

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño estructural de un edificio multifamiliar de un semisótano y cinco pisos con la condición de nivel freático alto, distrito de Puente Piedra, Lima, año 2016

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORA

Rosa Isabel Salvador Vásquez

ASESOR

Dr. Gerardo Enrique Cancho Zuñiga

LÍNEA DE INVESTIGACIÓN
DISEÑO SÍSMICO Y ESTRUCTURAL

LIMA - PERU

Año 2016-II

Página de Jurado

Presidente:			
Secretario:			
Vocal:			

Dedicatoria

A mi madre, América y mi padre, Fidel. Que siempre estuvieron apoyándome y motivándome desde mis primeros pasos.

Agradecimiento

A los docentes, asesores y compañeros de la Escuela Académico Profesional de Ingeniería Civil de la Universidad Cesar Vallejo, por los aportes y sugerencias brindados que

DECLARACIÓN DE AUTENTICIDAD

Yo, Rosa Isabel Salvador Vásquez con DNI Nº 7103832, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela Profesional de Ing. Civil, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada por lo cual me someto a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Lima, 01 de Octubre del 2016

Rosa Isabel Salvador Vásquez

V

ÍNDICE

		Pág.
RESUMEN		9
ABSTRACT		10
l.	INTRODUCCIÓN	
1.1	Realidad problemática	11
1.2	Antecedentes	12
1.3	Teorías relacionadas al tema	13
1.4	Formulación del problema	16
1.5	Justificación del estudio	16
1.6	Hipótesis	17
1.7	Objetivos	17
II.	MÉTODO	
2.1	Diseño de investigación	18
2.2	Variables, operacionalización	19
2.3	Población y muestra	21
2.4	Técnicas e instrumentos de recolección de datos	21
2.5	Método de análisis de datos	22
2.6	Aspectos éticos	22
III.	ASPECTOS GENERALES	
3.1	Arquitectura	22
3.2	Propiedades de los materiales	23
3.3	Cargas de diseño	24
3.4	Método de diseño	24
3.5	Parámetro para el Estudio de Mecánica de Suelos	25
3.6	Normas utilizadas	31
3.7	Cálculo de la capacidad portante	32
IV.	ESTRUCTURACIÓN	33

٧.	PREDIMENSIONAMIENTO	
5.1	Predimensionamiento de Losas Aligeradas	35
5.2	Predimensionamiento de Losas Macizas	36
5.3	Predimensionamiento de Vigas Peraltadas	36
5.4	Predimensionamiento de Vigas Chatas	37
5.5	Predimensionamiento de Columnas	37
5.6	Predimensionamiento de Placas	38
5.7	Predimensionamiento de Escaleras	39
5.8	Predimensionamiento de Tanque Elevado y Cisterna	39
VI.	METRADO DE CARGAS	
6.1	Cargas	40
6.1.1	Carga Muerta	40
6.1.1	Carga Viva	41
6.2	Metrado de Losas Aligeradas	41
6.3	Metrado de Losas Macizas	42
6.4	Metrado de Vigas	43
6.5	Metrado de Columnas	44
VII.	ANÁLISIS SÍSMICO	
7.1	Modelo Estructural	48
7.2	Parámetros de Sitio	48
7.2.1	Factor de Zonificación "Z"	48
7.2.2	Factor de Ampliación del Suelo "S"	
7.3	Parámetros estructurales	48
7.3.1	Categoría de la Edificación y Factor de uso	49
7.3.2	Factor de Ampliación sísmica	49
7.3.3	Sistema Estructural y Coeficiente de Reducción de Fuerza Sísmica "R"	
7.4	Análisis Estático	50
7.5	Análisis Dinámico	51

VIII.	DISEÑO DE CIMENTACIÓN	56
IX.	PROCESO CONSTRUCTIVO	61
Χ.	CONCLUSIONES	63
XI.	RECOMENDACIONES	64
XII.	REFERENCIAS	65
ANEXOS		
ANEXO N°1:	MATRIZ DE CONSISTENCIA	
ANEXO N°2:	PLANO DE UBICACIÓN Y LOCALIZACIÓN	
ANEXO N°3:	PLANO DE ARQUITECTURA	
ANEXO N°4:	PLANO DE ESTRUCTURACIÓN	
ANEXO N°5:	PLANO DE UBICACIÓN DE CALICATAS	
ANEXO N°6:	REGISTRO DE EXCAVACIÓN C-1	
ANEXO N°7:	REGISTRO DE EXCAVACIÓN C-2	
ANEXO N°8:	REGISTRO DE EXCAVACIÓN C-3	
ANEXO N°9:	RESULTADOS DE LABORATORIO: ANÁLISIS SALES	
ANEXU N°9:	TOTALES, CLORUROS Y SULFATOS	
ANEXO N°10:	RESULTADOS DE LABORATORIO: ANÁLISIS DE CORTE	
	DIRECTO	
ANEXO N°11:	RESULTADOS DE LABORATORIO: ANÁLISIS	
	GRANULOMÉTRICO C-2 , M-1	
ANEXO N°12:	RESULTADOS DE LABORATORIO: ANÁLISIS	
	GRANULOMÉTRICO C-1, M-1	
ANEXO N°13:	RESULTADOS DE LABORATORIO: ANÁLISIS	
	GRANULOMÉTRICO C-1, M-2	
ANEXO N°14:	RESULTADOS DE LABORATORIO: ANÁLISIS	
	GRANULOMÉTRICO C-3, M-1	
ANEXO N°15:	RECIBO DIGITAL TURNITIN	
ANEXO N°16:	REPORTE DE AUTENTICIDAD	

RESUMEN

El presente trabajo de investigación es de tipo aplicada, cuanti-culitativo o mixto, no experimental, cuyo objetivo principal consiste en desarrollar el diseño estructural en concreto armado de un edificio multifamiliar constituido por un semisótano y 5 pisos ubicado en una zona residencial de Puente Piedra en la ciudad de Lima, en donde se ha ubicado que el nivel freático se encuentra aproximadamente a 2.35m de profundidad del nivel 0.00.

Se utilizaron los fundamentos del Reglamento Nacional de Edificaciones , y por ello los datos recolectados se hicieron a través del estudio de mecánica de suelos el cual se realizó como primer paso y nos dio como resultado que el suelo que soportará las cargas del edificio tiene una capacidad admisible de aproximadamente 3.80 Kg /cm² y otras propiedades del suelo. Además de darnos como dato la profundidad a la cual se encuentra el nivel freático. El segundo paso que se debe realizar, es el pre dimensionamiento de los elementos estructurales para ello se debe realizar el diseño de la arquitectura para lo cual nos hemos guiado de los parámetros de las normas que se detallaran en el transcurso del presente trabajo. Como siguiente paso se desarrolló un modelo tridimensional en el programa ETABS, que fue utilizado para realizar el análisis por cargas de gravedad y de sismo. En dicho modelo los techos fueron representados por diafragmas rígidos con 3 grados de libertad. Finalmente se realizará el diseño de los cimientos.

El semisótano alberga 3 estacionamientos. El edificio tiene 5 pisos y 1 semisótano. El área construida total del proyecto es 719.66 m2. El sistema estructural del edificio de concreto armado está conformado por muros de corte, columnas y vigas. Para la cimentación, dada las condiciones del suelo del terreno se diseñó usando zapatas conectadas. La profundidad de cimentación es 1.50 m.

Palabras Clave: Nivel freático, Predimensionamiento, Estructuración, Mecánica de Suelos.

ABSTRACT

The present research work is applied, quantitative or mixed, non-experimental, whose main objective is to develop the structural design in reinforced concrete of a multifamily building consisting of a semi-basement and 5 floors located in a residential area of Puente Piedra In the city of Lima, where it has been found that the water table is approximately 2.35m deep from the 0.00 level.

The fundamentals of the National Building Regulations were used, and for that reason the data collected were made through the study of soil mechanics which was performed as a first step and gave us as a result that the soil that will support the loads of the building has a capacity Permissible of approximately 3.80 kg / cm2 and other soil properties. In addition to giving us as data the depth to which the water table is. The second step that must be done is the pre-dimensioning of the structural elements. To do this, the architectural design must be carried out, for which we have been guided by the parameters of the standards detailed in the course of this work. As a next step, a three-dimensional model was developed in the ETABS program, which was used to perform the analysis by gravity and earthquake loads. In this model the ceilings were represented by rigid diaphragms with 3 degrees of freedom. Finally the design of the foundations will be realized.

The semi-basement houses 3 parking lots. The building has 5 floors and 1 basement. The total built area of the project is 719.66 m2. The structural system of the reinforced concrete building is made up of cutting walls, columns and beams. For the foundation, given the ground conditions of the ground was designed using connected shoes. The foundation depth is 1.50 m.

Keywords: Water table, Predimensioning, Structuring, Soil Mechanics.