

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

IMPLEMENTACIÓN DEL MANTENIMIENTO
PREDICTIVO PARA MINIMIZAR LOS COSTOS DE
REPARACIÓN DE LAS MÁQUINAS ROTATIVAS DE LA
EMPRESA CASINO ATLANTIC CITY, MIRAFLORES, 2016.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERIO INDUSTRIAL

AUTOR:

Napoleón Hernández Venegas

ASESOR:

Mg. Ing. Walter Leoncio Vega Malpica

LÍNEA DE INVESTIGACIÓN

Gestión empresarial y productiva.

Lima - Perú

2016

Página del Jurado

Ing. Presidente	Ing. Secretario

La ingeniería es una esfera infinita: su centro está en cada uno de sus proyectos y su periferia en inalcanzable.

Paráfrasis de Blas Pascal (Pensées, 72) y Jorge Luis Borges ("La biblioteca de Babel", Ficciones)

Hoy, y más que nunca quizás, siento gravitar sobre mí una hasta ahora obligación sacratísima, la del hombre y de artista: ¡la de ser libre! Si no he de ser libre hoy, no lo seré jamás. Siento que gana el arco de mi frente su más imperativa fuerza de heroicidad. Me doy en la forma más libre que puedo y esta es mi mejor cosecha artística.

César A. Vallejo.1926. Carta a Antenor Orrego luego de que la crítica literaria lapidara su poemario "Trilce"

Dedicatoria:

"Dedico este trabajo a mis padres Alejandro y Carmen, a mi hermano Alejandro y a mi entrañable tía Blanca Hernández a quien le debo y deberé todo a pesar de su ausencia"

Agradecimiento:

"A mis compañeros de trabajos del Casino Atlantic City, en especial a todos los miembros del área de mantenimiento quienes, liderados por el Ing Jesús Carpio, me ayudaron en el desarrollo de la aplicación de mi trabajo de investigación".

"Al área de investigación del programa SUBE que, bajo la gestión de la profesora Teresa González Moncada, nos incentivó a invertir hasta la última cuota de energía para no desistir en nuestro camino de obtener nuestro logro académico".

DECLARATORIA DE AUTENTICIDAD

Yo, NAPOLEÓN HERNÁNDEZ VENEGAS con DNI Nº 07632940, a efecto de

cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados

y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de In-

geniería Industrial, declaro bajo juramento que toda la documentación que acom-

paño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que

se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponda ante cualquier falsedad,

ocultamiento u omisión tanto de los documentos como de información aportada

por lo cual me someto a lo dispuesto en las normas académicas de la Universidad

César Vallejo.

Lima, 19 de setiembre del 2016

NAPOLEÓN HERNÁNDEZ VENEGAS

vi

PRESENTACIÓN

Señores miembros del Jurado:

En cumplimiento del Reglamento de Grados y Títulos de la Universidad César

Vallejo presento ante ustedes la Tesis titulada "Implementación del mantenimien-

to predictivo para minimizar los costos de reparación de las máquinas rotativas de

la empresa Casino Atlantic City, Miraflores, 2016.", la misma que someto a vues-

tra consideración y espero que cumpla con los requisitos de aprobación para ob-

tener el título profesional de Ingeniero Industrial.

El presente trabajo de investigación se ha estructurado en siete capítulos. Capí-

tulo I: La Introducción, donde se presenta la realidad problemática, trabajos pre-

vios, teorías relacionadas al tema, formulación del problema, justificación del es-

tudio, hipótesis y objetivos. Capítulo II: El Método, donde se presentan el diseño

de investigación, variables de operacionalización, población y muestra, técnicas e

instrumentos de recolección de datos, métodos de análisis de datos y aspectos

éticos. Capítulo III: Se presentan los Resultados, Capítulo IV: Se exponen la dis-

cusión de los resultados. Capítulo V: Se formulan las Conclusiones. Capítulo VI:

Se presentan las Recomendaciones. Capítulo VII: se muestran las Referencias

bibliográficas y Anexos:

Esperando cumplir con los requisitos de aprobación.

Napoleón Hernández Venegas

iiv

ÍNDICE

PÁGINAS PRELIMINARES

Dedid Agrad Decla	entació e ımen	ento a de autenticidad	ii iv v vi viii viii xii
i	INT	RODUCCIÓN	14
	1.1	Realidad Problemática	17
	1.2	Trabajos previos	22
	1.3	Teorías relacionadas al tema	26
	1.4	Formulación del problema	53
	1.5	Justificación del estudio	54
	1.6	Hipótesis	57
	1.7	Objetivos	58
II	MÉT	ODO	59
	2.1	Diseño de investigación	60
	2.2	Variables, Operacionalización	62
	2.3	Población y muestra	65
	2.4	Técnicas e instrumentos de recolección de datos	66
	2.5	Métodos de análisis de datos	68
	2.6	Aspectos éticos	69
III	RES	ULTADOS	70
IV	DIS	CUSIÓN	112
V	CON	NCLUSIÓN	115
VI.	REC	COMENDACIONES	117
VII.	REF	ERENCIAS BIBLIOGRÁFICAS	120
ANE	xos		132

ÍNDICE DE ANEXOS

Anexo N°. 1: Matriz de consistencia	133
Anexo N°. 2: Validación de instrumentos	134
Anexo N°. 3: Instrumento de medición de la variable independiente	139
Anexo N°. 4: Instrumento de medición de la variable dependiente	140
Anexo N°. 5: Norma ISO 10816-3 para Análisis Vibracional	148
Anexo N°. 6: Norma ISO 18434-1 para Análisis Termográfico	149

ÍNDICE DE TABLAS

Tabla N°. 1: Comparación de ventajas del Mantenimiento Predictivo	34
Tabla N°. 2: Límites de vibración según norma ISO 10816	39
Tabla N°. 3: Matriz de operacionalización. Variable Independiente	63
Tabla N°. 4: Matriz de operacionalización. Variable Dependiente	64
Tabla N°. 5: Reporte de averías	72
Tabla N°. 6: Instrumento de la variable Dependiente Antes	81
Tabla N°. 7: Instrumento de la variable Dependiente Después	82
Tabla N°. 8: Determinación de criticidad	84
Tabla N°. 9: Registro de valores de vibración y temperatura	89
Tabla N°.10: Cuadro de datos: Costos de reparación antes y después	91
Tabla N°.11: Resultados estadísticos descriptivos Costos	92
Tabla N°.12: Cuadro de datos: Costos fijos antes y después	93
Tabla N°.13: Resultados estadísticos descriptivos de los costos fijos	94
Tabla N°.14: Cuadro de datos: Costos variables antes y después.	95
Tabla N°.15: Resultados estadísticos descriptivos de los costos variables	96
Tabla N°.16: Factores críticos de éxito – Mantenimiento Técnico	143
Tabla N°.17: Matriz FODA - Mantenimiento Técnico	144
Tabla N°.18: Relación de equipos para Mantenimeinto Predictivo	145

ÍNDICE DE GRÁFICOS

Gráfico N°. 1: Curva P.F.	29
Gráfico N°. 2: Evolución del mantenimiento a través de medios y objetivos	33
Gráfico N°. 3: Condición respecto al tiempo y evolución de una falla	35
Gráfico N°. 4: Vibración libre no amortiguada	36
Gráfico N°. 5: Movimiento armónico simple	37
Gráfico N°. 6: Emisión de radiación	42
Gráfico N°. 7: Elementos estratégicos del Mantenimiento	46
Gráfico N°. 8: Costo de máquina no operativa Vs Costo de Mantenimiento	46
Gráfico N°. 9: Punto de equilibrio Costos fijos y variables	48
Gráfico N°. 10: Costos fijos y variables Vs volumen de producción	48
Gráfico N°. 11: Relación de variable independiente y dependiente	62
Gráfico N°.12: Diagrama Ishikawa	71
Gráfico N°. 13: Diagrama de Pareto.	72
Gráfico N°. 14: Diagrama de Gantt de implementación	74
Gráfico N°. 15: Mapa de procesos de la empresa Casino Atlantic City	75
Gráfico N°. 16: Flujograma de proceso de Mantenimiento Técnico	76
Gráfico N°. 17: Diagrama de Operaciones de Proceso (DOP Antes)	77
Gráfico N°. 18: Diagrama de Operaciones de Proceso (DOP Después)	78
Gráfico N°. 19: Diagrama de Actividades de Proceso (DAP Antes)	79
Gráfico N°. 20: Diagrama de Actividades de Proceso (DAP Después)	80
Gráfico N°. 21: Definición de puntos de medición de vibración	87
Gráfico N°. 22: Definición de puntos de medición termográfico	87
Gráfico N°. 23: Comparación de costos de reparación de máquinas	92
Gráfico N°. 24: Comparación de los costos fijos	94
Gráfico N°. 25: Comparación de los costos variables.	96
Gráfico N°. 26: Histograma de Costo de Reparación Antes	98
Gráfico N°. 27: Histograma de Costo de Reparación Después	98
Gráfico N°. 28: Gráfico Q-Q normal antes (Hipótesis general)	99
Gráfico N°. 29: Gráfico Q-Q normal después (Hipótesis general)	99
Gráfico N°. 30: Histograma de Costos fijos de Reparación Antes	101
Gráfico N°. 31: Histograma de Costos fijos de Reparación Después	101

Gráfico N°. 32: Gráfico Q-Q normal antes (Hipótesis Específica 1)	102
Gráfico N°. 33: Gráfico Q-Q normal después (Hipótesis Específica 1)	102
Gráfico N°. 34: Histograma de Costo Variables de Reparación Antes	104
Gráfico N°. 35: Histograma de Costo Variables de Reparación Después	104
Gráfico N°. 36: Gráfico Q-Q normal antes (Hipótesis Específica 2)	105
Gráfico N°. 37: Gráfico Q-Q normal después (Hipótesis Específica 2).	105

ÍNDICE DE IMÁGINES

Imagen N°. 1: Vibrómetro	86
Imagen N°. 2: Cámara termográfica	86
lmagen N°. 3: Técnico realizando medición de vibración	88
lmagen N°. 4: Valor registrado en el vibrómetro	88
Imagen N°. 5: Técnico desmontando un rodamiento para ser cambiado	90
Imagen N°. 6: Vista frontal Casino Atlantic City	141
Imagen N°. 7: Ubicación Casino Atlantic City	141
Imagen N°. 8: Desgaste del eje y cotización por la fabricación del mismo	142

RESUMEN

El presente trabajo de investigación titulado: "Implementación del mantenimiento

predictivo para minimizar los costos de reparación de las máquinas rotativas en la

empresa Casino Atlantic City. Miraflores, 2016", tuvo como objetivo general, im-

plementar el Mantenimiento Predictivo para minimizar los costos de reparación en

las máquinas rotativas empresa Casino Atlantic, Miraflores, 2016. Lluís Cuatreca-

sas y Francesca Torrell Francisco explican la teoría y práctica del Mantenimiento

Predictivo y nos entregan un conjunto de aplicaciones para la prevención de fallas

funcionales, entre ellas, el Análisis Vibracional y Termográfico. Francisco Javier

González desarrolla el concepto costo de mantenimiento y la desagrega en los .

costos fijos y variables.

Esta investigación cuantitativa posee un alcance explicativo porque está dirigida a

responder las causas que originan averías en las máquinas rotativas. Entre los

tipos de diseños experimentales se ha determinado el cuasi-experimental. La in-

vestigación se basó en una muestra de 51 máquinas rotativas elegidas de acuer-

do a un criterio de criticidad. Las técnicas utilizadas fueron la observación de

campo y el análisis de documentos. Las herramientas utilizadas fueron las fichas

de datos y fichas de registro. Se recurrió al paquete estadístico SPSS para el pro-

cesamiento de datos el cual nos arroja pruebas de normalidad y significancia te-

niendo como base los costos de reparación.

Finalmente se concluye que la aplicación del método predictivo redujo en 51.94 %

los costos de reparación y de esta manera se cumple con el objetivo manifestado.

Palabras claves: mantenimiento, predictivo, vibración, máguina, costo.

xii

ABSTRACT

The present research work entitled "Implementation of predictive maintenance to

minimize the costs of repairing rotary machines at Casino Atlantic City. Miraflores,

2016", had as a general objective to implement the Predictive Maintenance to min-

imize the costs of repair in the rotating machines company Casino Atlantic, Mira-

flores, 2016. Lluís Cuatrecasas and Francesca Torrell Francisco explain the theory

and practice of Predictive Maintenance and we provide a set of applications for the

prevention of functional failures, including Vibrational and Thermographic Analysis.

Francisco Javier González develops the concept of maintenance cost and dis-

aggregates it into fixed and variable costs.

This quantitative research has an explanatory scope because it is aimed at re-

sponding to the causes that cause breakdowns in rotary machines. Among the

types of experimental designs the quasi-experimental has been determined. The

research was based on a sample of 51 rotating machines chosen according to a

criterion of criticality. The techniques used were field observation and document

analysis. The tools used were data sheets and registration forms. We used the

SPSS statistical package for data processing, which gives us normality and signifi-

cance tests, based on the repair costs.

Finally, it is concluded that the application of the predictive method reduced the

repair costs by 51.94% and in this way the stated objective is met.

Keywords: maintenance, predictive, vibration, machine, cost.

xiii