

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Diseño del sistema de trigeneración en Centro de Salud Pósope Alto – Chiclayo, para mejorar el suministro energético.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Mecánico Electricista

AUTORES:

Espinoza Arnao, Marco Antonio (orcid.org/0000-0002-1785-3304) Silva Becerra, Miguel Angel (orcid.org/0000-0003-1425-5971)

ASESOR:

Dr. Davila Hurtado, Fredy (orcid.org/0000-0001-8604-8811)

LÍNEA DE INVESTIGACIÓN:

Generación, Transmisión y Distribución

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo sostenible y adaptación al cambio climático

CHICLAYO – PERÚ

2024

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Declaratoria de Autenticidad del Asesor

Yo, DAVILA HURTADO FREDY, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHICLAYO, asesor de Tesis titulada: "Diseño del sistema de trigeneración en Centro de Salud Pósope Alto – Chiclayo, para mejorar el suministro energético.", cuyos autores son ESPINOZA ARNAO MARCO ANTONIO, SILVA BECERRA MIGUEL ANGEL, constato que la investigación tiene un índice de similitud de 10%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

CHICLAYO, 24 de Julio del 2024

Apellidos y Nombres del Asesor:	Firma
DAVILA HURTADO FREDY	Firmado electrónicamente
DNI : 16670066	por: FRDAVILAH el 02-08-
ORCID: 0000-0001-8604-8811	2024 19:30:42

Código documento Trilce: TRI - 0833509

Declaratoria de originalidad del autor(es)

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

Declaratoria de Originalidad de los Autores

Nosotros, ESPINOZA ARNAO MARCO ANTONIO, SILVA BECERRA MIGUEL ANGEL estudiantes de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA MECÁNICA ELÉCTRICA de la UNIVERSIDAD CÉSAR VALLEJO SAC - CHICLAYO, declaramos bajo juramento que todos los datos e información que acompañan la Tesis titulada: "Diseño del sistema de trigeneración en Centro de Salud Pósope Alto – Chiclayo, para mejorar el suministro energético.", es de nuestra autoría, por lo tanto, declaramos que la Tesis:

- 1. No ha sido plagiada ni total, ni parcialmente.
- Hemos mencionado todas las fuentes empleadas, identificando correctamente toda cita textual o de paráfrasis proveniente de otras fuentes.
- No ha sido publicada, ni presentada anteriormente para la obtención de otro grado académico o título profesional.
- Los datos presentados en los resultados no han sido falseados, ni duplicados, ni copiados.

En tal sentido asumimos la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada, por lo cual nos sometemos a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

Nombres y Apellidos	Firma	
MARCO ANTONIO ESPINOZA ARNAO	Firmado electrónicamente	
DNI: 74241796	por: MESPINOZAARN el 24- 07-2024 19:44:36	
ORCID: 0000-0002-1785-3304		
MIGUEL ANGEL SILVA BECERRA	Firmado electrónicamente	
DNI: 19337548	por: MASILVAB el 24-07-	
ORCID: 0000-0003-1425-5971	2024 20:28:35	

Código documento Trilce: TRI - 0833510

Dedicatoria

A mis padres por haber dedicado su vida entera en mi cuidado, crianza y formación, por su esfuerzo y su amor desmedido. M.A.E.A.

> A mi madre, mis hermanos, mi esposa y mis hijos por ser la inspiración y el soporte de mi superación personal y profesional. M.A.S.B.

Agradecimiento

A Dios, por permitirnos la fuerza y la inteligencia de concluir nuestros estudios profesionales satisfactoriamente.

A nuestra familia, por ser el motor que impulsa nuestra inquietud e ímpetus de superación.

A nuestros docentes y en especial a nuestro asesor por la rigurosidad y dedicación de los conocimientos impartidos.

Índice de contenidos

Carátula	i
Declaratoria de autenticidad del asesor	ii
Declaratoria de originalidad del autor(es)	iii
Dedicatoria	iv
Agradecimiento	v
Índice de contenidos	vi
Índice de tablas	vii
Índice de figuras	viii
Resumen	ix
Abstract	x
I. INTRODUCCIÓN	1
II. METODOLOGÍA	12
III. RESULTADOS	15
IV. DISCUSIÓN	86
V. CONCLUSIONES	90
VI. RECOMENDACIONES	91
REFERENCIAS	92
ANEXOS	96

Índice de tablas

Tabla 1. Información del cuadro de cargas del centro de salud.	15
Tabla 2. Dotación de agua caliente para el centro de salud	. 16
Tabla 3. Dotación de vapor para el centro de salud	. 18
Tabla 4. Resumen de cargas térmicas para sistema de refrigeración	19
Tabla 5. Resumen de requerimientos energéticos para sistema de trigeneración ercentro de salud	n el . 20
Tabla 6. Costo estimado de sistema de trigeneración	83
Tabla 7. Flujo de caja para determinar la rentabilidad del sistema de trigeneración.	84

Índice de figuras

Figura 1. Ejemplo de un sistema simple de trigeneración
Figura 2. Perfil de elevación del lugar donde se ubica el centro de salud 21
Figura 3. Esquema termodinámico del sistema de trigeneración del centro de salud de Pósope Alto
Figura 4. Diagrama termodinámico Temperatura vs Entropía (T-s) del sistema de trigeneración del centro de salud de Pósope Alto
Figura 5. Diagrama termodinámico Temperatura vs Entalpía (T-h) del sistema de trigeneración del centro de salud de Pósope Alto
Figura 6. Diagrama termodinámico Presión vs Entalpía (P-h) del sistema de trigeneración del centro de salud de Pósope Alto
Figura 7. Ciclo de refrigeración para antecámara 32
Figura 8. Ciclo de refrigeración para productos lácteos
Figura 9. Ciclo de refrigeración para frutas y verduras 43
Figura 10. Ciclo de refrigeración para productos congelados 49
Figura 11. Ciclo de refrigeración para carnes 54
Figura 12. Ciclo de refrigeración para pescados 60
Figura 13. Configuración del sistema de trigeneración en software Cyclepad77
Figura 14. Configuración del equipamiento del sistema de trigeneración en software Cyclepad
Figura 15. Configuración de los estados 1 al 12 del sistema de trigeneración en software Cyclepad
Figura 16. Configuración de los estados 13 al 28 del sistema de trigeneración en software Cyclepad
Figura 17. Datos obtenidos en cada equipo y del Ciclo Rankine en el sistema de trigeneración en software Cyclepad

Resumen

El estudio tuvo como objetivo diseñar un sistema de trigeneración en el centro de salud Pósope Alto en Chiclayo para mejorar el suministro energético. La investigación fue aplicada, cuantitativa y no experimental. Del análisis, se determinó que el centro de salud tiene una demanda eléctrica de 530 kW, para agua caliente de 66 kW, para vapor de 1647.76 kW y para refrigeración de 15.48 kW, sumando un total de 2259.24 kW. Para que el sistema de trigeneración pueda operar correctamente es necesario una caldera de vapor con la capacidad de generar 3902.40 kg/h, una turbina de vapor de 550 kW, una bomba de 3 HP, un generador eléctrico de 900 kVA, un condensador o intercambiador de calor de 68 kW, tres intercambiadores de calor de 550 kW cada uno, y el equipamiento necesario para los ciclos refrigeración. La simulación indicó una potencia eléctrica neta de 557.90 kW, para agua caliente de 66 kW, para vapor de 1647 kW, logrando una eficiencia térmica global de 77.07%. El ahorro energético obtenido fue de S/.4432792.81 y el costo de inversión de S/.3738925.34, VAN de S/.3022499.26, TIR de 22.81% y Payback de 5.40 años. Concluyendo que un sistema de trigeneración es rentable y atractivo.

Palabras clave: Trigeneración, eficiencia energética, rentabilidad.

Abstract

The aim of the study was to design a trigeneration system at the Pósope Alto health center in Chiclayo to improve energy supply. The research was applied, quantitative and non-experimental. From the analysis, it was determined that the health center has an electrical demand of 530 kW, for hot water of 66 kW, for steam of 1647.76 kW and for refrigeration of 15.48 kW, adding a total of 2259.24 kW. For the trigeneration system to operate correctly, a steam boiler with the capacity to generate 3902.40 kg/h, a 550 kW steam turbine, a 3 HP pump, a 900 kVA electric generator, a 68 kW condenser or heat exchanger, three 550 kW heat exchangers each, and the necessary equipment for the refrigeration cycles are necessary. The simulation indicated a net electrical power of 557.90 kW, for hot water of 66 kW, for steam of 1647 kW, achieving an overall thermal efficiency of 77.07%. The energy savings obtained were S/.4432792.81 and the investment cost of S/.3738925.34, NPV of S/.3022499.26, IRR of 22.81% and Payback of 5.40 years. Concluding that a trigeneration system is profitable and attractive.

Keywords: Trigeneration, energy efficiency, profitability.

I. INTRODUCCIÓN

El suministro energético en hospitales enfrenta desafíos significativos debido a la necesidad crítica de mantener servicios médicos esenciales durante emergencias y apagones (Abd et al., 2021). Ello se debe a la dependencia de fuentes de energía convencionales en hospitales que contribuye a la vulnerabilidad de los sistemas de atención médica, especialmente en áreas propensas a desastres naturales y crisis energéticas (Corvalán et al., 2020). Cabe indicar que las interrupciones en el suministro energético pueden poner en peligro la vida de los pacientes al comprometer el funcionamiento de equipos médicos críticos, como respiradores y monitores cardíacos (Badida et al., 2022). La gestión ineficiente de la energía en hospitales puede resultar en costos operativos elevados y un uso ineficaz de los recursos, lo que afecta la sostenibilidad financiera de las instituciones de salud (Mariano-Hernández et al., 2021).

Las tecnologías de almacenamiento de energía, como las baterías y los sistemas de almacenamiento térmico, pueden desempeñar un papel importante en la mejora de la confiabilidad del suministro energético en hospitales (Liu et al., 2021). La investigación y el desarrollo de tecnologías innovadoras, como sistemas de cogeneración y captura de calor residual, pueden mejorar la eficiencia y la sostenibilidad del suministro energético en hospitales a largo plazo (Borges et al., 2021).

En el Perú, la responsabilidad constitucional del Estado de cubrir el 100% de la atención de salud, con especial atención a las zonas rurales pobres y marginadas, lo obliga a incurrir en grandes gastos, que cada vez más no son cubiertos debido a déficits presupuestarios. Determinar la necesidad de reducir los costos de tratamiento en la implementación de servicios médicos, uno de los cuales es el costo de la energía eléctrica: energía activa, energía reactiva y potencia constante (Esquivel, 2021).

En el nuevo Centro Médico Pósope Alto, recién inaugurado y puesto en funcionamiento en octubre del 2022, posee un ámbito de atención I-3 quirúrgico, es decir, cuenta con sala de operaciones, ofreciendo servicios como radiología, ecografía, diagnóstico por imágenes, sala de partos, entre otros, con el potencial de beneficiar a 23 mil habitantes de la localidad donde brinda sus servicios. Actualmente, se ha detectado la falta de recursos para gastos corrientes u ordinarios, para cubrir el pago de los costos (recibos), de energía eléctrica, a tal extremo que, al mes de agosto 2023, se tiene un atraso de tres meses que asciende a los S/. 75000, recibo Nº 39694431 (código de usuario), situación que obliga a disminuir los costos energéticos.

El centro médico tiene una necesidad de demanda energética total de 2259.24 kW, con una distribución aproximada de 530 kW sistema eléctrico, 66 kW para el sistema de agua caliente, 1647.76 kW para el sistema de vapor 15.48 para los sistemas de refrigeración; al respecto, la oficina de mantenimiento del Centro Médico manifiesta que actualmente ha reducido la utilización de parte de su carga instalada, precisamente para no incurrir en un mayor consumo de energía, incrementando los costos. Asimismo, el sistema de calderas no está siendo utilizado por cuanto no se cuenta con el presupuesto para la compra de GLP que conjuntamente con el sistema de colectores solares le darían funcionamiento (GLP=60%; CS=40%), de la misma forma el sistema de frío y ambientación climática (el cual depende completamente del servicio eléctrico) es utilizado sólo en momentos necesarios e indispensables, dejando hasta un 40% del mismo sin utilizar (el aire acondicionado se mantiene apagado en algunos ambientes o se utiliza en horarios restringidos), de los dos ascensores existentes, sólo se utiliza uno; resultando en la necesidad operativa y de disminución de costos la implementación de un sistema alterno de generación energética, con menores costos operativos y con mayor eficiencia de utilización de la energía. La situación problemática con la existencia de una política de eficiencia energética, de acuerdo a la ley Nº 28832, donde brinda como solución emplear un sistema de trigeneración a la problemática energética del Centro Médico de Pósope Alto.

La presente investigación se justifica porque permite mejorar el suministro energético empleando un sistema de trigeneración, con dicho sistema el centro de salud puede contar con un suministro energético no convencional, lo que permitirá obtener un ahorro económico significativo en el pago de servicio al concesionario y, por ende,

puede funcionar a su capacidad real, es decir, suministrar energía a todas las dependencias del centro de salud.

La investigación puede contribuir al Objetivo de Desarrollo Sostenible (ODS) 7: Energía asequible y no contaminante, específicamente a la meta 7.2, que busca aumentar considerablemente la proporción de energía renovable en el conjunto de fuentes energéticas. El diseño de un sistema de trigeneración mejora la eficiencia energética y reduce las emisiones de gases de efecto invernadero, promoviendo el uso sostenible de recursos energéticos y contribuyendo a la seguridad energética del centro de salud.

Dentro de este contexto se formuló el problema de investigación: ¿Cómo mejorar el suministro energético mediante el diseño de un sistema de trigeneración en el centro de salud, Pósope Alto – Chiclayo?

Para enfrentar este problema se presentó el objetivo general: Diseñar un sistema de Trigeneración en el centro de salud, Pósope Alto – Chiclayo, para mejorar el suministro energético. Que fue alcanzado mediante el desarrollo de los siguientes objetivos específicos:

Determinar los parámetros necesarios para el sistema de trigeneración de acuerdo a las necesidades energéticas del Centro de Salud de Pósope Alto como energía eléctrica, térmica, frío u otro tipo de energía;

Dimensionar los dispositivos electromecánicos de producción de energía (eléctrica y térmica) según la demanda del centro de salud y las normas vigentes;

Realizar una simulación del sistema de trigeneración con la utilización de software de diseño con el desarrollo de los planos y esquemas correspondientes; y

Determinar la inversión inicial (presupuesto) además del costo en ahorro energético para estimar la rentabilidad económica y financiera.

De acuerdo al análisis bibliográfico y considerando lo anteriormente expuesto en relación a las variables de estudio, se tomó en cuenta los siguientes antecedentes:

En el artículo desarrollado por Calise et al. (2024) efectuado en Italia, plantearon como objetivo proponer un novedoso sistema basado en la integración de una pila de combustible de óxido sólido (SOFC) de cogeneración reversible y un campo fotovoltaico (PV). La población considerada fueron los hospitales pertenecientes a Italia y la muestra fue un hospital específico de pequeña escala. Emplearon al registro de datos, ficha de recolección de datos y análisis de datos como instrumentos de recolección de datos. El sistema propuesto consigue resultados muy interesantes, con un índice de ahorro de energía primaria del 33% y un periodo de recuperación de 6,7 años. Por lo tanto, concluyeron que esta medida energética resulta una solución prometedora para reducir el impacto ambiental de los hospitales y las instalaciones sanitarias.

En la investigación que desarrollaron Srivastava & Kumar (2023) en India, plantearon como objetivo realizar un análisis termodinámico para la eficiencia energética y exergética con diferentes combinaciones. La población y la muestra fue la misma, es decir, un sistema de trigeneración combinado con calefacción, enfriamiento y generación de energía. Los instrumentos de recolección de datos empleados fueron el registro de datos y la ficha de recolección de información. Los resultados mostraron que la eficiencia de la primera ley, la relación de energía eléctrica a térmica y la eficiencia de la segunda ley de cogeneración y trigeneración aumentan con el aumento de la temperatura de entrada de la turbina. Además, la destrucción de exergía en la cámara de combustión y el generador de vapor de recuperación de calor disminuye significativamente con el aumento de la relación de presión, pero aumenta con el aumento de la temperatura de entrada de la turbina. Concluyeron que un sistema de trigeneración ofrece una eficiencia entre un 20 y un 40 % mayor que la cogeneración y estos sistemas son útiles en restaurantes, hospitales, industrias de procesos, plantas químicas, industrias lácteas, etc., que tienen una demanda constante de electricidad, calefacción y refrigeración durante todo el año.

En el artículo de investigación elaborado por Swayze & Singh (2023) en Canadá, plantearon como objetivo desarrollar un marco generalizado de toma de decisiones para estimar el tamaño óptimo según las diversas cargas horarias de los edificios, además de la viabilidad económica y ambiental de los sistema de trigeneración basados en gas natural y energía solar. La población y muestra fue la misma, conformadas por ocho edificios diferentes ubicados en cinco ubicaciones diferentes: Toronto, Ottawa, Calgary, San Francisco y Los Ángeles en América del Norte. Los instrumentos empleados fueron los registro de datos y análisis documental. Los resultados mostraron que los sistemas de trigeneración solar ofrecieron la recuperación más rápida en granjas verticales y hospitales (el promedio varía de 5,4 a 9,0 años), mientras que los sistemas de trigeneración a base de gas natural tuvieron la mejor recuperación en hospitales, granjas verticales y escuelas secundarias (el promedio varía de 5,7 a 8,1 años). Concluyeron que el desempeño ambiental del sistema de trigeneración varió según las combinaciones de edificio y ubicación, por lo que la toma de decisiones está fuertemente influenciada por las emisiones de gases de efecto invernadero de la red.

En el artículo de investigación que desarrollaron Fong & Lee (2023) en China, plantearon como objetivo evaluar sistemas de trigeneración impulsados por biocombustibles para aplicaciones en edificios no residenciales, desde la perspectiva energética, ambiental y económica. La población y muestra considerada fue la misma, sistema de trigeneración impulsado por biocombustible. Los resultados mostraron que los sistemas de trigeneración impulsados por biocombustibles ofrecen un ahorro definitivo de energía primaria de hasta un 15% y una reducción de emisiones de carbono de al menos un 86% en diferentes tipos de edificios no residenciales en comparación con los sistemas convencionales. Con un funcionamiento 24 horas al día, 7 días a la semana para los edificios de hoteles y hospitales, el sistema correspondiente podría incluso alcanzar cero emisiones de carbono. Concluyeron que dichos sistemas reflejan el potencial de aplicación para edificios no residenciales, abriendo el camino hacia la neutralidad de carbono para ciudades subtropicales sostenibles.

En la investigación desarrollada por Ulusam & Koç (2022) efectuada en Turquía, plantearon como objetivo analizar los enfoques de simulacion basada en agentes y optimización de la simulación para la planificación energética en diferentes escenarios aplicado a un caso hospitalario. La población estuvo conformada por los hospitales de Turquía y la muestra fue un sistema multienergía de un gran complejo hospitalario ubicado en Turquía. Emplearon al registro de datos, ficha de recolección de datos y análisis de datos como instrumentos de recolección de datos. De los resultados obtuvieron que según los modelos de simulación optimizados con diferentes metaheurísticas, como el algoritmo genético, mostraron que ambos escenarios pueden ser rentables (períodos de recuperación simples de alrededor de 5,28 y 6,6 años respectivamente) incluso sin financiación pública. Concluyeron que el escenario 2 basado en cogeneración proporcionó una reducción del 12,35 % en las emisiones de carbono en comparación con el escenario base, mientras que el escenario 3 proporcionó una reducción del 16,94 % en comparación con el escenario base, y ambos escenarios han demostrado ser bastante amigables con el ambiente.

En la investigación realizada por Papadimitriou et al. (2021) en Atenas, plantearon como objetivo verificar los estandares de desempeño y evaluar el comportamiento real, destacando al mismo tiempo las ganancias económicas. La población estuvo conformada por todos los hospitales de Atenas y la muestra se conformó por un sistema de trigeneración de un hospital en funcionamiento de Atenas. Los instrumentos de recolección de datos empleados fueron los registros de datos, fichas de recolección de datos y análisis de datos. Los resultados mostraron que después de ocho años de funcionamiento, la eficiencia energética todavía estaba dentro de los estándares de diseño. La eficiencia eléctrica estuvo constantemente por encima del 30%, mientras que la eficiencia térmica rondaba el 40-45%. Concluyeron que el análisis también destacó la eficacia económica del sistema en el mercado energético y económico de un edificio hospitalario.

En la investigación desarrollada por Braun et al. (2020) en Alemania, plantearon como objetivo diseñar y evaluar la viabilidad de sistemas de trigeneración con colectores híbridos fotovoltaico-térmicos (PVT) para edificios de oficinas de energía cero en diferentes climas. La población fueron los sistemas de trigeneración híbridos fotovoltaico-térmicos y la muestra fue un sistema con diferentes áreas de superficie de PVT y volúmenes de tanques de almacenamiento para optimizar el sistema para tres zonas climáticas diferentes y para dos estándares de construcción diferentes. Emplearon como instrumentos de recolección de datos al registro de datos, ficha de recolección de datos y análisis de datos. Los resultados demostraron que los costes anuales de un sistema de este tipo son comparables a los de los sistemas de refrigeración solares térmicos y solares eléctricos convencionales. Sin embargo, la viabilidad económica depende en gran medida de los precios de la energía y de la política energética específicos de cada país. Concluyeron que hoy en día estos sistemas son técnicamente viables, con una utilización máxima de la electricidad fotovoltaica para calefacción, ventilación, aire acondicionado y otras demandas de electricidad, logrando altas fracciones solares y ahorros de energía primaria.

En la investigación efectuada por Natán (2020) desarrollada en Italia, plantearon como objetivo evaluar la eficiencia energética y estudiar la viabilidad de una unidad de trigeneración en el hospital Cantú. La población de estudio fueron todos los hospitales de Italia y la muestra fue el hospital de administración pública. Los instrumentos de recolección de datos empleados fueron los registros de datos, fichas de recolección de datos y análisis de datos. Los resultados indicaron que el tamaño del cogenerador debe rondar entre 500 a 600 kWe, ya que el valor presente neto varía entre $\leq 2.163.000$ y $\leq 1.881.000$; la tasa interna de retorno ronda el 26%, con un período de retorno de la inversión de 4,2 años, que es más alto que otras configuraciones o tamaños. Concluyendo que es una buena alternativa emplear un sistema de trigeneración porque permite una gran reducción en los costos de energía de modo que se incrementa la eficiencia energética en el hospital de estudio.

Entre las teorías relacionadas a la trigeneración, se tiene a la de Kumar et al. (2021), que mencionan sobre la integración de energías renovables, donde investigaciones recientes han destacado la importancia de integrar fuentes renovables en sistemas de trigeneración para mejorar su sostenibilidad, empleando los sistemas híbridos que combinan energía solar y eólica con trigeneración permitiendo reducir de forma significativa las emisiones de carbono.

De acuerdo con Wu et al. (2023), mencionaron la teoría sobre la optimización de sistemas multienergía para maximizar la eficiencia de la trigeneración. Explican que este enfoque utiliza modelos matemáticos avanzados para encontrar soluciones óptimas que equilibren diferentes variables, como la demanda energética y los costos operativos.

La implementación de sistemas de gestión energética inteligente se ha destacado como crucial para mejorar la eficiencia de la trigeneración. Según Xu et al. (2020), estos sistemas utilizan algoritmos avanzados para ajustar dinámicamente la operación de los sistemas de trigeneración, maximizando su rendimiento.

Se han realizado estudios para evaluar el impacto ambiental y económico de la trigeneración. En un estudio de caso presentado por Nami et al. (2020), se analizó cómo la trigeneración puede reducir las emisiones de gases de efecto invernadero y los costos operativos en el sector industrial, demostrando que poseen un gran potencial para lograr el tan deseado desarrollo sostenible y evitar la generación de grandes cantidades de dióxido de carbono.

Otra teoría se enfoca en la investigación centrada en el desarrollo de tecnologías innovadoras para mejorar la eficiencia y la sostenibilidad de la trigeneración. En un artículo de revisión de Chu et al. (2020), exploraron avances tecnológicos recientes, como sistemas de almacenamiento de energía avanzados y dispositivos de captura de carbono, los cuales brindan la posibilidad de obtener una excelente sostenibilidad y una reducción considerable de los gases contaminantes que otras tecnologías producen al emplear combustibles como fuente primaria de energía.

Entre las fórmulas a emplear para el diseño del sistema de trigeneración, en consideración con Rao (2015), las más importantes son las mencionadas a continuación:

Eficiencia eléctrica $\eta_{eléctrica}$:

$$\eta_{el\acute{e}ctrica} = \frac{P_{el\acute{e}ctrica~\acute{u}til}}{P_{calorífica~del~combustible}}$$

Donde:

Peléctrica útil: Potencia eléctrica útil.

 $P_{calorífica\ del\ combustible}$: Potencia calorífica del combustible empleado.

Eficiencia térmica $\eta_{térmica}$:

$$\eta_{t\acute{e}rmica} = \frac{P_{t\acute{e}rmica\,\acute{u}til}}{P_{calorífica\,del\,combustible}}$$

Donde:

 $P_{t\acute{e}rmica \ \acute{u}til}$: Potencia térmica $\acute{u}til$.

Eficiencia global η_{global} :

$$\eta_{global} = \frac{P_{el\acute{e}ctrica\,\acute{u}til} + P_{t\acute{e}rmica\,\acute{u}til}}{P_{calorífica\,del\,combustible}}$$

Ratio de Conversión de Energía (RCE):

$$RCE = \frac{P_{t\acute{e}rmica\ \acute{u}til}}{P_{el\acute{e}ctrica\ \acute{u}til}}$$

Coeficiente de Desempeño del Sistema de Refrigeración (COP):

$$COP = \frac{E_{t\acute{e}rmica\ extraída\ del\ refrigerador}}{E_{el\acute{e}ctrica\ del\ sistema\ de\ refrigeración}}$$

Donde:

 $E_{térmica\ extraída\ del\ refrigerador}$: Energía térmica que se extrae del sistema de refrigeración.

 $E_{eléctrica del sistema de refrigeración}$: Energía eléctrica que consume el sistema de refrigeración.

Consumo Específico del sistema (CEP):

$$CEC = rac{Q_{energia\ consumida}}{P_{el\acute{e}ctrica\ producida}}$$

Donde:

Q_{energia consumida}: Cantidad de energía consumido.

 $P_{eléctrica \ producida}$: Potencia eléctrica producida por el sistema.

Figura 1. *Ejemplo de un sistema simple de trigeneración.* Fuente: (Portella Rivera, 2022).

En la Figura 1 se tiene un sistema simple de trigeneración, donde se emplea como fuente primaria de energía un combustible en un sistema de cogeneración, donde la energía eléctrica generada es empleada por la empresa u organización dependiendo de su demanda de electricidad, en un determinado porcentaje, y el restante es inyectada por la red pública, donde el calor residual o recuperado del sistema de cogeneración es empleado mediante un intercambiador de calor para poder obtener agua caliente para sistemas sanitarios, para demanda de calefacción, y además para que pueda funcionar el chiller de absorción, para producir aire frío, brindando la demanda de refrigeración necesaria.

II. METODOLOGÍA

En este informe de tesis se empleó una investigación del tipo aplicada, pues se emplearon los conocimientos adquiridos durante los cinco años de estudios de Ingeniería Mecánica Eléctrica en la Universidad César Vallejo, a la solución de un problema ingenieril, empresarial o social concreto y específico. Asimismo, fue de diseño no experimental, es decir, las variables no se manipularon, sino que fueron utilizadas tal como fueron encontradas en su contexto, al momento de aplicar los instrumentos de recolección de datos pertinentes. Además, tuvo un enfoque cuantitativo, porque las variables con sus respectivas dimensiones e indicadores se pudieron medir, es decir, se pudieron calcular de modo que se dio respuesta a los objetivos planteados. Fue de alcance transversal, porque se aplicó el estudio en un determinado momento para obtener información importante sobre el impacto que tuvo la trigeneración en el centro de salud de Pósope Alto.

La investigación tiene como variable independiente al sistema de trigeneración, que se definió como: un procedimiento que amplía el sistema de cogeneración que se compone por tres sistemas principales: el sistema de transformación de la energía primaria, el sistema de generación de energía y el sistema de distribución de energía con el consiguiente aumenta la eficiencia (Serra, 2020). Y como variable dependiente al suministro energético, que se definió como: un sistema de trigeneración es que se logra a través de la generación simultánea de los sistema eléctrico y térmico, razón por la cual se debe de utilizar estos métodos con mucho cuidado y eficiencia. En el Anexo 01 se visualiza la información respectiva de la operacionalización de variables para el presente estudio.

La población estuvo representada por el conjunto de los centros de salud de la Región Lambayeque, que se benefician del sistema de trigeneración para mejorar su suministro energético. Se consideró a todos los requerimientos que se den con relación a la necesidad de energía calorífica y energía eléctrica, para los criterios de inclusión. Se consideró a los criterios de exclusión, como todos aquellos requerimientos que no correspondan a energía calorífica y energía eléctrica, fueron los criterios de exclusión. La muestra fue el centro médico Pósope Alto, que se beneficia del sistema de trigeneración para mejorar su suministro energético. El tipo de muestreo considerado fue no probabilístico, debido a que las muestras fueron escogidas a conveniencia debido a la presencia de datos secundarios, cercanía, facilidad de interactuar y diseño mejorado. La unidad de análisis considerada fue la eficiencia energética global del centro de salud.

Entre las técnicas de recolección de datos se consideraron a la observación, porque permite observar los patrones de uso de energía del centro de salud para recopilar datos sobre el desempeño del sistema energético actual e identificar áreas de mejora. También, se consideró a las entrevistas, para recoger datos de expertos en el campo, como ingenieros y consultores de energía, para obtener información sobre el proceso de diseño e identificar desafíos potenciales. Como instrumentos de recolección de datos se emplearon a la ficha de apuntes, para analizar tesis, libros y artículos científicos existentes sobre el tema para recopilar datos sobre el diseño y la implementación de sistemas similares. Además del cuestionario, porque permite recopilar datos de las partes interesadas, como administradores de centros de salud, personal y pacientes, para comprender sus necesidades y preferencias con respecto al uso de energía.

Para el método de análisis de datos se tuvo en consideración la recopilación de información sobre la situación actual proporcionando un conjunto de datos, que ayudaron a evaluar los problemas obtenidos durante la investigación del proyecto. Los datos recopilados y la selección de componentes se utilizaron e incorporaron al software aplicativo de diseño, para ayudar a determinar el mejor diseño de sistema de trigeneración. Además, se utilizó un programa de hoja de cálculo para desarrollar un presupuesto que refleje la relación costo-beneficio de implementar en el diseño de trigeneración.

En aspectos éticos, se garantizó que los datos recopilados durante el proceso de diseño sean precisos, coherentes y completos. Los datos se analizaron utilizando métodos estadísticos apropiados para garantizar que los resultados sean válidos y

confiables. Al diseñar un sistema de trigeneración para un centro de salud, es importante tener consideraciones éticas, garantizar la validez y confiabilidad del diseño. Todo dato o información que sea de propiedad intelectual de un tercero fue referenciado conforme corresponda, evitando el plagio y respetando la autoría, utilizando la norma ISO 690-2, de acuerdo con lo solicitado por la UCV.

III. RESULTADOS

3.1. Determinar los parámetros necesarios para el sistema de trigeneración

Demanda de energía eléctrica

El centro de salud no está operando a su capacidad total, emplear un instrumento de medición que permita medir la potencia que consume, no reflejaba la realidad para la cual se diseñó el centro de salud, por lo que, se optó por recurrir a obtener la información directamente del expediente técnico.

De acuerdo con información recopilada del expediente técnico del mismo Centro de Salud de Pósope Alto, con respecto al sistema de energía eléctrica, este cuenta con un Tablero General Normal (TGN), con un Tablero de Transferencia Automática (TTA) y un Tablero General de Bomba Contra Incendios (TF-BCI). En la Tabla 1 se puede apreciar el resumen de la potencia unitaria (P.U.), carga instalada (C.I.), factor de demanda (F.D.) y máxima demanda (M.D.), logrando obtener una máxima demanda total de 529.77 kW, lo que contrasta la potencia contratada con la concesionaria ENSA.

Ítem Descripción		Cantidad	P.U. (kW)	C.I. (kW)	F.D.	M.D. (kW)
TGN	TGN Tablero General Normal		818.34	818.34	0.8	640.51
TTA	TTA Tablero de Transferencia Automática		9.75	9.75	0.8	7.53
TF-BCI	-BCI Tablero General de Bomba Contra Incendios		15.76	15.76	0.9	14.18
				843.85		662.22
Factor de simultaneidad					0.8	
Máxima Demanda Total					529.77	

Tabla 1. Información del cuadro de cargas del centro de salud.

Fuente: Obtenida del expediente técnico del centro de salud Pósope Alto.

En el Anexo 9 se puede apreciar la información del sistema eléctrico, donde se detalla cada tablero con sus respectivos circuitos, carga instalada, factor de demanda, máxima demanda, equipamiento, entre otros detalles.

Demanda de energía térmica

Sistema de agua caliente

La información presentada a continuación, fue obtenida del expediente técnico del centro de salud, logrando determinarse que el consumo de agua caliente es el siguiente:

Servicio	Cantidad	Dotación DIGIEM/MINSA	Dotación total (L/día)
Camas hospitalarias	19	250 L/cama/día	4750
Consultorios médicos	21	130 L/consultorio/día	2730
Consultorios dentales	3	100 L/consultorio/día	300
Lavandería	180	20 L/kg/día	1.25x3600=4500
Cocina	400	10 L/ración/día	4000
Comedor	210	10 L/m²/día	2100
Residencia	10	120 L/habitante/día	1200
Subtotal		otal	19580
Reserva (20%)			3916
Subtotal + Reserva			23496
Factor de corrección (17% de subtotal + reserva)			3994.32
Demanda tota	27490.32		

Tabla 2. Dotación de agua caliente para el centro de salud.

Fuente: Obtenida del expediente técnico del centro de salud Pósope Alto.

De acuerdo a la norma IS. 010 del Reglamento Nacional de Edificaciones, en la Tabla 2 se aprecia el resumen para el cálculo de la dotación de agua caliente para el centro de salud, donde se consideró una reserva de 20% además de un factor de corrección de 17%, logrando obtener una demanda total de 27490.32 L/día, y considerando que el sistema de agua caliente debe operar 24 horas al día, se obtuvo lo siguiente:

$$\dot{V}_{agua\ caliente} = 27490.32 \frac{L}{dia} x \frac{1\ dia}{24\ h} = 1145.43 \frac{L}{h} \approx 0.00031818 \frac{m^3}{s}$$

Empleando la densidad promedio del agua ya que pasa de 15 a 60°C, se debe emplear el valor promedio de ambos valores, entonces:

$$\rho_{promedio,agua} = \frac{999.10\frac{kg}{m^3} + 983.30\frac{kg}{m^3}}{2} = 991.20\frac{kg}{m^3}$$

El flujo másico es:

$$m_{agua\ caliente}=\dot{V}_{agua\ caliente}\ x\
ho_{promedio,agua}$$

$$m_{agua\ caliente} = 0.00031818 \frac{m^3}{s} \times 991.20 \frac{kg}{m^3} = 0.3154 \frac{kg}{s}$$

El calor específico del agua a presión constante varía con la temperatura, por lo tanto, se calculó el promedio considerando las temperaturas de 15 y 60°C, pero que, al ser iguales, se utilizó un solo valor, obteniendo lo siguiente:

$$C_{p,agua\ promedio} = 4.185 \frac{kJ}{kg.\,^{\circ}C}$$

Empleando la fórmula correspondiente:

$$Q_{agua\ caliente} = \frac{\dot{m}_{agua\ caliente}\ x\ C_{p,agua\ promedio}\ x\ \Delta T}{\eta_{intercambiador\ de\ calor}}$$

Sustituyendo la información:

$$Q_{agua\ caliente} = \frac{0.3154 \frac{kg}{s} \times 4.185 \frac{kJ}{kg.°C} \times (60 - 15)°C}{0.90} = 66.00\ kW$$

Por lo tanto, para el sistema de agua caliente a 60°C, es necesario emplear una transferencia de calor de 66.00 kW, para poder calentar el agua desde 15°C a 60°C, de modo que se cubra el requerimiento del centro de salud. Para ello se consideró una eficiencia de 90% para el intercambiador de calor, en consideración con lo mencionado por Cengel et al. (2019). Cabe indicar que se empleó la temperatura de 60°C a la salida por temas de sugerencia en el diseño de dichos sistemas de agua caliente, ya que la Legionella crece en agua a temperaturas comprendidas entre 20°C y 50°C, pero que no sobreviven cuando la temperatura es de 60°C.

Sistema de vapor

Para el sistema de vapor, se recopiló la siguiente información de acuerdo a los requerimientos del centro de salud con el fin de abastecer toda la demanda necesaria solicitada, por lo tanto, la carga térmica para dicho sistema fue de:

Servicio	Cantidad	Dotación DIGIEM/MINSA	Dotación total (kg/h)
Camas hospitalarias	19	25 kg/h	475
Consultorios médicos	21	10 kg/h	210
Consultorios dentales	3	15 kg/h	45
Lavandería	180	3 kg/h por kg de ropa	540
Cocina	400	1 kg/h por ración	400
Residencia	10	5 kg/h	50
Subtotal (F.D.=0.90)		.D.=0.90)	1720x0.9=1548
Reserva (20%)			309.60
Subtotal + Reserva			1857.60
Factor de corrección (10% de subtotal + reserva)			185.76
Demanda total (subtotal + reserva + Factor de corrección)			2043.36

Tabla 3. Dotación de	e vapor para el	centro de salud.
----------------------	-----------------	------------------

Fuente: Obtenida del expediente técnico del centro de salud Pósope Alto.

De acuerdo con la Tabla 3, la demanda total de vapor para el centro de salud es de 2043.36 kg por hora, por lo tanto, se pudo calcular la transferencia de calor necesaria para poder obtener el vapor necesario, partiendo de los siguientes datos:

$$\dot{m}_{vapor} = 2043.36 \frac{kg}{h} \times \frac{1}{3600} \frac{h}{s} = 0.5676 \frac{kg}{s}$$

En primer lugar, se debe calentar el agua de 15°C hasta 100°C, y luego seguir transfiriendo calor para que cuando el agua se encuentre en líquido saturado, logre convertirse en vapor saturado totalmente.

$$Q_{vapor} = \frac{\dot{m}_{agua} \ x \ C_{p,agua \ promedio} \ x \ \Delta T + h_{fg \ agua} \ x \ \dot{m}_{agua}}{\eta_{intercambiador \ de \ calor}}$$

Sustituyendo la información:

$$Q_{vapor} = \frac{0.5676 \frac{kg}{s} \times 4.185 \frac{kJ}{kg.°C} \times (100 - 15)°C + 2257 \frac{kJ}{kg} \times 0.5676 \frac{kg}{s}}{0.90}$$

$$Q_{vapor} = 1647.76 \, kW$$

Cargas térmicas para sistemas de refrigeración

En la Tabla 4, se aprecia la información sobre los sistemas de refrigeración considerados para el centro de salud. En un centro hospitalario, las antecámaras y cámaras de refrigeración son esenciales para mantener la calidad y seguridad de diversos productos perecederos. La antecámara sirve como un espacio intermedio para reducir el intercambio de aire y mantener las condiciones internas de las cámaras frigoríficas. Las cámaras para frutas y verduras operan entre 0°C y 10°C con alta humedad para conservar la frescura. Las cámaras para productos congelados mantienen temperaturas bajo -18°C para prevenir el deterioro, así como las de pescados y carnes, y con ello se retarda el crecimiento bacteriano. Finalmente, las cámaras para lácteos operan entre 1°C y 5°C para preservar las propiedades organolépticas y nutricionales de los productos

Descripción	Carga térmica (kCal/h)	Carga térmica (W)	Carga Adicional (W)	Carga térmica total (kW)
Antecámara	1 507.90	1 753.69	175.37	1.93
Frutas y Verduras	1 091.44	1 269.34	126.93	1.40
Productos congelados	2 856.04	3 321.57	332.16	3.65
Pescados	2 800.52	3 257.00	325.70	3.58
Carnes	2 750.68	3 199.04	319.90	3.52
Lácteos	1 094.20	1 272.55	127.26	1.40
	Total			15.48 kW

Tabla 4. Resumen de cargas térmicas para sistema de refrigeración

Fuente: Obtenida del expediente técnico del centro de salud Pósope Alto.

En la Tabla 5 se muestra el resumen de los requerimientos energéticos para el sistema de trigeneración:

Sistema	Carga (kW)
Energía eléctrica	530
Agua caliente	66.00
Vapor	1647.76
Refrigeración	15.48
Total	2259.24

Tabla 5. Resumen de requerimientos energéticos para sistema de trigeneración en el centro de salud.

Fuente: Obtenida del expediente técnico del centro de salud Pósope Alto.

De la Tabla 5 se puede mencionar que el sistema de trigeneración debe ser capaz de generar 530 kW para suministrarlos al sistema de energía eléctrica para que el centro de salud pueda operar a su capacidad total y así ofrecer todos los servicios para lo cual fue concebido, para el sistema de calor, debe ser capaz de suministrar por medio de los gases de escape un total de 1713.76 kW (agua caliente + vapor) y para el sistema de refrigeración debe tener la capacidad de poder extraer por medio de los sistemas necesarios un calor de 15.48 kW. El requerimiento energético total del sistema de trigeneración es de 2259.24 kW, para poder satisfacer la demanda de electricidad, agua caliente, vapor y sistemas de refrigeración.

Parámetros atmosféricos

Entre los parámetros necesarios, se debe contar con la temperatura del lugar y presión atmosférica, que de acuerdo con Duffie & Beckman (2013) y Cengel et al. (2019), debe ser la temperatura máxima, para garantizar que los componentes del sistema puedan soportar condiciones extremas sin fallos. Esto incluye la selección de materiales que puedan resistir la temperatura máxima esperada y asegurar que el sistema funcione adecuadamente durante la temperatura mínima esperada. También se debe considerar a la presión atmosférica, que se debe calcular de acuerdo con la altitud del lugar, y la radiación solar debe ser la mínima disponible, para que el sistema pueda operar aún en las condiciones más adversas que se pueda presentar.

La temperatura máxima se obtuvo del SENAMHI, que se puede observar en el Anexo 9, donde el valor obtenido fue de 36.6 °C ocurrido en el mes de marzo.

$$T_{m\acute{a}xima} = 36.60 \,^{\circ}C$$

Luego, la presión atmosférica se calculó utilizando la ecuación de Potter et al. (2015), utilizando la altitud de la localicad de Pósope Alto, que se obtuvo de Google Earth y se puede obtener de la Figura 2.

$$z_{posope} = \frac{117 \ m + 115 \ m}{2} = 116 \ m$$

$$P_{atmosf\acute{e}rica\ local} = P_{atmosf\acute{e}rica\ est\acute{a}ndar}\ x\ \left(1 - \frac{\alpha\ z_{posope}}{T_0}\right)^{\frac{g}{\alpha R}}$$

$$P_{atmosf\acute{e}rica\ local} = 101.325\ kPa\ x\ \left(1 - \frac{0.0065\ x\ 116}{288.15}\right)^{5.26} = 100\ kPa$$

Figura 2. *Perfil de elevación del lugar donde se ubica el centro de salud.* Fuente: Google Earth.

3.2. Dimensionar los dispositivos electromecánicos de producción de energía (eléctrica y térmica)

Se ha considerado utilizar un sistema de trigeneración mediante un Ciclo Rankine simple pero que el vapor extraído de la turbina sea empleado para extraerles el calor necesario y ser transferido por medio de intercambiadores de calor a los demás sistemas que conforman la trigeneración, como el de agua caliente a 60°C, sistema de vapor y los sistemas de refrigeración, de modo que la energía eléctrica generada por el Ciclo Rankine mediante la turbina se suministre al centro de Salud, por lo tanto, la concesionaria ya no le brindará servicio eléctrico, porque el sistema de trigeneración sin problemas puede suministrar toda la potencia eléctrica necesaria además de las cargas térmicas para los sistemas adicionales mencionados.

Ahora, para el sistema de generación de energía eléctrica con GN, se seleccionó una caldera de GN además de una turbina de vapor de 550 kW, donde su ficha técnica se adjuntó en el Anexo 9. La turbina de vapor es DTEC de 550 kW modelo N.55-1.27. Cabe precisar que la turbina al estar acoplada a un generador, dicho generador otorga un voltaje de salida trifásico de 440-380V y que puede obtenerse 220V monofásico con una fase y neutro del generador, que va a ir directamente a la subestación del centro de salud de Posope Alto. Para poder efectuar el análisis y seleccionar los demás componentes del sistema de trigeneración, se dibujó el esquema termodinámico, que se aprecia en la Figura 3.

La Figura 4 muestra el diagrama termodinámico Temperatura vs entropía (T-s), donde se puede observar cada estado con su respectivo estado del fluido empleado, que de acuerdo con el análisis, en el estado 3 se tiene vapor sobrecalentado a la salida de la caldera de GN, en el estado 4 se tiene mezcla bifásica de líquido saturado y vapor saturado con una calidad superior a 90%, y a medida se avanza hasta el estado 12, la calidad se va reduciendo debido a la extracción de calor que se efectúa en cada intercambiador de calor, en el estado 1 se tiene líquido saturado a la entrada a la bomba y en el estado 2 se tiene líquido subenfriado o comprimido debido a la bomba.

La Figura 5 es similar a la Figura 4, ya que son los mismos estados y las mismas fases del fluido empleado, pero que el diagrama termodinámico es de Temperatura vs entalpía y de igual modo con la Figura 6, donde se puede observar las presiones y entalpías obtenidas en cada estado del sistema de trigeneración.

Figura 3. Esquema termodinámico del sistema de trigeneración del centro de salud de Pósope Alto.

Fuente: Elaborado con AutoCAD 2022.

Figura 4. Diagrama termodinámico Temperatura vs Entropía (T-s) del sistema de trigeneración del centro de salud de Pósope Alto. Fuente: Elaborado con Termograf.

Figura 5. Diagrama termodinámico Temperatura vs Entalpía (T-h) del sistema de trigeneración del centro de salud de Pósope Alto. Fuente: Elaborado con Termograf.

Figura 6. Diagrama termodinámico Presión vs Entalpía (P-h) del sistema de trigeneración del centro de salud de Pósope Alto. Fuente: Elaborado con Termograf.

Análisis termodinámico del sistema de trigeneración

Ciclo Rankine

Se empleó un Ciclo Rankine real, ya que se consideraron las eficiencias isoentrópicas de la turbina y bomba. El agua es el fluido de trabajo empleado en un Ciclo Rankine, por lo tanto, empleando las tablas de las propiedades termodinámicas respectivas (Anexo 9), se procedió con el cálculo:

Estado 1: En la entrada de la bomba, se obtiene líquido saturado a la presión indicada en la salida de la turbina, obtenido de la ficha técnica de la turbina, ya que trabaja entre los límites de presión de 1270 y 50 kPa:

$$P_{1} = 50 \ kPa$$

$$T_{1} = T_{f@50 \ kPa} = 81.32 \ ^{\circ}C$$

$$h_{1} = h_{f@50 \ kPa} = 340.54 \frac{kJ}{kg}$$

$$v_{1} = v_{f@50 \ kPa} = 0.001030 \frac{m^{3}}{kg}$$

Estado 2: Se encuentra la salida de la bomba y para calcular la entalpía en este estado, es necesario calcular el trabajo específico que realice, de la siguiente forma:

$$P_2 = 1270 \ kPa$$
$$w_{bomba,i} = v_1(P_2 - P_1)$$
$$m^3$$

$$w_{bomba,i} = 0.001030 \frac{m^3}{kg} (1270 - 50) \ kPa = 1.2566 \frac{kJ}{kg}$$

$$h_2 = h_1 + w_{bomba,i}$$

$$h_2 = 340.54 \frac{kJ}{kg} + 1.2566 \frac{kJ}{kg} = 341.7966 \frac{kJ}{kg}$$

Considerando la eficiencia isoentrópica de la bomba que es de 80%, se obtuvo:

$$\eta_{bomba} = 80\% = 0.80$$

$$w_{bomba.r} = \frac{w_{bomba,i}}{\eta_{bomba}}$$

$$w_{bomba.r} = \frac{1.2566 \frac{kJ}{kg}}{0.80} = 1.571 \frac{kJ}{kg}$$

$$h_{2r} = h_1 + w_{bomba,r}$$

$$h_{2r} = (340.54 + 1.571) \frac{kJ}{kg} = 342.111 \frac{kJ}{kg}$$

Estado 3: Se obtiene vapor sobrecalentado a la salida de la caldera.

$$P_{3} = 1270 \ kPa$$
$$T_{3} = 300 \ ^{\circ}C$$
$$h_{3} = 3044.41 \frac{kJ}{kg}$$
$$s_{3} = 7.0061 \frac{kJ}{kg.K}$$

Estado 4: En un inicio se considera isoentrópica a la turbina, obteniendo lo siguiente.

$$P_4 = 50 \ kPa$$
$$T_4 = 81.32 \ ^\circ C$$
$$s_4 = s_3 = 7.0061 \frac{kJ}{kg.K}$$
$$s_{4f} = 1.0912 \frac{kJ}{kg.K}$$

$$s_{4g} = 7.5931 \frac{kJ}{kg.K}$$

Calculando la calidad:

$$x_4 = \frac{s_4 - s_{4f}}{s_{4g} - s_{4f}}$$

$$x_{4} = \frac{(7.0061 - 1.0912)\frac{kJ}{kg}}{(7.5931 - 1.0912)\frac{kJ}{kg}} = 0.9097$$
$$h_{4f} = 340.54\frac{kJ}{kg}$$

$$h_{4g} = 2645.20 \frac{kJ}{kg}$$

La entalpía es:

$$h_4 = h_{4f} + x_4 (h_{4g} - h_{4f})$$
$$h_4 = 340.54 \frac{kJ}{kg} + 0.9097(2645.20 - 340.54) \frac{kJ}{kg} = 2437.09 \frac{kJ}{kg}$$

Estado 4r: Considerando la eficiencia isoentrópica de la turbina, que es de 85%:

$$\eta_{turbina} = 85\% = 0.85$$

$$w_{turbina.i} = h_3 - h_4$$

$$w_{turbina.i} = (3044.41 - 2437.09) \frac{kJ}{kg} = 607.32 \frac{kJ}{kg}$$

$$h_{4r} = h_3 - \eta_{turbina} \cdot w_{turbina.i}$$

$$h_{4r} = (3044.41 - 0.85 \ x \ 607.32) \frac{kJ}{kg} = 2528.19 \frac{kJ}{kg}$$

Calculando el trabajo real de la turbina:

$$w_{turbina.r} = h_3 - h_{4r}$$
$$w_{turbina.r} = (3044.41 - 2528.19)\frac{kJ}{kg} = 516.22\frac{kJ}{kg}$$

El trabajo neto real es:

$$w_{neto.r} = w_{turbina.r} - w_{bomba.r}$$

$$w_{neto.r} = 516.22 \frac{kJ}{kg} - 1.571 \frac{kJ}{kg} = 514.649 \frac{kJ}{kg}$$

La potencia neta real es:

$$\begin{split} \dot{W}_{turbina.r} - \dot{W}_{bomba.r} &= \frac{\dot{W}_{neta.r}}{\eta_{generador}} \\ \dot{m}_v &= \frac{\dot{W}_{neta.r}}{\eta_{generador}(w_{neto.r})} \\ \dot{m}_v &= \frac{530 \ kW}{0.95(514.649) \frac{kJ}{kg}} = 1.084 \frac{kg}{s} \cong 3902.51 \frac{kg}{h} \end{split}$$

Estado 6: A la salida del recuperador del calor, se realizó un balance de masa y energía en el sistema de vapor, obteniendo lo siguiente:

$$E_{entrada} = E_{salida}$$

$$\dot{m}_v(h_{4r} - h_5) = \dot{W}_{sistema\ de\ vapor}$$

$$h_5 = h_{4r} - rac{\dot{W}_{sistema\,de\,vapor}}{\dot{m}_v}$$

Reemplazando la información pertinente:

$$h_5 = 2528.19 \frac{kJ}{kg} - \frac{1647.76 \, kW}{1.084 \frac{kg}{s}} = 1008.12 \frac{kJ}{kg}$$

Seguidamente, se continuo con el análisis en cada sistema de refrigeración, cabe indicar que cada sistema se consideró por separado y no 2 o 3 sistemas en uno, ya que si falla un componente perjudica a los sistemas considerados, lo cual no es recomendable, sino que se encuentren separados, de manera independiente sin perjudicarse uno ni otro al realizar mantenimientos o presentar alguna falla. Por lo tanto, se procedió de la siguiente manera:

Antecámara

Se muestra en la Figura 7, el cual sirvió para poder calcular los parámetros necesarios para poder extraer la carga térmica requerida.

Figura 7. Ciclo de refrigeración para antecámara. Fuente: Elaborado con AutoCAD 2022.

Al realizar el análisis termodinámico, se obtuvo lo siguiente:

$$h_5 = 1008.12 \frac{kJ}{kg}$$

Se ha empleado la siguiente información para el cálculo y dimensionamiento del ciclo de refrigeración para antecámara. La temperatura para el condensador 1 se detalla a continuación:

$$T_{condensador 1} = 27 \ ^{\circ}C + 3 \ ^{\circ}C = 30 \ ^{\circ}C$$

$$P_{condensador 1} = P_{sat@30^{\circ}C} = 770.64 \ kPa$$

La temperatura para el evaporador 1 fue la siguiente:

$$T_{evaporador 1} = 3 \circ C - 3 \circ C = 0 \circ C$$

$$P_{evaporador 1} = P_{sat @0^{\circ}C} = 293.01 \ kPa$$

El refrigerante a emplear fue el R134a, por ser altamente comercial, además de que el sistema de refrigeración no es para una escala industrial, ya que la carga térmica es baja, del Anexo 9 entonces se tuvo que:

Estado 7a:

En el evaporador 1, a su salida, la temperatura es de:

$$T_{7a} = T_{evaporador 1} + 3 °C = 0 + 3 °C = 3 °C$$
$$T_{7a} = 3 °C$$
$$P_{evaporador 1} = 293.01 kPa$$
$$h_{7a} = 253.122 \frac{kJ}{kg}$$

Estado 8a: Al tener una válvula de expansión, el proceso del estado 7a a 8a es isoentálpico, por lo tanto, se tuvo que:

$$h_{8a} = h_{7a} = 253.122 \frac{kJ}{kg}$$

Estado 3a: Se encuentra la salida del condensador 1, con una presión de 770.64 kPa y una temperatura de 27 °C, de tablas termodinámicas se obtuvieron los demás parámetros:

$$P_{3a} = 770.64 \, kPa$$

$$T_{3a} = 27 \,^{\circ}C$$

 $h_{3a} = h_{f@27^{\circ}C} = 89.26 \frac{kJ}{kg}$

Estado 4a: Se encuentra la entrada del evaporador 1, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{4a} = h_{3a} = 89.26 \frac{kJ}{kg}$$

Estado 5a: Se encuentra la entrada del evaporador 2, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{5a} = h_{4a} = 89.26 \frac{kJ}{kg}$$
$$P_{5a} = 140 \ kPa$$
$$T_{5a} = -18.77 \ ^{\circ}C$$

Estado 6a: Los datos se presión y temperatura son los de saturación del estado 5a, y se tiene vapor saturado a la salida del evaporador 2, por lo tanto, se tuvo:

$$P_{6a} = 140 \ kPa$$

 $T_{6a} = -18.77 \ ^{\circ}C$
 $h_{6a} = h_{g@140kPa} = 239.16 \frac{kJ}{ka}$

Considerando que la carga térmica que debe extraer el evaporador 1 es de

$$\dot{Q}_{antec\acute{a}mara} = 1.92906 \, kW$$

Calculando el flujo de masa de refrigerante:

$$\dot{m}_{2a} = \frac{\dot{Q}_{antec\acute{a}mara}}{h_{7a} - h_{4a}} = \frac{1.92906 \frac{kJ}{s}}{(253.122 - 89.26) \frac{kJ}{kg}} = 0.0118 \frac{kg}{s}$$

En el evaporador 2, se requiere extraer una cantidad de calor de la mezcla bifásica de 2 kW, por lo tanto, se obtuvo:

$$\dot{Q}_{evaporador 2} = 2 \ kW$$

$$\dot{m}_{1a} = \frac{\dot{Q}_{evaporador\,2}}{h_{6a} - h_{5a}} = \frac{2\frac{kJ}{s}}{(239.16 - 89.26)\frac{kJ}{kg}} = 0.0133\frac{kg}{s}$$

Estado 1a: El flujo de masa total en el estado 1 es:

$$\dot{m}_a = \dot{m}_{1a} + \dot{m}_{2a} = 0.0133 \frac{kg}{s} + 0.0118 \frac{kg}{s} = 0.0251 \frac{kg}{s}$$

Realizando un balance de masa y energía:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$

 $\dot{m}_{1a} h_{6a} + \dot{m}_{2a} h_{8a} = \dot{m}_a h_1$

Despejando:

$$h_{1a} = \frac{\dot{m}_{1a} h_{6a} + \dot{m}_{2a} h_{8a}}{\dot{m}_a}$$
$$3\frac{kg}{s} \times 239.16\frac{kJ}{kg} + 0.0118\frac{kg}{s} x$$

$$h_{1a} = \frac{0.0133 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0118 \frac{kg}{s} \times 253.122 \frac{kJ}{kg}}{0.0251 \frac{kg}{s}}$$
$$h_{1a} = 245.724 \frac{kJ}{kg}$$
$$P_{1a} = 140 \ kPa$$

$$T_{1a} = -10.77 \,^{\circ}C$$
$$s_{1a} = 0.9699 \frac{kJ}{kg}$$

Estado 2a:

$$s_{2a} = s_{1a} = 0.9699 \frac{kJ}{kg}$$
$$P_{2a} = 770.64 \ kPa$$
$$T_{2a} = 45.38 \ ^{\circ}C$$
$$h_{2a} = 282.535 \frac{kJ}{kg}$$

El trabajo específico ideal del compresor 1 es:

$$w_{i,compresor 1} = h_{2a} - h_{1a}$$
$$w_{i,compresor 1} = 282.535 \frac{kJ}{kg} - 245.724 \frac{kJ}{kg} = 36.811 \frac{kJ}{kg}$$

Entonces, la potencia ideal del compresor es:

$$\dot{W}_{i,compresor\,1} = \dot{m}_a \, x \, w_{i,compresor\,1}$$

$$\dot{W}_{i,compresor\ 1} = 0.0251 \frac{kg}{s} \ x \ 36.811 \frac{kJ}{kg} = 0.924 \ kW$$

Considerando un rendimiento de 90% para el compresor:

$$\dot{W}_{r,compresor\ 1} = rac{\dot{W}_{i,compresor\ 1}}{\eta_{compresor}}$$

$$\dot{W}_{r,compresor\ 1} = \frac{0.924\ kW}{0.90} = 1.027\ kW = 1.38\ HP$$

$$h_{2ar} = h_{1a} + \frac{w_{i,compresor\ 1}}{\eta_{compresor\ }}$$

$$h_{2ar} = 245.724 \frac{kJ}{kg} + \frac{36.811 \frac{kJ}{kg}}{0.90} = 286.625 \frac{kJ}{kg}$$

La transferencia de calor del condensador 1 es:

$$\dot{Q}_{condensador 1} = \dot{m}_a (h_{2ar} - h_{3a})$$

$$\dot{Q}_{condensador 1} = 0.0251 \frac{kg}{s} (286.625 - 89.26) \frac{kJ}{kg} = 4.954 \, kW$$

Análisis en el evaporador 2:

$$\begin{split} \dot{E}_{entrada} &= \dot{E}_{salida} \\ \dot{m}_{1a}h_{6a} - \dot{m}_{1a}h_{5a} &= \dot{m}_v h_5 - \dot{m}_v h_6 \end{split}$$

Despejando:

$$h_6 = \frac{\dot{m}_v h_5 - \dot{m}_{1a} h_{6a} + \dot{m}_{1a} h_{5a}}{\dot{m}_v}$$

$$h_6 = \frac{1.084 \frac{kg}{s} \times 1008.12 \frac{kJ}{kg} - 0.0133 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0133 \frac{kg}{s} \times 89.26 \frac{kJ}{kg}}{1.084 \frac{kg}{s}} = 1006.28 \frac{kJ}{kg}$$

Sistema de refrigeración de productos lácteos

Continuamente, se prosiguió con el análisis de los productos lácteos, que se muestra en la Figura 8, el cual sirvió para poder calcular los parámetros necesarios para poder extraer la carga térmica requerida.

Figura 8. Ciclo de refrigeración para productos lácteos. Fuente: Elaborado con AutoCAD 2022.

Al realizar el análisis termodinámico, se obtuvo lo siguiente:

$$h_6 = 1006.28 \frac{kJ}{kg}$$

Se ha empleado la siguiente información para el cálculo y dimensionamiento del ciclo refrigeración para productos lácteos. La temperatura para el condensador 2 se detalla a continuación:

$$T_{condensador 2} = 27 °C + 3 °C = 30 °C$$
$$P_{condensador 2} = P_{sat@30°C} = 770.64 ~kPa$$

La temperatura para el evaporador 3 fue la siguiente:

$$T_{evaporador 3} = 3 °C - 3 °C = 0 °C$$
$$P_{evaporador 3} = P_{sat @0°C} = 293.01 kPa$$

El refrigerante a emplear fue el R134a, por ser altamente comercial, además de que el sistema de refrigeración no es para una escala industrial, ya que la carga térmica es baja, del Anexo 9 entonces se tuvo que:

Estado 7b:

En el evaporador 3, a su salida, la temperatura es de:

$$T_{7b} = T_{evaporador 3} + 3 \circ C = 0 + 3 \circ C = 3 \circ C$$
$$T_{7b} = 3 \circ C$$
$$P_{evaporador 3} = 293.01 \ kPa$$

$$h_{7b} = 253.122 \frac{kJ}{kg}$$

Estado 8b: Al tener una válvula de expansión, el proceso del estado 7b a 8b es isoentálpico, por lo tanto, se tuvo que:

$$h_{8b} = h_{7b} = 253.122 \frac{kJ}{kg}$$

Estado 3b: Se encuentra la salida del condensador, con una presión de 770.64 kPa y una temperatura de 27 °C, de tablas termodinámicas se obtuvieron los demás parámetros:

$$P_{3b} = 770.64 \ kPa$$
$$T_{3b} = 27 \ ^{\circ}C$$
$$h_{3b} = h_{f@27^{\circ}C} = 89.26 \frac{kJ}{kg}$$

Estado 4b: Se encuentra la entrada del evaporador 3, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{4b} = h_{3b} = 89.26 \frac{kJ}{kg}$$

Estado 5b: Se encuentra la entrada del evaporador 4, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento,

siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{5b} = h_{4b} = 89.26 \frac{kJ}{kg}$$

 $P_{5b} = 140 \ kPa$
 $T_{5b} = -18.77 \ ^{\circ}C$

Estado 6b: Los datos se presión y temperatura son los de saturación del estado 5b, y se tiene vapor saturado a la salida del evaporador 4, por lo tanto, se tuvo:

$$P_{6b} = 140 \ kPa$$

 $T_{6b} = -18.77 \ ^{\circ}C$
 $h_{6b} = h_{g@140kPa} = 239.16 \frac{kJ}{kg}$

Considerando que la carga térmica que debe extraer el evaporador 3 es de

$$\dot{Q}_{prod.l\acute{a}cteos} = 1.39981 \ kW$$

Calculando el flujo de masa de refrigerante:

$$\dot{m}_{2b} = \frac{\dot{Q}_{prod.lácteos}}{h_{7b} - h_{4b}} = \frac{1.39981\frac{kJ}{s}}{(253.122 - 89.26)\frac{kJ}{kg}} = 0.0085\frac{kg}{s}$$

En el evaporador 4, se requiere extraer una cantidad de calor de los gases de escape de 2 kW, por lo tanto, se obtuvo:

$$\dot{Q}_{evaporador 4} = 2 \ kW$$

$$\dot{m}_{1b} = \frac{\dot{Q}_{evaporador\,4}}{h_{6b} - h_{5b}} = \frac{2\frac{kJ}{s}}{(239.16 - 89.26)\frac{kJ}{kg}} = 0.0133\frac{kg}{s}$$

Estado 1b: El flujo de masa total en el estado 1 es:

$$\dot{m}_b = \dot{m}_{1b} + \dot{m}_{2b} = 0.0133 \frac{kg}{s} + 0.0085 \frac{kg}{s} = 0.0218 \frac{kg}{s}$$

Realizando un balance de masa y energía:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$

 $\dot{m}_{1b}h_{6b} + \dot{m}_{2b}h_{8b} = \dot{m}_bh_{1b}$

Despejando:

$$h_{1b} = \frac{\dot{m}_{1b}h_{6b} + \dot{m}_{2b}h_{8b}}{\dot{m}_b}$$

$$h_{1b} = \frac{0.0133\frac{kg}{s} \times 239.16\frac{kJ}{kg} + 0.0085\frac{kg}{s} \times 253.122\frac{kJ}{kg}}{0.0218\frac{kg}{s}}$$

$$h_{1b} = 244.604\frac{kJ}{kg}$$

$$P_{1b} = 140 \ kPa$$

$$T_{1b} = -12.14 \ ^{\circ}C$$

$$s_{1b} = 0.9656\frac{kJ}{kg}$$

Estado 2b:

$$s_{2b} = s_{1b} = 0.9656 \frac{kJ}{kg}$$

 $P_{2b} = 770.64 \, kPa$
 $T_{2b} = 44.03 \,^{\circ}C$
 $h_{2b} = 281.167 \frac{kJ}{kg}$

El trabajo específico ideal del compresor 2 es:

$$w_{i,compresor 2} = h_{2b} - h_{1b}$$

$$w_{i,compresor 2} = 281.167 \frac{kJ}{kg} - 244.604 \frac{kJ}{kg} = 36.563 \frac{kJ}{kg}$$

Entonces, la potencia ideal del compresor 2 es:

$$\dot{W}_{i,compresor 2} = \dot{m}_b x \, w_{i,compresor 2}$$

$$\dot{W}_{i,compresor 2} = 0.0218 \frac{kg}{s} \times 36.563 \frac{kJ}{kg} = 0.797 \, kW$$

Considerando un rendimiento de 90% para el compresor:

$$\dot{W}_{r,compresor 2} = \frac{\dot{W}_{i,compresor 2}}{\eta_{compresor}}$$

$$\dot{W}_{r,compresor 2} = \frac{0.797 \ kW}{0.90} = 0.886 \ kW = 1.19 \ HP$$

$$h_{2br} = h_{1b} + \frac{W_{i,compresor\ 2}}{\eta_{compresor}}$$

$$h_{2br} = 244.604 \frac{kJ}{kg} + \frac{36.563 \frac{kJ}{kg}}{0.90} = 285.23 \frac{kJ}{kg}$$

La transferencia de calor del condensador 2 es:

$$\dot{Q}_{condensador 2} = \dot{m}_b (h_{2br} - h_{3b})$$

$$\dot{Q}_{condensador 2} = 0.0218 \frac{kg}{s} (285.23 - 89.26) \frac{kJ}{kg} = 4.272 \, kW$$

Análisis en el evaporador 4:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$
$$\dot{m}_{1b}h_{6b} - \dot{m}_{1b}h_{5b} = \dot{m}_v h_6 - \dot{m}_v h_7$$

Despejando:

$$h_7 = \frac{\dot{m}_v h_6 - \dot{m}_{1b} h_{6b} + \dot{m}_{1b} h_{5b}}{\dot{m}_v}$$

$$h_7 = \frac{1.084 \frac{kg}{s} \times 1006.28 \frac{kJ}{kg} - 0.0133 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0133 \frac{kg}{s} \times 89.26 \frac{kJ}{kg}}{1.084 \frac{kg}{s}} = 1004.44 \frac{kJ}{kg}$$

Sistema de refrigeración de frutas y verduras

Continuamente, se prosiguió con el análisis de frutas y verduras, que se muestra en la Figura 9, el cual sirvió para poder calcular los parámetros necesarios para poder extraer la carga térmica requerida.

Figura 9. *Ciclo de refrigeración para frutas y verduras.* Fuente: Elaborado con AutoCAD 2022.

Al realizar el análisis termodinámico, se obtuvo lo siguiente:

$$h_8 = 1004.44 \frac{kJ}{kg}$$

Se ha empleado la siguiente información para el cálculo y dimensionamiento del ciclo refrigeración para frutas y verduras. La temperatura para el condensador 3 se

detalla a continuación:

$$T_{condensador 3} = 27 °C + 3 °C = 30 °C$$
$$P_{condensador 3} = P_{sat@30°C} = 770.64 kPa$$

La temperatura para el evaporador 5 fue la siguiente:

$$T_{evaporador 5} = 3 \circ C - 3 \circ C = 0 \circ C$$
$$P_{evaporador 5} = P_{sat @0 \circ C} = 293.01 \ kPa$$

El refrigerante a emplear fue el R134a, por ser altamente comercial, además de que el sistema de refrigeración no es para una escala industrial, ya que la carga térmica es baja, del Anexo 9 entonces se tuvo que:

Estado 7c: En el evaporador 5, a su salida, la temperatura es de:

$$T_{7c} = T_{evaporador 5} + 3 \circ C = 0 + 3 \circ C = 3 \circ C$$
$$T_{7c} = 3 \circ C$$
$$P_{evaporador 5} = 293.01 \ kPa$$
$$h_{7c} = 252.393 \frac{kJ}{kg}$$

Estado 8c: Al tener una válvula de expansión, el proceso del estado 7c a 8c es isoentálpico, por lo tanto, se tuvo que:

$$h_{8c} = h_{7c} = 253.122 \frac{kJ}{kg}$$

Estado 3c: Se encuentra la salida del condensador 3, con una presión de 770.64 kPa y una temperatura de 27 °C, de tablas termodinámicas se obtuvieron los demás parámetros:

$$P_{3c} = 770.64 \, kPa$$

$$T_{3c} = 27 \ ^{\circ}C$$
$$h_{3c} = h_{f@27^{\circ}C} = 89.26 \frac{kJ}{kg}$$

Estado 4c: Se encuentra la entrada del evaporador 5, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{4c} = h_{3c} = 89.26 \frac{kJ}{kg}$$

Estado 5c: Se encuentra la entrada del evaporador 6, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{5c} = h_{4c} = 89.26 \frac{kJ}{kg}$$
$$P_{5c} = 140 \ kPa$$
$$T_{5c} = -18.77 \ ^{\circ}C$$

Estado 6c: Los datos se presión y temperatura son los de saturación del estado 5c, y se tiene vapor saturado a la salida del evaporador 6, por lo tanto, se tuvo:

$$P_{6c} = 140 \ kPa$$

 $T_{6c} = -18.77 \ ^{\circ}C$
 $h_{6c} = h_{g@140kPa} = 239.16 \frac{kJ}{kg}$

Considerando que la carga térmica que debe extraer el evaporador 5 es de:

$$\dot{Q}_{frutas y verduras} = 1.39627 \ kW$$

Calculando el flujo de masa de refrigerante:

$$\dot{m}_{2c} = \frac{\dot{Q}_{frutas \ y \ verduras}}{h_{7c} - h_{4c}} = \frac{1.39627 \frac{kJ}{s}}{(253.122 - 89.26) \frac{kJ}{kg}} = 0.0085 \frac{kg}{s}$$

En el evaporador 6, se requiere extraer una cantidad de calor de los gases de escape de 2 kW, por lo tanto, se obtuvo:

$$\dot{Q}_{evaporador 6} = 2 \ kW$$

$$\dot{m}_{1c} = \frac{\dot{Q}_{evaporador\,6}}{h_{6c} - h_{5c}} = \frac{2\frac{kJ}{s}}{(239.16 - 89.26)\frac{kJ}{kg}} = 0.0133\frac{kg}{s}$$

Estado 1c: El flujo de masa total en el estado 1 es:

$$\dot{m}_c = \dot{m}_{1c} + \dot{m}_{2c} = 0.0133 \frac{kg}{s} + 0.0085 \frac{kg}{s} = 0.0218 \frac{kg}{s}$$

Realizando un balance de masa y energía:

$$\begin{split} \dot{E}_{entrada} &= \dot{E}_{salida} \\ \dot{m}_{1c}h_{6c} + \dot{m}_{2c}h_{8c} &= \dot{m}_{c}h_{1c} \end{split}$$

Despejando:

$$h_{1c} = \frac{\dot{m}_{1c}h_{6c} + \dot{m}_{2c}h_{8c}}{\dot{m}_c}$$

$$h_{1c} = \frac{0.0133 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0085 \frac{kg}{s} \times 253.122 \frac{kJ}{kg}}{0.0218 \frac{kg}{s}}$$
$$h_{1c} = 244.604 \frac{kJ}{kg}$$
$$P_{1c} = 140 \ kPa$$

$$T_{1c} = -12.14 \,^{\circ}C$$

 $s_{1c} = 0.9656$

Estado 2c:

$$s_{2c} = s_{1c} = 0.9656 \frac{kJ}{kg}$$
$$P_{2c} = 770.64 kPa$$
$$T_{2c} = 44.03 \ ^{\circ}C$$
$$h_{2c} = 281.167 \frac{kJ}{kg}$$

El trabajo específico ideal del compresor 3 es:

$$w_{i,compresor 3} = h_{2c} - h_{1c}$$
$$w_{i,compresor 3} = 281.167 \frac{kJ}{kg} - 244.604 \frac{kJ}{kg} = 36.563 \frac{kJ}{kg}$$

Entonces, la potencia ideal del compresor 3 es:

$$\dot{W}_{i,compresor 3} = \dot{m}_c \ x \ w_{i,compresor 3}$$

$$\dot{W}_{i,compresor\,3} = 0.0218 \frac{kg}{s} \ x \ 36.563 \frac{kJ}{kg} = 0.797 \ kW$$

Considerando un rendimiento de 90% para el compresor:

$$\dot{W}_{r,compresor 3} = rac{\dot{W}_{i,compresor 3}}{\eta_{compresor}}$$

$$\dot{W}_{r,compresor 3} = \frac{0.797 \ kW}{0.90} = 0.886 \ kW = 1.19 \ HP$$

$$h_{2cr} = h_{1c} + \frac{W_{i,compresor 3}}{\eta_{compresor}}$$

$$h_{2cr} = 244.604 \frac{kJ}{kg} + \frac{36.563 \frac{kJ}{kg}}{0.90} = 285.23 \frac{kJ}{kg}$$

La transferencia de calor del condensador 3 es:

$$\dot{Q}_{condensador\,3} = \dot{m}_c (h_{2cr} - h_{3c})$$

$$\dot{Q}_{condensador 3} = 0.0218 \frac{kg}{s} (285.23 - 89.26) \frac{kJ}{kg} = 4.272 \, kW$$

Análisis en el evaporador 6:

$$\dot{E}_{entrada}=\dot{E}_{salida}$$

 $\dot{m}_{1c}h_{6c}-\dot{m}_{1c}h_{5c}=\dot{m}_vh_7-\dot{m}_vh_8$

Despejando:

$$h_8 = \frac{\dot{m}_v h_7 - \dot{m}_{1c} h_{6c} + \dot{m}_{1c} h_{5c}}{\dot{m}_v}$$

$$h_8 = \frac{1.084 \frac{kg}{s} \times 1004.44 \frac{kJ}{kg} - 0.0133 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0133 \frac{kg}{s} \times 89.26 \frac{kJ}{kg}}{1.084 \frac{kg}{s}}$$
$$h_8 = 1000.75 \frac{kJ}{kg}$$

Sistema de refrigeración de productos congelados

Continuamente, se prosiguió con el análisis de los productos congelados, que se muestra en la Figura 10, el cual sirvió para poder calcular los parámetros necesarios para poder extraer la carga térmica requerida.

Figura 10. Ciclo de refrigeración para productos congelados. Fuente: Elaborado con AutoCAD 2022.

Al realizar el análisis termodinámico, se obtuvo lo siguiente:

$$h_8 = 1000.75 \frac{kJ}{kg}$$

Se ha empleado la siguiente información para el cálculo y dimensionamiento del ciclo refrigeración para productos congelados. La temperatura para el condensador 4 se detalla a continuación:

$$T_{condensador 4} = 27 \,^{\circ}C + 3 \,^{\circ}C = 30 \,^{\circ}C$$

$$P_{condensador 4} = P_{sat@30^{\circ}C} = 770.64 \, kPa$$

La temperatura para el evaporador 7 fue la siguiente:

$$T_{evaporador 7} = -19 \circ C - 5 \circ C = -24 \circ C$$
$$P_{evaporador 7} = P_{sat @-24 \circ C} = 111.37 \ kPa$$

El refrigerante a emplear fue el R134a, por ser altamente comercial, además de que el sistema de refrigeración no es para una escala industrial, ya que la carga térmica es baja, del Anexo 9 entonces se tuvo que:

Estado 7d: En el evaporador 7, a su salida, la temperatura es de:

$$T_{7d} = T_{evaporador 7} + 3 \circ C = -24 \circ C + 5 \circ C = -19 \circ C$$

$$P_{evaporador 7} = 111.37 \ kPa$$

$$h_{7d} = 239.405 \frac{kJ}{kg}$$

Estado 8d: Al tener una válvula de expansión, el proceso del estado 7d a 8d es isoentálpico, por lo tanto, se tuvo que:

$$h_{8d} = h_{7d} = 239.405 \frac{kJ}{kg}$$

Estado 3d: Se encuentra la salida del condensador 4, con una presión de 770.64 kPa y una temperatura de 27 °C, de tablas termodinámicas se obtuvieron los demás parámetros:

$$P_{3d} = 770.64 \ kPa$$
$$T_{3d} = 27 \ ^{\circ}C$$
$$h_{3d} = h_{f@27^{\circ}C} = 89.26 \frac{kJ}{kg}$$

Estado 4d: Se encuentra la entrada del evaporador 7, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{4d} = h_{3d} = 89.26 \frac{kJ}{kg}$$

Estado 5d: Se encuentra la entrada del evaporador 8, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{5d} = h_{4d} = 89.26 \frac{kJ}{kg}$$

$$P_{5d} = 140 \ kPa$$

 $T_{5d} = -18.77 \ ^{\circ}C$

Estado 6d: Los datos se presión y temperatura son los de saturación del estado 5d, y se tiene vapor saturado a la salida del evaporador 8, por lo tanto, se tuvo:

$$P_{6d} = 140 \ kPa$$
$$T_{6d} = -18.77 \ ^{\circ}C$$
$$h_{6d} = h_{g@140kPa} = 239.16 \frac{kJ}{kg}$$

Considerando que la carga térmica que debe extraer el evaporador 7 es de

$$\dot{Q}_{congelados} = 3.65373 \ kW$$

Calculando el flujo de masa de refrigerante:

$$\dot{m}_{2d} = \frac{\dot{Q}_{congelados}}{h_{7d} - h_{4d}} = \frac{3.65373 \frac{kJ}{s}}{(239.405 - 89.26) \frac{kJ}{kg}} = 0.0243 \frac{kg}{s}$$

En el evaporador 8, se requiere extraer una cantidad de calor de los gases de escape de 4 kW, por lo tanto, se obtuvo:

$$\dot{Q}_{evaporador 8} = 4 \ kW$$

$$\dot{m}_{1d} = \frac{\dot{Q}_{evaporador\,8}}{h_{6d} - h_{5d}} = \frac{4\frac{kJ}{s}}{(239.16 - 89.26)\frac{kJ}{kg}} = 0.0267\frac{kg}{s}$$

Estado 1d: El flujo de masa total en el estado 1d es:

$$\dot{m}_d = \dot{m}_{1d} + \dot{m}_{2d} = 0.0267 \frac{kg}{s} + 0.0243 \frac{kg}{s} = 0.0510 \frac{kg}{s}$$

Realizando un balance de masa y energía:

$$\begin{split} \dot{E}_{entrada} &= \dot{E}_{salida} \\ \dot{m}_{1d}h_{6d} + \dot{m}_{2d}h_{8d} &= \dot{m}_dh_{1d} \end{split}$$

Despejando:

$$h_{1d} = \frac{\dot{m}_{1d}h_{6d} + \dot{m}_{2d}h_{8d}}{\dot{m}_d}$$

$$h_{1d} = \frac{0.0267\frac{kg}{s} \times 239.16\frac{kJ}{kg} + 0.0243\frac{kg}{s} \times 239.405\frac{kJ}{kg}}{0.0510\frac{kg}{s}}$$

$$h_{1d} = 239.277\frac{kJ}{kg}$$

$$P_{1d} = 140 \ kPa$$

$$T_{1d} = -18.63 \ ^{\circ}C$$

$$s_{1d} = 0.94505\frac{kJ}{kg}$$

Estado 2d:

$$s_{2d} = s_{1d} = 0.94505 \frac{kJ}{kg}$$
$$P_{2d} = 770.64 \ kPa$$
$$T_{2d} = 37.74 \ ^{\circ}C$$
$$h_{2d} = 274.715 \frac{kJ}{kg}$$

El trabajo específico ideal del compresor 4 es:

$$w_{i,compresor 4} = h_{2d} - h_{1d}$$

$$w_{i,compresor 4} = 274.715 \frac{kJ}{kg} - 239.277 \frac{kJ}{kg} = 35.438 \frac{kJ}{kg}$$

Entonces, la potencia ideal del compresor 4 es:

$$\dot{W}_{i,compresor 4} = \dot{m}_d \ x \ w_{i,compresor 4}$$

$$\dot{W}_{i,compresor 4} = 0.051 \frac{kg}{s} \times 35.438 \frac{kJ}{kg} = 1.807 \, kW$$

Considerando un rendimiento de 90% para el compresor 4:

$$\dot{W}_{r,compresor 4} = rac{\dot{W}_{i,compresor 4}}{\eta_{compresor}}$$

$$\dot{W}_{r,compresor 4} = \frac{1.807 \ kW}{0.90} = 2.008 \ kW = 2.69 \ HP$$

$$h_{2dr} = h_{1d} + \frac{W_{i,compresor \, 4}}{\eta_{compresor}}$$

$$h_{2dr} = 239.277 \frac{kJ}{kg} + \frac{35.438 \frac{kJ}{kg}}{0.90} = 278.653 \frac{kJ}{kg}$$

La transferencia de calor del condensador 4 es:

$$\dot{Q}_{condensador 4} = \dot{m}_d (h_{2dr} - h_{3d})$$
$$\dot{Q}_{condensador 4} = 0.0510 \frac{kg}{s} (278.653 - 89.26) \frac{kJ}{kg} = 9.659 \, kW$$

Análisis en el evaporador 8:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$
$$\dot{m}_{1d}h_{6d} - \dot{m}_{1d}h_{5d} = \dot{m}_v h_8 - \dot{m}_v h_9$$

Despejando:

$$h_9 = \frac{\dot{m}_v h_8 - \dot{m}_{1d} h_{6d} + \dot{m}_{1d} h_{5d}}{\dot{m}_v}$$

$$h_9 = \frac{1.084 \frac{kg}{s} \times 1000.75 \frac{kJ}{kg} - 0.0267 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0267 \frac{kg}{s} \times 89.26 \frac{kJ}{kg}}{1.084 \frac{kg}{s}}$$
$$h_9 = 997.05 \frac{kJ}{kg}$$

Sistema de refrigeración de carnes

Continuamente, se prosiguió con el análisis de las carnes, que se muestra en la Figura 11Figura 8, el cual sirvió para poder calcular los parámetros necesarios para poder extraer la carga térmica requerida.

Figura 11. *Ciclo de refrigeración para carnes.* Fuente: Elaborado con AutoCAD 2022.

Al realizar el análisis termodinámico, se obtuvo lo siguiente:

$$h_9 = 997.05 \frac{kJ}{kg}$$

Se ha empleado la siguiente información para el cálculo y dimensionamiento del ciclo refrigeración para carnes. La temperatura para el condensador se detalla a continuación:

 $T_{condensador 5} = 27 \ ^{\circ}C + 3 \ ^{\circ}C = 30 \ ^{\circ}C$

$$P_{condensador 5} = P_{sat@30^{\circ}C} = 770.64 \ kPa$$

La temperatura para el evaporador 9 fue la siguiente:

$$T_{evaporador 9} = -19 \,^{\circ}C - 5^{\circ}C = -24^{\circ}C$$
$$P_{evaporador 9} = P_{sat @-24^{\circ}C} = 111.37 \, kPa$$

El refrigerante a emplear fue el R134a, por ser altamente comercial, además de que el sistema de refrigeración no es para una escala industrial, ya que la carga térmica es baja, del Anexo 9 entonces se tuvo que:

Estado 7e: En el evaporador 9, a su salida, la temperatura es de:

$$T_{7e} = T_{evaporador 9} + 5 \circ C = -24 \circ C + 5 \circ C = -19 \circ C$$

$$P_{evaporador 9} = 111.37 \ kPa$$

$$h_{7e} = 239.405 \frac{kJ}{kg}$$

Estado 8e: Al tener una válvula de expansión, el proceso del estado 7e a 8e es isoentálpico, por lo tanto, se tuvo que:

$$h_{8e} = h_{7e} = 239.405 \frac{kJ}{kg}$$

Estado 3e: Se encuentra la salida del condensador, con una presión de 770.64 kPa y una temperatura de 27 °C, de tablas termodinámicas se obtuvieron los demás parámetros:

$$P_{3e} = 770.64 \ kPa$$
$$T_{3e} = 27 \ ^{\circ}C$$
$$h_{3e} = h_{f@27^{\circ}C} = 89.26 \frac{kJ}{kg}$$

55

Estado 4e: Se encuentra la entrada del evaporador 9, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{4e} = h_{3e} = 89.26 \frac{kJ}{kg}$$

Estado 5e: Se encuentra la entrada del evaporador 10, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{5e} = h_{4e} = 89.26 \frac{kJ}{kg}$$
$$P_{5e} = 140 \ kPa$$
$$T_{5e} = -18.77 \ ^{\circ}C$$

Estado 6e: Los datos se presión y temperatura son los de saturación del estado 5e, y se tiene vapor saturado a la salida del evaporador 10, por lo tanto, se tuvo:

$$P_{6e} = 140 \ kPa$$
$$T_{6e} = -18.77 \ ^{\circ}C$$
$$h_{6e} = h_{g@140kPa} = 239.16 \frac{kJ}{kg}$$

Considerando que la carga térmica que debe extraer el evaporador 9 es de:

$$\dot{Q}_{carnes} = 3.51894 \, kW$$

Calculando el flujo de masa de refrigerante:

$$\dot{m}_{2e} = \frac{\dot{Q}_{carnes}}{h_{7e} - h_{4e}} = \frac{3.51894 \frac{kJ}{s}}{(239.405 - 89.26)\frac{kJ}{kg}} = 0.0234 \frac{kg}{s}$$

En el evaporador 10, se requiere extraer una cantidad de calor de los gases de escape de 4 kW, por lo tanto, se obtuvo:

$$\dot{Q}_{evaporador\,10} = 4 \, kW$$

$$\dot{m}_{1e} = \frac{\dot{Q}_{evaporador\,4}}{h_{6e} - h_{5e}} = \frac{4\frac{kJ}{s}}{(239.16 - 89.26)\frac{kJ}{kg}} = 0.0267\frac{kg}{s}$$

Estado 1e: El flujo de masa total en el estado 1e es:

$$\dot{m}_e = \dot{m}_{1e} + \dot{m}_{2e} = 0.0267 \frac{kg}{s} + 0.0234 \frac{kg}{s} = 0.0501 \frac{kg}{s}$$

Realizando un balance de masa y energía:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$

 $\dot{m}_{1e}h_{6e} + \dot{m}_{2e}h_{8e} = \dot{m}_eh_{1e}$

Despejando:

$$h_{1e} = \frac{\dot{m}_{1e}h_{6e} + \dot{m}_{2e}h_{8e}}{\dot{m}_{e}}$$

$$h_{1e} = \frac{0.0267 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0234 \frac{kg}{s} \times 239.405 \frac{kJ}{kg}}{0.0501 \frac{kg}{s}}$$

$$h_{1e} = 239.274 \frac{kJ}{kg}$$

$$P_{1e} = 140 \ kPa$$

$$T_{1e} = -18.63 \ ^{\circ}C$$

$$s_{1e} = 0.94504 \frac{kJ}{kg}$$

Estado 2e:

$$s_{2e} = s_{1e} = 0.94504 \frac{kJ}{kg}$$

 $P_{2e} = 770.64 \ kPa$
 $T_{2e} = 37.73 \ ^{\circ}C$
 $h_{2e} = 274.712 \frac{kJ}{kg}$

El trabajo específico ideal del compresor 5 es:

$$w_{i,compresor 5} = h_{2e} - h_{1e}$$

$$w_{i,compresor 5} = 274.712 \frac{kJ}{kg} - 239.274 \frac{kJ}{kg} = 35.438 \frac{kJ}{kg}$$

Entonces, la potencia ideal del compresor 5 es:

$$\dot{W}_{i,compresor 5} = \dot{m}_e \ x \ w_{i,compresor 5}$$

$$\dot{W}_{i,compresor 5} = 0.0501 \frac{kg}{s} \times 35.438 \frac{kJ}{kg} = 1.775 \ kW$$

Considerando un rendimiento de 90% para el compresor 5:

$$\dot{W}_{r,compresor 5} = \frac{\dot{W}_{i,compresor 5}}{\eta_{compresor}}$$

$$\dot{W}_{r,compresor 5} = \frac{1.775 \ kW}{0.90} = 1.972 \ kW = 2.643 \ HP$$

$$h_{2er} = h_{1e} + \frac{w_{i,compresor\,5}}{\eta_{compresor}}$$

$$h_{2er} = 239.274 \frac{kJ}{kg} + \frac{35.438 \frac{kJ}{kg}}{0.90} = 278.650 \frac{kJ}{kg}$$

La transferencia de calor del condensador 5 es:

$$\dot{Q}_{condensador 5} = \dot{m}_e (h_{2er} - h_{3e})$$

 $\dot{Q}_{condensador 5} = 0.0501 \frac{kg}{s} (278.650 - 89.26) \frac{kJ}{kg} = 9.488 \, kW$

Análisis en el evaporador 10:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$
$$\dot{m}_{1e}h_{6e} - \dot{m}_{1e}h_{5e} = \dot{m}_v h_9 - \dot{m}_v h_{10}$$

Despejando:

$$h_{10} = \frac{\dot{m}_v h_9 - \dot{m}_{1e} h_{6e} + \dot{m}_{1e} h_{5e}}{\dot{m}_v}$$

$$h_{10} = \frac{1.084 \frac{kg}{s} \times 997.05 \frac{kJ}{kg} - 0.0267 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0267 \frac{kg}{s} \times 89.26 \frac{kJ}{kg}}{1.084 \frac{kg}{s}}$$
$$h_{10} = 993.36 \frac{kJ}{kg}$$

Sistema de refrigeración de pescados

Continuamente, se prosiguió con el análisis de los pescados, que se muestra en la Figura 12Figura 8, el cual sirvió para poder calcular los parámetros necesarios para poder extraer la carga térmica requerida.

Figura 12. *Ciclo de refrigeración para pescados.* Fuente: Elaborado con AutoCAD 2022.

Al realizar el análisis termodinámico, se obtuvo lo siguiente:

$$h_{10} = 993.36 \frac{kJ}{kg}$$

Se ha empleado la siguiente información para el cálculo y dimensionamiento del ciclo refrigeración para pescados. La temperatura para el condensador se detalla a continuación:

$$T_{condensador} = 27 \circ C + 3 \circ C = 30 \circ C$$
$$P_{condensador} = P_{sat@30^\circ C} = 770.64 \ kPa$$

La temperatura para el evaporador 11 fue la siguiente:

$$T_{evaporador 11} = -19 \,^{\circ}C - 5^{\circ}C = -24 \,^{\circ}C$$
$$P_{evaporador 11} = P_{sat @-24^{\circ}C} = 111.37 \, kPa$$

El refrigerante a emplear fue el R134a, por ser altamente comercial, además de que el sistema de refrigeración no es para una escala industrial, ya que la carga

térmica es baja, del Anexo 9 entonces se tuvo que:

Estado 7f: En el evaporador 11, a su salida, la temperatura es de:

$$T_{7f} = T_{evaporador 11} + 5 \,^{\circ}C = -24 \,^{\circ}C + 5 \,^{\circ}C = -19 \,^{\circ}C$$

$$P_{evaporador 11} = 111.37 \, kPa$$

$$h_{7f} = 239.405 \frac{kJ}{kg}$$

Estado 8f: Al tener una válvula de expansión, el proceso del estado 7f a 8f es isoentálpico, por lo tanto, se tuvo que:

$$h_{8f} = h_{7f} = 239.405 \frac{kJ}{kg}$$

Estado 3f: Se encuentra la salida del condensador 6, con una presión de 770.64 kPa y una temperatura de 27 °C, de tablas termodinámicas se obtuvieron los demás parámetros:

$$P_{3f} = 770.64 \ kPa$$
$$T_{3f} = 27 \ ^{\circ}C$$
$$h_{3f} = h_{f@27^{\circ}C} = 89.26 \frac{kJ}{kg}$$

Estado 4f: Se encuentra la entrada del evaporador 11, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{4f} = h_{3f} = 89.26 \frac{kJ}{kg}$$

Estado 5f: Se encuentra la entrada del evaporador 12, pero previamente el fluido paso por un proceso de expansión por medio de una válvula de estrangulamiento, siendo un proceso isoentálpico, obteniendo lo siguiente:

$$h_{5f} = h_{4f} = 89.26 \frac{kJ}{kg}$$

 $P_{5f} = 140 \ kPa$
 $T_{5f} = -18.77 \ ^{\circ}C$

Estado 6f: Los datos se presión y temperatura son los de saturación del estado 5f, y se tiene vapor saturado a la salida del evaporador 12, por lo tanto, se tuvo:

$$P_{6f} = 140 \ kPa$$

 $T_{6f} = -18.77 \ ^{\circ}C$
 $h_{6f} = h_{g@140kPa} = 239.16 \frac{kJ}{kg}$

Considerando que la carga térmica que debe extraer el evaporador 11 es de

$$\dot{Q}_{pescado} = 3.5827 \ kW$$

Calculando el flujo de masa de refrigerante:

$$\dot{m}_{2f} = \frac{\dot{Q}_{pescado}}{h_{7f} - h_{4f}} = \frac{3.5827 \frac{kJ}{s}}{(239.405 - 89.26) \frac{kJ}{kg}} = 0.0239 \frac{kg}{s}$$

En el evaporador 12, se requiere extraer una cantidad de calor de los gases de escape de 4 kW, por lo tanto, se obtuvo:

$$\dot{Q}_{evaporador 12} = 4 \, kW$$

$$\dot{m}_{1f} = \frac{\dot{Q}_{evaporador\,12}}{h_{6f} - h_{5f}} = \frac{4\frac{kJ}{s}}{(239.16 - 89.26)\frac{kJ}{kg}} = 0.0267\frac{kg}{s}$$
Estado 1e: El flujo de masa total en el estado 1e es:

$$\dot{m}_f = \dot{m}_{1f} + \dot{m}_{2f} = 0.0267 \frac{kg}{s} + 0.0239 \frac{kg}{s} = 0.0506 \frac{kg}{s}$$

Realizando un balance de masa y energía:

$$\dot{E}_{entrada} = \dot{E}_{salida}$$

$$\dot{m}_{1f}h_{6f} + \dot{m}_{2f}h_{8f} = \dot{m}_f h_{1f}$$

Despejando:

$$h_{1f} = \frac{\dot{m}_{1f}h_{6f} + \dot{m}_{2f}h_{8f}}{\dot{m}_{f}}$$

$$h_{1f} = \frac{0.0267 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0239 \frac{kg}{s} \times 239.405 \frac{kJ}{kg}}{0.0506 \frac{kg}{s}}$$

$$h_{1f} = 239.276 \frac{kJ}{kg}$$

$$P_{1f} = 140 \ kPa$$

$$T_{1f} = -18.63 \ ^{\circ}C$$

$$s_{1f} = 0.94505 \frac{kJ}{kg}$$

Estado 2f:

$$s_{2f} = s_{1f} = 0.94505 \frac{kJ}{kg}$$

 $P_{2f} = 770.64 \ kPa$
 $T_{2f} = 37.74 \ ^{\circ}C$

$$h_{2f} = 274.715 \frac{kJ}{kg}$$

El trabajo específico ideal del compresor 6 es:

$$w_{i,compresor 6} = h_{2f} - h_{1f}$$

$$w_{i,compresor\,6} = 274.715 \frac{kJ}{kg} - 239.276 \frac{kJ}{kg} = 35.439 \frac{kJ}{kg}$$

Entonces, la potencia ideal del compresor 6 es:

$$\dot{W}_{i,compresor 6} = \dot{m}_f \ x \ w_{i,compresor 6}$$

$$\dot{W}_{i,compresor\ 6} = 0.0506 \frac{kg}{s} \times 35.439 \frac{kJ}{kg} = 1.793 \ kW$$

Considerando un rendimiento de 90% para el compresor 6:

$$\dot{W}_{r,compresor\ 6} = rac{\dot{W}_{i,compresor\ 6}}{\eta_{compresor\ 6}}$$

$$\dot{W}_{r,compresor\ 6} = \frac{1.793\ kW}{0.90} = 1.992\ kW = 2.67\ HP$$

$$h_{2fr} = h_{1f} + \frac{w_{i,compresor 6}}{\eta_{compresor}}$$

$$h_{2fr} = 239.276 \frac{kJ}{kg} + \frac{35.439 \frac{kJ}{kg}}{0.90} = 265.653 \frac{kJ}{kg}$$

La transferencia de calor del condensador 6 es:

$$\dot{Q}_{condensador 6} = \dot{m}_f (h_{2fr} - h_{3f})$$

 $\dot{Q}_{condensador 6} = 0.0506 \frac{kg}{s} (278.653 - 89.26) \frac{kJ}{kg} = 9.583 \, kW$

Análisis en el evaporador 12:

$$\dot{E}_{entrada}=\dot{E}_{salida}$$

$$\dot{m}_{1f}h_{6f}-\dot{m}_{1f}h_{5f}=\dot{m}_vh_{10}-\dot{m}_vh_{11}$$

Despejando:

$$h_{11} = \frac{\dot{m}_v h_{10} - \dot{m}_{1f} h_{6f} + \dot{m}_{1f} h_{5f}}{\dot{m}_v}$$

$$h_{11} = \frac{1.084 \frac{kg}{s} \times 993.36 \frac{kJ}{kg} - 0.0267 \frac{kg}{s} \times 239.16 \frac{kJ}{kg} + 0.0267 \frac{kg}{s} \times 89.26 \frac{kJ}{kg}}{1.084 \frac{kg}{s}}$$
$$h_{11} = 989.67 \frac{kJ}{kg}$$

Análisis en el intercambiador de calor del sistema de agua caliente a 60 °C:

$$(\dot{m}_{v})(h_{11} - h_{12}) = \dot{W}_{agua\ caliente\ 60^{\circ}C}$$
$$h_{12} = h_{11} - \frac{\dot{W}_{agua\ caliente\ 60^{\circ}C}}{\dot{m}_{v}}$$
$$h_{12} = 989.67 \frac{kJ}{kg} - \frac{66.00\ kW}{1.084\frac{kg}{s}} = 928.79 \frac{kJ}{kg}$$

Análisis del sistema de trigeneración

Una vez obtenidos todos los parámetros necesarios de cada estado, se procedió a calcular el calor en la caldera de GN:

$$q_{caldera\,GN} = h_3 - h_{2r}$$

$$q_{caldera\ GN} = 3044.41 \frac{kJ}{kg} - 342.111 \frac{kJ}{kg} = 2702.30 \frac{kJ}{kg}$$

Considerando el flujo de masa del vapor, se obtiene la tasa de transferencia de calor necesaria:

 $\dot{Q}_{caldera\,GN} = \dot{m}_{v} \, x \, q_{caldera\,GN}$

$$\dot{Q}_{caldera\,GN} = 1.084 \frac{kg}{s} \ x \ 2702.30 \frac{kJ}{kg} = 2929.29 \ kW$$

La potencia neta del sistema es:

$$\dot{W}_{neta} = \dot{m}_v x w_{neto.r}$$

$$\dot{W}_{neta} = 1.084 \frac{kg}{s} \times 514.649 \frac{kJ}{kg} = 557.88 \, kW$$

La potencia de la turbina es:

$$\dot{W}_{turbina} = \dot{m}_{v} x w_{turbina.r}$$
$$\dot{W}_{turbina} = 1.084 \frac{kg}{s} x 516.22 \frac{kJ}{kg} = 559.58 \, kW$$

La transferencia de calor en el condensador del Ciclo Rankine es:

$$\dot{Q}_{condensador} = \dot{m}_v x q_{condensador}$$
$$\dot{Q}_{condensador} = \dot{m}_v (h_{12} - h_1)$$
$$\dot{Q}_{condensador} = 1.084 \frac{kg}{s} (928.79 - 340.54) \frac{kJ}{kg} = 637.665 \, kW$$

Calculando la eficiencia global del sistema de trigeneración, se obtuvo que:

$$\dot{W}_{neta} = 557.88 \ kW$$
$$\dot{Q}_{ac \ 60^{\circ}C} = 66.00 \ kW$$
$$\dot{Q}_{sistema \ vapor} = 1647.76 \ kW$$
$$\dot{Q}_{evaporador \ 2} = \dot{Q}_{evaporador \ 4} = \dot{Q}_{evaporador \ 6} = 2 \ kW$$
$$\dot{Q}_{evaporador \ 8} = \dot{Q}_{evaporador \ 10} = \dot{Q}_{evaporador \ 12} = 4 \ kW$$

$$\begin{split} \dot{Q}_{entrada\ ideal} &= \dot{Q}_{caldera\ GN} = 2929.29\ kW \\ \eta_{global} &= \frac{\dot{W}_{neta} + \dot{Q}_{ac\ 60^\circ C} + 3x \dot{Q}_{evaporador\ 2} + 3x \dot{Q}_{evaporador\ 8} + \dot{Q}_{sistema\ vapor}}{\dot{Q}_{entrada\ ideal}} \\ \eta_{global} &= \frac{(557.88 + 66.00 + 3x2 + 3x4 + 1647.76)\ kW}{2929.29\ kW} = \frac{2289.64\ kW}{2929.29\ kW} \end{split}$$

$$\eta_{global} = 0.7816 \, x \, 100\% \approx 78.16\%$$

El consumo de GN se obtiene de la siguiente manera:

$$\dot{m}_{GN} = \frac{\dot{Q}_{caldera\ GN}}{PCI_{GN}\ x\ \eta_{caldera}}$$

El Poder Calorífico Inferior (PCI) del GN es de 48300 kJ/kg de acuerdo con Llerena (2018), la eficiencia de la caldera puede alcanzar un valor de 90%, en consideración con Liaño et al. (2019). Reemplazando la información:

$$\dot{m}_{GN} = \frac{2929.29 \frac{kJ}{s}}{48300 \frac{kJ}{kg} x \ 0.90} = 0.0674 \frac{kg}{s} x \frac{3600 \ s}{1 \ h} x \frac{24 \ h}{1 \ dia} x \frac{365 \ dias}{a \| o \|}$$
$$\dot{m}_{GN} = 2125526.40 \frac{kg}{a \| o \|} x \frac{1 \ m^3}{0.80 \ kg} = 2656908.00 \frac{m^3}{a \| o \|}$$

El consumo de GN por año es de 2656908.00 m³, considerando que posee un costo de S/.1.20 por metro cúbico, se obtiene un costo anual por consumo de dicho combustible de S/.3188289.60.

Selección de componentes del sistema de trigeneración

Caldera de Gas Natural

Para poder seleccionar la caldera, es necesario conocer el poder calorífico que debe suministrar, por lo que, al conocer el flujo de masa de vapor que debe generar la caldera que es de 3902.4 kg/h, se puede seleccionar adecuadamente la caldera para el sistema de trigeneración.

$$\dot{m}_{vapor\ de\ caldera} = 3902.40 \frac{kg}{h}$$

Se seleccionó una caldera que pueda producir el mismo flujo de vapor o superior, siendo la caldera de vapor pirotubular VYC modelo HTP-4000, con una producción de vapor de 4000 kg/h, una presión máxima admisible de 30 bar manométricos o 3 MPa manométricos, donde se visualiza su ficha técnica en el Anexo 9.

Turbina de vapor

La turbina de vapor debe generar los 559.58 kW de energía eléctrica para que el centro de salud opere a su plena capacidad y sin problemas, aunque cabe indicar que se debe elegir una con una capacidad superior, encontrándose una turbina de vapor con una capacidad de 600 kW, siendo una turbina MST modelo N.0.6-1.27, que en el Anexo 9 se adjuntó sus propiedades y características técnicas.

Bomba

La bomba tiene una potencia de:

$$\dot{W}_{bomba} = \dot{m}_v \ x \ w_{bomba.r}$$

$$\dot{W}_{bomba} = 1.084 \frac{kg}{s} \times 1.571 \frac{kJ}{kg} = 1.703 \ kW \times \frac{1 \ HP}{0.746 \ kW} = 2.28 \ HP$$

Es necesario utilizar una bomba de 2.28 HP, pero en el mercado existe una bomba de 3 HP en marca Pedrollo, recomendada para uso industrial, para calderas o como bomba tipo Jockey, donde en el Anexo 9 se pueden observar sus características y propiedades técnicas.

Generador de energía eléctrica

El generador debe producir 557.895 kW de potencia eléctrica, entonces se tuvo lo siguiente:

$$Q_{generador} = \frac{P_{generador}}{0.85}$$
$$Q_{generador} = \frac{557.895 \ kW}{0.85} = 656.35 \ kW$$

Entonces, se seleccionó un generador alternador Stamford sin escobillas serie KA-634 con una potencia de 684 kW. Su ficha técnica se encuentra en el Anexo 9.

Condensador de Ciclo Rankine

Dicho equipo debe suministrar una transferencia de calor de 637.665 kW, entonces se seleccionó un intercambiador de calor de 660 kW, que en el Anexo 9 se pueden observar sus características.

Intercambiador de calor para caliente a 60 °C

Se necesita una transferencia de calor de 66.00 kW, y al buscar en el mercado se encontró el modelo AlfaNova 52 / HP 52 / XP 52 de Alfa Laval con una transferencia de calor de 68 kW. Los datos técnicos de dicho intercambiador de calor se encuentran en el Anexo 9.

Intercambiador de calor para generación de vapor

Se necesita una transferencia de calor de 1647.76 kW, y al buscar en el mercado se encontró el modelo B3-50-60A de MQT de 50 placas con 550 kW de transferencia de calor, por ende, son necesarios 3 intercambiadores que pueden configurarse sin ningún problema en el sistema de trigeneración. Los datos técnicos de dicho intercambiador de calor se encuentran en el Anexo 9.

Ciclo de refrigeración

Antecámara

Compresor 1

La potencia del compresor 1 debe ser de 1.027 kW, entonces se seleccionó un compresor Danfoss MTZ032-4 con una potencia de 1.25 kW, que opera con una frecuencia de 50 Hz, siendo necesario un convertidor de frecuencia de 50 a 60 Hz. En el Anexo 9 se pueden verificar sus características y propiedades técnicas.

Evaporador 1

El evaporador 1 debe tener una potencia calorífica de 1.92906 kW o equivalente a 1 658.69 kCal/h (6 582.23 BTU/h), entonces se seleccionó un evaporador de techo Bohn WK 075, con una capacidad de 1 889 kCal/h (7 500 BTU/h), ya que son ideales para conservar frutas, verduras, carnes, entre otras aplicaciones. La Ficha técnica se aprecia en el Anexo 9.

Evaporador 2 (Intercambiador de calor)

El evaporador 2 o intercambiador de calor debe suministrar 2 kW, entonces se seleccionó un intercambiador de calor Rittal SK 3373.544 de 2 kW. La ficha técnica se aprecia en el Anexo 9.

Condensador 1

El calor que debe expulsar el condensador 1 es de 4.954 kW. Por lo tanto, se seleccionó un condensador helicoidal de aire CPN109 con carga de 5.080 kW. La ficha técnica se aprecia en el Anexo 9.

Productos lácteos

Compresor 2

La potencia del compresor 2 debe ser de 0.886 kW, entonces se seleccionó un compresor Danfoss MTZ028-4 con una potencia de 1.02 kW, que opera con una frecuencia de 50 Hz, siendo necesario un convertidor de frecuencia de 50 a 60 Hz.

En el Anexo 9 se pueden verificar sus características y propiedades técnicas.

Evaporador 3

El evaporador 3 debe tener una potencia calorífica de 1.39981 kW o equivalente a 1 203.62 kCal/h (4 776.35 BTU/h), entonces se seleccionó un evaporador de techo Bohn WK 050, con una capacidad de 1 259 kCal/h (5 000 BTU/h), ya que son ideales para conservar frutas, verduras, carnes, entre otras aplicaciones. La Ficha técnica se aprecia en el Anexo 9.

Evaporador 4

El evaporador 4 o intercambiador de calor debe suministrar 2 kW, entonces se seleccionó un intercambiador de calor Rittal SK 3373.544 de 2 kW. La ficha técnica se aprecia en el Anexo 9.

Condensador 2

El calor que debe expulsar el condensador 2 es de 4.272 kW. Por lo tanto, se seleccionó un condensador helicoidal de aire CPN109 con carga de 5.080 kW. La ficha técnica se aprecia en el Anexo 9.

Frutas y verduras

Compresor 3

La potencia del compresor 3 debe ser de 0.886 kW, entonces se seleccionó un compresor Danfoss MTZ028-4 con una potencia de 1.02 kW, que opera con una frecuencia de 50 Hz, siendo necesario un convertidor de frecuencia de 50 a 60 Hz. En el Anexo 9 se pueden verificar sus características y propiedades técnicas.

Evaporador 5

El evaporador 5 debe tener una potencia calorífica de 1.396 kW o equivalente a 1 200.34 kCal/h (4 763.35 BTU/h), entonces se seleccionó un evaporador de techo Bohn WK 050, con una capacidad de 1 259 kCal/h (5 000 BTU/h), ya que son ideales para conservar frutas, verduras, carnes, entre otras aplicaciones. La Ficha

técnica se aprecia en el Anexo 9.

Evaporador 6 (Intercambiador de calor)

El evaporador 6 o intercambiador de calor debe suministrar 2 kW, entonces se seleccionó un intercambiador de calor Rittal SK 3373.544 de 2 kW. La ficha técnica se aprecia en el Anexo 9.

Condensador 3

El calor que debe expulsar el condensador 3 es de 4.272 kW. Por lo tanto, se seleccionó un condensador helicoidal de aire CPN109 con carga de 5.080 kW. La ficha técnica se aprecia en el Anexo 9.

Productos congelados

Compresor 4

La potencia del compresor 4 debe ser de 2.008 kW, entonces se seleccionó un compresor Danfoss MTZ064-4 con una potencia de 2.17 kW, que opera con una frecuencia de 50 Hz, siendo necesario un convertidor de frecuencia de 50 a 60 Hz. En el Anexo 9 se pueden verificar sus características y propiedades técnicas.

Evaporador 7

El evaporador 7 debe tener una potencia calorífica de 3.654 kW o equivalente a 3 141.87 kCal/h (12 467.67 BTU/h), entonces se seleccionó un evaporador de techo Bohn WK 130, con una capacidad de 3 275 kCal/h (13 000 BTU/h), ya que son ideales para conservar frutas, verduras, carnes, entre otras aplicaciones. La Ficha técnica se aprecia en el Anexo 9.

Evaporador 8 (Intercambiador de calor)

El evaporador 8 o intercambiador de calor debe suministrar 4 kW, entonces se seleccionó un intercambiador de calor Rittal SK 3210.100 de 4 kW. La ficha técnica se aprecia en el Anexo 9.

Condensador 4

El calor que debe expulsar el condensador 4 es de 9.659 kW. Por lo tanto, se seleccionó un condensador helicoidal de aire CPN209 con carga de 9.750 kW. La ficha técnica se aprecia en el Anexo 9.

Productos cárnicos

Compresor 5

La potencia del compresor 5 debe ser de 1.972 kW, entonces se seleccionó un compresor Danfoss MTZ064-4 con una potencia de 2.17 kW, que opera con una frecuencia de 50 Hz, siendo necesario un convertidor de frecuencia de 50 a 60 Hz. En el Anexo 9 se pueden verificar sus características y propiedades técnicas.

Evaporador 9

El evaporador 9 debe tener una potencia calorífica de 3.51894 kW o equivalente a 3 025.74 kCal/h (12 007.12 BTU/h), entonces se seleccionó un evaporador de techo Bohn WK 130, con una capacidad de 3 275 kCal/h (13 000 BTU/h), ya que son ideales para conservar frutas, verduras, carnes, entre otras aplicaciones. La Ficha técnica se aprecia en el Anexo 9.

Evaporador 10 (Intercambiador de calor)

El evaporador 10 o intercambiador de calor debe suministrar 4 kW, entonces se seleccionó un intercambiador de calor Rittal SK 3210.100 de 4 kW. La ficha técnica se aprecia en el Anexo 9.

Condensador 5

El calor que debe expulsar el condensador 5 es de 9.488 kW. Por lo tanto, se seleccionó un condensador helicoidal de aire CPN209 con carga de 9.750 kW. La ficha técnica se aprecia en el Anexo 9.

Pescados

Compresor 6

La potencia del compresor 6 debe ser de 1.992 kW, entonces se seleccionó un compresor Danfoss MTZ064-4 con una potencia de 2.17 kW, que opera con una frecuencia de 50 Hz, siendo necesario un convertidor de frecuencia de 50 a 60 Hz. En el Anexo 9 se pueden verificar sus características y propiedades técnicas.

Evaporador 11

El evaporador 11 debe tener una potencia calorífica de 3.583 kW o equivalente a 3 080.83 kCal/h (12 225.70 BTU/h), entonces se seleccionó un evaporador de techo Bohn WK 130, con una capacidad de 3 275 kCal/h (13 000 BTU/h), ya que son ideales para conservar frutas, verduras, carnes, entre otras aplicaciones. La Ficha técnica se aprecia en el Anexo 9.

Evaporador 12 (Intercambiador de calor)

El evaporador 12 o intercambiador de calor debe suministrar 4 kW, entonces se seleccionó un intercambiador de calor Rittal SK 3210.100 de 4 kW. La ficha técnica se aprecia en el Anexo 9.

Condensador 6

El calor que debe expulsar el condensador 6 es de 9.583 kW. Por lo tanto, se seleccionó un condensador helicoidal de aire CPN209 con carga de 9.750 kW. La ficha técnica se aprecia en el Anexo 9.

3.3. Realizar una simulación del sistema de trigeneración

Para poder desarrollar dicho objetivo específico, se utilizó el software termodinámico CyclePad, que, aunque no puede arrojar la eficiencia térmica del sistema de trigeneración como tal, se puede obtener de la información obtenida sin ningún problema.

En la Figura 13 se observa el modelado del sistema de trigeneración, donde se pueden apreciar la turbina de vapor, caldera de Gas Natural, bomba, condensador, recuperador de calor, intercambiadores de calor para cada sistema de refrigeración, el intercambiador de calor para el sistema de vapor, el intercambiador de calor para el sistema de vapor, el intercambiador de calor para el sistema de vapor.

La Figura 14 presenta la configuración del equipamiento del sistema de trigeneración, donde se consideró que la bomba y turbina son no isoentrópicas pero adiabáticas, la caldera y el condensador operan isobáricamente, de igual modo los intercambiadores de calor en ambos lados.

La Figura 15 muestra la configuración de los datos ingresados y obtenidos de los estados 1 al 12 para el sistema de trigeneración de acuerdo con los cálculos realizados.

La Figura 16 detalla la información de los datos ingresados y obtenidos de los estados 13 al 28 para el sistema de trigeneración en consideración con los cálculos efectuados.

La Figura 17 presenta la información que se obtuvo en cada equipo luego del análisis de todo el sistema de trigeneración, donde se obtuvo lo siguiente:

$$\dot{W}_{neta} = 557.90 \ kW$$

 $\dot{Q}_{ac \ 60^{\circ}C} = 65.99 \ kW$
 $\dot{Q}_{sistema \ vapor} = 1647 \ kW$

$$\dot{Q}_{evaporador 2} = \dot{Q}_{evaporador 4} = \dot{Q}_{evaporador 6} = 2 \ kW$$

 $\dot{Q}_{evaporador 8} = \dot{Q}_{evaporador 10} = \dot{Q}_{evaporador 12} = 4 \, kW$

$$\dot{Q}_{entrada\,ideal} = \dot{Q}_{caldera\,GN} = 2970.00 \, kW$$

$$\eta_{global} = \frac{\dot{W}_{neta} + \dot{Q}_{ac\ 60^{\circ}C} + 3x\dot{Q}_{evaporador\ 2} + 3x\dot{Q}_{evaporador\ 8} + \dot{Q}_{sistema\ vapor}}{\dot{Q}_{entrada\ ideal}}$$

$$\eta_{global} = \frac{(557.90 + 65.99 + 3x2 + 3x4 + 1647) \, kW}{2970.00 \, kW} = \frac{2288.89 \, kW}{2970.00 \, kW}$$

$$\eta_{global} = 0.7707 \ x \ 100\% \approx 77.07\%$$

Finalmente, se obtuvo una eficiencia térmica global de 77.07%, bastante cercana a la obtenida en los cálculos anteriores, que fue de 78.16%, obteniendo una diferencia de apenas 1.09%. Con esto se logra concluir que un sistema de trigeneración permite aprovechar la energía contenida en la fuente energética primaria empleada en el Ciclo Rankine, específicamente en la caldera, logrando aprovechar el 77.07% de su contenido de energía total.

Figura 13. Configuración del sistema de trigeneración en software Cyclepad.

Figura 14. Configuración del equipamiento del sistema de trigeneración en software Cyclepad.

Figura 15. Configuración de los estados 1 al 12 del sistema de trigeneración en software Cyclepad.

Figura 16. Configuración de los estados 13 al 28 del sistema de trigeneración en software Cyclepad.

Figura 17. Datos obtenidos en cada equipo y del Ciclo Rankine en el sistema de trigeneración en software Cyclepad. Fuente: Elaborado con Cyclepad.

3.4. Determinar la inversión además del costo en ahorro energético para estimar la rentabilidad económica y financiera

Para desarrollar el objetivo, fue necesario determinar la inversión inicial (presupuesto) del sistema de trigeneración para posteriormente poder efectuar el análisis de rentabilidad y calcular los parámetros necesarios para estimar la viabilidad económica.

En la Tabla 6 se observa el detalle de cada equipo con sus cantidades y precios unitarios, además de accesorios, tuberías y el costo de instalación más puesta en marcha para el sistema de trigeneración propuesto para el centro de salud, logrando obtener un costo total incluyendo IGV e imprevistos de S/.3738925.34.

En la Tabla 7 se aprecia los indicadores correspondientes para el sistema de trigeneración, como el ahorro energético que se obtuvo de lo que ya no se pagará a la concesionaria considerando que el centro de salud opera las 24 horas durante todo el año, obteniendo un valor S/. 2257591.05, el costo por consumo de combustible fue de S/. 83809.12 por concepto de agua caliente y de S/. 2091393.64 para la generación de vapor por consumo de combustible, sumando un ahorro energético total de S/. 4432792.81 por año. También se consideró el concepto por Operación y Mantenimiento que asciende aproximadamente a S/. 200000.00 por año y el consumo de GN que es de S/. 3188289.60 anuales.

Cabe precisar que se ha considerando un horizonte de 20 años, porque el equipamiento del sistema de trigeneración como turbina, caldera, bomba, entre otros, pueden lograr dicha vida útil sin problemas y porque al considerar un largo plazo se genera un menor riesgo en la inversión, teniendo un panorama más claro y esperanzador de los beneficios que se puedan obtener de la inversión que considerando el corto plazo, tal como lo indica Fundación MAPFRE (2024).

Tabla 6. Costo estimado de sistema de trigeneración

Descripción	Cantidad	Unidad	Costo Unitario	Costo total
Caldera pirotubular VYC HTP-4000	1	Und	S/. 300000.00	S/. 300000.00
Turbina de vapor de 550 kW	1	Und	S/. 900000.00	S/. 900000.00
Generador ABB de 0.9 a 7.8 MVA	1	Und	S/. 800000.00	S/. 800000.00
Bomba de 3 HP Pedrollo tipo Jockey	1	Und	S/. 3990.00	S/. 3990.00
Intercambiador de calor o condensador MQT de 660 kW	1	Und	S/. 3500.00	S/. 3500.00
Intercambiador de calor Alfa Laval AlfaNova de 68 kW	1	Und	S/. 500.00	S/. 500.00
Intercambiador de calor MQT de 550 kW	3	Und	S/. 3000.00	S/. 9000.00
Compresor Danfoss MTZ028-4 de 1.02 kW	2	Und	S/. 5200.00	S/. 10400.00
Compresor Danfoss MTZ032-4 de 1.25 kW	1	Und	S/. 6700.00	S/. 6700.00
Compresor Danfoss MTZ064-4 de 2.17 kW	3	Und	S/. 7655.00	S/. 22965.00
Evaporador de techo Bohn WK 050 de 5000 BTU/h	2	Und	S/. 9090.00	S/. 18180.00
Evaporador de techo Bohn WK 075 de 7500 BTU/h	1	Und	S/. 12999.00	S/. 12999.00
Evaporador de techo Bohn WK 130 de 13000 BTU/h	3	Und	S/. 16190.00	S/. 48570.00
Intercambiador de calor Rittal SK 3373.544 de 2 kW	3	Und	S/. 10169.00	S/. 30507.00
Intercambiador de calor Rittal SK 3210.100 de 4 kW	3	Und	S/. 17289.00	S/. 51867.00
Condensador helicoidal de aire CPN109 de 5.080 kW	3	Und	S/. 7890.00	S/. 23670.00
Condensador helicoidal de aire CPN209 de 9.750 kW	3	Und	S/. 12560.00	S/. 37680.00
Tuberías	1	Glb	S/. 50000.00	S/. 50000.00
Accesorios (válvulas, codos, conectores, entre otros)	1	Glb	S/. 50000.00	S/. 50000.00
Infraestructura	1	Glb	S/. 100000.00	S/. 100000.00
Instalación y puesta en marcha del sistema	1	Glb	S/. 400000.00	S/. 400000.00
Subtotal				S/. 2880528.00
IGV (18%)				S/. 518495.04
Subtotal + IGV				S/. 3399023.04
Imprevistos (10%)				S/. 339902.30
Costo Total (incluido IGV + imprevistos	5)			S/. 3738925.34

Fuente: Elaboración propia.

N°	1	2	3	4	5	6	7	8	9	10
Año	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Inversión inicial	-S/.3,738,925.34									
Ingresos	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81
Ahorro obtenido	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81	S/.4,432,792.81
Egresos	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60	S/.3,388,289.60
Gasto de combustible (GN)	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60	S/.3,188,289.60
Operación y Mantenimiento	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00	S/.200,000.00
Utilidad (Ingresos-Egresos)	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21	S/.1,044,503.21
Utilidad afectada por inflación	S/.1,004,330.01	S/.965,701.93	S/.928,559.55	S/.892,845.72	S/.858,505.50	S/.825,486.06	S/.793,736.59	S/.763,208.26	S/.733,854.10	S/.705,628.94
Utilidad actualizada	S/.913,027.28	S/.798,100.77	S/.697,640.53	S/.609,825.64	S/.533,064.37	S/.465,965.36	S/.407,312.38	S/.356,042.29	S/.311,225.78	S/.272,050.50
	-S/.2,825,898.06	-S/.2,027,797.29	-S/.1,330,156.76	-S/.720,331.12	-S/.187,266.75	S/.278,698.61	S/.686,010.99	S/.1,042,053.27	S/.1,353,279.05	S/.1,625,329.55

Tabla 7. Flujo de caja para determinar la rentabilidad del sistema de trigeneración.

N°	11	12	13	14	15	16	17	18	19	20
Año	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044
Inversión inicial										
Ingresos	S/.4,432,792.81									
Ahorro obtenido	S/.4,432,792.81									
Egresos	S/.3,388,289.60									
Gasto de combustible (GN)	S/.3,188,289.60									
Operación y Mantenimiento	S/.200,000.00									
Utilidad (Ingresos-Egresos)	S/.1,044,503.21									
Utilidad afectada por inflación	S/.678,489.37	S/.652,393.62	S/.627,301.56	S/.603,174.58	S/.579,975.55	S/.557,668.80	S/.536,220.00	S/.515,596.16	S/.495,765.53	S/.476,697.63
Utilidad actualizada	S/.237,806.38	S/.207,872.71	S/.181,706.92	S/.158,834.72	S/.138,841.54	S/.121,364.98	S/.106,088.27	S/.92,734.50	S/.81,061.63	S/.70,858.07

Beneficio total	S/.6,761,424.60
VAN	S/.3,022,499.26
Tasa interna de retorno	22.81%
Payback (años)	5.40

Fuente: Elaboración propia.

Para poder realizar el análisis de los indicadores de rentabilidad, se ha empleado una tasa de descuento del 10%, de acuerdo con la Ley de Concesiones eléctricas, además se tuvo en cuenta una inflación anual de 4%, de acuerdo con información del BCRP con el propósito de hacer más real el análisis y un tiempo de vida útil del proyecto de 20 años. Por lo tanto, del análisis se obtuvo lo siguiente:

Al evaluar los indicadores de rentabilidad se obtuvo un costo de inversión de S/. 3738925.34, con un beneficio total en los 20 años de S/. 6761424.60, un Valor Actual Neto de S/. 3022499.26, la tasa interna de retorno obtenida fue de 22.81% y el tiempo de retorno de la inversión calculado fue de 5.40 años.

IV. DISCUSIÓN

De acuerdo con la información obtenida del centro de salud, se obtuvo como parámetro a la demanda eléctrica de 530 kW, demanda energética del sistema de agua caliente a 60°C de 66 kW, demanda energética del sistema de vapor de 1647 kW y una demanda térmica de los sistemas de refrigeración de 15.48 kW. Dicha información tiene concordancia con la investigación efectuada por Calise et al. (2024), ya que también propusieron un novedoso sistema de cogeneración reversible con energía renovable, obteniendo una demanda eléctrica para el hospital de 10 MW, lo que representa que es un hospital de más envergadura que el estudiado en la presente investigación, pero que dicha demanda puede ser suministrada sin problemas por el sistema de cogeneración. De igual modo, se tiene cierta concordancia con el estudio de Swayze & Singh (2023), donde el consumo de electricidad fue de 660 kW, con una demanda térmica para los sistemas energéticos de 440 kW, pero que emplearon paneles solares para su abastecimiento, con un total de 1737 paneles. De modo similar, se tiene coherencia con el estudio de Fong & Lee (2023), ya que obtuvieron una demanda de electricidad de 1355 kW, una demanda térmica para agua caliente de 1413 kW y una demanda para los Chillers o refrigeración de 1036 kW, que aunque son valores más altos a los estimados en el presente estudio, el sistema de trigeneración pudo satisfacer los requerimientos energéticos con una alta eficiencia térmica del sistema.

En relación con el software CyclePad empleado, la simulación obtuvo que el sistema de trigeneración puede generar una potencia eléctrica neta de 557.90 kW, 66 kW para el sistema de agua caliente, 1647 kW para el de vapor, 2 kW para los evaporadores del sistema de refrigeración y 4 kW para los restantes que son para congelación, con una potencia entregada de la caldera de 2970 kW, logrando obtener una eficiencia térmica global del sistema de trigeneración de 77.07%. Teniendo concordancia con el estudio de Papadimitriou et al. (2021), ya que obtuvo con el software TRNSYS una eficiencia que rondaba el 40 a 45%, con una eficiencia eléctrica por encima de 30%, demostrando que los sistemas de cogeneración y trigeneración permiten incrementar la eficiencia térmica y energética. Además, concuerda con la información obtenida en el estudio de Srivastava & Kumar (2023),

quienes lograron obtener que un sistema de trigeneración brinda una eficiencia o rendimiento superior en 20 a 40% mayor que la cogeneración, además de que son útiles para emplearse en restaurantes, hospitales, industrias de procesos, plantas químicas, industrias lácteas, etcétera; ya que poseen una demanda constante de energía eléctrica, calefacción, agua sanitaria caliente, vapor y refrigeración durante todo el año que vienen operando sin dejar de ofrecer sus servicios a la comunidad donde pertenecen.

Respecto al ahorro energético que fue de S/. 4432792.81 y el costo de inversión para el sistema de trigeneración de S/. 3738925.34, se determinó un VAN de S/. 3022499.26, TIR de 22.81% y un tiempo para el recupero de la inversión inicial de 5.40 años. Concluyendo que la propuesta de emplear un sistema de trigeneración en el centro de salud de Posope Alto es atractivo y rentable para su implementación, donde se recupera la inversión en cerca de 10 años. Dichos datos concuerdan con la investigación de Calise et al. (2024), ya que en su estudio obtuvo un ahorro energético en términos de porcentaje de 33% y que la inversión del sistema propuesto se recupera en un tiempo de 6.7 años, además de ser una solución prometedora para reducir el impacto ambiental de los hospitales y las instalaciones sanitarias. De igual forma, concuerda con Ulusam & Koç (2022), quienes obtuvieron que los modelos de simulación optimizados con diferentes metaheurísticas, como el algoritmo genético, mostraron que ambos escenarios pueden ser rentables (períodos de recuperación simples de alrededor de 5,28 y 6,6 años respectivamente) incluso sin financiación pública, concluyendo que el escenario 2 basado en cogeneración proporcionó una reducción del 12,35 % en las emisiones de carbono en comparación con el escenario base, mientras que el escenario 3 proporcionó una reducción del 16,94 % en comparación con el escenario base, y ambos escenarios han demostrado ser bastante amigables con el ambiente. De modo similar, se obtiene concordancia con el estudio de Natán (2020), obteniendo un VAN de \in 2.163.000 y \in 1.881.000; con una TIR de 26% y un tiempo para la recuperación de la inversión inicial de 4.2 años, logrando demostrar que es viable el proyecto de un sistema de trigeneración en el hospital Cantú. Adicionalmente, tienen coherencia con los resultados obtenidos del estudio de Braun et al. (2020) efectuada en Alemania, ya que indicaron que la viabilidad económica depende en gran medida de los costos anuales del sistema, como el precio de la energía, políticas energéticas específicas en cada país, además de costos de operación, mantenimiento, consumo de la fuente primaria de energía, además de los años de duración de la inversión o proyecto. Lograron concluir que actualmente dichos sistemas energéticos son viables en términos técnicos y económicos, ya que pueden operar durante todo el tiempo, con una utilización máxima de la energía eléctrica adempas de calefacción, ventilación, aire acondicionado entre otras demandas de electricidad, logrando altas fracciones solares y ahorros de energía primaria.

El estudio se alinea con la teoría relacionada a la trigeneración, tomando en cuenta a la de Kumar et al. (2021), porque mencionaron que integrar energías renovables o asequibles, permite mejorar la sostenibilidad, y que, si se integran otros tipos de energías renovables como la solar y eólica, se reducirían de forma significativa las emisiones de carbono al medio ambiente.

La investigación se alinea con la teoría de Wu et al. (2023), ya que mencionaron que optimizar los sistemas multienergía permite maximizar la eficiencia o rendimiento del sistema de trigeneración. Explicando que dicho enfoque permite utilizar diferentes metodologías matemáticas avanzadas para encontrar soluciones óptimas que equilibren diferentes variables, como los costos operativos y demanda energética.

Además, se alinea con la teoría de que la implementación de sistemas de gestión energética inteligente se ha destacado como crucial para obtener una mejora en la eficiencia de los sistemas de trigeneración, según lo indica Xu et al. (2020), porque se logra aprovechar al máximo el potencial energético contenido en la fuente de energía primaria, de modo que se optimiza el proceso de generación de energía eléctrica y se reducen las emisiones de gases contaminantes.

Se alinea con la teoría mencionada por Nami et al. (2020), destacando que los sistemas de trigeneración permiten obtener un impacto positivo en el ámbito ambiental y económico, ya que permite que se reduzcan las emisiones de gases de efecto invernadero y costos de operación en el sector industrial, logrando demostrar que dichos sistemas energéticos poseen un alto potencial para lograr el

tal deseado desarrollo sostenible y así evitar la producción de grandes cantidades de dióxido de carbono.

También se alinea con el ODS 7, ya que se demostró que el sistema de trigeneración permite utilizar una fuente primaria de energía aprovechando al máximo su potencial energético, ya que de acuerdo con los cálculos obtenidos y del software empleado, del 100% del potencial energético contenido en la fuente primaria de energía utilizada, se logra aprovechar el 77.07%.

Finalmente, se logra alinear con la teoría de Chu et al. (2020), donde mencionan que el desarrollo de tecnologías innovadoras que permiten mejorar la eficiencia y la sostenibilidad de la aplicación de un sistema de trigeneración, ya que exploraron avances tecnológicos recientes, empleando sistemas de almacenamiento de energía avanzados y recientes, además de dispositivos de captura de carbono, los cuales brindaron la posibilidad de obtener una gran sostenibilidad además de una reducción importante en los gases contaminantes que otras tecnologías producen al emplear combustibles como fuente primaria de energía.

V. CONCLUSIONES

- De acuerdo con la información recopilada en el centro de salud de Posope Alto, respecto a los parámetros necesarios para el sistema de trigeneración, se obtuvo una demanda eléctrica de 530 kW, con una demanda de calor para el sistema de agua caliente a 60°C de 66 kW, para el sistema de generación de vapor fue de 1647.76 kW y para los sistemas de refrigeración fue de 15.48 kW, sumando una demanda energética total de 2259.24 kW.
- Del análisis termodinámico realizado al sistema de trigeneración, conformado por un Ciclo Rankine, se seleccionó una caldera de vapor con la capacidad de generar 3902.40 kg/h, una turbina de vapor de 550 kW, una bomba de 3 HP, un generador eléctrico de 900 kVA, un condensador o intercambiador de calor de 68 kW, tres intercambiadores de calor de 550 kW cada uno, y para los ciclos refrigeración, dos compresores de 1.02 kW, uno de 1.25 kW, y tres de 2.17 kW, dos evaporadores de 5000 BTU/h, uno de 7500 BTU/h y tres de 13000 BTU/h, tres intercambiadores de calor de 2 kW y tres de 4 kW, tres condensadores de 5.08 kW y tres más de 9.75 kW.
- De la simulación efectuada con el software termodinámico CyclePad, se obtuvo que el sistema de trigeneración puede generar una potencia eléctrica neta de 557.90 kW, 66 kW para el sistema de agua caliente, 1647 kW para el de vapor,
 2 kW para los evaporadores del sistema de refrigeración y 4 kW para los restantes que son para congelación, con una potencia entregada de la caldera de 2970 kW, logrando obtener una eficiencia térmica global del sistema de trigeneración de 77.07%.
- El ahorro energético obtenido ascendió a la suma de S/. 4432792.81 y el costo de inversión para el sistema de trigeneración ascendió a la suma de S/. 3738925.34, que, al realizar el análisis de rentabilidad, se determinó que el VAN fue de S/. 3022499.26, con una TIR calculada de 22.81% y un tiempo para el recupero de la inversión inicial de 5.40 años. Concluyendo que la propuesta de emplear un sistema de trigeneración en el centro de salud de Posope Alto, generaría una rentabilidad de casi un millón soles y que se recupera la inversión en un poco menos de 6 años.

VI. RECOMENDACIONES

- Se podría efectuar un análisis más detallado para implementar otros sistemas termodinámicos, como un sistema de refrigeración a gran escala para vacunas y medicamentos que lo necesiten, sistema de calefacción para épocas de frío, de modo que se realice un estudio para un sistema más complejo o poligeneración.
- Se puede emplear otros softwares termodinámicos, con el fin de efectuar un análisis comparativo con respecto al CyclePad y el análisis efectuado manualmente, de modo que se corrobore si todo es conforme y concuerda la información obtenida con cada uno.
- Se puede efectuar un análisis de rentabilidad para el sistema de poligeneración recomendado anteriormente, pero se debe tomar en cuenta la tasa de descuento ya que puede variar y además de considerar la inflación para que se un análisis más cercano a la realidad.

REFERENCIAS

- ABD RAHMAN, N. M., HAW LIM, C., & FAZLIZAN, A. (2021). Optimizing the energy saving potential of public hospital through a systematic approach for green building certification in Malaysia. *Journal of Building Engineering, 43*, 1-14. https://doi.org/10.1016/j.jobe.2021.103088
- BADIDA, P., JANAKIRAMAN, S., & JAYAPRAKASH, J. (2022). Occupational health and safety risk assessment using a fuzzy multi-criteria approach in a hospital in Chennai, India. *International Journal of Occupational Safety and Ergonomics,* 29(3), 1047-1056. https://doi.org/10.1080/10803548.2022.2109323
- BORGES DE OLIVEIRA, K., et al. (2021). Guidelines for efficient and sustainable energy management in hospital buildings. *Journal of Cleaner Production, 329*, 1-9. https://doi.org/10.1016/j.jclepro.2021.129644
- BRAUN, R., et al. (2020). System design and feasibility of trigeneration systems with hybrid photovoltaic-thermal (PVT) collectors for zero energy office buildings in different climates. *Solar Energy*, 196, 39-48. https://doi.org/10.1016/j.solener.2019.12.005
- CALISE, F., et al. (2024). A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell. *Energies, 17*(5), 1-21. https://doi.org/10.3390/en17050979
- CENGEL, Y. A., BOLES, M. A., & KANOGLU, M. (2019). *Thermodynamics: An Engineering Approach.* Mc Graw Hill Education.
- CHU, W., et al. (2020). Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. *Energies, 13*(19), 1-29. https://doi.org/10.3390/en13195229
- CORVALÁN, C., et al. (2020). Towards Climate Resilient and Environmentally Sustainable Health Care Facilities. *International Journal of Environmental Research and Public Health, 17*(23), 1-18. https://doi.org/10.3390/ijerph17238849

- CUADRA, V. (2018). Estudio de viabilidad de un sistema de trigeneración para un hospital. Barcelona.
- DUFFIE, J. A., & BECKMAN, W. A. (2013). Solar Engineering of Thermal Processes, 4th Edition. John Wiley & Sons.
- ESQUIVEL, A., (2021). Análisis de la calidad de energía del sistema eléctrico de potencia para la reducción de costos de electricidad en empresas productoras de hortalizas, Perú 2021. Callao: Universidad Nacional del Callao.
- FONG, K. F., & LEE, C. K. (2023). Biofuel-driven trigeneration systems for nonresidential building applications: A holistic assessment from the energy, environmental and economic perspectives. *Building Systems and Components, 16*, 557-576. https://doi.org/10.1007/s12273-022-0958-0
- KUMAR, M., et al. (2021). Integration of Renewable Energy based Trigeneration Cycle: A Review. Journal of The Institution of Engineers (India): Series C, 102, 851-865. https://doi.org/10.1007/s40032-021-00690-y
- LIANO VELASCO, N., et al. (2019). Evaluación del sistema de generación, distribución y consumo de vapor de una empresa cárnica. *Ingeniería y Desarrollo, 38*(1), 163-180. https://doi.org/10.14482/inde.38.1.621.41
- LIU, J., et al. (2021). The role of energy storage systems in resilience enhancement of health care centers with critical loads. *Journal of Energy Storage*, 33, 1-15. https://doi.org/10.1016/j.est.2020.102086
- LLERENA, O. R. (2018). Análisis energético, exergético y económico de un sistema de cogeneración: Caso para una planta azucarera de San Pablo. *Ingenius Revista de Ciencia y Tecnología*(19), 29-39. https://doi.org/10.17163/ings.n19.2018.03
- MARIANO-HERNÁNDEZ, D., et al. (2021). A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. *Journal of Building Engineering,* 33, 1-12. https://doi.org/0.1016/j.jobe.2020.101692

MOHAMMADI, K. Y. (2018). Análisis termodinámico de ciclos híbridos basados en

un ciclo Rankine de vapor regenerativo para cogeneración y trigeneración. Massachusetts: Universidad de Massachusetts.

- NAMI, H., ANVARI-MOGHADDAM, A., & ARABKOOHSAR, A. (2020). Thermodynamic, Economic, and Environmental Analyses of a Waste-Fired Trigeneration Plant. *Energies, 13*(10), 1-18. https://doi.org/10.3390/en13102476
- NATÁN, B. (2020). *Cantù hospital : energy efficiency assessment and feasibility study of a trigeneration unit.* Repositorio del Politécnico de Milano Escuela de industrias e información en ingeniería.
- PAPADIMITRIOU, A., TOSIOS, A., & GIANNINI, E. (2021). Techno-Economic Performance Assessment of a Trigeneration System Operating in a Hospital. *Energies, 14*(16), 1-21. https://doi.org/10.3390/en14165105
- PORTELLA RIVERA, R. M. (2022). Estudio de factibilidad de un sistema de poligeneración para un hotel de cinco estrellas en la ciudad de Trujillo (Perú). Repositorio de la Unviersidad de Ingeniería y Tecnología.
- POTTER, M. C., WIGGERT, D. C., & RAMADAN, B. (2015). *Mecánica de Fluidos.* Cengage Learning.
- RAO, A. (2015). Sustainable Energy Conversión for Electricity and Coproducts: Principles, Technologies and Equipment. Wiley. https://doi.org/10.1002/9781119064190
- SERRA, L. y. (2020). Optimización energética con sistemas de trigeneración. España: Universidad de Zaragosa.
- SRIVASTAVA, P. K., & KUMAR PANDEY, M. (2023). Thermal analysis of a trigeneration system with combined heating, cooling and power generation. 8th Thermal and Fluids Engineering Conference (TFEC), 1655-1668.
- SWAYZE, E., & SINGH, K. (2023). Techno-economic-environmental decisionmaking approach for the adoption of solar and natural gas-based trigeneration systems. *Energy Conversion and Management, 289*, 1-15. https://doi.org/10.1016/j.enconman.2023.117189

ULUSAM SEÇKINER, S., & KOÇ, A. (2022). Agent-based simulation and simulation

optimization approaches to energy planning under different scenarios: A hospital application case. *Computers & Industrial Engineering, 169*, 1-27. https://doi.org/10.1016/j.cie.2022.108163

- WU, X., et al. (2023). Multi-objective and multi-algorithm operation optimization of integrated energy system considering ground source energy and solar energy. *International Journal of Electrical Power & Energy Systems, 144*, 1-17. https://doi.org/10.1016/j.ijepes.2022.108529
- XU, Y., et al. (2020). Smart energy systems: A critical review on design and operation optimization. Sustainable Cities and Society, 62, 1-19. https://doi.org/10.1016/j.scs.2020.102369

ANEXOS

Anexo 1. Tabla de operacionalización de variables

Variable	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala de medición
Variables Independiente: Diseño del Sistema de Trigeneración en centro de salud Pósope alto – Chiclayo	El sistema de trigeneración es un procedimiento que amplía el sistema de cogeneración que está compuesta por tres sistemas principales: el sistema de transformación de la energía primaria, el sistema de generación de energía y el sistema de distribución de energía con el consiguiente aumenta la eficiencia, (Serra, 2020).	Un sistema de trigeneración se basa en un ciclo Rankine, que tiene como objetivo la conversión de calor en trabajo, constituyendo lo que se denomina un ciclo de potencia necesario en distintas áreas de un moderno centro médico.	- Características del Ciclo Rankine	 Potencia eléctrica Demanda de calor Cargas térmicas Nivel de tensión Eficiencia térmica 	Razón
Variable Dependiente: Mejora del suministro energético	La mejora del suministro energético en un sistema de trigeneración se logra a través de la generación simultánea de los sistema eléctrico y térmico, razón por la cual debemos de utilizar estos métodos con mucho cuidado y eficiencia, (Cuadra, 2018).	Se logra la mejora de la administración de los recursos energéticos (calor y electricidad).	- Suministro eléctrico - Suministro calorífico	 Nivel de tensión Transferencia de calor 	Razón

Anexo 8. Autorizaciones para el desarrollo del proyecto de investigación

GOBIERNO REGIONAL LAMBAYEQUE GERENCIA REGIONAL DE SALUD RED SALUD CHICLAYO CENTRO DE SALUD PÓSOPE ALTO

"Año del Bicentenario, de la consolidación de nuestra Independencia, y de la conmemoración de las heroicas batallas de Junín y Ayacucho"

CONSTANCIA

El gerente del Centro de Salud Posope Alto, consta por el presente documento: Que los estudiantes:

ESPINOZA ARNAO MARCO ANTONIO SILVA BECERRA MIGUEL ANGEL

Alumnos de la Escuela Profesional de Ingeniería Mecánica Eléctrica de la Universidad Particular "Cesar Vallejo" Sede Chiclayo; ejecutará en este Centro de Salud el Proyecto de Investigación "DISEÑO DEL SISTEMA DE TRIGENERACIÓN EN CENTRO DE SALUD POSOPE ALTO – CHICLAYO, PARA MEJORAR EL SUMINISTRO ENERGÉTICO"

Se expide la presente Constancia, careciendo de valor oficial para asuntos judiciales en contra del Estado Peruano.

MBAYEQUE Dr. Efrain Hua huno Effio

Patapo, 06 de mayo del 2024

"Personas Que Atendemos Personas"

Av. Los Ángeles S/N - Telef 428107 - 428356 - Pósope Alto E-mail: clas posopea<u>lto@hotmail.com</u>

Anexo 9. Otras evidencias

Recibo del mes de mayo del 2024 del centro de salud Pósope Alto

Recibo Nº S2 Patapo/Chiclayo	58-9781435)	51										
Recibo por Cons	sumo del 01/0	05/2024 al 3	31/05/20	024							Enca	
Cliente	GERENCIA	REGIONAL	DE SAL	UD							Elisa	
R.U.C.	201638330	94				Mayo-2024						
Dirección	Ca. LOS A	NGELES Nº I	Mz."L"	Lt.1 AA.H	H. POSOF	PE ALT	0 - Patap	o / Chiclayo /		Way 0-2	.024	
Referencia	Lambaua								CÓ		060//3	1
Ruta	1439-10467	7-29							CO	JIGO J	909445	
arifa	MT3			Serie Me	didor	0000	0000288	6456 - Electrón.				
ledición	Media Tens	sion		Nº Hilos	Medidor	4			Promedio M	áxima Demanda	Potencia Con	tratada
ensión v SED	22.9/13.2 k	V / E-206508		Modalida	d	Pote	ncia Varia	able	15	4.3044	530.000	00
Sist. Eléctrico	S221 Chicla	avo Bai (ST3))	Inicio Co	ntrato	20/1	0/2022					
Tipo Suministro	Trifásica-Aé	érea(C5.3)	'	Termino	Contrato	19/1	0/2024		Calificación	Horas Punta	HorasPunta	130
Magnitud	l Leida	Lectura Anterior	Lect	ura C	Diferencia	a Der	nanda	Co	ncepto	Consumo	Precio Unitario	Total
Energia Activa Tota	l (kWh)	1,886.686	8 1,9	86.6668	99.98	00 41	,628.0327	Cargo Fijo			11.5929	11
Energia Activa Hora	a Punta (kWh)	321.752	6 3	39.2722	17.51	96 7	,294.5237	Cargo por Reposició	n y Mantenimiento	de la		24.
Energia Activa Fuer	ra Punta (kWh)	1,564.934	2 1,6	47.3945	82.46	03 34	,333.4674	Energia Activa HP		7294.523	7 0.3282	2394.
Potencia Hora Punt	a (kW)	0.202	2	0.1845	0.18	45	76,8191	Energia Activa FP		34333.467	4 0.2765	9493.
Potencia Fuera Pur	nta (kW)	0.252	6	0.2124	0.21	24	88.4356	Pot.Uso Redes Dist	ib.HP	154.304	4 18.3600	2833.
Factor Calificacion	1 : 0.6345	Fac.Medic	c. 416.36	536				Pot. Activa Generac	Aliquota : S/ 0 50	88.435	6 58.0800	5136.
								Interés Compensato	rio	1.000	0 125.4564	125.
200			1					SUB TOTAL				20893.
150				1-				Imp. Gral. a las Ven	tas			3760.
100		from	-					Interes Moratorio Saldo por redondeo		1.000	0 8.9411	8.
50			-		-	-		Redondeo		1.000	-0.0100	-0.
								Aporte Ley Nro. 287	49	41627.991	1 0.0103	428.
May	Jun Jul Ago	Set Oct	Nov Dic	Ene Fet	Mar Abr Afio 2	May 024		TOTAL RECIBO DE Deuda Anterior (1 M	MAYO-2024 es.)			25091. 29525.
60,000 -					, ,	60,000						
20,000 - 0		Acc. Set. Oct. No.		Eeb Mar	APr. May	20,000 0						
		EAHP kWh	EAFP kWh	, I	Año 2024							
				_								
	Mar - 2024 S/ 3	31176.50	Abr -	2024 S/ 295	25.30							
	HIST	TORICO DE CONS	SUMOS Y D	EMANDAS								
May Ju	n Jul Ago	Set Oct	Nov	Dic Ene	Feb	Mar Ab	r May					
EAFP kWh 38742 2975	56 36818 37137 5 7153 7585	33233 34998 7996 7327	33929	38426 4353	44808 4	17712 4150 8564 884	51 34333					
EAHP kWh 6000 600 PEP kW 145.6856 147.6	842 1142918 132.1954	97.5956 107.2553	93.1405 9	98.4700 140.64	76 1492247 15	0.3840 105.1	734 88.4356					
PHP KW 90.5174 86.02	207 76.6109 124.5760	67.8673 70.2822	66.3684 9	95.6387 127.24	07 1283233 10	8.4627 84.18	887 76.8191					
Emisión	06/06/2	2024	Vend	imient	o 2	4/06/2	024			TOTAL	S/****5	4.617.0
		Su	AMTes	· A2039	- TUM20	2		de SE e	e Potencia · TI	IMAN		
on : CINCUENTA Y	CUATRO MIL SE	EISCIENTOS D	ECISIET	E Y 00/100	SOLES					Ad 4 Incies 6 1 d		
) El importe en lea	aliza el pago via	a transferencia	bancaria	i debe env	iar un	4 Compr	obante en	nilido segun Ho-007-s	B SUNAT Cap. 1.	411. 4, IIICISO 0.1.U.		
corre cuen https /Con	to a: pagosensa ta de su recibo e ://servicios.distri sultas/Consultal	@distriluz.con en: iluz.com.pe/O MiRecibo/	n.pe Revi ficinaVirtu	se el esta ualConsult	do de a/Consulta	s			Fe	echa Corte:25/	06/2024	
									Si paga h el corte	asta la fecha de ve , gastos y molestia	ncimiento evitará s innecesarias.	ì
anti-un sión i									Recibo N	• 58-	-97814351	

 Facturación:
 Mayo-2024

 GERENCIA REGIONAL DE SALUD
 suminifativenes

 Suminifativenes
 *39694#31*00

 Dirección
 Ca. LOS ANGELES Nº Mz."L" Lt.1

 Ruta
 1439-10467-29

 Emisión
 06/06/2024

 Vencimiento
 24/06/2024

Patapo/Chiclayo

TOTAL A PAGAR S/ ****54,617.00

Información del sistema eléctrico del centro de salud Pósope Alto

		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	GNN-01	Tablero General Normal "TGN"	1	818.34	818.34	0.8	640.51	380
TRANSFORMADOR	GNN-02	Tablero de Transferencia Automatica "TTA2"	1	9.75	9.75	0.8	7.53	380
	GNN-03	Tablero General Bomba Contra Incendios "TF-BCI"	1	15.76	15.76	0.9	14.18	380
SUB TOTAL (kW):					843.85	0.78	662.22	380
		Factor de Simultaneidad					0.80	
		Subtotal					529.77	KW
		Factode Potencia					0.90	
		Poptencia del Transformador					588.64	KVA
		Potencia Comercial de Tranformador					630.00	KVA

GNN-01		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	GN-01	Subtablero de Distribucion de Fuerza "STFN-03"	1	85.98	85.98	0.9	76.53	380
	GN-02	Subtablero de Distribucion Normal "STDN-01"	1	83.81	83.81	0.7	62.10	380
	GN-03	Subtablero de Distribucion Normal "STDN-02"	1	94.13	94.13	0.7	66.59	380
	GN-04	Subtablero de Distribucion Normal "STDN-03"	1	33.18	33.18	0.9	28.37	380
Tablero General Normal "TGN"	GN-05	Tablero de Fuerza Ascensor "TF-ASC1"	1	6.50	6.50	1.00	6.50	380
Tablelo General Normal TGN	GN-07	Tablero de Rayos X "TF-RX"	1	85.00	85.00	0.8	68.00	380
		Tablero General de Emergencia "TGE"	1	429.75	429.75	0.8	332.42	380
		Espacio de Reserva						
		Espacio de Reserva						
		Espacio de Reserva						
SUB TOTAL (kW):			818.34	0.78	640.51	380		

SUB	TOTAL	(kW):
-----	-------	-------

		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	TA-01	Tablero de Transferencia Automatica "TTA"	1	455.26	455.26	0.6	254.40	380
	TA-02	Espacio de Reserva						
GROFO ELECTROGENO	TA-03	Espacio de Reserva						
	TA-04	Espacio de Reserva						
SUB TOTAL (kW):				455.26	0.56	254.40	380	

		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	TTA-01	Tablero General de Emergencia "TGE"	1	429.75	429.75	0.8	232.69	380
TABLERO DE	TTA-02	Tablero de Transferencia Automatica "TTA2"	1	9.75	9.75	0.8	7.53	380
	TTA-03	Tablero de Fuerza de Bomba Contraincendio "TF-BCI"	1	15.76	15.76	0.9	14.18	380
	TTA-04	Espacio de Reserva						
	TTA-05	Espacio de Reserva						
SUB TOTAL (kW):					455.26	0.56	254.40	380

GNN-02		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	TTA2-01	Tablero de Proteccion y Control Bomba Jockey "TPC-BJ"	1	2.75	2.75	0.7	1.93	380
Tablero de Transferencia Automatica "TTA2"	TTA2-02	Equipo de Presurizacion N°1	1	3.50	3.50	0.80	2.80	380
	TTA2-03	Equipo de Presurizacion N°2	1	3.50	3.50	0.80	2.80	380
	TTA2-05	Espacio de Reserva		3.00				
SUB TOTAL (kW):				9.75	0.77	7.53	380	

TTA-01		DESCRIPCIÓN	C.I.	F.D.	M.D. (kW)	v
	GE-01	Tablero de Fuerza Oxigeno Medicinal "TFE-COM"	42.45	0.74	31.43	380
	GE-02	Tablero de Fuerza Emergencia Aire Acondicionado "TFE-HVAC"	71.21	0.90	64.40	380
	GE-03	Subtablero de Distribucion de Emergencia "STDE-01"	19.84	0.87	17.31	380
	GE-04	Subtablero de Distribucion de Emergencia "STDE-02"	7.36	0.79	5.85	380
	GE-05	Subtablero de Distribucion de Emergencia "STDE-03"	55.16	0.85	47.14	380
	GE-06	Tablero de Servicios Auxiliares Grupo Electrogeno "STDSAG"	3.75	0.80	3.00	380
	GE-07	Tablero de Distribucion "STDCF"	3.24	0.87	2.81	380
	GE-08	Tablero de Emergencia de Fuerza para Bombas "TE-FB"	23.69	0.64	15.27	380
	GE-09	Tablero de Emergencia Cuarto de Data "TD-BYPASSDC"	38.00	0.80	30.40	380
Tablero General de Emergencia "TGE"	GE-10	Tablero de Fuerza Ascensor "TF-ASC2"	6.50	1.00	6.50	380
	GE-11	Tablero de Fuerza Calderas "TFC"	48.81	0.58	28.46	380
	GE-12	Tablero General de Energia Estabilizada "TG-EST"	85.94	0.69	59.62	380
	GE-13	Tablero de Proteccion y Control "TPC-BGE"	1.50	0.80	1.20	380
	GE-14	Tablero de Proteccion y Control "TPC-BSP"	0.75	0.50	0.38	380
	GE-15	Subtablero Sala de Partos Bypass "STDSPES"	3.90	0.80	3.12	380
	GE-16	Subtablero Sala de Partos "STDSPE"	5.82	0.94	5.46	380
		Espacio de Reserva				
		Espacio de Reserva				
		Espacio de Reserva				
		Espacio de Reserva				
		Espacio de Reserva				
SUB TOTAL (kW):			417.91	0.77	322.33	380
					0.70	
		MAXIMA DEMANDA			225.63	

GE-03		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CE-01	D-430	1	1.50	1.50	0.70	1.05	220
	CE-02	D-430	1	1.50	1.50	0.70	1.05	220
	CE-03	D-430	1	1.50	1.50	0.70	1.05	220
		Espacio de Reserva 3Ø						
	CE-04	Circuito de Alumbrado 1	8	0.04	0.32	0.85	0.27	220
	CE-05	Circuito de Alumbrado 2	9	0.04	0.32	0.85	0.27	220
	CE-06	Circuito de Alumbrado 3	11	0.04	0.44	0.85	0.37	220
	CE-07	Circuito de Alumbrado 4	11	0.04	0.42	0.85	0.36	220
	CE-08	Circuito de Alumbrado 5	10	0.04	0.38	0.85	0.33	220
	CE-09	Circuito de Alumbrado 6	7	0.04	0.27	0.85	0.23	220
	CE-10	Circuito de Alumbrado 7	5	0.04	0.19	0.85	0.16	220
	CE-11	Circuito de Alumbrado 8	8	0.04	0.31	0.85	0.26	220
	CE-12	Circuito de Alumbrado 9	9	0.04	0.35	0.85	0.29	220
	CE-13	Circuito de Alumbrado 10	5	0.04	0.19	0.85	0.16	220
	CE-14	Circuito de Alumbrado 11	5	0.04	0.19	0.85	0.16	220
	CE-15	Circuito de Alumbrado 12	7	0.04	0.27	0.85	0.23	220
	CE-16	Circuito de Alumbrado 13	6	0.04	0.23	0.85	0.20	220
	CE-17	Circuito de Alumbrado 14	10	0.04	0.38	0.85	0.33	220
	CE-18	Circuito de Alumbrado 15	9	0.04	0.35	0.85	0.29	220
	CE-19	Circuito de Alumbrado 16	9	0.04	0.35	0.85	0.29	220
Subtablero de Distribucion de	CE-20	Circuito de Alumbrado 17	8	0.04	0.31	0.85	0.26	220
Emergencia "STDE-01"	CE-21	Circuito de Alumbrado 18	7	0.04	0.27	0.85	0.23	220
-	CE-22	Circuito de Alumbrado 19	6	0.04	0.27	0.85	0.23	220
	CE-23	Circuito de Alumbrado 20	12	0.04	0.23	0.85	0.20	220
	CE-24	Circuito de Alumbrado Exterior	10	0.11	1.52	0.65	0.04	220
	CE-26	Circuito de Alumbrado Panel de Cabecera D-228	10	0.05	0.20	0.85	0.54	220
	CE-27	Circuito de Alumbrado Panel de Cabecera D-224	4	0.05	0.20	0.85	0.17	220
	CE-28	Circuito de Tomacorrientes	8	0.13	1.00	0.85	0.85	220
	CE-29	Circuito de Tomacorrientes	8	0.13	1.00	0.85	0.85	220
	CE-30	D-288	1	1.50	1.50	0.90	1.35	220
	CE-31	D-288	1	1.50	1,50	0.90	1.35	220
	CE-32	D-288	1	1.50	1.50	0.90	1.35	220
	CE-33	D-288	1	1.50	1.50	0.90	1.35	220
	CE-34	D-288	1	1.50	1.50	0.90	1.35	220
	CE-35	D-288	1	1.50	1.50	0.90	1.35	220
	CE-36	Reserva Equipada 1Ø						
	CE-37	Reserva Equipada 1Ø						
	CE-38	Reserva Equipada 1Ø						
	CE-39	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):					19.84	0.87	17.31	380

GN-02		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CN-01	Subtablero de Distribucion Normal "STDN-1.1"	1	23.30	23.30	0.72	16.89	380
	CN-02	Subtablero de Distribucion Lavanderia "STDLAV"	1	41.33	41.33	0.70	28.93	380
	CN-03	Subtablero "STDC-01"	1	2.53	2.53	0.75	1.89	380
	CN-04	Subtablero de Distribucion de Fuerza "TD-TA"	1	12.00	12.00	0.85	10.20	380
	CN-05	Circuito de Alumbrado 1	8	0.04	0.28	0.90	0.25	220
	CN-06	Circuito de Alumbrado 2	7	0.04	0.25	0.90	0.22	220
	CN-07	Circuito de Alumbrado 3	10	0.04	0.35	0.90	0.32	220
	CN-08	Circuito de Alumbrado 4	10	0.04	0.35	0.90	0.32	220
	CN-09	Circuito de Alumbrado 5	11	0.04	0.39	0.90	0.35	220
	CN-10	Circuito de Alumbrado 6	10	0.04	0.35	0.90	0.32	220
	CN-11	Circuito de Alumbrado 7	8	0.04	0.28	0.90	0.25	220
	CN-12	Circuito de Alumbrado 8	8	0.04	0.28	0.90	0.25	220
Subtablero de Distribucion	CN-13	Circuito de Alumbrado 9	9	0.04	0.32	0.90	0.28	220
Normal "STDN-01"	CN-14	Circuito de Alumbrado 10	7	0.04	0.25	0.90	0.22	220
	CN-15	Circuito de Alumbrado 11	7	0.04	0.25	0.90	0.22	220
	CN-16	Circuito de Alumbrado 12	11	0.04	0.39	0.90	0.35	220
	CN-17	Circuito de Alumbrado 13	10	0.04	0.35	0.90	0.32	220
	CN-18	Circuito de Alumbrado 14	8	0.04	0.28	0.90	0.25	220
	CN-19	Circuito de Alumbrado 15	9	0.04	0.32	0.90	0.28	220
	CN-20	Reserva Equipada 1Ø						
	CN-21	Reserva Equipada 1Ø						
	CN-22	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
UB TOTAL (kW):					83.81	0.74	62.10	380

CN-02		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	LAV-01	E-56	1	24.00	24.00	0.70	16.80	380
	LAV-02	E-210	1	14.00	14.00	0.70	9.80	380
	LAV-03	Circuito de Tomacorrientes	5	0.13	0.63	0.70	0.44	220
Subtablero de Distribucion	LAV-04	E-52	1	1.50	1.50	0.70	1.05	220
	LAV-05	E-211	1	1.20	1.20	0.70	0.84	220
Lavanderia "STDLAV"	LAV-06	Reserva Equipada 1Ø						
	LAV-07	Reserva Equipada 1Ø						
	LAV-08	Reserva Equipada 1Ø						
	LAV-09	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):				41.33	0.70	28.93	380	

CN-01		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CT-01	D-220	1	6.00	6.00	0.70	4.20	380
		Espacio de Reserva 3Ø						
	CT-02	Circuito de Tomacorrientes 1	7	0.04	0.25	0.90	0.22	220
	CT-03	Circuito de Tomacorrientes 2	10	0.04	0.35	0.90	0.32	220
	CT-04	Circuito de Tomacorrientes 3	8	0.04	0.28	0.90	0.26	220
	CT-05	Circuito de Tomacorrientes 4	8	0.04	0.29	0.90	0.26	220
	CT-06	Circuito de Tomacorrientes 5	8	0.04	0.29	0.90	0.26	220
	CT-07	Circuito de Tomacorrientes 6	9	0.04	0.33	0.90	0.30	220
	CT-08	Circuito de Tomacorrientes 7	8	0.04	0.29	0.90	0.26	220
	CT-09	Circuito de Tomacorrientes 8	10	0.04	0.37	0.90	0.33	220
Subtablero de Distribucion	CT-10	Circuito de Tomacorrientes 9	6	0.04	0.22	0.90	0.20	220
Normal "STDN-1.1"	CT-11	Circuito de Tomacorrientes 10	6	0.04	0.23	0.90	0.20	220
	CT-12	D-212	1	2.50	2.50	0.70	1.75	220
	CT-13	D-301	1	2.20	2.20	0.70	1.54	220
	CT-14	D212	1	2.50	2.50	0.70	1.75	220
	CT-15	D-301	1	2.20	2.20	0.70	1.54	220
	CT-16	D-83	1	2.50	2.50	0.70	1.75	220
	CT-17	D-83	1	2.50	2.50	0.70	1.75	220
		Reserva Equipada 1Ø						
		Reserva Equipada 1Ø						
		Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):				23.30	0.72	16.89	380	

GE-07		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CE-01	Reserva Equipada 3Ø						
-		Espacio de Reserva 3Ø						
	CE-02	Circuito de Alumbrado 1	4	0.04	0.14	0.90	0.13	220
	CE-03	Circuito de Alumbrado 2	5	0.04	0.18	0.90	0.16	220
	CE-04	Circuito de Alumbrado Exterior	4	0.40	1.60	1.00	1.60	220
	CE-05	Tomacorrientes	5	0.13	0.63	0.70	0.44	220
	CE-06	Equipo de Climatizacion	1	0.10	0.10	0.70	0.07	220
	CE-07	Extractor (Subestacion MT)	1	0.10	0.10	0.70	0.07	220
	CE-08	Extractor (Cto. Bombas de Agua)	1	0.10	0.10	0.70	0.07	220
Tablero de Distribucion	CE-09	Extractor (Cto. Bombas ACI)	1	0.10	0.10	0.70	0.07	220
SIDCF	CE-10	Extractor EC-01 (UMA-05)	1	0.10	0.10	0.70	0.07	220
	CE-11	Cargador de Baterias PS100	1	0.15	0.15	0.70	0.11	220
	CE-12	Reserva Equipada 1Ø						
	CE-13	Reserva Equipada 1Ø						
	CE-14	Reserva Equipada 1Ø						
	CE-15	Unidad Condensadora	1	0.05	0.05	0.70	0.04	220
	CE-16	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):	JB TOTAL (kW):				3.24	0.87	2.81	380

GE-08		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CB-01	TABLERO DE PROTECCION DE AGUA BLANDA "TPC-BAB"	1	8.95	8.95	0.50	4.48	380
	CB-02	TABLERO DE PROTECCION DE AGUA FRIA "TPC-BAF"	1	13.34	13.34	0.75	10.01	380
	CB-03	TABLERO DE PROTECCION DE BOMBA TRASVASE "TPC-BT"	1	0.75	0.75	0.50	0.38	380
	CB-04	TABLERO DE PROTECCION DE RECIRCULACION DE AGUA FRIA "TPC-BRAF"	1	0.40	0.40	0.50	0.20	380
Tablero de Emergencia de	CB-05	Reserva Equipada 3Ø						
		Espacio de Reserva 3Ø						
Fuerza para Bombas "TE-FB"	CB-06	Tomacorriente Dosificador de Cloro	1	0.25	0.25	0.85	0.21	220
	CB-07	Reserva Equipada 1Ø						
	CB-08	Reserva Equipada 1Ø						
	CB-09	Reserva Equipada 1Ø						
-		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):				23.69	0.64	15.27	380	

GE-02		DESCRIPCIÓN	C.I.	F.D.	M.D. (kW)	v
	FE-01	UI-CPD02	3.02	0.80	2.42	380
	FE-02	UI-CPD01	3.02	0.80	2.42	380
	FE-03	Subtablero de Distribucion de Fuerza "TFN-01"	2.10	0.85	1.79	380
	FE-04	Subtablero de Distribucion de Fuerza "STFN-02"	1.55	0.85	1.32	380
	FE-05	Subtablero de Distribucion de Fuerza de Emergencia "STFE-02"	0.35	0.85	0.30	380
	FE-06	Subtablero de Distribucion de Fuerza de Emergencia "STFE-03"	29.55	0.99	29.29	380
	FE-07	Subtablero de Distribucion de Fuerza "SSTFE-03"	31.42	0.85	26.71	380
Tablas da Evena Essenaria		Reserva Equipada 3Ø				
Airo Acondicionado "TEE	FE-08	Split	0.10	0.85	0.09	220
HVAC"	FE-09	Split	0.10	0.85	0.09	220
	FE-10	Reserva Equipada 1Ø				
	FE-11	Reserva Equipada 1Ø				
	FE-12	Reserva Equipada 1Ø				
	FE-13	Reserva Equipada 1Ø				
	FE-14	Reserva Equipada 1Ø				
	FE-15	Reserva Equipada 1Ø				
-		Espacio de Reserva 1Ø				
		Espacio de Reserva 1Ø				
SUB TOTAL (kW):			71.21	0.90	64.40	380

FE-03		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	FN-01	Split	2	0.05	0.10	0.85	0.09	220
	FN-02	Split	3	0.05	0.15	0.85	0.13	220
	FN-03	Split	2	0.05	0.10	0.85	0.09	220
	FN-04	Split	2	0.05	0.10	0.85	0.09	220
	FN-05	Split	2	0.05	0.10	0.85	0.09	220
	FN-06	Split	3	0.05	0.15	0.85	0.13	220
	FN-07	Split	3	0.05	0.15	0.85	0.13	220
	FN-08	Split	3	0.05	0.15	0.85	0.13	220
	FN-09	Split	2	0.05	0.10	0.85	0.09	220
	FN-10	Split	2	0.05	0.10	0.85	0.09	220
	FN-11	Split	2	0.05	0.10	0.85	0.09	220
	FN-12	Split	3	0.05	0.15	0.85	0.13	220
Subtablero de Distribucion de	FN-13	Split	3	0.05	0.15	0.85	0.13	220
Fuerza "TFN-01"	FN-14	Split	1	0.05	0.05	0.85	0.04	220
	FN-15	Split	2	0.05	0.10	0.85	0.09	220
	FN-16	Split	3	0.05	0.15	0.85	0.13	220
	FN-17	Split	2	0.05	0.10	0.85	0.09	220
	FN-18	Split	2	0.05	0.10	0.85	0.09	220
	FN-19	VAV-TUBERCULOSIS 1	1					
	FN-20	VAV-TUBERCULOSIS 2	1					
	FN-21	VAV-TUBERCULOSIS 3	1					
	FN-22	VAV-TUBERCULOSIS 4	1					
	FN-23	VAV-TUBERCULOSIS 5	1					
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
UB TOTAL (kW):					2.10	0.85	1.79	380

FN-01		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	FNN-01	UE-07	1	13.96	13.96	1.00	13.96	380
	FNN-02	UE-07.1	1	9.30	9.30	1.00	9.30	380
	FNN-03	UE-06	1	12.65	12.65	1.00	12.65	380
	FNN-04	UE-02	1	11.52	11.52	1.00	11.52	380
SSTEN 02	FNN-05	UE-03	1	5.98	5.98	1.00	5.98	380
33111-03	FNN-06	UE-04	1	7.62	7.62	1.00	7.62	380
	FNN-07	Reserva Equipada 3Ø						
	FNN-08	Reserva Equipada 3Ø						
		Espacio de Reserva 3Ø						
		Espacio de Reserva 3Ø						
SUB TOTAL (kW):				61.03	1.00	61.03	380	

CN-03		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CE-01	Circuito de Alumbrado 1	1	0.20	0.20	1.00	0.20	220
	CE-02	Circuito de Alumbrado Exterior (Luces de Guardia)	1	0.20	0.20	1.00	0.20	220
	CE-03	Circuito de Tomacorrientes	1	0.13	0.13	0.70	0.09	220
	CE-04	Unidad Condensadora	1	2.00	2.00	0.70	1.40	220
Subtablers "STDC 01"	CE-05	Reserva Equipada 1Ø						
Sublablero STDC-01	CE-06	Reserva Equipada 1Ø						
	CE-07	Reserva Equipada 1Ø						
	CE-08	Reserva Equipada 1Ø						
	CE-09	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):				2.53	0.75	1.89	380	

GE-04		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CE-01	Circuito de Alumbrado 1	7	0.04	0.25	0.90	0.22	220
	CE-02	Circuito de Alumbrado 2	6	0.04	0.21	0.90	0.19	220
	CE-03	Circuito de Alumbrado 3	8	0.04	0.28	0.90	0.25	220
	CE-04	Circuito de Alumbrado 4	8	0.04	0.28	0.90	0.25	220
	CE-05	Circuito de Alumbrado 5	9	0.04	0.32	0.90	0.28	220
	CE-06	Circuito de Alumbrado 6	10	0.04	0.35	0.90	0.32	220
	CE-07	Circuito de Alumbrado 7	11	0.04	0.39	0.90	0.35	220
	CE-08	Circuito de Alumbrado 8	10	0.04	0.35	0.90	0.32	220
	CE-09	Circuito de Alumbrado 9	6	0.04	0.21	0.90	0.19	220
	CE-10	Circuito de Alumbrado 10	6	0.04	0.21	0.90	0.19	220
Subtablero de Distribucion de	CE-11	Circuito de Alumbrado 11	7	0.04	0.25	0.90	0.22	220
Emergencia "STDE-02"	CE-12	Circuito de Alumbrado 12	5	0.04	0.18	0.90	0.16	220
	CE-13	Circuito de Alumbrado 13	5	0.04	0.18	0.90	0.16	220
	CE-14	Circuito de Alumbrado de Cabecera D-226	2	0.05	0.10	0.70	0.07	220
	CE-15	Circuito de Alumbrado de Cabecera D-226	2	0.05	0.10	0.70	0.07	220
	CE-16	Circuito de Alumbrado de Cabecera D-226	2	0.05	0.10	0.70	0.07	220
	CE-17	D-288	1	1.50	1.50	0.70	1.05	220
	CE-18	Salida Letrero Luminoso de "Emergencia"	1	2.00	2.00	0.70	1.40	220
	CE-19	Circuito de Tomacorriente	1	0.13	0.13	0.80	0.10	220
	CE-20	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
UB TOTAL (kW):					7.36	0.79	5.85	380

GN-03		DESCRIPCIÓN	C.I.	F.D.	M.D. (kW)	v
	CN-01	D-217	10.00	0.70	7.00	220
	CN-02	D-220	6.00	0.70	4.20	380
	CN-03	E-208	25.00	0.70	17.50	380
	CN-04	E-130	12.00	0.70	8.40	380
	CN-05	Circuito de Alumbrado 1	0.28	0.90	0.25	220
	CN-06	Circuito de Alumbrado 2	0.32	0.90	0.28	220
	CN-07	Circuito de Alumbrado 3	0.39	0.90	0.35	220
	CN-08	Circuito de Alumbrado 4	0.32	0.90	0.28	220
	CN-09	Circuito de Alumbrado 5	0.35	0.90	0.32	220
	CN-10	Circuito de Alumbrado 6	0.35	0.90	0.32	220
	CN-11	Circuito de Alumbrado 7	0.25	0.90	0.22	220
	CN-12	Circuito de Alumbrado 8	0.21	0.90	0.19	220
	CN-13	Circuito de Alumbrado 9	0.32	0.90	0.28	220
	CN-14	Circuito de Alumbrado 10	0.35	0.90	0.32	220
	CN-15	Circuito de Alumbrado 11	0.39	0.90	0.35	220
	CN-16	Circuitos de Tomacorrientes 1	1.13	0.7	0.79	220
	CN-17	Circuitos de Tomacorrientes 2	1.25	0.7	0.88	220
	CN-18	Circuitos de Tomacorrientes 3	1.00	0.7	0.70	220
	CN-19	Circuitos de Tomacorrientes 4	1.38	0.7	0.96	220
	CN-20	Circuitos de Tomacorrientes 5	0.88	0.7	0.61	220
	CN-21	Circuitos de Tomacorrientes 6	1.38	0.7	0.96	220
	CN-22	Circuitos de Tomacorrientes 7	1.00	0.7	0.70	220
Subtablero de Distribucion	CN-23	D-301	2.20	0.70	1.54	220
Normal "STDN-02"	CN-24	D-212	2.50	0.70	1.75	220
	CN-25	Circuitos de Tomacorrientes 8	1.38	0.70	0.96	220
	CN-26	Circuitos de Tomacorrientes 9	0.75	0.70	0.53	220
	CN-27	Circuitos de Tomacorrientes 10	1.25	0.70	0.88	220
	CN-28	Circuitos de Tomacorrientes 11	1.25	0.70	0.88	220
	CN-29	D-219	2.50	0.70	1.75	220
	CN-30	D-219	2.50	0.70	1.75	220
	CN-31	E-83	2.50	0.70	1.75	220
	CN-32	E-83	2.50	0.70	1.75	220
	CN-33	E-83	2.50	0.70	1.75	220
	CN-34	E-83	2.50	0.70	1.75	220
	CN-35	E-83	2.50	0.70	1.75	220
	CN-36	Chisoero de Cocina	0.20	0.70	0.14	220
	CN-37	E-86	1.30	0.70	0.91	220
	CN-38	E-86	1.30	0.70	0.91	220
	CN-39	1 Secador de manos	1.65	0.70	1.16	220
	CN-40	Reserva Equipada 1Ø				
	CN-41	Reserva Equipada 1Ø				
		Espacio de Reserva 1Ø				
		Espacio de Reserva 1Ø				
		Espacio de Reserva 1Ø				
		Espacio de Reserva 1Ø				
		Espacio de Reserva 1Ø				
SUB TOTAL (kW):			95.78	0.71	67.74	380

CN-01		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	OD-01	Circuitos de Tomacorrientes	6	0.13	0.75	0.75	0.56	220
	OD-02	D-41	1	0.50	0.50	0.75	0.38	220
	OD-03	D-212	1	2.50	2.50	0.75	1.88	220
	OD-04	Compresor de Aire	1	1.50	1.50	0.75	1.13	220
Subtablara "STDO 02"	OD-05	Reserva Equipada 1Ø						
Sublablero STDO-05	OD-06	Reserva Equipada 1Ø						
	OD-07	Reserva Equipada 1Ø						
	OD-08	Reserva Equipada 1Ø						
	OD-09	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):				5.25	0.75	3.94	380	

GE-05		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CE-01	Subtablero de Distribucion de Laboratorio "STDLAB"	1	45.05	45.05	0.85	38.29	220
		Espacio de Reserva 3Ø						
	CE-02	Circuito de Alumbrado 1	9	0.04	0.32	0.90	0.28	220
	CE-03	Circuito de Alumbrado 2	11	0.04	0.39	0.90	0.35	220
	CE-04	Circuito de Alumbrado 3	8	0.04	0.28	0.90	0.25	220
	CE-05	Circuito de Alumbrado 4	8	0.04	0.28	0.90	0.25	220
	CE-06	Circuito de Alumbrado 5	10	0.04	0.35	0.90	0.32	220
	CE-07	Circuito de Alumbrado 6	10	0.04	0.35	0.90	0.32	220
	CE-08	Circuito de Alumbrado 7	10	0.04	0.35	0.90	0.32	220
	CE-09	Circuito de Alumbrado 8	12	0.04	0.42	0.90	0.38	220
	CE-10	Circuito de Alumbrado 9	11	0.04	0.39	0.90	0.35	220
	CE-11	Circuito de Alumbrado 10	9	0.04	0.32	0.90	0.28	220
Subtablero de Distribucion de	CE-12	Circuito de Alumbrado 11	10	0.04	0.35	0.90	0.32	220
Emergencia "STDE-03"	CE-13	Circuito de Alumbrado 12	11	0.04	0.39	0.90	0.35	220
	CE-14	Circuito de Alumbrado 13	12	0.04	0.42	0.90	0.38	220
	CE-15	Circuito de Alumbrado Panel de Cabecera D-225	3	0.05	0.15	0.90	0.14	220
	CE-16	Circuito de Alumbrado Panel de Cabecera D-225	5	0.05	0.25	0.90	0.23	220
	CE-17	Circuito de Tomacorriente 1	5	0.13	0.63	0.85	0.53	220
	CE-18	D-287	1	1.50	1.50	0.85	1.28	220
	CE-19	D-287	1	1.50	1.50	0.85	1.28	220
	CE-20	E-159	1	1.50	1.50	0.85	1.28	220
	CE-21	Reserva Equipada 1Ø						
ľ	CE-22	Reserva Equipada 1Ø						
	CE-23	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
UB TOTAL (kW):					55.16	0.85	47.14	380

CE-01		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	LAB-01	E-130	1	12.00	12.00	0.85	10.20	380
	LAB-02	E-130	1	12.00	12.00	0.85	10.20	380
	LAB-03	Reserva Equipada 1Ø						
	LAB-04	D-352	1	2.80	2.80	0.85	2.38	220
	LAB-05	D-249	1	2.20	2.20	0.85	1.87	220
	LAB-06	D-376	1	2.00	2.00	0.85	1.70	220
	LAB-07	D-249	1	2.20	2.20	0.85	1.87	220
Subtablero de Distribucion de	LAB-08	D-301	1	2.80	2.80	0.85	2.38	220
Laboratorio "STDLAB"	LAB-09	D-352	1	2.80	2.80	0.85	2.38	220
	LAB-10	Circuito de Tomacorrientes	6	0.13	0.75	0.85	0.64	220
	LAB-11	D-369	1	2.50	2.50	0.85	2.13	220
	LAB-12	E-81	1	3.00	3.00	0.85	2.55	220
	LAB-13	Reserva Equipada 1Ø						
	LAB-14	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
UB TOTAL (kW):				45.05	0.85	38.29	380	

GN-04		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	CN-01	Subtablero "STDO-03"	1	5.25	5.25	0.85	4.46	380
		Espacio de Reserva 3Ø						
	CN-02	D-220	1	6.00	6.00	0.85	5.10	220
		Espacio de Reserva 3Ø						
	CN-03	Circuito de Alumbrado 1	11	0.04	0.39	0.90	0.35	220
	CN-04	Circuito de Alumbrado 2	11	0.04	0.39	0.90	0.35	220
	CN-05	Circuito de Alumbrado 3	10	0.04	0.35	0.90	0.32	220
	CN-06	Circuito de Alumbrado 4	12	0.04	0.42	0.90	0.38	220
	CN-07	Circuito de Alumbrado 5	7	0.04	0.25	0.90	0.22	220
	CN-08	Circuito de Alumbrado 6	8	0.04	0.28	0.90	0.25	220
	CN-09	Circuito de Alumbrado 7	13	0.04	0.46	0.90	0.41	220
	CN-10	Circuito de Alumbrado 8	4	0.04	0.14	0.90	0.13	220
	CN-11	Circuito de Alumbrado 9	9	0.04	0.32	0.90	0.28	220
	CN-12	Circuito de Alumbrado 10	8	0.04	0.28	0.90	0.25	220
	CN-13	Circuito de Alumbrado 11	4	0.04	0.14	0.90	0.13	220
	CN-14	Circuito de Alumbrado 12	8	0.04	0.28	0.9	0.24	220
Subtablero de Distribucion	CN-15	Circuito de Tomacorriente 1	12	0.13	1.50	0.9	1.28	220
Normal "STDN-03"	CN-16	Circuito de Tomacorriente 2	9	0.13	1.13	0.9	0.96	220
	CN-17	Circuito de Tomacorriente 3	13	0.13	1.63	0.9	1.38	220
	CN-18	Circuito de Tomacorriente 4	10	0.13	1.25	0.9	1.06	220
	CN-19	Circuito de Tomacorriente 5	10	0.13	1.25	0.9	1.06	220
	CN-20	Circuito de Tomacorriente 6	9	0.13	1.13	0.9	0.96	220
	CN-21	Circuito de Alumbrado	7	0.13	0.88	0.9	0.74	380
	CN-22	Circuito de Tomacorriente 7	12	0.13	1.50	0.9	1.28	220
	CN-23	E-83	1	2.50	2.50	0.9	2.13	220
	CN-24	E-83	1	2.50	2.50	0.9	2.13	220
	CN-25	Circuito de Tomacorriente 8	6	0.13	0.75	0.9	0.64	220
	CN-26	Circuito de Tomacorriente 9	13	0.13	1.63	0.9	1.38	220
	CN-27	Circuito de Tomacorriente 10	5	0.13	0.63	0.9	0.53	220
	CN-28	Reserva Equipada 1Ø						
	CN-29	Reserva Equipada 1Ø						
	CN-30	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):	B TOTAL (kW):					0.86	28.37	380

GE-01		DESCRIPCIÓN	C.I.	F.D.	M.D. (kW)	v
	OX-01	Central de Aire Medicinal	16.25	0.60	9.75	380
	OX-02	Central de Vacio	11.85	0.80	9.48	380
	OX-03	Reserva Equipada 3Ø				
	OX-04	Reserva Equipada 3Ø				
	OX-05	Compresor de Llenado	4.65	0.85	3.95	380
	OX-06	Reserva Equipada 3Ø				
	OX-07	Reserva Equipada 3Ø				
		Espacio de Reserva 3Ø				
	OX-08	Tanque para Aire 200 GLN 2A	3.50	0.85	2.98	220
	OX-09	Reserva Equipada 1Ø				
	OX-10	Reserva Equipada 1Ø				
	OX-11	Tanque para Aire 200 GLN 2B	3.50	0.85	2.98	220
Tablero de Fuerza Oxigeno	OX-12	Secador de Aire 3A	0.75	0.85	0.64	220
Medicinal "TFE-COM"	OX-13	Secador de Aire 3B	0.75	0.85	0.64	220
	OX-14	Reserva Equipada 1Ø				
	OX-15	Concentrador de Oxigeno 4A	0.60	0.85	0.51	220
	OX-16	Concentrador de Oxigeno 4B	0.60	0.85	0.51	220
	OX-17	Reserva Equipada 1Ø				
	OX-18	Reserva Equipada 1Ø				
	OX-19	Reserva Equipada 1Ø				
	OX-20	Reserva Equipada 1Ø				
	OX-21	Reserva Equipada 1Ø				
		Espacio de Reserva 1Ø				
		Espacio de Reserva 1Ø				
	OX-22	Compresor Scroll 1A	7.92	0.85	6.73	380
	OX-23	Compresor Scroll 1B	7.92	0.85	6.73	380
SUB TOTAL (kW):			42.45	0.74	31.43	380

GE-12		DESC	RIPCIÓN	C.I.	F.D.	M.D. (kW)	v
	DC-	GDP-01 (GABINETE DE COMUNICACIONES	01)	12.00	0.80	9.60	220
	DC-0	GDP-02 (GABINETE DE COMUNICACIONES	02A)	12.00	0.80	9.60	220
	DC-	GDP-03 (GABINETE DE COMUNICACIONES	03)	12.00	0.80	9.60	220
	DC-0	GDP-02 (GABINETE DE COMUNICACIONES	02B)				
l ablero de Emergencia Cua	DC-	Reserva Equipada 1Ø					
(UPS 50KVA)	DC-	Reserva Equipada 1Ø					
	DC-	Agente Limpio		1.00	0.80	0.80	220
	DC-	Reserva Equipada 1Ø					
	DC-	Camara PTZ		1.00	0.80	0.80	220
		Espacio de Reserva 1Ø					
SUB TOTAL (kW):				38.00	0.80	30.40	380
		Factor	le Potencia			0.90	
Potencia		tencia	1		33.78		
Potencia de :Transformador de Aislamiento		ormador de Aislamiento	1		45KVA		
Potencia de :UPS Comercial		:UPS Comercial]		40KVA		
				-			
					.	_ M.	D. I

GE-15		DESCRIPCIÓN		P.U.	C.I.	F.D.	(kW)	v
	CSSP-01	Tomacorriente Estabilizado	1	1.00	1.00	0.80	0.80	220
	CSSP-02	Lampara Quirugica	1	0.20	0.20	0.80	0.16	220
	CSSP-03	Mesa de Partos (Lampara Cialitica)	1	0.50	0.50	0.80	0.40	220
	CSSP-04	Tomacorriente Estabilizado Toma Mural D-226	1	0.20	0.20	0.80	0.16	220
Subtablero Sala de Partos Bypass "STDSPES"	CSSP-05	Tomacorriente Estabilizado Toma Mural D-226	1	1.00	1.00	0.80	0.80	220
	CSSP-06	Iluminacion Panel Mural	1	1.00	1.00	0.80	0.80	220
	CSSP-07	Reserva Equipada 1Ø						
	CSSP-08	Reserva Equipada 1Ø						
	CSSP-09	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):				3.90	0.80	3.12	220	
Potencia de :Transformador de Aislamiento -UPS						3.47		
		Factor de Coreccion para h = 2700 msnm; entonces tenemos que: Fc = 1.21	4.19					
Γ		Potencia de : Transformador de Aislamiento -UPS	10KVA					
			-					

GE-16		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
Subtablero Sala de Partos "STDSPE"	CSO-01	Iluminacion Sala de Operaciones	5	0.80	4.02	1.00	4.02	220
	CSO-02	Tomacorrientes Sala de Partos	9	0.20	1.80	0.80	1.44	220
	CSO-03	Reserva Equipada 1Ø						
	CSO-04	Reserva Equipada 1Ø						
	CSO-05	Reserva Equipada 1Ø						
	CSO-06	Reserva Equipada 1Ø						
	CSO-07	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):					5.82	0.94	5.46	380

GN-05		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	AS-01	Tablero de Proteccion y Control TPC-ASC1	1	6.50	6.50	1.00	6.50	220
		Espacio de Reserva 3Ø						
	AS-02	Reserva Equipada 1Ø						
Tablero de Fuerza Ascensor "TF-ASC1"	AS-03	Reserva Equipada 1Ø						
	AS-04	Reserva Equipada 1Ø						
	AS-05	Reserva Equipada 1Ø						
	AS-06	Reserva Equipada 1Ø						
	AS-07	Reserva Equipada 1Ø						
		Espacio de Reserva 1Ø						
		Espacio de Reserva 1Ø						
SUB TOTAL (kW):					6.50	1.00	6.50	380

M.D. DESCRIPCIÓN v GE-10 P.U. F.D. C.I. (kW) AS-01 Tablero de Proteccion y Control TPC-ASC2 1 6.50 6.50 1.00 6.50 220 Espacio de Reserva 3Ø AS-02 Reserva Equipada 1Ø AS-03 Reserva Equipada 1Ø AS-04 Reserva Equipada 1Ø Tablero de Fuerza Ascensor "TF-ASC2" AS-05 Reserva Equipada 1Ø Reserva Equipada 1Ø AS-06 AS-07 Reserva Equipada 1Ø Espacio de Reserva 1Ø Espacio de Reserva 1Ø SUB TOTAL (kW): 6.50 1.00 6.50 380

GE-12		DESCRIPCIÓN		P.U.	C.I.	F.D.	M.D. (kW)	v
	GES-01	Subtablero de Distribucion de Energia Estabilizada "STDES-01"	1	31.15	31.15	0.70	21.81	380
	GES-02	Subtablero de Distribucion de Energia Estabilizada "STDES-02"	1	25.48	25.48	0.70	17.83	380
	GES-03	Subtablero de Distribucion de Energia Estabilizada "STDES-03"	1	27.75	27.75	0.67	18.58	380
Tablero General de Energia Estabilizada "TG-EST"	GES-04	Reserva Equipada 3Ø						
		Control Monitor de Temperatura						
	GES-05	Control Medidor PM5560	1	1.56	1.56	0.90	1.40	380
		Resistencia de Calefaccion						
		Espacio de Reserva 3Ø						
		Espacio de Reserva 3Ø						
		Espacio de Reserva 3Ø						
SUB TOTAL (kW):					85.94	0.69	59.62	380
Factor de Potencia					0.90			
Potencia			KVA			66.24		
		Potencia de Transformador de Aislamiento		KVA			80.00	

GE-11		DESCRIPCIÓN	C.I.	F.D.	M.D. (kW)	v
	FC-01	Tablero Centralizado de Control Alternadores de Recirculacion 380V	35.63	0.50	17.82	380
	FC-02	Arrancador directo FCP Colectores 1.5HP 380V 60Hz 3Ø	12.68	0.80	10.14	380
	FC-03	Reserva Equipada 3Ø				
	FC-04	Reserva Equipada 3Ø				
	FC-05	Reserva Equipada 3Ø				
	FC-06	Espacio de Reserva 3Ø				
Tablero de Fuerza Calderas	FC-07	Espacio de Reserva 3Ø				
"TFC"	FC-08	Espacio de Reserva 3Ø				
	FC-09	Flujómetro Colect. Solares	0.50	1.00	0.50	220
	FC-10	Reserva Equipada 1Ø				
	FC-11	Reserva Equipada 1Ø				
	FC-12	Reserva Equipada 1Ø				
		Espacio de Reserva				
		Espacio de Reserva				
SUB TOTAL (kW):			48.81	0.58	28.46	380

Cargas térmicas para sistemas de refrigeración

	ANTECAMARA
5 INICIALES	
dad Relativa C F	70%
dad Relativa c.r.	70%
ratura Bulbo Seco	24.0 °C
eratura de la C.F.	10.0 °C
VIEN DE CÁMARA	
AREA Ext. Piso=	9.69 m2
ALTURA=	2.60 m
Perímetro=	14.00 m
Area Ext. Total=	55.78 m2
vol. Ext. Total=	23.20 1113
CALCULO DE CARGAS	$a = A \times U \times \Delta T \times 24$ $U = \frac{k}{2}$
1 Por Paredes, Techo y Piso	e
k= e	0.1 m Prod. Frescos
U=	0.18 Kcal/h-m2-°C
q1=	3373.70 Kcal/dia
2 - Por radiación Solar	$a_{-} = 0.86 \times K \times S \times (T - T) \times 24$
	42 0000 million (1/e - 1/2 - 4
q2=	0.00 Kcal/día (No aplica) 70
3 Por Cambios de Aire	$q_{3} = V \times n \times \Delta h \times 24$ $n = \frac{1}{24 \times \sqrt{V}}$
V=	25.20 m3
Ah=	9.40 Kcal/m3 TABLA I
q3=	3302.91 Kcal/día
4 Por Producto	$q_4 = \frac{M}{T} \left(C e_A \Delta T_A + C_L + C e_D \Delta T_D \right) \times 24$
M=	0 kg/dia
CeA	O Kcal/Kg°C TABLA II
Cep	0 Kcal/Kg°C TABLA II
$\Delta T_A =$	0.0 °C
$\Delta T_D =$	0.0 °C
C _L =	O Kcal/Kg TABLA II
Q4=	0.00 Kcal/dia (No aplica)
5 Cargas Diversas	
a) Por Personas	$q_{5a} = N \times F_{p} \times 24$
N=	4 personas
FP=	181.44 Kcal/h TABLA III
q5a=	1/410.24 KCal/Gla
b) Por Iluminación	$q_{5b} = 0.86 \times P \times Nl \times 24$
Factor=	0.86 Kcal/w.h
NI=	2 luminarias
P= q5b=	29 w 1197.12 Kcal/día
c) Por Respiración	$q_{c} = M \times C_{Page} \times 24$
M=	0 kg (No aplica)
Cresp=	0 KCal/h.kg TABLA IV
=dcp	
d) Por Envases	$q_{sd} = m_{\ell} \times C_{\ell} \times (T_{\ell} - T_{\ell}) \times \frac{2}{t}$
q5d=	0.00 Kcal/día (No aplica)
e) Por Motores	21
q5e=	932.40 Kcal/día
q TOTAL=	30158.02 Kcal/día
CAB colo	1507.90 Kcal/b

CAP cal= 0.499 TON Selección= 0.6 TON

INTERPOLACION

Entalpia del aire interno				
X				
т	10.00			
hi	7.10			

Entalpia del aire externo						
	Xi	X	Xf			
т	22.5	24.0 °C	25			
he	15.30	16.50	17.30			

PRODUCTOS LACTEOS

DATOS INICIALES

Humedad Relativa C.F.	80%
Humedad Relativa ambiente	70%
Temperatura Bulbo Seco	24.0 °C
Temperatura de la C.F.	5.0 °C

VOLUMEN DE CÁMARA

Γ

Γ

CAP cal=

CAP cal=

AREA Ext. Piso=	3.80	m2
ALTURA=	2.60	m
Perímetro=	7.90	m
Area Ext. Total=	28.13	m2
Vol. Ext. Total=	9.87	m3

q2=

V= n=

∆h=

q3=

M=

CÁLCULO DE CARGAS

3.- Por Cambios de Aire

4.- Por Producto

1.- Por Paredes, Techo y Piso

 $q_{1} = A \times U \times \Delta T \times 24$ 0.018 Kcal/h-m-*C Poliuretano k= 0.1 m 0.18 Kcal/h-m2-°C Prod. Frescos e U= q1= 2308.91 Kcal/día $q_2 = 0.86 \times K \times S \times (T_e - T_i) \times 24$ 2.- Por radiación Solar

9.87 m3

2550.64 Kcal/día

197.34 kg/dia

0.93 11.60 Kcal/m3

0.00 Kcal/día (No aplica)

 $q_3 = V \times n \times \Delta h \times 24$

TABLA I

 $q_4 = \frac{M}{T} \left(C e_A \Delta T_A + C_L + C e_D \Delta T_D \right) \times 24$

$$U = \frac{k}{e}$$

INTERPOLACION

70	Entalpia del aire interno				
n =		X			
$24 \times \sqrt{V}$	Т	5.00			
	hi	4.90			

Entalpia del aire externo				
	Xi	X	Xf	
т	22.5	24.0 °C	25	
he	15.30	16.50	17.30	

111-	131.34	ng/ ula	
CeA	0.7	Kcal/Kg*C	TABLA II
Cep	0.38	Kcal/Kg*C	TABLA II
ΔT _A =	19.0 °C		
ΔT _D =	0.0 °C		
C _L =	70	Kcal/Kg	TABLA II
q4=	2624.62	Kcal/día	
5 Cargas Diversas			
a) Por Personas	q_{5a}	$= N \times F$	$_{p} \times 24$
N=	2	personas	
FP=	208.63	Kcal/h	TABLA III
q5a=	10014.44	Kcal/día	
b) Por Iluminación	<i>q</i> _{5b} =	$= 0.86 \times I$	$P \times Nl \times 24$
Factor=	0.86	Kcal/w.h	
NI=	1	luminarias	
P=	29	w	
q5b=	598.56	Kcal/día	
c) Por Respiración	q _{sc} =	$= M \times C_{R}$	_{e sp} × 24
M=	0	kg	
Cresp=	0.000	KCal/h.kg	
q5c=	0.00	Kcal/día	(No aplica)
d) Por Envases	q_{sd} =	$m_{\scriptscriptstyle E} \times C_{\scriptscriptstyle E} \times (2$	$(T_t - T_t) \times \frac{24}{t}$
q5d=	0.00	Kcal/día	(No aplica)
e) Por Motores			
q5e=	932.40	Kcal/día	
q TOTAL=	21884.01	Kcal/día	7
q TOTAL=	21884.01	Kcal/día	

1094.20 Kcal/h

TON

Selección=

TON

0.5

0.362

	VI.	V	Vf
	XI	X	X
T	4 44	E O °C	1/

181.44

PRODUCTOS FRUTAS Y VERDURAS

DATOS INICIALES

90%
70%
24.0 °C
5.0 °C

VOLUMEN DE CÁMARA

4.- Por Producto

AREA Ext. Piso=	3.74	m2
ALTURA=	2.60	m
Perímetro=	7.80	m
Area Ext. Total=	27.76	m2
Vol. Ext. Total=	9.72	m3

CÁLCULO DE CARGAS

1 Por Paredes, Techo y Piso	$q_{1} = A \times U \times$	$\Delta T \times 24$
k=	0.018 Kcal/h-m-°C	Poliuretano
e	0.1 m	Prod. Frescos
U=	0.18 Kcal/h-m2-°C	
q1=	2278.54 Kcal/día	
2 Por radiación Solar	$q_2 = 0.86 \times K \times 10^{-10}$	$Sx(T_e - T_i) x 24$
q2=	0.00 Kcal/día	(No aplica)
q2= 3 Por Cambios de Aire	0.00 Kcal/día $q_{3} = V \times n \times .$	(No aplica) $\Delta h \times 24$
q2= 3 Por Cambios de Aire V=	0.00 Kcal/día $q_{3} = V \times n \times .$ 9.72 m3	(No aplica) $\Delta h \times 24$
q2= 3,- Por Cambios de Aire V= n=	0.00 Kcal/día $q_{3} = V \times n \times .$ 9.72 m3 0.94	(No aplica) $\Delta h \times 24$
q2= 3 Por Cambios de Aire ν= n= Δh=	0.00 Kcal/día $q_{3} = V \times n \times .$ 9.72 m3 0.94 11.60 Kcal/m3	(No aplica) $\Delta h \times 24$ TABLA I

INTERPOLACION

 $U = \frac{k}{e}$

 $n = \frac{70}{24 \times \sqrt{V}}$

	X
Т	5.00

ntalpia del aire externo				
	Xi	x	Xf	
т	22.5	24.0 °C	25	
he	15.30	16.50	17.30	

5 Cargas Diversas	
a) Por Personas	

M= CeA

 Ce_D $\Delta T_A =$ $\Delta T_D =$

C1=

q4=

N=	2	personas	
FP=	208.63	Kcal/h	TABLA III
q5a=	10014.44	Kcal/día	

 $q_{5a} = N \times F_{p} \times 24$

194.48 kg/dia 0.7 Kcal/Kg*C 0.4 Kcal/Kg*C 19.0*C 0.0*C 70 Kcal/Kg 2586.58 Kcal/dia

 $q_4 = \frac{M}{T} \left(C e_A \Delta T_A + C_L + C e_D \Delta T_D \right) \times 24$

TABLA II

TABLA II

TABLA II

]

b) Por Iluminación	$q_{_{5b}}$ =	$= 0.86 \times P \times Nl \times 24$
Factor=	0.86	Kcal/w.h
NI=	1	luminarias

P=	29	W
q5b=	598.56	Kcal/día

M=	194.48 kg	(No aplica
Cresp=	0.201 KCal/h.k	g TABLA IV
q5c=	39.01 Kcal/día	

Por Envases		$q_{sd} = m_{E} \times C_{E} \times (T_{I})$	$-I \partial^{\times} \overline{t}$
	q5d=	0.00 Kcal/día	(No aplica)

e) Por Motores

Г

	CAP cal=	0.361	TON	Selección=	0.5	TON
	CAP cal=	1091.44	Kcal/h]		
2	q TOTAL=	21828.86	Kcal/día]		
-	q5e=	932.40	Kcal/día			

	Xi	X	Xf
т	4.44	5.0 °C	10
FP	211.68	208.63	181.44

Calor por res	piraciòn		
	Xi	X	
			_

	XI	X	Xt
т	4.44	5.0 °C	15.6
he	0.183	0.201	0.533

PRODUCTOS CONGELADOS

DATOS INICIALES

Humedad Relativa C.F.	90%
Humedad Relativa ambiente	70%
Temperatura Bulbo Seco	24.0 °C
Temperatura de la C.F.	-18.0 °C

VOLUMEN DE CÁMARA

AREA Ext. Piso=	3.80	m2	
ALTURA=	2.60	m	
Perímetro=	7.90	m	
Area Ext. Total=	28.13	m2	
Vol. Ext. Total=	9.87	m3	

CÁLCULO DE CARGAS

1 Por Paredes, Techo y Piso	$q_{1} = A \times U \times$	$\Delta T \times 24$
k=	0.018 Kcal/h-m-°C	Poliuretano
e	0.12 m	Prod. Congelados
U=	0.15 Kcal/h-m2-*C	
q1=	4253.26 Kcal/día	
2 Por radiación Solar	$q_2 = 0.86 x K x$	S x (T _e - T _i) x 24
q2=	0.00 Kcal/día	(No aplica)
3 Por Cambios de Aire	$q_3 = V \times n \times .$	$\Delta h \times 24$
V=	9.87 m3	
n=	0.93	
Δh=	22.70 Kcal/m3	TABLA I
q3=	4991.33 Kcal/día	
4 Por Producto	$q_4 = \frac{M}{T} \left(C e_A \Delta T_A + \right.$	$C_L + Ce_D \Delta T_D) \times 24$
M=	296.01 kg/dia	
CeA	0.92 Kcal/Kg*C	TABLA II
Cep	0.47 Kcal/Kg*C	TABLA II
$\Delta T_A =$	24.0 °C	

$$U = \frac{k}{e}$$

INTERPOLACION

	70
n =	$24 \times \sqrt{V}$

	Xi	X	Xf
т	-20	-18.00	-17.5
hi	-6.20	-5.40	-5.20

Entalpia del aire externo

	Xi	x	Xf
Т	22.5	24.0 °C	25
he	15.30	16.50	17.30

5.- Cargas Diversas a) Por Personas

a) Por Personas		$q_{5a} = N \times F$	$r_p \times 24$
	N=	2 personas	
	FP=	328.12 Kcal/h	TABLA III
	q5a=	15749.67 Kcal/día	

13.0 °C

50 Kcal/Kg

23145.02 Kcal/día

TABLA II

(No aplica)

b) Por Iluminación -

ΔT_D=

C_L=

q4=

Factor=	0.86	Kcal/w.h
NI=	1	luminarias
P=	29	w
q5b=	598.56	Kcal/día

Respiración		$q_{5c} = M \times C_{\text{Re sp}} \times 2$		
	M=	0 kg	(No apli	

0 kg 0 KCal/h.kg Cresp= TABLA IV q5c= 0.00 Kcal/día

	q5c=	0.00 Kcal/dia	
d) Por Envases		$q_{5d} = m_E \times C_E \times C_E$	$T_{i}-T_{i} > \frac{24}{t}$
	q5d=	0.00 Kcal/día	(No aplica)

q5d=

e) Por Motores

c) Por

- 932.40 Kcal/día q5e= q TOTAL= 57120.78 Kcal/día
- CAP cal= 2856.04 Kcal/h

CAP cal= 0.944 TON Selección= 1 TON

Calor liberado en Kcal/h por persona Xi X Xf ſ

	() 2 () () () () () () () () (1	
т	-17.8	-18.0 °C	-27.55
FP	327.60	328.12	352.86

PRODUCTOS CARNICOS

DATOS INICIALES

90%
70%
24.0 °C
-18.0 °C

VOLUMEN DE CÁMARA

AREA Ext. Piso=	3.80	m2
ALTURA=	2.60	m
Perímetro=	7.90	m
Area Ext. Total=	28.13	m2
Vol. Ext. Total=	9.87	m3

CÁLCULO DE CARGAS

1.- Por Paredes, Techo y Piso $q_{1} = A \times U \times \Delta T \times 24$

0.018 Kcal/h-m-°C Poliuretano k= 0.12 m 0.15 Kcal/h-m2-*C Prod. Congelados e U= 4253.26 Kcal/día q1= $q_2 = 0.86 \times K \times S \times (T_e - T_j) \times 24$ 2.- Por radiación Solar 0.00 Kcal/día (No aplica) q2= 3.- Por Cambios de Aire $q_{3} = V \times n \times \Delta h \times 24$ V= 9.87 m3 n= 0.93 22.70 Kcal/m3 TABLA I ∆h= 4991.33 Kcal/día q3= 1 $q_4 = \frac{M}{T} \left(C e_A \Delta T_A + C_L + C e_D \Delta T_D \right) \times 24$ 4.- Por Producto 296.01 kg/dia M= CeA 0.7 Kcal/Kg°C TABLA II Cep 0.4 Kcal/Kg*C TABLA II $\Delta T_A =$ 24.0 °C ∆T_D= 13.0 °C TABLA II C_L= 50 Kcal/Kg 21312.72 Kcal/día q4=

 $U = \frac{k}{e}$

INTERPOLACION

70	Entalpia del aire interno						
n =		Xi	x	Xf			
$24 \times \sqrt{V}$	т	-20	-18.00	-17.5			
	hi	-6.20	-5.40	-5.20			

Entalpia del aire externo					
	Xi	X	Xf		
т	22.5	24.0 °C	25		
he	15.30	16.50	17.30		

5.- Cargas Diversas

a) Por Personas

N=

$q_{{}_{5a}}$	=	N	×	F	$_{P}$ ×	24
2	pe	rso	nas			

FP= 328.12 Kcal/h TABLA III q5a= 15749.67 Kcal/dia $q_{5b} = 0.86 \times P \times Nl \times 24$

b) Por Iluminación

Factor=	0.86	Kcal/w.h
NI=	1	luminarias
P=	29	w
q5b=	598.56	Kcal/día

c) Por Respiración		$q_{sc} = M \times q_{sc}$	$C_{\text{Re }sp} \times 24$
	M=	0 kg	(No aplica)

	Cresp=	0 KCal/h.kg	TABLA IV
	q5c=	0.00 Kcal/día	
d) Por Envases		$q_{sd} = m_{E} \times C_{E}$	$\times (T_I - T_I) \times \frac{24}{t}$

q5d=	0.00 Kcal/día	(No aplica)
	are ready and	free elements

```
e) Por Motores
```

	q5e=	932.40	Kcal/día			
	q TOTAL=	55013.63	Kcal/día			
6	CAP cal=	2750.68	Kcal/h	2		
	CAP cal=	0.910	TON	Selección=	1	TON

Calor libera	do en Kcal/h po	r persona	
	Xi	X	Xf

		~	
т	-17.8	-18.0 °C	-27.55
FP	327.60	328.12	352.86

PRODUCTOS PESCADO

DATOS INICIALES

Humedad Relativa C.F.	90%
Humedad Relativa ambiente	70%
Temperatura Bulbo Seco	24.0 °C
Temperatura de la C.F.	-18.0 °C

VOLUMEN DE CÁMARA

AREA Ext. Piso=	3.89	m2
ALTURA=	2.60	m
Perímetro=	8.60	m
Area Ext. Total=	30.13	m2
Vol. Ext. Total=	10.10	m3

CÁLCULO DE CARGAS

1.- Por Paredes, Techo y Piso $q_{-1} = A \times U \times \Delta T \times 24$

k= 0.018 Kcal/h-m-°C Poliuretano 0.12 m 0.15 Kcal/h-m2-°C e Prod. Congelados U= 4555.66 Kcal/día q1=

2.- Por radiación Solar
$$q_2 = 0.86 \times K \times S \times (T_e - T_i) \times 24$$

13.0 °C 50 Kcal/Kg

21818.16 Kcal/día

 $q_{5a} = N \times F_{p} \times 24$

TABLA II

CL=

q4=

INTERPOLACION

 $U = \frac{k}{e}$

70	Entalpia del a	aire interno		
n =		Xi	X	Xf
$24 \times \sqrt{V}$	т	-20	-18.00	-17.5
	hi	-6.20	-5.40	-5.20

Entalpia del aire externo

		Xi	X	Xf
	т	22.5	24.0 °C	25
3	he	15.30	16.50	17.30

5.- Cargas Diversas a) Por Personas

N=	2	personas	
FP=	328.12	Kcal/h	TABLA III
q5a=	15749.67	Kcal/día	
b) Por Iluminación	<i>q</i> ₅₆ =	$= 0.86 \times I$	$P \times Nl \times 24$
Factor=	0.86	Kcal/w.h	
NI=	1	luminarias	
P=	29	W	
q5b=	598.56	Kcal/día	

c) Por Respiración $q_{5c} = M \times C_{\text{Re sp}} \times 24$ 0 kg (No aplica) 0 KCal/h.kg TABLA IV 0.00 Kcal/día M= Cresp= q5c= 0.00 Kcal/día

$q_{sd} = m_{E} \times C_{E} \times (T_{I} - T_{I}) \times \frac{24}{t}$ d) Por Envases

0.00 Kcal/día (No aplica) q5d=

e) Por Motores

q5e=	932.40	Kcal/día	_
q TOTAL=	56010.31	Kcal/día	
CAP cal=	2800.52	Kcal/h	

CAP cal= 0.926 TON Selección= 1 TON Т

Calor liberado en Kcal/h por persona Xi X Xf

т	-17.8	-18.0 °C	-27.55
FP	327.60	328.12	352.86

Información de temperaturas máximas y mínimas registradas en la estación meteorológica Saña – desde marzo hasta junio de 2024

Fuente: SENAMHI / DRD

* Datos sin control de calidad.

* El uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

* S/D = Sin Datos.

		Estación	: SIPAN		
Departamento :	LAMBAYEQUE	Provincia :	CHICLAYO	Distrito :	SAÑA
Latitud :	6°48'5.08''	Longitud :	79°36'.07''	Altitud :	87 msnm
Tipo :	CO - Meteorológica	Código :	106036		
	TEMPERAT	URA (°C)	HUMEDAD	PRECIPITACIÓN (mm/día)]
AÑO / MES / DÍA	MAX	MIN	RELATIVA (%)	TOTAL	
02/03/2024	34.9	23.3	65	0	
03/03/2024	36	24.5	62.6	0	
04/03/2024	35.4	23	62.6	0	
05/03/2024	34	21.5	68	0	
06/03/2024	35.7	22.8	63.4	0	
07/03/2024	36	22.3	66.4	0	
08/03/2024	35.7	23	68.1	0	
09/03/2024	35.8	23	64.5	0	1
10/03/2024	36.1	22.1	66	0	
11/03/2024	34.5	22	67.2	0	
12/03/2024	34	21.4	70.6	0	
13/03/2024	34.1	22.1	72.1	0	
14/03/2024	35.2	22.9	69	0.4	
15/03/2024	33.8	20.8	71.1	0	
16/03/2024	34.6	21.4	68.1	0	
17/03/2024	35.2	21.1	68.3	0	
18/03/2024	36.6	21.1	66.5	0	
19/03/2024	35.6	21.9	68.6	0	
20/03/2024	34.8	22.1	69.3	0	
21/03/2024	34.4	23.1	69.3	0	
22/03/2024	34.6	24.1	67.1	0	
23/03/2024	31.3	22.4	75.1	0	
24/03/2024	34.1	21.6	71.3	0	
25/03/2024	36.2	22.1	68	0	
26/03/2024	34	22.4	71.1	0	
27/03/2024	35	20	69.8	0]
28/03/2024	34.1	19.4	71.5	0]
29/03/2024	34.5	20.5	67	0]
30/03/2024	34.6	20.4	70.7	0]
31/03/2024	35.3	21.6	69.2	0]

Fuente: SENAMHI / DRD

* Datos sin control de calidad.

* El uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

* S/D = Sin Datos.

		Estació	on : SIPAN		
Departamento :	LAMBAYEQUE	Provincia :	CHICLAYO	Distrito :	SAÑA
Latitud :	6°48'5.08''	Longitud :	79°36'.07''	Altitud :	87 msnm.
Tipo :	CO - Meteorológica	Código :	106036		
	TEMPERAT	URA (°C)	HUMEDAD	PRECIPITACIÓN (mm/día)	
AÑO / MES / DÍA	MAX	MIN	RELATIVA (%)	TOTAL	
01/04/2024	33.4	21.9	71	0	
02/04/2024	34.1	22.3	68.2	0.3	
03/04/2024	34.7	21.5	67.4	0	
04/04/2024	33.6	21	66.6	0	
05/04/2024	34.2	22	70.9	0.5	
06/04/2024	34.7	20.7	69.4	0	
07/04/2024	32.9	20.3	71.9	0	
08/04/2024	34.3	22	67.1	0	
09/04/2024	33.2	22.2	71.7	0	
10/04/2024	35	20.7	66.6	0	
11/04/2024	35.2	22	68.5	0	
12/04/2024	34.4	21.2	70.3	0	
13/04/2024	33.3	22.1	68	0	
14/04/2024	33.9	22.2	70.8	0	
15/04/2024	33.2	21.3	69.3	0	
16/04/2024	32	20.2	75	0	
17/04/2024	32.2	19.1	75	0	
18/04/2024	33.9	20	69.8	0	
19/04/2024	34.3	20.5	66.3	0	
20/04/2024	34.2	22.3	70.9	0	
21/04/2024	33.2	22.7	65.9	0	
22/04/2024	33.9	21.2	68.7	0	
23/04/2024	34.3	21.6	69.6	0	
24/04/2024	32.7	20.1	69.9	0	
25/04/2024	34.2	21.5	65.9	0	
26/04/2024	34	20.7	66.2	0	
27/04/2024	34.3	21.1	68.1	0	
28/04/2024	33.7	21.2	67.6	0	
29/04/2024	33.9	20.6	67.8	0	
30/04/2024	34.2	20.4	68.7	0	

Fuente: SENAMHI / DRD

* Datos sin control de calidad.

* El uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

* S/D = Sin Datos.

		Estació	n : SIPAN		
Departamento :	LAMBAYEQUE	Provincia :	CHICLAYO	Distrito :	SAÑA
Latitud :	6°48'5.08''	Longitud :	79°36'.07''	Altitud :	87 msnm.
Tipo :	CO - Meteorológica	Código :	106036		_
	TEMPERAT	URA (°C)	HUMEDAD	PRECIPITACIÓN (mm/día)	
AÑO / MES / DÍA	MAX	MIN	RELATIVA (%)	TOTAL	
01/05/2024	33.5	19.5	71.9	0	
02/05/2024	30.3	19.1	74.8	3.6	
03/05/2024	30.4	19.8	77.2	0	
04/05/2024	29.8	19.6	74.2	0	
05/05/2024	31.4	19.7	71.4	0	
06/05/2024	30.3	17.6	72.5	0	
07/05/2024	25.2	18.5	79.7	0	
08/05/2024	30.2	17.4	74.5	0.4	
09/05/2024	31.6	17.8	73.7	0	
10/05/2024	30.2	18	75.8	0	
11/05/2024	30.6	17.9	76.7	0	
12/05/2024	30.7	18.2	71.8	0	
13/05/2024	30.4	18.5	72.1	0	
14/05/2024	31.8	17.2	74.7	0	
15/05/2024	31.3	18.3	72.5	0	
16/05/2024	29.8	19	75	0	
17/05/2024	30.2	18.9	75.8	0	
18/05/2024	30	17.7	76.9	0	
19/05/2024	28.8	18.5	77.7	0	
20/05/2024	28	17.1	78.5	0	
21/05/2024	28.7	16.4	75.3	0	
22/05/2024	29.9	15.7	74.6	0	
23/05/2024	29.7	16.3	76.2	0	
24/05/2024	28.9	17.3	76.2	0	
25/05/2024	29.1	16.6	78.3	0	
26/05/2024	28	17.5	79.1	0	
27/05/2024	29.3	15.6	73.8	0]
28/05/2024	29.6	17.5	73.4	0]
29/05/2024	29.3	16.4	S/D	0]
30/05/2024	27.9	16.7	77.4	0]
31/05/2024	28.8	15	79.2	0	

Fuente: SENAMHI / DRD

* Datos sin control de calidad.

* El uso de estos datos será de entera responsabilidad del usuario.

Leyenda:

* S/D = Sin Datos.

		Estaciór	n : SIPAN		
Departamento :	LAMBAYEQUE Provincia :		CHICLAYO	Distrito :	SAÑA
Latitud :	6°48'5.08"	8'5.08" Longitud :		Altitud :	87 msnm.
Tipo :	CO - Meteorológica	Código :	106036		
	TEMPERATURA (°C)		HUMEDAD	PRECIPITACIÓN (mm/día)	
AÑO / MES / DÍA	MAX	MIN	RELATIVA (%)	TOTAL	
01/06/2024	27.2	15.5	79.3	0	
02/06/2024	27.9	15	78	0	
03/06/2024	27.2	15.2	77.7	0	
04/06/2024	29.8	15	78	0	
05/06/2024	30	15.9	75.9	0	-
06/06/2024	29	16.7	75.9	0	
07/06/2024	28.4	16.6	79.5	0	
08/06/2024	S/D	16.3	S/D	S/D	1
					_

Turbina de vapor de alta eficiencia

La turbina de vapor es una especie de planta de energía de vapor rotativo. El vapor de alta temperatura y alta presión pasa a través de una boquilla fija.

🗗 🛛 in 🖓 🕓 🖂

💬 Envíeconsulta

Chatee ahora

Introducción del producto

Introducción a la turbina de vapor

La turbina de vapor es una especie de planta de energía de vapor rotativo. El vapor de alta temperatura y alta presión pasa a través de una boquilla fija para convertirse en flujo de aire acelerado y luego se inyecta en las cuchillas para girar el rotor equipado con filas de cuchillas mientras se trabaja externamente. La turbina de vapor es el equipo principal de la moderna planta de energía térmica, y también se utiliza en la industria metalúrgica, la industria química y los equipos de energía de los buques.

I. Turbina de vapor micro (tipo MST)

1.Características de rendimiento:

La turbina de vapor tipo MST es una turbina de vapor multietapa con un círculo de paso del impulsor de 380 mm de diámetro y una velocidad de husillo de 1500-3000-5600-6500 rpm. MST es una unidad de turbina generadora de 1KW-500KW que puede utilizar vapor nuevo o temperatura saturada, con una presión de entrada de vapor de sólo 0.15MPa y temperatura de entrada de vapor de temperatura saturada. Se utiliza principalmente en los campos de la utilización integral de la energía como cerámica, cemento, centrales eléctricas, industria química, fibra química, fabricación de papel, fabricación de azúcar, hierro y acero, tratamiento de residuos y centrales eléctricas de propiedad empresarial, cogeneración regional, centrales eléctricas de desechos urbanos, generación de energía de ciclo combinado de gas y vapor, etc. El costo de operación del equipo es menor y el beneficio económico es más notable. Con la realización del gran rejuvenecimiento de la nación china, el "sueño chino" y la cohesión de la fuerza de China, la empresa proporcionará de todo corazón productos de primera clase y servicios de alta calidad a los usuarios y hará las contribuciones debidas.

2.Características de la unidad:

2.1. Amplio rango de trabajo, presión de trabajo de 0.15Mpa presión de trabajo de 4.9Mpa.

2.2. De acuerdo con el tamaño de potencia y los requisitos del usuario, se diseñan estructuras de diseño de una y dos capas.

2.3. Esta serie de turbinas de vapor también se denominan pequeñas turbinas de vapor. Son fáciles de instalar y también se pueden instalar rápidamente. Después de que el equipo se transporta al sitio del usuario, la unidad puede ser puesta directamente en marcha.

2.4. Los modos de ajuste incluyen el ajuste de la válvula eléctrica y el ajuste electrohidráulico digital (DEH), que se puede utilizar selectivamente. Los dispositivos auxiliares incluyen ETS, TSI y DCS. Los dispositivos auxiliares de unidades pequeñas pueden ser ignorados.

2.5. La fuente de vapor puede ser vapor sobrecalentado o vapor saturado.

2.6. Las cuchillas del impulsor de la unidad están integradas, con alta seguridad, larga vida útil, sin daños y sin mantenimiento. El rotor debe utilizarse dentro del rango de funcionamiento.

2.7. La presión de entrada de vapor en la muestra es un parámetro estándar, y una turbina de vapor especial se puede diseñar de acuerdo con los parámetros reales del usuario.

3. Principales modelos de turbina de vapor micro:

				Entrada		6	Presión de		Dimensional table
Modelo	Capacidad (kw)	Velocidad (r/min)	Presión (Mpa)	Temp. (°C)	Flujo (t/h)	(kg/kw.h)	escape (Mpa)	Peso (t)	Dimensiones totales LxWxH(mm)
N0.05-1.27	30-50	1500	1.27	300	0.3	6.2	0.06	0.33	506x211x621
N0.07-1.27	50-70	1500	1.27	300	0.5	6.42	0.06	0.43	560x251x652
N0.03-1.27	1-30	1500	1.27	300	0.2	6.67	0.06	0.16	322x211x351
N0.1-1.27	70-100	1500	1.27	300	0.6	6.36	0.06	0.55	706x403x666
NO.15-1.27	150	1500	1.27	300	1	6.35	0.05	0.62	735x432x701
N0.2-1.27	200	1500	1.27	300	1.3	6.36	0.05	0.7	821x456x801
N0.3-1.27	300	1500	1.27	300	1.9	6.33	0.05	0.76	850x475x855
N0.4-1.27	400	1500	1.27	300	2.7	6.63	0.05	0.81	933x520x900
N0.5-1.27	500	1500	1.27	300	3.1	6.25	0.05	0.88	988x622x956
N.55-1.27	550	1500	1.27	300	3.7	6.74	0.05	0.9	988x635x975
N0.6-1.27	600	1500	1.27	300	4	6.7	0.05	0.95	1010x755x1000
B0.05-1.27/0.2	30-50	1500	1.27	300	0.8	26.2	0.2	0.31	506x211x621
B0.07-1.27/0.2	50-70	1500	1.27	300	1.3	26.42	0.2	0.43	506x251x652
B0.03-1.27/0.2	1-30	1500	1.27	300	0	26.67	0.2	0.16	322x211x351
B0.1-1.27/0.2	70-100	1500	1.27	300	1.8	26.36	0.2	0.55	706x403x666
B0.15-1.27/0.2	150	1500	1.27	300	4	26.35	0.2	0.62	735x432x701
B0.2-1.27/0.2	200	1500	1.27	300	5.3	26.36	0.2	0.7	821x456x801
B0.3-1.27/0.2	300	1500	1.27	300	7.9	26.33	0.2	0.76	850x475x855
B0.4-1.27/0.2	400	1500	1.27	300	11	26.63	0.2	0.81	933x520x900
B0.5-1.27/0.2	500	1500	1.27	300	13	26.25	0.2	0.88	988x622x956
B0.55-1.27/0.2	550	1500	1.27	300	15	26.74	0.2	0.9	988x635x975
B0.6-1.27/0.2	600	1500	1.27	300	16	26.7	0.2	0.95	1010x755x1000

Tablas de propiedades termodinámicas del agua

914 Tablas de propiedades, figuras y diagramas (unidades si)

TABLA A-4

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Volume	n específico	I	Energía in	terna		Entalní	a		Entropía	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			m ³ /kg kJ/kg				kJ/kg			kJ/kg · K			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Pres.	Lía.	Vapor	Lía.		Vapor	Lía.		Vapor	Lía.		Vapor
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Temp.,	sat.,	sat.,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,
0.01 0.6117 0.001000 206.00 0.000 2374.9 2374.9 0.001 2500.9 2500.9 0.0000 9.1556 9.1556 5 0.8725 0.001000 147.03 21.019 2360.8 2381.8 21.020 2487.1 2510.1 0.0768 8.9487 9.0249 10 1.2281 0.001001 77.885 62.980 2332.5 2395.5 62.982 2465.5 2537.4 0.2245 8.3913 2318.4 2402.3 8.915 2455.5 0.3672 8.1895 8.5567 30 4.2469 0.00103 43.340 104.83 2247.0 242.7 146.4 241.9 254.6 0.3668 8.1122 8.4520 35 5.5291 0.001006 15.251 18.843 2247.7 243.4 18.844 239.40 2582.4 0.6386 7.5247 7.8632 8.2556 45 9.553 0.001012 12.026 29.33 223.4 2442.7 20.34 238.0 2582.4 <th>T ℃</th> <th>P_{sat} kPa</th> <th>V_f</th> <th>Vg</th> <th>u_f</th> <th>U_{fg}</th> <th>u_g</th> <th>h_f</th> <th>h_{fg}</th> <th>hg</th> <th>Sf</th> <th>S_{fg}</th> <th>Sg</th>	T ℃	P _{sat} kPa	V _f	Vg	u _f	U _{fg}	u _g	h _f	h _{fg}	hg	Sf	S _{fg}	Sg
5 0.8725 0.001000 147.03 21.019 2381.8 21.020 2481.0 201.01 0.0763 8.9487 9.0249 10 1.2281 0.01000 167.32 42.020 2346.7 22.022 2477.2 251.92 0.151.8 8.4889 9.0249 2.3392 0.001003 43.340 10.483 2304.3 2409.1 104.83 2441.7 2545.5 0.3762 8.1895 8.5567 30 4.2469 0.001004 32.879 125.73 2202.2 2415.9 125.74 2429.8 255.6 0.3572 7.5828 8.5567 30 10.0100 15.251 188.43 2247.7 2436.1 188.44 239.0 2573.5 0.5724 7.6832 8.2556 50 12.322 0.001015 15.653 220.47 2442.7 203.4 230.24 271.9 2442.7 203.4 230.24 261.3 7.3748 1.0768 7.3710 8.3710 8.3710 8.3710 8.3717	0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
10 1.2281 0.001000 106.32 42.020 2346.6 2388.7 42.022 247.2 2519.2 0.1511 8.7888 8.8999 20 2.3392 0.001002 57.762 83.913 2318.4 2402.3 83.915 2455.5 2537.4 0.2955 8.3696 8.6661 25 3.1698 0.001004 32.879 125.73 2290.2 2415.9 125.74 2429.8 2555.6 0.3686 8.0152 8.4520 30 4.2469 0.001006 25.205 146.63 2276.0 2422.4 167.53 2406.0 257.25 0.5724 7.6832 8.2556 45 9.5953 0.001012 15.251 188.43 2247.7 249.41 167.53 240.60 257.24 0.6386 7.2218 7.8486 8.317 0.7680 7.2248 1.838 50 12.352 0.001017 7.6670 251.16 220.47 2219.1 2449.3 230.26 2631.3 0.7680 7.2218 7.9488 50 19.947 0.001017 7.6670 251.6 220.4	5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
15 1.7057 0.001001 77.885 62.980 2332.5 2392.5 2392.5 2392.5 2392.5 253.4 0.2245 8.3596 8.3696 20 2.3392 0.001003 43.340 104.83 2314.4 2402.3 83.915 245.35 253.4 0.2965 8.3696 8.6567 30 4.2469 0.001004 32.879 125.73 2202.2 2415.9 125.74 2249.8 255.6 0.3568 8.152 40 7.3851 0.001008 19.515 167.53 2261.9 242.7 146.4 2417.9 256.4 0.6386 7.5247 8.6353 50 12.352 0.001015 9.5639 230.24 2219.1 244.7 29.34 238.0 250.13 0.7088 7.310 8.7310 8.7470 8.989 50 19.947 0.00102 6.1355 7.510 293.4 217.8 246.2 272.1 2345.4 263.16 0.0565 6.5355 7.6111	10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
20 2.3392 0.001002 57.762 83.913 2318.4 2402.3 83.915 245.5 253.7.4 0.2965 8.3696 8.6661 25 3.1698 0.001004 43.340 104.83 2409.1 104.83 2415.9 125.74 2429.8 0.555 0.6368 8.0152 8.4520 35 5.6291 0.001006 15.51 167.53 2261.0 2429.4 167.53 2400.0 257.85 0.5724 7.8828 8.2556 45 9.5953 0.00101 15.251 188.43 2247.7 2436.1 188.44 239.0 257.4 0.6386 7.524 8.8313 7.0769 7.982 50 12.352 0.001017 7.6670 251.16 2204.7 2449.3 230.72 238.0 269.11 7.0680 7.8928 65 15.763 0.001026 6.1935 272.09 219.03 2462.4 27.12 2345.4 261.5 1.0897 7.7540 70 3.10020	15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
25 3.1698 0.001003 43.340 104.83 2304.3 2409.1 104.83 2441.7 2546.5 0.3672 8.1895 8.5567 30 4.2469 0.001004 32.879 125.73 2290.2 2415.9 125.74 2429.8 2564.6 0.5017 846.83517 40 7.3851 0.001001 15.251 186.43 2241.7 2436.1 188.44 2394.0 2582.4 0.6366 7.5247 7.6832 8.2556 50 12.352 0.001017 7.6670 251.16 2204.7 2445.9 231.18 2357.7 2688.8 0.8313 7.0769 7.9082 65 25.043 0.00102 6.1935 27.09 2190.3 2462.4 721.2 2345.4 2617.5 0.8937 6.9360 7.8940 70 31.202 0.001023 5.0396 239.04 2175.8 2465.9 230.0 2430.5 230.6 2634.6 1.0156 6.6557 7.6812 80 47.416<	20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
30 4.2469 0.001004 32.879 125.73 2290.2 2415.9 125.74 2429.8 2555.6 0.4368 8.0152 8.4520 35 5.6291 0.001008 19.515 167.53 2620.1 146.63 2274.0 2429.4 146.53 2400.0 2573.5 0.5724 7.6832 8.2556 45 9.5953 0.001012 15.261 188.43 2247.7 2436.1 188.44 2394.0 2582.4 0.6386 7.5247 8.1633 50 12.352 0.001017 7.6670 251.16 2204.7 2455.9 251.18 2357.7 2608.8 0.8313 7.0769 7.9982 65 25.043 0.001020 6.1935 272.09 2190.3 2462.4 272.12 2345.4 2617.5 0.8937 6.936 7.8989 70 31.202 0.001026 4.1291 31.399 2161.3 2475.3 314.03 230.6 2634.6 1.0158 6.6655 7.6812 85<	25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
35 5.6291 0.001006 25.205 146.63 2276.0 24227 146.64 2417.9 2564.6 0.5051 7.8466 8.3517 40 7.3851 0.001008 19.515 167.53 2261.9 24924 167.53 2406.0 2573.5 0.5724 7.6832 8.2556 50 12.352 0.001012 12.026 209.33 223.4 2442.7 209.34 2382.0 2591.3 0.7038 7.3710 8.0748 50 12.352 0.001017 7.6670 2511.6 2204.7 2451.8 2357.7 2608.8 0.8131 7.0769 7.9826 60 19.947 0.001023 5.0396 293.04 2175.8 2466.9 293.07 233.0 26261 0.9551 6.7897 7.640 75 38.597 0.001026 4.1291 313.99 2161.3 2475.3 314.03 220.6 2634.4 1.0756 6.5357 6.111 85 7.7868 0.001032 2.8261	30	4,2469	0.001004	32,879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
40 7.3851 0.001008 19.515 167.53 2261.9 2429.4 167.53 2400.0 257.35 0.5724 7.6832 8.2556 45 9.5953 0.001010 15.251 188.43 2247.7 2436.1 188.44 2394.0 257.35 0.5724 7.6832 8.2556 50 12.352 0.001015 9.5639 230.24 2219.1 2449.3 230.26 256.98 2600.1 0.7680 7.218 7.9982 60 19.947 0.001020 6.1935 272.02 210.3 2452.9 251.18 235.7 260.8 8.813 7.0769 7.9082 65 25.043 0.001026 4.1291 313.99 2161.3 2475.3 314.03 2320.6 2634.6 1.0158 6.6655 7.6812 80 47.416 0.001024 1.293 336.97 2117.0 2447.8 335.02 2308.0 2663.1 1.0576 6.4111 85 78.680 0.001043 1.6720 <td>35</td> <td>5 6291</td> <td>0.001006</td> <td>25 205</td> <td>146.63</td> <td>2276.0</td> <td>2422.7</td> <td>146.64</td> <td>2417.9</td> <td>2564.6</td> <td>0.5051</td> <td>7 8466</td> <td>8.3517</td>	35	5 6291	0.001006	25 205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7 8466	8.3517
45 9.5953 0.001010 15.251 188.43 2247.7 2436.1 188.44 2394.0 2582.4 0.6386 7.5247 8.1633 50 12.352 0.001012 12.026 209.33 223.34 2442.7 209.34 2382.0 2591.3 0.7038 7.3710 8.0748 55 15.763 0.001017 7.6670 221.16 2249.7 2452.4 275.7 2608.8 0.8313 7.0769 7.9082 65 25.043 0.001026 6.1935 272.09 219.3 2462.4 272.12 2345.4 261.75 0.8937 6.9360 7.8296 75 38.597 0.001026 4.1291 313.99 2161.3 2475.3 314.03 2320.6 2634.6 1.0156 6.6555 7.6111 85 7.868 0.001032 2.8261 355.96 2131.9 2487.8 356.02 2295.3 2651.4 1.1346 6.4089 7.4782 95 84.609 0.001040 1.9808 398.00 2102.0 2500.1 398.09 2269.6 2667.6 1.25	40	7 3851	0.001008	19515	167.53	2261.9	2429.4	167.53	2406.0	2573 5	0 5724	7 6832	8 2556
50 12.352 0.001012 12.026 209.33 2233.4 2442.7 209.34 2382.0 259.3 0.7038 7.3710 8.0748 55 15.763 0.001017 7.6670 251.16 2204.7 2455.9 251.18 2387.7 2608.8 0.8313 7.0769 7.9082 65 25.043 0.001020 6.1935 272.09 2190.3 2462.4 272.12 2345.4 2617.5 0.8937 6.9360 7.8296 70 31.202 0.001023 5.0396 293.04 2175.8 2468.9 233.07 2333.0 2626.1 0.9551 6.7897 7.740 75 38.597 0.001022 3.4053 334.97 2146.6 2481.6 335.02 2308.0 2643.0 1.0756 6.5355 7.6111 80 47.416 0.001043 1.6720 419.06 2087.0 2506.0 419.17 2265.4 2657.6 1.2504 6.1647 7.4151 100 101.42 0.0010	45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
30 12.352 0.001012 12.020 203.33 2242.7 233.42 236.42 266.11 0.07680 7.9780 75 38.597 0.001020 6.1935 372.99 2161.3 2475.3 314.03 232.62 2634.6 1.0158 6.6655 7.6812 80 47.416 0.001032 2.8261 355.96 211.70 2494.0 377.04 228.52 2659.6 1.1929 6.2853 7.4782 95 7.6880 0.001032 1.8261 40.15 207.8 251.19 440.28 2245.2 2659.6 1.1929<	50	12 252	0.001012	12.026	200.22	2222.4	2442.7	200.24	2292.0	2501.2	0 7029	7 2710	9.0749
53 15.763 0.001017 5.76670 251.16 2249.3 230.24 2245.2 2357.7 260.88 0.8813 7.0769 7.9082 65 25.043 0.001027 5.0396 293.04 2175.8 2462.4 272.12 2345.4 261.7 0.09551 6.7989 7.7540 75 38.597 0.001026 4.1291 313.99 2161.3 2475.3 314.03 230.6 2643.0 1.0158 6.6555 7.6812 80 47.416 0.001022 3.4053 334.97 2146.6 2481.6 335.02 230.6 2643.0 1.0756 6.5355 7.6111 85 57.868 0.001032 2.8261 355.96 2131.9 2487.8 356.02 2295.3 2651.4 1.1346 6.4089 7.4782 95 84.609 0.001040 1.8672 419.06 2087.0 2506.0 419.17 2256.4 2675.6 1.3072 6.0470 7.3542 100 101.42 0.001047 1.4186 440.15 2071.8 2517.7 461.42 229.7 26	50	15,352	0.001012	0.5620	209.33	2233.4	2442.7	209.34	2302.0	2091.0	0.7030	7.3710	7 0000
60 19.947 0.001017 7.0670 221.16 2204.7 243.94 223.16 230.17 2800.8 0.8313 7.0769 7.9062 70 31.202 0.001023 5.0396 293.04 2175.8 2462.4 272.12 2345.4 2617.5 0.8317 6.7889 7.7540 75 38.597 0.001026 4.1291 313.99 2161.3 2478.3 314.03 2320.6 2634.6 1.0158 6.6555 7.6812 80 47.416 0.001032 2.8261 355.96 213.9 2487.8 356.02 2295.3 2651.4 1.1346 6.4089 7.6435 95 84.609 0.001040 1.9808 398.00 2102.0 2500.1 398.09 2266. 2667.6 1.2504 6.1647 7.4151 100 10.42 0.001047 1.4186 440.15 2071.8 251.9 440.28 2243.1 2683.4 1.3634 5.9319 7.2922 101 143.38 0.001052 1.2094 461.27 2054.3 4251.7 461.42 229.7 2691	55	10.763	0.001015	9.0039	230.24	2219.1	2449.3	230.20	2309.0	2600.1	0.7000	7.2210	7.9090
65 25.043 0.001020 6.1935 272.09 2190.3 2492.4 272.12 2345.4 261.5 0.8837 6.3960 7.8296 70 31.202 0.001023 5.0396 293.04 2175.8 2468.9 293.07 2333.0 2526.1 0.9551 6.7989 7.7540 75 38.597 0.001026 4.1291 313.99 2161.3 2475.3 314.03 2320.6 2634.6 1.0156 6.6555 7.6111 80 47.416 0.001032 2.8261 355.96 2131.9 2447.8 356.02 2295.3 2651.6 1.929 6.2857 7.482 95 84.609 0.001040 1.9808 398.00 2102.0 250.1 398.09 2269.6 2667.6 1.2504 6.1647 7.4151 100 101.42 0.001041 1.4186 440.15 2071.8 2511.9 440.28 2243.1 2683.4 1.3634 5.9319 7.2952 101 143.38 0.001056 1.0360 482.42 2040.9 2523.3 482.59 2216.0 269	60	19.947	0.001017	7.6670	201.16	2204.7	2400.9	201.18	2307.7	2608.8	0.8313	7.0769	7.9082
75 31.202 0.001025 5.0396 23.504 217.5 2486.5 233.07 246.7 10.007 10.6655	65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296
75 38.997 0.001026 4.1291 31.399 2161.3 2475.3 314.03 2230.6 2634.6 1.0158 6.6555 7.6811 80 47.416 0.001029 2.8261 355.96 2131.9 2487.8 336.02 2308.0 2643.0 1.0756 6.5355 7.6111 85 57.868 0.001036 2.3593 376.97 2117.0 2494.0 377.04 2282.5 2659.6 1.1929 6.2853 7.4782 95 84.609 0.001040 1.9808 398.00 2102.0 2506.0 419.17 2256.4 2667.6 1.3072 6.0470 7.3542 100 101.42 0.001047 1.4186 440.15 2071.8 2511.7 461.42 229.7 2691.1 1.4188 5.8193 7.2382 110 143.38 0.001056 1.0360 482.42 2040.9 2523.3 482.59 2216.0 2698.6 1.4737 5.7092 7.1829 120 198.67 0.001070 0.66808 546.10 1993.4 253.5 546.38 217.7	70	31.202	0.001023	5.0396	293.04	2170.8	2408.9	293.07	2333.0	2020.1	0.9551	0.7989	7.7540
80 47.416 0.001029 3.4053 334.97 2146.6 248.7.8 335.02 2308.0 2643.0 1.0756 6.5355 7.6111 85 57.868 0.001032 2.8261 355.96 2131.9 2487.8 356.02 2295.3 2651.4 1.1346 6.4089 7.5435 90 70.183 0.001040 1.9808 398.00 2102.0 2500.1 398.09 2269.6 2667.6 1.2504 6.1647 7.4151 100 101.42 0.001043 1.6720 419.06 2087.0 2506.0 419.17 2256.4 2675.6 1.3072 6.0470 7.3542 100 143.38 0.001056 1.0360 482.42 2040.9 252.3 482.59 2216.0 2698.6 1.4737 5.7092 7.1829 120 198.67 0.001060 0.89133 503.60 2025.3 2528.9 503.81 2202.1 2706.0 1.5279 5.6013 7.1292 125 232.23 0.001060 0.89133 503.60 2025.3 2548.5 2519.1 272.69	75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
85 57.868 0.001032 2.8261 355.96 2131.9 2487.8 356.02 2295.3 2651.4 1.1346 6.4089 7.5435 90 70.183 0.001036 2.3593 376.97 2117.0 2494.0 377.04 2282.5 2659.6 1.1929 6.2853 7.4782 95 84.609 0.001040 1.9808 398.00 2102.0 2500.1 398.09 2269.6 2667.6 1.2504 6.1647 7.4151 100 101.42 0.001047 1.4186 440.15 2071.8 2511.9 440.28 2243.1 2683.4 1.3634 5.9319 7.2952 110 143.38 0.001056 1.0360 482.42 2040.9 252.3 482.59 2216.0 2698.6 1.4737 5.7092 7.1829 120 198.67 0.001060 0.89133 503.60 2025.3 2528.9 503.81 2201.1 1.5816 5.4956 7.0711 130 270.28 0.01070 0.66808 546.10 1993.4 253.5 545.38 2173.7 272.1 <td< td=""><td>80</td><td>47.416</td><td>0.001029</td><td>3.4053</td><td>334.97</td><td>2146.6</td><td>2481.6</td><td>335.02</td><td>2308.0</td><td>2643.0</td><td>1.0756</td><td>6.5355</td><td>7.6111</td></td<>	80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	7.6111
90 70.183 0.001036 2.3593 376.97 2117.0 2494.0 377.04 2282.5 265.6 1.1929 6.2853 7.4782 95 84.609 0.001040 1.9808 398.00 2102.0 250.01 398.09 2269.6 2667.6 1.2504 6.1647 7.4151 100 101.42 0.001041 1.4186 440.15 2071.8 2511.9 440.28 2243.1 2683.4 1.3634 5.3919 7.2952 110 143.38 0.001056 1.0360 482.42 2040.9 2523.3 482.59 2216.0 2698.6 1.4737 5.7092 7.1829 120 198.67 0.001060 0.89133 503.60 2025.3 252.95 503.81 2202.1 2706.0 1.5279 5.6013 7.1292 125 232.23 0.001070 0.6808 546.10 1994.4 2539.5 546.38 2173.7 2720.1 1.6346 5.3919 7.0711 130 270.28	85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435
9584.6090.0010401.9808398.002102.02500.1398.092269.62667.61.25046.16477.4151100101.420.0010431.6720419.062087.02506.0419.172256.42675.61.30726.04707.3542105120.900.0010471.4186440.152071.82511.9440.282243.12683.41.36345.93197.2952110143.380.0010561.0360482.422040.92523.3482.592216.02698.61.47375.70927.1829120198.670.0010600.89133503.602025.32528.9503.812202.12706.01.52795.60137.1292125232.230.0010700.66808546.101993.42539.5546.382173.72720.11.63465.39197.0265135313.220.0010750.58179567.411977.32544.7567.752159.12726.91.68725.90166.9294145415.680.0010850.44600610.191944.22554.4610.642129.2273.81.79025.19016.9294155543.490.0010960.34648653.191910.32563.5653.792098.02751.81.89244.90026.7927160618.230.0011200.30680674.791893.02567.8675.472082.02757.51.94264.80666.7492	90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
100 101.42 0.001043 1.6720 419.06 2087.0 2506.0 419.17 2256.4 2675.6 1.3072 6.0470 7.3542 105 120.90 0.001047 1.4186 440.15 2071.8 2511.9 440.28 2243.1 2683.4 1.3634 5.9319 7.2952 110 143.38 0.001052 1.2094 461.27 2056.4 2517.7 461.42 2229.7 2691.1 1.4188 5.8193 7.2382 120 198.67 0.001060 0.89133 503.60 2025.3 2528.9 503.81 2202.1 2706.0 1.5279 5.6013 7.1292 125 232.23 0.001065 0.77012 524.83 2009.5 2534.3 525.07 2188.1 2713.1 1.5816 5.4956 7.0711 130 270.28 0.001070 0.66808 546.10 1993.4 259.5 546.38 217.7 720.1 1.6346 5.3919 7.0261 130 270.28 0.001070 0.58179 567.41 1977.3 2544.7 567.75 2159.1	95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
105120.900.0010471.4186440.152071.82511.9440.282243.12683.41.36345.93197.2952110143.380.0010521.2094461.272056.42517.7461.422229.72691.11.41885.81937.2382115169.180.0010600.89133503.602025.32528.9503.812202.12706.01.52795.60137.1292125232.230.0010650.77012524.832009.52534.3525.072188.12713.11.58165.49567.0771130270.280.0010700.66808546.101993.42539.5546.382173.72720.11.63465.39197.0265135313.220.0010750.58179567.411977.32544.7567.752159.1276.91.68725.29016.9773140361.530.0010800.50850588.771960.92549.6589.162144.3273.51.73925.19016.9294145415.680.0010910.39248631.661927.42551.1632.182113.82745.91.84184.99536.8371155543.490.0010960.34648653.191910.32663.5653.792098.02751.81.89244.90026.7927160618.230.0011020.30680674.791893.02567.7719.082048.82767.92.04174.62336.6650 <t< td=""><td>100</td><td>101.42</td><td>0.001043</td><td>1.6720</td><td>419.06</td><td>2087.0</td><td>2506.0</td><td>419.17</td><td>2256.4</td><td>2675.6</td><td>1.3072</td><td>6.0470</td><td>7.3542</td></t<>	100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
110 143.38 0.001052 1.2094 461.27 2056.4 2517.7 461.42 2229.7 2691.1 1.4188 5.8193 7.2382 115 169.18 0.001056 1.0360 482.42 2040.9 2523.3 482.59 2216.0 2698.6 1.4737 5.7092 7.1829 120 198.67 0.001065 0.89133 503.60 2025.3 2528.9 503.81 2202.1 2706.0 1.5279 5.6013 7.1292 125 232.23 0.001075 0.58179 567.41 1993.4 2539.5 546.38 2173.7 2720.1 1.6346 5.3919 7.0265 135 313.22 0.001075 0.58179 567.41 1977.3 2544.7 567.55 2159.1 273.5 1.7392 5.1901 6.9294 145 415.68 0.001080 0.50850 588.77 1960.9 2544.6 632.18 2113.8 2745.9 1.8418 4.9953 6.8371 150 476.16 0.001091 0.39248 631.66 1927.4 2559.1 632.18 2113.8	105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
115169.180.0010561.0360482.422040.9252.3.3482.592216.02698.61.47375.70927.1829120198.670.0010600.89133503.602025.32528.9503.812202.12706.01.52795.60137.1292125232.230.0010550.77012524.832009.52534.3525.072188.12713.11.58165.49567.0771130270.280.0010700.66808546.101993.42539.5546.382173.72720.11.63465.39197.0265135313.220.0010750.58179567.411977.32544.7567.752159.12726.91.68725.29016.9773140361.530.0010800.50850588.771960.92549.6589.162144.32733.51.73925.19016.9294145415.680.0010850.44600610.191944.22554.4610.642129.22739.81.79085.09196.8827150476.160.0010910.39248631.661927.42559.1632.182113.82745.91.84184.99536.8371160618.230.0011020.30680674.791893.02563.5653.792098.02757.51.94264.80666.7492170792.180.0011080.27244696.461875.42571.9697.242065.62762.81.99234.71436.7067 <td>110</td> <td>143.38</td> <td>0.001052</td> <td>1.2094</td> <td>461.27</td> <td>2056.4</td> <td>2517.7</td> <td>461.42</td> <td>2229.7</td> <td>2691.1</td> <td>1.4188</td> <td>5.8193</td> <td>7.2382</td>	110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382
120198.670.0010600.89133503.602025.32528.9503.812202.12706.01.52795.60137.1292125232.230.0010550.77012524.832009.52534.3525.072188.12713.11.58165.49567.0771130270.280.0010700.66808546.101993.42539.5546.382173.72720.11.63465.39197.0265135313.220.0010750.58179567.411977.32544.7567.752159.12726.91.68725.29016.9773140361.530.0010800.50850588.771960.92549.6589.162144.3273.51.73925.19016.9294145415.680.0010850.44600610.191944.22554.4610.642129.22739.81.79085.09196.8827150476.160.0010910.39248631.661927.42559.1632.182113.82745.91.84184.99536.8371155543.490.0010960.34648653.191910.32567.8675.47208.02757.51.94264.80666.7492160618.230.0011020.30680674.791893.02567.8675.47208.02757.51.94264.80666.7492170792.180.0011140.24260718.201857.52575.7719.082048.82767.92.04174.62336.6650<	115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
125 232.23 0.001065 0.77012 524.83 2009.5 2534.3 525.07 2188.1 2713.1 1.5816 5.4956 7.0771 130 270.28 0.001070 0.66808 546.10 1993.4 2539.5 546.38 2173.7 2720.1 1.6346 5.3919 7.0265 135 313.22 0.001075 0.58179 567.41 1977.3 2544.7 567.75 2159.1 2726.9 1.6872 5.2901 6.9773 140 361.53 0.001080 0.50850 588.77 1960.9 2549.6 589.16 2144.3 2733.5 1.7392 5.1911 6.9294 145 415.68 0.001085 0.44600 610.19 1944.2 2554.4 610.64 2129.2 2739.8 1.7908 5.0919 6.8827 150 476.16 0.001091 0.39248 631.66 1927.4 2559.1 632.18 2113.8 2745.9 1.8418 4.9902 6.7927 160 618.23 0.001102 0.30680 674.79 1893.0 2567.8 675.47 2082.0 <td>120</td> <td>198.67</td> <td>0.001060</td> <td>0.89133</td> <td>503.60</td> <td>2025.3</td> <td>2528.9</td> <td>503.81</td> <td>2202.1</td> <td>2706.0</td> <td>1.5279</td> <td>5.6013</td> <td>7.1292</td>	120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292
130 270.28 0.001070 0.66808 546.10 1993.4 2539.5 546.38 2173.7 2720.1 1.6346 5.3919 7.0265 135 313.22 0.001075 0.58179 567.41 1977.3 2544.7 567.75 2159.1 2726.9 1.6872 5.2901 6.9773 140 361.53 0.001080 0.50850 588.77 1960.9 2549.6 589.16 2144.3 2733.5 1.7392 5.1911 6.9294 145 415.68 0.001085 0.44600 610.19 1944.2 2554.4 610.64 2129.2 2739.8 1.7908 5.0919 6.8827 150 476.16 0.001091 0.39248 631.66 1927.4 2559.1 632.18 2113.8 2745.9 1.8418 4.9953 6.8371 155 543.49 0.00102 0.36680 674.79 1893.0 2567.8 675.47 208.0 2751.8 1.8924 4.9002 6.7927 160 618.23 0.001108 0.27244 696.46 1875.4 2571.9 697.24 2065.6	125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
135 313.22 0.001075 0.58179 567.41 1977.3 2544.7 567.75 2159.1 2726.9 1.6872 5.2901 6.9773 140 361.53 0.001080 0.50850 588.77 1960.9 2549.6 589.16 2144.3 2733.5 1.7392 5.1901 6.9294 145 415.68 0.001085 0.44600 610.19 1944.2 2554.4 610.64 2129.2 2739.8 1.7908 5.0919 6.8827 150 476.16 0.001091 0.39248 631.66 1927.4 2551.6 653.79 2098.0 2751.8 1.8924 4.9002 6.7927 160 618.23 0.001102 0.30680 674.79 1893.0 2567.8 675.47 2082.0 2757.5 1.9426 4.8066 6.7492 165 700.93 0.001108 0.27244 696.46 1875.4 2571.9 697.24 2065.6 2762.8 1.9923 4.7143 6.7067 170 792.18 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 <td>130</td> <td>270.28</td> <td>0.001070</td> <td>0.66808</td> <td>546.10</td> <td>1993.4</td> <td>2539.5</td> <td>546.38</td> <td>2173.7</td> <td>2720.1</td> <td>1.6346</td> <td>5.3919</td> <td>7.0265</td>	130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	7.0265
140 361.53 0.001080 0.50850 588.77 1960.9 2549.6 589.16 2144.3 273.5 1.7392 5.1901 6.9294 145 415.68 0.001085 0.44600 610.19 1944.2 2554.4 610.64 2129.2 273.8 1.7908 5.0919 6.8827 150 476.16 0.001091 0.39248 631.66 1927.4 2559.1 632.18 2113.8 2745.9 1.8418 4.9953 6.8371 155 543.49 0.001096 0.34648 653.19 1910.3 2663.5 653.79 2098.0 2751.8 1.8924 4.9002 6.7927 160 618.23 0.001102 0.30680 674.79 18930 2567.8 675.47 2082.0 2757.5 1.9426 4.8066 6.7492 170 792.18 0.001114 0.24260 718.20 1857.5 2575.7 719.08 2048.8 2767.9 2.0417 4.6233 6.6650 175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7	135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	6.9773
145415.680.0010850.44600610.191944.22554.4610.642129.22739.81.79085.09196.8827150476.160.0010910.39248631.661927.42559.1632.182113.82745.91.84184.99536.8371155543.490.0010960.34648653.191910.32563.5653.792098.02751.81.89244.90026.7927160618.230.0011020.30680674.791893.02567.8675.472082.02757.51.94264.80666.7492165700.930.0011080.27244696.461875.42571.9697.242065.62762.81.99234.71436.7067170792.180.0011140.24260718.201857.52575.7719.082048.82767.92.04174.62336.6650175892.600.0011210.21659740.021839.42579.4741.022031.72772.72.09064.53356.62421801002.80.0011270.19384761.921820.92582.8763.052014.22777.22.13924.44486.58411851123.50.0011340.17390783.911802.12580.0785.191996.22781.42.18754.35726.54771901255.20.0011410.15636806.001783.02589.0807.431977.92785.32.23554.27056.5059 <td>140</td> <td>361.53</td> <td>0.001080</td> <td>0.50850</td> <td>588.77</td> <td>1960.9</td> <td>2549.6</td> <td>589.16</td> <td>2144.3</td> <td>2733.5</td> <td>1.7392</td> <td>5.1901</td> <td>6.9294</td>	140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294
150476.160.0010910.39248631.661927.42559.1632.182113.82745.91.84184.99536.8371155543.490.0010960.34648653.191910.32563.5653.792098.02751.81.89244.90026.7927160618.230.0011020.30680674.791893.02567.8675.472082.02757.51.94264.80666.7492165700.930.0011080.27244696.461875.42571.9697.242065.62762.81.99234.71436.7067170792.180.0011140.24260718.201857.52575.7719.082048.82767.92.04174.62336.6650175892.600.0011210.21659740.021839.42579.4741.022031.72772.72.09064.53356.62421801002.80.0011270.19384761.921820.92582.8763.052014.22777.22.13924.44486.58411851123.50.0011340.17390783.911802.12580.0785.191996.22781.42.18754.35726.54771901255.20.0011410.15636806.001783.02589.0807.431977.92785.32.23554.27056.50591951398.80.0011470.127218.20.461743.72594.2852.261939.82.729.02.33054.09276.4302<	145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
155 543.49 0.001096 0.34648 653.19 1910.3 2563.5 653.79 2098.0 2751.8 1.8924 4.9002 6.7927 160 618.23 0.001102 0.30680 674.79 1893.0 2567.8 675.47 2082.0 2751.8 1.8924 4.9002 6.7927 165 700.93 0.001108 0.27244 696.46 1875.4 2571.9 697.24 2065.6 2762.8 1.9923 4.7143 6.7067 170 792.18 0.001114 0.24260 718.20 1857.5 2575.7 719.08 2048.8 2767.9 2.0417 4.6233 6.6650 175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 2772.7 2.0906 4.5335 6.6242 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.192 4.4448 6.5841 185 1123.5 0.001134 0.17390 783.91 1802.1 2589.0 807.43 1977.9 <td>150</td> <td>476.16</td> <td>0.001091</td> <td>0.39248</td> <td>631.66</td> <td>1927.4</td> <td>2559.1</td> <td>632.18</td> <td>2113.8</td> <td>2745.9</td> <td>1.8418</td> <td>4.9953</td> <td>6.8371</td>	150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
160 618.23 0.001102 0.30680 674.79 1893.0 2567.8 675.47 2082.0 2757.5 1.9426 4.8066 6.7492 165 700.93 0.001108 0.27244 696.46 1875.4 2571.9 697.24 2065.6 2762.8 1.9923 4.7143 6.7067 170 792.18 0.001114 0.24260 718.20 1857.5 2575.7 719.08 2048.8 2767.9 2.0417 4.6233 6.6650 175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 2772.7 2.0906 4.5335 6.6242 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.1392 4.4448 6.5841 185 1123.5 0.001134 0.17390 783.91 1802.1 2580.0 785.19 1996.2 2781.4 2.1875 4.3572 6.5049 190 1255.2	155	543 49	0.001096	0.34648	653 19	1910.3	2563.5	653 79	2098.0	2751.8	1 8924	4 9002	6 7927
165 700.93 0.001108 0.27244 696.46 1875.4 2571.9 697.24 2065.6 2762.8 1.9923 4.7143 6.7067 170 792.18 0.001114 0.24260 718.20 1857.5 2575.7 719.08 2048.8 2767.9 2.0417 4.6233 6.6650 175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 2772.7 2.0906 4.5335 6.6242 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.1392 4.4448 6.5841 185 1123.5 0.001134 0.17390 783.91 1802.1 2586.0 785.19 1996.2 2781.4 2.1875 4.3572 6.5447 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2705 6.5059 195 1398.8	160	618 23	0.001102	0.30680	674 79	1893.0	2567.8	675.47	2082.0	2757.5	1 9426	4 8066	6 7492
100 792.18 0.001114 0.24260 718.20 1857.5 2575.7 719.08 2048.8 2767.9 2.0417 4.6233 6.6650 175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 2772.7 2.0906 4.5335 6.6620 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.1392 4.4448 6.5841 185 1123.5 0.001134 0.17390 783.91 1802.1 2586.0 785.19 1996.2 2781.4 2.1875 4.3572 6.5447 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2705 6.5059 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.8 2.2351 4.1847 6.4678 200 1554.9	165	700.93	0.001108	0 27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1 9923	4 7143	6 7067
175 892.60 0.001121 0.21659 740.02 1839.4 2579.4 741.02 2031.7 2772.7 2.0906 4.5335 6.6242 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.1392 4.4448 6.5841 185 1123.5 0.001134 0.17390 783.91 1802.1 2586.0 785.19 1996.2 2781.4 2.1875 4.3572 6.5447 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2705 6.5059 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.3 2.2831 4.1847 6.4678 200 1554.9 0.001147 0.12721 850.46 1743.7 2594.2 852.66 1939.8 2729.2 2.3305 4.0927 6.4302	170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	6.6650
170 0.22.00 0.001121 0.21039 740.02 1033.4 237.4 741.02 2031.7 2.030.7 2.030.6 4.5353 6.6242 180 1002.8 0.001127 0.19384 761.92 1820.9 2582.8 763.05 2014.2 2777.2 2.1392 4.4448 6.5841 185 1123.5 0.001134 0.17390 783.91 1802.1 2586.0 785.19 1996.2 2781.4 2.1875 4.3572 6.5447 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2775 6.5059 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.8 2.2831 4.1847 6.4678 200 1554.9 0.001157 0.12721 850.46 1743.7 2594.2 852.26 1939.8 2792.0 2.3305 4.0997 6.4302	175	892.60	0.001121	0 21659	740.02	1830 /	2579.4	741.02	2031.7	2772 7	2 0906	4 5325	6 6242
185 1123.5 0.001127 0.17390 783.91 1802.1 2586.0 785.19 1996.2 2781.4 2.1875 4.3572 6.5447 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2781.4 2.1875 4.3572 6.5447 190 1255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2705 6.5059 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.8 2.2831 4.1847 6.4678 200 1554.9 0.001157 0.12721 850.46 1743.7 2594.2 852.26 1939.8 2792.0 2.3305 4.0997 6.4302	180	1002.8	0.001121	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2.7	2 1302	4 4448	6 5841
100 11255.2 0.001141 0.15636 806.00 1783.0 2589.0 807.43 1977.9 2785.3 2.2355 4.2705 6.5059 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.8 2.2831 4.1847 6.4678 200 1554.9 0.001157 0.12721 850.46 1743.7 2594.2 852.26 1939.8 2792.0 2.3305 4.0997 6.4302	185	1123.5	0.001134	0 17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2 1875	4 3572	6 5447
195 1398.8 0.001147 0.12039 800.00 1763.6 259.0 607.45 1977.5 2763.5 2.2535 4.2705 6.0039 195 195 1398.8 0.001149 0.14089 828.18 1763.6 2591.7 829.78 1959.0 2788.8 2.2831 4.1847 6.4678 200 1554.9 0.001157 0.12721 850.46 1743.7 2594.2 852.26 193.98 2792.0 2.3305 4.0997 6.4302	190	1255.2	0.0011/1	0 15626	806.00	1782.0	2589.0	807 42	1077.0	2785.2	2 2255	1 2705	6 5050
200 1554 9 0.001157 0.12721 850.46 1743 7 2594 2 852 6 1939 8 2792 0 2 336 4 097 6 4302	195	1398.8	0.001140	0.14080	828 18	1763.6	2505.0	829.78	1950 0	2788.9	2 2821	4 1847	6 4678
	200	1554.9	0.001157	0 12721	850.46	1743 7	2594.2	852.26	1939.9	2792.0	2 3305	4 0997	6 4302

TABLA A-4

Agua sa	iturada. Ta	bla de tem	peraturas (<i>co</i>	onclusión)								
		Volumei I	n específico, m³/kg	E	nergía in kJ/kg	terna, g		Entalpí. kJ/kg	а,		Entropía, kJ/kg · K	
Temp., <i>T</i> °C	Pres. sat., <i>P_{sat} kPa</i>	Líq. sat, v _f	Vapor sat., v _g	Líq. sat., <i>u_f</i>	Evap., u _{fg}	Vapor sat., <i>u_g</i>	Líq. sat., <i>h_f</i>	Evap., <i>h_{fg}</i>	Vapor sat., <i>h_g</i>	Líq. sat., <i>s_f</i>	Evap., s _{fg}	Vapor sat., <i>s</i> g
205	1724.3	0.001164	0.11508	872.86	1723.5	2596.4	874.87	1920.0	2794.8	2.3776	4.0154	6.3930
210	1907.7	0.001173	0.10429	895.38	1702.9	2598.3	897.61	1899.7	2797.3	2.4245	3.9318	6.3563
215	2105.9	0.001181	0.094680	918.02	1681.9	2599.9	920.50	1878.8	2799.3	2.4712	3.8489	6.3200
220	2319.6	0.001190	0.086094	940.79	1660.5	2601.3	943.55	1857.4	2801.0	2.5176	3.7664	6.2840
225	2549.7	0.001199	0.078405	963.70	1638.6	2602.3	966.76	1835.4	2802.2	2.5639	3.6844	6.2483
230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9	990.14	1812.8	2802.9	2.6100	3.6028	6.2128
235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	1789.5	2803.2	2.6560	3.5216	6.1775
240	3347.0	0.001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.0	2.7018	3.4405	6.1424
245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476	3.3596	6.1072
250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.7933	3.2788	6.0721
255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390	3.1979	6.0369
260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.6	2.8847	3.1169	6.0017
265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304	3.0358	5.9662
270	5503.0	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762	2.9542	5.9305
275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221	2.8723	5.8944
280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1236.7	1543.2	2779.9	3.0681	2.7898	5.8579
285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144	2.7066	5.8210
290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2.6225	5.7834
295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	5.7450
300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.6	3.2548	2.4511	5.7059
305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3633	5.6657
310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243
315	10,556	0.001472	0.016849	1416.1	1121.1	2537.2	1431.6	1283.4	2715.0	3.3994	2.1821	5.5816
320	11,284	0.001499	0.015470	1445.1	1080.9	2526.0	1462.0	1238.5	2700.6	3.4491	2.0881	5.5372
325	12,051	0.001528	0.014183	1475.0	1038.5	2513.4	1493.4	1191.0	2684.3	3.4998	1.9911	5.4908
330	12,858	0.001560	0.012979	1505.7	993.5	2499.2	1525.8	1140.3	2666.0	3.5516	1.8906	5.4422
335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1086.0	2645.4	3.6050	1.7857	5.3907
340	14,601	0.001638	0.010783	1570.7	893.8	2464.5	1594.6	1027.4	2622.0	3.6602	1.6756	5.3358
345	15,541	0.001685	0.009772	1605.5	837.7	2443.2	1631.7	963.4	2595.1	3.7179	1.5585	5.2765
350	16,529	0.001741	0.008806	1642.4	775.9	2418.3	1671.2	892.7	2563.9	3.7788	1.4326	5.2114
355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442	1.2942	5.1384
360	18,666	0.001895	0.006950	1726.2	625.7	2351.9	1761.5	720.1	2481.6	3.9165	1.1373	5.0537
365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004	0.9489	4.9493
370	21,044	0.002217	0.004953	1844.5	385.6	2230.1	1891.2	443.1	2334.3	4.1119	0.6890	4.8009
373.95	22,064	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

Fuente: Las tablas A-4 a A-8 fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la altamente precisa Steam_IAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Agua Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación reemplaza a la formulación de 1984 de Haar, Gallagher y Kell (MBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se basa en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K a 473.15 K", *ASHRAE Trans.*, Part 2A, Paper 2793, 1983.

915 Apéndice 1

916	
TABLAS DE PROPIEDADES, FI	GURAS Y DIAGRAMAS (UNIDADES SI)

TABLA A-5

Agua saturada. Tabla de presiones

		Volume	n específico, m ³ /kg		Energía in kJ/kg	nterna, g		Entalpía kJ/kg	,		Entropía, kJ/kg · K	
Pres., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat} °C	Líq. sat., v _f	Vapor sat., Vg	Líq. sat., u _f	Evap., u _{fe}	Vapor sat., u _g	Líq. sat, <i>h_f</i>	Evap., h _{fe}	Vapor sat., h _g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., <i>s_e</i>
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	5 99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLA A-5

917 Apéndice 1

Agua sa	turada. T	abla de pres	siones (<i>con</i>	clusión)									
		Volumen n	específico, 1 ³ /kg	E	nergía in kJ/kg	terna,		Entalpía kJ/kg	,		Entropía, kJ/kg · K		
Pres., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat} °C	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., <i>u_g</i>	Líq. sat, h _f	Evap., h _{fg}	Vapor sat., <i>h_g</i>	Líq. sat., <i>s_f</i>	Evap., s _{fg}	Vapor sat., <i>s</i> g	
800	170.41	0.001115	0.24035	719.97	1856.1	2576.0	720.87	2047.5	2768.3	2.0457	4.6160	6.6616	
850	172.94	0.001118	0.22690	731.00	1846.9	2577.9	731.95	2038.8	2770.8	2.0705	4.5705	6.6409	
900	175.35	0.001121	0.21489	741.55	1838.1	2579.6	742.56	2030.5	2773.0	2.0941	4.5273	6.6213	
950	177.66	0.001124	0.20411	751.67	1829.6	2581.3	752.74	2022.4	2775.2	2.1166	4.4862	6.6027	
1000	179.88	0.001127	0.19436	761.39	1821.4	2582.8	762.51	2014.6	2777.1	2.1381	4.4470	6.5850	
1100	184.06	0.001133	0.17745	779.78	1805.7	2585.5	781.03	1999.6	2780.7	2.1785	4.3735	6.5520	
1200	187.96	0.001138	0.16326	796.96	1790.9	2587.8	798.33	1985.4	2783.8	2.2159	4.3058	6.5217	
1300	191.60	0.001144	0.15119	813.10	1776.8	2589.9	814.59	1971.9	2786.5	2.2508	4.2428	6.4936	
1400	195.04	0.001149	0.14078	828.35	1763.4	2591.8	829.96	1958.9	2788.9	2.2835	4.1840	6.4675	
1500	198.29	0.001154	0.13171	842.82	1750.6	2593.4	844.55	1946.4	2791.0	2.3143	4.1287	6.4430	
1750	205.72	0.001166	0.11344	876.12	1720.6	2596.7	878.16	1917.1	2795.2	2.3844	4.0033	6.3877	
2000	212.38	0.001177	0.099587	906.12	1693.0	2599.1	908.47	1889.8	2798.3	2.4467	3.8923	6.3390	
2250	218.41	0.001187	0.088717	933.54	1667.3	2600.9	936.21	1864.3	2800.5	2.5029	3.7926	6.2954	
2500	223.95	0.001197	0.079952	958.87	1643.2	2602.1	961.87	1840.1	2801.9	2.5542	3.7016	6.2558	
3000	233.85	0.001217	0.066667	1004.6	1598.5	2603.2	1008.3	1794.9	2803.2	2.6454	3.5402	6.1856	
3500	242.56	0.001235	0.057061	1045.4	1557.6	2603.0	1049.7	1753.0	2802.7	2.7253	3.3991	6.1244	
4000	250.35	0.001252	0.049779	1082.4	1519.3	2601.7	1087.4	1713.5	2800.8	2.7966	3.2731	6.0696	
5000	263.94	0.001286	0.039448	1148.1	1448.9	2597.0	1154.5	1639.7	2794.2	2.9207	3.0530	5.9737	
6000	275.59	0.001319	0.032449	1205.8	1384.1	2589.9	1213.8	1570.9	2784.6	3.0275	2.8627	5.8902	
7000	285.83	0.001352	0.027378	1258.0	1323.0	2581.0	1267.5	1505.2	2772.6	3.1220	2.6927	5.8148	
8000	295.01	0.001384	0.023525	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2077	2.5373	5.7450	
9000	303.35	0.001418	0.020489	1350.9	1207.6	2558.5	1363.7	1379.3	2742.9	3.2866	2.3925	5.6791	
10,000	311.00	0.001452	0.018028	1393.3	1151.8	2545.2	1407.8	1317.6	2725.5	3.3603	2.2556	5.6159	
11,000	318.08	0.001488	0.015988	1433.9	1096.6	2530.4	1450.2	1256.1	2706.3	3.4299	2.1245	5.5544	
12,000	324.68	0.001526	0.014264	1473.0	1041.3	2514.3	1491.3	1194.1	2685.4	3.4964	1.9975	5.4939	
13,000	330.85	0.001566	0.012781	1511.0	985.5	2496.6	1531.4	1131.3	2662.7	3.5606	1.8730	5.4336	
14,000	336.67	0.001610	0.011487	1548.4	928.7	2477.1	1571.0	1067.0	2637.9	3.6232	1.7497	5.3728	
15,000	342.16	0.001657	0.010341	1585.5	870.3	2455.7	1610.3	1000.5	2610.8	3.6848	1.6261	5.3108	
16,000	347.36	0.001710	0.009312	1622.6	809.4	2432.0	1649.9	931.1	2581.0	3.7461	1.5005	5.2466	
17,000	352.29	0.001770	0.008374	1660.2	745.1	2405.4	1690.3	857.4	2547.7	3.8082	1.3709	5.1791	
18,000	356.99	0.001840	0.007504	1699.1	675.9	2375.0	1732.2	777.8	2510.0	3.8720	1.2343	5.1064	
19,000	361.47	0.001926	0.006677	1740.3	598.9	2339.2	1776.8	689.2	2466.0	3.9396	1.0860	5.0256	
20,000	365.75	0.002038	0.005862	1785.8	509.0	2294.8	1826.6	585.5	2412.1	4.0146	0.9164	4.9310	
21,000	369.83	0.002207	0.004994	1841.6	391.9	2233.5	1888.0	450.4	2338.4	4.1071	0.7005	4.8076	
22,000	373.71	0.002703	0.003644	1951.7	140.8	2092.4	2011.1	161.5	2172.6	4.2942	0.2496	4.5439	
22,064	373.95	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070	

918 Tablas de propiedades, figuras y diagramas (unidades si)

TABLA A-6

Vapor	de	agua	sobrecalentado
vapoi	ue	agua	Sobrecalentado

Т	V	и	h	s	V	и	h	s	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m³/kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	0.01 MP	a (45.81)	°C)*	P =	0.05 MPa	C)	P = 0.10 MPa (99.61°C)				
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741	0.4107	0511.5	0000 4	7 6050	1 6050	0506.0	0675.0	7 0 6 1 1
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	26/5.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2080.7	2/80.2	7.9413	1.9367	2082.9	2776.6	7.0148
200	21.620	2001.4	2077.5	0.9049	4.3002	2000.0	2076.2	0.1092	2.1724	2000.2	2074.5	7.0300
200	24.130	2/30.1	2977.0	9.1015	4.8200	2730.1	2970.2	8.3008	2.4002	2/33.9	2974.0	8.0340
400	31.063	2012.3	3280.0	9.2027	6 2094	2968.9	3075.8	8 8659	3 1027	2968.3	3278.6	8 5452
500	35,680	3132.9	3489.7	9,8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8,8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.7800
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.9800
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
P = 0.20 MPa (120.21°C)					P =	P = 0.40 MPa (143.61°C)						
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	2564.4	2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520	2726.4	2964.5	7.3804
300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037	0.65489	2805.1	3067.1	7.5677
400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	2964.9	3273.9	7.9003
500	1.78142	3131.4	3487.7	8.0103	1.18672	3130.6	3480.0	8.3271	0.88930	3129.8	3480.0	8.1933
700	2.01302	2470.0	2029.9	0.7793	1.34139	2470 5	2028.2	8.0910	1.12152	2479.0	2027 6	8,4080
800	2 47550	3664.7	4159.8	9 2479	1.49580	3664 3	41593	9.0545	1 23730	3663.9	4158.9	8 9274
900	2 70656	3856.3	4397 7	9 4 5 9 8	1 80417	3856.0	4105.0	9.0000	1 35298	3855 7	4396.9	9 1 3 9 4
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.3396
1100	3,16848	4259.6	4893.3	9.8497	2,11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1200	3.39938	4470.5	5150.4	10.0304	2.26624	4470.3	5150.2	9.8431	1.69966	4470.2	5150.0	9.7102
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
	P = 0.50 MPa (151.83°C)				<i>P</i> =	P = 0.80 MPa (170.41°C)						
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.26088	2631.1	2839.8	6.8177
250	0.47443	2723.8	2961.0	7.2725	0.39390	2721.2	2957.6	7.1833	0.29321	2715.9	2950.4	7.0402
300	0.52261	2803.3	3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416	2797.5	3056.9	7.2345
350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.35442	2878.6	3162.2	7.4107
400	0.61731	2963.7	3272.4	7.7956	0.51374	2962.5	3270.8	7.7097	0.38429	2960.2	3267.7	7.5735
500	0.71095	3129.0	3484.5	8.0893	0.59200	3128.2	3483.4	8.0041	0.44332	3126.6	3481.3	7.8692
600	0.80409	3300.4	3702.5	8.3544	0.66976	3299.8	3701.7	8.2695	0.50186	3298.7	3700.1	8.1354
/00	0.89696	3478.6	3927.0	8.5978	0.74725	34/8.1	3926.4	8.5132	0.56011	3477.2	3925.3	8.3794
800	0.98966	3663.6	4158.4	8.8240	0.82457	3663.2	4157.9	8.7395	0.61820	3662.5	4157.0	8.6061
900	1.08227	3855.4	4396.6	9.0362	0.90179	3855.1	4396.2	8.9518	0.6/619	3854.5	4395.5	8.8185
1100	1.1/480	4054.0	4641.4	9.2364	0.97893	4053.8	4641.1	9.1521	0.73411	4053.3	4640.5	9.0189
1200	1.20/28	4209.0	4092.0 5170.9	9.4203	1 12200	4208.8	4092.4 5170 C	9.5420	0.7919/	4208.3	4091.9	9.2090
1200	1.35972	4686.6	5412.6	9,0071	1 21012	4686 /	5412 5	9.5229	0.04900	4686 1	5412.2	9.5696
1300	1.40214	4000.0	3412.0	5.1131	1.21012	4000.4	3412.3	3.0300	0.50701	-1000.1	0412.2	9.0020

*La temperatura entre paréntesis es la temperatura de saturación a la presión especificada.

[†] Propiedades del vapor saturado a la presión especificada.

919 Apéndice 1

TABLA A-6

Vapor	de agua so	obrecalen	tado (<i>cor</i>	ntinuación)								
Т	V	и	h	S	v	u	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 1.00 MPa (179.88 °C)				P	= 1.20 N	/Pa (187	.96 °C)	P = 1.40 MPa (195.04 °C)			
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.3/29/	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8./150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.558/
11000	0.08/21	4052.7	4640.0	8.9100	0.48928	4052.2	4039.4	8.8310	0.41933	4051.7	4038.8	8.7090
1200	0.63334	4207.9	4091.4 5149.0	9.1057	0.52792	4257.5	4091.0 5149.5	9.0212	0.45247	4207.0	4090.0 5140 1	0.9497
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.48558	4685.1	5411.3	9.3036
P = 1.60 MPa (201.37 °C)					Р	= 1.80 M	/IPa (207	.11 °C)	P = 2.00 MPa (212.38 °C)			
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795	.9 6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0	2847.	2 6.4825	0.10381	2628.5	2836.1	6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7	2911.	7 6.6088	0.11150	2680.3	2903.3	6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.	9 6.8246	0.12551	2773.2	3024.2	6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6	5 3141.	9 7.0120	0.13860	2860.5	3137.7	6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3	3251.	6 7.1814	0.15122	2945.9	3248.4	7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5	5 3470.	4 7.4845	0.17568	3116.9	3468.3	7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7	3692.	3 7.7543	0.19962	3291.5	3690.7	7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6	5 3919.	4 8.0005	0.22326	3471.7	3918.2	7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8	3 4152.	4 8.2284	0.24674	3658.0	4151.5	8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5) 4391. / 4627	9 8.4417	0.27012	3850.9	4391.1	8.3925
11000	0.30087	4001.2	4038.2	0.0974	0.32000	4000.7	4037.	6 8.0427	0.29342	4000.2	4037.1	0.0930
1200	0.39089	4200.0	4890.0	0.0070	0.30188	4200.2	4889.	2 0 01/2	0.31007	4200.7	4889.1 5147.0	8.7842
1200	0.42400	4407.9	5410.9	9.0009	0.37700	4407.0	5 5410	6 9 1872	0.35309	4407.2	5410 3	0.3034
R = 0.50 MD= (000.55 00)					0.40341	2 00 1	AD- (000	.0 9.1072	$B = 2.50 \text{ Mp}_{0} (242.56 \text{ eV})$			
P = 2.50 MPa (223.95 °C)					P	= 3.00 K	/IPa (233.	.85 '0)	P = 3.50 MPa (242.56 °C)			
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
225	0.08026	2604.8	2805.5	6.2629	0.07062	2644 7	0056	F 6 2902	0.05976	2624.0	2020 7	6 1764
200	0.08700	2003.3	2000.9	6.4107	0.07063	2044.7	2800.	0.2893	0.05876	2024.0	2029.7	6 1 1 9 1
250	0.09694	2702.2	2127.0	6 8424	0.00110	2750.0	2994.	1 6 7450	0.00040	2926.0	29/0.4	6 6601
400	0.10979	2032.5	3240 1	7 0170	0.09030	2044.4	3221	7 6 9235	0.07080	2030.0	3223.2	6 8428
450	0 13015	3026.2	3351.6	7 1768	0 10789	3021.2	> 3201.	9 7 0856	0.09198	3016.1	3338 1	7 0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6	3457	2 7.2359	0.09919	3104.5	3451.7	7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5	3682	8 7.5103	0.11325	3282.5	3678.9	7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912	2 7.7590	0.12702	3464.7	3909.3	7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3	4146.	9 7.9885	0.14061	3652.5	4144.6	7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9	4387.	5 8.2028	0.15410	3846.4	4385.7	8.1304
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7	4634.	2 8.4045	0.16751	4046.4	4632.7	8.3324
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6	6 4886.	7 8.5955	0.18087	4252.5	4885.6	8.5236
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3	5145.	1 8.7771	0.19420	4464.4	5144.1	8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408	.8 8.9502	0.20750	4681.8	5408.0	8.8786
920 Tablas de propiedades, figuras y diagramas (unidades si)

Vapor	de	agua	sobrecalentado	(continuación))
-------	----	------	----------------	----------------	---

Т	v	и	h	S	v	u	h	s	v	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	Р	= 4.0 MP	a (250.35	°C)	Р	= 4.5 MPa	a (257.44	°C)	P =	5.0 MPa	(263.94	°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	32/3.3	3666.9	7.2605
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136
800	0.12292	3000.0	4142.3	7.8023	0.10916	3048.8	4140.0	7.7962	0.09816	3040.9	4137.7	7.7458
1000	0.13470	3844.8	4383.9	8.0670	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619
1100	0.14005	4045.1 4251 4	4051.2	0.2090 8.4612	0.13020	4045.9	4029.0	0.2144 8.4060	0.11715	4042.0	4020.3	8 3566
1200	0.15024	4251.4	51/2 2	8 6430	0.15103	4250.4	51/2 2	8 5880	0.12502	4249.5	51/1 2	8 5388
1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.13532	4679.3	5405.7	8.7124
	Р	= 6.0 MP	a (275.59	°C)	Р	= 7.0 MPa	a (285.83	°C)	P =	8.0 MPa	(295.01	°C)
Sat.	0.03245	2589.9	2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525	2570.5	2758.7	5.7450
300	0.03619	2668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937
350	0.04225	2790.4	3043.9	6.3357	0.035262	2770.1	3016.9	6.2305	0.029975	2748.3	2988.1	6.1321
400	0.04742	2893.7	3178.3	6.5432	0.039958	2879.5	3159.2	6.4502	0.034344	2864.6	3139.4	6.3658
450	0.05217	2989.9	3302.9	6.7219	0.044187	2979.0	3288.3	6.6353	0.038194	2967.8	3273.3	6.5579
500	0.05667	3083.1	3423.1	6.8826	0.048157	3074.3	3411.4	6.8000	0.041767	3065.4	3399.5	6.7266
550	0.06102	3175.2	3541.3	7.0308	0.051966	3167.9	3531.6	6.9507	0.045172	3160.5	3521.8	6.8800
600	0.06527	3267.2	3658.8	7.1693	0.055665	3261.0	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221
700	0.07355	3453.0	3894.3	7.4247	0.062850	3448.3	3888.3	7.3487	0.054829	3443.6	3882.2	7.2822
800	0.08165	3643.2	4133.1	7.6582	0.069856	3639.5	4128.5	7.5836	0.061011	3635.7	4123.8	7.5185
1000	0.08964	3838.8	43/0.0	7.8701	0.076750	3830.7 4027 5	43/3.0	7.8014	0.067082	3832.7	4309.3	7.7372
11000	0.09756	4040.1	4020.4	0.0700	0.083571	4037.0	4022.0	0.0000	0.073079	4030.0	4019.0	7.9419
1200	0.10043	4247.1	40/9./ 5120 /	0.2709 9.4524	0.090341	4245.0	40/7.4 5127.4	0.1902	0.079025	4242.0	40/0.0 5125 5	0.1330
1200	0.11320	4439.0	5404 1	8 6273	0.097073	4457.5	5402.6	8 5551	0.004934	4430.1	5401.0	8 / 925
1500	0.12107	4077.7	5404.1	0.0275	0.103701	4070.1	5402.0	0.0001	0.090817	4074.5	5401.0	0.4920
0	P	= 9.0 MP	a (303.35	°C)	P =	= 10.0 MP	a (311.00	°C)	P =	12.5 MPa	(327.81	°C)
5at.	0.020489	2008.0	2742.9	5.0791	0.018028	2040.2	2720.0	5.0109	0.013496	2505.6	2074.3	0.4638
320	0.025204	2047.0	2007.1	0.0730	0.019877	2611.0	2010.3	5.0460	0.016129	2624.0	2026 6	5 7120
400	0.020060	2720.0	2907.0	6.000	0.022440	2099.0	2924.0	6.2141	0.010138	2024.9	2020.0	5.7150
400	0.029900	2049.2	3258.0	6 4872	0.020430	2033.1	3097.0	6 / 2191	0.020030	20137	3201 5	6 2749
500	0.036793	3056.3	3387.4	6 6603	0.023702	3047.0	3375.1	6 5995	0.025630	3023.2	3343.6	6 4651
550	0.039885	3153.0	3512.0	6.8164	0.035655	3145.4	3502.0	6 7585	0.028033	3126.1	3476.5	6 6317
600	0.042861	3248.4	3634.1	6.9605	0.038378	3242.0	3625.8	6.9045	0.030306	3225.8	3604.6	6.7828
650	0.045755	3343.4	3755.2	7.0954	0.041018	3338.0	3748.1	7.0408	0.032491	3324.1	3730.2	6.9227
700	0.048589	3438.8	3876.1	7.2229	0.043597	3434.0	3870.0	7.1693	0.034612	3422.0	3854.6	7.0540
800	0.054132	3632.0	4119.2	7.4606	0.048629	3628.2	4114.5	7.4085	0.038724	3618.8	4102.8	7.2967
900	0.059562	3829.6	4365.7	7.6802	0.053547	3826.5	4362.0	7.6290	0.042720	3818.9	4352.9	7.5195
1000	0.064919	4032.4	4616.7	7.8855	0.058391	4029.9	4613.8	7.8349	0.046641	4023.5	4606.5	7.7269
1100	0.070224	4240.7	4872.7	8.0791	0.063183	4238.5	4870.3	8.0289	0.050510	4233.1	4864.5	7.9220
1200	0.075492	4454.2	5133.6	8.2625	0.067938	4452.4	5131.7	8.2126	0.054342	4447.7	5127.0	8.1065
1300	0.080733	4672.9	5399.5	8.4371	0.072667	4671.3	5398.0	8.3874	0.058147	4667.3	5394.1	8.2819

921 Apéndice 1

Vapor	de	agua	sobrecalentado	(conclusión)

	0											
Т	V	и	h	s	v	и	h	s	v	u	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K
	<i>P</i> =	15.0 MP	a (342.16	°C)	P = 1	7.5 MPa	(354.67	°C)	P =	20.0 MPa	a (365.75	°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463	2684.3	2902.4	5.7211	0.009950	2617.9	2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204	2845.4	3111.4	6.0212	0.012721	2807.3	3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385	2972.4	3276.7	6.2424	0.014793	2945.3	3241.2	6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305	3085.8	3423.6	6.4266	0.016571	3064.7	3396.2	6.3390
600	0.024921	3209.3	3583.1	6.6796	0.0210/3	3192.5	3561.3	6.5890	0.018185	3175.3	3539.0	6.5075
650	0.026804	3310.1	3/12.1	6.8233	0.022742	3295.8	3693.8	6./366	0.019695	3281.4	36/5.3	6.6593
700	0.028621	3409.8	3839.1	6.9573	0.024342	3397.5	3823.5	6.8735	0.021134	3385.1	3807.8	6.7991
800	0.032121	3609.3	4091.1	7.2037	0.027405	3599.7	4079.3	7.1237	0.023870	3590.1	4067.5	7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348	3803.5	4334.6	7.3511	0.026484	3795.7	4325.4	7.2829
1000	0.038808	4017.1	4599.2	7.6378	0.033215	4010.7	4592.0	7.5616	0.029020	4004.3	4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029	4222.3	4852.8	7.7588	0.031504	4216.9	4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806	4438.5	5117.6	7.9449	0.033952	4433.8	5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		<i>P</i> = 25	.0 MPa			<i>P</i> = 30.0) MPa			P = 35	.0 MPa	
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.002798	2068.9	2152.8	4.4758	0.002105	1914.9	1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299	2452.9	2611.8	5.1473	0.003434	2253.3	2373.5	4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737	2618.9	2821.0	5.4422	0.004957	2497.5	2671.0	5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691	2824.0	3084.8	5.7956	0.006933	2755.3	2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175	2974.5	3279.7	6.0403	0.008348	2925.8	3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445	3103.4	3446.8	6.2373	0.009523	3065.6	3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590	3221.7	3599.4	6.4074	0.010565	3190.9	3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2	4020.0	6.8301	0.013278	3531.6	3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473	3764.6	4288.8	7.0695	0.014904	3749.0	4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240	3978.6	4555.8	7.2880	0.016450	3965.8	4541.5	7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954	4195.2	4823.9	7.4906	0.017942	4184.4	4812.4	7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630	4415.3	5094.2	7.6807	0.019398	4406.1	5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		<i>P</i> = 40	.0 MPa			<i>P</i> = 50.0) MPa			<i>P</i> = 60	.0 MPa	
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731	1787.8	1874.4	4.0029	0.001633	1745.2	1843.2	3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009	1960.3	2060.7	4.2746	0.001816	1892.9	2001.8	4.1630
450	0.003692	2364.2	2511.8	4.9449	0.002487	2160.3	2284.7	4.5896	0.002086	2055.1	2180.2	4.4140
500	0.005623	2681.6	2906.5	5.4744	0.003890	2528.1	2722.6	5.1762	0.002952	2393.2	2570.3	4.9356
550	0.006985	2875.1	3154.4	5.7857	0.005118	2769.5	3025.4	5.5563	0.003955	2664.6	2901.9	5.3517
600	0.008089	3026.8	3350.4	6.0170	0.006108	2947.1	3252.6	5.8245	0.004833	2866.8	3156.8	5.6527
650	0.009053	3159.5	3521.6	6.2078	0.006957	3095.6	3443.5	6.0373	0.005591	3031.3	3366.8	5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717	3228.7	3614.6	6.2179	0.006265	3175.4	3551.3	6.0814
800	0.011521	3511.8	3972.6	6.6613	0.009073	3472.2	3925.8	6.5225	0.007456	3432.6	3880.0	6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296	3702.0	4216.8	6.7819	0.008519	3670.9	4182.1	6.6725
1000	0.014360	3952.9	4527.3	7.1355	0.011441	3927.4	4499.4	7.0131	0.009504	3902.0	4472.2	6.9099
1100	0.015686	4173.7	4801.1	7.3425	0.012534	4152.2	4778.9	7.2244	0.010439	4130.9	4757.3	7.1255
1200	0.016976	4396.9	5075.9	7.5357	0.013590	4378.6	5058.1	7.4207	0.011339	4360.5	5040.8	7.3248
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

922		
TABLAS DE PROPIEDADES,	FIGURAS Y DIAGRAMAS (UNIDADES SI)	

Agua I	íquida com	primida										
Т	V	и	h	S	V	и	h	s	v	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	5 MPa (263.94 °C	;)	P =	10 MPa	(311.00 °C	C)	<i>P</i> =	15 MPa	(342.16 °	°C)
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	1.5148
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206
200	0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	2.3100
220	0.0011868	938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	2.4951
240	0.0012268	1031.6	1037.7	2.6983	0.0012192	1026.2	1038.3	2.6876	0.0012121	1021.0	1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653	1121.6	1134.3	2.8710	0.0012560	1115.1	1134.0	2.8586
280					0.0013226	1221.8	1235.0	3.0565	0.0013096	1213.4	1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783	1317.6	1338.3	3.2279
320									0.0014733	1431.9	1454.0	3.4263
340									0.0016311	1567.9	1592.4	3.6555
	P =	20 MPa	(365.75 °	C)		<i>P</i> = 30	MPa			<i>P</i> = 50	MPa	
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705
120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	1.4859
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	1.6916
160	0.0010886	665.28	687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	2.0790
200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628
220	0.0011697	925.77	949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	2.4414
240	0.0012053	1016.1	1040.2	2.6676	0.0011927	1006.9	1042.7	2.6491	0.0011708	990.55	1049.1	2.6156
260	0.0012472	1109.0	1134.0	2.8469	0.0012314	1097.8	1134.7	2.8250	0.0012044	1078.2	1138.4	2.7864
280	0.0012978	1205.6	1231.5	3.0265	0.0012770	1191.5	1229.8	3.0001	0.0012430	1167.7	1229.9	2.9547
300	0.0013611	1307.2	1334.4	3.2091	0.0013322	1288.9	1328.9	3.1761	0.0012879	1259.6	1324.0	3.1218
320	0.0014450	1416.6	1445.5	3.3996	0.0014014	1391.7	1433.7	3.3558	0.0013409	1354.3	1421.4	3.2888
340	0.0015693	1540.2	1571.6	3.6086	0.0014932	1502.4	1547.1	3.5438	0.0014049	1452.9	1523.1	3.4575
360	0.0018248	1703.6	1740.1	3.8787	0.0016276	1626.8	1675.6	3.7499	0.0014848	1556.5	1630.7	3.6301
380					0.0018729	1782.0	1838.2	4.0026	0.0015884	1667.1	1746.5	3.8102

Propiedades termodinámicas del refrigerante R134a

Refrigerante 134a saturado. Tabla de temperatura

		Volumen es m ³ /l	specífico, kg	Ene	rgía intei kJ/kg	rna,		Entalpia kJ/kg	,		Entropía, kJ/kg · K	
Temp., 7 °C	Pres. sat., P _{sat} kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u _g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., <i>s</i> g
-40	51.25	0.0007054	0.36081	-0.036	207.40	207.37	0.000	225.86	225.86	0.00000	0.96866	0.96866
-38	56.86	0.0007083	0.32732	2.475	206.04	208.51	2.515	224.61	227.12	0.01072	0.95511	0.96584
-36	62.95	0.0007112	0.29751	4.992	204.67	209.66	5.037	223.35	228.39	0.02138	0.94176	0.96315
-34	69.56	0.0007142	0.27090	7.517	203.29	210.81	7.566	222.09	229.65	0.03199	0.92859	0.96058
-32	76.71	0.0007172	0.24711	10.05	201.91	211.96	10.10	220.81	230.91	0.04253	0.91560	0.95813
-30	84.43	0.0007203	0.22580	12.59	200.52	213.11	12.65	219.52	232.17	0.05301	0.90278	0.95579
-28	92.76	0.0007234	0.20666	15.13	199.12	214.25	15.20	218.22	233.43	0.06344	0.89012	0.95356
-26	101.73	0.0007265	0.18946	17.69	197.72	215.40	17.76	216.92	234.68	0.07382	0.87762	0.95144
-24	111.37	0.0007297	0.17395	20.25	196.30	216.55	20.33	215.59	235.92	0.08414	0.86527	0.94941
-22	121.72	0.0007329	0.15995	22.82	194.88	217.70	22.91	214.26	\$237.17	0.09441	0.85307	0.94748
-20	132.82	0.0007362	0.14729	25.39	193.45	218.84	25.49	212.91	238.41	0.10463	0.84101	0.94564
-18	144.69	0.0007396	0.13583	27.98	192.01	219.98	28.09	211.55	239.64	0.11481	0.82908	0.94389
-16	157.38	0.0007430	0.12542	30.57	190.56	221.13	30.69	210.18	240.87	0.12493	0.81729	0.94222
-14	170.93	0.0007464	0.11597	33.17	189.09	222.27	33.30	208.79	242.09	0.13501	0.80561	0.94063
-12	185.37	0.0007499	0.10736	35.78	187.62	223.40	35.92	207.38	243.30	0.14504	0.79406	0.93911
-10	200.74	0.0007535	0.099516	38.40	186.14	224.54	38.55	205.96	244.51	0.15504	0.78263	0.93766
-8	217.08	0.0007571	0.092352	41.03	184.64	225.67	41.19	204.52	245.72	0.16498	0.77130	0.93629
-6	234.44	0.0007608	0.085802	43.66	183.13	226.80	43.84	203.07	246.91	0.17489	0.76008	0.93497
-4	252.85	0.0007646	0.079804	46.31	181.61	227.92	46.50	201.60	248.10	0.18476	0.74896	0.93372
-2	272.36	0.0007684	0.074304	48.96	180.08	229.04	49.17	200.11	249.28	0.19459	0.73794	0.93253
0	293.01	0.0007723	0.069255	51.63	178.53	230.16	51.86	198.60	250.45	0.20439	0.72701	0.93139
2	314.84	0.0007763	0.064612	54.30	176.97	231.27	54.55	197.07	251.61	0.21415	0.71616	0.93031
4	337.90	0.0007804	0.060338	56.99	175.39	232.38	57.25	195.51	252.77	0.22387	0.70540	0.92927
6	362.23	0.0007845	0.056398	59.68	173.80	233.48	59.97	193.94	253.91	0.23356	0.69471	0.92828
8	387.88	0.0007887	0.052762	62.39	172.19	234.58	62.69	192.35	255.04	0.24323	0.68410	0.92733
10	414.89	0.0007930	0.049403	65.10	170.56	235.67	65.43	190.73	256.16	0.25286	0.67356	0.92641
12	443.31	0.0007975	0.046295	67.83	168.92	236.75	68.18	189.09	257.27	0.26246	0.66308	0.92554
14	473.19	0.0008020	0.043417	70.57	167.26	237.83	70.95	187.42	258.37	0.27204	0.65266	0.92470
16	504.58	0.0008066	0.040748	73.32	165.58	238.90	73.73	185.73	259.46	0.28159	0.64230	0.92389
18	537.52	0.0008113	0.038271	76.08	163.88	239.96	76.52	184.01	260.53	0.29112	0.63198	0.92310

		Volumen e m ³	específico, /kg	Ene	ergía inte kJ/kg	rna,		Entalpía kJ/kg			Entropía, kJ/kg · K	
Temp. T °C	Pres. sat., P _{sat} kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., <i>u_{fg}</i>	Vapor sat., u _g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s _g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Fuente: Las tablas A-11 a A-13 se generaron utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la R134a, la cual está basada en la ecuación fundamental de estado desarrollada por R. Tillner-Roth y H. D. Baehr, "An Internacional Standard Formulation for the Thermodynamic Properties de 1,1,1,2-Tetrafluoretano (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa", J. *Phys. Chem, Ref. Data*, vol. 23, núm. 5, 1994. Los valores de entalpía y entropía para el líquido saturado son cero a –40°C (y –40°F).

Refrige	erante 13	4a saturado	. Tabla de p	oresión								
		Volumen o m ³	específico, []] /kg	Ener	gía inter kJ/kg	ma,	l	Entalpía, kJ/kg			Entropía, kJ/kg · K	
Pres., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat} °C	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u _g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s _g
60	-36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.95183
120	-22.32	0.0007324	0.16212	22.40	195.11	217.51	22.49	214.48	236.97	0.09275	0.85503	0.94779
140	-18.77	0.0007383	0.14014	26.98	192.57	219.54	27.08	212.08	239.16	0.11087	0.83368	0.94456
160	-15.60	0.0007437	0.12348	31.09	190.27	221.35	31.21	209.90	241.11	0.12693	0.81496	0.94190
180	-12.73	0.0007487	0.11041	34.83	188.16	222.99	34.97	207.90	242.86	0.14139	0.79826	0.93965
200	-10.09	0.0007533	0.099867	38.28	186.21	224.48	38.43	206.03	244.46	0.15457	0.78316	0.93773
240	-5.38	0.0007620	0.083897	44.48	182.67	227.14	44.66	202.62	247.28	0.17794	0.75664	0.93458
280	-1.25	0.0007699	0.072352	49.97	179.50	229.46	50.18	199.54	249.72	0.19829	0.73381	0.93210
320	2.46	0.0007772	0.063604	54.92	176.61	231.52	55.16	196.71	251.88	0.21637	0.71369	0.93006
360	5.82	0.0007841	0.056738	59.44	173.94	233.38	59.72	194.08	253.81	0.23270	0.69566	0.92836
400	8.91	0.0007907	0.051201	63.62	171.45	235.07	63.94	191.62	255.55	0.24761	0.67929	0.92691
450	12.46	0.0007985	0.045619	68.45	168.54	237.00	68.81	188.71	257.53	0.26465	0.66069	0.92535
500	15.71	0.0008059	0.041118	72.93	165.82	238.75	73.33	185.98	259.30	0.28023	0.64377	0.92400
550	18.73	0.0008130	0.037408	77.10	163.25	240.35	77.54	183.38	260.92	0.29461	0.62821	0.92282
600	21.55	0.0008199	0.034295	81.02	160.81	241.83	81.51	180.90	262.40	0.30799	0.61378	0.92177
650	24.20	0.0008266	0.031646	84.72	158.48	243.20	85.26	178.51	263.77	0.32051	0.60030	0.92081
700	26.69	0.0008331	0.029361	88.24	156.24	244.48	88.82	176.21	265.03	0.33230	0.58763	0.91994
750	29.06	0.0008395	0.027371	91.59	154.08	245.67	92.22	173.98	266.20	0.34345	0.57567	0.91912
800	31.31	0.0008458	0.025621	94.79	152.00	246.79	95.47	171.82	267.29	0.35404	0.56431	0.91835
850	33.45	0.0008520	0.024069	97.87	149.98	247.85	98.60	169.71	268.31	0.36413	0.55349	0.91762
900	35.51	0.0008580	0.022683	100.83	148.01	248.85	101.61	167.66	269.26	0.37377	0.54315	0.91692
950	37.48	0.0008641	0.021438	103.69	146.10	249.79	104.51	165.64	270.15	0.38301	0.53323	0.91624
1000	39.37	0.0008700	0.020313	106.45	144.23	250.68	107.32	163.67	270.99	0.39189	0.52368	0.91558
1200	46.29	0.0008934	0.016715	116.70	137.11	253.81	117.77	156.10	273.87	0.42441	0.48863	0.91303
1400	52.40	0.0009166	0.014107	125.94	130.43	256.37	127.22	148.90	276.12	0.45315	0.45734	0.91050
1600	57.88	0.0009400	0.012123	134.43	124.04	258.47	135.93	141.93	277.86	0.47911	0.42873	0.90784
1800	62.87	0.0009639	0.010559	142.33	117.83	260.17	144.07	135.11	279.17	0.50294	0.40204	0.90498
2000	67.45	0.0009886	0.009288	149.78	111.73	261.51	151.76	128.33	280.09	0.52509	0.37675	0.90184
2500	77.54	0.0010566	0.006936	166.99	96.47	263.45	169.63	111.16	280.79	0.57531	0.31695	0.89226
3000	86.16	0.0011406	0.005275	183.04	80.22	263.26	186.46	92.63	279.09	0.62118	0.25776	0.87894

Refrig	gerante 13	4a sobre	calentad	lo								
Т	V	u	h	S	V	u	h	S	V	u	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.0	6 MPa (7	_{sat} = -36.	.95 °C)	P = 0	.10 MPa ($T_{sat} = -26$.37 °C)	P = 0.1	4 MPa (7	r _{sat} = -18	.77 °C)
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721	0.11011	210.01	200.10	0.5110
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0331
20	0.39302	249.35	272.94	1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	1.0624
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1.1195
50	0.43495	272.64	298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	1.1474
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	1.1749
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	1.2020
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	1.2288
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.1	8 MPa (7	$t_{sat} = -12.$.73 °C)	P = 0	.20 MPa ($T_{sat} = -10$	(3° 90.	<i>P</i> = 0.	24 MPa ($T_{sat} = -5.$	38 °C)
Sat	0.11041	222.99	242.86	0.9397	0.09987	224 48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0 11189	225.02	245.16	0 9484	0.09991	224 55	244 54	0.9380	0.00000	ALC: Y I A Y	6 17 16 0	015010
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00	262.04	1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831
20	0.12748	247.64	270.59	1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	1.0134
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	1.0429
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06	1.0718
50	0.14230	271.36	296.98	1.1256	0.12766	271.15	296.68	1.1163	0.10570	270.71	296.08	1.1001
60	0.14715	279.56	306.05	1.1532	0.13206	279.37	305.78	1.1441	0.10942	278.97	305.23	1.1280
70	0.15196	287.91	315.27	1.1805	0.13641	287.73	315.01	1.1714	0.11310	287.36	314.51	1.1554
80	0.15673	296.42	324.63	1.2074	0.14074	296.25	324.40	1.1983	0.11675	295.91	323.93	1.1825
90	0.16149	305.07	334.14	1.2339	0.14504	304.92	333.93	1.2249	0.12038	304.60	333.49	1.2092
100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	1.2356
	P = 0.	28 MPa ()	$T_{sat} = -1.2$	25 °C)	P =	0.32 MPa	$(T_{sat} = 2.4$	46 °C)	P = 0	.40 MPa	$(T_{sat} = 8.9)$	1 °C)
Sat.	0.07235	229.46	249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83	0.9362				1000000000				
10	0.07646	238.27	259.68	0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97	256.58	0.9305
20	0.07997	246.13	268.52	0.9987	0.06925	245.50	267.66	0.9856	0.054213	244.18	265.86	0.9628
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36	275.07	0.9937
40	0.08672	262.10	286.38	1.0576	0.07530	261.60	285.70	1.0451	0.059292	260.58	284.30	1.0236
50	0.09000	270.27	295.47	1.0862	0.07823	269.82	294.85	1.0739	0.061724	268.90	293.59	1.0528
60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104	277.32	302.96	1.0814
70	0.09644	286.99	314.00	1.1418	0.08395	286.62	313.48	1.1298	0.066443	285.86	312.44	1.1094
80	0.09961	295.57	323.46	1.1690	0.08675	295.22	322.98	1.1571	0.068747	294.53	322.02	1.1369
90	0.10275	304.29	333.06	1.1958	0.08953	303.97	332.62	1.1840	0.071023	303.32	331.73	1.1640
100	0.10587	313.15	342.80	1.2222	0.09229	312.86	342.39	1.2105	0.073274	312.26	341.57	1.1907
110	0.10897	322.16	352.68	1.2483	0.09503	321.89	352.30	1.2367	0.075504	321.33	351.53	1.2171
120	0.11205	331.32	362.70	1.2742	0.09775	331.07	362.35	1.2626	0.077717	330.55	361.63	1.2431
130	0.11512	340.63	372.87	1.2997	0.10045	340.39	372.54	1.2882	0.079913	339.90	3/1.87	1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

Refrig	erante 134	a sobred	calentad	o (conclus	sión)							
Т	v	и	h	s	v	и	h	s	v	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.5	iO MPa (7	r _{sat} = 15.	71 °C)	P = 0.	60 MPa (1	r _{sat} = 21.5	55 °C)	P = 0.	70 MPa (T _s	_{at} = 26.69	(2° 6
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115	242.40	263.46	0.9383				ALCONTRACTOR				
30	0.044338	250.84	273.01	0.9703	0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456	259.26	282.48	1.0011	0.037865	257.86	280.58	0.9816	0.031696	256.39	278.57	0.9641
50	0.048499	267.72	291.96	1.0309	0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	0.9954
60	0.050485	276.25	301.50	1.0599	0.041389	275.15	299.98	1.0417	0.034875	274.01	298.42	1.0256
70	0.052427	284.89	311.10	1.0883	0.043069	283.89	309.73	1.0705	0.036373	282.87	308.33	1.0549
80	0.054331	293.64	320.80	1.1162	0.044710	292.73	319.55	1.0987	0.037829	291.80	318.28	1.0835
90	0.056205	302.51	330.61	1.1436	0.046318	301.67	329.46	1.1264	0.039250	300.82	328.29	1,1114
100	0.058053	311.50	340.53	1.1705	0.047900	310.73	339.47	1.1536	0.040642	309.95	338.40	1.1389
110	0.059880	320.63	350.57	1.1971	0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	1.1658
120	0.061687	329.89	360.73	1.2233	0.050997	329.23	359.82	1.2067	0.043358	328.55	358.90	1.1924
130	0.063479	339.29	371.03	1.2491	0.052519	338.67	370.18	1.2327	0.044688	338.04	369.32	1.2186
140	0.065256	348.83	381.46	1.2747	0.054027	348.25	380.66	1.2584	0.046004	347.66	379.86	1.2444
150	0.067021	358.51	392.02	1.2999	0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	1.2699
160	0.068775	368.33	402.72	1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
	P = 0.8	80 MPa (7	$T_{\rm saf} = 31.$	31 °C)	P = 0.	90 MPa (1	r _{sat} = 35.5	51 °C)	P = 1.	00 MPa (T _s	at = 39.37	7 °C)
Sat.	0.025621	246.79	267.29	0.9183	0.022683	248.85	269.26	0.9169	0.020313	250.68	270.99	0.9156
40	0.027035	254.82	276.45	0.9480	0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	0.9179
50	0.028547	263.86	286.69	0.9802	0.024809	262.44	284.77	0.9660	0.021796	260.94	282.74	0.9525
60	0.029973	272.83	296.81	1.0110	0.026146	271.60	295.13	0.9976	0.023068	270.32	293.38	0.9850
70	0.031340	281.81	306.88	1.0408	0.027413	280.72	305.39	1.0280	0.024261	279.59	303.85	1.0160
80	0.032659	290.84	316.97	1.0698	0.028630	289.86	315.63	1.0574	0.025398	288.86	314.25	1.0458
90	0.033941	299.95	327.10	1.0981	0.029806	299.06	325.89	1.0860	0.026492	298.15	324.64	1.0748
100	0.035193	309.15	337.30	1.1258	0.030951	308.34	336.19	1.1140	0.027552	307.51	335.06	1.1031
110	0.036420	318.45	347.59	1.1530	0.032068	317.70	346.56	1.1414	0.028584	316.94	345.53	1.1308
120	0.037625	327.87	357.97	1.1798	0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	1.1580
130	0.038813	337.40	368.45	1.2061	0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	1.1846
140	0.039985	347.06	379.05	1.2321	0.035302	346.46	3/8.23	1.2210	0.031554	345.85	377.40	1.2109
150	0.041143	356.85	389.76	1.25//	0.036349	356.28	389.00	1.246/	0.032512	355.71	388.22	1.2368
100	0.042290	300./0	400.59	1.2830	0.037384	300.23	399.88	1.2/21	0.033457	305.70	399.10	1.2023
1/0	0.043427	3/0.81	411.00	1.3080	0.038408	3/0.31	410.88	1.2972	0.034392	3/0.81	410.20	1.28/5
180	0.044554	386.99	422.64	1.3327	0.039423	380.02	422.00	1.3221	0.035317	380.04	421.30	1.3124
	P = 1.2	20 MPa (1	_{saf} = 46.	29 °C)	P = 1.	40 MPa (1	$f_{sat} = 52.4$	10 °C)	P = 1.	60 MPa (T _s	_{af} = 57.88	3°C)
Sat.	0.016715	253.81	273.87	0.9130	0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
50	0.017201	257.63	278.27	0.9267				0.0000				0.0100
60	0.018404	267.56	289.64	0.9614	0.015005	264.46	285.47	0.9389	0.0123/2	260.89	280.69	0.9163
70	0.019502	2/7.21	300.61	0.9938	0.016060	274.62	297.10	0.9733	0.013430	2/1./6	293.25	0.9535
80	0.020529	286.75	311.39	1.0248	0.017023	284.51	308.34	1.0056	0.014362	282.09	305.07	0.9875
90	0.021506	296.26	322.07	1.0546	0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	1.0194
100	0.022442	305.80	332.73	1.0836	0.018//8	304.01	330.30	1.0661	0.016014	302.14	327.76	1.0500
110	0.023348	310.38	343.40	1.1118	0.019597	313./0	341.19	1.0949	0.016//3	312.07	338.91	1.0795
120	0.024228	323.03	304.11	1.1394	0.020388	323.00	302.09	1.1230	0.017500	322.02	350.02	1.1081
130	0.025086	334.77	304.88	1.1004	0.021135	333.41	303.02	1.1304	0.018201	332.00	301.12	1.1360
140	0.025927	344.01	3/5./2	1.1930	0.021904	343.34	374.01	1.1//3	0.018882	342.00	3/2.20	1.1032
160	0.020703	304.00	300.00	1.2192	0.022030	303.3/	305.07	1.2030	0.019545	362.20	204 60	1.1900
170	0.02/000	274.70	109 82	1.2449	0.023355	303.31	390.20	1.2290	0.020194	302.30	406.02	1.2103
180	0.020307	374.78	400.02	1 2054	0.024001	3/3./3	407.43	1.2004	0.020830	3/2.09	417 44	1.2421
100	0.029138	303.08	420.07	1.2904	0.024/0/	304.10	410.70	1.2007	0.021400	303.11	417.44	1.20/0

Ficha técnica de Caldera pirotubular VYC modelo HTP-4000

aldera de

Modelo HTP

La caldera de vapor HTP con capacidades de vaporización entre 1.250 y 28.000 kgv/h posee las características de las calderas de gran producción de vapor gracias al principio técnico de tres pasos de humos, caracterizado por una eficacia sobradamente demostrada.

Diseñada para perfeccionar los métodos de generación de grandes cantidades de vapor con el máximo espacio posible para el vapor y las mínimas dimensiones externas. El hogar de combustión (primer paso), más los dos haces de tubos de humos (segundo y tercer paso) y la cámara de inversión húmeda en la parte posterior, forman un conjunto perfectamente integrado dentro del cuerpo sometido a presión. Dotada del diseño y de las dimensiones precisas para hacer frente a unas prioridades muy claras: tanto el tamaño del hogar como las superficies de calefacción por radiación y convección, así como los volúmenes destinados al agua y al vapor, se han diseñado y dimensionado con la máxima atención posible hacia los más mínimos detalles, para generar vapor de calidad con un equipo de reducidas dimensiones y un alto grado de optimización térmica.

Las calderas de vapor HTP pueden combustionar gas natural, gas propano, gasóleo, fuel-oil, biogas...etc.

La caldera de vapor HTP es de tipo fijo pirotubular de tres pasos de humos horizontal y circulación natural, con hogar interior, haz de convección tubular paralelo al hogar y salida de humos situada en la parte posterior. Está dotado de un nivel de agua definido y regulado, encima del cual se encuentra la cámara de vapor saturado.

Dicha caldera se caracteriza por una estructura sólida, compacta y sumamente sencilla, construida mediante una envolvente cilíndrica del espesor suficiente para soportar la presión interior, para la cual ha sido construida, y cerrada por ambos extremos mediante placas que constituyen el soporte del hogar, de la cámara de inversión de humos y a su vez soportan, también, los tubos de humos.

Su dimensionado se ha realizado de forma que en su interior estén los elementos que la completan como son:

· Hogar de combustión.

 Tubos de humos del haz de convección fijados a las placas mediante expandido y soldadura.

Un volumen de agua suficiente para poder soportar con estabilidad las variaciones de carga a que sea sometida.

· Cámara de vapor.

El hogar está construido de acero al carbono adecuado para altas temperaturas. Se coloca soldado a las placas tubulares de forma que permita fácilmente el acceso a su interior para su revisión y limpieza. Su diámetro es suficiente para evitar choques de llama con las paredes y con una longitud tal que la combustión sea completa en su interior.

La cámara de inversión de humos, totalmente refrigerada, desvía los humos calientes al haz de convección y de éste a la caja de humos frontal. Dispone de aberturas de paso de hombre para el acceso al interior de la zona de aguas de la caldera, facilitando las operaciones de limpieza y revisión.

La caja de humos frontal dispone de una puerta basculante y a la cámara de inversión de humos posterior se accede desde el hogar; ambas permiten también el acceso para cualquier revisión, reparación o limpieza.

Asimismo la caldera cuenta con dos mirillas, una situada en el quemador y otra situada en la parte posterior del hogar, para la observación de la llama durante la combustión.

La construcción de la caldera se completa mediante una base rígida,

formada por perfiles de acero normalizados soldados, que soporta el conjunto del caldera.

El cuerpo de la caldera está debidamente calorifugado, con el fin de evitar, al máximo posible, las temperaturas periféricas y las pérdidas por radiación.

Vista interior de una caldera de vapor HTP.

Posibilidades de aplicación

Para satisfacer cualquier necesidad de vapor, con o sin periodos de interrupción, de una manera rápida y eficiente. Puede trabajar como caldera principal o auxiliar, en instalación individual o múltiple para un funcionamiento flexible.

Entre algunos de los proyectos llevados a cabo con este tipo de calderas se encuentran las suministradas en establecimientos industriales y de servicios en los sectores de la alimentación, bebidas, textil, materiales de construcción, productos químicos, farmacéuticos, cerámica, papel, en general cualquier sector que precise calor y vapor para tratamientos, fabricaciones y calentamiento.

VYC industrial

Principio de funcionamiento

Modelo HTP

A través de la aportación de combustible, el quemador proyecta la llama dentro del hogar cediendo el calor por radiación. Un gran intercambio térmico garantiza que este calor generado se transforme en vapor rápidamente, sin tensiones perjudiciales para los materiales que componen la caldera.

Las superficies calefactoras por radiación y convección trabajan conjuntamente para brindar una circulación muy rápida del agua y acelerar el ascenso de las burbujas hacia el espacio reservado al vapor.

Los gases regresan a la parte delantera a través de la cámara de inversión húmeda, recorriendo el primer haz tubular (segundo paso de humos), y son evacuados al exterior después de circular por el segundo haz tubular (tercer paso de humos).

Elementos de regulación, control y seguridad

· Regulación de la potencia del quemador con transductor de presión.

Protección mediante dos circuitos de seguridad enseriados por falta de agua y contra sobrepresiones.

 Regulación de nivel de agua por Dispositivo de control electrónico de nivel a electrodo capacitativo.

 Medición en contínuo de la conductividad, con bloqueo por exceso de ésta.

 Indicador de nivel visual con válvula de corte con bloqueo automático en caso de rotura del cristal.

Control de funcionamiento y averías basado en PLC.

El Controlador lógico programable (PLC) es un hardware industrial, que se utiliza para la obtención y gestión de datos. La industria buscó en las nuevas tecnologías electrónicas una solución más eficiente para reemplazar los sistemas de control basados en circuitos eléctricos con relés, interruptores y otros componentes comúnmente utilizados para el control de los sistemas de lógica combinacional. Hoy en día, los PLC no sólo controlan la lógica de funcionamiento de máquinas, plantas y procesos industriales, sino que también pueden manejar señales analógicas para realizar estrategias de regulación y control.

Basado en un aparato de automatización PLC hemos desarrollado nuestro propio programa de control de calderaes. Todas las funciones de regulación y control están integradas; desde los dispositivos para la regulación de la potencia del caldera, tanto si se trata de un quemador de gas o gasóleo o de un quemador dual, como de un sistema con varias etapas o modulante ya sea en un conjunto mecánico o electrónico, hasta el control del nivel de agua, las purgas continuas de sales, las purgas de fangos y lodos y los dispositivos de regulación del economizador. El control con el PLC es la solución idónea para cualquiera de estas y otras muchas aplicaciones.

Una pantalla TFT sensible al tacto permite activar de forma intuitiva todas las funciones disponibles de control y regulación así como representar y modificar los valores nominales definidos. La gestión integrada de las señales de funcionamiento registra y archiva los estados operativos antes de que pueda producirse un paro por avería. También permite mediante un módulo adicional opcional la conexión a sistemas de mando central de nivel superior vía Profibus DP, Ethernet u otros.

Instalación de dos calderas de vapor HTP.

Ventajas operativas

Funcionamiento flexible que supera fácilmente cualquier fluctuación de la demanda.

- Robusta, de funcionamiento seguro y diseñada para una larga vida útil.
 Económica y con bajas emisiones.
- Estabilidad en condiciones de altas presiones; también tanto en cargas máximas como mínimas.
- Vapor de gran calidad para usuarios exigentes.

Adaptable a todos los sistemas de quemadores, también a los de baja emisión NOx.

- · Circulación estable del agua y rápido intercambio de calor.
- · Facilidad de utilización y mantenimiento.
- · Máximos niveles de disponibilidad y seguridad.

ITP aldera de

Modelo HTP

Certificados y reglamentación

 Diseño y construcción de acuerdo con norma UNE-EN 12953 Calderas pirotubulares.

 Directiva 2014/68/UE del Parlamento Europeo y del Consejo, relativa a la armonización de las legislaciones de los Estados miembros sobre la comercialización de equipos a presión.

 Directiva 2014/35/UE del Parlamento Europeo y del Consejo, sobre la armonización de las legislaciones de los Estados miembros en materia de comercialización de material eléctrico destinado a utilizarse con determinados límites de tensión.

 Real Decreto 809/2021, por el que se aprueba el Reglamento de Equipos a Presión y su ITC EP-1 Calderas.

Certificación CE del modelo por parte de un organismo notificado.

 Procedimientos de soldadura de acuerdo con norma UNE-EN ISO 15614-1 y cualificación de soldadores de acuerdo con norma UNE-EN ISO 9606-1.

 Inspección de las uniones soldadas mediante procedimientos normalizados.

 Registro de materiales y un riguroso control de la fabricación, con ensayos e inspecciones, nos permite garantizar la construcción de acuerdo con los prototipos aprobados.

- · Prueba hidrostática de presión en fábrica.
- Verificación del cuadro eléctrico.

 Nuestra División de Legalizaciones puede asesorarles y darles asistencia técnico-legal en temas de seguridad industrial y medioambiental, en campos tan diversos como: Legalizaciones, Registros industriales, Licencias medioambientales, Aparatos a presión, Instalaciones de fluidos, Combustibles, Instalaciones: Eléctricas, térmicas y frigorificas, Plantas de productos químicos. Así como en Proyectos, Instalaciones y Homologaciones.

Equipamiento opcional

- Módulo de comunicación de señales (Profibus DP, Modbus Ethernet).
- Válvula para la purga continua automática de sales.
- Válvula de cierre rápido para la purga automática de fangos y lodos, con mando programable.
- Dispositivo refrigerador de muestras de agua.
- · Segundo grupo electro-bomba para la alimentación de agua.
- Economizador para la recuperación de calor de los gases de combustión.
- Contador para vapor, agua y combustible.
- · Indicador de nivel visual adicional.
- · Segunda válvula de seguridad de apertura total instantánea (AIT).
- Electrodo de seguridad de nivel mínimo/máximo de agua complementario.
- · Plataforma y escalera de mantenimiento

Post-venta

Al elegir una caldera de vapor VYC, no sólo se ha decidido por una gran marca, sino que además se dará cuenta de la tranquilidad que supone disponer de nuestra rápida y eficaz colaboración para atenciones preventivas, asistencia, recambios, asesoramiento y cualquier colaboración que precisen. Nunca se encontrarán solos ante un problema.

Vistas exteriores de dos calderas de vapor HTP.

Modelo HTP

Dimensiones, simbología y numeración

Punto de enganche para levantar la caldera

Peligro Tensión eléctrica

- 3 Salida vapor
- 4 Descarga válvula seguridad y drenaje
- 5 Conducción purga del nivel de agua
- 6 Conducción purga sales
- 7 Toma muestras agua
- 8 Conducción agua alimentación
- 9 Línea de aire comprimido
- 10 Conducción de purga
- 11 Salida de humos

HTP	Producción de vapor	Presión máxima admisible		Dimensio	ones princip	ales [mm]		Salida de humos	Base de soporte		Peso en vacio
Tipo	Kg/h	bar g	L1	L2	H1	H2	B1	ØDN	L3	B2	Tn
HTP-1250	1250	30	4134	3280	2262	2150	1914	250	1970	1060	4,2
HTP-2000	2000	30	4624	3820	2504	2232	2095	315	2230	1100	5,8
HTP-2600	2600	30	5064	4260	2557	2210	2182	315	1920	1360	7,3
HTP-3200	3200	30	5937	4760	2642	2210	2184	400	2325	1360	10,9
HTP-4000	4000	30	6448	5450	2947	2575	2439	400	3625	1655	10,9
HTP-5000	5000	30	6580	5570	3177	2700	2634	500	3375	1785	13,4
HTP-6000	6000	30	7494	6210	3217	2973	2672	500	3875	1820	15,5
HTP-7000	7000	30	7505	6210	3307	2956	2772	500	3875	1890	16,5
HTP-8000	8000	30	8095	6800	3562	3178	2874	630	4225	1950	19,2
HTP-10000	10000	30	8591	6860	3732	3065	3074	630	4225	2080	21,9
HTP-12000	12000	30	8996	7268	3867	3200	3224	710	4225	2180	24,5
HTP-13000	13000	30	8997	7446	4222	3465	3474	710	4475	2340	28,7
HTP-14000	14000	30	9007	7456	4222	3465	3474	710	4475	2340	29,4
HTP-16000	16000	30	9837	8286	4222	3465	3474	800	5275	2340	32,6
HTP-17000	17000	30	9837	8286	4467	3710	3669	800	5325	2365	34,3
HTP-18000	18000	30	9904	8286	4467	3658	3674	800	5325	2365	34,7
HTP-22000	22000	30	8245	8705	4747	3835	3874	900	5525	2500	40,6
HTP-28000	28000	30	9730	8955	5196	4302	4199	1000	5525	2700	50,5

· La dimensión L1 puede variar dependiendo del tipo de quemador y del fabricante del mismo.

 Bajo demanda, se puede variar el emplazamiento de las tubuladuras. Dimensiones con tolerancia ±1%.

* Clasificación para el emplazamiento del equipo según el Reglamento de Equipos a Presión, RD. 809/2021.

www.vycindustrial.com VYC (C) +34 93 735 77 21 🖂 119 (Q) calder@vycindustrial.com Avenc del Davi, 22 | Pol. Ind. Can Petit | 08227 - Terrassa (Barcelona) España

CC50-02/03

Folleto informativo, sin compromiso y sujeto a nuestras Condiciones Generales de Venta.

Ficha técnica de alternador Stamford sin escobillas serie KA-634

	KA-634 s	eries thr	ee-phase	synchro	onous bru	ushless g	jenerator		
	Rated Freq, Speed		50Hz 1	500r/min			60Hz 1	1800r/min	
	Insulation Class				Class H/Te	mp.(125°C)			
Model	Astro-Series(V)	380	400	415	440	416	440	460	480
	Astro-Parallel(V)	190	200	208	220	208	220	230	240
	Triangle Series (V)	220	230	240	254	240	254	266	277
	Rated Capacity(KVA)	750	750	750	725	869	900	925	950
KA 634D	Rated Output(KW)	600	600	600	580	695	720	740	760
NA-034D	Efficiency(%)	94.1	94.3	94.5	94.9	93.9	94.1	94.1	94.4
	Input Power(KW)	638	636	635	611	740	766	787	805
	Rated Capacity(KVA)	800	810	800	800	875	925	963	1000
VA 624C	Rated Output(KW)	640	648	640	640	700	740	770	800
NA-034C	Efficiency(%)	94.1	94.4	94.5	94.7	94.1	94.3	94.4	94.6
	Input Power(KW)	680	686.4	677	676	744	785	816	846
	Rated Capacity(KVA)	910	940	910	875	1025	1063	1075	1125
KA 634D	Rated Output(KW)	728	752	728	700	820	850	860	900
NA-034D	Efficiency(%)	94.8	95	95.1	95.3	94.7	94.9	95.1	95.2
	Input Power(KW)	768	791.6	765	734	866	896	905	946
	Rated Capacity(KVA)	1000	1030	1000	1000	1150	1200	1250	1300
KA C24E	Rated Output(KW)	800	824	800	800	920	960	1000	1040
KA-034E	Efficiency(%)	94.9	95.1	95.2	95.4	94.9	95.1	95.2	95.3
	Input Power(KW)	843	866.5	840	839	970	1010	1051	1092
	Rated Capacity(KVA)	1110	1130	1110	1110	1275	1338	1388	1438
KA 634E	Rated Output(KW)	888	904	888	888	1020	1070	1110	1150
104-0341	Efficiency(%)	95.2	95.5	95.5	95.6	95.2	95.4	95.4	95.5
	Input Power(KW)	932	946.6	930	929	1071	1123	1163	1204
	Rated Capacity(KVA)	1250	1250	1250	1188	1375	1438	1500	1563
KA-634G	Rated Output(KW)	1000	1000	1000	950	1100	1150	1200	1250
101-0340	Efficiency(%)	95.1	95.2	95.2	95.3	95.2	95.3	95.3	95.4
	Input Power(KW)	1052	1051	1051	997	1156	1207	1260	1311

Koten Power

www.kotenpower.com

Brushless Alternator

Product information :

KA Series three-phase synchronous brushless generators, are our company new products, which are basis on the internationally advanced technology. The products draw on the world's largest electrical machinery manufacturers' successful experience of using a number of their own innovative technology, such as insulation, ventilation, base structure, materials and surface treatment, etc., optimizing the design. Therefore, generator power density, efficiency, center high dimensions, as well as electrical, mechanical properties, etc., are up to the world advanced level.

the generators meet the requirements of JB/T10747-2007, and the relevant section of other international standards, such as International Electrotechnical Society IEC60034-22: 1996 "Reciprocating internal combustion engine driven alternator", GB755 Chinese rotary motor general technical conditions and BC5000 UK and North America NEMA MG1-22 standard.

Products character:

- 1. Optional permanent magnet generator system can provide a constant excitation in any condition.
- 2. Advanced automatic voltage regulator system can guarantee the genrator work normally even in the worst conditions.
- 3. Reorganization the twelve terminal block wiring to fit the different voltage requirements.
- 4. Standard 2 / 3 pitch windings curbed excessive midline current make it easily to operate with other generators in parallel.
- 5. Unique overall design of salient-pole rotating magnetic field, taking into account the advantages of separation of salient-pole and hidden structure, and also improved the thermal conditions and the winding coil increased mechanical strength.
- 6. Easy installation, convenient maintenance, with easily operated terminal, rotating diodes and the bolt axis.
- 7. Both of the single and full pivot type structures, in compliance with all the leading diesel engine land assembly interface standards.
- 8. Adopted a completely continuous damper winding and the 2 / 3 pitch windings effectively inhibit the output voltage waveform distortion and greatly reduce telephone harmonic factor and telephone interference factor.

Electrical performance:

voltage sinusoidal waveform distortion rate:≤5%, telephone harmonic factor (THF) : ≤2%, telephone interference factor (TIF) : ≤50

Note:

1. Under the following conditions, the generator could run continuously at the rated voltage: Ambient temperature < 40°C, altitude < 1000m, relative air humidity < 90%.

2. According to the user's need, we also can make other voltage range.

3. When ordering products model for further information, please click here to find our product model definition table.

Koten Power, reserves the right to modify the characteristics of its product at any time in order to incorporate the latest technological developments. The information contained in this document may therefore be changed without notice. For more technical data.

> Koten Power www.kotenpower.com

Ficha técnica de bomba Pedrollo de 3 HP PQm3000-MF 220/380 V trifásica

CAMPO DE PRESTACIONES

- Caudal hasta 90 l/min (5.4 m³/h)
- Altura manométrica hasta 100 m

LIMITES DE UTILIZO

- Altura de aspiración manométrica hasta 8 m
- Temperatura del líquido de -10 °C hasta +90 °C
 Temperatura ambiente de -10 °C hasta +40 °C
- (+50 °C para PQ 60)
- Presión máxima en el cuerpo de la bomba:
 6 bar for PQ 60, PQ 65
 7 bar for PQ 70, PQ 80

 - 10 bar for PQ 90, PQ 100, PQ 200, PQ 300
- Funcionamiento continuo S1

EJECUCION Y NORMAS DE SEGURIDAD

EN 60034-1 CE IEC 60034-1 CEI 2-3

CERTIFICACIONES

Empresa con sistema de gestión certificado DNV ISO 9001: CALIDAD

UTILIZOS E INSTALACIONES

Son recomendadas para bombear agua limpia, sin partículas abrasivas y líquidos químicamente no agresivos con los materiales que constituyen la bomba.

Las características hidráulicas de estas bombas, unidas a su tamaño reducido, sugieren su aplicación en el sector industrial o doméstico. La instalación se debe realizar en lugares cerrados o protegidos de la intemperie.

PATENTES - MARCAS - MODELOS

- Marca registrada n° 0001520591 PQm 60*

- Soporte: patente n° IT1243605
 Eje motor: patente n° 0000275945 (PQ60, PQ65)
 Modelo comunitario registrado n° 002146548

EJECUCION BAJO PEDIDO

- Cuerpo bomba con bocas roscadas NPT ANSI B 1.20.1
- Sello mecánico especial
- Otros voltajes
 Protección IP X5 para PQ 70-80-90-100-200-300

GARANTIA

2 años según nuestras condiciones generales de venta

60 Hz | PQ

MO	DELO	POTE	NCIA	P2)	m³/h	0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	3.0	3.6	4.2	4.8	5.4	
Monofásica	Trifásica	kW	HP		Q I/min	0	5	10	15	20	25	30	35	40	50	60	70	80	90	
PQm 60	PQ 60	0.37	0.50			40	38	33.5	29	24	19.5	15	10	5						
PQm 65	PQ 65	0.55	0.75	IE2		55	50	45.5	40.5	36	31	27	22	17	8					
PQm 70	PQ 70	0.60	0.85		1	65	62	57	52	47	42	37	32	27	18					
PQm 80	PQ 80	0.75	1			70	66	61	56	51	46	41	36.5	31	22					
PQm 90	PQ 90	0.75	1		H metros	90	82	71	60	49	38	27	17	5						
PQm 100	PQ 100	1.1	1.5	IE3	IE3		85	80	75	70	65	60	55	50	45	35	25	15		
PQm 200	PQ 200	1.5	2			90	86	81	76	71	65.5	60	55	50	40	30	20	10		
PQm 300	PQ 300	2.2	3			100	95	90	85	80	75	70	65	60	50	40	30	20	10	

 $\mathbf{Q} = Caudal \ \mathbf{H} = Altura manométrica total \ \mathbf{HS} = Altura de aspiración$

Tolerancia de las curvas de prestación según EN ISO9906 Grado 3B.

Clase de rendimiento del motor trifásico (IEC 60034-30-1)

PQ

POS.	COMPONENTE	CARACTERISTICA	S CONS	TRUCTIVAS							
1	CUERPO BOMBA	Hierro fundido con bo	Hierro fundido con bocas roscadas ISO 228/1								
2	SOPORTE	Aluminio con tapa en	Aluminio con tapa en latón y laminilla de ajuste frontal antibloqueo (patentado)								
3	RODETE	Latón, del tipo aletas	Latón, del tipo aletas periféricas radiales								
4	EJE MOTOR	Acero inoxidable AISI	431 (EN 10	0088-3 - 1.4104 f	or PQ 60, PQ 65)						
5	SELLO MECANICO	Electrobomba	Sello	o Eje		Materiales					
		Modelo	Mode	lo Diámetro	o Anillo fijo	Anillo móvil	Elastómero				
		PQ 60-65	AR-1	2 Ø 12 m	m Cerámica	Grafito	NBR				
		PQ 70-80-90	ST1-	12 Ø 12 m	m Carburo de silicio	Grafito	NBR				
		PQ 100-200-300	FN-1	4 Ø14 m	m Grafito	Cerámica	NBR				
6	RODAMIENTOS	Electrobomba	Mod	ielo							
		PQ 60-65	620	1 ZZ / 6201 ZZ							
		PQ 70-80-90	620	3 ZZ / 6203 ZZ							
		PQ 100-200-300	620	4 ZZ / 6204 ZZ							
7	CONDENSADOR	Electrobomba	Cap	acidad							
		Monofásica	(220	V)	(110 V o 127 V)						
		PQm 60	10	uF - 450 VL	25 µF - 250 VL						
		PQm 65	14	μF - 450 VL	25 µF - 250 VL						
		PQm 70	16	μF - 450 VL	60 µF - 300 VL						
		PQm 80	20	μF - 450 VL	60 µF - 300 VL						
		PQm 90	20	μF - 450 VL	60 µF - 300 VL						
		PQm 100	31.5	μF - 450 VL	60 μF - 250 VL						
		PQm 200	45	μF - 450 VL	80 μF - 250 VL						
		PQm 300	50	uF - 450 VL	-						

8 MOTOR ELECTRICO PQm: monofásica 220 V - 60 Hz con protección térmica incorporada en el bobinado. PQ: trifásica 220/380 V - 60 Hz o 220/440 V - 60 Hz.

➡ Las electrobombas trifásicas están equipadas con motores de alto rendimento en clase IE2 hasta P2=0.55 kW y en clase IE3 desde P2=0.60 kW (IEC 60034-30-1)

– Aislamiento: clase F – Protección: IP X4

60 Hz PQ

DIMENSIONES Y PESOS

MC	DELO	BO	CAS					D	MENSI	ONES n	nm					k	g				
Monofásica	Trifásica	DN1	DN2	а	f	h	h1	h2	h3	i	m	n	n1	w	5	1~	3~				
PQm 60	PQ 60				192	145	101		131	76	55	118	94-100			4.8	4.8				
PQm 65	PQ 65					222	152	113	20	143	78	80	120	100	23		6.9	6.2			
PQm 70	PQ 70	1	1	22			121	30							7	9.8	9.8				
PQm 80	PQ 80								256	179*	121		151	03	90	141	112	62		9.8	9.8
PQm 90	PQ 90	3/4"	3/4"				126	27	153	84						9.9	9.8				
PQm 100	PQ 100				020107											14.1	14.0				
PQm 200	PQ 200	1″	1″	29	322.5	212	140	28	168	89	100	164	125	95	9	15.2	15.2				
PQm 300	PQ 300			342.5	342.5												17.8				

(*) h=199 mm para versión monofásica en 110 V o 127 V

CONSUMO EN AMPERIOS

MODELO	TENSION						
Monofásica	220 V	110 V	127 V				
PQm 60	2.6 A	5.6 A	5.3 A				
PQm 65	5.8 A	11.6 A	11.0 A				
PQm 70	5.2 A	10.8 A	10.0 A				
PQm 80	5.2 A	10.5 A	9.7 A				
PQm 90	5.6 A	11.5 A	11.0 A				
PQm 100	9.0 A	18.0 A	16.5 A				
PQm 200	12.0 A	24.0 A	22.3 A				
PQm 300	-	-	-				

MODELO	TENSION							
Trifásica	220 V	380 V	220 V	440 V				
PQ 60	2.0 A	1.15 A	2.1 A	1.2 A				
PQ 65	3.2 A	1.85 A	3.2 A	2.0 A				
PQ 70	3.8 A	2.2 A	3.8 A	2.2 A				
PQ 80	3.8 A	2.2 A	3.8 A	2.0 A				
PQ 90	4.2 A	2.4 A	4.2 A	2.4 A				
PQ 100	8.3 A	4.8 A	6.5 A	3.6 A				
PQ 200	7.6 A	4.4 A	7.0 A	4.2 A				
PQ 300	10.0 A	5.8 A	8.2 A	4.8 A				

PALETIZADO

MC	DELO	PARA GRUPAJE	PARA CONTAINER
Monofásica	Trifásica	n° bombas	n° bombas
PQm 60	PQ 60	256	352
PQm 65	PQ 65	210	270
PQm 70	PQ 70	102	170
PQm 80	PQ 80	102	170
PQm 90	PQ 90	102	170
PQm 100	PQ 100	72	96
PQm 200	PQ 200	72	96
-	PQ 300	72	96

Ficha técnica de intercambiador de calor de 68 kW para agua caliente a 60°C

AlfaNova 52 / HP 52 / XP52 de Alfa Laval

Intercambiador de calor de placas soldadas por fusión, 100 % acero inoxidable

Introducción

Los intercambiadores de calor de placas soldadas por fusión AlfaNova de Alfa Laval están fabricados 100 % en acero inoxidable. Están indicadas para aplicaciones con requisitos específicos sobre limpieza, aplicaciones en las que se utilizan medios agresivos como el amoniaco o no se admita contaminación por cobre y níquel.

AlfaNova ofrece una transferencia de calor eficiente con una pequeña huella, cuenta con una resistencia a la fatiga por presiones extremas y soporta altas temperaturas de hasta 550°C/1022°F.

Aplicaciones

Adecuado para una amplia gama de aplicaciones, como:

- Refrigeración y calentamiento de HVAC
- Refrigeración
- Refrigeración de aceite
- Refrigeración y calentamiento industrial
- · Refrigeración y calentamiento de procesos

Ventajas

- Compacto
- Fácil de instalar
- Autolimpieza
- No requiere demasiado mantenimiento
- Todas las unidades han sido sometidas a pruebas de presión y estanqueidad
- Sin juntas
- Sin cobre

Características únicas de la marca

6	AlfaNova	100% acero inoxidable
ttt	PressureSecure	Resistencia inigualable para tareas exigentes
Ľ	REFuture	Una inversión de futuro para los refrigerantes del día de mañana
1	ValuePlus	Asistencia completa - con opciones de valor añadido que se adaptan a sus necesidades

Diseño

El material de soldadura AlfaFusion sella y mantiene las placas juntas en los puntos de contacto, garantizando con ello la eficacia de la transferencia de calor y la resistencia a la presión. Utilizando tecnologías de diseño avanzadas y una verificación exhaustiva se garantiza el máximo rendimiento y una mayor vida útil.

Bajo pedido, se pueden solicitar intercambiadores con diferentes presiones nominales.

El diseño XP está especialmente indicado para aplicaciones que trabajan con CO₂.

Basados en componentes estándar y un concepto modular, cada unidad está fabricada a medida para satisfacer los requisitos específicos de cada instalación.

Datos técnicos

Materiales estándar		
Placas de cubierta	Acero inoxidable	
Conexiones	Acero inoxidable	
Placas	Acero inoxidable	
AlfaFusion filler	Acero inoxidable	
Dimensiones y peso ¹ Una medida (mm)	11 + (2.48 * n)	
Una medida (pulgadas)	0.43 + (0.10 * n)	
Peso (kg) ²	1.9 + (0.22 * n)	
Peso (lb) ²	4.19 + (0.49 * n)	
¹ n = número de placas		

² Excluyendo las conexiones

Datos estándar

Volumen por canal, litros (gal)	0.095 (0.0251) (<2/>)				
Tamaño máx. de partículas mm (pulg.)	1.2 (0.047) (<2/>)				
Caudal máx. ¹ m ³ /h (gpm)	14 (61.6) (<2/>)				
Direcciones del flujo	Paralelo				
Número mín. de placas	6				
Número máx. de placas:	150				

¹ Agua a 5 m/s (16,4 pies/s) (velocidad de conexión)

Plano de dimensiones

Medidas en mm (pulgadas)

Presión y temperatura de funcionamiento

AlfaNova 52 - Gráfico de presión/temperatura con homologación PED

AlfaNova HP 52- Gráfico de presión/temperatura con homologación PED 1

¹ Temperatura mín. -10°C (14°F) con tubo de conexión hecho de acero de carbono.

AlfaNova XP52 - Gráfico de presión / temperatura con homologación

Diseñado para vacío completo.

Los intercambiadores de calor de placas Alfa Laval están disponibles con una amplia gama de certificados de recipientes a presión. Para obtener más información, póngase en contacto con su representante de Alfa Laval.

NOTA: Los anteriores valores se ofrecen unicamente a título informativo. Para obtener los valores exactos, utilice los planos generados por el configurador Alfa Laval o póngase en contacto con su representante local Alfa Laval.

This document and its contents are subject to copyrights and other intellectual property rights owned by Alfa Laval Corporate AB. No part of this document may be copied, re-produced or transmitted in any form or by any means, or for any purpose, without Alfa Laval Corporate AB's prior express written permission. Information and services provided in this document are made as a benefit and service to the user, and no representations or warranties are made about the accuracy or suitability of this information and these services for any purpose. All rights are reserved.

CHE00047-5-ES

© Alfa Laval Corporate AB

Cómo ponerse en contacto con Alfa Laval

La información para ponerse en contacto con Alfa Laval se encuentra actualizada para todos los países en nuestra página web www.alfalaval.com.

Ficha técnica de intercambiador de calor de 550 kW para generación de vapor

INTERCAMBIADOR DE CALOR MQT

DE 50 PLACAS

Un intercambiador de calor de placas es una forma de intercambiar el calor. Los intercambiadores de calor se conocen también como medio de transferencia de calor. Este término es apropiado, ya que durante el proceso no es un intercambio de calor, sino una transferencia de calor de un medio a otro. Entre las placas hay espacios intermedios. En ellos, alternativamente fluye el calor de absorción y de emisión de calor.

DATOS TECNICOS

La potencia del intercambiador de calor de placas individuales (PHE) es dependiente de la temperaturas de entrada y de salida de los medios de comunicación utilizado en el primario y en el lado secundario y la tasa de flujo.

Modelo	B3-50-60A
Matricula	50
Largo / Ancho / Alto (sin conexiones, en mm)	526/120/140
máx. Flujo	22 m³ / h
Altura de conexión	20 mm
Contenido	0111 l por placa = 5.55 litros
Superficie de intercambio eficaz	0,06 m² por placa = aproximadamente 3,0 m
Rango de temperatura	-195 ° C a 225 ° C
Presión operacional	30 bar *
Rendimiento	máx. 550 kW
Material de la placa	De acero inoxidable AISI 304
Material de Stutz	De acero inoxidable AISI 304
Circulación	F1 -> F3 / F4 -> F2
Guarniciones	F1 y F3 25,4 mm (1 ") (de conformidad con la norma ISO-G) F2 y F4 25,4 mm (1 ") (de conformidad con la norma ISO-G)
Soldaduras	99,9% de cobre
Peso en kg	16.0

Se utiliza por ejemplo en la tecnología de calefacción de la industria, sino también en la refrigeración y la tecnología solar. - CHP - Aire Acondicionado -Bombas de Calor - Calefacción por suelo radiante - Cogeneración -Recuperación de calor - Calentador de agua - aire acondicionado en los edificios.

Ficha técnica compresores 1, 2, 3 y 4

|--|

Technical specifications

Compressor	(Displacement			Oil	Net	Available motor voltage codes						
model	Code	cm³/rev	m ¹ /h at 2900 rpm	number	dm ³	kg	1	3	4	5	6	7	9
MT/MTZ018	JA	30.23	5.26	1	0.95	21	•	•	•	•	-	-	-
MT/MTZ022	JC	38.12	6.63	1	0.95	21	•	•	•	•	•	-	•
MT/MTZ028	JE	48.06	8.36	1	0.95	23	•	•	•	•	•	-	0
MT/MTZ032	JF	53.86	9.37	1	0.95	24	•	•	•	•	•	0	•
MT/MTZ036	JG	60.47	10.52	1	0.95	24	•	•	•	•	•	0	0
MT/MTZ040	JH	67.89	11.81	1	0.95	24	•	•	•	-	•	-	-
MT/MTZ044	HJ	76.22	13.26	2	1.8	35	0	•	•	-	0	0	•
MT/MTZ050	HK	85.64	14.90	2	1.8	35	•	•	•	-	•	0	•
MT/MTZ056	HL	96.13	16.73	2	1.8	37	•	•	•	-	•	•	•
MT/MTZ064	HM	107.71	18.74	2	1.8	37	•	•	•	-	•	-	•
MT/MTZ072	HN	120.94	21.04	2	1.8	40	-	•	•	-	0	-	•
MT/MTZ080	HP	135.78	23.63	2	1.8	40	-	•	•	-	•	-	•
MT/MTZ100	HS	171.26	29.80	4	3.9	60	-	•	•	-	•	•	•
MT/MTZ125	HU	215.44	37.49	4	3.9	64	-	•	•	-	•	•	•
MT/MTZ144	HV	241.87	42.09	4	3.9	67	-	•	•	-	•	•	•
MT/MTZ160	HW	271.55	47.25	4	3.9	67	-	•	•	-	•	•	•
 Available in MT a 	nd MTZ			 Availab 	le in MTZ on	ly							

Approvals and certificates	Maneurop® MT/MTZ compressors comp the following approvals and certificates	Maneurop® MT/MTZ compressors comply with the following approvals and certificates.				
	CE (European Directive)	C€	All models			
	UL (Underwriters Laboratories)	. 91	All 60 Hz models			
	CCC (China Compulsory Product Certification) (CALI Models code 4		All models code 4 and 5 under CCC scope.			
	EAC Eurasian conformity mark	EAC	All models voltage code 4 and 5			

Pressure equipment	Products	MT/MTZ 018 to 040	MT/MTZ 044 to 160
airective 2014/68/20	Refrigerating fluids	Group 2	Group 2
	Category PED	1	Ш
	Evaluation module	no scope	D1
	Maximum/minimum allowable temperature - TS	50°C > Ts > -35°C	50°C > Ts > -35°C
	MT maximum allowable pressure - PS	18.4 bar(g)	18.4 bar(g)
	MTZ maximum allowable pressure - PS	22.6 bar(g)	22.6 bar(g)

Low voltage directive	Products	MT/MTZ 018 to 040	MT/MTZ 044 to 160
2014/35/20	Manufacturer's declaration	contact Danfoss	contact Danfoss

Machinery directive	Products	MT/MTZ 018 to 040	MT/MTZ 044 to 160
2014/30/20	Manufacturer's declaration	contact Danfoss	contact Danfoss

Internal free volume		Volume (litre)				
	Products	Low side	High side			
	1 cyl.	7.76	0.28			
	2 cyl.	17.13	0.63			
	4 cyl.	32.2	1.20			

Danfoss

Application Guidelines Specifications

Nominal performance data for R407C and R134a

R407C						Air Cond	ditioning						
	50 Hz, EN12900 ratings To = 5°C, Tc = 50°C, SC = 0K, SH = 10K				To = 7.2°C	50 Hz, ARI ratings To = 7.2°C, Tc = 54.4°C, SC = 8.3K, SH = 11.1K				60 Hz, ARI ratings To = 7.2°C, Tc = 54.4°C, SC = 8.3K, SH = 11.1K			
model	Cooling capacity W	Power input kW	Current input A	C.O.P. W/W	Cooling capacity W	Power input kW	Current input A	E.E.R. Btu.h/W	Cooling capacity W	Power input kW	Current input A	E.E.R. Btu.h/W	
MTZ018-4*	3470	1.27	2.73	2.73	3850	1.38	2.86	9.52	5050	1.73	2.82	9.96	
MTZ022-4*	4550	1.71	3.27	2.67	5020	1.86	3.47	9.21	6280	2.26	3.45	9.48	
MTZ028-4*	5890	2.17	4.30	2.72	6540	2.36	4.57	9.46	8220	2.82	4.41	9.95	
MTZ032-4*	6650	2.43	4.57	2.74	7330	2.66	4.90	9.40	9000	3.20	4.80	9.60	
MTZ036-4*	7510	2.93	5.58	2.56	8280	3.21	5.99	8.80	9990	3.90	5.78	8.74	
MTZ040-4*	8660	3.40	6.46	2.55	9580	3.71	6.92	8.81	11720	4.46	6.69	8.97	
MTZ044-4*	9130	3.12	5.84	2.93	10100	3.38	6.18	10.20	12730	4.25	6.34	10.22	
MTZ050-4*	10420	3.69	6.51	2.83	11530	4.01	6.95	9.81	14110	4.87	7.06	9.89	
MTZ056-4*	11680	4.02	7.45	2.90	13000	4.37	7.91	10.15	16050	5.40	8.03	10.14	
MTZ064-4*	13360	4.61	8.35	2.90	14850	5.02	8.91	10.10	18090	6.14	9.01	10.06	
MTZ072-4*	15320	5.42	9.85	2.83	17050	5.87	10.48	9.91	20780	7.30	10.61	9.72	
MTZ080-4*	17380	6.29	11.31	2.76	19330	6.83	12.08	9.66	22870	8.24	11.99	9.47	
MTZ100-4*	20480	7.38	13.05	2.78	22700	8.00	13.83	9.68	28230	9.86	14.22	9.77	
MTZ125-4*	26880	9.48	16.12	2.84	29780	10.33	17.33	9.84	35620	12.83	19.24	9.48	
MTZ144-4*	29770	10.68	18.07	2.79	33060	11.59	19.35	9.74	40900	14.42	20.40	9.68	
MTZ160-4*	34090	12.41	20.68	2.75	37820	13.46	22.14	9.59	45220	16.64	23.13	9.27	

* 50 Hz, EN12900 data for indicated models are Asercom certified

R134a		Refrig	eration		Air Conditioning								
Commencer	To = -10	50 Hz, EN12900 ratings To = -10°C, Tc = 45°C, SC = 0K, SH = 10K				50 Hz, ARI ratings To = 7.2°C, Tc = 54.4°C, SC = 8.3K, SH = 11.1K				60 Hz, ARI ratings To = 7.2°C, Tc = 54.4°C, SC = 8.3K, SH = 11.1K			
model	Cooling capacity W	Power input kW	Current input A	C.O.P. W/W	Cooling capacity W	Power input kW	Current input A	E.E.R. Btu.h/W	Cooling capacity W	Power input kW	Current input A	E.E.R. Btu.h/W	
MTZ018-4	1075	0.69	1.92	1.56	2532	0.99	2.19	8.74	3038	1.19	2.29	8.74	
MTZ022-4	1408	0.82	2.16	1.73	3335	1.20	2.51	9.52	4001	1.44	2.62	9.52	
MTZ028-4	1823	1.02	2.83	1.79	4217	1.53	3.30	9.39	5061	1.84	3.44	9.39	
MTZ032-4	2076	1.25	3.33	1.66	4907	1.87	3.94	8.94	5889	2.25	4.11	8.94	
MTZ036-4	2753	1.45	3.32	1.90	6013	2.13	4.09	9.62	7216	2.56	4.26	9.62	
MTZ040-4	2914	1.61	3.81	1.81	6342	2.33	4.89	9.28	7610	2.80	5.10	9.28	
MTZ044-4	2926	1.49	4.05	1.96	6836	2.22	4.73	10.51	8203	2.66	4.93	10.51	
MTZ050-4	3364	1.80	4.32	1.87	7956	2.63	5.20	10.31	9547	3.16	5.42	10.31	
MTZ056-4	3526	1.88	5.31	1.87	8621	2.85	6.17	10.34	10346	3.41	6.44	10.34	
MTZ064-4	4192	2.17	5.71	1.94	10057	3.26	6.81	10.51	12069	3.92	7.10	10.51	
MTZ072-4	4873	2.50	6.67	1.95	11543	3.78	7.99	10.41	13852	4.54	8.33	10.41	
MTZ080-4	5857	2.93	7.22	2.00	13262	4.35	8.83	10.41	15915	5.23	9.21	10.41	
MTZ100-4	6617	3.65	8.67	1.82	15452	5.28	10.24	10.00	18542	6.34	10.68	10.00	
MTZ125-4	8306	4.17	8.89	1.99	18941	6.29	11.50	10.27	22729	7.55	11.99	10.27	
MTZ144-4	10732	5.40	11.35	1.99	23536	7.83	14.19	10.27	28243	9.39	14.80	10.27	
MTZ160-4	11900	5.84	11.71	2.04	25779	8.57	15.11	10.27	30935	10.29	15.76	10.27	

To: Evaporating temperature at dew point (saturated suction temperature) Tc: Condensing temperature at dew point (saturated discharge temperature) SC: Subcooling SH: Superheat

ARI capacity and power input data are +/- 5% Asercom: Association of European Refrigeration Compressor and Controls Manufacturers ARI: Air Conditioning and Refrigeration Institute

Application Guidelines Operating envelopes

MT - R22-R417A

Application Guidelines Outline drawings

1 cylinder

All dimensions in mm

	Code									
Model		3	- 4		6	7	9			
MT/MTZ018	(1)	(1)	(1)	(1)	-	-	-			
MT/MTZ022	(2)	(1)	(1)	(1)	(1)		(1)			
MT/MTZ028	(2)	(1)	(1)	(1)	(1)		(1)			
MT/MTZ032	(2)	(2)	(2)	(2)	(2)	(2)	(2)			
MT/MTZ036	(2)	(2)	(2)	(2)	(2)	(2)	(2)			
MT/MTZ040	(2)	(2)	(2)		(2)					

IP rating: 55 (with cable gland)

	Rotolock connections size		Pipe	sizing	Rotolock valve	
	Suction	Discharge	Suction	Discharge	Suction	Discharge
MT/MTZ 018 - 022 (3/4/5/6/9) - 028 (3/4/5/6)	1*	1"	1/2*	3/8*	V06	V01
MT/MTZ022/1-028/1-032 - 036 - 040	1*1/4	1"	5/8"	1/2*	V09	V06

Outline drawings

2 cylinders

	Rotolock connections size		Pipe	sizing	Rotolock valve		
	Suction	Discharge	Suction	Discharge	Suction	Discharge	
MT/MTZ 044 - 050 - 056 - 064 - 072	1"3/4	1*1/4	7/8*	3/4"	V07	V04	
MT/MTZ 080	1"3/4	1*1/4	1*1/8	3/4"	V02	V04	

Danfoss

Electrical connections and wiring

Single phase electrical characteristics		LRA - Loc Curre	ked Rotor nt (A)	MCC - Maximum Continuous Current (A)		Winding resistance (Ω) (±7% at 25° C)			
	Motor Code						1		5
	Winding					run	start	run	start
	MT/MTZ018	51	40	13	10	1.35	4.25	1.35	3.83
	MT/MTZ022	49.3	41	17	15	1.20	2.31	1.35	3.83
	MT/MTZ028	81	51	25	20	0.68	1.84	1.07	3.26
	MT/MTZ032	84	70	26.5	20	0.63	2.90	0.80	4.23
	MT/MTZ036	84	60	30	22	0.63	2.90	0.80	4.23
	MT/MTZ040	99		34		0.54	1.87		
	MT/MTZ044	97	-	31		0.46	1.94		
	MT/MTZ050	114	2	36		0.38	1.83	2	
	MT/MTZ056	136	4	42.5		0.33	1.64	- 2	
	MT/MTZ064	143		46		0.33	2.14		

Nominal capacitor values and relays			PSC/CSR* Run capacitors (1)		CSR only			
		Models			Start capacitors (2)			
			(A) µF	(C) μF	(B) µF	Start relay		
		MT/MTZ018 JA-5	20	10	100			
		MT/MTZ022 JC-5	20	10	100			
	50 Hz	MT/MTZ028 JE-5	20	10	100	3ARR3J4A4 /RVA6AMKL		
		MT/MTZ032 JF-5	25	10	135			
		MT/MTZ036 JG-5	25	10	135			
		MT/MTZ018 JA-1	15	10	100			
		MT/MTZ022 JC-1	30	15	100			
		MT/MTZ028 JE-1	25	25	135			
		MT/MTZ032 JF-1	25	20	100			
	c0.11	MT/MTZ036 JG-1	25	20	100	3ARR3J4A4		
	60 HZ	MT/MTZ040 JH-1	35	20	100	/RVA6AMKL		
		MT/MTZ044 HJ-1	30	15	135			
		MT/MTZ050 HK-1	30	15	135			
* PSC: Permanent Split Capacitor		MT/MTZ056 HL-1	35	20	200			
CSR: Capacitor Start Run		MT/MTZ064 HM-1	30	25	235			
(2) Start capacitors: 330 Volts								
Trickle circuit	the comp current t capacito connecti	The circuit provides the random pressor crankcase by fee o the auxiliary winding r (See the drawings in se ons and wiring").	actify of heating eding a small and the run ection "Electrical	By Using PSC or CSK starting systems, compressor models MT / MTZ 018 - 022 can be operated without crankcase heaters as the heater function is provided by the trickle circuit. For the larger single phase compressor models MT / MTZ 028 - 064, the use of the PTC crankcase heater is recommended.				
		uz 100 min - 4990 min 400 min 200 min 200						
PSC wiring	PSC wirir with cap bleed po	ng may be used for refri illary tubes or expansio rts. Pressure equalisatio	gerant circuits n valves with on must be	ensured before start-up because of the low starting torque characteristics of this system.				
CSR wiring	CSR wirin at start-u combina can be u tubes or only con potentia start seq	ng provides additional r up, by the use of a start of tion with the run capac sed for refrigerant circu expansion valves. The s nected during the start I relay is used to disconr uence.	notor torque capacitor in itor. This system its with capillary itart capacitor is ing operation, a nect it after the	Some applic can require cases the CS a very high start capcitor capacitor of can also be at unfavoura ambient ten	ations with high diffe a very high starting to R starting kit can be c starting torque kit by a or of 100 µF parallel to the CSR kit. This confi used to reduce erratic able conditions such a nperature or weak vol	rential pressure rque. For such onverted to an additional the start guration starting s very low tage.		

<u>Danfoss</u>

Electrical connections and wiring

Suggested wiring diagrams

Electrical connections and wiring

Three phase electrical characteristics

	LRA - Locked Rotor Current (A)					MCC - Maximum Continuous Current (A)				Winding resistance (Ω) (±7% at 25° C)					
Motor Code	3	4	6		9	3	4	6	7	9	3	4	6		9
MT/MTZ018	38	20	-	-	-	9.5	5	-	-	-	2.58	9.34	3.41	-	-
MT/MTZ022	38	20	30	-	22.5	11	6	8.5	-	6.5	2.58	11.84	3.41	-	7.30
MT/MTZ028	57	23	41	-	32	16	7.5	11.5	-	8.5	1.41	6.30	1.20	-	4.72
MT/MTZ032	60	25	44	22	35	18	8	13	5.5	9	1.32	4.45	2.01	10.11	3.40
MT/MTZ036	74	38	74	26	35	17	9	17	7	9.5	1.10	5.92	1.10	9.39	-
MT/MTZ040	98	38	74	-	-	22	10	18	-	-	0.89	4.05	1.10	-	-
MT/MTZ044	115	48.5	77	44	78	22	9.5	16	8.5	13	0.76	3.29	1.15	5.95	1.72
MT/MTZ050	115	48.5	77	44	78	25	11.5	19	10	13.5	0.74	3.42	1.42	5.95	1.72
MT/MTZ056	130	64	105	50	72	24	12	23	11	15	0.56	2.44	0.78	3.94	1.67
MT/MTZ064	137	64	124	-	72	29	14	25	-	17.5	0.58	2.44	0.78	-	1.67
MT/MTZ072	135	80	143	-	100	30	17	27	-	18.5	0.56	1.94	0.57	-	1.35
MT/MTZ080	140	80	132	-	102	36	19	29	-	22.5	0.49	1.94	0.57	-	1.33
MT/MTZ100	157	90	126	62	110	43	22	35	17	26	0.51	2.12	0.68	3.17	1.29
MT/MTZ 125	210	105	170	75	150	54	27	43	22	30	0.39	1.45	0.44	2.56	0.86
MT/MTZ 144	259	130	208	90	165	64	36	51	25	40	0.28	1.15	0.38	2.04	0.74
MT/MTZ 160	259	130	208	99	165	70	36	51	29	46	0.28	1.15	0.38	1.80	1.12

Winding resistance

Winding resistance is the resistance between indicated terminal pins at 20°C (resistance value +/- 7%).

Winding resistance is generally low and it requires adapted tools for precise measurement.

Motor protection and suggested wiring diagrams The 3-phase compressors are protected by an internal motor protector, connected to the neutral point of the star connected stator windings, the protector cuts out all 3-phases simultaneously. Note: once the overload protector has tripped it may take up to 3 hours to reset and restart the compressor. For all 3-phase compressors, a PTC crankcase heater is required.

Electrical connections and wiring

Soft starters

Starting current of Maneurop® 3-phase compressors can be reduced by using a soft starter. Version available: CI-tronic™ soft starters type MCI (recommended). The starting current can be reduced by up to 50% depending on the compressor model and the type of soft starter. Also mechanical stresses that occur at starting are reduced which increases the life of the internal components. For details of the CI-tronic[™] MCI soft starters, please refer to literature DKACT.PD.C50.

The number of starts should be limited to 6 per hour. HP/LP pressure equalisation is required before starting.

oltage application range					
	Motor Code	Nominal voltage	Voltage application range		
	1	208-230 V / 1 ph / 60 Hz	187 - 253 V		
	3	200-230 V / 3 ph / 60 Hz	180 - 253 V		
		380-400 V / 3 ph / 50 Hz	340 - 440 V		
	4	460 V / 3 ph / 60 Hz	414 - 506 V		
	5	220-240 V / 1 ph / 50 Hz	198 - 264 V		
	6	230 V / 3 ph / 50 Hz	207 - 253 V		
	7	500 V / 3 ph / 50 Hz	450 - 550 V		
	/	575 V / 3 ph / 60 Hz	517 - 632 V		
	9	380 V / 3 ph / 60 Hz*	342 - 418 V		

* Some models are approved for 380 - 400 V / 3 ph / 60 Hz. Please check datasheet.

IP rating

The compressor terminal boxes IP rating according to CEI 529 are shown on the outline drawings section. IP 5 5 1st numeral, level of protection against contact and foreign objects complete protection against contact and against harmful dust deposits 2nd numeral, level of protection against water protection against water splashing from any direction f protection against jets of water from any direction MT/ MTZ 1cyl = IP55 -- MT/ MTZ 2 cyl check section outline drawings -- MT/MTZ 4cyl = IP54
Danfoss

Application Guidelines

Refrigerants and lubricants

General information

When choosing a refrigerant, different aspects must be taken into consideration:

- · Legislation (now and in the future)
- Safety
- Application envelope in relation to expected running conditions
- Compressor capacity and efficiency
- Compressor manufacturer recommendations & guidelines

Only Danfoss lubricant are allowed for Maneurop® MT & MTZ compressors.

Additional points could influence the final choice:

- Environmental considerations
- Standardisation of refrigerants and lubricants
- Refrigerant cost
- Refrigerant availability

The table below gives an overview of the different refrigerant - lubricant - compressor combinations for Maneurop* MT & MTZ compressors.

	Refrigerant	Туре	Lubricant type	Compressor type	Danfoss lubricant	Application				
	R22	HCFC	Mineral	MT	Mineral oil, 160P	Medium / High temperature				
	R417A	HFC	Polyolester	MT	Polyolester oil 175PZ	Medium / High temperature				
	R407A/C/F	HFC	Polyolester	MTZ	Polyolester oil 175PZ	Medium / High temperature				
	R134a	HFC	Polyolester	MTZ	Polyolester oil 175PZ	Medium / High temperature				
	R404A	HFC	Polyolester	MTZ	Polyolester oil 175PZ	Medium temperature				
	R507	HFC	Polyolester	MTZ	Polyolester oil 175PZ	Medium temperature				
	R448A/ R449A R452A	HFO	Polyolester	MTZ	Polyolester oil 175PZ	Medium/High temperature				
		HFC+HFO	Polyolester	MTZ	Polyolester oil 175PZ	Medium/High temperature				
	Alternative with HFC re	R22 retrofit frigerants	POE	MT/MTZ	Polyolester oil 175PZ	Medium / High temperature				
	Hydroc	arbons	Danfo	ss does not auth	orise the use of hydrocarb compressors	ons in Maneurop® MT/MTZ				
R22	refrigerants Maneurop® use with the R22 is an HC	are not pu compresso se refriger	blished in th ors however ants and car rant and is si	his document. are suitable fo n still be used till in use today	technical news FRO r for more informatio	technical news FRCC.EN.049. and FRCC.EN.085. for more information on retrofit. The Maneurop [®] MT compressor is supplied with an initial mineral oil charge				
	and therefo Check local 160P with R	re it will be legislation 22.	phased out Always use	in the future. mineral oil	an mitar minerai on	an militar militar on charge.				
Alternatives R22, HFC retrofit	A wide varie developed a GWP alterna	ety of HFC I as tempora atives. Som	olends exist ry HCFC and e examples	There were HFC high are R422A/D	- R427A, Retrofit to issued to advice abo	echnical news have been out use of these refrigerants.				
R407C	Refrigerant similar therr R22.	R407C is ar nodynami	HFC refrige c properties	erant with to those of	information about a section "zeotropic r must be charged in	eotropic refrigerants; refer to efrigerant mixtures". R407C the liquid phase.				
	R407C has z (ODP=0). Ma R407C to be R22. R407C t temperature	ero ozone any installe the standa s a zeotrop e glide of a	depletion p ers and OEM ard alternati bic mixture a bout 6 K. Fo	otential s consider ve for and has a r more specific	Always use the Man with Danfoss 160PZ which is supplied w R407C applications.	Always use the Maneurop [®] MTZ compressors with Danfoss 160PZ or 175PZ polyolester oil, which is supplied with the MTZ compressor for R407C applications.				

Danfoss

Application Guidelines	Refrigerants and lubricants	
R134a	Refrigerant R134a is an HFC refrigerant with thermodynamic properties comparable to those of the CFC refrigerant R12. R134a has zero ozone depletion potential (ODP = 0) and is commonly accepted as the best R12 alternative. For applications with high evaporating and	high condensing temperatures, R134a is the ideal choice. R134a is a pure refrigerant and has zero temperature glide. For R134a applications always use the Maneurop® MTZ compressor with Danfoss 175PZ polyolester oil which is supplied with the MTZ compressor.
R404A	Refrigerant R404A is an HFC refrigerant with thermodynamic properties comparable to those of the CFC refrigerant R502. R404A has zero ozone depletion potential (ODP = 0) and is commonly accepted as one of the best R502 alternatives. R404A is especially suitable for low evaporating temperature applications but it can also be applied to medium evaporating temperature applications. R404A is a mixture and has a very small temperature glide, and therefore must be charged in its liquid phase, but for most	other aspects this small glide can be neglected. Because of the small glide, R404A is often called a near-azeotropic mixture. For more information refer to section «zeotropic refrigerant mixtures». For low evaporating temperature applications down to -45°C, Maneurop [®] NTZ compressors should be used. Refer to the NTZ selection and application guidelines. For medium temperature R404A applications, always use the Maneurop [®] MTZ compressor with 175PZ polyolester oil which is supplied with the MTZ compressor.
R507	Refrigerant R507 is an HFC refrigerant with thermodynamic properties comparable to those of the CFC refrigerant R502 and virtually equal to those of R404A. R507 has no ozone depletion potential (ODP = 0) and is commonly accepted as one of the best R502 alternatives. As with R404A, R507 is particularly suitable for low evaporating temperature applications but it can also be used for medium evaporating temperature applications. R507 is an azeotropic	mixture with no temperature glide. For low evaporating temperature applications down to -45°C, Maneurop® NTZ compressor should be used. Refer to the NTZ selection and application guidelines. For medium temperature R507 applications, always use the Maneurop® MTZ compressor and Maneurop® 175PZ polyolester oil which is supplied with the MTZ compressor.
R407A	Refrigerant R407A is an HFC with similar thermodynamic properties to those of R404A, R407A is a zeotropic refrigerant and has a temperature glide of about 6,6K. For more specific information about zeotropic refrigerant, refer to section "zeotropic refrigerants mixtures" and read FRCC.EN.085. R407A must be charged	in liquid phase, Use of R407A allow to comply with the new Fgaz regulation from 2015. R407A GWP is stated at 2107 [CO_2 =1,0]. Always use the Maneurop MTZ compressors with danfoss 175PZ polyolester oil, which is supplied with the MTZ compressors for R407A applications.
R407F	Refrigerant R407F is an HFC with similar thermodynamic properties to those of R404A, R407F is a zeotropic refrigerant and has a temperature glide of about 6,4K. For more specific information about zeotropic refrigerant, refer to section "zeotropic refrigerants mixtures" and read FRCC.EN.085. R407F must be charged in liquid phase, Use of R407F allow to comply with	the new Fgaz regulation from 2015. R407F GWP is stated at 1825 [CO2=1,0]. R407F is mainly suitable for high & medium temperature application- Always use the Maneurop MTZ compressors with danfoss 175PZ polyolester oil, which is supplied with the MTZ compressors for R407F applications
R448A/R449A	R448A/R449A is an HFO/HFC Blend, with similar thermodynamic properties to those of R404A or R22. R448A/R449A is a Zeotropic refrigerant and has a temperature glide of about 6,1/6,3K. For more specific information about zeotropic refrigerant, refer to section "zeotropic refrigerants mixtures" and read FRCC. EN.085. R448A/R449A must be charged in liquid	phase, Use of R448A allow to comply with the new Fgaz regulation from 2015. R448A GWP is stated at 1387/1397 [CO2=1,0]. Always use the Maneurop MTZ compressors with Danfoss 175PZ polyolester oil, which is supplied with the MTZ compressors for R448A/R449A applications.

Ficha técnica de los evaporadores 1, 3, 5, 7, 9 y 11

Evaporadores de techo

Los evaporadores para techo son ideales tanto para la conservación de flores, frutas frescas, verduras y masa, como para el almacenamiento y preparación de carnes frescas. Además de muchas otras aplicaciones, el flujo de aire lento y silencioso de los ventiladores hace que este modelo resulte sumamente apropiado en salas de proceso o trabajo de techo bajo.

Los modelos de mayor tamaño sólo miden 38.41 cm. de altura, lo cual permite obtener un máximo de espacio libre. Contamos con modelos para Deshielo por Aire (Modelo WK, SM), eléctrico (Modelos WKE, SME) y por gas caliente (Modelos WKG).

Características

- Cubierta de aluminio granulado y de gran espesor.
- Soportes de acero inoxidable.
- Charola con doble drenaje elimina la condensación en la misma.
- Los guardas del ventilador son inoxidables.

Para mayor información consulte el boletín 430.1

Modelo WK

EVAPORADORES

DE TECHO

	CADA	CIDAD	DAD Ventiledes				1	in the second se			Uniner	isiones				Daca			
	CAPA	CIDAD	· ·	ventilado	n.		M	motor		rgo	Ал	cho		lto	(pulgadas)			Peso	
Modelo	Kcal/hr	BTUH					115/1/60	220/1/60											
	5.55°C 10°F DT min CFM p		pulg	No.	FLA	FLA	cm	pulg	cm	pulg	cm	pulg	Líquido	Succión	Drenaje	Lbs.	kg.		
								Modelos	HGT 6 A	letas Por	Pulgad	las							
WK 050	1259	5000	20.5	725	12	1	2.1	1.1	135.89	53.50	73.66	29	22.86	9	1/2 DE	7/8 DE	3/4 FPT*	144	65.32
WK 075	1889	7500	20.7	730	12	1	2.1	1.1	191.77	75.50	73.66	29	22.86	9	1/2 DE	7/8 DE	3/4 FPT*	182	82.56
WK 100	2519	10000	41.0	1450	12	2	4.2	2.2	191.77	75.50	73.66	29	29.21	11.5	1/2 DE	7/8 DE	3/4 FPT*	208	94.35
WK 130	3275	13000	41.6	1470	12	2	4.2	2.2	191.77	75.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	234	106.14
WK 155	3904	15500	41.3	1460	12	2	4.2	2.2	191.77	75.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	246	111.59
WK 180	4534	18000	60.3	2130	12	3	6.3	3.3	191.77	75.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	246	111.59
WK 210	5290	21000	80.4	2840	12	4	8.4	4.4	247.65	97.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	306	138.80
WK 270	6801	27000	79.2	2800	12	4	8.4	4.4	247.65	97.50	73.66	29	38.74	15.25	1 3/8 DE	1 3/8 DE	3/4 FPT*	321	145.61
WK 340	8564	34000	99.1	3500	12	5	10.5	5.5	303.53	119.50	73.66	29	38.74	15.25	1 3/8 DE	1 3/8 DE	3/4 FPT*	377	171.01

Modelo WKE

CAPACID		ACIDAD	CAPACIDAD		CAPACIDAD		CAPACIDAD		CAPACIDAD		ACIDAD			Ventilador		Motor Resisten-		sten-			Diem	isione	15		Conexiones			Peso	
	GAFA				Ventilador		motor	cias		La	rgo	Ancho		Alto		(Pulgadas)													
Modelo	Kcal/hr	BTUH	ma/ min	CFM	Dia		208-230/		230/																				
	5.55°C DT	10°F DT	1745EN		pulg	No.	1/60 FLA	Watts	1/60	cm	pulg	cm	pulg	cm	pulg	Líquido	Succión	Drenaje	Lbs.	kg.									
WKE 050	1259	5000	20.5	725	12	1	1.1	2000	8.7	135.89	53.50	73.66	29	22.86	9	1/2 DE	7/8 DE	3/4 FPT*	148	67.13									
WKE 075	1889	7500	20.7	730	12	1	1.1	2400	10.5	191.77	75.50	73.66	29	22.86	9	1/2 DE	7/8 DE	3/4 FPT*	182	82.56									
WKE 100	2519	10000	41.0	1450	12	2	2.2	2800	12.2	191.77	75.50	73.66	29	29.21	11.5	1/2 DE	7/8 DE	3/4 FPT*	216	97.98									
WKE 130	3275	13000	41.6	1470	12	2	2.2	4000	17.4	191.77	75.50	73.66	29	38.74	15.25	1/2 DE	1 1/8 DE	3/4 FPT*	247	112.04									
WKE 155	3904	15500	41.3	1460	12	2	2.2	4000	17.4	191.77	75.50	73.66	29	38.74	15.25	1/2 DE	1 1/8 DE	3/4 FPT*	243	110.22									
WKE 180	4534	18000	60.3	2130	12	3	3.3	4000	17.4	191.77	75.50	73.66	29	38.74	15.25	1/2 DE	1 1/8 DE	3/4 FPT*	255	115.67									
WKE 210	5290	21000	80.4	2840	12	4	4.4	5200	22.6	247.65	97.50	73.66	29	38.74	15.25	1/2 DE	1 1/8 DE	3/4 FPT*	310	140.62									
WKE 270	6801	27000	79.2	2800	12	4	4.4	5200	22.6	247.65	97.50	73.66	29	38.74	15.25	1/2 DE	1 1/8 DE	3/4 FPT*	316	143.34									
WKE 340	8564	34000	99.1	3500	12	5	5.5	7000	30.4	303.53	119.50	73.66	29	38.74	15.25	1/2 DE	1 1/8 DE	3/4 FPT*	394	178.72									

Modelo WKG

0101010								Resis	tencias			Dimen	siones				Conexione	s		
	CAPA	CAPACIDAD			Ventilador		Motor	(Estándar)		Largo		Ancho		Alto		(Pulgadas)			Peso	
Modelo	5.55°C DT Kcal/hr	10°F Dt Btuh	m3/ min	CFM	Dia. pulg	No.	208- 230/1/60 FLA	Watts	230/1/60	cm	pulg	cm	pulg	cm	pulg	Líquido	Succión	Drenaje	Lbs.	kg.
WKG 100	2519	10000	41.0	1450	12	2	2.2	350	1.5	191.77	75.50	73.66	29	29.21	11.5	1/2 DE	7/8 DE	3/4 FPT*	214	97.07
WKG 130	3275	13000	41.6	1470	12	2	2.2	500	2.2	191.77	75.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	240	108.86
WKG 155	3904	15500	41.3	1460	12	2	2.2	500	2.2	191.77	75.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	255	115.67
WKG 180	4534	18000	60.3	2130	12	3	3.3	500	2.2	191.77	75.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	258	117.03
WKG 210	5290	21000	80.4	2840	12	4	4.4	650	2.8	247.65	97.50	73.66	29	38.74	15.25	1 1/8 DE	1 1/8 DE	3/4 FPT*	315	142.88
WKG 270	6801	27000	79.2	2800	12	4	4.4	650	2.8	247.65	97.50	73.66	29	38.74	15.25	1 1/8 DE	1 3/8 DE	3/4 FPT*	335	151.96
WKG 340	8564	34000	99.1	3500	12	5	5.5	875	3.8	303.53	119.50	73.66	29	38.74	15.25	1 1/8 DE	1 3/8 DE	3/4 FPT*	390	176.90

* Conexión roscada hembra

CATÁLOGO DE PRODUCTOS

BOHN

DESHIELO POR AIRE, ELÉCTRICO Y GAS CALIENTE Ficha técnica de evaporadores 2, 4 y 6

SK 3373.544 - Intercambiador de calor aire/agua montaje mural

Clases de potencia de 375 - 5.000 W. Para aplicación en entornos agresivos. Comodidad de montaje y posibilidades flexibles de acometida de agua. Posibilidad de montaje exterior o interior.

Características

Referencia	SK 3373.544
Ejecución	Piezas conductoras de agua, acero inox. (1.4571)
Descripción producto	Para la aplicación en entornos agresivos y rangos de temperatura de hasta +70 °C. Comodidad de montaje y opciones flexibles de acometida de agua. Posibilidad de montaje exterior o interior.
Color	RAL 7035
Unidad de envase	Cableado a punto de conexión Plantilla de taladros Material de estanqueidad y de fijación
Potencia total de refrigeración	L 35 W 10 para 400 l/h: 2 kW
Tensión de servicio	400 V, 2~, 50 Hz/60 Hz
Potencia nominal Pel	A 50 Hz: 110 W A 60 Hz: 140 W
Intensidad máx.	A 50 Hz: 0,22 A A 60 Hz: 0,25 A
Presión de servicio admisible (p máx.)	1 - 10 bar

© Rittal 2023

Características

Duración de la conexión	100 %
Medio refrigerante	Agua (ver especificación en internet)
Temperatura en la impulsión del agua	1 °C30 °C
Acometidas de agua	Boquillas ½" Rosca exterior G ¾"
Regulación de la temperatura	Controlador e-Confort (regulación de fábrica +35 °C)
Campo de temperatura de servicio	1 °C70 °C
Observación	Válvula de retención integrada en ejecución con controlador Confort-e
Dimensiones	Anchura: 400 mm Altura: 950 mm Profundidad: 145 mm
Observación referente a la referencia	Plazo de entrega bajo demanda
Campo de regulación	20 °C55 °C
Fusible previo	Interruptor de protección del transformador: 3,55 A
Grado de protección IP según EN 60 529	IP 55
Protection category NEMA	UL Type 1 UL Type 3R UL Type 12
Unidad de embalaje	1 pza(s).
Peso/UE	20 kg
Código arancelario	84195080
EAN	4028177496040
ETIM 7.0	EC002515
ECLASS 8.0	27180712

Ficha técnica de condensador 1, 2, 3, 4, 5 y 6

Características generales

Capacidades nominales entre 4,2 y 41,8 kW.

Condensadores Aire Helicoidales CPN

- Condensadores por aire con ventiladores axiales monofásicos de Ø300 y Ø400 mm.
- Batería construida mediante una combinación de tubo de cobre y aleta de aluminio que proporciona un optimizado coeficiente
- de intercambio térmico. La separación de aletas es de 2,1 mm. Carrocería en acero galvanizado y lacado con resina poliéster en blanco RAL-9002 de elevada resistencia.
- Ventiladores helicoidales monofásicos a 230 V 50/60 Hz (Ø300) y 50 Hz (Ø400) de rotor externo con protección IP-44 y protector térmico incorporado (termocontacto). Por su condición de monofásico permite la fácil regulación de velocidad para el control de la condensación.

Opciones

- Tubos de acero inoxidable.
- Aletas de aluminio pretratadas. Aletas de cobre.
- Bateria tratada con resina de poliuretano.
- Ventiladores 230 V / 1 / 60 Hz.

Todos los modelos se pueden suminstrar en versión doble con dos filas de ventiladores, entregados en una sola pieza y con un solo colector de entrada y salida.

Modelo		CPN	42	54	83	109	153	209	283	313	377	418
Precio €			580,00	765,00	925,00	1.125,00	1.515,00	1.785,00	2.235,00	2.425,00	2.830,00	3.060,0
Capacidad	Δt 15K	W	4.160	5.440	8.320	10.880	15.330	20.890	28.290	31.335	37.720	41.780
Capacidad	Δt 10K	W	2.770	3.630	5.550	7.250	10.220	13.930	18.860	20.890	25.150	27.850
Aplicación	Δt 7K	W	1,940	2.540	3.880	5.080	7.150	9,750	13.200	14.620	17.600	19.500
Caudal de Aire		m3/h	1.360	1.235	2.720	2.470	5.420	5.030	7.800	7.545	10.400	10.060
Nivel Sonoro		dB(A)	33	33	36	36	45	45	47	47	48	48
	230 V/1/50 Hz 1350 r.p.m	nxØ	1 x 300	1 x 300	2 x 300	2 x 300	2 x 400	2 x 400	3 x 400	3 x 400	4 x 400	4 x 400
Ventiladores		A	0,38	0,38	0,76	0,76	1,32	1,32	1,98	1,98	2,64	2,64
		W	80	80	160	160	300	300	450	450	600	600
Superficie		m ²	6,6	13,3	13,2	26,3	20,5	41,0	46,0	61,4	61,3	81,7
Volumen Int.		dm ³	1,0	2,1	1,9	3,7	2,8	5,7	6,2	8,2	8,1	10,8
Consulance		Entrada	3/8*	22	22	22	22	22	28	28	28	28
Conexiones		Salida	3/8*	16	16	16	16	16	22	22	22	22
Peso		Kg	12	15	21	26	29	36	47	53	61	69

Capacidad nominal condensador

Capacidad del evaporador

Factor refrigerante

Factor de altitud

Temperatura evaporación °C

Temperatura condensación °C

Temperatura aire ambiente °C

Diferencia temperatura (Tc-Tam) Factor calor compresión

Fa

ø400

ø300

Fr

R-134a

NIVEL SONORO

En catálogo se dan los datos de la presión sonora dB(A) a 10m de distancia en un recinto sin reflexión. Para otras distancias aplicar la corrección del gráfico GR1. Para varias fuentes sonoras, aplicar la corrección del gráfico GR2. Como en la práctica las condiciones de montaje y operativas son diferentes de las de los test en laboratorio, los datos de nivel sonoro deben ser utilizados solamente como elemento comparativo.

6.25 - Precios y características sujetos a modificaciones sin previo aviso; consulte con su comercial o delegación más cercana -

Ficha técnica de evaporador 8, 10 y 12

SK 3210.100 - Intercambiador de calor aire/agua Montaje en el techo

Para montaje sobre la superficie del techo. Potencia de refrigeración 1,87 kW – 4 kW. Grado de protección estándar hasta IP 55. Adecuado especialmente para aplicación en entornos agresivos. Posibilidades flexibles de acometida de agua.

Características

Referencia	SK 3210.100
Ejecución	Piezas conductoras de agua Cobre/Latón (Cu/CuZn)
Descripción producto	Para la aplicación en entornos agresivos y rangos de temperatura de hasta +70 °C. El intercambiador de calor aire/agua se instala sobre el techo de un armario con la ayuda de opciones flexibles de acometida de agua.
Color	RAL 7035
Unidad de envase	Cableado a punto de conexión (regleta de bornes de conexión a presión) Plantilla de taladros Estera de estanqueidad Material de fijación
Potencia total de refrigeración	L 35 W 10 para 400 l/h: 4 kW
Tensión de servicio	230 V, 1~, 50 Hz/60 Hz
Potencia nominal Pel	A 50 Hz: 100 W A 60 Hz: 120 W
Intensidad máx.	A 50 Hz: 0,44 A A 60 Hz: 0,5 A
Presión de servicio admisible (p máx.)	1 - 10 bar
Tipo de conexión (eléctrica)	Regleta de bornes de conexión a presión
Duración de la conexión	100 %
Medio refrigerante	Agua (ver especificación en internet)