

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

Implementación de herramientas del Lean Manufacturing para mejorar la Productividad del Área de Mantenimiento Empresa Talma, Callao, 2016

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: INGENIERO INDUSTRIAL

Autor:

ROMERO REDONDEZ, JONHY

Asesor:

MG. RONALD DÁVILA LAGUNA

Línea de Investigación:

Gestión Empresarial y Productiva

LIMA – PERÚ

2017

EDICATORIA

Dedicado a mi señora madre quien fue motivo de inspiración para seguir adelante con mis estudios pero que tuvo que adelantarnos y en este momento goza de la gracia de Dios.

AGRADECIMIENTO

Debo en principio agradecer a cada uno de mis profesores del programa Sube quienes con su tiempo y dedicación nos entregaron las herramientas para cumplir nuestros objetivos personales, sin ellos no tendríamos las armas para enfrentar los retos que nos exige este mundo globalizado.

También quiero agradecer a la empresa donde Laboro y a mi jefe Ramón Camero quien con su apoyo incondicional pude desarrollar la tesis y lograr hacer mejoras en nuestra área de trabajo. DECLARATORIA DE AUTENTICIDAD

Yo Jonhy Romero Redondez con DNI N° 25785174, a efecto de cumplir con las

disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la

Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería

Industrial, declaro bajo juramento que toda la documentación que acompaño es

veraz y autentica.

Así mismo, declaro también bajo juramento que todos los datos e información que

se presenta en la presente tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponde ante cualquier falsedad,

ocultamiento u omisión de los documentos como de información aportada por lo

cual me someto a lo dispuesto en las normas académicas de la Universidad

Cesar Vallejo.

Lima, 7 de Julio del 217

Jonhy Romero Redondez

V

PRESENTACIÓN

Señores miembros del Jurado:

Señores miembros del Jurado, presento ante ustedes la Tesis titulada "Implementación de herramientas del Lean Manufacturing para mejorar la productividad del área de Mantenimiento en la empresa Talma", con la finalidad de dar cumplimiento del Reglamento de Grados y Titulos de la Universidad César Vallejo para obtener el Titulo de Profesional de Ingeniero Industrial.

Esperando cumplir con los requisitos de aprobación.

Jonhy Romero Redondez

RESUMEN

El objetivo de la tesis es determinar de que manera la implementación de las herramientas del Lean Manufacturing mejora la productividad del area de Mantenimiento de la empresa Talma Servicios Aeroportuarios. El tipo de investigación según su finalidad es aplicada porque tiene por fin resolver problemas practicos utilizando para ello las teorias existentes y mejorar la productividad, es descriptiva explicativa, el diseño de la investigación es experimental porque se aplica las herramientas del Lean Manufacturing para estudiar los cambios en la variable dependiente, la población es el numero de mantenimientos realizados, la población es igual a la muestra que es medido en un periodo de 30 semanas antes y 30 semanas despues. Instrumento de recolección de datos que se usaron son fichas, reportes. La productividad del área de mantenimiento mejoro en 84.6%, la eficiencia mejoro en 93.8% y la eficacia en 90.24% en conclusión la aplicación de las herramientas del Lean manufacturing nos ayudo a mejorar la productividad del area de mantenimiento.

Palabras clave: Lean Manufacturing, 5S, Mantenimiento productivo Total.

ABSTRACT

The objective of the thesis is to determine how the implementation of Lean Manufacturing tools improves the productivity of the maintenance area of the company Talma Servicios Aeroportuarios. The type of research according to its purpose is applied because it is intended to solve practical problems using existing theories and improve productivity, it is descriptive explanatory, the research design is experimental because it applies the tools of Lean Manufacturing to study the changes In the dependent variable, the population is the number of maintenance performed, the population is equal to the sample that is measured in a period of 30 weeks before and 30 weeks later. Instrument of data collection that were used are tabs, reports. Maintenance productivity improved by 84.6%, efficiency improved by 93.8% and efficiency by 90.24%. In conclusion, the application of Lean manufacturing tools helped us improve the productivity of the maintenance area.

Keywords: Lean Manufacturing, 5S, Total Productive Maintenance.

INDICE

JURAD	DO CALIFICADOR	ii
DEDIC	CATORIA	iii
AGRA	DECIMIENTO	iv
DECLA	ARACIÓN DE AUTENTICIDAD	V
PRESI	ENTACIÓN	vi
RESU	MEN	vii
ABSTF	RACT	viii
INDIC	E DE TABLAS	xi
INDIC	E DE GRÁFICOS	xii
INDIC	E DE FOTOGRAFÍAS	xiii
INDIC	E DE PLANOS	xiv
INDIC	E DE FIGURAS	xiv
I. IN	TRODUCCION	15
1.1.	Realidad Problemática	16
1.2.	Trabajos previos	18
	1.2.1 Tesis variable independiente	18
	1.2.2 Tesis variable dependiente	22
1.3.	Teorías relacionadas al tema	26
	1.3.1 Teoría de la variable independiente	26
	1.3.2 Teoría de la variable dependiente	36
1.4.	Formulación del Problema	40
1.5.	Justificación del Estudio	41
1.6.	Hipótesis	42
1.7.	Objetivos	43
II. MI	ÉTODO	44
2.1.	Diseño de Investigación	45
2.2.	Variable, Operacionalización	47
2.3.	Población y muestra	48
2.4.	Técnicas de Recolección de datos	48
	2.4.1 Técnica	48

	2.4.2 Instrumentos de recolección de datos	49
	2.4.3 Validez	50
	2.4.4 Confiabilidad	50
2.5.	Método de análisis de datos	51
2.6.	Aspectos éticos	52
2.7.	Desarrollo de la propuesta de mejora	52
	2.7.1. Situación actual	53
	2.7.2. Propuesta de mejora	65
	2.7.3. Implementación propuesta de mejora	73
	2.7.4. Resultados	109
	2.7.5. Análisis Económico Financiero	112
III. RE	ESULTADOS	117
3.1.	Análisis descriptivo	118
3.2.	Análisis inferencial	132
IV. DI	SCUSIÓN	138
V. C	ONCLUSIÓN	141
VI. R	ECOMENDACIONES	143
VII. RE	EFERENCIAS BIBLIOGRÁFICAS	145
ANEX	OS	151
Anexo	01: Matriz de consistencia	152
Anexo	02: Lista de equipos de mantenimiento	153
Anexo	03: Control de recorrido de equipos	154
Anexo	04: Cronograma de mantenimiento y costos de mantenimiento	157
prever	ntivo	
Anexo	05: Fotografías de los equipos Talma	160
Anexo	06: Manual 5S	164
Anexo	07: Formato de evaluación antes de aplicar 5S	165
Anexo	08: Formato de evaluación después de aplicar 5S	166
Anexo	09: Matriz de calificación 5S Talma	167
Anexo	10: Mapa 5S	170
Anexo	11: Ficha estándar visual	171
Anexo	12: Gráfico de cumplimiento de inspecciones	172

Anexo 13: Ficha de inventario de activos fijos	173
Anexo 14: Manual de mantenimiento preventivo	174
Anexo 15: Programa trabajo semanal	175
Anexo 16: Historial de equipos	176
Anexo 17: Datos de la productividad	177
Anexo 18: Validación de instrumentos	178
ÍNDICE DE TABLAS	
Tabla 01: Cuadro del antes de la eficiencia y eficacia	56
Tabla 02: Consolidado de gastos en mantenimiento correctivo	57
Tabla 03: Cuadro Pareto	60
Tabla 04: Matriz de prioridades de metodología	67
Tabla 05: Gantt de implementación de herramientas lean Manufacturing	68
Tabla 06: Propuesta para elaborar la tesis	69
Tabla 07: Costos de capacitación importancia de la metodología 5S	70
Tabla 08: Cuadro de resumen del as capacitaciones con cantidad de horas	71
Tabla 09: Cuadro de gastos en implementación de las 5S	71
Tabla 10: Costos de capacitación de TPM	72
Tabla 11: Ficha datos generales de la zona	76
Tabla 12: Ficha de inventario de activo fijos	86
Tabla 14: Ficha estándar visual	91
Tabla 15: Ficha de actividades 5S	92
Tabla 16: Cumplimiento de inspecciones	94
Tabla 17: Cronograma del acto formal TMP	98
Tabla 18: Eficiencia después de aplicar las herramientas lean manufact.	110
Tabla 19: Eficiencia después de aplicar las herramientas lean manufact.	111
Tabla 20: Productividad después de aplicar las herramientas del lean	112
Tabla 21: Gastos en mantenimiento preventivo de enero a junio del 2016	113
Tabla 22: Gastos en mantenimiento correctivo de enero a junio del 2016	113
Tabla 23: Gastos mantenimiento preventivo de enero a junio del 2017	114
Tabla 24: Gastos en Mantenimiento Correctivo de enero a Junio del 2017	114
Tabla 25: Comparación antes y después de la implantación	115
Tabla 26: Comparación antes y después de implantación final	115

	Tabla 27: Comparativo puntaje 5S	118
	Tabla 28: Comparativo puntaje 5S	119
	Tabla 29: Comparativo pre-post 5S	120
	Tabla 30: Dimensión Disponibilidad antes de aplicar Lean Manufacturing	121
	Tabla 31: Disponibilidad después de aplicar Lean Manufacturing	122
	Tabla 32: Comparativo pre-post Disponibilidad	123
	Tabla 33: Productividad antes de aplicar Lean Manufacturing	123
	Tabla 34: Productividad después	124
	Tabla 35: Productividad antes y después	125
	Tabla 36: Eficacia antes	126
	Tabla 37: Eficacia después	127
	Tabla 38: Comparativo pre-post Eficacia	128
	Tabla 39: Eficiencia antes	129
	Tabla 40: Eficiencia después	130
	Tabla 41: Comparativo pre-post Eficiencia	131
	Tabla 42: Prueba de normalidad de productividad antes y después Con Shapiro-Wilk	133
	Tabla 43: Prueba de muestras relacionadas de productividad T-student.	134
	Tabla 44: Prueba de normalidad de eficacia antes y después con Shapiro- Wilk	135
	Tabla 45: Prueba de muestras relacionadas de eficacia T-student	135
	Tabla 46: Análisis de normalidad de eficiencia antes y después con	136
	Shapiro-Wilk	
	Tabla 47: Prueba de muestras relacionadas de eficiencia T-student	137
ĺ	ÍNDICE DE GRÁFICOS	
	Gráfico 01: Casa del sistema de producción Toyota	28
	Gráfico 02: Organigrama del área de mantenimiento	54
	Gráfico 03: Diagrama de Ishikawa	59
	Gráfico 04: Diagrama Pareto	61
	Gráfico 05: Organigrama de las 5S	74
	Gráfico 06: Organigrama TPM	96
	Gráfico 07: 5S Antes	118
	Gráfico 08: 5S Después	119

Gráfico 09: 5S Antes y Después	120
Gráfico 10: Disponibilidad antes de aplicar Lean Manufacturing	121
Gráfico11: Disponibilidad después de aplicar Lean Manufacturing	122
Gráfico 12: Comparativo pre-post Disponibilidad	123
Gráfico 13: Productividad antes de aplicar Lean Manufacturing	124
Gráfico 14: Productividad después	125
Gráfico 15: Productividad Antes y Después	126
Gráfico 16 Eficacia antes	127
Gráfico 17: Eficacia después	128
Gráfico 18: Eficacia Antes y Después	129
Gráfico 19: Eficiencia antes	130
Gráfico 20: Eficiencia después	131
Gráfico 21: Comparativo pre-post Eficiencia	132
ÍNDICE DE FOTOGRAFÍAS	
Fotografía 01: Ingreso a la oficina de mantenimiento	77
Fotografía 02: Área destinada para reparación de montacargas	78
Fotografía 03:Exterior del taller de mantenimiento	78
Fotografía 04:Almacén de repuesto y herramientas	79
Fotografía 05:Área destinada para maquinas herramientas	79
Fotografía 06:Oficina taller mantenimiento	80
Fotografía 07:Zona de almacenamiento temporal	82
Fotografía 08: Materiales que quedan en el taller	87
Fotografía 09: Tablero de herramientas	87
Fotografía 10:Limpieza de zona de carga de batería	88
Fotografía 11:Limpieza de taller de montacarga	89
Fotografía 12:Oficina de mantenimiento	89
Fotografía 13: Pintado de piso del taller de mantenimiento	90
Fotografía 14: Capacitación de conservadores	93
Fotografía 15: Reunión para el lanzamiento del TPM	98
Fotografía 16:Grupo de operarios del mantenimiento autónomo	100
Fotografía 17:Información del equipo para mantenimiento autónom	100
Fotografía 18:Manual de entrenamiento del TPM	101

Fotografia 19:Folder de celda del TPM	102
Fotografía 20: Actividades del TPM	103
Fotografía 21: Monitoreo continuo de máquina	103
Fotografía 22: Cartilla de control del TPM	104
Fotografía 23: Cartilla para operaciones	106
ÍNDICE DE PLANOS	
Plano 01: Oficinas y almacén de mantenimiento	63
Plano 02: Taller de mantenimiento	64
Plano 03: Zona de recarga de baterías y taller de mantenimiento	65
Plano 04: Oficina y taller de mantenimiento	83
Plano 05: Zona de carga de batería	84
Plano 06: Zona de estacionamiento de montacargas	85
ÍNDICE DE FIGURAS	
Figura 01: Formula productividad total	38
Figura 02: Formula productividad multi factorial	38
Figura 03: Formula productividad factorial	38
Figura 04: Ciclo de la productividad	40
Figura 05: Validación de instrumentos	50
Figura 06: Panel de las 5S	75
Figura 07: Código de identificación de activo	81
Figura 08: Modelo de tarieta roia	82