5	4.5	4.5	2000
- 2	AGREGADO GRUESO EN PESO DE LA MEZIDA > Nº 4	%	41.45	41.45	41.45	1000	1
3	AGREGADO PINO EN PESO DE LA MEZIDIA. + Nº 4	%	54.05	54.00	59.05	2.5	
4	FILLEREIN PESO DE LA MEZICIA	%	0.00	0.00	0.00	100	13
5	PESO ESPECIFICO DEL CEMENTO ASPALTICO APARENTE		1.016	1,016	1.016	1	13
- 6	PESO ESPECIFICO DEL AGREGADO GRUESO - BLLK		2.585	2.589	2.585	200	i .
7	PESO ESPECIFICO DEL AGREGADO FINO - BLLIX.		2.602	2,602	2.602		
-	PESO ESPECIFICO PALLER - APAVENTE		2.930	2,930	2.930		
Þ	PESO DE LA BROLIETA AL AIRE	17	1195.3	1193.3	1198.5		
10	PESO DE BRIOLISTA HARAFINA AL AIRE	gr.	1199.3	1197.2	1201.6	1.15	10
11	RESO DE LA BRIQUETA + PARAFINA EN AGUA.	OF.	675.9	677.6	677.9		38
12	VOLUMEN DE LA BRIQUETA-FRARATINA (10-11)	cc.	523.4	519.6	523.7	7 17 1	5
13		OF-		0.00		25	
14		C.C.		100			
15	VOLUMEN DE LA SRIQUETA POR DESPAZAMENTO (12-34)	cc.	523.4	519.6	523.7		1
16	PESO ESPECIFICO BLLK DE LA BIRQUETA (9/15)	gric c.	2.294	2.297	1.288	1.290) .
17	PESO ESPECIFICO MAXIMEI ASTM D-2041	-	2.485	2.485	2.465		0
18	VACOS (17-10)*10017	%	6.7	7,4	7.5	7.9	3 - 5
19	PESO ESPECIFICO SILIK DEL AGPEGADO TOTAL (2+3+4)((2/6)+(3/7)+(4/6))		1.006	2 595	2.595		2
20	V.M.A. 100-(2×3+4)*(16/18)	%	15.0	15.5	15.6	15.7	Min. 94
21	VACOS LIBNOS CON C.A. 100/35-18/20	%	49.2	31.0	43.3	50.6	
22	RESO REPREVIOU DEL AGREGADO TOTAL (2+3+4)((100/17)-(1/5))		2.667	2,967	2.667		10
23	CA. ABSOMBDO POR AGREGADO TOTAL (100°5′(22-19(y)22°19)	56	1,04	1.06	1.00		.0
24	CEMENTO ASPALTICO EPECTIVO 1-(23/(2+3-4)/100)	74	141	3,40	2.49	2.48	100
25	ruo	ritin	2.40	2.40	2.34	2.44	2 - 4
20	ISTABLEAD SIN CORPEGE	Kg.	919.2	003.4	891.5		
20	FACTOR DE ESTABLEAD	N:	0.00	1.00	0.96		(T
28	ISTABLEAD CORREGEA	759	- 786	003	196	835	Min. 215
20	ISTABLEIACHTUIO	V 5	3159	3468	3962	3430 /	1700 - 4000
30	PELACION POLVO / ASPALTO	1 . 7	191	1.91	1.01	130//	0.6-1.6

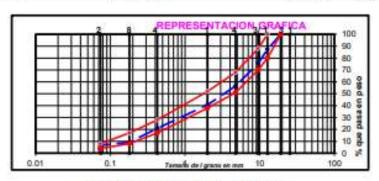
DESERVACIONES.

Grave triturade 10" Centers "ANCOSA" 42.0% Arena triturada" Centera" ANCOSA" 44.0% Arena Zarandeada 3/16" Centers " PTE LOS SISRA 14.0%

- CONSPICTOR PAV SAC ing More from those Castro Villada
CLE NE 294/40

P.C.A

:MAC


RUC: 2060Z407021 Saleterna forecost

de Geotecnia Suelos y Pavimentos Telt 037 501000 Cel. Claro: 986279811 Cel Movistar: 979199772 Direction: Calle Arequipa # 308 Bellavista - Sallana - Piura Email: geopav_moustro@botnuil.com - junior_castro@botnail.com

TESIS PROPUESTA DE DISEÑO DE MEZCIA ASFÁLTICA CON PIBRA DE TALLO DE PLÁTANO EN LA AVENIDA BORIZADO POR PLA AVENIDA LOS ALGARROSOS, PLURA - 2023 Evisado Por MA.C.

CANTERA CANTERA SOUIO RESPONDENCIA CORREA FECHA 17/05/2024

		L	ABORA	TORIO	MECA	NICAD	ESUE	LOS, A	SFALT	OYCO	NCRETO		
3			DIS	EÑO C	DDIGO:	PATRO	N SULL	ANA M	4C-82 (C.A. 5.0	150		
	0 V	E)	SAYO	GRANU	LOMET	RICO	U. 7		00	64 E	LAVAD	O ASFAL	TICO
FAMIZ ASTM		14"	1/2"	30	Nº 4	MF 10	N/A	10'00	Nº 200	+87200	Plac Mai, Stuyer	=	
ADDRITURA DI mini		19.000	12,790	1.525	4.763	1000	0.423	DAR	0.014		Perc Visi Lavado	7	
PESO RETEMBO	gr.		2530	2305	3795	141.2	174.4	103.2	22.3	56.6	Proc Met. Lev. (1981)	=	
RETIDADO PARCIAL	1.5		12.7	11.8	19.0	10.0	10.7	11.7	25	67	Pero de Arfeto -	7-	
RETENDO ACIDINALADO	1.16		12.7	24.4	434	59.4	70.1	100.0	133	1900	Pleas incode de Pêtro	=	
PASA	5	106.0	67.4	75.0	96.6	40.6	20.3	92	6.7	8 9	Pero Inside Fibro	gr.	
ESPECIFICACION	14.	160	80-100	70 - 88	21 - 98	38 - 52	17-28	8-57	4 - 8	9 0	Pero de filler	œ.	8.435
ASSALTO LIQUIDO		111111		100	- 27 100	-				- 3	PRACCION	*	505
TRAMO ASPALTADO	310				Matres L	/essies:				- 23	PESO TOTAL	-	20000

ENSAYO MARSHALL ASTM D-1559

BRQUETAS	Nº.	1	2		PROMEDIO	ESPECIFICACIO
1 CA INPESO DE LA MEZGIA	26.	1.0	2.0	5.0	5.0	W
2 AGREGADO GRISSO SVIPISO DE LA MEZILA Y Nº 4	%	61,23	4123	41.23		100
2 AGPEGADO PINO EN PESO DE LA MEZCLA. 4 Nº 4	%	51.77	53.7F	53.77		100
4 FLLSR DN PESO DELA MEZGLA	%	.0.00	0.00	0.00		3. 3
S PESO ESPECIFICO DEL CEMENTO ASPALTICO APARENTE		1.010	1.010	1.016		3. 3
6 PESO ESPECIFICO DEL AGRESADO GRUESO - BLKK	1.5	2.500	2.585	2.595		SS S
7 PESO ESPECIFICO DEL AGREGADO PINO - BLLK		2.602	2.002	2.502		
E PESO ESPECIFICO FILLER - ADARBATE		3.000	3.000	3.099		S
9 PESO DE LA BRIDLIETA AL AIRE	9	1124.5	1196.3	1195.6		37 3
10 PESO DE BROLETA «FARAFINA AL AIRE	2	1290.5	1291.6	1299 €	1	
11 PESO DE LA BROLETA + PARAFINA SNAGLIA	2	681.4	680.6	684.5		S. S
12 VOLUMEN DE LA BRIQUETA-FRARAFINA. (10-11)	5.6	DIRT	121,0	516.1		S
13 PESO DE LA RARATINA (15-9)	gr.	_ 225-	100000	92.77	1	(i)
14 VOLUMEN DE PARAFINA (1976 parafina)	4.6.	July 200	Tyrus an	Countries		20
15 VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	c.c.	518.7	521.6	516.1	A CONTRACT	S
16 PESO ESPECIFICO BLUK DE LA BRIQUETA (9/15)	gric a	2.302	2.296	2.317	2.305	\$ S
17 PESO ESPECIFICO NAVISAO ASTINO-2041	200	2.465	2.465	2.465	100000	3
18 VACKS 117-16(1)(0)17	%	6.6	6.3	6.0	6.5	3.5
19 PESO ESPECIFICO BULK DEL AGREGADO TOTAL (3+3+4)/(3/6)+(5/7)+(4/6))	22	2.895	1.595	2.595	F	50 200
20 V.M.A. 100-(2+3+4)/(16/18)	%	15.7	15.9	15.2	15.6	Min. 14
21 VACIOS LLENOS CON C.A. 100/(20-18)/08	%	57.9	56.9	60.3	58.3	31
22 PESO ESPECIFICO DEL AGREGADO TOTAL (2+0+4)((166/17)-(1/5)).	(2)	2,665	2.965	2.865		55 S
25 CA. ABBORRIGO POR AGREGADO TOTAL (100°5°122-1921/20°19)	%	1.54	1.04	1.04		100
24 COMENTO ASPALTICO EFECTIVO 1-(231)2+3+4(/100)	%	4.21	4.01	4.01	4.81	13
25 71.100	TOTAL C	2.70	2.15	3.20	3.02	2+4
26 SISTABLEAD SIN CORREGIN	G :	1214.0	1924.1	1000.4	2	13
27 FACTOR DE ESTABLIDAD	K .	1.00	1.00	1.00	Ž	St
28 ESTABLIDAD CORREGIDA	Ke	1214	1854	1006	1140	Min. 815
39 (ISTABLEAD-FLUID	0.3	4087	3258	3432	38.00	1790 - 4000
30 FELACION FOLVO / ASPALTO	100	1.66	1.00	1.00	5.66/	0.6+1.6

OBSERVACIONES
Grave tritutade 12° Cardera "ANCOSA" 42.0%
Arene tritutade 12° Cardera "ANCOSA" 44.0%
Arene Zarandeade 3/16° Cardera "PTELOS SERR 14.0%,
Relisso mineral RLLER (Cere ento Partillad) 8.0%

Ing North Sam Jose Carri Mach

de Geotecnia

Director y Pavimentos

Telf: 037-501000 Cell. Clare: 086279811 . Cell Mevister: 979199772

Direction: Celle Arequipe # 308 Bettaviste Sallane Piura

Email: geopev_mcentro@featmail.com junior_castro@featmail.com

PROPUESA DE DERNO DE MEZCIA ASFAIRCA CON REPA DE TAILO DE PLATANO EN LA AVENDA Registedo Por

LOS ALGARROBOS, PIURA - 2023 Revisado Por

MAC CANTERA CANTERA SOJO Esponsable

SOLICITA TESSTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXS ESPINOTA CORREA FECHA. 17/05/2024 LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO DISEÑO CODIGO PATRON SULLANA MAC-62 C.A. 5.5 ENSAYO GRANULOMETRICO LAVADO ASFALTICO TAMEZ ASTM my Mist. STL aver 12 ADDRITURA DV mm on Mid. Layudo 华 PESO RETIDNEO 2538 2355 3755 141.2 174.4 103.3 23 55.8 Num Met Lav. 478 ø. g. STENEDO PARCIAL 12.7 15.8 19.0 150 19.7 11.7 2.5 6.7 em de Astato (F 12.7 24.4 43.4 75.6 56.6 RETENDO ACUMULADO 39.4 79.5 90.8 93.3 100.0 en micial de Filho gr. 17.4 20.9 9.2 g. eo do Filer SPECIFICACION IF. ASPALTO LIQUIDO FRA CCION % 500

MISO TOTAL

ENSAYO MARSHALL ASTM D-1559

B	STOCKETAS	W	1	2	3	PROMEDIO	ESFECIFICACION
10	IA. EN PESO DE LA MEZOLA	%	5.5	4.5	5.5	5.5	See Line
2.4	OREDADO ORLESO EN PESO DE LA MEZCLA > Nº 4	%	41.01	41.61	45.81		
- 3 A	GREGADO FINO EN PESO DE LA MEZCLA «Nº 4	%	53.49	53.49	33.49		
4 F	RLER BYPESO DE LA MEZICIA	%	0.00	0.00	0.00		
-5 R	ESO ESPECIFICO DEL CIBIENTO ASFALTICO APARENTE		1,016	1.016	1.018		
8 8	ESO ESPECIFICO DEL AGRECIADO GRUESO - BULK		2.585	2585	2.585		
JA	ESO ESPECIFICO DEL AGRECADO FINO - BULK		2,602	2.602	2.602		
8 8	ESO ESPECIFICO FILLER - APARENTE		3.000	3.000	3.000		
. 9 R	ESO DE LA BRIQUETA AL ARE.	or.	1195.6	1181.8	1181.0		
10 R	ESO DE BRIQUETA+PARAFINA AL ARIE	9	1202.3	1188.1	1186.5		
11 8	EBO DE LA BRIQUETA + PARAFINA BN AQUA	(F	686.9	680.7	679.5		
12 V	OLUMENDE LA BRIQUETA HRARAFINA (10-11)	0.0	515.4	507.4	507.4		
13 R	ESO DE LA PARAFINA (10-0)	E.					
14 V	OLUMEN DE PARAFINA (13/Ru parafina)	ca.					
15 V	OLUMBNDE LA BRIQUETA POR DESPAZAMIENTO (13-14)	6.6.	515.4	50T,4	537,4		
16 R	ESO ESPECIFICO BULK DE LA BRIQUETA. (9/15)	gias.	2.320	2.329	2.328	2.525	
17 9	ESO ESPECIFICO MAXIMO ASTM D-2641	7,000	2.431	2.431	2.431		
18 V	ACIOS (17-16)*100/17	%	4.6	4.2	4.3	4.3	3 - 5
19 R	ESO ESPECIFICO BULK DEL A OPEGADO TOTAL (24944)/(2/6)4(3/7)4(4/6))		2.595	2.559	-2.595		
20 V	MA. 190-(2+5+4)*(19/18)	%	15.5	15.2	15.2	15.2	Min. 14
21 V	/AGOS LLENOS CON C.A. 100°(20-18)/20	%	70.5	72.3	72.0	71.6	
22 R	ESO ESPECIFICO DEL AGRECIADO TOTAL (2+3+4)/(100/17)+(1/5))		2.646	2.848	2.646	A	
23 C	A: ABSORBDO POR AGREGADO TOTAL (100°5°(22-19))/(22°19)	%	0.76	0.76	0.76		
24 0	(BIENTO ASFALTICO EFECTIVO 1-(29*(2+9+4)/100)	%	4.79	4.79	4.79	4.78	
25 R	LUIO	rms	3.20	3.30	3.18	3.23	2 - 4
26 E	STABILIDAD SIN CORRECIR	Kg	1192.8	1204.8	1213.9		
27 F	ACTOR DE ESTABILIDAD	K.	1.00	1.04	1.04		
26 B	STABILEAD CORRECIDA	(Ng	1192.8	1253	1262	1236	Win. 815
29 E	BTABLEAD-R.WO	Maria I	3727	3795	3976	1923	1700 - 4000
30 8	ELACION POLVO / ASFALTO	8 1 9 1	1.39	1.39	139	15 /130	0.6 - 1.6

CREENVACIONES

TERM.

TRAMO ASFALTADO

Grave triburada 1/2" Centera "ANCOSA." 42.6% Arona triturada" Cantara "ANCOSA " 44.9% Arona Zarandeada 2/16" Centera " PTE LOS SERR. 14.9%.

HANDE ONLY

- W CONSTCTOEDERY SAL Ing Manse Aver Diagn Control
Complete No. 284140

RUC: 20502467021 Switema Integral

de Geotecnia Sueles y Pavimentes Tell: 037 501000 Cel. Choro: 186279811 Cel Movistar: 979159772 Direccion: Calle Arequipa # 308 Bellavista Sullana Piura Email: geopsy moustro@hotmoil.com junior_castro@hotmail.com

PROPUESTA DE DISEÑO DE MEZICIA ASFÁLTICA CON RERA DE TALLO DE PLÁTANO EN LA AVENIDA Realizado Por TESIS

LOS ALGARROBOS, PIURA - 2023

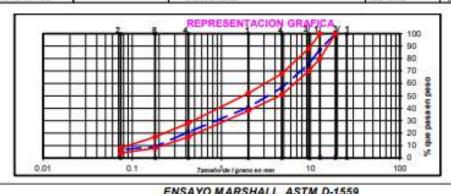
Revisado Por

P.C.A MAC

CANTERA CANTERA SOJO

Responsable

TMC.G.


Fecha

TESSTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

FECHA

17/05/2024

		L	ABORA	TORIO	MECA	NICA D	E SUE	LOS, A	SFALT	OYCO	NCRETO		
			DIS	EÑO C	DOIGO I	PATRO	N SULL	ANA M	AC-02 (C.A. 6.0	%		
		E	NSAYO (GRANU	LOMET	RICO					LAVAD	O ASFA	LTICO
TAMIZ ASTM		34"	102"	3/3"	10.4	Nº 10	Nº 40	Nº 60	Nº 300	+97200	Pero Mrt. St.erar	gt.	
ADDITURA DI INIII		19,050	12,708	9.526	4.760	2.008	0.425	0.10	0.074		Peac Net. Levedo	gt.	
PESO PETENDO	ar.		2530	2368	3795	143.2	174.4	103.3	22.3	58.8	Place Mid. Law, 478th p.	gt	
METENDO PARCIAL	. %		12.7	11.6	19.0	16.0	10.T	11.7	2.1	fi,T	Plato de Asfalta	w.	
RETENDO ACUMULADO	. 5	- 0	12.7	24.4	434	59.4	79.1	8.00	10.3	.100.0	Pleaco srectal de Filtro	gr.	
PASA	.%	1010	87.4	73.8	56.6	40.6	20.0	9.2	6.7		Placo fittal de Filtro	27	
ESPECIFICACION	. 15	100	00-100	78-88	51+68	30 - 52	17-30	8-17	4-1		Placo de Fillet	et.	
ASPALTO LIQUIDO											FRACCION	5	500
TRAMO ASPALTADO	1			100	Matronia	/mesles:					PESO TOTAL	et.	20000

LH3A10 MA	NOTIFIEL	ASIM D	333
	let.	1	
	%	6.0	

BRIQUETAS	No.	1	2	3	PROBLEDIG	ESPECIFICACIO
I CA, IN PESO DE LA MEZCLA	%	6.0	6.0	0.0	6.0	\$500000 c
2 AGPEGADO GRUESO EN PESO DE LA MEZCLA + Nº 4	%:	40.00	40.80	40.80	1 - 1	
3 AGREGADO PNO EN PESO DE LA MEZCLA « Nº 4	%	53.00	53,30	53,20		
4 FILLER EN PRIO DE LA MEZICIA	%	0.00	0.00	0.00		
5 PESO ESPRIORICO DEL CEMENTO ASFALTICO APARENTE	2 8	1.010	1.016	1.018		i.
6 PESO ESPEDINCO DEL AGREGADO GRUESO - BULK	3	2.602	2.603	2.600		
7 PESO ESPEDITION DEL AGREGADO FIND - BLLK		2.643	2.643	2.643		
II PESO ESPECIPICO PALLER - APARENTE.		3,000	3.000	3,000		5
II PESO DE LA BROLETA AL ARE	ir.	1130.5	1199.6	1194.6		
13 PESO DE BREJLETA (PARAFINA AL AIRE	(F	1193,3	1194.3	1197.7		
11 PESO DELA BRIGLETA - PARAFINA EN AGUA	ip:	682.1	662.1	665.5		
12 VOLUMEN DE LA GRECUETA-PARAFINA (10-11)	C.C.	2112	512.0	5/22		
TI PESO DELA PARAFINA (10-9)	ir.			Ç.		
14 VOLLARIN DE SARAFNA ((3/Pe perafits)	E.E.					
15 VOLIMBNOGLA BRIOLETA POR DESPAZAMENTO (12-14)	EE.	\$11.2	812.0	812.2		
16 PESO ESPECIFICO BULK DE LA BRIQUETA (N°15)	glec	2.329	2.336	2.332	2.329	
17 PESO ESPEDIFICO NAXMO ASTM DIZXVI		2,415	2.415	2.415		-
TILLYAGOS (17-187100)(7	%	1.6	2.7	3.4	14	3 - 5
HE PESO ESPEDIFICO BULK DEL AGREGADO TOTAL (2+3+K)((2/6)+(3/7)+(4/6))		2.626	2.625	2.625		
30 V.M.A. 100-(2+3+4)*(10/10)	T-	18.6	11.7	16.5	18.6	Min. 14
21 VACIDS LIENOS CON C.A. 100/(25-18)00	%	78.4	77.2	79.1	78.4	
22 PESO ESPECIFICO DEL AGREGADO TOTAL (2+3-4)() 100/17-(10))		2,646	2,648	2,646		
23 C.A. ABSORBIDO FOR AGRIGADO TOTAL (100°9°(22-19)) (22°19)	W	0.34	9.34	9.34		
24 CEMENTO ASPALTED EFECTIVO 1-(23°(2×3×4)/100)	%:	1.68	0.08	1.61	1.61	
25 FLUIO	mm .	3.56	3.43	3.68	3.56	2 - 4
26 ESTABLEAD SIN COPPEIGR	Ka	1280.2	1200.6	1276.1		
27 FACTOR DE ESTABLICAD	K	1.00	1.00	1.20	1122	274-30-3
28 SSTABLEAD CORREGEA	Kg	1280	1261	1276	1272	Min. 815
29 ESTABLEDAD-FLILIO	100	3600	3676	3495	/0588	1700 - 4900
30 RELACION FOLVO / ASFALTO	100	1.17	1.17	1 17	7.597	26-16

OBSERV ACIONES.

Grave triturade 52" Centera "ANCOSA." 42.5%.
Anena triturade" Centera "ANCOSA." 44.5%.
Anona Zarandeada 1/16" Centera "PTELOS SERR 14.5%.

by Bond for they Later White oknessent civil.

de Geotecnia Sueles y Pavimentos

Telf: 037 501000 Cell. Claro: 386279811 Cell Movistar: 979199772
Direccion: Cattle Araquipa # 308 Bellavista - Sullana - Piura
Email: geopay incastro@bstmail.com junior_castro@bstmail.com
PROPLESTA DE DISENO DE MEZCIA ASFAIRCA CON FBRA DE VALLO DE PLATANO EN LA AVENDA - Regizado Por

LOS ALGARROBOS, PIERA - 2023 Revisado Por

CANTERA CANTERA SOJO Responsable MCG

SOUCITA TESSTAS: RONALDO RIVERA CUNVA Y JHOAN ALEXIS ESPINOZA CORREA **FECHA** 17/05/2024

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO DISEÑO CODIGO PATRON SULLANA MAC-02 C.A. 6.5 ENSAYO GRANULOMETRICO LAVADO ASFALTICO MIZA SINAT 107 Sect Met. S.Lincor JE. ABERTURA DI mini 12,790 9.525 4.760 0.425 0.16 6.674 toko Met. Lacrado Œ PESO RETENDO 2530 2355 3798 1462 174.4 103.3 22.3 56.8 Peace Met Last +Filtre 12 11.8 to 42.4 PETEMBO PARCIAL 5 12.7 16.0 19:7 33.7 2.5 0.7 Pesu de Asfalto 12. PASA 12.7 90.8 90.3 29.4 79.1 100 D 35 Pesso intolé de l'iltro p. 36.6 87.4 75.6 40.5 20.9 9.2 4.7 uso firut de Film IF. ESPECIFICACION Pexo de Filor 15. ASFALTO LIQUIDO TRAMO ASFALTADO Metros Lineales: PESO TOTAL

	BROUETAS	500	1	2	1	PREMIEERO	ESPECIFICACIO
	CA. IN RISO DE LA MIZOLA	%	6.5	6.5	6.5	8.5	55
- 2	AGREGADO GRUESO EN PESIO DE LA MIZOLA INVIA	%	40.58	40.58	40.58	0	7
. 3	AGREGADO FINO EN PESO DE LA MEZCLA 14 Nº 4	%	52.02	52.00	10.32	10	7
-	FILLER EN PESO DE LA MEZCLA	5	0.00	8.00	0.00	10	17
-	PESO ESPECIFICO DEL CEMENTO ASPALTICO APARENTE	12	1.010	1.016	1.016	7.	-
	PESO ESPECIFICO DEL AGREGADO GRUESO - BULK	100	2,603	2.902	7,800	191	7
7	PESO ESPECIFICO DEL AGREGADO PNO - BILLIK		2.643	2,643	2.643	2.	
1	PESO ESPECIFICO PELLER - APAMENTE		3 000	3.000	3.000	0.	-2
9	PESO DE LA BRIQUETA AL AIRE	91	1200:1	1200.9	1200.3	6.	-1
10	PESO DE BRIQUETA «PARIAFINA AL AIRE	G1.	1202.5	1204.1	1203.3	2.	-
11	PESO DE LA SPIQUETA + PARAFINA EN AGUA	gri	684.2	686.6	685.9	12	
12	VOLUMENCE LA BROLETA (PARAFRA: (10-11).	2.2	518.3	517.5	517.4	0.0	7
13	PESCICELA PARAPINA (10-9)	gr.	1000	39.97		5.5	
14	VOLUMEN DE PARAFINA (10/Ps parafins)	C.E.		and the second second	- Marian		
10	VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	CE.	018.3	817.5	217.4		
10	PESO ESPECIFICO BLLIK DE LA BRIQUETA (IV15)	gric.c.	2,315	2.321	2.320	2.319	
17	PESO ESPECIFICO MAXIMO ASTMID-2041		2.390	2.390	2.396		
10	VACIOS (17-16/180/17	%	3.1	2.9	2.9	1.0	1-4
19	PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2-3-4)/(2/6)+(3/7)+(4/6))		7.625	2.625	2.625		
20	V.M.A.: 100-(243-4)*(190/19)	%	17.5	17,3	17.4	17.4	Min. 14
21	VACOS LLENOS CONICIA, 180°(25-18)(25	56	82.1	83.2	88.0	02.0	2, 20,000
22	PESO ESPECIFICO DEL AGREGADO TOTAL (2×3×4)/(199/17)-(1/5)/		2.638	2.538	2.638	1	-1
Z	C.A. ABSORBIDO POR AGREGADO TOTAL (190°51/22-19)((22°19)	%	0.20	0.20	8,20	11	-3
24	CIMENTO ASPALTICO BEBLITIVO: 1-(ZIY(2+3+4)/100)	%	6.52	6.32	6,32	6,32	Estate va
25	FLUID	mm	3.81	3.68	3.68	3.73	2 + 3.5
20	ESTABLEAD SIN CORREGIO	Kg:	893.5	885.6	803.5		12130250
Z	FACTOR DE ESTABLIDAD	K:	1.00	1.00	1.00		
20	ISTABLISAD COMMISSIA	Kg	294	896	683	268	Min. 015
25	ESTABLEAD-FLUIO	100	2345	2405	2399	2363	1700 - 4000

HANDE DE

ENSAYO MARSHALL ASTM D-1559

Grave triturade 1/2" Canters "ANCOSA" 42.0% Arena triturada" Cantera " ANCIGSA " Arena Zarandeada 3/16" Cantera " PTE LOS SERRE 14.0% Rolleno mineral FLLER (Comento Portland) 0.0%

30 PELACION POLVO / ASPALTO

TESIS

by North Services (1997) (1997

P.C.A.

MAC

CONSULTGEOPAV SAC

RUC: 20892407921
Sistema integral
de Geotocnia
Suelos y Pavimentos

Telf: 037.501000 Cel. Claro: 986279811 Cel Mevistar: 979199772
Direccion: Celle Arequipa # 308 Bellavista Sullana Piura
Email: geopav mcastro@hotmail.com junior castro@hotmail.com

PESO ESPECIFICO MAXIMO ASTM D-2041

Proyecto PROPUESTA DE DISEÑO DE MEZCIA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENIDA Redizado Por P.CA.

LOS ALGARROBOS, PIURA - 2023

Revisado Par

:MAC

Muestreo CANTERA SOJO

Responsable. :M.C.G.

SOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

FECHA 17-05-2024

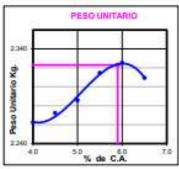
LABORATORIO ME	CANICADES	UELOS,	ASFALTO	Y CONC	RETO		
ENSAYO	NF	1	2	3	4	5	6
CEMENTO ASFALTICO	- %	4.00	4.50	5.00	5.50	6.00	6.50
PESO DEL MATERIAL	Gr.	1243.0	1201.5	1211.7	1218.0	1215.4	1220.0
PESO DEL AGUA + FRASCO RICE	Gr.	7705.0	7705.0	7705.0	7705.0	7705.0	7705.0
PESO DEL MATERIAL +FRASCO+AGUA (en aine)	Gr.	8948.0	8906.5	8916.7	8923.0	8920.4	8925
PESO DEL MATERIAL +FRASCO+AGUA (en agua)	Gr.	8452.0	8423.0	8425.2	8422.0	8417.2	8414.6
VOLUMEN DEL MATERIAL	6.0.	496.0	483.5	491.5	501.0	503.2	510.4
PESO ESPECIFICO MAXIMO	Gric c.	2.566	2.485	2.466	2,431	2.415	2.398
TEMPERATURA DE ENSAYO	*0	25°C	25°C	29°C	25°C	29°C	25°C
GRAVA TRITLIRADA 34°	%	45.0	45.0	45.0	45.0	45.0	45.0
ARENA TRITURADA 1/2"	*	45.0	45.0	45.0	45.0	45.0	24.0
ARENA ZARANDEADA 3/16"	*	9.5	9.5	9.5	9.5	9.5	51.0
PLLER (CEMENTO PORTLAND)	N.	0.5	0.5	0.5	0.5	0.5	0.5
TEMPO DE ENSAYO	Mn	25	25	25'	盂	25'	29
CORRRECCION POR TEMPERATURA		1.000	1.000	1.000	1.000	1.000	1.000

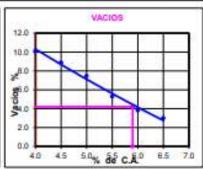
OBSERVACIONES:			

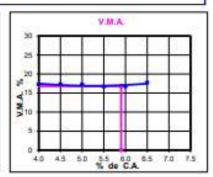
RUC: 20602407021 Sistema Integral de Geotecnia

Sueles y Pavimentes
Telt 037 501000 Cel. Clare: 986279811 Cel Mevister: 979199772
Direction: Calle Arequipa # 308 Bellavista - Sullana - Piura
Email: geopey_mcastro@hotmail.com - junier_castro@hotmail.com

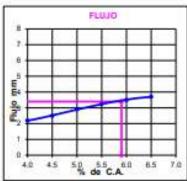
TESIS : PROPUESTA DE DISEÑO DE MEZICIA ASPÁLTICA CON PIBRA DE TALLO DE PLÁTANO EN LA AVENIDA LOS ALGARROBOS, PIURA - 2823


Fecho de Ensayo : 20/89/2004


MATERIAL: MAC MODIFICADO CON S.O % DE FIBRA DE TALLO DE PLATANO. Resissado por : ELIAS AGURRE


CANTERA: CANTERA SOJO Revissado por : JUNIOR CASTRO AGURRE


SOLICITA: TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA RESPONSADO: MANUEL CA STRO GALLO


LABORATORIO DE MECANICA DE SUELOS, ASFALTO Y CONCRETO

		ESTAB	ILIDAI	3	
1800		T			
1400					
£300					
S 200					
100					
0000	1	4		1	
900	1	-	\vdash	-	-
800		-			_
700	-	122	_		
4.0	4.5		de C.A	50 5	5 7.0

	-0.30%	OPTIMO % CA	0.30%	ESPECIFICACION
GOLPES POR LADO	S. successi	75	25.254.74	75
CEMENTO ASFALTICO		5.90		(4-8.3%)
PESO UNITARIO		2.323		10.0000
VACIOS		6.2		3-5
V.M.A.		16.0		Min 14
VACIOS LLENOS CON C.A.	- 3	74.0		
FLUJO		3.40		2 - 4.0
ESTABILIDAD		1200		Min. 212
ESTABILIDAD / FLUJO		3529		1700 - 4000
		U I		1.
				Ĩ.
3	- 83	AS 39		
DOSIFICACION				
Grass triturada 1/2" Cantora "ANCOSA."	42.0	%		
Arena triburada" Cantora " ANCOSA "	44.0	%		
Arena Zarandoada Centera " PTE LOS SERRA	NOS" 14.0	3		
PIBRA DETALLO DE PLATANO	1.0	%	1	
-		80	Villiam	
5			ALC: U	
			1200	
Comento Asfetico de PEN60/70	5.90	%	-	MAS TO
	032	TIAN LES	Gh 3700	1,100

My Need Too hop care than

Sistema Integral

Ge Geotecnia.
Suelos y Pavimentos
Teit: 037 501000 Cel, Claro: 986279811 Cel Movistar: 979199772
Direction: Celle Arequipa # 308 Bellavista : Sullana Piura
Email: geopay_meastro@hotmail.com junior_castro@hotmail.com

PROPROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENDA Roulizado Por TESIS IP.C.A. LOS ALGARROBOS, PLIRA - 2021 Revisado Por :MAC CANTERA ANCOSA (SOJO) Responsable MCG SOLICITA TESISTAS: RONALDO RIVERA CLINVA Y JHOAN ALEXIS ESPINOZA CORREA. FECHA 20/05/2024

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO

ė.			D	BEÑO C	00000 A	BRADE TAL	LO 5.0% N	AC-02	CA 4/	1%			
			ENSAYO	GRANUL	OMETRI	CO					LAWA	DO AS	ALTICO
TAMIZ ASTM	15	34"	1/2"	3/8"	16.4	Nº 10	Nº 40	Nº 80	N° 200	<n'200< th=""><th>Peso Mat S/Laver</th><th>gr.</th><th></th></n'200<>	Peso Mat S/Laver	gr.	
ABERTURA EN mm	(3)	19.050	12,700	9.709	4.760	2.900	0.425	0.18	0.074		Peso Mat. Lavado	gr.	
PESO RETENIDO	gr.	100	2575	2405	3695	139.9	175.3	103.9	21.9	50	Peso Mat. Lav.+Fit.	gr.	
RETENIDO PARCIAL	1.5	0.0	12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Astato	gr.	
RETENIDO ACUMULADO	- %	0	12.9	24.9	43.4	58.2	79.1	90.8	93,3	100.0	Peso inicial de Fith	gr.	
PASA	36	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7		Peso final de Filtro	OF.	
ESPECIFICACION	5	100	80 - 100	70 - 88	51 - 68	38 - 52	17 - 28	8-17	4 - 8		Peso de Filler	gr.	13.30
ASFALTO LIQUIDO				-							FRACCION	%	500
TRAMO ASFALTADO	15				Metros L	ineales:					PESO TOTAL	gr.	20000

BRIQUETAS	Mr.	1	10 20 0	3	PROMEDIC	ESPECIFICACIO
1 C.A. ENPESO DE LA MEZCLA	%	4.0	4.0	4.0	4.0	-
2 AGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	%	41.64	41.64	41.64		0
3 AGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	%	54.38	54.36	54.36		
4FILLER EN PESO DE LA MEZCLA	76	0.00	0.00	0.00		0
SPEBO ESPECIFICO DEL CEMENTO ASFALTICO APARENTE		1.016	1.016	1,016		
6 PESO ESPECIFICO DEL AGRECIADO GRUESO - BULK		2.602	2.602	2.602		8
7 PESO ESPECIFICO DEL AGREGADO FINO - BILLIX	10.00	2.643	2.643	2.643		01
8 PESO ESPECIFICO FILLER - APARENTE		0.000	0.000	0.000		2
SPESO DE LA BRIQUETA AL AIRE	CX.	1190.3	1190.1	1193.3		0
O PESO DE BRIQUETA+PARAFINA AL AIRE	OF.	1192.9	1193.1	1195.5		0
PESO DE LA BRIQUETA + PARAFINA EN AGUA	OX.	666.6	666.6	668.5		7
2 VOLUMEN DE LA BRIDUETA+PARAFINA (10-11)	0.0.	526.3	526.5	527.0		0
3 PESO DE LA PARAFINA (10-9)	OF.	1-70	C-255	2-17/1		5
4 YOLDNEN DE PARAFINA (13 PV parafina)	C.C.		100		1.	8
S VOCUMEN DE LA BRIQUETA PUR DESPAZAMENTO (12-14)	K.E.	526.3	528.5	527,0		0.0
BPESO ESPECIFICO BIOLA DE LA BRIQUE (A. (M15)	gric.c.	2.262	Z.260	2.264	7.262	0
7 PESO ESPECIFICO MAXIMO ASTMIO-2041	27.000	2.516	2.516	2.516		D 100
6 VACIOS (17-16) 10017	79	10.7	10.2	10.0	72.7	3 + 5
PESO ESPECIFICO BUCK DEL AGREGADO TOTAL (2+3+4)([28]+(37)+[48])		2,825	1.625	2.625	10000	9 00 miles
DVMA 100-(2+3+4)*(16/10)	79	17.3	17.2	17.2	17.3	Min. 14
T VACIUS ILLENUS CUN C.A. 100°[20-18]/20	79	41.5	41.3	41.8	41.5	0
2PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)-(1/5))	1	2.681	2.661	2.681		3
SC A ASSURBBULTOR AGREGADO TOTAL (100°51/22-19)((22°19)	7%	0.81	8.81	0.61		i c
4 CEMENTO ASFALTICU EFECTIVU 1-(23*(2+3+4)/100)	79.	3.22	2.22	3.22	1000	SC 900 500
SFL000	mm:	2.35	2.16	2.11	2.19	2 - 4
SESTABLUAD SIN CURREUR	Kg	888.5	895.5	891.5		
FACTOR DE ESTABLUAD	R.	0.56	0.96	0.96		Same
SESTABLIDAD CORREGIDA	KØ.	E53	860	856	856	Min. 815
MESTASCOAD-FCOIO	17	3600	3987	4060	3911	1700 - 4000
RIFECACION POLVO / ASPALTO		2.07	270	2.07	2.07	0.6 - 1.6

OBSERVACIONES:
Orava triturada 1/2" Cantera "ANCOBA"
Arena Inturada" Cantera "ANCOBA"
Arena Zarandeada Cantera "PELOS SERR
FIBRA DE TALLO PLATANO

44.0% 14.0% 5.0%

MAN STATE

Ing Muser they have come visited in the National Action of the Natio

RUC: 20602407021 Sileterna Integral

Tell: 037 501000 Cel. Charp: 966279811 Cel Movistor: 979199772
Direction: Calle Arequipa # 308 Bellevista Sullana Piera
Email: geopay_mcastro@hotmail.com junior_castro@hotmail.com
PROPROPUESTADE DEENO DE MEZCLA ASFALTICA CON FBRADE TALLO DE PLATANO EN LA AVENDA Revisado Por
LOS ALGARROBOS, PURA - 2023

CANTERA SOLO.

TESIS

Responsable MC.G CANTERA CANTERA SOJO SOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA **FECHA** 20/05/2024

			LAB	ORATO	DRIO MED	ANICA DE SUI	LOS, ASF	ALTO Y	CONC	RETO			
			- 0	SEÑO	CODVIGO I	BRADE TAL	O 5,0% M	4.C-02	CA. 45	Si.			
			ENSAY	GRAN	ULOMET	RICO					LAVADO	ASFAL	TICO
TAMIZ ASTM	100	34	1/2	348"	Nº 4	Nº 10	Nº 40	Nº 80	N° 200	<n°200< th=""><th>Peso Mat. Staver</th><th>gr.</th><th></th></n°200<>	Peso Mat. Staver	gr.	
ABERTURA EN mm	0.3	19,050	12,700	9.525	4,780	2.000	0.425	0.18	0.074		Peso Mat Lavado	gr.	
PESO RETENIDO	gr.		2575	2405	3696	139.9	175.3	103.9	21.9	50	Peso Mat. Lav. +Fitro	or.	
RETENIDO PARCIAL	%		12.9	12.0	18.5	15.8	19.9	118	25	6.7	Peso de Asfalto	dr.	
RETENIDO ACUMULADO	.%	- 5	12.9	24.9	43,4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtro	or.	
PASA	- %	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7		Peso final de Filtro	gr.	
ESPECIFICACION	-%	100	80 - 100	70 - 88	51 - 68	38 - 52	17 - 28	8-17	4 - 8		Peso de Filter	gr.	8,4087
ASFALTO LIQUIDO											FRACCION	%	500
TRAMO ASFALTADO				7	Metros L	ineales:					PESO TOTAL	gr.	20000

BHIQUETAS	26.		2	3	PHUMEUR	UESPECHI
1 C A EN PESO DE LA MEZOLA.	%	4.5	4.5	4.5	4.5	15
2AGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	%	41.42	41.42	45.42		
SAGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	%	54.08	54.08	54.08		
4 FILLER EN PESO DE LA MEZULA	%	600	1100	0.00		1
S PESO ESPECIFICO DEL CEMENTO ASFACTICO APARENTE		1.016	1,016	TUTE		1
6 PESO ESPECIFICO DEL AGREGADO GRUESO - BULK	7.7 . V	2.502	2.602	2.602		
/ PESO ESPECIFICO DEL ADREGADO FINO - BULK	5. 3.	2643	2.643	2.643	100	1
8 PESU ESPECIFICU FILLER - APARENTE	52 04	2,930	2.930	2930		1
SIPESO DE LA BRIQUETA AL AIRE	3	1193.3	1195.5	1196.8		
DIPESO DE BRIDDE JAFFARAFINA AL AIRE	2	1196.6	1198.3	1199.3		10
T PESO DE LA BRIQUE IA + PARAFINA EN AGUA	3	6/1.2	671.5	673.5		1
2 VOLUMEN DE LA BRIQUETA+PARAFINA (10-11)	0.0	525.4	526.8	525.8		
3 PESO DE LA PARAFINA (10-9)	2.		-			
4 VOCOMEN DE PARAFRA (TSPE parama)	6.0.	1,122	1 445-1			10
15 VOLUMEN DE LA BRIQUETA POR DESPAZAMIENTO (12-14)	6.0	525.4	526.8	525.8	- house	
RESO ESPECIFICO BUCK DE CABRIQUE (A. 1915)	200.0	2.271	2.269	2.276	2.272	
7 PESO ESPECIFICO MOVIMO ASTM 0-2041	8.115	2,494	2,494	2.494	12000	Source of the
BVACIOS (17-15)*100/17	%	8.9	9.0	8.7	8.9	3 - 5
IMPESU ESPECIFICO BOLK DEL AGREGADO TOTAL. [24344][26]+[37](48)[05 35	2.625	2.625	2.625		
20 V.M.A. 1004(2+3+4)*(16/19)	%	17.4	17.4	17.2	17.3	Min. 14
21 VACKOS LLIENOS CON C.A. 100° (20-18)/20	%	48.6	48.4	49.2	48.7	
A PESO ESPECIFICU DEL AGREGADO TOTAL (25344)(1100/1751(5))		2.6/7	2.5//	2677		10
C.A. ABSORSIDU POR AGREGADO TOTAL (1075/122-19)((22-19)	8	8.76	0.76	0.76		1
24 CEMENTO ASFALTICO EFECTIVO 1-(23°(2+3+4)/100)	%	3.78	3.78	3.78		10
S-LLU	elm .	2.59	2.41	2.46	2.48	2 - 4
SESTABLICALI SIN CORREGIA	10	963.8	958.9	956.8	1	1
FACTOR DE ESTABLIDAD	K.	0.96	0.96	0.96		- Castoriaes
BESTABLUAD CURREGUA	50	925	949	919	937.	J. Min., 815
S ESTABLOCAC-FCCCC	200	3571	3934	3725	3745	1700 - 400
SU RELACION POLVOTASFACTO	47 7	140	1.11	1.77	1.77	0.6 - 1.6

OBSERVACIONES:
Grava triturade 1/2" Cantera "ANCOSA" 42.0%
Arena triturade" Cantera "ANCOSA" 44.0%
Arena Zarandeada Cantera "PTE LOS SERRA 14.0%
FIBRA DE TALLO DE PLATANO 5.0%

MANUEL CAST

THE CONSTITUTE OF A SEC.

MAC

Sistema Injectel de Geotecnia

Sucios y Pavimentos

Telf: 037 501000 Cel. Claro: 906279811 Cel Movistar: 979199772

Oirection: Calle Arequipa # 308 Bellavista - Sallana - Piura

Email: geopay_meastro@hotmail.com - junior_castro@hotmail.com

PROPROPUESTA DE DISENO DE MEZCLA ASFALTICA CON FIBRA DE TALLO DE PLATANO EN LA AVENDA

LOS ALGARROBOS, PIURA - 2023

TESIS

FECHA.

CANTERA CANTERA SOJO TESISTAS: RONALDO RIVERA CUNYA YUHOAN ALEXIS ESPINICIZA CORREA

Realizado Par Revisado For MAC Responsable

FECHA

M.C.G. 20/05/2024

				LABO	DRATOR	O MECANICA DE SU	JELOS, ASP	ALTO	CONC	RETO			
ů,				DS	SEÑO CO	DIGO FIBRA DE TAL	LO 5.0% N	AC-02	C.A. 5.0	76			
			EN	SAYO (RANULO	METRICO					LAVADO	ASFALTI	CO
TAMIZ ASTM	10	34"	1/2	3/8"	N. 4	№° 10	N° 40	W 60	Nº 200	<n°200< th=""><th>Peso Mat S/Lavar</th><th>9'-</th><th></th></n°200<>	Peso Mat S/Lavar	9'-	
ABERTURA EN mm	83	19.050	12,700	9.525	4.760	2.000	0.425	0.18	0.074	900	Peso Mat. Lavado	Or.	
PESO RETENIDO	gr.		2575	2405	3695	139.9	175.3	103.9	21.9	59	Peso Mat. Lav.+Filtro	or.	
RETENIDO PARCIAL	%		12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Astato	gr.	
RETENIDO ACUMULADO	%		12.0	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtro	gr.	
PASA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	fi.T	77. 3	Peso final de Filtro	gr.	
ESPECIFICACION	94	100	80 - 100	70 - 68	91-98	38 - 52	17 - 28	8-17	4 - B	16 3	Peso de Filter	gr.	8.408
ASFALTO LIQUIDO			11				775	V		11.	FRACCION	%	500
TRAMO ASFALTADO	2				Metros L	ineales:					PESO TOTAL	gr.	20000

BRIQUETAS	100	1 1 D	2	3	PRUMELIIC	ESPECIFIC
1 C.A. EN PESO DE LA MEZICIA	56	5.0	5.0	5.0	5.0	7.1.5-1.5-
Z AGREGADO GRUESO EN PESO DE LA MEZILA > Nº 4	26	41.21	41.71	41.41	100	
3 AGREGADO PINO EN PESO DE LA MEZCIA < Nº 4	25	53.79	53.79	53.79		
4 FILLER EN PESU DE LA MEZULA	26	0.00	0.00	(2.18.)		
5 PESO ESPECIFICO DEL CEMENTO ASFALTICO APARENTE		1,016	1.016	1.016		
E PESO ESPECIFICO DEL AGREGADO GRUESO - BULK		2.602	2.902	2.662		-
7 PESO ESPECIFICO DEL AGREGADO FIND - BULK		2,643	2.643	2.643		
PESO ESPECIFICO FILLER - APARENTE	50	3.000	3,000	3.000		
PESO DE LA BRIQUETA AL AINE	4	1188.9	1136.5	1154.2		-
PESO DE BRIQUETAPPARAFINA AL ARIE	9	1189.9	1156.7	1756.1		
PESO DE LA BRIQUETA + PARAFINA EN ASUA	9	669.0	670.0	873.9		
2 VOLUMEN DE LA BRIQUETA+PARAFINA (10-11)	0.6	520.9	518.7	522.2		
3 PESO DE LA PARAFINA (1049)	O'.					
4 VOLUMEN DE PARAFNA (13 Pe paratha)	3.0					
5 VOLUMEN DE LA BRUIJE NA POR DESPAZAMENTO (12-14)	0.0	SOUTH	5167	-502.2		
E PESU ESPECIFICO BULK DE LA BRIDA E (A. (\$15)	SVC.C. 1	2252	2.288	7.280	1.200	
7 PESO ESPECIFICO MAXIMO ASTINIO 2041		2.470	2.476	2.470		
8 VACIOS (17-16) 100/17	76 .	7.5	7.4	1.4	7.5	3.5
PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)/(2/6)+(3/7)+(4/8)/	33	2,625	2,625	2,625	211	05,200,80
OV.MA. 100-(2+3+4)7(16/19)	%	17.4	17.2	17.2	17.3	Min. 14
1 VACIOS LLENOS CON C.A. 100°(20-18)(20	%	963	57.0	56.9	56.7	C- 2011
Z PESO ESPECIFICO DEL AGREGADO TOTAL (24344) (10017)-(15)		2,672	2,672	2.6/2		
S C A ABSURBUU PUR AGREGADO TOTAL (150°5°(22-19))(22°19)	76	0.68	88.0	0.68		-
A CEMENTO ASPACTICO EFECTINO 1-(23"(2+3+4)(100)	78	4.36	4.38	4.36		
5 FCC00	mm	2.85	330	2.90	2.92	2 - 4
ESTABLICAD SIN CORRECIN	RQ	1314.0	1042.1	1930.1	-	
7 FACTOR DE ESTABLIDAD	K	1.00	1.00	1.00		20242.22
BESTABLIDAD CORRECIDA	Ko	1314	1842	1030	1125	Min. 815
SESTABLIDAD-RULIO	7000	4611	3474	3552	3879	1700 - 400
RELACION POLVO 7 ASPACTO	1	7.53	1.53	1.53		0.6-1.6

OBSERVACIONES

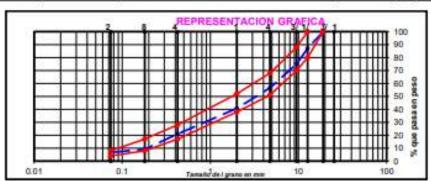
Disse MACOUNES
Grave triturade 1/2" Canters "ANCOSA" 42.0%
Avena triturade" Canters "ANCOSA" 44.0%
Avena Zarandeada Centers " PTE LOS SE 14.0%
FIBRADE TALLO DE PLATANO 5.0%

CONSTRUCTOR PAV SAC

RUC: 20602407021 Sistema Integral

Co Geotecnia
Suelos y Parimentos
Telt: 037 501000 Cel. Claro: 986279811 Cel Mevistar: 979199772
Direction: Calle Acequipa # 308 Bellavista - Sallena - Piura
Email: geopov_mcastro@hotmail.com - junier_castro@hotmail.com

PROPROPUESTA DE DISERIO DE MEZCILA ASFALTICA CON FERA DE TALLO DE PLATANO EN LA AVENDA Revisado Por : P.C.A. Revisado Por : MAC TESIS


Revisado Por MAC

CANTERA CANTERA 5030

BOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

Responsable :MCG FECHA. 20/05/2024

				LA	BORATORIO	MECANICADE SU	ELOS, ASFA	LTOY	CO	NCRE	TO		
				D	ISENO COL	DIGO FIBRA DE TAL	LO SON MA	C-02 C	A	5.5%	Si as		stores atten-
30		vi-00	ENS	AYO G	RANULOME	TRICO	35.75		98	9	Ü	WADO	D ASFALTICO
TAMIZ ASTM		3/4"	1/2	3/8	Nº 4	Nº 10	Nº 40	N* 88	2	<n°200< th=""><th>Peso Mat. S/Lavar</th><th>gr.</th><th></th></n°200<>	Peso Mat. S/Lavar	gr.	
ABERTURA EN mm		19.050	12,700	9.525	4.760	2.000	0.425	0.18	ø	9 7	Peso Mat. Lavado	gr.	
PESO RETENIDO	gr.	1.	2575	2405	3605	139.9	175.3	103.9	Ħ	59	Peso Mat. Lav.+Fit	gr.	
RETENIDO PARCIAL	%	d R	129	120	18.5	15.8	19.9	11.8	H	6.7	Peso de Asfalto	Or.	
RETENIDO ACUMULADO	%	30093	12.9	24.9	43.4	59.2	79.1	8.00	Ħ	100.0	Pese inicial de Filtr	gr.	
PASA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	Ħ		Peso final de Filtro	or.	
ESPECIFICACION	%	108	80-100	70 - 88	51 - 68	38 - 52	17 - 28	8-17	Н		Peso de Filler	gr.	8.4087
ASFALTO LIQUIDO											FRACCION	%	500
TRAMO ASFALTADO				8	Metros Lin	coles:				- 8	PESO TOTAL	or.	20000

BRIQUETAS	Mr.	1	2	3	PROMEDIO	ESPECIFICACION
1 C.A. EN PESO DE LA MEZCLA	56	5.5	5.5	5.5	5.5	120-20-00
Z AGREGADU GRUEBU EN PEBO DE LA MEZILLA > Nº 4	%	40.95	4338	40.99		
3 AGREGADO FIND EN PESO DE LA NEZCLA < Nº 4	5	53.51	53.51	53.51		
4 FILLER EN PESO DE LA NEZCLA	15	0.00	0.00	0.00		
5 PESU ESPECIFICU DEL CEMENTO ASPALTICO APARENTE	25 25	7.075	1.1/16	1.075		ì
S PESU ESPECIFICU DEL AGREGADO GRUESO - BOLK		2.602	2.802	2,602		
7 PESO ESPECIFICO DEL AGREGADO FIND - BULK	0.0	2.643	2.643	2.643		
8 PESO ESPECIFICO FELER - APARENTE		3.000	3.000	3.000		
9 PESU DE LA BRIQUE (A AL ANE	2	1196.6	1184.4	1155.8		1
TO PESO DE BRIQUE JAPPARAFINA AL AIRE	2	1198.6	1187.1	1190.2		1
11 PESO DE LA BRIQUETA + PARAFINA EN AGUA	Of .	682.5	675.3	675.8	- 3	
12 VOCUMEN DE LA BRIQUETA-PARAFINA (10.11)	6,6.	516.1	511.8	514.4		
TUPESO DE LA PARAFINA (10/9)	9.	777000		23-17 mm		
14 VOLUMEN DE PARAFINA (13 Pe parafina)	0.0	40		Same and		
15 VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	6,6	516.1	511.8	514.4		1
16 PESO ESPECIFICO BOLK DE LA BRIDGE (A. 1915)	\$7C.C.	2,319	2.314	2,311	2.315	
17 PESID ESPECIFICO MAMINO ASTIMO-ZUAT		2.444	2.444	2.444		
18 VACIOS (17-16)/100/17	56	5.1	5.3	5.5	5.3	3 - 5
10 PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)/(246)+(3/7)+(4/8))		2.625	2.625	2,625		
Zi V.MA. 100-[2+3+4] (16/19)	%	10.5	16.7	16.8	15.7	Mab. 14
21 VACIOS LLENOS CON C.A. 100°(20-18)/20	%	68.9	68.1	67.6	68.2	
22 PESD ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)-(1/5))	20.00	2.662	2.662	2,662		
ZSICIA ABSURBUO FUR ALREGADO TOTAL (1005 (22-19)) (22-19)	- 5	0.54	0.54	0.54		
24 CEMENTO ASPACTICU EFECTIVO 14/23 (24:344) 100)	9	4.50	4.99	4.59	20000 3	101120-1
25 PLUIO	550	3.25	3.18	3.30	3.24	2 - 4
26 ESTABLIDAD SN CORREGR	Kq	1153.6	11727	1176.7	25,000	12025
27 FACTOR DE ESTABLIDAD	6	1.00	1.00	1.80		1
28 ESTABLUAD CORREGUA	54	1153.6	1173	1177	1888	Min. 815
20 ESTABLEAD FLUID	17 17	3548	3694	3564	3602	1700 - 4000
3U RELACION PULVO LASPALTO	3 5	1.34	1.34	1.34	1.34	0.6 - 1.6

OBSERVACIONES:
Grava triturada 1/2" Cantera "ANCOSA" 42.0%
Arena triturada" Cantera "ANCOSA" 44.0%
Arena Zarandeada Cantera "PTE LOS SEI 14.0%
FIBRA DE TALLO DE PLATANO 5.0%

MANUAL CALL

Ing Words for Days Cares Waln

CONSULTGEOPAV SAC RUC: 20502407021 Sissiema Integral

Succession Succession Parimentos

Telt: 037 501000 Cel. Claro: 986279811 Cel Movistor: 979199772

Direccion: Celle Arequipa # 308 Bellavista Sullana Piura

Email: geopav_mostro@hotmail.com junior_castro@hotmail.com

PROPROPUESTA DE DISENO DE MEZCIA ASFALTICA CON FIBRA DE TALLO DE PLATANO EN LA AVENDA Realizado Por TESIS

LOS ALGARROSOS, PLIRA - 2023

Revisado Por MAC

P.C.A.

CANTERA CANTERA SOJO

FECHA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

Responsable :M.C.G. FECHA

20/05/2024

				LAB	ORATOR	O MECANICA DE	SUELOS, A	SFALT	DYCO	NCRET	0		
				D	sevo co	DIGO FBRA DE	FALLO S.Ø	MAC-	02 C.A.	50%			
0			ENS	AYO G	RANULON	ETRICO					LAVA	00 A	SFALTICO
TAMIZ ASTM		3/4"	1/2	3/8"	Nº 4	Nº 10	N* 40	Nº 80	N* 200	<n°200< th=""><th>Peso Mat. SiLavar</th><th>OF.</th><th></th></n°200<>	Peso Mat. SiLavar	OF.	
ABERTURA EN mm		19.050	12,700	9.525	4.790	2.000	0.425	0.18	0.074		Peso Mat. Lavado	OF.	
PESO RETENIDO	gr.		2575	2405	3695	139.9	175.3	103.9	21.9	59	Peso Mat. Lav.+Filtro	gr.	
RETENIDO PARCIAL	%		12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfaño	gr.	
RETENIDO ACUMULADO	%		12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtro	gr.	
ASA	%	100.0	87,1	75.1	56.6	40.8	20.9	9.2	5.7	5. 3	Peso final de Filtro	gr.	
SPECIFICACION	5	100	80 - 100	70 - 88	51 - 58	38 - 52	17 - 28	8-17	4 - 8		Peso de Filler	Or.	11931
ASFALTO LIQUIDO				1000							FRACCION	.%	500
TRAMO ASFALTADO					Metros Li	noales:					PESO TOTAL	Ø.	20000

BROUDETAS	M.	1100003	4 × ×		PHUMEUIU	ESPECIFICACIO
1 C.A. EN PESO DE LA MEZICLA	% (1)	6.0	6.0	6.0	6.9	
ZAGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	%	40.71	45,77	40.71		8.
3 AGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	5	53.23	53.23	53.23		5
4 FLUER EN PESO DE LA MEZICIA	5	0.00	0.00	5.60		55.
S PESU ESPECIFICU DEL CEMENTO ASPALTICO APARENTE		1.1/10	1.016	1.016		
6 PESO ESPECIFICO DEL AGREGADO GRUESO - BULX		2.602	2.602	2.602	13	1
7 PESO ESPECIFICO DEL AGREGADO FINO - BULK	0.0	2.643	2.543	2.643		9
S PESU ESPECIFICO FILLER - APARENTE	100	4000	3.000	2 000		
PESO DE LA BRIQUETA AL AIRE	3	1185.7	1189.3	1192.2		
N PESO DE BRIQUETA+PARAFINA AL ARIE	Œ	1187.2	1191.3	1194.6		
T PEBU DE LA BRIQUETA * PARAFINA EN AGUA	2	507.1	6/5.6	682.2		
Z VOLUMEN DE LA BRIQUETA+PARAFINA (10-11)	C.C.	550.5	511.7	512.4		10
3 PESO DE LA PARAFINA (10.9)	Or.					
4 VCLUMEN DE PARAFINA (19/Pe parafina)	0.0				1 1	
SVOLUMEN DE LA BROCLETA POR DESPAZAMENTO (12-14)	0,0	510.1	511.7	512.4		10
EPESO ESPECIFICO BULK DE LA BRIQUETA (9/15)	QE/G.C.	2.324	2.324	2.327	2.325	Çi.
7 PESO ESPECIFICO MAXIMO ASTMID-2041		2.418	2.418	2.418		7.
EWACIOS (17-16/10017	%	3.9	39	3.8	5.8	3 - 5
PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)((28)+(3/7)+(48))	31	2.625	2.625	2,625		E 10 10
OVMA: 100-(2+3+4)/(16/19)	%	16.8	16.0	16.7	75.7	Min. 14
WALLUS LLENUS CON C.A. 100 (20 TE)20	50 0	1730	76.9	11.4	11.1	
2 PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)(115))	7	2.661	2.651	2.661		
3 C.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(22-19)() 22°19)	%	0.38	0.38	0.38		
A CEMENTO ASFACTICO EFECTIVO 1422 (24344)100)	20	5.64	5.64	5.54	Coom	2-aron-
SFLUIO	2671	3.43	3.51	3.56	3.50	2-4
S ESTABLIDAD SIN CORREGR	Kg	1207.8	1145.5	1192.8	1	-
7 FACTOR DE ESTABLIDAD	K	1.00	1.00	1.00	1.05500	Section 2
BESTABLEAD CORREGIDA	Kg .	1208	1147	1193	1182	Min. 815
S ESTABLIDAD-FUUID	7 10	3522	3271	3354	3383)	1700 - 4000
U RELALION POLIVO / ASFACTO		1.18	1.76	1.15	71.10 /1	0.6 - 1.6

OBSERVACIONES:

Grave triturada 10" Cantera "ANCOSA" 42.0% Arena triturada" Cantera "ANCOSA" 44.0% Arena Zarandeada Cantera " PTE LOS SE 14.0% FIBRA DE TALLO DE PLATANO 5.0%

by Hope for the carry than

RUC: 20602407021 Sissiema Integral

Sucios y Parimentos

Telt 037 501000 Cel. Claro: 986279811 Cel Movistor: 979199772

Direccion Celle Aregoipe # 308 Bellavisto Sullana Piera

Email: geopey_mcastro@hotmail.com junior_castro@hotmail.com

PROPROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENDA Realizado Por LOS ALGARROBOS, PLIRA - 2123 P.C.A. TESIS CANTERA SOJO MC.B. CANTERA Responsable SOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA **FECHA** 20/05/2024

ACCIONAL MANAGEMENT		-	20.1.77								200000000000000000000000000000000000000		00010000
				LABOR	ATORIO I	MECANICADE SU	ELOS, ASF	ALTO Y	CONC	RETO			
				DISE	уо сорк	DO FIBRA DE TAL	LO 5.8% M	AC-02	C.A. 6.5	16			
Managara -			ENS	AYO G	RANULO	METRICO	and the same of	100000	100000		LAVADO	ASFAL	TICO
TAMIZ ASTM	0	3/4"	1/2"	3/8"	M* 4	Nº 10	N* 40	N" 80	N° 200	<n"280< th=""><th>Peso Mat. S/Laver</th><th>ar.</th><th>10000</th></n"280<>	Peso Mat. S/Laver	ar.	10000
ABERTURA EN mm		19.050	12,700	9.925	4.760	2.000	0.425	0.18	0.074		Peso Mat. Lavado	gr	
PESO RETENIDO	œ.		2575	2405	3995	139.9	175,3	103.9	21.9	59	Peso Mat. Lav. +Filtro	gr.	
RETENIDO PARCIAL	%	33 3	12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfalto	gt	
RETENIDO ACUMULADO	%	35 50	12.9	24.9	43.4	50.2	79.1	90.8	93.3	100.0	Peso inicial de Filtro	gt.	
PASA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	-	Paso final de Fitro	gr.	
ESPECIFICACION	.96	100	80 - 100	70 - 88	51 - 6B	38 - 52	17 - 28	8 - 17	4 - 8	8 3	Peso de Filler	gr.	
ASFALTO LIQUIDO	-	5 5		V	20.00		400		Ús	55 E	FRACCION	.%	500
TRAMO ASFALTADO					Metros L	ineales:					PESO TOTAL	OF.	20000

CHECKUP MADRILLI APPRID ACCO

BRIQUETAS	Nº I	- The second	2	3	PROMEDII	ESPECIFIC
1 C.A. EN PESO DE LA MEZCLA	%	6.5	6,5	6.5	6.5	Treasure of
ZAGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	%	40.56	40.56	40.56	1170	
3 AGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	%	10 01	52.94	52.94		
4 FILLER EN PESU DE LA MEZCIA	No.	0.00	17.00	17.181	-	î .
- 5 PESU ESPECIFICU DEL CEMENTO ASFALTICO APARENTE		1.016	1.016	1,076		1
6 PESU ESPECIFICO DEL AGREGADO GRUESO - BULK		2602	2.602	2.802		
T PESO ESPECIFICO DEL AGREGADO FINO - BULK		2.643	2.643	2.643		
8 PESO ESPECIFICO FILLER - APARENTE		3.000	3,000	3.000		
9 PESO DE LA BRIQUETA AL ARE	3	1199.3	1200.0	1196.6	_	i i
TO PESU DE BRIQUE TAPPARAFINA AL ARIE	2	1201.3	1202.3	1198.2		1
11 PESO DE LA BRIQUETA + PARAFINA EN AGUA	or	682.2	681.3	681.2		1
12 VOLUMEN DE LA BRIDGETA+PARAFINA (10-11)	6.6.	519.1	521.0	517.0	1	
13 PESU DE LA PARAFINA (10-0)	9.				_	1
14 VULUMEN DE PARAFINA (1.5Po parafra)	6.C.			100	_	î -
15 YOLUMEN DE LA BRIQUE JA PUR DESPAZAMENTU (12-14)	0,0,	519.1	521.0	517.0		
16 PESO ESPECIFICO BULK DE LA BRIQUETA (9/15)	atic.c	2,310	2,393	2.315	2.389	
17 PESO ESPECIFICO MAXIMO ASTM D-2041		2.381	2.381	2.381		
18 VACIOS (17-16/1/00/17	%	3.8	8.2	2.8	3.0	2 - 4
19 PESO ESPECIFICO BULK DEL AGREDADO TOTAL (2+3+4)((2-6)+(3/7)+(4-8))		2.625	2,525	2.825		
20 V.NEA 100-(2+3+4)*(16/19)	%	17.7	18.0	17.6	17.7	Min. 14
21 VACIOS LLENOS CON C.A. 1007 (20-18)/20	%	83.3	819	84.2	83.1	
22 PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)-(1/5))		7,626	2,626	2.626		
23 C.A. ABSURBLU PUR AGREGADU TUTAL (100°5 (22-19))(22°19)	%	0.01	0.01	0.01		1
24 CERENTO ASPACTICO EFECTIVO 1-(25*(2+3+4)/100)	No.	8.48	8.49	8.45		Î
25 FLUIO	mm .	3.66	3.76	3.68	3.70	2 - 3.6
26 ESTABLIDAD SIN CORREGR	Ko	929.7	913.6	968.6		
27 FACTUR DE ESTABLICAD	K	1.00	1,00	1.00		1
28 ESTABLIDAD CURREGIDA	KG:	930	914	909	917	Mit. 815
ZW-STABLUADFLUUU		2542	2430	2467	2480	1700 - 4000
30 RELACION POLYO / ASFAL TO		7.03	1383	1.03	T.03	0.6 - 1.6

MAIN TO CALL

DBSERVACIONES:
Grava triturada 1/2" Cantera "ANCOSA." 42.0%
Arena triturada" Cantera "ANCOSA." 44.0%
Arena Zaranda ada Cantera " PTE LOS SE 14.0%
FIBRA DE TALLO DE PLATANO 5.0%

Ing Many Fert Mago Lacin Lilate C. I P. N° 294740

PESO ESPECIFICO MAXIMO ASTM D-2041

TESIS

PROPROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE Realizado Por P.C.A.

LOS ALGARROBOS, PIURA - 2023

Revisado Por : MAC.

MUESTREO CANTERA SOJO

Responsable. M.C.G.

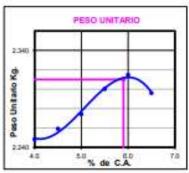
SOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

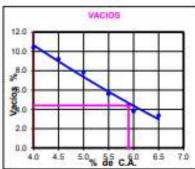
FECHA 20-05-2024

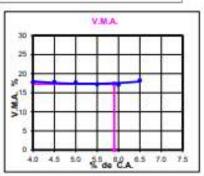
LABORATORIO MECANIC	ADE SUE	LUS, ASI	ALIUT	UNCRE	U	_	_
ENSAYO	Nº	1	2	3	4	5	6
CEMENTO ASFALTICO	%	4.00	4.50	5.00	5.50	6.00	6.50
PESO DEL MATERIAL	Gr.	1205.3	1200.8	1201.6	1200.9	1200.9	1200.3
PESO DEL AGUA + FRASCO RICE	Gr.	7705.0	7705.0	7705.0	7705.0	7705.0	7705.0
PESO DEL MATERIAL+FRASCO+AGUA (en aire)	Gr.	8910.3	8905.8	8906.6	8905.9	8905.9	8905.3
PESO DEL MATERIAL +FRASCO+AGUA (en agua)	Gr.	8431.3	8424.3	8420.2	8414.6	8409.2	8401.1
VOLUMEN DEL MATERIAL	C.C.	479.0	481.5	486.4	491.3	496.7	504.2
PESO ESPECIFICO MAXIMO	Gr/c.c	2.516	2.494	2.470	2.444	2.418	2.381
TEMPERATURA DE ENSAYO	°C	25°C	25°C	25°C	25°C	25°C	25°C
GRAVA TRITURADA 3/4"	%	45.0	45.0	45.0	45.0	45.0	45.0
ARENA TRITURADA 1/2"	%	45.0	45.0	45.0	45.0	45.0	24.0
ARENA ZARANDEADA 3/16"	%	9.5	9.5	9.5	9.5	9.5	51.0
FILLER (CEMENTO PORTLAND)	%	0.5	0.5	0.5	0.5	0.5	0.5
TIEMPO DE ENSAYO	Min.	25	25'	25'	25'	25'	25
CORRRECCION POR TEMPERATURA	- Constant	1.000	1.000	1.000	1.000	1.000	1.000

OBSERVACIONEDISEÑO CON 5.0 % DE FIBRA DE TALLO DE PLATANO

MANUEL GAS

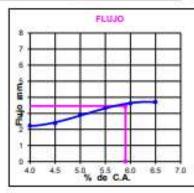

Market Dego Castro L Commence Cross. Commence Cross.

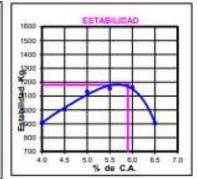



RUC: 20602407021 Sistema Integral

Ge Geotecnia
Suelos y Pavimentos
Tail: 037 501000 Cel. Clare: 986279811 Cel Movime: 979199772
Direction: Calle Arequipa # 308 Bellevista Sullana Piura
muil: geopey meastro@hotmail.com junior castro@hotmail.com

	CONTROL DE CALEAD DETERMINACION DEL DIPTIMO CONTEMDO DE ASFALTO	
TESIS:	PROPUESTA DE DISEÑO DE MEZICIA ASFÁLTICA CON PERRA DE TALLO DE PLÁTAMO EN LA AVENDA LOS ALGARROROS, PURRA - 2023	
	Fecta de Es	nsayo: 20/852624
Material	MAC MODIFICADO CON 1937 N DE FIERA DE TALLO DE PLATANO REMARANDO REMARANDO DE PLATANO	DOT: ELIAN AGUMRE
Cartiera :	CAMTERA SOJO Revisado po	OF: JUNIOR CASTRO AGURRI
SOLICITA:	TESISTAS: HOMALDO HIVERA CUNTA Y JHOAN ALEXIS ESPINOZA CORREA Respinsalis	MANUEL CA STRO GALL
	LABORATORIO DE MECAMICA DE SIJELOS, ASTALTO Y CONCRETO	





Cemento Asfáltico de PEN 60/70

	-0.30%	DPTMO % C.A	0.30%	ESPECIFICACION
GOLPES POR LADO	3	75		75
CEMENTO ASFALTICO		5.90		(+/- 0.3%)
PESO UNITARIO	8	2.310		40 - 12 - 12
VACIOS		4.4		3 - 5
V.M.A		17.3		Min 14
VACIOS LLENOS CON C.A.	2	73.0		
FLUJO	2.0	3.46		2 - 4.0
ESTABILIDAD	2	1180		Min. 815
ESTABILIDAD / FLUJO		3410		1700 - 4000
9 9				1 2
DOSIFICACION				
Grava triturada 1/2" Cantera "ANC	OSA" 42.	0 %		
Arena triturada" Cantera " ANCOS	A" 44.	0 %		
Arena Zarandeada Cantera " PTE L	OS SERF 14.	0 %		
RRADE TALLO DE PLATA	NC 10.	0 %		
		eu.	L. C. C. C.	

5.90 %

de Geotecnia Suelos y Pavimentos

Telf: 037.501000 Cel. Claro: 986279811 Cel Movistar: 979199772 Direccion: Celle Arequipa # 308 Bellavista - Sultana - Piura Email: geopav_mcastro@hotmail.com - junior_castro@hotmail.com

TESIS:	PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENDA	Realizado Por	:P.C.A.	
	LOS ALGARROBOS, PURA - 2023	Revisado Por	:MAC	
CANTER	MANCOSA (SOJO)	Responsable	MC.G.	
SOLICIT	A TESSTAS: RONALDO RIVERA CUNYA Y JHOWN ALEKIS ESPINOZA CORREA	FECHA	20/05/2024	

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO

					D	SENO CODIGO FIBRA	DE TALLO	10.0%	MAC-02	CA.4	10%		3
				ENSAY	O GRANU	LOMETRICO					LAVA	DO ASFALTICO)
TAMIZ ASTM		34"	1/2	78.	MA.	M* 10	N*40	N° 80	M* 200	KN'ZH	Peso Mat. SiLavar	Ø	
ABERTURAEN mm		19.050	12,700	9.709	4.790	2.000	0.425	0.18	0.074	7	Peso Mat. Lavado	σ.	
PESO RETENIDO	œ.		2575	2405	3695	139.9	175.3	103.9	21.9	59	Peso Mat. Lav.+Filtro	OT.	
RETENIDO PARCIAL	%	0	129	12.0	18.5	15.8	19.9	11.8	25	6.7	Peso de Astallo	gr.	
RETENIDO ACUMULA	%	. 0	12.9	24.9	42.4	59.2	79.1	90.6	93.3	100.0	Peso inicial de Filtro	gr.	
PASA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	3	Peso final de Fitro	gr.	
ESPECIFICACION	%	100	90 - 100	70-88	St - 68	38 - 52	17-28	\$-17	4 - 8	-	Peso de Filler	g.	13.303
ASFALTO LIQUIDO			-	- 42	A	AND THE RESERVE OF THE PERSON	12.	S 5			FRACCION	%	500
TRAMO ASFALTADO	-			1	Metros L	incales:					PESO TOTAL	gr.	20000

BRIQUETAS	P 1	1 1	2	1 3	PROMEDIO	ESPECIFICACION
SICA ENPESODE LAMEADIA	%	4.0	4.0	4.0	4.0	
ZAGREGADO GRUESO EN PESO DE LA MEJOLA > Nº 4	5	41.54	41.54	41.54		
MAGREGADO FINO EN PESO DE LA MEZOLA < Nº 4	5	54.36	54.36	54.36		
4 FILLER EN PESO DE LA MEZOLA	15	0.00	0.00	0.00		
S PESO ESPECIFICO DEL CEMENTO ASFALTICO APVINENTE	100	1.0%	1,016	1.015		
6 PESU ESPECIFICO DEL AGREGADO GRUESO - BULK	10.0	2.002	2.902	2.502		
7 PESO ESPECIFICO DEL AGREGADO FINO - BULK	7. 3	2.643	2.643	2.543		
8 PESO ESPECIFICO FILLER - APARENTE		0.000	0.000	0.000		
SPESO DE LA BRIQUETA AL ARE	9	1189.9	1191,5	1195.9		
TO PESO DE BRIQUETA-PARAFINA AL ARE	0.	1190.1	1198.6	1158.9		
HI PESO DE LA BRIDGETA + PARAFINA EN AGUA	0	664.5	667.5	668.0		
12 VOLUMEN DE LA BRIQUETA-PARAFINA (10-11)	2.3	201	537.1	530.9		
13 PESCI DE LA PARAFINA (10-9)	gr.					
14 VOLUMEN DE FARAFINA (13 Pe paratina)	66.		11.92.11			
15 YOLUMEN DE DA BRIQUETA POR DESPAZAMIENTO (12-14)	5.6.	529.1	501.1	530.9		
IS PESO ESPECIFICO BULK DE LA BRIQUETA (915)	gric c.	2349	7.243	2,253	2.340	
17 PESU ESPECIFICU MAXMU ASTM 0-2041		2,509	2501	4,509		
18 WACKS (17-96)*100/17	76	10.4	10.6	10.2	101.4	1 - 5
SPESO ESPECIFICO BOLK DEL AGREGADIO TOTAL (2+3+41)(2/6)+(3/7)+(4/8))		2.525	2,625	2,625		
20 7月人 (ID-12-3+47 (B/H))	N .	17.6	18.0	17.6	17.8	Min. 14
1 (ACIDS LIENOS CON C.A. 100/20-18)20	8	415	41.0	41.9	41.5	
2 PESO ESPECIFICO DEL AGREGADO NOTAL (25344)((100/17)-(115))		2673	2.673	2.673		
C.A. ABSURBIDD FOR AGREGADD TOTAL (1907) (22-19)(122-19)	%	E.70	6.70	0.70		
A CEMENTO ASPACTICO EFECTIVO 1 (ZIY)2+3+4)Y001	%	1.33	3.33	3.33		
25 FLUXO	min .	2.29	2.24	2.16	2.23	2 - 4
TESTABLIDAD SINCORREGR	Ke	350.7	965.8	938.7		
PFACTOR DE ESTABLIDAD	K	8.96	0.96	0.96		
SESTABLUAL CONNEIGUA	KD	893	927	361	967	Mar. 815
PRESTABLICAD-FEGIO		3908	4148	4174	4677	1700 - 4000
NO PELACION POLYO / ASFALTO		201	2.01	2.01	2.0%	# 0E-15

OBSERVACIONES:

Grave triturada 12" Cantera "ANCOSA." 42.0%.
Arena triturada" Cantera "ANCOSA." 44.0%.
Arena Zarandeada Cantera "PTE LOS SE 14.0%. FIBRA DE TALLO PLATANO

hig shirts for hope care relate

TESIS

CONSULTGEOPAV SAC

RUC: 20002407021 Sistema Integral

de Geotecnia

Suelicity Pavimentos
Telf: 037-501000 Cel. Claro: 986279911 Cel Movistar: 979199772
Direccion: Calle Arequipa # 308 Bellavista - Sullana - Piura
Email: geopav_mcastro@batmail.com - junior_castro@batmail.com

PROPUESTA DE DISENO DE MEZCLA ASFALTICA CON FIBRA DE TALLO DE PLATANO EN LA AVENIDA. LOS ALIGARNOSOS, PORA - 2023

CANTERA SOJO TESISTAS: HONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA SOLICITA

P.C.A. MAC MCG Realizado Por Revisado Por Responsable 1005903 **FECHA**

LABORATORIO MECANICADE SUELOS, ASFALTO Y CONCRETO

				DASE	Wo сарка	O FIBRA DE TAL	LO 10.0% A	(AC-02	CAA	5.%			
		11 1	ENSA	YO GR	ANULOME	TRICO	-		_		LAW	ADD A	SFALTICO
TAMIZ ASTM	П	3/4"	1/2"	3/6"	Nº 4	Nº 10	Nº 40	Nº 80	Nº 200	<n°290< th=""><th>Peso Mat. S/Lavar</th><th>gt.</th><th></th></n°290<>	Peso Mat. S/Lavar	gt.	
ABERTURA EN mm		19.050	12,700	9.525	4.760	2,000	0.425	0.18	0.074	1	Peso Mat. Lavado	gt.	
PESO RETENIDO	gr.		2575	2405	3695	139.9	175.3	103.9	21.9	59	Peso Mat. Lav.+Fits	gi.	0
RETENIDO PARCIAL	15	5. 5.	12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfalto	gr.	6
RETENIDO ACUMULADO	%	9 5	12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtre	gr	
PASA .	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	38	Peso final de Fittro	gt.	8
ESPECIFICACION	%	100	80 - 100	70 - 88	51 - 68	38 - 52	17 - 28	8-17	4+8	316	Peso de Filier	gr.	8.4087
ASFALTO LIQUIDO	Т									- 1	FRACCION	%	500
TRAMO ASFALTADO	Т				Metros Lin	icales:				7	PESO TOTAL	gt.	20000

BRIQUETAS ENSAYO MARSH	D.O.	D-1209	1 2	3	benuenin	ESPECIFICACION
TICA ENPESO DE LA MEZCLA	De .	4.5	4.5	4.5		COLECULICATION
ZAUREGADO GROESO EN PESO DE LA MEZICA > Nº 4	75	4142		41.42	4.5	
3 AGREGADO PRO EN PESO DE LA NEZULA < Nº 4	70	5418	41.42 54.00	54.08	-	
	70				-	
4 FELER ENPESO DE LA MEZOLA	75	0.00	0.00	0.00		
5 PESU ESPECIFICO DEL CEMENTO ASFACTICO APARENTE	_	1.09e	1.016 2802	1.016	-	
FESU ESPECIFICUIDEL AGREGADO DICUESO - BILLIX	_	2.902		2.602		
7 PESO ESPECIFICO DEL AGREGADO FINO - BULK	-	2.643	2.643	2.643		
8 PESO ESPECIFICO FLUER - APARENTE		2.930	2,930	2.930		
PESO DE LA BRIQUE IA AL AIRE	9	1190.5	1196.2	1195.4		
IN PESO DE BRIQUETA+PARAFINA AL AIRE	OF .	1193.6	1199.0	1198.8		
11 PESO DE LA BRIQUETA + PARAFINA EN AGUA	OF .	666.0	670.0	569.E		
12 VOLUMEN DE CABRIQUE TAPPARAFINA (10-11)	0.6.	527.6	52910	52912		
13 PESO DE LA PARAFINA (10-9)	Qr.	5.0-0.5		10000		
14 VOLUMEN DE PARAFINA (13Pe parafina)	0.0.	Mark Land		Constant of the last		
15 VOLUMEN DE LA BRIQUE (A PUR DESPAZAMENTO (12-14)	0.0.	527.6	529.0	529.0		
16 PESU ESPECIFICU BODA DE CABROQUETA (1915)	gra.c.	2.250	2.261	2,260	2.298	
17 PESO ESPECIFICO MAXIMO ASTM 0-2041		2.488	2.488	2.488		
18 VALUOS (17-16)*100/17	76	9.3	9.1	9.2	9.2	3 - 5
TO PESU ESPECIFICU BOLK DEL AGREGADO TOTAL (2+3+4)((2-6)+(37)+(4/8))		2.625	2,625	2,525		
23 V.M.A. 100-(2+3+4)*(16/19)	%	17.9	17.7	17.8	17.8	Min. 14
21 VACIDS LLEND'S CON C.A. 100°(20-18)(20	76	48.0	48.6	48.4	483	
ZZ PESU ESPECIFICO DEL ALBEGADO TOTAL (2+3+4)([100/17]-[1/5]]		2.671	2,671	2,671		i
23 C.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(22-19)(4/22°19)	76	0.66	6.66	0.66		
24 CEMENTO ASFALTICO EFECTIVO 1-23" (2+3+4) 100	75	3.87	3.87	3.87		2000
SELUX	7000	2.51	2.34	2.29	238	2.4
RESTABLIDAD SIN CORREGIR	Kn	1024.1	1050.2	1064.2		7000
77 FACTOR DE ESTABLIDAD	K	0.96	0.96	0.96		
RESTABLICAD CORREGIOA	50	963	1008	1922	1992	Mill. 815
SESTABLUAU-FUUU	-	200	4334	4469	420	1/00 - 4000
SURELACION PULVO / ASPALTU	1	1.73	1.73	1.73	1.73	U.S - 1.E

MANUEL CAS

OBSERVACIONES: Grava triturada 1/2" Cantora "ANCOSA" 42.0% Arena triturada" Cantera "ANCOSA " 44.0%. Arena Zarandeada Cantera " PTE LOS SERR. 14.0%. FIBRA DE TALLO DE PLATANO 10.0%.

NE VOTE AND LINE DE LES CONTRACTOR DE LES CONTRA

CONSULTGEOPAV SAC

17 - 28 8 - 17 4 - 8

RUC: 20002407021 Sistema Intectal

de Geotecnia

Suelos y Pavimentos
Tell: 037.501000 Cel. Claru: 986279811 Cel Movistar: 979199772
Direccion: Celle Arequipa # 308 Bellavista Sullana Piura
Emuit: geopay meastro@hotmail.com junior castro@hotmail.com

TESIS PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENDA. LOS ALGARROBOS, PILIRA - 2023

38 - 52

Metros Lineales:

MANUEL CAST 4-4-11%

CANTERA CANTERA SOJO FECHA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

% 100 50-10070-66 51-66

P.C.A. Realizado Por Revisado Por Responsable MCG. FECHA 20/05/2024

g.

8

8,4087

500

20000

				LABO	DRATORIO MECANICA DE SU	ELOS	, 45	ALTO	Y COM	CRETO	
_				DIS	END CODIGO FIBRA DE TAL	LO 10	15	MAC-80	CA. 5	1%	
		EN	SAYO 6	RANUL	OMETRICO					LAVAC	O ASFALTICO
I	34"	1/2"	38	Nº4	Nº 10 Nº 4	0 N	*80	M* 200	KN*200	Peso Mat. S'Lavor	gr.
I	19.060	12.700	9.525	4,760	2.000 0.42	5 0	48	0.074		Peso Mat. Lavado	g.
Ī	7	2575	2405	3895	139.9 175	3 10	15.9	219	SB	Peso Mat. Lav.+Filtro	gr.
	%	12.9	12.0	18.5	15.8 19.1	9 t	1,8	2.5	6.7	Peso de Astalto	g.
Ī	%	12.9	24.9	43.4	59.2 79.	1 9	0.8	953	100.0	Peso inicial de Filtro	g.
T	% 100.0	87.1	75.1	56.6	40.8 20.	9 9	2	6.7		Peso final de Filtro	or.

Peso de Filler

FRACCION

PESO TOTAL

	2 8	REPRESEN	ACION GR	A LAND	
170					Ш .
1015				W	- IIII 8
					7
			A W		- e
					, s
86 (89 3					11111 7
					Ш з
				\perp	2
					11111
0.014					

BRIQUETAS	B.F.	LL ASTM D-1559		-	DESCRIPTION	ESPECIFICACIO
- International Control of the Contr	Pe .	1	2	. 1		ESPECIFICACIO
C.A. EN PERO DE LA MEZCLA	15	5.0	5.0	5.0	5.0	
AGREGADO GRUESO EN PESO DE LA MEJULA > W 4	76	41.23	4121	41.21	100	
AGREGADO FINO EN PESO DE LA MEZCLA. < Nº 4	- %	9.79	53.79	53.79	2	
FILLER EN PESO DE LA MEZOLA	100	5.00	0.00	900	100	
PESO ESPECIFICO DEL CERENTO ASPALTICO APARENTE		10%	1,016	1.016	1	
ESO ESPECÍFICO DEL AGREGADO GRUESO E SULX		2.602	2.602	2 502	1000	
PESO ESPECIFICO DEL AGREGADO FINO - BULK		2.643	2.643	2.543	0.00	
PESO ESPECIFICO FILLER - APARENTE		3.000	3000	3 000	15.	
PESO DE LA BRIQUETA AL MRE	0.	1176.6	1184.8	1190.2	100	
PESO DE BRIQUETAFPARAFINA AL ARIE	DI .	11/9.1	1186.9	1198.1		
PESU DE LA BRIQUETA + PARA-INA EN AUCA	9'	699.0	667.3	671.1	0.00	
OLUMEN DE LA BRIQUETA+PARAFINA (10-11)	0.0.	501	519.6	522.0	0.0	
PESU DE LA PARAFINA (1010)	0.		2000	12	100	
OLUMEN DE PARAFINA (13P6 palaria)	0.0.			33	1672 27	
JOLLMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	0.0	501	519.6	522.6		
ESC ESPECIFICO BUILK DE LABRIQUETA (M15)	BFC.C.	2.262	2,281	2.286	2.274	
ESO ESPECIFICO MAXMO ASTM D-2041		2.467	2,467	2.467		
ACIOS (17-16)*900/17	%	8.3	7.6	7.6	Ta	3.5
ESU ESPECIFICU BLEK DEL ALHEGADO TOTAL (2+3+4)((26)+(3/)+(4)	B(0.	Z 625	2,625	2,625		-50000
MA 100-(2+3+4)(16/19)	%	18.1	17.5	17.5	17.7	Min. 14
ACIOS LLENOS CON C.A. 100°/20-18/20	100	54.2	56.6	56.6	56.8	
ESU ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((TIUL17)+15))		2,666	7,995	2,668		
A ABSORBOD POR AGREGADO TOTAL (100°5° (22-19) ((22°19)	5	0.62	0.62	0.62	100	
EMENTO ASFALTICO EFECTIVO 1-(231/2+3+4)/100/	. %	4.41	4.41	4.41	S	200.2
CUIO	1995	2.75	2.56	3,03	2.92	2 - 4
STABLIDAD SIN CORREGIR	Kg:	1314.0	1065.2	1017.0		
ACTOR DE ESTABLIDAD	- K	1.00	1.26	1.00	100	
STABLIDAD CONNEGIDA	F-Q2	1314	1860	1617	1132	Min. 815
ESTABLUALIFICOJO		4767	3581	3362	3910	1700 - 4000
RELACION POLVO FASFALTO		1.52	152	152	1.52	0.6-1.6

OBSERVACIONES,

TAMIZ ASTM ABERTURA EN mm PESO RETENIDO RETENDO PARCIAL RETENDO ACUMULADO

PASA

ESPECIFICACION

ASFALTO LIQUIDO TRAMO ASFALTADO

Grava triturada 112" Cantora "ANCOSA" 42.0%. Arena triturada" Cantora "ANCOSA" 44.0%. Arena Zarendeada Cantora "PTE LOS SE 14.0%. FIBRADE TALLO DE PLATANO

Ing Marie Der Diege Craw Whites

RUC: 20602407021 Sistema Integral

Ge Geotecnia Suclos y Pavimentos Telf: 037 501000 Cel. Claru: 986279811 Cel Movieter: 979199772 Direction: Calle Arequipe # 300 Bellavista Satlana Piera Email: geopey moastro@kotmail.com junior castro@kotmail.com

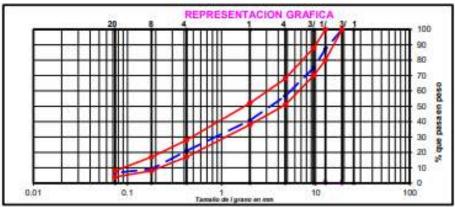
PROPUESTA DE DISENO DE MEZCUA ASFALTICA CON FIBRA DE TALLO DE PLATANO EN LA AVENDA LOS ALDARROBOS, PIDRA - 2023 :P.C.A :MAC TEBIS Realizado Por Revisado Por CANTERA CANTERA SOJO Responsable :MCG BOLICITA TESISTAS: RONALDO RIVERA CLINYA Y JHOAN ALEXIS ESPINOZA CORREA LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO FECHA 20/05/2024

				DISENC	o coolo	FBRA DE TALLO	10.0% MA	C-02 C	A 55%				and the last day has been
Sincatory o	UT TO	1522/1129	ENS	AYO GE	RANULO	METRICO	100	in a	56.754	1000	LAVADO	ASFA	LTICO
TAMIZ ASTM	35	3/4"	1/2"	3/8"	Nº 4	Nº 10	Nº 40	Nº 80	Nº 208	<w200< th=""><th>Peso Mat. S/Lavar</th><th>gr.</th><th>resolvening.</th></w200<>	Peso Mat. S/Lavar	gr.	resolvening.
ABERTURA EN mm		19,050	12,700	9.525	4.780	2.000	0.425	0.18	0.074			g.	
PESO RETENIDO	gr.		2575	2405	3695	139.9	175.3	103.9	21.9	50	Peso Mat. Lax +Fit	gr.	
RETENIDO PARCIAL	76		12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfalto	gr.	
RETENIDO ACUMULADO	.%		12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtri	gr.	
PASA	-76	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	-	Peso final de Filtro	OF.	1.0000000000000000000000000000000000000
ESPECIFICACION	%	100	80 - 100	70 - 88	51 - 68	38 - 52	17 - 28	8 - 17	4 - 8		Peso de Filler	or.	8.408
ASFALTO LIQUIDO			7.	100		70 TO THE RES	10000				FRACCION	.56	500
TRAMO ASFALTADO					Metros L	ineales:					PEBO TOTAL	gr.	20000

ENSAYO MARSH		W D-1559				
BRIQUETAS	Nº	1	2	3		EBPECIFICACIO
C.A. EN PESO DE LA MEZCLA	%:	5.5	5.5	5.5	5.5	8
ZAGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	%	40.99	40.99	40.99		12
SAGREGADO FINO EN PEBO DE LA MEZCLA < Nº 4	%	53.51	53.5	53.51	1.1.	2
4-ELEK EN PESO DE LAMEZCLA	76	ULU	U.BU	0.00		
S PESO ESPECIFICO DEL CEMENTO ASFALTICO APARENTE		1.016	1.016	1.016		65
E PESO ESPECIFICO DEL AGREGADO GRUESO - BULK		2.602	2.602	2,602		
PESU ESPECIFICU DEL AGREGADO FINO - BUCK		2,643	2.643	2.643		100
RPESO ESPECIFICO FILLER - APARENTE	125	3.000	3.000	3.000		0
PESO DE LA BRIQUETA AL ARIE	ior .	1185.3	1192.3	1190.2		03
O PESO DE BRIQUETA+PARAFINA AL AIRE	Q'	1187.5	1194.5	1193.1		3
PESU DE LA BRIQUETA + PARAFINA EN AGUA	G [*]	672.0	6/6.3	6/5.7		
VOCUMENTIE LA BRIQUE LAFPANAFINA (1011)	0.0	515.5	518.2	517.A		E .
3 PESO DE LA PARAFINA. (10-9)	Qr.					12
4 VOLUMEN DE PARAFINA (13 Pe parafina)	0.6		77			
S VOCUMENUE LA BRIQUETA POR DESPAZAMENTO [12-14]	0.0	515.5	518.2	517.4		
EPESO ESPECIFICO BULK DE LA BRIQUETA (9/15)	gric.c.	2.299	2.301	2.300	2,300	
7 PESO ESPECIFICO NAXIMO ASTMO-2041		2.436	2.436	2.436		6 NA 20
8 VACIUS (17-16) 10017	76	5.9	5.6	5.5	5.6	3 + 5
PESU ESPECIFICO BOLK DEL AGREGACIO TOTAL (2+3+4)[[26]+[37]+[46]]	D) 1	2.625	2.625	2,625	7 7 7 7 7	St. Blackett
0VMA 100-(2+3+4)*(16/19)	%	17.2	17.2	17.2	17.2	Min. 14
1 VACIOS LLENOS CON C.A. 1001/20-18/20	76	67.3	67.6	67.5	67.5	O. 11 1/1/2-1
PESU ESPECIFICO DEL AGREGADO TOTAL (2+3+4)/(100/17)-(105/)		2,862	7,652	2.652		-7
C.A. ASSURBBUT FOR AGREGADO TOTAL (100°S*(22-19)/(22-19)	76	0.40	0.40	0.40		T.
CEMENTO ASPALTICO EFECTIVO 3-(23°(2+3+4)/100)	%	5.13	5.13	5.13		(X)
FLUXO	DEPT.	3.30	3.35	3.30	3.32	2 - 4
BESTABLUAU SIN CURREGIK	Kg	1161.7	1168.6	11,35.6		
7 FACTOR DE ESTABLIDAD	K	1.00	1.00	1.00	10000	\$0-200 (2000)
BESTABLIDAD CORREGIDA	Ка	1161.7	1161	1140	1154	Min. 815
9ESTABLUAD-FCUUU (3518	3462	3451	34/1	1700 - 4000
URELIACION POLYOTASPALTO		130	1.30	1.30	1.30	0.6-1.6

CGSERVACIONES
Grava briturada 112" Cantera "ANCOSA" 42.0%
Arena briturada" Cantera "ANCOSA" 44.0%
Arena Zarandeada Cantera "PTE LOS SER 14.0%
FIBRA DE TALLO DE PLATANO 10.0%

by State organization Management of the Control of



RUC: 20602407021 Sistema Integral

Direction: Calle Arequipa # 308 Bellavista: Sullana Piura
Email: geopay meastro@hotmail.com junior_castro@hotmail.com

	ENSAVO GRANIII OMETRICO	1.69/40/0	AGENITION	
	DISEÑO CODIGO FIBRA DE TALLO 10.0% MAC-02 C.A. 6.0 %			
	LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO			
FECHA	TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA	FECHA	20/05/2024	
CANTERA	CANTERA SOJO	Responsable	MC.G.	
	LOS ALGARROBOS, PIURA - 2023	Revisado Por	:MAC	
TESIS	PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLATANO EN LA AVENDA.	Realizado Por	P.C.A.	

			ENS	AYO G	RANULOME	TRICO				(C	LAVADO A	BFALTICO
TAMIZ ASTM	1.0	3/4"	1/2"	38"	Nº 4	N* 10	N* 40	Nº 80	N° 200	<n°200< th=""><th>(F.</th><th>12</th></n°200<>	(F.	12
ABERTURA EN mm		19.050	12,700	9.525	4.760	2.000	0.425	97.0	0.074	460,000	gr.	
PESO RETENIDO	or.	0.00	2575	2405	3605	139.9	175.3	103.9	21.9	59	gr.	
RETENIDO PARCIAL	-%		12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	gr.	-
RETENIDO ACUMULADO	%		12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	gr.	
PASA	96	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7		Qf.	
ESPECIFICACION	96	100	80 - 100	70 - 88	51 - 68	38 - 52	17 - 28	8-17	4 - 8	17	QC.	
ASFALTO LIQUIDO	1		11-11-00	15.00	Zasanit.	202	3500200	17. 47.11.			%	500
TRAMO ASFALTADO	10				Metros Line	oales:				100	gr.	20000

ENSAYO MARSHI	ALL ASTM	D-1559	:20 - 62:		(3)	1
BRIQUETAS	Nº	1	2	3	PROMEDIC	ESPECIFICACIO:
1 C.A. EN PESO DE LA MEZCLA	%	6.0	6.8	6.0	6.0	
2 AGREGADO ORUESO EN PESO DE LA MEZCLA > Nº 4	36 /	40.77	40.77	49.77		
3 AGREGADO FINO EN PESO DE LA MEZCUA < Nº 4	JP	53.23	58.93	53.23	3 3	
4 FILLER EN PESO DE LA MEZOLA	Z	0.00	0.00	0.00	1 1	
5 PESU ESPECIFICO DEL CEMENTO ASFACTICO APARIENTE		1.016	1,016	1.016	37 3	
6 PESD ESPECIFICO DEL AGREGADO GRIJESO - BULK		2.602	2.602	2.602		
/ PESU ESPECIFICO DEL AGREGADO FINO - SULX.		Z 643	2.643	2.643	3 3	
8 PESU ESPECIFICO FILLER + APARENTE		3.000	3.000	3.000		
W ESU DE LA BRIQUETA AL AIRE	Qf .	1182.9	1792.3	1193.6		
TO PESU DE BRIDGETAPPARAFINA AL AIRE	SF.	1186.0	1194.5	1195.8	0.00	
T PESU DE LA BRIQUETA + PARAFINA EN AGUA	9	674.3	6.818	551.4	3	
Z VOLUMEN DE LA BRIQUE LA FPARAFINA (10-11)	6.6.	511.7	515.7	514.4	75 3	
13 PESU DE LA PARAFINA (10-9)	Gr.	A CAPTRILL		-	77 3	
A VULUNENUE PARAFINA (13Pe paralina)	6.6.					
15 VOLUMEN DE LA BRIQUE LA POR DESPAZAMENTO (12-14)	6.60	511.2	515.7	514.4	2 3	
B PEST ESPECIFICO BOLK DE LA BRIQUETA (915)	G00.0:	2.212	2.312	2.320	7.315	
PESU ESPECIFICO NAXINO ASTMILIZAT		Z.406	2.406	2,406		
18 VALIUS (17-16)*100/17	76 .	3.9	3.8	3.6	3.8	3 - 5
PESU ESPECIFICO BOLK DEL AGREGADO 101AL (2+3+4)/(2/6)+(3/1+(4/8))		2,625	2,625	2,625	200	100000
/UV-MA: 100-(2+3+4)*(16/19)	56	17.2	37.2	16.9	17.1	Min. 14
Y VACIOS LIENOS CON C.A. 100°(20-18)/20	%	17.2	77.3	78.9	17.8	
72 PESO ESPECIFICO DEL AGREGADO TOTAL [2+3+4)/[100/17]-[1/5]/	65.5	2,636	2,636	2.836		
CA ABSORBDO POR ADREDADO TOTAL (100°51/22-19)9/22°19	76	0.17	8.37	0.17	1000	
14 LENENTO ASPALTICU EFECTIVU 1-(25'(2+)+4)*100	%	5.84	2.84	9.84		
75 FCC00	illiam	3.58	3.56	3.68	3.81	2 - 4
IN ESTABLIDAD SIN CONREGIR	80	1134.5	1168.6	1183.7		
(/ FACTUR DE ESTABICIDAD	K	1.00	1.00	1.00	· Your Street,	201.000
ZB ESTABICIDAD CURREDIDA	Ka	1135	2169	1184	1162	Min. 815
29 ESTABLIDAD-FLUID		3168	3286	3214	3223	1700 - 4000
30 RELACION PULVUT ABFALTU		3.34	1.14	1.14	1.14	0.6 - 1.6

OBSERVACIONES:
Grave triturada 1/2" Carriera "ANCOSA" 42.0%
Arena triturada "Carriera" ANCOSA" 44.0%
Arena Zarandeada Carriera" PE LOS SERR 14.0%
FIBRA DE TALLO DE PLATANO 10.0% MANUEL COST S GALL

THE NAME OF THE PARTY OF THE PA

RUC: 20602407021 Sestema Integral

de Geotecnia

Succession Succession

PROYECT	PROPUESTA DE DISEÑO DE MEZCLA ASFALTICA CON FISRA DE TALLO DE PLATANO EN LA AVENIDA	Realizado Por	P.C.A.	
Same	LOS ALGARROBOS, PIURA - 2023	Revisado Por	MAC	
CANTERA	CANTERA SOJO	Responsable	MC.G.	
SOLICITA	TESTETAS DOMESTO DESCRIA CUBARA VILIDADA AL EVIS ESDANOTA CODOCA	EECHA	aning/angle	_

				LABOR/	ATORIO N	MECANICA DE SUB	LOS, ABFA	LTOY	CONCE	RETO			
				DISEN	o copia	O FIBRA DE TALL	O 10.0% AL	AC-02	C.A. 6.5	5	A		
ŝ.	W.		ENS	AYO G	RANULO	METRICO	300	7	2	W 3	LAVADO	ASFAL	TICO
TAMIZ ASTM		3/4"	1/2"	3/8	Nº 4	Nº 10	N° 40	Nº 80	Nº 200	<n°200< th=""><th>Peso Mat. S/Layer</th><th>gr.</th><th></th></n°200<>	Peso Mat. S/Layer	gr.	
ABERTURA EN mm		19.050	12,700	9.525	4.760	2,000	0.425	0.18	0.074	200	Peso Mat. Lavado	gt.	
PESO RETENIDO	gr.		2575	2405	3695	139.9	175.3	103.9	21.9	59	Peso Mat. Lav.+Fitro	gt.	
RETENIDO PARCIAL	%	1	12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfalto	gr.	
RETENIDO ACUMULADO	%	10000	12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtro	gr.	
PASA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	300	Peso final de Filtro	gr.	122
ESPECIFICACION	%	100	80 - 180	70 - 88	51 + 68	38 - 52	17 - 28	8 - 17	4+8	8. 3	Paso de Filler	gr.	
ASFALTO LIQUIDO											FRACCION	%	500
TRAMO ASFALTADO					Metros L	ineales:				-0	PESO TOTAL	gr.	20000

ENSAYO MARSI	HALL AST	TM D-1559	-30		-72	
BRIQUETAS	NP .	1	2	3	PROMEDIO	ESPECIFICACION
1)C A EN PERO DE LA MEZCLA	%	6.5	6.5	6.5	8.5	
ZAGREGADO GRUESO EN PESO DE LAMEZCIA > Nº 4	%	40.56	40.56	40.56	-	
3 AGREGADO FINO EN PESO DE LA MEZCIA < Nº 4	%	52.94	52.94	52.94	100	
4FILLER EN PESO DE LA MEZCIA	E .	0.00	0.00	0.00		
SPESO ESPECIFICO DEL CENENTO ASFALTICO APARENTE	7	1.016	1.016	1.016		
RIPESO ESPECIFICO DEL AGREGADO GRUESO - BULK	31 74	2,502	2.602	2,602		
/ PESO ESPECIFICO DEL AGREGADO FINO - BULK	77 S.	2.643	2,643	2.643		
BPESU ESPECIFICU FLIER - APARENTE		3 000	5.000	3.000		
SPESO DE LA BROQUE LA AL ARE	3	1198	1201.1	1194.6		
TUPESO DE BRIQUE (A+PARAFINA AL AIRE	Ø.	1200.3	1203.6	1197.0		
TTPESU DE LA BRIQUETA + PARAFINA EN AUUA	9	678.6	678.8	677.9		
12/VOLUMEN DE LA BRIDLE TA+PARAFINA (10-11)	0.0	521.7	524.B	519.1		
ISPESO DE LA PARAFINA (10-9)	or.	7000	-		7.7	
14 VOLUMEN DE PARAFINA (13 Pili parafina)	6.6.		No. of Contrast of			
19 VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	6.6.	621.7	524.8	519.1		
B PESU ESPECIFICO BULK DE LA BRIQUE (A. 1915)	000.0	2.298	7.289	7.36	2.286	
17 PESU ESPECIFICU MOMU AS IM D-2041	-	2.375	2.375	2.375		
18 WACAUS (17-16) 100/17	8	3.3	3.7	3.7	3.3	2 - 4
19PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)/(2/6/+(3/7)+(4/8))		2.625	2.625	2.625	10/1/10	
20 VMA: 100-(2+3+4)*(16/19)	%	18.2	18.5	18.0	18.2	Min. 14
H VACIOS LLENOS CON C.A. 100°(20-18)/20	%	82.0	80.2	82.7	81.5	
22 PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)-(1/5))	22 13	2819	2,619	2,619		
25 C.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(22-19))/22°19/	76	-0.09	-0.09	-0.05		
A CEMENTU ASFALTICO EFECTIVO 1-(23' (2+3+4)/100)	90	6.58	6.58	9.58		
5 F2000	mm.	3.55	1.76	168	3.70	2 - 3.8
H ESTABLICACI SIN CORRECIN	No	929.7	913.6	908.6		
DEFACTOR DE ESTABLIDAD	K.	1.00	0.96	1.00		
BESTABLIDAD CORREGIDA	Ka	930	877	909	505	Min. 815
IN ESTABLIDAD-FLUIO	-	2542	2333	2467	2447	1700 - 4000
SURELACION PULVOTASFACTU	33 33	1.01	1.01	1.01	1.01	0.6 - 1.6

OBSERVACIONES:

Conva triturada 12" Cantera "ANCOSA" 42.9%. Acena triturada" Cantora "ANCOSA" 44.9%. Arena Zarandeada Cantora "PTE LOS SER 14.9%. FIBRA DE TALLO DE PLATANO 10.9%.

MANUEL CALL

AUC: 20602407021 Sistema Integral

de Geotecnia
Suelos y Pavimentos
Taif: 037-501000 Cel. Clare: 986279811 Cel Movistar: 979199772
Direction: Celle Arequipe # 308 Bellavista Sullana Piura
Email: geopav meastro@hotmail.com junior castro@hotmail.com

PESO ESPECIFICO MAXIMO ASTM D-2041

Proyecto PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENIDA Resizado Por : P.C.A.

LOS ALGARROBOS, PIURA - 2023

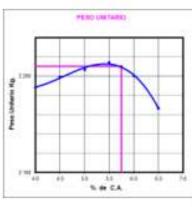
Revisado Por : M.A.C.

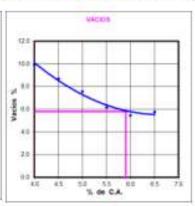
Muestreo CANTERA SOJO

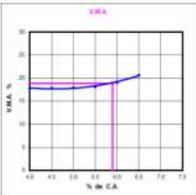
Responsable. : M.C.G.

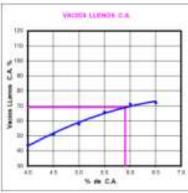
SOLICITA TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA

FECHA 20-05-2024

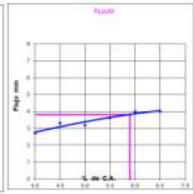

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO													
ENSAYO	Nº	1	2	3	4	5	6						
CEMENTO ASFALTICO	%	4.00	4.50	5.00	5.50	6.00	6.50						
PESO DEL MATERIAL	Gr.	1205.3	1200.8	1201.6	1200.9	1200.9	1200.3						
PESO DEL AGUA + FRASCO RICE	Gr.	7705.0	7705.0	7705.0	7705.0	7705.0	7705.0						
PESO DEL MATERIAL+FRASCO+AGUA (en aire)	Gr.	8910.3	8905.8	8906.6	8905.9	8905.9	8905.3						
PESO DEL MATERIAL +FRASCO+AGUA (en agua)	Gr.	8430.0	8423.2	8419.6	8413.0	8406.8	8400.0						
VOLUMEN DEL MATERIAL	0.0.	480.3	482.6	487.0	492.9	499.1	505.3						
PESO ESPECIFICO MAXIMO	Gr/c.c	2.509	2.488	2.467	2.436	2.406	2.375						
TEMPERATURA DE ENSAYO	°C	25°C	25°C	25°C	25°C	25°C	25°C						
GRAVA TRITURADA 3/4"	%	45.0	45.0	45.0	45.0	45.0	45.0						
ARENA TRITURADA 1/2°	%	45.0	45.0	45.0	45.0	45.0	24.0						
ARENA ZARANDEADA 3/16"	%	9.5	9.5	9.5	9.5	9.5	51.0						
FILLER (CEMENTO PORTLAND)	%	0.5	0.5	0.5	0.5	0.5	0.5						
			ch										
TIEMPO DE ENSAYO	Min.	25	25	25	25	25	25						
CORRRECCION POR TEMPERATURA		1.000	1.000	1.000	1:000	1.000	1.000						

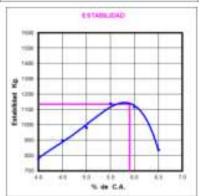

OBSERVACIO DISEÑO CON 10.0 % DE FIBRA DE TALLO DE PLATANO	
<u></u>	




Test: 037 507000 Cel. Claro: 986/279811 Cel Movietes: 979199772 Dissertor: Calle Arequips # 365 Betterdate: Sullens: Ptors Essett geopey measure@hotsoul.com junior_castco@hotsoul.com CONTROL DE CALDAD DETERMINACION DEL OPTIMO CONTENDO DE ASFALTO Fecha de Brasjo : 21/05/2024 MAC MODIFICADO CON 15.0 % DE FISIPA DE TALLO DE PLATANO Material. Restitado por: ELIAS AGURRE Cunters CANTERA SOLO JUNIOR CASTRO AGLINING Revisado por : Responsable : TESISTAS: RONALDO RIVERA CURYA Y JHOAN ALEXIS ESPINIZA CORREA MANUEL CASTRO GALLO SOLICITA

LABORATORIO DE MECANICA DE SUELOS, ASFALTO Y CONCRETO





Cemento Astáltico de PIN 60/70

()	-0.30%	OPTIMO % CA.	0.30%	ESPECIFICACION
GOLPES POR LADO		76		75
CEMENTO ASFALTICO		5.80		(4/- 0.2%)
PESO UNITARIO	-)	2.270		
VACIOS		5.8		1-1
V.M.A.	- 3	10.9		Min 14
VACIOS LLENOS CON C.A.	- 12	62.0		0.
FLUJO		2.80		2 - 4.0
ESTABILIDAD		1135		Min. 815
ESTABILIDAD / FLUJO		2987		1700 - 4000
DOSIFICACION				N.
Grava triturada 1/2" Cantera "ANCOSA "	42.0	%		
Arena triturada" Cantera " ANCOSA "	44.0	%		

DOSIFICACION	-	N	4.5
Grava triturada 1/2" Cantera "ANCOSA "	42.0	%	
Arena tritorada" Cantera " ANCOSA "	44.0	%	
Arena Zarandeada Cantera " PTE LOS SERRANOS *	14.0	%	
FIBRA DETALLO DE PLATANO	15.0	%	
	11	%	

MANUEL CAST SERVICES

HUC: 20002407021
Sincerna Intercent
Sincerna Intercent
Succion y Pavinsantes
Tult: 037-501000 Ced. Claro: 986279811 Ced Moviete: 979109772
Direction: Calle Arequipe # 355 Bullavisla - Sullana - Fine
Empil: groups - messtro@botmail.com - print pastro@botmail.com

PROPUESTA DE DISEÑO DE MEJICIA ASFÁ/NICA CON RERA DE TALLO DE PLÁTANO EN LA AVENDA Realizado Par : P.C.A. LOS ALGARROBOS, PIURA - 2023 Revisado For MAC CANTERA: ANCOSA (SOJO) SOUCITA: TESSTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXS ESPINOZA CORREA Responsable MC.G. 21/05/2024 FECHA

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO

		40.0	DISE	io cor	IGO FIL	BRA DE	TALLO	15.0%	MAC-6	C.A. 4	1.0 %		and the same of th
	ENSAYO GRANULOMETRICO												
TAMIZ ASTM		3/4"	1/2"	3/8"	Nº 4	Nº 10	Nº 40	Nº 80	Nº 290	<n°200< th=""><th>Peso Mat, S/Laver</th><th>Or.</th><th></th></n°200<>	Peso Mat, S/Laver	Or.	
ABERTURA EN mm		19,050	12,700	8.709	4.760	2.000	0.425	0.18	0.074		Peso Mat, Lavado	gr.	Š.
PESO RETENIDO	gr.	A	2575	2405	3695	139.9	175.3	103.9	21.9	59	Peso Mat. Lav+Filtro	gr.	
RETENIDO PARCIAL	74	0	12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfalto	gr.	1
RETENIDO ACUMULADO	%	.0	12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Film	or.	
PASA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	400 0	Peso final de Filtro	or.	100000
SPECIFICACION	%	100	89 - 100	70 - 88	51-68	38 - 52	17 - 28	8 - 17	4 - 8	- 0	Peso de Filler	or.	13,300
ASFALTO LIQUIDO										70	FRACCION	%:	500
TRAMO ASFALTADO				\neg	Metros	Lineales:	10				PESO TOTAL	or.	20000

BROLETAS	Mr.	1	2	1	PROMEDIO	ESPECIFICACI
1 CA ENPERODE LA MEZGLA	16	4.0	4.0	4.0	4.D.	
2 AGREGADO GRUESO EN PESO DE LA MEZOLA INFIA	%	41.04	41.84	41.64		
3 AGREGADO FINO EN PESO DE LA MEZCLA + Nº 4	16	54.00	54.26	54.30		
A FILLER EN PESO DE LA MEZOLA	%	0.00	0.00	0.00		
S PESO ESPECIFICO DEL CEMENTO ASPALTICO APARENTE.		1.000	1,010	1,030		
6 PESO ESPECIPICO DEL AGREGADO GRUESO - BILLIX		2 602	2.600	2.602		6
7 PESO ESPECIPICO DEL AGREGADO PINO-BLLK		2.643	2.643	2.643		8
S PESO ESPECIPICO FELLER - APARENTE		0.000	9.000	0.000		
SPESO DE LA SRECUETA AL AIRE		1109.0	1191.5	1155.9		
TO PESO DE ERIQUETA+PARAFINA AL AIRE	gr .	1123.1	1198.6	1196.9		
TT PESO DE LA SHELLETA + PARAPINA BINAGUA	gr.	664.0	967.5	688.0		
12 VOLUMEN DE LA SPIQUETA+PARAZINA (10-11)	0.0.	529.1	531.1	530.9		
13 PESO DE LA PARAPINA (10-9)	gr.	12.25				
14 VOLUMEN DE PAVA/INA (13Ps parafita)	cc.		1 2 2 2 2 2 2	1000		1
15 VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	c.c.	578.1	531.1	530.9	100000	
16 PESO ESPECIPCO BILIK DE LA BROUETA (915)	gricic	2.249	2.242	2.253	2.246	
17 PESO ESPECIFICO NACIMO AETM D-2041		2.496	2.456	2.496	822	i see
18 VACOS (17-16)*100/17	%	9.9	10.1	0.0	9.0	3 - 5
19 PESO ESPECIPICO BLEK DEL AGREGADO TOTAL (2×3×4)((20)+(37)+(48))		2,625	2.625	2 525		
20 V M.A. 100-(2+3+4) (10/10)	5	17.8	18.0	17.6	17.8	Min. 14
21 VACOS LLINOS CON C.A.: 100°(20-18/20	%	44.2	9.59	44.0	44.1	
22 PESO ESPECIPICO DEL AGPEGADO TOTAL (2×3×4)/(100/17)-(1/5)}		2,659	2.658	2.858		li.
23 C.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(22-19))(22°19)	%	0.43	0.46	0.48		
24 CEMENTO ASPALTED BESCTIVO 1-(25)(2+3-41/100)	%	3.54	3.54	1.54		
25 7.1110	mm)	2.62	2.69	2.79	2.79	2 - 4
26 ESTABLIDAD SN COWEGIN	No.	838.3	803.1	795.1		
27 FACTOR DE ESTABLEIAD	K.	0.04	0.00	0.96		3
26 ESTABL DAD CONNECTOR	54	900	771	763	780	Min. 215
75 ESTABLIDAD/LUID	/	3075	2964	2732	1890	£700 - 4000
30 PBLACKIN POLYO / ASPALTO	77	1.80	1.89	1.89	1.88 /	1.05-15

42.0% Grave triturade 1/2" Centers "ANCOSA" Arona triturade" Centers "ANCOSA" 44.0% Arona triturada" Cantera "ANCOSA"

Arona Zarando ada Cantera "PTELOS SERNANOS 14.0%
PIBRA DETALLO PLATANO 13.0% Ing Months from Dege Castre Walland

Figure (proper records) # 100 Polyment - Fails 037-50100 Cel. Cheer 986279811 Cel Mayoner 979190772
Direction: Calle Aregarine # 308 Bellavieta - Sallence - Phra.
Figure (proper records) # 508 Bellavieta - Sallence - Phra.

PROPLESTA DE DISEÑO DE METCLA ASFÁLTICA CON FBRA DE TALLO DE PLÁTANO EN LA AVENIDA. LOS ALGARROBOS, PEIRA - 2023

Realizado For Revisado Par

P.C.A

CANTERA CANTERA SOJO

Responsable

MAC MCG

SOUCITA TESISTAS: RONALDO RIVERA CUNVA Y JHOAN ALEXIS ESPINOZA CORREA

FECHA

21/05/2024

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO

	WAC-02 C.A. 4.6 %

Ę.		E	NSAYO	GRAN	JLOME	TRICO					LAVA	DO AS	FALTICO
TAMIZ ASTM	(6)	3/4"	1/2"	3/8	Nº 4	Nº 10	N° 40	Nº 80	Nº 200	<n°200< th=""><th>Peso Mat. S/Lavar</th><th>gr.</th><th></th></n°200<>	Peso Mat. S/Lavar	gr.	
ABBITURA EV mm	10	19,050	12,700	9.525	4.760	2.000	0.425	0.18	0.074			gr.	
PESO RETIDADO	gr	1	2575	2405	3696	139.9	175.3	103.9	21.9	69	Peso Mat. Lav.+Fitt	gr.	
RETENDO PARCIAL	%		12.9	12.0	18.5	15.8	19.9	11.8	2.5	6.7	Peso de Asfallo	g.	
PETENDO ACUMULADO	%	Shaw	12.9	24.9	43.4	59.2	79.1	90.8	93.3	100.0	Peso inicial de Filtre	gr.	
MSA	%	100.0	87.1	75.1	56.6	40.8	20.9	9.2	6.7	Tamber	Peso final de Fitro	gr.	
SPECIFICACION	1%	100	90 - 190	70 - 88	51 - 68	38 - 52	17 - 28	8 - 17	4 - 8		Peso de Filler	gr.	8.4087
ASFALTO LIQUIDO	()					ta and the					FRACCION	%	500
TRAM O ASPALTADO	TRAM C ASPALTADO Metros Lineales: PESO TOTAL		PESO TOTAL	gr.	20000								

BRIQUETAS		1	2	3	PROMEDIO	ESPECIFICACIO!
1 C.A. EN PESO DE LA MEZOLA	76	4.5	4.1	4.5	4.5	
2 AGREGADO GIRJESO EN PESO DE LA MEZCLA > Nº 4	76	41.42	41.42	41.42		
3 AGREGADO FINO EN PESO DE LA MEZCLA × Nº 4	%	54.08	54.00	54.Dit		
4 FILLER EN PESO DE LA MEZCLA	76	0.00	0.00	0.00		
5 PESO ESPECIFICO DEL CEMENTO ASFALTICO APARENTE		1.016	1.016	1.016		
6 PESO ESPECIFICO DEL AGRE GADO GRUESO - BULK		2,602	2,002	2.602		
7 PESO ESPECIFICO DEL AGREGADO FINO - BILLK		2.643	2.643	2.643		
8 PESO ESPECIFICO FILLER - APARENTE		2.930	2.930	2.930		
9 PESO DE LA BRIQUETA AL AIRE	57	1190.5	1196.2	1195.4		
10 PESO DE BRIQUETA+PARAFINA AL AIRE	OF .	1193.6	1199.0	1198.8		
11 PESO DE LA BRIQUETA + PARAFINA EN AGUA	12	666.0	670.0	569.8		
2 VOLUMEN DE LA BRIQUETA+PARAFINA (10-11)	6.6	527.6	529.0	529.0		
13	gr.					
14	E E					
15 VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	c.c.	527.6	529,0	529.0	111111111111111111111111111111111111111	
IS PESO ESPECIFICO BLEX DE LA BROQUETA (\$15)	gr/c.c.	2.256	2.201	2.260	2.255	
17 PESO ESPECIFICO MAXIMO ASTM D-2041		2.471	2.475	2,475		200-000
18 VACIOS (17-16/100/17	76	8.8	8.6	6.7	8.7	3 - 5
19 PESO ESPECIPICO BULK DEL AGREGADO TOTAL (2+3+4V)(215	(+(3/T)+(4/B	2.625	2.625	2.625	7 10 10	1.250000
20 V.M.A. 100-(2+3+4)*(16/19)	%	17.9	47.7	17.8	17.8	Min. 14
21 VACIUS LLENCS CON C. A. 180°(25-18)/20	56.	55.7	51.3	39.4	31.1	
22 PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4\VI/100/17HI).	H11	2.054	2,694	2,654		
23 C.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(22-19))(122°19)	79.	0.43	0.43	0.43		
CA CEMENTO ASPALTICO EFECTIVO 1-(23/(2+3+4) 100)	76	4.00	4.09	4.00		
25 FLWO	mm .	3.18	3.35	3.38	3.30	2 - 4
26 ESTABLIDAD SIN CORREGIN	Kg	919.6	908.6	978.9	-	
27 FACTOR DE ESTABLIDAD	K.	0.96	0.96	0.96		10.5 Valuation 25
28 ESTABLIDAD CORREGIDA	Kiti	883	872	940	896	Min. 815
29 ESTABL DAD-FLUIO		2781	2601	2782	2721	1700 - 4000
SO RELACION POLVO / ASPALTO		1.83	1.63	1.83	1.63	0.6+1.6

Grave triturada 1:5" Cantera "ANCOSA ". 42.0% Arena triturada" Cantera "AACOSA" Arena Zarandosata Cantera " PTE LOS SEPRANOS PERRA DE TALLO DE PLATANO 14.0% HER JUNULL CALL - ing Mark they have come what

Telf 037-501000 Cel. Claro: 980279811 Cel Movister: 979199772
Discritor: Calle Aveguips # 308 Bellevist: Sellens - Piccs
Finall geoper messing@bellenid.com junter castro@bellenid.com

TESIS PROPUESTA DE DISEÑO DE MEZCLA ASFÁLTICA CON FIBRA DE TALLO DE PLÁTANO EN LA AVENIDA Realizado Por IP.C.A TOS ALGARROBOS, PIURA - 2023 IMAC Revisado Par CANTERA CANTERA SOJO IMCG. Responsable **FECHA** TESISTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXIS ESPINOZA CORREA **FECHA**

DISENO CODIGO FIBRA DE TALLO 15.0% MAC-02 C.A. 5.0 % **ENSAYO GRANULOMETRICO** LAVADO ASFALTICO TAMIZ ASTM ABERTURA EN mm PESO RETENIDO 3/4" 5/2" 3/6" N° 4 N° 10 N° 40 N° 80 N° 200 Peso Mat. S/Laver gr. 19,050 4.780 2.000 0.425 0.18 0.074 Peso Mat. Lavado 12,700 9,525 gr. 2575 2406 3695 139.9 175.3 103.9 21.9 12.9 12.0 18.5 15.8 19.9 11.8 2.5 59 Peso Mat. Lay+Fitro 96 (20) Peso de Asfato gr.

79.9 11.8 79.1 90.8 93.3 9.2 6.7 RETENIDO PARCIAL 12.9 24.9 43.4 87.1 75.1 58.6 RETENDO ACUMULADO % 12.9
PASA % 100.0 87.1 50.2 100.0 Peso inicial de Filtro gr. 75.1 58.6 40.8 20.9 9.2 6.7 70-88 51-68 38-82 17-28 8-17 4-Peso final de Filtro gr. ESPECIFICACION Peso de Filler 9/ ASFALTO LIQUIDO TRAMO ASFALTADO Metros Lineales: PESO TOTAL gr.

BRIQUETAS	1 1	1	2	3	PROMEDIO	ESPECIFICACIO
1 C.A. EN PEBO DE LA MEZCLA	94	5.6	8.0	5.0	5.0	
2 AGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	14	41.21	41.21	41.21		
3 AGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	56	53.79	83.79	53.79		19
4 FILLER EN PESO DE LA MEZCLA	56	0.00	0.00	0.00		
5 PESO ESPECIFICO DEL CENENTO ASFALTICO APARENTE		1.016	1.016	1.016		
6 PESO ESPECIFICO DEL AGREGADO ORUESO - BULK		2.602	2.602	2.602		
7 PESO ESPECIFICO DEL AGREGADO FINO - BULK		2.643	2.643	2.643		G G
8 PEBO ESPECIFICO FILLER - APARENTE		3.000	3.000	3.000	2	
9 PESO DE LA BRIQUETA AL AIRE	ar .	1183.8	1185.8	1188.7	7	
ID PESO DE BRIQUETA+PARAFINA AL AIRE	gr .	1187.8	1187.2	1200.0		
1 PESO DE LA BRIQUETA + PARAFINA EN AGUA	QF	667.0	664.0	674.2	Öğ.	-
2 VOLUMEN DE LA BRIQUETA+PARAFINA (10-11)	0.6.	520.8	523.2	525.8	0	
PESO DE LA PARAFINA (10-9)	Q1.	***************************************	-			
4 VOLUMEN DE PARAFINA (13/Pe parama)	0.6.	-20				
5 VOLUMEN DE LA BRIQUETA POR DESPAZAMIENTO (12-14)	6.6.	520.8	525.2	525.8	E Comp.	Ü.
8 PESO ESPECIFICO BULK DE LA BRIQUETA (9/15)	atic e	2.273	2.266	2.261	2.287	C
7 PESO ESPECIFICO MAXIMO ASTM 0-2041		2.453	2.453	2.453	200	0.1.
8 VACIOS (17-16)*100/17	56	7.3	7.6	7.8	7.6	3.5
9 PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)/(2)	6)+(3/7)+(4	2.625	2.625	2.625	1886	0.0000
0 V.M.A. 100-(2+3+4)*(10/19)	96	17.7	18.0	18.2	18.0	Min. 14
1 VACIOS LLENOS CON C.A. 100/(20-18)(20	56	58.7	67.7	67.8	57.8	S PUBLISHED
2 PESD ESPECIFICO DEL AGREGADO TOTAL (2+3+4)([100/17]-)	1/5(0	2.660	2.650	2,650		
G.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(21-19))/22°1	9%	0.38	0.36	0.36		
A CEMENTO ASFALTICO EFECTIVO 1-(23*)2+3+4)/100)	96	4.65	4.65	4,65	St. come	
S FLUIO	mm	3.05	3.13	3.38	3.18	2 - 4
B ESTABILIDAD SIN CORREGIR	Ko	1003.0	1003.0	1018.0	20	
FACTOR DE ESTABILIDAD	K	1.00	0.96	0.96	70	
B ESTABILIDAD CORREGIDA	Ko	1003	963	977	361	Min. 815
2) ESTABILIDAD-FLUJO		5268	3081	2896	3088	1700 - 4000
30 RELACION POLVO / ABFALTO		1.44	1.44	1.44	1.44	0.6 - 1.6

CESSEN ACXONES Grava triturada 10" Cantera "ANCOSA." Arena triturada" Cantara "ANCOSA" Arena Zarandeada Cantera " PTE LOS SERRANOS " 14.0% FIBRA DETALLO DE PLATANO 15.0%

MANUEL GAST The State of the Local Control

- CONSULTATION SAC Jing Marser West Chapt Laters Milson and Servicing Cover Cont. N. 204740

TESIS PROPIES	A DE DI	ENO D	METCLA	ASFALT	CA CON	FIBRA D	E TALLO	DE PLAT	ANO EN	LA AVEN	DA Realizado Po	ε.	PCA	
LOS ALGA	AR OBOS	FILRA	- 2023								Revisado Par		MAC	
CANTERA CANTERA	SOJO										Responsable		: M.C.G.	
SOUCITA TESISTAS:	CHALD	O RIVER	A CUNYA	YUHOA	N ALEXE	ESPINO	LA CORR	EA.			FECHA		21/05/2024	
			LABOR	ATOR	O MEC	ANICA	DE SU	ELOS,	ASFAL	TOYC	ONCRETO			
		1,000	DISE	EÑO C	DDIGO I	FBRA D	E TALL	O 15.05	MAC-	02 C.A.	55%	Access	ar valuence	
	100 0	E	NSAYO (GRANU	LOMET	RICO			No. of Street	20 mm	LAVA	DO AS	FALTICO	
TAME ASTM	0.0	3.4"	1/2"	38"	Nº4	M-10	Nº 40	M*80	M1200	<w200< td=""><td>Peso Mrt. S.Laver</td><td>gr.</td><td></td></w200<>	Peso Mrt. S.Laver	gr.		
ABERTURA EN mm	11	19.000	12,760	9.825	4.788	2.000	0.425	0.18	0.074		Peso Met Lanuto	gt.		
PESO RETENIDO	gr.		2575	2405	3895	139.9	175.3	103.9	21.9	59	Peso Mit Lau+Filto	gt.		
RETENDO PARCIAL	5		12.9	12.0	18.5	15.6	19.9	11.8	2.5	6.7	Peso de Asfelto	gr.		
RETENDO ACUMULADO			12.9	24.9	43.4	59.2	79.1	8.00	93.3	100.0	Peso inicial de Filtro	: gt.		
PASA		300.0	87.1	75.1	56.6	40.8	20.9	92	8.7		Peac feet de Filtro	gr.		
ESPECIFICACION	5.5	100	88-108	70-68	51-68	38 - 52	17 - 28	8-17	4 - 1	6	Pesio de Filler	gt.	8.4087	
ASFALTO LIQUIDO		6-7-54	CONTRACTOR	-	9576	Jan.	V	17-1-1	77-25	X.7	PRACTION	%	500	
TRAMO ASFALTADO				1.0	Metros L	ineales:					PESO TOTAL	or.	20000	

BATSUCONE		1	2	3	PROMEDIO	ESPECIFICACION
1 C.A. EN PESO DE LA MEZCLA	%	8.0	5.5	5.5	5.5	9
2 AGREGADO GRUESO EN PESO DE LA MEZCLA > Nº 4	76	40.99	40.90	40.90	10	
3 AGREGADO FINO EN PESO DE LA MEZOLA × Nº 4	%	53.51	53.51	53.51	1.0	9
4 FILLER EN PESO DE LA MEZCLA	%	0.00	0.00	0.00	5.5	8
5 PESO ESPECIFICO DEL CEMENTO ASPALTICO APARENTE		1.016	1.010	1,016		
IL PESO ESPECIFICO DEL AGREGADO GRUESO - BULK		2.802	2.602	2,602	37	
7 PESO ESPECIFICO DEL AGREGADO FINO - BULK		2,643	2,643	2.643	3.2	9
8 PESC ESPECIFICOFILLER - APARENTE		3,000	3.000	3,000		2
IJ PESO DE LA BRIQUETA AL ARE	Q ²	1192.1	1110.1	1189.8		
0 PESO DE BRIQUETA-PARAFINA AL ARE	Q ²	1196.7	1191.6	1391.0		7
1 PESO DE LA BRIQUETA + PARAFINA EN AGUA	Q1	674.9	665.0	3.73B		
2 VOLUMEN DE LABRIQUETA-PARAFINA (10-11)	E.E.	523.8	523.0	523.4		
PESO DE LA PARAFINA (10-0)	OP!					
4 VOLUMEN DE PARAFINA (13/Pe parafina)	C.C.					
VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	D.E.	523.8	523.6	523.4		
PESO ESPECIFICO BULK DE LA BRIQUETA: (9/15)	gelo c.	2.276	2.273	2.271	2.274	0
7 PESC ESPECIFICO MARIM D-2941		2.424	2.424	2.424		0
8 VACIOS (17-16)*100/17	%	6.1	6.2	0.2	8.2	1 - 5
PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)((28)+(3/7	H(4/8))	2.825	2.629	2.625		43
0 VMA. 100-(2+3+4)/(16/19)	76	14.1	18.2	55.2	28.3	Min. 14
1 VACIOS LLENOS CON C.A. 1001(20-18)(20)	%	05.2	65.7	65.7	65.8	
PESC ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)(15))		2.837	2.627	2.637		
C.A. ABSORBIDO POR ADREGADO TOTAL (100°5°/22-19)/(22°19).	%	0.17	0.17	9.47	13	
4 CEMENTO ASFALTICO EFECTIVO (1-(23°)(2+3+4)(100)	%	1934	5.34	5.34	15	
FLUO	mm	3,68	3.61	3.56	3.62	2 - 4
ESTABLIDAD SNI CORREGIR	Ke	1183.7	1189.8	1176.7	13	
FACTOR DE ESTABLIDAD	K	0.26	0.96	0.00		
ESTABLIDAD CORREGIDA	Ku .	1136.4	1142	1130	1138	Min. 215
ESTABLIDAD-FLUIO		3086	3167	3177	3143	1700 - 4000
B RELACION POLVO / ASFALTO		1.25	1.25	1.25	1.25	0.61-1.6

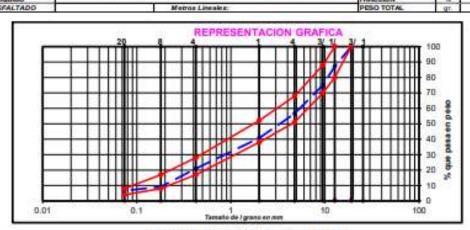
MANUEL CAST

DESIRVACIONES

Grava triturada 10" Cantara "ANCOSA " Arena triturada" Cantara "ANCOSA " Arena Zarantieada Cantara " PTELOS SERRANOS 42.0% 14.0% FIGRA DETALLO DE PLATANO 15.0% Ing Marker for Days Course Whats

Fig. 20002407021

Conterns Interns


Of Conterns Interns

Tell 037-501000 Cel. Claro; 386279811 Cel Maybeter: 379199772

Disaction Catte Aregoins # 368 Bellaviata Sufface Piers

Enail gaoper, messlooghedmail.com jerior, castes@hotmail.com

TESIS PROPUESTA I LOS ALGARRI				ASPALTO	IA CON	FBRA D	TALLO	SE PLAD	AND EN	LA AVENE	A Realizado For Revisado For	1	: MAC.
CANTERA CAMITERA SI	2,00										Responsable	4 8	:MC.G
fecho (ESSIAS: NO)	MALDO	DEIVER	A CUNYA	Y JHOA	ALEXS	ESPINOZ	A CORR	EA			FECHA		21/05/2024
ĝ.		L	ABORA	TORIO	MECA	NICA D	E SUEI	OS, A	SFALT	OYCON	CRETO		
			DISER	io con	IGO FR	BRA DE	TALLO	15.0%	MAC-0	2 C.A. 60	9 %	54.33°	Site Site Site Site Site Site Site Site
£	X 16	E	NSAYO (RANU	LOMET	RICO			3	200	LAVADO	ASF/	ALTICO
TAMIZ ASTM	-	3/4"	132"	3.6"	Nº 4	Nº 10.	Nº 40	- Man	M* 200	<m*200 p<="" td=""><td>eso Mat S.Lavar</td><td>gr.</td><td></td></m*200>	eso Mat S.Lavar	gr.	
ABERTURA EN mm		19,858	12,720	9.625	4.760	2,000	0.421	9.18	0.074	p	was Mai Laindo	at.	
PESO RETENDO	gr.		2575	2405	3695	139.9	175.2	103.9	21.9	59 P	was Med Law +Filtro	gr.	
RETENIDO PARCIAL	56		12.9	12.0	10.5	15.8	19.9	44.8	2.5	6.7 P	leso de Astalio	gr.	
RETENIDO ACUMULADO	55	10000	12.9	24.9	42.4	59.2	79.1	90.8	93.3	100.0 P	leso inicial de Filtro	gr.	
PASA	76	100.6	87.1	75.1	56.6	40.8	20.9	9.2	6.7	P	eso final de Filbo	gr.	
ESPECIFICACION	. %	100	66-100	70-88	51-60	36 - 52	17-21	6-17	4 - 1	P	reco de Riter	gr.	
ASFALTO LIQUIDO			99	10 r	1	- X-		37	(Q) = 3	- P	RACCION	16	500
TRAMO ASFALTADO	-			- 5	Metros i	ionales.				p	ESO TOTAL	gr.	20000

BRIQUETAS	1 1	1	2	3	PROMEDIO	ESPECIFICA
1 C.A. EN PESO DE LAMEZGLA	15	0.0	6.0	6.0	6.8	
2 AGREGADO GRUESO EN PESO DE LA MEZCLA > № 4	%	41.77	40.77	40.27		0
3 AGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	%	53.23	53.23	53.23		10
4 FILLER EN PESO DE LA MEZCLA	%.	0.00	0.00.	0.00		60
S PESO ESPECIFICO DEL CEMENTO ASFALTICO APARENTE		1.016	1.016	1.016		
fil PESO ESPECIFICO DEL AGREGADO GRUESO - BULK		2.602	2.802	2.602		U.
7 PESO ESPECIFICO DEL AGREGADO FINO - BULK	3 3	2.843	2.643	2.643		.5
8 PESO ESPECIFICO FILLER - APARENTE		3.000	3.000	3.000	30.00	
9 PESO DE LABRIQUETA AL AIRE	or .	1186.6	1191.4	1190.2	(S) (S)	
D PESO DE BRIQUETA+PARAFINA AL AIRE	Of .	1189.2	1196.5	1195.8	109 9	
1 PESO DE LA BRIQUETA + PARAFINA EN AGUA	gr .	665.0	669.9	667.9		
2 VOLUMEN DE LA BRIQUETA+PARAFINA (10-11)	0.0.	524.2	526.6	527.9		
3 PESO DE LA PARAFINA (10-9)	of.		1 121120		1 2	10
4 VOLUMEN DE PARAFINA (13 Pe parelina)	en:		3000		0.00	2
5 VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	C.C.	524.2	526.6	527.9		57
6 PESO ESPECIFICO BULK DE LA BRIQUETA (9/15)	grice.	2,264	2,262	2.255	2.260	0.0
7 PESO ESPECIFICO MAXIMO ASTM D-2041		2.391	2.391	2,391		1010
8 VACIOS (17-16)/100/17	%	5.3	5.4	5.7.	5.6	3 - 5
9 PESO ESPECIFICO BULK DEL AGREGADO TOTAL (2+3+4)((2/6)+)	3(7)+(4/51)	2.625	2.625	2.625		TANK TO VI
10 V.M.A. 100-(2+3+4)*(16/19)	%	18.9	19.0	19.3	19.1	Min. 14
11 VACIOS LLENOS CON C.A. 100°(20-18)/20	%	72.0	71.7	70.4	71.4	
2 PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4)((100/17)-(1/5)	100	2.617	2.617	2.617		1.0
3 C.A. ABSORBIDO POR AGREGADO TOTAL (100°5°(22-19))(22°19)	16	-0.12	-0.12	-0.12		
4 CEMENTO ASFALTICO EFECTIVO 1-23"(2+3+4)/100)	16	6.11	6.11	6.11		
5 FLUJO	mm	4.04	3.99	3.94	3.99	2 - 4
6 ESTABILIDAD SIN CORREGIR	(Ka	1134.5	1168.6	1183.7		ii.
FACTOR DE ESTABILIDAD	K	0.56	0.98	0.86		
8 ESTABILIDAD CORREGIDA	\ Kg	1089	1122	1136	1116	Min. 815
9 ESTABLIDAD-FLUJO	1	2697	2813	2886	2799	1700 -4000
IO RELACION POLVO / ASFALTO	1	1.00	1.09	1.00	100 /	7 0.6 - 1.6

MANUEL CAS OF GALLS Grave triturade "G" Centers "ANCOSA" Arena triturade" Centers "ANCOSA" Arena Zarandesda Centers " PTEL OS SERRANOS 42.0% FIBRA DETALLO DEPLATANO

Ing Muster from these Castri Walits

Tell: 037-501000 Ced. Claim 1862/70011 Ced Movinter 9/9199/72

Discontinue Calle Ampuips # 308 Pholisvinte Sullams Plans

Email: goopey, mountroppinolemail.com justice, castro@botmail.com

PROPLESSA DE DEBNO DE MEZCIA ASFAIRCA CON RIBRA DE IALIO DE PLATANO EN LA AVENDA Regissado For

LOS ALGARROSOS PIURA - 2023

CAMBRA 1000 TESIS :MAC Responsable MCG. CANTERA CANTERA SOJO SOLICITA TESSTAS: RONALDO RIVERA CUNYA Y JHOAN ALEXE ESPINOZA CORREA **FECHA** 21/05/2024

LABORATORIO MECANICA DE SUELOS, ASFALTO Y CONCRETO

			Children and	All the Contract of				L 1.50 9				
		DISE	io cor	NGO FIE	RA DE	TALLO	15.0%	MAC-02	CA.	15%	es nos	AND UNANGO
Vic. di	E	VSAYO (GRANU	LOMET	RICO		1	1000		LAVADO	ASF/	ALTICO
	1304	1/2"	3.00	N*4	M*10	Nº 42	Nº 90	M*200	4W290	Peso Mat SiLavor	IF.	
	19.050	12.700	9.521	4.760	2.000	0,425	9.18	0.074		Peso Mrt Lavedo	gr.	
gr.		2575	2405	3095	139.9	175.3	103.9	21,9	39	Perso Mat. Laurefilleo	DF.	Ç
150		12.9	12,0	18.5	15.8	19.9	11.6	2.5	6.7	Pezo de Astalio	12	
15%		12.9	24.5	43.4	29.2	79.1	20.0	13.3	100.0	Peso midal de l'iltro	12	č.
16	100.0	117.1	75.1	56.6	40.8	20.0	9.2	6.7		Peso froi de Filtro	12	2
194	100:	00 - 100	70 - 58	21 -60	38+52	17 - 28	8-17	4 - 3		Peso de filler	120	Ç.
										FRACCION	. %	500
				Metros I	inealex:					PESO TOTAL	TP.	20000
	75	19.050 gr. % % % 100.0	ENSAYO (244" 1/2" 19.890 12.700 gr. 2575 % 12.9 % 12.9 % 10.00 87.1	ENSAYO GRANU 24" 10" 38" 19.690 12.700 9.525 87. 2573 2405 % 12.9 12.9 % 12.9 24.8 % 100.0 87.1 75.1	ENSAYO GRANULOMET 244" 152" 381" N°4 19.050 12.700 25.25 4.760 15 12.9 12.0 18.5 16 12.9 12.0 18.5 16 10.0 87.1 75.1 50.8 16 100 60 100 70 88 21 68	### 1000 #7.1 75.1 56.8 40.8	ENSAYO GRANULOMETRICO 244" 1,5" 38" N°4 M°10 N°45 19.890 12.700 9.222 4.700 2.000 0.425 gr. 2573 3405 3006 139.9 175.3 16 12.9 12.0 18.5 15.8 15.9 16 12.9 24.8 43.4 59.2 79.1 16 100.0 87.1 75.1 56.8 40.8 20.9 16 100 60 100 70 58 51 60 28 52 17 25	ENSAYO GRANULOMETRICO 244" 152" 381" Nº 4 Nº 10 Nº 45 Nº 50 19.050 12.700 25.25 4.700 25.00 0.425 0.18 19. 25.75 2405 3605 13.09 175.3 103.9 15 12.9 12.0 18.5 15.0 19.9 175.3 103.9 15 12.9 24.8 43.4 59.2 79.1 20.8 15 100.0 87.1 75.1 50.8 40.8 20.9 92 15 100 00 -100 70 -38 51 -58 38 -52 17 -28 2 -17	ENSAYO GRANULOMETRICO 284* 1.52* 285* Nº4 Nº10 Nº45 Nº30 Nº250 19.890 12.700 28.25 4.760 28.00 0.425 0.18 0.874 19.890 12.700 28.25 4.760 28.00 0.425 0.18 0.874 15 12.9 12.0 18.9 13.9 17.9 103.9 17.9 17.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	ENSAYO GRANULOMETRICO 284* 1.5* 287 Nr4 8r10 Nr40 Nr50 Nr200 *Ar200 19.890 12.790 28.25 4.769 28.00 0.425 0.18 0.874 19.890 12.790 28.25 3.005 139.9 1753 103.9 21.9 29 16 12.9 12.0 18.5 15.8 19.9 11.6 2.5 6.7 16 12.9 24.8 43.4 29.2 79.1 29.8 23.3 100.0 16 100.0 87.1 75.1 56.8 40.8 20.9 9.2 6.7 16 100.0 80-100 70-58 21-68 28-52 17-25 2-17 4-5	18" 15" 38" N"4 M"10 N"40 M"30 M"200 M"200 Pean Mat SLover	ENSAYO GRANULOMETRICO LAVADO ASFA 244* 1.5* 345* N°40 N°40 N°40 N°20 N°200 Peso Mat Silaver pr 19.890 12.790 9.225 4.790 2.000 0.425 0.18 0.674 Peso Mat Lavefillo pr 15 12.9 3405 3005 139.9 175.3 103.9 21.9 99 Peso Mat Lavefillo pr 15 12.9 12.0 18.5 15.8 15.9 11.6 2.5 6.7 Peso Mat Lavefillo pr 15 12.9 24.6 43.4 59.2 79.1 90.8 93.3 100.0 Peso inicial de Filtro pr 15 100.0 17.1 75.1 36.8 40.8 20.9 92 E.7 Peso Grand de Filtro pr 15 100 60 100 70 58 21 68 38 52 17 -25 8 -17 4 - 3 Peso Grand de Filtro pr 16 100 60 100 70 58 21 68 38 52 17 -25 8 -17 4 - 3 Peso Grand de Filtro pr 17 18 18 18 18 18 18 18 18 18 18 18 18 18

	BRQUEYAS	Nº	1	2	3	PROMEDIO	ESPECIFICACION
1	C.A. EN PEBO DE LA MEZCLA	%	6.5	8.5	6.5	6.5	ACHEMINE SAN
1	AGRECADO GRUESO EN PESO DE LA NEZCLA > Nº 4	%	40.56	40.56	40.56		
3	AGREGADO FINO EN PESO DE LA MEZCLA < Nº 4	%	52.94	.52.54	52.94		
4	FILLER EN PESO DE LAMEZCIA.	%	0.00	0.00	0.00		
3	PESO ESPECIFICO DEL CEMENTO ASFALTICO APARENTE		1.016	1.016	1.016		
6	PESO ESPECIFICO DEL AGREGADO GRUEBO - BULK		2.602	2.602	2.602	0 8	
1	PESO ESPECIFICO DEL AGREGADO FINO -BULK	- 33	2.643	2 843	2.645	E- 9	1
3	PESO ESPECIFICO RILLER - APARENTE		3.000	2,000	3.000	100	î —
7	PEBO DE LA BRIQUETA AL AIRE	ar.	1197.4	1196.6	1195.6	7	î —
ti	PESO DE BRIQUETA-PARAFINA AL AIRE	ar.	1199.9	1198.7	1198.1	3 3	
i	PEBO DE LABRIQUETA + PARAFINA EN AGUA	ar I	662.3	681.3	680.9	- 3	
E	MOLUMEN DE LA BRIQUETA-PARAFINA (10-11)	cc.	537.8	537.4	537.2		1
R	PESO DE LA PARAFINA (10-9)	at.				1000	1
14	VOLUMEN DE PARAFINA (13.Pe parafina)	cc.				10 3	1
ti	VOLUMEN DE LA BRIQUETA POR DESPAZAMENTO (12-14)	cc.	537.6	537.4	537.2	1	1
	PESO ESPECIFICO BULK DE LA BRIQUETA (9/15)	gelo.c.	2.227	2.227	2:228	2.227	
ñ	PESO ESPECIFICO NAXIMO ASTM D-2041		2.363	2 363	2.363		1
R	VACIOS (17-16)*100/17	%	9.7	5.8	5.8	5.8	2 - 4
13	PESO ESPECIFICO BLILK DEL ADREGADO TOTAL (2+3+4)((2/6)+(3/7)+(4/80)	2.628	2.625	2.825		1
ž	VMA 100-(2+3+4)*(16/19)	Ps.	20.7	20.7	20.7	20.7	Min. 14
	VACKOS LLENOS CON C.A. 100°120-18920	%	72.1	Y2.2	72.0	72.1	
ž	PESO ESPECIFICO DEL AGREGADO TOTAL (2+3+4)(100/17)(15))		2.603	2.603	2.003		
	C.A. ABSORBIDO FOR AGREGADO TOTAL (100°5°)22-16(V)22°19)	16	0.31	-0.33	-0.31		1
5	CEMENTO ASPALTICO EFECTIVO 1-(23°(2+3+4)/100)	%	6.81	8.81	6.81		1
ä	FLUJO	mm	3.86	4.06	4.08	4.00	2-36
	ESTABLIDAD SIN CORREGIR	Ko	905.6	892.6	903.5	100	
	FACTOR DE ESTABILIDAD	K	0.93	0.93	0.93	- Y	1
2	ESTABL DAD CORREGIDA	900	842	830	649	838	Min. 515
2	ESTABLIDAD-FLUJO		2181	2643	2068	2097	1700 - 4000
ü	RELACION POLVO / ASFALTO		0.96	0.98	0.98	0.98	0.0-1.0

MANUEL GAST

The second secon

Grave triturada 1/2" Cantera "ANCOSA." 42.8% Arena triturada" Cantera " ANCOSA " 44.0% Arena Zarandeada Centera "PTE LOS SERVANOS PIBRA DETALLO DE PLATANO

- CONSPET GEDON SAC leg North for hop care to be great to be g

(/	PESO ESPECIF	ICO MAXII	NO ASTM D	-2041			
Proyecto PROPUESTA DE DISEÑO DE MEXCLA ASI LOS ALGARROBOS, PIURA - 2023 Muestreo CANTERA SOJIO SOLICITA TESISTAS: RONALDO RIVERA CLINYA Y	Reviso Respo	Realizado Por Revisado Por Responsable. FECHA 21-0					
LABORATOR	NO MECANIC	A DE SUEL	OS, ASFAL	TO Y CONC	RETO		_
BNSAY0	NF.	1	2	3	4	5	
CBMBNTO ASFALTICO	- %	4.00	4.50	5.00	5.50	6.00	6.50
PESO DEL MATERIAL	Q.	1205.3	1200.8	1201.6	1200.9	1200.9	1200.3
PEBO DEL AGUA + FRASCO-RICE	Q.	7705.0	7705.0	7705.0	7705.0	7705.0	7705.0
PEBO DEL MATERIAL+FRASCO+AGUA (en aire)	Gr.	8910.3	8905.8	8906.6	8005.9	8905.9	8905.3
PESC DEL MATERIAL +FRASCO+AGLA (en agua)	Q:	8427.5	8420.6	8416.7	8410.5	8403.6	8397.3
VOLUMEN DEL NA TERIAL	6.6	482.8	485.2	489.9	495.4	502.3	508.0
PEBO EBPECIFICO MAXIMO	Qrie.e.	2.498	2.475	2.453	2.424	2.391	2.363
TEMPERATURA DE BISAYO	·c	25°C	29°0	25°C	29°C	25°C	25%
GRAVA TRITURADA 34°	- %	45.0	45.0	45.0	45.0	450	45,0
ARBNA TRITURADA 1/2"	- %	45.0	45.0	45.0	45.0	45.0	24.0
ARBIA ZARANDEADA 3/16°	- %	9.5	9.5	9.5	9.5	9.5	51,0
FILLER (CEMENTO PORTLAND)	16	0.5	0.5	ů5	0.5	0.5	0.5
TIBMPO DE BNSAYO	Mr.	25	25'	25'	25'	25	25
CORRESECCION POR TEMPERATURA		1.000	1.000	1.000	1.000	1.000	1.000

OBSERVACIONES DISEÑO CON 15.0 % DE RERA DE TALLO DE PLATANO

MANUEL CASSO GALLS 79517

Marser there is the Courte Vidado OCENIERO CIVIL CIP N° 294740 Ing. Mandel